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Abstract

Recent advances in digital holography, optical engineering and computer
graphics have opened up the possibility of full parallax, three dimensional
displays. The premises of these rendering systems are however somewhat
different from traditional imaging and video systems. Instead of rendering
an image of the scene, the complete light distribution must be computed.
In this thesis we discuss some different methods regarding processing and
rendering of two well known full light representations: the light field and the
hologram.

A light field transform approach, based on matrix optics operators, is
introduced. Thereafter we discuss the relationship between the light field and
the hologram representations. The final part of the thesis is concerned with
hologram and wave field synthesis. We present two different methods. First,
a GPU accelerated approach to rendering point-based models is introduced.
Thereafter, we develop a Fourier rendering approach capable of generating
angular spectra of triangular mesh models.

Kurzfassung

Aktuelle Fortschritte in den Bereichen der digitalen Holographie, optischen
Technik und Computergrafik ermöglichen die Entwicklung von vollwertigen
3D-Displays. Diese Systeme sind allerdings auf Eingangsdaten angewiesen,
die sich von denen traditioneller Videosysteme unterscheiden. Anstatt für die
Visualisierung ein zweidimensionales Abbild einer Szene zu erstellen, muss
die vollständige Verteilung des Lichts berechnet werden. In dieser Disserta-
tion betrachten wir verschiedene Methoden, um dies für zwei verschiedene
gebräuchliche Darstellungen der Lichtverteilung zu erreichen: Lichtfeld und
Hologramm.

Wir stellen dafür zunächst eine Methode vor, die Operatoren der Strah-
lenoptik auf Lichtfelder anzuwenden, und diskutieren daraufhin, wie die Dar-
stellung als Lichtfeld mit der Darstellung als Hologramm zusammenhängt.
Abschliessend wird die praktische Berechnung von Hologrammen und Wel-
lenfeldern behandelt, wobei wir zwei verschiedene Ansätze untersuchen. Im
ersten Ansatz werden Wellenfelder aus punktbasierten Modellen von Objek-
ten erzeugt, unter Einsatz moderner Grafikhardware zur Optimierung der
Rechenzeit. Der zweite Ansatz, Fourier-Rendering, ermöglicht die Generie-
rung von Hologrammen aus Oberflächen, die durch Dreiecksnetze beschrieben
sind.
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Summary

This dissertation presents a number of different contributions related to light
field and computer generated holography (CGH) research. In short, the
projects regard light field transformation, wave field analysis and two differ-
ent methods for wave field and hologram rendering.

The overall motivation behind this thesis is an interest in complete light
representations such as the light field and the hologram. These represen-
tations are capable of encoding the full near field of a scene. They could
be used as rendering targets in true three dimensional display technologies,
taking over the role that the image or video frame has today.

Below we summarize the different projects in this thesis.

Light field transforms The project focuses on adopting linear operators
from ray optics in a light field framework. It is shown how propagation
between planes, rotation, interfaces and thin lenses can be expressed using a
matrix notation. This representation allows a chain of optical elements to be
expressed as a multiplication of each operator matrix. By adopting a plane-
slope representation, the light field can be propagated through the chain
simply by a coordinate transform. It is shown how the matrix describing the
transform can be seen as a change of the coordinate frame in ray space. Thus,
this notation allows for very efficient light field transforms. We present a
framework for wavelet compressing the light field and show how a hierarchical
hexadeca-tree representation can be used to allow for fast rendering.

Wave field analysis In this project the motivation is to investigate the
relationship between the light field and wave field representations. We discuss
the principle of each representation, as well as the physical model of light.
In the resulting analysis we argue that a conversion preserving the near field
may not be possible without reconstructing scene depth information. We
discuss briefly how this may be achieved using different methods. We also
present a time-frequency approach which is exemplified by the short-term
Fourier transform. This method approximates the wave field locally as a
sum of planar waves, using the angular spectrum. An example is given using
a wave field reconstructed from a phase-shift hologram.

GPU-based computer generated holography This project shows how
holographic interference patterns can be generated from 3D point objects
using programmable graphics hardware. We present an approach that ren-
ders the bipolar distribution of a wave field using a fragment shader that is
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customly generated to deliver optimal performance. The motivation behind
the project is to find an efficient way of implementing hologram generation
on the GPU. We analyze the problem as well as earlier work in the field. The
resulting program uses a tradeoff between multipass rendering and fragment
shader load. Our program tailors a fragment shader in runtime to optimize
the efficiency and take the limitations of current hardware into account. The
resulting shader contains the code necessary to render the superposition of
as many points as supported by the GPU in an unrolled loop, and is used
in a multiple rendering algorithm. We have used our program to generate
output directly on an experimental SLM-based display setup.

Fourier rendering for wave field synthesis The motivation behind this
work is an idea of a new strategy for computer generated holograms from
polygonal models. An efficient way of transporting wave fields between par-
allel planes is based on the angular spectrum. This method, however, requires
transforming the wave field of each planar surface into the frequency domain.
While previous approaches sampled the polygons and Fourier transformed
the resulting 2D image, we compute the Fourier transform of a general trian-
gle analytically. This has several advantages as the wave field is not sampled
until it is propagated all the way to the hologram plane. Therefore, our
technique does not suffer from the need to rotate and filter the Fourier coef-
ficients like previous methods. We present the theory behind the approach
and derive an analytic expression for the wave field of a general triangle as-
suming simplified material properties. We also present a proof of concept
implementation, and resulting wave fields that can be used for holographic
display.
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Zusammenfassung

Thema der vorliegenden Dissertation sind Verfahren zur schnellen und rea-
listischen Darstellung anhand von digitalen Hologrammen und Lichtfeldern.
Die Schwerpunkte sind Transformation von Lichtfeldern, Analyse von Wel-
lenfeldern und Methoden, um Wellenfelder sowie Hologramme in Echtzeit zu
visualisieren.

Motiviert wurde die Arbeit von der Überlegung, daß Lichtfeld und Holo-
gramm eine vollständige Darstellung des Lichts in einer Szene ermöglichen.
Als solche könnten sie in zukünftigen vollwertig dreidimensionalen Darstel-
lungstechnologien die Rolle übernehmen, die momentan dem zweidimensio-
nalen Videobild zukommt.

Im folgenden fassen wir die verschiedenen Projekte kurz zusammen.

Transformation von Lichtfeldern Ziel des ersten Abschnitts ist es, die
Wirkungsweise der linearen Operatoren der Strahlenoptik in den mathema-
tischen Rahmen der Lichtfelder zu übertragen. Wir zeigen, wie Lichttransport
zwischen Ebenen, Rotation, Materialübergänge und dünne Linsen mit Hilfe
einer Matrixnotation dargestellt werden können. In dieser Darstellung kann
eine Kette von Operationen durch einfache Matrixmultiplikation abgebildet
werden. Ein Lichtfeld, welches auf einer Ebene in verschiedene Richtungen
definiert ist, durchläuft eine Koordinatentransformation, wenn es einer sol-
chen Transformationen ausgesetzt wird. Die Matrix, die die Transformation
beschreibt, kann dann als Basiswechsel im Strahlenraum betrachtet werden.
Auf diese Weise erlaubt unsere Notation eine sehr effiziente Behandlung von
Lichtfeldern. Abschliessend stellen wir ein praktisches Konzept vor, wie durch
eine Wavelet-Kompression des Lichtfeldes und hierarchische Darstellung in
einem Baum ein schnelles Rendering ermöglicht wird.

Analyse von Wellenfeldern Der zweite Abschnitt widmet sich der Un-
tersuchung von Zusammenhängen zwischen den Darstellungen als Lichtfeld
oder Wellenfeld. Wir diskutieren dabei die zugrundeliegenden Prinzipien und
Theorie des Lichts beider Darstellungen. Die anschliessende Untersuchung
zeigt, daß im allgemeinen kein Wechsel zwischen beiden möglich ist, wenn das
Nahfeld erhalten bleiben soll. Erst die Gewinnung zusätzlicher Information
in Form von Tiefeninformation in der Szene macht einen solchen Übergang
möglich, und wir untersuchen verschiedene Methoden, die dazu geeignet sind.
Eine davon ist der Zugang über eine Fouriertransformation in kurzen Zeitfen-
stern, wobei das Wellenfeld lokal als Summe ebener Wellen dargestellt wird.
Als Beispiel rekonstruieren wir das Wellenfeld eines phasenverschobenen Ho-
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logramms.

GPU-basierte Hologrammsynthese Im dritten Abschnitt zeigen wir, wie
holographische Interferenzmuster aus 3D-Punkten mit Hilfe von program-
mierbarer Grafikhardware erzeugt werden können. Ziel ist die effiziente Im-
plementation der Hologrammsynthese auf einer GPU. Die Analyse des Pro-
blems sowie früherer Arbeiten auf dem Gebiet führt uns zu einem neuen
Zugang, in dem wir eine optimierte Balance zwischen Multipass-Rendering
und Berechung der Wellenüberlagerung ein einem einzelnen Shader herstel-
len.

Unser Algorithmus nutzt einen speziell angepassten Fragment-Shader, um
die bipolare Verteilung eines Wellenfeldes zu erzeugen. Dieser Shader wird
zur Laufzeit generiert und optimiert, um die Möglichkeiten der eingesetzten
Hardware zu berücksichtigen. Dabei überlagert er die Wellen von so vielen
Punkten, wie die GPU ohne die Verwendung von Schleifen ermöglicht. Weite-
re Überlagerungen werden durch zusätzliche Rendering-Durchgänge berech-
net. Die praktische Verwendbarkeit des Systems wird auf einem experimen-
tellen SLM-basierten Display gezeigt.

Fourier-Rendering zur Synthese von Wellenfeldern Der letzte Abschnitt
entwickelt die Idee für eine neue Strategie, um Hologramme aus Polygonmo-
dellen zu berechnen. Eine naheliegende Methode, das Wellenfeld zwischen
parallelen Ebenen zu transportieren, führt über das Winkelspektrum, erfor-
dert aber eine Fouriertransformation des Wellenfeldes jeder einzelnen Fläche.
Frühere Zugänge führten über ein Sampling der einzelnen Polygone und an-
schließende Fouriertransformation des entstandenen 2D-Bildes. Im Gegensatz
dazu berechnen wir die Fouriertransformation für ein allgemeines Dreieck
analytisch und führen ein Sampling erst durch, wenn das Wellenfeld bis zur
Hologrammebene propagiert wurde. Diese Methode hat verschiedene Vortei-
le, insbesondere können wir darauf verzichten, Fourierkoeffizienten zu rotie-
ren und zu filtern.

In der theoretischen Untersuchung unseres Zugangs leiten wir eine ana-
lytische Darstellung des Wellenfeldes eines allgemeinen Dreiecks her, wobei
wir ein vereinfachtes Materialmodell annehmen. Eine experimentelle Imple-
mentierung beweist die praktische Durchführbarkeit des Zugangs, die resul-
tierenden Wellenfelder können direkt in holographischen Displays verwendet
werden.



Preface

The contributions presented in this thesis are based on work I did as a re-
searcher at the Max-Planck-Institut für Informatik in Saarbrücken, Germany,
the years 2002 – 2007. My interest in numerical optics, holography and wave
optics for computer graphics was spurred by my supervisor, Marcus Magnor.
After I had been at the institute for some time, he handed me a few books
on linear and Fourier optics and suggested that I have a look. In one way
or another, several threads leading up to this dissertation sprung from the
experiments and project that followed.

Most, but not all, of the contributions have been published in journals
and conference proceedings. The publications have been integrated in this
thesis in revised and extended form. Light Field Rendering using Matrix
Optics [7] was presented at WSCG 2006. It is now part of Chapter 4. The
discussion on a light field to hologram mapping in Chapter 5 is the result of
a long process of understanding holograms in a computer graphics setting.
It is related to the work in [127], which is the result of a collaboration with
Remo Ziegler and his colleagues at ETH Zürich. It will be presented at
Eurographics 2007. The new rendering challenges that are introduced by full
light displays have been one of my main interests, and something I would
really like to pursue also in the future. The point-based method presented
in Chapter 6 was originally published in Optics Express [4]. It was while
revising this approach that I had the idea of developing a completely new
analytic method. This work lead to the contribution in Chapter 7. At the
time of writing, the basics of Fourier rendering is also being prepared for
publication.

During my stay at the MPI I also published some results in areas that
do not lie directly within the scope of this thesis. A Mobile System for
Multi-Video Recording [5] (CVMP 2004 ) and External camera calibration
for synchronized multi-video systems [46] (WSCG 2004 ) are the results of
successful collaborations with Ivo Ihrke concerning multi-video recording.
Another joint project with Ivo resulted in the paper Volumetric Reconstruc-
tion, Compression and Rendering of Natural Phenomena from Multi-Video
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Chapter 1

Introduction

This thesis presents research related to transforms, analysis, rendering and
synthesis of complete light distributions such as the light field and the holo-
gram. Human society has a long history of two dimensional image synthesis,
stretching from painting on a cave wall to rendering on a computer monitor.
It is, however, only relatively recently that technology has taken the first
steps towards true three-dimensional display systems. Such a system allows
all viewers within its proximity to experience their own true image of the
object. The perceived view is full or complete in such a sense that it carries
all the visual attributes, such as parallax and depth, of an object. While the
technical solutions for such displays are still in their early stages, we know
that they will require a full representation of the light leaving an object, as
well as novel rendering techniques.

Representations for full light distributions have been discussed in com-
puter graphics for quite some time now, and in the field of optics even longer.
In computer graphics light fields or lumigraphs are considered, while the op-
tics community talks about holograms or wave fields. In this work we consider
holographic rendering methods, but also analyze the hologram from a com-
puter graphics perspective and show how to relate the hologram to a light
field. We will however start by discussing light and the motivation behind
this thesis.

1.1 Light and true three dimensional viewing

Light is what we usually call the part of the electro-magnetic spectrum that
can be perceived using our eyes. For an object to be visible, light must travel
from its surface to our eyes.

1



2 Introduction

A digital camera can also be used to take a picture of an object. The
light emitted from the scene is focused through the optics of the camera lens
onto a light sensitive chip that registers color and intensity. Taking it one
step further, inspired by the human visual system, one can try to retrieve
information from the recorded picture. This is the science of Computer Vi-
sion. Likewise, in Computer Graphics methods are developed to generate
synthetic pictures for display on a monitor. The monitor is made up of mil-
lions of small light emitting elements that can be set to a specific color and
intensity. Combining computer vision and computer graphics so that images
are digitally recorded, processed and redisplayed on a computer screen we
have Image-based Rendering.

Cameras do not record the complete light of an object however, nor does
a monitor display the complete light. A camera records a picture showing
how the object looks from the position of the camera. Standard monitors
do the same. If two persons standing well apart are looking at a monitor
displaying a CG rendering of a coffee cup, both will see the same picture.
While, if the cup would have been placed where the monitor stood it would
look significantly different to both of them. Actually, it would look different
to the left and right eyes of one person, that is how depth is perceived.

This is why it is very uncommon to try to reach into a photograph of
a fruit basket and grab an apple for a bite. What we see is the light from
colors on a plane, and if no special concern is taken to fool the human visual
system we know it for a picture.

But, what if the complete light could be recorded and played back? In
that case, all light leaving said fruit basket, traveling in all directions would
be saved. Later light of identical structure could be re-emitted, and the eye
would perceive it as a solid, three-dimensional object. It would be much
more convincing to the visual system, and one would have to rely on the
other senses to perceive the illusion, e.g. by reaching out and trying to touch
the scene.

There are of course stereo displays and other technical solutions geared
towards giving a personal three-dimensional experience. However, a true
three-dimensional display is independent of the kind of instrument used for
viewing, or the amount of users. It emits the full light from a scene and acts
as a window to a virtual world.

The window analogy is a useful one when describing the difference to
traditional display and recording techniques. When viewing something on a
computer display it is like watching a painting or a photograph. The three
dimensional world is projected onto a two dimensional plane before reaching
our eyes and the depth cues are lost. Watching a true three-dimensional
display will be like looking out through a window. All light from the out-
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side world passing through the window is reaching the eyes, thus depth is
perceived.

1.2 Motivation

Over the last few years promising digital technologies, showing some of
the features needed to construct complete three dimensional displays, have
arisen. Modern digital holography, boosted by the development of high
resolution Charge Coupled Devices (CCDs) and Spatial Light Modulators
(SLMs), has been developed by optical engineers during the last decade.
Meanwhile, light field recording and rendering has been developed in the
computer graphics community, and are now supported by autostereoscopic
display systems.

In this thesis we will present research in the area of both technologies. We
will also show how the representations are related and how the information
contained in a hologram can be interpreted as a light field under certain
assumptions.

While the majority of technology today is of rather low resolution and
performance it obeys the basic principles of a complete light system. The
display is still a two dimensional surface, but the representations implicitly
encode depth information which is reconstructed during playback. Thus it
acts as if the glass in the window analogy above had a ”memory” and could
store and playback the light passing through it. The scene is not projected
to this surface, instead the visual information is encoded.

Such display technology clearly requires new methods for analysis and
rendering. These challenges are our main motivation behind the contribu-
tions presented in the different Chapters of this thesis. It is also worth noting
that although true 3D display technologies will be of great use in research,
medicine and the industry, wave front synthesis may also be used for other
applications than rendering. Wave fields are for instance used to model op-
tical tweezers. This is a holographic construction that can be used to affect
the momentum of very small particles and thus move them around. This is
very useful for microscopy and micro structure engineering.

1.3 Contributions

While this thesis only offers some contributions in the form of wave field
analysis and synthesis, we hope that the reader will find them valuable. It
is clear that several hurdles remain before systems for true 3D display are
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commonly available, but we are convinced that they can be overcome and
that one strategy is the study of wave field rendering.

The main contributions in this thesis can be summarized as

• An adoption of ray optics operators to a light field framework

• A discussion on the relationship between the light field and the holo-
gram

• An method for approximate conversion between wave field and light
field.

• A strategy for acceleration of computer generation using programmable
graphics hardware.

• A novel method for computer generated holography from triangular
meshes.

1.4 Outline

The work in this thesis regards several aspects of holography and light field
processing that together bridges the fields of computer graphics and optics.

The next chapter introduces the reader to the basics of geometric and
wave optics, the theory of holography and light field rendering, as well as the
principles of an experimental holographic system. General scientific contribu-
tions and literature in the fields of computer graphics and digital holography
are also reviewed. Chapter 3 on the other hand discusses work more directly
related to the contributions of this thesis.

In Chapter 4 we present a method for approximating a set of optical
elements for light field rendering as 4 × 4 matrix operators. This allows
for fast transformations of light fields as viewed through a chain of optical
elements.

Following that, Chapter 5 investigates the relationship between wave field
and light field. We discuss the basics of both representations and show their
differences. We also introduce the angular spectrum based on Fourier optics
and show how to approximate a hologram in the form of a light field.

Chapter 6 regards accelerating the computation of digital holograms through
the use of graphics processors. We introduce a point-based method that gen-
erates a custom shader in run time to suite the current rendering architecture.
This also allows it to render larger models than some of the previous work.

A novel method for wave field synthesis is presented in Chapter 7. We
derive an analytic solution for the angular spectrum of a general triangle. We
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also show how this result can be used to render a wave field for triangular
mesh models. This method does not require a per triangle Fourier transform
as previous methods did, neither is interpolation of the angular spectrum
needed.

Finally, Chapter 8 concludes the work. We summarize the contributions
in the thesis and discuss possible venues for future research.



6 Introduction



Chapter 2

Background

This chapter will explain the basic concepts and terminology used in this
dissertation.

We arranged this chapter so that the first sections are fairly general, giving
a brief introduction to basic concepts, while the later ones discuss terminology
and work directly related to the scientific contribution of this thesis. It is
of course impossible to give a full introduction to optics and holography on
these few pages. We have tried to provide references to textbooks and other
sources on information whenever available.

Section 2.1 introduces the reader to the geometric and wave models of
light. Section 2.2 thereafter, discusses how to perceive or record an image.
Section 2.3 builds on this to introduce the light field and the hologram as
two strategies to overcome the limitations of normal photography. Section 2.4
finally, turns the problem around by discussing how to display a three dimen-
sional image. That section also presents the experimental setup we have used
in our work on computer generated holography. The chapter is concluded
with a brief summary.

2.1 Models of light

The nature of light is not something that is easily explained. There are how-
ever several different models to describe its behavior. Techniques described
in this text will either be using the ray or the wave model of light.

In computer graphics the classic geometric model is most commonly used,
as features found in standard CG models tend to be much larger then the
wavelength of light and do not give rise to any noticeable degree of diffraction.
When it comes to hologram rendering however, diffraction plays an important

7



8 Background

role, thus for some of the work presented in this thesis we will also be using
the wave model of light.

We recommend readers looking for a complete introduction to the na-
ture of light to consult the excellent book Principles of Optics by Born and
Wolf [11]. However, as the following chapters will work with both the geo-
metric and wave models of light a short introduction is in place.

2.1.1 The geometric model of light

The geometric model describes light as rays traveling from a light source
through space. The model is therefore also commonly referred to as the ray
model of light. It has roots at least as far back as the ancient Greek culture.
In the centuries B.C. Euclid studied the properties of light in his Optica, and
proposed that light travels in straight lines.

When we refer to a light ray in this thesis we will usually mean a con-
struction that has an origin (the light source) and a direction of propagation.
The power of the ray, the radiance, is assumed to be constant along the ray.
Thus a ray can be described by the following attributes

{p,v, L}. (2.1)

Where p and v are vectors in R
3 and denotes ray origin and direction respec-

tively. L is the light radiance, which is a scalar constant along the ray. In
most general discussions, monochromatic light will be considered for simplic-
ity. If color images are desired, the methods can be generalized in accordance
with standard computer graphics principles, where the color intensity is con-
sidered as a coordinate in RGB-space.

In Chapters 4 and 5, rays without known origin are considered. These
are parameterized as intersecting a reference plane Π ⊂ R

3 defined as

Π = (oΠ, {eΠ
1 , e

Π
2 }), (2.2)

where oΠ is a point in Π and {eΠ
1 , e

Π
2 } spans a base in Π. We will denote the

normal to the plane nΠ. Assuming that not two rays intersect the plane in
the same point from the same direction a ray can now be described by

{x,d, L}. (2.3)

In the above equation, x ∈ R
2 and d ∈ R

2 denotes the ray intersection with
Π, respective the ray direction components along the basis vectors of Π.

To view light propagation as happening along rays has many advantages.
To start with it is intuitive. Light travels in a straight line between two points:
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“Nature always acts by the shortest course” (Pierre de Fermat, 1601–1665).
In addition, interaction with the light through lenses and other optical instru-
ments can be solved by geometric constructions, making it computationally
effective in many situations. Due to the vector nature and the possibil-
ity of linear operations, geometrical optics is the model of choice for many
numerical applications. It is by far the most commonly used light model in
computer graphics and is valid in most situations where the size of the object
interacting with the light is much bigger than a wavelength.

There is however one important characteristic of light that can not be
easily described by the geometric model: diffraction. This phenomena occurs
when the light passes an obstacle the size of a wavelength, and was one of
the main reasons for alternative models of light to be developed.

2.1.2 The wave model of light

The wave theory of light was originally developed as an alternative to the
geometric model during the 17th century. Some of its earliest advocates
and founders were Robert Hooke and Christian Huygens. The reason for
looking for alternatives to the already accepted model was that geometric
optics could not explain all observed properties of light at that time. One of
the most noteworthy characteristics, and the one interesting for holography
and the work in this thesis is diffraction.

However, before we start to address this phenomenon, we will introduce
the basics of the wave model.

Basic principles

Light is generally an electromagnetic wave, and can thus be described by
Maxwell’s equations. In the cases where the wave properties of light are
applied in this dissertation however, a simpler scalar wave model is suffi-
cient. We will not perform the full derivation of this model, but will only
briefly discuss some steps in order to identify some important properties. A
full derivation as well as valuable discussions can be found in Principles of
Optics by Born and Wolf [11]. In the discussion below we will follow the
argumentation of Kreis [53].

Propagation of light in vacuum is described by the wave equation derived
from the Maxwell equations.

∇2E − 1

c20

∂2E

∂t2
= 0. (2.4)
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In the above equation E is the electric field strength, c0 is the speed of light
in vacuum and t is the time variable. ∇2 denotes the Laplacian operator.

The general light wave is a transverse wave, meaning that it oscillates
in all directions orthogonal to the direction of propagation. The different
directions of vibration are called polarizations and are the reason that the
electric field strength is a vector quantity. For the purposes of the methods
in this thesis it is however safe to assume that the light is plane polarized.
That is, it only oscillates in one plane, and thus Eq. 2.4 reduces to the scalar
wave equation

∂2E

∂z2
− 1

c20

∂2E

∂t2
, (2.5)

assuming that the wave propagates along the z direction. Due to the linearity
of Eq. 2.5 the sum of two solutions is also a solution. We will call this
the superposition principle and it is an important property for many of the
methods presented in this thesis.

There are of course several solutions to the scalar wave equation. For the
applications in this dissertation we will however consider only plane waves
and spherical waves. We will start with the planar wave front which has
constant phase in planes perpendicular to the light propagation direction.
To describe these waves we start with the harmonic solution to Eq. 2.5 under
monochromatic light of wavelength λ

E(z, t) = E0 cos(
2π

λ
z − ωt). (2.6)

Assuming E has maximum phase at (z = 0, t = 0) in the above equation,
E0 is the real amplitude of the wave, while ω = 2πc0

λ
is called the angular

frequency. It is worth noting that the term 2π
λ

is called the wave number,
and is often shorthanded as k in some physics literature.

A useful simplification here is to use Euler’s formula and introduce a
complex wave. Thus, Eq. 2.6 is written as

E(z, t) =
1

2
E0 exp(i(

2π

λ
z − ωt)) +

1

2
E0 exp(−i(2π

λ
z − ωt)). (2.7)

In reality it is only the real part of a complex E(z, t) that has any physical
interpretation. If we keep this in mind we can remove the second part of
Eq. 2.7 and have

E(z, t) =
1

2
E0 exp(i(

2π

λ
z − ωt)). (2.8)

Equation 2.8 describes a planar wave front propagating in the direction
of the z axis. A planar wave front propagating in a general direction can be
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described by introducing the wave vector

k =
2π

λ
[dx, dy, dz]

T . (2.9)

The vector [dx, dy, dz] denotes the direction vector of the light in the world
coordinate frame, and ‖ [dx, dy, dz] ‖ = 1 so that the elements make up the
components projected onto the xyz basis vectors. Finally

r = [x, y, z]T (2.10)

denotes the spatial position. We can thus write a planar wave front traveling
in the direction k as

E(r) = A0 exp (i(k · r)) (2.11)

where A0 is called the complex amplitude.
The spherical wave front has constant phase on equiradial distances from

the light source. Such a wave must then satisfy the following scalar wave
equation:

1

r

∂2

∂r2
(rE) − 1

c2
∂2E

∂t2
= 0. (2.12)

Using the harmonic spherical solution to this equation, and employing the
simplifications analog to those discussed above, the equation for a spherical
wave front is:

E(r) =
A0

r
exp (

2πi

λ
r). (2.13)

Concluding, we have two simplified expressions that can be used to model
light sources in the wave model. The planar wave front as presented in
Eq. 2.11 and the spherical wave front, Eq. 2.13. Intuitively, the spherical
wave front is a point light source, irradiating equally light in all directions.
The planar wave front on the other hand can be thought of as originating
from a light source at an infinite distance. As the phase is constant on planes,
this means that the light does not spread out, which corresponds to parallel
rays in the geometric model.

Finally, due to the assumptions noted in the above derivations, the type
of light dealt with has the following properties:

• monochromatic and coherent

• plane polarized

• propagation in vacuum

• maximum amplitude at source
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• physical interpretation only for real part

From the first two points of the assumptions it is clear that we are dealing
with a laser type of light. The other assumptions are also worth keeping in
mind, as they are valid in an ideal situation and may or may not be met in
real experiments. However, for most cases the numerical methods based on
these assumptions will function well also in real world display situations.

Theory of diffraction

One of the main reasons for using waves to describe light propagation is that
it allows for diffraction. This is a phenomenon that occurs when waves get
disrupted by objects in their path. The effect occurs for all types of waves,
although in this dissertation we will only use the fact that light can get visibly
diffracted. The observed effect of diffraction is that the waves get spread out
at sharp edges of the obscuring object. Some everyday examples include
water waves that fan out around rocks and other obstacles, sound waves that
diffract at the edges of a doorway allowing us to hear a conversation although
we are not in the room, and the rainbow patterns reflected from a compact
disc as light diffracts in the small gratings. Although all object edges diffract
light, visible effects usually only occur when the size of the diffracting object
is at the order of a wavelength. This is due to the fact that the spread of the
diffracted light is inversely proportional to the size of the object.

The first scientific mentioning of diffraction is by F.M. Grimaldi in 1665.
It was also an effect of diffraction, the presence of light in a geometric shadow
that led Hooke to propose that light may propagate as a wave. Diffraction
is the phenomenon that occurs when a wave front passes an obstacle, or
through an opening of the size near the order of a wavelength. This can be
seen in Figure 2.1, where a wave travels from left to right through two small
apertures. Modeling the light propagation as waves, the light gets distorted
when passing the obstacle. In the case described in Figure 2.1 the small slits
will effect the wave front in such a way that the apertures themselves can be
thought of as two new light sources. This means that instead of the original
source on the left, emitting one wave front, we have two wave fronts to the
right of the barrier. When these waves hit a diffuser screen or a CCD to the
right of the obstacle they interfere with each other, and their amplitudes are
added together. Thus regions of different amplitude can attenuate or cancel
each other out, creating the interference pattern that can be observed in real
world experiments of this kind.

The geometric model of light will not yield this result. For the setup
described in Figure 2.1, a simple construction will yield two pencils of rays
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Figure 2.1: Young’s experiment; A classic diffraction example. A
point light source in A emits light in all directions. The light
passes through two small slits, but is otherwise obscured by an
opaque obstacle. Treating the light as waves will then have the
effect that each slits can be viewed as the source of two new light
waves, B and C. Measuring the light intensity in some plane at
the right of the obstacle yields an image based on the interference
between these two light waves. This model fits well with results
from practical experiments, where such patterns are observed.

originating from A, one through each aperture. According to this model, an
observer on the right side of the obstacle should just notice two bright re-
gions; the rest would be in shadow. This contradicts the interference pattern
observed in reality and was also what led Hooke to advocate the wave model
which could explain the phenomenon.

Huygens’ principle A good way of explaining diffraction is using Huygens’
principle. Named after the Dutch 17th century scientist Christian Huygens
this principle of wave propagation states that: Each point on an advancing
wave front can be considered a source of a secondary spherical wave. The
value of the wave front at some later stage can be written as the superposition
of the secondary waves. Figure 2.2 illustrates this principle. Diffraction can
thus be thought of as canceling out some of these secondary waves in the
region of the obstacle, and affecting the resulting wave front. This is exactly
what happens in Figure 2.1, where the incoming wave front is canceled out
in all but two narrow slits. Huygens’ principle states that the light passing
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Figure 2.2: Illustrating Huygens’ principle: A wave front at A
can be described as the source of a set of new spherical waves, B.
The wave front at some later position, C, can be described as the
envelope of all the spherical waves.

through these slits will act as two new light sources emitting spherical waves.
Thus the interference pattern observed to the right of the screen.

Rayleigh-Sommerfeld diffraction The diffracted wave front formed by
some distribution in a specific plane can be more formally described using
the Rayleigh-Sommerfeld integral

U(p) = −1

λ

∫∫

Π

A(s)
exp (2πi

λ
‖p − s‖)

‖p − s‖
(p − s) · n
‖p − s‖ ds. (2.14)

Where A is the known complex amplitude in some plane Π ∈ R
3, p ∈ R

3 is
assumed to lie in the positive half-space of Π, n ∈ R

3 is the positive normal
to Π. The integral expresses the value of the wave field U in the point p as
resulting from diffraction at the plane Π. The scenario is shown in Figure 2.3.

Intuitively, the Rayleigh-Sommerfeld integral reminds of the Huygens-

Fresnel principle. The term A(s)
exp ( 2πi

λ
‖p−s‖)

‖p−s‖
can be considered a spherical

wave, and we are integrating over a set of complex amplitudes. The integral
does not directly translate to the principle however, even though it explains
the effects. Instead the Rayleigh-Sommerfeld integral should be considered a
formal description of diffraction theory. Its derivation is outside the scope of
this dissertation, but is worth studying together with the other major theory
called Kirchhoff diffraction. Both are thoroughly described in [11] and [36].

We will use Rayleigh-Sommerfeld diffraction as the main formal descrip-
tion of diffraction, and our main methods will originate from this description.

The Fresnel approximation The full Rayleigh-Sommerfeld integral can
be costly to compute, and approximate methods have been suggested. One
of the most used is the so called Fresnel approximation, which has been
extensively used in previous computer generated holography and numerical
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Figure 2.3: Light gets diffracted in the plane Π by some occluder.
The complex wave amplitude in Π is described by A. n is normal to
the plane. The resulting wave front in a point p can be calculated
using the Rayleigh-Sommerfeld integral given in Eq. 2.14.

optics research. In this dissertation we base our CGH methods directly on
the Rayleigh-Sommerfeld integral, but use the Fresnel approximation when
discussing holograms and light fields in Chapter 5.

Starting from Eq. 2.14, we assume the plane Π to be the plane at z = 0
with the normal n = [0, 0, 1]T . Writing p = [xp, yp, zp]

T and s = [xs, ys, 0]
T

we have

r = ‖p − s‖ =
√

(xp − xs) + (yp − ys) + zp. (2.15)

For a finite aperture, when zp �
√

(xp − xs)2 + (yp − ys)2, we may ap-
proximate r in the denominator by r ≈ zp. Inserting this approximation and
Eq. 2.15 into Eq. 2.14 gives us

U(xp, yp, zp) = −1

λ

∫∫

Π

A(xs, ys)
exp (2πi

λ
r)

z2
p

(p − s) · n dxsdys

= − 1

λzp

∫∫

Π

A(xs, ys) exp (
2πi

λ
r) dxsdys.

(2.16)

Above we use the fact that (p−s)·n =
[

(xp − xs)
2, (yp − ys)

2, z2
p

]

·[0, 0, 1]T =
zp to simplify the equation.

Note that we can not use r ≈ zp in the exponent however. This is
where the Fresnel approximation comes into play. It is based on the binomial
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expansion of Eq. 2.15, assuming that it can be adequately approximated by
the two first terms

r =
√

(xp − xs)2 + (yp − ys)2 + z2
p = zp

√

(
xp − xs

zp

)2 + (
yp − ys

zp

)2 + 1

≈ zp(1 +
1

2
(
xp − xs

zp

)2 +
1

2
(
yp − ys

zp

)2).

(2.17)

The formal condition for the approximation to be valid is according to [36]

z3
p � max(

π

4λ
((xs − xp)

2 + (ys − yp)
2)2). (2.18)

Inserting Eq. 2.17 in (2.16) results in the Fresnel approximation

U(xp, yp, zp) = − 1

λzp

∫∫

Π

A(xs, ys)

exp (
2πi

λ
zp(1 +

1

2
(
xp − xs

zp

)2 +
1

2
(
yp − ys

zp

)2)) dxsdys

= −exp (2πi
λ
zp)

λzp

∫∫

Π

A(xs, ys)

exp (
πi

λzp

((xp − xs)
2 + (yp − ys)

2)) dxsdys. (2.19)

Interference

The interaction of two wave fronts through superposition is called interference
and, as discussed above, the superposition can be regarded as a new wave
front. Interference is one of the corner stones of holography, and will be used
when this technique is discussed below. We will therefore briefly present the
basic theory of interference in order to see what happens to the amplitude
and phase of two interfering wave fronts. In doing so we will follow the
example given in [99].

Consider two monochromatic waves of the same wavelength and polar-
ization

U1 = A1 exp (iφ1) (2.20)

U2 = A2 exp (iφ2). (2.21)

The superposition is simply the sum of the wave fronts

W = U1 + U2. (2.22)
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However, calculating the magnitude of W we see that

‖W‖2 = ‖U1 + U2‖2 = (U1 + U2)(U1 + U2)
∗

= A2
1 + A2

2 + 2A1A2 cos(φ1 − φ2)
(2.23)

where ∗ denotes the complex conjugate. Thus, the magnitude of the superpo-
sitioned waves is the sum of the magnitudes of the individual waves, plus the
so called interference term 2A1A2 cos(φ1 − φ2). This term has a maximum
when the phase difference is

φ1 − φ2 = 2nπ forn = 0, 1, 2... (2.24)

and a minimum at

φ1 − φ2 = (2n+ 1)π forn = 0, 1, 2... (2.25)

These cases are called constructive and destructive interference respectively,
and as can be seen from Eq. 2.23 they either amplify or cancel out the
magnitude.

The important observation here is that the magnitude of two interfer-
ing wave fronts is dependent on the phase difference. A single wave, as in
Eqs. 2.20 or 2.21 is not. It is this phase difference in the interference term
that leads to the fringe patterns sometimes observed when two laser sources
overlap, or when two ripples in a pond meet.

A valid question to ask in this situation is why we do not observe inter-
ference patterns in our daily lives. After all, light is all around us and must
surely interfere all the time. In fact it does, but the effects are smoothed out
because most light sources emit light in a fairly broad range of the spectrum.
This kind of light contains a band of different wavelengths and is called in-
coherent. Coherence is a measure of how well two light waves interfere, and
for instance laser light, containing only a single wavelength exhibits what is
called temporal coherence. In this dissertation coherent light is assumed for
the holographic experiments unless something else is specified. For further
reading on coherence we refer to [11] or the sections on interferometers in [53]
and [99].

A word on speckle

Image speckle is a general problem when using coherent light sources, and
are often heard as one of the main reasons for not using holographic tech-
niques. In short, speckle is an interference pattern that occurs due to random
variations in the object surface. It is visible when using coherent light to il-
luminate diffuse surfaces.
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Each surface element on an object with diffuse material properties reflects
light in all directions. We can see this as if each element is the source of a
diffracted wave. Each wave will have a random phase due to the diffuse
material properties and thus create an interference pattern which is observed
as a speckle noise over the image.

The speckle pattern produced is almost independent of the surface struc-
ture, but the intensity over the image follows the negative exponential prob-
ability distribution [42, 99].

As described in the above section, interference is generally only visible
when using coherent light, and then so is speckle noise. However, coherent
light is a prerequisite for interference which in turn is the foundation for
holographic recording as we will see in Section 2.3.1. Thus, speckle is an
inherit problem of holography and other coherent lighting. Figure 2.4 shows a
numerical reconstruction of a phase shift hologram. Note the speckle pattern
over the image.

Figure 2.4: Numerical reconstruction of a digital phase shift holo-
gram depicting a chess knight. Distance between model and holo-
gram plane was 0.46 m and the hologram has a size of 512 × 512
pixels. Each pixel has a size of 9 µm. Note the speckle pattern as
the irregular structure over the hologram.

The issue of speckle reduction is outside the scope of this dissertation,
however the theme is an active research area and several methods on speckle
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reduction has been proposed. According to the section on the topic in [42]
the most common method is to average out the speckle pattern by multiple
exposures. As speckle is such an integrated part of the wave front recorded in
a hologram, it does not affect the efficiency of the methods proposed in this
thesis. However, the existence must of course be taken into consideration
when examining visual results and renderings.

2.2 Image formation

In the previous section we presented a couple of models for representing and
propagating light through space. Now we will address the question of image
formation as well as the general principles behind light recording and display.
We will try to give a general overview of the problematic and thus lay the
foundation for the future sections dealing with holography and light field
rendering.

Light receptors of today, weather they are biological or man-made, mea-
sure light power. Simply told, this is the energy of all light reaching the
sensor per time unit. In order to form an image, intensity is measured in
several points, leading to a structure of receptors ordered on a two dimen-
sional surface. As an example, in the human eye light is focused through
the cornea and the lens onto a photo sensitive neural area in the eye called
the retina. This is basically a process where the light is projected onto the
receptor area at the back of the eye. The same principle holds for the camera,
but using glass optics and a CCD instead.

The amount of light reaching each receptor is dependant on the aperture,
or opening of the optical system. Figure 2.5 shows a conceptual sketch of an
aperture and a pinhole camera. Using an aperture, light from all directions
passing through the opening reaches each one of the receptors on the image
plane. Clearly, measuring the total power, means that the radiance of the
individual directions is lost in this case. This destroys the three-dimensional
information carried by the propagating light. Vision systems, such as our
brain, reconstruct some of the information and provide a 3D sensation using
advanced processing techniques.

Using an idealized pinhole camera instead, the aperture is now so small
that only light from one direction is measured per receptor. In theory, using
an infinitely high resolution receptor area the incoming radiance from each
light direction could be captured separately. Due to several practical and
physical limitations this is not possible however.
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(a) Aperture Camera (b) Pinhole Camera

Figure 2.5: Camera models. Light passes through an aperture and
is focused using optics onto some light sensitive material. The
images show the light coming in to one picture element for (a) a
camera with an aperture opening and (b) a pinhole camera.
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Figure 2.6: The hemisphere of incoming light directions at a sensor.

2.2.1 Image formation in geometrical optics

As described in Sect. 2.1.1 we define radiance as a property associated with
a ray. Thus the total incoming power at a receptor positioned at coordinates
(x, y) in some image plane Π is

IΠ(x, y) =

∫

Ω+

LΠ(x, y, s)Γ(s) ds. (2.26)

In the above equation LΠ : R
4 → R is a function on Π that for a specific

position and direction yields the incoming radiance. Γ is a direction depen-
dent attenuation function, and Ω+ is hemisphere of incoming light directions.
The principle is shown in Figure 2.6. IΠ is called the irradiance on Π. When
we refer to an image in this text, it usually means the normalized irradiance
field on some plane. Likewise the intensity will mean the element of such a
field.

It is clear from Eq. 2.26 that the radiance along the incoming individual
light rays is lost. Thus, it is not possible to determine the light directions
without some kind of deconvolution process. As this is very hard in most
cases, techniques to record both radiance and direction of the incoming light
rays would be desirable.
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2.2.2 Image formation in wave optics

The power of the wave fields described in Sect. 2.1.2 is measured as their
magnitude. Thus for a general complex valued wave field WΠ in a plane Π
we can assume the measured power to be proportional to

IΠ(x, y) = ‖WΠ(x, y)‖2. (2.27)

Just as in the case of geometrical optics, the normalized absolute field will
be referred to as an image in this text.

Measuring the power of the light only, removes the phase from the com-
plex valued wave field. Again, just as in the case of the geometrical model
this destroys any knowledge of light directions. The simplest example of this
is to consider the equation for a planar wave, 2.11, were the light direction
is explicitly encoded in form of the wave vector in the phase.

‖E(r)‖2 = ‖A0 exp (i(k · r))‖2 = (A0 exp (i(k · r)))(A0 exp (i(k · r)))∗
= A0A

∗
0 exp (i(k · r))(exp (i(k · r)))∗ = ‖A0‖2. (2.28)

Thus, it is clear that the directional information is lost also in this case.

2.3 Full light recording

While the contributions of this dissertation mainly regard analysis, manip-
ulation and synthesis of holograms and light fields, these concepts did his-
torically origin from the desire to capture and reconstruct the full light of a
scene. Thus, a section on recording is in place to introduce the holographic
method and the light field.

As we have seen in the previous section recording of light works by mea-
suring the power of the total incoming radiance on some image surface. This
projection results in a loss of directional information which is the basis of
many of the cues used to experience a 3D sensation. A simple example is by
looking at the lack of depth experienced from a photograph compared to the
real scene.

Thus, it is clear that in order to capture the full light, that is the whole
incoming light, as it passes through the aperture of the camera we need
methods and structures to encode the directional information of the captured
scene. Below we briefly present the background of the two main approaches
used in this thesis. The hologram and the light field.
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2.3.1 Principles of holography

Holography is a technique for wave front reconstruction presented by Dennis
Gabor in 1948 [29, 30, 31]. He was awarded the Nobel price for his discovery
in 1971. Gabor wanted to tackle aberration problems in electron microscopy,
but the general technique was applicable in a broader field of optics. The
holographic method requires coherent light, and as such it did not take off as
a practical method until the laser was introduced in the 1960’s. From that
time onwards however several improvements were made to the technique, and
today there are many different types of holographic techniques.

The basic principle however, is to record the interference of the object
wave field with a reference wave field. The resulting interference pattern will
then encode the phase difference between the object and reference waves,
thus reconstruction is possible.

The holographic setup is fairly simple. A collimated light source illumi-
nates the object which is to be recorded, at the same time as a reference light
(often from the same light source) directly exposes the recording medium.
The reflected light from the object will then interfere with the reference light
as described in Sect. 2.1.2 which can be recorded as an intensity fringe pat-
tern. This setup is illustrated in Figure 2.7.

Given an object wave front Wo and a reference wave front Wr we can
express the process as

I = ‖Wr +Wo‖2 = (Wr +Wo)(Wr +Wo)
∗

= WrW
∗
r +WrW

∗
o +WoW

∗
r +WoW

∗
o .

(2.29)

The intensity recording of this interference is commonly referred to as a
hologram.

The actual recorded hologram intensities are a linear function of I, as the
hologram values are dependent on the recording media and exposure time.
However, according to Schnars and Jüptner [100] the constant factor of the
transform can be dropped in digital holography. This leaves just a scale
factor, dependent on exposure, but constant over the hologram surface. As
we are mainly concerned with hologram rendering in this thesis, where the
output has to be scaled to the dynamic range of the display device, we will
drop also this factor and assume that the hologram is perfectly recorded and
reproduced.

To reconstruct the wave field from the hologram the recorded intensity
pattern is exposed to the same coherent light source that was used to record
the object. The pattern will diffract the incoming light, and part of the
resulting wave front contains the original object wave. To see why this is
true, consider illuminating the hologram in Eq. 2.29 by the reference wave
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Figure 2.7: Hologram recording setup. A coherent light source in
A illuminates a beamsplitter, B. Part of the light illuminates the
object at C and is reflected in direction of the recording medium
at D. The hologram is the recorded interference pattern between
the reference light coming directly from B and the reflected light
carrying the object wave.



24 Background

Wr as described above. This yields the following expression

W = IWr = (‖Wr‖2 + ‖Wo‖2)Wr +W 2
rW

∗
o + ‖Wr‖2Wo. (2.30)

A more explicit argument can be given by inserting the expression of gen-
eral complex valued reference and object waves, Wr = Ar exp (iφr) and
Wr = Ao exp (iφo), in the above equations. This leaves us with the following
expression for Eq. 2.29

I = WrW
∗
r +WrW

∗
o +WoW

∗
r +WoW

∗
o

= ArA
∗
r + ArA

∗
o exp (i(φr − φo)) + A∗

rAo exp (i(φo − φr)) + AoA
∗
o

= ‖Ar‖2 + ‖Ao‖2 + ArA
∗
o exp (i(φr − φo)) + A∗

rAo exp (i(φo − φr)).

(2.31)

And the reconstruction becomes

IAr exp (iφr) = (‖Ar‖2 + ‖Ao‖2)Ar exp (iφr)+

A2
rA

∗
o exp (i(2φr − φo)) + ‖Ar‖2Ao exp (iφo). (2.32)

In both Eq. 2.30 and Eq. 2.32 the third term is identical to the original
object wave, only multiplied by the magnitude of the reference wave. This
magnitude only influences the brightness of the image [100], and we thus
have a reconstruction of the original object wave. The image created by this
wave front is called the virtual image.

The original wave front is only a part of the reconstruction however. The
two other terms also corresponds to wave fronts. The first is the so called zero
order, it corresponds to the amount of reference light passing through the
hologram without being diffracted. The second term forms the real image.
This is a distorted view of the original object located at the opposite side
of the hologram plane from the virtual image. Thus, the full light observed
is more than the original wave front. It also contains the zero order from
illuminating with the reference wave, as well as the distorted real image.
This can make it hard to view a clear image of the object as reconstructed
from a so called inline setup where laser, object and recording medium all
are centered on the optical axis of the system. This is the kind of setup that
was originally described by Gabor.

One commonly used solution to this problem is to tilt the reference wave,
creating a so called off-axis hologram. Such a setup has the effect of spatially
separating the real and virtual images so that they lie on each side of the
zero order light. This approach was suggested by Leith and Upatnieks who
made several important contributions to the early development of modern
holography [56, 57, 58]. Off-axis holography will not be further discussed in
this Section, as the basic holographic principle is the same as in the inline
case. For a more in-depth description on this matter textbooks such as [99,
53, 42] should be consulted.
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2.3.2 Light field recording

The term light field was introduced in optics by Arun Gershun in 1936 in a
paper on the radiometric properties of 3D space [33]. The light field concept
as used in computer graphics was introduced at the annual SIGGRAPH
conference in 1996 by Levoy and Hanrahan [61] and Gortler et al.(using the
name lumigraph) [37]. Both papers describe the same general idea, which
however differs slightly from Gershun’s original definition. We shall be using
the computer graphics definition of the concept in this thesis and refer to it
as a light field.

The light field is closely related to the plenoptic function [2]. However,
the concept is simplified in such ways that it becomes suitable for computer
graphics rendering. The plenoptic function, in its most general form, is
defined as a

P : R
7 → R. (2.33)

That is, P(x, y, z, t, θ, φ, λ) is a function describing the radiance of a ray
passing through the spatial point (x, y, z) with the directional components
(θ, φ) at time t for wavelength λ. The light field is a specialized version of
this function, assuming a static scene, a discrete number of wavelengths and
empty (occlusion-free) space between the observer and the object. The two
first assumptions simply let us remove the time and wavelength dimensions as
they are not used. The last assumption might require a bit more explanation.
What it in fact states is that the light field can be measured at a plane instead
of a volume. As there is nothing obscuring the light path between the object
and the observer the radiance along the ray will always be kept constant.
This means, the same light will be measured in all planes in front of the
object, but at slightly different configurations. The third dimension of the
spacial coordinate can safely be ignored.

This leads to a light field defined as

L : R
4 → R (2.34)

that is a mapping from a ray-space to radiance. Intuitively L can be thought
of as a function that gives the radiance for a ray going though a plane,
where two coordinates describe the position in the plane and two describe
the direction of the ray relative to the plane.

In practice there are a couple of ways to implement the spatial and direc-
tional parameterizations. In [61, 37] as well as in the majority of subsequent
computer graphics work the so called plane-plane parameterization has been
used. In this setup the light rays are parameterized by the coordinate pairs
arising from the intersection with two planes. Figure 2.8 shows this setup.
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There are also other parameterizations such as the plane-sphere and the
sphere-sphere variants [17, 16] that have advantages in certain situations. In
this thesis however I will use a special case of the plane-plane configuration.
Depicted in Figure 2.9, it stores the first plane coordinate together with the
ray direction as components along the plane basis vectors. Chapter 4 discuss
this further and also defines Eq. 2.34 more rigorously.

PSfrag replacements
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Figure 2.8: The plane-plane parameterization. The light field ray
is parameterized as the intersection coordinates with the camera
(uv) and focal (st) planes.

Light field recording is usually performed using a single, multiple, or
plenoptic cameras. Recently there has also been some interest in synthetic
light field rendering. Below is a short comparison of the different techniques.

Single camera light field recording Used in the first light field related
papers, this technique requires a static scene. A digital camera is moved
from position to position around the scene, taking pictures. This can be
done either manually as in [37] or by an automated setup as in [61]. Several
issues have to be taken into consideration in this setup. The lighting has
to be constant, i.e., moving the camera must not create unwanted shadows
or change the light in any other way. In the works cited above it is also
important to acquire pictures in a regularly sampled grid around the object.
This requirement has later been relaxed by Buehler et al. [15].

Multi-camera light field recording The multiple camera setup is by far
the most common recording environment for video-based rendering [74].
Such a setup delivers high resolution dynamic video from multiple view-
points. Early versions of multi-camera recording setups include the works of
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Figure 2.9: The plane-direction parameterization that we use in
Chapter 4. This representation describes the ray by its intersec-
tion coordinate with a reference plane, Π, and its directional com-
ponents along the basis vectors that spans Π. This can be thought
of as a special case of plane-plane parameterization, using an indi-
vidual focal plane at distance 1 from every camera plane point.

Narayanan, Randers and Kanade who present a domelike structure of syn-
chronized video cameras [87]. Several similar systems with the same goal of
capturing multi-video data, have arisen since then [122, 113, 5, 84]. However,
most of the papers cited above consider systems targeted at other video-based
rendering techniques than light fields. This includes applications such as 3D
reconstruction [34], visual hull rendering [83, 63] and motion tracking [18].
Due to economical and technical reasons these systems usually employ a
sparse camera setup arranged to cover the scene from different viewpoints.
For light field acquisition, however, the number of cameras in such a setup is
often not sufficient. In recent years camera array systems such as the Stan-
ford Multi-Camera Array developed by Wilburn et al. [119] and the MIT
Distributed Light Field Camera described by Yang et al. [124] have been
introduced. These systems arrange a huge number of cameras into a planar
grid, and the recorded images are interpolated to form a light field.

A multi-camera recording system can deliver high resolution dynamic
light fields, but it also exhibits a greater degree of complexity. Some issues
that need to be resolved when considering a multi-camera system is inter-
camera synchronization, calibration and storage. Generally this means that
the systems require some infrastructure and are more suitable for studio
usage.
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Plenoptic camera light field recording A plenoptic camera is a single
camera that captures a whole light field in one shot. A device for this purpose
was first proposed by Adelson and Wang [3], and has recently been redesigned
and improved by Ng et al. [88, 89]. The basic principle is to break up the
incoming light so that every unique ray passing through the camera aperture
is imaged on a unique receptor on the sensor. This concept thus presents a
solution to the aperture problem discussed in Sect. 2.1.1. Thus, the plenoptic
camera works like a tightly packed array of pinhole cameras. The refocusing
of the light is performed using a micro lens array. Thus, a standard digital
camera CCD can be used to record the images, acting like a super sensor
divided into several sub sensors registering the ray bundles. Each of the
small images represents a pinhole picture. This is a very elegant technique
for light field recording and has recently also been adapted to other areas
such as microscopy [62]. There is a tradeoff to this method however. The
plenoptic camera records a full light field on just one standard CCD. Thus,
the sensor has to be tiled as described above. In a multi-camera system
each camera records a single image from its viewpoint using the full CCD,
while in the plenoptic case each tile acts as a camera. Thus, the plenoptic
camera captures lower resolution images leading to a lower resolution light
field. Despite this, the plenoptic camera holds a lot of promise as imaging
sensor technology improves.

Synthesized light fields The above acquisition methods all focus on im-
age- or video-based rendering, which also is the origin of the light field tech-
nology. Synthetization of light fields has mostly been used to generate test
cases and thus not been the main focus for improvement. The light field
representation however is very closely related to integral imaging and au-
tostereoscopic display systems. Isaksen et al. [47] showed how light fields
could be used to form lenticular images and Halle [40] discussed methods for
multi-view rendering already in 1998. Different types of autostereoscopic and
integral display systems are readily becoming available and so the interest in
efficient multi-view rendering is on the rise [125, 43, 45]. A good introduction
to autostereoscopic display technologies and its role for multi-view computer
graphics can be found in [41].
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2.4 Holographic displays and computer
generated holography

The main contributions in this thesis are two methods to synthetically gener-
ate holograms. The foundations for computer generated holography (CGH)
lies in a class of devices known as Spatial Light Modulators (SLMs). As
the name gives away these are devices that allow for wave front modulation.
More specifically they can, in the right scenario, be used to manipulate the
amplitude or phase of light. Such a device could be used to recreate a generic
wave front, containing the total light of a scene and thus allow true three
dimensional graphics.

2.4.1 Spatial Light Modulators

There are many types of SLMs on the market today, employing different
technological solutions. Two common types are Liquid Chrystal Displays
(LCDs) and Digital Micromirror Devices (DMDs). LCD based SLMs use the
same general principle as computer displays, employing a matrix of liquid
crystal cells embedded in an electrode wiring. By employing an electrical
field the crystal material can be arranged to affect the polarization of the
light and thus the transparency. As the wiring needs to be run within the
LCD structure pixel fill factor can be a problem with LCD displays. A
Digital Micromirror Device is a chip covered with a huge number of very small
aluminum mirrors. The mirrors are mounted on yokes and can be rotated to
an off-state using an electrostatic field. Thus, by setting the mirrors on or off
a binary image can be formed by choosing which light is reflected towards the
observer. Grayscales can be created by flipping the mirror on and off with a
high frequency, reflecting just a portion of the light and thus decreasing the
intensity by a form of time multiplexing. DMD devices are usually praised
for the almost complete fill factor of the chip, which is due to the fact that
the mirrors can be tightly packed.

A recent technology that can be seen as a hybrid between LCD and DMD
is the Liquid Crystal on Silicon (LCoS) devices. These are constructed as a
matrix of reflective elements, just as the DMDs. However, instead of the me-
chanical mirrors liquid crystal elements are used as mirroring elements. This
allows for a much higher fill-rate than with the traditional LCD construction.

We will not delve deeper into the specific technical solutions of SLMs in
this thesis. A comparative table of LCDs and DMDs for holographic displays
can be found in [112]. The methods within this thesis are independent of the
specific type of SLM used. The only thing assumed is that a spatial light
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Figure 2.10: A close-up of the type of SLM used in our experiments.
A Brillian 1080 with a resolution of 1920×1200 pixels, and individual
pixel size 8.1µm. Photograph by Philip Benzie.

modulator is an addressable device with M × N intensity valued elements
arranged into a matrix, much like a computer monitor.

2.4.2 Principle of a SLM-based holographic display

Spatial Light Modulators can be used to construct a holographic display
system. As described in Sect. 2.1.2 diffraction occurs as light interacts with
fine, detailed patterns. This is also the basics of traditional holographic
reconstruction as described in Sect. 2.3.1. Today, SLMs with pixel sizes of a
few micrometers can be bought off the shelves. While this is at least a factor
10 larger than the grain size offered by photographic film, it still offers the
possibility to prototype holographic displays with fairly good resolution. The
general principle is the same as that of traditional reconstruction. Coherent
light interacts with the interference pattern either by transmission through
the SLM or by reflection. The diffracted light will then create the wave front.
Figure 2.11 shows the layout of such a system.

In contrast to film-based holography however, using a SLM provides us
with the same advantage as using a computer monitor over a photograph:
the intensity pattern shown on the device can be rewritten and changed.
Thus, with the possibility to create arbitrary interference patterns, we can
indirectly control the wave field that is emitted. By developing methods to
compute holographic interference patterns, 3D images of virtual objects can
be displayed. This is the basic principle of the holographic display setup.
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Figure 2.11: Basic principle of hologram viewing. A laser in (A)
illuminates a SLM located at (B) with coherent light. The light
gets diffracted and an object wave field is emitted. An observer
will perceive a 3D model of the object

The main contributions of Chapters 6 and 7 considers effective methods for
hologram creation which is at the heart of the computational holographic
process.

As mentioned above, a SLM does not have the same high resolution as
the type of photographic film used in traditional holograms. The pixel size of
the SLM affects the maximum diffraction angle of the light, and therefore the
possible maximum object size and required focal distance. The diffraction
angle of a SLM is usually expressed using the grating equation [104, 99]

sin θ =
λ

2∆p
. (2.35)

Where θ is the maximum angle of diffraction possible, ∆p is the pixel size
of the SLM and λ is as usual the wavelength of the light source. We would
like to point out that this hints at that a general holographic system requires
very high resolution spatial light modulators and high pixel counts. Slinger et
al. [104] estimates that displaying an object of size 0.5 meters while allowing
for a field of view of 60◦ require about one terrapixels.

2.4.3 An experimental holographic display setup

Although there are several brands of SLMs readily available on the market
today, holographic display systems are still in their early stages. We have
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Figure 2.12: Picture of the SLM based holographic viewing setup
used in some of the experiments in this thesis. A HeNe laser
illuminates a beamsplitter through a spatial filter. A Brillian 1080
reflective SLM is mounted on the far side of the beamsplitter. Light
directed at the SLM is diffracted and reflected back trough the
splitter and towards a viewer located perpendicular to the laser
beam. Original photograph by Philip Benzie.

tested the techniques developed in this dissertation using an experimental
setup build by researchers at the University of Aberdeen. The principle of
the system is very similar to the one described in Sect. 2.4.2. Figure 2.12
depicts the main body of the system showing laser, polarizer, beamsplitter
and SLM. The light source is a Helium Neon laser (λ = 633 nm) that shoots
light through a spatial filter. A beamsplitter redirects the light so that it
reflects on the SLM and passes back out towards the viewer, located at a
right angle to the original beam.

The spatial light modulator is a Brillian 1080. This model has a maxi-
mum resolution of 1920 × 1200, and a pixel size of 8.1 µm. Inserting these
values, and the laser wavelength of 633 nm in Eq. 2.35 we find the maximum
diffracting angle of the setup to be

θ = sin−1 633 × 10−9

2 × 8.1 × 10−6
≈ 2.2◦. (2.36)
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2.5 Summary

In this chapter we have introduced some of the basic concepts used in this
dissertation. The geometric model of light and the light field concept will
be used in Chapters 4 and 5 where we discuss transforms of light fields and
holograms. Chapters 6 and 7 focus on methods for computer generated holog-
raphy. Wave optics and the concept of diffraction are the foundation of the
theories presented there. These two chapters also present results displayed
on the experimental SLM setup discussed in Section 2.4.3.
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Chapter 3

Related work

While we gave references to a broad range of background work in the previous
Chapter, we will now focus on work related more directly to the contributions
in this thesis. This includes traditional important work in computer graphics
and optics, as well as recent publications in light field analysis and computer
generated holography.

We will begin our study in Section 3.1 by reviewing work in computer
graphics applying the wave theory of light. Although this dissertation does
not primarily contribute to diffraction for traditional computer graphics, our
strategy is related to some of these rendering techniques and could be used
in the area in the future.

Thereafter, in Section 3.2, we will continue by presenting work related
to light field transform, rendering and compression. This is work directly
related to our contributions in Chapter 4.

There has been some work, in both optics and computer graphics to trans-
form between light field and hologram like representations. In Section 3.3 we
will review these papers from the point of view we take in Chapter 5.

Finally, Section 3.4 discusses work related to our contributions in com-
puter generated holography. This relates to both Chapters 6 and 7 and tries
to give a broad overview of work in the field.

3.1 Wave optics in computer graphics

Traditionally, computer graphics (CG) research has mostly been concerned
with the ray theory of light. This is due to computational efficiency and that
many wave-effects such as diffraction can be ignored while scattering may
be modeled or approximated using simplified versions of the Bidirectional
Reflectance Distribution Function (BRDF). There are however exceptions.

35
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For instance some materials have surface properties producing clearly visible
diffraction effects. One such example is the everyday compact disc, which
produces a distinctive rainbow reflection pattern due to diffraction in the
disc’s gratings.

Using the so called geometrical theory of diffraction (GTD) [52], diffrac-
tion effects could be integrated in a ray-tracing environment. However, to
our knowledge this theory has not been used much in the computer graphics
community. One exception is the work by Tsingos [117] where it is used
to model diffraction at wedges. GTD has also been incorporated in Monte
Carlo ray tracing [27], however this implementation is targeted towards op-
tic simulations and not computer graphics. In this dissertation we do not
further consider the geometric theory of diffraction, however it may be an
interesting venue for further research.

The first major attempt at using the wave model of light for CG rendering
seems to have been Moravec’s SIGGRAPH paper 3D Graphics and the Wave
Theory in 1981 [86]. Moravec suggests using the wave model in computer
graphics to model reflection and illumination. His method employs propa-
gation of wave fronts between planes in the scene. This approach is however
computationally very expensive as each pass requires the current wave front
to be convolved by a transmission function.

Lucente introduced the concept of computer generated holograms in com-
puter graphics [70, 69]. In contrast to other work discussed in this Section,
Lucente’s goal was computer graphics for holographic display systems, and
not the use of wave optics methods in traditional graphics. Many of the later
CGH rendering methods targeting real time display are related to the work
of Lucente. There is a difference in focus to the work presented in this disser-
tation however. We are mainly interested in synthesizing the wave field and
base our algorithms on implementations of interference directly. The work
by Lucente is mostly based on rendering using so called holographic elements
(hogels). We will return to how these are related to light fields below.

In his work on Diffraction Shaders Stam used the wave theory of light
to show how diffraction due to surface reflection could be implemented in a
shader [107]. This result is important, as it shows how to compute the BRDF
analytically, including diffraction effects, if the height field of the surface is
given as a Gaussian random process. There has also been work targeted
at rendering CDs and CD-like surface diffraction reflection [111, 23]. These
approaches however are specifically targeted at computing the reflectance
given the microstructure of the material.

Recently, Ziegler et al. have presented a framework for integrating holo-
grams in computer graphics [128]. The report summarizes digital holography
and holographic rendering from a computer graphics perspective. It also dis-
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cusses the hologram as a representation for CG rendering. In [127] Ziegler et
al. also show how holograms can be computed from a light field represen-
tation of the scene using depth reconstruction. This work is related to the
discussion on wave fields and light fields in Chapter 5, which also contributed
somewhat to the cited paper.

Although this dissertation is not directly concerned with holography in
the contents of traditional computer graphics rendering, the above works are
still of relevance. Many CG methods are designed with efficiency and visual
quality in mind. Meaning that even if the methods may not be directly ap-
plicable in holographic rendering, they may still provide insights in numerical
optics that classical simulation methods do not.

3.2 Light fields

In Chapter 4 we consider methods regarding optical operators for light fields.
As presented in Chapter 2, the computer graphics concept of a light field, as
used in this thesis was introduced in 1996 by Levoy and Hanrahan [61] and
Gortler et al. [37].

A lot of work related to light field transforms has been connected to
morphing. Zang et al. [126] presented a method to perform warping between
two light fields using corresponding rays and blending. Chen et al. [19]
took a different approach where the light fieldis subdivided into volumetric
parts that are deformed individually before being stitched together again.
Our work differs from morphing methods in that we only consider optical
operators. This means that we do not define an explicit target state of the
light field before transforming. Rather we focus on describing the parts of
the transform using a series of operators.

Heidrich et al. have presented an advanced lens model that well can be
used for light field rendering [44]. The model describes a mapping of all rays
passing through the lens, and can thus be seen as a light field transform.
While our approach is based around the thin lens model and thus not as
powerful, it allows us to combine different operators in a chain to also take
rotation and interface effects into account.

Isaksen et al. have presented important work on reparametrizing light
fields, and shown how to express the ray space in different frames [47]. This
is very useful in many applications as it allows for variable reconstruction
and focal planes. It also allows to model aperture and depth of focus effects.
Another important work on focal effects in light field rendering is Fourier
Slice Photography by Ng [89]. In this work the image formed by a light
field is expressed as a slice in its four dimensional Fourier space. While we
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perform our rendering using ray propagation in the spatial space, and are
currently not addressing depth of focus effects, it is interesting to note that
Ng base his slice lookup method on a plane to plane function very similar to
our propagation operator. It may thus be possible to integrate our operators
in a similar framework.

Several different methods have been proposed for light field rendering in
the past few years. Sloan and Hansen have developed a number of methods
using ray - light slab intersection tests targeted at parallel architectures [105].
In [15] Buehler et al. present a general method for rendering by blending views
from the original light field using a blending field derived from geometrical
and view information. Goldluecke et al. have developed a GPU-based method
for dynamic light field rendering using a warping algorithm [35]. The matrix
optics method developed in Chapter 4 expresses the ray transport from the
light field to the image plane as a linear transform. This allows us to easily
model the light field under influence of optical elements such as lenses and
interfaces.

Densely sampled light fields require high bandwidth, and consequently
data compression is essential. In [61] vector quantization followed by en-
tropy encoding is used. Wong et al. use spherical harmonics to represent the
directional part of a light field [120]. In [85] block encoding and the DCT is
suggested as compression method. Magnor and Girod have presented a pair
of codecs based on disparity compensation [73]. Wood et al. have developed
vector quantization and principal component analysis methods for irregu-
larly sampled surface light fields [121]. Another PCS approach is presented
by Lelescu and Bossen [59], while Chen et al. factorize an approximation
of the light field into a set of two dimensional functions and apply vector
quantization and block coding [20].

We use wavelet compression of the light field data. This allows for high
compression ratios and efficient storage and rendering. The efficiency for light
field encoding has already been reported in several publications; Lalonde and
Fournier use wavelets to store light fields in a hierarchical data structure [54],
while Peter and Straßer introduce a wavelet representation that allows for ef-
ficient storage and progressive transmission of light fields [91]. In [71] a light
field acquisition, compression and representation system based on a hierar-
chical wavelet structure is presented. Our approach to data representation
is similar to the work of Peter and Straßer, while the basic wavelet tree ac-
cessing philosophy has ideas in common with the method of Lalonde and
Fournier. However, in contrast to both approaches, we perform interactive
image reconstruction using matrix optics.
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3.3 Wave field analysis

To our knowledge, not much work has been performed on relating the light
field and the wave field. One notable exception is [51] where Kartch shows
how to map from Lucente’s hogel representation [68] to a light field. The
method assumes far field viewing and is based on Fourier transforming the
hogel data. It is thus very similar to the example we give in Chapter 5.
The hogel has the same role as the Fourier window in our framework. Thus
the both methods can be expected to produce similar results. However,
Kartch’s method is a transform between hogel and light field representations
which produces exact results for holographic stereograms only. Our trans-
form should be seen as an approximate method for wave field to light field
conversion as discussed in Chapter 5.

Abookasis and Rosen present a method to synthesize holograms from
multiple images [1]. The algorithm can be seen as computing a hologram from
a light field. Each image is weighted by direction dependent basis functions
and the results are summed together to form a hologram. However, as no
depth information is known, these holograms are only valid in the far field.

Ziegler et al. also show how holograms can be computed from a light
field representation of the scene using depth reconstruction [127]. The paper
is targeted towards a light field - hologram mapping, and thus attempts to
address some of the difficulties pointed out in Chapter 5.

3.4 Computer generated holography

According to Tricoles [116], the first work regarding computer generated
holography (CGH) was published in 1966 by Brown and Lohmann [13]. The
paper considers optical spatial filtering, and the holograms were computed
using a direct Fourier transform and output on a plotter. Nevertheless, the
work showed that it was possible to inversely compute wave fronts given an
object and sparked interest for further research.

The areas of application for CGHs ranges from optical computing, via
dynamic filtering to 3D displays. This thesis is primarily concerned with the
latter, and so we will mainly address works related to holographic display
technology from recent years. Readers interested in the early development of
CGH may want to refer to [55]. A literature survey of the twenty first years
of CGH research can be found in [116].

While most techniques reported here are based on propagating the light
from the object to the hologram plane, the opposite is of course possible.
Stein et al. have presented an approach using ray-tracing [108]. The method
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computes holographic patterns from a set of 3D points by computing the
distances between hologram plane and object points and then treating each
point as a light source. The basic premises of this technique are thus not
different from the ones we use in Chapter 6. However, the paper may suggest
an interesting possibility to couple holographic rendering with a computer
graphics grade ray-casting for accelerated rendering methods.

3.4.1 Hardware accelerated hologram synthesis

Due to significant computational load associated with hologram synthesis,
most methods targeted towards interactive holographic display make use of
some kind of special purpose hardware.

Holographic rendering hardware as well as techniques for real-time dis-
play were presented in 1994 by researchers in the MIT Media group [106,
66, 68, 118, 70]. This implementation was reported to be approximately 50
times faster than a workstation of its day. Lately work by Bove et al. has
been presented that takes advantage of the programmable graphics pipeline
of modern GPUs to drive a similar display [12]. Another hardware archi-
tecture, HORN, has been developed at the Department of Medical System
Engineering at Chiba University [48, 49, 101, 102, 50]. The later versions use
a clever scanline-based iterative recurrence formula [103]. The latest reported
HORN-model has an architecture allowing several boards to be coupled in
parallel, the system is reported to be about 1000 times faster than a CPU
implementation [50].

Special purpose hardware must be custom built however. This an ex-
pensive and time-consuming process. In this thesis we focus our attention
towards using the commonly available Graphics Processing Units (GPUs) in
order to synthesize holographic interference patterns.

Computer generated holography using the so called fixed-function (non-
programmable) pipeline on a graphics workstation was proposed in 1999 by
Ritter et al. [95]. They made use of an early generation of graphics hardware
to render holograms by using them for quick table look-up and summation
of the point source distributions. Another method was presented by Petz
and Magnor [92]. They showed that the Fresnel zone plate of a point source
could be approximated by scaling and translating the zone plate of a pre-
computed, known source. They then used texture combiners to perform fast
transformation and summation of the Fresnel zone plates from precomputed
images.

Both techniques applied state-of-the-art graphics hardware which at that
time did not allow for much programming freedom, hence the use of precom-
puted zone plates as approximations. Using modern GPUs, programming
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restrictions are not so limited, allowing for more accurate algorithms to be
implemented.

Matsushima and Takai have presented some very interesting reoccurrence
formulas aimed at hologram creation [82]. In their paper they derive three
different iterative formulas for computing holographic scanlines from point
models. They also perform error analysis and show how the formulas can
be optimized for efficiency. Their method is interesting, however, it must be
implemented on a device allowing scanline access to the frame buffer memory.
The methods are thus hard to implement efficiently on GPUs for instance.

Haist et al. use a multi-pass GPU-method to compute so called holo-
graphic tweezers [38]. This is a light trap construction used in microscopy
and often implemented using a CGH pattern. Although, not targeted to-
wards 3D models or display, the methods used to compute the tweezers are
similar to the ones used for CGH. Haist et al. have used GPU shaders similar
to ours to accelerate the computation. The implementation differs from the
one we present in Chapter 6 however, as it is multi-pass only. Our approach
creates a customized shader and unrolls much of the loops thus creating a
method with potentially less overhead.

Very recently Masuda et al. presented a GPU implementation for CGH
computation [75]. By implementing CGH calculations in a GPU shader
they managed to achieve video frame rates for a hologram image size of
800 × 600 pixels. However, their method is restricted by the number of
GPU registers to a maximum of 100 object points. Although the method
presented in Chapter 6 is implemented on similar hardware (their GPU was
an NVIDIA GeForce 6600, our’s an NVIDIA GeForce 7800) the algorithms
differ significantly. Among other things, our method does not suffer from
a fixed maximum number of points as we have tailored the algorithm to
adhere to the programming model imposed by the GPU. In order to speed
up the computations, we also use NVIDIA’s Scalable Link Interface (SLI) to
parallelize multiple GPUs for CGH rendering.

3.4.2 Hologram synthesis from surface models

All methods discussed above perform CGH rendering at interactive rates and
are targeted at display systems. However, the trade-off for this performance
is the use of light-weight, point-based models to arrive at simpler numerical
methods. As the complexity of these methods rise with the number of points,
it is generally hard to construct convincing holograms of detailed or solid
objects as the number of points required is too high. We therefore propose
an approach that uses triangular surfaces as its base primitive. It can handle
much more realistic objects at almost the same algorithmic complexity.
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In accordance with many other CGH methods, we perform light transport
using the angular spectrum of plane waves. This concept is related to the
Fourier spectrum of a wave field and will be further introduced in Chapters 5
and 7.

The Fourier transform has a long history as a tool in computer generated
holography, due to the potential computational speed increase and the possi-
bility to use the angular spectrum of plane waves. Already in 1967 Lohmann
and Paris published work where the Fourier transform was used to compute
Fraunhofer holograms [65].

In 1988 Leseberg and Frère introduced a method to create CGH from
tilted planes [60]. This approach is shown to work well, but is based around
the Fresnel approximation. In our work, we perform rotation and transport
of tilted planes based on work by Tommasi and Bianco [114] and Kreis [53].

The bulk of angular spectrum techniques are targeted at transporting
wave field distributions between planes. Consequently, the early Fourier-
based CGH algorithms considers point distributions in a plane. A good
introduction to development of Fourier holography, as well basic CGH tech-
niques in general, can be found in [14] by Bryngdahl and Wyrowski.

Lately, however there has also been some work on CGH from polygonal
objects. In these techniques each planar surface in the model is transported
to the hologram plane and the distributions are superpositioned. These meth-
ods are primarily targeted towards realistic rendering, and can not be used
for interactive holographic display today. Matsushima has presented work
on CGH rendering from surface objects incorporating both shading and tex-
turing [79, 76].

Ziegler et al. [128] have reported on a framework for incorporating and
rendering both synthetic and real holograms. They treat polygonal mod-
els in a similar way to Matsushima and also use graphics hardware for the
computations.

The methods presented above use the angular spectrum of the light dis-
tribution in the angular patch when performing light transport, just as our
approach in Chapter 7. This can be efficiently performed by just a multipli-
cation of a transfer function. However, as the polygon is defined spatially, a
direct implementation requires a Fourier transform for each polygonal surface
and thus puts an effective bound on the usefulness for interactive displays.

In contrast, our methods performs the rendering directly in Fourier space,
and thus the per-surface FFT can be avoided together with interpolation of
the sampled Fourier coefficients. Matsushima has estimated interpolation to
take up 44 % of the CPU time when using the previous method outlined
above [78]. With our approach we have an analytic description of the wave
field during the whole transport, and can thus avoid interpolation completely.
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To our knowledge this is the first time holographic rendering has been per-
formed directly in the angular spectrum.
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Chapter 4

Light field transforms by matrix
optics

This chapter presents a model for light manipulation inspired by the field
of matrix optics [32, 25]. The basic idea is to treat optical elements for
ray manipulation as linear functions described by matrices. Thus, the series
of operators for a complex optical system can be concatenated to a single
operator. This yields an elegant and very effective method for manipulation
of light fields.

4.1 Introduction

Since the introduction of image based light fields [37, 61] a number of differ-
ent rendering techniques have been suggested. The standard methods today
include both image-space and object-space algorithms. The former are based
on ray-tracing, ray-casting or view morphing, while the latter typically in-
volve texture mapping. In this chapter we investigate the use of matrix optics
for light field rendering. In comparison to other light field rendering meth-
ods, no ray - plane intersection test has to be performed for every image
pixel. Ray tracing based methods can be cumbersome if the imaging sys-
tem involves a series of optical elements such as lenses or material interfaces
causing refraction. In this case the imaging method requires tracing rays
between every element, each transforming them in some way. Using matrix
optics, a set of operators such as light propagation, thin lenses and dielectric
interfaces can be represented using matrices, allowing us to model the whole
process as a single matrix. This enables us to model a light field under the
influence of an arbitrary series of optical operators by performing a linear
transform of its elements. Rendering is a special case of this where a camera

45
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model is constructed from lens and propagation operators. This can be used
to create something alike to a ”virtual optical bench”, a test environment for
optical manipulation of light fields.

Our contribution in this chapter is twofold: First we adopt matrix op-
tics to light field modelling. Secondly, we have implemented a system us-
ing wavelet compression to render light fields directly from the hierarchical
wavelet representation. We achieve interactive to real-time frame rates for
densely sampled and compressed light fields.

4.2 Background

Inherited from physics, the ray model of light is by far dominant in computer
graphics applications. In image-space systems rays are traced from the cam-
era and out into the model space. Rays are either traced from camera plane
to object, or the other way around. Generally, the camera has some kind of
optical setup that focuses the rays onto the image plane. Some scenes do also
contain optical elements such as interfaces that cause refraction. When rays
pass through such elements they change directions according to the specifica-
tions of the system. In the simplest of cases the camera is a so called pinhole
camera without any optics. This is the classical and most dominant camera
model of computer graphics, often just represented by a projection matrix.
The name comes from the fact that the iris of the camera is a ”pinhole”, i.e.
the aperture is so small that only one ray will hit every pixel in the image
plane. There are however many situations both in computer graphics and
optics design and visualization when a more general model is needed. One
such case is when propagating light fields through space.

The model we will adopt for this task is called matrix optics. It is a
very simple linear model, but as we will see it has a number of strengths
for fast and simple matrix operations. We will only briefly touch the foun-
dations of matrix optics here, a more general introduction can be found in
[25] and [32]. Matrix optics defines linear operators for a number of optical
elements as well as propagation of light between planes in space. This gives
an elegant way of computing propagation and optical manipulations of light
fields. Standard ray-casting or ray-tracing based methods must compute the
ray-path between the individual optical elements, while in matrix optics all
operators can be combined using matrix multiplication. The model intro-
duced here is an extension to the matrix operators in optics, suitable for
light field transformations.
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Figure 4.1: The plane-direction parameterization describes the ray
by its intersection coordinate with a reference plane, Π, and its
directional components along the basis vectors that spans Π.

4.3 Definition of ray space and light field

As discussed in Chapter 2, light fields represent all light that passes through
a plane in space. In practical situations, the plane will have finite extent and
can thus be regarded as an aperture. The light field itself can be regarded
as a function giving the radiance of a specific ray passing through the plane.
In this section we will define the light field and the space of rays on which it
is defined.

To do this we will use the position-direction light field representation
shown in Figure 4.1. From this Figure, let Π ⊂ R

3 be a plane with an
associated coordinate system in 3D space

Π = (oΠ,nΠ, {eΠ
1 , e

Π
2 }), (4.1)

where oΠ and nΠ is the origin and normal of Π, and {eΠ
1 , e

Π
2 } are the

vectors spanning the plane.
The ray space on Π consists of all light rays intersecting the plane,

RΠ = R
2 × R

2. (4.2)

Thus, a ray passing through Π is described as a point in ray space with
homogeneous coordinate

r = [x,d, 1]T ∈ RΠ. (4.3)

Above x = [x1, x2] denote the plane coordinates in the frame {eΠ
1 , e

Π
2 },

and d = [d1, d2] the directional component along Π’s basis vectors.
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A light field on Π is a mapping

L : RΠ → R. (4.4)

Given a ray r, the light field L yields the radiance along that ray.
To highlight the advantage of the position-direction representation of the

rays, consider the following task: A ray is propagating from plane Π1 to a
parallel plane, Π2, at a distance z. The ray has coordinate r1 = [x1,d1, 1]

T

in Π1. Using the plane direction representation we can simply compute the
new ray coordinate as

r2 = [x1 + d1z,d1, 1]
T . (4.5)

Thus, if we know the light field on Π1 to be L1 it is easy to compute the light
field on Π2 by the inverse propagation

L2 = L1([x2 − d2z,d2, 1] . (4.6)

We are now ready to define a set of matrix operators for transforming ray
space.

4.4 Matrix optics operators for light field
transformation

Now that we have defined the ray space on a plane, as well as the light field
representing the radiance function on this, we can begin to consider what
happens to a ray space under transformation. Our goal is to find operators
that transforms the ray space coordinates in accordance with standard light
operations in geometric optics. To do this we follow the practice from matrix
optics literature [18]. Specifically we are interested in two types of operations.
The first is propagation of light: given a light-field in one plane, what does
the light-field in another plane look like? The second considers different types
of refraction, i.e. what happens to a light-field that is viewed through a thin
lens or an interface?

4.4.1 Propagation operators

A propagation P : RΠ → RΠp
means a transformation of the ray space RΠ

of plane Π to the ray space RΠp
of some other plane

Πp = (oΠp
,nΠp

, {eΠp

1 , e
Πp

2 }). (4.7)
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Any point in RΠ and its image in RΠp
under the propagation P must corre-

spond to the same ray in world space.
We assume that all propagation takes place in free space, i.e. that there

are no occluding objects between Π and Πp.
Mathematically, let WΠ(r) be the world space ray of r ∈ RΠ, given by

the base point oΠ + [eΠ
1 , e

Π
2 ]x and the direction nΠ + [eΠ

1 , e
Π
2 ]d.

Then
P : RΠ → RΠp

(4.8)

is a propagation operator if and only if

∀r ∈ RΠ : WΠ(r) = WΠp
(Pr). (4.9)

We will now introduce two different propagation operators: the trans-
port operator, which propagates between parallel planes, and the rotation
operator which propagates between rotated planes.

The transport operator

The transport operator, Tv, propagates the light to a plane parallel to Π
offset by some vector, v = [v1, v2, v3]

T ∈ R
3

Πv = (oΠ + v,nΠ, {eΠ
1 , e

Π
2 }). (4.10)

It can be written as a 5 × 5 matrix

Tv =













1 0 v3 0 v1

0 1 0 v3 v2

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, (4.11)

which has the desired properties. Intuitively, this corresponds to transporta-
tion along the ray direction and a translation in the plane. Figure 4.2 shows
an example of a pure transportation.

The rotation operator

The rotation operator maps the ray space of a plane Π to a ray space of
a rotated plane ΠSθ

j
, where Sθ

j denotes rotation of θ around basis vector

eΠ
j , j ∈ [1, 2]:

ΠSθ
j

= (oΠ,S
θ
jnΠ, {Sθ

je
Π
1 ,S

θ
je

Π
2 }). (4.12)
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Figure 4.2: An example of ray propagation. At the plane Π1, the
ray r has coordinate rΠ1

= [y1, d]
T . d is the directional deviation

of r from the normal n1, and can intuitively be thought of as the
slope of r. For an empty space propagation to plane Π2, the spatial
y-component is updated by the transport along the ray direction,
while the directional component is unaffected.

The matrix for ray-space transformation corresponding to the plane ro-
tation of Π around eΠ

1 is

Rθ
1 =













1 0 0 0 0
0 1/ cos θ 0 0 0
0 0 1 0 0
0 0 0 1 − tan θ
0 0 0 0 1













. (4.13)

Rotation around eΠ
2 follows by symmetry.

A general rotation does not yield a linear operation in ray space. However,
it can be adequately approximated if the paraxial approximation of ray optics
is applied. A linear approximation can be used for rays which lie close to
the optical axis. We will use this approximation both for rotations and
for elements with curved surfaces in the next section. Figure 4.3 shows an
example where the plane has been rotated around the origin of the plane Π1.
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Figure 4.3: Π2 is a plane rotated by θ around the origin of Π1, and
r is a ray traveling in the normal direction of Π1, intersecting the
planes in y1 and y2 respectively. To find the ray coordinate in Π2,
observe that y2 is scaled proportionally to y1, given by the triangle
oy1y2. As r intersects Π2 at an angle of −θ, the direction will be
offset by − tan θ.

4.4.2 Lens and interface operators

In this section we present operators which map the ray space on Π onto itself.

I : RΠ → RΠ. (4.14)

This kind of operator changes the ray direction, and can be used to model
elements such as interfaces and thin lenses.

Interfaces

Interfaces are used to model light transition from one medium to another.
If the materials have different refractive indices, a perturbation of the ray
direction will occur when passing through the material boundary.
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The matrix for a planar interface is

Pn1,n2
=













1 0 0 0 0
0 1 0 0 0
0 0 n1

n2
0 0

0 0 0 n1

n2
0

0 0 0 0 1













(4.15)

where n1 and n2 are the refractive indices of the source and destination
materials.

For a circularly curved interface the perturbation of the directional com-
ponent depends on the plane coordinate component of the ray. The operator
matrix is written as

Cn1,n2,r =













1 0 0 0
0 1 0 0

1
r
(n1

n2
− 1) 0 n1

n2
0

0 1
r
(n1

n2
− 1) 0 n1

n2

0 0 0 0 1













. (4.16)

As with the planar interface n1, n2 denotes the refractive indices, while r is
the radius of curvature. A positive r yields a convex interface, while negative
values result in a concave one.

The thin lens operator

A lens is considered “thin” if the light propagation within the lens material
can be neglected. Thus, the thin lens acts by perturbating ray directions,
and has the matrix

Hf =













1 0 0 0 0
0 1 0 0 0

−1/f 0 1 0 0
0 −1/f 0 1 0
0 0 0 0 1













(4.17)

for a focal length of f .

The matrix varies the directional component of a light field coordinate
as a linear function of the plane component. Figure 4.4 depicts an intuitive
example of a thin lens.



4.5. Image formation 53

PSfrag replacements

Π1

ff

r1

r2

r3

r4
r5 z

y

Figure 4.4: A thin lens in plane Π1. The rays r1 to r4 arrive per-
pendicular to p1. Their directions are perturbed depending on the
distance from the origin of Π1 so that all intersect at a distance
of f in front of Π1. r5 on the other hand, intersects the z-axis a
distance of f in front of Π1 and will emanate normal to the plane.
A general ray will have its directional component offset by −y1/f .

4.5 Image formation

We will now show how a two dimensional image can be formed from a 4D
light field .

Let
Γ = (oR3 , e3, {e1, e2}) (4.18)

be the image plane located at the world space origin, where {e1, e2, e3} is
the standard basis in R

3. To form an image on Γ, the intensity in the image
plane at a point x is computed using the general camera model

IΓ(x) =

∫

Ax

ω(d)L(M[x,d, 1]T ) dd. (4.19)

L is a light field defined on Rπ. Ax is the set of all ray directions inter-
secting x through the camera aperture, M is the matrix transforming from
RΓ to RΠ via any optical elements present, and ω is a weighting function
used to grade rays dependent on their direction.
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However general, this model is computationally expensive. A common
practice in real-time computer graphics rendering is to use the pinhole camera
model. This is a special case of the general model where the aperture of the
camera is considered a single point in space, yielding only a single ray per
point in the image plane. If we let the weight ω = δ0, so that only rays
with d = 0, i.e. perpendicular to the image plane, are considered the camera
integral reduces to

IΓ(x) = L(M[x,0, 1]T ). (4.20)

For M = 1 or M = Tv this will render an orthographic view of the light
field . Perspective views can simply be rendered by including a lens matrix
in M. Thus, a perspective camera with focal length f , viewing a light field
from a distance of t, would have the matrix

M = TvHf (4.21)

where v = [0, 0, t].

4.6 Wavelet compression of light field data

In this section we propose a 4D wavelet compression scheme to reduce the
memory and storage requirements of the light field representation.

4.6.1 Wavelets

Wavelet compression is nowadays a well-known approach to data reduction.
We will therefore just give a brief introduction to the part of the theory useful
for our application and point to other sources, such as [21] and [110], for a
thorough introduction.

We will assume that f is the light field and can be written as a linear
combination of basis functions

f =
N−1
∑

i=0

ciBi (4.22)

where N is the number of data elements.
Wavelet theory is based on two sets of basis functions, the scaling func-

tions

φk,n = 2
k
2φ(2k − n), (4.23)

and the wavelet functions
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ψk,n = 2
k
2ψ(2k − n). (4.24)

The scaling function down-samples a part of the signal, scaling its size
and preserving the low frequency, smoothed information. The wavelet func-
tion, on the other hand, is chosen so that it can represent the high-frequency
information, that is, the details lost by the low-pass filtering of the scaling
function. Both the scaling and wavelet functions are scaled and translated
versions of a mother function, and form a multi-resolution hierarchy. We will
use these properties later when constructing our data-structure for represent-
ing the wavelet compressed data. Once a set of wavelet basis functions and
corresponding scaling functions are chosen, the recovery of coefficients can
be thought of as a recursive process. Start with the original data and use the
scaling functions to down-sample the data to half its size, computing the scal-
ing coefficients of this level. At the same time the wavelet functions compute
another set of coefficients that represent the high-frequency information.

Now we take the down-sampled data and repeat this process, ending up
with half of the original data size, and a new set of coefficients. This can be
done until only one scaling function is needed to represent the down-sampled
data. Starting from this one scaling value, s0,0, the scaled function of the
next higher resolution is computed as

f 1 = s0,0φ0,0 + w0,0ψ0,0, (4.25)

and for any other level after this as

fm+1 = fm +
∑

t

wm,tψm,t (4.26)

where the sum over t represents the different translations on this scale. Thus
f is a linear combination of the basis functions φ0,0 and ψk,n, 0 ≤ k <
M , where M is the number of scaling levels. Wavelet basis functions have
compact support, and for our application we consider only orthonormal basis
functions. For our four-dimensional data we construct the basis functions as
the tensor product of one-dimensional wavelet and scaling functions. This
corresponds to the different combinations of the wavelet or scaling function
along the coordinate directions.

4.6.2 Compression

For many data sets a low pass filtering will yield a good approximation of the
original set, and thus the high frequency wavelet coefficients will be small.
The basic principle of compression is to threshold small coefficients to zero.
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For basis functions with good interpolating properties, many coefficients can
be dropped without degrading data quality. This technique results in high
compression ratios, storing only non-zero coefficients.

From the new sequence of coefficients, we keep only the ones that are
non-zero in value, as well as their corresponding basis functions. In order to
store this information and allow for both small size and fast access, we need
a compact data structure.

4.6.3 The Hexadeca-tree data structure

Because a wavelet basis function has local support and is used to refine the
value of a coarser scale function, the support of a basis function of side s with
index k will span the region of support of the s/2 sized functions of index
k + 1. That is, for a basis function, ψk,t, of scale k > 0, one can find basis
functions of a coarser scale j < k, so that their support contains the support
of ψk,t. Just as observed in section 4.6.1, the support of the basis functions
divide the original support of the data set into sub sets.

Figure 4.5: A binary tree representation. The squares represent
the original data-points, and the ellipse nodes contain a basis func-
tion and the corresponding coefficient. The dashed box around the
node indicates the width of the support of the function.

The basis functions form a space partitioning tree analogous to quad– and
octrees in 2D and 3D. Using this tree we let each node represent all basis
functions of a specific scale and translation. The child-nodes are those basis
functions refining the value along their parent node’s support, subdividing
them. Figure 4.5 shows a binary tree for the 1D case of the situation described
above. In this case, there are two basis functions: one wavelet and one scaling
function per node. However, for reconstruction purposes it is sufficient to
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store only the wavelet basis functions and their corresponding coefficients,
except for the root node which also contains the scaling coefficient and the
scaling basis function. Higher-dimensional trees will have more functions of
the same support, as there are more ways to combine the basis functions.
Generally, for a n-dimensional space, 2n −1 wavelet basis functions will have
the same support. All basis functions with the same support are represented
by one tree node. In our 4D case, there are 16 different basis functions defined
having common support. Of these, the 15 wavelet basis function coefficients
are stored in the nodes. The 16:th, being the scaling function coefficient, is
not required for reconstruction, except at the coarsest scale.

At the top level of the tree, we have the coarsest scale, represented by
the scaling function coefficient and the wavelet coefficient refining it. The
support of the root node being effectively the whole data size. The child-node
will then subdivide the support of its parent in a hierarchical manner.

If all basis functions are multiplied with the corresponding coefficients
and summed up, the result is the original function. In our 4D approach,
the result is not a binary tree, but one where each node has 16 children,
representing the 16 equally sized sub-cubes of a 4D hypercube. We refer to
this structure as a hexadeca-tree.

We can reduce the memory usage of the data-structure drastically by
pruning the tree in a bottom-up approach after compressing the coefficients.
Because the leaf-nodes with zero-coefficients do not contribute to the recon-
structed signal, they can be removed from the tree. If all children of a node
are removed, it becomes a leaf and the same test can be applied again until
we find a node that can not be removed. Figure 4.6 shows a simple, binary
tree example.

4.6.4 Implementing the data-structure

The pruning method described above leaves us with a smaller tree than we
started with. But it cannot do anything about those nodes which are not
leaves and still contain many zero-valued coefficients. This case can be com-
mon when dealing with 4D data, as each node contains several coefficients.
If only one of these coefficients of a leaf is non-zero, it is kept. Therefore we
choose to have a data structure of dynamic size to represent the nodes of the
hexadeca-tree.

A schematic of the node data-structure is depicted in Figure 4.7. For each
node we store a static and a dynamic part. The static part contains the node
position and two 16 bit masks. The ’Coefficient Mask’ specifies which of the
possible basis functions in the node have non-zero coefficients. The ’Child
Mask’ defines which of the children exist in a pruned tree. The dynamic part
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Figure 4.6: Pruning the nodes from the bottom up in a binary
space partitioning tree. Starting with node 6, we can remove it
because its coefficient is zero. Node 5 can be removed for the same
reason, and node 2 now becomes a leaf. This node can be removed
as it is 0. Node 4 is saved and node 3 is removed, but then the
pruning stops since there are no more leaves to check.

Figure 4.7: The node data-structure. The position vector and the
masks make up the static part, present in every node, while the
coefficient and the children sections are of dynamic size.

contains just the non-zero coefficients and index offsets to any child nodes, as
indicated by the masks. Every node stores basis functions having the same
support, which are the ones resulting from the tensor product producing the
four-dimensional basis functions from the one-dimensional mother wavelet.
The reason we only need to store 15 coefficients per node, although there are
16 different functions resulting from such an operation, is that one of them
is the scaling function, which is not needed for reconstructing the data. The
only scaling function coefficient needed is the one at the coarsest scale, as
indicated in section 4.6.1, and this one is stored first in the array as a special
case.

The compressed and pruned tree is an efficient representation for trans-
mission and rendering. There is, of course, some potential overhead in this
representation, as in the worst case all 15 coefficients will be set in the
dynamic section. However this is rarely the case. The nodes are stored
breadth-first in an array. This facilitates progressive decoding so that time-,
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transmission- or memory-critical applications need only read and decode a
part of the tree to obtain approximated rendering results. The approach is
similar to the spatial orientation trees in the SPIHT codec for images [98].

4.7 Proof of concept: a matrix optics
rendering system

In the previous section we have shown how matrix operators can be used
to transform light fields. In this section we will discuss our implemented
framework.

4.7.1 Light field data structures

We have chosen to implement two different ways of representing the light
field. The first is a raw light field table, which we will call the direct rep-
resentation, the second is the wavelet compressed representation suitable for
huge light fields described in Section 4.6.3. The former is faster as it basi-
cally is a four-dimensional image representation. For each spatial coordinate
x1, x2, we can look up the RGB value of any ray of direction d1, d2. However,
as the data size of light fields often gets large, we have also implemented the
alternative to use a wavelet compressed representation as described below.

4.7.2 Rendering

As seen in Section 4.5, Eq. (4.20) can be used to render an image from a
light field, L. Our framework implements this equation, and computes the
image formation matrix M by having the user specifying a chain of optical
elements.

For the direct light field representation, a value lookup is straightforward,
and Eq. (4.20) can be implemented directly. However for the wavelet com-
pressed representation, the light field must be reconstructed before it can
be evaluated. Instead of reconstructing the full light field we have devel-
oped an access method that takes the hierarchical structure of the wavelet
tree into consideration. This method is similar to the work of Lalonde and
Fournier [54], but integrates it with our operator framework.

Given some image formation matrix M, and an image plane coordinate
u ∈ Γ, let v = Mu . Observe that if v is located in the support of a specific
node in the hexadeca-tree, it is bound to be located in the support of one of
that nodes’ children. As the wavelet functions have a value of 0 outside their
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supports, the only nodes that affect L(v) are the single parent-child chain of
nodes whose support contains v. Thus,

L(v) =
∑

i∈Ω

ciBi(v), (4.27)

where Ω is the set of all indices of basis functions B with support containing
v.

From (4.20) and (4.27) we then have the reconstruction expression

IΓ(x) =
∑

i∈Ω

ciBi(M[x,0, 1]T ). (4.28)

As the children of a node sub-divide the support, it is simple to compute
Ω from the root node. Given that a node contains v, it is only necessary to
check in which of the node’s children the point lies until a leaf node is reached.
The reconstruction sum will thus take the form of a traversal through the
space partitioning tree. This is depicted in Fig. 4.8.

Figure 4.8: Traversal of a simple node tree, to reconstruct the value
at position 1.2. The method starts at the root node, and checks in
which child the coordinate lies. Nodes visited during traversal are
highlighted.

We know that the support of the next basis functions in the sum will
be contained within the support of the current. The number of summations
needed to reconstruct a value in a direct approach will thus be the depth of
the tree, which is logarithmically dependent on the resolution of the data.
This straightforward method can be directly implemented as an image-space
algorithm.
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4.7.3 Results

We have implemented a software framework of our matrix optics representa-
tion of light fields. If required, the light field can be stored in a progressive,
wavelet compressed data structure. The software renderer computes the cur-
rent view in a texture and uses OpenGL to map it onto a polygon filling the
screen.

For testing we have used both a synthetic light field and the ’buddha4’
data set freely available from the Stanford light fields archives. The synthetic
data set have a resolution of 1282 × 642 samples, each point on the sampling
plane covering an angular region of 120× 120 degrees. This has proven to be
a good balance between spatial and directional resolution while still keeping
the original data size manageable. The buddha data set has a resolution of
2562 × 322 samples.

The framework lets us implement and test a range of different optical
setups. The most interesting application in computer graphics is of course
to construct a ’camera’ that lets the user interactively view a light field.
Figure 4.9 shows a set of views from our synthetic light field . Figure 4.10
shows four images rendered from the buddha data set. The camera was
constructed using two thin lens operators offset by propagation operators.
The camera transform was modeled by a rotation and another propagation
operator. Aside from light field viewing, we believe that the availability of
other operators, such as interfaces, will allow for easy testing of a range of
optical configurations.

We have performed renderings from both a direct and a wavelet com-
pressed representation of the test data set. Rendering speeds are presented
in Table 4.1. The machine used is a Linux-PC with an Intel Xenon 2.8GHz
CPU and 2 Gigabytes of RAM.

No AA
Direct 417 fps

Wavelet 79 fps

Table 4.1: Frame rates for rendering a 1282 × 642 synthetic light
field.

As can be seen from Table 4.1 the rendering speeds for the uncompressed
data representation greatly exceeds those of the wavelet compressed data,
making it a preferred choice if the whole data set can be fit into main memory.
However, many light field data sets are huge, and may require compression.
Nevertheless, our rendering algorithm achieves interactive framerates.
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Figure 4.9: Four views of a test light field as taken by a perspec-
tive camera. The camera was constructed by combining lens and
propagation operators. Placement relative to the light field is
controlled by a rotation and a propagation operator.

4.8 Conclusions

We have presented a set of light field transformations inspired by matrix op-
tics. This allows us to model optical elements such as lenses and interfaces
into the image formation process. On this basis, we have implemented a
real-time light field rendering framework. The framework can handle un-
compressed light fields as well as wavelet compressed ones. The wavelet
compression scheme builds a hierarchical representation of the light field, en-
abling a fast way of accessing the data that integrates well with the presented
transformations.

We believe matrix optics proves an elegant solution to modeling some
optical phenomena for light field rendering. The ability to freely combine
the operators of different optical elements into one single matrix results in a
lot of flexibility. It should also be noted that the framework is not restricted
to pure image-based rendering. Many computer graphics problems can be
posed as a sampling or transport of a light field. In such situations this
framework can be used to model mappings of light fields through optical
elements.

An interesting application for this framework would be to incorporate it
into Fourier Slice Photography [89]. This should prove to be an easy but
powerful extention to the FSP algorithm.
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Figure 4.10: Four views of the buddha light field.
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Chapter 5

Wave field analysis

In this chapter we will discuss some features of the hologram from a computer
graphics perspective. In Chapter 2 we argued that the hologram is similar to
a light field in that they both are methods to represent the full light traveling
through an aperture.

This chapter introduces some further details regarding holography and
wave front analysis. We also investigate the relationship between the wave
field, as used in holography, and the light field, commonly used in computer
graphics. Recent advances in computer holography and image-based render-
ing have opened up both fields to new applications.

5.1 Introduction

In computer graphics the light field is a common representation for image
based data. During the last ten years similar techniques have been used,
not only for pure image based methods, but also in ray tracing, visual hull
reconstruction, shading etc. Similarly, in image processing light field data
are widely used in a number of shape and light reconstruction techniques.
Digital holography has recently seen a lot of development as better CCD chip
technology has become available [100, 26]. While it still can not compare to
traditional holography in terms of resolution, several unique features such
as phase shift techniques and fast recording procedures have made it widely
used.

An analysis of the relationship between light field and wave field repre-
sentations may prove useful for future applications in computer generated
holography, image processing and computer graphics.

In the discussions below we will use the same basic concept of the light
field as used in Chapters 2 and 4. For convenience we will use angles to denote
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ray directions instead of directional components when it is appropriate.
For a hologram, we will actually use the complex valued object wave

instead of the intensity distribution. We will refer to this as the wave field.
The reason for using the complex wave, is that we always can reconstruct
a complex valued wave field from a hologram (Sect. 2.3.1). There are also
digital techniques, such as phase-shift holography [123] to reconstruct the
object wave without the zero order wave. Thus, we will assume that we have
access to this wave field.

We will start this chapter by investigating three important concepts from
optics literature. First we will recapitulate how ray directions are related to
wave fronts. Second, hologram sampling theory is discussed, and third we
introduce the concept of the angular spectrum from Fourier optics.

5.2 Rays from a wave perspective

As described in Chapter 2, in this thesis, a ray is considered an entity with
constant radiance traveling in some direction through space. We will now
ask ourselves how this is related to the wave front, which can be considered
an equivalent representation. The answer is that rays always travel perpen-
dicular to the geometric wave front [11].

A general wave disturbance, W : R
3 → C can be written as

W (x) = A0 exp (
2πi

λ
S(x)). (5.1)

In the above equation, the function S : R
3 → R is called the eikonal. The

geometric wave front is defined as the surface in the disturbance of constant
magnitude. This is the case when

S(x) = K, (5.2)

where K ∈ R is some constant.
Comparing to how the spherical and planar wave fronts where defined

in Section 2.1.2, we see that this is coherent with the definition of the wave
front given there. For instance, the planar wave front would have the eikonal

Sp(x) = [dx, dy, dz] · x. (5.3)

Which is the equation of a plane when Sp is held constant. [dx, dy, dz]
T is

normal to the plane and can be considered as ray direction. Thus, a planar
wave front can be considered an infinite set of parallel rays traveling in the
direction of the plane normal. Using the same argument, the spherical wave
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front is a set of rays traveling radial in all directions from some point in
space.

Thus given a single ray, we know that there is a wave front having a local
tangent plane perpendicular to the direction vector in every point along the
ray. However, the ray does not tell us anything about the global curvature
of the wave front. This is equivalent to the fact that a ray provides full
information of light direction and radiance in a point but nothing on depth.
The ray can originate from an object at any distance.

5.3 The wave field

In Chapter 2 we mostly considered wave fronts as the complex valued light
wave from some light source, but have also talked about wave fields in con-
nection with holograms. In this section we will briefly discuss the wave field
and how it is related to the wave fronts of object points.

We will consider the wave field to be the complex light distribution mea-
sured in some 2D plane in 3D space. Thus, the wave field will represent
the superposition of all wave fronts in a plane. Huygens’ principle (see Sec-
tion 2.1.2) tells us that this is indeed a full description of all light in the
scene. We can use the information of a wave field to represent the total light
for propagation and rendering. However, it is intuitively clear that this rep-
resentation also looses information of the wave front locally. The wave field
represents the light distribution in a plane, however, the wave front is con-
stant valued on the eikonal (Section 5.2) which has a general shape. Thus,
the wave field measures the wave front at different depths i.e. at different
travel times. It does not contain any explicit information on the single wave
front curvatures, and without the knowledge of scene depth it does not say
anything about individual light directions.

Moreover, the wave field of a general scene is the superpositioned wave
fronts from all light emitting sources, i.e. all scene points. This means that in
order to reconstruct directions and depth of all points this sum would need
to be deconvolved.

5.4 The angular spectrum

The Fourier transform of a wave front is called the angular spectrum [11,
36], and the coefficients are seen as amplitudes of plane waves propagating
through space in different directions. There is a direct analogy between the
direction of propagation and Fourier frequency. Below we give an intuitive
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argument for this, using reasoning similar to the one given in [36]. First, let
A be the Fourier spectrum of the wave front W ;

A = F{W}. (5.4)

Expressing W using the inverse transform we then have, explicitly

W (x, y) =

∫∫ ∞

−∞

A(ψ, ω) exp (i2π(ψx+ ωy)) dψdω. (5.5)

The exponential part of the above equation can be interpreted as a plane
wave by rewriting it as

exp (i2π(ψx+ ωy)) = exp (i
2π

λ
(ψxλ+ ωyλ))

= exp (i
2π

λ
(αx+ βy)) exp (i

2π

λ
zγ)|z=0

= exp (ikT · r)

(5.6)

where α := ψλ and β := ωλ. The last step in the equation denotes a planar
wave, where

r = [x, y, z]T (5.7)

is the position vector, and

k =
2π

λ
[α, β, γ]T , γ =

√

1 − α2 − β2. (5.8)

is the wave vector. Note that the magnitude of the wave vector is 2π
λ

by
definition. This is how we can calculate the third component of the vector
in Eq. 5.8.

Now, we can use Eq. 5.5 to interpret W as a superposition of plane waves

W (x, y; z) =

∫∫ ∞

−∞

A(ψ, ω) exp (
2πi

λ
[α, β, γ] · [x, y, z]T ) dψdω. (5.9)

The propagation direction of each component is by the definition of a plane
wave determined by the wave vector. Finally, as shown in Eq. 5.6 there
is a direct relation between the frequency coordinates and the propagation
direction. Thus, with the help of the geometric setup in Figure 5.1, we can
relate the directions as angles directly to frequencies as

θ = cos−1 ψλ

φ = cos−1 ωλ
(5.10)
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Figure 5.1: The directions of the wave vector, k, as inverse cosines
of its vector components α, β, γ.

The angular spectrum of a wave front is a very powerful tool. It allows
us to analyze the contents of a wave field as directional components, by
expressing the superposition of arbitrary wave fronts as a collection of plane
waves. We will use the angular spectrum formulation of a wave field several
times in this thesis. First in this chapter, but also in Chapter 7 where we
will show how light propagation can be performed in the angular spectrum
representation.

5.5 The hologram and the light field

Now we are at the point where we can discuss the relationship between the
hologram and the light field representations. As stated earlier we will let the
wave field in the hologram plane represent the hologram information.

The light field is, as discussed in Chapters 2 and 4, a mapping from ray
space to intensities. In Section 5.2 above, we saw that a ray described the
local direction of a wave front. Thus, it samples the light directions at every
point in the light field plane.

We assume that each point in the scene is the source of a unique spherical
wave front, and that the normal of this wave front is unique for any point in
space. That is, occlusion works so that any ray can be traced back through
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Figure 5.2: Side view of point source and wave fronts. A point
source, A, with position [xs, ys, zs]

T emits light with amplitude a. In
the plane Π we measure both the wave field and the light field. As
can be seen wave fronts of different time, i.e. of different propa-
gation distance is measured in the plane. For the light field the
ray direction is always perpendicular to the wave front. The wave
field is the complex value of the wave front in Π, dependent on the
distance to A.

free space to a single scene point. This means that the light field can also be
seen as a mapping from the local wave front directions to the wave magnitude.

The wave field on the other hand is a superposition of all wave fronts at
a specific plane, Π, in space

W (x, y, z) =
∑

j

Wj(x, y, z), [x, y, z] ∈ Π. (5.11)

The question now is: given one of the representations, is there a point wise
mapping to the other? We will argue that no simple local mapping between
the two is possible without explicit information on the scene structure. The
basic reason for this is that the wave field is a sum of wave fronts, each of
which is constant valued along their eikonal, while the light field consists of
rays which by definition are constant valued in the direction of propagation.
As the ray direction is always normal to the wave front the curvature or
phase is needed to convert back and forth. This property in turn can not
be exactly reconstructed without knowledge of which distance the light has
traveled before reaching the plane of the wave field. Thus, depth, i.e. scene
structure information is needed.

To see this we will consider the simplest of all cases, namely a single point
light source, located in a point [xs, ys, zs]

T . This source emits a spherical
wave front, and the amplitude at the source is considered to be a. We will
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consider the wave field and the light field to be measured in the same plane
Π at z = 0. The situation is illustrated in Figure 5.2. Consider the value
measured in some spatial point [x, y; z = 0]T . The wave field value can be
computed as

W (x, y) = a
exp (2πi

λ
r)

r
. (5.12)

Where r =
√

(x− xs)2 + (y − ys)2 + z2
s . The 2D light field slice in this

spatial point will be zero valued everywhere except at x
zs
, y

zs
where it will be

L(x, y,
x

zs

,
y

zs

) = ‖a‖2. (5.13)

Now, consider computing the light field from the wave field. This requires
us to find the squared magnitude, ‖a‖2, of the wave field. Remember that
the measured value we have is just the complex valued W (x, y). Computing
the magnitude of this number gives us an equation

‖W (x, y)‖2 = aa∗
exp (2πi

λ
r)

r
(
exp (2πi

λ
r)

r
)∗

=
aa∗

r2
=

aa∗

(x− xs)2 + (y − ys)2 + z2
s

. (5.14)

which is dependent on two unknowns, the light source amplitude and position
vector. Thus, we can not solve it for either of them. For the same reason,
we can not know the angular coordinate of the light field, ( x

zs
, y

zs
). Thus,

without knowledge of the light source position it is not possible to compute
a light field.

The other way around, going from a light field, L(x, y, α, β) = ‖a‖2,
to a wave field, we know the magnitude of the source amplitude and local
direction of propagation (α, β). However, attempting to express a spherical
wave using just this information leads to the following equation

W (x, y) = (c± di)
exp (

√

(x− xs)2 + (y − ys)2 + z2
s

√

(x− xs)2 + (y − ys)2 + z2
s

. (5.15)

Where we let ‖a‖2 = (c+ di)(c− di). Even if we assume a to be real valued
and substitute zs = x

α
= y

β
, we still need to know the relative light source

position (xs, ys) in order to compute the correct value. Thus, we can conclude
that it is not possible to map directly between wave field and light field based
on a single point measurement.

On the other hand, the above examples are generally possible to solve
if we consider the measurement in several points. By setting up a system
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of equations the unknowns can be solved for. Doing so, the original point
source position is recovered.

However, while a system of equations is easy to set up if we know that
the source is a single point light, it is not possible in the general case. This
is simply due to the fact that every point in the scene must be considered
a source of a spherical wave front of unknown location. Thus, to create
a mapping in either direction the scene structure is needed. Either as the
position and amplitude of all the point sources or as the eikonal function
of the superpositioned wave fronts. These representations are equivalent for
free space propagation, and both require depth reconstruction for both light
field and wave front.

In the light field case, reconstructing depth is closely related to find-
ing rays of constant intensity. Thus, the problem is equivalent to plenoptic
scene reconstruction [109], and similar heuristic methods can be applied. It
should however be noted that we have now moved from the concept of an ex-
act mapping to discussing optimization methods to recover scene structure.
This approach for light field to wave field conversion is further investigated
in [127]. We face a similar problem when trying to construct a light field
from a wave field. In general, the value of W will be an interference between
a huge number of wave fronts, as expressed in Eq. 5.11. The sum must either
be deconvolved to find the addends, or the phase function of W , meaning
that the depth of the scene must be found. Doing so requires phase un-
wrapping [53, 99], shape measurement [72] or some other signal processing
technique to correlate the wave front values over the wave field.

In the next Section we will introduce a method based on the sliding
window Fourier transform that can be used to approximate the directional
component from a wave field locally as a plane wave.

5.6 Time-frequency analysis of a wave field

In this section we will show how the local frequency spectrum of a wave
front can be approximated by a light field. To do this we will first give an
introduction to time-frequency analysis of wave fronts. Then we will show
how the local Fourier frequencies of a wave front can be interpreted as ray
directions.
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5.6.1 The local frequency spectrum

If f(x′) denotes a function in the spatial domain we can transform it into the
frequency domain by the Fourier transform

F (ψ) =

∫ ∞

−∞

f(x′) exp (−i2πx′ψ) dx′. (5.16)

In doing so however, we lose all information on the spatial localization of the
frequencies. Just as the original function representation, f , does not tell us
anything of the frequencies in each spatial point of the function.

In many applications however, it would be beneficial to have localization
in both frequency and space. This is the goal of time-frequency analysis.
Several different transforms exist for this purpose. In this thesis we will
consider the short term Fourier transform, also known as the sliding window
transform [24]

F (x, ψ;h) =

∫ ∞

−∞

f(x′)h∗(x′ − x) exp (−i2πψx′) dx′. (5.17)

F is called the local frequency spectrum of the function f(x′). h is a window
function localized at the origin. The role of the window function is to suppress
the signal outside a region of interest and thus create a localization. Note that
F is a function of both location and frequency and that the transform thus
effectively creates a two-dimensional function from a one-dimensional one.
This is not an operation that is generally possible however, and it is governed
by the Heisenberg-Gabor inequality [24]. Intuitively this can be thought of
as a conservation of information and corresponds to Heisenberg’s uncertainty
principle in mechanical physics: we can not get more information out of a
signal or function than is there from the beginning. Thus mapping from
one to two dimensions will mean a tradeoff between spatial and frequency
information.

In Eq. 5.17 the tradeoff is directly influenced by the support of the window
function h. If h is a Dirac pulse, and thus has infinitely narrow support, there
will be perfect localization in the spatial domain but none in the frequency
domain. F is reduced to f(x) for ψ = 0. On the other hand, if h ≡ 1 with
an infinite, constant support Eq. 5.17 corresponds to the standard Fourier
transform. Thus, F will have perfect localization in frequency but none
in space. A good localization in one domain has the consequence of poor
localization in the other.
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5.6.2 Local frequency spectrum of a wave field

The previous section considered one-dimensional functions, however the the-
ory works in arbitrary dimensions. We can therefore compute a local fre-
quency spectrum of a wave field. As the wave field is two dimensional,
the spectrum will be four dimensional. That is, we transform the mapping
W : R

2 → C to a new mapping S : R
2 × R

2 → C, giving the complex ampli-
tude for a coordinate in spatial-frequency space. In our case, using the short
term Fourier transform we use a two-dimensional version of Eq. 5.17

F (x, y, ψ, ω;h) =

∫∫ ∞

−∞

W (x′, y′)h∗(x′−x, y′−y) exp (−i2π(ψx′ + ωy′) dx′dy′.

(5.18)
Now, consider how the local frequency spectrum can be interpreted phys-

ically. We start by observing that the short time Fourier transform can be
thought of as a set of normal Fourier transforms, albeit performed on sub-sets
of the function. This can be seen by noting that as the Fourier integral in
Eq. 5.18 does not depend directly on ψ and ω, we can consider the product
of W and the window function h to be a new function

g(x′, y′, ψ, ω) = W (x′, y′)h∗(x′ − x, y′ − y). (5.19)

Thus for every combination of ψ and ω a unique Fourier transform of g is
computed.

Moreover, a wave field masked by a window function is a subsection of the
full distribution and can be treated as a new wave field. Worth noting here is
that in a real world situation such a masking operation would be performed
using an aperture, generating diffraction at the edges. In this theoretical
setup however we will just consider it as masking out a sub-portion of a
given wave front and treating it as a new wave front. Thus, by noting that
Eq. 5.18 can be seen as a set of independent Fourier transforms and treating
a windowed wave field as a new wave field, we can interpret the short time
Fourier transform of a wave field as a set of angular spectra.

As we have seen in Section 5.4, Fourier transforming a wave frontW yields
the angular spectrum A. This can be interpreted as a superposition of plane
waves, and the frequencies can be thought of as denoting the wave vectors,
giving direction of propagation. Thus, by Fourier transforming a window of
the original wave field we are efficiently approximating the incoming wave
fronts by planar ”patches”. Each patch is approximating the wave field by
the local far field.

This means that for a discretized wave field, using a M×N sized window
with position (x, y), we would get M × N plane waves. As we have seen
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earlier, the coordinates in the angular spectrum are directly correlated to
ray directions.

Given a wave field, W , defined on a plane Π, we denote the angular
spectrum from a window centered at (x, y) ∈ Π as A(x,y). From Eq. 5.6 we
see that A(x,y)(ψ, ω), for some coordinate pair (ψ, ω) in the Fourier domain
of Π, can be interpreted as the complex amplitude of a plane wave. Thus,
we can define our mapping S : R

4 → C, computing the complex amplitude
from propagating any of the plane waves to some coordinate in Π as

S(s, t, α, β) = A(x,y)(
cosα

λ
,
cos β

λ
) exp (

2πi

λ
(α(s− x) + β(t− y))). (5.20)

Where (s, t) is a point in Π and (α, β) are plane wave directional angles.

Within the specific window we can thus approximate a light field as the
magnitude of S

L(s, t, α, β) = ‖S(s, t, α, β)‖2 (5.21)

where A(x,y) is the local angular spectrum and (ψ, ω) is the frequency coor-
dinates. Figure 5.3 illustrates this.

From this it is intuitively clear how the window position and size affects
the result. A smaller window will give us smaller patches, thus better spa-
tial localization. However, this means that there will be higher uncertainty
regarding the exact direction of the plane wave vectors. That is, the angular
resolution of the light field will be low. On the other hand, a large window
will allow for a high angular resolution, but all parallel ray directions within
the window would have the same intensity, leading to low spatial resolution.

5.6.3 A physical interpretation

According to Goodman [36], we can compute the effect of a thin lens on a
wave front by

Wf (x, y) = WΠ(x, y)P (x, y) exp (− πi

λf
(x2 + y2)). (5.22)

Where, WΠ is the wave field in the plane of the lens, and f is the focal length
of the length. P is the aperture function, defined as 1 inside the opening and
0 outside.

If we assume the lens plane to lie in z = 0 and the viewing distance to
be large enough, we can compute the complex amplitude in some plane at a
distance zp by the Fresnel approximation, introduced in Chapter 2. Inserting
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Eq. 5.22 in Eq. 2.19 results in

U(xp, yp; zp) =
exp (2πi

λ
zp)

λzp

∫∫

Π

WΠ(xs, ys)P (xs, ys) exp (− πi

λf
(x2

s + y2
s))

exp (
πi

λzp

((xp − xs)
2 + (yp − ys)) dxsdys. (5.23)

The polynomial in the exponent of the Fresnel approximation can be
expanded to yield

(xp − xs)
2 + (yp − ys)

2 = x2
p + y2

p + x2
s + y2

s − 2(xpxs + ypys)
2. (5.24)

Inserting this result into Eq. 5.23 we find that

U(xp, yp; zp) =
exp (2πi

λ
zp)

λzp

∫∫

Π

WΠ(xs, ys)P (xs, ys) exp (− πi

λf
(x2

s + y2
s))

exp (
πi

λzp

(x2
p + y2

p + x2
s + y2

s − 2(xpxs + ypys)) dxsdys

=
exp (2πi

λ
zp) exp ( πi

λzp
)(x2

p + y2
p)

λzp

∫∫

Π

WΠ(xs, ys)P (xs, ys)

exp (− πi

λf
(x2

s + y2
s)) exp (

πizp

λzp

(x2
s + y2

s))

exp (
−2πi

λzp

(xpxs + ypys)) dxsdys. (5.25)

Now, by choosing our reconstruction distance to be the same as the focal
length, f = zp, the first and second exponential inside the integral will cancel
out and we have

U(xp, yp; zp) = K(xp, yp, zp)

∫∫

Π

WΠ(xs, ys)P (xs, ys)

exp (
−2πi

λzp

(xpxs + ypys)) dxsdys. (5.26)

In the above equation we let K denote the phase function in front of the
integral. If we perform the variable substitution u = xp

λzp
and y = yp

λzp
Eq. 5.26

can be interpreted as a Fourier transform of WΠ(xs, ys)P (xs, ys) weighted by
the function K.

In the following we will assume a simple imaging system where the lens
focus the incoming light onto an image, measured on a distance zp, in the
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same plane as U . As noted in Section 2.2, the image intensity is proportional
to the magnitude of the wave front, and from Eq. 5.26 we have

I(xp, yp) = ‖U(xp, yp; zp)‖2

= k‖
∫∫

Π

WΠ(xs, ys)P (xs, ys) exp (
−2πi

λzp

(xpxs + ypys)) dxsdys‖2

(5.27)

where

k :=
K(xp, yp, zp)K

∗(xp, yp, zp)

λ2z2
p

=
1

λ2z2
p

(5.28)

is constant over the whole image.

Thus, this makes it possible to interpret the windowed Fourier transform
of a wave field, as a collection of lenses spread over a plane. Much like
the lenticular array described by Ng et al. in their work on the plenoptic
camera [88].

The Fourier window corresponds directly to the aperture function. The
size of the aperture in a real imaging system affects the depth of field. So
does the windowing function. Ultimately, one would like to have an idealized,
pinhole model to have as large depth of field as possible. This is however
not possible in reality as we are working with discretized wave fields. In this
case, using a too small aperture masks out most of the samples leaving only
a few coefficients. Again, we have the tradeoff between spatial and angular
resolution.

The Fourier transform itself will perform an operation similar to that of
a lens and focus light into bundles of parallel rays. Considering this is what
makes it apparent that a collection of lenses translated in a plane is needed.
This corresponds to sliding the Fourier transform. Consider Figure 5.4(a)
where light from a point located on the optical axis at focal distance is
imaged through a lens. Thus rays from this point will leave the lens parallel,
destroying all information on direction. If we are using a collection of lenses
however, as in Figure 5.4(b), the translation of each lens’ individual optical
axis relative to the object point results in an approximation of the light
direction.

Visualizing the process in this way, makes it apparent that the numerical
method suggested in the previous section is similar to the production of holo-
graphic Stereograms [96, 10, 39], and also shares the same traits. However,
in contrast to this traditional physical process, our approach is numerical.
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(a) Imaging using a single lens. (b) Imaging using multiple lenses.

Figure 5.4: Imaging using single (a) and multiple (b) lenses. A sin-
gle lens transforms all rays emerging from a single point to parallel
rays. Using a number of lenses tiled on a plane, the resulting ray
bundles have an unique direction depending on the lens position.

5.6.4 Test results

We have performed a test on a real phase shift digital hologram. It depicts a
chess knight at a distance of 0.46 m from the hologram plane. Four holograms
were recorded with phase shifts of 0, π

2
, π and 3π

2
using a 532 nm laser. Using

phase shifting techniques as described in [123] we reconstructed a 512 × 512
wave field with pixel spacing 9 µm.

To exemplify the method, Figures 5.5(a) and 5.5(b) show two reconstruc-
tions from 128× 128 windows from different positions within the wave field.
The large windows means that we have a good angular resolution. Each pixel
in the reconstruction can be viewed as a light field direction sample. This is
the reason for the relatively good reconstruction quality. These Figures can
be compared to a reconstruction of the full hologram, as shown in Figure 2.4
in Chapter 2. There are however very little spatial differences between the
two images. This is due to two facts: First, we have relatively large win-
dows, meaning that huge areas of the incoming wave fronts are assumed to
be linear. This makes sense, as the distance 0.46 m is large compared to
the hologram side, 512 × 9µm ≈ 0.5 cm. At this distance, the curvature of
spherical wave fronts can be approximated as planes over a small area.

To exemplify what happens if we use a smaller window, Figures 5.5(c)
and 5.5(d) depict the result from using 32 × 32 samples. As can be seen,
the quality is much worse. This is due to the fact that we have less ray
direction samples. This leads to a situation where a sample has a larger
”foot print” as it will have to represent a pencil of directions corresponding
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to the uncertainty in angular position. Thus the degradation of resolution
in the reconstructions and the blurring we see in the Figures. Note that the
speckle noise has also become larger.

Thus, we conclude this test by noting that it is possible to compute a
light field from a wave field by using time-frequency analysis. By using the
fractional Fourier transform we can approximate the wave fronts as piecewise
linear via the angular spectrum, thus interpreting the coefficients as rays
originating from a planar wave front locally. This can be used to build a light
field as in Eq. 5.21. However, due to the unavoidable uncertainty principle of
time-frequency analysis balance has to be kept between spatial and angular
resolution.

5.7 Summary and conclusion

In this chapter we have compared the light field and the wave field. We have
found that both representations capture the full visual information of a scene
through free space. However, the fundamentally different way in which depth
information is implicitly encoded makes it hard to convert between the two
without first reconstructing the original scene.

We have also shown how the angular spectrum can be used to interpret a
hologram as a collection of plane waves. Extending this, we proposed to use
the windowed Fourier transform to approximate light field information from
a wave field. As a local approximation, plane waves are used. The depth
information for these patches is lost. Thus, this method should produce
adequate results for far field approaches, but loose some information in the
near field. Our result is similar to the transform presented by Kartch [51].
In this work, Kartch shows how to map between a holographic stereogram,
represented using hogels, as introduced by Lucente [68], to a light field. Just
as in the windowed Fourier case, the hogel represents the local frequency
spectrum around some point in the hologram.

In theory, the mapping could also be inverted and used to approximate
a hologram from a light field. We have not tried this approach ourselves,
but Abookasis and Rosen have reported success in synthesizing holograms
from multiple view images [1]. In their method, the images are weighted
using an exponential function dependent on viewing direction. This should
correspond to our interpretation of the directions as plane waves, and hints
at the methods being similar.

From this we may gather that the full hologram should be viewed as a
complement to the light field . The two representations share many common
traits, however there seems to be no simple way of mapping between the two
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without reconstructing the complete object wave at a specific time, and thus
also reconstruct the depth.

A one-way wave field to light field transform should however be possible by
simulating a camera viewing the object scene through the hologram aperture.
There may also be powerful time-frequency methods available that can do
a good job of correlating the values of a wave field to reconstruct the wave
fronts and thus the light field. In this thesis we have shown how the windowed
Fourier transform may be used, however in the future it would be interesting
to apply other methods. One specific transform we would like to have a closer
look at is the Wigner distribution [9].
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(a) (b)

(c) (d)

Figure 5.5: Reconstructions from the windowed Fourier transform.
(a) Window size 128×128 positioned in the upper left corner of the
hologram. (b) Window size 128 × 128 positioned in the lower right
corner of the hologram. (c) Window size 32 × 32 positioned in
the upper left corner of the hologram. (d) Window size 32 × 32
positioned in the lower right corner of the hologram.



Chapter 6

GPU-based computer generated
holography

This chapter introduces a method to efficiently use programmable graphics
hardware for holographic interference pattern generation. While GPU based
methods have been proposed earlier, as discussed in Chapter 3, our method is
efficient and does not require the Fresnel approximation. Further more; our
dynamic shader generation allows us to tailor the program to handle large
models.

6.1 Introduction

Recent advances in three dimensional display technologies have shifted at-
tention to the possibility of true holographic displays. One way of realizing
this is through the use of Spatial Light Modulators (SLMs). The perfor-
mance and resolution of SLMs are increasing rapidly, and so consequently,
holographic displays of increasing spatial bandwidth product can be built.
To drive these, Computer Generated Holograms (CGHs) rendered from point
models are commonly used. However, generating a hologram from a set of
point samples is a computationally intensive task. In this chapter we propose
a method that takes advantage of parallel graphic processing units (GPUs)
to perform the computation. Although development of special purpose hard-
ware for CGH rendering has been reported [118, 49, 101, 102, 50], this type
of equipment is expensive and must be custom built. In contrast, graphic
boards are readily available today, and are especially constructed to accel-
erate numerical operations frequently used in computer graphics. Thus, a
parallel GPU system is an attractive alternative to both expensive custom-
built hardware and to much slower CPU-based approaches.

83
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6.2 The CGH model

In this section we will discuss the steps needed in order to render a holo-
graphic intensity pattern from a 3D model. The target system is described
in Chapter 2, Section 2.4.3. The target SLM has a maximum spatial resolu-
tion of 1920 × 1200 and an intensity resolution of 8 bits.

6.2.1 Using a point based 3D model

The goal of our method, as described above, is to compute the holographic
pattern from a 3D model. We consider the scene to be made up from a set
of points written as

P = {p1...pN ∈ R
3}. (6.1)

An example of such an object is given in Figure 6.1 depicting a set computed
from the Stanford bunny. We assume that the material is diffuse so that
light reflected off the model can be considered scattered in all directions.
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Figure 6.1: A point set generated from the Stanford bunny. This
version of the model contains about 1800 points.

Given these preconditions we can treat the object as being made up from
a number of self luminous points. Each points acts like a spherical light
source and

aj ∈ C, j = 1...N (6.2)

is the complex amplitude of point pj.



6.2. The CGH model 85

Figure 6.2: We use a coordinate system where the SLM lies in the
xy-plane and is centered at the origin. The object is assumed to
be placed at some distance along the negative z-axis.

From the definition of a spherical wave front (Eq. 2.13) the complex am-
plitude of point j at some position d in space can be written as

Wj =
aj exp (2πi

λ
‖d − pj‖)

‖d − pj‖
. (6.3)

6.2.2 Wave field formation

In order to compute the hologram pattern we need to compute the superpo-
sitioned wave field in the plane of the SLM. We adopt the coordinate system
shown in Figure 6.2. The SLM lies in the xy-plane centered at the origin.
The object points are assumed to lie somewhere along the negative z-axis.

From the superposition principle we know that the total object wave at
position d ∈ R

3 is the sum of all individual point sources. Using Eq. 6.3 we
have

Wo(d) =
N

∑

j=1

aj exp (2πi
λ
‖d − pj‖)

‖d − pj‖
. (6.4)

Thus by computing this sum for each pixel position in the SLM we have
the complex disturbance in this plane. The intensity-valued hologram pattern
is then the magnitude of the interference between this object wave and a
reference wave as described in Section 2.3.1.
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6.2.3 The bipolar model

While it is possible to compute the exact holographic pattern by simulating
the physical process directly we will employ a simplified method suggested
by Lucente [67].

Assuming that we have computed the object wave Wo using Eq. 6.4 the
hologram is (Eq. 2.29)

I = ‖Wr +Wo‖2 = WrW
∗
r +WrW

∗
o +WoW

∗
r +WoW

∗
o . (6.5)

Where Wr is the reference wave.
Following the argumentation of Lucente we identify the terms of Eq. 6.5.

WoW
∗
o is the object wave interfering with itself. Thus this term includes the

interference between all pairs of object points. Lucente argues that this term
is unnecessary for reconstructions and commonly also produces artifacts in
the reconstructed wave field. WrW

∗
r denotes the reference wave self inter-

ference. This is a major source of the zero term in the reconstructed wave
front, and serves no direct purpose for the object wave.

Removing these terms from Eq. 6.5 we have the following approximation

I ≈ Ib = WrW
∗
o +WoW

∗
r = 2<(WoW

∗
r ). (6.6)

Ib is called the bipolar intensity distribution as the intensities can have both
positive and negative values.

A negative intensity neither makes sense in reality, nor can be mapped to
a SLM. However, it is clear that the original intensity distribution in Eq. 6.5
is positive everywhere and thus that Ib acts as an offset from two removed
terms. As the intensity distribution will need to be scaled to fit the 8 bit
dynamic range of the SLM we can actually also offset the bipolar distribution
before scaling to fit into a positive 8-bit range.

We will assume the reference wave Wr to originate in a light source with
distance far enough for it to be treated as a plane wave over the SLM area.
Thus Wr = ar exp (2πi

λ
φr). Inserting this together with the expression for Wo

(Eq. 6.4) in Eq. 6.6 we have

Ib(d) = 2<((ar exp (
2πi

λ
φr))

∗

N
∑

j=1

aj exp (2πi
λ
‖d − pj‖)

‖d − pj‖
)

= 2<(ar

N
∑

j=1

aj exp (2πi
λ
‖d − pj‖ − φr)

‖d − pj‖
)

= 2ar

N
∑

j=1

aj cos (2π
λ
‖d − pj‖ − φr)

‖d − pj‖
.

(6.7)
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Denoting pj by the coordinates [xj, yj, zj]
T and the SLM coordinate d =

[x, y, 0] we arrive at our final bipolar equation

Is(x, y) = 2ar

N
∑

j=1

aj cos(2π
λ

√

(x− xj)2 + (y − yj)2 + zj − φr)
√

(x− xj)2 + (y − yj)2 + zj

. (6.8)

A further common simplification of (6.8) is to use the Fresnel approxi-
mation, i.e, the object size is assumed to be much smaller than the distance
between the object and the hologram plane; (xmax, ymax) � zobject. This

approximation is made for numerical reasons as square roots can be com-
putationally expensive. However, as distance computations occur frequently
in computer graphics algorithms, it is reasonable to assume that GPUs are
optimized for these operations. This is also confirmed by practical experi-
mentation, and thus we work directly with Eq. 6.8 and do not have to restrict
ourselves to the case of Fresnel diffraction.

6.3 Programmable graphics hardware

Special-purpose graphics hardware was developed to perform the compu-
tationally intensive transformations needed by many of today’s CAD and
computer games applications. The GPU architecture is based around the
rendering pipeline, a step-by-step sequential approach that allows for a very
fast and, at some stages, parallel hardware implementation. On modern
GPUs the pipeline is also programmable. This allows software routines, so
called shaders, to be uploaded to the graphics card and inserted to bypass
fixed functionality at certain places in the pipeline. The programs can be
written in a high-level language and sometimes use such features as loops and
conditional branching. It is important to note however, that although the
shaders are written in high level programming languages and allow for much
freedom, they are still just part of the graphics pipeline, and have to process
data in an input-output fashion. Thus, many problems and algorithms have
to be reposed to be efficiently implemented on a GPU. Although this might
seem restrictive from a programming point of view, it is also what makes the
GPU a special-purpose processor and accounts for much of its increased com-
putational efficiency over standard CPUs. Therefore, special care must be
taken when using a GPU for general purpose problems. Complex or ill-posed
shaders can clog the pipeline down and actually slow down the processing
speed.

A huge class of algorithms, for instance integrals and sums, rely on re-
peated processing of the data, i.e. looping. This also includes the CGH algo-
rithm. Whilst loops are supported within the newer shader standards, they
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can only be used in a rather restrictive manner when programming a GPU.
The reason for this is that very few GPU architectures support true branch-
ing in hardware. Keeping an efficient branching mechanism can be very hard
in a pipeline design. In order to still serve some looping functionality, the
shader compiler usually employs loop-unrolling. I.e. the instructions that
will be repeated within the loop are written out in a long sequence before
compile time. However, this sequence will of course require more program
memory as well as temporary registers. We have found that on the GeForce
6 and 7 series cards that were used for testing, the number of free memory
registers limits the number of consecutive operations. Depending on how
many other instructions that are performed, this number typically is in the
range of one to two hundred.

Thus, due to compiler and hardware limitations it is often only possible
to loop a few times while performing operations that make heavy use of GPU
registers.

A different approach than to perform the loop inside a shader is to re-
pose the problem so that it uses multi-pass rendering of the entire graphics
pipeline. That is, the result is computed by repeatedly running the entire
graphics pipeline and summing up the results. One such pass will create
some overhead, as many operations of the pipeline may have to be executed
that are not needed for the computation. However it allows for many more
sequential operations than a loop in a single shader. In the next section
we will present how we use a combination of in-shader looping and multiple
passes to create a fast and extendable CGH rendering implementation.

6.4 Implementation

In this Section we will discuss how we implement the bipolar method in
Eq. 6.8 given the programming constraints discussed in Sect. 6.3. The type of
computation hardware used is an NVIDIA GeForce 7800 GTX graphics card,
and a Brillian 1080 reflective spatial light modulator for display. The SLM
has a maximum resolution of 1920 × 1200 elements and a pixel pitch of 8.1
µm. The software was implemented using the OpenGL graphics library and
the GPU shaders were written in OpenGL Shading Language (GLSL) [97].

There are two types of shaders in modern day GPUs: the vertex and
fragment shaders. As the CGH algorithm operates on all pixels in an image
most of the logic will lie in the fragment program. Thus the word shader
from here on we will typically refer the fragment shader unless otherwise
mentioned.
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6.4.1 A double loop approach

Analyzing the bipolar CGH equation, it is clear that a summation of N
terms is needed for each pixel of the SLM. A standard CPU implementation
would solve this by a simple loop. On a GPU this would lead to an algo-
rithm like the one outlined in Fig. 6.3(a) performed for every fragment in
the pipeline, i.e. the whole summation would be performed within a single
fragment shader program. Due to the restrictions discussed in Sect.6.3, a
somewhat different strategy is necessary. Although loops are available on
modern graphics hardware, the size is restricted to a few hundred iterations.
This is too few for anything but the simplest objects.

An alternative, used frequently in computer graphics before looping in
shaders was available, is to use multiple rendering passes and functionality
known as blending. Using blending, the intensity, as output from sequential
executions of the graphics pipeline to the screen image, is combined using
a linear operation. This means that the pipeline is run once for every term
in the sum and the results are accumulated, see Fig. 6.3(b). However, this
method also has drawbacks as there in general is an overhead associated with
running multiple passes of the pipeline. For a small number of points it is
thus faster to perform the operations in a shader program.

We combine both methods to create an algorithm that can handle an
arbitrary number of points while still taking advantage of the GPU for hard-
ware acceleration. Fig. 6.3(c) depicts our algorithm. In short, for a set of N
object points we perform S summations in the shader while performing P
passes so that N = SP . Thus we have split the single loop into two nested
ones. This allows us to find a balance between the number of operations per-
formed in the shader for each pass and the number of passes, thus optimizing
performance.

6.4.2 Program structure

As mentioned above, we implemented our shader programs using GLSL. The
GLSL code is not compiled until runtime which serves as a great advantage to
us as it makes it easy to write a hologram shader generator. In order to adopt
our program to different kinds of hardware we generate a suitable fragment
shader on the fly. The basic shader code is available as a program template
that contains the operations that should be carried out before and after the
loop. However instead of the loop we have inserted a special token that will
be replaced with the correct code when our program executes. The shader
code needed to compute the bipolar contribution from one point is stored in
a string. At the beginning of our program a custom shader is generated by
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Algorithm 6.1: Generating the fragment shader by manually unrolling
the rendering loop.

Data: Shader program template (prog), loop code (term), the number
of model points(N)

Result: A tailored CGH shader (prog) compiled and loaded to the
GPU, the number of shader calls needed (P)

Query the GPU for maximum number of registers and store the1

result in Rmax;
Let Ruse = number of registers needed by the fixed code in the2

template;
Let S = Rmax - Ruse;3

Let P = N/S+1;4

for i = 1 to S do5

Find the loop token in prog ;6

Replace the token with the code string in term;7

if i != S then8

Insert loop token after the code;9

end10

end11

Compile and load the shader program to the GPU;12

return P13

Algorithm 6.1. The token in the template is replaced by the correct number
of copies of the loop code string.

Pseudocode for the basic steps in our main implementation can be found
in Algorithm 6.2. The object point coordinates are loaded as textures to the
GPU. In order to trigger rendering a point primitive is rendered.

This version of our code assumes hardware support for float blending. As
some older hardware architectures support 16 bit float buffers, but not float
blending, we have also implemented support for blending through a so called
ping-pong approach. The basic principle is very simple; the result from the
previous pass is sent as a texture to the current rendering pass. Thus, the old
value can be added to the new one in the fragment shader. The two buffers
are interleaved, so that the first time buffer A acts as texture and B is the
rendering target. The next pass B contains the most recent version of the
sum and is used as texture while A is overwritten, and so on.

Once the rendering is started the simple fragment shader described in
Algorithm 6.3 is called for the vertex connected with the rendered point
primitive. This shader is really simple, however it performs one important
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Algorithm 6.2: The basic steps of our program.

Data: The object points (points)
Result: Holographic intensity pattern in screen buffer

Check for hardware support ;1

Create a 16 bit FP frame buffer ;2

Turn on FP blending ;3

Set up a floating point texture rendering target ;4

Call Algorithm 6.1 ;5

Set up orthographic projection ;6

for j = 1 to P do7

Load points[(j − 1)(N − P ) : j(N − P )] as a 1D texture ;8

Render a point primitive in the middle of the screen ;9

end10

Normalize the frame buffer to make sure the results lie in the11

positive 8 bit range ;

Algorithm 6.3: The general structure of our vertex program. Note
that the point primitive size is set to cover the whole screen, ensures
that the fragment shader is executed for every pixel.

Data: Vertex coordinate data
Result: Sends on vertex information to the graphics pipeline

Transform the vertex to SLM coordinate system ;1

Set point size to cover the whole screen ;2

Make sure to forward the texture coordinates to the fragment3

shader ;

task, which is to set the size of the rendered primitive to the same size as the
screen. This causes the GPU to call the fragment shader for every point in
the frame buffer.

Now the turn has come to our custom made fragment shader. The pseudo-
code of an expanded shader can be found in Algorithm 6.4. For simplicity
we have assumed the amplitude of all point sources to be 1 and the reference
wave phase to be 0. The unrolled lines of code repeatedly sum the bipolar
intensity distribution from each point stored in the texture memory. Thus,
as the shader is called once for each fragment in the target buffer, the total
bipolar contribution from all S points in all pixels of the image is computed.

As the main program has a loop rendering P points, each with a different
texture containing S points, the total N point bipolar distribution is com-
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Algorithm 6.4: Fragment shader. The local image plane coordinate is
reprojected to the global coordinate system. Then the bipolar intensity
from the S object points stored in the texture is computed sequentially
and accumulated in sum. Instead of a loop, the code on lines 4 to 8
have been repeated S times.

Data: Point coordinates as a 1D texture (points), Local fragment
coordinate (x)

Result: The accumulated bipolar intensity for fragment x

1 Let sum = 0;
2 Reproject x to global coordinate system and store result in d ;
3 Let texturePos = 0;

4 // Generated code chunk 1

5 p = texture lookup(points, texturePos);
6 r = distance(d,p) ;

7 sum = sum + aj
cos ( 2π

λ
r)

r
;

8 texturePos = texturePos + 1 ;

...

508 // Generated code chunk S

509 p = texture lookup(points, texturePos);
510 r = distance(d,p) ;

511 sum = sum + aj
cos ( 2π

λ
r)

r
;

512 texturePos = texturePos + 1 ;

513 fragmentColor = sum;

puted at the end. The only thing that remains is to offset the distribution to
positive values and normalize the intensity values to lie in the 0...255 8-bit
range.

The implementation works with 16-bit floating point precision which can
be handled completely in hardware by modern graphics processors. Thus,
the method is not as prone to numerical errors as earlier methods were due
to the fix-point 8-bit representation of the intermediate results.

6.4.3 A note on SLI

Scalable Link Interface (SLI) is a technology that allows several graphics
boards to be connected in parallel in order to increase rendering speeds. This
technology automatically distributes the rendering tasks over the GPUs and
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the load balancing is handled at the driver level. We have confirmed that
our implementation works in single GPU mode as well as on a two GPU
SLI-equipped system.

6.5 Results

We have tested our software running on a GeForce 7800 GTX PC connected
to a Brillian 1080 SLM. The PC was equipped with an extra GeForce 7800
GTX board for dual GPU SLI rendering. For optical reconstruction we
used a 10 mW, 633 nm HeNe laser. The maximum resolution of the SLM is
1920×1200 pixels. We have performed tests at both full, and half, 960×600,
resolution. The test objects used had from 100 to 10000 points.

Resolution 960 × 600 960 × 600 SLI 1920 × 1200 1920 × 1200 SLI

100 pts 0.017 s 0.017 s 0.033 s 0.033 s
500 pts 0.094 s 0.041 s 0.327 s 0.172 s

1000 pts 0.161 s 0.083 s 0.619 s 0.318 s
2000 pts 0.307 s 0.161 s 1.204 s 0.630 s

10000 pts 1.486 s 0.785 s 5.848 s 3.115 s

Table 6.1: Rendering times; 100 to 10000 points for two SLM reso-
lutions using single and dual GPUs.

Table 6.1 and Figure 6.4 presents table and corresponding plot of the
times in seconds to render an interference pattern using our software for a few
test sets. Note that the rendering time scales almost perfectly linearly with
the number of points for both resolutions. With the exception of the object
set consisting of just 100 points, where the GPU can do the computations in
just one pass, using the SLI setup with two graphic boards effectively doubles
the performance. Moreover, as the number of output pixels is quadrupled
from the lower 960×600 to the higher 1920×1200 resolution, so are the ren-
dering times. This demonstrates that the algorithm is suitable for graphics
hardware. The rendering time is directly dependent on the number of input
and output points. There is no extra overhead associated with increasing
either the number of points or the resolution of the SLM. As can be seen
from Figure 6.4 we achieve interactive frame rates for fairly densely sampled
objects. Two thousand points are rendered in just 0.6 seconds at full SLM
resolution, and in less than 0.2 seconds at half resolution. Smaller objects, in
the order of a few hundred points, can be rendered at real time frame rates
of 30 frames per second and above. Figure 6.5 shows photographs of off-axis
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reconstructions. The models have 200, 1800 and 8000 points respectively;
render times are 15, 2 and 0.4 frames per second on a 1920 × 1200 SLM.

6.6 Conclusions

In this chapter we have presented a novel method for using a commodity
graphics processor to generate holographic patterns for SLM-based holo-
graphic displays. The algorithm is designed to fit the pipelined model of
the GPU and takes high advantage of the parallel architecture. Interactive
rates of 10 frames per second are achieved for one thousand object points at
a resolution of 960 × 600 pixels.

We have shown that the rendering time increases linearly with the number
of points and the SLM pixel count. Thus, the algorithm fits the program-
ming architecture imposed by the hardware, and can be expected to perform
proportionally better with future generations of GPUs. We have also shown
that the performance can be doubled by using two graphic boards in a par-
allel configuration. Today’s SLI standard allows for up to four GPUs to be
configured in this way, which potentially would quadruple the speed.

Future research on this project will consider color, occlusion and more
complex primitives. Since GPUs are designed to work with multi-channel
color data, it should be trivial to adopt our program to render three patterns,
each one for a different wavelength, without additional computational load.
These patterns could then be multiplexed to create a color hologram.
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(a)

(b)

(c)

Figure 6.3: Three different algorithmic layouts for computing the
distribution from N object points on a GPU. The fragment shader
is called once for every pixel. (a) Process all points in one pass.
Loop in shader. (b) Process one point per pass. Multi-pass. (c)
Process N = PS points. P passes and S summations in shader.
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1920 × 1200 pixels SLI
1920 × 1200 pixels

960 × 600 pixels, SLI
960 × 600 pixels
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Figure 6.4: Plot of the times presented in Table 6.1. The rendering
time scales almost perfectly linearly for 100 to 10000 points. Using
the SLI setup doubles the performance, with the exception of the
100 point case where the GPU can do the computation in just one
pass.
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(a) (b)

(c) (d)

Figure 6.5: Off-axis reconstruction. The models has 200 (a), 1800
(b) and 8000 (c,d) points.
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Chapter 7

Fourier rendering

This chapter presents a novel algorithm for fast rendering of holographic
display patterns based on polygonal models. Previous CGH methods either
compute a Fourier spectrum for each planar surface in a 3D scene or used
a per point approach. In contrast, our method computes the light distribu-
tions in the angular domain analytically, and only requires a single FFT for
the whole wave field. This approach is efficient and beneficial from a sam-
pling perspective. Using previous methods, care has to be taken to properly
sample the 3D object. With the method proposed in this chapter, the wave
field is expressed analytically through the whole propagation step, and thus
sampling is only necessary in the hologram plane.

7.1 Introduction

Holographic display systems were introduced in computer graphics over a
decade ago with the work of Lucente and Galyean [67, 68, 70]. Since then,
experimental setups for holographic displays have moved to reflect techno-
logical advances, such as higher resolution spatial light modulators and full
parallax displays. There has been some work in both the graphics and optics
communities on improving the CGH rendering algorithms, however much of
this work has followed the technological advances, presenting speedups based
on GPU rendering, etc.

One of the main reasons for this is that rendering holographic interference
patterns from 3D models is a computationally heavy task. Due to the fact
that a portion of the incoming light typically diffracts when it gets reflected
off the model, every surface point contributes with some light to the whole
hologram. Thus, the complexity of a direct method is O(N ×M) where N
is the number of object points and M the number of hologram samples.

99
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This is fundamentally the complexity of methods such as [92, 50, 75] as
well as the method we propose in Chapter 6. They are all based on point
primitives and then employ different strategies to compute the superposi-
tioned light distribution from these points on a hologram plane. The general
drawback of point-based methods is that the 3D object needs to be sampled.
The number of point samples required to faithfully represent a solid object is
dependent on its surface area, as well as the distance to the hologram plane.
Full sampling of the surface using points is, however generally too costly in
practice. As an example, consider the resulting rendering of Chapter 6, Fig-
ure 6.5(c). The model was constructed of 8000 points, but it is still clearly
visible that it is no solid structure.

An alternative to point sampling the whole surface of the 3D object is
to try to use more complex primitives than points. The most common way
to represent a 3D surface object is through a mesh of polygons. Each poly-
gon is a closed 2D structure made up from a set of vertices connected by
edges. The surface is considered solid inside the polygon. The distribution
from each polygon can be computed using the Rayleigh-Sommerfeld integral
and superpositioned in the hologram plane to form the full object distribu-
tion. Computing the Rayleigh-Sommerfeld integral directly is, however, of
the same complexity as the per point approach. Instead, one may use the
propagation between parallel planes using the angular spectrum, which is
based on the Fourier transform of the wave field. This opens up for use of the
Fast Fourier Transform (FFT) and is the strategy used by Matsushima [76].
Basically, the wave field in the polygon plane is Fourier transformed, multi-
plied with a transfer function representing the propagation to the hologram
plane, and transformed back to the spatial domain.

For T triangles this requires T + 1 number of 2D FFTs and T × M
additions. There are fast FFT libraries available nowadays, e.g. [28], allowing
this method to be implemented relatively efficiently. There are however some
drawbacks. In order for the FFT to work, the polygons still need to be
sampled in the surface plane. Moreover, as most polygon planes are not
parallel to the hologram plane, the Fourier image needs to be rotated and
resampled before propagation. Thus, the polygons need to be discretized at
an early stage and care has to be taken not to introduce sampling artifacts.

We present a novel method that is based on rendering the light distribu-
tion of triangles directly in frequency space. This allows for fast evaluation,
shading and propagation of light from 3D mesh objects. The method is at-
tractive because its complexity is only dependant on the hologram resolution
and the polygon count of the 3D model, just as in classic computer graphics.
In contrast to the FFT-based method outlined above there is no need to sam-
ple the triangle before propagation. We have derived an analytic formula for
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the frequency distribution of a diffusely shaded triangle. When transform-
ing the angular spectra we can then compute the frequency distribution of
a general triangle in the hologram plane. This eliminates the need of a per
polygon FFT. In addition the wave front is only sampled when recorded in
the hologram plane, mimicking the physical process, where the hologram
quality is only dependent on the resolution of the recording medium.

7.2 Computer generated holography of
surface objects

In this section we will discuss the basic concepts of our method and show
how they can be put together to an efficient approach for CGH rendering.
We will only cover the techniques briefly here, the theory will be thoroughly
presented in Section 7.3.

PSfrag replacements
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Figure 7.1: The goal of our method is to compute the wave field
in the hologram plane, ΠH . This distribution is the sum of the
distributions of all triangles in the object mesh.

The input scene is assumed to be a 3D model made up from T surfaces.
Each face of the model is a 2D polygon. We want to compute the total
complex valued light distribution from the object, measured in some defined
plane in space. The light distribution will be referred to as the wave field
and its location as the hologram plane. This is illustrated in Figure 7.1.
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If we somehow can compute the portion of light in the hologram plane
steaming from the individual polygons, the superposition principle tells us
that we can add these together to form the distribution of the whole object

U =
T

∑

i=1

Uj. (7.1)

Where Uj is the light distribution from polygon j in the hologram plane.
The general problem can thus be seen as twofold:

1. Shading: Given material properties and incoming light compute the
outgoing wave field of a polygon

2. Given the wave field of a polygon: propagate it to the hologram plane.

Regarding the first problem on the list; if the material properties of the
polygon, as well as the illumination, are known we can compute the ampli-
tudes of the reflected light using standard computer graphics shading meth-
ods. We can thus assume that at least the intensity values of the polygons are
known, and will call the wave field defined in the plane containing polygon
j as Wj. Thus, we start by covering the second point in depth.

The question is, how can the distribution in some other plane, specifically
the hologram plane be efficiently computed? One answer lies in the methods
working with the angular spectrum [36]. The angular spectrum is introduced
in Chapter 5, and the foundation and equations for propagation are given in
Section 7.3.3 below. The general idea, however is that given a wave field WΠ

the propagated field WΓ at some plane Γ parallel to Π at some distance, d,
can be expressed as

WΓ = F−1{F{WΠ}K(d)}. (7.2)

In the above equation F{} denotes the Fourier transform, and K is a specific
transfer function dependent on the distance, d.

By definition this propagation is only possible between parallel planes.
However, this is clearly not the general case as the polygons are rotated with
respect to the hologram plane. Fortunately, there are methods to rotate the
angular spectra, so that they may be transferred to planes tilted with respect
to the original are [114, 115, 80, 81]. We will denote this operator R for this
overview and discuss it further in depth in Section 7.3.3.

Using these two methods, Eq. 7.1 can be more explicitly written as

WH =
T

∑

i=1

F−1{Rj(F{Wj})Kj} = F−1{
T

∑

i=1

Rj(F{Wj})Kj}, (7.3)
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where Rj is the rotation operator, asserting that the angular spectrum in
the plane of polygon j lies parallel to the hologram plane. Kj is the transfer
function transporting the j:th rotated spectrum along the optical axis to the
hologram plane.

Equation 7.3 is an efficient method for light propagation if the term
F{Wj} can be computed. This is related to the first problem on the list
above, and can be formulated as: How can the angular spectrum of the re-
flected light be calculated? In an implementation this could be done in one
of three ways:

1. Compute Wj by shading the polygon then perform the Fourier trans-
form on the fly

2. The whole F{Wj} can be precomputed and stored as a sampled angular
spectrum

3. Express F{Wj} using an analytic function.

The first case is possible to implement using the FFT algorithm, but will
require a transform per polygon each rendering step. It also requires Wj

to first be rendered and then be sampled, something that could introduce
artifacts. Likewise, the second method requires sampling of the angular
spectrum. This method is also unpractical to implement due to very large
memory requirements. For each polygon a precomputed wave field, with size
of the same order as the hologram, has to be stored. It also does not allow
for dynamic lighting due to the precomputation.

The third method, to derive an analytic expression of the angular spec-
trum for a general shape is an intriguing option. It has several benefits:

• There is no need to sample the object to points

• It is possible to render solid objects

• Ideally the complexity of the algorithm scales with the number of poly-
gons and hologram samples only

• Dynamic lighting is possible

• The resulting wave field is dependent on hologram sampling only.

In this chapter we will show how to compute the angular spectrum of a
general diffusely reflecting triangle. We will also construct an algorithm
based on this theory and implement a proof of concept renderer.



104 Fourier rendering

PSfrag replacements

nt

l

Πt

v1

v2

v3

Figure 7.2: Triangle model. Each triangle is defined by three ver-
tices: v1, v2, v3, which also spans the triangle plane, Πt. nt is normal
to the triangle plane, and the vector l is the direction towards a
distant light source.

In the following sections, we will assume that the 3D object is made up
from triangles, each one defined by three coplanar vertices spanning a plane,
Πt. This plane will be called the triangle plane. The material of the object
is assumed to be a perfectly diffuse and the light source is assumed to lie far
away. This allows us to set a constant amplitude, i.e. flat shading, over a
single triangle, defined as

at = nt · l. (7.4)

In the above shading equation, nt denotes the triangle plane normal and l is
the direction vector of lighting. Figure 7.2 shows the above terms in relation
to each other.

Based on these assumptions, the next section will show how to derive an
expression to calculate the angular spectra of a triangle in a general reference
plane.

7.3 Theory

In this section, we will derive the mathematical foundations of the method
outlined in the previous section. We will do this in three steps. First, to
formulate an analytic expression of the Fourier spectrum of a general triangle,
we derive the analytic formula for calculating the two dimensional Fourier
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transform of a right triangle. Second, we show how to relate the Fourier
spectrum of the general triangle to this function. Third, we will revise some
strategies for rotating and transporting the angular spectra of a wave field
from literature.

7.3.1 The Fourier transform of a right triangle

Figure 7.3(a) depicts a right triangle with the side 1 and one vertex in the
origin. We will call this triangle, with vertices in the points (0, 0), (1, 0),
(1, 1), ∆ and define the function f∆ : R

2 → R as

f∆(x, y) =

{

1 if (x, y) lies inside ∆
0 else

. (7.5)

PSfrag replacements

(0, 0) (1, 0)

(1, 1)

∆

(a)

PSfrag replacements

(0, 0)
(1, 0)
(1, 1)

∆

(s1, t1)
(s2, t2)

(s3, t3)

Γ

(b)

Figure 7.3: Two triangles. (a) A simple triangle with ver-
tices in (0, 0), (1, 0), (1, 1). (b) A general triangle with vertices in
(s1, t1), (s2, t2), (s3, t3)

To acquire the Fourier spectra of ∆, we compute the 2D Fourier transform
of f∆ Thus, let F∆ be the Fourier transform of f∆. By definition

F∆(u, v) =

∫∫ ∞

−∞

f∆(x, y) exp(−2πi(xv + yv)) dydx. (7.6)

As f∆ is constant valued 1 on ∆ and 0 everywhere else, we can rewrite this
formula as

F∆(u, v) =

∫∫

∆

exp(−2πi(xu+ yv)) dydx

=

∫ 1

0

∫ x

0

exp(−2πi(xu+ yv)) dydx.

(7.7)
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Solving the integral we arrive at the following expression

F uv
∆ (u, v) =

exp (−2πiu) − 1

(2π)2uv
+

1 − exp (−2πi(u+ v))

(2π)2v(u+ v)
. (7.8)

However, this function is not properly defined at the point (0, 0) as well as
on the lines u = 0, v = 0 and u = −v. We solve the integral especially for
the critical values in order to see how F∆ behaves at these regions.

Case 1: u = 0, v 6= 0 Inserting u = 0 in Eq. 7.7 we have

F∆ =

∫ 1

0

∫ x

0

exp(−2πiyv) dydx

=
1 − exp (−2πiv)

(2πv)2
− i

2πv
.

(7.9)

Case 2: u 6= 0, v = 0 Similar to case 1, we integrate with v = 0:

F∆ =

∫ 1

0

∫ x

0

exp(−2πixu) dydx

=
exp (−2πiu) − 1

(2πu)2
+
i exp (−2πiu)

2πu
.

(7.10)

Case 3: u = −v, v 6= 0 Inserting u = −v in Eq. 7.7

F∆ =

∫ 1

0

∫ x

0

exp(−2πiv(y − x)) dydx

=
1 − exp (2πiv)

(2πv)2
+

i

2πv
.

(7.11)

Case 4: u = 0, v = 0 The integral at the origin is simply the area of the
triangle

F∆ =

∫ 1

0

∫ x

0

exp (0) dydx =
1

2
. (7.12)

Thus, the Fourier transform of f∆ can be expressed analytically as

F∆(u, v) =































1
2

u = v = 0,
1−exp (−2πiv)

(2πv)2
− i

2πv
u = 0, v 6= 0,

exp (−2πiu)−1
(2πu)2

+ i exp (−2πiu)
2πu

u 6= 0, v = 0,
1−exp (2πiv)

(2πv)2
+ i

2πv
u = −v, v 6= 0,

exp (−2πiu)−1
(2π)2uv

+ 1−exp (−2πi(u+v))
(2π)2v(u+v)

else

. (7.13)
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7.3.2 The Fourier spectra of a general triangle

The next step is to determine the Fourier spectra of a general triangle. For
this we make use of the fact that an affine transform relating two triangles
also can be use to relate their respective Fourier spectra.

Figure 7.3(b) shows an example of a general triangle, Γ, with vertices at
(s1, t1), (s2, t2), (s3, t3). We can relate the vertices of ∆ with those of Γ by an
affine transform

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





(s2 − s1) (s3 − s2) s1

(t2 − t1) (t3 − t2) t1
0 0 1



 , (7.14)

so that




s
t
1



 = A





x
y
1



 (7.15)

As long as Γ is a well behaved triangle there is of course also some inverse
mapping

B =





b11 b12 b13
b21 b22 b23
0 0 1



 . (7.16)

That relates




x
y
1



 = B





s
t
1



 . (7.17)

Thus, if we let fΓ : R
2 → R be the function describing Γ analog to Eq. 7.5

we can relate
fΓ(x, y) = f∆(s, t). (7.18)

The Fourier transform of fΓ is

FΓ(u, v) =

∫∫ ∞

−∞

fΓ(x, y) exp(−2πi(su+ tv)) dxdy. (7.19)

By substituting the function according to Eq. 7.18 and using the affine trans-
form in Eq. 7.16 to relate the variables, we have

FΓ(u, v) =

∫∫ ∞

−∞

f∆(s, t)

exp(−2πi(u(b11s+ b12t+ b13) + v(b21s+ b22t+ b23)))J dsdt. (7.20)

Where J = (b22b11 − b12b21) is the Jacobian determinant of B.
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Now, by rearranging the exponential we have

FΓ(u, v) =

∫∫ ∞

−∞

f∆(d, t) exp(−2πi(ub13 + vb23))

exp(−2πi(s(ub11 + vb21) + t(ub12 + vb22)))J dsdt. (7.21)

Finally, moving the terms not dependant on s, t outside the integral we note
that the rest corresponds to F∆ under a coordinate transform, and arrive to

FΓ(u, v) = (b22b11 − b12b21) exp(−2πi(ub13 + vb23))

F∆(ub11 + vb21, ub12 + vb22). (7.22)

Thus, from the results in Equations 7.13 and 7.22 we can compute the
Fourier transform of a general 2D triangle analytically. This is a very impor-
tant result, as it will allow us to perform rendering in Fourier space directly
instead of first rendering the triangle and then sampling and transforming it.

7.3.3 Light propagation in the angular domain

Earlier in this thesis we have described how the propagation of wave fields
can be achieved by directly implementing the Rayleigh-Sommerfeld integral.
This strategy can however be rather time consuming in general cases. Here
we will describe how to perform the propagation of a Fourier transformed
wave front.

Propagation between parallel planes

Wave front propagation between two planes Π1 and Π2 can be described using
the Rayleigh-Sommerfeld integral as described in Eq. 2.14. If we assume
U1(x, y) to be the known wave field on Π1 we can compute the distribution,
U2(s, t) in a parallel plane at a distance r as

U2(s, t) = − r

λ

∫∫ ∞

−∞

U1(x, y)
exp (2πi

λ

√

(x− s)2 + (y − t)2 + r2)
√

(x− s)2 + (y − t)2 + r2
dxdy.

(7.23)
In this formulation of the integral we have assumed the normal of the planes
to be n = [0, 0, 1], thus the scalar product in Eq. 2.14 reduces to r.

This equation however, can be written as a convolution

U2(s, t) = − r

λ
(U1(x, y) ∗

exp (2πi
λ

√

x2 + y2 + r2)
√

x2 + y2 + r2
). (7.24)
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Using the convolution theorem we can express this as a multiplication in the
Fourier domain

U2 = − r

λ
F−1{A1Kr}. (7.25)

A1 = F{U1} is called the angular spectrum of U1 and Kr is called the transfer
function. Chapter 5 covers the properties of the angular spectrum more in
depth.

According to [53] the transfer function, Kr can be expressed as

Kr(s, t) = exp (
2πi

λ
r
√

1 − (sλ)2 − (tλ)2). (7.26)

So, multiplication of the angular spectrum of a wave field by Kr and an
inverse Fourier transform will yield the wave field in a plane at distance r
from the first one.

Propagation between rotated planes

Another problem is related to calculating the light propagation between non
parallel planes. The general problem is shown in Figure 7.4: planes Π1 and Π2

are related by a rotation matrix R. Given the wave field, U1 of Π1 compute
U2 of Π2. Direct propagation by the Rayleigh-Sommerfeld integral is not
possible as the planes are not parallel. One solution to this problem can
be expressed using the angular spectrum [114, 115, 80, 81]. We will use the
approach of Matsushima et al. [80, 81] and briefly follow their argumentation.

As discussed in chapter 5, the angular spectrum in a point (u, v) can be
interpreted as the complex amplitude of a plane wave. The wave vector can
be expressed as

k =
2π

λ

[

uλ, vλ,
√

1 − u2λ2 − v2λ2
]T

. (7.27)

From the definition of the planar waves in Section 2.1.2 we know that the
wave vector denotes the propagation direction.

Matsushima et al. show that the wave vectors defined by the angular
spectra in the two planes can be related through the inverse rotation matrix
R−1. Their arguments are similar to the ones we use in Section 7.3.2, and
they arrive at the expression

U2(s, t) = F−1{A1(r11s+ r12t+ r13d(s, t), r21s+ r22t+ r23d(s, t))J(s, t)}.
(7.28)

Where, A1 = F{U1} denotes the angular spectrum and rij are the elements
of the rotation matrix.

d(s, t) =

√

1

λ2
− u2 − v2 (7.29)
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Figure 7.4: The angular spectrum in Π1 can be related to the one
in Π2 using the rotation R.

is the distance transform, derived from Eq. 7.27 and

J(s, t) = (r12r23 − r13r22)
s

d(s, t)

+ (r13r22 − r11r23)
t

d(s, t)
+ (r11r22 − r12r21) (7.30)

is the Jacobian determinant.
Now, using Eq. 7.28 it is possible to compute the wave distribution in a

plane rotated with respect to the source plane. Together with the transport
equation in 7.25 this can be used to propagate wave fields between arbitrary
planes located along an optical axis.

7.4 Algorithm and implementation

From the results in the previous section we can now start to design an algo-
rithm suitable for implementation.

By the use of Eqs. 7.13 and 7.22 the angular spectrum of a general tri-
angle can be computed. Thereafter by applying methods as discussed in
Section 7.3.3 it can be propagated to the hologram plane for recording. The
steps described by these equations are illustrated in Figure 7.5. The angular
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spectrum is computed in the triangle plane Πt. This spectrum is then re-
lated to the spectrum on an intermediate plane Π′

t by the transform R (see
Eq. 7.28). Once we know the values in Π′

t which is parallel to the hologram
plane ΠH we can use the method for propagation of the angular spectrum as
described in Section 7.3.3. In the algorithm outline below these transform
steps are combined into a single operation. For understanding, however it
helps to visualize this chain of operations.

PSfrag replacements

nt

n

Πt

Π′
t

ΠH

R
P

Figure 7.5: Stepwise transformation and rendering of the angular
spectrum from a triangle. The angular spectrum of the triangle is
computed in the triangle plane Πt, having normal nt. Thereafter
the angular spectrum is transformed using the rotation transform
R to a plane, Π′

t normal to the optical axis, n. In the last step
a propagation transform P is used to propagate the light to the
hologram plane ΠH .

Now, by repeatedly adding the propagated angular spectra of all planes
and then performing an inverse Fourier transform we will compute the wave
field in the hologram plane, as expressed in Eq. 7.3. This suggests a loop
over all triangles and pixels in the hologram. We can however reduce the
number of triangles that needs to be processed by using so called backface
culling. This involves computing

s = nt · n. (7.31)

where nt, as before, is the normal of the current triangle and n is the normal
of the hologram plane. If the scalar product s ≤ 0 we know that the planes
are orthogonal or facing away from each other. In this case we will assume
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that no light contribution from the plane can reach the hologram plane and
we do not have to process the triangle. This factor can be used even further,
by taking into consideration the maximum angle of diffraction as limited by
the hologram sampling. In this proof of concept implementation we let the
user define a threshold value in order to avoid aliasing artifacts.

It should also be mentioned that at this stage we do not consider true
hidden surface removal. This means that for some complex concave objects
light propagating from one triangle occluded by another one, closer to the
hologram plane may still be visible. This is a rare case for many objects
as the backface algorithm takes care of the major problems. However, it
is still an issue that needs to be considered in the future. Simple depth
occlusion algorithms do not work directly in the case of wave propagation,
as a triangle can very well be fully covered by another and still contribute
light to the hologram plane. Therefore, occlusion methods that are similar
to soft shadow algorithms in computer graphics may be a solution. As we
are mainly considering a proof of concept of our analytic rendering algorithm
at this stage, we will ignore full hidden surface removal for now.

7.4.1 Overview of the algorithm

Algorithm 7.1 shows the main steps in our proof of concept algorithm. The
basic idea is, for each triangle in the model to check if it is facing the hologram
plane. In that case, the angular spectrum of the light distribution from the
current triangle is calculated in the hologram plane using methods presented
in Section 7.3. The wave field is sampled at each hologram pixel position
and accumulated in a complex valued image. After all triangles have been
processed the image is inverse Fourier transformed to create the wave field
in the hologram plane.

To create a hologram intensity distribution from this, all that needs to be
done is to add a reference wave and measure the magnitude of the resulting
field.

We have implemented an un-optimized proof of concept version of the
algorithm in C++. The software renders holographic interference patterns
from triangular mesh models. Some results and a discussion can be found in
the next section.

7.5 Discussion and results

In this section we will present some visual results from our proof of concept
implementation. The current implementation is non-optimized and thus not
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Algorithm 7.1: The basic steps of our proof of concept methods.

Data: A set of triangles {tj}. A hologram plane H.
Result: The complex valued wave field distribution from all triangles

in the mesh.

for Each triangle tj do1

Let T be the plane containing all three triangle vertices,2

tv1, tv2, tv3 ;
Let I be a complex valued image defined on H ;3

Compute the triangle flat shading value using Eq. 7.4 and store4

the result in s ;
if normal(T ) · normal(H) > 0 then5

Find the mapping F : H → T that maps from hologram6

plane coordinates to triangle plane coordinates ;
Compute the affine mapping B from t to the right triangle ;7

Concatenate the mappings; G = B{F} now maps from8

image plane Fourier space to triangle plane Fourier space ;
for Each pixel p ∈ I do9

Find the coordinate of p in the right triangle Fourier10

space. q = G(p) ;
Compute the complex amplitude aq at q using Eq. 7.13 ;11

Let ap be aq transported to the image plane using12

Eqs. 7.22, 7.28 and 7.25 ;
Let Ip = Ip + aps ;13

end14

end15

end16

Compute the wave field of I by I = IFFT{I} ;17

fast enough for real-time performance. The models presented here contain
a few thousand triangles and render in a few minutes. An optimized ver-
sion should be on par with the point based method described in Chapter 6
however.

We have been using 3D models consisting of a few thousand triangles.
For all renderings, the distance between hologram plane and object has been
0.1 meters and wavelength has been kept at 633 nm. For the tests a wave
field resolution of 1220× 1220 and a pixel size of 8.1µm has been used. The
complex wave field was saved and numerically reconstructed at a distance of
0.1 meter.

Figure 7.6 shows input, wave field and reconstruction. In 7.6(a) we see a
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mesh model of the input as viewed from the hologram plane. After rendering,
the complex valued wave field was saved. Figure 7.6(b) shows the magnitude
of the wave field. A numerical simulation of the reconstruction is shown
in 7.6(c). The result looks solid and the different features of the model are
clearly visible. There are also a few artifacts visible which we will discuss
now.

First, there are some brighter areas visible. These are due to the lack of
global hidden surface removal as discussed earlier in this chapter. Light from
overlapping or partially overlapping surfaces will interfere and some areas
will be perceived as brighter. We believe that this may be less of a problem
in real world cases where the dynamic range of the laser lit displays may well
even out these effects.

Second, aliasing artifacts are visible along some edges of the reconstruc-
tion. These are most clearly visible at the tail feathers and the head of the
bird. The source of these artifacts are the triangles at the visual edge of the
object. These will have a very steep angle to the hologram plane. As was
discussed in Chapter 2, the resolution and pixel size of a sampled wave field
limits the diffraction angle and thus can not faithfully represent the angle of
the incoming light. The effect is also visible in the magnitude image, 7.6(b),
as jagged artifacts in the outer regions of the pattern.

One direct way of limiting the aliasing artifacts is to raise the threshold
used to determine if a triangle is back-facing or not. As discussed in Sec-
tion 7.4, a triangle can be considered back-facing if the scalar product of the
triangle plane normal and the hologram plane normal (Eq. 7.31) is less than
zero. In order to avoid aliasing the threshold can be raised somewhat to dis-
card the triangles that are the source of the problem. Ideally, the threshold
should be set to correspond to the diffracting angle of the hologram plane.
However, in most practical cases this angle is so small that most edge tri-
angles will be clipped. This in turn, removes all sense of object curvature
and may also erode or create holes in the mesh. Thus, a balance between
aliasing artifacts and model quality has to be kept. Figure 7.7 shows the
reconstructed wave field where the backfacing threshold were set to 0.2 while
rendering. I.e. if the scalar product of the triangle plane normal and the
hologram plane normal was less or equal to 0.2 the triangle was discarded.
As can bee seen the amount of aliasing has been visibly reduced, and the
edges of the model are perceived to be sharper.

Finally, Figure 7.8 shows a model of an abstract ”eight” shape. This is
an ideal case without any self occlusion and the algorithm produces a high
quality model with clearly visible shading.
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7.6 Conclusions

We have presented a novel method for generating wave fronts from 3D tri-
angular mesh models. Our approach has many advantages over previous
methods. By formulating an analytic expression for the plane wave spectra
there is no need to sample the 3D model surface, removing a potential source
of aliasing. The complexity of the algorithm is only dependent on the res-
olution of the target image and the number of triangles in the 3D model.
Previous methods either had to sample the 3D object or perform a FFT for
each triangular patch. Thus, for interactive applications the only choice was
to represent the object as a low-sampled point cloud.

The theory presented in this chapter has been supported by a proof of
concept implementation that can render wave fields and holographic patterns
from triangular mesh models. The current implementation is fairly straight
forward, but it may well be heavily optimized. For instance, using a GPU-
based implementation. This leads to a worst case scenario of one pass per
triangle, comparing to one pass per point using the techniques discussed in
Chapter 6.

In the future, we would like to focus work on exploring how different ma-
terial properties can be incorporated in our method. Currently we assume a
homogeneous material, and perform simple flat shading of the triangle. How-
ever, the incorporation of material and texture properties is not straightfor-
ward. Texturing the triangle will unavoidably lead to a convolution of the
angular spectrum which may slow the method down. However, it may be
possible to work with locally varying materials for instance.

The theory presented in this chapter has been exemplified mostly using
holographic applications, however it is of course also applicable in other areas.
This could include computer graphics rendering where the wave model of light
is more applicable, optical tweezers and microscopy.
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(a)

(b)

(c)

Figure 7.6: Rendering a bird using a wave field resolution of
1220 × 1220 samples. (a) Original mesh model. 2246 triangles. (b)
Magnitude of the resulting wave field. (c) Numerical reconstruc-
tion from the wave field.
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Figure 7.7: Numerical reconstruction using a backface-threshold of
0.2. Triangles with nt · n ≤ 0.2 gets culled thus removing some of
the angular aliasing. Wave field resolution: 1220 × 1220 pixels.

Figure 7.8: Numerical reconstruction of a mesh containing a few
hundred triangles. The directional shading of the triangles is
clearly visible. Wave field resolution: 1220 × 1220 samples.
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Chapter 8

Conclusions

In this Chapter we will conclude the work presented in this dissertation. We
give a brief summary and discuss possible future work.

8.1 Summary

We have presented techniques at the border between optics and computer
graphics research. The work in this thesis deals with what we call full light
representations. That is, the complete visual information of a scene is stored
and rendered. We have used two well known representations, the light field
and the hologram.

In Chapter 4 we presented work adopting linear operators from ray optics
to a light field framework. We showed how to approximate rotation, propa-
gation and interface operators using matrices. For a chain of operators each
describing a linear transform, the matrices for the individual elements are
multiplied, thus creating a very efficient one-step transform. We also showed
how wavelet compression of light fields fit into our framework.

In Chapter 5, we demostrate the duality of the light field and wave field
representations. We discussed the principle of each representation and also
presented a time-frequency approach and exemplified it by the short-term
Fourier transform. The method can be seen as assuming the object wave
front to be piecewise linear over the hologram plane.

The two final Chapters in this dissertation both considered hologram syn-
thesis. While the main focus is on rendering for holographic displays, the
techniques can be used for general wave field construction. Chapter 6 showed
how holographic interference patterns could be generated from 3D point ob-
jects using programmable graphics hardware. We showed how generating

119
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the fragment program in run-time using unrolled loops, allowed us to accel-
erate the rendering and also use larger 3D objects then previous techniques.
Chapter 7 presented a new strategy for computer generated holograms from
polygonal models. While previous approaches have rasterized each polygon
and Fourier transformed this 2D image, we compute the Fourier transform
of a general triangle analytically. This has several advantages as the wave
field is not sampled until it is propagated all the way to the hologram plane.
Thus, our technique does not suffer from the need to rotate and filter the
Fourier coefficients like previous approaches.

8.2 Future work

While the contributions in this thesis all improve on previous methods and
algorithms, they are by no means final. There is always room for improve-
ments, and while working on a project one always has new ideas on future
work. In this section we will discuss some of these ideas, and how we would
like to continue the work started in this dissertation.

8.2.1 Matrix optics for light fields

While our matrix optics formulation can not take second order effects into
account, it may still have interesting uses as it allows for very fast trans-
formation of the ray space. As discussed in Chapter 4 an interesting future
application of this would be to incorporate it into a Fourier slice framework
as the one proposed by Ng [89].

In Ng’s work, images with different focal depth can be rendered from a
light field by applying the Fourier slice theorem. In the paper the author
showed how a certain optical configuration corresponded to a specific 2D
slice in the four dimensional Fourier space of a light field. The optical con-
figuration does however only correspond to a fixed transportation using our
operator notation. It would be interesting to try to incorporate our matrix
optics transforms into the Fourier Slice framework. This would allow for
more general rendering applications.

8.2.2 Hologram to light field transform

There are two interesting venues of future work to pursue regarding work re-
lating holograms and light fields. The first is to improve methods for depth
and phase reconstruction from light fields and holograms. This includes
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plenoptic depth reconstruction, depth from defocus and interferometric meth-
ods. Could this be properly performed for general scenes it would be a great
step forward for hologram recording. General holograms of real scenes could
then be recorded in natural lighting situations using for instance plenoptic
cameras. Work in this direction has already been performed in [127].

The second possibility is to continue work on signal analysis. As discussed
in Chapter 5, the Fourier method presented there approximated the wave
front by planar segments. However, there are other methods available in
time-frequency analysis that may suite the problem better. If some higher
degree basis function can be found it may be possible to approximate the
local wave front curvature and thus depth. One possibility is using wavelets.
Liebling et al. [64] have proposed a family of wavelet basis functions that
we would like to have a closer look at for this purpose. Another possible
transform that we would like to implement is the Wigner distribution [9].

Hologram to light field transform may have many applications in com-
puter graphics and image-based rendering. Holography has a long history in
measurement and material scanning. One example where computer graphics
techniques may benefit from holographic recording is in BRDF measure-
ments. In order to capture a complete anisotropic BRDF using standard
camera techniques samples have to be taken for each light and viewing po-
sition. However, as holographic recording captures both light intensity and
direction, such a setup would only require one parameter to be changed.

8.2.3 Computer generated holograms

Wave field synthesis is still in its early stages, and the two different contri-
butions to the field presented in this thesis are a good base for future work.

In Chapter 6 we developed a method for accelerating hologram generation
from point models using graphics hardware. GPU technology is one of the
most innovative and rapidly advancing fields in computer hardware today.
A new generation technology has already been introduced while writing this
thesis and future improvements can be seen at the horizon. Already, there
are possibilities and new programming models available, for instance using
the recently introduced CUDA [90] from NVIDIA. The pipelined structure
of the graphics cards are still what makes up for most of the speed however.
We believe that our basic strategy, i.e. generating custom programs on the
fly, will be valid for yet some time.

We believe that our analytic approach to rendering triangle models may
be the most promising when looking for future perspectives. There are several
interesting possibilities to pursue in order to make the method more general.

Currently we do not address the problem of hidden surface removal in our
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approach. For future high resolution displays, this would be a requirement
however. The general problem for full light hidden surface removal is that it
is view dependent. This means that an image space method would have to
perform visibility tests for every polygon per pixel, which is very expensive.
In [77] Matsushima presented a method for hidden surface removal in CGH
rendering. However, it requires two Fourier transforms per polygonal surface,
which may be too expensive for real time graphics. We would like to fur-
ther investigate the problem, and believe that it is very similar to computer
graphics techniques for soft shadowing.

Right now we are only considering perfectly diffuse, unified materials,
however in order to be able to render a more interesting class of 3D models
we would like to investigate how to incorporate other material properties.
This would of course involve describing the BRDF analytically, but given the
results of Stam [107] we are optimistic about this possibility. In recent years
there has also been a lot of important work in the computational imaging
community related to frequency analysis of light transport and shading [93,
8, 22, 94]. We would like to investigate if these results could be used to
further extend our Fourier rendering approach.

Our proof of concept implementation is currently too slow for real time
display, however this is a naive implementation and the method can be ac-
celerated in several ways. First, we have the possibility of GPU acceleration
which looks very attractive for this solution. The per pixel frequency dis-
tribution could be computed in a fragment shader and the transforms are
all affine which is very fast to perform using graphics hardware. Second, it
would be interesting to find a better form of Eq. 7.13. It may be possible to
find an iterative approximation, or express it as a separable function. This
would allow for much faster CPU implementations. Third, it would be very
interesting to construct a hardware architecture implementing our method.
While we have mostly regarded custom made hardware as too expensive and
time consuming in this dissertation, and thus an argument for using other
approaches to achieve acceleration, the lowered prices and general availabil-
ity of Field Programmable Gate Arrays may make this an attractive venue
for further research.

Finally, all light transport performed in this thesis is done from surface to
hologram. However, due to the duality of light transport, the inverse calcu-
lation is possible. Thus, we would like to investigate a ray-tracing solution.
Instead of tracing single rays, it may be possible to use volumetric primitives
such as cones or frustums. An analytic solution for the intersection of these
entities and the 3D model corresponding to the one presented in Chapter 7
could probably be derived. To further accelerate the method, some sort of
hierarchical solution may be pursued.
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8.3 Final thoughts

The main contributions of this thesis has been in the area of wave field
synthesis. One main application is rendering for holographic displays, and we
have presented two different techniques, based on point and triangle models
respectively. Although different experimental holographic display systems
have been available for over 10 years, it is only recently that commercial
manufacturing attempts have been made. We believe that these displays
will open up for new challenges in rendering and computer graphics.

In some aspect, the bottom line may be that one of the basic principles in
almost all computer graphics related rendering, the camera projection, dis-
appears. In addition to the technical challenges presented by higher memory
bandwidth and processing, this also changes the rendering problem. Instead
of a camera, the rendering target will be a window peering into a virtual
world. This requires full light information all the way through the scene and
to the display. Thus, standard methods building on the projection principle
may not be valid, and alternative strategies must be found. We believe that
wave front construction and propagation will be an integral part of this.
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rasterization architecture. In Proceedings of the EGSR 2006, pages
67–72, 2006.

[44] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. An
image-based model for realistic lens systems in interactive computer
graphics. In Proceedings of the conference on Graphics interface ’97,
pages 68–75, Toronto, Ont., Canada, Canada, 1997. Canadian Infor-
mation Processing Society.

[45] Xianyou Hou, Li-Yi Wei, Heung-Yeung Shum, and Baining Guo. Real-
time multi-perspective rendering on graphics hardware. In Proceedings
of the EGSR 2006, pages 93–102, 2006.

[46] Ivo Ihrke, Lukas Ahrenberg, and Marcus Magnor. External camera cal-
ibration for synchronized multi-video systems. In WSCG ’2004 : the
12th International Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision 2004 ; short communication
papers proceedings, volume 12 of Journal of WSCG, pages 537–544,
Plzen, Czech Republic, February 2004. UNION Agency.

[47] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynam-
ically reparameterized light fields. In SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and interac-
tive techniques, pages 297–306, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[48] T. Ito, T. Yabe, M. Okazaki, and M. Yanagi. Special-purpose com-
puter HORN-1 for reconstruction of virtual image in three dimensions.
Computer Physics Communications, 82:104–110, September 1994.

[49] Tomoyoshi Ito, Hesham Eldeib, Kenji Yoshida, Shinya Takahashi,
Takashi Yabe, and Tomoaki Kunugi. Special-purpose computer for



130 BIBLIOGRAPHY

holography horn-2. Computer Physics Communications, 93:13–20, Jan-
uary 1996.

[50] Tomoyoshi Ito, Nobuyuki Masuda, Kotaro Yoshimura, Atsushi Shiraki,
Tomoyoshi Shimobaba, and Takashige Sugie. Special-purpose computer
horn-5 for a real-time electroholography. Optics Express, 13:1923–1932,
2005.

[51] Daniel Aaron Kartch. Efficient rendering and compression for full-
parallax computer-generated holographic stereograms. PhD thesis, Cor-
nell University, 2000. Adviser-Donald P. Greenberg.

[52] Joseph B. Keller. Geometrical theory of diffraction. J. Opt. Soc. Am.,
52:116–130, 1962.

[53] Thomas Kreis. Handbook of Holographic Interfereometry. Wiley-VCH,
2005.

[54] Paul Lalonde and Alain Fournier. Interactive rendering of wavelet pro-
jected light fields. In Proceedings of the 1999 conference on Graphics
interface ’99, pages 107–114. Morgan Kaufmann Publishers Inc., 1999.

[55] Wai-Hon Lee. Computer-generated holograms: Techniques and appli-
cations. In Emil Wolf, editor, Progress in Optics, volume 16, pages
119–232. North Holland Publishing Company, 1978.

[56] Emmet N. Leith and Juris Upatnieks. Reconstructed waefronts and
communications theory. JOSA, 52:1123–1130, 1962.

[57] Emmet N. Leith and Juris Upatnieks. Wavefront reconstruction with
continuous-tone objects. JOSA, 53:1377–1381, 1963.

[58] Emmet N. Leith and Juris Upatnieks. Wavefront reconstruction with
diffused illumination and three-dimensional objects. JOSA, 54:1295–
1301, 1964.

[59] Dan Lelescu and Frank Bossen. Representation and coding of light
field data. Graph. Models, 66(4):203–225, 2004.

[60] D. Leseberg and C. Frère. Computer-generated holograms of 3-d ob-
jects composed of tilted planar segments. Applied Optics, 27:3020–3024,
July 1988.



BIBLIOGRAPHY 131

[61] Marc Levoy and Pat Hanrahan. Light field rendering. In Computer
Graphics (SIGGGRAPH’96 Conf. Proc.), pages 31–42. ACM SIG-
GRAPH, August 1996.

[62] Marc Levoy, Ren Ng, Andrew Adams, Matthew Footer, and Mark
Horowitz. Light field microscopy. ACM Trans. Graph., 25(3):924–934,
2006.

[63] Ming Li, Marcus Magnor, and Hans-Peter Seidel. Hardware-accelerated
rendering of photo hulls. Proc. Eurographics (EG’04), Grenoble,
France, pages 635–642, September 2004.

[64] Michael Liebling, Thierry Blu, and Michael Unser. Fresnelets: New
multi-resolution wavelet bases for digital holography. IEEE Transac-
tions on Image Processing, 12:29–43, January 2003.

[65] A. W. Lohmann and D. P. Paris. Binary Fraunhofer holograms, gen-
erated by computer. Applied Optics, 6:1739–1748, 1967.

[66] Mark Lucente. Optimization of hologram computation for real-time
display. In S. A. Benton, editor, Proc. SPIE Vol. 1667, p. 32-43, Prac-
tical Holography VI, Stephen A. Benton; Ed., volume 1667 of Presented
at the Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference, pages 32–43, May 1992.

[67] Mark Lucente. Interactive computation of holograms using a look-up
table. Journal of Electronic Imaging, 2(1):28–34, January 1993.

[68] Mark Lucente. Diffraction-Specific Fringe Computation for Electro-
Holography. PhD thesis, Massachusetts Institute of Technology,
September 1994.

[69] Mark Lucente. Interactive three-dimensional holographic displays: see-
ing the future in depth. SIGGRAPH Comput. Graph., 31:63–67, 1997.

[70] Mark Lucente and Tinsley A. Galyean. Rendering interactive holo-
graphic images. In SIGGRAPH ’95: Proceedings of the 22nd an-
nual conference on Computer graphics and interactive techniques, pages
387–394, New York, NY, USA, 1995. ACM Press.

[71] Reto Lütolf, Bernt Schiele, and Markus H. Gross. The light field oracle.
In Pacific Conference on Computer Graphics and Applications, pages
116–126, 2002.



132 BIBLIOGRAPHY

[72] Lihong Ma, Hui Wang, Yong Li, and Hongzhen Jin. Numerical recon-
struction of digital holograms for three-dimensional shape measure-
ment. Journal of Optics A: Pure and Applied Optics, 6:396–400, 2004.

[73] Marcus Magnor and Bernd Girod. Data compression for light field
rendering. IEEE Trans. Circuits and Systems for Video Technology,
10(3):338–343, April 2000.

[74] Marcus A. Magnor. Video-Based Rendering. A. K. Peters, 2005.

[75] Nobuyuki Masuda, Tomoyoshi Ito, Takashi Tanaka, Atsushi Shiraki,
and Takashige Sugie. Computer generated holography using a graphics
processing unit. Optics Express, 14:603–608, 2006.

[76] Kyoji Matsushima. Computer-generated holograms for three-
dimensional surface objects with shade and texture. Applied Optics,
44(22):4607–4614, August 2005.

[77] Kyoji Matsushima. Exact hidden-surface removal in digitally synthetic
full-parallax holograms. In Practical Holography XIX and Holographic
Materials XI, 2005.

[78] Kyoji Matsushima. Performance of the polygon-source method for cre-
ating computer-generated holograms of surface objects. In Proceed-
ings of ICO Topical Meeting on Optoinfomatics/Information Photonics
2006, pages 99–100,, 2006.

[79] Kyoji Matsushima and Akinobu Kondoh. Wave optical algorithm for
creating digitally synthetic holograms of three-dimensional surface ob-
jects. In Sylvia H. Stevenson Tung H. Jeong, editor, Proceedings of
SPIE – Volume 5005 Practical Holography XVII and Holographic Ma-
terials IX, pages 190–197, May 2003.

[80] Kyoji Matsushima, Hagen Schimmel, and Frank Wyrowski. New cre-
ation algorithm for digitally synthesized holograms in surface model by
diffraction from tilted planes. In S. A. Benton, S. H. Stevenson, and
T. J. Trout, editors, Proc. SPIE Vol. 4659, p. 53-60, Practical Holog-
raphy XVI and Holographic Materials VIII, Stephen A. Benton; Sylvia
H. Stevenson; T. John Trout; Eds., volume 4659 of Presented at the So-
ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference,
pages 53–60, June 2002.



BIBLIOGRAPHY 133

[81] Kyoji Matsushima, Hagen Schimmel, and Frank Wyrowski. Fast cal-
culation method for optical diffraction on tilted planes by use of the
angular spectrum of plane waves. JOSA A, 20(9), 2003.

[82] Kyoji Matsushima and Masahiro Takai. Recurrence formulas for
fast creation of synthetic three-dimensional holograms. Appl. Opt.,
39:6587–6594, 2000.

[83] Wojciech Matusik, Chris Buehler, and Leonard McMillan. Polyhedral
visual hulls for real-time rendering. In Proceedings of the 12th Euro-
graphics Workshop on Rendering Techniques, pages 115–126, London,
UK, 2001. Springer-Verlag.

[84] Wojciech Matusik and Hanspeter Pfister. 3d tv: a scalable system
for real-time acquisition, transmission, and autostereoscopic display of
dynamic scenes. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
pages 814–824, New York, NY, USA, 2004. ACM Press.

[85] Gavin S. P. Miller, Steven M. Rubin, and Dulce B. Ponceleon. Lazy de-
compression of surface light fields for precomputed global illumination.
In Rendering Techniques, pages 281–292, 1998.

[86] Hans P. Moravec. 3d graphics and the wave theory. In SIGGRAPH
’81: Proceedings of the 8th annual conference on Computer graphics
and interactive techniques, pages 289–296, New York, NY, USA, 1981.
ACM Press.

[87] P. J. Narayanan, Peter Rander, and Takeo Kanade. Synchronous cap-
ture of image sequences from multiple cameras. Technical Report
CMU-RI-TR-95-25, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, December 1995.

[88] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan.
Light field photography with a hand-held plenoptic camera. Technical
Report CSTR 2005–02, Stanford Computer Science, 2005.

[89] Ren Ng. Fourier slice photography. ACM Trans. Graph., 24(3):735–
744, 2005.

[90] Nvidia. NVIDIA CUDA Compute Unified Device Ar-
chitecture Programming Guide, 0.82 edition, April 2007.
http://developer.nvidia.com/object/cuda.html.



134 BIBLIOGRAPHY

[91] Ingmar Peter and Wolfgang Straßer. The wavelet stream: Interactive
multi resolution light field rendering. In Proceedings of the 12th Euro-
graphics Workshop on Rendering Techniques, pages 127–138. Springer-
Verlag, 2001.

[92] Christoph Petz and Marcus Magnor. Fast hologram synthesis for 3d
geometry models using graphics hardware. In Practical Holography
XVII and Holographic Materials IX, pages 266–275. SPIE, 2003.

[93] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework
for inverse rendering. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
pages 117–128, New York, NY, USA, 2001. ACM Press.

[94] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. A first-
order analysis of lighting, shading, and shadows. ACM Trans. Graph.,
26(1):2, 2007.
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Data sources

We would like to acknowledge the following persons and institutions for
kindly allowing us to use data and resoures:

The Buddha light field used in Chapter 4 was downloaded from the (old)
Stanford Light Fields Archive1, while the Bunny model used in Chapter 6
was downloaded from the Stanford 3D Scanning Repository2. Both these
resources are provided online by Stanford University Computer Graphics
Laboratory.

The chess knight hologram used in Chapter 5 was kindly provided by
Ervin Kolenovic and Jan Mueller at Bremer Institut für angewandte Strahl-
technik.

The Bird and ”Eight” models used in Chaper 7 are courtesy of DISI
and INRIA respectively. The Max Planck bust model used in some of the
illustrations in Chapter 2 is courtesy of Max-Planck-Institut für Informatik.
All three models were kindly provided online by the Aim@Shape project3.

1http://graphics.stanford.edu/software/lightpack/lifs.html
2http://graphics.stanford.edu/data/3Dscanrep/
3http://www.aimatshape.net/



Curriculum Vitæ
1976 Born at Baldersnäs, Steneby, Sweden
1983 – 1989 Ekhagsskolan, Dals L̊anged, Sweden (Primary School)
1989 – 1992 Bengstg̊arden, Bengtsfors, Sweden (Primary School)
1992 – 1995 Karbergsskolans Gymnasium, Åmal, Sweden (High School)
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