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Kurze Zusammenfassung

Gegenstand unserer Arbeit ist die Entwicklung von Iterationsverfahren zur
Lösung des split feasibility problem (SFP) in Banachräumen und deren Un-
tersuchung hinsichtlich Stabilität und regularisierender Eigenschaften. Das
SFP besteht darin, einen gemeinsamen Punkt im Schnitt endlich vieler
abgeschlossener konvexer Mengen zu finden, wobei einige der Mengen dadurch
gegeben sind, dass Zwangsbedingungen im Bild eines linearen Operators aufer-
legt sind. Das SFP lässt sich prinzipiell dadurch lösen, dass zyklisch auf die
einzelnen Mengen projeziert wird. In den Anwendungen sind solche Projek-
tionsverfahren effizient, wenn die Projektionen auf die einzelnen Mengen rel-
ativ einfach zu berechnen sind. Wenn die Mengen jedoch durch Zwangsbe-
dingungen im Bild eines linearen Operators gegeben sind, dann ist es i.A. zu
schwierig oder zu aufwendig, in jedem Iterationsschritt auf diese Mengen zu
projezieren. In endlichdimensionalen euklidischen Räumen schlug Byrne den
CQ Algorithmus zur Lösung des SFP vor, bei dem nicht direkt auf solche
Mengen projeziert wird, sondern Gradienten geeigneter Funktionale verwen-
det werden.
Zur Lösung des SFP in Banachräumen verallgemeinern wir diesen Algorith-
mus mittels Dualitätsabbildungen, metrischer und Bregman Projektionen.
Dazu stellen wir die theoretischen Grundlagen zur Verfügung und ergänzen
diese durch weitere Ergebnisse. Wir zeigen die Konvergenz der resultieren-
den Verfahren und untersuchen sie hinsichtlich der Verwendung approxi-
mativer Daten sowie ihre regularisierenden Eigenschaften mit Hilfe eines
Diskrepanzprinzips. Insbesondere beschäftigen wir uns auch mit der Berech-
nung von Projektionen auf affine Unterräume, die durch den Nullraum oder
das Bild eines linearen Operators gegeben sind. Dazu dient das gleiche It-
erationsschema wie beim SFP und darauf aufbauend schlagen wir auch
entsprechend verallgemeinerte sequentielle Unterraum und konjugierte Gra-
dienten Verfahren vor.



Abstract

We develop iterative methods for the solution of the split feasibility prob-
lem (SFP) in Banach spaces and analyze stability and regularizing properties.
The SFP consists in finding a common point in the intersection of finitely
many closed convex sets, whereby some of the sets arise by imposing con-
straints in the range of a linear operator. In principle the SFP can be solved
by cyclically projecting onto the individual sets. In applications such projec-
tion algorithms are efficient if the projections onto the individual sets are
relatively simple to calculate. If the sets arise by imposing constraints in the
range of a linear operator then it is in general too difficult or too costly to
project onto these sets in each iterative step. In finite-dimensional euclidean
spaces Byrne suggested the CQ algorithm for the solution of the SFP, which
avoids projecting directly onto such sets by using gradients of suitable func-
tionals. To solve the SFP in Banach spaces we generalize this algorithm via
duality mappings, metric projections and Bregman projections. We provide
the necessary theoretical framework and extend it by some further contribu-
tions. We prove convergence of the resulting methods, show how approximate
data may be used, and analyze their regularizing properties by applying a dis-
crepancy principle. Especially we are also concerned with the computation of
projections onto affine subspaces that are given via the nullspace or the range
of a linear operator. To this end we can use the same iterative scheme as for
the SFP and we also propose generalized sequential subspace and conjugate
gradient methods.



Zusammenfassung

Gegenstand unserer Arbeit ist die Entwicklung von Iterationsverfahren
zur Lösung des split feasibility problem (SFP) in Banachräumen und deren
Untersuchung hinsichtlich Stabilität und regularisierender Eigenschaften. Das
von Censor und Elfving [20] so gennante SFP ist ein Spezialfall des convex
feasibility problem (CFP). Das CFP besteht darin, einen gemeinsamen Punkt
im Schnitt endlich vieler abgeschlossener konvexer Mengen zu finden. Beim
SFP werden dabei Mengen, die dadurch gegeben sind, dass Zwangsbedingun-
gen im Bild eines linearen Operators auferlegt sind, gesondert behandelt. Ein
klassisches Lösungsverfahren für das CFP in Hilberträumen ist die Methode
der zyklischen Orthogonalprojektionen [30], bei der iterativ eine konvergente
Folge durch zyklisches Projezieren auf die einzelnen Mengen erzeugt wird.
Bregman [11] zeigte 1967, dass auch allgemeinerer Projektionen verwendet
werden können, welche durch konvexe Funktionen erzeugt werden. Mit Hilfe
solcher Bregman Projektionen konnten Alber und Butnariu [1] das CFP in
Banachräumen lösen.
In den Anwendungen sind solche Projektionsverfahren effizient, wenn die Pro-
jektionen auf die einzelnen Mengen relativ einfach zu berechnen sind. Wenn
die Mengen jedoch dadurch gegeben sind, dass Zwangsbedingungen im Bild
eines linearen Operators auferlegt sind, dann ist es i.A. zu schwierig oder
zu aufwendig, in jedem Iterationsschritt auf diese Mengen zu projezieren.
Byrne [17] schlug 2002 den CQ Algorithmus vor, um einen Punkt x in einer
abgeschlossenen konvexen Menge C ⊂ RN zu finden, so dass Ax ∈ Q liegt für
eine abgeschlossene konvexe Menge Q ⊂ RM und eine M × N -matrix A. Der
CQ Algorithmus hat die iterative Form

xn+1 = PC

(

xn − µA∗
(

Axn − PQ(Axn)
)

)

,

wobei µ > 0 ein Parameter ist und PC , PQ die Orthogonalprojektionen auf
die entsprechenden Mengen bezeichnen. Der Vorteil liegt darin, dass man es
vermeidet, direkt auf die Menge {x ∈ RN |Ax ∈ Q} zu projezieren, indem
man den Gradienten des Funktionals f(x) = 1

2‖Ax − PQ(Ax)‖2 und damit
auch nur die Projektion auf Q verwendet.
Wir verallgemeinern dieses Verfahren zur Lösung des SFP in Banachräumen
mittels Dualitätsabbildungen, metrischer und Bregman Projektionen. Den
dazu benötigten theoretischen Rahmen stellen wir im ersten Kapitel zur
Verfügung. Dabei werden die Banachräume, in denen die Verfahren kon-
vergieren, durch ihre geometrischen Eigenschaften charakterisiert. Wir geben
einen kurzen Überblick über Dualitätsabbildungen, da sie das Hauptwerkzeug
unserer Arbeit sind. Wir verwenden auch positive Dualitätsabbildungen in Ba-
nachverbänden, um lineare Ungleichungen ,,Ax ≤ y” zu behandeln. Die Breg-



man Projektionen, die wir hier verwenden, werden durch Potenzen der Norm
der zugrundeliegenden Räume induziert. Wir ergänzen die bestehende Theorie
dieser speziellen Bregman Projektionen durch weitere nützliche Eigenschaften
und klären den Zusammenhang mit den metrischen Projektionen. Dabei be-
weisen wir auch einen Zerlegungssatz der Form

X = PU (X) ⊕ J∗
(

Π∗
U⊥

(

J(x)
)

)

,

wobei U ⊂ X ein abgeschlossener Unterraum eines reflexiven, strikt konvexen
und glatten Banachraums ist, PU die metrische Projektion auf U , Π∗

U⊥ eine
Bregman Projektion auf den Annihilator U⊥ von U bezeichnet und J , J∗

Dualitätsabbildungen in X bzw. dem Dualraum X∗ sind. Ein Resultat über
gleichmäßige Stetigkeit der Projektionen erhalten wir bezüglich beschränkter
Hausdorff Konvergenz konvexer Mengen (dieser Konvergenzbegriff basiert auf
lokalen Versionen der Hausdorff Metrik und wurde auch von Penot [39] im
Zusammenhang mit metrischen Projektionen verwendet).
Die Verfahren zur Lösung des SFP behandeln wir im zweiten Kapitel. Wir be-
weisen ihre (schwache) Konvergenz und untersuchen mit Hilfe eines
Diskrepanzprinzips ihre regularisierenden Eigenschaften und wie auch Approx-
imationen der Daten (rechte Seiten von Operatorgleichungen, die Operatoren
selbst, die konvexen Mengen) verwendet werden können.
Insbesondere beschäftigen wir uns auch mit der Berechnung von Projektio-
nen auf affine Unterräume, die durch den Nullraum oder das Bild eines lin-
earen Operators gegeben sind. Dazu dient das gleiche Iterationsschema wie
beim SFP. Hierbei verbessern und ergänzen wir unter Verwendung des oben
erwähnten Zerlegungssatzes unsere Arbeit in [46], wo wir schon die starke
Konvergenz dieses Verfahrens zeigen konnten.
Schließlich gehen wir noch auf Möglichkeiten ein, die Verfahren effizient zu im-
plementieren. Dazu gehören passende line search Verfahren, um die beteiligten
Parameter optimal zu bestimmen, sowie entsprechend verallgemeinerte se-
quentielle Unterraum und konjugierte Gradienten Verfahren, um im Fall ex-
akter Daten Projektionen auf affine Unterräume zu berechnen.
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Introduction 3

Introduction

Many problems in mathematics, natural sciences and engineering can be for-
mulated as the convex feasibility problem (CFP), which consists in finding a
common point in the intersection of finitely many closed convex sets. A clas-
sical procedure for the solution of the CFP in Hilbert spaces is the method of
cyclic orthogonal projections [30], where a convergent sequence is iteratively
generated by projecting cyclically onto the individual sets. In 1967 Bregman

[11] extended this method to non-orthogonal projections that are induced by
convex functions. Alber and Butnariu [1] used these nowadays called Breg-
man projections to solve the CFP in Banach spaces.
In applications such projection algorithms are efficient if the projections onto
the individual sets are relatively simple to calculate. If the sets arise by im-
posing constraints in the range of a linear operator then it is in general too
difficult or too costly to project onto these sets in each iterative step. In 2002
Byrne [17] suggested the CQ algorithm to solve the problem of finding a
point x in a closed convex set C ⊂ RN such that Ax ∈ Q for a closed convex
set Q ⊂ RM and an M × N -matrix A. The CQ algorithm has the iterative
form

xn+1 = PC

(

xn − µA∗
(

Axn − PQ(Axn)
)

)

,

whereby µ > 0 is a parameter and PC , PQ denote the orthogonal projections
onto the respective sets. The special case of Q = {y} being a singleton is
also known as the projected Landweber method. The advantage is that the
difficulty of directly projecting onto the set {x ∈ RN |Ax ∈ Q} is avoided by
using the gradient of the functional f(x) = 1

2‖Ax − PQ(Ax)‖2 and thus only
the projection onto Q is involved. Recently Censor et al. [21] generalized
this procedure to the case where several constraints are imposed in the domain
as well as in the range of the linear operator. This special case of the CFP
was also called the split feasibility problem (SFP) by Censor and Elfving

[20] and its solution in Banach spaces by means of a CQ algorithm has not
been analyzed yet.
Often the available data (right hand sides of operator equations, the opera-
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tors themselves, the convex sets) is given only approximately or contaminated
with noise or it is even preferable to use approximate data. Therefore it is im-
portant not only to have solution methods but also to analyze their stability
and regularizing properties and to modify them if necessary. Some results in
this direction were given by Eicke [27], who analyzed the regularizing prop-
erties of the projected Landweber method in Hilbert spaces with respect to
perturbed right hand side {y}, or Zhao and Yang [49], who studied a relaxed
version of the CQ algorithm for the use of approximately given convex sets.

We are concerned with the solution of the SFP in Banach spaces and the
special case of computing projections onto affine subspaces that are given via
a linear operator. To this end we generalize the CQ algorithm via duality
mappings, metric projections and Bregman projections induced by powers of
the norm of the underlying Banach spaces (also called generalized projections
by Alber [3]). We show how approximate data may be used in the resulting
methods and analyze regularizing properties and stability with respect to all
given data by applying a discrepancy principle.
In chapter 1 we provide the theoretical framework necessary to develop and
discuss the methods in Banach spaces. The spaces in which the methods work
are characterized by their geometrical properties dealt with in section 1.1,
where we also give a survey of duality mappings since they are the main tool
throughout this thesis. Positive duality mappings in Banach lattices (sub-
sec. 1.1.8) are used to handle linear inequalities. In section 1.2 we are con-
cerned with the Bregman distances and Bregman projections we use here. We
make some contributions to the existing theory and clarify the relationship
between these Bregman projections and the metric projection. Especially we
prove a decomposition theorem of the form

X = PU (X) ⊕ J∗
(

Π∗
U⊥

(

J(x)
)

)

,

whereby U ⊂ X is a closed subspace of a reflexive, smooth and strictly con-
vex Banach space, PU is the metric projection onto U , Π∗

U⊥ is a Bregman
projection onto the annihilator U⊥ of U and J , J∗ denote duality mappings
of X resp. the dual space X∗. In the last section we prove a uniform continu-
ity result with respect to bounded Hausdorff convergence of convex sets (this
notion of convergence is based on local versions of the Hausdorff metric and
has also been used by Penot [39] in the context of metric projections).
In chapter 2 we are concerned with the iteration methods for the solution
of the SFP and the computation of projections onto affine subspaces. In the
first section we examine the operators that are used in the iterative process
to handle different kinds of constraints. The operators related to constraints
in the range of a linear operator depend on a positive parameter which in
general has to be chosen a posteriori. The question of how to choose these
parameters is settled in the following section. Thereby we make use of the
characteristic inequalities of uniformly smooth Banach spaces [48] of subsec-
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tion 1.1.7. The iteration methods for the SFP are analyzed in section 2.3. In
section 2.4 we concentrate on the special case of computing projections onto
affine subspaces, which can be used to compute minimum norm solutions of
operator equations and best approximations in the range of a linear operator.
Hereby we improve and complement our work in [46] by using the above men-
tioned decomposition theorem. The last two sections deal with possibilities
to efficiently implement the methods. We show that the choice of parameters
can be replaced by line searches and propose generalized conjugate gradient
and sequential subspace methods to compute projections onto affine subspaces.

I am deeply grateful to Univ.-Prof. Dr. Alfred K. Louis for sparking my
interest in this topic and for encouraging me whenever I did not know how to
continue.
Special thanks go to Univ.-Prof. Dr. Thomas Schuster for advising and help-
ing me in so many ways.
I would also like to thank my friends who accepted my frequent absence, and
especially my parents for supporting me throughout the years.
And I thank my beloved wife Birgit for being with me.

Saarbrücken, im März 2007 Frank Schöpfer





1

Theoretical Framework

In this chapter we provide the theoretical framework in which the problems
we deal with are formulated and which is necessary to develop and discuss
the methods we propose for their solution.

1.1 Geometry of Banach Spaces and Duality Mappings

At first we recall some basic definitions and properties of Banach spaces which
can be found in [25, 33, 47] or any other book about Banach space theory or
functional analysis. We mainly concentrate on some convergence principles
that we will use frequently. Then we will give a short survey of geometrical
aspects of Banach spaces and (positive) duality mappings. A detailed intro-
duction to this topic can be found in [22]. We only give some of the proofs,
when we think they are not too involved and to make ourselves familiar with
duality mappings and the techniques to analyze the behaviour of the iteration
methods.

1.1.1 Preliminaries

Let us make some conventions: We shortly write “iff” for “if and only if”.
p, q ∈ [1,∞] are always supposed to be conjugate exponents so that

1

p
+

1

q
= 1 ,

whereby we set 1
∞ := 0. For convenience we also mention some equalities

which we will use more frequently for p ∈ (1,∞):

q =
p

p − 1
, p q = p + q , (p − 1)(q − 1) = 1 .

Further for extended real valued a, b1 we write

1 i.e. scalars, sequences or functions with values in [−∞, +∞]
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a ∨ b = max{a, b} and a ∧ b = min{a, b} ,

which is to be understood componentwise in case of sequences and pointwise
in case of functions.

1.1.2 Basic Definitions and Properties of Banach Spaces

Throughout this thesis X and Y are real Banach spaces, i.e. normed vector
spaces over the real field such that every Cauchy sequence is convergent. By
‖.‖X and ‖.‖Y we denote their respective norms and omit indices whenever
it becomes clear from the context which space is meant. The dual space X∗

of X is the space of continuous linear functionals on X. It becomes itself a
Banach space if we endow it with the norm ‖.‖X∗ defined by

‖x∗‖X∗ := sup
{

|〈x∗ |x〉|
∣

∣x ∈ X , ‖x‖X ≤ 1
}

, x∗ ∈ X∗ , (1.1)

whereby we write 〈x∗ |x〉 = x∗(x) for the application of an element x∗ ∈ X∗

on an element x ∈ X to emphasize that there are some similarities with scalar-
products in real Hilbert spaces. Obvious are bilinearity and continuity in both
arguments and by looking at

|〈x∗ |x〉|
‖x‖X

=

∣

∣

∣

∣

〈

x∗

∣

∣

∣

∣

x

‖x‖X

〉∣

∣

∣

∣

≤ ‖x∗‖X∗

we see that the following generalization of the Cauchy-Schwarz inequality
holds

|〈x∗ |x〉| ≤ ‖x∗‖X∗ ‖x‖X for all x∗ ∈ X∗, x ∈ X . (1.2)

The canonical embedding ιX of X in its bidual X∗∗ = (X∗)
∗

can then be
written in the form

ιX : X −→ X∗∗ , 〈x |x∗〉 = ιX(x)(x∗) := 〈x∗ |x〉 , x ∈ X , x∗ ∈ X∗ .

This mapping is linear and isometric. If it is also surjective and thus an iso-
metric isomorphism, the Banach space X is called reflexive. In this case we
can identify X∗∗ with X. It is a fact that X is reflexive iff X∗ is reflexive.

Example 1.1.

(a) Every finite-dimensional normed vector space is a reflexive Banach space.
(b) Every Hilbert space X is a reflexive Banach space with the identification

X∗ = X and 〈. | .〉 is just the scalar-product.
(c) The Lp-spaces are Banach spaces with

‖x‖p :=















(

∑

n

|xn|p
)

1
p

, p < ∞

sup
n

{|xn|} , p = ∞
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and
〈x | y〉 =

∑

n

xnyn , x = (xn)n ∈ Lp , y = (yn)n ∈ Lq

in case of sequence spaces, respectively

‖x‖p :=











(∫

ω∈Ω

|x(ω)|p dω

)
1
p

, p < ∞
ess sup

ω∈Ω

{|x(ω)|} , p = ∞

and

〈x | y〉 =

∫

ω∈Ω

x(ω)y(ω) dω , x ∈ Lp , y ∈ Lq .

in case of function spaces. For p ∈ (1,∞) they are reflexive and the
dual spaces are L∗

p = Lq. In finite dimensions the dual of (Rn, ‖.‖∞)
is (Rn, ‖.‖1) and vice versa.

(d) Of course there are many other classes of Banach spaces like spaces of con-
tinuous or differentiable functions, Sobolev spaces, Orlicz spaces [42],. . .

Besides convergence in norm, which is often referred to as strong conver-
gence, we will make use of the concept of weak convergence. A sequence (xn)n

in a Banach space X is called weakly convergent, if there is an x ∈ X such
that

lim
n→∞

〈x∗ |xn〉 = 〈x∗ |x〉 for all x∗ ∈ X∗ . (1.3)

Since in a reflexive space X∗∗ = X, a sequence (x∗
n)n in the dual X∗ is weakly

convergent, if there is an x∗ ∈ X such that

lim
n→∞

〈x∗
n |x〉 = 〈x∗ |x〉 for all x ∈ X . (1.4)

By |〈x∗ |x−xn〉| ≤ ‖x∗‖X∗ ‖x−xn‖X we see that strong convergence implies
weak convergence. The converse is true iff X is finite-dimensional. As a conse-
quence of the Hahn-Banach theorem2 the above weak limit points are unique
and a convex subset C ⊂ X is (norm-)closed iff it is weakly closed. Moreover
a closed and convex subset ∅ 6= C ( X coincides with the intersection of all
halfspaces containing C, i.e.

C =
⋂

C⊂H≤(u∗,α)

H≤(u∗, α) , (1.5)

whereby for 0 6= u∗ ∈ X∗ and α ∈ R we define the hyperplane

2 There are several versions of this theorem. We just mention the following two:
(a) For every x ∈ X there exists an x∗ ∈ X∗ with ‖x∗‖ = 1 and 〈x∗ |x〉 = ‖x‖.
(b) If C ⊂ X is a closed convex subset and x0 /∈ C then there exist x∗ ∈ X∗ and
α ∈ R such that 〈x∗ |x〉 ≤ α < 〈x∗ |x0〉 for all x ∈ C.
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H(u∗, α) := {x ∈ X | 〈u∗ |x〉 = α} (1.6)

and the halfspace

H≤(u∗, α) := {x ∈ X | 〈u∗ |x〉 ≤ α} (1.7)

and analogously for ≥, < and >. A hyperplane H is called a supporting hy-
perplane of C (at x ∈ C) if H has non-empty intersection with C (at x) and
C is contained in one of the halfspaces H≤ or H≥. In this case H≤ (resp. H≥)
is called a supporting halfspace of C (at x ∈ C). By C(X) we denote the set
of all non-empty, closed and convex subsets of X. For a subspace U ⊂ X the
annihilator of U is the set

U⊥ := {x∗ ∈ X∗ | 〈x∗ |u〉 = 0 for every u ∈ U} .

It is a closed subspace of X∗ and in a reflexive Banach space X we have

U⊥⊥ =
(

U⊥
)⊥

= U , the closure of U .

Another important characterization of reflexive spaces is the following.

Proposition 1.2. A Banach space X is reflexive iff the unit ball of X is
weakly compact iff every bounded sequence has a weakly convergent subse-
quence.

The next proposition shows that in reflexive spaces we can solve a special
kind of convex optimization problem, namely

min f(x) s.t. x ∈ C (1.8)

for a C ∈ C(X), whereby f(x) = ‖x−y‖ for an arbitrary y ∈ X (or equivalently
f(x) = 1

p
‖x − y‖p for any p > 1).

Proposition 1.3. In a reflexive Banach space problem (1.8) has at least one
solution.

Proof. There is a sequence (xn)n ∈ C with

lim
n→∞

‖xn − y‖ = m := inf
x∈C

‖x − y‖ .

In particular (xn)n is bounded and by 1.2 it has a weakly convergent subse-
quence (xnk

)k. Since C is convex and closed and therefore also weakly closed,
the weak limit point x0 of (xnk

)k lies again in C. Hence ‖x0 − y‖ ≥ m and for
all x∗ ∈ X∗ with ‖x∗‖ ≤ 1 we have

|〈x0 − y |x∗〉| = lim
k→∞

|〈xnk
− y |x∗〉| ≤ lim

k→∞
‖xnk

− y‖ = m.

It follows that ‖x0 − y‖ = sup
{

|〈x0 − y |x∗〉|
∣

∣x∗ ∈ X∗ , ‖x∗‖ ≤ 1
}

≤ m. ⊓⊔
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1.1.3 Geometry

We turn to some geometrical aspects of Banach spaces because we need them
to characterize those spaces in which we can apply the iteration methods and
prove their convergence. The results presented here are taken from [22, 24,
29, 34].

Definition 1.4. The function δX : [0, 2] −→ [0, 1] defined by

δX(ǫ) = inf

{

1 −
∥

∥

∥

∥

1

2
(x + y)

∥

∥

∥

∥

: ‖x‖ = ‖y‖ = 1 , ‖x − y‖ ≥ ǫ

}

is referred to as the modulus of convexity of X.

The function ρX : [0,∞) −→ [0,∞) defined by

ρX(τ) =
1

2
sup {‖x + y‖ + ‖x − y‖ − 2 : ‖x‖ = 1 , ‖y‖ ≤ τ}

is referred to as the modulus of smoothness of X.

These functions can be seen as a measure of the degree of convexity resp.
smoothness of the norm. They have the following basic properties.

Proposition 1.5.

(a) δX is continuous and nondecreasing with δX(0) = 0.
(b) ρX is continuous, convex and nondecreasing with ρX(0) = 0 and

ρX(τ) ≤ τ .

(c) The function τ 7→ ρX(τ)
τ

is nondecreasing and fulfills ρX(τ)
τ

> 0
for all τ > 0.

(d) For every Hilbert space H we have δH(ǫ) = 1 −
√

1 −
(

ǫ
2

)2
and

ρH(τ) =
√

1 + τ2 − 1 and δX(ǫ) ≤ δH(ǫ), ρX(τ) ≥ ρH(τ) for arbitrary
Banach spaces X.

The classes of Banach spaces we will deal with are:

Definition 1.6. A Banach space X is said to be

(a) strictly convex, if ‖λx + (1−λ)y‖ < 1 for all λ ∈ (0, 1) and x, y ∈ X with
x 6= y and ‖x‖ = ‖y‖ = 1, i.e. the boundary of the unit ball contains no
line segment,

(b) smooth, if for every 0 6= x ∈ X there is a unique x∗ ∈ X∗ such that
‖x∗‖ = 1 and 〈x, x∗〉 = ‖x‖, i.e. there is a unique supporting hyperplane
for the ball B‖x‖ around the origin with radius ‖x‖ at x,

(c) uniformly convex, if δX(ǫ) > 0 for any ǫ ∈ (0, 2],

(d) uniformly smooth, if limτ→0
ρX(τ)

τ
= 0.
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Uniform convexity implies strict convexity and uniform smoothness im-
plies smoothness. In finite dimensions the converse is also true. The next
proposition shows that convexity and smoothness are dual concepts.

Proposition 1.7.

(a) Let X be reflexive. Then X is strictly convex (resp. smooth) iff X∗ is
smooth (resp. strictly convex).

(b) If X is uniformly convex then X is reflexive and strictly convex.
(c) If X is uniformly smooth then X is reflexive and smooth.
(d) X is uniformly convex (resp. uniformly smooth) iff X∗ is uniformly smooth

(resp. uniformly convex).

Example 1.8. Lp-spaces (1 < p < ∞) are known to be both uniformly convex
and uniformly smooth and

δLp
(ǫ) =

{

p−1
8 ǫ2 + o(ǫ2) > p−1

8 ǫ2 , 1 < p < 2

1 −
(

1 −
(

ǫ
2

)p) 1
p > 1

p

(

ǫ
2

)p
, p ≥ 2

(1.9)

ρLp
(τ) =

{

(1 + τp)
1
p − 1 < 1

p
τp , 1 < p ≤ 2

p−1
2 τ2 + o(τ2) < p−1

2 τ2 , p > 2 ,
(1.10)

whereas the spaces L1 and L∞ are neither smooth nor strictly convex.

1.1.4 Duality Mappings

Duality mappings are a very important tool in nonlinear functional analysis,
in theory as well as in applications. One reason for this is that they serve as
a suitable substitute for the isomorphism H = H∗ in Hilber spaces. For more
information about duality mappings we refer the reader to the book of Ioana

Cioranescu [22] and the references cited therein.

Definition 1.9. Let p ∈ (1,∞) be given. The mapping Jp
X : X −→ 2X∗

defined by

Jp
X(x) =

{

x∗ ∈ X∗
∣

∣ 〈x∗|x〉 = ‖x∗‖ ‖x‖ , ‖x∗‖ = ‖x‖p−1
}

(1.11)

is called the duality mapping of X with gauge function t 7→ tp−1. J2
X is

also called the normalized duality mapping. By jp
X we denote a single-valued

selection of Jp
X , i.e jp

X(x) ∈ Jp
X(x) for every x ∈ X.

These mappings have the following basic properties.

Proposition 1.10.

(a) For every x ∈ X the set Jp
X(x) is not empty and convex.

(b) Jp
X is homogenous of degree p − 1, i.e.

Jp
X(λx) = |λ|p−1 sgn(λ)Jp

X(x) for all x ∈ X , λ ∈ R .
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(c) Jp
X is monotone, i.e.

〈x∗ − y∗ |x − y〉 ≥ 0 for all x, y ∈ X , x∗ ∈ Jp
X(x) , y∗ ∈ Jp

X(y) .

(d) If Jq
X∗ is the duality mapping of X∗ with gauge function t 7→ tq−1 then

x∗ ∈ Jp
X(x) whenever x ∈ Jq

X∗(x∗); if X is reflexive then x∗ ∈ Jp
X(x) iff

x ∈ Jq
X∗(x∗).

(e) If Jr
X is the duality mapping of X with gauge function t 7→ tr−1 then

Jr
X(x) = ‖x‖r−pJp

X(x) .

(So it suffices to know Jp
X for one value of p.)

(f) The normalized duality mapping is linear iff X is a Hilbert space and in
this case it is just the identity mapping.

Proof. Obviously Jp
X(0) = 0. For x 6= 0 by the Hahn-Banach theorem we can

find x∗ ∈ X∗ with ‖x∗‖ = 1 and 〈x∗ |x〉 = ‖x‖. The element x̃∗ := ‖x‖p−1x∗

then lies in Jp
X(x) ant thus Jp

X(x) is not empty.
For x∗, y∗ ∈ Jp

X(x), λ ∈ (0, 1) and z∗ = λx∗ + (1 − λ)y∗ we have

〈z∗ |x〉 = λ〈x∗ |x〉 + (1 − λ)〈y∗ |x〉 = ‖x‖p

and therefore by the triangle-inequality of the norm

‖x‖p−1 =

〈

z∗
∣

∣

∣

∣

x

‖x‖

〉

≤ ‖z∗‖ ≤ λ‖x∗‖ + (1 − λ)‖y∗‖ = ‖x‖p−1 .

Hence z∗ ∈ Jp
X(x).

For x∗ ∈ Jp
X(x) and λ > 0 we see that

〈−x∗ | − x〉 = 〈x∗ |x〉 = ‖x‖p = ‖ − x‖p ,

‖ − x∗‖ = ‖x∗‖ = ‖x‖p−1 = ‖ − x‖p−1 ,

〈λp−1x∗ |λx〉 = λp〈x∗ |x〉 = λp‖x‖p = ‖λx‖p ,

‖λp−1x∗‖ = λp−1‖x∗‖ = λp−1‖x‖p−1 = ‖λx‖p−1 .

and thus −Jp
X(x) ⊂ Jp

X(−x) and λp−1Jp
X(x) ⊂ Jp

X(λx). The inverse inclusions
can be proven analogously.
For all x, y ∈ X and x∗ ∈ Jp

X(x) , y∗ ∈ Jp
X(y) we have

〈x∗ − y∗ |x − y〉 = 〈x∗ |x〉 + 〈y∗ | y〉 − 〈x∗ | y〉 − 〈y∗ |x〉
≥ ‖x‖p + ‖y‖p − ‖x‖p−1‖y‖ − ‖y‖p−1‖x‖
=
(

‖x‖p−1 − ‖y‖p−1
)

(‖x‖ − ‖y‖) ≥ 0 .

Let Jq
X∗ be the duality mapping of X∗ with gauge function t 7→ tq−1 and

x ∈ Jq
X∗(x∗) be given. By
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‖x∗‖q = 〈x |x∗〉 = 〈x∗ |x〉 ≤ ‖x∗‖ ‖x‖ = ‖x∗‖ ‖x∗‖q−1

it follows that ‖x‖ = ‖x∗‖q−1 ⇔ ‖x‖p−1 = ‖x∗‖ and

〈x∗ |x〉 = ‖x∗‖q = ‖x‖(p−1)q = ‖x‖p .

Hence x∗ ∈ Jp
X(x).

The relation in (e) is straightforward. Now let X be a Hilbert space. Then

‖J2
X(x) − x‖2 = ‖J2

X(x)‖2 + ‖x‖2 − 2〈J2
X(x) |x〉 = ‖x‖2 + ‖x‖2 − 2‖x‖2 = 0

and thus J2
X is the identity mapping. Conversely suppose that for a real Ba-

nach space X the normalized duality mapping is linear. We show that in this
case the parallelogram equality holds which characterizes Hilbert spaces. If J2

X

is linear then x∗±y∗ ∈ J2
X(x±y) for all x, y ∈ X and x∗ ∈ Jp

X(x) , y∗ ∈ Jp
X(y)

and therefore

‖x ± y‖2 = 〈x∗ ± y∗ |x ± y〉 = ‖x‖2 + ‖y‖2 ± 〈x∗ | y〉 ± 〈y∗ |x〉 .

Adding these two equalities yields

‖x + y‖2 + ‖x − y‖2 = 2
(

‖x‖2 + ‖y‖2
)

.
⊓⊔

In the following we will frequently use J , JX , Jp and Jp
X for the duality

mappings in X and J∗, J∗
X , Jq and JX∗ for the duality mappings in the dual

X∗ depending on which index is to be emphasized or to facilitate notation.
By checking (1.9) we see that the following mappings are duality mappings.

Example 1.11.

(a) In Lp-spaces (1 < p < ∞) we have

Jp(x) = |x|p−1 sgn(x) ,

which is to be understood componentwise resp. pointwise (sgn(x) := x
|x|

for 0 6= x ∈ R and sgn(0) := 0).
(b) A single-valued selection for the normalized duality mapping in (Rn, ‖.‖∞)

is given by
j(x) = ‖x‖∞ sgn(xk)(δl,k)n

l=1 ,

whereby k is an index with |xk| = ‖x‖∞ (δl,k = 1 for l = k and δl,k = 0
for l 6= k).

(c) If we equip Rn with the L1-norm we may choose

j(x) = ‖x‖1 sgn(x) .
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1.1.5 Relationship between Geometry, Duality Mappings und
Convex Functionals

Duality mappings are in fact subdifferentials of convex functions. We recall
that a function f : X −→ R is said to be subdifferentiable at a point x ∈ X,
if there exists an x∗ ∈ X∗, called subgradient of f at x, such that

f(y) − f(x) ≥ 〈x∗ | y − x〉 for all y ∈ X . (1.12)

By ∂f(x) we denote the set of all subgradients of f at x and the mapping
∂f : X −→ 2X∗

is called the subdifferential of f .

It is known that if f, g : X −→ R are continuous convex functions then
they are subdifferentiable and

∂(f + g)(x) = ∂f(x) + ∂g(x) for all x ∈ X . (1.13)

Proposition 1.12. Let Jp
X be the duality mapping of X with gauge function

t 7→ tp−1 and let f : X −→ R be defined by

f(x) =
1

p
‖x‖p , x ∈ X .

Then Jp
X = ∂f .

Proof. For x∗ ∈ Jp
X(x) and all y ∈ X we have by Young’s inequality

1

q
‖x‖p +

1

p
‖y‖p =

1

q

(

‖x‖p−1
)q

+
1

p
‖y‖p ≥ ‖x‖p−1‖y‖ = ‖x∗‖ ‖y‖ ≥ 〈x∗ | y〉 .

Since 1
q
‖x‖p =

(

1 − 1
p

)

‖x‖p = 〈x∗ |x〉 − 1
p
‖x‖p we conclude that

1

p
‖y‖p − 1

p
‖x‖p ≥ 〈x∗ | y − x〉 (1.14)

and therefore x∗ ∈ ∂f(x). Now let x∗ ∈ ∂f(x) be given. By the above inequal-
ity (1.14) we get for all 1 6= t > 0 and y = tx

(tp − 1)

p
‖x‖p ≥ 〈x∗ | (t − 1)x〉 .

We divide by t − 1 and obtain

1
p
tp − 1

p

t − 1
‖x‖p

{

≤ 〈x∗ |x〉 , t < 1
≥ 〈x∗ |x〉 , t > 1

.

By letting t → 1 we arrive at ‖x‖p = 〈x∗ |x〉. Finally for y ∈ X with ‖y‖ = ‖x‖
inequality (1.14) yields 〈x∗ | y〉 ≤ 〈x∗ |x〉 and therefore

‖x∗‖ ‖x‖ = sup
‖y‖=‖x‖

|〈x∗ | y〉| ≤ 〈x∗ |x〉 .

Hence ‖x∗‖ ‖x‖ = 〈x∗ |x〉 = ‖x‖p which also gives ‖x∗‖ = ‖x‖p−1. ⊓⊔
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In order to clarify even more the tight relationship between geometry,
duality mappings and the above defined convex functionals, we need a little
more notation.

Definition 1.13. A function f : X −→ R is called

(a) Gâteaux differentiable at x ∈ X, if there exists an element f ′(x) ∈ X∗

such that

lim
t→0

f(x + ty) − f(x)

t
= 〈f ′(x) | y〉 for every y ∈ X ,

(b) Fréchet differentiable at x ∈ X, if it is Gâteaux differentiable at x and

lim
t→0

sup
‖y‖=1

∥

∥

∥

∥

f(x + ty) − f(x)

t
− 〈f ′(x) | y〉

∥

∥

∥

∥

= 0 ,

(c) uniformly Fréchet differentiable on the unit sphere, if it is Fréchet differ-
entiable and

lim
t→0

sup
‖y‖=‖x‖=1

∥

∥

∥

∥

f(x + ty) − f(x)

t
− 〈f ′(x) | y〉

∥

∥

∥

∥

= 0 ,

(d) uniformly convex, if it is convex and

inf
‖x‖=1

‖y−x‖≥ǫ

{

f(y) + f(x) − 2f

(

x + y

2

)}

> 0 for all ǫ > 0 .

It is not difficult to see that a continuous convex function f : X −→ R is
Gâteaux differentiable at x ∈ X iff it has a unique subgradient at x; and in
this case f ′(x) = ∂f(x).

Proposition 1.14. Let J be any duality mapping of X with gauge function
t 7→ tp−1 and let f : X −→ R be the function f(x) = 1

p
‖x‖p.

(a) X is strictly convex iff f is strictly convex iff J is strictly monotone, i.e.

〈x∗ − y∗ |x − y〉 > 0 for all x 6= y ∈ X , x∗ ∈ J(x) , y∗ ∈ J(y) .

(b) X is smooth iff f is Gâteaux differentiable iff J is single-valued. In this
case ∂f(x) = f ′(x) = J(x).

(c) X is uniformly convex iff f is uniformly convex.
(d) X is uniformly smooth iff f is uniformly Fréchet differentiable on the unit

sphere iff J is single-valued and uniformly continuous on bounded sets.
(e) X is reflexive, strictly convex and smooth iff J is bijective. In this case the

inverse J−1 : X∗ −→ X is given by J−1 = J∗ with J∗ being the duality
mapping of X∗ with gauge function t 7→ tq−1.

(f) If X is reflexive and smooth then J is norm-to-weak-continuous.
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1.1.6 Metric Projections

In proposition 1.3 we proved that in reflexive spaces the optimization problem
(1.8) has a solution. Now we are concerned with uniqueness of the solution
and when we can formulate (1.8) as a variational problem. And we use the
opportunity to define metric projections (see also [3, 5, 40]).

Proposition 1.15. Let X be a reflexive, smooth and strictly convex Banach
space and Jp be the duality mapping of X with gauge function t 7→ tp−1. Then
for every C ∈ C(X) and every x ∈ X there exists a unique element PC(x) ∈ C
such that

‖PC(x) − x‖ = min
y∈C

‖y − x‖ . (1.15)

PC(x) is called the metric projection of x onto C. An element x0 ∈ C is the
metric projection of x onto C iff

〈Jp(x0 − x) | y − x0〉 ≥ 0 for all y ∈ C . (1.16)

Proof. The existence of an element PC(x) ∈ C with (1.15) follows by proposi-
tion 1.3. Suppose there are two different such solutions PC(x) 6= P̃C(x) ∈ C.
Then ‖PC(x) − x‖ = ‖P̃C(x) − x‖ = m := min

y∈C
‖y − x‖ and the element

z := PC(x)+P̃C(x)
2 lies in C since C is convex. By proposition 1.14 (a) it follows

that

1

p
‖z − x‖p =

1

p

∥

∥

∥

∥

∥

PC(x) − x

2
+

P̃C(x) − x

2

∥

∥

∥

∥

∥

p

<

1
p
‖PC(x) − x‖p + 1

p
‖P̃C(x) − x‖p

2
=

1

p
mp ,

which leads to a contradiction. Let x0 ∈ C be the metric projection of x onto
C. Then 1

p
‖
(

x0 +λ(y−x0)
)

−x‖p ≥ 1
p
‖x0 −x‖p for any y ∈ C and λ ∈ (0, 1).

By proposition 1.12 and the definition of subgradients (1.12) we get

0 ≥ 1

p
‖x0 − x‖p − 1

p
‖
(

x0 + λ(y − x0)
)

− x‖p

≥
〈

Jp
(

(

x0 + λ(y − x0)
)

− x
) ∣

∣

∣−λ(y − x0)
〉

and therefore
〈

Jp
(

(

x0 + λ(y − x0)
)

− x
) ∣

∣

∣ y − x0

〉

≥ 0 .

According to proposition 1.14 (f) Jp is norm-to-weak-continuous and thus by
letting λ → 0 we arrive at

〈Jp(x0 − x) | y − x0〉 ≥ 0 for all y ∈ C .
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Conversely if the above inequality is valid then we get

‖x0 −x‖p = 〈Jp(x0 −x) |x0 −x〉 ≤ 〈Jp(x0 −x) | y−x〉 ≤ ‖x0 −x‖p−1‖y−x‖ .

Hence ‖x0 − x‖ ≤ ‖y − x‖ for all y ∈ C. ⊓⊔
In Hilbert spaces the metric projection operator PC is known to be non-

expansive, i.e.

‖PC(x) − PC(y)‖ ≤ ‖x − y‖ for all x, y ∈ X .

This is a very useful property in applications since it preserves monotonicity
of sequences in the form

‖PC(xn) − x‖ ≤ ‖xn − x‖ for all x ∈ C ,

which ensures convergence of many optimization algorithms. In general Ba-
nach spaces the metric projection operator lacks this property. But we will see
that Bregman projections behave better with respect to Bregman distances.

1.1.7 Characteristic Inequalities

The next two propositions provide us with inequalities which are of great
relevance for proving the convergence of the iteration methods. These in-
equalities indeed completely characterize uniformly smooth resp. uniformly
convex Banach spaces [48]. In the case of Hilbert spaces for the normalized
duality mapping (i.e. the identity mapping) they reduce to the well-known
polarisation identity

‖x − y‖2 = ‖x‖2 − 2〈x | y〉 + ‖y‖2 .

Let again Jp be the duality mapping of X with gauge function t 7→ tp−1 and
jp denote a single-valued selection.

Proposition 1.16. If X is uniformly convex then for all x, y ∈ X

‖x − y‖p ≥ ‖x‖p − p〈jp(x) | y〉 + σp(x, y) (1.17)

with

σp(x, y) = pKp

∫ 1

0

(

‖x − ty‖ ∨ ‖x‖
)p

t
δX

(

t‖y‖
2
(

‖x − ty‖ ∨ ‖x‖
)

)

dt , (1.18)

whereby

Kp = 4(2 +
√

3)min
{1

2
p(p − 1) ∧ 1 ,

(

1

2
p ∧ 1

)

(p − 1) ,

(p − 1)
(

1 − (
√

3 − 1)q
)

, 1 −
(

1 + (2 −
√

3)q
)1−p }

. (1.19)
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Proposition 1.17. If X is uniformly smooth then for all x, y ∈ X

‖x − y‖p ≤ ‖x‖p − p〈Jp(x) | y〉 + σ̃p(x, y) (1.20)

with

σ̃p(x, y) = pGp

∫ 1

0

(

‖x − ty‖ ∨ ‖x‖
)p

t
ρX

(

t‖y‖
‖x − ty‖ ∨ ‖x‖

)

dt , (1.21)

whereby Gp = 8 ∨ 64cK−1
p with Kp defined according to (1.19) and

c = 4
τ0

√

1 + τ2
0 − 1

∞
∏

j=1

(

1 +
15

2j+2
τ0

)

with τ0 =

√
339 − 18

30
.

To see how such results can be obtained in special cases and since we need
it in our applications, we prove the above proposition for Lp-spaces.

Proposition 1.18.

(a) In an Lp-space with p ≥ 2 the following inequality is valid for all x, y ∈ Lp

and all r ≥ 2:

‖x−y‖r ≤ ‖x‖r −r〈Jr(x) | y〉+ r

2

(

(p∨r)−1
)

(‖x‖+‖y‖)r−2‖y‖2 . (1.22)

Especially for the normalized duality mapping we have for all x, y ∈ Lp:

‖x − y‖2 ≤ ‖x‖2 − 2〈J2(x) | y〉 + (p − 1)‖y‖2 . (1.23)

(b) In an Lp-space with p ∈ (1, 2] the following inequality is valid for all
x, y ∈ Lp:

‖x − y‖p ≤ ‖x‖p − p〈Jp(x) | y〉 + 22−p‖y‖p , (1.24)

whereby the “p” in “Lp” and “Jp” are the same.

Proof. (a) Let x, y ∈ Lp (p ≥ 2) be given such that x−λy 6= 0 for all λ ∈ [0, 1].
As a consequence of proposition 1.14 (b) for all p̃ > 1 the function

hp̃ : [0, 1] −→ R , hp̃(t) =
1

p̃
‖x − ty‖p̃

is differentiable with

hp̃(0) =
1

p̃
‖x‖p̃ , hp̃(1) =

1

p̃
‖x − y‖p̃

and
h′

p̃(t) = −〈J p̃(x − ty) | y〉 , h′
p̃(0) = −〈J p̃(x) | y〉 .

Therefore we can write
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hr(1) − hr(0) − h′
r(0) =

∫ 1

0

(

h′
r(t) − h′

r(0)
)

dt .

We aim to find an upper estimate for the right hand side of the above equality.
By proposition 1.10 (e) and example 1.11 (a) we get

h′
r(t) = −‖x − ty‖r−p 〈Jp(x − ty) | y〉

= −
(

p hp(t)
)

r−p
p
〈

|x − ty|p−1 sgn(x − ty)
∣

∣ y
〉

.

This function is again differentiable and by the sum rule we get

h′′
r (t) = −r − p

p

(

p hp(t)
)

r−2p
p p h′

p(t) 〈Jp(x − ty) | y〉

+‖x − ty‖r−p(p − 1)
〈

|x − ty|p−2y
∣

∣ y
〉

= (r − p)‖x − ty‖r−2p |〈Jp(x − ty) | y〉|2

+‖x − ty‖r−p(p − 1)
〈

|x − ty|p−2y
∣

∣ y
〉

,

where by the Hölder inequality the element |x − ty|p−2y is in Lq with

∥

∥ |x − ty|p−2y
∥

∥ ≤ ‖x − ty‖p−2‖y‖ .

If p ≥ r then the first summand is less than or equal to zero. Otherwise we
can estimate it for all t ∈ (0, 1) by

(r − p)‖x − ty‖r−2p |〈Jp(x − ty) | y〉|2 ≤ (r − p)(‖x‖ + ‖y‖)r−2‖y‖2 .

For the second summand we get for all r ≥ 2

‖x − ty‖r−p(p − 1)
〈

|x − ty|p−2y
∣

∣ y
〉

≤ (p − 1)(‖x‖ + ‖y‖)r−2‖y‖2 .

All in all we get

h′′
r (t) ≤

{

(p − 1)(‖x‖ + ‖y‖)r−2‖y‖2 , p ≥ r
(r − 1)(‖x‖ + ‖y‖)r−2‖y‖2 , p ≤ r

.

For all t ∈ (0, 1) we can therefore find a t0 ∈ (0, t) such that

h′
r(t) − h′

r(0) = h′′
r (t0) t ≤

(

(p ∨ r) − 1
)

(‖x‖ + ‖y‖)r−2‖y‖2 t .

Hence

∫ 1

0

(

h′
r(t) − h′

r(0)
)

dt ≤ 1

2

(

(p ∨ r) − 1
)

(‖x‖ + ‖y‖)r−2‖y‖2 ,

from which the assertion follows. It remains to prove the inequality in case
x = λy for a λ ∈ [0, 1]; and by inserting such an x in (1.22) we see that it
suffices to show that
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(1 − λ)r ≤ λr − rλr−1 +
r

2
(r − 1)(1 + λ)r−2

for all λ ∈ [0, 1] and r ≥ 2. To this end we show that the differentiable function
gλ : [2,∞) −→ R defined by

gλ(r) := λr − rλr−1 +
1

2
(r2 − r)(1 + λ)r−2 − (1 − λ)r

is greater than or equal to zero. We have

gλ(2) = λ2 − 2λ + 1 − (1 − λ)2 = 0

and gλ is increasing since

g′λ(r) = ln(λ)λr − λr−1 − r ln(λ)λr−1

+
1

2
(2r − 1)(1 + λ)r−2 +

1

2
(r2 − r) ln(1 + λ)(1 + λ)r−2

− ln(1 − λ)(1 − λ)r

≥ − 1

r e
− 1 − 0 +

1

2
(4 − 1) + 0 − 0

=
1

2
− 1

r e
≥ 0 ,

because ln(λ) ≤ 0, ln(1 + λ) ≥ 0, ln(1 − λ) ≤ 0 and as can be easily seen

0 ≥ ln(λ)λr ≥ − 1

r e

for all λ ∈ [0, 1].
To prove (b) we remark that the pointwise resp. componentwise inequality

∣

∣|x|p−1 sgn(x) − |y|p−1 sgn(y)
∣

∣

|x − y|p−1
≤ 22−p

is valid for all x 6= y ∈ R and p ∈ (1, 2]. Hence we get

‖Jp(x) − Jp(y)‖ ≤ 22−p‖x − y‖p−1 for all x, y ∈ Lp .

Now we can estimate as in the beginning of the proof of (a):

1

p
‖x − y‖p − 1

p
‖x‖p − 〈Jp(x) | y〉 =

∫ 1

0

〈Jp(x − ty) − Jp(x) | y〉 dt

≤
∫ 1

0

‖Jp(x − ty) − Jp(x)‖ ‖y‖dt

≤ 22−p‖y‖p

∫ 1

0

tp−1 dt =
22−p

p
‖y‖p .

⊓⊔



22 1 Theoretical Framework

1.1.8 Positive Duality Mappings in Banach Lattices

Since we intend to include constraints of the form “Ax ≤ y” in the split
feasibility problem, we shortly introduce positive duality mappings on Banach
lattices (see also [19, 22, 34]).

Definition 1.19. A Banach space X with a partial order “≤” is called a
Banach lattice if for all x, y, z ∈ X and λ ≥ 0 the following holds:

(i) x ≤ y implies x + z ≤ y + z.
(ii) λx ≥ 0 for x ≥ 0.
(iii) There exists a least upper bound, denoted by x ∨ y, and a greatest lower

bound, denoted by x ∧ y.
(iv) ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|, whereby the absolute value |x| of x is

defined by |x| := x ∨ (−x).

Example 1.20. The Lp-spaces (p ∈ [1,∞]) with “≤” defined componentwise
resp. pointwise almost everywhere are Banach lattices.

It is a convenient fact that in a Banach lattice every (in-)equality involving
lattice operations and algebraic operations is valid if its analogue is valid in
the real line, e.g.

|x − y| = |x ∨ z − y ∨ z| + |x ∧ z − y ∧ z| ,
which together with property 1.19 (iv) implies that the lattice operations are
continuous. Thus the set

P := {x ∈ X |x ≥ 0}
of all positive elements of X is a closed convex cone. It is called the positive
cone of X. For x ∈ X we set

x+ := x ∨ 0 and x− := −(x ∧ 0) .

We obviously have x+, x− ∈ P and

x = x+ − x− and |x| = x+ + x− .

Two elements x, y ∈ X for which |x| ∧ |y| = 0 are said to be disjoint and we
write

disj(x) := {y ∈ X | |x| ∧ |y| = 0} . (1.25)

It is not difficult to see that x− ∈ disj(x+) and x+ ∈ disj(x−). The dual X∗

of a Banach lattice is also a Banach lattice provided its order is defined by

x∗ ≤ y∗ iff 〈x∗ | z〉 ≤ 〈y∗ | z〉 for all z ∈ P .

The positive cone P∗ of X∗ is then given by

P∗ = {x∗ ∈ X∗ | 〈x∗ |x〉 ≥ 0 for every x ∈ P} .

Shortly said, the positive duality mapping preserves positivity.
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Definition 1.21. Let J be the normalized duality mapping of a Banach lattice
X. The mapping J+ : P −→ 2X∗

defined by

J+(x) := {x∗ ∈ J(x) | x∗ ≥ 0 and 〈x∗ | y〉 = 0 for all y ∈ disj(x)}

is called positive duality mapping of X.

For every x ∈ P the set J+(x) is not empty. As a consequence of this
and 1.14 (b) the normalized duality mapping of a smooth Banach lattice is
a positive duality mapping. The single-valued selections of the normalized
duality mapping in example 1.11 (b) and (c) also define selections of the
positive duality mapping.

Proposition 1.22. Let J+ be the positive duality mapping of a Banach lattice
X and let f+ : X −→ R be defined by

f+(x) =
1

2
‖x+‖2 , x ∈ X .

Then J+(x+) ⊂ ∂f+.

Proof. Obviously we have J+(x) ⊂ J(x) for all positive x ∈ X. Thus by 1.12
we get for all x, y ∈ X and x∗ ∈ J+(x+)

1

2
‖y+‖2 − 1

2
‖x+‖2 ≥ 〈x∗ | y+ − x+〉

= 〈x∗ | y − x〉 + 〈x∗ | y−〉 − 〈x∗ |x−〉
≥ 〈x∗ | y − x〉 ,

because x∗ and y− are positive and x− ∈ disj(x+). ⊓⊔

We also need the following characterization of positivity.

Proposition 1.23. An element x ∈ X is positive iff 〈x∗ |x〉 ≥ 0 for all
positive x∗ ∈ X∗.

Proof. Let x ∈ X be such that 〈x∗ |x〉 ≥ 0 for all positive x∗ ∈ X∗. We write
x = x+ − x− and get

〈x∗ |x+〉 ≥ 〈x∗ |x−〉 for all x∗ ≥ 0 .

Especially for some x∗ ∈ J+(x−) this yields

0 = 〈x∗ |x+〉 ≥ 〈x∗ |x−〉 = ‖x−‖2

and therefore x = x+ ≥ 0. The converse part is obvious due to the definition
of positivity in the dual space. ⊓⊔
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1.2 Bregman Distances and Bregman Projections

In this section we are concerned with Bregman distances that are induced
by the functions f(x) = 1

p
‖x‖p and the related Bregman projections (which

Alber [3] also calls generalized projections). The idea to use such distances to
design and analyse optimization algorithms goes back to Lev Bregman [11]
and since then there has been an ever growing area of research in which his
ideas are applied in various ways: for analysing feasibility in optimization, for
projections onto convex sets, for approximating equilibria, for computing fixed
points of nonlinear mappings, for analysing regularization methods,. . . [1, 2,
6, 8, 10, 12–15, 18, 23, 26, 31, 32, 38, 43, 44, 46].
We try to give a self-contained representation, because most results in the
literature are presented in the more general context of total convexity, essential
strict convexity, essential strict smoothness, Legendre and Bregman functions
(and some of course don’t hold in the general case). More information about
this interesting topic can e.g. be found in [7, 9, 14, 16].

1.2.1 Bregman Distances

For a Gâteaux differentiable convex function f : X −→ R the function

∆f (x, y) := f(y) − f(x) − 〈f ′(x) | y − x〉 , x, y ∈ X (1.26)

is called the Bregman distance of x to y with respect to the function f .

Though it is not a metric in the usual sense – it is e.g. in general not
symmetric – this function has some distance-like properties; it indicates how
much f(y) increases over f(x) above linear growth with slope f ′(x). Because of
proposition 1.14 (b) and (1.9), in smooth Banach spaces the Bregman-distance
with respect to the function f(x) = 1

p
‖x‖p can be written as

∆p(x, y) =
1

q
‖x‖p − 〈Jp(x) | y〉 +

1

p
‖y‖p

=
1

p
(‖y‖p − ‖x‖p) + 〈Jp(x) |x − y〉

=
1

q
(‖x‖p − ‖y‖p) + 〈Jp(y) − Jp(x) | y〉 , x, y ∈ X . (1.27)

In a Hilbert space we just have ∆2(x, y) = 1
2‖x − y‖2.

In the next proposition we collect some important properties of ∆p and
point out its relationship to the norm in X (see also [6, 15, 46]).
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Proposition 1.24. Let X be reflexive, smooth and strictly convex. Then for
all x, y ∈ X and sequences (xn)n in X the following holds:

(a) ∆p(x, y) ≥ 0 and ∆p(x, y) = 0 ⇔ x = y.
(b) ∆p(x, y) + ∆p(y, x) = 〈Jp(x) − Jp(y) |x − y〉.
(c) ∆p(−x,−y) = ∆p(x, y) and ∆p is positively homogenous of degree p, i.e.

∆p(λx, λy) = λp∆p(x, y) for all x, y ∈ X , λ ≥ 0 .

(d) lim‖xn‖→∞ ∆p(xn, x) = ∞ and lim‖xn‖→∞ ∆p(x, xn) = ∞, i.e. the se-

quence (xn)n remains bounded if the sequence
(

∆p(xn, x)
)

n
resp. the se-

quence
(

∆p(x, xn)
)

n
is bounded.

(e) ∆p is continuous in both arguments and it is strictly convex and Gâteaux
differentiable with respect to the second variable with derivative

∂

∂y
∆p(x, y) = Jp(y) − Jp(x) . (1.28)

(f) Consider the following assertions:
(i) limn→∞ ‖xn − x‖ = 0.
(ii) limn→∞ ‖xn‖ = ‖x‖ and limn→∞〈Jp(xn) |x〉 = 〈Jp(x) |x〉.
(iii) limn→∞ ∆p(xn, x) = 0.
The implications (i) ⇒ (ii) ⇒ (iii) are valid. If X is uniformly convex
then the assertions are equivalent.

(g) If (xn)n is a Cauchy sequence then it is bounded and for all ǫ > 0 there
exists an n0 ∈ N such that ∆p(xk, xl) < ǫ for all k, l ≥ n0. If X is
uniformly convex then the converse is also true (and it suffices to show
∆p(xk, xl) < ǫ for all k ≥ l ≥ n0 or l ≥ k ≥ n0).

(h) If X is uniformly convex and M ⊂ X is bounded, then for all ǫ > 0 there
exists a δ > 0 such that ‖x − y‖ < ǫ for all x, y ∈ M with ∆p(x, y) < δ.

(i) Let us write ∆∗
q(x

∗, y∗) = 1
p
‖x∗‖q

X∗ − 〈Jq
X∗(x∗) | y∗〉 + 1

q
‖y∗‖q

X∗ for the
Bregman distance on the dual space X∗ with respect to the function
f∗(x∗) = 1

q
‖x∗‖q

X∗
3. Then we have

∆p(x, y) = ∆∗
q(y

∗, x∗)

for x∗ = Jp
X(x) ⇔ Jq

X∗(x∗) = x and y∗ = Jp
X(y) ⇔ Jq

X∗(y∗) = y.

Proof. At first we want to point out that by proposition 1.7 (a) X∗ is also
reflexive, smooth and strictly convex and thus all the assertions are valid for
the dual distance ∆∗

q too. The relation ∆p(x, y) = ∆∗
q(y

∗, x∗) in (i) is obvious.
(1.27) and (1.9) yield

3 This is in fact the conjugate function of f , whereby in general for a function
f : X −→ R∪ {+∞} the conjugate function f∗ : X∗ −→ R∪ {±∞} is defined by
f∗(x∗) := sup

x∈X

(

〈x∗, x〉 − f(x)
)

.
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∆p(x, y) ≥ 1

p
‖y‖p − ‖x‖p−1‖y‖ +

1

q
‖x‖p

= ‖x‖p

(

1

p

(‖y‖
‖x‖

)p

− ‖y‖
‖x‖ +

1

q

)

.

Since the right hand side of the above inequality converges to infinity for
‖x‖ → ∞ and fixed y or vice versa, we see that (d) holds. To prove (a) we

consider t = ‖y‖
‖x‖ and define h : [0,∞) −→ R by

h(t) :=
1

p
tp − t +

1

q
.

From h(0) = 1
q
, limt→∞ h(t) = ∞, h′(t) = tp−1 − 1 = 0 ⇔ t = 1 and h(1) = 0

we conclude that h(t) ≥ 0 and h(t) = 0 ⇔ t = 1. Therefore ∆p(x, y) ≥ 0 and
if ∆p(x, y) = 0 then ‖y‖ = ‖x‖ ⇔ ‖Jp(x)‖ = ‖x‖p−1 = ‖y‖p−1 and thus also

〈Jp(x) | y〉 =
1

q
‖x‖p +

1

p
‖y‖p = ‖y‖p .

Hence Jp(x) = Jp(y) and by proposition 1.14 (e) it follows that x = y. We
directly calculate

∆p(x, y) + ∆p(y, x)

=
1

q
‖x‖p − 〈Jp(x) | y〉 +

1

p
‖y‖p +

1

q
‖y‖p − 〈Jp(y) |x〉 +

1

p
‖x‖p

= ‖x‖p + ‖y‖p − 〈Jp(x) | y〉 − 〈Jp(y) |x〉
= 〈Jp(x) |x〉 − 〈Jp(x) | y〉 + 〈Jp(y) | y〉 − 〈Jp(y) |x〉
= 〈Jp(x) − Jp(y) |x − y〉 ,

which proves (b). (c) is a consequence of the homogeneity of Jp
(

Prop. 1.10

(b)
)

. In (e) continuity of the function y 7→ ∆p(x, y) is obvious and its strict
convexity follows by proposition 1.14 (a). The continuity of the function
x 7→ ∆p(x, y) is a consequence of proposition 1.14 (f). The assertion about
differentiability follows by proposition 1.14 (b) and straightforward calcula-
tion. The implication (i) ⇒ (ii) in (f) is valid due to proposition 1.14 (f) and
the implication (ii) ⇒ (iii) follows directly from the first line in (1.27). Now
let X be uniformly convex. Substituting x− y for y in theorem 1.16 we arrive
at

p∆p(x, y) = ‖y‖p + (p − 1)‖x‖p − p〈Jp(x) | y〉 ≥ σp(x, x − y) .

With the explicit expression for σp (1.18) we have 1
pKp

σp(x, x − y) =

∫ 1

0

(

‖x − t(x − y)‖ ∨ ‖x‖
)p

t
δX

(

t‖x − y‖
2
(

‖x − t(x − y)‖ ∨ ‖x‖
)

)

dt .

Since by proposition 1.5 (a) δX is nondecreasing and non-negative and
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‖x − t(x − y)‖ ∨ ‖x‖ ≤ ‖x‖ + ‖x − y‖

and

‖x − t(x − y)‖ ∨ ‖x‖ ≥ t

2
‖x − y‖

for all t ∈ [0, 1]
(

in case ‖x‖ ≥ t
2‖x − y‖ this is clear and otherwise

‖x − t(x − y)‖ ≥ t‖x − y‖ − ‖x‖ ≥ t
2‖x − y‖

)

, we can estimate

2p

pKp

σp(x, x − y) ≥ ‖x − y‖p

∫ 1

0

tp−1 δX

(

t‖x − y‖
2(‖x‖ + ‖x − y‖)

)

dt

≥ ‖x − y‖p

∫ 1

1
2

tp−1 δX

(

t‖x − y‖
2(‖x‖ + ‖x − y‖)

)

dt

≥ ‖x − y‖p δX

( ‖x − y‖
4(‖x‖ + ‖x − y‖)

)

1

p

(

1 − 1

2p

)

.

Putting all together we see that

∆p(x, y) ≥ C‖x − y‖p δX

( ‖x − y‖
4(‖x‖ + ‖x − y‖)

)

with C =
Kp

p2p

(

1 − 1
2p

)

. If M ⊂ X is bounded, then there is a constant R > 0

such that 4(‖x‖ + ‖x − y‖) ≤ R for all x, y ∈ M . Suppose there is an ǫ > 0
such that for all δ > 0 we can find xδ, yδ ∈ M with ∆p(xδ, yδ) < δ but
‖xδ − yδ‖ ≥ ǫ. Then by the monotonicity of δX and the uniform convexity of
X (Def. 1.6) we get for all δ > 0

δ > ∆p(xδ, yδ) ≥ Cǫp δX

( ǫ

R

)

> 0 .

By letting δ → 0 this leads to a contradiction. Thus (h) is proven and the
“converse”-part in (g) and the implication (iii) ⇒ (i) in (f) for uniformly
convex X are immediate consequences. Finally if (xn)n is a Cauchy sequence
then it is bounded and convergent and the rest of (g) follows by looking at
the second line in (1.27). ⊓⊔

1.2.2 Bregman Projections

We can now define Bregman projections onto closed convex sets.

Proposition 1.25. Let X be a reflexive, smooth and strictly convex Banach
space and Jp be a duality mapping of X. Then for every C ∈ C(X) and x ∈ X
there exists a unique element Πp

C(x) ∈ C such that

∆p

(

x,Πp
C(x)

)

= min
y∈C

∆p(x, y) . (1.29)
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Πp
C(x) is called the Bregman projection of x onto C (with respect to the

function f(x) = 1
p
‖x‖p). Moreover x0 ∈ C is the Bregman projection of x

onto C iff
〈Jp(x0) − Jp(x) | y − x0〉 ≥ 0 (1.30)

or equivalently
∆p(x0, y) ≤ ∆p(x, y) − ∆p(x, x0) (1.31)

for every y ∈ C.

Proof. There is a sequence (xn)n ∈ C with

lim
n→∞

∆p(x, xn) = m := inf
y∈C

∆p(x, y) .

In particular (xn)n is bounded by propostion 1.24 (d) and by proposition
1.2 it therefore has a weakly convergent subsequence (xnk

)k with w.l.o.g.
limk→∞ ‖xnk

‖ = R for an R ≥ 0. Since C is convex and (weakly) closed,
the weak limit point x0 of (xnk

)k lies again in C. Hence ∆p(x, x0) ≥ m and
we have

‖x0‖p = 〈Jp(x0) |x0〉 = lim
k→∞

〈Jp(x0) |xnk
〉 ≤ ‖x0‖p−1R

and thus ‖x0‖ ≤ R. Suppose ∆p(x, x0) > m. Then there exists a k0 ∈ N such
that for all k ≥ k0

∆p(x, xnk
) ≤ ∆p(x, x0)

⇔ 1

p
‖xnk

‖p − 〈Jp(x) |xnk
〉 ≤ 1

p
‖x0‖p − 〈Jp(x) |x0〉

⇔ 1

p
(‖xnk

‖p − ‖x0‖p) ≤ 〈Jp(x) |xnk
− x0〉 .

The right hand side converges to zero and the left hand side converges to
1
p

(Rp − ‖x0‖p) for k → ∞ and we get ‖x0‖ ≥ R. Hence ‖x0‖ = R and thus

∆p(x, x0) =
1

q
‖x‖p +

1

p
‖x0‖p − 〈Jp(x) |x0〉

= lim
k→∞

1

q
‖x‖p +

1

p
‖xnk

‖p − 〈Jp(x) |xnk
〉

= ∆p(x, xnk
) = m.

The uniqueness follows by the strict convexity of the function y 7→ ∆p(x, y)
(

proposition 1.24 (e)
)

. Now let Πp
C(x) ∈ C be the Bregman projection of x

onto C. Then for all y ∈ C and λ ∈ (0, 1) we have λΠp
C(x)+(1−λ)y ∈ C and

0 ≥ ∆p

(

x,Πp
C(x)

)

− ∆p

(

x, λΠp
C(x) + (1 − λ)y

)

≥
〈

∂

∂y
∆p

(

x, λΠp
C(x) + (1 − λ)y

)

∣

∣

∣

∣

Πp
C(x) −

(

λΠp
C(x) + (1 − λ)y

)

〉

= (1 − λ)
〈

Jp
(

λΠp
C(x) + (1 − λ)y

)

− Jp(x)
∣

∣Πp
C(x) − y

)〉
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by the first part of proposition 1.24 (e). We divide by 1 − λ and get

〈

Jp
(

λΠp
C(x) + (1 − λ)y

)

− Jp(x)
∣

∣ y − Πp
C(x)

)〉

≥ 0

whereby the left hand side converges to
〈

Jp
(

Πp
C(x)

)

− Jp(x)
∣

∣ y − Πp
C(x)

)〉

for

λ → 1 since Jp is norm-to-weak-continuous
(

proposition 1.14 (f)
)

. Conversely
let x0 ∈ C be such that 〈Jp(x0) − Jp(x) | y − x0〉 ≥ 0 for all y ∈ C. Then we
get

∆p(x, y) − ∆p(x, x0) ≥
〈

∂

∂y
∆p(x, x0)

∣

∣

∣

∣

y − x0

〉

= 〈Jp(x0) − Jp(x) | y − x0〉 ≥ 0

and therefore ∆p(x, x0) ≤ ∆p(x, y) for all y ∈ C. Finally we consider the
following equivalent inequalities for every x0, y ∈ C:

∆p(x0, y) ≤ ∆p(x, y) − ∆p(x, x0)

⇔ 1

q
‖x0‖p − 〈Jp(x0) |y〉 ≤ −〈Jp(x) | y〉 + 〈Jp(x) |x0〉 −

1

p
‖x0‖p

⇔ 〈Jp(x0) |x0〉 − 〈Jp(x0) |y〉 ≤ −〈Jp(x) | y〉 + 〈Jp(x) |x0〉
⇔ 0 ≤ 〈Jp(x0) − Jp(x) | y − x0〉 .

⊓⊔

If x /∈ C then the variational characterization (1.30) is equivalent to saying
that x0 ∈ C is the Bregman projection of x onto C iff

H≤(u∗, α) with u∗ = Jp(x) − Jp(x0) and α = 〈Jp(x) − Jp(x0) |x0〉

is a supporting halfspace of C at x0. Likewise the variational characterization
of the metric projection (1.16) is then equivalent to saying that x0 ∈ C is the
metric projection of x onto C iff

H≤(u∗, α) with u∗ = Jp(x − x0) and α = 〈Jp(x − x0) |x0〉

is a supporting halfspace of C at x0. In Hilbert spaces the Bregman projection
with respect to the function f(x) = 1

2‖x‖2 coincides with the metric projec-
tion. As we already pointed out when we talked about metric projections,
(1.31) is a property of Bregman projections which ensures monotonicity of
the iteration methods.
We prove some further properties of Bregman projections with respect to the
class of Bregman distances we use here. Although simple, we have not seen
them explicitly stated elsewhere (except (a); but see also [3, 4]). Especially (b)
answers the question asked in [1], whether their is some relationship between
metric and Bregman projections (but we feel certain that we are missing some
references).
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Proposition 1.26. Let X be a reflexive, smooth and strictly convex Banach
space and C ∈ C(X) be given.

(a) For x ∈ X we have Πp
C(x) = x ⇔ x ∈ C and if x /∈ C then Πp

C(x) lies in
the boundary of C.

(b) The Bregman projection and the metric projection are related via

PC(x) − x = Πp
C−x(0) for all x ∈ X .

Especially we have PC(0) = Πp
C(0) and thus ‖Πp

C(0)‖ = min
y∈C

‖y‖.
(c) Equivalent are

(i) 0 ∈ C,
(ii) ‖Πp

C(x)‖ ≤ ‖x‖ for all x ∈ X.
(d) Πp

C maps bounded sets onto bounded sets; more precisely we have

‖Πp
C(x)‖ ≤

(

2q−1‖x‖
)

∨
(

3 ‖Πp
C(0)‖

)

for all x ∈ X . (1.32)

(e) The Bregman projection is parity- and scale-invariant in the sense that

Πp
λC(λx) = λΠp

C(x) for every λ ∈ R , x ∈ X .

Especially if C is a cone then λC = C for λ > 0 and thus Πp
C is positively

homogenous of degree 1; if C is also symmetric4, then Πp
C is homogenous

of degree 1.
(f) The Bregman projections of points along the “dual ray” to the ray

z∗(λ) := Jp
X

(

Πp
C(x)

)

+ λ
(

Jp
X(x) − Jp

X

(

Πp
C(x)

)

)

coincide, i.e.

Πp
C

(

Jq
X∗

(

z(λ)
)

)

= Πp
C(x) for every λ ≥ 0 , x ∈ X .

(g) If we know Πp
C(x) then we obtain the Bregman projection of x onto the

set λxC with respect to the function f(x) = 1
r
‖x‖r (r > 1) via

Πr
λxC(x) = λxΠp

C(x) (1.33)

with

λx :=







1 , x = 0 or Πp
C(x) = 0

(

‖x‖
‖Π

p
C

(x)‖

)
r−p
r−1

, otherwise
.

Especially if C is a cone then

Πr
C(x) = λxΠp

C(x) . (1.34)

Moreover if x ∈ λxC then x ∈ C.

4 i.e. −C = C
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Proof. For x ∈ C we have ∆p(x, x) = 0 ≤ ∆p(x, y) for all y ∈ C and therefore
x = Πp

C(x). Conversely x = Πp
C(x) lies in C. In case x /∈ C then H≤(u∗, α)

with u∗ = Jp(x) − Jp(x0) and α = 〈Jp(x) − Jp(x0) |x0〉 is a supporting
halfspace of C at x0 := Πp

C(x) and x0 ∈ H(u∗, α). If x0 were an interior point
of C then we would also have

x0 ∈ int(C) ⊂ int
(

H≤(u∗, α)
)

= H<(u∗, α) ,

which contradicts x0 ∈ H(u∗, α). To see (b) we compare the variational in-
equalities (1.16) and (1.30) for x0 ∈ C and x̃0 := x0 − x ∈ C̃ := C − x:

〈Jp(x0 − x) | y − x0〉 ≥ 0 for all y ∈ C

⇔ 〈Jp(x0 − x) | (y − x) − (x0 − x)〉 ≥ 0 for all y ∈ C

⇔ 〈Jp(x̃0) | ỹ − x̃0〉 ≥ 0 for all ỹ ∈ C̃ .

If 0 ∈ C then by taking y = 0 in (1.30) we get

0 ≥
〈

Jp
(

Πp
C(x)

) ∣

∣Πp
C(x)

〉

− 〈Jp(x) |Πp
C(x)〉

= ‖Πp
C(x)‖p − 〈Jp(x) |Πp

C(x)〉

and therefore ‖Πp
C(x)‖p ≤ 〈Jp(x) |Πp

C(x)〉 ≤ ‖x‖p−1 ‖Πp
C(x)‖ which yields

‖Πp
C(x)‖ ≤ ‖x‖. Conversely if the above inequality is valid for all x ∈ X then

for x = 0 we get
0 = ‖0‖ ≥ ‖Πp

C(0)‖ .

Hence 0 = Πp
C(0) ∈ C. To prove (d) we transform (1.30) into

‖Πp
C(x)‖p ≤

〈

Jp
(

Πp
C(x)

) ∣

∣ y
〉

− 〈Jp(x) | y〉 + 〈Jp(x) |Πp
C(x)〉

≤ ‖Πp
C(x)‖p−1 ‖y‖ + ‖x‖p−1‖y‖ + ‖x‖p−1 ‖Πp

C(x)‖ . (1.35)

If ‖Πp
C(x)‖p−1

< 2‖x‖p−1 ⇔ ‖Πp
C(x)‖ < 2q−1‖x‖ then we are done. Other-

wise tx :=

(

‖Π
p
C

(x)‖
‖x‖

)p−1

≥ 2 for x 6= 0 and by (1.35) we get

‖Πp
C(x)‖

(

‖Πp
C(x)‖p−1 − ‖x‖p−1

)

≤ ‖y‖
(

‖Πp
C(x)‖p−1

+ ‖x‖p−1
)

⇔ ‖Πp
C(x)‖ ≤ ‖y‖‖Π

p
C(x)‖p−1

+ ‖x‖p−1

‖Πp
C(x)‖p−1 − ‖x‖p−1

.

With ‖Πp
C(0)‖ = min

y∈C
‖y‖ and since the function h(t) := t+1

t−1 is decreasing for

t > 1 we arrive at

‖Πp
C(x)‖ ≤ ‖Πp

C(0)‖h(tx) ≤ ‖Πp
C(0)‖h(2) = 3 ‖Πp

C(0)‖ .

(e) is a consequence of the homogeneity of ∆p

(

Prop. 1.24 (c)
)

because
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∆p

(

λx, λΠp
C(x)

)

≤ ∆p(λx, λy) for all x ∈ X,λy ∈ λC

⇔ ∆p

(

x,Πp
C(x)

)

≤ ∆p(x, y) for all x ∈ X, y ∈ C .

To prove (f) we recall that Jp
X

(

Jq
X∗(z∗)

)

= z∗ by proposition 1.14 (e) and we

check the validity of the variational inequality (1.30) with x̃ = Jq
X∗

(

z∗(λ)
)

and x̃0 = Πp
C(x) for all y ∈ C:

〈Jp
X(x̃0) − Jp

X(x̃) | y − x̃0〉 =
〈

Jp
X

(

Πp
C(x)

)

− z∗(λ)
∣

∣ y − Πp
C(x)

〉

= λ
〈

Jp
X

(

Πp
C(x)

)

− Jp
X(x)

∣

∣ y − Πp
C(x)

〉

≥ 0 .

Due to proposition 1.10 (e) we see that for x 6= 0 and Πp
C(x) 6= 0

〈

Jr
(

λxΠp
C(x)

)

− Jr(x)
∣

∣λxy − λxΠp
C(x)

〉

= λx

〈

λr−1
x ‖Πp

C(x)‖r−pJp
(

Πp
C(x)

)

− ‖x‖r−pJp(x)
∣

∣ y − Πp
C(x)

〉

= λx‖x‖r−p
〈

Jp
(

Πp
C(x)

)

− Jp(x)
∣

∣ y − Πp
C(x)

〉

≥ 0 .

Moreover Πr
C(0) = miny∈C ‖y‖ = Πp

C(0) by (b) of this proposition and if
Πp

C(x) = 0 and x 6= 0 then for all y ∈ C

〈Jr(0) − Jr(x) | y − 0〉 = ‖x‖r−p 〈Jp(0) − Jp(x) | y − 0〉 ≥ 0 ,

which proves the first part of (g). Let x be in λxC. Then x = Πr
λxC(x) =

λxΠp
C(x). If x = 0 or Πp

C(x) = 0 then λx = 1 and therefore x = Πp
C(x) ∈ C.

Otherwise we get

‖x‖ = λx‖Πp
C(x)‖ =

( ‖x‖
‖Πp

C(x)‖

)
r−p
r−1

‖Πp
C(x)‖ ,

which gives ‖x‖ = ‖Πp
C(x)‖. Hence λx = 1 and x = Πp

C(x) ∈ C. ⊓⊔

By the variational inequality (1.16) we can show that the metric projec-
tions of points along the ray

z(λ) := PC(x) + λ
(

x − PC(x)
)

, λ ≥ 0 , x ∈ X ,

coincide (compare (f) of the above proposition). A useful translation-property
of metric projections, which Bregman projections in general do not share, is
contained in the following corollary.

Corollary 1.27. For z ∈ X we have

Pz+C(x) = z + PC(x − z) .

Proof. By (b) of the preceeding proposition we get

Pz+C(x) = x + Πp
z+C−x(0) = z + (x − z) + Πp

C−(x−z)(0) = z + PC(x − z) .

⊓⊔
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In analogy to Hilbert spaces we characterize Bregman projections onto
closed affine subspaces and prove a related decomposition theorem, in which
the metric and the Bregman projection play a complementary role (compare
with [4]). This enables us to use the same iterative scheme to compute metric
as well as Bregman projections onto affine subspaces which are given via the
nullspace or the range of a linear operator. To simplify notation we just write
Π instead of Πp for the Bregman projection in X with respect to the function
f(x) = 1

p
‖x‖p and Π∗ for the Bregman projection in the dual X∗ with respect

to the conjugate function f∗(x∗) = 1
q
‖x∗‖q.

Lemma 1.28. In a reflexive, smooth and strictly convex Banach space X the
sets J(C) ⊂ X∗ are closed for every C ∈ C(X).

Proof. If the sequence
(

J(xn)
)

n
with xn ∈ C converges to some x∗ ∈ X∗

then the sequence (xn)n =
(

J∗
(

J(xn)
)

)

n
converges weakly to x := J∗(x∗)

because J∗ is norm-to-weak-continuous by 1.14 (f). Therefore x lies in C and
x∗ = J(x) by 1.14 (e). ⊓⊔

Proposition 1.29. Let X be a reflexive, smooth and strictly convex Banach
space, U ⊂ X a closed subspace and x, y, z ∈ X be given.

(a) If we write x∗ = J(x) ⇔ x = J∗(x∗) and analogously for y and z then the
following assertions are equivalent:
(i) x = Πz+U (y),
(ii) x − z ∈ U and J(x) − J(y) ∈ U⊥,
(iii) x∗ = Π∗

y∗+U⊥(z∗),

(iv) x∗ − y∗ ∈ U⊥ and J∗(x∗) − J∗(z∗) ∈ U .
(b) X can be decomposed into the “orthogonal sum”

X = U ⊕ J∗(U⊥) ,

i.e. every x ∈ X can be uniquely written in the form

x = xU + J∗(x∗
U⊥)

with xU ∈ U and x∗
U⊥ ∈ U⊥. More precisely we have

xU = PU (x) and x∗
U⊥ = Π∗

U⊥

(

J(x)
)

.

Proof. Since U is a subspace, x is the Bregman projection of y onto z + U iff
x ∈ z + U (i.e. x = z + ux for some ux ∈ U) and

〈J(x) − J(y) | v − x〉 ≥ 0 for all v = z + uv ∈ z + U

⇔ 〈J(x) − J(y) | (z + uv) − (z + ux)〉 ≥ 0 for all uv ∈ U

⇔ 〈J(x) − J(y) |u〉 ≥ 0 for all u ∈ U

⇔ 〈J(x) − J(y) |u〉 = 0 for all u ∈ U ,
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and by the definition of U⊥ this is fulfilled iff J(x) − J(y) ∈ U⊥. This proves
(i) ⇔ (ii). (iv) is just an equivalent reformulation of (ii) and since (U⊥)⊥ = U
it follows that (iii) ⇔ (iv). By proposition 1.26 (b) we have

PU (x) − x = ΠU−x(0) = J∗
(

J
(

Π−x+U (0)
)

)

.

By part (a) of this proposition we see that

J
(

Π−x+U (0)
)

= Π∗
U⊥

(

J(−x)
)

and we arrive at x = PU (x)+J∗
(

Π∗
U⊥

(

J(x)
)

)

. The uniqueness of the decom-

position also follows by part (a) of this proposition. ⊓⊔

To justify a little more the notation “orhogonal sum”, we point out that by
lemma 1.28 J∗(U⊥) is a closed subset of X and that if x ∈ U ∩ J∗(U⊥) then
‖x‖p = 〈J(x) |x〉 = 0 and therefore x = 0. Of course we have 〈x |J(y)〉 = 0
for all x ∈ U and y ∈ J∗(U⊥) but in general it need not be that 〈J(x) | y〉 = 0
as well.
In the next proposition we give a few examples; these shall also demonstrate
that the metric projection and the Bregman projection Πp sometimes might
coincide for all choices of p, sometimes only for special choices of p, but that
they differ in general (compare (b) with [15]).

Proposition 1.30. Let X be reflexive, smooth and strictly convex.

(a) The metric and the Bregman projection onto the ball around the origin
with radius c > 0 coincide and are given by

Πp
Bc

(x) = PBc
(x) = λxx with λx = 1 ∧ c

‖x‖ . (1.36)

(b) Let H(u∗, α) be a hyperplane and for x ∈ X let hx : R −→ R be the strictly
convex, differentiable function

hx(t) :=
1

q
‖Jp

X(x) − tu∗‖q
+ α t (1.37)

with continuous, strictly increasing derivative

h′
x(t) = −

〈

u∗
∣

∣ Jq
X∗

(

Jp
X(x) − tu∗

)〉

+ α . (1.38)

The Bregman projection of x onto H(u∗, α) is then given by

Πp

H(u∗,α)(x) = Jq
X∗

(

Jp
X(x) − t0u

∗
)

, (1.39)

whereby t0 is the (necessarily existing) unique solution of the one-dimensio-
nal optimization problem

min
t∈R

hx(t) . (1.40)
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Moreover if x is not contained in the halfspace H≤(u∗, α) then the Breg-
man projection of x onto H≤(u∗, α) is also given by

Πp

H≤(u∗,α)(x) = Jq
X∗

(

Jp
X(x) − t0u

∗
)

, (1.41)

whereby t0 is then the necessarily positive solution of (1.40).
(c) The metric projection onto a hyperplane H(u∗, α) is given by

PH(u∗,α)(x) = x − 〈u∗ |x〉 − α

‖u∗‖q
Jq

X∗(u
∗) .

Moreover if x is not contained in the halfspace H≤(u∗, α) then PH≤(u∗,α)(x)
is also given by this formula.

(d) If X is an Lp-space (1 < p < ∞) and [a, b] := {x ∈ Lp | a ≤ x ≤ b} is
a closed “interval” with 0 ∈ [a, b] for extended real valued a, b5 then the
metric and the Bregman projection Πp

[a,b] onto [a, b] coincide and are given

by
Πp

[a,b](x) = P[a,b](x) = (a ∨ x) ∧ b = a ∨ (x ∧ b) , (1.42)

whereby the “p” in “Lp” and “Πp

[a,b]” are the same.

Proof. If x ∈ Bc then Πp
Bc

(x) = x. If ‖x‖ > c then λx = c
‖x‖ < 1, ‖λxx‖ = c,

i.e. λxx ∈ Bc and for all y ∈ Bc we have

〈

Jp
(

λxx
)

− Jp(x)
∣

∣ y − λxx
〉

=
(

λp−1
x − 1

)

〈Jp(x) | y − λxx〉 ≥ 0 ,

because λp−1
x − 1 < 0 and

〈Jp(x) | y − λxx〉 = 〈Jp(x) | y〉 − λx 〈Jp(x) |x〉
≤ ‖x‖p−1‖y‖ − λx‖x‖p

= ‖x‖p−1(‖y‖ − c) ≤ 0 ,

which proves (a) for the Bregman projection; the proof for the metric projec-
tion is analogous by using the variational inequality (1.16). In (b) differen-
tiability and strict convexity of hx and continuity of h′

x are consequences of
1.14 (a), (b) and (f). We show that h′

x is strictly increasing. For t ∈ R we set
x∗(t) := J(x) − tu∗ and for t0, t ∈ R with t > t0 we get

h′(t) − h′(t0) = −
〈

u∗
∣

∣ J∗
(

x∗(t)
)

− J∗
(

x∗(t0)
)〉

=
1

t − t0

〈

x∗(t) − x∗(t0)
∣

∣ J∗
(

x∗(t)
)

− J∗
(

x∗(t0)
)〉

> 0

since J∗ is strictly monotone by 1.14 (a). If we set z := α
‖u∗‖q J∗(u∗) then we

can write
H(u∗, α) = z + H(u∗, 0)

5 a and b need not be themselves elements of Lp.
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with H(u∗, 0) =
(

span{u∗}
)⊥

being a closed subspace. By proposition 1.29 (a)
we get

x0 := ΠH(u∗,α)(x) = Πz+H(u∗,0)(x)

⇔ x0 ∈ H(u∗, α) and J(x0) ∈ J(x) + span{u∗} (1.43)

⇔ J(x0) = Π∗
J(x)+span{u∗}

(

J(z)
)

. (1.44)

(1.43) is equivalent to
x0 = J∗

(

J(x) − t0u
∗
)

with t0 ∈ R such that

0 = α −
〈

u∗
∣

∣ J∗
(

J(x) − t0u
∗
)〉

= h′
x(t0)

and (1.44) is then equivalent to t0 being a solution of the optimization problem

min
t∈R

(

∆∗
(

J(z), J(x) − tu∗
)

=
1

p
‖z‖p − 〈z |J(x) − tu∗〉 +

1

q
‖J(x) − tu∗‖q

)

⇔ min
t∈R

(

αt +
1

q
‖J(x) − tu∗‖q = hx(t)

)

.

Existence and uniqueness of t0 are guaranteed by the existence and uniqueness
of the Bregman projection. If x is not contained in the halfspace H≤(u∗, α),
i.e. 〈u∗ |x〉 > α, then the Bregman projection x̃0 of x onto H≤(u∗, α) lies
in the boundary H(u∗, α) of H≤(u∗, α) by 1.26 (a) and thus x̃0 coincides
with x0. Moreover the solution t0 of (1.40) must be positive since h′

x(0) =
α − 〈u∗ |x〉 < 0 and h′

x is strictly increasing. For the metric projection we
then get by 1.26 (b)

PH(u∗,α)(x) = x + ΠH(u∗,α)−x(0) = x + ΠH(u∗,α̃)(0)

with α̃ = α−〈u∗ |x〉. By what we have just shown for the Bregman projection
we get

PH(u∗,α)(x) = x + J∗
(

J(0) − t0u
∗
)

= x − tq0 sgn(t0)J∗(u∗)

with

0 = α̃ −
〈

u∗
∣

∣ J∗
(

J(0) − t0u
∗
)〉

= α − 〈u∗ |x〉 + tq0 sgn(t0) ‖u∗‖q

⇔ tq0 sgn(t0) =
〈u∗ |x〉 − α

‖u∗‖q
.

In (d) we at first point out that [a, b] is indeed a closed convex subset of Lp,
since convergence of a sequence in Lp implies the existence of a componentwise
resp. pointwise almost everywhere convergent subsequence. We have a ≤ 0 ≤ b
since 0 ∈ [a, b]. Therefore (a ∨ x) ∧ b = a ∨ (x ∧ b) and

(a ∨ x) ∧ b ≤ a ∨ x ≤ 0 ∨ x ≤ |x|
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and
(a ∨ x) ∧ b ≥ (a ∨ x) ∧ 0 ≥ x ∧ 0 ≥ −|x| ,

from which we infer that (a ∨ x) ∧ b ∈ Lp. By examples 1.1 (c) and 1.11
(a) it suffices to check the variational inequality (1.30) componentwise resp.
pointwise almost everywhere:

(

Jp
(

Πp

[a,b](x)
)

− Jp(x)
)(

y − Πp

[a,b](x)
)

=
(

|Πp

[a,b](x)|p−1 sgn
(

Πp

[a,b](x)
)

− |x|p−1 sgn(x)
)(

y − Πp

[a,b](x)
)

=







(

−|a|p−1 + |x|p−1
)

(y − a) , x < a
0 , a ≤ x ≤ b

(

bp−1 − xp−1
)

(y − b) , x > b

≥ 0 .

Again the proof for the metric projection is analogous by using (1.16). ⊓⊔

1.3 Bounded Hausdorff Convergence and Continuity of

the Projections

Another important topic is continuity of the projections with respect to the
x-variable and how perturbations of the convex set C affect the projection.
There are many notions of set convergence and we concentrate on bounded
Hausdorff convergence [41] in C(X) because we find it convenient for our pur-
poses. This notion of convergence generalizes convergence in the Hausdorff
metric for unbounded sets by local versions of the Hausdorff metric and has
also been used by Penot [39] in the context of metric projections. Alber

[3] obtained results with respect to the Hausdorff metric and Resmerita [43]
with respect to Mosco convergence. For more information about set conver-
gence we refer the reader to [45] and the references cited therein.

1.3.1 Bounded Hausdorff Convergence

At first we recall the Hausdorff metric, which indicates how well two bounded
closed convex sets “fit into each other”. By Cb(X) ⊂ C(X) we denote the set of
all non-empty, bounded, closed and convex subsets of X and we write B = B1

for the unit ball around the origin.

Proposition 1.31. Let X be a reflexive Banach space. The mapping

d : Cb(X) × Cb(X) −→ [0,∞)

defined by

d(C,D) := min
{

λ ≥ 0
∣

∣C ⊂ D + λB and D ⊂ C + λB
}

(1.45)

is called Hausdorff metric. It is indeed a metric.
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Proof. Obviously we have d(C,D) ≥ 0 and d(C,D) = d(D,C) and the set on
the right hand side of (1.45) is not empty for bounded sets C and D and thus
d(C,D) is finite. We show that the minimum in (1.45) indeed exists. If we set
λ := inf

{

λ ≥ 0
∣

∣C ⊂ D + λB and D ⊂ C + λB
}

for two sets C,D ∈ Cb(X)
then there exists a sequence (λn)n of positive numbers greater than or equal
to λ and converging to λ such that

C ⊂ D + λnB and D ⊂ C + λnB for all n ∈ N .

So for an arbitrary element x ∈ C and every n ∈ N we can find a yn ∈ D
and a bn ∈ B with x = yn + λnbn. Since the sequences (yn)n and (bn)n lie in
the bounded, closed and convex sets D and B and since X is assumed to be
reflexive, by theorem 1.2 there exist subsequences (ynk

)k and (bnk
)k such that

(ynk
)k converges weakly to an element y ∈ D and (bnk

)k converges weakly to
an element b ∈ B. Hence x = ynk

+ λnk
bnk

converges weakly to the element
x = y + λb ∈ D + λB and therefore C ⊂ D + λB. Analoguously we can show
that D ⊂ C +λB and conclude that λ is the minimum of the above set. From
this it also follows that if d(C,D) = 0 then C ⊂ D +0B and D ⊂ C +0B and
thus C = D. It remains to prove the triangle inequality. For C,D,E ∈ Cb(X)
we have C ⊂ E + d(C,E)B and E ⊂ D + d(E,D)B which implies

C ⊂ D +
(

d(C,E) + d(E,D)
)

B .

In the same way we get

D ⊂ C +
(

d(D,E) + d(E,C)
)

B .

Since d is symmetric we conclude that d(C,D) ≤ d(C,E) + d(E,D). ⊓⊔

On the one hand having a metric is convenient, on the other hand some
important classes of convex sets like e.g. cones are not bounded and thus we
cannot directly measure their distance with the Hausdorff metric. Therefore
we use local versions of the Hausdorff metric to extend the notion of conver-
gence to unbounded sets. For C,D ∈ C(X) and m ∈ N we set

dm(C,D) := min

{

λ ≥ 0

∣

∣

∣

∣

C ∩ Bm ⊂ D + λB
and D ∩ Bm ⊂ C + λB

}

. (1.46)

and Cm(X) := {C ∈ C(X) |C ∩ Bm 6= ∅}. Roughly speaking, we measure the
Hausdorff distance on bounded parts and two sets will be close to each other
if the distance is small on all these parts. Analogously to the case of the
Hausdorff metric and by (c) of the following lemma the minimum in (1.46)
indeed exists.

Lemma 1.32. In a reflexive Banach space X the following is valid for all
C,D,E ∈ C(X) and m ∈ N:

(a) dm(C,D) = dm(D,C) ∈ [0,∞) and dm(C,D) ≤ dm+1(C,D).
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(b) dm(C,C) = 0 and if there exists some k0 ∈ N such that dk(C,D) = 0 for
all k ≥ k0 then we have C = D.

(c) The relation ∅ 6= C ∩ Bm ⊂ D + λB for some λ ≥ 0 implies D ∩ Bm̃ 6= ∅
and

C ∩ Bm ⊂ D ∩ Bm̃ + λB for every m̃ ≥ m + λ (1.47)

(d) The “triangle inequality”

dm(C,D) ≤
(

dm(C,E) + dm1
(E,D)

)

∨
(

dm(D,E) + dm2
(E,C)

)

(1.48)

is valid for every m1 ≥ m + dm(C,E) and m2 ≥ m + dm(D,E).

Proof. Since C∩Bm and D∩Bm are bounded, dm is finite. The rest of (a) and
dm(C,C) = 0 is obvious. If k0 ∈ N is such that dk(C,D) = 0 for all k ≥ k0,
then

C ∩ Bk ⊂ D and D ∩ Bk ⊂ C for all k ≥ k0 ,

from which we infer that C = D. In (c) ∅ 6= C ∩ Bm ⊂ D + λB implies that
every x ∈ C ∩ Bm can be written as x = y + λb with some y ∈ D and b ∈ B.
We get y = x − λb ∈ Bm + λB and therefore y ∈ D ∩ Bm̃ 6= ∅ for every
m̃ ≥ m+λ. To prove the triangle inequality we observe that by what we have
just shown we get

C ∩ Bm ⊂ E ∩ Bm1
+ dm(C,E)B ⊂

(

D + dm1
(E,D)B

)

+ dm(C,E)B

for every m1 ≥ m + dm(C,E) and we arrive at

C ∩ Bm ⊂ D +
(

dm(C,E) + dm1
(E,D)

)

B .

(If the intersection C∩Bm is empty then this also holds trivially.) Analogously
we get

D ∩ Bm ⊂ C +
(

dm(D,E) + dm2
(E,C)

)

B

for every m2 ≥ m + dm(D,E). ⊓⊔

Definition 1.33. In a reflexive Banach space X a sequence (Cn)n in C(X)
is said to be boundedly convergent, if there exists a C ∈ C(X) such that

lim
n→∞

dm(C,Cn) = 0 for all m ∈ N . (1.49)

We examine some properties of boundedly convergent sequences and the
relationship to the Hausdorff metric in case of bounded sets.

Proposition 1.34. Let X be a reflexive Banach space.

(a) The limit C of a boundedly convergent sequence (Cn)n in C(X) is unique.
Moreover if C is bounded then almost all Cn are uniformly bounded, i.e.
there exist n0,m0 ∈ N such that Cn ⊂ Bm0

for all n ≥ n0.
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(b) A sequence in Cb(X) converges boundedly to a bounded set C ∈ Cb(X) iff it
converges with respect to the Hausdorff metric, i.e. for bounded sets these
notions coincide.

(c) If (xn)n is a bounded sequence in X with xn ∈ Cn for a boundedly conver-
gent sequence (Cn)n ∈ C(X), then all weak cluster points of the sequence
(xn)n lie in the limit C of the sequence (Cn)n. Especially if (xn)n is con-
vergent, then its limit x lies in C.

(d) The sequence (Cn + Dn)n converges boundedly to C + D whenever (Cn)n

converges boundedly to C and (Dn)n converges boundedly to a bounded
set D. Especially if (xn)n converges to x in X then (Cn + xn)n converges
boundedly to C + x.

(e) The sequence (λnCn)n converges boundedly to λC whenever (Cn)n con-
verges boundedly to C and (λn)n converges in R to some λ 6= 0. Moreover
(λnCn)n converges boundedly to {0} in case λ = 0 and C is bounded.

(f) If (Cn)n converges boundedly to C then there are n0, k ∈ N such that
C,Cn ∈ Ck(X) for all n ≥ n0.

Proof. Let (Cn)n be a boundedly convergent sequence in C(X). Suppose there
are two limit sets C and C̃. For all m ∈ N there is then an nm ∈ N such that
for all n ≥ nm we have dm(C,Cn) ≤ 1 and by 1.32 (a) and the triangle
inequality (1.48) we get

dm(C, C̃) ≤ dm+1(C,Cn) + dm+1(Cn, C̃) −→ 0 for n → ∞ .

By lemma 1.32 (b) we conclude that C = C̃. If in addition C is bounded then
w.l.o.g.

C ⊂ C + 2B ⊂ Bm0
. (1.50)

Let n0 ∈ N be such that dm0
(C,Cn) ≤ 1

4 for all n ≥ n0. We show that all Cn

with n ≥ n0 are contained in Bm0
. Our choice of n0 and m0 gives

Cn ∩ Bm0
⊂ C +

1

4
B (1.51)

and

C = C ∩ Bm0
⊂ Cn +

1

4
B . (1.52)

Suppose there is an x ∈ Cn which is not an element of Bm0
. It can be easily

seen that the set C + 1
4B is convex and closed and by proposition 1.3 we can

therefore find a y ∈ C + 1
4B with

‖x − y‖ = d := min
z∈C+ 1

4
B
‖x − z‖ . (1.53)

Moreover d ≥ 1 by (1.50) and since x /∈ Bm0
. Hence λ := 1

d+ 1
2

∈ (0, 1). From

(1.52) it follows that

C +
1

4
B ⊂ Cn +

1

2
B
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and thus we find ỹ ∈ Cn and b ∈ B such that y = ỹ + 1
2b. From this we also

get ỹ = y − 1
2b ⊂ C + 3

4B and ‖y − ỹ‖ ≤ 1
2 . The element z := λx + (1 − λ)ỹ

then lies in Cn since x, ỹ ∈ Cn. And if we write z = ỹ + λ(x− ỹ), we see that
z ∈ C + 2B ⊂ Bm0

since ỹ ∈ C + 3
4B and

‖λ(x − ỹ)‖ ≤ 1

d + 1
2

(

‖x − y‖ + ‖y − ỹ‖
)

≤ 1

d + 1
2

(

d +
1

2

)

= 1 .

Together we get z ∈ Cn ∩ Bm0
⊂ C + 1

4B by (1.51). On the other hand we
have

‖x − z‖ = (1 − λ)‖x − ỹ‖ ≤ d − 1
2

d + 1
2

(

d +
1

2

)

< d

and thus z cannot lie in C + 1
4B by (1.53), which leads to a contradiction. An-

other direct consequence of the preceeding considerations is, that a boundedly
convergent sequence in Cb(X) with a bounded limit C is uniformly bounded
and thus we can find an m0 ∈ N with C ⊂ Bm0

and Cn ⊂ Bm0
for all n ∈ N.

Hence
d(C,Cn) = dm0

(C,Cn) −→ 0 for n → ∞ .

Conversely if the sequence converges in the Hausdorff metric, then there is an
n0 ∈ N with d(C,Cn) ≤ 1 for all n ≥ n0. This implies

Cn ⊂ C + d(C,Cn)B ⊂ C + B ⊂ Bm0

for an m0 with C ⊂ Bm0−1. We get for all m ≥ m0

dm(C,Cn) = d(C,Cn) −→ 0 for n → ∞ ,

which together with 1.32 (a) proves (b). Let (xn)n be contained in Bm0
and

w.l.o.g. be weakly convergent to some x ∈ X and (Cn)n converge boundedly
to C ∈ C(X) with xn ∈ Cn for all n ∈ N. To an arbitrary k ∈ N we thus find
an nk ≥ k such that

xnk
∈ Cnk

∩ Bm0
⊂ C ∩ Bm0+1 +

1

k
B

and therefore xnk
= ynk

+ 1
k
bnk

with ynk
∈ C ∩ Bm0+1 and bnk

∈ B. These
sequences are also bounded and thus have weakly convergent subsequences
with weak limit points y ∈ C ∩ Bm0+1 resp. b ∈ B. Since 1

k
bnk

converges
weakly to zero, we conclude that x = y ∈ C ∩ Bm0+1 ⊂ C, from which asser-
tion (c) follows. Now let (Cn)n converge boundedly to C. If (Dn)n converges
boundedly to a bounded set D then by (a) and (b) of this proposition we find
m0, n0 ∈ N such that D and all Dn are contained in Bm0

for all n ≥ n0 and
(Dn)n≥n0

converges in the Hausdorff metric to D. For all m ∈ N and n ≥ n0

we get

(Cn +Dn)∩Bm ⊂ Cn∩Bm+m0
+Dn ⊂ C +D+

(

dm+m0
(C,Cn)+d(D,Dn)

)

B
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and

(C +D)∩Bm ⊂ C ∩Bm+m0
+D ⊂ Cn +Dn +

(

dm+m0
(C,Cn)+d(D,Dn)

)

B .

Hence dm(C + D,Cn + Dn) ≤ dm+m0
(C,Cn) + d(D,Dn) −→ 0 for n → ∞.

If limn→∞ λn = λ 6= 0 then there are m0, n0 ∈ N such that for all n ≥ n0 we
have

|λ|, |λn|,
1

|λ| ,
1

|λn|
≤ m0 . (1.54)

Let m ∈ N and ǫ > 0 be given. We choose n0 ∈ N such that for all n ≥ n0

|λ − λn| <
ǫ

2m0m
dm0m(C,Cn) <

ǫ

2m0
. (1.55)

Let y = λnxn with xn ∈ Cn be an arbitrary element of (λnCn) ∩ Bm. By
(1.54) and (1.55) we get ‖xn‖ = 1

|λn|‖y‖ ≤ m0m and therefore

xn ∈ Cn ∩ Bm0m ⊂ C +
ǫ

2m0
B

and
‖(λn − λ)xn‖ ≤ ǫ

2m0m
m0m =

ǫ

2
.

This yields

y = λnxn = λxn + (λn − λ)xn ∈ λ

(

C +
ǫ

2m0
B

)

+
ǫ

2
B

and since by (1.54)
∣

∣

∣

∣

λ
ǫ

2m0

∣

∣

∣

∣

≤ ǫ

2

we arrive at y ∈ λC + ǫB. Hence

(λnCn) ∩ Bm ⊂ λC + ǫB .

Analogously we get
(λC) ∩ Bm ⊂ λnCn + ǫB .

In case C is bounded and λ = 0 we may again assume Cn ⊂ Bm0
for all

n ≥ n0 and (Cn)n≥n0
converges in the Hausdorff metric to C. Thus we get

λnCn ⊂ λnBm0
= {0} + λnm0B

and
{0} = {λnxn − λnxn} ⊂ λnCn + λnCn ⊂ λnCn + λnm0B

for some xn ∈ Cn. It follows that d({0}, λnCn) ≤ λnm0 −→ 0 for n → ∞. In
(f) we find k ∈ N with C ∩Bk−1 6= ∅ and n0 ∈ N with dk−1(C,Cn) ≤ 1 for all
n ≥ n0. Lemma 1.32 (c) then ensures that Cn ∩ Bk 6= ∅ for all n ≥ n0. ⊓⊔
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1.3.2 Continuity of the Projections

To formulate the desired continuity result we write Πp(x,C) := Πp
C(x) and

Πp
x(C) := Πp(x,C) for x ∈ X and C ∈ C(X).

Proposition 1.35. In a uniformly smooth and uniformly convex Banach
space X the mapping Πp : X × C(X) −→ X is uniformly continuous
on bounded sets in the following sense: For all n, k ∈ N we can find an
m0 ∈ N such that for every ǫ > 0 there exist δ > 0 and δ̃ > 0 such that
‖Πp(x,C) − Πp(y,D)‖ < ǫ for all x, y ∈ Bn with ‖x − y‖ < δ and for every
m ≥ m0 and all C,D ∈ Ck(X) with dm(C,D) < δ̃.

Proof. At first we recall that C ∈ Ck(X) means that C ∩ Bk 6= ∅ and thus
min
y∈C

‖y‖ ≤ k. By proposition 1.26 (b) and (d) for all C ∈ Ck(X) and x ∈ Bn

we get

‖Πp(x,C)‖ ≤
(

2q−1‖x‖
)

∨
(

3min
y∈C

‖y‖
)

≤
(

2q−1n
)

∨ (3k)

and therefore Πp(x,C) ∈ Bm0
for an m0 ∈ N with m0 ≥

(

2q−1n
)

∨ (3k).

Furthermore for R := np−1 ∨ m0 ∨ mp−1
0 we have

‖Jp(x)‖ , ‖Πp(x,C)‖ ,
∥

∥Jp
(

Πp(x,C)
)∥

∥ ≤ R for all x ∈ Bn , C ∈ Ck(X) .

Let ǫ > 0 be given. Since X is uniformly convex, by proposition 1.24 (h) we
find a δ̃ > 0 such that

‖x̃ − ỹ‖ < ǫ for all x̃, ỹ ∈ Bm0
with ∆p(x̃, ỹ) < 6Rδ̃ . (1.56)

Since further Jp is uniformly continuous on bounded sets in a uniformly
smooth X

(

Prop. 1.14 (d)
)

, we find a δ > 0 such that

‖Jp(x) − Jp(y)‖ < δ̃ for all x, y ∈ Bn with ‖x − y‖ < δ . (1.57)

By proposition 1.24 (a) and (b) for such x and y we can estimate

∆p

(

Πp(x,C),Πp(y,D)
)

≤
〈

Jp
(

Πp(x,C)
)

− Jp
(

Πp(y,D)
) ∣

∣Πp(x,C) − Πp(y,D)
〉

= −
〈

Jp
(

Πp(x,C)
)

− Jp(x)
∣

∣Πp(y,D) − Πp(x,C)
〉

+ 〈Jp(x) − Jp(y) |Πp(x,C) − Πp(y,D)〉
−
〈

Jp
(

Πp(y,D)
)

− Jp(y)
∣

∣Πp(x,C) − Πp(y,D)
〉

. (1.58)

We estimate the first summand: For every m ≥ m0 and C,D ∈ Ck(X) with
dm(C,D) < δ̃ we have

C ∩ Bm ⊂ D + δ̃B and D ∩ Bm ⊂ C + δ̃B .
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Since Πp(y,D) lies in D ∩ Bm0
⊂ D ∩ Bm for y ∈ Bn, we therefore find

ỹ ∈ C and b ∈ B with Πp(y,D) = ỹ + δ̃b. We keep in mind the validity of the
variational inequality (1.30) for Πp(x,C) and get

−
〈

Jp
(

Πp(x,C)
)

− Jp(x)
∣

∣Πp(y,D) − Πp(x,C)
〉

= −
〈

Jp
(

Πp(x,C)
)

− Jp(x)
∣

∣ ỹ − Πp(x,C)
〉

−
〈

Jp
(

Πp(x,C)
)

− Jp(x)
∣

∣

∣ δ̃b
〉

≤
∥

∥Jp
(

Πp(x,C)
)

− Jp(x)
∥

∥ δ̃ ≤ 2Rδ̃ .

Analogously the third summand in (1.58) can also be estimated from above
by 2Rδ̃. For the second summand we get by (1.57)

+ 〈Jp(x) − Jp(y) |Πp(x,C) − Πp(y,D)〉
≤ ‖Jp(x) − Jp(y)‖ ‖Πp(x,C) − Πp(y,D)‖
≤ δ̃2R .

Altogether we arrive at ∆p

(

Πp(x,C),Πp(y,D)
)

< 6Rδ̃ and by (1.56) we
conclude that ‖Πp(x,C) − Πp(y,D)‖ < ǫ. ⊓⊔

This implies the following continuity results for the case that one of the
variables is fixed

(

for the last part in (b) see also 1.34 (f)
)

.

Corollary 1.36. Let X be a uniformly smooth and uniformly convex Banach
space.

(a) For every C ∈ C(X) the mapping Πp
C is uniformly continuous on bounded

sets.
(b) For every x ∈ X the mapping Πp

x is uniformly continuous on Ck(X) for all
k ∈ N in the sense that we can find an m0 ∈ N such that for every ǫ > 0
there exists a δ > 0 such that ‖Πp

x(C) − Πp
x(D)‖ < ǫ for every m ≥ m0

and all C,D ∈ Ck(X) with dm(C,D) < δ. Especially if a sequence (Cn)n

in C(X) converges boundedly to C ∈ C(X) then
(

Πp
x(Cn)

)

n
converges to

Πp
x(C).

By the relation PC(x) = x + Πp
C−x(0)

(

1.26 (b)
)

and 1.34 (d) we obtain
the same continuity results for the metric projection.

Corollary 1.37. The assertions of 1.35 and 1.36 remain valid for the metric
projection.
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SFP and Projections onto Affine Subspaces

In this chapter we develop and discuss the iteration methods for the solution of
the split feasibility problem (SFP) and the computation of metric and Bregman
projections onto affine subspaces. At first we examine what operators may be
used in the iterative process to handle different kinds of constraints appearing
in the SFP. The ones related to constraints in the range of a linear operator
depend on a positive parameter which in general has to be chosen a posteriori.
In section 2.2 we show how these parameters can be chosen in case of exact
as well as approximate data to ensure convergence of the methods. In case
of approximate or noisy data this choice is linked to a discrepancy priniple.
The iteration methods for the SFP are analyzed in section 2.3. They produce
sequences which in general have weak accumulation points that are solutions
of the SFP. In the following section we show that the same iterative scheme can
be used to compute metric and Bregman projections onto affine subspaces that
are given via the nullspace or the range of a linear operator. For this case we
can even prove strong convergence. In the last two sections we are concerned
with possibilities to efficiently implement the methods. We show that the
choice of parameters can be replaced by line searches and propose generalized
conjugate gradient and sequential subspace methods for the computation of
projections onto affine subspaces in case of exact data.

2.1 Convex Constraints and Related Operators

We intend to examine a little more closely the operators we will deal with.
First we recall some facts about linear operators [25, 47]. By L(X,Y ) we
denote the Banach space of all continuous linear operators A : X −→ Y
endowed with the operator norm

‖A‖ := sup
‖x‖≤1

‖Ax‖ . (2.1)

The dual operator A∗ ∈ L(Y ∗,X∗) is defined by
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〈A∗y∗ |x〉 := 〈y∗ |Ax〉 for all x ∈ X, y∗ ∈ Y ∗ (2.2)

and the equalities ‖A∗‖ = ‖A‖ and N (A∗) = R(A)⊥ are valid. In case X is
reflexive we also have N (A) = R(A∗)⊥ and N (A)⊥ = R(A∗) and in case Y
is reflexive we also have N (A∗)⊥ = R(A). An operator A ∈ L(X,Y ) is called
compact, if the image A(BX) of the unit ball of X is a relatively compact
subset of Y . It is a fact that A is compact iff A∗ is compact and that a com-
pact operator A is weak-to-norm-continuous, i.e. if (xn)n is a sequence in X
which converges weakly to some x ∈ X, then (Axn)n converges strongly to Ax.

From now on we assume that X is a smooth and uniformly convex
Banach space with a (bijective) duality mapping JX with gauge function
t 7→ tp−1. If JY is a set-valued duality mapping of another Banach space Y
and we write “JY (y)” for some y ∈ Y , then we mean that JY (y) is allowed
to be any element in the set JY (y). The additional assumptions in the
following definition will be used for the different kinds of contraints in case of
exact and approximate data.

Definition 2.1. We call assumption

(C) X is uniformly smooth and a set C ∈ C(X) is given.
(A,Q) Given are: a uniformly smooth and uniformly convex Banach

space Y with duality mapping JY (with gauge function t 7→ tr−1),
a compact operator 0 6= A ∈ L(X,Y ), a set Q ∈ C(Y ) and a con-
stant γ ∈ (0, 1). The set

MAx∈Q := {x ∈ X |Ax ∈ Q}
is not empty.

(A, y) Given are: an arbitrary Banach space Y with duality mapping JY

(with gauge function t 7→ tr−1), an operator 0 6= A ∈ L(X,Y ),
an element y ∈ Y and a constant γ ∈ (0, 1). The set

MAx=y := {x ∈ X |Ax = y}
is not empty.

(A, y,+) Given are: an arbitrary Banach lattice Y with positive duality
mapping J+, an operator 0 6= A ∈ L(X,Y ), an element y ∈ Y
and a constant γ ∈ (0, 1). The set

MAx≤y := {x ∈ X |Ax ≤ y}
is not empty.

(Ci) In addition to assumption (C) a constant β ∈ (0, 1) and convex
sets Ci ∈ C(X) are given with

dm(C,Ci) ≤ ǫm
i

and
lim

i→∞
ǫm
i = 0 for all m ∈ N .
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(Aj , Qk) In addition to assumption (A,Q) a constant β ∈ (0, 1), compact
operators 0 6= Aj ∈ L(X,Y ) and sets Qk ∈ C(Y ) are given with

‖A − Aj‖ ≤ ηj ≤ ηj−1 , dm(Q,Qk) ≤ δm
k ≤ δm

k−1

and
lim

j→∞
ηj = 0 , lim

k→∞
δm
k = 0 for all m ∈ N .

(Aj , yk) In addition to assumption (A, y) a constant β ∈ (0, 1), operators
0 6= Aj ∈ L(X,Y ) and elements yk ∈ Y are given with

‖A − Aj‖ ≤ ηj ≤ ηj−1 , ‖y − yk‖ ≤ δk ≤ δk−1

and
lim

j→∞
ηj = 0 , lim

k→∞
δk = 0 .

(Aj , yk,+) In addition to assumption (A, y,+) the same holds as under as-
sumption (Aj , yk).

Under assumption (C) we define the operator

TC : X −→ X

by
TC(x) := Πp

C(x) . (2.3)

Under assumption (A,Q) we define for µ > 0 the operators

Tµ
A,Q,Π , Tµ

A,Q,P : X −→ X

by

Tµ
A,Q,Π(x) := J∗

X

(

JX(x) − µA∗
(

JY (Ax) − JY

(

Πr
Q(Ax)

)

)

)

, (2.4)

and
Tµ

A,Q,P (x) := J∗
X

(

JX(x) − µA∗JY

(

Ax − PQ(Ax)
)

)

, (2.5)

whereby Πr is the Bregman projection and P is the metric projection in Y .
For Q = {y} with some y ∈ Y under assumption (A, y) we get the (possibly
set-valued) operator

Tµ
A,y : X −→ 2X

with
(

Tµ

A,{y},P
(x) =

)

Tµ
A,y(x) := J∗

X

(

JX(x) − µA∗JY (Ax − y)
)

. (2.6)

Under assumption (A, y,+) we define for µ > 0 the (possibly set-valued) op-
erator

Tµ
A,y,+ : X −→ 2X

by

Tµ
A,y,+(x) := J∗

X

(

JX(x) − µA∗J+

(

(Ax − y)+
)

)

. (2.7)
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In Hilbert spaces Tµ
A,y and Tµ

A,Q,P are just the familiar operators

Tµ
A,y(x) = x − µA∗(Ax − y) and Tµ

A,Q(x) = x − µA∗
(

Ax − PQ(Ax)
)

,

which appear in the ordinary Landweber methods and the CQ algorithm for
the SFP. Operator Tµ

A,Q,Π may also be useful in the context of more general
Bregman projections.

For an operator T : X −→ 2X we denote by

Fix(T ) := {x ∈ X |x ∈ T (x)}

the set of all fixed points of T and by

S-Fix(T ) := {x ∈ X |x = T (x)}

the set of all strong fixed points of T . Obviously S-Fix(T ) ⊂ Fix(T ) and if T
is single-valued then these sets coincide.

Proposition 2.2.

(a) Under assumption (C) we have

Fix(TC) = C .

(b) Under assumption (A,Q) and for all µ > 0 we have

Fix(Tµ
A,Q,Π) = Fix(Tµ

A,Q,P ) = MAx∈Q .

(c) Under assumption (A, y) and for all µ > 0 we have

Fix(Tµ
A,y) = S-Fix(Tµ

A,y) = MAx=y .

(d) Under assumption (A, y,+) and for all µ > 0 we have

Fix(Tµ
A,y,+) = S-Fix(Tµ

A,y,+) = MAx≤y .

Proof. (a) is just 1.26 (a). For x ∈ MAx∈Q we have Πr
Q(Ax) = Ax = PQ(Ax)

and thus Tµ
A,Q,Π(x) = x = Tµ

A,Q,P (x). Hence MAx∈Q ⊂ Fix(Tµ
A,Q,Π) and

MAx∈Q ⊂ Fix(Tµ
A,Q,P ). Conversely for x ∈ Fix(Tµ

A,Q,Π) we get

x = Tµ
A,Q,Π(x)

⇔ JX(x) = JX(x) − µA∗
(

JY (Ax) − JY

(

Πr
Q(Ax)

)

)

⇔ A∗
(

JY (Ax) − JY

(

Πr
Q(Ax)

)

)

= 0 .

Since MAx∈Q is supposed to be non-empty, we take some z ∈ X with Az ∈ Q
and get
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0 =
〈

A∗
(

JY (Ax) − JY

(

Πr
Q(Ax)

)

) ∣

∣

∣x − z
〉

=
〈

JY (Ax) − JY

(

Πr
Q(Ax)

) ∣

∣Ax − Az
〉

=
〈

JY (Ax) − JY

(

Πr
Q(Ax)

) ∣

∣Ax − Πr
Q(Ax)

〉

+
〈

JY (Ax) − JY

(

Πr
Q(Ax)

) ∣

∣Πr
Q(Ax) − Az

〉

≥
〈

JY (Ax) − JY

(

Πr
Q(Ax)

) ∣

∣Ax − Πr
Q(Ax)

〉

,

because of the validity of the variational inequality (1.30) for Πr
Q(Ax) and

Az ∈ Q. Since Y is strictly convex by 1.14 (a) the above inequality gives
Ax = Πr

Q(Ax) ∈ Q. The inclusion Fix(Tµ
A,Q,P ) ⊂ MAx∈Q can be shown

similarly. In (b) it suffices to show

Fix(Tµ
A,y) ⊂ MAx=y ⊂ S-Fix(Tµ

A,y) ,

because S-Fix(Tµ
A,y) ⊂ Fix(Tµ

A,y). If x ∈ MAx=y then we have Jy(Ax− y) = 0

and it follows that MAx=y ⊂ S-Fix(Tµ
A,y). Conversely for x ∈ Fix(Tµ

A,y) we
find some u∗ ∈ JY (Ax − y) such that

x = Tµ
A,y(x) ⇔ JX(x) = JX(x) − µA∗JY (Ax − y) ⇔ A∗JY (Ax − y) = 0 .

Since MAx=y is supposed to be non-empty, we take some z ∈ X with Az = y
and get

0 = 〈A∗JY (Ax − y) |x − z〉 = 〈JY (Ax − y) |Ax − y〉 = ‖Ax − y‖r ,

which gives Ax = y and thus Fix(Tµ
A,y) ⊂ MAx=y. In (c) it again suffices to

show
Fix(Tµ

A,y,+) ⊂ MAx≤y ⊂ S-Fix(Tµ
A,y,+) .

If Ax ≤ y then we get (Ax−y)+ = 0 and thus J+

(

(Ax−y)+
)

= 0, which yields
Tµ

A,y,+(x) = x. Hence MAx≤y ⊂ S-Fix(Tµ
A,y,+). Conversely for x ∈ Fix(Tµ

A,y,+)

we find some u∗ ∈ J+

(

(Ax − y)+
)

such that

x = J∗
X

(

JX(x) − µA∗u∗
)

⇔ JX(x) = JX(x) − µA∗u∗ ⇔ A∗u∗ = 0 .

Since MAx≤y is supposed to be non-empty, we find some z ∈ X with y−Az ≥ 0
and by the properties of the positive duality mapping 1.21 we get

0 = 〈A∗u∗ |x − z〉
= 〈u∗ |Ax − y〉 + 〈u∗ | y − Az〉
= 〈u∗ | (Ax − y)+〉 + 〈u∗ | y − Az〉
= ‖(Ax − y)+‖2 + 〈u∗ | y − Az〉
≥ ‖(Ax − y)+‖2 ,

from which we infer that Ax − y ≤ 0 and thus Fix(Tµ
A,y,+) ⊂ MAx≤y. ⊓⊔
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The operators are also linked to subdifferentials of certain functionals.

Proposition 2.3. We assume (A,Q), (A, y) or (A, y,+) and accordingly de-
fine the functions fA,Q,P , fA,y, fA,y,+ : X −→ R by

fA,Q,P (x) :=
1

r
‖Ax − PQ(Ax)‖r ,

fA,y(x) :=
1

r
‖Ax − y‖r ,

fA,y,+(x) :=
1

2
‖(Ax − y)+‖2 .

Then we have for all x ∈ X

A∗JY

(

Ax − PQ(Ax)
)

⊂ ∂fA,Q,P (x) ,

A∗JY (Ax − y) ⊂ ∂fA,y(x) ,

A∗J+

(

(Ax − y)+
)

⊂ ∂fA,y,+(x) .

Proof. The assertions for fA,y and fA,y,+ follow immediately by 1.12 and 1.22.
We prove the assertion for fA,Q,P . For all x, y ∈ X we get by 1.12 and the
variational inequality for the metric projection (1.16)

fA,Q,P (y) − fA,Q,P (x)

=
1

r
‖Ay − PQ(Ay)‖r − 1

r
‖Ax − PQ(Ax)‖r

≥
〈

JY

(

Ax − PQ(Ax)
) ∣

∣

(

Ay − PQ(Ay)
)

−
(

Ax − PQ(Ax)
)〉

=
〈

A∗JY

(

Ax − PQ(Ax)
) ∣

∣ y − x
〉

+
〈

JY

(

Ax − PQ(Ax)
) ∣

∣PQ(Ax) − PQ(Ay)
〉

≥
〈

A∗JY

(

Ax − PQ(Ax)
) ∣

∣ y − x
〉

.

⊓⊔

We do not know whether operator Tµ
A,Q,Π is also linked to a subdifferential

of a functional fA,Q,Π . The canonical candidates fA,Q,Π(x) = ∆r

(

Ax,Πr
Q(Ax)

)

or fA,Q,Π(x) = ∆r

(

Πr
Q(Ax), Ax

)

do not seem to work (do they?). However
by 1.24 (e) for fixed z ∈ X we have

A∗
(

JY (Az) − JY

(

Πr
Q(Az)

)

)

⊂ ∂fA,Q,Πr
Q

(Az)(z)

with
fA,Q,Πr

Q
(Az)(x) = ∆r

(

Πr
Q(Az), Ax

)

, x ∈ X .
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2.2 Choice of Parameters

The methods we will discuss are all based on an iterative scheme

xn+1 = Tn(xn) ,

whereby each Tn is one of the operators introduced in 2.1. The key for proving
the convergence of these methods is a monotonicity estimate of the form

∆p

(

xn+1, z
)

≤ ∆p(xn, z) − Sn(xn)

with a remainder term Sn(xn) ≥ 0 and for all z in a subset of the fixed
points of Tn. This relation results in (xn)n having (weak) cluster points and
(

Sn(xn)
)

n
converging to zero, whereby Sn(xn) is of such a form that this

eventually forces the cluster points to be the sought after solutions. In the
following “cluster” of lemmas we derive these estimates.

Lemma 2.4. We assume (C). Let xn ∈ X for some n ∈ N be given. We set
xn+1 := TC(xn) and

RC(xn) := ∆p(xn, xn+1) . (2.8)

Then we have xn ∈ C ⇔ RC(xn) = 0 and the following estimate is valid for
all z ∈ C:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) − RC(xn) . (2.9)

Proof. This is just a reformulation and direct consequence of (1.31), 1.26 (a)
and 1.24 (a). ⊓⊔

In case of approximate data (Ci)i we must also adjust the choice of the
sets Ci.

Lemma 2.5. We assume (Ci) and that C ∩ Bm0
is not empty for some

m0 ∈ N. Let xn ∈ X and in−1 ∈ N for some n ∈ N be given. We set

RCi
(xn) := ∆p

(

xn,Πp
Ci

(xn)
)

. (2.10)

If for all i > in−1

RCi
(xn) ≤ 1

β
ǫm0

i

∥

∥Jp
(

Πp
Ci

(xn)
)

− Jp(xn)
∥

∥ (2.11)

then xn lies in C. In this case we choose in > in−1 and set xn+1 := xn.
Otherwise we find in > in−1 with

0 ≤ ǫm0

in

∥

∥

∥
Jp
(

Πp
Cin

(xn)
)

− Jp(xn)
∥

∥

∥
< βRCin

(xn) . (2.12)

In this case we set xn+1 := TCin
(xn) and the following estimate is valid for

all z ∈ C ∩ Bm0
:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) − (1 − β)RCin
(xn) . (2.13)
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Proof. Since (Ci)i converges boundedly to C and X is uniformly smooth and
uniformly convex, corollary 1.36 (b) ensures that

(

Πp
Ci

(xn)
)

i
converges to

Πp
C(xn) for i → ∞. Therefore

∥

∥Jp
(

Πp
Ci

(xn)
)

− Jp(xn)
∥

∥ remains bounded
and the right hand side in (2.11) converges to zero for i → ∞ and so does
RCi

(xn) = ∆p

(

xn,Πp
Ci

(xn)
)

. By 1.24 (h) in a uniformly convex X we con-

clude that the sequence
(

Πp
Ci

(xn)
)

i
converges to xn. Since it also converges

to Πp
C(xn), we get xn = Πp

C(xn) ∈ C.
In case of (2.12) we set xn+1 := TCin

(xn). Since dm0
(C,Cin

) ≤ ǫm0

in
, for every

z ∈ C ∩Bm0
we can find some zin

∈ Cin
with ‖z − zin

‖ ≤ ǫm0

in
. By (1.31) and

(2.12) we get

∆p(xn+1, z) = ∆p(xn+1, zin
) +

1

p
(‖z‖p − ‖zin

‖p) + 〈Jp(xn+1) | zin
− z〉

≤ ∆p(xn, zin
) − ∆p(xn, xn+1)

+
1

p
(‖z‖p − ‖zin

‖p) + 〈Jp(xn+1) | zin
− z〉

= ∆p(xn, z) − ∆p(xn, xn+1) + 〈Jp(xn+1) − Jp(xn) | zin
− z〉

≤ ∆p(xn, z) − ∆p(xn, xn+1) + ǫm0

in
‖Jp(xn+1) − Jp(xn)‖

≤ ∆p(xn, z) − (1 − β)RCin
(xn) .

⊓⊔

The other operators all depend on a parameter µ > 0. The monotonicity
estimate does not hold for all µ, but we show that there always exists a µn > 0
for which the relation is valid. This parameter choice is linked to the modulus
of smoothness of the dual X∗ because we use the characteristic inequality
(prop. 1.17) to estimate from above terms of the form

1

q

∥

∥JX(xn) − µnA∗
jn

w∗
n

∥

∥

q
.

Therefore these lemmas are quite technical. Later on we will give an example
of how these parameters may look like if we have at hand a concrete version
of the characteristic inequality as in 1.18. Even better, we will see that it
suffices to know that these parameters exist and that we can replace their
choice by line searches. The following lemma covers a situation occurring in
the consecutive proofs.

Lemma 2.6. Let X be a uniformly convex Banach space with duality mapping
J (with gauge function t 7→ tp−1) and σ̃q be the function (1.21) appearing in
proposition 1.17 for the characteristic inequality of the uniformly smooth dual
X∗. If 0 6= x ∈ X, 0 6= A ∈ L(X,Y ) and 0 6= y∗ ∈ Y ∗ with an arbitrary
Banach space Y are given and µ > 0 is defined by

µ :=
τ

‖A‖
‖x‖p−1

‖y∗‖ for some τ ∈ (0, 1] (2.14)
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then the following estimate is valid:

1

q
σ̃q

(

J(x), µA∗y∗
)

≤ 2qGq‖x‖pρX∗(τ) , (2.15)

whereby Gq is the constant appearing in (1.21) and ρX∗ is the modulus of
smoothness of X∗.

Proof. According to (1.21) we have 1
q
σ̃q

(

J(x), µA∗y∗
)

=

Gq

∫ 1

0

(

‖J(x) − tµA∗y∗‖ ∨ ‖J(x)‖
)q

t
ρX∗

(

tµ‖A∗y∗‖
‖J(x) − tµA∗y∗‖ ∨ ‖J(x)‖

)

dt .

By the choice of µ (2.14) and τ ∈ (0, 1] we estimate for every t ∈ [0, 1]

‖J(x) − tµA∗y∗‖ ≤ ‖x‖p−1 + µ‖A‖ ‖y∗‖ ≤ 2‖x‖p−1

and get

‖J(x) − tµA∗y∗‖ ∨ ‖J(x)‖
{

≤ 2‖x‖p−1

≥ ‖x‖p−1 .

Since ρX∗ is nondecreasing
(

prop. 1.5 (b)
)

we see that

ρX∗

(

tµ‖A∗y∗‖
‖J(x) − tµA∗y∗‖ ∨ ‖J(x)‖

)

≤ ρX∗

(

tµ‖A‖ ‖y∗‖
‖x‖p−1

)

≤ ρX∗(tτ)

and we arrive at

1

q
σ̃q

(

J(x), µA∗y∗
)

≤ 2qGq‖x‖p

∫ 1

0

ρX∗(tτ)

t
dt .

= 2qGq‖x‖p

∫ τ

0

ρX∗(t)

t
dt .

≤ 2qGq‖x‖pρX∗(τ) ,

because also the function τ 7→ ρX(τ)
τ

is nondecreasing
(

prop. 1.5 (c)
)

. ⊓⊔

Both operator Tµ
A,Q,Π and operator Tµ

A,Q,P are suitable for situation

(A,Q). The use of Tµ
A,Q,P seems to be more simple, but as we have already

mentioned, Tµ
A,Q,Π may be used in the context of more general Bregman pro-

jections. We at first treat Tµ
A,Q,Π .

Lemma 2.7. We assume (A,Q). Let xn ∈ X for some n ∈ N be given. If
∥

∥JY (Axn) − JY

(

Πr
Q(Axn)

)∥

∥ = 0
(

⇔ xn ∈ MAx∈Q

)

then we set xn+1 := xn

and RA,Q,Π(xn) := 0.
Otherwise we set

RA,Q,Π(xn) :=

〈

JY (Axn) − JY

(

Πr
Q(Axn)

) ∣

∣Axn − Πr
Q(Axn)

〉

∥

∥

∥
JY (Axn) − JY

(

Πr
Q(Axn)

)

∥

∥

∥

(2.16)
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and

µn :=























τn

‖A‖
‖xn‖p−1

∥

∥

∥JY (Axn) − JY

(

Πr
Q(Axn)

)

∥

∥

∥

, xn 6= 0

1

‖A‖p

RA,Q,Π(xn)p−1

∥

∥

∥
JY (Axn) − JY

(

Πr
Q(Axn)

)

∥

∥

∥

, xn = 0
, (2.17)

whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ

2qGq‖A‖
RA,Q,Π(xn)

‖xn‖

)

. (2.18)

In this case we set xn+1 := Tµn

A,Q,Π(xn) and the following estimate is valid for
all z ∈ MAx∈Q:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)
‖A‖ τn‖xn‖p−1RA,Q,Π(xn) , xn 6= 0

1
p

(

1
‖A‖RA,Q,Π(xn)

)p

, xn = 0
. (2.19)

Proof. This follows from the next lemma. ⊓⊔
Again approximate data must be adjusted.

Lemma 2.8. We assume (Aj , Qk) and that MAx∈Q ∩ Bm0
is not empty for

some m0 ∈ N. Let xn ∈ X and jn−1, kn−1 ∈ N for some n ∈ N be given. We
choose m ≥ ‖A‖m0 and set

RAj ,Qk,Π(xn) :=

〈

JY (Ajxn) − JY

(

Πr
Qk

(Ajxn)
) ∣

∣Ajxn − Πr
Qk

(Ajxn)
〉

∥

∥

∥JY (Ajxn) − JY

(

Πr
Qk

(Ajxn)
)

∥

∥

∥

(2.20)
if the denominator is not equal to zero and RAj ,Qk,Π(xn) := 0 otherwise.
If for all j > jn−1 and k > kn−1

RAj ,Qk,Π(xn) ≤ 1

β
(ηjm0 + δm

k ) (2.21)

then xn lies in the set MAx∈Q. In this case we choose jn > jn−1, kn > kn−1

and set xn+1 := xn.
Otherwise we find jn > jn−1 and kn > kn−1 with

0 ≤ ηjn
m0 + δm

kn
< βRAjn ,Qkn ,Π(xn) (2.22)

and for those indices we set

µn :=























τn

‖Ajn
‖

‖xn‖p−1

∥

∥

∥JY (Ajxn) − JY

(

Πr
Qk

(Ajxn)
)

∥

∥

∥

, xn 6= 0

(1 − β)p−1

‖Ajn
‖p

RAjn ,Qkn ,Π(xn)p−1

∥

∥

∥
JY (Ajxn) − JY

(

Πr
Qk

(Ajxn)
)

∥

∥

∥

, xn = 0

, (2.23)
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whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ(1 − β)

2qGq‖Ajn
‖

RAjn ,Qkn ,Π(xn)

‖xn‖

)

. (2.24)

In this case we set xn+1 := Tµn

Ajn ,Qkn ,Π(xn) and the following estimate is valid
for all z ∈ MAx∈Q ∩ Bm0

:

∆p

(

xn+1, z
)

≤ ∆p(xn, z)−







(1−γ)(1−β)
‖Ajn‖ τn‖xn‖p−1RAjn ,Qkn ,Π(xn) , xn 6= 0

1
p

(

1−β
‖Ajn‖RAjn ,Qkn ,Π(xn)

)p

, xn = 0
.

(2.25)

Proof. We at first point out that RAj ,Qk,Π(xn) ≥ 0 in (2.20) by the mono-
tonicity of JY

(

prop. 1.10 (c)
)

. Suppose (2.21) is fulfilled, i.e.

RAj ,Qk,Π(xn) ≤ 1

β
(ηjm + δm

k )

for all j > jn−1 and k > kn−1. Since the right hand side converges to
zero for j, k → ∞, so does RAj ,Qk,Π(xn). Moreover the denominator in
RAj ,Qk,Π(xn) converges to

∥

∥JY (Axn) − JY

(

Πr
Q(Axn)

)∥

∥ by 1.35, because
(Ajxn)j converges to Axn and (Qk)k converges boundedly to Q. If we have
∥

∥JY (Axn) − JY

(

Πr
Q(Axn)

)∥

∥ = 0 then this is already equivalent to Axn ∈ Q.
Otherwise the numerator in (2.20) converges to zero. Since the numerator
also converges to

〈

JY (Axn) − JY

(

Πr
Q(Axn)

) ∣

∣Axn − Πr
Q(Axn)

〉

, this expres-
sion equals zero. By the strict convexity of Y we get Axn = Πr

Q(Axn) ∈ Q.
In the case of (2.22) we set µn according to (2.23) with τn ∈ (0, 1] according
to (2.24). This choice of τn is possible since X∗ is uniformly smooth

(

def.

1.6 (d)
)

and because of 1.5 (b) and (c). We at first consider xn 6= 0. We set

w∗
n := JY (Ajn

xn) − JY

(

Πr
Qkn

(Ajn
xn)
)

(2.26)

and get

∆p

(

Tµn

Ajn ,Qkn ,Π(xn), z
)

=
1

q

∥

∥JX(xn) − µnA∗
jn

w∗
n

∥

∥

q
+

1

p
‖z‖p − 〈JX(xn) | z〉 + µn 〈w∗

n |Ajn
z〉 .

We estimate the last summand (whereby we use (2.20) in the last line):

〈w∗
n |Ajn

z〉 = 〈w∗
n | (Ajn

− A)z〉 +
〈

w∗
n

∣

∣

∣
Az − Πr

Qkn
(Ajn

xn)
〉

+
〈

w∗
n

∣

∣

∣Πr
Qkn

(Ajn
xn) − Ajn

xn

〉

+ 〈w∗
n |Ajn

xn〉

= 〈w∗
n | (Ajn

− A)z〉 +
〈

w∗
n

∣

∣

∣Az − Πr
Qkn

(Ajn
xn)
〉

−‖w∗
n‖RAjn ,Qkn ,Π(xn) + 〈w∗

n |Ajn
xn〉 .
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Since z lies in MAx∈Q∩Bm0
, we can write Az = q with some q ∈ Q. Moreover

by the coice of m we have

‖q‖ = ‖Az‖ ≤ ‖A‖m0 ≤ m.

Thus we find q̃ ∈ Qkn
with ‖q̃ − q‖ ≤ δm

kn
and get

〈w∗
n |Ajn

z〉
≤ ‖w∗

n‖ηjn
m0 +

〈

w∗
n

∣

∣

∣ q̃ − Πr
Qkn

(Ajn
xn)
〉

+ 〈w∗
n | q − q̃〉

−‖w∗
n‖RAjn ,Qkn ,Π(xn) + 〈w∗

n |Ajn
xn〉

≤ −‖w∗
n‖RAjn ,Qkn ,Π(xn) + 〈w∗

n |Ajn
xn〉 + ‖w∗

n‖(ηjn
m0 + δm

kn
)

≤ 〈w∗
n |Ajn

xn〉 − ‖w∗
n‖(1 − β)RAjn ,Qkn ,Π(xn) ,

since q̃ ∈ Qkn
and because of the variational inequality for the Bregman

projection (1.30). Inserting this above yields (µn ≥ 0)

∆p

(

Tµn

Ajn ,Qkn ,Π(xn), z
)

≤ 1

q

∥

∥JX(xn) − µnA∗
jn

w∗
n

∥

∥

q
+

1

p
‖z‖p − 〈JX(xn) | z〉

+µn

(

〈w∗
n |Ajn

xn〉 − ‖w∗
n‖(1 − β)RAjn ,Qkn ,Π(xn)

)

. (2.27)

We estimate the first summand by the characteristic inequality for the dual
X∗ (prop. 1.17) and get

∆p

(

Tµn

Ajn ,Qkn ,Π(xn), z
)

≤ 1

q
‖JX(xn)‖q − µn 〈w∗

n |Ajn
xn〉 +

1

q
σ̃q

(

JX(xn), µnA∗
jn

w∗
n

)

+
1

p
‖z‖p − 〈JX(xn) | z〉 + µn

(

〈w∗
n |Ajn

xn〉 − ‖w∗
n‖(1 − β)RAjn ,Qkn ,Π(xn)

)

= ∆p(xn, z) +
1

q
σ̃q

(

JX(xn), µnA∗
jn

w∗
n

)

− µn(1 − β)‖w∗
n‖RAjn ,Qkn ,Π(xn) .

We estimate the second summand via lemma 2.6 and by the definitions of µn

(2.23) and τn (2.24) we finally arrive at

∆p

(

Tµn

Ajn ,Qkn ,Π(xn), z
)

≤ ∆p(xn, z) + τn2qGq‖xn‖p ρX∗(τn)

τn

−(1 − β)
τn

‖Ajn
‖‖xn‖p−1RAjn ,Qkn ,Π(xn)

≤ ∆p(xn, z) + τn

γ(1 − β)

‖Ajn
‖ ‖xn‖p−1RAjn ,Qkn ,Π(xn)

−(1 − β)
τn

‖Ajn
‖‖xn‖p−1RAjn ,Qkn ,Π(xn)

= ∆p(xn, z) − (1 − γ)(1 − β)

‖Ajn
‖ τn‖xn‖p−1RAjn ,Qkn ,Π(xn) .
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For xn = 0 we have ∆p(xn, z) = 1
p
‖z‖p and thus

∆p

(

Tµn

Ajn ,Qkn ,Π(xn), z
)

=
1

q

∥

∥µnA∗
jn

w∗
n

∥

∥

q
+

1

p
‖z‖p + µn 〈w∗

n |Ajn
z〉

= ∆p(xn, z) +
1

q

∥

∥µnA∗
jn

w∗
n

∥

∥

q
+ µn 〈w∗

n |Ajn
z〉

≤ ∆p(xn, z) +
1

q
µq

n‖Ajn
‖q‖w∗

n‖q − µn(1 − β)‖w∗
n‖RAjn ,Qkn ,Π(xn) ,

whereby we estimated the last summand analogously to the case xn 6= 0. By
the definition of µn (2.23) and observing that

µq
n =

(1 − β)p

‖Ajn
‖p+q

RAjn ,Qkn ,Π(xn)p

‖w∗
n‖q

we get

∆p

(

Tµn

Ajn ,Qkn ,Π(xn), z
)

≤ ∆p(xn, z) − 1

p

(

1 − β

‖Ajn
‖RAjn ,Qkn ,Π(xn)

)p

.

⊓⊔

Now we treat Tµ
A,Q,P .

Lemma 2.9. We assume (A,Q). Let xn ∈ X for some n ∈ N be given. We
set

RA,Q,P (xn) := ‖Axn − PQ(Axn)‖ . (2.28)

If RA,Q,P (xn) = 0
(

⇔ xn ∈ MAx∈Q

)

then we set xn+1 := xn.

Otherwise we define

µn :=















τn

‖A‖
‖xn‖p−1

RA,Q,P (xn)r−1
, xn 6= 0

1

‖A‖p
RA,Q,P (xn)p−r , xn = 0

, (2.29)

whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ

2qGq‖A‖
RA,Q,P (xn)

‖xn‖

)

. (2.30)

In this case we set xn+1 := Tµn

A,Q,P (xn) and the following estimate is valid for
all z ∈ MAx∈Q:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)
‖A‖ τn‖xn‖p−1RA,Q,P (xn) , xn 6= 0

1
p

(

1
‖A‖RA,Q,P (xn)

)p

, xn = 0
. (2.31)
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Proof. This follows from the next lemma. ⊓⊔

Lemma 2.10. We assume (Aj , Qk) and that MAx∈Q ∩Bm0
is not empty for

some m0 ∈ N. Let xn ∈ X and jn−1, kn−1 ∈ N for some n ∈ N be given. We
choose m ≥ ‖A‖m0 and set

RAj ,Qk,P (xn) := ‖Ajxn − PQk
(Ajxn)‖ . (2.32)

If for all j > jn−1 and k > kn−1

RAj ,Qk,P (xn) ≤ 1

β
(ηjm0 + δm

k ) (2.33)

then xn lies in the set MAx∈Q. In this case we choose jn > jn−1, kn > kn−1

and set xn+1 := xn.
Otherwise we find jn > jn−1 and kn > kn−1 with

0 ≤ ηjn
m0 + δm

kn
< βRAjn ,Qkn ,P (xn) (2.34)

and for those indices we set

µn :=















τn

‖Ajn
‖

‖xn‖p−1

RAjn ,Qkn ,P (xn)r−1
, xn 6= 0

(1 − β)p−1

‖Ajn
‖p

RAjn ,Qkn ,P (xn)p−r , xn = 0

, (2.35)

whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ(1 − β)

2qGq‖Ajn
‖

RAjn ,Qkn ,P (xn)

‖xn‖

)

. (2.36)

In this case we set xn+1 := Tµn

Ajn ,Qkn ,P (xn) and the following estimate is valid
for all z ∈ MAx∈Q ∩ Bm0

:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)(1−β)
‖Ajn‖ τn‖xn‖p−1RAjn ,Qkn ,P (xn) , xn 6= 0

1
p

(

1−β
‖Ajn‖RAjn ,Qkn ,P (xn)

)p

, xn = 0
.

(2.37)

Proof. We can prove this as in the case of the Bregman projection by setting

w∗
n := JY

(

Ajn
xn − PQkn

(Ajn
xn)
)

(2.38)

with ‖w∗
n‖ = RAjn ,Qkn ,P (xn)r−1. ⊓⊔

We turn to linear equality constraints.
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Lemma 2.11. We assume (A, y). Let xn ∈ X for some n ∈ N be given. We
set

RA,y(xn) := ‖Axn − y‖ . (2.39)

If RA,y(xn) = 0
(

⇔ xn ∈ MAx=y

)

then we set xn+1 := xn.
Otherwise we define

µn :=















τn

‖A‖
‖xn‖p−1

RA,y(xn)r−1
, xn 6= 0

1

‖A‖p
RA,y(xn)p−r , xn = 0

, (2.40)

whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ

2qGq‖A‖
RA,y(xn)

‖xn‖

)

. (2.41)

In this case we set xn+1 := Tµn

A,y(xn) and the following estimate is valid for
all z ∈ MAx=y:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)
‖A‖ τn‖xn‖p−1RA,y(xn) , xn 6= 0

1
p

(

1−β
‖A‖RA,y(xn)

)p

, xn = 0
. (2.42)

Proof. This follows from the next lemma. ⊓⊔

Lemma 2.12. We assume (Aj , yk) and that MAx=y ∩ Bm0
is not empty for

some m0 ∈ N. Let xn ∈ X and jn−1, kn−1 ∈ N for some n ∈ N be given. We
set

RAj ,yk
(xn) := ‖Ajxn − yk‖ . (2.43)

If for all j > jn−1 and k > kn−1

RAj ,yk
(xn) ≤ 1

β
(ηjm0 + δk) (2.44)

then xn lies in the set MAx=y. In this case we choose jn > jn−1 and kn > kn−1

and set xn+1 := xn.
Otherwise we find jn > jn−1 and kn > kn−1 with

0 ≤ ηjn
m0 + δkn

< βRAjn ,ykn
(xn) (2.45)

and for those indices we set

µn :=















τn

‖Ajn
‖

‖xn‖p−1

RAjn ,ykn
(xn)r−1

, xn 6= 0

(1 − β)p−1

‖Ajn
‖p

RAjn ,ykn
(xn)p−r , xn = 0

, (2.46)
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whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ(1 − β)

2qGq‖Ajn
‖

RAjn ,ykn
(xn)

‖xn‖

)

. (2.47)

In this case we set xn+1 := Tµn

Ajn ,ykn
(xn) and the following estimate is valid

for all z ∈ MAx=y ∩ Bm0
:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)(1−β)
‖Ajn‖ τn‖xn‖p−1RAjn ,ykn

(xn) , xn 6= 0

1
p

(

1−β
‖Ajn‖RAjn ,ykn

(xn)
)p

, xn = 0
.

(2.48)

Proof. The proof is quite similar to the proofs of 2.10 and 2.14 by setting

w∗
n := JY (Ajn

xn − ykn
) (2.49)

with ‖w∗
n‖ = RAjn ,ykn

(xn)r−1 and keeping in mind that Az = y for all
z ∈ MAx=y ∩ Bm0

. ⊓⊔

Finally we consider linear inequality constraints.

Lemma 2.13. We assume (A, y,+). Let xn ∈ X for some n ∈ N be given.
We set

RA,y,+(xn) := ‖(Axn − y)+‖ . (2.50)

If RA,y(xn) = 0
(

⇔ xn ∈ MAx≤y

)

then we set xn+1 := xn.
Otherwise we define

µn :=















τn

‖A‖
‖xn‖p−1

RA,y,+(xn)
, xn 6= 0

1

‖A‖p
RA,y,+(xn)p−2 , xn = 0

, (2.51)

whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ

2qGq‖A‖
RA,y,+(xn)

‖xn‖

)

. (2.52)

In this case we set xn+1 := Tµn

A,y,+(xn) and the following estimate is valid for
all z ∈ MAx≤y:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)
‖A‖ τn‖xn‖p−1RA,y,+(xn) , xn 6= 0

1
p

(

1−β
‖A‖RA,y,+(xn)

)p

, xn = 0
. (2.53)

Proof. This follows from the next lemma. ⊓⊔
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Lemma 2.14. We assume (Aj , yk,+) and that MAx≤y ∩ Bm0
is not empty

for some m0 ∈ N. Let xn ∈ X and jn−1, kn−1 ∈ N for some n ∈ N be given.
We set

RAj ,yk,+(xn) := ‖(Ajxn − yk)+‖ . (2.54)

If for all j > jn−1 and k > kn−1

RAj ,yk,+(xn) ≤ 1

β
(ηjm0 + δk) (2.55)

then xn lies in the set MAx≤y. In this case we choose jn > jn−1 and kn > kn−1

and set xn+1 := xn.
Otherwise we find jn > jn−1 and kn > kn−1 with

0 ≤ ηjn
m0 + δkn

< βRAjn ,ykn ,+(xn) (2.56)

and for those indices we set

µn :=















τn

‖Ajn
‖

‖xn‖p−1

RAjn ,ykn ,+(xn)
, xn 6= 0

(1 − β)p−1

‖Ajn
‖p

RAjn ,ykn ,+(xn)p−2 , xn = 0

, (2.57)

whereby τn ∈ (0, 1] is chosen such that

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ(1 − β)

2qGq‖Ajn
‖

RAjn ,ykn ,+(xn)

‖xn‖

)

. (2.58)

In this case we set xn+1 := Tµn

Ajn ,ykn ,+(xn) and the following estimate is valid
for all z ∈ MAx≤y ∩ Bm0

:

∆p

(

xn+1, z
)

≤ ∆p(xn, z) −







(1−γ)(1−β)
‖Ajn‖ τn‖xn‖p−1RAjn ,ykn ,+(xn) , xn 6= 0

1
p

(

1−β
‖Ajn‖RAjn ,ykn ,+(xn)

)p

, xn = 0
.

(2.59)

Proof. Suppose (2.55) is valid, i.e.

RAj ,yk,+(xn) ≤ 1

β
(ηjm0 + δk) for all j > jn−1 , k > kn−1 .

The right hand side converges to zero for j, k → ∞ and so does RAj ,yk,+(xn).
Since the mapping x 7→ (x)+ is continuous in a Banach lattice, RAj ,yk,+(xn)
also converges to ‖(Axn − y)+‖. Hence Axn ≤ y.
In the case of (2.56) we choose µn according to (2.57) with τn ∈ (0, 1] according
to (2.58). We at first consider xn 6= 0. We set

w∗
n := J+

(

(Ajn
xn − ykn

)+
)

≥ 0 . (2.60)
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Then we have ‖w∗
n‖ = RAjn ,ykn ,+(xn) and get for all z ∈ MAx≤y ∩ Bm0

∆p

(

Tµn

Ajn ,ykn ,+(xn), z
)

=
1

q

∥

∥JX(xn) − µnA∗
jn

w∗
n

∥

∥

q
+

1

p
‖z‖p − 〈JX(xn) | z〉 + µn 〈w∗

n |Ajn
z〉 .

Since w∗
n is positive and Az − y ≤ 0 we can estimate the last summand by

〈w∗
n |Ajn

z〉
= 〈w∗

n | (Ajn
− A)z〉 + 〈w∗

n |Az − y〉 + 〈w∗
n | y − ykn

〉
+ 〈w∗

n | ykn
− Ajn

xn〉 + 〈w∗
n |Ajn

xn〉
≤ ‖w∗

n‖(ηjn
m0 + δkn

) + 〈w∗
n | ykn

− Ajn
xn〉 + 〈w∗

n |Ajn
xn〉

≤ βRAjn ,ykn ,+(xn)2 + 〈w∗
n | ykn

− Ajn
xn〉 + 〈w∗

n |Ajn
xn〉 .

Moreover we can write

〈w∗
n | ykn

− Ajn
xn〉 = −〈w∗

n | (Ajn
xn − ykn

)+〉 = −RAj ,yk,+(xn)2

because (Ajn
xn − ykn

)− ∈ disj
(

(Ajn
xn − ykn

)+
)

. Since µn ≥ 0 we get

∆p

(

Tµn

Ajn ,ykn ,+(xn), z
)

≤ 1

q

∥

∥JX(xn) − µnA∗
jn

w∗
n

∥

∥

q
+

1

p
‖z‖p − 〈JX(xn) | z〉

+µn

(

〈w∗
n |Ajn

xn〉 − (1 − β)RAjn ,ykn ,+(xn)2
)

. (2.61)

As in the proof of lemma 2.8 we estimate the first summand via the charac-
teristic inequality for the dual X∗ and lemma 2.6 and get

∆p

(

Tµn

Ajn ,ykn ,+(xn), z
)

≤ ∆p(xn, z) − µn(1 − β)RAjn ,ykn ,+(xn)2 + 2qGq‖xn‖pρX∗(τn) .

By the definitions of µn (2.57) and τn (2.58) we arrive at

∆p

(

Tµn

Ajn ,ykn ,+(xn), z
)

≤ ∆p(xn, z) − (1 − β)
τn

‖Ajn
‖‖xn‖p−1RAjn ,ykn ,+(xn) + τn2qGq‖xn‖p ρX∗(τn)

τn

≤ ∆p(xn, z) − (1 − γ)(1 − β)

‖Ajn
‖ τn‖xn‖p−1RAjn ,ykn ,+(xn) .

The case xn = 0 can be treated as in the proof of 2.8. ⊓⊔
We exemplify the parameter choice in Lp-spaces. At first we consider p ≤ 2

(dual space Lq with q ≥ 2) with the normalized duality mapping1. We enter

1 We remind that this “p” in “Lp” has nothing to do with the “p” we have used the
whole time. The latter corresponds to the weight of the duality mapping; since in
this example we use the normalized duality mapping, this weight is “p = q = 2”.
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the above proofs where we used the characteristic inequality, e.g. (2.27) and
(2.61). With the respective Tn, w∗

n and Rn we have

∆2

(

Tµn
n (xn), z

)

≤ 1

2

∥

∥JX(xn) − µnA∗
jn

w∗
n

∥

∥

2
+

1

2
‖z‖2 − 〈JX(xn) | z〉

+µn (〈w∗
n |Ajn

xn〉 − ‖w∗
n‖(1 − β)Rn) .

By 1.18 (a) we get

∆2

(

Tµn
n (xn), z

)

≤ 1

2
‖xn‖2 − µn 〈w∗

n |Ajn
xn〉 +

q − 1

2
‖A∗

jn
w∗

n‖2 µ2
n

+µn

(

〈w∗
n |Ajn

xn〉 − (1 − β)‖w∗
n‖Rn

)

+
1

2
‖z‖2 − 〈JX(xn) | z〉

= ∆2(xn, z) − (1 − β)‖w∗
n‖Rn µn +

q − 1

2
‖A∗

jn
w∗

n‖2 µ2
n .

The right hand side is a quadratic function in µn and is minimal for

µn :=
1 − β

q − 1

‖w∗
n‖Rn

‖A∗
jn

w∗
n‖2

, (2.62)

which yields

∆2

(

Tµn
n (xn), z

)

≤ ∆2(xn, z) − (1 − β)2

2(q − 1)

‖w∗
n‖2R2

n

‖A∗
jn

w∗
n‖2

. (2.63)

Since ‖A∗
jn

w∗
n‖ ≤ ‖Ajn

‖ ‖w∗
n‖ we can further estimate

∆2

(

Tµn
n (xn), z

)

≤ ∆2(xn, z) − (1 − β)2

2(q − 1)‖Ajn
‖2

R2
n

to see more easily that this ensures convergence (but of course (2.63) is better).
Except for Tµ

A,Q,Π we have ‖w∗
n‖ = Rr−1

n and thus we can also write

µn =
1 − β

q − 1

Rr
n

‖A∗
jn

w∗
n‖2

. (2.64)

With the above estimate for ‖A∗
jn

w∗
n‖ we could also take

µn =
1 − β

(q − 1)‖Ajn
‖2Rr−2

n

. (2.65)

In Hilbert spaces with normalized duality mappings (for Y as well, i.e. r = 2)
and Tµ

A,y in case of exact data (A, y) (β = 0) we would get w∗
n = Axn − y and

Rn = ‖Axn − y‖ and thus (2.64) and (2.65) would result in

µn =
R2

n

‖A∗(Axn − y)‖2
resp. µn =

1

‖A‖2
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( steepest descent method resp. ordinary Landweber method for solving
operator equations).
For p ≥ 2 (dual space Lq with q ≤ 2) with the same weight p we get by
inequality 1.18 (b)

∆p

(

Tµn
n (xn), z

)

≤ ∆p(xn, z) − (1 − β)‖w∗
n‖Rn µn +

22−q

q
‖A∗

jn
w∗

n‖q µq
n .

The right hand side is minimal for

µq−1
n =

1 − β

22−q

‖w∗
n‖Rn

‖A∗
jn

w∗
n‖q

⇔ µn :=
(1 − β)p−1

2p−2

‖w∗
n‖p−1Rp−1

n

‖A∗
jn

w∗
n‖p

, (2.66)

which yields

∆p

(

Tµn
n (xn), z

)

≤ ∆p(xn, z) − (1 − β)p

p2p−2

‖w∗
n‖pRp

n

‖A∗
jn

w∗
n‖p

. (2.67)

The next lemma shows that “Rn → 0” implies “limn→∞ xn ∈ M” for the
respective set M . We prove this here for the constraints in the range of a
linear operator. The case of constraints C in X will be treated while proving
the convergence of the iteration methods.

Lemma 2.15. Let
(

Rn(xn)
)

n
be a sequence with xn ∈ X and Rn(xn)

having one of the forms RA,Q,Π(xn), RA,Q,P (xn), RA,y(xn), RA,y,+(xn),
RAjn ,Qkn ,Π(xn), RAjn ,Qkn ,P (xn), RAjn ,ykn

(xn) or RAjn ,ykn ,+(xn) (but all of
the same form) as in the previous lemmas. If the sequence (xn)n is bounded
and converges weakly to some x ∈ X and

(

Rn(xn)
)

n
converges to zero then x

lies in the corresponding set MAx∈Q, MAx=y or MAx≤y.

Proof. The assertion for Rn(xn) = RAjn ,Qkn ,Π(xn) follows analogously to
the beginning of the proof of 2.8, when we show that (Ajn

xn)n converges to
Ax. Since A is supposed to be compact, limn→∞ ‖A − Ajn

‖ = 0 and (xn)n

converges weakly to x and is bounded, say ‖xn‖ ≤ c, we get

‖Ax − Ajn
xn‖ ≤ ‖(A − Ajn

)xn‖ + ‖A(xn − x)‖
≤ ‖A − Ajn

‖c + ‖A(xn − x)‖ −→ 0 for n → ∞ .

Hence (Ajn
)n converges to Ax. Therefore also the cases Rn(xn) = RA,Q,Π(xn),

Rn(xn) = RA,Q,P (xn) and Rn(xn) = RAjn ,Qkn ,P (xn) follow similarly. In case
Rn(xn) = RAjn ,ykn

(xn) = ‖Ajn
xn − ykn

‖ we take some z ∈ MAx=y and get

‖Ax − y‖p = 〈JX(Ax − y) |Ax − y〉
= 〈A∗JX(Ax − y) |x − z〉
= lim

n→∞
〈A∗JX(Ax − y) |xn − z〉

= lim
n→∞

〈JX(Ax − y) |Axn − y〉 = 0 ,
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because

‖Axn − y‖ ≤ |(A − Ajn
)xn‖ + ‖Ajn

xn − ykn
‖ + ‖ykn

− y‖
≤ ‖A − Ajn

‖c + RAjn ,ykn
(xn) + ‖ykn

− y‖ −→ 0 for n → ∞ .

The case Rn(xn) = RA,y(xn) is an immediate consequence. In case Rn(xn) =
RAjn ,ykn ,+(xn) = ‖(Ajn

xn − ykn
)+‖ by 1.23 it suffices to show that

〈z∗ |Ax − y〉 ≤ 0 for all positive z∗ ∈ Y ∗ .

At first we observe that

〈z∗ |Ajn
xn − ykn

〉 = 〈z∗ | (Ajn
xn − ykn

)+〉 − 〈z∗ | (Ajn
xn − ykn

)−〉
≤ 〈z∗ | (Ajn

xn − ykn
)+〉

≤ ‖z∗‖RAjn ,ykn ,+(xn) .

Therefore we get

〈z∗ |Ax − y〉 = 〈z∗ | ykn
− y〉 + 〈z∗ |Ajn

xn − ykn
〉

+ 〈z∗ | (A − Ajn
)xn〉 + 〈A∗z∗ |x − xn〉

≤ 〈z∗ | ykn
− y〉 + ‖z∗‖RAjn ,ykn ,+(xn)

+‖z∗‖ ‖A − Ajn
‖c + 〈A∗z∗ |x − xn〉 ,

whereby the right hand side converges to zero for n → ∞. The case Rn(xn) =
RA,y,+(xn) is an immediate consequence. ⊓⊔

2.3 Split Feasibility Problem

The convex feasibility problem (CFP) consists of finding a common point in
the intersection of finitely many closed convex sets. Such sets typically arise
as constraints in a convex optimization problem. A classical procedure for
its solution in Hilbert spaces is the method of cyclic orthogonal projections
[30], where a convergent sequence is generated by projecting cyclically onto
the individual sets. Alber and Butnariu [1] used Bregman projections to
solve the CFP in Banach spaces. In applications such projection algorithms
are efficient if the projections onto the individual sets are relatively simple
to calculate. If the sets arise by imposing constraints in the range of a linear
operator, like equality constraints MAx=y, inequality constraints MAx≤y or
sets of the form MAx∈Q, then it is in general too difficult or too costly to
project onto these sets in each iterative step. This special case of the CFP,
where some of the convex sets are related to constraints in the range of a
linear operator, was also called the split feasibility problem (SFP) by Censor

and Elfving [20]. We are concerned with its solution in Banach spaces via a
generalization of the CQ algorithm suggested by Byrne [17], which has the
iterative form



66 2 SFP and Projections onto Affine Subspaces

xn+1 = PC

(

xn − µA∗
(

Axn − PQ(Axn)
)

)

.

Let us formulate the SFP.

Problem 2.16 (SFP). Let finitely many closed convex sets Cι ∈ C(X) be
given

(

ι ∈ I := {0, . . . , N − 1}
)

and assume that

C :=
⋂

ι∈I

Cι 6= ∅ .

Find some x ∈ C.

Of course it looks like the CFP. But in the solution methods the sets Cι

will be treated differently depending on their structure. If the Bregman pro-
jection onto Cι is relatively simple to calculate or if we even have a closed
form expression like in 1.30, then we use operator TC = Πp

C . If Cι is of the
form MAx∈Q, MAx=y or MAx≤y then we use the other respective operators
T (thereby several operators A ∈ L(X,Y ) and spaces Y are allowed). More
precisely to each set Cι we associate an operator Tι due to the structure of Cι,
i.e. Tι has the form Tµ

A,Q,Π , Tµ
A,Q,P , Tµ

A,y, Tµ
A,y,+ or TC , depending on whether

Cι is of the form MAx∈Q, MAx=y, MAx≤y or just of general form, whereby we
assume (A,Q), (A, y), (A, y,+) or (C) respectively.

Let ι : N −→ I be the cyclic control mapping

ι(n) := n mod N .

Method 2.17. We set x0 := 0 and iteratively define

xn+1 := Tι(n)(xn) , n ∈ N

according to lemma 2.4, 2.7, 2.9, 2.11 or 2.13 respectively.

For instance suppose that we are given two sets C0 = C and C1 = MAx∈Q.
We use T0 = TC = Πp

C and T1 = Tµ
A,Q,P and since ι(2n) = 0 and ι(2n+1) = 1

we would get
x(2n)+1 = Πp

C(x2n)

and
x(2n+1)+1 = J∗

X

(

JX(x2n) − µ2nA∗JY

(

Ax2n − PQ(Ax2n)
)

)

,

whereby the parameter µ2n has to be chosen according to lemma 2.9. This
can also be written more conveniently in a closed form

xn+1 = Πp
C

(

J∗
X

(

JX(xn) − µnA∗JY

(

Axn − PQ(Axn)
)

)

)

,

which in case of Hilbert spaces reduces to the CQ algorithm.
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Proposition 2.18. The sequence (xn)n generated by method 2.17 has the fol-
lowing properties.

(a) It is bounded and therefore has weak cluster points. Moreover for all z ∈ C

the sequence
(

∆p(xn, z)
)

n
is decreasing.

(b) Every (weak) cluster point x is a solution of problem 2.16 and fulfills

‖x‖ ≤ q ‖Πp
C
(0)‖ = q min

z∈C

‖z‖ .

(c) If it has a strongly convergent subsequence then the whole sequence con-
verges strongly. Especially this is the case if X is finite dimensional or
one of the sets Cι is boundedly compact2.

(d) If the duality mapping of X is weak-to-weak-continuous3 then the whole
sequence converges weakly.

Proof. According to (2.9), (2.19), (2.31), (2.42) or (2.53) respectively we have
for all z ∈ Cι(n)

∆p

(

xn+1, z
)

≤ ∆p(xn, z) − Sn (2.68)

with some Sn > 0 in case xn /∈ Cι(n) and Sn = 0 in case xn ∈ Cι(n) (which by
the fixed point relations 2.2 is equivalent to xn+1 = Tι(n)(xn) = xn). Therefore

(2.68) especially holds for all z ∈ C and n ∈ N, i.e. the sequence
(

∆p(xn, z)
)

n
is decreasing and thus convergent to some ∆z ≥ 0. Especially it is bounded
and 1.24 (d) then ensures that the sequence (xn)n is bounded, say ‖xn‖ ≤ d,
and consequently it has weak cluster points. If 0 ∈ C ⊂ Cι for all ι ∈ I then
x0 = 0 is our solution and we are done. In the interesting case 0 6∈ C we show
that there exist c > 0 and n0 ∈ N such that ‖xn‖ ≥ c for all n ≥ n0. We
w.l.o.g. assume x0 = 0 6∈ Cι(0) and thus S0 > 0. By (2.68) we get

∆z ≤ ∆p(x1, z) < ∆p(x0, z) = ∆p(0, z) .

So if (xn)n had a subsequence (xnk
)k converging to zero, this would lead to

the contradiction

∆p(0, z) = lim
k→∞

∆p(xnk
, z) = ∆z < ∆p(0, z) .

Now suppose that z0 ∈ X is a weak cluster point, say xnk
→ z0 weakly for

k → ∞. We show that z0 lies in C. Since ι is the cyclic control mapping we
may assume ι(nk + j) = j for j ∈ {0, . . . , N − 1} and all k ∈ N. Hence we
have Cι(nk+j) = Cj . By passing to subsequences if necessary we may further
assume that the sequence (xnk+j)k converges weakly to some zj ∈ X. We at
first show that z0 lies in C0 and z0 = z1. We take some z ∈ C and by (2.68)
we get

2 i.e. every bounded closed subset is compact
3 i.e.

(

JX(xn)
)

n
converges weakly to JX(x) if (xn)n converges weakly to x. The

duality mappings of the Lp-sequence spaces have this property, whereas this is
not true for the Lp-function spaces [22].
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Snk
≤ ∆p(xnk

, z) − ∆p

(

xnk+1, z
)

−→ ∆z − ∆z = 0 for k → ∞ . (2.69)

(If xnk+1 = xnk
infinitely often then the assertions follow trivially.) In case

C0 is of general form and therefore T0 of the form TC0
= Πp

C0
, all iterates

xnk+1 = Πp
C0

(xn) lie in C0 and Snk
= ∆p(xnk

, xnk+1) (see 2.4). Hence z1 ∈ C0

and by limk→∞ ∆p(xnk
, xnk+1) = limk→∞ Snk

= 0 and 1.24 (h) we conclude
that z0 = z1 ∈ C0. In case C0 is of one of the special forms, Snk

has the form

Snk
=

(1 − γ)

‖A‖ τnk
‖xnk

‖p−1R(xnk
)

for all k big enough such that ‖xnk
‖ ≥ c > 0 (see 2.7, 2.9, 2.11 and 2.13).

Suppose lim infk→∞ R(xnk
) 6= 0. Then especially R(xnk

) remains bounded
away from zero and by the definition of τnk

and 1.5 (c), so does τnk
. But

this implies that also Snk
remains bounded away from zero which contradicts

(2.69). So w.l.o.g.
(

R(xnk
)
)

k
converges to zero and by 2.15 we conclude that

z0 ∈ C0. Moreover by the definition of T0 (see 2.1) we have

JX(xnk+1) = JX(xnk
) − µnk

A∗w∗
nk

with w∗
nk

∈ Y ∗, which by the choice of µnk
(2.17), (2.29), (2.40) or (2.51)

yields

‖JX(xnk+1) − JX(xnk
)‖ ≤ µnk

‖A‖ ‖w∗
nk
‖ ≤ τnk

‖xnk
‖p−1 ≤ τnk

dp−1 .

Since
(

R(xnk
)
)

k
converges to zero, ‖xnk

‖ ≥ c for k big enough and X∗ is

uniformly smooth
(

1.6 (d)
)

, also τnk
converges to zero and therefore, so does

‖JX(xnk+1) − JX(xnk
)‖. By proposition 1.24 (b) we have

∆p(xnk
, xnk+1) ≤ 〈JX(xnk+1) − JX(xnk

) |xnk+1 − xnk
〉

≤ ‖JX(xnk+1) − JX(xnk
)‖ 2d −→ 0 for k → ∞

and since X is uniformly convex by 1.24 (h) we conclude that z0 = z1. Thus
we have shown in every case that z0 ∈ C0 and z0 = z1. In the same way we
can show z1 ∈ C1 and z1 = z2 and inductively we get z0 = zj ∈ Cj for all
j ∈ I. Hence z0 ∈ C. Moreover we have for all z ∈ C

∆p(xnk
, z) ≤ ∆p(0, z)

⇒ 1

q
‖xnk

‖p ≤ 〈JX(xnk
) | z〉 ≤ ‖xnk

‖p−1‖z‖

⇒ ‖xnk
‖ ≤ q‖z‖

and therefore ‖z0‖ ≤ lim infk→∞ ‖xnk
‖ ≤ q‖z‖. Hence ‖z0‖ ≤ q minz∈C ‖z‖.

We show that the whole sequence converges strongly if it has a strongly
convergent subsequence. Suppose xnk

→ z0 ∈ X strongly for k → ∞. By
what we have shown above, we know that z0 ∈ C and thus the sequence
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(

∆p(xn, z0)
)

n
converges (to ∆z0

). On the other hand by 1.24 (f) the sub-

sequence
(

∆p(xnk
, z0)

)

k
converges to zero and therefore the whole sequence

must converge to zero. Again by 1.24 (f) and since X is uniformly convex,
we conclude that the whole sequence (xn)n converges strongly to z0 ∈ C.
Finally suppose that JX is weak-to-weak-continuous. Let z1, z2 ∈ C be two
weak cluster points. We show that they coincide. We have

∆p(xn, z1) − ∆p(xn, z2) −
1

p
‖z1‖p +

1

p
‖z2‖p = 〈JX(xn) | z2 − z1〉 .

Since the left hand side converges to ∆ := ∆z1
− ∆z2

− 1
p
‖z1‖p + 1

p
‖z2‖p, so

does the right hand side. Let (xnk
)k converge weakly to z1 and (xml

)l converge
weakly to z2. Then

(

JX(xnk
)
)

k
converges weakly to JX(z1) and

(

JX(xml

)

l
converges weakly to JX(z2) and we get

〈JX(z2) − JX(z1) | z2 − z1〉
= 〈JX(z2) | z2 − z1〉 − 〈JX(z1) | z2 − z1〉
= lim

l→∞
〈JX(xml

) | z2 − z1〉 − lim
k→∞

〈JX(xnk
) | z2 − z1〉

= ∆ − ∆ = 0 .

By the strict convexity of X we conclude that z1 = z2. ⊓⊔

Now we examine stability and regularizing properties of method 2.17 and
how we may include approximate data. If X and all spaces Yι connected to
the sets Cι are uniformly smooth and uniformly convex then every iterate

xn = Tι(n−1)(xn−1) = . . . = Tι(n−1) . . . Tι(0)(x0)

depends continuously on all data C,A,Q, y because of the continuity proper-
ties of all mappings involved, i.e. the iterates behave stable with respect to
small perturbations. But also in the general case we can show that method
2.17 has some regularizing properties.
Suppose the sets Cι are only approximately given under the assumptions
(Ci), (Aj , Qk), (Aj , yk) and (Aj , yk,+), so that we actually know estimates
(ǫi, ηk, . . . ) for the deviations of the approximate data from the exact ones.
Moreover we assume that we know an estimate for the norm of some members
of C, i.e. we know an m0 ∈ N such that

C ∩ Bm0
6= ∅ . (2.70)

Again we associate to each set Cι the appropriate sequence of operators
(

TCi

)

i
,

(

Tµ
Aj ,Qk,Π

)

j,k
,
(

Tµ
Aj ,Qk,P

)

j,k
,
(

Tµ
Aj ,yk

)

j,k
or
(

Tµ
Aj ,yk,+

)

j,k
and consider the fol-

lowing method.



70 2 SFP and Projections onto Affine Subspaces

Method 2.19. We set x0 := 0, all starting indices i−1, j−1, k−1 := 0 and
iteratively define

xn+1 := Tι(n)(xn) , n ∈ N

and in, jn, kn according to lemma 2.5, 2.8, 2.10, 2.12 and 2.14, whereby the
respective indices “ in−1”, “ jn−1”, “ kn−1” are the ones defined in iteration
n − N , when the operator Tι(n−N) linked to the same set Cι(n) was applied.

We recall that according to the listed lemmas we set xn+1 := xn if relation
(2.11), (2.21), (2.33), (2.44) or (2.55) holds.

Proposition 2.20. For the sequence (xn)n generated by method 2.19 all as-
sertions of proposition 2.18 remain valid.

Proof. We can prove this in the same way as 2.18 when we take (2.70) and
the following into account: The sequences

(

‖Ajnk
‖
)

k
converge to ‖A‖ 6= 0 and

therefore the case “C0 is of special form” can be treated analoguosly. In case
“C0 is of general form”, and thus xnk+1 = Πp

Cink

(xnk
), we also have

lim
k→∞

∆p(xnk
, xnk+1) = lim

k→∞
Snk

= 0

and therefore z1 = z0. (Here we slightly abuse notation: The sets Cink
are

meant to be the ones converging to the (fixed) set C0 = Cι(nk) and should not
be confused with the other sets Cι.) Moreover since (xnk+1)k is bounded and
converges weakly to z1 with xnk+1 ∈ Cink

for all k ∈ N and
(

Cink

)

k
converges

boundedly to C0, by 1.34 (c) we conclude that z1 ∈ C0. Hence also in this
case we have z0 = z1 ∈ C0. ⊓⊔

In the proofs of 2.17 and 2.19 we have also seen that the whole sequence
of the remainders converges to zero, i.e.

lim
n→∞

R(xn) = 0

(Because every subsequence
(

R(xnk
)
)

k
has in turn a subsequence converging

to zero). Indeed even the stronger relation

∞
∑

n=0

Sn < ∞

holds, since by (2.68) we get for all k ∈ N

k
∑

n=0

Sn ≤
k
∑

n=0

(

∆p(xn, z) − ∆p

(

xn+1, z
)

)

= ∆p(x0, z) − ∆p

(

xk+1, z
)

≤ ∆p(x0, z) .
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Now we consider the case of noisy data, i.e. rather than approximations
Ci, Aj , Qk, yk we are given Cǫ, Aη, Qδ, yδ with known noise levels

dm0
(C,Cǫ) ≤ ǫ , ‖A − Aη‖ ≤ η , ‖y − yδ‖ ≤ δ ,

dm(Q,Qδ) ≤ δ with some m ≥ ‖A‖m0 .

We apply method 2.19 with ǫi = ǫ, ηk = η, . . . and use the discrepancy prin-
ciple [28, 35] as a stopping rule: We terminate the iteration when for the
first time all remainders R(xn) in a cycle of N successive iterations fulfill the
relations (2.11), (2.21), (2.33), (2.44) or (2.55) respectively. Because when-
ever such a relations is not fulfilled, (2.13), (2.25), (2.37), (2.48) and (2.59)
guarantee that

∆p

(

xn+1, z
)

< ∆p(xn, z) for all z ∈ C ∩ Bm0
,

which means in this sense xn+1 is a better approximation to the set of ex-
act solutions than is xn. Moreover we can interpret proposition 2.20 in the
following way.

Proposition 2.21. Together with the discrepancy principle method 2.19 is a
regularization method for problem 2.16 in the following sense: Let n(ǫ, η, . . .)
be the stopping index according to the discrepancy principle for the noise levels
ǫ, η, . . .. Then all assertions of 2.18 are valid for the sequence

(

xn(ǫ,η,...)

)

ǫ,η,...

if the noise levels ǫ, η, . . . tend to zero.

2.4 Projections onto Affine Subspaces

We want to use a special case of method 2.17 to compute Bregman and metric
projections onto affine subspaces which are given via a linear operator, i.e. onto

sets of the form x+N (A)
(∧
= MAx=y

)

or y+R(A). In [46] we already used this
method with starting point x0 = 0 to compute minimum norm solutions of
linear operator equations and proved its strong convergence. Here we improve
and complement our work by placing it in the context of projections. This
enables us to use the same method (with arbitrary starting points) for a
broader class of problems.

Method 2.22. We assume (A, y), choose an arbitrary starting point x0 ∈ X
and iteratively define

xn+1 := Tµn

A,y(xn) = J∗
X

(

JX(xn) − µnA∗JY (Axn − y)
)

according to lemma 2.11.
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Proposition 2.23. The sequence (xn)n generated by method 2.22 converges
strongly to the Bregman projection of x0 onto the set MAx=y. Except in the
following case: Suppose that y 6= 0 and x0 is such that ∆p(x0, z) > ∆p(0, z)
for all z ∈ MAx=y. Then it might happen that lim infn→∞ RA,y(xn) 6= 0. But
then we also have limn→∞ xn = 0 and the Bregman projections of 0 and x0

onto the set MAx=y must already coincide.

The exceptional case in fact poses no problem. When while running the
iteration it becomes obvious that lim infn→∞ RA,y(xn) 6= 0 and (then neces-
sarily also) limn→∞ xn = 0, then we know that Πp

MAx=y
(0) = Πp

MAx=y
(x0);

so we just have to restart with starting point x0 = 0 (in which case
∆p(x0, z) = ∆p(0, z) for all z ∈ MAx=y and the exception cannot occur).

Proof (of 2.23). We at first point out that by the definition of the iterates we
inductively get

JX(xn+1) − JX(x0) = JX(xn) − JX(x0) − µnA∗JY (Axn − y)

= . . .

= −
n
∑

k=0

µkA∗JY (Axk − y)

and thus

JX(xn) − JX(x0) ∈ R(A∗) = N (A)⊥ for all n ∈ N . (2.71)

Hence if RA,y(xn) = 0 ⇔ xn ∈ MAx=y for some n ∈ N then by 1.29 (a) we
already have xn = Πp

MAx=y
(x0) and we can stop the iteration. So we assume

RA,y(xn) > 0 for all n ∈ N. As in the proof of 2.18 and by (2.42) we get for
all z ∈ MAx=y the recursive inequality

∆p

(

xn+1, z
)

≤ ∆p(xn, z) − Sn (2.72)

with

0 < Sn =







(1−γ)
‖A‖ τn‖xn‖p−1RA,y(xn) , xn 6= 0

1
p

(

1−β
‖A‖RA,y(xn)

)p

, xn = 0
,

which implies that the limit ∆z = limn→∞ ∆p(xn, z) exists, that the sequence
(xn)n is bounded and has weak cluster points, that limn→∞ Sn = 0 and
∞
∑

n=0

Sn < ∞. Moreover it ensures that all iterates are different from each

other. Therefore we assume xn 6= 0 for all n ∈ N and thus

Sn =
(1 − γ)

‖A‖ τn‖xn‖p−1RA,y(xn) −→ 0 for n → ∞ . (2.73)

and
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∞
∑

n=0

τn‖xn‖p−1RA,y(xn) < ∞ . (2.74)

So what happens when lim infn→∞ RA,y(xn) 6= 0? Then especially RA,y(xn)
remains bounded away from zero and by the boundedness of the sequence
(xn)n, the definition of τn (2.41) and 1.5 (c), so does τn. But then (2.73)
forces (xn)n to converge to zero. Thus we have for all z ∈ MAx=y

∆p(0, z) = lim
n→∞

∆p(xn, z) ≤ ∆p(x1, z) < ∆p(x0, z) ,

and this can only happen if ∆p(x0, z) > ∆p(0, z) for all z ∈ MAx=y and

‖y‖ = lim
n→∞

‖Axn − y‖ = lim
n→∞

RA,y(xn) 6= 0 .

We show that in this exceptional case the Bregman projections of 0 and x0

onto the set MAx=y already coincide. Let z be an arbitrary element in MAx=y.
Then z − Πp

MAx=y
(0) ∈ N (A) = R(A∗)⊥ and by (2.71) we get for all n ∈ N

〈

JX

(

Πp
MAx=y

(0)
)

− JX(x0)
∣

∣

∣ z − Πp
MAx=y

(0)
〉

=
〈

JX

(

Πp
MAx=y

(0)
)

− JX(xn)
∣

∣

∣
z − Πp

MAx=y
(0)
〉

−→
〈

JX

(

Πp
MAx=y

(0)
)

− JX(0)
∣

∣

∣
z − Πp

MAx=y
(0)
〉

≥ 0 for n → ∞ .

Hence Πp
MAx=y

(0) = Πp
MAx=y

(x0) by (1.30).

Now let lim infn→∞ RA,y(xn) = 0. Then we can choose a subsequence
(

RA,y(xnk
)
)

k
with the property that

RA,y(xnk
) −→ 0 for k → ∞

and RA,y(xnk
) < RA,y(xn) for all n < nk .

(2.75)

The same property also holds for every subsequence of
(

RA,y(xnk
)
)

k
. We

show that (xn)n has a Cauchy subsequence. By the boundedness of (xn)n and
(

JX(xn)
)

n
we can find a subsequence (xnk

)k with

(S.1) the sequence of the norms
(

‖xnk
‖
)

k
is convergent,

(S.2) the sequence
(

JX(xnk
)
)

k
is weakly convergent and

(S.3) the sequence
(

RA,y(xnk
)
)

k
fulfills (2.75).

We show that (xnk
)k is a Cauchy sequence. With (1.27) we have for all l, k ∈ N

with k > l

∆p(xnl
, xnk

) =
1

q
(‖xnl

‖p − ‖xnk
‖p) + 〈JX(xnk

) − JX(xnl
) |xnk

〉 .

Because of (S.1) the first summand converges to zero for l → ∞. We fix some
z ∈ MAx=y and write the second summand as
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〈JX(xnk
) − JX(xnl

) |xnk
〉

= 〈JX(xnk
) − JX(xnl

) | z〉 + 〈JX(xnk
) − JX(xnl

) |xnk
− z〉 . (2.76)

Again the first summand converges to zero for l → ∞ by (S.2). We estimate
the second summand:

|〈JX(xnk
) − JX(xnl

) |xnk
− z〉| =

∣

∣

∣

∣

∣

nk−1
∑

n=nl

〈JX(xn+1) − JX(xn) |xnk
− z〉

∣

∣

∣

∣

∣

.

The recursive definition of method 2.22 and the definition of µn (2.40) yield

|〈JX(xnk
) − JX(xnl

) |xnk
− z〉| =

∣

∣

∣

∣

∣

nk−1
∑

n=nl

µn 〈JY (Axn − y) |Axnk
− y〉

∣

∣

∣

∣

∣

≤
nk−1
∑

n=nl

µn‖JY (Axn − y)‖ ‖Axnk
− y‖

=

nk−1
∑

n=nl

µnRA,y(xn)r−1RA,y(xnk
)

=
1

‖A‖

nk−1
∑

n=nl

τn‖xn‖p−1RA,y(xnk
) .

(S.3) ensures that

|〈JX(xnk
) − JX(xnl

) |xnk
− x〉| ≤ 1

‖A‖

nk−1
∑

n=nl

τn‖xn‖p−1RA,y(xn) .

By (2.74) the right side converges to zero for l → ∞ and therefore so does
∆p(xnl

, xnk
). By proposition 1.24 (g) we conclude that (xnk

)k is a Cauchy
sequence and thus convergent to an x ∈ X. Moreover we have x ∈ MAx=y

by 2.15, and as in the proof of 2.18 we see that the whole sequence (xn)n

converges strongly to x. It remains to prove that x = Πp
MAx=y

(x0). Since JX

is norm-to-weak continuous and R(A∗) weakly closed, (2.71) guarantees that
JX(x)−JX(x0) ∈ R(A∗) = N (A)⊥. By proposition 1.29 (a) we conclude that
indeed x = Πp

MAx=y
(x0). ⊓⊔

Of course we are also allowed to use approximate data.

Method 2.24. We assume (Aj , yk) and that MAx=y ∩Bm0
is not empty and

that the operators (Aj)j fulfill the condition R(A∗
j ) ⊂ R(A∗). We set j−1 := 0,

k−1 := 0, choose an arbitrary starting point x0 ∈ X and iteratively define

xn+1 := Tµn

Ajn ,ykn
(xn) = J∗

X

(

JX(xn) − µnA∗
jn

JY (Ajn
xn − ykn

)
)

and jn, kn according to lemma 2.12.
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The condition R(A∗
j ) ⊂ R(A∗) assures that the iterates JX(xn) remain in

R(A∗).

Proposition 2.25. For the sequence (xn)n generated by method 2.24 the as-
sertion of 2.23 remains valid.

Proof. We can prove this analogously to the case of exact data if we keep in
mind that

(

Ajn

)

n
converges to A 6= 0 and

(

ykn

)

n
converges to y and consider

the following modifications. According to lemma 2.12, if 2.44 is fulfilled for
some n ∈ N, then xn lies in MAx=y, from which we infer, as in the case of
exact data, that xn is our solution and we can stop iterating. Otherwise (2.45)
is valid, i.e.

0 ≤ ηjn
m0 + δkn

< βRAjn ,ykn
(xn) . (2.77)

So we may also assume RAjn ,ykn
(xn) > 0 for all n ∈ N. For z ∈ MAx=y ∩Bm0

(

⇔ Az = y and ‖z‖ ≤ m0

)

the second summand in (2.76) can be estimated
as follows.

|〈JX(xni
) − JX(xnl

) |xni
− z〉|

=

∣

∣

∣

∣

∣

ni−1
∑

n=nl

µn 〈JY (Ajn
xn − ykn

) |Ajn
xni

− Ajn
z〉
∣

∣

∣

∣

∣

≤
ni−1
∑

n=nl

µn

(

∣

∣

〈

JY (Ajn
xn − ykn

)
∣

∣Ajni
xni

− ykni

〉∣

∣

+
∣

∣

〈

JY (Ajn
xn − ykn

)
∣

∣ ykni
− y
〉∣

∣

+ |〈JY (Ajn
xn − ykn

) |Az − Ajn
z〉|

+
∣

∣

〈

JY (Ajn
xn − ykn

)
∣

∣

(

Ajn
− A

)

xni

〉∣

∣

+
∣

∣

〈

JY (Ajn
xn − ykn

)
∣

∣

(

Ajni
− A

)

xni

〉∣

∣

)

.

Since the sequences (ηn)n and (δn)n are supposed to be nonincreasing we get

|〈JX(xni
) − JX(xnl

) |xni
− z〉|

≤
ni−1
∑

n=nl

µnRAjn ,ykn
(xn)r−1

(

RAjni
,ykni

(xni
) + δkn

+ ηjn
m0 + 2ηjn

‖xni
‖
)

.

For m ∈ N with ‖xn‖ ≤ m for all n ∈ N relation (2.77) yields

2ηjn
‖xni

‖ ≤ 2β
m

m0
RAjn ,ykn

(xn) .

Therefore by the definition of µn (2.46) and property (S.3) of the sequence
(

RAjni
,ykni

(xni
)
)

i
we finally get

|〈JX(xni
) − JX(xnl

) |xni
− x〉| ≤

1 + β + 2β m
m0

‖Ajn
‖

ni−1
∑

n=nl

τn‖xn‖p−1RAjn ,ykn
(xn)
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and the assertion follows as in the proof of 2.23
(

we remind that the condition

R(A∗
j ) ⊂ R(A∗) assures that the iterates JX(xn) remain in R(A∗)

)

. ⊓⊔

In the case of noisy data Aη, yδ we again use the discrepancy principle, i.e.
we terminate the iteration when for the first time

RAη,yδ
(xn) ≤ 1

β
(ηm0 + δ) ,

and call the respective stopping index n(η, δ).

Proposition 2.26. Together with the discrepancy principle method 2.24 is a
regularization method for finding the Bregman projection of an arbitrary point
x0 ∈ X onto the set MAx=y, i.e.

lim
(η,δ)→0

‖xn(η,δ) − Πp
MAx=y

(x0)‖ = 0 .

The same method enables us to compute metric projections onto the affine
subspace MAx=y. To this end we recall that by (1.26) (b) we have

PMAx=y
(x̃0) = x̃0 + Πp

MAx=y−x̃0
(0) = x̃0 + Πp

MAx=ỹ
(0) (2.78)

with ỹ = y − Ax̃0 for some x̃0 ∈ X. So we only have to start method 2.22
with x0 = 0 and ỹ = y − Ax̃0 instead of y (or method 2.24 with x0 = 0 and
ỹk = yk−Aj x̃0 instead of yk). And since the sequence (xn)n converges strongly
to Πp

MAx=ỹ
(0), the sequence (x̃0 + xn)n converges strongly to PMAx=y

(x̃0).

Often the element x̃0 is also called initial discrepancy, and PMAx=y
(x̃0) is

referred to as the x̃0-minimum norm solution of the operator equation Ax = y,
i.e. the (unique) element x ∈ X with

Ax = y and ‖x − x̃0‖ = min{‖z‖ |Az = y} .

In this context we can formulate the following corollary.

Corollary 2.27. Together with the discrepancy principle method 2.24 with
starting point x0 = 0 and ỹδ̃ = yδ − Aηx̃0 (with δ̃ ≤ δ + η‖x̃0‖ ) is a regu-
larization method for finding the x̃0-minimum norm solution of the operator
equation Ax = y.

To tackle the problem of projecting onto an affine subspace of the form
y + R(A) ⊂ Y we revisit proposition 1.29 and see that

Π
y+R(A)

(y0) = J∗
(

Π∗
J(y0)+N (A∗)

(

J(y)
)

)

= J∗
(

Π∗
MA∗y∗=x∗

(

J(y)
)

)

(2.79)

with x∗ = A∗J(y0), whereby J is the duality mapping and Π the Bregman
projection in Y and J∗ is the duality mapping and Π∗ the Bregman pro-
jection in Y ∗. Thus we can solve this problem by method 2.22 (or 2.24),
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too, when instead of A ∈ L(X,Y ) we use the operator A∗ ∈ L(Y ∗,X∗)
and iterate in Y ∗. Nevertheless we must look more closely at the assump-
tions assuring convergence. Assumption (A, y)

(

resp. (Aj , yk)
)

translates into

(A∗, x∗)
(

resp. (A∗
j , x

∗
k)
)

, i.e. now we have to require the space Y ∗ to be
smooth and uniformly convex and X is allowed to be an arbitrary Banach
space. Then by 2.23 (resp. 2.25) the sequence (y∗

n)n generated in Y ∗ con-
verges strongly to Π∗

MA∗y∗=x∗

(

J(y)
)

. Since by 1.14 (f) J∗ is norm-to-weak-

continuous, this at least implies that the sequence
(

J∗(y∗
n)
)

n
converges weakly

to J∗
(

Π∗
MA∗y∗=x∗

(

J(y)
)

)

= Π
y+R(A)

(y0). Hence for strong convergence we

should additionally require that Y ∗ is uniformly smooth
(

prop. 1.14 (d)
)

.

The same considerations hold for the metric projection which we can com-
pute as before via

P
y+R(A)

(ỹ0) = ỹ0 + Π
(y−ỹ0)+R(A)

(0) = ỹ0 + J∗
(

Π∗
MA∗y∗=0

(

J(y − ỹ0)
)

)

and especially

PR(A)
(ỹ0) = ỹ0 − J∗

(

Π∗
MA∗y∗=0

(

J(ỹ0)
)

)

. (2.80)

Now that we know that method 2.22 enables us to compute Bregman
(metric) projections onto y + R(A) by producing sequences

(

yn = J∗(y∗
n)
)

n
in Y which converge to ỹ := Π

y+R(A)
(y0), the question arises whether we can

also produce sequences (xn)n in X such that (y + Axn)n converges to ỹ or
that even the sequence (xn)n itself converges to some x̃ ∈ X with ỹ = y +Ax̃.
We can partially answer this question by considering the following iteration
in X:

xn+1 := xn − µnJ∗
X

(

A∗JY (y + Axn) − A∗JY (y0)
)

, x0 := 0 . (2.81)

We apply A and add y on both sides and get

y + Axn+1 = y + Axn − µnAJ∗
X

(

A∗JY (y + Axn) − A∗JY (y0)
)

.

By setting y∗
n := JY (y + Axn) ⇔ J∗

Y (y∗
n) = y + Axn and x∗ := A∗JY (y0) we

can write this as

y∗
n+1 = JY

(

J∗
Y (y∗

n) − µnAJ∗
X(A∗y∗

n − x∗)
)

, y∗
0 = JY (y) .

This is just method 2.22 and thus the sequence
(

y+Axn = J∗
Y (y∗

n)
)

converges
weakly to ỹ (strongly for uniformly smooth Y ∗). We even get a stronger
result when A is injective and X is finite dimensional (but still allowed to
be endowed with an arbitrary norm). In that case we have R(A) = R(A)
and there exists a unique x̃ ∈ X with ỹ = y + Ax̃. Therefore the sequence
(

A(xn − x̃) = y + Axn − ỹ
)

n
converges in R(A) to zero, from which we infer

that (xn)n converges to x̃.
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2.5 Line Searches

In [46] we claimed that we are thinking about ways to easily and efficiently
implement the methods. In this and the next section we offer some possibil-
ities. We examine more closely what is needed to derive efficient algorithms.
Each iteration xn+1 = Tn(xn) only consists of applying an operator Tn which
has a rather simple structure. Of course we must know the duality mappings
of the spaces we work in (e.g. 1.11) since they appear in the very definition of
the operators Tµ

A,Q,Π , Tµ
A,Q,P , Tµ

A,y and Tµ
A,y,+. Moreover we should be able

to efficiently compute the projections involved (e.g. 1.30). The main work left
is then the application of the linear operators A and A∗ ( matrix-vector-
products). Only the choice of the parameters µn (resp. τn) seems to be a little
difficult in general. But as we have already mentioned before we can overcome
this problem by a line search method. When we look again at what is nec-
essary to prove the (weak) convergence of the methods, we see that we may
take as µn any t ∈ R such that for

xn+1 = xn+1(t) = J∗
X

(

JX(xn) − tA∗
jn

w∗
n

)

(with the appropriate w∗
n ∈ Y ∗) and all z ∈ M

(

∩Bm0

)

a relation of the form

∆p

(

xn+1(t), z
)

≤ ∆p(xn, z) − (1 − γ)(1 − β)

‖Ajn
‖ τn‖xn‖p−1Rn(xn) (2.82)

holds (which is fulfilled for t = µn). We arrived at this relation in 2.7-2.12 by
at first estimating ∆p

(

xn+1(t), z
)

from above by

∆p

(

xn+1(t), z
)

≤ 1

q

∥

∥JX(xn) − tA∗
jn

w∗
n

∥

∥

q
+ t
(

〈w∗
n |Ajn

xn〉 − (1 − β)‖w∗
n‖Rn(xn)

)

+
1

p
‖z‖p − 〈JX(xn) | z〉 ,

whereby t ≥ 0 was necessary to obtain the estimate

t 〈w∗
n |Ajn

z〉 ≤ t
(

〈w∗
n |Ajn

xn〉 − (1 − β)‖w∗
n‖Rn(xn)

)

. (2.83)

We continued by estimating from above the terms in which the parameter t
occurs, i.e. the function

hn(t) :=
1

q
‖JX(xn) − tu∗

n‖q
+ t αn (2.84)

with

u∗
n := A∗

jn
w∗

n and αn := 〈w∗
n |Ajn

xn〉 − (1 − β)‖w∗
n‖Rn(xn) . (2.85)
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We did this via the characteristic inequality for the dual X∗ and showed that
the choice t = µn leads to the desired relation (2.82). Instead we may as well
take any t ≥ 0 such that

hn(t) ≤ hn(µn)

and we can find such a t by solving the one-dimensional optimization problem

min
t≥0

hn(t) . (2.86)

The important thing about hn is, that it is independent of the (unknown) ele-
ments z ∈ M

(

∩Bm0

)

. We can interpret (2.86) in a familiar way by proposition
1.30 (b): Solving (2.86) is equivalent to computing the Bregman projection of
xn onto the halfspace H≤(u∗

n, αn) if xn does not yet lie in H≤(u∗
n, αn). This

is the case if xn /∈ M
(

∩Bm0

)

, because in the lemmas 2.7-2.14 we have shown
that then we have ‖w∗

n‖Rn(xn) 6= 0 and thus

〈u∗
n |xn〉 = 〈w∗

n |Ajn
xn〉 > αn .

Moreover every z ∈ M
(

∩ Bm0

)

lies in H≤(u∗
n, αn) by (2.83), i.e.

C ⊂
⋂

n∈N

H≤(u∗
n, αn) .

If xn ∈ M
(

∩Bm0

)

then xn is already the desired point and we set xn+1 := xn.
Therefore we may as well solve

min
t∈R

hn(t) , (2.87)

i.e.
xn+1 = Πp

H(u∗
n,αn)(xn) ,

because we know that the solution t will be positive. With regard to 2.3 we
may view the methods as subgradient methods and thus (2.87) as a line search
along a subgradient of an appropriate functional as search direction u∗

n. All
in all this enables us to easily implement the methods by solving in each
iterative step a one-dimensional minimization problem with a well behaving
function hn

(

convex, continuously differentiable
(

see 1.30 (b)
)

, with low costs

for function and gradient evaluations (JX(xn), u∗
n and αn are fixed)

)

. Of
course in practice we are in general not able to perform exact line searches.
But by (2.82) the condition

hn(t) ≤ hn(0) − (1 − γ)(1 − β)

‖Ajn
‖ τn‖xn‖p−1Rn(xn)

with some τn ∈ (τ, 1), τ > 0, ensures convergence also for inexact line searches.
However we should mention that in the infinite-dimensional case we could not
prove the strong convergence of method 2.22 and 2.24 with line searches, since
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for the part in which we showed that the sequence (xn)n has a Cauchy sub-
sequence we somehow needed t = µn; nevertheless it remains true that every
subsequence has in turn a subsequence converging weakly to the same point
Πp

MAx=y
(x0) and thus the whole sequence converges weakly.

What do we gain when we know more about the space we are iterating in?
When we want to perform a line search, it is advantageous to have a better
starting point than the canonical t0 = 0 for minimizing hn. A good starting
point would be t0 = µn since it already guarantees convergence. So whenever
we can easily compute µn, e.g. as we have done for Lp-spaces in (2.62) and
(2.66), we should use it. In this case we can even use method 2.22 to perform
the line search. This procedure is contained in the following two propositions.

Proposition 2.28. Let H(u∗, α) be a hyperplane in an Lp-space X (p ≤ 2)
with the normalized duality mapping and x0 ∈ X be given. Then the sequence
(xn)n iteratively defined by

xn+1 := J∗
(

J(xn) − snu∗
)

(2.88)

with

sn :=
〈u∗ |xn〉 − α

(q − 1)‖u∗‖2
(2.89)

converges strongly to the Bregman projection of x0 onto H(u∗, α). If we set

h(t) :=
1

2
‖J(x0) − tu∗‖2

+ t α , t ∈ R

and

tn :=
n
∑

k=0

sn , (2.90)

then we have
xn+1 = J∗

(

J(x0) − tnu∗
)

, (2.91)

the sequence (tn)n converges to the unique solution t̃ of

min
t∈R

h(t)

and the sequence
(

h(tn)
)

n
converges decreasingly to h(t̃) with

h(tn) ≤ h(tn−1) −
| 〈u∗ |xn〉 − α|2
2(q − 1)‖u∗‖2

≤ h(0) − 1

2(q − 1)‖u∗‖2

n
∑

k=0

| 〈u∗ |xk〉 − α|2 . (2.92)
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Proof. If we set Ax := 〈u∗
n |x〉 for x ∈ X, Y := (R, |.|) and y := αn then we

have A ∈ L(X,Y ) and

Πp

H(u∗
n,αn)(xn) = Πp

MAx=y
(xn) .

Therefore we can apply method 2.22 and get the iteration

xn+1 = J∗
(

J(xn) − µnA∗JY (Axn − y)
)

= J∗
(

J(xn) − µnu∗(〈u∗ |xn〉 − α)
)

,

whereby we can use the µn of (2.64) under assumption (A, y) with r = 2:

µn =
1

q − 1

R2
n

‖A∗JY (Axn − y)‖2
=

1

q − 1

| 〈u∗ |xn〉 − α|2
‖u∗(〈u∗ |xn〉 − α)

)

‖2
=

1

(q − 1)‖u∗‖2
.

Hence the iteration has the form (2.88) with sn as in (2.89) and the assertion
about convergence is valid (from (2.92) it follows that Rn = | 〈u∗ |xn〉 − α|
converges to zero and the exceptional case in 2.23 cannot happen). The form
(2.91) is obvious by (2.88) and (2.90). By (2.91) we get

tnu∗ = J(x0) − J(xn+1) .

We apply J∗(u∗) on both sides and arrive at

tn =
〈J(x0) − J(xn+1) | J∗(u∗)〉

‖u∗‖q
,

whereby the right hand side converges. Since t̃ is unique, the limit of (tn)n

must be t̃. Finally by 1.18 (a) we get

h(tn) =
1

2
‖J(x0) − tnu∗‖2

+ tn α

=
1

2

∥

∥

(

J(x0) − tn−1u
∗
)

− snu∗
∥

∥

2
+ tn−1 α + sn α

≤ 1

2
‖J(x0) − tn−1u

∗‖2 − sn 〈u∗ |xn〉 +
q − 1

2
‖u∗‖2

s2
n

+tn−1 α + sn α

= h(tn−1) − sn(〈u∗ |xn〉 − α) +
q − 1

2
‖u∗‖2

s2
n

= h(tn−1) −
| 〈u∗ |xn〉 − α|2
2(q − 1)‖u∗‖2

.

⊓⊔

The proof of the next proposition for the case p ≥ 2 is quite similar by
using 1.18 (b) and (2.66).
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Proposition 2.29. Let H(u∗, α) be a hyperplane in an Lp-space X (p ≥ 2)
with duality mapping with the same weight p and x0 ∈ X be given. Then the
sequence (xn)n iteratively defined by

xn+1 := Jq
(

Jp(xn) − snu∗
)

(2.93)

with

sn :=
|〈u∗ |xn〉 − α|p−1

2p−2‖u∗‖p
sgn

(

〈u∗ |xn〉 − α
)

(2.94)

converges strongly to the Bregman projection of x0 onto H(u∗, α). If we set

h(t) :=
1

q
‖Jp(x0) − tu∗‖q

+ t α , t ∈ R

and

tn :=

n
∑

k=0

sn , (2.95)

then we have
xn+1 = Jq

(

Jp(x0) − tnu∗
)

, (2.96)

the sequence (tn)n converges to the unique solution t̃ of

min
t∈R

h(t)

and the sequence
(

h(tn)
)

n
converges decreasingly to h(t̃) with

h(tn) ≤ h(tn−1) −
| 〈u∗ |xn〉 − α|p

p2p−2‖u∗‖p

≤ h(0) − 1

p2p−2‖u∗‖p

n
∑

k=0

| 〈u∗ |xk〉 − α|p . (2.97)

2.6 Generalized CG and Sequential Subspace Methods

Even with line searches the above discussed methods are more or less steepest
descent methods and it is well known that these can be arbitrarily slow (nev-
ertheless with appropriate stopping rules like the discrepancy principle they
often prove superior to faster methods with respect to regularization, where
only some iterations are needed to obtain good results).
We concentrate again on the special case of computing projections onto affine
subspaces in case of exact data. At first we show that in the finite-dimensional
case we can formulate this as an in general non-linear optimization problem
which can be solved by standard optimization routines like non-linear CG
methods and then propose alternative generalized CG and sequential sub-
space methods which also work in the infinite-dimensional case (but we do
not claim that they are superior in applications). Let us first consider the
problem of projecting onto the intersection of finitely many hyperplanes.
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Proposition 2.30. Let X be reflexive, smooth and strictly convex, and vectors
u∗

1, . . . , u
∗
N ∈ X∗ and α1, . . . , αN ∈ R be given. For x ∈ X let hx : RN −→ R

be the convex, differentiable function

hx(t) :=
1

q

∥

∥

∥

∥

∥

Jp(x) −
N
∑

k=1

tk u∗
k

∥

∥

∥

∥

∥

q

+

N
∑

k=1

tk αk , t = (t1, . . . , tN ) ∈ RN

with continuous partial derivatives

∂jhx(t) = −
〈

u∗
j

∣

∣

∣

∣

∣

Jq

(

Jp(x) −
N
∑

k=1

tk u∗
k

)〉

+ αj , j = 1, . . . , N .

If the intersection

H :=
N
⋂

k=1

H(u∗
k, αk)

of the hyperplanes H(u∗
k, αk) is not empty then the Bregman projection of x

onto H is given by

Πp
H(x) = Jq

(

Jp(x) −
N
∑

k=1

t0k u∗
k

)

,

whereby t0 = (t01, . . . , t
0
N ) is a (necessarily existing) solution of the N -

dimensional optimization problem

min
t∈RN

hx(t) . (2.98)

Moreover for all z ∈ H the Bregman projection in X∗ of Jp(z) onto the affine
subspace Jp(x) + span{u∗

1, . . . , u
∗
N} is given by

Πq

Jp(x)+span{u∗
1
,...,u∗

N
}

(

Jp(z)
)

= Jp(x) −
N
∑

k=1

t0k u∗
k .

If the vectors u∗
1, . . . , u

∗
N are linearly independent then t0 is unique.

Proof. We can prove this in the way of 1.30 (b) by using 1.29 (a). For all
z ∈ H we can write

H = z +
(

span{u∗
1, . . . , u

∗
N}
)⊥

.

Thus an element x0 ∈ X is the Bregman projection of x onto H iff x0 ∈ H
and Jp(x0) ∈ Jp(x) + span{u∗

1, . . . , u
∗
N} iff Jp(x0) = Jp(x)−∑N

k=1 t0k u∗
k with

some t01, . . . , t
0
N ∈ R such that 〈u∗

k |x0〉 = αk for all k = 1, . . . , N (uniquely
determined in case u∗

1, . . . , u
∗
N are linearly independent) iff t0 = (t01, . . . , t

0
N ) ∈

RN is a (unique) solution of the optimization problem
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min
t∈RN

∆∗
q

(

Jp(z), Jp(x) −
N
∑

k=1

tk u∗
k

)

= min
t∈RN

1

p
‖z‖p − 〈z |Jp(x)〉 +

N
∑

k=1

tk 〈z |u∗
k〉 +

1

q

∥

∥

∥

∥

∥

Jp(x) −
N
∑

k=1

tk u∗
k

∥

∥

∥

∥

∥

q

,

which is equivalent to (2.98) and Jp(x)−∑N
k=1 t0k u∗

k being the Bregman pro-
jection in X∗ of Jp(z) onto Jp(x) + span{u∗

1, . . . , u
∗
N}. ⊓⊔

We can use this to compute Bregman projections onto affine subspaces of
the form MAx=y.

Corollary 2.31. We assume (A, y). Let Y be of finite dimension N and
w∗

1 , . . . , w∗
M ∈ Y ∗ (M ≤ N) be given such that

R(A∗) = span{A∗w∗
1 , . . . , A∗w∗

M} .

The Bregman projection of x onto MAx=y is then given by

Πp
MAx=y

(x) = Jq

(

Jp(x) −
M
∑

k=1

t0k A∗w∗
k

)

,

whereby t0 = (t01, . . . , t
0
M ) is a (necessarily existing) solution of the M -

dimensional optimization problem

min
t∈RM

hx(t) (2.99)

with hx defined as in 2.30, whereby we set u∗
k = A∗w∗

k and αk := 〈w∗
k | y〉 for

k = 1, . . . ,M . Moreover for all z ∈ MAx=y the Bregman projection in X∗ of
Jp(z) onto the affine subspace Jp(x) + span{A∗w∗

1 , . . . , A∗w∗
M} is given by

Πq

Jp(x)+span{A∗w∗
1
,...,A∗w∗

M
}

(

Jp(z)
)

= Jp(x) −
N
∑

k=1

t0k A∗w∗
k .

If the vectors u∗
1, . . . , u

∗
M are linearly independent then t0 is unique.

Proof. We only remark that z lies in MAx=y iff 〈A∗w∗
k | z〉 = 〈w∗

k | y〉 for all

k = 1, . . . ,M and therefore
⋂M

k=1 H(u∗
k, αk) = MAx=y 6= ∅. ⊓⊔

We recall that Bregman projections onto z + R(A) (with then finite-
dimensional X) and the respective metric projections can be computed via
(2.79), (2.78) and (2.80). Problem (2.99) is an in general nonlinear, convex,
smooth unconstrained optimization problem which can be solved by standard
optimization routines (see e.g. [37] and [36], where we have taken our ideas
from).
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We now propose and develop methods in the spirit of conjugate gradient (CG)
and sequential subspace methods. They are based on the iterative process of
the previously discussed methods. Therefore we once again look at the iterates
in case of exact data under assumption (A, y):

xn+1 = xn+1(t) = J∗
X

(

JX(xn) − tA∗w∗
n

)

with
w∗

n = JY (Axn − y) and Rn := RA,y(xn) = ‖Axn − y‖ .

For all z ∈ MAx=y we have

〈A∗w∗
n | z〉 = 〈w∗

n | y〉 = 〈A∗w∗
n |xn〉 + 〈w∗

n | y − Axn〉 = 〈A∗w∗
n |xn〉 − Rr

n

(

with equality! in contrast to “≤” in case of (A,Q) or (A, y,+)
)

and thus

∆p

(

xn+1(t), z
)

= hn(t) − 〈JX(xn) | z〉 +
1

p
‖z‖p (2.100)

with

hn(t) =
1

q
‖JX(xn) − tA∗w∗

n‖q
+ t αn

and
αn = 〈A∗w∗

n |xn〉 − Rr
n = 〈w∗

n | y〉 .

Because of equality in (2.100) we can directly measure the decrease of
∆p

(

xn+1(t), z
)

via hn(t) and thus the solution t0 ∈ R of

min
t∈R

hn(t)

fulfills for all z ∈ MAx=y

∆p

(

xn+1(t0), z
)

≤ ∆p

(

xn+1(µn), z
)

with the µn of (2.40). Hence (weak) convergence is ensured. Although we know
that t0 is in fact positive, we do not have to impose this restriction here

(

as

we have to in case of (A,Q) or (A, y,+)
)

. Proposition 2.30 and 2.31 suggest
that the more search directions A∗wk we use to find xn+1 , the better xn+1

will approximate the exact solutions MAx=y.

Method 2.32. We assume (A, y), choose an arbitrary starting point x0 ∈ X
and for n = 0, 1, 2, . . . repeat the following steps:
We set

Rn := ‖Axn − y‖ .

If Rn = 0 then STOP, else we set

w∗
n := JY (Axn − y) (2.101)
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and

αn
k :=

{

αn−1
k , k = 0, . . . , n − 1

〈A∗w∗
n |xn〉 − Rr

n , k = n
, (2.102)

and define

xn+1 := xn+1(tn) = J∗
X

(

JX(xn) −
n
∑

k=0

tnk A∗w∗
k

)

, (2.103)

whereby tn = (tn0 , . . . , tnn) is the (necessarily existing) unique solution of the
(n + 1)-dimensional optimization problem

min
t∈Rn+1

hn(t) (2.104)

with

hn(t) :=
1

q

∥

∥

∥

∥

∥

JX(xn) −
n
∑

k=0

tk A∗w∗
k

∥

∥

∥

∥

∥

q

+

n
∑

k=0

tk αn
k , t = (t0, . . . , tn) ∈ Rn+1 .

Obviously it suffices to store the vectors u∗
k := A∗w∗

k instead of both u∗
k

and w∗
k. Existence and uniqueness of tn are consequences of 2.30 and the

following proposition.

Proposition 2.33. Method 2.32 either stops after a finite number n ∈ N of
iterations (in case Rn = 0) with xn being the Bregman projection x̃ of x0

onto the set MAx=y or the sequence of the iterates (xn)n converges weakly
to x̃ (with the exceptional case as in 2.23). Moreover as long as Rn 6= 0 the
following holds:

(a) The vectors {w∗
0 , . . . , w∗

n} ⊂ Y ∗ and {A∗w∗
0 , . . . , A∗w∗

n} ⊂ X∗ are linearly
independent.

(b) For

Hn :=

n
⋂

k=0

H(A∗w∗
k, αn

k ) and U∗
n := span{A∗w∗

0 , . . . , A∗w∗
n}

we have

U∗
n = span{A∗JY (Ax0 − y), . . . , A∗JY (Axn − y)}

MAx=y ⊂ Hn , xn+1 = Πp
Hn

(xn)

and

JX(xn+1) = Πq

JX(x0)+U∗
n

(

JX(z)
)

for all z ∈ MAx=y . (2.105)

(c) We have 〈w∗
k |Axn+1 − y〉 = 0 for all k = 0, . . . , n.
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Proof. The assertions about convergence follow by 2.23 and from what we
have just discussed above, because for all z ∈ MAx=y we have

∆p

(

xn+1(tn), z
)

≤ ∆p

(

xn+1

(

t = (0, . . . , 0, µn)
)

, z
)

with the µn of (2.40) (and thus every subsequence of (xn)n has in turn a
subsequence converging weakly to the same point x̃ = Πp

MAx=y
(x0), from

which we infer that the whole sequence converges weakly). (b) is clear by the
definition of the vectors w∗

k (2.101) and by 2.30, since

〈A∗w∗
k | z〉 = 〈w∗

k | y〉 = 〈A∗w∗
k |xk〉 − Rr

k = αn
k

for all z ∈ MAx=y and inductively by the definition of the iterates (2.103)

JX(xn) + U∗
n = JX(x0) + U∗

n .

In (a) it suffices to show that the vectors {A∗w∗
0 , . . . , A∗w∗

n} are linearly in-
dependent. We show this inductively in combination with (c). If R0 6= 0 then
A∗w∗

0 6= 0, because otherwise we take some z ∈ MAx=y and get

0 = 〈A∗w∗
0 |x0 − z〉 = 〈JX(Ax0 − y) |Ax0 − Az〉 = ‖Ax0 − y‖r = Rr

0 .

Hence w∗
0 6= 0 as well and t0 fulfills

0 = h′
0(t0) = −〈A∗w∗

0 |J∗
X (JX(x0) − t0 A∗w∗

0)〉 + α0
0

= −〈w∗
0 |Ax1〉 + 〈w∗

0 | y〉
= −〈w∗

0 |Ax1 − y〉 .

Now let Rn 6= 0 and λ1, . . . , λn ∈ R be given such that

n
∑

k=0

λk A∗w∗
k = 0 .

We take some z ∈ MAx=y and get

0 =

n
∑

k=0

λk 〈A∗w∗
k |xn − z〉 =

n
∑

k=0

λk 〈w∗
k |Axn − y〉

= λn 〈w∗
n |Axn − y〉 = λn Rr

n .

Thus λn = 0 and we continue with

0 =
n−1
∑

k=0

λk 〈A∗w∗
k |xn−1 − z〉 = λn−1 Rr

n−1 .

Inductively we get λk = 0 for all k = 0, . . . , n. Hence the vectors {A∗w∗
0 , . . . , A∗w∗

n}
are linearly independent. Finally we get for all j = 0, . . . , n
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0 = ∂jhn(tn) = −
〈

A∗w∗
j

∣

∣

∣

∣

∣

J∗
X

(

JX(xn) −
n
∑

k=0

tnk A∗w∗
k

)〉

+ αn
j

= −
〈

w∗
j

∣

∣Axn+1

〉

+
〈

w∗
j

∣

∣ y
〉

= −
〈

w∗
j

∣

∣Axn+1 − y
〉

.

⊓⊔
If Y is of finite dimension N then by (a) and (c) of the above proposition

the method stops after at most N iterations (indeed after at most M =
dim

(

R(A∗)
)

iterations). But of course the hope is that we are done much
earlier (n ≪ M); which by (2.105) should be the case if Hn is already a good
approximation to the solution set MAx=y or equivalently JX(x0) + U∗

n is a
good approximation to JX(MAx=y). Therefore we could try to build up U∗

n

in such a way that it somehow better fits the solution set. We try to motivate
our approach. Suppose we already have vectors {w∗

0 , . . . , w∗
n−1} ⊂ Y ∗ at hand

such that (a), (b) and (c) of 2.33 are fulfilled. We intend to construct a vector
w∗

n ∈ Y ∗ which incorporates some information about the solution set of its
predecessors so that we will find a better approximation xn+1 more quickly
(and such that (a), (b) and (c) still hold). Since we have seen that the choice
w∗

n = JY (Axn − y) is already a good one (ensuring convergence) we make the
ansatz

w∗
n = JY (Axn − y) −

n−1
∑

k=0

sn
k w∗

k . (2.106)

We know that xn is the optimal approximation with respect to U∗
n−1, more

exactly with respect to the search directions A∗w∗
0 , . . . , A∗w∗

n−1. Therefore
the new direction A∗w∗

n should be “as different as possible” from the latter;
so that when we search xn+1 via tn the main change will be along A∗w∗

n, i.e.
in the component tnn, and only minor corrections will have to be done along
the old directions, i.e. the components tn0 , . . . , tnn−1 will differ only little from
zero. We propose

A∗w∗
n = A∗JY (Axn − y) − PU∗

n−1

(

A∗JY (Axn − y)
)

,

i.e. sn = (sn
0 , . . . , sn

n−1) ∈ Rn is the solution of

min
s∈Rn

gn(s)

with

gn(s) =
1

q
‖A∗w∗

n(s)‖q =
1

q

∥

∥

∥

∥

∥

A∗JY (Axn − y) −
n−1
∑

k=0

sk A∗w∗
k

∥

∥

∥

∥

∥

q

.

By proposition 1.26 (b) and 1.29 (a) we also have

J∗
X(A∗w∗

n) = Πp

(U∗
n−1

)⊥

(

J∗
X

(

A∗JY (Axn − y)
)

)
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and thus

〈A∗w∗
k |J∗

X(A∗w∗
n)〉 = 0 for all k = 0, . . . , n − 1 (2.107)

(which is equivalent to ∂k gn(sn) = 0 for all k = 0, . . . , n − 1). We look more
closely at how this choice of the search directions may qualitatively affect the
minimization of the function hn. By the characteristic inequality for the dual
X∗, property (c) of 2.33 and (2.106) we get

hn(t) =
1

q

∥

∥

∥

∥

∥

JX(xn) −
n
∑

k=0

tk A∗w∗
k

∥

∥

∥

∥

∥

q

+

n
∑

k=0

tk 〈w∗
k | y〉

≤ 1

q
‖xn‖p −

n
∑

k=0

tk 〈w∗
k |Axn − y〉 +

1

q
σ̃q

(

JX(xn),

n
∑

k=0

tk A∗w∗
k

)

=
1

q
‖xn‖p − tn 〈w∗

n |Axn − y〉 +
1

q
σ̃q

(

JX(xn),
n
∑

k=0

tk A∗w∗
k

)

=
1

q
‖xn‖p − tnRr

n +
1

q
σ̃q

(

JX(xn),
n
∑

k=0

tk A∗w∗
k

)

,

whereby the size of the last summand essentially depends on the norms ‖xn‖
and ‖∑n

k=0 tk A∗w∗
k‖ (see also 1.18). Therefore with (2.107) we likewise esti-

mate

1

q

∥

∥

∥

∥

∥

n
∑

k=0

tk A∗w∗
k

∥

∥

∥

∥

∥

q

=
1

q

∥

∥

∥

∥

∥

tn A∗w∗
n +

n−1
∑

k=0

tk A∗w∗
k

∥

∥

∥

∥

∥

q

≤ |tn|q
q

‖A∗w∗
n‖q

+ tq−1
n sgn(tn)

n−1
∑

k=0

tk 〈A∗w∗
k |J∗

X(A∗w∗
n)〉

+
1

q
σ̃q

(

tn A∗w∗
n,

n−1
∑

k=0

tk A∗w∗
k

)

=
|tn|q

q
‖A∗w∗

n‖q
+

1

q
σ̃q

(

tn A∗w∗
n,

n−1
∑

k=0

tk A∗w∗
k

)

.

Inductively we get

hn(t) ≤ 1

q
‖xn‖p − tnRr

n + φ
(

‖xn‖; |tn| · ‖A∗w∗
n‖ , . . . , |t0| · ‖A∗w∗

0‖
)

with a function φ ≥ 0 which decreases with
(

|tn| · ‖A∗w∗
n‖ , . . . , |t0| · ‖A∗w∗

0‖
)

.
Hence hn is likely to get minimal for small values of |t0|, . . . , |tn−1| and
‖A∗w∗

n‖. For example by 1.18 in an Lp-space (p ≤ 2, dual space Lq with
q ≥ 2) with the normalized duality mapping we would get

(

see also around

(2.63)
)
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hn(t) ≤ h̃n(t) :=
1

2
‖xn‖2 − tnRr

n +
1

2

n
∑

k=0

(q − 1)n+1−k‖A∗w∗
k‖2 t2k ,

and h̃n(t) is minimal for

t̃n =

(

0, . . . , 0,
Rr

n

(q − 1)‖A∗w∗
n‖2

)

with

h̃n(t̃n) =
1

2

(

‖xn‖2 − R2r
n

(q − 1)‖A∗w∗
n‖2

)

.

This also shows that t̃n would be a good starting value for minimizing hn and
hn(t) ≤ c·h̃n(t̃n) with c ∈ (0, 1) a good stopping criterion for (the realistic case
of) inexact minimization of hn. We summarize this in the following method.

Method 2.34. The same as method 2.32 but the choice of w∗
n (2.101) is

replaced by

w∗
n := JY (Axn − y) −

n−1
∑

k=0

sn
k w∗

k . (2.108)

whereby sn = (sn
0 , . . . , sn

n−1) is the (necessarily existing) unique solution of
the n-dimensional optimization problem

min
s∈Rn

gn(s) (2.109)

with

gn(s) :=
1

q

∥

∥

∥

∥

∥

A∗JY (Axn − y) −
n−1
∑

k=0

sk A∗w∗
k

∥

∥

∥

∥

∥

q

, s = (s0, . . . , sn−1) ∈ Rn .

Existence and uniqueness of sn are consequences of 2.30 and the following
proposition.

Proposition 2.35. The assertions of 2.33 remain valid for method 2.34. Ad-
ditionally the following holds as long as Rn 6= 0:

(d) 〈A∗w∗
k |J∗

X(A∗w∗
n)〉 = 0 for all k = 0, . . . , n − 1.

(e)
A∗w∗

n = A∗JY (Axn − y) − PU∗
n−1

(

A∗JY (Axn − y)
)

and
J∗

X(A∗w∗
n) = Πp

(U∗
n−1

)⊥

(

J∗
X

(

A∗JY (Axn − y)
)

)

.

Proof. Inductively we get U∗
n = span{A∗JY (Ax0 − y), . . . , A∗JY (Axn − y)}

by the definition of the vectors w∗
k (2.108). Therefore the assertions about

convergence remain valid, because for all z ∈ MAx=y we have
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∆p

(

xn+1(tn), z
)

≤ ∆p

(

xn+1(t̃), z
)

with t̃ such that µnA∗JY (Axn − y) =
∑n

k=0 t̃k A∗w∗
k. Moreover we have

Rr
n = 〈w∗

n |Axn − y〉 by 2.33 (c) and thus the relation

〈A∗w∗
k | z〉 = 〈w∗

k | y〉 = 〈A∗w∗
k |xk〉 − Rr

k = αn
k

for all z ∈ MAx=y remains unchanged. Hence (b) holds. In (a) it again suf-
fices to show that the vectors {A∗w∗

0 , . . . , A∗w∗
n} are linearly independent.

We show this inductively in combination with (c) and (d). Let Rn 6= 0 and
λ1, . . . , λn ∈ R be given such that

n
∑

k=0

λk A∗w∗
k = 0 .

We apply J∗
X(A∗w∗

n) on both sides and by (d) we get

0 =

n
∑

k=0

λk 〈A∗w∗
k |J∗

X(A∗w∗
n)〉 = λn 〈A∗w∗

n |J∗
X(A∗w∗

n)〉 = λn ‖A∗w∗
n‖q .

Suppose A∗w∗
n = 0. Then we take some z ∈ MAx=y and get

0 = 〈A∗w∗
n |xn − z〉 = 〈w∗

n |Axn − y〉 = Rr
n ,

which contradicts Rn 6= 0. Hence λn = 0. Inductively we get λk = 0 for all
k = 0, . . . , n and thus the vectors {A∗w∗

0 , . . . , A∗w∗
n} are linearly independent.

(c) follows as in 2.33 and likewise (d) by

0 = ∂jgn(sn) = −
〈

A∗w∗
j

∣

∣

∣

∣

∣

J∗
X

(

A∗JY (Axn − y) −
n−1
∑

k=0

sn
k A∗w∗

k

)〉

= −
〈

A∗w∗
j

∣

∣ J∗
X(A∗w∗

n)
〉

for all j = 0, . . . , n − 1. (e) is just the definition of w∗
n. ⊓⊔

The nice behaviour of the above methods is of course only of theoretical
nature. Even in case of exact data we will only be able to perform the min-
imizations of hn and gn inexactly. Rounding errors are also unavoidable. As
a result the orthogonality relations in (c) and (d) will not hold exactly and
errors made in previous iterations will be carried on. Moreover the number
of vectors to be stored and the dimension of the otimization sub-problems
increases with n. Therefore in practice we should keep only a few of the old
directions, say the last M ones A∗w∗

n−1, . . . , A
∗w∗

n−M .
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Method 2.36. The same as the methods 2.32 or 2.34 but with the respective
modifications (for some M ∈ N)

w∗
n := JY (Axn − y) −

n−1
∑

k=0∨(n−M)

sn
k w∗

k ,

gn(s) :=
1

q

∥

∥

∥

∥

∥

∥

A∗JY (Axn − y) −
n−1
∑

k=0∨(n−M)

sk A∗w∗
k

∥

∥

∥

∥

∥

∥

q

,

xn+1 := J∗
X



JX(xn) −
n
∑

k=0∨(n−M)

tnk A∗w∗
k



 ,

hn(t) :=
1

q

∥

∥

∥

∥

∥

∥

JX(xn) −
n
∑

k=0∨(n−M)

tk A∗w∗
k

∥

∥

∥

∥

∥

∥

q

+
n
∑

k=0∨(n−M)

tk αn
k .

Corollary 2.37. The assertions of 2.33 and 2.35 remain valid for method 2.36
with the modifications

(a) The vectors {w∗
0∨(n−M), . . . , w

∗
n} and {A∗w∗

0∨(n−M), . . . , A
∗w∗

n} are lin-
early independent.

(b) For

Hn :=

n
⋂

k=0∨(n−M)

H(A∗w∗
k, αn

k )

and
U∗

n := span{A∗w∗
0∨(n−M), . . . , A

∗w∗
n}

we have

span{A∗JY (Ax0∨(n−M) − y), . . . , A∗JY (Axn − y)} ⊂ U∗
n

MAx=y ⊂ Hn , xn+1 = Πp
Hn

(xn)

and
JX(xn+1) = Πq

JX(xn)+U∗
n

(

JX(z)
)

for all z ∈ MAx=y .

(c) 〈w∗
k |Axn+1 − y〉 = 0 for all k = 0 ∨ (n − M), . . . , n.

(d) 〈A∗w∗
k |J∗

X(A∗w∗
n)〉 = 0 for all k = 0 ∨ (n − M), . . . , n − 1.

(e) For
Ũ∗

n−1 := span{A∗w∗
0∨(n−M), . . . , A

∗w∗
n−1}

we have

A∗w∗
n = A∗JY (Axn − y) − PŨ∗

n−1

(

A∗JY (Axn − y)
)

and
J∗

X(A∗w∗
n) = Πp

(Ũ∗
n−1

)⊥

(

J∗
X

(

A∗JY (Axn − y)
)

)

.
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As in CG methods we examine what happens when we only use the pre-
vious search direction u∗

n−1 = A∗w∗
n−1 to determine the new one u∗

n = A∗w∗
n

and minimize along that one only (instead of span{u∗
n, u∗

n−1} as in method
2.36).

Method 2.38. We assume (A, y), choose an arbitrary starting point x0 ∈ X
and for n = 0, 1, 2, . . . repeat the following steps:
We set

Rn := ‖Axn − y‖ .

If Rn = 0 then STOP, else we set

u∗
n := A∗JY (Axn − y) − sn u∗

n−1 . (2.110)

whereby sn is the (necessarily existing) unique solution of the one-dimensional
optimization problem

min
s∈R

gn(s) (2.111)

with

gn(s) :=
1

q

∥

∥A∗JY (Axn − y) − s u∗
n−1

∥

∥

q
, s ∈ R .

We set
αn := 〈u∗

n |xn〉 − Rr
n (2.112)

and define
xn+1 := J∗

X (JX(xn) − tn u∗
n) , (2.113)

whereby tn is the (necessarily existing) unique positive solution of the one-
dimensional optimization problem

min
t∈R

hn(t) (2.114)

with

hn(t) :=
1

q
‖JX(xn) − t u∗

n‖q
+ t αn , t ∈ R .

If both X and Y are Hilbert spaces (with the identity as normalized du-
ality mapping) then this is just the well-known CG method for finding the
minimum-norm solution of operator equations.

Proposition 2.39. Method 2.38 either stops after a finite number n ∈ N of
iterations (in case Rn = 0) with xn being the Bregman projection x̃ of x0

onto the set MAx=y or the sequence of the iterates (xn)n converges weakly to
x̃ (with the exceptional case as in 2.23).

Proof. We point out that this is not an immediate corollary of 2.37, because
we do not minimize hn over span{u∗

n, u∗
n−1} in which the convergence ensuring

descent direction A∗JY (Axn − y) is contained. We show that u∗
n retains this

property. As in the previous methods for w∗
n := JY (Axn − y) − sn w∗

n−1 we
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have u∗
n = A∗w∗

n ,
〈

w∗
n−1

∣

∣Axn − y
〉

= 0 ,
〈

u∗
n−1

∣

∣ J∗
X(u∗

n)
〉

= 0 and therefore
αn = 〈w∗

n | y〉 , Rr
n = 〈w∗

n |Axn − y〉 and u∗
n 6= 0 if Rn 6= 0. We once again do

the by now familiar estimations for hn(t) (compare 2.8, 2.11, 2.18, 2.23). We
w.l.o.g. assume xn 6= 0, u∗

n 6= 0 and set

t̃n :=
τn‖xn‖p−1

‖u∗
n‖

with τn ∈ (0, 1] chosen such

ρX∗

(

τn

)

τn

= ρX∗(1) ∧
(

γ

2qGq

Rr
n

‖xn‖ ‖u∗
n‖

)

.

By (2.114) we get

hn(tn) ≤ hn(t̃n)

≤ 1

q
‖xn‖p − t̃n 〈u∗

n |xn〉 +
1

q
σ̃q

(

JX(xn), t̃n u∗
n

)

+ 〈w∗
n | y〉

=
1

q
‖xn‖p − t̃nRr

n +
1

q
σ̃q

(

JX(xn), t̃n u∗
n

)

=
1

q
‖xn‖p − τn‖xn‖p−1 Rr

n

‖u∗
n‖

+
1

q
σ̃q

(

JX(xn), t̃n u∗
n

)

.

If we look at the proof of 2.6 we see that we can estimate the last summand
by

1

q
σ̃q

(

JX(xn), t̃n u∗
n

)

≤ τn2qGq‖xn‖p ρX∗(τn)

τn

≤ τn2qGq‖xn‖p γ

2qGq

Rr
n

‖xn‖ ‖u∗
n‖

= γτn‖xn‖p−1 Rr
n

‖u∗
n‖

.

Hence

hn(tn) ≤ 1

q
‖xn‖p − (1 − γ)τn‖xn‖p−1 Rr

n

‖u∗
n‖

.

By (2.114) we have

‖u∗
n‖ ≤ ‖A∗JY (Axn − y)‖ ≤ ‖A‖Rr−1

n

and thus

hn(tn) ≤ 1

q
‖xn‖p − 1 − γ

‖A‖ τn‖xn‖p−1Rn .

Since this τn also fulfills

ρX∗

(

τn

)

τn

≥ ρX∗(1) ∧
(

γ

2qGq‖A‖
Rn

‖xn‖

)

,

i.e. τn remains bounded away from zero if Rn does, the assertions about
convergence follow as in the proofs of 2.18, 2.23 and 2.33. ⊓⊔
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If X is an Lp-space with p ≤ 2 and the normalized duality mapping then
we may use the line search 2.28 for (2.111) and (2.114):

u∗
n,0 := A∗JY (Axn − y) ,

u∗
n,k+1 := u∗

n,k − s̃k u∗
n−1 with s̃k :=

〈

u∗
n−1

∣

∣

∣
J∗

X(u∗
n,k)

〉

(q − 1)‖u∗
n−1‖2

,

u∗
n := lim

k→∞
u∗

n,k

and
xn+1,0 := xn ,

xn+1,k+1 := J∗
X

(

JX(xn+1,k) − t̃k u∗
n

)

with t̃k :=
〈u∗

n |un,k〉 − αn

(q − 1)‖u∗
n‖2

,

xn+1 := lim
k→∞

xn+1,k .

In an Lp-space with p ≥ 2 and duality mapping with the same weight p we
take

s̃k :=

∣

∣

∣

〈

u∗
n−1

∣

∣

∣ J∗
X(u∗

n,k)
〉∣

∣

∣

p−1

2p−2‖u∗
n−1‖p

sgn
( 〈

u∗
n−1

∣

∣ J∗
X(u∗

n,k)
〉 )

and

t̃k :=
|〈u∗

n |un,k〉 − αn|p−1

2p−2‖u∗
n‖p

sgn
(

〈u∗
n |un,k〉 − αn

)

.





3

Conclusions and Outlook

The goals of our study was to develop iterative methods for the solution of the
split feasibility problem (SFP) in Banach spaces and to analyze their regular-
izing properties and stability with respect to noisy and approximate data. To
this end we have generalized the CQ algorithm via duality mappings, metric
and Bregman projections. We have shown that the resulting methods solve
the SFP and that in combination with a discrepancy principle they have good
regularizing properties and we may also use approximate data. Moreover we
have seen how the same iterative scheme can be used to compute metric and
Bregman projections onto affine subspaces that are given via a linear opera-
tor.
Although we have mainly concentrated on theoretical aspects and proven con-
vergence in infinite-dimensional spaces, the methods are finally intended to
solve real world problems and we think that they will prove efficient with the
line search, conjugate gradient and sequential subspace techniques presented
in the last two sections. Our preliminary results in [46] were promising and
thorough numerical tests are the topic of current research. In this context it
is also important to have criteria for the quality of the solutions. A suitable
criterion for the SFP is the size of the remainder terms. For the projections
onto affine subspaces it would be preferable to have something like conver-
gence rates, possibly in dependence of source conditions (see also [35, 44]).
It is also challenging to examine whether similar methods can be used to solve
problems in non-smooth Banach spaces X, which e.g. arise in image process-
ing [38]. As our results in [46] indicate, already the use of non-smooth spaces
Y can have a non-smoothing effect on the solution, which may be used to
handle discontinuities.
Of course to apply the methods it is necessary to know the duality mappings
of the spaces involved and useful to have concrete versions of the characteris-
tic inequalities. Therefore a list of Banach spaces with their duality mappings
and characteristic inequalities would be desirable.
Finally we want to mention that we think that many of our ideas and re-
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sults can be carried over to the case of more general Bregman distances and
projections.
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