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Abstract

Abstraction plays an important role in the verification of infinite-state sys-
tems. One of the most promising and popular abstraction techniques is predi-
cate abstraction. The right abstraction, i.e. the one that is sufficiently precise
to prove or disprove the property under consideration, is automatically con-
structed by iterative abstraction refinement. The abstract-check-refine loop
is not guaranteed to terminate in general. This results in the construction of
semi-algorithms that may not terminate on some inputs.

For the class of well-structured transition systems, a large class of infinite-
state systems, general decidability results hold. These are transition systems
equipped with a well-quasi ordering on the set of states which is compatible
with the transition relation. In particular coverability, i.e. reachability of an
upward-closed set, is known to be decidable for this class of systems.

In this work we study the verification of well-structured systems w.r.t. the
coverability property by means of predicate abstraction and refinement. We
investigate the conditions under which the abstract-check-refine loop is guar-
anteed to terminate on instances of this class, provide a model checking
method based on predicate abstraction and abstraction refinement and prove
its completeness for this class of systems.
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Chapter 1

Introduction

1.1 Software Model Checking, Predicate Ab-

straction and Refinement

Over the last few decades there has been an increasing research effort directed
towards the automatic verification of programs. Model checking has emerged
as a promising and powerful approach to automatic verification of finite-state
systems. It is essentially exhaustive exploration of the system’s state space
and hence its application is limited to finite-state systems. However, many of
the computational models used in practice (like channel systems) are infinite-
state, i.e. variables range over unbounded domains. There are two important
approaches to applying this technique to infinite-state systems. The first one
is basically reduction of the system to an ”equivalent” finite-state system
and then exploring the resulting finite quotient space. The second approach
gives rise to the so called symbolic methods where the infinite state space is
explored directly. This is accomplished by manipulation of a data structure
the members of which represent possibly infinite sets of states. Most often
these are formulas of a fixed formalism (usually some restricted class of first
order formulas over the algebraic structure over which the program computes
(e.g. integers or reals)). The formulas are boolean combinations of atoms
from an infinite set of atomic predicates AP and hence the resulting formula
space is infinite.

For model checking we are interested in operations that for a given for-
mula ϕ compute the formula denoting the set of predecessors or the set of
successors of the states in the denotation of ϕ. Since the formula space is
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infinite, a fixpoint iteration of such operator is in general not guaranteed
to converge. Abstraction is used to ameliorate this problem by mapping the
infinite domain into a finite one. Abstraction is used also in the case of finite-
state systems for overcoming the state explosion problem. The abstraction of
a program amounts to constructing a smaller abstract program in a manner
which ensures that the property holds for the original system if it holds for
the abstract one. A promising technique for automatic abstraction is predi-
cate abstraction. It is used to prove correctness or incorrectness of a program
with respect to a given specification on the basis of partial information about
the set of reachable states of the system. Given a system S and a finite set
of atomic predicates P, abstract interpretation consists in analyzing an ab-
straction of S relative to P. Automatic methods for generating predicates are
usually based on the analysis of false positives. These are error reports for
the abstract system, that do not have counterparts in the concrete system.
The set of atoms is constructed iteratively starting with the set of atoms
which appear in the specification of the property and refining it to eliminate
false positives.

1.2 Motivation

The verification of a program w.r.t. a given property is in general an unde-
cidable problem. However, undecidability is worked around by considering
special classes of systems and restricting the type of properties to be checked.
Here we are interested in reachability, that is whether a certain state or set
of states is reachable (not reachable). Verification of other safety properties
can be reduced to the reachability problem. Usually the goal is to check that
a given set of error states is not reachable in any possible computation of the
system. This can be done by either computing (an overapproximation of) the
set of all states that are reachable from an initial state and proving that its
intersection with the set of error states is empty (this is forward reachability
analysis) or computing (an overapproximation of) the set of all states that
can reach an error state and proving the emptiness of its intersection with
the set of initial states (this is backward reachability analysis).

For some classes of infinite-state systems, such as systems with finite
bisimulation/simulation quotient and systems with finite trace-equivalence
it is known that reachability is decidable. Moreover, there exist forward
procedures based on predicate abstraction for deciding reachability. A more
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general class of systems, which includes many models used in practice, is the
class of well-structured transition systems (WSTS ). These are infinite-state
systems equipped with a well-quasi ordering between states that satisfies
certain compatibility property w.r.t. the transition relation. It is known that
reachability is decidable for WSTS, provided that the set of error states is
upward-closed. A symbolic backward algorithm for this class was proposed
in [3]. The problem is that backward reachability analysis is often inefficient
in practice; forward exploration of the state space is much more efficient.
This is because forward state traversal can ensure that only parts of the state
space that are reachable from an initial state and relevant for the satisfaction
or violation of the specification are explored. For this reason, most of the
existing tools construct an overapproximation of the set of reachable states in
a forward manner. Hence, we are interested in obtaining a forward procedure
employing predicate abstraction and refinement and proving its termination
on WSTS and upward-closed sets of error states.

The termination of an abstraction refinement procedure depends on the
heuristic used for selecting new predicates. If the set of atomic predicates
is enumerable, then each time we can add a new predicate to the set of
predicates and try predicate abstraction. In this case the procedure termi-
nates if and only if there exists a safe invariant for the program which is
expressible over AP . However, this approach is not practical. Refinement
based on analysis of abstract counterexamples is more efficient, but it often
suffers from divergence. There are various completeness results for differ-
ent predicate selection heuristics. In [4] abstract iteration with backward
abstraction refinement was proven to be complete relative to a method for
backward reachability analysis based on widening that is guided by an un-
realistic oracle. A procedure for forward abstract iteration with backward
counterexample-guided predicate refinement that is guaranteed to terminate
for systems with finite trace-equivalence was presented in [13]. More re-
cently, a practical and complete heuristic for predicate refinement based on
interpolation was introduced in [16].

1.3 Contribution

We study the problem of applying predicate abstraction to WSTS. It is clear
that refinement of the abstraction is needed in order to obtain a complete
forward algorithm. We investigate the typical heuristic for predicate selec-
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tion based on counterexample analysis and the conditions under which the
refinement loop is guaranteed to converge. We present two instantiations
of a standard schema for forward abstract iteration with backward predi-
cate refinement. These instantiations result into two procedures for checking
reachability. We prove that the first one is guaranteed to terminate on every
member of the class of WSTS provided that the set of error states is upward-
closed. For the second procedure we show its completeness for a less general
class of systems - the class of WSLTS again under the assumption that the
set of error states is upward-closed.

1.4 Outline

This thesis is organized as follows.
In Chapter 2 we give the definitions of basic notions such as labeled

transition systems and well-structured transition systems. We state some
properties that are used in the subsequent chapters. We fix the framework of
the symbolic representation and relate programs with their semantics given
as transition systems.

In Chapter 3 we give a schema of an algorithm for checking reachability
by forward abstract interpretation and abstraction refinement and prove its
soundness.

In Chapter 4 we give an instantiation of the schema from the previous
chapter and prove its termination for WSTS.

In Chapter 5 we discuss the class of WSLTS. We look at a second
instantiation of the schema that results in a more efficient algorithm, the
termination of which we prove for instances of this class.

In Chapter 6 we discuss possible optimizations of the proposed algorithm
which might lead to losing the termination guarantee.

In Chapter 7 we look at two families of WSTS and study the conditions
under which the proposed method is applicable for them.

In Chapter 8 we give a short overview of the classification of transi-
tion systems and the completeness results for each class. We discuss the
differences between our approach and the other algorithms for WSTS.

In Chapter 9 we give a concluding overview.
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Chapter 2

Well-Structured Transition
Systems

In this chapter we introduce the notions of (labeled) transition system, well-
quasi ordering, and well-structured transition system. Then we look at sym-
bolic representation of transition systems as programs and finite represen-
tation of possibly infinite sets of states as formulas over a set of atomic
predicates.

2.1 Labeled Transition Systems

A system is represented by its set of states, a set of initial states, a set of
labels and a transition relation.

Definition 2.1. A (labeled) transition system S is a tuple 〈S , I , C, δ〉, where

• S is a (possibly) infinite set of states,

• I ⊆ S is a set of initial states,

• C is a finite set of labels,

• δ ⊆ S × C × S is a transition relation.
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Let 〈S , I , C, δ〉 be a labeled transition system.

Notation
Let s1, s2 ∈ S be states, c ∈ C be a label and σ = c1 . . . cm ∈ C∗ be a sequence
of labels.

1. We write

• s1
c→ s2 if (s1, c, s2) ∈ δ,

• s1
σ→ s2 if there exist states t0, t1, . . . , tm , such that t0 = s1, tm = s2

and t0
c1

→ t1, t1
c2

→ t2,. . . , tm−1
cm

→ tm ,

• s1 → s2 if there exists c ∈ C, such that s1
c→ s2,

• →∗ for the reflexive and transitive closure of →.

2. With σ[i , j ), where 1 ≤ i ≤ m +1, 1 ≤ j ≤ m +1 and i ≤ j , we denote
the subsequence ci . . . cj−1 of σ . If i = j then σ[i , j ) is the empty
sequence.

3. The length of σ is |σ|.

With the given transition system S we associate transformer functions.
The operator postc maps a set of states to the set of all successor states under
the transition

c→ and the operator prec maps a set of states to the set of all
predecessors under the transition

c→.

Definition 2.2 (Transformer functions). For A ⊆ S , c ∈ C and σ ∈ C∗
we define

postc(A) = {s ′|∃s ∈ A : s
c→ s ′}

prec(A) = {s|∃s ′ ∈ A : s
c→ s ′}

post(A) =
⋃

c∈C postc(A) = {s ′|∃s ∈ A : s → s ′}

pre(A) =
⋃

c∈C prec(A) = {s|∃s ′ ∈ A : s → s ′}

postσ(A) = {s ′|∃s ∈ A : s
σ→ s ′}

preσ(A) = {s|∃s ′ ∈ A : s
σ→ s ′}

All of the operators defined above are monotone w.r.t. the subset relation.
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2.2 Well-quasi Ordered Sets

We start with the definition of well-quasi ordering. For a set S equipped with
such an ordering we give the definitions of upward- and downward-closed sets
in S . Then we provide some results from the theory of well-quasi orderings.

Definition 2.3 (Preorder). A preorder � is a reflexive and transitive bi-
nary relation on a set S .

Definition 2.4 (Well-quasi ordering). We say that the preorder � on
a set S is a well-quasi ordering if for every infinite sequence s0, s1, s2, . . . of
elements of S , there exist indices 0 ≤ i < j such that si � sj .

Example 2.1 (Well-quasi orderings).

• (N,≤) - the set of natural numbers N with the standard ordering ≤ is
well-quasi ordered.

• (Nk ,≤) - the set of vectors of k natural numbers with component-wise
ordering is well-quasi ordered according to Dickson’s lemma [7].

• (Σ∗,�) - the set of finite words over some alphabet Σ together with the
subword relation � is well-quasi ordered in the case when Σ is finite
according to Higman’s lemma [15].

Let (S ,�) be a well-quasi ordered set.

Definition 2.5 (Upward-closed set). A set A ⊆ S is said to be upward-
closed if s ∈ A, t ∈ S and s � t imply t ∈ A.

Upward-closed sets have the useful property that they can be represented
by a finite set of minimal elements. Since in our setting we assume a given
symbolic representation of sets of states, this fact is not of much interest to
us.

Example 2.2 (Upward-closed set).
Consider (N2,≤). The set A = {(x , y) ∈ N2|x ≥ 0∧y ≥ 6} is upward-closed.

Definition 2.6 (Minor set). Let A ⊆ S . A set M ⊆ A is a minor set of A
if

• for every s ∈ A there exists s ′ ∈ M , such that s ′ � s and
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• for any distinct s , t ∈ M we have s 6� t .

Lemma 2.7 (From [1]). Every A ⊆ S has at least one finite minor set.

Thus, each upward-closed set can be represented by a finite minor set.

Definition 2.8 (Downward-closed set). A set A ⊆ S is said to be downward-
closed if s ∈ A, t ∈ S and t � s imply t ∈ A.

Definition 2.9. Let A ⊆ S . Then

• the set A↑ = {s ∈ S |∃s ′ ∈ A : s ′ � s} is the upward-closure of A,

• the set A↓ = {s ∈ S |∃s ′ ∈ A : s � s ′} is the downward-closure of A.

Example 2.3 (Upward-closure).
Consider (N2,≤). Let A = {(0, 5), (3, 2), (1, 5)}.
Then A↑ = {(x , y) ∈ N2|(x ≥ 0∧y ≥ 5)∨(x ≥ 3∧y ≥ 2)} and {(0, 5), (3, 2)}
is a minor set of A↑.

Proposition 2.10. For A ⊆ S it holds that A ⊆ A↑ and A ⊆ A↓.

Proposition 2.11. The operator ↑ distributes over union.

The following two lemmas formalize the facts that every infinite increasing
sequence (according to ⊆) of upward-closed sets and every infinite decreasing
sequence of downward-closed sets eventually stabilize. In the proof of the
completeness of the algorithm we present in Chapter 4 we make use of the
fact that there is no strictly increasing sequence of upward-closed sets of
states in a WSTS.

Lemma 2.12 (From [1]). Let (S ,�) be a well-quasi ordered set and U0,U1, . . .
be an infinite sequence of upward-closed sets, such that ∀i ≥ 0 : Ui ⊆ Ui+1.
Then ∃j ≥ 0 ∀k ≥ j : Uk = Uj .

Lemma 2.13 (From [1]). Let (S ,�) be a well-quasi ordered set and D0,D1, . . .
be an infinite sequence of downward-closed sets, such that ∀i ≥ 0 : Di ⊇ Di+1.
Then ∃j ≥ 0 ∀k ≥ j : Dk = Dj .
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2.3 Well-Structured Transition Systems

For WSTS the existence of a well-quasi ordering over the infinite set of states
ensures the termination of several algorithmic methods. WSTS are an ab-
stract generalization of several families of transition systems and allow for
general decidability results that can be applied to the specific classes of sys-
tems. The definition of WSTS was proposed by Finkel [8]. Independently,
another definition was proposed by Abdulla et al. [1]. Here we follow the
conceptual framework from [9]. The concept of WSTS defined there is a
generalization of the earlier definitions. It defines a more general class of
systems than the class from [1], to which we refer as well-structured labeled
transition systems.

We start with the definitions of three notions of compatibility of a preorder
on the set of states of the system with the transition relation. Let S =
〈S , I , C, δ〉 be a labeled transition system and�⊆ S×S be a preorder between
states. The first two conditions: compatibility and strong compatibility do
not take into account the labels of the transitions, i.e. this is as if we consider
transition systems without labels.

Definition 2.14 (Compatibility). We say that (S,�) satisfies (upward)
compatibility if for all s1, s2, t1 such that s1 � t1 and s1 → s2, there exists a
state t2 such that s2 � t2 and t1 →∗ t2.

Definition 2.15 (Strong compatibility). We say that (S,�) satisfies
strong compatibility if for all s1, s2, t1 such that s1 � t1 and s1 → s2, there
exists a state t2 such that s2 � t2 and t1 → t2.

Since Abdulla was interested in the problem of simulation of infinite-state
systems with finite-state systems, his definition included also labels on the
transitions. For labeled transition systems the notion of compatibility is
restricted so that it preserves the labels.

Definition 2.16 (Strong compatibility w.r.t. labels of transitions).
We say that (S,�) satisfies strong compatibility w.r.t. the labels of the tran-
sitions if for all s1, s2, t1 such that s1 � t1 and s1

c→ s2 for some c ∈ C, there
exists a state t2, such that s2 � t2 and t1

c→ t2.

It is clear from the definitions that strong compatibility w.r.t. labels of tran-
sitions implies strong compatibility and strong compatibility implies com-
patibility. According to these three notions of compatibility we obtain the
following three definitions.
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Definition 2.17 (WSTS). A transition system S = 〈S , I , C, δ〉 together
with a preorder �⊆ S × S between states is called well-structured transition
system (WSTS ) if the following conditions hold:

• � is a well-quasi ordering,

• (S,�) satisfies upward compatibility.

Definition 2.18 (WSTS with strong compatibility). A transition sys-
tem S = 〈S , I , C, δ〉 together with a preorder �⊆ S × S between states
is called a well-structured transition system with strong compatibility if the
following conditions hold:

• � is a well-quasi ordering,

• (S,�) satisfies strong compatibility.

Definition 2.19 (WSLTS). A labeled transition system S = 〈S , I , C, δ〉
together with a preorder �⊆ S ×S between states is called a well-structured
labeled transition system with strong compatibility (WSLTS ) if the following
conditions hold:

• � is a well-quasi order,

• (S,�) satisfies strong compatibility w.r.t the labels of the transitions.

It is clear that if S is a WSTS with strong compatibility, it is also a WSTS.
The converse is not true - the class of WSTS is strictly more general than
the class of WSTS with strong compatibility.

For a transition system S and a well-quasi ordering � on the set of states,
↑ is the operator that maps each set of states to its upward-closure. The
operator ucpre maps a set of states to the upward-closure of the set of pre-
decessors, it is defined as the composition of the operators pre and ↑. We
will use this operator in the analysis of the abstract counterexamples and for
determining the set of refinement predicates.

Definition 2.20 (ucpre). Let A ⊆ S . Let c ∈ C and σ = c1 . . . cm ∈ C∗. We
define:

ucprec(A) = (prec(A))↑.

ucpre(A) = pre(A)↑

ucpreσ(A) = ucprec1(. . . ucprecm (A) . . .)

Since ↑ distributes over union we have that ucpre(A) = pre(A)↑ =
⋃

c∈C ucprec(A).

10



2.4 Symbolic Representation of Labeled Tran-

sition Systems

In this section we describe the symbolic representation of transition systems
and sets of states.

Let V = X ∪X ′ be a countable infinite set of variables where each variable
in X occurs together with its primed version which is in X ′. Let AP be a
fixed infinite set of atomic formulas (we call them atoms, atomic predicates
or just predicates) over the variables in V where each atom appears with an
atom representing its negated version. Formulas are constructed from atoms
using the boolean connectives conjunction and disjunction. Let B(AP) be
the closure of AP under ∧ and ∨. The set of atoms that appear in a formula
ϕ we denote with atoms(ϕ) and the set of the negations of these atoms with
atoms(¬ϕ). We define a preorder ≤ between the elements of B(AP) in the
following way.

Definition 2.21 (Order relation ≤).
For two formulas ϕ1 and ϕ2, ϕ1 ≤ ϕ2 iff the implication ϕ1 ⇒ ϕ2 is valid. If
ϕ1 ≤ ϕ2 and ϕ2 ≤ ϕ1 we write ϕ1 ≡ ϕ2. ϕ1 < ϕ2 is a shortcut for ϕ1 ≤ ϕ2

and ϕ2 6≤ ϕ1.

Note that in many cases validity of implication, and hence the ordering ≤ is
not decidable.

2.4.1 Programs

A transition system actually describes the semantics of a program. Hence,
transition systems are represented symbolically as programs. Here we give
a formal definition of a program. We consider programs as sets of guarded
commands. Actually, a program in a standard programming language can
be easily translated into this form.

Definition 2.22 (Program). A program is specified by a tuple 〈X , init, δ〉,
where

• X = {x1, . . . xn} ⊆ X is a finite set of program variables, including one
or more program counters, each of which is associated with a domain,

• init(X ) is a formula called initial condition that denotes the set of initial
states,
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• δ(X ,X ′) is a formula describing the transition relation, where X ′ is the
set of next-state(primed) variables.

Definition 2.23 (Guarded command). We require that the formula δ rep-
resenting the transition relation is a finite disjunction of guarded commands

δ = c1 ∨ c2 ∨ . . . ∨ cr

where each command ci is of the form:

ci : gi(X ) ∧ x ′1 = ei
1(X ) ∧ . . . ∧ x ′n = ei

n(X ).

gi is the guard of the command; the transition is enabled if the guard is
satisfied. The other conjuncts are the updates of the variables.

With the program S = 〈X , init, δ〉 we associate a transition system S =
〈S , I , C, δ〉 that describes its semantics, defined as follows:

• S consists of all possible valuations of the program variables X ; it is
the cartesian product of the domains of the variables in X ,

• I = {s ∈ S |s |= init},

• C = {c1, c2, . . . , cr},

• (s1, c, s2) ∈ δ iff c[s1/X , s2/X
′] ≡ true.

In the above definition we used the following notation.

• With ϕ[s/X ] we denote the value of ϕ where each variable in X is
evaluated with the corresponding value from s .

• If a state s satisfies a formula ϕ, i.e. if ϕ[s/X ] ≡ true, we write s |= ϕ.

• For a formula ϕ, JϕK is the set of states denoted by this formula, i.e. the
states that satisfy ϕ. Then, provided that entailment is decidable,
ϕ1 ≤ ϕ2 iff Jϕ1K ⊆ Jϕ2K, and ϕ1 ≡ ϕ2 iff Jϕ1K = Jϕ2K.

Example 2.4 (Simple transition system). The set of guarded commands
of a simple program is given in Table 2.1. The set of initial states is denoted
by init = (pc = l1). The domain of x is N. The system is given on Figure
2.1.
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Guard Updates

c1 pc = l1 pc ′ = l2, x
′ = 0

c2 pc = l2 ∧ x = 0 pc ′ = pc, x ′ = x
c3 pc = l2 ∧ x > 0 pc′ = l3, x

′ = x

Table 2.1: Guarded commands of the simple program

l
1

l
3

l
2

x := 0 x >0

x = 0

Figure 2.1: Simple transition system

As in the symbolic algorithm sets of states are represented by formulas,
we need to translate the transformer functions defined for sets to operators
on formulas. This we do as follows.

Definition 2.24 (Predicate transformers).
Let c ∈ C and σ = c1, . . . , cm ∈ C∗.

postci (ϕ) = (∃X . ϕ(X )∧ gi(X )∧ x ′1 = ei
1(X )∧ . . .∧ x ′n = ei

n(X ))[X /X ′]

preci
(ϕ) = gi(X ) ∧ ϕ[ei

1(X ), . . . , ei
n(X )/x1, . . . , xn]

post(ϕ) =
∨

c∈C postc(ϕ)

pre(ϕ) =
∨

c∈C prec(ϕ)

postσ(ϕ) = postcm (. . . postc1(ϕ) . . .)

preσ(ϕ) = prec1(. . . precm (ϕ) . . .)

The definitions conform with the ones on sets in the sense that they reflect
the fact that a formula ϕ denotes a set of states. Thus,

• Jpostc(ϕ)K = postc(JϕK)

• Jprec(ϕ)K = prec(JϕK)

• Jpost(ϕ)K = post(JϕK)

13



• Jpre(ϕ)K = pre(JϕK)

• Jpostσ(ϕ)K = postσ(JϕK)

• Jpreσ(ϕ)K = preσ(JϕK)

Proposition 2.25. For formulas ϕ and ψ, and c ∈ C it holds that

ϕ ≤ ¬prec(ψ) iff postc(ϕ) ≤ ¬ψ.

Proof. Let ϕ ≤ ¬prec(ψ). Let s ∈ Jpostc(ϕ)K. Then there is a state t ∈ JϕK
such that t

c→ s . We have that t 6∈ Jprec(ψ)K since ϕ ≤ ¬prec(ψ). Assume
that s ∈ JψK. Then t ∈ Jprec(ψ)K. This is a contradiction and hence s ∈
J¬ψK.

Let postc(ϕ) ≤ ¬ψ. Let s ∈ JϕK. Assume that s ∈ Jprec(ψ)K. Then
Then there is a state t ∈ JψK such that s

c→ t . Hence, t ∈ Jpostc(ϕ)K. Since
postc(ϕ) ≤ ¬ψ, t 6∈ JψK. This is a contradiction and hence s ∈ J¬prec(ψ)K.

2.4.2 Iteration and Invariants

Let S = 〈X , init, δ〉 be a program and the following formulas be given

unsafe, such that JunsafeK = bad

safe, such that JsafeK = S\bad

The formula unsafe denotes the set bad of error states and its negation safe
denotes the set of safe states.

Definition 2.26 (Reachability). We say that a state t is reachable from a
state s if s →∗ t . For two sets of states I and B we say that B is reachable
from I if for some states s ∈ I and t ∈ B t is reachable form s. The set B is
reachable if it is reachable from the set of initial states.

In the case when S is a WSTS with ordering � and the set B is upward-
closed, checking reachability amounts to the coverability problem as it is
formulated in [10].

Definition 2.27 (Coverability). The coverability problem is ”Given an
upward-closed set B, is B reachable from I, the set of initial states of S?”.

14



A program is said to be correct(safe) if no error state is reachable from an
initial state. The least fixpoint of the operator pre, computed from the basis
unsafe is

lfp(pre,unsafe) = lfp(λϕ.unsafe ∨ pre(ϕ)).

Similarly, the least fixpoint of the operator post above init is

lfp(post,init) = lfp(λϕ.init ∨ post(ϕ)).

Note that they might not be elements of the domain of formulas. In the
sequel with lfp(pre, unsafe) we denote arbitrary formula ϕ such that JϕK =⋃∞

i=0Jpre
i(unsafe)K if such exists. Similarly for lfp(post, init). The definition

of correctness given above can be formalized as follows. The program S is
safe if

lfp(post, init) ≤ safe

or

lfp(pre, unsafe) ≤ nonInit,

where nonInit denotes the complement of the set of initial states.

Definition 2.28 (Forward invariant). A forward invariant is a formula ϕ
such that init ≤ ϕ and post(ϕ) ≤ ϕ. If in addition ϕ ≤ safe then ϕ is called
safe forward invariant.

Proving the correctness of the program can be done by computing a for-
ward invariant and checking whether it is safe. If we construct an over-
approximation post# of the operator post and compute the least fixpoint
lfp(post#, init), then we obtain a forward invariant. By proving its safety we
can show that the system is correct.

2.5 Symbolic Representation of WSTS

Let � be a preorder over the set of states of the transition system S =
〈S , I , C, δ〉 that corresponds to a program S and (S,�) is a WSTS. We
assume that � can be expressed over AP, i.e. there is a formula ϕ�(X ′,X )
in B(AP), such that s ′ � s iff ϕ�[s ′/X ′, s/X ].

Definition 2.29 (Operator ↑ on formulas). Let ϕ(X ) be a formula. With
ϕ↑(X ) we denote the formula obtained by quantifier elimination from the
formula ∃X ′ : ϕ�(X ′,X ) ∧ ϕ[X ′/X ].
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The formula ϕ↑(X ) is such that Jϕ↑K = JϕK↑.
Now we give the definitions of the operators ucprec, ucpre and ucpreσ on

formulas in a way that

• Jucprec(ϕ)K = ucprec(JϕK) and

• Jucpre(ϕ)K = ucpre(JϕK) and

• Jucpreσ(ϕ)K = ucpreσ(JϕK).

Definition 2.30 (ucpre on formulas). Let c ∈ C, σ = c1 . . . cm ∈ C∗ and
ϕ be a formula. We define:

ucprec(ϕ) = (prec(ϕ))↑

ucpre(ϕ) =
∨

c∈C ucprec(ϕ)

ucpreσ(ϕ) = ucprec1(. . . ucprecm (ϕ) . . .)

Proposition 2.31. For every formula ϕ we have pre(ϕ) ≤ ucpre(ϕ).

Proof. Jpre(ϕ)K ⊆ Jpre(ϕ)K↑ = Jpre(ϕ)↑K = Jucpre(ϕ)K

The following lemma says that the set of all states that can reach an upward-
closed set is also upward-closed.

Lemma 2.32. If JunsafeK is an upward-closed set, then Jlfp(pre, unsafe)K is
upward-closed.

Proof. Let s1 ∈ Jlfp(pre, unsafe)K and s1 � t1. We consider the two cases:

1. s1 ∈ JunsafeK
Since JunsafeK is upward-closed, it holds that t1 ∈ JunsafeK. Thus,
t1 ∈ Jlfp(pre, unsafe)K.

2. s1 6∈ JunsafeK
Thus, since s1 ∈ Jlfp(pre, unsafe)K, there exist s2, . . . , sn such that
s1 → s2 → . . .→ sn−1 → sn and sn ∈ JunsafeK. By the compatibility of
�, there exist t2, . . . , tn , such that t1 →∗ t2 →∗ . . . →∗ tn−1 →∗ tn and
sn � tn . Since JunsafeK is upward-closed, it holds that tn ∈ JunsafeK.
Thus, t1 ∈ Jlfp(pre, unsafe)K
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Proposition 2.33. For all i ≥ 0 it holds that prei(unsafe) ≤ ucprei(unsafe).

Proof. We do induction on i .

• Base case
pre0(unsafe) = unsafe = ucpre0(unsafe)

• Induction step
prei+1(unsafe) = pre(prei(unsafe)) ≤ pre(ucprei(unsafe)) ≤ ucprei+1(unsafe)

Proposition 2.34. If JunsafeK is an upward-closed set, then for all i ≥ 0 it
holds that ucprei(unsafe) ≤ lfp(pre, unsafe).

Proof. We do induction on i .

• Base case
ucpre0(unsafe) = unsafe ≤ lfp(pre, unsafe)

• Induction step
ucprei+1(unsafe) = pre(ucprei(unsafe))↑
Let s ∈ Jpre(ucprei(unsafe))↑K. Then there exists t , such that t � s and
t ∈ Jpre(ucprei(unsafe))K. Thus, there exist t ′, such that t → t ′ and t ′ ∈
Jucprei(unsafe)K. There exist s ′, such that s →∗ s ′ and t ′ � s ′. Since
Jucprei(unsafe)K ⊆ Jlfp(pre, unsafe)K and Jlfp(pre, unsafe)K is upward-
closed, it holds that s ′ ∈ Jlfp(pre, unsafe)K. Hence, s ∈ Jlfp(pre, unsafe)K.

The following lemma states that the set of states from which an upward-
closed set JunsafeK can be reached, is actually the set of states denoted by
the least fixpoint of ucpre above unsafe. This fact ensures that backward
exploration of the state space of a WSTS by iterating ucpre staring from
an upward-closed set produces as a result exactly the set of all states from
which an error state is reachable. However, we do not make use of it here
in this exact way. For our further discussions it is important that the for-
mula lfp(ucpre, unsafe) is a backward invariant. Hence, if a set of predicates
contains the negations of the atoms that appear in lfp(ucpre, unsafe), then
the abstraction constructed w.r.t. this set of predicates is precise enough to
prove correctness of the abstract system, in case the concrete system is safe.

17



Lemma 2.35. If JunsafeK is an upward-closed set, then Jlfp(pre, unsafe)K =
Jlfp(ucpre, unsafe)K.

Proof.

Jlfp(pre, unsafe)K =
∞⋃
i=0

Jprei(unsafe)K

Jlfp(ucpre, unsafe)K =
∞⋃
i=0

Jucprei(unsafe)K

By Proposition 2.33, Jlfp(pre, unsafe)K ⊆ Jlfp(ucpre, unsafe)K.
By Proposition 2.34, Jlfp(ucpre, unsafe) ⊆ Jlfp(pre, unsafe)K.
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Chapter 3

Predicate Abstraction with
Refinement

As explained in the previous chapter we are interested in computing a safe
forward invariant for a given transition system or proving the program’s in-
correctness. We use predicate abstraction with respect to finite set of pred-
icates P to map the infinite set of formulas B(AP) into a finite one. In the
finite abstract domain the iterative computation of the fixpoint of the ab-
stract post operator is guaranteed to converge. Whenever the approximation
is too coarse, the abstraction is refined and the computation of the invariant
is resumed.

3.1 Predicate Abstraction

In this section we define the abstract domain w.r.t. a finite set of predicates
together with abstraction and concretization functions. Since the algorithm
considers different abstract domains at the same time, we assign each formula
in the abstract domain a finite set of atoms - the set of predicates that
determines the corresponding abstract domain. These pairs of formulas and
sets of atoms we call regions. Then we define the abstract post operator post#

on regions, which is an overapproximation of the concrete post operator in
the sense that post#((ϕ,P)) is a superset of post(ϕ).

We fix a program S = 〈X , init, δ〉 and a preorder � given by the formula
ϕ�, which is a well-quasi ordering on the set of states of the corresponding
transition system.

19



3.1.1 Concrete and Abstract Domain

The concrete domain is the infinite formula space B(AP), more formally the
complete lattice 〈B(AP),≤, false, true,∨,∧〉. We assume that all formulas
are in the form ∨

i∈I

∧
j∈Ji

ϕij

where ϕij are atoms.
The abstract domain is parameterized by a finite set of atoms P ⊆ AP.

The abstract domain w.r.t. P is L(P), the finite free distributive complete
lattice generated by the set of predicates P , with bottom element false and top
element true (which are assumed to be elements of L(P)) and the operators
∨ and ∧. Each lattice element can be written in its disjunctive normal form.
The partial order v on L(P) is defined as follows.

Definition 3.1 (Order relation v).∨
i∈I

∧
j∈Ji

ϕij v
∨
k∈K

∧
j∈J ′

k

ϕ′kj if ∀i ∈ I ∃k ∈ K {ϕij | j ∈ Ji} ⊇ {ϕ′kj | j ∈ J ′k}

Note that according to this ordering predicates are pairwise incomparable.
The abstract relation v implies the concrete one, but the converse is not true.

Proposition 3.2. If ϕ1 v ϕ2 then ϕ1 ≤ ϕ2.

3.1.2 Abstraction and Concretization Functions

We use the framework of abstract interpretation [6] to construct the best
abstraction of post w.r.t. P. To this end we define abstraction and con-
cretization functions that form a Galois connection. The abstraction function
αP : B(AP) → L(P) is defined as:

αP(ϕ) = µvψ ∈ L(P). ϕ ≤ ψ.

It maps a formula ϕ to the smallest w.r.t. v formula ϕ′ in L(P) that is larger
than ϕ w.r.t. ≤. The concretization function γP is defined to be the identity.

Theorem 3.3. The pair of functions αP and γP is a Galois connection, i.e.
for all ϕ ∈ B(AP) and ψ ∈ L(P) it holds that

ϕ ≤ γP(ψ) iff αP(ϕ) v ψ.
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As a consequence we have that αP and γP are monotone and ϕ ≤
γP(αP(ϕ)). For ψ ∈ P we often write ψ instead of γP(ψ) using the fact
that γP is the identity. In the same way for ψ1, ψ2 ∈ L(P) we write ψ1 ≤ ψ2

when ψ1 v ψ2 having in mind that v entails ≤.

Proposition 3.4. If L(P) contains a formula that is equivalent to a formula
ϕ, then the abstraction of ϕ is equivalent to ϕ, formally

γP(αP(ϕ)) ≡ ϕ.

If the finite sets of atoms P and Q are such that P ⊆ Q , then for every
formula ϕ it holds that γQ(αQ(ϕ)) ≤ γP(αP(ϕ)), i.e. the more elements the
set of predicates contains, the more precise is the abstraction.

3.1.3 The Region Structure

Definition 3.5 (Region). A region is a pair (ψ,P) where P is a finite set
of predicates, which we call support predicates and ψ ∈ L(P).

Definition 3.6 (Operators on regions). Let c ∈ C and σ = c1 . . . cm ∈ C∗.
We define the following operators on regions:

post#c ((ψ,P)) = (αP(postc(ψ)),P)

post#((ψ,P)) = (
∨

c∈C αP(postc(ψ)),P)

post#σ ((ψ,P)) = post#cm (. . . post#c1((ψ,P)) . . .)

J(ψ,P)K = JψK

[(ψ,P)] = ψ.

3.1.4 Abstract post#
P

Let P ⊆ AP . The abstract post-operator w.r.t. P, post#P : L(P) → L(P) we
define as

post#P = αP ◦ post ◦ γP .

Then it holds that
post#P (ψ) = [post#((ψ,P))].
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3.2 Abstract Reachability Analysis

In this section we give a schema of a semi-algorithm that iteratively computes
a safe invariant for a program S or proves its incorrectness. We show that if
it terminates, then the result is correct. If it reports that the program is not
correct then bad is reachable, and if it gives as result a formula, then this
formula is a safe forward invariant, which means that the program is correct.
This entails the partial correctness of every instantiation of this schema.

Here we give the steps of the algorithm in pseudocode and describe the
procedure, explaining the basic performed operations.

3.2.1 Abstract Reachability Tree

The abstract reachability tree is a rooted directed tree where each node is
labeled with a region and each edge is labeled with a guarded command. If
a node n is labeled with (ψ,P), we write n:(ψ,P). The formula ψ is called
the reachable region of the node.

The elements of C∗, i.e. the finite sequences of guarded commands we call
traces. A node n is characterized by the trace σ labeling the path from the
root to n. When there is a path in the tree from a node m to a node n the
edges of which are labeled with the elements of the trace σ, we write m

σ→ n.
We call a node n:(ψ,P)

• an error node if ψ 6≤ safe,

• safe if ψ ≤ safe.

The algorithm that we describe here is a standard symbolic forward ab-
stract iteration algorithm with backward refinement of the abstraction. It is
similar to the corresponding procedure from [13]. The schema is parameter-
ized by:

• the procedure used to determine the pivot node (actually by the defi-
nition of the error region of a node) and

• by the procedure used to determine the refinement predicates,

i.e. by the way abstract counterexamples are analyzed. In the next two chap-
ters we provide two instantiations of this schema and prove their termination
for two particular classes of systems.
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Require: Program S, formula unsafe
create root r labeled with (init,P0); F := ∅; L := {r}
while L 6= ∅ do

remove n:(ψ,P) from L
if ψ ≤ safe then
ϕ :=

∨
θ∈F θ

if ψ v ϕ then
mark n as covered

else
for all command c ∈ C do

(ψ′,P):=post#c ((ψ,P))
if ψ′ 6≤ false then

construct a child n′ of n with label (ψ′,P)
label the arc n → n′ with c
mark n′ as unprocessed ; add n′ to L
F := F ∪ {ψ}
mark n as uncovered

end if
end for

end if
else

m:(ϕ,Q) := pivot(n); σ := the trace from m to n
if m==NULL then

return NOT CORRECT
else

relabel m with (ϕ,Q ∪ predicates(σ))
// m is refined with predicates(σ) w.r.t. the trace σ
remove the subtrees starting at the children of m
change the mark of m to unprocessed ; add m to L
remove from F the formulas corresponding to

the deleted nodes and m
mark as unprocessed and add to L

all nodes marked as covered after m was processed
end if

end if
end while
return ϕ :=

∨
θ∈F θ

Algorithm 1: Abstract Iteration with Abstraction Refinement
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Definition 3.7 (Error region). The error region of a node m with reach-
able region ϕ for an error node n with m

σ→ n is a formula χ, which satisfies
the following two conditions:

• If ϕ ≤ ¬χ then JϕK∩Jpreσ(unsafe)K = ∅, i.e. every σ-successor of a state
in JϕK is in JsafeK.

• If ϕ 6≤ ¬χ then JϕK ∩ Jlfp(pre, unsafe)K 6= ∅, i.e. there is a state in JϕK,
from which a state in bad is reachable.

3.2.2 The Algorithm Schema

The algorithm iteratively constructs an abstract reachability tree, by con-
structing a sequence of trees T0,T1, . . .. The initial tree T0 consists of a sin-
gle node r labeled with (init,P0), where P0 = atoms(¬unsafe) ∪ atoms(init).
At the k + 1-th iteration of the loop the procedure constructs the tree Tk+1

from the tree Tk . It maintains a list L of nodes to be explored and at each
step processes a node from L until it becomes empty.

Each node in the current tree Tk has a mark which can be unprocessed,
covered or uncovered. A node n:(ψ,P) is marked as

• unprocessed if it is in L,

• covered if it was processed in Ti with i < k and found to be covered,
i.e. if ψ v ϕ, where
ϕ =

∨
{ϕ′|∃n′:(ϕ′,P ′) ∈ Ti such that the mark of n′ is uncovered}

• uncovered if it was processed in Ti where i < k and its successors were
computed because ψ 6v ϕ, where
ϕ =

∨
{ϕ′|∃n′:(ϕ′,P ′) ∈ Ti such that the mark of n′ is uncovered}.

The tree Tk+1 is constructed from the tree Tk by one of the following
operations:

• a node from L is processed and found to be covered or

• a node from L is processed, it is not covered and so its children are
added to the tree and to L or

• a node in Tk is refined and the other nodes in its subtree are deleted.
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When a node is processed, it is checked whether it is safe or not. In the case
when the node is safe, it is either discovered to be covered and its children
are not generated (its subtree is guaranteed to be processed elsewhere in the
tree) or is not covered in which case its children are generated and added to
the abstract reachability tree and to L. If the node is not safe, then there is an
abstract counterexample - a path from the root of the abstract reachability
tree to an error node. This abstract counterexample is analyzed backwards,
starting from the error node and finding the first node on the path from it
to the root, such that the intersection of the reachable region and the error
region of the node is empty. This node is called the pivot node. If no such
node is found, the procedure terminates with the answer that the program
is not correct. Otherwise, this node is refined by adding new atoms to its set
of support predicates. The subtree below the pivot node is deleted and the
construction is resumed from the pivot node onwards, where the abstraction
is w.r.t. the new set of support predicates of the pivot node. In addition, all
nodes that are marked as covered after the pivot node was processed should
be marked as unprocessed and added to L since they might not be covered
any more. The new predicates are such, that it is guaranteed that the same
abstract counterexample does not appear again - the node that is reachable
from the pivot node via the same trace is guaranteed to be safe.

The algorithm schema described informally above is given in pseudocode
as Algorithm 1. If the algorithm terminates with a tree T, it either returns
NOT CORRECT, or the formula

ϕ =
∨
{ϕ′|∃n′:(ϕ′,P ′) ∈ T such that the mark of n′ is uncovered},

which is a forward safe invariant.

The following three propositions state some properties, that are satisfied
by the regions labeling a node in some of the trees and a node in its subtree.

Proposition 3.8. If n:(ψ,P) and m:(ψ′,P ′) are nodes in some Ti such that
m is in the subtree of n then P ⊆ P ′.

Proof. The proof goes by induction on the length l of the path between n
and m.

1. Base case:
If l=0 then m=n and so, P = P ′.
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2. Induction step:
Let the statement hold for some length l and the length of the path
from n to m be l+1. Let r:(ϕ,Q) be the parent of m. We consider
the following two cases:

(a) m has not been refined after it was added as a child of r.
Then P ′ = Q and by induction hypothesis P ⊆ Q . Thus, P ⊆ P ′.

(b) m has been refined after it was added as a child of r.
Then P ′ ⊇ Q and by induction hypothesis P ⊆ Q . Thus, P ⊆ P ′.

Proposition 3.9. If n:(ψ,P) and m:(ψ′,P ′) are nodes in some Ti such that
n

σ→m then ψ′ ≤ [post#σ ((ψ,P))].

Proof. The proof goes by induction on the length of σ.

1. Base case:
The length of σ is 0, i.e. m=n. Then ψ′ = ψ = [post#σ ((ψ,P))].

2. Induction step: Let σ have length l + 1, i.e. σ = σ′ ∗ c, where the
length of σ′ is l and c ∈ C. Let r:(ϕ,Q) be the parent of m. Then

n
σ′
→r. By induction hypothesis ϕ ≤ [post#σ′((ψ,P))]. Since αQ and

postc are monotone, αQ(postc(ϕ)) ≤ αQ(postc([post#σ′((ψ,P))])). Since

P ⊆ Q , αQ(postc([post#σ′((ψ,P))])) ≤ αP(postc([post#σ′((ψ,P))])). We

have that ψ′ = αQ(postc(ϕ)) ≤ αP(postc([post#σ′((ψ,P))])) =

[post#σ′∗c((ψ,P))] = [post#σ ((ψ,P))].

Proposition 3.10. If n:(ψ,P) and m:(ψ′,P ′) are nodes in some Ti such
that n

σ→m then postσ(ψ) ≤ ψ′.

Proof. The proof goes by induction on the length of σ.

1. Base case:
The length of σ is 0, i.e. m=n. Then ψ′ = ψ = postσ(ψ).
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2. Induction step: Let σ have length l + 1, i.e. σ = σ′ ∗ c, where the

length of σ′ is l and c ∈ C. Let r:(ϕ,Q) be the parent of m. Then n
σ′
→r.

By induction hypothesis postσ′(ψ) ≤ ϕ and thus, postc(postσ′(ψ)) ≤
postc(ϕ). ψ′ = αQ(postc(ϕ)) and so, postc(ϕ) ≤ ψ′. Hence, postσ(ψ) ≤
ψ′.

Proposition 3.11. Let a node n1:(ψ1,P1) be refined in Ti with the set of
atoms Q. Let k > i be such that n1 is not deleted in any of the trees Tj where
i < j < k. Let n2:(ψ2,P2) be a node in Tk in the subtree of n1 (n2 can be
also n1). Then Q ⊆ P2.

Proof. Let the label of n1 in Tk be (ψ′1,P
′
1). Then Q ⊆ P ′

1 and ψ′1 = ψ1 since
n1 is not deleted in any of the trees Tj where i < j < k . By Proposition 3.8
P ′

1 ⊆ P2 and hence Q ⊆ P2.

3.3 Soundness of the Algorithm

Theorem 3.12. If the algorithm terminates then:

1. if it returns NOT CORRECT, then the set of states bad is reachable.

2. if it returns a formula ϕ, it holds that:

• init ≤ ϕ,

• post(ϕ) ≤ ϕ,

• ϕ ≤ safe.

Proof.

1. Suppose that the algorithm terminates and returns NOT CORRECT.
We know that the intersection of the reachable region and the error
region of the root node is not empty. This means that there is an
initial state, from which a state in bad is reachable, formally JinitK ∩
Jlfp(pre, unsafe)K 6= ∅.

2. Suppose that the algorithm terminates and returns a formula ϕ which
is

∨
θ∈F θ.
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• The root node is labeled with (init,P) and marked as uncovered.
Hence, init v ϕ and thus, init ≤ ϕ.

• Let s ∈ Jpost(ϕ)K. Then, there exist c ∈ C and s ′ ∈ JϕK such
that s ′

c→ s . Since s ′ ∈ JϕK, there exists θ ∈ F such that s ′ ∈ JθK.
There is a node n′:(θ,P ′) in the current tree marked as uncovered.
Since L is empty and Jpostc(θ)K 6= ∅ because s ∈ Jpostc(θ)K, there
exists a node n:(ψ,P) in the current tree such that s ∈ JψK and
n′

c→ n. If n is marked as uncovered, then ψ ∈ F and hence,
s ∈ JϕK. Otherwise ψ v

∨
θ∈F θ and hence, there is an uncovered

node m:(ψ′′,P ′′) such that ψ′′ ∈ F and ψ v ψ′′. We have that
s ∈ Jψ′′K and so, s ∈ JϕK.

• It is clear that ϕ ≤ safe because ϕ =
∨

θ∈F θ and for all elements
θ of F, θ ≤ safe.
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Chapter 4

Forward Abstract Iteration
with Backward Abstraction
Refinement for WSTS

4.1 The Algorithm

In this chapter we give an instantiation of the schema from the previous
chapter and prove that the obtained algorithm is guaranteed to terminate on
WSTS.

We assume that S is a transition system represented as a program and
that � is a well-quasi ordering between states that is expressible with a for-
mula ϕ�. Moreover, we assume that the underlying theory admits quantifier
elimination and that entailment is decidable. These assumptions guarantee
that the images of the operators post, pre and ucpre on formulas are com-
putable. For this algorithm we use the following definition of error region.

Definition 4.1 (Error region). If m and n are nodes in some Ti and
m

σ→ n, |σ| = l , and n is an error node, then
∨l

i=0 ucprei(unsafe) is called
the error region of m for n.

Now we show that the above definition satisfies the required properties.

Proposition 4.2. Let the reachable region of a node m be ϕ, n be an error
node with m

σ→ n and χ be the error region of m for n.

• If ϕ ≤ ¬χ then JϕK ∩ Jpreσ(unsafe)K = ∅.

29



• If ϕ 6≤ ¬χ then JϕK ∩ Jlfp(pre, unsafe)K 6= ∅.

Proof. The error region is χ =
∨l

i=0 ucprei(unsafe), where l = |σ|.

• If JϕK∩J
∨l

i=0 ucprei(unsafe)K = ∅ then it holds that JϕK∩Jucprel(unsafe)K =
∅. Hence, JϕK ∩ Jpreσ(unsafe)K = ∅.

• If JϕK∩J
∨l

i=0 ucprei(unsafe)K 6= ∅ then by Proposition 2.34 it holds that
JϕK ∩ Jlfp(pre, unsafe)K 6= ∅.

The pivot node is determined as the first node on the path from the error
node backwards towards the root for which the intersection of the reachable
region and the error region is empty. Procedure 2 determines the pivot node
according to the definition of an error region given above for an error node
n given as an argument.

Require: Program S, tree T, formula unsafe, error node n
n′′ := n; ψ := unsafe; χ := unsafe; ψ′′ := unsafe
while ψ′′ 6≤ ¬χ do

if n′′ is the root then
return NULL

else
n′′:(ψ′′,P′′) :=parent(n′′)
ψ := ucpre(ψ)
χ := χ ∨ ψ

end if
end while
return n′′:(ψ′′,P′′)

Procedure 2: pivot-Counterexample Analysis for WSTS

If there is no pivot node, i.e. if the intersection of the reachable region of
the root with the error region of the root is not empty, then the procedure
pivot returns NULL and the abstract interpretation algorithm terminates
with NOT CORRECT. Otherwise the pivot node is refined and the predicates
that are added to its set of support predicates are determined by the proce-
dure predicates which for a trace σ returns the set of negations of the atoms
that appear in

∨|σ|
k=0 ucprek(unsafe).
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Require: Program S, formula unsafe
create root r labeled with (init,P0) //P0 = atoms(init) ∪ atoms(¬unsafe)
L := {r}; F := ∅
while L 6= ∅ do

pop n:(ψ,P) from L
if ψ ≤ safe then
ϕ :=

∨
θ∈F θ

if ψ v ϕ then
mark n as covered

else
for all command c ∈ C do

(ψ′,P):=post#c ((ψ,P))
if ψ′ 6≤ false then

construct a child n′ of n with label (ψ′,P)
label the arc n → n′ with c
mark n′ as unprocessed ; push n′ to L
F := F ∪ {ψ}
mark n as uncovered

end if
end for

end if
else

m:(ϕ,Q) := pivot(n); σ := the trace from m to n
if m==NULL then

return NOT CORRECT
else

relabel m with (ϕ,Q ∪ predicates(σ))
// We say that the node m is refined with

// atoms(¬
∨|σ|

k=0 ucprek(unsafe)) w.r.t. the trace σ
remove the subtrees starting at the children of m
change the mark of m to unprocessed ; push m to L
remove from F the formulas corresponding to

the deleted nodes and m
end if

end if
end while
return ϕ :=

∨
θ∈F θ

Algorithm 3: Predicate Abstraction for WSTS

31



The procedure for abstract iteration with abstraction refinement is given
as Algorithm 3. Here the list of unprocessed nodes L is interpreted as a stack,
i.e. the state space is explored in depth-first order. Note that in this case all
nodes processed after the pivot node are in its subtree. Hence, when the
pivot node is refined all nodes that have been marked as covered after it has
been processed are deleted. So, they need not to be marked as unprocessed.
If the state space is explored in breadth-first order, then all nodes that are
marked as covered after the pivot node was processed should be marked
as unprocessed. Then all results also hold in that case. Here we consider
depth-first exploration just to avoid the complication mentioned above.

Assume that the program S = 〈X , init, δ〉 is such that the correspond-
ing transition system (S,�) is a WSTS. Moreover, let the set JunsafeK be
upward-closed. Now we prove that under these assumptions the procedure
terminates.

4.2 Termination

The termination of the algorithm described in the previous section we prove
by contradiction. Each of the iterations of the loop is terminating, so if
we assume that the loop does not terminate then it generates an infinite
sequence of trees

T0,T1, . . . ,Tk , . . . .

First we prove several lemmas and propositions that will be useful for the
proof of the main theorem.

The following lemma and its corollary formalize the fact, that if a node is
refined with the set of negations of the atoms appearing in lfp(ucpre, unsafe),
then in the next iterations as long as this node is not deleted all the nodes
in its subtree are safe, i.e. the node is not refined.

Lemma 4.3. Let n:(ψ,P) be a node such that atoms(¬lfp(ucpre, unsafe)) ⊆ P
and ψ ≤ ¬lfp(ucpre, unsafe). Then, for every j ≥ 0 it holds that

[(post#)j ((ψ,P))] ≤ safe

Proof. We prove by induction on j that

[(post#)j ((ψ,P))] ≤ ¬lfp(ucpre, unsafe).
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• Base case: j = 0
We have that (post#)0((ψ,P)) = (ψ,P). Also, ψ ≤ ¬lfp(ucpre, unsafe)
by assumption.

• Induction step: (j + 1)
Induction hypothesis: [(post#)j ((ψ,P))] ≤ ¬lfp(ucpre, unsafe).
Let [(post#)j ((ψ,P))] = χ and [(post#)j+1((ψ,P))] = χ′.
Since lfp(ucpre, unsafe) ≡ ucpre(lfp(ucpre, unsafe)),
χ ≤ ¬ucpre(lfp(ucpre, unsafe))
⇒ χ ≤ ¬pre(lfp(ucpre, unsafe)) (by Prop. 2.31)
⇒ post(χ) ≤ ¬lfp(ucpre, unsafe) (by Prop. 2.25)
⇒ αP(post(χ)) ≤ αP(¬lfp(ucpre, unsafe)) (by monotonicity of αP)
⇒ αP(post(χ)) ≤ ¬lfp(ucpre, unsafe) (by Prop. 3.4)
⇒ χ′ ≤ ¬lfp(ucpre, unsafe) (by Def. of post# )

Hence, for all j ≥ 0

[(post#)j ((ψ,P))] ≤ ¬lfp(ucpre, unsafe) ≤ ¬unsafe ≡ safe.

Corollary 4.4.
Let a node n:(ψ,P) be refined in Ti with atoms(¬lfp(ucpre, unsafe)). Then,
for every k > i , such that n is not deleted in any of the trees Tj where

i < j < k, if m:(ϕ,Q) is a node in Tk with n
σ→m, it holds that ϕ ≤ safe.

Proof. Let the label of n in Tk be (ψ′,P ′). By Proposition 3.11,
atoms(¬lfp(ucpre, unsafe)) ⊆ P ′. Since n is refined in Ti with
atoms(¬lfp(ucpre, unsafe)) and not deleted in the trees Tj where i < j <
k , ψ′ = ψ ≤ ¬lfp(ucpre, unsafe). If l is the length of σ then by Lemma
4.3 [(post#)l((ψ′,P ′))] ≤ safe. Form Proposition 3.9 it follows that ϕ ≤
[post#σ ((ψ′,P ′))]. Thus, ϕ ≤ safe.

To guarantee the termination of the procedure we ensure that a node
cannot be refined more than once w.r.t. a trace of particular length. Thus,
if we assume that a node in the tree is refined infinitely often then for every
l it is eventually refined with respect to traces of length greater than l. This
fact is used for proving that a node cannot be refined infinitely many times.
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Lemma 4.5. Let n:(ψ,P) be a node such that atoms(¬χi) ⊆ P and ψ ≤ ¬χi ,
where χi =

∨i
k=0 ucprek(unsafe). Then

[(post#)i((ψ,P))] ≤ safe.

Proof. We prove by induction on j that if j ≤ i then

[(post#)j ((ψ,P))] ≤ ¬ucprei−j (unsafe).

• Base case: j = 0
We have that (post#)0((ψ,P)) = (ψ,P). Since χi =

∨i
k=0 ucprek(unsafe)

and ψ ≤ ¬χi , ψ ≤ ¬ucprei(unsafe).

• Induction step: (j + 1) ≤ i
Induction hypothesis: [(post#)j ((ψ,P))] ≤ ¬ucprei−j (unsafe).
Let [(post#)j ((ψ,P))] = χ and [(post#)j+1((ψ,P))] = χ′.
Then χ ≤ ¬ucprei−j (unsafe)
⇒ χ ≤ ¬ucpre(ucprei−j−1(unsafe))
⇒ χ ≤ ¬pre(ucprei−j−1(unsafe)) (by Prop. 2.31)
⇒ post(χ) ≤ ¬ucprei−j−1(unsafe) (by Prop. 2.25)
⇒ αP(post(χ)) ≤ αP(¬ucprei−(j+1)(unsafe)) (by monotonicity of αP)
⇒ αP(post(χ)) ≤ ¬ucprei−(j+1)(unsafe) (by Prop. 3.4)
⇒ χ′ ≤ ¬ucprei−(j+1)(unsafe) (by Def. of post#)

Thus, for j = i we have

[(post#)i((ψ,P))] ≤ ¬ucpre0(unsafe) = ¬unsafe ≡ safe.

Corollary 4.6. Let a node n1:(ψ1,P1) be refined in Ti w.r.t. a trace σ. Let
k > i be such that n1 is not deleted in any of the trees Tj where i < j < k
and let n2:(ψ2,P2) be a node in Tk in the subtree of n1. Then, for any trace
τ such that |τ | = |σ| = l , n2 is not refined in Tk w.r.t. τ .

Proof. Assume that n2 is refined in Tk w.r.t. τ where |τ | = l and m:(ϕ,Q)
is the corresponding error node in Tk . Then, ψ2 ≤ ¬

∨l
k=0 ucprek(unsafe).

According to Proposition 3.11 atoms(¬
∨l

k=0 ucprek(unsafe)) ⊆ P2. Hence,
by Lemma 4.5 [(post#)l((ψ2,P2))] ≤ safe. From Proposition 3.9 it follows
that ϕ ≤ [post#σ ((ψ2,P2))]. Thus, ϕ ≤ safe which contradicts to the fact that
m is an error node.
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Lemma 4.7. Let a node n be deleted only finitely many times and refined
infinitely many times, i.e. there is k ≥ 0 such that n is not deleted from any
of the trees Tk ,Tk+1, . . . and in infinitely many of these trees n is refined.
Then, there is an infinite subsequence Tk0 ,Tk1 , . . . of the above sequence, and
a sequence of traces σ0, σ1, . . ., such that

• |σi | < |σi+1| and

• in Tki n is refined w.r.t. σi.

Proof. Let a node n be deleted only finitely many times and refined infinitely
many times, i.e. there is k ≥ 0 such that n is not deleted from any of the trees
Tk ,Tk+1, . . . and in infinitely many of these trees n is refined. Then there is
an infinite subsequence of the above sequence Tj0 ,Tj1 , . . . and a sequence of
traces τ0, τ1, . . . such that n is refined in Tji with respect to τi. According
to Corollary 4.6 (with n1 = n2 = n) all members of the sequence τ0, τ1, . . .
have different lengths. Thus, we can choose a subsequence Tk0 ,Tk1 , . . . of
the above sequence of trees and a corresponding subsequence σ0, σ1, . . . of
τ0, τ1, . . ., such that |σi | < |σi+1| and n is refined in Tki w.r.t σi .

Lemma 4.8. If a node is deleted finitely many times, it is refined only finitely
many times.

Proof. Assume for contradiction, that n is deleted only finitely many times
and refined infinitely many times, i.e. there is k ≥ 0, such that n is not
deleted from any of the trees Tk ,Tk+1, . . . and in infinitely many of these
trees n is refined. Then according to the previous lemma there is an infi-
nite subsequence Tk0 ,Tk1 , . . . of the above sequence and a sequence of traces
σ0, σ1, . . ., such that

• |σi | < |σi+1|

• n is refined in Tki with respect to σi.

Let |σi | = li . At each of the corresponding refinements the algorithm consid-
ers the formula χli =

∨li
k=0 ucprek(unsafe). Then

χl0 ≤ χl1 ≤ . . .

and each set Jχli K is upward-closed. According to Lemma 2.12, there exists
an index j , such that

Jχlj K = Jχlj+1K = . . . .
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This means that,

χlj ≡ χij+1 ≡ . . . .

Since l0 < l1 < . . .,
∨∞

i=0 χli ≡
∨∞

i=0 ucprei(unsafe) ≡ lfp(ucpre, unsafe). Then,

χlj ≡ lfp(ucpre, unsafe). Let m:(ϕ,Q) be the node for which n
σj+1→ m in Tkj+1 .

Then ϕ 6≤ safe by the choice of σj+1. By Corollary 4.4, ϕ ≤ safe. This is a
contradiction.

Lemma 4.9. A node cannot be deleted infinitely many times.

Proof. A node n is deleted form some tree in the sequence only if a node on
the path from the root to n that is different from n is refined in this tree. For
every node we show that it is deleted only finitely many times. The proof
goes by induction on the depth of the node.

• Base case:
The root node is never deleted.

• Induction step:
Let l > 0. Assume that every node with depth less than l is deleted
only finitely many times. Let n be a node with depth l . By induction
hypothesis and by Lemma 4.8 we have that every node on the path
from the root to n is refined only finitely many times. Thus, there is a
k such that none of the nodes on the path from the root to n is refined
in the trees Tk ,Tk+1, . . .. Then n is not deleted from Tk ,Tk+1, . . .,
i.e. it is deleted only finitely many times.

Lemma 4.10. Let infinitely many different nodes be refined by the procedure.
Then there is an infinite sequence of different nodes n0,n1, . . . ,ni , . . . and an
infinite sequence of trees Tk0 ,Tk1 , . . . ,Tki , . . ., (ki < ki+1) such that:

• ni+1 is in the subtree of ni ,

• ni is refined in Tki ,

• none of the ancestors of ni(including ni) is refined in the trees Tj with
j > ki .
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Proof. Let infinitely many different nodes be refined. We construct induc-
tively the infinite sequence of nodes n0,n1, . . . ,ni , . . . and the infinite se-
quence of trees Tk0 ,Tk1 , . . . ,Tki , . . . such that for every i for the finite sub-
sequence n0,n1, . . . ,ni it holds that:

• for all l ≤ i , nl is refined in Tkl ,

• for all l < i nl+1 is in the subtree of nl ,

• infinitely many nodes in the subtree of ni are refined in the trees Tj

with j > ki ,

• for all l ≤ i none of the ancestors of nl (including nl) is refined in the
trees Tj with j > kl .

The construction is the following.

• There is a node in the subtree of which infinitely many nodes are refined
since C is finite. We define n0 to be the node with the smallest depth,
such that n0 is refined by the procedure and infinitely many nodes in
the subtree of n0 are refined. Let k0 be the largest index such that n0

is refined in Tk0 . It is clear, that the sequence n0 satisfies the above
conditions because by the choice of n0 we have that none of its ancestors
is ever refined.

• Let us assume that we have constructed the sequences n0,n1, . . . ,ni

and Tk0 ,Tk1 , . . . ,Tki that satisfy the above conditions. Since there are
infinitely many nodes in the subtree of ni that are refined in the trees
Tj with j > ki and C is finite, it holds that there is a node in the
subtree of ni , different from ni , such that infinitely many nodes in its
subtree are refined in the trees Tj with j > ki . Let ni+1 be the node
with the smallest depth in the subtree of ni such that

– ni+1 is refined in a tree Tk such that k > ki and

– infinitely many nodes in the subtree of ni+1 are refined in the trees
Tj with j > ki .

Let ki+1 be the largest index such that ni+1 is refined in Tki+1. Then we
are sure that none of the nodes on the path from ni to ni+1 (including
ni+1) are refined in the trees Tj with j > ki+1 by the choice of ni+1.
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By the induction hypothesis we have that none of the ancestors of ni

(including ni) is refined in some of the trees Tj with j > ki . Hence, none
of the ancestors of ni+1 (including ni+1) is refined in the trees Tj with
j > ki+1. According to the choice of ni+1, infinitely many nodes in its
subtree are refined in the trees Tj with j > ki+1. Hence, the sequence
of nodes n0,n1, . . . ,ni+1 satisfies the requirements. The properties of
the finite subsequences of the infinite sequence constructed above imply
that it satisfies the desired conditions.

Theorem 4.11. The abstraction refinement procedure given as Algorithm 3
terminates on every WSTS (S,�) and upward-closed set of error states.

Proof. Assume for contradiction that the procedure does not terminate. This
means that the loop is executed infinitely many times, i.e. the stack of un-
processed nodes L never becomes empty and all abstract counterexamples
are spurious. At each iteration of the loop the current tree constructed by
the procedure we denote with Tk . So, we have the sequence of finite trees

T0,T1, . . . .

Assume that for some k ≥ 0 for all i ≥ k no more refinements are
performed, i.e. Ti+1 is obtained from Ti by processing a safe node from L.
Let n:(ψ,P) be an arbitrary unprocessed node in Tk . There are two possible
cases:

• n is found to be covered, so none of the children of n are added to the
tree

• n is not covered in which case the children of n are generated and
added to the tree and to L.

n is not refined in Tk ,Tk+1, . . ., which means that for i ≥ k in Ti the set of
support predicates of n is P. The application of post#c preserves the set of
support predicates and the nodes added to the subtree of n are not refined
in Tk ,Tk+1, . . . either. Thus, all nodes that appear in the subtree of n in
Tk ,Tk+1, . . . have a set of support predicates P . Hence, all these nodes are
labeled with formulas that belong to L(P) which is finite. Since a node is
added to the tree only if it is not covered, only finitely many nodes may be
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added to the subtree of n. The tree Tk has only finitely many unprocessed
nodes, so only finitely many new nodes are added to L. Hence, at some point
L = ∅ and the algorithm terminates which contradicts to our assumption.
Thus, infinitely many refinements are performed.

By Lemma 4.9 no node is deleted infinitely often and thus, according to
Lemma 4.8 no node is refined infinitely often. Thus, infinitely many different
nodes are refined. By Lemma 4.10, there is an infinite sequence of nodes
n0,n1, . . . ,ni , . . . and an infinite sequence of trees Tk0 ,Tk1 , . . . ,Tki , . . ., such
that

• ni+1 is in the subtree of ni ,

• ni is refined in Tki ,

• none of the ancestors of ni (including ni) is refined in the trees Tj with
j > ki .

Let σ0, σ1, . . . be the corresponding sequence of traces with respect to
which the nodes from the above sequence are refined (ni is refined w.r.t. σi

in Tki ). By the third property of the sequence of nodes, for each i the node ni

is not deleted in any of the trees Tj with j > ki . According to Corollary 4.6
σ0, σ1, . . . should have different lengths. This means that there are arbitrarily
long sequences among them. Thus, we can choose an infinite subsequence
of the above sequence of nodes, m0,m1, . . . , such that for the corresponding
subsequence of traces τ0, τ1, . . . of σ0, σ1, . . . it holds that |τi | < |τi+1|. Let
|τi | = li . The algorithm considers the sequence of formulas

χl0 , χl1 , . . . ,

where

χli ≡
li∨

k=0

ucprek(unsafe).

Thus, for every i Jχli K is an upward-closed set and χli ≤ χli+1 . According
to Lemma 2.12 there is an index j , such that χlj ≡ lfp(ucpre, unsafe). Thus,
according to Corollary 4.4 after mj is refined w.r.t. τj , in the subsequent trees
all nodes in the subtree of mj are safe and hence, in all subsequent trees all
nodes in the subtree of mj+1 are safe. This contradicts to the fact that after
mj is refined w.r.t. τj , mj+1 is refined. This concludes the proof.
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Chapter 5

Forward Abstract Iteration
with Backward Abstraction
Refinement for WSLTS

In this chapter we consider WSTS with strong compatibility with the transi-
tion labels taken into account, i.e. WSLTS. Some families of WSTS such as
various extensions of Petri nets or real time automata (see [1]) belong to this
class. This class of transition systems is a subclass of the class of WSTS, but
we obtain a possibly more efficient algorithm for predicate abstraction with
abstraction refinement that is guaranteed to terminate on members of this
class.

For WSLTS the set of predecessors of an upward-closed set of states is
also upward-closed. This is formalized in the following lemma.

Lemma 5.1. If JϕK is upward-closed and c is a guarded command, then the
set Jprec(ϕ)K is also upward-closed.

Proof. Let JϕK be upward-closed. Let s ∈ Jprec(ϕ)K and s � t . There exists
a state u ∈ JϕK such that s

c→ u. Hence, there is a sate v such that t
c→ v

and u � v . Thus, v ∈ JϕK and hence, t ∈ Jprec(ϕ)K.

5.1 The Algorithm

We assume that S is a transition system represented as a program. Also,
entailment should be decidable in the underlying theory and it should admit
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quantifier elimination. This guarantees that the images of the operators post
and pre on formulas are computable.

Here we give an instantiation of the schema from Chapter 3 and show that
the obtained algorithm is guaranteed to terminate on WSLTS. This instan-
tiation results in a possibly more efficient algorithm since fewer predicates
are added to the support set of the pivot node. The definition of error region
that we use in this chapter is the following.

Definition 5.2 (Error region). If m and n are nodes in some Ti with
m

σ→ n and n is an error node then preσ(unsafe) is called the error region of
m for n.

Proposition 5.3. Let the reachable region of a node m be ϕ, n be an error
node with m

σ→ n and χ be the error region of m for n.

• If ϕ ≤ ¬χ then JϕK ∩ Jpreσ(unsafe)K = ∅.

• If ϕ 6≤ ¬χ then JϕK ∩ Jlfp(pre, unsafe)K 6= ∅.

Note that by the definition of error region we have that if ϕ 6≤ ¬χ, then
JϕK ∩ Jpreσ(unsafe)K 6= ∅.

Require: Program S, tree T, formula unsafe, node n
n′ := n; n′′ := n; ψ := unsafe; ψ′′ := unsafe;
while ψ′′ 6≤ ¬ψ do

if n′′ is the root then
return NULL

else
n′ :=n′′

n′′:(ψ′′,P′′) :=parent(n′′)
c:= the label on n′′ → n′

ψ := prec(ψ)
end if

end while
return n′′:(ψ′′,P ′′)

Procedure 4: pivot-Counterexample Analysis for WSLTS

The set of refinement predicates added to the set of support predicates
of the pivot node is changed accordingly. It is computed by the procedure
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predicates which takes as an argument the trace σ between the pivot node
and the error node and returns atoms(¬

∨|σ|+1
k=1 pre[k ,|σ|+1)(unsafe)). Note that

in this version the refinement is really guided by the counterexample since
the pivot node and the refinement predicates depend on the particular trace
σ. The procedure pivot that determines the pivot node is given as Procedure
4. The abstraction refinement procedure, which is similar to the algorithm
in [13], is given in pseudocode as Algorithm 5.

Assume that the program S = 〈X , init, δ〉 is such that the corresponding
transition system S = 〈S , I , C, δ〉 is a WSLTS with an ordering �. More-
over, let the set JunsafeK be upward-closed. Now we prove that under these
assumptions the algorithm terminates.

5.2 Termination

In order to prove the termination of the procedure, we first show in the
following lemma and its corollary that a node cannot be refined more than
once w.r.t. the same trace σ.

Lemma 5.4. Let n:(ϕ,P) be a node and σ = c1 . . . cn be a trace. Let

χn =
n+1∨
i=1

preσ[i ,n+1)(unsafe).

If atoms(¬χn) ⊆ P and ϕ ≤ ¬preσ(unsafe) then [post#σ ((ϕ,P))] ≤ safe.

Proof. We prove by induction on i that if i ≤ n then

[post#σ[1,i+1)((ϕ,P))] ≤ ¬preσ[i+1,n+1)(unsafe).

• Base case: i = 0
post#σ[1,1)((ϕ,P)) = (ϕ,P), ϕ ≤ ¬preσ[1,n+1)(unsafe). Hence,

[post#σ[1,1)((ϕ,P))] ≤ ¬preσ[1,n+1)(unsafe).

• Induction step: (i + 1) ≤ n
Induction hypothesis: [post#σ[1,i+1)((ϕ,P))] ≤ ¬preσ[i+1,n+1)(unsafe)

Let [post#σ[1,i+1)((ϕ,P))] = χ and [post#σ[1,i+2)((ϕ,P))] = χ′.
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Then χ ≤ ¬preσ[i+1,n+1)(unsafe)
⇒ χ ≤ ¬preci+1

(preσ[i+2,n+1)(unsafe))
⇒ postci+1

(χ) ≤ ¬preσ[i+2,n+1)(unsafe) (by Prop 2.25)
⇒ αP(postci+1

(χ)) ≤ αP(¬preσ[i+2,n+1)(unsafe))
⇒ αP(postci+1(χ)) ≤ ¬preσ[(i+1)+1,n+1)(unsafe) (by Prop. 3.4)
⇒ χ′ ≤ ¬preσ[(i+1)+1,n+1)(unsafe) (by Def. of post#)

Thus, for i = n we have

[post#σ[1,n+1)((ϕ,P))] ≤ ¬preσ[n+1,n+1)(unsafe) = ¬unsafe ≡ safe.

Corollary 5.5. Let a node n1:(ψ1,P1) be refined in Ti w.r.t. a trace σ. Let
k > i be such that n1 is not deleted in any of the trees Tj where i < j < k
and let n2:(ψ2,P2) be a node in Tk in the subtree of n1. Then n2 is not
refined in Tk w.r.t. σ.

Proof. Assume that n2 is refined in Tk w.r.t. σ and m:(ϕ,Q) is the cor-
responding error node in Tk . Then, ψ2 ≤ ¬preσ(unsafe). According to

Proposition 3.11 atoms(¬
∨|σ|+1

i=1 preσ[i ,|σ|+1)(unsafe)) ⊆ P2. Hence, by Lemma

5.4 [post#σ ((ψ2,P2))] ≤ safe. From Proposition 3.9 it follows that ϕ ≤
[post#σ ((ψ2,P2))]. Thus, ϕ ≤ safe which contradicts to the fact that m is
an error node in Tk .

Lemma 5.6. Let a node n be deleted only finitely many times, i.e. there is
k ≥ 0, such that n is not deleted from any of the trees Tk ,Tk+1, . . .. Then n
is refined only a finite number of times.

Proof. Let a node n be deleted only finitely many times, i.e. there is k ≥ 0,
such that n is not deleted from any of the trees Tk ,Tk+1, . . .. Assume that n
is refined in infinitely many of the trees Tk ,Tk+1, . . .. According to Corollary
5.5 each time n is refined with respect to a different trace. Let n be refined
in the trees Tm0 ,Tm1 , . . . with respect to the traces σ0, σ1, . . .. Since C is
finite, there is a c ∈ C, such that there is an infinite subsequence Tr0 ,Tr1 , . . .
of Tm0 ,Tm1 , . . . and a corresponding subsequence τ0, τ1, . . . of σ0, σ1, . . ., such
that for every i, τi[1] = c. Let li be the length of τi and τ ′i = τi [2, li + 1).
Let m be the child of n with n

c→ m and ϕ0, ϕ1, . . . be the reachable regions
of m in Tr0 ,Tr1 , . . .. Then, for all i JϕiK ∩ Jpreτ ′

i
(unsafe)K 6= ∅ (otherwise

m but not n would be refined in Tri ). Let s0, s1, . . . be a sequence of states
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such that si ∈ JϕiK ∩ Jpreτ ′
i
(unsafe)K. Since � is a well-quasi ordering on S ,

there are indices i < j such that si � sj . According to the choice of si we
have si ∈ Jpreτ ′

i
(unsafe)K. Thus, sj ∈ Jpreτ ′

i
(unsafe)K, since Jpreτ ′

i
(unsafe)K is

upward-closed. After the refinement preformed in Tri we have that for all p
with i < p it holds that JϕpK ∩ Jpreτ ′

i
(unsafe)K = ∅ (follows from the proof of

Lemma 5.4). This means that sj 6∈ Jϕj K which contradicts to the choice of
sj . So, n is refined only finitely many times.

Proposition 5.7. If a node n:(ϕ,P) in the tree Tk is refined in this tree
w.r.t. the trace σ then for every trace τ which is a prefix of σ and different
from σ it holds that ϕ ≤ ¬preτ (unsafe).

Proof. Assume for contradiction that ϕ 6≤ ¬preτ (unsafe).
Thus, JϕK ∩ Jpreτ (unsafe)K 6= ∅. Hence, Jpostτ (ϕ)K ∩ JunsafeK 6= ∅. Let
m:(ψ,Q) be the node in Tk with n

τ→ m. According to Proposition 3.10 we
have that postτ (ϕ) ≤ ψ. Hence, ψ 6≤ safe. This is not possible, since n is
refined in Tk w.r.t. σ and m is a node on the path from n to the corresponding
error node. This completes the proof by contradiction.

Theorem 5.8. The abstraction refinement procedure given as Algorithm 5
terminates on every WSLTS (S,�) and upward-closed set of error states.

Proof. Assume for contradiction that the procedure does not terminate. This
means that the loop is executed infinitely many times, i.e. the stack of unpro-
cessed nodes L never becomes empty and all counterexamples are spurious.
At each iteration of the loop the current tree constructed by the procedure we
denote with Tk . So, we have the sequence of finite trees T0,T1, . . .. Assume
that for some k ≥ 0 for all i ≥ k no more refinements are performed, Ti+1

is obtained from Ti by processing a safe node from L. Let n:(ψ,P) be an
arbitrary unprocessed node in Tk . There are two possible cases: n is found
to be covered, so none of the children of n are added to the tree or n is not
covered in which case the children of n are generated and added to the tree
and to L. n is not refined in Tk ,Tk+1, . . ., which means that for i ≥ k in Ti

the set of support predicates of n is P. The application of post#c preserves
the set of support predicates and the nodes added to the subtree of n are not
refined in Tk ,Tk+1, . . . either. Thus, all nodes that appear in the subtree of
n in Tk ,Tk+1, . . . have a set of support predicates P . Hence, all these nodes
are labeled with formulas that belong to L(P), which is finite. Since a node
is added to the tree only if it is not covered, only finitely many nodes may be
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added to the subtree of n. The tree Tk has only finitely many unprocessed
nodes, so only finitely many new nodes are added to L. Hence, at some point
L becomes empty and the algorithm terminates, which contradicts to our
assumption. Thus, infinitely many refinements are performed.

Note that the changes in the procedure do not affect the proof of Lemma
4.9, except that Lemma 5.6 is used instead of Lemma 4.8 in this case, and
hence it holds for this instantiation of the schema too. Hence, no node is
deleted infinitely often and thus according to Lemma 5.6 no node is refined
infinitely often. So, infinitely many different nodes are being refined. By
Lemma 4.10, there is an infinite sequence of nodes n0,n1, . . . ,ni , . . . and an
infinite sequence of trees Tk0 ,Tk1 , . . . ,Tki , . . ., such that

• ni+1 is in the subtree of ni ,

• ni is refined in Tki ,

• none of the ancestors of ni (including ni) is refined in the trees Tj with
j > ki .

Let σ0, σ1, . . . be the corresponding sequence of traces with respect to
which the nodes from the above sequence are refined (ni is refined w.r.t. σi

in Tki ). By the third property of the sequence of nodes, for each i the node
ni is not deleted in any of the trees Tj with j > ki . According to Corollary
5.5 all elements of σ0, σ1, . . . are different. Since C is finite, we can choose a
subsequence m0,m1, . . . of the sequence of nodes n0,n1, . . ., a subsequence
of trees Tl0 ,Tl1 , . . . and a corresponding subsequence τ0, τ1, . . . of σ0, σ1, . . .,
such that mi is refined in Tli w.r.t. τi and such that for all i τi is a prefix
of τi+1 and different from τi+1. Hence, there exists c ∈ C such that for all
i τi [1] = c. Let the sequence of nodes r0, r1, . . . be such that mi

c→ ri . Let
τ ′i = τi [2, |τi | + 1). Let ϕi and ϕ′i be the reachable regions of mi and ri in
Tli respectively. We have that Jϕ′iK ∩ Jpreτ ′

i
(unsafe)K 6= ∅. Let the sequence

of states s0, s1, . . . be such that si ∈ Jϕ′iK ∩ Jpreτ ′
i
(unsafe)K.

There exist indices i and j , such that i < j and si � sj . Since si ∈
Jpreτ ′

i
(unsafe)K and Jpreτ ′

i
(unsafe)K is upward-closed, sj ∈ Jpreτ ′

i
(unsafe)K.

By Proposition 5.7 we have that ϕj ≤ ¬preτi
(unsafe). By Proposition 3.11

atoms(¬
∨|τi |+1

l=1 preτi [l ,|τi |+1)(unsafe)) is a subset of the set of support predi-
cates of mj in Tlj . Hence, Jϕ′j K∩ Jpreτ ′

i
(unsafe)K = ∅ (by the proof of Lemma

5.4). This contradicts to the fact that sj ∈ Jϕ′j K ∩ Jpreτ ′
i
(unsafe)K. This

completes the proof.
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Require: Program S, formula unsafe
create root r labeled with (init,P0) //P0 = atoms(init) ∪ atoms(¬unsafe)
L = {r}; F := ∅
while L 6= ∅ do

pop n:(ψ,P) from L
if ψ ≤ safe then
ϕ :=

∨
θ∈F θ

if ψ v ϕ then
mark n as covered

else
for all command c ∈ C do

(ψ′,P):=post#c ((ψ,P))
if ψ′ 6≤ false then

construct a child n′ of n with label (ψ′,P)
label the arc n → n′ with c
mark n′ as unprocessed ; push n′ to L
F := F ∪ {ψ}; mark n as uncovered

end if
end for

end if
else

m:(ϕ,Q) := pivot(n); σ := the trace from m to n
if m==NULL then

return NOT CORRECT
else

relabel m with (ϕ,Q ∪ predicates(σ))
// We say that the node m is refined with

// atoms(¬
∨|σ|+1

k=1 preσ[k ,|σ|+1)(unsafe))
//w.r.t. the trace σ
remove the subtrees starting at the children of m
change the mark of m to unprocessed ; push m to L
remove from F the formulas corresponding to

the deleted nodes and m
end if

end if
end while
return ϕ :=

∨
θ∈F θ

Algorithm 5: Predicate Abstraction for WSLTS
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Chapter 6

Other Issues

Although the fact that the two procedures from the previous chapters are
guaranteed to terminate is a nice theoretical result, they are not very feasible
in practice. In this chapter we discuss two particular attempts to optimize
them. For the first one we provide an example that shows that the optimized
algorithm is not complete for the class of WSTS.

6.1 Refining Only the Spurious Error Trace

Since the construction of the abstract reachability tree is computationally
expensive, a practically feasible algorithm should keep more work from pre-
vious phases of the refinement loop to the next one when this is possible.
One possible improvement is to keep all parts of the subtree with root the
pivot node except the spurious error trace. This means that only the re-
gions of the nodes lying on the path between the pivot node and the error
node are recomputed with respect to the new set of predicates. In addition,
the nodes in this subtree that are marked as covered after the pivot node
was processed should be unmarked to preserve soundness. As stated in [13]
this optimization does not affect the soundness of the method, but it affects
its completeness, i.e. the modified procedure might not terminate. We give
an example - a WSTS together with an upward-closed set of error states
for which such a modified procedure does not terminate. The example is
constructed on the basis of the example in [13].

Example 6.1. Consider the program with set of guarded commands given in
Table 2.1 and the corresponding labeled transition system. Let � be defined
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as follows:

〈pc1, x1〉 � 〈pc2, x2〉 iff pc1 = pc2 and x1 ≤ x2.

It is clear that � is a well-quasi ordering. We now show that � is com-
patible with the transition relation.

Let s = 〈pc1, x1〉, t = 〈pc2, x2〉, u = 〈pc3, x3〉, s
c→ t and s � u.

We have to consider the following cases:

• c = c1

Then pc1 = pc3 = l1, pc2 = l2, x3 ≥ x1 and x2 = 0.
Let v = 〈l2, 0〉. Then u

c1→ v and t � v .

• c = c2

Then pc1 = pc2 = pc3 = l2, x1 = x2 = 0 and x3 ≥ x1.
Let v = u. Then u →0 v and t � v .

• c = c3

Then pc1 = pc3 = l2, pc2 = l3, x3 ≥ x1 > 0, x2 = x1.
Let v = 〈l3, x3〉. Then u

c3→ v and t � v .

Let unsafe = (pc = l3). Obviously the set JunsafeK is upward-closed.

Usually all the predicates expressing the control location are included in
the initial set of predicates. Assume that the initial set of support predicates
for the root is P0 = {pc = l1, pc = l2, pc = l3}. The resulting tree after the
first 4 iterations (after processing the first error node) is shown on Figure
6.1 (a). On the right of the nodes we show their error regions in a simplified
version dropping some disjuncts. The node labeled with (pc = l3,P0) is an
error node. The pivot node is the root. P1 ⊇ P0 ∪ {x = 0}. Assume that
only the regions of the nodes on the spurious error trace are recomputed
and all other nodes in the subtree are kept unchanged. The node marked
with covered should be unmarked since it is no longer covered by its parent.
Then, the subtree starting from the child of the pivot node appears as the
subtree with root the unmarked node. The tree after processing the next
encountered error node is shown on Figure 6.1 (b). Thus, the abstract-
check-refine loop never terminates. On the other hand, if the first time an
error node is processed the entire subtree below the pivot node is deleted
and constructed again with the new set of support predicates P1, then the
procedure terminates with the abstract reachability tree on Figure 6.1 (c).
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Figure 6.1: Abstract reachability trees
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From the above example we conclude that if we modify the algorithm
from Chapter 4 in a way that only the regions of the nodes on the error trace
are recomputed then the procedure is no longer guaranteed to terminate.

6.2 Taking into Account the Spurious Error

Trace

Recall that in the algorithm in Chapter 4 the refinement step is not actu-
ally guided by the counterexample. The abstract counterexample is used to
determine the pivot node, but its error region and the refinement predicates
actually depend only on the length of the path from the pivot node to the
error node. On the other hand, in the procedure from Chapter 5 the er-
ror region and the predicates actually depend on the sequence of commands
labeling the path from the pivot node to the error node. This refinement
heuristic results in the selection of more relevant predicates which is obvi-
ously a more practical approach. In this section we consider a modification
of the algorithm in Chapter 4 where the spurious error trace is actually taken
into account in computing the error regions and the refinement predicates.
We are interested in showing the termination of this modified algorithm for
the class of WSTS.

We take the following definition of error region:

Definition 6.1 (Error region). If m and n are nodes in some Ti with
m

σ→ n and n is an error node then ucpreσ(unsafe) is called the error region
of m for n.

Let the set of predicates added to the set of support predicates of the
pivot node consist of the negations of the atoms in the formula∨l+1

i=1 ucpreσ[i ,l+1)(unsafe), where l is the length of σ. This might reduce the
number of newly generated atoms, as some predicates that are not relevant
are not added to the set of supports. Moreover, the pivot node determined
in this way is guaranteed to be in the subtree with root the node found as a
pivot node by the procedure in Chapter 4. Hence, the set of nodes deleted
by the modified method is a subset of the set of nodes deleted by the method
in Chapter 4, which means that the same or a bigger part of the tree from
the current iteration is preserved for the next one. We have proven, that if
the method proposed in Chapter 4 is optimized in such a way, no node in the
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tree can be refined infinitely many times. The question whether the modified
procedure is guaranteed to terminate on every WSTS and upward-closed set
of error states is still open.

The following lemma and its corollary state that after refining the pivot
node in the way described above, in the subsequent trees this node cannot
be refined again w.r.t. the same trace. The proofs follow the lines of the ones
for the similar statements from Chapter 5.

Lemma 6.2. Let n:(ϕ,P) be a node and σ ∈ C∗ such that atoms(¬χn) ⊆ P
and ϕ ≤ ¬ucpreσ(unsafe) where

χn =
n+1∨
i=1

ucpreσ[i ,n+1)(unsafe).

Then
[post#σ ((ϕ,P))] ≤ safe.

Corollary 6.3. Let a node n:(ϕ,P) be refined in Ti w.r.t. a trace σ ∈ C∗
with atoms(¬χn) where

χn =
n+1∨
i=1

ucpreσ[i ,n+1)(unsafe).

Let k > i be such that n is not deleted in any of the trees Tj with i < j < k.

Then for m:(ψ,Q) in Tk with n
σ→m it holds that ψ ≤ safe.

In a manner similar to the corresponding proofs from Chapter 5 we show
that a node cannot be refined infinitely many times.

Lemma 6.4. Let a node n be deleted only finitely many times, i.e. there is
k ≥ 0, such that n is not deleted from any of the trees Tk ,Tk+1, . . .. Then n
is refined only a finite number of times.

Corollary 6.5. Every node is refined only finitely many times.
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Chapter 7

Two Families of WSTS

Several families of WSTS are used to model reactive systems in practice.
Among them are timed automata, networks of timed automata, hybrid au-
tomata, FIFO channel systems, extended Petri nets, broadcast protocols and
many others. In this chapter we discuss Petri nets and Lossy Channel Sys-
tems as particular examples of WSTS.

One of the main challenges in developing symbolic algorithms for a class
of systems is to choose a symbolic representation of possibly infinite sets
of system states. This symbolic representation should satisfy the require-
ments that allow for construction of a symbolic algorithm for the considered
verification problem. It should be expressive enough and should allow for
efficient performance of the basic operations. In our framework we assume
the existence of such a symbolic representation satisfying some effectiveness
requirements. The question is, whether for each family of WSTS there is
an appropriate formalism. Here we address this problem for Petri nets and
Lossy Channel Systems.

7.1 Petri Nets

7.1.1 Definition

Petri nets are introduced by Carl Adam Petri in 1962 in his PhD thesis. They
are a well known model of concurrent systems. Here we give some important
concepts from Petri net theory.

Definition 7.1 (Net). A net is a triple N = 〈P ,T ,F 〉, where
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• P is a finite set of places,

• T is a finite set of transitions,

• F : (P × T ) ∪ (T × P) → N is the flow relation.

The preset of a place or transition x is •x = {y ∈ P ∪ T |F (〈y , x 〉) > 0}.
The postset of a place or transition x is x • = {y ∈ P ∪ T |F (〈x , y〉) > 0}.
A marking is a mapping M : P → N. The configurations of a net N are
markings.

Definition 7.2 (Petri net). A Petri net is a pair N = 〈N ,M0〉, where N
is a net, and M0 is the initial marking.

Definition 7.3. Let t ∈ T .

• t is enabled at a marking M if M (p) ≥ F (〈p, t〉) for every p ∈ •t .

• If t is enabled at M it can fire and its firing leads to a successor marking
M ′ which is defined by

M ′(p) = M (p)− F (〈p, t〉) + F (〈t , p〉).

We denote this by the expression M
t→ M ′.

Each Petri net defines a labeled transition system in the following way.

• The set of states is the set of markings.

• The set of initial states consists of the initial marking.

• The set of labels is the set of transitions.

• The transition relation consists exactly of the tuples 〈M , t ,M ′〉 such

that M
t→ M ′.

The simplest ordering between markings is the inclusion: M � M ′ when
M (p) ≤ M ′(p) for every place p. This is a well-quasi ordering according
to Dickson’s lemma. The transition system corresponding to a Petri net
together with the ordering � is a WSLTS.

There are various extensions of Petri nets.
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• Petri nets with transfer arcs : transfer arcs say whether the full contents
of some place must be transferred to some other place.

• Self-modifying Petri nets the definition of which is given later.

• Post self-modifying Petri nets : the self-modifying extension is only al-
lowed on post arcs (the arcs from transitions to places).

All of the above extensions fall into the class of WSTS and thus coverability
is decidable for them. Most of the implemented algorithms use Karp-Miller’s
forward method for constructing the coverability tree [17] that cannot be
generalized to all extensions as shown for example in [18].

7.1.2 Karp-Miller Algorithm

The Karp-Miller’s tree is computed as follows.

1. Start with a tree with a single node labeled with the initial marking
M0.

2. Repeatedly pick an unprocessed leaf node labeled with M. For any

transition t which is enabled at M and for which M
t→ M ′ and there

is no ancestor M′′ of M′ such that M′′ = M′ do the following

• for all p such that there is an ancestor M′′ with M′′(p) < M′(p)
replace M′(p) by ω (where for every n ∈ N, n < ω),

• create a child of the processed node labeled with M′.

The extrapolation with ω is sufficient to ensure the completeness of the
method and the finiteness of the coverability tree. It means that arbitrarily
large values can be reached for the particular place. The generation of ω
places is precise for variants of Petri nets satisfying strict monotonicity, i.e. for
M1

σ→ M2 (where σ is a sequence of transitions) and M3, such that M1 ≺ M3

there exists M4, such that M3
σ→ M4 and M2 ≺ M4.

But there are extensions of Petri nets such as Petri nets with reset arcs for
which strict monotonicity does not hold (they satisfy only non-strict mono-
tonicity). A Petri net with reset arcs is a Petri net extended with a set of
reset arcs R ⊆ P×T from places to transitions. A reset arc from a place p to
a transition t is such that the place p is reset to 0 whenever t fires. For such
systems the tree constructed in this way is no longer precise. If M ′′ σ→ M ′
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and M ′′ ≺ M ′, then there is no longer a guarantee that an arbitrarily large
values can be reached for the places p for which M ′′(p) < M ′(p). Hence, the
Karp-Miller tree cannot be used to decide coverability for such types of Petri
nets.

7.1.3 Self-modifying Petri nets

The class of self-modifying Petri nets (SMPN) defined in [21] includes all
monotonic extensions of Petri nets defined in the literature. Here we use the
definition from [11].

Definition 7.4 (SMPN). Let P = {p1, . . . , pn} and T = {t1, . . . , tm} be
the sets of places and transitions respectively. The input and output effects
of a transition ti on a place pj are given by two functions D−

ij : Nn → N and
D+

ij : Nn → N. These functions are of the form α +
∑n

k=1 βk ·M (pk) where
α, βk ∈ N.

A transition ti is firable from a marking M if M (pj ) ≥ D−
ij (pj ) for every

j ∈ {1, . . . , n}. The successor marking M ′ of M under the transition ti is
computed as follows: first, we compute M ′′ such that for every j ∈ {1, . . . , n}
M ′′(pj ) = M (pj )− Dij

−(M ) and then, M ′(pj ) = M ′′(pj ) + Dij
+(M ).

Definition 7.5 (Strongly monotonic SMPN). A SMPN such that the
corresponding labeled transition system equipped with the inclusion ordering
� is a WSLTS is called strongly monotonic SMPN.

Almost all extensions of Petri nets defined in the literature are strongly
monotonic, for example Petri nets with transfer arcs, Petri nets with reset
arcs and post self-modifying Petri nets. There are exceptions such as Petri
nets with non-blocking arcs [20] and lossy Petri nets [5], which we will not dis-
cuss here. However, we just mention that every Petri net with non-blocking
arcs or lossy Petri net, can be transformed into a strongly monotonic SMPN
equivalent to the original one w.r.t. coverability in polynomial time. The
first generic complete procedure for the coverability problem for the whole
class of strongly monotonic SMPN was proposed in [11].

7.1.4 Symbolic Representation

Petri nets can be represented as programs over Z, i.e. Z is the domain of the
data variables. The ordering � is a well-quasi ordering on the set of mark-
ings since markings are tuples of nonnegative integers. As a formalism for
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representing sets of states we can use the theory of integer linear arithmetic.
It satisfies the following conditions:

• entailment is decidable,

• the well-quasi ordering on states can be expressed as a formula,

• it admits quantifier elimination.

Hence, for Petri nets and their extensions there exists a symbolic represen-
tation that is adequate in the sense that it satisfies the effectiveness require-
ments discussed in the previous chapters. Since most of the extensions are
strongly monotonic and hence belong to the class of WSLTS, the algorithm
from Chapter 5 is a decision procedure for the coverability problem for them.

7.2 Lossy Channel Systems

One model for specifying and verifying data transfer protocols is that of
Communicating Finite State Machines. It consists of finite-state processes
that exchange messages via unbounded FIFO channels. Considering lossy
channel systems where the channels may lose messages at any time, results
in a model for which reachability is decidable. This restricted model covers
a large class of communication protocols.

7.2.1 Definition

The system has a control part and a channel part. The control part is given
by a location where the set of possible locations is the Cartesian product of
the control states of the finite-state processes. The channel part consists of
a finite set of FIFO channels, each of which contains a sequence of messages
that are elements of a finite alphabet Σ. Here we follow the definition from
[2].

Definition 7.6 (Lossy channel system). A lossy channel system is a tuple
S = 〈Q , qi ,F ,Σ,T 〉 where

• Q is a finite set of locations,

• qi is an initial location,
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• F is a finite set of channels,

• Σ is a finite alphabet,

• T is a finite set of transitions, each of which is a triple of the form
〈q1, op, q2〉 where q1 and q2 are control locations and op is a label of
one of the forms:

– f !m, where f ∈ F and m ∈ Σ

– f ?m, where f ∈ F and m ∈ Σ

– nop.

With Σ∗ we denote the set of finite sequences of elements of Σ. �∗ is
ordering between words, i.e. elements of Σ∗, such that w1 �∗ w2 iff w1 is a
(not necessarily contiguous) subword of w2. It is well-known that �∗ is a well
quasi-ordering. The empty word is denoted by ε. With · we denote word
concatenation.

7.2.2 Symbolic Representation

The problem with applying predicate abstraction to lossy channel systems is
much harder than the one for Petri nets. The difficulty arises from the fact
that we should consider programs where the domain of the variables is Σ∗.
Here we propose a possible symbolic representation for lossy channel systems
following the lines of [3]. We show that the set of formulas is closed under
the operations pre, post and ↑.

Let S = 〈Q , qi ,F ,Σ,T 〉 be a lossy channel system. With S we associate
a program with set of variables X = F ∪ {loc}, i.e. one variable correspond-
ing to each channel in F , and one variable for the location. The domain
of a variable in F is Σ∗ and of loc is Q. We also assume that Param is a
countably infinite set of variables, which we call parameters, different from
the program variables. We allow parameters to appear in the atomic for-
mulas. With x , y , . . . we denote parameters and f , g , . . . stand for program
variables. We put a bar to denote a tuple. The parameters appearing in
a conjunction of atoms are implicitly existentially quantified, which means
that

∧n
i=1 ϕi(f , loc, x ) is the same as ∃x

∧n
i=1 ϕi(f , loc, x ), where ϕi is an atom

with variables among f , loc and parameters among x . We do not distinguish
between two conjunctions in the case when one of them can be obtained
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from the other by renaming of all parameters where different parameters are
replaced by different ones.

The constraint system proposed in [3] consists of predicates (there they
are called constraints) of the form ϕx where ϕx denotes the set {y |x �∗ y}.
We consider atomic predicates of the same form where we allow x to be an
expression that does not contain variables.

Definition 7.7. An expression is

• a channel variable, or

• a parameter, or

• an element of Σ∗, or

• a concatenation of expressions.

We consider atomic predicates of one of the following forms:

• e1 = e2 (e1 6= e2) where e1 and e2 are expressions and at least one of
them does not contain any program variables,

• e1 �∗ e2 (e1 6�∗ e2) where e1 and e2 are expressions and e1 does not
contain any program variables,

• loc = q (loc 6= q) where q ∈ Q .

In guarded commands we also allow predicates of the form e1 = e2 where e1

is a primed program variable and e2 is loc, an element of Q or an expression.
We define the set C of guarded commands for a lossy channel system

S = 〈Q , qi ,F ,Σ,T 〉 as the smallest set such that:

• If 〈q1, f !m, q2〉 ∈ T then c ∈ C where

c : loc = q1 ∧ loc ′ = q2 ∧ f ′ = f ·m ∧
∧

g∈F , g 6=f

g ′ = g .

• If 〈q1, f ?m, q2〉 ∈ T then c ∈ C where

c : loc = q1 ∧ f = m · x ∧ loc ′ = q2 ∧ f ′ = x ∧
∧

g∈F , g 6=f

g ′ = g .

61



• If 〈q1, nop, q2〉 ∈ T then c ∈ C where

c : loc = q1 ∧ loc ′ = q2 ∧
∧
f ∈F

f ′ = f .

• If m ∈ Σ then c ∈ C where

c : f = x ·m · y ∧ f ′ = x · y ∧
∧

g∈F , g 6=f

g ′ = g .

It is clear, that C is finite up to renaming of parameters.
The program 〈X , init, δ〉 representing the lossy channel system S is defined

as follows.

• X = F ∪ {loc}

• init(X) = loc = q0 ∧
∧

f ∈F f = ε

• δ(X ,X ′) is the formula describing the transition relation defined as the
disjunction of all guarded commands in the set of guarded commands
C as defined above.

A lossy channel system represented as a program defines a labeled tran-
sition system in the usual way. A state is a pair 〈q ,W 〉 where q ∈ Q and
W : F → Σ∗. The initial state is the pair 〈q0, ε〉, where ε is the function with
ε(f ) = ε for every f ∈ F . The set of states of the lossy channel system we
denote by S . The order � on states is defined as follows: for any s = 〈q ,W 〉
and s ′ = 〈q ′,W ′〉, we have s � s ′ iff q = q ′ and W (f ) �∗ W ′(f ) for all
f ∈ F . For every transition system S that corresponds to a lossy channel
system (S,�) is a WSTS as stated in [9].

Now we show that the operators post, pre and ↑ are computable for the
above symbolic representation. The only problematic issue is the quanti-
fier elimination. Since we allowed parameters in the formulas and post,
pre, ↑ distribute over disjunction, we can introduce new parameters in the
process of eliminating existential quantifiers. For a formula of the form
ϕ =

∨
i∈I

∧
j∈Ji

ϕij we have that post(ϕ) =
∨

i∈I post(
∧

j∈Ji
ϕij ), pre(ϕ) =∨

i∈I pre(
∧

j∈Ji
ϕij ), ϕ↑ =

∨
i∈I (

∧
j∈Ji

ϕij )↑.
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Let ϕ be a conjunction of atoms. We define

post – if

c : loc = q1 ∧ loc ′ = q2 ∧ f ′ = f ·m ∧
∧

g∈F , g 6=f

g ′ = g ,

then postc(ϕ) = ϕ[x/f , q1/loc] ∧ loc = q2 ∧ f = x ·m.

– if

c : loc = q1 ∧ f = m · x ∧ loc ′ = q2 ∧ f ′ = x ∧
∧

g∈F , g 6=f

g ′ = g ,

then postc(ϕ) = ϕ[m · x/f , q1/loc] ∧ loc = q2 ∧ f = x .

– if

c : loc = q1 ∧ loc ′ = q2 ∧
∧
f ∈F

f ′ = f ,

then postc(ϕ) = ϕ[q1/loc] ∧ loc = q2.

– if

c : f = x ·m · y ∧ f ′ = x · y ∧
∧

g∈F , g 6=f

g ′ = g ,

then postc(ϕ) = ϕ[x ·m · y/f ] ∧ f = x · y .

pre – if

c : loc = q1 ∧ loc ′ = q2 ∧ f ′ = f ·m ∧
∧

g∈F , g 6=f

g ′ = g ,

then prec(ϕ) = loc = q1 ∧ ϕ[q2/loc, f ·m/f ].

– if

c : loc = q1 ∧ f = m · x ∧ loc ′ = q2 ∧ f ′ = x ∧
∧

g∈F , g 6=f

g ′ = g ,

then prec(ϕ) = loc = q1 ∧ f = m · x ∧ ϕ[q2/loc, x/f ].

– if

c : loc = q1 ∧ loc ′ = q2 ∧
∧
f ∈F

f ′ = f ,

then prec(ϕ) = loc = q1 ∧ ϕ[q2/loc].
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– if
c : f = x ·m · y ∧ f ′ = x · y ∧

∧
g∈F , g 6=f

g ′ = g ,

then prec(ϕ) = f = x ·m · y ∧ ϕ[x · y/f ].

↑ – ϕ↑ = ϕ[x1/f1, . . . , xn/fn ] ∧
∧n

i=1 xi �∗ fi .

In this definition the newly introduced parameters are chosen to be differ-
ent and should not appear in ϕ. Furthermore, if the resulting conjunction
contains a conjunct of the form x = e where e does not contain program
variables, x is eliminated by removing this conjunct and substituting x with
e in all other conjuncts.

So, the chosen symbolic representation is adequate, in the sense that the
images of the operators pre, post and ↑ are computable and are expressible in
this formalism. We do not know whether entailment between formulas over
this set of atoms is decidable. This question is out of the scope of this thesis.
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Chapter 8

Related Work

In this chapter we review the definitions of several general classes of transi-
tion systems for which completeness results hold. We also look at the known
algorithms for deciding reachability for systems in these classes and at the
assumptions needed for their completeness. We start with the definitions
of systems with finite bisimulation quotient and systems with finite simu-
lation quotient and give the completeness results that are known for both
of these classes. Then, we briefly describe the LazyAbstraction procedure
which is guaranteed to terminate for systems with finite trace-equivalence
under certain assumptions. Finally, we discuss the completeness results for
the backward and forward approaches to checking coverability of WSTS, con-
centrating on the differences between the forward procedure presented in [10]
and our approach.

8.1 Systems with Finite (Bi)simulation Quo-

tient

Let us fix a transition system 〈S , I , C, δ〉 and a set of atoms P . For a state
s with L(s) we denote the set of atomic predicates which are satisfied by s ,
formally L(s) = {p ∈ P |s |= p}.

Definition 8.1 (Simulation relation). A relation R ⊆ S×S is a simulation
relation on S iff for any (s , t) ∈ R it holds that L(s) = L(t) and for any u
such that s → u, there exists v such that t → v and (u, v) ∈ R.
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Definition 8.2 (Bisimulation relation). A relation R is a bisimulation
relation on S iff R is symmetric and a simulation relation on S .

A state t simulates a state s iff (s,t) is in the greatest simulation relation
on S , which exists since simulations are closed under arbitrary union. States
s and t are simulation equivalent (written s ∼ t) if they simulate each other.
States s and t are bisimilar in S (written as s ≈ t) if (s,t) is contained in the
greatest bisimulation relation on S . It is clear that if s and t are bisimilar
then they simulate each other. Thus, if the index of ≈ is finite then the index
of ∼ is also finite.

Definition 8.3. We say that:

• S has finite simulation quotient if the index of ∼ is finite.

• S has finite bisimulation quotient if the index of ≈ is finite.

So, every transition system that has finite bisimulation quotient w.r.t. a
set of atoms P has finite simulation quotient w.r.t. P. The class of systems
with finite simulation quotient is a proper extension of the class of systems
with finite bisimulation quotient [12].

As∼ (≈) is an equivalence relation, it induces a quotient transition system
whose states are the equivalence classes of S w.r.t. ∼ (≈). The set of initial
states consists of the equivalence classes of the initial states of S and there
is a transition (A, c,B) iff ∃s , t : s ∈ A ∧ t ∈ B ∧ s

c→ t .
The algorithm presented in [19] iteratively constructs a finite-state ab-

stract program from a given possibly infinite-state concrete program by
means of syntactic program transformation. The finite state abstract pro-
gram has only boolean variables. They correspond to atomic predicates. This
finite set of atoms is constructed iteratively, starting with the initial finite
set of predicates P that consists of the atoms that appear in the specification
formula and the description of the program and applying at each step the
weakest liberal precondition operator wlp (wlp(ϕ) = ¬pre(¬ϕ)) to the predi-
cates in the current set. This process is repeated until no new predicates are
generated or until a given iteration bound K is exceeded. In the first case
the result is a bisimilar abstraction of the program and in the second it is
a conservative approximation (i.e. able to match every computation of the
concrete one).

Theorem 8.4. (Simulation Theorem) The finite state abstract program
simulates the concrete program w.r.t. the initial set of predicates P.
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Theorem 8.5. (Bisimulation Theorem) If the procedure terminates be-
cause no new predicates are generated, then the abstract program is bisimulation-
equivalent to the concrete one w.r.t. the initial set of predicates P.

Moreover, if the system has finite bisimulation (simulation) quotient, then
this algorithm is complete, i.e. there is a value m for the iteration bound
such that if the loop is iterated m times, the algorithm is guaranteed to
produce an abstract program which is bisimulation (simulation)-equivalent
to the concrete one with respect to the initial set of predicates. These results
are formally stated in the following two theorems.

Theorem 8.6. (Bisimulation Completeness) If the concrete program
has a finite reachable bisimulation quotient, then there is an appropriate
choice for the iteration bound K such that the abstract program produced by
the algorithm is bisimulation-equivalent to the concrete one w.r.t. the initial
set of predicates P.

Theorem 8.7. (Simulation Completeness) If the concrete program has
a finite simulation quotient, then there is an appropriate choice for the iter-
ation bound K such that the abstract program produced by the algorithm is
simulation-equivalent to the concrete one w.r.t. the initial set of predicates
P.

These classes of systems allow for the so called reductionist methods since
they are ”essentially finite-state”. If we have computed a finite-state abstract
system A, which is bisimulation (simulation)-equivalent to the concrete tran-
sition system S with respect to the finite set of atoms P , which contains the
atoms of safe, then we have that A is safe if and only if S is safe. So, in
particular, the abstract program can be used to check reachability. Thus the
method described in [19] can be used as a procedure for checking reachability.
It employs predicate abstraction and the iterative construction of the set of
predicates is actually iterative backward abstraction refinement.

Systems whose state spaces can be finitely partitioned are for example
timed automata, rational relational automata and various classes of hybrid
automata. Petri nets, lossy channel systems and integral relational automata
do not allow for finite state partitioning.
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8.2 Systems with Finite Trace-equivalence

In this section we discuss a class of systems called systems with finite trace-
equivalence defined in [13].

8.2.1 Finite Trace-equivalence and Lazy Abstraction

Let 〈S , I , C, δ〉 be a labeled transition system.

Definition 8.8 (Trace-equivalence). For a state s ∈ S and σ ∈ C∗ we
write s

σ→ if there is a state s ′ such that s
σ→ s ′. Two states s and t are

trace-equivalent if for every σ ∈ C∗ we have s
σ→ iff t

σ→.

Definition 8.9. The labeled transition system S has finite trace-equivalence
if the trace-equivalence relation on S has a finite index.

The ascending chain condition is that there does not exist an infinite
strictly increasing sequence ϕ0 < ϕ1 < . . . of formulas.

LazyAbstraction is an algorithm, proposed in [13], for verifying reachability
by means of predicate abstraction. It constructs the abstract reachability tree
in a forward manner. Whenever an abstract counterexample is produced, it
is analyzed backwardly by iterating pre. When the set of support predicates
of the pivot node is refined, only enough atoms are added as to exclude the
particular counterexample. A heuristic function is used to determine whether
the subtree below the pivot node will be deleted or only the error trace will
be refined. The LazyAbstraction procedure is guaranteed to terminate under
certain conditions, provided that the heuristic always determines that the
whole subtree below the pivot node should be deleted. These are:

• the system has finite trace-equivalence, and

• the ascending chain condition is satisfied, and

• error states have no outgoing transitions.

8.2.2 Finite Trace-equivalence and WSLTS

In this section we study the relationship between the two classes of systems-
the class of systems that have finite trace-equivalence as defined in [13] and
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the class of WSLTS. First we show that every labeled transition system S
with finite trace-equivalence can be equipped with a well-quasi ordering �
such that (S,�) is a WSLTS under the assumption that for each c ∈ C the
relation

c→ is deterministic.

Proposition 8.10. Let S = 〈S , I , C, δ〉 be a labeled transition system that
has finite trace-equivalence quotient. Assume that for each c ∈ C the relation
c→ is deterministic. Then there is a well-quasi ordering � on S such that
(S,�) is a WSLTS.

Proof. With s1 ' s2 we denote the fact that s1 and s2 are trace-equivalent.
We define � as follows:

s1 � s2 iff for every σ ∈ C∗, s1
σ→ implies s2

σ→.

Since ' is an equivalence relation with finite index, it is clear that � is a
well-quasi ordering.

We now check strong compatibility w.r.t. the labels of the transitions. Let
s1, s2, t1 ∈ S , c ∈ C, s1 � s2 and s1

c→ t1. Since s1 � s2, there is a state t2,
such that s2

c→ t2. Let t1
σ→. Then, since each command in C is deterministic,

there is a unique state u1 such that t1
σ→ u1. Then, s1

cσ→ u1. Since s1 � s2,
s2

cσ→. Then, there exist states t ′ and u2, such that s2
c→ t ′

σ→ u2. But since
c→ is deterministic it holds that t2 = t ′. Hence, t2

σ→ and thus, t1 � t2.

We have shown that every transition system that has finite trace- equiv-
alence can be turned into a WSLTS by equipping it with a proper well-quasi
ordering. In the general case this well-quasi ordering is not expressible with
a formula and depends on the particular system. Observe that for the al-
gorithm in Chapter 5 we do not require the existence of a formula ϕ� cor-
responding to the ordering �. This is because the existence of a well-quasi
ordering is used as a termination argument for the procedure and this or-
dering is not part of the procedure itself. This means that the algorithm in
Chapter 5 is guaranteed to terminate on every transition system with finite
trace equivalence, which is not surprising.

Now we show that the class of WSLTS is strictly more general than
the class of systems with finite trace-equivalence by giving an example of a
WSLTS S which does not have finite trace-equivalence.

Example 8.1 (System that does not have finite trace-equivalence).
Consider the transition system represented by the program with set of guarded
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commands given in Table 8.1. The domain of x is Z, i.e. the set of states
S is {l1, l2} × Z. The set of initial states is denoted by the formula init =
(x = −1 ∧ pc = l1) and the set of error states is denoted by the formula
unsafe = (pc = l2).

Guard Updates

c1 pc = l1 ∧ x 6= 0 pc ′ = pc, x ′ = x − 1
c2 pc = l1 ∧ x ≥ 0 pc ′ = l2, x

′ = x

Table 8.1: Program that does not have finite trace-equivalence quotient

It is easy to see that the transition system does not have finite trace-
equivalence. Consider the states si = 〈pc = l1, x = i〉 where i ≥ 1 and the

traces σi = c1
ic2 for i = 1, 2, . . .. For i < j we have that sj

σj→, but si 6
σj→

which implies that si and sj are not trace-equivalent.
Now we define an ordering � on S , such that S together with � is a

WSLTS. First we define an ordering on Z in the following way. Let m, n ∈ Z,
m v n iff

• m ≥ 0, n ≥ 0, and m ≤ n or

• m < 0, n < 0 and n ≤ m.

Let � be defined as follows:

〈pc1, x1〉 � 〈pc2, x2〉 iff pc1 = pc2 and x1 v x2.

It is clear that � is a well-quasi ordering.
We now show that (S,�) satisfies strong compatibility w.r.t. the labels

of the transitions. Let s = 〈pc1, x1〉, t = 〈pc2, x2〉, u = 〈pc3, x3〉, s
c→ t and

s � u. We distinguish between the following two cases.

• c = c1

Then pc1 = pc2 = pc3 = l1, x1 v x3, x1 6= 0. Let v = 〈l1, x3 − 1〉.
If x1 ≥ 0 then x3 ≥ x1 > 0 and thus x1 − 1 v x3 − 1. If x1 < 0 then
x3 ≤ x1 and thus x1 − 1 v x3 − 1. Then u

c1→ v and t � v .

• c = c2

Then pc1 = pc3 = l1, pc2 = l2, x1 ≥ 0, x3 ≥ x1 ≥ 0 and x2 = x1. Let
v = 〈l2, x3〉. Then u

c2→ v and t � v .

So, this transition system is a WSLTS, but it does not have finite trace-
equivalence.

70



8.2.3 Backward Counterexample Analysis for WSTS

Here we give an example of a WSTS such that counterexample analysis based
on iteration of pre does not terminate, but counterexample analysis based on
ucpre terminates with success.

Example 8.2. The guarded commands of the program are given in Table
8.2.

Guard Updates

c1 pc = l1 pc ′ = pc, x ′ = x + 1
c2 pc = l1 ∧ x 6= 1 pc ′ = pc, x ′ = x − 1
c3 pc = l1 ∧ x = 0 pc′ = l2, x

′ = x

Table 8.2: Guarded commands of the program for which refinement with pre
does not terminate

The domain of x is Z. The set of initial states is given by the formula
init = (pc = l1 ∧ x = 1) and the set of error states by unsafe = (pc = l2).
The transition system denoted by the program above can be easily equipped
with an ordering on the set of states that turns it into a WSTS.

First we define a well-quasi ordering on Z in the following way. Let
m, n ∈ Z, then m v n iff

• m > 0 and n > 0 and m ≤ n or

• m ≤ 0 and n ≤ 0 and n ≤ m.

Then we define the ordering � between states as

〈pc1, x1〉 � 〈pc2, x2〉 iff pc1 = pc2 and x1 v x2.

It is clear that� is a well-quasi ordering that is expressible with a formula and
the set of error states is upward-closed w.r.t �. Now we show compatibility.
Let s = 〈pc1, x1〉, t = 〈pc2, x2〉, u = 〈pc3, x3〉, s

c→ t and s � u.
We have to distinguish between the following cases:

• c = c1

Then pc1 = pc2 = pc3 = l1 and x2 = x1 + 1.
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If x1 > 0, then x3 ≥ x1. Let v = 〈l1, x3 + 1〉. Then u
c1→ v and t � v .

If x1 ≤ 0, then x3 ≤ x1. If x1 = 0, then x2 = 1, so let v = 〈l1, 1〉.
Then u

c1→
1−x3

v and t � v . If x1 < 0, then x3 ≤ x1 and x2 ≤ 0, so let
v = 〈l1, x3 + 1〉. Then u

c1→ v and t � v .

• c = c2

Then, pc1 = pc2 = pc3 = l1, x1 6= 1 and x2 = x1 − 1.
If x1 > 0 then x3 ≥ x1 and x3 6= 1. If x1 ≤ 0 then x3 ≤ x1 and x3 6= 1.
Let v = 〈l1, x3 − 1〉. Then, u

c2→ v and t � v .

• c = c3

Then pc1 = pc3 = l1, pc2 = l2, x1 = x2 = 0, x3 ≤ x1. Let v = 〈l2, 0〉.
Then u

c1→
−x3 c3→ v and t � v .

Here we would like to point out that (S,�) is not a WSLTS. This can
be seen by considering the states s = 〈l1, 0〉, t = 〈l2, 0〉 and u = 〈l1,−3〉. We
have that s

c3→ t and s � u, but there does not exist a state v such that
t � v and u

c3→ v .
During the construction of the abstract reachability tree in the case when

the pre operator is used for counterexample analysis the procedure generates
infinitely many spurious counterexamples that correspond to the unfolding
of a loop. To exclude those abstract counterexamples the refinement based
on pre generates infinitely many atomic predicates.

Let P0 = {pc = l1, pc = l2, x = 1}.
In the following table we give the reachable regions of the nodes along the
first encountered spurious counterexample together with their error regions.
From the error regions we have dropped some disjuncts, but their intersection
with the corresponding reachable region is empty.

Reachable region Error region

(init,P0) pc = l1 ∧ x = 1,P0 prec1 (pc = l1 ∧ x = 0) pc = l1 ∧ x = −1

post#c1 ((init,P0)) pc = l1,P0 prec3 (unsafe) pc = l1 ∧ x = 0

post#c3 ((pc = l1,P0)) pc = l2,P0 unsafe pc = l2

The pivot node is the root and it is refined with the predicates in P1 =
P0 ∪ {x 6= 0, x 6= −1} (for simplicity we drop pc 6= l1, pc 6= l2). Then the
following spurious counterexample is produced.
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Reachable region Error region

(init,P1) pc = l1 ∧ x = 1,P1 prec1 (pc = l1 ∧ x = −2) pc = l1 ∧ x = −3

post#c1 ((init,P1)) pc = l1 ∧ x 6= 0 ∧ x 6= −1,P1 prec1 (pc = l1 ∧ x = −1) pc = l1 ∧ x = −2

post#c1 ((pc = l1 ∧ x 6= 0 ∧ x 6= −1,P1)) pc = l1 ∧ x 6= 0,P1 prec1 (pc = l1 ∧ x = 0) pc = l1 ∧ x = −1

post#c1 ((pc = l1 ∧ x 6= 0,P1)) pc = l1,P1 prec3 (unsafe) pc = l1 ∧ x = 0

post#c3 ((pc = l1,P1)) pc = l2,P1 unsafe pc = l2

Again the root node is refined with P2 = P1 ∪ {x 6= −2, x 6= −3}. In the
following two tables the reachable and the error regions of the nodes along
the next counterexample are shown.

Reachable region

(init,P2) pc = l1 ∧ x = 1,P2

post#c1 ((init,P2)) pc = l1 ∧ x 6= 0 ∧ x 6= −1 ∧ x 6= −2 ∧ x 6= −3,P2

post#c1 ((pc = l1 ∧ x 6= 0 ∧ x 6= −1 ∧ x 6= −2 ∧ x 6= −3,P2)) pc = l1 ∧ x 6= 0 ∧ x 6= −1 ∧ x 6= −2,P2

post#c1 ((pc = l1 ∧ x 6= 0 ∧ x 6= −1 ∧ x 6= −2,P2)) pc = l1 ∧ x 6= 0 ∧ x 6= −1,P2

post#c1 ((pc = l1 ∧ x 6= 0 ∧ x 6= −1,P2)) pc = l1 ∧ x 6= 0,P2

post#c1 ((pc = l1 ∧ x 6= 0,P2)) pc = l1,P2

post#c3 ((pc = l1,P2)) pc = l2,P2

Error region

prec1 (pc = l1 ∧ x = −2) pc = l1 ∧ x = −5

prec1 (pc = l1 ∧ x = −1) pc = l1 ∧ x = −4

prec1 (pc = l1 ∧ x = 0) pc = l1 ∧ x = −3

prec1 (pc = l1 ∧ x = 0) pc = l1 ∧ x = −2

prec1 (pc = l1 ∧ x = 0) pc = l1 ∧ x = −1

prec3 (unsafe) pc = l1 ∧ x = 0

unsafe pc = l2

P3 = P2 ∪ {x 6= −4, x 6= −5} . . ..

We observe that each time new atomic predicates are needed to exclude
the current spurious counterexample that corresponds to an unfolding of the
loop. So, the process diverges, although the program under consideration is
correct.

If instead of pre the operator ucpre is used, during the analysis of the first
encountered counterexample the procedure computes:
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Reachable region Error region

(init,P0) pc = l1 ∧ x = 1,P0 pre(pc = l1 ∧ x ≤ 0)↑ (pc = l1 ∧ x ≤ −1) ∨ (pc = l1 ∧ x ≤ 0)

post#c1 ((init,P0)) pc = l1,P0 pre(pc = l2)↑ pc = l1 ∧ x ≤ 0

post#c3 ((pc = l1,P0)) pc = l2,P0 unsafe pc = l2

The root node is refined with P1 = P0 ∪ {x > 0, x > −1}

Then for the abstract iteration after this refinement we have:

post#c1
((pc = l1 ∧ x = 1,P1)) = (pc = l1 ∧ x > 0 ∧ x > −1,P1)

post#c1
((pc = l1 ∧ x > 0 ∧ x > −1,P1)) = (pc = l1 ∧ x > 0 ∧ x > −1,P1)

post#c2
((pc = l1 ∧ x > 0 ∧ x > −1,P1)) = (pc = l1 ∧ x > 0 ∧ x > −1,P1)

post#c3
((pc = l1 ∧ x > 0 ∧ x > −1,P1)) = false

Thus, Algorithm 3 terminates with success.

8.3 Well-structured Transition Systems

In this section we discuss the existing decision procedures for the coverability
problem for the class of WSTS, which as we showed in the previous section is
a proper extension of the class of transition systems with finite trace equiv-
alence.

8.3.1 The Coverability Problem

The coverability problem for WSTS as defined in [10] is the following: given
an upward-closed set bad, does it hold that lfp(post, I )∩ bad = ∅. For WSTS
this problem is known to be decidable, i.e. reachability of an upward-closed
set is decidable. There are generally to approaches to checking coverability -
backward and forward.

Backward Iteration

There exists a generic backward algorithm for solving the coverability prob-
lem for all families of WSTS. The algorithm computes over finite repre-
sentations of upward-closed sets of states. Every upward-closed set can be
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represented by a finite set of minimal elements. This finite representation is
adequate since union and intersection are effective. As an effectiveness as-
sumption it is required that given a finite set M that represents an upward-
closed set U it is possible to compute a finite set of minimal elements M ′

representing the upward-closure of pre(U ). If this holds then the procedure
iterating min ◦ ↑ ◦ pre ◦ ↑ (where min(A) returns a minor set of A) starting
from a minor set of the upward-closed set bad is guaranteed to terminate.
The result is a finite set of elements, the upward-closure of which is the set
all states that can reach a state in bad.

Forward Iteration

In [11] a forward algorithm for the coverability problem is proposed. It con-
structs two sequences of abstractions of the set of reachable states of the
system, one from below and one from above. The sequence of abstractions
from below allows to detect cases when a state in bad is reachable. They are
bounded iterations of post starting from the initial state. The abstractions
from above are iterations of overapproximations of post that become more
and more precise. This sequence allows to decide instances of the problem
when bad is not reachable. The proposed algorithm is actually a general
schema, and to be applied to a particular class of WSTS an adequate do-
main of limits has to be provided. This is, in fact, a set of abstract values
that allows to represent any downward-closed set. In the forward algorithm
downward-closed sets are approximation of the set of reachable states.

In [10] two of these authors proposed a generic and effective representa-
tion of downward-closed sets. The representation is formalized as a generic
abstract domain. The abstract domain is automatically refined until a suffi-
ciently precise overapproximation of the set of reachable states, which allows
to decide the coverability problem, is obtained.

8.3.2 The Forward Algorithm

Here we briefly review the abstract interpretation framework and the com-
pleteness result from [10]. The forward approach to coverability is based on
the notion of covering set - Cover(S ) which is the downward-closure of the
set of reachable states in S. Provided that bad is upward-closed it enjoys the
following property: lfp(post, I) ∩ bad = ∅ if and only if Cover(S ) ∩ bad = ∅.
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Hence, in order to check the emptiness condition lfp(post, I) ∩ bad = ∅ it
suffices to check that Cover(S ) ∩ bad = ∅.

For an upward-closed set A ⊆ S min is an operator such that min(A) is a
minor set of A and minpre(A)= min(pre(A↑)↑) .

The abstract domain

Overapproximations of the set of reachable states are downward-closed sets.
Since they might be infinite, abstraction is needed. The abstract domain
is parameterized by a finite set of states D ⊆ S . The abstract lattice is
L(DCS (D)) (where DCS (D) is the set of all downward-closed subsets in D).
⊆ is the partial order and ∪D and ∩D are the least upper bound and the
greatest lower bound operators respectively. Since D is finite, ∪D,∩D are
effective and ⊆D is decidable. The abstraction of a set A consists of those
elements of its downward-closure which are elements of D . The abstraction
and concretization functions are defined as follows:

For A ⊆ S αD(A) = A↓ ∩ D
For B ∈ DCS (D) γD(B) = {s ∈ S |s↓ ∩ D ⊆ B}

The pair of functions αD and γD form a Galois insertion.
This representation is adequate since every downward-closed set can be

exactly represented in some properly chosen abstract domain (a set A is
represented exactly if γD(αD(A)) = A). For each A ∈ DCS (S ) if we define
D to be min(S\A), then A is represented exactly in L(DCS (D)). Thus, the
abstract framework described above provides an effective way to represent
downward-closed sets. The more elements the set D has, the more downward-
closed sets have exact representation.

Abstract interpretation

The abstract operator post#D is defined as:

post#D = αD ◦ post ◦ γD .

It satisfies the property lfp(post, I ) ⊆ γD(lfp(post#D , αD(I))), i.e. the con-
cretization of the set of abstract reachable states is an overapproximation
of the set of concrete reachable states. If the WSTS is effective (� and the
transition relation are decidable and minpre is computable) then the set of
abstract reachable states lfp(post#D , αD(I)) can be effectively computed.
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Refinement

In order to obtain a complete method for solving the coverability problem,
the abstract domain should be iteratively refined until an abstraction that is
precise enough is obtained. If the abstract domain provides exact represen-
tation of Cover(S ), then the concretization of the set of abstract reachable
states is exactly Cover(S ). The covering set is downward-closed and thus
it can be represented exactly using a well-chosen finite D. To obtain an ab-
straction refinement procedure that is guaranteed to terminate, it suffices to
ensure that at some point it considers an abstract domain L(DSC (D)) in
which Cover(S ) is exactly represented. If the sequence of finite sets of states
produced by the iterative refinement is D0,D1, . . ., for each Dj the algorithm
checks whether there is a trace that consists only of elements of Dj starting
with an initial state and reaching an error state. This guarantees termination
of the algorithm in the case when lfp(post, I) ∩ bad 6= ∅.

In [10] two methods for abstraction refinement are proposed. Here we
briefly discuss both of them.

1. Enumeration of the finite subsets of S
If S is enumerable then we can enumerate the finite subsets of S :
D0,D1, . . .. There exists an index i , such that Di provides exact repre-
sentation of Cover(S ). So in the case when lfp(post, I) ∩ bad = ∅ the
algorithm is guaranteed to terminate.

2. Eliminating overapproximations leading to bad
If the finite set D contains the elements of min(lfp(pre, bad)) then the
overapproximation is ”good enough”, i.e. if the concrete system is safe,
so is the abstract one. Thus, termination of the procedure in the case
when the transition system is safe is guaranteed when the iterative
refinement eventually constructs such a finite set D. To this end at
each refinement step the procedure adds more states to the current
Di−1 - enough to exclude all spurious counterexamples of length i. The
set of elements that are added at the i -th iteration is a minor set of the
upward-closure of the set that consists of all abstract reachable states
that can reach a state in bad in at most i steps. This guarantees that
at some point the elements of min(lfp(pre, bad)) are added to D, since
lfp(pre, bad) = (lfp(minpre, bad))↑.

The key difference between the second approach described above and our
approach is the representation of the sets of states. In our case a possibly
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infinite set of states is finitely represented by a formula. Thus not only
the problem with the effective representation of infinite state sets is solved,
but we can also make use of predicate abstraction and various heuristics
for predicate refinement. In the procedures from the previous chapters this
heuristic is examination of abstract counterexamples by computing weakest
preconditions.

In our approach we have different precision of the abstractions for different
parts of the state space. Refinement predicates are added lazily on demand
only to the part of the reachability tree where they are actually needed. Thus
we not only do not construct the whole abstract state space from scratch
every time, but also parts of the reachability tree that can be verified in the
coarser abstraction are not refined. Thus, predicate abstraction probably
allows for more efficient algorithms for checking coverability.
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Chapter 9

Conclusion

9.1 Results

In this thesis we study the coverability problem for WSTS, i.e. reachability
of a set of states which is upward-closed according to a well-quasi ordering on
the set of states of the system. This problem is known to be decidable for this
class of systems. We investigate the conditions under which abstract forward
iteration based on predicate abstraction and refinement results into a decision
procedure for coverability in WSTS. We show that in the standard schema
the refinement step can be performed in a way that guarantees convergence
of the abstract-check-refine loop under these conditions. For the two classes
of systems WSTS and WSLTS we provide two instantiations and prove the
completeness of the resulting algorithms.

In order to apply predicate abstraction as a complete abstract interpreta-
tion framework for coverability of WSTS we make the following assumptions:

• we have a symbolic representation of the transition system (it is given
as a program),

• the well-quasi ordering is expressible (a formula ϕ� exists),

• the set of initial states and the set of error states can be expressed as
formulas,

• the underlying logical theory used for symbolic representation admits
quantifier elimination.
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We also study the relationship between the two classes of well-structured
systems and the class of systems with finite-trace equivalence as defined in
[13]. We show that every transition system with finite trace-equivalence can
be turned into a WSLTS and give an example of a WSLTS that does not have
finite trace-equivalence. Hence, the procedure in Chapter 5 is guaranteed to
terminate on all instances of the class of systems with finite trace-equivalence.

9.2 Open Problems

There are some open questions that are out of the scope of this thesis.

• One of the assumptions that we made is that we have a symbolic repre-
sentation that satisfies several requirements that permit the construc-
tion of an effective procedure. The question whether for each particular
family of WSTS a logical formalism that satisfies these requirements
exists is still to be studied. For the family of monotonic extensions of
Petri nets this is the case.

• There are other heuristics for predicate selection for example based on
interpolation that also suffer from the problem of divergence in the
general case. The question is whether there are reasonable conditions
under which we can obtain termination guarantee for procedures for
checking coverability for WSTS that employ such heuristics.
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