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Abstrat
The elementary losure P 0 of a polyhedron P is the intersetion of P with all its Gomory-Chv�atal utting planes. P 0 is a rational polyhedron provided that P is rational. TheChv�atal-Gomory proedure is the iterative appliation of the elementary losure operationto P . The Chv�atal rank is the minimal number of iterations needed to obtain PI . It isalways �nite, but already in R2 one an onstrut polytopes of arbitrary large Chv�atalrank. We show that the Chv�atal rank of polytopes ontained in the n-dimensional 0/1 ubeis O(n2 logn) and prove the lower bound (1 + �)n, for some � > 0.We show that the separation problem for the elementary losure of a rational polyhe-dron is NP-hard. This solves a problem posed by Shrijver.Last we onsider the elementary losure in �xed dimension. The known bounds forthe number of inequalities de�ning P 0 are exponential, even in �xed dimension. We showthat the number of inequalities needed to desribe the elementary losure of a rationalpolyhedron is polynomially bounded in �xed dimension. Finally, we present a polynomialalgorithm in varying dimension, whih omputes utting planes for a simpliial one fromthis polynomial desription in �xed dimension with a maximal degree of violation in anatural sense.



Kurzzusammenfassung
Die elementare H�ulle P 0 eines Polyeders P ist der Durhshnitt von P mit all seinenGomory-Chv�atal Shnittebenen. P 0 ist ein rationales Polyeder, falls P rational ist. DieChv�atal-Gomory Prozedur ist das wiederholte Bilden der elementaren H�ulle, beginnendmit P . Die minimale Anzahl der Iterationen, die bis zum Erhalt der ganzzahligen H�ulle PIvon P n�otig sind, hei�t der Chv�atal-Rang von P . Der Chv�atal-Rang eines rationalen Po-lyeders ist endlih. Jedoh lassen sih bereits im R2 Beispiele mit beliebig hohem Chv�atal-Rang konstruieren. Wir zeigen, da� der Chv�atal-Rang eines Polytops im n-dimensionalen0/1 W�urfel durh O(n2 logn) beshr�ankt ist, und beweisen die untere Shranke (1 + �)n,f�ur ein � > 0.Wir zeigen, da� das Separationsproblem f�ur die elementare H�ulle eines rationalen Po-lyeders NP-hart ist. Dies l�ost ein von Shrijver formuliertes Problem.Shlie�lih wenden wir uns der elementaren H�ulle rationaler Polyeder in fester Di-mension zu. Die bislang bekannten Shranken f�ur die Anzahl der Ungleihungen, die zurDarstellung von P 0 ben�otigt werden, sind exponentiell, selbst in fester Dimension. Wir zei-gen, da� in fester Dimension P 0 durh polynomiell viele Ungleihungen beshrieben werdenkann. Wir entwerfen au�erdem einen, in beliebiger Dimension polynomiellen, Algorithmus,der zu einem spitzen Kegel P eine Shnittebene aus der polynomiellen Darstellung von P 0berehnet, die zudem einen maximalen Grad der Verletzung in einem nat�urlihen Sinneaufweist.
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1Introdution
Gab es Einw�ande, die man vergessenhatte? Gewi� gab es solhe. DieLogik ist zwar unersh�utterlih, abereinem Menshen, der leben will,widersteht sie niht.(Franz Kafka, Der Proze�)1.1 MotivationInteger programming is onerned with the optimization of a linear funtion over theinteger points in a polyhedron P . Among the most suessful methods for solving integerprogramming problems is the utting plane method in ombination with branh-and-bound. A Gomory-Chv�atal utting plane for P is an inequality Tx � bÆ, where is an integral vetor and Tx � Æ is valid for P , i.e., the halfspae de�ned by Tx �Æ ontains P . The utting plane Tx � bÆ is valid for all integral points in P andthus for the onvex hull of integral vetors in P , the integer hull PI . The addition of autting plane to the system of inequalities de�ning P results in a better approximationof the integer hull. The intersetion of a polyhedron with all its Gomory-Chv�atal uttingplanes is alled the elementary losure P 0 of P . If P is rational, then P 0 is a rationalpolyhedron again. The suessive appliation of the elementary losure operation to arational polyhedron yields the integer hull of the polyhedron after a �nite number of steps(Chv�atal 1973a, Shrijver 1980). This suessive appliation of the elementary losureoperation is referred to as the Chv�atal-Gomory proedure. The minimal number of roundsuntil PI is obtained is the Chv�atal rank of P .Even in two dimensions, one an onstrut polytopes of arbitrary large Chv�atal rank.Integer programming formulations of ombinatorial optimization problems are most oftenpolytopes in the 0/1 ube. This motivates the following question.Question 1. Can the Chv�atal rank of polytopes in the 0/1 ube be polynomially boundedin terms of the dimension?In ombinatorial optimization, utting planes are often derived from the struture ofthe problem. But even then they most likely �t in the Gomory-Chv�atal utting plane



2 x 1. Introdutionframework. A polynomial separation routine for the elementary losure of a rationalpolyhedron would thus be a very powerful tool. The next question was posed as an openproblem in (Shrijver 1986, p. 351).Question 2. Does there exist a polynomial separation algorithm for the elementary lo-sure P 0 of a rational polyhedron P?Not muh was known about the polyhedral struture of the elementary losure ingeneral. In essene one has the following result (see, e.g. (Cook, Cunningham, Pulleyblank& Shrijver 1998)): If P is de�ned as P = fx 2 Rn j Ax � bg with A 2 Zm�n and b 2 Zm,then P 0 is the intersetion of P with all Gomory-Chv�atal utting planes Tx � bÆ;  2 Zn,where T = �TA with some � 2 [0; 1)m and Æ = maxfTx j x 2 Pg. The in�nity normkk1 of any suh vetor  = AT� from above an be estimated as follows: kk1 =kAT�k1 � kAT k1. From this, only an exponential (in the input enoding of P ) upperbound kAT kn1 on the number of inequalities needed to desribe P 0 an be derived. This isalso exponential in �xed dimension n. Integer programming in �xed dimension is solvablein polynomial time (Lenstra 1983). It would be undesirable if the upper bound desribedabove was tight. A deeper knowledge of the struture of the elementary losure is alsoimportant in the ontext of hoosing e�etive utting planes.Question 3. What is the struture of the elementary losure of a polyhedron? Can itsomplexity be polynomially bounded in �xed dimension?1.2 OutlineThis thesis is onerned with the questions above.After reviewing some preliminaries in hapter 2, we introdue the utting plane methodand the utting plane proof system in hapter 3 in greater detail. We show how Gomory's(Gomory 1958) original algorithmi result implies the �niteness of the Chv�atal-Gomoryproedure. Apparently this has not been observed before for general polyhedra. A similarobservation was made by Shrijver for polyhedra in the positive orthant.In hapter 4 we are onerned with Question 1. We �rst study rational polytopes inthe n-dimensional 0/1 ube that do not ontain integral points. It turns out that theirChv�atal rank an essentially be bounded by their dimension. Our main result in thishapter is an O(n2 log n) upper bound on the Chv�atal rank of arbitrary polytopes in the0/1 ube. We also present a family of polytopes in the n-dimensional 0=1-ube whoseChv�atal rank is at least (1 + �)n, for some � > 0. This improves the known lower boundn. In hapter 5 we give a negative answer to Question 2 by showing that the separationproblem for the elementary losure of a polyhedron is NP-hard.



x 1.3 Soures 3Chapter 6 is onerned with Question 3. We prove that the elementary losure anbe desribed with a polynomial number of inequalities in �xed dimension and we providea polynomial algorithm (in varying dimension) for �nding utting planes from this de-sription. First we inspet the elementary losure of rational simpliial ones. We showthat it an be desribed with polynomially many inequalities in �xed dimension. Via atriangulation argument, we prove a similar statement for arbitrary rational polyhedra.Then we show that the elementary losure of a rational polyhedron an be onstruted inpolynomial time in �xed dimension. This yields a polynomial algorithm that onstruts autting plane proof of 0Tx � �1 for rational polyhedra P with empty integer hull. Basedon these results, we then develop a polynomial algorithm in varying dimension for om-puting Gomory-Chv�atal utting planes of pointed simpliial ones. These utting planesare not only among those of maximal possible violation in a natural sense, but also belongto the polynomial desription of P 0 in �xed dimension.Eah of the hapters 4{6 begins with a more detailed motivation and with a summaryof the ontributions that are presented there.1.3 SouresThe material in hapter 4 is from the papers (Bokmayr & Eisenbrand 1997, Bokmayr,Eisenbrand, Hartmann & Shulz 1999, Eisenbrand & Shulz 1999). Chapter 5 is built onthe paper (Eisenbrand 1999), and the results in hapter 6 are from the paper (Bokmayr& Eisenbrand 1999).





2Preliminaries
We assume that the reader is familiar with basi set theory, linear algebra, and linearprogramming. Exellent referenes are the books of Lang (1971) and Shrijver (1986).2.1 Basis and notationIf a set U is ontained in a set V , we write U � V . If U is stritly ontained in V , wewrite U � V . The symbols R, Q , Z, N denote the set of real, rational, integer and naturalnumbers respetively.If � is a real number, then b� denotes the largest integer less than or equal to � andd�e denotes the smallest integer larger than or equal to �. We de�neb�e = 8<:b� if x � 0;d�e if x < 0.The size of an integer z is the numbersize(z) = 8<:1 if z = 01 + blog2(jzj) if z 6= 0The size of a rational r = p=q 2 Q is de�ned as size(p) + size(q), where p and q arerelatively prime integers.Let f; g : N �! R be funtions from the natural numbers to the reals. The funtionf is in O(g) if there exists onstants  and N suh that f(n) �  g(n) for all n 2 N withn � N . We write f = O(g). 2.2 Basi number theoryWe reall some basi number theory see e.g. (Niven, Zukerman & Montgomery 1991).An integer a divides an integer b, a j b, if there exists some integer  with a = b. A



6 x 2. Preliminariesommon divisor of integers a1; : : : ; an is an integer d dividing all ai for i 2 f1; : : : ; ng.The greatest ommon divisor of n integers a1; : : : ; an, not all equal to 0, is the largestommon divisor of a1; : : : ; an. It is denoted by gd(a1; : : : ; an) and an be omputed withthe eulidean algorithm see e.g. (Knuth 1969). If gd(a1; : : : ; an) = 1, then a1; : : : ; an arealled relatively prime. Zd denotes the ring of residues modulo d, i.e., the set f0; : : : ; d�1gwith addition and multipliation modulo d. We will often identify an element of Zd withthe natural number in f0; : : : ; d�1g to whih it orresponds. Zd is a ommutative ring butnot a �eld if d is not a prime. However Zd is a prinipal ideal ring , i.e., eah ideal is of theform hgi = fgx j x 2 Zdg E Zd. This follows sine Z is a prinipal ideal domain. The idealhgi E Zd is equal to the ideal hgd(d; g)i E Zd. Therefore we an assume that g dividesd, g j d. Thus eah ideal of Zd has a unique generator dividing d, all it the standardgenerator . The standard generator g of an ideal ha1; : : : ; aki E Zd is easily omputed withthe eulidian algorithm. 2.3 Linear algebraIf R is a ommutative ring then Rn denotes the R-module of n-tupels of elements ofR. In our appliations R stands for R; Q ; Z or Zd. An element of Rn is interpretedas a olumn vetor. The vetor of all zeroes (ones) is denoted by 0 (1) and the i-thunit vetor (the vetor of zeroes everywhere exept in the i-th omponent, whih is 1)is denoted by ei, for i = f1; : : : ; ng. If U and V are nonempty subsets of Rn, thenU +V = fu+v j u 2 U; v 2 V g. We write U +v instead of U +fvg for a singleton v 2 Rn .The l1-norm kk1 of the vetor  2 Rn is the largest absolute value of its entries:kk1 = maxfjij j i = 1; : : : ; ng. If A 2 Rm�n , then kAk1 denotes the row-sum norm,i.e., the number maxfPnj=1 jai;j j j i = 1; : : : ;mg. The l1-norm kk1 of  is the sumkk1 = Pni=1 jij. The eulidean norm kk2 of  is the sum kk2 = qPni=1 2i . Theeulidean norm of  is also denoted by kk. For w 2 Rn , let bw; dwe; bwe 2 Zn be thevetors obtained by omponent-wise appliation of b�; d�e and b�e.If a matrix A 2 Rm�n is given, then A(j), for j 2 f1; : : : ; ng, denotes the j-th olumnof A and A(i) for i 2 f1; : : : ;mg denotes the i-th row of A.If A 2 Rn�n then the inequalityjdet(A)j � kA(1)k � � � kA(n)k (2.1)is known as the Hadamard inequality. The size of a matrix A 2 Qm�n , size(A), is thenumber of bits needed to enode A, i.e., size(A) = mn+Pi;j size(ai;j), see (Shrijver 1986,p. 29). The Hadamard inequality, together with Cramer's rule implies that size(A�1) ispolynomially bounded by size(A) for a nonsingular matrix A 2 Qn�n .Let S be a subset of Rn ,



x 2.4 Polyhedra and linear programming 7� the linear hull of S, lin(S) is the subspae of Rn generated by S.� the aÆne hull of S is the set a�(S) = lin(S � s0) + s0 for an arbitrary elements0 2 S.� the onvex hull of S is the setonv(S) = f tXi=1 �isi j t � 1; tXi=1 �i = 1;�1; : : : ; �n � 0; s1; : : : ; sn 2 Sg:� the onial hull of S is the setone(S) = f tXi=1 �isi j t � 1;�1; : : : ; �n � 0; s1; : : : ; sn 2 Sg:The (aÆne)-dimension of a set of vetors S � Rn is the dimension of the subspaea�(S)� s0 of Rn for some s0 2 S.The following proposition is known as Carath�eodory's theorem.Theorem 2.1. If X � Rn and x 2 one(X) then x 2 one(fx1; : : : ; xdg) for some dlinearly independent vetors x1; : : : ; xd 2 X.If X � Rn and x 2 onv(X), then x 2 onv(fx0; : : : ; xdg) for some d + 1 aÆnelyindependent vetors x0; : : : ; xd 2 X.Let S � Rn ; n > 1 and let i 2 f1; : : : ; ng. The projetion �i(S) � Rn�1 is the set�i(S) = f(x1; : : : ; xi�1; xi+1; : : : ; xn)T j 9y 2 R; (x1; : : : ; xi�1; y; xi+1; : : : ; xn)T 2 Sg:(2.2)2.4 Polyhedra and linear programmingIn this setion we give de�nitions and fundamental fats about polyhedra and linear pro-gramming. Exellent referenes for this topi are the books by Shrijver (1986), Nemhauser& Wolsey (1988) and Ziegler (1998).A polyhedron P is a set of vetors of the form P = fx 2 Rn j Ax � bg, for some matrixA 2 Rm�n and some vetor b 2 Rm . We write P (A; b). The polyhedron is rational if bothA and b an be hosen to be rational. If P is bounded, then P is alled a polytope. If P isgiven as P (A; b), then the size of P is de�ned as size(P ) = size(A) + size(b). Notie thatthe size of a polyhedron depends on its inequality representation.



8 x 2. PreliminariesAn inequality aTx � � from Ax � b is alled an impliit equality if aTx = � for allx 2 Rn satisfying Ax � b. The system A=x � b= denotes the subsystem of impliitequalities in Ax � b and A+x � b+ denotes the subsystem of all other inequalities inAx � b. If P (A; b) � Rn , then dim(P (A; b)) = n� rank(A=).Polyhedra an be desribed by a set of inequalities or equivalently as the Minkowskisum of a polytope with a one (see Figure 2.1).Theorem 2.2 (Deomposition theorem for polyhedra). A set P � Rn is a polyhe-dron if and only if P = onv(Q) + one(C) for some �nite subsets Q; C � Rn .
= +P onv(Q) one(C)Figure 2.1: A polyhedron and its deomposition into onv(Q) and one(C)We say a polyhedron P � Rn is full-dimensional if dim(P ) = n. A rational half spaeis a set of the form H = fx 2 Rn j Tx � Æg, for some non-zero vetor  2 Qn and someÆ 2 Q . The half spae H is then denoted by (Tx � Æ). The orresponding hyperplane,denoted by (Tx = Æ), is the set fx 2 Rn j Tx = Æg. A rational half spae always has arepresentation in whih the omponents of  are relatively prime integers. That is, we anhose  2 Zn with gd() = 1.An inequality Tx � Æ is alled valid for a polyhedron P , if (Tx � Æ) � P . A fae ofP is a set of the form F = (Tx = Æ) \ P , where Tx � Æ is valid for P . The inequalityTx � Æ is a fae-de�ning inequality for F . Clearly F is a polyhedron. If P � F � ;, thenF is alled proper. A maximal (inlusion wise) proper fae of P is alled a faet of P . Ifthe fae-de�ning inequality Tx � Æ de�nes a faet of P , then Tx � Æ is a faet-de�ninginequality. A proper fae of P of dimension 0 is alled a vertex of P . A vertex v of P (A; b)is uniquely determined by a subsystem Avx � bv of Ax � b, where A is nonsingular andv = (Av)�1b. A polytope P an be desribed as the onvex hull of its verties. A d-simplexis a polytope, whih is the onvex hull of d+ 1 aÆnely independent points.Proposition 2.3. A full-dimensional polyhedron P has a unique (up to salar multipli-ation) minimal representation by a �nite set of linear inequalities. Those are the faet-de�ning inequalities.



x 2.4 Polyhedra and linear programming 9Proposition 2.4. If P is given by the inequalities Ax � b, and if F is a fae of P , thenF is of the form F = fx 2 P j A0x = b0g, for some subsystem A0x � b0 of Ax � b.Let P � Rn be a rational polyhedron. The faet omplexity of P is the smallest number' suh that ' � n and there exists a system Ax � b of rational linear inequalities de�ningP suh, that eah inequality in Ax � b has size at most '. The vertex omplexity of P isthe smallest number �, suh that there exist rational vetors q1; : : : ; qk; 1; : : : ; t, eah ofsize at most �, with P = onv(fq1; : : : ; qkg) + one(f1; : : : ; tg):Theorem 2.5. Let P � Rn be a rational polyhedron of faet omplexity ' and vertexomplexity �. Then � � 4n2' and ' � 4n2�:Linear programming onerns the maximization of a linear funtion Tx, where xranges over the elements in a polyhedron. The linear programming problem is:Given a rational matrix A and rational vetors b and , determine maxfTx jx 2 P (A; b)g.Khahiyan's method (Khahiyan 1979), an extension of the ellipsoid method to linearprogramming, results in a polynomial algorithm for linear programming.Proofs to the following fats an be found in the book of Shrijver (1986).Theorem 2.6 (Farkas' Lemma). The polyhedron P = fx 2 Rn j Ax � bg, whereA 2 Rm�n and b 2 Rm is empty if and only if there exists a � 2 Rm�0 with�T (A j b) = (0; : : : ; 0;�1):Theorem 2.7 (Linear programming duality). Let A be a matrix and b and  be ve-tors. Then maxfTx j Ax � bg = minfbT y j y � 0; yTA = T gprovided that both sets are not empty.Proposition 2.8 (Complementary slakness). Let A be a matrix and b and  be ve-tors. Suppose that the sets fx j Ax � bg and fy j y � 0; yTA = T g are nonempty. Let x̂and ŷ be feasible solutions tomaxfTx j Ax � bg and minfbT y j y � 0; yTA = T g (2.3)respetively. Then the following are equivalent:



10 x 2. Preliminariesi. x̂ and ŷ are optimal solutions of (2.3);ii. T x̂ = ŷT b;iii. if a omponent of ŷ is positive, then the orresponding inequality in Ax � b is tightat x̂, i.e., ŷT (b�Ax̂) = 0.Carath�eodory's theorem and omplementary slakness yield the following orollary.Corollary 2.9. Let A be a matrix and b and  be vetors. If the optimum of the LP-problems maxfTx j Ax � bg = minfbT y j y � 0; yTA = T gis �nite, then the optimum is attained at a vetor ŷ whose positive omponents orrespondto linear independent rows of A.A onsequene of the disussed results is that for a given polyhedron P = P (A; b),all valid inequalities Tx � Æ an be derived as a nonnegative linear ombination andright-hand-side weakening from Ax � b: = �TA and Æ � �T b for some � � 0: (2.4)2.5 The equivalene of separation and optimizationIt is not neessary to have an expliit representation of a polyhedron P in terms of linearinequalities in order to optimize a linear funtion over P . It is enough to be able to solve theseparation problem, whih is: Given a rational polyhedron P � Rn and a rational vetorx̂ 2 Qn , deide whether x̂ is in P and if not, ompute a rational separating inequalityTx � Æ whih is valid for P but not valid for x̂.The equivalene of separation and optimization, a result of Gr�otshel, Lov�asz & Shri-jver (1988), deouples optimization from an expliit representation of a polyhedron P bylinear inequalities.More formally: Let for eah i 2 N, Pi � Rni be a rational polyhedron suh that, giveni 2 N, one an ompute the number ni and an upper bound of the faet omplexity 'i ofPi � Rni in polynomial time (polynomial in size i). Then, the separation problem for thelass of polyhedra F = (Pi j i 2 N) is:Given i 2 N and x̂ 2 Qni , deide whether x̂ 2 Pi and if x̂ =2 Pi ompute ahyperplane Tx � Æ that separates x̂ from Pi.The optimization problem for the lass of polyhedra F = (Pi j i 2 N) is:



x 2.6 Integer programming 11Given i 2 N and  2 Zni, deide whether Pi is empty, maxfTx j x 2 Pig isunbounded or ompute an optimal solution x̂ 2 Pi of maxfTx j x 2 Pig.Theorem 2.10 (Gr�otshel, Lov�asz & Shrijver (1988)). For any lass of polyhedraF = (Pi j i 2 N), the separation problem is polynomially solvable if and only if theoptimization problem is polynomially solvable. 12.6 Integer programmingThe integer linear programming problem is:Given a rational matrix A and rational vetors b and , determinemaxfTx j x 2 P (A; b); x integral g:Integer linear programming is NP-omplete.The polyhedron P (A; b) from above is alled the linear programming relaxation. Thereason for the rationality assumption is that if P is a rational polyhedron, then the integerhull PI = onv(P \ Zn) of P is a rational polyhedron again.Theorem 2.11. If P is a rational polyhedron, then PI = onv(fx j x 2 P \ Zng) is arational polyhedron.
P PI

F
vbFigure 2.2: This piture illustrates a polyhedron P , one of its verties v, one of its faetsF and its integer hull PI .The integer linear programming problem an be redued to the linear programmingproblem maxfTx j x 2 P (A; b)Ig:1polynomial in size(i); size(x̂) and size()



12 x 2. PreliminariesHowever, an inequality desription of PI an be exponential. The integer hull of a nonrational polyhedron is in general not a polyhedron.For the deomposition of PI one has the following estimates.Proposition 2.12. Let P = fx 2 Rn j Ax � bg, where A 2 Zm�n and b 2 Zm, thenPI = onv(fx1; : : : ; xtg) + one(fy1; : : : ; ysg);where x1; : : : ; xs; y1; : : : ; yt are integral vetors of in�nity norm at most (n+ 1)�, where� is the maximal absolute value of the subdeterminants of the matrix (A j b).Theorem 2.13. Let P � Rn be a rational polyhedron of faet omplexity '. Then PI hasfaet omplexity at most 24n5'.The polyhedron P is alled integral if P is equal to its integer hull PI . If P and Q arepolyhedra with Q � P , then Q is alled weakening of P , if QI = PI .2.7 Integer linear algebraA (rational) lattie L = L (A) is a subset of Rm of the form L = fAx j x 2 Zng, whereA 2 Qm�n is a rational matrix of full row rank. If A is in addition of full ulumn rank,then A is alled basis of L . We refer to the books of Cassels (1997) and Lov�asz (1986)for basis about latties.A matrix U 2 Zn�n is alled unimodular if it is invertible and U�1 2 Zn�n. One hasthe following fat.Proposition 2.14. A matrix U 2 Zn�n is unimodular if and only if det(U) = �1.If U 2 Zn�n is unimodular, then L (A) = L (AU). The Hermite normal form, HNFof an integral matrix A 2 Zm�n with full row rank is a nonnegative, nonsingular lowertriangular matrix H, where eah row has a unique maximal entry, loated at the diagonalhi;i with L (A) = L (H). The Hermite normal form exists for eah integral matrix of fullrow rank. Coneptually, it an be traed bak to the study of quadrati forms by Gau�(1801). See (Kannan & Bahem 1979), (Domih, Kannan & Trotter 1987), (Hafner &MCurley 1991) and (Storjohann & Labahn 1996) for polynomial algorithms onerningthe omputation of the Hermite normal form. It follows from this that every lattie has abasis.Let A 2 Qn�n be a basis of L and let B be another basis of L . Then B = AV1and A = B V2 with some integral matries V1 and V2 in Zn�n. By substitution oneobtains A = AV1V2 and thus that V1V2 = I. This implies that V1 and V2 are unimodular.



x 2.8 Complexity 13Therefore the absolute value jdet(A)j of the determinants of bases of L is an invariant ofL . This number is alled the lattie determinant of L and is denoted by det(L ).The dual lattie L � of a lattie L � Rn is the set L � = fx 2 Rn j 8y 2 L (A) : xT y 2Zg � Rn .Lemma 2.15. Let A 2 Qn�n have rank n. The dual lattie L �(A) is the lattie L (A�1T ).Proof. Let a be the i-th row of A�1. Then aTA = eTi . Thus aTAx is an integer for eahx 2 Zn. Thus L (A�1T ) � L �(A).Suppose that v is not inL (A�1T ). Then vT an be written as vT = uTA�1, where u isnot integral. Then vTA = uTA�1A = uT is not an integral vetor. Thus vT =2 L �(A).Corollary 2.16. If v is an element of the dual lattie of L (A), where A is integral, thenv an be written as v = u=det(L (A)) with an integral vetor u.2.8 ComplexityIn Chapter 5 we prove omputational omplexity results for problems related to uttingplanes. For this it is neessary to review some de�nitions and notations. The reader isrefered to (Garey & Johnson 1979) and (Papadimitriou 1994) for further referene.An alphabet is a �nite nonempty set �, and a language is a subset of the Kleene losure�� of �. The lass NP is a lass of languages for whih membership has a short proof. Inother words: a language L � �� is in NP, if there exists a language L1 � �� � �� thatis deidable in deterministi polynomial time, and a polynomial p(X) with the propertythat for eah w 2 �� one has:w 2 L () 9y 2 ��; jyj < p(jwj); (w; y) 2 L1:If L1 � ��1 and L2 � ��2 are languages, then a polynomial redution from L1 to L2 is afuntion � : ��1 ! ��2, omputable in polynomial time, suh that for eah w 2 ��1 one has:w 2 L1 () �(w) 2 L2:In this ase one says that L1 an be redued to L2. A language L 2 NP is NP-omplete,if eah language in NP an be polynomially redued to it.





3The utting plane method
3.1 Cutting planesA utting plane of a polyhedron P = fx 2 Rn j Ax � bg is an inequality that is valid forthe integer hull PI of P but not neessarily valid for P . In this hapter we assume thatpolytopes and polyhedra are always rational unless expliitly stated otherwise.The simplest polyhedra are the rational half spaes. Their integer hull an be writtendown with little e�ort. If one has a rational half spae (Tx � Æ) then it an be representedwith  2 Zn where the greatest ommon divisor of the omponents gd(1; : : : ; n) is 1.The integer hull of this half spae is the half spae (Tx � bÆ). This an for example beseen as follows: The subspae of Rn whih is de�ned by the system Tx = 0 is integral. Thegreatest ommon divisor gd(1; : : : ; n) = 1 has a representation T y = 1 with an integralvetor y 2 Zn. Eah hyperplane (Tx = k), with k 2 Z is the translation of (Tx = 0) withthe vetor k y and is thus integral. Any point in (Tx � bÆ) is in the onvex hull of twoonseutive hyperplanes (Tx = d) and (Tx = (d � 1)) for some d � Æ, d 2 Z and thusis in the onvex hull of integral vetors in (Tx � bÆ). Therefore (Tx � bÆ) is integral.Let us from now on assume that a half spae (Tx � Æ) is always rational and that  inthe representation above is always integral.The ase of two half spaes (T1 x � Æ1) and (T2 x � Æ2) is already more ompliated. As-sume that 1 and 2 are integral vetors with greatest ommon divisor gd(i;1; : : : ; i;n) =1, i = 1; 2 and that Æi 2 Z. The half spaes represent the polyhedron P � Rn de�ned bythe system  1;1 � � � 1;n2;1 � � � 2;n!x �  Æ1Æ2! : (3.1)There is a unimodular mapping U that transforms the matrix in (3.1) into a matrix ofthe form � 1 0 0 ��� 0a2 a3 0 ��� 0 � : Notie that the variables x3; : : : ; xn are unonstrained and thatthe onstraints of the integer hull of � 1 0a2 a3 � (x1; x2)T � (Æ1; Æ2)T yield the integer hull of(3.1). Harvey (1999) presented an elementary algorithm whih omputes the integer hull



16 x 3. The utting plane methodof a rational polyhedron in R2 in polynomial time. The algorithm relies on diophantineapproximations of rational numbers and is onsiderably more ompliated than the oneonstraint ase.There does not seem to exist an elementary method to onstrut the linear desriptionof the integer hull formed by three or more half spaes in polynomial time. It is possiblethough with an appliation of Lenstra's method (Lenstra 1983) as proposed by Cook,Hartmann, Kannan & MDiarmid (1992).Rather than omputing the integer hull PI of P , the objetive pursued by the uttingplane method is a better approximation of PI . Here the idea is to interset P with theinteger hull of half spaes ontaining P . These will still inlude PI but not neessarily P .In the following we will study the theoretial framework of Gomory's utting planemethod (Gomory 1958) as given by Chv�atal (1973a) and Shrijver (1980).If the half spae (Tx � Æ);  2 Zn; gd(1; : : : ; n) = 1 ontains the polyhedron P ,i.e. if Tx � Æ is valid for P , then Tx � bÆ is valid for the integer hull PI of P . Theinequality Tx � bÆ is alled a utting plane or Gomory-Chv�atal ut of P . The geometriinterpretation behind this proess is that (Tx � Æ) is \shifted inwards" until an integerpoint of the lattie is in the boundary of the half spae.
PIP

Figure 3.1: The half spae (�x1 + x2 � Æ) ontaining P is replaed by its integer hull(�x1 + x2 � bÆ). The darker region is the integer hull PI of P .
The idea pioneered by Gomory (1958) is to apply these utting planes to the integerprogramming problem. Cutting planes tighten the linear relaxation of an integer programand Gomory showed how to apply utting planes suessively until the resulting relaxationhas an integral optimal solution.



x 3.2 The elementary losure 173.2 The elementary losureCutting planes Tx � bÆ of P (A; b); A 2 Rm�n obey a simple inferene rule. ClearlymaxfTx j Ax � bg � Æ and it follows from Corollary 2.9 that there exists a weight vetor� 2 Qm�0 with at most n positive entries suh that �TA = T and �T b � Æ. Thus Tx � bÆfollows from the following inequalities by weakening the right-hand-side if neessary:�TAx � b�T b; � 2 Qm�0 ; �TA 2 Zn: (3.2)Instead of applying utting planes suessively, one an apply all possible utting planesat one. P interseted with all Gomory-Chv�atal utting planesP 0 = \(T x�Æ)�P2Zn (Tx � bÆ) (3.3)is alled the elementary losure of P .The set of inequalities in (3.2), whih desribe P 0 is in�nite. However, as observed byShrijver (1980), a �nite number of inequalities in (3.2) imply the rest.Lemma 3.1. Let P be the polyhedron P = fx 2 Rn j Ax � bg with A 2 Zm�n andb 2 Zm. The elementary losure P 0 is the polyhedron de�ned by Ax � b and the set of allinequalities �TAx � b�T b, where � 2 [0; 1)m and �TA 2 Zn.Proof. An inequality �TAx � b�T b with � 2 Qm�0 and �TA 2 Zn is implied by Ax � band (�� b�)TAx � b(�� b�)T b, sine�TAx = (�� b�)TAx+ b�TAx � b(�� b�)T b+ b�T b = b�T b: (3.4)Corollary 3.2 (Shrijver (1980)). If P is a rational polyhedron, then P 0 is a rationalpolyhedron.Proof. P an be desribed as P (A; b) with integral A and b. There is only a �nite numberof vetors �TA 2 Zn with � 2 [0; 1)m.Remark 3.3. This yields an exponential upper bound on the number of faets of theelementary losure of a polyhedron. The in�nity norm kk1 of a possible andidate Tx �bÆ is bounded by kAT k1, where the matrix norm k � k1 is the row sum norm. Thereforewe have an upper bound of O(kAT kn1) for the number of faets of the elementary losureof a polyhedron. In Chapter 6 we will prove a polynomial upper bound of the size of P 0 in�xed dimension.



18 x 3. The utting plane methodThe following lemma is often useful. It states that if the i-th omponent of all elementsof a polyhedron P � Rn is �xed to an integer, then the elementary losure P 0 of P isobtained by the elementary losure of the projetion �i(P ) � Rn�1 . A proof is trivial.Lemma 3.4. Let P � Rn be a polyhedron with P � (xi = z) for some i 2 f1; : : : ; ng andsome integer z 2 Z, thenP 0 = f(x1; : : : ; xi�1; z; xi+1; : : : ; xn)T j (x1; : : : ; xi�1; xi+1; : : : ; xn)T 2 �i(P )0g:3.3 The Chv�atal-Gomory proedureThe elementary losure operation an be iterated, so that suessively tighter relaxationsof the integer hull PI of P are obtained. We de�ne P (0) = P and P (i+1) = (P (i))0, fori � 0. This iteration of the elementary losure operation is alled the Chv�atal-Gomoryproedure. The Chv�atal rank of a polyhedron P is the smallest t 2 N0 suh that P (t) = PI .In analogy, the depth of an inequality Tx � Æ whih is valid for PI is the smallest t 2 N0suh that (Tx � Æ) � P (t).Chv�atal (1973a) showed that every bounded polyhedron P � Rn has �nite rank.Shrijver (1980) extended this result to rational polyhedra. The main ingredient to hisresult is the following observation, see also (Cook, Cunningham, Pulleyblank & Shrijver1998, Lemma 6.33).Lemma 3.5. Let F be a fae of a rational polyhedron P . If TFx � bÆF  is a utting planefor F , then there exists a utting plane TPx � bÆP  for P withF \ (TPx � bÆP ) = F \ (TFx � bÆF ):Intuitively, this result means that that a utting plane of a fae F of a polyhedron Pan be \rotated" so that it beomes a utting plane of P and has the same e�et on F .Proof. Assume that ÆF = maxfTFx j x 2 Fg. Let F be de�ned by the half spae (Tx �Æ) � P , i.e., F = P \ (Tx = Æ), where  and Æ are integral and let P = P (A; b). It followsfrom linear programming duality (Theorem 2.7) that there exists a nonnegative weightvetor � and some rational number � with TF = �TA + �T and ÆF = �T b + �Æ: De�neTP = �TA+ (�� b�)T and observe thatTPx � b�T b+ (�� b�)Æ = bÆF  � b�Æis a utting plane for P . Notie further that(Tx = Æ) \ (TPx � bÆF  � b�Æ) = (Tx = Æ) \ (TFx � bÆF ):



x 3.3 The Chv�atal-Gomory proedure 19Thus with ÆP = bÆF  � b�Æ we see thatF \ (TPx � bÆP ) = F \ (TFx � bÆF ):This implies that a fae F of P behaves under its losure F 0 as it behaves under thelosure P 0 of P .Corollary 3.6. Let F be a fae of a rational polyhedron P . ThenF 0 = P 0 \ F:From this, one an derive that the Chv�atal rank of rational polyhedra is �nite.Theorem 3.7 (Shrijver (1980)). If P is a rational polyhedron, then there exists somet 2 N with P (t) = PI .
PPI

F
PPIFigure 3.2: After a �nite number of iterations F is empty. Then the half spae de�ningF an be pushed further down. This is basially the argument that every inequality,valid for PI eventually beomes valid for the outome of the suessive appliation of theelementary losure operation.Proof. The argument proeeds by indution on the dimension of P .One an assume P to be full-dimensional. Sine otherwise, there exists a hyperplane(Tx = Æ) with integral  and gd() = 1 whih ontains P . If Æ is not integral, one hasimmediately that P 0 = ;. If Æ is integral, we an apply a unimodular transformation, suhthat (Tx = Æ) beomes (x1 = Æ). Sine the elementary losure operation and unimodulartransformations ommute (see Setion 3.6) one has redued to a ase with one variableless (see Lemma 3.4).If dim(P ) = 0, then learly P 0 = PI . Let PI = ; and dim(P ) > 0. By Theorem 2.2P is of the form P = Q + one(C) with some polytope Q and some �nite set C � Qn .



20 x 3. The utting plane methodNow one(C) annot be full dimensional. Otherwise there would be an integral point inP . Thus there exists a  2 Zn whih is perpendiular to the one (see (Lang 1971)), i.e.,for eah � 2 one(C) one has T� = 0. Sine Q is bounded, there exist some Æ1; Æ2 2 Zwith maxfTx j x 2 Pg � Æ1 and minfTx j x 2 Pg � Æ2. Thus the minimal t suh thatTx � (Æ2 � 1) is valid for P (t) is the Chv�atal rank of P . Sine the fae F of P de�ned byF = P \ (Tx = Æ1) is of lower dimension than P , one has that F (t) = ; for some t. Thus,with Corollary 3.6, (Tx � Æ1 � �) is valid for P (t) for some � > 0 and thus (Tx � Æ1 � 1)is valid for P (t+1). By indution on Æ1 � Æ2 one an see that Tx � (Æ2 � 1) eventuallybeomes valid.If PI 6= ;, let Tx � Æ be valid for PI . Clearly for eah rational element � of one(C)one has T� � 0. Therefore maxfTx j x 2 Pg is bounded. An argument as given aboveshows that Tx � Æ eventually beomes valid.This is the termination argument of the Chv�atal-Gomory proedure.Already in dimension 2, there exist rational polyhedra of arbitrarily large Chv�atal rank(Chv�atal 1973a). To see this, onsider the polytopesPk = onvf(0; 0); (0; 1)(k; 12 )g; k 2 N: (3.5)(0; 0)(0; 1) (k; 12 )Figure 3.3:One an show that P(k�1) � P 0k. For this, let Tx � Æ be valid for Pk with Æ =maxfTx j x 2 Pkg. If 1 � 0, then the point (0; 0) or (0; 1) maximizes Tx, thus(Tx = Æ) ontains integral points. If 1 > 0, then T (k; 12) � T (k � 1; 12) + 1. Thereforethe point (k � 1; 12 ) is in the half spae (Tx � Æ � 1) � (Tx � bÆ). Unfortunately, thislower bound on the Chv�atal rank of Pk is exponential in the enoding length of Pk whihis O(log(k)).Remark 3.8. In Chapter 4 we will analyze the onvergene of the method in the 0/1 ubein a more sophistiated way, yielding a polynomial upper bound on the Chv�atal rank ofpolytopes in the 0/1 ube. 3.4 Cutting plane proofsAn important property of polyhedra is the following rule to derive valid inequalities whihis a onsequene of linear programming duality (Theorem 2.7). If P is de�ned by the



x 3.4 Cutting plane proofs 21inequalities Ax � b, then the inequality Tx � Æ is valid for P if and only if there existssome � 2 Rm�0 with  = �TA and Æ � �T b: (3.6)This implies that linear programming (in its deision version) belongs to the lass NP \o�NP, beause maxfTx j Ax � bg � Æ if and only if Tx � Æ is valid for P (A; b). A\No" erti�ate would be some vertex of P whih violates Tx � Æ. Interestingly, quitean amount of time went by until linear programming was found to be in P by Khahiyan(1979).In integer programming there is an analogy to this rule. A sequene of inequalitiesT1 x � Æ1; T2 x � Æ2; : : : ; Tmx � Æm (3.7)is alled a utting-plane proof of Tx � Æ from a given system of linear inequalities Ax �b, if 1; : : : ; m are integral, m = , Æm = Æ, and if Ti x � Æ0i is a nonnegative linearombination of Ax � b; T1 x � Æ1; : : : ; Ti�1x � Æi�1 for some Æ0i with bÆ0i � Æi. In otherwords, if Ti x � Æi an be obtained from Ax � b and the previous inequalities as aGomory-Chv�atal ut, by weakening the right-hand-side if neessary. Obviously, if there isa utting-plane proof of Tx � Æ from Ax � b then every integer solution to Ax � b mustsatisfy Tx � Æ. The number m here, is the length of the utting plane proof.The following proposition shows a relation between the length of utting plane proofsand the depth of inequalities (see also (Chv�atal, Cook & Hartmann 1989)). It omes intwo avors, one for the ase PI 6= ; and one for PI = ;. The latter an then be viewed asan analogy to Farkas' lemma.Proposition 3.9. Let P (A; b) � Rn ; n � 2 be a rational polyhedron.i. If PI 6= ; and Tx � Æ with integral  has depth t, then Tx � Æ has a utting planeproof of length at most (nt+1 � 1)=(n� 1).ii. If PI = ; and rank(P ) = t, then there exists a utting plane proof of 0Tx � �1 oflength at most (n+ 1)(nt � 1)=(n� 1) + 1.Proof. Let us �rst prove the following. If P (t) 6= ; and Tx � Æ is valid for P (t) for some 2 Zn, then Tx � bÆ has a utting plane proof of length at most (nt+1 � 1)=(n � 1). Ift = 0, then the laim follows from Corollary 2.9. If t > 0, then Tx � Æ an be derivedfrom n inequalities Ti x � bÆi, i 2 Zn; i = 1; : : : ; n, where eah Ti x � Æi is valid forP (t�1). By indution, eah of the inequalities Ti x � bÆi has a utting plane proof oflength (nt � 1)=(n � 1). We obtain a utting plane proof of Tx � bÆ by onatenating



22 x 3. The utting plane methodthose for the inequalities Ti x � bÆi with Tx � bÆ. The length of this proof is at mostn (nt � 1)=(n � 1) + 1 = (nt+1 � 1)=(n � 1). (i) follows diretly from this.Let PI = ;. If rank(P ) = 0, then (ii) is simply Farkas' lemma and Carath�eodory'stheorem. Therefore let rank(P ) = t � 1. There exist n + 1 inequalities Ti x � Æi,i = 1; : : : ; n+ 1 whih are valid for P (t�1), suh that a nonnegative linear ombination ofTi x � bÆi, i = 1; : : : ; n + 1 yields 0Tx � �1. The utting plane proofs of Ti x � bÆi,i = 1; : : : ; n + 1 and the inequality 0Tx � �1 form a utting plane proof of 0Tx � �1.Its length is at most (n+ 1)(nt � 1)=(n� 1) + 1.Due to this relation the Chv�atal rank has a preise omplexity theoreti meaning inthe ontext of the question o�NP = NP (see e.g. (Nemhauser & Wolsey 1988, p. 227)and (Shrijver 1986, p. 352)). Suppose F = (Pi j i 2 N) is a lass of polyhedra (see x 2.5)for whih linear programming is solvable in polynomial time:Given i 2 N and  2 Qni , ompute maxfTx j x 2 Pig , where Pi � Rni .Consider then the integer programming problem for this lass of polyhedra:Given i 2 N and  2 Qni , ompute maxfTx j x 2 Zni \ Pig, where Pi � Rni .If there exists a onstant K suh that for all Pi 2 F , rank(Pi) < K holds, thenthe integer programming problem for the lass F in its deision version annot be NP-omplete, unless NP = o�NP. The frational mathing polytopes QG (see Example 4.3)are suh a lass of polyhedra, whose Chv�atal rank is at most one as it was observed byEdmonds (1965).Cutting plane proofs have been studied in the ontext of the fasinating �eld of propo-sitional proof systems. After Haken (1985) showed that resolution was an exponentialproof system for the unsatis�ability of propositional formulas, Cook, Coullard & Tur�an(1987) observed that utting planes, when applied to polytopes resulting from proposi-tional formulas, are a stronger proof system than resolution. They observed that thepigeon hole priniple, whih annot be proved by resolution with a polynomial proof,ould be proved by utting planes with a polynomial proof. Eventually Pudl�ak (1997)was able to derive an exponential lower bound on the length of utting plane proofs forpropositional unsatis�ability. The question of whether eah proof system for proposi-tional logi is exponential or not is equivalent to the question whether o�NP = NP. See(Urquhart 1995, Pudl�ak 1999) for a survey on propositional proof systems.3.5 The lassial Gomory utGomory (1958) derived utting planes out of a simplex tableau of the urrent linear relax-ation of the orresponding integer program. The lassial Gomory ut therefore is de�ned



x 3.5 The lassial Gomory ut 23for polyhedra in standard form, i.e.,P = fx 2 Rm j Ax = b; x � 0g; (3.8)where A 2 Rm�n has rank m. The ut is derived from suh a representation as follows.Let ai;1x1 + � � � + ai;nxn = bi be the i-th equality of Ax = b. Notie that any integralx̂ 2 Zn satis�es fai;1gx̂1 + � � �+ fai;ngx̂n � fbig (mod 1); (3.9)where a � b (mod 1) means that a� b is an integer and f�g = �� b�.Sine P is in the positive orthant we see that the inequalityfai;1gx1 + � � �+ fai;ngxn � fbig (3.10)is valid for all integral vetors in P . This is the lassial Gomory ut. Note that it isderived from a row of the desription Ax = b; x � 0. It is easy to see that this uttingplane an be obtained as a Gomory-Chv�atal utting plane. For this, add to the equalityai;1x1 + � � �+ ai;nxn = bi inequalities �fai;jgxj � 0 for j = 1; : : : ; n to obtainbai;1x1 + � � � + bai;nxn � bi: (3.11)Then we an round down the right-hand-side to obtainbai;1x1 + � � �+ bai;nxn � bbi: (3.12)The Gomory-Chv�atal utting plane in (3.12) and ai;1x1+� � �+ai;nxn = bi yield the lassialGomory ut (3.10). More preisely, the polyhedron P interseted with the halfspaede�ned by (3.11) is the same polyhedron, as P interseted with the halfspae de�ned by(3.10).In this sense, on the other hand, eah Gomory-Chv�atal utting plane for P an beobtained by a lassial Gomory ut derived from a suitable standard form representationof P . For this let Tx � bÆ be an undominated Gomory-Chv�atal utting plane for P , withintegral  and Æ = maxfTx j x 2 Pg. Undominated means that this utting plane annotbe obtained from other valid inequalities for P 0 by a nonnegative linear ombination andright-hand-side weakening. It follows from Lemma 3.1 that T = b�TA and Æ = �T bfor some � 2 [�1; 1℄m. Here � an also be negative, sine Ax = b has the inequalitydesription Ax � b; �Ax � �b and the representation of  as T = b�TA omes fromthe fat that the nonnegativity onstraints �x � 0 an only have multipliative weightsin [0; 1) while applying Lemma 3.1 in this ase. We now desribe a suitable standardform representation of P whose �rst-row lassial Gomory ut yields Tx � bÆ. Assume



24 x 3. The utting plane methodwithout loss of generality that the �rst omponent of � is nonzero. The inhomogeneoussystem Ax = b represents then the same set of vetors as the system Cx = d, where the�rst row of (C j d) is is the row vetor (�TA j �T b) and where the other m � 1 rows arethe last m � 1 rows of (A j b). Observe that the lassial Gomory ut derived from this�rst row is equivalent to Tx � bÆ, as the previous disussion has shown.Gomory (1958) onsidered integer linear programs of the formmaxfTx j Ax = b; x � 0; x 2 Zng: (3.13)He added uts derived as in (3.10) to the problem, with an additional slak variable toobtain a standard form representation againfai;1gx1 + � � � + fai;ngxn � y = fbig: (3.14)Sine (3.9) holds this slak variable an be required to be integral. Therefore it remainsto solve the problemmaxfTx j Ax = b; nXj=1fai;jgxj � y = fbig;x � 0; x 2 Zn; y � 0; y 2 Zg: (3.15)Gomory showed how to iteratively add utting planes until an integral optimal solutionis obtained, whih then translates bak to an integral optimal solution to the originalproblem. Notie that instead of (3.15) we an equivalently writemaxfTx j Ax = b; nXj=1bai;jxj + y = bbi;x � 0; x 2 Zn; y � 0; y 2 Zg: (3.16)The next lemma lari�es how a Gomory-Chv�atal ut of a polyhedron resulting fromanother one by the addition of slak variables, an be translated into a Gomory-Chv�atalut of the original polyhedron having the same e�et. A proof is trivial.Lemma 3.10. Let P = fx 2 Rn j Ax � bg with integral A and b and let eP = f(x; y) 2Rm+n j Ax + y = b; y � 0g. If (T1 ; T2 )(x; y) � bÆ is a Gomory-Chv�atal ut of eP , then(T1 � T2A)x � bÆ � T2 b is a Gomory-Chv�atal ut of P andP \ ((T1 � T2 A)x � bÆ � T2 b) = �y( eP \ ((T1 ; T2 )(x; y) � bÆ));where �y(x; y) = x.



x 3.6 Unimodular transformations 25Lemma 3.10 and the observation from (3.16) imply now that if we start with a polyhe-dron P (A; b) with integral A and b in the positive orthant, then all utting planes derivedin the ourse of Gomory's original algorithm translate to iterated Gomory-Chv�atal utsof P (A; b).Theorem 3.11 (Gomory (1958)). Let the integral inequality system Ax � b, A 2Zm�n, b 2 Zm de�ne a polyhedron P (A; b) in the positive orthant and let Tx � Æ;  2Zn; Æ 2 Q be valid for P . There exists an algorithm that omputes a utting plane prooffor of Tx � Æ from the system Ax � b on input A; b;  and Æ.If Tx � Æ is from an inequality desription of PI , then Gomory's result is an algorithm,whih adds utting planes until Tx � Æ beomes valid. This yields the terminationof the Chv�atal-Gomory proedure for polyhedra in the positive orthant as observed byShrijver (Shrijver 1986, p. 359).Corollary 3.12. If P is a rational polyhedron in the positive orthant, then there existssome t 2 N with P (t) = PI .However we will show that Gomory's algorithm implies the onvergene of the Chv�atal-Gomory proedure for general rational polyhedra together with the simple observationsonerning unimodular transformations in the following Setion.3.6 Unimodular transformationsUnimodular transformations have already been mentioned and used in this hapter. Inthis setion we formalize the simple observation that unimodular transformations and theChv�atal-Gomory operation ommute. Unimodular transformations also play a ruial roleto relate the Chv�atal rank of arbitrary polytopes in the 0=1-ube to the Chv�atal rank ofmonotone polytopes, appearing in Setion 4.6.A unimodular transformation is a mappingu : Rn ! Rnx 7! Ux+ v;where U 2 Zn�n is a unimodular matrix, i.e., det(U) = �1, and v 2 Zn.Note that u is a bijetion of Zn. Its inverse is the unimodular transformation u�1(x) =U�1x� U�1v.Consider the rational halfspae (Tx � Æ);  2 Zn; Æ 2 Q . The set u(Tx � Æ) is therational halfspaefx 2 Rn j Tu�1(x) � Æg = fx 2 Rn j TU�1x � Æ + TU�1vg= (TU�1x � Æ + TU�1v):



26 x 3. The utting plane methodNotie that the vetor TU�1 is also integral. Let S be some subset of Rn . It follows that(Tx � Æ) � S if and only if (TU�1x � Æ + TU�1v) � u(S).Consider now the �rst elementary losure P 0 of some polyhedron P ,P 0 = \(T x�Æ)�P2Zn (Tx � bÆ):It follows that u(P 0) = \(T x�Æ)�P2Zn (TU�1x � bÆ + TU�1v):From this one an derive the next lemma.Lemma 3.13. Let P be a polyhedron and u be a unimodular transformation. Thenu(P 0) = (u(P ))0:Corollary 3.14. Let P � Rn be a polyhedron and let Tx � Æ be a valid inequality forPI . Let u be a unimodular transformation. The inequality Tx � Æ is valid for P (k) if andonly if u(Tx � Æ) is valid for (u(P ))(k).As an appliation of the previous disussion we will show that Gomory's algorithmimplies the onvergene of the Chv�atal-Gomory proedure for general rational polyhedra.A similar observation was made by Shrijver (Shrijver 1986, p. 358) for polyhedra in thepositive orthant. For this notie that we an assume that a rational polyhedron P (A; b) isgiven with A 2 Zm�n having full olumn rank, sine otherwise we an transform A fromthe right with a unimodular matrix U into a matrix (C j 0) where C has full olumn rankand 0 is a matrix with k = n � rank(A) zero-olumns. For this simply identify rank(A)many linearly independent rows, and ompute a unimodular matrix U , whih transformsthose rows into their Hermite normal form. Notie that P (C; b)0 yields P ((C j 0); b)0 byadding k zero-olumns to the linear desription of P (C; b)0. But a polyhedron P (A; b), withA 2 Zm�n having full olumn rank an be transformed with a unimodular transformationinto a polyhedron that lies in the positive orthant.Lemma 3.15. For eah rational polyhedron P (A; b) � Rn with integral A 2 Zm�n havingfull olumn rank and b 2 Zm, there exists a unimodular transformation u(x) = Ux + vsuh that u(P ) lies in the positive orthant Rn�0 .Proof. Let A0x � b0 be a hoie of inequalities of Ax � b with A0 having full row rankand rank(A) = rank(A0). Let U be the unimodular matrix transforming A0 from the right



x 3.6 Unimodular transformations 27into its Hermite normal form H. Multiplying eah olumn of H with �1 is a unimodulartransformation. Thus assume that eah entry on the diagonal of H is stritly negative.Then eah member of the i-th row hi;j with j < i an be replaed by the least positiveremainder hi;j (mod hi;i). This involves the addition of a olumn to a seond one, a uni-modular transformation. This an be iteratively done, starting at the �rst row. Thereforewe an assume A in the desription of P has a sub-matrix H of the form hi;i < 0, hi;j � 0and hi;j0 = 0 for eah i 2 f1; : : : ; ng, j 2 f1; : : : ; i� 1g and j0 2 fi+ 1; : : : ; ng. In the sotransformed polyhedron, lower bounds for eah variable �xi � li an be derived. By even-tually weakening the right-hand-sides, we an assume that li is integral. The translationof P with the integer vetor �(l1; : : : ; ln) lies in the positive orthant.This yields Theorem 3.7 as a orollary from Gomory's (Gomory 1958) original algo-rithmi result.Corollary 3.16. If P is a rational polyhedron, then there exists a natural number t withP (t) = PI .Proof. As we observed, we an assume that P = P (A; b) where A is an integral matrixwith full olumn rank. If P is not in the positive orthant, we an apply a unimodulartransformation u to P with u(P ) � Rn�0 . The result then follows from Lemma 3.13 andCorollary 3.12.Remark 3.17. The \altered" Hermite normal form H with hi;i < 0, hi;j � 0 and hi;j0 = 0for eah i 2 f1; : : : ; ng, j 2 f1; : : : ; i�1g and j0 2 fi+1; : : : ; ng from above has been usedby Hung & Rom (1990) to ompute utting planes for simpliial ones P , whih isolate avertex of PI .





4The Chv�atal-Gomory proedure in the 0/1 ube
4.1 MotivationCombinatorial optimization problems an often be modeled as an integer program. Thistypially involves the use of deision variables. Suh a variable x an take the value 0 or1, depending on the ourrene of a partiular event.Example 4.1. A stable set of a graph G = (V;E) is a subset U � V with the propertythat jfv; wg \ U j � 1 holds for eah edge fv; wg 2 E of G. In other words not both nodesof an edge an be in the set U . The maximum stable set problem is: Given a graphG = (V;E), �nd a maximal stable set. This an be modeled as an integer program usingdeision variables xv 2 f0; 1g for all v 2 V . Here xv = 1 means that v belongs to the stableset and xv = 0 means that v does not belong to the stable set U . The onstraints arexv � 0 for all v 2 V;xv � 1 for all v 2 V;xu + xv � 1 for all fu; vg 2 E: (4.1)Call the polytope de�ned by (4.1) SG. Any integral solution to (4.1) orresponds to astable set of G and the maximum stable set problem an be formulated as maxf1Tx j x 2SG; x integralg.There are many more examples of ombinatorial optimization problems whih have a0/1 formulation suh as maximum mathing or the famous travelling salesman problem.Suh ombinatorial optimization problems an often suessfully be attaked with ut-ting planes and branh-and-bound. Cutting planes whih an be derived from the ombi-natorial struture of the problem are often most useful.Example 4.2 (Continuation of Example 4.1). Let C = fv1; : : : ; v2k+1g, k 2 N, bean odd yle of G, i.e., an odd subset of nodes of G with fvi; vi+1g 2 E, i = f1; : : : ; 2kg.If more than k nodes of C are seleted, then at least two of them must be adjaent in the



30 x 4. The Chv�atal-Gomory proedure in the 0/1 ubeyle and thus in G. Therefore the following inequalities are valid for (SG)I :Xv2C xv � jCj � 12 ; for eah odd yle C. (4.2)These inequalities are alled odd yle inequalities.It is easy to see that the odd yle inequalities are Gomory-Chv�atal utting planes ofQG. They an be derived from (4.1) by adding the inequalities xu + xv � 1 for eah edgefu; vg of the yle, dividing the resulting inequality by 2, and rounding the right-hand-side.It is the ase for most known ombinatorially derived utting planes that they are infat Gomory-Chv�atal utting planes.Example 4.3 (Mathing). A mathing M � E of a graph G = (V;E) is a set of edgesof G, where all edges are pairwise non adjaent. The 0/1 programming formulation isgiven by the onstraints xe � 0 for all e 2 E;Pe2Æ(v) xe � 1 for all v 2 V: (4.3)Here Æ(v) is the set of edges inident to the node v. Call the desribed polytope QG. It islear that a 0/1 solution to (4.3) orresponds to a mathing of G. If U � V is an odd setof verties, then the number of edges of a mathing having both endpoints in U is at most(jU j � 1)=2. If (U) � E is the set ffu; vg 2 E j fu; vg � Ug, then it is easy to see thatthe following inequalities are valid for the integer hull of (QG)I :Xe2(U) xe � (jU j � 1)=2; for all odd subsets U � V: (4.4)Edmonds (1965) showed that (QG)I is desribed by the inequalities (4.3) and (4.4).The inequalities (4.4) are also Gomory-Chv�atal utting planes. For a given set U , sumthe inequalitiesPe2Æ(v) xe � 1 for eah v 2 U and if an edge has only one endpoint in Uadd the inequality �xe � 0. Then divide the outome by 2 and round down.There are many more examples of this kind and ombinatorially derived utting planesare very suessful in pratie. We have seen in (3.5) that the Chv�atal rank of polytopesannot be bounded in terms of the dimension. In fat there is an exponential lower boundof the Chv�atal rank of polytopes in R2 in the length of the input enoding. Therefore weare motivated to study the onvergene behavior of the elementary losure operation inthe 0/1 ube. Our main result will be a polynomial upper bound in n on the Chv�atal rankof polytopes in the n-dimensional 0/1 ube.In polyhedral ombinatoris, it has also been quite ommon to onsider the depthof a lass of inequalities as a measure of its omplexity. Chv�atal, Cook & Hartmann



x 4.2 Outline 31(1989) (see also (Hartmann 1988)) answered questions and proved onjetures of Barahona,Gr�otshel & Mahjoub (1985), of Chv�atal (1973b), and Gr�otshel & Pulleyblank (1986) onthe behavior of the depth of ertain inequalities relative to popular relaxations of the stableset polytope, the bipartite-subgraph polytope, the ayli-subdigraph polytope, and thetraveling salesperson polytope, respetively. The observed inrease of the depth was neverfaster than a linear funtion of the dimension. We prove that this indeed has to be thease, as the depth of any inequality with oeÆients bounded by a onstant is O(n).4.2 OutlineWe �rst study the behavior of the Chv�atal-Gomory proedure applied to polytopes P �[0; 1℄n with empty integer hull. It turns out that the Chv�atal rank of a rational polytopeis bounded by its dimension dim(P ). We will further see that the ase rank(P ) = n andPI = ; is rather pathologial. Besides the 0 � x � 1 onstraints, one needs at least 2nother onstraints.Then we study polytopes with nonempty integer hull. For this we have to onsiderthe faet omplexity of integral 0/1 polytopes. We will obtain a �rst upper bound on theChv�atal rank of polytopes in the n-dimensional 0/1 ube of O(n3 sizen) by saling thefaet de�ning vetors of PI . A more sophistiated appliation of saling will eventuallylead to an O(n2 sizen) upper bound.We then fous on monotone polyhedra. They reveal some nie features in the ontextof the Chv�atal-Gomory proedure. Via a monotonization we will prove a kk1 + n upperbound on the depth of an inequality Tx � Æ, where  2 Zn. This is an explanation ofthe phenomenon desribed above, namely that the lower bounds on the depth of ombina-torially derived valid inequalities were at most linear in the dimension. Combinatoriallyderived utting planes usually have 0/1 omponents.Finally, we onstrut a family of polytopes in the n-dimensional 0=1-ube whoseChv�atal rank is at least (1 + �)n, for some � > 0.If rank(n) denotes the maximum Chv�atal rank over all polytopes that are ontainedin [0; 1℄n, then it is shown that(1 + �)n � rank(n) � 3n2 size(n):4.3 Polytopes in the 0=1 ube without integral pointsReall the termination argument of the Chv�atal-Gomory proedure in x 3.3. Here onehas used that the proedure terminates for those faes of P whih do not inlude anyintegral points. In the following we will study the behavior of suh faes of polytopes in



32 x 4. The Chv�atal-Gomory proedure in the 0/1 ubethe 0/1 ube. Suh a fae de�nes a polytope again. It turns out that the Chv�atal rankof P � [0; 1℄n with PI = ; is at most the dimension of P . Via a onstrution of Chv�atal,Cook & Hartmann (1989) we will see that this bound is tight.Lemma 4.4. Let P � [0; 1℄n be a d-dimensional rational polytope in the 0=1 ube withPI = ;. If d = 0, then P 0 = ;; if d > 0, then P (d) = ;.Proof. The ase d = 0 is obvious.If d = 1, then P is the onvex hull of two points a; b 2 [0; 1℄n; a 6= b. Sine P \Zn = ;,there exists an i 2 f1; : : : ; ng suh that 0 < ai < 1. If ai � bi (resp. ai � bi), then xi � ai(resp. xi � ai) is valid for P and P 0 � (xi = 1) (resp. P 0 � (xi = 0)). Sine 0 < ai < 1 anddim(P ) = 1, it follows P 0 � fbg. Likewise, we an show in the same way that P 0 � fag.Together, we obtain P 0 � fag \ fbg = ;.The general ase is proven by indution on d and n. If P is ontained in (xn = 0) or(xn = 1), we are done by indution on n (see Lemma 3.4). Otherwise, the dimension ofP0 = P \ (xn = 0) and P1 = P \ (xn = 1) is stritly smaller than d. By the indutionhypothesis and Lemma 3.6 we getP (d�1)0 = P (d�1) \ (xn = 0) = ;and P (d�1)1 = P (d�1) \ (xn = 1) = ;It follows 0 < minfxn j x 2 P (d�1)g � maxfxn j x 2 P (d�1)g < 1;whih implies P (d) = ; (see Figure 4.1).
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Figure 4.1: After P0 and P1 are empty, the Gomory-Chv�atal uts xn � d�e and xn � b1��apply for some � > 0.



x 4.3 Polytopes in the 0=1 ube without integral points 33For eah polytope P � [0; 1℄n, there exists a rational polytope P � � P in the 0=1 ubewith the same integer hull (see (Shrijver 1986), proof of Corollary 23.2a). Indeed, for eah0=1 point y =2 P , there exists a rational half spae Hy ontaining P but not ontaining y.So P � = [0; 1℄n \ \y2f0;1gny=2P Hy (4.5)has the desired properties. As P � � P implies (P �)(t) � P (t) we have proved the followingorollary.Corollary 4.5. The Chv�atal rank of polytopes P � [0; 1℄n with PI = ; is at most n.The next lemma implies that the bound of Lemma 4.4 is tight. Its proof followsimmediately from the proof of Lemma 7.2 in (Chv�atal, Cook & Hartmann 1989).Lemma 4.6. Let Fj be the set of all vetors y in Rn suh that j omponents of y are1=2 and eah of the remaining n � j omponents are equal to 0 or 1. If a polyhedron Pontains F1, then Fj � P (j�1), for all j = 1; : : : ; n.Proof. Let (Tx � Æ) ontain Fj�1. We have to show that (Tx � bÆ) � Fj . Assumethat Æ = maxfTx j x 2 Fj�1g. Let x̂ 2 Fj and I � f1; : : : ; ng be the set of indies withx̂i = 1=2. If i = 0 for all i 2 I, then T x̂ 2 Z, thus T x̂ � bÆ.If i 6= 0 for some i 2 I, then T (x̂ � 1=2ei) � Æ, where ei is the i-th unit vetor.Therefore T x̂ � Æ � 1=2i, whih implies T x̂ � bÆ.If we de�ne Pn as the onvex hull of F1, then one hasPn = �x 2 Rn jXj2J xj +Xj =2J(1� xj) � 12 ; for all J � f1; : : : ; ng; 0 � x � 1	; (4.6)(Pn)I = ; and Fn = f(1=2; : : : ; 1=2)g � P (n�1)n . Thus n is the smallest number suh thatP (n)n = (Pn)I = ;. We therefore have the following proposition.Proposition 4.7. There exist rational polytopes P � [0; 1℄n with PI = ; and Chv�atal rankn. Notie that the number of inequalities desribing Pn in (4.6) is 2n, not ounting the0 � x � 1 onstraints. We will now show that this has to be the ase.Proposition 4.8. Let P � [0; 1℄n be a rational polytope in the 0=1-ube with PI = ; andrank(P ) = n. Any inequality desription of P has at least 2n inequalities.



34 x 4. The Chv�atal-Gomory proedure in the 0/1 ubeProof. For a polytope P � Rn and for some i 2 f1; : : : ; ng and ` 2 f0; 1g let Pì � Rn�1be the polytope de�ned byPì = fx 2 [0; 1℄n�1 j (x1; : : : ; xi�1; `; xi+1; : : : ; xn)T 2 Pg:Notie that, if P is ontained in a faet (xi = `) of [0; 1℄n for some ` 2 f0; 1g and somei 2 f1; : : : ; ng, then the Chv�atal rank of P is the Chv�atal rank of Pì (see Lemma 3.4).We will prove now that any one-dimensional fae F1 of the ube satis�es F1 \ P 6= ;.We proeed by indution on n.If n = 1, this is de�nitely true sine P is not empty and sine F1 is the ube itself.For n > 1, observe that any one-dimensional fae F1 of the ube lies in a faet (xi = `) ofthe ube, for some ` 2 f0; 1g and for some i 2 f1; : : : ; ng. Sine P has Chv�atal rank n itfollows that ~P = (xi = `) \ P has Chv�atal rank n� 1. If the Chv�atal rank of ~P was lessthan that, P would vanish after n� 1 steps. It follows by indution that (F1)ì \ ~Pì 6= ;,thus F1 \ P 6= ;.Now, eah 0=1-point has to be ut o� from P by some inequality, as PI = ;. If aninequality Tx � Æ uts o� two di�erent 0=1-points simultaneously, then it must also uto� a 1-dimensional fae of [0; 1℄n. Beause of our previous observation this is not possible,and hene there is at least one inequality for eah 0=1-point whih uts o� only this point.Sine there are 2n di�erent 0=1-points in the ube, the laim follows.We onlude that in order to obtain a rational polytope in the n-dimensional 0/1 ubewith empty integer hull and rank n, eah 0/1 point has to be ut o� by an individualinequality. 4.4 A �rst polynomial upper boundTo study the rank of polytopes with nonempty integer hull we �rst have to study thestruture of faet de�ning inequalities of integral 0/1 polytopes. Hadamard's inequalityan be used to show that an integral 0=1 polytope an be desribed by inequalities withinteger normal vetors whose l1-norm is only exponential in n (see, e.g, (Padberg &Gr�otshel 1985, Theorem 2)).Theorem 4.9. An integral 0=1 polytope P an be desribed by a system of integral in-equalities Ax � b with A 2 Zm�n; b 2 Zm suh that eah absolute value of an entry in Ais bounded by nn=2.Proof. We show the assertion for full dimensional integral 0/1 polytopes. Sine any integral0/1 polytope is a fae of a full-dimensional 0/1 polytope, the assertion follows then easily.Let v1; : : : ; vn be n aÆnely independent 0/1 points lying in a faet of P . We will estimate



x 4.4 A first polynomial upper bound 35the l1-norm of an integral vetor , whih de�nes the hyperplane through these points.Any faet de�ning inequality of an integral 0/1 polytope is of this form. For symmetryreasons we an assume that v1 = 0. Then  is the generator of the submodule of Zn de�nedby the system V x = 0; (4.7)where V 2 f0; 1gn�1�n is the matrix having v2; : : : ; vn as its rows. Assume withoutloss of generality that the �rst n � 1 olumns of V are linearly independent and allthe orresponding matrix U . The solution x̂ of the system U x = �V (n) yields a so-lution (x̂1; : : : ; x̂n�1; 1)T of the system V y = 0. Cramer's rule (see (Lang 1971)) im-plies that x̂i = det(Bi)=det(U) for i = 1; : : : ; n � 1, where Bi is obtained from Uby replaing the i-th olumn by �V (n). Thus an integral solution to (4.7) is given by(det(B1); : : : ;det(Bn�1);det(U))T . The Hadamard bound (2.1) implies that eah abso-lute value of these determinants is bounded by nn=2.Alon & Vu (1997) (see also (Ziegler 1999)) showed that this upper bound, derivedfrom the Hadamard bound is tight, i.e., there exist 0=1-polytopes with faets for whihany induing inequality aTx � �, a 2 Zn satis�es kak1 2 
(nn=2).First we formulate and prove a lemma whih is already in the termination argumentof the Chv�atal-Gomory proedure in Setion 3.3, only speially shaped for the 0/1 ube,with the knowledge on polytopes in the 0/1 ube without integral points.Lemma 4.10. Let P � [0; 1℄n be a rational polytope with PI 6= ;. For 0 6=  2 Zn let = maxfTx j x 2 Pg and Æ = maxfTx j x 2 PIg. Then Tx � Æ is valid for P (k), forall k � dd � Æe.Intuitively, the lemma says that any fae-de�ning inequality Tx � Æ of PI an beobtained from P by at most d dde iterations of the Chv�atal-Gomory proedure, whered =  � Æ is the integrality gap of P with respet to . A related result an be foundin (Chv�atal 1973a, Set. 4), see also (Hartmann 1988, Lemma 2.2.7). This lemma yieldsan exponential upper bound on the Chv�atal rank of polytopes in the 0/1 ube, sine theintegrality gap of a faet de�ning vetor of PI an be bounded by Pni=1 jij � nn=2+1,following Theorem 4.9.Proof. If d = 0, then PI = P and the laim follows trivially. If d = 1 and P 6= PI , then Pis the onvex hull of a 0=1 point a and some non-integral point b 2 [0; 1℄n. An argumentsimilar to the one in Lemma 4.4 shows that P 0 = fag = PI , whih implies the laim ford = 1, too.So assume that d � 2. The proof is by indution on d � Æe. The ase d � Æe = 0 istrivial, so suppose d � Æe > 0.



36 x 4. The Chv�atal-Gomory proedure in the 0/1 ubeIf  =2 Z, then Tx � b = de � 1 is valid for P 0.If  2 Z, then F = (Tx = ) \ P is a fae of P without any integral points anddim(F ) < d. With Lemma 4.4 and sine d � 2, we get F (d�1) = ;. Sine F (d�1) =P (d�1) \ F , we have maxfTx j x 2 P (d�1)g < , whih implies that Tx �  � 1 is validfor P (d).So in any ase we see that Tx � de�1 is valid for P (d). Let 0 = maxfTx j x 2 P (d)g.Then 0 � de�1 and sine Æ 2 Z, it follows by indution that Tx � Æ is valid for (P (d))(k0),for all k0 � d(d � Æe � 1) � dd0 � Æe. This implies the laim.We now derive an O(dn2 log n) upper bound for the Chv�atal rank of d-dimensionalrational polytopes in the 0=1 ube. Here, the basi idea is to use saling of the rowvetors aT of A, where Ax � b is an integral inequality desription if PI . The sequeneof integral vetors obtained from aT by dividing it by dereasing powers of 2 followed byrounding gives a better and better approximation of aT itself. One estimates the numberof iterations of the Chv�atal-Gomory rounding proedure needed until the fae given bysome vetor in the sequene ontains integer points, using the fat that the fae given bythe previous vetor in the sequene also ontains integer points. Although the size of thevetor is doubled every time, the number of iterations of the Chv�atal-Gomory roundingproedure in eah step is at most quadrati.The key is the following observation.Lemma 4.11. Let P � [0; 1℄n be a d-dimensional rational polytope with PI 6= ;. If  6= 0is an integral vetor with size(kk1) � k and if Tx � Æ is valid for PI , then Tx � Æ isvalid for P (k d n).Proof. Assume that Æ = maxfTx j x 2 PIg. We proeed by indution on k.For k = 1 note that  2 f�1; 0; 1gn, so for  = maxfTx j x 2 Pg one has  � Æ � nand the laim follows with Lemma 4.10.Now let k > 1 and write  as the sum 21+2 with 1 = b=2e. Note that size(k1k1) <size(kk1) and that 2 2 f�1; 0; 1gn. Let T1 x � Æ1 be a fae-de�ning inequality for PI .By the indution hypothesis it follows that T1 x � Æ1 is valid for P ((k�1)dn). Let xI 2 PIsatisfy T1 xI = Æ1. Let 0 = maxfTx j x 2 P ((k�1)dn)g. We will onlude that 0 � Æ � nand the laim then follows again from Lemma 4.10. Let x̂ 2 P ((k�1)dn) satisfy T x̂ = 0.Clearly T (x̂� xI) is an upper bound on the integrality gap 0 � Æ. ButT (x̂� xI) = 21(x̂� xI) + 2(x̂� xI)� 2(x̂� xI)� n:



x 4.5 An O(n2 log n) upper bound 37This follows sine xI maximizes fT1 x j x 2 P ((k�1)dn)g and sine 2 and x̂ � xI are in[�1; 1℄n.A polynomial upper bound on the Chv�atal rank now follows easily.Theorem 4.12. Let P � [0; 1℄n, PI 6= ;, be a d-dimensional rational polytope in the 0=1ube. The Chv�atal rank of P is at most (bn=2 log2 n+ 1)nd.Proof. PI is obtained by i iterations of the Chv�atal-Gomory proedure if eah inequal-ity Tx � Æ out of the desription delivered by Proposition 4.9 is valid for P (i). WithLemma 4.11 this is true for all i � size(nn=2) dn = (bn=2 log2 n+ 1) dnWe an now onlude with a polynomial upper bound on the Chv�atal rank for polytopesin the 0/1 ube.Theorem 4.13. The Chv�atal rank of any polytope P � [0; 1℄n in the n-dimensional0=1 ube is at most (bn=2 log2 n+ 1)n2.Proof. Let P � be the onstrution from equation (4.5) in Set. 4.3. The rank of P � is anupper bound on the rank of P . Sine P � is rational either Lemma 4.4 or Theorem 4.12applies to P � and the result follows.4.5 An O(n2 logn) upper boundThe weakness of the previous analysis is that the faes of the intermediate polytopes aretaken to have worst ase behavior d. In the following we will get rid of this nuisane.Observe the following. If a polytope P � [0; 1℄n does not interset with two arbitrarilyhosen faets of the ube, then P 0 = ;. This implies the next lemma.Lemma 4.14. Let P � [0; 1℄n be a rational polytope and let Tx � � be valid for PI andTx �  be valid for P , where � � , �;  2 Z and  2 Zn. If, for eah � 2 R; � > �, thepolytope F� = P \ (Tx = �) does not interset with two opposite faets of the 0=1-ube,then the depth of Tx � � is at most 2( � �).Proof. Notie that F 0� = ; for eah � > �. The proof is by indution on  � �.If � = , there is nothing to prove. So let �� > 0. Sine F 0 = ;, Lemma 3.6 impliesthat Tx � � � is valid for P 0 for some � > 0 and thus the inequality Tx � � 1 is validfor P (2).To failitate the argument we all a vetor  saturated with respet to a polytope P , ifmaxfTx j x 2 Pg = maxfTx j x 2 PIg. If Ax � b is an inequality desription of PI , then



38 x 4. The Chv�atal-Gomory proedure in the 0/1 ubeP = PI if and only if eah row vetor of A is saturated with respet to P . In setion 4.4, itis shown that an integral vetor  2 Zn is saturated after at most n2 size kk1 steps of theChv�atal-Gomory proedure. We now use Lemma 4.14 for a more sophistiated analysis ofthe onvergene behavior of the Chv�atal-Gomory proedure.Proposition 4.15. Let P be a rational polytope in the n-dimensional 0=1-ube. Anyintegral vetor  2 Zn is saturated with respet to P (t), for any t � 2(n2 + n size(kk1)).Proof. We an assume that  � 0 holds and that PI 6= ;. The proof is by indution on nand size(kk1). The laim holds for n = 1; 2 sine the Chv�atal rank of a polytope in the1- or 2-dimensional 0=1-ube is at most 4.So let n > 2. If size(kk1) = 1, then the laim follows, e.g., from Theorem 4.20below. So let size(kk1) > 1. Write  = 21 + 2, where 1 = b=2 and 2 2 f0; 1gn. Byindution, it takes at most 2(n2+n size(k1k1)) = 2(n2+n size(kk1))�2n iterations ofthe Gomory-Chv�atal proedure until 1 is saturated. Let k = 2(n2 + n size(kk1))� 2n.Let � = maxfTx j x 2 PIg and  = maxfTx j x 2 P (k)g. The integrality gap  � �is at most n. This an be seen as in the proof of Lemma 4.11: Choose x̂ 2 P (k) withT x̂ =  and let xI 2 PI satisfy T1 xI = maxfT1 x j x 2 P (k)g. One an hoose xI out ofPI sine 1 is saturated with respet to P (k). It follows that � � � (x̂� xI) = 21(x̂� xI) + 2(x̂� xI) � n:Consider now an arbitrary �xing of an arbitrary variable xi to a spei� value `,` 2 f0; 1g. The result is the polytopePì = fx 2 [0; 1℄n�1 j (x1; : : : ; xi�1; `; xi+1; : : : ; xn)T 2 Pgin the (n � 1)-dimensional 0=1-ube for whih, by the indution hypothesis, the vetorei = (1; : : : ; i�1; i+1; : : : ; n) is saturated after at most2((n� 1)2 + (n� 1) size(keik1)) � 2(n2 + n size(kk1))� 2niterations.It follows that�� `i � maxfeTi x j x 2 (Pì )(k)g = maxfeTi x j x 2 (Pì )Ig:If � > �, then (Tx = �)\ P (k) annot interset with a faet of the ube, sine a point in(Tx = �) \ P (k) \ (xi = `), ` 2 f0; 1g, has to satisfy Tx � �.With Lemma 4.14, after 2n more iterations of the Gomory-Chv�atal proedure,  issaturated, whih altogether happens after 2(n2 + n size(kk1)) iterations.



x 4.6 Upper bounds through monotonization 39We onlude this setion with an O(n2 log n) upper bound on the Chv�atal rank ofpolytopes in the 0/1 ube.Theorem 4.16. The Chv�atal rank of a polytope in the n-dimensional 0=1 ube is boundedby a funtion in O(n2 log n).Proof. Eah polytope Q in the 0=1-ube has a rational weakening P . Theorem 4.9 impliesthat the integral 0=1-polytope PI an be desribed by a system of integral inequalitiesPI = fx 2 Rn j Ax � bg with A 2 Zm�n; b 2 Zm suh that eah absolute value of anentry in A is bounded by nn=2. We estimate the number of Chv�atal-Gomory steps untilall row-vetors of A are saturated. Proposition 4.15 implies that those row-vetors aresaturated after at most 2(n2 + n sizenn=2) = O(n2 log n) steps.4.6 Upper bounds through monotonizationAs we have mentioned in x 4.1 for ombinatorially derived inequalities, only a lineargrowth of their depth has been observed. We give an explanation to this phenomenon inthis setion. We show that any inequality Tx � Æ whih is valid for the integer hull ofa polytope P in the n-dimensional 0=1-ube, has depth at most n+ kk1 with respet toP . This explains the linear growth of ombinatorial inequalities that has been observedso far, sine suh inequalities rarely have omponents larger than 3. Compared with thebound of Proposition 4.15 and Lemma 4.11, then the bound shown here is superior for with small entries.We start by introduing the unimodular transformations of the ube, the swithingoperations. 4.6.1 The swithing operationsThe i-th swithing operation is the unimodular transformation�i : Rn ! Rn(x1; : : : ; xn) 7! (x1; : : : ; xi�1; 1� xi; xi+1; : : : ; xn);It has a representation �i : Rn ! Rnx 7! Ux+ ei;where U oinides with the identity matrix In exept for U(i;i) whih is �1. Note that theswithing operation is a bijetion of [0; 1℄n. For the set (Tx � Æ) one has �i(Tx � Æ) =eTx � Æ � i. Here e oinides with  exept for a hange of sign in the i-th omponent.



40 x 4. The Chv�atal-Gomory proedure in the 0/1 ube4.6.2 Monotone polyhedraA nonempty polyhedron P � Rn�0 is alled monotone if x 2 P and 0 � y � x implyy 2 P . Hammer, Johnson & Peled (1975) observed that a polyhedron P is monotone ifand only if P an be desribed by a system x � 0; Ax � b with A; b � 0.The next statements are proved in (Hartmann 1988) and (Chv�atal, Cook & Hartmann1989, p. 494). We inlude a proof of Lemma 4.18 for the sake of ompleteness.Lemma 4.17. If P is a monotone polyhedron, then P 0 is monotone as well.Lemma 4.18. Let P be a monotone polytope in the 0=1-ube and let wTx � Æ, w 2 Zn,be valid for PI . Then wTx � Æ has depth at most kwk1 � Æ.Proof. The proof is by indution on kwk1. If kwk1 = 0, the laim follows trivially.W.l.o.g., we an assume that w � 0 holds. Let  = maxfwTx j x 2 Pg and letJ = fj j wj > 0g. If maxfPj2J xj j x 2 Pg = jJ j, then, sine P is monotone, x̂ withx̂i = 8<:1 if i 2 J;0 otherwiseis in P . Also wT x̂ =  must hold. So  = Æ and the laim follows trivially. IfmaxfPj2J xj j x 2 Pg < jJ j, then Pj2J xj � jJ j � 1 has depth at most 1. If kwk1 = 1this also implies the laim, so assume kwk1 � 2. By indution the valid inequalitieswTx � xj � Æ; j 2 J have depth at most kwk1 � Æ � 1. Adding up the inequalitieswTx� xj � Æ; j 2 J and Pj2J xj � jJ j � 1 yieldswTx � Æ + (jJ j � 1)=jJ j:Rounding down yields wTx � Æ and the laim follows.4.6.3 The redution to monotone weakeningsIf one wants to examine the depth of a partiular inequality with respet to a poly-tope P � [0; 1℄n, one an apply a series of swithing operations until all its oeÆientsbeome nonnegative. An inequality with nonnegative oeÆients de�nes a (frational)0=1-knapsak polytope K. The depth of this inequality with respet to the onvex hullof P [ K is then an upper bound on the depth with respet to P . We will show thatonv(P [K)(n) has a monotone rational weakening in the 0=1-ube.Lemma 4.19. Let P � [0; 1℄n be a polytope in the 0=1-ube, with PI = KI , where K =fx j Tx � Æ; 0 � x � 1g and  � 0. Then, P (n) has a rational, monotone weakening Qin the 0=1-ube.



x 4.7 A lower bound 41Proof. We an assume that P is rational. Let x̂ be a 0=1-point whih is not ontained inP , i.e., T x̂ > Æ. Let I = fi j x̂i = 1g. The inequality Pi2I xi � jIj is valid for the ubeand thus for P . Sine  � 0, the orresponding fae F = fx j Pi2I xi = jIj; x 2 Pg ofP does not ontain any 0=1-points. Lemma 4.4 implies that Pi2I xi � jIj � 1 is valid forP (n).Thus, for eah 0=1-point x̂ whih is not in P , there exists a nonnegative rationalinequality aT̂xx � x̂ whih is valid for P (n) and whih uts x̂ o�. Thus0 � xi � 1; i 2 f1; : : : ; ngaT̂xx � x̂; x̂ 2 f0; 1gn; x̂ =2 Pis the desired weakening.Theorem 4.20. Let P � [0; 1℄n, P 6= ; be a nonempty polytope in the 0=1-ube and letTx � Æ be a valid inequality for PI with  2 Zn. Then Tx � Æ has depth at most n+kk1with respet to P .Proof. One an assume that  is nonnegative, sine one an apply a series of swithingoperations. Notie that this an hange the right hand side Æ, but in the end Æ has tobe nonnegative sine P 6= ;. Let K = fx 2 [0; 1℄n j Tx � Æg and onsider the polytopeQ = onv(P [K). The inequality Tx � Æ is valid for QI and the depth of Tx � Æ withrespet to P is at most the depth of Tx � Æ with respet to Q. By Lemma 4.19, Q(n) hasa monotone rational weakening S. The depth of Tx � Æ with respet to Q(n) is at mostthe depth of Tx � Æ with respet to S. But it follows from Lemma 4.18 that the depthof Tx � Æ with respet to S is at most kk1 � Æ � kk1.4.7 A lower boundThe Chv�atal-Gomory proedure applies to general polyhedra. For the 0=1 ube otherutting plane approahes, relying on lift-and-projet were invented by Balas, Ceria &Cornu�ejols (1993), Sherali & Adams (1990) and Lov�asz & Shrijver (1991). These meth-ods an also be de�ned via an operator like the Chv�atal-Gomory operation this thesis isonerned with. In analogy, the rank de�ned by those operations is � n for all polytopesin the 0/1 ube. We now give a lower bound that shows that the Chv�atal rank of polytopesin the n-dimensional 0/1 ube exeeds n for in�nitely many n.We show that rank(n) > (1+�)n, for in�nitely many n, where � > 0. The onstrutionrelies on the lower bound result for the frational stable-set polytope due to Chv�atal, Cook& Hartmann (1989).Let G = (V;E) be a graph on n verties. A lique of G is a nonempty set of verties Cwhere eah two verties in C are adjaent to eah other. Let C be the family of all liques



42 x 4. The Chv�atal-Gomory proedure in the 0/1 ubeof G and let Q � Rn be the frational stable set polytope of G de�ned by the equationsPv2C xv � 1 for all C 2 C ;xv � 0 for all v 2 V: (4.8)The following lemma is proved in (Chv�atal, Cook & Hartmann 1989, Proof of Lemma 3.1).Lemma 4.21. Let k < s be positive integers and let G be a graph with n verties suhthat every subgraph of G with s verties is k-olorable. If P is a polyhedron that ontainsQI and the point u = 1k 1, then P (j) ontains the point xj = ( ss+k )ju.Let �(G) be the size of the largest independent subset of the nodes of G. It followsthat 1Tx � �(G) is valid for QI . One has1Txj = nk ( ss+ k )j � nk e�jk=s ;and thus xj does not satisfy the inequality 1Tx � �(G) for all j < (s=k) ln nk�(G) .Erd}os (1962) proved that for every positive t there exist a positive integer , a positivenumber Æ and arbitrarily large graphs G with n verties, n edges, �(G) < tn suh thatevery subgraph of G with at most Æn verties is 3 olorable. One wants that ln nk�(G) � 1and that s=k grows linearly, so by hoosing some t < 1=(3e), k = 3 and s = bÆn one hasthat xj does not satisfy the inequality 1Tx � �(G) for all j < (s=k).We now give the onstrution. Let P = onv(Pn [ Q) be the polytope that resultsfrom the onvex hull of Pn de�ned in (4.6) and Q. Pn � P ontributes to the fat that12 1 is in P (n�1). Thus x0 = 131 is in P (n�1), sine 0 also is in P . Sine the onvex hull ofP is QI , it follows from the above disussion that the depth of 1Tx � �(G) with respetto P (n�1) is 
(n). Thus the depth of 1Tx � �(G) is at least (n� 1) +
(n) � (1 + �)n forin�nitely many n, where � > 0. We onlude.Theorem 4.22. There exists an � > 0 suh that there exist, for in�nitely many n 2 N, apolytope P � Rn with Chv�atal rank at least (1 + �)n.Remark 4.23. The gap in between the lower bound 
(n) and O(n2 logn) for the rankfuntion r(n) is still large. Lower bounds that are worse than linear are not known.



5Complexity of the elementary losure
5.1 MotivationGomory-Chv�atal uts exist sine 1958 (Gomory 1958). They are a lassi in integer pro-gramming. It is natural to ask for the omplexity of the optimization problem over all utsthat an be derived from a polyhedron P . Of ourse there are a lot of Gomory-Chv�atalutting planes that an be derived from P . Indeed the mathing polytope has an expo-nential number of faets, but this does not imply that optimization over P 0 is not possiblein polynomial time. One an optimize over the mathing polytope and the elementarylosure analogon of other utting plane approahes, based on lift-and-projet (Lov�asz &Shrijver 1991, Balas, Ceria & Cornu�ejols 1993, Sherali & Adams 1990) yield polyhedrawith an exponential number of faets, over whih one an optimize in polynomial time.The semide�nite operator of Lov�asz & Shrijver (1991) even yields onvex sets that arenot polyhedra. However, unlike the general Gomory-Chv�atal uts, these methods applyfor the 0/1 ube only.Also, as we observed in x 4.1, a lot of ombinatorially derived utting planes are in fatGomory-Chv�atal utting planes. A polynomial separation routine for the Gomory-Chv�ataluts of a rational polyhedron P would be a powerful tool. This motivated Shrijver topose the possibility of suh an algorithm as an open problem in his book (Shrijver 1986).5.2 OutlineWe will prove that there exists no polynomial algorithm for the optimization problem overthe elementary losure of a rational polyhedron unless P = NP. This solves the problemraised by Shrijver in (Shrijver 1986, p. 351). The proof also shows that minimizingthe support of a nontrivial Chv�atal-Gomory ut is NP-hard. At the heart of the proofis a result given by Caprara & Fishetti (1996) onerning the separation of so alledf0; 12g-uts.



44 x 5. Complexity of the elementary losure5.3 The NP-ompleteness of membershipWe proeed by showing NP-ompleteness of the (non)-membership problem for the ele-mentary losure. We onsider the (non)-membership problem instead of the membershipproblem to avoid unneessary tehnialities involving the lass o�NP.De�nition 5.1 (MEC). Themembership problem for the elementary losure is as follows:Given an integral matrix A 2 Zm�n, an integral vetor b 2 Zm and a rationalvetor x̂ 2 Qn , is x̂ =2 P (A; b)0?The membership problem for the elementary losure is a subproblem of the separationproblem for the elementary losure (see x 2.5) whih is as follows: Given a polyhedron Pand some x̂ 2 Rn , deide if x̂ 2 P and if not return an inequality Tx � Æ, whih is validfor P but not for x̂.First we have to show that MEC is in NP (see Setion 2.8). For this let A; b and x̂be given with x̂ =2 P (A; b)0. We have to provide a short erti�ate for this. In fat, if x̂ isnot in the elementary losure P (A; b)0, then there exists a Gomory-Chv�atal ut Tx � bÆ,whih is not satis�ed by x̂ suh that  an be written as T = �TA, where � 2 [0; 1℄m.Notie then that kk1 � kAT k1, where the matrix norm k � k1 is the row-sum-norm.Clearly x̂ does not satisfy the inequality Tx � b, where  = maxfTx j Ax � bg. Sinelinear programming is polynomial, this  serves as a polynomial erti�ate for the fatthat x̂ is not in P (A; b)0. Thus MEC is in NP.To proeed, we have to show that eah language L 2 NP an be polynomially reduedto MEC. We will redue the so alled f0; 12g-losure membership problem to MEC. Caprara& Fishetti (1996) showed that the f0; 12g-losure membership is NP-omplete.Let A 2 Zm�n be an integral matrix, b 2 Zm be an integral vetor, and let P � Rn bethe polyhedron P (A; b). A f0; 12g-ut derived from A and b is a Gomory-Chv�atal ut ofP of the form �TAx � b�T b, where �TA is integral and the omponents of � are either0 or 12 . The f0; 12g-losure P 12 (A; b) derived from A and b is the intersetion of P with allthe f0; 12g-uts derived from A and b. Unlike the elementary losure, the f0; 12g-losureof P (A; b) depends on the desription of P by A and b and thus is not a property of thepolyhedron P = P (A; b). Observe that P (A; b) = P (2�A; 2�b), but no nontrivial f0; 12g-utsan be derived from the seond desription of the polyhedron, sine there annot be anyrounding e�et. Notie that the odd yle inequalities (4.2) and the odd set onstraints(4.4) are f0; 12g-uts.De�nition 5.2 (M012). The membership problem for the f0; 12g-losure is as follows:Given an integral matrix A 2 Zm�n, an integral vetor b 2 Zm and a rationalvetor x̂ 2 Qn , is x̂ =2 P 12 (A; b)?



x 5.3 The NP-ompleteness of membership 45Caprara & Fishetti (1996) show that M012 is NP-omplete. For the sake of omplete-ness we state and prove their result below.5.3.1 M012 is NP-ompleteThis setion follows losely (Caprara & Fishetti 1996, Set. 3). Let A 2 Zm�n andb 2 Zm be integral and let x̂ 2 P (A; b). The vetor x̂ does not satisfy all f0; 12g-utsderived from A and b if and only if there exists some � 2 f0; 1gm with �TA � 0 (mod 2)and �T b � 1 (mod 2) suh that the inequality �T (b�Ax̂) < 1 is valid.We will redue M012 to the problem of deoding of linear odes (Garey & Johnson 1979,p. 280). Here, one is given a matrix Q 2 Zm�n2 and a vetor d 2 Zm2 , whih together form alinear system Qx = d over Z2. The problem is: Given Q, d and a natural number k, deidewhether there exists a solution x̂ 2 Zn2 to the system Qx = d with no more than k 1's.The NP-ompleteness of this deision problem immediately implies the NP-ompletenessof the following deision problem, by hoosing w = 1=(k + 1).De�nition 5.3 (WCW). The weighted odeword problem is the following:Given a matrixQ 2 f0; 1gr�t, a vetor d 2 f0; 1gr and a weight vetor w 2 Q t�0 ,deide whether there exists some z 2 f0; 1gt withQz � d (mod 2) and wT z < 1:We will see that one an redue WCW to both M012 and MEC, whih implies thatthey are both NP-omplete.Theorem 5.4 (Caprara & Fishetti (1996)). M012 is NP omplete.Proof. M012 learly is in NP. We show that WCW an be polynomially redued to M012 .For this let Q; d and w be an instane of WCW. Construt the following instane ofM012 : A =  QTdT 2It+1 ! (5.1)b = (2; : : : ; 2; 1)T (5.2)x̂ = (0T ;1T � 12wT ; 12)T ; (5.3)where 0 = f0gr and 1 = f1gt. Notie �rst that x̂ is in P (A; b) and observe that b �Ax̂ = (w1; : : : ; wt; 0)T . The point x̂ does not satisfy all f0; 12g-uts derived from A andb if and only if there is a � 2 f0; 1gt+1 with �TA � 0 (mod 2), �T b � 1 (mod 2) and(w1; : : : ; wt; 0)� < 1. In this ase, the system fores the last entry of � to be 1. Thereforethe latter is satis�ed if and only if there is a z 2 f0; 1gt with Qz � d (mod 2) and wT z < 1,where z is to play the role �T = (zT ; 1).



46 x 5. Complexity of the elementary losure5.3.2 MEC is NP-ompleteIt will be shown that in the above redution, the f0; 12g-losure is in fat the elementarylosure, so that the question, whether x̂ is in the f0; 12g-losure is the same as askingwhether x̂ is in the elementary losure. This establishes the NP-ompleteness of MEC viathe same redution of WCW to MEC.The key is the following observation.Lemma 5.5. Let P be the polyhedron P = fx 2 Rn j Ax � bg with A and b integral. IfA is of the form A = (C j 2Im) for some integral matrix C, then P 0 = P 12 (A; b).Proof. Clearly P 12 (A; b) � P 0. For the reverse inlusion we simply show that eah undomi-nated Gomory-Chv�atal ut of P is also a f0; 12g-ut derived from the system (A; b). Reallfrom Lemma 3.1 that eah undominated Gomory-Chv�atal ut of P an be written as�TAx � b�T b, where �TA 2 Zn and � 2 [0; 1)m. However � has to satisfy �T 2Im 2 Zm.Thus for i = 1; : : : ;m one has 2�i 2 Z and 0 � 2�i < 2, i.e., � 2 f0; 12gm.Corollary 5.6. MEC is NP-omplete.Proof. We redue WCW to MEC. Let Q; d and w be an instane of WCW. Construt aninstane of MEC as given in the proof of Theorem 5.4. Sine in this ase P 12 (A; b) = P 0the laim follows.Theorem 5.7. If P 6= NP, then optimizing over the elementary losure of a rationalpolyhedron annot be done in polynomial time.Proof. If one ould optimize over the elementary losure of a rational polyhedron in poly-nomial time, then one ould also solve the separation problem for the elementary losurein polynomial time (see x 2.5), whih is at least as hard as MEC.Hartmann, Queyranne & Wang (1999) give onditions under whih an inequality hasdepth at most 1 and identify speial ases for whih they an test whether an inequalityhas rank at most 1. It follows from our results in this setion that this annot be done ingeneral unless P = NP.5.4 Minimizing the support of a utA Gomory-Chv�atal ut Tx � bÆ of P is nontrivial, if maxfTx j x 2 Pg > bÆ. Thesupport of a Gomory-Chv�atal Tx � bÆ is the minimal number of positive entries ofa weight vetor � 2 Rm�0 with �TA =  and b�T b = bÆ. It was reently suggested(Caprara, Fishetti & Lethford 2000, Lethford 1999) that nontrivial Gomory-Chv�atal



x 5.4 Minimizing the support of a ut 47uts with minimal support ould be expeted to be more e�etive. It is an appliationof the previous results that �nding a Gomory-Chv�atal ut with minimal support is NP-omplete.For this onsider again an instane Q, d and k of the deoding of linear odes problem.The polyhedron P (A; b) will be the same as in the proof of Theorem 5.4. Let Tx � bÆbe a nontrivial Gomory-Chv�atal ut, derived with the weight vetor �. Notie that � anbe reovered from , sine A has full row rank. Replaing � by � � b� strengthens theut and the number of positive entries does not inrease. Therefore we an assume � tobe in f0; 12gt+1 as the proof of Lemma 5.5 suggests. We observe again, that the mapping�t+1(2�) is 1-1 and onto into the solutions to the system Qz � d.Thus there exists a Gomory-Chv�atal ut of support at most k if and only if there existsa solution z of the system Qz � d with at most k 1's. We summarize.Proposition 5.8. The following problem is NP-omplete.Given A 2 Zm�n and b 2 Zm. Deide whether there exists a nontrivialGomory-Chv�atal ut of P (A; b) of support at most k.





6The elementary losure in �xed dimension
6.1 MotivationIf the dimension n in the integer linear programming problemmaxfTx j Ax � b; x 2 Zng; where A 2 Zm�n and b 2 Zm: (6.1)is �xed, then (6.1) beomes solvable in polynomial time (Lenstra 1983). Lenstra's algo-rithm deides whether a rational polyhedron P (A; b) has empty integer hull or not. Theinteger programming problem an then be solved via binary searh. In ontrast to thease when P is entrally symmetri, i.e., �x 2 P whenever x 2 P , where Minkowski'sonvex body theorem implies an upper bound on the volume of P if PI = f0g, P anhave in�nite volume and PI = ;. However a polyhedron P � Rn with empty integer hullhas to be \at" in some integral diretion. More formally, let K be a onvex body, i.e.,a bounded, losed, full-dimensional and onvex set and let  2 Rn be some vetor. Thewidth of K along  is the quantitymaxfTx j x 2 Kg �minfTx j x 2 Kgand the width of K is de�ned as the minimal width of K along any nonzero integral vetor 2 Zn. The next theorem, alled atness theorem, is due to Khinhine (see (Kannan &Lov�asz 1988)).Theorem 6.1. There exists a funtion f(n) depending only on the dimension n, suhthat eah onvex body K � Rn ontaining no integral vetors has width at most f(n).This implies that the integer feasibility problem, whih is: Given an integral systemAx � b, de�ning the rational polyhedron P = P (A; b), deide whether PI = ;, is inNP\ o�NP if n is �xed. This is beause an integral vetor in P must then lie in one ofthe onstant number of lower dimensional polyhedra P \ (Tx = Æ), where Æ is an integersatisfying maxfTx j x 2 Pg � Æ � minfTx j x 2 Pg and where 0 6=  2 Zn is a diretionin whih P is at.
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P

Figure 6.1: A polyhedron P with empty integer hull. P is at in the diretion (�1; 1).Lenstra's algorithm (Lenstra 1983) applies lattie basis redution, and the ellipsoidmethod to �nd an integral point in P or a diretion in whih it is at. Lov�asz & Sarf(1992) found a way to avoid the ellipsoid method. However, present algorithms for integerprogramming in �xed dimension are still far from being elementary.Also there is a polynomiality result onerning the size of a de�ning system of theinteger hull PI of a rational polyhedron P � Rn . Namely, the number of verties of PIis polynomially bounded in size(P ), if the dimension n is �xed (Hayes & Larman 1983,Shrijver 1986, Cook, Hartmann, Kannan & MDiarmid 1992).The Chv�atal-Gomory proedure omputes iteratively tighter approximations of theinteger hull PI of a polyhedron P , until PI is �nally obtained. We have seen in x 3.3 thatthe number of iterations t until P (t) = PI is not polynomial in the size of the desriptionof P , even in �xed dimension. Yet, if PI = ; and P � Rn , Cook, Coullard & Tur�an (1987)showed that there exists a number t(n), suh that P (t(n)) = ;.Theorem 6.2 (Cook, Coullard & Tur�an (1987)). There exists a funtion t(d), suhthat if P � Rn is a d-dimensional rational polyhedron with empty integer hull, then P t(d) =;.Proof. If P is not full dimensional, then there exists a rational hyperplane (Tx = Æ) with 2 Zn and gd() = 1 suh that P � (Tx = Æ). If Æ =2 Z, then P 0 = ;. If Æ 2 Z, thenthere exists a unimodular matrix, transforming  into e1. Thus P an be transformed viaa unimodular transformation (see x 3.6) into a polyhedron where the �rst variable is �xedto an integer.Thus we an assume that P is full-dimensional. The funtion t(d) is indutively de�ned.Let t(0) = 1. For d > 0, let  2 Zn;  6= 0 be a diretion in whih P is at, i.e.,maxfTx j x 2 Pg � minfTx j x 2 Pg � f(d). We \slie o�" in this diretion usingCorollary 3.6. If Tx � Æ; Æ 2 Z is valid for P , then Tx � Æ � 1 is valid for P (t(d�1)+1),



x 6.2 Outline 51sine the fae F = P \ (Tx = Æ) has at most dimension d � 1. Thus Tx � Æ � k isvalid for P (k (t(d�1)+1)). Sine the integral vetor  is hosen suh that maxfTx j x 2Pg �minfTx j x 2 Pg � f(d), t(d) = (f(d) + 2)(t(d � 1) + 1) satis�es our needs.Cook (1990) proved the existene of utting plane proofs for integer infeasibility thatan be arried out in polynomial spae. These results raise the question whether it ispossible to ome up with a polynomial utting plane algorithm for integer infeasibilityin �xed dimension. Using binary searh this would also yield a polynomial utting planealgorithm for integer programming in �xed dimension.In this ontext we are motivated to investigate the omplexity of the elementary losurein �xed dimension. More preisely, we will study the question whether, in �xed dimension,the elementary losure P 0 of a polyhedron P = fx 2 Rn j Ax � bg, with A and b integer,an be de�ned by an inequality system whose size is polynomial in the size of A and b.We have seen that P 0 an be desribed with an exponential number of inequalitiesin �xed dimension (see x 3.2 Remark 3.3). One an further restrit the utting planesTx � bÆ to those orresponding to a totally dual integral system de�ning P (Edmonds& Giles 1977). A rational system Ax � b is alled totally dual integral, abbreviated TDI,if for eah integral vetor , for whih the minimum of the LP-duality equationmaxfTx j Ax � bg = minfyT b j y � 0; yTA = g (6.2)is �nite, the minimum is attained at an integral optimal solution y. Giles & Pulleyblank(1979) showed that eah rational polyhedron P an be represented by an integral TDIsystem. If P is given by an integral TDI system Ax � b; A 2 Zm�n, then P 0 is de�ned byAx � bb (Shrijver 1980). This an be seen as follows. A Gomory-Chv�atal utting planeTx � bÆ, with Æ = maxfTxjAx � bg an be derived as (�TA)x � b�T bwith an integral� � 0, sine Ax � b is a TDI system. But b�T b � Pmi=1b�ibi � Pmi=1 �ibbi = �T bb.Thus eah ut follows from the system Ax � bb.The number of inequalities of a minimal TDI-system de�ning a polyhedron P an stillbe exponential in the size of P , even in �xed dimension (Shrijver 1986, p. 317).6.2 OutlineFirst we generalize a result of Hayes & Larman (1983) on the number of verties of theinteger hull of knapsak polyhedra so that it applies to general polyhedra. The possibil-ity of suh a generalization is mentioned in (Shrijver 1986, Cook, Hartmann, Kannan& MDiarmid 1992). By ombining an observation onerning the number of simpliesneeded for a deomposition of P and the result of Cook, Hartmann, Kannan & MDi-armid (1992) we an prove an asymptotially better bound on the number of verties



52 x 6. The elementary losure in fixed dimensionof the integer hull of a rational polyhedron in �xed dimension than the one observed in(Cook, Hartmann, Kannan & MDiarmid 1992). Then we inspet the elementary losureof rational simpliial ones. We show that it an be desribed with polynomially manyinequalities in �xed dimension. Via a triangulation argument, we prove a similar state-ment for arbitrary rational polyhedra. We show that the elementary losure of a rationalpolyhedron an be onstruted in polynomial time in �xed dimension. This yields a poly-nomial algorithm that onstruts a utting plane proof of 0Tx � �1 for rational polyhedraP with empty integer hull. Based on these results, we then develop a polynomial algorithmin varying dimension for omputing Gomory-Chv�atal utting planes of pointed simpliialones. Our approah uses tehniques from integer linear algebra like the Hermite and theHowell normal form of matries. While the Hermite normal form has been applied to utgeneration before (see e.g. (Hung & Rom 1990, Lethford 1999)), the utting planes thatwe derive here are not only among those of maximal possible violation in a natural sense,but also belong to the polynomial desription of P 0 in �xed dimension.6.3 Verties of the integer hullIf P = P (A; b) is a rational polyhedron, then the number of extreme points of PI an bepolynomially bounded by size(P ) in �xed dimension. This follows from a generalizationof a result by Hayes & Larman (1983), see (Shrijver 1986, p. 256).Let P = fx 2 Rn j Ax � bg, where A 2 Zm�n and b 2 Zm, be a rational polyhedronwhere eah inequality in Ax � b has size at most '. First, we an assume that P isfull-dimensional sine otherwise P is a fae of a full-dimensional polyhedron of at mostequal size. We want to estimate the number of integral verties of PI . Observe that wean assume that P is a polytope, sine eah vertex v of PI satis�es kvk1 � (n + 1)�,where � is the maximal absolute value of the sub-determinants of the matrix (A j b)(Proposition 2.12). We an impose this ondition by adding 2n-more inequalities�(n+ 1)� � xi � (n+ 1)�; for i = 1; : : : ; n: (6.3)Notie that the Hadamard bound (2.1) implies that the size of those inequalities is in O(')if n is �xed.If we have a representation of the polytope P as the union of K n-simpliesP = [i�K�i; (6.4)then eah vertex of PI must be a vertex of the integer hull (�i)I for some simplex �i; i � K.The next lemma gives an upper bound on the minimal number K, suh that P an berepresented as the union of K simplies.



x 6.3 Verties of the integer hull 53Lemma 6.3. Let P � Rn be a d-dimensional polytope with m faets, where d � 1. ThenP is the union of at most md�1 d-simplies �. Eah d-simplex � in this deomposition isspanned by verties of P and baryenters v = 1kPkj=1 vj, k � d + 1 of verties v1; : : : ; vkof P .Proof. The proof proeeds by indution on d. If d = 1, then P is a simplex itself. If d > 1,then P has d + 1 aÆnely independent verties v1; : : : ; vd+1. Consider the baryenter ofthese verties v = 1d+1Pd+1i=1 vi. Clearly v is in the relative interior of P and P is the unionof the onvex hulls of eah faet F with v,P = [F faet of P onv(F [ fvg): (6.5)A faet F of P is a d�1-dimensional polytope with at most m�1 faets. So, by indution,F is the union of at most (m� 1)d�2 simpliesF = [j�(m�1)d�2 �Fj : (6.6)Eah simplex �Fj in (6.6) is spanned by verties of P and baryenters of at most d vertiesof P , sine eah vertex of F is a vertex of P . Observe thatonv(F [ fvg) = [j�(m�1)d�2 onv(�Fj [ fvg): (6.7)The onvex hull of the d � 1-simplex �Fj with v is a d-simplex. Therefore P is the unionof at most m (m � 1)d�2 � md�1 d-simplies whih are spanned by verties of P andbaryenters of at most d+ 1-verties of P .Summarizing the previous disussion, we have the following proposition.Proposition 6.4. If P � Rn is a rational d-dimensional polytope, where d � 1, de�nedby m inequalities, eah of size at most ', then P is the union of at most md�1 simplies�i; i � md�1, eah of size O('), in �xed dimension n.Proof. Observe that the faet and vertex omplexity are related via a multipliative on-stant in Theorem 2.5 if the dimension n is �xed. In this ase, the size of a baryenterv = 1kPkj=1 vj, of k � n + 1 verties v1; : : : ; vk of P is also in O('). Thus the size of ad-simplex in the proof of Lemma 6.3 is in O(').Thus in order to show that the number of verties of the integer hull of a rationalpolyhedron is polynomial in �xed dimension, we only need to derive suh a bound whereP is a full-dimensional rational simplex � � Rn . We an further assume that 0 is a vertex



54 x 6. The elementary losure in fixed dimensionof �. Otherwise we embed � into Rn+1 as follows: Let � = onv(fv1; : : : ; vn+1g), thenthe embedding is de�ned as the simplex�0 = onv (0; 1v1! ; : : : ; 1vn+1!)! : (6.8)So let � � Rn be a full-dimensional rational simplex with 0 being one of its verties. Afull dimensional simplex in Rn is de�ned by n+1 inequalities. Eah hoie of n inequalitiesin suh a de�nition has linearly independent normal vetors, de�ning one of the vertiesof �. Sine 0 is one of the verties, � is the set of all x 2 Rn satisfying Bx � 0; Tx � �,where B 2 Zn�n is a nonsingular matrix, and Tx � � is an inequality. The inequalityTx � � an be rewritten as aTBx � �, with aT = TB�1 2 Qn . Let K be the knapsakpolytope K = fx 2 Rn j x � 0; aTx � �g. The verties of �I orrespond exatly to theverties of onv(K \L (B)).Proposition 6.5. Let K � Rn be a knapsak polytope given by the inequalities x � 0 andaTx � �. Let L (B) be a lattie with integral and nonsingular B � Zn, theni. A vetor Bx̂ 2 L (B) is a vertex of onv(K \L (B)) if and only if x̂ is a vertex ofthe integer hull of the simplex � de�ned by Bx � 0 and aTBx � �;ii. if v(1) and v(2) are distint verties of onv(K \L (B)), then there exists an indexi 2 f1; : : : ; ng suh that size(v(1)i ) 6= size(v(2)i ).Proof. The onvex hull of K \L (B) an be written asonv(K \L (B)) = onv(fx j x � 0; aTx � � ; x = By; y 2 Zn)= onv(fBy j By � 0; aTBy � �; y 2 Zng):If one transforms this set with B�1, one is faed with the integer hull of the desribedsimplex �. Thus (i) follows.For (ii) assume that v(1) and v(2) are verties of onv(K \L (B)), with size(v(1)i ) =size(v(2)i ) for all i 2 f1; : : : ; ng. Then learly 2v(1) � v(2) � 0 and 2v(2) � v(1) � 0. AlsoaT (2v(1) � v(2) + 2v(2) � v(1)) = aT (v(1) + v(2)) � 2�;therefore one of the two lattie points lies in K. Assume without loss of generality that2v(1) � v(2) 2 K \L (B). Then v(1) annot be a vertex sinev(1) = 1=2 (2v(1) � v(2)) + 1=2 v(2):



x 6.4 The elementary losure of a rational simpliial one 55If K = fx 2 Rn j x � 0; aTx � �g is the orresponding knapsak polytope tothe simplex �, then any omponent x̂i; i = 1; : : : ; n of an arbitrary point x̂ in K satis�es0 � x̂i � �=ai. Thus the size of a vertex x̂ of onv(K\L (B)) is in O(size(K)) = O(size(�))in �xed dimension. This is beause size(B�1) = O(size(B)) in �xed dimension. It followsfrom Proposition 6.5 that �I an have at most O(size(�)n) verties.We an summarize.Theorem 6.6. If P � Rn is a rational polyhedron, then the number of verties of PI ispolynomially bounded in size(P ) when the dimension is �xed.The following upper bound on the number of verties of PI was proved by Cook,Hartmann, Kannan & MDiarmid (1992). B�ar�any, Howe & Lov�asz (1992) show that thisbound is tight if P is a simplex.Theorem 6.7. If P � Rn is a rational polyhedron whih is the solution set of a systemof at most m linear inequalities whose size is at most ', then the number of verties of PIis at most 2md(6n2')d�1, where d = dim(PI) is the dimension of the integer hull of P .This result yields an O(mn'n�1) upper bound on the number of verties of PI , whereP � Rn is a rational polyhedron de�ned by at most m inequalities, eah of size at most 'in �xed dimension. Interestingly, this bound is not tight.Theorem 6.8. If P � Rn is a rational polyhedron de�ned by m inequalities, eah of sizeat most ', then PI has at most O(mn�1'n�1) verties.Proof. Following the previous disussion we an again assume that P is a polytope. Thisinvolves the 2n additional equations (6.3) of size O('). P an then be desribed as theunion of O(mn�1) simplies �, eah of size O('). Theorem 6.7 implies that eah simplex� in the deomposition of P has at most O('n�1) verties.6.4 The elementary losure of a rational simpliial oneConsider a rational simpliial one, i.e., a polyhedron P = fx 2 Rn j Ax � bg, whereA 2 Zm�n, b 2 Zn and A has full row rank. If A is a square matrix, then P is alledpointed.Observe that P; P 0 and PI are all full-dimensional. The elementary losure P 0 is givenby the inequalities (�TA)x � b�T b; where � 2 [0; 1℄n; and �TA 2 Zn: (6.9)Sine P 0 is full-dimensional, there exists a unique (up to salar multipliation) minimalsubset of the inequalities in (6.9) that suÆes to desribe P 0. These inequalities are the



56 x 6. The elementary losure in fixed dimensionfaets of P 0. We will ome up with a polynomial upper bound on their number in �xeddimension.The vetors � in (6.9) belong to the dual lattieL �(A) of the lattieL (A). Reall thateah element inL �(A) is of the form �=d, where d = det(L (A)) is the lattie determinant.It follows from the Hadamard inequality that size(d) is polynomial in size(A), even forvarying n. Now (6.9) an be rewritten as�TAd x � ��T bd � ; where � 2 f0; : : : ; dgm; and �TA 2 (d � Z)n: (6.10)Notie here that �T b=d is a rational number with denominator d. There are two ases:either �T b=d is an integer, or �T b=d misses the nearest integer by at least 1=d. Thereforeb�T b=d is the only integer in the interval��T b� d+ 1d ; �T bd � :These observations enable us to onstrut a polytope Q, whose integral points willorrespond to the inequalities (6.10). Let Q be the set of all (�; y; z) in R2n+1 satisfyingthe inequalities � � 0� � d�TA = d yT(�T b)� d+ 1 � d z(�T b) � d z: (6.11)If (�; y; z) is integral, then � 2 f0; : : : ; dgn, y 2 Zn enfores �TA 2 (d � Z)n and z is theonly integer in the interval [(�T b+1� d)=d; �T b=d℄. It is not hard to see that Q is indeeda polytope. We all Q the utting plane polytope of the simpliial one P (A; b)The orrespondene between inequalities (their syntati representation) in (6.10) andintegral points in the utting plane polytope Q is obvious. We now show that the faetsof P 0 are among the verties of QI .Proposition 6.9. Eah faet of P 0 is represented by an integral vertex of QI .Proof. Consider a faet Tx � Æ of P 0. If we remove this inequality (possibly several times,beause of salar multiples) from the set of inequalities in (6.10), then the polyhedronde�ned by the resulting set of inequalities di�ers from P 0, sine P 0 is full-dimensional.Thus there exists a point x̂ 2 Qn that is violated by Tx � Æ, but satis�es any otherinequality in (6.10) (see Figure 6.2). Consider the following integer program:maxf(�TA=d) x̂ � z j (�; y; z) 2 QIg: (6.12)



x 6.4 The elementary losure of a rational simpliial one 57Sine x̂ =2 P 0 there exists an inequality (�TA=d)x � b�T b=d in (6.10) with(�TA=d)x̂ � b�T b=d > 0:Therefore, the optimal value will be stritly positive, and an integral optimal solution(�; y; z) must orrespond to the faet Tx � Æ of P 0. Sine the optimum of the integerlinear program (6.12) is attained at a vertex of QI , the assertion follows.
b P 0x̂

Figure 6.2: The point x̂ lies \above" the faet Tx � Æ and \below" eah other inequalityin (6.10).Remark 6.10. Not eah vertex of QI represents a faet of P 0. In partiular, if P isde�ned by nonnegative inequalities only, then 0 is a vertex of QI but not a faet of P 0.Theorem 6.11. The elementary losure of a rational simpliial one P = fx 2 Rn jAx � bg, where A and b are integral and A has full row rank, is polynomially bounded insize(P ) when the dimension is �xed.Proof. Eah faet of P 0 orresponds to a vertex of QI by Proposition 6.9. Reall from theHadamard bound that d � ka1k � � � kank, where ai are the olumns of A. Thus the numberof bits needed to enode d is in O(n size(P )). Therefore the size of Q is in O(n size(P )).It follows from Theorem 6.7 that the number of verties of QI is in O(size(P )n) for �xedn, sine the dimension of Q is n+ 1.It is possible to expliitly onstrut in polynomial time a minimal inequality systemde�ning P 0 when the dimension is �xed.Observe �rst that the lattie determinant d in (6.11) an be omputed with somepolynomial Hermite normal form algorithm. If H is the HNF of A, then L (A) = L (H)and the determinant of H is simply the produt of its diagonal elements. Notie then thatthe system (6.11) an be written down. In partiular its size is polynomial in the size ofA and b, even in varying dimension, whih follows from the Hadamard bound.



58 x 6. The elementary losure in fixed dimensionAs noted in (Cook, Hartmann, Kannan & MDiarmid 1992), one an onstrut theverties of QI in polynomial time. This works as follows. Suppose one has a list of vertiesv1; : : : ; vk of QI . Let Qk denote the onvex hull of these verties. Find an inequalitydesription of Qk, Cx � d. For eah row-vetor i of C, �nd with Lenstra's algorithma vertex of QI maximizing fTx j x 2 QIg. If new verties are found, add them to thelist and repeat the preeding steps, otherwise the list of verties is omplete. The listof verties of QI yields a list of inequalities de�ning P 0. With the ellipsoid method oryour favorite linear programming algorithm in �xed dimension, one an deide for eahindividual inequality, whether it is neessary. If not, remove it. What remains are thefaets of P 0.Proposition 6.12. There exists an algorithm whih, given a matrix A 2 Zm�n of full rowrank and a vetor b 2 Zm, onstruts the elementary losure P 0 of P (A; b) in polynomialtime when the dimension n is �xed.6.5 The elementary losure of rational polyhedraLet P = fx 2 Rn j Ax � bg, with integral A and b, be a rational polyhedron.Any Gomory-Chv�atal ut an be derived from a set of rank(A) inequalities out ofAx � b where the orresponding rows of A are linear independent. Suh a hoie representsa simpliial one C and it follows from Theorem 6.11 that the number of inequalities ofC 0 is polynomially bounded by size(C) � size(P ).Theorem 6.13. The number of inequalities needed to desribe the elementary losure ofa rational polyhedron P = P (A; b) with A 2 Zm�n and b 2 Zm, is polynomial in size(P )in �xed dimension.Proof. An upper bound on the number of inequalities that are neessary to desribe P 0follows from the sum of the upper bounds on the number of faets of C 0 where C is asimpliial one, formed by rank(A) inequalities of Ax � b. There are at most � mrank(A)� �mn ways to hoose rank(A) linear independent rows of A. Thus the number of neessaryinequalities desribing P 0 is O(mn size(P )n) for �xed n.Following the disussion at the end of Setion 6.4 and using again Lenstra's algorithm,it is now easy to ome up with a polynomial algorithm for onstruting the elementarylosure of a rational polyhedron P (A; b) in �xed dimension. For eah hoie of rank(A)rows of A de�ning a simpliial one C, ompute the elementary losure C 0 and put theorresponding inequalities in the partial list of inequalities desribing P 0. At the end,redundant inequalities an be deleted.



x 6.6 Cutting plane proofs of 0Tx � �1 59Theorem 6.14. There exists a polynomial algorithm that, given a matrix A 2 Zm�n anda vetor b 2 Zm, onstruts an inequality desription of the elementary losure of P (A; b).6.6 Cutting plane proofs of 0Tx � �1If the rational polyhedron P has empty integer hull, then Theorem 6.2 together withProposition 3.9 implies the existene of a utting plane proof of 0Tx � �1 whih hasonstant length in �xed dimension. This was observed by Cook, Coullard & Tur�an (1987).Their result is only of existential nature. It follows from our results that one an onstruta utting plane proof of 0Tx � �1 whose length an be bounded aording to (ii) inProposition 3.9.Theorem 6.15. For �xed n, there exists a polynomial algorithm whih omputes a uttingplane proof of 0Tx � �1 of length bounded (n + 1)(nt � 1)=(n � 1) + 1 if its input is amatrix A 2 Zm�n and a vetor b 2 Zm de�ning a rational polyhedron P = P (A; b) withempty integer hull and Chv�atal rank t.Proof. Sine t is a onstant in �xed dimension, one an onstrut integral inequality de-sriptions C1x � d1; : : : ; Ctx � dt, of P (1); P (2); : : : ; P (t) with the algorithm proposed inTheorem 6.14. Eah inequality in the system Cix � di was derived from at most n inequal-ities from the previous system Ci�1x � di�1 for i = 2; : : : ; n. As one onstruts Cix � di,one remembers the parents of eah inequality. An inequality from the last system Ctx � dtthus has a utting plane proof of length at most 1+n+ : : :+nt�1 = (nt�1)=(n�1) (reallthat the original inequalities in Ax � b do not ontribute to the length of the proof) whihan be omputed by baktraking the parents. Using linear programming, one an �nd atmost n+ 1 inequalities from the system Ctx � dt, from whih 0Tx � �1 an be derived.The onatenations of the utting plane proofs of these inequalities and 0Tx � �1 is thedesired proof. 6.7 Finding uts for simpliial onesIn x 6.4 we saw that the verties of QI inlude the faets of the elementary losure P 0 ofa simpliial one P (A; b). In pratie the following situation often ours. The matrixA is invertible and one wants to �nd a utting plane that uts of the extreme point ofthe pointed one P , x̂ = A�1b. It is easy to see that the senario of Gomory's ornerpolyhedron (Gomory 1967) (see also (Shrijver 1986, p. 364)) is of this nature. We shortlydesribe it. As the method of hoie for solving linear relaxations is most likely the simplexmethod, one is faed with an integer programming problem in standard formmaxfTx j Ax = b; x � 0; x integralg; (6.13)



60 x 6. The elementary losure in fixed dimensionwhere A 2 Zm�n and b 2 Zm. Clearly one an assume that A has full row rank. An optimalsolution x̂ to the linear relaxation of (6.13) is haraterized by a set B � f1; : : : ; ngorresponding to m linearly independent olumns of A, alled a basis. Without loss ofgenerality assume that B orresponds to the �rstm olumns of A. Let N = fm+1; : : : ; ngbe the index set orresponding to the variables whih do not belong to the basis B. Wealso use B and N to denote the matries orresponding to the �rst m olumns of A andthe last n�m olumns of A respetively, i.e., A = (B j N). Then x̂ is of the formx̂ =  B�1b0 ! : (6.14)The point x̂ also is the optimum to the linear programmaxfTx j Ax = b; xN � 0g: (6.15)Then onsider the integer program resulting from (6.15).maxfTx j Ax = b; xN � 0; x integralg: (6.16)Compared to (6.13) one has dropped thus the nonnegativity of the basis variables. Theinteger programming problem (6.16) is an upper bound to (6.13) whih one an use ina branh-and-ut framework. The polyhedron desribed in (6.15) is a pointed simpliialone in an aÆne subspae of Rn . Via unimodular transformations, one an translate thisinteger programming problem (6.15) into an integer programming problem over a pointedsimpliial one.In this setion, we will show how to generate utting planes for pointed simpliial ones.Following x 6.4, they will have the speial property that they orrespond to verties of theinteger hull of the utting plane polytope Q and thus belong to a family of inequalitieswhih grows only polynomially in �xed dimension. While the separation problem for theelementary losure is NP-hard (see x 5) in general, these utting planes an be omputedin polynomial time in varying dimension.Let P = fx 2 Rn j Ax � bg be a rational pointed simpliial one, where A 2 Zn�nand b 2 Zn. Let d = jdet(A)j denote the absolute value of the determinant of A. Let Qbe the utting plane polytope of P de�ned by the inequalities in (6.11). We will �nd afae-de�ning inequality of QI that represents the utting planes with a maximal roundinge�et. This relates to the study of maximally violated mod k-uts by Caprara, Fishetti& Lethford (2000). A utting plane(�=d)TAx � b(�=d)T ban be found by solving the following linear system over Zd,�T (A j b) = (0; : : : ; 0; �); (6.17)



x 6.7 Finding uts for simpliial ones 61where �=d for � 2 f0; : : : ; d � 1g is the desired value for the rounding e�et (�T b)=d �b(�T b)=d. If P is a simpliial one, then this rounding e�et is the amount of violationof the utting plane by the extreme point x̂ of P . Caprara, Fishetti & Lethford (2000)�x � in the system (6.17) to the maximal possible value d � 1. However, there does nothave to exist a solution to (6.17) when � is set to d� 1. We show here that the maximal�, denote it by �max, for whih a solution to (6.17) exists, an be omputed eÆiently.For this we have to reah a little deeper into the linear algebra tool-box. In thefollowing we will make extensive use of the Hermite and Howell normal form of an integermatrix. The Hermite normal form belongs to the standard tools in integer programming.Hung & Rom (1990) for example use a variant of the Hermite normal form to generateutting planes of simpliial ones P , suh that the outome ~P has in integral vertex.Lethford (1999) uses the Hermite normal form to ut o� the minimal fae of a simpliialone P (A; b). We use the Hermite normal form beause it allows us to represent the imageand kernel of matries A 2 Zm�nd in a onvenient way. Notie that Zd is not a �eld if d isnot a prime. Therefore, standard Gaussian elimination does not apply for these tasks ingeneral. 6.7.1 The Howell and Hermite normal formLet us study the olumn-span of a matrix B 2 Zm�ndspan(B) = fx 2 Zmd j 9y 2 Znd; By = xg:The olumn-span of an integral matrix B 2 Zm�n is de�ned aordingly. We writespanZd(B) and spanZ(B) to distinguish if neessary. The span of an empty set of ve-tors is the submodule f0g of Zmd .Consider the set of vetors S(i) � span(B), i = 0; : : : ;m, whose �rst i omponentsare 0. Clearly S(i) is a Zd-submodule of span(B). We say that a nonzero matrix B is inanonial form ifi. B has no zero olumn, i.e., a olumn ontaining zeroes only,ii. B is in olumn-ehelon form, i.e., if the �rst ourrene of a nonzero entry in ol-umn j is in row ij , then ij < ij0 , whenever j < j0 (the olumns form a stairase\downwards"),iii. S(i) is generated by the olumns of B belonging to S(i).Notie that if d is a prime, then (iii) is automatially satis�ed, sine Zd has no zero-divisors.



62 x 6. The elementary losure in fixed dimensionExample 6.16. Consider the matrix B = ( 23 ) in Z4. Clearly B satis�es the onditions(i) and (ii). But B does not satisfy the ondition (iii), sine the vetor ( 02 ) is in spanZ4(B)but not in the olumn-span of those olumn vetors of B that belong to S(1), sine thereare none. A anonial form of this matrix would be the matrix eB = ( 2 03 2 )We now motivate this onept in the ontext of the deision problem, whether a vetorbelongs to the olumn-span of a matrix in anonial form or not. If B 2 Zm�nd is inanonial form and y 2 Zmd is given, then it is easy to deide whether y 2 spanZd(B).For this, let i be the number of leading zeroes of y. Clearly y 2 spanZd(B) if and only ify 2 S(i). Conditions ii) and iii) imply that if y 2 S(i), then there exists a unique olumnb of B with exatly i leading zeroes andbi+1 � x = yi+1 (6.18)being a solvable equation in Zd. It is an elementary number theory task to deide, whethersuh an x exists and if so to �nd one (see e.g. (Niven, Zukerman & Montgomery 1991,p. 62)). Now subtrat x bi+1 times olumn b from y. The result is in S(i+1). One proeedsuntil the outome is in S(n), whih implies that y 2 spanZd(B), or the onditions disussedabove fail to hold, whih implies that y =2 spanZd(B).Storjohann &Mulders (1998) show how to ompute a anonial form of a matrix A withO(mn!�1) basi operations in Zd, where O(n!) is the time required to multiply two n�nmatries. The number ! is less then or equal to 2:37 as found by Coppersmith & Winograd(1990). In the rest of this hapter, we use the O-notation to ount basi operations in Zdlike addition, multipliation, or (extended)-gd omputation of numbers in f0; : : : ; d� 1g.The bit-omplexity of a basi operation inZd is O(size(d) log size(d) log log size(d)) as foundby Sh�onhage & Strassen (1971) (see also (Aho, Hoproft & Ullman 1974)). Reall thatsize(d) = O(n size(A)).Storjohann & Mulders (1998) give Howell (1986) redit for the �rst algorithm and theintrodution of the anonial form and all it Howell normal form. However, there is asimple relation to the Hermite normal form.Proposition 6.17. Let A 2 Zm�nd be a nonzero matrix and let H be the Hermite normalform of (A j d � I) where (A j d � I) is interpreted as an integer matrix. Then a anonialform of A is the matrix H 0 whih is obtained from H by deleting the olumns h(i) withhi;i = d (notie that hi;i j d).Proof. Clearly, spanZd(H 0) � spanZd(A) and H 0 is in olumn-ehelon form. We needto verify iii). Let u 2 spanZd(A) with u 2 S(i), where i is maximal. Property iii) isguaranteed if i = m. If i < m, then ui+1 6= 0. Interpreted over Z, this means that0 < ui+1 < d. Clearly u 2 spanZ(H), and sine ui+1 2 hi+1;i+1 �Z (reall that H is a lower



x 6.7 Finding uts for simpliial ones 63triangular matrix with nonzero diagonal elements and that ui+1 is the �rst nonzero entryof u), it follows that the olumn h(i+1) appears in H 0. After subtrating ui+1=hi+1;i+1times the olumn h(i+1) from u, the result will be in S(i+1) and, by indution, the resultwill be in the span of the olumns of H 0 belonging to S(i+1). All together we see that uis in the span of the vetors of H 0 belonging to S(i).It is now easy to see that the anonial forms of a matrix A have a unique representativeB that, using the notation of ii), satis�es the following additional onditions that we willassume for the rest of the hapter:iv. the elements of row ij are redued modulo bij ;j (interpreted over the integers) andv. the natural number bij ;j divides d.6.7.2 Determining the maximal amount of violationWe now apply the anonial form to determine the maximal amount of violation�max=d. Notie that P 6= PI if and only if there exists a � 6= 0 suh that (6.17) hasa solution. If (A j b)T onsist in Zd of zeroes only, then P = PI . Otherwise let Hbe the anonial form of (A j b)T , whih an be found with O(n!) basi operations inZd (Storjohann & Mulders 1998). Sine P 6= PI , the last olumn of H is of the form(0; : : : ; 0; g)T , for some g 6= 0. The ideal hgi E Zd generated by g is exatly the set of �suh that (6.17) is solvable for �. Sine g j d, the largest � 2 f1; : : : ; d� 1g \ hgi is�max = d� g:Thus we an ompute �max in O(n!) basi operations in Zd and the inequality(bT =d;0T ;�1)(�; y; z) = �T b=d� z � �max=d (6.19)will be valid for QI , de�ning a nonempty fae of QI ,F = (QI \ (�T b=d� z = �max=d)): (6.20)Theorem 6.18. Let P = fx 2 Rn j Ax � bg be a rational simpliial one, where A 2Zn�n is of full rank, b 2 Zn and d = jdet(A)j. Then one an ompute in O(n!) basioperations of Zd the maximal possible amount of violation �max=d. Here, �max is themaximum number � 2 f0; : : : ; d � 1g for whih there exists a utting plane (�=d)TAx �b(�T b)=d separating A�1b with (�T b)=d � b(�T b)=d = �=d.



64 x 6. The elementary losure in fixed dimension6.7.3 Computing verties of QIWe proeed by omputing a vertex of F , whih will also be a vertex of QI . First we�nd in O(n!) basi operations of Zd, a solution �̂ to�T (A j b) = (0; : : : ; 0; �max): (6.21)Let K 2 Zn�kd represent the kernel of (A j b)T , i.e.,spanZd(K) = fx 2 Znd j xT (A j b) = (0; : : : ; 0)g:The anonial form of K again an be omputed in time O(n!) (Storjohann & Mulders1998). The solution set of (6.21) is the set of vetorsS = f�̂+ �� j �� 2 spanZd(K)g: (6.22)Notie thatS is the set of integral vetors in F . Verties of QI will be obtained as minimalelements of S with respet to some ordering on S . For i = 1; : : : ; n and a permutation� of f1; : : : ; ng, we de�ne a quasi-ordering �i� on S by� �i� ~� i� (��(1); : : : ; ��(i)) �lex (~��(1); : : : ; ~��(i)):Here, �lex denotes the lexiographi ordering on f0; : : : ; d � 1gi, i.e., u �lex v if u = vor the leftmost nonzero entry in the vetor di�erene v � u is positive. The lexiographiordering is a total order.Proposition 6.19. If � 2 S is minimal with respet to �n�, then (�; y; z) is a vertex ofQI , where y and z are determined by � aording to (6.11).Proof. Assume without loss of generality that � = id. Let � 2 S be minimal with respetto �n� and suppose that � = Pj=1;::: ;l �j�(j) is a onvex ombination of verties of QI ,where eah �(j) 6= � and �j > 0. Clearly, eah �(j) is in S . Therefore, there existsan index i 2 f1; : : : ; ng suh that �i � �(j)i , for all j 2 f1; : : : ; lg, and �i < �(j)i , forsome j 2 f1; : : : ; lg. Sine �j � 0 and Pi=1;::: ;l �j = 1, we have Pj=1;::: ;l �j�(j)i > �i, aontradition.We now show how to ompute a minimal element � 2 S with respet to �n�. Forsimpliity we assume that � = id, but the algorithm works equally well for any otherpermutation. For � 2 S , we all (�1; : : : ; �i) the i-pre�x of �. We will onstrut asequene �(i); i = 0; : : : ; n; of elements of S with the property that the i-pre�x of �(i) isminimal among all i-pre�xes of elements in S with respet to the �lex order. Sine �lexis a total order, the i-pre�x of �(i) is unique and the i-pre�x of �(j) is the i-pre�x of �(i),



x 6.7 Finding uts for simpliial ones 65for all j � i. In other words, the j-pre�x of �(j) oinides with the i-pre�x of �(i) exeptpossibly in the last (j � i) omponents.De�ne K(i) � spanZd(K) as the Zd-submodule of spanZd(K) onsisting of those ele-ments having a zero in their �rst i omponents. For j � i, the vetor �(j) is obtained from�(i) by adding an element of K(i). Suppose that K is in anonial form and let K(i) bethe submatrix of K onsisting of those olumns of K that lie in K(i). Notie that K(i) isin anonial form, too, and that spanZd(K(i)) = K(i).We initialize �(0) with an arbitrary element of S . Suppose we have onstruted �(i).By the preeding disussion, �(i+1) is of the form �(i) +�, for some � 2 K(i). We have totake are of the (i + 1)-st omponent. Let � be the �rst olumn of K(i) and let g be the(i+ 1)-st omponent of �. If g = 0, then �(i) is minimal with respet to �i+1. Otherwisethe smallest omponent that we an get in the (i + 1)-st position is is the least positiveremainder r of the division of �(i)i+1 by g (remember that g j d). We have �(i)i+1 = qg + rwith an appropriate natural number q and some r 2 f1; : : : ; g � 1g. Thus, by subtratingq� from �(i), we obtain a vetor �(i+1) that is minimal with respet to �i+1. Notie thatthe omputation of �(i+1) from �(i) involves O(n) elementary operations in Zd. Repeatingthis onstrution n times we get the following theorem.Theorem 6.20. Let P = fx 2 Rn j Ax � bg be a rational simpliial one, where A 2Zn�n is of full rank, b 2 Zn and d = jdet(A)j. Then one an ompute in O(n!) basioperations of Zd a vertex of QI orresponding to a utting plane (�=d)TAx � b(�=d)T bseparating A�1b with maximal possible amount of violation �max=d.In pratie one would want to generate several utting planes for P . Here is a simpleheuristi to move from one utting plane orresponding to a vertex of QI to the next. Ifone has omputed some � 2 S then it an be easily heked, whether a omponent of �an be individually dereased. This works as follows. Suppose we are interested in thei-th omponent �i. Compute the standard generator g of the ideal of the i-th omponentsof spanZd(K). Reall that g j d. Now �i an be individually dereased, if g < �i. In thisase we swap rows i and 1 of K and omponents i and 1 of � and proeed as disussed inthe previous paragraph. This \swapping" orresponds to another permutation. It resultsin a new order �� and a new vertex of QI .





Summary
In this thesis we study a prominent approah to integer programming, the so-alled uttingplane method. A Gomory-Chv�atal utting plane (Gomory 1958, Chv�atal 1973a) for apolyhedron P is an inequality Tx � bÆ, where  is an integral vetor and Tx � Æ is validfor P , i.e., the halfspae de�ned by Tx � Æ ontains P . The utting plane Tx � bÆis valid for all integral points in P and thus for the onvex hull of integral vetors in P ,the integer hull PI . The addition of a utting plane to the system of inequalities de�ningP results in a better approximation of the integer hull. The intersetion of a polyhedronwith all its Gomory-Chv�atal utting planes is alled the elementary losure P 0 of P . IfP is rational, then P 0 is a rational polyhedron again. Shrijver (1980) showed that thesuessive appliation of the elementary losure operation to a rational polyhedron yieldsthe integer hull of the polyhedron after a �nite number of steps. Chv�atal (1973a) observedthis for polytopes. This suessive appliation of the elementary losure operation isreferred to as the Chv�atal-Gomory proedure. The minimal number of rounds until PIis obtained is the Chv�atal rank of P . We observe that the �niteness of the Chv�atalrank of rational polyhedra an also be derived from Gomory's original algorithmi result(Gomory 1958). A similar observation was made by Shrijver (1986) for polyhedra in thepositive orthant.Even in two dimensions, one an onstrut polytopes of arbitrary large Chv�atal rank.Integer programming formulations of ombinatorial optimization problems are most oftenpolytopes in the 0/1 ube. Therefore we study the Chv�atal rank of polytopes that areontained in the 0/1 ube. First we investigate rational polytopes in the n-dimensional0/1 ube that do not ontain integral points. It turns out that their Chv�atal rank anessentially be bounded by their dimension. Then we study polytopes with nonemptyinteger hull. For this we have to onsider the faet omplexity of integral 0/1 polytopes.We obtain a �rst upper bound on the Chv�atal rank of polytopes in the n-dimensional0/1 ube of O(n3 log n) by saling the faet de�ning vetors of PI . A more sophistiatedappliation of saling eventually leads to an O(n2 logn) upper bound. We then present a



68 SUMMARYfamily of polytopes in the n-dimensional 0=1-ube whose Chv�atal rank is at least (1+�)n,for some � > 0. This improves the known lower bound n. So if rank(n) denotes themaximum Chv�atal rank over all polytopes that are ontained in [0; 1℄n, then it is shownthat (1 + �)n � rank(n) � 3n2 size(n).In ombinatorial optimization, utting planes are often derived from the struture ofthe problem. But even then they most likely �t in the Gomory-Chv�atal utting planeframework. A polynomial separation routine for the elementary losure of a rationalpolyhedron would thus be a very powerful tool. Shrijver posed the existene of suh analgorithm as an open problem in his book (Shrijver 1986). We give a negative answerto this question by showing that the separation problem for the elementary losure of apolyhedron is NP-hard.Not muh was known about the polyhedral struture of the elementary losure ingeneral. In essene one has the following result (see, e.g. (Cook, Cunningham, Pulleyblank& Shrijver 1998)): If P is de�ned as P = fx 2 Rn j Ax � bg with A 2 Zm�n andb 2 Zm, then P 0 is the intersetion of P with all Gomory-Chv�atal utting planes Tx �bÆ;  2 Zn, where T = �TA with some � 2 [0; 1)m and Æ = maxfTx j x 2 Pg. Thein�nity norm kk1 of any suh vetor  = AT� from above an be estimated as follows:kk1 = kAT�k1 � kAT k1. From this, only an exponential (in the input enoding of P )upper bound kAT kn1 on the number of inequalities needed to desribe P 0 an be derived.This is also exponential in �xed dimension n. Integer programming in �xed dimension issolvable in polynomial time (Lenstra 1983). There is also a polynomiality result onerningthe size of a de�ning system of the integer hull PI of a rational polyhedron P � Rn .Namely, size(PI) is polynomially bounded in size(P ), if the dimension n is �xed (Hayes& Larman 1983, Shrijver 1986, Cook, Hartmann, Kannan & MDiarmid 1992). It wouldbe undesirable if the upper bound desribed above was tight. A deeper knowledge of thestruture of the elementary losure is also important in the ontext of hoosing e�etiveutting planes. We prove that the elementary losure an be desribed with a polynomialnumber of inequalities in �xed dimension and we provide a polynomial algorithm (invarying dimension) for �nding utting planes from this desription. First we inspet theelementary losure of rational simpliial ones. We show that it an be desribed withpolynomially many inequalities in �xed dimension. Via a triangulation argument, we provea similar statement for arbitrary rational polyhedra. Then we show that the elementarylosure of a rational polyhedron an be onstruted in polynomial time in �xed dimension.This yields a polynomial algorithm that onstruts a utting plane proof of 0Tx � �1 forrational polyhedra P with empty integer hull. Based on these results, we then develop apolynomial algorithm in varying dimension for omputing Gomory-Chv�atal utting planesof pointed simpliial ones. These utting planes are not only among those of maximalpossible violation in a natural sense, but also belong to the polynomial desription of P 0



SUMMARY 69in �xed dimension.





Zusammenfassung
In dieser Arbeit untersuhen wir einen bedeutenden Ansatz zur L�osung ganzzahligerProgramme, das sogenannte Shnittebenenverfahren. Eine Gomory-Chv�atal Shnittebe-ne (Gomory 1958, Chv�atal 1973a) eines Polyeders P ist eine Ungleihung Tx � bÆ,wobei  ein ganzzahliger Vektor und die Ungleihung Tx � Æ f�ur P g�ultig ist, das hei�t,da� jeder Punkt, der in P liegt, auh die Ungleihung Tx � Æ erf�ullt. Die Shnittebe-ne Tx � bÆ ist f�ur jeden ganzzahligen Punkt in P g�ultig, also auh f�ur die konvexeH�ulle der ganzzahligen Punkte in P , die sogenannte ganzzahlige H�ulle PI von P . Da eineShnittebene im allgemeinen niht f�ur das Polyeder P g�ultig ist, f�uhrt ihre Hinzunah-me zu einer besseren Approximation der ganzzahligen H�ulle PI , als dies P selbst ist. DerDurhshnitt von P mit all seinen Gomory-Chv�atal Shnittebenen ist die elementare H�ulleP 0 von P . Falls P ein rationales Polyeder ist, dann ist auh die elementare H�ulle von Pein rationales Polyeder. Shrijver (1980) zeigte, da� das wiederholte Bilden der elementa-ren H�ulle eines rationalen Polyeders P nah endlih vielen Shritten zu der ganzzahligenH�ulle von P f�uhrt. Chv�atal (1973a) zeigte dies zuvor f�ur den Fall, da� P ein Polytop ist.Dieses wiederholte Bilden der elementaren H�ulle nennt man das Chv�atal-Gomory Verfah-ren. Die minimale Anzahl an Iterationen, die n�otig ist, um PI zu erhalten, nennt manden Chv�atal-Rang von P . Wir zeigen, da� die Endlihkeit des Chv�atal-Ranges rationalerPolyeder (Chv�atal 1973a, Shrijver 1980) bereits aus Gomorys algorithmishem Ergebnis(Gomory 1958) folgt. F�ur den Fall, da� das Polyeder im positiven Orthanten ist, wurdedies von Shrijver (1986) beobahtet.Bereits im zweidimensionalen Raum l�a�t sih eine Familie von rationalen Polytopenkonstruieren, f�ur die sih keine obere Shranke des Chv�atal-Ranges angeben l�a�t. For-mulierungen kombinatorisher Optimierungsprobleme als ganzzahliges Programm sind f�urgew�ohnlih Polytope im 0/1 W�urfel. Daher interessieren wir uns f�ur den Chv�atal-Rangvon Polytopen, die im 0/1 W�urfel enthalten sind. Zun�ahst untersuhen wir rationale Po-lytope, deren ganzzahlige H�ulle leer ist. Es stellt sih heraus, da� deren Chv�atal-Rang imwesentlihen durh ihre Dimension beshr�ankt ist. Dann wenden wir uns den Polytopen



72 ZUSAMMENFASSUNGim 0/1 W�urfel zu, deren ganzzahlige H�ulle nihtleer ist. Dazu m�ussen wir die Komplexit�atvon Faetten ganzzahliger 0/1 Polytope betrahten. Durh Skalieren dieser Faetten leitenwir eine erste polynomielle Shranke O(n3 logn) des Chv�atal-Ranges von Polytopen imn-dimensionalen 0/1 W�urfel her. Eine geshiktere Anwendung der Skalierungsmethodef�uhrt shlie�lih zu einer O(n2 logn) oberen Shranke. Dann konstruieren wir eine Familievon Polytopen im n-dimensionalen 0/1 W�urfel, deren Chv�atal-Rang mindestens (1 + �)nist, f�ur ein � > 0. Dies verbessert die bisher bekannte untere Shranke n. Wenn die Funkti-on rank(n) den maximalen Chv�atal-Rang von Polytopen im n-dimensionalen 0/1 W�urfelbezeihnet, dann zeigen wir (1 + �)n � rank(n) � 3n2 size(n).Zum L�osen kombinatorisher Optimierungsprobleme mit ganzzahliger Programmie-rung werden Shnittebenen oft aus der Kombinatorik des Problems abgeleitet. Aber auhdann sind sie meist Gomory-Chv�atal Shnittebenen. Eine polynomielle Separationsroutinef�ur die elementare H�ulle w�are daher ein m�ahtiges Werkzeug. Dies motivierte Shrijver,die Frage nah der Existenz einer solhen Routine als o�enes Problem in seinem Buh(Shrijver 1986) zu formulieren. Wir geben eine negative Antwort auf diese Frage, indemwir zeigen, da� das Separationsproblem f�ur die elementare H�ulle eines rationalen PolyedersNP-hart ist.Es war niht sehr viel �uber die Struktur der elementaren H�ulle bekannt. Man wei�im wesentlihen das folgende (siehe (Cook, Cunningham, Pulleyblank & Shrijver 1998)):Wenn P de�niert ist als P = fx 2 Rn j Ax � bg wobei A 2 Zm�n und b 2 Zm, dann istP 0 der Durhshnitt von P mit allen Gomory-Chv�atal Shnittebenen Tx � bÆ;  2 Zn,wobei sih  als T = �TA mit � 2 [0; 1)m shreiben l�a�t und Æ das Maximum Æ =maxfTx j x 2 Pg ist. Die Maximumnorm kk1 eines solhen  = AT� kann wie folgtabgesh�atzt werden: kk1 = kAT�k1 � kAT k1. Daraus ergibt sih die exponentielle (inder bin�aren Eingabel�ange) obere Shranke kAT kn1 f�ur die Anzahl der Ungleihungen, diezur Darstellung von P 0 ben�otigt werden. Diese Shranke ist auh exponentiell, wenn mandie Dimension n festh�alt. Ganzzahlige Programme in fester Dimension k�onnen jedoh inpolynomieller Zeit gel�ost werden (Lenstra 1983). Auh gibt es eine polynomielle obereShranke f�ur die Ungleihungsdarstellung der ganzzahligen H�ulle PI eines rationalen Po-lyeders P in fester Dimension (Hayes & Larman 1983, Shrijver 1986, Cook, Hartmann,Kannan & MDiarmid 1992). Es w�are niht w�unshenswert, stellte sih heraus, da� es einesolhe polynomielle obere Shranke f�ur die Darstellung von P 0 in fester Dimension nihtgibt. Genaueres Wissen von der Struktur der elementaren H�ulle ersheint auh hilfreih imKontext des Problems e�ektive Shnittebenen zu w�ahlen. Wir beweisen, da� die elemen-tare H�ulle eine polynomielle Darstellung in fester Dimension besitzt und wir beshreibeneinen in beliebiger Dimension polynomiellen Algorithmus, der uns Shnittebenen aus die-ser Darstellung berehnet. Zuerst untersuhen wir die elementare H�ulle von simplizialenKegeln. Wir zeigen, da� sie eine polynomielle Darstellung hat und verallgemeinern dies auf



ZUSAMMENFASSUNG 73beliebige rationale Polyeder durh Triangulierung. Dann beweisen wir, da� die elementareH�ulle eines rationalen Polyeders in fester Dimension in polynomieller Zeit berehnet wer-den kann. Dies f�uhrt zu einem polynomiellen Algorithmus, der f�ur rationale Polyeder mitleerer ganzzahliger H�ulle in fester Dimension einen Shnittebenenbeweis f�ur die Unglei-hung 0Tx � �1 herleitet. Basierend auf diesen Erkenntnissen entwikeln wir shlie�liheinen Algorithmus, der Shnittebenen von spitzen simplizialen Kegeln berehnet. DieserAlgorithmus ist polynomiell in beliebiger Dimension. Die Besonderheit der berehnetenShnittebenen ist niht nur die, da� sie einen maximalen Grad der Verletzung in einemnat�urlihen Sinne aufweisen, sondern auh, da� sie zu der zuvor beshriebenen polynomi-ellen Darstellung von P 0 in fester Dimension geh�oren.
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