
Dissertation

Course Generation as a Hierarchical Task
Network Planning Problem

Carsten Ullrich

Saarbrücken, 2007

Dissertation zur Erlangung des Grades des Doktors der
Ingenieurswissenschaften der Naturwissenschaftlich-Technischen

Fakultäten der Universität des Saarlandes

Dekan Prof. Dr. Thorsten Herfet, Universität des Saarlandes, Saarbrücken
Vorsitzender Prof. Dr. Raimund Seidel, Universität des Saarlandes, Saarbrücken
Gutachter PD. Dr. Erica Melis, Universität des Saarlandes, Saarbrücken

Prof. Dr. Julita Vassileva, University of Saskatchewan, Saskatoon
Prof. Dr. Jörg Siekmann, Universität des Saarlandes, Saarbrücken

Beisitzer Dr. Serge Autexier
Kolloquium 14. September 2007

Acknowledgments

First of all, I would like to thank my supervisor Erica Melis for her support during my
years in the ActiveMath group. Regardless how much and what she had to do, Erica
was always available for discussion and support, and a never dwindling source of ideas
and suggestions. I am also deeply indebted for her careful proofreading of this thesis.

I also wish to thank Jörg Siekmann for letting me become a member of his research
groups. His enthusiasm for Artificial Intelligence inspired my research from the very
beginning, and I am grateful that he accepted to review my thesis.

My special thanks goes to Julita Vassileva for accepting to be the second referee of this
thesis. I hope my research does honor to her pioneer work in course generation.

Research always takes place in a context. In Saarbrücken, I had the privilege of being
the member of two stimulating and encouraging research groups, first the Omega group
and then the ActiveMath group. Guys, I miss you already. Big thanks for proofreading
parts of my thesis goes to Martin Homik, George Goguadze, Paul Libbrecht and Stefan
Winterstein. Similar big thanks goes to Philip Kärger and Tianxiang Lu for implementing
several of my crazy ideas.

Large parts of this thesis were written during the month I was part of the Libbrecht
family at “Chez Joséphine” in Saarbrücken. Merci à Paul, Corinne, Pénélope, Mercure,
Eliott et Gaspard pour leurs encouragements.

Above all, I want to thank my wife Kerstin. Thank you for your support and patience
during the whole time of my thesis. Without you, I wouldn’t be standing here. Finally, I
am deeply grateful to my parents whose support made my studies of Computer Science
possible.

iii

iv

Abstract

This thesis presents course generation based on Hierarchical Task Network planning (HTN
planning). This course generation framework enables the formalization and application of
complex and realistic pedagogical knowledge. Compared to previous course generation,
this approach generates structured courses that are adapted to a variety of different
learning goals and to the learners’ competencies. The thesis describes basic techniques
for course generation, which are used to formalize seven different types of courses (for
instance introducing the learner to previously unknown concepts and supporting him
during rehearsal) and several elementary learning goals (e. g., selecting an appropriate
example or exercise).

The course generator developed in this thesis is service-oriented thus allowing the
integration of learning supporting services into the generated course in a generic and
pedagogically sensible way. Furthermore, learning environments can access the function-
ality of the course generator using a Web-service interface. Repositories are treated as
services that can register at the course generator and make their content available for
course generation. The registration is based on an ontology of instructional objects. Its
classes allow categorizing learning objects according to their pedagogical purpose in a
more precise way than existing metadata specifications; hence it can be used for intelli-
gent pedagogical functionalities other than course generation.

Course generation based on HTN planning is implemented in Paigos and was evaluated
by technical, formative and summative evaluations. The technical evaluation primarily
investigated the performance to Paigos; the formative and summative evaluations tar-
geted the users’ acceptance of Paigos and of the generated courses.

v

vi

Kurzzusammenfassung

Diese Arbeit stellt Kursgenerierung vor, die auf Hierarchical Task Network Planung (HTN
Planung) basiert. Der gewählte Rahmen erlaubt die Formalisierung von komplexem and
realistischem pädagogischem Wissen und ermöglicht im Vergleich zu bisherigen Techniken
die Generierung von strukturierten Kursen, die an eine Vielzahl von Lernzielen angepasst
sind. Aufbauend auf allgemeinen Techniken zur Kursgenerierung wird das pädagogische
Wissen für sieben verschiedene Kurstypen und für eine Reihe von elementaren Lernzielen
formalisiert.

Die in dieser Arbeit vorgestellte Kursgenerierung ist service-orientiert. Dadurch steht
ein generischer Rahmen zu Verfügung, in dem externe Lernsysteme in die generierten
Kurse eingebunden werden und dem Lernenden zur Verfügung gestellt werden können,
wenn es pädagogisch sinnvoll ist. Weiterhin können andere Lernsysteme über eine Web-
Service Schnittstelle auf die Funktionalitäten des Kursgenerators zugreifen: Datenbanken
werden als Services betrachtet, die an dem Kursgenerator registriert werden können,
und auf die während der Kurserstellung zugegriffen wird. Die Registrierung verwendet
eine Ontologie, die verschiedene instruktionale Typen von Lernobjekten repräsentiert
und es erlaubt, Lernobjekte nach ihrem pädagogischen Verwendungszweck zu klassi-
fizieren. Sie geht dabei über existierende Metadatenspezifikationen hinaus und ermöglicht
pädagogische komplexe Funktionalitäten, so wie beispielsweise Kursgenerierung und weit-
ere.

Die vorgestellte Kursgenerierung ist implementiert in Paigos und wurde durch tech-
nische, formative und summative Evaluationen untersucht. Die technische Evaluation
analysierte in erster Linie die Performanz von Paigos; die formative und summative
Evaluationen widmeten sich der Frage der Akzeptanz und Verständlichkeit der von Pai-
gos erzeugten Kurse aus Benutzersicht.

vii

viii

Extended Abstract

A course generator dynamically generates a sequence of learning objects that supports a
learner in achieving his learning goals. Most of the previous work on course generation
employs very limited pedagogical knowledge to guide the assembling process — more often
than not the knowledge is limited to using the prerequisite relation to collect and present
all learning objects that the current content goal of the learner depends on. Despite the
fact that over time learners may want to achieve different learning goals with respect to
same domain concept, other course generators cannot generate different types of courses.
Furthermore, today learning objects are stored in a multitude of repositories. However,
existing course generators can only access the resources stored in the repository they
were developed for; they do not offer interfaces to easily connect additional repositories.
Last but not least, no existing course generators can be accessed from external learning
environments; again, their functionality is restricted to the environment that they were
developed for.

These observations led me to develop course generation based on Hierarchical Task
Network planning (HTN planning), which I introduce in this thesis. This course gen-
eration allows formalizing complex and realistic pedagogical knowledge. Furthermore,
this course generation is service-oriented: it accesses learning objects stored in external
repositories and makes its functionality available to other systems.

The course generation knowledge described in this thesis allows formalizing complex
descriptions of courses (so called “scenarios”) that generate structured courses supporting
the learner’s achievement of a variety of learning goals. The knowledge is based on joint
work with pedagogical experts and on modern pedagogy. Each scenario generates courses
adapted to a specific learning goal, for instance, to introduce the learner to previously
unknown concepts, to support him during rehearsal and to train specific competencies.
In addition, the course generator implements basic knowledge, such as selecting a single
example or exercise for an individual learner.

The course generator was embedded into a service-oriented architecture. This enables
to integrate tools that support the learning process into generated courses in a pedagog-
ically sensible way. Furthermore, the course generator allows accessing its functionality
by a well-defined Web-service interface. This way, the course generation knowledge is en-
capsulated within a single component, the course generator, but still publicly available.
If a learning management system or any other tool wants to employ course generation,
then it can re-use the functionalities made available by Paigos and is not required to
implement the pedagogical knowledge itself.

Repositories are treated as services that can register at the course generator and make
their content available for course generation. This process requires a mapping between
the knowledge representation used in the course generator and the representation used
in the repositories. The knowledge representation used in the course generator is based
on an ontology of instructional objects. Its classes allow categorizing learning objects

ix

according to their pedagogical purpose in a more precise way than existing learning object
metadata specifications and it can be used for intelligent pedagogical functionalities other
than course generation.

The generated courses are structured in nested sections and contain bridging texts that
summarize the purpose of sections. This structure and the texts convey to the learner
additional information about the learning process that he can later use to structure his
own learning. However, generating the structure requires generating the complete course
immediately after receiving the user’s request, instead of selecting and presenting one
learning object after another. The downside is that a long time-span may separate gener-
ation and viewing of a page: assumptions about the learner made during course generation
may have become invalid. To overcome this problem, dynamic subgoal expansion selects
the specific learning objects as late as possible, that is, when the learner wants to see
them for the first time. As a result, the selection uses up-to-date information about the
learner. Dynamic subtask expansion can also be used for manually composed courses
where parts of the course are predefined and others dynamically computed, taking the
learner model into account. In this way, authors can profit from the best of both worlds:
they can compose parts of the course by hand and at the same time profit from the
adaptive features of the course generator.

Course generation based on HTN planning is implemented in Paigos and integrated
in the learning environment ActiveMath and several other environments.

The evaluation of course generation based on HTN planning was conducted in several
technical, formative and summative evaluations. A result of the technical evaluation is
that courses are generated very efficiently: since Paigos sends several thousands queries
its performance depends on the response times of the integrated repository, but under
optimal conditions Paigos requires less than a second to generate a course that consist of
about 300 learning objects. Such a course would take an average learner about 11 hours
of learning time. The summative evaluation showed that a majority of users prefers
generated books over manually authored books, mostly due to the generated books being
tailored to the student’s learning goals. The users also rate the selected content (in
particular the exercises) as being well adapted to their competencies.

x

Ausführliche Zusammenfassung

Kursgenerierung bezeichnet den Prozess, aus einer Vielzahl von Lernobjekten diejenigen
auszuwählen, die den Lernenden beim Erreichen eines Lernziels unterstützen. Bisherige
Arbeiten im Bereich der Kursgenerierung beschreiben in der Regel nur sehr elementares
pädagogisches Wissen, das verwendet wird, um Kurse zusammen zu stellen — in der
Mehrzahl der Fälle wird die Vorgängerrelation verwendet und dem Lernenden alle Lern-
objekte präsentiert, von denen sein inhaltliches Lernziel abhängt. Obwohl Lernende un-
terschiedliche Lernziele für ein und das selbe inhaltliche Konzept haben können, ist es
bisheriger Kursgenerierung nicht möglich, verschiedene Typen von Kursen zu generieren.
Weiterhin sind heutzutage Lernobjekte in einer Vielzahl von Datenbanken gespeichert.
Bisherige Kursgenerierer sind aber auf eine einzige Datenbank festgelegt; sie verfügen
über keine generische Methoden, um andere Datenbanken anzubinden. Zudem können
bisherige Kursgenerierer nicht von externen Lernsystemen verwendet werden, sondern
ihre Funktionalität ist nur innerhalb den Lernumgebungen zugänglich, in denen sie ent-
wickelt wurden.

Diese Beobachtungen motivierten die in dieser Arbeit vorgestellte Kursgenerierung.
Dieser Ansatz erlaubt es, komplexe und realistisches Kursgenerierungswissen zu formali-
sieren. Zudem ist die Kursgenerierung service-orientiert: die Kursgenerierung greift auf
Lernobjekte in externen Datenbanken zu und stellt ihre Funktionalität anderen Systemen
zur Verfügung.

Das in dieser Arbeit vorgestellte Kursgenerierungswissen erlaubt es, komplexe Typen
von Kursen (sogenannte Szenarios) zu formalisieren, um so strukturierte Kurse für eine
Vielzahl von Lernzielen zu erzeugen. Diese Formalisierung wurde in Zusammenarbeit
mit Pädagogen und basierend aktuellen Aussagen der Didaktik erstellt. Die verschiede-
nen Szenarios entsprechen jeweils unterschiedlichen Lernzielen. So ist es beispielsweise
möglich, Kurse zu generieren, die den Lernenden in ein Themengebiet einführen, ihn bei
der Wiederholung unterstützen oder gezielt gegebene Kompetenzen trainieren. Zudem
können auch elementare Funktionen vom Kursgenerator ausgeführt werden, wie beispiels-
weise die Auswahl eines für den Lernenden geeigneten Beispiels.

Weiterhin wurde die Kursgenerierung in eine service-orientierte Architektur eingebun-
den. Dadurch steht ein generischer Rahmen zu Verfügung, in dem externe Lernsysteme
in die generierten Kurse integriert und dem Lernenden zur Verfügung gestellt werden
können, wenn es pädagogisch sinnvoll ist.

Der Kursgenerierer stellt über eine Web-Service Schnittstelle seine Funktionalität an-
deren Lernsystemen zur Verfügung. Dadurch ist es möglich, das benötigte Wissen über
die Kursgenerierung in einer einzigen Komponente, dem Kursgenerator zu kapseln, gleich-
zeitig aber die Funktionalität öffentlich zu machen, um zu verhindern, dass Wissen du-
pliziert wird.

Lernsysteme können dank eines Mediators eigene Datenbanken an dem Kursgenerator
registrieren, auf die während der Kurserstellung zugegriffen wird. Die Registrierung er-

xi

fordert eine Abbildung der Wissensrepräsentation des Kursgenerators auf die Repräsentation
die innerhalb der einzubindenden Datenbank verwendet wird. Die Wissensrepräsentation
des Kursgenerators basiert auf einer Ontologie, die verschiedene instruktionale Typen von
Lernobjekten repräsentiert und erlaubt, Lernobjekte nach ihrem pädagogischen Verwen-
dungszweck zu klassifizieren. Sie geht dabei über existierende Metadatenspezifikationen
hinaus und ermöglicht pädagogische komplexe Funktionalitäten, so wie beispielsweise die
Kursgenerierung.

Die von der Kursgenerierung basierend auf HTN Planung erzeugten Kurse sind struk-
turiert in verschachtelten Kapiteln und enthalten Brückentexte, die die einzelnen Kapitel
beschreiben. Die Strukturierung und die Brückentexte dienen dazu, dem Lernenden eine
meta-kognitive Orientierung über den Lernprozess zu vermitteln, die er später für sein
Lernen verwenden kann. Die Erzeugung der Struktur erfordert es, den Kurs sofort nach
Erhalt der Benutzeranfrage vollständig zu planen, anstelle schrittweise ein Lernobjekte
zu zeigen und dann das folgende auszuwählen. Allerdings kann zwischen der Kursgener-
ierung und dem Betrachten der Seiten eine lange Zeitspanne liegen, die dazu führen kann,
dass die Annahmen über den Benutzer die während der Kursgenerierung galten, ungültig
geworden sind. Dynamisch expandierbare Teilziele ermöglichen es, dieses Problem zu
lösen: Die konkreten Lernobjekte werden zu einem späteren Zeitpunkt ausgewählt, z.B.
dann wenn der Lernende sich die Lernobjekte anschaut. Dadurch wird es möglich, ak-
tuelle Informationen über den Lernenden in die Auswahl einzubeziehen. Dynamisch ex-
pandierte Teilziele können auch von Autoren verwendet werden und erlauben es, Teile von
Kursen komplett zu autorieren, d.h. die konkreten Lernobjekte anzugeben, gleichzeitig
aber andere Lernobjekte wie z.B. Beispiele oder Übungen dynamisch auszuwählen.

Die in dieser Arbeit vorgestellte Kursgenerierung wurde in dem neuen System Pai-
gos implementiert und in das Lernsystem ActiveMath und weiteren Lernsystemen
integriert.

Zur Evaluierung der Kursgenerierung basierend auf HTN Planung und der Implemen-
tierung in Paigos wurden technische, formative und summative Evaluierungen durchge-
führt. Das wichtigste Resultat der technischen Evaluierung ist, dass Paigos Kurse sehr
effizient generieren kann. Die Performanz ist zwar von den Antwortzeiten der angebun-
denen Datenbanken abhängig, da Paigos während der Kursgenerierung Tausende von
Anfragen an die Datenbanken stellt, unter optimalen Bedingungen kann Paigos aber
Kurse die aus ca. 300 Lernobjekte bestehen und durchzuarbeiten ungefähr 11 Stun-
den erfordern, in weniger als einer Sekunde generieren. Die summative Evalution ergab,
dass die große Mehrzahl der Benutzer genererierte Kurse gegenüber manuell authorierten
bevorzugt, in der Regel da die generierten Kurse sehr viel genauer auf ihre Bedürfnisse
zugeschnitten sind. Die ausgewählten Inhalte (insbesondere die Übungen) wurden eben-
falls als gut an den Wissensstand angepasst gewertet.

xii

Contents

I. Preliminaries 1

1. Introduction 3
1.1. Motivation . 3
1.2. Contributions . 4

1.2.1. Service-Oriented Course Generation 4
1.2.2. Modeling of Pedagogical Knowledge 5
1.2.3. Adaptivity in Generated Courses 5
1.2.4. Evaluation . 6
1.2.5. Example, continued . 6

1.3. Overview . 6

2. Relevant Technologies 9
2.1. Basic Terminology . 9
2.2. Semantic Web Technologies . 11

2.2.1. Extensible Markup Language . 12
2.2.2. Resource Description Framework 12
2.2.3. OWL Web Ontology Language . 13

2.3. E-learning Standards . 14
2.3.1. Learning Object Metadata . 15
2.3.2. IMS Content Packaging . 16
2.3.3. IMS Simple Sequencing . 17
2.3.4. IMS Learning Design . 18

2.4. Course Generation . 18
2.5. Hierarchical Task Network Planning . 21

2.5.1. Introduction to AI-Planning . 21
2.5.2. Introduction to Hierarchical Task Network Planning 22
2.5.3. SHOP2 and JSHOP2 . 23
2.5.4. JSHOP2 Formalism . 23

3. Descriptive and Prescriptive Learning Theories 31
3.1. Behaviorism . 31
3.2. Cognitivism . 32
3.3. Constructivism . 32
3.4. Instructional Design . 33
3.5. Competency-Based Learning . 33

3.5.1. Mathematical Competencies . 33
3.5.2. Competency Levels . 35

xiii

Contents

II. PAIGOS 37

4. General Principles 39

4.1. An Ontology of Instructional Objects . 39
4.1.1. Motivation . 40
4.1.2. Description of the Ontology . 43
4.1.3. Why an Ontology? . 46
4.1.4. Applications of the Ontology . 46

4.2. A Mediator for Accessing Learning Object Repositories 48
4.2.1. Related Work . 48
4.2.2. Overview of the Mediator Architecture 49
4.2.3. Querying the Mediator . 50
4.2.4. Ontology Mapping and Query Rewriting 51
4.2.5. Repository interface and caching 51
4.2.6. Limitations of the Mediator as an Educational Service 52

4.3. Pedagogical Tasks, Methods and Strategies 53
4.4. Representing Course Generation Knowledge in an HTN Planner 55

4.4.1. Motivation . 57
4.4.2. Mapping Pedagogical Tasks onto HTN Tasks 58
4.4.3. Course Generation Planning Problems 58
4.4.4. Critical and Optional Tasks . 59

4.5. Basic General Purpose Axioms and Operators 60
4.5.1. Testing for Equality . 60
4.5.2. List Manipulation . 60
4.5.3. Binding a Variable to all Terms of a Term List 62
4.5.4. Manipulating the World State . 62

4.6. Basic Operators and Methods of the Course Generation Domain 63
4.6.1. Inserting References to Educational Resources 63
4.6.2. Starting and Ending Sections . 67
4.6.3. Inserting References to Learning-Support Services 68
4.6.4. An Operator for Dynamic Text Generation 69
4.6.5. Dynamic Subtask Expansion . 70
4.6.6. Accessing Information about Educational Resources 70
4.6.7. Axioms for Accessing the Learner Model 73
4.6.8. Processing Resources Depending on Learner Characteristics 75
4.6.9. Initializing and Manipulating Information about the Learning Goal 80

4.7. Converting a Plan into a Course . 83
4.8. Generating Structure and Adaptivity: Dynamic Tasks 88
4.9. Generation of Narrative Bridges and Structure 90

4.9.1. Empirical Findings . 90
4.9.2. Operator and Methods for Text Generation 92
4.9.3. Symbolic Representations of Dynamic Text Items 94
4.9.4. Generation of Structure Information 94

4.10. Summary . 96

xiv

Contents

5. Course Generation in Practice: Formalized Scenarios 99
5.1. Moderate Constructivist Competency-Based Scenarios 99

5.1.1. Course Generation and Constructivism — a Contradiction? 99
5.1.2. Selecting Exercises . 102
5.1.3. Selecting Examples . 110
5.1.4. Scenario “Discover” . 114
5.1.5. Scenario “Rehearse” . 129
5.1.6. Scenario “Connect” . 132
5.1.7. Scenario “Train Intensively” . 138
5.1.8. Scenario “Train Competencies” . 140
5.1.9. Scenario “Exam Simulation” . 142

5.2. Course Generation Based on Instructional Design Principles 147
5.2.1. Merrill’s “First Principles of Instruction” 147
5.2.2. Scenario “Guided Tour” . 148

6. Implementation and Integration 155
6.1. Implementation . 155
6.2. Integration of PAIGOS in ActiveMath . 157

6.2.1. The Learning Environment ActiveMath 157
6.2.2. Course Generation in ActiveMath 158
6.2.3. Dynamically Generated Elements in a Table of Contents 160
6.2.4. Usage of Learning-Support Services in ActiveMath 162
6.2.5. Template-Based Generation of Narrative Bridges 168
6.2.6. PAIGOS as a Service in ActiveMath 172

6.3. Course Generation as a Web-Service . 174
6.3.1. Interfaces . 175

7. Evaluations 179
7.1. Technical Evaluations and Use Cases . 179

7.1.1. Evaluations of the Ontology . 179
7.1.2. Mediator Use Cases and Evaluations 181
7.1.3. Course Generation Use Cases and Evaluations 181
7.1.4. Performance of PAIGOS . 182
7.1.5. Discussion . 187

7.2. Formative and Summative Evaluation . 187
7.2.1. Formative Evaluations . 188
7.2.2. Summative Evaluation . 191
7.2.3. Discussion . 198

III. Conclusions 205

8. Related Work 207
8.1. Early Work . 207
8.2. Generic Tutoring Environment . 207
8.3. Dynamic Courseware Generator . 208

xv

Contents

8.4. ACE/WINDS . 209
8.5. Former Course Generator of ActiveMath 210
8.6. APeLS/iClass . 212
8.7. SeLeNe . 213
8.8. Statistical Methods for Course Generation 214
8.9. Approaches using Hierarchical Task Network Planning 215
8.10. Ontologies for Instructional Design . 215
8.11. Summary . 216

9. Conclusion and Future Work 217

Complete List of User Comments 221

Example Plan and OMDoc 227

xvi

Part I.

Preliminaries

1

1. Introduction

1.1. Motivation

Today, the student interested in e-learning no longer faces the problem of finding any
educational resources but he1 is confronted with a much greater challenge: finding the
appropriate ones. A compilation of the Center for International Education at the Univer-
sity of Wisconsin (Beck, 2001) lists about 50 publicly accessible learning object reposito-
ries, some of them cataloging more than 16 000 individual resources. This overwhelming
amount makes it impossible for clients, be it learners, teachers, or educational systems
to search manually through the repositories to find those resources that are appropriate
for their current goals.

Say, the learner Anton wants to learn about the mathematical concept “derivative”.
This topic is new to him, but he has some rudimentary knowledge about more basic
concepts, such as “functions”. When searching for resources on the Web the first stop is
usually Google. At the time of writing a search for “derivative” yields about 70 800 000
results. A refined search (“derivative mathematics”) results in 1 260 000 links; a signifi-
cantly smaller number but still too large to handle. Furthermore, the results are polluted
by irrelevant links. Google (and other Web search tools) indexes all Web resources and
does not allow restricting a search to educational resources. Therefore, explanations
about the mathematical concept “derivative” are displayed alongside with advertisement
about “financial derivatives”.

Thus, in a second step, Anton searches learning object repositories. Browsing through
all repositories one by one would cost too much time. Therefore, Anton accesses a Web-
portal that offers federated search. Federated search allows uniform access to a multitude
of repositories and enables a client (a human or a system) to pose queries that are
answered by all repositories connected to the P2P network. Queries typically consist of
keywords and additional information (called metadata) about the desired resources, such
as learning context, typical learning time, etc.

Anton’s search at the Web-portal merlot (merlot, 2006) returns 25 resources, which
are of varying granularity and range from single applets to Web-sites that teach a variety
of topic, including derivatives. Anton now faces the question which results are relevant
for his goals and capabilities. In order to judge, he would need to inspect them one by
one. This takes time and, in the first place, requires a very competent and self-organized
learner who is able to assess and to structure the retrieved content. In particular low-
achieving students do not always possess these skills and several empirical studies show
that these learners benefit from content organized according to pedagogical principles
(Prenzel et al., 2004; OECD, 2004).

More abstractly speaking, posing queries to a multitude of repositories provides only

1Throughout this thesis, I will randomly refer to the learner as “he” or “she”.

3

1. Introduction

a part of the functionality required for the task of finding and structuring appropriate
educational resources. The task also requires pedagogical skills for finding and assembling
the resources. That is where course(ware) generation comes into play. Course generation
uses information about the resources, the learner and his learning goals to generate an
adapted sequence of resources that supports the learner in achieving his goals.

However, previous course generator cannot handle complex learning goals. In most
course generators the learning goal consists of the target concepts the learner wants to
learn about. But during learning, a user will have different objectives: when the content
is unknown to him, Anton requires detailed, comprehensive information. Later, he might
want to rehearse the content, which requires a different course. When preparing for an
exam, Anton wants to use a workbook, which is yet another type of course.

While recent work on course generation often claims to use pedagogical knowledge, the
quality and extent of most of the work cannot be judged due to insufficient descriptions.
Schulmeister’s (Schulmeister, 2006) criticism on adaptive systems in general applies to
course generation as well: a large percentage of existing work neither describes the char-
acteristics of the learner used for adaptivity nor the methods and dimensions of adaptivity
that are aimed at.

In addition, none of previous course generators has a service-oriented architecture.
They cannot perform federated search, nor make their functionality available as a service
to other systems.

1.2. Contributions

To overcome these and further problems, I developed the course generator Paigos.2 Pai-
gos advances the state of the art of course generation by using many of the possibilities
offered by today’s (Semantic) Web, Artificial Intelligence and technology-enhanced learn-
ing techniques. The work contributes to service-oriented course generation and modeling
of pedagogical knowledge. Several evaluations served to assess the practical value of
Paigos.

1.2.1. Service-Oriented Course Generation

This thesis considers all software systems that are involved in course generation as ser-
vices. This includes the course generator, repositories and additional tools that support
the user during learning (called learning-support services).

A course generator service allows accessing course generation functionality by well-
defined Web-service interfaces. This way, if a learning management system like Moodle
(Moodle, 2007) or any other system wants to offer course generation, it can re-use the
functionalities made available by Paigos and is not required to implement the pedagog-
ical knowledge itself.

Repositories are treated as services that can register at Paigos and make their con-
tent available for course generation. However, a difficulty is that the representation of

2I derived this term from the linguistic roof of “pedagogy”, which is “paidagōgos”. In ancient Greece, the
paidagōgos was the slave who took the children to and from school (The American Heritage Dictionary
of the English Language). Just like this slave, Paigos should provide guidance and support to the
learner, when requested.

4

1.2. Contributions

resources often varies simply because different database schemas may be used in the
repositories. In addition, despite standardization efforts such as lom (ieee Learning
Technology Standards Committee, 2002) almost every repository available uses its own
description of learning objects (or at least a variant of lom). Paigos uses a media-
tor architecture that is based on an ontology of instructional objects to overcome these
problems.

Last but not least, Paigos views tools that support the learning process as services,
too. Paigos integrate these services, not arbitrarily but in a pedagogically sensible way:
during the learning process, at times the usage of a tool can be more beneficial than at
some other time. For instance, reflecting upon the learned concepts may be most effective
at the end of a lesson because attention is not split between cognitive and meta-cognitive
(reflective) activity.

1.2.2. Modeling of Pedagogical Knowledge

Paigos implements realistic pedagogical knowledge developed jointly with pedagogical
experts. This knowledge encodes how to generate courses that help the learner to achieve
his learning goals. Paigos domain knowledge realizes a large set of learning goals, rang-
ing from selecting single resources such as examples and exercises to complete courses.
This thesis contains a detailed description of the implemented knowledge. This addresses
Schulmeister’s criticism and thus allows judgment and comparison of the course genera-
tion knowledge.

The knowledge is generic, that is, independent from the actual content. This makes
the knowledge reusable and applicable to other domains than it was originally developed
for.

The basic pedagogical building blocks developed in this thesis are pedagogically neutral.
In practice, researchers as well as practitioners disagree on the question which pedagogical
principles to use for teaching. Hence, if a course generator aims at wide-spread appli-
cability, it should not impose any specific learning theory. Paigos implements a novel
competency-based pedagogical approach as well as more a traditional approach based on
instructional design guidelines.

The courses that result from applying the formalized knowledge are structured accord-
ing to pedagogical principles. This structure is made explicit by the nested sections of
the table of contents and by bridging texts that are created during course generation.
This structure and the bridging texts convey to the learner additional information about
the learning process that he can later use to structure his own learning.

1.2.3. Adaptivity in Generated Courses

Course generation faces a dilemma: on one hand it makes sense from a pedagogical point
of view to generate a complete course immediately after receiving the learner’s request,
instead of selecting and presenting one resource after another: in one-shot generation,
the learner sees the how the content is structured and he can freely navigate. On the
other hand, if a long time-span separates between the generation and viewing of a page,
assumptions about the learner made during course generation may have become invalid,
resulting in an inadequate course. Hence, if possible, the course generating should be

5

1. Introduction

dynamic in the sense to use the most up-to-date information about the learner that is
available.

The solution presented in this thesis is based on dynamic subtask expansion: course
generation may stop at a level that specifies what kind of educational resources should
be selected but does not specify which ones. The specific resources are selected as late
as possible, that is, only at the time when the learner wants to see them. An important
aspect of dynamic subtask expansion is that this technique can be used by human “course
generators”, i. e., authors that manually compose courses: an author can define a course
where parts of the course are predefined and others dynamically computed, taking the
learner model into account. In this way, an author can profit from the best of both
worlds: she can compose parts of the course by hand and at the same time profit from
the adaptive features of the course generator.

1.2.4. Evaluation

Evaluations are an integral part of this thesis. A technical evaluation investigated the
performance of Paigos under various conditions. The results show that using the tech-
niques described in this thesis the generation of courses with an approximated reading
time of about 11 hours takes place in about half a second. The results also illustrate
the drawbacks of service-oriented architectures: the above figures were obtained under
optimal conditions, i. e., the latency of the services accessed during course generation was
minimized. In real life, performance decreases, due to the large amount of queries send
over the Web to the repositories and learner model.

Several formative and a summative evaluation investigated course generation from the
learners’ and teachers’ point of view. In summary, users appreciate the tailoring of the
content to their goals and they prefer dynamically generated over traditional, static books.
So, what would Anton’s usage of Paigos look like?

1.2.5. Example, continued

Using the techniques described in this thesis, Anton is able to find what he is looking for.
Paigos allows Anton to state his precise learning goal, in this case “discover derivatives”,
and to receive a structured sequence of educational resources that helps him achieving
this learning goal. Figure 1.1 contains the table of contents generated for Anton. At
a later time, when Anton wants to rehearse the same content, he can use Paigos to
generate a new course, which is again adapted to his needs (Figure 1.2).

1.3. Overview

This thesis consists of three parts. Part I introduces the preliminaries of the thesis, Part II
describes Paigos and Part III concludes the thesis with a description of related work, a
summary and an outlook to possible extensions.

Part I Preliminaries Chapter 2 describes the technologies relevant for this thesis. First,
I introduce Semantic Web technologies, starting with the basic building block xml and
then explaining how this general-purpose markup language is used to convey semantic

6

1.3. Overview

Figure 1.1.: A detailed course for Anton about “derivative”

Figure 1.2.: A course supporting Anton to rehearse “derivative”

7

1. Introduction

information in rdf and owl (Section 2.2). A second area relevant for this thesis is
standards used for technology-enhanced learning. I describe these in Section 2.3. The
basis concepts of course generation are topic of Section 2.4. The AI framework I used to
implement the pedagogical knowledge, Hierarchical Task Network Planning, is explained
in Section 2.5. The first part concludes with a brief overview on non-technical information
relevant for this thesis, namely descriptive and prescriptive learning theories (Chapter 3).

Part II PAIGOS This part consists of four chapters. Chapter 4 introduces general
principles for course generation developed in this thesis. It starts with an ontology of
instructional objects that allows describing educational resources such that pedagogically
useful and intelligent services become possible (Section 4.1). In Section 4.2, I present a
mediator architecture that enables Paigos to access educational resources stored in third-
party repositories. The remaining sections 4.3 to 4.10 describe the techniques Paigos
uses to employ HTN planning for course generation, such as the basic operators and
methods and the conversion of generated plans into table of contents.

In Chapter 5, I explain how the previously described basic operator and methods are
put into use to realize course generation for different learning goals based on different
pedagogical paradigms, namely moderated constructivism (Section 5.1) and instructional
design (Section 5.2).

Technical details of the implementation, of the integration of Paigos into the learning
environment ActiveMath, and of the Web-service interfaces are subject of Chapter 6.

In Chapter 7.2, I present the results of the technical, formative and summative evalu-
ations of Paigos.

Part III Conclusion This part concludes this thesis. I start with presenting related work
(Section 8) followed by the conclusion and an outlook on possible extensions (Section 9).

8

2. Relevant Technologies

This chapter describes the technologies which are relevant for intelligent technology-
supported instruction in the World Wide Web. The basic terminology, e. g., the concept of
a learning object, is introduced in Section 2.1. Today’s and tomorrows World Wide Web,
that is, the current basic standards and their extensions into the Semantic Web are topic
of Section 2.2. Web-based technology-supported instruction heavily relies on standards
describing learning materials and collections of learning material. These are described in
Section 2.3. The chapter concludes with a section on AI-planning (Section 2.5), which
provides the basics needed to understand how Paigos implements pedagogical knowledge.

2.1. Basic Terminology

Learning Object Wiley (2000) defines a learning object as “any digital resource that
can be reused to support learning”. This definition points out three characteristics that
are relevant for this thesis:

• Digital: a learning object has to be available in some digital format, i. e., it is
stored on a medium (say a hard disk, CD-ROM, Web page) and is visualized by a
computer. This is in contrast to other definitions, e. g., ieee Learning Technology
Standards Committee (2002), that include non-digital resources.

• Reuse: a learning object can used in a way or context different from the one it was
originally designed for (see Section 2.3 for more details on reuse of learning objects).

• Learning Support: a learning object is designed to serve the purpose of assisting a
learner in this learning process. For instance, it can provide a definition of a domain
concept, or an interactive opportunity used for exploration purposes.

According to Wiley (2000), the concept of “learning object” is based on the object-
oriented paradigm of software design. There, the goal is to create highly reusable software
components that can be employed in a large number of contexts. Each object has a well-
defined and specific functionality. Likewise, a learning object is a small piece of learning
material that can be reused in different learning contexts.

However, the above definition is still too broad for automatic (re-)use of learning ob-
jects. It neither addresses the question how to locate a learning object, nor its granularity.
Thus in the scope of this thesis, instead of learning object, I will use the term educational
resource, with the following characteristics:

Educational Resource An educational resource is an atomic, self-contained learning
object that is uniquely identifiable and addressable by an uri, i. e., an Uniform Resource
Identifier (Berners-Lee et al., 1998):

9

2. Relevant Technologies

• An educational resource must consist of the smallest possible (atomic) but still
understandable and complete learning material (self-contained). If any content
is removed from such an educational resource, then it can no longer be grasped
without referring to additional resources. An example is a self-contained paragraph
in a textbook. A complete course, although it might be self-contained, is not atomic,
and hence does not classify as an educational resources as defined in this thesis.

• Moreover, an educational resource is accessible through the Web (addressable),
identified using an uri.

Course generation is a service that (re-)uses existing educational resources and ar-
ranges them adapted to a learner’s individual context in order to create new learning
opportunities. For a flexible and personalized reuse, these resources must consist of small
entities, which can be presented in a Web-based learning environment (and thus must be
identifiable and addressable).

I will distinguish between non-aggregated learning objects (educational resources and
learning-support services) and learning objects that aggregate the basic learning objects
(pages, sections, courses).

Learning-Support Service A learning-support tool is any application that supports the
learner during her learning process1 in a targeted way and can be integrated into the
learning process automatically. A related concept is “cognitive tool”. According to
Mayes (1992), “[a] cognitive tool can be regarded as an instructional technique in so
far as it involves a task, the explicit purpose of which is to lead to active and durable
learning of the information manipulated or organized in some way by the task”. Work
on cognitive tools often stresses that a specific cognitive process has to be supported
(van Joolingen, 1999). In the scope of this thesis, this requirement is too restrictive, as
tools that support learning without targeting a specific cognitive process would then be
excluded. Another difference to cognitive tools is the requirement that a learning-support
tool needs to be available in a way that allows its automatic integration into a course.
More specifically, it must be reachable by following a link, and, optionally, configurable
via parameters. Later in this thesis, I describe how the course generator itself can be
used as a learning-support tool (Section 4.8) and how a template-based text generation
can be used to extend courses with dynamically generated texts in order to support
meta-cognitive learning (Section 4.9).

Page A page is an ordered list of references to educational resources and learning-
support services.

Section A section consists of an ordered list of pages and/or sections.

Course A course is a section that is an “instructionally complete” sequence of educa-
tional resources, i. e., it contains all resources required for a learner to reach a high-level
learning goal, say “rehearse the difference quotient”.

1Here, learning process is used in the sense of the series of interactions or steps that take place during
learning, and not in the sense of a cognitive activity taking place in the learner’s mind.

10

2.2. Semantic Web Technologies

A page

A course

A section

Figure 2.1.: An example of a course presented in LeActiveMath

Figure 2.1 illustrates these concepts using a course presented in the learning environ-
ment LeActiveMath.

2.2. Semantic Web Technologies

The vision of the Semantic Web as drawn by Berners-Lee et al. (2001) describes an
extension of today’s human-readable Web into a Web that represents information in a
way that is meaningful for machines, too. Such a Web would be crawled by agents
the same way Google and Co. do today, yet working on semantics, rather than on
syntax. As a result, services that today still require human intervention could cooperate
automatically, thus resulting in a new quality of services.

The Semantic Web is a major focus of the World Wide Web Consortium (W3C), a
consortium that designs and defines most of today’s Web standards (called “recommen-
dations” in W3C jargon), such as html, xhtml, etc.2 About half a decade after the
initial paper by Berners-Lee et al., the basic technologies of the Semantic Web have been
developed and standardized. Some of these technologies are relevant for this thesis and
they will be described below.

The “Semantic Web Layer Cake” illustrated in Figure 2.2 provides an overview of the
layered structure of the Semantic Web (van Harmelen and McGuinness, 2004, diagram
taken from Wikipedia). I will use it in the following to guide the description of the stan-
dards associated to the layers. Each layer builds on the lower layer. The first three layers
provide a common syntax (see the next section). The next two layers add the semantics
to the Web (see Section 2.2.2 and 2.2.3). The top layers allow inferring new knowledge
from the explicitly provided information and to check the validity of the statements made
in the Semantic Web. These are not directly relevant for Paigos.

2http://www.w3.org (W3C, 2007).

11

http://www.w3.org

2. Relevant Technologies

Figure 2.2.: The Semantic Web Layer Cake

2.2.1. Extensible Markup Language

The very basic layers of the Semantic Web provide a standard way to exchange symbols
(unicode) and refer to resources (uniform resource identifier, uri, based on ascii and
internationalized resource identifier, iri, based on unicode).

The “Extensible Markup Language” (xml) is a general-purpose markup language based
on uri/iri and unicode, which provides a syntax for structured documents (Sperberg-
McQueen et al., 2006). Basically, it fixes a notation for describing labeled trees (Studer
et al., 2003). However, it imposes no semantic constraints on the meaning of these
documents. Systems that use xml-based languages to exchange data have to agree on a
common structure, provided either by Document Type Definitions (dtd) or xml-Schemas
(Walmsley and Fallside, 2004).

2.2.2. Resource Description Framework

The “Resource Description Framework” (rdf) is a first step towards semantics on the
Web (Manola and Miller, 2004). rdf allows making statements about resources using
subject-predicate-object expressions called triples. The subject denotes the resource the
statement is about and the predicate describes the relationship that holds between the
subject and the object.

Example 2.1. The statement “http://www.example.org/index.html” was created on
August, 16, 1999” could be represented by an rdf statement with
the subject http://www.example.org/index.html,
the predicate http://www.example.org/terms/creation-date,
and the object “August 16, 1999” (example taken from Manola and Miller, 2004).

rdf can be expressed in a number of ways. The following is an example using the
xml-syntax of rdf. The first line contains the xml declaration. It indicates that the
content is provided in xml, version 1.0. The subsequent line begins an rdf element
and introduces the namespaces rdf and exterms (line three). A namespace provides a
context of the resources it contains and allows to distinguish between resources which
share the same name. Lines four to six specify the relation described in Example 2.1:

12

2.2. Semantic Web Technologies

http://www.example.org/index.html was created on August, 16, 1999. The final line
closes the rdf element.

Example 2.2. Expressing Example 2.1 using the xml-syntax of rdf:

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:exterms="http://www.example.org/terms/">
4 <rdf:Description rdf:about="http://www.example.org/index.html">
5 <exterms:creation-date>August 16, 1999</exterms:creation-date>
6 </rdf:Description>
7 </rdf:RDF>

rdf allows making statements about resources. However, it provides no means to
define the vocabularies used in the statements. That is where rdf schema comes into
play. rdf schema allows defining classes and properties, and how these are used together
(Manola and Miller, 2004). Basically, rdf schema provides a type system for rdf.

The following rdf schema statement defines a class named InstructionalObject.
rdf:ID (line six) is called fragment identifier and specifies that its value is to be inter-
preted relative to the base uri given in line five. Therefore, the rdf:Description ele-
ment specifies that the resource located at http://www.activemath.org/resources/#-
InstructionalObject is of type http://www.w3.org/2000/01/rdf-schema#Class.

Example 2.3.
1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
5 xml:base="http://www.activemath.org/resources">
6 <rdf:Description rdf:ID="InstructionalObject">
7 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
8 </rdf:Description>
9 </rdf:RDF>

In addition to providing a vocabulary for defining classes, rdf schema allows describing
properties of a class. The following rdf schema statement states that an instructional
object has a learning context.

Example 2.4.
<rdf:Property rdf:ID="hasLearningContext">
<rdfs:domain rdf:resource="#InstructionalObject"/>
<rdfs:range rdf:resource="#LearningContext"/>

</rdf:Property>

While rdf schema provides some basic capabilities for describing rdf vocabularies,
more advanced capabilities can also be useful. These are provided by ontology languages.

2.2.3. OWL Web Ontology Language

Ontology Gruber (1993) defines an ontology as “explicit formal specifications of the
terms in the domain and relations among them”. According to Noy and McGuinness

13

2. Relevant Technologies

(2001), the principal advantages of making information explicit in ontologies include a
shared common understanding of the domain among systems and to enable re-use of
domain knowledge.

The “OWL Web Ontology Language” (owl) provides a full-grown vocabulary for defin-
ing ontologies, i. e., describing classes, properties, relations between classes (e.g. disjoint-
ness), cardinality (e. g., “exactly one”), equality, richer typing of properties, characteris-
tics of properties, and enumerated classes (van Harmelen and McGuinness, 2004).

owl provides the three sublanguages owl Lite, owl DL, and owl Full, which offer on
the one hand increasing expressiveness, yet on the other hand increasing computational
complexity:

• owl Lite provides the means to define classification hierarchies, together with sim-
ple cardinality constraints.

• owl DL offers maximum expressiveness while retaining computational complete-
ness and decidability. The “DL” illustrates the correspondence to the field of De-
scription Logics.

• owl Full provides the full, unconstrained expressiveness of the owl vocabulary,
yet without any computational guarantees.

We will encounter owl again in Chapter 4.1, where it is used to describe an ontology
of types of instructional objects.

2.3. E-learning Standards

The authoring of educational resources is one major cost factor of e-learning (Schulmeis-
ter, 2002). One approach to reduce the associated costs is to enable reuse, or, more
specifically, interoperability of educational resources.

Reuse Reuse can be defined as “[u]sing a digital learning resource in a way or in a
context other than that for which it was originally designed” (Reusable Learning, 2007).
For instance, an author might be able to take an existing example for his course instead of
having to develop his own. The definition does not impose any constraints on the effort
required for reuse. The author might simply drag&drop the resource (a very efficient
form of reuse) or he might be required to manually copy the content. The required effort
is taken into account in the concept of interoperability.

Interoperability Interoperability is “[t]he extent to which a digital learning resource will
plug and play on different platforms” (Reusable Learning, 2007). Interoperability implies
a degree of automatization. Ideally, a resource developed in one context can be directly
used in a different context. In reality, however, resources often require some adaptations.

Reuse and interoperability of resources require the involved parties to be able to inter-
pret each others materials. While in principle, rdf, rdf schema, and owl can be used
for describing resources semantically, today, xml is still the most widely spread means to
define the syntax and structure of resources. The vocabulary of what is being described
is often described in standards:

14

2.3. E-learning Standards

Standard A standard is “[a] specification that is recognized as the accepted way to
achieve a technical goal either because it is widely adopted or because it has been ac-
credited by a formal standards body” (Reusable Learning, 2007).

In field of e-learning, the ieee Learning Technology Standards Committee (ieee ltsc)3

is the best known formal standard body. It is chartered by the ieee Computer Society
Standards Activity Board to develop accredited technical standards, recommended prac-
tices, and guides for learning technology (Duval, 2001).

In addition to the standardization bodies, several consortia carry out the technical
work of designing the standards. Once a standard has been designed and agreed upon,
they are submitted to the standard bodies. Consortia with a direct impact on educational
technologies include the following.

• The “Advanced Distributed Learning Initiative” (adl) was formed as a developer
and implementer of learning technologies across the US Department of Defense.4

adl is best know for the Shareable Content Object Reference Model (Scorm,
Dodds and Thropp, 2004), which aims to foster an overall specification for interop-
erability of learning objects among learning environments.

• The goal of the European Ariadne Foundation is to create tools and method-
ologies for producing, managing and reusing educational resources.5 In contrast
to adl’s military motivated aims, Ariadne emphasizes on societal objectives:
“[f]oster cooperation between educational bodies Keep social and citizen-
ship aspects domination Education Uphold and protect multilinguality
Define by international consensus what aspects of ICT [information and communi-
cation technology]-based formation should be standardized and what should be left
local” (Ariadne, 2004).

• The ims Global Learning Consortium (ims/glc) encompasses vendors of learning
management systems, authoring tools, and related products.6 ims/glc’s specifica-
tion activities cover a wide spectrum of e-learning relevant aspects and are generally
adhered to by all major commercial players. The subsequent sections will describe
the ims/glc specifications relevant for this thesis in more detail.

For a detailed description on standardization bodies and consortia, please refer to Duval
(2001).

2.3.1. Learning Object Metadata

Metadata ieee ltsc (2002) defines metadata as “information about an object, be it
physical or digital”. Metadata thus provides descriptive information about an object in
an explicit manner.

3http://ieeetlsc.org (ieee Learning Technology Standards Committee, 2005).
4http://www.adlnet.gov (McCollum, 2005).
5http://www.ariadne-eu.org (Ariadne, 2004).
6http://www.imsglobal.org (IMS Global Learning Consortium, 2007).

15

http://ieeetlsc.org
http://www.adlnet.gov
http://www.ariadne-eu.org
http://www.imsglobal.org

2. Relevant Technologies

The ieee ltsc Learning Object Metadata standard (lom) provides a defined “struc-
ture for interoperable descriptions of learning objects” (ieee Learning Technology Stan-
dards Committee, 2002). lom is based on early work by Ariadne and ims/glc and has
been approved as a standard by ieee ltsc.

lom provides a vocabulary to describe educational resources, which is divided in nine
categories (list taken from ieee Learning Technology Standards Committee, 2002):

1. The “General” category groups the general information that describes the learning
object as a whole.

2. The “Lifecycle” category groups the features related to the history and current
state of this learning object and those who have affected this learning object during
its evolution.

3. The “Meta-Metadata” category groups information about the metadata instance
itself (rather than the learning object that the metadata instance describes).

4. The “Technical” category groups the technical requirements and technical charac-
teristics of the learning object.

5. The “Educational” category groups the educational and pedagogic characteristics
of the learning object.

6. The “Rights” category groups the intellectual property rights and conditions of use
for the learning object.

7. The “Relation” category groups features that define the relationship between the
learning object and other related learning objects.

8. The “Annotation” category provides comments on the educational use of the learn-
ing object and provides information on when and by whom the comments were
created.

9. The “Classification” category describes this learning object in relation to a partic-
ular classification system.

Although the standard only specifies an xml-binding, a rdf specification of lom was
proposed by Nilsson et al. (2003).

lom strives for general applicability, and hence is the least common denominator of a
large number of interested parties. As a result, some of its vocabulary can be criticized
as being insufficiently precise for specific purposes. In Section 4.1, I will describe an
instructionally motivated replacement of the learning resource type as defined in lom’s
educational category.

2.3.2. IMS Content Packaging

lom describes single resources, but it does not provide means for exchanging structured
sets of educational resources. That is where ims Content Packaging (ims cp) comes into

16

2.3. E-learning Standards

Figure 2.3.: An overview on the structure of an ims Content Package (picture from (ims
Global Learning Consortium, 2003a)

play (ims Global Learning Consortium, 2003a). It provides a standardized way of col-
lecting and packaging educational resources to enable efficient aggregation, distribution,
and deployment.

Figure 2.3 illustrates the structure of an ims Content Package. The complete content
package is exchanged as a Package Interchange File, a zip-compressed package. The pack-
age contains the educational resources (physical files) as well as structuring information,
provided in the manifest. A manifest can contain sub-manifests. Each manifest contains
a metadata section that provides information about the manifest, an organization section
that describes the static organization of the content, a resource section the contains ref-
erences to all of the resources and media elements needed for a manifest (including those
from external packages), and optionally one or more logically nested manifests.

In theory, two systems that implement the ims cp standard are able to exchange sets
of resources by loading each others content packages. In practice, however, the formats
of the resources play an important role: a Web-based system will have problems when
integrating resources encoded in say Power Point format.

2.3.3. IMS Simple Sequencing

An ims cp specifies the structure of a collection of educational resources. ims simple
sequencing (ims ss) takes this approach one step further by allowing an author to specify
sequences how a learner can traverse the resources (ims Global Learning Consortium,
2003c). Basically, an ims ss structure consists of an ims cp together with navigation
paths.

Central to ims ss is the notion of an activity. Each resource contained in an ims cp
can be associated with an activity. Each activity can be associated with sequencing
information, sequencing rules and learning objectives.

Sequencing information covers the control mode of the interaction, e. g., whether the
student can navigate freely or is guided through the content. Sequencing rules specify

17

2. Relevant Technologies

how to react depending on the learner’s action, for instance, which activity to present
next, or whether to display the current activity.

Learning objectives are specified very abstractly. They are objects, with an unique
identifier, a satisfaction status (e. g., passed, failed) and an satisfaction measure (the
degree to which the objective was achieved). The satisfaction status changes depending
on the results of the student interactions. For instance, it is possible to specify that an
objective is fulfilled if the student has a higher achievement in the current activity than
0.8.

As its name indicates, ims ss provides a rather limited and simple approach to se-
quencing. It restricts itself to a single user in the role of a learner and does not address
several simultaneous users and different roles. Furthermore, the ways of controlling the
sequencing and navigation are limited.

Although the specification claims to be “pedagogical neutral”, the very strict control of
the learner navigation, based only on the performance, bears similarities to the restricted
mode of interactions inherent in behavioral learning theories (see Section 3.1).

2.3.4. IMS Learning Design

Ims Learning Design (ims ld) provides a pedagogical meta-model (ims Global Learning
Consortium, 2003b). It allows describing how people perform activities using educational
resources and how the activities are coordinated in a learning process.

ims ld was originally developed at the Open University of the Netherlands, and is
still widely known under its previous name “Educational Modelling Language” (Koper,
2000).

Key concepts in ims ld including roles and activities of people. The overall design (the
play) specifies how collections of activities performed by the involved people interact.

Due to its generality, ims ld is a quite complex standard. It is hard to implement and
is not yet completely supported by existing systems (Jeffery and Currier, 2003).

ims cp, ims ss and ims ld are relevant for this thesis because they define potential
output formats of the course generated by Paigos. Using a standardized format increases
the range of potential clients of the course generator service. In Chapter 6, I will discuss
the three different standards and their applicability with respect to course generation,
and motivate why I chose ims cp as output format.

2.4. Course Generation

This section introduces the basics of course generation and the standard components a
course generator typically consists of. Based on Brusilovsky and Vassileva (2003), I will
distinguish between course(ware) generation and course(ware) sequencing.

Course Generation Course generation uses pedagogical knowledge to generate a struc-
tured sequence of learning objects that is adapted to the learners’ competencies, individ-
ual variables, and learning goals. This generation happens upon request of a client (a
learner or a software system). Ideally, the sequence is not a flat list of learning objects
but is structured in sections and subsections. This structure can convey additional in-
formation relevant to the learning process. In course generation, the course is generated

18

2.4. Course Generation

completely before it is presented to the learner. This early generation has the advan-
tage that the course can be visualized to the learner, thereby informing her about the
structure. In addition, the student can navigate freely through the course.

Course Sequencing Course sequencing uses pedagogical knowledge to dynamically se-
lect the most appropriate resource at any moment, based on the current needs and goals
of the learner. Thus, the course is not generated beforehand but step-by-step. The ben-
efit of this approach is that it can react to the current context and thereby circumvent
problems that arise in course generation if assumptions about the learner change. How-
ever, this local approach, with its transitions from resource to resource makes it hard to
convey information about the structure of a course and the sequence from start to end
can not be presented to the learner.

Course generation has long been a research topic and is also called “curriculum se-
quencing” and “trail generation”. It has been reinvented several times, which leads to
a vast amount of terminology used in the literature for the same technical concept. To
avoid this confusion, I use the following sections to define the relevant basic concepts and
describe them in relation to a reference architecture.

Reference Model A reference model is an abstract representation of the entities and
relationships of some environment. It is used as an abstract template for the development
of more specific models of that environment. A reference model simplifies the comparison
between different systems implementing the model (OASIS, 2006).

A reference model for course generation systems has not yet been developed. However,
reference models exist for adaptive hypermedia system, which Brusilovsky (1996) defines
as follows:

Adaptive Hypermedia System “By adaptive hypermedia systems we mean all hyper-
text and hypermedia systems which reflect some features of the user in the user model
and apply this model to adapt various visible aspects of the system to the user. In other
words, the system should satisfy three criteria: it should be a hypertext or hypermedia
system, it should have a user model, and it should be able to adapt the hypermedia using
this model.”

According to this definition, a course generation system can be classified as an adaptive
hypermedia system. The visible aspects that are adapted are the sequences through the
educational resources.

Several reference architectures for adaptive hypermedia systems do exists. The first,
the Adaptive Hypermedia Application Model (aham), was proposed by De Bra et al.
(1999). It is based on the Dexter hypertext reference model (Halasz and Schwartz, 1994),
and extends it to encompass adaptive hypermedia techniques. Koch and Wirsing (2002)
describes an object-oriented reference model formalized the Unified Modeling Language
(uml) (Object Management Group, 2007). A logical characterization of adaptive hyper-
media systems is provided by Henze and Nejdl (2004). Their model allows formalizing
parts of the adaptive features using first-order logic. In the following, I mostly use the
terms as defined by the aham reference model, which is the most wide-spread archi-
tecture. The basic ingredients of an adaptive hypermedia system are concepts and the

19

2. Relevant Technologies

three-tier architecture, consisting of a domain model, a user model, and a teaching model.

Concept A concept is an abstract representation of an information item from the ap-
plication domain.

Domain Model The domain model contains the educational resources, and, depending
on the specific system, the domain concepts. Additional information associated to the
domain model includes metadata and the domain structure (often represented by a graph)
that models the relationships between resources. In case the domain model contains
resources as well as concepts, the connections between them are called anchors (De Bra
et al., 1999) or indices (Brusilovsky and Vassileva, 2003).

User Model The user model (also called learner model) manages information about
users. Based on observations of the user’s interactions, it stores, infers and updates
information about an individual user. Examples of user models are overlay models and
stereotype user modeling. In the former approach, first proposed by Carr and Goldstein
(1977), the user model contains the knowledge of a domain expert. The individual user’s
knowledge is represented as a subset of that knowledge. In stereotype user modeling,
proposed by Rich (1979), each learner belongs to a specific class whose characteristics he
inherits.

Teaching model The teaching model (or adaptation model) contains the knowledge
how to adapt the behavior of the system, e. g., how to present content from the domain
model taking into consideration the information provided by the user model. Often, this
knowledge is provided as a set of rules.

Vassileva (1997) distinguishes between two different functionalities provided by the
rules of the teaching model, content planning and presentation planning.

Content Planning Content planning reasons about the domain model and determines
the domain concepts the generated course will cover. Usually, this process makes use of
the domain structure.

Presentation Planning For each concept selected during content planning, presentation
planning determines the educational resources used to convey the information about the
concept to the learner.

This distinction was originally coined by Wasson (1990) (then called content planning
and delivery planning), yet at that time in the scope of one-to-one tutoring. Other
authors (e. g., Karampiperis and Sampson, 2005a) use the terms concept selection and
content selection for these processes. The distinction between content and delivery
planning is also made in other domains, e. g., natural language generation (Reiter and
Dale, 2000).

Course Planning The process of producing a course is called course planning. The
result of the planning is a course plan (plan in the AI-sense, see Section 2.5). From this
plan, a course can be constructed.

20

2.5. Hierarchical Task Network Planning

Instructional Tasks Following Van Marcke (1998), I define a task as an abstract activity
that can be accomplished during the learning process at various levels of granularity. In
principle, tasks are generic, i. e., they can be applied across domains, or at least within
a domain. The tasks developed in this thesis are applicable for well-structured domains.
They were mostly applied for learning mathematics, although one application target
workflow-embedded e-learning in enterprise and office environments (see the section about
evaluations for further details).

Instructional Methods An pedagogical method specifies means to accomplish a task.
It encodes domain expert knowledge how to proceed in order to perform the activity
represented in a task. Typically, a method decomposes a task into subtasks, i. e., it
breaks down an activity into smaller activities. Like tasks, most methods are generic, and
can be applied in a large number of circumstances. Methods normally carry application
conditions that specify the conditions under which a method can be applied. As an
example, a method could decompose the task “rehearse content” into the subtasks “show
content”, “illustrate content”, and “train content”.

The distinction between task and methods, i. e., between what to achieve and how to
achieve it clearly separates different kinds of knowledge (Steels, 1990).

2.5. Hierarchical Task Network Planning

In the following, I describe the planning algorithm used in Paigos. I start with a gen-
eral overview on Artificial Intelligence (AI) Planning that introduces basic of planning
vocabulary. Sections 2.5.2 to 2.5.4 provide the details on the Hierarchical Task Network
Planner shop2 and its Java version jshop2 employed in Paigos. These three sections
owe a lot to Yaman et al. (2005) and Ilghami (2005).

2.5.1. Introduction to AI-Planning

AI-Planning/AI-planning problem AI-planning provides an intelligent agent with the
means of generating a sequence of action that will achieve his goals (Russell and Norvig,
2003). Generally speaking, an AI-planning problem consists of:

• the initial state that represents the state of the world at the time the agent begins
to act;

• the goal the agent wants to achieve; and

• the possible operations that the agent can perform.

Planner/Actions The algorithm that is applied to a planning problem in order to solve it
is called planner. The result of the planning process, the plan, is a sequence of instantiated
operators, which are called actions. The execution of the actions starting in any world
that satisfies that initial state will achieve the goal.

21

2. Relevant Technologies

Planning Language The language that is used to describe the planning problem influ-
ences the kind of problems that can be solved by the planner. A language should be
expressive enough to represent a variety of problems, while at the same time restrictive
enough to allow efficient planning.

A classic planning language is strips (Fikes and Nilsson, 1971). In strips, a state
is represented by a conjunction of positive ground literals. The goal state is partially
specified. A goal g is fulfilled in a state s if s contains all literals of g. Operators consist
of a precondition and an effect. A precondition is a conjunction of positive literals; an
effect is a conjunction of literals. An action is an instantiated operator. It can be applied
if the precondition is true in the state before the action is executed. The state changes
that occur due to the application are represented in the effect: positive literals are asserted
to be true, negative literals are asserted to be false.

In recent years, it has been shown that strips is insufficiently expressive for real-world
problems (Russell and Norvig, 2003) and many language variants have been developed to
overcome its limitations. The “Planning Domain Definition Language” (pddl) provides
a syntax that attempts to standardize planning languages (McDermott, 1998; Fox and
Long, 2003). It is mainly used to benchmark and compare different planning approaches,
e. g., at the AI Planning Systems Competition (McDermott, 2000).

Planning Algorithm Different planning algorithms exist. The standard approaches are
forward state-space search and backward state-space search. Forward state-based plan-
ning (or progression planning) starts in the initial state and applies actions until the goal
state is reached. Because naive forward planning does consider all actions applicable in
each state, the search space quickly becomes too large to handle. In contrast, backward
state-based planning (also called regression planning) only considers those actions that
contribute in achieving unsatisfied literals, i. e., conditions that should be true, but are
not. One of those available operators is selected that has a literal on the effect list that
matches an unsatisfied literal. The variables of the operator are instantiated, and the
new goal state is calculated by deleting all positive effects of the operator and adding all
preconditions of the operator (unless they already appear in the goal state).

These basic algorithms are insufficient for real-world problems. As a consequence, a
number of different algorithms have been developed (see Russell and Norvig 2003 for a
description). In the following, I will describe an approach that makes use of the hierar-
chical problem solving knowledge often available in a domain to guide the search through
to search space.

2.5.2. Introduction to Hierarchical Task Network Planning

In Hierarchical Task Network planning (HTN planning), the goal of the planner is to
achieve a partially or fully ordered list of activities. In HTN terminology, these activities
are called tasks. For now, these tasks share only the name with instructional tasks
as defined in Section 2.4; conceptually they are different. Only later in this thesis, in
Section 4.4, I will show how instructional tasks can be mapped onto HTN tasks. In the
following sections, whenever I use the term “task”, it means “HTN task”.

An HTN planner solves a list of tasks (task network) by decomposing these top tasks
into smaller and smaller subtasks until primitive tasks are reached that can be carried

22

2.5. Hierarchical Task Network Planning

out directly. Sacerdoti (1975) and Tate (1977) developed the basic idea in the mid-70s.
The development of the formal underpinnings came much later, in the mid-90s by Erol
et al. (1996). HTN planning research has been much more application-oriented than most
other AI-planning research, and most HTN planning systems have been used in one or
more application domains (Wilkins, 1990; Currie and Tate, 1991; Nau et al., 2004).

HTN planning is a very efficient planning technique, as illustrated by the HTN planner
shop2 that received one of the top four awards in the 2002 International Planning Compe-
tition. HTN planning is efficient because the task decomposition encodes domain-specific
control knowledge that prunes the search space effectively. The goal is represented by a
task network, and instead of considering all operators applicable in the current state, the
planner only considers those that occur in the decomposed goal task (Nau et al., 1998).

2.5.3. SHOP2 and JSHOP2

The planners shop (Simple Hierarchical Ordered Planner, Nau et al., 1999), shop2
(Nau et al., 2001), and jshop2 (Ilghami and Nau, 2003) were developed at the Auto-
mated Planning Group, University of Maryland. Unlike most other HTN planners, they
decompose tasks into subtasks in the order in which the tasks will be achieved in the re-
sulting plan. This search-control strategy is called ordered task decomposition. As a result
of this strategy, the current state is known in each step of the planning process. This al-
lows incorporating sophisticated reasoning capabilities into the planning algorithm, such
as calling external functions, which can access predefined code in order to perform com-
plex calculations or access external information sources. Nau et al. (2001) show that the
planning procedure of shop2 (and jshop2) is Turing-complete, and sound and complete
over a large class of planning problems.

jshop2 is the Java version of shop2. It is a compiler that takes a HTN domain de-
scription as input and compiles it into a set of domain-specific Java classes that can
later be used to solve planning problems in that domain. These classes implement a
domain-specific instance of a domain-independent planner. The fact that jshop2 is a
compiler rather than an interpreter helps optimizing the domain-dependent code it pro-
duces. Ilghami and Nau (2003) provide evaluation results that show that the compilation
technique can increase planning efficiency significantly.

2.5.4. JSHOP2 Formalism

In this section, I provide a detailed description of jshop2. I will restrict myself to the
features actually used by Paigos. The jshop2 manual (Ilghami, 2005) describes the
complete set of features; and this section owes a lot to that manual.

The inputs to jshop2 are a planning domain and a planning problem. Planning do-
mains are composed of operators, methods, axioms, and external functions:

• planning operators describe various kinds of actions that the plan executor can
perform directly. These are similar to classical planning operators such as the ones
in pddl, with preconditions, add and delete lists. Each operator instance can carry
out a primitive task associated with it. These operator instances change the world
state upon their execution according to their add and delete lists.

23

2. Relevant Technologies

• Methods describe various possible ways of decomposing compound tasks into even-
tually primitive subtasks. These are the “standard operating procedures” that one
would normally use to perform tasks in the domain. Each method may have a set
of preconditions that must be satisfied in order to be applicable.

• Axioms are Horn-clause-like statements for inferring conditions that are not men-
tioned explicitly in world states.

• External functions are code calls to external agents that the planner can make while
evaluating a condition or calculating a binding during planning. As we will see in
Chapter 4, they are used extensively in Paigos.

Planning problems are composed of an initial state that consists of logical atoms, and
tasks lists (high-level actions to perform). The components of a planning domain (op-
erators, methods, and axioms) all involve logical expressions, which are logical atoms
connected through operators described below. Logical atoms involve a predicate symbol
plus a list of terms. Task lists in planning problems are composed of task atoms. The
elements of domains and problems are defined by various symbols.

Planning happens by applying methods to compound tasks that decompose them into
subtasks until a level of primitive tasks is reached, and by applying operators to primitive
tasks to produce actions. If this is done in such a way that all of the constraints are
satisfied, then the planner has found a solution plan; otherwise the planner will need to
backtrack and try other methods and actions.

This section describes each of the above structures. Following Ilghami (2005), the de-
scription is organized in a bottom-up manner because the specification of higher-level
structures is dependent on the specification of lower-level structures. For example, meth-
ods are defined after logical expressions because methods contain logical expressions.

2.5.4.1. Symbol

The vocabulary of the language for the jshop2 planner is a tuple 〈V,C, P, F, T,N, M〉,
where V is an infinite set of variable symbols, C is an finite set of constant symbols, P is
a finite set of predicate symbols, F is a finite set of function symbols, T is a finite set of
compound task symbols, N is a finite set of primitive task symbols, and M is an infinite
set of name symbols. All these sets are mutually distinct. To distinguish among these
symbols, I will use the following conventions:

• variable symbols begin with a question mark (such as ?x);

• primitive task symbols begin with an exclamation point (such as !unstack);

• constant symbols, predicate symbols, function symbols, and compound task sym-
bols begin with a letter;

• square brackets indicate optional parameters or keywords;

• expressions in italic denote any arbitrary term. They have no semantic meaning
in jshop2 but are used for convenience in examples.

Any of the structures defined in the remaining sections are said to be ground if they
contain no variable symbols.

24

2.5. Hierarchical Task Network Planning

2.5.4.2. Term

A term is any one of the following:

• a variable symbol;

• a constant symbol;

• a name symbol;

• a number;

• a list term;

• a call term.

List Term A list term is a term of the form

(t1 t2 ... tn [. l])

where each ti is a term. This specifies that t1, t2, . . . , and tn are the items of a list.
If the final, optional element is included, the item l should evaluate to a list; the “.”
indicates that all items in l are included in the list after t1 through tn

Call Term A call term is an expression of the form

(call f t1 t2 ... tn)

where f is a function symbol and each ti is a term. A call term tells jshop2 that f is
an attached procedure, i. e., that whenever jshop2 needs to evaluate a structure where
a call term appears, jshop2 should replace the call term with the result of applying the
external function f on the arguments t1, t2, . . . , and tn. In jshop2, any Java function
can be attached as a procedure, as long as it returns a term as a result.

Example 2.5. The following call term has the value 6: (call + (call + 1 2) 3).

2.5.4.3. Logical Atom

A logical atom has the form

(p t1 t2 ... tn)

where p is a predicate symbol and each ti is a term.

Example 2.6. Later in this thesis, I will describe the fact that a resource r was inserted
in course using the logical atom (inserted r).

2.5.4.4. Logical Expression

A logical expression is a logical atom or any of the following complex expressions: con-
junctions, disjunctions, negations, implications, assignments, or call expressions.

25

2. Relevant Technologies

Conjunction A conjunction has the form

([and] L1 L2 ... Ln)

where each Li is a logical expression.

Disjunction A disjunction has the form

(or L1 L2 ... Ln)

where each Li is a logical expression.

Negation A negation is an expression of the form

(not L)

where L is a logical expression.

Implication A implication has the form

(imply Y Z)

where each Y and Z are logical expressions, and Y has to be ground. An implication is
interpreted as (or not(Y) Z).

Assignment An assignment expression has the form

(assign v t)

where v is a variable symbol and t is a term. An assignment expression binds the value
of t to the variable symbol v.

Call Expression A call expression has the same form as a call term but is interpreted
as false if it evaluates to an empty list and as true otherwise.

2.5.4.5. Logical Precondition

A logical precondition is either a logical expression or a first satisfier precondition.

First Satisfier Precondition A first satisfier precondition has the form

(:first L)

where L is a logical expression. Such a precondition causes jshop2 to consider only the
first binding that satisfies L (similar to the cut operator in Prolog). Alternative binding
will not be considered, even if the first binding does not lead to a valid plan.

26

2.5. Hierarchical Task Network Planning

2.5.4.6. Axiom

An axiom in a expression of the form

(:- a [name1] L1 [name2] L2 ... [namen] Ln)

where the axiom’s head is the logical atom a, and its tail is the list [name1] L1 [name2]
L2 ... [namen] Ln, and each Li is a logical precondition and each namei is a symbol
called the name of Li. The names serve debugging purposes only, and have no semantic
meaning. The intended meaning of an axiom is that a is true if L1 is true, or if L1 is
false, but L2 is true, . . . , or if all of L1, L2, . . . , Ln-1 are false but Ln is true.

2.5.4.7. Task Atom

A task atom is an expression of the form

(s t1 t2 ... tn)

where s is a task symbol and the arguments t1 t2 . . . tn are terms. The task atom is
primitive if s is a primitive task symbol, and it is compound if s is a compound task
symbol.

Example 2.7. Lather in this thesis, I will use the primitive task (!insert r) to re-
present the goal that a resource r should be inserted into a course. The compound task
(rehearse r) represents that a course should be generated that supports the learner is
rehearsing r.

2.5.4.8. Task List

A task list is either a task atom or an expression of the form

([tasklist1 tasklist2 ... tasklistn])

where tasklist1 tasklist2 . . . tasklistn are task lists themselves. n can be zero,
resulting in an empty task list.

2.5.4.9. Operator

An operator has the form

(:operator h P D A)

where

• h (the operator’s head) is a primitive task atom;

• P (the operator’s precondition) is a logical expression;

• D (the operator’s delete list) is a list that consists of logical atoms;

• A (the operator’s add list) is a list that consists of logical atoms.

27

2. Relevant Technologies

A planning operator accomplishes a primitive task: the task symbol is the name of the
planning operator to use, and the task’s arguments are the parameters for the operator.
An action is defined as being an instantiated operator.

jshop2 allows defining internal operators. An internal operator is only used for sup-
porting purposes during the planning process (e. g., to perform calculations which might
become useful later during planning) and does not correspond to actions performed in the
plan. Internal operators are specially marked (they begin with two exclamation marks),
yet have they same syntax and semantics as other operators. Internal operators serve
the purpose that a client that uses plans generated by jshop2 can distinguish between
operators that are internal to the planning process and those that involve action.

jshop2 requires that an operator is designed such that each variable symbol in the add
list and delete list can always be bound to a single value when the operator is invoked.
Variable symbols can be bound in the head of the operator (by the method that invokes
the associated primitive task) or in the precondition of the operator.

2.5.4.10. Method

A method is a list of the form

(:method h [name1] L1 T1 [name2] L2 T2 ...[namen] Ln Tn)

where

• h (the method’s head) is a compound task atom;

• each Li (a precondition for the method) is a logical precondition;

• each Ti (a tail or the subtasks of the method) is a task list;

• each namei is the name for the succeeding pair Li Ti.

A method specifies that the task in the method’s head can be performed by performing
all of the tasks in one of the method’s tails, when that tail’s precondition is satisfied.
Note that the preconditions are considered in the given order, and a later precondition
is considered only if all of the earlier preconditions can not be satisfied. If there are
multiple methods for a given task available at some point in time, then the methods are
considered in the order given in the domain definition.

2.5.4.11. Planning Domain

A planning domain has the form

(defdomain domain-name (d1 d2 ...dn))

where domain-name is a symbol and each item di is either an operator, a method, or an
axiom.

28

2.5. Hierarchical Task Network Planning

1 (:operator (!board ?person ?plane) ;; the primitive HTN task
2 (;; the precondition
3 (at ?person ?place)
4 (at ?plane ?place)
5)
6 (;; the delete list
7 (at ?person ?place)
8)
9 (;; the add list

10 (in ?person ?plane)
11)
12)

Figure 2.4.: An HTN operator

2.5.4.12. Planning Problem

A planning problem has the form

(defproblem problem-name domain-name ([a1,1 a1,2 ... a1,n]) T1 ...
([am,1 am,2 ... am,o]) Tm)

where problem-name and domain-name are symbols, each ai,j is a ground logical atom,
and each Ti is a task list. This form defines m planning problems in domain domain-name
each of which may be solved by addressing the tasks in Ti with the initial state defined
by the atoms ai,1 through ai,j.

2.5.4.13. Plan

While the above sections described the input to jshop2, this section describes the output
that jshop2 produces. A plan is a list of the form

(h1 h2 ... hn)

where each hi is the head of a ground operator instance oi (an action). If p = (h1 h2
... hn) is a plan, oi the operator associated with hi, and S is a state, then p(S) is the
state produced by starting with S and executing o1, o2, . . . on in the given order.

2.5.4.14. Example of an Operator and a Method

Figure 2.4 contains an example of an HTN operator in jshop2 syntax (this and the
following example are taken from Nau et al., 2003). It uses the conventions defined
above: the semicolon indicates the start of a comment, terms starting with a question
mark denotes variables, primitive HTN tasks are marked with an exclamation mark, and
a double exclamation mark denotes a task only relevant for internal purposes.

The operator in the example is applicable given a) that the primitive task (!board
?person ?plane) can be matched against a not yet achieved primitive task (i. e., that
there is a person that should board a plane) and b) that the instantiated preconditions

29

2. Relevant Technologies

(:method (transport-person ?person ?destination) ;; the HTN task
;; the first preconditions
(
(at ?person ?current-position)
(same ?current-position ?destination)
)
;; the corresponding subtask
()
;; the next preconditions
(
(at ?person ?current-position)
(plane ?p)
)
;; the corresponding subtask
((transport-with-plane ?person ?p ?destination)))

Figure 2.5.: An HTN method

in lines 3–4 hold (i. e., atoms exists in the world state that can be matched with the pre-
conditions whose variables are replaced by the value they were bound to in the operator’s
task). In case an operator is applied all atoms contained in the delete list are removed
and all atoms contained in the add list are added to the world state respectively. In the
example, the person would no longer be at the original place but in the plane.

Figure 2.5 contains an example of a HTN method. The method is applicable in case an
open HTN task exists that matches with (transport-person ?person ?destination)
and any of the precondition lists holds. The preconditions are tried in the given order.
If one matches, the method’s head is replaced by the corresponding subtasks.

30

3. Descriptive and Prescriptive Learning
Theories

Learning theories describe how people learn, often by reference to a particular model of
human cognition or development. Depending on the learning theory, different require-
ments arise regarding the learning process, e. g., how to structure it, what questions to
ask the learner, etc.

Learning theories can be divided into descriptive and prescriptive theories (Schulmeis-
ter, 2002, page 137). Descriptive learning theories make statements about how learning
occurs and devise models that can be used to explain and predict learning results. When
describing different descriptive theories of learning below, I will follow the common cat-
egorization that distinguishes between behaviorist, cognitive, and constructivist learning
theories (Reinmann-Rothmeier and Mandl, 2001; Schulmeister, 2002).

Prescriptive learning theories are concerned with guidelines that describe what to do
in order to achieve specific outcomes. They are often based on descriptive theories;
sometimes they are derived from experience. Instructional design is the umbrella which
assembles prescriptive theories. I will describe instructional design in Section 3.4.

3.1. Behaviorism

Behaviorism explains human behavior based on observable stimulus-response associa-
tions, without referring to mental processes. Behavioristic theories were developed in the
beginning of the 19th century as a reaction to the then predominantly used psychological
methods of introspection and subjectivity, which behavioral theorists such as John B.
Watson qualified as non-scientific (Watson, 1913).

Learning is viewed as the forging of the desired condition-action pairs. Positive re-
actions have to be reinforced, undesired ones avoided. Behaviorists such as Burrhus F.
Skinner applied their research results to technology-supported learning. Skinner (1968)
provided principles for programmed instruction, which is characterized by leading the
learner through the learning material in gradual steps, providing immediate feedback,
and continuous positive reinforcement.

In the sixties, the US government, especially the Department of Defense invested con-
siderable amounts of money in the development of programmed instruction, with the
hope of reducing the costs for civil and military training.1 One prominent system devel-
oped at that time was Plato whose trademark is still used today.2 Yet, evaluation results

1The ratio between military and civilian investment in education is astonishing: “within government
agencies, the military spends seven dollars for every civilian dollar spent on educational technology
research. Each year, for example, the military spends as much on educational technology research and
development as the Department . . . of Education has spent in a quarter century” (Noble, 1991).

2http://www.plato.com (PLATO Learning, Inc, 2007).

31

http://www.plato.com

3. Descriptive and Prescriptive Learning Theories

of programmed instruction were mixed, and the authoring costs were extremely high, so
that educational systems based on pure behavioristic principles became rare.

3.2. Cognitivism

Cognitive psychology makes mental processes the primary object of study. Experiments
involving mental operations are designed such that they allow conclusions on the cognitive
structures used in the mind during problem solving. These experiments are reproducible,
in contrast to the former introspective and subjective experiments.

Learning is viewed as transferring the cognitive structures in long-term memory and
being able to use them, when necessary. Learning takes place through organizing, storing
and linking the new structures to old knowledge.

Based on cognitive theories, one can devise principles for instruction. In the 1960ties,
Gagné (1965) published his principles of instruction, an effort to collect the existing
theories and to put them into a common framework. He distinguishes nine cognitive
processes and assigns specific instructional events to the objectives, e. g., the process
“retrieval”, with the instructional event “stimulating recall of prior learning”.

In technology-supported learning, the research in cognitive psychology led to the new
field of Intelligent Tutoring Systems (ITS). ITS were designed to support the learner
during problem solving in his creation of the appropriate cognitive structures. One of
the most prominent ITS, the Pact-tutors were originally based on Anderson’s ACT-*
theory (Anderson, 1983; Anderson et al., 1987, 1995).

3.3. Constructivism

Constructivism is based on the premise that knowledge can not be transmitted but has to
be constructed by the individual. Therefore, learning is an active process of integrating
information with pre-existing knowledge.

Cognitively oriented constructivist theories such as discovery learning (e. g., Bruner
1967) and microworlds (Papert, 1980) emphasize exploration and discovery. Socially
oriented constructivist theories, such as social constructivism (Vygotsky, 1978) and cog-
nitive apprenticeships (Brown et al., 1989) stress the collaborative efforts of groups of
learners as sources of learning.

In constructivism, the control over the learning process shifts from the teacher to stu-
dent. The learner plays the active role in the learning process. He is regarded to be an
information-processing individual; the external stimulus is processed actively and inde-
pendently. The kind and quality of the processing varies between the learners, depending
on the account of different experiences, previous knowledge and levels of development of
the learners. Learning takes place in context and in collaboration and provides opportu-
nities to solve realistic and meaningful problems. In contrast, the teachers focus mainly
on preparatory activities and provide support in case assistance is needed. Consequently,
the teacher is an initiator of and an adviser in the learning process.

Papert’s Turtle microworld in logo (Papert, 1980) is one of the best known examples
of technology-supported learning based on constructivist principles.

32

3.4. Instructional Design

The last years have seen an increasing research in and appliance of constructivist ap-
proaches. Pure constructivist approaches, however, are not unchallenged. Authors such
as Mantyka (2007) point out that it is not possible to completely abandon instructions
and drill from lessons. Hence, the moderate constructivist theory has developed as a prag-
matic approach which integrates instructions into a theory that has a clear constructivist
tendency.

3.4. Instructional Design

According to Reigeluth (1999), instructional design describes how to design teaching
materials that are effective (how well is learned), efficient (ratio of effectivity and the
time required for learning), and appealing to the learner. Instructional design being a
prescriptive learning theory is orthogonal to descriptive theories. The work by Gagné
(1965) counts as one of the first examples of instructional design.

Usage of instructional design is wide-spread. However, it is not unquestioned. Some
authors (Wilson and Cole, 1991; Reigeluth, 1999; Merrill, 2002) claim that instructional
design can encompass cognitive and even constructivist elements. Others, e. g., Schul-
meister, classify instructional design as behavioristic. Schulmeister (2002, pages 142–166)
documents an intensive debate in the journal “Educational Technology” between support-
ers of instructional design and constructivism. He provides the following quote by Jones,
Li, and Merrill (1990), which convincingly illustrates the principal differences between
the traditional instructional design and the constructivist approach:

Instruction, in large measure, communicates accepted meaning. The devel-
oper of instruction explicitly desires that the learner adopt the meaning in-
tended by the developer, and not reach a separate and personal interpretation
of that meaning. . . . [M]ost instruction . . . concerns transferring, as effectively
and efficiently as possible, determined interpretations

No matter what, the debate between the protagonists of instructional design and con-
structivist is not subject of this thesis. However, what this debate illustrates is that
different views exist on the “best” way of teaching. Therefore, Paigos was designed to
be educational neutral, that is, independent of any learning theory. In Chapter 5, I will
describe course generation based on moderate constructivist as well as on instructional
design principles.

Throughout this thesis, I use the term “instruction” in a manner that reflects this
educational neutrality. Following the Random House Unabridged Dictionary, in this
thesis, instruction denotes “the act or practice of instructing or teaching”.

3.5. Competency-Based Learning

3.5.1. Mathematical Competencies

In the late nineties, the OECD (Organisation for Economic Co-operation and Devel-
opment) started the PISA studies (Programme for International Student Assessment),
which “aim to measure how far students approaching the end of compulsory education

33

3. Descriptive and Prescriptive Learning Theories

have acquired some of the knowledge and skills essential for full participation in the
knowledge society” (OECD, 2007).

From early on, PISA considered mathematics as one of the central subjects to be tested.
PISA is based on the notion of competency-based learning (OECD, 1999): learning math-
ematics should not only aim at solving a problem but also at thinking mathematically and
arguing about the correctness or incorrectness of the problem solving steps and involved
methods, to perform simple and complex computations, etc.

The competency approach is based on the literacy concept. The general assumption
is that different competencies together build up mathematical literacy. One can only
become mathematically literate by sufficiently high achievement over the complete set of
competencies.

The competency approach can be considered as a way to support the presentation of
concepts from different perspectives by giving varying tasks to the students. The tasks
differ in the required mathematical activities, the competencies.

Based on the PISA studies and related work by the (American) National Council
of Teachers of Mathematics, the European FP6 project LeActiveMath investigated
employing mathematical competencies for technology-supported learning.

The competencies in LeActiveMath describe high level learning objectives and can
be characterized as following (see also Niss, 2002 and Klieme et al., 2004):

Think mathematically includes the ability to

• pose questions that are characteristic for mathematics (“Are there . . . ?”, “How
does . . . change?”, “Are there exceptions?”)

• understand and handle the scope and limitations of a given concept

• make assumptions (e.g. extend the scope by changing conditions, generalize
or specify, with reasons)

• distinguish between different kinds of mathematical statements (e.g. condi-
tional assertions, propositional logic)

Argue mathematically includes the ability to

• develop and assess chains of arguments (explanations, reasons, proofs)

• know what a mathematical proof is and what not

• describe solutions and give reasons for their correctness or incorrectness

• uncover the basic ideas in a given line of arguments

• understand reasoning and proof as fundamental aspects of mathematics

Solve problems mathematically includes the ability to

• identify, pose and specify problems

• self-constitute problems

• monitor and reflect on the process of problem solving

• endue strategies / heuristics

34

3.5. Competency-Based Learning

• solve different kinds of problems (with various contexts outside of mathematics,
open-ended exercises)

Model mathematically includes the ability to

• translate special areas and contents into mathematical terms

• work in the model

• interpret and verify the results in the situational context

• point out the difference between the situation and the model

Use mathematical representations includes the ability to

• understand and utilize (decode, interpret, distinguish between) different sorts
of representation (e.g., diagrams and tables) of mathematical objects, phe-
nomena, and situations

• find relations between different kinds of representation

• choose the appropriate representation for the special purpose

Deal with symbolic and formal elements of mathematics includes the ability to

• use parameters, terms, equations and functions to model and interpret

• translate from symbolic and formal language into natural language and the
other way round

• decode and interpret symbolic and formal mathematical language and under-
stand its relations to natural language

Communicate includes the ability to

• explain solutions

• use a special terminology,

• work in groups, including to explain at the adequate level

• understand and verify mathematical statements of others

Use tools and aids includes the ability to

• know about the existence of various tools and aids for mathematical activities,
and their range and limitations;

• to reflectively use such tools and aids

3.5.2. Competency Levels

Competency levels of exercises are intervals of difficulty labeling. They serve the purpose
to measure to what extent a specific competency has to be developed by the student in
order to solve the particular exercise with a certain probability. The competency levels
are characterized as follows (Klieme et al., 2004):

35

3. Descriptive and Prescriptive Learning Theories

Level I: Computation at an elementary level To achieve this level, students have to ap-
ply arithmetic knowledge (factual knowledge, schematic applicable procedures).
This level comprises knowledge learned by heart that is easy to recall and can be
applied directly in a standard situation without requiring conceptual modeling.

Level II: Simple conceptual solutions This competency level involves simple forms of
conceptual modeling, solutions that require only a limited amount of problem solv-
ing steps, and factual knowledge. In exercises on this level, either the task is to
select the correct solution from several alternatives or the student is provided with
structural aids and graphical hints to develop her own solution.

Level III: Challenging multi-step-solutions This competency level requires to perform
more extensive operations, and to solve a problem in several intermediate steps.
Additionally, it includes dealing with open-ended modeling tasks that can be solved
in various ways, but that require to find a solution of their own. High level modeling
on inner-mathematical connections can also be required.

Level IV: Complex processings (modelings, argumentations) Students, who solve ex-
ercises of this competency level successfully are able to work on open-ended tasks,
choose adequate models and construct models themselves where necessary. Con-
ceptual modeling at this highest level often includes mathematical justification and
proof as well as reflection on the modeling process itself.

36

Part II.

PAIGOS

37

4. General Principles

In this chapter, I will identify and describe general principles that apply to course gener-
ation as formalized in Paigos, independent of both the underlying learning theory and
the learning goals the course is generated for.

The chapter starts with metadata. In Section 4.1, I show that existing learning object
metadata standards fail to describe educational resources sufficiently precise for their
automatic integration into learning processes by intelligent components. I then describe
an ontology of instructional objects that contains specifically this previously missing in-
formation. The ontology facilitates the process of making repositories available to the
course generator. On the one hand, this process helps to assemble a course from re-
sources of different repositories. On the other hand, the course generator can provide its
functionalities as a service to other systems that plug-in their repositories. The mediator
architecture that was developed for this purpose is described in Section 4.2. A further
question concerns the learning goals that Paigos processes. In traditional course gener-
ation systems, learning goals consist only of educational resources, which represent the
target content that is to be learned. Such an approach ignores that different purposes
require different course of actions. For instance, a course for preparing an exam should
consist of different educational resources than a course that provides a guided tour. Sec-
tion 4.3 tackles this question and provides a general representation of learning goals. The
subsequent sections form the main part of this chapter. They explain how course gener-
ation knowledge can be formalized as an HTN planning domain. This chapter describes
general axioms, operators and methods used in that domain (Chapter 5 describes how
these general techniques are used to generate course for different learning goals in different
learning theories). The remaining sections of this chapter cover additional features that
arise from the need of the application and are possible in Paigos: Section 4.8 describes
how to generate a complete course and still allow for adaptive selection of resources when
needed. Section 4.9 focuses on the problem that automatically generated sequences of
educational resources can lack coherence and explanations about the learning goals, and
describes how to use the information about the learning goals available during course
generation to generate such information.

4.1. An Ontology of Instructional Objects

According to Gruber (1993) an “ontology is an explicit specification of a conceptualiza-
tion”. He continues: “when the knowledge of a domain is represented in a declarative
formalism, the set of objects that can be represented is called the universe of discourse.
This set of objects, and the describable relationships among them, are reflected in the rep-
resentational vocabulary with which a knowledge-based program represents knowledge.”
The set of objects is also called concepts or classes.

39

4. General Principles

Mizoguchi and Bourdeau (2000) stress that a first step towards intelligent services is
to define the terms used in the application domain. For educational services such as
course generation the terms need to describe the educational resources as well as the
learning goals.1 This section describes an ontology of instructional objects (oio) that
was developed to characterize educational resources. Although originally developed for
mathematical resources, it can also be used for describing other subject domains, as long
as the domain can be structured in distinct elements with relations (e. g., physics, future
work will investigate applicability to domains as language learning). The oio describes
resources sufficiently precise for a pedagogically complex functionality such as course
generation.

Seminal work on using ontologies for e-learning was done in the ISIR lab, headed by
Mizoguchi: Mizoguchi and Bourdeau (2000) lay out how ontologies can help to overcome
problems in artificial intelligence in education; Aroyo and Mizoguchi (2003) and Hayashi
et al. (2006a) describe how an assistant layer uses an ontology to support the complete
authoring process, for instance by giving hints on the course structure (see also the
description of related work in Chapter 8. The following ontology has a more specific
scope; instead of describing the authoring process during which the educational resources
are developed, the ontology is focused on describing the resources. It thus defines a set
of types (or classes) that is used to annotate educational resources.2

4.1.1. Motivation

The requirements that influenced the design of the ontology are the following (partly
based on Koper, 2000):

Domain independence The types represented in the ontology should be independent of
the domain that is being taught as long as the domain can be structured in distinct
entities connected by relations. Ideally, the types should characterize educational
resources about mathematics as well as physics or chemistry.

Pedagogical flexibility The types should be independent of the learning theory under-
lying the educational resources, i. e., they should describe constructivist as well as
more traditional didactic approaches.

Completeness The types should cover the range of educational resources as much as
possible.

Compatibility Mapping the ontology onto existing standards and learning object meta-
data should be as easy as possible.

Applicability Users should be able to understand and apply the ontology using terms
that reflect their needs. lom, for instance, is notorious for putting a heavy load on
content developers due to its vast amount of properties. (Duval, 2005).

1Equally important is information about the learner and her current learning context. However, this
is outside the scope of this thesis. We will assume that there exists a component that contains the
necessary information about the learner (a learner model).

2Part of the work described in this section was published in the following publications: Ullrich (2004a,b);
Merceron, Oliveira, Scholl, and Ullrich (2004); Ullrich (2005b); Melis, Shen, Siekmann, Ullrich, Yang,
and Han (2007).

40

4.1. An Ontology of Instructional Objects

Machine processability The types (together with additional metadata) should enable
intelligent applications to find and reuse learning objects without human guidance
or intervention.

In order to design an ontology that complies with these goals as much as possible,
I analyzed sources ranging from text classification (Mann and Thompson, 1988), over
instructional design (e. g., Reigeluth, 1983, 1999; Gardner, 1999; Tennyson et al., 1997;
Dijkstra et al., 1997; Wiley, 2000; Meder, 2003) to knowledge representations of struc-
tured texts (Burnard and Sperberg-McQueen, 2002; Walsh and Muellner, 1999; Interna-
tional Organization for Standardization, 1995) and representations used for technology-
supported learning (e. g., Van Marcke, 1998; Specht et al., 2001; Pawlowski, 2001; Melis
et al., 2003; Lucke et al., 2003; Cisco Systems, Inc, 2003; ims Global Learning Consortium,
2003b). Whenever applicable, these sources were taken into account in the ontology.

A concrete example illustrates best the entities described by the ontology. Figure 4.1
includes several learning resources (taken from the textbook Bartle and Sherbert, 1982),
clearly divided into several distinct paragraphs. Each paragraph serves a particular in-
structional role. The first two paragraphs introduce two concepts (a definition and a
theorem), the third provides examples of applications of a concept, and the last one offers
activities to apply the concept. The example is taken from a traditional textbook in order
to illustrate that the ontology applies to other resources than digital ones.

Currently, the most established standard for describing educational resources is lom.
It is a common and exhaustive, yet easily extensible description of learning objects,
which allows describing, finding, and using educational resources across any learning
environment. lom’s educational categories partially describe resources from an pedagog-
ical perspective, in particular the slot learningResourceType. Its possible values are
Exercise, Simulation, Questionnaire, Diagram, Figure, Graph, Index, Slide, Table,
NarrativeText, Exam, Experiment, ProblemStatement, and SelfAssesment. The prob-
lem with these values is that they mix pedagogical and technical or presentation infor-
mation: while Graph, Slide and Table describe the format of a resource, other values
such as Exercise, Simulation and Experiment cover the instructional type. They rep-
resent different dimensions, hence need to be separated for an improved decision-making.
Furthermore, several instructional objects are not covered by lom (e. g., definition,
example). As a result, lom fails to represent the instructional type sufficiently precise
to allow for automatic usage of educational resources, in particular if the usage involves
complex pedagogical knowledge necessary for effective learning support. For instance,
lom has no easy way to determine to what extent a resource annotated with Graph can
be used as an example. Related metadata standards, e. g., GEM (GEM Consortium,
2004), exhibit similar problems.

Other relevant e-learning standards in this context are ims ld and ims Question and
Test Interoperability (ims qti, ims Global Learning Consortium, 2002). ims ld describes
ordered activities in learning and the roles of the involved parties. It does not represent
single learning resources and their instructional functions. ims qti specifies a represen-
tation of exercises which encodes common exercise types, such as multiple choice, image
hot-spot, and fill-in-blank. It specifies the functionality of an exercise rather than its
pedagogical purpose.

41

4. General Principles

Figure 4.1.: A page that contains several types of instructional objects (from the mathe-
matics textbook Bartle and Sherbert, 1982, marginally modified)

42

4.1. An Ontology of Instructional Objects

Procedure

Policy

InstructionalObject

Fundamental

Law

Definition

Fact

Auxiliary Interactivity

Evidence

Illustration

Example

CounterExample

Demonstration

Proof

RealWorldProblem

Invitation

Exploration

Exercise

Conclusion

Remark

Introduction

LawOfNature

Theorem

Process

Explanation

isA: isFor:
isVariantOf:requires:

Figure 4.2.: Overview of the Ontology of Instructional Objects

Since no existing standard could fulfill the above requirements, I designed an ontology
of instructional objects (oio) that describes learning resources from an instructional per-
spective. Note that each of the classes of the ontology stands for a particular instructional
role an educational resource can play — they do not describe the content taught by the
educational resources, e. g., concepts in mathematics and their relationships.

4.1.2. Description of the Ontology

An overview of the oio is shown in Figure 4.2. In the following, I will describe the classes
and relations in detail.3

Instructional Object The root class of the ontology is instructionalObject. At this
class, several properties are defined that are used in all classes of the ontology. They
include Dublin Core Metadata for administrative data, an unique identifier, and some
values adopted from lom such as difficulty and learningContext (the educational
context of the typical target audience). Dependencies between instructional objects are
represented using the relation requires. In the current version of Paigos it proved to

3The ontology is publicly available at http://semanticweb.dfki.de/Wiki.jsp?page=Ontologies.

43

http://semanticweb.dfki.de/Wiki.jsp?page=Ontologies

4. General Principles

be not necessary to distinguish between educational and content-based dependencies, as
done, e. g., in the learning environment ActiveMath (Melis et al., 2006). The relation
isVariantOf is used to indicate that an instructional object is a variant of another one,
e. g., that an exercise e is a simpler version of an exercise f . In the current version of
Paigos, handling variants of fundamentals is limited to the learning context, i. e., all
definitions for the same learning context are assumed to be different. This is due to the
way how fundamentals are processed in the learning environment ActiveMath in which
Paigos was implemented. It poses no principal difficulties to extend Paigos to take this
kind of variants into account.

Central to the ontology is the distinction between the classes fundamental and auxili-
ary. The class fundamental subsumes instructional objects that describe the central
pieces of domain knowledge (concepts). Auxiliary elements include instructional objects
which contain additional information about the fundamentals as well as training and
learning experience.

Fundamental More specifically, an educational resource of type fundamental conveys
the central pieces of information about a domain that the learner should learn during the
learning process. Pure fundamentals are seldom found in educational resources. Most
of the time, they come in the form of one of their specializations. Albeit fundamentals
are not necessarily instruction-specific because they cover types of knowledge in general,
they are included in the ontology because they are necessary for instruction: educational
resources often have the instructional function of presenting a fundamental.

Fact An educational resource of type fact contains information based on real occur-
rences; it describes an event or something that holds without being a general rule.

Definition A definition states the meaning of, e. g., a word, term, expression, phrase,
symbol or class. In addition, it can describe the conditions or circumstances that an
entity must fulfill in order to count as an instance of a class.

Law, Law of Nature, Theorem A law describes a general principle between phenomena
or expressions that has been proven to hold or is based on consistent experience. Two
sub-classes allow a more precise characterization: lawOfNature describes a scientific gen-
eralization based on observation; theorem describes an idea that has been demonstrated
to be true. In mathematics, it describes a statement which can be proven true on the
basis of explicit assumptions.

Process, Policy, Procedure Process and its subclasses describe a sequence of events.
The deeper in the class hierarchy, the more formal and specialized they become. An edu-
cational resource of type process contains information on a flow of events that describes
how something works and can involve several actors. A policy describes a fixed or pre-
determined policy or mode of action. One principal actor can employ it as an informal
direction for tasks or as a guideline. A procedure consists of a specified sequence of steps
or formal instructions to achieve an end. It can be as formal as an algorithm or a proof
planning method (Melis and Siekmann, 1999).

44

4.1. An Ontology of Instructional Objects

Auxiliary An educational resource of type auxiliary contains information about fun-
damentals that, in theory, is not necessary for understanding the domain but supports
the learning process and often is crucial for it. They motivate the learner and offer engag-
ing and challenging learning opportunities. Every auxiliary object contains information
about one or several fundamentals. The identifiers of these fundamentals are enumerated
in the property isFor.

Interactivity An interactivity requires the learner to give active feedback. It is more
general than an exercise as it does not necessarily have a defined goal that the learner
has to achieve. It is designed to develop or train a skill or ability related to a funda-
mental. The subclasses of interactivity do not capture technical aspects. In general,
the way an interactivity is realized, for instance as a multiple choice question, is inde-
pendent of its instructional function. As illustrated by Bloom (1956) for the “taxonomy
of educational objectives”, well-designed multiple choice questions can address different
educational objectives.

Exploration, Real World Problem, Invitation, Exercise Using an educational resource
of type exploration, the user can freely explore aspects of a fundamental without a
specified goal or with a goal but no predefined solution path. A realWorldProblem
describes a situation from the learner’s daily private or professional life that involves open
questions or problems. An invitation is a request to the learner to perform a meta-
cognitive activity, for instance by using a tool. An educational resource of type exercise
is an interactive object that requires the learner’s response/action. The response can be
evaluated (either automatically or manually) and an success ratio can be assigned to it.

Illustration, Counter Example, Example Educational resources of type illustration
illustrate a fundamental or parts of it. A counterExample is an instructional object that
is exception to a proposed general fundamental. An educational resource of the type
example positively illustrates the fundamental or parts of a fundamental.

Evidence, Demonstration, Proof An evidence contains supporting claims made for a
law or one of its subclasses, hence the isFor-property of an evidence has as range the class
law. A demonstration provides informal evidence that a law holds, e. g., experiments in
physics or chemistry. A proof contains formal evidence, i. e., a test or a formal derivation
of a law.

Explanation Conclusion, Introduction, Remark An explanation contains additional
information about a fundamental. It elaborates certain aspects or points out important
properties. Its sub-class conclusion sums up the main points of a fundamental. An
introduction contains information that leads the way to a fundamental. A remark
provides additional, not strictly mandatory information about an aspect of a fundamental.
It can contain interesting side information, or details about how the fundamental is related
to other fundamentals.

To summarize, this vocabulary was designed to describe educational resources such that
they can be automatically re-used for educational purposes such as course generation.

45

4. General Principles

The oio was recently used for a revised version of the ALOCoM ontology, an effort
in the European Network of Excellence ProLearn (Knight et al., 2006), in the e-learning
platform e-aula (Sancho et al., 2005), and in the CampusContent project of the Distant
University Hagen (Krämer, 2005). Section 7.1.1 describes the evaluations performed
with the ontology. The following sections motivate why it makes sense to represent
instructional vocabulary in an ontology and gives examples of applications of the oio in
areas other than course generation.

4.1.3. Why an Ontology?

Why is the information about the instructional types represented in an ontology rather
than in a flat list as e. g., the learning-resource-type of lom or in a taxonomy? The need
for ontologies, that is, for a common understanding of a domain that serves as a basis
for communication between people or systems, has been widely recognized (for a recent
discussion see Heflin 2004); in the following, I will only summarize the most relevant
points.

First of all, one needs to be able to express relations between educational resources,
i. e., that an exercise is for a definition. In addition, as we will see in Section 4.2, the sub-
class information contained in the ontology contains valuable information when searching
for educational resources.

Benefits of a formal description of the domain for human users include the following.
For technology-supported learning, the usage of such a shared instructional vocabulary
offers advantages for teachers and learners. The explicit instructional function represented
in the ontology enables a more accurate search for learning resources, which leads to better
reuse and less duplication. This enables a faster authoring of courses by teachers and
tutors. Learners can bridge knowledge gaps more efficiently by seeking instructionally
appropriate educational resources.

The pedagogically relevant information of the ontology might also bring forth better
pedagogical Web-services. It can increase the accuracy of a service because at design
time, a Web-service developer can foresee different functionalities depending on the type
of the resource. For most pedagogical services, the information whether, say, a resource
contains a definition or an example will be of use, since it can react differently depending
on the type. Similarly, service composition is enhanced. For instance, a requester service
can require different actions from a provider depending on the instructional type of a
resource. Furthermore, interoperability is eased, and at least in theory, each system can
provide its own specialized service and make use of the services offered by others.

4.1.4. Applications of the Ontology

This section describes services other than course generation that might profit from the
ontology of instructional objects.

Learner Modeling A learner model stores personal preferences and information about
the learner’s mastery of domain concepts etc. The information is regularly updated
according to the learner’s interactions. A user model server such as Personis (Kay
et al., 2002) can use the information about the instructional function of a learning

46

4.1. An Ontology of Instructional Objects

resource for more precise updating. For instance, reading an example should trigger
a different updating than solving an exercise.

Interactive exercises In interactive exercises, feedback to the learner is crucial. Using
an ontology of instructional objects, an exercise system can generate links to ed-
ucational resources that additionally support the learner in problem solving, e.g.
(counter) examples or definition of the important fundamentals.

Suggestion mechanism/Intelligent assistant Providing feedback is not restricted to ex-
ercises. During the whole interaction of a learner with educational resources, a sug-
gestion mechanism (Melis and Andres, 2005) or intelligent assistant (Schöch et al.,
1998) can analyze the student’s actions and provide hints of what to do next, which
content to read additionally, etc. An ontology of instructional objects can be used
by such tools to analyze actions and to make specific suggestions. Section 6.2.6.1
describes how this was realized in the learning environment ActiveMath.

Browsing services Services that support the user’s navigation through the hypertext-
space (or, generally speaking, the space opened by the resources and their relations)
benefit when the instructional function of a learning resource is made explicit. They
can better classify and select the presented objects. Systems that adaptively add
links to content (Brusilovsky et al., 1998) can decide what links to add and how to
classify them appropriately. Similarly, tools that generate concept maps can better
adapt the maps to the intended learning goal, both with respect to the selection
and the graphical appearance of the elements. A search tool that provides a view
on the dependencies of the domain elements can sort the element with respect to
their instructional type, which can be useful for authors and learners alike.

Authoring support An ontology of instructional objects assists authors by enabling en-
hanced search facilities and by describing an conceptual model of the content struc-
ture. It equips authors with a set of concepts at an adequate abstractness level
to talk about instructional strategies, thus allowing them to describe their teach-
ing strategies at a level abstracted from the concrete learning resources. Hence,
instructional scenarios can be exchanged and re-used. An ontology of instructional
objects can additionally support the author by providing an operational model in
the sense of Aroyo and Mizoguchi (2003) and Hayashi et al. (2006a,b) that gives
hints to the author, e. g., what instructional objects are missing in his course.

Data mining In a joint work in the European Network of Excellence Kaleidoscope, Mer-
ceron, Oliveira, Scholl, and Ullrich (2004) investigated applications of the oio for
data mining of learning paths. There, a data mining tool extracts pedagogically
relevant information from the paths of a learner through the educational resources.
The data-mining can include the specific information about the instructional type
of the learning resource. For instance, if a learner regularly skips introductions and
directly tries to solve exercises, a system can infer what Merceron and Yacef (2003)
call a practical instead of a theoretical learning style.

In the following section, I describe how the oio is used for accessing educational re-
sources stored in distinct repositories.

47

4. General Principles

4.2. A Mediator for Accessing Learning Object Repositories

The ontology described in the previous section allows specifying the instructional func-
tion of educational resources and contains necessary information required for automatic,
intelligent course generation. However, as a matter of fact, most of the repositories avail-
able today use their own metadata schema rather than the terms defined in the oio. Yet,
the pedagogical knowledge formalized in the course generator should be independent of
the concrete metadata used in the repositories, as one wants to avoid designing separate
methods for each repository. In this section, I describe how a mediator, an architecture
from the field of distributed information systems, enables the course generator to abstract
from the specific metadata schemas and repository accesses.4

4.2.1. Related Work

The challenge of providing uniform access to resources has been recognized since long.
Mediation information system as proposed by Wiederhold (1992) are a well-known solu-
tion to this challenge. Its main component, called mediator, offers a uniform interface for
accessing multiple heterogeneous data stores (e. g., file systems, different databases, . . .).
The mediator uses mappings between the data representation used in the mediator and
those used in the repository to translate queries. Each repository is enhanced with a
wrapper, which can be integrated into the repository itself or into the mediator. This
way, the query component does not have to know the specification of the data sources
and their query languages

4.2.1.1. Edutella

An example of a mediator architecture in the domain of technology-enhanced learning
is Edutella (Nejdl et al., 2002). Edutella is a Peer-To-Peer approach for sharing
information in the Semantic Web. One of its first applications was the federation of
learning objects. A peer that encodes its metadata in rdf format can be connected
to the Edutella services by specifying a wrapper. A query service offers a uniform
query language with different levels of expressiveness. Edutella is a general purpose
infrastructure and connecting a peer is rather complex. In Edutella, a client (a human
or a system) can pose queries that are answered by all repositories connected to the
P2P network. Queries can be quite sophisticated and return single objects as well as
sequences of learning objects, for instance using a prerequisite relationship. Since these
systems provide a generic, technical infrastructure for repository integration, they do not
aim at specifying the educational semantics of resources. This, however, is needed by
clients who wish to automatically retrieve resources based on their instructional function
(e. g., definition, example, etc.).

4The work described in this section was jointly developed by Philipp Kärger, Erica Melis, Tianxiang
Lu and myself (Kärger et al., 2006a,b; Kärger, 2006; Lu, 2006). Therefore, I will use the personal
pronoun “we” in this section.

48

4.2. A Mediator for Accessing Learning Object Repositories

4.2.1.2. Ontology Mapping Languages

Structured representations of data can be represented as ontologies. For ontology map-
ping, expressive mapping languages have been developed. De Bruijn et al. (2005) propose
a mapping language as well as a set of pattern templates; Pazienza et al. (2004) introduce
the xml-based mapping language XeOML. Both mapping languages are very expressive
but were not implemented at the time of writing.

4.2.1.3. SQI

Simon et al. (2005) specify an interface called sqi (Simple Query Interface) for interop-
erable repositories of educational resources. The aim of sqi is to create a standardized
interface for repository access and thus sqi specifies only the interface. It does not pre-
scribe any implementation and therefore it does not offer a framework for query rewriting.

4.2.1.4. Triple

An approach based on the Semantic Web rule language Triple is introduced by Miklos
et al. (2005). They describe an architecture which queries for resources in the Semantic
Web by specifying their metadata. Triple is based on rdf and mainly used for data
manipulation, which makes parsing, translating and processing of simple queries rather
expensive.

4.2.1.5. Reinventing the Wheel But Making it Faster

Any mediator used for course generation needs to answer queries extremely quickly: as the
evaluation in Chapter 7 will show, generating an expanded course for a single fundamental
results in about 1 500 mediator queries that are expanded to more than 11 000 queries to
the repository.

Existing ontology-based query rewriting approaches are very expressive, but, in con-
sequence, complicated to use and not optimized for efficiency. Therefore, we decided to
develop a query rewriting approach which is less powerful than other systems but expres-
sive enough for our translation purposes. This specialization allows for optimizations,
e. g., during query processing.

Additionally, in the developed framework it is easy to integrate new repositories, by
specifying a mapping between the oio and the representation used in the repositories
and implementing a small set of interfaces.

4.2.2. Overview of the Mediator Architecture

The mediator described in this section answers queries about the existence of specific
educational resources. It is illustrated in Figure 4.3. Its interfaces5 are Web-service in-
terfaces. A repository can register (interface Register), passing an owl representation of
its metadata structure as well as a mapping of the oio onto this representation to the me-
diator. Additionally, each repository needs to implement the interface RepositoryQuery

5The figure uses uml ball-and-socket icons. A ball represents a provided interface, a socket a required
interface.

49

4. General Principles

<< component >>
Repository

<< component >>
Client

<< component >>
Mediator

cd: Mediator

ResourceQuery

ResourceQuery RepositoryQuery

RepositoryQuery

Register

Register

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4.3.: Overview of the mediator

that allows the mediator to query the existence of educational resources. Clients access
the mediator using the interface ResourceQuery.

4.2.3. Querying the Mediator

The interface ResourceQuery takes a partial metadata description as input and returns
the set of identifiers of the educational resources that meet the description. The metadata
used in a query sent to the mediator must comply to the oio. It can consist of three
parts:

• Class queries specify the classes the educational resources have to belong to. They
consist of a set of tuples (class c) in which c denotes the class of the oio the
returned educational resources must belong to.

• Property queries specify property metadata. They consist of a set of triples (pro-
perty prop val), where prop and val are property and value names from the oio.
Retrieved educational resources have to satisfy each given property-value pair.

• Relation queries specify the relational metadata the educational resources have to
meet. They consist of a set of triples (relation rel id) in which rel specifies the
relation that must hold between the resource referenced by the identifier id and the
educational resources to be retrieved. rel is a relation name of the oio.

Example 4.1. A query asking for all resources with an easy difficulty level illustrating
the definition def slope looks as follows:

(relation isFor def_slope) (class illustration) (property hasDifficulty
easy)

While processing a query, the mediator uses the information of the oio to expand a
query to subclasses. Hence, if asked for class c, the mediator returns resources belonging
to c and to its subclasses.

Example 4.2. Continuing the above example, the expanded query is shown below:

(relation isFor def_slope) (class example) (property hasDifficulty
easy)
(relation isFor def_slope) (class counterExample) (property
hasDifficulty easy)

50

4.2. A Mediator for Accessing Learning Object Repositories

4.2.4. Ontology Mapping and Query Rewriting

A repository that registers itself using the interface Register must provide sufficient
information to enable the mediator to translate the metadata of an incoming query to
the metadata used by the repository.

The translation is performed by an ontology-based query-rewriting mechanism. The
mechanism requires an ontological representation O of the metadata structure used by
the repository and an ontology mapping M . It uses O and M to compute the rewriting
steps for translating the queries it receives. A registration time, a repository passes both
the ontology and the mapping to the mediator. The mappings currently used by the
mediator were produced beforehand by the developers.

We designed an xml-based ontology mapping language that represents the mappings
between the oio and the target ontologies. An ontology mapping contains a set of
mapping patterns, where each mapping pattern m consists of a matching pattern mp and
a set of replacement patterns RP = {rp1, . . . , rpn}. mp and RP consist of terms of the
oio and the ontology of the repository, respectively. A mapping pattern m1 = (mp1, RP1)
is more specific than a pattern m2 = (mp2, RP2) if mp2 ⊂ mp1.

The idea of the ontology mapping is that every part of a query that matches a matching
pattern is replaced by the replacement patterns. More formally, we say a mapping pattern
m = (mp, {rp1, . . . , rpn}) matches a query q if q contains each term specified in mp.
Applying m to q results in new queries q1, . . . , qn, which are derived by replacing each
term of mp by the terms of rp1, . . . , rpn, respectively.

The ontology mapping procedure applies the most specific mapping pattern to a
query q. Currently, the author of an ontology mapping has to ensure manually that
there is only one such pattern; future work will investigate how to support this automati-
cally. A term for which no matching pattern is found is left as it is. This approach avoids
writing mapping patterns that express the identity of terms (the use cases have shown
that this is the most frequently occurring case).

Example 4.3. To illustrate the rewriting, we assume that a repository registers with
the mapping patterns (example, {exa}), (isFor, {for}), and (hasDifficulty=easy,
{difficulty level=1}). The queries from Example 4.2 will be translated to

(relation for def_slope) (class illustration)
(property difficulty_level 1)

(relation for def_slope) (class exa) (property difficulty_level 1)
(relation for def_slope) (class counterExample)

(property difficulty_level 1)

4.2.5. Repository interface and caching

In order to be accessible from the mediator, a repository must implement the following
interface that provides information about each of the above query types:

• public Set queryClass(String id) returns the classes a given resource belongs
to.

51

4. General Principles

• public Set queryRelation(String rel, String id) returns the set of identi-
fiers of those educational resources the resource id is related to via the relation
rel.

• public Set queryProperty(String id) returns the set of property-value pairs
the given resource has.

In real use, performance matters and query processing is often time consuming mostly
because of latency of the Web. For instance, course generation involves a significant
amount of queries (about 30 000 for a course consisting of about 100 educational re-
sources). Therefore, the amount of processed queries has to be reduced. We tackled
this problem by integrating a caching mechanism into the mediator. If the same query
(or sub-query) is sent repeatedly, the mediator does not query each connected repository
again. Instead, it returns the cached set of identifiers, which increases run-time perfor-
mance dramatically. The results of partial queries are cached, too. Section 7.1.4 provides
details about evaluations of the cache.

Please note that our approach focuses on mapping of pedagogical concepts and not
on mapping of instances of the subject domain. Thus, the mediator cannot yet use the
information that fundamental c1 in repository r1 represents the same domain entity as
fundamental c2 in repository r2, say def group in r1 and definition gruppe in r2 both
define the same mathematical concept group. In future work, we will integrate an instance
mapping technology that maps domain ontologies.

4.2.6. Limitations of the Mediator as an Educational Service

The mediator allows access to resources based on their instructional function: a service
generates partial metadata, and the mediator retrieves a list of corresponding educational
resources. However, this is a basic service, which has some limitations:

• How to come up with the metadata? Determining the appropriate metadata for
finding educational resources is not trivial. Assume a service wants to present an
example of “average slope” to the learner. Is the learning context relevant? Should
it be an easy or a difficult example? These decisions depend on the current learning
goal, i. e., the current educational task.

• Which precise educational resources to select? Typically, the mediator returns a list
of resources. Which one is the most appropriate? Are they all equivalent? A too
large set might indicate that the metadata was too general. However, narrowing it
down might result in an over-specification and hence in an empty set.

• A single educational resource might not be sufficient to achieve learning progress.
For instance, understanding content in depth requires a sequence of carefully se-
lected educational resources. Again, the precise resources to select depend on the
learning goal.

These limitations motivate the need for a course generator, i. e., a component that
operationalizes the educational knowledge and provides services on a higher level of ab-
straction. The following sections describe the course generator.

52

4.3. Pedagogical Tasks, Methods and Strategies

4.3. Pedagogical Tasks, Methods and Strategies

The mediator architecture allows finding educational resources that fulfill given criteria.
Typically, an agent (a learner or a machine) searches for the resources in order to achieve
a learning goal. In this section, I describe an explicit and declarative representation that
can be used to encode such learning goals.

A declarative representation of goals offers several advantages. First of all, it allows
a system to autonomously generate actions to achieve the goal if the system uses an
appropriate framework. Secondly, it provides an abstract layer that can be used for
communication between systems. Instead of only being able to talk about the resources
used in the learning process, systems can communicate about the purposes of the learning
process. Third, it can be used to describe precisely the functionalities that the course
generator offers: for each learning goal, Paigos can calculate a sequence of educational
resources (if available) that help the learner to achieve this goal.

As I will describe in Related Work (Section 8), existing course generators often use
the domain concepts to represent learning goals. There, the generated course provides a
sequence of educational resources that leads to these concepts and includes prerequisites
and other resources. However, such an approach that restricts goals to resources is
too limited. Depending on their current situation, learners want to achieve different
objectives with the same target fundamentals, and a course should reflect the different
needs associated with the objectives. For instance, a course that helps students to discover
new content should differ different from a course that supports rehearsal.

Van Marcke (1998) introduced the the concept of an instructional tasks, which helps
to define learning goals in more details: an instructional task represents an activity that
can be accomplished during the learning process.

Both, the content and the instructional task are essential aspects of a learning goal.
Therefore, I define learning goals as a combination of the two dimensions content and
task. In the remainder of this thesis, I will refer to instructional tasks as pedagogical
objectives, in order to distinguish them from the declarative representation of learning
goals, which I will call pedagogical tasks:

Pedagogical Task A pedagogical task is a tuple t = (p, L), where p is an identifier of
the pedagogical objective and L is a list of educational resource identifiers. L specifies
the course’s target fundamentals, and p influences the structure of the course and the
educational resources selected. The order of the resources in L is relevant and the same
task with L’s elements ordered differently can result in a different course.

Example 4.4. The educational objective to discover and understand content in depth
is called discover. Let’s assume that def slope and def diff are the identifiers of
the educational resources that contain the definition of the mathematical fundamental
“average slope of a function” and “definition of the derivative, resp., differential quotient”,
respectively. We can now write the learning goal of a learner who wants to discover and
understand these two fundamentals as the educational task t = (discover, (def slope,
def diff)). The fundamentals are processed in the given order: first def slope, followed
by def diff.

53

4. General Principles

Identifier Description
discover Discover and understand fundamentals in depth
rehearse Address weak points
trainSet Increase mastery of a set of fundamentals by training
guidedTour Detailed information, including prerequisites
trainWithSingleExercice Increase mastery using a single exercise
illustrate Improve understanding by a sequence of examples
illustrateWithSingleExample Improve understanding using a single example

Table 4.1.: A selection of pedagogical objectives used in Paigos

Table 4.1 contains a selection of pedagogical tasks formalized within this thesis, partly
designed in cooperation with pedagogical experts. Chapter 5 provides the worked-out
pedagogical tasks and methods.

It is important to note that tasks correspond to goals, not to methods that achieve
these goals. The distinction between task and methods, i. e., between what to achieve
and how to achieve it (Steels, 1990) is important in this context since tasks and methods
represent different kinds of knowledge.

Pedagogical Method Methods that are applicable to pedagogical tasks and decompose
them are called pedagogical methods.

Scenario Pedagogical objectives exist on different levels of abstraction: the highest-level
objectives correspond to different types of courses that can be assembled. These types of
courses are called scenarios. The first four tasks in Table 4.1 are examples of scenarios.

Public Task Pedagogical tasks can be “internal” tasks, used for internal course gener-
ation purposes only, or tasks that are of potential interest for other services. The second
category of tasks is called public tasks. Public tasks need to be described sufficiently
precise in order to enable a communication between components as described above. The
description designed for Paigos contains the following information:

• the identifier of the pedagogical objective;

• the number of concepts the pedagogical objective can be applied to. A task can
either be applied to a single concept (cardinality 1) or multiple concepts (cardinality
n).

• the type of educational resource (as defined in the oio) that the task can be applied
to;

• the type of course to expect as a result. Possible values are either course in case a
complete course is generated or section in case a single section is returned. Even
in case the course generator selects only a single educational resource, the resource
is included in a section. This is due to requirements from standards like ims cp
which is used by the course generator Web-service.

54

4.4. Representing Course Generation Knowledge in an HTN Planner

• an optional element condition that is evaluated in order to determine whether a
task can be achieved. In some situations, a service only needs to know whether
a task can be achieved but not by which educational resources. In that case, the
condition can be passed to the mediator, and if the return value is different from
null, the task can be achieved. An example is the item menu (Section 6.2.6.3)
that allows the learner to request additional content. Menu entries are displayed
only if the corresponding tasks can be achieved. For instance if there are no exam-
ples available for def slope, then the task (illustrate, (def slope)) cannot be
achieved. Most of the time, the condition element corresponds to a subset of the
preconditions of the least constrained pedagogical method applicable to the task.
This way, the course generator can guarantee that a learning object that fulfills
these conditions will be returned but the exact elements will be determined only
on-demand.

• a concise natural language description of the purpose that is used for display in
menus.

Figure 4.4 contains a selection of pedagogical tasks. In the figure, all keywords in
the condition element that start with ? are variables which are instantiated by the
corresponding value at the time the condition is sent to the mediator. The top ele-
ment in Figure 4.4 describes the pedagogical task discover. It is applicable to sev-
eral educational resources of type fundamental. The bottom element specifies the task
trainWithSingleExercise!. It is applicable to a single educational resource of the type
fundamental and returns a result in case the condition holds.

Educational tasks together with the ontology of instructional objects allow represent-
ing learning goals and the instructionally relevant aspects of resources used to achieve
those goals. In the next section, I describe how the course generator Paigos uses these
representations in order to assemble personalized sequences of educational resources that
support the learner in achieving her learning goals.

4.4. Representing Course Generation Knowledge in an HTN
Planner

In this section, I describe how course generation knowledge is formalized as an hierarchical
task network planning problem. I start by motivating why planning in general and HTN
planning in particular is an adequate choice for the formalization of course generation
knowledge. Then, in Section 4.4.2, I describe how to join the notion of HTN task and
pedagogical task. The course generation domain as formalized in this thesis contains
several basic operators and methods which are reused throughout the domain. Those are
described in Section 4.5.

Part of the work described in this section was developed jointly with Okhtay Ilghami,
a member of the Automated Planning Group of the University of Maryland, led by Dana
Nau and James Hendler.6

6The work described in this section was published in the following publications: Ullrich (2005a,c); Melis
et al. (2006); Ullrich and Ilghami (2006).

55

4. General Principles

<tasks>

<task>

<pedObj id="discover"/>

<contentIDs cardinality="n"/>

<applicableOn type="fundamental"/>

<result type="course"/>

<condition></condition>

<description>

<text xml:lang="en">Generate a book that helps a learner to understand

the selected topics in depth.</text>

<text xml:lang="de">Erstelle ein Buch das hilft die ausgewählten Begriffe

grundlegend zu verstehen</text>

</description>

</task>

<task>

<pedObj id="explain!"/>

<contentIDs cardinality="1"/>

<applicableOn type="fundamental"/>

<result type="section"/>

<condition>(class Remark) (relation isFor ?c)</condition>

<description>

<text xml:lang="en">Explain the concept.</text>

<text xml:lang="de">Erkläre das Element</text>

</description>

</task>

<task>

<pedObj id="illustrateWithSingleExample!"/>

<contentIDs cardinality="1"/>

<condition>(class Example)(relation isFor ?c)

(property hasLearningContext ?learningContext)</condition>

<applicableOn type="fundamental"/>

<result type="section"/>

<description>

<text xml:lang="en">Illustrate the concept.</text>

<text xml:lang="de">Veranschauliche den Inhalt.</text>

</description>

</task>

<task>

<pedObj id="trainWithSingleExercise!"/>

<contentIDs cardinality="1"/>

<applicableOn type="fundamental"/>

<result type="section"/>

<condition>(class Exercise)(relation isFor ?c)

(property hasLearningContext ?learningContext)</condition>

<description>

<text xml:lang="en">Train the concept.</text>

<text xml:lang="de">Übe den Inhalt.</text>

</description>

</task>

...

</tasks>

Figure 4.4.: A selection of pedagogical task descriptions

56

4.4. Representing Course Generation Knowledge in an HTN Planner

4.4.1. Motivation

The central principle of knowledge representation consists of having a formal and explicit
representation of the world, including how the actions of an agent affect the world (Russell
and Norvig, 2003, p. 19). Such a representation allows modeling manipulations of the
world. As a consequence, deductive processes can be used to reason about actions,
e. g., whether an action helps to achieve a goal of the agent. Different frameworks for
knowledge representation and reasoning exist, e. g., planning, multi-agent systems and
expert systems.

For technology-supported learning, Murray (1989) concisely summarizes: “a system
should have a plan and should be able to plan”. Generally speaking, a system should be
able to plan, since it is practically impossible to cater for individual learning goals and
characteristics by providing manually authored courses. It should have a plan in order
to ensure global coherence, where resources are sequenced in a manner that supports
the overall learning goal and respects the learner’s characteristics, such as competencies,
motivation, and interests.

Arguments in favor of hierarchical planning methods include that non-AI experts
quickly grasp the principal mechanism. The hierarchical decomposition of the HTN
framework provides a quite natural way for formalizing the pedagogical knowledge: the
pedagogical experts I cooperated with while designing the course generation knowledge
felt comfortable with the approach, despite having no experience in computer science.

Additionally, HTN is efficient in planning. HTN can result in linear-time instead of
exponential-time planning algorithms if the high-level solutions formulated in the meth-
ods always result in good low-level implementations (Russell and Norvig, 2003, p. 422).

The practical relevance of HTN is also “proved by demonstration” by its wide-spread
use in real-life applications. According to Russell and Norvig (p. 430) most of the large-
scale planning applications are HTN planners. The primary reason is that HTN allows
human experts to encode the knowledge how to perform complex tasks in a manner that
can be executed with little computational effort.

However, using a planning approach also brings forth some difficulties. During course
generation, educational resources serve as a basis for the reasoning process of the planner:
different methods will be applied depending on whether specific educational resources ex-
ist that fulfill given criteria. Say, an introduction to the mathematical concept “Definition
of Derivation” needs to be generated. If no resource that is a textual introduction to the
concept exists, then an alternative is to use an educational resource that is an easy ex-
ample for the concept. However, taking into consideration such information about avail-
able resources involves the difficulty that traditional AI planning requires evaluating a
method’s precondition against the planner’s world state. In a naive approach, this would
require mirroring in the world state all the information available about the resources in
all the repositories. In real world applications, this is simply infeasible. Usually, only a
subset of all the stored resources may be relevant for the planning, but which subset is
unknown beforehand.

jshop2’s planning algorithm allows overcoming this problem. jshop2’s planning algo-
rithm is based on ordered task decomposition. There, tasks are expanded in the order in
which they will be performed, when the plan is executed. According to Nau et al. (1998),
this approach has the advantage that when the planner plans for tasks, it knows all that

57

4. General Principles

is to know about the world state at the time when task will be executed. This enables
performing doing complex numeric calculations and using external knowledge sources to
retrieving information. In the case of the course generation domain, this allows accessing
the repositories that contain the educational resources as well as the learner model.

4.4.2. Mapping Pedagogical Tasks onto HTN Tasks

In the following sections, I describe the course generation planning domain. In a first
step, I explain the relationship between the notion of a pedagogical task and HTN task.

Section 4.3 defined a pedagogical task as a tuple t = (p, L), where p is an identifier
of pedagogical objective and L = {l1, . . . , lm} is a list of educational resource identifiers.
This definition is now mapped onto the definition of HTN task as given in Section 2.5.4.7:
there, a task atom was defined as an expression of the form (s t1 t2 ... tn) where s
is a task symbol and the arguments t1 t2 . . . tn are terms.

Let P = {p1, . . . , pn} be the set of all pedagogical objectives. For each pi ∈ P , we define
a corresponding task symbol ti. Let T =

⋃n
i=1 ti and f : P → T be a function that maps

each pi onto the corresponding task symbol ti. Furthermore, let g be a function that
assigns each educational resources identifier a unique name symbol s ∈ M , with M being
the infinite set of name symbols as defined in Section 2.5.4. Then, for a pedagogical task
t = (p, l1, . . . , lm) the corresponding HTN task atom is given by (f(p) g(l1) . . . g(lm)).

4.4.3. Course Generation Planning Problems

1 (defproblem Problem CourseGeneration
2 (
3 (user userId)
4 (goalTask task)
5)
6

7 ((generateCourse))
8)

Figure 4.5.: A schema of a course generation planning problem

The general form of planning problems in the course generation domain is shown in
Figure 4.5. The first line defines a problem with the name Problem to be solved in the
domain CourseGeneration. The problem itself is quite small: the initial state consists of
the user identifier and a logical atom that represents the pedagogical task to be achieved
(line 3–4). The task to be solved by the problem is a task without parameters, called
(generateCourse) (line 7). This task starts the initialization process (described in detail
in Section 4.6.9) that performs conceptually irrelevant but technically required processing.
Once the initialization is complete, the pedagogical task is the goal task of the planning
problem.

Notably, the world state contains neither information about the resources nor about
the learner (besides her identifier). All this information is retrieved dynamically, when

58

4.4. Representing Course Generation Knowledge in an HTN Planner

required.

4.4.4. Critical and Optional Tasks

A feature that distinguished the course generation planning domain from other domains
is that there exist a number of tasks that should be achieved if possible, but failing to
do so should not cause backtracking. These tasks are called optional tasks. An example
is the motivation of a fundamental. If there exist educational resources that can serve
as a motivation, then they should be included in the course. If no suited resource can
be found, the course generation should continue anyway. In contrast, other tasks are
critical, and have to be achieved. In the following, critical task symbols are marked with
the suffix “!”. Whether a specific task is critical or optional depends on the scenario.
Therefore, in Paigos, for almost each critical task there exists an equivalent optional
task.

Technically speaking, optional tasks are realized by encapsulating critical tasks in fall-
back methods. Figure 4.4.4 illustrates the general approach. The first method in the
Figure (lines 1–4) is an exemplary method for a critical task. The second method (lines
6–9) encapsulates the critical task in an optional task. In case this method cannot be
applied (due to the critical task not being achievable), the fallback method in lines 11–15
is applied. It has no preconditions and not subtasks, hence achieves the task immediately.

1 (:method (taskSymbol ! term)
2 (preconditions)
3 (subtasks)
4)
5

6 (:method (taskSymbol term)
7 ()
8 (taskSymbol ! term)
9)

10

11 (:method (taskSymbol term)
12 ;; fallback method
13 ()
14 ()
15)

Figure 4.6.: Implementing optional tasks by encapsulating critical tasks in fallback meth-
ods

In the following, I will assume that a) there exists an optional task for each critical
task, and b) for each optional task there exists a set of methods like described above.
Due to length reasons, I will not include them explicitly in this document.

59

4. General Principles

4.5. Basic General Purpose Axioms and Operators

In this section, I describe the basic axioms that are used in the course generation domain
but serve general purposes, such as list manipulation.

4.5.1. Testing for Equality

(:- (same ?x ?x) ())

Figure 4.7.: same tests the equality of two terms

The axiom in Figure 4.7 tests the equality of two given terms: it matches only if the
terms passed as arguments are the same. In that case, the axiom’s body is evaluated.
Since it is empty, the axiom is satisfied.

Example 4.5. The axiom (same a a) is satisfiable; the axiom (same a b) is not.

4.5.2. List Manipulation

1 (:- (first ?head (?head . ?tail)) ())
2 (:- (first nil nil) ())
3

4 (:- (rest ?tail (?head . ?tail)) ())
5 (:- (rest nil nil) ())
6

7 (:- (restrict ?result ?list1 ?list2)
8 (assign ?result (call Restrict ?list1 ?list2)))
9

10 (:- (removeElement ?result ?element ?list)
11 (removeH ?result nil ?element ?list))
12

13 (:- (removeH ?result ?tempResult ?element nil)
14 (assign ?result (call Reverse ?tempResult)))
15

16 (:- (removeH ?result ?tempResult ?first (?first . ?tail))
17 (removeH ?result ?tempResult ?first ?tail))
18

19 (:- (removeH ?result ?tempResult ?element (?first . ?tail))
20 (
21 (not (same ?first ?element))
22 (removeH ?result (?first . ?tempResult) ?element ?tail)
23))

Figure 4.8.: Axioms for basic list operations

60

4.5. Basic General Purpose Axioms and Operators

Figure 4.8 contains a list of axioms that perform basic list operations. The first axiom
with the head first either checks whether the first parameter (head) is the first element
of the given list or, if the first parameter is a variable, returns the first element of the list
given as parameter. The second axiom with head first specifies that the first element
of the empty list (nil) is the empty list.

Example 4.6. The axiom (first a (a b c)) is satisfiable because ?head can be in-
stantiated with a and ?tail can be instantiated with (b c).

Example 4.7. The axiom (first ?p (a b c)) is satisfiable and binds ?p to a.

Analogously, the axioms in line 4 and 5 in Figure 4.8 check whether the first parameter
is the rest of the list given as parameter or, if the first parameter is a variable, return the
rest of the given list. The rest of the empty list is defined to be the empty list.

Example 4.8. The axiom (rest (b c) (a b c)) is satisfiable because ?head (see Fig-
ure 4.8) can be instantiated with a and ?tail can be instantiated with (b c).

Example 4.9. The axiom (rest ?p (a b c)) results in binding ?p to (b c).

The intent of the axiom with head restrict (lines 7–8) is to remove all elements
from the term list bound to list1 that do not occur in the term list bound to list2
and to bind the result to the variable ?result. This axiom uses the external function
Restrict (line 8), a Java function that implements the above described functionality
(since external functions are Java functions, they are written with an initial capital).
There is no difference between embedding an external function in an axiom or calling it
directly and binding the resulting value to a variable.

Example 4.10. The axiom (restrict ?r (a b c d) (a c e)) binds the variable ?r
to the term list (a c). Similarly, the call term (assign ?r (call Restrict (a b c
d) (a c e))) binds the variable ?r to the term list (a c).

Similar functions are Concat (concatenates the given term lists or name symbols),
Length (returns the length of a given term list as an integer value), and Reverse (reverse
a given term list).

Example 4.11. The call term (call Concat (a b c) (d e) (f g h)) returns the list
(a b c d e f g h); (call Length (a b c)) returns 3; (call Reverse (a b c)) re-
turns (c b a).

The axioms in lines 10–23 of Figure 4.8 serve to illustrate that in principle such func-
tions can be realized without resorting to call terms. These lines define the axiom
removeElement which removes the term bound to ?element from the term list bound to
?list and binds the result to the variable ?result. The advantage of using call terms
that access Java functions instead of defining a set of axioms is efficiency: in general, the
Java function is evaluated much faster then the corresponding axioms.

Example 4.12. The axiom (removeElement ?var (a b c) c) binds ?var to (a b).

61

4. General Principles

(:- (assignIterator ?var (?head . ?tail))
(assign ?var ?head))

(:- (assignIterator ?var (?head . ?tail))
(assignIterator ?var ?tail))

Figure 4.9.: assignIterator binds a variable to all terms of a list

4.5.3. Binding a Variable to all Terms of a Term List

An assignment expression (assign ?var t) as defined in Section 2.5.4 binds ?var to
the term t. The axioms illustrated in Figure 4.9 extend this behavior to a list: if the
precondition of an operator or method contains (assignIterator ?var termList), all
bindings of ?var to the elements of the list termList will be generated. The first axiom
binds ?var to the first value of the list; if the planning process fails at any later time,
backtracking causes the second axiom to be applied, which recurses into the list and thus
applies the first axiom to bind ?var to the next value. This process is repeated until
the list is empty. In that case, the axiom cannot be satisfied and the planning process
backtracks.

Example 4.13. (assignIterator ?var (a b c)) first binds ?var to the term a. Back-
tracking can later cause binding ?var to b and finally to c.

4.5.4. Manipulating the World State

(:operator (!!addInWorldState ?atom)
;; precondition
()
;; delete list
()
;; add list
(?atom)
)

(:operator (!!removeFromWorldState ?atom)
;; precondition
()
;; delete list
(?atom)
;; add list
()
)

Figure 4.10.: !!addInWorldState and !!removeFromWorldState change the world state

62

4.6. Basic Operators and Methods of the Course Generation Domain

Methods cannot change the world state, unlike operators. Therefore, a method that
requires changes to the world state has to resort to operators. The operators illustrated
in Figure 4.10 provide a generic means to achieve this functionality. !!addInWorldState
adds the given parameter as an atom to the world state, while !!removeFromWorldState
removes it. The two exclamation marks denote the operators as being internal operators,
that is, not corresponding to actions performed in a plan. Examples of methods using
these two operators are, e. g., initializing methods that add information about the user
and her learning goals to the world state (see Section 4.6.9).

4.6. Basic Operators and Methods of the Course Generation
Domain

The above axioms, operators and methods might be of use in any planning domain. The
operators and methods describe in the subsequent sections are domain-specific: they
insert educational resources into a course, access information about the learner, etc. In
the following, whenever I use the term “resource” (e. g., a resource is given as parameter,
added to the world state, etc.) I used it as abbreviation for “resource identifier”.

4.6.1. Inserting References to Educational Resources

The result of a planning process in the course generation domain is a plan consisting
of a sequence of operators that, when applied, generates a structured list of references
to educational resources and learning-support services. These “inserting” operators and
methods are described below and in the following two sections.

(:operator (!insertResource ?r)
;; precondition
()
;; delete list
()
;; add list
((inserted ?r))
)

Figure 4.11.: !insertResource inserts references to an educational resource in a course

Several operators and methods handle the insertion of references to educational re-
sources in a course. The basic operator is shown in Figure 4.11. The operator has no
precondition and delete list, and adds a logical atom to the world state that describes
that a resource ?r was inserted into the course.

Note that the basic operators in the course generation domain have neither precondi-
tions nor delete or add lists. This is one peculiarity of the course generation domain as
formalized in Paigos: in general, resources are not consumed in the sense that they are
no longer available, like, say, fuel that is consumed in the travel domains. An educational
resource that is added into a course can be added again at a later time (the only poten-
tial constraint being that it makes sense from a pedagogical point of view). Similarly,

63

4. General Principles

starting/ending a section can be realized at any time and repeatedly without consuming
any resources.

1 (:method (insertResourceOnce! ?r)
2 ((not (inserted ?r)))
3 ((!insertResource ?r))
4)
5

6 (:method (insertResource ?r)
7 ((not (inserted ?r)))
8 ((!insertResource ?r))
9

10 ()
11 ()
12)

Figure 4.12.: insertResourceOnce! and insertResource insert a resource in a course
once

The operator !insertResource is used by the methods in Figure 4.12. The first
method (lines 1–4) is applicable only if the given resource was not yet inserted into the
course and in that case inserts the resource: it “decomposes” the task atom (insert-
ResourceOnce! ?r) into the primitive task atom (!insertResource ?r), otherwise it
fails. The second method inserts a given resource if it was not yet inserted (line 7–8),
otherwise achieves the task directly since it has no subtasks (lines 10–11).

Example 4.14. Let

T =((insertResourceOnce! a) (insertResource b)
(insertResource c) (!insertResource d) (insertResourceOnce! a))

be a task list and S =((inserted c) (inserted d)) be the current world state. Then,
the first two tasks can be achieved by applying the methods of Figure 4.12 and the
operator of Figure 4.11, resulting in the plan

((!insertResource a) (!insertResource b)).

Since c was already inserted, the third subtask is achieved by the second precondition-
subtask pair of the bottom method in Figure 4.12 (lines 10–11): there, the subtask consist
of the empty list, thus the task is achieved without applying an operator. The fourth task
(!insertResource d) (different from the previous ones, note the !) is directly achieved
by the operator of Figure 4.11, and hence d is inserted although the world state indicates
it was already inserted. At this time, the resulting plan is

((!insertResource a) (!insertResource b) (!insertResource d)).

However, the final task (insertResourceOnce! a) cannot be achieved: it was already
inserted and no method other than the upper method of Figure 4.12 (lines 1–4) is appli-
cable on it. Hence, the planning process backtracks.

64

4.6. Basic Operators and Methods of the Course Generation Domain

(:method (insertAllResources (?head . ?tail))
MethodInsertAllResources
()
(
(insertResource ?head)
(insertAllResources ?tail)
)
)

(:method (insertAllResources nil)
MethodInsertAllResourcesFallback
()
()
)

Figure 4.13.: insertAllResources inserts in a course all resources of a given list

The methods illustrated in Figure 4.13 insert into a course all resources from the given
list. The bottom method makes sure that the recursion performed in the top method
terminates in case the list has no (more) elements.

(:- (allInserted (?head . ?tail))
(
(inserted ?head)
(allInserted ?tail)
)
)

(:- (allInserted nil)
()
)

Figure 4.14.: allInserted tests whether the given resources are contained in the course

Figure 4.14 contains the axiom allInserted that is used to test whether all resources
of a given term list are contained in the current course. The upper axiom tests whether
the first element is inserted, and if it is, recurses into the rest of the list. The bottom
axiom ends the recursion.

Under some circumstances, resources need to be marked as inserted without actually
being inserted into a course. Figure 4.15 illustrates the methods that achieve this func-
tionality. The upper method recurses into a list of references and adds in the world
state the fact that the references were inserted. Yet, since the method does not involve
the operator !insertResource, the references are not inserted into the course, but only
marked as such. The lower method ends the recursion as soon as the list has become
empty.

65

4. General Principles

(:method (addInWorldStateAsInserted (?head . ?tail))
MethodAddInWorldStateAsInserted
()
(
(!!addInWorldState (inserted ?head))
(addInWorldStateAsInserted ?tail)
)
)

(:method (addInWorldStateAsInserted nil)
MethodAddInWorldStateAsInsertedEmptyList
()
()
)

Figure 4.15.: addInWorldStateAsInserted marks a list of resources as inserted

(:- (getNonInserted ?result ?resources)
(getNIH ?result (call Reverse ?resources) nil))

(:- (getNIH ?result ?resources ?temp)
((same ?resources nil)
(assign ?result ?temp)

((first ?el ?resources)
(inserted ?el)
(rest ?tail ?resources)
(getNIH ?result ?tail ?temp))

((first ?el ?resources)
(rest ?tail ?resources)
(getNIH ?result ?tail (?el . ?temp)))

)

Figure 4.16.: getNonInserted selects those resources from a list that were not inserted

66

4.6. Basic Operators and Methods of the Course Generation Domain

The axiom getNonInserted displayed in Figure 4.16 is used to select those resources
from a given list that were not yet inserted into the course. It uses a helper axiom
(getNIH) that recurses into the list and tests whether the current resource is marked as
inserted into the world state. The result is then bound to ?result.

4.6.2. Starting and Ending Sections

(:operator (!startSection ?type)
()
()
()
)

(:operator (!startSection ?type ?parameters)
()
()
()
)

(:operator (!startSection ?type ?parameters ?task)
()
()
()
)

(:operator (!endSection)
()
()
()
)

Figure 4.17.: !startSection and !endSection create structure

Figure 4.17 contains the four operators that are used for creating structure within a
course. The top three operators applicable to !startSection begin a section. They vary
only in the number of arguments. The lower operator ends a section. The intended mean-
ing is that all references that are inserted between a !startSection and an !endSection
operator are contained within the same section. Sections can be nested.

The !startSection operators require additional information to be passed by the pa-
rameters. This information is used later to generate the section titles, which is described
in detail later in Section 4.9. For the time being, it suffice to know that the parameter
?type is used to provide information about the type of the section, say an introduction
or a training section. The parameter ?parameters contains the list of identifiers of the
fundamentals the section is for. In addition, sections can contain information about the
pedagogical task for which they were generated: the third !startSection operator allows
passing a task as an argument. When the course is generated after the planning process
by applying the operators, the task is added as metadata of the section. This allows

67

4. General Principles

preserving the information about the pedagogical context that was available during the
planning process. Other components can later use this information. For instance, a sug-
gestion mechanism could interpret the fact that a students fails to solve an exercise taking
into consideration whether the exercise occurs in the context of learning the prerequisites
or whether it occurs during training the goal fundamentals. The task information could
also be used for re-planning a section by passing the task to the course generation service.

(:method (taskSymbol Section ?parameters ?type ?sectionParameters ?task)
()
(
(!startSection ?type ?sectionParameters ?task)
(taskSymbol ?parameters)
(!endSection)
)

)

Figure 4.18.: Embedding tasks into sections

For most pedagogical tasks t in Paigos there exists a task that embeds the task t into
a section. These tasks are marked with the suffix Section. It depends on the scenario
whether the “original” task or the embedded variant is used.

Figure 4.18 illustrates the general approach used for creating sections. For every task
atom whose head has the suffix Section (e. g., taskSymbol Section), there exists a
method as shown in the Figure. This method starts a section with the given parameters,
tries to achieve the task taskSymbol , and then closes the section. In the following
descriptions, I will omit most of these “section” tasks in order to keep the number of
methods limited.

4.6.3. Inserting References to Learning-Support Services

(:- (learningServiceAvailable ?serviceName)
(call LearningServiceAvailable ?serviceName))

Figure 4.19.: The axiom learningServiceAvailable tests whether a learning-support
service is available

Section 2.1 defined a learning-support tool as any application that supports the learner
during her learning process in a targeted way and that can be integrated within the
learning process automatically.

Whether such a service is available or not can vary depending on the actual configura-
tion of the environment in which the course generator is used. Paigos offers an axiom to
check the availability of service (illustrated in Figure 4.19) using an external function for
the query. This way, a method’s preconditions can test for the availability of a service.

68

4.6. Basic Operators and Methods of the Course Generation Domain

(:operator (!insertLearningService ?serviceName ?methodName ?resources)
()
()
()
)

(:operator (!insertLearningService ?serviceName ?methodName ?resources
?parameters)

()
()
()
)

Figure 4.20.: insertLearningService inserts references to learning-support services

In case the service is available, methods can use the operators illustrated in Figure 4.20
to insert into the course references to the services. Later, when the course is presented
to the learner, these references can be rendered as links. The variables of the opera-
tors specify the type of service to be used (?serviceName), the method of the service
(?methodName), the resources potentially required by the method ?resources, and addi-
tional parameters if necessary (?parameters). The names and semantics of the param-
eters of these two operators are based on the requirements of the xml-rpc-protocol, a
standard for remote procedure calls over the Internet (Winer, 1999).

Methods that potentially insert references to learning-support services should encode
a fallback branch that is applied if the service is not available. This way, the pedagog-
ical knowledge remains reusable, regardless of the actual configuration of the learning
environment.

4.6.4. An Operator for Dynamic Text Generation

Courses generated by Paigos can include templates used for dynamic text generation.
These generated texts augment the dynamically generated courses with texts that set
the student’s mind, support the students’s understanding of the structure and of the
learning goals, and make transitions between educational resources smoother. The precise
mechanism is described in Section 4.9; here, the basic operators is only briefly mentioned
since it will be used in several of the following methods.

(:operator (!text ?type ?parameters)
()
()
()
)

Figure 4.21.: !text generates symbolic text representations

69

4. General Principles

The operator (illustrate in Figure 4.21 is used to create a representation of text of a
given type and possibly further specified by the additional parameters.

4.6.5. Dynamic Subtask Expansion

(:operator (!dynamicTask ?educationalObjective ?contentIds)
()
()
()
)

Figure 4.22.: !dynamicTask enables dynamic subtask expansion

The operator in Figure 4.22 is used to achieve dynamic subtask expansion, i. e., to stop
the course generation process even though not all resources are selected and to continue
the process at a later time. The advantages of this stop-and-continue are described in
detail in Section 4.8; here I will only explain the technical realization.

Since dynamic subtask expansion is not implemented in jshop2’s planning algorithm,
it is simulated in Paigos in the following way: if a subtask t of a method is not to be
expanded, then t is given as parameter to the primitive task atom !dynamicTask. Since
the operator that performs this task atom has no preconditions, it can be performed
directly. When the operator is applied during plan execution, it creates a special element
called dynamic item. At a later time, when the course is presented to the learner and the
server that handles the presentation detects a dynamic item on the page, it passes the
associated dynamic task to the course generator. Then, the course generator assembles
the educational resources that achieve the task. In a final step, these resources replace
the dynamic item and are presented to the learner.

4.6.6. Accessing Information about Educational Resources

This section describes the call terms, i. e., the Java functions that Paigos uses to access
information about educational resources. As explained in Section 4.2, the course genera-
tor does not directly access the repositories in which the resources are stored but uses a
mediator.

GetResources The call term (GetResources (mediatorQuery)) returns the list of
identifiers of those educational resources that fulfill the given mediator query.

Example 4.15. The call term

(call GetResources ((class Exercise) (relation isFor def slope)))

returns the list of all exercises for the educational resource with the identifier def slope.

70

4.6. Basic Operators and Methods of the Course Generation Domain

(:- (typicalLearningTime ?id ?time)
((assign ?time (call GetMetadata typicalLearningTime ?id))))

Figure 4.23.: typicalLearningTime retrieves the typical learning time of a resource

GetMetadata The call term (GetMetadata property identifier) returns the value
of the given property of the educational resources with the given identifier.

In the current version of Paigos, GetMetadata is only used in the axiom displayed
in Figure 4.23. The axiom binds the variable ?time to the typical learning time of the
resource with the given identifier. This information is required for the scenario “exam
preparation”, which assembles a list of exercises that can be solved by the learner within
a specified time-frame.

GetRelated During course generation, it is often required to find educational resources
which are connected to a given resource by some relation. A typical example is to find
the prerequisites of a fundamental. In Paigos, the function GetRelated provides this
functionality: the call term (GetRelated startingSet distance relation) returns
a list of all identifiers of educational resources which are connected to the elements of
the starting set by the given relation up to the given distance. If the distance equals −1,
then the relation is followed without any limit. The returned list of identifiers is unsorted.
Note that this behavior is only reasonable for transitive relations. Paigos does not check
whether the given relation is transitive; this has to be ensured by the developer of the
pedagogical knowledge.

The relation is followed using the mediator. Therefore, the relation is evaluated from
the perspective of the resource to be tested, not from the resources in the starting set.
This may be confusing at first glance, since the relation seems to be “reversed”:

A

B

E

C D

G

F

Figure 4.24.: A graph illustrating dependencies between resources

Example 4.16. Let’s assume that the graph shown in Figure 4.24 illustrates the rela-
tionship requires between a set of fundamentals, e. g., A requires B. Then, (GetRelated
(A) 2 isRequiredBy) returns all fundamentals that are connected to A by the relation
requires up to a distance of two, which are the elements (E G C F B) (or in any other
permutation since the result is not sorted). (GetRelated (A E) 1 isRequiredBy) re-
turns the result (B E G F); (GetRelated (D) -1 requires) returns (A B C) (or any
other permutation).

71

4. General Principles

Sort Sorting a set of resources with respect to a given relation is done using the function
sort: the call term (Sort resources relation) returns the element of resources in
topological order, sorted with respect to the graph that spanned by the fundamentals as
nodes and the relations between the elements of resources as edges.

Example 4.17. Referring to the graph in Figure 4.24 (Sort (B D C A) isRequiredBy)
returns (A B C D); (Sort (C B E F G) isRequiredBy) can return (B C E F G), (B C
E G F), (E F G B C), or (E G F B C).

The implementation of GetRelated and Sort in Paigos allows for an additional fea-
ture: it is possible to annotate the relation with constraints about metadata. In order for
such an “extended” relation to hold between two resources, both resources have to fulfill
the metadata constraints. For instance, if the metadata constraint specifies a learning
context, then the two resources have to have this learning context. A list of constraints is
interpreted as a disjunction: any of the constraints need to hold for the extended relation
to hold.

1 (:method (insertWithVariantsIfReady! ?r ?resource)
2 (
3 (not (inserted ?r))
4 (readyAux ?r ?resource)
5 (learnerProperty hasEducationalLevel ?el)
6 (assign ?variants
7 (call GetRelated (?r) -1
8 (((class InstructionalObject)
9 (relation isVariantOf ?r)

10 (property hasLearningContext ?el)
11))))
12)
13 (
14 (!insertResource ?r)
15 (addInWorldStateAsInserted ?variants)
16)
17)

Figure 4.25.: !insertWithVariantsIfReady inserts a resource and all its variants

The method in Figure 4.25 illustrates the use of “extended” relations. The task atom
insertWithVariantsIfReady! serves to insert an auxiliary in a course and at the same
time to mark all its variants as inserted. The relation isVariantOf represents the fact
that two educational resources are almost equivalent and differ only in a minor aspect.
For instances, two exercises a and b are marked as being variants if they present the same
problem but a uses a graph in addition to the text. More often than not, only a either a
or b should be contained in a course.

The method works as follows: if the resource r given as parameter was not yet inserted
into the course (line 3) and the learner is ready to see r (line 4, readyAux is explained
in detail in Section 4.6.8), then all resources that are variants of r and of the adequate

72

4.6. Basic Operators and Methods of the Course Generation Domain

learning context (line 6–11) are bound to ?variants. Finally, r is inserted into the course
(line 14) and its variants are marked as inserted (line 15).

4.6.7. Axioms for Accessing the Learner Model

(:- (learnerProperty ?property ?value)
(
(user ?userId)
(assign ?value (call LearnerProperty ?userId ?property))
)

)

(:- (learnerProperty ?property ?r ?value)
(
(user ?userId)
(assign ?value (call LearnerProperty ?userId ?property ?r))
)

)

Figure 4.26.: learnerProperty accesses information about the learner

The axioms displayed in Figure 4.26 allow querying information stored in the learner
model. The queries are evaluated for the current user, whose identifier is stored in the
world state in the atom (user identifier). The upper axiom takes a property as input
and binds the variable ?value to the value stored in the learner model for this property
and for the user identified by ?userId. The lower axiom takes as additional input the
identifier of a resource. This allows querying information about the user with respect to
a given resource. Both axioms use the Java function LearnerProperty to connect the
course generator to the learner model.

Example 4.18. Let Eva be the identifier of the user for whom the course is currently
generated. Then, (learnerProperty hasEducationalLevel ?edlev) binds ?edlev to
the educational level of the learner, e. g., universityFirstYear for a first year university
student. (learnerProperty hasCompetencyLevel def slope ?cl) binds ?cl to the
current competency level that the learner has reached with respect to the fundamental
def slope, e. g., 3.

Identifier Description
hasEducationalLevel The current level of education (e. g., high school and uni-

versity first year) of the user
hasAllowedEducationalLevel The levels of education the user is able to handle
hasField The fields of interest of the user

Table 4.2.: Learner properties used during course generation

Tables 4.2 and 4.3 list the learner properties that can be used during course generation.
All the properties are based on the learner model that is currently used by Paigos,

73

4. General Principles

Identifier Description
hasAlreadySeen Whether the user has already seen the given resource

(true/false)
hasCompetencyLevel The agglomerated competency level of the learner
hasCompetencyArgue The competency level of the competency “argue” of

the learner
hasCompetencyCommunicate The competency level of the competency “communi-

cate” of the learner
hasCompetencyLanguage The competency level of the competency “language”

of the learner
hasCompetencyModel The competency level of the competency “model” of

the learner
hasCompetencyRepresent The competency level of the competency “repre-

sents” of the learner
hasCompetencySolve The competency level of the competency “solve” of

the learner
hasCompetencyThink The competency level of the competency “think” of

the learner
hasCompetencyTools The competency level of the competency “tools” of

the learner
hasAnxiety The anxiety the learner exhibits (experimental)
hasMotivation The motivation the learner exhibits (experimental)

Table 4.3.: Learner properties evaluated with respect to a resource

called slm. slm is based on the PISA competency framework (see Section 3.5). The slm
represents all information about the learner’s “mastery” and his anxiety and motivation
with respect to a fundamentals (Table 4.3). All values of the properties in Table 4.3 are
represented as a value between one and four, with one representing the lowest and four
the highest “mastery”, motivation, etc. The competence level can be further divided
with respect to specific mathematical competencies, such as “solve” and “model”. The
last two properties in Table 4.3 model situational factors, which are difficult to assess.7

At the time being, they are provisionally supported in Paigos.

A recurring problem for course generation is that information that is relevant for the
generation process is stored in different components, using different terminologies. This
problem motivated the development of the mediator for repository integration. A sim-
ilar problem arises for learner properties, because often the metadata used to annotate
the educational resources employs terms different from those used by the learner model.
Ideally, the repository mediator (or a different one) is able to handle the translation.
However, in the current implementation of Paigos, a set of axioms handles this neces-
sary translation. They are shown in Figure 4.27. The axioms specify that the symbols
elementary, simple conceptual, multi step, and complex (used in the metadata) cor-
respond to numerical values v with v ≤ 1, 1 < v ≤ 2, 2 < v ≤ 3, and v > 3, respectively.
In the current version of Paigos, these are the only cases which require a translation

7The learner model of LeActiveMath uses the user’s performance in exercise solving to estimate his
motivation and anxiety.

74

4.6. Basic Operators and Methods of the Course Generation Domain

(:- (equivalent ?cl elementary)
(call <= ?cl 1))

(:- (equivalent ?cl simple_conceptual)
((call > ?cl 1)
(call <= ?cl 2)))

(:- (equivalent ?cl multi_step)
((call > ?cl 2)
(call <= ?cl 3)))

(:- (equivalent ?cl complex)
(call > ?cl 3))

Figure 4.27.: Translating terms from the learner model to metadata

4.6.8. Processing Resources Depending on Learner Characteristics

The axioms and methods in this section infer information about resources and modify
the world state depending on characteristics of the learner.

(:- (known ?f)
(
(learnerProperty hasCompetencyLevel ?f ?cl)
(call >= ?cl 3)
)

)

Figure 4.28.: known tests whether the learner “knows” a concept

In the PISA competency framework, a learner who has reached a competency level
of three is able to perform extensive computations. The axiom shown in Figure 4.28
is satisfied if the learner has reached a competency level greater or equal to three with
respect to the given fundamental. In other words, the axiom checks whether the concept
is “known”.

Figure 4.29 contains axioms that are used to test whether all resources in a given list
are either known or were inserted into the course. The top axiom performs the test and,
if successful, the recursion step; and the bottom axiom ends the recursion.

In most cases, an auxiliary r (e. g., an example, text, and exercise) should be inserted
into a course only if the learner is prepared to understand it. In Paigos, such a test is
encoded in the axiom illustrated in Figure 4.30. In short, the axiom checks whether all
fundamentals that r is for are either known or were inserted into the course (in other
words whether an opportunity is provided to the learner to understand the necessary
fundamentals before he reaches r). What makes the matter complicated is the fact that
often a resource r is used relative to a specific fundamental f, e. g., when training f.
In this case, f should be excluded from the list of concepts that need to be known.

75

4. General Principles

(:- (allKnownOrInserted (?head . ?tail))
(
(or (inserted ?head) (known ?head))
(allKnownOrInserted ?tail)
)

)

(:- (allKnownOrInserted nil)
())

Figure 4.29.: allKnownOrInserted tests whether all resources in a given list are either
known or were inserted into the course

1 (:- (readyAux ?r ?f)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (removeElement ?result ?f
5 (call GetResources
6 ((class Fundamental)
7 (relation inverseIsFor ?r)
8 (property hasLearningContext ?el))))
9 (allKnownOrInserted ?result)

10 (allInserted (call GetResources
11 ((class Auxiliary)
12 (relation isRequiredBy ?r)
13 (property hasLearningContext ?el))))))

Figure 4.30.: The axiom readyAux tests whether the learner is ready to see an auxiliary

76

4.6. Basic Operators and Methods of the Course Generation Domain

Otherwise, the contradiction might arise that an auxiliary r should be used for learning
an unknown fundamental f, but r would never be presented since one of the fundamental
it is for (namely f) is unknown.

In detail, the axiom in Figure 4.30 works as follows: first, it retrieves the educational
level of the learner (line 3). Then, it collects all fundamentals that r is for, but removes
from this list the fundamental f given as a parameter (lines 4–8). Then the axiom checks
whether the remaining fundamentals are either known or were inserted into the course
(line 9). In addition, r should only be presented if all other auxiliaries it requires where
inserted before r (lines 10–13). If all conditions are fulfilled, then the auxiliary is classified
as being “ready” for the learner.

(:method (insertAuxOnceIfReady! ?r ?f)
(
(not (inserted ?r))
(readyAux ?r ?f)
)

((!insertResource ?r))
)

Figure 4.31.: insertAuxOnceIfReady! inserts an auxiliary if the learner is ready to see
it

The method displayed in Figure 4.31 uses the axiom readyAux to insert a given aux-
iliary if it wasn’t already inserted and the learner is “ready” for it (relative to the given
fundamental).

(:method (insertAllAuxOnceIfReady (?head . ?tail) ?resource)
()
(
(insertAuxOnceIfReady ?head ?resource)
(insertAllAuxOnceIfReady ?tail)
)

)

(:method (insertAllAuxOnceIfReady nil)
()
()
)

Figure 4.32.: insertAllAuxOnceIfReady inserts all references in a list if the learner is
ready

The methods shown in Figure 4.32 perform the same functionality, but on a list of
references. Each reference is inserted into the course if the learner is “ready” for it and
it was not yet inserted.

77

4. General Principles

1 (:- (removeKnownFundamentals ?result (?head . ?tail))
2 ((removeKnownFundamentalsH ?result nil ?head ?tail)))
3

4 (:- (removeKnownFundamentalsH ?result ?tempResult ?c ?tail)
5 (
6 (same ?c nil)
7 (assign ?result ?tempResult)
8)
9

10 (
11 (or (inserted ?c) (known ?c))
12 (first ?next ?tail)
13 (rest ?newRest ?tail)
14 (removeKnownFundamentalsH ?result ?tempResult ?next ?newRest)
15)
16

17 (
18 (first ?next ?tail)
19 (rest ?newRest ?tail)
20 (removeKnownFundamentalsH ?result (?c . ?tempResult) ?next ?newRest)
21)
22)

Figure 4.33.: removeKnownFundamentals removes from the given fundamentals those fun-
damentals the learner “knows”

78

4.6. Basic Operators and Methods of the Course Generation Domain

The axioms in Figure 4.33 remove all fundamentals from a given list of resources that
are either known by the learner or inserted into the course, and it binds the result to
the variable ?result. The helper axiom removeKnownFundamentalsH performs the main
work. The first preconditions (lines 6–7) represent the base case and end the recursion
if the list of left fundamentals is empty. The second preconditions (lines 11–14) check
whether the current fundamental is either inserted or known. In this case, the current
fundamental is discarded and the recursion continues with the rest of the fundamentals.
Otherwise, the current fundamental is neither known nor inserted and hence is put into
the result list (lines 18-21).

1 (:- (sortByAlreadySeen ?result ?list)
2 (sortByAlreadySeenh ?result ?list nil nil)
3)
4

5 (:- (sortByAlreadySeenh ?result ?list ?notSeen ?seen)
6 (
7 (same ?list nil)
8 (assign ?result (call Concat ?notSeen ?seen))
9)

10

11 (
12 (first ?current ?list)
13 (learnerProperty hasAlreadySeen ?current nil)
14 (rest ?tail ?list)
15 (sortByAlreadySeenh ?result ?tail (?current . ?notSeen) ?seen)
16)
17

18 (
19 (first ?current ?list)
20 (rest ?tail ?list)
21 (sortByAlreadySeenh ?result ?tail ?notSeen (?current . ?seen))
22)
23)

Figure 4.34.: sortByAlreadySeen partitions a list into unseen and seen resources

When resources are inserted into a course, often it is preferable to present new, previ-
ously unseen resources to the learner, and to show seen resources only if no new resources
are available. This is achieved by the axiom shown in Figure 4.34. There, the axiom
sortByAlreadySeen and a helper axiom partition the given list of resources into unseen
and seen resources. Finally, these two lists are concatenated and returned as a single list
in which unseen resources come first (lines 7–8). The preconditions in lines 12–15 use the
learner property hasAlreadySeen to access the learner model for the required informa-
tion. In case the resource was not yet seen, it is inserted into the first list. Otherwise it
is inserted into the second list (lines 19–21).

79

4. General Principles

4.6.9. Initializing and Manipulating Information about the Learning Goal

This section describes operators and methods that initialize a course generation problem
and provide means to manipulate its learning goals.

(:method (insertTargetFundamentals (?head . ?tail))
()
(
(!!addInWorldState (targetFundamental ?head))
(insertTargetFundamentals ?tail)
)
)

(:method (insertTargetFundamentals nil)
()
()
)

Figure 4.35.: insertTargetConcepts adds in the world state information about the con-
tent goals of a course

The methods in Figure 4.35 add the information in the world state that the fundamen-
tals in the list are the content learning goals of the current course. This is represented
by the task atom (targetFundamental fundamental).

1 (:method (generateCourse)
2 (
3 (goalTask (?pedObjective ?resources))
4 (learnerProperty hasEducationalLevel ?el)
5)
6 (
7 (!!addInWorldState (scenario ?pedObjective))
8 (insertTargetFundamentals ?resources)
9 (insertAndPlanGoal ?pedObjective ?resources)

10)
11)

Figure 4.36.: Initializing the world state

Figure 4.36 contains the method used to initialize the world state and start the course
generation. Basically, it takes the goal task that was given in the definition of the planning
problem (line 3) and breaks it up into its constituents, namely its pedagogical objective
(represented in the world state using the atom scenario, line 7) and its fundamentals,
which are inserted as target fundamentals using the methods of Figure 4.35 (line 8). The
final subtask of the method performs some additional processing, explained in the next
paragraph.

80

4.6. Basic Operators and Methods of the Course Generation Domain

1 (:method (insertAndPlanGoal ?pedObjective ?resources)
2 ((same ?pedObjective "guidedTour"))
3 ((guidedTour ?resources))
4 ...
5 ((same ?pedObjective "discover"))
6 ((discover ?resources))
7 ...
8 ((same ?pedObjective "trainCompetencyThink"))
9 (

10 (!!changeScenario trainCompetency)
11 (trainCompetency think ?resources)
12)
13 ...
14 ((same ?pedObjective "examSimulation30"))
15 (
16 (!!changeScenario "examSimulation")
17 (examSimulation 30 ?resources)
18)
19 ...
20)

Figure 4.37.: insertAndPlanGoal starts the course generation

The method in Figure 4.37 analyzes the pedagogical objective of the course and
starts the course generation. Technical issues with jshop2 require that the pedagog-
ical objective is provided in string format, therefore the method maps the string to
a task atom (e. g., lines 2–3 and 5–6). In addition, some pedagogical objectives are
decomposed into a different objective and additional parameters. For instance, the
tasks trainCompetencyThink and examSimulation30 are split into their main objective
(trainCompetency and examSimulation) and a parameter that indicates the specific
competency to train or the time allocated for the exam simulation (lines 10 and 16).
This requires changing the scenario (see the following operator).

Figure 4.37 only contains parts of the method: the actual method provides a set of
preconditions and subtasks for each “public” pedagogical task, i. e., for each task that
the course generator achieves as part of his service provision.

Changing the scenario is done using the operator !!changeScenario. It simply re-
moves the logical atom denoting the scenario and inserts a new one (see Figure 4.38).

The operator shown in Figure 4.39 inserts a logical atom in the world state that marks
the given task as achieved. After the application, the atom (achieved t) can be used
for detecting whether a task t was already achieved.

Sometimes it is required to extract all fundamentals from a given list that are not
the content goals of the course. This is done by the axioms shown in Figure 4.40.
getNonTargetFundamentals uses a helper axiom to recurse onto a list and to remove
all fundamentals that are content goals.

This completes the description of the axioms, operators and methods that serve as a
general basis for the course generation domain. Chapter 5 describes how they are used

81

4. General Principles

(:operator (!!changeScenario ?newScenario)
(;; precondition
(scenario ?oldScenario)
)
(;; delete list
(scenario ?oldScenario)
)
(;; add list
(scenario ?newScenario))
)

Figure 4.38.: !!changeScenario changes the scenario of the current course

(:operator (!!setAchieved ?task)
()
()
((achieved ?task))
)

Figure 4.39.: !!setAchieved marks a task as achieved

(:- (getNonTargetFundamentals ?result ?elements)
(getNTCH ?result (call Reverse ?elements) nil))

(:- (getNTCH ?result ?elements ?temp)
(
(same ?elements nil)
(assign ?result ?temp)
)

(
(first ?el ?elements)
(targetFundamental ?el)
(rest ?tail ?elements)
(getNTCH ?result ?tail ?temp))

(
(first ?el ?elements)
(rest ?tail ?elements)
(getNTCH ?result ?tail (?el . ?temp))
)

)

Figure 4.40.: getNonTargetFundamentals removes all content goals from a given list of
fundamentals

82

4.7. Converting a Plan into a Course

in course generation scenarios. The remainder of the current chapter will focus on how
to generate a course from a plan and novel features that become possible within Paigos.

4.7. Converting a Plan into a Course

After a plan is found, it is used to generate a course. This section describes the underlying
process.

Paigos represents courses using the element omgroup, which is an element from the
OMDoc standard, a semantic knowledge representation for mathematical documents
(Kohlhase, 2001; Kohlhase, 2006; Melis et al., 2003). The purpose of the omgroup element
is to represent collections of resources and is as such independent of the mathematical
domain. It can also be easily mapped/transformed into other data structures with similar
aims, such as ims cp.

An omgroup element has a simple structure; it consist of metadata information (e. g.,
the author and title of the element), references to other OMDoc elements, other omgroup
elements, and dynamic items that allow the dynamic inclusion of resources generated by
services.

Example 4.19. Figure 4.41 contains an excerpt from a plan generated by Paigos, assem-
bled for the task (discover (def diff def diff f thm diffrule sum)) (namespaces
are omitted in the example; the complete plan is contained in the appendix). The first
lines add the goal task information in the world state (lines 1–4). The following operators
start several new sections: for the overall course (lines 5–6, note that the section includes
the task for which the section was created), and then for the first section, which contains
an explanation for the overall goals of the course (line 7–9). This section is closed, and
new section begins, for the chapter on the first goal fundamental the “definition of the
derivative, resp., differential quotient” (def diff, line 10), and for the first page, the
necessary prerequisites (line 11). The page starts with a dynamically created text that
provides an explanation on the purpose of the section (line 12), followed by a references
to the prerequisites (lines 13–14). Dynamic tasks are inserted in line 20. When exe-
cuted, the task will result in a sequence of examples for the definition in this section (see
the next section). Another interesting case is line 24. There, a reference to a learning-
support service is inserted: an exercise sequencer, a component specialized in training
the learner. A different service, a concept mapping tool is shown in lines 29–31. The
final lines insert a reference to another learning-support service, an Open Learner Model
(olm) (line 59). The precise meaning of the parameters of these learning-support service
is not relevant for the purpose of this example, the important point is that they follow
the general scheme of containing the service name, method name, resource references,
and potentially additional parameters (as described in Section 4.6.3).

From a plan, a course represented as an omgroup is constructed in the following way:

• !startSection triggers the opening of an omgroup element. For the title genera-
tion, it uses the techniques described in section 4.9.4.

• !endSection inserts the closing tag of an omgroup element.

83

4. General Principles

1 (!!addInWorldState (scenario discover))

2 (!!addInWorldState (targetFundamental def_diff))

3 (!!addInWorldState (targetFundamental def_diff_f))

4 (!!addInWorldState (targetFundamental thm_diffrule_sum))

5 (!startSection Discover (def_diff def_diff_f thm_diffrule_sum)

6 (discover (def_diff def_diff_f thm_diffrule_sum)))

7 (!startSection Description (def_diff def_diff_f thm_diffrule_sum))

8 (!text discover.Description (def_diff def_diff_f thm_diffrule_sum))

9 (!endSection)

10 (!startSection Title (def_diff) (learnFundamentalDiscover (def_diff)))

11 (!startSection Prerequisites (def_diff) (learnPrerequisitesFundamentalsShortSection! (def_diff)))

12 (!text discover.Prerequisites (def_diff))

13 (!insertResource def_diff_quot_FOS)

14 (!insertResource def_informal_limit)

15 (!endSection)

16 (!startSection Title (def_diff) (developFundamental (def_diff)))

17 (!text discover.Develop (def_diff))

18 (!insertResource def_diff)

19 (!insertResource note_diff)

20 (!dynamicTask illustrate! (def_diff))

21 (!endSection)

22 (!startSection Exercises (def_diff) (practiceSection! (def_diff)))

23 (!text discover.Practice (def_diff))

24 (!insertLearningService ExerciseSequencer TrainCompetencyLevel (def_diff))

25 (!dynamicTask train! (def_diff))

26 (!endSection)

27 (!startSection Connections (def_diff) (showConnectionsSection! (def_diff)))

28 (!text discover.Connect (def_diff))

29 (!insertLearningService CMap display (def_diff) (includeEdge1 isRequiredBy

30 includeEdge2 isA includeEdge3 inverseIsA includeCategory1 Definition

31 includeCategory2 Law computeNeighbourNodes 1.0))

32 (!endSection)

33 (!endSection)

34 (!startSection Title (def_diff_f) (learnFundamentalDiscover (def_diff_f)))

35 (!startSection Introduction (def_diff_f) (introduceWithSection! (def_diff_f)))

36 (!text discover.Introduction (def_diff_f))

37 (!insertResource cluso_diff_hiking)

38 (!endSection)

39 (!startSection Title (def_diff_f) (developFundamental (def_diff_f)))

40 ...

41 (!endSection)

42 (!startSection Title (thm_diffrule_sum) (learnFundamentalDiscover (thm_diffrule_sum)))

43 ...

44 (!startSection Title (thm_diffrule_sum) (developFundamental (thm_diffrule_sum)))

45 (!text discover.Develop (thm_diffrule_sum))

46 (!insertResource thm_diffrule_sum)

47 (!dynamicTask illustrate! (thm_diffrule_sum))

48 (!endSection)

49 (!startSection Proof (thm_diffrule_sum) (proveSection! (thm_diffrule_sum)))

50 (!text discover.Proof (thm_diffrule_sum))

51 (!insertResource prf_diffrule_diff_applet)

52 (!insertResource prf_diffrule_sum_applet)

53 (!insertResource prf_diffrule_sum)

54 (!endSection)

55 ...

56 (!endSection)

57 (!startSection Reflection (def_diff def_diff_f thm_diffrule_sum)

58 (reflect (def_diff def_diff_f thm_diffrule_sum)))

59 (!insertLearningService OLM display (thm_diffrule_sum) (competencyId competency))

60 (!endSection)

61 (!endSection)

Figure 4.41.: Parts of a plan generated by the course generator

84

4.7. Converting a Plan into a Course

• !insertResource inserts the ref element that OMDoc uses for referencing to
resources.

• !insertLearningService inserts the dynamicItem element that is used to create
links to learning supporting services.

• !text inserts a dynamicItem element that serves as a symbolic representation for
text generation (see Section 4.9.2).

• !dynamicTask inserts a dynamicItem element that is used for dynamic task expan-
sion (see Section 4.6.5).

• Internal operators (marked with the prefix “!!”) serve jshop2’s internal bookkeep-
ing purposes and hence are ignored.

The following lines contain parts of the omgroup that is generated from the plan shown
in Figure 4.41. Due to xml’s verbosity, I included only the first and last section, the
complete course is contained in the appendix. The first metadata element (lines 4–
18) contains the title of the section in several languages (lines 5–6), the task of this
section (lines 7–13), and some administrative information (lines 14–17). Lines 24–28
contain the dynamic item from which at a later stage a text will be generated that
explains the purpose and structure of this course. Then, the section is closed, and a new
section containing the prerequisites is opened. Lines 53–54 contain the first references
to educational resources in the proper sense of course generation: these two resources
will be included on the page and shown to the learner. The OMDoc representation of a
dynamic task is shown in the lines 71–73, and the dynamic item representing the exercise
sequencer is contained in the lines 88–91.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <omdoc xmlns:omd="http://www.mathweb.org/omdoc">

3 <omgroup id="4">

4 <metadata>

5 <Title xml:lang="de">Begriffe kennenlernen</Title>

6 <Title xml:lang="en">Discover</Title>

7 <extradata>

8 <pedtask pedobj="discover">

9 <ref xref="def_diff" />

10 <ref xref="def_diff_f" />

11 <ref xref="thm_diffrule_sum" />

12 </pedtask>

13 </extradata>

14 <Creator xml:lang="en" role="edt">Activemath</Creator>

15 <Creator xml:lang="en" role="aut">N/A</Creator>

16 <Contributor xml:lang="en" role="trl">N/A</Contributor>

17 <Date xml:action="updated" xml:who="Activemath">2007-03-09T17:19:48</Date>

18 </metadata>

19 <omgroup>

20 <metadata>

21 <Title xml:lang="de">Überblick</Title>

22 <Title xml:lang="en">Overview</Title>

23 </metadata>

24 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Description">

25 <ref xref="def_diff" />

26 <ref xref="def_diff_f" />

27 <ref xref="thm_diffrule_sum" />

28 </dynamic-item>

85

4. General Principles

29 </omgroup>

30 <omgroup>

31 <metadata>

32 <Title xml:lang="de">Definition der Ableitung bzw. des Differentialquotienten</Title>

33 <Title xml:lang="en">Definition of the derivative, resp., differential quotient</Title>

34 <extradata>

35 <pedtask pedobj="learnFundamentalDiscover">

36 <ref xref="def_diff" />

37 </pedtask>

38 </extradata>

39 </metadata>

40 <omgroup>

41 <metadata>

42 <Title xml:lang="de">Vorwissen</Title>

43 <Title xml:lang="en">Prerequisites</Title>

44 <extradata>

45 <pedtask pedobj="learnPrerequisitesFundamentalsShortSection!">

46 <ref xref="def_diff" />

47 </pedtask>

48 </extradata>

49 </metadata>

50 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Prerequisites">

51 <ref xref="def_diff" />

52 </dynamic-item>

53 <ref xref="def_diff_quot_FOS" />

54 <ref xref="def_informal_limit" />

55 </omgroup>

56 <omgroup>

57 <metadata>

58 <Title xml:lang="de">Definition der Ableitung bzw. des Differentialquotienten</Title>

59 <Title xml:lang="en">Definition of the derivative, resp., differential quotient</Title>

60 <extradata>

61 <pedtask pedobj="developFundamental">

62 <ref xref="def_diff" />

63 </pedtask>

64 </extradata>

65 </metadata>

66 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Develop">

67 <ref xref="def_diff" />

68 </dynamic-item>

69 <ref xref="def_diff" />

70 <ref xref="note_diff" />

71 <dynamic-item type="dynamicTask" servicename="tutorialControl" queryname="illustrate!">

72 <ref xref="def_diff" />

73 </dynamic-item>

74 </omgroup>

75 <omgroup>

76 <metadata>

77 <Title xml:lang="de">Übungen</Title>

78 <Title xml:lang="en">Exercises</Title>

79 <extradata>

80 <pedtask pedobj="practiceSection!">

81 <ref xref="def_diff" />

82 </pedtask>

83 </extradata>

84 </metadata>

85 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Practice">

86 <ref xref="def_diff" />

87 </dynamic-item>

88 <dynamic-item type="learningService" servicename="ExerciseSequencer"

89 queryname="TrainCompetencyLevel">

90 <ref xref="def_diff" />

91 </dynamic-item>

92 <dynamic-item type="dynamicTask" servicename="tutorialControl" queryname="train!">

93 <ref xref="def_diff" />

86

4.7. Converting a Plan into a Course

94 </dynamic-item>

95 </omgroup>

96 <omgroup>

97 <metadata>

98 <Title xml:lang="de">Zusammenhänge</Title>

99 <Title xml:lang="en">Connections</Title>

100 <extradata>

101 <pedtask pedobj="showConnectionsSection!">

102 <ref xref="def_diff" />

103 </pedtask>

104 </extradata>

105 </metadata>

106 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Connect">

107 <ref xref="def_diff" />

108 </dynamic-item>

109 <dynamic-item type="learningService" servicename="CMap" queryname="display">

110 <ref xref="def_diff" />

111 <queryparam property="includeEdge1" value="isRequiredBy" />

112 <queryparam property="includeEdge2" value="isA" />

113 <queryparam property="includeEdge3" value="inverseIsA" />

114 <queryparam property="includeCategory1" value="Definition" />

115 <queryparam property="includeCategory2" value="Law" />

116 <queryparam property="computeNeighbourNodes" value="1.0" />

117 </dynamic-item>

118 </omgroup>

119 </omgroup>

120 ...

121 <omgroup>

122 <metadata>

123 <Title xml:lang="de">Rückblick</Title>

124 <Title xml:lang="en">Looking Back</Title>

125 <extradata>

126 <pedtask pedobj="reflect">

127 <ref xref="def_diff" />

128 <ref xref="def_diff_f" />

129 <ref xref="thm_diffrule_sum" />

130 </pedtask>

131 </extradata>

132 </metadata>

133 <dynamic-item type="learningService" servicename="OLM" queryname="display">

134 <ref xref="thm_diffrule_sum" />

135 <queryparam property="competencyId" value="competency" />

136 </dynamic-item>

137 </omgroup>

138 </omgroup>

139 </omdoc>

Therefore, the resulting OMDoc grouping consists of nested sections with the leaves
being pointers to educational resources. As described in Section 2.3.1, there exist several
e-learning standards that represent similar structures, the most prominent being ims cp,
ims ld, and ims ss.

ims ss with its explicit control of the navigation process imposes a rather behavioristic
pedagogical approach on the learning process, and thus might raise problems when em-
ployed in constructivist settings. On the other hand, ims ld describes ordered activities
in learning and the roles of the involved parties. It is a very broad approach, hard to
implement, and not well suited for representing courses down to the level of educational
resources. In contrast, the purpose of ims cp is the exchange of content and organiza-
tion of the content. Its organization element can be mapped directly to an OMDoc
omgroup element and vice versa, and the ims cp item element can represent references to

87

4. General Principles

Figure 4.42.: A course generated for the scenario “Discover”

content as well as to learning-supporting services. Therefore, ims cp is a sensible output
format of Paigos, and the Web service interface of Paigos (described in Section 6.3)
exports this format. Since the resulting course does not include the “physical” resources
themselves but only references, the output is not a complete content package, but only
its manifest.

Figure 4.42 shows what the course of Figure 4.41 looks like in a learning environment,
in this case ActiveMath. The shown page is the second page of the course, which
contains the prerequisites (only one of which is shown in the screenshot).

4.8. Generating Structure and Adaptivity: Dynamic Tasks

Course generation faces a dilemma: on the one hand it makes sense from a pedagogical
point of view to generate a complete course immediately after receiving the learner’s
request, instead of selecting and presenting one resource after another, as it is done in
dynamic content sequencing. The learner sees the complete sequence of content that
leads him toward his learning goal, how the content is structured and can freely navigate,
say, to have a look at the final fundamentals.

On the other hand, if a long time-span separates between the generation and viewing of
a page, assumptions about the learner made during course generation may have become
invalid, resulting in an inadequate course. Hence, if possible, the course generating should
be dynamic in the sense to use the most up-to-date information about the learner that
is available.

In AI, execution monitoring and replanning offers a framework that can cope with
situations in which assumptions made during planning can change while the plan is
executed. An execution monitor constantly monitors the current world state and if it

88

4.8. Generating Structure and Adaptivity: Dynamic Tasks

changes in a way that makes preconditions of an operator invalid, the execution monitor
triggers replanning, i. e., tries to find a different sequence of operators that achieve the
goal (Russell and Norvig, 2003, p. 441).

However, this framework cannot be applied to course generation as realized in Paigos.
Here, the plan is completely applied before the course is presented, in fact, applying
the plan produces the course. One alternative would be to keep the plan, to associate
a planning step with the parts of the course it creates, and to use some mechanism to
re-plan those parts affected by the changes in the world state. Some of these requirements
are already provided by Paigos, for instance, sections contain information about the task
context in which they were created. Yet, designing such a reactive planning algorithm
would be a rather complex task, especially since jshop2 does not provide any facilities
for it.

In this thesis, I propose a different solution for this problem of dynamic course gen-
eration, based on dynamic subtask expansion. In this solution, planning may stop at
the level of specially marked primitive tasks, called dynamic tasks. Each dynamic task
encloses a pedagogical task t and is inserted into the course instead of t. Since a dy-
namic task is primitive, it counts as directly achieved by its operator and is not further
expanded (see Section 4.6.5 for a description of the operators).

Later, a presentation time, when the learner first visits a page that contains a dynamic
task, the task t it encloses is passed to the course generator. Then, the course generator
assembles the sequence of resources that achieve t. The resulting identifiers of educational
resources replace the task in the course structure with specific instances of educational
resources (hence, when the page is revisited, the elements do not change, which avoids
confusion of the learner reported in De Bra 2000). This means a course is partly static,
partly dynamic, and thus the goal of presenting the complete course to the learner while
still being able to adapt is realized.

An important aspect of dynamic tasks is that they can be used by human “course
generators”, i. e., authors that manually compose courses: an author can define a course
where parts of the course are predefined and others dynamically computed, taking the
learner model into account. In this way, an author can profit from the best of both
worlds: she can compose parts of the course by hand and at the same time profit from
the adaptive features of the course generator.

The following example shows that the above described realization of dynamic tasks is
too simplistic:

Example 4.20. Let the current course contain references to the definition def slope
and the example exa slope, which is for def slope. Let d be a dynamic task that
selects an example for the given definition, t=(illustrate (def slope)). If the task is
planned for without any further restrictions, it might happen that the selected example
will be exa slope, and hence will be contained in the course twice. This would not
have happened if the course was generated in one shot since then the course generation
methods would have ensured that the selected example did not occur previously in the
course by testing against the word state.

As a consequence, dynamic task expansion needs to take the current course into ac-
count. The underlying algorithm uses a translation from a course, i. e., an omgroup ele-

89

4. General Principles

ment, to a world state: each reference to a resource r results in a logical atom (inserted
r), which is inserted into the world state the course generator is started with.

Dynamic task expansion offers an additional benefit: since the course generation stops
at a higher level and does not expand all subtasks, the planning process is much faster.
The technical evaluations in Section 7 show an increase of performance up to a factor of
ten.

4.9. Generation of Narrative Bridges and Structure

The courses generated by Paigos consist of structured sequences of references to educa-
tional resources. The same resource can be used in a multitude of courses and support
the achievement of various learning goals. This re-use of educational resources imposes
constraints on their content: in comparison to a standard textbook, absolute references
to previous or latter content have to be avoided, because it is impossible to tell in ad-
vance whether the referenced educational resources will be presented at all and at which
positions they will be presented. For the same reason, authoring introductions to a
course or summaries is difficult: at authoring time, the educational resources contained
in a particular course are unknown. But introductions, summaries and similar texts have
pedagogical purposes that is relevant for a successful learning process, and which a simple
sequence of educational resources lacks. Yet, during course generation information about
the current learning goals and the used educational resources is available. In this section,
I will show how to use that information in order to extend a sequence of educational
resources with bridging texts that provide supportive information about a course to a
learner.

The bridging texts we will discuss here serve the following purposes: firstly, they
explain the purpose of a course or a section at a higher level of abstraction than the
level of educational resources. Because they make the structure of a course explicit, they
provide cues that the learners can use to structure their own learning process. Secondly,
they serve to improve the coherence and the readability of a course. By providing texts
that link different sections, they provide coherence that a mere sequence of educational
resources might lack.

This section starts with empirical findings that provide evidence for the need of bridging
texts. Then, the realization of bridging texts is described from the perspective of the
course generation planner, which generates symbolic representations of bridging texts.
These representations can be transformed into text in many ways, depending on the
learning environment the course is used in (an example implementation is described in
the chapter about integration, in Section 6.2.5). The final part of this section explains
how additional structural information is provided through the generation of section titles.

4.9.1. Empirical Findings

Empirical studies suggest that learning of fundamentals can be improved by referencing
other content and by providing explanations of the content to come on a higher level of
abstraction. A well-known support technique for learning are advance organizers:

[Advance] organizers are introduced in advance of learning itself, and are also

90

4.9. Generation of Narrative Bridges and Structure

presented at a higher level of abstraction, generality, and inclusiveness; and
since the substantive content of a given organizer or series of organizers is
selected on the basis of its suitability for explaining, integrating, and inter-
relating the material they precede, this strategy simultaneously satisfies the
substantive as well as the programming criteria for enhancing the organization
strength of cognitive structure. (Ausubel, 1963, p. 81).

Cognitive learning theories (as opposed to the behavioristic information transmission
paradigm), provide additional support for the relevance of properly preparing the stu-
dent’s mind. According to Mayer (2001), multimedia learning needs to consider the
following:

1. selection of the important information in the lesson (for instance by providing
overviews and summaries);

2. management of the limited capacity in working memory to allow the rehearsal
needed for learning (for instance by providing structure such that chunks take up
less space in working memory);

3. integration of auditory and visual sensory information in working memory with
existing knowledge in long-term memory by way of rehearsal in working memory.
This includes constructing a knowledge structure in the mind.

4. retrieval of knowledge and skills from long-term memory into working memory when
needed later (which can be supported by providing a clear structure).

5. management of all these processes via meta-cogntive skills, which includes the skill
of a learner of being able to structure the learning process on his own.

In Paigos, the goal of narrative bridges is to augment the dynamically generated
courses with texts that set the student’s mind (similar to an advanced organizer), sup-
port the students’s understanding of the structure and of the learning goals, and make
transitions between educational resources smoother.

The literature provides evidence that bridging texts should be concisely formulated.
Summarizing research in user interface design, Nielsen (1994) suggests that ”[d]ialogues
should not contain information which is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant units of information and diminishes
their relative visibility”. Similarly, Shneiderman and Plaisant (2004) argues to reduce
short-term memory load: “[t]he limitation of human information processing in short-
term memory requires that displays be kept simple, multiple page displays be consolidated
. . . ”. The importance of reducing the cognitive load also stressed by Kearlsey (1988) in
the domain of hypertext technology. Additional evidence for the importance of concise
texts is provided by research on feedback: van der Linden (1993) analyzed the usage
of feedback texts during problem solving and reached the conclusion that “[f]eedback of
more than three lines was hardly ever read to the end”.

The results of these studies are taken into account for the generation of bridging texts
in Paigos. The generation of bridging texts happens as follows.

91

4. General Principles

1. During the course generation, specific methods trigger the application of operators.
The instantiated operators encode sufficient information for a later text generation.

2. The resulting plan serves as the basis to generate a table of contents. The informa-
tion contained in the operator applications of the previous stage is used to create
symbolic representations. Stage 1 and 2 are described below.

3. The final stage uses the symbolic representation to generate text. This is “outside”
the course generator and part of the learning environment the course is presented in.
An exemplary realization in ActiveMath is described in the chapter on integration
in Section 6.2.5.

4.9.2. Operator and Methods for Text Generation

One goal of the narrative bridges is to convey to the learner the structure of a course and
the purpose of the educational resources contained in a page. Therefore, the texts are
inserted at the level of pages. However, course generation aims at avoiding duplication
of educational knowledge as far as possible and to reuse existing knowledge, and thus
different scenarios use partly the same, partly different methods and operators. Therefore,
in different scenarios, the same methods may serve to achieve different goals. For instance,
the example selection in the scenario discover is done by the same methods as in the
scenario rehearse. Yet, the examples serve different purposes: in the former case, the
examples are used to provide illustrative applications of a new fundamental; in the latter
case, they are used to remind the learner how to apply the fundamental. As a consequence,
the respective bridging texts should differ, depending on the scenario.

1 (:operator (!text ?type ?parameters)
2 ()
3 ()
4 ()
5)
6

7 (:method (text ?type ?parameters)
8 ((scenario ?var))
9 ((!text (call Concat ?var "." ?type) ?parameters))

10)

Figure 4.43.: !text and text generate symbolic text representations

The operator !text (the upper operator in Figure 4.43, it was briefly described earlier)
encodes the information later used to create a symbolic representation of a bridging text.
This operator has no preconditions, delete and add lists. Thus, it can always be applied
and does not modify the planning world state. The variables in the head are used to
specify the type of text (which consists of the current scenario and the specific type of
bridging text) and ?parameters stands for a list of terms that can provide additional
information. In the current implementation of Paigos, these are the identifiers of the
fundamentals currently in focus.

92

4.9. Generation of Narrative Bridges and Structure

(:method (descriptionScenarioSection ?parameters)
MethodDescriptionScenarioSection
()
((!startSection Description ?parameters)
(text Description ?parameters)
(!endSection)
)

)

Figure 4.44.: descriptionScenarioSection inserts descriptions of scenarios

The method displayed in Figure 4.44 serves to generate descriptions of scenarios. In
the current version of Paigos, these description are encapsulated in their own section
and the method provides a convenient abbreviation to keep other methods less cluttered.

Example 4.21. The following operator instance triggers the generation of a symbolic
representation of a text that is an introduction for a section about the “definition of
the derivative quotient” in the scenario discover: (!text discover.introduction
(def diff)).

This operator requires to provide the scenario name in the variable ?type. However,
because most of the time the scenario will not change during course generation (the
exceptions will be explained in the next chapter), things can be simplified. The second
method in Figure 4.43 wraps the call of the operator and automatically inserts the scenario
name (line 8), thereby simplifying methods that use text generation.

Example 4.22. The following method illustrates the creation of a bridging text. The
method adds a new section that introduces a fundamental. The section consists of an
explanatory bridging text (highlighted), a motivation and potentially some introductory
examples. The above method is applicable to the highlighted task.

(:method (introduceWithSection! ?c)
;; preconditions
()
;; subtasks
(;; Start a new section for the motivation
(!startSection Introduction (?c))
(text introduction (?c))
(motivate! ?c)
(introductionExamplify ?c)
(!endSection)
)
)

Example 4.23. The application of the method MethodText on the following task during
the scenario discover results in the task shown in Example 4.21.

(introduceWithSection! (def diff))

93

4. General Principles

In some cases, a more precise control of the type of generated texts is needed. Meth-
ods can achieve this by using the operator !!changeScenario to modify the atom that
represents the scenario. This gives methods the possibility to control the texts that will
be generated. Take, e. g., the scenario rehearse in which two different sections present
a sequence of examples. The first example section serves to remind the learner how to
apply the fundamental. The second section, placed after an exercise section, provides
additional examples. Consequently, even if both times the task is the same, namely
(text illustrate termlist), the texts have to be different, which can be achieved by
changing the scenario.

4.9.3. Symbolic Representations of Dynamic Text Items

<dynamic-item
type="text" servicename="NLGGenerator" queryname="scenario.type ">
<ref xref="id 1 " />
...
<ref xref="id n " />

</dynamic-item>

Figure 4.45.: A schema of dynamic items for bridging texts

After a plan was found, its operators are applied and generate a table of contents.
The entries for bridging texts are realized by dynamic items. Figure 4.45 contains a
schema of a dynamic item for texts. The actual application replaces scenario , type
and id 1,...,id n with the terms that instantiate the variables of the head of the
operator, which are ?scenario, type and ?parameters =id 1,...,id n , respectively.
The dynamic items serve as the symbolic representation needed for text generation.

Example 4.24. The dynamic item created by the task of Example 4.21 looks as follows:

<dynamic-item
type="text" servicename="NLGGenerator" queryname="discover.introduction">
<ref xref="def_diff"/>

</dynamic-item>

In Section 6.2.5, I will describe how texts are be generated from these symbolic repre-
sentations.

4.9.4. Generation of Structure Information

The course generator generates a hierarchically structured course that consists of nested
sections. Each section requires a title that is used for referencing and displayed when
the course is presented to the learner. Ideally, a title concisely indicates the content and
purpose of the section it describes. This way, it can provide to the learner an overview
on the structure of a course.

The generation of section titles follows the pattern of bridging texts generation: the
methods that add tasks for creating new sections “know” the learning goals to be achieved
within a section and include this information into the tasks.

94

4.9. Generation of Narrative Bridges and Structure

(:operator (!startSection ?type)
()
()
()
)

(:operator (!startSection ?type ?parameters)
()
()
()
)

(:operator (!startSection ?type ?parameters ?task)
()
()
()
)

(:operator (!endSection)
()
()
()
)

Figure 4.46.: !startSection and !endSection create structure

95

4. General Principles

text.NLGGenerator.Title.Introduction=Introduction
text.NLGGenerator.Title.Exercises=Exercises
text.NLGGenerator.Title.Examples=Examples
text.NLGGenerator.Title.Connections=Connections
text.NLGGenerator.Title.Reflection=Looking Back
text.NLGGenerator.Title.Prerequisites=Prerequisites

Figure 4.47.: A selection of phrases for title generation

The three upper operators in Figure 4.46 (repeated from Section 4.6.2) start a new
section. Since they do not have preconditions, they can always be applied. The variables
in the head specify the type of the title and additional parameters, such as the identifiers
of the fundamentals presented in the section.

Example 4.25. The following tasks are generated while planning a course for the fun-
damental “definition of the average slope between two points”:

(!startSection elementTitle (def_diff))
... some other tasks ...
(!startSection Introduction (def_diff))
... some other tasks ...

In contrast to bridging texts, titles need to be generated during the plan application,
at the time the course is generated, rather than later by the learning environment that
presents the course, since the standards used for the representation of table of contents,
such as OMDoc or ims cp require the titles to be static character strings.

Paigos possesses a selection of phrases, i. e., a set of keywords and corresponding texts
(see Figure 4.47 for some examples). Each type of title corresponds to a phrase. At the
time the table of content is generated from the plan, the corresponding texts are inserted
as titles sections. If phrases are available in several languages, then a language specific
title is generated for each language. The result is a multi-lingual educational resource.
Which language is presented to the learner is determined by the learning management
system at presentation time.

The only exception is the text type elementTitle, whose parameters have to consist of
a list with only a single resource identifier. This text type uses the title of the referenced
educational resource for the generated title. Typically, it is used to convey that the nested
sections all refer to the same fundamental.

Example 4.26. The tasks in Example 4.25 results in the OMDoc table of contents
in Figure 4.48. The title of the first section uses the title of the referenced educational
resource as its own title (lines 5–6 in Figure 4.48). The title of the second section is taken
from the phrases (line 12). Figure 4.49 shows a html rendering of a table of contents.

4.10. Summary

This chapter laid the foundations of Paigos and described the AI techniques used in this
thesis: ontological modeling to represent the types of educational resources the course

96

4.10. Summary

1 <omgroup>
2 <metadata>
3 <Title xml:lang="de">Definition der Ableitung
4 bzw. des Differentialquotienten</Title>
5 <Title xml:lang="en">Definition of the derivative,
6 resp., differential quotient</Title>
7 ...
8 </metadata>
9 <omgroup>

10 <metadata>
11 <Title xml:lang="de">Vorwissen</Title>
12 <Title xml:lang="en">Prerequisites</Title>
13 ...
14 </metadata>
15 ...
16 </omgroup>
17 ...
18 </omgroup>

Figure 4.48.: Examples for generated section titles

Figure 4.49.: A table of contents with generated section titles

97

4. General Principles

generator reasons about, a mediator architecture and ontology mapping to access re-
sources distributed in distinct repositories, and HTN axioms, operators and methods
that provide a basic set of functionality to perform course generation. The following
chapter describes how these axioms, operators and methods are used for formalizing
several course generation scenarios.

98

5. Course Generation in Practice:
Formalized Scenarios

This chapter puts the general techniques described in Chapter 4 to use. I describe several
course generation scenarios: those in the first part of this chapter are based on a moderate
constructivist competency-based approach and were developed in close collaboration with
experts for mathematics education at the Mathematical Institute of Ludwig-Maximilians-
University Munich. The scenario in the second part of this chapter is based on guidelines
from instructional design.

To keep the following description in reasonable length, I will omit those methods and
operators that are only slight variations of other, previously explained methods.

5.1. Moderate Constructivist Competency-Based Scenarios

The work presented in this chapter was performed as part of the EU FP6 project Le-
ActiveMath, which developed an innovative, Web-based, intelligent, multi-lingual e-
learning system for mathematics. One central component of LeActiveMath is the
course generator described in this thesis. The pedagogical knowledge formalized in the
course generator was developed in cooperation with Marianne Moormann and Chris-
tian Groß, two members of the team of Prof. Reiss at the Mathematical Institute of
Ludwig-Maximilians-University Munich. We identified six different learning scenarios
that typically arise in a learning process. These scenarios were informally modeled using
diagrams and natural language. As an example, a diagram compiled for the scenario
“discover” is illustrated in Figure 5.1. The scenarios were modeled down to the level of
selection of educational resources. In a final step, these descriptions were formalized us-
ing the HTN framework. The resulting formalization is described in this chapter. I will,
however, start with a section discussing the underlying pedagogy and potential conflicts
with course generation.

5.1.1. Course Generation and Constructivism — a Contradiction?

The pedagogy underlying LeActiveMath is based on moderate constructivism. Hence,
learners have to play an active role and are to a large extent responsible for the outcome of
their learning process. As a result, the course generation scenarios do not implement the
knowledge “transmission” paradigm but aim at supporting the students in structuring
their learning activities and developing strategic competence. Therefore, the main goals of
the pedagogical strategies developed in LeActiveMath are that students are to become
autonomous and self-regulated learners.

In addition, the scenarios implement a competency-based approach. Competency-
based pedagogy claims that learning mathematics should not only aim at solving a prob-

99

5. Course Generation in Practice: Formalized Scenarios

reflection

connections & transfer

practice

develop concepts

introduction

call for OLM

�
�

�
�

?

theorems, lemmata, remarks

�
�

�
�

theorem’s proof

�
�

�
�

exercise1, exercise2, exercise3

�
�

�
�

?

example*

�
�

�
�

?

explanation

�
�

�
�

?

?

definition

�
�

�
�

?

?

motivation, problem,

�
�

�
�

?

examples*

�
�

�
�

?

prerequisites

�
�

�
�

Figure 5.1.: A diagram illustrating an informal modeling of the scenario “discover”

100

5.1. Moderate Constructivist Competency-Based Scenarios

lem but also at thinking mathematically and arguing about the correctness or incorrect-
ness of the problem solving steps and involved methods, to perform simple and complex
computations, etc.

In LeActiveMath, we identified six major learning goals and used them as a basis to
define the scenarios. They refer to typical learning phases, like introduction or practice
as described, e. g., by Zech (2002, p. 181ff). Each strategy determines the basic structure
of a course, for instance, by prescribing that the presentation of an example should follow
the presentation of a definition. The strategies are adaptive, that is, different resources
can be selected by taking information from the learner model into account, such as the
learner’s motivational state or his success in solving previous exercises.

Course generation selects, orders, and structures educational resources. Thus it per-
forms a range of activities that a learner might have performed on her own. Does this
contradict the constructivist paradigm that knowledge is and has to be constructed by
the individual? We argue that it does not: constructivism does not imply to drop the
learner in a labyrinth of educational resources and to let her find out a way on her own.
Instead, providing structure and selection as done by Paigos is beneficial to learning:

Studies show that students rarely develop explicit learning strategies on their own:
“[t]he majority of learners is (still) not prepared for this [learning with computer technol-
ogy]. Therefore an efficient self-guided usage of the offered learning opportunities cannot
take place” (Tergan, 2002, p. 110, translated by the author). He continues: “the first pos-
itive effects regarding the acquisition of knowledge are shown by learners with adequate
learning requirements (e.g., possessing previous knowledge, a good spatial sense, appro-
priate learning strategies)”. According to Tergan, disorientation and cognitive overload
are the principal obstacles of self-regulated learning in technology-supported learning.

In a related study, Prenzel et al. (2004) show that in particular low-achieving students
may benefit from content organized according to pedagogical principles, a finding that is
also supported by the PISA studies (OECD, 2004).

These studies provide evidence that students must learn to self-regulate their learning
process since most of them do not posses this skill. Consequently, providing structured
content is an important requirement for course generation since then the generated courses
provide examples of how to deal with the offered content. They show how the material
can be structured or ordered depending on the educational objectives.

It is important to note that although the content is pre-structured, the generated
courses do not impose any restrictions on the learner in contrast to ims ss. If the learn-
ing environment that presents the courses does not add limitations, then the learner is
never constrained in his navigation. Schulmeister (2002, p. 151–162) showed in his com-
prehensive meta-review that placing the locus of control in the hands of the learner is
one of the few measures in technology-supported learning that has repeatedly proven to
increase motivation.

In the following, I describe the different scenarios formalized in LeActiveMath. The
first two sections cover the selection of the exercises and examples, which is shared across
the different scenarios. Since all methods that select auxiliaries perform the selection
with respect to a fundamental f, I will often omit this fact from the description of the
methods.

101

5. Course Generation in Practice: Formalized Scenarios

5.1.2. Selecting Exercises

The methods presented in this section implement the pedagogical knowledge of selecting
exercises that are “appropriate” for the learner. The exact meaning of “appropriate”
differs depending on the individual learner. For instance, if he is highly motivated then
a slightly more difficult exercise might be selected.

The most relevant factors are the educational level of the learner1 and his current
competency level. In general, the learning context of an educational resource (of all
resources, not only exercises) should always correspond to the educational level of the
learner. Otherwise, it may be inadequate, e. g., either too simple or too difficult (e. g.,
think of a second year university student being presented a definition for elementary
school).

The competency level of a resource measures how far a specific competency has to be
developed by the student in order to solve/understand the particular exercise/example
with a certain probability. In most cases, resources presented to the learner should have a
competency level that corresponds to the learner’s since these are the resources he is able
to master with a high probability. In some situations resources with a higher competency
level need to be selected, e. g., when aiming at increasing the competency level.

Most of the following methods do not make use of the difficulty level of a resource. This
is caused by the competency-based approach in LeActiveMath. There, the competency
level takes precedence over the difficulty level, and the difficulty level allows differentiating
between resources at the same competency level, which is only rarely required in the
LeActiveMath scenarios.

5.1.2.1. Selecting Exercises for a Fundamental

The task that governs exercise selection is (trainWithSingleExercise! f) , which
triggers the insertion of an exercise for the fundamental f . All methods that formalize
the knowledge of how to select an exercise follow a same basic scheme, which I will explain
using the method in Figure 5.2. In short, the method specifies that if a learner is highly
motivated, then it inserts a subtask that selects an exercise of the next higher competency
level. This method is based on the strong positive correlation between motivation and
performance (Pintrich, 1999): with increasing motivation, performance increases, too
(and vice versa).

In the figure, lines 3–8 prepare the ground for selecting the exercise (all axioms and
operators used in the method were explained in Chapter 4). The first two lines (lines 3–4)
specify the condition under which the method can be applied, in this case, if the learner is
highly motivated. The axiom learnerProperty binds the current motivation represented
by a number between 1 and 4 to the variable ?m (line 3). The call expression in line 4
tests whether the ?m is greater or equal to 4.2 The following lines 5–8 collect information
about the learner used to specify the metadata constraint, i. e., the field of interest of
the learner (line 5), his educational level (line 6), and his competency level (lines 7–8).

1Recall that the learner has reached an “educational level”, while an educational resource was written
for a “learning context”. The values of both properties correspond, i. e., for each educational level
there exists the corresponding learning context.

2In theory, it would be sufficient to test whether ?m is equal to 4, the highest possible value. However,
due to technical reasons, it is necessary to test greater or equal.

102

5.1. Moderate Constructivist Competency-Based Scenarios

1 (:method (trainWithSingleExercise! ?c)
2 (;; preconditions
3 (learnerProperty hasMotivation ?c ?m)
4 (call >= ?m 4)
5 (learnerProperty hasField ?field)
6 (learnerProperty hasEducationalLevel ?el)
7 (learnerProperty hasCompetencyLevel ?c ?cl)
8 (equivalent (call + 1 ?cl) ?ex_cl)
9 (assign ?unsortedExercises

10 (call GetResources
11 ((class Exercise)
12 (relation isFor ?c)
13 (property hasLearningContext ?el)
14 (property hasCompetencyLevel ?ex_cl)
15 (property hasField ?field))))
16 (sortByAlreadySeen ?exercises ?unsortedExercises)
17 (assignIterator ?exercise ?exercises)
18)
19 (;; subtask
20 (insertWithVariantsIfReady! ?exercise ?c)
21)
22)

Figure 5.2.: Example of a method for trainWithSingleExercise

Since the competence level of a learner is given as a integer between 1 and 4, but the
metadata of the resources use keywords, the keyword that corresponds to the integer has
to be retrieved using an axiom (line 8). In addition, the integer value is increased by 1,
since the exercise should be of a higher competence level.3 The information collected up
to now is used to instantiate a mediator request. The request includes the constraints
that the resources have the type exercise (line 11) and that they are for f (line 12). In
lines 10–15, the request is sent to the mediator. If there exist any educational resources
that fulfill the constraint, then they are bound to the variable ?unsortedExercises in
line 9. Line 16 sorts the list and moves any not yet seen resources to the front of the
list. The axiom assignIterator causes to iterate through the list of exercises (line 17),
and the subtask of the method inserts the first exercise that the learner is ready to see
(line 20). If there is such an exercise, it is inserted and all its variants are marked as
inserted. Otherwise, if none of the exercises bound to ?exercises can be inserted or no
exercises was found at all, then the planning algorithm backtracks and applies the next
possible operator or method.

In the following explanations of methods, I will often show only those parts of the
methods that vary (besides the call to the mediator, which varies, too). As an example,
the relevant lines of the method of Figure 5.2 (lines 3–8) are shown in Figure 5.3.

The method in Figure 5.3 is the first method evaluated for the exercise selection trig-

3In case the learner has reached the highest competence level, increasing the value has no effect (as does
decreasing the competency level below 1.)

103

5. Course Generation in Practice: Formalized Scenarios

(learnerProperty hasMotivation ?c ?m)
(call >= ?m 4)
(learnerProperty hasField ?field)
(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent (call + 1 ?cl) ?ex_cl)

Figure 5.3.: Selecting an exercise, high motivation

1 (learnerProperty hasMotivation ?c ?m)
2 (call <= ?m 1)
3 (learnerProperty hasField ?field)
4 (learnerProperty hasEducationalLevel ?el)
5 (learnerProperty hasCompetencyLevel ?c ?cl)
6 (equivalent (call - ?cl 1) ?ex_cl)

Figure 5.4.: Selecting an exercise, low motivation

gered by the task trainWithSingleExercise!. The second method is illustrated in
Figure 5.4. In case the learner exhibits a low motivation (lines 1–2), then an exercise of
a lower competence level (lines 5–6) is presented if available.

(learnerProperty hasField ?field)
(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)

Figure 5.5.: Selecting an exercise, adequate competence level

Otherwise, the course generator tries to insert an exercise whose metadata corresponds
directly to the learner’s characteristics: if available, an exercise is selected that has the
learner’s field and corresponds to the learner’s educational and competency level (Fig-
ure 5.5). The subsequent methods relax the preconditions, starting by omitting the
constraint on the field value (see Figure 5.6).

If still no adequate exercise was found, the methods in Figure 5.7 and 5.8 search for
exercises on the next lower competency level, first with and then without the field con-
straint. The rationale is that it is better to present a exercise with a too low competency
level than one of a different learning context since resources from a different learning
context might be harder to understand than “easier” resources.

The next set of methods repeats the approach described in the methods illustrated in
Figures 5.3 to 5.8 but relax the constraint on the educational level. The learner property
hasAllowedEducationalLevel returns a list of all educational levels that the current
user is able to understand, besides his original one. For instance, resources for university
first year student are “allowed” for second year university students. The precise meaning

104

5.1. Moderate Constructivist Competency-Based Scenarios

(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)

Figure 5.6.: Selecting an exercise, any field

(learnerProperty hasField ?field)
(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent (call - ?cl 1) ?ex_cl)

Figure 5.7.: Selecting an exercise, lower competence level

(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent (call - ?cl 1) ?ex_cl)

Figure 5.8.: Selecting an exercise, lower competence level, any field

1 (learnerProperty hasField ?field)
2 (learnerProperty hasMotivation ?c ?m)
3 (call >= ?m 4)
4 (learnerProperty hasCompetencyLevel ?c ?cl)
5 (equivalent (call + 1 ?cl) ?ex_cl)
6 (learnerProperty hasAllowedEducationalLevel ?aels)
7 (assignIterator ?el ?aels)

Figure 5.9.: Selecting an exercise, high motivation, lower educational level

105

5. Course Generation in Practice: Formalized Scenarios

of this learner property is handled by the part of the learner model that stores the
learner’s preferences. Since these six methods are analogous to the above methods, only
one is displayed (see Figure 5.9). The difference to the previous methods is that the
lines 6–7 cause the method to iterate over all allowed educational levels: in case no suited
exercise is found for the first allowed educational level, then backtracking causes to try
the next one, until either an exercise could be inserted or backtracking leads to apply
the next method. However, no further methods for exercise selection that use the task
(trainWithSingleExercise! f) exist. Thus, if no exercise was found at this place,
then the task cannot be achieved.

5.1.2.2. Selecting Exercises for a Fundamental with Additional Constraints

1 (:method (trainWithSingleExercise! ?c ?difficulty ?competency)
2 (
3 (learnerProperty hasMotivation ?c ?m)
4 (call >= ?m 4)
5 (learnerProperty hasField ?field)
6 (learnerProperty hasEducationalLevel ?el)
7 (learnerProperty hasCompetencyLevel ?c ?cl)
8 (equivalent (call + 1 ?cl) ?ex_cl)
9 (assign ?unsortedExercises

10 (call GetResources
11 ((class Exercise)
12 (relation isFor ?c)
13 (property hasLearningContext ?el)
14 (property hasCompetencyLevel ?ex_cl)
15 (property hasField ?field)
16 (property hasDifficulty ?difficulty)
17 (property hasCompetency ?competency))))
18 (sortByAlreadySeen ?exercises ?unsortedExercises)
19 (assignIterator ?exercise ?exercises)
20)
21 (
22 (insertWithVariantsIfReady! ?exercise ?c)
23)
24)

Figure 5.10.: Selecting an exercise, for specific difficulty and competency

Sometimes it is necessary to search for exercises that are of a specific competency and
difficulty level. Hence, a set of methods equivalent to those described in the previous
section exists that adds constraints on difficulty and competency. A complete example
is shown in Figure 5.10. The displayed method is analogous to the method show in
Figure 5.2, but uses the values of difficulty and competency given as parameters to
further restrict the mediator query (lines 16–17). To keep the thesis within reasonable
length, I omit the remaining methods from the description.

106

5.1. Moderate Constructivist Competency-Based Scenarios

5.1.2.3. Least Constrained Exercise Selection

(:method (trainWithSingleExerciseRelaxed! ?competency ?c)
(
(learnerProperty hasAllowedEducationalLevel ?aels)
(learnerProperty hasEducationalLevel ?edl)
(assignIterator ?el (?edl . ?aels))
(assign ?unsortedExercises

(call GetResources
((class Exercise)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasCompetency ?competency))))

(sortByAlreadySeen ?exercises ?unsortedExercises)
(assignIterator ?exercise ?exercises)
)

(
(insertResourceOnce! ?exercise)
)

)

Figure 5.11.: Selecting an exercise, any competency level, applicable on trainWithSin-
gleExerciseRelaxed!

A method for least constrained exercise selection is shown in Figure 5.11. This method
is applicable on the task atom trainWithSingleExerciseRelaxed!. This task serves
as a fallback task in case none of the above methods could be applied but presenting
a potentially slightly inadequate exercise is preferred over presenting no exercise at all.
This method omits the constraint on the competency level and traverses all potential
educational levels. In addition, it does not check whether the learner is “ready” to
understand the exercise but directly inserts it if it was not already inserted (using the
task insertResourceOnce!).

5.1.2.4. Selecting a Sequence of Exercises that Covers All Competencies

Figure 5.12 contains parts of the method that selects a sequence of exercises. The
exercises cover all competencies as far as there exist adequate exercises for the competen-
cies. Thus, this method implements what Reinmann-Rothmeier and Mandl (2001) call
“learning in multiple contexts”: present new content in different application situations.

First, the method tests whether there exists a resource that will ensure that any of
its subtasks are achievable, otherwise the method is not applicable. Although this test
is not required technically speaking, it increases the efficiency of the course generation
process significantly. The planner will avoid attempting to expand the subtasks in case
none of them is achievable. If the method is applicable, the method inserts subtasks that
for each difficulty level and for each competency cause the insertion of an exercise if it
exists. In the figure, the lines 12–19 show the first set of tasks. For each competency, the

107

5. Course Generation in Practice: Formalized Scenarios

1 (:method (train! ?c)
2 MethodTrain!
3 (
4 (learnerProperty hasAllowedEducationalLevel ?aels)
5 (learnerProperty hasEducationalLevel ?edl)
6 (assignIterator ?el (?edl . ?aels))
7 (call GetResources
8 ((class Exercise)
9 (relation isFor ?c)

10 (property hasLearningContext ?el))))
11 (
12 (trainWithSingleExercise ?c very_easy think)
13 (trainWithSingleExercise ?c very_easy solve)
14 (trainWithSingleExercise ?c very_easy represent)
15 (trainWithSingleExercise ?c very_easy language)
16 (trainWithSingleExercise ?c very_easy model)
17 (trainWithSingleExercise ?c very_easy argue)
18 (trainWithSingleExercise ?c very_easy tools)
19 (trainWithSingleExercise ?c very_easy communicate)
20 ...
21 (trainWithSingleExerciseRelaxed ?c)
22)
23)

Figure 5.12.: Inserting a sequence of exercises

108

5.1. Moderate Constructivist Competency-Based Scenarios

subtasks try to insert a very easy exercise. This pattern is repeated for each difficulty
level (not shown in the figure). The preconditions of the method for the final subtask
(trainWithSingleExerciseRelaxed) correspond to the preconditions of this method.
In this manner, if the preconditions are fulfilled, then at least the final subtask of the
method can be achieved.

A previous version of the method did not include the final relaxed subtask. However, it
turned out that this imposed too hard constraints on the content. Often, no completely
adequate resource would exist and thus no exercises were presented at all. Thus, we
decided to add the relaxed subtask in this and similar methods, in order to present
at least some resources. The formative and summative evaluation investigated whether
this design decision had any negative impact on the learners’ opinion regarding resource
selection. This was not the case as the results discussed in Section 7 will show.

5.1.2.5. Selecting a Sequence of Exercises for a Specific Competency

(:method (practiceCompetency ?competency ?c)
(
(learnerProperty hasAllowedEducationalLevel ?aels)
(learnerProperty hasEducationalLevel ?edl)
(assignIterator ?el (?edl . ?aels))
(call GetResources
((class Exercise)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasCompetency ?competency)))

)
(
(trainWithSingleExercise ?c very_easy ?competency)
(trainWithSingleExercise ?c very_easy ?competency)
(trainWithSingleExercise ?c easy ?competency)
(trainWithSingleExercise ?c easy ?competency)
(trainWithSingleExercise ?c medium ?competency)
(trainWithSingleExercise ?c medium ?competency)
(trainWithSingleExercise ?c difficult ?competency)
(trainWithSingleExercise ?c difficult ?competency)
(trainWithSingleExercise ?c very_difficult ?competency)
(trainWithSingleExercise ?c very_difficult ?competency)
(trainWithSingleExerciseRelaxed ?competency ?c)
)

)

Figure 5.13.: Training a competency with increasing difficulty level

The task (practiceCompetency competency f) triggers the insertion of exercises that
train a specific competency competency for a given fundamental f . The method that
achieves the task is shown in Figure 5.13. Its precondition serves to test whether there
exists at least one exercise that fulfills one of the subtasks. If so, the method’s task

109

5. Course Generation in Practice: Formalized Scenarios

is decomposed into subtasks that try to insert exercises for the given competency with
increasing difficulty. The final subtasks guarantees that at least one exercise is inserted.

5.1.3. Selecting Examples

The example selection formalized in Paigos is very similar to the exercise selection. The
main difference is that the field of an example is considered as being more important than
in exercise selection: examples illustrate aspects of a fundamental and should, if possible,
use situations and provide context of the learner’s field of interest.

5.1.3.1. Selecting Examples for a Fundamental

1 (:method (illustrateWithSingleExample! ?c)
2 (
3 (learnerProperty hasField ?field)
4 (learnerProperty hasEducationalLevel ?el)
5 (learnerProperty hasCompetencyLevel ?c ?cl)
6 (equivalent ?cl ?ex_cl)
7 (assign ?unsortedExamples
8 (call GetResources
9 ((class Example)

10 (relation isFor ?c)
11 (property hasLearningContext ?el)
12 (property hasCompetencyLevel ?ex_cl)
13 (property hasField ?field))))
14 (sortByAlreadySeen ?examples ?unsortedExamples)
15 (assignIterator ?example ?examples)
16)
17 (
18 (insertWithVariantsIfReady! ?example ?c)
19)
20)

Figure 5.14.: Selecting an example for illustrateWithSingleExample!

(learnerProperty hasField ?field)
(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)

Figure 5.15.: Selecting an example, adequate field and competency level

The task that governs example selection is (illustrateWithSingleExample! f) . If
achieved, it triggers the insertion of an example for the fundamental f . The method in
Figure 5.14 is the first method that is applied when selecting an example and is applicable

110

5.1. Moderate Constructivist Competency-Based Scenarios

if there exists an example with a field that matches the field of the learner and a learning
context and competency level that corresponds to the learner’s educational level and
competency level (lines 3–6). Similar to the exercise selection, examples that the learner
has not yet seen are preferred (line 14). In the reminder of this section, I explain only
those parts of the methods that vary. For the method in Figure 5.14, these are the
lines 3–6, shown in Figure 5.15.

(learnerProperty hasField ?field)
(learnerProperty hasEducationalLevel ?el)

Figure 5.16.: Selecting an example, adequate field

The second method, shown in Figure 5.16 omits the constraint on the competency level
and tries to insert an example that has the field of the learner and corresponds to her
educational level.

(learnerProperty hasEducationalLevel ?el)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)

Figure 5.17.: Selecting an example, adequate competency level

If still no example was found, then the next method omits the constraint on the field,
but reintroduces the competency level (Figure 5.17).

(learnerProperty hasField ?field)
(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)
(learnerProperty hasAllowedEducationalLevel ?aels)
(assignIterator ?el ?aels)

Figure 5.18.: Selecting an example, adequate field and competency level, lower educa-
tional level

The methods in Figures 5.18–5.20 perform the same functionality as the first three
methods, but relax the constraint on the educational level by taking into account all
allowed educational levels.

5.1.3.2. Selecting Examples for a Fundamental with Additional Constraints

Analogous to the exercise selection, a second set of methods exists for the example
selection that adds constraints on difficulty and competency. Figure 5.21 shows the first
of these methods, which corresponds to the first method for general example selection

111

5. Course Generation in Practice: Formalized Scenarios

(learnerProperty hasField ?field)
(learnerProperty hasAllowedEducationalLevel ?aels)
(assignIterator ?el ?aels)

Figure 5.19.: Selecting an example, adequate field, lower educational level

(learnerProperty hasCompetencyLevel ?c ?cl)
(equivalent ?cl ?ex_cl)
(learnerProperty hasAllowedEducationalLevel ?aels)
(assignIterator ?el ?aels)

Figure 5.20.: Selecting an example, adequate competency level, lower educational level

1 (:method (illustrateWithSingleExample! ?c ?difficulty ?competency)
2 (;; preconditions
3 (learnerProperty hasField ?field)
4 (learnerProperty hasEducationalLevel ?el)
5 (learnerProperty hasCompetencyLevel ?c ?cl)
6 (equivalent ?cl ?ex_cl)
7 (assign ?unsortedExamples
8 (call GetResources
9 ((class Example)

10 (relation isFor ?c)
11 (property hasLearningContext ?el)
12 (property hasCompetencyLevel ?ex_cl)
13 (property hasField ?field)
14 (property hasDifficulty ?difficulty)
15 (property hasCompetency ?competency))))
16 (sortByAlreadySeen ?examples ?unsortedExamples)
17 (assignIterator ?example ?examples)
18)
19 (;; subtask
20 (insertWithVariantsIfReady! ?example ?c)
21)
22)

Figure 5.21.: Selecting an example, taking difficulty and competency into account

112

5.1. Moderate Constructivist Competency-Based Scenarios

shown in Figure 5.14, but extends the mediator query with values for difficulty and
competency (lines 14–15). The five other methods are not shown in this thesis.

5.1.3.3. Least Constrained Example Selection

(:method (illustrateWithSingleExampleRelaxed! ?c)
(
(learnerProperty hasAllowedEducationalLevel ?aels)
(learnerProperty hasEducationalLevel ?edl)
(assignIterator ?el (?edl . ?aels))
(assign ?unsortedExamples

(call GetResources
((class Example)
(relation isFor ?c)
(property hasLearningContext ?el))))

(sortByAlreadySeen ?examples ?unsortedExamples)
(assignIterator ?example ?examples)
)

(
(insertResourceOnce! ?example)
)

)

Figure 5.22.: Selecting an example, any competency level, applicable on illus-
trateWithSingleExampleRelaxed!

Figure 5.22 contains the fallback method used in case an example needs to be presented,
but none of the previous methods was successfully applied (task illustrateWithSingle-
ExampleRelaxed!). In order to be selected by the method, an example needs to have an
allowed learning context and must not yet been inserted in the course.

5.1.3.4. Selecting a Sequence of Examples that Covers All Competencies

The method illustrated in Figure 5.23 is applicable on the task illustrate! and
inserts a sequence of examples. It has the same structure as the method for exercise
selection shown in Figure 5.12: the preconditions test whether there exists at least one
example that can be inserted by one of the subtasks. If so, the method inserts subtasks
that for each difficulty level and for each competency try to insert an example (in the
figure, the pattern is only shown for the easiest difficulty level). The final subtask ensures
that at least a single example is inserted.

5.1.3.5. Selecting a Sequence of Examples for a Specific Competency

The task (illustrateCompetency! competency f) inserts a sequence of examples
that illustate the given competency competency of the given fundamental f . The method
applicable on this task is shown in Figure 5.24. Its precondition serves to test whether

113

5. Course Generation in Practice: Formalized Scenarios

(:method (illustrate! ?c)
(
(learnerProperty hasAllowedEducationalLevel ?aels)
(learnerProperty hasEducationalLevel ?edl)
(assignIterator ?el (?edl . ?aels))
(call GetResources

((class Example)
(relation isFor ?c)
(property hasLearningContext ?el))))

(
(illustrateWithSingleExample ?c very_easy think)
(illustrateWithSingleExample ?c very_easy solve)
(illustrateWithSingleExample ?c very_easy represent)
(illustrateWithSingleExample ?c very_easy language)
(illustrateWithSingleExample ?c very_easy model)
(illustrateWithSingleExample ?c very_easy argue)
(illustrateWithSingleExample ?c very_easy tools)
(illustrateWithSingleExample ?c very_easy communicate)
...
(illustrateWithSingleExampleRelaxed ?c)
)
)

Figure 5.23.: Inserting a sequence of examples

there exists at least one example that can fulfill one of the subtasks. If so, the task
is decomposed into subtasks that try to insert examples for the given competency with
increasing difficulty. The final subtask guarantees that at least one example is inserted.

In the following sections, I describe the formalization of the six scenarios developed
in LeActiveMath. Each scenario is explained in a top-down manner, starting with
the goal task of the scenario and then gradually diving into the hierarchy of tasks and
subtasks.

5.1.4. Scenario “Discover”

The scenario “discover” generates courses that contain those educational resources that
support the learner in reaching an in-depth understanding of the fundamentals given in
the goal task. The course includes the prerequisites fundamentals that are unknown to the
learner. It also provides the learner with several opportunities to use learning-supporting
services.

The basic structure of the scenario follows the course of action in a classroom as
described by Zech (2002), which consists of several stages that typically occur when
learning a new fundamental. For each stage, the course contains a corresponding section.
The following sections are created:

Description The course starts with a description of its aim and structure. Then, for each
fundamental given in the goal task, the following sections are created.

114

5.1. Moderate Constructivist Competency-Based Scenarios

(:method (illustrateCompetency! ?competency ?c)
(
(learnerProperty hasAllowedEducationalLevel ?aels)
(learnerProperty hasEducationalLevel ?edl)
(assignIterator ?el (?edl . ?aels))
(call GetResources
((class Example)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasCompetency ?competency)))

)
(
(illustrateWithSingleExample ?c very_easy ?competency)
(illustrateWithSingleExample ?c very_easy ?competency)
(illustrateWithSingleExample ?c easy ?competency)
(illustrateWithSingleExample ?c easy ?competency)
(illustrateWithSingleExample ?c medium ?competency)
(illustrateWithSingleExample ?c medium ?competency)
(illustrateWithSingleExample ?c difficult ?competency)
(illustrateWithSingleExample ?c difficult ?competency)
(illustrateWithSingleExample ?c very_difficult ?competency)
(illustrateWithSingleExample ?c very_difficult ?competency)
(illustrateWithSingleExampleRelaxed ?competency ?c)
)

)

Figure 5.24.: Illustrating a competency with increasing difficulty level

115

5. Course Generation in Practice: Formalized Scenarios

Introduction This section motivates the usefulness of the fundamental using adequate
auxiliaries (for all stages, the precise meaning of an “adequate” educational re-
sources is explained in the formalized methods below). It also contains the unknown
prerequisites.

Develop This section presents the fundamental and illustrates how it can be applied.

Proof For some fundamentals, proofs, or more general, evidence supporting the funda-
mentals is presented.

Practice This section provides opportunities to train the fundamental.

Connect This section illustrates the connections between the current fundamental and
related fundamentals.

Reflection Each course closes with a reflection section, which provides the learner with
opportunity to reflect on what he has learned in the course.

5.1.4.1. Top-Level Decomposition of “Discover”

1 (:method (discover ?fundamentals)
2 ((goalTask ?task))
3 (
4 (!startSection Discover ?fundamentals (discover ?fundamentals))
5 (descriptionScenarioSection ?fundamentals)
6 (learnFundamentalsDiscover ?fundamentals)
7 (reflect ?fundamentals)
8 (!endSection)
9)

10)
11

12 (:method (learnFundamentalDiscover ?c)
13 ()
14 (
15 (!startSection Title (?c) (learnFundamentalDiscover (?c)))
16 (introduceWithPrereqSection ?c)
17 (developFundamental ?c)
18 (proveSection ?c)
19 (practiceSection ?c)
20 (showConnectionsSection ?c)
21 (!endSection)
22)
23)

Figure 5.25.: Top-level decomposition in the scenario “discover”

The two methods illustrated in Figure 5.25 start the generation of a course for the
scenario “discover”. The upper method decomposes the task (discover f) into five
sub-tasks. First, a new section is started, in this case the course itself (line 4). Then, a

116

5.1. Moderate Constructivist Competency-Based Scenarios

description about the course’s aims and structure is inserted (line 5). The third subtask
triggers a method that recursively inserts the task (learnFundamentalDiscover g) for
each identifier g in the list of identifiers bound to ?fundamentals. The last two subtasks
insert the reflection section and close the course.

The methods that insert the tasks (learnFundamentalDiscover g) for each funda-
mental g are not shown in the figure since they follow the schema illustrated previously
in other methods: one method recursively inserts the task for each element in the list,
and a second method ends the recursion if the list becomes empty (the base case).

For each fundamental g, a task (learnFundamentalDiscover g) is created. The
bottom method in Figure 5.25 decomposes the task into subtasks which closely resemble
the structure of the scenario as described in the previous section. They will be discussed
in the following.

5.1.4.2. Section “Introduction”

(:method (introduceWithPrereqSection! ?c)
()
((introduceWithSection! ?c)
(learnPrerequisitesFundamentalsShortSection! ?c)))

Figure 5.26.: introduceWithPrereqSection generates an introduction that includes pre-
requisites

An introduction of a fundamental f in the scenario “discover” consists of a section
that contains one or several educational resources that introduce f and of a section that
contains the prerequisite fundamentals that the learner needs to see. The method in
Figure 5.26 displays the method for the critical task. As explained earlier, for each
critical task there exists an optional task and the corresponding methods. Due to space
reasons, they are not shown here.

(:method (introduceWithSection! ?c)
()
(
(!startSection Introduction (?c) (introduceWithSection! (?c)))
(text Introduction (?c))
(motivate! ?c)
(problem! ?c)
(insertIntroductionExample! ?c)
(!endSection)
)

)

Figure 5.27.: introduceWithSection! generates an introduction

117

5. Course Generation in Practice: Formalized Scenarios

The resources that introduce a fundamental f are determined by the method in Fig-
ure 5.27. The method starts a new section and inserts a text that explains the purpose
of the section. The following three tasks try to insert several resources: a resource that
motivates the fundamental f, a resource that provides a real-world-problem involving f,
and an example that illustrates the application of f.

1 (:method (problem! ?c)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (assignIterator ?r (call GetResources
5 ((class RealWorldProblem)
6 (relation isFor ?c)
7 (property hasLearningContext ?el)))))
8 (
9 (insertResourceOnce! ?r)

10)
11)

Figure 5.28.: problem! selects a real-world-problem

Figure 5.28 contains the method responsible for the selection of a real-world-problem.
(task (problem! f)). It retrieves all resources that are of type RealWorldProblem
(lines 4–7) and inserts the first one not already inserted (line 9). An analogous method
exists that takes all allowed educational levels into account.

5.1.4.3. Motivating a Fundamental

(:method (motivate! ?c)
(
(learnerProperty hasAnxiety ?c ?an)
(call <= ?an 2)
(learnerProperty hasEducationalLevel ?el)
(assignIterator ?r (call GetResources

((class Exercise)
(class Introduction)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasDifficulty very_easy)))))

(
(insertAuxOnceIfReady! ?r ?c)
)
)

Figure 5.29.: Motivating a fundamental, no anxiety

118

5.1. Moderate Constructivist Competency-Based Scenarios

Several methods encode the knowledge how to catch the learner’s interest regarding
a fundamental. If the learner exhibits no fear of mathematics, then the method in Fig-
ure 5.29 tries to insert into the course a very easy exercise that is also an introduction
(an equivalent method exists for an easy exercise). The rationale is to provide a chal-
lenging but achievable exercise to the learner, which according to Lumsden (1994) fosters
motivation.

(:method (motivate! ?c)
()
((insertIntroductionExample! ?c)))

Figure 5.30.: Motivating a fundamental using an example

Otherwise or if no such exercises exist, the method in Figure 5.30 uses the task
(insertIntroductionExample! f) to insert an example as introduction. A specific
set of methods explained in the following section implements this functionality since
it is also required in other scenarios, in contrast to the introductory exercise selection
explained above.

(:method (motivate! ?c)
(
(learnerProperty hasEducationalLevel ?el)
(assignIterator ?r (call GetResources

((class Introduction)
(relation isFor ?c)
(property hasLearningContext ?el)))))

(
(insertAuxOnceIfReady! ?r ?c)
)

)

Figure 5.31.: Motivating a fundamental using an introduction

The method shown in Figure 5.31 searches for an educational resource that is an
introduction and inserts it if available. An equivalent method extends the educational
level to the allowed educational levels.

5.1.4.4. Using an Example as Introduction

The task of inserting an example as an introduction is performed by the method in
Figure 5.32. It inserts a very easy example which is also an introduction if available. Two
additional methods for the same task search for an easy and medium difficult example
(not shown).

119

5. Course Generation in Practice: Formalized Scenarios

(:method (insertIntroductionExample! ?c)
(
(learnerProperty hasEducationalLevel ?el)
(assignIterator ?r (call GetResources

((class Example)
(class Introduction)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasDifficulty very_easy))))

)
(
(insertAuxOnceIfReady! ?r ?c)
)
)

Figure 5.32.: Introducing a fundamental using an example

5.1.4.5. Inserting Prerequisites

1 (:- (collectUnknownPrereq ?c ?result)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (assign ?resources (call GetRelated (?c) -1
5 (((class Fundamental)
6 (relation isRequiredBy ?c)
7 (property hasLearningContext ?el)))))
8 (not (same ?resources nil))
9 (assign ?sorted (call Sort ?resources

10 (((class Fundamental)
11 (relation isRequiredBy ?c)
12 (property hasLearningContext ?el)))))
13 (removeKnownFundamentals ?reversedUnknown ?sorted)
14 (assign ?result (call Reverse ?reversedUnknown))
15)
16)

Figure 5.33.: collectUnknowPrerq collects all unknown prerequisites

In the scenario “discover”, all prerequisite fundamentals that are unknown to the
learner are presented on a single page. Thus the students easily distinguish between
the target fundamentals and the prerequisites.

The axiom shown in Figure 5.33 is used to retrieve the prerequisite fundamentals. In a
first step, all fundamentals that are required by the fundamental bound to ?c and whose
learning context corresponds to the educational level of the learner are collected using the
call term GetRelated (lines 4–7). In case some were found (line 8), they are sorted with re-
spect to the prerequisite relationship requires (lines 9–12). Finally, those fundamentals

120

5.1. Moderate Constructivist Competency-Based Scenarios

that are known to the learner are removed using the axiom removeKnownFundamentals
and the result is bound to the variable ?result.

1 (:method (learnPrerequisitesFundamentalsShort! ?c)
2 (
3 (collectUnknownPrereq ?c ?result)
4 (not (same ?result nil))
5)
6 ((insertAllResources ?result)))

Figure 5.34.: Inserting all unknown prerequisites

The axiom is used by the method shown in Figure 5.34. It first collects all unknown
fundamentals (in the precondition in line 3) and, if there are any, adds a task that inserts
them (line 6).

5.1.4.6. Section “Develop”

(:method (developFundamental ?c)
((learnerProperty hasCompetencyLevel ?c ?cl)
(call >= ?cl 3))

(
(!startSection Title (?c) (developFundamental (?c)))
(text Develop (?c))
(!insertResource ?c)
(illustrateWithSingleExample ?c)
(!endSection)
)

()
(
(!startSection Title (?c) (developFundamental (?c)))
(text Develop (?c))
(!insertResource ?c)
(explain ?c)
(!dynamicTask illustrate! (?c))
(!endSection)
)

)

Figure 5.35.: Developing a fundamental

The section “develop” presents the fundamental, together with auxiliaries that help the
learner to understand it. Figure 5.35 shows the corresponding method. Both precondi-
tion-subtask pairs start a new section, include a text that explains the purpose of the
section and insert the fundamental the section is about. In case the learner exhibits a

121

5. Course Generation in Practice: Formalized Scenarios

high competency level (tested in the first precondition), a single example illustrates the
fundamental. Otherwise, the learner does not exhibit a high competency level, and first
a text explaining the fundamental is inserted, followed by several examples that aim at
providing the learner with a first understanding of the fundamental. The example inser-
tion uses the dynamic task (!dynamicTask illustrate! (?c)): the planning process
does not expand this subtask, hence the specific examples are selected at a later time.
The final subtask closes the section.

(:method (explain! ?c)
(
(learnerProperty hasEducationalLevel ?el)
(assignIterator ?r (call GetResources

((class Remark)
(relation isFor ?c)
(property hasLearningContext ?el)))))

(
(insertAuxOnceIfReady! ?r ?c)
)
)

Figure 5.36.: Explaining a fundamental

The method shown in Figure 5.36 provides information about a fundamental by in-
serting an educational resource of the type Remark. The fallback method that relaxes
the constraint on the educational level by considering all allowed educational levels is not
shown.

5.1.4.7. Section “Prove”

Proofs play an important role in mathematics and being able to prove is one aspect of
the competency “argue”. The methods in this section govern the insertion of proofs and
proof exercises. However, instead of inserting educational resources of type Proof, the
methods implement a more abstract approach and insert resources of type Evidence, the
superclass of Proof. This way, the pedagogical approach implemented in the methods
is also applicable to other areas than mathematics, e. g., physics, where demonstrations
and experiments play an important role.

Resources of the type Evidence are for resources of the type Law, including its sub-
classes Theorem and LawOfNature. In case the methods explained in this section are
applied on different subclasses of Fundamental than Law, they will fail, since the re-
quired resources will not exist (e. g., a proof for a definition). But still, the overall course
will be generated, since the task (prove! f) is embedded in an optional task.

In case the learner has a high competency “argue”, then she is able to find proofs or
establish evidence on her own. Thus, the method shown in Figure 5.37 does not insert an
evidence but an exercise for the competency “argue”. The preconditions of the method
check whether the learner has reached a high competency level for the competency argue
(lines 3–4). In that case, a proof exercise is selected, i. e., an exercise for the competency

122

5.1. Moderate Constructivist Competency-Based Scenarios

1 (:method (prove! ?c)
2 (
3 (learnerProperty hasCompetencyArgue ?c ?argue)
4 (call >= ?argue 3)
5 (learnerProperty hasEducationalLevel ?el)
6 (assignIterator ?exercise
7 (call GetResources
8 ((class Exercise)
9 (relation isFor ?c)

10 (property hasLearningContext ?el)
11 (property hasCompetency argue))))
12)
13 (
14 (insertAuxOnceIfReady! ?exercise ?c)
15)
16)

Figure 5.37.: Presenting a proof exercise

“argue”.
If the learner has not reached a high competency “argue”, then resources of the type

Evidence are inserted. In case more than a single evidence exists, the evidences are
inserted ordered by increasing abstractness using the representational type: visually ori-
ented evidence is presented first, followed by verbal, numeric, and symbolic evidence,
and finally evidence that is not annotated with a representational type (since one cannot
assume that all resources are annotated with this metadata). The evidences are followed
by exercises that train the competency “argue”.

Figure 5.38 shows parts of the method. Lines 5–10 retrieve evidences with a visual
representation type. In case there exist several evidences, there is often a preferred or-
der in which to show them to the learner. This order does not have to be induced by
the domain, but can be based on purely pedagogical considerations. Since Paigos does
not distinguish between pedagogical and domain dependencies (it was not necessary for
the formalized scenarios), both types of dependencies are represented using the relation
requires, which is used by Paigos to sort the evidences (lines 11–17). The precondi-
tions in lines 5–17 are repeated for each representational type (not included in the fig-
ure). Then, lines 19–32 collect and sort all existing evidences, thereby including evidence
without a representation value. Lines 33–34 remove the previously collected evidences,
thus keeping only evidences without a representation value. These five collected lists of
evidences (“visual”, “verbal”, “numeric”, “symbolic”, and no representation value) are
concatenated (line 35–38). The subtasks of the method insert the resulting list (line 42)
and proof exercises (line 43, the subtask will be explained in detail later).

5.1.4.8. Section “Practice”

The methods in the section “practice” insert a list of exercises that provide the learner
with opportunities to develop her own understanding of the fundamental, from a variety

123

5. Course Generation in Practice: Formalized Scenarios

1 (:method (prove! ?c)
2 MethodProveByProve!
3 (
4 (learnerProperty hasEducationalLevel ?edl)
5 (assign ?visualProofsUnsorted
6 (call GetResources
7 ((class Evidence)
8 (relation isFor ?c)
9 (property hasLearningContext ?edl)

10 (property hasRepresentationType visual))))
11 (assign ?visualProofs
12 (call Sort ?visualProofsUnsorted
13 (((class Evidence)
14 (relation isFor ?c)
15 (relation isRequiredBy ?visualProofs)
16 (property hasLearningContext ?edl)
17 (property hasRepresentationType visual)))))
18 ...
19 (assign ?allWithRep
20 (call Concat ?visualProofs ?verbalProofs
21 ?numericProofs ?symbolicProofs))
22 (assign ?allProofsUnsorted
23 (call GetResources
24 ((class Evidence)
25 (relation isFor ?c)
26 (property hasLearningContext ?edl))))
27 (assign ?allProofs
28 (call Sort ?allProofsUnsorted
29 (((class Evidence)
30 (relation isFor ?c)
31 (relation isRequiredBy ?allProofsUnsorted)
32 (property hasLearningContext ?edl)))))
33 (assign ?allProofsWithoutRep
34 (call Restrict ?allProofs ?allWithRep))
35 (assign ?all
36 (call Concat ?visualProofs ?verbalProofs
37 ?numericProofs ?symbolicProofs
38 ?allProofsWithoutRep))
39 (not (same nil ?all))
40)
41 (
42 (insertAllResources ?all)
43 (practiceCompetencyForAllFundamentals argue ?all)
44)
45)

Figure 5.38.: Presenting proofs

124

5.1. Moderate Constructivist Competency-Based Scenarios

of perspectives.

1 (:method (practiceSection! ?c)
2 MethodPracticeSection!
3 (
4 (learnerProperty hasAllowedEducationalLevel ?aels)
5 (learnerProperty hasEducationalLevel ?edl)
6 (assignIterator ?el (?edl . ?aels))
7 (call
8 GetResources
9 ((class Exercise)

10 (relation isFor ?c)
11 (property hasLearningContext ?el)))
12)
13 (
14 (!startSection Exercises (?c) (practiceSection! (?c)))
15 (text Practice (?c))
16 (!insertLearningService ExerciseSequencer TrainCompetencyLevel (?c))
17 (!dynamicTask train! (?c))
18 (!endSection)
19)
20)

Figure 5.39.: Training a fundamental

The method illustrated in Figure 5.39 creates a corresponding section. Note that the
result of the call term GetResource (lines 7–11) is not bound to a variable. Its only
purpose is to test whether there exists an exercise that can be inserted at a later time,
when the dynamic task is expanded. This test is performed for each allowed educational
level until matching resources are found. In case no resource was found for any educational
level, the method is not applicable and backtracking takes place. If this test would not
be performed, then it might happen that a dynamic task is inserted even if there are no
exercises that can fulfill it.

The subtasks of the method start the section and insert a text that explains the pur-
pose of the section (lines 14–15). Line 16 inserts a reference to a learning-supporting
service called exercise sequencer. An exercise sequencer leads the learner interactively
through a sequence of exercises until a terminating condition is reached, given by the
second parameter. In this case, the parameter TrainCompetencyLevel specifies that the
learner should reach the next higher competency level. Since some learners prefer not to
use the exercise sequencer, the following subtask, a dynamic task, triggers the insertion
of exercises (line 17, the task train! was explained in Section 5.1.2). Due to the pre-
conditions, it is certain that this subtask can be fulfilled. The final subtask closes the
section.

5.1.4.9. Section “Connect”

The section “connect” illustrates the connections between the current fundamental
and related fundamentals of type law (including theorems). Figure 5.40 contains the

125

5. Course Generation in Practice: Formalized Scenarios

1 (:method (showConnections! ?c)
2 ((learningServiceAvailable CMap))
3 ((showConnectionsByCMap! ?c))
4

5 ()
6 ((showConnectionsByTheoremWithProof! ?c))
7)

Figure 5.40.: Illustrating the connections of a fundamental to other fundamentals

corresponding method. If a concept mapping tool is available (tested in the precondition
in line 2), it is used for displaying the connections (the subtask in line 3). Otherwise, the
resources of the type law are inserted in the course.

1 (:method (showConnectionsByCMap! ?c)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (call GetResources ((class Law)
5 (relation requires ?c)
6 (property hasLearningContext ?el)))
7)
8 (
9 (text Connect (?c))

10 (!insertLearningService CMap display (?c)
11 (includeEdge1 isRequiredBy includeEdge2 isA
12 includeEdge3 inverseIsA includeCategory1 Definition
13 includeCategory2 Law computeNeighbourNodes 1))
14)
15)

Figure 5.41.: Illustrating connections using a concept mapping tool

The method in Figure 5.41 inserts the reference to a learning-support service of type
CMap, i. e., a concept mapping tool (lines 10–13). The tool displays a given fundamental
f and all fundamentals of the given type that are connected to f by the given relations.
The method is applicable only if there exist resources that can be displayed (tested in
lines 4–6).

In case a concept mapping tool is not available, the connections are made visible in the
course by inserting all laws that require the current fundamental (the upper method in
Figure 5.42, lines 4–7). The variables contain the word “Theorem” for historical reasons,
but of course include resources of the type law. Those laws that are target fundamentals
(line 8) and those that were already inserted (line 9) are excluded. The sorted laws are
then inserted in the course, together with explanations and evidence (the lower method
in Figure 5.42).

A similar method exists that is applicable on the task (showConnectionsTheorem f).
This method does not insert the subtask (prove ?theorem).

126

5.1. Moderate Constructivist Competency-Based Scenarios

1 (:method (showConnectionsByTheoremWithProof! ?c)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (assign ?allTheoremsH
5 (call GetResources ((class Law)
6 (relation requires ?c)
7 (property hasLearningContext ?el))))
8 (getNonTargetFundamentals ?allTheoremsHH ?allTheoremsH)
9 (getNonInserted ?allTheorems ?allTheoremsHH)

10 (assign ?sortedTheorems
11 (call Sort ?allTheorems
12 (((class Law)
13 (relation isRequiredBy allTheorems)
14 (property hasLearningContext ?el)))))
15 (not (same ?sortedTheorems nil))
16)
17 (
18 (text Connect (?c))
19 (showConnectionsTheoremsWithProof ?sortedTheorems)
20)
21)
22

23 (:method (showConnectionsTheoremWithProof ?theorem)
24 ()
25 ((insertResourceOnce! ?theorem)
26 (explain ?theorem)
27 (prove ?theorem)))

Figure 5.42.: Illustrating connections using theorems

127

5. Course Generation in Practice: Formalized Scenarios

5.1.4.10. Section “Reflect”

1 (:method (reflect ?fundamentals)
2 ((learningServiceAvailable OLM))
3 (
4 (!startSection Reflection ?fundamentals (reflect ?fundamentals))
5 (!insertLearningService OLM display ?fundamentals
6 (competencyId competency))
7 (!endSection)
8)
9

10 ()
11 ((!startSection Reflection ?fundamentals (reflect ?fundamentals))
12 (text Reflect ?fundamentals)
13 (!endSection)))

Figure 5.43.: Reflecting over the learned fundamentals

Each course generated for the scenario “discover” closes with a reflection step, which
provides the learner with opportunity to reflect on what he has learned in the course.
Preferably, this is done using an Open Learner Model (olm, Dimitrova, 2002). The
olm in LeActiveMath shows the learner its current beliefs about his competencies.
The first precondition-subtask pair is applicable if an olm is available. In that case,
the method inserts a reference to the learning-support service whose parameters encode
the fundamentals and the competency to display. The keyword competency denotes the
aggregated competency.

In case, an olm is not available, a text is inserted that prompts the learner to perform
this reflection manually, e. g., “Please think about your learning process: How did you
proceed? Did you understand everything? If not, try to look up the necessary content
using the system”.

5.1.4.11. Example

Figure 5.44 contains a screenshot of a course generated for the scenario “discover” and the
goal fundamentals “the definition of the derivative, resp., the differential quotient”, “the
definition of the derivative function” and the theorem “sum rule”. The page displayed
on the right hand side of the figure is the second page of the course. It contains the
first items of the prerequisites page: the generated text that describes the purpose of the
section and the first of the prerequisite fundamentals. The sections displayed in the table
of contents vary in the pages they contain. For instance, the first section does not contain
an introduction page. The reason is that no elements could be found to be displayed in
this section and therefore, the section was skipped.

In the following, after each scenario description I present a screenshot of a course
generated for the corresponding scenario, always for the same goal fundamentals. These
examples illustrate the different kinds of course Paigos can generate.

128

5.1. Moderate Constructivist Competency-Based Scenarios

Figure 5.44.: A course generated for the scenario “discover”

5.1.5. Scenario “Rehearse”

Courses of the type “rehearse” are designed for learners who are already acquainted
with the target fundamentals but do not yet master them completely. Such a course
provides several opportunities to examine and practice applications of the fundamentals
and illustrates the connections between fundamentals. The structure is as follows:

Description The course starts with a description of its aim and structure. Then, for each
fundamental given in the goal task, the following sections are created.

Reminding the Fundamental This section presents the fundamental of the section.

Illustrate This section presents example applications of the fundamental.

Connect This section illustrate the connections between the current fundamental and
related fundamentals.

Practice This section provides opportunities to train the fundamental.

Illustrate–2 This section contains additional examples.

Practice–2 This section contains additional exercises.

5.1.5.1. Top-Level Decomposition of “Rehearse”

The top-level decomposition in the scenario “rehearse” is illustrated in Figure 5.45.
The upper method first starts a new section, in this case the course itself (line 4), and
then inserts the description of the course’s aims and structure (line 5). The third subtask
triggers the insertion of the task (rehearseSingleFundamental f) for each fundamental

129

5. Course Generation in Practice: Formalized Scenarios

1 (:method (rehearse ?fundamentals)
2 ()
3 (
4 (!startSection Rehearse ?fundamentals (rehearse ?fundamentals))
5 (descriptionScenarioSection ?fundamentals)
6 (rehearseFundamentals ?fundamentals)
7 (!endSection)
8)
9)

10

11 (:method (rehearseSingleFundamental ?c)
12 ()
13 (
14 (!startSection Title (?c) (rehearseSingleFundamental (?c)))
15 (insertFundamentalSectionWithText ?c)
16 (illustrateSection ?c)
17 (showConnectionsTheoremSection ?c)
18 (practiceSection ?c)
19 (!!changeScenario RehearseDeeper)
20 (illustrateSection ?c)
21 (practiceSection ?c)
22 (!!changeScenario Rehearse)
23 (!endSection)
24)
25)

Figure 5.45.: Top-level Decomposition in the scenario “rehearse”

(:method (insertFundamentalSectionWithText ?c)
()
(
(!startSection Title (?c) (insertFundamentalSectionWithText (?c)))
(text Develop (?c))
(!insertResource ?c)
(!endSection)
)
)

Figure 5.46.: Presenting a fundamental in a section

130

5.1. Moderate Constructivist Competency-Based Scenarios

given in the goal task (line 6). Finally, the section that contains the course is closed
(line 7).

The lower method in Figure 5.45 inserts subtasks that reflect the overall structure of
the scenario. Each fundamental is presented in its proper section. First, in line 15, the
fundamental is presented, using the method illustrated in Figure 5.46. The following
subtask inserts a first series of examples (line 16). Then, connections to related laws
are presented. The responsible task and methods correspond to those described in the
scenario “discover”, Figure 5.42, with the difference that evidences are not presented.
The rationale behind this decision is that while learning of a fundamental benefits from
presenting it in context, in this scenario the focus does not lie on working with evidences,
e. g., proofs. Since the methods differ only in that the task (prove c) is not inserted,
they are not shown here.

The task in line 18 triggers the insertion of a number of exercises. After having worked
on this section, the learner should have solved a number of exercises and her competency
level should have changed accordingly. In order to deepen the learner’s competencies, the
lines 20–21 insert additional examples and exercises. The selected resources correspond
to the learner’s current level, since the selection is performed using dynamic tasks (see
the subtasks of illustrate and train explained in Section 5.1.2 and 5.1.3). However,
although the methods are reused, the texts explaining the purposes of the sections “il-
lustrate” and “train” should differ from the texts introduced in the previous sections (in
the lines 16 and 18). This is achieved by changing the scenario name (line 19). Since the
operators used for text insertion use the scenario name as a context for text generation,
changing the context will result in different titles. The last two lines revert to the old
scenario name (line 22) and close the section (line 23).

5.1.5.2. Example

Figure 5.47.: A course generated for the scenario “rehearse”

Figure 5.47 contains a screenshot of a course generated for the scenario “rehearse” and

131

5. Course Generation in Practice: Formalized Scenarios

the same goal fundamentals as in the previous example: “the definition of the derivative,
resp., the differential quotient”, “the definition of the derivative function” and the theo-
rem “sum rule”. The page displayed on the right hand side of the figure is the second page
of the course, which contains the definition rehearsed in the first section of the course.

5.1.6. Scenario “Connect”

The scenario “connect” helps the learner to discover connections among the fundamentals
given in the goal task and other fundamentals and to provide opportunities to train
the fundamentals. The rationale of this scenario is that laws connect definitions by
describing some relationship between the definition, for instance, laws in physics put
physical concepts in relation to each other, and that becoming aware of these connections
is beneficial to the user’s learning (Novak and Gowin, 1984).

At first glance, the structure of the scenario seems complicated, therefore I will use the
graph shown in Figure 5.48 as an example. In the graph, A, B, C and D denote definitions,
and T1 and T2 denote theorems or other laws. The edges between the nodes denote
the requires relationship, e. g., T1 requires A. A course generated using the scenario
“connect” is structured as follows:

Description The course starts with a section that describes its aim and structure. Then,
for each fundamental given in the goal task, say, A, the following sections are in-
serted.

Present Fundamental The fundamental is inserted, together with a concept map that
shows its connections to laws and definitions.

Connect For this section, all definitions (excluding A) are retrieved that are required by
those theorems that require A. In the figure, these are the definitions B, C and D
since T1 and T2 both require A and require B, C and D. These are the definition
that are connected to A by theorems. Then, for each retrieved definition, say B, the
following sections are created:

Illustrate This section presents example applications of the definition.

Train This section provide opportunities to train the definition.

Develop This section develops the definition in the following way:

Present The definition is presented.
Connect-2 This section presents all theorems that connect the original fun-

damental A with the definition B (T1 in the example) and all previously
processed definitions.

Train-Connection The course ends with a section that contains a concept map exercise.

The scenario was developed in the context of mathematics, therefore, the following
methods often use the term “theorem”. However, the scenario applies to all educational
resources of the type law.

132

5.1. Moderate Constructivist Competency-Based Scenarios

Figure 5.48.: An example illustrating the scenario “connect”

(:method (connect ?fundamentals)
()
(
(!startSection Connections ?fundamentals (connect ?fundamentals))
(descriptionScenarioSection ?fundamentals)
(connectFundamentals ?fundamentals)
(!endSection)
))

Figure 5.49.: Top-level decomposition of the scenario “connect”

5.1.6.1. Top-Level Decomposition of “Connect”

The top-level decomposition of the scenario “connect” (illustrated in Figure 5.49) is
analogous to the other scenarios: a description is inserted, followed by a subtask that trig-
gers the insertion of tasks for all fundamentals of the goal task (connectSingleFundamen-
tal).

Figure 5.50 contains the principal method of the scenario “connect”. It first retrieves
all laws that require the current fundamental (lines 4–7). In the example, for the funda-
mental A the laws T1 and T2 are retrieved. In case no theorems were found, and thus no
connections could be illustrated, the method is not applicable (line 8). Otherwise, in the
lines 9–13 all definitions are collected that are required by the theorems (A, B and C in the
example). The current resource is removed from the result (line 14) and the remaining
resources are sorted (lines 15–19).

Then, a new section is started that first inserts the current fundamental (line 25) and
a concept map (line 26). The concept map visualizes the connections to come. In line 29
a subtask is inserted that adds a new section for each collected definition. Its parameters
contain the definitions for which a section still needs to be created and the already pro-
cessed definitions, initialized with the current fundamental. The corresponding method
is described below (Section 5.1.6.3). Finally, a concept map exercise is inserted into the
course. In this exercise, the learner has to construct the previously shown relationships
on his own.

133

5. Course Generation in Practice: Formalized Scenarios

1 (:method (connectSingleFundamental ?c)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (assign ?theorems
5 (call GetResources ((class Law)
6 (relation requires ?c)
7 (property hasLearningContext ?el))))
8 (not (same ?theorems nil))
9 (assign ?definitionsH

10 (call GetRelated ?theorems 1
11 (((class Definition)
12 (relation isRequiredBy ?theorems)
13 (property hasLearningContext ?el)))))
14 (removeElement ?definitions ?c ?definitionsH)
15 (assign ?sortedDefinitions
16 (call Sort ?definitions
17 (((class Definition)
18 (relation isRequiredBy ?definitions)
19 (property hasLearningContext ?el)))))
20)
21 (
22 (!startSection Connections (?c) (connectSingleFundamental ?c))
23 (!startSection Title (?c))
24 (text Introduction (?c))
25 (!insertResource ?c)
26 (CMapConnect (call Concat (?c) ?theorems ?sortedDefinitions))
27 (!endSection)
28 (!startSection ConnectionsOverview ?sortedDefinitions)
29 (developConnections ?sortedDefinitions (?c))
30 (!endSection)
31 (CMapConnectExerciseSection
32 (call Concat (?c) ?theorems ?sortedDefinitions))
33 (!endSection)
34)
35)

Figure 5.50.: Connecting a fundamental in the scenario “connect”

134

5.1. Moderate Constructivist Competency-Based Scenarios

5.1.6.2. Displaying Concept Maps in the Scenario “Connect”

(:method (CMapConnect ?resources)
((learningServiceAvailable CMap))
(
(!insertLearningService CMap display ?resources
(includeEdge1 isRequiredBy includeEdge2 requires
includeCategory1 Definition includeCategory2 Law))

)

()
()
)

Figure 5.51.: The concept mapping tool displays relationships

Figure 5.51 illustrates the method that inserts the concept map. The first precondition
tests whether a concept map service is available. If so, then a reference to the service
is inserted. Its parameters specify that the given resources should displayed, including
all definitions and laws that are connected to the resources by the relation requires
and isRequiredBy. If no concept map service is available then no subtask is inserted
(the second precondition-subtask pair). An analogous method applicable on the task
(CMapConnectExercise resources) inserts a link to a concept map exercise. In this
exercise, the learner has to compose the concept map on his own.

5.1.6.3. The Section “Connect”

1 (:method (developConnections (?c . ?rest) ?connected)
2 ()
3 (
4 (!startSection Title (?c) (developConnections (?c . ?rest)))
5 (illustrateSection ?c)
6 (practiceSection ?c)
7 (developConnectionSingleFundamental ?c ?connected)
8 (!endSection)
9 (developConnections ?rest (?c . ?connected))

10)
11)

Figure 5.52.: Developing a connected definition

The method in Figure 5.52 presents the definitions which were retrieved for the current
fundamental from the goal task. Its first parameter contains the definitions that still
need to be inserted in the course; its second parameter is instantiated with the already
processed resources. They were initialized with all definitions collected previously and

135

5. Course Generation in Practice: Formalized Scenarios

the current fundamental from the goal task (see the method illustrated in Figure 5.50).
Each definition is illustrated and trained (lines 5–6). The subtask in line 7 presents
the connections of the definition (described below). The final subtask serves to iterate
through all collected definitions and adds the currently processed fundamental to the
already processed fundamentals (the second parameter). The method applicable for the
base case is not shown.

1 :method (developConnectionSingleFundamental ?c ?fundamentals)
2 (
3 (collectConnectedTheorems ?theorems ?c ?fundamentals)
4 (learnerProperty hasEducationalLevel ?el)
5 (assign ?sortedTheorems
6 (call Sort ?theorems
7 (((class Law)
8 (relation isRequiredBy placeholder)
9 (property hasLearningContext ?el)

10)))))
11 (
12 (!startSection ConnectionsDetail (?c)
13 (developConnectionSingleFundamental (?c)))
14 (text Connect (?c))
15 (!insertResource ?c)
16 (showConnectionsTheoremsWithProof ?sortedTheorems)
17 (!endSection)
18)
19)

Figure 5.53.: Inserting connecting laws

The method illustrated in Figure 5.53 inserts the laws that connect the already pro-
cessed and the current definition (collected using the axiom in line 3, see below). The
sorted laws are then inserted together with evidences (e. g., proofs). Each law is inserted
only once, at the first occurrence.

The axiom shown in Figure 5.54 retrieves all laws that connect the fundamental f that
instantiates the parameter ?c with the fundamentals fs that instantiate ?fundamentals.
It first collects all laws that require f (lines 4–7). Then, it retrieves the laws that require
the fundamentals fs (lines 8–12). Line 13 removes those laws from the first list of laws
that are not contained in the second list, i. e., it retains all laws that are required by f

as well as by any fundamental contained in fs .
The remaining tasks and methods used in this scenario were described in the previous

sections.

5.1.6.4. Example

Figure 5.55 contains a screenshot of a course generated for the scenario “connect” and the
goal fundamentals: “the definition of the derivative, resp., the differential quotient”, “the
definition of the derivative function” and the theorem “sum rule”. The page displayed

136

5.1. Moderate Constructivist Competency-Based Scenarios

1 (:- (collectConnectedTheorems ?theorems ?c ?fundamentals)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (assign ?theoremsA
5 (call GetResources ((class Law)
6 (relation requires ?c)
7 (property hasLearningContext ?el))))
8 (assign ?theoremsB
9 (call GetRelated ?fundamentals 1

10 (((class Law)
11 (relation requires placeholder)
12 (property hasLearningContext ?el)))))
13 (assign ?theorems (call Retain ?theoremsA ?theoremsB))
14)
15)

Figure 5.54.: Collecting theorems for the connect step

Figure 5.55.: A course generated for the scenario “connect”

137

5. Course Generation in Practice: Formalized Scenarios

on the right hand side of the figure is the second page of the course, which contains
the definition rehearsed in the first section and a concept map exercise that displays the
connection between the fundamentals.

5.1.7. Scenario “Train Intensively”

A course generated for the scenario “train intensively” generates a workbook that aims at
increasing the competency level of the learning by presenting a large selection of exercises.
The exercises cover all competencies and are presented with increasing difficulty level.

5.1.7.1. Top-Level Decomposition of “Train Intensively”

1 (:method (trainIntenseSingleFundamental ?c)
2 (
3 (learnerProperty hasCompetencyLevel ?c ?v)
4 (call >= ?v 4.0)
5)
6 (
7 (practiceAllCompetenciesSection ?c)
8)
9

10 (
11 (learnerProperty hasCompetencyLevel ?c ?cl)
12 (assign ?newCl (call + ?cl 1.0))
13)
14 (
15 (practiceAllCompetenciesSection ?c)
16 (!!setCompetencyLevel ?c ?newCl)
17 (practiceAllCompetenciesSection ?c)
18 (!!deleteSetCompetencyLevel ?c ?newCl)
19)
20)

Figure 5.56.: Intense training of a fundamental

Similar to the previous scenarios, for each fundamental in the goal task, a section is in-
troduced that trains the single fundamental using the task (trainIntenseSingleFunda-
mental ?c). Since the methods responsible for the decomposition are very similar to those
described previously, I will omit them.

A fundamental is trained intensely by presenting numerous exercises, first at the
learner’s current competency level, then at the next higher competency level. The respon-
sible method is shown in figure 5.56. The first precondition-subtask pair is applicable if
the learner has reached the highest competency level. In this case, only a single section of
exercises is inserted into the course (using the task (practiceAllCompetenciesSection
?c)). The second precondition-action pair inserts this task twice, but in between adds
an atom in the world state that changes the competency level (line 16, explained below).
Since the methods for exercise selection use information about the competency level to

138

5.1. Moderate Constructivist Competency-Based Scenarios

perform their selection, increasing the competency level results in a selection of exercises
of a higher level. The final subtask of the method removes the previously inserted atom
from the world state.

1 (:operator (!!setCompetencyLevel ?c ?cl)
2 ()
3 ()
4 (
5 (learnerProperty hasCompetencyLevel ?c ?cl)
6 (set (learnerProperty hasCompetencyLevel ?c))
7)
8)
9

10 (:operator (!!deleteSetCompetencyLevel ?c ?cl)
11 (
12 (learnerProperty hasCompetencyLevel ?c ?cl)
13)
14 (
15 (learnerProperty hasCompetencyLevel ?c ?cl)
16 (set (learnerProperty hasCompetencyLevel ?c))
17)
18 ()
19)
20

21 (:- (learnerProperty ?property ?r ?value)
22 ((not (set (learnerProperty ?property ?r)))
23 (user ?userId)
24 (assign ?value (call LearnerProperty ?userId ?property ?r))))

Figure 5.57.: Manually setting the competency level

Figure 5.57 contains the operators used for changing the competency level. The first
operator has no preconditions and an empty delete list, and adds in the world state an
atom representing the new competency level (line 5) and an atom that indicates the
fact that the competency was “manipulated”. The second operator removes both facts
previously inserted. An additional change is required to the axiom learnerProperty
that accesses the learner model. The axiom now first checks whether a learner property
was manually inserted in the world state (line 22). If so, the axiom is not applicable since
the requested information about the learner is to be taken from the world state and not
from the learner model.

5.1.7.2. Training all Competencies in the Scenario “Train Intensively”

The method illustrated in Figure 5.58 decomposes a task (practiceCompetency f)
into subtasks (practiceCompetency f) that trigger the insertion of exercises for each
competency. These subtasks were explained in Section 5.1.2.5.

139

5. Course Generation in Practice: Formalized Scenarios

(:method (practiceAllCompetencies ?c)
()
(
(practiceCompetency think ?c)
(practiceCompetency solve ?c)
(practiceCompetency represent ?c)
(practiceCompetency language ?c)
(practiceCompetency model ?c)
(practiceCompetency argue ?c)
(practiceCompetency tools ?c)
(practiceCompetency communicate ?c)
)
)

Figure 5.58.: Training all competencies

5.1.7.3. Example

A example course generated for the scenario “train intensively” is illustrated in Fig-
ure 5.59. The goal fundamentals were “the definition of the derivative, resp., the differ-
ential quotient”, “the definition of the derivative function” and the theorem “sum rule”.
For each fundamental, two pages were created that contain the exercises.

5.1.8. Scenario “Train Competencies”

A course generated for the scenario “train competency” trains a specific competency by
presenting sequences of examples and exercises with increasing difficulty and competency
level. The courses are structured as follows:

Description This section provides a description of the scenario. Then, for each funda-
mental given in the goal task, the following sections are created:

Rehearse This section presents the current fundamental.

Illustrate and Practice The following two sections are repeated for each competency
level starting with the competency level one below the learner’s current level:

Illustrate This section contains a sequence of examples of the competency level of
the learner and of increasing difficulty level.

Practice This section contains a sequence of exercises of the competency level of
the learner and of increasing difficulty level.

5.1.8.1. Top-Level Decomposition of “Train Competencies”

Analogous to the other scenarios, several methods exist that perform the principal decom-
position and introduce a subtask for each fundamental. These methods are not included
here, since they are very similar to the previously described ones.

140

5.1. Moderate Constructivist Competency-Based Scenarios

Figure 5.59.: A course generated for the scenario“train intensively”

(:method (trainCompetencySingleFundamental! ?competency ?c)
(
(learnerProperty hasCompetencyLevel ?c ?cl)
(call > ?cl 1.0)
(learnerProperty hasAllowedEducationalLevel ?aels)
(learnerProperty hasEducationalLevel ?edl)
(assignIterator ?el (?edl . ?aels))
(call GetResources

((class Exercise)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasCompetency ?competency)
))

(assign ?newCl (call - ?cl 1.0))
)

(
(!startSection Rehearse (?c))
(!insertResource ?c)
(!endSection)
(trainCompetencyExamplesExercises ?competency ?c ?newCl)
)

)

Figure 5.60.: Top-level decomposition in the scenario “train competencies”

141

5. Course Generation in Practice: Formalized Scenarios

For each fundamental, the task (trainCompetencySingleFundamental f) is created.
The method shown in Figure 5.60 decomposes the task into subtasks that first insert the
fundamental. The last subtask triggers the insertion of examples and exercises, starting
at a competency level one below the current one of the learner. A similar method exists
that caters for the case in which the competency level equals 1.

5.1.8.2. Sections “Illustrate” and “Train”

(:method (trainCompetencyExamplesExercises ?competency ?c ?cl)
(
(call < ?cl 4.0)
)
(
(!!setCompetencyLevel ?c ?cl)
(illustrateCompetencySection ?competency ?c)
(practiceCompetencySection ?competency ?c)
(!!deleteSetCompetencyLevel ?c ?cl)
(trainCompetencyExamplesExercises ?competency ?c (call + 1.0 ?cl))
)

Figure 5.61.: Sections “illustrate” and “train” in the scenario “train competency”

The first subtask of the method illustrated in Figure 5.61 sets the competency level
that is used by the examples and exercises selection. The subsequent selection uses
the tasks illustrateCompetencySection and practiceCompetencySection described
earlier. Afterwards, the set competency level is removed from the world state. The final
subtask starts the method again, this time with an incremented competency level. A
different method, not included here, stops the recursion when the highest competency
level is reached.

5.1.8.3. Example

The figure 5.62 contains a course generated for the scenario “trainCompetencySolve” and
the goal fundamentals “the definition of the derivative, resp., the differential quotient”,
“the definition of the derivative function” and the theorem “sum rule”.

5.1.9. Scenario “Exam Simulation”

The scenario “exam simulation” contains exercises that can be solved within a specified
timeframe. In contrast to the previous scenarios, the exercises are not selected with
respect to learner properties since this is not the case in a real exam either. The generated
courses consists of a number of pages, with each page consisting of exercises for the
fundamentals given in the goal task. The final page of the course contains an estimation
of the amount of minutes it takes a average learner to solve all exercises.

142

5.1. Moderate Constructivist Competency-Based Scenarios

Figure 5.62.: A course generated for the scenario “train competency”

5.1.9.1. Top-Level Decomposition of “Exam Simulation”

Time plays an important role in this scenario since the selected exercises should be solv-
able within the specified timeframe. Therefore, the methods that implement the scenario
need to know about the time typically required to solve an exercise. This information
is represented in the resource metadata typicalLearningTime, which specifies the av-
erage time it takes a learner of the target group (specified by the educational level) to
read/process a resource.

In addition, methods need to reason about the time that is taken up by the in-
serted exercises and the time left for the simulated exam. In the scenario, the atom
(remainingTime time) is used to keep track of the time that is still left for additional
exercises. It is initialized with the time originally assigned to the scenario by the learner.

The following methods perform several estimations about the time available for exer-
cises for a fundamental. These estimations are necessary to ensure that exercises can be
selected for all fundamentals given in the goal task. If the methods did not restrict the
time available for the exercises, then the first fundamental will use up the available time
and no exercises will be inserted for later fundamentals.

Figure 5.63 contains the central methods of this scenario. The upper method takes the
current fundamental (the term that instantiates ?first) and estimates the amount of
time that can be assigned to the section that inserts exercises for this fundamental. The
estimation takes place in the lines 5–11. If r denotes the remaining time and l the amount
of fundamentals still necessary to process, then the time t that can be spend on exercises
for the current fundamental is defined as t = max{8, r

l+1}. That is, the remaining time
is approximately the ratio of time left and fundamentals left. If t is too small, then a
minimum value is assigned to it. The values were determined from technical experiments:
if t becomes too small, then no exercises can be inserted.

The lower method in Figure 5.63 is applicable if all fundamentals were processed,
i. e., exercises for all fundamentals were inserted. If there is still time left (lines 23–24),
the exercise selection restarts and tries to insert additional exercises to fill up the time
of the simulated exam. Additionally, the preconditions test whether an exercise was

143

5. Course Generation in Practice: Formalized Scenarios

1 (:method (examSimulationH (?first . ?rest) ?allIds)
2 (
3 (remainingTime ?remainingTime)
4 (call > ?remainingTime 0)
5 (assign ?estimatedTimePerFundamental
6 (call / ?remainingTime (call + 1 (call Length ?rest))))
7 (imply (call > ?estimatedTimePerFundamental 8)
8 (assign ?remainingTimePerFundamental
9 ?estimatedTimePerFundamental))

10 (imply (call <= ?estimatedTimePerFundamental 8)
11 (assign ?remainingTimePerFundamental 8))
12)
13 (
14 (!startSection Exercises (?first))
15 (examSimulationSingleFundamental ?remainingTimePerFundamental ?first)
16 (!endSection)
17 (examSimulationH ?rest ?allIds)
18)
19)
20

21 (:method (examSimulationH nil ?allIds)
22 (
23 (remainingTime ?remainingTime)
24 (call > ?remainingTime 8)
25 (lastRemainingTime ?lastRemainingTime)
26 (not (call = ?remainingTime ?lastRemainingTime))
27)
28 (
29 (!!removeFromWorldState (lastRemainingTime ?lastRemainingTime))
30 (!!addInWorldState (lastRemainingTime ?remainingTime))
31 (examSimulationH ?allIds ?allIds)
32)
33

34 ()
35 ()
36)

Figure 5.63.: Top-level methods for the scenario “exam simulation”

144

5.1. Moderate Constructivist Competency-Based Scenarios

inserted during the last exercise selection by comparing the currently remaining time
(remainingTime t) with the time remaining before the last exercise selection was per-
formed (lastRemainingTime t). If both times are equal, then no exercise was inserted
in the last run, and hence it does not make sense to apply the method again (line 26).
Otherwise, the exercise selection process restarts (line 31).

(:method (examSimulationSingleFundamental ?remainingTimePerFundamental ?first)
(
(remainingTime ?remainingTime)
(call > ?remainingTime 0)
(assign ?timePerCL (call / ?remainingTimePerFundamental 2))
)

(
(getExercises ?timePerCL elementary ?first)
(getExercises ?timePerCL simple_conceptual ?first)
(getExercises ?timePerCL multi_step ?first)
(getExercises ?timePerCL complex ?first)
)

)

Figure 5.64.: Start of the exercise selection for a fundamental in the scenario “exam sim-
ulation”

The previous methods have estimated the approximate time that can be allocated to
the exercise selection for the current fundamental. The method in Figure 5.64 further
specifies the exercises that should be selected. If there is still time left, then for each
competency level, a task is inserted that selects exercises solvable in the given timeframe.
The time is not divided by 4 (for the four competency levels), but by 2. This value
was also determined by running several test-runs and evaluating the resulting courses by
pedagogical experts.

5.1.9.2. Exercise selection in the scenario “exam simluation”

The exercise selection in the scenario “exam simulation” is illustrated in Figure 5.65.
Several preconditions of the method in the figure are replaced by text to improve the
readability. In brief, the method retrieves easy, medium and difficult exercises that the
learner has not yet seen and tries to find a combination of an easy, medium and difficult
exercise that fits in the time assigned to the method.

The method first checks whether there is still time left (lines 3–4). Then it retrieves
all very easy and easy exercises and removes the open exercises. (lines 6–7). Open
exercises cannot be evaluated automatically and hence should not be used in this scenario.
This is repeated for medium and for difficult and very difficult exercises (lines 9–10). If
no exercises were found, the method is not applicable (line 12). Otherwise, the axiom
assignIterator is used to find the first unseen easy exercise (lines 14–17). This is
repeated for the medium and difficult exercises (lines 19–20). If there exists a set of
exercises that fulfills these criteria, then their typical learning time is retrieved (lines 24–

145

5. Course Generation in Practice: Formalized Scenarios

1 (:method (getExercises! ?time ?cl ?c)
2 (
3 (remainingTime ?remainingTime)
4 (call > ?remainingTime 0)
5

6 retrieve very_easy and easy exercises
7 remove the open exercises
8

9 repeat for medium exercises
10 repeat for difficult and very difficult exercises
11

12 fail if no exercises were retrieved
13

14 (assignIterator ?easyExc ?allEasyExcsNotOpen)
15 (not (inserted ?easyExc))
16 (learnerProperty hasAlreadySeen ?easyExc ?seenEx1)
17 (same ?seenEx1 nil)
18

19 repeat for medium exercises
20 repeat for difficult and very difficult exercises
21

22 make sure that at least one exercise has been found
23

24 (typicalLearningTime ?easyExc ?time1)
25 (typicalLearningTime ?mediumExc ?time2)
26 (typicalLearningTime ?difficultExc ?time3)
27

28 (assign ?totalTime (call + ?time1 ?time2 ?time3))
29 (call >= ?time ?totalTime)
30 (assign ?remainingTimeNow (call - ?remainingTime ?totalTime))
31)
32 (
33 (insertResourceOnce! ?easyExc)
34 (insertResourceOnce! ?mediumExc)
35 (insertResourceOnce! ?difficultExc)
36 (!!removeFromWorldState (remainingTime ?remainingTime))
37 (!!addInWorldState (remainingTime ?remainingTimeNow))
38)
39)

Figure 5.65.: Selecting exercises in the scenario “exam simulation”

146

5.2. Course Generation Based on Instructional Design Principles

26). If they are not solvable in the timespan assigned to the method (lines 28–30), then
backtracking causes the selection of a different set of exercises (if any). Otherwise they
are inserted (lines 33–35) and the remaining time is updated (lines 36–37). A similar
method exists that does not require the elements to be new to the learner.

5.1.9.3. Example

Figure 5.66.: A course generated for the scenario “exam simulation”

An example of a course generated for the scenario “exam simulation” is shown in
Figure 5.66. It was generated on the same fundamentals as before (“the definition of the
derivative, resp., the differential quotient”, “the definition of the derivative function” and
the theorem “sum rule”) and for a time of 90 minutes.

This concludes the formalization of the scenarios based on moderate constructivist and
competency-based pedagogy. The next section describes a scenario based on principles
of instructional design.

5.2. Course Generation Based on Instructional Design
Principles

According to Reigeluth (1999), instructional design describes how to design educational
resources that are “effective”, “efficient”, and “appealing”. In the following, I will describe
Merrill’s “First Principles of Instruction”, a set of guidelines that integrates results from
several instructional design theories.

5.2.1. Merrill’s “First Principles of Instruction”

Merrill (2002) surveys research done in instructional design (McCarthy, 1996; Andre,
1997; Merriënboer, 1997; Gardner, 1999; Jonassen, 1999; Nelson, 1999; Schank et al., 1999;

147

5. Course Generation in Practice: Formalized Scenarios

Schwartz et al., 1999) and describes the common underlying principles. He identifies five
stages that he argues need to be present during the learning process in order for successful
learning to take place:

Problem “Learning is facilitated when learners are engaged in solving real-world prob-
lems.”

Activation “Learning is facilitated when relevant previous experience is activated.”

Demonstration “Learning is facilitated when the instruction demonstrates what is to be
learned rather than merely telling information about what is to be learned.”

Application “Learning is facilitated when learners are required to use their new knowl-
edge or skill to solve problems.”

Integration “Learning is facilitated when learners are encouraged to integrate (transfer)
the new knowledge or skill into their everyday life.” This integration happens
foremost in collaboration with other learners. They should have the possibility to
reflect, discuss, and defend their new knowledge.

The extent to which each of these stages can be realized depends on the learning
environment. For instance, not all systems provide the functionalities required for col-
laborative learning.

The following scenario is partly based on Merrill’s principles. One of its design goals
was to formalize a scenario that poses the smallest possible constraints on metadata. So-
phisticated scenarios as described in the previous section require the educational resources
to be annotated with a great amount of metadata, e. g., competency level, competency,
and representation value. Some of these metadata are not wide-spread, especially the
ones related to competencies. The scenario formalized in this section uses “standard”,
established metadata, such as difficulty level.

5.2.2. Scenario “Guided Tour”

A course generated for the scenario “guided tour” provides the learner with the necessary
resources to help him understand the target fundamentals in depth. In contrast to the
scenario “discover”, the prerequisites are included in detail and the exercise and example
selection primarily uses the difficulty level. The sections in the course respect Merrill’s
“First Principles”, as far as possible. For each fundamental given in the goal task, and
for each unknown prerequisite fundamental, the following sections are created:

Introduction This section arises a learner’s interest by presenting educational resources
of the type introduction.

Problem This section inserts a real world problem for the fundamental.

Fundamental This section presents the fundamental.

Explanation This section contains educational resources that provide explaining and
deepening information about the fundamental.

148

5.2. Course Generation Based on Instructional Design Principles

Illustration This section provides opportunities for the learner to examine demonstrations
of applications of the fundamentals.

Practice This section enables a student to actively apply what he has learned about the
fundamental.

Conclusion This section presents educational resources that contain concluding informa-
tion about the fundamental.

Reflection This section provides the learner with an opportunity to reflect and discuss
his new knowledge.

5.2.2.1. Top-Level Decomposition of “Guided Tour”

1 (:method (guidedTour ?fundamentals)
2 ()
3 (
4 (!startSection GuidedTour ?fundamentals (guidedTour ?fundamentals))
5 (learnFundamentalsGuidedTour ?fundamentals)
6 (reflect ?fundamentals)
7 (!endSection)
8)
9)

10

11 (:method (learnFundamentalsGuidedTour (?c . ?rest))
12 ()
13 (
14 (learnPrerequisitesFundamentalsGT ?c)
15 (learnSingleFundamentalGT ?c)
16 (learnFundamentalsGuidedTour ?rest)
17)
18)

Figure 5.67.: Methods used for the top-level decomposition of the scenario “guided tour”

The two methods displayed in Figure 5.67 perform the top-level decomposition: for each
target fundamental f , first a task (learnPrerquisitesFundmentalsGT f) is created that
inserts sections for all prerequisites of f that are unknown to the learner. Previously
presented prerequisites are automatically detected and hence duplications are avoided.
Then, the task (learnSingleFudamentalGT f) causes the creation of a section for the
fundamental f . The final task causes the method to call itself recursively. The method
for the base case (when all fundamentals were processed) is not shown.

The task (learnSingleFudamentalGT f) is processed by the method illustrated in
Figure 5.68. First, it tests whether the section for the current fundamental was already
created. In this case, the second precondition-subtask is applied. Since it has no sub-
tasks, the task is achieved. This way, duplication of sections which might happen due
to the handling of prerequisites in this scenario are avoided. In case the section was

149

5. Course Generation in Practice: Formalized Scenarios

1 (:method (learnSingleFundamentalGT ?c)
2 (
3 (not (achieved (learnSingleFundamentalGT ?c)))
4)
5 (
6 (!startSection Title (?c) (learnSingleFundamentalGT (?c)))
7 (introduceByIntroductionSection ?c)
8 (problemSection ?c)
9 (insertFundamentalSection ?c)

10 (explainSection ?c)
11 (illustrateWithIncreasedDiffSection ?c)
12 (trainWithIncreasingDiffSection ?c)
13 (concludeSection ?c)
14 (!endSection)
15 (!!addInWorldState (achieved (learnSingleFundamentalGT ?c)))
16)
17

18 ((achieved (learnSingleFundamentalGT ?c)))
19 ()
20)

Figure 5.68.: Creating a section for a fundamental in the scenario “guided tour”

not yet created, the subtasks of the method create the structure described above. The
final subtask adds an atom in the world state that represents that the current task was
achieved.

5.2.2.2. Sections “Introduce”, “Explanation” and “Conclusion”

The methods in Figure 5.69 handle the insertion of educational resources in the sec-
tions “introduction”, “explanation” and “conclusion”. They follow the same schema: a
resource for the given fundamental and of a learning context that corresponds to the
learner’ educational level is inserted. If these methods cannot be applied, then an anal-
ogous set of methods relaxes the constraint on the educational level and searches for
resources for all allowed educational levels.

5.2.2.3. Sections “Illustration” and “Practice”

The method in Figure 5.70 handles the insertion of examples. Depending on the
learner’s current competency level, a set of examples is selected. For instance, if the
learner has a low competency level (≤ 2), then five very easy, five easy, three medium
examples and one difficult and one very difficult example are inserted. The general rule
implemented in the example selection is that most of the examples should correspond to
the learner’s current competency level. He should neither be demotivated nor bored. In
addition, a sufficiently large amount of examples is presented. The given number is the
maximum number if only a smaller amount of these resources exists, then the remaining
ones are skipped. The methods for the subtask insertResourcesOfType first try to

150

5.2. Course Generation Based on Instructional Design Principles

1 (:method (introduceShort! ?c)
2 (
3 (learnerProperty hasEducationalLevel ?el)
4 (assign ?resources (call GetResources
5 ((class Introduction)
6 (relation isFor ?c)
7 (property hasLearningContext ?el))))
8 (assignIterator ?r ?resources)
9)

10 (
11 (insertAuxOnceIfReady! ?r ?c)
12)
13)
14

15 (:method (explain! ?c)
16 (
17 (learnerProperty hasEducationalLevel ?el)
18 (assignIterator ?r (call GetResources
19 ((class Remark)
20 (relation isFor ?c)
21 (property hasLearningContext ?el))))
22)
23 (
24 (insertAuxOnceIfReady! ?r ?c)
25)
26)
27

28 (:method (conclude! ?c)
29 MethodConclude!Ideal
30 (
31 (learnerProperty hasEducationalLevel ?el)
32 (assignIterator ?r (call GetResources
33 ((class Conclusion)
34 (relation isFor ?c)
35 (property hasLearningContext ?el))))
36)
37 (
38 (insertAuxOnceIfReady! ?r ?c)
39)
40)

Figure 5.69.: Inserting texts in the scenario “guided tour”

151

5. Course Generation in Practice: Formalized Scenarios

1 (:method (illustrateWithIncreasedDiff ?c)
2 (
3 (learnerProperty hasCompetencyLevel ?c ?competencyLevel)
4 (call < ?competencyLevel 2)
5)
6 (
7 (insertResourcesOfType ?c Example very_easy 5)
8 (insertResourcesOfType ?c Example easy 5)
9 (insertResourcesOfType ?c Example medium 3)

10 (insertResourcesOfType ?c Example difficult 1)
11 (insertResourcesOfType ?c Example very_difficult 1)
12)
13

14 (
15 (learnerProperty hasCompetencyLevel ?c ?competencyLevel)
16 (call >= ?competencyLevel 2)
17 (call < ?competencyLevel 4)
18)
19 (
20 (insertResourcesOfType ?c Example very_easy 3)
21 (insertResourcesOfType ?c Example easy 4)
22 (insertResourcesOfType ?c Example medium 4)
23 (insertResourcesOfType ?c Example difficult 2)
24 (insertResourcesOfType ?c Example very_difficult 2)
25)
26

27 (
28 (learnerProperty hasCompetencyLevel ?c ?competencyLevel)
29 (call >= ?competencyLevel 4)
30)
31 (
32 (insertResourcesOfType ?c Example very_easy 1)
33 (insertResourcesOfType ?c Example easy 2)
34 (insertResourcesOfType ?c Example medium 2)
35 (insertResourcesOfType ?c Example difficult 4)
36 (insertResourcesOfType ?c Example very_difficult 4)
37)
38)

Figure 5.70.:

152

5.2. Course Generation Based on Instructional Design Principles

find sufficient resources that correspond to the learner’s educational level, but relax the
constraint if necessary. The methods are not shown in this thesis. An analogous method
exists that handle the exercise selection.

5.2.2.4. Example

Figure 5.71.: A course generated for the scenario “guided tour”

Figure 5.71 contains a screenshot of a course generated for the scenario “guided tour”
and the goal fundamentals “the definition of the derivative, resp., the differential quo-
tient”, “the definition of the derivative function” and the theorem “sum rule”. The
difference to the course generated for the scenario “discover” is clearly visible: here, all
prerequisites are included in their own section.

153

5. Course Generation in Practice: Formalized Scenarios

154

6. Implementation and Integration

In this chapter, I describe technical aspects of Paigos. The implementation, i. e., the
Java classes and interfaces, is described in the first section. The interfaces work on the
level of tasks: they take a pedagogical task as input and return a course that achieves
the task as a result. The second section describes how the interfaces are used in the inte-
gration of Paigos in a Web-based learning environment, in this case ActiveMath. The
section illustrates the advantages that arise in a tightly coupled integration, where differ-
ent components of the learning environment have direct access to the course generator:
whenever a component needs to make informed decisions about content to present to the
learner, it can use the functionalities offered by the course generator. Thus, knowledge
is not duplicated and a coherent pedagogical approach regarding content selection is en-
sured in the overall system, since a single component, the course generator, is responsible
for this functionality. The step from a tight, system confined integration to a service
architecture is described in the final section of the chapter. In this setting, an external
learning environment registers its repository at the course generation Web-service and
subsequently can access Paigos’s functionalities. The interfaces partly remain the same:
pedagogical tasks are sent to the course generating service, which returns a course as a
result. However, some additional interfaces are required for the repository registration,
such as exchanging information about the metadata of the educational resources. As a
result, if a system needs to offer course generation to its learners, it can use the function-
alities offered by Paigos and is not required to implement the pedagogical knowledge
itself.

6.1. Implementation

Since the most relevant parts of Paigos are formalized in the course generation planning
domain, the actual Java implementation of Paigos consists only of a small number of
classes.

Figure 6.1 presents an uml overview on the classes that implement the course generator.
The class Task (middle bottom right in the figure) represents a pedagogical task as
described in Section 4.3. It consists of a pedagogical objective and a list of identifiers of
educational resources.

The class TutorialInteraction serves to associate the users, pedagogical tasks and
the courses that were generated for the task and for the individual users. It is initialized
with a task and, if needed, an initial world state. The initial world state is mostly
used when processing dynamic tasks (see Section 4.8). There, some resources have to
be considered as inserted in the course in order to prevent their selection during the
instantiation of the task.

In a TutorialInteraction object, the first invocation of the method getCourse starts
the course generation. Once the course is generated, it is stored in the tutorial interaction,

155

6. Implementation and Integration

Figure 6.1.: An overview on the classes relevant for course generation

the boolean property wasInvoked is set to true, and the course is passed to the object
that requested it. If the course is requested again at a later time, the stored course is
returned.

The interface Solver serves to abstract from the classes that implement the course
generation process. This eases a potential change of the engine that realizes the course
generation (e. g., as done in ActiveMath whose first course generator was implemented
using an expert system). Classes that implement the Solver interface need to provide
the method solve that takes a task, a user identifier and an initial world state as input
and returns an OMDoc document. In Paigos, the class JShop2Planner implements
this interface and encapsulates jshop2.

During course generation, the class JShop2Planner accesses the Mediator using the
interface ResourceQuery and the learner model using the interface LearnerProperty.
Similar to the mediator, classes that implement the interface LearnerProperty should
cache queries, too. However, this cache becomes invalid much faster than the mediator
cache since the learner’s properties usually change more often than the content. In
ActiveMath, the cache is cleared after each planning process.

The class CourseGenerator manages the tutorial interactions and is used by those
components that need to generate courses. It is implemented as a singleton pattern, thus
a single object implements this class. The first invocation of the constructor of the class
creates the CourseGenerator object. Later invocation of the constructor returns this
single object (the singleton). Its principal method is achieveTask that takes as input
the user identifier of the learner the course will be generated for (userId), a task (task),
and optionally a list that represents the initial world state (initialWorldState), actually

156

6.2. Integration of PAIGOS in ActiveMath

a list of atoms that are added into the world state in addition to the atoms that make up
the original world state, see Section 4.4.3). Using this information, the CourseGenerator
singleton creates tutorial interactions and then starts the course generation using the
method getCourse. The result of the planning process is an OMDoc document. The
interface of the class CourseGenerator is the following:

public OMDoc achieveTask(String userID, Task task)
public OMDoc achieveTask(String userID, Task task, List initialWorldState)

6.2. Integration of PAIGOS in ActiveMath

In this section, I describe the integration of Paigos in the Web-based learning environ-
ment ActiveMath. I first describe ActiveMath, and then explain the integration in
detail, starting with the graphical user interface, followed by the basic technique used for
including references to learning-support services (Section 6.2.3), and then provide details
on the specific services that were integrated: a concept map (Section 6.2.4.1), an open
learner model (Section 6.2.4.2), and an exercise sequencer (Section 6.2.4.3). Section 6.2.5
describes how the symbolic representations of narrative bridges generated during plan-
ning are transformed into “real” text. The final section explains how Paigos is used as
a service by other ActiveMath components.

6.2.1. The Learning Environment ActiveMath

ActiveMath (Melis et al., 2001, 2006) is a Web-based intelligent learning environment
for mathematics that has been developed since the year 2000 at the Saarland University
and at the German Research Center of Artificial Intelligence (DFKI).

ActiveMath uses an extension of OMDoc (Kohlhase, 2001; Kohlhase, 2006; Melis
et al., 2003) to encode its educational resources. In addition to presenting pre-defined
interactive materials, it uses Paigos for course generation.

A presentation component transforms the OMDoc documents represented in xml to
the desired output format, e. g., html, xhtml +MathML, and pdf. A learner model
stores the learning history, the user’s profile and preferences, and a set of beliefs that the
systems holds about the cognitive and meta-cognitive competencies and the motivational
state of the learner. The domain model that underlies the structure of the learner model
is inferred from the content for that domain and its metadata.

A complex subsystem in its own right is ActiveMath’s exercise subsystem (Goguadze
et al., 2005) that plays interactive exercises, computes diagnoses and provides feedback to
the learner in a highly personalized way. It reports events to inform the other components
about the users’ actions.

In 2007, at the time of this writing, a significant amount of educational resources exists
in ActiveMath’s repositories for Fractions (German), Differential Calculus (German,
English, Spanish) at high school and first year university level, operations research (Rus-
sian, English), Methods of Optimization (Russian), Statistics and Probability Calculus
(German), Matheführerschein (German), and a Calculus course from University of West-
minster in London.

157

6. Implementation and Integration

To realize a smooth and efficient cooperation of all components and in order to inte-
grate further internal and external services, ActiveMath has a modular service-oriented
architecture. It includes the xml-rpc Web communication protocol for simplicity and re-
mote support. In addition, an event framework enables asynchronous messaging between
system components.

6.2.2. Course Generation in ActiveMath

Access to content using the course generator is an important part of ActiveMath. The
manually authored courses contain only parts of the available educational resources. The
remaining resources are only accessible using the search tool or the course generator.
In addition, special care was taken to ensure that the user interface that handles the
user’s access to Paigos is easy to use. In the LeActiveMath project, the interface was
evaluated and revised twice, first by a review performed by the Fraunhofer Institute for
Industrial Engineering IAO and then in a formative evaluation by usability experts of the
School of Informatics at the University of Edinburgh (see Section 7.2). In the following,
I describe the course generation user interface using the Figures 6.2 to 6.7.

Figure 6.2.: The main menu of ActiveMath

Figure 6.2 contains a screenshot of the main menu of ActiveMath. The entries on the
left hand side correspond to manually authored books. The menu on the right hand side
allows a learner to start the course generation. In ActiveMath, this process is called
“personal book creation”. Since the concept of course generation is unknown to almost
all learners, an extensive help section explains the general approach and the scenarios
in detail. The text on the link that start the course generation is phrased such that it
motivates to experiment with it (“Just try it!”). If the learner follows the link, a step-by-
step guide (wizard) leads him through the selection of the course generation parameters,
i. e., the scenario and the target fundamentals.

Figure 6.3 illustrates the first step of the course generation wizard. There, the learner

158

6.2. Integration of PAIGOS in ActiveMath

Figure 6.3.: Selecting the general area of interest

selects the mathematical domain the target fundamentals will be chosen from. In Ac-
tiveMath, each of the possible choices is represented by a grouping. Just like a table
of contents a grouping is an OMDoc omgroup element that consists of other omgroup
elements and references to educational resources (for additional details about the repre-
sentation of table of contents, see the following section). However, a grouping is not used
to present a course, but to collect the fundamentals the learner can select from for course
generation. Making OMDoc resources available for course generation simply requires
authoring a new grouping and registering it in the ActiveMath configuration. Being a
regular OMDoc element, a grouping is authored using the standard OMDoc authoring
tools.

Figure 6.4.: Selecting the scenario

159

6. Implementation and Integration

In the next step, illustrated in Figure 6.4, the learner selects the scenario. Each scenario
is briefly described, the most relevant words being highlighted. A click on the terms in
bold font opens the help menu with a more detailed description of the scenario. The
evaluations showed that providing detailed help is a necessary requirement if students
are to used course generation: most learners are not used to the possibility of creating
books, let alone different types of books.

Figure 6.5.: Selecting the target fundamentals

Once the learner has chosen a scenario, he needs to select the target fundamentals
(Figure 6.5). In this step, the table of contents represented by the grouping selected in
the first step is presented to the learner. The learner can select one of the sections or
subsections by marking the respective radio button. He can navigate through the table
of contents by clicking on the chapter names. Each section contains a brief text that
describes the content of the section. This information needs to be provided by the author
of the grouping.

In the screenshot of Figure 6.6, the learner has selected the first section and the wizard
presents its subsections.

When the learner has completed his selection, his choices are presented on a summary
page (Figure 6.7). There, he can name the book and provide a summary. Clicking on
“Next” starts the course generation process.

6.2.3. Dynamically Generated Elements in a Table of Contents

ActiveMath uses the OMDoc elements omgroup and ref for representing tables of
contents.

• the omgroup element represents and structures a table of contents in the following

160

6.2. Integration of PAIGOS in ActiveMath

Figure 6.6.: Expanding a section

way: either an omgroup consists only of omgroup elements, in which case it rep-
resents a section; or it consists of ref elements and then represents a page in a
course.

• the ref element references an educational resource. The value of its xref attribute
contains the identifier of the resource that will be included into the page.

This approach works fine when a course consists only of previously authored educational
resources. Yet, some elements of courses generated by Paigos depend on the specific
resources contained in the course and cannot be realized by using pre-authored objects
only. This includes references to learning-support services, narrative bridges and dynamic
tasks.

Therefore, the integration of Paigos in ActiveMath required the development of a
new element, called dynamic-item, that serves as a generic container for these dynamic
cases. Dynamic-item elements are included into a table of contents in the same way as
ref elements, but instead of referencing an existing educational resource they contain
the information necessary to generate the resource on-demand. These dynamic items are
presented on a page in the same way as other educational resources.

The general structure of the element dynamic-item is defined by the dtd shown in
Figure 6.8. A dynamic item has a type specifying whether the item is a dynamic task, a
call to a learning-support service or a symbolic representation for text generation. The
attributes servicename and queryname allow further differentiating the specific item

161

6. Implementation and Integration

Figure 6.7.: The summary page

to be generated by providing the exact service and method of the service to be called.
The optional children of a dynamic-item element specify information about the context:
relevant learning objects (using the ref element), mathematical terms in OpenMath
format (OMOBJ), and additional parameters given as property-value pairs (queryparam).

The following sections describe how dynamic elements are used for the integration of
learning-support services.

6.2.4. Usage of Learning-Support Services in ActiveMath

The ActiveMath system offers a variety of learning-support services. This section
focuses on how these services are integrated into courses generated by Paigos.

During course generation, references to learning-support services are inserted using
specific methods and operators. In ActiveMath, these references are rendered as links.
Thus, for the learner, are not different from other interactive elements such as exercises
and seamlessly blend into the course. Technically, the integration happens in the following
way:

1. During planning, the course generator applies the operator

(!insertLearningService serviceName queryName

(r 1 ... r n) (p 1 v 1 ... p m v m))

162

6.2. Integration of PAIGOS in ActiveMath

<!ELEMENT dynamic-item (ref*|queryparam*|OMOBJ*)>
<!ATTLIST dynamic-item

type (dynamicTask|learningService|text) #REQUIRED
servicename CDATA #REQUIRED
queryname CDATA #IMPLIED>

<!ELEMENT queryparam EMPTY>
<!ATTLIST queryparam

property CDATA #REQUIRED
value CDATA #REQUIRED>

Figure 6.8.: The document type description (DTD) of the dynamic item element

where r x are resource identifiers and p y and v y denote property-value pairs.

2. After a plan was found, the above operator triggers the creation of a dynamic item
that represents the above service call:

<dynamic-item type="learningService" servicename="serviceName "
queryname="queryName ">

<ref xref="r 1" />
...

<ref xref="r n" />
<queryparam property="p 1" value="v 1" />

...
<queryparam property="p m" value="v m" />

</dynamic-item>

3. When the learner visits a page that contains a dynamic item, the presentation
system converts the dynamic item into the requested output format (e.g., html) and
displays it. The rendered element is presented like any other interactive element:
it uses the same layout and is started by a click on a link.

I will now describe three services that were integrated using this approach.

6.2.4.1. Interactive Concept Mapping Tool

The interactive Concept Mapping Tool (iCMap, Melis et al., 2005) helps the learner to
reflect on his mathematical knowledge by providing a framework for the visualization and
construction of structures in a mathematical domain. It supports the learning process
by verifying the concept map constructed by the learner and by suggesting reasonable
changes to the created map.

Paigos employs the concept mapping tool in two different ways: the mode display
presents a complete concept map to the learner. This is used by, e. g., the scenario
“connect” to offer the learner with an opportunity to inspect a visual representation of
the relationships between the fundamentals covered in the course. In the mode solve, the
learner’s task is to construct a concept map on her own, using a given set of fundamentals.

In order to create dynamic exercises, iCMap takes the following parameters from the
course generator as input: a set of OMDoc references pointing to the initial fundamentals

163

6. Implementation and Integration

to be displayed (the central fundamentals), a set of pairs (relationType depth), and
the mode-string (with the values solve and display). Roughly speaking, the concept
map contains the initial fundamentals C and all other fundamentals that are connected
to elements of C by the given set of relations up to the given depth. More precisely:

Central Fundamentals For each central fundamental all related resources are added to
the concept map exercise. The relations taken into account are specified in the
parameter relationType:

Relation Type and Depth The parameter relationType represents the relation types
(as defined in the oio) which are used to compute the additional resources to be
presented to the learner. A depth parameter is attached to each specified relation
representing the maximum distance iCMap will follow to compute neighboring
learning items. Each node N that is added to the concept map meets one of the
following conditions:

1. N is a node representing a central fundamental, or

2. a relation type r with depth rn defined such that N is connected by the relation
r over at most rn nodes.

Mode The mode specified with the parameter queryname determines how the concept
map exercise will be presented to the learner. If the mode is display, all computed
nodes and all edges of the given types are added to the workspace; the learner is
told to verify the map and, if applicable, to complete it. Launching an exercise with
mode solve starts iCMap with an empty concept map. All the nodes determined
as central fundamentals and all those computed by iCMap are added to the learners
palette. Therefore, in mode solve, the learner has to create the concept map by
herself.

Example 6.1. The following operator triggers the creation of an iCMap exercise for the
resource “definition of the average slope”:

(!insertLearningService CMap display (def_average_slope)
(requires 1.0 isRequiredBy 1.0 isA 1.0 inverseIsA 1.0))

Example 6.2. The application of the above operator creates the following dynamic item:

<dynamic-item type="learningService" servicename="CMap" queryname="display">
<ref xref="def_average_slope" />
<queryparam property="requires" value="1.0" />
<queryparam property="isRequiredBy" value="1.0" />
<queryparam property="isA" value="1.0" />
<queryparam property="inverseIsA" value="1.0" />

</dynamic-item>

Figure 6.9 shows the presentation of the dynamic element in ActiveMath. Figure 6.10
contains of screenshot of the resulting workbench of the iCMap exercise.

164

6.2. Integration of PAIGOS in ActiveMath

Figure 6.9.: Presentation of a dynamically generated concept mapping tool exercise in
ActiveMath

Figure 6.10.: The workbench of a dynamically generated concept mapping tool exercise

165

6. Implementation and Integration

Figure 6.11.: The presentation of a dynamically generated link to the Open Learner Model

6.2.4.2. Open Learner Model

An Open Learner Model (olm, Dimitrova, 2002) provides learners with a possibility to
inspect and modify the beliefs that the learner model holds about the mastery or compe-
tencies of the learner. An olm for ActiveMath was developed in the LeActiveMath
project.

The course generator uses the olm for the reflection phase to encourage the learner to
reflect about her learning progress regarding the learned fundamentals. It is started with
a list of fundamentals and a competency, which define the initial items presented on the
olm workbench. References to the olm are created using the following operator:

(!insertLearningService OLM display (r 1 ... r n) (competencyID competency))

The application of the above operator results in the following dynamic item:

<dynamic-item type="learningService" servicename="OLM"
queryname="display">

<ref xref="r 1" />
...

<ref xref="r n" />
<queryparam property="comptencyID" value="competency " />

</dynamic-item>

Example 6.3. The following operator serves to insert a reference to the olm that dis-
plays the fundamental “definition of the derivative function” and the competency that
aggregates all eight mathematical competencies.

(!insertLearningService OLM display (def_diff_f) (competencyId competency))

Example 6.4. The above operator is transformed into the following dynamic item:

<dynamic-item type="learningService" servicename="OLM" queryname="display">
<ref xref="def_diff_f" />
<queryparam property="competencyId" value="competency" />

</dynamic-item>

Figure 6.11 shows the link generated for the above example and Figure 6.12 an example
of the workbench of the olm after the learner has performed a few exploration steps.

166

6.2. Integration of PAIGOS in ActiveMath

Figure 6.12.: The workbench of the Open Learner Model

6.2.4.3. Exercise Sequencer

The exercise sequencer presents to the learner a dynamically selected sequence of exercises
that leads her towards a higher competency level. This functionality differs from the
exercise selection of the course generator: Paigos generates a sequence of educational
resources which is adapted to the learner at generation time, but once it is generated,
it remains static. This behavior was a design decision to avoid confusion of the learner
arising from pages changing over and over again as reported by De Bra (2000).

In contrast, the exercise sequencer is completely dynamic. It selects an exercise,
presents it to the learner in a window separate from the current course, and depending on
the learner’s problem-solving success provides feedback and terminates or selects a new
exercise, thus starting the cycle again. The selection algorithm is based on competency
levels.

For the selection of the exercises, the sequencer uses the course generator. It requests
the course generator to select an exercise adequate to the current competency level of
the learner using the pedagogical task trainWithSingleExercise!. The task reuses
the pedagogical knowledge of Paigos, thus following the same principles and avoiding
different ways of exercise selection.

References to the exercise sequencer created by the course generator include the funda-
mental that will be trained. Additionally, it is possible to specify the algorithm used by
the sequencer. However, currently only the competency based algorithm is implemented.
A link to a sequencer is created using the following operator, where r stands for the
fundamental that will be trains and algorithm is the identifier of the algorithm used for
the exercise selection.

167

6. Implementation and Integration

Figure 6.13.: The presentation of a dynamically generated link to the exercise sequencer

(!insertLearningService ExerciseSequencer algorithm (r))

The application of the above operator results in the following dynamic item:

<dynamic-item type="learningService" servicename="ExerciseSequencer"
queryname="algorithm ">

<ref xref="r " />
</dynamic-item>

Example 6.5. The following operator inserts a reference to an exercise sequencer that
trains the fundamental “the definition of the derivative function” using the algorithm
based on competency-levels.

(!insertLearningService ExerciseSequencer TrainCompetencyLevel (def_diff_f))

Example 6.6. The above operator is transformed into the following dynamic item:

<dynamic-item type="learningService" servicename="ExerciseSequencer"
queryname="TrainCompetencyLevel">

<ref xref="def_diff_f" />
</dynamic-item>

Figures 6.13 and 6.14 contain screenshots of the rendering of the link to the exercise
sequencer and of an exemplary interaction.

6.2.5. Template-Based Generation of Narrative Bridges

In this section I demonstrate how the symbolic representations of bridging texts generated
during course generation can be transformed into texts.

6.2.5.1. NLG vs. Templates

Reiter (1995) distinguishes between two principally different techniques for text gener-
ation. While natural language generation (NLG) is based on linguistic and knowledge-
based techniques, the template-based approach is based on the manipulation of character
strings, done at character level, without a deeper, semantic representation of text. Ac-
cording to Reiter (1995), the advantages of NLG include the following:

168

6.2. Integration of PAIGOS in ActiveMath

Figure 6.14.: An exemplary interaction with the exercise sequencer

Maintainability NLG is easier to adapt than template-based techniques, especially if large
amounts of texts are generated. Since NLG works on a higher level of abstraction,
it uses a limited set of rules to create a potentially vast amount of individual texts.
In a template-based approach, each of these text needs to specified beforehand.
Therefore, whereas performing a change in NLG requires updating a limited amount
of rules, in a template-based approach all involved templates need to be updated.

Improved text quality NLG uses various techniques to improve text quality. For in-
stance, aggregation is used to sum up several individual propositions in a single
sentence.

A principal disadvantage of NLG is its need of an explicit representation of the content
that is to be communicated, i. e., for learning the content that is being learned. Without
this representation, no texts can be generated. In addition, the generation requires a
macro-planner and micro-planner, which necessitates specialized expertise for their de-
velopment, since only prototypical toolkits are available. They also make the generated
language hard to internationalize.

In contrast, template-based approaches are widely-used because of their straightforward
implementation. Their development and application is supported by several frameworks,
for instance using phrases.

In ActiveMath, the purpose of generated texts is to make explicit the structure of
a course by displaying the pedagogical purpose of sections. It is possible to formulate
the templates in a way independent of the fundamentals actually taught. Each purpose
is expressed by a specific phrase, hence techniques such as aggregation are not required.
In addition, the amount of required texts is limited. All in all, the pedagogical strate-
gies encompass about twenty sections that need to be augmented by texts. Therefore,
manually maintaining the texts is feasible.

169

6. Implementation and Integration

Reiter (1995) summarizes his comparison of NLG and template-based text generation
as follows: “[i]f a certain portion of the output text never varies . . . it would be silly to
generate it with NLG, and much more sensible to simply use canned text for this portion
of the document”. This statement and the above discussion provide ground for the claim
that a template-based approach can be adequate for the generation of bridging texts. I
now describe the technical aspects of the generation.

6.2.5.2. Generation of Narrative Bridges in LeActiveMath

In ActiveMath, a 2-stage presentation pipeline handles the rendering/presentation of
the learning materials contained in a course (Ullrich et al., 2004). In the first step, the
educational resources referenced in the table of contents of a course are fetched from
the database, transformed into the requested output format and cached. In the second
step, these educational resources are composed into a complete page, and the resulting
page is rendered for the learner. If an educational resource was already transformed, it is
directly retrieved from the cache, in order to avoid repeated transformation of the same
educational resource.

In contrast, dynamic items (such as symbolic representations of bridging texts) are
not fetched from a database but instantiated on demand. More specifically, the con-
troller responsible for the presentation calls the service specified in the dynamic item
by the attribute servicename and passes the remaining attributes and sub-elements as
parameters. In the case of dynamic items of type text, the corresponding service uses
the parameters to determine the adequate template t and returns an OMDoc element
whose text body consists of t. If a template is available in several languages, a specific
text body is generated for each language (catering for the case that the user changes the
language any later time). Because the texts are stored in OMDoc elements, they can be
cached and reused using the mechanisms of the presentation pipeline.

This approach allows for a flexible on-demand generation of texts. The texts are
generated at view time, i. e., when the learner actually visits the page for the first time.
Therefore, the templates can integrate up-to-date learner information, such as user name,
competency-level, etc.1 If texts were generated directly after planning, some information
might not be available or quickly become outdated (such as competency-level).

For the instantiation of the templates, ActiveMath uses a common internationaliza-
tion framework that pairs a set of keywords with texts. Such a pair is called a phrase.
These phrases are stored in text files, one for each language. This makes editing and
extending phrases easily possible for non-technical experts, e. g., translators.

Figure 6.15 contains a selection of phrases used for English bridging texts. The carpet
character “#” denotes comments. The keywords at the left hand side of the equals sign
are the phrases determined during the course generation. For the presentation, they are
replaced by the texts following the equals sign. The last two phrases provide an example
of a method-induced change of scenario. As described in Section 4.9.2, in the scenario
rehearse two different sections present a sequence of examples. The first section serves
to remind the learner how to apply the fundamental. The second section, placed after an
exercise section, is used to provide additional examples. Because the same methods are
used for the selection, the context is changed prior to the second examples selection.

1This feature is not yet used in the current version of ActiveMath.

170

6.2. Integration of PAIGOS in ActiveMath

phrases for scenario "Discover"

text.NLGGenerator.Item.Discover.Introduction=Why is the mathematical
content presented in this chapter important? The following section
tries to answer that question.

text.NLGGenerator.Item.Discover.Prerequisites=This paragraph contains
the prerequisite knowledge necessary to understand the content of this
section.

text.NLGGenerator.Item.Discover.Develop=Careful now! This section
contains the principal content and some examples.

text.NLGGenerator.Item.Discover.Practice=Practice makes perfect. This
section contains exercises to practice the application of the
content.

text.NLGGenerator.Item.Discover.Connect=In this section, you will
discover the connections to other content.

text.NLGGenerator.Item.Discover.Reflect=Please think about your
learning process: How did you proceed? Did you understand everything?
If not, try to look up the necessary content using the system.

text.NLGGenerator.Item.Discover.Examples=Have a close look! In this
section you will see example applications of the content.

phrases for scenario "Rehearse"

text.NLGGenerator.Item.Rehearse.Develop=Do you still remember what the
goal content is about? Here you can have a second look at it.

text.NLGGenerator.Item.Rehearse.Connect=What else can the content be
used for? That’s the topic of the following section.

text.NLGGenerator.Item.Rehearse.Examples=If you do not recall how to
apply the goal content, have a look at these examples.

text.NLGGenerator.Item.RehearseDeeper.Examples=Here you find
additional examples of the goal content.

Figure 6.15.: A selection of bridging texts

171

6. Implementation and Integration

Figure 6.16.: A rendered bridging text

Figure 6.16 shows a html rendering of the task of Example 4.21 (Section 4.9.2). The
text is emphasized in order to convey to the learner that the text is on a different level
of abstraction than the remaining content displayed on the page.

6.2.6. PAIGOS as a Service in ActiveMath

The most frequent usage of Paigos in ActiveMath is to generate a course on request of
the learner. Equally important and a good illustration of the features made possible by
a course generator service is its usage by other components in ActiveMath whenever
they require pedagogically based retrieval of content. By using the course generator,
these components do not have to implement themselves the knowledge required to make
the selection. This reduces development time and ensures a coherent pedagogical look-
and-feel, since the same pedagogical principles are used for content selection, regardless
of the component.

Previously, I described how the exercise sequencer uses Paigos to select the exercises
the learner should work on. In the following, I describe two additional components, a
suggestion component and an assembly tool, that use Paigos’s functionalities. The third
subsection explains how Paigos is used to enhance the learner’s interaction possibilities
with courses presented in ActiveMath. All components use the interface described in
Section 6.1.

6.2.6.1. Suggestion Component

ActiveMath’s suggestion component (Melis and Andres, 2005) analyzes the user’s in-
teractions with ActiveMath to detect potential learning problems. Based on the in-
teractions, diagnoses are formed. The diagnoses are addressed by actions that provide
remediating feedback, i. e., suggestions, in case problems are diagnosed. Suggestions con-
sists of navigational hints (e. g., pointing at a specific page in the table of contents) or
of educational resources (e. g., an example that illustrates the fundamental that learner
seems to not have understood). For the latter case, the suggestion component uses Pai-
gos: the action only specifies the pedagogical task that can be used to address the
diagnosed problem; the actual educational resources to be presented are determined by
the course generator.

6.2.6.2. Assembly Tool

ActiveMath’s assembly tool allows a learner to create a book on her own by dragging
educational resources from ActiveMath (but also any other resource addressable by
an uri). The tool was designed to support the learner’s meta-cognitive reasoning, self-
regulated learning and active engagement with the content.

172

6.2. Integration of PAIGOS in ActiveMath

Figure 6.17.: Screenshot of the assembly tool

The principal actions supported by the assembly tool are the creation of structured
courses by adding chapters and drag-and-drop of resources into a table of contents. In
addition, a learner has access to Paigos’s functionality using a context menu. She can
select the direct insertion of resources that fulfill a pedagogical task specified by the
learner or insert a dynamic task that is achieved at a later time. Figure 6.17 contains a
screenshot that illustrates the integration. In the example, the learner uses the course
generator to select an example for “the definition of the difference quotient”.

The interface allows an intuitive creation of a pedagogical task. First, the user selects
a fundamental by clicking on it. This fundamental is the target fundamental of the
pedagogical task. Then, the learner selects the pedagogical objective from the context
menu. If the learner selected the direct insertion of elements, then the complete task
is sent to the course generator and the resulting resources are added in the table of
contents. Otherwise, in case the learner selected a dynamic item, the dynamic item is
inserted in the table of contents and instantiated at the time the learner views the page
in ActiveMath.

The assembly tool runs on the client and thus illustrates that the course generator
interfaces allow server-client communication.

6.2.6.3. Supporting the User’s Initiative

In addition to the generation of complete courses on request of the learner, the integration
of Paigos in ActiveMath offers user-triggered course extension as an additional feature
that supports the learner’s active engagement in accessing the content.

In case the learner wishes to see additional educational resources about a fundamental
displayed in a course, she can trigger the execution of a pedagogical task (e.g., train)
by selecting them from a drop-down list. Then, the task is processed by Paigos and
the resulting educational resources are presented to her. Upon the learner’s request,
the resources are added to the current page. Figure 6.18 contains a screenshot of the

173

6. Implementation and Integration

Figure 6.18.: The item menu for requesting additional content

interface. The interface uses the condition element provided in the description of the task
processable by Paigos (“public” tasks, see Section 4.3) to evaluate efficiently whether
a task can be fulfilled. If it cannot be fulfilled, then the corresponding menu entry is
hidden.

Compared to the search tool available in ActiveMath, the item menu has the ad-
vantage that content is retrieved in “one click” using pedagogical knowledge. Using the
search tool to retrieve, say, an easy exercise, requires knowledge about the ActiveMath’s
metadata. The item menu only requires following a link.

6.3. Course Generation as a Web-Service

In this section, I describe how Paigos can be made available as a Web-service.2 I start
by describing a survey we conducted in order to determine the specific functionalities
required by potential clients. From the collected requirements, we inferred a set of in-
terfaces (Section 6.3.1); in contrast to a course generator integrated within a Web-based
e-learning system as described in the previous section, a course generator Web-service
(cgws) needs to provide additional information, e. g., about the metadata it uses and the
functionalities it offers. The final section describes the interactions between the clients
and the cgws.

In order to assess the potential interest and the requirements of third-parties regarding
a cgws, we designed a survey of 13 questions inquiring about general and specific interests
of clients (e. g., interest in generating complete courses and retrieval of single resources),
but also technical questions, e. g., the used metadata schema, whether a learner model is
available, and the expected format of the results.

The survey was sent to three main mailing lists whose subscribers are mostly developers

2The work described in this section was developed as the master thesis by Lu (2006) under my super-
vision.

174

6.3. Course Generation as a Web-Service

and researchers in the field of technology supported learning: Adaptive Hypertext and
Hypermedia,3 International Forum of Educational Technology & Society4 and the Internal
Mailinglist of the European Network of Excellence Kaleidoscope.5

25 questionnaires were completed. About 65% of the participants showed an interest
in a cgws, including 33% being strongly interested. The majority of the participants
were using lom, ims cp and Scorm. Interestingly, even parties whose Web-based e-
learning systems did not include a learner model were interested in personalized course
generation. Half of the Web-based e-learning systems that use learner models offer a
Web-service access to their system. The results from the survey served to determine the
interfaces of the cgws.

6.3.1. Interfaces

6.3.1.1. Interfaces of the Course Generator Web-Service

The cgws provides two main kinds of interfaces: the core interface that provides the
methods for the course generation, and the repository integration interface that allows a
client to register a repository at the cgws. The core interface consists of the following
methods:

• The method getTaskDefinitions is used to retrieve the pedagogical tasks which
the course generator can process. The tasks are represented in the format described
in Section 4.3.

• The method generateCourse starts the course generation on a given task. The
client can make information about the learner available in two ways: if the learner
model contains information about the specific learner, then the client passes the
respective learner identifier as a parameter. In case no learner model exists, a
client gives a list of property-value pairs that is used by the cgws to construct
a temporary “learner model”. The course generator performs the planning in the
same way as with a real learner model, however its access of learner properties is
diverted by the cgws and answered using the map. Properties not contained in
the map are answered with a default value.

The result of the course generation is a structured sequence of educational resources
represented in an ims Manifest. Since the returned result does not contain the resources
but only references, the return result is not an ims cp.

The interface for repository registration consists of the following methods:

• The method getMetadataOntology informs the client about the metadata struc-
ture used in cgws. It returns the ontology of instructional objects described in
Section 4.1.

• The method registerRepository registers the repository that the client wants the
course generator to use. The client has to provide the name and the location (url)

3http://pegasus.tue.nl/mailman/listinfo/ah (De Bra, 2007)
4http://ifets.ieee.org/ (Mularczyk, 2004)
5http://www.noe-kaleidoscope.org/ (Kaleidoscope, 2007)

175

http://pegasus.tue.nl/mailman/listinfo/ah
http://ifets.ieee.org/
http://www.noe-kaleidoscope.org/

6. Implementation and Integration

2:generateMapping():RepAPI :Mediator1:getMetadataOntology():LMS�Client
5:getOntologyMapping()4:registerRepository()3:registerRepository()

Figure 6.19.: A sequence diagram illustrating the repository registration

of the repository. Additional parameters include the ontology that describes the
metadata structure used in the repository and the mapping of the oio onto the
repository ontology.

• The method unregisterRepository unregisters the given repository.

6.3.1.2. Client Interfaces

A client that wants to use the cgws needs to provide information about the educational
resources as well as about the learner (if available).

The interface ResourceQuery is used by the mediator to query the repository about
properties of educational resources. The interface consists of the following methods (the
same as described in Section 4.2.5):

• queryClass returns the classes a given resource belongs to.

• queryRelation returns the set of identifiers of those educational resources the given
resource is related to via the given relation.

• queryProperty returns the set of property-value pairs the given resource has.

The LearnerPropertyAPI makes the learners’ properties accessible to the cgws in case
the client contains a learner model and wants the course generator to use it. In the
current version of the cgws, this interface is not yet implemented. It would require a
mediator architecture similar to the one used for repository integration.

6.3.1.3. Interaction between Client and Server

In this section we describe the communication between client and server performed when
registering a repository and for course generation.

A repository is registered in the following way (for a sequence diagram illustrating the
registration, see Figure 6.19): in a first step, the client (LMS-Client in the figure) retrieves
the metadata ontology used in the cgws (i. e., the oio). The ontology is then used to
generate a mapping between the oio and the ontology representing the client metadata
(Step 2) (the currently existing mappings were manually authored). Then, the repository

176

6.3. Course Generation as a Web-Service

is registered using the method registerRepository (Step 3). The repository is added to
the list of available repositories and made known to the mediator (Step 4). Subsequently,
the mediator fetches the ontology mapping from the client and automatically generates
a wrapper for querying the contentAPI of the client.

A client starts the course generation using the service method generateCourse. In a
first step, the cgws checks whether the task is valid. If so, the course is generated by the
course generator. During the generation process, Paigos sends queries to the mediator,
which passes the queries to the repository. Like in ActiveMath, the results are cached.
After the course is generated, the omgroup generated by Paigos is transformed into an
ims manifest and sent to the client.

The cgws is still in an early stage of development and further work is necessary
to realize a mediator-like architecture for the generic integration of learner models. Yet,
despite being a prototype, the cgws was successfully used by the two third-party systems
MathCoach (a learning tool for statistics, Grabowski et al., 2005) and Teal (workflow
embedded e-learning at the workplace, Rostanin et al., 2006). The following chapter will
provide additional details on these use-cases.

177

6. Implementation and Integration

178

7. Evaluations

This section describes the evaluations and use cases that assessed different aspects of Pai-
gos. The first section covers technical evaluations and investigates the claims made in
the previous chapters, i. e., whether the oio can be mapped to third-party metadata (Sec-
tion 7.1.1); whether the mediator can access third-party repositories (Section 7.1.2); and
whether the Web-service interface of Paigos is usable by third-parties (Section 7.1.3).
Furthermore, I describe the results of a detailed analysis of the performance of Paigos
(Section 7.1.4). The analysis shows that Paigos generates courses that take a student
approximately 11 hours to study in less than half a second, as long as other compo-
nents such as the learner model and the repositories are able to answer requests in a
timely manner. For real life usage results involving the target audience, i. e., learners are
equally important as technical results. Therefore, Paigos was subject to formative and
summative evaluation (Section 7.2). The evaluation involved about fifty students from
Germany, UK, and Spain. The final summative evaluation illustrates that students like
to use Paigos and appreciate the interactive possibilities offered by Paigos.

7.1. Technical Evaluations and Use Cases

The use cases and evaluations reported in this chapter have been performed in order to
prepare the work and assess and improve the implemented results. The use cases are
summarized in Table 7.1. I will discuss them in the following sections.

7.1.1. Evaluations of the Ontology

A major design goal of the oio was compatibility with existing knowledge representations
and metadata schemas. For that purpose, I analyzed to what extent the ontology could

Type of uses case Systems
Ontology mapping ActiveMath, DaMiT, DocBook, LeAc-

tiveMath exercise repository, MathCoach,
MathsThesaurus, <ml>3, OMDoc, teal,
Winds

Repository connection ActiveMath MBase, DaMiT, LeActive-
Math exercise repository, MathCoach,
MathsThesaurus, teal

Usage of course generation
service

LMS: MathCoach, teal,
Educational services: Assembly Tool, Exer-
cise Sequencer, Suggestion Component

Table 7.1.: Realized uses cases

179

7. Evaluations

be mapped to the following widely-used knowledge representations and metadata used in
existing e-learning systems.

• DaMiT is an adaptive learning environment for the data mining domain (Jantke
et al., 2004). It adapts to the individual learning style of a user by providing
different views (e.g. formal vs. informal) on the same learning content.

• DocBook (Walsh and Muellner, 1999) serves a standard for writing structured doc-
uments using sgml or xml and was selected for the evaluation because of its wide-
spread use. Its elements describe the complete structure of a document down to
basic entities, e.g., the parameters of functions. Here, the most relevant elements are
those that describe content at paragraph level (called “block” elements). DocBook
is a general-purpose standard and not specifically designed for the representation
of educational resources.

• The LeActiveMath exercise repository was designed in the LeActiveMath
project and is a repository of interactive exercises that can be accessed by hu-
mans and machines. Its metadata is a slightly modified variant of ActiveMath’s
metadata.

• The MathCoach system was developed at the University of Applied Sciences
Saarland. It is a Web-based learning tool especially designed for exercises and
experiments in statistics (Grabowski et al., 2005).

• MathsThesaurus is an online multilingual mathematics thesaurus in nine lan-
guages (Thomas, 2004) and was selected because it covers a wide range of mathe-
matics.

• The “Multidimensional Learning Objects and Modular Lectures Markup Language”
(<ML>3 , Lucke et al., 2003) was designed for use in e-learning. Several German
universities used it to encode about 150 content modules in various domains.

• The Teal project investigates task-oriented proactive delivery of educational re-
sources in order to support learning at the workplace (Rostanin et al., 2006). The
Teal project was particularly interesting since its domain was not mathematics
but project management and the associated work tasks.

• WINDS (Specht et al., 2001), the “Web-based Intelligent Design and Tutoring Sys-
tem” provides several adaptive hypermedia features, e. g., adaptive link annotation.
Its knowledge representation is based on Cisco’s categorization of learning objects
(Cisco Systems, Inc, 2003) and was selected because its design was based on peda-
gogical considerations. WINDS is discussed in detail in Section 8.4.

By and large, we were able to design mappings between the oio and the knowledge
representations. Most problems were caused by the fact that often elements had no
instructional semantics (e. g., para in DocBook, quotation and description in <ml>3).
In these cases, it is impossible to define a general mapping rule.

In contrast, it was relatively straightforward to devise mappings between the oio and
knowledge representations devised for pedagogical usage as in WINDS and <ML>3.

180

7.1. Technical Evaluations and Use Cases

For instance, <ML>3 represents learning materials in “content blocks”. These blocks
can have one of the following types: “definition”, “example”, “remark”, “quotation”,
“algorithm”, “theorem”, “proof”, “description”, “task”, or “tip”. Most elements directly
correspond to an instructional object, however some elements, such as “quotation” and
“description” cannot be mapped directly, since again the instructional purpose is unclear.

Additional evaluations of the oio investigated its pedagogical appropriateness. School
teachers (for mathematics and physics), instructional designers, and members of Klett’s
e-learning lab (the largest publisher of educational content in Germany), were interviewed
about domain independence, pedagogical flexibility, completeness, and applicability. The
feedback was largely positive and suggestions (e. g., an additional class lawOfNature)
were taken into account for a revision of the ontology.

Applications of the ontology in domains other than course generation were investigated
in the European Network of Excellence Kaleidoscope and published in Merceron et al.
(2004). Additionally, it was used for a revised version of the ALOCoM ontology, a recent
effort in the European Network of Excellence ProLearn (Knight et al., 2006), in the e-
learning platform e-aula (Sancho et al., 2005), and in the CampusContent project of the
Distant University Hagen (Krämer, 2005).

7.1.2. Mediator Use Cases and Evaluations

Several repositories were successfully connected to the mediator (second row in Table 7.1,
page 179): the mathematical knowledge-base of ActiveMath (a Lucene database), the
LeActiveMath exercise repository (an eXist-database), the database of the math tu-
tor MathCoach (DerbyDB/JDBC), the MySQL-database of the online multilingual
Mathematics Thesaurus, and the DB2 database of the Teal project. As a result, all
these repositories can be accessed during course generation.

7.1.3. Course Generation Use Cases and Evaluations

Figure 7.1.: A course generated by Paigos for the Teal learning system

181

7. Evaluations

Number of Fundamentals 1 4 8 12 16 20
Pages 6 19 36 52 79 83
Resources 37 105 202 254 319 365

Table 7.2.: The amount of fundamentals, pages and resources of the courses generated in
the technical evaluations

The remote access to the course generation was successfully applied in MathCoach
and the Teal project (third row of Table 7.1, page 179). While the two former use
cases focus on teaching mathematics, the latter targets e-learning in office environments.
This illustrates that Paigos is applicable in other areas than mathematics. In both
cases, Paigos was accessed as a Web-service using the approach described in Section 6.3:
MathCoach and Teal registered their repositories and then started the course gen-
eration by providing a task. Information about the learner was passed as a map of
property-value pairs. Figure 7.1 contains a screenshot of a course generated by Paigos
and presented in Teal.

7.1.4. Performance of PAIGOS

If Paigos is to be used in real-life learning situations, it has to generate courses quickly.
In this section, I describe the results of a number of test of Paigos that allow making
claims about its performance, i. e., the time it takes to generate courses under varying
conditions.

In order to minimize influences of latency caused by the network, all components, i. e.,
the testing framework, ActiveMath and its repository and learner model ran on the
same computer, a standard PC with 2.8GH Intel Pentium 4 CPU with 2GB RAM (thus
not a server).

Since the tests were designed to assess the performance of Paigos, influences of other
components were minimized as much as possible. The learner model was replaced by a
dummy learner model that returned a standard value for each query. In addition, most
of the tests were performed with a pre-filled mediator cache: the course was generated
once, thereby causing the mediator to store the results of the queries. Then, the actual
test runs were performed, on the same set of target fundamentals and thus resulting in
the same queries.

The tests were performed using the scenario “discover”. This scenario involves a large
variety of different educational resources and is not as specialized as, say, “exam prepa-
ration”. The data was collected by generating six courses on 1, 4, 8, 12, 16, and 20 target
fundamentals. Each course generation was repeated 10 times and the data was averaged.
Prior to the test, the mediator cache was filled as described above.

Table 7.2 provides details on the length of the created courses. The course generated
for a single fundamental consists of six pages and a total of 37 educational resources
if all dynamic tasks are expanded. A course generated for 20 fundamentals consists of
83 pages and 365 resources. If each resource has a typical learning time of about two
minutes, completing this course would take between 11 and 12 hours. These figures
illustrate that course generation requires a large amount of educational resources: a

182

7.1. Technical Evaluations and Use Cases

Number of Fundamentals 1 4 8 12 16 20
Expanded 429 1 204 1 875 2 562 3 360 4 834
Dynamic Tasks 205 288 415 446 617 617

Table 7.3.: Required time of course generation vs. increasing amount of fundamentals

429

1204

1875

2562

3360

4834

205 288 415 446
617 622

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Concepts

M
ill

is
ec

on
ds

Expanded Dynamic Tasks

Figure 7.2.: A plot of the number of fundamentals vs. time required for course generation
in milliseconds

course for 4 fundamentals consists of more than 100 educational resources.
Table 7.3 and Figure 7.2 plot the number of fundamentals (called concepts in the

Figure) against the time required for course generation (in milliseconds). In the table,
the condition Expanded provides the time required for a completely expanded course,
i. e., all dynamic tasks are directly instantiated. The generation of the smallest course (a
single fundamental, six pages and 37 educational resources in total) takes less than half
a second. The generation of a course for 20 fundamentals takes less than five seconds, an
acceptable delay in a Web-based environment.

The condition Dynamic Tasks contains the values obtained for course generation
with dynamic tasks. The figures illustrate that not planning the complete plan can result
in a significant performance improvement: a course for 20 fundamentals is generated in
slightly more than half a second.

Table 7.4 compares the times it takes to generates courses using a filled cache (the
same data as in the previous tables) versus an empty cache. The increase is significant:
the generation of a course for a single fundamental with an empty cache takes more than

183

7. Evaluations

Number of Fundamentals 1 4 8 12 16 20
Filled Cache 205 288 415 446 617 617
Empty Cache 1 218 2 176 4 258 6 502 8 975 11 405

Table 7.4.: Times for generating a course with filled and empty mediator caches.

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Concepts

M
ill

is
ec

on
ds

Filled cache
Empty cache

Figure 7.3.: A plot of the number of fundamental vs. times required for course generation
with empty and filled cache

184

7.1. Technical Evaluations and Use Cases

Number of Fundamentals 1 4 8 12 16 20
Mediator Queries (Exp.) 1 519 5 297 9 826 13 123 16 901 21 499
Expanded Queries (Exp.) 11 400 29 697 49 565 62 992 83 923 100 421
Mediator Queries (DT) 148 496 1 043 1 503 2 002 2 707
Expanded Queries (DT) 1 204 3 349 7 810 9 702 11 510 14 155

Table 7.5.: Numbers of queries to the mediator and of expanded queries

no LM 288
SLM 463
LM-x 161 085

Table 7.6.: Time required for course generation with different learner models (in millisec-
onds)

a second, compared to 200 milliseconds with filled cached. A course for 20 fundamentals
takes about 11 seconds compared to half a second. This data was obtained with the
repository running on the same location as the course generator. Hence, accessing a
repository over the Web would increase the required time even more. The reasons for the
increase can be found by taking a closer look at the mediator.

Table 7.5 provides details about the number of queries that are send to the mediator
during course generation and about the number of queries that the mediator sends to
the repository. The figures differ since the mediator expands a query for a class c to
include its subclasses. The data is provided for expanded courses (condition Exp.) as
well as for courses with dynamic tasks (condition DT). The high amount of queries came
as a surprise. Generating an expanded course for a single fundamental results in about
1 500 mediator queries that are expanded to more than 11 000 queries to the repository.
The figures are significantly less in condition DT. Approximately 150 queries are send to
mediator, which expands them to about 1 200 queries. On the other end of the spectrum,
generating an expanded course for 20 fundamentals results in 21 500 mediator queries
and more than 100 000 expanded queries. Condition DT requires approximately 2 700
and 14 100 mediator and repository queries.

The above results show that although Paigos generates courses very efficiently, it
strongly depends on the performance of the repository. An additional test examined
effects on the learner model on course generation. In the previous tests, learner property
queries were handled by a dummy learner model. Table 7.6 and Figure 7.4 compare the
time required by course generation with the dummy leaner model, the standard learner
model of ActiveMath (SLM) and an external learner model that was integrated in
ActiveMath on a provisional basis in the LeActiveMath project (I will refer to it as
LM-x). During course generation, Paigos caches learner property queries. The cache is
cleared after each planning run. The course was generated for four fundamentals. Not
surprisingly, the required time depends on the learner model: if it provides fast response
times, then course generation is not substantially affected (see the increase from 288
to 463 milliseconds when using the SLM). In contrast, a low-performing learner model
like the LM-x deteriorates the course generator’s performance: generating a course takes

185

7. Evaluations

288 463 161085
0

100

200

300

400

500

600

700

800

900

1000

no LM SLM LM-x

Milliseconds

Figure 7.4.: Plot of the time required for course generation with different learner models
(in milliseconds)

186

7.2. Formative and Summative Evaluation

Expanded 7 713
Dynamic Tasks 31 029

Table 7.7.: Required average time of 50 concurrent course generation processes (in mil-
liseconds)

about 2:30 minutes instead of half a second.
A final test investigated the performance of concurrent access to the course generator.

In the test, fifty concurrent course generation processes were started, for a course with
four target fundamentals. Table 7.7 illustrates the results: on the average, a completely
expanded course takes 30 second to generate. Using dynamic tasks, it takes about 8
seconds.

7.1.5. Discussion

The results show that Paigos on its own generates courses fast, especially if dynamic
tasks interrupt the expansion of subtasks. Thus, dynamic tasks improve the performance
and enable adaptivity in generated and authored courses.

The tests were designed to assess the performance of Paigos. As a consequence,
external factors needed to be minimized. In particular, Paigos retrieved all resource
queries from the mediator’s cache. However, this test design is not completely artificial:
in classroom usage, each lesson covers a limited set of fundamentals. After a few course
generations, the majority of queries will be cached. In addition, since the topics are
known beforehand, the teacher or the e-learning environment can fill the cache before the
lesson.

Yet, Paigos’s real-life performance considerably depends on the repositories and the
learner model. In case the components reside on different servers, the very network
latency alone reduces the overall performance: the LeActiveMath exercise repository
is located in Eindhoven, the Netherlands. When accessed from Saarbrücken, Germany,
it answers a single query in about 80 milliseconds. As a consequence, the generation
of a 4 concepts course that requires 3 300 queries requires 4:30 minutes instead of 290
milliseconds.

On the Web, four minutes are an eternity. Few learners will wait patiently for the
course to appear: the experiments conducted by Bhatti et al. (2000) showed that subjects
rate a response time of over 11 seconds as unacceptable. This suggests adapting the
user-interface metaphor of the course generator. Instead of making the users expect an
immediate course assembly, a course should be “downloadable”, like a pdf document or
PowerPoint slides. A download often takes several minutes. After the “download” the
user is notified and can access her course from the main menu.

7.2. Formative and Summative Evaluation

This section presents the results of several evaluations of Paigos performed in the LeAc-
tiveMath project. The reported work was done in collaboration with Marianne Moor-
mann (Mathematical Institute of Ludwig-Maximilians-University, Munich), Tim Smith

187

7. Evaluations

(School of Informatics at the University of Edinburgh) and Eva Millán (University of
Malaga). Paigos was subject to two formative evaluations and a summative evaluation.

Formative Evaluation Formative evaluations are performed during the development of
a product (a software, a lesson, etc.). The evaluators monitor how users interact with the
product and identify potential problems and improvements. According to Scriven (1991,
p. 20), “[f]ormative evaluation is evaluation designed, done, and intended to support
the process of improvement, and normally commissioned or done by, and delivered to,
someone who can make improvements.”

Summative Evaluation A summative evaluation is performed at the end of the devel-
opment of the product. It describes the outcome of the product, by summarizing whether
the product is able to do what it was supposed to do. Scriven (1991, p. 20) characterizes
summative evaluation as “the rest of evaluation: in terms of intentions, it is evaluation
done for, or by, any observers or decision makers (by contrast with developers) who need
evaluative conclusions for any reasons besides development”.

The difference between formative and summative evaluation is illustrated by Robert
Stake’s analogy: “when the cook tastes the soup, that’s formative evaluation; when the
guest tastes it, that’s summative evaluation (Scriven, 1991, p. 19).”

The evaluations focused on the scenario “discover”. It is the first scenario learners
will work with and does not require prior contact with the content in contrast to, say,
rehearse and connect. The final summative evaluation included the remaining scenarios.

We conducted the first formative evaluation in December 2005 in Saarbrücken and
Munich, Germany (Section 7.2.1). At that time we had completed a first prototypi-
cal implementation of the scenario “discover”. The results of the evaluation were taken
into account in the further implementation of Paigos. In June 2006, the second for-
mative evaluation took place in Munich and repeated the methodology employed in the
first evaluation (Section 7.2.1.2). The result showed that we successfully addressed the
problems identified in the first evaluation. The summative evaluation was performed in
January 2007 in Edinburgh, UK, and Malaga, Spain (Section 7.2.2). It investigated the
complete set of scenarios developed in LeActiveMath. The results were positive: the
subjects judged the generated courses being useful and well-structured. The following
sections describe the evaluations in detail. In the following, I use the terminology of
ActiveMath: generated courses are called personal books; authored courses are called
prerecorded books.

7.2.1. Formative Evaluations

7.2.1.1. First Formative Evaluation (Germany)

A first formative evaluation assessed the scenario “discover”. It took place at the uni-
versities in Munich and in Saarbrücken. The subjects were five students for pre-service
mathematics teachers in their final year of study (Munich) and six computer science
students attending a seminar on “e-learning and mathematics” (Saarbrücken).

188

7.2. Formative and Summative Evaluation

In both places the procedure was as follows: an introduction (15 minutes) introduced
the subjects to ActiveMath (the book metaphor, navigation, online help and search,
and exercises). Then, we randomly split the students in two groups. One group worked
with a personal book, the other with a prerecorded book that contained the complete
content. The aim of the evaluation was to assess whether an automatic selection of
the educational resources would show an advantage over accessing the complete content
within a single book. Usage of the search facility was not restricted.

The subjects worked on the task to learn about derivatives, from the basic concept up
to the differentiation rules. The duration of the evaluation was 45 minutes. Afterwards,
each subject completed a questionnaire that assessed attitudes (e.g., like and dislike of
the book they worked with) and how they judge the effectiveness of the book. The
questionnaire asked for both structured (Likert scale questions) and open feedback.

For the quantitative analysis, the answers were encoded numerically ranging from 1 for
complete agreement or positive judgment to 4 for complete disagreement or a negative
judgment. We merged all questions inquiring about similar topics into one category,
thus resulting in the following categories: overall positive views on the system, quality of
navigation, content quality, and value for learners new to the content.

The subjects rated the overall ActiveMath system as average (2.54), which is not
surprising given the early state of the system. The subjects from Saarbrücken gave better,
i. e., lower, ratings (2.31) than the Munich subjects (2.82). This was general tendency
throughout all the answers. We believe it is caused by the Saarbrücken students being
more familiar with software in general. The subjects rated the content averagely, too
(mean 2.37, Saarbrücken and Munich 2.07).

Several question assessed whether the subjects judged the content as being useful for
learners without prior knowledge. The overall mean was 2.85, hence neutral. Contrary
to our expectations the group that worked with prerecorded books gave a more positive
statement (2.66) than the group working with generated books (3.01). However, the
difference between the two locations was more significant: the subjects of Saarbrücken
rated the usefulness higher than the Munich subjects (2.48 vs. 3.01).

The evaluation was severely hampered by the fact the mathematical skills of the sub-
jects were much lower than we expected. Both groups exhibited problems while working
with content we considered being prerequisites. Hence, in the limited time of the study
some subjects did not reach the principal content of the books, which was the content
that was adapted.

Nevertheless, the qualitative feedback given in the open feedback questions identified
several problems regarding book generation. Subjects working with generated books
complained about the order of exercises and examples and that the selected auxiliaries
did not take the required prerequisites sufficiently into account. Additionally, the sub-
jects criticized that several auxiliaries were seemingly inserted twice on the same page,
which was caused by the book generation not taking variants into account. A subject
working with a prerecorded book expressed a need for enhanced structure: “Die einzelnen
Kapitel könnten in Unterkapitel aufgeteilt werden, so dass der Lernende nicht von vielen
Inhalten auf einer Seite ’erschlagen’ wird” (“the different section should be structured
using subsections to avoid that learners are overwhelmed with content located on a single
page”).

The comments were taken into account for the further development of the course gen-

189

7. Evaluations

eration scenarios. Concretely, the revised selection of exercises and examples as explained
in Section 5.1.2 and 5.1.3 orders the resources by difficulty level. Additionally, Paigos
now uses the axiom readyAux (Section 4.6.8) to test whether the prerequisites of a re-
source are known to the learner or inserted in the book. The duplication of resources was
addressed by marking all variants of a resource as inserted as soon as the resource itself is
inserted. Although the evaluation focused on the scenario “discover”, these modifications
are relevant to all scenarios.

7.2.1.2. Second Formative Evaluation (Germany)

We conducted a second formative evaluation in June 2006 in Munich. Although the
number of participants was limited (4 pre-service teachers), the feedback of the subjects
showed that the modifications implemented as a reaction to the first evaluation were
beneficial.

The used methodology was almost equivalent to the one of the first study. Due to the
small number of participants, the subjects all worked with personal books. In addition,
the task was formulated slightly differently. In order to avoid that the subjects try to
work through all pages of the book and run in danger to get stuck in the very first pages,
they were told to assess the book with respect to its adequateness for learners new to the
concept of derivation.

In this evaluation, the subjects were very positive regarding the structure of the per-
sonal books. They rated the structure of the book as being beneficial for “new learner”
(mean 1.67). Similarly, the structure of the sections are rated as being very coherent
(mean 1.25).

7.2.1.3. Formative Evaluation (UK)

During February and March 2007 a lab-based University-level formative evaluation of
Paigos was performed. At that time, the system was in an early stage of development.
The learner model and course generator was not yet completely functional. Nevertheless,
the evaluation was able to identify potential problems and to identify the potential contri-
butions of the course generator to the student’s learning and experience of ActiveMath.

A cooperative evaluation design was used for this study. This design actively engages
the student in the evaluation process and enables them to step back and critique the
system’s performance and comment on their experience. Students were set tasks to
complete and asked to “think aloud” describing how they are carrying out the task and
any problems they are having. During their interaction audio and video was recorded
and later analyzed to identify metrics of performance. This data was then combined with
the student’s answers to pre- and post-use questionnaires.

Eleven students (6 male; mean age 19.45 years) from University of Edinburgh first year
Mathematics courses took part in the evaluation. The participants had been studying
calculus for 2.6 years on average and rated their own confidence with calculus as “good”.
All participants were frequent computer users who were very familiar with web interfaces.
All had previously used some form of maths software although the tasks they had per-
formed were mostly limited to generating graphs and inputing mathematical formulae.
These participants were considered representative of the University-level target users of

190

7.2. Formative and Summative Evaluation

ActiveMath.
The content in the primitive version of ActiveMath evaluated was divided into either

prerecorded courses which had been constructed by a teacher or personal courses which
the student could construct themselves using the course generator. Due to the preliminary
state of the learner model the content presented in these courses was not adapted to the
competency levels of the students. Essentially the student’s experience of the content
was as an electronic text book with hyperlinked concepts.

The evaluation showed that students found the structure and navigation of the content
“quite” easy to use and “quite” useful. Responses were made on a 5-point Likert scale
ranging from 1 (“not at all”) to 5 (“very much”). The two above values (“quite”) corre-
spond to 4. 91% of students said that the book metaphor used to structure the content
was useful and intuitive and the web interface worked as expected. However, 63% of the
students commented that the content structure became confusing when there were more
than two sublevels of content. When a course was subdivided into only one top level and
bottom level (chapters and pages), students navigated the content without any problem.
If a course contained further subdivision they were unable to use the book metaphor to
refer to the content and their efficiency of navigation suffered.

Learners used a course generation wizard for selecting content topics to appear in the
course. On average students rated the course generator as “quite” easy to use but of only
“moderate” usefulness. When asked for more details 63% of students commented that
they found it difficult to relate the list of content items presented in the course creation
tool to the resulting form of that content in the generated course. The relationship
between content item and page was not one-to-one as expected.

When asked to identify ActiveMath’s weaknesses students commented that the sys-
tem was not as good as a human tutor as it could not direct them towards content and
exercises based on their knowledge or give them tailored guidance. However, no requests
for these functions were made when given the opportunity to suggest improvements.
This mismatch possibly indicates students’ assumptions about what a computer system
is capable of. This suggests that the functionality offered by the course generator in com-
bination with the learner should be unexpected but beneficial to the student’s experience
of ActiveMath and their learning. This was confirmed in the summative evaluation.

7.2.2. Summative Evaluation

The summative evaluation took place in January 2007 in Edinburgh, UK, and Malaga,
Spain. It involved 39 students of mathematics, engineering, science, and computer sci-
ence, with an age range of 17–21 (average age of 18). 28 students were male, 11 female.

The evaluation used a cooperative evaluation methodology. A cooperative evaluation
usually involves a user working together with a physically present experimenter to use and
critique a system (Monk et al., 1993). The physical presence of the experimenter allows
them to modify the evaluation to the user, ensures that they communicate any problems
they are experiencing, any issues, incompatibilities they identify and also to ensure that
they explore the important features of the system. The upside of this approach is that a
detailed insight into the system’s usability and acceptance can be gained. The downside
is that only one user can be run at a time, the scenario in which the system is used is
highly artificial, and the experiences of multiple users cannot be directly compared as the

191

7. Evaluations

experimenter tailors each session.
These problems were addressed in the in-depth summative evaluation by taking the

cooperative evaluation design and automating it. As ActiveMath is an on-line system
tailored to a specific student a realistic evaluation of the system should be performed by
solitary students, on-line whilst in their usual work environment, whether that is at home
or in an open-access computer lab. To achieve this, the experimenter in the cooperative
evaluation has to be replaced by a system that both guides the student and probes them
for feedback. On-line surveys were used to set the student tasks, provide hints on how to
solve the tasks, and ask for both structured (Yes/No or Likert scale questions) and open
feedback.

At the time of the study, course generation was new to the students and not part
of their learning routine. This certainly affects the judgment of some of the scenarios,
especially those that correspond to unfamiliar ways of structuring content, e. g., the
scenario “connect”. In addition, the subjects had no experience how and when to use
personal books, e. g., to start with “discover”, followed by “rehearse”, etc. Nevertheless,
the evaluation allowed to collect data regarding the subject’s attitude towards personal
books, e. g., to assess whether the students accept and appreciate the generated books.

The evaluations were impaired by severe problems with the learner model component.
Access to the learner model was often very slow, which caused some courses not to be
generated. In addition, sometimes the competency values were not updated and existing
values forgotten. Nevertheless, since we were able to take these problems into account,
the evaluation provided us with valuable data how learners value the courses generated
by Paigos.

76

90

77

0

10

20

30

40

50

60

70

80

90

100

Assembling time acceptable Easy to create a course Confident finding content for the course

M
ea

n
ag

re
em

en
t (

5-
pt

 %
 s

ca
le

)

Figure 7.5.: General usability regarding the scenario “discover”

192

7.2. Formative and Summative Evaluation

Figure 7.5 shows that the subjects appreciate Paigos’s general usability. The subjects
stated their agreement (100) or disagreement (0) using a 5-point Likert scale. The as-
sembling time is judged being acceptable (first column). The subjects highly value the
course generation wizard: they agree that it is easy to create a course and that they are
confident that they will find the content they want (second and third column). Given
that course generation was previously unknown to the subjects, these results show that
the revised wizard is able to convey the concept of course generation to the learners.

Are the ... in the order you would expect?

28

36 36

11

3 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chapters Chapters (revised) Pages

M
ea

n
ag

re
em

en
t (

2
pt

 s
ca

le
, a

gr
ee

/d
is

ag
re

e)

Figure 7.6.: Agreement with the order of elements

The following figures present results concerning the scenario “discover”. Figure 7.6
illustrates that Paigos orders chapters (first/second column) and pages (third column) in
a way the subjects expect. They could either agree or disagree with the given statement.
About 70% agreed that the chapters were in the expected order. This relatively low value
was caused by a programming error, which under some circumstances resulted in chapters
not being ordered with respect to the prerequisite relation. This error is now corrected.
Most subjects who disagreed with the ordering of the chapters reported this fact in the
open feedback questions. If we assume that these subjects would agree with the order of
the chapters if it were not for the bug, the agreement ratio is 92% (second column). The
subject’s agreement with the order of the pages is similarly high (92%). These results
show that automatic course generation as implemented in Paigos structures courses in
a way that students understand.

As shown in Figure 7.7, the subjects agree with the way Paigos adapts courses to their
knowledge if they agree with the learner model. Students were asked to rate how well
they think the content of the book has been tailored to their current knowledge using a 5-

193

7. Evaluations

61

29

38

54

73
77

0

10

20

30

40

50

60

70

80

90

100

Mean Learner model
correct: 0

Learner model
correct: 25

Learner model
correct: 50

Learner model
correct: 75

Learner model
correct: 100

M
ea

n
ag

re
em

en
t (

5
pt

 %
 s

ca
le

)

Figure 7.7.: Results for the question “rate how well you think the content of the book
has been tailored to your current knowledge”, in relation to the perceived
correctness of the learner model

point Likert scale (0 not tailored at all, 100 perfectly tailored). The course was generated
for content the subjects had worked with previously. The mean value of about 60 (first
column) shows that the subjects agree with Paigos’s adaptivity. However, a closer
look on these figures shows that the rating of the quality of the tailoring increases with
the perceived correctness of the learner model. One question in the evaluation asked the
subjects to rate how well they think the learner model reflects their competency. Columns
2 to 6 in Figure 7.7 show that the rating of the tailoring increases with the perceived
quality of the learner model. With a very low rating of the correctness of the learner
model, the quality of the tailoring is low, but not zero. This may be due to the tailoring
with respect to the selected fundamentals. A high perceived learner model quality (10
students for column 5, and 13 for column 6) increases the rating of the tailoring to almost
80. We think that this data allows drawing two conclusions: firstly, the learners are able
to see that the courses generated by Paigos are adapted to the learner. Otherwise, the
ratings would not differ depending on the rating of the learner model. Secondly, the
realized adaptivity is appreciated by the learners.

Figure 7.8 presents the subjects’ agreement/disagreement with the level of difficulty of
the selected exercises (the numbers give the numbers of subjects as well as the percentage).
As described in the previous chapter, the scenario “discover” presents exercises directly
on a page, but also includes a link to the exercise sequencer. Since the evaluation surveys
instructed the subjects to use the sequencer, the figures comprises the data for both

194

7.2. Formative and Summative Evaluation

13; 72%

1; 6%

4; 22%

Agree
Disagree
No opinion

Figure 7.8.: Results for the question “do you think the level of difficulty of the exercises
was correct” for learners who state that the learner model values are correct

selection processes (which both use the same pedagogical task). The data contains the
answers of those students who stated that the estimations by the learner model were
correct. Almost three quarter of the learners state that the selected exercises have the
appropriate difficulty level, and only a single subject disagrees. Again, this result indicates
that Paigos’s pedagogical knowledge is adequate.

Data that investigates the preferred way of exercise selection is presented in Figure 7.9.
The subjects were asked whether they preferred exercises being presented using the se-
quencer or on a page. The results are not clear cut. Even if more than half of the
subjects prefer the sequencer, about a quarter prefer the “traditional” way. Thus, the
current formalization that caters for both groups is reasonable.

Subjects like working with personal books of the type “discover”. Figure 7.10 shows
that only a single subject stated that he would never use a personal book. One third would
use it mostly or as often as prerecorded books; forty percent would use it occasionally.

An additional set of questions investigated the subjects’ attitudes towards the remain-
ing scenarios. For each scenario, the subjects first read its description and then answered
the question how much they think they could learn from personal book of this type.
Subsequently, they generated the corresponding course. After examining the course, the
subjects answered the following questions.

• “I understand how the personal book is structured.”

• “The book is very tailored to my knowledge.”

195

7. Evaluations

0; 6; 15%

25; 5; 13%

50; 6; 15%

75; 13; 34%

100; 9; 23%

0
25
50
75
100

Figure 7.9.: Results for the question “do you prefer exercises to be sequenced in this way
or presented in a book that you can work through on your own?” Answers
were given on a 5-point scale, with 0 corresponding to “on a book page” and
100 to “in the exercise sequencer”

• “I would learn a lot from using this type of personal book.”

• “How much do you think you would use a book this type when learning a topic?”

The Figures 7.11 and 7.12 contain the results for scenario “connect”. The first column
in Figure 7.11 shows how much the learners think they could learn a lot from a “connect”
book (with 0 corresponding to “disagree” and 100 to “agree”). Even though the aim
of the book, i. e., to make explicit the connections between fundamentals, is usually not
a focus in teaching and thus unfamiliar to the learners, they still think they can learn
from books of this type after reading the scenario’s description. Albeit the structure
of “connect” books is more complicated than of the other scenarios, students seem to
understand it (second column). They have a neutral opinion regarding the adaptivity.
Interestingly, the subjects appreciate the scenario less after having seen a generated course
(column 4) than after having read the description (column 1). We think this indicates
that the students value learning about connections between fundamentals, but that the
formalization of the course needs to be refined. This conclusion is supported by the data
in Figure 7.12. More than half of the subjects state that they would use a book of type
“connect” occasionally and more often, and an additional 20% would use it at least once.
In this and the following figures, the total number of subjects differ since due to the

196

7.2. Formative and Summative Evaluation

Never; 1; 3%

Once; 7; 18%

Occassionally; 16; 42%

As often as prerec.; 10;
26%

Mostly; 4; 11%

Never Once Occassionally As often as prerec. Mostly

Figure 7.10.: Results for the question “how much do you think you would use a Discover
book when learning a new topic?”

problems with the learner model some subjects were unable to generate courses for all
scenarios. These subjects were not included in the respective data.

Figure 7.13 and 7.14 contains the results for the scenario “exam simulation”. In Fig-
ure 7.13, the discrepancy between the agreement after reading the description (85) and
after inspecting the course (54) is striking. We attribute this fact to the long time it
takes to generate this particular type of book. In this scenario, all exercises have to be
determined during the course generation in order to fill the selected time-span and hence,
dynamic tasks cannot be used. But still, 90% of the subjects would use books of this
type.

The data in Figure 7.15 shows that the subjects highly value personal books of the type
“rehearse”: the average agreement after reading the description and after generating a
course is about 75. The high rating is confirmed by Figure 7.16. None of the subjects
claimed he/she would never use a book of this type, about two third would use mostly
or as often as prerecorded books. We attribute these results to the fact that rehearsing
is a common task when learning and that students appreciate support during rehearsal,
especially if the support is tailored to their competencies.

Figure 7.17 contains the data for books of the type “train competency”. The appre-
ciation is lowest of all scenarios (56) but increases after the subjects have inspected a
generated course (61). We think these results are due to the unfamiliarity of the concept
of “competencies”. This would explain the increase: by only reading the description, the
learners do not have a sufficiently concrete idea of the scenario. After inspecting a gen-

197

7. Evaluations

49

65

48
43

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
ag

re
em

en
t (

5-
pt

 %
 s

ca
le

)

Figure 7.11.: Results for the scenario “connect”, on a 5-point scale, with 0 corresponding
to complete disagreement and 100 corresponding to complete agreement

erated course, the subjects become aware that it mainly consists of exercises that train
a specific aspect of a fundamental. Two third of the students would use such a course at
least occasionally (Figure 7.18).

The most appreciated type of book is “train intensively” (called “workbook” in Ac-
tiveMath). The mean agreement both before and after a course of this type was gen-
erated is about 80 (see Figure 7.19). About 85% of the subjects would use it at least
occasionally (see Figure 7.20), and half of the subject as least as often as a prerecorded
book.

7.2.3. Discussion

The results of the formative and summative evaluations show that the subjects under-
stand the structure of the generated courses and appreciate the tailoring to their compe-
tencies. Those scenarios that support the students in working with exercises are valued
highest. The in-depth evaluations performed in the LeActiveMath project confirm
that students primarily appreciate ActiveMath as a tool for rehearsing and training.
Scenarios such as connect that are new to students are rated lower.

The open feedback questions provide other valuable insights. Two subjects commented
that they were afraid to miss important content when using personal books. One of the
subject said “the personal book was at a good level, but if I was revising for maths I would
be worried that it would miss out something important, and just read the prerecorded

198

7.2. Formative and Summative Evaluation

Never; 8; 22%

Once; 7; 19%

Occassionally; 15; 40%

As often as prerec.; 5;
14%

Mostly; 2; 5%

Never Once Occassionally As often as prerec. Mostly

Figure 7.12.: Results for the question “How much do you think you would use a book of
type ‘connect’ when learning a topic?”

books anyway”. This underlines the importance of making the concept of personal books
familiar to the students if they are to be used in daily learning.

Another point emphasized by the subjects in the open feedback was that they under-
stand and appreciate the notion that a personal book is indeed personal, that is, it is
tailored to and modifiable by the individual learner. In fact, all subjects agreed that they
should be able to modify personal books using the item menu.

I conclude this chapter by discussing some of the subjects’ remarks (spelling errors
were not corrected). Appendix 9 contains the complete list of the students’ comments.

The two following quotes illustrate that the subjects detected incorrect order of chap-
ters, but were also aware of the intended structure in case of correct order.

“differnce quotient is first but i think it should come later. pages are in a
logical order.”

“They get progressively more difficult and the later ones require the knowledge
of the first ones”

Three quarter of the subjects judged the difficulty level of the exercises as appropriate
considering their competency level; several provided comments like the first quote below.
The remaining subjects either judged the exercises either being too difficulty or too easy
(see the second quote). Often, this was caused by the problems with the learner model.

“the exercises are good as they grow in difficulty”

199

7. Evaluations

85
82

59 58

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
ag

re
em

en
t (

5-
pt

 %
 s

ca
le

)

Figure 7.13.: Results for the scenario “exam simulation”, on a 5-point scale, with 0 cor-
responding to complete disagreement and 100 corresponding to complete
agreement

“These problems seemed quite hard considering how weakly I have met the
prerequisites.”

The subjects appreciate the options of modifying personal books by adding and re-
moving resources. and the majority agrees that prerecorded books should remain fixed
(“kind of a backup”). Particularly interesting are the last two comments: the “freedom”
of ActiveMath helps learners to find they own way of learning and makes them feel
being respected, treated as adults.

“One is responsible utterly for a personal book, but should always have a kind
of backup in the form of pre-recorded book.”

“I think the more freedom a user is given, the more likely they will find the
best way to learn the material for them.”

“As I understand, LAM is designed for students; as students are adults, they
should be able to easily decide about contents of their books, to suit their
particular needs.”

The final four comments are a representative set of quotes of the subjects describing
whether they prefer working with prerecorded books or personal books. Most subjects
value the clear structure of personal books and that they are focused on the selected

200

7.2. Formative and Summative Evaluation

Never; 3; 9%

Once; 10; 31%

Occassionally; 10; 30%

As often as prerec.; 6;
18%

Mostly; 4; 12%

Never Once Occassionally As often as prerec. Mostly

Figure 7.14.: Results for the question “How much do you think you would use a book of
type ‘exam simulation’ when learning a topic?”

target fundamentals. These quotes show that subjects perceive the adapted courses that
Paigos generates as an added value compared to traditional access to content.

“In Personal Book topics are more friendly segregated.”

“personal book offers a better means of understanding the product rule as it
gives information bit by bit ie in sequence”

“The prerecorded books were set out ideally and in an acceptable order, I’d
use that.”

“I prefer personal book because it is only about the product rule and no other
topics would interrupt me. The pre-recorded book is quite big and is therefore
not as clear as the personal book.”

201

7. Evaluations

77

84

71
74

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
ag

re
em

en
t (

5-
pt

 %
 s

ca
le

)

Figure 7.15.: Results for the scenario “rehearse”, on a 5-point scale, with 0 corresponding
to complete disagreement and 100 corresponding to complete agreement

Once; 4; 13%

Occassionally; 8; 25%

As often as prerec.; 14;
43%

Mostly; 6; 19%

Once Occassionally As often as prerec. Mostly

Figure 7.16.: Results for the question “How much do you think you would use a book of
type ‘rehearse’ when learning a topic?”

202

7.2. Formative and Summative Evaluation

56

73

63
61

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
ag

re
em

en
t (

5-
pt

 %
 s

ca
le

)

Figure 7.17.: Results for the scenario “train competency”, on a 5-point scale, with 0
corresponding to complete disagreement and 100 corresponding to complete
agreement

Never; 1; 3%

Once; 10; 31%

Occassionally; 11; 34%

As often as prerec.; 6;
19%

Mostly; 4; 13%

Never Once Occassionally As often as prerec. Mostly

Figure 7.18.: Results for the question “How much do you think you would use a book of
type ‘train competency’ when learning a topic?”

203

7. Evaluations

76

84

71

78

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
ag

re
em

en
t (

5-
pt

 %
 s

ca
le

)

Figure 7.19.: Results for the scenario “train intensively”, on a 5-point scale, with 0 cor-
responding to complete disagreement and 100 corresponding to complete
agreement

Never; 2; 6%

Once; 3; 9%

Occassionally; 11; 30%

As often as prerec.; 9;
26%

Mostly; 10; 29%

Never Once Occassionally As often as prerec. Mostly

Figure 7.20.: Results for the question “How much do you think you would use a book of
type ‘train intensively’ when learning a topic?”

204

Part III.

Conclusions

205

8. Related Work

Course generation has long been a research topic. It is appearing in the literature under
a number of names, for instance curriculum sequencing (Stern and Woolf, 1998) and trail
generation (Keenoy et al., 2003). The subsequent sections provide an overview on existing
course generation approaches. The focus lies on well-known approaches that use (or claim
to use) educational knowledge to inform the sequencing and selection of learning objects.

8.1. Early Work

The early work (e. g., Peachy and McCalla 1986) introduced techniques on which some
of today’s course generation is still based on, in particular those approaches that model
pedagogical knowledge. In the beginning, the distinction between course generation and
ITS was fuzzy. The goal was to model the complete process of one-to-one tutoring as
a dialogue between a system and a learner, including interactions while solving exer-
cises. Some of these systems (e. g., Murray, 1989) used learning materials retrieved from
repositories to support the tutoring process — a technique that later became the basic
technique for course generation.

The early approaches applied a number of AI-techniques to guide the tutorial inter-
action, e. g., skeletal plans retrieved from a plan library (Woolf and McDonald, 1984),
expert systems (Clancey, 1979), STRIPS-based planning (Peachy and McCalla, 1986),
blackboard-based architectures (Murray, 1989), and task-based approaches (Van Mar-
cke, 1990). For a recent discussion on modeling tutorial interactions, see du Boulay and
Luckin (2001).

The early work was done at a time when the Internet was in its very beginning: there
was no notion of standardized learning objects, and Web-based learning environments
did not exist. With the advent of the Web, the research focus in course generation moved
from modeling tutorial interactions to exploring Web-based techniques such Adaptive
Hypermedia, generic descriptions of learning objects (metadata), and re-use as well as
interoperability of resources and tools. While pedagogical knowledge was present in each
developed system to some extent, often it was marginalized and seldom extensively and
explicitly modeled.

Since in this thesis, the modeling of pedagogical knowledge plays a significant role,
I restrict the following discussion of related work to approaches which (claim to) have a
similar objective.

8.2. Generic Tutoring Environment

The “Generic Tutoring Environment” (GTE) (Van Marcke, 1992; Van Marcke, 1998)
is a learning environment that is based on the explicit modeling of knowledge. It was

207

8. Related Work

developed in the Third EU Framework Programme, in the scope of several Delta projects.
To my knowledge, despite the time that has passed since the development of GTE, no
other course generation system possesses a comparable large instructional knowledge base
up to now, aside from Paigos.

GTE was the first system that followed the line of thought of Steels’ Components of Ex-
pertise (Steels, 1990). Based on this paradigm, the instructional knowledge represented
in GTE was divided into instructional tasks, instructional methods, and instructional
objects. Tasks represent activities to be accomplished during the teaching process. They
are performed by methods that decompose tasks into subtasks down to a level of prim-
itives. The tree that results from the repeated decomposition of tasks into subtasks by
methods is called a task structure. Paigos is also based on the task-based paradigm.

The early descriptions of GTE (Van Marcke, 1990) show that the original system was
not designed as a course generator. The complete instructional process was supposed to
be modeled as a dialogue, which includes interactions while solving exercises. This aim
is reflected in the process model of GTE, which handles the interaction with the learner.
The process model includes the selection/presentation of the educational resources and
interpretation of learner input during problem solving.

GTE does not use any standard (AI) technique but implements its own algorithm,
based on proceed signals. A proceed signal tells the system to advance the interaction
step by step. It is sent to the top-level task of the interaction and pushed through the
tasks and methods of the task structure down to the currently active bottom task. In case
the bottom task can be decomposed, a method that is applicable on the task is selected
using a complex set of rating conditions. If the interactions associated with task were
completed successfully (e. g., the learner solved the associated exercise(s)), then the task
is marked as “finished”. Otherwise a failure signal was sent to the method that created
the task. A method that receives a process signal passes it to its first unfinished task. A
failure signal causes the method to select a different subtask or to fail.

Van Marcke (1998) argues that process signals provide a great deal of flexibility, as it
enables tasks to interrupt the execution of its children. The downside is that no analysis
of this algorithm exists (at least not published) and thus its complexity is unknown. In
contrast, the formal underpinnings of HTN-planning were developed in the mid-90s by
Erol et al. (1996) and complexity results are available.

Despite the amount of pedagogical knowledge modeled in GTE, it has no notion of
scenarios as developed in Paigos. While the methods for teaching a concept do represent
different ways of doing so (e. g., following a tutorial or discovery approach), the selection
of the method is done using ratings encoded within the methods. A learner can not tell
the system to apply, say, a discovery approach for the complete tutorial session.

In addition, the selection of exercises is limited. GTE takes difficulty and prior perfor-
mance into account but does not use properties such as competencies, although it is in
principle possible within the GTE framework.

8.3. Dynamic Courseware Generator

Just like GTE, the “Dynamic Courseware Generator” (DCG) (Vassileva, 1995, 1997;
Vassileva and Deters, 1998) is one of the early systems. It uses rules for pedagogically-

208

8.4. ACE/WINDS

based decision making, e. g., for deciding how to present a concept. DCG is based on the
ideas of Peachy and McCalla (1986) who first proposed to use AI planning for technology-
supported learning.

DCG distinguishes between the domain concepts and the educational resources used
to explain/teach the concepts. The domain structure is represented in a graph. Nodes
correspond to domain concepts, and edges to relations that hold between the concepts,
e. g., domain prerequisites. The educational resources are stored as html pages and they
are linked to the domain concepts. Each resource has a role (e. g., teach, explain, exercise,
and test).

Course generation in DCG is separated in two consecutive steps: the selection of the
concepts the course will cover and the way how these concepts are explained. Based on
Wasson (1990), Vassileva named these steps content planning and presentation planning.

Given a learner and a goal concept, content planning generates paths through the
concept graph that connect the concepts known by the learner with her learning goal.
DCG uses an AI-planner to search for the paths. A plan is then selected as a course
skeleton for presentation planning.

Presentation planning selects which of those educational resources that are linked to a
concept are to be presented to the learner and in what order. DCG uses four different
methods for teaching a concept: “hierarchical”, “advanced organizer”, “basic concept”,
and “discovery”. The hierarchical method uses the sequence “introduce”, “explain”, “give
example”, “give exercises”, and “give a test”. The “advance organizer” method uses the
same sequence, but starts by informing the learner of the structure of the course to come
and of the learning objectives. The “basic concepts” method starts with an exercise. The
“discovery” method presents a motivating problem and an analysis of the problem and
then lets the learner solve the problem on her own.

DCG is a course sequencer, that is, the next page is selected dynamically at the time
the learner requests it. While this allows better reactivity, the learner is not able to see
the structure of the complete course, which inhibits, for instance, free navigation.

The distinction between content and presentation planning raises the problem that for
each concept it is decided separately what educational resources will be selected for it.
The selection only takes the current concept into account. Using the published rules, it
is not possible to construct a page that contains, say, the definition of a concept and all
the definitions of its prerequisite concepts. Aside from the case of re-planning, it is also
not possible that the same concept occurs in the course several times, which is necessary,
for instance, when a theorem is used in several proofs and should be presented each time.

8.4. ACE/WINDS

The “Adaptive Courseware Environment” (ACE), developed by Specht and Oppermann
(1998), offers similar features as DCG. ACE was an extension of one of the first Web-based
e-learning systems ELM-ART (Brusilovsky et al., 1996; Weber and Brusilovsky, 2001),
and combined ELM-ART’s adaptive hypermedia techniques with DCG’s presentation
planning.

In ACE’s concept graph, each node represents a concept or a set of concepts. Each
concept is linked to different types of learning materials that explain different aspects

209

8. Related Work

of the concept. The edges of the domain structure represent prerequisite relations. In
addition, authors can specify a sequence relation that is used as the default path through
the domain.

Whereas in DCG the rules that govern presentation planning are independent of the
concepts and hence re-used, in ACE an author has to provide them explicitly by specifying
the sequence of educational resource to present for each concept (otherwise a default
strategy is used). The sequence can change depending on values of the learner model, for
instance easy examples might be skipped. Unfortunately, Specht and Oppermann do not
describe the expressiveness of these rules, which makes them hard to assess. An adaptive
sequencing component tries to keep the student on an optimal path but allows skipping
sections if the learner proves to master them in a test.

Specht continued research in course generation and developed the “Web-based Intelli-
gent Design and Tutoring System” (WINDS) (Specht et al., 2001). Based on WINDS’
description, ACE and WINDS seem closely related, which, however, is hard to assess
precisely as the available descriptions of WINDS are very abstract. WINDS may possess
more complex adaption methods, such as one deciding whether to present a concrete
example before or after an abstract statement.

Both ACE and WINDS are conceptually very similar to DCG. In particular, they
follow the distinction between content and presentation planning and hence suffer from
the same drawbacks.

Another drawback is that the rules informing the presentation planning are attached to
the individual concepts, which is a step backwards from the goal of generic instructional
knowledge. The same applies to the requirement that the path through the domain
structure needs to be specified by the author and is not generated automatically taking
into account the learning goals.

8.5. Former Course Generator of ActiveMath

ActiveMath (Melis et al., 2001, 2006) is a mature web-based intelligent learning envi-
ronment for mathematics that has been developed since 2000 at the University of Saar-
land and at the German Research Institute for Artificial Intelligence.1 Adaptivity was
a central feature of ActiveMath since the beginning of its development. An extensive
description of ActiveMath and the integration of Paigos is subject of Chapter 6. In
this section, I will focus on the former course generator of ActiveMath.

The former course generator of ActiveMath (Libbrecht et al., 2001) generates a
personalized course in a three-stage process, where stage one and two correspond to
content and presentation planning:

Retrieval of content Starting from the goal concepts chosen by the user, all concepts
they depend upon and corresponding additional educational resources (e.g., elabo-
rations, examples for a concept) are collected recursively from the knowledge base.
This process uses the dependency metadata information specified in metadata. The
result of this retrieval is a collection of all educational resources that are available
for the goal concepts and their prerequisites.

1www.activemath.org, (ActiveMath Group, 2007).

210

www.activemath.org

8.5. Former Course Generator of ActiveMath

Applying pedagogical knowledge Then, the collection of educational resources is pro-
cessed according to the information in the user model and in the pedagogical mod-
ule. This results in a personalized instructional graph of the learning material. This
process is detailed below.

Linearization In the final step, the instructional graph is linearized.

The result of the presentation planning is a linearized instructional graph of references
to educational resources. In contrast to previous systems, the educational resources are
not html pages, but represented in OMDoc, an xml-based standard for mathematical
documents (Kohlhase, 2001; Melis et al., 2003). At presentation time, this collection is
transformed by xsl-transformations into the desired output format, e. g., html or pdf.

The goal of the application of pedagogical knowledge is to select resources from the
collection of educational resources that was gathered in the first stage of course generation
and to assemble them into a course. ActiveMath employs pedagogical information
represented in pedagogical rules. It evaluates the rules with the expert system shell jess
(Friedman-Hill, 1997). The rules consist of a condition and an action part. The condition
part of a rule specifies the conditions that have to be fulfilled for the rule to be applied,
the action part specifies the actions to be taken when the rule is applied.

The course generator employs the pedagogical rules to decide: (1) which information
should be presented on a page; (2) in what order this information should appear on a
single page; (3) how many exercises and examples should be presented and how difficult
they should be; (4) whether or not to include exercises and examples that make use of a
particular learning-supporting service, such as Computer Algebra Systems.

The application of pedagogical rules works as follows (stage two of the above process).
First, information about the learner retrieved from the user model (e. g., what kind of
service system the learner can use) is entered as facts into jess’ knowledge base together
with the metadata of the OMDoc items (annotated with the learner’s mastery level)
collected in the first stage of presentation planning and her goals and the chosen scenario.
Then the rules are evaluated. This results in adding new facts in the knowledge base and
eventually generating the sorted lists of items the pages of the course will consist of.

For examples, the following rule determines the kind of items and in what order they
will appear on the course pages, here for the case that the learner has selected to prepare
for an exam (indicated by the fact (scenario ExamPrep)). When this rule fires, then
the facts (definition ... exercise) are asserted, i.e., added to jess’ knowledge base.
This implies that these items will appear on a page in the specified order.

Example 8.1.
(defrule PatternForExamPrep

(scenario ExamPrep)
=>
(assert (definitions assertions methods exercises)))

In turn, these facts will make other rules fire, e.g., those choosing exercises with an
appropriate difficulty level:

211

8. Related Work

Example 8.2.
(defrule RequireAppropriateExercise

(exercise)
(definition
(name ?definition)
(userKnowledge ?user-knowledge))
(test (< ?user-knowledge 0.3))
=>
(assert (choose-exercise-for ?definition (0.3 0.5 0.7))))

This rule determines that if exercises should be presented at all (indicated by (exerci-
ses)) and if there exists a definition d in the knowledge base of jess, then d’s name
is bound to the variable ?definition and the learner’s knowledge of d is bound to
?user-knowledge. jess allows to specify Boolean functions (indicated by test) that are
evaluated and whose value determines whether a rule fires or not. The above rule fires
when the learner’s knowledge is less than 0.3. Then the fact (choose-exercise-for
?definition (0.3 0.5 0.7)) is inserted into jess’ knowledge base. This triggers the
selection of examples for d with difficulty levels 0.3, 0.5, and 0.7 in a row.

The former course generator of ActiveMath offered the following scenarios: overview,
guided tour, workbook, exam preparation. A prototypical Polya-style proof presentation
targets the presentation of proofs in a manner based on guidelines by Polya (1973). For
more details on the scenarios, see Ullrich (2003); Melis and Ullrich (2003).

The former course generation of ActiveMath had the following limitations. First,
the content on a page was limited. Only a single concept could be contained in a page,
and all other educational resources on that page had to be for the concept — a recurrent
limitation of course generators that follow the paradigm of distinguishing between content
and presentation planning.

A severe technical problem arouse due to the usage of the expert system approach.
There, it is required that first the fact base that is used as a basis for the reasoning process
is filled with the facts that are relevant for the reasoning. Only then, the reasoning process
starts. This required to collect all potentially useful educational resources beforehand and
then perform the selection. Naturally, this created performance problem, in particular
high memory usage.

Additional limitations included the following. The rules that decided which auxiliaries
to select for a concept were limited; they consisted of fixed schemas. In addition, the
reasoning process happened on OMDoc level, using the metadata it provided, therefore,
other repositories could not be integrated. Finally, the resulting course only contained
educational resources; no learning goals, text templates, or services.

8.6. APeLS/iClass

In the “Adaptive Personalised e-Learning Service” (APeLS) (Conlan et al., 2002, 2003) an
author can represent his courses using what the authors call “narratives” and “candidate
groups”. A narrative is a sequence through the content where each step consists of sets of
educational resources that share the same learning goal (candidate groups). The specific
resource presented to the learner is selected at run-time. This approach seems very
similar to Vassileva’s paths through the domain structure but instead of having concepts

212

8.7. SeLeNe

linked with educational resources, the nodes of the domain structure consist of the sets
of educational resources. Unfortunately, the authors do not provide any details on this
topic (nor citations). Different from DCG, where the paths were generated during content
planning, in APeLS they are authored.

In APeLS, presentation planning is restricted to selecting the specific candidate group.
The candidate groups are pre-defined and differ in the structure/layout in which the
educational resources are placed and their output format.

Conlan and Wade continued their research on course generation in the European FP6
Integrated Project “iClass” (Intelligent Distributed Cognitive-based Open Learning Sys-
tem for Schools)2 that “adapts to learners’ needs, both intelligently and cognitively” (Ke-
effe et al., 2006). In iClass, two components are responsible for course generation (or, to
follow the terms of Keeffe et al. 2006, “the delivery of customized learning experiences”).
A “Selector Service” does content planning and part of the presentation planning and a
“LO Generator” performs additional functionalities similar to presentation planning.

The authors stress that the fact that unlike in APeLS, the iClass system separates
pedagogical information and the domain structure into two distinct entities. However,
they do not provide information to what extent this is different from the approach as
advocated by Peachy and McCalla (1986) and implemented by, e. g., Vassileva in DCG.
A potential difference might be that the selector’s domain structure contains “skills” as
well as concepts, and the selector service uses “skills” as a basis for determining the
content. However, as there exists a one-to-one relationship between skills and concept,
the approach is not fundamentally different. Once the selector has determined a set of
concepts, it decides how each concept is presented, i. e., it selects the suited instructional
method. The LO Generator then determines the exact educational resources to be used,
based in learner preferences and context.

8.7. SeLeNe

The “SeLeNe” (self e-learning networks) project investigated technology-supported learn-
ing in networks of Web-based learning objects.3 SeLeNe was an Accompanying Measure
in the Fifth Framework Programme of the EU; part of its research was continued in the
TRAILS-project of the European Network of Excellence Kaleidoscope.4 A techniques
investigated in SeLeNe is adaptive sequencing. Keenoy et al. (2003, 2005) call a linear
sequence of educational resources a trail.

In SeLeNe, a learner searches for educational resources using simple keyword-based
queries that are matched against author and subject information. A “Trails and Adap-
tation service” personalizes the queries by reformulating and adding conditions to the
query (e. g., the learner’s language), and by ranking the results in order of relevance to
the learner. The learner can request a personalized sequence of interactions through the
resources (a trail). Trails are calculated based on relationship types that hold between
resources.

Most of the pedagogical knowledge used in SeLeNe is embedded in the algorithm that

2http://www.iclass.info (IClass Consortium, 2004).
3http://www.dcs.bbk.ac.uk/selene/ (University of London, 2005).
4http://www.noe-kaleidoscope.org/ (Kaleidoscope, 2007).

213

http://www.iclass.info
http://www.dcs.bbk.ac.uk/selene/
http://www.noe-kaleidoscope.org/

8. Related Work

ranks the search results. The sequencing of the educational resources is done using
the relationships given in the metadata of the resources. In the current version, it is
rather limited, since essentially it consists of presenting all prerequisite concepts. When
searching for resources, the learner can only specify a learning goal from the content. She
can not specify more sophisticated learning goals as they are available in Paigos.

8.8. Statistical Methods for Course Generation

In contrast to the above approaches to course generation that rely on a more or less
detailed explicit representation of instructional knowledge, Karampiperis and Sampson
(2005a,b) suggest to use statistical methods for determining the best path through the
educational resources.

The approach works as follows. Instead of first selecting the concepts and then for
each concept selecting the educational resources, they first calculate all possible courses
that reach a set of concepts and then select the best suited one, according to a utility
function.

Generating all possible sequences requires merging the concepts contained in the do-
main structure with the educational resources. This is achieved by replacing every con-
cept in the domain structure by the related set of educational resources. The resulting
structure (“Learning Paths Graph”) inherits the relations represented in both the domain
structure and among the educational resources.

The utility function encodes how good a particular educational resource is suited for
a given learner. The utility function maps learning object characteristics to learner
characteristics and vice versa. The function is determined through statistical methods:
for a set of reference learners, an instructional designer rates a training and generalization
set of educational resources with respect to their usefulness for the learner. Subsequently
this data is used to train and evaluate the resulting utility function.

In a final step, the edges in the learning paths graph are inversely weighted with to the
utility function: the more appropriate an educational resource is, the lower the weight.
Determining the best sequence through the learning paths graph is done by using a
shortest path algorithm

The authors evaluated their approach by comparing automatically calculated sequences
with sequences authored by an instructional designer, as well as through simulations that
measure how close the generated sequences are to ideal paths. They claim that their
approach can produce sequences that are almost similar to the ideal ones (generated
and authored) if the educational resources are well described by metadata and consist of
collections of small-size resources.

This statistical method is a novel approach to course generation and hence it is hard
to assess it suitability in real-life applications. A major drawback is that the educational
resources are rated by an instructional designer with respect to a specific learner. The
rating does not take into account that the same learner can have different learning goals
regarding the same concepts. Another drawback is that educational resources will only
appear in a course if there exists a direct relation between them. However, it will often be
the case that two educational resources for the same concept have no relations between
each other, e. g., two exercises of different difficulty level. They will never be presented

214

8.9. Approaches using Hierarchical Task Network Planning

in the same course, unless a different educational resource exists that aggregates both
resources. This criticism is supported by the evaluation, where best results were obtained
for small-size resources.

8.9. Approaches using Hierarchical Task Network Planning

Course generation approaches based on HTN planning are rare – in the literature, only a
single system is described, apart from Paigos. Méndez et al. (2004) propose to use HTN
planning for course generation in the e-learning environment Forhum. Their approach
automatically generates HTN methods and operators from the domain model. So called
“educational objectives”, which practically correspond to concepts are “achieved” by
educational resources, called “educational units”. Each educational unit has an associated
learning style.

The generation of the methods and operators happens according to set of five rules: for
each concept c, a method m is generated. The preconditions of m are the prerequisites
of c. The subtasks of m are the concepts that are linked to c by a part-of relation
(called “component”). For each educational resource e, a method and an operator are
generated. The method has as a precondition the learning style associated with e (hence,
the resource will only be “applied” if the learning style is the one of the learner); the single
subtask consists of the resource itself. The operator has as precondition the prerequisites
of e, the delete list is empty, and the add list consists of the concept associated with e.
Therefore, a resource is presented after its prerequisites were presented. The remaining
three generation rules are similar.

In contrast to Paigos, the generation of the pedagogical knowledge happens automat-
ically, once the domain structure is defined. The system can then generate courses for
given concepts adapted to a given learning style. The drawback is that the pedagogical
knowledge is encoded in the generation process and it is rather limited. Basically, it says:
teach the prerequisites first and select educational resources according to the learner’s
learning style. Paigos, in contrast, has an explicit representation of pedagogical knowl-
edge, which was derived by interviewing from pedagogical experts and from pedagogical
theory. In addition, Paigos allows generating courses for the same concepts but with
different learning goals, which is not possible in the planner of Forhum.

8.10. Ontologies for Instructional Design

Closely related are applications of ontological modeling in instructional design. Seminal
work in this direction by Mizoguchi and Bourdeau (2000) describes general directions of
research regarding how ontologies might help to overcome problems in artificial intelli-
gence in education. Building on that work, Aroyo and Mizoguchi (2003) describe how
an assistant layer uses an ontology to support the complete authoring, for instance by
providing hints on the course structure.

Recent work by Hayashi et al. (2006b,a) develops “an ontology of learning, instruction
and instructional design”. Conceptually similar to Paigos’s pedagogical tasks and meth-
ods, this ontology formalizes the learning process by describing how high-level events
(called “educational events”) can be decomposed into smaller events. The approach

215

8. Related Work

makes assumptions about the changes in the state of minds of learners: An educational
event combines an instructional action with a presupposed mental change. For instance,
the instructional action “preparing the learner for learning” is associated with the state
change “being ready to learn”. There is no notion of preconditions, i. e., one cannot
specify the context under which a specific decomposition is applicable. The ontology is
used for author support and provides guidelines what learning materials to author in a
given learning theory. Currently supported learning theories encompass cognitive as well
as constructivist theories.

The authors do not list the automatic generation of courses as a potential application
for the ontology, and accordingly, the ontology misses some requirements necessary for
this task. First, the event decomposition does not contain preconditions and the selection
of an event depends only on the instructional theory used in the current authoring process.
Additionally, the connection to the resource layer is missing: basic events are not coupled
with partial descriptions of educational resources that can be used to locate resources that
support the achievement of the educational event. Furthermore, different scenarios are
not represented. Nevertheless, it would be an interesting research direction to combine
their complex ontology with the approach provided by Paigos.

8.11. Summary

The discussion of related work has shown that the foundations of pedagogically supported
course generation have been laid in previous work: the task-based approach as advocated
by Van Marcke (1998) and the distinction between content and presentation planning as
made by Vassileva (1997).

Most work continues the tradition of presentation planning and content planing, al-
though sometimes without being aware of it. However, the distinction between first
determining the concepts of a course and only subsequently determining how to present
each concept imposes some restrictions on the course structure. For instance, it is difficult
to “reuse” a concept several times within a course, say to present a theorem each time it
is used in a proof.

None of the discussed systems uses the structure of the generated course to convey
information about the learning process. In Paigos, the hierarchical knowledge encoded
in the pedagogical methods is reflected in the different sections and sub-sections, thereby
providing a means for the student to understand the structure of a course.

In addition, the existing approaches operate in their own small world, i. e., they only
use content provided in their specific repositories. Similarly, services are rarely integrated.

216

9. Conclusion and Future Work

This thesis presents course generation based on HTN planning — a novel approach that
extends course generation by employing a service-oriented architecture and complex ped-
agogical knowledge. The architecture and the knowledge proposed in this thesis were
implemented in the course generator Paigos.

The service-oriented architecture enables Paigos to access educational resources stored
in external repositories and to generate courses using these resources. A mediator trans-
lates the queries sent by Paigos into the different database schemas and knowledge rep-
resentations used by the external repositories. Thus, the course generator can abstract
from these technical details and focus on pedagogical knowledge.

Paigos’s queries are formulated using terms defined in an ontology of instructional
objects. The classes of this ontology allow categorizing educational resources accord-
ing to their pedagogical purpose, better suited for intelligent pedagogical functionalities
than existing metadata specifications. Applications of the ontology in domains other
than course generation were investigated in the European Network of Excellence Kalei-
doscope. Additionally, it was used for a revised version of the ALOCoM ontology in the
European Network of Excellence ProLearn, in the e-learning platform e-aula, and in the
CampusContent project of the Distant University Hagen.1

Several repositories were successfully connected to the mediator: the mathematical
knowledge-base of ActiveMath (a Lucene database), the LeActiveMath exercise
repository (an eXist-database), the database of the math tutor MathCoach (Der-
byDB/JDBC), the MySQL-database of the online multilingual Mathematics Thesaurus,
and the DB2 database of the Teal project. As a result, all these repositories can be
accessed during course generation.

A generic mechanism for tool integration based on xml-rpc embeds in a course links
to external services. As a result, the generated courses seamlessly integrate educational
resources and learning-supporting services, thereby widening the scope of courses. In the
European project LeActiveMath, several learning-supporting services were integrated,
e. g., an Open Learner Model and a concept-mapping tool.

Paigos is not tied to a specific learning environment. Due to its Web-service interfaces
its functionality is publicly available. The interfaces enable an easy registration of repos-
itories and access to the course generation. Paigos is used by the learning environments
ActiveMath, MathCoach and Teal.

The pedagogical knowledge used for course generation is specified as basic building
blocks. From these, seven different scenarios were formalized based on learning theories,
such as moderate constructivism, and based on guidelines from instructional design. This
illustrates the flexibility and pedagogical neutrality of Paigos. The formalized scenarios

1Future usage of the ontology might include its integration in a revised version of the China-wide Learn-
ing Object Metadata standard. A member of the Chinese Education Ministry Distance Education
Committee has expressed his interest in this regard.

217

9. Conclusion and Future Work

generate courses for a range of learning goals such as discovering new content, rehearsing
and preparing for an exam. The pedagogical knowledge allows retrieving very specific
content, such as adequate examples and exercises. These highly granular “learning goals”
combined with dynamic sub-task expansion enable to combine manually assembled books
with an adaptive selection of resources. They also allow other learning-supporting services
delegating specific functionality to Paigos. For instance, such a service is not required
to implement pedagogically founded exercise selection, but can use Paigos for this task.
In ActiveMath, several services use this functionality, such as a suggestion component
and an assembly tool.

The generated courses are structured according to pedagogical principles and contain
bridging texts that describe the purpose of the sections. Together, these two features
provide the student with information that may help them to understand why a course is
structured in a specific way and to apply this knowledge when learning on their own.

The architecture and the pedagogical knowledge were implemented in the HTN planner
jshop2. Paigos is completely integrated in ActiveMath and is used by several of its
components.

Paigos was subject to Europe-wide evaluations. Formative evaluations in the early
stage of Paigos’s development informed its further development. The summative eval-
uation shows that learners like to use course generation: a large percentage of learners
prefers generated books over manually authored books, mostly due to the generated books
being tailored to the student’s learning goals. The users also rate the selected content
(in particular the exercises) as being well adapted to their competencies. The techni-
cal evaluation shows that Paigos is efficient. Due to the hierarchical planning, courses
consisting of more than 300 educational resources are generated in less than a second.

Future Work

The declarative representation of the course generation knowledge and the modular ar-
chitecture of Paigos ensures that extensions can be realized easily. The following work
could be worth investigating.

Increased Generality The course generation knowledge and the ontology of instructional
objects were designed for applicability in domains other than mathematics. How-
ever, the majority of the test cases and evaluations of Paigos used mathematics
as a domain. Due to its formal nature, mathematical knowledge is well struc-
tured into educational resources and thus an ideal candidate for course generation.
Other domains such as language learning exhibit different characteristics (Heil-
man and Eskenazi, 2006). Exploring these but also domains that are more closely
related to mathematics such as computer science and physics will allow insights
into the generality of course generation knowledge. In addition, Paigos’s han-
dling of competencies could be made more abstract. The current formalization of
the competency-based scenarios uses the PISA competency model. Yet, there ex-
ist other similar models, the best known being Bloom’s taxonomy of educational
objectives (Bloom, 1956). Currently, the competencies used by Paigos are en-
coded within the methods. For increased generality the competencies should be

218

externalized and the methods should adapt themselves dynamically to the specific
competency framework used by the course generation client.

Mediator The mediator translates queries about the metadata of educational resources.
However, in its current state it requires that identical resources have the same
identifier throughout the repositories. Extending the mapping algorithm of the me-
diator to include mappings between instances, that is to translate between different
names of the same fundamentals, would allow a more flexible integration of repos-
itories. Similarly, Paigos’s current access of learner information is not sufficiently
flexible: adding a learner model requires changes to Paigos’s source code in con-
trast to the plug-and-play registration and access to repositories. As a consequence,
further research might investigate how to increase applicability of course generation
by applying the mediator framework to learner models.

Rapid Prototyping/Evaluation Tool Due to the declarative representation of the course
generation knowledge, the knowledge can be changed and extended easily. There-
fore, Paigos is an ideal candidate for rapid prototyping of adaptive systems. By
using the basic axioms, operators and methods and by modifying the existing
scenarios, hypotheses about the effects of adaptive features can be tested faster
than if the adaptive system was to be implemented from scratch. The rapid-
prototyping process could be supported by tools that allow a drag-and-drop con-
struction/modification of scenarios.

Deeper Integration into the Learning Process During the evaluation of Paigos in the
LeActiveMath project it became obvious that students and teachers need detailed
information about how to integrate advanced tools such as Paigos in their learning.
In a first step, we designed a user manual for course generation that describes
how to use the scenarios, for instance, by suggesting a sequence of the different
scenarios. It would be worth investigating the general problem, namely how to
integrate course generation into a learning management system. For instance, a
suggestion component could recommend which scenario a learner should use at a
specific point during learning. This would require formalizing the complete learning
process, which might be possible with ims ld.

Authoring Support Paigos could support the authoring process in various ways. For
instance, authors could use Paigos to assess whether they produced a sufficient
amount of educational resources. In case Paigos is not able to find a specific
resource, it could make this information available to an authoring tool.

219

9. Conclusion and Future Work

220

Complete List of User Comments

This appendix contains the complete list of the comments2 made by the English speaking stu-
dents during the summative evaluation. In the evaluation, the subjects were asked to state their
agreement to a variety of statements about the course generator using yes/no questions and Lik-
ert scales. After each set of statements, the students had the opportunity to briefly explain their
answers in their own words.

The first comments are the students’ explanations of their answers the following questions:

• Are the chapters in the order you would expect?

• Are the pages in the order you would expect?

The comments are as follows:

These are in order of the topic I wanted. So that’s ok.
expected chapters in the order Average Slopes, rates of change, and further differ-

ence quotients. The pages not also ordered in the same way
differnce quotient is first but i think it should come later. pages are in a logical

order.
The order of the chapters seems fine. I cannot suggest a more suitable order.
I would expect chapters regaarding the same subject (ie. derivatives, or slope) to

be one after the other. I would also put chapters containg concepts (ie. slope) useful
to others (derivatives) to be presented before.

The chapters follow on from each other and each chapter follows a logical order of
pages - introduction, explanation, exercises

yes, with the connections and look back at correct place, exercises at end of chapter.
chapters lead on well from each other.

They get progressively more difficult and the later ones require the knowledge of the
first ones

in correct order, ie intro, explanation, exercises
The order is fine. First introduction − > Theory − > Exercises.
The chapters are in a good order- starting from basics, moving on into concepts

based on the previous ones. The pages are similarily well - ordered.
equation of a tangent was after equation of normal
the pages go throgh the order of having inroduction then the concept then the exer-

cies. which seems to be a locigal order
All looks like I would expect really, it is fairly standard to have a looking back

excercise at the end etc.
Because the chapters are in the order that they were in step 4 of making the book

and the pages link on from each other
I would expect the order to be ’Definition of the Average Slope’, ’Definition of the

Average Rate of Changes’ and then ’Definition of the Difference Quotient’. To me
this is a more natural progression of knowledge. However, inside the chapters, the
pages seem to be in a logical order.

The topics are in logical order and the pages build from concepts towards exercises.

2I did not correct spelling and grammar mistakes.

221

Complete List of User Comments

Each chapter is layed out starting with an Intro, Prerequisites and then into the
information for the topic and then exercises which is a sensible order.

The chapters and pages were in a good order, but too similar to the prerecorded
books.

I expected the slope chapter to come before the rate chapter. The pages are arranged
in introduction, definition, then excercises which is how I would work through them.

Each page/chapter seems to be in a logical order....
Opposite order to that listed when creating book. Prerequisites, Information, Exer-

cises is logical order.
The chapters seem to be in a logical order with the definitions first then moving

onto exercises. The pages started with the simple content before moving onto what
appears to be the more advanced parts.

each chapter and page follows on logically from what you’ve learned before in the
previous chapter/page

Chapters and pages are ordered from the easiest to most difficult.
the order seems logical
Well i didn’t really think about chapter order but the page orders seem logical.

Definition should come first etc..
a- follow order selection when creating the book b- sequenced

The next comments are the students’ explanations of their answers the following questions:

• Should exercises be added to the same page as the definition or to the designated exercise
page?

• Should users be permitted to remove items from personal books?

• Should users be permitted to add items from personal books?

• Should users be permitted to remove items from pre-recorded books?

• Should users be permitted to add items from pre-recorded books?

One is responsible utterly for a personal book, but should always have a kind of
backup in the form of pre-recorded book.

users should be free do do as they wish, if removing or adding items makes a more
personalized environment that sustains learning then it should be allowed

personal books should be allowed to be customised and these should be used to add
more knowledge to not the pre-recorded books.

Custom-made books should the modifiable, after all, that is the key reason for mak-
ing them in the first place. Pre-recorded books shouldn’t be modifiable as they were
made as they were for a good reason.

I think it’s up to the user how they structure the pages they want but removial of
set books is pintless as they have the badics for the course.

if a user makes a personal book he wants it for certain purposes. It is natural for
him to decide the contents of the book in order to suit the purposes in the way he
finds most useful. He should be able to do this by adding or removing Items from the
book. The user should be able to expand the contents of a book if he chooses to, ie.
by adding excercises. He should also be able to take these exercises he has added off,
by removing them.

I think the more freedom a user is given, the more likely they will find the best way
to learn the material for them.

personal books, being tailored for the individual should have the control over them.
for the per-recorded books i think theres a reason for all the pages being in it so
shouldnt be able to remove at will.

222

b) They are customized for them c) They are customized for them d) No they are
designed the way they are for a reason e) No they are designed the way they are for
a reason

this tidys up the book and makes it more relevant
personal books should be completely editable whereas pre-recorded books should be

left as they are but users should be able to add things to them and from them.
As I understand, LAM is designed for students; as students are adults, they should

be able to easily decide about contents of their books, to suit their particular needs.
whenever you need to change a personal book you wouldnt want to create a new

one, however editing pre-recorded books may result in an incomplete knowledge of
topics

you should be able to do anything with your own personal book. and assuming the
pre recorded books dont work like a wiki for everyone signing in. then its reasonable
to change whatever you want

Users should be able to modify their books to their needs but the pre-recorded books
should be there just for reference

Allowing the removal of things from books could lead to content being missed.
adding content will help the user to learn in their own style.

Personal books should be just that, personal. The computer should suggest what
goes in a book but ultimately if the user doesn’t want somehting in the book tey should
be able to remove it. On the other hand, a pre-recorded book should be ’locked’ just in
case a user deleted a piece of content (these books contain the content of the course
so should also be standard).

The more customisation the better as users can tailor the books/pages to their own
needs.

Its a very useful feature.
I think the personal books should have the ability to be edited, but not the prerecorded

books, this keeps things tidy in the personal book (i.e. has only the things that you
want in it) , but also means that you can refer to the prerecorded books if there is
something missing.

Adding and removing pages from both types of book will allow the user to further
personalise their learning experience and make it more useful to them.

a user can customize a personal book to his or her needs & it would be easier
for them to add or remove things that were relevant or irrelevent accordingly........
pre-recorded books should be Read Only because accidental deleting could occur

Personal books by definition should contain whatever the user wants Customised
books are what the personal feature is for, and it could be dangerous to make pages
inaccessible, or even to put an item in an inappropriate book.

Users should be able to customise how they learn
all things should be able to be altered, so that the user can get the most out of the

information, like having their own notes
Users should have influence on their personal book.
editing custom books is acceptable, however editing premade ones isnt, the user

would end up deleting the book eventually. however it would be helpful to hide certain
items

4d would be yes if these changes were reversable. altho im not sure they should be
allowed to mess around with the pre recorded books at all

b - If comfortable that they kno the info already c - Yes, update the book and keep
themselves aware of things they kno/don’t d - No, they were not made for them e -
Yes, helps update them

223

Complete List of User Comments

The following statements were made with respect to the exercise sequencer. The students also
commented the content. I included the statements since they show how the subjects judge the
appropriateness of the selected exercises.

• How matched to your level of knowledge are the exercises?

• How suitable are the types of exercises to your position as a beginner in this area?

According to results of early completed exercises I would be in a position to finish
successfully those too.

to me the level of the maths is not challenging. a beginner would find it some what
difficult to follow through

the exercises are good as they grow in difficulty
These problems seemed quite hard considering how weakly I have met the prerequi-

sites.
The examples weren’t particularly challenging and suite a 1st year easily.
all the excercise required the knowledge of derivatives and in particulare of the

Product Rule, which is probably something I don’t know if I create a book to ”Discover
Product Rule”

It is quite frustrating to be presented with this format of exercise [open exercises]
as a beginner.

open ended are a bit iffy but besides that questions seemed suited
All the exercises i have attempted before have not shown a direct way to calculate

dy/dx of a function making this task impossible for someone who has never done it
before

For me personally they could be harder but for beginners they are very good.
1b) the difficulty seems perfect- some of the excercises were easy and would just

remind me about the principles, some required some effort and one would actually
require me to search for more knowledge. 1c) too many open questions I think.

Some of the questions were a bit easy but others made me think a bit harder. Some
people who are just beginning might find a few of the questions challenging

I think the exercises are fairly testing but within the reach of someone starting this
topic. However, there were a few questions that needed knowledge of other differ-
entiation methods which someone who was just learning the product rule would not
know.

The sort of language used in the notes seem convulated and not very clear, so it
wouldn’t be very good for a beginner. But the questions seem to be more or less on the
right lines, although i’d never use the words ”difference quoteient” The loading time
for the excersise sequencer and pretty much everything is ureasonably long. takeing
2 about mins to load one question. I’d never use it if it took that long.

Exercises seemed to be at around the correct level for someone new to the topic
The exercises were at a really good level for my knowledge, there was a good spread

of exercises for the subject.
The questions were mainly open questions that could not give feedback on how you

were doing.
the questions seemed a bit challenging for a beginner but they were not TOO hard

either.........
Perhaps excessive use of variables rather than numbers would be hard on a beginner

as a first example?
questions seem to scale to how you cope with previous questions. It starts slightly

difficult for beginners in this area.
the exercises are fairly simple and straight forward, not requiring advanced knowl-

edge

224

Some exercises may be too difficult for beginners.
The questions are well suited if the user has the right prerequisite knowledge
The level seems ok...
b- questions match level of maths I know c- quite suitable

The next comments address the following questions:

• How tailored to you as a learner is the content in your personal book, Discover Quotient
Rule?

• Which would you rather use to learn about the Product Rule?

In Personal Book topics are more friendly segregated.
personal book offers a better means of understanding the product rule as it gives

information bit by bit ie in sequence
i think the personal books as it’s tailored to your knowledge and level on compre-

hension
The personal book is much leaner but I would still prefer the complete pre-recorded

book just so that I don’t miss anything that may be important.
The prerecorded books were set out ideally and in an acceptable order, I’d use that.
in the personal book the rule is presented in a way which is more friendly to learn-

ing. rule, application of rule, examples and then animated proof, proof, in a separate
page. In the prerecorded everything is in a less inutitive order and all on the same
page.

The personal book explained concepts such as polynomials which I didnt know about.
pre-recorded book has more links to help with wider grasp but personal book is more

explicitly designed for the user.
I think i would use either
It is more advanced than anything i have used active math for. The pre-recorded

book is good as it proves the quotient rule
they are specifically designed and more appropriate
I prefer personal book because it is only about the product rule and no other topics

would interrupt me. The pre-recorded book is quite big and is therefore not as clear
as the personal book.

I dont think the differences between the books are particularily significant- maybe
because I didnt use LAM long enough yet. However, my personal book is better
structured and therefore easier to use.

i got the message - Sorry, there are no more exercises available! We have to abort
this exercise session. Close the window to get back to the course. when loading the
Exercise Sequencer

Personal books seem a lot better as they give content that is specific and that is
good as most people learning maths i presume will be using this to touch up on little
things they have not understood.

In the personal book they do an example of the product rule, it might be useful to
have more than one though

Whilst the personal book seems to be good for my level of knowledge, I like to have
all of the information at one time so form my point of view I would prefer to be able
to access all of the information in the pre-recorded book.

The personal book is a bit more direct and less in-depth.
Its hard to tell what has been tailored to me as all the mastery squares are grey

even though i’m on SLM. It seems not too bad. I’d prefer the Pre recorded book to
learn about the Product rule mainly as it seems the only one acutally mentioning the
product rule. The personal book doensn’t seem to mention the product rule

225

Complete List of User Comments

The page introduces it well and then uses several examples to show the rule which
is ideal.

The book did not seem well tailored to the standards of a beginner in the topic but
the pre-recorded book provided a wide base for the subject.

pre-recorded books would tend to maybe go into too much detail while personal books
would register the concepts that you have already grasped etc.....

Quotient Rule is not in my personal book Either is fine for (f)
A mixture of both is best.
both books are useful, i would start with the personal book and move on to the

pre-recorded one
In personal book I can chose the content on my own.
pretty well tailored, but i would be scared i missed something important
I would rather have the information pre-recorded as making a personal book is quite

alot of effort.
e-more detail given f-easily understanable due to detail given

226

Example Plan and OMDoc

This appendix contains the complete plan generated for the scenario “discover” and the following
mathematical fundamentals:

• Definition of the derivative, resp., differential quotient

• Definition of the derivative function

• Sum rule

The corresponding task is

(discover (mbase://LeAM_calculus/deriv/def_diff
mbase://LeAM_calculus/deriv/def_diff_f
mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

Generated Plan

Paigos generated the following plan for the above task:

(!!addInWorldState (scenario discover))

(!!addInWorldState (targetFundamental mbase://LeAM_calculus/deriv/def_diff))

(!!addInWorldState (targetFundamental mbase://LeAM_calculus/deriv/def_diff_f))

(!!addInWorldState (targetFundamental mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!startSection Discover (mbase://LeAM_calculus/deriv/def_diff

mbase://LeAM_calculus/deriv/def_diff_f

mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(discover

(mbase://LeAM_calculus/deriv/def_diff

mbase://LeAM_calculus/deriv/def_diff_f

mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!startSection Description (mbase://LeAM_calculus/deriv/def_diff

mbase://LeAM_calculus/deriv/def_diff_f

mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!text discover.Description (mbase://LeAM_calculus/deriv/def_diff

mbase://LeAM_calculus/deriv/def_diff_f

mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!endSection)

(!startSection Title (mbase://LeAM_calculus/deriv/def_diff)

(learnFundamentalDiscover (mbase://LeAM_calculus/deriv/def_diff)))

(!startSection Prerequisites (mbase://LeAM_calculus/deriv/def_diff)

(learnPrerequisitesFundamentalsShortSection!

(mbase://LeAM_calculus/deriv/def_diff)))

(!text discover.Prerequisites (mbase://LeAM_calculus/deriv/def_diff))

(!insertResource mbase://LeAM_calculus/differencequot/def_diff_quot_FOS)

(!insertResource mbase://AC_UK_calculus/limits/def_informal_limit)

(!endSection)

(!startSection Title (mbase://LeAM_calculus/deriv/def_diff)

(developFundamental (mbase://LeAM_calculus/deriv/def_diff)))

(!text discover.Develop (mbase://LeAM_calculus/deriv/def_diff))

227

Example Plan and OMDoc

(!insertResource mbase://LeAM_calculus/deriv/def_diff)

(!insertResource mbase://LeAM_calculus/deriv/note_diff)

(!dynamicTask illustrate! (mbase://LeAM_calculus/deriv/def_diff))

(!endSection)

(!startSection Exercises (mbase://LeAM_calculus/deriv/def_diff)

(practiceSection! (mbase://LeAM_calculus/deriv/def_diff)))

(!text discover.Practice (mbase://LeAM_calculus/deriv/def_diff))

(!insertLearningService ExerciseSequencer TrainCompetencyLevel

(mbase://LeAM_calculus/deriv/def_diff))

(!dynamicTask train! (mbase://LeAM_calculus/deriv/def_diff))

(!endSection)

(!startSection Connections (mbase://LeAM_calculus/deriv/def_diff)

(showConnectionsSection! (mbase://LeAM_calculus/deriv/def_diff)))

(!text discover.Connect (mbase://LeAM_calculus/deriv/def_diff))

(!insertLearningService CMap display (mbase://LeAM_calculus/deriv/def_diff)

(includeEdge1 isRequiredBy includeEdge2 isA includeEdge3 inverseIsA

includeCategory1 Definition includeCategory2 Law computeNeighbourNodes 1.0))

(!endSection)

(!endSection)

(!startSection Title (mbase://LeAM_calculus/deriv/def_diff_f)

(learnFundamentalDiscover (mbase://LeAM_calculus/deriv/def_diff_f)))

(!startSection Introduction (mbase://LeAM_calculus/deriv/def_diff_f)

(introduceWithSection! (mbase://LeAM_calculus/deriv/def_diff_f)))

(!text discover.Introduction (mbase://LeAM_calculus/deriv/def_diff_f))

(!insertResource mbase://LeAM_calculus/deriv/cluso_diff_hiking)

(!endSection)

(!startSection Title (mbase://LeAM_calculus/deriv/def_diff_f)

(developFundamental (mbase://LeAM_calculus/deriv/def_diff_f)))

(!text discover.Develop (mbase://LeAM_calculus/deriv/def_diff_f))

(!insertResource mbase://LeAM_calculus/deriv/def_diff_f)

(!dynamicTask illustrate! (mbase://LeAM_calculus/deriv/def_diff_f))

(!endSection)

(!startSection Exercises (mbase://LeAM_calculus/deriv/def_diff_f)

(practiceSection! (mbase://LeAM_calculus/deriv/def_diff_f)))

(!text discover.Practice (mbase://LeAM_calculus/deriv/def_diff_f))

(!insertLearningService ExerciseSequencer TrainCompetencyLevel

(mbase://LeAM_calculus/deriv/def_diff_f))

(!dynamicTask train! (mbase://LeAM_calculus/deriv/def_diff_f))

(!endSection)

(!startSection Connections (mbase://LeAM_calculus/deriv/def_diff_f)

(showConnectionsSection! (mbase://LeAM_calculus/deriv/def_diff_f)))

(!text discover.Connect (mbase://LeAM_calculus/deriv/def_diff_f))

(!insertLearningService CMap display (mbase://LeAM_calculus/deriv/def_diff_f)

(includeEdge1 isRequiredBy includeEdge2 isA includeEdge3 inverseIsA

includeCategory1 Definition includeCategory2 Law computeNeighbourNodes 1.0))

(!endSection)

(!endSection)

(!startSection Title (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(learnFundamentalDiscover (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!startSection Introduction (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(introduceWithSection! (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!text discover.Introduction (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!insertResource mbase://LeAM_calculus/deriv_rules/motivation_for_diffrule_sum)

(!endSection)

(!startSection Prerequisites (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(learnPrerequisitesFundamentalsShortSection!

228

(mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!text discover.Prerequisites (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!insertResource mbase://LeAM_calculus/functions/def_polynom)

(!insertResource mbase://LeAM_calculus/deriv_maps/form_diff_monom)

(!endSection)

(!startSection Title (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(developFundamental (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!text discover.Develop (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!insertResource mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(!dynamicTask illustrate! (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!endSection)

(!startSection Proof (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(proveSection! (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!text discover.Proof (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!insertResource mbase://LeAM_calculus/deriv_rules/prf_diffrule_diff_applet)

(!insertResource mbase://LeAM_calculus/deriv_rules/prf_diffrule_sum_applet)

(!insertResource mbase://LeAM_calculus/deriv_rules/prf_diffrule_sum)

(!endSection)

(!startSection Exercises (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(practiceSection! (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!text discover.Practice (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!insertLearningService ExerciseSequencer TrainCompetencyLevel

(mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!dynamicTask train! (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!endSection)

(!startSection Connections (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(showConnectionsSection! (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!text discover.Connect (mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum))

(!insertLearningService CMap display

(mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum) (includeEdge1 isRequiredBy

includeEdge2 isA includeEdge3 inverseIsA includeCategory1 Definition

includeCategory2 Law computeNeighbourNodes 1.0))

(!endSection)

(!endSection)

(!startSection Reflection (mbase://LeAM_calculus/deriv/def_diff

mbase://LeAM_calculus/deriv/def_diff_f

mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)

(reflect (mbase://LeAM_calculus/deriv/def_diff

mbase://LeAM_calculus/deriv/def_diff_f

mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum)))

(!insertLearningService OLM display

(mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum) (competencyId competency))

(!endSection)

(!endSection)

Generated Course

The following course in OMDoc format was generated from the above plan:

<?xml version="1.0" encoding="UTF-8"?>

<omd:omdoc xmlns:omd="http://www.mathweb.org/omdoc">

<omd:omgroup id="4">

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Begriffe kennenlernen

</dc:Title>

229

Example Plan and OMDoc

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Discover</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content" am:pedobj="discover">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

<dc:Creator xmlns:dc="http://purl.org/DC" xml:lang="en" role="edt">Activemath</dc:Creator>

<dc:Creator xmlns:dc="http://purl.org/DC" xml:lang="en" role="aut">N/A</dc:Creator>

<dc:Contributor xmlns:dc="http://purl.org/DC" xml:lang="en" role="trl">N/A</dc:Contributor>

<dc:Date xmlns:dc="http://purl.org/DC" xml:action="updated"

xml:who="Activemath">

2007-03-09T17:19:48

</dc:Date>

</omd:metadata>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Überblick</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Overview</dc:Title>

</omd:metadata>

<am:dynamic-item

xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Description">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Definition der Ableitung bzw. des Differentialquotienten

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Definition of the derivative, resp., differential quotient

</dc:Title>

<omd:extradata>

<pedtask

xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="learnFundamentalDiscover">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</pedtask>

</omd:extradata>

</omd:metadata>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Vorwissen

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Prerequisites

</dc:Title>

<omd:extradata>

<pedtask

xmlns:am="http://www.activemath.org/namespaces/am_content"

230

am:pedobj="learnPrerequisitesFundamentalsShortSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Prerequisites">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/differencequot/def_diff_quot_FOS" />

<omd:ref xref="mbase://AC_UK_calculus/limits/def_informal_limit" />

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Definition der Ableitung bzw. des Differentialquotienten

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Definition of the derivative, resp., differential quotient

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="developFundamental">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Develop">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

<omd:ref xref="mbase://LeAM_calculus/deriv/note_diff" />

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="dynamicTask" servicename="tutorialControl" queryname="illustrate!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Übungen

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Exercises

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="practiceSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Practice">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

231

Example Plan and OMDoc

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="ExerciseSequencer"

queryname="TrainCompetencyLevel">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="dynamicTask" servicename="tutorialControl" queryname="train!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Zusammenhänge

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Connections

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="showConnectionsSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Connect">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="CMap" queryname="display">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

<am:queryparam property="includeEdge1" value="isRequiredBy" />

<am:queryparam property="includeEdge2" value="isA" />

<am:queryparam property="includeEdge3" value="inverseIsA" />

<am:queryparam property="includeCategory1" value="Definition" />

<am:queryparam property="includeCategory2" value="Law" />

<am:queryparam property="computeNeighbourNodes" value="1.0" />

</am:dynamic-item>

</omd:omgroup>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Definition der Ableitungsfunktion

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Definition of the derivative function

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="learnFundamentalDiscover">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</pedtask>

</omd:extradata>

232

</omd:metadata>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Einführung

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Introduction

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="introduceWithSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Introduction">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/deriv/cluso_diff_hiking" />

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Definition der Ableitungsfunktion

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Definition of the derivative function

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="developFundamental">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Develop">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="dynamicTask" servicename="tutorialControl" queryname="illustrate!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Übungen

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Exercises

</dc:Title>

<omd:extradata>

233

Example Plan and OMDoc

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="practiceSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Practice">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="ExerciseSequencer"

queryname="TrainCompetencyLevel">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="dynamicTask" servicename="tutorialControl" queryname="train!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Zusammenhänge

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

Connections

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="showConnectionsSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Connect">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="CMap" queryname="display">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

<am:queryparam property="includeEdge1" value="isRequiredBy" />

<am:queryparam property="includeEdge2" value="isA" />

<am:queryparam property="includeEdge3" value="inverseIsA" />

<am:queryparam property="includeCategory1" value="Definition" />

<am:queryparam property="includeCategory2" value="Law" />

<am:queryparam property="computeNeighbourNodes" value="1.0" />

</am:dynamic-item>

</omd:omgroup>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Summenregel</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Sum rule</dc:Title>

<omd:extradata>

234

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="learnFundamentalDiscover">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Einführung</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Introduction</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="introduceWithSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Introduction">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/motivation_for_diffrule_sum" />

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Vorwissen</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Prerequisites</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="learnPrerequisitesFundamentalsShortSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Prerequisites">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/functions/def_polynom" />

<omd:ref xref="mbase://LeAM_calculus/deriv_maps/form_diff_monom" />

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Summenregel</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Sum rule</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="developFundamental">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Develop">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

235

Example Plan and OMDoc

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="dynamicTask" servicename="tutorialControl" queryname="illustrate!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Beweis</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Proof</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="proveSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Proof">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/prf_diffrule_diff_applet" />

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/prf_diffrule_sum_applet" />

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/prf_diffrule_sum" />

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Übungen</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Exercises</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="practiceSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Practice">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="ExerciseSequencer"

queryname="TrainCompetencyLevel">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="dynamicTask" servicename="tutorialControl" queryname="train!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">

Zusammenhänge

</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">

236

Connections

</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="showConnectionsSection!">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="text" servicename="NLG" queryname="Item.Discover.Connect">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</am:dynamic-item>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="CMap" queryname="display">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

<am:queryparam property="includeEdge1" value="isRequiredBy" />

<am:queryparam property="includeEdge2" value="isA" />

<am:queryparam property="includeEdge3" value="inverseIsA" />

<am:queryparam property="includeCategory1" value="Definition" />

<am:queryparam property="includeCategory2" value="Law" />

<am:queryparam property="computeNeighbourNodes" value="1.0" />

</am:dynamic-item>

</omd:omgroup>

</omd:omgroup>

<omd:omgroup>

<omd:metadata>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="de" role="">Rückblick</dc:Title>

<dc:Title xmlns:dc="http://purl.org/DC" xml:lang="en" role="">Looking Back</dc:Title>

<omd:extradata>

<pedtask xmlns:am="http://www.activemath.org/namespaces/am_content"

am:pedobj="reflect">

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff" />

<omd:ref xref="mbase://LeAM_calculus/deriv/def_diff_f" />

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

</pedtask>

</omd:extradata>

</omd:metadata>

<am:dynamic-item xmlns:am="http://www.activemath.org/namespaces/am_content"

type="learningService" servicename="OLM" queryname="display">

<omd:ref xref="mbase://LeAM_calculus/deriv_rules/thm_diffrule_sum" />

<am:queryparam property="competencyId" value="competency" />

</am:dynamic-item>

</omd:omgroup>

</omd:omgroup>

</omd:omdoc>

237

Example Plan and OMDoc

238

Bibliography

The American Heritage Dictionary of the English Language. Houghton Mifflin Company, fourth
edition, 2004.

Random House Unabridged Dictionary. Random House, Inc., 2006.

ActiveMath Group. Activemath home, 2007. URL http://www.activemath.org/. This is an
electronic document. Date retrieved: January 29, 2007.

J. R. Anderson. The Architecture of Cognition. Harvard University Press, Cambridge, MA, 1983.

J. R. Anderson, C. F. Boyle, R. G. Farrell, and B. J. Reiser. Cognitive principles in the design of
computer tutors. In P. Morris, editor, Modeling Cognition. John Wiley, New York, NY, 1987.

J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier. Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4(2):167–207, 1995.

T. Andre. Selected microinstructional methods to facilitate knowledge construction: implications
for instructional design. In R. D. Tennyson, F. Schott, N. Seel, and S. Dijkstra, editors,
Instructional Design: International Perspective: Theory, Research, and Models, volume 1,
pages 243–267. Lawrence Erlbaum Associates, Mahwah, NJ, 1997.

Ariadne. Ariadne – foundation for the european knowledge pool, 2004. URL http://www.
ariadne-eu.org. This is an electronic document. Date retrieved: January 31, 2007.

L. Aroyo and R. Mizoguchi. Authoring support framework for intelligent educational systems. In
U. Hoppe, F. Verdejo, and J. Kay, editors, Proccedings of AI in Education, AIED-2003, pages
362–364. IOS Press, 2003.

D. Ausubel. The Psychology of Meaningful Verbal Learning. Grune & Stratton, New York, 1963.

R. Bartle and D. Sherbert. Introduction to Real Analysis. John Wiley& Sons, New York, NY,
1982.

R. J. Beck. Learning objects collections, 2001. URL http://www.uwm.edu/Dept/CIE/AOP/LO_
collections.html. This is an electronic document. Date of publication: May 17, 2001. Date
retrieved: January 19, 2007. Date last modified: January 10, 2007.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (uri): Generic syntax.
Technical report, RFC Editor, United States, 1998.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):34–43,
2001.

N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-perceived quality into web server design.
In Proceedings of the 9th international World Wide Web conference on Computer networks : the
international journal of computer and telecommunications netowrking, pages 1–16, Amsterdam,
The Netherlands, The Netherlands, 2000. North-Holland Publishing Co. doi: http://dx.doi.
org/10.1016/S1389-1286(00)00087-6.

239

http://www.activemath.org/
http://www.ariadne-eu.org
http://www.ariadne-eu.org
http://www.uwm.edu/Dept/CIE/AOP/LO_collections.html
http://www.uwm.edu/Dept/CIE/AOP/LO_collections.html

Bibliography

B. Bloom, editor. Taxonomy of educational objectives: The classification of educational goals:
Handbook I, cognitive domain. Longmans, Green, New York, Toronto, 1956.

J. S. Brown, A. Collins, and P. Duguid. Situated cognition and the culture of learning. Educational
Researcher, 18(1):32–41, 1989.

J. S. Bruner. On knowing: Essays for the left hand. Harvard University Press, Cambridge, Mass.,
1967.

P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling and User Adapted
Interaction, 6(2–3):87–129, 1996.

P. Brusilovsky and J. Vassileva. Course sequencing techniques for large-scale webbased education.
International Journal of Continuing Engineering Education and Lifelong Learning, 13(1/2):75–
94, 2003.

P. Brusilovsky, E. Schwarz, and G. Weber. Elm-art: An intelligent tutoring system on world
wide web. In C. Frasson, G. Gauthier, and A. Lesgold, editors, ITS96: Proceedings of the
Third International Conference on Intelligent Tutoring Systems, volume LNCS 1086. Springer-
Verlag, 1996.

P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based education for all: A tool for developing
adaptive courseware. Computer Networks and ISDN Systems, 30(1-7):291–300, 1998.

L. Burnard and C. M. Sperberg-McQueen. TEI Lite: An introduction to text encoding for
interchange, 2002.

B. Carr and I. P. Goldstein. Overlays: A theory of modeling for computer aided instruction. AI
Memo 406, MIT, Feb 1977.

Cisco Systems, Inc. Reusable learning object strategy: Designing and developing learning objects
for multiple learning approaches, 2003.

W. Clancey. Tutoring rules for guiding a case method dialogue. International Journal of Man-
Machine Studies, 11:25–49, 1979.

O. Conlan, V. Wade, C. Bruen, and M. Gargan. Multi-model, metadata driven approach to
adaptive hypermedia services for personalized elearning. In P. De Bra, P. Brusilovsky, and
R. Conejo, editors, Proceedings of the Second International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, volume 2347 of LNCS, pages 100–111. Springer-Verlag, 2002.

O. Conlan, D. Lewis, S. Higel, D. O’Sullivan, and V. Wade. Applying adaptive hypermedia
techniques to semantic web service composition. In P. de Bra, editor, Proceedings of AH2003:
Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems, Budapest, Hungary,
May 20-24, pages 53–62, 2003.

K. Currie and A. Tate. O-plan: The open planning architecture. Artificial Intelligence, 52(1):
49–86, November 1991.

P. De Bra. Pros and cons of adaptive hypermedia in web-based education. Journal on CyberPsy-
chology and Behavior, 3(1):71–77, 2000.

P. De Bra. ah — adaptivehypertext and hypermedia, 2007. URL http://pegasus.tue.nl/
mailman/listinfo/ah. This is an electronic document. Date retrieved: March 19, 2007.

240

http://pegasus.tue.nl/mailman/listinfo/ah
http://pegasus.tue.nl/mailman/listinfo/ah

Bibliography

P. De Bra, G.-J. Houben, and H. Wu. AHAM: a Dexter-based reference model for adaptive
hypermedia. In HYPERTEXT ’99: Proceedings of the tenth ACM Conference on Hypertext
and hypermedia : returning to our diverse roots, pages 147–156, New York, NY, USA, 1999.
ACM Press.

J. de Bruijn, D. Foxvog, and K. Zimmermann. Ontology Mediation Patterns Library V1. D4.3.1,
SEKT-project, February 2005.

S. Dijkstra, N. M. Seel, F. Scott, and R. D. Tennyson, editors. Instructional Design: International
Perspectives. Solving Instructional Design Problems, volume 2. Lawrence Erlbaum Associates,
Mahwah, NJ, 1997.

V. Dimitrova. STyLE-OLM: Interactive open learner modelling. International Journal of Artificial
Intelligence in Education, 13:35–78, 2002.

P. Dodds and S. E. Thropp. Sharable content object reference model 2004 3rd edition overview
version 1.0. Technical report, Advanced Distributed Learning, 2004.

B. du Boulay and R. Luckin. Modelling human teaching tactics and strategies for tutoring systems.
International Journal of Artificial Intelligence in Education, 12(3):235–256, 2001.

E. Duval. Metadata standards: What, who & why. Journal of Universal Computer Science, 7(7):
591–601, 2001.

E. Duval. Metadata, but not as you know it: electronic forms are dead! In Proceedings of
Interactive Computer aided Learning, ICL2005, Villach, Austria, 2005. published on CD-ROM.

K. Erol, J. Hendler, and D. S. Nau. Complexity results for hierarchical task-network planning.
Annals of Mathematics and Artificial Intelligence, 18(1):69–93, 1996.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, Special Issue on the 3rd International Planning
Competition, 20:61–124, December 2003.

E. Friedman-Hill. Jess, the java expert system shell. Technical Report SAND98-8206, Sandia
National Laboratories, 1997.

R. M. Gagné. The Conditions of Learning and Theory of Instruction. Holt, Rinehart & Winston,
New York, NY, first edition, 1965.

H. Gardner. Multiple approaches to understanding. In C. M. Reigeluth, editor, Instructional
Design Theories and Models: A New Paradigm of Instructional Theory, volume 2, pages 69–
89. Lawrence Erlbaum Associates, 1999.

GEM Consortium. GEM 2.0: Element descriptions. Technical report, Gateway to Educational
Materials Project, November 2004.

ims Global Learning Consortium. ims content packaging information model, June 2003a.

ims Global Learning Consortium. ims learning design specification, February 2003b.

ims Global Learning Consortium. ims simple sequencing specification, March 2003c.

241

Bibliography

ims Global Learning Consortium. ims question and test interoperability: ASI information model
specification, final specification version 1.2, 2002.

G. Goguadze, A. G. Palomo, and E. Melis. Interactivity of Exercises in ActiveMath. In In
Proceedings of the 13th International Conference on Computers in Education (ICCE 2005),
pages 107–113, Singapore, 2005.

B. L. Grabowski, S. Gäng, J. Herter, and T. Köppen. MathCoach und LaplaceSkript: Ein
programmierbarer interaktiver Mathematiktutor mit XML-basierter Skriptsprache. In K. P.
Jantke, K.-P. Fähnrich, and W. S. Wittig, editors, Leipziger Informatik-Tage, volume 72 of
LNI, pages 211–218. GI, 2005.

T. R. Gruber. A translation approach to portable ontology specifications. Knowl. Acquis., 5(2):
199–220, 1993. ISSN 1042-8143. doi: http://dx.doi.org/10.1006/knac.1993.1008.

F. Halasz and M. Schwartz. The dexter hypertext reference model. Communications of the ACM,
37(2):30–39, 1994.

Y. Hayashi, J. Bourdeau, and R. Mizoguchi. Ontological support for a theory-eclectic approach
to instructional and learning design. In W. Nejdl and K. Tochtermann, editors, Innovative
Approaches for Learning and Knowledge Sharing, First European Conference on Technology
Enhanced Learning, EC-TEL 2006, Crete, Greece, October 1-4, 2006, Proceedings, volume
4227 of LNCS, pages 155–169. Springer, 2006a.

Y. Hayashi, J. Bourdeau, and R. Mizoguchi. Ontological modeling approach to blending theories
for instructional and learning design. In R. Mizoguchi, P. Dillenbour, and Z. Zhu, editors,
Proceedings of the 14th International Conference on Computers in Education, pages 37–44,
Beijing, China, 2006b. IOS Press, Amsterdam.

J. Heflin. OWL web ontology language use cases and requirements. W3C recommendation, W3C,
Feb. 2004. http://www.w3.org/TR/2004/REC-webont-req-20040210/.

M. Heilman and M. Eskenazi. Language learning: Challenges for intelligent tutoring systems.
In V. Aleven, N. Pinkwart, K. Ashley, and C. Lynch, editors, Proceedings of the Workshop of
Intelligent Tutoring Systems for Ill-Defined Domains at the 8th International Conference on
Intelligent Tutoring Systems, 2006.

N. Henze and W. Nejdl. A logical characterization of adaptive educational hypermedia. Hyper-
media, 10(1):77–113, 2004. ISSN 0955-8543.

IClass Consortium. iclass, 2004. URL http://www.iclass.info. This is an electronic document.
Date retrieved: January 20, 2007.

ieee Learning Technology Standards Committee. ieee learning technology standards committee,
2005. URL http://ieeeltsc.org/. This is an electronic document. Date of publication:
March 19, 2005. Date retrieved: January 29, 2007. Date last modified: November 16, 2006.

O. Ilghami. Documentation for JSHOP2. Technical Report CS-TR-4694, Department of Computer
Science, University of Maryland, February 2005.

O. Ilghami and D. S. Nau. A general approach to synthesize problem-specific planners. Technical
Report CS-TR-4597, Department of Computer Science, University of Maryland, October 2003.

IMS Global Learning Consortium. Welcome to IMS global learning consortium, inc., 2007. URL
http://www.imsglobal.org/. This is an electronic document. Date retrieved: January 31,
2007. Date last modified: January 28, 2007.

242

http://www.iclass.info
http://ieeeltsc.org/
http://www.imsglobal.org/

Bibliography

International Organization for Standardization. Electronic manuscript preparation and markup,
document number: ANSI/NISO/ISO 12083, April 1995.

K. P. Jantke, G. Grieser, S. Lange, and M. Memmel. DaMiT: Data Mining lernen und lehren. In
A. Abecker, S. Bickel, U. Brefeld, I. Drost, N. Henze, O. Herden, M. Minor, T. Scheffer, L. Sto-
janovic, and S. Weibelzahl, editors, LWA 2004, Lernen — Wissensentdeckung —Adaptivität,
pages 171–179. Humboldt-Universität Berlin, Oct. 2004.

A. Jeffery and S. Currier. What is. . . IMS learning design? Standards briefings series, cetis,
2003.

D. Jonassen. Designing constructivist learning environments. In C. M. Reigeluth, editor, Instruc-
tional Design Theories and Models: A New Paradigm of Instructional Theory, volume 2, pages
215–239. Lawrence Erlbaum Associates, 1999.

M. Jones, Z. Li, and M. D. Merrill. Domain knowledge representation for instructional analysis.
Educational Technology, 10(30), 1990.

Kaleidoscope. Kaleidoscope, 2007. URL http://www.noe-kaleidoscope.org. This is an elec-
tronic document. Date retrieved: January 20, 2007.

P. Karampiperis and D. Sampson. Adaptive learning resources sequencing in educational hyper-
media systems. Educational Technology & Society, 8(4):128–147, 2005a.

P. Karampiperis and D. Sampson. Automatic learning object selection and sequencing in web-
based intelligent learning systems. In Z. Ma, editor, Web-Based Intelligent e-Learning Systems:
Technologies and Applications, chapter III, pages 56–71. Information Science Publishing, 2005b.

P. Kärger. Ontologie-basierter Mediator zum Zugriff auf heterogene und verteilte Lerninhalte.
Master’s thesis, Department of Computer Science, Saarland University, March 2006.

P. Kärger, C. Ullrich, and E. Melis. Integrating learning object repositories using a medi-
ator architecture. In W. Nejdl and K. Tochtermann, editors, Innovative Approaches for
Learning and Knowledge Sharing, Proceedings of the First European Conference on Tech-
nology Enhanced Learning, volume 4227, pages 185–197, Heraklion, Greece, Oct. 2006a.
Springer-Verlag. ISBN 9783540457770. URL http://www.activemath.org/publications/
kaergeretal-mediator-ectel06.pdf.

P. Kärger, C. Ullrich, and E. Melis. Querying learning object repositories via ontology-based
mediation. In Kinshuk, R. Kopers, P. Kommers, P. Kirschner, D. G. Sampson, and W. Did-
deren, editors, Proceedings of the 6th IEEE International Conference on Advanced Learning
Technologies, pages 845–846. IEEE Computer Society, July 2006b. ISBN 0769526322. URL
http://www.activemath.org/publications/icalt06_mediator.pdf.

J. Kay, R. J. Kummerfeld, and P. Lauder. Personis: a server for user models. In P. De Bra,
P. Brusilovsky, and R. Conejo, editors, Proceedings of AH’2002, Adaptive Hypertext 2002,
pages 203–212. Springer, 2002.

G. Kearlsey. Authoring considerations for hypertext. Educational Technology, 28(11):21–24, 1988.
ISSN 0013-1962.

I. O. Keeffe, A. Brady, O. Conlan, and V. Wade. Just-in-time generation of pedagogically sound,
context sensitive personalized learning experiences. International Journal on E-Learning, 5(1):
113–127, 2006.

243

http://www.noe-kaleidoscope.org
http://www.activemath.org/publications/kaergeretal-mediator-ectel06.pdf
http://www.activemath.org/publications/kaergeretal-mediator-ectel06.pdf
http://www.activemath.org/publications/icalt06_mediator.pdf

Bibliography

K. Keenoy, M. Levene, and D. Peterson. Personalisation and trails in self e-learning networks.
WP4 Deliverable 4.2, IST Self E-Learning Networks, 2003.

K. Keenoy, A. Poulovassilis, G. Papamarkos, P. Wood, V. Christophides, A. Maganaraki,
M. Stratakis, P. Rigaux, and N. Spyratos. Adaptive personalisation in self e-learning net-
works. In Proceedings of First International Kaleidoscope Learning Grid SIG Workshop on
Distributed e-Learning Environments, Napoly, Italy, 2005.

E. Klieme, H. Avenarius, W. Blum, P. Döbrich, H. Gruber, M. Prenzel, K. Reiss, K. Riquarts,
J. Rost, H. Tenorth, and H. J. Vollmer. The development of national educational standards - an
expertise. Technical report, Bundesministerium für Bildung und Forschung / German Federal
Ministry of Education and Research, 2004.

C. Knight, D. Gašević, and G. Richards. An ontology-based framework for bridging learning
design and learning content. Educational Technology and Society, 9(1):23–37, 2006.

N. Koch and M. Wirsing. The Munich reference model for adaptive hypermedia applications.
In P. De Bra, P. Brusilovsky, and R. Conejo, editors, Proceedings of the Second International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, volume 2347 of LNCS,
pages 213–222. Springer-Verlag, 2002.

M. Kohlhase. OMDoc: Towards an internet standard for mathematical knowledge. In E. R.
Lozano, editor, Proceedings of AISC’2000, LNAI. Springer Verlag, 2001.

M. Kohlhase. OMDoc – An Open Markup Format for Mathematical Documents. Springer Verlag,
2006. ISBN 3540378979.

R. Koper. From change to renewal: Educational technology foundations of electronic learn-
ing environments. published online, 2000. URL http://eml.ou.nl/introduction/docs/
koper-inaugural-address.pdf.

B. J. Krämer. Reusable learning objects: Let’s give it another trial. Forschungsberichte des
Fachbereichs Elektrotechnik ISSN 0945-0130, Fernuniversität Hagen, 2005.

P. Libbrecht, E. Melis, and C. Ullrich. Generating personalized documents using a presentation
planner. In ED-MEDIA 2001, World Conference on Educational Multimedia, Hypermedia and
Telecommunications, pages 1124–1125. AACE/Norfolk, 2001. URL http://www.activemath.
org/publications/edmedia01.pdf.

T. Lu. Kursgenerator für E-Learning Syteme als Web-Service. Master’s thesis, Hochschule für
Technik und Wirtschaft des Saarlandes, 2006.

U. Lucke, D. Tavangarian, and D. Voigt. Multidimensional educational multimedia with ml3. In
G. Richards, editor, Proceedings of World Conference on E-Learning in Corporate, Govern-
ment, Healthcare, and Higher Education 2003, pages 101–104, Phoenix, Arizona, USA, 2003.
AACE.

L. S. Lumsden. Student motivation to learn. ERIC Digest, 92, 1994.

W. C. Mann and S. A. Thompson. Rhetorical structure theory: Toward a functional theory of
text organization. Text, 8(3):243–281, 1988.

F. Manola and E. Miller. RDF primer. W3C recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

244

http://eml.ou.nl/introduction/docs/koper-inaugural-address.pdf
http://eml.ou.nl/introduction/docs/koper-inaugural-address.pdf
http://www.activemath.org/publications/edmedia01.pdf
http://www.activemath.org/publications/edmedia01.pdf

Bibliography

S. Mantyka. The Math Plague: How to Survive School Mathematics. MayT Consulting Cooper-
ation, 2007.

R. Mayer. Multimedia Learning. Cambridge University Press, New York, NY, 2001.

J. T. Mayes. Cognitive tools: A suitable case for learning. In P. A. M. Kommers, D. H. Jonassen,
and J. T. Mayes, editors, Cognitive Tools for Learning, volume 81 of NATO ASI Series, Series
F: Computer and Systems Science, pages 7–18. SpringerVerlag, Berlin, HeriotWatt University,
UK, 1992.

B. McCarthy. About Learning. Excell Inc., Barrington, IL, 1996.

B. McCollum. Advanced distributed learning - home, 2005. URL http://www.adlnet.gov/.
This is an electronic document. Date of publication: April 13,2005. Date retrieved: January
31, 2007. Date last modified: January 12, 2007.

D. McDermott. The 1998 AI planning systems competition. AI Magazine, 21(2):35–55, 2000.

D. McDermott. PDDL, the planning domain definition language. Technical Report 1165, Yale
Center for Computational Vision and Control, New Haven, CT, 1998. URL ftp://ftp.cs.
yale.edu/pub/mcdermott/software/pddl.tar.gz.

N. Meder. Didaktische Ontologien. accessed online, 2003.

E. Melis and E. Andres. Global Feedback in ActiveMath. Journal of Computers in Mathematics
and Science Teaching, 24:197–220, 2005.

E. Melis and J. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 115(1):65–105,
1999. ISSN 0004-3702.

E. Melis and C. Ullrich. How to teach it – Polya-scenarios in activemath. In
U. Hoppe, F. Verdejo, and J. Kay, editors, Artificial Intelligence in Education,
pages 141–147. IOS Press, 2003. URL http://www.activemath.org/publications/
HowToTeachItPolyaScenariosActiveMath.pdf.

E. Melis, E. Andrès, J. Büdenbender, A. Frischauf, G. Goguadze, P. Libbrecht, M. Pollet, and
C. Ullrich. ActiveMath: A generic and adaptive web-based learning environment. Interna-
tional Journal of Artificial Intelligence in Education, 12(4):385–407, 2001.

E. Melis, J. Büdenbender, G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. Knowledge rep-
resentation and management in activemath. Annals of Mathematics and Artificial Intelligence,
Special Issue on Management of Mathematical Knowledge, 38(1–3):47–64, 2003. URL http:
//www.activemath.org/publications/Knowledge_Representation_in_ActiveMath.pdf.

E. Melis, P. Kärger, and M. Homik. Interactive Concept Mapping in ActiveMath (iCMap). In J. M.
Haake, U. Lucke, and D. Tavangarian, editors, Delfi 2005: 3. Deutsche eLearning Fachtagung
Informatik, volume 66 of LNI, pages 247–258, Rostock, Germany, Sept. 2005. Gesellschaft für
Informatik e.V. (GI).

E. Melis, G. Goguadze, M. Homik, P. Libbrecht, C. Ullrich, and S. Winterstein.
Semantic-aware components and services of activemath. British Journal of Educa-
tional Technology, 37(3):405–423, 2006. URL http://www.activemath.org/publications/
Melisetal-SemanticAware-BJET-2005.pdf.

245

http://www.adlnet.gov/
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
http://www.activemath.org/publications/HowToTeachItPolyaScenariosActiveMath.pdf
http://www.activemath.org/publications/HowToTeachItPolyaScenariosActiveMath.pdf
http://www.activemath.org/publications/Knowledge_Representation_in_ActiveMath.pdf
http://www.activemath.org/publications/Knowledge_Representation_in_ActiveMath.pdf
http://www.activemath.org/publications/Melisetal-SemanticAware-BJET-2005.pdf
http://www.activemath.org/publications/Melisetal-SemanticAware-BJET-2005.pdf

Bibliography

E. Melis, R. Shen, J. Siekmann, C. Ullrich, F. Yang, and P. Han. Challenges in search and usage
of multi-media learning objects. In R. Lu, J. Siekmann, and C. Ullrich, editors, Proceedings
of the 2005 Joint Chinese-German Workshop on Cognitive Systems, volume 4429 of Lecture
Notes in Artificial Intelligence, pages 36–44, Shanghai, China, 2007. Springer-Verlag. URL
http://www.activemath.org/publications/Melisetal-MultimediaLOs-WSCS-2007.pdf.

N. D. D. Méndez, C. J. Ramı́rez, and J. A. G. Luna. IA planning for automatic generation of
customized virtual courses. In Frontiers In Artificial Intelligence And Applications, Proceedings
of ECAI 2004, volume 117, pages 138–147, Valencia (Spain), 2004. IOS Press.

A. Merceron and K. Yacef. A web-based tutoring tool with mining facilities to improve learning
and teaching. In Proceedings of the 11th International Conference on Artificial Intelligence in
Education, Sydney, Australia, 2003.

A. Merceron, C. Oliveira, M. Scholl, and C. Ullrich. Mining for content re-use and ex-
change – solutions and problems. In Poster Proceedings of the 3rd International Seman-
tic Web Conference, ISWC2004, pages 39–40, Hiroshima, Japan, November 2004. URL
http://www.activemath.org/publications/Merceronetal-Mining-ISWC-2004.pdf.

J. J. G. V. Merriënboer. Training Complex Cognitive Skills. Educational Technology Publications,
Inc., Englewood Cliffs, 1997.

M. D. Merrill. First principles of instruction. Educational Technology Research & Development,
50(3):43–59, 2002.

Z. Miklos, G. Neumann, U. Zdun, and M. Sintek. Querying Semantic Web Resources Using
TRIPLE Views. In Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, editors,
Semantic Interoperability and Integration, number 04391 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2005. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany.

R. Mizoguchi and J. Bourdeau. Using ontological engineering to overcome AI-ED problems.
International Journal of Artificial Intelligence in Education, 11(2):107–121, 2000.

A. Monk, P. Wright, J. Haber, , and L. Davenport. Improving your human-computer interface:
A practical technique. Prentice Hall, 1993.

Moodle. Moodle, 2007. URL http://moodle.org/. This is an electronic document. Date re-
trieved: May 16, 2007.

D. Mularczyk. International forum ofeducational technology & society, 2004. URL http://
ifets.ieee.org/. This is an electronic document. Date retrieved: March 19, 2007. Date last
modified: October 9, 2004.

W. R. Murray. Control for intelligent tutoring systems: A blackboard-based dynamic instruc-
tional planner. In D. Bierman, J. Breuker, and J. Sandberg, editors, Proc. 4th International
Conference of AI and Education, pages 150–168, Amsterdam, Springfield VA, Tokyo, 1989.
IOS.

D. S. Nau, S. J. J. Smith, and K. Erol. Control strategies in HTN planning: theory versus
practice. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial intelligence, pages 1127–1133, Menlo
Park, CA, USA, 1998. American Association for Artificial Intelligence.

246

http://www.activemath.org/publications/Melisetal-MultimediaLOs-WSCS-2007.pdf
http://www.activemath.org/publications/Merceronetal-Mining-ISWC-2004.pdf
http://moodle.org/
http://ifets.ieee.org/
http://ifets.ieee.org/

Bibliography

D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP: Simple hierarchical ordered
planner. In IJCAI ’99: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 968–975, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-613-0.

D. S. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-order planning with
partially ordered subtasks. In B. Nebel, editor, Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI 2001, pages 425–430, Seattle, Washington,
USA, 2001. Morgan Kaufmann.

D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2: An
HTN Planning System. Journal of Artificial Intelligence Research, 20:379–404, 2003.

D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila, J. W. Murdock, D. Wu, and
F. Yaman. Applications of SHOP and SHOP2. Technical Report CS-TR-4604, Department of
Computer Science, University of Maryland, 2004.

W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér, and T. Risch.
Edutella: a P2P networking infrastructure based on RDF. In WWW ’02: Proceedings of the
11th international conference on World Wide Web, pages 604–615, New York, NY, USA, 2002.
ACM Press. ISBN 1-58113-449-5.

L. M. Nelson. Collaborative problem solving. In C. M. Reigeluth, editor, Instructional Design
Theories and Models: A New Paradigm of Instructional Theory, volume 2, pages 241–267.
Lawrence Erlbaum Associates, 1999.

J. Nielsen. Heuristic evaluation. In J. Nielsen and R. L. Mack, editors, Usability inspection
methods, pages 25–62. John Wiley & Sons, Inc., New York, NY, USA, 1994.

M. Nilsson, M. Palmér, and J. Brasse. The lom rdf binding – principles and im-
plementation. In Proceedings of the 3rd Annual Ariadne Conference, Leuven, Bel-
gium, 2003. URL http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/LOM_
binding_nilsson_brase.pdf. Published online.

M. Niss. Mathematical competencies and the learning of mathematics: the danish KOM project.
Technical report, IMFUFA, Roskilde University, 2002.

D. D. Noble. The Classroom Arsenal: Military Research, Information Technology and Public
Education. The Falmer Press, New York, NY, 1991.

J. Novak and D. Gowin. Learning How to Learn. Cambridge University Press, New York, 1984.

N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Stanford Medical Informatics Technical Report SMI-2001-0880, Stanford University,
2001.

OASIS. OASIS SOA reference model, 2006. URL http://www.oasis-open.org/committees/
soa-rm/faq.php. This is an electronic document. Date retrieved: January 22, 2007.

Object Management Group. Object Management Group — UML, 2007. URL http://www.uml.
org/. This is an electronic document. Date retrieved: January 22, 2007. Date last modified:
January 2, 2007.

OECD, editor. Learning for Tomorrows World — First Results from PISA 2003. Organisation
for Economic Co-operation and Development (OECD) Publishing, 2004.

247

http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/LOM_binding_nilsson_brase.pdf
http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/LOM_binding_nilsson_brase.pdf
http://www.oasis-open.org/committees/soa-rm/faq.php
http://www.oasis-open.org/committees/soa-rm/faq.php
http://www.uml.org/
http://www.uml.org/

Bibliography

OECD, editor. Measuring Student Knowledge and Skills – A New Framework for Assessment.
OECD Publishing, Paris, France, 1999.

OECD. PISA – the OECD programme for international student assessment. Brochure, 2007.

S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York, NY,
1980.

J. M. Pawlowski. Das Essener-Lern-Modell (ELM): Ein Vorgehensmodell zur Entwicklung com-
puterunterstützter Lernumgebungen. PhD thesis, Universität Gesamthochschule Essen, Essen,
2001.

M. T. Pazienza, A. Stellato, M. Vindigni, and F. M. Zanzotto. XeOML: An XML-based extensible
Ontology Mapping Language. Workshop on Meaning Coordination and Negotiation, held in
conjunction with 3rd International Semantic Web Conference (ISWC-2004) Hiroshima, Japan,
November 2004.

D. R. Peachy and G. I. McCalla. Using planning techniques in intelligent tutoring systems.
International Journal of Man-Machine Studies, 24(1):77–98, 1986.

P. R. Pintrich. The role of motivation in promoting and sustaining self-regulated learning. Inter-
national Journal of Educational Research, 31:459–470, 1999.

PLATO Learning, Inc. Plato learning, 2007. URL http://www.plato.com/. This is an electronic
document. Date retrieved: January 16, 2007.

G. Polya. How to Solve it. Princeton University Press, NJ, 1973.

M. Prenzel, B. Drechsel, C. H. Carstensen, and G. Ramm. PISA 2003 - Eine Einführung. In
PISA-Konsortium Deutschland, editor, PISA 2003 - Der Bildungsstand der Jugendlichen in
Deutschland - Ergebnisse des zweiten internationalen Vergleichs, pages 13–46. Waxmann Ver-
lag, Münster, Germany, 2004.

C. M. Reigeluth, editor. Instructional Design Theories and Models: An Overview on their Current
Status, volume 1. Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

C. M. Reigeluth, editor. Instructional Design Theories and Models: A New Paradigm of Instruc-
tional Theory, volume 2. Lawrence Erlbaum Associates, Mahwah, NJ, 1999.

G. Reinmann-Rothmeier and H. Mandl. Unterrichten und Lernumgebungen gestalten. In
A. Krapp and W. Weidmann, editors, Pädagogische Psychologie. Ein Lehrbuch, pages 601–
646. Beltz PVU, Weinheim, 4.edition edition, 2001.

E. Reiter. NLG vs. Templates. In Proceedings of the Fifth European Workshop on Natural
Language Generation, pages 95–105, Leiden, The Netherlands, May 1995.

E. Reiter and R. Dale. Building Natural Language Generation Systems. Cambridge University
Press, Cambridge, England, 2000.

Reusable Learning. Reusable learning, 2007. URL http://www.reusablelearning.org/
glossary.asp. This is an electronic document. Date retrieved: January 29, 2007.

E. Rich. User modeling via stereotypes. Cognitive Science, 3:329–354, 1979.

248

http://www.plato.com/
http://www.reusablelearning.org/glossary.asp
http://www.reusablelearning.org/glossary.asp

Bibliography

O. Rostanin, C. Ullrich, H. Holz, and S. Song. Project TEAL: Add adaptive e-learning to your
workflows. In K. Tochtermann and H. Maurer, editors, Proceedings: I-KNOW’06, 6th Interna-
tional Conference on Knowledge Management, pages 395–402, Graz, Austria, Sep 2006. URL
http://www.activemath.org/publications/Rostaninetal-TEAL-IKNOW-2006.pdf.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,
2003. ISBN 0137903952.

E. Sacerdoti. The nonlinear nature of plans. In The Proceedings of the 4th International Joint
Conference on Artificial Intelligence, pages 206–214, Tiblisi, USSR, September 1975. Morgan
Kaufmann.

P. Sancho, I. Mart́ınez, and B. Fernández-Manjón. Semantic web technologies applied to e-learning
personalization in e-aula. Journal of Universal Computer Science, 11(9):1470–1481, 2005.

R. C. Schank, T. R. Berman, and K. A. Macperson. Learning by doing. In C. M. Reigeluth,
editor, Instructional Design Theories and Models: A New Paradigm of Instructional Theory,
volume 2, pages 161–181. Lawrence Erlbaum Associates, 1999.

V. Schöch, M. Specht, and G. Weber. ADI - an empirical evaluation of a tutorial agent. In
T. Ottmann and I. Tomek, editors, Proceedings of ED-MEDIA/ED-TELECOM’98 - 10th World
Conference on Educational Multimedia and Hypermedia and World Conference on Educational
Telecommunications, Freiburg, Germany, pages 1242–1247, 1998.

R. Schulmeister. Grundlagen hypermedialer Lernsysteme. Oldenbourg, München, Germany, 2002.

R. Schulmeister. eLearning: Einsichten und Aussichten. Oldenbourg, München, Germany, 2006.

D. L. Schwartz, X. Lin, S. Brophy, and J. D. Bransford. Toward the development of flexibly
adaptive instructional designs. In C. M. Reigeluth, editor, Instructional Design Theories and
Models: A New Paradigm of Instructional Theory, volume 2, pages 183–213. Lawrence Erlbaum
Associates, 1999.

M. Scriven. Beyond formative and summative evaluation. In M. W. McLaughlin and D. C.
Phillips, editors, Evaluation and Education: A Quarter Century, pages 18–64. University of
Chicago Press, Chicago, IL, USA, 1991.

B. Shneiderman and C. Plaisant. Designing the User Interface : Strategies for Effective Human-
Computer Interaction. Addison Wesley, 2004. ISBN 0321197860.

B. Simon, D. Massart, F. van Assche, S. Ternier, E. Duval, S. Brantner, D. Olmedilla, and
Z. Miklos. A simple query interface for interoperable learning repositories. In B. Simon,
D. Olmedilla, and N. Saito, editors, Proceedings of the 1st Workshop on Interoperability of
Web-based Educational Systems, pages 11–18, Chiba, Japan, May 2005. CEUR.

B. F. Skinner. The Technology of Teaching. Appleton-Century-Crofts, New York, NY, 1968.

M. Specht and R. Oppermann. ACE - adaptive courseware environment. The New Review of
Hypermedia and Multimedia, 4:141–162, 1998.

M. Specht, M. Kravcik, L. Pesin, and R. Klemke. Authoring adaptive educational hypermedia in
WINDS. In N. Henze, editor, Proc. of the ABIS 2001 Workshop, 2001.

C. M. Sperberg-McQueen, T. Bray, F. Yergeau, E. Maler, and J. Paoli. Extensible
markup language (XML) 1.0 (fourth edition). W3C recommendation, W3C, Aug. 2006.
http://www.w3.org/TR/2006/REC-xml-20060816.

249

http://www.activemath.org/publications/Rostaninetal-TEAL-IKNOW-2006.pdf

Bibliography

L. Steels. Components of expertise. AI Magazine, 11(2):30–49, 1990. ISSN 0738-4602.

M. Stern and B. P. Woolf. Curriculum sequencing in a web-based tutor. In ITS ’98: Proceedings
of the 4th International Conference on Intelligent Tutoring Systems, pages 574–583, London,
UK, 1998. Springer-Verlag. ISBN 3-540-64770-8.

R. Studer, A. Hotho, G. Stumme, and R. Volz. Semantic web - state of the art and future
directions. KI, 17:5–8, 2003.

A. Tate. Generating project networks. In Proceedings of the Fifth International Joint Conference
on Artificial Intelligence, pages 888–893. Morgan Kaufmann, 1977.

R. D. Tennyson, F. Scott, N. M. Seel, and S. Dijkstra, editors. Instructional Design: International
Perspectives. Theory, Research, and Models, volume 1. Lawrence Erlbaum Associates, Mahwah,
NJ, 1997.

S. O. Tergan. Hypertext und Hypermedia: Konzeption, Lernmöglichkeiten, Lernprobleme und
Perspektiven. In P. Klimsa and L. Issing, editors, Information und Lernen mit Multimedia und
Internet – Lehrbuch für Studium und Praxis, pages 99–112. Beltz Verlag, Weinheim, 2002.

ieee Learning Technology Standards Committee. 1484.12.1-2002 ieee standard for Learning
Object Metadata, 2002.

merlot. merlot – multimedia educational resource for learning and online teaching, 2006. URL
http://www.merlot.org/merlot/index.htm. This is an electronic document. Date retrieved:
May 15, 2007.

R. Thomas. Millenium mathematics project - bringing mathematics to life. MSOR Connections,
4(3), August 2004.

C. Ullrich. Course generation based on HTN planning. In A. Jedlitschka and B. Brandherm,
editors, Proceedings of 13th Annual Workshop of the SIG Adaptivity and User Modeling in
Interactive Systems, pages 74–79, 2005a. URL http://www.activemath.org/publications/
Ullrich-CourseGenerationHTN-ABIS-2005.pdf.

C. Ullrich. Description of an instructional ontology and its application in web services for educa-
tion. In Poster Proceedings of the 3rd International Semantic Web Conference, ISWC2004,
pages 93–94, Hiroshima, Japan, November 2004a. URL http://www.activemath.org/
publications/Ullrich-InstructionalOntology-ISWC-2004.pdf.

C. Ullrich. Description of an instructional ontology and its application in web services for educa-
tion. In Proceedings of Workshop on Applications of Semantic Web Technologies for E-learning,
SW-EL’04, pages 17–23, Hiroshima, Japan, November 2004b. URL http://www.activemath.
org/publications/Ullrich-InstructionalOntology-SWEL-2004.pdf.

C. Ullrich. The learning-resource-type is dead, long live the learning- resource-type! Learn-
ing Objects and Learning Designs, 1(1):7–15, 2005b. URL http://www.activemath.org/
publications/Ullrich-LearningResource-LOLD-2005.pdf.

C. Ullrich. Tutorial planning: Adapting course generation to today’s needs. In C.-K. Looi,
G. McCalla, B. Bredeweg, and J. Breuker, editors, Proceedings of 12th International Conference
on Artificial Intelligence in Education, page 978, Amsterdam, 2005c. IOS Press. URL http:
//www.activemath.org/publications/Ullrich-TutorialPlanning-AIED-2005.pdf.

250

http://www.merlot.org/merlot/index.htm
http://www.activemath.org/publications/Ullrich-CourseGenerationHTN-ABIS-2005.pdf
http://www.activemath.org/publications/Ullrich-CourseGenerationHTN-ABIS-2005.pdf
http://www.activemath.org/publications/Ullrich-InstructionalOntology-ISWC-2004.pdf
http://www.activemath.org/publications/Ullrich-InstructionalOntology-ISWC-2004.pdf
http://www.activemath.org/publications/Ullrich-InstructionalOntology-SWEL-2004.pdf
http://www.activemath.org/publications/Ullrich-InstructionalOntology-SWEL-2004.pdf
http://www.activemath.org/publications/Ullrich-LearningResource-LOLD-2005.pdf
http://www.activemath.org/publications/Ullrich-LearningResource-LOLD-2005.pdf
http://www.activemath.org/publications/Ullrich-TutorialPlanning-AIED-2005.pdf
http://www.activemath.org/publications/Ullrich-TutorialPlanning-AIED-2005.pdf

Bibliography

C. Ullrich. Pedagogical rules in ActiveMath and their pedagogical foundations. Seki Report SR-
03-03, Universität des Saarlandes, FB Informatik, 2003. URL http://www.activemath.org/
publications/Ullrich-PedRules-Techrep03.pdf.

C. Ullrich and O. Ilghami. Challenges and solutions for hierarchical task network plan-
ning in e-learning. In L. Penserini, P. Peppas, and A. Perini, editors, STAIRS 2006,
Proceedings of the Third Starting AI Researchers’ Symposium, volume 142 of Frontiers
in Artificial Intelligence and Applications, pages 271–272, Riva del Garda, Italy, Aug
2006. IOS Press. ISBN 0922-6389. URL http://www.activemath.org/publications/
UllrichOkhtay-HTNEL-Stairs-2006.pdf.

C. Ullrich, P. Libbrecht, S. Winterstein, and M. Mühlenbrock. A flexible and efficient presentation-
architecture for adaptive hypermedia: Description and technical evaluation. In Kinshuk,
C. Looi, E. Sutinen, D. Sampson, I. Aedo, L. Uden, and E. Kähkönen, editors, Proceedings
of the 4th IEEE International Conference on Advanced Learning Technologies (ICALT 2004),
Joensuu, Finland, pages 21–25, 2004. URL http://www.activemath.org/publications/
Ullrichetal-Presentation-ICALT04.pdf.

University of London. Self e-learning networks, 2005. URL http://www.dcs.bbk.ac.uk/selene/.
This is an electronic document. Date retrieved: January 20, 2007.Date last modified: January
21, 2005.

E. van der Linden. Does feedback enhance computer-assisted language learning? Computers &
Education, 21(1-2):61–65, 1993. ISSN 0360-1315. doi: http://dx.doi.org/10.1016/0360-1315(93)
90048-N.

F. van Harmelen and D. L. McGuinness. OWL web ontology language overview. W3C recommen-
dation, W3C, Feb. 2004. URL http://www.w3.org/TR/2004/REC-owl-features-20040210/.

W. R. van Joolingen. Cognitive tools for discovery learning. International Journal of Artificial
Intelligence in Education, pages 385–397, 1999.

K. Van Marcke. Instructional expertise. In C. Frasson, G. Gauthier, and G. McCalla, editors,
Proceedings of the Second International Conference on Intelligent Tutoring Systems, Montréal,
Canada, volume 608 of Lecture Notes in Computer Science, pages 234–243, Heidelberg, 1992.
Springer. ISBN 3-540-55606-0.

K. Van Marcke. A generic tutoring environment. In L. Aiello, editor, Proceedings of the 9th Euro-
pean Conference on Artificial Intelligence, pages 655–660, Stockholm, Sweden, 1990. Pitman,
London.

K. Van Marcke. GTE: An epistemological approach to instructional modelling. Instructional
Science, 26:147–191, 1998.

J. Vassileva. Dynamic courseware generation: at the cross point of CAL, ITS and authoring. In
Proceedings of the International Conference on Computers in Education (ICCE) 95, Singapore,
pages 290–297, December 1995.

J. Vassileva. Dynamic courseware generation. Communication and Information Technologies, 5
(2):87–102, 1997.

J. Vassileva and R. Deters. Dynamic courseware generation on the WWW. British Journal of
Educational Technology, 29(1):5–14, 1998.

L. S. Vygotsky. Mind in society. Harvard University Press, Cambridge, MA, 1978.

251

http://www.activemath.org/publications/Ullrich-PedRules-Techrep03.pdf
http://www.activemath.org/publications/Ullrich-PedRules-Techrep03.pdf
http://www.activemath.org/publications/UllrichOkhtay-HTNEL-Stairs-2006.pdf
http://www.activemath.org/publications/UllrichOkhtay-HTNEL-Stairs-2006.pdf
http://www.activemath.org/publications/Ullrichetal-Presentation-ICALT04.pdf
http://www.activemath.org/publications/Ullrichetal-Presentation-ICALT04.pdf
http://www.dcs.bbk.ac.uk/selene/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

Bibliography

W3C. World wide web consortium, 2007. URL http://www.w3.org/. This is an electronic
document. Date retrieved: February 6, 2007. Date last modified: February 2, 2007.

P. Walmsley and D. C. Fallside. XML schema part 0: Primer second edition. W3C recommen-
dation, W3C, Oct. 2004. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

N. Walsh and L. Muellner. DocBook: The Definitive Guide. O’Reilly, 1999.

B. Wasson. Determining the Focus of Instruction: Content planning for intelligent tutoring
systems. PhD thesis, Department of Computational Science, University of Saskatchewan, 1990.
Research Report 90-5.

J. B. Watson. Psychology as the behaviorist views it. Psychological Review, 20:158–177, 1913.

G. Weber and P. Brusilovsky. ELM-ART: An adaptive versatile system for web-based instruction.
International Journal of Artificial Intelligence in Education, 12(4):351–384, 2001.

G. Wiederhold. Mediators in the architeture of future information systems. The IEEE Computer
Magazine, March 1992.

D. A. Wiley. Connecting learning objects to instructional design theory: A definition, a metaphor,
and a taxonomy. In D. A. Wiley, editor, The Instructional Use of Learning Objects: Online
Version. published online, 2000.

D. E. Wilkins. Can AI planners solve practical problems? Computational Intelligence, 6(4):
232–246, November 1990.

B. Wilson and P. Cole. A review of cognitive teaching models. Educational Technology Research
and Development, 39(4):47–64, 1991.

D. Winer. XML-RPC specification, October 1999. http://www.xmlrpc.org/spec.

B. P. Woolf and D. D. McDonald. Building a computer tutor: Design issues. IEEE Computer,
17(9):61–73, 1984.

F. Yaman, Y. Cao, D. S. Nau, and R. P. Goldmann. Documentation for SHOP2. Department of
Computer Science, University of Maryland, May 2005.

F. Zech. Grundkurs Mathematikdidaktik. Beltz Verlag, Weinheim, 2002.

252

http://www.w3.org/
http://www.xmlrpc.org/spec

Index

!!addInWorldState, 62
!!changeScenario, 81
!!removeFromWorldState, 62
!!setAchieved, 81
!dynamicTask, 70
!endSection, 67, 94
!insertLearningService, 68
!insertResource, 63
!startSection, 67, 94
!text, 69, 92

ACE, 209
action, 21
adaptive hypermedia system, 19
addInWorldStateAsInserted, 65
Advanced Distributed Learning Initiative (adl),

15
AI-planning, 21
allInserted, 65
allKnownOrInserted, 75
APeLS, 212
Ariadne Foundation, 15
assignIterator, 62
assignment, 26
auxiliary, 45
axiom, 27

behaviorism, 31

call expression, 26
call term, 25
CMapConnect, 135
CMapConnectExercise, 135
cognitivism, 32
collectUnknownPrereq, 120
concat, 61
concept, 20
concept mapping tool, 163
concept selection, see content planning
conclusion, 45
conjunction, 26
connect, 133
constructivism, 32
content planning, 20

content selection, see presentation planning
counterExample, 45
course generation, 18

web-service, 174
course planning, 20
course sequencing, 19
curriculum sequencing, see course generation

DCG, 209
definition, 44
delivery planning, see presentation planning
demonstration, 45
descriptionScenarioSection, 92
discover, 116
disjunction, 26
domain model, 20
dtd, 12
dynamic-item, 70, 83, 161

effect, 22
evaluation

formative, 188
summative, 188

evidence, 45
example, 45
exercise, 45
explain!, 122
explanation, 45
exploration, 45
external function, 25

fact, 44
first, 60
first satisfier precondition, 26
fundamental, 44

generateCourse, 80
GetMetadata, 71
getNonInserted, 65
getNonTargetFundamentals, 81
GetRelated, 71
GetResources, 70
grouping, 159
GTE, 207

253

Index

guidedTour, 149

hierarchical task network planning (HTN),
22

iClass, 213
ieee Learning Technology Standards Com-

mittee (ieee ltsc), 15
illustrate!, 113
illustrateCompetency!, 113
illustrateWithSingleExample!, 110, 111
illustrateWithSingleExampleRelaxed!, 113
illustration, 45
implication, 26
ims content packaging (ims cp), 16
ims Global Learning Consortium (ims/glc),

15
ims learning design (ims ld), 18
ims simple sequencing (ims ss), 17
insertAllAuxOnceIfReady, 77
insertAllResources, 65
insertAndPlanGoal, 80
insertAuxOnceIfReady!, 77
insertIntroductionExample!, 119
insertResource, 64
insertResourceOnce

, 64
insertTargetFundamentals, 80
insertWithVariantsIfReady!, 72
instructional design, 33
instructionalObject, 43
intelligent content assembly, see course gen-

eration
interactivity, 45
internal operator, 28
interoperability, 14
termintroduceWithPrereqSection!, 117
introduceWithSection!, 117
introduction, 45
invitation, 45
iri, 12
isFor, 45
isVariantOf, 44

jshop2, 23

known, 75

law, 44
lawOfNature, 44
learner model, 20

open, 128
learnerProperty, 73

learning theory
descriptive, 31

learning theory, 31
prescriptive, 31

length, 61
list term, 25
logical atom, 25
logical expression, 25
logical precondition, 26
lom, 15

mediator, 48
metadata, 15
method

fallback, 59
HTN, 28
instructional, 21
pedagogical, 54

motivate!, 118

negation, 26

OMDoc, 83, 157
omgroup, 83, 160
ontology of instructional objects (oio), 43
operator, 22

HTN, 27
owl, 14

pddl, 22
pedagogical objective, 53
pedagogical scenario, 54
personalized content delivery, see course gen-

eration
plan, 21

HTN, 29
planner, 21
planning algorithm, 22
planning domain, 23, 28
planning problem, 21

HTN, 23, 29
policy, 44
precondition, 22
presentation planning, 20
problem!, 118
procedure, 44
process, 44
proof, 45
prove!, 122

rdf, 12
rdf schema, 13
readyAux, 75

254

Index

realWorldProblem, 45
reference model, 19
reflect, 128
rehearse, 129
rehearseSingleFundamental, 129
remark, 45
removeElement, 61
removeKnownFundamentals, 77
rest, 61
restrict, 61
reuse, 14
reverse, 61

same, 60
SeLeNe, 213
semantic web, 11

layer cake, 11
shop, 23
shop2, 23
showConnections!, 125
showConnectionsTheorem, 126
showConnectionsTheoremWithProof, 126
slm, 74
Sort, 72
sortByAlreadySeen, 79
standard, 15
state-space search, 22

backward, 22
forward, 22

strips, 22
symbol, 24

task
critical, 59
HTN, 22
instructional, 21
optional, 59
pedagogical, 53
public, 54

task atom, 27
task list, 27
teaching model, 20
term, 25
text, 92
theorem, 44
trail, 213
trail generation, see course generation
train!, 107
trainWithSingleExercise!, 102, 106
trainWithSingleExerciseRelaxed!, 107

unicode, 12

uri, 12
user model, 20

WINDS, 210
World Wide Web Consortium (W3C), 11

xml Schema, 12
xml, 12

255

	Preliminaries
	Introduction
	Motivation
	Contributions
	Service-Oriented Course Generation
	Modeling of Pedagogical Knowledge
	Adaptivity in Generated Courses
	Evaluation
	Example, continued

	Overview

	Relevant Technologies
	Basic Terminology
	Semantic Web Technologies
	Extensible Markup Language
	Resource Description Framework
	OWL Web Ontology Language

	E-learning Standards
	Learning Object Metadata
	IMS Content Packaging
	IMS Simple Sequencing
	IMS Learning Design

	Course Generation
	Hierarchical Task Network Planning
	Introduction to AI-Planning
	Introduction to Hierarchical Task Network Planning
	SHOP2 and JSHOP2
	JSHOP2 Formalism

	Descriptive and Prescriptive Learning Theories
	Behaviorism
	Cognitivism
	Constructivism
	Instructional Design
	Competency-Based Learning
	Mathematical Competencies
	Competency Levels

	PAIGOS
	General Principles
	An Ontology of Instructional Objects
	Motivation
	Description of the Ontology
	Why an Ontology?
	Applications of the Ontology

	A Mediator for Accessing Learning Object Repositories
	Related Work
	Overview of the Mediator Architecture
	Querying the Mediator
	Ontology Mapping and Query Rewriting
	Repository interface and caching
	Limitations of the Mediator as an Educational Service

	Pedagogical Tasks, Methods and Strategies
	Representing Course Generation Knowledge in an HTN Planner
	Motivation
	Mapping Pedagogical Tasks onto HTN Tasks
	Course Generation Planning Problems
	Critical and Optional Tasks

	Basic General Purpose Axioms and Operators
	Testing for Equality
	List Manipulation
	Binding a Variable to all Terms of a Term List
	Manipulating the World State

	Basic Operators and Methods of the Course Generation Domain
	Inserting References to Educational Resources
	Starting and Ending Sections
	Inserting References to Learning-Support Services
	An Operator for Dynamic Text Generation
	Dynamic Subtask Expansion
	Accessing Information about Educational Resources
	Axioms for Accessing the Learner Model
	Processing Resources Depending on Learner Characteristics
	Initializing and Manipulating Information about the Learning Goal

	Converting a Plan into a Course
	Generating Structure and Adaptivity: Dynamic Tasks
	Generation of Narrative Bridges and Structure
	Empirical Findings
	Operator and Methods for Text Generation
	Symbolic Representations of Dynamic Text Items
	Generation of Structure Information

	Summary

	Course Generation in Practice: Formalized Scenarios
	Moderate Constructivist Competency-Based Scenarios
	Course Generation and Constructivism --- a Contradiction?
	Selecting Exercises
	Selecting Examples
	Scenario ``Discover''
	Scenario ``Rehearse''
	Scenario ``Connect''
	Scenario ``Train Intensively''
	Scenario ``Train Competencies''
	Scenario ``Exam Simulation''

	Course Generation Based on Instructional Design Principles
	Merrill's ``First Principles of Instruction''
	Scenario ``Guided Tour''

	Implementation and Integration
	Implementation
	Integration of PAIGOS in ActiveMath
	The Learning Environment ActiveMath
	Course Generation in ActiveMath
	Dynamically Generated Elements in a Table of Contents
	Usage of Learning-Support Services in ActiveMath
	Template-Based Generation of Narrative Bridges
	PAIGOS as a Service in ActiveMath

	Course Generation as a Web-Service
	Interfaces

	Evaluations
	Technical Evaluations and Use Cases
	Evaluations of the Ontology
	Mediator Use Cases and Evaluations
	Course Generation Use Cases and Evaluations
	Performance of PAIGOS
	Discussion

	Formative and Summative Evaluation
	Formative Evaluations
	Summative Evaluation
	Discussion

	Conclusions
	Related Work
	Early Work
	Generic Tutoring Environment
	Dynamic Courseware Generator
	ACE/WINDS
	Former Course Generator of ActiveMath
	APeLS/iClass
	SeLeNe
	Statistical Methods for Course Generation
	Approaches using Hierarchical Task Network Planning
	Ontologies for Instructional Design
	Summary

	Conclusion and Future Work
	Complete List of User Comments
	Example Plan and OMDoc

