
A Flexible and Reusable Framework

for Dialogue and Action Management
in Multi-Party Discourse

Dissertation

zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

vorgelegt von

Markus Löckelt

Saarbrücken
2008

Tag des Kolloquiums: 26. Mai 2008

Dekan: Prof. Dr. Joachim Weickert

Mitglieder des Prüfungsausschusses:

• Prof. Dr. Thorsten Herfet (Vorsitzender)

• Prof. Dr. Dr. h. c. mult. Wolfgang Wahlster (Erstgutachter)

• Prof. Dr. Dietrich Klakow (Zweitgutachter)

• Dr. Jörg Baus (Akademischer Beisitzer)

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, daß ich die vorliegende Arbeit selbständig und ohne Be-

nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen

oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekenn-

zeichnet.

Diese Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in

einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Markus Löckelt

Saarbrücken, den 3. Juni 2008

i

Danksagung

Obwohl eine Dissertation natürlich nur von einer Person geschrieben wird, gibt es immer viele

Personen, die Ideen, Diskussionen, Unterstützung und Aufmunterung zu ihrer Fertigstellung

beitragen.

Zuerst will ich Professor Wolfgang Wahlster danken, der die Dissertation begleitet und mich

mit konstruktiver Kritik und vielen Verbesserungsvorschlägen für die Entwürfe bedacht hat.

Außerdem schuf er die Arbeitsumgebung, die die Dissertation überhaupt erst ermöglichte.

Ich danke auch Professor Dietrich Klakow, der sich bereiterklärt hat, die Rolle des Zweitgut-

achters zu übernehmen. Norbert Reithinger, der Leiter unserer Dialog-Arbeitsgruppe, ver-

dient ebenfalls Dank: er hat mich immer gedrängt, es “endlich aufzuschreiben”. Er war

zudem eine unschätzbare erfahrene und freundliche Hilfe bei den Entwürfen, und auch

während der Projektphasen selbst. Außerdem danke ich Professor Thorsten Herfet für die

Übernahme des Vorsitzes des Prüfungsausschusses sowie Dr. Jörg Baus, der ebenfalls am

Ausschuss teilnahm.

Wie gesagt, die Dissertation wäre nicht möglich gewesen ohne die anregende Arbeitsumge-

bung am DFKI. Das ist natürlich hauptsächlich den Leuten geschuldet, die man dort trifft.

Ich will meinen Kollegen danken, mit denen ich an den Projekten SmartKom, MIAMM, Vir-

tualHuman und OMDIP arbeiten konnte, in denen die hier präsentierten Ideen entstanden

sind und realisiert wurden. Ich kann sie nicht alle erwähnen, aber namentlich seien genannt

Norbert Pfleger, Elsa Pecourt, Tilman Becker, Jan Alexandersson, Gerd Herzog, Massimo Ro-

manelli, Alexander Pfalzgraf, Alassane Ndiaye und Ralf Engel. Ich erfuhr auch überragende

Unterstützung durch meine studentischen Hilfskräfte Ehsan Gholamsaghaee und Mohammed

Mehdi Moniri, die sich manche Nacht um die Ohren geschlagen haben. Außerdem danke ich

Kate Flynn, die den Entwurf als native speaker korrekturgelesen hat.

Schließlich danke ich für ihre nichtprofessionelle Unterstützung meinen Eltern, meinem

Bruder und meiner Schwester, meinen Freunden und (last but definitely not least) Katja. Und

für sie, und all die anderen, die die Aufgabe mit Geduld bis zum Schluß ertragen haben, will

ich meine Danksagung mit einem treffenden Zitat aus einer anderen Publikation schließen:

“Ich verspreche, daß ich keine weitere Dissertation schreiben werde” (Alexandersson, 2003).

(Hervorhebung im Original)

Acknowledgments

Although a dissertation is of course written by one person only, there are always many people

that contribute ideas, discussions, support and encouragement to its completion.

First of all, I want to thank Professor Wolfgang Wahlster for supervising the thesis and pro-

viding me with constructive criticism and many suggestions for improvement on the drafts,

especially in the final stages, and creating the work environment which made the thesis pos-

sible in the first place.

I also thank Professor Dietrich Klakow, who has agreed to take on the role of second advisor.

The leader of our dialogue group, Norbert Reithinger, also deserves thanks: he was always

ii

pushing me to “write it down, already” and also was an invaluable experienced and friendly

help in the drafting stages, and also during the project development itself. Additionally, I

thank Professor Thorsten Herfet, who chaired the disputation committee, and Dr. Jörg Baus,

who also participated in the committee.

As I said, this thesis would not have been possible without the stimulating environment at

DFKI. This is of course mainly due to the people one meets there. I want to thank my collegues

with whom I could work on the SmartKom, MIAMM, VirtualHuman and OMDIP projects, dur-

ing which the ideas presented here were conceived and realized. I can not mention them

all, but I’d like name Norbert Pfleger, Elsa Pecourt, Tilman Becker, Jan Alexandersson, Gerd

Herzog, Massimo Romanelli, Alexander Pfalzgraf, Alassane Ndiaye, and Ralf Engel. I also

received tremendous support from my student assistants, Ehsan Gholamsaghaee and Mo-

hammed Mehdi Moniri, who worked tirelessly through many a night. In addition, I want to

thank Kate Flynn for carefully proof-reading the draft as a native speaker.

Finally, for their non-professional support I thank my parents, brother and sister, my friends

and (last but definitely not least) Katja. And for her, and all of the others who endured

the quest with patience until completion, I want to close my acknowledgements with a fit-

ting quote from another publication: “I promise that I will never ever write another thesis”

(Alexandersson, 2003).

(Emphasis in the original)

iii

Kurzzusammenfassung

Diese Arbeit beschreibt ein Modell für zielgesteuerte Dialog- und Ablaufsteuerung in Echtzeit

für beliebig viele menschliche Konversationsteilnehmer und virtuelle Charaktere in multimo-

dalen Dialogsystemen, sowie eine Softwareumgebung, die das Modell implementiert. Dabei

werden zwei Genres betrachtet: Task-orientierte Systeme und interaktive Erzählungen. Das

Modell basiert auf einer Repräsentation des Teilnehmerverhaltens auf drei hierarchischen

Ebenen: Dialogakte, Dialogspiele und Aktivitäten. Dialogspiele erlauben es, soziale Konven-

tionen und Obligationen auszunutzen, um die Dialoge grundlegend zu strukturieren. Die

Interaktionen können unter Verwendung wiederkehrender elementarer Bausteine spezifiziert

und programmtechnisch implementiert werden. Aus dem Zustand aktiver Dialogspiele wer-

den Erwartungen an das zukünftige Verhalten der Dialogpartner abgeleitet, die beispielsweise

für die Desambiguierung von Eingaben von Nutzen sein können. Die Wissensbasis des Sy-

stems ist in einem ontologischen Format definiert und ermöglicht individuelles Wissen und

persönliche Merkmale für die Charaktere. Das Conversational Behavior Generation Framework

implementiert das Modell. Es koordiniert eine Menge von Dialog-Engines (CDEs), wobei je-

dem Teilnehmer eine CDE zugeordet wird, die ihn repräsentiert. Die virtuellen Charaktere

können autonom oder semi-autonom nach den Zielvorgaben eines externen Storymoduls

agieren (Narrative Mode). Das Framework erlaubt die Kombination alternativer Spezifika-

tionsarten für die Aktivitäten der virtuellen Charaktere (Implementierung in einer allgemei-

nen Programmiersprache, durch Planoperatoren oder in der für das Modell entwickelten Spe-

zifikationssprache Lisa). Die Praxistauglichkeit des Frameworks wurde anhand der Realisie-

rung dreier Systeme mit unterschiedlichen Zielsetzungen und Umfang erprobt und erwiesen.

Short Abstract

This thesis describes a model for goal-directed dialogue and activity control in real-time for

multiple conversation participants that can be human users or virtual characters in multi-

modal dialogue systems and a framework implementing the model. It is concerned with two

genres: task-oriented systems and interactive narratives. The model is based on a representa-

tion of participant behavior on three hierarchical levels: dialogue acts, dialogue games, and

activities. Dialogue games allow to take advantage of social conventions and obligations to

model the basic structure of dialogues. The interactions can be specified and implemented

using reoccurring elementary building blocks. Expectations about future behavior of other

participants are derived from the state of active dialogue games; this can be useful for, e. g.,

input disambiguation. The knowledge base of the system is defined in an ontological format

and allows individual knowledge and personal traits for the characters. The Conversational

Behavior Generation Framework implements the model. It coordinates a set of conversational

dialogue engines (CDEs), where each participant is represented by one CDE. The virtual char-

acters can act autonomously, or semi-autonomously follow goals assigned by an external story

module (Narrative Mode). The framework allows combining alternative specification meth-

ods for the virtual characters’ activities (implementation in a general-purpose programming

language, by plan operators, or in the specification language Lisa that was developed for

the model). The practical viability of the framework was tested and demonstrated via the

realization of three systems with different purposes and scope.

iv

Zusammenfassung

Diese Arbeit beschreibt das Ergebnis mehrjähriger Forschung und Entwicklung auf dem

Gebiet des Dialogmanagements für multimodale Dialogsysteme. In mehreren Schritten

wurde ein Ansatz, der anfangs im Kontext des multimodalen Einbenutzersystems SmartKom

entstand, erweitert, um eine flexible Interaktion mit mehreren Benutzern in wechseln-

den Systemumgebungen mit unterschiedlichen Anforderungen und Funktionsumfang zu

ermöglichen.

Der erste wesentliche Beitrag dieser Arbeit besteht in einem Modell für die Repräsentation

zielgerichteter Interaktionen zwischen beliebig vielen menschlichen oder virtuellen Dialog-

partnern in einem multimodalen Dialogsystem. Dabei werden zwei Typen von Systemen

betrachtet: Task-orientierte Systeme zur Assistenz bei der Bewältigung von Aufgaben und

interaktive Erzählungen (interactive narratives) im Bereich Unterhaltung und Edutainment.

Speziell in letzterem Anwendungsszenario ist es dabei auch wesentlich, daß die vom System

simulierten virtuellen Charaktere mit individuellen Charaktermerkmalen und Wissensbasen

ausgestattet werden können.

Das CDE-Modell ordnet jedem der Dialogpartner eine eigene unabhängige Dialog-Engine

(Conversational Dialogue Engine) zu. Es verfolgt einen modularen und inkrementellen

Ansatz, der den Spezifikations- und Planungsaufwand durch die Verwendung wiederverwend-

barer, zusammengesetzter Dialogbausteine – sogenannter Dialogspiele (Dialogue Games) –

überschaubar zu halten sucht. Die Dialogspiele nutzen den Teilnehmern gemeinsame soziale

und kommunikative Konventionen über die Dialogstruktur aus, um anhand bekannter und

erprobter Muster einerseits die eigenen Aktionen in größeren Planungseinheiten konzipieren

und andererseits Reaktionen von Dialogpartnern antizipieren zu können. Durch die Bekannt-

gabe der sich aus den Mustern ergebenden Erwartungen (Expectations) an die zukünftigen

Reaktionen der Dialogpartner kann der Dialogmanager auch die mit der Analyse betrauten

Module bei der Desambiguierung mehrdeutiger Benutzereingaben unterstützen.

Das Konzept der Dialogspiele in dem Modell kann auch benutzt werden, um “physische”

Aktionen in der virtuellen Umgebung und Interaktionsprotokolle für anzubindende Anwen-

dungsschnittstellen abzubilden. Das Modell nutzt weiterhin die Ausdrucksmächtigkeit und

Flexibilität einer ontologischen Wissensrepräsentation. Dadurch können die Basis des Welt-

und Dialogwissens in einer einheitlichen und standardkonformen Darstellung repräsentiert

und unter Verwendung von generalisierten Werkzeugen wie dem Protégé-Editor definiert und

bearbeitet werden. Es ist auch möglich, bereits existierende Basisontologien dem Modell

anzupassen und wiederzuverwenden.

Der zweite Fokus der Arbeit ist der Entwurf und die Bereitstellung einer Programmumge-

bung Conversational Behavior Generation Framework, welche das CDE-Modell implementiert.

Sie ist konzipiert für Dialogsysteme mit einer modularen und nebenläufigen Architektur und

flexibel adaptierbar an vielfältige Systemanforderungen und Anwendungskonstellationen. In

einem multimodalen System erlaubt sie in Kombination mit einer separaten Diskursmodel-

lierungskomponente eine Interaktion mit komplex modellierten und parallel angesteuerten

virtuellen Charakteren in Echtzeit. Jeder Charakter kann dabei entweder teilautonom nach

Maßgabe einer externen narrativen Kontrollinstanz oder auch vollständig autonom agieren.

Für den ersten Fall stellt die Umgebung ein Zielspezifikationsprotokoll (directionML) für das

Verhalten der Charaktere bereit, welche einem externen Modul erlaubt, die Rolle eines “Regis-

v

seurs” zu übernehmen. Es kann dann den Fortgang der Geschichte dynamisch unter Berück-

sichtigung von Rückmeldungen über den Erfolg von Teilzielen anpassen (Narrativer Modus).

Das Framework erlaubt auch planbasierte Aktionsplanung durch die Anbindung eines exter-

nen Planers sowie die Zusammenarbeit mit zusätzlichen applikationsspezifischen Modulen,

wie beispielsweise dem in VirtualHuman eingesetzten ALMA-Modul zur dynamischen Model-

lierung emotionaler Zustände von virtuellen Charakteren.

Das Framework erlaubt die inkrementelle Entwicklung von Dialogsystemen durch die Ver-

wendung von generalisierten Interaktionsbausteinen (building blocks) und den gleichzeitigen

Einsatz unterschiedlicher Paradigmen für die Spezifikation von Anwendungen. Aktivitäten

können definiert werden durch Code in einer allgemeinen Programmiersprache wie Java,

durch Planoperatoren in PDDL, oder durch Aktivitätspläne in der Spezifikationssprache Lisa,

die für die speziellen Anforderungen von Dialoganwendungen für das CDE-Modell entwick-

elt wurde. Es unterstützt Dateninspektion im laufenden System und eine manuell kontrol-

lierte Ausführung von Teilzielen für Testzwecke während der Entwicklung. Um die Realzei-

tanforderungen in einem interaktiven System einzuhalten, wurde ein geschwindigkeitsopti-

miertes API JenaLite zum effizienten Zugriff auf die ontologische Wissensrepräsentation ent-

wickelt und eingesetzt.

Die Praxistauglichkeit der Umgebung wurde erprobt und erwiesen, indem sie zum Dialog-

management in drei bezüglich Anforderungen, Szenario und Umfang sehr unterschiedlichen

multimodalen Dialogsystemen, dem interaktiven Storytelling-System VirtualHuman, der task-

orientierten Anwendung OMDIP und dem studentischen Projekt Clue eingesetzt wurde. Zum

Abschluß der Arbeit wird vorgestellt, welche Besonderheiten diese Systeme aufweisen und

wie das Framework eingesetzt wurde, um sie zu realisieren.

vi

“If any such machines bore a resemblance to our bodies and imitated our actions as

closely as possible for all practical purposes, we should still have two very certain

means of recognizing that they were not real men.

The first is that they could never use words, or put together other signs, as we do in

order to declare our thoughts to others [. . .] it is not conceivable that such a ma-

chine should produce different arrangements of words so as to give an appropriately

meaningful answer to whatever is said in its presence, as the dullest of men can do.

Secondly, even though such machines might do some things as well as we do them,

or perhaps even better, they would inevitably fail in others, which would reveal that

they were not acting through understanding but only from the disposition of their

organs. For whereas reason is a universal instrument which can be used in all kinds of

situations, these organs need some particular disposition for each particular action;

hence it is for all practical purposes impossible for a machine to have enough different

organs to make it act in all contingencies of life in the way in which our reason makes

us act.”

— Descartes, Discourse 5

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Aims of this Thesis . 2

1.2.1 Problem Statement . 2

1.2.2 Thesis Contributions . 3

1.3 Summary of the Approach . 4

1.4 Preview of VirtualHuman . 5

1.4.1 The Football Quiz . 6

1.4.2 The Lineup Game . 8

1.5 Chapter Outline . 10

1.6 Notes to the Reader . 12

2 Requirements and Basic Concepts 13

2.1 Introduction . 13

2.2 Characterization of the Task . 15

2.2.1 Task-Oriented Systems . 15

2.2.1.1 Task Structure . 16

2.2.1.2 Interaction Structure . 18

2.2.1.3 Purpose and Success Criteria 19

2.2.2 Interactive Narratives . 21

2.2.2.1 Task Structure . 21

2.2.2.2 Interaction Structure . 23

2.2.2.3 Purpose and Success Criteria 24

2.2.3 Related Types of Systems . 25

2.2.4 Summary . 26

2.3 The Interaction Triangle . 26

2.3.1 The Environment of the Interaction . 28

2.3.2 User Perspective . 29

2.3.2.1 Natural vs. Asymmetrical Interaction 29

2.3.2.2 Response Delays and Feedback 30

2.3.2.3 Believability and Immersion 31

2.3.3 Dialogue Designer Perspective . 33

2.3.3.1 Defining the Knowledge Base 33

2.3.3.2 External Control and Narration Engines 33

2.3.3.3 Testing and Tuning the System 34

2.4 Dialogue and Conversation Modeling . 34

ix

CONTENTS

2.4.1 Speech and Dialogue Acts . 35

2.4.1.1 Types of Context Changes . 36

2.4.1.2 Dialogue Acts . 37

2.4.2 Discourse and Dialogue Structure . 39

2.4.2.1 The Hierarchical Structure of Discourse Segments 39

2.4.2.2 Discourse History and Context 41

2.4.3 Information State . 41

2.4.3.1 The Belief-Desire-Intention Model 42

2.4.3.2 SharedPlans . 44

2.4.3.3 TRINDI Information State . 45

2.4.3.4 SmartKom’s Information State 46

2.4.4 The Impact of Multimodality . 47

2.4.4.1 Rationale . 47

2.4.4.2 Processing . 48

2.5 Dialogue Management . 49

2.5.1 Patterns for Communicative Exchange 50

2.5.1.1 Dialogue Games . 51

2.5.1.2 The Plan-Based Approach . 55

2.5.1.3 Turn Management . 57

2.5.1.4 Grounding . 59

2.5.2 Multi-Party Dialogue . 60

2.5.2.1 Speaker and Addressee Recognition 61

2.5.2.2 Participant Roles . 62

2.5.2.3 Turn and Conversation Thread Management 62

2.5.3 Dialogue System Architecture . 63

2.5.3.1 Order of Processing . 63

2.5.3.2 Modularization and Communication 64

2.5.3.3 Module Types . 65

2.5.4 Discussion . 68

2.6 Summary . 69

3 Related Systems 71

3.1 Introduction . 71

3.2 Task-Oriented Systems . 71

3.2.1 TRAINS and TRIPS . 72

3.2.2 COLLAGEN . 73

3.2.3 RavenClaw . 75

3.2.4 WITAS and other TrindiKit-Related Systems 76

3.2.5 MATCH . 78

3.2.6 QuickSet . 79

3.2.7 SmartKom . 80

3.2.8 SmartWeb . 83

3.3 Interactive Narratives . 84

3.3.1 Façade . 85

3.3.2 The Sims . 86

3.3.3 Mission Rehearsal Exercise and IN-TALE 88

3.4 Other Systems and Approaches . 90

x

CONTENTS

3.5 Summary . 92

4 Representing the Knowledge Base for Situated Conversational Characters 95

4.1 Introduction . 95

4.2 The Role of Knowledge in a Dialogue System 96

4.2.1 Levels of Knowledge Representation 96

4.2.2 Types of Knowledge . 97

4.2.3 Dialogue and Context . 99

4.3 Ontological Representation . 102

4.3.1 Representation Formalisms . 102

4.3.2 Basic Ontological and Epistemological Terminology 103

4.3.3 Defining the Base Ontology . 105

4.3.4 Mapping to an XML representation . 106

4.3.5 Using the XML-Ontology as a Data Structure 109

4.4 Important Methods and Concepts . 111

4.4.1 Unification, Restricted Unification and Overlay 111

4.4.2 Underspecification and Matching . 113

4.4.3 Grounding . 114

4.4.4 Relations and Condition Matching . 116

4.4.5 Affordances . 117

4.5 Summary . 119

5 A Model for Generating Multi-Party Conversational Behavior 121

5.1 Introduction . 121

5.2 Motivation and Basic Structure of the Model 122

5.2.1 Building Blocks . 122

5.2.2 Layers of Action . 122

5.3 The Dialogue System . 123

5.3.1 The Multi-Party Conversation Manager 124

5.3.2 The Discourse Modeler . 125

5.3.3 Communication With Other Modules: Channels 126

5.4 The Conversation Participants . 127

5.4.1 Conversational Dialogue Engines . 127

5.4.2 Perception Filters and Grounding . 129

5.5 Interaction . 130

5.5.1 Layers of Conversational Action . 131

5.5.2 Motivation for Action . 134

5.5.3 Action Modes . 136

5.6 The Building Blocks of the Model . 137

5.6.1 Act Types . 139

5.6.1.1 Examples of Dialogue Acts 140

5.6.1.2 Physical Acts . 142

5.6.1.3 Meta-Acts . 143

5.6.2 Dialogue Game Types . 144

5.6.3 Activity Types . 148

5.7 Operation of the CDE Conversation Manager by Example 151

5.7.1 Tasks of the Conversation Manager . 151

xi

CONTENTS

5.7.2 The Running Example from VirtualHuman 152

5.7.3 The Activities Available to a Character 153

5.7.3.1 Explicit Creation of an Activity Instance 155

5.7.3.2 Implicit Creation of an Activity Instance 156

5.7.4 Deliberation in Activities . 157

5.7.5 Single-Initiative Dialogue Games . 158

5.7.5.1 Directly Realizable Acts . 159

5.7.5.2 Generated Acts . 160

5.7.6 Consuming Acts . 161

5.7.6.1 Determining the Processing Layer 161

5.7.6.2 Processing an Act on the Activity Layer 163

5.7.7 Multi-Initiative Dialogue Games . 163

5.7.7.1 Starting an Intermediate Game 165

5.8 Summary . 165

6 Realization of a Conversational Behavior Generation Framework 167

6.1 Introduction . 167

6.2 CDE Framework Architecture . 168

6.2.1 Overview . 168

6.2.2 Accessing the Knowledge Representation: JenaLite 169

6.2.3 Configuration . 169

6.2.3.1 Dialogue System Definition 169

6.2.3.2 Activity Specifications . 172

6.2.4 CDE internal structure . 175

6.2.5 The Framework’s Graphical Interface 175

6.2.6 Connecting Modules and Devices to the Framework 178

6.3 Performing Activities and Dialogue Games . 178

6.3.1 Goals . 178

6.3.1.1 Setting Goals . 178

6.3.1.2 Goal Feedback . 179

6.3.2 Expectations . 181

6.3.3 Activities . 182

6.4 The Lisa Language . 184

6.4.1 Motivation . 184

6.4.2 The Structure of a Lisa Plan . 186

6.4.3 The Lisa Interpreter . 190

6.4.4 Lisa Language Elements . 190

6.5 Using Planning to Schedule Activities and Games 191

6.5.1 Motivation and Applicability . 191

6.5.2 Contingencies . 192

6.5.3 Realization . 193

6.6 Summary . 193

7 Applications Implemented Using the Behavior Generation Framework 195

7.1 Introduction . 195

7.2 VirtualHuman . 196

7.2.1 Configuration . 196

xii

CONTENTS

7.2.2 Narrative Mode and the Director CDE 197

7.2.3 Character and User CDEs . 199

7.2.4 Realization Scheduling . 199

7.2.5 Affective Modeling in Cooperation with ALMA 201

7.2.6 The Game Logic for the Lineup Game 203

7.2.7 Dynamic Help and Explanations . 204

7.2.8 Timeout Reactions . 206

7.3 OMDIP and Clue . 206

7.3.1 OMDIP . 206

7.3.2 Clue . 208

7.4 Summary . 210

8 Conclusion 211

8.1 Contributions . 211

8.1.1 Scientific Results . 211

8.1.2 Practical Contributions . 213

8.1.3 Publications . 214

8.2 Future Work . 215

A Lisa Specification 217

A.1 Service Elements . 218

A.2 Slot Definitions . 218

A.3 Value Specifications . 219

A.3.1 Slots . 219

A.3.2 Relations . 220

A.3.3 Conditions . 221

A.4 Body Elements . 222

A.4.1 General Statements . 222

A.4.2 Assertions and Relations . 225

A.4.3 Control Structures . 227

A.5 Game Elements . 229

B Elements of the JenaLite API 231

B.1 Concept . 231

B.2 Interfaces . 232

C Schemata for DSD and directionML documents 237

C.1 The Dialogue System Definition . 237

C.2 The Direction Markup Language directionML 239

D Communicative Acts 243

E Abbreviated XML Notation 245

Bibliography 247

xiii

CONTENTS

xiv

List of Figures

1.1 Physical setup of the VirtualHuman scenario ZAMB 6

1.2 Phase 1 of the VirtualHuman ZAMB scenario 7

1.3 VirtualHuman: Sample interaction from the quiz phase 7

1.4 Phase 2 of the VirtualHuman ZAMB scenario 9

1.5 VirtualHuman: Sample interaction from the lineup game 9

1.6 Thesis outline . 11

2.1 Complexity for various approaches to task-oriented dialogue 14

2.2 An example cinema reservation application 16

2.3 Example structure of a cinema reservation dialogue 18

2.4 PARADISE objective structure . 20

2.5 The Aristotelian dramatic arc . 22

2.6 Complexity progression of conversational systems 27

2.7 The Interaction Triangle . 28

2.8 The virtual characters Miss Dewey, Mister Kaiser, and Smartakus 32

2.9 A taxonomy of dialogue acts . 38

2.10 DSP relations in a fragment of a train ticket sale dialogue 40

2.11 Example multimodal context representation 41

2.12 Practical reasoning in a BDI agent . 43

2.13 A TRINDI information state . 45

2.14 An InformationSearch discourse object from a SmartKom information state . . 47

2.15 Examples of dialogue macrogames with joint goals 52

2.16 Example of dialogue games and their hierarchical structure 53

2.17 Example: An overhearer takes the role of responder 54

2.18 Notations for dialogue game combination operations 55

2.19 STRIPS-like action schemata for flight booking 56

2.20 A discourse actor algorithm . 58

2.21 Examples for “barge-before” and “barge-in” 58

2.22 Grounding acts . 59

2.23 Multi-party, multi-conversation dialogue layers 60

2.24 Addressee identification algorithm for multi-party interaction 61

2.25 Processing sequence for end-to-end multimodal dialogue processing 64

2.26 Sequential, direct and facilitator-mediated communication between modules . 65

2.27 Architecture for multimodal systems . 66

2.28 List of module types . 67

2.29 Modules in direct communication with the dialogue manager 68

xv

LIST OF FIGURES

3.1 TRAINS and TRIPS . 72

3.2 COLLAGEN test application screen . 74

3.3 RavenClaw: Hierarchy of agencies and agents 76

3.4 WITAS helicopter and system architecture . 77

3.5 MATCH user interface and unimodal selection on the map 78

3.6 QuickSet simulation setup and facilitator . 79

3.7 SmartKom: Platforms and screenshots . 80

3.8 The SmartKom architecture . 81

3.9 Internal structure of the the SmartKom action planner 82

3.10 Architecture of SmartWeb and SmartWeb on the MDA 83

3.11 Screenshots from Façade . 85

3.12 Screenshots from The Sims 2 . 87

3.13 The Mission Rehearsal Exercise System . 88

3.14 Screenshot from the IN-TALE prototype . 89

3.15 Feature comparison of related systems . 93

4.1 Classification of KR formalisms on several levels 96

4.2 Knowledge types and examples . 97

4.3 Example for changes in different contexts effected by a dialogue act 101

4.4 Illustration of some ontological and epistemological terms 104

4.5 Base ontology structure . 105

4.6 Editing ontological concept definitions in Protégé 106

4.7 Excerpt from the XML ontology representation 108

4.8 A Menu object represented in TFS notation . 109

4.9 Some newly introduced subconcepts of RepresentationalObject 110

4.10 An example for unification . 112

4.11 An underspecified FootballPlayer instance . 113

4.12 Example for the grounding process . 115

4.13 A Relation instance . 116

4.14 A sample condition . 117

4.15 An object with an affordance slot in VirtualHuman 118

5.1 Main information flow assumed for the dialogue system 124

5.2 The functional architecture of FADE . 126

5.3 Conversation participants exchanging acts . 129

5.4 Summary: ontology states and building blocks 131

5.5 Example process hierarchy in a sales dialogue 132

5.6 Different types of action motivations . 134

5.7 Action cycle . 136

5.8 Rhetorical question act type . 138

5.9 Partial tree of subcategories of Act . 140

5.10 Subconcepts of MetaAct . 143

5.11 Some game types occurring in different contexts in VirtualHuman 144

5.12 Basic Question-Response dialogue game type 145

5.13 Instance of a dialogue game type corresponding to Figure 5.12. 146

5.14 Teacher question FSA . 146

5.15 Illustration of the game composition operations 148

xvi

LIST OF FIGURES

5.16 Some activity types in VirtualHuman . 149

5.17 A scene from the quiz game . 153

5.18 Excerpt from a quiz dialogue in VirtualHuman 154

5.19 SetGoal message from the narration engine 155

5.20 Some service mappings of the expert characters in VirtualHuman 156

5.21 A FootballQuizQuestion instance in the moderator’s ontology 158

5.22 Outline of the moderator’s “plan recipe” for a QuizRound 158

5.23 The “PresentVideo” game . 159

5.24 Offering a selection of answers for the quiz question 160

5.25 Processing utterances from other conversation participants 161

5.26 The “QuestionSelection” dialogue game . 163

5.27 The user Agrees with the opinion of expert Kaiser 165

6.1 Internal structure of a conversation manager instantiation 168

6.2 The set of knowledge resources for a CDE system 170

6.3 The DSD file for OMDIP . 171

6.4 Excerpt from the activity definition file for the OMDIP system agent 173

6.5 The essential internal composition of a CDE 174

6.6 Ontology view for officer Bogert in the Clue system 176

6.7 The player preview showing a conversation in VirtualHuman. 177

6.8 Roles of the SetGoal concept . 179

6.9 A directionML message setting the Lineup goal 180

6.10 Roles of the GoalFeedback concept . 180

6.11 An example GoalFeedback message . 181

6.12 An example Expectation containing a lexicon update 183

6.13 Process states . 183

6.14 The activity manager loop . 184

6.15 Distribution algorithm for the dispatcher . 185

6.16 Activity Implementation Classes . 186

6.17 Basic algorithm for a dialogue game’s execution 187

6.18 The ComeAgain game from OMDIP2 . 188

6.19 Example Lisa activity specification, Part 1 . 188

6.20 Example Lisa activity specification, Part 2 . 189

7.1 The modules in VirtualHuman . 196

7.2 Screenshot of the narration engine interface of VirtualHuman 198

7.3 Associated components of character and user CDEs in VirtualHuman 200

7.4 Realization time points of overlapping acts . 201

7.5 The expert trying to grab the turn . 202

7.6 The CharacterModel concept . 203

7.7 Different affective states . 203

7.8 A FootballPlayer instance from the VirtualHuman ontology 204

7.9 Requesting and accepting a move proposal by the expert 205

7.10 The OMDIP device and some sample screens from the application 207

7.11 The OMDIP architecture . 208

7.12 Screenshots from Clue and module setup . 209

xvii

LIST OF FIGURES

A.1 Toplevel structure of a Lisa plan . 217

A.2 XSD structure of service elements . 218

A.3 XSD structure of a slot value specification . 219

A.4 XSD structure of relation value specifications 220

A.5 XSD structure of a condition type . 221

A.6 XSD structure showing the possible statements in a body 222

A.7 XSD structure of subgame statement . 223

A.8 XSD structure of lexiconUpdate . 224

A.9 XSD structure of subgoal . 224

A.10 XSD structure of try . 225

A.11 XSD structure of setSlot . 225

A.12 XSD structure of retractSlot . 225

A.13 XSD structure of assertObject . 226

A.14 XSD structure of setParameter . 227

A.15 XSD structure of relation operations . 227

A.16 XSD structure of select . 228

A.17 XSD structure of a conditional execution loop 228

A.18 XSD structure of a game type definition . 229

B.1 JenaLite object hierarchy . 231

B.2 The Ontology interface . 233

B.3 The OntoClass interface . 234

B.4 The OntoSlotDefinition interface . 234

B.5 The OntoInstance interface . 235

B.6 The OntoSlot interface . 236

C.1 Schema for DSDs . 238

C.2 Toplevel elements of directionML . 240

C.3 The goal specification in directionML . 241

D.1 Direct subcategories of CommunicativeAct . 244

xviii

Chapter 1

Introduction

1.1 Motivation

The design of conversational user interfaces for interactions with computer systems is a broad

and multifaceted field of research with great impact. Traditionally, to interact with a computer

a user is either required to use formal means such as command line interfaces and computer

languages, or to get acquainted with various sorts of metaphors that usually originate from

other areas of life—desktops, files, menus, and so on—their meanings are not always in-

tuitively clear, but have to be learned. In addition, those metaphors tend to break down in

situations when it becomes obvious that, e. g., the “trash can” item of common computer GUIs

behaves similar to, but not really the same as a ordinary trash can: For example, the contents

of a real trash can do not just vanish when it is emptied. If the user is not aware of the cases

where the metaphors do not apply, this can lead to problems. Another central point is that

the purpose of a computer is to take care of, i. e., perform, tasks for and in cooperation with

the user, which is something that is not commonly expected of inanimate objects like the ones

mentioned, but something that would be more readily associated with a human counterpart

offering a service. In this case, we do not “point an arrow” at or “click” on the fellow human,

but we talk to each other using natural language, which may be accompanied by, e. g., point-

ing gestures and facial expressions. Several communication channels, or modalities used in

combination constitute multimodal communication.

Enabling a computer to process and/or produce natural communication involving a combi-

nation of modalities is a difficult undertaking. Even arriving at the intended meaning of a

multimodal communication act involves a large variety of sub-tasks, including recognition of

the different analog modality inputs sensed by microphones, cameras, or other sensor de-

vices, interpretation and fusion of related multimodal input pieces, and modeling dialogue

history. On the other hand, the output requires the selection and conversion of computer data

into human-intelligible units, presentation planning, generation, and synthesis of the differ-

ent modalities. However, between understanding the user and constructing own multimodal

utterances to the conversation from a given data representation, there remains the task of

managing the interaction in a conversation, and actually doing the “job”. To achieve this, it is

not enough to just be able to handle the straight execution of simple commands, but rather in-

volves participation in a conversational exchange of coherent two-way communication, and

1

Introduction

may include more than just “one human (commander) vs. one computer (executor)”, but

multiple participants, in varying roles, on both sides; in other words, multi-party conversa-

tion.

In this thesis, we are concerned with the part of a dialogue system that is responsible for de-

ciding what conversational actions the computer-controlled participants should do in a given

situation, and triggering them. The functional part of our task is what is associated with the

dialogue manager, or the action planner, of a dialogue system. It is the part of the conversa-

tional agents that “controls the flow of the dialogue, deciding at a high level how the agent’s side

of the conversation should proceed, what questions to ask or statements to make, and when to

ask or make them” (Jurafsky and Martin, 2000, p. 750). In systems like VirtualHuman, the

behavior of the characters encompasses additional dimensions beyond pure speech interac-

tion, such as emotional changes and expressions in other modalities. The dialogue manager

described in this thesis does not directly generate this behavior, however, it triggers it (e. g.,

by updating an affect modeling module with cues on how current events are perceived emo-

tionally). Therefore, it could more precisely be called a conversational behavior generator for

multiple characters. To use a somewhat shorter name, we call it a conversation manager in

this thesis. The term “dialogue” is also used in cases where the multi-party aspect is not es-

sential, or where it is part of established terminology (e. g., “dialogue game”, “dialogue act”,

or “dialogue system”).

The conversation manager relies on the semantic interpretation of the input provided by

recognizer modules, and interacts with application and presentation modules to render an

output for the user that represents its part of the conversation. This intra-system communi-

cation, hidden from the user, also represents actions intended, e. g., to retrieve information

from a database to answer a question. Therefore, in addition to the procedural resources

needed for action planning, we also consider the design and integration of the knowledge

sources for the task, domain, and application models.

Some tasks commonly associated with the dialogue manager in a dialogue system are not

covered by the approach. This includes processing of input to resolve ambiguities, reference

resolution, and multimodal fusion. Another important such field is the generation of “sub-

conscious” and reflexive behavior, such as turn-taking gestures and gazing behavior. For these

tasks, it relies on another module, the discourse modeler. This role was taken over by the FADE

module in the example systems (see (Pfleger, 2007)).

1.2 Aims of this Thesis

1.2.1 Problem Statement

The aim of this thesis is to provide a conversation management model and framework for

dialogue systems that are able to let a group of participants—human users and virtual char-

acters alike—engage in meaningful and purposeful conversation. It focuses on two types

of systems, task-oriented dialogue systems and interactive narratives. For both cases, we ex-

amine the role of the conversation management component in the context of a functioning

multimodal system with multiple modules.

2

Introduction

The VirtualHuman project, which was realized with the framework, stages a virtual perfor-

mance involving autonomous characters and allowing interaction from human users. During

the project, two scenarios were developed for the performance. The earlier one is an edu-

tainment scenario that involves two virtual characters, embodying a teacher and a pupil,

respectively, enacting a lesson about astronomy with the human user taking the role of a sec-

ond pupil. The other scenario is a competitive game about soccer for two human participants

who interact with three different virtual characters. The interaction uses multiple input and

output modalities. We will use examples from the second VirtualHuman scenario throughout

the thesis for the sake of illustration.

1.2.2 Thesis Contributions

Because dialogue management is such an extensive and varied field of research, one thesis

can only try to cover a very limited segment of it. The main contributions of this thesis are

concerned with the following issues:

• How can sophisticated, goal-oriented, and cooperative multi-party conversation

be modeled?

We examine how to model conversations that involve an arbitrary number of mutually

independent participants, where each participant can be either a human user or a virtual

character. However, the conversations we look at are not free-form, but the participants

find themselves in a particular situation and have individual goals which they pursue

using communicative action. The purpose of the goals is to direct the behavior of the

virtual characters in a way that is given by the dialogue designer. Goals can arise from

the internal state of the participants themselves, or be imposed externally, e. g., incited

by the behavior of other participants or by a designated software module—a so-called

narration engine—that sets the goals for semi-autonomous characters.

The model is meant to be suited for a variety of application scenarios. We aim for an

approach that supports the construction of an application from building blocks that can

be re-used and specialized if needed.

• How to specify an adequate knowledge base for such a conversation

We aim for a knowledge base that is flexibly extendable and specified in a standardized

representation. The representation must be sufficiently complete in expressive power

to be used as a foundation for real-world application domains and it must be possible

to implement the necessary inferences in a tractable way, i. e., the computations must

be feasible in a system operating in real-time.

The task should be made easier for the knowledge engineer by using a standardized

formalism, such as an ontology. For ontologies, general tools are available that allow

one to specify and maintain a knowledge base. The knowledge engineer should also

not have to start from scratch for each new application, but be provided with a skele-

ton structure for the knowledge base, an upper ontology. The upper ontology already

features a set of entities representing interaction building blocks that cover frequently

used cases of dialogue acts, interaction patterns, and processes. This is meant to allow

for an incremental construction of new applications with re-usable components.

3

Introduction

• How can the behavior of virtual characters be specified?

We want to realize believable and realistic characters that reflect individual character

personality and other traits. There are several approaches to this question, with dif-

ferent advantages and shortcomings. We propose a method that allows the dialogue

designer to combine different techniques in the same system, as long as they conform

to the requirements of the dialogue model. This supports rapid prototyping by starting

with a direct integration of procedures in a general programming language, and sub-

sequently moving to a more abstract specification in an extensible behavior definition

language, or as plan operators for an external planning algorithm.

• Providing a unified and flexible framework that implements the model

We describe the actual implementation of our framework and show that it is indeed

versatile enough to be used for “real-world” dialogue systems. To this end, we present

how it was employed to realize three systems with quite different requirements: Virtu-

alHuman, OMDIP, and Clue.

The focus of this thesis is to provide a framework that can be used as a practical tool for

the construction of practical dialogue systems. It is not aiming to provide a comprehensive

linguistic account for the dialogical interaction.

1.3 Summary of the Approach

The framework described in this thesis is a continuation of the work conducted on the action

planning component of the DFKI “dialogue back-bone” toolbox that is intended to provide

generalized modules covering all core functionalities for multimodal dialogue systems. Its

development originated from the SmartKom project and was applied in several systems of

varying size (Alexandersson et al., 2004a).

The action manager component is meant to be part of the implementation of a functioning

framework, usable in a large variety of practical applications. This is already considered when

we examine the background of previous work done in the area. There is a wealth of work in

the field of dialogue management, nevertheless we need to focus on ideas that promise to be

usable from a practical viewpoint, especially with regard to tractability from the perspective

of computational and domain modeling expense. Numerous approaches, while theoretically

sound and powerful, show weaknesses in the face of larger or more intricate domains, real-

istic real-time demands intended to make human-computer interaction convenient, or simply

ultimate decidability of the computational problems involved.

This thesis builds on the available theoretical background to first define a model of conversa-

tion. This model in turn is used to construct a practical framework implementation intended

to support realistic and user-friendly applications. The soundness and usability of the frame-

work is demonstrated with several use cases of complete systems that were realized with it.

We take a bottom-up course and start from the representation of knowledge. We then proceed

through the steps, or levels, of how to model single acts in conversation, how to group related

acts together in so-called dialogue games, and how to describe complex and coordinated acti-

vities for characters. Each subsequent level is built using the elements of the former. The

4

Introduction

levels are concerned with elementary dialogue acts, dialogue games, and goal-based complex

activities. We have chosen an approach that models the necessary knowledge in an ontolog-

ical representation. The characters are modeled as separate and autonomous entities, each

using its own version of the ontology that encompasses the domain and task knowledge as

well as the rules for conducting the dialogue. Additionally, the discourse history is recorded

in a separate module using instances of concepts from the ontology.

Dialogue acts are seen as events in a virtual environment that trigger changes in the context

maintained by the dialogue participants, such as providing new information, or imposing

obligations on an addressee to act in a certain way. There is a clear separation between public

and private information. Mutual and public agreement is assumed between the conversation

partners about some effects that acts have (e. g., a question that imposes an obligation to

answer to the addressee), but other aspects are hidden (e. g., whether the addressee actually

honors the obligation, and why, as well as whether or not it chooses to answer honestly).

Dialogue games provide coherence structure and further describe what a specific dialogue act

means in a situation, and with respect to the rest of the conversation. We use dialogue games

not just as a means of analytically describing a given conversation structure, but also in a

generative and procedural way, to plan, execute and coordinate the actions of characters to

achieve their goals.

Composite goals (or tasks) that may require a number of related and ordered interactions

until completion are represented by parameterized activities that the characters are capable

of executing. The adoption of an activity can be triggered by means of actions of other

conversation partners, by internal motivations of characters, or by a third party “direction”

entity used to guide the structure of the interaction.

1.4 Preview of VirtualHuman

The framework described in this thesis is designed to be usable to realize a wide range of

applications with different characteristics. Most of it was, however, developed in the context

of the project VirtualHuman. We will use examples from VirtualHuman throughout the text

for the sake of illustration; to put these examples into context for the reader, we give an

outline here of what VirtualHuman is all about. Chapter 7 later fills in the gaps left by this

introduction.

The realized system allows two human users to interact with up to three virtual characters

at a time. The interaction exhibits symmetric multimodality, i. e., the users can use a combi-

nation of different modes of expression, and the virtual characters will respond accordingly.

The VirtualHuman system itself was deployed using two different scenarios, the prototype “as-

tronomy” scenario and the final “ZAMB” scenario.1 In this thesis, we are only concerned with

examples from ZAMB. ZAMB takes place in a 3D environment projected on a large screen,

the users are placed in front of the projection behind two tables that feature microphones and

1The name ZAMB is a shorthand for “Zweiundachtzig Millionen Bundestrainer” (eighty-two million national

coaches), a saying in German that plays humorously on the perceived opinion of many Germans that they know

more about football than the national coach.

5

Introduction

Figure 1.1: Physical setup of the VirtualHuman scenario ZAMB (as demonstrated at the CeBIT-

2006 fair)

trackball interaction, as shown in Figure 1.1.2

The setting is modeled after a typical sports quiz show on television. It comprises two suc-

cessive stages: The first stage, called the “football quiz”, allows two human users to compete

on questions about sports events. It is hosted by a virtual moderator, who has two virtual

experts at his side. Whichever user scores the most points in the quiz can continue to play in

the second stage, the “lineup game”, which lets her create a lineup for a football team from

a given roster of players. The overall duration of a complete ZAMB game is variable, and

generally spans about fifteen minutes.3

1.4.1 The Football Quiz

The first stage of the scenario is designed for two human users interacting with three virtual

characters. It is presented as in Figure 1.2. One virtual character, the moderator (on the left),

hosts the show and gives instructions, while the two others—the experts, on the right side of

the picture—take the roles of guest football professionals that offer to help the human users

answer the quiz questions with their expert knowledge. The quiz takes place in a part of a

virtual stage that features a video screen where key scenes from famous football matches can

be displayed. The scenes are shown up to a decisive point (e. g., right before a goal shot).

Then, the users are given a selection of possibilities about how the situation will develop

(e. g., whether or not there will actually be a goal). The quiz has three rounds with a possible

play-off round that is added if the competition is still undecided.

2It is also possible to use a different projection setup involving two overlayed projections, and have the users

wear polarized glasses to achieve true 3D immersion.
3The maximum duration of the presentation can be configured dynamically.

6

Introduction

Figure 1.2: Phase 1 of the VirtualHuman ZAMB scenario: The moderator hosts the video quiz

about football scenes shown on the screen in the back, the users can ask two experts for their

opinion

(1) MODERATOR: . . . Now look closely [shows video on screen]. What will

happen next? The alternatives are [counting gesture “1”]

One – Ballack scores the goal, [counting gesture “2”] Two

– the keeper does a parade, [counting gesture “3”] Three –

Ballack kicks the ball into the sky.

(2) MODERATOR: What do you think, Mister Kaiser?

(3) EXPERT KAISER: I think Ballack scores the goal.

(4) MODERATOR: [appreciative gesture] Spoken like a real football trainer.

(5) MODERATOR: [pointing to user 1] Now, player one, what is your guess?

(6) USER 2: [tries to take over the role of user 1] Answer one.

(7) MODERATOR: Well, actually I was asking player one.

(8) USER 1: Miss Herzog, what do you think?

(9) EXPERT HERZOG: [blushes] I think the keeper does a parade.

(10) MODERATOR: An interesting opinion.

(11) MODERATOR: Now it’s your decision, player one.

(12) USER 1: I think Mr. Kaiser is right.

(13) EXPERT HERZOG: [gets angry] How can you believe this amateur!

(14) EXPERT KAISER: [smiles]

(15) MODERATOR: Alright, answer one.

[. . .]

Figure 1.3: Sample interaction from the quiz phase

7

Introduction

An example interaction from the quiz phase is shown in Figure 1.34. Several interesting

phenomena are present in this sample:

• The characters use and combine both “physical”—in the context of the virtual

environment—and communicative actions,

• Utterances are multimodal; the speech is enriched by gestures that are precisely syn-

chronized with the production of the spoken text. Some gestures derive from anno-

tations of the utterances, others are generated automatically from the context (such

as pointing at the addressee of an utterance). In turn (1), the counting gestures are

generated explicitly by the questioning activity that enumerates the alternatives.

• The affective state of the characters changes in response to actions from the user as well

as from the other virtual characters. The state is visualized in real-time by changing the

facial expression and face textures of the characters, as well as their idle gestures and

posture.

• There is conversation between the virtual characters as well as with the user. The user

can use and refer to previous utterances from virtual characters in her own utterances.

• Characters overhear the conversation and react emotionally and verbally with respect

to their attitude towards its content, even if they themselves are not addressed directly.

1.4.2 The Lineup Game

After the football quiz, the scenery on the stage changes with a camera movement, and the

winning user proceeds to stage two, where she is challenged to put together a lineup for a

German national football team against a given opponent with the help of the moderator and

one of the experts.

Figure 1.4 shows this scene. Placed in front of the two active virtula characters, it shows a

3D football field representation, where players can be assigned to different playing positions

by the user, at the front. On the right side is the team roster with the football players enlisted

for the national team. A red bar on the top of the screen gives an evaluation of the current

strength of the team (“Spielstärke”).

From this phase comes another example conversation (see figure 1.5). Some dialogue phe-

nomena that are illustrated by this example, in addition to the ones mentioned in the previous

section, are:

• The expert and moderator make comments about the moves of the player differently

according to their role in the conversation and their different knowledge bases. The

moderator prefers neutral acknowledgements, while the expert uses her knowledge to

make more informed and evaluative comments (turns (3), (4), (8) and (9)).

• When more than one virtual character intends a contribution, they compete for the floor

and indicate this by appropriate gesturing (turn (8)).

4VirtualHuman and the other systems described in Chapter 7 originally use German language; all conversation

examples have been translated to English throughout this thesis.

8

Introduction

Figure 1.4: Phase 2 of the VirtualHuman ZAMB scenario: The moderator hosts the lineup

game on a virtual football field; one expert offers advice

(1) MODERATOR: Ok, let’s get started.

(2) USER: Put [characters gaze at user] Lehmann up as keeper.

(3) EXPERT HERZOG: [nods] That’s an excellent move! You can’t go wrong with

Jens Lehmann as a goalie.

(4) MODERATOR: [nods] Great, Lehmann as keeper.

(5) USER: Miss [characters gaze at user] Herzog, give me a hint!

(6) EXPERT HERZOG: [smiles] I recommend a defensive strategy against Brazil. I

would definitely put Ballack into the central midfield.

(7) USER: Ok, [characters gaze at user] let’s do that.

(8) MODERATOR: [nods] Great, Ballack [Expert makes turn-grabbing ges-

ture] as central midfielder.

(9) EXPERT HERZOG: [smiles, nods] You won’t regret this move.

(10) USER: . . . [hesitates]

(11) MODERATOR: [encouraging gesture] Don’t be shy!

(12) USER: Hmm, [characters gaze at user] put Metzelder to Ballack’s

left.

(13) MODERATOR: [shrugs] That is not possible, I’m afraid that place is al-

ready occupied.

[. . .]

Figure 1.5: Sample interaction from the lineup game

9

Introduction

• The expert can use her knowledge to make a proposal based on dynamically planning

the moves needed to transform the current lineup into an ideal team, or give general

comments about attributes of the players based on her knowledge (turn (6)).

• The moderator follows the flow of the interaction and, according to a parameter in the

set goal, will encourage the user to go on (turn (11)). This covers hesitations by the

user as well as the overall time set for the game phase (by a narrative control instance)

running out.

• the user can make spatial references that will be resolved according to the current

configuration on the playing field, and the discourse history (turn (12)).

• There is a game logic that provides the moderator with an understanding of possible

player placements at any given time. He will not allow the user, e. g., to put more than

eleven players on the field or two players at the same position (turn (13)).

To be able to realize this kind of interaction, the scenario poses a sizable and multifaceted set

of requirements on VirtualHuman’s system setup in general, and the conversation manage-

ment component in particular. This thesis describes how the latter task was addressed.

1.5 Chapter Outline

The thesis comprises eight chapter parts, as shown in figure 1.6. The following enumeration

briefly sketches the contents and purpose of each one:

1. This chapter, Introduction, gives a motivation identifying the problems we are concerned

with, and addresses the question of why it is desirable to find solutions to them. It

contains a short sketch of our approach, a short preview of the main application Virtu-

alHuman, and finally this outline of what the chapters of the thesis are about.

2. The next chapter, Requirements and Basic Concepts, introduces the two different types of

dialogue systems we are concerned with: task-oriented systems and interactive narra-

tives. It gives criteria to judge whether a given system addresses its purpose successfully

or not. It then highlights the different viewpoints of the system’s users, the dialogue de-

signer, and the designer of the system itself. The chapter also comprises sections on the

rules of conversation, and the methods that are used in existing dialogue systems to

devise, execute, and monitor behaviors for virtual characters. It also describes different

architectural approaches for dialogue systems.

3. In the following chapter, Related Systems, we give examples of influential instances of

dialogue systems with similar scope. It includes descriptions of task-oriented systems

and interactive narratives that were realized. We show how these other systems treat

the issues relevant to the tasks in this thesis.

4. The chapter Representing the Knowledge Base for Situated Conversational Characters de-

scribes how we address the crucial task of providing the characters with the different

types of knowledge that are needed to engage in a conversation, and to solve the tasks

10

Introduction

Requirements
and Basic
Concepts

Related

Knowledge

Conclusion

Introduction

ApplicationsRepresentation

Systems Framework

Model

1

2

3

4

5

6

7

8

Figure 1.6: Outline of the thesis

they are given. We explain how the knowledge domain is structured, our choice of an

ontological representation, the operations we use to access and manipulate the know-

ledge base, and related important concepts and methods.

5. In A Model for Generating Multi-Party Conversational Behavior, we present our conver-

sational model that builds on the theoretical tools introduced in the chapter on related

work. We explain the concept of individual dialogue engines for each conversation par-

ticipant, and the model we developed to structure elements of discourse action in a

three-level hierarchy of conversation activities, games, and acts. We also describe how

the model allows encapsulated conversation participants to loosely collaborate on joint

goals via the dialogue game metaphor.

6. Realization of a Conversational Behavior Generation Framework describes how a work-

ing, real-time capable, and flexible implementation of the conversational model can be

constructed. The chapter begins with an overview of the multi-agent framework that

integrates the CDEs and interfaces with the rest of the dialog system and then shows

how activities are executed in it. Finally, it treats the integration of an external planner

into the framework.

7. In the chapter Applications Implemented Using the Behavior Generation Framework, we

show how the approach was used to implement action management in three dialogue

systems, VirtualHuman, OMDIP, and the student project Clue, that have significantly

different scope. Each system poses its own particular set of requirements. We show that

the flexibility of the framework was sufficient to tackle them by describing the solutions

in each case.

11

Introduction

8. In the last chapter, Conclusion, we summarize and discuss the results of our work and

evaluate how it meets our targets. Finally, we give an outlook of remaining issues and

promising avenues for future work.

The appendices contain some additional references, including a description of the Lisa lan-

guage that is used to specify action plans, the JenaLite API that was designed as a lightweight

interface to ontological data structures, XML schemata for dialogue system definition (DSD)

and directionML documents, as well as an overview of the system-independent dialogue

branch of the ontology.

1.6 Notes to the Reader

• Pronouns

With respect to the gender of pronouns we use the following convention inspired by

(Hulstijn, 2000b): the speaker or initiator of a conversation is a “she”, the hearer or

responder is a “he”. The user initiates the conversation and will thus be referred to as

“she”. A system or virtual character is referred to by “it”, except for characters that have

a name.

• Definitions

For purposes of clarity, at some points we used concepts in definitions at a point in the

thesis where they themselves are not yet (formally) defined. In these cases, and in cases

where the definitions are not close together in the text, we provide an informal account

for the meaning of these concepts in the surrounding description and give a reference

to the section where the actual definition is given.

• XML Shorthand

To encode and transmit data, our framework frequently uses XML structures, and sev-

eral examples of such structures occur in the text. Because XML documents are quite

verbose, and including them verbatim would take up considerable space, they are ab-

breviated or abridged in some places (however keeping the gist of the message). We

also use a simple shorthand notation that cuts the required space approximately in half.

The notation is described in Appendix E.

12

Chapter 2

Requirements and Basic Concepts

2.1 Introduction

A dialogue system is a computer system that can partake in communicative exchange in

a natural language, and possibly additional modalities. Realistically, present-day dialogue

systems can only cover a very limited subset of the full expressivity that is offered by human

communication; to achieve full mastery in this area is generally considered to be an “AI-

complete” problem, i. e., a problem that is likely to require an intelligence level comparable to

a human’s to be tackled. As long as the ability of computer systems to conduct a conversation

is still a long way from approaching human competence, the practical rationale of using

computers—to provide an effective and convenient tool to support humans—should, in our

opinion, take precedence over attempts at modeling human discourse comprehensively.

Most current dialogue systems focus on restricted conversations that involve the human user

and the computer collaborating to address some well-defined task that involves, for example,

information seeking, controlling devices, or tutoring on some subject. (Allen et al., 2001a, p.

3) call interactions of this kind practical dialogues, and offers a Practical Dialogue Hypothesis

that proposes

“The conversational competence required for practical dialogues, while still complex,

is significantly simpler to achieve than general human conversational competence”

We think that this is a plausible assumption, and that it is not restricted to purely task-oriented

dialogues, but can also be applied to other related domains, such as simulated narratives, to

a certain extent. The reason for this is that the hypothesis derives from the observation

that focusing on a specific task narrows down the forms of interaction that are expected to

play a role in the conversation, as well as the domain of relevant knowledge (namely, the

knowledge directly related to and needed for accomplishing the task). A number of aspects

of human interaction that are difficult to capture for computerized models, such as ironic

or ambiguous statements, do seldom occur in predominantly task-oriented conversations1.

More importantly, when these aspects are not essentially needed to accomplish a task, human

1Note, however, that there have been successful attempts to recognize irony in task-oriented dialogues, e. g.,

by exploiting cross-modal incongruities in the SmartKom system (Wahlster, 2006).

13

Requirements and Basic Concepts

technique example task dialogue phenomena handled

finite state script long-distance dialing user answers questions

frame based getting train arrival and de-

parture information

user asks questions, simple clarifications

by the system

set of contexts travel booking agent shifts between predetermined topics

plan based kitchen design consultant dynamically generated topic structures,

collaborative negotiation dialogues

agent based disaster relief management different modalities (e. g. planned

world and actual world)

Figure 2.1: Domain and interaction complexity for task-oriented dialogue systems with vari-

ous approaches (from (Allen et al., 2001a, p. 2))

users usually do not expect nor demand from such a system that it is able to handle them. In

this respect, typical human-computer interactions exhibit significantly different patterns than

interactions between humans (Dahlbäck and Jönsson, 1992), which indicates that human

users, to a degree, know about and accept such limitations, and consciously or unconsciously

adapt their behavior.

A second relevant hypothesis, also from (Allen et al., 2001a, p. 3) is the Domain-Independence

Hypothesis:

“Within the genre of practical dialogue, the bulk of the complexity in the language

interpretation and dialogue management is independent of the task being performed”

This hypothesis builds on the observation that practical dialogues share many interaction

patterns, such as the form of question-answer exchanges, that occur universally and in the

same way regardless of the actual task. If it is justified, it should be possible to address these

general issues independently of any concrete system or application, and re-use patterns across

applications.

In addition to task-oriented dialogues, we are also interested in another genre for dialogue

systems, namely interactive narratives, like the ZAMB game. This kind of system allows the

user to experience a story interactively. Like in the ZAMB scenario, such stories frequently

include several characters—the user may or may not be one of them—that interact with each

other by conversation or otherwise; this is in contrast to most task-oriented systems that lets

one human user collaborate with the computer personified as a single agent. Because of this

setup, interactive narratives offer a natural platform to study dialogical interaction involving

more than two participants, i. e., multi-party interaction. Like task-oriented dialogues, most

interactive narratives also feature only a restricted interaction: Besides the problem of com-

prehensively understanding all possible user interactions, the system designer usually needs

to constrain them to ensure the progression of the story plot towards a goal outcome (or

possibly several alternative ones), and the subject of the conversation is expected to relate to

the elements of the story (see, e. g., (Riedl et al., 2003; Cavazza et al., 2002)).2

2The Façade system does not pose such restrictions, but simply ignores any user input it cannot understand.

14

Requirements and Basic Concepts

Dialogue management is a very wide and multifaceted field of research. A comprehensive ac-

count of even just the major aspects would not be possible (or adequate) in the scope of this

thesis. Also, what is required of a dialogue manager heavily depends on the particularities of

the application(s) it is intended for. Figure 2.1 from (Allen et al., 2001a) shows a compari-

son of the power of different techniques being used for dialogue management, and the types

of applications and phenomena that can be handled by instances of each paradigm. From

top to bottom, the tasks increase in complexity and variability, and more complex paradigms

can handle increasingly sophisticated dialogue phenomena. The additional reasoning power,

however, comes at the price of increasing effort for modelling the domain as well as compu-

tational cost.

The next section examines the characteristics of the two types of systems we want to consider,

“task-oriented systems” and “interactive narratives”. After that, a section points out the role

of the interaction environment and the perspectives of the user and the dialogue designer.

Section 2.4 goes into more linguistic issues of modeling dialogues and conversations. Section

2.5 is about aspects related to dialogue management and covers patterns for communica-

tive exchange, issues arising from multi-party interaction, and the modular architecture of

dialogue systems.

2.2 Characterization of the Task

Two of the most important questions that must be answered to characterize and understand

any interactive system are: “What purpose is the system used for, in what context, and by

whom?” and “What constitutes a successful interaction?”—in other words, “What must happen

to achieve satisfaction for human users as well as the provider of the system?”.3 The answers

to questions are different for the two system types we are concerned with: task-oriented

dialogue systems and interactive narratives. We describe what characterizes both types of

systems, and give some examples of what criteria can be applied to determine interaction

success and failure in both cases. Afterwards, we take a brief look at related kinds of systems

that represent special cases or a mixture of both types.

2.2.1 Task-Oriented Systems

The great majority of realized dialogue systems today are so-called task-oriented systems that

can be used to complete a task, or to have a problem solved in interaction with the user.

The dictionary meaning of “task” is “a piece or amount of work set or undertaken” (Chambers

Editors, 1993), often in a given amount of time. Task-oriented systems often offer support for

tasks by providing an interface to external applications to make their functionality accessible

through dialogical interaction.

Examples of common tasks addressed by task-oriented systems involve information seeking,

command-and-control interactions, collaborative problem solving, transactions such as ticket

ordering, or customer help applications. Assistive systems provide help or guidance on some

3These criteria need not be identical; a system implementing on-line banking could easily satisfy users by

making errors that benefit the customer, but this would not be in the interest of a financial institution that

provided the system.

15

Requirements and Basic Concepts

subject without themselves solving a task. Tutoring assistive systems often also make use of

a narrative element. On the low end, speech-driven interfaces are used frequently today for

the single purpose of navigation in menu-like structures, e. g. in phone applications. Service

call centers use this technology to narrow down the possible reason for calling to guide the

caller to a specialized human operator.

2.2.1.1 Task Structure

Focusing on task-oriented dialogue offers some advantages for the designer of a dialogue

system. There are some common characteristics of task-oriented dialogues that do not extend

to general dialogues.

determine
seats in
theater

reservation
make

determine
number of
attendants

determine
time

determine
movie

determine
theater

determine performance

Figure 2.2: An example from a task-oriented cinema reservation application (SmartKom): the

diagram shows the subtask dependencies (an arrow means that a step in the application is

dependent upon the completion of another step)

• Many common tasks consist of successive steps or stages that depend on each other and

have to be taken in some order, and it is relatively easy to specify constraints regarding

which part of the task requires what preconditions, and to identify the corresponding

dialogue segments. Also, sub-tasks can often be ordered hierarchically. Ideally, the

different sub-tasks are self-contained, and their precise specification can change inde-

pendently of other parts of the application.

An example for this is an application for making cinema reservations with a structure

as shown on the left side of Figure 2.2. The following is a corresponding dialogue from

the SmartKom movie application:

16

Requirements and Basic Concepts

(1) USER: What movies are running tonight?

(2) SMARTAKUS: [presents a list of movie performances (including per-

forming theater) from 20pm the same day, and a city

map where theaters are shown] Here you see a list of per-

formances running tonight. On the map, the cinemas are

marked.

(3) USER: I’d like to make two reservations for this [ր selects perfor-

mance] performance.

(4) SMARTAKUS: [shows cinema layout] show me where you want to sit.

(5) USER: I want to sit [ր encircling gesture] here.

(6) SMARTAKUS: [marks two seats] Is that correct?

(7) USER: Yes.

(8) SMARTAKUS: I reserved your seats. Your reservation number is 20. Please

get your thickets no later than 30 minutes before the movie

starts.

The sub-tasks of specifying the performance to attend and the number of attendants do

not depend on each other, but the actual selection of seats can only happen when both

have been completed. Determining the performance is a sub-task that can be further

broken up into selecting a movie and a preferred performance time, and then selecting

from theaters where the movie is being shown at that time. The outcome of the sub-task

could also be accomplished in a different way (e. g., the user could pick a performance

directly from a list of possibilities), without affecting the rest of the task.

• For task-oriented systems, the domain can often be restricted to a small set of topics that

will conceivably be addressed in the course of solving the task; the dialogue does not

have to deal with issues beyond these topics. The set of objects occurring in the dialogue

is determined by the task structure. A task-oriented system handling reservations for

cinema performances will mainly have to deal with attributes of performance and movie

objects, such as playing times, movie names, ticket prices, and so on. Although the

concrete objects the dialogue is about may change over time (e. g., the movie selection

is updated every week), these changes only affect content “parameters”, and not the

underlying structure of the task. A limited, well-defined, and closed domain makes it

easier to construct the knowledge base for the system.

• The conditions at the start and end of the dialogue can be described in logical terms.

Task-oriented dialogues can be segmented into stages with well-defined dependencies

more readily than general free dialogue. The conditions for successful completion of the

tasks are often relatively straightforward. In our example, the available performances

and seats are known to the system, and it is clear which pieces of data have to be

collected from the user to achieve a successful reservation.

• In many cases, the roles of the agents involved in the task are predetermined by the

application and do not change during the interaction. This is also the case in the exam-

ple, where the system takes the role of the vendor and provider of possible performance

configurations, and the user is the customer who provides missing data and selects from

the available choices.

17

Requirements and Basic Concepts

These points indicate that task-oriented dialogue is an easier terrain for research than com-

mon every-day communication, because some trickier phenomena, like off-topic dialogue,

fuzzy and changing objectives, or unclear situations are less likely to be found, and also less

relevant to the task’s completion.

2.2.1.2 Interaction Structure

In many cases, the task can already help to structure the dialogue in stages and dependencies.

It also constrains the types of utterances that are to be expected because they are sensible or

mandatory at different points in the task-solving process. The vocabulary is also limited, since

the situation of solving a task provides for a rational setting. As mentioned in the introduction

of this chapter, many users will tend to adapt to this and use plain language with simple and

concise utterances, and also appreciate it when the system acts likewise. In the extreme,

such a dialogue can be reduced to “command-and-control” language. If the user has some

knowledge about what is involved in the task, she will also have an a priori idea of what she

can expect to talk about, and will be motivated to stay within the limits of the task-related

language, because she is primarily interested in accomplishing the task.

seats
selectselect

seats
available
present

selection

present

transaction
confirmpresent

reservation

movie

time

genre

theater
theater

performance
select specific

Figure 2.3: Example structure of a cinema reservation dialogue

Consider again the task of making a cinema reservation. The user and the system need to

agree about a specific instance of a reservation, which is characterized by the time of the

performance, the name of the movie, and few other possible parameters. In this case, the

bulk of the dialogue will consist of telling and asking for values of attributes of the domain

objects, and agreeing on a configuration of values for the final reservation transaction. Figure

2.3 shows a diagram of the possible interaction course in such an application. It closely

follows the dependency structure of the task (cf. figure 2.2). It allows transitions back to

earlier stages of the interaction to change earlier commitments, e. g., if the user is not content

with the available seats for a selected performance.

Some basic patterns are reoccurring in task-oriented interaction. The narrowing down of a

concrete instance from a set of alternatives can often be modelled by a sequence of form-

filling interactions. A form-filling interaction is concerned with the concretion of one or more

underspecified objects, like forms where empty slots have to be filled in. The sample interac-

tion has the final goal to agree on one fully specified, unique object representing the desired

reservation by subsequently determining the concrete values for the unfilled slots, thus reduc-

ing the set of alternatives. Besides form-filling actions, requests for information and providing

18

Requirements and Basic Concepts

information (either in answer to a request or as an initiative) are important interaction types

in task-oriented systems. In the example, the user may request information about the value

space given a partial instantiation, e. g., “What action films are there on Saturday?”. Informa-

tion requests can also be posed by system initiative, e. g., “What genre are you interested in?”.

The kind of information that is exchanged in these interactions depends on the application. In

a cooperative task, a participant could, e. g., also request another to propose a next step in a

cooperative plan towards the goal, or to execute such a step. If explicit commands are issued,

they are mostly directed from the human user to the system. Finally, some meta-interactions

are also frequent. Dialogue control interactions serve to reach common ground. This occurs

on the level of dialogue acts (e. g., backchannels, nodded agreement) or on the discourse

level, e. g., to confirm explicit agreement before undertaking an action that is not reversable

(such as the confirmation of the reservation parameters before executing the reservation in

the example). Some additional types of (meta-)interaction might address providing help

with the task, recovering from errors and misunderstandings, or conventional interactions for

greetings and ending the conversation.

To summarize, the general interaction structure in task-oriented dialogues is directed towards

the completion of the task. The participants tend to subsequently reduce the number of alter-

natives for task parameters, and take steps forward towards the task goal as a logical end

point.

2.2.1.3 Purpose and Success Criteria

The foremost purpose of a task-oriented system is to allow the user to complete one or more

associated tasks or transactions. Completion in this case can mean different things. For

example, an interaction with a system that offers the opportunity to get information about

cinema programmes and possibly also to purchase tickets can be deemed to be successful

even when no ticket is sold, if the reason for this is that there is no performance on offer the

user is interested in. Additional important requirements include robustness of the interaction,

i. e., recovering from errors either in the user interaction or in the associated application. This

is important in applications that employ speech or multimodal input, since in addition to user

errors, they also have to deal with possible misrecognitions of actually correct user input. The

interaction should be efficient, i. e., the user should not be required to make redundant turns.

In many cases, the system should be usable by untrained users, which is again a special issue

for spoken dialogue systems, since they can only sport a restricted vocabulary. Whether or

not, and how successfully, a task was completed lends itself to quantitative evaluation. It is

often straightforward to count the percentage of successful tries, count the number of steps

that were taken, or identify misleading steps.

There are approaches to a formal evaluation of dialogue system usability for task-oriented

systems, such as the PARADISE framework (Walker et al., 1997). The general structure of

PARADISE’s objectives for measuring spoken dialogue performance is shown in figure 2.4.

The overall goal is to maximize the user’s satisfaction. This breaks down into task success

on one side, captured using the kappa coefficient (Carletta, 1996), and the costs for the user

which are in turn further divided into efficiency measures (such as number of required turns

and overall time taken for the task) and qualitative measures (such as how much delay system

responses take, and how many errors occur during the interaction). For a given system, the

19

Requirements and Basic Concepts

Number of Utterances
Dialogue Time

etc.

Kappa

Agent Response Delay
Inappropriate Utterance Ratio

Repair Ratio
etc.

Maximize
Task Success

User Satisfaction
Maximize

Minimize
Costs

Efficiency
Measures

Qualitative
Measures

Figure 2.4: PARADISE objective structure

success in meeting the criteria can be measured by letting subjects interact with the system

and evaluating the performance afterwards. Part of the data can be collected automatically

by logging interaction data and transcripts (e. g., elapsed time, task completion, number of

timeouts). Some more subjective measures are taken by letting the subject complete ques-

tionnaires after the interaction with questions such as “Was the system easy to understand in

this conversation?” or “Did the system work the way you expected it to in this conversation?”

(see (Walker et al., 2000) for a comparative evaluation of the ELVIS, ANNIE and TOOT sys-

tems and further methodological details). (Schiel, 2006) points out that difficulties may arise

when PARADISE is applied to more complex task-oriented systems, especially multimodal

ones, citing the example of the SmartKom system. He cites as most problematic that (a) cor-

rectness labels cannot always be assigned to single recognition results due to the multiple

asynchronous modalities, and (b) the task structure is much more fuzzy than simple database

access interactions, and there may be more than one way to solve a task. For such systems,

an adaptation of PARADISE called PROMISE is proposed (Beringer et al., 2002).

A more comprehensive evaluation methodology is provided by the Voice Application Perfor-

mance Index (VAPI) used in the Voice Award. The Voice Award is a prize that has been awarded

annually since 2004 for the best German-language speech applications deployed for business

use. It involves four benchmark criteria (Hoffmeister et al., 2007):

• Technical Performance Characteristics

This includes the number of possible simultaneous user connections, the number of calls

per day, the number of unique users, the kind of speech recognizer, and the number of

interfaces to other systems.

• Cost Effectiveness

This criterion includes the costs per call, the average task completion rate, how long it

took to build and deploy the system, and the time it takes to amortize the costs of the

system.

20

Requirements and Basic Concepts

• Voice User Interface

Sub-factors for the user interface are understandability, effectiveness of use, recognition

errors and their impact on the dialogue, and “hear and feel” in terms of sympathy and

appropriateness for the task.

• Innovation

This criterion accounts for new functionalities, innovative user interfaces allowing a

simpler or faster use, or novel business models

The results across all criteria are integrated in a “VAPI scorecard” model where the ratings for

the different criteria are weighted according to expert assessment with the aim to ensure a

balance of usability and technical/business factors. The test is designed to provide a unified,

structured benchmark methodology for applications of different purposes.

2.2.2 Interactive Narratives

Another emerging purpose for dialogue systems is to provide entertainment by telling or

enacting a story. We call such systems narrative systems, or, if the user can participate in the

narrative, interactive narratives. In the entertainment and infotainment industries, there is

an increasing interest in telling stories via the computer that allow for active participation

of a human user that communicates with virtual characters and/or a virtual story world. A

storytelling system focusing on entertainment or edutainment is successful when its audience

is presented with a convincing and immersive experience; in addition to bringing the point

across, it must, above all, not be boring.

One can think of interactive narratives as simulated theater performances that are enacted by

virtual characters that can play assigned roles and that allow for user participation. Another

perspective is to view them as a kind of computer game, and in a limited sense, computer

games such as Deus Ex often use interactive scenes where the player does interact with the

game characters to influence the course of the subsequent game narrative. However, these

scenes are usually quite inflexible in that they allow the player to select between a small set of

alternative options of what to say, and the resulting space of outcomes is easily enumerated

(and consequently just realized as a tree of alternatives). In such situations, the gameplay

proper is suspended and resumes after the interaction has been completed. This has the effect

that (a) the narrative aspect is detached from the actual gaming experience, actually just an

“add-on” to provide atmosphere, and (b) there is no real sense of agency for the player.

2.2.2.1 Task Structure

Interactive narratives are mainly driven by two forces: the intention (provided by the dia-

logue designer and enacted by the system) to tell a story, and that of the user to experience,

influence and drive forward the story forward through own actions. Like in a drama, longer

interactions are often segmented into successive units, or scenes, that might involve different

characters and environments, and whose order is determined by dramatic intent rather than

logical necessity.

21

Requirements and Basic Concepts

exposition

rising action

crisis

climax

falling action

dénouement

inciting incident

Figure 2.5: The Aristotelian dramatic arc (from (Mateas, 2002))

If an interactive narrative follows a classic arc of dramatic tension like in an Aristotelian

drama (see figure 2.5), the goal of the interaction is not the conclusion (“dénouement”) at

the end of the narrative, but the climax. It is the intention of the dialogue designer to let

the events move towards it at a pace that also allows the story to unfold. In contrast to task-

oriented interactions, the focus is not to find a solution to a task quickly and efficiently, but

to demonstrate the consequences the actions of the user entail, and concluding the story with

the consequences. The protagonists of the story, however, whether their roles are taken by

human users or virtual characters, do have tasks to do and goals to achieve in a story.

There are several methods for story control in narrative systems. The emergent narrative

paradigm (Aylett, 1999; Aylett et al., 2006) aims at designing fully autonomous characters

that are driven to enact the story from inherent desires and their perceptions of the environ-

ment. This approach allowing the characters strong autonomy is criticized by, e. g., (Mateas

and Stern, 2000), on the grounds that the selection of “correct” actions in the context of a

desired story cannot always be made on the (local) basis of the individual character’s know-

ledge alone; they argue that there must be a supervising entity that enforces the intended

story from a global omniscient perspective. This direction is taken by systems that employ

drama managers which assume full control of the behavior of all characters, possibly with

the exception of secondary behavior that is not relevant to the story (such as idle anima-

tions). The drama manager can, for example, restrict the outcomes of the story by a series

of branching points that create a tree of possible stories, a technique that is frequently used

in computer games (Lindley, 2005); branching story structures are, however, hard to manage

for more complex narratives or ones that allow the user extensive freedom of action. Another

possibility is to let the drama manager observe the events in the environment and dynamically

adapt the story. In some situations it can also be necessary for a drama manager to prevent

user interactions that threaten the story, or to trigger interventions, e. g., to manipulate the

outcomes of interactions, or to create events that serve to repair the storyline. This technique

is used, e. g., by the story mediation approach proposed by (Riedl et al., 2003).

This thesis is not directly concerned with the problem of drama management. However, for

systems that have a component that acts as a narrative control instance—such as VirtualHu-

man’s narration engine—our model offers the possibility to dynamically balance control and

22

Requirements and Basic Concepts

autonomy (Löckelt et al., 2005). It puts the virtual characters in the role of actors that au-

tonomously perform actions that achieve goals set by directions from the control instance. To

enable the drama manager to guide the story, and intervene in situations where the outcome

of the story is threatened, it also provides the possibility to deliver feedback about the cur-

rent state of the interaction. The drama manager can use this information to adapt future

directions, or to retract goals and replace them with new ones.

For interactive narratives, an element of chance in the task structure is much more acceptable

than for task-oriented systems, or can also be explicitly intended to create variation. If a

virtual character tells the same story twice in a row, possibly even using the same utterances,

the entertainment value as well as the believability of the agent as a “living and thinking

entity” will suffer. Users may forgive small incoherencies (e. g., caused by overzealous or

“emergency” mediation) if the story is interesting otherwise. Robustness of understanding

typically is not as crucial as in task-oriented systems, if there is no time limit or important

task involved. On the other hand, poor understanding and presentation can also negatively

affect the aesthetic experience and the immersion of the user.

2.2.2.2 Interaction Structure

Like task-oriented interactions, interactive narratives exhibit reoccurring building blocks on

several levels. For one, general dialogue patterns like question/answer exchanges, etc. also

apply in this context. However, there are also building blocks on higher levels, as outlined by,

e. g., (Propp, 1968). In his investigations on the morphology of the folk tale, Propp identifies

a set of archetypical dramatic structures present in virtually all classic narratives. His findings

are also applicable to more contemporary works, as has been shown for, e. g., the Star Wars

series (Hiltunen, 2002). The structures include archetypes or roles for the dramatis personae

(hero, villain, a “helper” figure, etc.), motivations (such as “rescue the princess”), typical

activities and scenes (e. g., the exposition, or an “end-fight” climax with a villainous character)

and instruments for the story.

In narratives, longer stories are usually split up into several scenes, where each scene com-

municates a certain purpose, goal, or theme, in the story. Between scenes, the setting of the

narrative, e. g., the virtual physical environment, or the set of participating characters, can

change. They can be seen to correspond to sub-tasks in task-oriented interactions. A scene

can be further subdivided into smaller parts. For this, a widespread concept in interactive

narratives is the notion of the story proceeding in dramatic beats. Mateas and Stern describe

a (dramatic) beat in the following way:

“First, beats are the smallest unit of dramatic value change. They are the fundamen-

tal building blocks of the interactive story. Second, beats are the fundamental unit

of character guidance. The beat defines the granularity of plot/character interaction.

Finally, the beat is the fundamental unit of player interaction. The beat is the small-

est granularity at which the player can engage in meaningful (having meaning for

the story) interaction.” (Mateas and Stern, 2000, p. 4)

A dramatic beat does not necessarily involve only singular actions. For example, in the Façade

system described in the next chapter, dramatic beats are shared between several involved

characters and represent joint plans for action.

23

Requirements and Basic Concepts

In comparison with purely task-oriented interactions, the dialogue designer will want to use

more variation of expression, because of the underlying goal to entertain people. Besides

more elaborate language, multimodal presentations are useful to provide variation because

there can be more than one way to present an event, as well as to broaden the range of expres-

sion the characters are capable of in a single action. Modalities other than voice can often be

used to convey a character’s emotions in a more believable, direct, and concise manner. Users

will also have a greater tendency to experiment with the system to explore the boundaries of

what it can handle. In interactive narratives, it can also add to the atmosphere to consider

how the status of the participants and their social relations affect character behaviors, e. g.,

by influencing the participation rate in the conversation (cf. (Rumpler, 2007) and Section

2.5.2.2 on participant roles in multi-party conversations).

2.2.2.3 Purpose and Success Criteria

The main purpose of the characters of a narrative system (corresponding to the protagonists

and supporting roles) is different from the one in task-oriented systems. The characters

should appear and act life-like, but this is not to be mistaken to mean that they have to be

graphically photo-realistic, and neither do they have to exhibit near human-level intelligence

or dialogue competence. Rather, they are supposed to exhibit life-like behavior within the

context that they are artificial entities and not real persons. Animated characters like Donald

Duck are not meant to appear human-like; but fortunately, this is not required for them

to be convincing. It can even be counter-productive when realism is approached, but not

quite achieved, a situation which was dubbed the “Uncanny Valley” by (Mori, 1970), which

postulates that characters are perceived to be more unrealistic, or even spooky, when they are

very close to realism without completely achieving it. A human interacting with a computer

system may know fully well that computer characters do not really feel emotions, but this

does not have to diminish the entertainment value of them expressing simulated emotional

behavior. After all, this is exactly what human actors do when they perform. Virtual characters

are successful if they manage to show some kind of personality that fits their role in the setting

and is consistent over time (Gebhard, 2005).

Another point that was brought up in (Doyle, 2002) is that the main challenge for traditional

rational agents, and indeed agents in task-oriented systems, is the selection of actions nec-

essary to reach some goal. In other words, it is required that they be effective. Storytelling

protagonists that are meant to be life-like, in contrast, predominantly have to be believable

and interesting, attributes that depend heavily on expression of action as well as emotion.

This means that, e. g., acting in an identical manner in identical circumstances, while being

perfectly rational, might not constitute desirable behavior for a life-like character, since de-

terminism is perceived as odd for a sentient being. Acting irrationally, on the other hand, can

be just fine for the character as long as it is plausible. In contrast to task-oriented systems,

inconsistency or lack of transparency can be tolerable (e. g., in order to not give away the

story in advance) or even necessary (e. g., to save the storyline) in interactive narratives.

To sustain the flow of the narrative, it is even more crucial than in task-oriented systems to

have fast (ideally real-time) reaction times. Generally, people do not even know how long

it would take a human to book cinema tickets, or are prepared to rationalize and accept

that “the agent needs to wait for the answer from the ticket database”. However, since the

24

Requirements and Basic Concepts

“suspension of disbelief” responsible for an immersive experience must be upheld, un-natural

delays during conversations are dangerous in an interactive narrative: they endanger the

impression of interacting with a real, believable character.

The evaluation of an interactive narrative system relies more on subjective measures than

with task-oriented systems. It is generally possible and meaningful to determine (analogous

to task-oriented systems) whether some crucial points, or sub-tasks, of the story were real-

ized, and whether the story was consistent. The overall success of an interaction, however, in

this case does rely more on the qualitative experience of the user than on quantitative crite-

ria.4 Parameters that are important when a task should be accomplished effectively, like the

number of utterances required, do play a lesser, or no, role.

2.2.3 Related Types of Systems

Systems that try to educate or instruct users about some subject form a hybrid of task-oriented

and entertainment purposes. They need to incorporate a concept of didactic structure for their

task, and also often involve a narrative component to make the interaction more interesting.

An advantage of tutoring systems that use a virtual environment is the possibility to simulate

situations that would be difficult to create in a real environment, dangerous to the trainee,

would endanger valuable equipment, or all of the above. In comparison to narrative systems

intended for entertainment, tutoring and help systems will tend to follow a more rigid story-

line. Virtual tutoring systems are on the rise in military training. An elaborate example of a

multimodal military training system we will examine in the next chapter is the Mission Re-

hearsal Exercise (MRE), which lets the user experience a conflict between mission objectives

and handling a road accident. Other systems have been developed to train soldiers to deal

with foreign cultural contexts (Deaton et al., 2005), to act as museum guides (Kopp et al.,

2005) or to educate school children to cope with bullying situations (Paiva et al., 2004).

A special case, albeit a frequent one, is systems developed primarily for research purposes,

e. g., in the fields of computational linguistics or human-computer interaction. These are

often of the task-oriented type, which has been investigated most thoroughly. The purpose of

research systems is to provide new insights by, e. g., demonstrating or explaining particular

phenomena in dialogue, or to test a theory. Interactive systems with virtual characters are

also created to test scientific hypotheses or to gather empirical data about human-human or

human-computer interaction. Variants here include systems that conduct a full dialogue with

users or transcribe recorded or live interactions they do not take part in, e. g., the AMI/AMIDA

projects.5 There also are setups that are controlled by a human operator to simulate dialogue

systems that do not actually exist in so-called “Wizard-of-Oz” experiments; this technique can

be used to gather information about an application scenario before or during the development

of actual prototypes (see, e. g., (Schiel, 2006)).

With increasing realism, virtual characters can also to some degree take the part of human

counterparts in research settings. A recent interesting example is a piece of psychological

research reported by (Slater et al., 2006): The well-known Milgram Experiment (Milgram,

1963) that had raised considerable concerns because it required the test subjects to treat

humans in an unethical way, could be repeated with virtual characters and yielded results

4cf. the VirtualHuman evaluation with school children reported in (Langer et al., 2005)
5Project website: http://www.amiproject.org

25

Requirements and Basic Concepts

that are comparable to the original setup. In such cases, the system is designed to capture

one or several phenomena occurring in dialogues, or to measure a psychological response

from the user. A research system meets its purpose successfully if it provides meaningful data

on the adequateness of the scientific models it uses. In research systems, the system designers

are often identical with the users.

2.2.4 Summary

We examine conversations that are driven by the goal to complete a given predefined task, or

to realize a storyline, respectively. Both conversation types have in common that during the

interaction, a set of preconditions is established that are necessary to arrive at the goal. In

both cases, we assume that the necessary “plan” is not negotiated between the participants—

that is, we explicitly do not include the particularities of “negotiation dialogues”, which would

introduce a whole additional field of research (see, e. g., (Hulstijn, 2000b) for a comprehen-

sive treatment of negotiation dialogues).

There are some major differences between task-oriented interactions and interactive narra-

tives. The former are intended to be efficient, while the latter should be entertaining, which

means that their success cannot be measured quantitatively by “number of turns until comple-

tion”. Task-oriented interactions are mainly determined by the task description, and what the

application can and cannot do, while interactive narratives have additional story constraints.

Thirdly, the task structure differs significantly as task-oriented interactions have a tendency to

move towards a solution; in a narrative, while there is also an ultimate goal, the whole point

of a story is to throw in some complications and perplexities in between to create dramatic

tension.

2.3 The Interaction Triangle

In this section, we examine the relationship between human users and virtual characters,

the system itself, and the dialogue designer. This relationship can take on several forms

depending on the number of users and virtual characters, and the interaction possibilities

between them.

Figure 2.6 shows a succession of conversational system constellations of human users and

virtual characters from a purely system-initiated monologue over several steps with increasing

interactivity and number of participants up to applications where a variable number of human

and virtual participants interact. It also reflects a progression of stages in the development

of dialogue systems towards increased complexity. There also are systems that deal with

purely human-human conversations, e. g. the AMI/AMIDA projects, whose goal is to record

and summarize meetings; but we do not consider this configuration here.

A system monologue is the simplest, unidirectional form of a conversational system. An in-

teractive system where both the user and the system can contribute has to deal with a whole

new set of issues. A simulated conversation involves computer characters interacting with

each other, while the interaction can be observed by the human user. One step further are

26

Requirements and Basic Concepts

System

Users

System Conversation Performance

}

human agents
2. Interactive 3. Simulated 4. Interactive

5. Dialogue
between virtual and

Monologue
1. System

Figure 2.6: Complexity progression of conversational systems (from (Wahlster, 2005))

interactive performances, where the user can also participate in the interaction. The final sce-

nario type, of which the VirtualHuman system is an instance, also involves multiple users, and

represents the focus and state of the art of current research.

An additional dimension that has gained importance since real-world applications of growing

complexity are tackled by dialogue systems is the role of the dialogue designer. The dialogue

designer has to provide the definition of the interaction environment, as well as the characters

in terms of their knowledge and behavior. The goal of the designer is to arbitrate between the

system’s purpose and the needs and expectations of the users and to ensure that the system

can conduct an interaction that is successful with respect to the application type. Figure 2.7

shows a triangle diagram illustrating how the users, the virtual characters, and the dialogue

designer are related to the dialogue system’s definition and operation. The system intercon-

nects a number of human users and virtual characters as conversation participants. They

partake in conversational (and possibly physical) interactions in the context of an interaction

environment. The virtual characters and the environment together form the dialogue system.

All participants also need to take into account all other participants and their actions in order

to be able to coordinate their efforts at having a coherent interaction.

We first look at the interaction environment. Then we examine the content of interactions

and the mode of the exchange of communicative action. We then in turn take the perspectives

of the users, the virtual characters managed by the system, and the interaction designer.

27

Requirements and Basic Concepts

Characters

Dialogue System

Interaction

Influence / Demands

Definition

Designer
Dialogue

InteractionCoordination

Users

Environment

Figure 2.7: The Interaction Triangle

2.3.1 The Environment of the Interaction

We call the space in which the interaction takes place the environment of a dialogue system.

In the real world, conversation always occurs in some kind of physical and mental environ-

ment. This environment must be taken into consideration, as it puts constraints on what

can be done. Even for conversations over the telephone, where the participants do not share

the same location, the physical environment has crucial impact, as anyone who has tried

to call somebody from a crowded subway car can confirm. Human-Computer interactions

often include some additional virtual or simulated physical environment by means of gra-

phics or other modalities. One issue is whether or not the human conversation partner(s)

are represented via avatars, i. e., actually co-present with the characters, in the environment.

Co-presence enables a more immersive and direct interaction, but sharing space with virtual

characters can also be perceived as a nuisance (as known e. g. from negative reactions of

users to helper assistants in office applications that tend to get in the way of what the user

intends to do).

If the conversation participants are embedded in a virtual environment, it is possible to have

(virtual) physical actions in this environment. Virtual humans can use facial expressions,

gestures, and other means of non-verbal expression. They can also manipulate simulated

physical objects in this environment. They are agents that are situated in a virtual reality. The

environment is, however, not restricted to the virtual physical setting, but also includes the

wider context the system is located in. The real physical environment for the interaction with

a dialogue system can consist of purely textual output showing written responses to user input

entered via a keyboard, or it can be a fully-fledged 3D rendition. It is characterized by what it

contains, how it is presented, and which interactions are possible with it for the conversation

participants. These questions must be addressed in the knowledge representation of the

system to solve the problem of world representation. Since a virtual environment represents

a form of space to move in, the world representation must also include ways of modeling the

possible spatial configurations and relationships.

28

Requirements and Basic Concepts

For many applications, it is adequate and beneficial to restrict the environment to compo-

nents that are immediately relevant to the task at hand. It can be confusing to add further

elements, for example for decoration. In human conversations in the real world, objects of

the physical environment may be off-topic, but they are never really off-limits to be referred

in the conversation. The same holds, in principle, for conversation topics. However, as stated

in the chapter’s introduction, human users are generally well aware that today’s computer-

generated virtual humans are not prepared to talk about just any topic. They also usually

do not expect to be able to refer to all objects or parts of objects presented on-screen, for

example, that a character represented by an avatar can talk about the color of the avatar’s

hair. In this case, it is beneficial to have an understanding of the user’s intuition, and to try

to guide it correctly instead of leading it astray. To achieve this, it is necessary to make rea-

sonably clear which objects are “live” in the environment, and which are not, as well as to

avoid unnecessary objects in the environment that cannot be referred to and that serve no

purpose but decoration (a technique that is sometimes used is to visibly highlight objects that

can be interacted with). This will help to prevent unnecessary user confusion and possibly

frustration, since with respect to the interaction, an object is really present in the environment

if, and only if, there are ways to refer to it and get a reaction.

The virtual environment can be just a passive display that is observable by the human user, or

it can be connected to the real environment. If there is a one-to-one coupling between the vir-

tual and the real environment such that manipulations on a real object change a virtual object

and vice versa, the setting is called mixed reality environment. (Kruppa et al., 2005) describe

such a setup in which a character “lives” in a room, can move about, and offers situated as-

sistance to users within the environment. Virtual characters can also use effectors to cause

changes on objects in the real world. The user, too, does not necessarily have to be restricted

to, e. g., navigating a user avatar and giving conversation input. In the COHIBIT system (Kipp

et al., 2006), the user can re-arrange real-world car model parts. The system senses their

current positions (via RFID technology); with this information, the system’s virtual characters

can provide hints for the creation of a car design. Another interesting example of this is given

in (Paiva, 2005): In the described storytelling system, a child can transmit its own emotional

state to game characters by interacting with a sensor-equipped doll that reports, e. g., being

shaken or cuddled. The doll acts as a proxy object connected to a virtual object placed in the

real world, and is the origin of the game character’s affective state.

2.3.2 User Perspective

2.3.2.1 Natural vs. Asymmetrical Interaction

In the general case, the human user will compare the conversational interaction with the in-

teractions with fellow humans. She will value naturalness and ease of use. This is a challenge

because all contemporary dialogue systems lack the knowledge as well as the intelligence to

converse on a level on par with a human. The fundamental asymmetry in human-computer

interaction is often overlooked. This includes both the user and the system itself, and in both

cases involves generation as well as understanding.

Human users frequently experience problems when they are forced to restrict themselves to

interactions the computer can process, or when they should find out what these interactions

29

Requirements and Basic Concepts

are in the first place. To this end, it has been proposed (Jönsson and Dahlbäck, 1988; Jönsson,

1997) that a dialogue system should exhibit habitability, e. g., by employing a consistent sub-

language that can be easily grasped by the user and enables her to communicate fluently

with minimal risk of straying outside the borders of understanding. Habitability can also be

enhanced by other means, such as giving cues about expected input to the user. Generally,

the system should

“. . . clearly show the user which actions it is able to perform, which initiatives it can

respond to, which it cannot respond to, and why this is the case.” (Jönsson, 1993,

p. 2).

How can habitability be achieved without extensively training the users? One possibility is

to re-introduce symmetry by ensuring that the system only produces contributions that it

would be able to understand if they came from the user, i. e., all generated acts must also be

analyzable.6 A drawback of such an approach is that this means that the system might have

to do without more elaborate code, such as ambiguous idioms or figurative expressions, since

they are harder to understand and may also encourage the user to use more complicated

language. In some cases, especially in the case of an interactive narrative, this might hurt the

atmosphere, because the language would be too plain and “matter-of-fact”.

Habitability is also increased if the system is able to deal gracefully with errors (application

failures as well as understanding problems), offers help for inexperienced users, or has the

ability to dynamically adapt to different users. Additionally, systems can to a certain degree

exploit the user’s imagination by adhering to principle of least surprise: Even when the system

does not achieve human competence in conversation, it should be possible for a human to

predict which kind of utterances will probably be understood by the system. This is supported

by consistency in the user interface, e. g., making available similar interaction possibilities in

similar situations. If the dialogue system fails to understand the human, it should provide

feedback about why this is the case (for example, missing vocabulary, or its limited capacity

to understand the domain), to enable the human user to adapt to the level of the machine.

Taking the scenario into account, it is also an option to accept the fundamental interaction

asymmetry without reservations. It would be counter-productive to outfit a system designed

for a narrow domain, e. g., ticket sale, with a general-purpose lexicon. The inclusion of super-

fluous vocabulary that is unlikely to be used at all for the task of the system would negatively

impact the recognition rate and introduce unnecessary ambiguities, hurting the effectiveness

of the interaction. In such a case, interaction robustness must be weighed against the ability

of the user to also address off-task topics.

2.3.2.2 Response Delays and Feedback

An interaction will be perceived as unnatural, and possibly inconvenient, if the time the sys-

tem needs to respond is substantially longer than in typical human-human interactions. This

problem can be ameliorated somewhat if there is at least some feedback from the system that

6One technique to help this would be adopt an approach of “no generation without interpretation” (analogous

to “no generation without representation” (Wahlster, 2002)) – i. e., the system should only generate output that it

could also interpret as input (cf. the concept of an “anticipation feedback loop” in (Ndiaye and Jameson, 1996))

30

Requirements and Basic Concepts

acknowledges that an utterance has been “heard” and is being processed. Three important

limits can be used as a rule of thumb to estimate how the interaction flow is perceived by the

user (Miller, 1968):

• A response time of up to 0.1 second is perceived as instantaneous reaction,

• 1.0 second is noticed as a delay, but preserves the feeling of free interaction,

• Delays should stay below 10 seconds to keep the user focused on the dialogue.

The acceptable response time for a given system is further dependent on the application and

purpose. In a narrative context, long pauses will not just delay answers, but also disrupt the

flow of the narrative. In the presence of pauses, it helps if the user can rationalize why “it

takes a little longer”, e. g., when the system explains that it has to connect to a database to

answer some query before making a pause. In all cases, it is advisable that the system ac-

knowledges user input and consistently signals in some way that it is still operational and/or

occupied (e. g., by displaying idle or busy gestures).

2.3.2.3 Believability and Immersion

The acceptance of a system is strongly dependent on coherent behavior. Especially if virtual

characters are involved, or the system purports to have a “personality”, it must act believably.

This does not necessarily have to mean that a character’s actions have to be logically consis-

tent, or human-like. The main requirement is that the character’s behavior be plausible given

the information (or mental image) the user has about its inner life. This can lead to situa-

tions where a character that is less human-like is actually more believable when exhibiting a

certain behavior. It is frustrating to encounter a dialogue system that uses elaborate canned

text, which leads to the expectation that it actually can engage in free conversation, only to

earn repeated misunderstandings when it turns out that the understanding is not up to par

with generation. A sensible user does not really assume that she is interacting with an agent

that is intelligent on a human level. It is important, however, that she can construct a mental

model that enables her to have some notion of what she can expect the agent to do.

To achieve believability in a narrative context, it is crucial to express actions in addition to the

task of selecting them. For behavior to be believable, it must be interesting instead of effective

(Doyle, 2002). An additional issue contributing to believability is the variety of utterances.

Like what was said about interaction asymmetry, it can be acceptable to use a uniform utter-

ance schema across cases that are similar. This is especially true for task-oriented systems.

It can even be beneficial in this case to strive for a simplified, predictable, and unambiguous

interaction, since the user can concentrate on the task and is not distracted. On the other

hand, in systems that are predominantly meant to entertain, poor variation and overly plain

language harms the atmosphere and believability. The emphasis with such systems is not on

conveying information in the most efficient and reliable way.

Depending on the purpose of a system, user immersion has varying degrees of importance

from crucial for acceptance to irrelevant. Part of the requirements for immersion is that the

user experiences a sense of agency, that is, the actions of the user have a manifest effect on

31

Requirements and Basic Concepts

the environment. Narrative systems with life-like virtual characters also rely on the Eliza Ef-

fect, i. e., that the user implicitly assumes their actions to be guided by motives and thinking

processes similar to a human’s. The contributions of the dialogue partner(s) must be ade-

quate (in the sense of (Grice, 1975)) in the conversation, i. e., exhibit the right degree of

informativeness, be relevant and clear, and be founded on an understanding by the system.

However, narrative systems that try to produce adequate feedback for atmospheric purposes,

even on user input that was not understood properly, are in danger of failing miserably, like

in the following example of a typical interaction with the Eliza system:

PATIENT: Like I said earlier, I hate the rain.

ELIZA: Why do you like you said earlier, you hate the rain?

PATIENT: What do you mean?

ELIZA: Please elaborate on that.

After just a short interaction, such behavior results in the immersion-shattering realization

that the “understanding” exhibited by this system is really an illusion. In most task-oriented

interactions, immersion does not play a major role. It can also be explicitly undesired in

some situations, e. g., the interaction with a dialogue-enabled route-planning application in a

moving car.

Figure 2.8: Virtual characters in varying degrees of realism: Miss Dewey, Mister Kaiser, and

Smartakus

The design of the virtual agents can support or work against the believability of task-oriented

and narrative systems. Figure 2.8 shows three types of virtual agents: Miss Dewey, the front-

end of Microsoft’s prototype search engine msdewey7, Mr Kaiser from VirtualHuman (Hülsken

et al., 2007), and Smartakus, the system avatar of SmartKom (Poller and Tschernomas, 2006).

Miss Dewey is animated by concatenating photo-realistic animation snippets performed by a

human actor, but her responses are generated using a system similar to the Eliza program

(Weizenbaum, 1966), i. e., it offers some reactions tailored to specific keywords, and other-

wise produces random generic behavior (the search results are displayed in a separate win-

dow). Since it is very obvious that the agent does not live up to the expectations raised by her

life-like appearance, she is very quickly demoted to pure “eye candy” irrelevant to the search.

On the other extreme, confronted with the cute, comic-like appearance of Smartakus, users

are positively surprised when they are understood, since their mental model of Smartakus

7See http://www.msdewey.com

32

Requirements and Basic Concepts

takes into account that it is a “just a computer character”. Mr Kaiser is located between Miss

Dewey and Smartakus in terms of realism, and also of user expectance of dialogue capability.

2.3.3 Dialogue Designer Perspective

2.3.3.1 Defining the Knowledge Base

The perspective of the designer of the dialogue and the application content is often neglected

in dialogue systems research. There are not many frameworks available that are ready to use

for authors who are not at home in the fields of linguistics or computer science. This has much

to do with the fact that in research, system and content design is frequently done by members

of the same team or even by the same person, usually being computer scientists or linguists

rather than professional creative writers. Consequently, the available frameworks tend to

not be very accessible for non-technical authors, because they require the use of unfamiliar

specification methods, like state diagrams or expressions in predicate logic.

In the area of storytelling, systems begin to emerge to address this shortcoming. One example

is the Erasmatron system (Crawford, 1999) and its successor Storytron, designed for writers

with non-technical background. The stories created by Erasmatron are emergent narratives

without goal-based guidance. Also, built-in editors of games like Quake or The Sims can be

employed to create animated stories with game engines (so-called “Machinima” movies). The

plot of these stories is fixed in advance and allows few (if any) interactions from the user that

significantly affect the outcome of the story. Some variation can be added by employing story

generators such as the SceneMaker tool (Gebhard et al., 2003) that script stories by represent-

ing them as scenes connected by conditional transitions in scene graphs. This approach was

used in, e. g., the COHIBIT system. However, these approaches generally do not implement a

separation between the overall story structure and the interaction of the story participants.

2.3.3.2 External Control and Narration Engines

One significant difference between pure task-oriented dialogue systems and narrative systems

is the need to establish and maintain dramatic tension to keep an audience interested. As

said before, the foremost goal for a character in a narrative is not to act rationally, but to

always remain a believable character. The purpose of the narrative is to be entertaining and

coherent, but the final resolution of the dramatic tension requires to set narrow boundaries

to the freedom of the human interactor as well as of the virtual characters to act. In a typical

murder-solving mystery, e. g., it is simply not an option to let the murderer get away in the

end; also, in a narrative, the author usually desires a general plot line that must be followed

by a successful storytelling system.

For the VirtualHuman system, the goal was to keep the story management and the conversa-

tion management tasks separate: the conversational engine does not deal with the dramatic

constraints of story development. An additional module, the narration engine, guides the

events by acting in the fashion of a movie director, setting goals for the character agents that

are motivated to push the story forward, and to correct intentional and accidental uncooper-

ative behavior from the side of the user. A narration engine uses the available character goals

and their parameters as the material from which a narrative can be put together (Göbel et al.,

33

Requirements and Basic Concepts

2004). The author must use these as building blocks and select appropriate goals for each

situation that can arise during the interaction. With a narration engine setting high-level

goals, and the characters having the freedom to determine the exact means for achieving

these goals, the system exhibits a balance of narrative control and autonomy (Löckelt et al.,

2005).

2.3.3.3 Testing and Tuning the System

The number of possible input variations for a typical dialogue system grows exponentially

with the length of the interaction, especially if it takes into account the context, i. e., if each

conversation turn can in principle be influenced by any previous turn. Generally, it is not

possible to test a dialogue manager with all possible conversations, and even limited testing

is difficult without full integration of all components of the complete system. This is further

complicated, because the surrounding system is comprised of numerous interacting modu-

les; by the nature of its task, the dialogue manager is a very central component in such a

system and has to coordinate interactions with many other components. For example, in

the SmartKom system, the action planner is in direct information exchange with eight other

modules (see Figure 2.29 on page 68). Dialogue systems dealing with input that requires

recognition and interpretation (i. e., spoken or multimodal input in contrast to typed input)

also tend to have a higher response error rate compared to other applications of comparable

task complexity because of the significant rate of false recognition results in the more complex

modalities such as speech or gestures.

These factors render a complete verification and evaluation of dialogue managers for non-

trivial applications very hard or impossible. The quality of a system can be selectively probed

with trial runs with groups of users which are rated afterwards using methods for measuring

task success as described in Section 2.2.1.3 or more general usability measures as described

in, e. g., (Dybkjær and Bernsen, 2001); however, in the general case, such tests are very time-

consuming while still only covering only a small part of the possible interaction space. Lim-

ited automated analysis of dialogue manager performance as undertaken with, e. g., the Val-

Dia system (Alexandersson and Heisterkamp, 2000) or the currently work-in-progress MeMo

workbench (Jameson et al., 2007) can partly alleviate this effort.

2.4 Dialogue and Conversation Modeling

Besides the overall state of the world the interaction takes place in, the information state

must also include the system’s model of the conversation. Most research has examined dis-

courses between two participants, which are also called two-party dialogues. Multi-party

dialogues (or conversations) with more than two participants exhibit additional phenomena

and complexities. One example is the issue of deciding which participant has the mandate to

speak next after the current speaker releases the initiative (turn taking). However, even in

the multi-party case, the interaction proceeds mostly in sequential exchanges involving only

two participants at a time, a speaker and a (direct) addressee. Other participants that may

be present—the overhearers—can be explicitly or implicitly included. We begin with mod-

els concerned with two-party dialogue, and elaborate on additional properties of multi-party

dialogue in Section 2.5.2.

34

Requirements and Basic Concepts

Linguistic theory describes several aspects that are essential to capturing a dialogue situation,

and must therefore contribute to the information state of the system. One is the context in

which the discourse takes place, which includes the mental models of the participants, the

social or task situation, and the physical (or virtual) environment. Another is the informa-

tional content of the dialogue contributions themselves, and the relations between them. In

the general case, a conversation cannot be reduced to a sequence of isolated consecutive

statements, e. g., a series of propositional assertions, but it also relies on the relationships

between utterances in the discourse context. For example, an answer typically is related to

some question occurring earlier in the interaction, and a question in turn imposes an obliga-

tion on the addressee to give an answer in the future. Another example is the use of anaphora

and ellipses. Besides the linguistic relation between contributions, utterances might also be

comprehensible only with respect to the overall context the conversation takes place in.

This means that conversation cannot be comprehensively modeled by looking at the individ-

ual dialogue acts alone, but the structure of the whole interaction needs to be taken into

account. A collection of unrelated utterances does not constitute a proper conversation, it

has to be coherent to be meaningful. The coherence relations of a conversation are however

derived from the basic dialogue acts and their communicative functions.

2.4.1 Speech and Dialogue Acts

(Austin, 1962) introduced the notion of spoken utterances being a kind of action, calling

them “dialogue acts”. Searle later elaborated on this theory more formally in (Searle, 1969)

and together with Vanderveken in (Searle and Vanderveken, 1985). The correspondence of a

dialogue act to its effect on the world can be immediate and direct, as in performative utter-

ances such as christening a ship or declaring war, or less direct, for example as in the sentence

“It’s cold in here”, whose intended effect could be solely to confer a belief or opinion about

the state of the world to a listener; it might however—within certain contexts—pragmatically

cause somebody to turn on a radiator or close a window, and be intended to do so. Bunt gives

the following definition of a dialogue act:

“A dialogue act is a unit in the semantic description of communicative behavior pro-

duced by a sender and directed at an addressee, specifying how the behaviour is

intended to influence the context through understanding of the behaviour.” (Bunt,

2005, p. 2)

The notion of intended context change directed at an addressee is central. It stresses that not

only the form of the utterance itself is important, but also its (expected) interpretation by the

addressee. To be able to know, or at least presume, what the sender will effect by a producing

a dialogue contribution, it is necessary to have some understanding of the way the addressee

is going to analyze it. The addressee-dependent context that is referred to in Bunt’s definition

is an informational account of the conversation as well as the general situation in which the

discourse takes place. The conversation participants generally cannot be expected to have

identical context representations. They can differ because the participants have different

beliefs and attitudes about the world.

Bunt’s definition implies that, to understand how utterances in a conversation are produced

and understood, the following questions must be addressed:

35

Requirements and Basic Concepts

• what kinds of context changes can be effected by dialogue acts, and

• in what way can a conversation participant anticipate how an utterance will change the

context for an addressee?

In the context of dialogue systems, different types of context change will result in correspond-

ing updates of the information states of the interlocutors, as well as possibly the representa-

tion of the environment.

2.4.1.1 Types of Context Changes

The mapping of linguistic signs to their intended context change, and with it their meaning,

are not inherent, but determined by pre-agreed conventions between the interlocutors. Also,

the “protocol” of conversation is governed by rules. A participant in a conversation needs

to know and adhere to these conventions and rules to be able to successfully understand

utterances of others, and make his own contributions to a conversation (Wittgenstein, 1953).

Frequently, the type of intended context change of a contribution is included in the form of the

utterance itself. For example, in the case of questions, in addition to marking them by ques-

tion cue words (“When will John come?”), questions can be distinguished from statements by

way of syntax (“John is coming tomorrow” vs. “is John coming tomorrow?”). A verbatim state-

ment can also be transformed to a question “John is coming tomorrow?” without syntactical

change by cues in other modalities, such as prosody or facial expression. The context can also

determine the type of speech act, e. g., the utterance “yes” can, e. g., be a statement about

some fact, or a commitment to do something, depending on previous utterances.

Dialogue acts can have effects on several levels. Austin distinguishes between three facets of

action in an utterance:

• the locutionary act, which is the physical action of producing an utterance,

• the illocutionary act, which is the speaker’s intended meaning of the utterance, which

could be a statement or a request. According to Searle, The illocutionary act has the

further aspects of illocutionary context (the environment in which the utterance is to be

understood), its propositional content, and its illocutionary force.

• the perlocutionary act, which is the action that results from the utterance, e. g., getting

the addressee to answer a question, or to incorporate the content of a statement into

her set of beliefs.

(Searle, 1975) elaborates on Austin and gives five major classes for speech acts:

• assertives – statements of facts, expressing beliefs of the speaker

• directives – commands, requests, questions, etc.

• commissives – promises, offers, etc.

• expressives – expressions of feelings and attitudes, e. g., apologizing or greeting

36

Requirements and Basic Concepts

• declaratives – acts that themselves perform an action, e. g., naming something

(Pedersen, 2002) points out that these classes can be further subdivided to yield more fine-

grained speech act types, as in (Bach and Harnish, 1962). He gives rich examples for verb

groups that each capture different shades of meaning for the types. His examples for English

verbs describing, e. g., assertives include: affirm, assert, claim, declare, say, state, submit,

forecast, predict, ascribe, attribute, categorize, describe, identify, judge, testify, conclude, agree,

guess, and many more. Also, (Pedersen, 2002) marks as important aspects of the meaning

of dialogue acts the notions of belief, want, desire, intention and obligation. Each of these

notions can apply to the speaker as well as to the listener in that, e. g., the utterance of an act

may impose obligations on either of them, or on both.

A further complication is that a speech act may be intended to convey pragmatic content

that is very different from its surface (or “literal”) meaning, depending on the context and

inferences that are implicitly assumed by the speaker. Consider the following utterances:

(1) Can you open the door for me?

(2) You are Peter Miller, I assume.

(3) You are so right.

(4) That was very wrong of me.

Utterance (1) usually does not constitute a request for information, but is a polite way of

instructing somebody to open the door. (2) is a question in the surface form of a statement.

It is possible (but not necessarily clear out of context) that (3) is a sarcastic statement, as

hinted at by the emphasized keyword so, and means just the opposite to what is actually

said. Finally, (4) is an utterance that can simultaneously be interpreted as a statement and

an apology. The last example also illustrates the important point that there not necessarily

has to be a clear one-to-one mapping from utterances to speech act types. There are many

possibilities to formalize the semantics of speech acts. Most use some sort of logic, either first-

order logic or modal logics that additionally model concepts of, e. g., temporal constraints or

necessity (cf., e. g., (Gamut, 1991)).8

2.4.1.2 Dialogue Acts

In the context of dialogue systems, the wider concept of dialogue acts (also called conversa-

tional moves) enriches speech acts with additional functions in the context of conversations.

Some examples are (Traum and Hinkelman, 1992), (Bunt, 1994), the dialogue coding scheme

DAMSL (Core and Allen, 1997; Carletta et al., 1997) which has later been expanded for mul-

timodal acts (Pineda et al., 2000), and the analysis of dialogue acts in the Verbmobil project

(Alexandersson et al., 1995).

The exemplary taxonomy shown in figure 2.9 builds on the work in the TRAINS project and

DAMSL. It specifies a set of task-independent dialogue acts derived in the Discourse Resource

8see (Pedersen, 2002) for a more extensive summarization of the development of speech act theory.

37

Requirements and Basic Concepts

• Core Speech Acts

– Forward looking acts

Statement

Assert, Reassert, Other-Statement

Influencing-addressee-future-action

Open-option

Directive

Action-directive, Info-Request

Commiting-speaker-future-action

Offer, Commit

Conventional

Opening, Closing

Explicit-performative

Exclamation

– Backward looking acts

Agreement

Accept, Accept-part, Maybe, Reject, Reject-part, Hold

Answer

• Grounding Acts

Understanding-act

Signal-non-understanding

Signal-understanding

Acknowledge, Repeat-rephrase, Completion

Correct-misspeaking

• Turn-taking acts

Take-turn

Keep-turn

Release-turn

Assign-turn

Figure 2.9: A taxonomy of dialogue acts (Poesio and Traum, 1998)

Initiative, with special attention to grounding and turn-taking acts. The set is hierarchically

structured in terms of classes and subclasses of actions, where subclasses inherit the proper-

ties of a superclass. The class of core speech acts that are used to “manage the topic of the

conversation in a general sense” (Poesio and Traum, 1998) is further subdivided into acts with

a forward looking and backward looking function, i. e., they relate to other acts in the future

or the past conversation, respectively. Further classes are acts used for grounding purposes,

and turn-taking. Again, a single locution may constitute an instantiation of more than one

dialogue act type.

There is no proven set of dialogue acts, or one that is de facto generally agreed-upon in the

research community. Neither is there a canonical taxonomy to define the relations between

acts. Some important open issues in this field are (Traum, 2000):

• what distinguishes genuine dialogue acts and other (e. g., physical) acts, communicative

or otherwise, and how can different kinds of acts be related if they occur together in a

conversational situation?

38

Requirements and Basic Concepts

• how are dialogue acts related to the dialogue structure beyond the scope of individual

utterances, and how do they extend to multi-party dialogue (e. g., are there multi-agent

dialogue acts)?

• which classes of dialogue acts should be distinguished, and what is their precise seman-

tics and role in the dialogue?

• what formalism should be used to represent dialogue acts, and how can one avoid

sacrificing common-sense intuitions or desirable formal properties?

• can the same taxonomy be used for different kinds of dialogue? How detailed should a

dialogue act taxonomy be?

It is therefore still an unsolved problem, and may well also be infeasible altogether, to deter-

mine a general set of dialogue acts suited to every kind of human communication, or dialogue,

or a single canonical taxonomy or representation for them. Fortunately, the fact that these

linguistic problems are not yet resolved does not prevent us from creating our framework for

dialogue management. The approach we describe in Chapter 5 is not dependent on such an

agreed-upon set of dialogue acts. For our framework, it is not required to commit to a specific

dialogue act categorization. We will instead use a basic dialogue act taxonomy similar to

the ones of (Poesio and Traum, 1998) and (Alexandersson et al., 1995) that is meant to be

extended by introducing additional subtypes if and when it is convenient or necessary for a

specific application (see section 5.6.1).

2.4.2 Discourse and Dialogue Structure

2.4.2.1 The Hierarchical Structure of Discourse Segments

Above the level of dialogue acts, a coherent conversation is characterized by higher levels of

structure. This includes the relations between the utterances as well as the mental models

that are constructed by the participants as the conversation progresses. Both contribute to the

meaning and understandability. (Grosz and Sidner, 1986) distinguish three main components

in discourse structure: The linguistic structure of the sequence of utterances, the intentional

structure, and the attentional state of the participants.

The segments of a conversation comprising units of linguistic structure, usually one or more

utterances per turn where a participant makes a contribution, can be grouped in discourse

segments. These segments can be hierarchically ordered according to their role or discourse

purpose in the conversation, as in, e. g., a train ticket sale interaction represented in figure

2.10. The intentional structure accounts for the discourse purpose of each segment by assign-

ing corresponding discourse segment purposes (DSPs). A DSP might be, e. g., to make some fact

known to a dialogue partner, or to persuade a dialogue partner to do something. The figure

does not make explicit whether each segment consists of just one, or many utterances. A DSP

structure could also be seen as a recipe for the structure of such a corresponding dialogue.

Each segment can also possibly be composite, and recursively decompose into additional sub-

segments to include, e. g., clarification exchanges when necessary.

Grosz and Sidner propose the coherence relations of dominance and satisfaction-precedence

between DSPs. A DSP A dominates another DSP B if B provides a part of what is necessary

39

Requirements and Basic Concepts

travel

set
departure

time

set

time
arrival

select from
list of

connections

dominance

satisfaction−precedence

time

establish confirm
travel
data

sell
train
ticket

Figure 2.10: DSP relations in a fragment of a train ticket sale dialogue

to establish A’s purpose, and A has satisfaction-precedence over B if A must be satisfied

before B can be satisfied. The train ticket sale example in figure 2.10 illustrates this: the

DSP sell train ticket dominates the DSPs that provide travel times, a connection selection,

and a confirmation from the user, since a train ticket cannot be sold without establishing

this information and getting the user to agree to it. A suitable list of connections can only

be presented after the travel times have been set, therefore establish travel time satisfaction-

precedes select from list of connections. Since departure and arrival time can be set in any

order (or possibly just one of both might be necessary), there is no relation of dominance

or satisfaction-precedence between the corresponding DSPs. Both coherence relations are

transitive and irreflexive (the transitive closure for the relations is not shown in the figure).

(Allwood, 2000) holds that the use of linguistic expressions is defined by grammatical struc-

ture, communicative function and their occurrence in a social activity, which is characterized

by the parameters

1. type and and function (purpose) of the activity,

2. roles that define the competence, obligations, and/or the rights of the participants in

the activity,

3. instruments used in the activity, and

4. other physical environment

If discourse segments are interpreted as sub-activities in a larger social activity governing the

overall discourse, and DSPs are seen as the purposes of sub-activities, the DSP relations can

already give some idea of how an agent could go about planning the sequence of communica-

tive actions necessary to achieve a task.

40

Requirements and Basic Concepts

2.4.2.2 Discourse History and Context

To understand an ongoing discourse, the history of past utterances and other context, linguis-

tic and otherwise, has to be considered.

Domain Layer RecordTapeDeviceTvProgram
... ...

Discourse Layer DO
1

Modality Layer
1

LO LO LOLO
1

LO
1

VO
2

GO
3 4 5

list of broadcasts running tonight.
S2: here (pointing gesture) you see a

... ...

one for me.
U3: Then tape the first

DO DO
2

DO
3

DO

DO

...
n

n+1 n+2

Figure 2.11: Example multimodal context representation (simplified, adapted from (Pfleger,

2007))

The recording of the course of the conversation is called the discourse history. In all but

very simple systems, this information does not only comprise an unordered collection of facts

about the interaction, but is also organized hierarchically according to the discourse and/or

task structure.

Knowledge of previous contributions and the context in which they occurred is necessary to

resolve elliptical utterances. It can also provide cues for the correct meaning of ambiguous

contributions and enable other instances of context dependent interpretation. An example is

the fusion of multimodal contributions, which can benefit enormously from close integration

with the discourse history. Figure 2.11 shows a simplified example of the dialogue history

representation used in the SmartKom system that also accounts for multimodal contributions.

It comprises three layers: the modality layer, the discourse layer, and the domain layer. For

dialogue systems, it is a design decision whether the discourse history should be stored and

processed separately from the task state (Allen et al., 2001b).

2.4.3 Information State

To engage in a dialogue in a meaningful way, the participants need to have some understan-

ding of what is going on in the utterances, as well as how they refer to the context in which

the conversation takes place. That means that the dialogue management components have to

maintain a knowledge base that is commonly known as the information state of the system.

41

Requirements and Basic Concepts

The necessary complexity of the information state for different dialogue systems spans a wide

range, depending on the complexity of the interaction as well as the underlying application.

On the side of simplicity, there are systems that are essentially finite state automata. The

majority of current automated phone-based services are examples of this. Using cue word

recognition, they frequently present the user with a voice-navigable menu system that is able

to answer common requests and tasks, or narrow down the topic area and route the caller

to a specialized human operator. The finite state approach is also suitable for other tasks

that can be modeled by a limited number of contextual “frames” or “forms” to be filled in,

corresponding to application stages or states, in a fixed order.9 In this case, the state of the

dialogue manager essentially coincides with the current state the automaton is in, possibly

extended by some account of the interaction history in terms of filler values.

On the other hand, more elaborate interaction paradigms require additional information to

model the task state, the state of the interaction, and the states of the interactors in user and

character models that account for the beliefs, motivations and plans of the interactors. Such

systems make use of a more powerful and comprehensive representation of the state of the

world and the actions the system is capable of, e. g., in terms of logical descriptions. Such a

representation allows more powerful and flexible reasoning using, e. g., theorem provers and

planning mechanisms. It imposes however, as a trade-off, increased demands with respect to

computational complexity and storage requirements; e. g., inferences using fully-fledged first

order logic theorem proving is semi-decidable and thus cannot guarantee reasonable time

bounds for system responses in the general case. To avoid this problem, dialogue systems

often resort to knowledge representation languages using Description Logics that offer decid-

ability in exchange for different subset restrictions of first-order logic with varying degrees of

expressivity that disallow, e. g., negation or existential quantification. The first such language

was KL-ONE (Brachman and Schmolze, 1985). Modern ontology languages for applications

in the semantic web, e. g., OWL-DL, also are based on description logics.

Between plain state-based and fully-fledged logical representation there is a wide variation of

paradigms. The following sections describe the approaches the Belief-Desire-Intention model,

the SharedPlans model for collaborative action, and the information states of the TRINDI and

SmartKom systems.

2.4.3.1 The Belief-Desire-Intention Model

The Belief-Desire-Intention (BDI) approach was introduced by Rao and Georgeff (Rao and

Georgeff, 1991), which expanded on earlier work by Cohen and Levesque (Cohen and

Levesque, 1990) and Bratman’s theory of human practical reasoning (Bratman, 1987). It

describes the motivations for action in a rational agent by interpreting the folk psychology

notions of beliefs, desires, and intentions in terms of computational agents.

The beliefs of a BDI agent are the set of logical assertions in that particular agent’s knowledge

base that the agent assumes to be true. This does not actually have to objectively be the case.

The belief set can also include inference rules that allow one to generate new beliefs. For a

rational agent, the set of beliefs should be logically consistent.

9Some flexibility is added if the states can be ordered dynamically, like in e. g., VoiceXML systems.

42

Requirements and Basic Concepts

The desires of an agent are motivations towards goals that the agent wants to achieve without

having decided to actively take action to pursue them. They can be abstract in the sense of

establishing conditions to “be happy”, or rather concrete, like achieving some goal. An agent

having particular desires does not necessarily mean that actions to satisfy them have to be

“on its agenda” at all times; they can be suspended if others take precedence.

intentions

belief
revision beliefs

filter options
generate

execute

plansdesires

Figure 2.12: Practical reasoning in a BDI agent (adapted from (Weiss, 1999))

An agent’s intentions represent what it has decided to do to reach the goal to satisfy one or

more desires that are attainable in a given situation, e. g., in terms of instantiated plans or

plan recipes. There may be more than one possible way to reach such a goal, in which case the

agent has to make a selection between them. Once an agent has decided to adopt a certain

plan, its execution becomes an intention of the agent; it can be said that intentions therefore

represent “choice with commitment” (Cohen and Levesque, 1990). The choice can be guided

by preferences of the agent, e. g., assumed utility values for the different alternatives. While

different desires of an agent can conceivably be and remain in conflict with each other (e. g.,

it can be rational to simultaneously desire to go to work and stay in bed), however, the set of

simultaneously adopted intentions should be consistent for a rational agent (i. e., one cannot

rationally intend to go to work and stay in bed at the same time). (Georgeff et al., 1999)

point out that to have intentions that are derived from desires gives a reason, or explanation,

for why those actions are done by a computational agent, and this constitutes a difference to

“conventional” program execution:

“. . . a goal represents some desired end state. Conventional computer software is “task

oriented” rather than “goal oriented”, that is, each task (or subroutine) is executed

without any memory of why it is being executed. This means that the system cannot

automatically recover from failures (. . .) and cannot make use of opportunities as

they unexpectedly present themselves.” (Georgeff et al., 1999, p.4)

As an extension of BDI, it has been proposed to also include the obligations of an agent, re-

sulting in a “BOID” model. Obligations are externally imposed constraints or requirements

on actions that are imposed on an agent by way of social conventions, norms, or commit-

ments. (Broersen et al., 2001) examine the conflicts that arise from the combination of the

43

Requirements and Basic Concepts

four components of BOID as well as possibilities to resolve them. Obligations can be violated,

e. g., if the desire to do something is stronger than the obligation to refrain from doing it.

The priority balance between external obligations and internal desires of the agent can also

be seen as a measure of how “socially behaved” the agent is. This allows the construction

of different personality types of agents that exhibit different preferences with regard to the

resolution of conflicts between beliefs, desires, intentions, and obligations; e. g., an agent is

called “selfish” if it tends to let desires override obligations, or “social” in the opposite case

(Broersen et al., 2001).

Implementing computational BDI agents for complex domains has turned out to be difficult.

One problem is that, e. g., fully rational action based on a BDI model would require oversight

of all consequences of one’s beliefs and actions, which is generally not practical for nontrivial

settings (problem of logical omniscience).

2.4.3.2 SharedPlans

SharedPlans theory (Grosz and Sidner, 1990) formalizes the conditions under which a group

of agents can be said to have a shared plan to collaboratively achieve some objective. The

theory was implemented in, e. g., the COLLAGEN system (see Section 3.2.2), but continues to

be developed.

The theory states that agents have (shared) plans when they jointly hold a certain set of

intentions and beliefs, i. e., it assumes a mental-state view of plans. There is a distinction

between having recipes and having plans. A recipe for an action α is a description of how to

do α, while a plan is an instantiated recipe that represents the intention to do α in a certain

way. Agents in collaboration share mutual beliefs and plans. Mutual belief in a statement σ

means that, in addition to each agent believing σ, each agent believes that all other agents

believe σ, and so on. A summary description of the conditions for a group G to hold a shared

plan for action α using a recipe Rα is (Grosz and Kraus, 1996):

(1) All members of G have mutual beliefs in a recipe Rα leading to the group success of

doing α.

(2a) Each member of G intends that Rα is done,

(2b) Each member of G intends that the collaborators succeed in doing the constituent

sub-actions,

(3) For each sub-action β in Rα, there is an agent or sub-group G′ which has an indi-

vidual or shared plan to do β, and everyone else in G must believe that G′ can do the

sub-actions using an appropriate recipe (it is not required that other agents know the

recipe).

Note the distinction between intend-to, i. e., the intention to (personally) do an action and

intend-that, the intention to (possibly jointly) bring about some state of the world. The con-

ditions can be elaborated for, e. g., partial shared plans in which not all steps are (yet) fully

specified. They include additional items in (1) concerning the mutual belief of the mem-

bers of G that all participants are committed to identify the parameters for Rα and satisfy

44

Requirements and Basic Concepts

its constraints, and (3) can be extended to cover different cases of deliberation and conflict

resolution (see, e. g., (Grosz and Kraus, 1999)). Agents collaborating on some goal can use

operators to build shared plans (Grosz and Kraus, 1996):

• selecting: from an available set of recipes to accomplish a subgoal, an agent or a group

of agents select a recipe using the operators Select Rec or Select Rec GR

• elaborating: an agent or a group of agent decompose a selected recipe into subactions

using the operators Elaborate Individual or Elaborate Group.

Using these operators, goals are decomposed until the level of fully specified atomic actions

is reached. An algorithm to build SharedPlans has been given in (Lochbaum, 1998).

The SharedPlans formalism focuses on the process of building a shared plan between agents

and does not account for the actual process of execution (Blaylock, 2005); some issues con-

cerning the underlying reasoning and, e. g., commitment rules also are not fully specified

(Grosz and Kraus, 1996). The formalism also does not integrate plan-building with other

communicative actions the agents perform. (Nguyen and Wobcke, 2005) points out that the

available implementations are hard-coded for a specific application, and a full framework

implementation of the theory for more general domains has not yet been constructed.

2.4.3.3 TRINDI Information State

TRINDI-based systems use an information state that is based on Ginzburg’s notion of a dia-

logue game board (DGB) that represents the dialogue information publicly shared between

participants (Ginzburg, 1996). It is combined with a private information state for each parti-

cipant (representing Ginzburg’s unpublicised mental state). Both together form the structure

called the “total information state”. The total information state keeps track of a dialogue by

successive updates triggered by the moves of the participants. It can then be used to motivate

and trigger future action.

2

6

6

6

6

6

6

6

6

6

6

6

4

PRIVATE

2

6

4

AGENDA Stack
`

ACTION
´

PLAN Stack
`

ACTION
´

BEL Set
`

PROP
´

3

7

5

SHARED

2

6

6

6

6

4

COM Set
`

PROP
´

QUD Stack
`

QUESTION
´

LU

"

SPEAKER Participant

MOVE Move

#

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

5

Figure 2.13: A TRINDI information state

Figure 2.13 shows an example from the IBiS1 system (Larsson, 2002). The public part

(SHARED) stores information about the current question under discussion (QUD) in the dia-

logue, propositions the speaker and the system have mutually agreed to (COM), and infor-

mation about the latest utterance (LU). The PRIVATE part contains the agenda of the system

agent (AGENDA) as a stack of actions, a set of plan constructs (PLAN), and a set of beliefs held

by the agent (BEL).

45

Requirements and Basic Concepts

An information state theory consists of (Larsson and Traum, 2000):

(1) a description of the informational components of the dialogue model, including context

and motivating factors such as participants, user models, obligations, beliefs, etc.,

(2) formal representations of the informational components in terms of, e. g., lists, discourse

representation structures, or logic expressions,

(3) a set of dialogue moves that realize natural language utterances and trigger information

state update,

(4) a set of update rules that are applicable depending on the current information state and

performed dialogue moves,

(5) an update strategy for deciding which rule to select from a set of applicable ones, which

can be a simple “pick the first one” strategy, or use more sophisticated arbitration mech-

anisms, such as game theory, utility theory, or statistical methods.

A TRINDI dialogue manager executes an update loop that drives the dialogue by selecting and

applying appropriate update rules and executing associated dialogue moves.

2.4.3.4 SmartKom’s Information State

In the SmartKom system, the main information state is split between two modules, the dis-

course modeller (DiM) and the action planner (AP).10 The discourse history module models

the structure of the interaction with the user in terms of dialogue segments in a three-tiered

model. DiM’s information roughly corresponds to the SHARED part of the information state in

TrindiKit-based systems (the progression of the interactions between the action planner and

the application modules is not stored in the dialogue history). Not only spoken contributions,

but all multimodal interactions are stored, since the user can also refer to past non-spoken

contributions in, e. g., anaphora (Pfleger et al., 2003).

The action planner holds the structures that contain the task-related domain knowledge, in-

tentions and discourse-independent beliefs of the system. This in turn corresponds to the

PRIVATE part of the information state. For each active application, a discourse object is main-

tained that contains the data relevant to the application (Figure 2.14 shows a discourse object

representing an information search action in a route-finding application). Underspecified dis-

course objects are also used to represent the content of dialogue contributions related to the

application. Discourse objects can be passed between applications that work together; in

some cases, they can also be converted to other data types, e. g., when the dialogue is about

scheduled cinema performances and switches to the TV program, parameters such as time

restrictions and genre preferences are adapted and retained in the discourse object for the

new application (Porzel et al., 2003; Alexandersson et al., 2004b).

Alternative hypotheses for the meaning of incoming user intentions are annotated with scores

at the different processing stages of speech recognition, speech interpretation and media

10The run-time data some other modules maintain, e. g., the dynamic lexicon and the help module, also affect

the interaction and could be seen as part of the overall information state of the system; however, the flow of the

main interaction is determined by the states of AP and DiM.

46

Requirements and Basic Concepts

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

InformationSearch

PIECEOFINFORMATION

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Sight

LOCATION

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

LocationType

OBJECTKEY

2

6

4

ObjectKeyType

KEY 147

TYPE “spatialObject”

3

7

5

LOCATIONNAME “Schloss”

OBJECTTYPES
˙

Castle
¸

GEOMETRIES

*

2

6

4

Point

X 3479352.0

Y 5474910.0

3

7

5

+

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 2.14: An InformationSearch discourse object from a SmartKom information state

fusion. The discourse modeller performs context-dependent semantic enrichment on these

hypotheses, e. g., reference resolution, which also adds a score to each. After that enrichment,

an intention recognizer module selects one hypothesis according to a weighting of the different

scores, and passes it on to the action planner.

The action planner manages a stack of discourse objects that belong to the active applications

and are dynamically updated during the interaction. When an active application is completed,

it is either possible to either continue a previous application that was incompletely executed

before the current one (whose discourse object is located below in the stack), or to start

a new unrelated application (cleaning the stack). The first option allows applications to

execute functionalities of other applications as sub-procedures. However, SmartKom does

not incorporate more sophisticated switching between tasks, and especially does not allow to

execute more than one task simultaneously.

Contrary to TRINDI’s information state, the information state in SmartKom does not include

rules for updates of discourse objects or the selection of actions (items (4) and (5) in the

list in the previous section). This information is represented separately in a set of action

plans that combine declarative and procedural elements to define a set of possible dialogue

games for each application in SmartKom. A custom planner combines the information in the

following way: it uses the action plans as operator specifications, and the information state

as a description of a task state for a planning problem. The operation of SmartKom’s action

planner is described comprehensively in (Löckelt, 2006).

2.4.4 The Impact of Multimodality

2.4.4.1 Rationale

In everyday communication, humans generally uses multiple modalities. On first glance, a

multimodal dialogue system therefore promises to be more intuitive to use. There are how-

ever additional benefits. The potential as well as possible misconceptions regarding the use

of multiple modalities were analyzed, e. g., using the example of the QuickSet system. Aside

from more natural interaction, they provide a greater robustness of recognition, and superior

error avoidance and graceful recovery from errors (Oviatt, 2002), greater expressive power

47

Requirements and Basic Concepts

and efficiency, and better accessibility for users with different skill levels, native languages,

cognitive styles, and sensory or motor impairments (Oviatt and Cohen, 2000). Oviatt rejects

the assumption that a combination of different error-prone recognition technologies might re-

sult in greater unreliability, arguing that instead the input can be combined to remedy errors

and ambivalent input through mutual disambiguation offered by redundant or complemen-

tary data (Oviatt, 1999).

Key issues for multimodal interaction are systems with multiple (not just two) modalities,

symmetric multimodality (i. e., balanced multimodal input and output) and the integration

of multimodality with virtual environments and synthetic characters (Wahlster, 2003b; Ovi-

att, 2002). For systems featuring non-trivial interactive communication with virtual charac-

ters, called “embodied interfaces” by Cassell, the ability to flexibly produce (and recognize)

contributions in different modalities becomes a necessity (Cassell et al., 1999; Cassell, 2001).

Common input modalities for interaction with dialogue systems include speech, gestures, fa-

cial expression, gaze, as well as “conventional” mouse interactions with GUI components, and

of course typed input. There are also systems where the user can interact via manipulations

of the physical environment, such as moving objects (e. g., the COHIBIT installation (Ndi-

aye et al., 2005) lets the user assemble a car prototype from different car parts, and reacts

to positioning the parts in different physical places), or handling physical avatars (e. g., the

“emotion transmitting doll” mentioned in Section 2.3.1). Many types of multimodal output

require that the system features some kind of “embodiment” to carry the message, usually in

form of an (abstracted or realistic) avatar of the system. In some cases, modalities cannot be

straightforwardly symmetrical (e. g., graphic display of data by the system).

2.4.4.2 Processing

Although we are concerned with multimodal systems, we assume that the integration and

disambiguation of multimodal input, as well as the distribution of output into suitable mo-

dality combinations are the tasks of two components separate from the dialogue manager:

A modality fusion component constructs a unified input representation from the output of

the recognizers for the different input modalities. Conversely, a modality fission component

decomposes output in this combined representation and yields component acts that can be

distributed to different generation components.

This means that the input and output of the dialogue manager can be in terms of multi-

modal communication acts that combine the content of all modalities in a unified semantic

representation. With dedicated fusion and fission components present, the dialogue manager

can remain largely “modality-agnostic” with respect to its input and output, as the units of

communication are multimodal “discourse objects” (see Figure 2.11). However, some issues

related to multimodality remain that must be considered, for example

• Input and Output Synchronization

Frequently, multimodal input occurs in a time-overlapping manner, or with delays. An

example are utterances accompanied by pointing gestures, as in the following:

USER: Select this [ր (player4)] football player.11

11We include pointing gestures by a notation of “[ր (referenced object)]” in transcriptions.

48

Requirements and Basic Concepts

USER: Put Ballack there . . . [hesitates] [ր (position7)]

Combined with the fact that recognizers for different modalities may take different

processing times, it follows that it is not always possible to pass on an utterance im-

mediately when it has been recognized. Instead, multimodal fusion components often

set some time frame to wait before proceeding in case the contribution is not (yet)

complete. This however can impact the responsiveness of the system negatively. The

generation of multimodal output also requires synchronization. A constraint-solving

component can be employed to generate a schedule for the production of a multimodal

act (e. g., the ActionEncoder described in (Klesen and Gebhard, 2007)). There are also

some questions with regard to when a contribution is actually considered to have be-

gun or finished from the point of view of the participants; this issue will be discussed in

more detail in Section 7.2.4 on realization scheduling.

• Presentation Planning

In some cases, the timing of the system contributions and their distribution among dif-

ferent modalities is partly or completely done by the dialogue manager. This is sensible

in cases where there is no dedicated presentation planning component, or where the

presentation component is a stateless module altogether.12 In this case, a unified re-

presentation allows for selection of different modality combinations for the same mul-

timodal presentation depending on context. For example, if the system is used in a

mobile environment such as a moving car by the driver, in some situations it can be

inferred that it is not appropriate to use a graphical display since the user must not

divert her attention from the street while driving. In this case, it is better to choose

a purely speech-based rendering of the output. Another example is presentation plan-

ning to manage limited screen estate on smaller devices. If the system is reacting to

a multimodal user utterance, information about the source modality, if retained in the

unified input representation, can also be exploited to aid in the selection of appropriate

output modalities. It can also be beneficial if the dialogue manager can determine or at

least influence the selection of output modalities, e. g., to accommodate the preferences

of the user, or environment-related constraints (e. g., using non-speech modalities in a

noisy situation). Along these lines, to enable the dialogue manager to be responsive to

user modality choices, the multimodal communication acts should retain information

about the original modalities the different parts of the input were recognized in.

The systems that have been realized with the framework from this thesis, described in Chapter

7, all feature multimodal input and output. In all cases, a designated module (FADE) is

assigned to do modality fusion, but the task of modality fission is taken over by the dialogue

manager.

2.5 Dialogue Management

The last sections concentrated on descriptions of the elements and structure of dialogues,

as well as the mental states of the participants. This section now looks at dialogue from

12This is the case for all use case examples described in this thesis.

49

Requirements and Basic Concepts

the perspective of how the participants interact in it as a joint activity, and how a dialogue

manager may go about to partake such an activity in controlling one or more participants.

We also examine several relevant phenomena that arise during interactions with dialogue

systems, and what is usually done about them. We also look at the additional qualities and

requirements introduced in multi-party dialogues, i. e., dialogues involving more than two

participants.

All parties involved in a dialogue must satisfy essential constraints to “play by the rules”. First,

even when ignoring task level cooperativity, for communication to have any chance to be suc-

cessful at all, there has to be at least a basic level of interaction cooperativity. If participants

do not coordinate their usage of the available channels used to exchange communication

signals, e. g., by means to avoid simultaneous speech, understanding will be difficult or im-

possible for everyone. Also, in a dialogue, the participants can generally be said to have

individual, joint, or possibly conflicting goals they pursue. In a task-oriented interaction, it

is usually in everyone’s interest to act cooperatively and solve the task together. In a typical

interactive narrative, every character has personal goals, and those of the antagonist of the

player will—per definitionem—include to work against the player. However, cooperativity on

the dialogue level is more fundamental. Unless they want to cause utter confusion, even

openly hostile dialogue partners are bound by the basic rules of dialogue; otherwise, it might

be just as useful to have no conversation at all.

In the next sections, we examine some aspects of communication as joint action. First, look

at patterns underlying communicative exchange. Second are issues of negotiating the right

to speak at a given time. Afterwards, we treat how the respective information states of the

dialogue participants are accommodated to ensure mutual understanding and agreement of

what the dialogue is about.

2.5.1 Patterns for Communicative Exchange

As stated in section 2.4.2, related utterances group into discourse segments with certain pur-

poses. We now look at how this grouping can be modeled, where, like with syntactic phrases

and their constituents, “the meaning of a segment [is] encompassing more than the meaning

of the individual parts” (Grosz, 1997). The interactive patterns are important for dialogue

management from different viewpoint angles.

• Descriptive: In what way can rules or patterns be specified that set apart sequences of

utterances that are meaningful / rational / cooperative from ones that are not?

• Interpretative: Given the meaning of the constituents and the context, what is the (prag-

matic) meaning of each utterance?

• Generative: How can a dialogue manager generate appropriate utterances?

Prominent approaches in this respect are the dialogue grammar, dialogue games and plan-

based approaches, which we will concentrate on here (in Chapter 3 we also give some exam-

ples of differing approaches used in deployed dialogue systems). To summarize a comparison

made in (Cohen, 1997), the dialogue grammar approach is based on the observation that

50

Requirements and Basic Concepts

there are adjacency pairs, like “question-answer” or “proposal-acceptance”, where the first el-

ement of a pair generates an expectation for the second, and violations of such expectations

are apt to disrupt the dialogue. Dialogue grammars use rules similar to syntactic phrase-

structure grammar rules, where terminal rules correspond to dialogue act representations,

and can be used to predict possible next acts given a prior sequence. The related dialogue

games approach, which will be further explained in the following section, also groups utter-

ance elements together according to a set of rules to generate predictable sequences, but sees

them as moves in a game between the participants. This offers the possibility to identify ex-

pected next moves, like in other games. The plan-based approach starts from the underlying

task structure and sees the utterances of the participants as means to convey their intentions

in addressing a (joint) task. Planning and plan recognition algorithms can then be employed

to infer appropriate subsequent utterances.

In our framework, we follow the proposal made by (Hulstijn, 2000a) and use the dialogue

game and plan-based approaches in a complementary fashion to model dialogue as a process

of joint action using shared schematic (sub)plans—or, “recipes”—derived from the patterns

provided by the rules of the former. As Hulstijn put it in the title of his paper, “Dialogue Games

are recipes for joint action.”

2.5.1.1 Dialogue Games

The notion of seeing the interaction in a dialogue as a sort of game has a long history, reaching

back as far as Aristotle, who investigated rules for argumentation in his work Topics (Aristotle,

1928). In the 20th century, linguistic research took up the notion again. Wittgenstein viewed

the meaning of language to be determined by way of how it is used in an exchange between

humans, and introduced the term “language game” in a series of thought experiments about

the nature of human communication (Wittgenstein, 1953). In such games, the use of non-

linguistic devices, such as pointing, was also included to convey meaning.

Later research, especially in the field of computational linguistics, found the game metaphor

useful, not least because the availability of explicit rules for dialogical interactions facilitates

an algorithmic approach. Early work in this area is (Schegloff and Sacks, 1973) examining

conventions that exist between human dialogue partners regarding the termination of con-

versation. Such conventions need not involve making actual utterances, but can also consist

of deliberately not making them (e. g. outwaiting the socially acceptable time frame for the

introduction of a new conversation theme). Schegloff and Sacks also pointed out that the

conventions typically involve utterance pairs, e. g., one utterance (or silence) to propose the

termination, and another utterance in response to accept the proposal. This work, although

only concerned with dialogue termination, also illustrates that the social pressure to adhere

to these conventions can cause awkward situations. It is quite possible for a dialogue partner

to refuse an offering for dialogue termination by, e. g., starting a new strand of conversa-

tion. It requires considerable social courage for a dialogue partner to brusquely abort the

discourse anyway if another does refuse to cooperate. If we see conversational interaction as

a rule-bound game, this difficulty can be ascribed to a reluctance to violate the rules of the

game.

(Carlson, 1983) applies the game metaphor for discourse analysis and to determine the se-

mantics of utterances, but he only considers question-answer dialogues. (Lewis, 1979) de-

51

Requirements and Basic Concepts

Game Name Joint Goal Goal of Initiator (I) Goal of Responder (R)

Information
Seeking

I knows the information
that is sought

I has identified to R

the information that is
sought

R has provided the in-
formation that is sought

Socratic
Challenge

I knows whether R can
construct particular infor-
mation i which R plausibly
is able to construct based
on prior experience

I has identified i to R R has exhibited R’s own
knowledge of i

Permission
Seeking

Determine whether R

gives permission to I to
do a particular action a or
seek a particular outcome
o of action

I has identified to R the
action a or outcome o

for which permission is
sought

R has decided whether
R grants permission to
I to do a or seek to
achieve o

Figure 2.15: Some examples of dialogue macrogames with their joint goals (Mann, 2002)

scribes a representation called the “dialogue game board” that is updated with communicative

moves during a conversation and thereby keeps a “score” of the common context between the

participants. Mann identifies joint goals shared by the participants in dialogues in his in-

vestigations on dialogue macrogames (e. g., (Mann, 1988, 2002)). Figure 2.15 shows some

of the game types he lists, together with the joint and individual goals. The dialogue game

metaphor has also been used in various instances for dialogue management and in the anal-

ysis of speech corpora for dialogue systems. Examples are the problem-solving in TRAINS

(see Chapter 3), the collaborative dialogues in the Edinburgh map task (Kowtko et al., 1991;

Carletta et al., 1997), and negotiation dialogues in Verbmobil (Alexandersson, 1996).

While dialogues, like competitive games, are goal-directed activities, one characteristic that

is harder to pinpoint in them is the notion of winning that is central to most classic games;

however, some moves may be better or more “advantageous” depending on the situation.

Dialogue games can be associated with a purpose expressing why they are played, which is

usually a joint purpose for all players involved. This can be to share a piece of information,

to achieve mutual commitment, etc. In this case, the game is successful if the participants

achieve its purpose. However, generally there is no immediate material gain or “winning

situation” to a dialogue game13. Rather, the point is to avoid to violate the rules—which

is socially discouraged—and select from the available moves the one that is suited best for

achieving the context and joint purpose (e. g., intuitively, a correct answer should be the

“best” reaction to a question in a cooperative context).

Following the terminology used with other games, dialogue games involve a group of parti-

cipants. The participants take on roles. In a game with two participants, the basic roles are

the one of the initiator that starts the game, and the responder role assumed by the other

participant. A game consists of a sequence of actions, or dialogue moves. The rules of the

game specify which moves are permitted at any one point depending on the circumstances,

and when the game ends. For the moves, the notion of utterances being acts, namely dialogue

acts as described in Section 2.4.1, is adopted.

13One can view “socratic dialogue” as an exception; the initiator can “win” a socratic dialogue by forcing the

responder to contradict himself or otherwise to accept the initiator’s premise.

52

Requirements and Basic Concepts

Dialogue acts are produced by a speaker and have a set of intended addressees as well as

possibly overhearers, i. e., participants that were not directly addressed by the utterance, but

nevertheless are able to observe the contents of the utterance. Thus, dialogue acts are by their

nature directed towards an audience; the participants exchange dialogue acts. One utterance

in a dialogue game is then called a move.

A: Good morning.
B: Hi.
B: Have you seen the coffee machine?

A: I think it is broken.
A: They took it away yesterday for repairs.

A: The one on our floor?
B: Yes.

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(1) (2) (3) (4) (5) (6) (7)

I

1I

2G

Game Subtree DSP

G (1)–(2) Greeting

I1 (3)–(7) Information Seeking (“where is the coffee machine?”)

I2 (4)–(5) Information Seeking (subgame of I1; “which coffee machine?”)

Figure 2.16: Example of dialogue games and their hierarchical structure

As already mentioned, the exchange of moves is governed by rules; pragmatic social con-

ventions prescribe which sequences of moves are considered acceptable or anomalous. An

example of such a rule would be that a question move from A directed towards B should be

followed by an answer move from B to A, and that the answer move should actually address

the question. Depending on circumstances, other moves are acceptable as well. B could react

with a statement that he does not know an answer, or refuse to answer for other reasons. On

the other hand, simply ignoring the question is usually not a (polite) option. B could also ask

a counter question, in which case a sub-game is initiated. The sub-game then is embedded

into the original game, which is suspended and continued only after the sub-game has been

completed. The resulting structures of sequential moves and hierarchically embedded games

can be displayed as a tree structure, as in Figure 2.16. Here, the leafs of the tree correspond

to single dialogue moves, and the subtrees to dialogue segment purposes, as shown in the

figure table. Note that the end of a game is not always clear-cut in an ongoing conversation:

the first information seeking subgame is continued up until turn (7), but it might have been

considered already finished after turn (6); the responder belatedly provided some additional

information.

53

Requirements and Basic Concepts

Usually, multi-party dialogue is described by means of decomposing it into segments involving

two participants at a time. This is often (but not always) adequate. The main shortcoming of

this reduction is the failure to take into account that overhearers, or addressees not actively

contributing to a segment, at least perceive the utterances and can update their information

state accordingly. If they contribute later in the conversation, they can “grab” a role from

another participant (e. g., answering instead of the addressee). If their overhearer role is

accepted, they can also use rhetoric devices such as anaphoric references to utterances even

when they were not addressed in the conversation, as in the example in Figure 2.17, where

an overhearer C chooses to take over the responder role from the addressee B.

A (→ B): Do you know Peter?

B (→ A): No.

C (→ A): I met him yesterday.

Figure 2.17: Example: An overhearer takes the role of responder

Dialogue games also present some difficulties. One is that the involved parties need to have

shared knowledge about the games used in the conversation; here, discrepancies can lead

to confusion. Also, the hearer must, to cooperatively join a game, be able to recognize the

type of game, which can be ambiguous if there are several games starting with the same

dialogue act type. A related issue is that it may be also ambiguous which dialogue act type

a given utterance belongs to. (Pulman, 1996) argues that Bayesian networks may help to

identify dialogue act types, however, the mapping may just not be clear-cut in some cases (cf.

Section 2.4.1.1). Also, especially in multi-party dialogues, games can occur in an overlapping

fashion. These issues are more problematic for a dialogue manager that has to produce a

reaction during an ongoing conversation, of which naturally only the previous utterances can

help in disambiguation, than in the case of analysis of an already completed dialogue that is

known in its entirety.

There have been several formal accounts of dialogue games for different types of dialogues

(an overview can be found in, e. g., (Hulstijn, 2000b), Chapter 5.2.1). As an example, we

show the approach of (McBurney and Parsons, 2002a,b). There, dialogue games are explic-

itly called “protocols for interaction”. A list of dialogue game components is given, which

encompasses

1. Commencement rules that define the conditions that must hold for for a dialogue game

to begin,

2. Locution rules that indicate which utterances (or utterance types) are permitted,

3. Combination rules constrain particular locutions to be permitted, not permitted, or obli-

gatory, depending on dialogical context,

4. Moves are associated with commitments to propositions. After execution of a move, the

initiator is obliged to hold onto its commitments (although it may be possible to back

up, this will usually require further action, such as explicitly retracting a claim in an

additional game),

54

Requirements and Basic Concepts

5. Termination rules define the circumstances under which a game ends. A completed

game is called “closed”.

Name Notation Meaning

Iteration Gn G is repeated n times

Sequencing G;H G is executed until it is closed, and immediately followed

by H

Parallelization G ∩H G and H are executed simultaneously, until both are

closed

Embedding G[H|Φ] H is embedded in G after Φ: G is executed up to some

specified point Φ where it is suspended, then immedi-

ately H is executed until it is closed, then G is resumed

from the point of interruption and executed until it is

closed

Testing < p > Obtains the truth value for the proposition p referring to

the world external to the dialogue. This operation might,

e. g., consist of a database lookup, or require to conduct

a physical experiment to test the proposition

Figure 2.18: Notations for dialogue game combination operations

Composite dialogue games can be constructed from elementary ones using combination

operations. A list of combination operations given dialogue games G and H is given in Figure

2.18.14

2.5.1.2 The Plan-Based Approach

A second widespread approach assumes that the actions in a dialogue are steps of plans

created and pursued by the participants in order to achieve their goals, mainly, to change the

mental state of the other participants. Besides an own plan of how to proceed, to understand

each other and to be able to react appropriately, the dialogue partners need need to use

some sort of plan recognition, or a way to communicate their plans explicitly. Some of the

informational background for plan-based models were already introduced in Section 2.4.3.1

on the BDI and SharedPlans models.

If a dialogue is seen as goal-directed and plan-based behavior, then dialogue can be seen as “a

special case of other rational noncommunicative behavior” (Cohen, 1997). Dialogue acts can

be defined as operators, manipulating the mental states of the participants, with preconditions

and postconditions to assert and retract propositions according to logical inferences over the

previous mental state and other context. For a given goal, a possible course of conversational

actions can then be devised using standard AI planning techniques, such as HTN planning

(cf., e. g., (Nau et al., 1998)).

14We think that the last type of operation, testing, is not strictly required, but can also be replaced by embedded

sub-dialogues, such as database request-response interactions.

55

Requirements and Basic Concepts

BOOK-FLIGHT(A, C, F):

Constraints: agent(A) ∧ flight(F) ∧ client(C)

Precondition: know(A, depart-date(F)) ∧ has-seats(F) ∧ want(C,BOOK-FLIGHT(A, C, F)) . . .

Effect: flight-booked(A, C, F)

Body: make-reservation(A, F, C)

INFORM(S, H, P):

Constraints: speaker(S) ∧ hearer(H) ∧ proposition(P)

Precondition: know(S, P) ∧ want(S, INFORM(S, H, P))

Effect: know(H, P)

Body: believe(H , want(S, know(H, P)))

Figure 2.19: Some STRIPS-like action schemata for flight booking

Act axiomization can use, e. g., parameterized action schemas derived from operators for the

STRIPS planner (Fikes and Nilsson, 1971). An action schema has preconditions that must hold

for it to be applicable, effects (also called postconditions) that are introduced when the schema

is performed, and a body that specifies subactions to be performed, or subgoals to be fulfilled

when the schema is executed. Figure 2.19 shows an two abridged action schemata that are

part of an example from (Jurafsky and Martin, 2000). The first schema states that to book a

flight for a client C, the agent A must know (among other things) the departure date of the

flight. If C is aware of this requirement, it can instantiate the INFORM action schema and

produce an utterance to this effect. Otherwise, A could try to elicit the INFORM action by

producing an instance of an INFO-REQUEST schema (not shown in the figure), to explicitly

communicate to C that A needs this information.

One could question whether a planning stance actually matches the approach of human dia-

logue partners. There is no doubt that dialogue constitutes is a cooperative and often goal-

directed activity, and that the interlocutors generally have some idea of how to arrive at goals

and sub-goals. However, the nature of dialogical interaction itself exhibits some features that

speak against treating it as a classical planning problem. Intuitively, humans interlocutors

seldom plan ahead in all detail how a conversation will or should proceed. There are some

exceptions in rigidly formalized conversations (such as an officer asking someone to answer a

series of questions for a questionnaire) or carefully premeditated arguments where one party

has “hindsight” about the contributions of others (such as a socratic dialogue). However,

even in such cases, there will usually be exchanges that are not part of the “plan”. Instead,

the contributions during dialogue are chosen and formulated opportunistically, one turn at a

time, and in real time. Also, the assumption of perfect information—that a planning agent

knows the full state of the world it plans in—is not a given in common dialogues, and no at-

tempt is made to establish it initially; instead, the participants adapt their course of action to

information that is discovered during the interaction. However, humans do employ planning

on the level of a task they are trying to achieve.

Plan-based dialogue processing presents difficulties with respect to the interlocutors being re-

quired to interpret each other’s utterances, that also may be ambiguous, and which requires

them to employ plan recognition. Similar to dialogue games, for a plan to be recognizable,

56

Requirements and Basic Concepts

both parties need to have shared knowledge about it. The approach is generally considered to

be powerful, but also to require more complex domain modeling (Allen et al., 2001a), as well

as computational effort if the plans are computed dynamically during the interaction: in the

worst case, planning and plan-recognition can be combinatorially intractable or undecidable

(Cohen, 1997). To reduce the plan-creation effort, some systems retain libraries of generic,

prefabricated plans as a special kind of belief in the knowledge base (e. g., (Georgeff et al.,

1999; Larsson et al., 2000)). This kind of plans are called recipes and are especially help-

ful for schematic situations that occur frequently. Models with different levels of goals and

plans have also been proposed, e. g., a tripartite plan-based dialogue model in (Lambert and

Carberry, 1991) that has separate plan libraries for domain, problem-solving, and discourse

issues.

2.5.1.3 Turn Management

Spoken conversation overwhelmingly proceeds in turns where one party—the one “having the

turn”—speaks at a time, and human speakers have means to finely coordinate the allocation

of turns (Sacks et al., 1974). Each turn also provides a natural interval for information state

update. For coordinated dialogue, the participants need to take heed of time constraints. For

one thing, available “half-duplex” modalities such as speech, (i. e., ones that are unreliable if

they are used in a simultaneous fashion) have to be assigned to one person at a time; others,

e. g., gestures, can be used and understood in parallel by all participants. There needs to be

some management of the available modality resources (also called communication channels)

over time to avoid conflicts and misunderstandings. The right to talk can be asserted verbally

(e. g., by explicit assignment, as in “What do you think, Robert?”, or by nonverbal means such

as using gestures and eye gazes. Humans are very proficient in recognizing the points in

conversation where the turn assignment can change, the so-called transition relevance points

(TRPs). In human-human dialogues, most of the time, there is no or very little discernible

overlap or gaps between turns (Sacks et al., 1974).

The need for turn-taking management is largely eliminated if a system uses single initiative,

i. e., the interaction is driven by one of the participants, the other only reacts. Pure system

initiative is prevalent in many simpler system-user interactions for more linear task-based

applications. In this case, the system issues a prompt, often in form of a question, to indicate

a turn yield and the expectation of a user contribution. For example, telephone based service

hotlines often feature dialogues like the following:

SYSTEM: “Good morning, welcome to <company name>. Please answer loud and

clearly. Do you want to talk about your Internet service contract, technical

problems or other issues? Please say ’contract’, ’technical’ or ’other’ . . . ”

A prompt can, as exemplified by the second sentence, also constrain possible utterances by

the user by already offering a limited set of options to choose from. This is useful if, e. g., the

system can only handle a small vocabulary. System-initiative dialogue can be tedious if the

user knows what she wants but needs to conform to the system’s terms to get there, maybe

involving several fixed steps in between that could be avoided. Interfaces that employ pure

user initiative are very rare; since they impose on inexperienced users the problem to find out

what exactly is possible in the interaction.

57

Requirements and Basic Concepts

while conversation is not finished
if system has obligations

address obligations
else if system has turn

if system has intended conversation acts
call generator to produce NL utterances

else if some material is ungrounded
address grounding situation

else if some proposal is not accepted
consider proposals

else if high−level goals are unsatisfied
address goals

else release turn or attempt to end conversation
else if no one has turn

take turn
else if longer pause

take turn

Figure 2.20: A discourse actor algorithm (Traum and Allen, 1994)

More flexible and natural are mixed-initiative systems where each dialogue partner can take

the initiative. (Traum and Allen, 1994) gives a discourse actor algorithm for mixed-initiative

plan-based systems, shown in Figure 2.20 (the update of the conversational status with newly

perceived conversation acts progresses asynchronously to this algorithm in a parallel thread).

The algorithm is a continuous loop that in each iteration will decide whether to take an action,

depending on the current context. Taking and releasing turns can happen implicitly (e. g.,

by pauses), but nevertheless are actions in their own right. (Traum and Hinkelman, 1992)

introduced a class of turn-taking acts containing acts take-turn, keep-turn, and release-turn

(which has a subvariant assign-turn if the releasing party explicitly selects another as the next

speaker). In an environment involving more than two interlocutors, there is an additional

element of multiple participants competing for the next turn. Turn-taking acts can, beyond

their “protocol” function, also take shape in the system presentation in various forms; e. g.,

a visual prompt indication for the user, or, in the case of virtual characters, explicit gestures

and gazes akin to turn-taking signals between human interlocutors.

(1) USER: “Book a ticket for Thursday.”

(2) USER: [before System responds (during processing)] “No, I mean Friday.”

(3) SYSTEM: “Here is your reservation number for . . . ”

(4) USER: “Actually, make that two tickets.”

Figure 2.21: Examples for “barge-before” and “barge-in”

In this context it is also significant what happens during interruptions as in the example of

Figure 2.21. It can happen that a participant interrupts during another’s turn (barge-in, turn

(4)), or the user makes an utterance during the move preparation phase of a dialogue sys-

tem, but before the start of the utterance realization (barge-before, turn (2)) (Beringer et al.,

58

Requirements and Basic Concepts

2001).15 An adequate reaction to such interruptions can require (a) aborting an utterance

during realization, as in turn (3), and (b) re-evaluating or reconstructing adopted plans. A

plan-based system can check for interruptions during and after the move planning phase and

before actual realization, but there still remains the delay caused by the realization steps after

the action manager, such as text generation and speech synthesis.

To proactively reduce the incidence of barge-in and barge-before, the system can provide

visual or other feedback cues to the user when the virtual characters actually expect her to

say something, or when the characters are themselves busy preparing to make an utterance.

The emphasis of such a mechanism depends on the circumstances. In a task-oriented dialogue

system, where miscommunications are potentially disruptive and frustrating, a more bold or

even exaggerated display of attention may be appropriate (e. g., in the SmartKom system, the

system character Smartakus caps its ears in an obvious and even comical gesture), while in a

narrative context, more subtle hints like gazes are probably advisable, to avoid disturbing the

atmosphere.

2.5.1.4 Grounding

During a conversation, the participants build up a common ground, i. e., shared assumptions

about what was said. Adding to the common ground is called grounding. (Clark and Schaefer,

1989) list as main types “evidence” for grounding: continued attention, indicating an utter-

ance was accepted and there is “nothing wrong” with it, the initiation of a next relevant turn,

explicit (and often overlapping) acknowledgement, e. g., by short cue words or an evaluation

like “that’s great”, the demonstration of what the recipient has understood by completion or

reformulating the utterance in a display of the content of the original utterance. If a contri-

bution was not or just partly understood, the receiver can answer with a request for repair

pointing out the problem, either requesting a restatement of the full utterance (“I beg your

pardon?”) or the part in question (“when did you say you wanted to go to Amsterdam?”).

Type Function

Initiate Initial utterance of a discourse unit

Continue Continuation of a previous act by the same speaker

Acknowledge Shows understanding of the previous utterance

Repair Changes the content of the current discourse unit

ReqRepair Request for repair by the other party

ReqAck Attempt to get the other agent to acknowledge the previous utterance

Cancel Closes off the current discourse unit as ungrounded

Figure 2.22: Grounding acts

For explicit grounding and requests for grounding, (Traum and Hinkelman, 1992) introduced

a set of grounding acts for discourse units (see Figure 2.22), whereby a discourse unit is an

initial utterance—an attempt to realize a core speech act—and “as many subsequent utter-

ances by each party as are needed to make the act mutually understood”. Since utterances are

often already understood before they are completed, grounding actions often uses non-verbal

15This does not include short feedback interjections like “uh-huh” or “yes”, which are used for grounding.

59

Requirements and Basic Concepts

communication channels, like nodding and gazing, instead of (short) utterances, so as not to

interrupt the speaker.16

Apart from producing the external acts to confirm or request grounding to the other speakers,

the participants themselves have to change their information state to integrate a perceived

dialogue act after it has been accepted as part of the common ground. This can involve

merging the new information with elements gathered in previous turns (or assumed “a priori”

by the dialogue agent), or possibly even resolving incompatibilities by dropping knowledge

items. Chapter 4, Section 4.4.3 describes a way to achieve this.

2.5.2 Multi-Party Dialogue

Much remains the same when going from dialogues with two participants to multi-party

dialogues (conversations), but some issues gain additional complexity. It also plays a role for

a dialogue manager on which “side” new participants join in: are there additional human

users, or does the system manage several virtual characters? How can different human users

be told apart? And how many aspects must be modeled separately for each character by the

system?

In this section, we take a look at some important aspects of multi-party interactions: the

variations in the roles of the participants, speaker and addressee identification, and how the

process of turn-taking changes.

(1) contact

(2) attention

(3) conversation

(i) participants

(ii) initiative

(iii) grounding

(iv) topic

(v) rhetorical

(vi) turn

(4) social commitments (obligations)

(5) negotiation

Figure 2.23: Multi-party, multi-conversation dialogue layers (Traum and Rickel, 2002)

(Traum and Rickel, 2002) identify the topics and sub-topics shown in Figure 2.23 regar-

ding multi-party, multi-conversation dialogues and propose that their processing should be

arranged in layers (one per item), as each item depends on the former. While the topics

also occur in two-party dialogues, they are more complex in the multi-party case. The model

introduced in this thesis is mainly concerned with the items (3)(i)-(iv) and (4). For (1), it

16In situations where it is exceptionally important to be sure about common ground, such as radio traffic in

a rescue situation, explicit confirmations are much more common. An example is the excerpt from emergency

communications in the Apollo 13 mission cited by (Mann, 2002).

60

Requirements and Basic Concepts

is assumed that all participants are in contact and available for communication (however, a

perception filtering mechanism (cf. Section 5.4.2) can result in participants overhearing an

utterance). Behavior regarding (2), such as eye-gazing is implemented by the FADE module

in the systems described. In addition, the participants have to recognize who is making

an utterance, and whether they are addressed. This is also closely tied to turn-taking (3)(vi),

which is handled by the behavior generator and FADE together (see Section 7.2.4). Rhetorical

connections between the dialogue acts and obligations are captured by the possible moves in

dialogue games and possibly additional constraints on the activities they occur in, as will be

shown in Chapter 5. Finally, level (5)—negotiation of goals and plans—is not covered by the

model.

The following sections take a closer look at the issues of speaker and addressee recognition,

the participant roles and the management of turns and conversation threads in multi-party

conversations. For this, we largely follow the analysis in (Traum, 2004).

2.5.2.1 Speaker and Addressee Recognition

In multi-party dialogues it is necessary to determine the speaker and/or the addressee(s) of

utterances, especially if speech recognition is involved, and multiple participants may use the

same modality. Also, an utterance can be addressed at a group instead of a single participants.

For systems where speaker recognition is a practical concern rather than a research interest,

communication messages sent between agents can include an explicit speaker identification,

and the hardware setup can be used to distinguish different human speakers.17 Intended

addressee(s) can be made clear explicitly or implicitly in the content of the utterance itself,

e. g., by using a vocative. In the case of computational agents participating in the dialogue,

the multi-party situation first introduces the necessity to perform speaker and addressee iden-

tification, where in a dyadic interaction, it is clear that “I must be addressed when the other

one is speaking” and vice versa.

if utterance explicitly specifies addressee
addressee← specified addressee

else if speaker is the same as speaker of immediately previous utterance
addressee← previous addressee

else if previous speaker is different from current speaker
addressee← previous speaker

else if unique other conversational participant
addressee← participant

else
addressee unknown

Figure 2.24: Addressee identification algorithm for multi-party interaction (Traum, 2004)

Figure 2.24 shows the algorithm used for addressee recognition in the MRE system (Traum,

2004). For the general case, this is however only a heuristic, and not appropriate in all cases.

For example, there are ways to specify the addressee of an utterance that do not depend

on the utterance itself, but, e. g., the general conversational and social context (e. g., if the

17For example, in VirtualHuman, human users can be distinguished because each uses a dedicated microphone.

61

Requirements and Basic Concepts

speaker gives an order, the addressee will likely be a subordinate rather than a superior),

situational context (e. g., spatial proximity), task role, or via communication on additional

modality channels (e. g., using gazes and gestures).

2.5.2.2 Participant Roles

Two-party dialogues exhibit the fundamental roles of speaker and addressee, which can be

switched according to who currently has the initiative. In multi-party interactions, the situ-

ation is more complex. The addressee (whether it is a single participant or a group) is no

longer the only listener, but is joined by others taking overhearer roles of various categories.

An overhearer is a bystanding dialogue participant that is not directly addressed by a con-

tribution, but perceives and possibly reacts to it. One can further differentiate whether the

overhearing is intended/unintended, voluntary/involuntary, or whether the overhearer is in-

context/out-of-context. Overhearers can be implicitly included in or the conversation, and

cause the speaker to adapt what she says in other ways. During the interaction, the speaker

and hearer roles can shift between being an active participant, an (active) listener, or an

entirely passive bystander.

Other dimensions are defined by the social and/or task roles. Depending on the subject matter,

social roles can determine task roles or vice versa. These roles can influence the frequency

and duration of contributions and the determination with which a participant holds or grabs

the turn (Rumpler, 2007). They also establish relations such as, e. g., the authority to lead the

conversation, or issue commands to a subordinate (Traum, 2004). In some situations, they

can also help to disambiguate the addressees of an utterance.

2.5.2.3 Turn and Conversation Thread Management

When multiple participants are involved, turn management is more complex than in the two-

party case. For example, in the two-party case, the turn-taking act release-turn is (almost)

identical to assign-turn, since there is only one possible other speaker. It is also possible that

multiple parallel threads of conversation, with different participant sets, are active at the

same time. If these threads are conducted on the same exclusive communication channels

(e. g., speech), turns need not only be negotiated between participants in the same conver-

sation, but also between conversations, to avoid the understanding problems that occur with

overlapping speech. It has also been noted (Cohen et al., 2002) that in multimodal multi-

party dialogues, there are situations where several participant cooperate across modalities,

e. g., one participant is speaking, and the other supplies an illustrative gesture; both actions

could be interpreted as a combined, but single multimodal contribution.

It is possible in two-party dialogues that more than one conversation thread is pursued in

parallel, but it is much more common in multi-party conversations. Traum notes that in this

case, “it can be tricky to determine which thread a particular utterance belongs to” (Traum,

2004, p. 6), even if the topical structure is taken into account. The model presented in

Chapter 5 allows parallel and nested sub-conversations with different participants; however,

ambiguities in assigning contributions to particular activities have to be resolved on the task

level.

62

Requirements and Basic Concepts

2.5.3 Dialogue System Architecture

A full-fledged dialogue system has to address a variety of tasks, which are quite different in

nature. When investigating dialogue management only, some restrictions can be imposed to

be able to ignore some factors perceived to have lesser impact on the interaction per se, such

as requiring that the conversation is typed, as in, e. g., (Jönsson, 1993), or the utterances

are selected from a set of options (Rich and Sidner, 1998). This simplifies the task and

makes some areas of processing obsolete, possibly allowing the researcher to concentrate on

phenomena she actually wants to study.

Such restrictions can, however, also move a system away from capturing “natural” spoken

interaction, which is considerably different from, e. g., typed conversations. Important issues

arising of human-human conversation may be overlooked, even though they are relevant to

conversation management. Some phenomena that are encountered in spoken conversation

do less frequently occur in written form (e. g., false starts, noise) or are not perceived (e. g.,

hesitations, accents). If the input is typed, the characteristic errors—typos—are quite differ-

ent in nature to misunderstandings in spoken conversation: the string “good monring” is a

typical typo, while “good mourn ink” would be a plausible speech recognition error, but is

unlikely to occur in typed input. Lastly, a reduced setup may also suffer from taking away

the modality dimensions in human interactions, like the ability to use gestures, prosody, and

facial expression.

We aim to design a conversation manager for as natural a system as possible, although it can

and has been argued that it is a good strategy to make good conversation managers for such

restricted systems first, and then expanding to the more general case (Allen et al., 1996).

Additionally, we consider systems using multiple input and output modalities in addition to

speech.

2.5.3.1 Order of Processing

Figure 2.25 shows a way to put the different tasks necessary to do end-to-end multimodal dia-

logue processing in a sequential order, from recognizing input to synthesizing output. Note

that the depiction does not necessarily include all tasks of such a system. It does not, e. g.,

incorporate tasks related to application logics or knowledge representation. This fragmenta-

tion of the dialogue management task corresponds with different roles in speech production

and understanding in human conversation.

(Clark, 1996) points out that tasks appear symmetrically for the speaker and hearer of an

utterance, i. e., (a) vocalizing and attending utterances (multimodal analyzers and render-

ers – TTS, player), (b) formulating and identifying the message (multimodal interpretation,

fusion, and DiM on one hand, fission and multimodal generators on the other), and (c) con-

ceptualizing and comprehending the content (action manager). This has led to some efforts

to let modules handle both directions.18 Action planning, on the other hand, always entails

to both analyze input from the user and generate output for the user.

18For example, the SPIN language interpretation component (Engel, 2002) was used as a generator, NIPS, in

the OMDIP system described in Chapter 7.

63

Requirements and Basic Concepts

attending

Speech Gesture
Facial

Expression
Mouse
Input input modalities

Recognition

Interpretation / Fusion

Discourse Modelling
identifying

comprehending /
conceptualizingAction Planning

Fission

Generation
formulating

Synthesis vocalizing

output modalitiesGraphical
Events

Facial
ExpressionGestureSpeech

Figure 2.25: Processing sequence from multimodal analysis to multimodal generation

(adapted from (Clark, 1996))

2.5.3.2 Modularization and Communication

Early dialogue systems, e. g., TRAINS, used a monolithic architecture, essentially collapsing the

different subtasks in the processing sequence in one program. However, this approach showed

hard to construct, debug, and modify for new tasks and domains (Allen et al., 2000b). This

led to a practice of encapsulating the subtasks in dedicated modules that communicate with

each other. There are different approaches to realize this communication, as shown in Figure

2.26. In a pipelined architecture, the data flow between modules is sequentialized in an order

more or less equivalent to moving top-down in Figure 2.25. The TRAINS system is (mostly)

unidirectional in that sense (Ferguson and Allen, 1998). If sequential ordering is imposed

strictly, it prevents some useful features. Modules early in the processing chain could often

profit from the availability of results of modules at a later stage.

Why it is useful to allow communication to go “backwards” against the canonical processing

sequence is exemplified by the phenomenon that human dialogue partners prefer to re-use

terms that other participants (or they themselves) have already used earlier in the conversa-

tion over the introduction of different terms that may be semantically equivalent. This can

be explained as an instance of Grice’s maxim “avoid obscurity of expression” (Grice, 1975),

since it eliminates the cognitive load of establishing the equivalence. Therefore it can be

beneficial to have a (two-way) connection between the speech generation and the speech

recognition component to coordinate input and output. Also, new lexical terms can arise

during the interaction, e. g., when expressions that are not commonly present in a lexicon are

newly introduced into the discourse as the result of database lookups, as in the SmartKom

EPG application (Löckelt et al., 2002) and in OMDIP (cf. Section 7.3.1).

Although it is also possible to connect all modules that need to communicate by direct chan-

nels, most state-of-the-art systems today use modules that are independent, concurrent agents

64

Requirements and Basic Concepts

Speech
Interpretation

Speech
Recognition

Speech
Recognition

Speech
Interpretation

Speech
Generation

Dialogue
Management

Speech
Generation

TTS
Output

Discourse
History

Dialogue
Management

TTS
Output

Speech
Recognition

Speech
Interpretation

Discourse
History

Dialogue
Management

Speech
Generation

TTS
Output

Message
Facilitator

Discourse
History

Figure 2.26: Sequential, direct and facilitator-mediated communication between modules

that can communicate freely with all other agents by message passing. This follows the refer-

ence architecture for multimodal systems given in (Maybury and Wahlster, 1998), shown in

Figure 2.27. A way to provide free message passing in a straightforward way is using a black-

board architecture. It features a facilitator module managing a shared, central data pool (the

blackboard) where modules can post typed messages. Other modules communicate with the

facilitator to either read messages directly off the blackboard, or they can subscribe messages

of certain types that the facilitator will deliver to them. Multi-blackboard systems use several

blackboards in parallel. One advantage of blackboard systems is that the modules are decou-

pled (they are only communicating directly with the facilitator) and can organize their input

and output solely in terms of message types to send or receive. Subscribers can be added or

removed without affecting the posting modules. An example of a multi-blackboard system is

MultiPlatform that was used in the SmartKom system (Herzog et al., 2003). SmartWeb uses a

Java-based hub-and-spoke architecture (IHUB) where a central module decides from a set of

rules where messages should go (Reithinger and Sonntag, 2005).

A multi-agent approach also has some drawbacks. First, there are software engineering issues

that arise from an architecture with concurrent modules, such as possible deadlocks and

timing problems. Second, in the absence of clearly defined processing steps, it can be difficult

to decide the beginning and end of “turns”, and problems can arise with race conditions and

deadlocks. These and related issues can make concurrent multi-agent systems somewhat

harder to analyze and debug.

2.5.3.3 Module Types

The dialogue management framework described in this thesis and its predecessor, the

SmartKom action planner, work in different systems comprising all the types of modules

shown in Figure 2.28; they are directly connected and involved with the modules shown

65

Requirements and Basic Concepts

Language

Graphics

Gesture

Sound

Vision

Media/Mode
Analysis

Language

Graphics

Gesture

Sound

Animated
Character

Media/Mode
Synthesis

Context
Management

Multimodal
Lexicon

Management

Intention
Recognition

Action
Planning

User Id

User
Modeling

Resolution
Reference

Interaction
Management

Discourse
Management

Representation and Inference, States and Histories

Models Models
User/Agent

Models
Discourse

Model
Context
Model

Domain
Model

Task
Model

Media Application

Application
Interface

Initiate

Terminate

Request

Respond

Integrate

Information
Applications

People

Media Input
Processing

Mode
Coordination

Select Content

Design

Allocate

Coordinate

Layout

Multimodal
Design

Multimodal
Reference
Resolution

Multimodal
Fusion

Mouse

Keyboard

Microphone

Eye−Tracker

Microphone

GUI Elements

Text

Character
Behavior

Media Output
Rendering

User(s)

Figure 2.27: Architecture for multimodal systems (Maybury and Wahlster, 1998)

in bold. The most essential ones are:

• Discourse modeler

The output of the discourse modeler is the main input for the dialogue manager. It is in

terms of dialogue acts that already incorporate the information gathered from fusion of

different modalities and resolution of references against the discourse history. In some

systems, discourse modeling is integrated with dialogue management. As stated in

Section 2.4.2.2, we found it advantageous to use two separate modules for these tasks,

however, in all instances the same knowledge representation formalism was shared

between both modules.

• Function modeler and multiple application frontends

A function modeler is a module located between the dialogue manager and the appli-

cation frontends that provides an abstraction layer so that the latter does not have to

implement all idiosyncrasies of the application protocols. It is particularly useful in set-

ups where the dialogue manager has to interact with many heterogeneous applications.

The framework we will describe assumes that it can communicate with a function mod-

eler in form of dialogue acts, and that the application frontend interaction protocols can

be specified in terms of dialogue games.

• Presentation planner resp. presentation module and multimodal generators

To let the output of the system or the virtual characters be rendered, the dialogue

manager sends it to a presentation planner, or, if no such module is present, directly to

66

Requirements and Basic Concepts

Module Purpose D

affect engine computing affective state of system characters based on

the interaction and their personality traits, influencing

mood-dependent idle behavior

↔

discourse modeler storing and organizing discourse history, reference reso-

lution

↔

dynamic help monitoring the dialogue and offering context-dependent

help or other support to the user

↔

dynamic lexicon parameterizing speech recognition with context-

dependent lexicon entries in interaction with the

dialogue manager

→

function modeler providing a unified interface to multiple applications

and application groups by providing an abstracted access

layer

↔

generators converting symbolic output representation into a se-

quence of syntactic elements that can be rendered by the

presentation module

→

intention recognition selecting the most probable input hypothesis based on

context and other criteria

←

multimodal fusion combining and integrating acts in different modalities,

resolving cross-modal references

←

narrative engine controlling characters externally by manipulating their

goals. This can be combined with processing of goal state

feedback to adapt the story

↔

planner frontend uses an external planner program to solve planning prob-

lems for the dialogue manager

↔

presentation module realizes the system output using 2D or dynamic 3D ren-

dering

↔

presentation planner planning layout and (partial) modality selection →

prosodic analysis influences the user model

recognizers getting and converting device input signals for analyzers

synthesizers producing output presentations, (e. g., TTS)

analyzers interpreting analyzer input and converting it to a sym-

bolic representation

application frontends providing adapters translating the internal message for-

mat for applications

other modules

Figure 2.28: List of module types. The rightmost column indicates the direction(s) of com-

munication with the dialogue manager (right=outgoing, left=incoming, or both)

67

Requirements and Basic Concepts

a presentation module. Again, the units of communication are dialogue acts containing

a semantic, symbolic encoding of the content. In cases where the surface output form is

not contained as “canned text” in the semantic representation, it is therefore necessary

to let it be processed by a generator module to obtain a surface form (Reiter and Dale,

1999). Deep generation and canned text can also be used together in the same system

(cf. Section 7.2).

• Narrative Engine

In narrative systems, the story can be controlled by a narrative engine module. It offers

the possibility to let an author designer develop the storyline separately from low-level

dialogue issues. The module can directly influence the behavior of virtual characters

by setting their goals and receiving feedback from the dialogue manager about their

execution state.

Multimodal
Generation

Multimodal
Analysis

Modeller

Function
Modeller

Dynamic
Help

Discourse

Interaction

Application
DataModeller

Presentation
Manager

Manager
Dynamic
Lexicon

Dialogue

Intention
Recogniser

Figure 2.29: Constellation of modules in direct communication with the dialogue manager

(example SmartKom)

Depending on the focus of a given system, it can also be advantageous to integrate other

modules closely with the dialogue manager. For example, dynamic help, recognition and

analyzer modules can benefit from generated expectations about future input (see section

6.3.2). As an example, Figure 2.29 shows the modules that are directly connected with the

dialogue manager in SmartKom.

2.5.4 Discussion

We aim for a model that can be used to implement a practical system. This puts at a disadvan-

tage theoretical tools that, while being possibly more expressive or powerful than others, are

too complex and have high demands with respect to memory usage, computational cost, and

68

Requirements and Basic Concepts

necessary effort in modeling non-trivial domains. On the other hand, we also want to avoid

overly simplistic approaches that do not allow complex dialogues, or just deliver reasonable

performance when limited to trivial domains.

Our approach will strive to offer both possibilities: The basic conversation model will not

automatically require extensive logical inference and planning capabilities, but leave open the

option to include sophisticated reasoning mechanisms if they are required by the application.

We also recognize the advantages of approaches that can benefit from accepted standards and

widespread tools, as well as ones that allow to re-use existing work. This especially holds true

for knowledge representation, for which the Semantic Web effort has introduced ontological

modeling languages that are now increasingly adopted by the community to model and share

application domains.

2.6 Summary

This chapter treated the requirements for the two types of dialogue systems we are concerned

with, which are task-oriented systems and interactive narratives, and the basic concepts nec-

essary to understand the operation of a dialogue manager.

We first examined the purposes of both dialogue system types, and which criteria can be ap-

plied to determine whether it is successful in addressing the purpose. We then introduced

the Interaction Triangle which shows the relationships created by the system between human

users, the designer of the system and its content, and the virtual characters acting as system

avatars. The section on dialogue modeling was concerned with dialogue acts, the basic units

of dialogue, how they fit into larger dialogue modeling structures, and the role of informa-

tion state for a dialogue system. In this context, we presented the BDI model, SharedPlans,

as well as the information state representations in TRINDI and SmartKom. We then described

a number of issues that multimodality adds to the dialogue management task. The fourth

section dealt with the basic concepts of dialogue management. Dialogue games and the plan-

based approach as means to model it were introduced, together with issues related to turn

taking and grounding contributions for all participants. Multi-party dialogue, again, adds

some further phenomena, like variable and shifting participant roles and changes in interac-

tion and turn management. Finally, we described how systems that do dialogue management

are organized and modularized.

69

Requirements and Basic Concepts

70

Chapter 3

Related Systems

3.1 Introduction

The field of dialogue research as seen a wide variety of dialogue systems. An overview in

the scope of this thesis cannot be exhaustive, therefore we are aiming to cover different

approaches and areas of application, and give an overview of the most influential approaches

and implementations that relate to our field of study. Strictly speaking, any interaction with

a computer could be viewed as a (possibly formalized) dialogue with the machine; however,

we start our overview with systems that could process spoken input in natural language, and

focus on multimodal systems. We also try to avoid too much overlap in describing systems

that are too similar in nature, and instead pick a selection of systems, from which each has to

offer relevant distinctive features or characteristics. In the two main sections of the chapter,

we cover examples for task-oriented systems and interactive narratives, respectively; however,

the distinction is not always clear-cut.

3.2 Task-Oriented Systems

In the following, we describe the TRAINS and TRIPS systems, which are examples of projects

that use a logic domain description and AI planning techniques. The COLLAGEN project fea-

tures multimodal interaction and uses the SharedPlans theory to model collaborative action.

RavenClaw is an instance of a general framework for task-oriented dialogue systems that sep-

arates task and domain knowledge. TrindiKit is an influential toolbox approach based on

the notion of “information state” that has been used in several systems. WITAS emphasizes

real-time control, joint activities, and a dialogue model using a dialogue tree that is similar to

our approach. MATCH is a multimodal system that that is entirely finite-state based and runs

on a mobile device. QuickSet has been developed as a research tool to examine multimodal

interactions. SmartKom is a large, multimodal, multi-application system with ontological

domain modeling and multiple coordinated modules whose action planning approach is a

direct precursor to our framework. SmartWeb offers information-seeking dialogues in the Se-

mantic Web using advanced ontological domain modeling; its infrastructure has been used

along with the framework described in this thesis to implement one of the use case systems

described in Chapter 7.

71

Related Systems

3.2.1 TRAINS and TRIPS

TRAINS The TRAINS system is a long-term research project that has gone through several

versions from TRAINS-91 to TRAINS-96 (Allen et al., 1995; Ferguson et al., 1996).1 An un-

trained human user is assisted by the system in solving routing problems in a simplified train

transportation domain of five cities. One such problem could be, e. g., to send “a boxcar of

oranges to Bath by 8 am”. The system shows a map with the locations of destination cities,

freight train engines, and possible routes, as shown on the left side of figure 3.1. When the

user makes suggestions of what actions to take, the system calculates expected route times

and scheduling conflicts, and suggests solutions to problems that may arise.

The discourse manager of TRAINS is composed of several submodules for context representa-

tion, reference disambiguation and an actualization component holding models of the system

“self” and the display (Traum, 1993). The system uses domain-specific reasoning instead of

full planning techniques to overcome performance issues. The system architecture of TRAINS,

in terms of modules and communication channels, uses a fixed rather than a more versatile,

e. g., blackboard-driven, setup by deliberate design decision, to trade-off flexibility for sim-

plicity (Allen et al., 1995).

Figure 3.1: (Left) a later TRAINS domain, (right) the TRIPS architecture (from the project

website)

Early versions of TRAINS were implemented to demonstrate that constructing a system that

does robust processing of spontaneous dialogue with non-expert users about a narrow domain

in real time is possible in practice. The system was also intended as a research platform,

and subsequent versions were more robust and added functionality. TRAINS-96 breaks up

the previously monolithic system into a modular design. Communication is changed from

using a custom representation for episodic logic (Hwang and Schubert, 1993) to the KQML

agent communication language (Finin et al., 1994). Several versions of TRAINS have been

evaluated for time to task completion and length of solutions, e. g., in (Allen et al., 1996;

Sikorski and Allen, 1997). Also, a set of 98 task-oriented dialogues involving 34 speakers has

1Project website: http://www.cs.rochester.edu/research/trains

72

Related Systems

been collected during the project and made available as the “TRAINS corpus” (Gross et al.,

1993). This corpus has been used as a reference in numerous other research projects.

TRIPS The successor of TRAINS, TRIPS (Allen et al., 2001a; Ferguson and Allen, 1998; Allen

et al., 2000b) has further emphasis of being an end-to-end system including all components

necessary to do research about concrete collaborative planning problems, constituting an “in-

tegrated AI system” (Ferguson and Allen, 1998). TRIPS is not a completely new system, but

builds on and reuses many of the components from TRAINS. It employs collaborative plan-

ning assistants and uses a hub and spoke architecture to convey messages between the agents

in the KQML language (Finin et al., 1994). It was used to implement multiple different do-

mains, e. g., scenarios coordinating rescue vehicles during emergency situations (PACIFICA

and TRIPS-911) and controlling virtual robots doing exploration (Underwater Survey). Over-

all, the scenarios and the problem solutions are more complex than in TRAINS. TRIPS features

incremental interpretation and generation, separation of task and domain reasoning from dis-

course reasoning.

As envisaged, TRAINS and TRIPS pioneered as complete, usable, and extensively evaluated

end-to-end systems for task-oriented dialogue in changing task settings. Most current sys-

tems use a similar partition of work into modules and comparable module communication

techniques. This work uses a set of dialogue acts that draws on work on the TRAINS corpus

(Core and Allen, 1997; Traum and Hinkelman, 1992). Both projects had foundational influ-

ence on dialogue management, however, both also exemplified the problems incurred by the

modeling of more complex domains (Allen et al., 2000a).

3.2.2 COLLAGEN

The COLLAGEN system is intended as a collaboration manager to maintain the flow and co-

herence of collaboration between a system agent not part of COLLAGEN proper, and a user,

jointly working on the same task (Rich and Sidner, 1998). The example scenario involves an

application to plan air travel schedules. The user can interact with the application and with

an agent. The agent is a black box module: it is not specified what mechanism it uses for de-

ciding what contributions to make to the discourse, or what actions to initiate. The developer

of an agent for COLLAGEN needs to specify a task model, but as Rich and Sidner emphasize,

this model only relates to communication and collaboration with the user, and leaves aside

the decision making of the agent, which can be implemented in other ways, e. g., by a general

rule-based system.

The system focuses on collaborative problem solving and is based on the SharedPlans theory

of discourse (Grosz and Sidner, 1986, 1990). The interaction is highly constricted: the user

can speak or make a menu selection from a set of possible utterances possible at a point in

the interaction (see figure 3.2; the interaction menu is the window in the lower left corner).

The user’s interactions with the application are observed by the agent. In parallel, the agent

can interact with the application with a cursor of its own. While a shared plan is pursued,

the system agent and the user may perform interleaved steps; also, several plans may be

followed simultaneously. The task model contains a set of “recipes” consisting of a sequence

of partially ordered steps towards a goal, and pattern-action rules to trigger the recipes. The

test application features 8 recipes for 15 different goal or action types. Some recipes in

73

Related Systems

Figure 3.2: COLLAGEN test application screen (Rich and Sidner, 1998)

COLLAGEN are also specified non-declaratively, i. e., hard-coded methods generate a recipe

for a given objective procedurally.

COLLAGEN implements no general planning or plan recognition approach for discourse in-

terpretation. Instead, only the steps of a current recipe and recipes known for the current

segment’s purpose are examined non-recursively. To encode the communication acts realized

by the user and the agent, COLLAGEN uses an artificial discourse language (Sidner, 1994),

of which only two act types are included in the system described in (Rich and Sidner, 1998),

making and accepting proposals. For discourse interpretation, an algorithm by Lochbaum was

implemented (Lochbaum, 1998). First, the system tries to classify acts to be in one of five

categories. An act either (1) directly achieves the current purpose, (2) is one of the steps in

a recipe for the current purpose, (3) identifies a recipe for the current purpose, (4) identi-

fies who should perform the current purpose or a step in a recipe for it, or (5) identifies an

unspecified parameter of the current purpose or a step in the current recipe. Otherwise, the

act is considered an interruption. The algorithm then adds the act to the current discourse

segment on top of a focus stack, and if the act completes the dialogue segment purpose, the

segment is popped off the stack. Discourse generation reverses Lochbaum’s algorithm.

The system records the decisions of the agent and, based on context, provides an agenda of

expected communication and manipulation acts based on the aforementioned five cases. This

agenda is available to the agent and (in part) to the user. For communication, a selection

from utterances that are generated corresponding to expectations of the system is used, as a

replacement for natural language understanding. (this also means that it is not possible for

the user to input utterances that are not expected). A history of the communication is gen-

erated and organized in a hierarchical tree structure of discourse segments and subsegments,

74

Related Systems

which can be viewed by the user. The history display also includes the unexecuted steps of

recipes, and thus provides information about the expectations of the system.

The user or the system agent may seize the initiative at any point. There is no explicit notion

in COLLAGEN of obligations in discourse, instead it is up to the agent to decide when and

how it is relevant or appropriate to contribute at any point in the discourse. Likewise, there

are no mechanisms provided for turn taking, control or grounding (although Rich and Sidner

experimented with some ad hoc mechanisms, such as waving the “hand” of the agent to gain

attention of the user). Using the discourse history, it is possible to apply transformations that

allow, e. g., to rewind the conversation to an earlier point, to replay part of the conversation,

or to explicitly manipulate the focus stack for other purposes.

Unlike our system, COLLAGEN is not primarily concerned with dialogue management and

leaves aside the internal reasoning of the communicating system agent. The collaboration

manager takes a similar role to the CDE controller used in our framework described in Chapter

6, in that it comprises an outside mediator between the communicating parties, and their

interaction with a “task world” separate from the participants (i. e., the application). Another

similarity is that the dialogue history is used to generate expectations about possible future

acts of the participants.

3.2.3 RavenClaw

The RavenClaw dialogue management framework that was developed as a successor of the

AGENDA architecture used in the CMU Communicator (Bohus and Rudnicky, 2003). It is meant

to provide a basis for constructing task-oriented dialogue systems using a set of predefined,

domain-independent conversational behaviors. The idea is to reduce the system designer’s

concerns to the specification and maintainance of the actual task. RavenClaw then uses the

task specification to automatically generate dialogue strategies. Consequently, the system

places special emphasis on a clear separation of discourse and task knowledge.

To build a full natural-language interface, RavenClaw requires additional modules for, e. g.,

speech recognition and natural language understanding; it has mainly (but not exclusively)

been used with Olympus dialogue system architecture that employs a classic pipeline process-

ing order and is also a descendant of the CMU Communicator project. A number of systems

for quite diverse scenarios have been successfully realized with RavenClaw/Olympus.2

RavenClaw manages a multi-agent system that uses a combination of fundamental agents and

agencies. In the tree shown in figure 3.3 (adapted from (Bohus and Rudnicky, 2005)), fun-

damental agents correspond to leaf nodes, agencies to non-terminal nodes. The former are

capable of realizing one of four basic operations: Inform is used to present information,

Request to ask for information, and Expect accepts input without requesting it. The fourth

kind is called DomainOperation for other types of domain-related operations. Agencies are

agents that control other agents on a higher level, e. g., the Login node. The agents comprise

preconditions, execution routines, and completion criteria. The dialogue engine operates in

interleaving execution and input phases and allows mixed-initiative interactions (some of the

2An overview of these—along with a downloadable version of the framework itself—can be found on the

website of the project, http://www.cs.cmu.edu/∼dbohus/ravenclaw-olympus/systems overview.html

75

Related Systems

RoomLine

DoQuery DiscussResults Start−OverGetQueryWelcome

GetDate

GetStartTime GetEndTime

start_time

date

end_time

Figure 3.3: RavenClaw: Hierarchy of agencies and agents

implemented systems are, however, system-initiative only). The dialogue engine also uses

expectations to disambiguate input.

The RavenClaw framework also focuses on ensuring robustness and error handling strategies

that are designed to be reusable for different applications. An independent error handling

process runs parallel to the application agents and can be configured to apply different hand-

ling strategies. In case of misunderstandings, for example, some of the possibilities are to

ask the user to repeat her utterance, or to rephrase it, to re-state the prompt verbatim or in

more verbose form, to notify the user of the misunderstanding, or to do nothing (Bohus and

Rudnicky, 2005).

Like our framework, the RavenClaw system aims to be a general-purpose environment for

dialogue systems. It also features a library of multiple agent types for different purposes that

can run concurrently in a process hierarchy (but it does not realize multi-party interaction.

As exemplified by the agents that implement different error handling strategies, it supports

parameterizing an application by using different application-independent building blocks.

3.2.4 WITAS and other TrindiKit-Related Systems

TrindiKit is a collection of tools for experimenting with dialogue move engines and informa-

tion states (Traum and Larsson, 2003; Larsson and Traum, 2000). The toolset has been and

continues to be used and developed further in the course of several projects. These include

the original TRINDI project (for “Task-Oriented Instructional Dialogue”), DIPPER (Bos et al.,

2003), GoDIS (Larsson et al., 2000) and IBiS (Larsson, 2002), SIRIdUS (Kruijff-Korbayová

et al., 2003), WITAS (Lemon et al., 2002) and the TALK project (Ljunglöf et al., 2005; Kruijff-

Korbayová et al., 2006). The TrindiKit is based on the principle of information state update

using update rules (cf. section 2.4.3.3). It aims to be a general framework for testing and

developing dialogue theories rather than presenting a single theory (Kruijff-Korbayová et al.,

2006). As an example, we take a closer look at the WITAS system.

76

Related Systems

WITAS The WITAS system is used to remotely control an autonomous small robot helicopter

UAV (see figure 3.4) in real time.3 The helicopter carries deliberative and perceptive systems

on-board. During flight, new objects appear and it is possible for the operator to refer to

them in the dialogue and, e. g., direct the helicopter to fly towards an object, or to follow

an object. WITAS consists of a set of modules communicating by an open agent architecture

(OAA2) facilitator. The system features spoken input and TTS output; a GUI display showing

the current environment allows to use deictic references. The system uses the Nuance speech

recognizer, Festival TTS, and the Gemini parser and generator. The generative component is

designed to be symmetrical to interpretation, i. e., to only generate utterances that it could

also parse. This way, the user is primed to speak “in-grammar”.

Facilitator

(OAA2)

FacilitatorNL Agent

(GEMINI)

SR Agent

(Nuance)

TTS Agent

(Festival)

Interactive

GUI Display

Activities
Device

Interface

Device

Dialogue

Manager

Figure 3.4: WITAS helicopter and system architecture

Several concurrent activities are possible. The interleaving of multiple communication

threads about activities of the robot, to discuss several issues simultaneously, is a research

topic of WITAS. The goal is to provide an interface that allows control of the vehicle by

a non-expert using standard English, without requiring a specialized command-and-control

language. At the same time, the system also has to be be sufficiently robust, since errors

can easily result in damage to the moving robot. A related requirement is transparency in

how spoken commands have been understood by the system; therefore, the helicopter always

gives explicit feedback appraising its understanding.

The declarative descriptions of the goal decomposition of activities use activity models; the

current and planned activities are accessible via an activity tree similar to a Hierarchical Task

Network that contains a representation of the current and scheduled activities. The atomic

actions the system can execute are dialogical and also physical actions. They are represented

in a logical form (e. g. (locate, np[det(a), truck]) for the utterance “locate a truck”). The

dialogue acts are described by a set of abstract dialogue move classes such as command, wh-

question, etc. The logical forms of the input are tagged with such a dialogue move. Incoming

utterances are interpreted relative to a current dialogue move tree (DMT) which specifies

which utterances can be interpreted in the current context and how they are to be inter-

preted. (Lemon et al., 2002) describe the operation upon the dialogue tree as a variant of

“conversational games”. Besides the DMT/activity tree approach, there is also an effort to use

case-based reasoning to control the actions of the robot (Eliasson, 2005).

3The images were taken from the project websites http://www-csli.stanford.edu/semlab-hold/witas/ and

http://www.cvl.isy.liu.se/Research/Robot/WITAS/blobs.html

77

Related Systems

TrindiKit is an influential model for the storage and manipulation of the dialogue information

state, a task that is required for any non-trivial dialogue system. There are many differences

between the systems that have been realized with the toolkit (which emphasizes its versa-

tility). It does not prescribe much about the way reasoning should be done beyond the use

of update rules and an update strategy; approaches using production rules, dialogue move

trees, or case-based reasoning have all been implemented.

For the use cases this thesis is concerned with, the WITAS system is relevant because it is

also dependent on time-critical action, which includes dialogical as well as physical action.

The requirement to honor real-time constraints is very strict, failure to do so would endanger

the helicopter’s safety on a mission. The system also has to process and interpret real-world

percepts, and therefore has a multimodal component (although not with respect to user in-

teraction).

3.2.5 MATCH

MATCH (“Multimodal Access to City Help”) (Johnston et al., 2001) is a multimodal system

that runs on a portable device (a Fujitsu PDA). It offers information about restaurants and

subway stations in New York City (see figure 3.5). The user can interact via a combined voice

and pen interface and the system answers with text-to-speech and a browser-based graphi-

cal output. The restaurant information part can provide information about restaurants in a

particular area and their attributes (cuisine, pricing, etc.). The subway route application can

compute an itinerary from a given map point to another and generate a dynamic presentation

for it (there is no incremental guidance functionality, though).

Figure 3.5: MATCH: left: user interface, right: unimodal selection on the map

The system supports different types of gestures (circling, line drawing, pointing, etc.). The

user can talk about more than one entity by, e. g., circling several restaurants and asking

about their phone numbers, or putting a constraint over an area of the map, as shown in the

right image. The user has to indicate the start of an utterance boundaries by a click with

the pen. This is justified by decreased susceptibility to background noise in outdoor use, but

also facilitates segmentation of the input in turns. The dialogue model of MATCH is agent-

78

Related Systems

based with a finite-state automaton model that is compiled to cover all possible modality

combinations.

MATCH features the integration of multiple modalities, but does factor out issues related to

asynchronicity by requiring the user to delimit turns. The task domain is relatively small; for

more complex tasks or interaction sequences, the finite state representation would probably

not scale well and be difficult to understand and maintain because of the size of the compiled

automaton.

3.2.6 QuickSet

QuickSet (Oviatt and Cohen, 2000; Cohen et al., 1997) is a system that can run on a different

platforms, including handheld devices, desktop systems, or fully-fledged augmented reality

environments (cf. Figure 3.6).4 It provides multimodal interaction using speech and gestures

using a pen device. One research goal is to investigate under what circumstances different

modalities are most useful and/or actually used. The system has been used with different

backend systems, chiefly map-based military simulations (LeatherNet and ExInit); there is also

a civil information seeking application called Mimi in which the users can query information

about medical centers on a city map. Several users can interact together in a scenario with

shared views (Cohen et al., 1997). The primary component of the user interface is a geo-

referenced map, which can be panned and zoomed, and the users can annotate the map

by marking points and lines. The users place military units and control measures (e. g.,

objectives) on positions on the map for simulation purposes.

Figure 3.6: QuickSet simulation setup (Cohen et al., 1996), illustration of the facilitator (Ovi-

att and Cohen, 2000)

The system uses the OAA communication architecture, with a blackboard and registration /

subscription mechanism. The recognized input is encoded in messages of typed feature struc-

tures by a late, semantic-level fusion component using unification (Oviatt, 2002). (Cohen

et al., 2000) analyze the performance of test subjects with this setup and find a speedup for

interactions using this multimodal interface compared with a standard direct-manipulation

GUI, as well as a strong preference for using multimodal interaction among the test subjects.

4In the mobile-use case, the bulk of the processing is shifted to a remote system for performance reasons.

79

Related Systems

The interaction follows a command-and-control paradigm: the user always has the initiative

in the interaction, and user input essentially consists of commands that the system presents

the results of.

An important result of QuickSet is the extensive analysis of system runs with regard to pref-

erences, efficiency, and ratio of multimodal interactions (Oviatt, 2000; Oviatt and Cohen,

2000). Among the results are that a large advantage of multimodality lies in superior error

handling, both in terms of error avoidance and graceful recovery, e. g., due to the possibility

of mutual disambiguation (Oviatt, 2002). It was also found that in the context of the col-

lected data, the presumption that there has to be temporal overlap between components of

a multimodal construct was not justified, and that complementarity of content from different

modalities was more common than redundancy.

3.2.7 SmartKom

SmartKom (Wahlster, 2003a, 2006; Reithinger et al., 2003) is a multimodal, task-oriented

dialogue system. It features multiple applications, 13 in total, of which most are using and

relying on services of other applications. The user interacts directly, in mixed-initiative, with

a personification of the system, called Smartakus, to whom she may express her wishes.

Smartakus will then look for a way to accomplish the task that has been delegated to it. This

setup is called the SDDP metaphor (for Situated Delegation-oriented Dialogue Paradigm, see

(Wahlster et al., 2001)).

Figure 3.7: The SmartKom system: (Top) the different platforms mobile, home and public,

(bottom) screenshots of the EPG and biometrics applications

The system’s avatar, Smartakus, is rendered as a cartoon character rather than a life-like one.

Nevertheless, he features a repertoire of human-like expressions to convey its current state

80

Related Systems

(e. g. he will cap his ears in some situations to make clear that he expects the user to say

something, and has animations to show that he is currently working on something).

The system is deployed on three different hardware platforms (see figure 3.7): a stationary

kiosk, a mobile handheld device, and a portable tablet PC for use in the home. The appli-

cation configuration is changing with the hardware platform. Reasons for this are hardware

requirements (e. g., a scanner necessary for fax service and biometric hand recognition is only

available in the kiosk hardware setup) as well as applicability (the incremental route planning

application only makes sense with a mobile device).

Figure 3.8: The SmartKom architecture (dialogue management modules are shown with high-

lighted borders)

SmartKom is heavily modularized and uses a hub-and-spoke architecture for communication

between the modules (figure 3.8). The communication hub, Multiplatform (Multiple Lan-

guage / Target Integration Platform for Modules), makes it possible to integrate modules

running on different hosts, operating systems, and language environments to be intercon-

nected. It was specially developed for the system (Herzog et al., 2003).5 The roles of the

modules allow them to be put into functional groups respective to the responsibilities of in-

put/output, dialogue processing, and application modeling.

The domain and knowledge of SmartKom is modeled in an ontology that is transferred to

an XSD/XML representation in the Multimodal Markup Language (M3L) by specially tailored

tools, as described in (Porzel et al., 2003). The use of a rigorously structured ontological

representation facilitated the development of the large knowledge base of about 730 concepts

and 200 inter-concept relations enormously, and provided for a smooth interfacing of the

many components of the system, along with offering sufficient expressive power.

5Multiplatform is available at http://multiplatform.sourceforge.net/ as open source software.

81

Related Systems

Plan operator
specifications

system
specific

system
independent

Interface
Module

ExecutorPlanner

Controller

Channels Channels
OutputInput

Communication
Architecture

(MultiPlatform)

Figure 3.9: Internal structure of the the SmartKom action planner

In SmartKom, dialogue management is distributed between four modules addressing the sub-

tasks of intention recognition, discourse modeling, context modeling and action planning.

The action planner uses task specifications called “action plans” that contain a collection

of system-specific goals and plan operators for the different applications, and comprises a

controller that operates a forward planning and execution monitoring algorithm and com-

municates with the rest of the system via abstract channels (Figure 3.9). Expectations about

future moves of the user are delivered to the multimodal analysis modules and the discourse

modeler. While the general concept of expectations was already introduced in earlier systems

(e. g., RavenClaw), the expectations in SmartKom are novel in that they are more fine-grained

and address several aspects of input. (Löckelt et al., 2002) outline the protocol and the in-

formational structure of the expectation mechanism. The expectations in SmartKom inform

the analysis components about which slots of active domain instances are expected to be re-

ferred, as well as about the currently active goal of the action planner. However, there is no

account of the form in which they are expected to be addressed, e. g., by an explicit answer to

a question or a statement by user initiative. Lexicon updates, depending on the context of the

current task, are also incorporated into the expectations. One instance is the EPG application

which continuously updates the dynamic lexicon with lexical items concerning movie titles

and actors as they are retrieved in response to the user’s browsing of the database, and made

salient by displaying them on the screen.

The dialogue manager realizes flexible mixed-initiative dialogue (Löckelt, 2004, 2006). The

system will take the initiative to collect additional information needed for carrying out tasks,

as well as accept and integrate user-initiated dialogue moves. In one application, the interac-

tive tour guide, system initiative can also be triggered in response to asynchronous external

events. If a tour is in progress, the position of the user is constantly monitored via a GPS de-

vice. Certain landmarks in the location database are annotated with additional information,

82

Related Systems

e. g., if the place is of historical interest. When the user approaches such landmarks while

the tour guide is active, the application initiates a corresponding event. The dialogue man-

ager will then interrupt and suspend the currently active subdialogue and display background

information about the location.

The basic structure of the conversational dialogue engines described in this thesis is based

on the action planner component of SmartKom. Several techniques that were introduced in

SmartKom are refined and extended in the multi-party scenario of VirtualHuman.

3.2.8 SmartWeb

The SmartWeb project provides multimodal question-answering interactions in open domains

to allow a mobile and context-aware interface to the Semantic Web (Wahlster, 2004; Rei-

thinger et al., 2005). It combines research efforts in multimodal interaction, Semantic Web

technology, information extraction, and mobile devices for web access.

SWEMMA
RDFS

IP/VoIP
XML

Camera
GPS

GUI
Control

Local
Control

Local
VXML

Semantic Web

SWEMMA

Dialogue Server

PDA Client

Multimodal
Recognizer

Speech
Synthesis

Semantic Mediator

Knowledge Server
Agent Access

Web Services

Q&A System

Speech Interpretation

Speech Generation

FADE

REAPR

EMMA

Unpacker
Packer / IHUB

Figure 3.10: Architecture of SmartWeb handheld (Sonntag et al., 2007), SmartWeb on the

MDA

A sketch of the architecture, using the example of SmartWeb-Handheld with a smartphone in-

terface, is shown in figure 3.10. Other realized setups allow interaction in a car or while

83

Related Systems

riding a motorbike. The modules of the system run in a distributed fashion, with more

computation-intensive modules running remotely on a dialogue server. The dialogue server

can host multiple instances of the system that are created on-demand when a remote device

connects. In the dialogue server, the communication infrastructure is provided in a hub-and-

spoke architecture called IHUB (Reithinger and Sonntag, 2005). The IHUB distributes mes-

sages between the dialogue modules for speech interpretation (SpIn), generation (NipsGen),

the fusion and discourse engine (FADE) and the system reaction and presentation component

(REAPR). The EMMA unpacker and packer (EUP) connects the IHUB to the multimodal rec-

ognizer, the speech synthesizer and the Semantic Mediator. The applications behind the Se-

mantic Mediator can be addressed by a SOAP/WDSL API (Reithinger et al., 2005). SmartWeb

features comprehensive ontological modeling using the W3C recommendation EMMA and

RDFS. EMMA is used to encode multimodal I/O, and RDFS for interactions with the Semantic

Web interface. The goal was to let different domain ontologies interoperate in a common

data model; for this, the general-purpose ontologies SUMO and DOLCE were merged (Son-

ntag and Romanelli, 2006).

The initial use case scenario was that a user visits a World Cup stadium during the soccer

championship in 2006, and has related queries regarding, e. g., soccer results, but it is possi-

ble to request information from any domain. The interaction comprises asking information-

seeking questions, requesting additional services available by integrating external applica-

tions, and system control queries (e. g., canceling a running query or asking for status in-

formation). The user can also use the pen to edit recognition results, which is immediately

presented on the screen after recognition, in case they are incorrect. The user can also correct

recognition results by speech, e. g., “I did not mean Fuji, but Fiji” (Reithinger and Sonntag,

2005). On the output side, the system attempts to provide answers in several modalities, e. g.,

a typical reply to the user’s question “who won the soccer championship in 1990?” would be a

TTS output “Germany” accompanied by a picture of the winning team, as shown on the right

side of Figure 3.10. The interaction follows a cycle of turns where REAPR first takes input

from SpIn and FADE, and presents it again to the user for reconsideration. If the user makes

a correction, the input is reprocessed by the interpretation modules. Otherwise, the request

is sent to the Semantic Mediator. After the results arrive from the Semantic Mediator, they

are presented on the device (Reithinger et al., 2005). Additionally, the user can interrupt the

processing cycle by pressing a Cancel button.

For the OMDIP project, which is documented in Chapter 7, our dialogue manager was inte-

grated with the IHUB communication infrastructure and used SmartWeb’s ontology frame-

work. There was also cross-fertilization due to the parallel development of SmartWeb and

VirtualHuman, both of which use the fusion and discourse engine FADE and a similar toolset

for the development and maintenance of the ontological knowledge base.

3.3 Interactive Narratives

Systems that use dialogues to perform storytelling include many commercial applications,

especially in the games industry. Since the mid-1970s, there have been games of interac-

tive fiction. The early Infocom series already incorporated a sophisticated parser capable

84

Related Systems

of processing simple anaphora and relative clauses in typed input.6 However, even today

the intended target hardware for most interactive games—computer systems in the private

home—is operating with keyboard and mouse input modes only and usually does not offer

support for spoken language processing, let alone more sophisticated means for multimodal

interaction.7

In this section, we first look at a “game” for adults that is also intended as a research plat-

form: Façade achieves depth of immersion in a convincing scenario. Our second example is

the commercial game The Sims. Although the interactions in this game do not include spo-

ken dialogue in the classic sense, the character modeling is interesting for virtual storytelling

systems. The Mission Rehearsal Exercise is a research project that realizes an ambitious multi-

character scenario that also includes narrative elements. We then take a look at the related

IN-TALE system, which makes use of a separate director module to control the goals of the

characters. We have to leave out several interesting systems. Some have been using existing

commercial game architectures to provide the environment for experimentation, e. g., the Un-

real Tournament engine in the Mimesis system (Young, 2001) and “Haunt 2” (Magerko et al.,

2004), which also examines the use of virtual directors. The FearNot research system features

an unusual scenario involving educating children how to cope with bullying situations (Paiva

et al., 2004).

3.3.1 Façade

Developed by Mateas and Stern, Façade (Mateas and Stern, 2003; Mateas, 2002) is a recent

milestone in interactional narrative systems. The user can interact with two virtual characters,

playing the roles of a married couple, in their apartment. The user impersonates a visitor and

is involved in a developing marital conflict situation. Although the interaction possibilities are

relatively limited and the story quite constrained by the storytelling requirements, the system

manages to convey a strong sense of immersion in the situation.

Figure 3.11: Screenshots from Façade

6Wikipedia article on Infocom: http://en.wikipedia.org/wiki/Infocom
7This is currently changing somewhat with the introduction of the Nintendo Wii gaming console.

85

Related Systems

The user can move around in the apartment of the characters which is rendered in comic-

strip-like pseudo-3D, as displayed in figure 3.11. Façade recognizes a set of keyword inputs

and mouse interactions with objects that trigger predefined story events. For example, if the

user expresses interest in a painting on the wall by referring to it or by standing next to it for

a longer period of time, the characters will start to argue about whether the location of the

painting is suitable, and try to persuade the user to take their respective side in the argument.

Failing to react to some of the characters’ actions can also have consequences.

The system only processes typed keyboard input which is processed in real time. This intro-

duces a disadvantage for the user into the dialogue situation, since her dialogue contributions

tend to be lacking in speed or accuracy; the system does not compensate for slow typing or

typing errors. Also, since the input interpretation is rather simplistically based on relatively

few keywords, often an utterance is understood incorrectly. Both aspects can be a source

of frustration, because the characters are quick to throw out the visitor in case they are not

satisfied with her contributions, or if they—possibly by mistake—interpret a user action as

inappropriate.

It is not really possible to engage in a more complex, meaningful conversation with the char-

acters. The story unfolds in small scripted sequences tied to key events and the progression

of time. However, the wording of the utterances and their triggers are cleverly chosen, so

that the user gets the feeling that she is actually in a scene with an (admittedly egocentric

and agitated) couple. Much of the atmosphere is created by the exchanges between the char-

acters, not with the user, who acts mainly as the trigger for events. The lack of real control

over the interaction, and resulting unintended consequences such as being thrown out of the

apartment, is implicitly made more plausible by the context of a marital conflict where the

user is in the role of a bystander anyway, and all participants are emotionally upset and may

“over-react”.

In Façade, a single user can experience real-time multi-party interaction with autonomous

characters. However, it is more an example for storytelling systems than for dialogue systems.

The system manages to enforce a storyline, with different yet defined endings, while allowing

the user to act freely and get a sense of immersion.

3.3.2 The Sims

There have been two instalments of the series The Sims. The Sims 1 was the best-selling com-

puter game of all time with over 6.3 million copies sold worldwide, according to a statement

by the publisher company Electronic Arts in 2002. The game is a psychological simulator set in

a neighborhood of semi-autonomous characters whose interactions create an emergent narra-

tive. There has been work to incorporate multimodal input via a tabletop interface (Tse et al.,

2006), although in this case, the interaction did not include interactions with the characters

themselves, but the overall environment of the game.

Although there is a sort of “dialogue” between the characters, along with synthesized “speech”

output in a simple artificial language called “Simlish”, the interactions are not intelligible to

the human user. To hint at meanings, illustrative speech balloons with icons are displayed

above the heads of the characters, as seen in Figure 3.12. The characters also use the ad-

ditional modalities of gestures, body posture and facial expression to convey their condition

and intentions.

86

Related Systems

Figure 3.12: Screenshots from The Sims 2: (top) character interaction, (below) status bar

displaying a character’s wants, fears, and needs

Unfortunately (but not surprisingly), the creators of this commercial software are not very

open about the inner workings of their product. However, from the interface it can be con-

cluded that the characters in The Sims 2 are modeled in a way that is in some ways remarkably

close to concepts in the research literature about life-like communicating agents. For one, a

Sim character is defined in terms of character traits that are similar to the psychological “big

five” that also were used by the ALMA affect engine in VirtualHuman (see section 7.2.5). They

include, e. g., degrees of “extraversion” and “neatness”. The behavioral model for the charac-

ters, on the other hand, is reminiscent of BDI theory (see section 2.4.3). The characters have

positive and negative desires (called “wants” and “fears” in the game) that are derived from

the character traits (e. g., a “neat” character will eventually have a desire to wash the dishes).

The desires however do not directly lead to actions of the characters. What the character

intends to do in a given situation can be determined by direct commands from the player, or

arise depending on the desires or one of a set of “needs”. Needs are quantitative measures of

conditions such as “comfort”, “hunger”, or “hygiene” (see the lower part of figure 3.12). For

example, if the “hunger” value sinks below a certain threshold, the character will adopt an

intention to eat a meal. Intentions are added to a queue, and only one intention can be active

at any one time. The currently active intention leads to actions to fulfil the intention, e. g.,

planning how to go to the kitchen, open the fridge, prepare a meal, and carry it to a suitable

table to eat it. How exactly the intention execution is scripted or planned is not entirely

clear, but at least the path-finding toward objects needed for the actions is flexible enough to

dynamically accommodate moved objects or other characters standing in the way.

The way in which the user can interact with objects and characters is modeled alluding to the

concept of affordances (see section 4.4.5). Possible actions involving an object are triggered

by clicking on the object and choosing from a set of options, this set is provided by the object

87

Related Systems

itself. As suggested in the section about affordances, this facilitates authoring new content in

the scenario: New objects have been added by a very active player’s community that come

with customized actions available with them.

3.3.3 Mission Rehearsal Exercise and IN-TALE

Figure 3.13: The Mission Rehearsal Exercise System

MRE The Mission Rehearsal Exercise (MRE) (Swartout et al., 2005, 2006) is an ambitious

project carried out at the Institute of Creative Technologies (ICT). It simulates an emergency

situation during a peacekeeping mission in Bosnia where the human user, a trainee, takes on

the role of a lieutnant in charge of a team and has to coordinate squads of virtual soldiers to

resolve the situation.

The scene is presented in 3D on a large screen (see figure 3.13) where the trainee can perceive

the virtual environment and interact with life-like and life-size virtual characters taking the

roles of different team members via speech. The characters were created by Boston Dynamics

Incorporated (BDI) and include facial expressions and lip synchronization. The animation of

the characters was done using a combination of motion-capture and procedural animation

techniques. MRE uses a blackboard communication infrastructure called Elvin similar to the

IHUB and MultiPlatform. Elvin is bypassed for time-critical tasks such as the synchroniza-

tion of animation and audio to mitigate latencies, as well as for text-to-speech and gesture

generation to achieve lip synchronization (Swartout et al., 2005).

The stated research goal of MRE is to improve capabilities such as perception, planning, spo-

ken dialogue and the display of emotions, and to integrate it into a single agent architecture.

The setting especially allows for interesting research topics related to multi-party dialogues.

The interactions with the characters are influenced by the social roles in a military situation,

which include the superior / subordinate relationship, professional roles (e. g., medic), au-

thority to order a task and responsibility for a task to be carried out. Traum’s investigation

88

Related Systems

of issues in multi-party dialogues (Traum, 2004) is strongly guided by the MRE setup. Char-

acters can move around in the virtual world, answer questions about the state of the world,

suggest appropriate future actions, respond to orders by acting or counterproposing alter-

natives, engage in clarification sub-dialogues, and issue orders to subordinates. They also

exhibit attending behavior (such as gazing) and can engage in multiple conversations (Traum

and Rickel, 2002).

The behavior of the (up to three) major characters is autonomous, minor characters and

physical events (e. g. explosions) are scripted. Scripted events can be triggered either au-

tonomously (production rules) or by a human exercise controller. Characters have a world

model that also includes assumptions about the intentions of other characters, and plans that

specify who might be able to carry out sub-tasks. They feature behavior to express attention

to other characters and objects, such as gazing. The autonomous characters are implemented

using a production system in the SOAR architecture (Laird and Rosenbloom, 1996) and are

partially based on TrindiKit.

In terms of setup, the MRE has requirements that are similar to those of the VirtualHuman

system, especially regarding the number of virtual characters and the objective to let them en-

act realistic visible behavior. Although the theoretical background of the has been extensively

analyzed, the exact extent of the system’s implementation is not entirely clear. In (Swartout

et al., 2006), the authors state that “an initial version of the MRE system described in this pa-

per has been implemented”, allowing the user to interact with three virtual humans, and that

the system was ported afterwards to an additional domain that only features a single virtual

character. A more recent publication describing the completion of the entire system could not

be found.

IN-TALE Another approach to interactive storytelling is implemented in the prototype IN-

TALE system, also developed at the ICT. Like with MRE, the scenario for this system is a

training exercise for military personnel.

Figure 3.14: Screenshot from the IN-TALE prototype

89

Related Systems

The scenario is a peacekeeping mission in a foreign country where the trainee is put in a

situation in which there is a threat of insurgents detonating a bomb in a marketplace (Figure

3.14 shows a screenshot). The situation involves characters that are hostile to each other, and

it is unclear who sets up the bomb because there is more than one suspect. The trainee is

not required to solve or prevent the criminal case; instead, the emphasis is to put him into a

learning situation where he can practice relevant skills.

The characters’ actions are scripted with the ABL language (“A Behavior Language”) that was

also used in the Façade system (Riedl, 2005). However, IN-TALE’s focus is more on the narra-

tive aspects of the system. The system employs a director module that is meant to ensure that

the story goals unfold as planned. The intention is to realize believable actions by the char-

acters and the ability to reconcile actions by the player that might threaten the desired end

result, e. g., if the player arrests the insurgent before he has the chance to place the bomb, the

outcome may be changed. One possibility in such a situation is to let narrative-threatening ac-

tions fail in a way that does not destroy the suspension of disbelief (Riedl and Stern, 2006b).

In the bounds of the high-level goals from the director module (called “narrative directive be-

haviors”), the characters execute low-level autonomous behaviors (called “local autonomous

behaviors”). In both cases, ABL scripts are triggered by matching associated preconditions

against working memory elements (Riedl and Stern, 2006a). The cited publications do not

go into the set of supported input/output modalities, which are in any case not the topic of

the research. From the screenshot, it appears that textual output is generated on-screen, and

as a game engine was used to render the scenario (Riedl, 2005), the input can be assumed to

be genre-typical mouse interaction.

At the time of writing, IN-TALE is still a prototype system. The approach to let the high-level

narrative goals be directed by an external module while letting the characters exert local

autonomy is similar to VirtualHuman.

3.4 Other Systems and Approaches

For many simpler applications, using finite state automatons (FSAs) to represent the dialogue

model, like in the MATCH system, is sufficient. In this case, the application is laid out as

a finite set of states, or nodes, that are interconnected in a directed graph. The connecting

edges represent transitions between states. Graph edges can be labeled with conditions or

probabilities determining when a certain transition is allowed. On entering a node, one or

more actions are executed. An early important system using scripted interaction is the PPP

system realizing life-like presentation agents (André et al., 1998). SceneMaker is a toolkit

for designing and executing FSAs for scripted characters, which was used to define multiple-

character interactions in, e. g., the CrossTalk (Rist et al., 2002) and COHIBIT systems (Gebhard

et al., 2003; Klesen et al., 2003).

Another alternative for less complex applications is to use VoiceXML interpreters for process-

ing. VoiceXML (Voice Extensible Markup Language) is a standard introduced by the W3C

consortium. It allows the dialogue designer to specify a voice-controlled application in a

state-based manner. An interpreter that parses VoiceXML specifications can then render the

application. The main uses of VoiceXML are for phone-controlled services, like form-based

tech support, voice e-mail access, or package tracking. VoiceXML can also be used to direct

90

Related Systems

a customer towards a specific human phone operator by asking decision queries about the

nature of a call. A VoiceXML application consists of related documents that are interpreted by

a “voice browser” analogous to HTML documents. VoiceXML presents a relatively easy way to

specify dialogues that do not require advanced features. The language has found widespread

use and, according to the specification webpage (W3C-VoiceXML, 2006), deployed VoiceXML

applications in 2006 handled “millions of phone calls every day”. There is also a proposal

by the W3C to extend VoiceXML for multimodal dialogue requirements.8 (Niklfeld et al.,

2001) argues that VoiceXML lacks adaptation capabilities to user and situational attributes

for multimodal and multi-platform applications, which are important especially for mobile

devices. The specification also is quite inflexible and not very powerful for more complex

dialogues. VoiceXML dialogues for example do not allow the user to be proactive, i. e., to give

information that is not expected at the current point of the interaction, but “scheduled to be

addressed at a later time”.

Predominantly in non-research systems with a limited scope, or systems that are not primarily

concerned with dialogue management per se, dialogue specification is also sometimes done

using programming languages specially designed for a particular application. Storytelling

systems often fall into this category. One example is ABL, which was mentioned in the sections

about the Façade and IN-TALE systems. Special-purpose languages allow a dialogue designer

to tailor and optimize to cater to the idiosyncratic demands of an application, but also have

the drawback that they tend to trade-off theoretical soundness for pragmatic reasons; this

can, e. g., entail that it is difficult to incorporate additional linguistic issues that were not

originally planned for. Also, a re-use in different domains can turn out to be difficult for the

same reason.

An avenue of research of growing importance with respect to task-oriented systems is the

dynamic integration and easy or automatical configuration of multiple applications. Systems

that comprise more than one application and possibly dynamically changing and/or interde-

pendent application contexts raise additional integration and coordination problems that also

affect the dialogue management modules. Examples for integrated multi-application systems

are, e. g., the EMBASSI project which aims to provide an easy-to-use plan-based interface

to networked information systems and home control (Heider and Kirste, 2002; Krämer and

Bente, 2002). Another approach is the DyMaLog framework that allows application-blind dia-

logue processing with the AIDE dialogue engine and an object-oriented input representation

(called o2I-trees) of application parameters derived from an ontological knowledge repre-

sentation. This representation allows in some cases to automatically infer cross-application

dependencies (te Vrugt, 2006). DIANEXML is an XML-based specification language that uses

a set of transactions, parameters, and a grammar. An application is identified with a set

of possible transactions. DIANEXML was extended in (Dongyi, 2006) to a meta-description

language that makes it possible automatically or semi-automatically analyze and combine the

functions of existing speech user interfaces. Such possibilites for meta-specifications that span

multiple applications could become increasingly useful to achieve interoperability between a

mounting number of deployed, but mutually incompatible speech-enabled systems.

8see http://www.w3.org/TR/multimodal-reqs

91

Related Systems

3.5 Summary

This chapter has presented a selection of systems that concentrate on different aspects of

human-computer conversational interaction in task-oriented and narrative-oriented domains,

and use very different knowledge and dialogue management techniques, modality combina-

tions, and theoretical backgrounds. Figure 3.15 juxtaposes some of the key features of these

systems for comparison, and also lists the ones that our framework aims to provide.

Since beginning of TRIPS and the SmartWeb project, task-oriented systems became increas-

ingly usable and practical to realize. At the same time, they are involving ever more complex

tasks, multimodal I/O configurations, and domain descriptions. On the other hand, construct-

ing a dialogue system still is a daunting undertaking. In the face of more comprehensive

domain and task descriptions, the use of ontologies to organize them in a standardized way

becomes more important, and so does the need for comprehensive tools for their creation

and maintainance. The availability of multimodal interaction possibilities and free mixed ini-

tiative enhances the convenience, versatility, error-tolerance and efficiency of task-oriented

systems. In addition, it makes the interaction feel more natural. Difficulties with the feasabil-

ity of full logic-based approaches have cast light on the importance of using the “appropriate

paradigm for the job”, one that is powerful and expressive enough to handle the demands of

the task, but also computationally tractable.

In the area of storytelling, there is not currently a strong emphasis on extending the dialogue

capabilities of the characters. One reason for this may be that this feature is hard to realize

in a completely or near realistic fashion, and unconvincing behavior on the part of the char-

acters would endanger immersion and believability, and thus hurt the story. Efforts instead

concentrate on making the characters act believably. This comes often at the price of much

hard-coded, non-reusable work to cover possible situations with little real reasoning. In the

extreme, problems with the combinatoric explosion of possible situations results in “interac-

tive movies” with very few meaningful interaction possibilities, or incoherent and arbitrary

“emergent” stories. There is also increasing research effort to provide authoring software for

interactive narratives, e. g., the Storytron and Erasmatron systems (Crawford, 1999) and the

authoring platform INSCAPE (Göbel et al., 2005). However, there is still a lack of tools that

support creative writers on the non-technical level.

92

R
e
la

te
d

S
y
ste

m
s

System Multimodal

Input / Output

Initiative Dialogue Management

Paradigm

Applications /

Scenarios

Multi-Party

Interaction

Knowledge

Representation

TRAINS/

TRIPS

speech, typed /

deep generation, GUI

mixed planning one at a time no logic

COLLAGEN menu selection, speech, gesture /

written and GUI output

mixed

but arbitrary

SharedPlans recipes (one) no logic

RavenClaw (diverse) mixed /

system

agency tree one at a time no agents and

agencies

WITAS spoken / TTS and GUI mixed theorem prover one no TrindiKit

MATCH speech and pen gestures /

TTS and GUI

user finite state automaton two no finite state

automaton

QuickSet speech and pen gestures /

GUI

user command interaction one at a time two

collaborating

users

feature structures

representing

commands

SmartKom speech, pen, facial recognition,

pointing gestures /

deep multimodal generation,

gesture, and GUI

mixed dialogue games,

planning

multiple,

interacting

no ontology and

plan operators

SmartWeb speech and pen /

TTS and GUI

user Q/A cycle with

corrections and modality

selection

one no ontologies

Façade typed keywords /

recorded speech and GUI

mixed

but arbitrary

event-triggered scripts one one user,

two characters

production rules

MRE speech /

multimodal generation,

character behavior

mixed scripts and

human controller

one one user,

multiple

characters

SOAR / TrindiKit

IN-TALE mouse (?) /

written text (?),

character behavior

mixed scripts,

external direction

one one user,

multiple

characters

ABL special-purpose

language

The Sims mouse commands /

artificial canned text,

character behavior

(mixed) unknown, at least

partially planned

one,

parameterizable

one user,

multiple

characters

(unknown)

CDE use cases speech, pointing gestures /

deep generation, TTS, GUI,

character behavior

mixed dialogue games with or

without planning,

Narrative Mode

one at a time arbitrary

many users

and characters

ontologies, games,

activity specifications

Figure 3.15: Feature comparison of related systems

9
3

Related Systems

94

Chapter 4

Representing the Knowledge Base for

Situated Conversational Characters

4.1 Introduction

A conversation manager needs a way to represent the content of items of discourse, facts

about the environment in which the conversation occurs, and the application or theme the

dialogue is about. If it is concerned with a multi-party situation involving one or more virtual

dialogue participants, it also needs to account for the mental state and reasoning capabilities

they use to produce utterances and other behavior, as well as one or more user models. The

decision about the representation method to use for holding and manipulating this informa-

tion about the world has far-reaching consequences, since almost all parts of the dialogue

system are in one way or another related to it. Ideally, the different modules of a system

should share a common representation.

The system’s knowledge base determines what is known to exist, what can be talked about,

and what inferences can be drawn. Possible approaches include procedural representation,

custom special-purpose representations, classical logic representations, frame-based repre-

sentations, or ontology-based representations. The distinction between these representation

methods is blurred, since they often are at least partly equivalent. For example, ontolog-

ical relations can be transformed to equivalent logic expressions. However, there are still

important differences, which we will explain below.

In this chapter, we first describe the types of knowledge that are needed in a dialogue system

and the different purposes for which the knowledge is used. We look at ways to represent

knowledge and justify our decision to employ an ontology-based approach, with a notation

based on typed feature structures, and introduce important operations on ontological objects.

The environment and the characters are each associated with a self-contained view of the

world representing the context. We describe the notion of context in another section. Finally,

a section talks about important concepts in the domain.

95

Representing the Knowledge Base for Situated Conversational Characters

4.2 The Role of Knowledge in a Dialogue System

4.2.1 Levels of Knowledge Representation

(Liew, 2007) gives the following explanation of the distinction between data, information

and knowledge (emphasis in the original):

Data are recorded [. . .] symbols and signal readings [. . .] Information is a mes-

sage that contains relevant meaning [. . .] from both current (communication) and

historical (processed data or ’reconstructed picture’ sources) [. . .] Knowledge is the

(1) cognition or recognition (know-what), (2) capacity to act (know-how), and (3)

understanding (know-why) that resides or is contained within the mind or in the

brain.

These relations are sometimes also depicted in a pyramid that has data as its foundation, the

next level constitutes information describing the data, and above is the knowledge that can

be inferred from the information; another level can be added for wisdom derived from the

knowledge, yielding a so-called “DIKW” hierarchy (Ackoff, 1989). In a multimodal dialogue

system, interpretation and modality fusion modules are responsible for converting raw in-

put data from the recognizers for the different modalities to messages representing, e. g., the

meaning of user utterances (cf. Section 2.5.3 on dialogue system architecture). The conversa-

tion manager needs knowledge that defines its ability to interpret the information content of

the messages representing communicative and other actions from other dialogue participants

and to react accordingly.

Level Primitives Interpretation Main Feature

Logical Predicates, functions Arbitrary Formalization

Epistemological Structuring relations Arbitrary Structure

Ontological Ontological relations Constrained Meaning

Conceptual Conceptual relations Subjective Conceptualization

Linguistic Linguistic terms Subjective Language dependency

Figure 4.1: Classification of KR formalisms on several levels according to the kind of primi-

tives used (from (Guarino, 1995, page 10))

Knowledge representation needs to be concerned with the ontological level, which is about

the nature of things and the state of the world, and the epistemological level, which is about

how knowledge can be extracted from the state of the world. (Guarino, 1995) distinguishes

the levels of knowledge representation shown in the table in Figure 4.1. He describes the

characteristics of the different levels as follows: The logical level works with predicates and

functions that are given a formal semantics that allows for their formal interpretation but

involves, however, no commitment regarding their interpretation. The epistemological level

adds structure in terms of generic concepts and roles. The ontological level explicitly speci-

fies the concepts and roles by characterizing the meaning of the basic ontological categories,

and the relations between them. The conceptual level assigns the primitives a definite cogni-

tive interpretation, e. g., elementary actions or thematic roles. Finally, the linguistic level is

concerned with the concrete linguistic units.

96

Representing the Knowledge Base for Situated Conversational Characters

4.2.2 Types of Knowledge

The knowledge base for a dialogue system needs to cover different areas, and it is advanta-

geous to clearly separate the knowledge for each area to facilitate their reuse (Flycht-Eriksson,

1999).

Communication Environment

Task Knowledge

Task StateDiscourse HistoryDynamic Instances

Discourse Rules
World Knowledge

General

Domain Knowledge

Taxonomy

Static Instances

domain
specific

independent
domain

T−Box

A−Box

Taxonomic Knowledge

Participant Models

type example

taxonomic knowledge integers are numbers, there is a partition of subcategories

into “animate” or “inanimate”

discourse rules A question requires an answer

general world knowledge Ballack is a football player

domain knowledge Ballack was injured in the last game

task knowledge Logging in to the application requires a password

discourse history Dialogue participant P1 greeted participant P2 and then

asked me about the weather

task state User U has completed the login procedure

participant model Dialogue participant P wants to sell me something

Figure 4.2: Knowledge types and examples

The two main knowledge types are task knowledge and discourse knowledge. We will make a

somewhat more fine-grained distinction, as shown at the top of figure 4.2. In the table on the

bottom, concrete examples are given for each type of knowledge.

The knowledge types differ as to whether they are taxonomical in nature, or whether they

represent concrete object entities, called instances. In description logics, these types are often

referred to as the T-Box (terminological box) that contains the definitions of concepts the

knowledge base is about, and the A-Box (assertional box) that contains descriptions of actual

entities, or instances of the concepts. For dialogue systems, it is also useful to make a further

distinction between knowledge that is used to represent the aspects of communication, and

knowledge representing the environment in which the interaction takes place. Instances of

97

Representing the Knowledge Base for Situated Conversational Characters

both kinds can be either static or dynamically created and mutable during an interaction.

The areas covered by the knowledge types are the following:

• Taxonomic knowledge describes the taxonomic relations between concepts (types of ob-

jects). It is concerned with concept hierarchies (e. g., is-a relations) and relations be-

tween instances of concepts (e. g., has-a relations).

• General World Knowledge concerns factual information about the world, which includes

objects, their attributes, and relations between them. It is extended by domain know-

ledge which is about the concrete domain of the application.

For example, for the VirtualHuman system that is concerned with the domain of foot-

ball, the world knowledge defines that there are concepts like persons and numbers.

The domain knowledge includes the concept of football player (a specialization of the

person concept) with has attributes such as the player’s name, physical fitness, or na-

tionality. It specifies that the FootballPlayer category is a subcategory of Person and

has subcategories such as Defender, Goalkeeper and so on.1 The knowledge base also

contains objects that are concrete instances of the FootballPlayer concept.

It is not strictly necessary to separate general world knowledge and specific domain

knowledge. However, doing so makes it possible to share and re-use existing bodies of

domain-independent general world knowledge across different applications (cf. section

4.3.3).

• Task knowledge connects the interaction and the general world and domain knowledge

with respect to the goals of the system. In VirtualHuman, it encompasses what the

different quiz games involve and how the characters go about realizing their roles. Task

knowledge is in terms of goals and the actions that are necessary to achieve them, how

different actions change the state of the system’s goals, and what they mean for the

character’s future actions, plans, and behavior. Task knowledge can be seen as a special

case of domain knowledge.

• Knowledge about the discourse rules states what form appropriate contributions in a

given context can take on, and what their meaning is. Coherent interaction has rules,

and the individual communicative acts have an effect; for example, a question will be

about some subject (that should be known and identifiable from the world knowledge)

and influence the state of the question’s addressee in some way, e. g., in that she will

be obligated to return an answer. The dialogue games that are introduced later in this

thesis are instances of discourse rules.

• The discourse history models the content and structure of instances of actual dialogical

interactions between the interlocutors, and relations between them (e. g., belonging to

the same topic, or cross-utterance references). Information that is obtained in the course

of the dialogue may also be accepted permanently by dialogue participants to become

part of their world or domain knowledge. For example, if the dialogue system in one

session learns the address of a user, it could use this information to update its persistent

world knowledge, so it would not have to ask for it again in a subsequent session.

1When we are talking about a concrete concept from a knowledge base, we emphasize this by using the name

as one word in italics, e. g., “FootballPlayer” vs “football player”.

98

Representing the Knowledge Base for Situated Conversational Characters

Exchange of knowledge items between dialogue participants constitutes communication,

and the discourse history records the communication in the system.

In a multimodal system, contributions in different modalities are stored in the discourse

history. As will be explained in Section 5.3.2, our model relies on the FADE engine

(Pfleger, 2007) to store the discourse history.

• Parallel to the discourse history, the situation also includes information that belongs to

a task state. This information is influenced by the discourse, but separate from it. It

comprises information like, e. g., “The football team on the field is complete” (in Virtual-

Human). The task state can also change due to, e. g., physical actions of the characters,

or external events that may not have anything to do with the interaction per se.

• A user model provides a dialogue system with an “explicit model of the user’s beliefs,

goals and plans” (Wahlster and Kobsa, 1989). It is usually considered distinct from

the discourse and domain model. In our approach, the human users do not hold a

special position, but are on a par with the other dialogue participants; each participant is

therefore represented by participant models held by the other interlocutors as (dynamic)

parts of their overall domain model. Models for virtual characters are a special case of

participant models; we refer to them as character models (cf. Section 7.2.5).

The basic taxonomic structure and a part of the instances concerning stable world knowledge

(i. e., knowledge that does not change during the course of interactions) can, in principle,

be independent of the domain. Rules of discourse can also be largely domain-independent,

since discourses in different domains are structured similarly (exceptions for domains where

special or additional rules may hold nonwithstanding, such as in a classroom situation). We

assume the taxonomy and the rules of discourse to be static (although both could also be

dynamic in a learning system). On the other hand, the knowledge about the task, the task

state, and the actual history of the current discourse are domain-specific to a high degree.

4.2.3 Dialogue and Context

To provide those dialogue participants that are agents controlled by the computer with some

understanding of the task, each one needs to have access to (at least parts of) the general

world, domain, and task knowledge. It is possible that they have different versions of this

information, resulting in differing private views or degrees of being informed. For example, in

a scenario with characters that take on the roles of a “teacher” and a “pupil”, their knowledge

of the subject matter will have to be different almost by definition.

Each participant also needs to be able to access a record of the current task state, and a (pos-

sibly also private) dialogue history that contains the parts of the interaction the participant

has followed. When making their own contributions to the discourse, participants can resort

to the discourse rules to determine their options. The principal uses for the different types of

knowledge are:

• representing communication in terms of communicative acts passed between the parti-

cipants, and in the dialogue history,

99

Representing the Knowledge Base for Situated Conversational Characters

• representing the state of the world and the task,

• providing rules for the communication between dialogue participants, and between the

components of the system, and

• providing computational dialogue participants with a way to reason about the state of

the world and determining courses of action.

To be able to meaningfully and purposefully engage in a dialogue, the participant agents need

an account for the changes effected by the utterances, and a way in which they can access

and act upon that context.

By context we mean a knowledge base of facts about the domain and the task state that is

dynamically updated to reflect the current state in the interaction. Similar to SmartKom’s

information state, the (private) domain and task state information is separated from the

(public) interaction history, and both types of information are processed by separate modules

(namely, the conversation manager and the FADE engine). Also like in SmartKom, dialogue

games are used to specify the rules for well-formed interactions that have declarative and

procedural aspects (cf. Section 2.4.3). The model we present separates them and includes

the declarative aspects of the dialogue games in the contexts of the participants as facts.

A system of multiple autonomous participants calls for a set of separate contexts, since the

knowledge base of the participants may be different from the start, and/or change indepen-

dently. Dialogues are taking place in some kind of environment, which can be the actual

physical reality, but also a simulated reality represented graphically as a “virtual environ-

ment” as in VirtualHuman. The state of this environment, which we call the system context,

represents the actual, “objective” state of affairs as modeled by the dialogue system. Addi-

tionally, each virtual character has a private character context, which holds its individual view

of the current state of affairs that may or may not conform to the system context, and in

addition a private set of beliefs, desires, and intentions.

Actions that take place in the environment bring about changes in the contexts of all the

dialogue participants that perceive them. The interconnection between the contexts of the

dialogue participants and the environment context is illustrated in an example in Figure 4.3.

It shows an instantiation of the left side of the interaction triangle from Figure 2.7 with one

human user and two characters, Peter and Mary. When Peter utters an invitation to Mary

for dinner, he triggers several different kinds of context changes. The dialogue history will

record the (objective) fact that Peter made the invitation. The changes in the contexts of the

participants depend on their attitudes. Assuming both characters adhere to “normal” social

conventions, Peter’s context will include a notion that after an acceptance of the invitation

by Mary, he will be obliged to cook a meal. On the other hand, Mary now would be obliged

to address Peter’s invitation by accepting or declining it, and if she accepts, she takes on an

obligation to visit Peter. The user (or any other additional participant), not being involved

directly in the interaction, might just notice the fact that Peter invited Mary. It would also

be possible that a third-party observer draws additional conclusions not shown in the figure

(e. g., assuming that Peter likes Mary).

Utterances can affect the participant models that contain information about the other in-

terlocutors; also, a character’s interpretation of an utterance, as well as its actions, may be

100

Representing the Knowledge Base for Situated Conversational Characters

Character: Peter Character: Mary

"Mary, I
invite you
for dinner"

Human User

Mary User

User

Mary Peter

Peter

Participant Models

Participant Models

Participant Models

Environment

User’s Context

Context

Dialogue
History

Context
Participant Participant

cook a meal
obligation to

Acceptance

invitation
to reply to
Obligation

Acceptance

visit Peter
obligation to

Peter invited
Mary for
dinner

Act(Peter, Mary,
Invitation, t)

Figure 4.3: Example for changes in different contexts effected by a dialogue act

101

Representing the Knowledge Base for Situated Conversational Characters

influenced by its participant models (e. g., if it does not trust a dialogue partner). In the ex-

ample, the invitation might cause a positive modification in Mary’s model of Peter. Participant

models generalize the notion of a user model employed in systems that involve interaction of

a single human user with the computer for multi-party situations where models are required

for both human users and virtual characters. The mental model of the human user is beyond

the scope of this work; instead, we need to account for the system context and the contexts of

the characters. The information in each of these contexts is described by means of a dedicated

ontology, as we describe in the following sections.

4.3 Ontological Representation

4.3.1 Representation Formalisms

Modeling the structural and factual information about a given domain is a difficult and labo-

rious task, and there is still no straightforward and universally accepted methodology for it.

As we are also concerned with virtual environments and (multiple) characters, the domain

for our system not only includes the conversation itself, but also the “physical” objects of the

virtual environment, including the characters themselves, as well as models of the emotional

and mental states of the characters. Still, an extensive section of the knowledge base is de-

voted to the representation of dialogue and dialogue structure. As outlined in chapter 3,

dialogue systems use many different methods for knowledge representation. This section is

about the reasons why we chose to use an ontological foundation for our framework.

A declarative representation of some content defines what it is about, in contrast to a pro-

cedural representation that implements directly how to manipulate and what to do with it.

Using a declarative approach is increasingly considered good practice for knowledge-based

systems, especially for larger domains, because modeling knowledge independently from the

procedures that operate on it offers more flexibility than a procedural approach, allows for

re-use of existing knowledge across systems and facilitates maintenance.

Knowledge can be represented in a wholly or partly declarative way by designing a custom

representation tailored to the implementation requirements of a particular system or algo-

rithm. For example, systems that implement a dialogue purely as state transitions in finite

state automata frequently encode the knowledge in a custom FSA representation. While such

an approach separates the knowledge from the implementation, the representation remains

largely dependent on the particularities of the specific program, and a re-use for a different

environment can turn out to be difficult or impossible.

An abstract, expressive and concise representation method is to encode the knowledge as

assertions in some logic. Logic formalisms range from elementary propositional logic, over

first-order logic, to higher-order logics and variants which allow capturing notions of, e. g.,

possibility, necessity, time, or belief (modal logics), and uncertainty (fuzzy logics). Such

extensions can be powerful tools for dealing with various phenomena in natural language

(Gamut, 1991), however, a problem with logics that go beyond propositional logic is that

it is difficult to pose a limit on computational requirements: determining the truth value of

assertions is not decidable in the general case (Fitting, 1990).

102

Representing the Knowledge Base for Situated Conversational Characters

Computational ontologies provide a vocabulary to link assertions in some, possibly restricted,

logic to define concepts (types of entities) and their instances. OWL, a language recom-

mended by the World-Wide Web Consortium (W3C) for ontology specification, uses a descrip-

tion logic, which is a subset of first-order logic derived from frame-based systems, semantic

networks, and KL-ONE-like languages (Nardi and Brachman, 2002). While description logics

put some constraints on what can be expressed, they have the big advantage that there are

decidable procedures to determine the truth value of expressions.

Gruber defines a (computational) ontology as follows:

“An ontology is an explicit specification of a conceptualization. The term is borrowed

from philosophy, where an Ontology is a systematic account of Existence. For AI

systems, what ”exists” is that which can be represented. When the knowledge of

a domain is represented in a declarative formalism, the set of objects that can be

represented is called the universe of discourse. This set of objects, and the describ-

able relationships among them, are reflected in the representational vocabulary with

which a knowledge-based program represents knowledge. [...] Formally, an ontology

is the statement of a logical theory.” (Gruber, 1993, page 1)

Although formal ontology-based domain modelling for dialogue systems has been used suc-

cessfully for some time (see, e. g., (Porzel et al., 2003)), it has only recently begun to be-

come standardized and feasible for larger domains with the introduction of languages such

as RDF(S) and OWL2. Tools for ontology creation and editing have also begun to emerge,

such as the Protégé and OilEd visual editors, and program libraries to access and reason with

ontologies, like the Jena API.3 These efforts related to making a semantic web access feasible

have resulted in the adoption of a set of standards for ontology description that have gained

widespread acceptance. A third strong incentive to use ontologies comes from the possibil-

ity to re-use predefined concepts from upper or base ontologies, such as SUMO, DOLCE, or

OpenCyc as a foundation upon which application-specific ontologies can be constructed (A

synopsis of seven base ontologies is given in (Mascardi et al., 2007)).

Dialogue research begins to exploit the advantages of upper-level ontologies where they are

available to support all areas of dialogue processing, also including recognition, interpreta-

tion, and generation. Other efforts create, use or merge general purpose ontologies, espe-

cially ones concerned with information retrieval in the Semantic Web. For example, for the

SmartWeb project, DOLCE and SUMO were integrated to form the SmartSUMO foundational

ontology, on which the SmartWeb Integrated Ontology (SWIntO) is based (Oberle et al., 2007).

4.3.2 Basic Ontological and Epistemological Terminology

An ontology imposes a taxonomy that divides the domain into different hierarchically ordered

classes to represent types of entities, called concepts or types. For example, a Tiger concept

would represent all kinds of tigers in the domain. The hierarchy defines subconcept and

superconcept relations. The transitive subconcept relation is called the is-a relation. Actual

objects in the domain that are described by a concept are called instances of that concept and

2see http://www.w3.org/TR/rdf-schema/ and http://www.w3.org/2004/OWL/
3see http://jena.sourceforge.net/

103

Representing the Knowledge Base for Situated Conversational Characters

its superconcepts: the individual tigers in the domain would be instances of the Tiger concept.

Categories can be concrete or abstract. Categories that are used to represent actual entities

in the domain are called concrete categories, in contrast to abstract categories that only have

instances that also belong to at least one concrete subcategory. For example, the ontology

can have an abstract Animal concept as a superconcept of the concrete animal concepts Tiger,

Elephant, and so on.

Animal

ElephantTiger ...

Animate

is−a
is−a

is−a

...

concrete

abstract

Concepts

Tiger

Person

Integer

has_owner

String

has_age

has_name

...

Role Types

Figure 4.4: Illustration of some ontological and epistemological terms

On the epistemological level, a concept can define role relations that relate its instances to

other instances of a given type; e. g., “has-a” relations. Roles describe the attributes of the

instances of a concept. For example, the Tiger concept could have a role has owner of type

Person, which means that a Tiger instance is associated with an Person instance that represents

the owner of the Tiger, or that a Tiger “has-an” owner.4 We call the instance associated with

the role r of an instance via the relation has r the value or role filler of the role r. Instances of

subconcepts of the role type are also possible role fillers.5

The cardinality of values for a given role of a valid instance (an instance that is considered to

be completely specified—see section 4.4.2 on underspecification) can be restricted. If more

than a single value is allowed for a role (e. g., a Tiger could have more than one owner), the

role is called multiple. If there must be at least one value of a role for an instance to be valid,

the role is called required; otherwise it is optional.

Subconcepts inherit the roles from their superconcepts and can add new roles of their own,

thereby extending their superconcepts. A concept Person that is a subconcept of an An-

imal concept inherits, e. g., the has age role, and adds new person-specific roles, such as

has nationality. Subconcepts can also further restrict the concepts that are allowed for role

values; the Person concept will restrict the has parent slot that it inherits from Animal to have

only values of type Person instead of Animal. In the case of multiple inheritance, a concept

can have multiple superconcepts and inherit roles from all of them. Multiple inheritance can

4We adopt the convention that a “possession” of an attribute a is expressed with a role has a, whereas a

“predicate” role, which is filled by a boolean value indicating whether a is the case is named is a.
5In addition to concepts explicitly defined in the hierarchy, a role can also specify one of a small set of atomic

types for the role fillers that correspond to the simple datatypes used in many programming languages, e. g.,

String, Integer, or Boolean.

104

Representing the Knowledge Base for Situated Conversational Characters

be difficult to maintain in larger ontologies because it can lead to contradictions (Bechhofer

et al., 2002). The systems described in this thesis did not require multiple inheritance.6

4.3.3 Defining the Base Ontology

For ontological domain modeling, (Bateman, 1990) argues that the linguistic knowledge

should be factored out from task knowledge to obtain a so-called upper model that is reusable

and domain-independent. An upper model can also be obtained from adapting a base ontology

that describes foundational concepts that are general enough to be applicable in a wide range

of domains, and is designed to be extendable to meet the additional requirements introduced

by a specific domain.

Anything

Stuff

Animal Agent

Human

Solid Liquid Gas

Set

Category

AbstractObject

Number RepresentationalObject

Sentence Measurement

Time Weight

Event

Interval

Moment

Place PhysicalObject Process

Thing

Figure 4.5: Base ontology structure

There are considerable efforts to examine the process of designing domain ontologies for,

e. g., Semantic Web content (Berners-Lee et al., 2003), but also notably for applications in

the fields of medicine and biology (e. g., using medical ontologies to help diagnose illnesses

(Milward and Beveridge, 2003)) . Figure 4.5 shows the top-level skeleton of the base ontology

of (Russell and Norvig, 1995), containing some initial sub-divisions along abstract categories.

As can be seen from the figure, the ontology also includes important auxiliary concepts that

could be positioned between structural and world knowledge in the types of knowledge listed

in section 4.2.2, e. g., the concepts modeling Sets, Numbers, and Time. This base structure is

used as a starting point for the domains of the VirtualHuman and Clue systems. For the OMDIP

system, the base ontology from SmartWeb (Sonntag and Romanelli, 2006) is adapted.

As an editor to develop and maintain the knowledge base, we use Protégé, a free, open-source

tool for creation and visualization of ontologies in a graphical environment (Gennari et al.,

2003).7 Protégé allows the knowledge engineer to edit the taxonomic hierarchy and concept

instances separately. Figure 4.6 shows the Protégé interface for defining concept hierarchies

and the slots for different concepts. While Protégé can be very helpful for designing taxonomic

hierarchies, the definition of instances can quickly become cumbersome, since there is no easy

6The JenaLite tool implemented for our framework (see Section 6.2.2) also does not currently support multiple

inheritance for this reason.
7Protégé website: http://protege.stanford.edu

105

Representing the Knowledge Base for Situated Conversational Characters

Figure 4.6: Editing ontological concept definitions in Protégé

way to track all instances. The native storage format of the Protégé editor is not a standardized

one, and frequently changes while the editor is still under development.

Ontologies developed with Protégé can also be stored, among other formats, as standardized

RDF (Resource Description Framework) resources structured by RDFS (RDF Schema). RDFS

was designed as a general language to describe the vocabulary for RDF in a particular domain,

and can be used to represent ontologies. It encodes the subconcept hierarchies and the role

value types and ranges. The resources themselves are a collection of RDF triples, each of

which specifies a subject-predicate-object relation, such as (Elephant, is-a, Animal) or (Tiger34,

has owner, Person3).

4.3.4 Mapping to an XML representation

In our framework, the RDF(S) representation is not used directly for performance reasons

(see Section 6.2.2). Instead, as was already done in the SmartKom and SmartWeb systems,

106

Representing the Knowledge Base for Situated Conversational Characters

an additional layer is employed that expresses the content in terms of an XML representation

based on typed feature structures (TFS) (Carpenter, 1992). The original ontology, which

can be present in either RDF(S) format (or alternatively the proprietary ontology storage

format of the Protégé editor) is translated by a preprocessor into the format that is easier

to manipulate and also (arguably) more human-readable. An excerpt of the VirtualHuman

ontology file rendered in this format is shown in figure 4.7 (see Appendix E for an explanation

of the abbreviated XML notation). The XML representation comprises two sections:

• Concepts section

Here, all concepts are defined, and for each concept the set of its (immediate) super-

concepts is given. Each concept entry lists all roles defined by the concept along with

their restrictions. Roles inherited by superconcepts are not listed again. The role defi-

nitions state whether the role is required and/or multiple.8 The “type” attribute defines

whether the role value fillers must be ontological instances or members of the atomic

datatypes available in Protégé. In case of Instance role values, an additional attribute

lists the allowed concepts legal filler instances may belong to.

• Instances section

This section defines all instances, assigns them a unique identifier, and specifies their

(possibly multiple) role values. As can be seen in Figure 4.7, this also includes the roles

that come from superconcepts (the Midfielder instance also has slots inherited from

Person and FootballPlayer). Values of an atomic datatype can be specified directly as

a string literal, whereas an instance value is referenced by its identifier; in this case,

another unique instance with that identifier must also be be defined in the same file.

Instances are not required to be totally well-typed, i. e., even if the concept defines a

role to be required, it is still possible to define an instance without a value for it. This

instance will then be underspecified. The intended interpretation is that the information

is necessary for a full specification, but not given: e. g., the ontology may acknowledge

that every FootballPlayer has a first name, but not include this information for a certain

player instance.

This representation is used to construct a type hierarchy and corresponding instances like

in the SmartKom system (Alexandersson and Becker, 2001; Gurevych et al., 2006). The

translation process is essentially straigthforward: the concept hierarchy is mapped to a type

hierarchy, roles to corresponding slots, and ontological instances to instances of XML-TFS

structures.9

Figure 4.8 shows an example of the TFS notation for an instance of the Menu concept. In this

notation, we use a star postfix (∗) to indicate that a feature may be multi-valued. If there

is more than one value present for such a feature, we show them as lists in angle brackets

(<>). Value types are shown in slanted font (Menu). Given atomic values are quoted (“please

select”), while values that are TFS themselves are in square brackets. Where an actual value

8The possibility to specify exact numerical cardinalities for slots is not supported in the current format, but

could easily be added.
9Some aspects, e. g., exact cardinality restrictions for slots, are left out in our translation since they were

not required for the applications described in this thesis; however, in case they they were needed for a future

application, the translation could be adapted without too much effort.

107

Representing the Knowledge Base for Situated Conversational Characters

ontology

concepts

FootballPlayer

superconcepts

Person

roles

is_listed type="String" multiple="no" required="no"

has_fitness type="String" multiple="no" required="no"

has_speed type="Integer" multiple="no" required="no"

has_footballAction type=Instance" multiple="no" required="no"

allowedConcepts="FootballAction"

...

Midfielder

superconcepts

FootballPlayer

...

FootballAction

superconcepts

MotionProcess

roles

has_style type="Instance" multiple="no" required="no"

allowedConcepts="CDEThing"

has_agent type="Instance" multiple="no" required="no"

allowedConcepts="Agent"

has_direction type="Instance" multiple="no" required="no"

allowedConcepts="Direction"

...

Injury

superconcepts

FootballAction

superconcepts

roles

has_cause type="Instance" multiple="no" required="no"

allowedConcepts="MotionProcess"

has_partOfTheBody type="Instance" multiple="no" required="no"

allowedConcepts="BodyPart"

...

instances

Midfielder id="CDEOntology_Instance_470000"

has_firstName: Michael

has_lastName: Ballack

is_listed: true

has_fitness: 94

has_footballAction id="CDEOntology_Instance_730000"

...

Figure 4.7: Excerpt from the XML ontology representation in VirtualHuman

108

Representing the Knowledge Base for Situated Conversational Characters

of an instance is not important or not known, we also sometimes just give the type of a value

(like in the case of the HAS NAME slot).

2

6

6

6

6

6

4

Menu

HAS NAME String

HAS TITLE “please select”

HAS MENUITEMLIST*

*"

MenuItem

HAS LABEL “Yes”

#

,

"

MenuItem

HAS LABEL “No”

#+

3

7

7

7

7

7

5

Figure 4.8: A Menu object represented in TFS notation

We call the result of the XML transformation, comprising a set of concept definitions and

instances of these concepts, an XML-Ontology. We denotate the set of all instances of a concept

C in an XML-Ontology Ω (including instances of subconcepts of C) as iC(Ω), and the set of

all possible instances of C as i∗
C
(Ω). Two XML-Ontologies are called compatible if all concepts

that are present in both have the same set of slots, and there are no conflicts in the subtype

hierarchy. In the following, we use depictions as in Figure 4.8 for typed feature structures of

the corresponding XML-Ontology as convenient representations for ontological concepts and

instances.

4.3.5 Using the XML-Ontology as a Data Structure

During the interaction, the ontology must be dynamically accessible and mutable as a data

structure. As each character has a private ontology, there must be separate instances that

will hold different information. Nevertheless, all instances must be compatible in the sense

that expressions in one ontology must be interpretable in the others, otherwise mutual under-

standing would not be possible. One approach would be to apply an ontology transformation

process to convert instances between ontologies; however, devising such a transformation for

arbitrary pairs of ontologies is a difficult problem and currently not feasible without human

intervention (McDermott et al., 2002); it has even been called “certainly AI-complete” (Dou

et al., 2003, page 957)

Fortunately, in our case, it can be assumed that the knowledge bases of the characters are

not fundamentally different, since we only want to model, differing knowledge on part of,

e. g., a quiz show moderator and an football expert in the same scenario. We require that

the taxonomic structure of all ontologies employed in the same system are compatible in

the sense described in the previous section. On the other hand, the sets of concrete entity

instances may differ and are indeed subject to change during the dialogue.

The initial ontologies, which are initialized from an external data source for each character

at the beginning, contains its a priori world, domain, and task knowledge and the discourse

rules as static entities. The discourse contributions and the task state are dynamic and can

be changed. The domain ontology is an adaptation and extension of a base ontology, as

described in the last section. For the extension, we use a dedicated namespace to integrate

concepts that are specific to the workings of the model; concepts for domain description can

be added in any namespace or reused if they are already present in the base ontology.

To support our dialogue management model, a collection of concepts inheriting from a Repre-

sentationalObject concept was introduced, which we call the “dialogue management branch”

109

Representing the Knowledge Base for Situated Conversational Characters

MetaAct

Activity
PhysicalAct

Act

SetGoal
RetractGoal
GoalFeedback
CreateCharacter
RemoveCharacter
Assert
Expectation
Reset

CommunicativeAct

Relation
Condition

NonverbalAct

FormalParameter

List Tuple
MenuSelection

RepresentationalObject

DialogueGameEdge

DialogueAct
DialogueGame

DialogueGameState

Figure 4.9: Some newly introduced subconcepts of RepresentationalObject

of the ontology. Figure 4.9 shows some immediate concept descendants in the subconcept

tree of RepresentationalObject. Some of the base concepts, e. g., Relation, List, or Tuple, are

auxiliary concepts needed for domain-independent operations over ontological objects. They

are further extended by additional domain-specific concepts that are introduced by the task-

specific part of the ontology, e. g., in VirtualHuman, the MenuSelection concept, which repre-

sents a selection list which is to be displayed graphically and includes additional attributes,

e. g., screen position information. Besides the auxiliary classes, the bulk of the newly in-

troduced concepts are related to the representation of dialogue acts, dialogue games, and

expressing logical conditions.10

Objects the character “knows about” are present in the ontology as instances. The character

can create new instances or modify existing ones while it learns new information about the

environment. For example, the ontology of the expert character Herzog in VirtualHuman

contains the following Midfielder instance:

2

6

6

6

6

6

6

4

Midfielder

HAS FIRSTNAME “Michael”

HAS LASTNAME “Ballack”

IS LISTED “true”

HAS FITNESS 94

. . .

3

7

7

7

7

7

7

5

10Some additional subconcepts of the Act concept are shown in the chapter on the CDE model, see Figure 5.9

on page 140; all CommunicativeAct instances are listed in Appendix D).

110

Representing the Knowledge Base for Situated Conversational Characters

The character therefore has information that there is a midfielder named Michael Ballack

that is listed (in the national team roster), and has a quantitative assessment of his fitness.

The knowledge base of the moderator, who does not have an opinion about Michael Ballack’s

fitness, does not need to contain detailed information about his fitness etc.; the moderator

could also represent Ballack as a FootballPlayer instance instead of a more specific Midfielder.

The distinction between descriptions of objects and the objects per se is important. If dialogue

participants talk about objects, they always exchange descriptions. To make an utterance

about some object, the initiator needs to create a description of a mental object, i. e., encode

it in some representation. This involves a selection of which aspects to include into the

utterance. Utterances normally will not include everything the initiator knows about the

object, but be restricted to the relevant aspects (Grice, 1975). For example, if one wants to

inform somebody about a meeting with a joint acquaintance, it is sufficient to identify the

name, as in “I met John yesterday”, in contrast to “I met John Barry yesterday, who is 39 years

old, and works in the bakery . . . ” and so on. When the relevant parts of the ontological

representation have been determined and encoded, they must then be serialized to fit in

a linear message that can be communicated. This is akin to serializing an utterance as a

sequence of phonemes when making a spoken statement.

On the opposite side, to be able to understand a contribution by another dialogue participant

in the form of an encoded message, a listener needs to decode the message and relate its con-

tents to its private ontological representation. Only then will he be able to integrate it into

its own private view of the world. This process establishes the common ground reached by

the utterance and is known as grounding the message (see section 4.4.3). Depending on the

ontology of the recipient, it is possible that the content of the message will mean something

different in the framework of the recipient’s knowledge. To prevent too many misunderstand-

ings, the knowledge bases of both communication participants need to be sufficiently similar,

so that knowledge items from one can be mapped to equivalent items in the other. This is the

case for compatible ontologies.11

4.4 Important Methods and Concepts

4.4.1 Unification, Restricted Unification and Overlay

The unification operation (denotated by the symbol ⊔) is a standard operation that has been

defined for logic, TFS, and other knowledge representation expressions. The operation can

be used to merge two knowledge structures to produce a new, unified result that contains

the combined information of both arguments (Carpenter, 1992). It can fail if the structures

cannot be reconciled because they are of incompatible types, or contain incompatible infor-

mation. The result of unification is the greatest lower bound of both arguments, or failure if

there is no such lower bound.

Figure 4.10 shows an example for the unification of two feature structures of type A and B,

where A is a supertype of B. If, in this example, the feature ALPHA had a different value in

11Strictly speaking, it would be sufficient to require that parts of the ontology that hold information intended to

be communicated are compatible, but not ones that are, e. g., used internally by a character to make inferences.

111

Representing the Knowledge Base for Situated Conversational Characters

2

6

6

6

6

6

4

A

ALPHA 1

BETA 2

GAMMA

"

C

DELTA 3

#

3

7

7

7

7

7

5

⊔

2

6

6

6

4

B

ALPHA 1

GAMMA

"

C

EPSILON 4

#

3

7

7

7

5

=

2

6

6

6

6

6

6

6

4

B

ALPHA 1

BETA 2

GAMMA

2

6

4

C

DELTA 3

EPSILON 4

3

7

5

3

7

7

7

7

7

7

7

5

Figure 4.10: An example for unification

one of the arguments (a value clash), the unification would fail, and also if A and B were not

in a (transitive) subtype relation (a type clash).

Restricted Unification, a variation of unification used for pattern matching, additionally im-

poses an ordering on the arguments and requires that all information in the first argument is

also present in the second argument, otherwise it fails. The effect is that the result is either

failure or the first argument strictly extended by the information in the second argument. A

restricted unification for the arguments in the example figure would fail, since the second

argument does not include any suitable values for the BETA and DELTA slots.

Overlay is an operation that is based on unification and can be used to integrate newly ac-

quired knowledge with previous knowledge. The new information, called the “cover” is im-

posed over the “background” consisting of old information. Unlike unification, overlay is an

operation that never fails, even when the covering and the background happen to have value

or type clashes. The result of the overlay operation is a combined structure together with

an overlay score that expresses how well the covering fits the background. Overlay is used

in dialogue management to integrate new information (e. g., from a current utterance) with

previous background information (e. g., from the dialogue history). The new information

supersedes the old while preserving as much of it as possible.

The unification and overlay operations are defined formally in (Pfleger et al., 2002; Alexan-

dersson and Becker, 2001). The working of the overlay of two structures covering and back-

ground can be briefly summarized as follows:

• it behaves identically to unification when there are no type clashes.

• if there is a type clash between a feature c from the covering and a feature b from the

background,

– if the features are atomic, the value from c (new information) is kept in the result;

i. e., the background is overwritten.

– if the features are complex, the types of the values of c and b are generalized to

the least upper bound of type(c) and type(b) and overlay is applied recursively.

The score for the result is computed using the following parameters:

• Covering (co): incremented for each case a TFS or an atomic value stemming from the

covering is added to the result.

112

Representing the Knowledge Base for Situated Conversational Characters

• Background (bg): incremented for each TFS or an atomic value in the result occurs in

the background.

• Type clash (tc): incremented for each case where the type of the covering and the back-

ground was not identical.

• Conflicting values (cv): incremented for each case where the value of a feature from the

background is overwritten.

The formula to compute the overlay score is

score(co, bg, tc, cv) =
co + bg− (tc + cv)

co + bg + (tc− cv)

An augmentation of the overlay operation was presented in (Alexandersson et al., 2004b).

There, the type clash score (tc) is weighted by taking into account the informational distance

of its arguments, i. e., how far apart the types of the overlayed instances are in the type

hierarchy.

4.4.2 Underspecification and Matching

If the attributes of an entity are not fully known, or possibly even the exact mapping to a

concept is unclear or ambiguous (e. g., it is known that the instance MichaelBallack refers to a

Person, but given the state of knowledge, the more rigid subclass FootballPlayer cannot (yet)

be inferred), it is common practice in dialogue systems and knowledge representation frame-

works to use an underspecified representation. An underspecified instance can be interpreted

to represent the set of all instances that unify with it.

2

4

FootballPlayer

HAS NATIONALITY “German”

IS LISTED true

3

5

Figure 4.11: An underspecified FootballPlayer instance

For example, Figure 4.11 shows a TFS instance that can be taken to represent all football play-

ers that are listed in the German national team. An additional reason to use an underspecified

entity is that in some cases a partial description is sufficient to identify it by matching it with

the elements of a set of possible candidates, and efficiency can be improved by reducing the

amount of information that has to be communicated (Pinkal, 1999).

To determine if a “foreground” TFS matches another underspecified “background” TFS, it can

be compared to and merged with the background knowledge by the unification operation. We

call an underspecified instance intended to be matched against other instances an instance

template or simply a template. To select one of a set of instance templates that matches a

given instance most closely, we use a function called best match that is based on the overlay

operation and also takes the informational distance of object instances into account (see

section 4.4.1).

113

Representing the Knowledge Base for Situated Conversational Characters

There are many ways to specify what constitutes a “good” match; one possibility is to measure

it using the overlay score. Given an instance i and a set of instance templates T , the best

match function selects the element m ∈ T that gives the highest score:

bestMatch(i, T) = arg max
m∈T

(overlayScore(i,m))

Note that it is possible that more than one score is maximal, in this case, the result is a

set of instances that match e equally well. A strict best match additionally requires that

all the features present in the background are present in the covering, i. e., the covering

strictly extends the background (in this case, there must be no conflicting values, i. e., the cv

parameter must always be zero). It is possible that no strict best match exists.

4.4.3 Grounding

Participants in a dialogue need to have knowledge about the world, and dialogue involves the

passing of information between the participants. The information contained in dialogue acts

needs to be derived from the knowledge base of the act initiator, and to be integrated into

the knowledge base of the addressee(s). The information in the dialogue act itself is detached

from the knowledge base it comes from, and a recipient needs to determine how to fit it into

its own system of beliefs and thoughts, a process known as the grounding of information. It

may be that the utterance itself relies on shared information to be meaningful, as is the case

with e. g. elliptical utterances.

A different case is that the belief system of the interlocutors have a differing taxonomical

structure. An example of this is that, e. g., a car mechanic talking about cars could have

a different, more intricate model of a car than a listening layperson with a more simplistic

model, and the listener therefore might not be able to understand an utterance from the

mechanic with their own knowledge, either because concepts are missing, or the structure

itself is different. Our model does not deal with this interesting problem, but requires that

the ontologies of communicating agents have compatible concept hierarchies.

Figure 4.12 shows an example. One of the dialogue participants, a football expert, commu-

nicates the fact that “Michael Ballack prefers to play in the midfield on the left side” to the

moderator, who is a layperson. The fact is derived from the expert’s “professional” knowledge

about football players, which also includes many other pieces of information about Michael

Ballack that are not related to the statement, such as his physical fitness. Following the

Gricean Maxims, the expert constructs the utterance so that it only includes the relevant in-

formation. In this case, even the TFS type is generalized to FootballPlayer instead of the more

specific Midfielder. The moderator then tries to integrate the content into his ontology. He has

far inferior knowledge, in the example he knows only the last names of the players. He also

has incorrect information and believes that Ballack is not listed in the team roster. Overlaying

the new content on the best match results in the TFS at the bottom, which includes the new

information, which replaces the previous belief.

Unfortunately in this situation, the information about the listing status was not included

in the utterance (because the expert did not deem it relevant), therefore, the moderator

continues to hold on to his false belief. If it had been included, the moderator would not

114

Representing the Knowledge Base for Situated Conversational Characters

Ontology

Communicated
Content

Listener’s
Ontology

Grounded
Content

(Moderator)

(Expert)

Speaker’s

has_firstname
has_lastname
has_preferredPosition

Michael

is_listed
has_fitness

true
94

...

has_side left
MidfieldPosition

Ballack

has_lastname
has_preferredPosition

left

Ballack

MidfieldPosition
has_side

has_firstname Michael
FootballPlayer

Midfielder

FootballPlayer
has_lastname Ballack
is_listed false

has_lastname
has_preferredPosition

left

Ballack

MidfieldPosition
has_side

has_firstname Michael
FootballPlayer

is_listed

FootballPlayer
has_lastname
is_listed

FootballPlayer
has_lastname
is_listed false

Klose
true

Huth

in the midfield on the left side"

overlay
belief

previous

"Michael Ballack prefers to play

false

extends

Figure 4.12: Example for the grounding process

115

Representing the Knowledge Base for Situated Conversational Characters

have found a best match (the TFS representing Ballack and Klose would have had the same

number of clashes, namely, one). There are several possibilities to deal with this complication

and rectify the false belief of the moderator. First, the tie of scores would not occur if the

moderator had more knowledge about the players (e. g., if he also knew the first names).

Second, the slots of the TFS could be assigned weights in the ontology itself to account for

their relative significance, assigning the has name slot a greater weight than the is listed slot.

If both resolution possibilities are not available, the moderator can do nothing but ask a

clarification question to find out who the expert was referring to.

4.4.4 Relations and Condition Matching

The presence of and object instance in the ontology of a dialogue participant means that the

participant believes that the object exists, and has the attributes of the instance. A special

kind in this regard are instances of the type Relation. Such instances assert that a named

relation holds between a tuple of other instances.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Relation

HAS RELATIONNAME holds

HAS TUPLESCHEMA

*
2

6

4

TupleElement

HAS INDEX 1

HAS NAME person

3

7

5
,

2

6

4

TupleElement

HAS INDEX 2

HAS NAME object

3

7

5

+

HAS TUPLE

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Tuple

HAS ARITY 2

HAS TUPLEELEMENT

*

2

6

6

6

4

TupleElement

HAS INDEX 1

HAS VALUE

"

Character

HAS NAME MissPoisonella

#

3

7

7

7

5

,

2

6

6

6

4

TupleElement

HAS INDEX 2

HAS VALUE

"

MurderWeapon

HAS NAME knife

#

3

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 4.13: A Relation instance

Figure 4.13 shows an example from the Clue system. This instance asserts that there is a

relation holds between an instance representing a virtual character called MissPoisonella and

an instance of the type MurderWeapon, a knife; in other words, that Miss Poisonella is in

possession of the knife. There can be arbitrary many Relation instances for a given relation.

Note that the Tuple concept is constructed in such a way as to allow the ordering of tuple

elements by indices. This is necessary because ordered lists are not straightforward to model

as TFS (cf. also (Romanelli, 2005). Another possibility would be to use cons-Lists as in the

Lisp language, which, however, leads to a quite intricate representation. Another advantage

of the Tuple representation is that it is easily possible to underspecify tuples by leaving out

tuple elements. The optional TupleSchema slot, if present, makes it possible to assign names

to the different positions in the tuple.

116

Representing the Knowledge Base for Situated Conversational Characters

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Condition

HAS ARGUMENT

"

FormalParameter

HAS NAME A

#

HAS RESTRICTION

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Relation

HAS RELATIONNAME holds

HAS TUPLESCHEMA

*
2

6

4

TupleElement

HAS INDEX 1

HAS NAME A

3

7

5

+

HAS TUPLE

2

6

6

6

6

6

6

6

6

4

Tuple

HAS ARITY 2

HAS TUPLEELEMENT

*

2

6

6

6

4

TupleElement

HAS INDEX 2

HAS VALUE

"

MurderWeapon

HAS NAME knife

#

3

7

7

7

5

+

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

HAS NEGATION false

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 4.14: A sample Condition: “A holds the knife”

Relations make it possible to express logical assertions, and also conditions that may or may

not hold over the ontological knowledge base. For this, a Condition concept exists. It has

a slot has restriction specifying a Relation instance that must hold for the Condition to be

fulfilled. By using underspecified relations, parameterized conditions can be employed that

take parameters as specified in the has argument slot, and that take up the place of a corre-

spondingly named tuple element. Figure 4.14 shows an example from the Clue system that

expresses a condition with a parameter A that holds if “A holds the knife”. Dependent on a

parameter A (which must be an instance in the ontology), the condition is true only if there

is a Relation instance in the ontology that, if the first element of the condition restriction is

replaced by A, unifies with the restriction. Conditions can also be negated via the value of

the has negation slot. A set of Conditions is interpreted as a conjunction, i. e., it is evaluated

as true if all conditions in it are true. More complex conditions involving disjunction are ex-

pressed in a Prolog-like manner. They must first be transformed into disjunctive normal form

(DNF) (Fitting, 1990). Then, a set of Conditions can account for each clause of the DNF.12

The dialogue acts, dialogue games and activities that are described in the next chapter use

Conditions to determine whether a given act, game or activity can be applied as an operator

in a given situation, and which state of affairs will hold after the application.

4.4.5 Affordances

Addressing the difficulties in designing knowledge bases for agents that would allow them

to perform in changing environments, (Doyle, 2002) describes the concept of attaching task-

specific knowledge to the objects of an environment themselves, comparable to putting up

a sign at a slot machine saying “insert coin to play”. We call such a piece of information

12Also similar to Prolog, the order of clauses resp. condition sets is relevant. If there are several sets of conditions

that each trigger an action, the action associated with the first set that is satisfied will be selected.

117

Representing the Knowledge Base for Situated Conversational Characters

an affordance. The idea is that this way, agents can be enabled to determine action options

by way of examining their environment. Objects that are important in a scenario can be

clearly annotated with additional interaction possibilities or just general description, while

entities that are just included for a single purpose, or are just decorative, can be modeled

more sketchily.

An advantage of such an approach is that the core functionality of an agent can be designed

in part independently from the environment it will be used in; it just has to be able to in-

terpret the information from object affordances and integrate it into its knowledge base.

Consequently, the environment can change—even dynamically at runtime, while the agent is

executing—and offer new possibilities, without a requirement to reconfigure the agent. Even

when the environment is very large, only a portion of the world knowledge needs to be acces-

sible in any given situation. This portion consists of the part of the world currently perceived

by the agent, and the agent’s internal state. The use of affordances also makes it easier to de-

sign the environment in an incremental fashion. (Peters et al., 2003) contrast the approach of

agents employing low-level rules and a learning model to using “smart objects” derived from

(Kallmann and Thalmann, 1998) that contain information about gestures relating to an ob-

ject, object behaviors and attributes, and the behaviors of agents interacting with the object.

However, affordances must be recognizable and interpretable by a dialogue participant that

is to make use of it. Not all participants have to be able to discern all affordances, especially

the human user will typically not be presented with a scenario of objects that have lots of

signs attached telling the possible uses of the objects. On the other hand, the user is able

to make her own inferences from the way objects are presented visually in the environment,

and possibly already knows what can be done to something that looks like a slot machine, an

advantage the virtual characters do not have.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

FootballChampionship

HAS AFFORDANCE

2

6

6

6

6

6

6

6

6

6

6

4

ExplanationProcess

HAS EXPLANATION

2

6

6

6

4

Explanation

HAS CANNEDTEXT Die Fussball-Weltmeister-

schaft findet dieses Jahr

in Deutschland statt

3

7

7

7

5

HAS DEPENDSON

*

ˆ

Explanation
˜

,
ˆ

Explanation
˜

+

3

7

7

7

7

7

7

7

7

7

7

5

. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 4.15: An object with an affordance slot in VirtualHuman

Since the action of our agents are in terms of acts, games, and activities, the affordances

provide information about which acts, games and processes are possible with objects. An

affordance can also specify which preconditions and postconditions are associated with it,

e. g., a stone can be annotated with an action of “lift”, but with the precondition that the

action can only be executed if the agent is strong enough to lift the weight of the stone (which

can be part of the factual knowledge of the character about the stone, or also be included in

the affordance).

Affordances do not have to be the exclusive means to provide action possibilities for char-

acters; they can also be used as a supplement to extend other knowledge of the characters.

118

Representing the Knowledge Base for Situated Conversational Characters

In the tutoring scenario of the VirtualHuman system, we use a variant of objects with affor-

dances to store knowledge that can be used by specialized as well as general processes. The

affordances are stored in a special slot called has affordance that can occur multiple times on

any object. Another example of a general process taking advantage of such an affordance

is that objects can have an ExplanationProcess object parameterized by an Explanation (see

Figure 4.15) that provides an Explain dialogue act along with depends on roles that point to

other objects representing themes on whose understanding the explanation depends. A help

process can then use this information directly to provide explanations, and elaborate recur-

sively, or if the user asks for it. This feature was also implemented in the VirtualHuman system

(see Section 7.2.7).

4.5 Summary

This chapter outlined the foundation of how we represent the knowledge base of the dialogue

system and the characters. It identified the basic types of knowledge needed, which are con-

cerned with the structure of the domain, knowledge about the world, the task, and the task

state, as well as knowledge representing the discourse rules and history. It then described the

approach of an ontological representation for modeling that makes use of an upper ontology

as a starting point, and how it is translated to XML structures. A section is dedicated to im-

portant concepts and operations on the objects of the ontology. We introduced unification,

restricted unification and overlay and explained the role of underspecification as well as how

matching is done in our system. The process of integrating information into a private know-

ledge base (grounding) was explained. The following section was about the role of relations

in the ontology and conditions that are used to test whether logical conditions are satisfied.

Finally, the possibility to annotate objects directly with affordance information about what

they offer in action possibilities for a character was discussed.

119

Representing the Knowledge Base for Situated Conversational Characters

120

Chapter 5

A Model for Generating Multi-Party

Conversational Behavior

5.1 Introduction

This chapter describes the model for conversational behavior that is the foundation for the

conversation framework we have implemented. It covers interactions comprising of utter-

ances that can be either spoken dialogue acts, contributions in other modalities, or combina-

tions of both. The conversations are multi-party dialogues, i. e., they can be involve two or

more participants, each of whom can either be a virtual character, or a human user. The basic

interaction patterns apply regardless of whether the roles in the interaction are taken up by

humans, or by computational agents. The model is designed to be adaptable to multiple con-

figurations of applications. The number of system agents and human users may all vary; they

can also change dynamically during an interaction, e. g., when participants enter or leave the

conversation.

The actions and interactions of the conversation participants are described on several concep-

tual levels, and the communication between the parts of the software representing the virtual

characters, and external application modules that are available to them, is also integrated.

Therefore, communication protocols as used for, e. g., database or service queries can also be

captured by the model. The characters can also carry out physical actions (in the virtual en-

vironment). This way, the entirety of action and communication in the system is covered. We

do not aim for a system that is able to handle completely unrestricted and casual interaction.

Instead, the model should provide a solid foundation for communication involving the two

types of applications put forward in Chapter 2: task-oriented systems and interactive narra-

tives. The foundation should be broad enough to provide for the basic interaction types found

across such systems. In addition, when implementing a particular system, it should be easy

to extend the basic interactions incrementally to accommodate any additional requirements.

We first describe the situation the dialogue participants are in. The virtual characters are

situated agents in that they have a presence in a virtual environment that has a connection

to the real world via multimodal communication channels. The characters can perceive other

virtual characters, virtual objects, and the user via the communication channels, as well as

influence the environment.

121

A Model for Generating Multi-Party Conversational Behavior

In the sections that follow, we describe the different levels of our model. We start with the

bottom level concerning the dialogue acts that act as the atomic unit of action whereby the

characters can influence the world. There are types of these acts that can be instantiated

to yield a concrete dialogue act. We then show how the dialogue act types can be used as

basic building blocks to define dialogue games that cluster acts together for more complex

units of interaction involving more than one agent. As a third level of the dialogue model,

we introduce processes that the agents can execute in order to reach their goals. Processes

use the elements of the lower levels of the model, games and acts, and can also use other

subprocesses as helpers. Finally, we turn to the question of how an agent can go about

choosing the appropriate elements for its goals, and how different agents can cooperate on

the several levels of communication.

5.2 Motivation and Basic Structure of the Model

5.2.1 Building Blocks

The underlying motivation for the model is to enable the dialogue designer to capture the

structure of the intended conversation in an intuitive and uniform way, and to produce a

library of building blocks that can be re-used across dialogue applications. Using these buil-

ding blocks, we describe how the dialogue agents produce the behavior needed to reach their

goals, and how they understand the contributions of other participants.

For this, we try to fit the possible conversational interactions into a set of common interac-

tion patterns. Certain types of interactions are so frequent that they will occur in almost any

conversation (for example, regular question-answer exchanges). These are used to provide

a “standard library” of patterns for general interaction. Other patterns are less frequent and

possibly non-occurring in a given corpus, depending on the interaction’s context (for example,

there is very low tolerance for rhetorical questions in radio-transmitted emergency commu-

nications, where precision, conciseness and unambiguity of the interaction is crucial). If a

specific application turns out to require additional building blocks that are not covered by the

general cases, the basic set of patterns must offer the possibility to be extended accordingly.

5.2.2 Layers of Action

The concept starts from the notion that an act is the minimal context-changing unit. There-

fore, we have to start by explaining what we mean by the context. As sketched in Section

4.2.3, we make a distinction between the dialogue context, which is shared, and the context

of the individual characters, which is private to each character. Seen from the perspective

of a character, a context change can be internal, i. e., located in its own “mental state”, or

otherwise external.

Performed acts either influence the environment (we call this a physical act, even though it

occurs in a virtual reality), or the mental state of other conversation participants. In the

latter case, the act is a dialogue act in accordance with (Bunt, 2005) (cf. Section 2.4.1) in an

instance of communication. Additionally, the mental state of a character can also be changed

122

A Model for Generating Multi-Party Conversational Behavior

by inferences drawn internally by the character. The bottom layer of the model is concerned

with physical and dialogue acts.

In the cases where a context change requires cooperation—or at least participation—from

others, there must be a way for the participants to coordinate joint actions. For example,

if a participant A wants to obtain some information, e. g., the current time, from B, it is

generally not a good strategy for A to simply wait in hope that B at some time will feel the

urge to tell about it. It is more promising if A asks B about it and thereby communicates

to B the desire to obtain the information. However, this is only the case because A can rely

on generally accepted social conventions that prescribe that the act of asking imposes an

obligation on B to either provide the information in an answer act, or at the very least to give

some justification why he is not inclined to do so (especially in cases of innocuous information

such as the time). These conventions give conversation participants a means to predict, or at

least presume, what behavior they can reasonably expect of other participants, and to plan

their actions accordingly. The middle layer of the model employs such conventions to realize

joint actions by using a version of the dialogue games introduced in Section 2.5.1.1.

In a structured and purpose-driven interaction, particular actions, intentions and needs of a

participant are usually derived from a higher level of composite activities he pursues in order

to accomplish some goals. For example, the desire for information in the previous example

could be due to a goal of A to catch a train at a given departure time. To accomplish this goal,

it might be necessary to construct and pursue a complex plan for an activity involving possibly

numerous related communicative and physical acts (to find out where the train station is,

how and when to get there, etc.). The model’s top level is concerned with such goal-based

activities that make use of the games in the middle level, and through them, the acts on the

lower level.

5.3 The Dialogue System

As we have seen in Section 2.5.3, there are several architectural paradigms for modular dia-

logue systems that make different decisions regarding the interaction between modules and

the division of labor. We assume a basic setup similar to the one introduced in the dialogue

back-bone of the SmartKom system. This means that the system is indeed heavily modular,

there is a possibility for each module to send messages to any other module at any time

(Chapter 6 will describe the actual mechanism used in the framework).

The number of other modules that need to interoperate with the conversation manager may

vary considerably, depending on the system architecture. In the SmartKom system, there are

eight modules that directly communicate with the conversation manager (see Figure 2.29),

while in OMDIP, there are only three. Figure 5.1 shows the main information flow in the

system, starting from the recognition of user utterances to the realization of system presenta-

tions by the player or other effectors. Both the multimodal input and output pass through the

Discourse Modeler module that is located between the analysis and generation modules. The

role of the discourse modeler is explained in Section 5.3.2. The conversation manager also

communicates with modules that are frontends for the applications provided by the system

(if any), and possibly other system modules as needed.

123

A Model for Generating Multi-Party Conversational Behavior

Multi−modal
Recognizers

Multi−modal
Analysis

Multi−modal
Generation

Applications

Other
Modules

Player /
Effectors

Discourse
Modeler /

Multimodal
Fusion/Fission Manager

Conversation

Multi−Party

Figure 5.1: Main information flow assumed for the dialogue system

5.3.1 The Multi-Party Conversation Manager

Regarding the interaction, we make a distinction between a so-called objective environment

representing the actual state of affairs, and a number of subjective environments that represent

the individual views of the participants in the multi-party situation. The environments are

represented by different ontologies representing the entities that are present in the scenario,

and relations between them.

The conversation proceeds in turns, each consisting of one or more multimodal utterances.

The entity instances in the ontologies are dynamic and subject to change. Instances may be

added, removed, or modified as a consequence of turns in the conversation or other events.

The ontology used to represent the objective environment is called the system ontology. Each

character under the control of the conversation manager has a character ontology. The re-

presentations of the environment and the participants are maintained by the conversation

manager and kept clearly separated. A controller component in the conversation manager dy-

namically creates and administers an individual dialogue engine for each participant, called

its Conversational Dialogue Engine, or CDE. The CDEs interact with the rest of the system by

sending and receiving messages that contain communicative acts.

The controller is responsible for distributing these messages to the designated recipients. Mes-

sages that enter or leave the conversation manager are inputs gathered by multimodal rec-

ognizers, outputs delivered to multimodal rendering engines, and communication exchanges

with other modules. Those external interactions go via so-called communication channels.

Inbound and outbound channels are called input and output channels, respectively. The chan-

nel device is used as an abstraction to encapsulate that external communication may use

different information representations (i. e., other than communicative acts), and in this case,

it is necessary to apply conversions to and from the uniform representation used within the

conversation manager when messages enter or leave it.

124

A Model for Generating Multi-Party Conversational Behavior

We define

Definition (Multi-Party Conversation Manager)

A Multi-Party Conversation Manager M is a software artifact parameterized by

• ΩM , an ontology called the system ontology,

• CM , a set of Conversational Dialogue Engines (Section 5.4.1),

• IM , a set of input channels (Section 5.3.3), and

• OM , a set of output channels (Section 5.3.3).

Apart from the controller, each component of the conversation manager is dependent on the

particular dialogue system.

5.3.2 The Discourse Modeler

Similar to the approach in SmartKom, we separate the conversation management task from

modeling the discourse structure and the discourse history. The division of knowledge in-

volved roughly corresponds to the distinction between PUBLIC and PRIVATE parts in informa-

tion state approaches like TRINDI (see Section 2.4.3.3). In our approach, the processing of

both kinds of knowledge is assigned to two specialized modules. This also means that the

conversation manager relies on a component that preprocesses the multimodal user input.

It is assumed that this component does multimodal fusion and reference resolution, and in-

tegrates it into a model of the discourse history. We use the FADE (Fusion and Discourse

Engine) toolkit by Pfleger (Pfleger, 2007) for this task.

Figure 5.2 shows the functional architecture of FADE including its two main subcomponents,

PATE and DiM. The left part of the figure shows the conversational context and the right part

shows the discourse context and its API for processing propositional contributions. PATE uses

a production rules system to process interactional events such as eye gazing and the start and

end of utterances, and is responsible for generating reactive behavior, such as, e. g., gazing in

response, other backchannel feedback, and generating gestures while waiting for a turn. It

also does initial addressee identification. DiM maintains the discourse history and applies mo-

dality fusion, reference resolution, and utterance enrichment from the context to transform

the input events (i. e., the semantic content of the utterances as delivered by the analysis

modules) into dialogue acts. Messages containing these dialogue acts are sent as input to the

conversation manager. FADE also postprocesses the output of the conversation manager and

enriches it with additional reactive behavior. Inputs and outputs are both integrated into the

discourse history.

FADE uses the same internal knowledge representation as the conversation manager, i. e.,

typed feature structures that represent ontological instances with a taxonomical ordering

which is shared between the modules. The exchange of messages with FADE is therefore very

efficient, since both modules are tightly coupled and there is no need for message conversion.

FADE’s preprocessing and postprocessing makes it possible for the conversation manager to

be modality-agnostic on the input side; however, when producing output, the conversation

manager still has the opportunity to select specific modalities. We will not describe the op-

eration of FADE in greater detail here, but refer to the comprehensive treatment in (Pfleger,

2007).

125

A Model for Generating Multi-Party Conversational Behavior

Figure 5.2: The functional architecture of FADE (Pfleger, 2007, p. 186).

5.3.3 Communication With Other Modules: Channels

Apart from FADE, other modules in the dialogue system generally do not use the XML-

Ontology representation for communication. This is especially the case when off-the-shelf

modules (e. g., a commercial TTS engine) or already existing applications with a fixed inter-

face protocol are used. To be applicable in system setups with differing message formats, the

model needs an abstraction to transform input from and output to such modules into terms of

the XML-Ontology. This is done by routing input and output via channels. Channels are func-

tions doing a translation, or, in their implementation as software artifacts in the framework,

transformation filters through which the messages are passed. There are input channels for

translating incoming messages to the internal format, and output channels doing the inverse

translation for outgoing messages. An input channel can be subscribed by any number of

CDEs which will receive translated messages from other modules, and each CDE can publish

messages for an output channel, which will be delivered in translated form to one or more

receiving module.

Definition (Input Channel)

An input channel I ∈ IM for a conversation manager M is a software artifact

parameterized by

• INCOMING, a set of sources for incoming data connected to I,

126

A Model for Generating Multi-Party Conversational Behavior

• SUBSCRIBERS ⊆ CM is a set of CDEs of M that subscribe to messages via I,

• input, the input translation function, is a function

input : STRINGS → i∗(ΩM)

that maps string input from all data sources i ∈ INCOMING to instances in the

ontological representations in ΩM .

Definition (Output Channel)

An output channel O ∈ OM for a conversation manager M is a software artifact

parameterized by

• OUTGOING, a set of sinks for outgoing data connected to O,

• PUBLISHERS ⊆ CM , a set of CDEs of M that publish messages via O,

• output, the output translation function, is a function

output : i∗(ΩM)→ STRINGS

that maps instances in the ontological representations in ΩM to string output

for all devices o ∈ OUTGOING .

In some setups, it can also be necessary to let input and output channels do more compli-

cated transformation work, especially with regard to application protocols. For example, in

SmartKom, one input channel connected to the function modeler had to combine two asyn-

chronous streams (one containing operation success status, the other data content from the

application) in order to construct one feedback message to the conversation manager.

5.4 The Conversation Participants

The model covers three kinds of conversation participants: Virtual characters, human users,

and other modules of the system which can act as “invisible” participants (i. e., they are not

represented by a graphical avatar, and their communicative acts are not rendered by the

presentation). An example for the last kind is the narration engine in VirtualHuman that

operates like a director in a dynamic play and triggers and coordinates story goals. The

participants are treated uniformly by the conversation manager’s controller: Each is assigned

a dedicated dialogue engine that represents it in the model, and handles the conversation

acts that affect the participant.

5.4.1 Conversational Dialogue Engines

A CDE uses an ontology to represent the participant’s view of the domain. Its set of instances

may be different from the system ontology. However, all ontologies must be compatible in the

sense described in Section 4.3.4, to ensure that instances from one of them can be interpreted

in the taxonomical structure of all others. The participant itself is represented by an entity of

127

A Model for Generating Multi-Party Conversational Behavior

the concept Agent from the system ontology, which has the subconcepts Character (for virtual

characters), User and MetaCharacter (used for, e. g., a director module). These instances can

hold additional information about the character and model, e. g., personal attributes such as

age, sex, and profession, and character traits that may be used to parameterize its behavior.

Characters can also maintain their own models of other participants using Agent instances.

A CDE that implements a virtual character has to produce the behavior for this character, and

process the events that the character can perceive. A human user’s CDE has the task of relay-

ing her utterances that are entering the conversation manager via input channels connected

to the analysis modules, and sending them to other CDEs in the same fashion as if the utter-

ances were produced internally in the CDE. A user’s CDE can generally ignore utterances from

other CDEs that are addressed to it, since these will be realized by the presentation module

and can in this way be perceived by the user.1 CDEs representing other modules are similar

to user CDEs in that they relay messages from and to their modules.

The actions of character and user CDEs manifest in the environment in an identical way, ex-

cept that again, user utterances, unlike character utterances, are not sent on to the player

component to be rendered, because otherwise the system would echo user utterances. A

fundamental difference, however, is that the human users—which are not part of the compu-

tational system—of course produce their own behavior, whereas CDEs for virtual characters

must also provide some reasoning mechanisms to generate their actions. To describe the ac-

tions that a participant is capable of, its CDE also comprises sets of activity types, dialogue

game types, and act types it can perform. We define

Definition (Conversational Dialogue Engine (CDE))

A Conversational Dialogue Engine C ∈ CM in a conversation manager M is a soft-

ware artifact parameterized by

• ΩC , an ontology called the CDE ontology. ΩC must be compatible with the

ontology ΩM of M ,

• p ∈ iAgent(ΩM) is the participant instance,

• ACTIVITYTYPES ⊆ iActivity(ΩC) is a set of activity types (Section 5.6.3),

• GAMETYPES ⊆ iDialogueGame(ΩC) is a set of dialogue game types (Section

5.6.2),

• ACTTYPES ⊆ iAct(ΩC) is a set of act types (Section 5.6.1),

• registeredServices is a function

registeredServices : ACTTYPES −→ ACTIVITYTYPES

that maps from act types to activity types.

• fC is a perception filter for ΩC (Section 5.4.2)

The components of a CDE include knowledge sources (comprising the ontology, the types

of activities, games, and acts, as well as the ontological instance representing the character

1In some cases, user CDEs have to process other (non-communicative) messages. In VirtualHuman, the director

CDE sends a message to one user CDEs to disable the input microphone during the second quiz phase.

128

A Model for Generating Multi-Party Conversational Behavior

itself). The other elements are required for the operation of the engine: The registered

service mapping is used to find the appropriate activity type for perceived utterances, and

the perception filter influences how the character perceives utterances and other events in

the environment. The following sections explain the function of the elements of the CDE

definition.

5.4.2 Perception Filters and Grounding

The dialogue engines of the participants contribute to the interaction exclusively by triggering

and perceiving actions via the virtual environment. The actions are represented by instances

of the ontological class Act. Whether and how an act is perceived by a conversation participant

can depend on the circumstances.

Virtual
Environmentprocessing

Character

Character

processing

thinking

User

A

B

C

A

B

C

Act

Act

Act
Filter

Perception

Filter
Perception
Explicit

Implicit

Figure 5.3: Conversation participants exchanging acts

Figure 5.3 illustrates the way acts are passed from an initiating character to other conversa-

tion participants. Even though the characters are situated in a virtual reality, they are not able

to perceive everything that happens in their environment. For one, the mental states of the

other virtual characters (or human participants, for that matter) are encapsulated and cannot

be directly accessed. Also, the “physical” events in their surroundings are also not necessar-

ily open to them. In an environment consisting of several rooms, such as the Clue scenario,

actions happening in a separate room cannot be seen, spoken utterances that happen too

far away might be misunderstood or not heard at all, etc. Another possibility is to account

for whether a participant is paying attention, or whether he is possibly distracted, e. g., by

another strand of conversation.

There needs to be a mechanism that restricts what can be perceived by the participants. We

call such a mechanism the perception filter for the participant. A perception filter in our model

acts as a function that maps an act happening in the environment to perceived acts for a CDE.

It employs a set of conditions to determine whether a fact or event in the environment can

be perceived by the character (for example, whether the distance from the hearer to the

producer of an utterance is below a set threshold, or whether there are no obstacles such as

virtual walls in between).

The filter may remove or distort information. For the human users, the presentation com-

ponents act as implicit perception filters when, e. g., speech synthesis renders conversation

129

A Model for Generating Multi-Party Conversational Behavior

contributions by spatially distant characters with a lower volume, or the graphical presenta-

tion does not render events that are not be visible from the point of view of the user. The

corresponding mechanism for a virtual character applies explicit perception filtering using rules

that determine how acts should be perceived by the character, or may altogether prevent them

from arriving by mapping them to an empty act.

We define a perception filter as follows:

Definition (Perception Filter)

A perception filter for an ontology Ω is a function

f : i∗Act(Ω) 7→ i∗Act(Ω)

that maps act instances from Ω to perceived act instances in Ω.

When acts are perceived by other conversation participants, they can have an effect on their

mental state (beliefs, desires, intentions and obligations). This means, if a participant per-

ceives an act, it will process it (in the case of a human participant, we would rather say she

thinks about it), and will possibly react by producing her own acts. There are two perspec-

tives to this: what the initiator of an act intends for it to accomplish, and what it actually does

change in the contexts of the addressees (or possibly additional overhearers). For example,

by making a statement of some fact, the initiator usually intends the effect that the addressees

include the fact in their set of beliefs. However, it may be that the intention is not successful

for some reason, for example

• addressees do not trust the initiator enough and reject the statement,

• addressees do not know how to integrate the statement into their belief bases, or

• the act does not correctly arrive at an addressee because its content is wholly or partially

eliminated by a perception filter.

Conventionally, the participants need to agree on some common ground about what has been

established between them during the interaction. The common ground states public accep-

tance: it can be different from the actual beliefs of the participants. With autonomous charac-

ters, it is also possible that a character mistakenly assumes some fact to be part of the common

ground when it actually is not. To raise its confidence that its assumptions are correct, it may

request explicit feedback by the other characters. Whether or not a virtual character decides

to accept the semantic content of an utterance is determined by the rules of the dialogue

game it occurs in; this will be explained in later sections of this chapter. If it does, it has to in-

tegrate the content into its own ontology, i. e., ground the utterance for itself. This grounding

operation was described in Section 4.4.3.

5.5 Interaction

In Section 2.4.1 (page 35), we cited Austin’s definition of dialogue acts as context-changing

actions. What an interaction is about does not stem from the single actions alone, but also

130

A Model for Generating Multi-Party Conversational Behavior

Ontology states

System ontology state “objective” context for the system, state of the environment

Character’s ontology state context for one character, private view of the state of the

world

Building blocks

Act elementary context change

Dialogue Act context change for other DPs: communication

Dialogue Game context change in cooperation with other DPs using shared

rules that allow to anticipate what other DPs will do

Activity complex goal-directed context change,

possibly involving multiple DPs in different roles

Figure 5.4: Summary of the relations between the roles of the different ontology states and

building blocks

needs to take into account the relationships between them, and the reasons why they are

done.

In Section 2.4.2, we identified the concept of a DSP and subsequently dialogue games as a

means to connect related dialogue acts that serve as a sub-unit for a DSP. In turn, dialogue

segments are undertaken for some superordinate purpose, such as realizing an intention.

Figure 5.4 summarizes these notions again.

5.5.1 Layers of Conversational Action

We organize the actions of the conversation participants hierarchically in three different layers

of abstraction. The layers are those of activities, dialogue games, and dialogue acts. An action

of a given layer can trigger and coordinate actions located on the same layer or on lower

layers, but not above its own layer. We use the example in Figure 5.5 as a reference for the

following explanation.

The layer structure is similar to the levels of intentional structure given in (Alexandersson,

2003). It is, however, different in several respects. First, it does not include a separate level

for the (single) toplevel activity (the dialogue level); rather, the toplevel activity is treated like

any other activity. Second, it does not have different levels for dialogue moves and dialogue

acts. The introduction of the move layer was motivated by the observation that “frequent oc-

currences of sequences of utterances [...] can be viewed as a unit” (Alexandersson, 2003, p.57).

In our model, dialogue moves comprising more than one dialogue act correspond to portions

in a dialogue game where the initiative remains with the same participant over more than

one act; we do not think that these cases necessitate the introduction of an additional model-

ing level. The surface realization form also does not constitute a separate level in our model,

since the actual generation and multimodal fission of the acts is not part of the conversation

manager’s operation.

Consider as an example the following fragment of a sales dialogue between a bakery shop

assistant and a customer:

131

A Model for Generating Multi-Party Conversational Behavior

(1) SHOP ASSISTANT: Good morning!

(2) CUSTOMER: Good morning.

(3) SHOP ASSISTANT: What would you like?

(4) CUSTOMER: That depends. Do you have any blueberry muffins today?

(5) SHOP ASSISTANT: No, but we have chocolate muffins [ր] and plain muffins

[ր] over here.

(6) CUSTOMER: Then I’d like [ր] three chocolate muffins and [ր] a bot-

tle of milk.

Root

Order
Select

ActivityActivity

Activity

Ordering

Question/
Response

Question/
Response

ResponseQuestionQuestion

...

Activity layer

Dialogue game layer

Act layer

Surface realization
Speech

Gesture

Greeting

Speech

(3) (4) (5)

...

Figure 5.5: Example process hierarchy in the interaction in a sales dialogue

Figure 5.5 shows how the process hierarchy could look like at some point for a character that

implements a corresponding shopping application. In the example, the interaction starts with

an activity where the participants exchange greetings, and then the shop assistant proceeds to

ask what the user is interested in. Instead of answering right away, the user also has the option

of asking a counter-question. The figure shows a situation where a character is responding

to such a counter-question (the items shown in boxes with dotted lines have already been

132

A Model for Generating Multi-Party Conversational Behavior

completed at this point). The layers shown have the following functions:

• Activity Layer

On the highest level, the activities represent the (individual) courses of action of a

participant. Executing an activity can involve starting sub-activities. In the example, the

Greeting activity (shown as a dotted box) has already been completed and the Ordering

activity is currently being pursued. This activity will consist of the task of selecting an

order along with several parts not shown here, such as specifying a delivery method,

and confirming the order. Each of these parts is a sub-activity to the original activity. The

Ordering activity triggers them to delegate part of its functionality and may block while

they are executing. In the figure, the Ordering activity has triggered the sub-activity

Select Order to gather the information about what item the user wants to order.

The Root Activity shown topmost in the figure is the parent activity for all other activities

and spawns them as needed. As will be explained later, the root activity is also used as

a fallback to deal with situations that no other process is prepared to handle. Activities

implement the behaviors of the characters directed to achieve the different goals of the

characters.

• Dialogue Game Layer

To engage in interactions with other conversation participants or other modules of the

dialogue system, activities start and join into dialogue games that are located in the

middle layer. Executing a Dialogue game may also involve starting subgames. In the

example, a Question/Response game has been started by the active Select Order acti-

vity. After the question was posed, a counter-question was asked by the addressee of

the question, initiating a nested Question/Response subgame (with switched initiator /

responder roles). As with activities, dialogue games also usually block while triggered

subgames are still active. Dialogue games realize the rule-governed exchange of dia-

logue acts.

• Act Layer

The actual dialogue acts reside on the bottom layer. They are the atomic units of com-

munication between the interlocutors, and the physical acts the characters can perform.

When a dialogue game is active, it generates dialogue acts that are sent to their respec-

tive addressees. On the surface level of multimodal presentations, it is possible that

one dialogue act is rendered as several distinct actions. This will, e. g., be the case if a

multimodal fission component decides that the content is to be rendered as a combina-

tion of speech and gestures. The surface realizations may overlap, but unlike activities

and dialogue games, dialogue acts cannot be active in parallel, but are realized one at a

time by each character. Section 7.2.4 talks about the treatment of overlapping surface

realizations in the VirtualHuman system.

We focus on (multimodal) utterances in conversations, and the model is primarily in-

tended to describe interaction by communicative acts. However, physical acts such as

moving an object and subsequently receiving perceptions about the effect can also be

seen (metaphorically) as a “dialogue with the world” and we treat them as such in our

system: If a character produces a physical act, e. g., it tries to open a door, it receives

133

A Model for Generating Multi-Party Conversational Behavior

back an act containing a perception information that the door is now open—or not, if

the action failed (see Section 5.6.1.2 on physical acts).

We also call elements of the two upper layers executable acts because they are of procedural

nature in that they may take some time to complete, and may be interrupted, suspended, and

continued. On the other hand, actions on the lowest layer are performed as atomic actions,

i. e., without the possibility of being interrupted, although they do also take some time to

complete and/or may be realized as more than one surface act.

5.5.2 Motivation for Action

What exactly incites a character to perform an action? Consider the examples in Figure 5.6.

The list proceeds from automatic, subconscious actions over actions that are governed by

reflexes to behavior that involves explicit deliberation. At the most basic level, functions

such as breathing are performed automatically, without consciousness even taking notice in

the general case. The wincing in example (2) is a classic reflexive reaction, which will be

registered by consciousness after the fact only. Gazing while talking, as well as gazing back

when talked to as in (3) also occurs automatically; it is a deeply ingrained social behavior that

requires no explicit decision to be performed. Case (4) can occur as a deliberate action or

as a reflexive one (especially in the case of the person that gets offered the handshake). The

examples (5) and (6) are deliberate actions. In the latter case, the action is undertaken as part

of a superordinate plan to accomplish something, i. e., it is part of some overall deliberation

going beyond the action itself.

(1) Peter is breathing.

Peter and Mary shake hands.

(2)
(3)
(4)
(5)
(6)

Peter winces at the sound of the explosion.
Peter looks at Mary while addressing her.

Peter answers Mary’s question.
Peter calls Mary so they can lift the heavy box together.deliberative

reflexive

automatic

Figure 5.6: Different types of action motivations

We are mainly concerned with action that is the result of goal-driven deliberation. However,

our framework also provides support for automatic and reflexive action, such as the charac-

ters’ blinking behavior, as was done in VirtualHuman.

Different reasons can lead to the adoption of a goal by a virtual character. Based on the source

and the purpose, we distinguish between external goals, internal goals and goals that arise

from the interaction between the conversation participants, which we will call interaction

goals.

• External Goals and Narrative Mode

In the task-oriented situation, the (cooperative) conversation participants share the

overall joint goal of accomplishing tasks together. There may be a large number of

134

A Model for Generating Multi-Party Conversational Behavior

possible tasks, and it is possible that it is not known at the beginning which tasks will

be needed. Usually the system’s purpose is to provide help for the human user, and

users choose the goals for the interaction, whereas the virtual characters will only in-

troduce new goals that help to advance the goals of the user. If the system only has one

purpose, or determining the desired task is a task itself, the system can also take the

initiative in setting goals.

In interactive narratives, the overall goal is to arrive at the story conclusion via a set of

story points. If a narration engine is controlling the storytelling, it exerts the control over

the goals of the virtual characters. The characters do not necessarily cooperate with the

human users. Depending on their role in the story—e. g., being the antagonist—they

might even work to jeopardize the human user’s goals.

If the main goals are set by an external narration engine, the system is running in

Narrative Mode. In this mode, the character’s behavior is only semi-autonomous: An

external goal commits the character to performing an activity. Additional parameters

can be given by supplying values for roles of the activity or constraints on its execution,

e. g., a time limit.

• Internal Goals

A goal can also arise from the internal state of a character, e. g., from its desires or as a

consequence of other goals. In some scenarios, such as the military setting of the MRE

system, it is also possible that a character has a social status that allows it to give an

order to other characters, which will then adopt a goal to follow the order based on its

internal obligations.

• Interaction Goals

Finally, a goal can be adopted as a reaction to a communicative action of another con-

versation participant, for example a question. It can entail the execution of a new

activity, or cooperatively pursuing a joint action (such as resolving the question).

During an interaction, when a conversation participant adopts a goal, it will engage in an acti-

vity whose purpose is to fulfill the goal. We base our definition on Allwood’s characterization

of social activities as referred to in Section 2.4.2.1 and also require procedural information to

“define what the activity is all about” (Allwood, 2000). The model describes the context for

the environment and for the individual characters. The interaction is a sequence of actions,

mostly communicative ones, that change these contexts. In turn, context states give rise to

desires and obligations to perform further acts. If there were no external influence, such as

input from users and the narration engine, and no dynamic desires, it would be possible that

the system would at some point reach a stable state (barring obligation loops).

There are two kinds of basic obligations for a character. First, a character is obliged to try

to continue dialogue games it is involved in. Second, a character must take action to fulfill

its goals. If both kinds of obligations conflict, there must be some mechanism to resolve the

conflict, e. g., by assigning priorities determining which obligations are to be addressed first.

A special case is when a goal is a subgoal of another: If an activity or game g is dominated by

another activity or game g′, then its execution has priority over the execution of g′.2

2The Gricean Maxims for cooperative conversation (Grice, 1975) do not apply on this level. It is concerned

135

A Model for Generating Multi-Party Conversational Behavior

5.5.3 Action Modes

The two upper layers of the action model—activities and dialogue games—are of a composite

and procedural nature, while acts and their surface realizations do not have an internal struc-

ture. In contrast to atomic actions, executable acts remain active for some time. There are the

two categories of action: observable ”behavioral” action, and non-observable deliberative or

regulatory mechanisms. The former category manifests as communication and physical acts,

the latter constitutes internal computations of the agent.

Deliberation

Initiate Act

Consume Act

Figure 5.7: Action cycle

This gives us three modes of activity: Deliberation, passively consuming acts, and actively

initiating acts. In an interaction, the three modes occur in an interleaved fashion. The current

mode of a character can change as depicted in Figure 5.7. The circumstances in each mode

of activity are the following:

• Deliberation

In this mode, the character examines its knowledge state and performs computations in

order to determine its future action. This can include planning and adopting subgoals,

knowledge base manipulations, and updates of the character model. If no intention

is formed to go into initiative mode, and no communication is perceived from other

characters, the character remains in deliberation mode. Also, the success conditions of

the currently active executables are checked to determine whether they can terminate.

• Initiate Act

The character initiates communication or action in order to progress towards reaching

its active goals, i. e., it acts on its intentions, and then goes back into deliberation mode.

The actual production of an act may require additional preparatory action, e. g., to

acquire the floor before speaking, or waiting until the realization is finished (cf. Section

7.2.4).

• Consume Act

The character perceives communication acts from other dialogue participants, changes

in the environment, or messages from external modules. It has to integrate the content

into its knowledge base, and the acts have to be delegated, in the context of the active

only with “well-formedness” of dialogue games and does not consider the content of the utterances. Furthermore,

characters do not have to be cooperative (especially in narrative settings): it could be explicitly desired that a

character’s utterances should be, e. g., untruthful, ambiguous, or irrelevant.

136

A Model for Generating Multi-Party Conversational Behavior

goals, to a suitable executable that is able to handle it. External messages (e. g., from a

narration engine) can also lead directly to the adoption of new goals.

This concludes our initial overview of the operation of the conversation manager in the model.

Before elaborating on it in Section 5.7, we describe the building blocks that constitute the

different layers of action.

5.6 The Building Blocks of the Model

The ontology provides the building blocks used to assemble interactions in the three layers we

introduced in Section 5.5.1. They represent types of actions and are called act types, dialogue

game types, and activity types, corresponding to their associated layer. When they are used

in an interaction, concrete instances of these types are created. For example, a character

could be concerned with several instances of the same activity type, e. g., to answer different

questions, in parallel or at different stages of the interaction. On the other hand, a concrete

instance of a question answering activity starts and ends at given points in time and features

concrete values for different roles, or parameters, including who is performing the activity,

on whose request, and what precise pieces of information the act is about.

A building block type is an underspecified ontological instance that contains the general pro-

perties of the building block. For example, in a multi-party situation, the act type for a

QuestionIf dialogue act would specify that it involves the roles of initiator of the question,

one or more addressees, and some content that the question is about. It acts as a schema or

template for uses of the QuestionIf concept. When used in the conversation, a fully instanti-

ated QuestionIf building block has these roles filled. The same principle holds for activities

and dialogue games. The building block types are instances of entities, and should not be

confused with concept types on the ontological level (there can be an arbitrary number of

building blocks of the same concept type). One property of all building blocks is that they

can specify preconditions and postconditions, which are sets of Condition instances. This is

important because an agent needs to know under which circumstances a building block can

be used, and what effects are to be expected after it has been used.

The dialogue designer can, for example, define a an act type for a “rhetorical question” to

be a building block as shown in Figure 5.8. This act type can then be used as a template for

all rhetorical questions. It has parameter roles that specify how slots are filled in an instance

of it. In the example, the subject (1) of the question is assigned to the slot has content by

the parameter subject. Two special preconditions are imposed that state that the knowledge

base contains a relation knowsIf which holds for two tuples: one holding the values of the

addressee and subject roles of the question, the other the values of the initiator and the subject

roles. Conditions are always evaluated against the knowledge state of the character doing the

evaluation. In other words, an initiator would find the precondition of a rhetorical question

satisfied if it believes that it knows the answer, and believes that the addressee knows it, too.3

3The given definition does really capture just one kind of rhetorical question. For example, utterances of the

form “how long do I have to tell you to do X?” or “would you open the door for me?” are also considered rhetorical

questions.

137

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

QuestionIf

HAS INITIATOR Character

HAS ADDRESSEE Character

HAS PRECONDITION

*

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Condition

HAS ARGUMENT
˙

1 , 2
¸

HAS RESTRICTION

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Relation

HAS NAME knowIf

HAS TUPLE

2

6

6

6

6

6

6

6

6

6

6

4

Tuple

HAS TUPLEELEMENT

2

6

4

TupleElement

HAS INDEX 0

HAS VALUE 1

3

7

5

HAS TUPLEELEMENT

2

6

4

TupleElement

HAS INDEX 1

HAS VALUE 2

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Condition

HAS ARGUMENT
˙

1 , 3
¸

HAS RESTRICTION

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Relation

HAS NAME knowIf

HAS TUPLE

2

6

6

6

6

6

6

6

6

6

6

4

Tuple

HAS TUPLEELEMENT

2

6

4

TupleElement

HAS INDEX 0

HAS VALUE 1

3

7

5

HAS TUPLEELEMENT

2

6

4

TupleElement

HAS INDEX 1

HAS VALUE 3

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

HAS PARAMETER

*

1

2

6

4

FormalParameter

HAS NAME subject

HAS SLOTNAME has content

3

7

5
, 2

2

6

4

FormalParameter

HAS NAME addressee

HAS SLOTNAME has addressee

3

7

5
,

3

2

6

4

FormalParameter

HAS NAME initiator

HAS SLOTNAME has initiator

3

7

5

+

HAS CONTENT :THING

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 5.8: An example act type representing a rhetorical question

138

A Model for Generating Multi-Party Conversational Behavior

The building block still lacks information about, e. g., the actual content, or the addressee, of

the question. To create a concrete “rhetorical question” instance, this information needs to

be added. The same holds for the other two kinds of building blocks. As ontological objects,

the building blocks and concrete instances made from them are used in a representational

way to hold information about the event or event type they stand for. The building blocks of

the two upper levels, activity and dialogue game types, also have a procedural aspect. While

elementary acts can realize behavioral action, the upper levels are purely deliberative.

We now show how the different building block types are represented, which should also

already give an idea of what they stand for. The subsequent sections then explain the proce-

dural view, i. e., how they are used by the CDEs to conduct an interaction. This is illustrated

by an example taken from a session with the VirtualHuman system.

5.6.1 Act Types

Acts are communicative and physical events that are atomic from a CDE’s point of view. This

does not mean that they occur instantaneously, or that they correspond to a singular event

in the virtual world. The realization of spoken utterances and gestures takes some time,

and a CDE implementation must account for this (see Section 7.2.4). Also, a single act will

often be realized as a combination of world events, especially in a multimodal system, e. g.,

if an utterance is accompanied by a pointing gesture or facial expression. However, the CDEs

cannot produce units smaller than an act, and in turn, they receive multimodal utterances in

the form of single acts that are the output of multimodal fusion.

The base ontology specifies several subtypes of acts; a subset of their inheritance tree originat-

ing from the Act concept is shown in Figure 5.9. For interactions in the form of a multi-party

conversation, the main type of act is a DialogueAct, which is a subtype of CommunicativeAct.

The DialogueAct type has a number of subtypes that correspond roughly to categories from

different dialogue act tag sets from linguistic theory (e. g., (Carletta et al., 1996); see Section

2.4.1). It is not the goal to be complete or sound from a speech-theoretical point of view, but

rather as an extensible starting point to collect the act types needed for a given scenario.

Other communicative act types are available to model nonverbal acts (such as gestures) and

signals (e. g., to indicate that a participant has started or finished speaking). Additionally,

there are the types physical act and meta-act.

The basic structure of an act is as follows:

Definition (Act type)

An act type is a TFS of type Act with the following roles:

2

6

6

6

6

6

6

6

6

4

Act

HAS INITIATOR Agent

HAS PRECONDITION* Condition

HAS POSTCONDITION* Condition

HAS PARAMETER* FormalParameter

HAS BEGINTIME Time

HAS ENDTIME Time

3

7

7

7

7

7

7

7

7

5

139

A Model for Generating Multi-Party Conversational Behavior

Act PhysicalAct

CommunicativeAct
MetaAct

NonverbalAct
StartOfSpeech

Activity

DialogueGame
DialogueAct Request Question QuestionSelect

QuestionHow
QuestionIf
QuestionWh

Command

Propose
Interdiction

Inform Response
Statement
Advice
Explain
Instruction
Agree
Disagree

Acknowledge
Conventional
Exclamation
Performative

Figure 5.9: Partial tree of subcategories of Act

A basic act always has an initiator, but is not necessarily directed at someone else. An ad-

dressee slot is introduced in the CommunicativeAct type, and also available for the MetaAct

type.

5.6.1.1 Examples of Dialogue Acts

Concepts inheriting from Act can add new roles holding the content of the act they define.

For example, the Agree concept has an additional has content role that contains the semantic

representation of what was agreed to. Some simpler acts like yes/no answers or acknowledge-

ments do not need to provide more information beyond their type. Here are some examples

showing partial instances from VirtualHuman:

• Greeting

A Greeting dialogue act does not necessarily need additional content. The semantics are

already sufficiently clear by the type of the act alone, supplied with an initiator and a

set of addressees. Depending on how utterances are generated, however, the act could

also possibly be enriched by, e. g., canned text content for a surface utterance; but if it

is missing, multimodal generation could also just supply a greeting gesture:

140

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

4

Greeting

HAS INITIATOR

"

Character

HAS NAME “Moderator”

#

HAS ADDRESSEE

*"

Character

HAS NAME “Herzog”

#

,

"

Character

HAS NAME “Kaiser”

#+

HAS CANNEDTEXT I welcome you all to our quiz!

3

7

7

7

7

7

7

7

7

7

5

• Inform

An Inform act has to specify a has content role that states what the informing is about,

in this case, that a football player named “Michel Platini” shoots with his right foot and

scores a goal in the bottom right corner:4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Inform

HAS INITIATOR

"

Agent

HAS NAME “User1”

#

HAS ADDRESSEE

"

Character

HAS GENDER “female”

#

HAS CONTENT

2

6

6

6

6

6

6

6

6

6

6

4

Goal

HAS AGENT

2

6

4

FootballPlayer

HAS NAME “Michel Platini”

. . .

3

7

5

HAS DIRECTION BottomRight

HAS STYLE RightFootShoot

. . .

3

7

7

7

7

7

7

7

7

7

7

5

. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

This is a more sophisticated example where an utterance can be produced by a gen-

eration component doing “deep generation” from the semantic representation of the

content.

Groups of characters can be addressed by using underspecification and/or concept spe-

cialization a in the addressee slot. For example, to address all virtual characters, but not

any users, the addressee slot is filled by an empty instance of type Character (special-

ization). The example above additionally uses underspecification to address all female

characters (but not female users).5

• Agree

An Agree act can have different types of values in his has content role: A participant

can (1) either explicitly agree to an Inform statement made by another participant, or

simply (2) implicitly “agree with” another participant. If the expert Kaiser explicitly

agrees with user 1’s opinion about some football action and tells the moderator as well

as user 1 about it, the instance looks like this:

4Note that the “initiator” role in acts are of type Agent, since acts can be initiated by—and addressed to—

characters, users, and other modules, which are all Agents. Where the initiator is a character, the roles are filled

by the more specific subconcept Character.
5This example is not actually possible in VirtualHuman, since the users’ genders are not known by the system.

141

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Agree

HAS INITIATOR

"

Character

HAS NAME “Kaiser”

#

HAS ADDRESSEE

*"

Character

HAS NAME “Moderator”

#

,

"

Character

HAS NAME “User1”

#+

HAS CONTENT

2

6

6

6

6

6

6

6

6

6

4

Inform

HAS INITIATOR

"

Agent

HAS NAME “User1”

#

HAS ADDRESSEE

"

Character

HAS NAME “Moderator”

#

HAS CONTENT FootballAction . . .

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In case (2), the discourse modeler tries to determine which Inform act was referred to

by the agreement from the conversation history and integrate it into the content of the

Agree act.

5.6.1.2 Physical Acts

Another dimension that comes into play within a virtual performance is concerned with in-

teractions with the environment. The agents of a virtual reality system are situated because

they move and act in a simulated environment including simulated physical objects, and

quasi-physical objects like menus superimposed over the scene rendition on the screen.

Carlson, in his work on dialogue games (Carlson, 1983), briefly compared the mental deli-

berations of a person to conducting an internal dialogue with herself. He also stated that

“Nature is in the audience of every move”. In addition to communicative actions, we model

the physical interactions of characters with the world in terms of a rule-based dialogue. The

percepts that an agent receives after it initiated an action can be seen as an answer given by

the environment to the question, “what happens if I do this?”, and in some cases, there may

be more than one possible answer (e. g., an action can succeed or fail).

An example for a physical act in VirtualHuman is when the moderator moves football players

to positions on the virtual playing field, which is done by producing acts of types ZambAd-

dPlayer, ZambRemovePlayer and ZambMovePlayer:

2

6

6

6

6

6

6

6

6

6

6

6

6

4

ZambAddPlayer

HAS INITIATOR

"

Character

HAS NAME “Moderator”

#

HAS PLAYER

"

FootballPlayer

HAS NAME “Michael Ballack”

#

HAS FIELDPOSITION

"

MidfieldPosition

HAS SIDE “half-right”

#

3

7

7

7

7

7

7

7

7

7

7

7

7

5

The value of the role fieldPosition in this case can be of type FootballFieldPosition or of type

SpatialReference. In the latter case, the FADE module resolves the spatial reference, if possible,

and replaces the value with a FootballFieldPosition.

142

A Model for Generating Multi-Party Conversational Behavior

Concept Senders Receivers Purpose

SetGoal narration

engine

characters Sets a goal for a character or group of

characters, specifying an activity and role

values

RetractGoal narration

engine

characters Retracts a currently active goal

GoalFeedback character narration

engine

Contains feedback information about a

current or terminated goal

CreateCharacter narration

engine

controller Creates and activates a character CDE

RemoveCharacter narration

engine

controller Removes a character CDE completely

from the dialogue system

Deactivate narration

engine

character Stops processing for a character

without removing it from the dialogue

system

Assert narration

engine

controller,

characters

Asserts an object or a relation into the on-

tology of a character

Reset narration

engine,

controller

controller,

characters

Resets the dialogue system

Expectation characters analysis

modules

Contains information about the

utterance types expected by a

character, and lexicon updates

(playerML) narration

engine

player Sends a playerML command directly to

the player

(playerFeedback) player controller Informs about realization state of player

commands

Figure 5.10: Subconcepts of MetaAct (the last two acts are VirtualHuman-specific)

The environment also can and frequently does “take the initiative for itself” (which is called

“events happening”). The interaction patterns for physical interactions do not correspond

one-to-one to conversational ones, and are generally less complex (the environment will not

pose rhetorical questions, for example). However, by capturing the interactions between

characters, the character-internal exchanges and physical actions in the same model, we aim

to be able to use the same mechanism for all three interaction types. Characters that witness

the actions of others and their consequences may also, in analogy to the overhearers in a

conversation, perceive the “answering” reaction of the environment, if their perception filter

allows for it.

5.6.1.3 Meta-Acts

Besides communicative acts and physical acts, there is a set of Meta-Acts. Meta-Acts are not

realized as utterances in the environment, but sent “silently” to the receiver (i. e., human users

143

A Model for Generating Multi-Party Conversational Behavior

can not perceive them). They can be produced or processed by the conversation participants

and/or other modules in the system. Figure 5.10 shows a table of possible Meta-Acts.

The acts initiated by the narration engine support the directing of the story in an interactive

narrative. It is possible to change the scenario by adding, disabling and removing CDEs. The

narration engine can also send goals directly to one or a group of CDEs, or make assertions

about objects and relations that are to be integrated into the respective ontologies of the

receivers of the assertion.

CDEs send Meta-Acts in return to provide feedback about the status of their goals when

they are finished, or when an event occurs that the narration engine has subscribed to. If a

CDE expects a dialogue act from another conversation participant, it produces an Expectation

Meta-Act which is sent to the analysis modules. In VirtualHuman, the player module also

sends Meta-Acts that inform about the realization state of commands (fetched, started, fin-

ished) and allow the conversation manager to synchronize actions of the characters with the

presentation.

5.6.2 Dialogue Game Types

Figure 5.11 lists some dialogue game types that occur in different scene contexts of the Vir-

tualHuman system. Dialogue games are a device for the participant to collaborate in commu-

nicative exchange by providing a protocol that defines which reactions can follow an action,

and what it means in context.

Context Game Types

Moderation Greeting users, introducing Experts, explaining the quiz

rules, alerting to timeouts, announcing different game

stages, providing help

Playing the scene quiz Requesting to select from available answers, requesting to

propose an answer, commenting other’s opinion

Creating the football team Requesting to propose an action, requesting information,

physically executing and evaluating player moves, hinting

Figure 5.11: Some game types occurring in different contexts in VirtualHuman

Using dialogue games, an agent can gain some assurance about the presumed behavior of

other agents. They can be used like atomic acts to plan a sequence of actions. Unlike atomic

acts, however, the outcome of a dialogue game is not wholly determined beforehand. An act

in a dialogue game may often leave several alternatives of how a counterpart can continue.

Additionally, other agents may choose to violate the implicit social rules of interaction, i. e.,

refuse to play along in the game.

A dialogue game type captures a rule-based exchange of acts. It can be depicted as a fi-

nite state automaton (FSA). In the ontology, dialogue game types are represented by Dia-

logueGame instances that use DialogueGameStates and DialogueGameEdges roles that define

the automaton’s graph. Figure 5.12 shows a simple FSA for an interaction that starts with a

question from the game’s initiator, followed by a response by the addressed participant. Like

144

A Model for Generating Multi-Party Conversational Behavior

simpleQuestionResponse(initiator,responder)

initiative: initiator
act: Question

initiative: responder
act: Response

s3s2

2e
s

e
1

1

Figure 5.12: Finite state automaton showing the basic structure for a simple Question-

Response dialogue game type.

acts, dialogue games have formal parameters that specify how their roles are assigned. The

elementary parameters for a dialogue game are its initiator and its counterpart, the respon-

der.6 If it is not removed by a perception filter (either explicitly, or implicitly in case of the

user), other participants will also receive the message containing the dialogue act, but be able

to tell that they are not addressed directly. The simple example FSA would be represented in

the ontology as shown in Figure 5.13.

A dialogue game has a unique initial state. The game is advanced by traversal of edges until

one of a set of final states is reached. Each edge traversal represents the realization of one

act by the participant that holds the edge’s initiative.

Figure 5.14 shows a slightly more complex game, a question made by a teacher to a pupil (the

darkened states are terminal). It has two final states corresponding to different outcomes. In

state s2, there are two possible edges available to the responder; if e3 is taken, the game

terminates immediately, whereas e2 is to be followed by another edge that lets the initiator

evaluate the response.

The whole game, as well as the constituent edges, can be assigned preconditions and post-

conditions, like activities. A game is only applicable, and the edge is only traversable, if the

preconditions are satisfied, and the postconditions express what is to be expected after the

termination of the game, or the traversal of the edge, respectively.

In summary, the concepts in the knowledge base that are necessary to define dialogue game

types comprise dialogue games, dialogue game edges, and dialogue game states.

Definition (Dialogue Game State)

A dialogue game state is a concept of type DialogueGameState, which has the fol-

lowing structure:

»

DialogueGameState

HAS NAME String

–

Definition (Dialogue Game Edge)

A dialogue game edge is a concept of type DialogueGameEdge, which has the fol-

lowing structure:

6A responder group, e. g., all experts in VirtualHuman, can be represented by underspecification.

145

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DialogueGame

HAS NAME “simpleQuestionResponse”

HAS PARAMETER*

*

2

6

4

FormalParameter

HAS NAME “initiator”

HAS VALUE 4 Character

3

7

5
,

2

6

4

FormalParameter

HAS NAME “responder”

HAS VALUE 5 Character

3

7

5

+

HAS INITIALSTATE 1

HAS FINALSTATE*
˙

3
¸

HAS EDGE*

*

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DialogueGameEdge

HAS NAME “e1”

HAS ACT

2

6

4

Question

HAS INITIATOR 4

HAS ADDRESSEE*
˙

5
¸

3

7

5

HAS INITIATIVE 4

HAS SOURCE 1

"

DialogueGameState

HAS NAME “s1”

#

HAS TARGET 2

"

DialogueGameState

HAS NAME “s2”

#

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DialogueGameEdge

HAS NAME “e2”

HAS ACT

2

6

4

Response

HAS INITIATOR 5

HAS ADDRESSEE*
˙

4
¸

3

7

5

HAS INITIATIVE 5

HAS SOURCE 2

HAS TARGET 3

"

DialogueGameState

HAS NAME “s3”

#

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 5.13: Instance of a dialogue game type corresponding to Figure 5.12.

Question
(initiator)

Response
(responder)

Refuse
(responder)

(initiator)

teacherQuestion(initiator,responder)

Evaluation

s
e

1

1

s2

e

e

e2

3

s

s

3

4

4
s5

Figure 5.14: Game type FSA for a teacher’s question

146

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DialogueGameEdge

HAS NAME String

HAS PRECONDITION* Condition

HAS POSTCONDITION* Condition

HAS PARAMETER* FormalParameter

HAS ACT Act

HAS INITIATIVE ParticipantRole

HAS SOURCEGAMESTATE DialogueGameState

HAS TARGETGAMESTATE DialogueGameState

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

A ParticipantRole value can either be represent an Initiator (who started the game)

or the Responder counterpart.

Definition (Dialogue Game Type)

A dialogue game type is a concept of type DialogueGame, which has the following

structure:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

DialogueGame

HAS NAME String

HAS INITIATOR Agent

HAS PARAMETER* FormalParameter

HAS PRECONDITION* Condition

HAS POSTCONDITION* Condition

HAS INITIALSTATE DialogueGameState

HAS FINALSTATE* DialogueGameState

HAS EDGE* DialogueGameEdge

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

This representation covers the five components of a formal description of dialogue games

required by (McBurney and Parsons, 2002a,b) that were stated in Section 2.5.1.1:

1. Commencement rules: A dialogue game may begin if its preconditions are satisfied,

and must begin in its initial state (i. e., the first move must be along an outgoing edge

of the initial state)

2. Locution rules: All instances of act types occurring on an edge in the game may occur.

3. Combination rules: In the context of a given game state, the set of permitted locutions

is restricted to instances of act types on those outgoing edges with satisfied precondi-

tions.

4. Propositional commitments: The propositions that the participants are obliged to

commit to with a given utterance move are those occurring in its postconditions, as

parameterized by the game parameters and the actual act instances.

5. Termination rules: A dialogue game ends when it reaches any of its terminal states.

The composition operations of iteration, sequencing, parallelization, and embedding for two

dialogue game graphs G and H can be expressed by combining states as shown in Figure

5.15, where new transitions and additional auxiliary states are shown in dotted lines.7

7A special case would be overlapping games where, e. g. a sequence where the end state of the first game is

conflated with the initial one of the second; also, this could be extended to more than one leading or trailing states.

It would be an interesting area for further investigation to examine how overlapping games can be automatically

recognized or generated.

147

A Model for Generating Multi-Party Conversational Behavior

Iteration

Sequencing

Embedding

Parallelization

H

G

n times

Figure 5.15: Illustration of the game composition operations

In the literature, dialogue games are sometimes understood as short initiative-response ex-

changes of adjacency pairs and possibly associated acknowledgment moves (e. g., (Kowtko

et al., 1991). We use them to build structures that cover longer interaction spans. Arguably,

there is still an upper limit to the length of sensible dialogue games.

5.6.3 Activity Types

Following (Hoc, 1988), we see an activity as the interaction between a subject (or more

than one subject in case of joint activities) and a task, and distinguish between observable

(behavioral) and non-observable (regulatory) mechanisms that make up the activity.

Figure 5.16 lists some activity types occurring in the VirtualHuman system. Taking up an

activity means introducing an instance of the corresponding type into the discourse. The in-

stances of each type are parameterized by roles specifying who is partaking in the activity in

what function, and possibly additional parameter roles that specify how the activity is to pro-

ceed. An activity also usually has one or more specific conditions upon which it terminates.8

Like in the case of DialogueAct, the basic ontological concept Activity does not contain many

roles, but its subconcepts often specify additional roles besides the participant and parameter

roles. For an instance, they either have to be available from the initial knowledge bases

of the participating characters, or dynamically inferred from the previous interaction. For

example, successfully executing the Lineup activity requires knowledge about the football

players enlisted in the national team roster, as well as the possible spatial positions they

8This is not strictly necessary; an activity can also be intended to continue either indefinitely or until it is

explicitly cancelled by, e. g., a MetaAct from the narration module.

148

A Model for Generating Multi-Party Conversational Behavior

Activity Type Participant Roles Parameter Roles Termination

Introduction Moderator One expert to be intro-

duced

after completion of

introduction

QuizRound Moderator, two experts

and two users

An identifier for a par-

ticular football scene in

the ontologies of the

virtual characters

after both users have

answered the ques-

tion; feedback about

new scores of the

users

Lineup Moderator, expert and

winning user from first

round

opponent team, op-

tional time constraints

when user states that

she is finished, or

the time limit has ex-

pired

Figure 5.16: Some activity types in VirtualHuman with their roles and goal conditions

can occupy on the football field. This information is available from the initial character

ontologies. On the other hand, when a QuizRound activity is executed, it stores the current

score dynamically in the ontology, so that it can be used in later instances to compute the

resulting score.

We define

Definition (Activity Type and Activity Instance)

An activity type is a TFS of type Activity where the following roles are filled:

2

6

6

6

6

6

6

6

6

6

6

6

4

Activity

HAS PRECONDITION* Condition

HAS POSTCONDITION* Condition

HAS AUTOREGISTER Boolean

HAS AUTOSTART Boolean

HAS CLASSNAME String

HAS PARAMETER* FormalParameter

HAS SERVICE* DialogueGame

3

7

7

7

7

7

7

7

7

7

7

7

5

The meanings of the roles are

• PRECONDITION – a (possibly empty) set of Condition instances that must be

satisfied for the activity to begin,

• POSTCONDITION – a (possibly empty) set of Condition instances that are ex-

pected to hold after the execution of the activity,

• AUTOREGISTER and AUTOSTART – whether the activity will automatically reg-

ister the dialogue games in its SERVICE slots (cf. Section 5.7.3.2), and

whether it will be started when the CDE is initialized

• PARAMETER – a set of FormalParameter instances specifying the possible roles

in the activity,

• CLASSNAME – the name of the class implementing the activity type’s deliber-

ation process type

149

A Model for Generating Multi-Party Conversational Behavior

• SERVICE – a set of service dialogue games

An activity type is underspecified, and can be used to create an activity instance

with the same role values, which has some additional parameter roles filled. The

exact set of additional roles depends on the HAS PARAMETERS values which may

reference any role present in the actual subconcept of Activity that is used, but

include at least the following:

2

6

6

6

6

4

Activity

HAS NAME String

HAS INITIATOR Agent

HAS BEGINTIME Time

HAS ENDTIME Time

3

7

7

7

7

5

• NAME – a unique name for the activity instance, acting as an identifier,

• INITIATOR – the agent that caused the activity to be created,

• BEGINTIME – the creation time of the activity, if applicable

• ENDTIME – the termination time of the activity, if applicable

Activity is an abstract concept. For each activity known to a character, its ontology must

contain a concrete subconcept of Activity that can be instantiated, which then yields a building

block on the activity level.

For example, assume the ontology contains an instance representing an InformationSearch,

where InformationSearch is a subtype of Activity. The concept specifies that an Information-

Search activity has the roles of initiator and addressee of type Character and a content role that

can have a value of the most general type :THING, as shown below:

2

6

6

4

InformationSearch

HAS INITIATOR Character

HAS ADDRESSEE Character

HAS CONTENT :THING

3

7

7

5

For a CDE to offer a specific type of InformationSearch goal, an appropriately restricted activity

type instance must be in the ACTIVITYTYPES set of the CDE, along with some information

about the deliberative process type that will handle the goal, for example,

2

6

6

6

4

InformationSearch

HAS CONTENT

"

FootballPlayer

HAS NATIONALITY: “German”

#

HAS CLASSNAME LisaProcess

3

7

7

7

5

When a CDE’s ACTIVITYTYPES set contains this instance, it offers a goal to handle information

searches about German football players.

150

A Model for Generating Multi-Party Conversational Behavior

5.7 Operation of the CDE Conversation Manager by Example

Now that the interaction building blocks are established, we look more closely at what the

tasks of the conversation manager are, and how they are accomplished. For this, we already

have to include some specifics about how the framework that implements the model will be

structured.

Since there are many factors that contribute to the operation of the conversation manager, a

top-down explanation would likely be confusing. To avoid this, we chose to describe features

one-by-one as they appear while presenting an interaction example from the VirtualHuman

system, which we introduce in Section 5.7.2. But first, we give an overview of the conversa-

tion manager components and the tasks it has to handle.

5.7.1 Tasks of the Conversation Manager

A conversation manager M has to produce the deliberative and behavioral actions of all char-

acters and deliver the messages that communicate actions of characters, human participants,

and other system modules to their destinations. This poses a variety of different sub-tasks for

each part of the conversation manager:

• Controller and Environment

The controller has to route and possibly process the following kinds of messages:

– Communicative and physical acts:

If a participant I ∈ CM initiates a communicative or physical act ACT by sending a

message with a set of addressed participants A ⊆ CM , then if ACT is an act that is

to be realized in the virtual environment, a corresponding event (TTS, graphical,

etc.) must be generated and passed on to the realization channels, e. g., the player

output channel. This ensures that it can then be perceived by the human users,

unless implicit filtering applies (cf. Section 5.4.2).

For all character addressees a ∈ A, their explicit perception filter fa is applied to

ACT, and a receives fa(ACT).

– Meta-acts:

Meta-Acts (e. g., SetGoal) can be addressed to one or more CDE and/or the con-

troller. They do not have to be rendered in the environment. Like other acts, they

are delivered to all addressees a ∈ A, but no perception filter is applied. If a Meta-

Act is addressed to the controller itself, it can trigger action such as creating new

CDEs, or suspending active ones.

• Virtual Characters

Each CDE representing a virtual character must perform the following functions:

– Maintenance of the private world model:

The ontology of the character needs to be kept in sync with the environment and

the internal deliberations. This includes adding and modifying instances. The

151

A Model for Generating Multi-Party Conversational Behavior

character must also be able to accept Assert acts that manipulate its world model,

e. g. from a narration engine, and make the corresponding updates.

– Accepting goals:

For all goals they offer, the characters have to accept SetGoal meta-acts, create

and adopt corresponding goal instances, and upon termination of a goal, return

feedback messages informing about the outcome.

– Producing goal-directed behavior:

When a goal has been adopted, a character has to determine and initiate commu-

nicative and other actions that lead towards its fulfillment.

– Consuming and interpreting communicative acts:

When a character receives communicative acts, it has to interpret them with re-

spect to its running activities or adopt new activities to deal with them, and engage

in the corresponding dialogue games.

• External Interactions

– User CDEs:

The user CDEs are connected to the input channels delivering user input and they

route the corresponding utterances to the addressed character CDEs.

– External Applications and Modules, Proxy CDEs

Since a dialogue system is often used as an interface to the functionality of exter-

nal applications, e. g., databases, there must be a way to interact with them. In

this case, the conversation manager acts as a client to a module that provides an

API to the application. The communication with the application is then routed

through input and output channels that convert dialogue acts to messages that can

be processed by the API.

Depending on the setup, a proxy CDE for an application or module may be used.

A proxy CDE partakes in the interaction like the virtual characters, but is not ren-

dered in the scene. This can be appropriate if the application or module acts like

another person participating in the conversation. One case is the narrative engine

in VirtualHuman, which can be seen as impersonating a director of a play.

User and proxy CDEs encapsulate the module functionality. No other CDEs need to

subscribe to the channels delivering application resp. user input. There are additional

possibilities for debugging and testing. For example, the module or the user can be

replaced by a simulation, or responses can be provided manually (see Sections 7.2.3

and 7.2.2).

Instead of treating each of the aspects separately, we use an example that illustrates how they

come into play in a real interaction.

5.7.2 The Running Example from VirtualHuman

Figure 5.18 is an excerpt from a quiz interaction in the VirtualHuman scenario and illustrates a

number of features. Throughout the following sections, we will refer to it as a running exam-

ple. Involved as participants are two human users, the virtual moderator, and two competing

152

A Model for Generating Multi-Party Conversational Behavior

virtual football experts, Miss Herzog and Mr Kaiser, who—by design of the narrative—have

an aversion to each other.

Figure 5.17: A scene from the quiz game: both experts listening to the moderator

For the moderator character, the purpose of the underlying activity of type QuizRound is to

present a football scene, to get both human users in turn to make a guess about the probable

outcome of the scene, and finally to assign them scores depending on whether their guesses

were correct. The role of the experts in this activity is to answer questions from the moderator

or the human users in order to give them advice (the excerpt does not cover a whole instance

of this goal). The implicit goal of the users is to score points with correct answers. The result

of the activity is the score. It is returned back to the narration engine on termination, which

can adapt the story accordingly (cf. Section 7.2.2).

5.7.3 The Activities Available to a Character

The actions that a virtual character is able to perform can be grouped according to different

criteria. One is the type of interaction pattern. In a task-oriented system, one can consider

information-retrieval actions, commands, and answering system questions as re-occurring

patterns. Another possibility is to treat actions relating to the same application as related. The

first categorization is based on similarities between the patterns: question-answer exchanges

proceed in much the same way across different applications. The second categorization em-

phasizes that actions occurring in the same application are related thematically, and may also

share common data and interaction context.

In our model, both categorization schemes are used, but they apply to different layers. Acti-

vities represent processes that are thematically related, e. g., by virtue of belonging to the

153

A Model for Generating Multi-Party Conversational Behavior

illustrates

DIRECTOR: (goal start) initial setup of the conversa-
tion manager, explicit creation of
activities for external goals

(1) MODERATOR: Now for an interesting scene

[shows video on screen]
using the private knowledge, de-
liberation and action planning,
single-initiative dialogue games,
physical action

(2) MODERATOR: What happens next? [ր count-
ing gesture] One – Ballack scores

the goal, [ր counting gesture]
Two – the keeper does a parade,

[ր counting gesture] Three –

Ballack kicks the ball into the sky.

generating multimodal utter-
ances from semantic descrip-
tions

(3) MODERATOR: What is your guess, Mister Kaiser? implicit creation of activities
(4) EXPERT KAISER: [smiles] I believe that Ballack

scores the goal.

active role of expert

(6) MODERATOR: Spoken like a real football trainer! “canned” response
(7) MODERATOR: Now it is your turn, [ր pointing

gesture] player one. Make your

guess!

(8) USER 1: I think Mister Kaiser is right. using discourse references
(9) MODERATOR: Alright, answer one. resolving references
(10) EXPERT HERZOG: [angry] How can you trust such

an amateur!

affective response, spontaneous
character interjection

[Mr Kaiser smiles]
(11) MODERATOR: Now, player two, what do you

think?

(12) USER 2: Moderator, what do you think? Explictly addressing characters,
initiating subgame

(13) MODERATOR: Sorry, [shrugs] I’m not allowed to

help you; please ask one of the ex-

perts. Your answer?

passive role of moderator, con-
tinuing interrupted game

(14) USER 2: Answer two. answering directly
(15) MODERATOR We will see whether that is correct.

Lets look at the end of the sit-

uation [shows second part of
video]

addressing all other participants
as a group

(16) MODERATOR: The answer of user one was cor-

rect. Unfortunately, user two has

guessed wrong.

evaluation, goal completion and
feedback

DIRECTOR: [gets successful goal feedback
with score information
[the moderator’s activity context
is updated with the new score]

Figure 5.18: Running example: Excerpt from a quiz dialogue in VirtualHuman

154

A Model for Generating Multi-Party Conversational Behavior

same application or goal, and that may include a series of interactions over a longer part of

the whole conversation. A character that is answering to a question by the user is performing

a specific activity that represents, e. g., the football quiz application in VirtualHuman, and may

use a generalized Request-Response interaction pattern that also occurs in other applications

to accomplish one part of the activity.

New activity instances for a CDE can be created explicitly by a message from an external

module that exerts control over the CDEs, such as the narration engine, or as a subgoal of

an already running activity. It can also be created implicitly because it offers a service in

response to a dialogue act by another conversation participant. The activity types supported

by a given CDE are the ones in its ACTIVITYTYPES set, the registered services are the domain

of the registeredServices function of the CDE.

The QuizRound activity of the running example is an external goal; the narration engine

schedules and triggers it as a part of the overall story of the scenario. When it begins, each

of the involved virtual characters (the moderator and the two experts) needs to create a new

instance of the activity type QuizRound with parameters supplied by the narration engine.

5.7.3.1 Explicit Creation of an Activity Instance

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SetGoal

HAS INITIATOR

"

Agent

HAS NAME “Director”

#

HAS ADDRESSEE

"

Character

HAS NAME “Moderator”

#

HAS CONTENT

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

QuizRound

HAS MODERATOR

"

Character

HAS NAME “Moderator”

#

HAS CONTESTANT

*"

Character

HAS NAME “User1”

#

,

"

Character

HAS NAME “User2”

#+

HAS EXPERT

*"

Character

HAS NAME “Kaiser”

#

,

"

Character

HAS NAME “Herzog”

#+

HAS QUIZQUESTION

"

FootballQuizQuestion

HAS NAME “WM1998-france-brazil-petit”

#

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 5.19: SetGoal message from the narration engine

A new activity instance is created explicitly if the CDE receives a SetGoal act that can either

originate from another module in the dialogue system, or from another activity of the same

CDE. SetGoal is a meta-act (see Section 5.6.1.3) and specifies how the activity type should be

instantiated; its content slot contains an activity type instance with the necessary parameters.

At the beginning of the running example, the Moderator CDE receives a message from the

narration engine via the Director CDE (as a proxy for the narration engine) that contains a

SetGoal instance like in Figure 5.19.

From the value of the content role it is clear that the character named “Moderator” is to take

the moderator role of the QuizRound. Note that in this particular case, the other participants—

155

A Model for Generating Multi-Party Conversational Behavior

virtual characters taking the expert roles and human contestants—do not receive a similar

goal. They will partake in the activity implicitly by reacting to actions of the moderator or the

users, which will be explained in the next section.

The CDE that receives the explicit goal G then needs to find an activity type to instantiate.

This is done by finding an element a ∈ ACTIVITIES, where a is a strict best match for the

has content element of G (if no such element can be found, no activity can be adopted, and

the goal has to fail instantly). G and A are then unified, and the resulting TFS is used as the

activity instance. The activity is placed as a child of the root activity of the CDE and starts by

determining what action is necessary to complete the goal.

5.7.3.2 Implicit Creation of an Activity Instance

The second way an activity instance can be created is implicitly. This happens when a dialogue

act A is received that is not currently expected by a running activity, and which matches one

of the services of the CDE. Recall from Section 5.4.1 that a CDE has a function services which

maps from act types to activity types. The purpose of this function is to find an activity that

can deal with the dialogue act. The CDE finds the element A′ that is the strict best match for

A in the domain of services; then, services(A′) is the activity type that is taken to handle A.

has_content
Command

ZambMove
has_content
Request

Inform
has_content

FootballPlayer

has_content
Request

Propose
has_content

ZambMove

has_content
Request

Propose
has_content

FootballAction

has_content
Request

Help

Request

DialogueAct

HelpLineup:Lineup:Lineup:

a Player
Propose anPropose a

move
Execute a

move answer
(context

dependent)
Give Tips about

QuizRound:

Figure 5.20: Some service mappings of the expert characters in VirtualHuman

Figure 5.20 shows some of the service mappings for the expert characters in VirtualHuman.

The five TFS shown are all instances of the Request type, or subtypes thereof (Command is a

subconcept of Request), and they are all elements from the domain of the services function of

an expert CDE.

In the example, the human user asks one of the experts for his opinion in turn (3):

(3) USER 1: What do you think, Mister Kaiser?

(4) EXPERT KAISER: [smiles] I believe that Ballack scores the goal.

156

A Model for Generating Multi-Party Conversational Behavior

The resulting dialogue act received by the expert’s CDE is a strict best match for the second-

to-last TFS in Figure 5.20, which is mapped to the QuizRound activity type by the services

function. At this point, no such activity is running for the expert (because, as we said in the

last section, a QuizRound goal was only sent to the moderator CDE), so a new activity instance

of that type is started in the expert’s CDE that subsequently has to deal with the contribution.

5.7.4 Deliberation in Activities

Contrary to dialogue acts, activities (and also dialogue games) are not atomic messages, but

executables that run over a period of time in a CDE. During the execution of an activity, differ-

ent kinds of deliberation can be performed: (1) adopting intentions in the form of dialogue

games for one’s own initiatives to satisfy the goal, and executing them; (2) processing of

contributions of other participants, and integrating them with running dialogue games; and

(3) other general computations on the knowledge base, including drawing task-related infer-

ences.

This means that activities have to be programmable. The model itself does not prescribe how

the executable bits of an activity are programmed, but defines a black-box protocol on their

input and output:

(1) An executable can access the ontology of the character, all acts that pass the perception

filter, and the SetGoal message that contains the activity’s parameters (if the activity was

started explicitly) as input,

(2) it can modify the contents of the ontology, execute dialogue games, start sub-activities,

and call external modules (such as a planning algorithm), and

(3) when an activity that was started explicitly terminates, it must send a GoalFeedback

message to the initiator of the SetGoal message that contains information about its

success state.

The rationale for the black-box approach is that it offers great flexibility in choosing different

paradigms to implement deliberation, and the possibility to use different ones in the same

system. Chapter 6 describes the different paradigms that were used to implement different

kinds of executables.

The deliberations that the moderator’s CDE has to perform in the example immediately after

the QuizRound activity has been started are of the first kind. The moderator initially has to

examine his knowledge base to determine more information, since the SetGoal message does

not contain all information needed for the performance of the activity: the given Footbal-

lQuizQuestion is only an underspecified instance. In particular, it only contains the name of

the quiz round, but not the video to be shown, question to be asked, or the possible answers.

If information is missing, it has to be obtained by finding an instance in the ontology that best

matches the provided slots.

This best match is the one FootballQuizQuestion instance in the moderator’s ontology—part

of its “expert knowledge”—that has the same name and provides the additional slots that are

necessary to perform the quiz question. Figure 5.21 shows an example (the FootballAction

157

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

FootballQuizQuestion

HAS NAME “WM1998-france-brazil-petit”

HAS VIDEODESCRIPTION

2

6

6

6

4

VideoDescription

HAS FILENAME “franceBrazil98.avi”

HAS CLIPLENGTH 18000

HAS STOPFRAME 12400

3

7

7

7

5

HAS ANSWER*

*

"

Response

HAS CONTENT
ˆ

FootballAction. . .
˜

#

, 1

"

Response

HAS CONTENT
ˆ

FootballAction. . .
˜

#

,

"

Response

HAS CONTENT
ˆ

FootballAction. . .
˜

#

+

HAS CORRECTANSWER 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 5.21: A FootballQuizQuestion instance in the moderator’s ontology that matches the

SetGoal of Figure 5.19

instances in the Responses that are abbreviated here are fully specified in the ontology and

contain a semantic description of goals, fouls, etc). After a matching instance is found, it is

overlayed on the quizRound slot of the QuizRound activity. The narration engine only needs

to know the names, not the details of the quiz questions to trigger them.

compute and
announce

score

present
actual
ending

alternative
endings

presentshow
video

get get

(1) (2) (3a) (3b) (4) (5)

one expert
opinion choices

all user’s

Figure 5.22: Outline of the moderator’s “plan recipe” for a QuizRound

After the activity’s parameters have been enhanced with information from the knowledge

base, the moderator CDE takes steps towards completion of the goal. Figure 5.22 shows a

rough “plan recipe” for a successful QuizRound: the moderator must present the first part

of a football scene, give the choice of several alternative endings for the scene, then get the

opinion of one of the experts. Afterwards, the moderator requests the guesses of both human

contestants, shows the rest of the scene, and then evaluates the answers to get the new score.

The execution is not entirely straightforward. For one, the steps (3a) and (3b) also require

actions from other participants, who might not be cooperative at all times. In the example,

the user does not answer the question right away, but instead consults one of the experts first

and agrees to his statement. The moderator’s action planning mechanism must be flexible

enough to accommodate this. Also, the steps (3a) and (3b) of the recipe involve very similar

actions; so it is sensible to have re-usable building blocks with different parameters for each.

5.7.5 Single-Initiative Dialogue Games

Dialogue games where only one participant has the initiative act as partial recipes for an acti-

vity. However, this does not necessarily mean that only the initiator has to do any processing

related to the game.

158

A Model for Generating Multi-Party Conversational Behavior

5.7.5.1 Directly Realizable Acts

The quiz turn starts with the “PresentVideo” game. It comprises two actions that involve only

the moderator character, and do not require cooperation by the other participants. First the

moderator shows the video, which is a physical act, and accompanies it with a comment. The

moderator executes a simple dialogue game that has just two transitions. The first realizes a

PlayVideo physical act, and the second an Explain dialogue act.

2

6

6

6

6

6

6

6

6

6

4

PlayVideo

HAS INITIATOR

"

Character

HAS NAME “Moderator”

#

HAS ADDRESSEE*

"

Agent

HAS NAME “Controller”

#

HAS FILENAME “franceBrazil98.avi”

3

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

4

zamb Bridge

HAS INITIATOR

"

Character

HAS NAME “Moderator”

#

HAS ADDRESSEE*

*"

Agent

HAS NAME “User1”

#

,

"

Agent

HAS NAME “User2”

#+

HAS CANNEDTEXT “Now for an interesting scene [Think]”

3

7

7

7

7

7

7

7

7

7

7

7

5

initiative: initiator

s2s
e

1

1

parameter: fileName
act: PlayVideo

instantiation

e
s3

2

initiative: initiator
parameter: −

instantiation

act: Explain

Figure 5.23: The “PresentVideo” game

The first act has one parameter, the name of the video, which can be extracted from the path

videoDescription:fileName in the FootballQuizQuestion instance (Figure 5.23). Physical acts are

not addressed to any other character, but are instead sent to the controller, which manages

the environment (other character may however take a role in an action, e. g., as a target of a

gaze). In this case, the controller forwards the PlayVideo act to the player channel, which will

translate it to a message for the 3D player that triggers the video. Also, the act is forwarded

to all CDEs that are able to perceive it (which is determined by their perception filter).

The second act is addressed to the two users, and contains the explanation for the video. In

this case, an instance of zamb Bridge (a subconcept of Explain) is used. To avoid repetitions in

consecutive quiz turns, the moderator’s ontology contains a selection of zamb Bridge instances

from which one is randomly selected. These instances have a slot that holds a set of variants

as canned text. The use of canned text is appropriate in this case, since the comments do not

refer to semantic content of the videos that are presented. The annotation [Think] placed

within the canned text is a gesture tag representing a class of gestures in a gesture lexicon

(gesticon) of VirtualHumanas alternatives to represent “thinking”. For example, a gesture of

the character scratching its head could be selected. When the act is sent to the multimodal

generator, it produces a corresponding gesture at that point of the utterance.

159

A Model for Generating Multi-Party Conversational Behavior

5.7.5.2 Generated Acts

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

OfferSelection

HAS INITIATOR

"

Character

HAS NAME “Moderator”

#

HAS ADDRESSEE

*"

Character

HAS NAME “User1”

#

,

"

Character

HAS NAME “User2”

#

,

"

Character

HAS NAME “Herzog”

#

,

"

Character

HAS NAME “Kaiser”

#+

HAS CONTENT

2

6

6

6

6

6

6

4

List

HAS ELEMENT*

*

2

6

6

6

4

ListElement

HAS LISTPOSITION “1”

HAS CONTENT

"

Response

HAS CONTENT
ˆ

FootballAction. . .
˜

#

3

7

7

7

5

, . . .

+

3

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

initiative: initiator

s2s
e

1

1

instantiation

act: OfferSelection
parameter: content

object effect

game selection is defined for all participants

s2 selection is set to the value of content for all participants

Figure 5.24: Offering a selection of answers for the quiz question

The utterance that follows also involves only actions from the moderator, but it now comprises

a communicative act that is addressed at all participants, including the expert characters.

The information is derived from the instance describing the whole FootballQuizQuestion from

Figure 5.21, which also contains a set of possible answers to the question about how the

scene will continue. The moderator uses this information to construct an OfferSelection act

that holds an ordered list of possibilities, as shown in Figure 5.24.

For this utterance, the content is specified using a semantic representation rather than pre-

compiled canned text. The communicative act is sent to the multimodal generator, which

produces a textual representation of the semantic content of the offer and the accompanying

pointing gestures, as described in (Kempe et al., 2005). The result of the generation process

is also text, possibly annotated with gesture tags. It can be passed on via the TTS engine to

the multimodal player, which results in utterance (2):

(2) MODERATOR: What happens next? [ր counting gesture] One – Ballack scores

the goal, [ր counting gesture] Two – the keeper does a parade, [ր
counting gesture] Three – Ballack kicks the ball into the sky

The act in its semantic form is also delivered to the addressed characters, and both expert

characters will now try to make sense of the content, which we call consuming the utterance.

160

A Model for Generating Multi-Party Conversational Behavior

5.7.6 Consuming Acts

5.7.6.1 Determining the Processing Layer

When a CDE perceives an act initiated by another conversation participant, it has to decide

whether it will react to it, and if it reacts, what processing layer it belongs to. We leverage

the expectations of the characters to avoid having to do plan recognition, which is computa-

tionally very expensive (Carberry, 2001).

utterance by
another participant

instance of
dominates
matches

Activities

Games

Acts

=?

Types

CDE state

without running instances

Expectations

?

?

?

Start activity
process move in
game associated

with service

On matchProcess Hierarchy
Instances in

Services of activity types

Start game and
process move

Process
move

Dialogue games offered by
running activity instances

Next expected moves in
active dialogue games

Figure 5.25: Processing utterances from other conversation participants: Finding the correct

processing level by matching against expected moves, games, and services

Figure 5.25 illustrates how an utterance can be integrated given a current state of a CDE

with several running activities and subactivities on the activity layer, dialogue games and

subgames on the dialogue game layer, recent acts, and types for the different building blocks

available in the CDE’s ontology. The fundamental rule is: if an act fits an expected move in

a currently active dialogue game, it will be processed in that game. An expected move in a

dialogue game is one that matches the act belonging to a transition outgoing from the current

state the game is in, and whose preconditions are fulfilled. Otherwise, if the act is a possible

initial move in a dialogue game of a currently running activity, it is sent to this activity which

will start that game. When the first two cases do not apply, the service mapping is used to

determine whether there is a type of activity to deal with the act. More precisely, the method

to consume an act ACT by an initiator A perceived by receiver CDE B is described by the

161

A Model for Generating Multi-Party Conversational Behavior

following cases:

(1) If B is an addressee of ACT, and ACT is an expected reaction to own acts of B, e. g.,

previous moves in a dialogue game with A, B will continue that game by using ACT

as the next move. Therefore, it will first be checked whether a move is a possible

continuation or a possible subgame to currently active games. If this is the case, ACT

will be processed on the dialogue game layer.9

(2) If B is an addressee of ACT and ACT is not a reaction, but an initiative by A that does

not fit the criteria in case 1, ACT has to be processed on the activity layer. Depending

on ACT, there are three further sub-cases:

(a) ACT occurs in the context of a currently running activity of B, i. e., it matches

elements of the set of services available from B’s running activities. ACT will then

be used to start a dialogue game in the running activity whose services offer the

best match to ACT.

(b) ACT can be interpreted in the context of an available activity type of B that does

not have a running instance. This means that there is a service offered by a activity

type that matches ACT best. A new activity of that type will be instantiated to

handle the act.

(c) otherwise, B is not able to interpret ACT at all. This can be because of a misunder-

standing or other reasons. In this case, ACT cannot be handled by B. This case can

and should be eliminated by including a “catch-all” activity that offers the service

to deal with all acts of type DialogueAct. The catch-all activity can give feedback

about the failure to A to enable A to clarify the intention. It could e. g., produce

an utterance to the effect of “Sorry, I did not understand you”.

(3) B is not one of the addressees of ACT. In this case,

(a) if B is interested in the content of ACT, it can use it to update its knowledge base

or start an initiative of its own,

(b) otherwise, B can choose to ignore ACT.

The state of a CDE’s expectations in a given situation can also be exploited to aid input

interpretation modules to resolve ambiguities in a user’s input. How this is done in our

framework is covered in Section 6.3.2.

In the example turn (2), both expert characters are addressed, but the act does not match any

currently running dialogue game, and they are not executing an activity related to the quiz at

the time. However, both have an activity type QuestionAnswerProcess that lets them answer

questions about items in their knowledge base. It offers a service that also lets them play the

OfferSelection game. The mapping is

9Case (1) can also apply in a slightly different way if B attempts to “steal” the dialogue role from the orig-

inal dialogue game partner of A. A can then choose to accept or decline the role change. This is modeled in

VirtualHuman to account for the situation where a human player tries to answer a question from the moderator

character that was really addressed to the other human (see Section 1.4.1).

162

A Model for Generating Multi-Party Conversational Behavior

ˆ

OfferSelection
˜

7→ QuestionAnswerProcess

The consume case that applies to the utterance, therefore, is case (2)(b). Both expert CDEs

process the act on the activity level and start a QuestionAnswerProcess. This kind of process

does not terminate once it is started (i. e., the termination condition is never fulfilled).

5.7.6.2 Processing an Act on the Activity Layer

When it is started, QuestionAnswerProcess registers (i. e., adds to the registeredServices func-

tion of the CDE) a service to deal with OfferSelection acts, because questions may actually

be requests to choose from a selection of answers earlier in the conversation. Therefore, the

process, upon receiving an selection offer, stores it in a local variable selection, in case it is

referenced later. Such task-oriented references (i. e., ones that refer to items in the knowledge

base that hold task information) are handled by the conversation manager, while discourse-

oriented references (pertaining to the discourse history, e. g., turn (7)) are resolved by the

discourse modeler.

5.7.7 Multi-Initiative Dialogue Games

In turn (3), the moderator starts the first dialogue game that also requires cooperative action

from other participants:

(3) MODERATOR: What is your guess, Mister Kaiser?

5e

(responder)
Response

2e
(initiator)

(initiator)

s
e

1

1

s2

s3 s5

QuestionSelect

s4

e3

Refuse
(responder)

4e

(responder)
Agree

NeutralEvaluation

object precondition

game selection is defined

e2 responder is not moderator

e3 responder is moderator

e5 responder is user, initiator of agreed-to content is not a user

Figure 5.26: The “QuestionSelection” dialogue game

163

A Model for Generating Multi-Party Conversational Behavior

This game, called “QuestionSelection”, is shown in Figure 5.26. It is derived from the

“teacher’s question” game shown earlier (figure 5.14). The act associated with transition

e1 is restricted to be a QuestionSelect (a subconcept of Question), and a new transition, e5,

is introduced, which adds the possibility to answer indirectly by Agreeing with some other

statement. Also, the Evaluation act in e4 is restricted to be of type NeutralEvaluation. The

moderator is the initiator of the game, and the expert character “Kaiser” is the addressee of

QuestionSelect (and therefore takes on the responder role). Like with turn (2), the expert

has to find an activity and game corresponding to the moderator’s initiative. The Questio-

nAnswerProcess activity offers this “QuestionSelection” game as a service. Since an instance

of it is was started in the previous turn and is still running, case 2(a) of the processing layer

determination algorithm applies and the game is also started for the expert.

Both participants start the game via transition e1 with a QuestionSelect act. However, the

moderator takes the initiative generating the move, which is in turn consumed by the expert.

Afterwards, the game is in state s2 for both participants. All outgoing transitions for state

s2 prescribe that the responder—the expert—has the initiative and must select one of its

outgoing transitions. As can be seen from the table of preconditions in the figure, two of the

transitions have preconditions that are not fulfilled. The reason for this is is that the same

QuestionSelection game type is shared between two different participants—the moderator and

the expert—who should exhibit differing behavior in the scenario. For example, if the user

poses a QuestionSelect to the moderator, he should not voice his own opinion on the situation.

the Refuse act in this case produces an utterance like

MODERATOR: I cannot help you, but you could ask one of the experts instead.

The experts, on the other hand, can use a Response, but are not allowed to react with an

Agree to a previously uttered answer, since their role in the scenario is that they compete with

each other and “stand their own ground”, so they will as a matter of principle have their own

opinions. They also must not refuse to answer. Only a user has the choice to either explicitly

answer the question, or to agree to an already given answer. So in turn (4), expert Kaiser

gives a direct answer:

(4) KAISER: [smiles]10 I believe that Ballack scores the goal.

The answer is selected at random the answers available from the QuizRound instance.

The next turn (6) is again executed by the moderator. It is a short evaluation of the expert’s

choice which is, similar to turn (1), chosen from a set of instances in the ontology. The

instances used are of a concept NeutralEvaluation and contain canned texts like “interesting

choice!” or “we’ll see whether you are right”. There are also PositiveEvaluation and NegativeEva-

luation concepts for use in the second game phase; however, the moderator remains neutral

in this situation and does not rate the answers before showing the result video.

Beginning with turn (7), the moderator executes the QuestionSelect dialogue game again with

different parameters to get the answers of the human quiz participants.

(7) MODERATOR: Now it is your turn, [ր pointing gesture] player one. Make your guess!

(8) USER 1: I think Mister Kaiser is right.

(9) MODERATOR: Alright, answer one.

10Section 7.2.5 describes how the affective reaction is generated here.

164

A Model for Generating Multi-Party Conversational Behavior

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Agree

HAS INITIATOR

"

Character

HAS NAME “User1”

#

HAS ADDRESSEE

"

Character

HAS NAME “Moderator”

#

HAS CONTENT

2

6

6

6

6

6

6

6

6

6

6

6

6

4

Response

HAS INITIATOR

"

Character

HAS NAME “Kaiser”

#

HAS ADDRESSEE

"

Character

HAS NAME “Moderator”

#

HAS CONTENT

"

FootballAction

. . .

#

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 5.27: The user Agrees with the opinion of expert Kaiser

The user agrees to the previous utterance of the expert, which is a possible move given the

preconditions of the dialogue game. The discourse modeler FADE is able to reconstruct the

utterance that was agreed to from the discourse history and the expectations of the conver-

sation manager (see Section 6.3.2). This results in the enriched dialogue act shown in Figure

5.27 delivered to the moderator’s CDE. The moderator can extract the same information as if

the user had formulated the response himself.

5.7.7.1 Starting an Intermediate Game

A different possibility for the user is to ask the moderator (or an expert) for an opinion:

(12) USER 2: Moderator, what do you think?

(13) MODERATOR: Sorry, [shrugs] I’m not allowed to help you; please ask one of the

experts. Your answer?

The user’s comment does not fit the currently active dialogue game (in which the moderator

expects an answer), and so would start a new one where the user is in the initiator role. The

moderator’s game is suspended while the expert answers, and continues after the subgame is

completed.

5.8 Summary

This chapter introduced the model for interactions between multiple virtual characters and

human users. The operation of the model was illustrated by way of an example from the

VirtualHuman system.

The model comprises three layers: dialogue acts, which encode atomic units of communi-

cation, dialogue games, which provide for exchanges of dialogue acts between participants

that are regulated by shared rules of social commitment and allow the participants to make

predictions about the behavior of others, and the level of activities. The dialogue games offer

165

A Model for Generating Multi-Party Conversational Behavior

a means to coordinate joint actions of the participants, and activities that represent complex

behavior and can be used to implement the reasoning necessary to address related goals in

an application, and to achieve them by executing a combination of dialogue games.

For further reasearch, an interesting property of the model is that it is possible to create

multi-party scenarios with participants in multiple roles. An example would be a court-room

situation that has multiple interesting roles (judge, plaintiff, advocate) and group roles (wit-

nesses, jury). Formalized interactions, such as a court event, also exhibit formalized rules for

items interaction that are suitable for a representation via dialogue games (e. g., an interroga-

tion or a defense) and planning (courtroom sessions have to follow a well-defined procedure,

differing by legislation). In modeling such a scenario, one such role can be taken by a hu-

man, to experience their viewpoint. For tutorial applications, this could be a useful feature,

especially if the user could change dynamically between roles.

The next chapter describes how a generic CDE framework realizes this model in a way that is

adaptable to a broad range of actual applications.

166

Chapter 6

Realization of a Conversational

Behavior Generation Framework

6.1 Introduction

This chapter describes the framework that can be used to define and run applications that con-

form to the conversation model. It has been implemented as a set of application-independent

core modules that offer the basic functionality for a conversation manager. In most cases,

the core modules have to be supplemented by additional software for application-specific

tasks; the framework implementation contains several APIs to facilitate these extensions. The

framework also features a lightweight API for accessing and manipulating the ontological

knowledge base that comprises the base ontology, together with necessary additions to cap-

ture application-specific domain and task knowledge.

The framework builds on the architecture used in the SmartKom system and extends it for

multi-party conversation. This is facilitated by the fact that the SmartKom dialogue manager

already provides for interleaved mixed-initiative communication with the user and the various

applications via a uniform dialogue game mechanism. In effect, carrying out a multi-step task

for the user in SmartKom generally involves having interspersed sub-conversations with one

or more applications, which are—like the dialogues between the system and the user—also

in terms of, e. g., questions, answers, and commands, and has some similarities to conducting

a conversation with multiple communication partners.

The CDE framework has been designed to be able to accommodate dialogue system setups for

different purposes. It supports an arbitrary number of human and virtual conversation par-

ticipants, different reasoning mechanisms, and makes it easy to incorporate special-purpose

modules to provide additional functionality, such as the affect engine ALMA (Gebhard, 2007)

in VirtualHuman that computes changes in the emotional state of virtual characters, or a

narration engine to provide external goals for the virtual characters. The framework is in-

tended to run in a dialogue system environment where separate concurrent and specialized

modules communicate using asynchronous message-passing. It implements a system of con-

current agents where each agent represents a conversation participant in a dedicated CDE

sub-module. Besides an action manager, a CDE can host additional character-specific software

instances, such as modules dealing with dialogue history or reference resolution. Indeed, in

167

Realization of a Conversational Behavior Generation Framework

multimodal setups, the conversation manager is dependent on cooperating with an external

module that provides for multimodal fusion and reference resolution; in all system instances

described in this thesis, this task was taken over by the FADE module (Pfleger, 2007).

6.2 CDE Framework Architecture

6.2.1 Overview

Figure 6.1 shows how the components of the conversation manager framework are related to

each other for a system instantiation with multiple characters and human users (the Virtual-

Human system).

Player
Output
Channel

Multimodal
Player

CDE
Moderator

Human
Users

Channels
Input

Multimodal
Input

Resolution

CDE CDE

Framework

Perception
Character

Filters

Expert 1 Expert 2

User 1
CDE

User 2
CDE

System
Management

User
Interaction

Characters

Channels

CDE
Director

CDE Controller
and Environment

Input/Output

Applications

Figure 6.1: Overview of the internal structure of an exemplary conversation manager instan-

tiation (VirtualHuman) with several human users and characters

There are three main areas, from top to bottom: On top are the parts concerned with input

from and output to the human users, the middle part deals with the dialogue system control

and managing the virtual environment, and the bottom part generates the behavior of the

168

Realization of a Conversational Behavior Generation Framework

virtual characters, including possible communications with application modules (the system

and character ontologies are omitted for simplicity).

The heart of the framework is the central CDE controller. It is initialized with a definition of a

specific dialogue system and hosts the multi-agent system. It connects to the other modules of

the system to receive and send messages and dynamically manages the CDEs, and also holds

the system’s ontology that represents the objective state of the environment. The controller

is able to dynamically create new CDEs, or to deactivate present CDEs. This is done during

the initialization of the system, according to its configuration, or dynamically during the

interaction according to directives from a narration module.

6.2.2 Accessing the Knowledge Representation: JenaLite

The framework needs a means to access and manipulate the system ontology and the ontolo-

gies of the characters. A commonly used tool for this task in Java is the open-source Jena

library.1 However, while the Jena API and corresponding implementation are comprehensive

and powerful, after initial experiments it showed that the time and space overhead imposed

by the full implementation of RDF(S) was too grave, so that the real-time requirements of

our system would not have been satisfiable if we used Jena.

To address this problem, a lighter API, JenaLite, was specified and implemented that operates

on the TFS ontology representation generated from the RDFS knowledge base, as described in

section 4.3.4 and is restricted to the features that are actually needed by the framework. The

API then was implemented in two versions in a student project, yielding the ability to handle

ontologies stored in the XML format, and in RDF(S). Internally, the implementation uses

the speed-optimized DOM library JDOM to hold and manipulate the ontological taxonomy

and the instances.2 The use of JenaLite resulted in considerable speed and memory savings.

Appendix B lists the elements of the JenaLite API.

6.2.3 Configuration

6.2.3.1 Dialogue System Definition

The dialogue system is specified by the set of interrelated knowledge sources shown in figure

6.2. The main resource is the Dialogue System Definition (DSD) that configures the controller

for the dialogue system (the schema definition for DSD documents can be found in Appendix

C.1). An initial controller section specifies the system ontology, the communication channel

definitions for connecting the system to the outside world, and the initial actions that should

be executed at the initialization of the system. The controller section is followed by the parti-

cipants section, in which the CDEs that occur in the system, representing virtual characters or

users, are defined. The DSD can also optionally contain an application stub to start external

applications.3

1Jena website: http://jena.sourceforge.net
2JDOM website: http://www.jdom.org
3In case the conversation manager is to start other modules on initialization, this item is used to specify a stub

Java class that handles their initialization.

169

Realization of a Conversational Behavior Generation Framework

Ontologies
task and domain knowledge
building blocks

activity types
dialogue games
dialogue acts

Activity Specifications

Lisa plans
Java classes

Activity Implementations

offered services
offered goals

DSD

system ontology
channel definitions
system initial code
(application stub)

Participants (CDE) section

link to activity definitions

character ontology

name and type

Controller section

Figure 6.2: The set of knowledge resources for a CDE system

Figure 6.3 shows the dialogue system definition for the OMDIP system. In the controller

section, the path to the system ontology is given. OMDIP uses three communication channels,

to the FADE module (Pfleger, 2007), the GUI generator, and to the function modeler that

interfaces to the external application services. The type of a channel gives a Java class that

is dynamically loaded to implement the translation function. Since in the case of OMDIP, all

communication is in the same common data format (EMMA), a single class OmdipChannel can

be used for all channels. There is no application stub given. Finally, the controller section can

optionally contain initial code in the Lisa language (see Section 6.4) that is executed when

the system is initialized. In this case, two CDEs are created and activated at the beginning.

The participants section specifies that the system can use two CDE instances, one for the user

and one for the system agent. Again, CDE types are supplied which identify Java classes

that are subclasses of an abstract CDE class. Both CDEs and the CDE controller use the same

ontology, which is contained in an XML file that contains the ontology translated to the XML

representation described in Section 4.3.4. For the system CDE, an activity definition file is

specified; the OmdipUserCDE does not require activity definitions, since it is only a proxy for

the user.

The DSD enables the controller to initialize the conversation manager in four steps:

1. Create the initial state of the system environment by loading a file containing the system

ontology,

2. Prepare all CDE instances that are in the DSD, and initialize them with their activity

specifications,

3. Set up the input and output channels for external communication, and

4. Execute additional arbitrary instructions necessary to bring the system to its initial state.

170

Realization of a Conversational Behavior Generation Framework

dsd

controller

name: OMDIP

ontology: etc/ontology/omdipOntology.xml

subdir: omdip

gameTypesPath: etc/dialog/gameTypesOMDIP.xml

channels

channel

name: fade

type: de.dfki.omdip.OmdipChannel

channel

name: fm

type: de.dfki.omdip.OmdipChannel

channel

name: GUIGen

type: de.dfki.omdip.OmdipChannel

participants

cde

name: OMDIPAgent

type: de.dfki.omdip.OmdipCDE

ontology: etc/ontology/omdipOntology.xml

activityDefinitionFile: etc/omdip/omdipAgent/omdipAgent.xml

cde

name: OMDIPUser

type: de.dfki.omdip.OmdipUserCDE

ontology: etc/ontology/omdipOntology.xml

init

CreateCharacter

has_character

Character

has_name: OMDIPAgent

CreateCharacter

has_character

Character

has_name: OMDIPUser

Figure 6.3: The DSD file for OMDIP

171

Realization of a Conversational Behavior Generation Framework

This can involve sending further initializations to other modules in the system, activat-

ing CDEs, or setting initial goals for character CDEs.

After the initialization, the system is ready to engage in conversation and can process user

input or directions from a narration engine.

6.2.3.2 Activity Specifications

The activity definition file contains the definitions for all activity types and the services they

offer. Figure 6.4 shows an excerpt of three activity type definitions from the activity definition

file for the OMDIP system agent.

As shown in the figure, an activity type definition specifies the following information:

• the name of the concept in the ontology representing the activity type. This concept will

typically contain roles that can hold object instances relevant to the activity, acting as

local variables.

• the type of the activity executable, and the implementing Java className. There are

three types in the standard framework, LisaProcess, HardcodedProcess and ManagedPro-

cess (see Section 6.3.3).

• a set of service templates for the activity type.

• whether the services of the activity type should be automatically registered (autoRegis-

ter) and/or started when the CDE is initialized (autoStart).

The set of service templates are interpreted as underspecified TFS instances that can be regis-

tered in the registeredServices table of the CDE, which maps from templates to activity types.

In the third activity type in the example, this would result in the following mappings being

included in registeredServices:

2

6

6

6

6

4

Command

HAS CONTENT

2

6

4

Offering

HAS OBJECT

"

Service

HAS NAME ServiceCenter

#

3

7

5

3

7

7

7

7

5

−→ ServiceCenterProcess

2

6

4

Select

HAS CONTENT

"

Service

HAS NAME ServiceCenter

#

3

7

5
−→ ServiceCenterProcess

Registered services can be triggered by user interaction or SetGoal acts by external modules.

If services are not registered automatically, they can still be called as sub-activities from other

activities.

172

Realization of a Conversational Behavior Generation Framework

processes

ActivityProcessType

has_type: lisa

has_name: NotAvailableProcess

has_className: de.dfki.cde.process.LisaProcess

has_autoRegister: true

has_autoStart: false

has_service

DialogueAct

has_plan: etc/omdip/omdipAgent/notAvailable.xml

ActivityProcessType

has_type: lisa

has_name: ComeAgainProcess

has_className: de.dfki.cde.process.LisaProcess

has_autoRegister: true

has_autoStart: false

has_service

NotUnderstood

has_plan: etc/omdip/omdipAgent/comeAgain.xml

ActivityProcessType

has_type: lisa

has_name: ServiceCenterProcess

has_className: de.dfki.cde.process.LisaProcess

has_autoRegister: true

has_autoStart: false

has_service

Select

has_content

multimod_Service

has_name: ServiceCenter

has_service

Command

has_content

smartsumo_Offering

multimod_has_object

multimod_Service

has_name: ServiceCenter

has_plan: etc/omdip/omdipAgent/serviceCenter.xml

[...]

Figure 6.4: Excerpt from the activity definition file for the OMDIP system agent

173

Realization of a Conversational Behavior Generation Framework

Dispatcher

directly
integrated
modules

(e.g., planner,
application

logic)

external
modules

Controller
CDE

other
CDEs

{

{

Activity
Instances

Game
Instances

Activity
Manager

Game
Executor

GUI
Subframe

active
game

Knowledge Sources

interleaving
execution

CDE
Registered
Services

Ontology
Activity

Specifications

Dialogue
System

Definition

Figure 6.5: The essential internal composition of a CDE (without system-specific extensions)

174

Realization of a Conversational Behavior Generation Framework

6.2.4 CDE internal structure

Without any configured modules and channels, a plain CDE has an internal processing struc-

ture as shown in figure 6.5. This basic structure is designed to be modified by subclassing

the CDE class from the framework. The CDE draws on the knowledge sources DSD, ontology

and the activity specifications from the configuration. A dispatcher distributes incoming and

outgoing messages.

The activity manager controls the hierarchy of currently active and suspended activity pro-

cesses, and schedules their execution. It is parameterized by the registered services, which

can be either static (from the activity specification) or dynamically registered by other running

activities. Each activity is running as a separate thread in the engine. The activity manager

executes in an alternating fashion with the game executor that becomes active when a game

has to be advanced by generating acts of the character or by consuming user acts.

Additional modules can be integrated directly into subclasses of the CDE class, instead of

connecting them via channels in the CDE controller for improved performance (this was done,

e. g., in VirtualHuman for the integration of FADE and the module implementing the game

logic for the lineup game). Each CDE also provides a GUI subframe that is integrated into the

overall framework GUI managed by the CDE controller.

6.2.5 The Framework’s Graphical Interface

A graphical user interface allows the conversation designer to examine and influence many

aspects of the system in real-time. This can be especially useful for debugging, testing, and

monitoring a live system during development, and also makes it possible to configure specific

situations interactively.

The main features of the interface are:

• Character CDEs

– Ontology View

This view allows the dialogue designer to browse through and inspect the instances

in the ontology of an active character and step-wise track changes in the relations

between them (see Figure 6.6).

– Act Dispatch

Using this feature, dialogue acts can be directly input or selected from a list of files

to be sent as if the behavioral module of the character generated them. This is

especially useful when the system exhibits partially non-deterministic behavior for

the sake of variation in a narrative, e. g., characters selecting randomly from a set

of possible actions.

In this case, some possible interactions may show up infrequently, making them

hard to test. This difficulty can be alleviated by manual testing. Additionally, the

effect of new behaviors can also be tried out manually before adding them to the

knowledge base proper.

175

Realization of a Conversational Behavior Generation Framework

Figure 6.6: Ontology view for officer Bogert in the Clue system

– Processes

This view allows an operator to supervise the active goals of the character and

their completion status.

– IQ, Personality and Mood

For these, a set of views is provided that dynamically display the configuration of

the character in terms of traits and affective parameters.

• Channels

The channel views are dependent on the application configuration. The following pos-

sibilities are available if the corresponding channel is present:

– Speech Input

The operator can use the keyboard to provide a speech recognition result for a

human user’s CDE, and let it be processed by the system.

– Affective Input and Output

176

Realization of a Conversational Behavior Generation Framework

The input view shows the updates by the affect engine in real-time, while the

output view protocols the affective tags that are sent by the CDEs to the affect

engine.

Figure 6.7: The player preview showing a conversation between moderator (Kaiser) and

expert (Lebacher) in VirtualHuman

– Presentation Output and Feedback

This view shows for all characters the generated utterances, including gestures,

physical acts, and player configuration messages. The output is available in terms

of the actual message sent to the 3D player in playerML (player markup language),

and a more human-readable “sanitized” format, as shown in Figure 6.7.4

– Narration Input and Output

In this view, an operator can send single narrative goals manually and examine

the status all current narrative goals, as well as SetGoal and GoalFeedback mes-

sages. Section 7.2.2 features a screenshot and a more detailed description of its

possibilities.

4A description of PML can be found in (Jung and Knöpfle, 2007; Klesen and Gebhard, 2007)

177

Realization of a Conversational Behavior Generation Framework

• Reset

The conversation can be restarted from the GUI. If other modules in the system support

remote restart, they are also sent reset messages.

6.2.6 Connecting Modules and Devices to the Framework

The system is designed to enable easy interoperation with off-the-shelf modules and devices

that are not part of the framework. While the content of messages generated by modules of

the framework is based on the common ontological representation, communication from and

to external programs (e. g., speech recognizers and multimodal players) has to be adapted

to this scheme. Usually, changing the source code of such programs is not an option. To

avoid having to integrate idiosyncratic conversions into the core of CDE framework itself, it

provides a set of interfaces that define the functionality required for interaction with external

applications.

For the integration, it is necessary to provide Java classes that implement the interfaces In-

putChannel (for incoming messages) and OutputChannel (for outgoing messages) and real-

ize the conversion function as defined in Section 5.3.3. The qualified names (including the

package specification) of these classes, and a name for the associated channel, can then be

specified in the DSD for the dialogue system. The system will load and instantiate them dy-

namically at run-time. CDEs that need to be interfaced to external modules or devices can

subscribe to the respective input channel or publish messages for an output channel. Instanti-

ated channels also receive a message when the system is reset, in case the modules or devices

need to be notified of this event.

6.3 Performing Activities and Dialogue Games

Section 5.5.3 stated that the behavioral and deliberative actions of the characters are per-

formed in three modes of action: deliberation, consuming acts, and initiating acts. Here, we

describe how these action modes are managed for each CDE. We start with how goals are set

and how goal feedback is generated, introduce the notion of expectations, and then turn to

the implementation of activities.

6.3.1 Goals

6.3.1.1 Setting Goals

There are four cases for how an activity can be triggered for a character:

(1) automatically at the initialization of the system,

(2) implicitly to process a dialogue act that no current activity can process.

(3) explicitly by another activity,

178

Realization of a Conversational Behavior Generation Framework

(4) explicitly by an external source, e. g., a narration engine,

Case (1) is carried out while loading the DSD (see Section 6.2.3.1). (2) is handled by the act

consuming algorithm (see Section 5.7.6.1). The cases (3) and (4) involve passing a SetGoal

meta-act to the character. An activity can do this either via a command in the Lisa language

(section 6.4) or an explicit call to the framework API; an external module has to send a

message via an input channel.

An activity continues to execute until it terminates. If it was started by an external source, a

feedback message is sent to the goal initiator upon termination that indicates the termination

states “success” or “failure” and possibly additional information. The basic type of SetGoal

contains the roles shown in Figure 6.8.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SetGoal

HAS NAME String

HAS INITIATOR Agent

HAS ADDRESSEE
˙

Character
¸

HAS TIMEOUT Integer

HAS EVENT
˙

Event
¸

HAS ACTIVITY Activity

HAS BEGINTIME Time

HAS ENDTIME Time

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 6.8: Roles of the SetGoal concept

The external narration engines in VirtualHuman and Clue use the directionML markup lan-

guage for sending goals and receiving feedback (the schema definition of directionML mes-

sages is given in appendix C.2). A directionML message setting the Lineup goal of VirtualHu-

man is shown in figure 6.9.

Upon receiving this message, the CDE controller will construct and send SetGoal acts to all

participants specified in the message (the user CDE ignores goals). Under the Goal tag, an

ontological instance is specified in XML notation, which takes on the activity role in the Set-

Goal act. An activity can take a SetGoal message directly to the CDE it runs in, but not to

other CDEs.

6.3.1.2 Goal Feedback

When goals are imposed on characters by an external entity such as a narration engine, it can

be crucial to have a possibility to give back notifications about the state of the activities. This

is done by sending goal feedback messages to the goal initiator upon the following events:

• Termination: When a goal terminates successfully or unsuccessfully.

• Timeout: After the duration of timeout, the activity automatically terminates with fail-

ure. In the example, this would be after 360 seconds.

• NoResponseEvent: When the activity associated with the goal does not send or receive

any communicative acts for the duration specified in the SetGoal timeout (after 60 sec-

onds in the example).

179

Realization of a Conversational Behavior Generation Framework

directionML

setGoal

has_name: lineup

Participant

has_name: Moderator

Participant

has_name: Herzog

Participant

has_name: User1

Timeout: 360 // timeout in seconds

NoResponseEvent: 60

Event refId="lastEvaluation"

Goal

zamb_Lineup

has_moderator

Character

has_name: Moderator

has_expert

Character

has_name: Herzog

has_contestant

Character

has_name: User1

has_opponent

FootballTeam

has_name: Japan

has_lastEvaluation

Evaluation id="lastEvaluation"

Figure 6.9: A directionML message setting the Lineup goal

• Events: When activity roles are marked by reference in an Event instruction change (the

value of the has lastEvaluation role in the example). In this case, the new value of the

role is sent back in the feedback as a result

2

6

6

6

6

6

6

4

GoalFeedback

HAS NAME String

HAS STATUS String

HAS INITIATOR Character

HAS EVENT* Event

HAS RESULT :THING

3

7

7

7

7

7

7

5

Figure 6.10: Roles of the GoalFeedback concept

A GoalFeedback meta-act has the roles shown in Figure 6.10, which encode the aforemen-

tioned information.

Figure 6.11 shows an abridged possible feedback message for a termination event. It was

sent by the “Moderator” character in response to the goal set by the message in Figure 6.9.

180

Realization of a Conversational Behavior Generation Framework

directionML

goalFeedback

has_name: lineup

has_initiator

Character

has_name: Moderator

has_status: failure

has_event

Timeout

has_result

ZambEvaluation

has_evaluatedObject

ZambMove ...

has_globalScore

Score

has_character

Character

has_name: User1

has_points: 67

...

Figure 6.11: An example GoalFeedback message

It indicates that the Lineup goal failed because of a timeout event, and that the player had a

score of 67 points when the activity was aborted.

6.3.2 Expectations

Dialogue processing algorithms can exploit the fact that it is often possible to predict future

utterances. Sources for such predictions are the social obligation expressed in the dialogue

games, but also from the wider task or story context of the interaction. The benefits of us-

ing expectations to place constraints on input disambiguation has already been exploited in

various systems, e. g., in RavenClaw (Bohus and Rudnicky, 2003) and in form of anticipation

feedback loops in the PRACMA system (Ndiaye and Jameson, 1996). Usually, expectations

are considered binary, i. e., an utterance is either expected or not. Our approach uses a some-

what more fine-grained distinction between several degrees of expectancy. These expectation

categories were introduced in (Löckelt et al., 2002) for the SmartKom system. There, the ex-

pectations related to expected slots, i. e., slots that were expected to be filled, but the principle

can be transferred. In the model described in this thesis, they refer to expected dialogue acts

by other conversation participants.

• An expected act in a dialogue game is an act associated with an edge outgoing from the

current state it is in. The initiative label of the edge also must specify the interaction

counterpart, i. e., if the expecting party (“expectator” is the initiator of the game, the

edge must be labeled with the initiative value “responder”, and vice versa.

• possible acts are all acts that start a dialogue game in currently executing activities

181

Realization of a Conversational Behavior Generation Framework

• other acts are acts that cannot be reasonably interpreted in the current context, for

example acts that would start a new activity.

Expectations play a central role in routing incoming utterances for a character to the correct

activity. If a dialogue game explicitly “expects” an act, it will be given preference over an

activity that only declares it “possible”, and only if the act does not fall into either category,

does a new activity have to be started. Section 5.7.6.1 states how an expected act in a dialogue

game is determined by examining the outgoing edges of its current state. The expectation

information is sent via an output channel in the form of an Expectation data structure to other

modules on the input analysis side, especially FADE, to help with disambiguation (cf. (Löckelt

et al., 2002)).

In addition to the status of the various slots of the different processes, the expectation data

structure can also contain lexicon updates. If the system features a dynamic lexicon, it can

subscribe to the expectation messages and receive new sets of words that are likely to be used

in the current application context. Consecutive lexicon updates are collected and dispatched

together the next time an expectation is sent. Below are two sample statements in the Lisa

language to construct a lexicon update after new song titles and artist names are retrieved

from the database in OMDIP:

lexiconUpdate

slotName: performanceList

path: listItem/SoundLogo/has_title

category: songTitle

lexiconUpdate

slotName: performanceList

path: listItem/SoundLogo/has_artist/Artist/has_name

category: artist

Each of these statements will collect the (string-valued) objects found under the given path

in the role with the name slotName and construct a lexicon update with these objects as

lexemes for the category category.5 Figure 6.12 shows an example of an Expectation instance

containing two lexicon updates that could result from this expression.

6.3.3 Activities

All activities in a CDE are created in a process hierarchy as children of a root activity (cf.

Figure 5.5 on page 132).

They are in one of the different states shown in Figure 6.13 at all times. Activities themselves

can spawn other activities, either as root activity children or as sub-activities. In the latter

case, the original activity is in suspended state until the child activity terminates. The main

activity manager loop executes all non-suspended activities in turn (Figure 6.14). If there

is an incoming act in the activity’s input queue, it has to process it via a consume() method,

otherwise an execute() method is called that invokes the deliberation mode, from where the

5In Lisa, references to substructures of ontological instances are given in XPath syntax to be applied to their

XML representation.

182

Realization of a Conversational Behavior Generation Framework

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Expectation

IS EXPECTED* Act

IS POSSIBLE* Act

IS OTHER* Act

HAS LEXICONUPDATE

*

2

6

6

6

6

6

6

6

6

4

LexiconUpdate

WORDCLASS songTitle

OBJECTTYPE
ˆ

SoundLogo
˜

LEXEME

* Music,

Mensch,

Material Girl

+

3

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

4

LexiconUpdate

WORDCLASS artist

OBJECTTYPE
ˆ

Person
˜

LEXEME

*

Madonna,

Herbert Grönemeyer

+

3

7

7

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 6.12: An example Expectation containing a lexicon update

suspend resume

run

initialize
R

succeeded
success

failure
failed

running

suspended

Figure 6.13: Process states for activities (adapted from (Hulstijn, 2000b))

activity can also initiate an act of its own. If the activity has reached the finished state after-

wards, the send-feedback method will notify the initiator of the corresponding goal, if it is an

external module.

To service the input queues of the activities, a separate dispatcher thread runs concurrently

and is called whenever a new act is received from any channel. The dispatcher distributes the

acts to the input queues of the activities managed by the process manager via the procedure

shown in Figure 6.15 that determines the right processing level and the destination activity,

as was illustrated in Figure 5.25.6 The combination of the activity manager loop and the

dispatcher ensure that an act is sent to the correct activity and processed when it is scheduled

next for execution.

To implement the activity, several possibilities are available. The DSD specifies which im-

plementation type is used for each activity by the type and className features. Figure 6.16

shows the basic Java classes available in the framework for executing activities. The basic im-

plementations, except LisaProcess, are abstract classes and must be extended by subclassing

before they can be used.

To act as an activity implementation, a class must implement three basic methods of the Pro-

6The additional case where an act has an explicit receiver process covers CDE-internal communication, such

as an answer from a planner module.

183

Realization of a Conversational Behavior Generation Framework

ACTIVITY-MANAGER-LOOP ():

loop

forall activity ∈ Activities where activity is not suspended

if activity is not finished

if there an incoming act act in activity’s input queue

activity.consume(act)

else

activity.execute()

if activity is finished and goal originated from external source

send−feedback(activity.getState())

Figure 6.14: The activity manager loop

cess class; these methods are needed for interaction with the activity manager. CONSUME(Act)

is called to deliver an act to the activity, EXECUTE() lets the activity do internal computations,

and GETSTATE() has to return the running state of the activity (running, suspended, succeeded,

or failed). There are two other abstract subclasses directly inheriting from the basic Process.

Subclassing HardcodedProcess is intended for free implementation for the processing of the

acts in plain Java, in case some desired behavior is not capturable with the dialogue game

paradigm. ManagedProcess offers some basic convenience methods for implementing dia-

logue game-based processing “manually”. LisaProcess again extends ManagedProcess and can

execute activities based on activity plans in the Lisa language, which we describe next.

6.4 The Lisa Language

Figure 6.17 summarizes the top-level algorithm for the execution of dialogue games (both

single-initiative and multi-initiative) in pseudo-code, including deliberation, consuming acts,

and realizing own acts. Lisa is a special-purpose language for parameterizing the basic algo-

rithm.

6.4.1 Motivation

Each dialogue application has its own set of idiosyncratic requirements. A dialogue designer

can find it difficult to realize required features in the absence of the versatility of a full general-

purpose programming language. Examples that are encountered in real systems are, e. g.

• extraction of patterns from ontological data structures for lexicon updates using regular

expressions (SmartKom)

• specification of rules that are not conversation related, e. g., the rules for placing a legal

football team on a field (VirtualHuman) or for deciding on a strategy to solve a criminal

case (Clue)

184

Realization of a Conversational Behavior Generation Framework

DISTRIBUTE (act):

if there is an explicit receiver process for act

add act to receiver’s input queue

else if there is a nonempty set expectators of dialogue games expecting act

let e← the strict best match for act in expectators

add act to e’s input queue

else if there is a set of process types s offering a matching service

let t← the strict best match for act in s

if an instance i of type t is running

add act to i’s input queue

else

start a new process instance i of type t

add act to i’s input queue

else

if the root process can handle act

add act to the root process’ input queue

else

reject(act)

Figure 6.15: Distribution algorithm for the dispatcher

• adapting output modes to differing presentation paradigms, e. g., as a 3D scene (Virtu-

alHuman and Clue) vs. a web presentation (OMDIP)

The most direct way to implement services is to explicitly write them in a programming lan-

guage such as Java. However, this has several drawbacks, e. g., lack of abstraction, difficulties

in enforcing compliance to the constraints of a dialogue model, poor integration with know-

ledge sources, and no possibility to support the dialogue designer with development tools.

On the other hand, it would be possible to use a general formalism such as description logic

together with a general-purpose problem solver. Such an abstraction is quite removed from

the actual communication situation. This approach, while powerful, tends to lead to overly

verbose and obfuscating, and therefore also error-prone, descriptions with regard to the ac-

tual content. For this reason, it is cumbersome to implement complex applications using

explicit logic representation. To employ the principle of adapting the programming language

to the problem, instead of vice versa, also known under the name “bottom-up programming”

(cf. (Graham, 1994)), various dialogue systems have used special-purpose languages such as

HAP or ABL (see Chapter 3).

For the CDE framework, we implemented Lisa (“Language for interactions of situated

agents”). It is an XML-based language that can be used to declaratively specify the actions

in the activities for the character CDEs. Its repertoire includes constructs to manipulate the

belief state of the character, manage sub-processes and conduct communicative games, as

well as procedural control constructs. Lisa is an imperative programming language designed

to be extended incrementally. If new and useful patterns are identified by analyzing activity

types that it cannot yet cover and that have to be hard-coded, they can be integrated into the

185

Realization of a Conversational Behavior Generation Framework

HardcodedProcess

Process

ManagedProcess

LisaProcess

Game−based ImplementationsDirect Implementations

Figure 6.16: Activity implementation classes (classes in dashed boxes are abstract and must

be subclassed)

language. The XML notation makes it possible to automatically verify Lisa specifications for

syntactic correctness by using XSD checking (including ontological entities that are part of

the specification) (Gurevych et al., 2006).

6.4.2 The Structure of a Lisa Plan

An activity specification in Lisa, also called a Lisa plan, declares the services offered by the

activity and specifies how they are implemented. It can then be executed by an interpreter,

which is provided by the LisaProcess class.

A Lisa plan consists of a header, slot definitions, an activity body and dialogue game specifica-

tions. It can also specify preconditions and postconditions for the activity. The header of the

plan specifies the services it implements, and the name of the dialogue games that are used

for the implementation. The slot definitions provide a way to store named ontological in-

stances as local variables for the activity. The body of the activity is a sequence of instructions

to be executed during the activity, and the dialogue game specifications provide instructions

to be executed along with DialogueGame instances defined in the ontology.

As an example, we use a simple activity from the OMDIP2 system called “ComeAgain”. This

activity offers a single dialogue game, called “ComeAgainGame”, whose depiction as a graph

is shown in Figure 6.18. The game is intended to be used to react to speech recognition

errors. If such an error is detected, the input to the conversation manager consists of an

instance of the concept NotUnderstood that may contain some semantic fragments, if the

utterance could be partly interpreted by the input processing modules. The reaction of the

system should consist in a dialogue act of type ComeAgain, whose content roles should contain

(a) the semantic fragments, and (b) a counter indicating how many dialogue acts of the same

type in sequence were not understood.7 The basic “ComeAgainGame” instance is contained

7The rationale for this is that the presentation module might indicate a first, and only the first misunderstand-

ing with a beeping signal, since several such signals in the case of consecutive misunderstandings would likely

annoy the user.

186

Realization of a Conversational Behavior Generation Framework

DIALOGUEGAME.ADVANCE ():

let currentState← state of game

case: body of currentState has not been executed

// deliberation

execute body of currentState

case: g is final state

// finishing game

unregister expectations of g

set game state to finished

case: input queue contains an act a

// consuming acts

applicableTransitions← set of applicable transitions for a from currentState

bestTransition← strict best match for a in applicableTransitions

consume(bestTransition, a) // sets new currentState

advanceGame(bestTransition))

unregister expectations of g

otherwise:

applicableTransitions← set of applicable edges for currentState

if applicableTransitions = ε and no expectations

registered

// expecting moves from other participants

register expectations for new state

publish expectations for other modules

else

// producing own move

unregister expectations for g

bestTransition← strict best match for a in applicableTransitions

realize(bestTransition)

set current state of g to target of bestTransition

Figure 6.17: Basic algorithm for a dialogue game’s execution

in the ontology of the character. The additional Lisa plan uses this instance and specifies the

additional operations to be performed during the execution of the game.

In the example of Figure 6.19, the service comeAgain is defined that is implemented by a

game specification called comeAgainSpec that will follow below in the plan. Afterwards, three

slots are defined to act as local variables for the activity, and given initial value assignments:

comeAgainContent, notUnderstoodCounter and lastNotUnderstood. The body of the plan, in

this case, contains a loop statement without a termination condition, i. e., an endless loop.

That means that after the activity is started, it will not terminate until the whole application

ends.8

The second part of the plan, shown in Figure 6.20, contains the game specifiation. It defines

actions to be executed when the activity is in the different states of the game as a series of

8An empty endless loop in Lisa sleeps between iterations and does not take up much processor time.

187

Realization of a Conversational Behavior Generation Framework

s2s
e

1

1 e
s3

2

initiative: responderinitiative: initiator

act: NotUnderstood act: ComeAgain

comeAgainGame

Figure 6.18: The ComeAgain game from OMDIP2

plan

activity

<!-- header -->

name: comeAgain

services

service

name: comeAgain

usedGame: comeAgainSpec

template

NotUnderstood

[...]

<!-- slot declarations -->

slots

slot

name: comeAgainContent

value

ComeAgain

slot

name: notUnderstoodCounter

getABoxObject

name: notUnderstoodCounter

slot

name: lastNotUnderstood

value

DialogAct

slot

name: counter

string: 1

<!-- activity conditions -->

preconditions()

postconditions()

<-- activity body -->

body

loop()

Figure 6.19: Example of a Lisa activity specification, Part 1: header with service declaration,

slot declaration, conditions, and main body (activity ComeAgain from OMDIP2)

188

Realization of a Conversational Behavior Generation Framework

games

game

name: comeAgainSpec

gameType: comeAgainGame

states

state

name: s2

body

setSlot(slotName: lastNotUnderstood,

getABoxObject(name: lastNotUnderstood)

select

template

conditions

condition

slotEqualsSlot(slotName: lastNotUnderstood,

slotName: consumedAct)

body() <!-- same as last time, do nothing -->

template

conditions() <!-- reset counter -->

body

replaceSlotAtPath(pathToSlot:notUnderstoodCounter:has_name,

slotValue: counter)

assertObject(name: lastNotUnderstood, slotValue: consumedAct)

select

template

conditions

condition

slotIsSet(slotName: content)

body

addSlotAtPath(pathToSlot: comeAgainContent:has_content,

slotValue: content

template

conditions()

body()

addSlotAtPath(pathToSlot: comeAgainContent:has_count,

getABoxObject(name: notUnderstoodCounter:has_name))

setParameter(name: addressee, string: GUIGen)

setParameter(name: content, slotValue: comeAgainContent)

increment(slotName: counter)

replaceSlotAtPath (pathToSlot: notUnderstoodCounter:has_name,

slotValue: counter)

[...]

Figure 6.20: Example of a Lisa activity specification, Part 2: dialogue game specification

(activity ComeAgain from OMDIP2)

189

Realization of a Conversational Behavior Generation Framework

commands under the body tag. Only a body for state s2 is given, since no other states require

action. The operational semantics of the Lisa language constructs are given in Appendix A. We

will not explain s2’s body in detail, but mention that the getABoxObject and assertObject state-

ments retrieve resp. store object instances in the ontology under a given name. The overall

effect of the procedural body can be stated as: “if the consumed act is different from the one

stored in lastNotUnderstood, reset the counter. Store the consumed act in lastNotUnderstood.

If there are semantic fragments in the consumed act, copy them to the comeAgainContent slot.

Finally, set the parameter content for the next dialogue act to the value of comeAgainContent

and increment the counter”.

6.4.3 The Lisa Interpreter

The Lisa plans, which are XML documents, are executed by creating a LisaProcess object that

uses an execution stack, a stack of bindings and an interpreter-parser for body code blocks

(cf. Figure 6.20). Its mode of execution is similar to a SAX parser traversing a document.

Therefore, the implementation makes use of a subclass of SAXBuilder (from the JDOM li-

brary) for the traversal. Lisa is an imperative language and features all necessary constructs

(statements, values, assignments, recursion and control structures like conditional execution

and loops). Via channel communication, it is possible to integrate external programs written

in Java or any language (like a planner module).

When using the framework to build an application that involves a large number of concurrent

communicative agents, it would be advantageous to alternatively compile Lisa programs to

Java code snippets loaded at run-time to gain some speed improvement. Such an approach

was described by, e. g., (Mateas, 2002) for the ABL language. However, with the low number

of characters present in our scenarios (not more than four), the speed of the SAXBuilder-based

implementation did not pose a problem.

It is also the case that the speed improvement attainable by a compilation to “native” Java

code can only amount to a minor time constant per statement. Lisa is a high-level language;

one Lisa statement can correspond to several dozen lines of java methods. For each statement

that is executed by the interpreter, the performance loss from interpretation is only the time

it takes to read the next node in an XML document and make a callback to a corresponding

Java method in the LisaProcess class that implements the statement.

6.4.4 Lisa Language Elements

Lisa executable bodies feature three different types of language constructs (a full reference

overview to Lisa’s language elements can be found in Appendix A)

• Statements:

These comprise mainly commands manipulating slot contents and the ontology, like

assertABoxObject, or the local slots, like setSlot or replaceSlotAtPath. Also, relations be-

tween objects can be created and manipulated by createRelation and assert statements.

Loop constructs can be used to iterate over blocks of statements until a condition evalu-

ates to false. Select statements allow conditional execution of code blocks. The nextState

190

Realization of a Conversational Behavior Generation Framework

statement can be used to select one of several possible followup states of the game. A

subgoal can be triggered by the subgoal statement that can be parameterized either to

suspend the current goal until the subgoal has completed, or let both run concurrently.

If the current goal suspends for a subgoal, it receives the local slot values of the subgoal

at its completion in a data structure called binding that is named after the subgoal.

Several statements are put as children in a body statement to be executed sequentially.

• Rvalues:

Rvalues are expressions that compute a value of type instance or String that can be as-

signed to slots or act as parameters for statements or conditions. They can use values as

literals (value, string), from the local slot binding (slotValue), a binding from a subgoal

(bindingValue) or the ontology (getABoxObject).

• Conditions:

These are expressions that compute a boolean value for use in conditional statements

such as loop and select. They can test for conditions between one or several slots

(slotHasValue, slotIsSet, slotEqualsSlot) or whether a relation holds for a tuple of ob-

ject instances in the ontology (holds).

When an activity specified by a Lisa plan is adopted as a goal, the CDE process manager

starts a new LisaProcess that interprets the plan. It starts by registering the services that are

not auto-registering with the process manager, initializes the plans’ slot definitions, and then

starts executing the main body. The process continues to run until its main body has been

executed. If the activity is triggered by a service match, the main body is executed (if it is not

already running), followed by the corresponding game specification.

When executing a game specification, transitions are made according to the algorithm in

Figure 6.17, waiting for input if no transition is applicable. As the states are entered, the

corresponding Lisa bodies are executed. The set of statements, rvalues and conditions in

Lisa can be extended by implementing new keywords for either in the core framework, or in

plugin classes that can be added dynamically.

6.5 Using Planning to Schedule Activities and Games

6.5.1 Motivation and Applicability

In Section 2.5.1.2, we already questioned the adequacy of a fully plan-based approach to

dialogue management. During the development of the VirtualHuman system, we concluded

that the characters would not be able to sensibly plan several moves ahead on the dialogue

game level, i. e., as far as the next utterances in the conversation were concerned. For one,

the set of sensible replies to an utterance in a game is generally small and to a large extent

determined by the circumstances (this also fits with the perception of Hulstijn of dialogue

games to essentially be small precompiled joint plans (Hulstijn, 2000a)). On the other hand,

there are several ways in which responses from other participants can change the interaction

by unexpected moves outside a current game, e. g., by opening an entirely different topic; but

since these responses are a priori not expected, it would not make much sense to plan for

191

Realization of a Conversational Behavior Generation Framework

all such contingencies beforehand. However, the task level seems much more promising for

a planning approach. Also, planning ability would be a valuable addition to the deliberation

capabilities of the virtual characters.

In VirtualHuman, the planning of the task—or rather, story—progression is managed by the

narration engine module. It, however, features a deliberative task that uses planning, namely

giving hints to the human player on how to improve the football player lineup in the second

phase of the game. The expert character achieves this by computing a sequence of moves that

transforms the current lineup to an optimal lineup retrieved from its own knowledge base;

here, the plan operators are the possible moves on the football field (placing, removing, and

exchanging players). For this, an interface to an external planner was added to the framework

(see Section 6.5.3) that was first accessible through setting a goal for a HardcodedProcess and

subsequently integrated into the Lisa language.

In the task-oriented OMDIP system, the planning mechanism was used to plan the task level

of the interaction. The Clue system also uses task level planning, and additionally manages

complex coordination of physical actions, e. g., way planning for moving characters, using the

planner.

6.5.2 Contingencies

The fact that activities, dialogue games and actions have preconditions and postconditions can

be put to use by treating them as operators in a planning algorithm that devises the sequence

of games necessary to arrive at a desired world state. However, since the postconditions

express only an expectation with respect to what will be the result of executing the game

(after all, in the general case cooperation from conversation partners will be required), it is

necessary to assess whether the plan’s causal links actually hold after each step.

Therefore, a plan for conversation contributions can fail, since there are other interlocutors

involved, who might not play along as planned. The definition of an activity states that

postconditions are not guaranteed to hold after the execution, but only expected. During

the interaction, unexpected results can occur because the other conversation participants are

genuinely non-cooperative, but it is also possible that a commitment to cooperate can make

it necessary to disrupt a plan, e. g. because an addressee could not understand an utterance

and has to ask again, or interrupts to get more information, etc. Therefore it is crucial to do

execution monitoring to determine whether everything goes as planned. In planning, there

are two main approaches to this problem (Russell and Norvig, 1995):

• Contingency planning tries to account for every possible situation that could arise, and

constructs different alternative paths through a plan. During execution, the agent needs

to find out what path to select by sensing the actual conditions.

• Execution monitoring detects when conditions necessary to continue the course of action

do not hold anymore, and revises or reconstructs the plan accordingly. Contrary to

contingency planning, dealing with contingencies is deferred until they arise during

execution.

Contingency planning including all possible conditions has disadvantages when the set of

conditions is large, because then the plan has to include many alternatives and can become

192

Realization of a Conversational Behavior Generation Framework

exponentially large. If the likelihood for some outcomes is much larger than for others,

the agent might be better off to plan for the general case and repair if and when a more

infrequent situation arises. For example, if the system asks for the name of a human user,

it can be assumed that the user is cooperative and supplies it; if the user refuses to give her

name, this can be dealt with as a special case.

6.5.3 Realization

To keep the mechanism as flexible as possible, we aimed for a standard planning interface that

allows the framework to utilize different external planners. An accepted standard language

for defining planning problems is PDDL (Planning domain description language), which is

used for problem specification in planning contests, e. g., the International Planning Com-

petition.9 PDDL can be used to specify domains, plan operators and an associated planning

problem and is available in several versions from the original PDDL 1.0 (Ghallab et al., 1998)

to the most recent version 3.0 (Gerevini and Long, 2005). Newer versions add features like

temporal and resource constraints to the original language, however, most planners support

mainly the STRIPS language subset of PDDL.

Via the interface, the JSHOP2 planner was integrated, which is a Java-based adaptation of

the SHOP2 planner. It uses a hierarchical task network (HTN) approach (Nau et al., 1998,

2003).10 The planner is sent a world description, method and operator descriptions and a

goal description in the form of ontological objects and returns a plan for action that can be

in terms of activities, games, or single actions. The bulk of the integration work, and the

additional implementation of an execution-monitoring process in the framework, was carried

out by a research assistant (Gholamsaghaee, 2006) and is not in the scope of this thesis.

6.6 Summary

In this chapter, we described the implementation of the CDE framework to realize our conver-

sational model. The framework is designed to offer high flexibility with regard to the system

it is used to implement. The overall size of the core framework implementation, including the

GUI components, is approximately 40000 lines of code; the auxiliary classes (e. g., channels)

needed for the applications described in the next chapter together amount to another about

15000 lines of code. The computation times of the module are heavily dependent on the

particular application and its complexity; however, it generally ranges below one second in

all described application instances.11

The chapter shows how the framework can be configured by the dialogue designer to create

a scenario. We then describe the internal structure of a CDE and the graphical interface that

allows to monitor characters in real time. The following section is about how a narration

9The International Planning Competition is held bi-annually at the Artificial Intelligence Planning and Schedul-

ing conference series.
10HTN planning was used for character behavior planning in other systems, see, e. g., (Cavazza et al., 2002).
11Note that computation time may be different from the actual time until a response. In VirtualHuman, re-

actions are artificially delayed since near-instantaneous responses from virtual characters would be perceived as

unrealistic by the user.

193

Realization of a Conversational Behavior Generation Framework

engine can direct a scenario by setting goals an receiving feedback. A section explained the

role of expectations in dialogue games. We describe how processes for the activities are

implemented.

We give a motivation for the Lisa language, developed for the declarative specification of

activities. The structure of a Lisa plan, its interpretation and the elements of Lisa follows. The

next section is concerned with the possibility and use for planning and the integration of an

external planner that can be used to aid deliberation for the characters as well as devising

the course of action on the task level. In the following chapter, we examine cases where the

framework was employed to realize several working systems of differing size and complexity.

194

Chapter 7

Applications Implemented Using the

Behavior Generation Framework

7.1 Introduction

A framework begins to show its real qualities and shortcomings when it is used to imple-

ment an actual system. A dialogue system designer may realize a framework that copes with

some phenomena in a detailed and theoretically sound fashion, but end up with a system that

is only able to handle “toy worlds” because the knowledge engineering task is too complex

to handle for larger domains, the inference mechanisms do not scale well enough, or the

whole system cannot handle the real-time requirements necessary to provide the users with

a smooth interaction experience. Also, for researchers there is the danger of suffering from

“institutional blindness”: persons who know a system inside out tend to overlook shortcom-

ings that would quickly be discovered by untrained users. Therefore, it is beneficial to get a

system out “in the open” as early as possible to be able to get external feedback.

The viability of the CDE framework was shown by using it to implement the dialogue man-

agement component of several different multimodal systems, each of which has a different

setup, requirements, and scale. In this chapter, we describe how the dialogue management

components of the multi-party VirtualHuman system, the task-oriented OMDIP system, and

the multi-character performance Clue were realized with the framework. VirtualHuman is

described most comprehensively, since it is the most complex system and uses most of the

features of the framework. For the other systems, we give shorter descriptions and highlight

the features that are unique to them.

As already mentioned, the interaction language is German for all systems that we describe

here. Dialogue fragments cited in the text are translated to English, while text that appears

on screenshots of system outputs remains in German; however, this should not pose any

understanding problems.

195

Applications Implemented Using the Behavior Generation Framework

7.2 VirtualHuman

In the course of this thesis, many features of the VirtualHuman system have already been

presented. We previously gave an outline of the scenario of the football quiz and the lineup

game in Section 1.4 of the introduction, and instances of interactions occurred throughout

Chapter 5.. Therefore, we restrict the treatment in this chapter to the special modules and

their relation to the dialogue manager, and the overall configuration of the system.

7.2.1 Configuration

VirtualHuman runs on three networked Pentium IV computers. A communication software

InfoRouter acts as a multi-blackboard message system similar to SmartKom’s MultiPlatform

(Herzog et al., 2003): modules can publish output messages of certain types, and subscribe

to receive input message types.

Affect
Engine

FADE

Conversation

Multimodal
Generator

CDE

ManagerdirectionML playerMLEngine
Narration

3D Player
Avalon

Dialog

Multimodal
Recognizers

Scheduler
Action Encoder /

Knowledge base
Ontology

Activity Specifications
Quiz Materials

Figure 7.1: The modules in VirtualHuman

The system features two separate speech recognizers (one for each human user) with con-

figurable language models, a narration engine module, a FADE discourse modeler module,

a conversation manager realized with our framework, an ALMA affect engine to model the

emotional state of the characters, a scheduler called action encoder, and the Avalon 3D player

196

Applications Implemented Using the Behavior Generation Framework

that renders the animated scene on a selection of available visualization platforms, e. g., a

computer monitor or a 3D projection (cf. Figure 7.1). For user input, there are two tables

with mounted microphones and a trackball control (see Figure 1.1 on page 6).

The software configuration related to the dialogue manager comprises several XML files and

the ontology. In addition to the configuration resources described in Section 6.2.3, VirtualHu-

man requires a scene definition. This is a hierarchical XML structure that contains sub-sections

defining the different characters (including gestures, TTS voices, etc.) and the description

of the physical scene also needed by the player module. Upon system startup, the dialogue

manager informs the player module about the contents of the scene definition. Two special

markup languages were developed in VirtualHuman. Communication with the narration en-

gine is done via directionML (cf. Section 6.3.1.1), and player output and player feedback

messages are encoded in the scene language playerML (also called PML) that is also used for

the scene definition (Knöpfle and Jung, 2006). Some parts of the system can also be dynam-

ically configured, i. e., during runtime, by using a GUI interface to the narration engine to

let the director character issue commands to other characters, and the system (see Section

7.2.2).

Each character has access to the same ontology. Initially, it was planned to provide each

character with its own private version of an ontology, allowing knowledge differing between,

e. g., an expert or the moderator. However, the effort of maintaining and developing multiple

large ontologies during implementation proved too immense to be handled.1 To encode

different knowledge bases in a single ontology file, we introduced the “Traits” concept to

mark instances to belong to some characters only, e. g., detailed knowledge about the players

in the German football team is only available to the expert characters.2. There are three types

of CDEs in the VirtualHuman system: Character CDEs, and two kinds of proxy CDEs for users

and the narration engine.

7.2.2 Narrative Mode and the Director CDE

The external narration engine module uses an automaton-based approach to set the story

goals for the virtual characters while the framework is running in Narrative Mode. Via the

goal feedback mechanism, it can adapt the story to what actually happens during the inter-

action. In the VirtualHuman system, we experimented with two different narration engine

versions, one provided by ZGDV (Göbel et al., 2007) and one developed in-house as an ex-

tension to the framework. Both engines use the same control protocol; we use the in-house

engine as an example here.

The combination of internal motivation and external narrative control produces semi-auto-

nomous behavior from the characters. The main storyline is determined by the narration

module making use of information about the dialogue progress. For example, in Phase 1, the

selection of quiz videos is influenced by the performance of the human user. If neither user

manages to answer the initial question, the narration engine will decide to tone down the

difficulty and subsequently select easier videos to provide a more rewarding experience for

the user.

1This issue is in our opinion an important area for future research (see Chapter 8).
2An instance with a has trait slot can only be used by characters that are defined to have this trait (e. g., the

football expert has an “expert” trait)

197

Applications Implemented Using the Behavior Generation Framework

The succession of goals is also chosen in such a way that it is ensured that necessary conditions

for the continuation of the story are met. In the quiz stage, an extra question round is inserted

if there is a tie in points after the scheduled three rounds, giving no clear winner. If the tie

persists even after the additional round, the moderator picks a winner randomly, to prevent

the quiz from going on indefinitely. The moderator also comments these decisions to explain

and justify them, as in the following example:

MODERATOR: We have a tie, therefore we will do another round.

. . . (an additional round is played, but the players still have equal

scores afterwards)

MODERATOR: Regrettably, there still is a tie [shrugs]. Since we do not have enough

time, I declare user one as the winner of phase one. We will now

continue with phase two.

The fact that the progress of the story is controlled by an external “director” module makes

the character agents themselves largely independent of (macro-)narrative concerns. They

only need the ability to come up with actions that accomplish their current “stage” directions.

Changing the story can then be achieved by adjusting the settings for the narration engine

only. To enable the narration engine to exert control over the state and progress of the story,

the goal feedback mechanism (see Section 6.3.1.2) is used. If a goal does not yield the desired

results that are needed to continue the story, the narration engine can try a different strategy.

Figure 7.2: Screenshot of the narration engine interface of VirtualHuman

198

Applications Implemented Using the Behavior Generation Framework

Figure 7.2 shows the part of the controller interface for the director CDE. It is adapted to the

possibilities of the narration engine. An operator can choose a set of parameters for a run

of VirtualHuman at run-time. In the top part of the GUI, an operator can select and send

narrative goals manually or switch between the external or built-in narration engine. Below,

some controls (“Narrative Modes”) allow to set story parameters that are helpful to tune the

story to different presentation situations. The verbosity of the story can be adjusted, e. g.,

the moderator can leave out the introductions of the experts and only give a brief version of

the explanations when the system is demonstrated repeatedly, and the human users already

know the setting. The timeouts for the lineup phase can also be configured, or parts of the

story can be left out if desired (e. g., the quiz phase can be skipped to directly start with the

lineup game), and the operator can select a specific opponent for the lineup phase, which

allows to adapt the performance to an imminent match in the real world. On the bottom, the

GUI protocols the goals sent to and the feedback received from the CDEs, and shows the state

of currently executed or finished goals.

During the development of VirtualHuman, the possibility to use the proxy CDE, via the inter-

face, to manually simulate the narration engine one step at a time, turned out to be a very

valuable tool for testing and debugging the system.

7.2.3 Character and User CDEs

The components associated with CharacterCDEs in VirtualHuman are shown in Figure 7.3 on

the left. The action encoder and the multimodal generator, which are necessary to annotate

outgoing dialogue acts with scheduling information and producing surface utterances from

semantical representations respectively, were tightly integrated by extending the CDE java

class. Discourse history and multimodal fusion are handled by the FADE module, which was

also embedded. Additionally, the character CDEs are interacting closely with the affect engine

ALMA and the narration engine.

The UserCDE extensions of the CDE class incorporate the gesture and speech recognition and

interpretation modules, FADE, and no dialogue engine. A user CDE can be disabled by the

narration engine without removing it from the scene; this is used when the second expert

character is excluded from the second phase.

Like with the director CDE, the GUI interfaces to the character and user CDEs proved very

valuable for testing and debugging purposes. The internal knowledge state of the characters

can be examined on-line while the system is running, and it is possible to enter speech recog-

nition results directly into the GUI, thereby testing the reaction of the dialogue subsystem,

including FADE, without requiring any other modules to be on-line (the latter functionality

was implemented by Norbert Pfleger).

7.2.4 Realization Scheduling

The passing of communicative action in the abstract representation takes very little time. On

the other hand, the user-perceivable actions realized in the environment take much more time

to complete. One reason for this is that there are delays to produce the final output (e. g.,

text-to-speech processing). Additionally, the actions themselves have a duration. Depending

199

Applications Implemented Using the Behavior Generation Framework

Engine
Affect

Recognition

Human
User

perceived actions of other CDEs

User CDECharacter CDE

FADE FADE

NLUGesture
Analysis

Recognition
SpeechGesture

Dispatcher Dispatcher

Encoder
Action

Multimodal
Generator

3D Player
Avalon

State
World

CDE
Controller

goals and goal feedback disabling

Narration
Engine

(via director
CDE)

Activity
Manager

Game
Executor

Figure 7.3: Associated components of character CDEs (left) and user CDEs (right) in Virtual-

Human. Dashed lines indicate translations to external message formats

on the kind of action and other factors (such as cognitive load), the user needs some time to

perceive at least some part of the action to understand its meaning. In the case of a gesture,

e. g. a pointing gesture that takes one or two seconds, understanding is usually established

quickly. In the case of spoken utterances, it is possible that the meaning is understood before

the utterance is completely realized; however, if the meaning is complex, it can also be that

the user needs extra time to think even after the realization is finished.

In the VirtualHuman system, the virtual characters can process dialogue acts in very little time.

However, if the acts were delivered to them only after completion, they would not be able

to react early to actions that conceivably do not need full realization to be be appraised. We

added realization scheduling to give the interaction a more natural feel. It uses a heuristic that

sends messages containing gesture information immediately after they begin to be rendered.

Spoken utterances are sent to the overhearers after two thirds of the time they take to be

completed.3 The realization times are extracted from an action schedule that is computed by

the action encoder (Klesen and Gebhard, 2007).

The effect of this is illustrated in Figure 7.4. It shows overlapping acts in a conversation

between the moderator and an expert character. The moderator announces a move to “put

(the football player) Ballack in the midfield”. This statement is delivered to and understood

by the expert before it is completely realized in the environment. The expert processes this

3This fraction is a heuristic value obtained by experimentation to determine plausible behavior.

200

Applications Implemented Using the Behavior Generation Framework

Affirmative
Gesture

Moderator

Expert
processing

Turn−Grabbing
Gesture

silence

hesitation

time

"Ok Ballack into the central midfield"

"That’s where his strength is"

Figure 7.4: Realization time points of overlapping acts. The filled boxes indicate the duration

of the realization of an act, the arrows the point in time when the controller passes the act on

to the receivers.

dialogue act and, still before its complete realization, decides to comment on the move.

However, the expert is not immediately allowed to speak, since she does not hold the floor

while the moderator is still talking. Before an act is sent, the framework calls the floor-

management subroutine in FADE which generates a turn-grabbing gesture if the turn has not

been released (e. g. raising an arm, cf. Figure 7.5). This occurs in parallel to the ongoing

utterance by the moderator, and tries again after some time. When the expert eventually gets

the turn, she can proceed to utter her comment. If the turn-grabbing does not succeed after

several tries, the character may decide to abandon her intention to comment. The realization

scheduling mechanism was more thoroughly described in (Löckelt and Pfleger, 2006).

7.2.5 Affective Modeling in Cooperation with ALMA

The ontology of VirtualHuman defines the concept CharacterModel, a subconcept of Partici-

pantModel, whose instances can hold individual traits for virtual and human dialogue parti-

cipants, and attributes describing their current affective state. In addition to being loaded as

static members of the ontology, they can be dynamically updated during the interaction.

The selection of roles in this concept, shown in figure 7.6, matches the character updates sent

by the affect engine ALMA (“A Layered Model of Affect”, (Gebhard, 2007)) that continuously

computes a dynamic emotional state for all characters based on weighted affective events

combined with general preconfigured personality traits for the characters and periodically

informs the dialogue manager about the current mood and the dominant emotion of a char-

acter. The emotional state depends on the social relations between the characters, as well on

the events that happen in the environment. The personalities of the characters are described

in terms of a psychological model using the “big five” characteristics describing a personality

in terms of a combination of openness, conscientiousness, extraversion, agreeableness, and

neuroticism (Gebhard, 2005; John and Srivastava, 1999).

In addition to the affect attributes, a CharacterModel also contains an account for the (static)

201

Applications Implemented Using the Behavior Generation Framework

Figure 7.5: The expert (on the right) trying to grab the turn while the moderator is speaking

personality parameters and possibly multiple Trait instances that endow the character with

additional “attitudes” such as, e. g., talkativeness; this is an easy way to make a character’s

behavior configurable by simply changing a the character model instance in the ontology.

To infer the current mood and the dominant emotion of the character, the affect engine needs

to be notified of events and their affective impact. During the dialogue, the dialog manager

generates affective events that match the content of the utterances and update ALMA accord-

ingly. There are events that are generated in the executable body of an activity state (e. g., an

expert reacts positively if the user asks her for advice) or from annotations in dialogue acts

from the ontology. An example for the latter is a remark from an expert like

EXPERT HERZOG: Mister Kaiser has no idea what he is talking about [GoodActSelf 1.0].

When this utterance is generated, the GoodActSelf tag is extracted and sent as a message to

ALMA, along with the numerical weight indicating the strength of the affective action. On the

other hand, when Expert Kaiser perceives the utterance, he himself will send a corresponding

event BadActOther to the affect engine.

If the affective state changes, the dialogue manager in turn receives asynchronous messages

from the affect engine ALMA that update the character models of the respective CDEs. ALMA

also parameterizes the appearance of the character player, e. g., by changing its idle gestures

and facial expression, as shown in Figure 7.7. This in turn can influence the behavior of

the characters. In the example, the ALMA will send a new state for Expert Herzog reflecting

her boosted self-esteem, and one to Expert Kaiser that expresses that he is now angry. In

the simplest case, the ontology provides alternative versions of utterances annotated with

Trait instances corresponding to different moods and personality traits of the character. The

character model can also be employed directly in conditions to influence decisions, e. g., a

character may refuse an answer because it does not like the character that posed the question,

or simply because it is in a bad mood.

202

Applications Implemented Using the Behavior Generation Framework

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

CharacterModel

HAS INTELLIGENCE Integer

HAS OPENNESS Integer

HAS CONSCIENTIOUSNESS Integer

HAS EXTRAVERSION Integer

HAS AGREEABLENESS Integer

HAS NEUROTICISM Integer

HAS DOMINANCE Integer

HAS AROUSAL Integer

HAS PLEASURE Integer

HAS MOODWORD String

HAS MOODINTENSITY Integer

HAS DOMINANTEMOTION String

HAS DOMINANTEMOTIONVALUE Integer

HAS TRAIT* Trait

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 7.6: The CharacterModel concept

Figure 7.7: Different affective states: (left) Miss Herzog changing from “happy” to “disap-

pointed” facial expression; (right) Mister Kaiser changing from “relaxed” to “docile” body

posture.

7.2.6 The Game Logic for the Lineup Game

In phase two of the quiz, an additional process implements a game logic that produces eval-

uations of the current team lineup and can generate proposals for moves. It is implemented

as a singleton object and is shared between the moderator and the expert character. How-

ever, it produces different evaluations based on the traits of the character requesting them

(the expert is more conservative than the moderator and prefers more defensive teams). The

evaluation is based on the ontological descriptions of the players, and the opponent the team

is to play against. The game logic can be viewed as an external application that can serve

requests by the characters.

• Move Scores

Opponent teams are represented in the ontology together with a rating of aggressive,

203

Applications Implemented Using the Behavior Generation Framework

defensive, conservative or robust. The FootballPlayer concept includes scores for different

football-related aspects, like fitness and preferred side to play on.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Striker

HAS FIRSTNAME Miroslav

HAS LASTNAME Klose

HAS DUELSKILL 77

HAS FITNESS 92

HAS HEADERSKILL 93

HAS SHOTSKILL 83

HAS TECHNIQUE 81

HAS SIDE center

HAS PREFERREDFOOT right

. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 7.8: A FootballPlayer instance from the VirtualHuman ontology

FootballPlayer also has the subconcepts of Defender, Midfielder, Striker and Goalkeeper

(part of a sample instance is shown in Figure 7.8). In combination, the exact ontological

class of the player, the ability scores, and the preferred strategy against the opponent

determine how a player is rated at a particular position. Move scores are different

for the moderator and the expert: the moderator is more cautious than the expert. For

example, the moderator has a “cautious” personality and prefers a robust strategy (more

defenders) against an aggressive opponent team, while the expert will also counter with

an aggressive strategy (more strikers).

• Proposing Moves

The game logic assembles an “ideal” team given the knowledge of the female expert

and the opponent team. If the expert is asked to propose a move during the lineup

game, the game logic assumes the current team consisting of players set by the user

as an initial world state and the ideal team as a goal world state and computes a plan

consisting of the moves that would be necessary to transform the current team to the

ideal team. The first move of this plan is proposed to the user.

The proposal by the expert is overheard by the moderator character, and if the user

agrees, FADE can resolve the reference to the proposed move, and the moderator can

immediately execute the move (cf. turns (3)-(8) in the the example of Section 5.7.2,

page 154). The moderator then updates the score. Because of the different personalities

of moderator and expert, it can happen that a move proposed by the expert does not

get a good score from the moderator.

7.2.7 Dynamic Help and Explanations

During the narrative, an auxiliary process offering the service of Dynamic Help is continuously

running as a background process in the moderator’s CDE. It engages in dialogue games that

start with requests of the user for instructions, such as “What can I do here?”. If the user

makes such a request, the process determines the game phase by examining the moderator’s

other running processes. It then looks in the ontology for instances of type ActivityProcess

204

Applications Implemented Using the Behavior Generation Framework

Do you have a suggestion,

I would recommend putting

Owomoyela in the Midfield.

Miss Herzog?

Ok, let’s do it.

Ok, Owomoyela as a

midfielder − interesting.

expert to be heard.

It is always nice for an

Figure 7.9: Requesting and accepting a move proposal by the expert

205

Applications Implemented Using the Behavior Generation Framework

that have available affordances of type Explanation containing a canned help text. If such an

affordance is found, the user is given this explanation. Explanation affordances are present

for most activities in the VirtualHuman scenario. A possible dynamic help instance would be

(1) USER: What can I do?

(2) MODERATOR: You might ask Mrs Herzog for her opinion. She knows most

players personally.

Explanations are also generated from other attributes of the objects. If the user asks the

female expert about her opinion of a particular football player, she uses the most specific type

the player belongs to (which could be one of Goalkeeper, Striker, and so on) and information

stored in the instance representing the player, which can include, e. g., the preferred foot,

the side the player prefers, or various fitness values. For additional atmospheric value, the

instance in some cases contains additional comments of stereotypical football expert talk.

From this, the expert constructs a comment like

(1) USER: What do you think of Huth?

(2) EXPERT: Robert Huth normally plays as a defender and prefers the right

foot. He is not very fast, but nevertheless difficult to overcome. I

would place him in a central position.

Another possible use of annotated objects used in the first prototype enabled the construction

of an explanation of the game in variable level of detail. For this, the annotations in the

objects to be explained were given causal links that connected the object to be explained with

other objects that could be used to elaborate on the explanation.

7.2.8 Timeout Reactions

To keep the flow of the quiz and lineup games going, the moderator character also has the role

to incite hesitant users to contribute to the interaction. If a user remains silent for too long,

the moderator CDE will switch to an uneasy affective state and either produce encouraging

remarks (as exemplified in, e. g., move (11) of Figure 1.5 on page 9) , or autonomously

suggest actions to the user. Since the second game phase has a time limit for the duration

of the lineup assembly, the moderator keeps track of its progress and will announce when,

e. g., half the time is up, or the game is soon to end. The time limit is set dynamically by

the narration engine, and the moderator will also signal longer phases of user inaction to the

narration engine. VirtualHuman can be configured to suppress the moderator’s autonomous

suggestions and leave it up to the narration engine to trigger appropriate actions explicitly.

7.3 OMDIP and Clue

7.3.1 OMDIP

OMDIP is a prototype for a small, task-oriented multimodal system that allows a single user

to interact with a web-based application from a handheld device. There were two phases of

the project is with different underlying application scenarios.

206

Applications Implemented Using the Behavior Generation Framework

Figure 7.10: The OMDIP device and some sample screens from the application (in German)

The first scenario allows the user to purchase soundlogos for a phone,4 the second, some-

what more complex scenario is about composing a musical greeting message, i. e., a spoken

recorded audio accompanied by a musical background, e. g., an up-to-date chart song. The

user can use combined speech and stylus input to order and configure soundlogos for mobile

phones and compose musical greeting messages via a multimodal user interface. The hand-

held device communicates with a server application logic that provides the dynamic data;

the graphical presentations are rendered as Java Server Pages (JSP) in Internet Explorer (see

Figure 7.10). Overall, the application comprises nine different screens; in principle, the user

can move more or less freely between the screens, although there are restrictions conditional

on the task state.

The system uses the IHUB communication infrastructure that has been adapted from the

SmartWeb project (cf. Section 3.2.8). Its component modules and their relations are shown

in Figure 7.11. OMDIP, too, is based on a full ontological domain modeling. As the base

ontology, the SmartWeb ontology (Sonntag and Romanelli, 2006) was used, which already

includes an comprehensive coverage of concepts for the representation of different media

types, including musical items. It was extended with additional concepts of additional do-

main knowledge and the task knowledge needed for the required activity types. The dialogue

management branch of the VirtualHuman ontology was merged with this base ontology, mak-

ing the interaction with the CDE framework possible.

Even though OMDIP does not realize true multi-party dialogue, the human user and the

system itself are represented by one CDE each, and the system could easily be extended to

support multiple users, or more than one system agent. The activity specifications for OMDIP

were written exclusively in the Lisa language. The system comprises 13 activity types, which

register 88 services in total. The activities in OMDIP are annotated with preconditions and

postconditions to make them usable as plan operators. The system uses the JSHOP2 planner

interface created during the Clue project (see next section) to dynamically plan the activity

sequence.

The selection of available background songs is delivered dynamically from the external

database. This way, the system can, e. g., feature up-to-date music charts. Since the mu-

sical pieces can be identified by the user via speech, the ASR language model is updated with

dynamical lexicon updates via the expectation mechanism each time a song list is retrieved.

OMDIP acts as a front-end between the user and an external web application. The dialogue

4A soundlogo is an audio snippet that is played for the caller as a replacement for a signal tone.

207

Applications Implemented Using the Behavior Generation Framework

OMDIP Core Dialogue System

Interpretation
Speech

ASR

JSP

Display

Microphone

Stylus

Speaker TTS

GUI
Generator

FADE

Manager

Speech
Generator

JSHOP2
Planner

External
Database

Function
Modeler

External
Devices

Conversation

Figure 7.11: The OMDIP architecture

agent communicates with a function modeller using dialogue games implementing the ap-

plication protocols. Most of them are Request-Response games where the system takes the

initiative, but there also are some cases where the application takes the initiative to, e. g.,

asynchronously Inform the system about the completion of an operation.

7.3.2 Clue

The Clue system uses the CDE framework to stage a performance with multiple virtual char-

acters in a mystery game setting modeled after the well-known board game Cluedo.5 It was

realized as an advanced programming project by three participating students. The CDE frame-

work is coupled with a narration engine and a 3D player that was specificially developed for

the project. Clue does not feature user interaction (apart from the possibility to move, zoom

and rotate the player view).

Each student was assigned one of three largely independent subtasks for the project: (1) de-

signing and encoding the story flow and implementing a narration engine, (2) interfacing the

JSHOP2 planner to the framework, and specifying the planning knowledge sources, and (3)

developing an XML-controllable real-time 3D player including the modeling of the characters

and objects, and combining it with the existing Mary TTS system (Schröder and Trouvain,

2003) for speech output. The base ontology was VirtualHuman’s; the students with the tasks

5Incidentally, the board game has also been renamed “Clue” in the United States, and there also is a Cluedo-

based computer game of the same name.

208

Applications Implemented Using the Behavior Generation Framework

Narration
Engine

CDE
Director

CDE
Controller

Character
CDE

Character
CDE

3D

Player

Character
CDE

Character
CDE

directionML

Conversation Manager

playerML

Figure 7.12: Screenshots from Clue with some trace messages (German realizations of the

utterances included); Clue’s module setup

(1) and (2) jointly extended it to include the necessary domain and task knowledge. Figure

7.12 shows two screenshots from a Clue performance and the setup of the system. Clue runs

in Narrative Mode. Its narration engine is, unlike the one in VirtualHuman, not realized as a

separate module, but was integrated into the director CDE. The narration engine in Clue uses

an approach based on a finite state automaton whose transitions are conditional on the goal

feedback messages from the characters.

The physical environment consists of four interconnected rooms (kitchen, living room, bed-

chamber, and study) with various pieces of furniture. Possible murder weapons and other

evidence are hidden in various places in the scenario, including inside closed objects. The

yellow text in the upper left corner is a live protocol of the actions and utterances of the char-

acters (the utterances are made in German language). The goal of the (innocent) characters

is to cooperate to find the evidence and to combine it to be able to derive who is responsible

for the murder, and to determine the motive and the murder weapon. The murderer, unsur-

prisingly, has the opposing goal to hinder the solution of the mystery by hiding evidence and

209

Applications Implemented Using the Behavior Generation Framework

telling misleading stories.

The characters can be instructed to employ different strategies for solving the criminal case

that influence their preference between different actions. The searching strategy means that

the character prefers to wander through the surroundings to retrieve pieces of evidence. The

asking strategy inclines the character to ask others about what they know (what evidence

they have found, what they know about the other characters, and what their inferences are).

A commanding character gives instructions to others to e. g., go look for the murder weapons.

The characters also have different degrees of cooperativity, which determines their tendency

to answer or obey other characters. The design of the narrative component was further

described in (Nikolova, 2006).

The interfacing of the JSHOP2 planner to the CDE framework was part of the work done by

one of the students and re-used in OMDIP for planning on the task level, as mentioned in the

description of the OMDIP system. In Clue, planning was not restricted to the task level, rather

it was employed to devise the entirety of the character actions including physical actions.

In total, Clue features 21 operators for physical actions and 31 operators for communicative

actions. The details of the planner adaptation are described in (Gholamsaghaee, 2006).

7.4 Summary

This chapter described three dialogue system instances that were realized with the conver-

sational behavior generation framework: VirtualHuman, OMDIP, and Clue. The systems are

substantially different in scope, theme, and purpose, and each one has unique features that

had to be accounted for.

• VirtualHuman, the most complex example, is an interactive, multimodal, multi-party

storytelling system that uses the Narrative Mode of the framework to coordinate the

actions of three virtual characters with individual traits that interact with two human

users. The scenario requires solutions with respect to synchronizing turn-taking and

overlapping contributions, fast real-time reactions, cooperation with affective modeling

and story-introduced constraints like changing scenes with differing character combina-

tions and timeouts.

• OMDIP is a task-oriented system for one user that interacts via dynamically created JSP

pages on a web browser. The system interfaces via a function modeler with a database

backend that provides the content for the modeled task. Like the presentation mode,

the system infrastructure is quite different from VirtualHuman: For the knowledge base,

the SmartWeb ontology was re-used and adapted; the communication infrastructure

employs SmartWeb’s IHUB.

• Clue is a student project that demonstrates that the framework can be used, with some

training, by non-experts to create a small yet functional and nontrivial storytelling sys-

tem. It features multiple characters that, beyond communicative interaction, also use a

variety of physical actions to perform a story with several possible endings.

The selected systems demonstrate the expressive capabilities of the conversational behavior

generation model and the versatility of the implementing framework to adapt to a variation

of different task types and requirements.

210

Chapter 8

Conclusion

We have presented a way to model the knowledge base, a dialogue model for multimodal

and multi-party conversations with mixed virtual and human participants, and a framework

implementing the model. We then described how it these components are used to realize the

conversation manager for three dialogue systems that exhibit substantially different require-

ments, scale, and setup. The framework has been shown to be flexible enough to employ

different paradigms for devising action, including processes written in a general purpose

programming language, external planning algorithms, and action plans written in Lisa, an

extensible language for the special purpose of specification of dialogue activities.

8.1 Contributions

The contributions of this thesis comprise scientific results in the field of multimodal multi-

party conversation management, practical contributions in form of an implemented frame-

work and applications realized with it, and a number of publications that arose from the

research. The following sections gives an overview of these contributions.

8.1.1 Scientific Results

The main scientific results of this thesis are the following:

• Modelling sophisticated goal-oriented and cooperative multi-party conversation

A three-layered model of dialogue acts, dialogue games and activitites was proposed.

It describes joint conversational action by cooperating conversational dialogue engines

(CDEs) representing the participants of multi-party dialogue.

– The model achieves natural coordination of emergent multi-character interactions.

An arbitrary number of activities can be pursued in parallel and still interact with

each other.

– A mechanism and a protocol for Realization Scheduling was implemented that co-

ordinates the realization of interactions to appear more life-like.

211

Conclusion

– SmartKom’s expectation representation was adapted to the ontological modeling

and improved to describe more expressive templates for communicative actions in-

stead of expected slots. Using expectations, the conversation manager can provide

other modules with disambiguation help.

• Construction of an adequate knowledge base for modeling multi-party conversa-

tion

A comprehensive modeling of the knowledge resources for conversation management

was designed and realized in a standardized ontology format. With respect to the differ-

ent types of knowledge outlined in Section 4.2.2, the taxonomical ordering, world and

domain knowledge, this was joint work with the collegues responsible for other modu-

les in the systems, especially the FADE module, with which the conversation manager

shares a common representation. Here, the main contribution of this thesis is the mod-

eling of the conversation management branch of the ontology, which features concepts

relating to dialogue acts, dialogue game rules, and activities, and the task knowledge

for the different activities of the systems. The dialogue branch, originally created in the

VirtualHuman ontology, was shown to be sufficiently generalizable as it was transferred

and re-used in the OMDIP knowledge base derived from SmartWeb’s ontology.

• Specification of autonomous and semi-autonomous behavior of virtual characters

The behavior model of the virtual characters can exploit the full inferential power of the

ontological representation. It allows for independent autonomous conversational and

“physical” action for each character, or semi-autonomous action under the supervision

of an external module for narrative control. The characters also support dynamic affec-

tive modeling by an external module that can influence their behavioral choices. They

can pursue multiple independent or related goals in parallel.

– The character’s behavior specification can be specified in a wholly declarative fash-

ion. Dialogue acts and dialogue games reside entirely in the ontology, while acti-

vities additionally use plans specified in the Lisa language, or dynamically gener-

ated by an external planner module.

– The characters can act with regard to internal goals, external goals or a combi-

nation of both. The directionML protocol allows a fine-grained control of external

goals and feedback of their results.

• Providing a method for incremental construction of conversation specifications

The three-layer model uses a set of building blocks that is easily extendable and re-

usable across applications. The dialogue games from the existing applications provide a

solid base that can be enhanced either by extending existing or constructing new ones,

while activity specifications are largely application-specific.

– The development of a dialogue system can be done incrementally by adding one

activity at a time to a functional system.

– The system remains highly configurable, since behaviors are located in description

units that can be easily and independently added or removed.

212

Conclusion

• Allowing for multiple paradigms for activity specification

The behavior of the characters can be defined by explicit implementation in Java classes,

or by specifying it in the Lisa, a language that was designed for activity specification. In

addition, an external planner can be used on the task level.

– Although planning could also be used on the dialogue level (as was done in

SmartKom), we argue that this is neither very useful nor realistic, since the plan-

ning units are too small: in a typical conversation, it is simply not possible to plan

several moves ahead. This restriction does not impair planning on the task level.

– The process of designing Lisa was aided by analyzing activities written in Java

and identifying code patterns that frequently occurred, like manipulation of slots,

matching ontology content, and constructing utterances. Lisa’s language elements

correspond to such patterns, and the language remains extendable.

8.1.2 Practical Contributions

• Providing a framework that implements the conversational behavior generation

model

A unified, configurable and reusable behavior generation framework was provided that

can manage real-time interactions involving an arbitrary number of virtual characters

and human users. A conversation manager coordinates an individual conversational

dialogue engine for each participant. The framework allows for the flexible integration

of external modules and applications, and additional tools for testing and monitoring.

A generic process allows adaptation of PDDL-conformant planning algorithms to the

system. The procedural aspects of activities can be developed in a rapid-prototyping

fashion.

• Support for Narrative Mode

In addition to autonomous behavior generation, the framework is also capable of run-

ning in (semi-autonomous) Narrative Mode. In this configuration, story development

is directed by a dedicated external narration engine via fine-grained control of goals

for characters and character groups in combination with a feedback mechanism. This

control mechanism is made available via the directionML protocol.

• Evaluation by implementation and deployment of applications

The framework was evaluated in practice by putting it to use to implement and de-

ploy three multimodal conversation applications of varying domain scale from student-

project sized to very large, and of different thematical background.

– In case of the largest and most complex instance, VirtualHuman, it was the first

time that comprehensive ontological domain modelling for an application, mul-

tiple life-like characters communicating with multiple users in real-time, multidi-

mensional expressive modalities (speech, gestures, facial expression, body posture,

ability to interact physically with a virtual environment), as well as support for ex-

ternal affective modeling and dynamic narrative control were integrated in a single

system.

213

Conclusion

– OMDIP showed that the framework can also be used for developing a web-based

task-oriented system with ontological domain modeling, and that it is possible to

accommodate general-purpose ontologies originally developed for different sys-

tems and adaptable to other communication infrastructures.

– Clue is an example for a smaller scale project, and demonstrated that non-experts

(three students) could, with some training, re-use and utilize the conversation

manager and other resources from VirtualHuman to build a full-fledged, real-time

mystery narrative.

• Facilitating ontology access and manipulation

Efficiency issues in ontology manipulation with common RDF(S) libraries like Jena were

addressed by providing a lean interface, JenaLite, that lets the user access and modify

the ontology in terms of an intuitive, TFS-based API view and exhibits increased per-

formance. This comes at the price of sacrificing some of the features of RDF(S), which

however—in contrast to the improved real-time performance—were not required for

our task.

8.1.3 Publications

This section gives a list of the publications that resulted from the research for this thesis.

• Journals and Book Chapters

Parts of this work have been published in the book Smartkom: Foundations of Multi-

modal Dialogue Systems (Wahlster, 2006) (see (Löckelt, 2006)) and in the International

Journal of Virtual Reality (Löckelt et al., 2007). An extended version of (Pfleger and

Löckelt, 2006) is to appear as a chapter in the book Fusing Intelligence in Virtual Agents

(Jain, 2008).

• Conferences

Parts of this work have been presented at the following international conferences: Kon-

ferenz zur Verarbeitung natürlicher Sprache (KONVENS) (Löckelt, 2004), the Interna-

tional Conference on Virtual Storytelling (ICVS) (Löckelt, 2005), the International Con-

ference on Intelligent Virtual Agents (IVA) (Pfleger and Löckelt, 2006), the International

Conference on Intelligent Technologies for Interactive Entertainment (INTETAIN) (Löckelt

et al., 2005), the International Conference on Multimodal Interfaces (ICMI) (Reithinger

et al., 2003, 2006), the International Conference on Technologies for Interactive Digital

Storytelling and Entertainment (TIDSE) (Löckelt and Pfleger, 2006), the International

Conference on Virtual Storytelling (ICVS) (Kempe et al., 2005), and the European Con-

ference on Speech Communication and Technology (Interspeech/Eurospeech) (Pfleger and

Löckelt, 2005).

• Workshops

Parts of this work have been presented at the following international workshops: At the

workshop series Semantics and Pragmatics of Dialogue (Löckelt et al., 2002; Löckelt and

Pfleger, 2005), the IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue

214

Conclusion

Systems (Porzel et al., 2003), and the Workshop on Scalable Natural Language Under-

standing (ScaNaLu) (Alexandersson et al., 2004a).

8.2 Future Work

The model and framework can be utilized and extended to further improve multimodal multi-

party interaction. To conclude this thesis, we will briefly point out some interesting avenues

for further research:

• Multiple conversation thread management

An area where additional refinements would be especially beneficial is the manage-

ment of multiple conversations. The model and framework do not provide for flexible

and sophisticated task switching. While our approach does work adequately for the

applications that we have realized to date, it can run into problems for conversation ar-

rangements where different sub-conversation threads or entire goals need to be freely

and independently suspended, continued, and aborted.

• Character groups

In the current form, conversation participants can be addressed as groups either by ex-

plicitly enumerating them, or by way of underspecified ontology instances (e. g., Char-

acter instances that have an Expert trait, or instances of the subconcept User). However,

this mechanism leaves much to be desired for several reasons. The deficits include (but

are not limited to): (1) it is too dependent on the way the ontology is modeled, and

on the knowledge bases of the individual characters, (2) it does not support groups

that are heterogenous, or have internal individual group roles, and (3) while possible,

it is at best very awkward to form or break up dynamic groups (by manipulating the

knowledge bases of the characters, e. g., asserting and retracting ad-hoc traits).

• Advanced tool support for knowledge engineering

Knowledge engineering was still quite difficult and time-consuming with the tools that

were available. One reason for this is that general-purpose ontology editors do not

cater to the special needs of the kind of knowledge base we had to maintain. One

reason for this is that they tend to view ontologies as immutable data structures, while

the knowledge base of a virtual character can change dynamically. Another is lack of

graphical support for certain dependencies (e. g., the dialogue game graphs could not

be visually edited), automated validity checks of the knowledge base, and poor support

for entering large amounts of data. We also mentioned in Chapter 7 that given the

available tools, it is extremely cumbersome to keep differing but compatible knowledge

bases for several characters synchronized.

These points should not be mistaken as a criticism to mean that the available ontology

editors were incomplete or poorly implemented. Instead, we want to emphasize the

need for special-purpose tools, perhaps in the form of plugins for editors such as Protégé,

that can be adapted to support the particular needs of the designers of larger dialogue

system ontologies.

215

Conclusion

• Multiple-typed dialogue acts

Another issue that has not been addressed in the model is that the mapping of utterances

to dialogue acts can be ambiguous, or even multi-valued. We assume in this thesis that

the discourse modeler is able to assign a unique dialogue act type to any utterance,

which, however, is not always possible. A mechanism for handling such ambiguous or

multi-valued acts would be a useful extension of the model.

• Development and quality assurance tools

The setup can be exploited to allow automatical and semi-automatical testing of a de-

veloped system without additional external tools. This can be done by replacing user

CDEs with special character CDEs, which could be called testing CDEs, that are designed

to carry out the contributions of the user in dedicated use cases or by trying out pos-

sible interactions in some systematical fashion. The testing CDE(s) can also verify the

system’s reactions and produce appropriate conversation and error logs. Such a setup,

used in concert with unit testing on the lowest level, and integration testing on the

level of the system components, promises to be very useful to the dialogue designer in

developing and debugging a new system.

216

Appendix A

Lisa Specification

As described in Section 6.4, a plan defines an activity by specifying services offered by the

activity, slots that hold relevant data, a body for the activity and games that implement the

services.

Figure A.1: Toplevel structure of a Lisa plan

Figure A.1 shows the toplevel structure of a Lisa plan.1 It contains the name of the plan, a set

of services, a set of definitions for slots, preconditions and postconditions for the execution,

a body of Lisa statements that is executed once when the activity is started, and a set of

definitions of games. The name element is a simple string; the other elements are described

in more detail in the following sections.

If an error occurs during the execution of a Lisa plan, a RuntimeException is raised, which

terminates the currently running activity with a failure state.

1The syntax diagrams were created using the XSD schema design view of XML Spy 4.3 from Altova, Inc.

217

Lisa Specification

A.1 Service Elements

Figure A.2: XSD structure of service elements

A plan can have any number of service elements (see figure A.2). They describe services

provided by the plan, and specify which game (as defined in the games section of the Lisa

document) implements the service. The basic form of a service element is

service

name: <string>

usedGame

name: <string>

template

<some ontological structure>

The template is used to match an input structure using the best match strategy. If the template

is deemed a best match, the associated usedGame is executed.

A.2 Slot Definitions

Plans and bodies of code can have any number of slot definitions. These essentially define

local variables with a name and a type.

A slot definition (see figure A.3) looks like this:

slot

name: <string>

type: <string>

(

value ... |

slotValue ... |

bindingValue ... |

getABoxObject ... |

string: <string>

)

218

Lisa Specification

Figure A.3: XSD structure of a slot value specification

A.3 Value Specifications

A.3.1 Slots

The possibilities to assign a value are as follows (we refer to value specifications by the

<value> tag in the following sections).

• value: this directly gives an ontological object to be bound to the slot

• slotValue: the slot someName is set to the value of another slot. someName can also
be assigned a sub-value of the other slot. In this case, the sub-value is determined by
specifying a slot path after the name of the second slot. Example:

slot

name: a

type: t

slotValue: b:has_x:has_y

assigns the value of the role has y of the object in the role has x of the slot b to a.

• bindingValue: The source of the value in this case comes from another named binding.
After a sub-game g is completed, its binding is available to the parent process under the
name g.

slot

name: a

219

Lisa Specification

type: t

bindingValue

binding g

slotName b

assigns the value of slot b in binding g to slot a.

• getABoxObject:

slot

name: a

retrieves a named object from the ontology that has previously been stored with the

assertObject statement. If no such element exists, an exception is raised.

• string:

slot

name: a

string: someString

Sets a to the string value someString.

A.3.2 Relations

Figure A.4: XSD structure of relation value specifications

220

Lisa Specification

A.3.3 Conditions

Figure A.5: XSD structure of a condition type

Condition elements (see figure A.5) are used to check for boolean conditions.

• holds: true if a relation r stored in the ontology holds for a particular n-tuple t of
ontological objects. The tuple t is made up of ordered elements ti (i ∈ [0, n]). In the
condition element, the tuple elements are given with their indices and values.2

holds

relationName: r

tuple

(element

index: t_i

<value>

)*

• slotHasValue: true if a slot s has a particular value in the current binding.

2All tuple elements must be present in the condition. If the arity of the relation is different from the arity in

the condition, an error is thrown.

221

Lisa Specification

slotHasValue

slotName: s

<value>

• slotEqualsSlot: true if both given slots have structurally equal values

slotEqualsSlot

slotName: s1

slotName: s2

• slotIsSet: true if the slot has any nonempty value

slotIsSet

slotName: s

A.4 Body Elements

Figure A.6: XSD structure showing the possible statements in a body

• A body element (Figure A.6) holds a sequence of statements to execute.

A.4.1 General Statements

• debugMessage outputs a message. This is useful while developing plans.

222

Lisa Specification

debugMessage: someMessage

The example prints the text “[Lisa] someMessage” on the debug output.

• body inserts a sub-block of statements into another block.

body

(statement)*

• nextState (only valid while executing a game).

nextState: stateName

Specifies that outgoing edges are preferred that end in the state with the specified name.

• subgame executes a subgame.

subgame

name: someName

gameType: someType

(parameter

name: paramName

<value>

)*

Figure A.7: XSD structure of subgame statement

A subgame of type someType is created and executed embedded in the current block

(called the “parent” of the subgame). The block resumes execution after the game has

finished. The parameter binding of the subgame is initialized with the values given by

the parameter arguments. After the subgame has finished, the values in its binding is

available in the parent’s binding under its name someName.

223

Lisa Specification

• timeout suspends execution of the block for some time, and then resumes. Other pro-
cesses running concurrently are not affected.

timeout: timeoutValue

TimeoutValue must be parseable as an integer value. The execution is suspended for

timeoutValue milliseconds.

• lexiconUpdate updates the speech recognizer’s lexicon.

lexiconUpdate

slotName: s

path: a

category: ADJ

Figure A.8: XSD structure of lexiconUpdate

The example asserts that the string found under the slot a of the slot s should be added

to the lexicon as being in the adjective (ADJ) category.

• subgoal starts a subgoal.

subgoal

slotName: s

[blocking]

Figure A.9: XSD structure of subgoal

The statement tries to find and start a process p that provides a service described by

the value of slot s (in effect, the same action that would happen if the user made the

utterance in s). If the blocking element is present, the current process waits until p is

finished, otherwise, it is executed in parallel.

• try invoke a planner.

224

Lisa Specification

try

<condition_1>

...

<condition_n>

Figure A.10: XSD structure of try

invokes the external planner to generate and execute a plan to bring about the condi-

tions, if possible.

A.4.2 Assertions and Relations

• setSlot sets a slot to some value.

setSlot

slotName: someName

<value>

Figure A.11: XSD structure of setSlot

(see Value Specifications (Section A.3) for the possible forms of <value>)

• retractSlot retracts the value of a slot.

Figure A.12: XSD structure of retractSlot

225

Lisa Specification

retractSlot

slotName: s

• assertObject (see figure A.13) dynamically stores an ontological named object in the

CDE’s ontology.

Figure A.13: XSD structure of assertObject

assertObject

name: someName

<value>

The result of evaluating <value> is stored in the ontology under the name someName. If

there already is an object in the ontology with the same name, it is removed first. This

is the method of choice for sharing object values with other processes in the same CDE,

or to store them after the process has finished.

• setParameter sets parameters for outgoing edges of the current state.

setParameter

name: someName

<value>

If a parameter x is set, the role has x of the dialogue act associated with an outgoing

edge will be set to its value.

• assert adds a tuple of ontological objects to a relation in the ontology. If the relation

does not exist, it is created.

assert

relationName: someName

tuple

(element

index: t_i

<value>

)*

226

Lisa Specification

Figure A.14: XSD structure of setParameter

Figure A.15: XSD structure of relation operations

(for the meaning of the syntax of tuple specifications, see the corresponding entry for

condition elements).

• createRelation creates a relation in the ontology.

createRelation

relationName name

arity: n

Creates a new relation name with arity n in the ontology that contains no tuples. It

is an error to attempt to create a relation that already exists. When using the assert

statement to add a tuple t to a relation that does not exist in the ontology, the relation

is automatically created using the arity of t.

A.4.3 Control Structures

• select is a conditional statement (see figure A.16). The body of the first template argu-

ment whose conditions are fulfilled is executed.

227

Lisa Specification

Figure A.16: XSD structure of select

select

(template

conditions

(condition

<condition>

)*

body

)*

• loop defines a conditional execution loop.

loop

[conditions

<condition>*] // block-initial conditions

body

<body>

[conditions

<condition>*] // block-final conditions

Figure A.17: XSD structure of a conditional execution loop

Executes a body of statements in a loop. The construct allows loops of the do-while

and repeat-until flavors (or both combined). The body is executed repeatedly; for each

iteration, the block-initial-conditions are checked before entering the body and the block-

final-conditions after leaving the body. If a check fails, the iteration is terminated and

execution continues after the loop.

228

Lisa Specification

A.5 Game Elements

Game elements define how a game type is implemented in the given process (see Figure

A.18). If a game type is used by a process, there must be an element game that defines its

implementation, and gives it a name.

Figure A.18: XSD structure of a game type definition

game

name: someName

gameType: someTypeName

states

state

name: stateName_n

body

[...]

[...]

The example snippet redefines the game type someTypeName (from the game type definition)

and gives it the name someName to be used by the plan the snippet occurs in. It then proceeds

to define the bodies of states from this game type. In this case, the state stateName n (which

must occur in the game type) gets a new body definition. A plan can have arbitrarily many

game elements. It is not necessary to redefine all (or even any) of the states from the game

type; if a redefinition is missing, the respective body will just be treated as empty.

229

Lisa Specification

230

Appendix B

Elements of the JenaLite API

B.1 Concept

The JenaLite API is designed to provide a subset of the possibilities offered by the Jena RDF

API.1 Its purpose is to gain speed and memory efficiency at the expense of some aspects

of Jena’s expressivity and inferential power that are not crucial for systems described in this

thesis. The API defines a set of interfaces that can then be implemented by corresponding Java

classes, for our framework, this was done by Mehdi Moniri.2 The implementation allows to

access and manipulate structures in RDF, the proprietary data format of the Protégé ontology

editor, or the XML representation defined in Chapter 4.

OntoClass

OntoInstance

contains

contains

Ontology

defines defines

contains

InstancesOntoSlot

OntoSlotDefinition Structure

Figure B.1: JenaLite object hierarchy

Figure B.1 shows the hierarchy of objects using the JenaLite interfaces. An object imple-

menting the Ontology interface represents an entire ontology. The structural knowledge is

1Project homepage: http://jena.sourceforge.net
2Programmatically, the interfaces are realized by abstract Java classes instead of Java interface constructs,

because they already include base method implementations.

231

Elements of the JenaLite API

encoded in OntoClass and OntoSlotDefinition objects that specifiy, e. g., the inheritance rela-

tions, occurrence and requiredness of slots, and slot value types. Actual ontological instances

and their attributes correspondingly are stored in OntoInstance and OntoSlot objects. Each of

these object types offers a set of methods that allows to add, access and modify the ontology’s

content. The JenaLite interfaces were designed to match the requirements of actual use in

the CDE framework, and incrementally extended during the implementation in some cases

where the need for additional features was encountered.

B.2 Interfaces

JenaLite offers a view of ontological objects in terms of TFS and, correspondingly, XML objects

that represent these TFS. Sub-objects can be referenced using XPath expressions that are

similar to file system paths3; this mode of addressing is supported directly by the JDOM library

used in the implementation of the interface. For example, the set of values of all top-level

has owner slots of an ontological instance is referenced by the expression “/has owner/*”.

The interfaces were—on purpose—not designed to be minimal or orthogonal. That is, they

exhibit more than minimal set of methods necessary to achieve their functionality. They in-

stead feature additional convenience methods in cases where frequently occurring special

uses of certain methods, or composite uses, were observed. For example, there are sepa-

rate methods getSlotInstanceValues() and getSlotInstanceValue() in the OntoInstance interface,

where the latter is only intended for situations where the programmer is sure there will be at

most one single value returned. In this case, the extra step to extract the single element of the

set returned by the latter method can be left out. If the programmer’s assumption is wrong

in these cases, an exception is thrown. Descriptions of the signatures of the five interfaces

follow:

• Ontology (Figure B.2)4

This interface allows operations on a whole dynamic ontology. Ontology data can be

loaded with the importData method from files stored in the Protégé, XML, or RDF for-

mats5. Instances can be added or removed dynamically, subclass relations can be tested,

and best matches for instances over the entire ontology be found. There also is some

support for namespaces and namespace abbreviations.

• OntoClass (Figure B.3)

This interface gives access to the concepts of the ontology, including the instances and

their slot definitions. As with the Ontology interface, instances can be added or re-

moved. The getSuperclassNames() method only returns the set of names of the direct

superclasses.

• OntoSlotDefinition (Figure B.4)

3see http://www.w3.org/TR/xpath
4For brevity reasons, this figure, and the following ones, use abbreviations for arguments and return values,

e. g. OntoClass → class. Java already has a keyword class, so this name could not be used in the implementation.
5There are some incompatibilities between the file formats of Protégé versions. JenaLite supports the file format

used in Protégé 3.0 beta, which was current during the VirtualHuman project.

232

Elements of the JenaLite API

method returns remarks

o.addInstance(instance) —

o.getInstance(id) instance

o.getNamespaceAbbreviations() map(string→string) Returns a mapping of abbreviation
strings to namespaces

o.getOntoClass(name) ontoClass

o.getOntoClasses() set(ontoClass)

o.getStandardNamespace() string see setStandardNamespace

o.importData(file) — Automatically detects the data for-
mat and converts the contents to
XML format if necessary

o.isSubclassOf(cName1, cName2) boolean

o.removeInstance(instance) —

o.setStandardNamespace(namespace) — One namespace string can be set as
default; instances in this namespace
can be referenced without qualifica-
tion

o.someBestMatch(instance) instance Returns one best match for instance
over all instances in the ontology

o.toXML() string

Figure B.2: The Ontology interface

The intended use of this interface is to get information about how slots are defined. It

does not provide methods to create new slot definitions at run-time, since the taxonomic

structure is static.6

• OntoInstance (Figure B.5)

This is the most comprehensive interface in JenaLite. It provides methods to manipulate

dynamic instances (addSlot, replaceSlot, unifyWith etc.), select and access parts of their

information (pathInstance, pathString, etc.), and to test attributes (isDynamic, hasSlot-

Named, etc.). The path arguments in the accessor methods pathInstance and pathString,

the add-/replace-/removeSlotAtPath methods and deepCopy use the XPath notation to se-

lect substructures in the XML representation of the instance. The Binding defined by an

instance is a data structure used by the framework that maps the top-level slot names

to their values.

• OntoSlot (Figure B.6)

This interface allows access and manipulation of slot values. These are of type instance

or string, corresponding to complex resp. atomic values. For the purposes of the frame-

work, it was not necessary to use the different types for atomic values available in

Protégé (string, integer, float, boolean etc); instead, these values were converted to a

textual (string) representation.

6In Mehdi Moniri’s implementation of JenaLite, the slot definitions are created when an ontology is loaded.

The class implementing the Ontology interface uses implementation-dependent methods of the class implementing

OntoSlotDefinition.

233

Elements of the JenaLite API

method returns remarks

c.addInstance(instance) —

c.getDirectSlotDefinitions() setslotDefinition Returns the set of slots defined directly in the
class, i. e., without slots inherited from super-
classes

c.getInstance(id) instance

c.getInstances() set(instance)

c.getName() string

c.getOntology() ontology

c.getSlotDefinition(slotName) slotDefinition

c.getSlotDefinitions() set(slotDefinition)

c.getSlotNames() set(string)

c.getSuperclassNames() set(string) Gets the names of all direct superclasses only

c.removeInstance(instance) —

c.toXML() string

Figure B.3: The OntoClass interface

method returns remarks

d.getAllowedClasses() set(string) Returns the names of classes whose instances are allowed as
slot values

d.getName() string

d.getValueType() string Can be “instance” or “string”

d.isMultiple() boolean

d.isRequired() boolean

d.toXML() string

Figure B.4: The OntoSlotDefinition interface

234

Elements of the JenaLite API

method returns remarks

i.addSlot(slot) —

i.addSlot(slotName, instance) —

i.addSlot(slotName, valueString) —

i.addSlotAtPath(path, object) —

i.addSlots(binding) —

i.containsSlot(slotName) boolean

i.deepCopy(path, object) instance

i.filterStrictlyExtends(set(instance)) set(instance) filters the argument set and returns
all elements that do not strictly ex-
tend i (cf. Section 4.4.2)

i.getAllUnifiableInstances() set(instance)

i.getAllUnifiableInstances(isRestricted) set(instance)

i.getBestMatches(set(instance)) set(instance)

i.getBinding() binding

i.getBinding(parentBinding) binding

i.getId() string

i.getOntoClass() ontoClass

i.getOntoClassName() string

i.getOntology() ontology

i.getSlot(name) slot

i.getSlotInstanceValue(slotName)) instance

i.getSlotInstanceValues(slotName)) set(instance)

i.getSlots() set(slot)

i.getSlots(name) set(slot)

i.getSlotStringValue(name) string

i.getSlotStringValues(name) set(string)

i.getStaticUnifiableInstances(set(instance)) set(instance)

i.getUnifiableInstances(set(instance)) set(instance)

i.hasSlotNamed(name) boolean

i.isDynamic() boolean

i.isStrictlyExtendedBy(instance) boolean

i.isUnifiableWith(instance) —

i.pathInstance(path) instance

i.pathString(path) string

i.removeSlot(slot) —

i.removeSlotAtPath(path) —

i.replaceSlotAtPath(path, valueObject) —

i.setDynamic(flag) — sets the dynamic flag. A dynamic
instance can be manipulated a run-
time

i.setId(id) —

i.toElement() element

i.toRDF() string

i.toString() string

i.unifyWith(instance) instance

i.unifyWith(instance, isRestricted) instance

Figure B.5: The OntoInstance interface

235

Elements of the JenaLite API

method returns remarks

s.getInstanceValue() instance

s.getName() string

s.getOntoClass() ontoClass

s.getSlotDefinition() slotDefinition

s.getStringValue() string

s.getValue() object

s.getValueType() type Type can be one of “instance” or
“string”

s.setInstance(instance) —

s.setStringValue(string) —

s.toRDF() string

s.toString() string

Figure B.6: The OntoSlot interface

236

Appendix C

Schemata for DSD and directionML
documents

C.1 The Dialogue System Definition

Figure C.1 shows the schema for a dialogue system definition (DSD). A DSD consists of three

parts: a controller section, a participant section and the init section.

• The controller section contains information necessary for the operation of the CDE con-

troller, including the name of the dialogue system, the location of the system ontology

file, the path to the subdirectory where application-specific data is located (subdir), the

path to the game types definitions (gameTypes) and the channel specifications.

• the participants section contains one data structure for each participant CDE in the

system, giving its name, type, ontology file, and activity definition file.

• the init section contains an (optional) Lisa block of statements. If statements are

present, they are executed in order when the dialogue system is initialized. The main

purpose of this section is to define the set of CDEs that are to be activated at bootup of

the system.

237

Schemata for DSD and directionML documents

F
ig

u
re

C
.1

:
S

ch
e
m

a
fo

r
D

S
D

s

238

Schemata for DSD and directionML documents

C.2 The Direction Markup Language directionML

This section contains the schema definition of the directionML markup language introduced

in VirtualHuman. It is used for both directions of the communication between the either the

CDE framework or a set of individual CDEs, and a narration engine. Depending on sender and

receiver, directionML messages serve different purposes; the main use is to set goals for CDEs

and receive feedback about the execution and success state of the associated activities. The

narration engine can also send meta-goals addressed at the framework to create or remove

CDE instances from the scene. Via the playerML tag, instructions in playerML format can be

issued that are routed to the player module without further intervention from the framework

to allow for, e. g., story-controlled camera movements and events.

For reasons of space, the schematic definition of directionML messages is split in two parts:

Figure C.2 shows the toplevel elements, and Figure C.3 shows the internal structure of a goal

specification.

239

S
ch

e
m

a
ta

fo
r

D
S

D
a
n

d
d

ir
e
ct

io
n

M
L

d
o
cu

m
e
n

ts

Figure C.2: Toplevel elements of directionML

2
4

0

S
ch

e
m

a
ta

fo
r

D
S

D
a
n

d
d

ire
ctio

n
M

L
d

o
cu

m
e
n

ts

Figure C.3: The goal specification in directionML

2
4

1

Schemata for DSD and directionML documents

242

Appendix D

Communicative Acts

The model for conversational behavior generation is designed to make use of different on-

tologies to encode the knowledge bases of the characters. However, a minimum requirement

is that there is a way to represent the foundational building blocks of the model, namely, acti-

vities, dialogue games, and dialogue acts; also, some auxiliary concepts are required if the

application needs to make use of tuples, relations, and character models (which will almost

always be the case).

These concepts, which are subconcepts of RepresentationalObject in the VirtualHuman ontol-

ogy, have to be integrated with the base ontology of the system the framework should be

adapted to. Figure 4.9 on page 110 and Figure 5.9 on page 140 depict parts of the subcon-

cept tree below RepresentationalObject. In Figure D.1, the hierarchy of the communicative acts

is shown; with the exception of NonverbalAct and BackchannelFeedback acts, which are used

by FADE and some very application-specific dialogue acts, like the different types of “canned

text” questions from Clue.

243

Communicative Acts

Figure D.1: Direct subcategories of CommunicativeAct in the ontology dialogue branch (the

branch on the right side of the figure starts below DialogueAct)

244

Appendix E

Abbreviated XML Notation

In this document, we use an abbreviated notation for XML structures and the ontological

objects represented in XML to avoid overly verbose examples. In the following, we informally

explain the notation by way of an example. Note: This notation cannot be used to rewrite

all well-formed XML documents unambiguously. For example, long strings wrapping into

consecutive lines are a problem (which could be addressed by indenting them below the

column, for example). It also cannot properly represent cases where elements have both

textual and element children. However, this document does not contain any examples where

these restrictions apply.

General XML. An example XML structure

<Alpha>

<Beta attr1="aaa" attr2="bbb">

<Gamma>

hello, world!

</Gamma>

<Delta id="ccc">

5.0

</Delta>

<Epsilon/>

</Beta>

<Zeta/>

</Epsilon>

is rewritten as

Alpha

Beta attr1="aaa", attr2="bbb"

Gamma: hello, world!

Delta id="ccc": 5.0

Epsilon

Zeta

245

Abbreviated XML Notation

Basically, closing elements are omitted, the angle brackets marking elements are omitted, and

the document structure of subelements is represented using indentation alone. A string child

of an element is printed after a colon on the same line. To save additional space, an element

that has only slots with atomic values may also be written with the slots and comma-separated

values in parentheses, and leaving out attributes. The Beta element from above then would

read Beta(Gamma: hello world!, Delta: 5.0, Epsilon).

Ontological objects. Since we also use an XML representation for ontological objects (de-

fined in section 4.3.4), the shorthand above also applies to them. Let Alpha be a class with

roles has foo and has bar and Beta a class with one role has foo. Let the role has foo have a

value type of String, and has bar be a role with value type Beta. The following would be an

XML notation for an instance of that class:

<Alpha>

<has_foo>

example string

</has_foo>

<has_bar>

<Beta>

<has_foo>

another example string

</has_foo>

</Beta>

</has_bar>

</Alpha>

or, in the shorthand notation,

Alpha

has_foo: example string

has_bar

Beta

has_foo: another example string

246

Bibliography

Russell L. Ackoff. From Data to Wisdom. Journal of Applied Systems Analysis, 16:34–39, 1989.

Jan Alexandersson. Hybrid Discourse Modelling and Summarization for a Speech-to-Speech

Translation System. PhD thesis, University of the Saarland, Saarbrücken, Germany, 2003.

Jan Alexandersson. Some Ideas for the Automatic Aquisition of Dialogue Structure. In An-

ton Nijholt, Harry Bunt, Susann LuperFoy, Gert Veldhuijzen van Zanten, and Jan Schaake,

editors, Proceedings of the 11th Twente Workshop on Language Technology: Dialogue Man-

agement in Natural Language Dialogue Systems, pages 149–158, University of Twente, En-

schede, the Netherlands, 1996.

Jan Alexandersson and Tilman Becker. Overlay as the Basic Operation for Discourse Pro-

cessing in a Multimodal Dialogue System. In Proceedings of the IJCAI Workshop on Know-

ledge and Reasoning in Practical Dialogue Systems, pages 8–14, Seattle, WA, USA, 2001.

Jan Alexandersson and Paul Heisterkamp. Some Notes on the Complexity of Dialogues. In

Proceedings of the 1st SIGdial Workshop on Discourse and Dialogue, pages 160–169, Morris-

town, NJ, USA, 2000. Association for Computational Linguistics.

Jan Alexandersson, Elisabeth Maier, and Norbert Reithinger. A Robust and Efficient Three-

layered Dialogue Component for a Speech-to-speech Translation System. In Proceedings

of the 7th Conference on European Chapter of the Association for Computational Linguistics,

pages 188–193, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

Jan Alexandersson, Tilman Becker, Ralf Engel, Markus Löckelt, Elsa Pecourt, Peter Poller,

Norbert Pfleger, and Norbert Reithinger. Ends-based Dialogue Processing. In Robert

Porzel, editor, Proceedings of the 2nd Workshop on Scalable Natural Language Understan-

ding (ScaNaLu), pages 25–32, Boston, MA, USA, 2004a.

Jan Alexandersson, Tilman Becker, and Norbert Pfleger. Scoring for Overlay based on Infor-

mational Distance. In Proceedings of KONVENS 2004, pages 1–4, Vienna, Austria, 2004b.

James Allen, Donna Byron, Dave Costello, Myrosia Dzikovska, George Ferguson, Lucian

Galescu, and Amanda Stent. TRIPS-911 System Demonstration. In Proceedings of the NAA-

CL/ANLP 2000 Workshop on Conversational Systems, pages 33–35, Morristown, WA, USA,

2000a. Association for Computational Linguistics.

James Allen, Donna Byron, Myroslava Dzikovska, George Ferguson, Lucian Galescu, and

Amanda Stent. An Architecture for a Generic Dialogue Shell. Natural Language Engineering,

6(3-4):213–228, 2000b.

247

BIBLIOGRAPHY

James F. Allen, Lenhart K. Schubert, George Ferguson, Peter Heeman, Chung Hee Hwang,

Tsuneaki Kato, Marc Light, Nathaniel G. Martin, Bradford W. Miller, Massimo Poesio, and

David R. Traum. The TRAINS Project: A Case Study in Building a Conversational Planning

Agent. Journal of Experimental and Theoretical AI (JETAI), 7:7–48, 1995.

James F. Allen, Bradford W. Miller, Eric K. Ringger, and Teresa Sikorski. A Robust System

for Natural Spoken Dialogue. In Arivind Joshi and Martha Palmer, editors, Proceedings of

the 34th Annual Meeting of the Association for Computational Linguistics, pages 62–70, San

Francisco, CA, USA, 1996. Morgan Kaufmann Publishers.

James F. Allen, Donna Byron, Myroslava Dzikovska, George Ferguson, Lucian Galescu, and

Amanda Stent. Towards Conversational Human-Computer Interaction. AI Magazine, 22

(4):27–37, 2001a.

James F. Allen, George Ferguson, and Amanda Stent. An Architecture for More Realistic Con-

versational Systems. In IUI ’01: Proceedings of the 6th International Conference on Intelligent

User Interfaces, pages 1–8. ACM Press, 2001b.

Jens Allwood. An Activity Based Approach to Pragmatics. In Harry Bunt and Bill Black,

editors, Abduction, Belief and Context in Dialogue: Studies in Computational Pragmatics,

pages 47–80. John Benjamins, Amsterdam, the Netherlands, 2000.

Elisabeth André, Thomas Rist, and Jochen Müller. Integrating Reactive and Scripted Behavi-

ors in a Life-like Presentation Agent. In Katia P. Sycara and Michael Wooldridge, editors,

Proceedings of the 2nd International Conference on Autonomous Agents (Agents 1998), pages

261–268, New York, NY, USA, 1998. ACM Press.

Aristotle. Topics. Clarendon Press, Oxford, UK, 1928. W. D. Ross, editor.

John L. Austin. How to do Things with Words. Oxford University Press, London, UK, 1962.

Ruth S. Aylett. Narrative in Virtual Environments: Towards Emergent Narrative. In Papers

from the 1999 AAAI Fall Symposium, Technical report FS-99-01, pages 83–86, Menlo Park,

CA, USA, 1999. AAAI Press.

Ruth S. Aylett, Rui Figuieredo, Sandy Louchart, João Dias, and Ana Paiva. Making It Up as

You Go Along - Improvising Stories for Pedagogical Purposes. In Jonathan Gratch, Michael

Young, Ruth Aylett, Daniel Ballin, and Patrick Olivier, editors, Proceedings of the 6th Inter-

national Conference on Intelligent Virtual Agents (IVA), pages 307–315, Marina del Rey, CA,

USA, 2006. Springer.

Kent Bach and Robert M. Harnish. Linguistic Communication and Speech Acts. Clerandon,

Oxford, UK, 1962.

John A. Bateman. Upper Modeling: Organizing Knowledge for Natural Language Processing.

In Proceedings of the 5th International Workshop on Natural Language Generation, pages

54–61, Dawson, PA, USA, 1990.

Sean Bechhofer, Carole Goble, and Ian Horrocks. Requirements of Ontology Languages. On-

toWeb deliverable 4.1, University of Manchester, Manchester, United Kingdom, 2002.

248

BIBLIOGRAPHY

Nicole Beringer, Daniela Oppermann, and Silke Steininger. Possible Lexical Indicators for

Barge-In / Barge-Before in a Multimodal Man-Machine-Communication. SmartKom Tech-

nical Report 9, Ludwig-Maximilians-Universität (LMU), Munich, Germany, 2001.

Nicole Beringer, Ute Kartal, Katerina Louka, Florian Schiel, and Uli Türk. PROMISE - A

Procedure for Multimodal Interactive System Evaluation. Technical Report 23, Ludwig-

Maximilians-Universität (LMU), Munich, Germany, 2002.

Tim Berners-Lee, Dieter Fensel, James A. Hendler, Henry Lieberman, and Wolfgang Wahlster,

editors. Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. The

MIT Press, Cambridge, MA, USA, 2003.

Nate Blaylock. Towards Tractable Agent-Based Dialogue. PhD thesis, Department of Computer

Science, University of Rochester, Rochester, NY, USA, 2005.

Dan Bohus and Alexander I. Rudnicky. RavenClaw: Dialog Management Using Hierarchical

Task Decomposition and an Expectation Agenda. In Proceedings of EUROSPEECH-2003,

pages 597–600, Geneva, Switzerland, 2003.

Dan Bohus and Alexander I. Rudnicky. Error Handling in the RavenClaw Dialog Management

Framework. In HLT ’05: Proceedings of the Conference on Human Language Technology and

Empirical Methods in Natural Language Processing, pages 225–232, Morristown, NJ, USA,

2005. Association for Computational Linguistics.

Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi Oka. DIPPER: Description and Formali-

sation of an Information-State Update Dialogue System Architecture. In Proceedings of the

4th SIGdial Workshop on Discourse and Dialogue, pages 115–124, Sapporo, Japan, 2003.

Ronald J. Brachman and James G. Schmolze. An Overview of the KL-ONE Knowledge Repre-

sentation System. Cognitive Science, 9(2):171–216, 1985.

Michael E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, Cam-

bridge, MA, USA, 1987.

Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert van der Torre.

The BOID Architecture: Conflicts Between Beliefs, Obligations, Intentions and Desires. In

AGENTS ’01: Proceedings of the 5th International Conference on Autonomous Agents, pages

9–16. ACM Press, 2001.

Harry Bunt. A Framework for Dialogue Act Specification. In Presented at the 4th ISO SIGSEM

Workshop on the Representation of Multimodal Semantic Information, Tilburg, the Nether-

lands, 2005.

Available at http://let.uvt.nl/general/people/bunt/docs/fdas.ps (last access: 29.2.2008).

Harry Bunt. Context and Dialogue Control. Think, 3:19–31, 1994.

Sandra Carberry. Techniques for Plan Recognition. User Modeling and User-Adapted Interac-

tion, 11(1-2):31–48, 2001.

Jean C. Carletta. Assessing Agreement on Classification Tasks: The Kappa Statistic. Compu-

tational Linguistics, 22(2):249–254, 1996.

249

BIBLIOGRAPHY

Jean C. Carletta, Amy Isard, Stephen Isard, Jacqueline Kowtko, Gwyneth Doherty-Sneddon,

and Anne Anderson. HCRC Dialogue Structure Coding Manual. Technical report, HCRC,

Universities of Edinburgh and Glasgow, UK, 1996.

Jean C. Carletta, Stephen Isard, Gwyneth Doherty-Sneddon, Amy Isard, Jacqueline C.

Kowtko, and Anne H. Anderson. The Reliability of a Dialogue Structure Coding Scheme.

Computational Linguistics, 23(1):13–31, 1997.

Lauri Carlson. Dialogue Games. Synthese Language Library. D. Reidel Publishing Company,

Dordrecht, the Netherlands, 1983.

Bob Carpenter. The Logic of Typed Feature Structures. Cambridge University Press, Cambridge,

UK, 1992.

Justine Cassell. Embodied Conversational Agents: Representation and Intelligence in User

Interface. AI Magazine, 22(3):67–83, 2001.

Justine Cassell, Hannes Vilhjálmsson, Kenny Chang, Timothy Bickmore, Lee Campbell, and

Hao Yan. Requirements for an Architecture for Embodied Conversational Characters. In

D. Thalmann and N. Thalmann, editors, Computer Animation and Simulation ’99, Euro-

graphics Series, pages 109–120. Springer, Vienna, Austria, 1999.

Marc Cavazza, Fred Charles, and Steven J. Mead. Interacting with Virtual Characters in

Interactive Storytelling. In Proceeedings of the Autonomous Agents Conference (AAMAS’02),

pages 318–325, Bologna, Italy, 2002.

Chambers Editors. The Chambers Dictionary. Chambers Harrap Publishers, Cambridge, UK,

1993.

Herbert H. Clark. Using Language. Cambridge University Press, Cambridge, UK, 1996.

Herbert H. Clark and Edward F. Schaefer. Contributing to Discourse. Cognitive Science, 13

(2):259–294, 1989.

Philip R. Cohen. Discourse and Dialogue: Dialogue Modeling. In Ron Cole, editor, Survey of

the State of the Art in Human Language Technology, pages 204–210. Cambridge University

Press, New York, NY, USA, 1997.

Philip R. Cohen and Hector J. Levesque. Intention is Choice with Commitment. Artificial

Intelligence, 42:213–261, 1990.

Philip R. Cohen, James A. Pittman, Ira Smith, and Tzu-Chieh Yang. QuickSet: A Multimodal

Interface for Distributed Interactive Simulation. Abstract for a demo at the 9th Annual ACM

Symposium on User-Interface Software and Technology, 1996.

Available at http://citeseer.ist.psu.edu/cohen96quickset.html (last accessed 12.07.2007).

Philip R. Cohen, Michael Johnston, David R. McGee, Sharon L. Oviatt, Jay A. Pittman, Ira

Smith, Liang Chen, and Josh Clow. QuickSet: Multimodal Interaction for Distributed Ap-

plications. In Proceedings of the 5th International Multimedia Conference, pages 31–40,

Seattle, WA, USA, 1997. ACM Press.

250

BIBLIOGRAPHY

Philip R. Cohen, David R. McGee, and Josh Clow. The Efficiency of Multimodal Interaction

for a Map-Based Task. In Proceedings of the Applied Natural Language Processing Conference

(ANLP’00), pages 331–338, Seattle, WA, USA, 2000. Morgan Kaufmann Publishers.

Philip R. Cohen, Rachel Coulston, and Kelly Krout. Multimodal Interaction During Multiparty

Dialogues: Initial Results. In 4th IEEE International Conference on Multimodal Interfaces

(ICMI), pages 448–453, Pittsburgh, PA, USA, 2002.

Mark G. Core and James F. Allen. Coding Dialogues with the DAMSL Annotation Scheme. In

David R. Traum, editor, Working Notes: AAAI Fall Symposium on Communicative Action in

Humans and Machines, pages 28–35, Menlo Park, CA, USA, 1997. American Association for

Artificial Intelligence.

Chris Crawford. Assumptions Underlying the Erasmatron Interactive Storytelling Engine.

In M. Mateas and P. Sengers, editors, Proceedings of the AAAI Fall Symposium: Narrative

Intelligence, Technical Report, pages 112–114, Menlo Park, CA, USA, 1999. AAAI Press.

Nils Dahlbäck and Arne Jönsson. An Empirically Based Computationally Tractable Dialogue

Model. In Proceedings of the Fourteenth Annual Meeting of The Cognitive Science Society,

pages 785–790, Bloomington, IN, USA, 1992.

Jonn E. Deaton, Charles Barba, Tom Santarelli, Larry Rosenzweig, Vance Souders, Chris Mc-

Collum, Jason Seip, Bruce W. Knerr, and Michael J. Singer. Virtual Environment Cultural

Training for Operational Readiness (VECTOR). Virtual Reality, 8(3):156–167, 2005.

Song Dongyi. Combining Speech User Interfaces for Different Applications. PhD thesis, Ludwig-

Maximilians-Universität (LMU), Munich, Germany, 2006.

Dejing Dou, Drew V. McDermott, and Peishen Qi. Ontology Translation on the Semantic Web.

In Proceedings of the International Conference on Ontologies, Databases and Application of

Semantics (ODBASE), pages 952–969, 2003.

Patrick Doyle. Believability Through Context Using “Knowledge in the World” to Create In-

telligent Characters. In AAMAS ’02: Proceedings of the First International Joint Conference

on Autonomous Agents and Multiagent Systems, pages 342–349, New York, NY, USA, 2002.

ACM Press.

Laila Dybkjær and Niels Ole Bernsen. Usability Evaluation in Spoken Language Dialogue

Systems. In Proceedings of the Workshop on Evaluation for Language and Dialogue Systems,

pages 1–10, Morristown, NJ, USA, 2001. Association for Computational Linguistics.

Karolina Eliasson. Integrating a Discourse Model with a Learning Case-Based Reasoning Sys-

tem. In Claire Gardent and Bertrand Gaiffe, editors, 9th Workshop on the Semantics and

Pragmatics of Dialogue (DIALOR), pages 29–36, LORIA, Nancy, France, 2005.

Ralf Engel. SPIN: Language Understanding for Spoken Dialogue Systems Using a Production

System Approach. In Proceedings of the 7th International Conference on Spoken Language

Processing, pages 2717–2720, Denver, CO, USA, 2002.

George Ferguson and James F. Allen. TRIPS: An Integrated Intelligent Problem-Solving Assis-

tant. In AAAI ’98/IAAI ’98: Proceedings of the Fifteenth National/10th Conference on Artificial

251

BIBLIOGRAPHY

Intelligence/Innovative Applications of Artificial Intelligence, pages 567–572. American Asso-

ciation for Artificial Intelligence, 1998.

George M. Ferguson, James F. Allen, Brad W. Miller, and Eric K. Ringger. The Design and

Implementation of the TRAINS-96 System: A Prototype Mixed-Initiative Planning Assistant.

TRAINS Technical Note 96-5, Computer Science Dept., University of Rochester, Rochester,

NY, USA, October 1996.

R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem Proving

to Problem Solving. Artificial Intelligence, 2:189–208, 1971.

Tim Finin, Rich Fritzson, Don McKay, and Robin McEntire. KQML as an Agent Communication

Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings of the 3rd Interna-

tional Conference on Information and Knowledge Management (CIKM’94), pages 456–463,

Gaithersburg, MD, USA, 1994. ACM Press.

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, New York, NY,

USA, 1990.

Annika Flycht-Eriksson. A Survey of Knowledge Sources in Dialogue Systems. Electronic

Transactions on Artificial Intelligence, 3(D):5–32, 1999.

L. T. F. Gamut. Logic, Language, and Meaning, volume 2: Intensional Logic and Logical

Grammar. University of Chicago Press, Chicago, IL, USA, 1991.

Patrick Gebhard. ALMA - A Layered Model of Affect. In Proceedings of the 4th International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’05), pages 29–36,

Utrecht, the Netherlands, 2005.

Patrick Gebhard. Emotionalisierung interaktiver virtueller Charaktere - ein mehrschichtiges

Computermodell zur Erzeugung und Simulation von Gefühlen in Echtzeit. PhD thesis, Univer-

sity of the Saarland, Saarbrücken, Germany, 2007.

Patrick Gebhard, Michael Kipp, Martin Klesen, and Thomas Rist. Authoring Scenes for Adap-

tive, Interactive Performances. In AAMAS ’03: Proceedings of the 2nd international joint

conference on Autonomous agents and multiagent systems, pages 725–732, New York, NY,

USA, 2003. ACM Press.

John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso, Monica Crubézy,

Henrik Eriksson, Natalya F. Noy, and Samson W. Tu. The Evolution of Protégé: An En-

vironment for Knowledge-Based Systems Development. International Journal of Human-

Computer Studies, 58(1):89–123, 2003.

Mike Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Mike Wooldridge. The Belief-

Desire-Intention Model of Agency. In Jörg Müller, Munindar P. Singh, and Anand S. Rao,

editors, Proceedings of the 5th International Workshop on Intelligent Agents V : Agent The-

ories, Architectures, and Languages (ATAL-98), volume 1555, pages 1–10. Springer-Verlag:

Heidelberg, Germany, 1999.

Alfonso Gerevini and Derek Long. Plan Constraints and Preferences in PDDL3. Technical

report, Department of Electronics for Automation, University of Brescia, Italy, 2005.

252

BIBLIOGRAPHY

Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Drew McDermott, Ashwin Ram, Manu-

ela M. Veloso, Daniel S. Weld, and David Wilkins. PDDL—The Planning Domain Definition

Language, 1998.

Ehsan Gholamsaghaee. Adapting JSHOP to a Dialog Framework with an Ontological Domain

Description. Bachelor’s thesis, Department of Computer Science, University of the Saarland,

2006.

Jonathan Ginzburg. Interrogatives: Questions, Facts, and Dialogue. In Shalom Lappin, edi-

tor, The Handbook of Contemporary Semantic Theory, pages 385–422. Blackwell Publishers,

Oxford, UK, 1996.

Stefan Göbel, Oliver Schneider, Ido Iurgel, Axel Feix, Christian Knöpfle, and Alexander Rettig.

Virtual Human: Storytelling and Computer Graphics for a Virtual Human Platform. In

Lecture Notes in Computer Science 3105 (TIDSE’04), pages 79–88, Darmstadt, Germany,

2004. Springer.

Stefan Göbel, Felicitas Becker, and Axel Feix. INSCAPE: Storymodels for Interactive Story-

telling and Edutainment Applications. In Gérard Subsol, editor, International Conference

on Virtual Storytelling, volume 3805 of Lecture Notes in Computer Science, pages 168–171.

Springer, 2005.

Stefan Göbel, Ido Iurgel, Markus Rössler, Frank Hülsken, and Christian Eckes. Design and

Narrative Structure for the Virtual Human Scenarios. International Journal of Virtual Real-

ity, 6(4):1–10, 2007.

Paul Graham. On Lisp: Advanced Techniques for Common Lisp. Prentice Hall, London, UK,

1994.

Herbert P. Grice. Syntax and Semantics, volume 3: Speech Acts, P. Cole and J. Morgan (eds.),

chapter ”Logic and Conversation”, pages 41–58. Academic Press, New York, NY, USA, 1975.

Derek Gross, James F. Allen, and David R. Traum. The TRAINS 91 Dialogues. Technical

Report TN92-1, Computer Science Department, University of Rochester, NY, USA, 1993.

Barbara Grosz. Discourse and Dialogue: Overview. In Ron Cole, editor, Survey of the State of

the Art in Human Language Technology, pages 199–201. Cambridge University Press, New

York, NY, USA, 1997.

Barbara Grosz and Sarit Kraus. Collaborative Plans for Complex Group Action. Artificial

Intelligence, 86(2):269–357, 1996.

Barbara Grosz and Sarit Kraus. Foundations and Theories of Rational Agencies, A. Rao and M.

Wooldridge, Eds., chapter The Evolution of SharedPlans, pages 227–262. Kluwer, Dordrecht,

the Netherlands, 1999.

Barbara J. Grosz and Candace L. Sidner. Attention, Intentions, and the Structure of Discourse.

Computational Linguistics, 12(3):175–204, 1986.

Barbara J. Grosz and Candace L. Sidner. Plans for Discourse. In Philip R. Cohen, Jerry Morgan,

and Martha E. Pollack, editors, Intentions in Communication, chapter 20, pages 417–444.

MIT Press, Cambridge, MA, USA, 1990.

253

BIBLIOGRAPHY

Thomas R. Gruber. A Translation Approach to Portable Ontologies. Knowledge Acquisition, 5

(2):199–220, 1993.

Nicola Guarino. Formal Ontology, Conceptual Analysis and Knowledge Representation. Inter-

national Journal on Human-Computer Studies, Special Issue on Formal Ontology, Conceptual

Analysis and Knowledge Representation, 43(5–6):625–640, 1995.

Iryna Gurevych, Robert Porzel, and Rainer Malaka. Modeling Domain Knowledge: Know-

How and Know-What. In Wolfgang Wahlster, editor, SmartKom: Foundations of Multimodal

Dialogue Systems, pages 71–84. Springer Verlag, Berlin, Germany, 2006.

Thomas Heider and Thomas Kirste. Supporting Goal Based Interaction with Dynamic Intelli-

gent Environments. In Proceedings of the 15th European Conference on Artificial Intelligence,

pages 596–600, Lyon, France, 2002.

Gerd Herzog, Heinz Kirchmann, Stefan Merten, Alassane Ndiaye, and Peter Poller. MULTI-

PLATFORM Testbed: An Integration Platform for Multimodal Dialog Systems. In H. Cun-

ningham and J. Patrick, editors, Proceedings of the HLT-NAACL 2003 Workshop on Software

Engineering and Architecture of Language Technology Systems (SEALTS), pages 75–82, Ed-

monton, Canada, 2003.

Ari Hiltunen. Aristotle in Hollywood. Visual Stories that Work. Intellect Books, Bristol, UK,

2002.

Jean-Michel Hoc. Cognitive Psychology of Planning. Academic Press Professional, Inc., San

Diego, CA, USA, 1988.

Jürgen Hoffmeister, Christel Müller, and Engelbert Westkämper. Sprachtechnologie in der An-

wendung: Sprachportale. Springer, Berlin, Germany, 2007.

Frank Hülsken, Christian Eckes, Roland Kuck, Jörg Unterberg, and Sophie Jörg. Modeling

and Animating Virtual Humans for Real-Time Applications. International Journal of Virtual

Reality, 6(4):11–20, 2007.

Joris Hulstijn. Dialogue Games are Recipes for Joint Action. In M. Poesio and D. Traum,

editors, Formal Semantics and Pragmatics of Dialogue (Gotalog’00), volume 00-5, pages 99–

106, Gothenburg University, Gothenburg, Sweden, 2000a.

Joris Hulstijn. Dialogue Models for Inquiry and Transaction. PhD thesis, University of Twente,

the Netherlands, 2000b.

Chung-Hee Hwang and Lenhart K. Schubert. Episodic Logic: A Comprehensive Natural Re-

presentation for Language Understanding. Mind and Machine, 3(4):381–419, 1993.

L. C. Jain, editor. Fusing Intelligence in Virtual Agents. Springer, 2008. (to appear).

Anthony Jameson, Angela Mahr, Michael Kruppa, Andreas Rieger, and Robert Schleicher.

Looking for Unexpected Consequences of Interface Design Decisions: The MeMo Work-

bench. In Proceedings of the 6th International Workshop on TAsk MOdels and DIAgrams

(TAMODIA 2007), pages 279–286, Toulouse, France, 2007.

254

BIBLIOGRAPHY

Oliver P. John and Sanjay Srivastava. The Big-Five Trait Taxonomy: History, Measurement,

and Theoretical Perspectives. In L. A. Pervin and O. P. John, editors, Handbook of Personality

Theory and Research, volume 2, pages 102–138. Guildford Press, New York, NY, USA, 1999.

Michael Johnston, Srinivas Bangalore, Gunaranjan Vasireddy, Amanda Stent, Patrick Ehlen,

Marilyn Walker, Steve Whittaker, and Preetam Maloor. MATCH: An Architecture for Multi-

modal Dialogue Systems. In Proceedings of the Annual Meeting of the Association for Com-

putational Linguistics, pages 376–383, Philadelphia, PA, USA, 2001.

Arne Jönsson. A Model for Habitable and Efficient Dialogue Management for Natural Lan-

guage Interaction. Natural Language Engineering, 3(2):103–122, 1997.

Arne Jönsson. Dialogue Management for Natural Language Interfaces – An Empiricial Approach.

PhD thesis, Linköping Studies in Science and Technology, No 312, Linköping, Sweden,

1993.

Arne Jönsson and Nils Dahlbäck. Talking to a Computer is not Like Talking to Your Best

Friend. In Proceedings of The first Scandinavian Conference on Artificial Intelligence, pages

53–68, Tromsø, Norway, 1988.

Yvonne Jung and Christian Knöpfle. Real Time Rendering and Animation of Virtual Charac-

ters. International Journal of Virtual Reality, 6(4):55–66, 2007.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice-Hall, Upper

Saddle River, NJ, USA, 2000.

Marcelo Kallmann and Daniel Thalmann. Modeling Objects for Interaction Tasks. In

EGCAS’98, 9th Eurographics Workshop on Animation and Simulation, pages 73–86, Lisbon,

Portugal, 1998.

Benjamin Kempe, Norbert Pfleger, and Markus Löckelt. Generating Verbal and Nonverbal

Utterances for Virtual Characters. In Proceedings of the International Conference on Virtual

Storytelling (ICVS) 2005, pages 73–78, Strasbourg, France, 2005.

Michael Kipp, Kerstin H. Kipp, Alassane Ndiaye, and Patrick Gebhard. Evaluating the Tangible

Interface and Virtual Characters in the Interactive COHIBIT Exhibit. In Proceedings of the

6th International Conference on Intelligent Virtual Agents (IVA’06), pages 434–444, Marina

Del Rey, CA, USA, 2006.

Martin Klesen and Patrick Gebhard. Affective Multimodal Control of Virtual Characters. In-

ternational Journal of Virtual Reality, 6(4):43–54, 2007.

Martin Klesen, Michael Kipp, Patrick Gebhard, and Thomas Rist. Staging Exhibitions: Me-

thods and Tools for Modelling Narrative Structure to Produce Interactive Performances

with Virtual Actors. Virtual Reality, Special Issue of Virtual Reality on Storytelling in Virtual

Environments, 7(1):17–29, 2003.

Christian Knöpfle and Yvonne Jung. The Virtual Human Platform: Simplifying the Use of

Virtual Characters. International Journal of Virtual Reality, 5(2):25–30, 2006.

255

BIBLIOGRAPHY

Stefan Kopp, Lars Gesellensetter, Nicole C. Krämer, and Ipke Wachsmuth. A Conversational

Agent as Museum Guide - Design and Evaluation of a Real-World Application. In Proceedings

of the 5th International Conference on Intelligent Virtual Agents (IVA’05), pages 329–343, Kos,

Greece, 2005.

Jacqueline Kowtko, Stephen Isard, and Gwyneth Doherty. Conversational Games within Dia-

logue. In M. Caenepeel, J. L. Delin, L. Oversteegen, G. Redeker, and J. Sanders, editors,

Proceedings of the DANDI Workshop on Discourse Coherence, University of Edinburgh Centre

for Cognitive Science, Edinburgh, UK, 1991.

Nicole C. Krämer and Gary Bente. Virtuelle Helfer: Embodied Conversational Agents in der

Mensch-Computer-Interaktion. In G. Bente, N. C. Krmer, and A. Petersen, editors, Virtuelle

Realitäten, pages 203–225. Hogref, Göttingen, Germany, 2002.

Ivana Kruijff-Korbayová, Elena Karagjiosova, Kepa J. Rodŕıguez, and Stina Ericsson. A Dia-

logue System with Contextually Appopriate Spoken Output Intonation. In Proceedings of

EACL-2003, pages 199–202, Budapest, Hungary, 2003.

Ivana Kruijff-Korbayová, Gabriel Amores, Nate Blaylock, Stina Ericsson, Guillermo Pérez,

Kalliroi Georgila, Michael Kaisser, Staffan Larsson, Oliver Lemon, Pilar Manchón, and Jan

Schehl. Extended Information State Modeling. Technical report, TALK deliverable 3.1,

2006.

Michael Kruppa, Lübomira Spassova, and Michael Schmitz. The Virtual Room Inhabitant -

Intuitive Interaction With Intelligent Environments. In S. Zhang and R. Jarvis, editors,

Proceedings of the 18th Australian Joint Conference on Artificial Intelligence (AI05), pages

225–234, Sydney, Australia, 2005.

John E. Laird and Paul Rosenbloom. The Evolution of the Soar Cognitive Architecture. In

David M. Steier and Tom M. Mitchell, editors, Mind Matters: A Tribute to Allen Newell,

pages 1–50. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1996.

Lynn Lambert and Sandra Carberry. A Tripartite Plan-Based Model of Dialogue. In Pro-

ceedings of the 29th annual meeting of the Association for Computational Linguistics, pages

47–54, Morristown, NJ, USA, 1991.

Marion Langer, Frank Hülsken, and Christian Eckes. Evaluation des T24-Demonstrators im

BMBF-Forschungsprojekt “Virtual Human”. Technical Report 3, Fraunhofer-Institut für Me-

dienkommunikation, St. Augustin, Germany, 2005.

Staffan Larsson. Issue-Based Dialogue Management. PhD thesis, Department of Linguistics,

Gothenburg University, Gothenburg, Sweden, 2002.

Staffan Larsson and David R. Traum. Information State and Dialogue Management in the

TRINDI Dialogue Move Engine Toolkit. Natural Language Engineering, 6(3–4):323–340,

2000.

Staffan Larsson, Peter Ljunglöf, Robin Cooper, Elisabet Engdahl, and Stina Ericsson. GoDiS

- An Accommodating Dialogue System. In Proceedings of ANLP/NAACL-2000 Workshop on

Conversational Systems, pages 7–10, Seattle, WA, USA, 2000.

256

BIBLIOGRAPHY

Oliver Lemon, Alexander Gruenstein, and Stanley Peters. Collaborative Activities and Multi-

Tasking in Dialogue Systems – Towards Natural Dialogue with Robots. Traitement automa-

tique des langues: Special issue on dialogue, 43(2):131–154, 2002.

David Lewis. Scorekeeping in a language game. Journal of Philosophical Logic, 8:339–359,

1979.

Anthony Liew. Understanding Data, Information, Knowledge and their Inter-Relationships.

Journal of Knowledge Management Practice, 8(2), 2007.

Available at http://www.tlainc.com/articl134.htm (last accessed 08.02.07).

Craig A. Lindley. Story and Narrative Structures in Computer Games. In Brunhild Bushoff,

editor, Developing Interactive Narrative Content: sagas/sagasnet reader. HighText, Munich,

Germany, 2005.

Peter Ljunglöf, Björn Bringert, Robin Cooper, Ann-Charlotte Forslund, David Hjelm, Rebecca

Johnson, Staffan Larsson, and Aarne Ranta. The TALK Library: an Integration of GF with

TrindiKit. Technical report, TALK deliverable 1.1, 2005.

Karen E. Lochbaum. A Collaborative Planning Model of Intentional Structure. Computational

Linguistics, 24(4):525–572, 1998.

Markus Löckelt. Dialogue Management in the SmartKom System. In E. Buchberger, editor,

Proceedings of KONVENS 2004, pages 125–132, Vienna, Austria, 2004.

Markus Löckelt. Action Planning for Virtual Human Performances. In Proceedings of the 3rd

International Conference on Virtual Storytelling, pages 53–62, Strasbourg, France, 2005.

Springer.

Markus Löckelt. Plan-Based Dialogue Management for Multiple Cooperating Applications. In

Wolfgang Wahlster, editor, SmartKom: Foundations of Multimodal Dialogue Systems, pages

301–316. Springer, Berlin, Germany, 2006.

Markus Löckelt and Norbert Pfleger. Multi-Party Interaction with Self-Contained Virtual Char-

acters. In Proceedings of the 9th Workshop on the Semantics and Pragmatics of Dialogue

(DIALOR), pages 139–142, Nancy, France, 2005.

Markus Löckelt and Norbert Pfleger. Augmenting Virtual Characters for More Natural Interac-

tion. In Proceedings of the 3rd International Conference on Technologies for Interactive Digital

Storytelling and Entertainment (TIDSE 2006), pages 231–240, Darmstadt, Germany, 2006.

Markus Löckelt, Tilman Becker, Norbert Pfleger, and Jan Alexandersson. Making Sense of

Partial. In Johan Bos, Mary Ellen Foster, and Colin Matheson, editors, Proceedings of the

6th Workshop on the Semantics and Pragmatics of Dialogue, pages 101–107, Edinburgh, UK,

2002.

Markus Löckelt, Elsa Pecourt, and Norbert Pfleger. Balancing Narrative Control and Autono-

my for Virtual Characters in a Game Scenario. In Mark T. Maybury, Oliviero Stock, and

Wolfgang Wahlster, editors, Proceedings of the First International Conference on Intelligent

Technologies for Interactive Entertainment (INTETAIN) 2005, pages 248–252, Madonna di

Campiglio, Italy, 2005. Springer.

257

BIBLIOGRAPHY

Markus Löckelt, Norbert Pfleger, and Norbert Reithinger. Multiparty Conversation for Mixed

Reality. International Journal of Virtual Reality, 6(4):31–42, December 2007.

Brian Magerko, John E. Laird, Mazin Assanie, Alex Kerfoot, and Devvan Stokes. AI Charac-

ters and Directors for Interactive Computer Games. In Proceedings of the 2004 Innovative

Applications of Artificial Intelligence Conference, pages 877–883, San Jose, CA, USA, 2004.

AAAI Press.

William C. Mann. Dialogue Macrogame Theory. In Proceedings of the 6th Workshop on Seman-

tics and Pragmatics of Dialogue (EDILOG), pages 109–116, Edinburgh, UK, 2002.

William C. Mann. Dialogue Games: Conventions of Human Interaction. Argumentation, 2:

512–532, 1988.

Viviana Mascardi, Valentina Cordi, and Paolo Rosso. A Comparison of Upper Ontologies.

Technical Report DISI-TR-06-21, University of Genova, Department for Informatics and

Information Science, Genova, Italy, 2007.

Michael Mateas. Interactive Drama, Art, and Artificial Intelligence. PhD thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2002.

Michael Mateas and Andrew Stern. Towards Integrating Plot and Character for Interactive

Drama. In Working Notes of the Social Intelligent Agents: The Human in the Loop Symposium,

AAAI Fall Symposium Series, pages 113–118, Menlo Park, CA, USA, 2000. AAAI Press.

Michael Mateas and Andrew Stern. Façade: An Experiment in Building a Fully-Realized

Interactive Drama. In Game Developers Conference, Game Design track (Online Proceedings),

San Jose, CA, USA, March 2003.

Available at http://citeseer.ist.psu.edu/mateas03facade.html (last access 07.03.2008).

Mark T. Maybury and Wolfgang Wahlster, editors. Readings in Intelligent User Interfaces, chap-

ter Introduction. Morgan Kaufmann Publishers, 1998.

Peter McBurney and Simon Parsons. Dialogue Games in Multi-Agent Systems. Informal Logic,

Special Issue on Applications of Argumentation in Computer Science, 22(3):257–274, 2002a.

Peter McBurney and Simon Parsons. Games That Agents Play: A Formal Framework for

Dialogues Between Autonomous Agents. Journal of Logic, Language and Information, 11

(3):315–334, 2002b.

Drew McDermott, Mark Burstein, and Douglas Smith. Overcoming Ontology Mismatches in

Transactions with Self-describing Agents. In The Emerging Semantic Web: Selected Papers

from the First Semantic Web Working Symposium, pages 228–244. 2002.

Stanley Milgram. Behavioral Study of Obedience. Journal of Abnormal and Social Psychology,

67:371–378, 1963.

Robert B. Miller. Response Time in Man-Computer Conversational Transactions. In Procee-

dings of the AFIPS Fall Joint Computer Conference, volume 33, pages 267–277, 1968.

David Milward and Martin Beveridge. Ontology-based Dialogue Systems. In Proceedings of the

3rd Workshop on Knowledge and Reasoning in Practical Dialogue Systems (IJCAI’03), pages

9–18, Acapulco, Mexico, 2003.

258

BIBLIOGRAPHY

Masahiro Mori. Bukimi No Tani (The Uncanny Valley). Energy, 7:33–35, 1970.

Daniele Nardi and Ronald J. Brachman. An Introduction to Description Logics. In F. Baader,

D. Calvanese, D.L. McGuiness, D. Nardi, and P. F. Patel-Schneider, editors, The Description

Logic Handbook, pages 5–44. Cambridge University Press, Cambridge, UK, 2002.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. Wiliam Murdock, Dan Wu, and Fusun

Yaman. SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research, 20:

379–404, 2003.

Dana S. Nau, Stephen J. J. Smith, and Kutluhan Erol. Control Strategies in HTN Planning:

Theory versus Practice. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/10th con-

ference on Artificial intelligence/Innovative applications of artificial intelligence, pages 1127–

1133, Menlo Park, CA, USA, 1998.

Alassane Ndiaye and Anthony Jameson. Predictive Role Taking in Dialog: Global Anticipation

Feedback Based on Transmutability. In Sandra Carberry and Ingrid Zukerman, editors,

Proceedings of the 5th International Conference on User Modeling (UM-96), pages 137–144,

Kailua-Kona, HI, USA, 1996.

Alassane Ndiaye, Patrick Gebhard, Michael Kipp, Martin Klesen, Michael Schneider, and Wolf-

gang Wahlster. Ambient Intelligence in Edutainment: Tangible Interaction with Life-Like

Exhibit Guides. In Proceedings of the Conference on Intelligent Technologies for Interactive

Entertainment (INTETAIN’05), pages 104–113, Madonna di Campiglio, Italy, 2005.

Minh Hoai Nguyen and Wayne R. Wobcke. Towards a General Implementation of Shared-

Plans. In Proceedings of the 3rd Australian Undergraduate Students’ Computing Conference,

pages 42–48, Canberra, Australia, 2005.

Georg Niklfeld, Robert Finan, and Michael Pucher. Architecture for Adaptive Multimodal

Dialog Systems based on VoiceXML. In EUROSPEECH-2001, pages 2341–2344, 2001.

Mina Nikolova. Konzeption und Realisierung von Wissensbasis und narrativer Kontrolle

für ein Storytelling-System mit multiplen Agenten. Student project report, DFKI GmbH,

Saarbrücken, Germany, 2006.

Daniel Oberle, Anupriya Ankolekar, Pascal Hitzler, Philipp Cimiano, Michael Sintek, Malte

Kiesel, Babak Mougouie, Stephan Baumann, Shankar Vembu, Massimo Romanelli, Paul

Buitelaar, Ralf Engel, Daniel Sonntag, Norbert Reithinger, Berenike Loos, Hans-Peter Zorn,

Vanessa Micelli, Robert Porzel, Christian Schmidt, Moritz Weiten, Felix Burkhardt, and

Jianshen Zhou. DOLCE ergo SUMO: On Foundational and Domain Models in the SmartWeb

Integrated Ontology (SWIntO). Web Semantics: Science, Services and Agents on the World

Wide Web, 5(3):156–174, 2007.

Sharon Oviatt. Handbook of Human-Computer Interaction, chapter Multimodal Interfaces.

Lawrence Erlbaum, New Jersey, NJ, USA, 2002.

Sharon L. Oviatt. Ten Myths of Multimodal Interaction. Communications of the ACM, 42(11):

74–81, 1999.

259

BIBLIOGRAPHY

Sharon L. Oviatt. Multimodal System Processing in Mobile Environments. In Proceedings of

the 13th Annual ACM Symposium on User Interface Software Technology (UIST’2000), pages

21–30, New York, NY, USA, 2000. ACM Press.

Sharon L. Oviatt and Philip R. Cohen. Multimodal Interfaces That Process What Comes Natu-

rally. Communications of the ACM, 43(3):45–53, 2000.

Ana Paiva. The Role of Tangibles in Virtual Storytelling. In Gérard Subsol, editor, Procee-

dings of the 3rd International Conference on Virtual Storytelling (ICVS’05), Lecture Notes in

Computer Science 3805, pages 225–228, Strasbourg, France, 2005. Springer.

Ana Paiva, Joao Dias, Daniel Sobral, Ruth Aylett, Polly Sobreperez, Sarah Woods, Carsten Zoll,

and Lynne Hall. Caring for Agents and Agents that Care: Building Empathic Relations with

Synthetic Agents. In AAMAS ’04: Proceedings of the 3rd International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 194–201, Washington, DC, USA, 2004.

IEEE Computer Society.

Hans Madsen Pedersen. Speech Acts and Agents. A Semantic Analysis. Master’s thesis, Infor-

matics and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark,

2002.

Christopher Peters, Simon Dobbyn, Brian MacNamee, and Carol O’Sullivan. Smart Objects

for Attentive Agents. In Proceedings of the International Conference in Central Europe on

Computer Graphics, Visualization and Interactive Digital Media, pages 1–8, Plzen, Czech

Republic, 2003.

Norbert Pfleger. FADE – an Integrated Approach to Multimodal Fusion and Discourse Processing.

PhD thesis, University of the Saarland, Saarbrücken, Germany, 2007.

Norbert Pfleger and Markus Löckelt. A Comprehensive Context Model for Multi-Party Inter-

actions with Virtual Characters. In Jonathan Gratch, Michael Young, Ruth Aylett, Daniel

Ballin, and Patrick Olivier, editors, Proceedings of the 6th International Conference on Intelli-

gent Virtual Agents (IVA), volume 4133 of Lecture Notes in Computer Science, pages 157–168,

Marina del Rey, CA, USA, 2006. Springer.

Norbert Pfleger and Markus Löckelt. Synchronizing Dialogue Contributions of Human Users

and Virtual Characters in a Virtual Reality Environment. In Proceedings of the 9th European

Conference on Speech Communication and Technology (Interspeech/Eurospeech), pages 2773–

2776, Lisbon, Portugal, 2005.

Norbert Pfleger, Jan Alexandersson, and Tilman Becker. Scoring Functions for Overlay

and their Application in Discourse Processing. In Proceedings of KONVENS’02 (online),

Saarbrücken, Germany, 2002.

Available at http://konvens2002.dfki.de/cd (last accessed 07.12.2007).

Norbert Pfleger, Jan Alexandersson, and Tilman Becker. A Robust and Generic Discourse

Model for Multimodal Dialogue. In Workshop Notes of the IJCAI-03 Workshop on “Knowledge

and Reasoning in Practical Dialogue Systems”, pages 64–70, Acapulco, Mexico, 2003.

260

BIBLIOGRAPHY

Luis Villaseñor Pineda, Antonio Massé Márquez, and Luis Alberto Pineda Cortés. A Multi-

modal Dialogue Contribution Coding Scheme. In Proceedings of the Workshop on Meta-

Descriptions and Annotation Schemes for Multimodal Language Resources, 2nd Interna-

tional Conference on Language Resources and Evaluation (LREC’2000), pages 52–56, Athens,

Greece, 2000.

Manfred Pinkal. On Semantic Underspecification. In H. Bunt and Reinhard Muskens, editors,

Computing Meaning, pages 33–56, Tilburg University, The Netherlands, 1999. Kluwer.

Massimo Poesio and David R. Traum. Towards an axiomatization of dialogue acts. In J. Hul-

stijn and A. Nijholt, editors, Proceedings of TWENDIAL, the Twente Workshop on the Formal

Semantics and Pragmatics of Dialogues, pages 207–222, Enschede, the Netherlands, 1998.

Peter Poller and Valentin Tschernomas. Multimodal Fission and Media Design. In Wolfgang

Wahlster, editor, SmartKom: Foundations of Multimodal Dialogue Systems, pages 379–400.

Springer, Berlin, Germany, 2006.

Robert Porzel, Norbert Pfleger, Stefan Merten, Markus Löckelt, Iryna Gurevych, Ralf Engel,

and Jan Alexandersson. More on Less: Further Applications of Ontologies in Multi-Modal

Dialogue Systems. In 3rd Workshop on Knowledge and Reasoning in Practical Dialogue Sys-

tems (IJCAI’03), pages 1–8, Acapulco, Mexico, 2003.

Vladimir A. Propp. Morphology of the Folktale. University of Texas Press, Austin, TX, USA,

1968.

Stephen G. Pulman. Conversational Games, Belief Revision and Bayesian Networks. In CLIN

VII: 7th Computational Linguistics in the Netherlands meeting, pages 1–25, IPO, Technische

Universiteit Eindhoven, the Netherlands, 1996.

Anand S. Rao and Michael P. Georgeff. Modeling Rational Agents within a BDI-Architecture.

In James F. Allen, Richard Fikes, and Erik Sandewall, editors, Proceedings of the 2nd Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR’91), pages

473–484. Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA, 1991.

Ehud Reiter and Robert Dale. Building Natural Language Generation Systems. Cambridge

University Press, Cambridge, UK, 1999.

Norbert Reithinger and Daniel Sonntag. An Integration Framework for a Mobile Multimodal

Dialogue System Accessing the Semantic Web. In Proceedings of 9th European Conference on

Speech Communication and Technology (Interspeech 2005), pages 841–844, Lisboa, Portugal,

2005.

Norbert Reithinger, Jan Alexandersson, Tilman Becker, Anselm Blocher, Ralf Engel, Markus

Löckelt, Jochen Müller, Norbert Pfleger, Peter Poller, Michael Streit, and Valentin Tscher-

nomas. SmartKom – Adaptive and Flexible Multimodal Access to Multiple Applications.

In Sharon L. Oviatt, Trevor Darrell, Mark T. Maybury, and Wolfgang Wahlster, editors, Pro-

ceedings of the 5th International Conference on Multimodal Interfaces (ICMI), pages 101–108,

Vancouver, Canada, 2003.

Norbert Reithinger, Simon Bergweiler, Ralf Engel, Gerd Herzog, Norbert Pfleger, Massimo

Romanelli, and Daniel Sonntag. A Look Under the Hood – Design and Development of the

261

BIBLIOGRAPHY

First SmartWeb System Demonstrator. In Proceedings of the 7th International Conference on

Multimodal Interfaces (ICMI), pages 159–166, Trento, Italy, 2005.

Norbert Reithinger, Patrick Gebhard, Markus Löckelt, Alassane Ndiaye, Norbert Pfleger, and

Martin Klesen. VirtualHuman – Dialogic and Affective Interaction with Virtual Characters.

In Proceedings of the 8th International Conference on Multimodal Interfaces (ICMI 2006),

pages 51–58, Banff, Canada, 2006.

Charles Rich and Candace L. Sidner. COLLAGEN: A Collaboration Manager for Software

Interface Agents. User Modeling and User-Adapted Interaction, 8(3-4):315–350, 1998.

Mark O. Riedl. Towards Integrating AI Story Controllers and Game Engines: Reconciling

World State Representations. In Proceedings of the 2005 IJCAI Workshop on Reasoning,

Representation, and Learning in Computer Games, pages 84–89, Edinburgh, UK, 2005.

Mark O. Riedl and Andrew Stern. Believable Agents and Intelligent Story Adaptation for

Interactive Storytelling. In Proceedings of the 3rd International Conference on Technologies

for Interactive Digital Storytelling and Entertainment (TIDSE’06), pages 1–12, Darmstadt,

Germany, 2006a.

Mark O. Riedl and Andrew Stern. Failing Believably: Toward Drama Management with Au-

tonomous Actors in Interactive Narratives. In Proceedings of the 3rd International Conference

on Technologies for Interactive Digital Storytelling and Entertainment (TIDSE06), pages 195–

206, Darmstadt, Germany, 2006b.

Mark O. Riedl, Cesare J. Saretto, and R. Michael Young. Managing Interaction between Users

and Agents in a Multiagent Storytelling Environment. In Proceedings of the 2nd International

Conference on Autonomous Agents and Multi-Agent Systems, pages 741–748, Melbourne,

Australia, 2003.

Thomas Rist, Stephan Baldes, Patrick Gebhard, Michael Kipp, Martin Klesen, Peter Rist, and

Markus Schmitt. CrossTalk: An Interactive Installation with Animated Presentation Agents.

In Proceedings of the 2nd Conference on Computational Semiotics for Games and New Media

(COSIGN 2002), pages 61–67, Augsburg, Germany, 2002.

Massimo Romanelli. Ontology-based Representation and Processing of Plurals for Human-

Machine Dialogue Systems with Unification-based Operations. Master’s thesis, University

of the Saarland, Saarbrücken, Germany, 2005.

Martin Rumpler. Statusbasierte Verhaltenssteuerung von virtuellen Charakteren. PhD thesis,

University of the Saarland, Saarbrücken, Germany, 2007.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

Upper Saddle River, NJ, USA, 1995.

Harvey Sacks, Emanuel A. Schegloff, and Gail Jefferson. A Simplest Systematics for the

Organization of Turn-Taking for Conversation. Language, 50:696–735, 1974.

Emanuel A. Schegloff and Harvey Sacks. Opening up Closings. Semiotica, 8:289–327, 1973.

262

BIBLIOGRAPHY

Florian Schiel. Evaluation of Multimodal Dialogue Systems. In Wolfgang Wahlster, editor,

SmartKom: Foundations of Multimodal Dialogue Systems, pages 617–643. Springer Verlag,

Berlin, Germany, 2006.

Marc Schröder and Jürgen Trouvain. The German Text-to-Speech Synthesis System MARY: A

Tool for Research, Development and Teaching. International Journal of Speech Technology,

6:365–377, 2003.

John R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University

Press, Cambridge, UK, 1969.

John R. Searle. A Taxonomy of Illocutionary Acts. In K. Gunderson, editor, Language, Mind,

and Knowledge. University of Minnesota Press, Minneapolis, MN, USA, 1975.

John R. Searle and Daniel Vanderveken. Foundations of Illocutionary Logic. Cambridge Uni-

versity Press, Cambridge, UK, 1985.

Candace L. Sidner. An Artificial Discourse Language for Collaborative Negotiation. In AAAI

’94: Proceedings of the 12th National Conference on Artificial Intelligence (vol. 1), pages

814–819, Menlo Park, CA, USA, 1994. American Association for Artificial Intelligence.

Teresa Sikorski and James F. Allen. A Task-Based Evaluation of the TRAINS-95 Dialogue

System. In ECAI’96 Workshop on Dialogue Processing in Spoken Language Systems, revised

papers, number 1236 in Springer Lecture Notes in Computer Science, pages 207–220, Bu-

dapest, Hungary, 1997.

Mel Slater, Angus Altley, Adam Davison, David Swapp, Christoph Guger, Chris Barker, Nancy

Pistrang, and Maria V. Sanchez-Vives. A Virtual Reprise of the Stanley Milgram Obedience

Experiments. PLoS ONE, 1(1):e39, 2006.

Daniel Sonntag and Massimo Romanelli. A Multimodal Result Ontology for Integrated Se-

mantic Web Dialogue Applications. In Proceedings of the 5th International Conference on

Language Resources and Evaluation (LREC), pages 511–516, 2006.

Daniel Sonntag, Ralf Engel, Gerd Herzog, Alexander Pfalzgraf, Norbert Pfleger, Massimo Ro-

manelli, and Norbert Reithinger. SmartWeb Handheld – Multimodal Interaction with On-

tological Knowledge Bases and Semantic Web Services. In LNAI Special Volume on Human

Computing, pages 272–295. Springer, 2007.

William R. Swartout, Jonathan Gratch, Randy Hill, Ed Hovy, R. Lindheim, Stacy Marsella, Jeff

Rickel, and David R. Traum. Simulation meets Hollywood: Integrating Graphics, Sound,

Story and Character for Immersive Simulation. In Oliviero Stock and Massimo Zancanaro,

editors, Multimodal Intelligent Information Presentation, pages 279–304. Springer, 2005.

William R. Swartout, Jonathan Gratch, Randall W. Hill, Eduard Hovy, Stacy Marsella, Jeff

Rickel, and David R. Traum. Toward Virtual Humans. AI Magazine, 27(2):96–108, 2006.

Jürgen te Vrugt. A Dynamic Multi-Application Dialog Engine for Task-Oriented Voice User Inter-

faces. PhD thesis, University of the Saarland, Saarbrücken, Germany, 2006.

David R. Traum. 20 Questions on Dialogue Act Taxonomies. Journal of Semantics, 17(1):

7–30, 2000.

263

BIBLIOGRAPHY

David R. Traum. Issues in Multi-Party Dialogues. In Frank Dignum, editor, Advances in Agent

Communication, pages 201–211. Springer, Berlin/Heidelberg, Germany, 2004.

David R. Traum. Mental State in the TRAINS-92 Dialogue Manager. In Working Notes of the

AAAI Spring Symposium on Reasoning about Mental States: Formal Theories and Applications,

pages 143–149, 1993.

David R. Traum and James F. Allen. Discourse Obligations in Dialogue Processing. In Pro-

ceedings of ACL-94, pages 1–8, Las Cruces, NM, USA, 1994.

David R. Traum and Elizabeth A. Hinkelman. Conversation Acts in Task-Oriented Spoken

Dialogue. Computational Intelligence, 8(3):575–599, 1992. Special Issue on Non-literal

Language.

David R. Traum and Staffan Larsson. The Information State Approach to Dialogue Manage-

ment. In Smith and Kuppevelt, editors, Current and New Directions in Discourse & Dialogue,

pages 325–353. Kluwer, Dordrecht, the Netherlands, 2003.

David R. Traum and Jeff Rickel. Embodied Agents for Multi-Party Dialogue in Immersive

Virtual Worlds. In C. Pelachaud and I. Poggi, editors, Proceedings of the First International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02), pages 766–

773, Bologna, Italy, 2002.

Edward Tse, Saul Greenberg, Chia Shen, and Clifton Forlines. Multimodal Multiplayer Table-

top Gaming. In Proceedings of the 3rd International Workshop on Pervasive Gaming Applica-

tions (PerGames), pages 141–150, Dublin, Ireland, 2006.

W3C-VoiceXML. Voice Extensible Markup Language (VoiceXML) 2.1, W3C Working Draft 15,

2006. (http://www.w3.org/TR/voicexml21/, last accessed Dec 20, 2006).

Wolfgang Wahlster. SmartKom: Fusion and Fission of Speech, Gestures, and Facial Expres-

sions. In Proceedings of the 1st International Workshop on Man-Machine Symbiotic Systems,

pages 213–225, Kyoto, Japan, 2002.

Wolfgang Wahlster. SmartKom: Symmetric Multimodality in an Adaptive and Reusable Dia-

logue Shell. In R. Krahl and D. Günther, editors, Proceedings of the Human Computer Inter-

action Status Conference 2003, pages 47–62, DLR: Berlin, Germany, 2003a.

Wolfgang Wahlster. Towards Symmetric Multimodality: Fusion and Fission of Speech, Ges-

ture, and Facial Expression. In Andreas Günter, Rudolf Kruse, and Bernd Neumann, editors,

KI 2003: Advances in Artificial Intelligence. Proceedings of the 26th German Conference on Ar-

tificial Intelligence, Springer LNAI, pages 1–18, Hamburg, Germany, 2003b.

Wolfgang Wahlster. SmartWeb: Towards Semantic Web Services for Ambient Intelligence

(Presentation). In Proceedings of the International Symposium on Life-World Semantics and

Digital City Design, Kyoto, Japan, 2004.

Wolfgang Wahlster. Overview of the Current State of the Lead Innovation VirtualHuman. In

Bernd Reuse, Wolfgang Wahlster, and José L. Encarnaçāo, editors, VirtualHuman: Slides of

the 3rd Project Meeting and VirtualHuman Network of Excellence Meeting held in conjunction

with INTETAIN 2005, Madonna di Campiglio, Italy, 2005.

264

BIBLIOGRAPHY

Wolfgang Wahlster, editor. Smartkom. Foundations of Multimodal Dialogue Systems. Cognitive

Technologies Series. Springer, Berlin, Germany, 2006.

Wolfgang Wahlster and Alfred Kobsa. User Models in Dialog Systems, chapter User Models in

Dialog Systems, pages 4–34. Springer, Berlin, Germany, 1989.

Wolfgang Wahlster, Norbert Reithinger, and Anselm Blocher. SmartKom: Multimodal Com-

munication with a Life-Like Character. In Proceedings of Eurospeech 2001, 7th European

Conference on Speech Communication and Technology, volume 3, pages 1547–1550, Aal-

borg, Denmark, 2001.

Marilyn Walker, Candace A. Kamm, and Diane J. Litman. Towards Developing General Models

of Usability with PARADISE. Natural Language Engineering, 6(3-4):363–377, 2000.

Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella. PARADISE: A

Framework for Evaluating Spoken Dialogue Agents. In Philip R. Cohen and Wolfgang

Wahlster, editors, Proceedings of the 35th Annual Meeting of the Association for Computa-

tional Linguistics, pages 271–280, Somerset, New Jersey, USA, 1997.

Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-

gence, chapter Belief-Desire-Intention Architectures, pages 54–61. MIT Press, 1999.

Joseph Weizenbaum. ELIZA – A Computer Program For the Study of Natural Language Com-

munication Between Man And Machine. Communications of the ACM, 9(1):36–45, 1966.

Ludwig Wittgenstein. Philosophische Untersuchungen. Suhrkamp Verlag, Frankfurt am Main,

Germany, 1953.

R. Michael Young. An Overview of the Mimesis Architecture: Integrating Intelligent Narrative

Control into an Existing Gaming Environment. In Working Notes of the AAAI Spring Sympo-

sium on Artificial Intelligence and Interactive Entertainment, pages 77–81, Menlo Park, CA,

USA, 2001. AAAI Press.

265

