
Dissertation zur Erlangung
des Grades des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

U
N I

V E R S IT A
S

S
A

R A V I E N

S I
S

Applying the Engineering Statechart Formalism
to the Evaluation of Soft Real-Time in Operating Systems

-
A Use Case Tailored Modeling and Analysis Technique

Vorgelegt von
Alexander Koenen-Dresp

Glons, Belgien

Tag der Einreichung: 4. Juli 2008

Tag des Kolloquiums: 28. Oktober 2008

Dekan: Prof. Dr. Joachim Weickert
Vorsitzender der Prüfungskommission: Prof. Dr. Reinhard Wilhelm
1. Berichterstatter: Prof. Dr. Helge Scheidig
2. Berichterstatter: Prof. Bernd Finkbeiner, PhD
Akademischer Mitarbeiter: Dr. Mark Hillebrand

Acknowledgements

First of all I thank my primary advisor Professor Helge Scheidig for the unique opportu-
nity to participate in his research. I am also very grateful for the excellent supervision and
the guidance Professor Bernd Finkbeiner gave me during my research. Without his clear
guidelines on the methodology, this thesis would never have been possible. My colleges
Sebastian Schöning and Reinhart Spurk also greatly contributed to this work - thank you.

Words cannot express my gratitude towards my wife Wiebke. Her never-ending fight
for my success was the best support for which I could ever have hoped.

I am very grateful to my three proof readers, Calogero Cumbo, Christian Franze and
Robert Koch. To Robert I owe thanks for his friendship and personal support over the
last decade.

Since my research and the writing of this thesis was conducted while I was a full-time
employee of the German Armed Forces Command Control and Information System Reg-
iment (GAFCCIS Rgt) in Cologne and later of the NATO Programming Centre (NPC)
in Glons (Belgium), I would like to thank all my superior officers for their support. In
particular, Colonel Scholz, Commander of the GAFCCIS Rgt and his deputy Lieutenant
Colonel Domke. At the NPC my thanks go to Colonel Eisenreich, Commander of the
NPC, Lieutenant Colonels Nauth and Feuerbach, the Senior National Officers of Germany
and to all my colleges for taking over my duties during my absent periods.

Finally I would like to express my sincere appreciation to my family and all those not
mentioned who have contributed, directly or indirectly to this thesis.

For my beloved wife Wiebke and my dearly departed grandfather Paul

All we have to decide is what to do with the time that is given to us.
Gandalf the Grey, J.R.R. Tolkien

Abstract

Multimedia applications that have emerged in recent years impose unique requirements on
an underlying general purpose operating system (GPOS). The suitability of a GPOS for
multimedia processing is judged by its soft real-time capabilities. To date, the question of
how these capabilities can be assessed has scarcely been addressed: this is a gap in GPOS
research.
By answering questions on the impacts of the Interrupt Handling Facility (IHF) on the
overall soft real-time capabilities of a GPOS, this thesis contributes to the filling of this
blank space. The Engineering Statechart Formalism (ESF), a use case tailored formal
method of modeling real-world OS, is syntactically and semantically defined. Models
of the IHF of selected real-world operating systems are then created by means of this
technique.
As no appropriate real-time concept fitting the goals of this thesis as yet exists, a suitable
definition is constructed. By projecting this system-wide idea to the interrupt subsystem,
specific indicators for this subsystem are derived. These indicators are then evaluated
by applying formal techniques such as graph-based analysis and temporal logic model
checking to the ESF models. Finally, the assertions derived from this evaluation are
interpreted with respect to their impacts on real-time multimedia processing in different
general purpose operating systems.

Kurzzusammenfassung

Multimedia-Anwendungen haben in den letzten Jahren weite Verbreitung erfahren. Solche
Anwendungen stellen besondere Anforderungen an das Betriebssystem (BS), auf dem sie
ausgeführt werden. Insbesondere Echtzeitfähigkeiten des Betriebssystems sind von Be-
deutung, wenn es um seine Eignung für Multimedia-Verarbeitung geht. Bis heute wurde
die Frage, wie sich diese Fähigkeiten konkret innerhalb eines BS manifestieren, nur unzu-
reichend untersucht.
Die vorliegende Arbeit leistet einen Beitrag zur Füllung dieser Lücke in der BS-Forschung.
Die Effekte des Subsystems zur Unterbrechungsbehandlung in BS auf die Echtzeitfähigkeit
des Gesamtsystems werden detailliert auf Basis von Modellen dieses Subsystems in ver-
schiedenen BS analysiert. Um eine formale Auswertung zu erlauben, wird eine auf den
Anwendungsfall zugeschnittene formale Methode zur BS-Modellierung verwendet. Die
spezifizierte Syntax und Semantik dieses Engineering Statechart Formalism (ESF) basieren
auf dem klassischen Statechart-Formalismus.
Da bislang kein geeigneter Echtzeit-Begriff existiert, wird eine konsistente Definition herge-
leitet. Durch die Abbildung dieser sich auf das Gesamtsystem beziehenden Eigenschaft
auf die Unterbrechungsbehandlung werden spezifische Indikatoren für dieses Subsystem
hergeleitet. Die Ausprägungen dieser Indikatoren für die verschiedenen untersuchten Be-
triebssyteme werden anhand formaler Methoden wie graphbasierter Analyse und Tempo-
ral Logic Model Checking ausgewertet. Die Interpretation der Untersuchungsergebnisse
liefert Aussagen über die Effekte der Implementierung der Unterbrechungsbehandlung auf
die Echtzeitfähigkeit der untersuchten Betriebssysteme bei der Verarbeitung von multime-
dialen Daten.

Ausführliche Zusammenfassung

Multimedia-Anwendungen haben in den letzten Jahren weite Verbreitung erfahren. Solche
Anwendungen stellen besondere Anforderungen an das Betriebssystem (BS), auf dem sie
ausgeführt werden. Insbesondere Echtzeitfähigkeiten des Betriebssystems sind von Bedeu-
tung, wenn es um seine Eignung für Multimedia-Verarbeitung geht. Es existieren zwar
zahlreiche Lösungen für die Verbesserung des systeminternen Scheduling, aber ganzheitliche
Ansätze, die andere Komponenten des Systems mit einbeziehen, sind bisher kaum vorhan-
den. Die damit einhergehende Frage, wie sich die geforderten Echtzeitfähigkeiten in
konkreten Subsystemen innerhalb eines BS manifestieren, ist daher bis heute nur un-
zureichend untersucht.

Die vorliegende Arbeit leistet einen Beitrag zur Füllung dieser Lücke in der Betriebssystem-
Forschung. Der interaktive Teil eines Betriebssystems, die Unterbrechungsbehandlung,
wird hier eingehend hinsichtlich seiner Einflüsse auf das Systemverhalten hin untersucht.
Dazu kommen Methoden aus den Disziplinen des Software Engineering und der rechner-
gestützten Verifikation zum Einsatz: die Effekte des Subsystems zur Unterbrechungsbe-
handlung in verschiedenen BS auf die Echtzeitfähigkeit des Gesamtsystems werden detail-
liert mittels formaler Modelle abgebildet und analysiert.

Da sich Betriebssysteme bezüglich ihrer inhärenten Eigenschaften signifikant von an-
deren Software-Systemen unterscheiden, ist der erste notwendige Schritt die Entwick-
lung einer formalen, anwendungsfallspezifischen Modellierungstechnik. Ein auf klassischen
Statecharts basierender Formalismus – der Engineering Statechart Formalism (ESF) –
wird hergeleitet und seine Syntax sowie Semantik definiert. Die zusätzlichen Statechart-
Elemente erleichtern die Modellierung von Rekursion, reduzieren die Komplexität der
Modelle und stellen ein Werkzeug zur Verfügung, um sowohl logisch gruppierte als auch
parallele Abläufe ohne Mehraufwand abzubilden.

Drei unterschiedliche Betriebssysteme für die Intel IA32-Architektur, namentlich Linux,
OpenBSD und L4Ka::Pistachio werden ausgewählt und die relevanten Bestandteile des
Interrupt-Subsystems mittels Techniken des Reverse Engineering unter Verwendung des
ESF modelliert.

Da bislang kein für die Zielsetzung dieser Arbeit geeigneter Echtzeit-Begriff existiert, wird
eine konsistente Definition basierend auf Time Utility Functions (TUF) hergeleitet. Die
somit erreichte Abgrenzung zwischen hartem und weichem Echtzeitbegriff erlaubt die Fest-
legung des Konzeptes von Multimedia-orientierter weicher Echtzeit für Betriebssysteme.

Dieser sich auf das Gesamtsystem beziehende Echtzeitbegriff wird anschließend auf die
Unterbrechungsbehandlung projiziert. Da dieser Projektionsvorgang eine komplette Sys-
temarchitektur voraussetzt, wird die am Lehrstuhl für Betriebssysteme der Universität
des Saarlandes entwickelte Component Extension (CE) als Referenz-Architektur angenom-
men. Mittels der Projektion werden spezifische Indikatoren für das Interrupt-Subsystem
hergeleitet. Diese Indikatoren werden ISO-Qualitätsfaktoren für Anwendungssoftware zu-
geordnet.

Die Ausprägungen dieser Indikatoren für die drei verschiedenen untersuchten Betriebs-
syteme werden anhand unterschiedlicher formaler Methoden ausgewertet. Dabei werden in
Abhängigkeit von der Natur jedes Indikators verschiedene Herangehensweisen spezifiziert
und angewandt. Architekturelle Eigenschaften werden mittels statischer, syntaktischer
Analyseverfahren ausgewertet, für Kontrollflussbasierte Indikatoren wird eine Methode
zur graphbasierten Analyse entwickelt. Die verbleibenden, eingabeabhängigen Indika-
toren werden dann mittels Temporal Logic Model Checking evaluiert. Dafür wird ein
umfassendes Regelwerk zur Umwandlung von ESF -Modellen in Kripkestrukturen definiert.

Die Interpretation der Untersuchungsergebnisse liefert quantitative und qualitative Aus-
sagen über die Effekte der Implementierung der Unterbrechungsbehandlung auf die Echt-
zeitfähigkeit der untersuchten Betriebssysteme bei der Verarbeitung von multimedialen
Daten. Aus diesen Ergebnissen wird eine Empfehlung für das Betriebssystem gegeben,
welches optimal als Basis für das multimediale Gesamtsystem geeignet ist. Weiterhin in-
duzieren die Analyseergebnisse Implementierungsempfehlungen für die CE.
Ein ausführlicher Ausblick auf durch die geleistete Forschungsarbeit neu erschlossene The-
menbereiche rundet die Arbeit ab.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions and Scientific Goals . 1
1.3 Thesis Outline . 2
1.4 Related Work: Requirements Verification in Operating Systems 3
1.5 Basic Definitions . 4
1.6 Conventions . 5

2 Modeling Methods 7
2.1 Preliminary Considerations . 8

2.1.1 Transformational vs. Reactive Systems 8
2.1.2 Stochastic vs. Deterministic Modeling 8

2.2 Formal Techniques . 9
2.2.1 Visual Formalisms . 9

2.2.1.1 Graphs . 9
2.2.1.2 Automata . 9
2.2.1.3 State Transition Nets . 9
2.2.1.4 Other High-Level Formalisms 10

2.2.2 Textual Formalisms – Description Languages 10
2.2.3 Algebras . 10

2.3 Comparison and Usability Studies . 10
2.4 Statecharts . 12

2.4.1 Introduction . 12
2.4.2 Formal Definition . 13
2.4.3 Attributes, Properties and Notations 18
2.4.4 Semantics . 19

2.4.4.1 Categories of Semantics . 19
2.4.4.2 The Synchrony Hypothesis 20
2.4.4.3 Statechart Semantics . 20

3 Engineering Statechart Formalism 25
3.1 Preliminaries of ESF Syntax and Semantics 26

3.1.1 Sequential Transitions . 26
3.1.2 Enhanced Data Structures for Statecharts 27

3.2 Path Events and Split/Combine Pseudo-States 27
3.3 Event Bus . 33

I

II CONTENTS

3.4 Long-Term History Connectors . 36
3.5 Cartesian Transition Set . 38
3.6 Conclusion . 41

4 IHF Models 43
4.1 Hardware Platform . 43

4.1.1 Intel Architecture Specific Details 46
4.1.2 Specific Machine Setup . 50
4.1.3 Load Scenarios . 52
4.1.4 Load Profiles . 52

4.2 Modeling Approach . 52
4.2.1 Top Down View . 53
4.2.2 Modeling Implementation Patterns 55

4.2.2.1 Modeling Sequential Control Flow 55
4.2.2.2 Modeling Disruptions . 56
4.2.2.3 Modeling Synchronization 57
4.2.2.4 Modeling Conditional Branching 58

4.2.3 Nomenclature and Conventions . 59
4.2.3.1 Events . 59
4.2.3.2 States . 60
4.2.3.3 Transitions . 60
4.2.3.4 Usage of Event Busses in Combination with CTSC 61
4.2.3.5 UML 2.0 Submachines . 61

4.3 Operating Systems . 62
4.3.1 Miscellaneous Properties . 62
4.3.2 Detailed Criteria . 65

4.4 Models . 68
4.4.1 Modeling Process . 68
4.4.2 SuIs . 69
4.4.3 Linux . 70

4.4.3.1 Specific Parameters . 70
4.4.3.2 Further Classification of Events in a Linux Model 70
4.4.3.3 Top Level Model of the Linux Kernel 71
4.4.3.4 The Interrupt Handling Facility Model 72
4.4.3.5 Preemptive IKCPs . 80

4.4.4 OpenBSD . 82
4.4.4.1 The Interrupt Handling Facility Model 83
4.4.4.2 The Global Kernel Lock . 88

4.4.5 L4Ka::Pistachio . 89
4.4.5.1 Further Classification of Events in a Pistachio Model . . . 89
4.4.5.2 Pistachio Architectural Model 89
4.4.5.3 Pistachio Intermission Kernel Control Path 90

5 Real-Time in Operating Systems 95
5.1 Real-Time . 95

5.1.1 Working Example for Description of Real-Time Systems 98

CONTENTS III

5.1.2 Hard Real-Time . 99
5.1.3 Soft Real-Time . 100

5.2 From Task Perspective to the IHF . 100
5.2.1 Architectures . 101
5.2.2 Efficiency, Reliability and Determinism 106
5.2.3 Timing and Synchrony . 107

5.2.3.1 Time Scales . 107
5.2.3.2 Synchronous and Asynchronous Events 108

5.3 Quality factors . 108
5.4 Indicators . 109

5.4.1 Immediate or Deferred Handling . 109
5.4.2 Creation of Deferred Handlers . 110
5.4.3 Prior or Subject to Scheduling . 110
5.4.4 Priority Compliance . 111
5.4.5 Disruption Path Length . 112
5.4.6 Synchronization . 113
5.4.7 Interruptibility . 113
5.4.8 Recursion Depth . 114
5.4.9 Infinite Handling . 115
5.4.10 Lost Interrupts . 115
5.4.11 Timer Granularity . 115

6 Techniques for Indicator Analysis 117
6.1 Architectural Analysis . 118

6.1.1 Immediate or Deferred Handling . 118
6.1.2 Creation of Deferred Handlers . 119
6.1.3 Prior or Subject to Scheduling . 119

6.2 Control-Based Analysis . 119
6.2.1 Disruption Path Length . 119
6.2.2 Interruptibility . 125
6.2.3 Recursion Depth . 128

6.3 Data-Based Analysis – Model Checking . 129
6.3.1 Model Checking Foundations . 130

6.3.1.1 Modeling . 130
6.3.1.2 Specification . 131
6.3.1.3 Checking Models against Specifications 132

6.3.2 Tools for Model Checking . 132
6.3.3 Model Checking Statecharts . 133
6.3.4 Model Checking ESF Models . 135

6.3.4.1 Transformation Rules: Translating ESF into Kripke Models136
6.3.4.2 Transformation Algorithm 138
6.3.4.3 Transformation Rule Set 140

6.3.5 Temporal Logic Representation of Indicators 151
6.3.5.1 Infinite Handling of Interruptions 152
6.3.5.2 Losing Interrupts . 153

6.4 Combination of Path Length and Recursion Depth 153

IV CONTENTS

7 Interpretation of Real-Time Capabilities 155
7.1 Analysis of Architectural Properties . 155
7.2 Analysis of Determinism and Response Behavior 158
7.3 Analysis of Reliability . 161

8 Conclusion 167
8.1 Summary . 167
8.2 Outlook . 168

8.2.1 Operating Systems Engineering with ESF 168
8.2.2 Implementation of ESF . 168

8.3 Conclusion . 169

Bibliography 171

A Analysis Data 187
A.1 Immediate vs. Deferred Interrupt Handling 187

A.1.1 Linux . 187
A.1.2 OpenBSD . 187
A.1.3 Pistachio . 188

A.2 Interrupt Handlers Subject to Scheduling 189
A.2.1 Linux . 189
A.2.2 OpenBSD . 189
A.2.3 Pistachio . 189

A.3 Response Behavior - PAGs and Paths . 190
A.3.1 Linux . 190
A.3.2 OpenBSD . 193
A.3.3 Pistachio . 197

A.4 Interruptibility . 199
A.4.1 Linux . 199
A.4.2 OpenBSD . 200
A.4.3 Pistachio . 202

B SMV Models 203
B.1 Linux . 203
B.2 OpenBSD . 212
B.3 Pistachio . 220

C List of Used Abbreviations 229

D Contents of the Archive 233

Chapter 1

Introduction

1.1 Motivation

In recent years, the focus of operating systems (OS) research has shifted to multimedia
applications. These dramatically change the requirements to be met by general purpose
OS (GPOS). Nowadays, a variety of solutions exist for speeding up the processing of mul-
timedia streams. Special middleware (see e.g. [KS05]) enables those applications to run
efficiently and fast.
Scheduling paradigms for multimedia purposes are subject to intensive research and de-
velopment. Numerous dedicated multimedia schedulers have already been created and
tested [NL97]. So far, research has focused on scheduling. Thus, there is hardly any com-
monly accepted understanding about the overall real-time capabilities a system suitable
for multimedia processing must possess. Moreover, the question of how those capabilities
manifest has scarcely been addressed.
This thesis contributes to the filling of this blank space in operating systems research.
The focus will be on the investigation of the interactive component of an OS, namely the
interrupt handling facility (IHF). The handling of indeterministic interaction with the en-
vironment that is conducted in this subsystem of an OS is a crucial part of any real-time
consideration.
Furthermore, the application and development of formal modeling and analysis methods
tailored to this specific use case lays the foundation for future research in this area.

1.2 Research Questions and Scientific Goals

Current research of the chair of operating systems at the Universität des Saarlandes fo-
cuses on graph-oriented processing of multimedia streams. This includes the specification
of a system architecture that incorporates this paradigm on a GPOS platform. Within
this context, questions about soft real-time capabilities of general purpose operating sys-
tems arise. A suitable definition of real-time as such needs to be constructed as a basis
for deriving any assertions.

So far, existing formal methods and techniques of recent software development and sys-
tem design have only been applied to the specification and analysis of minimal as well as
embedded and hard real-time systems while not at all to GPOS that are by far more com-

1

2 CHAPTER 1. INTRODUCTION

plex. A formal modeling method will be extended on a use case tailored basis to alleviate
the effort of creating an efficient and simple, while still formally precise, abstraction of
GPOS. Using this methodology, models of interrupt processing in chosen GPOS of various
architectural types will be created.

As the multi-faceted questions about the systems real-time capabilities cannot be sim-
ply answered by evaluating the IHF models, a set of quality factors and corresponding
indicators for the devised real-time definition must be established. Along with these in-
dicators, different formal analysis techniques are to be introduced. Applying the analysis
techniques to the concrete system models allows conclusions about the applicability of a
system for multimedia-oriented stream processing to be derived.

1.3 Thesis Outline

Modeling the behavior of an IHF in a non-stochastic way is a novel approach to the prob-
lem of analyzing real-time capabilities. In order to identify the most adequate formalism,
an examination and evaluation of common formalisms of systems design is conducted in
Chapter 2. The usability of graph-based formalisms, transition nets, queuing theories and
algebras as well as description techniques or languages is assessed. Within the scope of
this thesis, a formalism is considered usable if it is suitable for managing large, hierarchi-
cal models with a significant amount of concurrency and recursion while still providing a
formally defined semantics. The statechart formalism turns out to be a suitable basis for
the desired modeling method.
Although the chosen formalism has all the necessary basics for serving as a vehicle for
operating system modeling, a number of extensions become necessary to keep the models
small but select, to use statecharts more efficiently and to achieve a close approximation
of the resulting models to reality. The pursued paradigm is on the one hand to shift cer-
tain commonly used patterns such as synchronization, parallelism or recursion from being
explicitly modeled towards being implicitly given. On the other hand, system-inherent
principles such as code locality must be exploited to gain simplicity. Therefore, a formal
extension to statecharts – called the engineering statechart formalism (ESF) – is estab-
lished in Chapter 3.
Equipped with the ESF as a use case tailored formal method, Chapter 4 provides detailed
models of the IHF of three real-world operating systems. Since the way of interrupt pro-
cessing implemented within the micro-architecture of the hardware platform is the crucial
criterion for selecting a certain platform, the Intel Architecture is chosen for all models.
For further modeling, a pool of suitable operating systems is derived. The systems are
chosen by investigating and comparing their inherent properties such as architecture or
implementation.
To create a correct model of an OS subsystem, a general modeling approach is given
which makes use of the black and white box paradigm. Thus, subsystems that are not of
particular interest can be blanked out. Chapter 4 also covers all aspects of the modeling
process itself, starting from the technical issues when performing reverse engineering of an
operating system up to a guideline of how to model implementation patterns common to
operating system kernels. Finally, the models of the interrupt handling facilities of Linux,

CHAPTER 1. INTRODUCTION 3

OpenBSD and Pistachio are presented in detail.
Since it turns out to be surprisingly hard to find a fitting and consistent definition of real-
time that covers hard real-time as well as soft real-time suitable for multimedia-oriented
data processing, a sophisticated distinction between hard and soft real-time is made in
Chapter 5.
This definition is based on sufficiency functions that combine provided and perceived val-
ues of tasks at a point in time. It clearly expresses soft real-time from the perspective of
operating system activities such as processes or threads. Projecting this notion of real-
time to the IHF requires the assumption of a certain system architecture. The stated
architecture is a component extension system as developed at the chair of operating sys-
tems at the Universität des Saarlandes.
The projection onto the IHF results in a set of indicators for soft real-time properties that
are traceable in the IHF subsystem of a GPOS. According to best practices of software
quality measurement, these indicators are assigned to the ISO quality factors concerning
soft real-time capabilities.
The need for the developed indicators to be formalized and then shown in the concrete
models follows immediately. From the grouping into architectural, control-based and data-
based indicators, three different techniques for indicator analysis are developed. Archi-
tectural indicators are evaluated based on static model characteristics. For control-based
indicators, a graph representation of the statechart models is used. Finally, the data-based
indicators are verified by means of exhaustive state space enumeration. For the latter, a
model representation allowing for temporal logic model checking is created. These tech-
niques are elaborated in Chapter 6. In Chapter 7, the analysis results are presented and
interpreted with respect to their impact on real-time multimedia processing in different
GPOS.
A summary of the work and an outline of future research topics related to the scientific
goals conclude the thesis in Chapter 8.

1.4 Related Work: Requirements Verification in Operating

Systems

There exist a variety of approaches to formally verify specifications in operating systems.
Bevier [Bev89] reported on verifying parts of the minimal and highly experimental oper-
ating system KIT (Kernel for isolated tasks) by means of the Boyer-Moore logic in 1988.
The target architecture was a virtual machine and the operating system itself only covered
a few fundamental aspects of process handling.
A further variety of verification approaches for specifications with narrow scope can be
found in the literature. Klein [KT04] et al. reported on how to verify the virtual memory
described by the L4 API specification and link their formal models to the code. Although
they discussed the Pistachio implementation, the work has not been applied to the Pis-
tachio system so far. A formal specification of the system call interface and the existing
system calls in the Mach kernel was presented by Bevier [BS94].
The VFiasco project was a more comprehensive approach to directly verify security prop-
erties in the Fiasco µ-kernel operating system, a C++ reimplementation of the L4 API.
A series of reports starting with [THH01] outline the efforts spent by Hohmuth et al. to

4 CHAPTER 1. INTRODUCTION

directly apply verification techniques to the C++ implementation of Fiasco.
Since all the systems investigated so far are quite small (i.e. about 10k to 15k lines of
code), all those verification approaches derive their representations directly from the code
instead of creating standalone models. For GPOS with their huge number of of code lines,
this approach is not feasible.
In the context of the Verisoft project1, an academic system based on a µ-Kernel operat-
ing system, pervasive verification of the OS is part and parcel of the research activities
[DHP05] [GHLP05]. The goal of this verification approach is to prove the correctness of
all operating system modules. To achieve this, all modules are written in a reduced dialect
of C. These research activities differ from those performed for this thesis where the focus
is on evaluation of a somewhat abstract property (real-time) in original implementations
of GPOS. While the Verisoft approach is bottom-up in nature to answer questions on
how a verifiable system has to be designed, this thesis presents a top-down approach to
real-world OS.

All in all, there are two essential differences between all these related research activities
and the approach in this thesis: First, only minimal, modified or experimental systems
with strict prerequisites are regarded, and there is as yet no investigation of real-world
GPOS. Secondly, the questions to be answered are very precise and strongly related to
the facet that is investigated (e.g. memory management verification). General, abstract
properties such as real-time capabilities of a complete system have not been analyzed so
far.

1.5 Basic Definitions

Since this thesis uses some terms that need a common understanding, these are given in
this short section.

Definition 1.1 System

A system is a set of entities or components that work together in an integrated way. Every
system is characterized by its boundaries, i.e. its frontiers with the environment.

A special case for a system is a reactive system as defined by Schneider [Sch04]:

Definition 1.2 Reactive Systems

In a reactive system, the environment freely determines the points in time when an inter-
action is desired. The system itself only reacts to the occurring external stimuli.

Applying those definitions, every operating system can be seen as a reactive system. The
interrupts that are triggered by the external hardware circuits occur randomly from an
internal perspective.

Definition 1.3 System under Investigation (SuI)

Derived from the term SuD: System under Development [HLN+90], a system under inves-
tigation is an existing real-world system that must be examined and whose properties are
to be investigated.

1http://www.verisoft.de

CHAPTER 1. INTRODUCTION 5

In this thesis, all SuIs are operating systems and thus reactive systems according to the
above definition.

1.6 Conventions

In this thesis, a few typographical conventions are used. Source code (assembly language
as well as high level language code) and microprocessor internal handling are depicted
verbatim, i.e. a function is denoted as function name().
Statechart elements are depicted in the typographical style of the statechart figures, e.g.
STATE.
Finally, all kinds of formal definitions and formulae are expressed by means of italic letters,
e.g. function : N → R+. Sets are depicted by capital Latin letters, whereas elements are
represented by small Latin letters.
Free variables within formulae are usually depicted as small Greek letters. Certain prede-
fined functions also use small Greek letters. Auxiliary functions are depicted by abbrevi-
ations consisting of three small German letters, e.g. aux().
Special, uncommon operators or characters such as ⊥, ג or + will be introduced as they
occur.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Modeling Methods

Modeling is a widely used methodology in computer science. A model can serve multiple
different purposes such as design, development, investigation or evaluation of complex sys-
tems. According to Stachowiak [Sta73], a model of a system is (1) based upon an original,
it (2) reflects only a relevant subset of attributes and properties of the original and (3)
serves some dedicated purpose. Kühne [Küh06] gives a brief definition that describes the
nature of a model in a nutshell:

”A model is an abstraction of a system allowing predictions or inferences to be made.”

One of the perpetual issues that exist when a system is modeled is whether the proper
definition of the relevant subset that is necessary for answering the given questions has
been captured. In other words, is the chosen level of abstraction adequate? It is obvious
that a too abstract model might lead to inaccurate conclusions whereas a too detailed
model is difficult to manage. The adequateness of the chosen formalism is crucial: its
characteristics such as quantitative vs. qualitative modeling, stochastic vs. non-stochastic
models and deterministic vs. indeterministic behavior must be carefully chosen.

Early Applications. First serious efforts to model complex computational systems were
already taken in the sixties (see e.g. [RB69]). The goal then was to describe systems
in a mathematically exact way while the need for abstraction was secondary. At that
time, computational systems were small, without parallelism and closely coupled with the
underlying hardware circuits. The methods used were based mainly on graph theory.

Modeling Hardware. One of the most popular fields of application for modeling is the
design and specification of hardware. The evaluation of computational hardware is also
an established area for formal modeling and verification techniques. Precise, quantitative
methods are very often applied to deduce or improve the behavior of distributed or parallel
systems as well as communication networks [Edw01]. The behavior of a fully loaded
system, its reliability and fault tolerance are of special interest. The methods used are
often derived from descriptive statistics. Input data for those is usually collected by
measurement instrumentation monitors. When designing systems from scratch, graph-
based visual methods such as Petri Nets prevail.

7

8 CHAPTER 2. MODELING METHODS

Modeling System Software. In the seventies, modeling techniques where first used to
describe system software for mainframe computers (see e.g. [Rid72], [CY74] and [AB76]).
The software was still small and not multi-threading capable. Today’s general purpose
operating systems are much larger in size and far more complex because of their concurrent
parts.

Modeling Real-Time Systems. In the domain of real-time systems and real-time
scheduling, modeling is a widely used methodology to express real-time prerequisites and
to prove that they are met. In contrast to the field of general purpose operating systems,
strictly limited assumptions and preconditions of hard real-time and embedded systems
permit the generation of formal specifications.
In the literature – that is mainly of theoretical origin – real-time models are often simplified
and cut down to general scheduling models rather than being wholistic representations.
One famous example is the model of the AOCS real-time control system for the Olympus
satellite [BW95].

Modeling Application Software. Nowadays, the design and implementation of all
kinds of software can be alleviated by modeling some dedicated structural and behavioral
aspects of it. The Unified Modeling Language UML [OMG05] is the agreed industry
standard that has emerged during the last decade.

2.1 Preliminary Considerations

2.1.1 Transformational vs. Reactive Systems

Operating system software is designed to encapsulate the functionality of its underlying
hardware. The interrupt handling facility is in continuous interaction with the hardware:
it is supposed to react to each input as soon as it occurs. Wieringa [Wie03] lists those
characteristics as the properties of a reactive system. It is highly state-dependent. The
correctness of its output depends more on the state the system was in when the input
occurred than on the input itself. We distinguish between such a system and a transfor-
mational (i.e. purely computational) one.
Formalisms that are suitable to model reactive systems differ greatly from those that are
adequate for transformational ones as the latter do not have to handle any external stimuli.

2.1.2 Stochastic vs. Deterministic Modeling

The occurrence of external stimuli is without doubt of a stochastic nature. However, the
models to be created describe the systems’ deterministic reaction on those stimuli – their
occurrence is rather a necessary fact than a degree of freedom for the models. In a nutshell:
the deterministic reaction to (stochastic) events is modeled and evaluated, but not their
indeterministic appearance itself. Subsequently, stochastic formalisms are not applicable
for our purposes.

CHAPTER 2. MODELING METHODS 9

2.2 Formal Techniques

As already indicated, sophisticated formalisms, formal description as well as modeling
techniques as well as languages have been invented and tools to support them have been
developed in nearly four decades of research. All formal techniques are based on some
formal language or specification for a precise description and communication of systems
together with a corresponding mathematical meaning – the semantics [Mon03]. The un-
derlying theory is potent and mature.
This section discusses which non-stochastic methods seem promising for modeling general
purpose operating systems and lists a few characterizing examples.

2.2.1 Visual Formalisms

A variety of visual formalisms exist that can possibly serve as a basis for the necessary
modeling capabilities. A formalism is considered to be visual when its main representation
is in visual form. Nonetheless, visual formalisms also have an equivalent textual represen-
tation. Languages fulfilling this property are called visual or diagrammatic languages.

2.2.1.1 Graphs

Graphs are the oldest visual formalism known, invented by Euler in the 18th century
[Eul72]. Although graphs are a very old-fashioned formalism with limited expressiveness
and no manageability when it comes to larger models, they are the precursors of many
modern techniques.

2.2.1.2 Automata

Automata model state transition systems [Koz97]. The simplest example are deterministic,
finite automata (DFA) [Mea55] [Moo56]. This formalism can be used to define sets that
are accepted by grammars or to visualize state transition systems. Nondeterministic finite
automata (NFA) [RS59] introduced nondeterministic concepts, but were proven to be no
more powerful than DFAs.

2.2.1.3 State Transition Nets

Transition nets were developed from graphs. Petri Nets [Pet62] and place/transition sys-
tems (P/T) [Rei87] are well-known and examined basic formalisms. There exist a variety
of (non-stochastic) enhanced Petri Nets. Simple condition-event-systems [GLT80] or ele-
mentary net systems [RT86] can be seen as simplified Petri Nets with several limitations
e.g. in their token structure. Coloured [sic!] Petri Nets [Jen91] and Timed Petri Nets
(e.g. [Wan98]) are far more advanced concepts. Hierarchy can also be added to Petri Nets,
as shown by Fehling [Feh93]. The different approaches can even be combined resulting in
powerful high-level formalisms like HCPN (Hierarchical Coloured Petri Nets [HN04]).

10 CHAPTER 2. MODELING METHODS

2.2.1.4 Other High-Level Formalisms

The unified modeling language UML 2.0 [OMG07] contains several different diagrammatic
languages such as statecharts, class diagrams and sequence charts. A variety of tools such
as Rhapsody1 support the application of UML from system specification to verification
(see e.g. [STMW04]). Apart from UML, statecharts are a powerful standalone formalism
[Har87] on a solid mathematic foundation and supported by a sophisticated tool suite
called Statemate2 [HP98].

2.2.2 Textual Formalisms – Description Languages

Textual formalisms – such as languages – from which visual representations can be directly
derived and interactively used are also considered as a possible choice for an appropriate
formalism. Pure languages such as Esterel or Z that do not come with some visual equiv-
alent are not taken into account.
The Language Of Temporal Ordering Specification (LOTOS) invented by Turner [Tur87]
is based on the algebras CCS and CSP (see Section 2.2.3) and is standardized by the In-
ternational Organization for Standardization (ISO). A variety of tools support the usage
of LOTOS.
The specification language Estelle is also ISO-standardized [ISO89]. Together with the
commercial Estelle Development Toolset (EDT), it forms a powerful technique for speci-
fying and verifying real-time systems as well as embedded software.
The Specification and Description Language (SDL) (e.g. [SH01]) is a formal descrip-
tion technique invented and standardized by the International Telecommunication Union
ITU-T in their recommendation Z.100. It is mainly used to model hard real-time and
communication systems [MT01]. These three languages can also be combined [ISO91].

2.2.3 Algebras

Beside the already mentioned visual and textual formalisms, there are also purely math-
ematical ones such as algebras. Usually, these serve as the underlying theory rather
than as an adequate modeling technique. Two famous process algebras that facilitated
many modeling techniques are Communication Sequential Processes (CSP) and Calculus
of Communicating Systems (CCS). Hoare invented CSP [Hoa78], a textual but algebraic
formalism that describes how to deal with concurrency, synchronization etc. in a formal
but intuitive way. The CCS is a process algebra designed by Milner [Mil80] to specify
concurrent systems and to reason about them [Mil82]. As mentioned above, although
they are important milestones towards formal methods on their own, they cannot serve as
an adequate modeling technique.

2.3 Comparison and Usability Studies

Expressiveness (column EXP in Table 2.1) is a crucial criterion for choosing the optimal
formalism. It is essential to have the possibility to perform formal analysis and verification.

1http://www.telelogic.com
2ibidem

CHAPTER 2. MODELING METHODS 11

A key element for that is a formally defined semantics as well as a structured syntax (col-
umn FSS). Furthermore, the formalism must be adequate for modeling hierarchy (HIE),
concurrency (CON) and recursion (REC). Moreover, it is crucial that models containing a
considerable amount of hierarchy, concurrence and recursion are still manageable (MAN)
with respect to their size and complexity. The visual representation of the model must be
fully equivalent to the textual representation and provide interactive usability (VIS). This
claim results from the fact that the models will be created by manually reverse engineering
operating systems source code instead of automatically interpreting them.
The scale is defined as follows: - (not available), 0 (deficient), + (applicable), ++ (well
suited).

Formalism EXP FSS HIE CON REC MAN VIS

Graphs 0 + - - - 0 +

Automata 0 + - - - 0 +

Petri Nets (PN) 0 + - 0 - 0 ++
Colored PN (CPN) + ++ - 0 0 0 ++
Hierarchical CPN ++ ++ + 0 0 + ++

Unified Modeling Language ++ 0 ++ ++ + + ++
Non-UML Statecharts ++ ++ ++ ++ + + ++

Spec./desc. languages + ++ 0 ++ 0 0 0
LOTOS + ++ 0 ++ 0 0 0
Estelle + ++ 0 ++ 0 0 0

Table 2.1: Comparison of available formalisms for modeling GPOS

Conclusion
Some formalisms do not fulfill the basic requirements mentioned above at all. HCPN,
UML and the non-UML statecharts are the most promising candidates after a first brief
evaluation of Table 2.1.
Recursion, concurrency and a large number of interfaces to the environment become seri-
ous issues when modeling large reactive systems such as OS. The majority of the existing
formal methods briefly presented in the former sections generate huge, nearly unreadable
models when applied to such systems or lack the possibility to do so at all. Beside that,
practical features like standardization or tool support are not provided for all formalisms.
These features allow for efficient reverse engineering and the evaluation of large systems.
As concurrency and recursion are difficult to model in HCPN as well, this formalism is
not suitable for the given application.
As Table 2.1 and the preceding discussion show, the most promising foundations for ad-
dressing the problems mentioned above are UML and the statechart formalism. Due to
the fact that still today UML lacks a precise formal semantics, the preferable choice is
conventional, non-UML statecharts.

12 CHAPTER 2. MODELING METHODS

2.4 Statecharts

Statecharts where invented during the eighties by Harel [Har87]. They provide modularity,
hierarchy, orthogonality and broadcast communication as inherent characteristics [Har88].
Statecharts also offer formally defined basic semantics [HPSS87] (whose shortcomings will
be discussed in Section 2.4.4). The adequateness of this formalism in modeling reactive
systems is proven [HLN+90].
Statemate is a tool suite widely used for the design of reactive systems [HP98]. The related
Statemate research resulted in a more sophisticated semantics [HN96] for statecharts.
With the introduction of UML 2.0 [OMG07] and the inclusion of statecharts as the main
behavioral description language, they also became an industry standard. In this thesis,
only the notational style (i.e. the way of drawing state diagrams) of UML statecharts
and their concept of submachines (cp. Section 4.2.3.5) are used, their syntax or semantic
components (cp. Section 2.3) are omitted.

2.4.1 Introduction

This section explains the statechart formalism in an entirely informal but very intuitive way
by discussing a working example. In Section 2.4.2, the formal foundations and definitions
are given after gaining a first heuristic understanding of the nature of statecharts. As a
working example, a toy model of a simple multimedia car audio and navigation system is
used, see Figure 2.1.

Figure 2.1: Working example: multimedia car audio navigation system, focus on traffic
messages

There exist ten external inputs (events) to the statechart model represented by its root
state CAR AUDIO NAVIGATION SYSTEM, namely four user inputs (assumed to be but-
tons) ON, OFF, CD and RA as well as four sensor inputs IGNITION, STOPPAGE, POWER ON

and POWER OFF. Finally, there are two events that symbolize the beginning and ending
of a traffic program (TP), namely TP ON and TP OFF.
The system is switched on when the event ON or IGNITION occurs: then, the transition
(arrow) reacting on such an event is taken. This changes the system’s state from STANDBY

CHAPTER 2. MODELING METHODS 13

to WORKING and thus the four concurrent sections NAV SYS, VIDEO SYS, AUDIO SYS

and TRAFFIC SYS are all entered simultaneously. WORKING is therefore called an AND
state, the parallel substates are marked by the dashed lines. All other states are XOR
states, i.e. the system can only be in one substate of such a state at a time. The naviga-
tional subsystem is not elaborated further3, it just runs without any interaction until the
system is switched off (event OFF or STOPPAGE occurs).
The transitions originating from the black filled circular connectors point to the default
substate of each state. DISPLAY and SOUND are entered, and the system switches im-
mediately to play radio music (RADIO) and display the station (STATION). When the
user changes the source of music by pressing the CD button, this event is sent through-
out the system causing it to switch to play the CD (PLAY CD) and display the track list
(TRACK LIST).
The fourth parallel subsystem TRAFFIC SYS evaluates the radio channel and listens for
traffic messages. When a TP begins (event TP ON), it changes its internal state from
EVALUATE to NOTIFY and raises the internal event SWITCH. This raising is called an
action. As a result of this internal event, the video system immediately takes the tran-
sition from DISPLAY to DISPLAY TP STATION and the audio system from SOUND to
PLAY TP MESSAGE. When this happens, the current substate (RADIO or PLAY CD) is
left as well. This reaction crossed the boundaries of a concurrent component, the event
was broadcasted all throughout the statechart. When the traffic subsystem senses the
stimulus TP OFF and generates the internal event BACK, the video and audio subsystem
take their transition back to DISPLAY or SOUND respectively. This time, the substates
of DISPLAY and SOUND are not the default ones, but the history (represented by circles
with letter H) of these states is applied. This means that the most recently active substate
of DISPLAY and SOUND respectively is chosen as currently active state.
It is obvious that states form a hierarchy due to their insideness with the deepest nesting
level being four (e.g. RADIO, SOUND, WORKING, CAR AUDIO NAVIGATION SYSTEM),
this depth allows for simple abstraction and modularization.
Besides a mere demonstration of the statechart syntax, this working example already
shows a very important paradigm of modeling systems by means of a visual language such
as statecharts: different foci can easily be expressed by different levels of abstraction. In
the example, the focus is on the handling of traffic messages alone whereas the entire
behavior of the navigation system is blanked out.

2.4.2 Formal Definition

Statecharts are formally based on two different ideas [Har88] : On the one hand, they are
predicated on Euler-Circles [Eul72] and the later Venn diagrams [Ven80]. These diagrams
are a profound way to represent sets, collections and the structural relations between them.
The intended semantics is uniformly interpreted in a set-theoretic manner.
On the other hand, statecharts are based on the concept of connecting entire sets of nodes
rather than a single pair of nodes: a property originally provided by hypergraphs [Ber73],
a graph extension. Hypergraphs are specifically designed to depict sets, their elements
and special inter-set relations. The meaning of the edge relation can be interpreted freely
depending on the field of application.

3This part of the system will become a distinct working example later in the thesis (cp. Chapter 5).

14 CHAPTER 2. MODELING METHODS

In order to exploit both ideas, higraphs [Har88] were invented. They are composed of
slightly modified Euler-Circles that are enriched with the cartesian product of their sets.
The latter are called blobs and can be nested and overlapping. Finally, the sets and n-
tuples are connected by edges or hyperedges, see Figure 2.2(a). The concept of higraphs is
widely used in computer science, e.g. for entity relationship diagrams [Che76] or semantical
networks [Sha71].

(a) blobs and subblobs (b) edges, hyper-edges and the cartesian product

Figure 2.2: An example higraph with eight blobs

Definition 2.1 Higraph

A Higraph is defined as a quadruple H
def= (B,E, σ, π) with B being the finite set of elements

called blobs, E the set of edges, E ⊆ B × B, the subblob function σ and a partitioning
function π.

Definition 2.1.1 Subblob Function σ

The subblob function σ : B → 2B yields all subblobs for each blob. The closure of σ, named
σ+, is recursively defined as:

σ+(x) def=
⋃
i≥1

σi(x)

σi+1(x) def=
⋃

x̃∈σi(x)

σ(x̃)

σ0(x) def= {x}

In anticipation of the hierarchy function (cp. Definition 2.2.1) of statecharts, σ has to be
cycle-free, i.e. ∀x ∈ B : x 6∈ σ+(x).

Definition 2.1.2 Partitioning Function π

The partitioning function π : B → 2B×B determines the partitioning of blobs. It is defined
as an equivalence relation, let [x]π, x ∈ B be the equivalence classes induced by π.

Definition 2.1.3 Intersection of Subblobs

For x ∈ B it holds that no two subblobs y, z ∈ σ(x) can intersect unless they belong to the
same orthogonal component (partition):

∀ y, z ∈ (σ(x) ∈ B) : (σ+(y) ∩ σ+(z) 6= ∅ ⇒ [y]π = [z]π)

CHAPTER 2. MODELING METHODS 15

Statecharts are now a “higraph-based version of finite state machines and their transition
diagrams” [Har88]. Each blob A to I in Figure 2.2 represents a certain set; this “unique
contour convention” then allows for unambiguously identifying and labeling all sets. The
nesting (e.g. blobs D and H) of blobs thus depicts set inclusion, overlapping of blobs
(A and C) denotes set intersection. By adding a cartesian product – the dashed line in
Figure 2.2(b) – to those sets, parallelism can be achieved. The resulting parts are called
orthogonal components. Edges or hyperedges – the arrows in Figure 2.2(b) – represent
system transitions while blobs depict system states.
Overlapping blobs within a single orthogonal component are allowed by the higraph def-
inition. It turned out to be extremely difficult to define a proper semantics for this and
to be not as beneficial as expected [HK92] (see also Section 3.5). Therefore, the following
complete formal definition of statecharts prohibits overlapping blobs, i.e. states, per se.
It is based on [HPSS87].

Definition 2.2 Statechart

A Statechart is defined as a 12-tupel: S
def= (S, ρ, ψ,H, γ, δ, V, C,E,A,L, T) with S 6= ∅

the finite set of states, H the finite set of history symbols and the following elements:

Definition 2.2.1 Hierarchy Function ρ and Root State r

The hierarchy function ρ : S → 2S denotes all the direct substates or descendants of a state.
A state s is called basic iff ρ(s) = ∅. For all x, y ∈ S it holds that: ρ(x) = ρ(y)⇒ x = y.
The closure of ρ is recursively defined as:

ρ+ def=
⋃
i≥1

ρi(s)

ρ∗
def=

⋃
i≥0

ρi(s) where

ρ0(s) def= {s} , ρ1(s) = ρ(s) ,

ρi+1(s) def=
⋃

s̃∈ρ(s)

ρi(s̃)

Every statechart contains a state r called root state:

∃ r ∈ S :
[
∀ s ∈ S : [r /∈ ρ(s)]

]
The two extended functions ρ+(s) and ρ∗(s) depict all substates of a state s ∈ S down
through the entire state hierarchy. Note that ρ+(s) does not include the very state s itself
while ρ∗(s) does.

Definition 2.2.2 Type Function ψ

The type of each state is determined by the type function ψ : S → {AND,XOR}. If
ρ(s) 6= ∅ and ψ(s) = XOR , ρ(s) is an XOR decomposition of s, i.e. when the system is
in a state s, it is in exactly one of the substates of s.
If ρ(s) 6= ∅ and ψ(s) = AND, ρ(s) is an AND decomposition of s, i.e. when the system
is in a state s, it is in all substates of s simultaneously.

In the literature, the XOR type is often named OR. Due to the fact that the system is in
exactly one substate only, this notation is inaccurate.

16 CHAPTER 2. MODELING METHODS

Definition 2.2.3 Historic State Function γ, Mapping Function ω

The historic state function γ : H → S yields the assigned XOR state for a history symbol.
For all h1, h2 ∈ H it holds that γ(h1) = γ(h2)⇒ h1 = h2 and

∀h ∈ H : γ(h) ⊂ {s ∈ S |ψ(s) = XOR}

The mapping function ω : H ∪ S → S is a supporting function to avoid the need to
distinguish between a history symbol and its associated XOR state:

ω(x) def=

{
x | x ∈ S
γ(x) | x ∈ H

Each history symbol is assigned to an XOR state using the γ function. AND states cannot
have a history symbol.

Definition 2.2.4 Default Function δ

The default function δ : S → 2S∪H yields a set of states and history symbols contained in
a state.

x ∈ δ(s) ⇒

{
x ∈ ρ+(s) | x ∈ S
γ(x) ∈ ρ∗(s) | x ∈ H

The set δ(s) is denoted as the default set for s.

Definition 2.2.5 History Traversal Function τ

For a given sequence of system configurations (cp. Definition 2.5) (X0, . . . , Xn) and a
history symbol h ∈ H where ∃s ∈ S : γ(h) = s, we define the history traversal function
τ : H × (2S)n → S ∪ 2S∪H :

I = {i | ρ∗(s) ∩Xi 6= ∅}

τ(h, (X0, . . . , Xn)) def=

δ(s) | I = ∅
s′ ∈ ρ(s) | else
where ρ∗(s′) ∩Xj 6= ∅, j = max(I)

for i, j, n ∈ N0

The history traversal function yields the most recently visited substate s′ of a state s. If
there was no visit of s yet, the default function δ is applied. Since δ(s) returns a set of
states and history symbols rather than a single state, the range of τ has to be S ∪ 2S∪H .
Note that in the semantics, the default set will be defined by means of connectors (cp.
Definition 2.7).

Definition 2.2.6 Expressions V

The set of primitive variables is Vp. The set of expressions V is defined inductively as
follows:

k ∈ N0 ⇒ k ∈ V

v ∈ Vp ⇒ v ∈ V

v ∈ V ⇒ cr(v) ∈ V

v1, v2 ∈ V ⇒ (v1 〈+| − | ∗ |/〉 v2) ∈ V

CHAPTER 2. MODELING METHODS 17

The expression cr(v), v ∈ V refers to the current value of v within a system step (cp.
Section 2.4.4).

Definition 2.2.7 Conditions C

The set of primitive conditions is Cp. The set of conditions C is defined inductively as
follows:

true, false ∈ C
c ∈ Cp ⇒ c ∈ C
s ∈ S ⇒ in(s) ∈ C
e ∈ E ⇒ ny(e) ∈ C
c ∈ C ⇒ cr(c) ∈ C
v1, v2 ∈ V ⇒ (v1 + v2) ∈ C, where +∈ {==, ! =, <,>,≤,≥}
c1, c2 ∈ C ⇒ (c1 〈∧|∨〉 c2) ∈ C,¬c1 ∈ C

The condition cr(c), c ∈ C is defined in the same way as above, in(s) is true when the
system is in state s while ny(e) is true when an event e according to Definition 2.2.8 has
not yet occurred during a system step.

Definition 2.2.8 Events E

The set of primitive events is Ep. The set of events E is defined inductively as follows:

atomic events:

λ ∈ E null event

e ∈ Ep ⇒ e ∈ E
c ∈ C ⇒ tr(c), fs(c) ∈ E
v ∈ V ⇒ ch(v) ∈ E
s ∈ S ⇒ ex(s), en(s) ∈ E
compound events:

e1, e2 ∈ E ⇒ (e1 〈∧|∨〉 e2) ∈ E,¬e1 ∈ E
e ∈ E, c ∈ C ⇒ e[c] ∈ E

The events tr(c) and fs(c) represent the boolean evaluation of a condition: tr(c) is the
event created when the condition is true, fs(c) when it is false. The events en(s), ex(s) are
raised when a state s is entered or exited, ch(v) when an expression v changes its value.

Definition 2.2.9 Actions A

The set of actions A is defined inductively as follows:

atomic actions:

µ ∈ A null action

e ∈ E ⇒ gen(e) ∈ A
c1 ∈ Cp, c2 ∈ C ⇒ (c1 := c2) ∈ A
v1 ∈ Vp, v2 ∈ V ⇒ (v1 := v2) ∈ A
compound actions:

ai ∈ A, (i ≤ n) ∈ N0 ⇒ (a0; ...; an) ∈ A

18 CHAPTER 2. MODELING METHODS

An action can be regarded as an output in automata-theoretic terms. The action gen(e)
generates an (internal) event e that is sensed throughout the system. The sequence
(a0; ...; an) denotes the concatenation of actions a0 to an.

Definition 2.2.10 Labels L

The set of labels is a set of pairs L def= (E×A). A label l ∈ L is called trivial iff l = (λ, µ) ∈ L.

Adopting the notation of finite state machines, e/a is written instead of (e, a). Further-
more, if it is clear from the context, e1/e2 is used for e1/gen(e2) with e1, e2 ∈ E.

Definition 2.2.11 Transitions T

The set of transitions is a set of triples T ⊂ (2S×L×2S∪H). In a transition t = (X, l, Y),
X is denoted as the source set of t (X = src(t)), Y as the target set of t (Y = tgt(t)).

With the definition of transitions, the syntax of statecharts is complete.

2.4.3 Attributes, Properties and Notations

To clarify the syntax and to facilitate the later semantics definition, some additional
specifications and notations based on [HPSS87] and [PS91] are now given.

Definition 2.3 Lowest Common Ancestor lca

For any set of states X ⊆ S, the lowest common ancestor lca(X) is defined as follows:

lca(X) = x ∈ S ⇔ X ⊆ ρ∗(x) and ∀ s ∈ S : [X ⊆ ρ∗(s)⇒ x ∈ ρ∗(s)]

The lowest common ancestor (LCA) of a set of states X is the topmost (with regard to
the state hierarchy) superstate that contains all elements of X. For any statechart, there
exists a unique LCA for every set of states X ⊆ S, being at least the root state.

Definition 2.4 Orthogonality

Two states x, y ∈ S are orthogonal, denoted as x ⊥ y, if either x = y or ψ(lca(x, y)) =
AND. A set of states X is an orthogonal set iff ∀x, y ∈ X : (x ⊥ y).
An orthogonal set X is an orthogonal set relative to s ∈ S if X ⊂ ρ∗(s). It is called
maximal orthogonal set relative to s if ∀ y ∈ ρ∗(s), y 6∈ X ⇒ X ∪ {y} is not orthogonal.

A set of states being orthogonal means that they are in different orthogonal components
of the statechart. The system can be in all those states at the same time (parallelism).
Hence, a component of a statechart that is part of an AND state and thus has at least
one orthogonal counterpart is called concurrent component.
From the definition it follows that for every s ∈ S, the set {s} is a maximal orthogonal
set relative to s.

Definition 2.5 Configurations

A state configuration of s ∈ S is an orthogonal set X relative to s where all x ∈ X are
basic states (i.e. states without substates, see Definition 2.2.1).
A maximal state configuration of s ∈ S is a maximal orthogonal set X relative to s where
all x ∈ X are basic.
A system configuration is a maximal state configuration relative to the root state r.
The initial system configuration is a system configuration X0 where the system is in the
root state only and no system steps have occurred yet.

CHAPTER 2. MODELING METHODS 19

A system configuration contains all basic states that the system is concurrently in at one
point in time.

Definition 2.6 Properties of Transitions

The arena function arena : T → S defines for any transition t ∈ T the XOR state which
contains both its source and target states src(t), tgt(t).

arena(t)def=x ⇔ x = lca({src(t), tgt(t)}) and ψ(x) = XOR

Two transitions t1, t2 ∈ T are consistent if either t1 = t2 or arena(t1) ⊥ arena(t2). Other-
wise, t1 and t2 are in conflict. A set of transitions T1 ⊆ T is consistent if ∀ t1, t2 ∈ T1 :
t1 consistent t2.

A set of consistent transitions can be simultaneously processed during one system step.
The definition of system steps will be the crucial part of the statechart semantics.

2.4.4 Semantics

In the early years of the statechart formalism, Harel, Pnueli et al. published a formal
definition of the statechart semantics [HPSS87]. This early approach was later criticized
not only by various other researchers like Huizing [HG88] but also by Pnueli himself [PS91].
Von der Beeck [vdB94] provides an extensive list of deficiencies that where unveiled in
the original semantics over time and lists over 20 statechart variants and their different
semantical approaches. Harel later published a revised semantics [HN96].

2.4.4.1 Categories of Semantics

In the literature (e.g. [NN92]), three main distinct ways of giving formal semantics are
described. There exist a few other approaches such as algebraic or action semantics [SK95]
but these are not widely used.

1. Operational Semantics: The main goal of operational semantics is to define how a
program, a language construct or, more generally, a syntactical construct is executed
on a virtual machine rather than only defining its result. A virtual machine could be
some abstract formalism like a term replacement system, a graph or Kripke structure
(cp. Definition 6.8). Two approaches are possible when dealing with operational
semantics:

(a) Structural operational semantics (SOS): This describes “small step semantics”,
i.e. a rule set that defines a step by step conversion to arrive at the underlying
formalism.

(b) Natural semantics: The contrary case to SOS depicts a kind of “big step se-
mantics”: axioms and rules are given to allow one to prove that a calculation
terminates and to say what the result will be. That is, there is a big step
directly from the start to the final result with no intermediate steps.

Defining operational semantics is the natural way a compiler designer or a manufac-
turer for an interpreter of a language would choose.

20 CHAPTER 2. MODELING METHODS

2. Denotational Semantics: The behavior of a language can be defined by creating
functions that represent the mapping of initial inputs to final results, i.e. a math-
ematical model is given. In contrast to the operational approach, this concentrates
on the results rather than on the procedure itself. Denotational semantics always
include compositionality of the syntactic categories and declarativity of the functions
that define the meaning.
Due to the fact that this method abstracts from any concrete implementation, it is
a language designer’s choice.

3. Axiomatic Semantics: A third way of defining behavior is to postulate pre- and
post-conditions. This is usually done by means of a logical calculus. This is a very
common approach to showing the equivalence of languages and to proving the total
correctness of a language or of program sections.

Since operational semantics are most constructive in a mathematical sense and are very
specific in defining the behavior of their components, they are the first choice for the
purposes of enhancing a formalism and interpreting its meaning.

2.4.4.2 The Synchrony Hypothesis

During development of the synchronous programming language Esterel by Berry et al.
[BG92] it became obvious that there exist major problems such as competing reactions
or differing perceptions of the timescale within a system. One simple solution to these
problems was to make an assumption about the system’s reaction time: Each reaction is
assumed to happen instantaneously and thus is atomic to its trigger.
This assumption, named synchrony hypothesis, was later adopted in different areas of
application. A weaker version of the synchrony hypothesis is applied to very-large-scale-
integration (VLSI) circuits: Any system reaction takes less than one clock cycle. In a way,
this is also atomic with regard to the timing granularity.
The focus of this thesis is to model the part of an operating system software that reacts
to external stimuli – interruptions. Although such a disruption can occur at any time in
the continuous real-world time spectrum, the hardware reaction to that stimulus is always
synchronized with clock cycles. When the CPU clock cycles are defined as a time scale (cp.
Section 5.2.3.1), the synchrony hypothesis holds for all software models that always have
a coarser grained granularity. In other words, no part of the SuI could possibly realize
that some reaction is not atomic with regard to the real-world timescale.

2.4.4.3 Statechart Semantics

The original statechart semantics [HPSS87] applies the synchrony hypothesis. This op-
erational approach (SOS) is based upon steps leading from one system configuration to
another. In other words, there exists a next-step relation between a configuration and
each of its legal (with respect to the semantics) configuration outcomes. Events can be
generated as outputs of any transition and can trigger new transitions during the very
same step. The intricate part is thus to find all transitions that are relevant and that can
be taken simultaneously, i.e. that are not mutually exclusive and not conflicting. The
basic idea was to introduce micro-steps (µ-step) and then defining a real system step as a

CHAPTER 2. MODELING METHODS 21

maximal sequence of µ-steps. Subsequently, the sequence of µ-steps represents the order
of transitions and actions that make up a whole step. For the execution of each µ-step,
a consistently executable subset of of enabled transitions is determined and taken. The
evaluation of conditions and actions then is used as input for the next µ-step execution.
The expression cr(v) as well as the conditions cr(c) and ny(e) (cp. Definitions 2.2.6 and
2.2.7) particularly expose this internal handling to the outside world, i.e. they can be used
to gain explicit control over the internal ordering of µ-steps because they are updated on
a µ-step basis.
It is an interesting contradiction that on the one hand, all µ-steps should be executed
transparently within an instant, i.e. not consuming any time, and on the other hand, the
order of this infinitely short period can affect the overall result of the step considerably.
Although the original semantics meets the requirements of synchrony, causality and local
consistency, i.e. all µ-steps are pairwise consistent, the missing feature is global consis-
tency (e.g. [HG88], [vdB94]).
A declarative statechart semantics, i.e. a denotational semantics that is not compositional,
based on a fix-point equation is elaborated by Pnueli [PS91] confronting the problems of
the original semantics. The presented fix-point equation is based on an enabling function
en : 2T → 2T that determines for each taken set of transitions the maximal set of transi-
tions that are enabled and can be taken as a consequence.
To show the differences between this declarative semantics and an operational approach,
the missing global consistency is exploited. First, an operational step creation procedure
such as the one in the basic semantics definition that is equivalent to the declarative se-
mantics is created. The main limitation on the syntax is that only primitive events or
negations, but no compound events can trigger actions. Since the enabling function is
proven to be concave under these limitations, the equivalence between the step creation
procedure and the enabling function can be shown. Thus, the syntactical constraints
are set aside which removes the concavity property and thus establishing the equivalence
between the two concepts. Under these circumstances, the procedure fails to create the
correct steps while the declarative semantics does.
This demonstrates the basic deficiencies in the original operational semantics but does not
offer any alternative since it is not completely elaborated in detail and since a declarative
or even a full denotational semantics (such as in [HGdR88]) in general does not serve the
purposes of this thesis.

Harel and Naamad [HN96] define the semantics used by the Statemate tool in an in-
formal and highly operational way. Each single step leads from one system status to the
next. A system status here is in fact a system configuration (cp. Definition 2.5) plus some
additional information, e.g. about data items and activities of the Statemate model. A
basic step algorithm is provided in pseudo-code.
The main difference between the presented approach and the basic semantics [HPSS87]
is that changes occurring during a step (e.g. generated events) affect the following step
only and never the current one. Events are valid for the duration of one step only. In
other words, the system’s memory is volatile. At any step, the subset of transitions that
are taken must be maximal. In [HN96], this attribute of the semantics is called greediness
property.
Due to the comprehensive nature of the Statemate tool and the fact that it embodies

22 CHAPTER 2. MODELING METHODS

code generation and simulation modules, the semantics provide more concepts than the
original statechart semantics does, i.e. static reactions (actions that are carried out while
the system is in a specific state), the timing means such as scheduling and timeouts and
activity charts.

Since it is the most advanced SOS for statecharts, the Statemate semantics is used in
the following. However, the additional features mentioned are not exploited in this work.

The most important semantical concepts for the further application of the Statemate
semantics will now be defined:

Definition 2.7 Connector

A connector is an entity that allows the splitting of transitions into several parts.

CON = AND CON ∪ XOR CON ∪ TERM CON ∪ DEF CON ∪H
AND CON = FORK ∪ JOIN
XOR CON = COND ∪SELECT ∪ JUNCT

where FORK is the set of all fork connectors, JOIN the set of join connectors, COND of
condition connectors, SELECT and JUNCT of select and junction ones. TERM CON
and DEF CON are the sets of termination and default connectors.

Connectors can be seen as “whistle stops” for transitions that are split into parts (seg-
ments) and by that enriched with some particular meaning depending on the type of the
connector. For example, a select connector allows for switching the target of a transition
depending on some conditions.
Note that from now on the history symbols ∈ H will be treated as connectors. The default
connectors substantiate the default function δ: the target state of a transition segment (as
defined next) that originates from a default connector is the default state of its superstate.
In Figure 2.3, the transitions4 t 2 and t 4 that originate from default connectors point to
the default states of the two orthogonal components: C and D.

Figure 2.3: Different transition segments t 1 up to t 6 form different compound transitions

4For a better understanding, here the strings t 1 to t 6 denote the names of the transition segments

rather than their labels. This – later recurring – intentional deviation from statechart standard is purely

notational and does not impact syntax or semantics at all.

CHAPTER 2. MODELING METHODS 23

Definition 2.8 Default and Termination Connector Functions

The default connector function cond : S → DEF CON yields the default connector as-
signed to a specific state:

cond(s) = cd ⇔ cd ∈ ρ(s), cd 6∈ ρ+(s)

The termination connector function cont : S → TERM CON analogously yields the
termination connector of a state:

cont(s) = ct ⇔ ct ∈ ρ(s), ct 6∈ ρ+(s)

Definition 2.9 Full Transitions, Transition Segments

A full transition t ∈ T leads directly from a set of states src(t) to a set tgt(t) without being
split. If a transition is divided using connectors, the resulting parts are called transition
segments. The set of transition segments TS is defined as follows:

TS ⊂ (2CON∪S × L× 2CON∪S)

In the example Figure 2.3, t 1, ... , t 6 are transition segments, the combination of e.g.
t 1 — t 2 is a full transition with respect to Definition 2.9.

Definition 2.10 Compound Transitions

A compound transition is a sequence of transition segments ts0 | . . . | tsn, tsi ∈ TS, 0 ≤
i ≤ n, n ∈ N0. The set of all compound transitions (CT) is CT .
A basic compound transition (BCT) is a CT with the following properties (BCT being the
set of basic compound transitions):

• It is a maximal sequence of transition segments that can be taken within one single
step as one full transition.

• ∀BCT 3 bct = (s, e/a, t) = ts0 | . . . | tsn with s ∈ 2S , t ∈ 2S∪H , e ∈ E, a ∈ A and
0 ≤ i ≤ n with tsi = (stsi , etsi/atsi , ttsi):

e
def=

n∧
i=0

etsi and a
def= (ats0 ; . . . ; atsn)

An initial compound transition (ICT) has the following restrictions (with set ICT):
∀ ICT 3 ict = ts0 | . . . | tsn : src(ts0) ⊂ S and tgt(tsn) ⊂ S ∪H ∪ TERM CON .
A continuation compound transition (CTC) has the following restrictions (with set CCT):
∀CCT 3 ict = ts0 | . . . | tsn : src(ts0) ⊂ H ∪ DEF CON and tgt(tsn) ⊂ S ∪ H ∪
TERM CON .

A basic compound transition is taken if all events of the TS labels occur and the BCT
triggers all actions defined by these labels. An initial CT always has its origin in a set of
states, a continuation CT in a set of default or history connectors. Both lead to either
states, history or termination connectors. In Figure 2.3, the combination of e.g. t 1 — t 2

is a basic compound transition, the transition segments t 1, t 3, t 5 and t 6 are initial
compound transitions, t 2 and t 4 continuation compound transitions.

24 CHAPTER 2. MODELING METHODS

Definition 2.11 Full Compound Transitions

A full CT (FCT) is a combination of one ICT followed by one or more CCTs that lead
the system to a full system configuration. The following restrictions apply:

• The sequence of these compound transitions has to be cycle-free.

• All source states are mutually orthogonal.

• All target states are mutually orthogonal.

Figure 2.3 also illustrates the differences between FTs and FCTs: in order to reach a valid
system configuration, it would be insufficient to take the full transition t 1 — t 2 because
a system has to be in all its orthogonal components at the same time. Subsequently, only
t 1 — t 2 — t 4 makes a full compound transition. The same holds for t 3 — t 6, this FT
is insufficient, thus t 3 — t 5 — t 6 is the full compound transition.
The chosen semantics is predicated on full compound transitions leading from one full
system configuration to another.

Chapter 3

Engineering Statechart Formalism

Although the statechart formalism has been identified as the most suitable technique for
modeling operating systems, this approach still has shortcomings. The number, multiplic-
ity and complexity of external interfaces and the multi-layer design of an operating system
model results in an exploding number of inter-level transitions.
The reason for that is that usually, statecharts are used to describe the behavior of sys-
tems that have a bounded, small number of interfaces to the outside world on the one
hand and a very detailed and complex “inner workings” on the other. In GPOS, we also
have the reverse case: a high ratio of external interfaces in relation to internal behavioral
states. The fact that the models of multi-processor systems additionally contain consider-
able concurrency and the exhaustive use of recursion exacerbates the transition explosion
– the model becomes nearly unreadable and thus barely understandable. This not only
limits the potential of the model – the goal of visualizing the complicated activities inside
the system and gaining a better understanding can barely be achieved – but also impedes
formal analysis and verification (cp. Section 6.3) of the model.
The solution presented in this chapter is to define a new set of standardized, use case
tailored and UML-compliant statechart elements. These have a basic syntax including
modeling rules and a rigorous semantics as described later. This set of constituents to-
gether with the conventional statechart elements make up the Engineering Statechart
Formalism. Being an extension of statecharts, the resulting method does not lack any
formal correctness or expressiveness. Furthermore, it supplements the reverse engineering
process of general purpose operating systems by providing simple elements for intuitively
modeling OS-inherent paradigms such as recursion, nested function calls and control flow
branching.
The technique has been developed iteratively while modeling a number of real-world oper-
ating systems. This evaluation and accreditation process culminated in a formalism that
can be regarded as formally sufficient while still usable. The following ESF constituents
will now be defined:

• to reduce the number of explicitly given transitions and labels in the model: path
events, split states and combine states

• to reduce the overall number of transitions, particularly inter-level transitions: event
busses

• to ease the modeling of recursion: long-term history connectors

25

26 CHAPTER 3. ENGINEERING STATECHART FORMALISM

• to deal with parallel, grouped systems behavior: cartesian transition sets

Syntax and semantics of these extensions are presented in the following sections. All ex-
tensions are based upon the statechart definition as in 2.4.2 and the Statemate semantics
as discussed in Section 2.4.4. The given operational semantical transformation rules de-
fine how to sequentially translate ESF constituents into conventional statechart elements.
Later in Section 6.3, these rules will be used to define a step relation as described in
Section 2.4.4. A rule has the following format:

RULE NAME
ESF element(s) to be transformed

resulting ESF or statechart constituent(s)
⇓

A simple running example (Figures 3.3, 3.5, 3.7, 3.8 and 3.9) will explain and demonstrate
the usage of the ESF elements. The example is a very small and comprehensive toy model
of an operating system part that handles interruptions, executes a process and runs on
two CPUs in parallel.

3.1 Preliminaries of ESF Syntax and Semantics

3.1.1 Sequential Transitions

The ESF explicitly allows for modeling a situation in which a system simply steps through
a sequence of states without any external events triggering this walking-through. Figure
3.1 depicts such a situation. The crucial claim here is that the system has to process
the sequence of states STATE 1 to STATE 3 in three distinct system steps. When the
transition t 1 contains a trivial label, the system would traverse to STATE 2 in the same
system step it reaches STATE 1. We call this the “fast-forward problem”.

Figure 3.1: Sequential transitions t 1 and t 2

To confront the “fast-forward problem”, a special kind of transition called sequential tran-
sition is defined.

Definition 3.1 Sequential Transition

A transition (s1, e/a, s2) ∈ T with s1, s2 ∈ S, e ∈ E and a ∈ A is called a sequential
transition iff e = en(s1), s1 basic and a = µ. In the case where s1 is not a basic state, let
tslast = (slast, elast/alast, cont(s1)) with slast ∈ ρ(s1) be the transition segment that leads
to the termination connector embodied in s1. A transition (s1, e/a, s2) where s1, s2 ∈ S,
e ∈ E and a ∈ A, s1 not basic is called sequential iff elast = en(slast), alast = term(slast),
e = term(slast) where term(slast) ∈ E and a = µ. A sequential transition is denoted tseq.

Due to the nature of the chosen semantics, the special event en(s1) that is raised when
the system entered state s1 is realized one system step later. This solves the problem in
a very easy and elegant way.

CHAPTER 3. ENGINEERING STATECHART FORMALISM 27

In the more complex case that the originating state is not a basic state, the second part
of the definition ensures that the substates within the originating state are first processed
until the termination connector is reached. Any other behavior would reflect branching
rather than sequential execution.
Note that this mechanism would also allow the introduction of timing to ESF models by
simply redefining the condition that allows stepping further. However, this option is not
elaborated further in this thesis.

3.1.2 Enhanced Data Structures for Statecharts

Some of the ESF constituents make use of data lists. List functions have to be defined to
facilitate handling of these lists.

Definition 3.2 Lists and List Functions

A list is an n-tuple (x0, . . . , xn−1), n ∈ N, of elements of a set X. Three list functions are
defined:

push : X ×Xn → Xn+1

push(e, (x0, . . . , xn−1)) = (e, x0, . . . , xn−1)

tail : Xn → Xn−1, n ≥ 1

tail(x0, . . . , xn−1) = (x1, . . . , xn−1)

get : Xn × {0, . . . , n− 1} → X

get((x0, . . . , xn−1), i) = xi

The set of extended actions is consisting of all actions in A and the list operations defined
above:

Definition 3.3 Extended Actions Ã

The set of extended actions consists of the statechart actions A and the defined list func-
tions:

Ã = A ∪ {push(e, l), tail(l), get(l, n)}

where e ∈ X, l ∈ Xn, n ∈ N0

3.2 Path Events and Split/Combine Pseudo-States

When modeling an operating system with statecharts, all external events can – due to the
(code) locality principle – be categorized as k ∈ N fixed, finite event classes called branch
categories (see Figure 4.8 in Section 4.2 for a universal partition for GPOS).

Definition 3.4 Branch Categories, Category Sets and Identifiers

CAT is the set of all branch category sets: CAT = {CAT 0, . . . ,CAT k−1} with ∀ a, b ∈
{0, . . . , k − 1}, a 6= b : CAT a ∩CAT b = ∅.

28 CHAPTER 3. ENGINEERING STATECHART FORMALISM

For each branch category κ, 0 ≤ κ ≤ k−1, the branch category set CATκ = {iκ0 , . . . , iκm−1},
m ∈ N contains all possible values which the branch identifier iκ of this category κ can
take.
Note that for each category κ, iκ ∈ CATκ and iκ 6∈ CAT 0 ∪ . . .CATκ−1 ∪CATκ+1 ∪ · · · ∪
CAT k−1.

A branch category can be seen as a way-point in a location plan (e.g. a turnoff) and the
branch identifiers are then instructions such as “turn left”. A path (location plan) thus is
an event with k indices (way-points), one for each branch category set defined. Each index
κ represents the branch identifier iκ of branch category CAT iκ , 0 ≤ κ ≤ k − 1. That is
the information where to “turn”.

Because of the code locality principle, events of one category are mainly handled at one
dedicated state at a specific hierarchy level of the model. This fact is crucial for gaining
any simplification.

Definition 3.5 Path Events
−→
E

The set of path events
−→
E is defined as a k-fold indexed set of events. Each index represents

the branch identifier iκ of branch category CAT iκ , 0 ≤ κ ≤ k − 1.

e ∈ E : ei0...ik−1
∈
−→
E where k ∈ N0

Figure 3.2: Path event

A path event is only written to that transition reacting on the “original” event e ∈ E.
This event implicitly contains the information for i0, . . . ik−1. The path event resulting
from a signaling SCSI device eINT,DEV,SCSI with k = 3 is thus indexed with i0 = INT

(an interrupt), i1 = DEV (caused by a peripheral device) and i2 = SCSI (source device
is a SCSI device).

Definition 3.6 Path Conditions

A path condition is a list of branch identifiers (ij , . . . , ik−1) where 0 ≤ j ≤ k − 1. PC is
the set of path conditions.

A path condition is initially set when a path event occurs.

Definition 3.7 Path Event Initialization Function pc

The path event initialization function pc :
−→
E → PC initially sets a path condition. The

result of pc is called initial path condition.

The initial path condition for the above example is pc(eINT,DEV,SCSI) = (INT,DEV, SCSI)
∈ PC.
Path conditions are defined within the topmost XOR superstate only. Within an AND
state, i.e. when orthogonal components are used, each of these components has its own

CHAPTER 3. ENGINEERING STATECHART FORMALISM 29

path condition indexed pcω with ω being the identifier of the component the path condition
relates to. Note that the index can be omitted when the component the path condition
belongs to is unambiguous or irrelevant.

Path events are useful in allowing for branching according to the given categories. To
achieve this, it is necessary to define means of splitting and combining paths. Each split
processes a specific index of a path event and branches according to its value (which is
like carrying out the given turn at the specific way-point). By use of such an extension,
alternative paths can be drawn as part of their one parent state – instead of drawing
disjoint states in conventional statecharts. The alternative paths are then merged again
by a so-called combine on the same hierarchy level as the associated split.
The existing XOR connectors (see Definition 2.7) condition, junction and selection seem
to be an ideal way of realizing such a mechanism at first glance. Unfortunately, they are
not capable of managing flexible data structures such as lists. Hence, this mechanism
cannot be used when it is exposed to recursion (cp. Section 3.4); recursion depths > 1
cannot be modeled. From this consideration it follows that a new type of constituent
must be defined: the pseudo-state concept enriches the concept of XOR connectors with
flexible data structure handling. In analogy to connectors, they do not need any system
steps to be traversed. This is guaranteed by exploiting the “fast-forward problem” to our
advantage. For ease of the later semantical transformation rules, pseudo-states are not
part of the set of connectors at all.
Split and combine pseudo-states now manage correct branching and merging of the paths
determined by path conditions.

Definition 3.8 Pseudo-States PS and Extended States S̃

SP and CO are the sets of named split and combine pseudo-states.

PS
def= SP ∪ CO

S̃
def= S ∪ PS

Each split and combine state pair (ssp, sco) is assigned to a category κ, 0 ≤ κ ≤ k−1 with
the branch category set CATκ

1. It thus splits for branch identifier iκ ∈ CATκ, i.e. for the
value of condition iκ set by the last path event occurred. Depending on the current value
of iκ, a corresponding outgoing transition is performed. From all transitions leading from
a specific split state to normal system states, only one is ever carried out so that there is
a specific system path to be taken.
To each split state, a specific combine state is assigned which unites all branches, i.e. all
paths originating from its split state.
In our running example, we now look at the part of the system that carries out some
dedicated action triggered by external stimuli. In Figure 3.3(a), it is represented by the
root state INTERRUPT HANDLING and its descendants. This state contains a branch
(SP, CO) that corresponds to the second branch identifier (i1 = DEV) of the path event
eINT,DEV,SCSI . Note that processing the first branch identifier is supposed to happen in a
higher or earlier state not shown in this figure, the one according to the third is to happen
later (see also Figure 3.7(a)).

1Note that the opposite is not necessarily true.

30 CHAPTER 3. ENGINEERING STATECHART FORMALISM

(a) with path events and split/com-

bine

(b) without path events and split/combine

Figure 3.3: Comparison of path events and split/combine mechanism to a conventional
statechart presentation

The shortcomings of the conventional statechart approach become clear with an exam-
ple: Let’s assume the system is in state SERVE due to a former processed event and a
new event occurs implying transition to state UPDATE. Since no alternative paths within
the same superstate can be traversed, the superstate INTERRUPT HANDLING has to be
cloned with disjoint descendants as shown in Figure 3.3(b). Thus, all possible transition
permutations between the cloned states have to be modeled explicitly (t 1, t 2 and t 3).
It is easy to see that for models with a larger number of alternative paths, this quickly
leads to unmanageable models.

To give a transformation rule for path events as well as for split and combine states,
extensions for E, L and T have to be first defined:

Definition 3.9 Extended Events Ẽ and Extended Labels L̃

The set of extended events Ẽ contains the inductively defined statechart events and the
path events.

Ẽ
def= E ∪

−→
E

The set of extended labels L̃ is defined as

L̃
def= Ẽ × Ã

Definition 3.10 Full Extended Transitions T̂ , Simplified Ext. Transitions T̃

The set of full extended transitions T̂ is analogous to the standard definition of T as in
Definition 2.2.11 but uses the extensions on S, L and H:

T̂ ⊂ (2S̃ × L̃× 2S̃∪H̃)

with the set of extended history symbols H̃ as in Definition 3.16.
The set T̃ of simplified extended transitions does not have sets of states as source and
target, but only one state each:

T̃ ⊂ (S̃ × L̃× (S̃ ∪ H̃))

CHAPTER 3. ENGINEERING STATECHART FORMALISM 31

As for the semantics, it holds:

STRANS
t̃ = (s1, l, s2) ∈ T̃

t̂ = (ρ∗(s1), l, ρ∗(ω(s2))) ∈ T̂
⇓ (3.1)

where s1, s2 ∈ (S̃ ∪ H̃), l ∈ L̃.

The definition of simplified extended transitions eases the transition syntax: only the
topmost state – instead of a full set of nested states – is referenced as source or target
respectively.

Now, the semantic transformation rule for a path event can be given:

PATH EVENT
t = (s1, ei0,...,ik−1

/a, s2) ∈ T̃
t̃ = (s1, e/(a; acs), s2) ∈ T̃

⇓ (3.2)

where s1, s2 ∈ S̃, a ∈ Ã, e ∈ E and

Ã 3 acs =
(
push(i0, condCAT0); . . . ; push(ik−1, condCATk−1

)
)
,

condCAT0 , . . . , condCATk−1
are lists of statechart conditions (according to Definitions 2.2.7

and 3.2). Additionally, the initial path condition is set as soon as the path event occurs:
pc = pc(ei0,...,ik−1

).

The definition of the semantics implies that an ESF transition acting on a path event
ei0,...,ik−1

implicitly reacts to its corresponding event e ∈ E and does not only carry out
action a but also an action acs setting the conditions by pushing them on the condition
lists for each branch category.

To further specify the transitions between system states and pseudo-states, two important
properties have to be defined: The degree of a split or combine state, i.e. the number of
its incoming or its outgoing transitions and then the dimension of a path condition, i.e.
the current number k − j (cp. Definition 3.6) of its indices.

Definition 3.11 Dimension and Degree Functions dim(e) and deg(s)

dim : PC → N0, dim(pc), pc ∈ PC def= k − j, 0 ≤ j ≤ k − 1

deg+ : S̃ → N0, deg+(s), s ∈ S̃ def= | { t = (in, l, out) | out = s } |

deg− : S̃ → N0, deg−(s), s ∈ S̃ def= | { t = (in, l, out) | in = s } |

where l ∈ L, t ∈ T̃ and in, out ∈ S̃. deg−(s) denotes the incoming degree of a state, deg+(s)
is called outgoing degree.

The following constraints are postulated for the formalism. Those are also the modeling
boundaries:

32 CHAPTER 3. ENGINEERING STATECHART FORMALISM

1. Exactly one transition leads to each split state and one originates from a combine
state.

∀ sp ∈ SP : deg+(sp) = 1 (3.3)

∀ co ∈ CO : deg−(co) = 1 (3.4)

2. For each split state sp ∈ SP , exactly one (quantifier
1

∃) combine state co ∈ CO is
assigned (pairing).

∀ sp ∈ SP : [
1

∃ co ∈ CO : co ∈ ρ(lca({sp, co}))] (3.5)

∀ co ∈ CO : [
1

∃ sp ∈ SP : sp ∈ ρ(lca({sp, co}))] (3.6)

3. For all assigned pairs (sp ∈ SP, co ∈ CO), the number of outgoing transitions of sp
is equal to the number of incoming transitions of co, i.e. all paths originating from
a split state are united by its corresponding combine state..

∀ (sp, co) ∈ SP × CO :

[co ∈ ρ(lca({sp, co})) ∧ sp ∈ ρ(lca({sp, co}))⇒ deg−(sp) = deg+(co)] (3.7)

4. All transitions originating from a split or combine state have to react to the null
event λ.

∀ sp ∈ SP : [∀ t = (sp, e/a, s) ∈ T̃ , s ∈ S̃, a ∈ Ã : e = λ] (3.8)

∀ co ∈ CO : [t = (co, λ/a, s) ∈ T̃ , s ∈ S̃, a ∈ Ã] (3.9)

(a) split state SP ∈ SP with deg+(sp) =

1, deg−(sp) = 2

(b) combine state CO ∈ CO with

deg+(co) = 2, deg−(co) = 1

Figure 3.4: Split and combine pseudo-states and their deg values in the ESF

Furthermore, they are two functions dealing with the assignment of branch category sets
and branch identifiers to pseudo-states or system states:

Definition 3.12 Branch Category Assignment Function cat

The branch category assignment function cat assigns a branch category set to each pseudo-
state:

cat : PS → CAT

The function cat yields the branch category (set) for which a pseudo-state is “responsible”.

CHAPTER 3. ENGINEERING STATECHART FORMALISM 33

Definition 3.13 Branch Identifier Assignment Function bid

The branch identifier assignment function bid assigns a specific value for the branch iden-
tifier it ∈ CAT t to a state:

bid : S̃ → CAT
t
, 0 ≤ t ≤ k − 1

By default, this assignment is carried out by the matching of identifiers (operator id=):

bid(s) = itb ⇔ itb
id= s

The function bid is used to determine for any (pseudo- or system) state s ∈ S̃ that is the
target of a transition originating directly from a split state the condition under which the
transition can occur. That means that it determines the value the branch identifier iκ of
the branch category set CATκ assigned to the precedent split state has to take to activate
the transition leading to state s.

We now have all the necessary definitions to give the semantics for the pseudo states:

SPLIT STATE
ti = (s1, ei/ai, sp) ∈ T̃ ; sp ∈ SP ; to = (sp, λ/ao, s2) ∈ T̃

t̃ = (s1, ei[c]/(ai; ao), s2) ∈ T̃
⇓ (3.10)

where s1, s2 ∈ S̃ and ai, ao ∈ Ã, ei ∈ E, c = get(condcat(sp)
id= bid(s2)).

At each split state, the path condition is modified:

pc =
(
get(condCAT cat(sp)+1

), . . . , get(condCATk−1
)
)

This leads to an adjustment in the dimension: dim(pc) is decremented. The new path
condition does not contain the branch identifier for the previously taken branch any more.
Note that this definition of the path condition is based only on the path condition lists, not
on the path condition that was valid before the split. This is very important when it comes
to interrupting unfinished processes that are later resumed using long term history (see
Section 3.4): it has to be possible at any time to specify the currently active path condition
even if the system jumps into any state within the system using history connectors that
skip previous default and split states.

COMBINE STATE
ti = (s1, ei/ai, co) ∈ T̃ ; co ∈ CO; to = (co, λ/ao, s2) ∈ T̃

t̃ = (s1, ei/(ai; ao; tail(condCATcat(co))), s2) ∈ T̃
⇓ (3.11)

where s1, s2 ∈ S̃ and ai, ao ∈ Ã, ei ∈ E.
The topmost value of the condition list of CATcat(sp) (which is by definition equal to
CATcat(co) for the assigned co) is thus excluded from the path condition at the split state
but not actually removed from the list until the respective combine state is reached and
the action executed.

3.3 Event Bus

The event bus constituent implements the same paradigm that we presented before with
the split and combine mechanism: a shift from explicitly modeled to implicitly given.

34 CHAPTER 3. ENGINEERING STATECHART FORMALISM

The introduction of both path events and split and combine states trims the numbers of
inter-level transitions considerably. To additionally reduce the number of explicitly given
transitions in the models, a routing mechanism has to be established. Such a simplified
way of drawing transitions is provided by a new element named an event bus. In a way, it
“teleports” transitions to their actual destination states.
There are two possible variations of this element: The first would be a heavy-weight event
bus (HWEB) that is a routing mechanism taking a transition labeled with a path event
eij ...ik−1

and heading to an event bus pseudo-state (EBS). The HWEB mechanism then
continues this transition to that destination state which contains the split state sp ∈ SP
branching for branch category j as a child state. For this, it uses a target function which
assigns a target state to each correctly indexed path event.
One of the drawbacks of this approach is that when it comes to cartesian transition sets
(cp. Section 3.5), the definition of this mapping towards a valid target would be difficult
and ambiguous. Furthermore, the extension of pseudo-states with the EBS complicates
the transition rule definitions considerably. Finally, only transitions labeled with a path
event could be processed by the HWEB mechanism; those with conventional events can-
not.
On the other hand, the light-weight event bus (LWEB) defines a simplified way of draw-
ing explicitly given transitions. Contrary to the HWEB case, the transition leading to an
LWEB can also be labeled with a standard event e ∈ E. The LWEB is fully transparent,
i.e. the target of the transition taken is the explicitly given target system state. Regard-
ing its semantics and adaptability, it has strong advantages compared with the HWEB.
Therefore in the following, only the LWEB (or simply event bus) will be specified and
used. An event bus is depicted in the style of ground symbols used in CAD systems for
electronic circuits. The graphic entities (black bars in Figure 3.5) are called event bus
connectors (EBCs). The set of event bus connectors is named EBC.

(a) with event bus (b) without event bus

Figure 3.5: Comparison of the event bus facility with a conventional statechart presenta-
tion

A completely defined transition t ∈ T̃ = (SOURCE, e/a,TARGET) (see figure Figure 3.6)
with e ∈ Ẽ has to be given to use the LWEB. The entire transition t is a full transition
(Definition 2.9). Since EBCs are connectors, we define:

CHAPTER 3. ENGINEERING STATECHART FORMALISM 35

Definition 3.14 Extended Connectors C̃ON

C̃ON is the set of extended connectors with C̃ON = EBC ∪ CON .

In Figure 3.6(a), there exist two dedicated event bus connectors FR SRC, TO TGT ∈ EBC
for t. They break the full transition t down into two transition segments ts 1 and ts 2 ∈ TS.
The LWEB now implicity defines a further transition segment ts im to complete the full
transition t as shown in Figure 3.6(b).

(a) event bus connectors FR SRC and TO TGT for

t ∈ T = (SOURCE, label,TARGET)

(b) full transition completed by implicitly given seg-

ment ts im. The full transition is also a FCT.

Figure 3.6: Compound transition constructed by event bus connectors

Formally, the set of transition segments is defined as follows:

Definition 3.15 Extended Transition Segments T̃ S

T̃S ⊂
(
(S̃ ∪ C̃ON)× L̃× (S̃ ∪ H̃ ∪ CON)

)
To limit the semantic side effects, it is claimed that all transition segments leading from
an EBC to a target state contain only a trivial label:

∀ t ∈ T̃ : t = (ebc, λ/µ, s1), ebc ∈ EBC, s1 ∈ S̃

Using the EBC routing mechanism to implicitly draw a transition must not under any cir-
cumstances alter the events, conditions and actions associated with the transition. From
that, the semantics of the LWEB can now be derived.

The transformation rule contains two steps:

EB1

tini = (s1, eini/aini, sebc s) ∈ T̃ ; sebc s ∈ EBC;
sebc t ∈ EBC; tcont = (sebc t, λ/µ, s1) ∈ T̃

t̃ini = (s1, eini/aini, sebc s) ∈ T̃ ; t̃impl = (sebc s, λ/µ, sebc t) ∈ T̃ ;
t̃cont = (sebc t, λ/µ, s1) ∈ T̃

⇓ (3.12)

EB2

t̃ini = (s1, eini/aini, sebc s) ∈ T̃ ; t̃impl = (sebc s, λ/µ, sebc t) ∈ T̃ ;
t̃cont = (sebc t, λ/µ, s1) ∈ T̃
t̃ = (s1, eini/aini, s2) ∈ T̃

⇓ (3.13)

where eini ∈ Ẽ, aini ∈ Ã, s1, s2 ∈ S̃.
EB1 defines the enhancement with a further continuation TS between the EB connectors

36 CHAPTER 3. ENGINEERING STATECHART FORMALISM

and EB2 the translation of this completed connector structure into a full transition.
Note that according to EB1, step EB2 would not be necessary if the EBC were replaced
by a standard connector, e.g. a condition connector with a true-condition or a junction
connector. Furthermore, in the case of the two connectors (FR SRC and TO TGT) being
identical, the full transition is a trivial special case of the transition rule EB1.

3.4 Long-Term History Connectors

The mere reduction of the number of explicitly defined transitions is not sufficient to
create a modeling technique for large and complex real-world systems. A satisfying way
to represent recursion is also required to ease modeling efforts of systems consisting of
numerous recursive parts. To achieve this, a modification of the history connector named
long-term history connector (LTH) is created: it facilitates the tracking of a number of
previously accessed substates of a specific state.

The conventional (flat or deep) history connectors cannot provide this: they do not track
the overall sequence of previously traversed states but only the last visited one. Especially
when applying the mechanisms of path events and event-busses, this is not at all sufficient.
Whereas deep history connectors provide structural, i.e. hierarchical depth, the long-term
history connector now offers temporal depth, i.e. tracking of a longer past. Both concepts
are orthogonal.

(a) with long-term history

...
(b) without long-term history

Figure 3.7: Comparison of long-term history with a conventional statechart presentation

As shown in Figure 3.7(b), it would be necessary to clone the recursive part of the model
– here the state INTERRUPTION HANDLING FACILITY – where each clone uses conven-
tional history. This is not only inefficient, but also impedes variable recursion depths.

Now, an extended set of history symbols H̃ is defined. It contains H as well as the
elements of a third type of history symbols, the long-term history symbols (elements of
the set LTH). In the original definition of H, there is no function to determine the type of
a history symbol (deep or flat). Consequently, a history type function hit : H̃ → {H,LTH }
has to be defined. It denotes whether a history connector is an ordinary (either deep or
flat) or a long term one. Both sets are disjoint.

CHAPTER 3. ENGINEERING STATECHART FORMALISM 37

Definition 3.16 Extended History Symbols H̃, History Type Function hit

LTH is defined as the set of long-term history connectors (or symbols). The set of extended
history symbols is given as H̃ def= H ∪ LTH with H ∩ LTH = ∅.
The history type function hit : H̃ → {H,LTH } denotes the type of a history symbol:

hit(h) def=

{
H | h ∈ H
LTH | h ∈ LTH

To allow for recursion, two premises must hold:

1. The recursion depth has to be bounded by a natural number k. We refer to that
property as k-boundedness.

2. The length of a path, i.e. the number of states processed in a single recursion step,
has to be bounded by a natural number l. We refer to that property as l-boundedness.

These boundedness properties guarantee that a recursion is always terminated. With
that precondition, a history function τ̃ for long-term history connectors can be defined in
analogy to Definition 2.2.5. It yields an m-tuple of substates of the very state s containing
the long-term history connector: the last m direct substates of s that were accessed in
the past. The value m is increased when entering a state s containing a long-term history
connector and decreased when leaving s.

Definition 3.17 History Function τ̃ for Long-Term History Connectors

For a given sequence of system configurations X = (X0, . . . , Xn) and a history symbol
h ∈ H̃, ∃ s ∈ S : γ(h) = s and hit(h) = LTH , the history function τ̃ : H × (2S)n → Sm

yields the sequence of the last m accessed substates of a state s with m ≤ n and m,n ∈ N0.
It is defined using S′, the set of all substates visited in sequence X:

Ĩ = {i|ρ∗(s) ∩Xi 6= ∅}
S′ = {s′i|i ∈ Ĩ , s′i ∈ ρ(s), ρ∗(s′i) ∩Xi 6= ∅}

τ̃(h,X) def=

δ(s) |if Ĩ = ∅

(sij , . . . , sij+m−1), sik ∈ S′,
j ≤ k ≤ j +m− 1, ∀ sik , sik+1

: ik > ik+1 | otherwise

The list (sij , . . . , sij+m−1) contains the m most recently visited substates of s with indices
ij , . . . , ij+m−1 representing the m biggest elements of Ĩ in descending order. Formally:
ij = max(Ĩ), ij+n = max(Ĩ \ {ij , . . . , ij+n−1}) where 1 ≤ n ≤ m.

The maximum length of sequence S′ is limited by the k-boundedness property of ESF in
the case of a recursive ascent and by the general finiteness of statecharts otherwise. The
integer m is always bound to a specific state s. In the following, ms is the number of
tracked history states for a state s.
By means of this modified history function, the transformation rules for the LTH guarantee

38 CHAPTER 3. ENGINEERING STATECHART FORMALISM

that the value ms for each state s is handled correctly within the model. Thus, the
transformation rules for handling the number of tracked states are defined as follows:

LTH IN
t = (s1, e/a, s) ∈ T̃ where ∃ lth ∈ LTH : γ(lth) = s

t̃ = (s1, e/(a;ms : ms + 1), s)
⇓ (3.14)

LTH OUT
t = (s, e/a, s2) ∈ T̃ where ∃ lth ∈ LTH : γ(lth) = s

t̃ = (s, e/(a;ms : ms − 1), s2)
⇓ (3.15)

where s1, s2 ∈ S, a ∈ Ã, ms ∈ V, e ∈ E.
Recursion can now be modeled using long-term history connectors: Each state containing
an LTH keeps track of its ms previously visited substates. To make recursion applicable, it
has to be postulated that there are so-called recursion scopes (RS), i.e. states with nested
substates, where all non-basic states contain a long-term history connector. With that
prerequisite, it is possible to leave a state at any time, process another path (recursive
descent) and later return to the state(s) the system was in before (recursive ascent).
To terminate such a recursion, the uppermost state of a recursion scope, called the recur-
sion delimiter state, must be known. When it reaches its exit state, it must be checked
whether there is still any path awaiting completion, i.e. if the long-term history still
contains one or more states. If this is the case, the traversal of the most recently ac-
cessed substate has to be resumed. Otherwise, the state can be left since the recursive
ascent is finished. In Figure 3.7(a), the state INTERRUPTION HANDLING FACILITY is
the recursion delimiter state of the drawn scope.

Definition 3.18 Recursion Delimiter States RDS
RDS is the set of recursion delimiter states with

RDS = {s ∈ S | ∃h ∈ H̃, s∗ ∈ S : [(γ(h) = s ∧ hit(h) = LTH) ∧ (ρ(s∗) = s∧
(∀h∗ ∈ H̃ : γ(h∗) = s∗ ⇒ hit(h∗) = H))]}

For states belonging to the set of recursion delimiter states RDS , a transformation rule
additional to LTH OUT is defined:

LTH OUT RDS
t = (s, e/a, s1) with s ∈ RDS

t̃1 = (s, e[ms == 0]/a, s1); t̃2 = (s, e[ms > 0]/a, s)
⇓ (3.16)

This rule specifies that any transition originating from a recursion delimiter state is taken
only if the corresponding ms is zero (transition t 1 in Figure 3.7(a)). Otherwise (t 2 in
Figure 3.7(a)), the RDS is entered anew to proceed with the next “suspended” state.

3.5 Cartesian Transition Set

There is further optimization potential when considering n-time parallel systems. The
uppermost hierarchy layer must here be described by an n-time AND superstate. When
some of the substates of these AND states have to be logically grouped because of common
functionality or transition groups, this is not possible with conventional statecharts. The
existing orthogonal approaches are insufficient: either a fully grouped approach where it

CHAPTER 3. ENGINEERING STATECHART FORMALISM 39

is impossible to be in a substate of one AND state and in a substate of another AND
state at a time (Figure 3.8(a)), or a parallel approach where states and transitions are to
be duplicated and grouping is completely lost (Figure 3.8(b)).

(a) groups (b) parallel

Figure 3.8: Comparison of approaches grouping vs. parallelism

Figure 3.9(a) shows a possible solution to this problem by allowing states to overlap. Harel
and Kahana [HK92] show clearly that general overlapping in statecharts leads to much
more complex semantics and creates a number of new problems. The most severe one
is that after creating fully or partially overlapping states, some parts of the statechart
semantics become unclear and fuzzy. For example, it is ambiguous whether the system is
in all overlapping superstates, or only in a subset of them or what it means being in parts
of a state only. Furthermore, it is shown that enriching the statechart formalism with
overlapping does not gain any expressiveness that could not be gained in other ways.

(a) grouped overlapped (b) with CTS - parallel grouped

Figure 3.9: Comparison of approaches to deal with parallelism

Fortunately, general overlapping is not necessary to confront the problem: a mechanism
operating on path events analogous to the split-combine mechanism is now constructed
to address the tension between parallelism and grouping. The main idea is to provide a
connector (called cartesian transition set connector or CTSC) connecting two AND states
(Figure 3.9(b)). Now, the substate of such a state can be addressed directly as the target
of a transition occurring on a path event.
The target state is then an implicitly given AND state constructed of the substates of
the source state that are not left and the specified new substate. In our example (Figure

40 CHAPTER 3. ENGINEERING STATECHART FORMALISM

3.9(b)) with two parallel CPUs, the given path event e p facilitates the transition to an
implicit, merged AND state with substate PROCESS 1 for CPU 1 together with the un-
affected substate IHF 0 of CPU 0.

Following this principle, the set of CTS connectors is defined as follows:

Definition 3.19 Cartesian Transition Set Connectors CTSC , CTS Assignment

Function cts

The set of cartesian transition set connectors is named CTSC . The set of connectors is
redefined as follows:

˜CON
def= CTSC ∪EBC ∪ CON

The CTS assignment function cts : CTSC → 2T yields the transitions associated with a
CTS connector.

Each CTSC has a direction, i.e. it leads via transition segments from a set S̄ ⊂ S to
another set Ŝ ⊂ S, and we say that the CTSC leads from s̄ ∈ S̄ to ŝ ∈ Ŝ. For AND states
ssrc, stgt ∈ S and ν, µ, nsrc, ntgt ∈ N, the following holds:

SRC = {ssrcν | 0 < ν ≤ nsrc} ⊂ S where ρ(ssrc) = SRC,ψ(ssrc) = AND (3.17)

TGT = {stgtµ | 0 < µ ≤ ntgt} ⊂ S where ρ(stgt) = TGT, ψ(stgt) = AND (3.18)

The following modeling rules are given for CTSC:

1. AND superstates which – or whose substates – are connected using a CTSC must
have the same number of parallel substates: nsrc = ntgt

2. A transition segment leading to a CTSC has to be labeled with a path event.

ts = (s1, ei0...ik−1
/a, c) ∈ T̃ S (3.19)

where c ∈ CTSC, ei0...ik−1
∈
−→
E , s1 ∈ S.

3. A transition segment leading from a CTSC to a state has to be labeled with the
trivial label λ/µ.

ts = (c, λ/µ, s2) ∈ T̃ S (3.20)

where c ∈ CTSC, s2 ∈ S.

4. The first index of the path event on a TS to a CTSC has to specify the target
substate (of the AND state) to which the CTSC leads.

∀ ts1, ts2 ∈ T̃ S : [ts1 = (s1, ei0...ik−1
/a, c) ∧ ts2 = (c, λ/µ, s2)⇒ i0

id= s2] (3.21)

5. For each CTSC leading from an AND state s1 to another AND state s2, there has
to be a corresponding CTSC directed from s2 to s1.

∀ s1, s2 ∈ S, t1 ∈ T, c1 ∈ CTSC :
[
t1 = (s1, ei0...ik−1

/a, s2) ∧ t1 ∈ cts(c1)⇒[
∃ t2 ∈ T, c2 ∈ CTSC : [t2 = (s2, ei0...ik−1

/a, s1) ∧ t2 ∈ cts(c2)]
]]

(3.22)

where ei0...ik−1
∈
−→
E , a ∈ Ã.

CHAPTER 3. ENGINEERING STATECHART FORMALISM 41

Note that by means of the CTSC mechanism as defined, only one substate can be ad-
dressed per path event. This is intentional and could be changed by allowing more than
one category to be processed by a CTS connector.

The transformation rule is given as follows:

CTSC

t = (ss ∈ ρ∗(ssrc), ei0...ik−1
/a, st ∈ ρ∗(stgt));

c ∈ CTSC : t ∈ cts(c); stgt ∈ S
s̃tgt; ρ(s̃tgt) = {ssrc0 , . . . ssrcν−1 , stgtν , ssrcν+1 , . . . , ssrcn};

t̃ = (ss, ei0...ik−1
/a, st) : st ∈ ρ∗(s̃tgt)

⇓ (3.23)

where stgtν
id= i0, AND states ssrc, stgt, s̃tgt ∈ S with ρ(ssrc) = {ssrc0 , . . . ssrcn}, stgtν ∈ ρ(stgt),

a ∈ Ã, ei0...ik−1
∈
−→
E , ss, st ∈ S, t, t̃ ∈ T .

Because of this rule, it is not necessary to implicitly create the full cartesian product of
imaginable new AND states: only those new AND states are created that are reachable
due to a matching transition marked with the respective path event.

Analogous to the split state semantics, the path condition is modified when passing a
CTSC as well since the CTSC removes the first condition:

pc =
(
get(condCAT1), . . . , get(condCATκ−1)

)
This also decrements the value of dim(pc).

3.6 Conclusion

By definition of the ESF constituents, all shortcomings and missing features of Harel’s
statecharts have been addressed. Path events and path conditions allow for implicit spec-
ification of the part of the model where certain events are handled. Split and combine
pseudo-states provide the formal foundation for the processing of path conditions in a hi-
erarchical model providing a branching mechanism. The event bus mechanism reduces the
number of transitions in the models. The problems occurring when recursive behavior is
modeled is solved by the definition of long-term history connectors. Finally, the modeling
of concurrent paths is simplified considerably by way of cartesian transition set connectors.
The syntax and prerequisites of these new ESF elements has been given and transforma-
tion rules have been defined that allow for the step-by-step translation of ESF constituents
into conventional statechart elements. These also provide the semantical basis necessary
for the later formal verification (cp. Section 6.3).

42 CHAPTER 3. ENGINEERING STATECHART FORMALISM

Chapter 4

IHF Models

While the developed ESF suits all OS modeling targets, this thesis addresses specific
questions about soft real-time as outlined in Section 1.2. For that purpose, we shift our
focus now towards the interrupt handling facility. The IHF is the part of an operating
system that represents nondeterminism. Furthermore, it is the most reactive part of a
complete OS. As elaborated later in chapter 5, the architectural and qualitative properties
of the interrupt handling facility greatly influence a system’s ability to meet (soft) real-time
requirements.

4.1 Hardware Platform

The first step is to discuss possible hardware platforms that can be used as a basis for
the investigation of different operating systems. Any interruption is handled first by the
microprocessor and its peripheral circuits.

Modern microprocessors differ widely according to their fields of application, Flik [FL01]
gives a detailed introduction to microprocessors.
General purpose systems such as personal computers usually rely on complex instruction
set computing (CISC) processors. Their clock rate is between 1 and 4 GHz. Instructions
are pipelined and executed out of order. Multiple arithmetical logical units (ALU) and
sophisticated pipelines allow for super-scalar execution. Data and address bus widths are
usually either 32 or 64 bit.
The most common CISC architecture is the Intel Architecture (IA), starting with the 8086
CPU in 1978. The CPU family most commonly used today is IA32. Its representatives
are mainly Intel Pentium CPUs, most recently the Pentium 4 (2000 - 2006). The IA32E –
Intel Pentium 4 Extreme Edition (2005-2007) – is the first real 64 bit architecture emerg-
ing from the Pentium family. The Intel Core Duo and Intel Core Solo Processors (2006
- 2007) as well as the Intel Core 2 Processor family (2006-2008) are the currently used
CPUs.
High end servers and workstations usually use reduced instruction set computing (RISC)
processors. The reduced instruction set is implemented very efficiently and fast, the slower
clock-rates between 1 and 3 GHz are compensated for by fewer cycles per special instruc-
tion. Whereas the CISC CPUs of any vendor are nearly all similar to the Intel Architec-
ture, different vendors of RISC processors implement entirely different features in their

43

44 CHAPTER 4. IHF MODELS

CPUs. The current SPARC processors such as UltraSPARC IIIcu, UltraSPARC IV and
UltraSPARC IV+ are also used in workstations, whereas the T1 Niagara processors are
optimized for server side throughput computing. Other examples are the 32 bit MIPS
CPUs (MIPS32 (4k)) such as R3000 and the modern 64 bit MIPS64 (5k) such as the
R6000A.

Intel Architecture
The Intel Architecture (x86) features a three-way super-scalar design equipped with a 12-
stage pipeline [Int08a]. Furthermore, a 4-way micro-operations cache as well as a 8-way
level 2 cache are on die. Starting with the Intel Pentium Pro, the IA is capable of dy-
namic out-of-order-execution and intelligent branch prediction. Since the Intel Pentium 4
processor, the Intel NetBurst Architecture that allows for hyper pipelining and advanced
dynamic execution has been implemented. Intel Virtualization Technology was then also
introduced. Dual Core capability was added with the Extreme Edition. Thermal manage-
ment and dynamic power coordination are the latest accomplishments of Intel research.
Since the release of the Extreme Edition 840 (2005), several cores can be located on every
physical carrier (package) – such a system is called multi-core. However, every core (i.e.
an entire CPU) possesses up to two logical CPUs, or more precisely architectural states
(each with its own set of registers and APIC, see Section 4.1.1) sharing busses and the
ALU – such a system is called hyper-threaded. Today both paradigms are used: current
Intel processors are hyper-threaded multi-core CPUs.
Disruptions of the control flow are subdivided into two basic categories: exceptions and
interrupts [Int08b]. Exceptions cannot be masked under any circumstances whereas inter-
rupts can be blanked out according to the operating system. Exceptions can be raised due
to program errors detected by the CPU itself or due to machine check results. Interrupts
can be generated by external hardware or issued by means of software instructions.

SPARC V9 Architecture
Sun Microsystems currently manufactures the UltraSPARC IV+(2006) and the Ultra-
SPARC T1 (2007) CPU [SUN05]. Both implement the SPARC V9 Architecture [WG00].
The UltraSPARC IV+ features a four-way super-scalar design equipped with a 14-stage
pipeline. Its instruction set is compatible with the visual instruction set (VIS) Version II.
Its virtual address space has a width of 64 bits, the physical one is 43 bits (8192 GB of
memory can be accessed). The CPU embodies full 64 bit arithmetical and logical opera-
tions. The specifications are inherited mainly from the UltraSPARC IV CPU [SUN04b]
and the UltraSPARC III cu [SUN04a].
The UltraSPARC T1 CPU can execute up to 32 threads in parallel. Note that not all nec-
essary components like the floating point unit are duplicated – which would limit the fields
of application for this CPU considerably. All SPARC V9 processors are capable of sym-
metrical multiprocessoring. Besides these features, all CPUs have architectural support
for external monitoring by means of watch-dog cards such as RSC by Sun Microsystems
or XSCF by Fujitsu Siemens Computers.
Because of these features, the handling of interruptions within a SPARC V9 processor is
complex. Internal conditions that lead to an altered control flow are called exceptions,
external stimuli (e.g. by other CPUs or I/O devices) are interrupts. The system’s reac-
tion to either of them is defined by system traps. A trap is treated like any asynchronous

CHAPTER 4. IHF MODELS 45

procedure call. If the CPU has reached the maximal nesting depth for interruptions, the
system switches first to an “alert state” that can only be left by immediately starting the
recursive ascent. If another trap occurs, the system switches to an “error state” where only
watchdog resets or hardware resets are valid inputs. This mechanism of failsafe handlers
allows the external environment to interact at any time and in whatever condition the
system is.

MIPS
MIPS64 (2005) is the latest set of 64 bit CPUs fabricated by MIPS. They feature a four-
way super-scalar design equipped with a multiple stage pipeline [MIP05a]. The MIPS64
5Kc CPU possesses six pipeline stages, the MIPS64 20Kc seven. The instruction set im-
plements the MIPS instruction set architecture (ISA) version V [MIP05b]. The so-called
dual-issue super-scalar micro-architecture is capable of executing pairs of instructions to-
gether (SIMD), its pre-fetch unit fetches four instructions per cycle. A MIPS CPU has a
40-bit virtual address space and a 36-bit physical address space (so it addresses up to 64
GB of physical memory).
All interruption handling [MIP05c] is carried out by the first co-processor that is inte-
grated into the core of a MIPS CPU. The MIPS64 CPUs distinguish between interrupts
and exceptions as the Intel Architecture and SPARC V9 family do. While the first version
of the architecture supported merely six hardware interrupts, the second version allows for
three modi: a compatibility mode that is identical to version 1, a vectored interrupt mode
that allows the mapping of dedicated handlers to interrupt vectors and finally a mode that
delegates all prioritizing and handling of interrupts to an external interrupt controller cir-
cuit. Regardless of which modus is chosen, a handler routine is not interruptible and thus
its length is restricted to 32 machine instructions [MIP05c]. Any handling beyond that
has to be realized by means of routine calls and is thus not reentrant at all – preemption
cannot be prohibited.

Table 4.1 sums up these IHF properties and the adequacy for real-time usage of the plat-
form. Furthermore, practical criteria such as usage and costs of the platform are assessed
as well. Finally, the availability of operating systems for each architecture is considered.

Hardware IHF Properties Adequacy for
Real-Time

Usage, Costs OS Available

SPARC complex,
powerful

most eligible common, very
costly

some

MIPS basic, limited concept-
dependent

uncommon,
costly

few

IA32 comprehensive,
flexible

adequate widespread,
reasonable

numerous

Table 4.1: Hardware comparison

Obviously, after immediately ruling out the MIPS platform, the choice between Intel
(CISC) and SPARC (RISC) is not only practical but also conceptual. The Intel Architec-

46 CHAPTER 4. IHF MODELS

ture is the platform chosen for this thesis: due to the flexibility of the IHF, the system’s
real-time capabilities depend on the supervisor software rather than on the hardware.

4.1.1 Intel Architecture Specific Details

In this thesis the focus is on multi-processor architectures rather than on single CPU
systems. As mentioned above, a system’s symmetrical multiprocessor (SMP) [Int97] ca-
pability can be achieved in different ways. In order to have n-fold SMP capability, either
n single core CPUs (see Figure 4.1(a)) , n

2 dual core (Figure 4.1(b)) or hyper-threading1

CPUs or even n
4 dual core CPUs capable of hyper-threading (Figure 4.1(c)) can be used.

Regardless of this usage, any architectural state (AS) of a single or dual core processor
as well as any AS of a hyper-threading CPU has its own local advanced programmable
interrupt controller [Int08b] as depicted in Figure 4.1.

Architectural
State

Execution Engine

local
APIC

Bus Interface

6?System Bus-�

(a) Intel Processor

Architectural
State

Architectural
State

Execution Eng Execution Eng

local
APIC

local
APIC

Bus Interface Bus Interface

6?System Bus-�

(b) Intel Dual Core Processor

Arch
State

Arch
State

Arch
State

Arch
State

Execution Eng Execution Eng

local
APIC

local
APIC

local
APIC

local
APIC

Bus Interface Bus Interface

6?System Bus-�

(c) Intel Dual Core Processor

with Hyper-threading

Figure 4.1: Overview of Intel single core, hyper-threading and dual core design

Any CPU implementing the specifications of the Intel Architecture provides four different
current privilege levels (CPL) for the currently running program.

Interrupts and Exceptions
The two distinct types of interruptions that are defined by the Intel Architecture [Int08b]
can be further categorized. The asynchronous interrupts that are issued by external hard-
ware circuits via an IOAPIC and sensed by the local APIC (by means of the LINT[1:0]

pins) are all maskable. The external interrupt that is wired to the NMI pin is called the
non-maskable interrupt (NMR), it can under no circumstances be masked. Exceptions
cannot be masked at all. There exist three different kinds of exceptions:

• Fault: if the issue causing an exception can be corrected (e.g. a page fault) and it
is possible to continue the disrupted code an exception is called a fault. The return
address of a fault is usually the memory address of the faulty instruction.

1Since an architectural state does not have as many independent CPU components as an entire core

[Int08a], the two options dual-core or hyper-threading CPU are not equivalent from a performance per-

spective. Resource conflicts are more likely in hyper-threading CPUs. This was one of the major problems

when Sun Microsystems exploited the hyper-threading concept by enabling the T1 CPUs to simultaneously

run 32 threads but only provided one single FPU: Depending on the application, the entire CPU stalled

due to conflicts.

CHAPTER 4. IHF MODELS 47

• Trap: A simple way to transport debugging information (e.g. a breakpoint) to the
supervisor software. The return address points to the memory location directly after
the instruction that was trapped.

• Abort: If a severe error occurs, the program that was terminated cannot be contin-
ued, a handler is called instead. Example: double fault.

Every interrupt has a unique identifying 8-bit number, called the interrupt vector. Vectors
0 and 3−14,16−19 are the 17 predefined exceptions (for details see [Int08b] section 5.3.1),
vectors 1, 15 and 20 − 31 are unused – they are reserved for further use by Intel. The
vectors 32−255 are the user-defined interrupts that can be assigned to any external device.
The missing vector 2 is assigned to the NMI. Each one of the 256 existing interrupts can
be generated by means of the instruction int n. If an interrupt is issued by software, it
cannot be masked, regardless of whether its vector is maskable or not.
The interrupt enable flag IF that is part of the EFLAGS register is used to mask interrupts.
If the flag is set, the processor services hardware interrupts; otherwise, they are masked.
The set interrupt flag instruction sti, and respectively the clear interrupt flag instruction
cti are used to modify flag IF directly. The ability to execute these instructions depends
on the current privilege level of the program or task attempting to do so.

In order to localize a handler routine address that is associated with an interrupt vec-
tor, a CPU internal table called interrupt descriptor table (IDT) exists. It has to be
populated while the CPU operates in privileged mode (CPL is 0) by the operating system,
usually during the boot phase of the system. The IDT can reside anywhere in the system’s
address space; it is referenced by the idtr register. Depending on the type of exception (or
interrupt) the IDT may contain three different kinds of descriptors: task-gate descriptors,
interrupt-gate descriptors or finally trap-gate descriptors. The main difference between
these descriptors is that the interrupt-gate disables all maskable interrupts by default,
whereas the trap-gate descriptor does not.
Each interrupt that is delivered to the CPU has its own priority called the interrupt
priority [Int08b]. It is determined as follows:

priority = bvector /16c

Since the vector numbers 0 - 31 are reserved or predefined, the user defined interrupts
have the priorities 2 up to 15. A group of 16 interrupt lines sharing the same priority is
called an interrupt priority class or priority level. A task priority register (TPR) is part
of any local APIC (see next paragraph for details). It keeps a priority threshold defined
by the supervisor software. Only interrupts with a higher priority can be handled by the
CPU. If it is set to 0, all interrupts are served, if it is set to 15, only the non-maskable
ones are handled. An additional register called the processor priority register (PPR) is
automatically populated by the CPU; it can only be read by the operating system. This
register represents the current priority at which the CPU is currently executing. Its value
is calculated as follows:

if TPR[7:4] >= ISVR[7:4]
then
PPR[7:0] <- ISVR[7:0]

48 CHAPTER 4. IHF MODELS

else
PPR[7:4] <- ISVR[7:4]
PPR[3:0] <- 0x00

ISVR represents the vector number of the highest priority bit of any service routine regis-
tered.

Advanced Programmable Interrupt Controller and Symmetric Multiprocessor
Architecture
In recent years, the programmable interrupt controller (PIC) mainly used for Intel Ar-
chitecture compliant systems was Intel 8259A. Usually, two of the controller chips – that
handled eight interrupt lines each – where used in a cascade to have 15 IRQ lines available
[Int88]. With multiprocessor systems spreading, the advanced programmable interrupt
controller (APIC) became more common. When dealing with an APIC architecture, it is
crucial to distinguish between the local APIC that is embodied in every CPU core and the
IOAPIC that replaces the old-fashioned PIC [Int08b] (see also Figure 4.2). For the latter,
controller circuits such as Intel 82489DX2 or the Intel 2093AA [Int96] are mainly used.
This IOAPIC provides multi-processor interrupt management and implements static as
well as dynamic distribution of symmetric interrupts across all processors of a system. If
there exist multiple I/O subsystems, each one possesses its own set of interrupts.

• Static distribution mode. The IOAPIC delivers interrupts depending on their
origins to specific local APICs. This assignment is stored within the internal Inter-
rupt Redirection Table (IRT) of the IOAPIC. The interrupt is delivered to either a
single CPU (unicast), a subset of CPUs (multicast) or all CPUs (broadcast).

• Dynamic distribution mode. As mentioned above, each local APIC has a pro-
grammable Task Priority Register (TPR) that yields the priority of the currently
running process. The interrupt is delivered to the CPU running with the lowest
priority. If two or more CPUs share the lowest priority, arbitration – based on a
second priority that is reset every time an interrupt is delivered – is used.

As defined by Intel in 1997 [Int97], “the MP specification’s model of multiprocessor sys-
tems incorporates a tightly-coupled, shared-memory architecture with a distributed inter-
processor and I/O interrupt capability.” Any SMP system that follows [Int97] is entirely
symmetric, i.e, all CPUs are functionally identical, have the same status and are able to
communicate with every other processor. In a nutshell: There exist neither hierarchy nor
master-slave relationships among them.

Yet, Figure 4.2 distinguishes between a bootstrap processor (BSP) and the other appli-
cation processors (AP). The BSP is responsible for initially booting the operating system
while the application processors are activated later during the boot process itself.
By means of the local APIC, every CPU can send inter-processor interrupts (IPI) to every
other CPU. When a CPU intends to send an IPI to another, only the targets identifier
and interrupt vector is to be stored in the local interrupt command register (ICR). The
interrupt is then automatically generated via the interrupt controller communication bus.

2Intel abandoned this series in 1999

CHAPTER 4. IHF MODELS 49

BSP

...

local APIC

? 6

AP 0

...

local APIC

? 6

AP 1

...

local APIC

? 6

AP 2

...

local APIC

? 6 -�
Interrupt Controller
Communications Bus

-�
I/O Expansion Bus

I/O APIC 0

I/O Interface

?

6

?6

...

-�
I/O Expansion Bus

I/O APIC n

I/O Interface

?

6

?6

Graphics

Framebuffer

?6

Figure 4.2: APIC configuration in an Intel SMP version 1.4 compliant system

Timing Facilities
Before defining the concrete machine setup that will then serve as the basis for all operating
system models, another facette of the Intel Architecture must be considered: the existing
timing facilities. A timing facility is a means that allows to create an operating system’s
internal representation of time.

• Real Time Clock (RTC). The first chips that provided timing capabilities to
home computer systems were Motorola MC146818 and compatible CMOS RAMs.
Today, RTC devices are integrated into the I/O controller hub (ICH), the main part
of the chipset.

• Programmable Interval Timer (PIT). Different CMOS circuits, such as the
Intel 8253 and 8254 programmable interval timer [Int94], were for a long time the
most commonly used way to periodically fire timer interrupts and thus to create a
system’s internal representation of time.

• High Precision Event Timers (HPET). The former Multimedia Timer [Int04]
is a high resolution timing facility manufactured to synchronize multimedia streams.
Many well-known hardware vendors follow the HPET standard that was mainly
developed by Intel, Microsoft, Compaq, Toshiba and Phoenix.

• Advanced Programmable Interrupt Controller (APIC). If there is no exter-
nal [Int96] circuit available for generating timer interruptions, the APIC can be pro-
grammed to issue interrupts with the theoretical frequency of the systems frontside
bus (FSB).

• Advanced Configuration and Power Interface (ACPI). Every operating sys-
tem uses the ACPI [TIM+00] system to keep track of the time the hardware is unused.
Thus, the ACPI power management facilities also possess timing capabilities where
interrupts can be issued on a one-shot basis only and not periodically.

• Time Stamp Counter (TSC). This special CPU register is incremented every
cycle. It can be accessed by means of the rdtsc assembly language instruction

50 CHAPTER 4. IHF MODELS

[Int08b]. It is not capable of signaling any elapsed time at all, therefore it is mainly
used to calibrate the timing facility used rather than being used as one itself.

Table 4.1.1 taken from [Koe02] lists all the crucial characteristics of the above mentioned
hardware clocks and timers. Their capability to issue “one-shot” interrupts as well as
to periodically deliver interrupts to the CPU is the most important feature with respect
to the IHF models. For later discussion about soft real-time requirements (cp. Section
5.2.2), their resolutions (theoretical, real and the range of their periodicity) are elaborated
as well.

RTC PIT HPET APIC ACPI TSC

Interrupt yes yes yes yes yes no
Periodic yes yes yes yes no no
Range 2Hz-8kHz ≤ 1,19

MHz
≤ 10 MHz ≤ bus fre-

quency
≤ 14,3
MHz

n/a

Theoret.
Resol.

21..13 Hz
Steps

∼ 10−2Hz ∼ 10−7Hz
steps

1 FSB-
Cycle

∼ 10−3Hz
steps

1 Cycle

Real
Resol.

n/a 1 Hz n/a 20 FSB-
Cycles

n/a 38 Cycles

Table 4.2: Characteristics of the different timing facilities

4.1.2 Specific Machine Setup

All models and later investigations are based upon a specific machine setup. This setup
is defined by the parameters of the TwinUx project.

The TwinUx Idea
Scheidig [SS03] invented the TwinUx-Architecture inspired by the paradigm of graph-
based execution of multimedia data [MP96] within operating systems. By then, only the
experimental operating system Scout [Mos97] implemented this paradigm. See Figure 5.6
on page 102 for a simple example of a multimedia scenario graph.

In order to exploit this idea further, a second paradigm was introduced by Scheidig [Sch06]:
A TwinUx system has to separate interactive processing from the execution of path-based
multimedia content. To realize this, an additional entity named the coordinator was con-
ceived [Sch03] to manage the two parts and to de-conflict the handling of shared hardware
resources. The video output device for example is one of those shared resources. The
overall architecture [Sim04] is depicted in Figure 4.3.
The multimedia subsystem is supposed to be a minimized operating system that does not
include any interactive components or spooling. It incorporates all required multimedia
functionality and is driven by a basic scheduling mechanism. It therefore contains the
component extension (see Section 5.2.1) that decouples the multimedia functionality from
the operating system layer. The interactive part is based on any general purpose operating
system that is in place to handle all interactions with the outside world (the user) and to

CHAPTER 4. IHF MODELS 51

communicate with pre-defined interfaces of the component extensions via the coordinator
software.

SMP Hardware / Hypervisor

Multimedia
Subsystem

System
Coordinator

Interactive
Component

mm m m m- �

Figure 4.3: TwinUx architecture - circles depict abstract resources

The need for three processors directly derives from the TwinUx Architecture. Given that
common symmetrical multiprocessor systems can only handle 2n CPUs, four CPUs are
considered. Since this thesis deals with the interrupt handling facility rather than with
overall performance evaluation, a single Intel Core Duo Processor with hyper-threading
capabilities could be regarded as sufficient. However, Figure 4.1 shows that architectural
states do not each possess their own bus interfaces. It is therefore reasonable to disregard
hyper-threading and to consider only multi-core CPUs.

• The setup contains four Intel Pentium 4 cores, i.e. either two Core Duo Processors
or four conventional Intel Pentium 4 CPUs.

• The overall system is equipped with one IOAPIC that is connected to the Peripheral
Component Interconnect (PCI) bus.

• An external timing facility which is either the PIT or the HPET is used to generate
the periodic timer interruptions (uses one interrupt line).

• An additional real-time clock device exists in order to provide one-shot timer func-
tionality (uses one interrupt line). This is the reasonable choice from the above
discussion on timing facilities.

• The advanced configuration and power interface regulates idle times and device
power. It also carries out thermal management (uses one interrupt line).

• A fixed set of peripheral devices is defined. Those devices are assumed to allocate
an IRQ channel, i.e. one IRQ line in the interrupt controller each. IRQ sharing or
the assignment of multiple channels per device are not considered.

1. single IDE or SCSI hard drive (HDD)

2. MPEG decoder card (MPEG)

3. human interface device (HID) like a mouse that is connected via universal serial
bus (USB)

4. sound card (SND)

5. network interface card (NIC)

6. keyboard (KB)

Each of the peripheral devices generates I/O interrupts using one interrupt line each.

52 CHAPTER 4. IHF MODELS

4.1.3 Load Scenarios

In a system running with the previously defined peripheral devices, workload for the
interrupt handling facility is created. Each device can issue interrupts, which are modeled
as events – or more specifically path events (see Section 4.2.2.3) – at any point in time.
An interrupt load scenario (or for short: load scenario) is a finite sequence of disruptive
events, or formally:

Definition 4.1 Load Scenario (ESF)

A load scenario is a finite sequence of path events
−→
E n together with the distances (in

system steps) between their occurrences: scen ∈
−→
E n ×Nn

0 , n is called the length of scen.
The function length(scen) yields n.
It holds that ∀~eν , ~eν+1 : xν ∈ N0 is the corresponding distance between these path events
(0 ≤ ν < n).

Note that the previously used term at any point in time is disregarded by the formal
definition: instead, system steps are used to describe the distance between two events.
Later in the thesis (cp. Section 5.4), this somewhat unusual definition will prove helpful.

4.1.4 Load Profiles

While a load scenario is a concrete situation, an interruption load profile (or for short: load
profile) defines the abstract ratio of device usage (load). Load profiles depend on the kind
of usage of the system. For different categories of usage, e.g. interactive work, multimedia
playback or scientific computing, different dedicated load profiles can be defined. The
formal definition is based on path events once more:

Definition 4.2 Load Profile

For each subset of path events Edisrupt ⊆
−→
E that represents disruptions, a load profile is

defined. Let occ : R+ ×
−→
E → N0 be a function that yields the number of occurrences of a

path event within a certain period of time. With e0, . . . , en−1 ∈ Edisrupt, the load profile is
the ratio:

occ∞(e0) : occ∞(e1) : · · · : occ∞(en−1)

4.2 Modeling Approach

Based on the preliminary discussions about the underlying hardware platform presented
so far, the approach for creating the IHF models is now given.
The modeling methodology can be described as a top-down approach. Starting from a very
abstract level, the architecture of an operating system is described by hiding all details in
black boxes. If source code is available for this particular SuI, more detailed sub-models
can be created in order to fill the black boxes so that they become white boxes in terms
of software engineering [JW96]. This especially applies to the IHF which is the crucial
white box in this thesis: as the interactive part of an OS, it greatly influences the overall
real-time capabilities of the system (cp. Section 5.2 for a detailed discussion).

CHAPTER 4. IHF MODELS 53

All principles and paradigms will be explained in the following sections starting with
a top-down definition of building blocks of an entire OS. A guide of how to model spe-
cific implementation details of any operating system such as interruptions, priorities or
synchronization is then elaborated. A basic nomenclature facilitates easy comparison and
conveyance of any model.

4.2.1 Top Down View

To create the IHF white box model, it is indispensable to reverse engineer the operating
system’s source code. Unfortunately, the modeling of an IHF is the most complex part
of the whole operating system from a reverse engineering point of view. Any source
code that implements the interrupt handling facility contains considerable amounts of
low-level assembly language instructions – which is the most difficult language to reverse
engineer – for two main reasons:

1. In the compiled operating system kernel, the part that represents the IHF is executed
more often than other parts (every clock tick, every system call as well as any
interruption traverses this section of the OS). Only assembly language code can be
sufficiently optimized and tuned with regard to high performance.

2. The hardware-dependent parts of the IHF need to be coded by means of the native
instruction set of the target hardware platform. Usually, there exists no high-level
language equivalent for instructions such as iret that returns from an interrupt
handler or cli that disables all local interrupts (cp. Section 4.1.1).

Yet the fact that all interrupt handling starts at a well-defined point (which is derivable
from the IDT entries) eases the reverse engineering efforts a little. Besides the challenging
task of reverse engineering, modeling the IHF as part of the complete OS that is looked
at from a top down perspective requires some further consideration.

As already mentioned, when modeling an entire OS or a dedicated part of it, it is useful
and necessary to provide different levels of abstraction according to the focus and purpose
of the model. This usually results in a layered (different levels of abstraction) and mod-
ularized (different black or white boxes) model. It is easy to see that the contrary, i.e.
giving one flat model for the internal states of an OS with constant level of detail is not
helpful.
Different granularities of the model are required when focusing on different parts of the
system. For example, a system state depicting the first steps of handling an interruption
may represent only a few machine instructions, whereas a state describing the update of
system statistics may represent hundreds of high-level language statements and thus a
large number of machine instructions. Those differences should be encapsulated by modu-
larity or separated by hierarchy. In our case, only the IHF is modeled with high granularity.

Although the paradigm of partiality in modeling is applied, investigating one isolated
aspect of an OS is not possible. This is so because of the concurrent and reactive nature
of the IHF as a subsystem. Unpredictable side effects may cause other paths outside this
particular subsystem to be taken. Therefore, all possible causes for those effects have to
be taken into account carefully.

54 CHAPTER 4. IHF MODELS

Because of this, a predefined stub for a model of the IHF is necessary. In any operating
system, the following subsystems exist which form the building blocks of an OS model
[SGG01]:

1. User space processes3

For some decades, pseudo-parallelism as a paradigm has been mostly exploited for
all GPOS [Han73]. Processes, tasks and threads [IEE01] implement this principle in
nearly all modern operating systems.
Hence, the set of all processes and their logical states is an important facet for all
models as well. In general, any process can be active, i.e. running, blocked or ready,
i.e. waiting. Most operating systems have implemented more than those three very
basic states.

2. Kernel control paths (KCP) / Intermission kernel control paths (IKCP)
The main part of any IHF model is the set of kernel control paths (KCPs). A KCP
depicts the control and data flow within the operating system kernel. In general, it
is the description of any action carried out while the CPU is in privileged mode. It
does not necessarily need to be triggered by a disruption of any other control flow.
A special case are the intermission kernel control paths (IKCPs). They represent
the paths through the kernel that were triggered by an intermission of the currently
active tasks, i.e. by an interruption of any kind. In the case of multiple processors,
the IKCP building block can exist several times in a model.

3. Multi-processor and interrupt platform
If the sophisticated mechanisms of the Intel Architecture for interrupt distribution
and handling as described in Section 4.1.1 are used, they need to be represented
in the model. This block represents the arbitration and distribution of interrupts
within the Intel IA32 hardware platform. It incorporates the modes of operation
of the interrupt controller circuits as well as the numbers, types and properties of
interrupt sources.

4. Synchronization primitives
Especially in multi-processor systems, critical regions have to be protected from
concurrent access of simultaneously executed code. The operating system primitives
implementing the protection have to be defined or at least modeled by an interface
or any other means.

5. Memory management interface
When modeling system calls or kernel control paths, memory handling has to be
modeled by means of a common interface. When modeling IKCPs, the management
of segmentation and paging can be crucial for the accuracy of the model as well:

• User space processes could raise exceptions when accessing a swapped memory
page.

• Any IKCP could execute segment switches or cause pages to be swapped.

3Note that the subset of processes located in kernel space memory is modeled separately.

CHAPTER 4. IHF MODELS 55

• In some rare cases, privilege levels within the operating system are implemented
by means of memory segmentation.

In general, concepts and implementation of memory management are not part of
the thesis. Thus, the according models contain abstract interfaces for the memory
management at most.

The top level model of an OS gives a clear overview of architectural types and design
paradigms the system is based on. It unites and therefore contains all more detailed
building blocks (subsystems) in a hierarchical manner.
Depending on the implementation and the complexity of an operating system and its
IHF, it can become necessary to elaborate all of these building blocks. For the systems
investigated in this thesis, it will prove feasible to abstract most of them in the models.
Note that creating a wholistic model for the entire operating system would contradict the
fact that there is no uniform implementation paradigm throughout the kernel.

4.2.2 Modeling Implementation Patterns

Having defined the formalism, discussed the hardware platform and explored some prelimi-
nary issues about the models in general, it is necessary to provide a more detailed guideline
on how to translate certain source code elements into ESF models. Four characteristic
operating system patterns will be elaborated:

1. Sequential control flow including function calls

2. Disruptions

3. Synchronization

4. Conditional branching

No interrupt handling facility follows the object-orient paradigm at the lowest level of
implementation. Though the more high level interrupt service routines can be implemented
in an object-oriented way, no object-oriented patterns are reflected in the models as these
routines are treated as black boxes in this thesis.

4.2.2.1 Modeling Sequential Control Flow

The easiest part of any building block to model is a sequential control flow that does
not branch and cannot be interrupted. It may contain function calls to subroutines. Each
subroutine call should be modeled by adding an additional level of hierarchy. The following
pseudo-code depicts the simplest case:

void routine (void *param) {
disable_interrupts();
calculate(param);
enable_interrupts();

}

A routine that is not interruptible calls a subroutine to carry out some calculations. Figure
4.4(a) shows the according statechart model. If there is more than one function call (or
any other computational entity), a sequential transition is used – Figure 4.4(b) shows this

56 CHAPTER 4. IHF MODELS

case. The transition t with src(t) = CALCULATE and src(t) = UPDATE is a sequential
transition according to Definition 3.1.

void routine (void *param, void *data) {
disable_interrupts();
calculate(param);
update(data);
enable_interrupts();

}

(a) a simple routine consisting of one

atomic part

(b) a routine that contains two dedi-

cated parts

Figure 4.4: Non-interruptible routines

Note that due to the considerations in the previous sections, namely different granularity
for different code regions, there might be other criteria to either group a region of code to
one state or to model it preserving its peculiarities. Nevertheless, this decision must be
made carefully because it can change the significance of some of the later indicators (cp.
Section 5.4).

4.2.2.2 Modeling Disruptions

If an elementary part of code is interruptible, such as the calculate(param) function call
in the following pseudo-code, interruptibility has to be modeled on the basic state level as
depicted in Figure 4.5(a). By doing so, it is guaranteed that the finest granularity possible
is achieved. The transition t with src(t) = CALCULATE heading towards the event bus
represents interruptibility on the level providing the finest granularity.

void routine (void *param, void *data) {
calculate(param);
disable_interrupts();
update(data);
enable_interrupts();

}

Whenever a collection or any other coarse grained part of the code is interruptible, this fact
needs to be modeled on the appropriate non-basic state level. The function routine now
is assumed to be interruptible at any point in time, thus the transition (Figure 4.5(b))
depicting this fact originates from the state ROUTINE rather than being duplicated to
originate from both CALCULATE and UPDATE. The following pseudo-code represents
such a situation.

void routine (void *param, void *data) {
calculate(param);
update(data);

}

CHAPTER 4. IHF MODELS 57

(a) one part of the routine is inter-

ruptible

(b) a routine that is entirely inter-

ruptible

Figure 4.5: Interruptible routines

Note that the fact of whether a region of code is interruptible or not is a sufficient condition
for grouping code to a single model state. It is a fact that due to grouping of code, the level
of abstraction is not constant throughout a model. Since the proximity of the model to
the source code is not a requirement in this thesis, these variations are no issue. However,
when generating code from the ESF models would be considered, this varying level of
abstraction would need to be confronted.

4.2.2.3 Modeling Synchronization

A sequential control flow may enter a critical region. Access to critical regions must be
treated carefully (see Section 4.3). When concurrent access is synchronized, the impact on
the control flow must be incorporated in the models although the primitives themselves
are not elaborated any further. The following pseudo-code gives an example of a critical
region synchronized by a spinlock.

void routine (void *param, void *data) {
spinlock_t the_lock;
calculate(param);
spin_lock(the_lock); // obtain lock or "spin around"
update(data); // critical region, data is accessed elsewhere
spin_unlock(the_lock); // finished critical region, release the lock

}

The instruction spin lock is used as implemented e.g. in the Linux kernel sources (see e.g.
[CRKH05]). When creating ESF models, sequential transitions enhanced with conditions
can be used to depict these circumstances in a very easy and intuitive way.

Definition 4.3 Synchronized Sequential Transition

A transition (s1, e/a, s2) ∈ T where s1, s2 ∈ S, e ∈ E and a ∈ A is called a synchronized
sequential transition iff e = λ[c], s1 basic and a = µ, c ∈ C is called the synchronization
condition. A synchronized sequential transition is denoted tsync.

In Figure 4.6(a), the transition t 1 is such a synchronized sequential transition. When
the synchronization condition becomes true, the system steps further. The fast forward
problem does not affect this at all.
When dealing with synchronization on a non-basic state level, this approach does not
reflect the intended semantics any longer. Let us for a moment consider transition t 3 from
Figure 4.6(b) being labeled with λ[c]/µ, c being the synchronization condition as defined.
It is clear that in this case, the state COMPUTE would be left regardless of whether

58 CHAPTER 4. IHF MODELS

(a) synchronization applied to

basic states

(b) synchronization cannot be applied to superstates

Figure 4.6: Synchronization by means of modified sequential transitions

it completed (PROCESS might never be entered). This is not the intended meaning of
synchronization. If we apply the approach of raising a special event term(slast) ∈ E when
taking t 3, t 3 could be defined as term(slast)[c]/µ. Unfortunately, this would require the
finishing of COMPUTE and the fulfilling of the synchronization condition in the very same
system step due to the statechart semantics.
From this it follows that synchronization must be modeled on a basic state level only. In
the given example, t 2 must be a synchronized sequential transition, but not t 3.

4.2.2.4 Modeling Conditional Branching

The statechart formalism offers two nearly identical ways of modeling conditional branches.
The following pseudo-code can thus be represented by either Figure 4.7(a) or Figure 4.7(b).

eval(cpu);
if (cpu == 0) // Bootstrap CPU ?

exec(cpu); // Execute locally
else

transmit(++cpu); // Otherwise delegate

(a) branching by means of a connec-

tor

(b) branching with different transi-

tions

Figure 4.7: Possible ways to model branching

When dealing with sequential transitions that represent the branches, the first version
(4.7(a)) is the one to be used when modeling operating systems code with the ESF. The
first transition segment leading from EVAL to the connector is to be a sequential one, the
following transition segments carry the branch condition l = λ[cpu == 0]/µ).

When dealing with branches that might have several optional values – as the number
of CPUs in the given example can be any number – the use of an expression [val1 + val2]
is unavoidable. However, when considering a binary choice, a simple condition that can
be true or false only is the preferable way to model a branch.

IHF Impact on the Modeling Paradigm

CHAPTER 4. IHF MODELS 59

Although the presented implementation patterns are widely used throughout the IHF sub-
system, best practices of software engineering are rarely applied to the kernel code in this
particular area. As shown later in Section 4.4, the code is highly optimized for perfor-
mance reasons and thus often implemented in assembly language. These optimizations are
not necessarily reflected in the later ESF models. However, this fact greatly influenced
the choice of the modeling technique.

4.2.3 Nomenclature and Conventions

For better readability and an easier interchange of operating system models, a general
nomenclature is defined. This nomenclature consists of the definitions of a set of universal
branch categories for path events that all models must have in common, the introduction
of transition tables and the use of the UML 2.0 submachine mechanism.

4.2.3.1 Events

Events in any operating system can be divided into three categories: disruptive, scheduling
and signaling events. For now, scheduling and signaling events are put aside as we focus
on disruptive events (DEVT). These are defined within the models as a set DEV T ⊆

−→
E ,

i.e. they are represented by path events.

Classification of Disruptive Events Each system model implements a distinct tree of
disruptive events. This tree categorizes dedicated disruptive events based on the complete
path from root to leaf. Each of these events is represented by a path event, each level of
the tree depicts a branch category with the nodes at this level being the specific branch
identifiers of this category.

DEVT

�
��

@
@@

EXC

. . .
SYS

. . .
INT

�
��

@
@@

IPI

. . .
TIME

. . .
I/O

�
��

@
@@m... m... m

IRQ0 IRQn−1

Figure 4.8: Disruptive event tree

Common to all trees for different systems is the distinction between interrupts, exceptions
and syscalls {INT,EXC, SY S} as inferred from the Intel architecture (first hierarchy level

60 CHAPTER 4. IHF MODELS

of the tree in Figure 4.8). The sources for interrupts processed can be subdivided into
three classes: interrupts delivered by I/O devices (I/O), inter-processor interrupts (IPI)
and timer interrupts (TIME). The lower levels are different for each concrete system.
The branch categories are, as already mentioned, defined on the basis of this disruptive
event tree. As we deal with a hardware platform with parallel CPUs, the first branch
category is always the number of the CPU that is addressed by the event. The further
categories are then specified starting with the first hierarchy layer of the tree. Hence,
for an interrupt issued by the peripheral device allocated to IRQ channel 2 that is then
delivered to the first CPU, the corresponding path event would be e0,INT,I/O,2. The
specific machine setup as provided in Section 4.1.2 defines the concrete I/O interrupts of
its devices somewhere below the I/O hierarchy level of the tree, depicted as circles (leaves).

4.2.3.2 States

States in the operating system models are representations of certain activities that are
carried out. They represent what the system is doing at the moment, i.e. executing a
function of some kind. Since this activity is regarded as atomic, the details and sequences
of the execution are of no interest. The focus is on what a system does from an abstract
point of view, not on how it does it. Consequently, states can model more than one atomic
point in time.

4.2.3.3 Transitions

For transitions, an abbreviated label (or identifier) is used to avoid the cluttering of figures
and diagrams. This identifier refers to the detailed description of the transition that is
provided separately.

Figure 4.9: Example statechart with three transitions associated with abbreviated labels

Figure 4.9 is a simple statechart using identifiers for labeling transitions instead of correct
statechart labels. Table 4.3 provides the detailed information about the three sample
transitions.

ID Source Target Event/Action Description

INT ACK IKCP 0 DEV T0,INT,I/O,ι/µ, ι = device Any device
EXC SERVE EXC HD DEV T0,EXC,ε/µ, ε ∈ {8, 9, 18} Any abort
PRE UPDATE SCHED DEV T0,INT,IPI,0/µ Preemption

Table 4.3: Example transition table for the statechart in Figure 4.9

Note that Table 4.3 also illustrates the property of the event bus that the real target of a
transition leading towards an event bus connector must be given: in the first row of the
table, the target of the transition is the state IKCP 0 (which is not part of this example).

CHAPTER 4. IHF MODELS 61

The example shows two different cases:

1. In the third row, there is only one path event DEV T0,INT,IPI,0. Subsequently,
DEV T0,INT,IPI,0/µ directly corresponds to the statechart label of the transition in
question.

2. The first and second rows show otherwise. A set of multiple path conditions (cp.
Definition 3.6, e.g. DEV T0,EXC,ε, ε ∈ {8, 9, 18}) is given. In this case, the following
holds for the statechart label:

∀ pcν ∈ {pc0, . . . , pcn−1} ⊆ PC : l =
∨

ν∈{0...n−1}

epcν/µ

with n being the number of different disruptive events covered by the respective
set. The actual (implicit) transition label is constructed from a disjunction of all
corresponding path events.

Sequential Transitions
In the visual representations of the OS models, sequential transitions are not to be labeled.
By this, some additional clearness of the representation is gained. In Figure 4.9, the tran-
sitions t1 with src(t1) = ACK and tgt(t1) = SERVE as well t2 with src(t2) = SERVE and
tgt(t2) = UPDATE are such sequential transitions:

Furthermore, sequential transitions are not to cross hierarchical levels, i.e. they must
not be used as inter-level transitions. From their meaning itself it is obvious that this
usage does not reflect the intended meaning. As a matter of course, all other types of
transitions are allowed to be inter-level transitions.

4.2.3.4 Usage of Event Busses in Combination with CTSC

When the event bus connector is used in combination with cartesian transition set con-
nectors, ESF does not at all restrict the ways of combining the two constituents. Figure
4.10 illustrates a maximal chain.

Figure 4.10: Usage of CTSC together with event-bus connectors

When creating IHF models, it makes sense to limit this usage to one of the two possibilities
given in Figure 4.11. This limitation does not impede the expressiveness of the model in
any way, but rather facilitates more consistent modeling. Which variant is used does not
matter at all, as long as it is used consistently throughout the entire model.

4.2.3.5 UML 2.0 Submachines

All black or white boxes of the model (except for the top level model) can be defined as
UML 2.0 submachine states [RJB05]. If any building block contains more detailed infor-
mation about the SuI, further submachine states can be defined additionally.

62 CHAPTER 4. IHF MODELS

(a) Event bus followed by CTSC (b) CTSC followed by event bus

Figure 4.11: Possible limitations of the usage

Such an include mechanism was always part of the chosen Statemate semantics [HN96].
In the Statemate tool, includes were depicted as @NAME . Its consequences are of a
notational nature only; it has no semantical implications at all.

(a) a UML 2.0 submachine

state

(b) the internal representation

Figure 4.12: UML 2.0 submachine mechanism

4.3 Operating Systems

Before modeling some concrete operating systems, the choice of which to pick must be
narrowed down. There exists a variety of different systems dedicated to different purposes
and characterized by numerous criteria. The facts that the Intel Architecture was chosen
as the underlying hardware platform and that the operating system must be SMP capable
already rule out a considerable number of OS. Some operating systems matching the given
requirements will now be discussed further.

4.3.1 Miscellaneous Properties

To begin with, some miscellaneous properties are assessed in order to develop a first heuris-
tics about operating systems that might be suitable for modeling.
The greatest difference between different operating systems lies in the kernel architec-
ture. In operating systems theory, one distinguishes mainly between three types of kernel
architectures.

1. Monolithic Kernel Systems. A monolithic kernel contains all functionalities of
the operating system. All kernel libraries are statically linked into one kernel binary.
Hence the range of functionality is determined the moment the system is compiled.
Monolithic systems are on the one hand inflexible and not modifiable but on the
other hand, the tight coupling allows for very efficient optimization [Kon96]. In
general, such systems are used for performance reasons.

CHAPTER 4. IHF MODELS 63

2. Modular Kernel Systems. A modular kernel allows for loading additional func-
tionality during runtime. The majority of the kernel libraries are thus linked dy-
namically. Kernel modules such as device drivers, file systems or even schedulers
can be added at any point in time. This approach addresses the shortcomings of
monolithic systems. Unfortunately, malicious modules can affect the overall safety
and stability of such operating systems [SS96].

3. Micro-Kernel Systems. A micro-kernel system (or µ-kernel) only contains the
functionalities of process management, a rudimentary interruption handling and
inter-process communication means. Every other function is implemented as a “nor-
mal” process. Every device driver and internal service (such as scheduling or memory
management) is outsourced to processes. The main challenge is to implement such
a loosely coupled system in an efficient way [Lie96b].

Since the boundaries between these categories overlap, in reality, mainly hybrid systems
(monolithic/modular and modular/µ-kernel) exist. Hybrid approaches address partially
the performance problems of early µ-kernel implementations [HHLS97].

L4 and Pistachio
In 1995, the German GMD developed a µ-kernel called L4 [Lie96a] that was the basis for
numerous later operating systems such as L4Linux4 and L4Ka::Pistachio5, short Pistachio.
The original µ-kernel implementation L4/x86 does not support preemption (for the defini-
tion of preemption as a general concept see Section 4.3.2), hence nested interrupts cannot
be processed in the order of their occurrences but rather in the order of their priorities
[AH99]. As a consequence, priority inversions occurred. The Omega0 project [LH00] as
well as the Fiasco kernel [Hoh98] address this issue.
Any synchronization within an L4 kernel is based on messages, the transmission of mes-
sages is always synchronous and unbuffered. A mechanism of grouping processes called
“Clans and Chiefs” [Lie92] facilitates multi-cast transmission, especially amongst server
processes. The only scheduling strategy implemented is time slice policy-based on one
parameter, the maximal controlled priority.
The Pistachio micro-kernel operating system is a new implementation of the L4 API
Version four. It was designed to overcome the shortcomings of L4 while preserving its
functional specifications. The focus of the re-implementation was on the design of an
efficient inter-process communication (IPC) facility.

Mach
In the years 1985-1993, the micro-kernel system Mach6 [BBB97] was developed by re-
searchers at the Carnegie-Mellon University, supervised by the US Department of Defense.
There are still numerous operating systems based on this kernel, MacOS X7, GNU/Hurd8

and MkLinux9 are three of the most popular examples [SG91]. Mach was launched as a

4http://os.inf.tu-dresden.de/L4/LinuxOnL4/
5http://l4ka.org/projects/pistachio/
6http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
7http://www.apple.com/macosx
8http://www.gnu.org
9http://www.mklinux.org

64 CHAPTER 4. IHF MODELS

BSD variant, but later development turned away from that path. A Mach system (Version
3) [Leo91] contains comprehensive handling of physical devices, a highly efficient process
and thread management and full kernel preemption. It can handle nested interrupts as
delivered by the underlying hardware platform. The internal synchronization is based
on messages. The inter-process communication is a mixture of a modified System-V stan-
dard and POSIX (see Section 4.3.2) means. The Mach scheduling policy is based on simple
priorities: no optional strategies are implemented [RJO+89].

Linux
Started in 1991 by Linus Torwalds, the Linux kernel10 is an open source project. A world-
wide community performs the development, as well as different companies such as Redhat,
Novell or IBM. The general purpose operating system Linux [Rus99] is used in desktop-,
server- and embedded systems.
The current kernel versions 2.6.x allow for optional kernel preemption, nested interrupts
and the use of SMP hardware.
Linux contains numerous primitives for internal synchronization of interleaving control
flows and IPC. At compile time, it is decided which specification to follow for IPC: System-
V standard or POSIX. Linux offers amongst others a conventional time sharing policy, a
round robin policy and a simple first-in-first-out-based strategy [BC01].

OpenBSD
The OpenBSD11 Kernel Version 4 was released in 2006. OpenBSD is an open source
variant of the Berkley Software Distribution (BSD) Unix [Luc03]. The monolithic kernel
possesses full SMP capabilities. It does not allow for full kernel preemption but handles
nested interrupts and uses software interrupts in conjunction with system priority levels.
OpenBSD is not fully POSIX-compliant, however it implements numerous POSIX prim-
itives for the IPC. Since the kernel is monolithic and hence no external modules are pro-
vided, the internal kernel synchronization still only relies on a few primitives. OpenBSD
uses a dynamic priority-based algorithm to schedule user processes [Erk05].

OpenSolaris
When Sun Microsystems decided to create an Intel x86 version of their SPARC-based
general purpose operating system Solaris (or SunOS) an open source project called Open-
Solaris12 was founded later. OpenSolaris is based on the modular kernel of the commercial
Solaris 10 operating system [MM06].
All System-V and POSIX IPC primitives are implemented, OpenSolaris handles multiple
CPUs, nested interruptions and supports full kernel preemption. A variety of different
scheduling policies is integrated into the Solaris scheduler: from traditional timeshare to
real-time, from fixed priority scheduler to fair share scheduling.

10http://www.kernel.org
11http://www.openbsd.org/
12http://opensolaris.org

CHAPTER 4. IHF MODELS 65

QNX
QNX Software Systems develops and maintains the commercial hard real-time (see Sec-
tion 5.1.2) operating system QNX Neutrino13 [QNX06]. In order to achieve a transparent
development process, the QNX sources were published in 2007. QNX Neutrino follows the
µ-kernel approach. QNX offers fully controllable kernel preemption, fine-granular locking
of interrupts and the processing of nested interrupts.
Synchronization means differ between those used to control POSIX threads, internal ker-
nel synchronization and conventional IPC. The IPC implementation is comprehensive and
fulfills both System-V and POSIX standards. A real-time scheduler is an inherent part of
the system, other schedulers or strategies cannot be implemented.

Table 4.4 provides an overview of the discussed general criteria.

SMP Capa-
bilities

Kernel Ar-
chitecture

Real-Time
Capabilities

Languages Standards

L4 none µ-kernel GPOS ASM, C,
C++

none

Pistachio SMP (lim-
ited)

µ-kernel GPOS ASM, C,
C++

none

Mach full MP µ-kernel GPOS ASM, C none
Linux full SMP monolithic,

modular
GPOS ASM, C System-V,

POSIX
(limited)

openBSD full SMP monolithic GPOS ASM, C POSIX
(very
limited)

OpenSolaris full SMP modular real-time ASM, C POSIX,
System-V

QNX full SMP µ-kernel hard real-
time

ASM, C POSIX

Table 4.4: Comparison of operating systems, general criteria

4.3.2 Detailed Criteria

Now, more detailed criteria are given to further classify the subset of operating systems.
The focus of the following considerations is on real-time aspects rather than general prop-
erties.

Nested Interrupts
The Intel Architecture supports nested interruptions. Therefore, an operating system
must be capable of disrupting any execution of a previously started interrupt handling.
The processed kernel control path (KCP) is left (recursive descent) and the new path is

13http://www.qnx.com

66 CHAPTER 4. IHF MODELS

entered. This property is called nested interrupts and evidently, this is crucial for achieving
the goals of this thesis.

Kernel Preemption
When a kernel of an OS can be suspended by other kernel threads or any process residing
in the same address space, this system property is called kernel preemption. A prerequi-
site for kernel preemption is that all interruptible functions are reentrant, i.e. they can be
resumed any time without losing data integrity.
When dealing with µ-kernel systems, this property and the ability to handle nested in-
terrupts overlap because any interrupt service routine implemented for such a system is a
decoupled server process.

Synchronization
Since the later considerations do not include the synchronization primitives but only the
consequences of those (see Section 5.4.6), these primitives are not elaborated in depth.
However, in order to select dedicated systems from the previous short list, it is necessary
to look at kernel-level synchronization and IPC primitives. In single-CPU systems, kernel
synchronization can be avoided by simply prohibiting kernel preemption. Unfortunately,
this trivial solution does not work with multi-processor systems. In these, all critical
regions must be protected from concurrent access by one of the following primitives:

1. Per-CPU Variables

2. Atomic Operations

3. Compiler Optimization Barriers

4. Conventional Memory Barriers

5. Locks/Spinlocks

6. Mutexes

7. Semaphores

8. Condition Variables

9. Interrupt Disabling

10. Messages

Inter-Process Communication
In any current operating system, regardless of whether the underlying hardware platform is
a multi-core one or not, the set of user space processes is exposed to (pseudo) parallelism.
Therefore, it is vital to provide a set of communication primitives (and thus means of
synchronization) for user space processes:

1. Semaphores

2. Messages (System-V)

3. Message Queues (POSIX)

4. Shared Memory

5. Signals

CHAPTER 4. IHF MODELS 67

6. Pipes

7. FIFO Pipes

8. Sockets

There exist two separate standard definitions for IPC implementations:

1. System-V IPC: The vendor of the Unix System III, namely AT&T, defines semaphores
(1), messages (2) and shared memory (4) as IPC primitives.

2. The POSIX IPC specification [IEE01] defines messages queues (3), shared memory
(4), signals (5), pipes (6), FIFO pipes (7) and sockets (8) as means of inter-process
communication.

Table 4.5 provides an overview on the operating systems previously presented showing the
detailed criteria.

Nested
Interrupts

Preemption Kernel Synchroniza-
tion

IPC

L4 no no (10) (2)
Pistachio full yes (10) (2)
Mach full full (6) (7) (1) (2) (3) (4) (6) (8)
Linux full optional (1) (2) (3) (5) (7) (9)

(10)
all

OpenBSD full limited (5) (6) (7) 8) (9) (10) (1) (4) (5) (6) (8)
OpenSolaris full optional (5) (6) (7) all
QNX full full (2) (4) (5) (6) (7) (8)

(10)
(2) (3) (4) (5) (6) (7)

Table 4.5: Comparison of operating systems, detailed criteria

From this table it is obvious that choosing the pure L4 kernel would not serve the goals of
this thesis since it does not have nested interrupt capabilities. Hence, Pistachio is chosen
as a µ-kernel system because it is more modern and its architecture better structured than
Mach.

From the general purpose operating systems, one modular and one monolithic kernel is
chosen. OpenBSD is a reasonable choice for a complete statically linked kernel. Either
OpenSolaris or Linux could be modeled as modular GPOS. Since the Linux community
is much larger than the OpenSolaris community, there exists more documentation and
support for the reverse engineering process for Linux.

Although the main focus of this thesis is on soft real-time systems, it would have been
desirable to have a detailed model of a hard real-time system such as QNX. Unfortunately,
the sources were published too late to include such a model in this thesis (cp. Section 8.2).

68 CHAPTER 4. IHF MODELS

4.4 Models

Now, the concrete models of Linux, OpenBSD and Pistachio will be presented.

4.4.1 Modeling Process

This section describes the technical process of creating the IHF models. Since there exists
no tool suite for engineering operating systems at all, a variety of tools has been surveyed
to build up some adequate work chain.

• OpenGrok14 is a web-based source code browser and search engine developed by
Sun Microsystems to ease the community-based development of OpenSolaris. It
creates hyper-linked code references from any C/C++ source package.

• The LXR project15 by Gleditsch and Gjermshus is an older source code browsing
system used to handle and document the Linux kernel sources. It is web-based like
OpenGrok and allows for various search modi as well as comparison of different
versions and hardware architecture ports of the same source code.

• The Red Hat SourceNavigator16 is a stand-alone source browser that allows for
quick and detailed tracking of logical paths throughout source code. Unfortunately,
this software was discontinued several years ago and the latest available version still
has severe performance problems.

• Statemate17 is the commercial development tool for statechart design. It is sold
and maintained by the Telelogic company. This research and thesis was partially
supported by the Telelogic University Research Programme.

• ArgoUML18 is a free of charge and open source UML modeling tool that supports
all standard UML 1.4 diagram types, including statecharts. It is capable of export-
ing diagrams into the Meta Object Facility (MOF) 2.0/XMI Mapping Specification
[OMG05] format. This allows statecharts to be saved in an XML-based standardized
manner. Furthermore, statechart diagrams can be exported to the scalable vector
graphics (SVG) format, a W3C recommended standard [W3C03] for scalable images
and graphics. The SVG format is also used for visualizing and evaluating operating
system traces at the chair for operating systems research at Saarland University
[Koh07]. The Inkscape19 graphics software is used as an editor and converter for
the SVG format.

Applying the tools exposed a number of shortcomings: Beside many others, Statemate
was not able to exchange the models with any other software while ArgoUML was not
able to handle the resulting model sizes.

14http://www.opensolaris.org/os/project/opengrok/
15http://lxr.linux.no/
16http://sourcenav.sourceforge.net/
17http://www.telelogic.com/
18http://argouml.tigris.org/
19http://inkscape.org/

CHAPTER 4. IHF MODELS 69

Implementation details of operating systems impede not only the use of the source brows-
ing tools but also complicate the manual reverse engineering process considerably.

• Assembly language parts are highly efficient but greatly complicate a deep under-
standing of the systems’ internals. Usually, only the machine dependent or perfor-
mance critical parts of an OS should be implemented this way.

/* Load the potential sixth argument from user stack.
* Careful about security.*/
cmpl __PAGE_OFFSET-3,%ebp
jae syscall_fault

1: movl (%ebp),%ebp

Often, assembly language code relies on some prerequisites, e.g. the call stack created
by the used compiler. Such code (the example is from the Linux 2.6 kernel) is
extremely hard to trace.

• Poor coding: When, for example, an encapsulation of underlying functionality is
not done properly, this causes more difficulties as the following example from the
Pistachio operating system easily shows:

/* deactivate APIC timer */
local_apic.mask(local_apic_t<APIC_MAPPINGS>::lvt_timer);

/* activate APIC timer:*/
write_reg(APIC_LVT_TIMER,(((periodic ? 1 : 0) << 17)) | irq);

The function that deactivates the APIC timer is encapsulated in a proper and intu-
itive way, its companion function is not. Such engineering shortcomings frequently
appear in a lot of real-world systems.

• Compiler macros and defines are not sensed by common code browser systems since
they do not follow the same syntactical rules for declarations as variables. However,
the C compiler gcc of the GNU Compiler Collection20 can be used to only preprocess
the source files without compiling them by setting the option gcc -E. While the
resulting sources do not contain any definitions, they are hardly readable. This
work around therefore is only to be used with caution.

The reverse engineering process for modeling the IHF fortunately has a common starting
point: the interrupt descriptor table (IDT). From there, all source code parts that make
up the IHF can be reached by performing a linear search of the code. This strategy is
crucial for successful creation of the models. In order to analyze the content of the IDT,
the initialization phase of the system must be tracked and understood. This is the first
major part of work in reverse engineering any of the chosen SuIs.

4.4.2 SuIs

There are three systems chosen from the preliminary choice conducted in Section 4.3. The
IHF model for the Linux 2.6 kernel (cp. Section 4.4.3) was the first model to be created

20http://gcc.gnu.org/

70 CHAPTER 4. IHF MODELS

by the author. This model then served as a guideline for creating others. Gogolok [Gog07]
modeled the OpenBSD 4.0 interrupt handling facility while Wieder [Wie07] chose the ex-
perimental µ-kernel system Pistachio.
Table 4.6 lists the sizes of the three IHF models and compares them to an estimated size
of non-ESF models. These estimates are based on fictitiously unwinding the ESF con-
stituents to conventional statechart elements based on the ESF transformation rules (cp.
Section 3).

Model Trans. (ESF) States (ESF) Trans. (Non-ESF) States (Non-ESF)

Linux 990 602 ∼ 13 000 ∼ 8 000
OpenBSD 1062 612 ∼ 18 000 ∼ 12 000
Pistachio 801 550 ∼ 11 000 ∼ 5 000

Table 4.6: Model sizes of the three SuIs – ESF compared to estimated sizes in statecharts

4.4.3 Linux

4.4.3.1 Specific Parameters

Linux can be configured and compiled in many ways. In order to deal with an unambigu-
ously defined system, a few parameters have to be set. The following extract from the
global configuration file shows the settings used for this thesis:

CONFIG_X86_64=y #Intel Pentium 4 CPU 64 bit
CONFIG_SMP=y #Intel SMP specification
CONFIG_PREEMPT_NONE=y #Preemption is deactivated for now
CONFIG_NR_CPUS=4 #Probe for max. 4 CPUs, no hotplug
CONFIG_HPET_TIMER=y #Use the high precision event timer
CONFIG_GENERIC_HARDIRQS=y #Allow for generic arbitration of IRQs
CONFIG_GENERIC_PENDING_IRQ=y #Enable pending IRQ lines

4.4.3.2 Further Classification of Events in a Linux Model

All interrupts caused by the I/O devices ι = {HDD,MPEG,HID, SND,NIC,KB} are
used in the Linux model exactly as depicted in the event tree Figure 4.8: DEV Tx,INT,I/O,ι
with x being the CPU number which is processed by the CTSC. The agglomeration
DEV Tx,INT,I/O,ι is possible because the device drivers – which are different of course
– are all invoked in the same way. The interrupts between two ore more CPUs build
up the class DEV Tx,INT,IPI,θ as defined in the event tree. In Linux 2.6, only three
different IPIs θ = {0, 1, 2} are covered, the implementation is very basic. Deviating
from the default event tree, two distinct sources for timer interrupts are embodied in
the Linux models: local timer interrupts DEV Tx,INT,LOC TIMER and global timer inter-
rupts DEV Tx,INT,GLOB TIMER handled by one dedicated CPU.

CHAPTER 4. IHF MODELS 71

In the model, all software generated exceptions but the double fault (DEV Tx,EXC,DF)
are treated equally. They are covered by the disruptive events DEV Tx,EXC,HD,η with
η ∈ {0, 3 . . . 13, 16 . . . 19} which correspond to the set of the 16 exceptions defined by the
IA32 (see Section 4.1.1). The double fault exception is handled in a different way.

The selected hardware platform comes with the special instructions syscall and sysret

for efficient handling of system calls (see [Int08a] for more details). Older Linux kernels21

realize all system calls by means of the dedicated interrupt vector int 0x80 and a C
function system call() as registered handler for the interrupt. This function uses the
exception number passed to branch to the corresponding routine.
To achieve downwards compatibility, an abstraction layer called vsyscall was imple-
mented in the kernel. In this thesis, the syscall - sysret mechanism is used and the
abstraction layer is thus disregarded. Note that the execve() system call is under every
circumstance handled by means of an interruption vector since all registers have to be
saved properly for this call anyway.
All system calls are denoted as given with DEV Tx,SY SCALL,σ with σ ∈ [0 − 288]. Linux
implements 289 system calls (Linux 2.6.11). The kernel macro NR syscalls limits that
number at compile time. However, additional system calls might exist. The kernel version
of the component extension (Linux/CE) [Mül08] for example adds 13 additional system
calls to the kernel.

4.4.3.3 Top Level Model of the Linux Kernel

The top level model of Linux is given in Figure 4.13. The two top level Cartesian Transition
Set Connectors CU and CK connect the two main groups of the Linux operating system:
KERNEL LEVEL and USER LEVEL.

Figure 4.13: Linux 2.6 top level model

The rest of the model is straightforward: when a disruption DEV Tx,{INT,EXC,SY S} occurs

21and modern kernel versions compiled for old CPUs

72 CHAPTER 4. IHF MODELS

on CPU x, the user space process is abandoned and the system starts the corresponding
kernel control path. When soft interrupts are pending, i.e. [pending] is true, the kernel
daemon is launched. Linux can process interrupts (INTR 0, ... INTR 3) while executing
the kernel daemon. The two artificial guards [shut] and [trm] are used to ensure that the
corresponding states are not terminated unintentionally.
Table 4.7 lists all top level transitions. For typesetting reasons, the null action µ is not
listed in this transition table.

ID Source Target Event/Action Description

DISR 0 USP 0 IKCP 0 DEV T0,{INT,EXC,SY S} An interruption of the
process on CPU 0

DISR 1 USP 1 IKCP 1 DEV T1,{INT,EXC,SY S} An interruption of the
process on CPU 1

DISR 2 USP 2 IKCP 2 DEV T2,{INT,EXC,SY S} An interruption of the
process on CPU 2

DISR 3 USP 3 IKCP 3 DEV T3,{INT,EXC,SY S} An interruption of the
process on CPU 3

INTR 0 KD 0 IKCP 0 DEV T0,{INT} An interrupt occurring
on CPU 0

INTR 1 KD 1 IKCP 1 DEV T1,{INT} An interrupt occurring
on CPU 1

INTR 2 KD 2 IKCP 2 DEV T2,{INT} An interrupt occurring
on CPU 2

INTR 3 KD 3 IKCP 3 DEV T3,{INT} An interrupt occurring
on CPU 3

Table 4.7: Transitions in the Linux top level model

4.4.3.4 The Interrupt Handling Facility Model

In the Linux top level model, a dedicated interrupt kernel control path is given by UML
2.0 submachine include for every CPU. Within each such include, an artificial grouping
state IKCP is invented to bind the handling of exceptions, system calls and exceptions.
The split pseudo-state SP1 reacts to the second branch identifier of a delivered path event
which is, according to Section 4.2.3.1 one of {INT,EXC,SYSCALL}. Exceptions are
then processed further within the substate EXC, the processing of interruptions is modeled
within INT and syscall servicing is elaborated further in the state SYSCALL.
Already on this very high level of modeling, the interruption which is possible in principle
for an entire set of substates down through the hierarchy is given. Table 4.8 gives all
complete labels and transitions of the Linux IKCP model.

4.4.3.4.1 Exceptions - EXC

The first state CPU HANDLING in the Linux exception handling substate EXC represents
the initial IA32(e) hardware handling. This handling comprises the following steps: The
interrupt vector (in this case one of the numbers 0,3-14 or 16-19) is determined and the

CHAPTER 4. IHF MODELS 73

Figure 4.14: Linux 2.6 intermission kernel control path model

corresponding entry from the IDT is read. The new values of the registers ss and esp are
loaded with respect to the exception which occurred and previous values are saved. Then,
cs and eip are replaced with new values as well. Finally the hardware error code (if it
exists) is pushed on the stack.
The first instructions executed by the operating system Linux itself when handling an
exception are given in the state SAVE REGISTERS. This code is implemented as an assem-
bly language macro called errorentry which saves the number of the error in question,
the general purpose registers (GPR) and branches to the registered handler. Two other
dedicated macros zeroentry and paranoidentry are used by some special interrupt or
exception handlers that need special care when saving the register contents.
The handling of the error itself is done by high-level C functions. For conventional ex-
ceptions, the corresponding state in the model is HANDLE EXC, or more specifically the
included state HD. Any exception handling routine must check whether the calling context
was the kernel- or user space. Furthermore, according to the error, a fixup is processed
if applicable and finally a signal is generated. The whole handler routine is interruptible.
It is depicted in Figure 4.15(a). If the exception handler was called from kernel mode
context, the kernel obviously suffers from errant code, a debug message, the “kernel oops”
is printed and the system is terminated, i.e. it stays ultimately in state PANIC. The only
legal exception which can be initially raised in kernel mode is the page fault exception.
The double fault exception necessarily occurs in kernel mode as a result of an erroneous
condition while handling an exception. The first activity taken by the (concrete) Linux
system while in (abstract) state CHECK CXT is to enable local interrupts, hence any ex-
ception handler in Linux can be disrupted by hardware interrupts.

The state DOUBLE FAULT, detailed by its submachine state DF, represent exactly those
unusual cases (see Figure 4.15(b)). When a double fault is raised, the kernel restores the
registers eip and esp using the per-CPU task state segment (TSS) in previous (< 2.6.18)

74 CHAPTER 4. IHF MODELS

ID Source Target Event/Action Description

DFE EXC IKCP DEV Tx,EXC,DF /µ,
x CPU number

Exception handler raising an
exception - double fault

NST IPI IKCP DEV Tx,INT /µ,
x CPU number

IPI handler disrupted by inter-
rupt - nesting

NST IO IKCP DEV Tx,INT /µ,
x CPU number

I/O handler disrupted by in-
terrupt - nesting

INT SOFT IKCP DEV Tx,INT /µ,
x CPU number

SoftIRQ disrupted by inter-
rupt

PFE INT IKCP DEV Tx,EXC,HD,14/µ,
x CPU number

Any interrupt handler raises a
page fault

PFE SYSCALL IKCP DEV Tx,EXC,HD,14/µ,
x CPU number

System call routine raises a
page fault

INT SYSC IKCP DEV Tx,INT /µ,
x CPU number

System call routine disrupted
by any interrupt

Table 4.8: Transition table for DEV T s in the Linux IKCP

Linux versions. In newer versions, the double fault handler has its own double fault
TSS (offset 31). Any double fault handler is initiated by the macro paranoidentry. In
most cases it just prints debug-information and terminates the system. Nonetheless, if a
fix is possible – for example when a faulty system call parameter raised the fault – the
corresponding fix is processed. The main difference between the double fault handler and
the other exception handlers is that this code is not interruptible under any circumstances.

(a) conventional exception handler in Linux (b) double fault handler in Linux

Figure 4.15: Exception handlers in Linux

In the model, the distinction between the two different exception handler types is made
by means of the pseudo-states SP2 and CO2. The state RETURN EXC represents a very
complicated part of the source code that is executed when the systems returns from any
interruption handling. If preemption is omitted, a check for the need to invoke the sched-
uler is performed. The decision to execute in the next step depends on whether a user
process or a previously interrupted kernel path is to be continued. Finally, this step is then
done in state CPU RETURN. The instruction iret forces the processor to cease interrupt
processing and return from the current context to the old one that was left.
Table 4.9 shows all transitions that can possibly be taken in submachine HD. Note that as
an alternative to providing three distinct transitions, a grouping state as done for example
in the OpenBSD models (see Figure 4.29) could be used.

CHAPTER 4. IHF MODELS 75

ID Source Target Event/Action Description

INT CHECK CXT IKCP DEV Tx,INT /µ,
x CPU number

EXC handler disrupted by an
interrupt

INT FIXUP IKCP DEV Tx,INT /µ,
x CPU number

EXC handler disrupted by an
interrupt

INT GEN SIG IKCP DEV Tx,INT /µ,
x CPU number

EXC handler disrupted by an
interrupt

Table 4.9: Labeled transitions for DEV T s in the exception handlers in Linux

4.4.3.4.2 Interrupts - INT

After the initial hardware handling state CPU HANDLING which is the very same one
used to handle exceptions, the contents of all relevant GPRs are saved in the next part
of the interrupt handling facility. These saved GPRs are treated as a structure pt regs

called *regs in the subsequent processing. The corresponding state SAVE REGISTERS is
not interruptible since all local interrupt lines are still disabled.

The different classes of interrupts – inter-processor interrupts, I/O devices, and local as
well as global timer interrupts – are modeled in different substates of INT. The split
pseudo-state SP3 branches to the appropriate substate, one of IPI, IO ISR, LT ISR, GT ISR

in the model. Note that in this case, the names of the states reachable from the split state
SP3 do not match the branch identifiers. The deviating values of the branch identifier
assignment function bid are therefore defined as:

bid(IO) def= IO ISR , bid(LOC TIMER) def= LT ISR , bid(GLOB TIMER) def= GT ISR

4.4.3.4.2.1 Inter-Processor Interrupts - IPI
IPIs are implemented very basically in Linux, hence the submachine for state IPI is
quite small and simple. Figure 4.16 shows the steps taken by the Linux kernel. First,
due to performance reasons, only a reduced set of GPRs is saved to the stack in state
SAVE GPR. One of the interrupt vectors 251, 252 or 253 is pushed to the stack. Afterwards,
the according C function is called – smp reschedule (depicted by state DO RESCHED),
smp call function (depicted by state DO CALL FUN) or smp invalidate tlb (depicted
by state DO INV TLB).
Since the choice of which IPI is to be handled is encoded as a path event, the pair of
pseudo-states SP4 and CO4 models the branches. Similar to Table 4.9, Table 4.10 lists the
detailed transitions of the inter-processor interrupt handling submachine.

4.4.3.4.2.2 I/O interrupts
Any interrupt (see Figure 4.17) issued by peripheral devices is first processed by the state
DO INT. This still critical (in terms of urgency) part of the IHF contains the following
steps:

1. The function do IRQ() first executes the macro irq enter which increases the num-
ber of nested interrupts in the preempt counter - field, see Section 4.4.3.5.

76 CHAPTER 4. IHF MODELS

Figure 4.16: Linux 2.6 inter-processor interrupt handler

ID Source Target Event/Action Description

INT DO RESCHED IKCP DEV Tx,INT /µ,
x CPU number

Rescheduling is disrupted by any in-
terrupt

INT DO CALL FUN IKCP DEV Tx,INT /µ,
x CPU number

Remote function call is disrupted by
any interrupt

INT DO INV TLB IKCP DEV Tx,INT /µ,
x CPU number

Invalidating the TLB disrupted by
any interrupt

Table 4.10: Labeled transitions for DEV T s in the Linux IPI handling submachine

2. If necessary, the stack is switched to the hard IRQ stack. If the current interrupt is
a nested one, this step is not needed, since the correct stack is already in use.

3. The do IRQ() function is called. It acknowledges the IRQ using the registered low
level routines and marks the IRQ as pending.

4. If no other CPU is already executing the registered service routines, the function
handle IRQ event() loops through all registered handler routines for the particular
interrupt.

The remaining handling of interrupts raised by the external I/O devices and arbitrated
via the IOAPIC is also modeled in the submachine IO ISR as depicted by Figure 4.17.
Table 4.11 shows the transitions.

Figure 4.17: Linux 2.6 I/O interrupt handling ISR (simplified model, ISRs 1..4 analogous)

Without loss of generality we assume at this pint that all I/O interrupt service routines
have the same basic structure:

CHAPTER 4. IHF MODELS 77

1. Some critical parts – communication with the according hardware device may be
one of these – have to be executed with interrupts being disabled, as processed in
states UNDISRUPT 0 . . . UNDISRUPT 5 of the model. If this is the first part of the
handler, the flag SA INTERRUPT is used to prevent the function handle IRQ event

from enabling local interrupts at the beginning. This flag is part of the entry stored
in the IDT and thus it is set during the initialization phase.

2. Some parts of a called ISR may run without any restrictions regarding interruptibil-
ity. These parts are represented by the states DISRUPT 0 . . . DISRUPT 5.

3. Many uncritical and deferrable tasks may be swapped out to a tasklet, see Section
4.4.3.4.2.5. In states ACT TASK 0 . . . ACT TASK 5, these tasklets are set active for
execution.

The state EXIT INT basically calls the assembly language macro irq exit to decrease the
counter for nested interrupts which is the companion operation to irq enter.

ID Source Target Event/Action Description

NST DISRUPT n IKCP DEV Tx,INT /µ,
x CPU number

Uncritical parts of an ISR are dis-
rupted by any interrupt

NST ACT TASK n IKCP DEV Tx,INT /µ,
x CPU number

Tasklet activation is disrupted by
any interrupt

Table 4.11: Labeled transitions for DEV T s in the submachine for device-triggered I/O
interrupt handling; n ∈ {0..5}

4.4.3.4.2.3 Local timer interrupts
Timer interruptions issued by the the local APIC are processed in submachine LT ISR. The
initial (DO INT) and final (EXIT INT) handling do not differ from the methods described
for I/O devices above. The following extract from the Linux kernel explains the whole
process and shows that the acknowledgement is sent immediately. The reason for the
immediate acknowledgement is that the runtime of the overall routine can be quite long.

void smp_apic_timer_interrupt(struct pt_regs *regs) {
ack_APIC_irq();
irq_enter();
smp_local_timer_interrupt(regs);
irq_exit();
}

Figure 4.18 shows the model of the entire handling routine smp local timer interrupt.
As mentioned above, the whole service routine was registered with the flag set SA INTERRUPT

and thus started with local interrupts disabled. In a nutshell, it performs the following
steps:

1. The invocation of profile tick, depicted by state PROF TICK, realizes the pro-
filer22.

22Only if this facility is enabled during the boot-process.

78 CHAPTER 4. IHF MODELS

Figure 4.18: Linux 2.6 handler routine for the local timer interrupt

2. The state UPD PROC TIMES represents the function update process times which
contains the following steps:

(a) In state ACCOUNTING, the first activity performed is updating the time for
the current process, UPD TIME, and if its time quantum elapsed to send the
according signals SIGXCPU and SIGKILL where necessary are send to the pro-
cess in question (SENDSIG). If any interval timer is registered, it is checked
separately from the conventional timers in state IT TIMER.

(b) The system timers in Linux are implemented as deferrable functions, i.e. as
software interrupts. A software IRQ that corresponds to a system timer is
marked as runnable in state TIMER SOFTIRQ.

(c) Afterwards, in TICK which corresponds to the kernel function scheduler tick,
the CPU load between scheduling domains is re-balanced (BALANCE) and the
scheduler is marked to execute (lazy invocation) (SET RESCHED).

4.4.3.4.2.4 Global Timer Interrupts
The global timer interrupt raised by the external hardware circuits like the PIT or HPET
(see Sections 4.1.1 and 4.1.2) are handled in submachine GT ISR which is included by the
submachine state GLOBAL TIMER INT (see Figure 4.14).

Figure 4.19: Linux 2.6 handling routine for the global timer interrupt

In multi-processor systems, the corresponding handling routine timer interrupt is very
simple as most issues related to timekeeping are CPU-specific and thus conducted by
local routines. The few actions taken by the handler are shown in Figure 4.19. First, a
hardware-dependent part checks whether timer interrupts have been lost since the last tick
(state CHECK LOST), then the variable jiffies64 – the tick counter – is incremented and
finally the update time function represented by state UPD TIME in the model calculates
the system load and updates the system internal time representation, called “wall time”.

CHAPTER 4. IHF MODELS 79

4.4.3.4.2.5 Software IRQs
Not only the system timers can be deferred as mentioned above, but also other interrupt
service routines that are expected to take a long time to completion can be executed after
the immediate interrupt handling.
In Linux, this concept was once called “bottom half”, but since the 2.6 kernel, this mech-
anism has been enhanced and renamed Software IRQ (SoftIRQ). A SoftIRQ can be raised
by any interrupt handler as well as by any other code with kernel space privileges.
Linux implements six SoftIRQs, the ones with lowest (5) and highest (0) priority allow
new deferrable functions to be implemented on top of them. These new deferrable func-
tions are called tasklets. The four remaining ones represent the former bottom halves for
the timers (1), network transmission (2) and reception (3) and finally for SCSI command
processing (4). Thus any I/O device driver having some deferrable work to do has to
register either a high or a low priority Tasklet.

Figure 4.20: Linux SoftIRQ handler

The handling of SoftIRQs is done by means of the C function do softirq() that basically
performs the following steps:

1. In state DISABLE DEF FUN, at first all other deferrable functions are marked as
deactivated to permit interleaving of SoftIRQ handlers. Local interrupts are reacti-
vated at the end of the handling.

2. During the checking for and execution of pending SoftIRQs, CHECK SOFTIRQ and
RUN SOFTIRQ can be re-entered at least ten times. After that number of repetitions,
a counter variable leads straight to the next step.

3. If after ten iterations there are still SoftIRQs pending, the SoftIRQ handler awakes
the local kernel daemon for handling pending software IRQS called ksoftirqd/<cpu>,
this awakening is performed by state SIG KSOFTIRQD.

The process ksoftirqd/<cpu> runs with low priority and thus ensures that user mode
processes can run although high traffic network load for example is processed by the
corresponding SoftIRQs. Table 4.12 lists the detailed transitions.

4.4.3.4.3 System Calls - SYSCALL

The state SYSENTER in Figure 4.14 is the abstraction of the instruction syscall and its
processor-internal processing mentioned above. Although local interrupts are physically
enabled during the execution, theoretically allowing the processing to be interrupted by
any external stimulus, no such transitions are introduced in the Linux model. The reason

80 CHAPTER 4. IHF MODELS

ID Source Target Event/Action Description

INT CHECK SOFTIRQ IKCP DEV Tx,INT /µ,
x CPU number

Checking is disrupted
by any interrupt

INT RUN SOFTIRQ IKCP DEV Tx,INT /µ,
x CPU number

SoftIRQ is disrupted
by any interrupt

Table 4.12: Transitions for DEV T s in the SoftIRQ handler

for that is the fact that the overhead and the instruction time of syscall and also sysret

are negligibly small and the disruptive event causes the abortion of the current control flow
after completion. For that reason, the following state SYSC is modeled adequately, i.e.
interruptible from the very beginning. However, if some critical code is to be processed,
the routine has to lock interrupts by using the assembly language instruction pair cli

and sti. SYSEXIT is the logical counterpart of SYSENTER. Although these two states
enclose privileged code execution, underlying machine instructions are not considered a
call/return pair but only companion instructions [Int05].

4.4.3.5 Preemptive IKCPs

In the next step, a preemptive kernel is considered and the changes in the model elab-
orated accordingly. Although preemption is not considered relevant for a MOSRTOS
system (compare Section 5.2.1), a close investigation of the differences is insightful.

In 2001, initial efforts were made to reduce worst case latency scenarios in Linux 2.4
by introducing preemption points into long critical regions. The Montavista preemption
patch by Molnar [Mol02] established a basis for the improvements of the Linux 2.6 kernel
series. Today, Linux can be compiled in three ways:

1. Non-preemptive, as considered before: CONFIG PREEMPT NONE is set in the configu-
ration during the build process. This is the traditional Linux preemption model; the
system is optimized for high throughput.

2. In a voluntary preemption mode, i.e. some preemption points are introduced into
the kernel, but in general, the kernel code does not relinquish the CPU. The flag
CONFIG PREEMPT VOLUNTARY has to be set before building the system.

3. Fully preemptive, i.e. all kernel code except for a few critical sections can be inter-
leaved with other kernel code. To achieve this behavior, Linux has to be built with
the CONFIG PREEMPT option enabled.

In addition to this, the “Big Kernel Lock” (BKL) – which is used to lock the whole
kernel and is still used in some old drivers – can be configured preemptive by setting
CONFIG PREEMPT BKL = y before compiling as of Linux 2.6.11. In the real-time Linux
community, efforts to improve preemption, for example in the IRQ subsystem, are still
underway. See e.g. [DW05] for details on current issues.

CHAPTER 4. IHF MODELS 81

With the chosen configuration, kernel preemption is allowed by default unless a special field
in the process descriptor prohibits this. This field is called preempt count and contains
the following data:

1. The preemption counter, bits 0-7, that counts how often preemption was explicitly
disabled for the currently running thread.

2. The SoftIRQ counter , bits 8-15, that counts the level of SoftIRQs being disabled.
Hence, SoftIRQs can only be executed if this field is equal to 0.

3. The nested interrupts counter (referring only to hardware IRQs), bits 16-2723 that
holds the depth of nested interrupt handlers on the current CPU. This value is
incremented or decremented by the macros irq enter and irq exit respectively as
described above.

4. The flag PREEMPT ACTIVE indicating whether preemption is active or not.

When dealing with a preemptive Linux kernel, any thread running in kernel mode could
be rescheduled by a forced task switch at any time without an asynchronous interrupt
from an external source. Thus, critical sections in Linux can be guarded by disabling local
interrupts to ensure that nothing can force the current thread to release the CPU unless
it does so voluntarily.

If the preemption property of one state cannot be given unambiguously because it changes
during the execution of the state, this state has to be subdivided into multiple sequential
states.

Figure 4.21: Conventional exception handler in Linux, preemptive parts only

Figure 4.21 shows that only one part of the exception handler routine allows for preemp-
tion, whereas the whole handler allows for local interrupts.

Two of three basic inter-processor interrupt handlers (see Figure 4.22) are implemented
preemptive: only the TLB invalidation routine is not preemptive for reasons of perfor-
mance optimization. However, it could easily be implemented as preemptive, but the
average duration of the corresponding code is too short: it is only a few assembly lan-
guage instructions. In the special case that the inter-processor interrupt DO CALL FUN is
sent to all CPUs, the preemption is also disabled by a wrapper function.

23although values range from 0 to 4095, the IA32(e) specification limits that range.

82 CHAPTER 4. IHF MODELS

Figure 4.22: Linux 2.6 inter-processor interrupt handler, preemptive parts only

As done before, several assumptions concerning the structure of an I/O device ISR are
made. It is now assumed that the noncritical part contains components with data access
to critical structures and thus kernel preemption is not allowed – states DISRUPT 0 . . .

DISRUPT 5 in Figure 4.23 represent this. In addition to those states, some parts of
the handler will access own structures only and will thus be preemptive. Their states
DISRUPT PREEMPT 0 . . . DISRUPT PREEMPT 5 depict this part.

Figure 4.23: Linux 2.6 I/O interrupt handling ISR, preemptive parts only (simplified
model, ISRs 1..4 analogous)

Note that Figures 4.21, 4.22 and 4.23 only show the preemptive parts of the routines, the
transition tables for those model parts remain unaltered.

4.4.3.5.1 Returning from any Exception or Interrupt Handler
As already mentioned in Section 4.4.3.4, within a preemptive kernel, the return from
an interruption or exception handler is much more complex than it was before. The
corresponding assembly language code is rather complicated. Figure 4.24 is derived from
[BC06], page 185 and shows this control flow when preemption is considered.

4.4.4 OpenBSD

The OpenBSD IHF model created by Gogolok [Gog07] is not completely elaborated in
this section. The model is based on version 4.0, released in November 2006.

The classification of events is very close to the universal classification for disruptive events
as given in Section 4.2.3.1, i.e. a disrupting event has the form DEV Tx,k,t,i with x being
the CPU number relevant to the top level CTSC. The set of interrupts caused by I/O

CHAPTER 4. IHF MODELS 83

ret from exception:

cli�

cli -

�
�
�
�Work to do?

No!

�

Yes!

?�
�
�
�Need to

reschedule?

No!

?

�Yes!
schedule()

6

ret from intr:

?�
�
�
�Nested con-

trol paths?

Yes!

?
cli

?�
�
�
�Preemption

enabled?

?

No!

-Yes!

Restore
context

�
�
�
�Need to

reschedule?

?

Yes!�
�
�
�Resuming

path IF=0?

?
No!

schedule()

?

?

No!

-Yes!

Figure 4.24: Linux 2.6 return from interrupts and exceptions

devices is defined as in the Linux model ι = {HDD,MPEG,HID, SND,NIC,KB}.
The only deviations from this are that on the level of DEV Tx,INT , there is the additional
class of software inter-processor interrupts t = SOFT IPI and exceptions are further
categorized as follows:
In the model, all software-generated exceptions other than 7 and 16 (i.e. the device
not available (DNA) and the floating point errors (FPU)) are covered by the events
DEV Tx,EXC,η with η ∈ {0, 3 . . . 6, 8 . . . 14, 17 . . . 19}

OpenBSD supports the following inter processor interrupts : DEV Tx,INT,IPI,ι with ι ∈
{HLT, SET, TLB,FLUSH,SY NC,DB}. Their different handling is not elaborated fur-
ther. Since the same 4-CPU setup is considered, the OpenBSD top level model is quite
similar to that of Linux.

4.4.4.1 The Interrupt Handling Facility Model

On the level of the IKCPs, either interrupt, exception or system call processing takes place
(see Figure 4.25). The split/combine pseudo-state pair SP1/CO1 reacts to the first branch
identifier k ∈ {INT,EXC,SYSCALL}.
On this modeling level, all control paths can only be interrupted when an exception occurs.
Table 4.13 lists all interruptions which can possibly occur while the system is in state IKCP.

84 CHAPTER 4. IHF MODELS

Figure 4.25: OpenBSD intermission kernel control path model

ID Source Target Event/Action Description

EXC SYSCALL IKCP DEV Tx,EXC/µ,
x CPU number

System call handler raising any
exception

DF EXC IKCP DEV Tx,EXC,8/µ,
x CPU number

Exception handler raising an ex-
ception - double-fault

EXC INT IKCP DEV Tx,INT /µ,
x CPU number

Interrupt handler raising any ex-
ception

Table 4.13: Transition table for DEV T s in the OpenBSD IKCP

4.4.4.1.1 System Calls - SYSCALL

Contrary to case of system calls in the Linux operating system, in OpenBSD those are
implemented by means of software interrupts. The vector 80hex = 128dec is used to jump
to the registered system call routine. Figure 4.26 shows the submachine that handles
system calls: SYSCALL.

Figure 4.26: OpenBSD system call handling

The initial handling depicted by state GET PARAM basically fetches the number of the
system call24 issued and retrieves the parameters required to service the call. The serv-

24OpenBSD implements more than 300 system calls. A comprehensive list and universal classification

can be found in [Gog07], appendix A.

CHAPTER 4. IHF MODELS 85

ing itself is carried out while a global kernel lock (see Section 4.4.4.2) (states SET LOCK

and REM LOCK) protects the critical region (state EXEC SYSCALL). The postprocessing,
i.e. pushing necessary values to the user mode stack etc. is carried out in the two states
SYS RETURN and USERRET. Note that if the preliminary check for valid parameters fails,
the handler routine is immediately abandoned.

Since all parts other than the kernel locking operations are interruptible, a grouping state
DO SYSCALL is introduced. Table 4.14 describes the outgoing transition in detail.

ID Source Target Event/Action Description

INT DO SYSCALL IKCP DEV Tx,INT /µ,
x CPU number

System call handler disrupted by
any interrupt

Table 4.14: Transition table for DEV T s in the OpenBSD system call handler

4.4.4.1.2 Exceptions - EXC

Exception handlers are grouped as described by the address spaces they operate in. The
DNA and FPU handlers operate in any address space (states DNA and FPU), the remaining
ones are handled by means of the trap function (state TRAP) The SP2 and CO2 pseudo-
states model the corresponding branches. Figure 4.27 shows the entire submachine EXC.

Figure 4.27: OpenBSD exception handling

Again, for the majority of the handlers (TRAPSIGNAL followed by USERRET), the kernel
must be locked (states SET LOCK and REM LOCK). The special exceptions (SPECIAL)and
the page fault exception (PAGE) do not need this precaution. If an exception that is not
allowed to occur in kernel mode is sensed (TEST) outside user mode, the kernel enters the
state (PANIC) and remains stuck.
Since all parts other than the kernel locking operations are interruptible, a grouping state
DO TRAP is introduced once more. Table 4.15 describes the transitions.

4.4.4.1.3 Interrupts - INT

Different from the Linux model, the next level of branching for hardware interrupts is

86 CHAPTER 4. IHF MODELS

ID Source Target Event/Action Description

INT DNA IKCP DEV Tx,INT /µ,
x CPU number

DNA exception handler dis-
rupted by any interrupt

INT FPU IKCP DEV Tx,INT /µ,
x CPU number

FPU exception handler disrupted
by any interrupt

INT DO TRAP IKCP DEV Tx,INT /µ,
x CPU number

Generic exception handler dis-
rupted by any interrupt

Table 4.15: Transition table for DEV T s in the OpenBSD system call handler

modeled by means of a submachine include instead of simply using nested substates.
Figure 4.28 shows the submachine INT.
The initial saving of the registers (called frame creation in OpenBSD) including the steps
carried out by the CPU itself are modeled as state CREATE FRAME. The interrupt post-
processing also includes various checks for software interrupts (as in Linux). It is modeled
in submachine INT RETURN. The details about this part of the model are omitted in this
thesis, but can be found in [Gog07]. The same applies for the inter-processor handlers IPI

and SOFT IPI modeled as black boxes.

Figure 4.28: OpenBSD IHF details for the interrupt-branch

4.4.4.1.3.1 IOAPIC Interrupts - IO APIC

All interrupts generated by peripheral devices are treated equally in the model (see Figure
4.29). For any registered handler that is detected (states DET HANDLER and DET NEXT),
the kernel is locked, the handler routine invoked (state IOAPIC HDL) and the usage statis-
tics are updated (state UPDATE STAT). If no handler is registered, an error message is
passed to a kernel debugger if any, depicted by state STRAY INTERRUPT. The flag end

of interrupt is finally set in state EOI.
A part of an interrupt handler can be only disrupted by interrupts with certain priorities,
as OpenBSD implements the Intel hardware priority schema. Table 4.16 lists these possible
interruptions.

4.4.4.1.3.2 Local Timer Interrupt - LAPIC TIMER

The distinct handler for the timer interrupt is modeled by submachine LAPIC TIMER.

CHAPTER 4. IHF MODELS 87

Figure 4.29: OpenBSD I/O interrupt handling

ID Source Target Event/Action Description

INT GRP IKCP DEV Tx,INT,ι>cur,
x CPU number

Generic handling disrupted by inter-
rupt with higher priotity

INT IOAPIC HDL IKCP DEV Tx,INT /µ,
x CPU number

service routine disrupted by any inter-
rupt

Table 4.16: Transition table for DEV T s in the OpenBSD I/O interrupt handler

Contrary to the Linux operating system, the routines for the local and the global timer
interrupts are the same.

The interrupt is acknowledged immediately in state EOI and then – with the kernel locked
– the hardware-based system clock is accessed. If the interrupt was issued to the primary
CPU, i.e. the interrupt represents the global timer interrupt, the TSC (see Section 4.1.1)
is read and saved to calculate the system’s wall time.
Within the state HARDCLOCK, a series of important tasks is performed:

1. The interval timers (each process in OpenBSD owns up to three of these) are checked
to see whether a configured interval has elapsed. If so, the corresponding signal is
sent. This is modeled in the state INTERVAL TIMER.

2. Several data structures containing usage and load statistics are updated every clock-
tick (state UPDATE STAT).

3. Every 4 ticks (i.e. 40 ms), the priority of the running processes is calculated as
represented by state PRPRIO.

4. Every 10 ticks (RR ACT), the scheduler modeled by state RESCHED is invoked.

5. Only on the primary CPU, the process queues are updated (state UPD QUEUE).

6. If existing, a software timer is registered for the scheduled process (state SETSOFT-

CLOCK).

Figure 4.30 shows two possible interruptions of a local APIC timer routine, Table 4.17
lists them.

88 CHAPTER 4. IHF MODELS

Figure 4.30: OpenBSD timer interrupt

ID Source Target Event/Action Description

INT TSC ACT IKCP DEV Tx,INT /µ,
x CPU number

Primary timer handling dis-
rupted by any interrupt

INT HARDCLOCK IKCP DEV Tx,INT /µ,
x CPU number

Secondary timer handling dis-
rupted by any interrupt

Table 4.17: Transition table for DEV T s in the OpenBSD timer interrupt handler

4.4.4.2 The Global Kernel Lock

Most kernel routines require the kernel to be locked by some sort of global spin-lock.
This mechanism is very much the same as the Linux big kernel lock abandoned a long
time ago by the community due to performance impacts. However, this coarse-grained
synchronization means is widely used in OpenBSD. Figures 4.31(a) and 4.31(b) show
both the locking and unlocking operations as implemented in the kernel sources. Note
that their execution is basically interruptible (transition INT).

(a) Kernel lock operation in OpenBSD (b) Kernel unlock operation in OpenBSD

Figure 4.31: OpenBSD kernel locking and unlocking operations

The remaining submachine SPLX which is not elaborated in this theses is entirely inter-
ruptible. The corresponding kernel function splx checks every time a system priority level
changes, whether a registered software interrupt must be executed and, if so, invokes it.
This very functionality is also implemented in the XDORETI submachine in Figure 4.28.

CHAPTER 4. IHF MODELS 89

4.4.5 L4Ka::Pistachio

As the OpenBSD model, Pistachio is not entirely elaborated in this thesis. Since it does
not serve the goal of this thesis, the implementation details of the system calls such as
IPC or the page fault are not considered. In contrast to the other operating systems
investigated so far, a model of the system scheduler is regarded.

4.4.5.1 Further Classification of Events in a Pistachio Model

All interrupts caused by the I/O devices ι = {HDD,MPEG,HID, SND,NIC,KB} are
also used in the Pistachio model exactly as in the other models. Inter-processor interrupts
are called cross-CPU mailbox mechanism in Pistachio.
Since exception handling is implemented only in a very rudimentary way in the experimen-
tal operating system Pistachio, it is not elaborated in the model, and thus no disruptive
events underneath the EXC category are defined here. For a very detailed analysis, see
Wieder [Wie07].

System calls are vital for any micro-kernel operating system. Pistachio distinguishes be-
tween six non-privileged system calls, four privileged ones and the IPC calls for sending
and receiving messages (see Section 4.3.1). Their technical implementation is not part of
the IHF model either.
In contrast to the Linux and OpenBSD models, the Pistachio IHF model also makes use
of a different class of other events than disruptive ones: events to broadcast signals and
scheduling actions across the model (see Section 4.2.3.1). These events are generated by
the action mechanism of statecharts and will be elaborated when they are used within the
model.

4.4.5.2 Pistachio Architectural Model

The architecture of a µ-kernel system differs considerably from the other systems consid-
ered so far. Figure 4.32 shows the top level for one CPU, i.e. for one path of concurrency
only.

Figure 4.32: Pistachio micro-kernel architectural overview

A top level model with four concurrent paths is very similar to the one provided for the
Linux kernel, a four-fold AND super state is used to incorporate each upmost state, USER

90 CHAPTER 4. IHF MODELS

as well as KERNEL.
While a kernel mode handling of interrupts, exceptions and system calls is represented by
the two submachine states INTERRUPT and EXC/SYSCALL just as in the non-µ-kernel sys-
tem models, in this system even the user space contains several handler threads (grouped
by the superstate HANDLERS). This characteristic element of a µ-kernel system will be
investigated later in Section 5.4.
The user model thus contains the user mode threads USER T, a representation of the idle
thread IDLE T as well as the handler threads for hardware interrupts HDL THREAD, the
actual worker thread for each registered interrupt IRQ THREAD and the handler routines
for exceptions EXC THREAD.
Depending on a generated event representing a signal or a scheduling decision, either the
pseudo-state pair SP1/CO1 or SP2/CO2 carries out the branching.
Note that the sequential transition t with source(t) = HANDLERS and target(t) = CO1

is not entirely correct with respect to the ESF modeling rules. In the actual model, it
is cloned and each clone then originates from one of the three handler substates. The
deviation was only made in the figure to improve its readability.

The transitions in this model are provided in Table 4.18. In all following tables, events
related to signals are abbreviated as SIGEV T and events corresponding to scheduling
decisions as SCHEV T .

ID Source Target Event/Action Description

IRQ USER INTERRUPT DEV Tx,INT , with x

CPU number
An interrupt occurred while in
user mode

IRQ USER EXC/SYSCALL DEV Tx,{EXC,SY S},
with x CPU number

An exception occurred or
syscall was issued.

TRM USER T USER SIGEV Ti, with i

thread ID
User thread terminated by sig-
nal

TRM HANDLER USER SIGEV Ti, with i

thread ID
Handler thread terminated by
signal

Table 4.18: Transitions in the Pistachio top level model

4.4.5.3 Pistachio Intermission Kernel Control Path

The kernel-level handling of interrupts differs greatly from the handling approaches inves-
tigated so far: no service routine is executed directly in kernel space. One of the driving
paradigms of the research is to treat the concrete handler of a dedicated device as a black
box and to make a few assumptions about its behavior. Doing so does not at all influ-
ence the model of the IHF located in the kernel since these simplifications only affect the
handler threads in user space.
The IKCPs in the Pistachio model are structured quite like those in the Linux and
OpenBSD models. Figures 4.33(a) and 4.33(b) show the subsequent branching (pseudo-
state pairs SP3/CO3 and SP4/CO4).
At this level, no finer distinction of interruptibility is provided, i.e. there are no outgoing
transitions in the submachines. As mentioned above, the inter-process interrupts are

CHAPTER 4. IHF MODELS 91

(a) interrupt submachine in Pistachio (b) system call and exception submachine

in Pistachio

Figure 4.33: Pistachio hardware intermission kernel control paths

not elaborated further. Nonetheless, the following modification of the branch identifier
function is needed to correctly process path events:

bid(IPI) def= XCPU MAILBOX

The exception (EXCEPTION) and system call (SYSCALL) submachines are also not elab-
orated further. Details about those black boxes can be found in [Wie07].

4.4.5.3.1 I/O interrupts - HW IRQ HANDLER

The kernel mode I/O interrupt handling is kept small and its focus is merely on delegating
the work to the appropriate processes. The Pistachio kernel offers a software masking
mechanism for interrupts. The kernel functions mask() and unmask() are implemented
as high-level software equivalents to the machine instructions cli and sti.

Figure 4.34: Pistachio I/O interrupt, kernel part

Figure 4.34 illustrates the entire process of handling interrupts on the kernel level. If the
interrupt in question was masked, it is marked as pending (if it was edge-triggered only)
in the state MARK PENDING and the end of interrupt (EOI) acknowledgment is sent im-
mediately (state EOI FAST). Otherwise, the interrupt is masked (state SW MASK) and
the internal handling started (state HANDLE HW IRQ). In this case, an end of interrupt

92 CHAPTER 4. IHF MODELS

is signalled later (state EOI) and in any case, the hardware return that switches from the
interrupt handling stack back to the stack frame of the interrupted control paths is carried
out in state IRET.

The hardware handling (state HANDLE HW IRQ) first determines whether a handler is
waiting by evaluating the thread control block. If this is not the case, a message is
sent (in IRQ THREAD IPC) and the handling is aborted. If a handler is waiting, the re-
maining handling depends on the location (on which CPU the handler is waiting), states
TRANSMIT IRQ and DO IPC model the two possible cases. Finally, a local handler can
be scheduled (depicted by RUN HANDLER). The messaging towards and the scheduling
of the threads is modeled by means of generated events, Table 4.19 shows the detailed
transitions.

ID Source Target Event/Action Description

NST HANDLE HW IRQ IRQ DEV Tx,INT ,
x CPU number

An interrupt occurred -
nesting

IRQ IRQ THREAD IPC HANDLERS λ/SIGEV Ti,
i handler thread ID

IPC delivered to corre-
sponding thread

IRQ DO IPC HANDLERS λ/SIGEV Ti,
i handler thread ID

IPC delivered to corre-
sponding thread

FWD IRQ HANDLERS λ/DEV Tx,INT,IPI ,
x target CPU

Interrupt forwarded via
XCPU mailbox

Table 4.19: Transitions in the Pistachio I/O interrupt handler model

4.4.5.3.2 Timer Interrupts and Scheduler - TIMER HANDLER

As in any system, the timer interrupt in Pistachio is of special importance. Here, also the
scheduler is of interest since it is part of the IHF. As in OpenBSD, before the timer handler
(state TIMER HANDLER) starts processing the interrupt, it acknowledges the reception
and sends the EOI to the hardware circuit up front (state EOI APIC). Figure 4.35 shows
the entire handling.

If a timer interrupt was sensed on the primary processor, i.e. CPU 0, the global timer
and usage statistics are updated (state UPD TIMER). In every case, all inter-processor
messages are checked – submachine XCPU MAILBOX – before the scheduling is started.
By this, the kernel ensures that the scheduler reacts to the most recent data values and
not to any deprecated information.

The scheduler implements in a straightforward way a priority-based policy enriched by
the concept of delayed preemption. Delayed preemption prevents handler threads from
being dismissed too early. Basically, a second priority value is considered to decide about
the total quantum of computation time a process possesses.

Thus, the scheduler first checks whether a thread with a higher process priority was awo-
ken by any signal, schedules this (WAKEUP) and then terminates. Otherwise, a check on

CHAPTER 4. IHF MODELS 93

Figure 4.35: Pistachio timer interrupt and scheduler

the time slice is done: if the time slice is not used up, no rescheduling is necessary and
the scheduler terminates without any further action.
In state TOTAL QUANTUM, the calculations concerning delayed preemption, if any, are
carried out (UPD TOTAL QUANTUM). Finally, a new schedule is calculated in states
END SLICE and RESCHED, and the scheduler terminates. The generated scheduling events
and the possible disruption are listed in Table 4.20.

ID Source Target Event/Action Description

NST HANDLE TIMER

INTERRUPT

IRQ DEV Tx,INT ,
x CPU number

An interrupt occurred -
nesting

WAKE IRQ THREAD IPC USER λ/SCHEV Ti,
i thread ID

Thread with higher prior-
ity woken

NEXT DO IPC USER λ/SCHEV Ti,
i thread ID

Next thread scheduled

Table 4.20: Transitions in the Pistachio timer handler model

94 CHAPTER 4. IHF MODELS

Chapter 5

Real-Time in Operating Systems

Since the beginning of computing itself in the early forties, a variety of real-time systems
have been used in different fields [LRGW95]. Thus, a large number of real-time definitions
from every era of computer science can be found in the literature, e.g. [Mar65], [GHJ+77],
[JLT85] and [Liu00].
A commonly agreed standard for real-time operating systems are the POSIX standards
P1003.4 and P1003.13, see [Cla90] and [GL91] for a further discussion. Those standards
define implementation details, scheduling policies etc. in a bottom-up manner, but do not
provide a universal definition nor contribute to the nature of real-time per se.
Although real-time systems are used widely and decades of research have passed, it is
surprisingly hard to find a comprehensive and consistent definition of real-time. Even in
academic research and teaching, fuzzy definitions are commonly used. Real-time systems
are sometimes defined as systems that react to events within a short period of time - how
short depends on the field of application.
In particular, the difference between hard real-time and soft real-time is simply defined as
the severeness of not meeting a specified deadline for finishing a certain job: if it is not
so dangerous that a deadline is missed (e.g. frame-loss in an MPEG decoder), the system
is considered to be soft real-time; if it causes serious damage (e.g. controlling fuel rods
in a nuclear power plant), the system is said to be hard real-time. However, this kind of
definition is of no use for our purposes: for one thing, it is informal and imprecise. For
another, focussing on failure does not allow for the evaluation of the system’s ability to
meet its constraints. Subsequently, a definition of real-time that satisfies the needs of this
thesis is to be given.

5.1 Real-Time

When talking about real-time systems, the focus is on reactive systems rather than on
transformational ones. Nevertheless, an adequate real-time definition incorporates trans-
formational – i.e. computational – correctness as well: a punctual but incorrect result of
a task is of no use.
The chosen approach separates the two facets of real-time systems: punctuality and cor-
rectness.

95

96 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

Definition 5.1 Real-Time or Time-Constrained System
A (reactive) system (see Definition 1.2) is called a real-time, or more generally a time-
constrained system, if the acceptance of any computational task not only depends on the
computational correctness or value of its result, but also on time constraints.

The very term acceptance reveals the nature of real-time: Real-time is always judged by
or evaluated from an outside perspective. Usually, there are two distinct manifestations
of this outside perspective:

1. A human user operates the real-time system directly. The judgement of whether a
response meets the requirements is mainly dictated by human sensors and cognitive
abilities. Examples: a multimedia player that produces video and audio output
will be judged by perceived jitter rather than absolute frame losses; an interactive
workstation will be evaluated by its response time behavior.

2. A machine environment (hardware or software) surrounds the real-time facility. The
constraints are thus subject to specifications of other systems. Examples: a digital
signal processor must meet the time constraints dictated by the sample rate of the
system; a digital control circuit steering a machine part must comply with the ma-
chine’s overall specification; a network device handler must provide data as soon as
it is needed by the other parts of the system.

The perceptions of an external entity determine the computational value of a task.

Definition 5.2 Computational Task, Computational Value

Any computational system consists of a finite, nonempty set of computational tasks Θ. A
computational task is a job that executes a specified set of actions. The computational (or
transformational) value of a task θi ∈ Θ is defined by the function

value : Θ→ [0, 1]

It yields the perceived value of the job at the moment of its completion.

The computational value does not bear any information about whether the task meets
any requirements or fulfills any constraints. It is merely a statement about a task, not
about any part of the surrounding system (Section 5.1.1 provides a concrete example).

The chosen interval [0, 1] ⊂ R+
0 allows for the definition of a maximal value and provides

scalability as well as comparability.

Value Function (VAL)
The definition of computational value only refers to its perceived value at the moment the
task is finished. In reality, the value of a task changes over time.

Definition 5.3 Value Function

As the value of a task θi ∈ Θ changes over time, the value function

valueθi : R+ →]−∞, 1]

yields the concrete perceived value of this task at a given moment in time.
The value function is not necessarily continuous. For t = completion time of θi, it holds
that valueθi(t) = value(θi).

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 97

Without loss of generality, the value function is assumed to have a maximum and the com-
pletion time of a task is assumed to be � ∞. The maximum of the function is reached
at least by this point in time. Usually, the maximum value is valid for a period of time
being a plateau in the function graph.
With respect to scheduling theory, the value function is assumed to be monotonically in-
creasing. However, when using value functions as a vehicle to define real-time, a greater
flexibility and accuracy is achieved by allowing negative peaks and even negative values.
The latter can be used to represent critical sections (regions) in tasks (cp. Figure 5.1).

-

6 �
tcomplete

+1

−∞

Figure 5.1: Example value function with critical region

The value gained by that task in this time interval is considered negative because any
interruption leads to a total failure of the whole system and not only of the task itself.
Note that a negative value at completion time is not by definition allowed: it is absurd if
malicious code is not taken into consideration.
In a nutshell: the value function measures the perceived value of a task over time: “what
the task gives”.

Time Utility Functions
It is now vital to define how the benefits of a job develop over time: “what the outside
entity requires”. This is done by means of time utility functions.
Jensen, Locke, Clarke et all invented a generic and flexible mechanism to describe time
constraints and the utility [Jen00a] [Jen00b] of final and intermediate results of a task. The
perspective taken is the one an outsider has towards the system. The mechanism uses time
utility functions (TUFs) [GHJ+77]. In their research, these functions serve as a vehicle to
formalize and implement different real-time scheduling algorithms [JLT85] [Loc86] [Cla90].
They show that one of the most important benefits of TUFs is a predictable value for
systems with optimized task schedulers.
Nonetheless, TUFs can also contribute in creating a proper definition of real-time. It is
defined analogously to the value function as follows:

Definition 5.3.1 Time Utility Function

The actual perceived utility of the results of a task θi ∈ Θ for an outside entity changes
over time. The utility function

utilityθi : R+ →]−∞, 1]

yields the concrete estimated benefit of a task at a given moment in time.

98 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

Sufficiency Functions
As mentioned above, the TUF and the value function implement orthogonal views. They
can be combined and evaluated in order to determine whether the system or a subset of
its tasks meets the expressed requirements (see Figure 5.2). This leads to the definition
of sufficiency functions.

Environment Computation
utilityθi-

valueθi�

�
�
�
�EVAL

?

Sufficiency

Figure 5.2: Relation between time utility function and value function

There are many possible ways to combine the two functions VAL and TUF. Since in this
thesis, it is not intended to exploit the real-time definition for scheduling purposes1, the
simplest and most feasible option for combining them is the preferred choice. This simplest
option is to superimpose VAL and TUF.

Definition 5.4 Sufficiency Function, Sufficiency Break-Even

The sufficiency function suffθi : R+ →] − ∞, 1] depicts the requirements fulfilment of a
task over time.

∀x ∈ R+ : suffθi (x) =

{
0 ⇔ valueθi(x) < utilityθi(x)

utilityθi(x) otherwise

The smallest x ∈ R+ : suffθi (x) > 0 is called sufficiency break-even. If there exists no such
x, the system is said to be insufficient with regard to θi.

In contrast to scheduling theory, points in time after the sufficiency break-even are also
considered.

5.1.1 Working Example for Description of Real-Time Systems

Let us consider again the multimedia car audio navigation system from Section 2.4.1.
This time we will focus on the navigation part that has not yet been elaborated. It is
assumed to have three computational tasks (θ0, θ1, θ2) available for calculating a specific
route around a barrier (e.g. an unexpected construction site). The VAL functions are
given in Figure 5.3.

The system is specified by these three tasks. It is considered to be real-time when at least
one of the tasks is sufficient with respect to its time constraints.
The different value functions mean that task θ0 calculates the precise route – its value is
maximal and requires 5 time units – whereas tasks θ1 and θ2 only provide approximations

1In this case, more sophisticated options like defining multiplication classes would be necessary.

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 99

-

6
val

t

1

5
(a) valueθ0(t)

-

6
val

t

1

5
(b) valueθ1(t)

-

6
val

t

1

5
(c) valueθ2(t)

Figure 5.3: Value functions for the three tasks in the sample car navigation system

of different quality (0.6 and 0.4) which can be obtained after shorter time intervals (4 and
2 time units).
The working example introduced here will later serve to clarify the difference between
hard and soft real-time.
Depending on the purpose of a system, it has to fulfil different requirements with respect
to time constraints. Those constraints classify the system as hard or soft real-time. The
utility and thus the sufficiency functions can now be used to characterize a real-time system
as either or.

5.1.2 Hard Real-Time

A hard real-time system is characterized mainly by the fact that it has a binary TUF and
thus also a binary sufficiency function. If a task produces the absolutely right output (i.e.
computational value = 1) in time, it is considered sufficient, if it misses the deadline, the
result is considered an error regardless of its computational correctness. Any possible task
value 0 ≤ val ≤ 1 is deemed insufficient by means of the binary TUF.

Definition 5.5 Hard Real-Time System

A hard real-time system with regard to a set of hard real-time tasks ΘHRT ⊆ Θ is charac-
terized by binary time utility functions. It holds that

∀ θ ∈ ΘHRT , t ∈ R+ : (utilityθ(t) ∈ {0, 1} ⇒ suffθ(t) ∈ {0, 1})

Even a hard real-time system might contain some tasks that are not hard real-time tasks
at all.

For the given working example, we now assume the two different binary time utility func-
tions utility0 and utility1 as depicted in Figure 5.4.

-

6
val

t

1

5
(a) utility0 leading to an in-

sufficient system

-

6
val

t

1

5
(b) utility1 leading to suffi-

ciency break-even 4 for θ0

Figure 5.4: Alternative time utility functions for the car navigation system

When superimposed with the value functions valueθ0(t), valueθ1(t) and valueθ2(t), it is
clear that in the case of the first TUF, the hard real-time system is insufficient – at no

100 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

time is the value of any task bigger than the postulated utility. In the case of the second
TUF, the task θ0 fulfils the requirement with sufficiency break-even x = 4. Since in this
example one task meeting the constraints is enough, the system is considered to be hard
real-time.
Note that, contrary to the common understanding of hard real-time systems, this definition
does not consider the magnitude of the specified time-frames. Furthermore, in this thesis,
the – very imprecise – severity of an error is not considered either.

5.1.3 Soft Real-Time

In contrast with hard real-time systems, soft real-time systems are characterized by any
kind of time utility functions. According to this definition, any hard real-time system is
a special case of a soft real-time system though it will be shown later that this does not
hold any more in real-world systems.

Definition 5.6 Soft Real-Time System

A soft real-time system with regard to a set of soft real-time tasks ΘSRT ⊆ Θ is character-
ized by a specific time utility function. It holds that

∀ θ ∈ ΘSRT , t ∈ R+ : (utilityθ(t) ∈ [0, 1]⇒ suffθ(t) ∈ [0, 1]

Referring to the working example, we now assume the two different non-binary time utility
functions utility2 and utility3 as depicted in Figure 5.5.

-

6
val

t

1

5

XXXXXXXX

(a) utility2

-

6
val

t

1

5

A
A
A

(b) utility3

Figure 5.5: Alternative non-binary time utility functions for the car navigation system

The sufficiency evaluation for the three tasks θ0 , θ1 and θ2 as well as the two non-binary
time utility functions utility2 and utility3 is provided by Table 5.1. The given t depicts
the sufficiency break-even. Due to the fact that VAL and TUF are superimposed, no other
than those values given by the TUF can be reached.

θ0 θ1 θ2

utility2 t = 4, val = 1.0 t = 4.2, val = 0.6 t = 5.8, val = 0.4
utility3 t =∞, val = 0.0 t =∞, val = 0.0 t = 2.6, val = 0.4

Table 5.1: Soft real-time TUFs: sufficiency break-even

5.2 From Task Perspective to the IHF

So far the focus of defining what real-time is all about was on tasks and sets of tasks2,
but not on complete real-world operating systems. This perspective is fully acceptable for

2called a system previously in this chapter

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 101

scheduling theory. Since most real-time literature is mainly about scheduling, there exists
no suitable projection of a general real-time definition to any other part of a real-world
operating system – such as the IHF. Constructing such a projection is the subject of this
section.

5.2.1 Architectures

When considering a projection of the real-time properties as defined above to the interrupt
handling facility, it is crucial to determine if, and if so how, the operating system’s overall
architecture influences this projection.

• Different operating systems have different degrees of transparency towards the ap-
plication layer regarding the handling of hardware interruptions. In other words,
effects that are relevant for the IHF might influence the application layer more or
less depending on the system architecture.

• Depending on the the way the IHF is embodied in a system, different facets of its
real-time capabilities influence the system in very specific ways.

Clearly, the architecture of an operating system matters when taking into account under-
lying parts of the system such as the IHF. Since in the former considerations, a system’s
real-time capabilities were judged from an outside perspective of the tasks only, now the
overall architecture and the building blocks will be taken into account. Doing so, it
becomes possible to isolate parts of a system and to determine their specific real-time
capabilities.
Since different operating systems with different architectures are investigated in this thesis,
it would be incorrect to use one specific architecture to perform the projection. Doing so
would result in the loss of objectivity in judging and comparing the systems’ capabilities.
To deal with this problem, a target-based approach is taken: for a specific class of real-time
application scenarios, a generic architecture is elaborated and from that, a projection is
constructed. The research of the chair of operating systems focusses on operating system
support for path-based processing of multimedia data. This class of applications allows
for the definition of such a generic architecture.
Koenen-Dresp and Schöning [KDSS07] discuss different kinds of real-time systems for use
in multimedia-oriented systems based on the component extension (CE) idea [Sch08].

The Component Extension
The underlying concept of the component extension is to interpret any multimedia appli-
cation as a scenario graph composed of components (vertices) and channels (edges). By
using such a structure, it is possible to exploit implicit information about the application
itself far beyond the idea of the conventional process model.
Figure 5.6 shows the application scenario graph for an audio-video player with subtitle
overlaying. In order to prove the feasibility of the concept and to implement an execution
platform for such scenario graphs, a CE system based on the Linux 2.6 kernel is speci-
fied [SM07]. Beyond this mere implementation, the specification of a CE system led to
another achievement: the possibility of defining a class of real-time systems by means of
architectural properties.

102 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

This class of Multimedia-Oriented Soft Real-Time Operating Systems (MOSRTOS) is
characterized by the CE and its architectural properties discussed later in this section.

}
Textfile
Grabber

-

}
AV-File
Grabber

- m
Splitter

-

@
@
@
@R

m
Text

Renderer

�
�
�
��

m
Video

Decoder

-

m
Audio

Decoder

-

m
Video

Combiner

-

m
Audio
Filter

-

}
Video
Buffer

}
Audio
Buffer

Figure 5.6: Example of a scenario graph of a multimedia application

Like most structured software systems, a component extension software system can be
regarded as a multi-tier architecture. Although Müller provides a migration of the CE
based on the Linux 2.6 kernel where parts are moved into kernel space [Mül08], the com-
ponent extension is treated as a pure user-space application in this discussion for the sake
of simplicity. Figure 5.7 depicts the overall structure of a CE system and its constituent
parts: the application, the component extension, an upper and a lower operating system
layer, as well as the hardware. Arrows in the figure represent functional dependencies
among the layers.

Hardware Layer

Lower Operating
System Layer

Upper Operating
System Layer

Component
Extension

Application

Interrupt
Handling

Virtual
Address
Handling

Hardware
Device Driver

Component
Management

Process
Management

Memory
Management

S
ynchronisation

Device
Management

Scenario
Scheduling

Process
Scheduling

Buffer
Management

Application Functionality

Figure 5.7: Component extension system layers and their interdependencies

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 103

The real-time definition from Section 5.1 only applies to the uppermost levels: the ap-
plication and CE layers. Having defined the functional dependencies, it is now possible
to investigate the impact that the lower operating system layer and particularly the IHF
may have on this uppermost level.
To explain the architectural implications of the component extension for the projection,
let us assume for a moment that we have a normal layered operating system without CE.
Keeping the (top-down) functional dependencies between upper and lower OS layer in
mind, the corresponding control flow within the OS (bottom-up) is shown in Figure 5.8.

Definition 5.7 Transmission Integrity and Priority Compliance

Transmission integrity (or scheduling consecutiveness in [KDSS07]) is the property of an
operating system which guarantees a direct and consistent vertical transmission of asyn-
chronous events from the hardware interrupt level to the scheduler.
Priority compliance means that there exists a unique mapping between interrupt priorities
and priorities usable by a scheduler.

Evidently, a system that has transmission integrity is always priority-compliant whereas
the converse is not necessarily true.
A set of real-time tasks that is judged by means of a TUF depends on the mentioned
transmission of events in two distinct ways:

1. The task execution depends on the overall scheduling of tasks within the operating
system. Since a scheduler is driven by clock ticks, it indirectly relies on the accuracy
of the IHF.

2. Much more decisive is the fact that often the execution of a task or the evaluation of
its punctuality also involves communication with hardware devices. The shape of a
TUF often relates to certain points in time such as the disposal of some input data
by a specific hardware device such as a hard disk.

For a hard real-time system according to Definition 5.5, transmission integrity and hence
priority compliance is the conditio sine qua non. Figure 5.8(a) depicts such a constellation.

(a) scheduling consecutiveness pre-

serves priorities throughout the sys-

tem.

(b) scheduling is decoupled from the

handling of interrupts entirely.

Figure 5.8: Transmission integrity influences the overall system

Unfortunately, the architectural definition of soft real-time is quite complex whereas the
formal, theoretical definition is convenient and straight-forward. The situation shown in

104 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

Figure 5.8(b) therefore does not show a soft real-time but a best effort system as classified
e.g. in the taxonomy of Lin et al. [LKPB06], see Figure 5.93. Note that according to the
preceding real-time definition, all real-time classes except best effort and hard real-time
are considered soft real-time.

-

6

required
resource
allocation

dispatching
% deadlines met

Best
Effort

I/O
Bound

Resource
Adaptive

CPU
Bound

Rate
Based

Resource
Adaptive

Missed
Deadline

Firm
Real-Time

Hard
Real-Time

]0, 100%] [min, 100%] [100%]

]0, target]

[min, target]

[target]

Figure 5.9: Real-time taxonomy according to [LKPB06]

When the IHF and the upper operating system layer allow the control paths to interleave
arbitrarily, it cannot be guaranteed that any – however shaped – TUF is ever satisfied.
If for such a best effort system statistical statements about interleaving of paths can be
given, the system can be reclassified at most as a missed deadline real-time system.
As a result, the soft real-time capability of a system relies on there being some restric-
tions on interleaving control paths and some guarantees about transmission integrity and
priority compliance.

We now turn our attention again to a component extension system. Figure 5.10 shows
how the component extension is embodied into the previously considered system.
The resulting overall architecture which is the MOSRTOS architecture mentioned needs
to implement the following three basic properties:

Complete Decoupling of Architectural Layers
The component extension and the underlying operating system kernel are completely de-
coupled so that interrupts induce state changes in the scheduler only but never affect the
application itself. A control path triggered by a hardware interrupt is completed at the
latest within the CE – it never reaches the application layer. The CE itself conducts its
own scheduling, resource allocation etc. affecting the application. A real-time capable

3In this thesis, the distinction between Resource Adaptive Systems with minimal requirements (upper)

and such without minimal needs (lower) is ignored.

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 105

(a) scheduling consecutiveness pre-

serves priorities - CE decides con-

sciously

(b) the CE has to compensate for

missing priority compliance

Figure 5.10: CE system: the CE mitigates different IHF properties

IHF supports this decoupling.
When the IHF cannot be classified as real-time capable, the consequences of this non
real-time IHF can impede the application level due to latencies that can appear. When
taking into consideration the time scales discussed in Section 5.2.3.1, latencies caused by
interrupts can be considered “white noise” from the application perspective, i.e. they are
by orders of magnitude smaller than the ones commonly dealt with on the application
layer. Nonetheless, if the IHF does not posses real-time capabilities, this can influence
the application layer and thus impede the benefits of decoupling while a real-time capable
IHF supports them perfectly.

Omission of Preemption
Multimedia-oriented applications usually do not benefit from preemption since the en-
forced quasi-parallelism only extends the computation time due to context-switching over-
head. Therefore, preemption of multimedia-oriented applications is of no benefit.

Explicit Handover of Control
The structure of any application that is executed on behalf of the component extension
is known. Therefore, the handover of control can be accomplished according to logical
dependencies known to the CE.

From these preliminary thoughts, the crucial properties of the IHF can now be derived. If
the interrupt handling is deferred and completed at the process level (i.e. the completion
is subject to scheduling), then it follows that the scheduler has to maintain real-time prior-
ities (with respect to interrupts) in order to satisfy any real-time requirements. Hence, the
scheduler as well as the CE can be considered as an enlargement of the interrupt handling
facility. Latencies are prolonged by the scheduler control path, yet they remain fixed, i.e.
the set of hardware priorities (cp. Section 4.1.1) is partially ordered.
On the contrary, when the handling is immediate and thus prior to scheduling, the sys-
tem’s scheduler and thus the CE lack the ability to reorder priorities to meet non-binary
TUFs. Such a system is considered to be primarily event-driven rather than soft real-time
capable. Minimal hard real-time systems such as controller circuits in automated produc-

106 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

tion facilities lie in this system category.
As discussed, these architectural properties of the IHF qualitatively influence a system’s
real-time abilities considerably. This behavior manifests itself in answering the following
architectural IHF questions:

• Does the IHF handle interruptions immediately or is the handling deferred?

• If applicable, what is the moment of the creation of deferred handlers? Are they
created at boot time or on demand?

• If applicable, is the deferred handling conducted prior to scheduling or is it subject
to scheduling?

• Does the IHF possess the property of priority compliance?

5.2.2 Efficiency, Reliability and Determinism

Beside these qualitative features, the performance properties of the IHF also affect the
quantitative behavior that is then sensed by the environment. Note that for this behavior,
a notion of time and time-scales is indispensable. Section 5.2.3.1 addresses this issue.
Especially with regard to the resource-bounded real-time classes (I/O Bound and CPU
Bound), the effective response behavior of the IHF must be considered. For this, two
distinct IHF key figures are vital:

• The disruption path length characterizes the efficiency of the IHF.

• The maximal recursion depth in handling is necessary to properly evaluate the per-
formance.

When it comes to the reliability of an entire system, the notion of correctness in terms
of time and computational accuracy (cp. Definition 5.1) differs greatly between that of
the IHF and that of the application. The commonly agreed definition reliability = errors

time

does not hold for the interrupt handling facility since errors are per se unacceptable in the
IHF. The two significant features affecting the system’s reliability are:

• The possibility of losing interrupts

• The possibility of handling an interrupt for an infinitely long time

The missing crucial factor for projecting the real-time definitions to the interrupt handling
facility is determinism. It is easy to see from Figures 5.8(b) and 5.10(b) that determinism
is also an important factor in increasing the number of restrictions on control paths. The
two building blocks are:

• Interruptibility: at what points may a control path branch?

• Synchronization: at what points may a control path have to wait?

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 107

5.2.3 Timing and Synchrony

5.2.3.1 Time Scales

When considering a model of the interrupt handling facility, the definition of time differs
from the real notion of time in a significant way. The system’s internal perception of time
is created by the interrupt handling facility itself (by means of the timer-interrupt).
It is therefore crucial to explain the different notions of time and their granularity and to
elaborate the differences between them. Figure 5.11 provides an overview of the existing
notions of time in a layered CE system.

-Real-World
Time

continuous
real

-ScaleAPP discrete

or
?

?

Software Timer
-ScalePROC clock ticks

?
Hardware Clocks

-ScaleINT CPU-cycles

Figure 5.11: Different time scales and timing facilities

The real-world time can be regarded as the overall reference time that is expressed by con-
tinuous real values. On the level of the interrupt handling facility, the time scale ScaleINT
is given in machine cycles. Those can simply be converted into real-world time by using
the processor frequency. The IHF now induces the time scale ScalePROC that is used
for all internal system activities, such as process scheduling. The elapsed internal time is
measured in ticks. For applications, the time scale ScaleAPP is defined by discrete real
values.

For the interrupt handling facility, the granularity is drawn from the range of nanosec-
onds. The granularity of the process time scale is characterized by orders of milliseconds.
The granularity of applications might be within hundreds of milliseconds or even seconds.
Time values related to the time scales ScalePROC and ScaleINT can, by definition, be
converted directly with respect to latencies. The time scale ScaleAPP cannot easily be
normalized to either ScalePROC or ScaleINT . Thus, the comparison of (a) latencies in-
duced by the interrupt handling facility and (b) latencies induced by the application level
differs in orders of magnitudes. Nonetheless, in reality, the complete decoupling of the
architecture (that is present only in a CE system) allows for dealing only with the time
scale of the current level of abstraction. Due to this architectural decomposition, it is
possible to define dedicated time scales.

From these considerations, one can easily derive that for the overall quality of soft real-
time, one additional consideration is significant:

• What is the granularity of the hardware clock and the ScalePROC?

108 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

5.2.3.2 Synchronous and Asynchronous Events

According to [Int08b], interrupts are asynchronous events, whereas exceptions are called
synchronous events. This is reasonable from the micro-architectural point of view. Inter-
rupts (as defined by [Int08a]) can occur at any point in the real-world time (see Figure
5.11). Exceptions are fixed causal reactions of the CPU on the previous4 instruction. From
the modeling and analysis point of view, there are three distinct kinds of synchrony:

Cycle Synchrony. Due to the fact that any micro-processor operates on a discrete
timing basis, i.e. its clock pulse, any external event will be sensed and reacted upon in
synchrony with the next clock-cycle, more precisely with the next rising edge of the pulse.
Cycle synchrony is the weakest form of synchrony considered.

Instruction Synchrony. If an exception or system call occurs synchronous only with re-
spect to previous machine instructions, this property is called instruction synchrony. The
Intel architecture ensures that an interruption is handled at the boundary of the currently
processed instruction. From an operating systems point of view, the synchrony is not
recognized since the control and data flow of the issuing process is unknown. This form
of synchrony is stronger than the previous one.

Call Synchrony. A reaction to a system call is considered call synchronous if it oc-
curs synchronously with it. This strongest form of synchrony is still disregarded by the
operating system kernel, but it can be sensed in the ESF models.

5.3 Quality factors

The previously discussed features, which will be analyzed in Chapter 6, can be mapped to
software quality factors. The International Organization for Standardization (ISO) pro-
vides several standards dealing inter alia with software quality and quality measurement.

Definition 5.8 Quality Factor

A quality factor according to [ISO05] and [ISO94] is a distinct feature of a system that
can be isolated, measured and evaluated by means of a dedicated metric.

The standard set of quality factors for software is defined by [ISO01]. It comprises func-
tionality, reliability, usability, efficiency, maintainability and portability. When considering
the above discussion about soft real-time parameters and this set of quality factors, it be-
comes obvious that there is some overlap. Usability is not an issue at all because the IHF
is not operated by users but integrated into a software environment. Maintainability and
portability of dedicated IHFs could be assessed by means of the provided models as well,
but that is not considered in this thesis. Wieder touches on this topic in [Wie07].

In summary, here are the soft real-time properties that correspond to quality factors in
the ISO specification:

4With respect to super-scalar architecture, the term “previous” is not entirely correct since the relevant

instruction might still be in any pipeline stage of the CPU.

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 109

1. Reliability (as in the ISO specification)

2. Architectural Properties (corresponds to functionality)

3. Response Behavior (corresponds to efficiency)

4. Response Determinism (corresponds to functionality)

The last discussed feature – temporal resolution – does not have a counterpart in the ISO
specification.

Table 5.2 now assembles the quality factors and the corresponding features of the interrupt
handling facility. Those features are now denoted as indicators (see Definition 5.9).

Quality Factor Indicators

Reliability Lost Interrupts
Infinite Handling

Architectural Properties Priority Compliance
Prior or Subject to Scheduling
Immediate or Deferred Handling
Creation of Deferred Handlers

Response Behavior Recursion Depth
Disruption Path Length

Response Determinism Interruptibility
Synchronization

Temporal Resolution Timer Granularity

Table 5.2: Quality factors and their indicators

5.4 Indicators

As stated above, features of the IHF that indicate real-time (or any other) capabilities of
a system or subsystem are called indicators.

Definition 5.9 Indicator

A quality factor of a system manifests itself in one or more imminent indicators. These
indicators may differ for diverse implementations of the same kind of system.

From a first heuristical consideration it can already be seen that the IHF indicators differ
significantly among the operating systems that have been modeled. The set of indicators
is now compiled from Sections 5.2.1, 5.2.2 and 5.2.3.1 and elaborated on in detail.

5.4.1 Immediate or Deferred Handling

In most operating systems, some part of the interrupt handling is deferred. Deferred
handling of interruptions is not a discrete aspect that can be described by a single figure,
but it comprises several aspects:

110 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

• What part of the handling is conducted in a deferred way?

• In what way (i.e. until what point) is the handling postponed?

• What other entities influence the displacement?

We imagine a “slider” between complete handling of interrupts just when they occur and
completely deferred handling with a minimal immediate portion. In an idealized IHF, the
slider (or more precisely: the spectrum) could be dynamically adjusted depending on the
priority of an interruption and the current load situation of the system.

5.4.2 Creation of Deferred Handlers

If interrupt handling is carried out in a deferred manner, there are two distinct ways of
creating the handler processes that conduct the corresponding service:

1. In advance, e.g. during the boot process or the initialization phase of the operating
system the handlers are created.

2. On demand, i.e. at the very point during execution when the process is needed,
its data structures are allocated.

Depending on the load profile of a system, either way has advantages. However, an overall
paradigm in a CE system is to exploit any knowledge of the applications in question in
order to allow for static resource planning. From this, it is easy to see that an in-advance
strategy for the interrupt handling facility works best.

5.4.3 Prior or Subject to Scheduling

Postponing the handling of interrupts can cause the real handler to be subject to the
overall system scheduling. As a matter of fact, this indicator is equivalent to the question of
whether a deferred handler is implemented by means of an activity (subject to scheduling)
or not (prior to scheduling). The following definition of activities slightly deviates from
the one provided e.g. by Kalfa [GKS94] which was then later adopted by Schöning [Sch08]:

Definition 5.10 Activity

An operating system activity has its own context, i.e. it is implemented as a thread, task
or process or a primitive based upon one of these that is perceived by the system scheduler.
Any activity context must be created and thus can be destroyed. An activity has the three
following properties:

1. Weight - a figure that depicts the size of an activity’s context

2. Domain - the memory region (usually kernel or user space) the context resides in

3. Type - the kind of activity, i.e. tasklet, thread process, task etc.

This architectural property is crucial since it allows not only for direct statements about the
system architecture but also greatly influences the discussion about priority compliance.

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 111

5.4.4 Priority Compliance

For the selected hardware platform, a fixed priority schema (see Section 4.1.1) exists that
can be tweaked by means of the TPR register. This kind of manipulation of priorities is
easy to assess and evaluate because it is statically defined by the system’s source code. A
far more complicated way of in effect abandoning the priority schema becomes imminent
when considering deferred handling of interruptions. Although the immediate part of the
handling may follow the priority schema, the real action to be taken can be reordered or
completely omitted.
From these considerations arises the question of whether a system is priority compliant5.

-

INT1

prio 2

INT2

prio 3
-

handling 2
-

-

handling 1

-

(a) immediate handling - interrupt priorities

are preserved

-

INT1

prio 2

INT2

prio 3
-

-

-

-

handling 1
-

handling 2

(b) deferred handling, priorities might be

abandoned

Figure 5.12: Priority compliance can get lost when deferred handling is regarded

Figure 5.12 shows two interrupts INT1 and INT2 with the second being the one with
higher priority. In the case of immediate handling (Figure 5.12(a)), the priority schema
is preserved, whereas in the case of deferred handling, priority inversion is possible (as in
Figure 5.12(b)).

If the deferred handling is conducted by means of activities, i.e. if it is subject to schedul-
ing, the priority compliance of the deferred handling only depends on the scheduler. An-
ticipating the later analysis, this is the case in Pistachio. With the implemented priority
schema for handler routines (in Pistachio they have the highest process priorities within
the entire operating system) and the principle of delayed preemption, a consistent software
priority schema is established and the hardware priority schema is abandoned. The imple-
mentation of use case tailored, novel scheduling policies as discussed by Wieder [Wie07]
depends on these software priorities. However, the question of how to prioritize user level
handling threads in an adequate way in general is for example in the focus of Löser’s
research on interrupt priority schemas [LH00].
When, on the other hand, the deferred handling is processed within the kernel path, the
question of whether the system is priority-compliant is a design criterion of the OS. The
order of invoking deferred handler routines forms an additional interrupt priority schema.
Whether this is congruent with the hardware priority schema is a system-inherent design
decision.
In the investigated operating systems Linux and OpenBSD, this congruence was not in-
tended. The only priority scheme regarded is the priority schema that evolves from the
OS itself: hardware priorities are intentionally ignored.

5The term “Priority Compliance” is used as suggested by Jensen et al., see e.g. http://www.real-

time.org

112 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

From this exhaustive discussion it follows that the indicator of priority compliance will
not be investigated further in the indicator analysis. Nonetheless, the formal confirmation
about the “schedulability” will be conducted.

Interdependencies
Since the four indicators are closely related, Figure 5.13 shows how they influence each
other. For these behavioral indicators, the later model analysis will focus on the dedicated
models instead of providing a universal formula that is valid for all models at the same
time. For all other indicators, a general method of formal analysis is presented.

Deferred Handling ?
��3

QQs

�
 �	None

- Prior to Scheduling
- No Handler Creation

�
 �	Full

-

- Prior to Scheduling ?
��3

QQs

�
 �	Yes

�Component Extension

�
 �	�� ��No

Handler Creation ?
��3

QQs

�
 �	Time�
 �	Boot

Figure 5.13: Interdependencies between the architectural indicators

5.4.5 Disruption Path Length

The disruption path length is quantified in system steps. A disruption path describes the
sequence of actions that are taken between the issuing of a specific disruption and the
continuation of the disrupted computational task.
For each dedicated disruption, i.e. each scenario with size 1, the maximal disruption path
length is the number of these executed actions under a weak worst case assumption, i.e.
the worst combination of runtime variables and conditions.
When investigating more than one disruption, the paths are either independent, i.e.
strictly sequential (see Figure 5.14(a), or nested (see Figure 5.14(b)). The latter case
directly leads to a combination of this indicator with the indicator recursion depth.

-

INT1

-

l1
-

INT2

-

l2
-

(a) sequential

-

INT1

-

INT2

-

-

-

l̃1
2 l2

l̃1
2

(b) nested

Figure 5.14: Sequential and nested disruptions

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 113

In the case of the nested path, it generally holds that l̃1 ≥ l1 for it causes delay to interrupt
the handling of INT1. A high disruption path length indicates that disruptions trigger a
high workload in the SuI.

5.4.6 Synchronization

As already discussed in Section 4.3.2, synchronization in an operating system is performed
on two different levels:

• The kernel provides synchronization primitives in order to synchronize user pro-
cesses. This kind of synchronization is not investigated in this thesis.

• The kernel itself needs synchronization in different situations. Avoiding race con-
ditions and protecting critical regions of code are the most common. Kernel data
structures that can be accessed simultaneously by interleaving kernel control paths
are also protected using primitives, see Section 4.3.

In the following, only the consequences of the usage of synchronization primitives within
the kernel are analyzed. Hence (kernel) synchronization is an abstraction from these
primitives.
The length of a disruption path with synchronized elements becomes relative: waiting for
an external trigger (condition) to occur can take a long “time”. Since we use the notion of
system steps, there may be a large number of steps where a transition in a path cannot be
taken because the synchronization condition (as specified by Definition 4.3) is false. This
will severely impede the comparison between different paths, as Section 6.2.1 will show.

5.4.7 Interruptibility

A significant property of any kernel control path is its interruptibility. It is easy to see
that the determinism of a path execution is decreased when there are many points where
it can be disrupted.
To quantify the determinism of a certain path, it is not only important to know if and
how often it can be interrupted but also how this can occur – i.e. in what states and by
what external triggers. From a purely stochastic point of view, it is worse if a path can
be disrupted in three different states by one trigger each than if one single state can be
disrupted by three triggers. Figures 5.15(c), 5.15(b) and 5.15(a) illustrate this difference.

z h�� jjj
QQ jj
j��
zz
zz

(a) 3 triggers à 2 options

z h��
QQ jj
jj�� zz
zz

(b) 1 branch à 3 options, 1 branch

à 2 options

z h��
PP zz
zz

(c) 1 branch à 4 options

Figure 5.15: Comparison of branches and options

From these considerations it becomes clear that the later model analysis of an IHF’s
interruptibility must provide more than a single figure indicating how often a certain path
can be disrupted.

114 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

5.4.8 Recursion Depth

When interrupts are nested, the nesting depth is of great interest as discussed above.
It is limited by the k-boundedness property. This upper boundary is derived from the
Intel Architecture (cp. Section 4.1.1). The maximal number of nested interruptions
(32 ≤ INT ≤ 255) delivered via the IOAPIC and two exceptions: an arbitrary excep-
tion and the registered double fault handler on top of it. If system calls are implemented
by means of the assembly language instruction int n, this one additional recursion layer
is already included in the number of disruptions possible. Otherwise, i.e. if the modern
SYSENTER and SYSEXIT instructions are used by the operating system, an additional nest-
ing level is achieved. For the boundary value it holds that k = 224 + 2 + 1 = 227. The
recursion depth indicator now depicts the following:

1. The maximal possible recursion depth ksys that can be reached by a system running
on a specific machine setup is one crucial property of an IHF.

2. The concrete recursion depth kscen that is reached when a specific scenario is con-
sidered.

3. The maximal value of system steps klmax that make up the worst case scenario for
both: recursion depth and disruption path length.

Figure 5.16(a) illustrates the indicator recursion depth with k̃ = 3, whereas k̃ could be
either ksys6 or kscen. The third case, the flexible combination of the two indicators, needs
more detailed consideration.

-

INT1

-

INT2

-

-

INT3

-

-

-

k̃

(a) nested interrupts INT1, INT2 and INT3

-

INT1

-

INT2

-

-

INT2

-

-

-

k̃

(b) transient interrupt INT2

Figure 5.16: Nested disruptions - legal and illegal case

A heuristical approach leads to the formula klmax = ksys × lmax + overhead. Unfortu-
nately, this heuristic does not at all take into account the case where interrupts might
be transient as depicted in Figure 5.16(b). It is obvious that this situation can easily
result in klmax = ∞. As a matter of fact, this situation is not ruled out by the Intel
micro-architecture. In order to exclude this situation of transient interrupts from the later
analysis, a fairness constraint (see Definition 6.8) will be given.
Note that this artificial fairness constraint only supports the analysis of the models. It does
not reflect any inherent property of the operating systems under investigation. Strong fair-
ness amongst scheduled processes as a system property is a non-trivial aspect in operating
systems research that has not been solved satisfactorily yet (see for example [LS07]).

6for a hypothetical minimal system

CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS 115

5.4.9 Infinite Handling

The problem of starvation and deadlocks has always been a common one in operating
systems research. For the IHF, the probability of such a situation existing is exacerbated by
the fact that external stimuli influence the control flow. The indicator “Infinite Handling”
summarizes these two problems. Since the case of transient interrupts certainly gives
rise to such a situation, a meaningful evaluation of this indicator also requires additional
fairness constraints limiting the set of valid scenarios as discussed in Section 5.4.8. It
serves no purposes to identify that there exists an (infinite) number of scenarios that for
example create infinite path lenghts and depths. It is more valuable to create a way of
proving that there are no additional situations that unexpectedly lead to a starvation or
deadlock situation.

5.4.10 Lost Interrupts

Any CPU hardware platform that follows the Intel Architecture allows for buffering in-
terrupts that occur while interrupt lines are masked. It is the responsibility of the system
software to handle these buffered interrupts before a buffer overflow occurs. It is important
to analyze all possible situations the IHF can be in when such a situation arises. Obvi-
ously, one special case where interrupts are lost is when the system handles an interrupt
for an infinite period of time (see previous section).
The second alternative where interrupts could be lost is when, for whatever reasons (e.g.
implementation errors), the appropriate handling routine is not invoked during the IKCP.
Thus is has to be checked as well whether all IKCPs are correctly traversed.

5.4.11 Timer Granularity

As already mentioned in Sections 4.1.1 and 5.2.3.1, the temporal resolution of the system
under investigation may vary due to implementation and usage of the underlying hardware
facilities. An evaluation of the real temporal resolution provided by the hardware and the
timer interrupts – that are necessarily part of any IHF – thus benefits this thesis as well.
It was a conscious choice not to pursue this indicator later in the thesis for there already
exists much research dealing with it. For example, the author discusses this topic for the
old Linux 2.4 Kernel [Koe02].

116 CHAPTER 5. REAL-TIME IN OPERATING SYSTEMS

Chapter 6

Techniques for Indicator Analysis

In this chapter, different approaches to analyzing the models with respect to the different
indicators are presented. As already discussed in Section 5.4.11, the indicator dealing with
timer granularity that is outside the scope of the models is not regarded further in this
chapter. Although the building block of synchronization primitives is not elaborated in
the models, the consequences of synchronization, i.e. the influences on paths that contain
synchronized elements certainly are. Hence, the synchronization indicator is included in
the analysis of the disruption path length.
The remaining indicators are subdivided into three disjoint classes, determined by the way
the analysis is conducted. Table 6.1 lists these categories.

Architectural Analysis Control-Based Analysis Data-Based Analysis

Prior or Subject to Scheduling Disruption Path Length Infinite Handling
Immediate or Deferred Handling Interruptibility Lost Interrupts
Creation of Deferred Handlers Recursion Depth

Table 6.1: Methods of checking the different indicators – a classification

Indicators belonging to the first category, architectural analysis, can be checked in the
simplest way: a mere investigation of some axiomatic properties of the ESF models is
performed – i.e. the behavior of a system and thus its model is of no interest here. The
axioms can be postulated without taking much of the ESF or statechart semantics into
account. The axiomatic properties are formulated in detail on a per-model basis.

The indicators of the second category are based on general, system-inherent parameters
regarding the handling of interrupts. Best case and worst case numerical figures will be
derived here. Taking the applied best case and worst case assumptions as fixed points,
constructing indicator-tailored representations of the ESF models, e.g. using graphs, is
possible. This allows for focussing on each indicator omitting model details that are un-
necessary for the respective indicator.

The indicators of the third category will give information on the worst case consequences
of the actual behavior of a SuI. Note that these indicators cannot be investigated without
considering all possible variants of stepping through a system including multiple runs,
recursion etc. Temporal logic model checking is used for them.

117

118 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

6.1 Architectural Analysis

The architectural analysis is an axiomatic approach to checking the architectural indi-
cators. It is quite natural that architectural properties are fully independent of system
behavior. In software engineering, the architectural peculiarities are defined mainly by
structural information such as class diagrams for object oriented software systems. In the
ESF models, the architectural properties are integrated into the behavioral information.
A set of simple axioms defines how to evaluate this.

6.1.1 Immediate or Deferred Handling

In the models presented, this architectural indicator can be analyzed as follows: If there is
one handling state in the kernel for every interrupt, the IHF applies immediate handling.
When there are separate handler states for all interruptions, the IHF handles interruptions
in a deferred manner. If both cases exist, an IHF implements hybrid handling.
A set of functions for assigning disruptive events to their handling model state(s) is given
as follows:

Definition 6.1 Handling Functions hdl, hdl∗ and hdlb

All IHF models allow for an unambiguous definition of a function hdl :
−→
E → S that asso-

ciates any disruptive path event with a model state located within the kernel that represents
the handling of this path event, i.e. a state which is dedicated to the handling of this path
event only.
The function hdl∗ :

−→
E → 2S yields multiple handler states for the particular interrupts.

Those states do not necessarily need to be located in kernel space.
The function hdlb :

−→
E → S′ with S′ = {s|s ∈ S; s basic} yields the one basic state that

unambiguously represents the kernel handling of the interrupt. It is defined as follows:

hdlb(e) =

{
hdl(e) | if hdl(e) basic

δn(hdl(e))with n ≥ 1 so that δn(hdl(e)) basic | otherwise

The definition of hdlb that will be used later indicates that the default function is applied
until the default basic state is found.

With these definitions, the axioms for defining immediate, deferred and hybrid handling
are as follows:

1. Immediate handling iff ∀ e ∈
−→
E , e is DEVT : [{hdl(e)} = hdl∗(e)]

2. Deferred handling iff ∀ e ∈
−→
E , e is DEVT : [{hdl(e)} 6= hdl∗(e)]

3. Hybrid handling iff neither of the previous cases applies

Hybrid systems can be further investigated in order to determine which interrupts are
handled immediately and which are deferred. In this case, either a per-interruption or a
per-group investigation can be conducted.

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 119

6.1.2 Creation of Deferred Handlers

As for the following architectural indicators, this indicator is only applicable when deferred
interrupt handling is operative. An investigation of the creation of deferred handlers can
only be conducted if it is an activity. Deferred handling that is implemented as a simple
kernel function is not taken into account since no context needs to be allocated.

The position of the context creation state, i.e. whether it is accessed once during initial-
ization or every time the handler is called will be investigated. As the models depict only
the interrupt handling as a white box, the initialization itself is blanked out. Thus, it has
to be checked whether there even is a context creation state within the model. If so, the
handler context is created when a handler is actually called. Otherwise, it follows that the
context creation takes place during system initialization.

6.1.3 Prior or Subject to Scheduling

Deferred handling can either be processed prior to or be subject to scheduling. For the
latter case, two possibilities exist: a part of the handling is done in user-process space or
as a kernel-process thread. Priority to scheduling is only possible if no part whatsoever of
the handling is displaced to a separate context. Thus, the following axioms are given:

1. Subject to scheduling if ∃ s ∈ hdl∗(e) : [s ∈ U] with DEVT e ∈
−→
E being the path

event belonging to the handling state, U ⊂ S being the set of states within user-
process space

2. Subject to scheduling if ∃ s ∈ hdl∗(e) : [s ∈ KT] with DEVT e ∈
−→
E being the path

event belonging to the handling state, KT ⊂ S being the set of states representing
kernel-space threads

3. Prior to scheduling iff neither of the previous cases applies

6.2 Control-Based Analysis

In order to derive general statements about the real-time capabilities of the SuIs, system-
inherent numerical properties must be investigated. Best case and worst case figures are
therefore of great interest: they determine the scope of the actual values expected in a
system. Concentrating on statements depending on specific scenarios would considerably
reduce the general significance of the statements.

The indicators of this category, disruption path length and interruptibility, can thus be
defined based on best and worst case assumptions abstracted from actual system behavior.
Doing so, the indicators can be analyzed based on the static models themselves without
needing to take any run-dependent properties into account.

6.2.1 Disruption Path Length

The goal of the analysis of this indicator is to quantify the minimum and maximum of
system steps necessary to process the path induced by an interruption. To achieve this, a

120 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

graph based on basic states and full transitions is constructed. This path analysis graph
(PAG) also includes information on synchronization points which then allows for further
analysis of the synchronization indicator in this context.

The use case tailored graph representation of a concurrent component of an ESF statechart
has the following properties:

1. its vertices represent the basic states within this component

2. its edges represent full sequential transitions and have two possible colors:

(a) black if the corresponding statechart transition has a label without condition
(stepping through)

(b) red if the corresponding statechart transition has a label with synchronization
condition (synchronized step), i.e. the transition does not pass any condition
connector

This edge coloring is a more intuitive binary weighting. As the PAG will be later
extended to serve the analysis of interruptibility (cp. Section 6.2.2), the edge coloring
will be enhanced as well.

3. condition connectors create alternative paths in the graph being translated into
multiple black edges

4. split states are translated into different edges, one per outgoing transition

5. combine states are translated into different edges, one per incoming transition

In statecharts, states have to be unique within their direct domain (i.e. the superstate)
only. When flattening this hierarchy to create a graph based only on basic states, ambigu-
ous identifiers could appear. Therefore, the hierarchy of the basic states has to be taken
into account to allow for unique node names. The identifier of a node is now an n-tuple
with n being its depth in the state hierarchy.

Definition 6.2 Traverse Hierarchy Name Function thn

The function thn : S → Sn, n ∈ N yields the full hierarchy structure of a state s, i.e. all
states above and including s in the hierarchy to the root state r.

s = r ⇒ thn(s) = s

s ∈ S ⇒ thn(s) = thn(s′), s with s ∈ ρ(s′), s′ ∈ S

The path analysis graph is now defined as follows:

Definition 6.3 Path Analysis Graph PAG

The path analysis graph GPAG of an ESF statechart XOR state sPAG (concurrent compo-
nent) is a weighted directed graph, i.e. a 3-tuple (VPAG, EPAG, colPAG) with VPAG being a
finite set of vertices (also called nodes), EPAG a finite set of edges, EPAG ⊆ VPAG×VPAG
and colPAG : EPAG → {black, red} a coloring function that assigns a color, here a binary
weight to each edge.

Note that the finiteness of VPAG and EPAG is a direct consequence of the finiteness of
statecharts.

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 121

Definition 6.3.1 Vertices VPAG
The set of vertices VPAG of a PAG is defined on the set Ŝ with Ŝ ⊆ S, ∀ s1, s2 ∈ Ŝ :
s1 6⊥ s2, Ŝ = ρ(sPAG):

∀ s ∈ Ŝ, s basic : ∃v ∈ VPAG : v id= thn(s)

cond(sPAG) : ∃v ∈ VPAG : v id= START

cont(sPAG) : ∃v ∈ VPAG : v id= FINAL

The path analysis graph contains all basic substates as vertices that are identified by the
complete state hierarchy of each state.

Definition 6.3.2 Color Function colPAG, Edges EPAG
The color function colPAG : EPAG → {black, red} assigns a color to each edge. The set of
edges EPAG and the corresponding edge coloring are constructed as follows:

1. Sequential and conditional transitions are translated one-to-one:

∀ tseq ∈ T̃ : ∃ e ∈ EPAG : e = (src(tseq), tgt(tseq)), colPAG(e) = black

∀ t = (s1, λ[c]/µ, s2) ∈ T̃ : ∃ e ∈ EPAG : e = (s1, s2), colPAG(e) = red

where s1, s2 ∈ S̃, c ∈ C.

2. Transitions to and from split and combine states are pairwise combined into transi-
tions from state to state:

∀ t1 = (s1, l, sSP), t2 = (sSP , λ/µ, s2) ∈ T̃ : ∃ e ∈ EPAG : e = (s1, s2),

colPAG(e) =

{
black if l = e/a

red if l = e[c]/a

∀ t1 = (s1, l, sCO), t2 = (sCO, λ/µ, s2) ∈ T̃ : ∃ e ∈ EPAG : e = (s1, s2),

colPAG(e) =

{
black if l = e/a

red if l = e[c]/a

where s1, s2 ∈ S, sSP ∈ SP, sCO ∈ CO.

3. Full compound transitions involving condition connectors are mapped as black edges:

∀ ts1 = (s1, l, s2), ts2 = (s2, λ[c]/µ, s3) ∈ T̃ S : ∃ e ∈ EPAG : e = (s1, s3),

colPAG(e) = black

where s1, s3 ∈ S, s2 ∈ COND.

122 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

4. Full compound transitions involving default or termination connectors are mapped
one-to-one:

∀ ts1 = (s1, l, s2), ts2 = (cond(s2), λ/µ, s3) ∈ T̃ S : ∃ e ∈ EPAG : e = (s1, s3),

colPAG(e) =

{
black if l = e/a

red if l = e[c]/a

∀ ts1 = (s1, l, cont(s2)), ts2 = (s2, λ/µ, s3) ∈ T̃ S : ∃ e ∈ EPAG : e = (s1, s3),

colPAG(e) =

{
black if l = e/a

red if l = e[c]/a

where s1, s2, s3 ∈ S.

5. Transition segments from the default connector and to the termination connector of
state sPAG are translated as follows:

∀ ts = (cond(sPAG), λ/µ, s1)) ∈ T̃ S : ∃ e ∈ EPAG : e = (START, s1), colPAG(e) = black

∀ ts = (s1, l, cont(sPAG)) ∈ T̃ S : ∃ e ∈ EPAG : e = (s1, F INAL),

colPAG(e) =

{
black if l = e/a

red if l = e[c]/a

where s1, sPAG ∈ S.

Note that transitions labeled with path events do not have any counterpart in PAG edges.

Theorem 1 The complexity of the PAG construction from an ESF model is O(n2) with
n being the number of states.

The complexity is composed as follows:

• Every basic state is translated into a PAG vertex according to Definition 6.3.1:
complexity O(n)

• Every transition originating from every basic state is translated into one PAG edge
according to Definition 6.3.2. In a fully intermeshed graph, the number of edges and
thus the complexity of translation based on n is O(n2).

The overall complexity is then O(n+n2) = O(n2). �

Figure 6.1 shows an example of an ESF state and its PAG. The PAG nodes are due to
layout considerations given with their, here unique, short names instead of their full hierar-
chical identifiers, e.g. INTERRUPTION HANDLING FACILITY, INTERRUPT HANDLING,

PERIPHERAL DEVICES, ACK is simply given as ACK.

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 123

(a) simple engineering statechart (b) path analysis graph for the state

INTERRUPTION HANDLING FACILITY

Figure 6.1: Example of the creation of path analysis graphs

Definition 6.4 Path

A disruption path is a sequence of edges e0, . . . en−1 ∈ EPAG, n ∈ N that are linearly
connected:

∀ ν ∈ {0, . . . , n− 1} : eν = (u, v), eν+1 = (v, w)

where u, v, w ∈ VPAG. The number of edges n is called the numerical length of the path.

For each node vana = hdlb(e), with e ∈
−→
E being the path events of the interruption subject

to analysis, there is a set of disruption paths Pvana from START to FINAL that passes
through this very node, i.e. vana is the origin of at least one edge. The node being analyzed
is the PAG representation of basic state hdlb(e) for the path event e ∈

−→
E .

A cycle within a path is a (sub-)path with length ≥ 1 where the origin of the first edge is
the endpoint of the last:

ecyc0 = (v, v′), . . . , ecycl = (v′′, v)

where v, v′, v′′ ∈ VPAG, l ∈ N. A cycle of size 1 is called a self loop. Pvana contains all paths
passing through a specified node, even those with cycles. Since each cycle can be taken
an unlimited number of times, |Pvana | can be ∞. Therefore, now the set P ′vana ⊂ Pvana
is defined which only contains those paths with exactly one occurrence of each possible
cycle.
The process of deriving P ′vana is an application of depth-first search (DFS) in graphs.
Subsequently, the complexity of this process corresponds to that of established DFS algo-
rithms [AHU74]. Various optimized or distributed variants exist in the literature [SS86]
going down to O(|E| + |V | log |V |) [Bar98]. For all disruption paths ∈ P ′vana , the length
of a disruption path is specified by four degrees of freedom. Those parameters allow for
the unambiguous comparison of path lengths among different SuIs as well as for different
states vana. For both minimum and maximum path length, the following parameters must
be derived:

1. The numerical path length excluding cycles using a best case or a worst case as-
sumption:

124 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

• for the minimum path length: if there exist several sub-paths of different length,
the shortest is assumed to be the one taken

• For the maximum path length: if there exist several sub-paths of different
length, the longest is assumed to be the one taken

2. The number of cycles that the path contains when taking the longest or shortest
sub-paths.

3. The accumulated numeric length of all cycles allows the evaluation of an average
cycle length in the path. This is then used to consider overall repetitions.

4. The number of red edges that represent the synchronization points in a path. This
parameter must be used to compare path lengths between idle and heavily loaded
systems.

A simple example of a disruption path is depicted in Figure 6.2. The path contains
exactly one cycle, namely the one ((c0, c2), (c2, c3),(c3, c0)) of length 3 applying for both the
minimal and the maximal paths. Furthermore, there is only one red edge (b,FINAL). The
maximal numerical path length without cycles is lmax = 9, the minimal is lmin = 8. The
overall metric values for the example path are (9, 1, 3, 1)max, (8, 1, 3, 1)min. The numerical
path lengths in this example are composed as follows:

lmin = (START , c0) + (c1, vana) + (vana, a) +min(l0, l1) + (b,FINAL)

lmax = (START , c0) + (c1, vana) + (vana, a) +max(l0, l1) + (b,FINAL)

Although there might be numerous circles, their numbers of repetitions that occur in the
models is bounded. This is implied by the l-boundedness property as defined in Section 3.4.

}
START

- m
c0

- m
c1

-
�
�
���

mc3

�

?

mc2

mj
vana

- ma -
�
�
���

m -

m - m - m
m
@
@
@@R
- mb red- }

FINALl0 = 4

l1 = 3

Figure 6.2: Example of a disruption path

The reference system uses model steps instead of real execution times. The path steps
match system steps due to the construction rules of the PAG. This principle can be seen as
a functional abstraction and is regarded as sufficient for this thesis. In fact, this principle
has been used widely in Petri Nets research and applications (see e.g. [Zur97]).
Nonetheless, it is possible to enhance this approach with timing. A valid worst case
estimate of the run times is a necessary prerequisite for this (even when the minimal
disruption path length is regarded). There are two basic variants:

1. The sequential transition (cp. Definition 3.1) can be used to incorporate real timing
directly into the ESF models. For that, the condition for stepping further must be
redefined. Currently when a state is reached, the enable event automatically is raised

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 125

and triggers the next step. By adding a timeout condition to this definition, run-
time values for specific parts of the OS code can be embodied. It is then necessary
to give an enhanced rule set for translating such timed ESF models into a PAG so
that the timing information does not get lost on the way.

2. The timing can be applied directly to the PAG after it is generated. Since the
timing information is not relevant for the statechart execution itself, unnecessary
complexity can thus be avoided. The execution times are then assigned directly to
the PAG edges.

In both cases, the path analysis graph would be a weighted graph where the weights repre-
sent the execution times. The disruption path length would then be calculated differently
(all numeric path lengths would be sums of weights).

6.2.2 Interruptibility

The analysis of the interruptibility indicator further illustrates the benefits of a use case
tailored graph representation. Based on the PAG, an interruptibility analysis graph (IAG)
is created. Such an IAG has the following properties:

1. The PAG to start with only contains sequential, trivial and conditional transitions.

2. Transitions labeled with path events, i.e. transitions that model interruptions of the
control flow are added to the graph. These transitions get a new edge color, green.

3. Each green edge is weighted with one attribute representing one path event. This
may result in multiple edges originating from one node.

4. The green edges all lead towards a single dummy node as the target state of the
interruption is of no interest for the analysis.

5. The mapping of path events to weights is unique.

In the resulting IAG, those nodes along a path (as defined for the PAG) that have outgoing
green edges are of interest. Two questions are then to be answered:

1. How often and where is a path ∈ P ′vana interruptible, i.e. which nodes with outgoing
green edges exist and which path events are associated with this set? The path
∈ P ′vana is defined as in Section 6.2.1 containing cycles only once.

2. For a given path event, how often is a corresponding green edge traversed within the
IAGs for all P ′vana?

The formal definition of the IAG is similar to the one for the PAG.

Definition 6.5 Interruption Analysis Graph IAG
The interruption analysis graph GIAG of an ESF statechart XOR state sIAG (concurrent
component) is a weighted directed graph, i.e. a 3-tuple (VIAG , EIAG , colIAG) with VIAG
being a finite set of vertices (also called nodes), EIAG a finite set of edges, EIAG ⊆ VIAG ×
VIAG and colIAG : EIAG → N0 a coloring function that assigns a color, i.e. a numerical
weight to each edge.

126 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

The set of vertices VIAG of an IAG is defined as for the PAG, i.e. the interruption analysis
graph also contains all basic substates as vertices that are identified by the complete state
hierarchy of each state. Additionally, there exists one artificial node called dummy that
is the target of all green-colored edges.

The coloring function colIAG and the set of edges EIAG differ significantly from those
of the PAG. In order to define the coloring function, a mapping between path events and
numerical values is defined.

Definition 6.5.1 Weight Function wgt

The weight function wgt :
−→
E → {2, 3, . . . , p+ 1} assigns a numerical value to a single path

event. The values 0 and 1 are excluded since they are reserved for black and red edges.
The boundary p is the number of existing different path events.

Note that since the set of path events is structured, the default implementation of wgt is to
traverse the tree given in Figure 4.8 on page 59. In this thesis, this default is regarded as
sufficient. When it comes to a software implementation, it can be worthwhile to redefine
this function to allow for optimization.

Definition 6.5.2 Color Function colIAG, Edges EPAG
The color function colIAG : EIAG → N0 assigns a numerical color value to each edge. The
set of edges EIAG and the corresponding edge coloring are constructed as follows:

1. The set EIAGPAG is the set of PAG edges as defined in Definition 6.3.2. For the
coloring it applies that:

∀ e ∈ EIAGPAG : colIAG(e) =

{
0 if | colPAG(e) = black

1 if | colPAG(e) = red

In other words, black and red edges are henceforth treated as edges with weights 0
and 1.

2. For all defined nodes, a green edge is created if the corresponding basic state in the
statechart has an outgoing transition that is labeled with a path event:

∀ t = (s1, e/a, s2), e ∈
−→
E , s1 basic :

∃ e ∈ EIAG = (thn(s1), dummy), colIAG(e) = wgt(e)

3. For each node whose corresponding statechart superstate at any level of the hierarchy
has an outgoing transition that is labeled with a path event, an additional green edge
is defined:

∀ t = (s1, e/a, s2), e ∈
−→
E , s basic, s ∈ ρ∗(s1) :

∃ e ∈ EIAG = (thn(s), dummy), colIAG(e) = wgt(e)

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 127

Theorem 2 The complexity for the construction of the IAG is O(n2).

The complexity is composed as follows:

• The complexity of constructing the PAG which is the basis of the IAG is O(n2)
according to Theorem 1.

• For each basic state, the entire hierarchy is traversed to create the green edges. At
a maximum, the hierarchy depth is n. Thus, the complexity of this step is O(n2) as
for each hierarchy level, the factor p (the number of possible path events) limits the
number of actions.

The overall complexity is therefore O(n2)+ p · O(n2) = O(n2). �

Having defined the set of edges EIAG and the coloring applied to all green edges going to
the dummy state, the following example shows the creation of a simple IAG. Figure 6.3(a)
shows an ESF model that contains the transitions E1 and E2 each assumed to be labeled
with a path event with the same name. Figure 6.3(b) then shows the corresponding PAG.
Note that the set of vertices VPAG = {START , A,B,C,D,FINAL} is the basis for the
later IAG, depicted in Figure 6.4. This figure also depicts the additional state dummy as
well as the three green edges, that are (only for the sake of the brevity of the explanation)
labeled with the original path events instead of their numerical values.

(a) simple statechart model (b) path analysis graph for the model

Figure 6.3: Sample input for the creation of IAGs

}
START

- m
A

- m
B

- m
C

- m
D

- }
FINAL

�
�
��

�
�
���

A
A
AK

E1
E2 E2

mdummy

Figure 6.4: Example of an interruptibility analysis graph

Note that the interruptibility indicator depicts at what points along a kernel path the
system can be interrupted and not when a concrete sequence of interrupt handling is
actually interrupted.
The indicator of interruptibility is then defined in two figures answering the two basic
questions stated above:

128 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

1. Interruptibility of a specific path by all path events under investigation:

Int(path) = {n1̀ e1, . . . , np̀ ep}

with p being the number of different path events, n1, . . . , np ∈ N0, e1, . . . , ep ∈
−→
E

and path being any path in the IAG. This figure is defined as a multiset [Bli89], i.e.
a special set that can contain one element several times, e.g. {2`a} is a multiset
with two occurrences of element a.

2. Influence of a path event on all paths under investigation:

Inf (e) = {n1̀ path1, . . . , nx̀ pathx}

with x being the number of different paths under investigation, n1, . . . , nx ∈ N0,
e ∈

−→
E and path1, . . . , pathx being paths in the IAG. This figure is defined as a

multiset as well.

6.2.3 Recursion Depth

As discussed in Section 5.4.8, the indicator recursion depth incorporates different forms,
i.e. the overall architectural maximum as already dealt with, the system-dependent bound-
ary, a concrete scenario-dependent value and finally the combination of path length and
recursion depth. While for the disruption path length and the interruptibility, a graph-
based approach relying on worst and best case assumptions was used, for the system- and
scenario-dependent recursion depths, a direct and algebraic approach is chosen. A possible
analysis for the combination of path length and recursion depth will be discussed later in
Section 6.4.

System-Dependent Recursion Depth
The number of different disruptive events (cp. Section 4.2.3.1) that possibly increment
the recursion depth – or more precisely the interrupt nesting level – is to be counted. This
machine-based maximal recursion depth is composed as follows:

ksys = 2 exceptions + xs syscalls + xt timer + xi IPI + xd IO devices (6.1)

The exceptions and system calls are counted as in Section 5.4.8. The number of IRQ lines
allocated by timers is usually xt = 1. If a different line is used for the local and the global
timer interrupt, this variable is increased up to 5 (one global one and one local per CPU).
Usually, there is only one interrupt vector used by inter-processor interrupts xi. Neverthe-
less, in any OS implementation, many of them may be implemented. For the I/O devices,
xd is defined by the machine-specific setup (cp. Section 4.1.2), here 8. The machine-based
maximal recursion depth usually varies among concrete OS implementations.

Scenario-Dependent Recursion Depth
Whereas the machine-based maximal recursion depth is an upper bound for the possible
nesting of hardware interrupts, a more specific, use case based version of the indicator
can be given in preparation for the scenario-aware point of view that will be presented
in Section 6.4. Such a use case is given as a finite sequence of disruptive events. The
scenarios constructible from that sequence (by mapping delays between the events to it)
can be divided into three disjoint sets depending on the concrete SuIs:

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 129

• The set of best case scenarios: all scenarios where the distances between the events
are large enough so that for all SuIs, all events can be treated without nesting. The
recursion depth for these scenarios is 1 for all SuIs.

• The set of worst case scenarios: all scenarios where the delays between the events
of the sequence are so small that it is impossible for any of the SuIs to process any
of the events completely before the next event arises. This also holds for the last
event of the sequence. The recursion depth for these scenarios is m for all SuIs where
m ≤ n is the maximal subsequence of events without repetition.

• The set of all scenarios with event occurrence delays that lie between those of worst
and best case scenarios. This set contains all these scenarios where the maximal
recursion depth can vary from system to system.

Not all events that make up a sequence are able to change the recursion depth. Even
with no explicit locking of all interrupt sources, the microprocessor automatically locks
the currently processed interrupt. Hence, only maximal subsequences of different events
can be the trigger increasing the recursion depth.

Definition 6.6 Maximal Sequence without Repetition

A sequence without repetition is a sequence e0 . . . en−1 with eν ∈
−→
E , ν ∈ {0, . . . n− 1} being

mutually distinct: ∀ eν1 , eν2 : eν1 6= eν2.
A sequence without repetition is maximal if ∀ eµ, µ 6∈ {0, . . . n − 1} : e0 . . . en−1eµ is no
sequence without repetition.

Having given the precise meaning of a maximal sequence without repetition, subsequences
now need to be defined.

Definition 6.7 Subsequence

A sequence seqs = ei . . . ej is a subsequence of sequence seqt if seqt = e0 . . . ei . . . ej . . . en−1.
This is denoted by seqs < seqt.

Let scen = (seq, {x0, . . . , xn−1}) ∈
−→
E n × Nn

0 be a given scenario that is neither a best
nor a worst case scenario with respect to seq. Let {seqmax0 . . . seqmaxj} be a set of max-
imal sequences without repetition that are all subsequences of seq, i.e. ∀ ι ∈ {0, . . . , j} :
seqmaxι < seq. The following holds for the maximal recursion depth:

recursion depth(scen) =
∣∣{xν |xν ≤ length(PAGhdlb(eν)

), eν ∈ seqmaxι}
∣∣ (6.2)

For all maximal subsequences without repetition, a maximal recursion depth nι is derived
by means of the inequation xν ≤ length(PAGhdlb(eν)

), i.e. the number of times when the
delays between the events of the subsequence are so small that the previous disruption
path was not finished and thus the system continues the recursive descent.

6.3 Data-Based Analysis – Model Checking

Some indicators depend on system runs of a SuI since they describe the worst case reaction
of a given system on all possible inputs, i.e. sequences of interrupts. In contrast to the

130 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

previously defined indicators that are by their nature independent of any scenario, here a
dynamic approach is chosen.
When simulating the behavior of a system modeled as an ESF, nothing less than an infinite
number of simulations could cover all interrupt scenarios. Therefore, model checking (MC)
is the optimal course of action: it allows for exhaustive state space investigation to derive
statements about the respective indicator using temporal logic formulae.

6.3.1 Model Checking Foundations

Temporal logic model checking (TLMC), the model checking variant used in this thesis,
was founded by Clarke and Emerson in the United States [Eme81], [CE82] [CES83] and
by Quielle and Sifakis1 in Europe [QS82] at almost the same time. It is a technique for
verifying reactive and concurrent finite state systems [CGP00] with regard to a formal
specification. Counterexamples are generated automatically if the model check proves the
specification to be incorrect.
For a long time, state space explosion was the limiting factor that prevented large sys-
tems such as complex software to be verified by means of model checking. Techniques
confronting this problem emerged during the past decades. Symbolic model checking with
binary decision diagrams was founded by McMillan [McM92a] for synchronous models
(e.g. of circuits), partial order reduction by Godefroid et al. [GP93] for asynchronous
models (e.g. of communication protocols). Huge models – i.e. 1020 states and even more
[BCM+92] – can be processed nowadays.

6.3.1.1 Modeling

The model that is used for MC is usually given as a state transition graph. One special type
of such graphs is called Kripke structure. Kripke structures associate (or more precisely:
label) each state with a set of atomic propositions (AP) that are true in this very state.
All following basic definitions are according to [CGP00].

Definition 6.8 Kripke Structure, Fair Kripke Structure, Sequence

A Kripke structure M over the set of atomic propositions AP = {p1, . . . , pn} is a quadruple
M = (SK , RK , LK , SK0) with:

1. SK being a finite set of states

2. RK ⊆ SK × SK being a transition relation that is total, i.e.

∀ s ∈ SK : [∃s′ ∈ SK : RK(s, s′)]

3. LK being a function LK : SK → 2AP that labels every state with a set of atomic
propositions that hold in this state

4. A set of initial states SK0

A path from state s in a Kripke structure is an infinite sequence of states π = s0s1 . . .

with ∀ i : [R(si, si+1)] and s0 = s. A path is a calculation on a Kripke structure.
1Emerson, Clarke and Sifakis were granted the A.M. Turing Award of the ACM in 2007 for their

pioneering work on model checking.

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 131

A fair Kripke structure is a 5-tuple (SK , RK , LK , FK , SK0) with SK ,RK ,LK ,SK0 as defined
above and FK ⊆ 2SK a set of Büchi acceptance conditions [Büc62] or fairness constraints.
With

inf (π) = {s | s = si for infinitely many i}

a sequence π is defined fair ⇔ ∀ f ∈ FK : [inf(π) ∩ f 6= ∅], i.e. a path is fair if all
constraints are true infinitely often along the path.

Kripke structures can easily be derived from first order representations of the states and
transitions of any system. First order representations themselves can be created from
sequential or concurrent programs (cp. e.g. [CGP00] Chapter 2).

6.3.1.2 Specification

In the verification of transformational systems, a mere description of input/output re-
lations, e.g. using the Hoare calculus, is sufficient. In reactive systems however, the
specification of properties relies on the description of transitions between states. Tempo-
ral logic invented by Pnueli [Pnu77]2 is used to describe sequences of transitions within
such a system. The basics for these specifications is the set of atomic propositions that
hold in specific states.
The computation tree logic (CTL*) [CES83] [CE82] [EH86] formally describes properties
of a computational tree. This tree is created by unwinding Kripke structures3, i.e. pre-
serving the initial state as the root state and then creating an infinite tree by unrolling all
cycles and enumerating the infinite input state space.
Due to its extensive expressiveness, model checking for CTL* formulae is very complex
and costly in terms of computational time and memory. Furthermore, there is often no
need to explore the entire expressiveness provided. For these reasons, there exist two sub-
sets of CTL*: the branching time computation tree logic CTL [BAMP81] and the linear
time logic LTL [Pnu81].
As the indicators to be checked refer only to linear paths and not to branching trees, LTL
is the right choice for formulating these in temporal logic (cp. Section 6.3.5). Note that
however, the Kripke representation of ESF that will be given in Section 6.3.4.1 would
allow for the entire expressiveness of CTL∗.

Definition 6.9 Linear Time Logic (LTL)

In LTL, every specification formula is composed of temporal operators. The following
operators exist:

X - “Next time” - Unary operator that states if the property holds for the second state
in the path

F - “In the future” or “Eventually” - Unary operator that states if the property holds
at any future state in the path

2Pnueli received the Turing Award as well (1996).
3We do not distinguish between Kripke structures and fair Kripke structures where the meaning is clear

from the context or the differences are irrelevant.

132 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

G - “Globally” - Unary operator that states if the property holds for all future states in
the path

U - “Until” - Binary operator that holds if there is one state along the path where the
second property holds and at every preceding state the first property holds

R - “Release” - Binary operator that states if the second property holds along the path
up to and including the first state where the first property holds

An LTL formula is created by applying the following compositional rules:

1. p ∈ AP ⇒ p is a path formula

2. f, g are path formulae ⇒ ¬f, f∨g, f∧g,Xf,Ff,Gf, f U g, f R g are path formulae

6.3.1.3 Checking Models against Specifications

The following term denotes that a path formula f holds along a sequence π of the Kripke
structure M .

M,π |= f

The relation |= is defined recursively as follows:

1. M,π |= ¬g1 ⇔M,π 6|= g1

2. M,π |= g1 ∨ g2 ⇔M,π |= g1 or M,π |= g2

3. M,π |= g1 ∧ g2 ⇔M,π |= g1 and M,π |= g2

4. M,π |= (X)g1 ⇔M,π1 |= g1

5. M,π |= (F)g1 ⇔ ∃k ∈ N : M,πk |= g1

6. M,π |= (G)g1 ⇔ ∀ i ∈ N : M,πi |= g1

7. M,π |= g1(U)g2 ⇔ ∃k ∈ N : (M,πk |= g2 and ∀ 0 ≤ j < k : M,πj |= g1)

8. M,π |= g1(R)g2 ⇔ ∀ j ∈ N, if ∀ i < j : M,πi 6|= g1) then M,πj |= g2

with g1, g2 being path formulae.

With the given definitions, the problem of checking a model M against any temporal
logic formula f is to find the set of paths that fulfill the given specification:

{π ∈ 2S |M,π |= f}

6.3.2 Tools for Model Checking

There exists a variety of mature tools and frameworks to find {π ∈ 2S | M,π |= f} for
given M and f . Some commonly used non-commercial tools are the following:

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 133

• McMillan developed the symbolic model checker SMV [McM92b] based on ordered
binary decision diagrams OBDD [Bry86] within his PhD Thesis [McM92a]. The SMV
uses CTL as the specification calculus. There exists a widely used open source re-
implementation of the SMV called NuSMV [CCGR99]. This newer program checks
for both specification subsets, CTL and LTL. It also uses sequential extended regular
expressions (SEREXP), a path-based variant of classical regular expressions to enrich
the temporal logic formulae.

• The SPIN tool [Hol03] created by Holzmann [Hol97] uses the process meta language
(PROMELA) to specify models that then can be checked for LTL properties.

• The UPPAAL tool environment [LPY97] is an integrated model checking tool that
uses timed automata as the input language for models and checks those models
against CTL specifications.

• Apart from these very general model checkers, there exists a variety of special pur-
pose model checkers, e.g. to verify VHSIC hardware description language designs or
to check safety constraints of programming languages.

This thesis has no intention of developing a new or of enhancing an existing model checking
tool. All further work uses Kripke structures and LTL formulae as a de facto standard for
model checking tools.

6.3.3 Model Checking Statecharts

To this day, model checking of statecharts is the subject of intensive research. There exists
a variety of approaches and solutions, Bhaduri presents a good while incomplete survey
[BR04]. In this section, not only are the conventional Harel statecharts considered, but
also UML 2.0 statecharts as well as other dialects.

Harel Statecharts
In the early 1990ies, Day [Day93a] [Day93b] translated a subset of statecharts into ML
(meta language) code [MTM97] for the theorem prover for high order logic HOL-Voss
[Jef94]. This early approach restricts the statechart semantics considerably and does not
allow transitions to cross any level of hierarchy.
Around that time, Kelb et al. also studied model checking of statecharts omitting history
but already considering inter-level transitions [Kel95] and translated statecharts to OBDD
[HK94].
Later Mikk et al. used extended hierarchical automata (EHA) [MLS97] to verify state-
charts by translating them into both PROMELA for SPIN and the input language for the
SMV [MLSH98] [Mik00]. This approach was the first that led to a usable tool chain. It
still had a number of shortcomings though: no history, no timing, no data-transformations
and only generated events as actions could be modeled.
Brockmeier verified Statemate statecharts [BW98a] by means of symbolic timing diagrams
(STD), translated into CTL [BW98b]. The Siemens model checker [Fil97] is used to verify
the requirements of reactive systems.
There also exists a translation of statecharts to Esterel [SSBD99], this approach evidently
would require the means of verifying Esterel code. Since there are still problems with that

134 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

verification task, this approach only shifts rather than solves the problem at hand.
In 2000, Clarke and Heinle translated statecharts into SMV exploiting the modularity of
the specification language [CH00]. Their so-called STP approach was to define a new basic
language named ETL. The fact that the reported translation does not handle inter-level
transitions greatly limits its applicability.
The researchers at OFFIS, Oldenburg University (Germany) developed the Statemate
verification environment [BBD+99] by means of the VIS model checker [RHS+96], the
basis of the commercial Telelogic product [BDW00]. This commercial product comes with
unpublished algorithms and a template language instead of full temporal logic calculus.
Despite that, the commercial Statemate ModelVerifier is the most powerful tool to check
statecharts against specifications.
A translation from statecharts to Communicating Sequential Processes (CSP) [Hie01] and
the verification by failures divergences refinement (FDR) was achieved by Fuhrmann and
Hiemer [FH01]. A mapping from statecharts to the Verilog model checker [IEE95] is ar-
ticulated by Qin et al. [TQC04].
A translation from statecharts to a labeled transition system (LTS) by means of basic
process algebra is presented by Qian in [XQ05]. This approach offers the great advantage
of being independent of any dedicated input language or format. When creating an LTS
or Kripke model equivalent to the statechart model, the problem of model checking is
reduced to just checking the LTS.

UML 2.0 Statecharts
Apart from the efforts to model check Harel statecharts, various approaches to verifying
UML statecharts exist. Latella et al. converted UML 2.0 statecharts to PROMELA /
SPIN [LMM99], as Lilius et al. [LP99a] did, even providing a tool called vUML [LP99b].
Unfortunately, none of the approaches considers the full UML statechart dialect but only
subsets of it.
As for conventional statecharts, the inter-level transitions turn out to be the most difficult
part. They impede a compositional approach and thus complicate the transformation rules
considerably. However, Dong et al. showed how to apply hierarchical automata to UML
statecharts [DWQQ01] [WDQ02] and outlined a way of model checking UML statecharts
including hierarchy. Kwon [Kwo00] achieved a full translation of UML statecharts to the
SMV model checker by means of conditional term rewriting systems.

Other Statechart Dialects
There exists a variety of statechart subsets and enhancements [vdB94]. In [IBDR03],
a translation from communicating statecharts – an extension for statecharts that allows
communication through buffered channels – is presented. Philipps et al. show how to
verify µ-statecharts [PS98] using the model checker µ-cke [Bie97].
Alur et al. proposed hierarchical state machines as a variant of statecharts [AKY99]. The
model checking input is then based on hierarchic reactive modules (HRM) that can then
be symbolically model checked [AY01] by means of the BDD package that is part of VIS.
Büssow translated a combination of the specification language Z and statecharts into
a generic intermediate format facilitating model checking by means of numerous tools
[Büs03].

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 135

It would be unrewarding to adopt one of the numerous approaches and to enhance its
formal translation schema to match the ESF specification: all presented methods still
lack vital features and/or are not flexible enough to be adopted for the purposes of this
thesis. Instead, the goal is to model check an ESF model directly or to translate the ESF
models into a Kripke structure or Kripke model MK that then serves as a universal vehicle
to be used by any model checker.

6.3.4 Model Checking ESF Models

The common goal of all approaches surveyed is to provide a universal technique that can
be applied for model checking of any possible statechart model MSC . Since all presented
approaches aim at generality, it is clear that none of them allows the exploitation of any
inherent semantic properties of an ESF model MESF as it is. Having said that, in general,
there are three different possible courses of action to conducting model checking with a
model MESF .

1. Formulating model check algorithms that directly operate on LTL formulae and the
model MESF in order to determine the set {π ∈ 2S | MESF , π |= f}. Any model
MESF possesses a formally defined syntax and semantics, it contains all necessary
information, i.e. the set of atomic propositions on which to check. From a theoretical
perspective, formulating such an algorithm is possible.

2. A sequential translation of the ESF models to statecharts exploiting their semantic
peculiarities and then from statecharts to a labeled transition system such as a
Kripke structure (including possible intermediate steps) can be defined assuming
the semantic transformation rules given in Chapter 3. This way of applying model
checking practices to a model MESF is very easy, in terms of the necessary rule set,
and straightforward. In a nutshell, a chain MESF

trans−−−→ MSC
trans−−−→ MK needs to

be created.

3. A semantic rule set can be given that allows for the direct translation of ESF models
to a labeled transition system by exploiting the very peculiarities directly. This
translation MESF

trans−−−→MK then allows for introducing considerable optimizations
for model checking algorithms.

The issue with the first approach is that the definition of an ESF -based algorithm for
model checking, although theoretically possible, is not a feasible solution. Reinventing the
results of two decades of research and facing the same complexity problems does not at all
seem desirable. Major difficulties arise, at the latest, when the concepts of recursion and
long term history (that demand multidimensional data structures such as lists) are to be
verified directly. Therefore, this theoretical solution is ruled out.
But even the second approach has serious shortcomings, especially when compared to the
third. The translation of ESF models into conventional statecharts would make it impos-
sible to exploit all existing peculiarities that could make the target representation simpler.
However, for all ESF constituents except CTS, a translation into conventional statecharts
and a later translation to a Kripke structure would be possible (although not beneficial).
The reason is that those constituents have a kind of “compile time” semantics. If such a

136 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

compile time approach were applied to CTS as well, the entire cartesian product of the
implicated AND states would have to be explicitly elaborated. To avoid this, a runtime
semantics is defined for the CTS. This runtime semantics must be incorporated into the
translation rules.
Moreover, the two translation processes that would be necessary result in a less specific
exploitation than if only one such process was applied. The result is that with the second
option, the Kripke structures would be far more bulky.
The intermediate step would not only result in extremely large models to be processed by
the model checking tool, but also in unnecessarily dense ones. Usually, only a few parts
of the bulky models are reachable. Büssow for example reports in his PhD thesis [Büs03]
that a statechart model consisting of 92 states and 30 events resulted in a model MSC

with 3 ·1025 states where only 3 ·106 states were reachable. Taking the magnitude of those
figures and the IHF model sizes as a basis for this work, it is evident that this approach
leads to severe complexity issues.

Therefore, in this thesis, the third approach is chosen: since all models that are to be
checked are based on the same kind of systems and follow fixed modeling rules, there
exists a variety of properties that can be exploited to simplify the model checking pro-
cess. This approach is consistent with the paradigm of use case tailored formal methods
developed throughout this thesis. As the next section shows, in particular the cartesian
transition set allows for massive optimization. The semantic properties taken into account
for this optimization are the ESF modeling rules on the one hand and the defined appli-
cation rules for modeling operating systems.

6.3.4.1 Transformation Rules: Translating ESF into Kripke Models

As Definition 6.8 shows, Kripke structures – or Kripke models MK – are based on a set of
atomic propositions. For any translation MESF

trans−−−→ MK , this set APK comprises the
following subsets:

1. The set of all reachable system configurations Pconf , represented by an n-tuple of
the special proposition in(s), for a statechart model being in state s, one proposition
for each concurrent component

2. The set of explicitly given statechart properties such as conditions, variables and
expressions, called Pexp

3. The implicitly given semantical ESF properties such as path conditions or recursion
variables, Pimp

The distinct temporal logic formulae that represent the indicators in question (cp. Section
6.3.5) could be formulated based solely on the proposition in(s). Elaborating this fact, one
could immediately reduce the set of atomic propositions relevant for the Kripke structure
thus creating smaller Kripke structures (fewer number of states).
Unfortunately, this simple translation would also result in quite “crowded” Kripke struc-
tures, leading to an accumulation of transitions ∈ RK at semantical hot-spots such as
recursive model parts or states that precede a split state. In fact, the models MK would

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 137

be nearly completely intermeshed. In any event, such a translation would preserve the
semantic peculiarities of ESF models instead of taking advantage of them. Hence, the
model checking results would still bear these very properties.
As a consequence, any counterexample produced by model checking must be validated to
determine if it represents a correct ESF -compliant path. This is most undesirable since an
unnecessarily large number of invalid counterexamples would be produced by the model
checker and the validation of the results is a complex step to be avoided. Even if no valid
counterexample is produced, numerous invalid ones would still be checked.
The atomic properties that are subject to model checking are only state specific, never
path dependent. From there it follows that regardless of how a specific Kripke state was
entered, the properties will have the same value. In the ESF this is not necessarily true
since a path can influence this set of propositions considerably. In other words: the check
of the result mentioned could not be done by means of the Kripke structure but only by
means of the ESF model itself.

From these considerations it follows that for the translation MESF
trans−−−→ MK , addi-

tional data from the models has to be taken into account. Accordingly, the set of atomic
propositions relevant to the Kripke model MK is defined as

APK
def=Pconf ∪ Pexp ∪ Pimp with Pconf ∩ Pexp ∩ Pimp = ∅

This definition detaches the Kripke states from the mere statecharts basic configurations.
By this, the semantics of all ESF constituents is exploited before the model checking itself
is performed. Since the Kripke states and the statecharts basic configurations no longer di-
rectly correspond, the transition relation definition and the definition of the Kripke states
are much more complex. By taking a complex translation into account, one avoids the
problems mentioned above: the resulting Kripke structure can be optimized already, i.e. it
is larger but sparse, it thus contains fewer unreachable states and there exist no hot-spots.

A translation trans−−−→: MESF
trans−−−→ MK with MESF being an ESF model following the

given modeling approach and MK = (SK , RK , LK , SK0) being a Kripke structure results
in the equivalency of the following set S:

{π ∈ 2S |MESF , π |= f} ⇔ {π ∈ 2S |MK , π |= f}

By this equivalency, the problem of model checking an ESF statechart model is reduced to
the classical problem of model checking as discussed above [CGP00]. A similar approach
is presented in [XQ05].

Since the translation trans−−−→ is comprehensive, it is another crucial point to decide on
the means of defining it. There are three alternatives:

• Graph grammar. Since both ESF models and Kripke structures are graph de-
scendants, a graph grammar [Ehr88] would be a quite natural approach to describe
a conversion between them. On the contrary, graph grammars are neither intuitive
nor satisfactorily manageable for the intended purpose.

• Term rewriting system. In this approach contrary to graph grammars, translation
rules are defined using a textual form. This is a feasible solution due to the simplicity

138 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

of the rules. But although there is a variety of textual representations of statecharts
(e.g. [KP91]), it would require much additional work to create such a representation
for the ESF, e.g. based on the XMI format [OMG05].

• Transformation rule set. In analogy to the ESF semantics definition, a set of
transformation rules based on the formal definition of ESF syntax and semantics
can be given in a short and formally precise way.

The transformation rule approach is closest to the nature of the modeling method whereas
the other two are bound to the mere outer form of a model. Therefore, it suits the purposes
of this thesis best to give the translation in a transformation rule set.

6.3.4.2 Transformation Algorithm

The basic idea of the direct transformation approach is to subdivide the translation from
ESF to Kripke into two separate steps. In the first step, each concurrent component is
treated separately. For each such component ω, a certain preliminary Kripke model M⊥K,ω
is created.
Since the CTS mechanism makes a grouped approach obsolete (cp. Section 3.5), we can
assume that all models MESF use the cartesian transition set mechanism alone and no
simple AND states to represent concurrency. From that, a global property (i.e. a natural
number) specifying the currently considered concurrent component can be assigned. This
property is crucial for gaining a simple and compact translation rule set for the first step
as well as an efficient rule to later combine the preliminary Kripke models.
Informally, a substate of an AND state cannot be left until its final state is reached.
Formally, this is analogous to the fact that there is no case in which a full transition is
different from its full compound transition.

∀ fct ∈ FCT, fct = ts0, . . . , tsn : (6 ∃ ft ∈ FT, ft = ts0, . . . , tsn : ft 6= fct), ts0 . . . tsn ∈ TS

The concurrent component in question can therefore be treated independently of the oth-
ers. Subsequently, there is one dedicated preliminary Kripke model M⊥K,ω per orthogonal
partition of the model MESF . For every transition that originates within the scope of the
concurrent component, it holds that its target state is not located outside the scope. Let
rω be the root state of concurrent component ω:

∀ t ∈ T : [source(t) ∈ ρ∗(rω)⇒ arena(t) = ρ∗(rω)]

During the first step, all transformation rules defined later are applied in the order that
is predefined by the original statechart semantics. From this it follows that all necessary
semantic properties of conventional statecharts – such as for example the greediness prop-
erty – are preserved while the rules themselves exploit the semantic benefits of the ESF.
Since the progress relation of statecharts is not guaranteed to terminate, an additional
termination condition is stated:
When no application of any transformation rule creates a new Kripke relation tuple, the
transformation terminates.

No concrete inputs (i.e. occurring events or evaluated conditions or variables) are consid-
ered. Therefore, all path conditions are omitted and only the currently valid conditions

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 139

for split and combine states are relevant (they are implicit, i.e. ∈ Pimp). The actual
non-concurrent portions of a statechart model are traversed like hierarchical graphs. This
further enhances the idea of PAGs and IAGs used for graph-based model analysis.

A state of a preliminary Kripke model M⊥K,ω differs from a state of the final Kripke model
in three ways:

1. The first part Pconf only contains basic states, no configurations.

2. A dedicated partition of the state, Pevt , contains the event that triggered the pre-
ceding transition.

3. A dedicated partition of the state, Pact , contains the action carried out during the
translated transition.

The additional information preserved by the latter two sets is required to later assemble
the preliminary models M⊥K,ω.
A Kripke state ∈ S⊥K,ω of a preliminary Kripke model M⊥K,ω has the following form:

(
[in(s)]︸ ︷︷ ︸
∈Pconf

, [pimp0 , . . . , pimpk′]︸ ︷︷ ︸
∈Pimp

, [pexp0 , . . . , pexpl′]︸ ︷︷ ︸
∈Pexp

, [pevt0 , . . . , pevtm′]︸ ︷︷ ︸
∈Pevt

, [pact0 , . . . , pactn′]︸ ︷︷ ︸
∈Pact

)
︸ ︷︷ ︸

=s′K∈S
⊥
K,ω

(6.3)

Note that since only one concurrent component is considered, for this definition the set of
configurations Pconf is equal to the set of basic states ⊂ S̃. The actions are only part of
the intermediary Kripke states and are evaluated by the composition rule (AND rule, see
Section 6.3.4.3.6). They are not part of the final Kripke states ∈ SK .

The AND rule that constructs the final Kripke structure MK from the preliminary struc-
tures M⊥K,ω in the second step produces an intermediate format, which is defined as:(

[in(s0), . . . , in(sn)]︸ ︷︷ ︸
∈Pconf

, [pimp0 , . . . , pimpk′]︸ ︷︷ ︸
∈Pimp

, [pexp0 , . . . , pexpl′]︸ ︷︷ ︸
∈Pexp

, [pevt0 , . . . , pevtm′]︸ ︷︷ ︸
∈Pevt

, [pact0 , . . . , pactn′]︸ ︷︷ ︸
∈Pact

)
︸ ︷︷ ︸

=s′′K∈SK,ω
(6.4)

Since the basic idea behind all transformation rules is to exploit the fact that the three
subsets of APK are disjoint, i.e. Pconf ∩Pexp ∩Pimp = ∅, any Kripke state s′K ∈ S⊥K,ω – as
well as sK ∈ SK – relies on this fact. The final states sK ∈ SK are defined by using APK
as follows: (

[in(s0), . . . , in(sn)]︸ ︷︷ ︸
∈Pconf

, [pimp0 , . . . , pimpk]︸ ︷︷ ︸
∈Pimp

, [pexp0 , . . . , pexpl]︸ ︷︷ ︸
∈Pexp

)
︸ ︷︷ ︸

=sk∈SK

(6.5)

140 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

It is clear that the transition between each of the three final partitions is dictated mainly
by different parts of the semantics. In other words, one can define three distinct relations,
each describing parts of the transition relation ∆ : SK → SK , ∆ ⊂ RK :

∆conf : Pconf → Pconf (6.6)

∆exp : Pexp → Pexp (6.7)

∆imp : Pimp → Pimp (6.8)

The ∆conf relation is the progress relation that is defined by the statechart semantics (cp.
Section 2.4.4) which determines how a statechart model can be “executed” in a step-by-
step manner. The ∆exp relation is as well predefined by the chosen semantics. It is based
on the action mechanism of statecharts.
The entirely new part for ESF models is the third part, ∆imp . It is completely defined by
a composition of the semantic transformation rules for the ESF constituents and the over-
all semantics. The transformation rule set thus starts with elaborating ∆imp and hence
adopting the necessary parts of ∆conf and ∆exp as well.

The rules that are applied during the first step ensure that all semantic peculiarities
of the ESF constituents are exploited as discussed. The later composition makes use of
the CTS semantics and thus eases the transformation considerably. Finally, the model
checking itself takes care of the recursion. When the model checker unwinds the Kripke
model into an infinite computational tree, all possible paths including the recursive de-
scent and ascent are taken into account.
For this, the only requirement is to translate the transitions originating from the recursion
delimiter state (see Definition 3.18) according to the translation rules.

It is not necessary to validate any generated counterexamples: as the Kripke models are
created based on the step relation and the ESF semantics, there can be no path in the
Kripke models that does not correspond to a correct path in the ESF model. Thus, the
problem of validating paths outside the model checking (cp. Section 6.3.4.1) is avoided.

6.3.4.3 Transformation Rule Set

The first 15 rules make up the first step of the transformation algorithm. As mentioned
above, they are applied in a predefined order given by the statechart semantics. For using
the two rather complex definitions of Kripke states in the following, a few rules apply:

• There exists an additional value any proposition p can take: undefined, i.e. p = .ג

• Any undefined proposition is omitted in any formula unless it changes its value.

• The set membership of the propositions, i.e. if a proposition p is either ∈ Pconf ,
∈ Pimp , ∈ Pexp or ∈ Pact , is not given unless it is ambiguous. A situation where
ambiguity occurs is for example when generated events are handled in order to
translate broadcast communication.

Note that in the following, ESF definitions will not be marked separately, whereas Kripke
elements are, e.g. s ∈ S depicts a statechart state, sK ∈ SK a Kripke state.

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 141

In general, a transformation rule has the following format:

NAME
ESF constituents

Kripke states, relation, rule
⇓

6.3.4.3.1 Construction of the Set S⊥K,ω
The set of Kripke states for all preliminary Kripke structures can be defined in two different
ways:

1. All Kripke states, i.e. all possible permutations of the atomic propositions are as-
sumed to exist from the beginning. After applying all rules, the set of states is
limited to a subset where all states are part of the relation R⊥K,ω at least once.

2. A creation rule is added to the rules that creates a not yet existing Kripke state
on demand. Such a creating function cre : S → 2S

⊥
K would basically perform the

following pseudo-code:

kripkeState *k createOnDemand(statechartState s){
if (! existingKripkeStateFor(s))
return createStateFor(s);
else
return fetchStatesFromSet(s); // can be multiple

}

The major shortcoming of the first option is that all rules must implicate changes to all
existing Kripke states related to the given ESF constituent in order to not accidentally
create micro Kripke structures that cannot be merged for each rule that is applied. Having
said this, it is clear that by creating all permutations, all Kripke states (whether they
should be part of the model or not) become part of RK , thus the models would not only
be maximal in size and density but also not fully equivalent to the ESF model.
From these considerations it follows that an explicit creation procedure must be used. To
avoid cluttering the rules with the formally correct embodiment of a creation function
(which is set-theoretically complex), the following notation is used:

RULE
−− s1 −−

([in(s1)], . . .) :
(([in(s1)], . . .),−−) ∈ R⊥K,ω

⇓

The term “([in(s1)], . . .) :” denotes the implicit use of the creation function cre for s1 when
needed in the second part of the formula (after the “:”) where the transformation itself is
described. In most cases, the transformation is a simple addition to the relation R⊥K,ω.
The unspecific “. . . ” are a wildcard for any possible combination of propositions that
appears. If there yet exists no set of Kripke states for s1, the least specific one, i.e.
([in(s1)], ,[ג] ,[ג] ,[ג] ([ג] is created, i.e. added to the set. When a rule is actually specified,
the more detailed notation ([in(s)], [. . .], [. . .], [. . .], [. . .]) is used to specifically address the
partitions of propositions. This degree of precision is required for example when one part
has to be set such as ([in(s)], [cimp1 , . . .], [. . .], [. . .], [. . .]) or ([in(s)], [. . .], ,[ג] [. . .], [. . .]).

142 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

Since there is a difference between the null event and null action and the undefined value,
a general function for converting events / actions to propositions is defined as follows:

Definition 6.10 Conversion Functions (conE , conA)

The conversion function for events conE : Ẽ → Pevt and the conversion function for actions
conA : Ã→ Pevt are defined as:

conE(e)

{
e : e 6= λ

ג else
, conA(a)

{
a : a 6= µ

ג else

The application of any rule is written using the application operator:

Definition 6.11 (Default) Application Operator

The following notation stands for applying the rule NAME to the given ESF constituent
(element):

NAME
↪−−−−→ (element)

If element does not match the upper side of NAME, the application is simply disregarded.
The following short notation applies any matching rule to element:

RULE*
↪−−−−−→ (element)

6.3.4.3.2 General, Sequential and Synchronization Transition Rules
For any ESF transition (with or without a guarding condition) originating from and
leading to a basic state, the following transformation rules expands the corresponding
preliminary Kripke structure with s1, s2 ∈ S̃ , e ∈ E, , a ∈ Ã and s1, s2 both being basic
states:

TRANS 1
s1, s2, t = (s1, e/a, s2)

([(in(s1)], . . .), ([(in(s2)], . . .) :
(([(in(s1)], . . .), ([(in(s1)], . . .)),

(([(in(s1)], . . .), ([(in(s2)], ,[ג] ,[ג] [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓ (6.9)

TRANS 2
s1, s2, t = (s1, e[c]/a, s2)

([(in(s1)], . . .), ([(in(s2)], . . .) :
(([(in(s1)], . . .), ([(in(s1)], . . .)),

(([(in(s1)], . . .), ([(in(s2)], ,[ג] [c1], [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓ (6.10)

The term ESF transition also includes all conventional statechart transitions. Since the
ESF in general contains all conventional statechart elements, from now on only ESF
components will be mentioned, representing the conventional statechart constituents as
well.
Preliminary Kripke structures M⊥K,ω can be constructed from these two transition rules
depending on whether an explicitly given condition is part of the transition or not. Figure
6.5 shows the application of TRANS 2. The simple statechart example (Figure 6.5(a))
contains a transition labeled with e[c1]/a. Figure 6.5(b) depicts the resulting preliminary
Kripke model. Note that the resulting model would look very similar if TRANS 1 were
applied, with only the difference that the state would be (in(B)) instead of (in(B), c1).

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 143

(a) MESF with 1 transition

mj
(in(A))

�
- m

(in(B), c1)
(b) application of TRANS 2:

M⊥K,ω for any c1

Figure 6.5: Sample application of the general transition rule

Both rules induce a self loop for the Kripke state representing the source of the transition.
If a transition cannot be taken during a system step, the system stays in the current state
– a self loop is created in the preliminary Kripke structure. Hence, self loops always occur
when ESF transitions are guarded by a condition such as a synchronization condition.
When dealing with transitions that do not have a guarding condition at all, the seman-
tics [HN96] dictates that, according to the progress relation, a self loop is possible since
the system may traverse further triggered by an event noticeable to another orthogonal
component. Consequently, the only cases in which no self loop can possibly occur are the
ones in which the source state is left without any explicit triggering: a trivial transition
or a sequential transition as in Definition 3.1. Therefore, with s1, s2 ∈ S̃ and s1, s2 both
being basic states and e ∈ {λ, en(s1)} ⊂ E, the following special rule is defined:

TRANS 3
s1, s2, t = (s1, e/µ, s2)

([(in(s1)], . . .), ([(in(s2)], . . .) :
(([(in(s1)], . . .), ([(in(s2)], ,[ג] ,[ג] ,[ג] (([ג] ∈ R⊥K,ω

⇓ (6.11)

Figure 6.6(a) shows the modified example statechart model that now has one sequential
transition, leading to a preliminary Kripke model without a self loop, depicted in Figure
6.6(b).

(a) MESF with 1 sequential

transition

mj
(in(A))

- m
(in(B))

(b) application of TRANS 3:

M⊥K,ω without self loop

Figure 6.6: Sample application of the general transition rule

144 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

For transitions reacting on path events, the following rules are defined with s1, s2 ∈ S̃,
e ∈
−→
E , a ∈ Ã and s1, s2 both being basic states:

TRANS 4
s1, s2, t = (s1, e/a, s2)

([(in(s1)], . . .), ([(in(s2)], . . .) :
(([(in(s1)], . . .), ([(in(s1)], . . .)),

(([(in(s1)], . . .), ([(in(s2)], [pc(e)], ,[ג] [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓ (6.12)

TRANS 5
s1, s2, t = (s1, e[c]/a, s2)

([(in(s1)], . . .), ([(in(s2)], . . .) :
(([(in(s1)], . . .), ([(in(s1)], . . .)),

(([(in(s1)], . . .), ([(in(s2)], [pc(e)], [c1], [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓ (6.13)

These rules differ from TRANS 1 and TRANS 2 only with respect to the implicit proposi-
tions: here, the initial path condition corresponding to the triggering path event is included
in the state.

Finally, for synchronization transitions as introduced in Definition 4.3, the rule TRANS 2

applies with c being the synchronization condition.

6.3.4.3.3 Condition and Variable Branching Rule
As described in Section 4.2.2.4, branches can be modeled in two different ways: using either
variables/expressions or conditions. The transformation rules BRANCH 1 and BRANCH 2

are defined with ts1, . . . , tsn ∈ T̃ S , a ∈ Ã , con ∈ COND and s1, . . . , sn all being basic
states:

BRANCH 1

ts1 = (s1, e/a, con) , e ∈ {λ, en(s1)}
ts2 = (con, λ[c]/µ, s2), ts3 = (con, λ[¬c]/µ, s3)

([(in(s1)], . . .), ([(in(s2)], . . .), ([(in(s3)], . . .) :
(([(in(s1)], . . .), ([(in(s2)], ,[ג] [c], ,[ג] [conA(a)])),

(([(in(s1)], . . .), ([(in(s3)], ,[ג] [¬c], ,[ג] [conA(a)])) ∈ R⊥K,ω

⇓ (6.14)

BRANCH 2

ts1 = (s1, e/a, con) , e 6∈ {λ, en(s1)}
ts2 = (con, λ[c]/µ, s2), ts3 = (con, λ[¬c]/µ, s3)

([(in(s1)], . . .), ([(in(s2)], . . .), ([(in(s3)], . . .) :
(([(in(s1)], . . .), ([(in(s1)], . . .)),

(([(in(s1)], . . .), ([(in(s2)], ,[ג] [c], [conE(e)], [conA(a)])),
(([(in(s1)], . . .), ([(in(s3)], ,[ג] [¬c], [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓ (6.15)

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 145

BRANCH 3

ts1 = (s1, e/a, con),
ts2 = (con, λ[v1 + vx1]/µ, s2),

. . .

tsn = (con, λ[v1 + vxn]/µ, sn)

([(in(s1)], . . .), ([(in(s2)], . . .), . . . , ([(in(sn)], . . .) :
(([(in(s1)], . . .), ([(in(s2)], ,[ג] [v1 + vx1], [conE(e)], [conA(a)])),

. . .

(([(in(s1)], . . .), ([(in(sn)], ,[ג] [v1 + vxn], [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓

(6.16)

The distinguishing factor between the two methods of branching is the fact that by using
a conditional branch, a self loop can be avoided when a sequential transition is used. See
Figures 6.7(c) , 6.7(d) and 6.7(a) respectively 6.7(b).
Only binary branching can be realized this way, whereas by means of variables, a variety
of different paths can be branched out and the resulting Kripke model always contains a
self loop (see Figures 6.7(e) and 6.7(f)).

(a) MESF with conditional branch,

sequential transition

mj
(in(A))

���
���:

XXXXXXz m
(in(C), c1)

m
(in(B),¬c1)

(b) application of BRANCH 1:

M⊥K,ω

(c) MESF with conditional branch

mj
(in(A))

���
���:

XXXXXXz m
(in(C), c1)

m
(in(B),¬c1)

�

(d) application of BRANCH 2:

M⊥K,ω

(e) MESF with value selection branch

mj
(in(A))

����
���:

XXXXXXz m
(in(C), v1 > 1)

m
(in(B), v1 < 1)

(f) application of BRANCH 3:

M⊥K,ω

Figure 6.7: Sample application of branching rules BRANCH 1, BRANCH 2 and BRANCH 3

146 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

6.3.4.3.4 Split / Combine State Rule
When a split state is the origin or target of a transition, the resulting M⊥K,ω is similar to
the one that is constructed by application of rule BRANCH 3 as depicted in Figures 6.7(e)
and 6.7(f).
The major difference in the formal definition of the transformation rule is the fact that the
branching values are not given explicitly in the model but are provided by means of path
events and path conditions. Since in this implicit branching it cannot happen that the
system does not take any outgoing transition, no self loop is possible (cp. Figure 6.7(d)).

SPLIT

t1 = (s1, e/a, sp)
t2 = (sp, λ/µ, s2), . . . , tn = (sp, λ/µ, sn)

([(in(s1)], . . .), ([(in(s2)], . . .), . . . , ([(in(sn)], . . .) :
(([(in(s1)], . . .), ([(in(s2)], [pc = (. . . , icat(sp) = bid(s2), . . .)],

[ג] , [conE(e)], [conA(a)])),
. . .

(([(in(s1)], . . .), ([(in(sn)], [pc = (. . . , icat(sp) = bid(sn), . . .)],
[ג] , [conE(e)], [conA(a)])) ∈ R⊥K,ω

⇓ (6.17)

COMBINE

t1 = (s1, e1/a1, co), . . . , tn−1 = (sn−1, en−1/an−1, co)
tn = (co, λ/µ, sn)

([(in(s1)], . . .), . . . , ([(in(sn−1)], . . .), ([(in(sn)], . . .) :
(([in(s1)], [pc = (. . . , icat(co) = ,ג . . .)],

[ג] , [conE(e1)], [conA(a1)]), ([in(sn)], . . .))
. . .

(([in(sn−1)], [pc = (. . . , icat(co) = ,ג . . .)],
[ג] , [conE(en−1)], [conA(an−1)]), ([in(sn)], . . .)) ∈ R⊥K,ω

⇓ (6.18)

The term pc = (. . . , icat(sp) = bid(sn), . . .) denotes the part of the path condition that
corresponds to the split state in question.
For combine states, the branch category identifier that corresponds to the combine state
in question is set to .ג This represents the truncation of path conditions as described in
Section 3.2.

6.3.4.3.5 Hierarchical State Rule (XOR Rule)
All transition rules so far are defined on the basic state level only. The XOR rule allows for
the treatment of hierarchy and inter-level transitions. The fact that the Kripke models use
the basic system configuration eases the problem of inter-level transitions considerably. In
the final Kripke states, only basic states have to be regarded, hence changes in the state
hierarchy that occur when basic states are left and entered are of no interest. In short:
no in()-statements for non-basic states, i.e. no hierarchical information is necessary to
construct Kripke models:

[in(s0), . . . , in(sn)]︸ ︷︷ ︸
∈Pconf

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 147

This part can be used to cover hierarchy and inter-level transitions without any modifica-
tion. Three general cases are possible when dealing with transitions originating from and
leading to non-basic states:

1. The non-basic state is the source of the transition in question

2. The non-basic state is the target of the transition

3. Both, source and target are non-basic states

Since history symbols must be considered, the first two alternatives must be treated dif-
ferently, the third case then is just a functional concatenation of the first two.

6.3.4.3.5.1 Non-Basic Source State
As history symbols do not influence this constellation at all, this is the simplest case.
The approach is very similar to the one exploited for the IAG (see Section 6.2.2). The
transition is taken as an outgoing transition for all basic states that are located anywhere
downwards the hierarchy. With t, t0, t1 ∈ T̃ , s1, s2, s10 , . . . s1n ∈ S̃, e ∈ Ẽ, a ∈ Ã and s1

non-basic, s2 basic, the rule is given as follows:

XOR SRC
t = (s1, e/a, s2)

s10 , . . . , s1n , {s10 , . . . , s1n} ⊆ ρ+(s1) :
RULE*
↪−−−−−→ (t0 = (s10 , e/a, s2)), . . . ,

RULE*
↪−−−−−→ (tn = (s1n , e/a, s2))

⇓ (6.19)

Figure 6.8(b) gives a sample application of this rule. There are two distinct preliminary
Kripke states (in(D), a1) and (in(D), a2) since the statechart model MESF as depicted by
Figure 6.8(a) has two outgoing transitions labeled with e1/a1 and e2/a2 emerging from
different hierarchical levels.

(a) the source of the transitions is a non-basic state

mj
(in(B))

-
Q
Q
Q
Q
QQsmj

(in(C))

-

m
(in(D), a2)

m
(in(D), a1)

mj
(in(A))

�
�
�

�
�
��+

(b) two applications of XOR SRC: M⊥K,ω.

Figure 6.8: Sample application of the XOR SRC rule.

6.3.4.3.5.2 Non-Basic Target State
When the target state of the transition in question is a non-basic one, the rule must take
history connectors into account: If there are none, the target state is simply the default
state. With s1, s2 ∈ S̃, e ∈ Ẽ, a ∈ Ã, t, t0 ∈ T̃ and s1 basic, s2 non-basic, the following rule
defines the translation:

XOR TGT 1
t = (s1, e/a, s2), (6 ∃h ∈ H̃ : [γ(h) = s2])

RULE*
↪−−−−−→ (t0 = (s1, e/a, δ(s2)))

⇓ (6.20)

148 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

A simple example for this rule is given by Figure 6.9. The statechart model MESF as in
Figure 6.9(a) contains two levels of hierarchy (BC and BCD), so the rule has to be applied
twice. The intermediate statechart that is then considered for a second application is
depicted in Figure 6.9(b). A second application then leads to the very basic preliminary
Kripke model shown in Figure 6.9(c).

(a) the target of the transitions is a non-basic state,

no history connectors

(b) “intermediate step”, after one ap-

plication of the rule XOR TGT 1

mj
(in(A))

- m
(in(B))

(c) two applications of XOR TGT 1:

M⊥K,ω.

Figure 6.9: Sample application of the XOR TGT 1 rule.

Otherwise, i.e. if there exists a history connector, all direct descendants of the target
state must be considered as possible target states. The rules for non-basic target states do
not go down the entire hierarchy (XOR TGT 2) unless a deep history connector is applied
(XOR TGT 3). With s1, s2, s20 . . . s2n ∈ S̃, e ∈ Ẽ, a ∈ Ã, t, t0 . . . , tn ∈ T̃ and s1 basic, s2

non-basic, the following two rules are defined:

XOR TGT 2
t = (s1, e/a, s2), (∃h ∈ H̃ : [γ(h) = s2], h flat or LTH)

s20 , . . . , s2n , {s20 , . . . , s2n} ⊆ ρ(s2) :
RULE*
↪−−−−−→ (t0 = (s1, e/a, s20)), . . . ,

RULE*
↪−−−−−→ (tn = (s1, e/a, s2n))

⇓ (6.21)

XOR TGT 3
t = (s1, e/a, s2), (∃h ∈ H̃ : [γ(h) = s2], h deep)

s20 , . . . , s2n , {s20 , . . . , s2n} ⊆ ρ+(s2) :
RULE*
↪−−−−−→ (t0 = (s1, e/a, s20)), . . . ,

RULE*
↪−−−−−→ (tn = (s1, e/a, s2n))

⇓ (6.22)

Figures 6.10(b) and 6.10(d) show the difference if a flat (as in Figure 6.10(a)) or deep (as
in Figure 6.10(c)) history symbol is contained in the non-basic target state. The rules
are nearly identical except for the use of either the direct descendants ρ(s2) or the whole
hierarchy downwards ρ+(s2).

6.3.4.3.5.3 Non-Basic Source and Target States
The remaining case in which both source and target of a transition are non-basic states is
the simple functional concatenation of the previously defined rules, which is defined with
s1, s2 ∈ S̃ non-basic, t ∈ T̃ , e ∈ Ẽ, a ∈ Ã as:

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 149

(a) the target of the transitions is a non-basic state,

a long term history connector exists.

mj
(in(A))

���
���:

XXXXXXz m
(in(B))

m
(in(D))

(b) rule chain: XOR TGT 2, XOR TGT 1

and finally TRANS 1

(c) the target of the transitions is a non-basic state,

a deep history connector exists.

m
(in(C))

mj�

(in(A))

��
���

�:

XXXXXXz m
(in(B))

m
(in(D))

(d) rule chain: XOR TGT 3 and finally

TRANS 1

Figure 6.10: Sample application of the rules XOR TGT 2 and XOR TGT 3.

XOR SRC TGT
t = (s1, e/a, s2)

XOR TGT 1,2,3
↪−−−−−−−−−−−→ (

XOR SRC
↪−−−−−−−→ (t))

⇓ (6.23)

Note that the presented form of functional concatenation is a simplification. It represents
the following procedure: First, apply the rule XOR SRC on all transitions assuming all
targets are basic. In the resulting Kripke structure, replace all states – and the related
transitions – with in(x) (x being a non-basic target state) with the results of the application
of XOR TGT 1,2,3 on the respective transitions (s, e/a, x) from the ESF model (assuming
again s basic). All propositions that already emerged from XOR SRC are taken over to the
new replacement states.

6.3.4.3.6 Composition Rule (AND Rule)
This rule is applied in the second step of the transformation algorithm. It combines
the preliminary Kripke models M⊥K,ω to form the final Kripke model MK . Basically, a
product automaton of the substructures is created. The only deviation from a conventional
product automaton is the evaluation of the events and actions. This additional step
finally ensures that broadcast communication between orthogonal components is part of
the Kripke models. This simple but very efficient step is only possible when CTS is used
throughout the models.
The first rule to apply is the UNITE rule. It creates intermediary Kripke states s′′ ∈ SK,ω.

UNITE
([in(x0)], [pimp0][pexp0][pevt0][pact0]), . . . , ([in(xω−1)], [pimpω−1], [pexpω−1], [pevtω−1], [pactω−1])

([in(x0), . . . , in(xω−1)], [pimp0 ∪ pimpω−1], [pexp0 ∪ pexpω−1], [pevt0 ∪ pevtω−1], [pact0 ∪ pactω−1])
⇓

(6.24)

It is to be applied to all initial states of the ω preliminary models. A preliminary state
s′ = ([in(s)], . . .) is initial iff the statechart state s is a default state of the concurrent
component, i.e. s = δ(rω).

150 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

Figure 6.11(a) shows a model extract with ω = 4 (as discussed in Section 4.1.2) parallel
initial preliminary Kripke states. The combination by means of the UNITE rule is depicted
in Figure 6.11(b).

mj
?

. . .

(in(A), c1) mj
?

. . .

(in(B), pc2) mj
?

. . .

(in(C)) mj
?

. . .

(in(D), e4)

(a) four parallel preliminary Kripke states.

[in(A), in(B), in(C), in(D)],
[pc2], [c1], ,[ג] [e4])�
 �	�� ��
��� AAU? ?

.

(b) application of UNITE: MK,ω

Figure 6.11: Sample application of the UNITE rule.

For each existing intermediary Kripke state, the state relation (the arrows in Figure 6.11)
is processed by the following rule:

TRAVERSE
([in(x0), . . . , in(xω−1)], . . .) , ([in(x0)], . . .), . . . , ([in(xω−1)], . . .)

(s′0, . . . , s
′
ω−1) ∈

{s′0|(([in(s0)], . . .), s′0) ∈ R⊥K,ω}
× · · · ×

{s′ω−1|(([in(sω−1)], . . .), s′ω−1) ∈ R⊥K,ω} :

(([in(x0), . . . , in(xω−1)], . . .),
UNITE
↪−−−−−→ (s′0, . . . , s

′
ω−1))) ∈ RK

⇓ (6.25)

This is the most complex rule of the entire rule set. It describes the creation of a cartesian
product of the ω preliminary models. Possible permutations of the preliminary Kripke
states that are in relation to the intermediate state in question are constructed by ap-
plication of the UNITE rule. Figure 6.12(a) shows a minimal example with two parallel
preliminary models consisting of only two states each. The resulting intermediate states
and the relation between them are shown in Figure 6.13(b).

�
 �	�� ��
(in(B))

�
-
�
 �	

(in(D), [e = e1])

�
 �	�� ��
(in(A))

-
�
 �	

(in(C), [a = e1])

(a) two parallel preliminary

Kripke models.

(in(B), in(A))�
 �	�� �� -

?�
 �	
(in(B), in(C), ,[ג] [a = e1])

(in(D), in(C), [e = e1], [a = e1])�
 �	

(b) application of TRAVERSE: MK,ω

Figure 6.12: Sample application of the TRAVERSE rule.

As the intermediate states still contain some unevaluated information, i.e. Pevt and Pact ,
they are depicted as bigger ovals in the figures. The last rules finally processes this

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 151

information in order to realize broadcast communication between the orthogonal statechart
components.

REDUCE 1

(r′′, s′′0), . . . , (r′′, sn) ∈ RK ,
s′′x = ([. . .]︸︷︷︸

∈Pconf

, [. . .]︸︷︷︸
∈Pimp

, [. . .]︸︷︷︸
∈Pexp

, [. . .]︸︷︷︸
∈Pevt

, [a]︸︷︷︸
∈Pact

) , s′′y = ([. . .]︸︷︷︸
∈Pconf

, [. . .]︸︷︷︸
∈Pimp

, [. . .]︸︷︷︸
∈Pexp

, [a]︸︷︷︸
∈Pevt

, [. . .]︸︷︷︸
∈Pact

)

(r′′, s′′y/Pevt , Pact) ∈ RK
⇓

(6.26)

REDUCE 2

(r′′, s′′0), . . . , (r′′, sn) ∈ RK ,
s′′x = ([. . .]︸︷︷︸

∈Pconf

, [. . .]︸︷︷︸
∈Pimp

, [. . .]︸︷︷︸
∈Pexp

, [. . .]︸︷︷︸
∈Pevt

, [a]︸︷︷︸
∈Pact

) , s′′y 6= ([. . .]︸︷︷︸
∈Pconf

, [. . .]︸︷︷︸
∈Pimp

, [. . .]︸︷︷︸
∈Pexp

, [a]︸︷︷︸
∈Pevt

, [. . .]︸︷︷︸
∈Pact

)

(r′′, s′′0/Pevt , Pact), . . . (r′′, s′′n/Pevt , Pact) ∈ RK
⇓

(6.27)

While REDUCE 1 applies if broadcast communication needs to be considered, REDUCE 2

simply strips out the unnecessary information. Figures 6.13(a) and 6.13(b) depict the final
minimization.

(in(B), in(A))�
 �	�� �� -

?�
 �	
(in(B), in(C), ,[ג] [a = e1])

(in(D), in(C), [e = e1], [a = e1])�
 �	

(a) an intermediate structure

(in(B), in(A))mj -

(in(D), in(C))m
(b) application of REDUCE 1: MK

Figure 6.13: Sample application of the REDUCE rule.

The presented transformation rule set only allows for the translation of ESF models that
follow the given guidelines. It is not applicable to every kind of statechart model. In a
nutshell: The translation is a use case tailored one as is the formalism itself.

6.3.5 Temporal Logic Representation of Indicators

The two indicators to be verified by means of model checking are the lost interrupts and
the infinite handling of interrupts as shown in Table 6.1.

152 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

The translations of the indicators in temporal logic are quite simple and straightforward:
as the Kripke structures as such are created using the ESF semantics, the unwinding
directly leads to valid paths that can be investigated.

6.3.5.1 Infinite Handling of Interruptions

To make this indicator suitable for model checking, the following question is to be formu-
lated in temporal logic: Is there any case where the interrupt handling is never finished?
Or simply: can it occur that once interrupt handling is started, the system will never go
back to the abandoned user-space process?

Let U be the set of basic states within user-process space, e.g. in the Linux model (see
Figure 4.14) all basic states underneath superstate USER LEVEL. The set K of basic states
is the set of the first basic states that can be entered when entering the IKCP; e.g. in the
Linux model: K = { EXC.CPU HANDLING, INT.CPU HANDLING, SYSENTER }.

The following formulae show that for any computation possible (G(. . .)) a started IKCP
(in(k)) always ends in a basic state located in user-process space (in(u)) at some point in
the future (F(. . .)):

G(in(k)→ F
(
in(u)

)
) where k ∈ K,u ∈ U (6.28)

⇔G(
∧
k∈K

in(k)→ F
(∨
u∈U

in(u)
)
) (6.29)

Thus, it can be checked whether all paths traversing any of the possible “starting points”
of an IKCP finally reach user-process space – indicating that the interrupt handling has
at last terminated.

As already discussed in Section 5.4.8, transient interrupts can lead to infinite handling
regardless of the operating system. This is an illegal case which is to be excluded from
the model checking results as discussed in Section 5.4.9. Without a fairness constraint,
the model checking results would always contain the cases where transient interrupts lead
to infinite handling. As there is an infinite number of these situations, a model checker
cannot always determine whether there is a situation aside from these cases that leads
to infinite handling. In order to prevent this situation, a fairness constraint excluding
these cases that are a priori known is to be defined. According to Definition 6.8, this is
equivalent to defining, the set FK of acceptance conditions that have to hold infinitely
often along a path.

FK = {P1, . . . , Pn} = {pc1, . . . , pcn} (6.30)

This constraint is based on the following idea: If all possible interruptions have to occur
infinitely often, their ratio must be finite. That is: if only some interruptions occur
infinitely often, i.e. if they alternate in any way, the other interruptions cannot occur
infinitely often as well and the fairness constraint is violated. The only remaining case
that all n different interruptions alternate does not lead to infinite handling due to the
constraints within the hardware architecture.

CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS 153

The different interruptions are represented by the path conditions that are set when the
corresponding path event occurs and that are at least part of the Kripke states representing
the targets of such ESF transitions.

6.3.5.2 Losing Interrupts

Besides infinite handling, there are two error sources causing the loss of interrupts:

1. An overflow occurs in the buffer storing interrupt requests while interrupt handling
is underway. This topic will be discussed in Chapter 7.

2. The handling of a specific interrupt is initiated, but the dedicated handler routine is
never reached. The basic state representing this routine is identified by the handler
function hdlb as given by Definition 6.1.

The second possibility can also be checked using an LTL formula:

∧
e∈
−→
E

G
(
pce → F

(
in(he)

))
(6.31)

with pce = pc(e) ∈ PC being the path condition of a specific path event e ∈
−→
E and

he = hdlb(e) ∈ S. If this formula is true, the handler routine of any possible path event is
always reached.

6.4 Combination of Path Length and Recursion Depth

When the two indicators path length and recursion depth are combined, their expres-
siveness also allows for further evaluation. Two additional statements about the overall
number of handling steps kl as discussed in Sections 5.4.8 and 6.2.3 can be made. A
fairness constraint as discussed in Section 6.3.5.1 is necessary for any statements about
this combined indicator as well.

1. For a given maximal number of system steps, the set of all possible scenarios can be
divided into the two subsets of scenarios: the ones that can and those that cannot
be completed within that number of steps.

2. For a dedicated set of scenarios, it is possible to determine the maximal number of
steps necessary to process these scenarios.

To investigate this combined indicator, a dynamic analysis has to be done. However, the
model checking approach as used in Section 6.3 cannot be used without adjustment: it
has to be possible to formulate temporal logic formulae including numerical values (e.g.
“can a scenario be completed in x steps?”) as well as to derive a numeric value as a result
(e.g. “what is the maximal number of steps for scenario y?”). To achieve this, temporal
logic calculi other than LTL or CTL* are necessary.

1. Koyman proposed a metric temporal logic (MTL) [Koy90] based on linear temporal
logic equivalents enriched by a < relation for specifying distances in paths. With
such a calculus, one can for example specify a distance that is not to be exceeded.

154 CHAPTER 6. TECHNIQUES FOR INDICATOR ANALYSIS

2. Alur later enhanced this idea by defining parametric temporal logic PLTL [AETP01].
Parametric temporal logic not only allows for checking whether a certain condition
is fulfilled within a given number of steps, it also allows for the following kinds of
statements:

(a) in at most x steps f occurs - F≤xf

(b) for at least y steps g holds - G≤yg

These two calculi are well suited for the two possible kinds of statements that deal with
the combined indicator. For all paths starting in a state s with ∃k ∈ K : [MK , s |= in(k)]
and a numerical value x being the maximal number of steps, the following MTL formula
determines if a scenario can be processed within this number of steps:∨

u∈U

[
F<x+1(in(u))

]
MTL

(6.32)

The sets K and U are used as defined in Section 6.3.5.1. With the defined fairness
constraint (Formula 6.30) still applying, a very similar PLTL formula can be used to
compute the maximal necessary number of steps. It uses a slightly modified Kripke model
MK which is constructed using only those path events which correspond with the scenarios
that are to be investigated.

∨
u∈U

[
F≤x(in(u))

]
PLTL

(6.33)

Both statements directly require the notion of scenarios which was avoided for the other
indicators. Chapter 7 deals with this scenario dependence.

Chapter 7

Interpretation of Real-Time

Capabilities

In the previous chapter, different methods of evaluating the distinct indicators were given.
Now, the actual analysis and interpretation of the systems’ real-time capabilities is per-
formed.
For the entire analysis, the code is presumed to contain no malicious parts. Since all oper-
ating system kernels run in the privileged mode of the CPU, any malicious driver software
or module can cause harm to the overall system and irrational behavior. Taking all pos-
sible malevolent code portions into account would impede the analysis and considerably
taint the results.
All results are interpreted with respect to the use case: soft real-time for multimedia
applications. Thus, the evaluation of real-time capabilities based on the IHF indicators
refers to a MOSRTOS with a CE handling multimedia scenarios (cp. Section 5.2).

7.1 Analysis of Architectural Properties

Evaluation of the soft real-time capabilities a system implements cannot be conducted
without taking into account the kind of real-time application (as pointed out in Chapter
5). Above all, a hard real-time system for a control unit requires the sustaining of interrupt
priorities. A multimedia application demands IHF reactivity and flexibility to facilitate
overall timeliness; soft real-time requirements of another kind of application might be to-
tally different. As a result, it is pointless to pose the question “how soft real-time capable
is a SuI?” – soft real-time capabilities have to be judged with respect to a certain kind of
application and its requirements.

The statements derived in this thesis apply to soft real-time requirements of multimedia
applications. To achieve the IHF reactivity and flexibility needed in a MOSRTOS, deferred
handling of interrupts is to be favored as it keeps the execution of non-interruptible,
privileged kernel sections flexible.
Table 7.1 lists the immediate and deferred handling parts in the SuIs as derived from
the axioms defined in Section 6.1.1. All possible intermission kernel control paths for the
three SuIs are listed in appendix A.1. The three SuIs implement a hybrid approach with

155

156 CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES

immediate as well as deferred handling portions.

System Immediate Handling Deferred Handling Classification

Linux IPIs, Global Timer Local Timer, NIC Interrupt hybrid
all other I/O Interrupts

OpenBSD IPIs, Timer, I/O Interrupts NIC Interrupt hybrid

Pistachio Timer, IPI All other Interrupts hybrid

Table 7.1: Evaluation immediate / deferred handling

However, the weighting differs: OpenBSD handles the vast majority of interrupts imme-
diately while in Pistachio, deferred handling is implemented for nearly all interrupts. The
cross-CPU mailbox and the timer interrupt are the only ones to be completely treated as
they occur.
Linux conceptually strikes a balance. The portion of interrupts with fixed assignment to
immediate or deferred handling is very small; all other routines can be freely implemented
in either way. For deferred handling, the concept of tasklets is to be used.
One fact that all investigated systems (and many more like OpenSolaris) have in common
is the immediate handling of the timer interruption1. By this, a maximal accuracy of
the timing facility and an optimal precision of the scheduler can be gained. The timer
interrupt is the only one that is designed to be priority-compliant. In general, priority
compliance is not a design objective in GPOS (see Section 5.4.4).
Figure 7.1 shows the level of deferral for the three systems. In contrast to an idealized
IHF (see Section 5.4.1), the positioning of the systems on the slider is static.

OpenBSD Linux 2.6 Pistachio

-
deferred parts

Figure 7.1: Amount of deferred interrupt handling

When deferred handling is used in a system, it must still be determined how the work-
load is fragmented into the immediate and deferred parts. Pistachio sources out most
of the workload to the deferred handlers. Only the hardware acknowledgements and the
specification of the handler is carried out immediately. In contrast, OpenBSD and Linux
generally immediately perform a considerable amount of work (though in Linux, this also
depends on the concrete implementation of interrupt service routines).
Comparing the three SuI IHFs with an idealized IHF with on-demand slider position, it
becomes clear that a system which focusses on deferred handling and minimal immediate
portions is closest to the idealized situation: when the workload on the system is high,
a large part of the workload is postponed. When the system is idle, the immediate and
deferred part of handling an interrupt is directly carried out converging on the completely
immediate handling in the idealized IHF. Thus, Pistachio with its high level of deferral
offers the best basis for a highly reactive system with respect to both load situations.

1at least as far as the determination of the current time and the (lazy) invocation of the scheduling

routine are concerned

CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES 157

Linux has evolved in the direction of having more deferred handling to gain the flexibility
and reactivity of µ-kernel systems such as Pistachio. This fact is highly appreciated with
regard to the applicability of Linux for a MOSRTOS system.

Deferred handlers also differ in “how far” they are postponed: are they subject to schedul-
ing or are they always executed prior to the transition back to user space? Table 7.2 shows
the evaluation results of this indicator according to appendix A.2.

System Prior to Scheduling Subject to Scheduling

Linux first 10 current tasklets all other
OpenBSD NIC interrupt none
Pistachio none all

Table 7.2: Evaluation of deferred handlers: prior or subject to scheduling

In Linux, the deferral to scheduling depends on the number of pending tasklets to be
treated. This number does not only comprise deferred handler routines but also other
tasklets, e.g. created by software timers. When scheduling is applied, i.e. for the handlers
exceeding the limit of 10, a common per-CPU activity is used for all those handlers (the
kernel thread ksoftirqd/<cpu>). In OpenBSD, the only interrupt with deferred handler
is always invoked directly when returning from the immediate interrupt handling while in
Pistachio, all deferred handlers are scheduled.
As the CE in a MOSRTOS is designed to schedule activities in user mode, it can be used
to take over the scheduling of the deferred handlers if they are not prior to scheduling.
Due to the paradigm of decoupling control and the fact that the CE possesses more ac-
curate information on the current requirements of the multimedia application, controlling
the deferred handlers is the most beneficial way to achieve soft real-time.
To gain this, task priorities have to be set accordingly: the priorities of the IRQ handlers
have to be decreased while the CE scheduler gets the highest priority. Thus, the CE
scheduler can use its sophisticated heuristics to prioritize the deferred handlers according
to the current application scenario.
From this it also follows that it is not useful to implement a MOSRTOS based on a hard
real-time OS: in such an OS, deferred handling is unwanted so that CE scheduling cannot
be applied on any deferred handler parts. The requirements of reactivity (MOSRTOS)
and priority compliance / immediate handling (hard real-time OS) are inconsistent with
each other.
In OpenBSD, the deferred handling is always prior to scheduling so the CE scheduling
cannot be exploited here. As a consequence, the CE concept will completely lack the
important feature of influencing deferred interrupt handling when used with OpenBSD.
In Linux, it cannot be known beforehand whether a certain deferred handler will be sub-
ject to scheduling. But even if a handler is, it will be treated by the common kernel thread
ksoftirqd/<cpu>, i.e. the CE cannot influence the execution order of handler routines.
This would only be possible if the tasklet mechanism was adjusted and a per-handler kernel
thread was created. Such a modification would be a severe intervention in the fine-tuned
balancing of SoftIRQs.

158 CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES

Only Pistachio allows for exploitation of the CE mechanism without major adjustments
in the OS code. A separate module can be implemented to realize the priority changes for
handlers and CE scheduler. With this, the CE handler scheduling as described above can
be thoroughly used. The custom scheduler concept developed by Wieder [Wie07] could
be easily adapted for this purpose.

System Creation of deferred handling routines

Linux creation of local kernel daemon ksoftirqd/<cpu> outside the model
(boot time)

OpenBSD no handling routines created at all
Pistachio creation of handler thread contexts outside the model (boot time)

Table 7.3: Evaluation of deferred handlers: creation

In Linux and Pistachio, the handler contexts are created at boot time as indicated in Table
7.3. In contrast to minimal or embedded systems, in GPOS there is no resource shortage.
Therefore it is reasonable to create all contexts at boot time so that they are available
without delay at any time. There is even no need for on-demand creation since a static
system setup is assumed, i.e. there are only predefined, static interrupt sources.

All in all, from the architectural point of view, the µ-kernel system Pistachio which provides
the most flexible interrupt handling is best suited for implementing a MOSRTOS.

7.2 Analysis of Determinism and Response Behavior

Reactivity as a major property of a MOSRTOS is not only influenced by architectural
properties, it also depends significantly on the intermission paths: not only the length
of a path is of interest, but also where it is synchronized and thus might have to wait,
where and how it can be interrupted and how long interrupt handling as such can last
when multiple interruptions occur. These properties are covered by the strongly connected
indicators path length, interruptibility and recursion depth.

The minimal path lengths, i.e. the baseline effort that must be spent at a minimum when
handling an interruption, are achieved when immediate handlers are executed without
being delayed or disrupted. Here, Linux and OpenBSD are very much alike as shown in
Table 7.4 condensing the data from appendix A.3.
However, the more relevant figure is the worst case path length – which differs considerably
between Linux and OpenBSD. The inflexible handling of software interrupts in OpenBSD
results in large discrepancies between best and worst case: the handling of software in-
terrupts is directly coupled to the handling of system priorities so that multiple calls of
soft interrupt handling are likely to occur. Moreover, the coarse-grained synchronization
primitives exacerbate the situation: a global kernel lock must be requested every time
synchronization is needed. This results in numerous cycles and synchronization points
(i.e. red edges in the PAG).

CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES 159

System Inter Proc. Interrupts I/O Device Interrupts Timer Interrupts

Linux Min: (8,0,0,0)
Max: (11,1,2,0)

Min: (11,0,0,0)
Max: (14,1,2,0)

Min: (15,0,0,0)
Max: (18,1,2,0)

OpenBSD Min: (4,0,0,0)
Max: (10,4,11,1)

Min: (12,0,0,0)
Max: (27,14,37,5)

Min: (13,0,0,0)
Max: (34,10,26,4)

Pistachio Min: (2,0,0,0)
Max: (7,0,0,0)

Min: (3,0,0,0)
Max: (8,0,0,0)

Min: (3,0,0,0)
Max: (7,0,0,0)

Table 7.4: evaluation of interruption path lengths, notation: (numerical path length,
cycles, acc. cycle length, red edges)

Although in Linux, additional cycles and prolonged paths are present in the worst case fig-
ures as well, the influence of synchronization, a severe drawback for real-time, is minimal.
While the big kernel lock was still used in the early kernel versions that were SMP-capable,
sophisticated fine-grained synchronization primitives such as per-CPU variables (cp. Sec-
tion 4.3.2) were implemented during the development of the Linux 2.x kernel. Thus,
quantities of cycles and synchronization points were significantly reduced.

In Pistachio, all paths2 are considerably shorter than in Linux and OpenBSD. Moreover,
there are no cycles or kernel synchronization points at all. Thus, the handling of an inter-
rupt is completed in a minimum of system steps compared with the other SuIs. Best and
worst case figures do not even differ much so that Pistachio also turns out to be the most
load-tolerant system investigated.

In general, short path lengths contribute to the reactivity of a system. Yet, the inter-
ruptibility of such paths influences reactivity as well: a system that is highly interruptible
allows the direct handling of the interrupting event on the one hand but on the other
delays the finalization of the interrupted handler – and vice versa. Therefore, a relation
between the path length and the interruptibility must be established to make a more so-
phisticated judgement.

System Minimal Interruptibility Maximal Interruptibility Modal Value

Linux Timer Interrupts: 0 Deferred I/O Interrupts: 3 1
OpenBSD Inter Proc. Interrupts: 0 Timer Interrupts: 11 6
Pistachio Inter Proc. Interrupts: 0 Deferred I/O Interrupts: 6 6

Table 7.5: Evaluation of interruptibility

The figures in Table 7.5 summarize maximal, minimal and modal number of interruption
points as derived from the full interruptibility matrices in appendix A.4. The latter figure
is the number of interruption points with the most occurrences in all paths.
Reactivity is constructed from two distinct facets: To judge how fast the handling of a
new interrupt can be started, the ratio of path length and interruption points is evaluated
– the expected number of system steps before the handling can be kicked off depends on

2Note that the Pistachio figures accumulate kernel and user space paths.

160 CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES

the interruptible and non-interruptible portions of a path. The second facet is the overall
delay in handling, i.e. how long it takes to finalize interrupt handling once it is started.
Here, the absolute number of interruption points matters, as well as the recursion depth
as discussed later.
As a matter of fact, the two facets conflict: for the first one, higher interruptibility is
preferable, for the second, interruptions prolong the completion of the handling and are
thus undesirable. In general, short path lengths mitigate this tradeoff as they allow the
swift resumption of an interrupted path. Linux addresses this tradeoff by giving the deci-
sion of interruptibility (voluntary kernel preemption) to the user at compile time.

In Linux, the absolute number of interruption points is low for most paths including im-
mediate handlers. This is so mainly because the lowest level of preemption was assumed
for this model. In OpenBSD, paths can be interrupted more often, but are also expected
to be longer so that long non-interruptible sequences can occur. Moreover, the fact that
the high path lengths cause an interrupted execution to wait a long time to be resumed
is assumed to cause a much higher delay than having to wait for an interruption slot to
start execution. Therefore, the reactivity of OpenBSD is identified to be weaker than that
of Linux with its fewer interruption points but also shorter paths.
Pistachio unites both: nearly all states can be interrupted so that treatment of an inter-
rupt is started quickly. At the same time, all paths are sufficiently short so that every
interrupted path can be resumed with short delay. This is the optimal combination of
properties.
The overall delay depends on the actual nesting of interruptions: any interruptible path
currently executed can be left to process a more recent interrupt leading to a recursive
descent. The maximal depth of such a recursion depends on the concrete system imple-
mentation. Table 7.6 lists the maximal recursion depths without the exceptions.

System Maximal Recursion Depth

Linux 2 timer + 3 IPI + 6 I/O devices = 11
OpenBSD 1 syscall + 1 IPI + 1 timer + 6 I/O devices = 9
Pistachio 1 IPI + 1 timer + 6 I/O devices = 8

Table 7.6: Maximal recursion depths

The different values represent different implementation strategies. In Linux, each IPI
comes with its own interrupt vector which simplifies treatment of mutual interruptions.
This is possible as the number of IPIs is small. In OpenBSD, there is only one IPI vec-
tor with branching towards the respective handler routine. The mutual interruptibility is
software-based and thus costly, but the best solution for the large number of similar IPIs,
e.g. to alleviate the initialization of interrupt vectors.

The overall delay of an interrupted path depends on the particular path lengths and the
actual level of recursion. While the maximum recursion level as given above depends
statically on a system’s implementation, scenarios and the actual overall paths resulting
from them have to be taken into account to derive further statements on the real-time
behavior of a system.

CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES 161

The main idea in a CE system is to exploit information about the topology and thus the
structure of multimedia scenarios. If a mapping of these known application scenarios to
interrupt scenarios existed, it would even be possible to derive the actual recursion depth
– and from that the overall path length – for each scenario beforehand. The maximal
recursion depth is the upper boundary for this value.
Since application scenario scheduling and buffer planning are mostly static in a CE sys-
tem, a one-to-one mapping between application scenarios and interrupt load scenarios as
defined in Definition 4.1 can be established as discussed in Section 8.2. A concrete CE
specification is needed for this.

The response behavior of a system however can be evaluated without taking these scenarios
into account. The figures derived clearly show that Pistachio combines the most favorable
properties once more, followed by Linux.

7.3 Analysis of Reliability

To model check the reliability indicators, infinite handling and losing interrupts, the models
have to be converted into a format readable by an established model checking tool. This
translation is to be done based on the transformation rule set presented in Section 6.3.4.1.
Two approaches can be taken:

1. Implementation of a parser exploiting the rule set to automatically generate suitable
code from the ESF model

2. Manual on-the-fly application of the rule set to the ESF models to create code

For the first approach, it would be necessary to have a specific format for ESF models.
Today, there is no editor capable of handling ESF and of creating textual model files (e.g.
based on XMI). The specification and implementation of this would be a separate work
(see Section 8.2) that could then serve as a basis for the development of a parser.
For now, manual on-the-fly creation of the models is done. As the models are not too
large, this can be done quickly and efficiently. The target of the translation is the input
language for the model checker NuSMV (see Section 6.3.2) which performs symbolic model
checking. For conventional on-the-fly model checking, the ESF models are too complex.
In the following, the translation of the ESF models into a NuSMV-compliant format will
be presented.

For the two indicators under investigation, parallelism within a system is not relevant:
inter-CPU synchronization is taken into account as the model checker anyway unwinds all
possible situations including values of conditions. This allows concentrating on one CPU.
In case there is a prolonged path on a distinguished CPU3, this one is taken.

Since malicious kernel code is disregarded, the only exception that could occur in kernel
mode is the page fault. However, as kernel parts are never swapped, this very exception
cannot be raised in kernel mode so it can be excluded from further considerations as

3In the case of the timer interrupt, some housekeeping tasks are only executed on the primary processor.

162 CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES

well. Therefore, the exception submachine is not translated into the SMV models. Only
the OpenBSD SMV model embodies the system call handling since system calls are not
implemented by means of software generated interrupts in Linux and Pistachio. Due to the
fact that the according interrupt vector for system calls in OpenBSD is 128, its interrupt
priority ensures that it can be disrupted by any other interrupt but not dismiss any of the
regarded IKCPs itself.
The set Pconf is thus the set of basic states within one component, i.e. one CPU sub-
model. This set of basic states is defined in the section VAR of the NuSMV file. This part
contains all variable declarations of any kind. The specification of the states and any other
enumeration type as the two other subsets Pimp and Pexp are declared in this portion of
the code as given in the following SMV pseudo-code example:

MODULE main

VAR
-- P_{CONF}
state : {<in_STATE_1>, <in_STATE_2>, ..., <in_STATE_x>};

-- P_{IMP}
pc : {<pc_1>, <pc_2>, ... , <pc_y>};

--P_{EXP}
cond_1 : boolean;
cond_2 : boolean;

The relations ∆conf , ∆imp and ∆exp are then implemented as described in Section 6.3.4.1
based on the step relation (next) of the SMV model checker.

ASSIGN
-- Delta_{P_{CONF}}
init(state) := in_STATE_x;
next(state) := case

<cond> : in_STATE_x;
...
esac;

-- Delta_{P_{IMP}}
init(pc) := pc_NONE;
next(pc) := case

<cond> : pc_y;
...
esac;

-- Delta_{P_{EXP}}
init(cond_1):= 0;
next(pc) := case

<cond> : 1;
...
esac;

CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES 163

In SMV, all atomic propositions are defined separately, i.e. without any relation to other
atomic propositions. However, the APs defined for the Kripke representation of ESF are
connected: they all rely on the step relation between system configurations. Thus, it is
necessary to synchronize the next relations of Pimp and Pexp with the next relation for
states which represents the actual ESF step relation.
This synchronization is achieved by sophisticated guarding, i.e. similar conditions for
stepping further in the SMV model for all three sets of propositions. The following code
shows an example of where the next basic state and the next path condition are set
analogously, both depending on the current state and path event.

ASSIGN
-- Delta_{P_{CONF}}
init(state) := in_STATE_x;
next(state) := case

(state = in_STATE_x & pe = pe_y) : in_STATE_y;
(state = in_STATE_x & pe = pe_z) : in_STATE_z;
esac;

-- Delta_{P_{IMP}}
init(pc) := pc_NONE;
next(pc) := case

(state = in_STATE_x & pe = pe_y) : pc_Y;
(state = in_STATE_x & pe = pe_z) : pc_Z;
esac;

Without this parallelism, the model would “fall apart” in terms of generation of the
Kripke states, i.e. the states generated and their relations would no longer reflect the
chosen statechart semantics. Note that enforcing this synchronous stepping would also be
a challenge when implementing a parser for ESF models to be translated into SMV.
The fairness constraints are implemented as justice constraints [CCJ+05] using the SMV
keyword JUSTICE. The example below shows the fairness condition “path event x appears
an infinite number of times” for a model with two different interrupts that can occur, i.e.
a maximum nesting level of 2. As a path event can only occur again when the previous
one of this type was processed (i.e. there is no recursion level with the corresponding path
condition pending), the fairness constraint can be rewritten as follows:

JUSTICE pcs[0]!=pc_X & pcs[1]!=pc_X;

Finally, the indicators are given using the keyword LTLSPEC:

LTLSPEC
G(state = in_STATE_START -> F(state = in_STATE_FINAL))

Variables that are of no enumeration type were defined as boolean where possible. As
NuSMV internally uses boolean representations for all variables, this greatly reduces the
complexity of model checking compared with, for example, integer variables that are inter-
nally represented bitwise to comply with the boolean format. This simplification applies
for example for the counter of pending SoftIRQs: in the model, it is only noted whether
there are soft interrupts pending.

164 CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES

Table 7.7 lists the characteristic figures for the three SMV models.

System BDD Nodes All States Reachable States

Linux 2679229 1.22664 · 1013 2.87907 · 106

OpenBSD 1035634 5.0251 · 1014 625860
Pistachio 1195862 1.7408 · 1011 3215

Table 7.7: Model characteristics in NuSMV

In Table 7.8, the results of the analysis are presented.

System Infinite Handling Lost Interrupts

Linux no none
OpenBSD possible only for syscalls possible only for syscalls
Pistachio not in kernel mode none

Table 7.8: Model checking results

In Linux, infinite handling is impossible: under the given fairness constraints, any IKCP
is terminated in a finite number of steps, no matter where and how often it is interrupted.
Furthermore, all interrupts are finally treated in their dedicated handling states.
In OpenBSD, this is not the case: when the first interruption treated was a syscall, the
interrupt handling does not necessarily terminate. Due to the low priority of the syscall
itself, its handling can always be disrupted by any other interrupt. As the handling of
interrupts is always terminated before resuming syscall handling, all interrupts are free to
occur again. The following example shows such a case where the IHF alternates between
syscall and interrupt handling without terminating.

// Example: Infinite Handling in OpenBSD
// handling of syscall pe_SYS
-> state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM
-> state = in_IKCP-SYS-SET_LOCK-LOCK
-> state = in_IKCP-SYS-SET_LOCK-SPLX
-> state = in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL -> Input: 1.5 <-
// interrupted by pe_INT_LAPIC
// Loop starts
-> state = in_IKCP-SYS-REM_LOCK-REMOVE
-> state = in_IKCP-INT-CREATE_FRAME
-> state = in_IKCP-INT-LAPIC_TIMER-EOI
-> state = in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK
-> state = in_IKCP-INT-LAPIC_TIMER-SET_LOCK-SPLX
-> state = in_IKCP-INT-LAPIC_TIMER-TSC_ACT
-> state = in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-TIMER
-> state = in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SCHEDULE
-> state = in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SETSOFTCLOCK
-> state = in_IKCP-INT-LAPIC_TIMER-REM_LOCK-REMOVE
-> state = in_IKCP-INT-LAPIC_TIMER-REM_LOCK-SPLX
-> state = in_IKCP-INT-XDORETI
// timer handling completed, return to syscall handling

CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES 165

// Loop: again interrupted by pe_INT_LAPIC
-> state = in_IKCP-SYS-REM_LOCK-REMOVE

For all other interrupts, no infinite handling can occur. Moreover, all handler states of
interrupts are reached, so that interrupts cannot get lost once their processing is triggered.
For syscalls, handling cannot be guaranteed due to the low priority and interruptibility of
the syscall as discussed above.
Note that in systems where syscalls are not implemented as software generated interrupts,
it is not mandatory to guarantee that the syscall handling is terminated. There, they are
treated just as any kernel paths for which the postulated demand for completion does not
apply – it only has to be guaranteed that they can be resumed.

In Pistachio, no infinite handling can happen in kernel mode. However, as the deferred
handling is executed in user mode, a case similar to the alternation problem in OpenBSD
can occur: although the kernel mode IHF always terminates, the user space handler can
be interrupted at any time. Thus, the overall handling of the interrupt is not necessarily
completed as illustrated by the example below.

// Example: Infinite Handling in Pistachio
// handling of pe_IO_0 up to user space handler
-> state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK
-> state = in_KERNEL-INTERRUPT-HW_IRQ-EOI
-> state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0
-> state = in_KERNEL-INTERRUPT-HW_IRQ-IRET
-> state = in_USER-HANDLERS-IRQ_THREAD
// handler is interrupted by pe_IO_5
// Loop starts here
-> state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK
-> state = in_KERNEL-INTERRUPT-HW_IRQ-EOI
-> state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5
-> state = in_KERNEL-INTERRUPT-HW_IRQ-IRET
// resume handling of pc_IO_0
-> state = in_USER-HANDLERS-IRQ_THREAD
// interrupt pe_IO_5 occurs again, user space handling is left --> loop
-> state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK

As the dedicated handler states for the interrupts are located in kernel space, losing inter-
rupts is not possible in Pistachio – despite the possibility of infinite handling.

When the cases of switching between kernel mode and user mode in Pistachio and be-
tween syscall handling and interrupt handling in OpenBSD are excluded from the model
checking indicator, the analysis shows that there are no other occurrences of infinite han-
dling or losing interrupts in the systems.
In OpenBSD, the possibly infinite handling of syscalls is induced by the software archi-
tecture: as syscalls have the lowest possible priority, it can only be guaranteed that their
handling is resumed, but not that it is completed. This priority was consciously chosen
in system design. In the other systems, this infinite handling cannot occur as syscalls are
not implemented as interrupts and the other interrupts have no fixed priorities. While
OpenBSD is certainly unsuitable for hard real-time, the identified flaw can be handled in a
MOSRTOS: as the scenarios, including syscalls, are known to the CE a priori, it is possible

166 CHAPTER 7. INTERPRETATION OF REAL-TIME CAPABILITIES

to implement the identification of a possible infinite handling scenario beforehand. Thus,
a procedure to avoid infinite handling and lost syscalls can be integrated into the CE.
This can be used to address infinite handling in Pistachio as well: the CE can be imple-
mented to react to such a scenario beforehand to avoid the problem, e.g. by rescheduling
or by incorporating a small delay to allow for completing the handling in user space. How-
ever, these identified cases are exotic situations unlikely to happen: they demand worst
case scenarios with interrupts that occur within such infinitesimal time intervals that it
is practically impossible for such a scenario to happen in a multimedia application on a
non-malfunctioning system.
Since device interrupts cannot get lost due to the fact that their handling is not conducted,
the only remaining possible cause for losing such interrupts is an overflow of the buffering
circuit that stores interrupts occurring while the corresponding interrupt line is masked.
When enhancing the modeling framework presented with real execution times or proper
worst case execution times as discussed in Sections 6.2.1 and 8.2, a direct algebraic rela-
tion between scenarios and buffer filling level of the circuit could be defined. Establishing
such a relation based on path length is of no use since the external stimuli relate to the
real-world time scale.
All in all, the analysis of the data-based indicators shows that there are only some very
special cases in Pistachio and OpenBSD that have to be covered by the CE implementa-
tion to prevent erroneous behavior, while for Linux, the analysis has shown that erroneous
behavior cannot occur at all.

Taking all defined and investigated IHF indicators into account, it is clear that the µ-kernel
system Pistachio possesses the most advantageous properties with respect to architectural
and control-based indicators. The minimalist design provides the highest flexibility for
implementing a MOSRTOS using a CE. Directly comparing the two non-µ-kernel sys-
tems, Linux scores better than OpenBSD. This is mainly due to the more modern kernel
implementation with clear µ-kernel tendencies.
As the peril of infinite handling can be averted beforehand by the CE, there are no seri-
ous flaws concerning the data-based properties of Pistachio. Taking all this into account,
Pistachio is highly suitable for the implementation of a MOSRTOS and thus the prime
recommendation. Linux with its expedient properties is a reasonable practical alternative
to the still experimental Pistachio system.
L4Linux4 might be a good compromise: this system combines a µ-kernel OS with a full
Linux on top of it [HHW98]. This unites the demonstrated advantages of a µ-kernel system
with the widely supported and well-established Linux OS.

4http://os.inf.tu-dresden.de/L4/LinuxOnL4/

Chapter 8

Conclusion

8.1 Summary

In this thesis, a formal approach was conducted to derive statements on the usability of
general purpose operating systems for the implementation of a multimedia-oriented soft
real-time OS. The focus of the investigation was on the interrupt handling facility of such
systems as this is an important determining factor of a system’s soft real-time capabilities.

After specification of the basic conditions such as the hardware setup, formal models for
the interrupt handling facilities of three selected GPOS – Linux, OpenBSD and Pistachio
– were created. To facilitate the generation of these models, a modeling technique uniting
simplicity in modeling, clearness in presentation and formal accuracy was needed. As no
existing technique could satisfactorily provide these properties, a new use case tailored
modeling method based on statecharts was developed: the engineering statechart formal-
ism ESF. With the ESF and its modeling paradigms, it becomes possible to model most
parts of an operating system in a simple way. Due to the formal foundations, the ESF
models can serve as a basis for the analysis of the soft real-time indicators investigated
in this thesis. Moreover, the ESF as such facilitates the application of best practices in
software engineering such as model-driven analysis and verification to real-world operating
systems and paves the way for future research and application in operating systems design
and analysis.

Though the term soft real-time is widely used, it turned out that existing definitions are
rather fuzzy. Therefore, a definition of real-time was presented based on provided and
perceived values of a task over time.
The perceived values that relate to a complete system was then projected on the inter-
rupt handling facility of a MOSRTOS system that uses a component extension module to
handle multimedia streams. This led to the specification of indicators that determine the
soft real-time capabilities of an IHF in a MOSRTOS environment.

For the evaluation of the defined indicators, indicator-specific representations of the ESF
models were devised preserving their formal expressiveness. For the different classes of in-
dicators – architectural, control-based and data-based – different analysis techniques were
introduced: static and graph-based analysis as well as temporal logic model checking were

167

168 CHAPTER 8. CONCLUSION

applied. For the latter, a complete rule set to translate all ESF constituents into Kripke
structures, a universal formal structure suitable for temporal logic model checking, was
specified.
The examination of the indicators revealed that Pistachio is most suitable for the im-
plementation of a MOSRTOS. Nonetheless, Linux also incorporates some advantageous
properties so that it is a suitable candidate, too.

8.2 Outlook

As this thesis contributed to a variety of research fields, further research options arise in
different areas.

8.2.1 Operating Systems Engineering with ESF

In order to elaborate the existing ESF models of the three SuIs, interrupt service routines
for dedicated devices can be modeled. This will turn the handlers into white boxes even
facilitating model-based analysis of drivers and other kernel modules. Other parts of the
SuIs such as the process management facility can be particularized as well.
As a next step, the ESF modeling and analysis techniques can be applied to other operat-
ing systems, e.g. hard real-time systems such as QNX. This application aims at different
goals: to either answer questions on real-time capabilities as done in this thesis or to
pursue new objectives using the ESF approach as a framework.

As already discussed, the integration of timing into the models is also an issue. As ESF
as a modeling method already allows this, the main task is to perform worst case execu-
tion time analysis of functions and calls by measuring actual OS behavior. Afterwards,
additional indicators evaluating concrete timing can be defined.
Another promising approach is to streamline CE research with the ESF concept: an ESF
model of the CE can be integrated into timed OS models to allow for the analysis of
concrete timed scenarios. As an alternative, an approach to stochastically analyze soft
real-time behavior with respect to given load profiles and scenarios could be developed.
The advantages of a clear visual representation of OS using ESF can be exploited when
it comes to education: ESF can serve as a vehicle to clearly show operating systems
structures and principles. To pursue this goal, traditional operating systems models such
as client-server protocols and master/slave relationships can be mapped to ESF models.
Furthermore, Linux trace visualization [Koh07] – that already supports XMI formats –
and ESF can be brought together to provide a consistent visual notation for static and
dynamic illustrations of OS.

8.2.2 Implementation of ESF

A graphical editor to create and modify ESF models is necessary to alleviate the modeling
process and to allow for electronic interchange of the models. For the latter, an XMI
representation of the ESF must be defined. One option is to enhance the open-source
ArgoUML editor that already supports UML statecharts. The Netbeans XMI writer1

1http://mdr.netbeans.org/uml2mof/

CHAPTER 8. CONCLUSION 169

used by ArgoUML can be modified to support ESF.
Taking these steps, a program can be designed and implemented that converts the XMI
representation of an ESF model into the input format of a model checking tool.

8.3 Conclusion

The research conducted clearly contributes to filling a blank space in operating systems
research and engineering. It also narrows the gap between best practises in software engi-
neering and methods for analyzing operating systems. The real-time definition provided
as well as the analysis of the soft real-time capabilities of concrete real-world operating
systems greatly assist the design and development of a multimedia-oriented soft real-time
system.

170 CHAPTER 8. CONCLUSION

Bibliography

[AB76] James Wayne Anderson and J. C. Browne. Graph Models of Computer Sys-
tems: Application to Performance Evaluation of an Operating System. In
SIGMETRICS ’76: Proceedings of the 1976 ACM SIGMETRICS Conference
on Computer Performance Modeling Measurement and Evaluation, pages 166–
178, New York, NY, USA, 1976. ACM Press.

[AETP01] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron A. Peled. Para-
metric Temporal Logic for “Model Measuring”. ACM Trans. Comput. Logic,
2(3):388–407, 2001.

[AH99] Alan Au and Gernot Heiser. L4 User Manual, 1999.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1974.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating Hi-
erarchical State Machines. In ICAL ’99: Proceedings of the 26th International
Colloquium on Automata, Languages and Programming, pages 169–178, Lon-
don, UK, 1999. Springer-Verlag.

[AY01] Rajeev Alur and Mihalis Yannakakis. Model Checking of Hierarchical State
Machines. ACM Trans. Program. Lang. Syst., 23(3):273–303, 2001.

[BAMP81] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The Temporal Logic
of Branching Time. In POPL ’81: Proceedings of the 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 164–176,
New York, NY, USA, 1981. ACM.

[Bar98] Michael Barbehenn. A Note on the Complexity of Dijkstra’s Algorithm for
Graphs with Weighted Vertices. IEEE Transactions on Computers, 47(2):263,
1998.

[BBB97] R. Baron, D. Black, and W. Bolosky. MACH Kernel Interface Manual, 1997.

[BBD+99] Tom Bienmüller, Udo Brockmeyer, Werner Damm, Gert Döhmen, Claus Eß-
mann, Hans-Jürgen Holberg, Hardi Hungar, Bernhard Josko, Rainer Schlör,
Gunnar Wittich, Hartmut Wittke, Geoffrey Clements, John Rowlands, and
Eric Sefton. Formal Verification of an Avionics Application using Abstraction

171

172 BIBLIOGRAPHY

and Symbolic Model Checking. In Proceedings of the Seventh Safety-Critical
Systems Symposium, pages 150–173. Springer-Verlag, 1999.

[BC01] Daniel Pierre Bovet and Marco Cassetti. Understanding the Linux Kernel.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1. edition, 2001.

[BC06] Daniel Pierre Bovet and Marco Cesati. Understanding the Linux Kernel.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 3. edition, 2006.

[BCM+92] J. R. Burch, Edmund M. Clarke, Kenneth Lauchlin McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and beyond. Inf. Comput.,
98(2):142–170, 1992.

[BDW00] Tom Bienmüller, Werner Damm, and Hartmut Wittke. The STATEMATE
Verification Environment - Making It Real. In CAV ’00: Proceedings of the
12th International Conference on Computer Aided Verification, pages 561–567,
London, UK, 2000. Springer-Verlag.

[Ber73] Claude Berge. Graphs and Hypergraphs, volume 6 of North - Holland Mathe-
matical Library. North Holland, Amsterdam, 1. edition, 1973.

[Bev89] W. R. Bevier. KIT: A Study in Operating System Verification. IEEE Trans.
Softw. Eng., 15(11):1382–1396, 1989.

[BG92] Gérard Berry and Georges Gonthier. The ESTEREL Synchronous Program-
ming Language: Design, Semantics, Implementation. Sci. Comput. Program.,
19(2):87–152, 1992.

[Bie97] Armin Biere. µcke - Efficient µ-Calculus Model Checking. In CAV ’97: Pro-
ceedings of the 9th International Conference on Computer Aided Verification,
pages 468–471, London, UK, 1997. Springer-Verlag.

[Bli89] Wayne D. Blizard. Multiset Theory. Notre Dame Journal of Formal Logic,
30(1):36–66, 1989.

[BR04] Purandar Bhaduri and S. Ramesh. Model Checking of Statechart Models:
Survey and Research Directions, July 2004.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Trans. Comput., 35(8):677–691, 1986.

[BS94] W. R. Bevier and L. Smith. A Mathematical Model of the Mach Kernel: Kernel
Requests. Technical Report 53, Computational Logic Inc., 1994.

[Büc62] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic. In
E. Nagel, editor, Proceedings 1960 International Congress on Logic, Methodol-
ogy and Philosophy of Science, pages 1–11. Stanford University Press, 1962.

[Büs03] Robert Büssow. Model Checking Combined Z and Statechart Specifications.
PhD thesis, Technical University Berlin, 2003.

BIBLIOGRAPHY 173

[BW95] A. Burns and A. J. Wellings. Engineering a Hard Real-Time System: From
Theory to Practice. Softw. Pract. Exper., 25(7):705–726, 1995.

[BW98a] Udo Brockmeyer and Gunnar Wittich. Real-Time Verification of Statemate De-
signs. In CAV ’98: Proceedings of the 10th International Conference on Com-
puter Aided Verification, pages 537–541, London, UK, 1998. Springer-Verlag.

[BW98b] Udo Brockmeyer and Gunnar Wittich. Tamagotchis Need Not Die - Verification
of STATEMENT Design. In TACAS ’98: Proceedings of the 4th International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
pages 217–231, London, UK, 1998. Springer-Verlag.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: A New Symbolic Model Verifier. In N. Halbwachs and D. Peled,
editors, Proceedings Eleventh Conference on Computer-Aided Verification
(CAV’99), number 1633 in Lecture Notes in Computer Science, pages 495–
499, Trento, Italy, July 1999. Springer.

[CCJ+05] Robert Cavada, Alessandro Cimatti, Charles Jochim, Gavin Keighren,
Emanuele Olivetti, Marco Pistore, M. Roveri, and Andrei Tchaltsev. NuSMV
2.4 User Manual, 2005.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic. In Logic of Pro-
grams, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[CES83] Edmund M. Clarke, E. Allen Emerson, and A. P. Sistla. Automatic Verification
of Finite State Concurrent System Using Temporal Logic Specifications: A
Practical Approach. In POPL ’83: Proceedings of the 10th ACM SIGACT-
SIGPLAN symposium on Principles of Programming Languages, pages 117–
126, New York, NY, USA, 1983. ACM.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, January 2000.

[CH00] Edmund M. Clarke and W. Heinle. Modular translation of Statecharts to
SMV. Technical Report CMU-CS-00-XXX, Carnegie Mellon University School
of Computer Science, August 2000.

[Che76] Peter Pin-Shan Chen. The Entity-Relationship Model - Towards a Unified
View of Data. ACM Trans. Database Syst., 1(1):9–36, 1976.

[Cla90] Raymond Keith Clark. Scheduling Dependent Real-Time Activities. PhD thesis,
1990.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers. O’Reilly Media, Inc., 3. edition, 2005.

[CY74] Richard W. Conn and Richard H. Yamamoto. A Model Highlighting the Se-
curity of Operating Systems. In ACM 74: Proceedings of the 1974 Annual
Conference, pages 174–179, New York, NY, USA, 1974. ACM Press.

174 BIBLIOGRAPHY

[Day93a] Nancy Day. A Model Checker for Statecharts. Technical report, University of
British Columbia, Vancouver, Canada, 1993.

[Day93b] Nancy Day. The Semantics of Statecharts in HOL. In 6th International Work-
shop on Higher Order Logic Theorem Proving and Its Applications, volume 780
of Lecture Notes in Computer Science, pages 339–351, Vancouver, BC, August
1993. Springer-Verlag.

[DHP05] Iakov Dalinger, Mark A. Hillebrand, and Wolfgang J. Paul. On the Verification
of Memory Management Mechanisms. In Dominique Borrione and Wolfgang J.
Paul, editors, CHARME, volume 3725 of Lecture Notes in Computer Science,
pages 301–316. Springer, 2005.

[DW05] Sven Thorsten Dietrich and Daniel Walker. The Evolution of Real-Time Linux.
In Proceeding of the seventh Real-Time Linux Workshop, Boise, Idaho, 2005.
The Real-Time Linux Foundation Inc.

[DWQQ01] Wei Dong, Ji Wang, Xuan Qi, and Zhi-Chang Qi. Model Checking UML Stat-
echarts. In APSEC ’01: Proceedings of the Eighth Asia-Pacific Conference on
Software Engineering, page 363, Washington, DC, USA, 2001. IEEE Computer
Society.

[Edw01] James Edwards. Process Algebras for Protocol Validation and Analysis. In
Proceedings of PREP 2001, pages 1–20, Keele, April 2001. EPSRC.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never”
Revisited: On Branching Versus Linear Time Temporal Logic. J. ACM,
33(1):151–178, 1986.

[Ehr88] Hartmut Ehrig. Graph-Grammars and Their Application to Computer Science.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1988.

[Eme81] E. Allen Emerson. Branching Time Temporal Logic and the Design of Correct
Concurrent Programs. PhD thesis, Harvard University, 1981.

[Erk05] Juha Erkkilä. Real-Time Audio Servers on BSD Unix Derivatives. Master’s
thesis, University of Jyväskylä, Finland, 2005.

[Eul72] Leonard Euler. Lettres a une Princess d’Allemagne (Translated to English).
Longman in 1830, 3. edition, 1772.

[Feh93] Rainer Fehling. A Concept of Hierarchical Petri Nets with Building Blocks. In
Papers from the 12th International Conference on Applications and Theory of
Petri Nets, pages 148–168, London, UK, 1993. Springer-Verlag.

[FH01] Kay Fuhrmann and Jan-Juan Hiemer. Formal Verification of STATEMATE-
Statecharts. Technical report, ESPRESS Project, 2001.

[Fil97] T. Filkorn. Applications of Formal Verification in Industrial Automation and
Telecommunication. In Proceedings of Workshop on Formal Design of Safety
Critical Embedded Systems, 1997.

BIBLIOGRAPHY 175

[FL01] Thomas Flik and Hans Liebig. Mikroprozessortechnik (in German). Springer,
6. edition, 2001.

[GHJ+77] M. G. Gouda, Y. W. Han, E. Douglas Jensen, W. D. Johnson, and R. Y.
Kain. Applications of DDP Technology to BMD: Architectures and Algorithms.
Distributed Data Processing Technology, 4, 1977.

[GHLP05] Mauro Gargano, Mark A. Hillebrand, Dirk Leinenbach, and Wolfgang J. Paul.
On the Correctness of Operating System Kernels. In Joe Hurd and Thomas F.
Melham, editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2005.

[GKS94] Sven Graupner, Winfried Kalfa, and Frank Schubert. Multi-Level Architecture
of Object-Oriented Operating Systems. Technical Report TR-94-056, Interna-
tional Computer Science Institute, Berkeley, CA, 1994.

[GL91] B. O. Gallmeister and C. Lanier. Early Experience with POSIX 1003.4 and
POSIX 1003.4A. In IEEE Real-Time Systems Symposium, pages 190–198,
1991.

[GLT80] Hartmann J. Genrich, Kurt Lautenbach, and P. S. Thiagarajan. Elements of
General Net Theory. In Proceedings of the Advanced Course on General Net
Theory of Processes and Systems, pages 21–163, London, UK, 1980. Springer-
Verlag.

[Gog07] Robert Gogolok. Reverse-Engineering des Interrupt-Subsystems von OpenBSD
(in German). Bachelors thesis, August 2007.

[GP93] Patrice Godefroid and Didier Pirottin. Refining Dependencies Improves
Partial-Order Verification Methods (Extended Abstract). In CAV ’93: Pro-
ceedings of the 5th International Conference on Computer Aided Verification,
pages 438–449, London, UK, 1993. Springer-Verlag.

[Han73] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1973.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8(3):231–274, 1987.

[Har88] David Harel. On Visual Formalisms. Communications of the ACM, 31(8):514–
531, 1988.

[HG88] Cornelis Huizing and Rob Gerth. On the Semantics of Reactive Systems. Tech-
nical report, Eindhoven University of Technology, 1988.

[HGdR88] Cornelis Huizing, Rob Gerth, and Willem P. de Roever. Modeling Statecharts
Behaviour in a Fully Abstract Way. In CAAP ’88: Proceedings of the 13th
Colloquium on Trees in Algebra and Programming, pages 271–294, London,
UK, 1988. Springer-Verlag.

176 BIBLIOGRAPHY

[HHLS97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, and Sebastian Schönberg.
The Performance of Microkernel-based Systems. In SOSP ’97: Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles, pages 66–77,
New York, NY, USA, 1997. ACM Press.

[HHW98] Hermann Härtig, Michael Hohmuth, and Jean Wolter. Taming Linux, 1998.

[Hie01] Jan-Juan Hiemer. Statecharts in CSP - Ein Prozessmodell zur Analyse von
Statemate-Statecharts. PhD thesis, Technical University Berlin, Berlin, Ger-
many, 2001.

[HK92] David Harel and Chaim-arie Kahana. On Statecharts With Overlapping. ACM
Trans. Softw. Eng. Methodol., 1(4):399–421, 1992.

[HK94] Johannes Helbig and Peter Kelb. An OBDD-Representation of Statecharts. In
EDAC-ETC-EUROASIC, pages 142–149, 1994.

[HLN+90] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi,
R. Sherman, Aharon Shtull-Trauring, and Mark B. Trakhtenbrot. STATE-
MATE: A Working Environment for the Development of Complex Reactive
Systems. Software Engineering, 16(4):403–414, 1990.

[HN96] David Harel and Amnon Naamad. The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):293–333,
1996.

[HN04] K Hangos and E Nemeth. Multi-Scale Process Model Description by generalized
Hierarchical CPN Models. Technical Report SCL-002, Hungarian Academy of
Sciences, 2004.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[Hoh98] Michael Hohmuth. The Fiasco Kernel: Requirements Definition, 1998.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–295, May 1997.

[Hol03] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 1 edition, 2003.

[HP98] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts:
The Statemate Approach. McGraw-Hill, Inc., New York, NY, USA, 1998.

[HPSS87] David Harel, Amir Pnueli, J. Schmidt, and R. Sherman. On the Formal Se-
mantics of Statecharts. pages 54–64, 1987.

[IBDR03] A. Iqbal, A. K. Bhattacharjee, S. D. Dhodapkar, and S. Ramesh. Visual Mod-
eling and Verification of Distributed Reactive Systems. In SAFECOMP, pages
22–34, 2003.

BIBLIOGRAPHY 177

[IEE95] IEEE. IEEE Standard Hardware Description Language based on the Verilog
Hardware Description Language, 1995.

[IEE01] IEEE. The Open Group Base Specifications Issue 6, IEEE Std 1003.1-2001,
2001.

[Int88] Intel. 8259A - Programmable Interrupt Controller, December 1988.

[Int94] Intel. 82C54 CHMOS Programmable Interval Timer, 1994.

[Int96] Intel. 82093AA I/O Advanced Programmable Interrupt Controller (IOAPIC),
1996.

[Int97] Intel. MultiProcessor Specification Version 1.4, 1997.

[Int04] Intel. IA-PC HPET (High Precision Event Timers) Specification, 2004.

[Int05] Intel. IA-32 Intel Architecture Software Developers Manual - Volume 3: System
Programming Guide, 2005.

[Int08a] Intel. INTEL 64 and IA-32 Architectures Software Developers Manual - Volume
1: Basic Architecture, February 2008.

[Int08b] Intel. Intel 64 and IA-32 Architectures Software Developers Manual System
Programming Guide, Part 1, 2008.

[ISO89] International Organization for Standardization ISO. Information Processing
Systems – Open Systems Interconnection – Estelle – A Formal Description
Technique Based on an Extended State Transition Model, 1989.

[ISO91] International Organization for Standardization ISO. Information Processing
Systems – Open Systems Interconnection – Guidelines for the Application of
Estelle, LOTOS, and SDL, 1991.

[ISO94] International Organization for Standardization ISO. ISO 8402 Quality Man-
agement and Quality Assurance: Vocabulary, 1994.

[ISO01] International Organization for Standardization ISO/IEC. ISO/IEC 9126. Soft-
ware Engineering - Product Quality. ISO/IEC, 2001.

[ISO05] International Organization for Standardization ISO. 9000:2005 Quality Man-
agement Systems – Fundamentals and Vocabulary, 2005.

[Jef94] Jeffrey J. Joyce and Carl-Johan H. Seger. The HOL-Voss System: Model-
Checking Inside a General-Purpose Theorem-Prover. In HUG ’93: Proceedings
of the 6th International Workshop on Higher Order Logic Theorem Proving
and its Applications, pages 185–198, London, UK, 1994. Springer-Verlag.

[Jen91] Kurt Jensen. Coloured Petri Nets: a High Level Language for System Design
and Analysis. In APN 90: Proceedings on Advances in Petri Nets 1990, pages
342–416, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

178 BIBLIOGRAPHY

[Jen00a] E. Douglas Jensen. Utility Functions: A General Scalable Technology for Soft-
ware Execution Timeliness as a Quality of Service Part 1: Motivation, 2000.

[Jen00b] E. Douglas Jensen. Utility Functions: A General Scalable Technology for Soft-
ware Execution Timeliness as a Quality of Service Part 2: The Utility Function
Model of Timeliness, 2000.

[JLT85] E. Douglas Jensen, Carey Douglass Locke, and Hideyuki Tokuda. A Time-
Driven Scheduling Model for Real-Time Operating Systems. In IEEE Real-
Time Systems Symposium, pages 112–122, 1985.

[JW96] Daniel Jackson and Jeannette Wing. Lightweight Formal Methods. Computer,
29(4):21–22, 1996.

[KDSS07] Alexander Koenen-Dresp, Helge Scheidig, and Sebastian Schöning. Internal
Technical Report on Multimedia Oriented Soft Real-Time Systems. Technical
report, Saarland University, 2007.

[Kel95] Peter Kelb. Abstraktionstechniken für automatische Verifikationsverfahren (in
German). PhD thesis, Oldenburg University, Oldenburg, Germany, 1995.

[Koe02] Alexander Koenen. Untersuchung und Verbesserung des Zeitverhaltens ak-
tueller Linux Kernel (in German). Master’s thesis, University of the Federal
Armed Forces Munich, 2002.

[Koh07] Sascha Kohn. Wiedergabe und Präsentation von tracebasierten Implemen-
tierungssichten des Linuxkerns (in German). Master’s thesis, Saarland Univer-
sity, 2007.

[Kon96] Fabio Kon. Were Microkernels a Good Idea That Did Not Work?, 1996.

[Koy90] Ron Koymans. Specifying Real-Time Properties with Metric Temporal Logic.
Real-Time Syst., 2(4):255–299, 1990.

[Koz97] Dexter C. Kozen. Automata and Computability. Springer, New York, 3. edition,
1997.

[KP91] Yonit Kesten and Amir Pnueli. Timed and Hybrid Statecharts and Their
Textual Representation. In Proceedings of the Second International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 591–
620, London, UK, 1991. Springer-Verlag.

[KS05] Jiantao Kong and Karsten Schwan. KStreams: Kernel Support for Efficient
Data Streaming in Proxy Servers. In NOSSDAV ’05: Proceedings of the In-
ternational Workshop on Network and Operating Systems Support for Digital
Audio and Video, pages 159–164, New York, NY, USA, 2005. ACM Press.

[KT04] Gerwin Klein and Harvey Tuch. Towards Verified Virtual Memory in L4. In
Konrad Slind, editor, TPHOLs Emerging Trends ’04, page 16 pages, Park City,
Utah, USA, September 2004.

BIBLIOGRAPHY 179

[Küh06] Thomas Kühne. Matters of (Meta-) Modeling. Software and Systems Modeling
(SoSyM), 5(4):369–385, December 2006.

[Kwo00] Gihwon Kwon. Rewrite Rules and Operational Semantics for Model Checking
UML Statecharts. In UML 2000 - The Unified Modeling Language. Advanc-
ing the Standard. Third International Conference, York, UK, October 2000,
Proceedings, volume 1939 of LNCS, pages 528–540. Springer, 2000.

[Leo91] K. Leopere. Mach 3 Kernel Principles, 1991.

[LH00] Jork Löser and Michael Hohmuth. Omega0: A Portable Interface to Interrupt
Hardware for L4 Systems, 2000.

[Lie92] Jochen Liedtke. Clans & Chiefs. In Architektur von Rechensystemen, 12.
GI/ITG-Fachtagung, pages 294–305, London, UK, 1992. Springer-Verlag.

[Lie96a] Jochen Liedtke. L4 Reference Manual - 486, Pentium, Pentium Pro, 1996.

[Lie96b] Jochen Liedtke. Towards Real Microkernels. Commun. ACM, 39(9):70–77,
1996.

[Liu00] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[LKPB06] Caixue Lin, Tim Kaldewey, Anna Povzner, and Scott A. Brandt. Diverse Soft
Real-Time Processing in an Integrated System. In RTSS ’06: Proceedings of
the 27th IEEE International Real-Time Systems Symposium, pages 369–378,
Washington, DC, USA, 2006. IEEE Computer Society.

[LMM99] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic Verification of
a Behavioural Subset of UML Statechart Diagrams Using the SPIN Model-
checker. Formal Asp. Comput., 11(6):637–664, 1999.

[Loc86] Carey Douglass Locke. Best-Effort Decision-Making for Real-Time Scheduling.
PhD thesis, 1986.

[LP99a] Johan Lilius and Ivan Porres Paltor. Formalising UML State Machines for
Model Checking. In Robert France and Bernhard Rumpe, editors, UML’99
- The Unified Modeling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 430–445. Springer, 1999.

[LP99b] Johan Lilius and Ivan Porres Paltor. vUML: a Tool for Verifying UML Models.
Technical report, 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, October
1997.

[LRGW95] Phillip A. Laplante, Eileen P. Rose, and Maria Gracia-Watson. An Historical
Survey of Early Real-Time Computing Developments in the U.S. Real-Time
Syst., 8(2-3):199–213, 1995.

180 BIBLIOGRAPHY

[LS07] Matthew Lang and Paolo A. G. Sivilotti. A Distributed Maximal Scheduler
for Strong Fairness. In DISC, pages 358–372, 2007.

[Luc03] Michael Lucas. Absolute OpenBSD: UNIX for the Practical Paranoid. No
Starch Press, Inc, 2003.

[Mar65] James Martin. Programming Real-Time Computer Systems. Prentice-Hall,
Englewood Cliffs, N.J., 1965.

[McM92a] Kenneth Lauchlin McMillan. Symbolic Model Checking: An Approach to the
State Explosion Problem. PhD thesis, Pittsburgh, PA, USA, 1992.

[McM92b] Kenneth Lauchlin McMillan. The SMV System. Technical Report CMU-CS-
92-131, 1992.

[Mea55] George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[Mik00] Erich Mikk. Semantics and Verification of Statecharts. PhD thesis, Christian
Albrecht University Kiel, Kiel, Germany, 2000.

[Mil80] Robert Milner. A Calculus of Communicating Systems. volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[Mil82] Robert Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[MIP05a] MIPS. Vol I: Introduction to the MIPS64 Architecture – Revision 2.50, 2005.

[MIP05b] MIPS. Vol II: The MIPS64 Instruction Set – Revision 2.50, 2005.

[MIP05c] MIPS. Vol III: The MIPS64 Privileged Resource Architecture – Revision 2.50,
2005.

[MLS97] Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hierarchical Automata as
Model for Statecharts. In ASIAN ’97: Proceedings of the Third Asian Com-
puting Science Conference on Advances in Computing Science, pages 181–196,
London, UK, 1997. Springer-Verlag.

[MLSH98] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. Im-
plementing Statecharts in PROMELA/SPIN. In WIFT ’98: Proceedings of
the Second IEEE Workshop on Industrial Strength Formal Specification Tech-
niques, page 90, Washington, DC, USA, 1998. IEEE Computer Society.

[MM06] Jim Mauro and Richard McDougall. Solaris Internals. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2. edition, 2006.

[Mol02] Ingo Molnar. The Preemtion Patch, 2002.

[Mon03] Jean-Francois Monin. Understanding Formal Methods. Springer, 2003.

BIBLIOGRAPHY 181

[Moo56] Edward F. Moore. Gedanken-Experiments on Sequential Machines. In
Claude E. Shannon and J. MacCarthy, editors, Automata Studies, pages 129–
153. Princeton University Press, 1956.

[Mos97] David Mosberger. SCOUT: A Path-Based Operating System. PhD thesis, The
University of Arizona, 1997.

[MP96] David Mosberger and Larry L. Peterson. Making Paths Explicit in the Scout
Operating System. SIGOPS Oper. Syst. Rev., 30(SI):153–167, 1996.

[MT01] Andreas Mitschele-Thiel. Systems Engineering with SDL: Developing
Performance-Critical Communication. John Wiley & Sons, Inc., New York,
NY, USA, 2001.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

[Mül08] Markus Müller. Migration of the Component Extension into the Linux Kernel.
Master’s thesis, Saarland University, March 2008.

[NL97] Jason Nieh and Monica S. Lam. The Design, Implementation and Evaluation
of SMART: a Scheduler for Multimedia Applications. SIGOPS Oper. Syst.
Rev., 31(5):184–197, 1997.

[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A
Formal Introduction. Wiley, 1st edition, December 1992.

[OMG05] OMG Object Management Group. MOF 2.0/XMI Mapping Specification, v2.1,
September 2005.

[OMG07] OMG Object Management Group. Unified Modeling Language Specification
2.1.1, February 2007.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten (in German). PhD thesis,
1962.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science. IEEE Press, 1977.

[Pnu81] Amir Pnueli. A Temporal Logic of Concurrent Programs. In Theoretical Com-
puter Science, volume 13, pages 45–60, 1981.

[PS91] Amir Pnueli and M. Shalev. What is in a Step: On the Semantics of State-
charts. In TACS ’91: Proceedings of the International Conference on Theoreti-
cal Aspects of Computer Software, pages 244–264, London, UK, 1991. Springer-
Verlag.

[PS98] Jan Philipps and Peter Scholz. Formal Verification and Hardware Design with
Statecharts. In Proceedings of the ESPRIT Working Group 8533 on Prospects
for Hardware Foundations, pages 356–389, London, UK, 1998. Springer-Verlag.

[QNX06] Software Systems QNX. QNX - A Commercial Realtime System, 2006.

182 BIBLIOGRAPHY

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and Verification of Con-
current Systems in CESAR. In Proceedings of the 5th Colloquium on In-
ternational Symposium on Programming, pages 337–351, London, UK, 1982.
Springer-Verlag.

[RB69] J. E. Rodrigues and Jorge E Rodriguez Bezos. A Graph Model For Paral-
lel Computations. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1969.

[Rei87] Wolfgang Reisig. Place/Transition Systems. In Proceedings of an Advanced
Course on Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986-Part I, pages 117–141, London, UK, 1987. Springer-Verlag.

[RHS+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A Aziz,
S. T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.
Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a System
for Verification and Synthesis. In Rajeev Alur and Thomas A. Henzinger,
editors, Proceedings of the Eighth International Conference on Computer Aided
Verification CAV, volume 1102, pages 428–432, New Brunswick, NJ, USA,
1996. Springer Verlag.

[Rid72] William Riddle. Hierarchical Modeling of Operating System Structure and
Behavior. In ACM ’72: Proceedings of the ACM annual conference, pages
1105–1127, New York, NY, USA, 1972. ACM Press.

[RJB05] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, Boston, MA, 2005.

[RJO+89] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, and
M. Jones. Mach: A System Software Kernel , February 1989.

[RS59] M. O. Rabin and D. Scott. Finite Automata and their Decision Problems.
j-IBM-JRD, pages 114–125, 1959.

[RT86] G Rozenberg and P. S. Thiagarajan. Petri Nets: Basic Notions, Structure,
Behaviour. pages 585–668, 1986.

[Rus99] D. A. Rusling. The Linux Kernel. Published as eBook, 1999.

[Sch03] Sebastian Schöning. TwinUx@SB – eine Plattform zur Integration multime-
dialer und interaktiver Verarbeitung (in German). Master’s thesis, Saarland
University, 2003.

[Sch04] Klaus Schneider. Verification of Reactive Systems: Formal Methods and Algo-
rithms. SpringerVerlag, 2004.

[Sch06] Helge Scheidig. Twinux: Architecture and Realizaion - Internal Technical Re-
port (in German). Technical report, Universität des Saarlandes, May 2006.

[Sch08] Sebastian Schöning. Working Title: The Component Extension - Still Unpub-
lished. PhD thesis, Saarland University, 2008.

BIBLIOGRAPHY 183

[SG91] Abraham Silberschatz and Peter Baer Galvin. Operating Systems Concepts.
Addison-Wesley Publishing Company, 4. edition, 1991.

[SGG01] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[SH01] Richard O. Sinnott and Dieter Hogrefe. Finite State Machine Based: SDL.
pages 55–76, 2001.

[Sha71] S. C. Shapiro. A Net Structure for Semantic Information Storage, Deduction
and Retrieval. In Proc. of the 2nd IJCAI, pages 512–523, London, UK, 1971.

[Sim04] Jens Simon. TwinUx@SB – Eine experimentelle Implementierung von Koordi-
nator und Multimedia-Anteil (in German). Master’s thesis, Saarland Univer-
sity, 2004.

[SK95] Kenneth Slonneger and Barry Kurtz. Formal Syntax and Semantics of Pro-
gramming Languages - A Laboratory Based Approach. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[SM07] Sebastian Schöning and Markus Müller. Providing Support for Multimedia-
Oriented Applications under Linux. Proceeding of the Ninth Real-Time Linux
Workshop, (49-59), November 2007.

[SS86] Harold S Stone and Paolo Sipala. The Average Complexity of Depth-First
Search with Backtracking and Cutoff. IBM J. Res. Dev., 30(3):242–258, 1986.

[SS96] C. Small and M. Seltzer. A Comparison of OS Extension Technologies. In Proc.
1996 Annual USENIX Technical Conference, pages 41–54, January 1996.

[SS03] Helge Scheidig and Reinhard Spurk. Motivation und Ideen für Betriebssys-
tem S0 - Internal Technical Paper (in German). Technical report, Saarland
University, February 2003.

[SSBD99] Sanjit A. Seshia, R. K. Shyamasundar, A. K. Bhattacharjee, and S. D. Dho-
dapkar. A Translation of Statecharts to Esterel. In World Congress on Formal
Methods (2), pages 983–1007. Springer, 1999.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie (in German). Springer-Verlag,
Wien New York, 1973.

[STMW04] I. Schinz, T. Toben, C. Mrugalla, and B. Westphal. The Rhapsody UML
Verification Environment. Software Engineering and Formal Methods, 2004.
SEFM 2004. Proceedings of the Second International Conference on, 2004.

[SUN04a] Sun Microsystems Inc. SUN. UltraSPARC III cu User’s Manual - Version 2.2.1,
2004.

[SUN04b] Sun Microsystems Inc. SUN. UltraSPARC IV Processor - User’s Manual Sup-
plement - Version 1.0, 2004.

184 BIBLIOGRAPHY

[SUN05] Sun Microsystems Inc. SUN. UltraSPARC IV Processor - User’s Manual Sup-
plement - Version 1.0, 2005.

[THH01] H. Tews, Hermann Härtig, and Michael Hohmuth. VFiasco — Towards a
Provably Correct µ–Kernel. Technical Report TUD-FI01-1 – January 2001,
Dresden University of Technology, Department of Computer Science, 2001.

[TIM+00] Toshiba, Intel, Microsoft, Phoenix, and Hewlett-Packard. Advanced Configu-
ration and Power Interface Specification, 2000.

[TQC04] Viet-Anh Vu Tran, Shengchao Qin, and Wei-Ngan Chin. An Automatic Map-
ping from Statecharts to Verilog. In ICTAC, pages 187–203, 2004.

[Tur87] Kenneth J Turner. Lotos – A practical Formal Description Technique for OSI.
In International Open Systems 87, volume 1, pages 265–279. Online Publica-
tions, London, March 1987.

[vdB94] Michael von der Beeck. A Comparison of Statecharts Variants. In Pro-
CoS: Proceedings of the Third International Symposium Organized Jointly with
the Working Group Provably Correct Systems on Formal Techniques in Real-
Time and Fault-Tolerant Systems, pages 128–148, London, UK, 1994. Springer-
Verlag.

[Ven80] J Venn. On the Diagramatic and Mechanical Representation of Propositions
and Reasonings, 1880.

[W3C03] W3C. Scalable Vector Graphics (SVG) 1.1 Specification, January 2003.

[Wan98] Jiacun Wang. Timed Petri Nets: Theory and Application. Kluwer Acadamic
Publishers, USA, October 1998.

[WDQ02] Ji Wang, Wei Dong, and Zhi-Chang Qi. Slicing Hierarchical Automata for
Model Checking UML Statecharts. In ICFEM ’02: Proceedings of the 4th Inter-
national Conference on Formal Engineering Methods, pages 435–446, London,
UK, 2002. Springer-Verlag.

[WG00] D. L. Weaver and T. Germont. The SPARC Architecture Manual. Prentice
Hall, Santa Clara (CA), 2000.

[Wie03] R. J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate
and the UML. Morgan Kaufmann Publishers, 2003.

[Wie07] Alexander Wieder. Modelling the IRQ Subsystem of L4Ka::Pistacchio with the
ESF. Bachelor’s Thesis, August 2007.

[XQ05] Baowen Xu and Junyan Qian. Model Checking for Statecharts. In Proceedings
of the Ninth IASTED Intern. Conf. Software Engineering and Applications,
pages 183–187. ACTA, November 2005.

BIBLIOGRAPHY 185

[Zur97] Richard Zurawski. Petri Net Models, Functionality and Functional Abstrac-
tions, and Applications to the Design of Automated Manufacturing Systems.
In Emerging Technologies and Factory Automation Proceedings, pages 339–346,
1997.

186 BIBLIOGRAPHY

Appendix A

Analysis Data

This first appendix contains all detailed analysis data about the three systems under
investigation that is summarized and interpreted in Chapter 7. Note that some of the
data is derived directly from the system models as in [Gog07] and [Wie07]. The full
models can be found in the file archive, see appendix D.

A.1 Immediate vs. Deferred Interrupt Handling

The possible interruption handling states according to the axioms defined in Section 6.1.1
are listed for the three SuIs.

A.1.1 Linux

In Linux, most interrupt service routines can be implemented either way. Thus, only the
ones that have a fixed assignment are elaborated. The following four interrupt handlers
are always executed immediately:

hdl(DEV Tx,INT,IPI,0) = DO RESCHED = hdl∗(DEV Tx,INT,IPI,0)

hdl(DEV Tx,INT,IPI,1) = DO CALL FUN = hdl∗(DEV Tx,INT,IPI,1)

hdl(DEV Tx,INT,IPI,2) = DO INV TLB = hdl∗(DEV Tx,INT,IPI,2)

hdl(DEV Tx,INT,GLOB TIMER) = GT ISR = hdl∗(DEV Tx,INT,GLOB TIMER)

The following two service routines are necessarily executed in a deferred manner:

hdl(DEV Tx,INT,LOC TIMER) = LT ISR 6=
hdl∗(DEV Tx,INT,LOC TIMER) = {LT ISR,RUN SOFTIRQ}

hdl(DEV Tx,INT,I/O,0=NIC) = UNDISRUPT 0 6=
hdl∗(DEV Tx,INT,I/O,0=NIC) = {UNDISRUPT 0,RUN SOFTIRQ}

A.1.2 OpenBSD

Note that the latter parts of state identifiers given with their full hierarchical names, such
as STATE.DESCENDENT are not included in the model extracts in this thesis, but are

187

188 APPENDIX A. ANALYSIS DATA

part of [Gog07]. In OpenBSD, nearly all interrupt handlers are mandatorily immediate:

hdl(DEV Tx,INT,IPI,HLT) = IPI.HALT = hdl∗(DEV Tx,INT,IPI,HLT)

hdl(DEV Tx,INT,IPI,SET) = IPI.IPI MICROSET = hdl∗(DEV Tx,INT,IPI,SET)

hdl(DEV Tx,INT,IPI,TLB) = IPI.TLB SHOOTDOWN = hdl∗(DEV Tx,INT,IPI,TLB)

hdl(DEV Tx,INT,IPI,FLUSH) = IPI.FLUSH FPU = hdl∗(DEV Tx,INT,IPI,FLUSH)

hdl(DEV Tx,INT,IPI,SY NC) = IPI.SYNCH FPU = hdl∗(DEV Tx,INT,IPI,SY NCH)

hdl(DEV Tx,INT,IPI,DB) = IPI.IPI DB = hdl∗(DEV Tx,INT,IPI,DB)

hdl(DEV Tx,INT,TIME) = LAPIC TIMER = hdl∗(DEV Tx,INT,TIME)

hdl(DEV Tx,INT,I/O,HDD) = IOAPIC HDL = hdl∗(DEV Tx,INT,I/O,HDD)

hdl(DEV Tx,INT,I/O,MPEG) = IOAPIC HDL = hdl∗(DEV Tx,INT,I/O,MPEG)

hdl(DEV Tx,INT,I/O,HID) = IOAPIC HDL = hdl∗(DEV Tx,INT,I/O,HID)

hdl(DEV Tx,INT,I/O,SND) = IOAPIC HDL = hdl∗(DEV Tx,INT,I/O,SND)

hdl(DEV Tx,INT,I/O,KB) = IOAPIC HDL = hdl∗(DEV Tx,INT,I/O,KB)

The only exceptional case is the network card service routine as shown by the following
evaluated axiom:

hdl(DEV Tx,INT,NIC) = IOAPIC HDL 6=
hdl∗(DEV Tx,INT,NIC) = {IOAPIC HDL,XDORETI.SOFWTARE INTERRUPT}

A.1.3 Pistachio

In the µ-kernel system Pistachio, only two system-internal interrupts are handled imme-
diately:

hdl(DEV Tx,INT,TIME) = TIMER HANDLER = hdl∗(DEV Tx,INT,TIME)

hdl(DEV Tx,INT,IPI) = PROCESS XPCU MAILBOX = hdl∗(DEV Tx,INT,IPI)

All other six interrupt handlers, which are the service routines for the peripheral I/O
devices, are handled in a deferred way:

hdl(DEV Tx,INT,I/O,HDD) = HW IRQ HANDLER 6=
hdl∗(DEV Tx,INT,I/O,HDD) = {HW IRQ HANDLER,HDL THREAD}

hdl(DEV Tx,INT,I/O,MPEG) = HW IRQ HANDLER 6=
hdl∗(DEV Tx,INT,I/O,MPEG) = {HW IRQ HANDLER,HDL THREAD}

hdl(DEV Tx,INT,I/O,HID) = HW IRQ HANDLER 6=
hdl∗(DEV Tx,INT,I/O,HID) = {HW IRQ HANDLER,HDL THREAD}

APPENDIX A. ANALYSIS DATA 189

hdl(DEV Tx,INT,I/O,SND) = HW IRQ HANDLER 6=
hdl∗(DEV Tx,INT,I/O,SND) = {HW IRQ HANDLER,HDL THREAD}

hdl(DEV Tx,INT,I/O,NIC) = HW IRQ HANDLER 6=
hdl∗(DEV Tx,INT,I/O,NIC) = {HW IRQ HANDLER,HDL THREAD}

hdl(DEV Tx,INT,I/O,KB) = HW IRQ HANDLER 6=
hdl∗(DEV Tx,INT,I/O,KB) = {HW IRQ HANDLER,HDL THREAD}

A.2 Interrupt Handlers Subject to Scheduling

The severeness of deferral, i.e. the question whether the deferred handler is subject to
the system scheduling is also analyzed by means of axioms. This section provides the
evaluation of the axioms defined in Section 6.1.3.

A.2.1 Linux

The only service routine that can be subject to scheduling is the timer handler. Note that
if other routines are implemented in a deferred way, they can be subject to scheduling as
well.

hdl∗(DEV Tx,INT,I/O,NIC) 3 TIMER HANDLER ∈ KT

A.2.2 OpenBSD

In OpenBSD, there are no handlers exposed to the overall system’s scheduler at all.

A.2.3 Pistachio

Since there is no kernel model handling in Pistachio other than for the two immediate
handlers, all deferred handlers are subject to the system scheduling:

hdl∗(DEV Tx,INT,I/O,HDD) 3 TIMER HANDLER ∈ U
hdl∗(DEV Tx,INT,I/O,MPEG) 3 TIMER HANDLER ∈ U
hdl∗(DEV Tx,INT,I/O,HID) 3 TIMER HANDLER ∈ U
hdl∗(DEV Tx,INT,I/O,SND) 3 TIMER HANDLER ∈ U
hdl∗(DEV Tx,INT,I/O,NIC) 3 TIMER HANDLER ∈ U
hdl∗(DEV Tx,INT,I/O,KB) 3 TIMER HANDLER ∈ U

190 APPENDIX A. ANALYSIS DATA

A.3 Response Behavior - PAGs and Paths

The path analysis graphs as given by Definition 6.3 for the three SuIs are elaborated in
the following section. Since complete hierarchical names are used, the identifiers are quite
verbose. Sometimes, when the hierarchical prefix is unambiguous, [...] abbreviates the
identifier for typesetting reasons.

A.3.1 Linux

The Linux PAG contains all interruption paths, also those only accessible when exceptions
are raised.

V_PAG_LINUX = {START, IKCP.EXC.CPU_HANDLING , IKCP.EXC.SAVE_REGISTERS,
IKCP.EXC.HD.FIXUP, IKCP.EXC.HD.GEN_SIG, IKCP.EXC.PANIC, IKCP.EXC.DF.DF_FIXUP,
IKCP.EXC.DF.DF_PANIC, IKCP.EXC.RETURN_EXC, IKCP.EXC.CPU_RETURN, IKCP.EXC.HD.CHECK_CTX,
IKCP.INT.CPU_HANDLING, IKCP.INT.SAVE_REGISTERS, IKCP.INT.IPI.SAVE_GPR,
IKCP.INT.IPI.DO_RESCHED, IKCP.INT.IPI.DO_CALL_FUN, IKCP.INT.IPI.DO_INV_TLB,
IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_0, IKCP.INT.IO_ISR.DISRUPT_0,
IKCP.INT.IO_ISR.ACT_TASK_0, IKCP.INT.IO_ISR.UNDISRUPT_1, IKCP.INT.IO_ISR.DISRUPT_1,
IKCP.INT.IO_ISR.ACT_TASK_1, IKCP.INT.IO_ISR.UNDISRUPT_2, IKCP.INT.IO_ISR.DISRUPT_2,
IKCP.INT.IO_ISR.ACT_TASK_2, IKCP.INT.IO_ISR.UNDISRUPT_3, IKCP.INT.IO_ISR.DISRUPT_3,
IKCP.INT.IO_ISR.ACT_TASK_3, IKCP.INT.IO_ISR.UNDISRUPT_4, IKCP.INT.IO_ISR.DISRUPT_4,
IKCP.INT.IO_ISR.ACT_TASK_4, IKCP.INT.IO_ISR.UNDISRUPT_5, IKCP.INT.IO_ISR.DISRUPT_5,
IKCP.INT.IO_ISR.ACT_TASK_5, IKCP.INT.IO_ISR.EXIT_INT, IKCP.INT.LT_ISR.DO_INT,
IKCP.INT.LT_ISR.PROF_TICK, IKCP.INT.LT_ISR.UPD_PROC_TIMES.ACCOUNTING.UPD_TIME,
IKCP.INT.LT_ISR.UPD_PROC_TIMES.ACCOUNTING.SENDSIG,
IKCP.INT.LT_ISR.UPD_PROC_TIMES.ACCOUNTING.IT_TIMER,
IKCP.INT.LT_ISR.UPD_PROC_TIMES.TIMER_SOFTIRQ,
IKCP.INT.LT_ISR.UPD_PROC_TIMES.TICK.BALANCE,
IKCP.INT.LT_ISR.UPD_PROC_TIMES.TICK.SET_RESCHED, IKCP.INT.LT_ISR.EXIT_INT,
IKCP.INT.GT_ISR.DO_INT, IKCP.INT.GT_ISR.CHECK_LOST, IKCP.INT.GT_ISR.JIFFIES,
IKCP.INT.GT_ISR.UPD_TIME, IKCP.INT.GT_ISR.EXIT_INT, IKCP.INT.SOFT.DISABLE_DEF_FUN,
IKCP.INT.SOFT.CHECK_SOFTIRQ, IKCP.INT.SOFT.RUN_SOFTIRQ, IKCP.INT.SOFT.SIG_KSOFTIRQD,
IKCP.INT.RETURN_INT, IKCP.INT.CPU_RETURN,
IKCP.SYSCALL.SYSENTER, IKCP.SYSCALL.SYSC, IKCP.SYSCALL.SYSEXIT,
IKCP.SCHEDULE, FINAL}

E_PAG_LINUX = {(START,IKCP.EXC.CPU_HANDLING),
(IKCP.EXC.CPU_HANDLING, IKCP.EXC.SAVE_REGISTERS),
(IKCP.EXC.SAVE_REGISTERS, IKCP.EXC.HD.CHECK_CTX),
(IKCP.EXC.HD.CHECK_CTX, IKCP.EXC.HD.FIXUP),
(IKCP.EXC.HD.CHECK_CTX, IKCP.EXC.HD.PANIC),
(IKCP.EXC.HD.FIXUP, IKCP.EXC.HD.GEN_SIG),
(IKCP.EXC.HD.GEN_SIG, IKCP.EXC.RETURN_EXC),
(IKCP.EXC.SAVE_REGISTERS, IKCP.EXC.DF.DF_FIXUP),
(IKCP.EXC.DF.DF_FIXUP, IKCP.EXC.RETURN_EXC),
(IKCP.EXC.DF.DF_FIXUP, IKCP.EXC.DF.DF_PANIC),
(IKCP.EXC.RETURN_EXC, IKCP.EXC.CPU_RETURN),
(IKCP.EXC.CPU_RETURN, IKCP.SCHEDULE),
(START, IKCP.INT.CPU_HANDLING),
(IKCP.INT.CPU_HANDLING, IKCP.INT.SAVE_REGISTERS),
(IKCP.INT.SAVE_REGISTERS, IKCP.INT.IPI.SAVE_GPR),

APPENDIX A. ANALYSIS DATA 191

(IKCP.INT.IPI.SAVE_GPR, IKCP.INT.IPI.DO_RESCHED),
(IKCP.INT.IPI.SAVE_GPR, IKCP.INT.IPI.DO_CALL_FUN),
(IKCP.INT.IPI.SAVE_GPR, IKCP.INT.IPI.DO_INV_TLB),
(IKCP.INT.IPI.DO_RESCHED, IKCP.INT.SOFT.DISABLE_DEF_FUN),
(IKCP.INT.IPI.DO_CALL_FUN, IKCP.INT.SOFT.DISABLE_DEF_FUN),
(IKCP.INT.IPI.DO_INV_TLB, IKCP.INT.SOFT.DISABLE_DEF_FUN),
(IKCP.INT.IPI.DO_RESCHED, IKCP.INT.RETURN_INT),
(IKCP.INT.IPI.DO_CALL_FUN, IKCP.INT.RETURN_INT),
(IKCP.INT.IPI.DO_INV_TLB, IKCP.INT.RETURN_INT),
(IKCP.INT.SAVE_REGISTERS, IKCP.INT.IO_ISR.DO_INT),
(IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_0),
(IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_1),
(IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_2),
(IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_3),
(IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_4),
(IKCP.INT.IO_ISR.DO_INT, IKCP.INT.IO_ISR.UNDISRUPT_5),
(IKCP.INT.IO_ISR.UNDISRUPT_0, IKCP.INT.IO_ISR.DISRUPT_0),
(IKCP.INT.IO_ISR.UNDISRUPT_1, IKCP.INT.IO_ISR.DISRUPT_1),
(IKCP.INT.IO_ISR.UNDISRUPT_2, IKCP.INT.IO_ISR.DISRUPT_2),
(IKCP.INT.IO_ISR.UNDISRUPT_3, IKCP.INT.IO_ISR.DISRUPT_3),
(IKCP.INT.IO_ISR.UNDISRUPT_4, IKCP.INT.IO_ISR.DISRUPT_4),
(IKCP.INT.IO_ISR.UNDISRUPT_5, IKCP.INT.IO_ISR.DISRUPT_5),
(IKCP.INT.IO_ISR.DISRUPT_0, IKCP.INT.IO_ISR.ACT_TASK_0),
(IKCP.INT.IO_ISR.DISRUPT_1, IKCP.INT.IO_ISR.ACT_TASK_1),
(IKCP.INT.IO_ISR.DISRUPT_2, IKCP.INT.IO_ISR.ACT_TASK_2),
(IKCP.INT.IO_ISR.DISRUPT_3, IKCP.INT.IO_ISR.ACT_TASK_3),
(IKCP.INT.IO_ISR.DISRUPT_4, IKCP.INT.IO_ISR.ACT_TASK_4),
(IKCP.INT.IO_ISR.DISRUPT_5, IKCP.INT.IO_ISR.ACT_TASK_5),
(IKCP.INT.IO_ISR.ACT_TASK_0, IKCP.INT.IO_ISR.EXIT_INT),
(IKCP.INT.IO_ISR.ACT_TASK_1, IKCP.INT.IO_ISR.EXIT_INT),
(IKCP.INT.IO_ISR.ACT_TASK_2, IKCP.INT.IO_ISR.EXIT_INT),
(IKCP.INT.IO_ISR.ACT_TASK_3, IKCP.INT.IO_ISR.EXIT_INT),
(IKCP.INT.IO_ISR.ACT_TASK_4, IKCP.INT.IO_ISR.EXIT_INT),
(IKCP.INT.IO_ISR.ACT_TASK_5, IKCP.INT.IO_ISR.EXIT_INT),
(IKCP.INT.IO_ISR.EXIT_INT, IKCP.INT.SOFT.DISABLE_DEF_FUN),
(IKCP.INT.IO_ISR.EXIT_INT, IKCP.INT.RETURN_INT),
(IKCP.INT.SAVE_REGISTERS, IKCP.INT.LT_ISR.DO_INT),
(IKCP.INT.LT_ISR.DO_INT, IKCP.INT.LT_ISR.PROF_TICK),
(IKCP.INT.LT_ISR.PROF_TICK, IKCP.INT.LT_ISR.UPD_PROC_TIMES.ACCOUNTING.UPD_TIME),
(IKCP.[...].ACCOUNTING.UPD_TIME, IKCP.[...].ACCOUNTING.SENDSIG),
(IKCP.[...].ACCOUNTING.SENDSIG, IKCP.[...].ACCOUNTING.IT_TIMER),
(IKCP.[...].ACCOUNTING.IT_TIMER,IKCP.INT.LT_ISR.UPD_PROC_TIMES.TIMER_SOFTIRQ),
(IKCP.INT.LT_ISR.UPD_PROC_TIMES.TIMER_SOFTIRQ, IKCP.[...].TICK.BALANCE),
(IKCP.[...].TICK.BALANCE, IKCP.[...].TICK.SET_RESCHED),
(IKCP.[...].TICK.SET_RESCHED, IKCP.INT.LT_ISR.EXIT_INT),
(IKCP.INT.LT_ISR.EXIT_INT, IKCP.INT.SOFT.DISABLE_DEF_FUN),
(IKCP.INT.LT_ISR.EXIT_INT, IKCP.INT.RETURN_INT),
(IKCP.INT.SAVE_REGISTERS, IKCP.INT.GT_ISR.DO_INT),
(IKCP.INT.GT_ISR.DO_INT, IKCP.INT.GT_ISR.CHECK_LOST),
(IKCP.INT.GT_ISR.CHECK_LOST, IKCP.INT.GT_ISR.JIFFIES),
(IKCP.INT.GT_ISR.JIFFIES, IKCP.INT.GT_ISR.UPD_TIME),
(IKCP.INT.GT_ISR.UPD_TIME, IKCP.INT.GT_ISR.EXIT_INT),

192 APPENDIX A. ANALYSIS DATA

(IKCP.INT.GT_ISR.EXIT_INT, IKCP.INT.RETURN_INT),
(IKCP.INT.GT_ISR.EXIT_INT, IKCP.INT.SOFT.DISABLE_DEF_FUN),
(IKCP.INT.SOFT.DISABLE_DEF_FUN, IKCP.INT.SOFT.CHECK_SOFTIRQ),
(IKCP.INT.SOFT.CHECK_SOFTIRQ, IKCP.INT.SOFT.SIG_KSOFTIRQD),
(IKCP.INT.SOFT.CHECK_SOFTIRQ, IKCP.INT.SOFT.RUN_SOFTIRQ),
(IKCP.INT.SOFT.RUN_SOFTIRQ, IKCP.INT.SOFT.CHECK_SOFTIRQ),
(IKCP.INT.SOFT.SIG_KSOFTIRQD,IKCP.INT.RETURN_INT),
(IKCP.INT.RETURN_INT, IKCP.INT.CPU_RETURN),
(IKCP.INT.RETURN_INT, IKCP.SCHEDULE),
(START, IKCP.SYSCALL.SYSENTER),
(IKCP.SYSCALL.SYSENTER, IKCP.SYSCALL.SYSC),
(IKCP.SYSCALL.SYSC, IKCP.SYSCALL.SYSEXIT),
(IKCP.SYSCALL.SYSEXIT, SCHEDULE),
(IKCP.SCHEDULE, FINAL)}

Since all edges of the Linux PAG are black, the color function is not provided explicitly.
Table A.1 lists the all path length tuples for any possible interrupt. It is directly derived
from the Linux PAG by applying the path definition 6.4.

Disruptive Event Handler state (vana) Min Length Max Length

DEV Tx,INT,IPI,0 hdl(DEV Tx,INT,IPI,0) =
DO RESCHED

(8,0,0,0) (12,1,2,0)

DEV Tx,INT,IPI,0 hdl(DEV Tx,INT,IPI,1) =
DO CALL FUN

(8,0,0,0) (11,1,2,0)

DEV Tx,INT,IPI,0 hdl(DEV Tx,INT,IPI,2) =
DO INV TLB

(8,0,0,0) (11,1,2,0)

DEV Tx,INT,IO,HDD hdl(DEV Tx,INT,I/O,HDD) =
UNDISRUPT 0

(11,0,0,0) (14,1,2,0)

DEV Tx,INT,IO,MPEG hdl(DEV Tx,INT,I/O,MPEG) =
UNDISRUPT 1

(11,0,0,0) (14,1,2,0)

DEV Tx,INT,IO,HID hdl(DEV Tx,INT,I/O,HID) =
UNDISRUPT 2

(11,0,0,0) (14,1,2,0)

DEV Tx,INT,IO,SND hdl(DEV Tx,INT,I/O,SND) =
UNDISRUPT 3

(11,0,0,0) (14,1,2,0)

DEV Tx,INT,IO,NIC hdl(DEV Tx,INT,I/O,NIC) =
UNDISRUPT 4

(11,0,0,0) (14,1,2,0)

DEV Tx,INT,IO,KB hdl(DEV Tx,INT,I/O,KB) =
UNDISRUPT 5

(11,0,0,0)1 (14,1,2,0)

DEV Tx,INT,LOC TIMER hdl(DEV Tx,INT,GLOB TIMER)
= LT ISR

(15,0,0,0) (18,1,2,0)

DEV Tx,INT,GLOB TIMER hdl(DEV Tx,INT,LOC TIMER)
= GT ISR

11,0,0,0) (14,1,2,0)

Table A.1: Path lengths of DEVTs in Linux

APPENDIX A. ANALYSIS DATA 193

A.3.2 OpenBSD

The OpenBSD PAG is based on the entire model from [Gog07], not on the excerpts that
are provided in Section 4.4.4. Due to this, German terms and abbreviations are used as
identifiers rather than English ones. Submachines that are included in several super states,
such as SPLX or KERNEL LOCK SETZEN do not have all possible prefixes since they are
named unambiguously anyway.

V_PAG_OPENBSD = {START, UNTR_BEH.SYSTEMAUFRUF.SYS_VOR, UNTR_BEH.SYSTEMAUFRUF.SYS_ERL,
UNTR_BEH.SYSTEMAUFRUF.SYS_NACH, UNTR_BEH.SYSTEMAUFRUF.USERRET,
UNTR_BEH.EXCEPTION_BEHANDLUNG.DNA, UNTR_BEH.EXCEPTION_BEHANDLUNG.FPU,
UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USR, UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PAGE,
UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.SPEZIAL, UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PRUEFE,
UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PANIC, UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.TRAPSIGNAL,
UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USERRET,
UNTR_BEH.INTERRUPT_BEHANDLUNG.FRAME_ERSTELLEN,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.GRP.INTERRUPT_HANDLER_ERMITTELN,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.GRP.STRAY_INTERRUPT,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.GRP.NAECHSTER_INTERRUPT_HANDLER,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.GRP.STATISTIKEN_AKTUALISIEREN,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.IO_APIC_HDL,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.EOI,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI, UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_HALT,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_MICROSET, UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.FLUSH_FPU,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.TLB_SHOOTDOWN, UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.SYNC_FPU,
UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_DB,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.EOI,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.TSC_AKT,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.GRP_0.INTERVALZEITGEBER_ITIMER_VIRTUAL,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.GRP_0.INTERVALZEITGEBER_ITIMER_PROF,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.T_ADD_VIR,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.T_ADD_PROF,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.STAT_AKT,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.PRPRIO,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.RR_AKT,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.SPCF_SEENRR,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.RESCHED,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.T_W_AKT,
UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.HARDCLOCK.SETSOFTCLOCK,
UNTR_BEH.INTERRUPT_BEHANDLUNG.SOFTWARE_INTERRUPT_IPI.CPL_SETZEN,
UNTR_BEH.INTERRUPT_BEHANDLUNG.SOFTWARE_INTERRUPT_IPI.DEREG,
UNTR_BEH.INTERRUPT_BEHANDLUNG.SOFTWARE_INTERRUPT_IPI.EOI,
UNTR_BEH.INTERRUPT_NACHBEHANDLUNG.SW_INTR_NACH.UEBERPREUFUNG_SW_INTR,
UNTR_BEH.INTERRUPT_NACHBEHANDLUNG.SW_INTR_NACH.SW_B_L,
UNTR_BEH.INTERRUPT_NACHBEHANDLUNG.SW_INTR_NACH.CPL_SETZEN,
SOFTWARE_INTERRUPT.TTY_BEH, SOFTWARE_INTERRUPT.SOFTCLOCK,SOFTWARE_INTERRUPT.SOFTNET,
KERNEL_LOCK_SETZEN.LOCK_SETZEN.VERSUCH_LOCK_BEKOMMEN,
KERNEL_LOCK_SETZEN.LOCK_SETZEN.ZAEHLER_INKREMENTIEREN,
KERNEL_LOCK_ENTFERNEN.ENTFERNEN.ZAEHLER_DEKREMENTIEREN,
KERNEL_LOCK_ENTFERNEN.ENTFERNEN.LOCK_ENTFERNEN,
SPLX.CPL_SETZEN, SPLX.PRUEF,FINAL}

194 APPENDIX A. ANALYSIS DATA

E_PAG_OPENBSD = {START, UNTR_BEH.SYSTEMAUFRUF.SYS_VOR),
(SYS_VOR, [...].VERSUCH_LOCK_BEKOMMEN),
(SYS_VOR, [...].ZAEHLER_INKREMENTIEREN),
([...].VERSUCH_LOCK_BEKOMMEN, [...].ZAEHLER_INKREMENTIEREN),
([...].VERSUCH_LOCK_BEKOMMEN, [...].VERSUCH_LOCK_BEKOMMEN),
([...].VERSUCH_LOCK_BEKOMMEN, SPLX.CPL_SETZEN),
([...].ZAEHLER_INKREMENTIEREN, SPLX.CPL_SETZEN),
(SPLX.CPL_SETZEN, SPLX.PRUEF),
(SPLX.PRUEF,UNTR_BEH.SYSTEMAUFRUF.SYS_ERL),
(SPLX.PRUEF,[...].VERSUCH_LOCK_BEKOMMEN),
(SPLX.PRUEF,SOFTWARE_INTERRUPT.TTY_BEH),
(SPLX.PRUEF,SOFTWARE_INTERRUPT.SOFTCLOCK),
(SPLX.PRUEF,SOFTWARE_INTERRUPT.SOFTNET),
(SOFTWARE_INTERRUPT.TTY_BEH, [...].ZAEHLER_DEKREMENTIEREN),
(SOFTWARE_INTERRUPT.SOFTCLOCK, [...].ZAEHLER_DEKREMENTIEREN),
(SOFTWARE_INTERRUPT.SOFTNET,[...].ZAEHLER_DEKREMENTIEREN),
([...].ZAEHLER_DEKREMENTIEREN),[...].LOCK_ENTFERNEN),
([...].ZAEHLER_DEKREMENTIEREN), SPLX.CPL_SETZEN),
(UNTR_BEH.SYSTEMAUFRUF.SYS_ERL,[...].LOCK_ENTFERNEN),
(SPLX.PRUEF,UNTR_BEH.SYSTEMAUFRUF.SYS_NACH),
(UNTR_BEH.SYSTEMAUFRUF.SYS_NACH, UNTR_BEH.SYSTEMAUFRUF.USERRET),
(UNTR_BEH.SYSTEMAUFRUF.USERRET,FINAL),
(START, UNTR_BEH.EXCEPTION_BEHANDLUNG.DNA),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.DNA, FINAL),
(START, UNTR_BEH.EXCEPTION_BEHANDLUNG.FPU),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.FPU, FINAL),
(START,UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USR),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USR, UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PRUEFE),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PRUEFE, FINAL),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PRUEFE, UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PANIC),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USR, UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PAGE),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USR,UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.SPEZIAL),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USR, [...].VERSUCH_LOCK_BEKOMMEN),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.PAGE, FINAL),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.SPEZIAL, FINAL),
(SPLX.PRUEF,UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.TRAPSIGNAL),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.TRAPSIGNAL,[...].LOCK_ENTFERNEN),
(SPLX.PRUEF,UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USERRET),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.TRAP.USERRET, FINAL),
(START, UNTR_BEH.INTERRUPT_BEHANDLUNG.FRAME_ERSTELLEN),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.FRAME_ERSTELLEN, [...].GRP.INTERRUPT_HANDLER_ERMITTELN),
([...].GRP.INTERRUPT_HANDLER_ERMITTELN, [...].STRAY_INTERRUPT),
([...].STRAY_INTERRUPT, UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.EOI),
([...].GRP.INTERRUPT_HANDLER_ERMITTELN, [...].VERSUCH_LOCK_BEKOMMEN),
(SPLX.PRUEF, UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.IO_APIC_HDL),
([...].IO_APIC_HDL, [...].STATISTIKEN_AKTUALISIEREN),
([...].STATISTIKEN_AKTUALISIEREN, [...].LOCK_ENTFERNEN),
(SPLX.PRUEF, [...].NAECHSTER_INTERRUPT_HANDLER),
([...].NAECHSTER_INTERRUPT_HANDLER,[...].VERSUCH_LOCK_BEKOMMEN),
([...].NAECHSTER_INTERRUPT_HANDLER,UNTR_BEH.INTERRUPT_BEHANDLUNG.IO_APIC_INTERRUPT.EOI),
([...].IO_APIC_INTERRUPT.EOI, [...].SW_INTR_NACH.UEBERPREUFUNG_SW_INTR),
(START, UNTR_BEH.INTERRUPT_BEHANDLUNG.FRAME_ERSTELLEN),

APPENDIX A. ANALYSIS DATA 195

(UNTR_BEH.INTERRUPT_BEHANDLUNG.FRAME_ERSTELLEN,UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI,UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_HALT),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI,UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_MICROSET),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_MICROSET, [...].UEBERPREUFUNG_SW_INTR),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI,UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.FLUSH_FPU),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.FLUSH_FPU, [...].UEBERPREUFUNG_SW_INTR),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI,UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.TLB_SHOOTDOWN),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.TLB_SHOOTDOWN, [...].UEBERPREUFUNG_SW_INTR),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI, UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.SYNC_FPU),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.SYNC_FPU, [...].UEBERPREUFUNG_SW_INTR),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.EOI, UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_DB),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.IPI.IPI_DB, [...].UEBERPREUFUNG_SW_INTR),
([...].FRAME_ERSTELLEN, UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.EOI),
(UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.EOI, [...].VERSUCH_LOCK_BEKOMMEN),
(SPLX.PRUEF, UNTR_BEH.INTERRUPT_BEHANDLUNG.LAPIC_TIMER.TSC_AKT),
([...].LAPIC_TIMER.TSC_AKT, [...].HARDCLOCK.GRP_0.INTERVALZEITGEBER_ITIMER_VIRTUAL),
([...].INTERVALZEITGEBER_ITIMER_VIRTUAL, [...].HARDCLOCK.T_ADD_VIR),
([...].INTERVALZEITGEBER_ITIMER_VIRTUAL, [...].INTERVALZEITGEBER_ITIMER_PROF),
([...].HARDCLOCK.T_ADD_VIR, [...].INTERVALZEITGEBER_ITIMER_PROF),
([...].INTERVALZEITGEBER_ITIMER_PROF, [...].LAPIC_TIMER.HARDCLOCK.T_ADD_PROF),
([...].INTERVALZEITGEBER_ITIMER_PROF, [...].LAPIC_TIMER.HARDCLOCK.STAT_AKT),
([...].LAPIC_TIMER.HARDCLOCK.T_ADD_PROF, [...].LAPIC_TIMER.HARDCLOCK.STAT_AKT),
([...].LAPIC_TIMER.HARDCLOCK.STAT_AKT, [...].LAPIC_TIMER.HARDCLOCK.PRPRIO),
([...].LAPIC_TIMER.HARDCLOCK.PRPRIO, [...].LAPIC_TIMER.HARDCLOCK.RR_AKT),
([...].LAPIC_TIMER.HARDCLOCK.RR_AKT, [...].LOCK_ENTFERNEN),
([...].LAPIC_TIMER.HARDCLOCK.RR_AKT, [...].LAPIC_TIMER.HARDCLOCK.RESCHED),
([...].LAPIC_TIMER.HARDCLOCK.RESCHED, [...].LOCK_ENTFERNEN),
([...].LAPIC_TIMER.HARDCLOCK.RR_AKT, [...].LAPIC_TIMER.HARDCLOCK.SPCF_SEENRR),
([...].LAPIC_TIMER.HARDCLOCK.SPCF_SEENRR, [...].LAPIC_TIMER.HARDCLOCK.RESCHED),
([...].LAPIC_TIMER.HARDCLOCK.RESCHED, [...].LAPIC_TIMER.HARDCLOCK.T_W_AKT),
([...].LAPIC_TIMER.HARDCLOCK.T_W_AKT, [...].LOCK_ENTFERNEN),
([...].LAPIC_TIMER.HARDCLOCK.T_W_AKT, [...].LAPIC_TIMER.HARDCLOCK.SETSOFTCLOCK),
([...].LAPIC_TIMER.HARDCLOCK.SETSOFTCLOCK, [...].LOCK_ENTFERNEN),
([...].SW_INTR_NACH.UEBERPREUFUNG_SW_INTR, [...].SW_INTR_NACH.SW_B_L),
([...].SW_INTR_NACH.UEBERPREUFUNG_SW_INTR, FINAL),
([...].SW_INTR_NACH.SW_B_L, [...].SW_INTR_NACH.UEBERPREUFUNG_SW_INTR),
([...].SW_INTR_NACH.SW_B_L, [...].SW_INTR_NACH.CPL_SETZEN),
([...].SW_INTR_NACH.CPL_SETZEN, [...].VERSUCH_LOCK_BEKOMMEN),
(SPLX.PRUEF, [...].SW_INTR_NACH.UEBERPREUFUNG_SW_INTR)}

C_PAG_OPENSBD = {
([...].VERSUCH_LOCK_BEKOMMEN, [...].ZAEHLER_INKREMENTIEREN) -> RED

Since OpenBSD uses coarse-grained synchronization primitives affecting the IKCP, there
is one red edge in the PAG. Table A.2 lists the all path length tuples for any interrupt
that is handled by OpenBSD.

196 APPENDIX A. ANALYSIS DATA

Disruptive Event Handler state (vana) Min Length Max Length

DEV Tx,INT,IPI,0 hdl(DEV Tx,INT,IPI,0) =
IPI MICROSET

(4,0,0,0) (10,4,11,1)

DEV Tx,INT,IPI,1 hdl(DEV Tx,INT,IPI,1) =
TLB SHOOTDOWN

(4,0,0,0) (10,4,11,1)

DEV Tx,INT,IPI,2 hdl(DEV Tx,INT,IPI,2) =
FLUSH FPU

(4,0,0,0) (10,4,11,1)

DEV Tx,INT,IPI,3 hdl(DEV Tx,INT,IPI,3) =
SYNCH FPU

(4,0,0,0) (10,4,11,1)

DEV Tx,INT,IPI,4 hdl(DEV Tx,INT,IPI,4) =
IPI DB

(4,0,0,0) (10,4,11,1)

DEV Tx,INT,IO,HDD hdl(DEV Tx,INT,I/O,HDD) =
IOAPIC HDL 0

(12,0,0,0) (27,14,37,5)

DEV Tx,INT,IO,MPEG hdl(DEV Tx,INT,I/O,MPEG) =
IOAPIC HDL 1

(12,0,0,0) (27,14,37,5)

DEV Tx,INT,IO,HID hdl(DEV Tx,INT,I/O,HID) =
IOAPIC HDL 2

(12,0,0,0) (27,14,37,5)

DEV Tx,INT,IO,SND hdl(DEV Tx,INT,I/O,SND) =
IOAPIC HDL 3

(12,0,0,0) (27,14,37,5)

DEV Tx,INT,IO,NIC hdl(DEV Tx,INT,I/O,NIC) =
IOAPIC HDL 4

(12,0,0,0) (27,14,37,5)

DEV Tx,INT,IO,KB hdl(DEV Tx,INT,I/O,KB) =
IOAPIC HDL 5

(12,0,0,0) (27,14,37,5)

DEV Tx,INT,TIMER hdl(DEV Tx,INT,TIMER) =
LAPIC TIMER

(13,0,0,0) (34,10,26,4)

Table A.2: Path lengths of DEVTs in OpenBSD

APPENDIX A. ANALYSIS DATA 197

A.3.3 Pistachio

Since Pistachio is a µ-kernel system, a kernel PAG and a user level PAG are constructed.
The path lengths are then derived by simply adding the kernel and the user path lengths.
Note that small letters from the original identifiers are replaced by capital ones and white
spaces by .

V_PAG_PISTACHIO_KERNEL = {START, KERNEL_LEVEL.IRQ.TIMER_HANDLER.SEND_EOI_APIC,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.UPDATE_GLOBAL_TIMER,
[...].HANDLE_TIMER_INTERRUPT.PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.SCHEDULER.UPDATE_TOTAL_QUANTUM,
[...].IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.SCHEDULER.TOTAL_QUANTUM_EXPIRED,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.SCHEDULER.END_OF_TIMESLICE,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.SCHEDULER.RESCHEDULE,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.SCHEDULER.WAKEUP_PREEMPTION,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.HANDLE_TIMER_INTERRUPT.SCHEDULER.SWITCH_TO_WAKEUP,
KERNEL_LEVEL.IRQ.TIMER_HANDLER.IRET, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.SW_MASK,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.MARK_PENDING, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.EOI_1,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.EOI_2, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.IRET,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.HANDLE_HW_IRQ.DO_IRQTHREAD_IPC,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.HANDLE_HW_IRQ.DO_IPC,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.HANDLE_HW_IRQ.SEND_IRQ_TO_ANOTHER_CPU,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.HANDLE_HW_IRQ.SWITCH_TO_HANDLER,
KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.HANDLE_HW_IRQ.ENQUEUE_HANDLER,
KERNEL_LEVEL.IRQ.PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST,FINAL}

E_PAG_PISTACHIO_KERNEL = {(START,KERNEL_LEVEL.IRQ.TIMER_HANDLER.SEND_EOI_APIC),
([...].TIMER_HANDLER.SEND_EOI_APIC, [...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST),
([...].SEND_EOI_APIC,[...].HANDLE_TIMER_INTERRUPT.UPDATE_GLOBAL_TIMER),
([...].UPDATE_GLOBAL_TIMER,[...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST),
([...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST, KERNEL_LEVEL.IRQ.TIMER_HANDLER.IRET),
([...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST, SCHEDULER.WAKEUP_PREEMPTION),
([...].SCHEDULER.WAKEUP_PREEMPTION, [...].SCHEDULER.SWITCH_TO_WAKEUP),
([...].SCHEDULER.SWITCH_TO_WAKEUP, KERNEL_LEVEL.IRQ.TIMER_HANDLER.IRET),
([...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST, [...].SCHEDULER.UPDATE_TOTAL_QUANTUM),
([...].SCHEDULER.UPDATE_TOTAL_QUANTUM, [...].SCHEDULER.TOTAL_QUANTUM_EXPIRED),
([...].SCHEDULER.UPDATE_TOTAL_QUANTUM, [...].SCHEDULER.END_OF_TIMESLICE),
([...].SCHEDULER.TOTAL_QUANTUM_EXPIRED, [...].SCHEDULER.END_OF_TIMESLICE),
([...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST, [...].SCHEDULER.END_OF_TIMESLICE),
([...].SCHEDULER.END_OF_TIMESLICE, [...].SCHEDULER.RESCHEDULE),
([...].SCHEDULER.RESCHEDULE, KERNEL_LEVEL.IRQ.TIMER_HANDLER.IRET),
(KERNEL_LEVEL.IRQ.TIMER_HANDLER.IRET, FINAL),
(START, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.SW_MASK),
(START, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.MARK_PENDING)
(START, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.EOI_2),
(KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.SW_MASK, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.EOI_1)
(KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.MARK_PENDING, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.EOI_2),
(KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.EOI_2, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.IRET),
([...].HW_IRQ_HANDLER.EOI_1, [...].HANDLE_HW_IRQ.DO_IRQTHREAD_IPC),
([...].HW_IRQ_HANDLER.EOI_1, [...].HANDLE_HW_IRQ.DO_IPC),
([...].HW_IRQ_HANDLER.EOI_1, [...].HANDLE_HW_IRQ.SEND_IRQ_TO_ANOTHER_CPU),
([...].HANDLE_HW_IRQ.DO_IRQTHREAD_IPC, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.IRET),

198 APPENDIX A. ANALYSIS DATA

([...].HANDLE_HW_IRQ.SEND_IRQ_TO_ANOTHER_CPU, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.IRET),
([...].HANDLE_HW_IRQ.DO_IPC, [...].HANDLE_HW_IRQ.SWITCH_TO_HANDLER),
([...].HANDLE_HW_IRQ.DO_IPC, [...].HANDLE_HW_IRQ.ENQUEUE_HANDLER),
([...].HANDLE_HW_IRQ.SWITCH_TO_HANDLER, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.IRET),
([...].HANDLE_HW_IRQ.ENQUEUE_HANDLER, KERNEL_LEVEL.IRQ.HW_IRQ_HANDLER.IRET),
(START,KERNEL_LEVEL.IRQ.PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST),
(KERNEL_LEVEL.IRQ.PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST,FINAL)}

V_PAG_PISTACHIO_USER = {START, USER_LEVEL.USER_THREAD, USER_LEVEL.IDLE_THREAD,
USER_LEVEL.HW_IRQ_HANDLER_THREAD.HANDLE_IRQ, USER_LEVEL.HW_IRQ_HANDLER_THREAD,FINAL}

E_PAG_PISTACHIO_USER = {(START, USER_LEVEL.USER_THREAD),
(START, USER_LEVEL.IDLE_THREAD),
(START, USER_LEVEL.HW_IRQ_HANDLER_THREAD.HANDLE_IRQ),
(START, USER_LEVEL.HW_IRQ_HANDLER_THREAD),
(USER_LEVEL.USER_THREAD, FINAL),
(USER_LEVEL.IDLE_THREAD, FINAL),
(USER_LEVEL.HW_IRQ_HANDLER_THREAD.HANDLE_IRQ, FINAL),
(USER_LEVEL.HW_IRQ_HANDLER_THREAD, FINAL),}

Table A.3 lists the accumulated path lengths for the µ-kernel operating system Pistachio.

Disruptive Event Handler state (vana) Min Length Max Length

DEV Tx,INT,IPI hdl(DEV Tx,INT,IPI) =
PROCESS XCPU MAILBOX

(2,0,0,0) (7,0,0,0)

DEV Tx,INT,IO,HDD hdl ∗ (DEV Tx,INT,I/O,HDD) ⊃
HLD HW IRQ HANDLE IRQ

(2,0,0,0) +
(1,0,0,0)

(7,0,0,0) +
(1,0,0,0)

DEV Tx,INT,IO,MPEG hdl ∗ (DEV Tx,INT,I/O,HDD) ⊃
HLD HW IRQ HANDLE IRQ

(2,0,0,0) +
(1,0,0,0)

(7,0,0,0) +
(1,0,0,0)

DEV Tx,INT,IO,HID hdl ∗ (DEV Tx,INT,I/O,HDD) ⊃
HLD HW IRQ HANDLE IRQ

(2,0,0,0) +
(1,0,0,0)

(7,0,0,0) +
(1,0,0,0)

DEV Tx,INT,IO,SND hdl ∗ (DEV Tx,INT,I/O,HDD) ⊃
HLD HW IRQ HANDLE IRQ

(2,0,0,0) +
(1,0,0,0)

(7,0,0,0) +
(1,0,0,0)

DEV Tx,INT,IO,NIC hdl ∗ (DEV Tx,INT,I/O,HDD) ⊃
HLD HW IRQ HANDLE IRQ

(2,0,0,0) +
(1,0,0,0)

(7,0,0,0) +
(1,0,0,0)

DEV Tx,INT,IO,KB hdl ∗ (DEV Tx,INT,I/O,HDD) ⊃
HLD HW IRQ HANDLE IRQ

(2,0,0,0) +
(1,0,0,0)

(7,0,0,0) +
(1,0,0,0)

DEV Tx,INT,TIMER hdl(DEV Tx,INT,TIMER) =
TIMER HANDLER

(3,0,0,0) (7,0,0,0)

Table A.3: Path lengths of DEVTs in Pistachio

APPENDIX A. ANALYSIS DATA 199

A.4 Interruptibility

Based on the three path analysis graphs in Section A.3, the IAGs and the two multisets
Int(path) and Inf (e) are elaborated in this section. Since all three SuIs use a slightly
different categorization of disruptive events (cp. Section 4.4), the wgt-function is also
detailed on a per-SuI level.

A.4.1 Linux

The concrete wgt function for the Linux PAG and the set of disruptive events as handled
in Linux is the following:

wgt(DEV Tx,INT,IPI,0) def= 2 wgt(DEV Tx,INT,IPI,1) def= 3

wgt(DEV Tx,INT,IPI,2) def= 4 wgt(DEV Tx,INT,IO,HDD) def= 5

wgt(DEV Tx,INT,IO,MPEG) def= 6 wgt(DEV Tx,INT,IO,HID) def= 7

wgt(DEV Tx,INT,IO,SND) def= 8 wgt(DEV Tx,INT,IO,NIC) def= 9

wgt(DEV Tx,INT,IO,KB) def= 10 wgt(x, INT,LOC TIMER) def= 11

wgt(DEV Tx,INT,GLOB TIMER) def= 12

For the sake of brevity, a summed-up notation is given for the set of green edges and the
weighting of an edge: ((PAG STATE, DUMMY), C = { x,y }) means that there are two
green edges from STATE to DUMMY, one with the weight x and one with y:

{(IKCP.EXC.HD.CHECK_CTX, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12}),
(IKCP.EXC.HD.FIXUP, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12}),
(IKCP.EXC.HD.GEN_SIG, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12}),
(IKCP.INT.IPI.DO_RESCHED, DUMMY), C = { 3,4,5,6,7,8,9,10,11,12}),
(IKCP.INT.IPI.DO_CALL_FUN, DUMMY), C = {2, 4,5,6,7,8,9,10,11,12}),
(IKCP.INT.IPI.DO_INV_TLB, DUMMY), C = {2,3, 5,6,7,8,9,10,11,12}),
(IKCP.INT.IO_ISR.DISRUPT_0, DUMMY), C = {2,3,4, 6,7,8,9,10,11,12}),
(IKCP.INT.IO_ISR.ACT_TASK_0, DUMMY), C = {2,3,4, 6,7,8,9,10,11,12}),
(IKCP.INT.IO_ISR.DISRUPT_1, DUMMY), C = {2,3,4,5, 7,8,9,10,11,12}),
(IKCP.INT.IO_ISR.ACT_TASK_1, DUMMY), C = {2,3,4,5, 7,8,9,10,11,12}),
(IKCP.INT.IO_ISR.DISRUPT_2, DUMMY), C = {2,3,4,5,6, 8,9,10,11,12}),
(IKCP.INT.IO_ISR.ACT_TASK_2, DUMMY), C = {2,3,4,5,6, 8,9,10,11,12}),
(IKCP.INT.IO_ISR.DISRUPT_3, DUMMY), C = {2,3,4,5,6,7, 9,10,11,12}),
(IKCP.INT.IO_ISR.ACT_TASK_3, DUMMY), C = {2,3,4,5,6,7, 9,10,11,12}),
(IKCP.INT.IO_ISR.DISRUPT_4, DUMMY), C = {2,3,4,5,6,7,8, 10,11,12}),
(IKCP.INT.IO_ISR.ACT_TASK_4, DUMMY), C = {2,3,4,5,6,7,8, 10,11,12}),
(IKCP.INT.IO_ISR.DISRUPT_5, DUMMY), C = {2,3,4,5,6,7,8,9, 11,12}),
(IKCP.INT.IO_ISR.ACT_TASK_5, DUMMY), C = {2,3,4,5,6,7,8,9, 11,12}),
(IKCP.INT.SOFT.CHECK_SOFTIRQ, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12}),
(IKCP.INT.SOFT.RUN_SOFTIRQ, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12})}

The two multisets Int(path) and Inf (e) for Linux are now easily derived from the IAG as
a 11 × 11 matrix. Each row represents the path according to the 11 disruptive path events
(weights 2-12), each column represents one of the 11 disruptive path events themselves.
The matrix elements then show how often a certain disruption can occur.

200 APPENDIX A. ANALYSIS DATA

ΓLinux =

0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
3 3 3 3 3 3 2 3 3 3 3
1 1 1 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

A.4.2 OpenBSD

The concrete wgt function for the OpenBSD IAG slightly differs from the one defined for
Linux:

wgt(DEV Tx,INT,IPI,0) def= 2 wgt(DEV Tx,INT,IPI,1) def= 3

wgt(DEV Tx,INT,IPI,2) def= 4 wgt(DEV Tx,INT,IPI,3) def= 5

wgt(DEV Tx,INT,IPI,4) def= 6 wgt(DEV Tx,INT,IO,HDD) def= 7

wgt(DEV Tx,INT,IO,MPEG) def= 8 wgt(DEV Tx,INT,IO,HID) def= 9

wgt(DEV Tx,INT,IO,SND) def= 10 wgt(DEV Tx,INT,IO,NIC) def= 11

wgt(DEV Tx,INT,IO,KB) def= 12 wgt(x, INT, TIMER) def= 13

The set of green edges and their weights in OpenBSD are defined as follows. The same
notation as for the Linux IAG is used.

{(UNTR_BEH.SYSTEMAUFRUF.SYS_VOR, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(UNTR_BEH.SYSTEMAUFRUF.SYS_NACH, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(UNTR_BEH.SYSTEMAUFRUF.USERRET, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.DNA, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(UNTR_BEH.EXCEPTION_BEHANDLUNG.FPU, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].TRAP.USR, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].TRAP.PAGE, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].TRAP.SPEZIAL, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].TRAP.TRAPSIGNAL, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].TRAP.PRUEFE, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].TRAP.USERRET , DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].INTERRUPT_HANDLER_ERMITTELN , DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].STRAY_INTERRUPT , DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].NAECHSTER_INTERRUPT_HANDLER , DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].STATISTIKEN_AKTUALISIEREN , DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].IO_APIC_HDL_0, DUMMY), C = {2,3,4,5,6, 8,9,10,11,12,13}),
([...].IO_APIC_HDL_1, DUMMY), C = {2,3,4,5,6,7, 9,10,11,12,13}),
([...].IO_APIC_HDL_2, DUMMY), C = {2,3,4,5,6,7,8, 10,11,12,13}),
([...].IO_APIC_HDL_3, DUMMY), C = {2,3,4,5,6,7,8,9, 11,12,13}),
([...].IO_APIC_HDL_4, DUMMY), C = {2,3,4,5,6,7,8,9,10, 12,13}),
([...].IO_APIC_HDL_5, DUMMY), C = {2,3,4,5,6,7,8,9,10,11, 13}),

APPENDIX A. ANALYSIS DATA 201

([...].IPI.FLUSH_FPU, DUMMY), C = {2,3,4,5,6 }),
([...].IPI.TLB_SHOOTDOWN, DUMMY), C = {2,3,4,5,6 }),
([...].IPI.SYNC_FPU, DUMMY), C = {2,3,4,5,6 }),
([...].IPI.IPI_DB, DUMMY), C = {2,3,4,5,6 }),
([...].LAPIC_TIMER.TSC_AKT, DUMMY), C = {2,3,4,5,6, 13}),
([...].ZEITGEBER_ITIMER_VIRTUAL, DUMMY), C = {2,3,4,5,6, 13}),
([...].ZEITGEBER_ITIMER_PROF, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.T_ADD_VIR, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.T_ADD_PROF, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.STAT_AKT, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.PRPRIO, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.SPCF_SEENRR, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.RESCHED, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.T_W_AKT, DUMMY), C = {2,3,4,5,6, 13}),
([...].HARDCLOCK.SETSOFTCLOCK, DUMMY), C = {2,3,4,5,6, 13}),
([...].SW_INTR_NACH.SW_B_L, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(SPLX.CPL_SETZEN, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(SPLX.PRUE, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].INTERRUPT_IPI.CPL_SETZEN, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
([...].SOFTWARE_INTERRUPT_IPI.DEREG, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(SOFTWARE_INTERRUPT.TTY_BEH., DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(LOCK_SETZEN.VERSUCH_LOCK_BEKOMMEN, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(LOCK_SETZEN.ZAEHLER_INKREMENTIEREN, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(ENTFERNEN.ZAEHLER_DEKREMENTIEREN, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13}),
(ENTFERNEN.LOCK_ENTFERNEN, DUMMY), C = {2,3,4,5,6,7,8,9,10,11,12,13})}

With the above IAG and the set of green edges, the interruptibility matrix as given for
Linux is for OpenBSD as follows:

ΓOpenBSD =

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
6 6 6 6 6 5 6 6 6 6 6 6
6 6 6 6 6 6 5 6 6 6 6 6
6 6 6 6 6 6 6 5 6 6 6 6
6 6 6 6 6 6 6 6 5 6 6 6
6 6 6 6 6 6 6 6 6 5 6 6
6 6 6 6 6 6 6 6 6 6 5 6
11 11 11 11 11 11 0 0 0 0 0 11

202 APPENDIX A. ANALYSIS DATA

A.4.3 Pistachio

The weighting for the edges representing the interruptible parts of the Pistachio operating
system is given as follows:

wgt(DEV Tx,INT,IPI)
def= 2 wgt(DEV Tx,INT,IO,HDD) def= 3

wgt(DEV Tx,INT,IO,MPEG) def= 4 wgt(DEV Tx,INT,IO,HID) def= 5

wgt(DEV Tx,INT,IO,SND) def= 6 wgt(DEV Tx,INT,IO,NIC) def= 7

wgt(DEV Tx,INT,IO,KB) def= 8 wgt(x, INT, TIMER) def= 9

The set of green edges and their weights for both parts, i.e. the kernel and user level
graphs are listed now for Pistachio.

{([...].IRQ.TIMER_HANDLER.UPDATE_GLOBAL_TIMER, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].PROCESS_XCPU_MAILBOX.HANDLE_XCPU_REQUEST, DUMMY),C = {2,3,4,5,6,7,8 }),
{([...].SCHEDULER.UPDATE_TOTAL_QUANTUM, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].SCHEDULER.TOTAL_QUANTUM_EXPIRED, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].SCHEDULER.END_OF_TIMESLICE, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].SCHEDULER.RESCHEDULE, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].SCHEDULER.WAKEUP_PREEMPTION, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].SWITCH_TO_WAKEUP, DUMMY), C = {2,3,4,5,6,7,8 }),
{([...].HANDLE_HW_IRQ.DO_IRQTHREAD_IPC, DUMMY), C = {2,3,4,5,6,7,8,9}),
{([...].SEND_IRQ_TO_ANOTHER_CPU, DUMMY), C = {2,3,4,5,6,7,8,9}),
{([...].DO_IPC, DUMMY), C = {2,3,4,5,6,7,8,9}),
{([...].SWITCH_TO_HANDLER, DUMMY), C = {2,3,4,5,6,7,8,9}),
{([...].ENQUEUE_HANDLER, DUMMY), C = {2,3,4,5,6,7,8,9}),
{(USER_LEVEL.HW_IRQ_HANDLER_THREAD_0, DUMMY), C = {2,3,4,5,6,7,8,9}),
{(USER_LEVEL.HW_IRQ_HANDLER_THREAD_1, DUMMY), C = {2,3,4,5,6,7,8,9}),
{(USER_LEVEL.HW_IRQ_HANDLER_THREAD_2, DUMMY), C = {2,3,4,5,6,7,8,9}),
{(USER_LEVEL.HW_IRQ_HANDLER_THREAD_3, DUMMY), C = {2,3,4,5,6,7,8,9}),
{(USER_LEVEL.HW_IRQ_HANDLER_THREAD_4, DUMMY), C = {2,3,4,5,6,7,8,9}),
{(USER_LEVEL.HW_IRQ_HANDLER_THREAD_5, DUMMY), C = {2,3,4,5,6,7,8,9})}

The resulting interruptibility matrix for Pistachio is given as follows:

ΓPistachio =

0 0 0 0 0 0 0 0
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
8 8 8 8 8 8 8 0

Appendix B

SMV Models

B.1 Linux

MODULE main

VAR

state : {

-- dummy user-space state

in_USERSPACE,

-- scheduling state

in_SCHEDULER,

-- INT states

in_INT-CPU_HANDLING, in_INT-SAVE_REGISTERS, in_INT-RETURN_INT, in_INT-CPU_RETURN,

-- helper state to re-unite paths before decision SoftIRQ handling or not

-- necessary since combine is directly followed by a branch connector

in_INT-CO3,

-- INT.IPI states

in_INT-IPI-SAVE_GPR, in_INT-IPI-DO_RESCHED, in_INT-IPI-DO_CALL_FUN, in_INT-IPI-DO_INV_TLB,

-- INT.LT_ISR states

in_INT-LT_ISR-DO_INT, in_INT-LT_ISR-PROF_TICK, in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-UPD_TIME,

in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-SENDSIG, in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-IT_TIMER,

in_INT-LT_ISR-UPD_PROC_TIMES-TIMER_SOFTIRQ, in_INT-LT_ISR-UPD_PROC_TIMES-TICK-BALANCE,

in_INT-LT_ISR-UPD_PROC_TIMES-TICK-SET_RESCHED, in_INT-LT_ISR-EXIT_INT,

-- INT.GT_ISR states

in_INT-GT_ISR-DO_INT, in_INT-GT_ISR-CHECK_LOST, in_INT-GT_ISR-JIFFIES, in_INT-GT_ISR-UPD_TIME,

in_INT-GT_ISR-EXIT_INT,

-- INT.IO_ISR states

in_INT-IO_ISR-DO_INT, in_INT-IO_ISR-UNDISRUPT_0, in_INT-IO_ISR-DISRUPT_ACT_TASK_0,

in_INT-IO_ISR-UNDISRUPT_5, in_INT-IO_ISR-DISRUPT_ACT_TASK_5, in_INT-IO_ISR-EXIT_INT,

-- INT.SOFT states

in_INT-SOFT-DISABLE_DEF_FUN, in_INT-SOFT-CHECK_RUN_SOFTIRQ, in_INT-SOFT-SIG_KSOFTIRQD};

-- path events

pe : {pe_none, pe_INT_IPI_0, pe_INT_IPI_1, pe_INT_IPI_2, pe_INT_LOC_TIMER,

pe_INT_GLOB_TIMER, pe_INT_IO_0, pe_INT_IO_5};

-- counter to access the path conditions array statically

counter : 0..6;

pcs: array 0..6 of {pc_none, pc_INT_IPI_0, pc_INT_IPI_1, pc_INT_IPI_2, pc_INT_LOC_TIMER,

pc_INT_GLOB_TIMER, pc_INT_IO_0, pc_INT_IO_5};

-- current and previous path condition : constructed to avoid non-allowed dynamic access to pcs array

pc: {pc_none, pc_INT_IPI_0, pc_INT_IPI_1, pc_INT_IPI_2, pc_INT_LOC_TIMER,

pc_INT_GLOB_TIMER, pc_INT_IO_0, pc_INT_IO_5};

prevpc : {pc_none, pc_INT_IPI_0, pc_INT_IPI_1, pc_INT_IPI_2, pc_INT_LOC_TIMER, pc_INT_GLOB_TIMER,

pc_INT_IO_0, pc_INT_IO_5};

-- last interrupted historic state

203

204 APPENDIX B. SMV MODELS

hist : {

state_none,

-- INT.IPI states

in_INT-IPI-DO_RESCHED, in_INT-IPI-DO_CALL_FUN, in_INT-IPI-DO_INV_TLB,

-- INT.IO_ISR states

in_INT-IO_ISR-DISRUPT_ACT_TASK_0,

in_INT-IO_ISR-DISRUPT_ACT_TASK_5

};

-- indicator: has SOFT submachine been interrupted in the last run?

submachine_soft_interrupted : boolean;

-- condition variables

soft_int_pending : boolean;

tif_need_reschedule : boolean;

ASSIGN

--

-- \DELTA P_CONF : STATES / BASIC CONFIGURATIONS

-- START

--

init(state) := in_INT-CPU_HANDLING;

next(state) := case

-- INT states

state = in_INT-CPU_HANDLING : in_INT-SAVE_REGISTERS;

state = in_INT-RETURN_INT : in_INT-CPU_RETURN;

-- split state SP3

state = in_INT-SAVE_REGISTERS & (pc = pc_INT_IPI_0 | pc = pc_INT_IPI_1 | pc = pc_INT_IPI_2):

in_INT-IPI-SAVE_GPR;

state = in_INT-SAVE_REGISTERS & (pc = pc_INT_LOC_TIMER): in_INT-LT_ISR-DO_INT;

state = in_INT-SAVE_REGISTERS & (pc = pc_INT_GLOB_TIMER): in_INT-GT_ISR-DO_INT;

state = in_INT-SAVE_REGISTERS & (pc = pc_INT_IO_0): in_INT-IO_ISR-DO_INT;

state = in_INT-SAVE_REGISTERS & (pc = pc_INT_IO_5): in_INT-IO_ISR-DO_INT;

-- resume in SOFT when was interrupted, else start in default state of SOFT

state = in_INT-CO3 & soft_int_pending > 0 & submachine_soft_interrupted = 0:

in_INT-SOFT-DISABLE_DEF_FUN;

state = in_INT-CO3 & soft_int_pending > 0 & submachine_soft_interrupted = 1:

in_INT-SOFT-CHECK_RUN_SOFTIRQ;

state = in_INT-CO3 & soft_int_pending = 0 : in_INT-RETURN_INT;

state = in_INT-RETURN_INT : in_INT-CPU_RETURN;

-- history : jumping back to last left state

state = in_INT-CPU_RETURN & hist != state_none : hist;

-- INT processed : go to scheduler and user space

state = in_INT-CPU_RETURN & hist = state_none : in_SCHEDULER;

state = in_SCHEDULER : in_USERSPACE;

--

-- Submachine IPI - START

-- ... <- analogous for target states in_INT-IPI-DO_CALL_FUN and in_INT-IPI-DO_INV_TLB

state = in_INT-IPI-SAVE_GPR & pc = pc_INT_IPI_0 : in_INT-IPI-DO_RESCHED;

state = in_INT-IPI-DO_RESCHED & (pe = pe_none | pe = pe_INT_IPI_0 |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

APPENDIX B. SMV MODELS 205

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 | pcs[5] = pc_INT_IO_0 | pcs[6] = pc_INT_IO_0)))

: in_INT-CO3;

-- ... ->

-- <- analogous for target states in_INT-IPI-DO_CALL_FUN and in_INT-IPI-DO_INV_TLB

-- path event handling : stepping to next recursion level

state = in_INT-IPI-DO_RESCHED & (pe = pe_INT_IPI_1 & !(pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 |

pcs[2] = pc_INT_IPI_1 | pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 |

pcs[6] = pc_INT_IPI_1)) : in_INT-CPU_HANDLING;

state = in_INT-IPI-DO_RESCHED & (pe = pe_INT_IPI_2 & !(pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 |

pcs[2] = pc_INT_IPI_2 | pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 |

pcs[6] = pc_INT_IPI_2)) : in_INT-CPU_HANDLING;

state = in_INT-IPI-DO_RESCHED & (pe = pe_INT_LOC_TIMER & !(pcs[0] = pc_INT_LOC_TIMER |

pcs[1] = pc_INT_LOC_TIMER | pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER |

pcs[4] = pc_INT_LOC_TIMER | pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER))

: in_INT-CPU_HANDLING;

state = in_INT-IPI-DO_RESCHED & (pe = pe_INT_GLOB_TIMER & !(pcs[0] = pc_INT_GLOB_TIMER |

pcs[1] = pc_INT_GLOB_TIMER | pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER |

pcs[4] = pc_INT_GLOB_TIMER | pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER))

: in_INT-CPU_HANDLING;

state = in_INT-IPI-DO_RESCHED & (pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 |

pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 |

pcs[6] = pc_INT_IO_5)) : in_INT-CPU_HANDLING;

state = in_INT-IPI-DO_RESCHED & (pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 |

pcs[2] = pc_INT_IO_0 | pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 | pcs[5] = pc_INT_IO_0 |

pcs[6] = pc_INT_IO_0)) : in_INT-CPU_HANDLING;

-- ... ->

-- Submachine IPI - END

--

--

-- Submachine LT_ISR - START

state = in_INT-LT_ISR-DO_INT : in_INT-LT_ISR-PROF_TICK;

state = in_INT-LT_ISR-PROF_TICK : in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-UPD_TIME;

state = in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-UPD_TIME :

in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-SENDSIG;

state = in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-SENDSIG :

in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-IT_TIMER;

state = in_INT-LT_ISR-UPD_PROC_TIMES-ACCOUNTING-IT_TIMER :

in_INT-LT_ISR-UPD_PROC_TIMES-TIMER_SOFTIRQ;

state = in_INT-LT_ISR-UPD_PROC_TIMES-TIMER_SOFTIRQ :

in_INT-LT_ISR-UPD_PROC_TIMES-TICK-BALANCE;

state = in_INT-LT_ISR-UPD_PROC_TIMES-TICK-BALANCE :

in_INT-LT_ISR-UPD_PROC_TIMES-TICK-SET_RESCHED;

state = in_INT-LT_ISR-UPD_PROC_TIMES-TICK-SET_RESCHED : in_INT-LT_ISR-EXIT_INT;

state = in_INT-LT_ISR-EXIT_INT : in_INT-CO3;

-- Submachine LT_ISR - END

--

--

-- Submachine GT_ISR - START

state = in_INT-GT_ISR-DO_INT : in_INT-GT_ISR-CHECK_LOST;

206 APPENDIX B. SMV MODELS

state = in_INT-GT_ISR-CHECK_LOST : in_INT-GT_ISR-JIFFIES;

state = in_INT-GT_ISR-JIFFIES : in_INT-GT_ISR-UPD_TIME;

state = in_INT-GT_ISR-UPD_TIME : in_INT-GT_ISR-EXIT_INT;

state = in_INT-GT_ISR-EXIT_INT : in_INT-CO3;

-- Submachine GT_ISR - END

--

--

-- Submachine IO_ISR - START

-- split state SP5

state = in_INT-IO_ISR-DO_INT & pc = pc_INT_IO_0 : in_INT-IO_ISR-UNDISRUPT_0;

state = in_INT-IO_ISR-DO_INT & pc = pc_INT_IO_5 : in_INT-IO_ISR-UNDISRUPT_5;

state = in_INT-IO_ISR-UNDISRUPT_0 : in_INT-IO_ISR-DISRUPT_ACT_TASK_0;

state = in_INT-IO_ISR-UNDISRUPT_5 : in_INT-IO_ISR-DISRUPT_ACT_TASK_5;

-- ... <- analogous for in_INT-IO_ISR-DISRUPT_ACT_TASK_5

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_none | pe = pe_INT_IO_0 |

(pe = pe_INT_IPI_0 & (pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)) |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)))

: in_INT-IO_ISR-EXIT_INT;

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 |

pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 | pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 |

pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)) : in_INT-CPU_HANDLING;

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_INT_IPI_1 & !(pcs[0] = pc_INT_IPI_1 |

pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 | pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 |

pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) : in_INT-CPU_HANDLING;

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_INT_IPI_2 & !(pcs[0] = pc_INT_IPI_2 |

pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 | pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 |

pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) : in_INT-CPU_HANDLING;

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_INT_LOC_TIMER & !(pcs[0] = pc_INT_LOC_TIMER |

pcs[1] = pc_INT_LOC_TIMER | pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER |

pcs[4] = pc_INT_LOC_TIMER | pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER))

: in_INT-CPU_HANDLING;

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_INT_GLOB_TIMER & !(pcs[0] = pc_INT_GLOB_TIMER |

pcs[1] = pc_INT_GLOB_TIMER | pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER |

pcs[4] = pc_INT_GLOB_TIMER | pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER))

: in_INT-CPU_HANDLING;

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & (pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 |

pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 |

pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)) : in_INT-CPU_HANDLING;

-- ... ->

state = in_INT-IO_ISR-EXIT_INT : in_INT-CO3;

-- Submachine IO_ISR - END

--

--

-- Submachine SOFT - START

state = in_INT-SOFT-DISABLE_DEF_FUN : in_INT-SOFT-CHECK_RUN_SOFTIRQ;

APPENDIX B. SMV MODELS 207

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_none |

(pe = pe_INT_IPI_0 & (pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)) |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 | pcs[5] = pc_INT_IO_0 | pcs[6] = pc_INT_IO_0)))

& soft_int_pending = 0 : in_INT-SOFT-SIG_KSOFTIRQD;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 |

pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 | pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 |

pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)) : in_INT-CPU_HANDLING;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_IPI_1 & !(pcs[0] = pc_INT_IPI_1 |

pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 | pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 |

pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) : in_INT-CPU_HANDLING;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_IPI_2 & !(pcs[0] = pc_INT_IPI_2 |

pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 | pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 |

pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) : in_INT-CPU_HANDLING;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_LOC_TIMER & !(pcs[0] = pc_INT_LOC_TIMER |

pcs[1] = pc_INT_LOC_TIMER | pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER |

pcs[4] = pc_INT_LOC_TIMER | pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER))

: in_INT-CPU_HANDLING;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_GLOB_TIMER & !(pcs[0] = pc_INT_GLOB_TIMER |

pcs[1] = pc_INT_GLOB_TIMER | pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER |

pcs[4] = pc_INT_GLOB_TIMER | pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER))

: in_INT-CPU_HANDLING;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 |

pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 | pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 |

pcs[5] = pc_INT_IO_0 | pcs[6] = pc_INT_IO_0)) : in_INT-CPU_HANDLING;

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 |

pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 |

pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)) : in_INT-CPU_HANDLING;

state = in_INT-SOFT-SIG_KSOFTIRQD : in_INT-RETURN_INT;

-- Submachine SOFT - END

--

1 : state;

esac;

--

-- \DELTA P_CONF : STATES / BASIC CONFIGURATIONS

-- END

--

--

--

-- \DELTA P_IMP : PATH CONDITIONS & HISTORY

-- START

--

--

-- PATH CONDITIONS

208 APPENDIX B. SMV MODELS

-- START

--

init(pcs[0]) := {pc_INT_IPI_0, pc_INT_IPI_1, pc_INT_IPI_2, pc_INT_LOC_TIMER, pc_INT_GLOB_TIMER,

pc_INT_IO_0, pc_INT_IO_5};

init(pcs[1]) := pc_none;

init(pcs[2]) := pc_none;

init(pcs[3]) := pc_none;

init(pcs[4]) := pc_none;

init(pcs[5]) := pc_none;

init(pcs[6]) := pc_none;

next(pcs[0]) := case

counter = 0: case

state = in_INT-CPU_RETURN : pc_none;

1 : pcs[0];

esac;

1: pcs[0];

esac;

next(pcs[1]) := case

counter = 0 : case

-- ... <- analogous for all path events that might interrupt in_INT-IPI-DO_RESCHED,

-- in_INT-IPI-DO_CALL_FUN and in_INT-IPI-DO_INV_TLB

state = in_INT-IPI-DO_RESCHED & counter < 6 &

(pe = pe_INT_IPI_1 & !(pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)):

pc_INT_IPI_1;

-- ... ->

-- ... <- analogous for all path events that might interrupt in_INT-SOFT-CHECK_RUN_SOFTIRQ

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & counter < 6 &

(pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)):

pc_INT_IPI_0;

-- ... ->

-- ... <- analogous for all path events that might interrupt in_INT-IO_ISR-DISRUPT_ACT_TASK_0 and

-- in_INT-IO_ISR-DISRUPT_ACT_TASK_5

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & counter < 6 &

(pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)):

pc_INT_IPI_0;

-- ... ->

1 : pcs[1];

esac;

counter = 1 : case

state = in_INT-CPU_RETURN : pc_none;

1 : pcs[1];

esac;

1: pcs[1];

esac;

-- analogous: pcs[2] ... pcs[6]

-- current path condition

init(pc) := pcs[0];

next(pc) := case

-- ... <- analogous for all path events that might interrupt in_INT-IPI-DO_RESCHED,

-- in_INT-IPI-DO_CALL_FUN and in_INT-IPI-DO_INV_TLB

state = in_INT-IPI-DO_RESCHED & counter < 6 &

(pe = pe_INT_IPI_1 & !(pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)):

APPENDIX B. SMV MODELS 209

pc_INT_IPI_1;

-- ... ->

-- ... <- analogous for all path events that might interrupt in_INT-SOFT-CHECK_RUN_SOFTIRQ

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & counter < 6 &

(pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)):

pc_INT_IPI_0;

-- ... ->

-- ... <- analogous for all path events that might interrupt in_INT-IO_ISR-DISRUPT_ACT_TASK_0 and

-- in_INT-IO_ISR-DISRUPT_ACT_TASK_5

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & counter < 6 &

(pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)):

pc_INT_IPI_0;

-- ... ->

-- recursive ascent : go to previous counter position since counter is decreased at the

-- same step as this next(pc) occurs

state = in_INT-CPU_RETURN & counter = 1 : pcs[0];

state = in_INT-CPU_RETURN & counter = 2 : pcs[1];

state = in_INT-CPU_RETURN & counter = 3 : pcs[2];

state = in_INT-CPU_RETURN & counter = 4 : pcs[3];

state = in_INT-CPU_RETURN & counter = 5 : pcs[4];

state = in_INT-CPU_RETURN & counter = 6 : pcs[5];

1 : pc;

esac;

-- previous path condition

init(prevpc) := pc_none;

next(prevpc) := case

-- ... <- analogous for counters 0..4: reset pc at current counter if state is interrupted

state = in_INT-IPI-DO_RESCHED & !(pe = pe_none | pe = pe_INT_IPI_0 |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 | pcs[5] = pc_INT_IO_0 | pcs[6] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)))

& counter = 5: pcs[5];

-- ... ->

-- analogous for interruptible states in_INT-IPI-DO_CALL_FUN, in_INT-IPI-INV_TLB,

-- in_INT-SOFT-CHECK_RUN_SOFTIRQ, in_INT-IO_ISR-DISRUPT_ACT_TASK_0, in_INT-IO_ISR-DISRUPT_ACT_TASK_5

-- for counters 0..5

-- recursive ascent : go to previous counter position since counter is decreased at the

-- same step as this next(pc) occurs

state = in_INT-CPU_RETURN & counter = 1 : pc_none;

state = in_INT-CPU_RETURN & counter = 2 : pcs[0];

state = in_INT-CPU_RETURN & counter = 3 : pcs[1];

state = in_INT-CPU_RETURN & counter = 4 : pcs[2];

state = in_INT-CPU_RETURN & counter = 5 : pcs[3];

state = in_INT-CPU_RETURN & counter = 6 : pcs[4];

210 APPENDIX B. SMV MODELS

1 : prevpc;

esac;

init(counter) := 0;

next(counter) := case

-- recursive descent

-- ... <- analogous for all other interruptible states

state = in_INT-IPI-DO_RESCHED & counter < 6 & !(pe = pe_none | pe = pe_INT_IPI_0 |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 | pcs[5] = pc_INT_IO_0 | pcs[6] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)))

: counter+1;

-- ... ->

-- recursive ascent

state = in_INT-CPU_RETURN & counter > 0 : (counter + (-1));

1 : counter;

esac;

--

-- PATH CONDITIONS

-- END

--

--

-- HISTORY

-- START

--

-- previous / last seen historic state

init(hist) := state_none;

next(hist) := case

-- interruption point is unambiguous per path condition

prevpc = pc_INT_IPI_0 : in_INT-IPI-DO_RESCHED;

prevpc = pc_INT_IPI_1 : in_INT-IPI-DO_CALL_FUN;

prevpc = pc_INT_IPI_2 : in_INT-IPI-DO_INV_TLB;

prevpc = pc_INT_IO_0 : in_INT-IO_ISR-DISRUPT_ACT_TASK_0;

prevpc = pc_INT_IO_5 : in_INT-IO_ISR-DISRUPT_ACT_TASK_5;

1 : state_none;

esac;

--

-- HISTORY

-- END

--

--

-- \DELTA P_IMP : PATH CONDITIONS & HISTORY

-- END

--

--

-- \DELTA P_EXP : CONDITIONS & VARIABLES

APPENDIX B. SMV MODELS 211

-- START

--

-- setting condition soft_int_pending

init(soft_int_pending) := 0;

next(soft_int_pending) := case

-- decrement if RUN_SOFTIRQ steps through without being interrupted: finalize all pending softIRQs

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_none |

(pe = pe_INT_IPI_0 & (pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)) |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0 | pcs[5] = pc_INT_IO_0 | pcs[6] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)))

& soft_int_pending > 0 : 0;

-- increment when DISRUPT_ACT_TASK_x steps through

-- ... <- analogous for TASK_5

state = in_INT-IO_ISR-DISRUPT_ACT_TASK_0 & soft_int_pending < 9 & (pe = pe_none | pe = pe_INT_IO_0 |

(pe = pe_INT_IPI_0 & (pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 | pcs[2] = pc_INT_IPI_0 |

pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 | pcs[6] = pc_INT_IPI_0)) |

(pe = pe_INT_IPI_1 & (pcs[0] = pc_INT_IPI_1 | pcs[1] = pc_INT_IPI_1 | pcs[2] = pc_INT_IPI_1 |

pcs[3] = pc_INT_IPI_1 | pcs[4] = pc_INT_IPI_1 | pcs[5] = pc_INT_IPI_1 | pcs[6] = pc_INT_IPI_1)) |

(pe = pe_INT_IPI_2 & (pcs[0] = pc_INT_IPI_2 | pcs[1] = pc_INT_IPI_2 | pcs[2] = pc_INT_IPI_2 |

pcs[3] = pc_INT_IPI_2 | pcs[4] = pc_INT_IPI_2 | pcs[5] = pc_INT_IPI_2 | pcs[6] = pc_INT_IPI_2)) |

(pe = pe_INT_LOC_TIMER & (pcs[0] = pc_INT_LOC_TIMER | pcs[1] = pc_INT_LOC_TIMER |

pcs[2] = pc_INT_LOC_TIMER | pcs[3] = pc_INT_LOC_TIMER | pcs[4] = pc_INT_LOC_TIMER |

pcs[5] = pc_INT_LOC_TIMER | pcs[6] = pc_INT_LOC_TIMER)) |

(pe = pe_INT_GLOB_TIMER & (pcs[0] = pc_INT_GLOB_TIMER | pcs[1] = pc_INT_GLOB_TIMER |

pcs[2] = pc_INT_GLOB_TIMER | pcs[3] = pc_INT_GLOB_TIMER | pcs[4] = pc_INT_GLOB_TIMER |

pcs[5] = pc_INT_GLOB_TIMER | pcs[6] = pc_INT_GLOB_TIMER)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5 | pcs[5] = pc_INT_IO_5 | pcs[6] = pc_INT_IO_5)))

& soft_int_pending = 0 : 1;

-- ... ->

1 : soft_int_pending;

esac;

init(tif_need_reschedule) := 0;

next(tif_need_reschedule) := case

state = in_INT-LT_ISR-UPD_PROC_TIMES-TICK-SET_RESCHED : 1;

state = in_SCHEDULER : 0;

1 : tif_need_reschedule;

esac;

-- history indicator for submachine SOFT

init(submachine_soft_interrupted) := 0;

next(submachine_soft_interrupted) := case

state = in_INT-SOFT-CHECK_RUN_SOFTIRQ & (pe = pe_INT_IPI_0 & !(pcs[0] = pc_INT_IPI_0 | pcs[1] = pc_INT_IPI_0 |

pcs[2] = pc_INT_IPI_0 | pcs[3] = pc_INT_IPI_0 | pcs[4] = pc_INT_IPI_0 | pcs[5] = pc_INT_IPI_0 |

pcs[6] = pc_INT_IPI_0)) : 1;

-- analogous for all other path events that could interrupt

-- interruptible state passed --> SOFT about to terminate

212 APPENDIX B. SMV MODELS

state = in_INT-SOFT-SIG_KSOFTIRQD : 0;

1 : submachine_soft_interrupted;

esac;

--

-- \DELTA P_EXP : CONDITIONS & VARIABLES

-- END

--

-- FAIRNESS CONSTRAINTS

--

-- ... <- analogous for all other path conditions: path event is free to occur an infinite number of times

JUSTICE pcs[0]!=pc_INT_IPI_0 & pcs[1]!=pc_INT_IPI_0 & pcs[2]!=pc_INT_IPI_0 & pcs[3]!=pc_INT_IPI_0 &

pcs[4]!=pc_INT_IPI_0 & pcs[5]!=pc_INT_IPI_0 & pcs[6]!=pc_INT_IPI_0;

-- ... ->

--

-- INDICATORS

--

-- infinite handling

LTLSPEC

G(state = in_INT-CPU_HANDLING -> F(state=in_USERSPACE))

-- losing interrupts

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_IPI_0

-> F(state=in_INT-DO_RESCHED))

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_IPI_1

-> F(state=in_INT-IPI-DO_CALL_FUN))

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_IPI_2

-> F(state=in_INT-IPI-DO_INV_TLB))

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_IO_0

-> F(state=in_INT-IO_ISR-DISRUPT_ACT_TASK_0))

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_IO_5

-> F(state=in_INT-IO_ISR-DISRUPT_ACT_TASK_5))

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_LOC_TIMER

-> F(state=in_INT-LT_ISR-UPD_PROC_TIMES-TICK-SET_RESCHED))

LTLSPEC G(state = in_INT-CPU_HANDLING & pc = in_INT_GLOB_TIMER

-> F(state=in_INT-GT_ISR-JIFFIES))

B.2 OpenBSD

MODULE main

VAR

state : {

-- dummy user-space state

in_USERSPACE,

-- INT states

in_IKCP-INT-CREATE_FRAME, in_IKCP-INT-XDORETI, in_IKCP-INT-IPI-EOI, in_IKCP-INT-IPI-IPI,

-- IO_APIC states

in_IKCP-INT-IO_APIC-GRP-DET_HANDLER, in_IKCP-INT-IO_APIC-GRP-UPDATE_STAT,

in_IKCP-INT-IO_APIC-IOAPIC_HDL_0, in_IKCP-INT-IO_APIC-IOAPIC_HDL_5,

in_IKCP-INT-IO_APIC-EOI, in_IKCP-INT-IO_APIC-SET_LOCK-LOCK,

in_IKCP-INT-IO_APIC-SET_LOCK-SPLX, in_IKCP-INT-IO_APIC-REM_LOCK-REMOVE,

in_IKCP-INT-IO_APIC-REM_LOCK-SPLX,

-- LAPIC_TIMER states

in_IKCP-INT-LAPIC_TIMER-EOI, in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK,

in_IKCP-INT-LAPIC_TIMER-SET_LOCK-SPLX,

in_IKCP-INT-LAPIC_TIMER-REM_LOCK-REMOVE, in_IKCP-INT-LAPIC_TIMER-REM_LOCK-SPLX,

in_IKCP-INT-LAPIC_TIMER-TSC_ACT, in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-TIMER,

in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SCHEDULE,

in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SETSOFTCLOCK,

APPENDIX B. SMV MODELS 213

-- SYSCALL states

in_IKCP-SYS-DO_SYSCALL-GET_PARAM, in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL,

in_IKCP-SYS-DO_SYSCALL-USERRET, in_IKCP-SYS-SET_LOCK-LOCK, in_IKCP-SYS-SET_LOCK-SPLX,

in_IKCP-SYS-REM_LOCK-REMOVE, in_IKCP-SYS-REM_LOCK-SPLX

};

pe : {pe_none, pe_INT_IPI, pe_INT_LAPIC, pe_INT_IO_0, pe_INT_IO_5, pe_SYS};

counter : 0..4;

pcs: array 0..4 of {pc_none, pc_INT_IPI, pc_INT_LAPIC, pc_INT_IO_0, pc_INT_IO_5, pc_SYS};

-- current and previous pc : constructed to avoid non-allowed dynamic access to pcs array

pc: {pc_none, pc_INT_IPI, pc_INT_LAPIC, pc_INT_IO_0, pc_INT_IO_5, pc_SYS};

prevpc : {pc_none, pc_INT_IPI, pc_INT_LAPIC, pc_INT_IO_0, pc_INT_IO_5, pc_SYS};

-- last interrupted historic state

hist : {

state_none,

in_IKCP-INT-IPI-IPI,

in_IKCP-INT-IO_APIC-GRP-DET_HANDLER, in_IKCP-INT-IO_APIC-GRP-UPDATE_STAT,

in_IKCP-INT-IO_APIC-IOAPIC_HDL_0, in_IKCP-INT-IO_APIC-IOAPIC_HDL_5,

in_IKCP-INT-IO_APIC-SET_LOCK-LOCK, in_IKCP-INT-IO_APIC-REM_LOCK-REMOVE,

in_IKCP-INT-LAPIC_TIMER-EOI,

in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK, in_IKCP-INT-LAPIC_TIMER-REM_LOCK-REMOVE,

in_IKCP-INT-LAPIC_TIMER-TSC_ACT, in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-TIMER,

in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SCHEDULE, in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SETSOFTCLOCK,

in_IKCP-SYS-DO_SYSCALL-GET_PARAM, in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL,

in_IKCP-SYS-SET_LOCK-LOCK, in_IKCP-SYS-REM_LOCK-REMOVE

};

-- historic states: all interruptible states that can be subject to long-term history

history: array 0..3 of {

state_none,

in_IKCP-INT-IPI-IPI,

in_IKCP-INT-IO_APIC-GRP-DET_HANDLER, in_IKCP-INT-IO_APIC-GRP-UPDATE_STAT,

in_IKCP-INT-IO_APIC-IOAPIC_HDL_0, in_IKCP-INT-IO_APIC-IOAPIC_HDL_5,

in_IKCP-INT-IO_APIC-SET_LOCK-LOCK, in_IKCP-INT-IO_APIC-REM_LOCK-REMOVE,

in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK, in_IKCP-INT-LAPIC_TIMER-REM_LOCK-REMOVE,

in_IKCP-INT-LAPIC_TIMER-TSC_ACT, in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-TIMER,

in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SCHEDULE, in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SETSOFTCLOCK,

in_IKCP-SYS-DO_SYSCALL-GET_PARAM, in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL,

in_IKCP-SYS-SET_LOCK-LOCK, in_IKCP-SYS-REM_LOCK-REMOVE

};

ASSIGN

-- \DELTA P_CONF : STATES / BASIC CONFIGURATIONS

-- START

init(state) :=

case

-- split state SP1

pc = pc_SYS : in_IKCP-SYS-DO_SYSCALL-GET_PARAM;

1 : in_IKCP-INT-CREATE_FRAME;

esac;

next(state) := case

-- Submachine SYS - START

-- .. <-- analogous for all other interruptible states of the SYS submachine:

-- in_IKCP-SYS-SET_LOCK-LOCK, in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL,

-- in_IKCP-SYS-REM_LOCK-REMOVE,

214 APPENDIX B. SMV MODELS

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & (pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 |

pcs[2] = pc_INT_IO_0 | pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 |

pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC |

pcs[2] = pc_INT_LAPIC | pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI |

pcs[2] = pc_INT_IPI | pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI))) :

in_IKCP-SYS-SET_LOCK-LOCK;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & !(pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 |

pcs[2] = pc_INT_IO_0 | pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 |

pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC |

pcs[2] = pc_INT_LAPIC | pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI |

pcs[2] = pc_INT_IPI | pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI))) :

in_IKCP-INT-CREATE_FRAME;

-- .. -->

state = in_IKCP-SYS-SET_LOCK-SPLX : in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL;

state = in_IKCP-SYS-REM_LOCK-SPLX : in_IKCP-SYS-DO_SYSCALL-USERRET;

-- go directly to user space because no recursive ascent is possible:

-- a syscall can’t interrupt any other IKCP

state = in_IKCP-SYS-DO_SYSCALL-USERRET : in_USERSPACE;

-- Submachine SYS - END

------ Submachine INT - Interrupt Processing

-- split state SP3

state = in_IKCP-INT-CREATE_FRAME & pc = pc_INT_IPI : in_IKCP-INT-IPI-EOI;

state = in_IKCP-INT-CREATE_FRAME & (pc = pc_INT_IO_0 | pc = pc_INT_IO_5) :

in_IKCP-INT-IO_APIC-GRP-DET_HANDLER;

state = in_IKCP-INT-CREATE_FRAME & pc = pc_INT_LAPIC : in_IKCP-INT-LAPIC_TIMER-EOI;

-- Submachine IPI - START

state = in_IKCP-INT-IPI-EOI : in_IKCP-INT-IPI-IPI;

state = in_IKCP-INT-IPI-IPI & (pe = pe_none | pe = pe_INT_IPI | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC))) :

in_IKCP-INT-XDORETI;

state = in_IKCP-INT-IPI-IPI & !(pe = pe_none | pe = pe_INT_IPI | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC))) :

in_IKCP-INT-CREATE_FRAME;

-- Submachine IPI - END

APPENDIX B. SMV MODELS 215

-- Submachine IO - START

-- ... <-- analogous for the other interruptible states of submachine IO_APIC:

-- in_IKCP-INT-IO_APIC-SET_LOCK-LOCK, in_IKCP-INT-IO_APIC-IOAPIC_HDL_0,

-- in_IKCP-INT-IO_APIC-IOAPIC_HDL_5, in_IKCP-INT-IO_APIC-GRP-UPDATE_STAT,

-- in_IKCP-INT-IO_APIC-REM_LOCK-REMOVE

state = in_IKCP-INT-IO_APIC-GRP-DET_HANDLER & (pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI))) :

in_IKCP-INT-IO_APIC-SET_LOCK-LOCK;

state = in_IKCP-INT-IO_APIC-GRP-DET_HANDLER & !(pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & !(pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI))) :

in_IKCP-INT-CREATE_FRAME;

state = in_IKCP-INT-IO_APIC-SET_LOCK-SPLX & pc = pc_INT_IO_0 : in_IKCP-INT-IO_APIC-IOAPIC_HDL_0;

state = in_IKCP-INT-IO_APIC-SET_LOCK-SPLX & pc = pc_INT_IO_5 : in_IKCP-INT-IO_APIC-IOAPIC_HDL_5;

state = in_IKCP-INT-IO_APIC-REM_LOCK-SPLX : in_IKCP-INT-IO_APIC-EOI;

state = in_IKCP-INT-IO_APIC-EOI : in_IKCP-INT-XDORETI;

-- Submachine IO - END

-- Submachine LAPIC_TIMER - START

state = in_IKCP-INT-LAPIC_TIMER-EOI : in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK;

-- ... <-- analogous for the other interruptible states of submachine LAPIC_TIMER:

-- in_IKCP-INT-LAPIC_TIMER-TSC_ACT, in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-TIMER,

-- in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SCHEDULE, state = in_IKCP-INT-LAPIC_TIMER-REM_LOCK-REMOVE

state = in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK & (pe = pe_none | pe = pe_INT_LAPIC | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI))) :

in_IKCP-INT-LAPIC_TIMER-SET_LOCK-SPLX;

state = in_IKCP-INT-LAPIC_TIMER-SET_LOCK-LOCK & !(pe = pe_none | pe = pe_INT_LAPIC | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI))) :

in_IKCP-INT-CREATE_FRAME;

state = in_IKCP-INT-LAPIC_TIMER-SET_LOCK-SPLX : in_IKCP-INT-LAPIC_TIMER-TSC_ACT;

state = in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SETSOFTCLOCK : in_IKCP-INT-LAPIC_TIMER-REM_LOCK-REMOVE;

state = in_IKCP-INT-LAPIC_TIMER-REM_LOCK-SPLX : in_IKCP-INT-XDORETI;

216 APPENDIX B. SMV MODELS

-- Submachine LAPIC_TIMER - END

-- history : jumping back to last left state

state = in_IKCP-INT-XDORETI & hist != state_none : hist;

-- no history: return to user space

state = in_IKCP-INT-XDORETI & hist = state_none : in_USERSPACE;

1 : state;

esac;

--

-- \DELTA P_CONF : STATES / BASIC CONFIGURATIONS

-- END

--

--

-- \DELTA P_IMP : PATH CONDITIONS & HISTORY

-- START

--

-- PATH CONDITIONS

-- START

init(pcs[0]) := {pc_INT_IPI, pc_INT_LAPIC, pc_INT_IO_0, pc_INT_IO_5, pc_SYS};

init(pcs[1]) := pc_none;

init(pcs[2]) := pc_none;

init(pcs[3]) := pc_none;

init(pcs[4]) := pc_none;

next(pcs[0]) := case

counter = 0: case

state = in_IKCP-INT-XDORETI : pc_none;

state = in_IKCP-SYS-DO_SYSCALL-USERRET : pc_none;

1 : pcs[0];

esac;

1: pcs[0];

esac;

-- ... <-- analogous for pcs[2] .. pcs[4]

next(pcs[1]) := case

counter = 0 : case

-- ... <-- analogous for all other interruptible states and their interrupting path events

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 |

pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)):

pc_INT_IO_5;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 |

pcs[2] = pc_INT_IO_0 | pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)):

pc_INT_IO_0;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_IPI & !(pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI |

pcs[2] = pc_INT_IPI | pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI)):

pc_INT_IPI;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_LAPIC & !(pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC |

pcs[2] = pc_INT_LAPIC | pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)):

pc_INT_LAPIC;

-- ... -->

1 : pcs[1];

esac;

counter = 1 : case

state = in_IKCP-INT-XDORETI : pc_none;

state = in_IKCP-SYS-DO_SYSCALL-USERRET : pc_none;

1 : pcs[1];

APPENDIX B. SMV MODELS 217

esac;

1: pcs[1];

esac;

-- current path condition

init(pc) := pcs[0];

next(pc) := case

-- recursive descent

-- ... <-- analogous for all other interruptible states and their interrupting path events

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 |

pcs[2] = pc_INT_IO_5 | pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)):

pc_INT_IO_5;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 |

pcs[2] = pc_INT_IO_0 | pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)):

pc_INT_IO_0;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_IPI & !(pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI |

pcs[2] = pc_INT_IPI | pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI)):

pc_INT_IPI;

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM &

(pe = pe_INT_LAPIC & !(pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC |

pcs[2] = pc_INT_LAPIC | pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)):

pc_INT_LAPIC;

-- ... -->

-- recursive ascent : go to previous counter position since counter is decreased at the

-- same step as this next(pc) occurs

state = in_IKCP-INT-XDORETI & counter = 1 : pcs[0];

state = in_IKCP-INT-XDORETI & counter = 2 : pcs[1];

state = in_IKCP-INT-XDORETI & counter = 3 : pcs[2];

state = in_IKCP-INT-XDORETI & counter = 4 : pcs[3];

1 : pc;

esac;

-- previous path condition

init(prevpc) := pc_none;

next(prevpc) := case

-- recursive descent

-- ... <-- analogous for all other interruptible states and counters / array indices 2..0

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & !(pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI)))

& counter = 3 : pcs[3];

-- recursive ascent

state = in_IKCP-INT-XDORETI & counter = 1 : pc_none;

state = in_IKCP-INT-XDORETI & counter = 2 : pcs[0];

state = in_IKCP-INT-XDORETI & counter = 3 : pcs[1];

state = in_IKCP-INT-XDORETI & counter = 4 : pcs[2];

1 : prevpc;

esac;

init(counter) := 0;

next(counter) := case

-- ... <-- analogous for all other interruptible states

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & !(pe = pe_none | pe = pe_INT_IPI | pe = pe_SYS |

218 APPENDIX B. SMV MODELS

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)))

& counter < 4 : counter+1;

-- ... -->

state = in_IKCP-INT-XDORETI & counter > 0 : (counter + (-1));

1 : counter;

esac;

-- PATH CONDITIONS - END

-- HISTORY - START

-- previous / last seen historic state

init(hist) := history[0];

next(hist) := case

-- ... <-- analogous for all other interruptible states

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & !(pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI)))

: in_IKCP-SYS-DO_SYSCALL-GET_PARAM;

-- ... -->

state = in_IKCP-INT-XDORETI & counter = 1 : state_none;

state = in_IKCP-INT-XDORETI & counter = 2 : history[0];

state = in_IKCP-INT-XDORETI & counter = 3 : history[1];

state = in_IKCP-INT-XDORETI & counter = 4 : history[2];

1 : hist;

esac;

init(history[0]) := state_none;

init(history[1]) := state_none;

init(history[2]) := state_none;

init(history[3]) := state_none;

-- ... <-- analogous for history[1] .. history[3]

next(history[0]) := case

counter = 0: case

-- ... <-- analogous for all other interruptible states

state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & !(pe = pe_none | pe = pe_SYS |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0 | pcs[4] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5 | pcs[4] = pc_INT_IO_5)) |

(pe = pe_INT_LAPIC & (pcs[0] = pc_INT_LAPIC | pcs[1] = pc_INT_LAPIC | pcs[2] = pc_INT_LAPIC |

pcs[3] = pc_INT_LAPIC | pcs[4] = pc_INT_LAPIC)) |

(pe = pe_INT_IPI & (pcs[0] = pc_INT_IPI | pcs[1] = pc_INT_IPI | pcs[2] = pc_INT_IPI |

pcs[3] = pc_INT_IPI | pcs[4] = pc_INT_IPI)))

: in_IKCP-SYS-DO_SYSCALL-GET_PARAM;

-- ... -->

1 : history[0];

esac;

APPENDIX B. SMV MODELS 219

counter = 1: case

state = in_IKCP-INT-XDORETI : state_none;

state = in_IKCP-SYS-DO_SYSCALL-USERRET : state_none;

1 : history[0];

esac;

1: history[0];

esac;

-- HISTORY - END

-- \DELTA P_IMP : PATH CONDITIONS & HISTORY

-- END

-- \DELTA P_EXP : CONDITIONS & VARIABLES

-- START

--

-- NONE

--

-- \DELTA P_EXP : CONDITIONS & VARIABLES

-- END

-- FAIRNESS CONSTRAINTS

--

JUSTICE pcs[0]!=pc_INT_IPI & pcs[1]!=pc_INT_IPI & pcs[2]!=pc_INT_IPI & pcs[3]!=pc_INT_IPI;

JUSTICE pcs[0]!=pc_INT_IO_0 & pcs[1]!=pc_INT_IO_0 & pcs[2]!=pc_INT_IO_0 & pcs[3]!=pc_INT_IO_0;

JUSTICE pcs[0]!=pc_INT_IO_5 & pcs[1]!=pc_INT_IO_5 & pcs[2]!=pc_INT_IO_5 & pcs[3]!=pc_INT_IO_5;

JUSTICE pcs[0]!=pc_INT_LAPIC & pcs[1]!=pc_INT_LAPIC & pcs[2]!=pc_INT_LAPIC & pcs[3]!=pc_INT_LAPIC;

--

-- INDICATORS

--

-- infinite handling

LTLSPEC

G(state = in_IKCP-INT-CREATE_FRAME & hist = state_none & pcs[0] != pc_SYS

-> F(state = in_USERSPACE));

LTLSPEC

G(state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & hist = state_none -> F(state = in_USERSPACE))

-- losing interrupts

LTLSPEC

G(state = in_IKCP-INT-CREATE_FRAME & pc = pc_INT_IPI -> F(state = in_IKCP-INT-IPI-IPI));

LTLSPEC

G(state = in_IKCP-INT-CREATE_FRAME & pc = pc_INT_IO_0

-> F(state = in_IKCP-INT-IO_APIC-IOAPIC_HDL_0));

LTLSPEC

G(state = in_IKCP-INT-CREATE_FRAME & pc = pc_INT_IO_5

-> F(state = in_IKCP-INT-IO_APIC-IOAPIC_HDL_5));

LTLSPEC

G(state = in_IKCP-INT-CREATE_FRAME & pc = pc_INT_LAPIC ->

F(state = in_IKCP-INT-LAPIC_TIMER-HARDCLOCK-SETSOFTCLOCK));

LTLSPEC

G(state = in_IKCP-SYS-DO_SYSCALL-GET_PARAM & pc = pc_SYS

-> F(state = in_IKCP-SYS-DO_SYSCALL-EXEC_SYSCALL));

220 APPENDIX B. SMV MODELS

B.3 Pistachio

MODULE main

VAR

state : {state_none,

-- Kernel Mode

in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI, in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST,

in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET,

in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK, in_KERNEL-INTERRUPT-HW_IRQ-EOI,

in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0, in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5,

in_KERNEL-INTERRUPT-HW_IRQ-IRET,

in_KERNEL-INTERRUPT-TIMER-EOI_APIC, in_KERNEL-INTERRUPT-TIMER-IRET,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX,

-- User Mode

in_USER-HANDLERS-IRQ_THREAD,

-- dummy user-space state

in_USERSPACE

};

pe : {pe_none, pe_INT_XCPU, pe_INT_TIMER, pe_INT_IO_0, pe_INT_IO_5};

counter : 0..3;

pcs: array 0..3 of {pc_none, pc_INT_XCPU, pc_INT_TIMER, pc_INT_IO_0, pc_INT_IO_5};

pc: {pc_none, pc_INT_XCPU, pc_INT_TIMER, pc_INT_IO_0, pc_INT_IO_5};

prevpc : {pc_none, pc_INT_XCPU, pc_INT_TIMER, pc_INT_IO_0, pc_INT_IO_5};

-- last interrupted historic state

hist : {

state_none,

in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST,

in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0, in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX

};

-- historic states: all interruptible basic states that can be subject to LTH

history: array 0..3 of {

state_none,

in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST,

in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0, in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED,

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX

};

ASSIGN

-- \DELTA P_CONF : STATES / BASIC CONFIGURATIONS - START

init(state) := case

pc = pc_INT_XCPU : in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

pc = pc_INT_TIMER : in_KERNEL-INTERRUPT-TIMER-EOI_APIC;

pc = pc_INT_IO_0 | pc = pc_INT_IO_5 : in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

1 : state_none;

esac;

next(state) := case

APPENDIX B. SMV MODELS 221

-- Kernel Space

-- Submachine XCPU_MAILBOX - START

--

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI : in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST & (pe = pe_none | pe = pe_INT_XCPU |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))) :

in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER))

: in_KERNEL-INTERRUPT-TIMER-EOI_APIC;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

((pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & hist != state_none : hist;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & hist = state_none : in_USER-HANDLERS-IRQ_THREAD;

--

-- Submachine XCPU_MAILBOX - END

-- Submachine HW_IRQ - START

--

state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK : in_KERNEL-INTERRUPT-HW_IRQ-EOI;

state = in_KERNEL-INTERRUPT-HW_IRQ-EOI & pc = pc_INT_IO_0 : in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0;

state = in_KERNEL-INTERRUPT-HW_IRQ-EOI & pc = pc_INT_IO_5 : in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0 & (pe = pe_none | pe = pe_INT_IO_0 |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))) :

in_KERNEL-INTERRUPT-HW_IRQ-IRET;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0 &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0 &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER))

: in_KERNEL-INTERRUPT-TIMER-EOI_APIC;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0 &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5 & (pe = pe_none | pe = pe_INT_IO_5 |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

222 APPENDIX B. SMV MODELS

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU)))

: in_KERNEL-INTERRUPT-HW_IRQ-IRET;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5 &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5 &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER))

: in_KERNEL-INTERRUPT-TIMER-EOI_APIC;

state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5 &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & hist != state_none : hist;

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & hist = state_none : in_USER-HANDLERS-IRQ_THREAD;

--

-- Submachine HW_IRQ - END

-- Submachine TIMER - START

--

state = in_KERNEL-INTERRUPT-TIMER-EOI_APIC :

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER &

(pe = pe_none | pe = pe_INT_TIMER |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))) :

in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-UPD_TIMER &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX &

(pe = pe_none | pe = pe_INT_TIMER |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU)))

: in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0))

APPENDIX B. SMV MODELS 223

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-XCPU_MAILBOX &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM &

(pe = pe_none | pe = pe_INT_TIMER |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU)))

: in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-TOTAL_QUANTUM &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED &

(pe = pe_none | pe = pe_INT_TIMER |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU)))

: in_KERNEL-INTERRUPT-TIMER-IRET;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_KERNEL-INTERRUPT-TIMER-IRET & hist != state_none: hist;

state = in_KERNEL-INTERRUPT-TIMER-IRET & hist = state_none: in_USER-HANDLERS-IRQ_THREAD;

--

-- Submachine TIMER - END

224 APPENDIX B. SMV MODELS

-- User Space

--

state = in_USER-HANDLERS-IRQ_THREAD & (pe = pe_none |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_XCPU & (pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU)))

: in_USERSPACE;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5))

: in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER))

: in_KERNEL-INTERRUPT-TIMER-EOI_APIC;

1 : state;

esac;

--

-- \DELTA P_CONF : STATES / BASIC CONFIGURATIONS

-- END

--

-- \DELTA P_IMP : PATH CONDITIONS & HISTORY

-- START

-- PATH CONDITIONS

-- START

--

init(pcs[0]) := {pc_INT_XCPU, pc_INT_TIMER, pc_INT_IO_0, pc_INT_IO_5};

init(pcs[1]) := pc_none;

init(pcs[2]) := pc_none;

init(pcs[3]) := pc_none;

next(pcs[0]) := case

counter = 0: case

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET : pc_none;

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET : pc_none;

state = in_KERNEL-INTERRUPT-TIMER-IRET : pc_none;

-- ... <-- analogous for the other interrupting path events

-- pe_INT_IO_5, pe_INT_TIMER, pe_INT_XCPU

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) : pc_INT_IO_0;

-- ... -->

1 : pcs[0];

esac;

APPENDIX B. SMV MODELS 225

1: pcs[0];

esac;

-- ... <-- analogous for pcs[2] and pcs[3]

next(pcs[1]) := case

counter = 0 : case

-- ... <-- analogous for all other interruptible states and their interrupting path events

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) : pc_INT_TIMER;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) : pc_INT_IO_0;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) : pc_INT_IO_5;

-- ... -->

1 : pcs[1];

esac;

counter = 1 : case

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET : pc_none;

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET : pc_none;

state = in_KERNEL-INTERRUPT-TIMER-IRET : pc_none;

-- when an interrupt is in user space handling, it does not block any field in the pcs

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) : pc_INT_IO_0;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) : pc_INT_IO_5;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) : pc_INT_TIMER;

state = in_USER-HANDLERS-IRQ_THREAD &

(pe = pe_INT_XCPU & !(pcs[0] = pc_INT_XCPU | pcs[1] = pc_INT_XCPU | pcs[2] = pc_INT_XCPU |

pcs[3] = pc_INT_XCPU)) : pc_INT_XCPU;

1 : pcs[1];

esac;

1: pcs[1];

esac;

-- ... -->

init(pc) := pcs[0];

next(pc) := case

-- ... <-- analogous for all other interruptible states and their interrupting path events

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_TIMER & !(pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) : pc_INT_TIMER;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_IO_0 & !(pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) : pc_INT_IO_0;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST &

(pe = pe_INT_IO_5 & !(pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)) : pc_INT_IO_5;

-- ... -->

-- recursive ascent

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & counter = 1 : pcs[0];

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & counter = 2 : pcs[1];

226 APPENDIX B. SMV MODELS

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & counter = 3 : pcs[2];

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & counter = 1 : pcs[0];

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & counter = 2 : pcs[1];

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & counter = 3 : pcs[2];

state = in_KERNEL-INTERRUPT-TIMER-IRET & counter = 1 : pcs[0];

state = in_KERNEL-INTERRUPT-TIMER-IRET & counter = 2 : pcs[1];

state = in_KERNEL-INTERRUPT-TIMER-IRET & counter = 3 : pcs[2];

1 : pc;

esac;

init(prevpc) := pc_none;

next(prevpc) := case

-- ... <-- analogous for all other interruptible states and counters 0..2

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST & !(pe = pe_none | pe = pe_INT_XCPU |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)))

& counter = 2 : pcs[2];

-- recursive ascent

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & counter = 1 : pc_none;

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & counter = 2 : pcs[0];

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET & counter = 3 : pcs[1];

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & counter = 1 : pc_none;

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & counter = 2 : pcs[0];

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET & counter = 3 : pcs[1];

state = in_KERNEL-INTERRUPT-TIMER-IRET & counter = 1 : pc_none;

state = in_KERNEL-INTERRUPT-TIMER-IRET & counter = 2 : pcs[0];

state = in_KERNEL-INTERRUPT-TIMER-IRET & counter = 3 : pcs[1];

1 : prevpc;

esac;

init(counter) := 0;

next(counter) := case

-- ... <-- analogous for all other interruptible states except user space handling

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST & !(pe = pe_none | pe = pe_INT_XCPU |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)))

& counter < 3 : counter+1;

-- recursive ascent

(state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET |

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET |

state = in_KERNEL-INTERRUPT-TIMER-IRET) & counter > 0 : (counter + (-1));

1 : counter;

esac;

--

-- PATH CONDITIONS - END

APPENDIX B. SMV MODELS 227

-- HISTORY - START

--

init(hist) := history[0];

next(hist) := case

-- ... <-- analogous for all other interruptible states except user space handling

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST & !(pe = pe_none | pe = pe_INT_XCPU |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST;

-- recursive ascent

(state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET |

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET |

state = in_KERNEL-INTERRUPT-TIMER-IRET) & counter = 1 : state_none;

(state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET |

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET |

state = in_KERNEL-INTERRUPT-TIMER-IRET) & counter = 2 : history[0];

(state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET |

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET |

state = in_KERNEL-INTERRUPT-TIMER-IRET) & counter = 3 : history[1];

1 : hist;

esac;

init(history[0]) := state_none;

init(history[1]) := state_none;

init(history[2]) := state_none;

init(history[3]) := state_none;

-- ... <-- analogous for history[1] .. history[2]

next(history[0]) := case

counter = 0: case

-- ... <-- analogous for all other interruptible states except user space handling

state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST & !(pe = pe_none | pe = pe_INT_XCPU |

(pe = pe_INT_TIMER & (pcs[0] = pc_INT_TIMER | pcs[1] = pc_INT_TIMER | pcs[2] = pc_INT_TIMER |

pcs[3] = pc_INT_TIMER)) |

(pe = pe_INT_IO_0 & (pcs[0] = pc_INT_IO_0 | pcs[1] = pc_INT_IO_0 | pcs[2] = pc_INT_IO_0 |

pcs[3] = pc_INT_IO_0)) |

(pe = pe_INT_IO_5 & (pcs[0] = pc_INT_IO_5 | pcs[1] = pc_INT_IO_5 | pcs[2] = pc_INT_IO_5 |

pcs[3] = pc_INT_IO_5)))

: in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST;

-- ... -->

1 : history[0];

esac;

counter = 1: case

(state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-IRET |

state = in_KERNEL-INTERRUPT-HW_IRQ-IRET |

state = in_KERNEL-INTERRUPT-TIMER-IRET) : state_none;

1 : history[0];

esac;

1: history[0];

esac;

next(history[3]) := history[3];

228 APPENDIX B. SMV MODELS

--

-- HISTORY - END

--

-- \DELTA P_IMP : PATH CONDITIONS & HISTORY -- END

--

-- \DELTA P_EXP : CONDITIONS & VARIABLES - START

-- NONE

-- \DELTA P_EXP : CONDITIONS & VARIABLES - END

--

-- FAIRNESS CONSTRAINTS

--

JUSTICE pcs[0]!=pc_INT_XCPU & pcs[1]!=pc_INT_XCPU & pcs[2]!=pc_INT_XCPU & pcs[3]!=pc_INT_XCPU;

JUSTICE pcs[0]!=pc_INT_IO_0 & pcs[1]!=pc_INT_IO_0 & pcs[2]!=pc_INT_IO_0 & pcs[3]!=pc_INT_IO_0;

JUSTICE pcs[0]!=pc_INT_IO_5 & pcs[1]!=pc_INT_IO_5 & pcs[2]!=pc_INT_IO_5 & pcs[3]!=pc_INT_IO_5;

JUSTICE pcs[0]!=pc_INT_TIMER & pcs[1]!=pc_INT_TIMER & pcs[2]!=pc_INT_TIMER & pcs[3]!=pc_INT_TIMER;

--

-- INDICATORS

--

-- infinite handling

LTLSPEC

G((state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI | state = in_KERNEL-INTERRUPT-TIMER-EOI_APIC |

state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK) -> F(state = in_USERSPACE));

LTLSPEC

G((state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI | state = in_KERNEL-INTERRUPT-TIMER-EOI_APIC |

state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK) -> F(state = in_USER-HANDLERS-IRQ_THREAD));

-- losing interrupts

LTLSPEC

G((state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-EOI & pc = pc_INT_XCPU)

-> F(state = in_KERNEL-INTERRUPT-XCPU_MAILBOX-HANDLE_XCPU_REQUEST));

LTLSPEC

G((state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK & pc = pc_INT_IO_0)

-> F(state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_0));

LTLSPEC

G((state = in_KERNEL-INTERRUPT-HW_IRQ-SW_MASK & pc = pc_INT_IO_5)

-> F(state = in_KERNEL-INTERRUPT-HW_IRQ-HANDLE_HW_IRQ_5));

LTLSPEC

G((state = in_KERNEL-INTERRUPT-TIMER-EOI_APIC & pc = pc_INT_TIMER)

-> F(state = in_KERNEL-INTERRUPT-TIMER-HANDLE_TIMER_INTERRUPT-SCHEDULER-RESCHED));

Appendix C

List of Used Abbreviations

ACPI Advanced Configuration and Power Interface
ALU Arithmetical Logical Unit
AOCS Attitude and Orbital Control System
AP Atomic Proposition
API Application Programming Interface
APIC Advanced Programmable Interrupt Controller
AS Architectural State
BCT Basic Compound Transition
BDD Binary Decision Diagrams
BKL Big Kernel Lock
BSD Berkley Software Distribution
BSP Bootstrap Processor
CAD Computer Aided Design
CE Component Extension
CISC Complex Instruction Set Computing
CCS Calculus of Communicating Systems
CPL Current Privilege Level
CPU Central Processing Unit
CSP Communication Sequential Processes
CT Compound Transition
CTL Branching Time Computation Tree Logic
CTL* Computation Tree Logic
CTS Cartesian Transition Set
CTSC Cartesian Transition Set Connector
DEVT Disruptive Event
DFA Deterministic Finite Automaton
DFS Depth First Search
DNA Device Not Available
EB Event Bus
EBC Event Bus Connector
EBS Event Bus Pseudo-State
EDT Estelle Development Toolset

229

230 APPENDIX C. LIST OF USED ABBREVIATIONS

EHA Extended Hierarchical Automaton
EOI End Of Interrupt
ESF Engineering Statechart Formalism
FCT Full Compound Transition
FDR Failures Divergences Refinement
FDT Formal Description Technique
FIFO First In First Out
FPE Floating Point Errors
FPU Floating Point Unit
FT Full Transition
GB GigaByte
GMD Gesellschaft für Datenverarbeitung
GNU GNU is Not Unix
GPOS General Purpose Operating System
HCPN Hierarchical Colored Petri Net
HDD Hard Disc Drive
HID Human Interface Device
HPET High Precision Event Timers
HRM Hierarchic Reactive Modules
HRT Hard Real-Time
HWEB Heavy-Weight Event Bus
IA Intel Architecture
IAG Interruptibility Analysis Graph
ICR Interrupt Command Register
ICT Initial Compound Transition
IDT Interrupt Descriptor Table
IKCP Intermission Kernel Control Path
INT Interrupt
IOAPIC Input Output Advanced Programmable Interrupt Controller
IPC Inter-Process Communication
IPI Inter-Processor Interrupt
IRQ Interrupt Request
IRT Interrupt Redirection Table
ISA Instruction Set Architecture
ISR Interrupt Service Routine
ITU-T International Telecommunication Union
IHF Interrupt Handling Facility
ISO International Standardization Organization
KB Keyboard
KCP Kernel Control Path
KIT Kernel for Isolated Tasks
LAPIC Local Advanced Programmable Interrupt Controller
LCA Lowest Common Ancestor
LOTOS Language Of Temporal Ordering Specification
LTH Long-Term History

APPENDIX C. LIST OF USED ABBREVIATIONS 231

LTL Linear Time Logic
LTS Labeled Transition System
LWEB Light-Weight Event Bus
MC Model Checking
MHz MegaHertz
MIPS Microprocessor without Interlocked Pipeline Stages
ML Meta Language
MOF Meta Object Facility
MOSRTOS Multimedia-Oriented Soft Real-Time Operating System
MPEG Moving Picture Experts Group
MTL Metric Temporal Logic
NIC Network Interface Card
NMR Non-Maskable Interrupt
NFA Non-Deterministic Finite Automaton
OBBD Ordered Binary Decision Diagrams
PAG Path Analysis Graph
PC Path Condition
PCI Peripheral Component Interconnect
PIC Programmable Interrupt Controller
PLTL Parametric Temporal Logic
PIT Programmable Interval Timer
POSIX Portable Operating System Interface
PPR Processor Priority Register
PROMELA Process Meta Language
P/T Place Transition System
RISC Reduced Instruction Set Computing
RS Recursion Scope
RSC Remote System Control
RT Real-Time
RTC Real Time Clock
OS Operating System
SDL Specification and Description Language
SEREXP Sequential Extended Regular Expressions
SMP Symmetric Multi-Processor
SMV Symbolic Model Checker
SND Sound Card
SOS Structural Operational Semantics
SPARC Scalable Processor Architecture
SRT Soft Real-Time
STD Symbolic Timing Diagrams
SuD System under Development
SuI System under Investigation
SVG Scalable Vector Graphics
TLB Translation Look Aside Buffer
TLMC Temporal Logic Model Checking

232 APPENDIX C. LIST OF USED ABBREVIATIONS

TPR Task Priority Register
TS Transition Segment
TSC Time Stamp Counter
TUF Time Utility Function
UML Unified Modeling Language
USB Universal Serial Bus
VAL Value Function
VIS Visual Instruction Set
VLSI Very-Large-Scale Integration
VHSIC Very-Large-Scale Integration Circuits
XMI XML Metadata Interchange
XML Extensible Markup Language
XOR Exclusive Or
XSCF Extended System Control Facility

Appendix D

Contents of the Archive

The archive belonging to this thesis contains the following files:

Dissertation/dissertation.pdf Dissertation in PDF format
Dissertation/dissertation.ps Dissertation in PS format

Linux/model.smv SMV Model of Linux
OpenBSD/model.smv SMV Model of OpenBSD
OpenBSD/Thesis.pdf Bachelor Thesis Gogolok
Pistachio/model.smv SMV Model of Pistachio
Pistachio/Thesis.pdf Bachelor Thesis Wieder

It is available for download at http://www.koenen-dresp.de/research-alex/

233

234 APPENDIX D. CONTENTS OF THE ARCHIVE

List of Figures

2.1 Working example: multimedia car audio navigation system, focus on traffic
messages . 12

2.2 An example higraph with eight blobs . 14
2.3 Different transition segments t 1 up to t 6 form different compound transitions 22

3.1 Sequential transitions t 1 and t 2 . 26
3.2 Path event . 28
3.3 Comparison of path events and split/combine mechanism to a conventional

statechart presentation . 30
3.4 Split and combine pseudo-states and their deg values in the ESF 32
3.5 Comparison of the event bus facility with a conventional statechart presen-

tation . 34
3.6 Compound transition constructed by event bus connectors 35
3.7 Comparison of long-term history with a conventional statechart presentation 36
3.8 Comparison of approaches grouping vs. parallelism 39
3.9 Comparison of approaches to deal with parallelism 39

4.1 Overview of Intel single core, hyper-threading and dual core design 46
4.2 APIC configuration in an Intel SMP version 1.4 compliant system 49
4.3 TwinUx architecture - circles depict abstract resources 51
4.4 Non-interruptible routines . 56
4.5 Interruptible routines . 57
4.6 Synchronization by means of modified sequential transitions 58
4.7 Possible ways to model branching . 58
4.8 Disruptive event tree . 59
4.9 Example statechart with three transitions associated with abbreviated labels 60
4.10 Usage of CTSC together with event-bus connectors 61
4.11 Possible limitations of the usage . 62
4.12 UML 2.0 submachine mechanism . 62
4.13 Linux 2.6 top level model . 71
4.14 Linux 2.6 intermission kernel control path model 73
4.15 Exception handlers in Linux . 74
4.16 Linux 2.6 inter-processor interrupt handler 76
4.17 Linux 2.6 I/O interrupt handling ISR (simplified model, ISRs 1..4 analogous) 76
4.18 Linux 2.6 handler routine for the local timer interrupt 78
4.19 Linux 2.6 handling routine for the global timer interrupt 78

235

236 LIST OF FIGURES

4.20 Linux SoftIRQ handler . 79
4.21 Conventional exception handler in Linux, preemptive parts only 81
4.22 Linux 2.6 inter-processor interrupt handler, preemptive parts only 82
4.23 Linux 2.6 I/O interrupt handling ISR, preemptive parts only (simplified

model, ISRs 1..4 analogous) . 82
4.24 Linux 2.6 return from interrupts and exceptions 83
4.25 OpenBSD intermission kernel control path model 84
4.26 OpenBSD system call handling . 84
4.27 OpenBSD exception handling . 85
4.28 OpenBSD IHF details for the interrupt-branch 86
4.29 OpenBSD I/O interrupt handling . 87
4.30 OpenBSD timer interrupt . 88
4.31 OpenBSD kernel locking and unlocking operations 88
4.32 Pistachio micro-kernel architectural overview 89
4.33 Pistachio hardware intermission kernel control paths 91
4.34 Pistachio I/O interrupt, kernel part . 91
4.35 Pistachio timer interrupt and scheduler . 93

5.1 Example value function with critical region 97
5.2 Relation between time utility function and value function 98
5.3 Value functions for the three tasks in the sample car navigation system . . 99
5.4 Alternative time utility functions for the car navigation system 99
5.5 Alternative non-binary time utility functions for the car navigation system . 100
5.6 Example of a scenario graph of a multimedia application 102
5.7 Component extension system layers and their interdependencies 102
5.8 Transmission integrity influences the overall system 103
5.9 Real-time taxonomy according to [LKPB06] 104
5.10 CE system: the CE mitigates different IHF properties 105
5.11 Different time scales and timing facilities . 107
5.12 Priority compliance can get lost when deferred handling is regarded 111
5.13 Interdependencies between the architectural indicators 112
5.14 Sequential and nested disruptions . 112
5.15 Comparison of branches and options . 113
5.16 Nested disruptions - legal and illegal case 114

6.1 Example of the creation of path analysis graphs 123
6.2 Example of a disruption path . 124
6.3 Sample input for the creation of IAGs . 127
6.4 Example of an interruptibility analysis graph 127
6.5 Sample application of the general transition rule 143
6.6 Sample application of the general transition rule 143
6.7 Sample application of branching rules BRANCH 1, BRANCH 2 and BRANCH 3145
6.8 Sample application of the XOR SRC rule. 147
6.9 Sample application of the XOR TGT 1 rule. 148
6.10 Sample application of the rules XOR TGT 2 and XOR TGT 3. 149
6.11 Sample application of the UNITE rule. 150

LIST OF FIGURES 237

6.12 Sample application of the TRAVERSE rule. 150
6.13 Sample application of the REDUCE rule. 151

7.1 Amount of deferred interrupt handling . 156

238 LIST OF FIGURES

List of Tables

2.1 Comparison of available formalisms for modeling GPOS 11

4.1 Hardware comparison . 45
4.2 Characteristics of the different timing facilities 50
4.3 Example transition table for the statechart in Figure 4.9 60
4.4 Comparison of operating systems, general criteria 65
4.5 Comparison of operating systems, detailed criteria 67
4.6 Model sizes of the three SuIs – ESF compared to estimated sizes in statecharts 70
4.7 Transitions in the Linux top level model . 72
4.8 Transition table for DEV T s in the Linux IKCP 74
4.9 Labeled transitions for DEV T s in the exception handlers in Linux 75
4.10 Labeled transitions for DEV T s in the Linux IPI handling submachine . . . 76
4.11 Labeled transitions for DEV T s in the submachine for device-triggered I/O

interrupt handling; n ∈ {0..5} . 77
4.12 Transitions for DEV T s in the SoftIRQ handler 80
4.13 Transition table for DEV T s in the OpenBSD IKCP 84
4.14 Transition table for DEV T s in the OpenBSD system call handler 85
4.15 Transition table for DEV T s in the OpenBSD system call handler 86
4.16 Transition table for DEV T s in the OpenBSD I/O interrupt handler 87
4.17 Transition table for DEV T s in the OpenBSD timer interrupt handler . . . 88
4.18 Transitions in the Pistachio top level model 90
4.19 Transitions in the Pistachio I/O interrupt handler model 92
4.20 Transitions in the Pistachio timer handler model 93

5.1 Soft real-time TUFs: sufficiency break-even 100
5.2 Quality factors and their indicators . 109

6.1 Methods of checking the different indicators – a classification 117

7.1 Evaluation immediate / deferred handling 156
7.2 Evaluation of deferred handlers: prior or subject to scheduling 157
7.3 Evaluation of deferred handlers: creation . 158
7.4 evaluation of interruption path lengths, notation: (numerical path length,

cycles, acc. cycle length, red edges) . 159
7.5 Evaluation of interruptibility . 159
7.6 Maximal recursion depths . 160
7.7 Model characteristics in NuSMV . 164

239

240 LIST OF TABLES

7.8 Model checking results . 164

A.1 Path lengths of DEVTs in Linux . 192
A.2 Path lengths of DEVTs in OpenBSD . 196
A.3 Path lengths of DEVTs in Pistachio . 198

	Introduction
	Motivation
	Research Questions and Scientific Goals
	Thesis Outline
	Related Work: Requirements Verification in Operating Systems
	Basic Definitions
	Conventions

	Modeling Methods
	Preliminary Considerations
	Transformational vs. Reactive Systems
	Stochastic vs. Deterministic Modeling

	Formal Techniques
	Visual Formalisms
	Graphs
	Automata
	State Transition Nets
	Other High-Level Formalisms

	Textual Formalisms -- Description Languages
	Algebras

	Comparison and Usability Studies
	Statecharts
	Introduction
	Formal Definition
	Attributes, Properties and Notations
	Semantics
	Categories of Semantics
	The Synchrony Hypothesis
	Statechart Semantics

	Engineering Statechart Formalism
	Preliminaries of ESF Syntax and Semantics
	Sequential Transitions
	Enhanced Data Structures for Statecharts

	Path Events and Split/Combine Pseudo-States
	Event Bus
	Long-Term History Connectors
	Cartesian Transition Set
	Conclusion

	IHF Models
	Hardware Platform
	Intel Architecture Specific Details
	Specific Machine Setup
	Load Scenarios
	Load Profiles

	Modeling Approach
	Top Down View
	Modeling Implementation Patterns
	Modeling Sequential Control Flow
	Modeling Disruptions
	Modeling Synchronization
	Modeling Conditional Branching

	Nomenclature and Conventions
	Events
	States
	Transitions
	Usage of Event Busses in Combination with CTSC
	UML 2.0 Submachines

	Operating Systems
	Miscellaneous Properties
	Detailed Criteria

	Models
	Modeling Process
	SuIs
	Linux
	Specific Parameters
	Further Classification of Events in a Linux Model
	Top Level Model of the Linux Kernel
	The Interrupt Handling Facility Model
	Preemptive IKCPs

	OpenBSD
	The Interrupt Handling Facility Model
	The Global Kernel Lock

	L4Ka::Pistachio
	Further Classification of Events in a Pistachio Model
	Pistachio Architectural Model
	Pistachio Intermission Kernel Control Path

	Real-Time in Operating Systems
	Real-Time
	Working Example for Description of Real-Time Systems
	Hard Real-Time
	Soft Real-Time

	From Task Perspective to the IHF
	Architectures
	Efficiency, Reliability and Determinism
	Timing and Synchrony
	Time Scales
	Synchronous and Asynchronous Events

	Quality factors
	Indicators
	Immediate or Deferred Handling
	Creation of Deferred Handlers
	Prior or Subject to Scheduling
	Priority Compliance
	Disruption Path Length
	Synchronization
	Interruptibility
	Recursion Depth
	Infinite Handling
	Lost Interrupts
	Timer Granularity

	Techniques for Indicator Analysis
	Architectural Analysis
	Immediate or Deferred Handling
	Creation of Deferred Handlers
	Prior or Subject to Scheduling

	Control-Based Analysis
	Disruption Path Length
	Interruptibility
	Recursion Depth

	Data-Based Analysis -- Model Checking
	Model Checking Foundations
	Modeling
	Specification
	Checking Models against Specifications

	Tools for Model Checking
	Model Checking Statecharts
	Model Checking ESF Models
	Transformation Rules: Translating ESF into Kripke Models
	Transformation Algorithm
	Transformation Rule Set

	Temporal Logic Representation of Indicators
	Infinite Handling of Interruptions
	Losing Interrupts

	Combination of Path Length and Recursion Depth

	Interpretation of Real-Time Capabilities
	Analysis of Architectural Properties
	Analysis of Determinism and Response Behavior
	Analysis of Reliability

	Conclusion
	Summary
	Outlook
	Operating Systems Engineering with ESF
	Implementation of ESF

	Conclusion

	Bibliography
	Analysis Data
	Immediate vs. Deferred Interrupt Handling
	Linux
	OpenBSD
	Pistachio

	Interrupt Handlers Subject to Scheduling
	Linux
	OpenBSD
	Pistachio

	Response Behavior - PAGs and Paths
	Linux
	OpenBSD
	Pistachio

	Interruptibility
	Linux
	OpenBSD
	Pistachio

	SMV Models
	Linux
	OpenBSD
	Pistachio

	List of Used Abbreviations
	Contents of the Archive

