
Problems of Unknown Complexity

Graph isomorphism and Ramsey theoretic numbers

Dissertation zur Erlangung des Grades
des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Pascal Schweitzer

Saarbrücken
2009

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Professor Dr. Joachim Weickert

Berichterstatter:
Professor Dr. Kurt Mehlhorn, Max-Planck-Institut für Informatik, Saarbrücken
Professor Dr. Markus Bläser, Fachbereich Informatik der Universität des Saarlandes

In memory of Martin Kutz

Zusammenfassung

Wir entwickeln Algorithmen für drei kombinatorische Probleme unbekannter Kom-
plexität: Das Graphisomorphieproblem, die Berechnung von van der Waerden-Zahlen
und die Berechnung von Ramsey-Zahlen. Mit theoretischen und praktischen Methoden
wird ein Vergleich zu bereits existierenden Algorithmen gezogen.

Der Schraubenkasten, ein zertifizierender, randomisierter Graph-nicht-Isomorphie
Algorithmus, führt zufällige Stichproben in zwei gegeben Graphen durch, und schließt
durch Festellen von statistisch signifikant abweichendem Verhalten der gesammelten
Daten auf Nichtisomorphie. Die Durchführung der Stichproben und damit die erhal-
tenen Daten sowie die verwendete Methode zum Festellen statistisch abweichenden
Verhaltens passen sich dabei den Eingabegraphen an. Auf isomorphen Graphen wird
mit hoher Wahrscheinlichkeit ein Isomorphismus gefunden, der als Zertifikat dient.
Für nichtisomorphe Eingabegraphen dienen als randomisiertes Zertifikat die Zusam-
mensetzung des Schraubenkastens und die Spezifizierung eines günstigen statistischen
Tests.

Zur Berechnung von van der Waerden-Zahlen entwickeln wir einen Algorithmus, der
durch die Verwendung von Platzhaltern ein gleichzeitiges Bearbeiten von verschiedenen
Elementen des zu durchsuchenden Lösungsraums ermöglicht. Mit ihm werden neue van
der Waerden-Zahlen berechnet.

Der Zusammenhang der ersten beiden Probleme ist durch das dritte gegeben, dessen
Lösung die anderen Lösungen zu einem Algorithmus verknüpft, der Ramsey-Zahlen
berechnet.

4

Abstract

We consider three computational problems with unknown complexity status: The
graph isomorphism problem, the problem of computing van der Waerden numbers and
the problem of computing Ramsey numbers. For each of the problems, we devise an
algorithm that we analyze with theoretical and practical means by a comparison with
contemporary algorithms that solve the respective problems.

The ScrewBox algorithm solves the graph isomorphism problem by a random sam-
pling process. Given two graphs, the algorithm randomly searches an invariant that
may be randomly evaluated quickly and that shows significant statistical difference on
the input graphs. This invariant is gradually and adaptively constructed depending
on the difficulty of the input. Isomorphism is certified by supplying an isomorphism.
Non-isomorphism is certified by the ScrewBox, the invariant whose statistical behavior
deviates on the input graphs, together with the appropriate statistical test.

The wildcards algorithm for van der Waerden numbers solves the second problem.
Its key technique is to treat colorings of integers avoiding monochromatic arithmetic
progressions simultaneously by allowing ambiguity. This, together with a specific
preprocessing step, forms the algorithm that is used to compute previously unknown
van der Waerden numbers.

The wildcards algorithm for Ramsey numbers combines the techniques and algo-
rithms with which we approach the first two problems to solve the third problem.

5

6

Contents

1 Introduction 9

2 Graph isomorphism 15

2.1 The graph isomorphism problem . 16
2.1.1 Reductions: equivalent and non-equivalent problems 18

2.2 Brendan McKay’s Nauty . 22
2.3 The Weisfeiler-Lehman method . 24
2.4 The Cai-Fürer-Immerman construction and Miyazaki graphs 26
2.5 Eugene Luks’ bounded degree algorithm 30
2.6 The ScrewBox . 31

2.6.1 The basic sampling algorithm 33
2.6.2 Higher level screws . 37
2.6.3 Cheap screws of high level . 40
2.6.4 Customizing the algorithm . 42
2.6.5 Placement of the screws . 44
2.6.6 Capabilities provided by the screws 47
2.6.7 The choice of pattern . 48

2.7 Advanced statistical tests for equal distribution 49
2.7.1 Testing a biased coin . 50
2.7.2 Testing two random variables for equal distribution 54
2.7.3 Choosing an optimal filter . 56
2.7.4 Testing with the ScrewBox . 58

2.8 Difficult graph instances . 60
2.8.1 Strongly regular graphs . 61
2.8.2 Hadamard matrices . 62
2.8.3 Projective planes . 62

2.9 Engineering the ScrewBox . 63
2.9.1 Random sampling without replacement 64
2.9.2 Pairlabel matrices . 65
2.9.3 Matrix multiplication . 65

2.10 Evaluation of the ScrewBox algorithm 67
2.10.1 Theoretical evaluation . 68
2.10.2 Practical evaluation . 70
2.10.3 The CFI-construction and the ScrewBox 75

2.11 Certification . 78

7

Contents

2.11.1 Beyond deterministic certification 82
2.11.2 Amplification of randomized certifiability 85

2.12 Conclusion . 86

3 Van der Waerden numbers 89

3.1 Van der Waerden numbers . 90
3.1.1 Existence of van der Waerden numbers 91

3.2 Upper bounds for van der Waerden numbers 94
3.3 Lower bounds for van der Waerden numbers 94

3.3.1 Lovász’ Local Lemma in the context of van der Waerden numbers 95
3.4 Known mixed van der Waerden numbers 96
3.5 Detecting monochromatic arithmetic progressions 98
3.6 The culprit algorithm . 99
3.7 Kouril’s and Paul’s SAT technique . 100
3.8 The wildcards algorithm for mixed van der Waerden numbers 101

3.8.1 Incorporating culprits in the wildcards algorithm 105
3.9 Preprocessing techniques . 106

3.9.1 Preprocessing with late peak 110
3.9.2 Preprocessing for two colors . 110

3.10 Implementation details . 111
3.11 Certification . 111
3.12 Evaluation and conclusion . 112

4 Ramsey numbers 115

4.1 Ramsey numbers . 116
4.1.1 Existence of Ramsey numbers 116

4.2 Upper bounds for Ramsey numbers . 117
4.3 Lower bounds for Ramsey numbers . 118
4.4 Known Ramsey numbers . 118
4.5 Computational Complexity of Ramsey numbers 118
4.6 Previous algorithms . 120
4.7 The wildcards algorithm for Ramsey numbers 120

4.7.1 High level description of the wildcards algorithm 122
4.7.2 The Gluing technique for the wildcards algorithm 125

4.8 Certification . 126
4.9 Evaluation and conclusion . 128

8

1 Introduction

When we are posed the algorithmic question:“How do you compute this efficiently?”
with classical computational complexity theory we produce two kinds of answers: Ei-
ther we devise a provably efficient algorithm or we show, using the theoretical frame-
work, that it is likely, that we will never be able to construct an efficient algorithm
for the problem, no matter how hard we try. Despite the large applicability of the
classical computational complexity, there are problems for which our tools have not
provided either answer yet. The complexity of these problems is unknown.

This thesis is concerned with three fundamental computational problems, arising
from combinatorics, with unknown complexity status:

1. the graph isomorphism problem,

2. the computation of van der Waerden numbers and

3. the computation of Ramsey numbers.

For decades, numerous approaches have been taken to each of the problems in order
to show one of the classical alternatives. Still, the unsettled complexity status of the
problems remains. Nevertheless, we desire algorithms that solve these problems as
efficiently as possible.

In this thesis we develop algorithmic concepts that address the problems. Using the
concepts, for each problem we design an algorithm that we evaluate by means of the-
oretical and practical comparison to state-of-the-art algorithms that have previously
been designed. The design of such algorithms goes hand in hand with mathemati-
cal insight into the combinatorial structures involved in the problems and into their
complexity.

The third problem is strongly connected to the first two problems and thus forms
the link between the two. This becomes apparent, as the algorithms devised for the
graph isomorphism problem and the problem of computing van der Waerden numbers
are merged to form an algorithm that computes Ramsey numbers. We briefly describe
the three problems considered.

Graph isomorphism

Numerous graph theoretical treatises mention Euler’s famous problem, the Seven
Bridges of Königsberg [39], in their introduction. In 1736 Euler asks whether it is
possible to tour Königsberg, using all of its bridges exactly once. The solution ab-
stracts the paths within the city into a graph, consisting of vertices, the islands, and
edges between them, the bridges. The graph thus models the relation between vertices

9

1 Introduction

that governs whether there is an edge between them. Readily agreed by Euler and his
readers, for the existence of such a tour, the names of the different islands and their
geographic location is irrelevant. Mathematically this abstraction is reformulated to
the fact that our solution depends only on the isomorphism type of the graph. In-
formally, two graphs are isomorphic if we can not differentiate them, after we ignore
labels (names) for vertices and edges and only consider the relation governed by the
edges. Thus we abstract the information, that we can reach the Kneiphof Island from
the Altstadt via the Krämerbrücke or from the Vorstadt via the Green Bridge, but
cannot reach the Altstadt directly from the Vorstadt, to a graph on three vertices that
has two edges. In a different scenario where we model whether people know each other,
we also abstract the information, that Agate knows Boris and Ceceilia, but Boris and
Ceceilia do not know each other, to a graph on three vertices that has two edges. We
say, that the graphs representing the two examples are isomorphic. The algorithmic
task of deciding whether two graphs are isomorphic becomes increasingly difficult as
the number of vertices and the number of edges increase. When considering the road
network as an example of a graph that contains a lot of information, we see that com-
puters are indispensable when modeling large graphs. Besides its applications in the
natural sciences, where it is for example used to identify chemical compounds [111],
the graph isomorphism problem has applications in mathematics and computer sci-
ence. It is crucial for enumeration of various combinatorial objects, such as Ramsey
graphs [93, 94], and used to compare circuit layouts against their specification [35].
Currently, graph isomorphism is a candidate for a quantum algorithm [103]. In the tra-
ditional theory of computational complexity, the problem is a reappearing candidate
with various unusual properties [72].

Van der Waerden numbers

Van der Waerden’s theorem [126], which also proves the existence of the van der Waer-
den numbers, is a Ramsey theoretic result. Roughly speaking, Ramsey theoretic results
state that in large structures which are partitioned into finitely many parts, a certain
smaller substructure must emerge within one of the parts. Van der Waerden’s theorem
in particular states, that when the integers are partitioned into finitely many sets, then
one of these sets must contain arbitrarily long sequences of equidistant integers. Such
a sequence, for example 3, 7, 11, 15, . . ., is called an arithmetic progression.

The van der Waerden numbers are quantifications of the theorem, in the sense that
they determine the size of the smallest subset of the integers {1, . . . , n} for which these
arithmetic progressions arise, whenever the set is partitioned arbitrarily into a fixed
number of parts. We are concerned with the computation of the van der Waerden
numbers.

As demonstrated in Rosta’s dynamic survey [112], the applications of Ramsey the-
ory are numerous within numerous fields of mathematics. The survey includes various
applications of van der Waerden’s theorem, including applications in number theory,
lower bound constructions for the computation of boolean functions and in finite model
theory. Recently, connections between the computation of van der Waerden numbers

10

and propositional theories have been shown [33]. Using this connection van der Waer-
den numbers have been computed and at the same time they serve as benchmarks for
solvers of satisfiability problems.

Ramsey numbers

In contrast to van der Waerden’s theorem, which deals with partitions of integers,
Ramsey’s theorem [110] deals with partitions of edges contained in a complete graph.
It shows for example, that among 6 people either 3 are pairwise strangers or 3 of
the people all know each other. In its generality, the theorem states that however we
partition the edges of a sufficiently large complete graph into finitely many sets, we
find a large complete subgraph, whose edges are all contained in the same partition
class. The Ramsey numbers describe how large the original graph must be, so that we
can find these subgraphs of a certain size. It is not known how fast these numbers grow
asymptotically. In his essay on the two cultures of mathematics, Gowers [48] mentions
this problem as “one of the major problems in combinatorics” since “a solution to this
problem is almost bound to introduce a major new technique.” As direct application
Boppana and Halldórsson [16, 17] use Ramsey numbers to devise a polynomial time
approximation algorithm that finds a large complete subgraph of a guaranteed, but
not necessarily optimal, size.

Contribution

In this thesis we develop algorithms for each of the three combinatorial problems and
evaluate them by theoretical and practical comparison with the state-of-the-art.

Our first algorithm, the ScrewBox, solves the graph isomorphism problem by ran-
domly sampling within a pair of input graphs, and decides isomorphism by performing
a statistical test. The algorithm aims in particular at a fast detection of non-isomorphic
inputs that appear similar. Given two graphs, the ScrewBox randomly searches an
invariant that may be randomly evaluated quickly and that shows significant statis-
tical difference on the two input graphs. This invariant is gradually and adaptively
constructed, depending on the difficulty of the input.

We show with theoretical and practical means that the ScrewBox can compete with
Nauty [88, 92], the benchmark algorithm for graph isomorphism. Nauty is based on the
individualization refinement technique, generally considered as the fastest technique
for isomorphism solvers available [9]. We show that the expected number of samplings
performed by the sampling approach, which directly corresponds to the running time
of a specific version of the ScrewBox algorithm, is at most the number of search tree
nodes visited by the Nauty’s individualization refinement approach. We further show
on the theoretical side, that the ScrewBox easily handles the Cai-Fürer-Immerman
construction, the most prominent method to produce pairs of non-isomorphic graphs
that are difficult to distinguish for various current graph isomorphism algorithms. We
develop a particular family of graph isomorphism invariants that is well suited for the
ScrewBox’s sampling approach. Practically we show that for a specific family of graphs

11

1 Introduction

that arise by combinatorial construction, non-isomorphism detection is infeasible for
Nauty. In contrast ScrewBox is able to show non-isomorphism for these graphs.

The ScrewBox algorithm is a Monte Carlo algorithm with 1-sided error: If the input
graphs are non-isomorphic graphs, the algorithm determines so. If the input graphs
are isomorphic, the algorithm finds with a chosen probability of error an isomorphism.
The ScrewBox uses a novel approach to graph isomorphism: It performs statistical
tests to conclude an answer.

We demonstrate, again theoretically and practically, what kind of test is favorable
for the algorithm, and show how such a test can be chosen efficiently. The distinctive
feature of the statistical tests is the adaption to the changing behavior of the unknown
distributions of the outcomes produced by the random samplings in the graphs. This
is achieved by applying a filter that changes over time.

Exemplary, we outline three subproblems arising in the implementation of the Screw-
Box algorithm and the algorithm engineering that has been performed to solve them
efficiently. Besides answering whether the input graphs are isomorphic, the ScrewBox
algorithm also provides the user with witness that certifies the output. In case the
two input graphs are isomorphic, this witness is an isomorphism. In case the input
graphs are non-isomorphic, the witness is checkable with a statistical test. To relate
randomly checkable witnesses to the theory of certifying algorithms, we develop the
concept of random certificates for Monte Carlo algorithms, i.e., for algorithms that
err.

The wildcards algorithm, the second new algorithm presented in this thesis, com-
putes mixed van der Waerden numbers. It is based on a technique that reduces the
search space and is a generalization of a variant of delayed evaluation to more than two
colors. The partitions of the integers considered in van der Waerden’s theorem are usu-
ally considered as a colorings, with the parts corresponding to the color classes. The
general idea behind the algorithm is to treat colorings of integers that avoid monochro-
matic arithmetic progressions simultaneously by allowing ambiguity in the colorings
generated by the algorithm. This idea, together with a preprocessing step that further
prunes the search space, composes an algorithm that was used, with one exception,
to recompute all known mixed van der Waerden numbers. Moreover, two previously
unknown van der Waerden numbers, w(2, 3, 14; 3) = 201 and w(2, 2, 3, 11; 4) = 141,
have been computed with the wildcards algorithm.

The third algorithm merges the previous two into a combined algorithm that com-
putes Ramsey numbers. Its central aspects are the simultaneous treatment of colored
graphs, in analogy to the simultaneous treatment of colorings of integers, and the iso-
morphism detection of the colored graphs that are obtained. The algorithm shows the
connection between the techniques and algorithms with which the first two problems
are approached. We highlight the search space reduction obtained with the wildcards
algorithm for Ramsey numbers and show the difficulties that arise when this algorithm
is intended for the computation of a new Ramsey number.

All three algorithms are intended as practical algorithms, solving prominent prob-
lems of unknown complexity. The theoretical comparisons and the computations per-

12

formed on actual instances serve as proof of concept. The implementations of the
algorithms have been thoroughly tested on various inputs. The emphasis of the im-
plementation was set on the development of the concepts of and for the algorithms.
Although the main focus of the implementation did not lie on algorithm engineering, a
reasonable amount of it was necessary to process input instances of relevant size. Still,
there is room for improvement of the efficiency of the implementation, to optimally
exploit the techniques that were developed. The implementation of three algorithms
is available at [116].

The thesis is written as a coherent, self-contained document. Its aim is to develop
the theory required to understand the algorithms that were designed and to relate
them to current research. The thesis is arranged in three chapters, each of which
treats one of the three combinatorial problems.

Acknowledgements

I thank Kurt Mehlhorn for his continuing, motivating supervision and support. Fur-
ther, I appreciate the inspiring and encouraging conversations I had with Petteri Kaski.
I am thankful to Diane Tremor, for providing excellent command of the English lan-
guage, and to Daniel Johannsen who always had an open ear that listened to my
fragmentary thoughts and an observant eye that corrected my drafts.

Finally, I am greatly in debt and most thankful to my brother Patrick Schweitzer,
who persistently improved the quality of my dissertation in virtually every aspect.

13

1 Introduction

14

2 Graph isomorphism

The computational complexity of graph isomorphism has remained unresolved for over
thirty years. No polynomial-time algorithm deciding whether two given graphs are
isomorphic is known; neither could this problem be shown to be NP-complete. Graph
isomorphism is one of the two remaining open problems from Garey and Johnson’s
famous list [45] of computational problems with this unsettled complexity status.

The approaches taken to and the publications on graph isomorphism are numerous,
(for an overview see [72]). While research is conducted on complexity issues for the
problem in general, algorithms efficient on restricted graph classes are designed. In
contrast to “typical” problems known to be NP-complete, it is not easy to devise
truly difficult graph isomorphism instances. The leading graph-isomorphism solver
Nauty [88, 92] (see Section 2.2) easily finds isomorphisms for most graphs with sev-
eral thousand vertices. Only highly structured graphs pose a real challenge for this
program (see Section 2.8). These difficult instances usually arise from combinatorial
constructions. Among the hardest known instances are point-line incidence graphs of
finite projective planes.

Even though the problem remains open, larger and larger insight has been gained
over the years. We focus on certain important concepts that have arisen over time.
First (in Section 2.1) we set a framework of definitions and formally describe the
graph isomorphism problem. After this we turn to three prominent algorithms avail-
able, namely McKay’s Nauty (in Section 2.2), the Weisfeiler-Lehman algorithm (in
Section 2.3) and Luks’ bounded degree algorithm (in Section 2.5). In between (in
Section 2.4) we present the graph construction devised by Cai, Fürer and Immerman,
that constructs pairs of non-isomorphic graphs, which the Weisfeiler-Lehman algo-
rithm fails to differentiate. We also present the application of the construction by
Miyazaki, used to produce graphs on which Nauty has exponential running time.

We then introduce ScrewBox (in Section 2.6), a randomized non-isomorphism al-
gorithm, and explain the statistical test employed by this algorithm (in Section 2.7).
This algorithm takes a new algorithmic approach to graph isomorphism. It computes
randomized certificates for non-isomorphism of pairs of graphs. Based on heuristic
sampling rules, we search for substructures in pairs of given graphs to find statisti-
cal evidence for non-isomorphism. After we treat combinatorial graph constructions
that yield challenging input pairs (in Section 2.8), we supply various details that are
elsewhere omitted (in Section 2.9). We then evaluate the ScrewBox algorithm from
a theoretical and a practical perspective (in Section 2.10). We show that on various
graphs the algorithm is able to compete with the benchmark isomorphism solver Nauty,
and show adequate performance on particular “difficult” instances, which are infeasi-
ble for the other solvers. We conclude with a view on deterministic and randomized

15

2 Graph isomorphism

certification (in Section 2.11).
We start with definitions and the description of the graph isomorphism problem.

2.1 The graph isomorphism problem

The central definition in the context of graph isomorphism, and of this chapter, is the
concept of a graph:

Definition 1 (graph). A simple undirected graph G is a pair of sets (V, E) called
vertices and edges respectively, such that the edges form a subset of the two-element
subsets of the vertices: E ⊆ {{v, v′} | v, v′ ∈ V }.

The vertices are also referred to as nodes. Two vertices v, v ′ ∈ V that form an
edge {v, v′} are neighbors and are said to be adjacent. If we require the possibility for
multiple edges between the same pair of vertices, we allow E to be a multiset of pairs
of V . Such a graph is called a multigraph. An edge of the form {v, v} with v ∈ V
is called a loop. If loops are absent, i.e., if the binary relation on V induced by E
is anti-reflexive, we call the graph loopless. In the class of directed graphs the edge
set consists of ordered pairs of vertices, i.e., E ⊆ {(v, v′) | v, v′ ∈ V }. Such a graph
corresponds to an undirected graph if the binary relation is symmetric, i.e., if for all
(v, v′) ∈ E we have (v′, v) ∈ E. We need both variants, (directed and undirected),
and freely use whichever definition is more suitable in a particular situation. As in
this thesis the graph class in question is always evident from the context, we abusively
denote by G the class of graphs in that very category. Given a graph G ∈ G, we denote
by V (G) and E(G) its vertex set and edge set respectively.

By n = |G| = |V (G)| we denote the number of vertices of a graph, its size. By m
we denote the number of edges |E(G)| in the graph. A simple graph in which every
pair of distinct vertices forms an edge is complete. For a subset of vertices U ⊆ V (G)
the induced subgraph on U is the graph G[U] := (U, E(G) ∩ {{u, u′} | u, u′ ∈ U}), i.e.,
the graph that consists of the vertices from U which share an edge, if they do so in G.
Conversely, we define G−U as the graph obtained by deleting vertices U from V , i.e.,
as the graph G[V \ U].

When dealing with graphs in the context of graph isomorphisms, it is convenient to
work with colored graphs:

Definition 2 (colored graph). A vertex colored graph is a graph G = (V, E) together
with a map cG : V →M from the vertices into some set of colors M .

An edge colored graph is a graph G = (V, E) together with a map cG : E →M from
the edges into some set of colors M .

For a colored graph G, of either type, we denote by cG its color map, and consider
the triple (V, E, cG) as a the colored graph itself. Whether we consider an edge or a
vertex coloring is implied by the context, in which we use the colored graphs.

Babai’s chapter on automorphism groups, isomorphism and reconstruction in the
Handbook of Combinatorics [4] is a good starting point to get an overview of the field
of these concepts. We continue with the definition of an isomorphism:

16

2.1 The graph isomorphism problem

Figure 2.1: Isomorphic graphs Figure 2.2: Non-isomorphic graphs

Definition 3 (graph isomorphism). Given graphs G1 = (V1, E1) and G2 = (V2, E2)
a graph isomorphism from G1 to G2 is bijection φ : V1 → V2 such that for all v, v′ ∈ V1

we have {v, v′} ∈ E1 if and only if {φ(v), φ(v′)} ∈ E2.

Thus an isomorphism is a bijection on the vertices that preserves adjacency and
non-adjacency. Figures 2.1 and 2.2 depict a pair of isomorphic and a pair of non-
isomorphic graphs. For two graphs G1, G2 we write G1

∼= G2 (respectively G1 À G2),
if the graphs are isomorphic (respectively non-isomorphic). The isomorphism type of a
graph G is the class of graphs that are isomorphic to G. An automorphism of a graph
G is, as for any category, an isomorphism from G to itself. For any graph G, the
set of automorphisms forms a group, the automorphism group of G, which we denote
by Aut(G).

When we work with colored graphs, we impose on the bijection the restriction to
preserve the colors:

Definition 4 (graph isomorphism of colored graphs). An isomorphism from a
vertex colored graph G1 to a vertex colored graph G2 is an (uncolored) isomorphism φ
from G1 to G2 such that additionally for all v ∈ V (G1) we have cG1(v) = cG2(φ(v)).

Analogously, whenever we consider edge colored graphs, we require that for all edges
{v, v′} ∈ E(G) we have cG1({v, v′}) = cG2({φ(v), φ(v′)}).

This chapter of the thesis is mainly concerned with the corresponding computational
problem:

Problem 1 (graph isomorphism problem). Given two finite graphs G1, G2, the
graph isomorphism problem (Gi) is the task to decide whether G1 and G2 are isomor-
phic.

As our central question is a computational problem, for the remainder of this chapter
we assume that all graphs are finite.

Basic knowledge in permutation group theory is indispensable when dealing with
the graph isomorphism problem. In particular we later require the concept of orbit
partitions.

Definition 5 (orbit). Given a graph G and a vertex v ∈ V (G) the orbit of v is the
set of images of v under all automorphisms of G.

17

2 Graph isomorphism

For colored graphs the automorphisms in this definition are those preserving colors.
The relation v1 ∼ v2 that holds for vertices v1, v2 ∈ V (G) if v2 is in the orbit of v1

is an equivalence relation. Its equivalence classes, the orbits, form a partition of the
vertices, the aforementioned orbit partition.

We frequently use the adjective invariant to describe a function that is invariant
under graph isomorphisms, i.e., evaluates equally for isomorphic graphs. Here the
invariance must hold under the type of isomorphisms that are under consideration
in the respective context (e.g., it must respect color constraints, if isomorphisms of
colored graphs are considered).

A complete invariant is a function that does not only map isomorphic graphs to the
same value but also maps non-isomorphic graphs to different values. A complete in-
variant, that is computable within a certain time bound, solves the graph isomorphism
problem within this time bound (apart form the additional time needed to compare
values of the invariant). A canonical labeling is a special type of complete invariant:

Definition 6 (canonical labeling). A canonical labeling is a complete invariant that
maps graphs on n vertices to isomorphic graphs on the vertex set {1, . . . , n}.

Thus, with a canonical labeling, for every n-vertex graph G we obtain a function χG,
that assigns the labels 1, . . . , n to the vertices of G. Furthermore, the map that is given
by χ−1

G (i) 7→ χ−1
G′ (i) is an isomorphism for any pair (G, G′) of isomorphic graphs with

n vertices. In other words, the isomorphism is formed by mapping vertices in G to
those with equal label in G′. Computationally, this implies that as soon as we know
the canonical labelings of two graphs, we can trivially check whether the graphs are
isomorphic. Moreover, if they are isomorphic, we obtain an isomorphism. Brendan
McKay’s graph isomorphism solver Nauty uses this approach (see the Nauty user
guide [88] and Section 2.2).

The theoretical complexity of the graph isomorphism problem is still unknown. The
problem has properties that are presumably not shared by other NP-hard problems:
Goldreich, Micali and Wigderson [47] showed that Gi has an interactive proof system
and as Schöning [115] shows Gi is low in the hierarchy. For an overview of known
results on the complexity of graph isomorphism see [72]. This implies that the poly-
nomial hierarchy collapses if Gi is NP-complete.

Many isomorphism questions are equally hard as graph isomorphism. We therefore
introduce a complexity class that contains these problems:

Definition 7 (graph isomorphism-complete). A problem P is Gi-complete if
there is a polynomial-time reduction from P to Gi and vice versa.

We now discuss the relation of this complexity to other classes and its prominent
members:

2.1.1 Reductions: equivalent and non-equivalent problems

When dealing with problems “similar” to Gi, it appears that many of those fall into
three classes: they are NP-complete, they are Gi-complete or they are polynomial-
time solvable. Since the graph isomorphism problem ranges between problems in P

18

2.1 The graph isomorphism problem

and NP-complete problems, we exclusively look at polynomial-time reductions, as
opposed to logarithmic space reductions.

NP-complete variants

The most prominent example of an NP-complete problem in this area is presumably
the subgraph isomorphism problem. It takes various forms: Given two graphs G1

and G2 one asks whether G1 is a subgraph of G2, induced or not induced, or one
tries to determine the largest subgraph common to G1 and G2. All three variants are
NP-complete which can easily be seen by a reduction of Max-Clique to the special
case in which G1 is a complete graph. Being a generalization of graph coloring, the
question whether there exists a homomorphism from G1 to G2 is also NP-complete.
As Lubiw [85] shows, the problem that asks whether there exists an automorphism of
a graph which does not fix any vertex is NP-complete, which stands out from other
variants that are Gi-complete.

Graph isomorphism-complete variants

Many problems concerning structural equivalence are easily seen to be Gi-complete.
The general problem of hypergraph isomorphism is Gi-complete and with it the isomor-
phism problem of simplicial complexes. This stays true if colored hypergraph isomor-
phisms are considered. More generally, the isomorphism problem for general relational
structures is Gi-complete, as shown by Miller [98]. Mathon [87] shows that the prob-
lem of counting the number of isomorphisms between two graphs is Gi-complete. The
proof of Theorem 1, given below, shows a color reduction method, which shows that
the problems of colored and uncolored graph isomorphism are equivalent. The natural
graph classes given by any choice of loops or loopless, multiple edges, bipartite, con-
nected, colored or regular as properties also have Gi-complete isomorphism problems.
We therefore refer to Gi-complete problems simply as isomorphism-complete.

Basin [8] shows that a certain term equality problem, of terms also containing com-
mutative variable-binding operators, is isomorphism-complete. Colbourn and Col-
bourn [27] show that deciding isomorphism of block designs is Gi-complete.

Furthermore, deciding isomorphism of finite semigroups (given by multiplication
table) and finite automata (Booth [15]), of finitely represented algebras (Kozen [75])
and of convex polytopes (Kaibel and Schwartz [66]) is Gi-complete as well. There are
also classes of groups (as shown for example by Garzon and Zalcstein [46]) for which
deciding isomorphism, when the groups are given via presentations, is Gi-complete. In
accordance with this Droms [34] shows that right-angled Artin groups are isomorphic
if and only if their underlying graphs are isomorphic.

There are only a limited number of equivalence results for problems which are not
directly related to the isomorphism of combinatorial structures. For example, Kutz [78]
shows that deciding if a subdivision digraph (a digraph, in which every edge has been
subdivided) with positive minimal in- and outdegree has a k-th root, is isomorphism-
complete. Kozen [76] shows that finding a clique of a certain size in M -graphs is

19

2 Graph isomorphism

Gi-complete. Feigenbaum and Schäffer [40] show that the question whether a graph
decomposes non-trivially as a lexicographic product is Gi-complete. Hemaspaandra,
Hemaspaandra, Radziszowski and Tripathi [60] show that various graph reconstruction
problems are Gi-complete.

When we relax the allowed reduction method from many-one reduction to any form
of Turing-reduction, we obtain even more Gi-complete problems. Under these, Gi is
set apart from the typical NP-complete problem by the fact that it is equivalent to its
counting version: the task of determining the number of isomorphisms between two
graphs. This also renders the problem of determining the size of the automorphism
group of a graph Gi-complete. Moreover computing generators for the automorphism
group is Gi-complete as well.

Polynomial variants

When restricting the class of graphs in a severe way, i.e., in a way such that we cannot
show Gi-completeness anymore, we can expect that the restricted problem falls into P.
For several restricted classes of graphs, polynomial-time algorithms are known. The
most prominent are planar graphs [125, 62], minor closed graphs [107], graphs with
bounded eigenvalue multiplicity [6], graphs of bounded genus [41, 84, 100], graphs of
bounded degree [86], graphs of bounded color class size [44] and graphs of bounded
treewidth [13]. Isomorphism of random graphs [5] can be tested in expected polynomial
time.

Other variants

Being able to compute a canonical labeling for all graphs certainly suffices to decide
graph isomorphism. Conversely though, it is not known whether computing a canon-
ical labeling is computationally harder than Gi.

Group isomorphism (when finite groups are given by their multiplication table) is re-
ducible to graph isomorphism as shown by Miller and Monk [98]. The converse is again
unknown. Tarjan showed that group isomorphism can be solved in O(nlog(n)+O(1)),
thus showing a reduction of graph isomorphism to it would improve the best known
running time for the Gi problem. (Apparently Tarjan never published this algorithm;
however, the algorithm and its running time bound can be found in [99]).

Though deciding isomorphism for block designs is Gi-complete [27], for the “em-
pirically difficult small cases”, the projective planes and Hadamard matrices, Gi-
completeness is not known (see Section 2.8). Miller [99] provides an algorithm with
which isomorphism of projective planes can be decided in nO(log log(n)). Leon [82] pro-
vides an algorithm that computes the automorphism group of a Hadamard matrix,
which can also be used to decide equivalence of Hadamard matrices in nO(log n).

Explicit reductions

The fact that Gi with colored graphs reduces to Gi of uncolored graphs is folklore.
There are many polynomial-time reductions; we provide one for completeness. This

20

2.1 The graph isomorphism problem

particular reduction increases genus, treewidth and maximum degree by at most a
constant:

Theorem 1 (reduction of colored to uncolored graph isomorphism). The
graph isomorphism problem for colored graphs polynomial-time reduces to the uncolored
graph isomorphism problem.

Proof. Assume we are given two colored graphs G1, G2 on n vertices. If the sets of
colors used for the graphs are not equal, we reduce the problem to a No-instance of
uncolored graph isomorphism, i.e., some fixed pair of non-isomorphic graphs.

If the graphs use the same color set, we attach to every vertex a rooted tree whose
isomorphism type is in one-to-one correspondence with the color of the vertex: We
choose a canonical bijection of the color set to the set of rooted trees for which every
leaf is at height dlog2(n)e and which has a maximum degree of 3. Such a bijection is
given by the following method: We number the colors with integers in {0, . . . , n− 1}.
To a color with binary encoding a0a1 . . . adlog2 n−1e we assign the tree for which every
vertex on height i has exactly ai + 1 children.

We obtain two new graphs G′
1, G

′
2 of size at most O(n2). By induction on the height,

it is easy to show that these new graphs are isomorphic if and only if the original graphs
are.

Note that this reduction reduces trees to trees and does not increase the maximum
degree by more than 3 (if we choose the dummy No-instance wisely.) The reduction
shown may square the number of vertices in order to reduce the colors. Reductions
to smaller size graphs are possible as well, e.g., by attaching different subgraphs not
contained in the original graphs to encode colors.

Overall there are numerous color reductions. Possibly less known is the degree
reduction method of Zemlyachenko [3].

Theorem 2 (degree reduction of graph isomorphism [Zemlyachenko [3]
(1981)]). There exists a reduction that, given two graphs of size n and of maxi-
mal degree at most d, produces two graphs of maximal degree at most dd/2e. These
graphs are isomorphic if and only if the original graphs are. The new graphs are of
size O(n2n

d) and they may be computed in time polynomial in that size.

This degree reduction has been used to obtain the moderately exponential graph
isomorphism algorithm [3]. We do not expect to find a trivial way to reduce the degree
of the graph. The reason for this is the following fact: For d > 4 there is no colored
graph of maximum degree d′ < d which has an orbit of size d on which the induced
group operation is the full permutation group. Miller [98] calls such a (non-existent)
graph concisely a d-gadget. If they existed, we could reduce the degree of a graph by
replacing every vertex of degree d with such a d-gadget. (The fact that these graphs do
not exist can be seen via the composition series of the symmetric group Sn, as for n > 4
this composition series contains simple groups that are not contained in Sn−1.)

21

2 Graph isomorphism

2.2 Brendan McKay’s Nauty

We use this section to review the Nauty algorithm designed by McKay [92]. To do
so we introduce the necessary vocabulary. Most of these definitions are taken from
the Nauty user guide [89]. Nauty is an algorithm that produces a canonical labeling
of a given input graph. Isomorphism of two graphs can then easily be checked via
equivalence of the respective canonical labelings.

A partition of G is a partition of the vertices of G. When Nauty performs operations
on such partitions it maintains and takes into account an ordering of the partition
classes. The partition classes are also called cells. A vertex coloring of a graph induces
a partition of the vertices as the preimages of colors. A cell of size one in a partition
is called singleton. A partition that contains only singletons is discrete. A partition π
is called finer than a partition π′ if all cells of π are subsets of cells of π′. Under these
conditions π′ is coarser than π. The relation “finer than” defines a partial order on
the partitions of a vertex set. (Moreover it defines a lattice on the partitions, a fact
we will not use). Recall that the orbit partition of a graph is the partition given by
the sets of orbits of the automorphism group.

Definition 8 (refinement). A refinement is a function invariant under graph isomor-
phism that maps every colored graph G = (V, E, c) to a colored graph G′ = (V, E, c′),
such that the induced partition of c′ is finer than the induced partition of c.

More precisely a refinement is a functor from the category of finite colored graphs
(where its morphisms are the isomorphisms) to itself. Invariance under graph iso-
morphisms means that for any isomorphic copy G′ of G, the refinement colors corre-
sponding vertices in G and G′ with the same color. In particular, this causes any two
vertices v, v′ ∈ G which lie in the same orbit (under the color respecting automorphism
group of G) to have images that lie in the same orbit of G′. Thus a refined coloring
of a graph induces a partition that is finer than the partition induced by the original
coloring and coarser than the orbit partition of the graph. In other words, orbits will
never be split up.

Definition 9 (vertex invariant). A vertex invariant is a function that maps the
vertices of a colored graph to some set M and is invariant under graph isomorphism.

Any vertex invariant can be used to refine a partition by differentiating vertices
according to their image under the invariant.

Definition 10 (stable partition). The stable partition under a refinement r is the
finest partition obtained by any number of repeated refinement steps performed with r.

Any partition of a set of size n can be refined at most n times before it becomes
discrete. Therefore any refinement repeated sufficiently often has to stabilize and
the stable partition under a given refinement is well defined. (Recall that for our
computational problem we require the graphs to be finite). A particular and basic
refinement is the one that assigns to each vertex a color that depends on the number
of neighbors of that vertex and the neighbors’ colors:

22

2.2 Brendan McKay’s Nauty

Definition 11 (näıve vertex refinement). The näıve vertex refinement maps every
colored graph G = (V, E, c) with c : V → M = {m1, m2, . . . , m|M |} to a new colored

graph G′ = (V, E, c′) with c′ : V →M × NM given by

c′(v) :=
(
c(v), |{v′ | {v, v′} ∈ E, c(v′) = m1}|, . . . , |{v′ | {v, v′} ∈ E, c(v′) = m|M |}|

)
.

The newly assigned color of a vertex v thus is the tuple consisting of the previous
color of v, the number of neighbors in color m1, the number of neighbors in color m2,
and so on. This refinement is also called the 1-dimensional Weisfeiler-Lehman refine-
ment (for higher dimensions see Definition 13).

A partition is called equitable if it is stable under the näıve vertex refinement.

Definition 12 (individualization). Given a colored graph G = (V, E, c), an indi-
vidualization of the vertex u of G is a colored graph Gu := (V, E, cu) where

cu(v) :=

{
c(v) if v 6= u,

m′ if v = u,

where m′ is a new color that is not in the image of c.

In an individualization, the individualized vertex thus gets a color that distinguishes
it from the other vertices. Given a graph as input, Nauty uses the following back-
tracking procedure: It constructs a search tree, in which every node corresponds to a
partition of the input graphs. (To avoid confusion with the vertices of the graph, we
call the vertices of the search tree nodes.) The root of the search tree corresponds to
the näıvely vertex refined coloring of the input. (We choose a uniform coloring for un-
colored inputs.) Then, for each node in the search tree, which does not correspond to
a discrete partition, Nauty recursively picks a target cell, i.e., a partition class, of this
coloring according to some heuristic rule. One by one each vertex in this cell is indi-
vidualized and the resulting coloring is näıvely vertex refined. The obtained coloring is
a child of the current node. The search then proceeds, in a depth first search manner,
with the children. The leafs of the search are all associated with discrete partitions.
According to a deterministic rule, one of the leafs is taken as a canonical labeling of
the graph. (The deterministic rule lexicographically orders the leafs by the node types
on the path from the root to the leaf, and chooses the leaf minimal in this order.) The
procedure we have described so far already suffices to correctly determine whether two
graphs are isomorphic, but would demand infeasible exponential computation time,
even when a complete graph is given as input. Nauty therefore uses two methods to
prune the search tree. First, since the automorphism group acts on the search tree,
detected automorphisms can reveal the equivalence of search nodes. If for some search
tree node Nauty detects that two vertices in the target cell lie in the same orbit (of the
automorphism group of the colored graph corresponding to the current node), only one
of the vertices has to be individualized, as the other one yields an equivalent branch of
the search tree with equivalent leafs. Second, Nauty uses an indicator function (and
in particular the lexicographic ordering of the leafs) to determine ahead of time that

23

2 Graph isomorphism

some nodes do not have to be individualized. This concludes a very rough sketch of
the algorithm, which omitted crucial details necessary to obtain a desired efficiency.

There are several other algorithms that use the individualization refinement tech-
nique. Among those are Saucy [31], which is an algorithm that exploits sparsity
of input graphs, Bliss [65], which was derived by using efficient data structures and
algorithm engineering, and Traces [106], which uses specific individualization and re-
finement rules to drastically decrease the number of nodes visited in the search tree.

We now present the Weisfeiler-Lehman method, our second example of a graph
isomorphism algorithm.

2.3 The Weisfeiler-Lehman method

The Weisfeiler-Lehman method is a powerful refinement that uses a k-vertex tuple
coloring procedure. The 1-dimensional Weisfeiler-Lehman refinement was introduced
in Definition 11. Its k-dimensional generalization colors k-tuples by considering the
way they are embedded in the graph.

Definition 13 (k-dimensional Weisfeiler-Lehman coloring procedure). Let
k ≥ 2 be natural number and G a colored graph. For every k-tuple of (not neces-
sarily distinct) vertices (v1, . . . , vk) define wlk0(v1, . . . , vk) as the isomorphism type of
the colored subgraph induced by (v1, . . . , vk). (Here we take the order of the ver-
tices into account.) I.e., wl0(v1, . . . , vk) = wl0(v′1, . . . , v

′
k) if and only if the map that

sends vj to v′j for j ∈ {1, . . . , k} is an isomorphism of the induced colored subgraph
on the vertices (v1, . . . , vk) respectively (v′1, . . . , v

′
k). Iteratively for i ≥ 0 we define

wlki+1(v1, . . . , vk) :=
(

wlki (v1, . . . , vk),Mk
i

)
where Mk

i is the multiset given by Mk
i :=

{{(wlki (w, v2, . . . , vk), wlki (v1, w, v3, . . . , vk), . . . , wlki (v1, . . . , vk−1, w)) | w ∈ V }}.

The colors wlki are the colors obtained in the i-th iteration of the Weisfeiler-Lehman
coloring procedure.

Thus in every iteration of the Weisfeiler-Lehman coloring procedure, every tuple
(v1, . . . , vk) is given a new color. This new color consists of the previous color of the
respective tuple and the multiset obtained by substituting successively each vi by w
for all vertices w in the graph.

Observe that the k-dimensional Weisfeiler-Lehman coloring procedure refinement is
invariant under graph isomorphism. As for the 1-dimensional case, where only the
vertices (i.e., 1-tuples) are colored, this procedure stabilizes. By abuse of notation
we define wlk∞(v1, v2, . . . , vk) to be this stable coloring. (The coloring continues to
change, but the induced partition of the set of k-tuples does not. One way to remedy
this is to define wlk∞(v1, v2, . . . , vk) as wlki (v1, v2, . . . , vk) where i is the least positive
integer such that the induced partition in step i is equivalent to the induced partition
in step i + 1.)

Using the stable coloring wlk∞, we use the k-tuple coloring procedure to produce
the k-dimensional Weisfeiler-Lehman vertex refinement, a refinement in the sense of

24

2.3 The Weisfeiler-Lehman method

Definition 8, that colors vertices, as opposed to tuples of vertices. To color a vertex v,
we use the color of the tuple that consists only of the vertex v:

Definition 14 (k-dimensional Weisfeiler-Lehman vertex refinement). Given
a colored graph G = (V, E, c), define G′ = (V, E, c′) as the k-dimensional Weisfeiler-
Lehman vertex refinement, where c′(v) = wlk∞(v, v, . . . , v).

Intuitively this refinement is finer for larger k, since more colors and further in-
formation is used to differentiate the tuples of vertices. The partition induced by the
k-dimensional Weisfeiler-Lehman vertex refinement is stable, thus in the 1-dimensional
case, the corresponding partition is obtained by the stable partition of the näıve vertex
refinement.

With brute force, a single iteration of the k-dimensional Weisfeiler-Lehman coloring
procedure can be computed in O(knk+1) time. Immerman and Lander [63] show
that a stable refinement can be computed in O(k2nk+1 log n). Even though it may
be possible to improve this bound via fast matrix multiplication, we expect a lower
bound of Ω(nk), as there are nk tuples that must obtain a color.

The k-dimensional Weisfeiler-Lehman algorithm, corresponding to the just-defined
vertex refinement, performs the refinement on two input graphs. It then claims that
the graphs are isomorphic if the colors with their multiplicity are equal in both graphs.
However, we later see with Theorem 5 that for any k this algorithm has false posi-
tives: graphs, which are not distinguished by their color refinement, but which are
not isomorphic. In other words, for any fixed k the k-dimensional Weisfeiler-Lehman
algorithm solves graph isomorphism only for a subclass of graphs.

The Weisfeiler-Lehman algorithm subsumes almost all combinatorial graph algo-
rithms that are not based on the group theoretic method, (see Section 2.5). An excep-
tion to this might be the problem of deciding isomorphism of graphs of bounded eigen-
value multiplicity, for which Fürer gave a combinatorial algorithm [43]. To demonstrate
the power of the Weisfeiler-Lehman method, we cite two theorems that handle graph
isomorphism for two natural graph classes:

Theorem 3 (k-dimensional Weisfeiler-Lehman algorithm solves bounded
genus [Grohe [55] (2000)]). For any genus bound g there is a number f(g) such
that the f(g)-dimensional Weisfeiler-Lehman algorithm solves Gi for graphs with a
genus of at most g.

Prior to the proof of this theorem, Grohe and Mariño showed that the same is true
when the treewidth is taken as parameter:

Theorem 4 (k-dimensional Weisfeiler-Lehman algorithm solves bounded
treewidth [Grohe, Mariño [56] (1999)]). For any treewidth bound w there is a
number f(w) such that the f(w)-dimensional Weisfeiler-Lehman algorithm solves Gi

for graphs with a treewidth of at most w.

Before we explore another graph isomorphism algorithm, namely Luks’ algorithm
that solves Gi for graphs of bounded degree, we first investigate families of graphs of
bounded degree, which the k-dimensional Weisfeiler-Lehman algorithm fails to differ-
entiate and for which Nauty fails to yield polynomial running time.

25

2 Graph isomorphism

2.4 The Cai-Fürer-Immerman construction and Miyazaki

graphs

011 110101000

(2, 1)(2, 0)

(0, 1) (0, 1) (1, 0) (1, 1)

Figure 2.3: The Figure depicts the Fürer gadget F3. The 4 middle vertices are shown
in the middle row (with color 0 depicted as black). Three pairs of equally colored
outer vertices are shown above and below the middle vertices, (the colors 1, 2 and 3
are shown in red, green and blue respectively).

In this section we outline the Cai-Fürer-Immerman construction. It produces pairs
of graphs that are difficult for various approaches to the graph isomorphism problem.
Cai, Fürer and Immerman [23] show that for any k the k-dimensional Weisfeiler-
Lehman algorithm cannot distinguish all graphs, not even those of bounded degree.
Using their construction, Miyazaki [102] shows that Nauty has exponential running
time on a family of graphs of bounded degree. To explain the construction we first
need to define the Fürer gadgets [42] Fi. (See Figure 2.3 for the graph F3.)

Definition 15 (Fürer gadget). For any non-negative integer k we define the Fürer
gadget Fk = (V, E, c) as the graph on the vertex set V := Ok ∪Mk, where Ok :=
{1, . . . , k} × {0, 1}, and Mk is the set of 0-1-strings of length k with an even number
of entries equal to 1, i.e.,

Mk := {σ1 . . . σk ∈ {0, 1}k | |{σi 6= 1}| is even}.

The edge set is given by

E :=
{
{(i, j), σ1 . . . σk} | i ∈ {1, . . . , k}, j ∈ {0, 1} ∧ σi = j

}
.

The map c : V → {0, . . . , k} colors the vertices (i, j) ∈ Ok, with i ∈ {1, . . . , k} and
j ∈ {0, 1}, such that c((i, j)) = i. All remaining vertices, i.e., those in Mk, are colored
with color 0.

Thus the Fürer gadget Fk contains a set of middle vertices Mk, and each of them
corresponds to a 0-1-sequences of length k. For every index i ∈ {1, . . . , k} it also
contains two outer vertices (i, 0), (i, 1) ∈ Ok. For i ∈ {1, . . . , k} outer vertex (i, 0)
(respectively (i, 1)) is joined to all middle vertices that correspond to a sequence with

26

2.4 The Cai-Fürer-Immerman construction and Miyazaki graphs

entry 0 (respectively 1) at position i. Each set {(i, 0), (i, 1)} of outer vertices forms a
color class. The middle vertices also form a color class.

The automorphism group of the colored graph Fk is isomorphic to Zk−1
2 , the (k−2)-

fold direct product of cyclic groups of order 2. This automorphism group acts on
the pairs of equally colored outer vertices, i.e. on the sets {(i, 0)(i, 1)} with i ∈
{1, . . . , k}. Any automorphism transposes an even number of these pairs. Conversely
any permutation of the outer vertices that transposes an even number of these pairs
can be extended to an automorphism of the whole graph. This action is faithful, i.e.,
only the trivial automorphism fixes all outer vertices. The graph Fk has 2k−1 + 2k
vertices and maximum degree of max{k, 2k−2}.

The Fürer gadgets may be used as a building block to construct difficult graph
isomorphism instances. To do so, we replace in a base graph G every vertex by
a Fürer gadget. The edges in the graph G determine how the vertices from different
replacement gadgets are connected with extra edges. We now explain this construction
in detail (the middle graph of Figure 2.4 depicts an example of the construction):

Definition 16 (replacement with Fürer gadgets). Given a base graph G, we
define CFI(G), the replacement with Fürer gadgets, as the graph obtained by replacing
each vertex of G with a Fürer gadget of specific size: First, for every vertex v ∈ V (G)
we replace v with the graph Fdeg(v) where deg(v) is the degree of v. (We index the
colors of this replaced graph by the index v, such that the sets of colors used in
replacements for different vertices v and v′ from G are disjoint.) Second, we associate
with every edge e in G incident to v one pair of outer vertices of equal color. We denote
this pair by (av

e , b
v
e). Every edge e = {v, v′} in the original graph is then associated

with two such pairs in CFI(G): one pair (av
e , b

v
e) in the replacement graph of v and

one pair (av′

e , bv′

e) in the replacement graph of v′. Besides edges within the gadgets, for
every edge e = {v, v′} in G, we also add the edges joining av

e with av′

e and bv
e with bv′

e

to the new graph CFI(G).

The graph that we obtain by replacement with Fürer gadgets has two type of edges:
It contains edges that are completely contained in one of the Fürer gadgets. We call
these edges internal. And it contains edges that connect different Fürer gadgets. We
call these edges external. External edges appear in pairs.

For connected graphs, additionally to this replacement, we define the twisted re-
placement to be the same replacement graph, apart from one pair of external edges,
which is twisted:

Definition 17 (twisted replacement with Fürer gadgets). For every connected

non-trivial graph G we define the twisted replacement with Fürer gadgets C̃FI(G), as
the graph obtained with the untwisted replacement procedure (Definition 16), except
for exactly one edge e = {v, v′}, associated to (av

e , b
v
e) and (av′

e , bv′

e). For this edge
we insert the edges {av

e , b
v′

e } and {bv
e , a

v′

e }, instead of the untwisted pair of edges, (i.e,
instead of the two edges {av

e , a
v′

e } and {bv
e , b

v′

e }).
Figure 2.4 shows the replacement and the twist operation of an example graph. The

automorphism group of a graph CFI(G) is the elementary Abelian 2-group of rank

27

2 Graph isomorphism

Figure 2.4: The Figure shows a base graph (left), its replacement with Fürer gadgets
(middle) and the corresponding twisted replacement (right). The vertex of degree 3
in the base graph has been replaced with the graph F3, shown in Figure 2.3. The
twist is introduced at the pair of edges associated with the edge in the base graph that
connects the vertex of degree 3 and the vertex of degree 2 in the lower left corner.
All middle vertices are shown in black. The outer vertices from different replacement
gadgets have been given different colors.

equal to the dimension of the cycle space of G. The automorphism group of C̃FI(G)
is isomorphic to the one of CFI(G).

Observe that the twisted replacement of a base graph G is well defined up to isomor-
phism: Since the original graph is required to be connected, it suffices to show that for
two incident edges e and e′ in the base graph G, the two graphs obtained by twisting
one of the corresponding pairs of external edges in CFI(G) are isomorphic. Assume e
and e′ are incident in v. Let (av

e , b
v
e) and (av

e′ , b
v
e′) be the pairs in the replacement of v

associated to e and e′ respectively, then by construction there an automorphism Fürer
gadget used to replace v, that interchanges av

e with bv
e and av

e′ with bv
e′ , and leaves

all other outer vertices fixed. In other words, the graph Fk has been designed such
that the twist can be moved among pairs of external edges that originate from edges
incident in the base graph G, with the help of an automorphism of Fk. Contrarily, the
graphs CFI(G) and C̃FI(G) are not isomorphic. Since any automorphism of CFI(G)
transposes an even number of pairs (a, b), the parity of the number of twists (pairs
(av

e , b
v
e) and (av′

e , bv′

e) where av
e is adjacent to bv′

e and bv
e is adjacent to av′

e) is a graph

isomorphism invariant. For CFI(G) and C̃FI(G) this parity is 0 and 1 respectively.
The CFI-construction, i.e., the application of the replacement with Fürer gadgets and
the twisted replacement with Fürer gadgets to a connected base graph G, thus yields
two non-isomorphic graphs.

With this, we next describe a class of graphs which the k-dimensional Weisfeiler-
Lehman algorithm cannot distinguish. We first recall the notion of a balanced vertex

28

2.4 The Cai-Fürer-Immerman construction and Miyazaki graphs

separator:

Definition 18 (balanced vertex separator). A balanced vertex separator of a graph
G is a subset of its vertices S ⊆ V (G), such that no component of G − S has more
than |V (G)|/2 vertices.

It turns out that if the CFI-construction is applied to graphs without small bal-
anced separators, it is very difficult to determine whether a twist has been introduced.
Intuitively this is due to the fact that the twist can move around the graph. This
movement cannot easily be prohibited by individualizations of vertices, as one has to
individualize every vertex within some separator. If separators are not small, many
individualizations are required. In their groundbreaking paper Cai, Fürer and Immer-
man develop this intuition and turn it into a formal argument:

Theorem 5 (criterion for indistinguishability of graphs obtained with the
CFI-construction [Cai, Fürer, Immerman [23] (1992)]). Let G be a graph with

no balanced vertex separator smaller than k + 1. Then CFI(G) and C̃FI(G) cannot be
distinguished by the k-dimensional Weisfeiler-Lehman algorithm.

With this theorem at hand we may now construct a family of graphs (even of
bounded degree) which for any fixed k cannot be distinguished by the k-dimensional
Weisfeiler-Lehman algorithm. One performs the CFI-construction to a family of
bounded degree expanders. As expanders, they cannot contain small balanced ver-
tex separators:

Corollary 1 (graphs indistinguishable for the Weisfeiler-Lehman algorithm
[Cai, Fürer, Immerman [23] (1992)]). There is a family {(Gi, G

′
i) | i ∈ N} of

pairs of non-isomorphic regular graphs of degree 3 and color class size bounded by 4
with O(i) vertices such that for any k the k-dimensional Weisfeiler-Lehman algorithm
cannot distinguish between the graphs Gi and G′

i for any i ≥ k.

Miyazaki [102] used the CFI-construction to show that there is a family of graphs
for which Nauty has exponential running time. In particular he applied it to the 3-
regular multigraphs obtained by the following definition: For k ∈ N define Mk the
Miyazaki graph as the graph on the vertex set V (Mk) := {v1, . . . , vk, w1, . . . , wk} with
edge multiset E(Mk) :=

{{
{v1, v1}, {wk, wk}, {vi, wi | i ∈ {1, . . . , k}}, 2 · {wi, vi+1 | i ∈ {1, . . . , k − 1}}

}}
.

I.e., in this multiset the edges {wi, vi+1} appear twice. Figure 2.5 shows the Miyazaki
graph M3. We observe that, if the CFI-construction is applied to Mk, the multiedges
and the loops are assigned to different endpoints, thus CFI(Mk) is a simple graph
(one without multiedges). With slight ambiguity, we call the graphs Mk as well as the
graphs CFI(Mk) Miyazaki graphs.

With the help of these graphs, one may force Nauty to have exponential running
time:

29

2 Graph isomorphism

v1 w3w2 v3v2w1

Figure 2.5: The Miyazaki graph M3

Theorem 6 (exponential running time of Nauty [Miyazaki [102] (1995)]).
There is an ordering of the colors for the family of graphs CFI(Mk) such that Nauty
has exponential running time for these graphs.

We revisit the CFI-construction in Subsection 2.10.3. We now return to the dis-
cussion of graph isomorphism algorithms, and consider Luks’ algorithm for graphs of
bounded degree.

2.5 Eugene Luks’ bounded degree algorithm

In 1982 Luks [86] designed a graph isomorphism algorithm that runs in polynomial
time for graphs with bounded degree. It is, opposed to the combinatorial Weisfeiler-
Lehman method, of group theoretic nature. Luks reduced Gi to orbit classification of
permutation groups, whose composition factors are subgroups of Sn, the symmetric
group on n elements. Together with Zemlyachenko’s degree reduction (Theorem 2),

Babai [3] obtained an e
O
“√

n log(n)
”

deterministic algorithm for Gi in general.

Theorem 7 (polynomial time isomorphism algorithm for graphs of bounded
degree [Luks [86](1982)]). There is a polynomial-time Gi algorithm for graphs of
bounded degree.

We very briefly sketch Luks’ algorithm. The graph isomorphism problem for graphs
of bounded degree reduces to the computation of the automorphism groups of rooted
graphs of bounded degree. Let X be such a rooted graph. Consider Xi, the subgraph
that consists of those edges and vertices with distance at most i from the root. We
successively compute the automorphism of Xi+1, from the automorphism of Xi. Let
Aut(Xi) =: Ai be the automorphism group of this subgraph. As the group Ai+1

operates on the set Xi we obtain a group homomorphism Ai+1 → Ai. The kernel of
this map is the pointwise stabilizer of Xi in Ai+1. Thus generators for Ai+1 may be
computed by lifting generators of the image of Ai+1 in Ai and computing generators of
the kernel. Generators for the kernel are directly computable, but for the computation
of the image of Ai+1 one has to resort to group theory. This image is the stabilizer
of the edges in Xi+1 not contained in Xi. The property that makes these groups
accessible is the fact that for all i, the composition factors of Ai are subgroups of Sd,
where d is the maximum degree of X.

We do not go into further detail here, as it will divert us too much. The methods
can also be used to obtain an algorithm, with moderately exponential running time,

30

2.6 The ScrewBox

that canonically labels a graph [7]. Gary Miller [101] has generalized Luks’ method
to a (natural) algorithm that solves Gi in polynomial time for a graph class that
concurrently contains the graphs of bounded degree and the graphs of bounded genus.

This ends our rough overview over existing graph isomorphism algorithms. Next we
introduce a new randomized algorithm that uses statistical tests to solve the graph
isomorphism problem.

2.6 The ScrewBox

In this section we describe the ScrewBox algorithm, a randomized algorithm for Gi

that performs particularly well on pairs of graphs which are “very similar” but non-
isomorphic. Given any two graphs, the algorithm either supplies an isomorphism, or
concludes, with a selectable error probability, that the input graphs are not isomorphic.

A standard approach to detect whether two graphs are non-isomorphic is via graph
invariants. A graph invariant is any function on graphs invariant under isomorphisms.
Basic examples of invariants are the degree sequence, i.e., the (multi-)set of node
degrees, or the set of degree sums of all neighbors of all nodes. Any combination of
invariants is also an invariant. A possibly more expressive invariant computes the
maximum flow between all pairs of vertices in a graph. If an invariant yields different
values on two graphs, the graphs cannot be isomorphic.

On highly structured graphs, like the incidence graphs of finite projective planes,
however, such simple predicates will not suffice. We obtain a very expressive invariant
by considering the multiset of colors that is obtained by the k-dimensional Weisfeiler-
Lehman refinement. The strength of this invariant is indicated by the fact that it solves
Gi on various graph classes, as shown by Theorems 3 and 4. However, excessively
strong invariants are computationally far too expensive. To remedy this we construct
invariants that can be evaluated in a probabilistic fashion. An easy example of this is
the invariant that counts the number of triangles in a given graph. Assume two graphs
on n vertices contain a different amount of triangles. When determining the number
of triangles in both graphs, we observe different counts and infer that the graphs are
not isomorphic. If these counts differ strongly, we can save time at the expense of
certainty: We randomly sample triples of vertices in both graphs, and eventually note
that the relative frequency of the triple forming a triangle differs in the two graphs.
We conclude (with a certain error probability) that the graphs are not isomorphic.

Sampling triangles is good for many pairs of graphs, but will not suffice for pairs
of equally large graphs with equal number of triangles. For these we require other
invariants. The idea behind the algorithm that follows is to dynamically construct
invariants that can be evaluated through statistical tests. Figure 2.6 depicts from a
high level view point how the stochastic algorithms, that we design, work.

The specific algorithm we now describe first appeared in [79] and was developed
together with Martin Kutz.

Intuitively, the algorithm tries to find certain patterns in the input graphs by se-
quentially sampling nodes in a randomized fashion. The goal is to observe significantly

31

2 Graph isomorphism

Start

Search property
in which graphs

might strongly differ

Randomly
evaluate

the property

Found
statistical
difference?

Conclude:
“probably

not isomorphic”

Try to extract isomorphism
from the evaluation process

Found
isomorphism?

Conclude:
“isomorphic”

Yes

No

YesNo

Figure 2.6: High level view of the stochastic Gi algorithms, such as the ScrewBox
algorithm

different behavior of this sampling process for the two given graphs. A single sample
run draws nodes s1, s2, . . . , sn, the sample, one after another, where each st has to ful-
fill a certain set of rules. Such a rule determining the admissibility of a sample node st

is called a screw. By replacing the screws with other screws, the sampling process
can be steered. Specifically, in each step t, a set of screws determines the set At of
admissible nodes, from which st is drawn at random. Then the sampling proceeds to
vertex st+1. If, for the first time, the set AT is empty, for some T ∈ {1, . . . , n}, the
sampling terminates and we record the length T at which this happened. If, after
running this process many times, the frequencies of these termination lengths differ
significantly for samples on two given graphs, we conclude that (with high probability)
the graphs are not isomorphic.

The collection of all screws for all lengths 1, . . . , n is called the screw box (as opposed
to the word “ScrewBox,” which denotes the complete algorithm). The construction of
the screw box and the selection and tuning of the screws is a complex dynamic process
that forms the core of the ScrewBox and will be subsequently described in this section.

Throughout this section, for any graph G, we denote by λG : V 2 → {−1, 0, 1}
the characteristic edge function, that is λG(v1, v2) = 1 if v1 and v2 are adjacent,
λG(v1, v2) = −1 if v1 = v2 and 0 otherwise. For the characteristic edge function, we

32

2.6 The ScrewBox

s1 s2 s3

p1 p2 p3 p4

admissible nodes for s4

Figure 2.7: Depiction of the 0-level screw S4,0 with result (0, 1, 1), when evaluated
on the pattern p1, p2, p3, p4 (left), and the corresponding admissible nodes for s4 in a
graph of size 7, in which s1, s2, s3 is the previously chosen sample, (right).

liberally omit the parameter G, that specifies the graph, whenever it is evident from
the context.

Definition 19 (screw). A screw applicable at length t is a function S : G ×V t →M
invariant under graph isomorphism that assigns t-tuples of vertices of a graph some
value in a set M .

Thus if S is a screw and (v1, . . . , vt) = v̄ and (v′1, . . . , v
′
t) = v̄′ are ordered tuples of

vertices in two equally large graphs G and G′ respectively, then S(G, v̄) = S(G′, v̄′)
if there is an isomorphism from G to G′ that maps v̄ to v̄′, (as ordered tuples). For
screws, we omit the parameter G whenever it is evident from the context (as we do
for the characteristic edge function).

We now define the most basic of screws that will be used in the algorithm:

Definition 20 (0-level screw). For any colored graph and any tuple of vertices
(v1, . . . , vt) = v̄ define St,0(G, v̄) :=

(
λ(v1, vt), . . . , λ(vt−1, vt)

)
, the 0-level screw of

length t.

The 0-level screw thereby encodes the adjacency type of the vertex vt with the
vertices v1, . . . , vt−1, taking their order into account.

Fact 1. A 0-level screw can be computed in linear time (more precisely in can be
computed in O(max{t, n})), as it only involves t− 1 edges incident with vt.

For illustrative purposes, we now develop a basic version of the algorithm that only
uses these 0-level screws and a very simple statistical test.

2.6.1 The basic sampling algorithm

Given two input graphs G1 and G2, the basic sampling proceeds in the following way:
If the graphs are not of the same size n we declare G1 and G2 as not isomorphic

due to their size. Otherwise, (which we implicitly assume from now on), we pick

33

2 Graph isomorphism

an arbitrary permutation p̄ = p1, p2, . . . , pn of the vertices of the graph G1. This
permutation is called the pattern and will be fixed for the rest of the algorithm. Next
we initialize a histogram, a map H : N× {1, 2} → N, as the constant 0 map. By Hj(i)
with j ∈ {1, 2} we denote the value H(i, j). Then alternating for both graphs we repeat
the following: We pick a random vertex s1. When si−1 has been picked, we find a
vertex si, by repeatedly drawing vertices uniformly at random (without replacement)
from the vertices of G, until we find a vertex that is admissible, i.e. a vertex v that
satisfies Si,0(p1, . . . , pi) = Si,0(s1, . . . , si−1, v).

Figure 2.7 illustrates the 0-level screw S4,0. With its evaluation of

S4,0(G1, p̄) =
(
λ(p1, p4), λ(p2, p4), λ(p3, p4)

)
= (0, 1, 1)

on the pattern p̄, it filters, for a sample s1, s2, s3 all vertices that are not adjacent
to s1 but adjacent to s2 and s3, as candidates for s4, i.e., all vertices s for which
S4,0(Gj , (s1, s2, s3, s)) = S4,0(G1, p̄).

If an admissible vertex has been found we increase i and continue by drawing the
next admissible vertex si+1 for the sample. Otherwise we mark the length T := i
at which the sampling process could not be prolonged, by increasing Hj(i) where j
is 1 or 2 depending on whether the sampling was taken from G1 or G2 respectively.
The sampling process is repeatedly performed alternately in the two input graphs G1

and G2: Thus a sample s1, . . . , sT is drawn from graph G1, then a sample s1, . . . , sT ′

is drawn from G2, and then again a sample s1, . . . , sT ′′ is drawn again from graph G1,
and so on.

The sampling process induces two random variables h1 and h2, where h1 = i (re-
spectively h2 = i) is the observation that a single sampling in G1 (respectively G2)
terminates with length i.

Theorem 8. The sampling process constitutes for each graph Gj (with j ∈ {1, 2}) a
random variable hj with values in N, for which the outcome is the length of the sample
that has been drawn. These random variables have equal distribution if and only if the
graphs are isomorphic.

Proof. Since the 0-level screws are invariant under graph isomorphism and, further-
more, in every step a vertex is chosen uniformly at random among the set of admissible
vertices (those that have a certain value when the screw S i,0 is evaluated), the whole
sampling process is invariant under graph isomorphism.

If at some point a sample of length n is found for graph G2, an isomorphism is
found. It is given by the map that maps pi 7→ si. This can only (and will) happen
with positive probability if G2 is isomorphic to G1. Contrarily, since the pattern has
been taken from G1, the random variable h1 always attains the value n with positive
probability. If the graphs are not isomorphic then h1 and h2 differ in the probability
of the outcome n, i.e., they do not have the same distribution.

If we continue taking samples from isomorphic graphs we therefore eventually, (i.e.,
asymptotically almost surely), encounter an isomorphism. When sampling in two non-
isomorphic graphs, we have to content ourselves with performing a statistical test. If

34

2.6 The ScrewBox

after a long period of time, i.e., when many samples have been drawn, we observe
that the distributions of the random variables differ, we conclude, with some error
probability, that the graphs are not isomorphic. One way of performing the statistical
test is to only consider events for which h1 or h2 have n as their outcome. If this
happens repeatedly for h1 (which it must over time) but never for h2, we conclude
that the graphs are not isomorphic: Putting things together we obtain Algorithm 1
that uses exactly this event as stopping criterion.

Algorithm 1 The basic sampling algorithm

Input: Two graphs G1, G2 and the acceptable probability of error α

Output:
Yes, if G1

∼= G2

No, if G1 À G2, or with probability of at most α if G1
∼= G2

1: if G1 and G2 have different size then
2: return No
3: end if
4: n← |G1|
5: initialize Hj(i)← 0 for j ∈ {1, 2} and i ∈ {1, . . . , n}
6: pick a random permutation (p1, . . . , pn) of V (G1) // the pattern
7: repeat
8: for j ∈ {1, 2} do // perform sampling in each graph
9: i← 1

10: while i ≤ n and there is s with Si,0(G1, p1, . . . , pi) = Si,0(Gj , s1, . . . , si−1, s)
do

11: pick a random s that satisfies this equation
12: si ← s
13: i← i + 1
14: end while
15: Hj(i)← Hj(i) + 1
16: end for
17: until H2(n) > 0 or 2−H1(n) < α
18: if H2(n) > 0 then
19: return Yes
20: else
21: return No
22: end if

The running time of the algorithm essentially depends on the number of sampling
processes that have to be performed. Each such sampling process takes O(n3) time:
As i ranges from 1 to a maximum of n, at most 2n2 screws are evaluated. Each
evaluation can be done in linear time, as observed in Fact 1. (As the outcome of
the screws evaluated on the pattern remains the same throughout the duration of the
algorithm, we precompute these values. Per sampling we then evaluate at most n2

screws.)

35

2 Graph isomorphism

Lemma 1. The expected number of samplings that are performed by Algorithm 1 is
in O(n!

|Aut(G1)| · log2(1/α)).

Proof. The probability that for j = 1 the sampling process continues up to i = n
is related to the number of permutations that yield an isomorphic graph. There
are |Aut(G1)| such permutations. If the first i vertices of such a permutation have
been sampled, the next vertex of the permutation will be drawn with a probability
of at least n−i

n . We note that vertices cannot occur twice in a sample, as 0-level
screws prohibit this. Therefore every specific permutation will occur with probability
of at least 1

n! and these events are disjoint. The total probability is therefore at

least |Aut(G1)|
n! . If this event happens dlog2(1/α)e times then termination condition of

the algorithm applies. The number of samplings needed for the event to happen once
is geometrically distributed and in expectation n!

|Aut(G1)| . By linearity of the expected

value we conclude the result. (On isomorphic instances the process will end after an
expected O(n!

|Aut(G1)|) samplings due to samplings in G2.)

This upper bound on the number of samplings will hold for any version of the
algorithm that we present in this thesis. Together with the running time for performing
one sampling process we conclude:

Theorem 9. Given input graphs G1 and G2, the expected running time of Algorithm 1
is in O(n3 · n!

|Aut(G1)| · log2(1/α)).

Proof. The proof is immediate from Lemma 1 and the aforementioned fact that the
time required for each sampling is in O(n3).

We will now convince ourselves, that the algorithm satisfies the specified error prob-
ability. If the outcome is Yes then indeed an isomorphism has been found and no error
has occurred. If the output is No, then the algorithm only erred if the graphs are iso-
morphic. If the graphs are isomorphic then the events h1 = n and h2 = n are equally
likely. Thus the probability that h1 = n is observed k times before the event h2 = n
is observed even once is bounded by 2−k. (Note that since we always perform two
samplings, for the test the samplings may be considered as being performed simulta-
neously in both graphs). If the output is No then H2(n) = 0 but 2−H1(n) < α. Thus,
by choosing k = H1(n), we conclude the probability of error, i.e., the significance level
of the test, is bounded by α.

The algorithm in this simple form only exploits the values of Hj(n). Naturally it
is possible to include other values of the histogram into the algorithm: To see this,
we use the introductory example of sampling triangles. We assume for the moment
that G1 and G2 are d-regular graphs, and that in the one graph G1 most pairs, say c1,
of adjacent vertices have a common neighbor while in G2 only c2 < c1 vertices have
a common neighbor. We assume further that the pattern vertices p1, p2 and p3 form
a triangle. Since the graphs are regular, the sampling process picks the first two
vertices s1 and s2 uniformly at random among the pairs of vertices that form an edge
in the graph. The probability that the sample can be prolonged to s3 depends on s1

36

2.6 The ScrewBox

and s2 having a common neighbor. More precisely the probability that a sample in G1

can be prolonged is 2 · c1
d ·n as opposed to 2 · c2

d ·n in graph G2, so the probability for h1

and h2 to yield a value of 3 or more differs by at least 1
d ·n , which is statistically (a

lot) more significant than the bound we used for the difference in probability of the
events hi = n. We defer further treatment of how to test for significant difference of
the random variables h1 and h2 to Section 2.7.

This example also shows that we can get better upper bounds for running times
when we consider restricted graph classes (easy graphs). Such considerations will be
postponed until we have an enhanced version of the algorithm.

The basic sampling algorithm may be altered by removing the check whether G1

and G2 have the same size, so that it can be used for subgraph isomorphism detection.
This problem is known to be NP-complete. We therefore do not expect to find a
satisfying bound for the algorithm in general. The modifications we perform on the
basic sampling algorithm, however, prevent it from being used for this purpose. (This
is relieving as the seemingly easier problem Gi should not necessarily be solved with
a reduction to an NP-complete problem.)

2.6.2 Higher level screws

With highly structured graphs, this basic sampling algorithm leads to unacceptably
long running times. Our way of improving the performance is to introduce vertex
invariants into the algorithm, that more strongly capture the structure of a graph. As
mentioned earlier, a screw in the screw box can, in principle, be an arbitrary predicate
invariant under graph isomorphism that determines whether a vertex vt is a valid
extension of the sample v1, . . . , vt−1 in G.

The screws of higher level, that we now define, do not only consider the incidence
structure of the sample itself but take into account its relative position within the
rest of the graph. As a result, the average sample length may increase. This should,
however, be seen only as a side effect since our main goal is to increase the statistical
significance. The performance depends on the “degree of non-isomorphism” between
the given graphs. Strong similarity makes non-isomorphism verification difficult, which
then requires more computation time.

Thus, in order to improve the performance, we recursively design a set of vertex
invariants, the k-level screws. Intuitively, for some level k these invariants compute
in advance all possible extensions of the sample by k further vertices, and keep track
of how the adjacency structure to the sample and amongst the chosen vertices is
composed.

The definition extends Definition 20, which defines the 0-level screws.

Definition 21 (k-level screw). For any colored graph G, we define the k-level
screw St,k by their evaluation on any t-tuple of vertices v̄ = (v1, . . . , vt) recursively as:

St,0(G, v̄) :=
(
λ(v1, vt), . . . , λ(vt−1, vt)

)
,

St,k(G, v̄) :=
{{

St,0
(
G, (v1, . . . , vt)

)}}
∪
{{

St+1,k−1
(
G, (v1, . . . , vt, u)

)
| u ∈ G

}}
.

37

2 Graph isomorphism

p2 p3p1

s1 s2

admissible nodes for s3

Figure 2.8: The figure depicts the 1-level screw S3,1 which has an evaluation of{{
(0, 1)

}}
∪
{{

(0, 1, 1), (0, 1, 1), (0, 0, 1)(1, 1, 0), (−1, 0, 0), (0,−1, 1), (0, 1,−1)
}}

on the
pattern p1, p2, p3 (left), and the corresponding admissible nodes for s3 in a graph of
size 7, in which s1, s2 is the previously chosen sample (right).

By this definition S0,0 is the constant function that evaluated to the empty tuple ().
While the values of 0-level screws are tuples, the values of k-level screws are multisets
of values of screws of lower level. Again, as for 0-level screws, we frequently drop the
first parameter, the graph G, if it is evident from the context.

Figure 2.8 depicts an evaluation of a 1-level screw. It shows the 1-level screw S3,1

applied to a sample s1, s2 in order to determine an admissible vertex s3, which has to
yield the value

S3,1(G, (s1, s2, s3)) =
{{

S3,0
(
G, (p1, p2, p3)

)}}
∪
{{

S4,0
(
G, (p1, p2, p3, u)

)
| u ∈ G

}}
=

{{
(0, 1)

}}
∪
{{

(0, 1, 1), (0, 1, 1), (0, 0, 1)(1, 1, 0), (−1, 0, 0), (0,−1, 1), (0, 1,−1)
}}

.

On the left the figure displays (in green) the adjacency pattern that the next vertex
must exhibit. Also on the left (in blue) it displays the set of adjacencies, which vertices
on the second level must form, after a third vertex has been chosen for the sample.
(The nodes that are already in the pattern, which correspond to tuples that contain−1,
have been depicted in the figure.)

For screws in general we observe, if St,k(G, v̄) = St,k(G′, v̄′), then St,k−1(G, v̄) =
St,k−1(G′, v̄′). The screws thus form a set of invariants that increase in strength with
increasing level k. Two graphs of the same size G and G′ are isomorphic if and only
if S0,n(G) = S0,n(G′). The screws can be used to characterize various regularity
conditions on graphs: A graph is regular if and only if S1,1(G, ·) is constant. If
additionally the value of S2,1(G, v1, v2) only depends on the value of S2,0(G, v1, v2)
then the graph is strongly regular (see Subsection 2.8.1). A graph is vertex-transitive
if and only if S1,n−1(G, ·) is constant.

Since the map St,k(G, ·) is an isomorphism invariant on the t-tuples of vertices,
they may be used to construct a refinement procedure: refine a coloring of the t-tuples
by partitioning them according to their value on St,k(G, ·) and repeat this step until
the partition corresponding to the coloring stabilizes.

38

2.6 The ScrewBox

We now briefly mention, without proof, two interpretations of the screws in other
mathematical contexts. Namely, they can be understood with combinatorial games,
as well as in the context of logic.

It is known that for the k-dimensional Weisfeiler-Lehman refinement there exists a
corresponding Ehrenfeucht-Frässé game [23]. We will not go into detail of the theory.
Consult Spencer’s book on random graphs [120] for an introduction to these games in
the context of graph theory. We do mention, however, that there is a corresponding
Ehrenfeucht-Frässé game in our case. The game has to be adapted in such a way that
the spoiler may reuse the pebbles, but may only do so in a last-in-first-out order, i.e.,
the player first has to remove pebbles that were put onto the graph last.

As for the invariants that are used by the Weisfeiler-Lehman vertex refinement, there
is also a connection between the k-level screw refinement and statements expressible in
formal logic. From this we deduce a relationship between the refinement with screws
and the Weisfeiler-Lehman refinement:

The k′-dimensional Weisfeiler-Lehman vertex refinement, as given in Definition 14,
is at least as fine as the refinement with k-level screws on t-tuples, if k + t ≤ k′ + 1.
This can be seen by expressing St,k as a sentence in first order logic. In particular,
the screw St,k is a first order sentence in the language with ordered quantifiers, i.e.,
the set of clauses that use constants v1, . . . , vt that represent vertices in the graph and
quantified vertex variables x1, . . . , xn (with counting), where nesting of the variables
occurs in a fixed order in any clause of the formula. In fact, the screw S t,k can
distinguish any two t-tuples of vertices that can be distinguished by a sentence in this
logic. For the logical statements corresponding to the Weisfeiler-Lehman refinement,
there is no restriction on the ordering in which the variables occur.

Consequently, for any fixed level k, the graphs obtained with the CFI-construction
cannot be distinguished with the vertex invariants of level k. This answers a question
Martin Kutz and I posed in [79] in the negative. In fact, the Weisfeiler-Lehman
refinement is strictly finer than the refinement with k-level screws. As an easy example,
consider two graphs each consisting of two disjoint cycles Cn ∪Cm and Cn′ ∪Cm′ such
that n+m = n′+m′. For n, m, m′, m′ large enough, S1,k will not be able to distinguish
vertices in the graphs, while the 2-dimensional Weisfeiler-Lehman refinement partitions
the vertices of these graphs into the orbits. However, the screws offer significant
advantages over the Weisfeiler-Lehman refinement. Before we explain these, we first
need to know how fast and with how much space requirement a screw can be evaluated.
As a value of a screw of level k consists of n values of screws of level k− 1, evaluating
the screws the way they are defined yields intractable values. In practice, we therefore
hash all screw values to integers, a multiset of n integers thus hashes again to an
integer. We use a hash function, which enables us to compute the hashed value for a
multiset of n integers in linear time in n. With this we can space-efficiently compute
the screws:

Theorem 10. Given vertices v1, . . . , vt, a (hashed) evaluation of St,k(v1, . . . , vt) can
be performed in O

(
(max{t + k, n})k

)
time. This computation requires O(n) space.

Proof. This can be seen by induction over k, starting with Fact 1 that St,0(v1, . . . , vt)

39

2 Graph isomorphism

can be computed in linear time. To compute St,k(v1, . . . , vt) one has to perform n
computations St+1,k−1(v1, . . . , vt, u), of screws of level k − 1, and one computation
of St,0(v1, . . . , vt). Together this yields a running time of O

(
n · (max{t + k, n})k−1 +

max{t, n}
)
⊆ O

(
(max{t + k, n})k

)
. With the straight forward depth-first evaluation,

we attain the desired space requirement.

Since we only deal with the case where t and k add to a value of at most n, the
computation time simplifies to O(nk). As previously mentioned, the k-level screws
take the whole graph into account. Therefore, with the enhanced algorithm we do not
implicitly solve the subgraph isomorphism problem. (See the remark at the end of
Subsection 2.6.1). We emphasize that the main goal when designing the screw box is
not to find very long samples but to create a significant deviation in the termination
levels on the two graphs, and thus to find proof for non-isomorphism.

The sampling algorithm may use any graph invariant to determine whether a vertex
is admissible to extend the sample. By using the k-dimensional Weisfeiler-Lehman
refinement to decide admissibility, we have developed a graph isomorphism algorithm
that distinguished all non-isomorphic graphs, as opposed to the Weisfeiler-Lehman
algorithm described in Section 2.3, which fails on certain non-isomorphic graphs. Since
the computation time of the k-level screws matches that of one step in the Weisfeiler-
Lehman coloring procedure, but the refinement corresponding to the latter is provably
finer, the questions arises: Why are the screws introduced?

The reason for this is threefold. First, a k-level screw can be used to evaluate whether
a vertex is admissible, independent of the admissibility of other vertices. Since cheaper
screws may already exclude many candidates, we only have to evaluate expensive
screws on a few candidates. If, on the other hand, we have found an admissible vertex,
no other vertex has to be tested. Second, for all we know the Weisfeiler-Lehman
refinement requires Ω(nk) space, where a k-level screw can be computed in O(n) space.
This space requirement renders the higher dimensional Weisfeiler-Lehman refinement
infeasible. Third, there is a way to compute only partial, yet conclusive, information
for a screw. This can be done in an organized fashion, which we elucidate in the
following subsection.

2.6.3 Cheap screws of high level

Näıvely evaluating k-level screws repeatedly the way they are defined soon becomes
impractical, even for 2-level screws. We therefore optimize the screws by stripping
them of the consideration of irrelevant nodes (many nodes turn out to have no effect
on the value of a screw) and of superfluous adjacency tests. Eventually, we are able
to work with highly fine-tuned screws that have very good separation properties at
low computational cost. This screw tuning is an integral part of the algorithm and
is indispensable for achieving acceptable running times. This is also reflected in the
code, since the part that computes the cheap screws has been optimized the most.

For most sample lengths there is no need to employ a screw of higher level at all. For
those lengths at which higher level screw are required, the information computed by the

40

2.6 The ScrewBox

screw exceeds what is needed to differentiate vertices. If St,k(Gi, s̄) 6= St,k(G1, p̄) then
one of the following two cases must occur: Either St,0(Gi, s̄) 6= St,0(G1, p̄), in which
case we do not need to resort to a high level screw in the first place, (we could use the
screw St,0), or the multisets computed by the screws differ in the frequency of some
element U = St+1,k−1(G1, (p̄, u)). In this case we define a new screw Rt,k(G, v̄) ={{

St+1,k−1
(
G, (v̄, u)

)
| u ∈ V (G), St+1,k−1(G, (v̄, u)) = U

}}
. Under the previous

assumption we obtain Rt,k(Gi, s̄) 6= Rt,k(G1, p̄), and conclude that the screw Rt,k also
differentiates s̄ and p̄. To compute Rt,k(G, v̄) we may dispose of all extension vertices u
for which we can show that St+1,k−1(G, (v̄, u)) 6= U . When computing the value of
the refined screw Rt,k we first check whether a vertex u has the correct adjacencies
with v̄, before computing the recursive structure of Rt,k.

Now that we have excluded vertices on the first recursive level, we further reduce
the computation time by excluding vertices on the second level that do not exhibit
specific adjacencies with v̄. This is not always possible. If possible we then continue
the exclusion of vertices for levels beyond the second.

Definition 22 (cheap screw). The set of cheap screws is recursively defined by:

• For all t, k ∈ N the screw St,k is a cheap screw of level k and length t.

• For any set of cheap screws Rt+1,k−1
1 , . . . , Rt+1,k−1

` of level k−1 and length t+1,
and any set U = {U1, . . . , U`} of possible values of these screws, the screw Rt,k

given by Rt,k(G, v̄) :=

⋃

i∈{1,...,`}

{{
Rt+1,k−1

i

(
G, (v1, . . . , vt, u)

)
| u ∈ V (G), Rt+1,k−1

i (G, (v̄, u)) = Ui

}}
.

is a cheap screw.

We give an intuition of the information computed by the cheap screws: The k-level
screws St,k are the invariants that broadly determine how individualization of k further
vertices will affect the graph. More precisely, they capture the recursive individualiza-
tion tree and all information in it (including all adjacencies and the whole recursive
structure). The cheaper screws do the same, but only on a smaller portion of the tree,
i.e., they only continue the recursion on vertices that meet certain adjacency require-
ments. An efficient implementation of the cheap screws requires us to precompute lists
of the vertices that meet the adjacency requirements. For example, when choosing a
vertex for the first level, we update a list of vertices that have the correct adjacency
requirement for every level beyond the first. These lists for each level will be updated
as the recursion level changes. For further details we refer the inquisitive reader to the
code [116], and conclude with an example:

We define the two circulant graphs G1 and G2 on the vertices V := {1, . . . , 15}.
For two vertices v1, v2 ∈ V , we define the distance modulo 15 as the number given
by |v1, v2|15 := min{|v1 − v2|, 15 − |v1 − v2|}. The edge sets of the graphs are given
by E1 :=

{
{v1, v2} | v1, v2 ∈ V ∧ |v1, v2|15 ∈ {1, 5}

}
for G1 and respectively by

41

2 Graph isomorphism

Figure 2.9: The circulant graph on 15
vertices with neighbors at distances 1
and 5

Figure 2.10: The circulant graph on 15
vertices with neighbors at distances 1
and 3

E2 :=
{
{v1, v2} | v1, v2 ∈ V ∧ |v1, v2|15 ∈ {1, 3}

}
for G2. These graphs are depicted in

Figures 2.9 and 2.10.

As circulant graphs, they are vertex transitive. In particular they are 4-regular and
the map S1,k is constant for any k. Moreover, given two adjacent vertices v1, v2 in one
of the graphs, there are, besides v1 and v2, exactly three vertices adjacent only to v1,
three vertices adjacent only to v2, and seven (15 − 2 · 3 − 2 = 7) vertices adjacent to
neither v1 nor v2. This means, in particular, that there is no way to differentiate pairs
of adjacent vertices by only considering one additional vertex. In other words, the
1-level screws S2,1(G1, ·) and S2,1(G2, ·) are constant and equal on pairs of adjacent
vertices. Thus, when trying to differentiate the graphs with the 2-level screw S1,2, we
choose R1,2 given by R1,2(v1) = {{S2,1(G1, v1, v2) | v1 not adjacent to v2}}. When we
evaluate R1,2 on graph G2, we see that for every vertex v1 in G2 there is a non-adjacent
vertex v2, such that v1 and v2 have three common neighbors. (This corresponds to
finding two cycles of length 4). When we evaluate R1,2 on the graph G1, however, we
see that this is not the case for any vertex in G1. We thus further restrict the screw
on the second level to only consider vertices v3 that are adjacent to v1 and v2. To
conclude that the graphs are not isomorphic, it thus suffices to count, in both graphs,
how many non-adjacent vertices have exactly three common neighbors.

2.6.4 Customizing the algorithm

We have seen that the basic sampling algorithm is very customizable and there
are lots of design choices to be made. In particular we have a variety of choices for
the invariants (screws) we use, for the refinement techniques we want to apply and
for the choice of the pattern (which corresponds to an individualization strategy).
Section 2.7 explains statistical tests well-suited for the algorithm. Algorithm 2 shows

42

2.6 The ScrewBox

Algorithm 2 The generic (enhanced) sampling algorithm (with options marked in
red)

Input: Two graphs G1, G2 and a significance level α

Output:
Yes, if G1

∼= G2

No, if G1 À G2, or with probability of at most α if G1
∼= G2

1: if G1 and G2 have different size then
2: return No
3: end if
4: initialize Hj(i) = 0 for j ∈ {1, 2} and i ∈ {1, . . . , n}
5: pick a random permutation (p1, . . . , pn) of V (G1) // the pattern
6: repeat
7: for j ∈ {1, 2} do
8: sample each graph according to some rules (vertex invariants, vertex refine-

ments, rule for individualization)
9: update the histogram Hi accordingly

10: end for
11: until some chosen statistical test on H1 and H2 will provide an answer with

confidence α
12: if the test is met then
13: return Yes
14: else
15: return No
16: end if

(highlighted in red) where changes can easily be implemented into the basic sampling
algorithm. These elements, which may be edited, are options with which we may run
the algorithm.

Basically the algorithm may be run with any set of options also applicable in a
refinement individualization algorithm such as Nauty. The statistical test has to be
chosen in a way that guarantees the significance level desired by the user. The challenge
is, on a given input, to dynamically find a set of options such that:

• significant statistical data is obtained, so that the test ends early,

• the sampling procedure remains computationally cheap and

• simplicity is maintained (theoretically and practically).

There is a trade-off between these three goals: When we increase statistical significance
by invariants that are more powerful, each sampling process requires more time, as
it has to evaluate these invariants. The more sophisticated our techniques, the more
complicated they are. We thus have to find a balance between the goals to achieve
our desired performance.

Our method for this is of adapting the options to a given pair of input graphs. We
first focus on the possibility to adapt the admissibility rules to input graphs, and then

43

2 Graph isomorphism

elaborate on the choice of pattern, which corresponds to the individualization strategy.
We deal with the options for the statistical test in Section 2.7. The admissibility rules
are governed by the choice of where and what kinds of screws we use in the algorithm.

2.6.5 Placement of the screws

←− length t −→

←
le

ve
l
k
→

S1,0 S2,0 S3,0 S4,0 S5,0 S6,0 S7,0 . . . Sn,0

R2,1 R4,1 . . .
R4,2 R6,2 . . .

Figure 2.11: A typical screw box for graphs of size n: the screws St,0 are present at

every length t, and at some lengths additional cheap screws Rt,k of level k have been
inserted.

In the previous subsection we have seen that the sampling algorithm is highly cus-
tomizable. Even if we restrict ourselves to using screws of level at most 2, there are still
lots of choices open. (Screws of arbitrary level will be too expensive, and therefore, in
practice, we have to restrict the used level.) In the following we deal with the decision
how and where (i.e., at what length t) to put what kind of screw. This is something
that shall be done by the algorithm and not by the user.

Part of the construction process of the screw box is the continued evaluation of its
quality. Insertions, deletions, and modifications of screws are meant to increase the
statistical significance of the sampling and reduce the running time of the algorithm.

Usually, we have to deal with a trade-off between more expensive screws and sam-
pling significance. This means that for an efficient sampling, the selection and place-
ment of the screws has to be done with great care. A main feature of the algorithm
is the self-adaptive behavior of the screw box’s construction process. On a “simple”
instance, for example, no expensive screw gets installed, whereas a highly structured
graph induces a few expensive screws at crucial sample lengths. This way there is
no need to specify in advance the difficulty or special properties of the input graphs.
During the construction process, sampling sequences are taken from the input graphs,
and note is taken of which screws are effective:

Definition 23 (effective, ultimate). We say that a screw St,k is effective on the
sample v̄ = (v1, . . . , vt−1) from the graph G with respect to some graph G′ with
pattern p̄ = (p1, . . . , pt) of vertices from V (G′), if there is a vertex vt such that
St,k(G, (v̄, vt)) 6= St,k(G′, p̄).

We say that a screw St,k is ultimate on the sample v̄ = (v1, . . . , vt−1) from the
graph G with respect to some graph G′ with pattern p̄ = (p1, . . . , pt) of vertices from
V (G′), if for every vertex vt it holds that St,k(G, (v̄, vt)) 6= St,k(G′, p̄).

44

2.6 The ScrewBox

Start

Draw
s1

Draw
s2

Draw
s3

Draw
s4

Draw
s5

Draw
s6

. . .

S1,0 S2,0 S3,0 S4,0 S5,0 S6,0

R2,1 R4,1

R4,2 R6,2

− − − − − −−

− −

− −

+ +

+

+

+

+

+

+

+

+

Figure 2.12: A flow diagram for a sampling performed with the screw box from Fig-
ure 2.11. For each screw there are two possible ways to continue, depending on whether
the screw determines that the drawn sampling vertex is admissible (+) or not admissi-
ble (−). (It also depends on a previously chosen pattern p̄, not depicted). If for some
length t all candidates st have been rejected, the sampling terminates with length
T := t, this value is supplied to the ScrewBox algorithm. (The algorithm then may
choose to perform further samplings commencing at “Start”).

Being effective thus says that the screw can determine for some candidates vt, that
they are not admissible. Being ultimate says that screw shows that no vertex is
admissible.

We now describe the modifications on the set of screws, the screw box, that are
applied in each sampling. The algorithm starts with a screw box that only con-
tains one 0-level screw for every length of the sample. It thus starts with the set
{S1,0, S2,0, . . . , Sn,0}.

These screws will never be removed from the box, only screws of higher level will be
inserted and possibly removed again. Since it is desireable for a given sample length
to first evaluate cheaper invariants, followed by the more expensive ones, these 0-level
screws will always be evaluated first. Figures 2.11 and 2.12 show an example of how
the final screw box may be composed, and in what order they are evaluated during
a sampling. The algorithm estimates the effectiveness of the screws, by counting the
number of vertices that have been rejected by them. Screws are inserted and deleted
according to the following rules:

45

2 Graph isomorphism

Insertion and deletion rules for screws

Rule 1 If a screw rejects a vertex, the screw is asked whether there is a cheaper
version, a child, of itself, that also rejects the vertex. If so, the cheaper
version is placed at the same length as its parent. During a sampling, it is
evaluated right before its parent.

Rule 2 If a screw is placed into the screw box, the effectiveness of any screw that
during a sampling is used after the inserted screw is reset.

Rule 3 If the algorithm determines that a screw is not effective, it is removed from
the box.

Rule 4 If a screw is ultimate, a screw of higher level is placed at a shorter length
into the box. (If no screw of higher level is available, a screw of equal level is
used). This process is done at most some constant number of times for any
screw.

We need two observations that clarify how the effectiveness of different screws is
related. The screws St,k form an ordered set of invariants:

Theorem 11 (relational effectiveness of screws). Let G′ be a fixed graph, in which
a pattern p̄ = p1, . . . , pn has been chosen. Effectiveness of screws, for vertices v1, . . . , vn

in V (G), has the following relational properties:

1. If St,k is effective on (v1, . . . , vt−1), with respect to G′ and p̄, then for any t′ ≥ t
the screw St′,k is effective on any extension of the sample, with respect to G′ and
p̄, i.e., it is effective on any tuple of the form (v1, . . . , vt−1, . . . , vt′−1).

2. If for t > 1 a k-level screw St,k is ultimate on all samples (v1, . . . , vt−2, v) for any
v in V (G), with respect to G′ and p̄, then St−1,k+1 is ultimate on (v1, . . . , vt−2),
with respect to G′ and p̄.

Proof. To prove Statement 1 we assume there is a vertex v ∈ V (G), such that

St,k(G, v1, . . . , vt−1, v) 6= St,k(G′, p̄).

We claim, that St′,k(G, (v1, . . . , vt′−1, v) 6= St′,k(G′, p1, . . . , pt′). That is, we show that
exactly this same vertex is not admissible for the longer sample. We consider two
cases:

Case 1: If St,0(G, v1, . . . , vt−1, v) 6= St,0(G′, p1, . . . , pt), then

St′,0(G, v1, . . . , vt′−1, v) 6= St′,0(G′, p1, . . . , pt′),

from which we conclude the claim.

Case 2: If the multiset {{St+1,k−1(G, v1, . . . , vt−1, v, u) | u ∈ V (G)}} is different
from the multiset {{St+1,k−1(G′, p1, . . . , pt, u

′) | u′ ∈ V (G′)}}, then we conclude by

46

2.6 The ScrewBox

induction on k, (the base case being Case 1), that the same holds for the multi-
sets {{St′+1,k−1(G, v1, . . . , vt′−1, v, u) | u ∈ V (G)}} and {{St′+1,k−1(G′, p1, . . . , pt′ , u

′) |
u′ ∈ V (G′)}}, they thus also differ, which gives us the desired conclusion.

To prove Statement 2 we assume the contrary. In particular, we assume that there
is a vertex v′ ∈ V (G) such that

St−1,k+1(G, v1, . . . , vt−2, v
′) = St−1,k+1(G′, p1, . . . , pt−1).

But in this case, by definition, the multiset {{St,k(G, v1, . . . , vt−1, u) | u ∈ V (G)}} and
the multiset {{St,k(G′, p1, . . . , pt−1, u

′) | u′ ∈ V (G′)}} are equal. Thus for the vertex
pt there is a corresponding vertex v, such that

St,k(G, v1, . . . , vt−1, v) = St,k(G′, p1, . . . , pt−1, pt),

which yields a contradiction.

The first part of the previous theorem tells us that for a given sample there is an
earliest length t, at which a screw St,k is effective. From that length onward the
screws St′,k with t′ ≥ t all are effective. This enables us to find the earliest length t for
which the screw St,k is effective via a binary search. The algorithm uses this technique
whenever it applies Rule 4. The second part of the theorem tells us that if a sample
cannot be prolonged anymore, employing a screw of higher level could have detected
this at a shorter length.

These two observations motivate the rules for the placement of screws given above.
The algorithm performs these rules until statistically significant data is obtained.
When it is satisfied with the statistic outcome of the current screw box (see Sub-
section 2.7.4), the screw box is fixed and a statistical test is performed. (In Section 2.7
we develop methods to perform the statistical test, while the screw box is still being
modified.)

2.6.6 Capabilities provided by the screws

The concept of rules that guide the placement process suggests an encapsulation of
the screws themselves from the decision of their placement. In order for an outer
algorithm to perform the choices regarding placement, the screws themselves have to
supply certain information. We thus need an interface for the screws that enables
access to the required information. This interface should in particular enable the
screws to:

• supply a screw of equal level that may be inserted by the algorithm elsewhere in
the box, i.e., at a different length.

• calibrate themselves: Given the pattern they should initialize themselves with
values to which any sample is compared to, without having to resort to the
pattern again.

47

2 Graph isomorphism

• suggest a cheaper version of themselves, with which the algorithm may chose to
replace the original screw, in order to save time.

• estimate their own effectiveness by determining how many sample vertices are
rejected.

• evaluate their cost. One way of measuring this is to keep track of the number of
accesses to the pairlabel matrix associated with the graph. See Subsection 2.9.2.

• suggest a stronger version of themselves in case the algorithm decides the screws
used are too weak to generate significant data.

Assuming these capabilities, we may apply the rules from the previous subsection
to effectively use few expensive screws at places they are needed.

The next option we investigate is the choice of the pattern, which was previously
assumed to be arbitrary.

2.6.7 The choice of pattern

Depending on the input, the choice of the pattern may be of crucial importance.
We give an example of an input where this is the case: We consider Gf

1 and Gf
2 , a

pair of non-isomorphic graphs on which the algorithm is fast, i.e., a pair of graphs
on which our algorithm requires little time. In addition we consider Gs

1 and Gs
2,

a pair of non-isomorphic graphs on which the algorithm is slow, i.e., graphs where
our algorithm requires a lot of time to terminate. (We also suppose that all four
graphs are not isomorphic.) We now consider as input the disjoint unions G1 =

Gf
1 ∪ Gs

1 and G2 = Gf
2 ∪ Gs

2. It is advantageous for our algorithm to analyze Gf
1

(respectively Gf
2), instead of trying to understand the structure of Gs

1 (respectively Gs
2).

Thus, given this information, we prefer to choose for the pattern first all vertices from
the graph Gf

1 and the vertices from Gs
1.

In the absence of an optimal decision rule we use the following: We choose unique
vertices, whenever possible, i.e., if a vertex has a unique adjacency structure to
p1, . . . , pt−1, i.e, to the vertices that have already been chosen, it should be chosen
as pt next. This way the sampling collects obvious information very cheaply and can
determine erring choices faster. If there is no vertex with unique adjacency structure,
we pick a vertex from the largest color class that remains, after a refinement of the
vertex colors according to the adjacency structures. Another option is to use Nauty’s
individualization strategy. When using it we pick the vertex, whose individualiza-
tion yields a refinement that partitions the colors class as much as possible. (Since
in practice there is no need to generate the whole pattern in advance, it is produced
on demand. Whenever the length of a sample would exceed the length pattern we
have generated so far, the pattern is extended.) For a fixed screw box, the pattern is
only required to calibrate the screws, i.e., to obtain their evaluation on the pattern,
to which evaluations of sample vertices are compared. Otherwise, if new screws are
inserted to the screw box, we have to use the pattern to calibrate the new screws.

48

2.7 Advanced statistical tests for equal distribution

We continue our discussion of the options of the algorithm with the design of suitable
statistical tests.

2.7 Advanced statistical tests for equal distribution

In the previous section we have studied several versions of the ScrewBox algorithm.
They all share the property that they need a probabilistic way to ensure certainty on
non-isomorphism. In other words, some statistical test has to be performed in order to
gain certainty on non-isomorphism. In some sense randomized algorithms for decision
problems and statistical tests are the same concept. They are procedures that describe
how to perform experiments that provide answers which are true with a certain error
probability. They do, however, differ in their terminology. When possible, we abstract
our concrete problem within the ScrewBox algorithm to a statistical problem, in which
case we also use the adequate terminology.

In the ScrewBox algorithm, we perform samplings in two graphs, and gather the
termination lengths of the samplings that are performed. Thus when we sample in
one of the inputs graphs we obtain an integer. For either graph the outcomes appear
according to some distribution. These two distributions are equal if and only if the
graphs are isomorphic.

Abstractly, the problem we face is the following: For n ∈ N, given two random
variables h1, h2 : Ω→ {0, . . . , n}, we want to statistically infer that h1 and h2 are not
equally distributed. Thus we are not primarily interested in verifying that the two
variables are equally distributed, which is the case if the input graphs are isomorphic,
see Theorem 8. If they are (and our test does not wrongfully show them to be unequally
distributed), some isomorphism is produced eventually. We therefore formulate as null
hypothesis the equality of the distributions, against which we want to test:

H0 : h1 and h2 are equally distributed.
H1 : h1 and h2 are not equally distributed.

Our goal is to minimize the number of experiments performed, as it corresponds
closely to the running time of our algorithm (one essentially depends linearly on the
other). The number of tests that are performed is not fixed in advance and it should
be chosen in a sensible manner. When testing for equal distribution of h1 and h2,
we additionally face the problem that the distributions of h1 and h2 are unknown,
and complicating things even more, by changing the setup of the screw box, we may
drastically alter these distributions.

Summarizing, we are interested in a statistical test with the following properties:

1. It is applicable, irrespective of the distribution of h1 and of h2.

2. It wrongfully rejects H0 with error probability of at most α. (The error of the
first kind).

3. It wrongfully accepts H0 with error probability of β = 0, (i.e., if H1 is true then
the test result does not claim the opposite, the error of the second kind).

49

2 Graph isomorphism

4. If H0 is true, (i.e., if h1 and h2 are equally distributed), then the test may (and
should) perform infinitely many samples.

5. It is economical, (i.e., it performs as few samplings as possible).

If we employ the test within the ScrewBox algorithm, Property 4 of the test will
guarantee us that, while the test in principle runs forever, at some point an isomor-
phism is found at which point we end the test, as we do not require the result of the
test.

Before we treat the general case, in which we consider two variables h1 and h2

with values in the non-negative integers {0, 1, . . .}, we first consider, as an instructive
example, the restricted case, in which only two values (0 and 1) are attained by the
variables.

2.7.1 Testing a biased coin

In a restricted scenario, we consider h1, h2 : Ω→ {0, 1} , two random binary variables,
which are to be tested against equality of their distributions. We repeatedly and
independently evaluate h1 and h2 simultaneously, until the outcome of the variables
is not the same for the first time and use the last outcomes to design a new random
variable X:

X :=

{
1 if h1 = 0 and h2 = 1,

0 if h1 = 1 and h2 = 0.

We observe: h1 and h2 are equally distributed if and only if E(X) = 1
2 , i.e., the

expected value of X is 1
2 . As a variable that attains only two values, we consider X

as the outcome of a coin toss. Thus, we have reduced our problem to the problem of
determining whether a coin is biased or not.

We design a test that rejects the hypothesis H0 : E(X) = 1
2 , with a significance

level of α say. Properties 1–5 from the beginning of this section now translate into
the requirements that the test is applicable for any coin that, when given an unbiased
coin, will run forever with probability of at least 1 − α, and that it will never claim
that the coin is unbiased. Additionally the test is supposed to perform few samples.

We let ε := |1/2 − E(X)| be the bias of the coin. For a known potential bias ε,
Wald’s sequential probability ratio test [127] solves this problem to optimality. By
“knowing the potential bias” we mean that we are guaranteed (by some other source)
that either ε = 0 or that ε is at least as big as some fixed minimum deviation from the
unbiased case. For the coin tossing problem, Wald’s test provides, based on the number
of coins tosses performed and the observed number of heads, a rule that determines
the future course of action: Either one of the hypotheses H0 or H1 is to be accepted,
or one has to continue testing. In our case the hypothesis H0 is never accepted. It
can be shown [128] that with this technique the expected number of coin tosses is
in Θ(1/ε2), if the coin is biased, and that this is the best possible.

Since, however, the potential bias ε is unknown to us, we have to use a different
technique. We first convince ourselves that our desired properties for the test may

50

2.7 Advanced statistical tests for equal distribution

actually be achieved: We perform coin-flips, until we have an estimate of how biased
the coin is. For example, we can estimate ε with the maximum likelihood method.
Assuming the validity of this estimate, we test the coin against the hypothesis H0,
with some simple test that produces an error of the first kind of at most α/2. If the
test rejects H0, we claim that H0 is false. If not we restart: We perform further coin
flips to improve our estimate of the bias. We then again apply a test on H0, but this
time we require an error probability of at most α/4. This procedure (flipping coins to
improve the estimate, followed by a test with error probabilities α/8, α/16, . . .) is either
continued indefinitely, or we eventually reject H0, with cumulative maximum error of
the first kind of at most α. (When we apply this test in the ScrewBox algorithm, we
terminate once an isomorphism has been found with the sampling process, and thus
will almost surely not continue the test indefinitely.) The procedure just described
already provides all our desired properties, except that it is not very economical.

Thus we now develop an improved, more economical version. The essential ideas
for this improved version are taken from a paper of Karp and Kleinberg [69], in which
they analyze binary search under uncertainty. We adapt their methods, hidden in
Lemma 3.4 in [69], slightly to our problem. Beside these methods, we also need their
corollary of a generalized version of Azuma’s inequality:

Lemma 2. If a coin has a probability p ∈ [0, 1] of showing heads, and Xn is the
series of random variables that count the number of heads after n tosses, then for
any q := p− ε, with ε > 0 we have:

P (Xn ≤ qn) < e−ε2n/2.

Proof. The proof is contained in [69], it uses Azuma’s inequality for submartingales.

With this lemma we may design an economical test, that detects the bias of a coin:

Theorem 12. We let α ∈ (0, 1] be a fixed error probability. There is a test that proves
(with error probability of at most α) that a given biased coin (which shows heads with
probability p ∈ [0, 1]) is indeed biased, which performs an expected number of coin

tosses in O
(

log log(1/ε)
ε2

)
.

Here ε := |p− 1
2 | is the bias of the coin unknown to the algorithm. Given an unbiased

coin, the test will run indefinitely with probability of at least 1− α.

Proof. We first design a coin toss algorithm that achieves the running time as required
(see Algorithm 3), and then prove the claimed bound on the expected number of
tosses performed. The algorithm runs in phases k = 1, 2, In phase k we set
γk := e−k and we perform nk := d16γ−2

k ln((k + 2)/
√

α)e coin tosses. If in phase k the

number of outcomes heads is in between (1−γk)
2 nk and (1+γk)

2 nk, we continue to the
next phase, otherwise we claim, possibly erring, that the coin is biased. By Lemma 2,
the probability that the algorithm errs in phase k, is bounded by

2e−γ2
k
nk/8 ≤ 2e−2 ln((k+2)/

√
α) =

2 ·α
(k + 2)2

.

51

2 Graph isomorphism

So, in total, the probability that the algorithms errs is bounded by
∑∞

k=1
2 ·α

(k+2)2
≤ α.

To bound the expected number of tosses, we assume ε 6= 0 is the bias of the coin.
We define ` := dln(1/ε)e. This way γk ≤ ε holds in all phases `, ` + 1, The
algorithm only continues past phase k ≥ ` if the number of observed heads deviates
by more than εnk/2 from the expected value. The probability of this happening is, by
Lemma 2, bounded above by

2e−ε2nk/8 ≤ 2e−2ε2 exp(2k) ln((k+2)/
√

α) = 2

(
k + 2

α

)−2ε2 exp(2k)

.

So, as Karp and Kleinberg argue: The number of tosses performed in phase k
grows exponentially with k, while the probability of reaching phase k ≥ ` decreases
faster than exponential. Therefore the expected number of tosses is dominated by the
running time of phase `. More formally, if X is the random variable that counts the
number of tosses, then

E(X) ≤
∑̀

k=1

nk +
∞∑

k=`+1

nk · 2
(

k + 2

α

)−2ε2 exp(2k)

∈ O
(

log log(1/ε)

ε2

)
.

This shows the desired bound on the expected number of tosses.

We have seen in the previous theorem that with O
(

log log(1/ε)
ε2

)
tosses we can de-

termine whether a given coin is biased, where ε is the potential unknown bias of the
coin. To show that this is optimal, we use the following lower bound on a related coin
toss problem shown in [69]:

Theorem 13 (lower bound for direction of a bias [Karp, Kleinberg [69]
(2007)]). We let α ∈ [0, 1) be a fixed error probability. Assume we are given a
coin, known to be biased, but the bias ε ∈ (0, 1/2] is unknown to us. There is no

algorithm that determines with o
(

log log(1/ε)
ε2

)
tosses whether the probability of heads p

satisfies p > 1/2 or p < 1/2.

We now use this lower bound to obtain a lower bound for our problem: We reduce
the problem of determining the direction of a bias to the problem of determining
the existence of a bias. For this reduction, we describe how any algorithm A that
asserts that a coin is biased may be used to create an algorithm A′ which determines
the direction of the bias, and which only uses as many coin flips as performed by
algorithm A.

Corollary 2 (lower bound for asserting the bias of a coin). We let α ∈ [0, 1) be a
fixed error probability. There is no test that proves (with error probability of at most α)
that a given biased coin, that shows heads with probability p ∈ [0, 1] \ { 1

2}, is indeed

biased, when at the same time the expected number of coin tosses is in o
(

log log(1/ε)
ε2

)
.

Here ε := |p− 1
2 | is the bias of the coin unknown to the algorithm. The error probability

of α requires that for unbiased coins the algorithm may wrongfully declare the coin
biased with probability of at most α.

52

2.7 Advanced statistical tests for equal distribution

Proof. Assume we are given an algorithm A for the problem of asserting bias that

performs an expected number of coin tosses in o
(

log log(1/ε)
ε2

)
. For a given coin, we

determine the direction of the bias in the following way: We run the algorithm, until
it concludes that the coin is biased. We then claim that the coin is biased towards
the direction of the result which occurred more often. (We break ties arbitrarily.) If
algorithm A does not conclude the coin to be biased, we do not claim any direction of
the bias. This procedure yields a new algorithm A′ that outputs the direction of the
bias.

By Theorem 13 it suffices to show that the probability of error of algorithm A′ is
bounded by α.

Case 1: We first assume that the coin is unbiased. In this case the algorithm A
errs with probability of at most α, so the probability that algorithm A′ errs is also
bounded by α.

Case 2: It remains to bound the error probability of algorithm A′, when the coin is
biased. W.l.o.g., we assume that the coin is biased towards heads. We let E be the
event that algorithm A claims that the coin is biased and that during the execution
tails can be observed at least as often as heads. Since E is exactly the event in which
algorithm A determines that the coin is biased, but algorithm A′ fails to determine
the correct direction of the bias, it suffices now to show that this event occurs with
probability of at most α, (i.e., to show that P(E) ≤ α).

We now show that the probability of the event E does not decrease when algorithm A′

(or equivalently algorithm A) is supplied with an unbiased coin, as opposed to a coin
biased towards heads. Consider a specific outcome ω of the event E , i.e, a sequence
of observations of coin tosses with at least as many tails as heads. Since the specific
outcome ω has more outcomes with tails than with heads, the probability of outcome ω
does not decrease when the experiment is performed with a fair coin, instead of a coin
biased towards heads. Since this holds for all outcomes in E , the total probability of
event E when algorithm A is executed on an unbiased coin is at least as big as the
probability of E when algorithm A is executed on the coin with bias towards heads.
Since algorithm A may not err with probability larger than α on unbiased coins, we
therefore conclude P(E) ≤ α.

The running time achieved by Algorithm 3 is thus optimal. Karp and Kleinberg
use the Kullback-Leibler [77] divergence (also known as relative entropy) to show
Theorem 13. Possibly the Kullback-Leibler divergence can be used to directly show
Corollary 2. See [30] for an introduction to information theory, including the concept
of entropy.

Since we use Boole’s inequality (i.e., a union bound) for the error-estimation, we
may actually perform the different phases at the same time: In this case we do not
reset the observations, and in phase k we perform additional coin tosses, so that the
total number of tosses performed is equal to nk.

Now that we know how to solve the restricted scenario, where our two random
variables h1 and h2 only attain values in {0, 1}, we return to the general problem.

53

2 Graph isomorphism

Algorithm 3 Testing for bias of a coin

Input: A coin to test and a significance level α.
Output: Yes if the coin is biased, or with probability of at most α if it is not biased.

The test runs forever otherwise.

1: for k = 1 to ∞ do
2: reset all observations
3: γk ← e−k

4: perform nk = d16γ−2
k ln((k + 2)/

√
α)e coin tosses

5: if the number of heads observed is more than (1+γk)
2 nk or less than (1−γk)

2 nk

then
6: return Yes
7: end if
8: end for

2.7.2 Testing two random variables for equal distribution

In the previous subsection we have considered a simplified situtation in which the
random variables h1 and h2 have two possible outcomes. This simplified situation,
however, does not apply to the variables that model the data we collect when we use
the ScrewBox algorithm.

The data we collect during the sampling process consists of the termination lengths T
of the samples. (In practice we collect more detailed information to increase the
statistical significance. We number the screws in the order they are applied and for
every sample run note the number of the latest screw that was applied, but we ignore
this detail and use only the length T .) Abstractly we are in the situation that we want
to test whether two random variables h1, h2 : Ω→ {0, . . . , n} have equal distribution.

We repeatedly evaluate h1 and h2 and gather the obtained data in a histogram. A
histogram of length n is a map H : {0, . . . , n} × {1, 2} → N. For j ∈ {1, 2}, we denote
by Hj(t) the value H(t, j).

The empty histogram is the all-zero function. A single sample run on graph Gj , with
j ∈ {1, 2}, terminating with length T corresponds to the histogram with Hj(T) = 1
and 0 elsewhere. Samplings are performed in either graph Gj , according to the setup
of the screw box, (see Figure 2.12).

The histogram of a set of sample runs is the sum of the histograms of all samples in
the set, (i.e., the histograms are added as functions, by adding the function values).
In particular, extending the sample set by another single sample run increases exactly
one entry in the histogram of the entire sample set.

If after an equal number of samples from both graphs, G1 and G2, the values H1(t)
and H2(t) differ significantly for some t ∈ {0, . . . , n}, we have statistical evidence that
the graphs are not isomorphic. If there is a particular length on which the histograms
deviate extremely, we may use the concepts developed in the previous subsection.
Note, however, that after samples have been performed, we cannot point to the length

54

2.7 Advanced statistical tests for equal distribution

that shows the most significant behavior and assert conclusions with results from
samples that have been performed in the past. Either we have to declare in advance
which length t we consider, or we have to take account of the fact that the possible
choices concerning this length t lower the significance of the result.

Since the deviation on each individual length of the histogram is usually not sig-
nificant enough to claim non-isomorphism of the graphs with sufficient confidence, we
develop a technique that increases the confidence by using entries of the histogram at
multiple lengths.

If the two random variables h1 and h2 were fixed throughout the whole algorithm,
we could apply a χ2 test to show that they do not have equal distributions. We are,
however, in a different situation: The distributions of the random variables change
over time. The only fact we know for certain is, that at any given time, if we take a
sample from each graph, (by applying the same screw box), the outcomes are equally
distributed if and only if the graphs are isomorphic. In other words, the distributions
of the random variables h1 and h2 change over time, but whether these distributions
are equal remains fixed. We filter the histograms to cope with this situation and
increase the significance:

Definition 24 (filter). A filter, specified by the coefficients σ = (σ0, σ1, . . . , σn) ∈
{−1, 0, +1}n, is a function Fσ that maps a histogram to a pair (a, b) of integers in the
following way:

Fσ(H) := (a, b) =
∑

t : σt = +1

(
H1(t), H2(t)

)
+

∑

t : σt = −1

(
H2(t), H1(t)

)
.

In words, the coefficients σt specify how the values of the histogram at length t
contribute to Fσ(H): by direct addition, by swapped addition, or not at all. Hence,
a+ b is at most

∑
t H1(t)+

∑
t H2(t), the total number of sample runs in either graph.

A good filter chooses the coefficients in such a way that the sampling process pro-
duces two integers with significant difference. In case the random variables h1 and h2

are equally distributed, (respectively the given graphs are isomorphic), the expected
values of a and b coincide, irrespective of the filter we apply. Figure 2.13 depicts a
good filter chosen from a histogram.

For j ∈ {1, 2} we define the filtered outcome under variable hj as Fσ ◦ hj := σhj
,

i.e., the coefficient σhj
at the length equal to the value of hj determines the value

of Fσ ◦ hj . This way any filter also turns the random variables h1, h2 into filtered
random variables Fσ ◦ h1, Fσ ◦ h2 with image in {−1, 0, 1}. We combine the variables
Fσ ◦ h1 and Fσ ◦ h2 into one random variable:

Fσ,h1,h2 := sgn(Fσ ◦ h1 − Fσ ◦ h2)

with values in {−1, 0, 1}. Here sgn denotes the signum function. The expected value
of the random variable Fσ,h1,h2 is related to the difference of the distributions of h1

and h2:

55

2 Graph isomorphism

H1 H2

0 0

0 0

0 3

12 29

75 60

0 1

0 0

6 0

σt H1 H2

0 0

0 0

1 0 3

1 12 29

75 60

1 0 1

0 0

−1 6 0

Fσ(H)

12 39

Figure 2.13: The figure depicts a histogram H (left), a typical choice for a filter Fσ

(middle), where σ = (0, 0, 1, 1, 0, 1, 0,−1), given this histogram, and the result Fσ(H)
of the application of the filter to the histogram (right).

Fact 2. Let Fσ be any filter. If the two input graphs are isomorphic, then the func-
tion Fσ,h1,h2 has an expected value 0.

Conversely, if h1 and h2 are not equally distributed and we have not chosen the
filter in an unfavorable way, then the expected value is different from 0. To determine
whether the random variable X has expected value 0, we may ignore all outcomes
of 0 of that variable: The expected value of X is 0 if and only if the expected value
of X conditioned to X 6= 0 is 0. (Intuitively, when we try to determine whether a coin
is biased, we may ignore all tosses for which the coin lands on the edge.) We thus
ignore any evaluation with outcome 0 and have reduced the problem of determining
whether two random variables h1, h2 : Ω → {0, . . . , n} are equally distributed, to the
problem of determining whether for one random variable Fσ,h1,h2 : Ω′ → {−1, 1} the
expected value satisfies E(Fσ,h1,h2) = 0. We solved this problem (with range {0, 1}
and an expected value of 1/2) in the previous subsection.

If the variables h1 and h2 are equally distributed, then for any choice σ, the coeffi-
cients of the filter, the filtered variable Fσ,h1,h2 has expected value 0.

Let us rephrase this crucial observation: We may change the filter arbitrarily after
having performed an equal number of samples in the graphs G1 and G2. Feeding the
filtered result (possibly obtained with different filters) to Algorithm 3 yields a valid
non-isomorphism test.

There are numerous choices for the coefficients of a filter, but they do not yield
equally significant data. Thus, the question arises: How is a favorable filter deter-
mined?

2.7.3 Choosing an optimal filter

Intuitively we are interested in a filter that yields a filtered histogram which is unlikely
to occur when an unbiased coin is tossed. A good filter Fσ thus provides a random

56

2.7 Advanced statistical tests for equal distribution

variable, for which it is easy to statistically infer that it does not have an expected
value of 0.

It is impossible to choose an optimal filter before we have sampled in the graph. We
thus content ourselves with determining what the optimal filter is, given a histogram,
i.e., given the data we have collected to far. Since there are exponentially many
possible filters (for every σt, with t ∈ {0, . . . , n}, there are 3 choices, namely +1,−1
and 0). It is not obvious that a good filter can be determined efficiently. We first
formalize what the quality of a filter is:

Let H be a histogram and Fσ a filter with a filtered histogram Fσ(H) = (a, b). We
define the probability of the outcome H under filter Fσ to be the probability that an
unbiased coin shows at most a times tails when tossed a + b times.

Given the filtered histogram Fσ(H) = (a, b), the probability of an outcome H under
a filter Fσ can easily be computed with the binomial cumulative distribution. It is de-
fined as bcd(x; n, p) := P (Xn ≤ x), the probability that the random variable Xn, that
counts the number of tails in n tosses of a coin, which shows tails with probability p,
evaluates to at most x. For the binomial cumulative distribution, our implementation
uses a variant of the code that is contained in the Numerical Recipes in C [108].

Definition 25 (optimal filter). For a given histogram H an optimal filter is a filter
under which the outcome of H is least probable. To avoid ambiguity we define for any
optimal filter σt = 0, whenever (H1(t), H2(t)) = (0, 0) for t ∈ {0, . . . , n}.

An optimal filter has very specific properties: Unless H1(t) = H2(t), one possible
choice for σt can be ruled out. The optimal filter accumulates all levels which disagree
by at least a certain ratio, adds the smaller values at these levels to a number a, and
adds the larger values to a second number b. Lengths t for which the outcomes H1(t)
and H2(t) do not sufficiently disagree are ignored. We use the following lemma to
argue this formally:

Lemma 3. Let H be a histogram and Fσ, with σ = (σ0, . . . , σn), be a corresponding
optimal filter with filtered histogram Fσ(H) = (a, b). In this situation the following
holds:

1. a ≤ b

2. If for t ∈ {0, . . . , n} we have σt = 1 then H1(t) ≤ H2(t).

3. If H2(t) = 0 and H1(t) > 0 then σt = −1.

4. If for t, t′ ∈ {0, . . . , n} we have H1(t)
H2(t) ≤

H1(t′)
H2(t′) and σ′

t = 1 then σt = 1.

(We assume H2(t) and H2(t′) to be different from 0.)

Proof. We denote by puc(a, b) the probability that an unbiased coin shows at most a
times tails and b times heads when tossed a + b times, i.e.,

puc(a, b) := bcd(a; a + b, 1/2) =

a∑

i=0

(
i

a + b

)
· 2−(a+b).

57

2 Graph isomorphism

1: If a > b then the inverse filter F−σ = F(−σ0,...,−σn) is strictly better than Fσ.
2: If H1(t) > H2(t) and σt = 1 then we can improve the filter by changing σt to −1.

This is due to the fact that if a ≤ b and c > d, then puc(a, b) ≤ puc(a + c, b + d).
3: This follows from the fact that puc(a + c, b) ≥ puc(a, b) and that puc(a, b) ≤

puc(a, b + c)
4: This follows from the fact puc(a, b) ≤ puc(a+c, b+d) if a ≤ b and a/b ≥ c/d.

All statements in the lemma hold when H1(t) is interchanged with H2(t) and σt = 1
is interchanged with σt = −1 accordingly. Part 4 of the lemma tells us that for
t ∈ {1, . . . , n} the highest value rt := min{H1(t)

H2(t) ,
H2(t)
H1(t)}, for which σt 6= 0, determines all

coefficients of an optimal filter. We extend, strongly abusing notation, this definition
to undefined fractions by setting i/0 =∞, for these ratios, if i ∈ {1, 2, . . .}.

Using the lemma we can efficiently construct an optimal filter. To find an optimal
filter, we proceed in the following way: We order the lengths t ∈ {1, . . . , n} by their

values of rt = min{H1(t)
H2(t) ,

H2(t)
H1(t)}. This ordering is given by rt1 ≤ . . . ≤ rtn , with

ti ∈ {1, . . . , n}, say. Then for an optimal filter there is a cut-off ratio r such that σtk 6= 0
if and only if rtk ≤ r. In the example shown in Figure 2.13, this cut off ratio is 12

29 .
After we have ordered the lengths according to the ratios, for every i ∈ {1, . . . , n} we
evaluate the filter given by using the first i lengths, according to this ordering, (i.e.,
t1, . . . , ti), and none of the lengths beyond that. For any length t, the orientation
(whether σt = 1 or σt = −1) is determined by smaller number in the histogram at
that length. Algorithm 4 summarizes how to determine an optimal filter in an efficient
way.

If we assume that function calls to the binomial cumulative distribution bcd can be
performed in constant time, we may bound the running time of the algorithm that
computes an optimal filter. (The assumption is legitimate as for large parameters in
practice we replace the binomial cumulative distribution by an approximation.)

Theorem 14 (running time for the optimal filter algorithm). If we assume
that calls to the binomial cumulative distribution can be performed in constant time,
then the running time of Algorithm 4, the algorithm that determines an optimal filter
for a given histogram H of length n, is in O(n log n).

Proof. The sorting step of Algorithm 4 can be performed in a time in O(n log n). The
remaining operations in Algorithm 4 are two loops iterated at most n times. All other
operations can be performed in constant time.

2.7.4 Testing with the ScrewBox

In Subsections 2.7.1–2.7.3 we have developed tools to perform efficient tests designed
specifically for the situation we face. We now assemble the parts we have developed
into the ScrewBox algorithm. The general framework for the algorithm is the one
given by Algorithm 2.

The ScrewBox algorithm repeatedly chooses, using Algorithm 4, a filter, optimal
according to the current histogram, and then performs a sampling in each input graph,

58

2.7 Advanced statistical tests for equal distribution

Algorithm 4 Determining an optimal filter

Input: Histogram H of length n
Output: An optimal filter Fσ, with σ = (σ0, . . . , σn).

1: find an ordering bijection π : {0, . . . , n} → {0, . . . , n} // by sorting the values
such that for t < t′ we have

min{H1(π(t))

H2(π(t))
,
H2(π(t))

H1(π(t))
} ≤ min{H1(π(t′))

H2(π(t′))
,
H2(π(t′))
H1(π(t′))

}

// fractions with 0 in the denominator are consider as ∞, see text
2: opt← 1, iopt ← 1
3: (a, b)← 0
4: for i = 1 to n do
5: if H1(π(i)) ≤ H2(π(i)) then
6: σi ← 1
7: (a, b)← (a, b) + (H1(π(i)), H2(π(i)))
8: else
9: σi ← −1

10: (a, b)← (a, b) + (H2(π(i)), H1(π(i)))
11: end if
12: if bcd(a; a + b, 1/2) < opt then // bcd: binomial cumulative distribution
13: iopt ← i
14: opt = bcd(a; a + b, 1/2)
15: end if
16: end for
17: for i = iopt + 1 to n do
18: σi ← 0
19: end for

according to the rules in the screw box. This produces two numbers, T1 and T2, the
termination lengths from each sampling. The filtered values are then used as the
outcome of one coin flip in the statistical test given by Algorithm 3. Then the screw
box is modified, according to Subsection 2.6.5, by inserting and deleting screws. This
process is repeated until either the test asserts that the coin simulated by the filtered
values is biased (i.e., the graphs are not isomorphic), or a sample of length n was found
in graph G2 (i.e., an isomorphism has been found).

If, as just described, we always use the filter, which is optimal given the current
historgram, we face the following problem: During the execution, it is possible that
the current filter yields significantly differing outcomes, but this significance disappears
within the data we have collected so far. In this case it is preferable to reset the
histogram and start a new test, without the noise previously collected. When we reset
the data, we have to ensure that the error probability does not increase. One way to
avoid this is to start the initial test with a probability of error of at most α/2, where α

59

2 Graph isomorphism

is the actual error bound we wish to guarantee. Resetting the data at any point in
time and restarting the test with an error probability of at most α/2, we ensure the
required bound on the overall error.

Repeating this trick, it is possible to continuously start new tests with various filters,
without violating the error bound: To perform multiple tests, we perform each of them
with decreasing error probability, i.e., α/2, α/4, α/8, . . ., in order to maintain an overall
error bound of α.

With this technique at hand, we propose an alternative method to the one given
above which always supplies one test with the current optimal filter:

The alternative test applies various test filters, during a construction phase, in order
to estimate the quality of the screw box. We consider this quality as “high” if the
current histogram has a small probability under the optimal filter. Whenever the
quality exceeds some prespecified bound (which becomes more stringent over time),
we freeze the screw box (no screw insertions or deletions) and perform a test with it.
If this test fails, we resume the modification phase of the screw box.

More explicitly, we proceed in three phases: In phase 1 we sample with the screw
box, allowing modifications, until the probability of the histogram under the optimal
filter is below a certain limit. We then fix in phase 2 the screw box and start a new
histogram. We run samplings with the fixed screw box for some prespecified time and
then choose an optimal filter. In phase 3 we perform a simple hypothesis test with this
filter, i.e., we estimate the bias of the filter chosen in phase 2 and compute a number
of samples N that are performed. If the histogram of the N samples deviates by
more than a predetermined bound, which depends on the desired confidence level, we
conclude that the input graphs are non-isomorphic. Otherwise we go back to phase 1.

The advantage of this type of test is that we obtain a randomized certificate for
our computation, namely the current screw box and the optimal filter. Together they
describe a set of sampling rules that prove the graphs to be non-isomorphic. We
discuss this certificate further in Section 2.11. The disadvantage is that it requires
more sampling runs to complete, a statement we will not quantify.

Apart from various technical details that have been omitted (see Section 2.9), this
concludes our description of the ScrewBox algorithm. We now explain the advantages
of this algorithm, and evaluate its performance. For this we first need to introduce
further examples of graph constructions that yield challenging inputs for graph iso-
morphism algorithms.

2.8 Difficult graph instances

Throughout this document we frequently use the terminology “difficult graphs,” upon
which we elaborate in this section. We have already described two constructions
that pose a challenge to graph isomorphism solvers: the CFI-graphs and the Miyazaki
graphs, (see Section 2.4). As further examples, we now turn to strongly regular graphs
and then to two types of graphs that arise from combinatorial constructions.

60

2.8 Difficult graph instances

2.8.1 Strongly regular graphs

A strongly regular graph is a regular graph G for which the number of common neigh-
bors of two distinct vertices v, v′ ∈ V (G) depends only on the adjacency of v and v′

(i.e., whether v and v′ are adjacent or non-adjacent). More formally:

Definition 26 (strongly regular). A graph G = (V, E) is strongly regular if it
is regular and there are non-negative integers λ and µ, such that any two distinct
adjacent vertices v, v′ ∈ V have exactly λ common neighbors and any two distinct
non-adjacent vertices u, u′ ∈ V have exactly µ common neighbors.

The strongly regular graphs can also be described as the graphs for which the 2-
dimensional Weisfeiler-Lehman refinement refines the pairs of vertices v, v ′ into colors
that only depend on the isomorphism type of the subgraph induced by {v, v′}, (i.e., the
class of graphs isomorphic to the induced subgraph). As mentioned in Subsection 2.6.2,
this also translates into a characterization via screws. For an introduction to strongly
regular graphs see [25]. There are various generalizations of strongly regular graphs.
A graph is said to be t-tuple regular if for any set S ⊆ V of size at most t, the number
of vertices that are adjacent to every vertex of S depends only on the isomorphism
type of the graph induced by S. Cameron [24] shows, that any 5-tuple regular graph
is t-tuple regular for any t ∈ N. Furthermore the only graphs satisfying this property
are disjoint unions of complete graphs of equal size, the 5-cycle and the line graph
of K3,3, the complete bipartite graph with 3 vertices in each partition. (The line graph
of a graph G = (V, E) is the graph L(G) := (E, E ′), whose vertex set is the edge set
of G, and whose edge set is defined, such that two vertices in L(G) are adjacent, if
they are incident as edges in G.)

Since for any tuple of vetices (v1, . . . , vt) of a graph G the value of St,1(G, v1, . . . , vt)
in particular counts the number of vertices that are simultaneously adjacent to all vi

for i ∈ {1, . . . , t}, we can translate the theorem on 5-tuple regular graphs into our
terminology:

Theorem 15 (5-tuple regular graphs [Cameron [24](1980)]). Let G be a graph.
If for all t ≤ 5 and all vertices v1, . . . , vt ∈ V (G) the value of St,1(G, v1, . . . , vt) depends
only on the isomorphism type of the graph induced by {v1, . . . , vt} then G is n ·Kr,
the n-fold disjoint union of complete graphs of the size r (for some n, r ∈ N), the
5-cycle C5 or the line graph L(K3,3).

In our framework we also require a notion of strong regularity that is applicable to
colored graphs, and for which vertices of different color may behave differently. We
say that a colored graph is strongly regular, if for any color c the number of c-colored
neighbors of any vertex v ∈ V depends only on the color of v. Additionally we require
that for any color c the number of common c-colored neighbors of any two distinct
vertices v, v′ ∈ V depends only on the colors and the adjacency of v and v′. Loosely
speaking, we require that all properties which are invariant for a non-colored strongly
regular graph, are invariant when the colors involved are equal. Analogously we may
define t-tuple regularity for colored graphs.

We now consider two constructions that yield colored strongly regular graphs.

61

2 Graph isomorphism

2.8.2 Hadamard matrices

In [91] McKay shows how Hadamard equivalence of Hadamard matrices can be solved
via a reduction to Gi. The graphs obtained with this reduction are our first example
of graphs that arise from combinatorial constructions.

Definition 27 (Hadamard matrix). An n×n Hadamard matrix is an n×n matrix
A with entries in {−1, 1} such that AAT = n Id.

The graph associated with an n × n Hadamard matrix A = (ai,j), with i, j ∈
{1, . . . , n}, is the graph with vertex set

V = {v1, . . . , vn, v′1, . . . , v
′
n, w1, . . . , wn, w′

1, . . . , w
′
n},

and edge set E, such that (vi, wj) and (v′i, w
′
j) are edges in the graph, if ai,j = 1,

and (vi, w
′
j) and (v′i, wj) are edges in the graph if ai,j = −1. Thus there are two

vertices vi, v
′
i associated with every row i and two wj , w

′
j vertices associated with

every column j. The row vertices are connected to the column vertices depending on
the respective entry in the matrix A.

If we color the vertices corresponding to the columns with a different color than the
vertices corresponding to the rows, the graphs associated with the Hadamard matrices
are strongly regular (in the colored sense explained in the previous subsection). The
second graph construction we consider builds on projective planes.

2.8.3 Projective planes

A projective plane of order N is an incidence structure on N 2 + N + 1 points, and
equally many lines, (i.e., a triple (P, L, I) where P, L, I are disjoint sets, the points,
the lines and the incidence relation with I ⊆ P ×L and |P | = |L| = N 2 +N + 1), such
that:

• for all pairs of distinct points p, p′ ∈ P there is exactly one line ` ∈ L such that
(p, `) ∈ I and (p′, `) ∈ I,

• for all pairs of distinct lines `, `′ ∈ L there is exactly one point p ∈ P such that
(p, `) ∈ I and (p, `′) ∈ I,

• there are four points such that no line is incident with more than two of these
points.

Figure 2.14 shows the only projective plane of order 2, the Fano plane. A famous
open question asks whether there exists a projective plane of non-prime power order.
In contrast to the fact that no projective planes of non-prime power order are known,
there is an explicit construction for every prime power N = pk: We obtain a projective
plane of order N by considering the incidence relation of the 1- and 2-dimensional
subspaces of (Fpk)3, the 3-dimensional vector space over the field of characteristic p

that has pk elements. A projective plane that arises by this construction is called

62

2.9 Engineering the ScrewBox

Figure 2.14: The Fano plane, the unique
projective plane of order 2. The “line at
infinity” is depicted as a circle.

Figure 2.15: The incidence graph of the
Fano plane.

algebraic. For various prime power orders non-algebraic planes are known. The web
pages of Moorhouse [104] and Royle [113] offer a collection of known projective planes.

From a projective plane (P, L, I) we construct its incidence graph, a graph with
vertex set V = P ∪ L and edge set E = I. Figure 2.15 shows the incidence graph of
the Fano plane. Differentiating projective planes of the same order poses a difficult
challenge to graph isomorphism programs.

As was the case with the colored Hadamard matrices, if we color the vertices orig-
inating from the points and lines with two different colors, then any projective plane
is strongly regular.

Projective planes and Hadamard matrices are a special kind of combinatorial con-
struction, they are combinatorial block-designs. For further information on the theory
of block-designs, we refer the reader to the corresponding chapter in the Handbook
of Combinatorics [18]. Deciding isomorphism of graphs that arise with the combina-
torial constructions presented in this subsection poses challenging problems for graph
isomorphism solvers. In subsection 2.10.2 we use them as benchmarks to evaluate the
ScrewBox algorithm.

2.9 Engineering the ScrewBox

We have mainly taken a high level view to explain the ScrewBox algorithm. In this
section we explain solutions to subproblems that arise during the implementation of
the ScrewBox. In particular, we explain how to perform random samplings without
replacement, and how to exploit sparse matrix multiplication, when the matrices are
not given in sparse form. These two problems serve to illustrate the type of low level
subroutines encountered when implementing the ScrewBox. They require algorithm
engineering in order to guarantee short running times. Before we treat the matrix
multiplication, we amend in Subsection 2.9.2 several details that were left out in the
explanation of the ScrewBox in Section 2.6. In particular, we explain the preprocessing
that is performed, which uses the matrix multiplication, and how the thereby obtained

63

2 Graph isomorphism

edge color information is used by the screws.

2.9.1 Random sampling without replacement

A core routine in the ScrewBox algorithm is the repeated sampling of vertices from
a graph without replacement. We encode vertices by positive integers {1, . . . , n}, and
sample from these integers. Frequently we do not sample a complete permutation
but rather just a portion of these numbers. Then we start a new sample, i.e., we
perform another sampling without replacement from {1, . . . , n}. In this subsection,
we show how this can be done in constant time per sampling (apart from a one-time
initialization).

We initialize an array a of size n by setting a[i] = i for all entries i ∈ {1, . . . , n}
(i.e., the i-th entry of a is equal to i). The idea to guarantee constant time per
sampling is the following: The entries of the array will always form a permutation of
the integers {1, . . . , n}, and we maintain the numbers that have not been sampled in a
consecutive initial part of the array, (i.e., we maintain them in the set {a[1], . . . , a[m]}
for some m ≤ n).

To draw an integer that has not been drawn so far, we generate a random integer k
in {1, . . . , m}. Our next element is a[k]. We then swap the value of a[k] with the
value a[m], where m is the last position that contains an integer we have not drawn.
Now the set {a[1], . . . , a[m− 1]} contains all numbers that have not been sampled so
far. To draw the next integer we repeat the process with the value of m decremented.
Algorithm 5 summarizes this procedure.

Algorithm 5 Random sampling without replacement

Input: The number of samples to be drawn k ≤ n and an array a[i] of length n, such
that the entries form a permutation of {1, . . . , n}

Output: A random sample b1, b2, . . . , bk of distinct integers in {1, . . . , n}
1: m← n
2: i← 1
3: while i ≤ k do
4: draw t uniformly at random from {1, . . . , m}
5: bi ← a[t]
6: swap a[t] with a[m]
7: m← m− 1
8: i← i + 1
9: end while

As desired, at any time during an execution of the algorithm, the entries in array a
form a permutation of {1, . . . , n}. Thus, if the sampling is interrupted, i.e., no further
elements will be drawn, there is no reason to reinitialize the array. A new sequence of
samples may be drawn with help of the current values in the array.

Before we explain how we perform matrix multiplication, our next low-level imple-
mentation, we first describe where it is applied in the ScrewBox algorithm.

64

2.9 Engineering the ScrewBox

2.9.2 Pairlabel matrices

When approaching the isomorphism problem, it is reasonable to extract all informa-
tion that can efficiently be gathered from the graph in a preprocessing step. In the
preprocessing we attempt to differentiate vertices and refine the coloring, (as always
without splitting orbits). For example, nodes with different degrees or nodes with
different neighborhoods are separated this way. This is done by the näıve vertex re-
finement described in Section 2.2. We recall that any refinement splits color classes,
but does not color vertices in the same orbit with different colors. In practice our
algorithm colors the 2-tuples of the vertices. We call a matrix that has one entry for
every ordered pair of vertices, and for which these entries are invariant under graph
isomorphism, a pairlabel matrix. A coloring of the 2-tuples of vertices can be consid-
ered as a combination of an edge- and a vertex-coloring of the complete graph on n
vertices. The adjacency matrix of a graph itself is a pairlabel matrix. Also the ma-
trix that has as entries the colors given by the stable refinement of the 2-dimensional
Weisfeiler-Lehman coloring procedure (see Definition 13), is a pairlabel matrix, since
the procedure is invariant under graph isomorphism.

Instead of performing the computationally expensive 2-dimensional Weisfeiler-Leh-
man refinement we use the following strategy: We perform the näıve vertex refinement
and update the entries on the diagonal of the pairlabel matrix. Once this refinement
is stable for a pairlabel matrix A we perform a matrix multiplication step, with an
algorithm described in the next subsection, and compute kA + k′A2 for some fixed
integers k and k′. If this does not refine the matrix A, we stop with the preprocessing.
Otherwise, we go back to the näıve vertex refinement after which we use another matrix
multiplication step. This is repeated, until the colors stabilize. The preprocessing is
deterministic and invariant under graph isomorphism. When the ScrewBox is run on
two inputgraphs, we first perform the preprocessing on each graph exactly the same
way, i.e., we apply the same refinements in the same order. If the behavior of the
graphs differs during this preprocessing, e.g., if the refined partitions are not of equal
size, we conclude that the graphs are not isomorphic.

In addition to this preprocessing, we also use the pairlabels (i.e., the stable colors
of the 2-tuples) during the sampling process. We do so by replacing the characteristic
function λ that we used to define the screws in Definition 21 with the 2-tuple coloring
obtained in the preprocessing, i.e., λ(v, v′) is always interpreted as a specific entry in
the pairlabel matrix. The preprocessing is performed to enrich the information in the
pairlabel matrix. This focuses the sampling process and saves computation time.

We remark that since the ScrewBox internally uses pairlabel matrices, i.e., 2-tuple
vertex colorings of the graphs, the ScrewBox can also perform isomorphism tests on
graphs which are edge- or vertex-colored.

2.9.3 Matrix multiplication

As explained in the previous subsection, we use matrix multiplication in the prepro-
cessing step of the ScrewBox algorithm. This is our second example of a low-level

65

2 Graph isomorphism

implementation. Matrix multiplication is a 2-tuple coloring refinement procedure in-
variant under graph isomorphism: Given a 2-tuple colored graph G = (V, E) of size n,
we let AG be the n×n matrix for which the entry ai,j is the color of the tuple (vi, vj).
Reversing this association, the matrix A2

G may be considered as a new 2-tuple coloring.
This new coloring does not separate orbits (i.e., for any two vertices vi, vj that lie in the
same orbit, the colors (vi, vi) and (vj , vj) are equal): Any automorphism φ induces a
permutation matrix Pφ. Since φ is an automorphism (and thus in particular preserves
2-tuple colors), we know that PφAGP−1

φ = AG. Therefore PφA2
GP−1

φ = A2
G. The

coloring is invariant under graph isomorphism: If we are given isomorphic graphs G1

and G2, in which we have chosen an ordering of the vertices, and an isomorphism φ′

from G1 to G2, we again obtain a matrix Pφ′ , such that Pφ′AG1P
−1
φ′ = AG2 . From

this we conclude Pφ′A2
G1

P−1
φ′ = A2

G2
, thus, after refinement, the isomorphism φ′ still

preserves colors of 2-tuples.

When implementing the matrix multiplication, we refrain from using any complex
data structures. We instead exploit the fact that the integers, as implemented in C++,
form a (finite) ring Z2B (where B is the number of bits used per integer, which is
machine-dependent). This means that we ignore the fact that integers overflow, since
we know that this happens consistently with the ring operations.

There are two practical key observations that we use for our version of matrix
multiplication:

1. It is desireable to have consecutive memory access since this minimizes the num-
ber of page faults, i.e., memory accesses that are not contained in the cache.

2. It is desireable to exploit the fact that the matrices that we multiply have a
predominant entry c, i.e., almost all entries are equal to c.

We first assume that the matrices considered are sparse, i.e., that the predomi-
nant entry is 0. We will exploit the sparsity, even though the matrices are stored
as adjacency matrix, rather than in a sparse format, by adjacency lists. By defini-
tion, the matrix product AB = C (where the coefficients of the matrices are given by
ai,j , bi,j , ci,j respectively) is computed by the formula ci,j =

∑n
k=1 ai,k · bk,j . We can

rewrite this as ci,k′ =
∑n

k=1

∑n
j=1 δk,j · ai,k · bj,k′ , where the Kronecker-delta satisfies

δk,j =

{
1 if k = j,

0 otherwise.

Since the coefficient ai,k is independent of j, we can transform the formula into

ci,k′ =
n∑

k=1

ai,k

n∑

j=1

δk,j · bj,k′ .

We simultaneously compute the entries ci,k′ by initializing them to 0, and then,
iterating over i, k, j, we add to ci,k the product ai,k · δk,kbj,k. If ai,k is equal to 0, no

66

2.10 Evaluation of the ScrewBox algorithm

Algorithm 6 Matrix multiplication of sparse matrices with consecutive access

Input: Two Matrices ai,k, bj,k′ with i, k, j, k′ ∈ {1, . . . , n}
Output: ci,k′ , with i, k′ ∈ {1, . . . , n} the product of the two matrices

1: initialize all ci,k′ initialized as 0
2: for all i ∈ {1, . . . , n} do
3: for all k ∈ {1, . . . , n} do
4: if ai,k 6= 0 then // here sparsity saves computation time
5: for all k′ ∈ {1, . . . , n} do
6: ci,k′ ← ci,k′ + ai,k · bk,k′

7: end for
8: end if
9: end for

10: end for

iteration over j is required. This is exactly where we exploit the sparsity of the matrix.
Algorithm 6 performs this iteration; it fulfills both desired properties mentioned above.

In practice, the matrices arising from the graph colorings are not sparse, in the sense
that most entries are 0. However, there may be a value c, which is predominant.

In this case we can still use the effects of sparse matrix multiplication: We define 1l
as the matrix for which every entry is equal to 1. We use the identity A2 = (A−c1l)2 +
2cA−nc21l to decompose the matrix multiplication into a sparse matrix multiplication
followed by additions. (In practice we use (A− c Id)2 as new coloring, since it contains
the same information as A2, unless some values are coincidentally hashed to equal
values.)

This concludes our treatment of exemplary implementation details. With these
details at hand we now perform an evaluation of the ScrewBox algorithm.

2.10 Evaluation of the ScrewBox algorithm

We first perform a theoretical comparison of the individualization refinement technique
used by Nauty and the sampling approach used by the ScrewBox. Then we perform a
practical comparison of running times of Nauty and the ScrewBox and finally analyze
how the ScrewBox algorithm handles the CFI-construction.

A direct evaluation of the ScrewBox algorithm and the underlying sampling ap-
proach is difficult. While algorithms that perform the individualization refinement
technique canonically label one input graph, the ScrewBox requires two input graphs,
for which isomorphism is to be decided.

Many graphs, for which we perform experiments, do not come in pairs of graphs
difficult to distinguish. For these graphs we run the ScrewBox on two isomorphic
input graphs G1 = G2. This is no restriction: The time required to find an isomor-
phism of G2, i.e., to find a sample of length n, bounds the time required to conclude
non-isomorphism of two non-isomorphic graphs G1 and G2. Conversely however, for

67

2 Graph isomorphism

“difficult” graphs, the ScrewBox is more efficient on non-isomorphic graphs, even if
these are very similar, and difficult to distinguish. To illustrate this ability of the
ScrewBox, we analyze running times of the ScrewBox on pairs of non-isomorphic diffi-
cult graphs, such as projective planes, see Subsection 2.8.3. We start with a theoretical
evaluation after which we present running times.

2.10.1 Theoretical evaluation

In this subsection we perform a theoretical evaluation of the ScrewBox algorithm.

An explicit bound on the expected running time of the ScrewBox algorithm is given
by Theorem 9. It shows that on an input pair G1, G2 of graphs of size n the expected
running time is in O(n3 · n!

|Aut(G1)| · log2(1/α)), where α is the guaranteed bound on
the probability of error. For the improved version, which uses k-level screws up to
a level k′, the corresponding bound amounts to O(nk′

n2 · n!
|Aut(G1)| · log2(1/α)), which

increases with increasing k′. As we cannot observe these bounds in practice, even
on difficult inputs, they do not suffice to truly evaluate the sampling approach. To
perform a theoretical evaluation we will therefore compare the ScrewBox to Nauty [92].
The intricacy in this is that Nauty is highly customizable with many options to choose
from. In Subsection 2.6.4 we have presented ways to customize the ScrewBox. We
have done this intentionally in a way, from which similarities between the sampling
approach of the ScrewBox and the individualization-refinement approach of Nauty
become apparent. This however enables us to perform a comparison of basic variants
of the algorithms.

We compare a version of the ScrewBox that only considers a specific outcome of
the sampling process to a version of Nauty that does not perform pruning with an
indicator function. For either algorithm this is a major restriction. If we consider
the algorithms in their full functionality, we cannot draw a theoretical comparison.
Instead, for the unrestricted algorithms, we perform a practical comparison in the
next subsection.

Nauty performs a backtracking search on a search tree, which depends on options
with which it is run. When run with the same options the ScrewBox repeatedly
samples a path from the root to a leaf in the same search tree as Nauty: For any
choice of vertex invariants, (or vertex refinements) both algorithms obtain the same
refined graphs, which represent the vertices of the search tree. Following [89], we call
the vertices of the search tree nodes.

When sampling a path from the root in the search tree, the ScrewBox uses the
screws to terminate the sampling. In order to prevent the ScrewBox from terminating
a sampling before reaching a leaf node, we drop the choice of the pattern before the
sampling process and resort to vertex refinements. We use a histogram that counts for
every type of leaf node, (i.e., for every isomorphism type of a sample that could not be
prolonged), the number of occurrences. If the ScrewBox visits a particular leaf a fixed
number of times (depending on the significance level α), the algorithm terminates. In
practice it is not possible to store information on all leaf nodes that have been visited.
The same restriction is encountered by Nauty when it stores leaf vertices to perform

68

2.10 Evaluation of the ScrewBox algorithm

automorphism pruning.

To compare the ScrewBox with Nauty, we only consider the runs of the ScrewBox
on the input graph G1 (and not those on G2). If one leaf node s is reached a fixed
number of times as dictated by some statistical test, the ScrewBox terminates: Either
an isomorphism is found, because the ScrewBox has found a leaf node equivalent to s
in graph G2, or the ScrewBox terminates, concluding non-isomorphism, because leaf
nodes of the type of s occur often in G1 but never in G2. (More formally: For a fixed
ScrewBox, the expected running time of the ScrewBox for any input pair (G1, G2) is
bounded by twice the expected running time on the input (G1, G1).)

We now relate the number of samplings performed by the ScrewBox to the number
of tree leaves visited by Nauty. We first show a general lemma about the relation of
the two basic search strategies in any search tree, which we now define.

Definition 28. Let T be a rooted tree where each non-leaf node is equipped with
a probability distribution according to which the next child is chosen, i.e., edges are
equipped with a probability p such that the edge probabilities of the children of a node
sum up to 1.

• By the backtracking algorithm BT we denote the algorithm that recursively
chooses a random ordering of the children of that node (possibly depending
on the given distribution) and that proceeds with these children in the chosen
order. (Basically BT models the “behavior of Nauty”).

• By the sampling algorithm SA we denote the algorithm that starts at the root
and repeatedly in every node chooses a child according to the given distribution
until it reaches a leaf. It then restarts at the root. (Basically SA models the
“behavior of the ScrewBox”).

For any leaf s in the tree T we define SAT (s) as the expected number of leaves
visited by the algorithm SA until it hits the leaf s. By BTT we denote the number of
leafs visited by the backtracking algorithm in tree T .

Lemma 4. Let T be a rooted tree with ` leaves and internal nodes equipped with a
probability distribution for their children. The algorithm BT visits every leaf of the
tree, i.e, BTT = `. Furthermore there is a leaf s ∈ T such that:

SAT (s) ≤ `,

i.e., the expected number of leaves visited by the sampling algorithm before visiting s
is at most the number of leaves of the tree `.

Proof. Algorithm BT searches the entire tree, therefore it also visits all leaves. The
claim in the expected number of leaves visited by SA follows, if we choose s as the
leaf that is visited most frequently. The sampling process ends in s with probability of
at least 1/`. Since the appropriate random variable is geometrically distributed, the
expected number of samples performed until leaf s is reached is `.

69

2 Graph isomorphism

The lemma relates repeated sampling from starting at the root and backtracking.
The number of samples of the sampling algorithm is linearly bounded by the number
of nodes visited by the backtracking algorithm. We can translate this statement into
one that relates Nauty and the ScrewBox.

Theorem 16. Assume Nauty and the ScrewBox are run with the same options (i.e.,
such that they traverse the same search tree), and ScrewBox is set to memorize all vis-
ited leaves. For any fixed significance level α ∈ (0, 1], the expected number of samplings
performed by the ScrewBox is bounded by a linear function in the number of search
tree nodes that Nauty visits, when it does not prune the search tree with an indicator
function.

Proof. Let G be the input graph. (By the remark above, we only need to consider
sampling runs of the ScrewBox on G1.) Let T be the search tree of Nauty. The auto-
morphism group Aut(G1) acts on the levels (i.e., the sets of nodes with equal distance
from the root), of the search tree. Consider T/ Aut(G), the factor tree of T modulo this
automorphism group. By performing automorphism pruning, Nauty avoids searching
portions of the search tree. When it does not use an indicator function however, it
always searches at least as many nodes as contained in the factor tree |T/ Aut(G)|.
Each sampling projects onto the factor tree, since preimages of the tree are equiv-
alent, it suffices for the sampling algorithm to visit some leaf in the factor a fixed
number of times. We can therefore simulate the sampling algorithm on the factor
graph T/ Aut(G). The theorem now follows with Lemma 4.

The theorem cannot straightforwardly be extended to a statement on running time
as the ScrewBox repeatedly computes the same information for internal nodes on
equivalent paths (i.e., paths that lie in the same orbit of the action of the automor-
phism group). If we assume that on every node roughly the same amount of work is
performed, we can bound the running time linearly by the height of the search tree,
which is at most n, and the number of samplings.

As Nauty and the ScrewBox become incomparable when equipped with further
functionality, we can not compare by theoretical means: Nauty uses an indicator
function to prune the search tree. Consequently, once certain parts of the tree have
been visited, other parts will never be visited at all. The ScrewBox, on the other hand,
is not bound to search for a specific leaf; it rather prunes the tree and simultaneously
gathers information that is exploited in the tests. In particular, on difficult non-
isomorphic input graphs, the ScrewBox will terminate before ever reaching a leaf.

The fact that the sampling approach can handle automorphisms is in accordance
with the observation that CFI-graphs can be distinguished by the ScrewBox. (See
Subsection 2.10.3).

2.10.2 Practical evaluation

The implementation of the ScrewBox is written in C++, without the use of special graph
or matrix libraries, representing graphs as simple adjacency matrices. All tests have

70

2.10 Evaluation of the ScrewBox algorithm

been performed on a 2.4 GHz AMD Opteron machine with one 1 GB RAM that runs
Linux. The algorithm has been set to ensure an error probability of at most 0.05%.

Junttila and Kaski [65] have, in the course of designing the algorithm named Bliss,
an engineered version of Nauty, collected a benchmark set of graphs on which they ex-
tensively tested Nauty and Bliss. We use this benchmark family to perform a practical
comparison of the ScrewBox and Nauty. The graphs in this family consist of:

1. miscellaneous “easy” graphs (complete graphs, grid graphs, . . .)

2. random regular graphs

3. the incidence graphs of algebraic affine and projective geometries

4. graphs arising from constraint satisfaction problems

5. graphs obtained by applying the Cai-Fürer-Immerman construction to random
3-regular graphs

6. Miyazaki graphs

7. random strongly regular graphs

8. graphs associated with Hadamard matrices

9. incidence graphs of algebraic and non-algebraic projective planes

As phrased in [65] these graphs were designed to evaluate 1) the efficiency of basic
data structures, 2) heuristics for eliminating redundancy and 3) the efficiency of the
implementation on truly large graphs.

The ScrewBox has not been implemented to solve “easy” instances. On these graphs
the ScrewBox has cubic running time, as the preprocessing dominates the computation.
This is reflected by running times for easy graphs (1, 2 and 3). This is also reflected by
the running times on large graphs (4). In order for the ScrewBox to compete in such
instances, a rigorous efficient implementation is required. As the individualization
refinement technique, and in particular Nauty, have evolved in 30 years, this is a
challenging task that has a different aim than the one taken in this thesis. Exemplarily
Figure 2.16 depicts the running times on the grid graphs (contained in 1). These grid
graphs are the Cartesian product of two paths.

The behavior of the ScrewBox on graphs obtained via the CFI-construction (5 and 6)
is analyzed separately in Subsection 2.10.3. The random strongly regular graphs (7) are
rigid, i.e., their automorphism group is trivial. The 2-dimensional Weisfeiler-Lehman
refinement refines these into a coloring that induces a discrete partition. The same is
true for the preprocessing that the ScrewBox algorithm performs. The running times
on these graphs therefore do not yield meaningful results, since the time spent for the
actual sampling is negligible.

We continue with running times for graphs associated with Hadamard matrices (8)
and incidence graphs of projective planes (9).

To test the ScrewBox on graphs associated with Hadamard matrices, we used the
family had-sw-44-〈i〉 also contained in the benchmark family [65]. We chose this
family as it contains large non-isomorphic graphs associated with Hadamard matrices
of the same size. We ran the algorithm on pairs of these graphs. There is a large

71

2 Graph isomorphism

0.01

0.1

1

10

100

1000

10000

100000

1e+06

100 1000 10000

se
co

n
d
s

size of the grid graph

ScrewBox (total time)

♦

♦

♦

♦
♦

♦ ♦ ♦
♦
♦
♦

♦
♦♦

♦♦

♦
ScrewBox (after preprocessing)

+

+
+

+
+

+
+

+ + + +++++

+
Nauty

¤
¤

¤ ¤ ¤
¤¤

¤¤
¤¤

¤¤
¤¤

¤

Figure 2.16: The figure depicts the running time of Nauty and the ScrewBox on grid
graphs. It also depicts running time of the ScrewBox spent, after the preprocessing
has been performed. Both axes are in logarithmic scale. The chart shows that in
particular for “easy” such as the grid graphs, Nauty is very efficiently implemented.
It also shows that both algorithm scale satisfactorily.

deviation on the single runs of the ScrewBox even on the same input pair. After 366
seconds 50% of the executions finished; after 3156 seconds 95% were finished. The
longest run took 11798 seconds. With a simple doubling technique, i.e., restarting
the algorithm after increasingly long intervals, the large deviation can be rectified and
thus the outliers eliminated. In comparison Nauty required on average 93 seconds on
these graphs. Thus, despite the very efficient implementation of Nauty, the ScrewBox
achieves comparable running times on the Hadamard matrices.

In the original paper on the ScrewBox algorithm [79], an extensive test-suite on
projective planes is performed. On these graphs a comparison between the ScrewBox
and Nauty is conducted. Furthermore the projective planes are used as building blocks
to devise larger instances of graphs that are “even harder.” These larger instances are
infeasible for Nauty. However the ScrewBox performs isomorphism tests on them
without any tuning.

On projective planes, we performed only tests on pairs of non-isomorphic graphs
with the ScrewBox. We split the graphs into several classes, on which the algorithms
have similar running times.

Since the deterministic running times of Nauty vary only slightly within the consid-
ered graph classes, we simply list their averages. With the ScrewBox algorithm, we
performed many runs on distinct pairs of graphs within the respective class. As with
the graphs associated with Hadamard matrices, there is a large deviation among the

72

2.10 Evaluation of the ScrewBox algorithm

running times even on the same pair of graphs. This is variation due to the choice
of pattern. Therefore, we list the time it took 50% and 95% of the runs to complete.
Though it is a randomized algorithm, all answers provided were correct. (The error
bound we used 0.05% is only a crude upper bound of the actual error probability of
the algorithm.)

proj-16 proj-27

alg n’alg alg n’alg flag

Nauty avg. 0 s 2 min 4 s 421 min 64 h

50 % 2 s 2 min 18 s 39 min 73 h
ScrewBox

95 % 4 s 37 min 39 s 167 min –

Figure 2.17: Running times for 21 runs the ScrewBox and Nauty on projective planes
of order 16 and 27, (“proj-16” and “proj-27” respectively). Computations that involve
algebraic planes (“alg”), and those that involve the planes “flag4” and “flag6” (“flag”)
are listed separately from the other computations with non-algebraic planes (“n’alg”).
For Nauty the average running time is shown, if favorable for Nauty the “cellfano2”
option has been used. For the ScrewBox the time after which 50% respectively 95%
of the computations have finished is shown. (The Dash indicates that computations
did not finish within three days).

Projective planes

We use all known projective planes of order 24 = 16 and 33 = 27, which can be
found at the web pages of Moorhouse [104] and Royle [113]. There are 13 known
planes of order 16 and 8 of order 27. (As geometric structures of points and lines,
there are actually 22 respectively 13 known planes of these orders, but viewed as
uncolored incidence graphs, planes cannot be distinguished from their duals, in which
the points and lines are interchanged) We performed 21 ScrewBox runs on each pair
of non-isomorphic planes of the same size.

For the planes of order 16 (“proj-16”), which have 546 vertices, the performance of
our code is comparable to that of Nauty, while on the planes of order 27 (“proj-27”),
with 1514 vertices, our algorithm was considerably faster than Nauty. The actual
running times are depicted in Figure 2.17. The difficulty of the planes varies. For
both, Nauty and the ScrewBox, algebraic planes (“alg”) are much easier to solve than
the non-algebraic ones (“n’alg”). Therefore all computations that involved algebraic
planes are separated from the rest. Two exceptionally difficult incidence graphs of
planes of order 27, called “flag4” and “flag6” on [104], are also listed separately.

73

2 Graph isomorphism

Unions and joins

unions 1 2 3 4 6 8 10

Nauty avg. 3 79 368 441 1101 2096 –

50 % 1 2 4 7 13 19 32
ScrewBox

95 % 31 71 129 338 479 843 1403

joins 1 2 3 4 6 8 10

Nauty avg. 1716 – – – – – –

50 % 1 2 4 6 13 25 34
ScrewBox

95 % 24 79 148 226 595 936 1277

Figure 2.18: Running times (in minutes) for the ScrewBox and Nauty of 21 runs
on disjoint unions of projective planes k ·P for k ∈ {1, 2, 3, 4, 6, 8, 10}, for four non-
algebraic projective planes P of order 16 (“unions”), and these unions joined with an
additional Fano plane (k ·P) ∗ F (“joins”). For Nauty the average running time is
shown, if favorable for Nauty the “cellfano2” option has been used. For the ScrewBox
the time after which 50% respectively 95% of the computations have finished is shown.
(Dashes indicate that computations did not finish within three days).

In order to devise larger and more difficult graph instances, we combine several
projective planes into one graph by forming disjoint unions and joins. By r ·G we
denote the disjoint union of r copies of the graph G, i.e., the graph

r ·G :=
(
V × {1, . . . , r},

{
{(v, i), (v′, i)} | (v, v′) ∈ E(G), i ∈ {1, . . . , r}

})
.

By G ∗H we denote the join of graphs G and H, i.e., the graph

G ∗H :=
(
V ∪ V ′, E ∪ E′ ∪ {{vg, vh} | vg ∈ G, vh ∈ H}

)
.

We ran the ScrewBox and Nauty on the unions 1 ·P, . . . , 10 ·P and on the joins
(1 ·P)∗F, . . . , (10 ·P)∗F for four non-algebraic projective planes P of order 16. Here F
denotes the incidence graph of the Fano plane, depicted in Figure 2.15. Figure 2.18
shows the running times of the ScrewBox and Nauty on these graphs.

The ScrewBox proved to be very robust under the above graph operations. The
running times range from a few seconds for the small instances to several minutes
for a typical run on the large graphs. Combining several planes does not lead to an

74

2.10 Evaluation of the ScrewBox algorithm

explosion of running times. In particular, joining an extra Fano plane to the disjoint
unions only slightly increases the running time. This behavior is to be expected from
the sampling strategy of the ScrewBox algorithm: The sampling tends to invest most
of its resources in the “interesting” regions of the graph. An added Fano plane does
thus not interfere with the discrimination of the base graphs P .

For Nauty, already the smallest instances of this collection are difficult. Large
disjoint unions take several hours to compute. For one of the planes, the computation
of Nauty on the 9-fold union did not finish within a week. Joining the Fano plane to the
unions has a negative effect on Nauty’s performance. The smallest graphs (1 ·P) ∗ F
with non-algebraic P took several hours to compute and the (2 ·P) ∗ F cases did not
finish within three days. In order to obtain canonical labelings, Nauty has to establish
isomorphisms between all components. The extra Fano plane seems to complicate this
task.

Nauty offers a number of options to adapt it to different classes of graphs. On each
instance, Nauty has been executed with and without the “cellfano2” option, which is
recommended for computation with projective planes. The tables only consider the
faster run for each graph. For the unions and joins, Nauty does not benefit from the
cellfano option. Presumably, it is possible to create a new invariant which helps in the
recognition of this particular graph family.

2.10.3 The CFI-construction and the ScrewBox

In this subsection we return to the CFI-construction. Recall that the CFI-construction
produces, from a connected base graph G, two non-isomorphic graphs CFI(G) and

C̃FI(G), by replacing the vertices of G with Fürer gadgets, and joining the gadgets

with pairs of external edges. In the twisted replacement C̃FI(G) in one of these pairs a
twist has been introduced (see Section 2.3). We now analyze how the CFI-construction
is handled by the sampling approach of the ScrewBox. Intuitively, it is irrelevant for
the sampling process that many individualization steps have to take place in order
to determine the graph structure of the CFI-graphs. For the sampling process, only
individualization steps within a color class which is not refined into orbit poses a
threat to the running time. When sampling in such a color class, the isomorphism
type of the sample as a whole depends on the chosen vertex, and this possibly leads
to an early termination of the sampling process. In the following, we argue with
theoretical and practical arguments why the sampling algorithm is quite robust under
the CFI-construction. For the following theorem recall that in our definition, when
the CFI-construction is applied, the obtained graph is already a colored graph.

Theorem 17. If a graph G does not have two 2-connected components which are
connected (i.e., there is no path of bridges that connects two cycles), then the näıve

vertex refinement refines the graphs CFI(G) and C̃FI(G) into the orbit partition.

Proof. It suffices to show that for any edge e = {v, v′}, the two associated outer
vertices av

e , b
v
e are assigned different colors whenever av

e and bv
e are not in the same

orbit. We thus assume they are not in the same orbit. Then the original edge e in

75

2 Graph isomorphism

the graph G was not contained in a cycle. This means it is a bridge in G. Therefore
in G \ e := (V (G), E(G) \ {e}) the two vertices v and v′ are contained in two different
connected components C and C ′ say. By assumption, one of the connected components
C or C ′ does not contain a cycle. W.l.o.g we assume that this is the case for the
connected component C ′ that contains v′. By induction on the number of vertices
remaining in C ′ we conclude that for all edges e′ 6= e with v′ ∈ e′, the outer vertices
av′

e′ and bv′

e′ are assigned different colors. Thus, in the Fürer gadget that replaces the
vertex v′, all but one pair of outer vertices are assigned different colors. In a Fürer
gadget for every two inner vertices σ1, σ2 there are at least 4 outer vertices which are
joined to exactly one of σ1 and σ2. Hence, all inner vertices of the Fürer gadget are
colored with different colors. Therefore the last remaining pair av′

e and bv′

e , and thus
also their neighbors av

e and bv
e , are assigned different colors as well.

If we individualize a vertex in a graph obtained via the CFI-construction, then apply
the näıve vertex refinement and then delete singletons from the graph, we end up with
a graph that is essentially a CFI-graph again. More precisely, we obtain a CFI-graph
in which the inner vertices in a Fürer gadget are possibly duplicated. The obtained
graph still refines into orbits if the respective underlying graph G′, that is obtained
from the original underlying graph G by deleting vertices, has no edge bridging two
connected components.

Note that it is exactly this theorem that the Miyazaki construction circumvents,
(as can be concluded from Figure 2.5). The Miyazaki graphs contain many bridges
that connect cycles. In light of this observation, we tune our algorithm, when only
faced with CFI-graphs, to use the vertex refinement as an option: Every time a vertex
is added to the sample, we individualize this vertex and perform the näıve vertex
refinement.

Figure 2.19 shows running times of the ScrewBox, without any adaption to the CFI-
construction, on the CFI-graphs from the benchmark family devised by Junttila and
Kaski [65]. These graphs are uncolored graphs that were obtained by applying the
CFI-construction to random 3-regular graphs. The size of the graphs ranges from 200
to 2000.

The running time is dominated by the matrix multiplication steps performed in
the preprocessing of the algorithm. (It is our version of the 2-dimensional Weisfeiler-
Lehman vertex refinement and is explained in Subsection 2.9.2). This preprocessing
performs O(log(n)) steps of matrix multiplication. It colors the original graph into its
orbit partition. Figure 2.19 also shows the running times restricted to computation
after the preprocessing.

We have argued that the näıve vertex refinement refines the CFI-construction when-
ever there is no bridge that connects two cycles. One may further show that the
2-dimensional Weisfeiler-Lehman refinement partitions the vertices of the Miyazaki
graphs into orbits. (In fact, since they are of low pathwidth, this is not too surpris-
ing in the light of Theorem 4). The ScrewBox algorithm has therefore polynomial
running time on these graphs, if we modify the options, such that every drawn sam-
ple vertex is individualized and the 2-dimensional Weisfeiler-Lehman refinement is

76

2.10 Evaluation of the ScrewBox algorithm

0.01

0.1

1

10

100

1000

10000

100 1000

se
co

n
d
s

size of the CFI-graphs

total computation time

♦♦
♦♦

♦♦
♦♦
♦♦
♦♦♦♦

♦♦♦
♦♦♦♦♦

♦♦♦
♦♦♦♦♦
♦♦♦
♦♦♦
♦♦♦♦♦♦♦♦

♦♦♦
♦♦♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦

♦
computation time after preprocessing

+++
+

+

+++
+
+++

+++
++++++

+++
++++

+++
++
+
++
+++

+++++
++
+
++
+
+++++

++
+
+
+++
+++++

+
++
++++
+
+
+++++
+
+
++++
++++

+

Figure 2.19: The figure depicts the running time of the ScrewBox algorithm on un-
colored graphs that were obtained by application of the CFI-construction to random
3-regular graphs, taken from [65]. It also depicts running time spent after the prepro-
cessing has been performed. The data in the log-log plot indicates polynomial running
time of the ScrewBox on these graphs.

performed. Again, even without any modification, the ScrewBox algorithm mainly
performs preprocessing on the Miyazaki graphs. Figure 2.20 shows the running times
of the ScrewBox on the Miyazaki graphs from the benchmark family from [65]. This
benchmark family also contains two families of Miyazaki graphs, which have been “re-
inforced with gadgets to mislead the cell selector.” Nauty and Bliss have exponential
running time on these graphs. As these gadgets are specifically designed for the cell
selector of Nauty (and Bliss), it is not surprising that they do not affect the ScrewBox.
The running times of the ScrewBox are almost identical on graphs with or without
these reinforcements. Additional figures for these running times are therefore omitted.

We have shown in this subsection, theoretically and practically, that running times
of the ScrewBox are robust under the CFI-construction. In contrast to the Weisfeiler-
Lehman algorithm, the ScrewBox can handle graphs that require many individualiza-
tions: When chosen as next vertex for the sample, all vertices in the same orbit allow
the sampling to continue exactly in the same manner.

This concludes the evaluation of the ScrewBox. In the next section we are concerned
with the certification of the output of graph isomorphism algorithms in general and
the ScrewBox in particular.

77

2 Graph isomorphism

0.01

0.1

1

10

100

1000

10000

10 100 1000

se
co

n
d
s

size of the Miyazaki graph

total computation time

♦

♦

♦

♦
♦
♦
♦
♦
♦♦
♦♦
♦♦
♦♦
♦♦♦
♦♦♦
♦♦♦

♦
computation time after preprocessing

+

+
+

++
++

++
++++

++
+++++

+

+

Figure 2.20: The figure depicts the running time of the ScrewBox algorithm on uncol-
ored graphs obtained by application of the CFI-construction to the Miyazaki graphs,
taken from [65]. It also depicts running time spent after the preprocessing has been
performed. The plot shows that most of the running time is spent for preprocessing.

2.11 Certification

A standard graph isomorphism algorithm, given two input graphs, either returns an
isomorphism between them or returns the claim “non-isomorphic.” While in the former
situation, the user can easily verify the correctness of the output by checking the
isomorphism, in the latter situation, she is bound to trust the algorithm. This might
not be very satisfying. The same difficulty occurs for any problem in NP, not known
to be in co-NP: Generally speaking, a positive answer is easy to verify, while the
correctness of a negative outcome can usually only be recognized through verification
of the algorithm together with its computation.

The ScrewBox algorithm addresses this concern: When it terminates, claiming the
input graphs are non-isomorphic, it has found with high probability a screw box that
can be used to establish a difference between the two input graphs. In order to verify
the correctness of the predicate, the user need not understand or even know anything
about the construction process of the screw box. She only needs to convince herself
that sampling with this particular screw box is invariant under graph isomorphism.
The user employs the screw box to repeat a statistical test, with the filter that is also
provided, with her desired error probability to confirm the non-isomorphism claim. In
the next subsection we argue why this can be considered the randomized analogon to
a certifying algorithm. For this, we first define a traditional (i.e., non-randomized)
certifying algorithm. Mehlhorn and Näher [95] explain how certifying algorithms are

78

2.11 Certification

used in the LEDA [96] library. See Mehlhorn’s and Sanders’ book on algorithms and
data structures [97] for a current view on certifying algorithms.

Informally, a certifying algorithm is an algorithm that together with its output
supplies a witness which certifies the correctness of the output. We require this witness
to be “easy to check,” where this non-mathematical term may mean various things:
“Easy to check” may mean:

1. that a check can be performed quickly,

2. that it is easy to understand why the check really proves that the output is
correct,

3. that the check has an easy implementation,

4. or any combination of the above.

We formalize these definitions now: Assume we are to design an algorithm that, given
an input from a set X, is supposed to compute an output in the set Y . Here the
user of the algorithm has to guarantee that a precondition Φ(x) for the input x ∈ X
is met. For every input x ∈ X for which the precondition is met, the output y ∈ Y
of the algorithm must meet a postcondition Ψ(x, y). Thus, the precondition is a
map Φ: X → {true, false}, discriminating legal inputs, and the post-condition is
a map Ψ: X × Y → {true, false}, discriminating legal outputs. The pair (Φ, Ψ)
is called an I/O-specification. A randomized algorithm that errs with probability
α ∈ [0, 1] computes, given an input that meets the precondition, with a probability of
at least 1− α an output that meets the postcondition.

In the case of the graph isomorphism problem, the set X is the set of pairs of
graphs. There is no precondition. (Alternatively, we can consider as precondition the
requirement that the input must encode a pair of graphs). The output is either Yes
or No. The postcondition Ψ ((G1, G2), y) is met if and only if y ∈ {Yes,No} is the
correct answer to the question: Are G1 and G2 isomorphic?

W.l.o.g., we assume that the element ⊥ is not contained in Y and define the extended
output set Y := Y ∪{⊥}. A strong witness predicate for an I/O-specification (Φ, Ψ) is
a predicate W : X × Y ×W → {true, false}, where W is some set of witnesses, such
that for all x ∈ X, y ∈ Y , w ∈W we have:

(
(y = ⊥ ∧W(x, y, w))⇒ ¬Φ(x)

)∧(
(y ∈ Y ∧W(x, y, w))⇒ Ψ(x, y)

)
,

and which is additionally “easy to check.”

I.e., if the output is y = ⊥, then the witness proves that the input does not satisfy the
precondition. Otherwise the witness proves that the input/output pair (x, y) satisfies
the postcondition. If an algorithm provides a strong witness, this implies that it also
determines the validity of at least one of two possibilities (whether the precondition
is not met or the post condition is met). In contrast to this, we define a witness
predicate:

79

2 Graph isomorphism

A witness predicate for an I/O-specification (Φ, Ψ) is a predicate W : X×Y ×W →
{true, false} such that for all x ∈ X, y ∈ Y , w ∈W we have:
(
(y = ⊥ ∧W(x, y, w))⇒ ¬Φ(x)

)∧(
(y ∈ Y ∧W(x, y, w))⇒ ¬Φ(x) ∨Ψ(x, y)

)
,

and which is additionally “easy to check.”
Thus this weaker form of witness predicate only shows that the output is correct

when the precondition is assumed. An algorithm that computes this kind of witness
must not determine whether the precondition is not met or the post condition is met.

Definition 29 (strongly certifying algorithm). A strongly certifying algorithm
for an I/O-specification (Φ, Ψ) is an algorithm for which a strong witness predicateW
exists, such that the algorithm, given an input x ∈ X, computes a y ∈ Y and a w ∈W
for which W(x, y, w) is true.

A certifying algorithm is defined analogously, by replacing the strong witness pred-
icate with the ordinary witness predicate.

As indicated at the beginning of this section, we do not know how to construct a
certifying algorithm for the graph isomorphism problem. A simple way to certify that
two graphs are isomorphic is to provide an isomorphism, but no similar certificate is
available for non-isomorphic graphs. For a decision problem a randomized algorithm is
said to have a one-sided error if for one of the truth values true or false the algorithm
always provides the correct answer. Randomized algorithms that err for both truth
values are said to have a two-sided error. For a decision problem, we call an algorithm
one-sided certifying, if for one of the truth values true or false the algorithm always
provides a witness that certifies the answer.

The ScrewBox algorithm primarily tries to prove that two graphs are not isomorphic.
Isomorphisms are merely produced as a side-effect. However, there is a generic way to
turn a non-isomorphism test into an algorithm that finds isomorphisms. In fact any
randomized colored graph isomorphism algorithm can be used to find isomorphisms.
We will prove this statement by using a given non-isomorphism test as an oracle. For
the proof we first require a standard lemma on error reduction of oracles:

Lemma 5. Let Ocl be an oracle for a decision problem L, with fixed probability of
error of at most ε < 1/2. For any k ∈ R, we can simulate an oracle Ocl′ for the
problem L that errs with probability of at most 1/k by using O(log(k)) calls to the
oracle Ocl for every simulated call to Ocl′.

Proof. Given an oracle Ocl for problem L that errs with probability of at most ε, we
can simulate the oracle Ocl′ in the following way: Suppose we want to query Ocl′

with the problem instance Q ∈ L. To simulate the oracle Ocl′, we perform dlogc(k)e
queries with problem instance Q to the original oracle Ocl (where c is a constant to
be determined later). The majority of the answers of oracle Ocl is taken as the answer
of Ocl′. We can bound the error probability of the new oracle with the Chernoff
bound [59]. In particular we obtain that Ocl′ gives a wrong answer with probability
of at most e−2dlogc(k)e · (1/2−ε)2 = c′−dlogc(k)e, where c′ is a positive constant depending
on ε. By choosing c = c′, we obtain c′−dlogc(k)e ≤ 1/k ∈ O(log(k)).

80

2.11 Certification

With the lemma we now prove, with the help of a self-reduction, that any randomized
graph isomorphism algorithm can be made one-sided certifying with a one-sided error:

Theorem 18 (isomorphism certification). Any randomized colored graph isomor-
phism algorithm A, possibly with two-sided error, can be turned into a one-sided
certifying one-sided error graph isomorphism algorithm A′. If algorithm A has a
running time in O(f(n)), the certifying version A′ has an expected running time
in O

(
f(n) ·n2 · log n

)
.

Proof. We suppose the original algorithm A has an error probability of ε < 1/2. We
consider it as an oracle Ocl and use Lemma 5 to obtain a colored graph isomor-
phism oracle Ocl′ that errs with a probability of at most 1

3 · (n2+1)
and that performs

O
(

log(3 · (n2 + 1))
)

= O(log(n)) calls to algorithm A for every query.

To show the theorem, we construct an algorithm A′ that has an error probability
of ε′ ≤ 1/3 and performs an expected number of O(n2) calls to the new oracle Ocl′.

Given two graphs G1 and G2, the new algorithm A′ first queries the oracle Ocl′ as
to whether the graphs are non-isomorphic. If the answer is “non-isomorphic,” then
the output of algorithm A′ is also “non-isomorphic.” If the oracle Ocl′ claims that
the graphs are isomorphic, the algorithm tries to find two permutations v1, . . . , vn

and v′1, . . . , v
′
n of vertices in G1 and G2 respectively, such that the mapping that

sends vi to v′i for all i ∈ {1, . . . , n} is an isomorphism. When initial parts of these
sequences v1, . . . , vi and v′1, . . . , v

′
i have been found, an extension, by vi+1 and v′i+1,

can be found by the following procedure: We individualize one vertex vi+1 in the
first graph, that is not contained in the sequence yet. (Recall that by Definition 12
an individualization of a vertex v assigns v a unique color). We consider a candi-
date for v′i+1 that is not contained in the sequence v′1, . . . , v

′
i, and individualize it.

We query the oracle Ocl′ as to whether the colored graphs, in which v1, . . . , vi+1 re-
spectively v′1, . . . , v

′
i+1 have been successively individualized, are isomorphic. For all

candidates v′i+1 we perform this individualization and the isomorphism check. If a
vertex v′i+1 can be found for which the graphs are isomorphic, then the sequences are
extended by the respective vertices.

If the oracle Ocl′ always gives the correct answer for all queries, and the graphs
are isomorphic, the final sequences will induce an isomorphism between G1 and G2.
Algorithm A′ detects the case that Ocl′ erred, i.e., that the final sequences do not
form an isomorphism in the following way: The algorithm A′ only claims that the
graphs are isomorphic, if the sequences indeed represent an isomorphism. This can
be checked in O(n2) time. Therefore algorithm A′ does not err when giving positive
answers. By providing the isomorphism, it is also one-sided certifying. If the sequences
obtained do not form an isomorphism, or at some point the answer of the oracle Ocl′

assert that there is no possible extension of the sequences, we say that a failure has
occurred. In this case we restart the whole procedure with another iteration, including
the non-isomorphism check.

It remains to bound the probability of error of algorithm A′ and to show that it
has the required running time. By construction, the probability of error of Ocl′ is at

81

2 Graph isomorphism

most 1
3 · (n2+1)

. During an iteration of the algorithm, at most n2 + 1 calls to oracle

Ocl′ are performed. The probability that all of the answers provided are correct is at
least 1 − n2+1

3 · (n2+1)
= 2/3. In other words, the algorithm errs with a probability of at

most 1/3.
For the running time, we use the same bound. The probability that a failure occurs

is bounded above by the probability that at least one answer in an iteration is not
correct, which is at most 1/3. The expected number of iterations E performed, until
the first time that no failure occurs, is therefore at most 1 + 1/3 + 1/9 + . . . = 3/2.
(Indeed if Xi is the random variable that indicates whether at least i iterations are
performed, then E = E(

∑∞
i=1 Xi) =

∑∞
i=1 E(Xi) =

∑∞
i=1(1/3)i−1 = 3/2.) Every

iteration requires at most O(n2) calls to the oracle Ocl′, each of which calls O(log(n))
times algorithm A. As algorithm A has a running time of f(n), in total we get an
expected running time of at most 3/2 · O(n2)O(log(n))f(n) ⊆ O(f(n) ·n2 · log n).

The theorem shows that isomorphism can always be certified. As we do not know
a way to certify non-isomorphism, we investigate alternatives to the deterministic
version of certification.

2.11.1 Beyond deterministic certification

Theorem 18 deals with certification of isomorphisms. Concerning non-isomorphism,
we do not know whether Gi is in co-NP, consequently we do not know how to suc-
cinctly, deterministically certify non-isomorphism. We claim that the ScrewBox is
randomized certifying. Before stating precisely, what we mean by this, we make sev-
eral observations that justify this terminology:

• Given two input graphs, the ScrewBox algorithm designs a screw box that be-
haves significantly different when it is used to sample in the two input graphs.
This screw box and a filter are provided to the user, and serve as a witness.

• Using the given screw box, the user may resample and convince herself that the
result is reproducible.

• She may use her own random source for this resampling.

• To understand the correctness of the algorithm, with certain guarantee on the er-
ror probability, it suffices to comprehend only a small fraction of the code. Given
an encapsulation (which we define below) of all access to the input graphs from
the remaining part of the code, it suffices to verify that screws are deterministic
functions, with access to random vertices.

• The running time required for the verification is (much) shorter than the running
time of the algorithm.

• The statistical test employed by the ScrewBox can be performed faster, after
data on the distribution of the termination lengths of the sampling process in
the two input graphs has been gathered.

When we refer to encapsulation of the access to a graph, we mean the following
computational model: a deterministic Turing machine that instead of an input tape

82

2.11 Certification

has access to an oracle that provides two features: 1) when requested, it supplies a
random vertex v ∈ V and 2) it answers queries that ask whether two vertices v, v ′ ∈ V
share an edge. For this type of query v and v′ must be vertices that each are obtained
via a request of form 1) to the oracle. The probability distribution of any deterministic
function (with access to such an oracle) is invariant under graph isomorphism.

For a more formal definition of randomized certifiability, we alter the requirement
“easy to check” from the beginning of Section 2.11 for witnesses supplied by a certifying
algorithm. The check for the randomized version is allowed to be performed by a
randomized algorithm. Thus, an algorithm is randomized certifying if together with its
output it supplies a witness that may be used to statistically show, with a randomized
algorithm, that the output is correct.

With the help of complexity theory, we describe how efficient the certification is.
For this we define randomized certification complexity classes.

Definition 30 (randomized certification classes). Let C, CY , CN be three complex-
ity classes. We say that a decision problem L is in the certification class (C | CY , CN)
if there is an algorithm which, for any input x ∈ X, computes the output y ∈ Y as
either Yes or No, (whether x has the property to be computed or not) and supplies
a witness w ∈W . This algorithm must be in the complexity class C. Additionally, for
the witness predicate W the value of W(x, y, w) must be computable with a running
time that is

in CY if y = Yes, and
in CN if y = No.

In this definition we specifically allow non-deterministic complexity classes (in par-
ticular randomized ones).

As an example we consider the matrix multiplication decision problem, which, given
three matrices A, B, C ∈ Rn×n, asks whether C is the product of A and B. This
problem is in the class (O(n2.376) | O(n2),O(n)): Coppersmith and Winograd [29]
show that matrix multiplication can be performed in O(n2.376). If the product of the
given matrices A and B is not equal to the putative product C, then a position of a
specific entry, where AB and C differ, is used as witness. To check that the specific
entry is different for AB and C, the user performs n multiplications and n summations,
the negative check thus lies in CN = O(n). If on the other hand the product of A
and B is equal to C, no witness is required. We can recheck that AB = C by choosing
random vectors x ∈ Rn, and computing Cx and A(B(x)). This check can randomly
be performed in CY = O(n2) time [71].

We remark, that this randomly certifying algorithm for matrix multiplication can
also be used to certify the preprocessing of the ScrewBox algorithm explained in Sub-
section 2.9.2.

When using the notation to describe complexity classes we use a dot (·) to denote
the complexity class of all functions (i.e., the class in which any algorithms lies).
This way NP (respectively co-NP) is the class of problems that are in (· | P, ·)
(respectively (· | · ,P)).

83

2 Graph isomorphism

We use the randomized certification classes to formulate a question concerning the
graph isomorphism problem that has not been solved yet. As usual BPP is the class
of randomized algorithms with bounded two-sided error.

Open Question 1. Is Gi, the graph isomorphism problem, in (· | · ,BPP)? In other
words, can non-isomorphism be certified with a witness which can then be verified in
randomized polynomial time?

This question is a weaker form of the question whether Gi ∈ co-NP. In the language
of Arthur-Merlin games Open Question 1 is exactly the famous open problem whether
Gi is in MA, see [72] for further detail.

The connection of the open question and the ScrewBox algorithm is the following:
The ScrewBox algorithm provides a witness, i.e., a screw box, that can be randomly
evaluated. The evaluation of the screw box heavily depends on this randomization. For
difficult graphs however, we do not know how to construct a screw box that provides
the non-isomorphism certification in randomized polynomial time. Thus, the question
remains open.

The running time by which the randomized certification that employs the screw box
as witness is (by far) shorter than the computation time required when the witness
is not available. We do not know whether this can be expressed in the asymptotic
notation. In the example of matrix multiplication given above, the randomized check
for positive instances, which requires O(n2) operations, does not require a witness. We
do not have an example of an algorithm that provides a witness that is not determin-
istically checkable in a running time faster (in the O-notation) than the one required
for the computation of the witness.

In the next subsection, we consider a construction that makes the existence of such
problems plausible. First, we give an example of a problem L that has a randomized
algorithm that is faster than the best known deterministic algorithm that solves L.
Given a graph G, the Min-Cut problem asks for a partition of the vertices into
two parts that minimizes the number of edges, that have an endpoint in either part.
Karger’s randomized Min-Cut algorithm [67] solves the minimum cut problem in a
running time of O(m log3 n) (and in O(n2 log n)), while the best known deterministic
running time of O(mn + n2 log n) is achieved by Stoer and Wagner’s algorithm [122].
Karger and Panigrahi [68] recently showed it is possible to construct the cactus, a
representation of all minimum cuts in the graph, also in near linear time. This al-
gorithm is also randomized. We do not know how to enhance Karger’s algorithm
with additional output, without asymptotically increasing running time, such that we
can (randomly) check the correctness of the output in a running time asymptotically
shorter than that of Karger’s randomized algorithm.

In the following subsection, we assume that L is a problem, for which the fastest
algorithm is randomized. From this we construct a problem Lh that has a randomized
certificate which may be checked fast. For the problem Lh all deterministic witnesses
can be checked slower, unless it is possible to instances of L simultaneously.

84

2.11 Certification

2.11.2 Amplification of randomized certifiability

In this subsection we intuitively argue for the existence of problems that are randomly
certifiable, but which lack equally efficient deterministic certificates. We do this with
the help of a construction that amplifies the gap between the computation time re-
quired, when a certificate is available, and when it is not. For this we define the
recursive majority of three: Let T be a rooted ternary tree of height h, i.e., a rooted
tree in which every vertex is either a leaf or has exactly three children. This tree
has 3h leaves. To every leaf a truth value in {true, false} is assigned. For any node
in the tree we recursively define its truthvalue as the majority of the truthvalue of
its children. The goal is to to evaluate the value at the root of the tree, but we wish
to do so using as few values at leaves as possible. We can avoid having to inspect
all truthvalues at the leaves with the following technique: We first evaluate two of
the children of the root. If we are lucky and the values coincide, there is no need to
evaluate the third subtree. Choosing the two subtrees uniformly at random, we are
lucky with a probability of at least 1/3. Repeating this recursively yields an algorithm
that for any input requires an expected number of evaluations of (2 + 2/3)h = (8/3)h

leaves. Jayram, Kumar and Sivakumar [64] show, that this bound can be improved

to (19
√

1349
18)h ≈ 2.655h. In the same paper, they also show, using information theory,

that no randomized algorithm can beat a lower bound of (7/3)h. In contrast, when
complete knowledge on the values at the leaves is available we may always choose 2h

leaves that certify the value at the root.

We now use the construction to obtain a problem that has randomized certificates.
Consider a decision problem L, for which there exists a randomized algorithm that
solves L, that is faster than any deterministic algorithm. (If the currently known
algorithms for the Min-Cut problem are optimal, then the Min-Cut problem has
this property). We form a ternary rooted tree of height h whose leaves correspond to
an instance of the problem L. Again we define the value of a node as the majority of
values of its children. Consider the new decision problem Lh that decides the value
at the root. We may determine Lh with an expected number of 2.655h of calls to
an algorithm that solves the problem L. As before, there is a subtree with 2h leaves
that determines the value at the root. Given this tree, to check the solution it suffices
for the user to recompute 2h instances of the problem L by using the randomized
algorithm for problem L. Since there is no algorithm that requires less than (7/3)h

leaf evaluations in expectation, we have created an algorithm which may be checked
with fewer evaluations than the expected number of evaluations required in the absence
of a witness. In other words, we have shown the existence of a randomized algorithm
that needs less evaluations when the certificate is known.

Be aware that this statement does not directly carry over to running time: Since a
large input asks for the computation of many instances of problem L, it may be possible
to determine the outcome by reusing partial information in the various instances:
The instances may be in some relation to each other, in the worst case some of the
leaf problems may actually be equal. If L were the graph isomorphism problem,
for instance, a canonical labeling approach may circumvent the lower bound. One

85

2 Graph isomorphism

might resolve this issue by considering a restricted computation model, where results
obtained in a leaf computation may not be used in the computation different leaf
computation. As this would not be more expressive than the plausibility argument,
we content ourselves with the latter.

Now that we have discussed the existence of problems that have a large gap be-
tween deterministic certification and randomized certification, we recapitulate that
the ScrewBox algorithm is randomized certifying in three different ways:

1. It supplies a witness, which in practice may be checked considerably faster than
the time required for the computation. The main reason is that during the
modification phase of the ScrewBox, the data obtained by the sampling process
becomes more and more significant. Moreover, the witness can only be checked
by a randomized algorithm. Derandomizing the sampling process results in an
exponential growth of the running time.

2. The preprocessing step of the ScrewBox uses matrix multiplication which can be
certified with a randomized algorithm in a time faster than the running time of
any known matrix multiplication algorithm.

3. The test applied by the ScrewBox can be performed faster when data has been
collected, and the significance of the deviation may be estimates. For the re-
stricted case of a biased coin we have even quantified this statement in Sub-
section 2.7.1. A known bias of ε can be asserted with a number of tosses in
Θ(1/ε2), where by Corollary 2 this cannot be done in o

(
log log(1/ε)

ε2

)
, if the bias

is unknown.

Summarizing, the ScrewBox is a practical example of an algorithm that has ran-
domized certification.

2.12 Conclusion

Graph isomorphism remains one of the intriguing computational problems, whose
complexity is not known. It is a representative of a class of problems that deals with
combinatorial equivalence of relational structures, all of the same unknown complex-
ity status. This chapter summarizes known algorithms that are used to approach the
graph isomorphism problem, and develops a new randomized algorithm, the Screw-
Box, that solves the general graph isomorphism problem. Many graph isomorphism
algorithms have been engineered to quickly solve inputs that consist of graphs which
are “easy.” In contrast the ScrewBox aims at difficult graphs, for which isomorphism
detection is infeasible for other algorithms, rather than at graphs for which the quality
of an algorithm is measured by whether the answer can be found in seconds or mil-
liseconds. The new sampling concept underlying the ScrewBox algorithm requires new
theory and techniques. Both are thoroughly discussed in this chapter. The individual-
ization refinement technique used by other algorithms such as Nauty, a practical graph
isomorphism algorithm that has constantly been improved since it first appeared in

86

2.12 Conclusion

McKay’s master thesis in 1976, is based on a backtracking search and automorphism
pruning. The ScrewBox replaces this backtracking by repeatedly drawing random
vertices. The ScrewBox also replaces group theoretical with statistical instruments.
Though the ScrewBox is a practical algorithm, the aim of the chapter is to attract the-
oretical interest in alternatives to the classical approach taken to graph isomorphism.

Most of the chapter provides a high-level view of necessary theory to understand the
ScrewBox algorithm, how it is made efficient, and why particular design choices are
optimal. Exemplarily some low level implementation techniques have been outlined.
Running times on various graphs have been provided to evaluate the ScrewBox algo-
rithm and graphs. On a particular family the ScrewBox outperforms the benchmark
isomorphism solver Nauty.

Certification of graph non-isomorphism is discussed, and alternatives for determin-
istic certifying algorithms are developed. The ScrewBox algorithm provides a practical
way of certifying non-isomorphism. The certificate given by the algorithm, the screw
bow with its optimal filter, can then randomly be checked.

When solving the graph isomorphism problem, the computation of a canonical la-
beling has the advantage that it allows to screen a graph against a large database. It
is not apparent how to perform this screening with the ScrewBox algorithm. With the
algorithm developed in Chapter 4 means to do so are supplied.

We close the chapter with a citation from Cai [22], who phrases the fact that the
polynomially hierarchy collapses, if graph isomorphism is NP-hard by saying: “It is
Not likely that we can show that it is Not likely to be easy.”

87

2 Graph isomorphism

88

3 Van der Waerden numbers

In 1927 Bartel Leendert van der Waerden [126] was the first to prove Baudet’s conjec-
ture on arithmetic progressions within partitions of consecutive integers. He proved
that whenever the integers are partitioned into finitely many parts, one of the parts
contains an arithmetic progression of arbitrary length. Numerous generalizations, sim-
plifications and variants of his proof have cumulated over time, forming the base for
the Ramsey theory on the integers. These variants are as far reaching as Szemerédi’s
theorem [124], whose proof has supplied the mathematical community with priceless
tools and insights into the natural numbers. The obtained tools and the acquired
insight culminate in Green’s and Tao’s theorem [53], stating that the primes contain
arbitrarily long arithmetic progressions.

The numbers that correspond to the original theorem by van der Waerden, accre-
tively entitled van der Waerden numbers, quantify how many consecutive integers can
be partitioned into a fixed number of parts, without the occurrence of an arithmetic
progression of a certain length within one of the parts. For the van der Waerden num-
bers, there is a large gap between the known lower bounds, which are exponential,
and the known upper bounds, which are given by a tower of twos (see Sections 3.2
and 3.3).

Rather than with asymptotic bounds, in this thesis we concern ourselves with the
exact computation of such van der Waerden numbers. Computing them is, after the
graph isomorphism problem, the second computational problem with unknown com-
plexity status we investigate. More precisely, we deal with the more general problem
of computing mixed van der Waerden numbers, for which the size of the arithmetic
progression in consideration is allowed to vary among the parts. Upper bounds for the
running times of contemporary algorithms depend on the value of the computed mixed
van der Waerden number. In particular our available upper bounds on the running
times range somewhere between linear and a tower of twos. This huge uncertainty in
the running times exists despite the fact that the number of substructures of interest,
namely the arithmetic progressions within a set of consecutive integers, is polynomi-
ally bounded in the size of the set. It also exists despite the fact that progressions
of maximal length can easily be found in polynomial time, (see Section 3.5). (This
is in contrast to the detection of cliques in a graph, with which we deal in the next
chapter).

We commence with basic definitions in Section 3.1 and review available algorithms
in Sections 3.6 and 3.7. In Section 3.8 we then introduce a new view of colored
progressions, and, using this view, design an algorithm that computes mixed van der
Waerden numbers. With the new wildcards algorithm, for the case where consecutive
integers are partitioned into 2 parts, we verify all but one known mixed van der

89

3 Van der Waerden numbers

Waerden number. For the case of at least three parts, our algorithm outperforms
previously developed algorithms. For this case all previously known and two new mixed
van der Waerden numbers are computed. The numbers are provided in Section 3.4.

3.1 Van der Waerden numbers

Ramsey theory in general deals with the necessity of the occurrence of certain sub-
structures, when a larger structure is partitioned into finitely many parts. In this
chapter we deal with the branch of Ramsey theory that is concerned with integers,
more precisely we deal with colorings of integers. We commence with the necessary
background essential to define the van der Waerden numbers. All of this can be found
in Landman and Robertson’s book addressing Ramsey theory on the integers [81]. For
the sought van der Waerden numbers, the specific substructure is that of an arithmetic
progression:

Definition 31 (arithmetic progression). A k-term arithmetic progression with
gap d is a set of integers of the form {a, a + d, . . . , a + (k − 1) · d} with a ∈ Z and
k, d ∈ {1, 2, . . .}.

The positive integer k, the number of terms in a progression, is called the length of
the progression. Two progressions intersect if they intersect as sets.

We say that two arithmetic progressions given by {a, a + d, . . . , a + (k − 1) · d} and
{b, b + d′, . . . , b + (k′ − 1) · d′} aim at the same term if a + k · d = b + k′ · d′, i.e., were
both progressions extended by one additional term, they would be extended by the
same integer. Figure 3.1 depicts these definitions.

Throughout this chapter we consider maps from subsets S ⊆ N of the non-negative
integers to a finite set C. In analogy to the colored graphs (see Definition 2), we
define such a map χ : S → C as a coloring of the integers in S. We say the coloring
has length |S|. The set C is called the set of colors, and is often given by {1, . . . , c}.
Any coloring with |C| = c colors is a c-coloring. Under a given coloring χ an arithmetic
progression is monochromatic if the restriction of χ to the progression is constant, i.e.,
all terms of the progression have the same color. Figure 3.1 also depicts a 2-coloring
of the integers with color set {0, 1}. One of the progressions shown is monochromatic.

Van der Waerden’s theorem asserts that any coloring of the integers with finitely
many colors induces monochromatic arithmetic progressions of arbitrary length.

An equivalent formulation of van der Waerden’s theorem colors sets of consecutive
integers (the fact that the two formulations are equivalent can be seen by an application
of the compactness principle [51]):

Theorem 19 (van der Waerden’s theorem [van der Waerden [126](1927)]).
For all positive integers k, c ∈ {1, 2, . . .} there is a positive integer n such that any
c-coloring χ : {1, . . . , n} → {1, . . . , c} forms a k-term monochromatic arithmetic pro-
gression (with arbitrary gap).

90

3.1 Van der Waerden numbers

. . . 011110110101010001110 . . .

AP

AP ′

. . . χ(i)χ(i + 1) . . . χ(i + 20) . . . =

Figure 3.1: The figure shows parts of a coloring χ : N → {0, 1}. It also shows AP, a
6-term arithmetic progression with gap 2, and AP′ a 4-term monochromatic arithmetic
progression with gap 5. The progressions intersect in term 2 of AP and term 3 of AP′.
Both progressions aim at the same position, as indicated by the dashed lines.

In [50] Graham and Rothschild provide a concise proof of van der Waerden’s theo-
rem. In the next subsection, we describe a variant of their proof that provides a crude
recursive upper bound.

The smallest number w ≤ n, denoted w(k; c), for which the conclusion of the the-
orem holds is called the van der Waerden number for c colors and progressions of
length k. These numbers generalize to the case, in which the considered length k of
the progression may vary with the color:

Definition 32 (mixed van der Waerden number). For any c ∈ {1, 2, . . .} and
any sequence k1, . . . , kc of positive integers define the mixed van der Waerden number
w(k1, . . . , kc; c) to be the least integer w, for which any coloring of {1, . . . , w} contains,
for some t ∈ {1, . . . , c}, a monochromatic arithmetic progression of length kt in color t.

The mixed van der Waerden numbers generalize the van der Waerden numbers, in
particular w(k; c) = w(k, . . . , k; c), (where k is repeated c times on the right side of the
equation). We frequently refer to the mixed van der Waerden numbers simply as van
der Waerden numbers. Since for any k′ ≤ kt any coloring that contains a monochro-
matic arithmetic progression of length kt in color t also contains a monochromatic
arithmetic progression of length k′ in color t, for a fixed number of colors c the mixed
van der Waerden numbers are monotone in every parameter kt.

Given parameters c and k1, . . . , kc, we say that a c-coloring of a set of integers
is proper, if for any color t ∈ {1, . . . , c} it contains no monochromatic arithmetic
progression of length kt. Such a proper coloring is also called a (k1, . . . , kc; c)-coloring.

We now prove a first upper bound for the van der Waerden numbers.

3.1.1 Existence of van der Waerden numbers

In this subsection we develop a coarse recursive upper bound for the van der Waerden
numbers, and thereby also proof their existence. The proof is essentially taken from
the book on Ramsey theory by Graham, Rothschild and Spencer [51]. We turn this
proof into a constructive version, that yields a doubly recursive bound. We generalize
the van der Waerden numbers in order to facilitate the proof:

Definition 33. For k, c, t ∈ {1, 2, . . .} let B(k, c, t) be the minimum natural num-
ber, such that any c-coloring of {1, . . . , B(k, c, t)} yields an arithmetic progression of

91

3 Van der Waerden numbers

length k or it yields t progressions of length k− 1 monochromatic in t different colors,
which aim at the same next term contained in {1, . . . , B(k, c, t)}.

We observe that B(k, c, c) = w(k; c): By definition any coloring of {1, . . . , w(k; c)}
contains an arithmetic progression of length k, and therefore B(k, c, c) ≤ w(k; c). It
remains to show that B(k, c, c) ≥ w(k; c). For this it suffices to show that any coloring
of {1, . . . , B(k, c, c)} contains an arithmetic progression of length k. By definition, such
a coloring contains an arithmetic progression of length k or there are c progressions
of length k − 1 in c different colors that aim at the same position i. This position i is
colored with j say, then there is a (k − 1)-term progression in color j which, together
with position i, forms a monochromatic arithmetic progression of length k. Therefore
B(k, c, c) ≥ w(k; c).

For t > c we observe that B(k, c, t) = w(k; c): Indeed in case t > c there cannot
be t progressions all colored differently, thus the definitions of B(k, c, t) and w(k; c)
coincide.

We now prove a recursive upper bound on the numbers B(k, c, t):

Theorem 20 (van der Waerden recursion). For the numbers B(k, c, t) we get the
following recursive bounds:

B(k, c, t) ≤ B(k, cB(k,c,t−1), 1) ·B(k, c, t− 1) (3.1)

B(k + 1, c, 1) ≤ k

k − 1
(B(k, c, c)− 1) + 1 (3.2)

B(1, c, t) = 1 (3.3)

B(2, c, t) = min {c, t}+ 1 (3.4)

B(k, c, t) = B(k, c, c), if t ≥ c (3.5)

Proof. We begin by proving Inequality 3.1: Assume χ is a c-coloring of the integer set
S = {1, . . . , B(k, cB(k,c,t−1), 1) ·B(k, c, t− 1)}. Divide the set S into B(k, cB(k,c,t−1), 1)
blocks B1, . . . , BB(k,cB(k,c,t−1),1) of B(k, c, t − 1) consecutive integers each. There are

cB(k,c,t−1) ways to color each block with c colors. If one of these blocks contains a
monochromatic progression of length k, we are done. Otherwise we consider the pos-
sible ways in which a block may be colored. We say two blocks are equally colored
if for every ` ∈ {1, . . . , B(k, c, t − 1)} the `-th elements of both blocks have the same
color. We have B(k, cB(k,c,t−1), 1) blocks colored in cB(k,c,t−1) colors. By the defini-
tion of B(k, cB(k,c,t−1), 1), there must be an arithmetic progression of length k − 1 of
equally colored blocks, Bi1 , . . . , Bik−1

say. Since no block contains a monochromatic
arithmetic progression of length k, in each of these blocks Bi there are t− 1 colordis-
tinct monochromatic progressions pi

1, . . . , p
i
t−1 aiming at a term aBi

. Since the blocks
Bi1 , . . . , Bik−1

are equally colored, we may chose these progressions with the same color
and the same relative position in each block. Since the blocks Bi1 , . . . , Bik−1

form an
arithmetic progression, the terms aBi1

, . . . , aBik−1
form a monochromatic progression

of length k − 1. This progression aims at some position a say.
We claim that there are t monochromatic progressions of different colors that aim at

position a: For j ∈ {1, . . . , t−1} consider the progression that consists of the first term

92

3.1 Van der Waerden numbers

of pi1
j in block Bi1 , the second term of pi2

j in block Bi2 , up to the (k−1)-st term, which

is the (k − 1)-st term of p
ik−1

j in Bik−1
. The set of these positions forms a progression

aiming at a. This way we obtain for any j ∈ {1, . . . , t − 1} a progression that aims
at a. In total we obtain t− 1 progressions aiming at a, in addition to the progression
{aBi1

, . . . , aBik−1
} which also aims at a. All t progressions are monochromatic in a

different color, since the progressions pi
j aim at a position in {aBi1

, . . . , aBik−1
}. This

shows our claim, and by the definition of B(k, c, t) we conclude the first inequality.

To prove Inequality 3.2 we note that since B(k, c, c) = w(k; c), shown prior to
the theorem, any coloring of the set {1, . . . , B(k, c, c)} contains a monochromatic
arithmetic progression of length k. It suffices therefore to see that if an arithmetic
progression {a, a + d, . . . , a + (k − 1) · d} of length k is contained within the first
n = B(k, c, c) positive integers, then its extension to the right, i.e., the progression
{a, a + d, . . . , a + (k − 1) · d, a + k · d}, is contained in the first k

k−1(n− 1) + 1 positive

integers: The gap of a progression of length k in {1, . . . , n} is at most n−1
k−1 . Thus the

last position of the extended progression is at most n−1
k−1 + n = k

k−1(n− 1) + 1.

Finally Equations 3.3 and 3.4 are trivial and we have argued Equation 3.5 right
before the theorem.

One may slightly improve the bound of van der Waerden recursion by easy modifi-
cations:

• The blocks into which the set S is divided do not have to be disjoint.

• We do not require that the blocks Bi1 , . . . , Bik−1
are colored exactly in the same

way. Rather, the only requirement is that the progressions pj we employ for the
proof are at the same position and in the same color. With at most ct ·B(k, c, t)t

ways we can ensure that t− 1 progressions aim at the same position and specify
the involved colors, since such a situation can be described by four properties:
By pointing out the position aimed at, the gaps of the involved progressions, the
colors of the progressions and the color of the position aimed at, the situation is
sufficiently specified.

With these modifications inequality 3.1 of the recursion translates into

B(k, c, t) ≤ B
(
k, ct ·B(k, c, t− 1)t, 1

)
+ B(k, c, t− 1)− 1.

We can modify this inequality even further: The gap of the progression formed
during step j of this procedure can be at most B(k, r, j). Therefore we get:

B(k, c, t) ≤ B

k, ct ·B(k, c, t− 1) ·

t−1∏

j=1

B(k, c, j), 1

+ B(k, c, t− 1)− 1.

93

3 Van der Waerden numbers

Still, being a double induction, these recursive bounds yield an upper bound of
ackermaniac growth. Following [51] we say a function grows ackermaniac if it asymp-
totically grows as fast as the Ackermann function. We do not go into further detail as
better upper bounds for the van der Waerden numbers are known. We present them
next.

3.2 Upper bounds for van der Waerden numbers

The ackermaniac upper bound resisted improvement attempts for over 60 years, until
in 1988 Shelah [118] showed that the van der Waerden numbers are primitive recursive.
The proof is elementary combinatorial and insightful to read. A very illustrative and
accessible exposition can be found in [51]. More specifically the proof bounds the
numbers w(k; c) by a function that lies in the fifth level of the Grzegorczyk hierarchy.

At present the best known upper bounds are given by Gowers [49]. His analytical
proof of Szemerédi’s theorem shows that

w(k; c) ≤ 22c2
2(k+9)

.

This bound on the van der Waerden numbers also gives us, using the brute force
algorithm, an upper bound on the running times necessary to compute the num-
bers exactly. The brute force algorithm for n ∈ N enumerates all proper colorings
of {1, . . . , n}. For each n there are cn colorings in total. The smallest n for which
there is no coloring that avoids monochromatic progressions is the sought van der
Waerden number.

3.3 Lower bounds for van der Waerden numbers

We now consider lower bounds for the van der Waerden numbers. A weak lower bound
can readily be obtained with the first moment probabilistic method [2]: The basic idea
is to randomly color the integers in some interval {1, . . . , n} and then show that the
expected number of monochromatic arithmetic progressions is less than 1. In this
case one may conclude that there exists a result of the random coloring experiment,
i.e., a coloring which contains no arithmetic progression. Alternatively the same lower
bounds can be obtained with the incompressibility method:

Theorem 21 (lower bound for van der Waerden numbers [Erdős, Rado [37]
(1952)]). For the van der Waerden number w(k; c), (i.e., for k-term monochromatic
arithmetic progressions of integers colored with c colors), the following inequality holds:

w(k; c) >
√

k · c k
2
−1.

Proof. We formulate the proof in the setting of strings: In this setting a coloring
χ : {1, . . . , n} → {1, . . . , c} corresponds to the string χ(1), . . . , χ(c) that consists of
characters in the color set {1, . . . , c}.

94

3.3 Lower bounds for van der Waerden numbers

We use the basic fact, that strings cannot be compressed: There is no injective map
from the set of strings of length n to the set of strings of length n′ for any n′ < n.
We define an injection from strings of length n = w(k; c) to strings of some length n′.
We therefore conclude that n′ ≥ n and use this fact to bound the van der Waerden
number w(k; c).

Let s be a string of length n = w(k; c). By definition, s contains a k-term monochro-
matic arithmetic progression. (In the setting of strings, a monochromatic arithmetic
progression is a set of positions in the string that forms an arithmetic progression
which only consists of one character.) Number all arithmetic progressions of length k,
that occur in a string of length n. There are at most n2/k such progressions. Us-
ing its number encode one monochromatic progression in s (which must exist), by a
string e with dlogc(n

2/k)e characters. Delete it from the string and attach the en-
coding plus the character t of the progression, using 1 additional character, to the
front of the string. Summarizing, we obtain a new string teŝ, where ŝ is obtained
from s by deleting the characters that are contained in the monochromatic arithmetic
progression.

Using the same method, we map all strings of length n to a new string of length n′

for some fixed integer n′. The obtained mapping is injective, since the operation can
be reversed. Therefore, the resulting strings are no shorter than the strings we start
with. We get:

n′ = 1 + dlogc(n
2/k)e+ n− k ≥ n,

solving for n yields:

w(k; c) = n >
√

k · c k
2
−1.

Instead of mapping all strings s, we may use a string that is incompressible, in the
sense of Kolmogorov complexity. We do not go into detail, see Li’s and Vitányi’s intro-
duction to Kolmogorov complexity [83] for a broad treatment of the theory, including
the incompressibility method.

3.3.1 Lovász’ Local Lemma in the context of van der Waerden numbers

A better lower bound than the one just presented may be obtained via Lovász’ Local
Lemma. In this section e ≈ 2.71828 denotes the Euler constant.

Theorem 22 (Lovász’ Local Lemma (symmetric version) [Erdős, Lovász [36]
(1975)]). Let A1, . . . , An be a series of events in a probability space, such that for
each 1 ≤ i ≤ n the event Ai is mutually independent of all but d ∈ N of these events,
and such that the probability of each Ai is at most p ∈ [0, 1]. If e · d · p ≤ 1, then there
is a positive probability that none of the events Ai occur.

An application of Lovász’ Local Lemma improves on the previously stated lower
bound for van der Waerden numbers. We obtain:

95

3 Van der Waerden numbers

Theorem 23 (improved lower bound for van der Waerden numbers [51]).
For the van der Waerden number w(k; c), (i.e., for k-term monochromatic arithmetic
progressions of integers colored with c colors), the following inequality holds:

w(k; c) >
ck

eck
(1 + o(1)).

In [117] we show how the same bound (up to a factor of 2) can be obtained by a
repeated application of the encoding step used in the proof of Theorem 21.

Szabó [123] uses a variant of Lovász’ Local Lemma and non-trivially exploits the
fact that most intersecting progressions only meet in one common point. He shows
that for any ε > 0 there exists a k0(ε), such that for all k ≥ k0

w(k; 2) ≥ 2k

kε
.

Berlekamp [12] uses finite fields to show that for any prime p

w(p + 1; 2) ≥ p2p.

Brown, Landman and Robertson [20] show further asymptotic bounds in case some
parameters are fixed. Moser [105] recently proves a constructive version of Lovász’
Local Lemma, with which one can obtain proper colorings (of essentially the same size
as given by the bound). These colorings may then serve as deterministic certificates
for lower bounds. Still, algorithms specificly designed to supply lower bounds for van
der Waerden numbers yield stronger lower bounds than general techniques.

Due to their monotonicity, upper and lower bounds for van der Waerden numbers
can be obtained from the bounds mentioned in this and the previous section. We now
consider exact values of mixed van der Waerden numbers.

3.4 Known mixed van der Waerden numbers

Few exact values of mixed van der Waerden numbers are known. Recall that by Defi-
nition 32 the integer w(k1, . . . , kc; c) is the mixed van der Waerden number, for which
arithmetic progressions may not have length kt if the progressions are monochromatic
in color t.

For c = 1 we conclude from the definition that w(k1; 1) = k1 + 1. For an arbitrary
number of colors c and any choice of lengths k1, . . . , kc, we conclude directly from
the definition that w(k1, . . . , kc, 1; c + 1) = w(k1, . . . , kc; c). Furthermore under any
permutation π of the colors {1, . . . , c}, the van der Waerden number does not change,
i.e., w(k1, . . . , kc; c) = w(kπ(1), . . . , kπ(c); c). We therefore always sort the lengths such
that k1 ≤ . . . ≤ kc and restrict the entries to be greater than 1.

For van der Waerden numbers of the form w(2, . . . , 2, kc; c), there exists an explicit
formula for cases where k is large enough (where large enough is a function depending
on c), as shown by Culver, Landman and Robertson [80].

96

3.4 Known mixed van der Waerden numbers

w(k1, k2; 2)

k1 ↓k2→ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 6 7 10 11 14 15 18 19 22 23 26 27 30 31 34

3 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279

4 18 35 55 73 109 146

5 22 55 178 206

6 32 73 206 1132

w(2, k2, k3; 3)

k2 ↓k3→ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 7 11 15 16 21 22 25 29 33 34 39 40 43 47 51

3 14 21 32 40 55 72 90 108 129 150 171 201

4 21 40 71 82 119

5 32 71 180

w(3, k2, k3; 3)

k2 ↓k3→ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 27 51 80

4 51 89

w(2, 2, k3, k4; 4)

k3 ↓k4→ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 8 12 20 21 28 29 32 34 44 45 52 53 56 58 68

3 17 25 43 48 65 83 99 119 141

4 25 53 75 93

w(2, 3, k3, k4; 4)

k3 ↓k4→ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 40 60 86

w(3, 3, k3, k4; 4)

k3 ↓k4→ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 76

Figure 3.2: For c ≤ 4 the figure shows the known mixed van der Waerden numbers
w(k1, . . . , kc; c) for 2 ≤ k1 < . . . < kc < 17 and kc > 2. With the exception of
w(6, 6; 2) = 1132, all numbers have been computed with the wildcards algorithm
explained in Section 3.8. The two numbers shown in bold were previously not known.

97

3 Van der Waerden numbers

In particular we get the explicit formula

w(2, k2; 2) =

{
2k2 − 1 if k2 is even,

2k2 if k2 is odd.

Figure 3.2 summarizes the known mixed van der Waerden numbers. These num-
bers were computed with various methods over time, with increasingly more powerful
approaches and computing machinery, by Chvátal [26], Brown [19], Stevens and Shan-
taram [121], Beeler and O’Neil [11], Beeler [10], Landman, Robertson and Culver [80],
Kouril [73] and Kouril and Paul [74]. Recently Ahmed [1] has posted mixed van
der Waerden numbers, which are also included in the figure. With the exception
of w(6, 6; 2) = 1132 all numbers have been verified with the wildcards algorithm (see
Section 3.8).

3.5 Detecting monochromatic arithmetic progressions

As mentioned in the beginning of this chapter, the structure of the underlying object,
when computing van der Waerden numbers, i.e., that of arithmetic progressions, is
simple. The number of arithmetic progressions contained in {1, . . . , n} is at most
cubic in n, as each progression is well defined by its first two terms and its length.

Erikson [38] uses a dynamic programming approach to obtain an algorithm that
computes the longest arithmetic progression within a set of n integers in O(n2) time.
There is a matching lower bound of Ω(n2) in the 3-linear decision model for any
algorithm that computes the longest arithmetic progression. Erikson’s algorithm can
also be used to determine whether a given coloring of the set {1, . . . , n} contains a
monochromatic arithmetic progression of a certain color and length. We describe such
an adaption next.

The algorithm proceeds as follows: Given a certain color t ∈ {1, . . . , c} it computes
iteratively for every pair i, j ∈ {1, . . . , n} with i < j the value L(i, j), the length of the
longest monochromatic arithmetic progression in color t with first term i and second
term j. (If position i is not colored in t then L(i, j) = 0. If position i is colored in t,
but position j is not colored different in t then L(i, j) = 1). The key observation is the
following: Assume that j, d are positive integers such that j − d, j, j + d ∈ {1, . . . , n}.
Then L(j− d, j) = L(j, j + d) + 1, if all three integers j− d, j, j + d are colored with t.
Algorithm 7, very similar in fashion to Erikson’s algorithm, runs a quadratic loop over
position j and gap d = j − i to compute these values L(i, j) = L(j − d, j).

It is also possible to modify the algorithm, so that it computes the longest monochro-
matic progression for all colors simultaneously.

Erikson also explains how to improve this algorithm, if the length ` of the longest
arithmetic progression is relatively large compared to n, the number of integers that
are colored. Since in all our applications the van der Waerden number n = w is large
in comparison to the lengths of the progressions ` = kt, this is not of use to us.

Maintaining the values L(i, j) avoids a repeated recomputation of arithmetic pro-
gressions. In particular the culprit algorithm, which we consider next, can benefit

98

3.6 The culprit algorithm

Algorithm 7 Longest progression of a certain color

Input: A coloring χ of {1, . . . , n} and a color t
Output: The length ` of the longest arithmetic progression in color t.
1: `← 0
2: for j = n down to 1 do
3: if χ(j) = t then
4: `← max{`, 1}
5: end if
6: for d = 1 to j − 1 do
7: if χ(j − d) 6= t then
8: L(j − d, j)← 0
9: else if χ(j) 6= t then

10: L(j − d, j)← 1
11: else if j + d ≤ n and χ(j + d) = t then
12: L(j − d, j)← L(j, j + d) + 1 // L(j, j + d) has previously been computed
13: else // j + d > n or χ(j + d) 6= t
14: L(j − d, j)← 2
15: end if
16: `← max{`, L(j − d, j)}
17: end for
18: end for
19: return `

from this maintaining the values.

3.6 The culprit algorithm

We now turn to algorithms that compute mixed van der Waerden numbers. Sup-
pose we want to compute the van der Waerden number w(k1, . . . , kc; c). A simple
brute force method to determine a van der Waerden number w has to try cw color-
ings of {1, . . . , w}. This rapidly becomes infeasible. The technique of coloring initial
segments and discarding them, whenever they contain a monochromatic arithmetic
progression that is too long, reduces the number of colorings that have to be con-
sidered, but still yields infeasible running times for all but a few van der Waerden
numbers.

The culprit algorithm, as first appeared in [11] and described in [81], improves over
the brute force algorithm by making use of the following observation: Assume we know
a lower bound wlb for the van der Waerden number we are about to compute. We also
assume that an initial interval {1, . . . , i} with i ≤ wlb is already colored. If there is a
position i′ with i < i′ ≤ wlb such that for every color t ∈ {1, . . . , c} a monochromatic
progression of length kt − 1 aims at that position i′, then our current initial coloring
cannot be extended past position i′ − 1. (Recall that, as defined in Subsection 3.1,

99

3 Van der Waerden numbers

a progression {a, a + d, . . . , a + (k − 1) · d} aims at position a + k · d). Position i′

is called the culprit, as it does not allow the coloring to continue. Algorithm 8,
using this observation, recursively enumerates all proper colorings. It continuously
updates its lower bound whenever a proper coloring exceeding the current bound
has been found. For illustrative purposes the algorithm is specialized to the case
k = k1 = k2 = . . . = kc. It is easily adapted to the general case. Besides the number
of colors c and the length k as natural inputs, it takes as input a lower bound wlb and an
initial interval {1, . . . , i} that has been properly colored with a coloring χ. To compute
w(k; c) = w(k, k, . . . , k; c), the algorithm is called with parameters (0, χ, 0, c, k), where
χ : {} → {1, . . . , c} is the coloring of the empty set.

Algorithm 8 Culprit algorithm [81]

Input: (i, χ, wlb, c, k): A proper coloring χ of {1, . . . , i}, a lower bound wlb, the num-
ber of colors c and a desired length k.

Output: wlb is the largest integer for which there exists an extension of χ to
{1, . . . , wlb − 1} avoiding monochromatic progressions of length k.

1: for t = 1 to c do
2: χ(i + 1)← t
3: if there is no monochromatic progression of length k in {1, . . . , i + 1} and there

is no culprit i′ ∈ {i + 2, . . . , wlb} then // i.e, a position aimed at by c
differently colored monochromatic arithmetic progression of length k − 1

4: wlb ← max{wlb, i + 1}
5: wlb ← Culprit algorithm(i + 1, χ, wlb, c, k)
6: end if
7: end for
8: return wlb

3.7 Kouril’s and Paul’s SAT technique

In [74] Kouril and Paul use SAT techniques, previously developed in Kouril’s thesis [73],
to compute the van der Waerden number w(6, 6; 2). (Earlier [33] also describes ap-
plicability of SAT solvers to determine mixed van der Waerden numbers.) The main
technique is to encode the requirement that monochromatic arithmetic progressions
must be avoided into a Boolean expression in conjunctive normal form. For every
position i ∈ {1, . . . , n} and every color t ∈ {1, . . . , c}, a variable xi,t with values in
{true, false} determines whether i is colored with color t. Clauses are introduced to
guarantee that for every i exactly one xi,t is true. Furthermore, for every progression
(of the length in question) a clause guarantees that the positions cannot all be colored
with the same color. In case only two colors are available, this clause requires that
every color must appear in one of the variables of the clause. Given an initial color-
ing of the variables, one may invoke a SAT solver to determine whether there is an
extension of a certain length. The SAT solver used for the computation of w(6, 6; 2)

100

3.8 The wildcards algorithm for mixed van der Waerden numbers

is restricted to inferences and contradictions. In the terminology of SAT problems the
culprit algorithm from the previous section does exactly this: It checks whether there
are inferences that contradict each other.

The second major ingredient in the method, referred to as preprocessing, is the
determination of a set of unavoidable patterns, of which at least one must occur
within any feasible coloring of an interval of integers of sufficient length.

3.8 The wildcards algorithm for mixed van der Waerden

numbers

We now present an algorithm that computes, for any number of colors c ∈ {1, 2, . . .}
and arbitrary lengths k1, . . . , kc ∈ {1, 2, . . .}, the mixed van der Waerden number
w(k1, . . . , kc; c). Throughout this section we fix the parameters c and k1, . . . , kc. We
call the algorithm wildcards algorithm because of the main idea that we exploit: For
many non extremal colorings, (i.e., colorings of a set of consecutive integers shorter
than the maximal possible length), there are many positions that may be recolored
with a different color, without introducing a monochromatic arithmetic progression.
We use wildcards as placeholders to indicate that the color of these positions is not
pinpointed by the coloring of the other positions. (In the words of satisfiability, for two
colors this is a form of delayed evaluation.) To handle these placeholders, we define
varicolorings:

Definition 34 (varicoloring of integers). A map λ : {1, . . . , n} → P({1, . . . , c})\{},
i.e, a map into the power set of the colors, is said to be a varicoloring of the interval
{1, . . . , n} with c colors.

For disambiguation we refer to the elements of {1, . . . , c} as ordinary colors and
refer to maps into {1, . . . , c} as ordinary colorings. We usually denote ordinary colors
by t and varicolors by T . When presenting examples we use two colors, call them red
and blue, and refer to the varicolor {red, blue} as magenta. In contrast to the concept
of varicolorings, a multicoloring is a coloring (either a varicoloring or an ordinary
coloring) for which c > 2, i.e., a coloring that is allowed to use more than two ordinary
colors.

Definition 35 (coarser, finer, specification). Given two varicolorings

λ, λ′ : {1, . . . , n} → P({1, . . . , c}) \ {}

we say that λ is coarser than λ′, (and λ′ is finer than λ′) if

∀i ∈ {1, . . . , n} : λ′(i) ⊆ λ(i).

In this case we also say that λ specifies to λ′.

Further, we say that a set of varicolorings L covers another set of varicolorings L′,
if L is an upper bound for L′, i.e., every element in L′ is a specification of some element
in L.

101

3 Van der Waerden numbers

A varicoloring λ is said to be proper with respect to the color lengths k1, . . . , kc if no
specification of λ to an ordinary coloring is improper, i.e., if it does not specify to an
ordinary coloring that contains a monochromatic arithmetic progression of length kt in
some color {t}, with t ∈ {1, . . . , c}. (Here we implicitly identify the ordinary colorings
with the varicolorings that use only varicolors that are sets of size 1.) The set of
varicolorings forms a partial order in which the proper varicolorings form a suborder.
The minimal elements are the ordinary colorings.

A varicoloring thus models a set of ordinary colorings. The proper varicolorings are
the varicolorings of interest to us, since they simultaneously model proper ordinary
colorings. By handling several ordinary progressions simultaneously, we reduce the
amount of work carried out by an algorithm that computes van der Waerden numbers.

The notion of varicolorings is applicable to any category of colored objects. Since we
do not consider isomorphisms between colorings of integers (which could be reversal
or permutation of colors), we do not require this categorical view. We postpone this
view to Chapter 4.

With the given terminology we may describe the wildcards algorithm: The algorithm
iteratively for n ranging from 1 to w, the sought van der Waerden number, constructs
an antichain Ln (i.e., a set of pairwise incomparable elements) in the partially ordered
set of proper varicolorings of {1, . . . , n}. The constructed list Ln covers all ordinary
proper colorings of {1, . . . , n}. In order to keep the size of this antichain small, we only
include maximal proper varicolorings, i.e, varicolorings that are maximal among the
set of proper varicolorings, into the list. (Taking maximal elements is only a heuristic
strategy. It is not optimal since the antichain of minimal size that covers all proper
ordinary colorings may contain colorings that are not maximal.)

When we extend a proper varicoloring λ of {1, . . . , n} to a proper varicoloring λ′

of {1, . . . , n + 1}, it suffices to check that no specification of λ′ forms monochromatic
arithmetic progressions that contains position n + 1: If λ′ were to specify to an ordi-
nary coloring that contains a monochromatic arithmetic progression within {1, . . . , n},
then λ would also specify to an improper ordinary coloring.

Given a varicoloring λ : {1 . . . , n} → P({1, . . . , c}) \ {}, we define for any position
i ∈ {1, . . . , n} and varicolor T ⊆ {1, . . . , c} the recoloring of λ of position i with color T
as the varicolor λi→T : {1 . . . , n} → P({1, . . . , c}) \ {} given by

λi→T (j) :=

{
λ(j) if j 6= i,

T if j = i.

We define two properties a potential color at a certain position in a given varicoloring
may have. They are depicted in Figure 3.3:

Definition 36 (prohibited, innocuous). Let λ : {1, . . . , n} → {1, . . . , c} be a vari-
coloring. Let t ∈ {1, . . . , c} be an ordinary color, i ∈ {1, . . . , n} a position and λi→{t}
be the recoloring of position i with color {t}.

• We say the ordinary color t is prohibited at position i if λi→{t} contains a
monochromatic arithmetic progression of color {t} that contains position i.

102

3.8 The wildcards algorithm for mixed van der Waerden numbers

AP

{2} ?{1,2} {1}{1} {2} {2}

i

Figure 3.3: For two colors, (i.e., c = 2), and lengths 3, (i.e., k1 = k2 = 3), the figure
depicts a varicoloring for which blue = 2 is prohibited at position i: If position i is
recolored with blue then progression AP is monochromatic in blue. On the other hand,
red = 1 is innocuous for position i.

• We say that color t is innocuous at position i, if λi→{t} does not specify to any
coloring which contains a monochromatic arithmetic progression of color {t} that
contains position i.

Given a list Ln of proper varicolorings of {1, . . . , n} which covers all ordinary proper
colorings of {1, . . . , n}, we now explain how to construct a list Ln+1 of proper varicol-
orings of {1, . . . , n + 1} which covers all ordinary proper colorings of {1, . . . , n + 1}.

For every varicoloring λ ∈ Ln, we construct its extension: We define λ′ := λn+1→C

as the extension of λ to the set {1, . . . , n + 1} defined by

λn+1→C(i) :=

{
C if i = n + 1

λ(i) if i < n + 1,

where C = {1, . . . , c} is the set of colors. If λ′ is proper, then we insert it into the
list Ln+1. Otherwise, i.e. if λ′ is improper, we find a set of specifications of λ′ which
covers all proper ordinary colorings that are covered by λ′. These specifications are
then added to the list Ln+1. We find the specifications by performing a backtracking:
If λ′ is improper, we first remove prohibited colors: Suppose position i is colored
with color T , which contains a color t ∈ T that is prohibited for position i. We
recolor position i by removing t and obtain the new varicoloring λ′

i→T\{t}. After we

repeatedly remove prohibited colors, we suppose there is no prohibited color in λ′ (for
any position). If λ′ is now proper we add it to the list Ln+1. Otherwise there are two
possibilities. Either λ′ does not cover any proper ordinary coloring, in which case we
discard λ′, or there is a position i ∈ {1, . . . , n + 1} colored with varicolor T say, for
which the following holds: The set T contains at least two ordinary colors and not all
ordinary colors contained in T are innocuous at position i. If such a position i exists,
we branch by splitting T into one part that contains the innocuous colors, and several
parts that each consist of one color that is not innocuous: Let T ′ ⊂ T be the set of
innocuous colors in T . We construct the set Λ :=

{λ′
i→T ′} ∪ {λ′

i→{t} | t ∈ T \ T ′}.
The varicolorings in the set Λ cover all ordinary proper colorings that are covered

by λ′. We add all proper varicolorings in Λ into the list Ln+1. For all improper

103

3 Van der Waerden numbers

varicolorings in Λ we recurse, i.e. we first remove the prohibited colors, then possibly
branch and so on.

Since in every recursive step we split a set of colors, this process ends. In the end we
obtain a list Ln+1 of proper varicolorings of {1, . . . , n + 1} which covers all ordinary
proper colorings of {1, . . . , n + 1}.

Algorithm 9 describes how to perform the branching in detail. It takes as input a
list Ln of proper varicolorings of length i and produces a list Ln+1 that covers all proper
extensions of the varicolorings in Ln. The algorithm is called with input L0 = {λε},
where λε is the coloring of the empty set.

Algorithm 9 Wildcards algorithm

Input: A set of colors C = {1, . . . , c} and a set Ln of varicolorings of length n.
Output: A set Ln+1 of proper varicolorings of length n + 1, covering all proper ordi-

nary colorings that are extensions of proper ordinary colorings covered by Ln, i.e.,
if λi is a proper ordinary specification of an element in Ln and λn+1 is an ordinary
proper extension of λn, then λn+1 is a specification of an element in Ln+1.

1: Ln+1 ← {}
2: S ← {}
3: for all λ ∈ Ln do
4: S ← S ∪ {λn+1→C}
5: end for
6: while S 6= {} do
7: pick λ′ ∈ S
8: while there is a position i and an ordinary color t ∈ T := λ(i) prohibited at

position i do // remove prohibited colors
9: λ′ ← λ′

i→T\{t}
10: end while
11: if λ′ is proper then
12: Ln+1 ← Ln+1 ∪ {λ′}
13: else if there is a position i colored in T := λ(i) with |T | ≥ 2 and not all t ∈ T

are innocuous at position i then // branch
14: T ′ ← {t ∈ T | t is innocuous at position i}
15: S ← S ∪ {λi→T ′}
16: for all t ∈ T \ T ′ do
17: S ← S ∪ {λi→{t}}
18: end for
19: end if
20: end while

For every length n, the set of varicolorings Ln that we iteratively construct this way
has the favorable property that every proper ordinary coloring is finer than exactly
one of the varicolorings in Ln. In the terminology of partial orders, it is a strong
downwards antichain. Recall that a strong downwards antichain in a partially ordered

104

3.8 The wildcards algorithm for mixed van der Waerden numbers

set P is a subset of the elements which pairwise do not have a common lower bound,
i.e., a set X ⊆ P , such that

∀x, y ∈ X, x 6= y : @ z ∈ P : z ≤ y ∧ z ≤ x.

Lemma 6. For every n the set Ln of proper varicolorings forms a strong downward
antichain.

Proof. We show the statement by induction on n. The base case is trivial since L0

only contains λε, the varicoloring of the empty set. For n > 0, every varicoloring in Ln

is constructed from a varicoloring in Ln−1. If two varicolorings λn, λn
′ from Ln are

constructed from two different varicolorings λn−1, λn−1
′ in Ln−1, then the restrictions

to {1, . . . , n− 1} of λn and λn
′ are specifications of λn−1 and λn−1

′ , respectively. Since
by induction λn−1 and λn−1

′ do not have a common lower bound, i.e., an element finer
than both of them, the restrictions of λn, λn

′ , and therefore the varicolorings λn, λn
′ ,

do not have a common lower bound.

It suffices thus to show that the new varicolorings obtained by extending one spe-
cific λ ∈ Ln−1 in the step from n− 1 to n do not have a common lower bound. This is
true since whenever we branch at a position i the colors of that position are partitioned
into disjoint sets of colors. More formally, in the execution of Algorithm 9, after every
iteration of the main while loop, no two varicolorings in the set S ∪ Ln specify to the
same ordinary coloring.

Given a set Ln, it is consequently very easy to compute the number of proper
ordinary colorings of the set {1, . . . , n}. Indeed, since the elements of Ln form a strong
downward antichain, we simply sum over the number of proper ordinary colorings
covered by each individual λ ∈ Ln. To do so for each λ ∈ Ln we multiply the sizes
of the color sets of all positions. In particular Ln is empty if and only if for w, the
corresponding mixed van der Waerden number w ≤ n holds.

The algorithm in this form can already quickly compute most known mixed van
der Waerden numbers. To enable the algorithm to compute more van der Waerden
numbers, we tweak the algorithm and find a fast implementation.

3.8.1 Incorporating culprits in the wildcards algorithm

To improve efficiency we incorporate the culprit technique from Section 3.6 into the
wildcards algorithm. As before, the algorithm needs to maintain a lower bound that
is continuously updated. If we detect that there is a position i ≤ wlb aimed at by a
monochromatic arithmetic progression of length k−1, in every ordinary color, we con-
clude, that the current varicoloring cannot be extended beyond the lower bound. We
thus do not consider any extensions of the current varicoloring. (As usual a monochro-
matic progression must be monochromatic in an ordinary color, i.e., all positions must
be equal to the same color set of size one.)

The wildcards algorithm properly colors increasingly large initial intervals of the
form {1, . . . , n}. Given a lower bound wlb, we may also start to color intermediate

105

3 Van der Waerden numbers

intervals {n′, . . . , n} with 1 ≤ n′ ≤ n ≤ wlb, and extend these to larger and smaller
integers. The advantage of this is that we may use the culprit argument toward both
directions, which further reduces the running time.

Instead of placing the intermediate coloring at some fixed position within the larger
colorings, we may vary its position in every instance. Instead of considering all vari-
colorings in the list Ln−n′+1, we consider a smaller list Ln−n′+1. Intuitively, we shift
the positions by s and color the set {n′+s, . . . , n+s} for varying s ∈ Z. The technique
opens a diversity of new possibilities. For example, as mentioned in Section 3.7, we
can make use of unavoidable patterns. This brings us to what we call preprocessing.

3.9 Preprocessing techniques

By the term preprocessing, we capture the entirety of methods that decrease the search
space by “combinatorial reasoning.” Rather than making this notion more precise, we
give a flavor of such combinatorial arguments:

• Starting with an unavoidable subpattern: We start with a certain pattern, and
allow partial colorings to be extended to either side.

• Pruning equivalent colorings: If the lengths for two colors kt and kt′ are equal,
interchanging colors t and t′ does not change anything (e.g, coloring {1, 2, 3} with
(red, blue, red) or (blue, red, blue) yields equivalent colorings if kred = kblue). In
particular intererchanging the colors t and t′ does not change the extendibility
of a coloring. Hence, given two colorings that are equivalent under the inter-
changing of colors that correspond to equal lengths, we may dispose of one of
the colorings.

• Using known van der Waerden numbers: When computing w(k1, . . . , kc−1, kc; c),
if we know w′ = w(k1, . . . , kc−1, k

′
c; c) for some k′

c < kc, we also know that any
proper coloring must have an arithmetic progression of length k′

c monochromatic
in color c in any subinterval of length w′.

Even though these search space reductions are usually performed in advance, hence
the name preprocessing, some pruning methods may only be performed during the
execution of the main algorithm.

We now describe a specific preprocessing technique that is performed during the
execution of the main algorithm. There are three aspects to the technique, which we
gradually explain with the help of an example.

Assume we want to enumerate, i.e. explicitly construct, all (5, 5; 2)-colorings of a
certain length, say 170. (Note that w(5, 5; 2) = 178 and recall that a (5, 5; 2)-coloring
is a 2-coloring that avoids monochromatic arithmetic progressions of length 5). We
set aside for the moment the fact that our algorithm computes varicolorings and only
consider ordinary colorings. As is customary, we consider the 2-colorings as 0-1-strings,
where 0 and 1 represent the two colors used.

106

3.9 Preprocessing techniques

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 20 40 60 80 100 120 140 160 180

n
u
m

b
er

of
p
ro

p
er

co
lo

ri
n
gs

length of the coloring

(5, 5; 2)-colorings

♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦♦
♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦♦
♦♦♦
♦♦♦
♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦

♦

♦

Figure 3.4: The figure depicts the number of proper ordinary (5, 5; 2)-colorings for
lengths ranging from 1 to 177, in a logarithmic scale. We observe that for small
lengths the number exponentially increases, hits a peak, after which it exponentially
decreases. It then starts increasing again, up to the number of proper colorings of
maximal lengths 177, which is an outlier.

The first aspect of the preprocessing is that it produces restricted lists L1, . . . ,L163

of varicolorings, and then, given L163, computes a complete list L170 of varicolorings,
covering all proper ordinary colorings of length 170:

We know that in the first 5 positions color 0 must occur. Within the next 4, following
the first 0, the color 1 must occur. Thus the pattern 01 must occur within the first 9
positions.

Instead of starting with just any coloring at position 1, we might therefore insist
that our coloring starts with 01, if we allow a shift of up to 9-2 = 7: To explain
precisely what we mean by this, we first need the following definition.

Definition 37 (shifted coloring). For a varicoloring λ : {1, . . . , n}→P({1, . . . , c})\{}
and integers s, n′ ∈ N, with n′ ≥ s + n, we define the shift of λ by s within {1, . . . , n′}
as the varicoloring λs,n′ : {1, . . . , n′} → P({1, . . . , c}) given by

λs,n′(i) :=

{
λ(i− s) if i ∈ {s + 1, . . . , s + n},
{1, . . . , c} otherwise.

Informally λs,n′ is obtained by shifting λ by s and filling up with C = {1, . . . , c}.
Going back to our example, we first iteratively for n ∈ {1, . . . , 163} generate the lists

Ln that are restricted to (5, 5; 2)-colorings that start with 01. (For L1 We only consider
the coloring that colors the position 1 with 0.) Each lists Ln covers all proper ordinary

107

3 Van der Waerden numbers

colorings that start with 01. Thus we now suppose we have computed a list L163

covering all proper ordinary colorings that start with 01 of length 170 − 7 = 163.
From the list we generate the list L170 by computing for alls ∈ {0, . . . , 7} and for
all λ ∈ L163 all proper specifications of λs,170.

To explain the benefit from this indirect computation, we first need to understand
how the number of (5, 5; 2)-colorings of {1 . . . , n} changes with n.

Figure 3.4 shows the number of (5, 5; 2)-colorings of lengths 1 to 177 in a logarithmic
scale. The characteristics of the function that describes the number of proper colorings
(which are of interest to us) are roughly the same for all sets of small parameters
(k1, . . . , kc; c) (see also Figures 3.5 and 3.7): For small lengths we observe exponential
growth. The slope then levels off, until it hits a peak, after which the number of
proper colorings significantly decreases. Though the number of proper colorings then
may increase again, it never returns to the magnitude attained at the peak.

When we generate L170 with the indirect method described above, for all values n
of up to 163 we have reduced the number of colorings generated in our enumeration
by a certain fraction, since we only consider colorings that start with 01. Since there
are only few colorings of length 163 and beyond, we do not fear the extra work we
have from computing the shifted colorings λs,170.

As the values around the peak are at least by an order of magnitude larger than any
other values, when computing the mixed van der Waerden numbers we have to avoid
dealing with most colorings of lengths close to the peak.

The second aspect of our preprocessing technique explains how we can restrict our-
selves to subpattern, even if we do not know that they occur within the first few
positions of the coloring. To improve the preprocessing technique, we consider (simi-
lar to what was used by Kouril and Paul, see Section 3.7) the following: Assume we
are guaranteed that the pattern 000 occurs in all (5, 5; 2)-colorings of length 170, i.e.,
that three consecutive positions are colored with 0. Then the pattern 0001 also occurs
in all (5, 5; 2)-colorings of length 170.

Iteratively for n ranging from 1 to 170/2 = 85, we generate the lists Ln, which
consist of colorings which start with 0001 (or a truncated prefix of 0001 for n < 4).
We then allow a shift of up to 85, i.e., using the previously described technique obtain
a list L170 of colorings of length 170. Finally we construct the list L170 which consists
of all colorings in L170 and their reversals, i.e., if the string σ = σ1, . . . , σ170 is in L170

then L170 contains σ and its reversal σR = σ170, . . . , σ1. With this method even less
colorings of lengths below 85 are generated than before. Note that it is necessary to
reverse the strings, since we do not know whether the substring 000 is contained in
the first part or the second half of the string.

The third aspect improves the preprocessing technique further: Instead of start-
ing with the pattern 000, we generate all colorings (i.e., the colorings are allowed to
start with an arbitrary number of zeros). Suppose during the generation of the lists
L1, . . . ,L85, the current coloring starts with exactly ` consecutive zeros. Once we
encounter a subpattern that contains more than ` consecutive zeros, we declare the
coloring as invalid and dispose of it. In other words, we require that the coloring starts
with the maximum number of consecutive zeros, and do not consider extensions that

108

3.9 Preprocessing techniques

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
er

of
p
ro

p
er

co
lo

ri
n
gs

length of the coloring

(3, 10; 2)-colorings
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦♦
♦♦
♦♦
♦♦♦
♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦
♦
♦♦♦♦♦♦♦♦

♦
♦
♦
♦
♦
♦
♦♦
♦

♦

Figure 3.5: The figure depicts the number of proper (3, 10; 2)-colorings for lengths
ranging from 1 to w(3, 10; 2) = 97, in a logarithmic scale. We observe that the peak
is attained roughly at w(3, 10; 2)/2 = 48.5.

produce more consecutive zeros. We again generate a list L85, which now contains all
proper colorings whose initial segment attains the maximum number of consecutive
zeros. From this list we generate L170 as before. Note that it is essential for the cor-
rectness argument that all patterns 0 . . . 0 := 0`, of consecutive zeros, are palindromes.
The crucial and trivial fact used here is as follows:

Fact 3. Any varicoloring of length n that contains a maximum of ` > 0 consecutive
zeros contains a subcoloring of length at least n/2 that starts with ` consecutive zeros,
or is a reflexion of such a coloring (i.e., ends with ` consecutive zeros).

In general we use this technique to first compute a list Ldw/2e from which we compute
a list Lw. In practice, since we do not know the value w, we replace it by a lower
bound wlb. (In the example, the lower bound is 170). Our algorithm first computes the
lists L1, . . . ,Ldwlb/2e, then it computes the list Lwlb

, and then (without preprocessing
technique) all lists Ln for n > wlb.

When parameters for different ordinary colors t < t′ ∈ {1, . . . , c} coincide, i.e.,
kt = kt′ , we may further reduce our search space by disposing of all colorings, which
contain more consecutive integers colored with t′ than consecutive integers colored
with t.

109

3 Van der Waerden numbers

3.9.1 Preprocessing with late peak

For several parameters (k1, . . . , kc; c) the “peak” is not significantly smaller than
the value w(k1, . . . , kc; c)/2. In particular, this is the case for the parameter fam-
ily (3, k2; 2). Figure 3.5 depicts this phenomenon for k = 10. In this case the previous
method does not yield the desired search space reduction. But there is a remedy:
Intuitively, when we place a coloring of length dn/2e with some shift s into a coloring
of length n, there are bn/2c positions that are unspecified. Therefore, on one of the
sides of the placed coloring, at least bn/4c positions must unspecified.

Given a lower bound wlb we proceed by first computing a restricted list Ldwlb/2e
of colorings of length dwlb/2e whose initial segment attains the maximum number
of consecutive zeros. We then compute a list Ld3wlb/4e from the list Ldwlb/2e by
using a shift of exactly 0 or exactly d3wlb/4e − dwlb/2e ≈ wlb /4. We obtain the

list L′d3wlb/4e from Ld3wlb/4e by adding reversals. Finally we compute the list Lwlb

from the list L′d3wlb/4e by using a shift of up to bwlb/4c and adding reversals.

The following fact, an appropriately modified version of the corresponding Fact 3,
guarantees us that the list Lwlb

obtained this way covers all proper colorings.

Fact 4. Any varicoloring of length n that contains a maximum of t > 0 consecutive
zeros contains a subcoloring of length at least n · 3/4 that

• starts with t consecutive zeros,

• has t consecutive zeros starting from position i = dn/4e,

• or is a reflexion of one of the previous two.

Using this fact, we may generate restricted lists Ln for n ranging from 1 up to
d3wlb/4e. (The ratio of lists Lwlb/2, . . . ,L3wlb/4 vs complete lists is roughly a factor

of 2 worse than for the lists L1, . . . ,Lwlb/2−1.)

3.9.2 Preprocessing for two colors

We conclude the preprocessing section with a particular preprocessing variant we used
for the computation of 2-color van der Waerden numbers: In this variant we con-
sider patterns of the form 0 . . . 010 . . . 0 = 0`10`′ , with `, `′ ∈ N and order them
lexicographically by two parameters: By the length, (i.e., ` + `′), and by the max-
imum number of consecutive zeros (i.e., max{`, `′}). We thus order the pattern, such
that 0`110`′1 ≺ 0`210`′2 if

`1 + `′1 < `2 + `′2 or
(
`1 + `′1 = `2 + `′2 and max{`1, `

′
1} < max{`2, `

′
2}
)
.

For the preprocessing variant, we enumerate all colorings χ for which the initial
segment attains the maximum (under “≺”) among all subcolorings of χ.

110

3.10 Implementation details

3.10 Implementation details

We briefly mention how varicolors are handled by the wildcards algorithm. To repre-
sent the sets of colors, we use integers and encode the subsets by the binary expan-
sion, i.e., if {1, . . . , c} is the set of colors and ` =

∑c
i=1 ai2

i−1 < 2c with ai ∈ {0, 1}
is a representation of a varicolor, then ` corresponds to the varicolor which is given
by
{
i ∈ {1, . . . , c} | ai = 1

}
. This way all required operations (such as extension and

recoloring of an varicoloring) may be performed with a few integer manipulations.

For illustrative purposes the description of the wildcards algorithm in Section 3.8
describes a breadth first search by generating the lists Ln. However, to maintain a
linear space bound, the algorithm has been implemented as a depth first search. The
implementation comes with many switches that toggle the use and choice of prepro-
cessing, varicolors, culprits, lowerbounds, double reversing for late peaks and enables
distributed computation. A special implementation for two colors avoids overhead
coming from the representation as sets. For further details we refer to the code [116].

3.11 Certification

Now that we have designed an algorithm that computes mixed van der Waerden num-
bers, the question of certification naturally comes up (as it always should). There is an
obvious way to certify lower bound claims on the van der Waerden numbers: Extend
the output by a coloring that certifies the lower bound, i.e., the algorithm supplies
the user with a coloring of the set {1 . . . , w− 1} that does not have a monochromatic
arithmetic progression of respective length. The user may then employ, for example,
Erikson’s algorithm (i.e., Algorithm 7) to quickly check that the output does not con-
tain monochromatic arithmetic progressions of forbidden lengths. This certification
procedure is commonly used in the literature to certify lower bounds.

We define s1 as the binary string

s1 = 0410610510310101061051081101010106107101081012101016109110,

which is of length 139. The string s1s
R
1 , the concatenation of s1 with its reversal,

serves as a certificate that w(3, 17; 2) ≥ 279 = 2 · 139 + 1.

As is the case for extremal colorings for many other parameters, the coloring ssR

is a palindrome. Herwig, Heule, van Lambalgen and van Maaren [61] use the “Cyclic
Zipper Method” to exploit regularities in extremal colorings, thereby providing com-
puter verifiable lower bounds on the van der Waerden numbers. Analogously for the
van der Waerden number w(2, 3, 14; 3) = 201 we set

s2 = 4824624524324424241322462482422472413224724248241224322411224246

and

s′2 = 492424624322472411244244

111

3 Van der Waerden numbers

van der Waerden
number

running time
in seconds

w(2, 3, 11; 3) 2426
w(2, 3, 12; 3) 15824
w(2, 3, 13; 3) 262057
w(2, 3, 14; 3) 7078578
w(2, 4, 7; 3) 67101
w(2, 5, 5; 3) 2602
w(3, 3, 5; 3) 19758
w(2, 2, 3, 9; 4) 2359
w(2, 2, 3, 10; 4) 27707
w(2, 2, 3, 11; 4) 747045
w(2, 2, 4, 6; 4) 33507
w(2, 3, 3, 5; 4) 377600
w(3, 3, 3, 3; 4) 1218708

Figure 3.6: The figure shows the running times of the wildcards algorithm spent for
the computation of various mixed van der Waerden numbers.

And obtain the string s21s′2 of length 200, consisting of characters 1,2 and 4. In
the encoding of the colors, as explained in Section 3.10, color t corresponds to the
character 2t−1. The string certifies that w(2, 3, 14; 3) ≥ 201.

Finally the string

s3 = 83(12)8488448104844481048486487284448848948848489488418928828848944874

is a string of length 140, that certifies w(2, 2, 3, 11; 4) ≥ 141. For the varicolor 12, both
choices of 4 and 8 yield a proper coloring.

The strings s1,s2,s′2 and s3 were computed with the wildcards algorithm, which
moreover showed that the inequalities are exact, i.e., the computation also showed
that w(3, 17; 2) = 279, that w(2, 3, 14; 3) = 201 and that w(2, 2, 3, 11; 4) = 141.

Certifying exact values of van der Waerden numbers, however, seems to be intrin-
sically difficult. One might argue that it involves upper bounds, for the improvement
of which we still lack accurate techniques.

3.12 Evaluation and conclusion

The wildcards algorithm has been used to verify all van der Waerden numbers given
in Figure 3.2. Two of the values were previously unknown. The van der Waerden
number w(6, 6; 2) has not been computed. Ahmed has posted most of these values
at [1], but we do not know what technique was used to compute them.

To see the magnitude of the search space contraction that is achieved by the vari-
coloring approach, we compare the number of ordinary progressions with the number

112

3.12 Evaluation and conclusion

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 5 10 15 20 25 30 35 40 45 50

n
u
m

b
er

of
p
ro

p
er

co
lo

ri
n
gs

length of the coloring

ordinary (3, 3, 4; 3)-colorings

♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦♦
♦♦
♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

♦
♦

♦♦
proper varicolorings generated

++

+++
+
+
+
+
+
+
+
+
+
+
+++

++++++++++++++++++++++
+
+
+
+
+
+
+

+
+

++

Figure 3.7: Number of (3, 3, 4; 3)-colorings in comparison to sizes of the antichains of
proper varicolorings produced by the wildcards algorithm without preprocessing for
various lengths.

of varicolors the wildcards algorithm generates. The varicolorings used yield to a
search space contraction, as desired. Figure 3.7 shows the number of proper ordinary
(3, 3, 4; 3)-colorings in comparison to the sizes of the lists Ln generated by the wildcards
algorithm. We observe a reduction of roughly a factor of 10 over the straightforward
approach.

It took 552 days of total computation time to compute w(3, 17; 2), which was the
longest computation for any of the numbers shown in Figure 3.2. It was divided over 30
clusternodes, each a 2.4 GHz AMD Opteron machine with one 1 GB RAM that runs
Linux. Figure 3.6 shows the total computation times for multicolor mixed van der
Waerden numbers for various parameters.

Unfortunately we do not have any running times available with which to compare.
Neither do we have another competitive algorithm available that produces them. We
can only stress the fact that our algorithm computed (with the exception of w(6, 6; 2))
the largest mixed van der Waerden numbers known. We remark that for the compu-
tation of w(6, 6; 2), various methods of SAT solvers are used. In particular, special
hardware (field programmable gate arrays) provided a considerable speedup. Prior to
the computation of w(6, 6; 2) in [73], delayed evaluation was used for the computa-
tion of mixed van der Waerden numbers. It is related to the varicoloring approach
restricted to two colors. The varicoloring approach is in particular well suited for the
multicolor case, i.e, when c > 2.

Providing upper bounds for the mixed van der Waerden numbers is difficult, both
when considering asymptotics, as well as when computing specific numbers. The wild-

113

3 Van der Waerden numbers

cards algorithm provides a method to compute mixed van der Waerden numbers. To
obtain reasonable running times, practical considerations are indispensable, such as
preprocessing and algorithm engineering. Though both have been performed with the
implementation of the wildcards algorithm, there is still room for improvement. In
particular, the use of efficient data structure such as bit-vectors, or hardware such as
field programmable gate arrays, may further improve the running times. The compu-
tation of the previously unknown mixed van der Waerden numbers w(2, 3, 14; 3) and
w(2, 2, 3, 11; 4) serves to show that an implementation of the varicoloring approach can
outperform state-of-the-art methods. However, rather than the design of a extremely
efficient implementation, the goal pursued in this thesis is the development of general
techniques and a framework that may be used for the computation of further Ramsey
theory related numbers. These techniques are employed in the next chapter, which
explains how the varicoloring technique may be used to compute Ramsey numbers.
We will see that computing mixed van der Waerden numbers is theoretically not as
involved as computing Ramsey numbers, and we outline several obstacles that we did
not encounter in the current chapter.

114

4 Ramsey numbers

Ramsey’s theorem, proven by Frank Ramsey [110] in the year 1930, embodies purely
the essential idea, omnipresent in the field of mathematics nowadays called Ramsey
theory: Monochromatic substructures are unavoidable when coloring large combina-
torial objects with finitely many colors. In this spirit Ramsey’s theorem shows that if
the edges of a large complete graph are colored with finitely many colors, a monochro-
matic clique (i.e, a complete subgraph whose edges are all colored equal) must arise.
Ramsey numbers quantify the size of the edge colored graph that must be colored
in order to guarantee the existence of a monochromatic clique of a specific size (de-
pending on the colors that are used). Though the upper and lower bounds available
for Ramsey numbers are closer to the actual values than the bounds for the van der
Waerden numbers, already for cliques of size as small 5 the exact computation of the
associated 2-color Ramsey number appears very difficult, and has not been performed
yet.

In this chapter we use the varicoloring approach, developed in the previous chapter,
to outline the wildcards algorithm for Ramsey numbers. The varicoloring approach
enables one to simultaneously model different edge colorings of a graph, and thereby
achieves a contraction of the search space that has to be traversed, i.e., it reduces
the number of colorings that have to be considered. During the design of an efficient
implemention, we encounter three major problems. First, the detection of monochro-
matic substructures, i.e., the cliques which the generated graphs are supposed to avoid
is difficult. Second, isomorphism detection is required in order to enumerate colorings
without duplicates. A coloring is a duplicate, if it is equivalent to another coloring un-
der permutation of the vertices. Third, to avoid the duplicates the wildcards algorithm
maintains a list of colorings, which results in an inadequate space requirement.

Thus though the reduction obtained with the varicoloring approach is promising,
the computation of a new Ramsey number cannot be performed, as it first requires
efficient algorithms and economical data structures that attack the subproblems.

We proceed in the exposition as follows: We first define and prove the existence
of Ramsey numbers (see Section 4.1) and then give upper and lower bounds (see
Sections 4.2 and 4.3) as well as the known exact values (see Section 4.4). We describe
the drastic sense in which the computational complexity of the problem in unknown
(see Section 4.5) and also describe previous algorithms that were used to determine
exact values (see Section 4.6). Finally we outline the wildcards algorithm for Ramsey
numbers (see Section 4.7) and discuss certification of the output (see Section 4.8).

This chapter, which is held brief, is intended to show the benefits gained from
the varicoloring approach, as well as the challenges that arise from using it. It also
shows the connection between the two algorithms that were developed in the previous

115

4 Ramsey numbers

chapters.

4.1 Ramsey numbers

In the previous chapter, our focus lies on colorings of integers and monochromatic pro-
gressions within these colorings. Our focus now shifts from integers back to graphs.
The basic observation intuitively says that very large graphs cannot simultaneously
avoid large cliques and independent sets. Recall that a clique (respectively an inde-
pendent set) in a graph G is a set of vertices, K ⊂ V (G) (respectively I ⊂ V (G)), for
which {{v, v′} | v, v′ ∈ K} ⊆ E(G) (respectively {{v, v′} ∈ E(G) | v, v′ ∈ I} = {}).

Before we make the statement more precise, we first express it in the terminology of
colorings: When a large complete graph G is edge colored (see Definition 2) with two
colors, it contains a large monochromatic clique, i.e, a subset of vertices K ⊆ V (G)
for which all edges in the induced subgraph G[K] are colored equally. The formal
statement, generalized to an arbitrary number of colors, is the following:

Theorem 24 (Ramsey’s Theorem [Ramsey [110](1930)]). For any c ∈ N and
any k ∈ {1, 2, . . .} there is an integer R such that every edge coloring of KR (the
complete graph on R vertices) with c colors forms a monochromatic clique of size k.

The theorem is the analogon to van der Waerden’s Theorem (see Theorem 19),
which deals with colorings of the integers, instead of edge colorings of graphs.

When vertex colorings are considered instead of edge colorings, the equivalent theo-
rem is Dirichlet’s pigeonhole principle. The algorithmic problem Max-Clique(i.e, the
task of determining the maximal size of a clique in a graph) is NP-hard. Therefore,
detecting the largest monochromatic clique is (presumably) difficult, whereas in the
previous chapter, for the detection of the largest monochromatic arithmetic progres-
sions, we have Erikson’s algorithm (see Algorithm 7) available, which runs in quadratic
time.

As in the previous chapter, we allow the forbidden size of a monochromatic subclique
to vary with the color. We are interested in the value of the smallest number R that
satisfies the property of Ramsey’s theorem:

Definition 38 (Ramsey number). For any c ∈ N and any sequence k1, . . . , kc of
positive integers define the Ramsey number R = R(k1, . . . , kc; c) to be the least integer,
for which any edge coloring of KR (the complete graph on R vertices) contains a
monochromatic clique of size kt in some color t ∈ {1, . . . , c}.

We say that an edge colored complete graph is (k1, . . . , kc; c)-Ramsey, if it demon-
strates a lower bound for the Ramsey number R(k1, . . . , kc; c), i.e., if for every color
t ∈ {1, . . . , c} it does not contain a clique of size kt monochromatic in color t. We
define an extremal (k1, . . . , kc; c)-Ramsey graph as a (k1, . . . , kc; c)-Ramsey graph of
size R(k1, . . . , kc; c)− 1.

We now show the existence of the Ramsey numbers.

116

4.2 Upper bounds for Ramsey numbers

4.1.1 Existence of Ramsey numbers

The existence of the Ramsey numbers follows from a decomposition of the Ramsey
graphs into Ramsey graphs of smaller parameters:

Theorem 25 (Ramsey recursion). For c ∈ N and any sequence k1, . . . , kc of positive
integers, for the Ramsey numbers R(k1, . . . , kc; c) we get

R(−; 0) = 0
R(k1, . . . , kc−1, 1; c) = R(k1, . . . , kc−1; c− 1)
R(k1, . . . , kc; c) ≤ 1 +

∑c
t=1 R(k1, . . . , kt−1, kt − 1, kt+1, . . . , kc; c)

Proof. The first two equations are trivial. To prove the inequality, we consider the
complete graph G of size 1 +

∑c
t=1 R(k1, . . . , kt−1, kt− 1, kt+1, . . . , kc; c) together with

an edge coloring χ. Let v ∈ V (G) be a vertex. We partition all other vertices according
to the color of the edge they form with v. More precisely, we let Vt be the set of vertices
v′ ∈ V (G) \ {v} for which χ({v, v′}) = t. Figure 4.1 illustrates this partition for c = 2.
By the pigeonhole principle there is a color t, such that

|Vt| ≥ R(k1, . . . , kt−1, kt − 1, kt+1, . . . , kc; c).

For this color t, the coloring induced on the subgraph of Vt either contains a monochro-
matic clique if size kt′ for some color t′ ∈ {1, . . . , c}\{t} or it contains a monochromatic
clique of color t and size kt− 1. In the latter case, the monochromatic clique together
with vertex v forms a clique of size kt monochromatic in color t. Thus any graph
of size 1 +

∑c
t=1 R(k1, . . . , kt−1, kt − 1, kt+1, . . . , kc; c) is not a (k1, . . . , kc; c)-Ramsey

graph.

4.2 Upper bounds for Ramsey numbers

It is known that the Ramsey numbers asymptotically grow exponentially. This follows
from the known upper and lower bounds, which we present next.

For two colors, the recursion given in Theorem 25 yields an upper bound for the
2-colored Ramsey numbers given by R(k1, k2; 2) ≤

(
k1+k2

k1

)
. A proof of this is contained

in [51]. Conlon [28] recently published the currently best known bound for the diagonal
2-color Ramsey numbers, i.e., for the case c = 2 and k1 = k2. He shows that there is
a constant D, such that for sufficiently large k ∈ N we have

R(k + 1, k + 1; 2) ≤ k
−D log k

log log k

(
2k

k

)
.

4.3 Lower bounds for Ramsey numbers

An application of Lovász’ Local Lemma (see Theorem 22) provides a lower bound for
the diagonal Ramsey numbers as first proven by Spencer in [119]. It shows that

R(k, k; 2) > k2k/2

(
1

e
√

2
+ o(1)

)
,

117

4 Ramsey numbers

v

R(k1 − 1, k2; 2) R(k1, k2 − 1; 2)

Figure 4.1: An illustration of the proof of the Ramsey recursion (Theorem 25) for
the Ramsey number R(k1, k2; 2). A vertex v partitions all other vertices v′ 6= v by
the color of the edge {v, v′} (shown in red and blue). The size of each partition class
is bounded by a Ramsey number for smaller parameters. The horizontal edges that
contain a vertex from either partition class are colored either blue or red, (shown in
magenta).

where e ≈ 2.71828 is the Euler constant. See also [51] for a well presented proof.

The lower and upper bounds differ in the base constant when approximated by
an exponential function: The central binomial coefficient approximates via Stirling’s
approximation to

(
2k
k

)
≈ 1√

πn
22k, thus the constant in the upper bound is 22 = 4,

whereas the constant in lower bound is
√

2.

This shows that if there is an approximation for the diagonal Ramsey numbers by
an exponential function, the base constant must lie somewhere between

√
2 and 4.

If you figure out this exponent do not miss the chance to collect your prize money
(see the corresponding problem on diagonal Ramsey numbers at the “Open Problem
Garden” [32]).

For the off-diagonal case, Jeong Han Kim [70], and recently Bohman [14] with a
direct approach, analyzes the triangle free process to show that the Ramsey num-
bers R(3, k; 2) are of order Θ(k2/ log k).

4.4 Known Ramsey numbers

A thorough source for information on values of and bounds on Ramsey numbers is
Radziszowski’s dynamic survey on small Ramsey numbers [109]. Figure 4.2 summa-
rizes the values of the Ramsey numbers that are exactly known. From the basic
identity R(2, k2, . . . , kc; c) = R(k2, . . . , kc; c− 1), sequences of ki that contain an entry
equal to 2 can be deduced from shorter sequences. These (infinitely many) values have
been omitted in the figure.

118

4.5 Computational Complexity of Ramsey numbers

R(k1, k2; 2)

k1 ↓, k2 → 3 4 5 6 7 8 9

3 6 9 14 18 23 28 36

4 9 18 25

R(3, k2, k3; 3)

k2 ↓, k3 → 3 4 5 6 7 8 9

3 17

Figure 4.2: Taken from [109] the figure shows all known values of Ramsey numbers
R(k1, . . . , kc; c), with kt > 2 for all t ∈ {1, . . . , c}. The other values with kt = 2 can be
obtained from the figure with the identity R(2, k2, . . . , kc; c) = R(k2, . . . , kc; c− 1).

4.5 Computational Complexity of Ramsey numbers

The computational complexity of determining Ramsey numbers is (in a drastic sense)
unknown. Haanpää shows in his thesis [57] (also see the corresponding technical
report [58]) why this is the case. Following Haanpää, we now want to capture the flair
of uncertainty we have concerning the computational complexity of our problem.

We first define a more general problem. We use the typical Ramsey arrow notation.
For arbitrary graphs G, H1, H2 the arrow notation G → (H1, H2) says that G can be
edge colored with 2 colors such that it contains (as a subgraph) no H1 in the first and
no H2 in the second color.

Problem 2. Given graphs G, H1, H2, determine whether G can be edge colored with 2
colors avoiding monochromatic subgraphs isomorphic to H1 and H2 in their respective
colors, i.e., determine whether G→ (H1, H2).

Schaefer [114] showed that this problem is co-NPNP -complete, i.e., complete for
the second level of the polynomial hierarchy.

With this insight Haanpää further explains that when restricting G to be a clique,
the problem at least remains NP-hard(see a paper of Burr [21] for a proof). When all
three input graphs are restricted to be complete graphs, we do not know whether the
restricted problem remains NP-hard. We do know that the problem is in co-NPNP .
This is only true if the input graphs are explicitly given as complete graphs, i.e., if the
size of the description of a complete graph of size n is polynomial in n. However, when
we ask for a Ramsey number R(k1, k2; 2), the input is not encoded as a graph (and
neither as a unary number), but rather as two numbers k1 and k2. Consequently the
input format is exponentially smaller than the input format that explicitly provides
the graphs. Thus we do not know whether the problem of computing the Ramsey
numbers R(k1, k2; 2) is in co-NPNPor where it is situated in the polynomial hierarchy.

119

4 Ramsey numbers

Thus, on the one hand, we do not known whether our problem is in co-NPNPbut,
on the other hand, for all we know, an explicit formula that computes Ramsey numbers
in linear time might exist.

4.6 Previous algorithms

As shown by Figure 4.2 only very few Ramsey numbers are known. Thus the compu-
tational methods that compute new Ramsey numbers are also few. Algorithms that
compute exact Ramsey numbers are algorithms that show exact upper bounds (rather
than lower bounds for which we have short certificates, that are independent of the
algorithms they were produced with).

Bounds for Ramsey numbers have been established by reformulating the problem
into an integer program. Current solvers for these integer programs have become very
fast. However, the computation of the values of R(3, 8; 2) and R(4, 5; 2) did not use
these techniques. The value of R(3, 9; 2) was known before the value of R(3, 8; 2) [54].
The computation of R(3, 9; 2) involved some computer support, and combinatorial
arguments were used to drastically reduce the search space. The computation of the
values of R(3, 8; 2) and R(4, 5; 2) heavily depended on the algorithmic design of the
programs used for their computation. We only give a very rough overview of the
ingredients of the algorithms used for the computation of both values:

Combinatorial arguments: A combinatorial argument may for example bound the
number of edges in an extremal graph or the minimum degree. Arguments of this form
played a crucial role in search space reduction, which reduced the running time of the
exhaustive enumeration of the Ramsey graphs.

Isomorphism rejection: When dealing with enumeration of graphs of some subclass,
isomorphism rejection is crucial. For the computation of R(3, 8; 2) and R(4, 5; 2) Nauty
(See Section 2.2) was used, as it is fast and moreover computes canonical labelings.
Given the canonical labeling of a graph, isomorphism detection is trivial.

Algorithm engineering: Appropriate data structures (such as bit-vectors) to reduce
the required machine instructions for basic operations, as well as design techniques
(such as clever enumeration and search space reduction) are required to reduce the
global running time.

Gluing: The term gluing describes the method of composing Ramsey graphs from
Ramsey graphs of smaller parameters. This is possible, as the proof of Ramsey’s
theorem shows: Any (4, 5; 2)-Ramsey graph decomposes into a vertex v, its neighbor-
hood, which forms a (3, 5; 2)-Ramsey graph, and the remaining vertices, which form
a (4, 4; 2)-Ramsey graph.

All of the ingredients are necessary for the success, i.e., to obtain acceptable running
times for the computations of R(3, 8; 2) and R(4, 5; 2). For further details we refer the
reader to two papers: McKay and Min [93] describe the methods employed for the
computation of R(3, 8; 2), and McKay and Radziszowski [94] describe the methods
employed for the computation of R(4, 5; 2).

120

4.7 The wildcards algorithm for Ramsey numbers

4.7 The wildcards algorithm for Ramsey numbers

Figure 4.3: The figure depicts the partial order of all varicolored (3, 4; 2)-Ramsey
graphs of size 4. The two colors are shown in red (dashed) and blue (solid). Though
the graphs are all complete graphs, for improved lucidity the edges colored in the
varicolor {red, blue} are omitted. Following a line downwards corresponds to the
specification of an edge from varicolor {red, blue} to either red or blue.

We now combine the ScrewBox algorithm (see Section 2.6) and the wildcards al-
gorithm (see Section 3.8) designed in the previous chapters to a wildcards algorithm
that computes Ramsey numbers.

When dealing with unlabeled graphs, as in the computation of Ramsey numbers,
isomorphic copies have to be eliminated in order to avoid an explosion of the search
space. In the wildcards algorithm we need to detect isomorphisms of varicolored
graphs, and we need the notion of coverings. In analogy to Definition 34, we first
define varicolorings of graphs.

Definition 39 (varicoloring of graphs). Given a graph G = (V, E), a map λ : E →
P({1, . . . , c}) \ {} is said to be a varicoloring of the graph G with c colors.

More precisely the map λ is an edge varicoloring, but since we do not use vertex
varicolorings, we omit this specification. Since we deal with unlabeled graphs, when
defining whether one varicoloring is coarser than another, we allow that an automor-
phism is applied to the graph prior to a specification:

Definition 40 (coarser, finer, specification). Given a graph G = (V, E), and two
varicolorings λ, λ′ : E → P({1, . . . , c}) \ {}, we say that λ is coarser than λ′, (and λ′

121

4 Ramsey numbers

is finer than λ′) if there is an automorphism φ of G such that

∀{v1, v2} ∈ E : λ′({v1, v2}) ⊆ λ({φ(v1), φ(v2)}).

In the case where φ can be taken as the identity, we also say that λ specifies to λ′.

Thus λ is coarser than λ′ if λ specifies to a permutation of the λ′ colored graph G.
We say that λ covers λ′ if any specification of λ′ to an ordinary edge coloring is finer
than λ. Extending our previous definition of an ordinarily colored Ramsey graph, we
say that a complete varicolored graph is (k1, . . . , kc; c)-Ramsey if it does not specify
to an ordinary coloring that is not (k1, . . . , kc; c)-Ramsey. In this case the varicoloring
is proper.

The covering relation induces a partial order on the set of varicolorings of a graph G.
We are in particular interested in the suborder of Ramsey varicolorings, within the
order of varicolorings of a complete graph Kn, for n ∈ N. For n = 4, Figure 4.3 shows
this suborder of the (3, 4; 2)-Ramsey graphs of size 4.

For the remainder of this section we fix the number of colors c ∈ N and the param-
eters k1, . . . , kc ∈ {1, 2, . . .}.

To compute R(k1, . . . , kc; c) we proceed in a similar fashion as in the previous chap-
ter: For n ∈ {1, . . . , R(k1, . . . , kc; c)}, we iteratively construct a list Ln of proper
varicolorings of Kn. (We fix the vertex set Kn as V (Kn) = {1, . . . , n}.) Each Ln cov-
ers all proper ordinary colorings of the complete graph Kn. A list Ln is empty if and
only if n ≥ R(k1, . . . , kc; c). We thus construct the lists L1,L2, . . ., and once we observe
that the list Ln is empty for the first time, we conclude that n = R(k1, . . . , kc; c).

For efficiency it is necessary to keep the maintained lists L1,L2, . . . ,LR(k1,...,kc;c)

small. In particular, we need to avoid treating isomorphic copies of the graphs. This
complicates the algorithm in comparison to the wildcards algorithm in the previous
chapter. A 2-graph with d unspecified edges does not necessarily cover 2d ordinarily
colored graphs. Note, for example, that though the two maximal graphs in Figure 4.3
(i.e., the graphs at the top) have 2 respectively 3 undetermined edges, the number
of proper ordinary colorings, i.e., the number of ordinarily colored (3, 4; 2)-Ramsey
graphs of size 4 (i.e., the graphs shown at the bottom) covered by each of them is
3 and 5 respectively. Furthermore, since they do not form a downwards antichain,
together they do not cover 3 + 5 = 8 but 6 proper ordinary colorings. In particular
we lack an analogue of Lemma 6, concerning downward antichains of mixed van der
Waerden numbers, that allows us to find a set Ln that covers every ordinary coloring
exactly once.

We start with a high level description of a backtracking algorithm that performs
our desired task of computing Ramsey numbers.

4.7.1 High level description of the wildcards algorithm

Assuming we are given a list Ln of varicolorings of Kn, we want to construct a list Ln+1

of varicolorings of Kn+1 that covers all ordinary colorings of Kn+1. We gradually build
the list Ln+1. One by one we pick a varicoloring λ from Ln and extend it by the

122

4.7 The wildcards algorithm for Ramsey numbers

additional vertex n + 1, and color all new edges with C := {1, . . . , c}, i.e., we form the
varicoloring λ(n+1)→C given by

λ(n+1)→C(e) :=

{
λ(e) if (n + 1) /∈ e,

C otherwise.

This varicoloring λ(n+1)→C is in general not proper, thus, in a backtracking fashion,
we specify edges until the varicoloring is proper. We then test whether the coloring
is already covered by a graph in Ln+1. If it is, we discard it and backtrack (as
explained below, i.e., we continue with a different varicoloring from the list Ln). If
it is not, we have to include the current varicoloring (or a varicoloring coarser than
the current varicoloring) into the list Ln+1. Any varicoloring coarser than the current
varicoloring can be used to guarantee that the current varicoloring is covered. Hence,
when choosing the varicoloring that is inserted into the list Ln+1, various options exist.
Our option of choice is to insert some maximal proper varicoloring coarser than the
current varicoloring into the list Ln+1.

We now explain how to perform the actual backtracking. It proceeds the same way
as the backtracking from Section 3.8 proceeds. Figure 4.4 describes this backtracking
procedure for two colors. We adopt the terminology for colors to be able to describe
the backtracking:

Given a graph G and a varicoloring λ : E(G) → P({1, . . . , c}) \ {}, we define for
edge e ∈ E(G) and varicolor T ⊆ {1, . . . , c} the recoloring of λ of edge e with color T
as the varicoloring λe→T : E(G)→ P({1, . . . , c}) \ {} given by

λe→T (e′) :=

{
λ(e′) if e′ 6= e,

T if e′ = e.

Definition 41 (prohibited, innocuous). Let λ : E(G) → P({1, . . . , c}) \ {} be a
varicoloring of a graph G. Let t ∈ {1, . . . , c} be an ordinary color, e ∈ E(G) an edge,
and λe→{t} the recoloring of edge e with color {t}.

• We say t is prohibited for edge e if λe→{t} contains a monochromatic clique of
color {t} that contains the edge e.

• We say t is innocuous for edge e if λe→{t} does not specify to any coloring which
contains a monochromatic clique of color {t} that contains the edge e.

For a varicoloring λ from Ln, the backtracking starts with λ′ = λ(n+1)→C , the
extension of λ by an additional vertex. We backtrack the following way (compare
with Section 3.8):

First, while there is an e ∈ E(G) whose varicolor T = λ′(e) contains a prohibited
color t ∈ T , we remove that color t from the varicolor of e, i.e., we form the varicol-
oring λ′

e→T\{t}. This step eliminates unnecessary braching. We now suppose all edges

in λ′ are colored with non-prohibited colors. If λ′ is not proper, then there exists an

123

4 Ramsey numbers

Input: A list Ln of varicolorings
that cover all Ramsey graphs of
size n.

For every varicoloring λ in Ln:
Set λ′ ← λ(n+1)→C , the extension
by an additional vertex.

Eliminate prohibited colors:
While a color t is prohibited for
some edge e set λ′ ← λ′

e→λ′(e)\{t}.

Exists an edge e
with λ′(e) ≥ 2
and t ∈ λ′(e)
non-innocuous ?

Branch:
Set T ← {t ∈ λ′(e) | t innocuous}
and λ′

T
← λ′

e→T
. Suppose that

{t1, . . . , t`} = T \ λ′(e). For all
j ∈ {1, . . . , `} set λ′

tj
← λ′

e→{tj}
.

If λ′ improper, find maximal λ′′

specifying to λ′ and if λ′′ /∈ Ln+1

then add λ′′ to Ln+1.

More color-
ings in Ln?

Output: A list Ln+1 of varicolor-
ings that cover all Ramsey graphs
of size n + 1.

No

Yes

No

λ′
T

λ′
t1

...

λ′
t`

Yes

Figure 4.4: The figure shows a high level view of the wildcards algorithms for Ram-
sey numbers. Given a list Ln of varicolorings of size n, it produces a list Ln+1 of
varicolorings of size n + 1.

124

4.7 The wildcards algorithm for Ramsey numbers

edge e, whose varicolor T = λ′(e) contains at least two ordinary colors and which also
contains a color that is not innocuous. We construct the set Λ :=

{λ′
e→T ′} ∪ {λ′

e→{t} | t ∈ T \ T ′},

on which we recurse (i.e., we perform the backtracking with all colorings in Λ) until
they are proper.

Remaining to be explain is what we do once we obtain a proper coloring λ′ say. When
the current varicoloring λ′ is proper, we heuristically check whether the varicoloring
is already covered by a graph in Ln+1: We find a maximal proper varicoloring λ′′ that
specifies to λ′. We then check whether there is an isomorphic varicoloring already
in the list Ln+1, i.e., we check whether the complete graph Kn+1 colored with λ′′ is
isomorphic to the graph Kn+1 colored with some coloring from Ln+1. If this is the
case, we discard λ′, otherwise we insert λ′′ into the list, which also covers λ′.

As we said, this check is only heuristic. For the problem of detecting whether a graph
in Ln+1 already covers a varicoloring λ′, we do not expect to find an efficient solution.
The reason is that the NP-hard problem Max-Clique reduces to this problem. We
use the specified heuristic since (supposedly) the set of maximal proper varicolorings
is small.

For this heuristic check, we require an isomorphism test. For our purposes, it is not
essential that an isomorphic copy always be found, if one exists. On the one hand,
to keep the list Ln+1 small, we only need that for most graphs an isomorphic copy
is found. On the other hand, we must ensure that we do not err when choosing not
to include a graph, i.e., we may not discard a graph that is not covered by another
graph in the list. This functionality is especially offered by the ScrewBox algorithm
(see Section 2.6).

To be able to screen a single graph against a large library (in our case the list Ln+1),
we have to modify the ScrewBox algorithm. We use easy invariants that differentiate
most graphs for a preselection of the graphs. Only on the remaining few graphs, for
which these invariants do not suffice, we resort to the ScrewBox to test for isomorphism.
Note that if, for a specific class of isomorphic graphs, we do not perform isomorphism
testing at all, or we never find the graphs to be isomorphic, the list may contain an
exponential number of isomorphic copies of the graph, thus, for any specific graph, we
need to detect isomorphism most of the time.

During the algorithm, by assumption, deletion of the last vertex n + 1 gives us
a proper varicoloring of the graph. Therefore, in order to check whether a color is
prohibited or innocuous, we only need to consider cliques that contain the last vertex.
We thereby save computation time.

This concludes our description of the backtracking procedure. We now explain how
gluing may be performed with varicolorings and how it helps to increase the efficiency
of the algorithm.

125

4 Ramsey numbers

4.7.2 The Gluing technique for the wildcards algorithm

Most techniques that use combinatorial arguments (see Section 4.6) can not straight-
forwardly be used on varicolored graphs. An example of this is a restriction on the
maximum degree Dt in a specific color t, i.e., we require that any vertex is incident
to at most Dt edges of color t. It is not clear how to impose this restriction onto
varicolorings. If λ is a varicoloring, then the number of edges varicolored in {t} which
are incident to a fixed vertex varies among specifications of λ to ordinary colorings.
In this case the coloring may cover ordinary colorings that fulfill the degree constraint
and at the same time cover ordinary colorings that do not fulfill the constraint.

In contrast to the technique that restricts degrees, the technique of gluing may be
directly applied to varicolored objects. The graph obtained by gluing two disjoint
varicolored graphs G = (V, E) and H = (V ′, E′), varicolored with λG and λH with
colors from the set C, is the join G∗H = (V ∪V ′, E∪E′∪{{vg, vh} | vg ∈ G, vh ∈ H}),
with the varicoloring λG∗H , given by

λG∗H(e) :=

λG(e) if e ∈ E(G),

λH(e) if e ∈ E(H),

C otherwise.

I.e., in the join every edge that is either completely contained in G or completely
contained in H retains its color, and all other edges are colored with the whole set of
colors C.

The coloring of a graph we obtain by this gluing procedure is not necessarily proper.
We thus have to specify the coloring further. For this we use the backtracking method
described in the previous subsection.

The advantage of the gluing technique is the applicability of the decomposition in
Ramsey’s theorem. For example, a (k1, k2; 2)-Ramsey graph decomposes into a vertex,
a (k1−1, k2; 2)-Ramsey graph and a (k1, k2−1; 2)-Ramsey graph (see Figure 4.1). Since
the smaller parameters are more restrictive, there are less graphs to these parameters,
so the gluing allows us to reduce the search space.

When the gluing technique and the subsequent backtracking are performed with
two ordinarily colored graphs, this approach is essentially the interval technique used
in [94] for the computation of R(4, 5; 2).

4.8 Certification

Mostly everything we said about certifying mixed van der Waerden numbers in Sec-
tion 3.11 caries over to the certification of Ramsey number computation. Lower bounds
can easily be certified by providing Ramsey graphs. McKay has gathered an extensive
pool of Ramsey graphs, including extremal graphs for all 2-color Ramsey numbers
whose determination required computational power [90]. The validity of these graphs
can be checked with any Max-Clique algorithm. As the graphs are relatively small

126

4.9 Evaluation and conclusion

with only small cliques and small independent sets, this computation is feasible. How-
ever, again, there seems to be no satisfying way to provide certified upper bounds,
unless they are of combinatorial nature obtained without computation. Further, it is
unclear how or if we can exploit randomization to certify upper bounds. (Compare
with Subsection 2.11.1.)

4.9 Evaluation and conclusion

To evaluate the approach taken by the wildcards algorithm for Ramsey numbers,
we first, as for the case of mixed van der Waerden numbers, compare the number
of Ramsey graphs with the size of the lists of varicolored Ramsey graphs that are
produced by the wildcards algorithm. Analyzing these numbers, we observe a similar
behavior as in the previous chapter. For various parameters, Figures 4.5–4.8 show the
number of Ramsey graphs and the sizes the lists Ln of varicolored Ramsey graphs
produced with the wildcards algorithm (for the same parameters). We observe that
there is a peak in the function that describes the numbers of non-isomorphic Ramsey
graphs to a given size, and the function drastically decreases again after the peak. Note
that all sequences of numbers are unimodal (i.e, they increase up to some point and
then decrease again). Intuitively this is what we expect: For small sizes the number of
Ramsey graphs increases. This is due to the fact that the number of graphs increases
and most of the graphs are Ramsey graphs. At some point the Ramsey property of the
graphs, i.e., the fact that monochromatic cliques must be avoided, starts to force more
and more structure onto the graphs, until the Ramsey property cannot be fulfilled
anymore. Maybe for all parameters, the number of non-isomorphic Ramsey graphs
shows this behavior:

Open Question 2. Is the number of non-isomorphic (k1, . . . , kc; c)-Ramsey graphs
of size n, for fixed parameters c ∈ N and k1, . . . , kc ∈ {1, 2, . . .}, a unimodal function
in n?

We also observe that the number of the lists Ln in the range of the peak is far less
than the number of ordinarily colored graphs. There are, for example, 275086 non-
isomorphic (3, 6; 2)-Ramsey graphs of size 14, whereas only 1479 varicolored graphs
are contained in the list L14 produced by the wildcards algorithm. By simultaneously
considering proper ordinary colorings of Ramsey graphs, the varicoloring approach thus
yields a search space contraction by providing a small list of varicolorings that contains
the essential information on all proper ordinary colorings. The gluing operation uses
two of these lists of varicolorings to compose a new list of larger varicolorings that
again contains all essential information.

With the wildcards algorithm, the list L22 of extremal (3, 7; 2)-Ramsey graphs of
size 22 has been computed. Recall that R(3, 7; 2) = 23. (Also the list L21 has been
computed. The computation of the list Ln for n < 21 was avoided with the help of the
gluing operation). Using the list L22, all (3, 7; 2)-Ramsey graphs of size 22 have been
computed. There are 191 such graphs (which has previously been known [90]). For the

127

4 Ramsey numbers

0

5

1 2 3 4 5

Figure 4.5: Number of
(3, 3; 2)-Ramsey graphs

0

5

10

15

20

1 2 3 4 5 6 7 8

Figure 4.6: Number of
(3, 4; 2)-Ramsey graphs

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.7: Number of (3, 5; 2)-Ramsey
graphs

100

101

102

103

104

105

106

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4.8: Number of (3, 6; 2)-Ramsey graphs

The figures show the number of (3, k2; 2)-Ramsey graphs for k2 ∈ {3, 4, 5, 6}, and the
sizes of the lists Ln of maximal proper varicolorings that are produced by the wildcards
algorithm. The elements of the lists cover all Ramsey graphs of the respective size and
parameters. Note that Figure 4.8 is shown in logarithmic scale.

128

4.9 Evaluation and conclusion

computation of all (3, 8; 2)-Ramsey graphs of extremal size 27 (which has previously
not been done [90]), the efficiency of the algorithm is not sufficient.

Three major challenges remain to improve the efficiency of the implementation of
the wildcards algorithm: First, the enumeration of the varicolorings produces an over-
head to cope with the ambiguity intrinsic in the approach. This overhead computes
monochromatic cliques, for which an efficient algorithm is required. Second, though
the isomorphism question is equally complicated for ordinary colors as for varicolors,
the relation of two graphs in the partial order arising from varicolorings is difficult to
determine. And third, the space consumption of the algorithm is of concern. When we
compute Ramsey numbers for larger parameters, the space required to maintain the
lists Ln exceeds the space available in the main memory of current machines. For the
mixed van der Waerden numbers, there is no need to generate the lists explicitly since
no duplicates appear. In other words, while a depth-first strategy with linear space
requirement is performed for the computation of the van der Waerden numbers, for the
computation of the Ramsey numbers we must employ a breadth-first strategy, which
results in the large space requirement. Along with the search space contraction that is
achieved by the wildcards algorithm, we thus further require efficient implementations
and clever enumeration techniques to compute the next Ramsey number.

Overall, we conclude that computing Ramsey numbers is still a difficult challenge,
and remains science fiction for the time being, just as in the famous quote by Erdős
himself [52]:

“Aliens invade the earth and threaten to obliterate it in a year’s time unless human
beings can find the Ramsey number for red five and blue five. We could marshal
the world’s best minds and fastest computers, and within a year we could probably
calculate the value. If the aliens demanded the Ramsey number for red six and blue
six, however, we would have no choice but to launch a preemptive attack.”

129

4 Ramsey numbers

130

List of Algorithms

1 The basic sampling algorithm . 35
2 The generic version of the algorithm 43
3 Testing for bias of a coin . 54
4 Determining an optimal filter . 59
5 Random sampling without replacement 64
6 Matrix multiplication of sparse matrices with consecutive access . . . 67

7 Longest progression of a certain color 99
8 Culprit algorithm . 100
9 Wildcards algorithm . 104

131

List of Algorithms

132

List of Figures

2.1 Isomorphic graphs . 17

2.2 Non-isomorphic graphs . 17

2.3 The Fürer gadget F3 . 26

2.4 The CFI-construction . 28

2.5 The Miyazaki graph M3 . 30

2.6 High level view of the stochastic Gi algorithms 32

2.7 Depiction of a 0-level screw . 33

2.8 Depiction of a 1-level screw . 38

2.9 The circulant graph on 15 vertices with neighbors at distances 1 and 5 42

2.10 The circulant graph on 15 vertices with neighbors at distances 1 and 3 42

2.11 Depiction of rules in a screw box . 44

2.12 Flow diagram corresponding to a screw box 45

2.13 A good filter Fσ applied to a histogram H 56

2.14 The Fano plane . 63

2.15 The incidence graph of the Fano plane. 63

2.16 Running times on grid graphs . 72

2.17 Running times on projective planes . 73

2.18 Running times on unions and joins . 74

2.19 Running times on CFI-graphs . 77

2.20 Running times on Miyazaki graphs . 78

3.1 Progressions aiming at the same position 91

3.2 Known van der Waerden numbers . 97

3.3 Prohibited and innocuous colors . 103

3.4 Number of proper ordinary (5, 5; 2)-colorings for given lengths 107

3.5 Number of (3, 10; 2)-colorings for given lengths 109

3.6 Running times for mixed van der Waerden numbers 112

3.7 Ordinary colorings vs varicolorings . 113

4.1 Illustration of the Ramsey recursion 117

4.2 Values of the known Ramsey numbers R(k1, . . . , kc; c) 119

4.3 The partial order of varicolored (3, 4; 2)-Ramsey graphs 121

4.4 High level view of the wildcards algorithms 124

4.5 Number of (3, 3; 2)-Ramsey graphs vs. varicolorings 127

4.6 Number of (3, 4; 2)-Ramsey graphs vs. varicolorings 127

133

List of Figures

4.7 Number of (3, 5; 2)-Ramsey graphs vs. varicolorings 127
4.8 Number of (3, 6; 2)-Ramsey graphs vs. varicolorings 127

134

Bibliography

[1] Tabir Ahmed. van der Waerden numbers.
http://users.encs.concordia.ca/∼ta ahmed/vdw.html. 98, 112

[2] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience,
August 2000. 94

[3] László Babai. Moderately exponential bound for graph isomorphism. In FCT
’81: Proceedings of the 1981 International FCT-Conference on Fundamentals of
Computation Theory, pages 34–50, London, UK, 1981. Springer-Verlag. 21, 30

[4] László Babai. Handbook of Combinatorics (vol. 2), chapter Automorphism
groups, isomorphism, reconstruction, pages 1447–1540. MIT Press, Cambridge,
MA, USA, 1995. 16

[5] László Babai, Paul Erdős, and Stanley M. Selkow. Random graph isomorphism.
SIAM Journal on Computing, 9(3):628–635, 1980. 20

[6] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In STOC ’82: Proceedings of the four-
teenth annual ACM symposium on Theory of computing, pages 310–324, New
York, NY, USA, 1982. ACM. 20

[7] László Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC ’83:
Proceedings of the fifteenth annual ACM symposium on Theory of computing,
pages 171–183, New York, NY, USA, 1983. ACM. 31

[8] David A. Basin. A term equality problem equivalent to graph isomorphism.
Information Processing Letters, 51(2):61–66, 1994. 19

[9] Burak Bayoglu and Ibrahim Sogukpinar. Polymorphic worm detection using
token-pair signatures. In SecPerU ’08: Proceedings of the fourth international
workshop on Security, privacy and trust in pervasive and ubiquitous computing,
pages 7–12, New York, NY, USA, 2008. ACM. 11

[10] Michael D. Beeler. A new van der Waerden number. Discrete Applied Mathe-
matics, 6(2):207–207, 1983. 98

[11] Michael D. Beeler and Patrick E. O’Neil. Some new van der Waerden numbers.
Discrete Mathematics, 28(2):135–146, 1979. 98, 99

135

http://users.encs.concordia.ca/~ta_ahmed/vdw.html

Bibliography

[12] Elwyn Ralph Berlekamp. A construction for partitions which avoid long arith-
metic progressions. Canadian Mathematical Bulletin, 11(3):409–414, 1968. 96

[13] Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990. 20

[14] Tom Bohman. The triangle-free process. arXiv:0806.4375v1 [math.CO], 2008.
118

[15] Kellogg S. Booth. Isomorphism testing for graphs, semigroups, and finite au-
tomata are polynomially equivalent problems. SIAM Journal on Computing,
7(3):273–279, 1978. 19

[16] Ravi B. Boppana and Magnús M. Halldórsson. Approximating maximum inde-
pendent sets by excluding subgraphs. In SWAT’90: Proceedings of the second
Scandinavian Workshop on Algorithm Theory, pages 13–25, Berlin, Germany,
1990. Springer-Verlag. 11

[17] Ravi B. Boppana and Magnús M. Halldórsson. Approximating maximum inde-
pendent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2):180–
196, 1992. 11

[18] Andries E. Brouwer. Handbook of Combinatorics (vol. 1), chapter Block designs,
pages 693–745. MIT Press, Cambridge, MA, USA, 1995. 63

[19] Tom C. Brown. Some new van der Waerden numbers (preliminary report).
Notices of the American Mathematical Society, 21:A–432, 1974. 98

[20] Tom C. Brown, Bruce M. Landman, and Aaron Robertson. Bounds on some van
der Waerden numbers. Journal of Combinatorial Theory, Series A, 115(7):1304–
1309, 2008. 96

[21] Stefan A. Burr. Mathematics of Ramsey Theory, chapter On the computational
complexity of ramsey-type problems. Springer-Verlag, New York, NY, USA,
1990. 119

[22] Jin-Yi Cai. From the world of P and NP: Problems in complexity theory.
http://www.cs.wisc.edu/∼jyc/MadMath.pdf. 87

[23] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on
the number of variables for graph identification. Combinatorica, 12(4):389–410,
1992. 26, 29, 39

[24] Peter J. Cameron. 6-transitive graphs. Journal of Combinatorial Theory, Series
B, 28(2):168–179, 1980. 61

[25] Peter J. Cameron. Topics in Algebraic Graph Theory, chapter Strongly regular
graphs, pages 203–221. Cambridge University Press, New York, NY, USA, 2004.
61

136

http://www.cs.wisc.edu/~jyc/MadMath.pdf

Bibliography

[26] Vašek Chvátal. Some unknown van der Waerden numbers. In Proceedings of
the Calgary International Conference on Combinatorial Structures and Their
Applications, pages 31–33, New York - London - Paris, 1970. Gordon and Breach.
98

[27] Marlene J. Colbourn and Charles J. Colbourn. Concerning the complexity of
deciding isomorphism of block designs. Discrete Applied Mathematics, 3(3):155–
162, 1981. 19, 20

[28] David Conlon. A new upper bound for diagonal Ramsey numbers. Annals of
Mathematics, to appear, 2009. 118

[29] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990. 83

[30] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
and Sons, New York, August 1991. 53

[31] Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Ex-
ploiting structure in symmetry detection for cnf. In DAC’04: Proceedings of the
41th Design Automation Conference, pages 530–534, New York, NY, USA, June
2004. ACM. 24

[32] Matt DeVos and Robert Šámal. The Open Problem Garden.
http://garden.irmacs.sfu.ca/. 118

[33] Michael R. Dransfield, Lengning Liu, Victor W. Marek, and Miroslaw Truszczyn-
ski. Satisfiability and computing van der Waerden numbers. Electronic Journal
of Combinatorics, 11(1):R41, 2004. 11, 100

[34] Carl Droms. Isomorphisms of graph groups. Proceedings of the American Math-
ematical Society, 100(3):407–408, 1987. 19

[35] Carl Ebeling. Geminiii: a second generation layout validation program. In
ICCAD’88: IEEE International Conference on Computer-Aided Design, pages
322–325, Washington, DC, USA, Nov 1988. IEEE Computer Society. 10

[36] Paul Erdős and Lászlo Lovász. Problems and results on 3-chromatic hypergraphs
and some related questions. In Infinite and Finite Sets (Colloquia Mathematica
Societatis Jbanos Bolyai 11), pages 609–627, 1975. 95

[37] Paul Erdős and Richard Rado. Combinatorial theorems on classifications of
subsets of a given set. Proceedings of the London Mathematical Society, s3-
2(1):417–439, 1952. 94

[38] Jeff Erickson. Finding longest arithmetic progressions.
http://www.cs.uiuc.edu/∼jeffe/pubs/arith.html. 98

137

http://garden.irmacs.sfu.ca/
http://www.cs.uiuc.edu/~jeffe/pubs/arith.html

Bibliography

[39] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commen-
tarii Academiae Scientarum Imperialis Petropolitanae, 8:128–140, 1736. 9

[40] Joan Feigenbaum and Alejandro A. Schäffer. Recognizing composite graphs
is equivalent to testing graph isomorphism. SIAM Journal on Computing,
15(2):619–627, 1986. 20

[41] Ion S. Filotti and Jack N. Mayer. A polynomial-time algorithm for determining
the isomorphism of graphs of fixed genus. In STOC ’80: Proceedings of the
twelfth annual ACM symposium on Theory of computing, pages 236–243, New
York, NY, USA, 1980. ACM. 20

[42] Martin Fürer. A counterexample in graph isomorphism testing. Technical Re-
port CS-87-36, Pennsylvania State University, Department of Computer Science,
University Park, PA, USA, 1987. 26

[43] Martin Fürer. Graph isomorphism testing without numerics for graphs of
bounded eigenvalue multiplicity. In SODA ’95: Proceedings of the sixth annual
ACM-SIAM symposium on discrete algorithms, pages 624–631, San Francisco,
CA, USA, 1995. SIAM. 25

[44] Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algorithms
for permutation groups. In FOCS ’80: Proceedings of the twenty-first Annual
Symposium on Foundations of Computer Science, pages 36–41, Washington, DC,
USA, 1980. IEEE Computer Society. 20

[45] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, 1979. 15

[46] Max Garzon and Yechezkel Zalcstein. The complexity of isomorphism testing.
In FOCS ’86: Proceedings of the twenty-seventh Annual Symposium on Founda-
tions of Computer Science, pages 313–321, Washington, DC, USA, 1986. IEEE
Computer Society. 19

[47] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(3):690–728, 1991. 18

[48] William Timothy Gowers. The two cultures of mathematics.
http://www.dpmms.cam.ac.uk/∼wtg10/2cultures.ps. 11

[49] William Timothy Gowers. A new proof of Szemerédi’s theorem. Geometric And
Functional Analysis, 11(3):465–588, 2001. 94

[50] Ronald L. Graham and Bruce L. Rothschild. A short proof of van der Waerden’s
theorem on arithmetic progressions. Proceedings of the American Mathematical
Society, 42(2):385–386, 1974. 91

138

http://www.dpmms.cam.ac.uk/~wtg10/2cultures.ps

Bibliography

[51] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey Theory.
John Wiley & Sons, Inc., New York, NY, USA, 1990. 90, 91, 94, 96, 118

[52] Ronald L. Graham and Joel H. Spencer. Ramsey theory. Scientific American,
262(7):112–117, 1990. 129

[53] Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic
progressions. Annals of Mathematics, 167(2):481–547, 2008. 89

[54] Charles M Grinstead and Sam M Roberts. On the Ramsey numbers R(3, 8) and
R(3, 9). Journal of Combinatorial Theory, Series B, 33(1):27–51, 1982. 120

[55] Martin Grohe. Isomorphism testing for embeddable graphs through definabil-
ity. In STOC ’00: Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 63–72, New York, NY, USA, 2000. ACM. 25

[56] Martin Grohe and Julian Mariño. Definability and descriptive complexity on
databases of bounded tree-width. In ICDT ’99: Proceedings of the seventh
International Conference on Database Theory, pages 70–82, London, UK, 1999.
Springer-Verlag. 25

[57] Harri Haanpää. Computational Methods for Ramsey Numbers. Licentiate the-
sis, Helsinki University of Technology, Department of Computer Science and
Engineering, Espoo, Finland, June 2000. 118

[58] Harri Haanpää. Computational methods for Ramsey numbers. Reseach Report
A65, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, November 2000. 119

[59] Torben Hagerup and Christine Rüb. A guided tour of chernoff bounds. Infor-
mation Processing Letters, 33(6):305–308, 1990. 80

[60] Edith Hemaspaandra, Lane A. Hemaspaandra, Stanislaw P. Radziszowski, and
Rahul Tripathi. Complexity results in graph reconstruction. Discrete Applied
Mathematics, 155(2):103–118, 2007. 29th Symposium on Mathematical Founda-
tions of Computer Science MFCS 2004. 20

[61] Paul R. Herwig, Marijn J. H. Heule, P. Martijn van Lambalgen, and Hans van
Maaren. A new method to construct lower bounds for van der Waerden numbers.
Electronic Journal of Combinatorics, 14(1):R6, 2007. 111

[62] John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of
planar graphs. In STOC ’74: Proceedings of the sixth annual ACM symposium
on Theory of computing, pages 310–324, New York, NY, USA, 1974. ACM. 20

[63] Neil Immerman and Eric Lander. Complexity Theory Retrospective, chapter
Describing Graphs: A First-Order Approach to Graph Canonization. Springer-
Verlag, Berlin, Germany, 1990. 25

139

Bibliography

[64] T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information
complexity. In STOC ’03: Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 673–682, New York, NY, USA, 2003. ACM. 85

[65] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling
tool for large and sparse graphs. In ALENEX’07: Proceedings of the ninth Work-
shop on Algorithm Engineering and Experiments, pages 135–149, New Orleans,
USA, 2007. SIAM. 24, 71, 76, 77, 78

[66] Volker Kaibel and Alexander Schwartz. On the complexity of polytope isomor-
phism problems. Graphs and Combinatorics, 19(2):215–230, 2003. 19

[67] David R. Karger. Minimum cuts in near-linear time. Journal of the ACM,
47(1):46–76, 2000. 84

[68] David R. Karger and Debmalya Panigrahi. A near-linear time algorithm for
constructing a cactus representation of minimum cuts. In SODA ’09: Proceedings
of the nineteenth annual ACM-SIAM symposium on discrete algorithms, pages
246–255, Philadelphia, PA, USA, 2009. SIAM. 84

[69] Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications.
In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on
discrete algorithms, pages 881–890, Philadelphia, PA, USA, 2007. SIAM. 51, 52

[70] Jeong Han Kim. The ramsey number R(3, t) has order of magnitude t2/ log t.
Random Structures and Algorithms, 7(3):173–207, 1995. 118

[71] Tracy Kimbrel and Rakesh Kumar Sinha. A probabilistic algorithm for verifying
matrix products using o(n2) time and log2 n + o(1) random bits. Information
Processing Letters, 45(2):107–110, 1993. 83

[72] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Birkhäuser Verlag, Basel, Switzerland,
Switzerland, 1993. 10, 15, 18, 84

[73] Michal Kouril. A backtracking framework for beowulf clusters with an extension
to multi-cluster computation and sat benchmark problem implementation. PhD
thesis, University of Cincinnati, Cincinnati, OH, USA, 2006. 98, 100, 113

[74] Michal Kouril and Jerome L. Paul. The van der Waerden number W (2, 6) is
1132. Experimental Mathematics, 17(1):53–61, 2008. 98, 100

[75] Dexter Campbell Kozen. Complexity of finitely presented algebras. PhD thesis,
Cornell University, Ithaca, NY, USA, 1977. 19

[76] Dexter Campbell Kozen. A clique problem equivalent to graph isomorphism.
SIGACT News, 10(2):50–52, 1978. 19

140

Bibliography

[77] Solomon Kullback and Richard A. Leibler. On information and sufficiency. An-
nals of Mathematical Statistics, 22:49–86, 1951. 53

[78] Martin Kutz. The Angel Problem, Positional Games, and Digraph Roots. PhD
thesis, Freie Universität Berlin, Berlin, Germany, 2004. 19

[79] Martin Kutz and Pascal Schweitzer. ScrewBox: a randomized certifying graph
non-isomorphism algorithm. In ALENEX’07: Proceedings of the ninth Workshop
on Algorithm Engineering and Experiments, pages 150–157, New Orleans, USA,
2007. Society for Industrial and Applied Mathematics, SIAM. 31, 39, 72

[80] Bruce Landman, Aaron Robertson, and Clay Culver. Some new exact van der
Waerden numbers. Integers, 5(2):A10, 2005. 96, 98

[81] Bruce M. Landman and Aaron Robertson. Ramsey Theory on the Integers.
American Mathematical Society, February 2004. 90, 99, 100

[82] Jeffrey S. Leon. An algorithm for computing the automorphism group of a
Hadamard matrix. Journal of Combinatorial Theory, Series A, 27(3):289–306,
1979. 20

[83] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its
applications (2nd ed.). Springer-Verlag, Berlin, Germany, 1997. 95

[84] David Lichtenstein. Isomorphism for graphs embeddable on the projective plane.
In STOC ’80: Proceedings of the twelfth annual ACM symposium on Theory of
computing, pages 218–224, New York, NY, USA, 1980. ACM. 20

[85] Anna Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM
Journal on Computing, 10(1):11–21, 1981. 19

[86] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer and System Sciences, 25(1):42–65, 1982.
20, 30

[87] Rudolf Mathon. A note on the graph isomorphism counting problem. Informa-
tion Processing Letters, 8(3):131–132, 1979. 19

[88] Brendan D. McKay. The nauty page.
http://cs.anu.edu.au/∼bdm/nauty. 11, 15, 18

[89] Brendan D. McKay. Nauty user guide.
http://cs.anu.edu.au/∼bdm/nauty/nug-2.4b7.pdf. 22, 68

[90] Brendan D. McKay. Ramsey graphs.
http://cs.anu.edu.au/∼bdm/data/ramsey.html. 126, 128

[91] Brendan D. McKay. Hadamard equivalence via graph isomorphism. Discrete
Mathematics, 27(2):213–214, 1979. 62

141

http://cs.anu.edu.au/~bdm/nauty
http://cs.anu.edu.au/~bdm/nauty/nug-2.4b7.pdf
http://cs.anu.edu.au/~bdm/data/ramsey.html

Bibliography

[92] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981. 11, 15, 22, 68

[93] Brendan D. McKay and Zhang Ke Min. The value of the Ramsey number R(3, 8).
Journal of Graph Theory, 16(1):99–105, 1992. 10, 120

[94] Brendan D. McKay and StanisÃlaw P. Radziszowski. R(4, 5) = 25. Journal of
Graph Theory, 19(3):309–322, 1995. 10, 120, 126

[95] Kurt Mehlhorn and Stefan Näher. From algorithms to working programs: On the
use of program checking in LEDA. In MFCS ’98: Proceedings of the twenty-third
International Symposium on Mathematical Foundations of Computer Science,
pages 84–93, London, UK, 1998. Springer-Verlag. 78

[96] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, UK, 1999. 79

[97] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic
Toolbox. Springer-Verlag, Berlin, Germany, June 2009. 79

[98] Gary L. Miller. Graph isomorphism, general remarks. In STOC ’77: Proceedings
of the ninth annual ACM symposium on Theory of computing, pages 143–150,
New York, NY, USA, 1977. ACM. 19, 20, 21

[99] Gary L. Miller. On the n log n isomorphism technique (a preliminary report).
In STOC ’78: Proceedings of the tenth annual ACM symposium on Theory of
computing, pages 51–58, New York, NY, USA, 1978. ACM. 20

[100] Gary L. Miller. Isomorphism testing for graphs of bounded genus. In STOC ’80:
Proceedings of the twelfth annual ACM symposium on Theory of computing,
pages 225–235, New York, NY, USA, 1980. ACM. 20

[101] Gary L. Miller. Isomorphism testing and canonical forms for k-contractable
graphs (a generalization of bounded valence and bounded genus). In FCT
’83: Proceedings of the 1983 International FCT-Conference on Fundamentals
of Computation Theory, pages 310–327, London, UK, 1983. Springer-Verlag. 31

[102] Takunari Miyazaki. The complexity of McKay’s canonical labeling algorithm. In
Groups and computation, II, volume 28 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 239–256. American Mathemat-
ical Society, 1995. 26, 29, 30

[103] Cristopher Moore, Alexander Russell, and Piotr Sniady. On the impossibility of
a quantum sieve algorithm for graph isomorphism. In STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pages 536–
545, New York, NY, USA, 2007. ACM. 10

[104] Eric Moorhouse. Projective planes of order 27.
http://www.uwyo.edu/moorhouse/pub/planes27/. 63, 73

142

http://www.uwyo.edu/moorhouse/pub/planes27/

Bibliography

[105] Robin A. Moser. A constructive proof of the Lovasz local lemma. In STOC ’09:
Proceedings of the fourty-first annual ACM symposium on Theory of computing,
page to appear, New York, NY, USA, 2009. ACM. 96

[106] Adolfo Piperno. Search space contraction in canonical labeling of graphs (pre-
liminary version). arXiv:0804.4881v1 [cs.DS], 2008. 24

[107] I. N. Ponomarenko. The isomorphism problem for classes of graphs closed under
contraction. Journal of Mathematical Sciences, 55(2):1621–1643, 1991. 20

[108] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numer-
ical Recipes in C. Cambridge University Press, Cambridge, UK, 2nd edition,
1992. 57

[109] StanisÃlaw P. Radziszowski. Small Ramsey numbers. Electronic Journal of Com-
binatorics, page DS1, 2006. 118, 119

[110] Frank P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, s2-30(1):264–286, 1930. 11, 115, 116

[111] Milan Randić. On canonical numbering of atoms in a molecule and graph isomor-
phism. Journal of Chemical Information and Computer Sciences, 17(3):171–180,
1977. 10

[112] Vera Rosta. Ramsey theory applications. Electronic Journal of Combinatorics,
page DS13, 2004. 10

[113] Gordon Royle. Projective planes of order 16.
http://www.csse.uwa.edu.au/∼gordon/remote/planes16/. 63, 73

[114] Marcus Schaefer. Graph Ramsey theory and the polynomial hierarchy. In STOC
’99: Proceedings of the thirty-first annual ACM symposium on Theory of com-
puting, pages 592–601, New York, NY, USA, 1999. ACM. 119

[115] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37(3):312–323, 1988. 18

[116] Pascal Schweitzer. The implementaion of the algorithms developed in this thesis.
http://www.mpi-inf.mpg.de/∼pascal/software/. 13, 41, 111

[117] Pascal Schweitzer. Using the incompressibility method to obtain local lemma
results for Ramsey-type problems. Information Processing Letters, 109(4):229–
232, 2009. 96

[118] Saharon Shelah. Primitive recursive bounds for van der Waerden numbers.
Journal of the American Mathematical Society, 1(3):683–697, 1988. 94

[119] Joel H. Spencer. Ramsey’s theorem - a new lower bound. Journal of Combina-
torial Theory, Series A, 18(1):108–115, 1975. 118

143

http://www.csse.uwa.edu.au/~gordon/remote/planes16/
http://www.mpi-inf.mpg.de/~pascal/software/

Bibliography

[120] Joel H. Spencer. The Strange Logic of Random Graphs. Springer-Verlag, Berlin,
Germany, 2001. 39

[121] R. S. Stevens and R. Shantaram. Computer-generated van der Waerden parti-
tions. Mathematics of Computation, 32(142):635–636, 1978. 98

[122] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the
ACM, 44(4):585–591, 1997. 84

[123] Zoltán Szabó. An application of Lovász’s local lemma - a new lower bound for
the van der Waerden number. Random Structures and Algorithms, 1(3):343–360,
1990. 96

[124] Endre Szemerédi. On sets of integers containing no k elements in arithmetic
progression. Acta Arithmetica, 27:199–245, 1975. 89

[125] Robert Endre Tarjan. A V 2 algorithm for determining isomorphism of planar
graphs. Information Processing Letters, 1(1):32–34, 1971. 20

[126] Bartel L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Archief
voor Wiskunde, 15:212–216, 1927. 10, 89, 90

[127] Abraham Wald. Sequential tests of statistical hypotheses. Annals of Mathemat-
ical Statistics, 16(2):117–186, 1945. 50

[128] Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential
probability ratio test. Annals of Mathematical Statistics, 19(3):326–339, 1948.
50

144

	Introduction
	Graph isomorphism
	The graph isomorphism problem
	Reductions: equivalent and non-equivalent problems

	Brendan McKay's Nauty
	The Weisfeiler-Lehman method
	The Cai-Fürer-Immerman construction and Miyazaki graphs
	Eugene Luks' bounded degree algorithm
	The ScrewBox
	The basic sampling algorithm
	Higher level screws
	Cheap screws of high level
	Customizing the algorithm
	Placement of the screws
	Capabilities provided by the screws
	The choice of pattern

	Advanced statistical tests for equal distribution
	Testing a biased coin
	Testing two random variables for equal distribution
	Choosing an optimal filter
	Testing with the ScrewBox

	Difficult graph instances
	Strongly regular graphs
	Hadamard matrices
	Projective planes

	Engineering the ScrewBox
	Random sampling without replacement
	Pairlabel matrices
	Matrix multiplication

	Evaluation of the ScrewBox algorithm
	Theoretical evaluation
	Practical evaluation
	The CFI-construction and the ScrewBox

	Certification
	Beyond deterministic certification
	Amplification of randomized certifiability

	Conclusion

	Van der Waerden numbers
	Van der Waerden numbers
	Existence of van der Waerden numbers

	Upper bounds for van der Waerden numbers
	Lower bounds for van der Waerden numbers
	Lovász' Local Lemma in the context of van der Waerden numbers

	Known mixed van der Waerden numbers
	Detecting monochromatic arithmetic progressions
	The culprit algorithm
	Kouril's and Paul's SAT technique
	The wildcards algorithm for mixed van der Waerden numbers
	Incorporating culprits in the wildcards algorithm

	Preprocessing techniques
	Preprocessing with late peak
	Preprocessing for two colors

	Implementation details
	Certification
	Evaluation and conclusion

	Ramsey numbers
	Ramsey numbers
	Existence of Ramsey numbers

	Upper bounds for Ramsey numbers
	Lower bounds for Ramsey numbers
	Known Ramsey numbers
	Computational Complexity of Ramsey numbers
	Previous algorithms
	The wildcards algorithm for Ramsey numbers
	High level description of the wildcards algorithm
	The Gluing technique for the wildcards algorithm

	Certification
	Evaluation and conclusion

