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Kurzfassung

In dieser Arbeit betrachten wir das Problem, die Halbraumdarstellung eines
Polytops in seine Eckendarstellung umzuwandeln, — das sogenannte Problem der
Eckenaufzählung — sowie viele andere grundlegende und eng verwandte Berech-
nungsprobleme für Polytope. Das Problem, die Eckendarstellung in die Halbraum-
darstellung umzuwandeln — das sogenannte Konvexe-Hüllen Problem — ist äqui-
valent zum Problem der Eckenaufzählung.

In Kapitel 3 zeigen wir, dass Eckenaufzählung für ein unbeschränktes H-
Polyeder P selbst dann NP -schwer ist, wenn P nur 0/1-Ecken hat. Das verbessert
ein Ergebnis von Khachiyan et. al. [KBB+06]. In den Kapiteln 4 bis 6 zeigen wir,
dass viele andere Operationen auf Polytopen, wie Berechnung von Minkowski-
Summe, Durchschnitt, Projektion usw., für viele Darstellungen NP -schwer sind
und für viele weitere äquivalent zu Eckenaufzählung sind.

In Kapitel 7 beweisen wir Härteresultate über ein Kegelüberdeckungsproblem,
das danach fragt, ob eine gegebene Menge polyedrischer Kegel eine andere gegebe-
ne Menge überdeckt. Wir zeigen, dass dies im Allgemeinen ein NP -vollständiges
Problem ist und wichtige Probleme wie Eckenaufzählung und Hypergraphentra-
versierung als Spezialfälle umfasst.

Schließlich stellen wir in Kapitel 8 einen Zusammenhang zwischen Ecken-
aufzählung und Graphisomorphie her, indem wir beweisen, dass ein bestimmtes
Graphisomorphie-schweres Problem genau dann Graphisomorphie-leicht ist, wenn
Eckenaufzählung Graphisomorphie-leicht ist. Außerdem beantworten wir eine Fra-
ge von Kaibel und Schwartz über das Testen der Selbst-Dualität von Polytopen.





Abstract

In this thesis we consider the problem of converting the halfspace representa-
tion of a polytope to its vertex representation — the Vertex Enumeration prob-
lem — and various other basic and closely related computational problems about
polytopes. The problem of converting the vertex representation to halfspace rep-
resentation — the Convex Hull problem — is equivalent to vertex enumeration.

In chapter 3 we prove that enumerating the vertices of an unbounded H-
polyhedron P is NP -hard even if P has only 0/1 vertices. This strengthens a
previous result of Khachiyan et. al. [KBB+06]. In chapters 4 to 6 we prove that
many other operations on polytopes like computing the Minkowski sum, intersec-
tion, projection, etc. are NP -hard for many representations and equivalent to
vertex enumeration in many others.

In chapter 7 we prove various hardness results about a cone covering problem
where one wants to check whether a given set of polyhedral cones cover another
given set. We prove that in general this is an NP -complete problem and includes
important problems like vertex enumeration and hypergraph transversal as special
cases.

Finally, in chapter 8 we relate the complexity of vertex enumeration to graph
isomorphism by proving that a certain graph isomorphism hard problem is graph
isomorphism easy if and only if vertex enumeration is graph isomorphism easy. We
also answer a question of Kaibel and Schwartz about the complexity of checking
self-duality of a polytope.





Zusammenfassung

Jedes Polytop P ⊂ Rd kann sowohl als konvexe Hülle von endlich vielen Punk-
ten in Rd als auch als beschränkter Durchschnitt von endlich vielen Halbräumen
dargestellt werden. Jede dieser Darstellungen bestimmt die andere eindeutig (falls
Mehrdeutigkeiten ausgeschlossen wurden), aber es sind keine output-sensitiven Al-
gorithmen bekannt, die eine dieser Darstellungen in die andere überführen. Je nach-
dem, ob ein Polytop durch Ecken- oder Facettendarstellung gegeben ist, kann die
Berechnungskomplexität einer Operation auf Polytope sehr unterschiedlich sein.
Diese Arbeit behandelt verschiedene Berechnungsprobleme für Polytope und ihre
Komplexität.

Die Probleme und Ergebnisse dieser Arbeit behandeln folgende gemeinsamen
Themen:
• Viele der in dieser Arbeit betrachteten Probleme sind sehr grundlegen-

de Operationen auf Polytopen. Operationen wie Durchschnitt, Minkowski-
Addition und Projektion sind Basisoperationen auf Polytopen, die in der
Praxis oft berechnet werden müssen. Die Ergebnisse dieser Arbeit zeigen,
dass die beste Methode, diese Operationen durchzuführen, oft darin besteht,
als erstes die Darstellung des Eingabepolytops umzuwandeln, was die Bedeu-
tung von output-sensitiven Algorithmen zur Eckenaufzählung unterstreicht.

• Jedes in dieser Arbeit behandelte Problem ist eng verwandt mit dem Pro-
blem der Eckenaufzählung (vertex enumeration - VE). Für die meisten Pro-
bleme würde ein effizienter Algorithmus zu einem output-sensitiven Algorith-
mus für Eckenaufzählung führen. Unglücklicherweise stellen sich die meisten
dieser Probleme als NP - oder #P -schwer heraus. Hingegen stellt das Pro-
blem zu überprüfen, ob ein Polytop isomorph zu seinem polarem Dual ist
(Kapitel 8), einen Zusammenhang zwischen Eckenaufzählung und dem be-
kanntem Problem der Graphisomorphie (GI) her. Allerdings ist der in dieser
Arbeit hergestellt Zusammenhang etwas schwach.

• Jedes Problem unterstreicht die Bedeutung der Darstellung der Eingabe
für Polytop-Berechnungsprobleme. So ist beispielsweise die Berechnung des
Eckenzentroids (Kapitel 4) für ein V-polytop trivial, während sie für H-
Polytope #P -schwer ist. In ähnlicher Weise ist es leicht, die Facetten des
Durchschnitts zweier H-Polytope zu berechnen, doch das Problem ist NP -
schwer für fast alle anderen Darstellungen.

Die Hauptbeiträge dieser Arbeit unterteilen sich grob in die in den folgenden
Abschnitten ausgeführten Kategorien.



Verbesserung früherer Ergebnisse

In Kapitel 3 zeigen wir, dass Eckenaufzählung eines unbeschränkten H-Polyeders
P selbst dann NP -schwer ist, wenn P nur 0/1-Ecken besitzt. Das verbessert ein
Ergebnis für allgemeine Polyeder von Khachiyan et. al. [KBB+06]. Für allgemei-
ne H-Polytope ist die Komplexität für Eckenaufzählung unbekannt, aber für ein
Polytop, dessen Ecken alle 0/1 sind, gibt es einen output-sensitiven Algorithmus
[BL98]. Unser Ergebnis verdeutlicht damit den Unterschied in der Berechnungs-
komplexität der Eckenaufzählung für Polytope gegenüber der von unbeschränkten
Polyedern.

Unsere kleinen, aber sehr entscheidenden Veränderungen im Beweis von [KBB+06]
ermöglichen es uns, einige zusätzliche Härteresultate zu gewinnen. So zeigt unsere
Methode unter anderem, dass nicht in Polynomialzeit festgestellt werden kann,
ob ein H-Polyeder ein 0/1-Polyeder ist, außer P = NP . Viele dieser zusätzlichen
Resultate aus Kapitel 3 sind schon bekannt, aber unsere Methode erlaubt uns,
diese Ergebnisse zu vereinheitlichen. So sind zwar nicht die Resultate selbst ein
Fortschritt, der vereinheitlichte Beweis hingegen ist durchaus als Fortschritt zu
sehen.

In Kapitel 8 zeigen wir, dass es Graphisomorphie-vollständig ist zu prüfen, ob
ein Polytop, gegeben durch HV-Darstellung, kombinatorisch isomorph zu seinem
polaren Dual ist. Dies verallgemeinert ein Ergebnis von Kaibel und Swartz [KS03],
dass die GI-Vollständigkeit des Test auf kombinatorische Isomorphie zweier HV-
Polytope beweist. Unser Ergebnis basiert auf einer einfachen Beobachtung, die die
Zerlegbarkeit durch free-joins eines Polytops in kleinere Polytope charakterisiert
(Lemma 8.5.1).

Neue Härteresultate

Die wichtigsten neuen Ergebnisse dieser Arbeit beschäftigen sich damit zu zeigen,
dass viele Grundoperationen auf Polytopen, wie Berechnung von Durchschnitt,
Minkowski-Summe, Projektion usw., im Allgemeinen nicht output-sensitiv in Po-
lynomialzeit durchgeführt werden können, außer P = NP . Dies sind zwar Ne-
gativresultate aber positiv betrachtet zeigen sie wie wichtig es ist, die output-
sensitive Komplexität von Eckenauszähung zu verstehen, weil viele grundlegende
und in der Praxis wichtige Probleme nur effizient gelöst werden können, indem
in einem Zwischenschritt die Darstellung des Eingabepolytops in eine bestimme
Form konvertiert wird.

Viele Ergebnisse in dieser Arbeit beantworten von Anderen aufgeworfene Fra-
gen. In Kapitel 7 leiten wir viele neue Härteresultate her, die mit der Komplexität
des Problems zu prüfen, ob eine gegebene Menge von polyhedrischen Kegel ei-



ne gegebene Menge1 D überdeckt, zu tun haben. Als Korollar beantworten wir
eine Frage von Bemporad et. al. [BFT01] negativ, indem wir beweisen, dass es
NP -schwer ist zu entscheiden, ob die Vereinigung einer gegebenen Menge von H-
oder V-Polytopen konvex ist. In ähnlicher Weise beantworten wir in Kapitel 8 eine
Frage von Kaibel und Swartz [KS03], indem wir zeigen, dass es Graphisomorphie-
vollständig ist zu prüfen, ob ein durch seine Facetten und Ecken gegebener Polytop
kombinatorisch isomorph zu seinem polaren Dual ist.

Eine weiterer neuer Beitrag in Kapitel 8 ist die Konstruktion einer Familie von
selbst-dualen Polytopen mittels free-joins. Die konstruierten Polytope sind für sich
schon interessant, weil sie symmetrisierbare Inzidenzmatrizen haben. Außerdem
geben wir ein Beispiel einer Klasse von Polytopen an, die wir die “Dach-Prismen”
(roofed-prisms) nennen, die selbst-dual sind, aber sich nicht mittels freiem Zusam-
menfügen aus anderen Polytopen ergeben. Die Beobachtung, dass solche Polytope
existieren, ist möglicherweise nicht überraschend, aber Dach-Prismen bilden eine
interessante Klasse solcher Polytope.

VE-Vollständigkeit

In dieser Arbeit haben wir eine Komplexitätsklasse für Probleme definiert, die
äquivalent zum Problem der Eckenauszähung sind. Diese Klasse versucht den Be-
griff der Vollständigkeit für VE in gleicher Weise zu fassen, wie die Klasse der
NP -vollständigen Probleme es für die Probleme in NP tut. In Kapitel 6 wird
definiert, was es heißt, dass ein Problem äquivalent zu VE bzw. schwerer oder
leichter als VE ist. Eine Klasse von Problemen, die verwandt zur Berechnung der
Projektion von Polytopen sind, wird als Beispiel für diese Begriffe verwendet. Es
wird gezeigt, wie die verschiedenen Versionen des Projektionsproblems sich als
NP -schwer, V E-vollständig, V E-schwer oder V E-leicht herausstellen.

Trotz mehrjähriger intensiver Forschung ist weder bekannt, ob VE zu P gehört,
noch ob das Problem NP -schwer ist. Aufgrund dieser Tatsache glauben wir, das
es sich als für die zukünftige Forschung nützlich herausstellen wird, einen solchen
Begriff ist definieren. Diese Arbeit stellt zwei Probleme vor, die sich als verwandt
zu dieser neuen Komplexitätsklasse herausstellen (Kapitel 6, Kapitel 7) und wir
hoffen, dass für viele Probleme gezeigt wird, dass ihre Komplexität zu der des
Problems der Eckenauszähung verwandt ist. Solche neuen Probleme werden es
hoffentlich ermöglichen, Werkzeuge aus verschiedenen Gebieten zu nutzen, um die
Frage der Komplexität der Eckenauszähung zu klären.

1Die Mengen, die wir explizit betrachten, sind entweder der gesamte Raum oder ein
linearer Unterraum, obwohl der Fall, dass D ein Polytop ist, mit leichten Modifikationen
behandelt werden kann.



Verhältnis VE zu GI

Es ist durchaus möglich, dass die Komplexität von Eckenauszähung irgendwo zwi-
schen P und NP -vollständig liegt. Wir kennen keine Arbeit, die die Komplexität
von Eckenauszähung zur Komplexität eines Problems wie Graphisomorphie in Be-
ziehung zu setzen versucht. Ganz wie Eckenauszähung hat auch Graphisomorphie
eine lange Forschungsgeschichte und seine Komplexität ist unbekannt. Einige Er-
gebnisse dieser Arbeit versuchen einen Schritt dahin zu gehen, eine Verbindung
zwischen diesen beiden Problemen herzustellen. Auch wenn wir die Frage nicht
abschließend beantworten, ob diese Probleme ähnliche Komplexität haben, glau-
ben wir doch, dass die Ergebnisse in Kapitel 8 ein Schritt in die richtige Richtung
sind.

Insbesondere zeigen wir in Kapitel 8, dass ein bestimmtes Isomorphieproblem
für Polytope genau dann Graphisomorphie-vollständig ist, wenn Eckenauszähung
leicht für Graphisomorphie ist. Für das Problem, das wir SD oder Selbstdualität
nennen, wird gezeigt, dass es schwer für Eckenauszähung und auch für Graphiso-
morphie ist. Im Gegensatz zu anderen in dieser Arbeit betrachteten Problemen,
von denen gezeigt wird, dass sie NP -schwer sind, deren NP -Schwere aber nicht
zum Verständnis der Komplexität von Eckenauszähung beiträgt, wird das Problem
der Selbstdualität nichttriviale Einsichten über die Komplexität von Eckenauszä-
hung gewähren, je nachdem es sich als vollständig für Graphisomorphie oder echt
schwerer als Graphisomorphie (z.B. NP -schwer) herausstellt.



Thesis Summary

Any polytope P ⊂ Rd can be represented as either the convex hull of a finite
number of points in Rd or as a bounded intersection of a finite number of halfspaces.
Either of these representations defines the other uniquely if redundancies are not
allowed, but no output-sensitive algorithms are known that convert one of these
representations to the other. Also, depending on whether the vertex representation
or the facet representation of a polytope is known, the computational complexity of
an operation can vary wildly. This thesis considers various computational problems
about polytopes and their complexity.

The problems that we consider in this thesis, and the results that we obtain,
have the following common themes:
• Many of the problems considered in this thesis are very fundamental opera-

tions on polytopes. Operations like the intersection, Minkowski addition and
projection are very basic operations on polytopes that need to be frequently
computed in practice. The complexity results in this thesis show that often
the best way to perform these operations is by converting the representa-
tion of the input polytope first, highlighting the importance of finding an
output-sensitive vertex enumeration algorithm.

• Every problem considered in this thesis is closely related to the vertex enu-
meration problem. For most problems, an efficient algorithm would imply
and output-sensitive algorithm for vertex enumeration. Unfortunately, most
of these problems turn out to be NP -hard or #P -hard. The problem of
checking whether a polytope is isomorphic to to its polar dual (chapter 8),
on the other hand, relates the vertex enumeration problem with the well
know graph isomorphism problem. Admittedly though the connection es-
tablished in this thesis is somewhat weak.

• Every problem highlights the impact of input representation for computa-
tional problems about polytopes. For example, computing the vertex cen-
troid (chapter 4) for a V-polytope is trivial but is #P -hard for H-polytopes.
Similarly, computing the facets of the intersection of two H-polytopes is easy
but the problem is NP -hard for almost all other representations.

The main contributions of this thesis are roughly divided into different cate-
gories as mentioned in the following subsections.

Strengthening previous results

In chapter 3 we show that enumerating the vertices of an unboundedH-polyhedron
P is NP -hard even when P has only 0/1 vertices. This strengthens a previous re-



sult of Khachiyan et. al. [KBB+06] for general polyhedra. For generalH-polytopes
the complexity of enumerating all the vertices is unknown but for a polytope all
whose vertices are 0/1 there exists an output-sensitive algorithm [BL98]. Our
result, thus, provides a better contrast between the complexities of vertex enumer-
ation problem for polytopes and unbounded polyhedra.

Our small but very crucial modifications of the proof in [KBB+06] allows us
to obtain various other hardness results. For example, among other things, our
method shows that it is not possible to identify in polynomial time whether an
H-polyhedron is a 0/1-polyhedron or not unless P = NP. Many of these addi-
tional results in chapter 3 are already known but our method allows us to unify
all these results, and although these additional results in themselves are not an
improvement over existing results, the unifying proof can arguably be considered
an improvement.

In chapter 8 we prove that it is graph isomorphism complete to check if a
polytope, given by HV-representation, is combinatorially isomorphic to its polar
dual. This generalizes a previous result of Kaibel and Swartz [KS03] proving
the GI-completeness of checking combinatorial isomorphism of two HV-polytopes.
Our result is based on a simple observation characterizing the decomposability of
a polytope as free-join of smaller polytopes (Lemma 8.5.1).

New Hardness results

The most important new results in this thesis concern proving that many basic
operations on polytopes like computing intersections, Minkowski sums, projection
etc can not in general be performed in output-sensitive polynomial time unless
P = NP . Although these results are negative, they do provide a positive view
for algorithmic research on polytopes - it is very important to understand the
output-sensitive complexity of vertex enumeration because many basic and prac-
tically important problems can only be efficiently solved via an intermediate step
of converting the representation of the input polytopes to a certain form.

Many results in this thesis answer questions raised by others. In chapter 7 we
derive many new hardness results related to the complexity of checking whether
a given set of polyhedral cones cover a given set2 D. As a corollary we answer a
question of Bemporad et. al. [BFT01] in the negative by proving that it is NP -
hard to decide whether the union of a given set of H- or V-polytopes is convex.
Similarly, in chapter 8 we answer a question of Kaibel and Swartz [KS03] by proving
that it is graph isomorphism complete to check whether a polytope, given by its

2The sets that we explicitly consider are either the whole space or a linear subspace,
although one can handle the case when D is a polytope with slight modifications.



facets and vertices, is combinatorially isomorphic to its polar dual.
Another novel contribution in chapter 8 is the construction of a family of self-

dual polytopes via free-join. The polytopes constructed are interesting on their
own because their incidence matrices are symmetrizable. In general transposability
of the incidence matrix suffices for self-duality of a polytope and not all self-dual
polytopes have symmetrizable incidence matrices. We also provide an example of
a class of polytopes, which we call the roofed-prisms, that are self-dual but do
not arise as a free-join of other polytopes. The observation that such polytopes
exist is perhaps not surprising but roofed-prisms form an interesting class of such
polytopes.

Completeness for VE

In this thesis we have defined a complexity class for problems that are equivalent
to the vertex enumeration problem. This class tries to capture the notion of
completeness for VE in the same way the class of NP -complete problems does for
problems in NP . In chapter 6 the notion of a problem being equivalent, harder
or easier than VE is defined, and a class of problems related to computing the
projection of polytopes is used as an example for these notions. It is shown how
the various versions of the projection problem turn out to be either NP -hard,
V E-complete, V E-hard or V E-easy.

Despite years of active research neither it is known whether VE is in P nor it
is known to be NP -hard. This fact makes us believe that defining such a notion
of completeness will turn out to be useful for future research. This thesis presents
two problems that turn out to be related to this new complexity class (chapter 6,
chapter 7) and we hope that many problems will be shown to have a complexity
related to that of the vertex enumeration problem. Hopefully such new problems
will make it possible to use tools from different areas for settling the question of
the complexity of vertex enumeration.

Relating VE to GI

It is entirely possible that the complexity of vertex enumeration lies somewhere
between P and NP -complete. We are not aware of any work trying to relate
the complexity of vertex enumeration to some problem like graph isomorphism.
Graph isomorphism, like vertex enumeration, has a long history of research and
an unknown complexity status. Some results in this thesis try to take a step
towards establishing the connection between these two problems. Even though we
do not settle the question whether these two problems have similar complexities,
we believe the results in chapter 8 are a step in the right direction.



In particular, we show in chapter 8 that a certain isomorphism problem defined
for polytopes is graph isomorphism complete if and only if vertex enumeration is
graph isomorphism easy. The problem, which we call SD or Self Duality, is shown
to be vertex enumeration hard as well as graph isomorphism hard. As opposed
to other problems considered in this thesis, that are shown to be NP -hard but
whose NP -hardness offers no insight into the complexity of vertex enumeration,
the self-duality problem will provide non-trivial insight into the complexity of
vertex enumeration whether it turns out to be graph isomorphism complete or
strictly harder that graph isomorphism (say NP -hard).
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Chapter 1

Introduction

A convex polyhedron is an intersection of a finite number of halfspaces H. A

polyhedron is called pointed if it does not contain an affine line and bounded if it

does not contain a ray. The Minkowski-Weyl theorem for polyhedra states that

every polyhedron can be represented as conv(V ) + cone(Y ), where V and Y are

finite sets of vectors in Rd, and conv(X) and cone(X) are respectively the convex

and the conic hull of a set X. Bounded polyhedra are called polytopes, and for

polytopes we have Y = ∅. Although a polyhedron can be bounded or unbounded,

in this thesis we use the word polyhedron exclusively for the unbounded case; for

the bounded case we use the term polytope.

The representation of a polyhedron as intersection of halfspaces is called the

H-representation and the representation as the convex hull of points is called the V-

representations. An H-representation is called minimal if omitting some halfspace

from H does not change the polyhedron. Similarly a V -representation is called

minimal if omitting some vector in the sets V or Y does not change the polyhedron.

For any pointed polyhedron the minimal H- or V-representations are unique and

the H-representation completely defines the V-representation, and vice-versa.

Although the H- and the V-representations are equivalent, that is they define

the same convex set and one completely determines the other, they are quite

different from a computational perspective. Consider the following problem for a

polytope P : Given a vector c ∈ Rd, find a point x ∈ P such that the objective value

cTx is maximized, i.e., we are interested in a point x ∈ P such that cTx ≥ cT y, for

all y ∈ P . It is well known that the point x∗ achieving the maximum can always

be assumed to be one of the vertices of P and thus given the V-representation of

1
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P, this problem can be trivially solved by evaluating cT v for each vector v ∈ V and

taking the maximum. But if P is given in H-representation the problems becomes

fairly non-trivial. In fact, the problem for H-representation is known as the Linear

Programming problem which has been a subject of extensive research since the

time of Fourier.

Perhaps the previous example does not fully convey how different the compu-

tational complexity of the same operation can be for these two representations.

From the example of linear programming, one might be tempted to think that it

is always a case of triviality versus existence of a fairly non-trivial yet polynomial

algorithm. After all, even though a polynomial algorithm for linear programming

was found as recently as 1979 [Kha79] and involved using powerful techniques de-

veloped over a long period, we nevertheless have a polynomial algorithm. This

is not true in general and as we will see in this thesis, many computations on

polytopes are in fact NP-hard (or even #P-hard) in one representation and poly-

nomially solvable in the other. Note that this disparity in the complexity occurs

because the number of vertices and the number of facets of a polytope can vary

greatly. Indeed as we will see in thesis, if the dimension is not assumed to be a

fixed constant then one representation can be exponential compared to the other

representation.

Since the representation of a polytope plays a crucial role in how efficiently

one can perform a computation on a given polytope, it seems natural from a

computational perspective to find an algorithm that converts one representation

to the other efficiently. The problem of representation conversion is fundamental

from a theoretical viewpoint as well - as highlighted by the observation that proving

the equivalence of the two representations of a polytope, generally involves giving a

procedure to convert one representation to the other and then proving termination

of this procedure. The problem of converting the H-representation to the V-

representation is known as the Vertex Enumeration problem (VE) and the problem

of converting the V-representation to the H-representation is called the Convex

Hull problem (CH). The two problems are equivalent and an instance of one can

be converted to an instance of another if a point in the interior of the polytope

is known. Finding such a point for the V-representation is trivial while for H-

representation one can find such a point via linear programming.

It is known that a d-dimensional polytope with n halfspaces (vertices resp.)

in its minimal representation can have as many as
(n−b d+1

2 c
n−d

)
+
(n−b d+2

2 c
n−d

)
vertices
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(facets resp.) [McM70]. The dominating term in the upper bound theorem is

exponential in d and thus one can not hope to find a polynomial algorithm for

this problem if the dimension is not fixed. Also, since the upper bound theorem is

symmetric in the number of vertices and facets, we have a tremendous gap between

the maximum and the minimum number of vertices of a polytope in terms of the

number of facets and the dimension. This fact suggests that one needs to measure

the running time of any algorithm for the problem of representation conversion

both in terms of the input and the output sizes. An algorithm whose computational

complexity is a function of both the input and the output sizes is called an output

sensitive algorithm and this notion of complexity of an algorithm is frequently

used for enumeration problems. Naturally, whenever possible one is interested in

finding an algorithm whose complexity is only a polynomial in the input and the

output sizes. In this thesis any discussion about output sensitivity assumes that

we are interested in polynomial complexity and thus we omit the word polynomial

and use output-sensitive to mean “polynomial in the size of the input and the

output”.

Various algorithms are known for the representation conversion problem but

none of them are output sensitive for general polytopes [ABS97]. This thesis

started out with the goal of finding an output sensitive algorithm for Vertex Enu-

meration problem but unfortunately such an algorithm remains elusive. In the

process of trying to find such an algorithm I discovered many ways that do not

give an output sensitive algorithm and this thesis shaped up to become a collec-

tion of negative results about various computational tasks relating to polytopes.

A typical chapter in this thesis starts with the discussion of a particular prob-

lem on polytopes or polyhedra that relates in some way to the problem of vertex

enumeration. We discuss this connection briefly and then proceed to study that

particular problem. Since most of our results are about hardness of such problems,

and thus do not yield a solution to vertex enumeration, we discuss the problems

and associated results in a way somewhat independent of vertex enumeration.

In Chapter 3 we consider the problem of enumerating the vertices of a poly-

hedron. This is harder than computing both the vertices V and the extreme rays

Y of a polyhedron. Khachiyan et. al. [KBB+06] proved this problem to be NP-

hard. We strengthen this result and prove that this problem remains NP-hard

for the special class of polyhedra all whose vertices are a subset of the vertices

of a hypercube. The vertices of such a polyhedra can be represented only using
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0 and 1 as coordinate values and such polyhedra are aptly named 0/1-polyhedra.

Our result can be contrasted to the results of Bussieck and Lübbecke [BL98] who

showed that for 0/1-polytopes the vertices can be enumerated in polynomial time.

As mentioned before, the problems of enumerating vertices of a general polytope

remains open.

We build upon the proof in [KBB+06] and by analyzing a polyhedron associated

with the negative-flows in a directed graph we are able to derive many other

hardness results. Apart from strengthening the results of [KBB+06], we show that

checking whether an H-polyhedron is 0/1 or not is NP-hard. Ding, Feng and Zang

[DFZ07] have already shown that checking whether an H-polyhedra is 0/1 or not

is NP-hard, but their construction results in polyhedra with exponentially many

vertices. The polyhedra arising in our construction, on the other hand, have only

a polynomial number of vertices. We also show that checking half-integrality of

an H-polyhedron is NP-hard as well. A polyhedron P ⊆ Rn is said to be 1
f -

integral [Vaz01] if V(P ) ⊆ {0, 1
f ,

1
f−1 , . . . ,

1
2 , 1}n. In particular, for f = 2, such a

polyhedron is called half-integral.

The same construction also shows that the maximum support of a d-dimensional

polyhedron can not be approximated to any factor less than d
12 . For a polyhedron

P = {x ∈ Rd : Ax = b, x ≥ 0}, the support of a vertex v ∈ V(P ) is defined as

the number of positive components of v. Finding a vertex of a polyhedron with

maximum support includes several interesting problems, such as MAX-CUT in

undirected graphs, and LONGEST-CYCLE in directed graphs.

In Chapter 4 we consider the problem of computing the vertex centroid of a

polytope. The vertex centroid is defined as the average of the vertices of a polytope,

i.e. if c(P ) be the centroid of the polytope P then

c(P ) =
∑

v∈V(P )

v

|V(P )| .

The relationship of the vertex centroid with the number of vertices bears a parallel

to the relation of the center of mass and the volume of a polytope. Computing

the center of mass was recently shown to be #P -hard by Rademacher [Rad07],

even though it can be approximated quite well via random sampling [KLS98].

Similarly, computing the volume of a polytope is known to be #P -hard [DF88]

even though the volume can be approximated well by random sampling [KLS98].

Computing the number of vertices of a polytope is also known to be #P -hard
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[Lin86] but approximating it is an open problem. We show that computing the

vertex centroid is also #P -hard and approximating it is #P -easy. For polyhedra

we further show that approximating the vertex centroid to any sufficiently non-

trivial degree is hard.

In Chapter 5 we consider the complexity of computing the Minkowski sum,

the intersection, or the convex hull of the union of two polytopes. The Minkowski

sum P1 + P2 of two polytopes P1 and P2 is defined as follows:

P1 + P2 = {x+ y|x ∈ P1, y ∈ P2}.

Our motivation for considering these operations arise from the fact that vertex

enumeration can be solved in polynomial time if these operations can be performed

efficiently. Naturally many versions of these problems have trivial solution. For

example, computing the vertices of the Minkowski sum of two V-polytopes can be

done easily via linear programming. We are interested in other variants of these

operations where such easy solutions do not exist.

We consider these problems for various other input and output representations

and derive various hardness results. For the Minkowski sum, we prove that enu-

merating the facets of P1 + P2 is NP-hard if P1 and P2 are H-polytopes, or if P1

is specified by vertices and P2 is a polyhedral cone specified by facets. For the

intersection, we prove that computing the facets or the vertices of the intersection

of two polytopes is NP-hard if one of them is given by vertices and the other by

facets. Also, computing the vertices of the intersection of two polytopes given by

vertices is shown to be NP-hard. Analogous results for computing the convex hull

of the union of two polytopes follow from polar duality.

Another fundamental operation on polytopes is the projection of a d-dimensional

polytope onto an affine subspace of dimension k ≤ d for an arbitrary k. In Chap-

ter 6 we consider the computational complexity of this operation. We show that

computing either the vertices or the facets of the projection of an H-polytope is

NP-hard while computing both the vertices and the facets of the projection is

equivalent to the vertex enumeration problem. The NP-hardness results in this

chapter follow from the results in Chapter 5, nevertheless the discussion about

projection is included into a separate chapter due to the fact that projection in

itself is a fundamental operation in the theory of polytopes and we consider it

worthwhile to include a coherent and complete discussion of this operation. We
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also discuss the case when the given subspace is not arbitrary but picked at ran-

dom. In contrast to the case of projection onto arbitrary subspaces and somewhat

surprisingly, computing the facets of the projection of a polytope onto a ran-

domly picked subspace can be done in polynomial time even though computing

the vertices remains vertex enumeration hard. The reader should note that we

are not necessarily interested in a randomized algorithm but only the complex-

ity of computing the projection for instances that picked with a certain random

distribution.

The projection operation also serves as an introductory example for the notion

of VE-complete, -hard, or -easy problems which we introduce in Chapter 6. The

idea of defining such classes is to identify the complexity of problems relative to

the vertex enumeration problem. Thus, for example, a VE-complete problem is

equivalent to vertex enumeration and a polynomial algorithm for the vertex enu-

meration problem would give a polynomial algorithm for the VE-complete problem

at hand, and vice-versa. The definition of such classes is motivated again by the

fact that despite years of active research the complexity status of the vertex enu-

meration problem remains unknown, and it might be fruitful to try to relate this

problem with other problems.

In Chapter 7, we consider another problem whose complexity is closely related

to the vertex enumeration problem. The problem, which we call the Cone-Cover

problem, asks us to decide whether a given set of polyhedral cones, each embedded

in Rd, covers a given convex set D. We discuss the cases where D is either the

whole space Rd or an affine subspace Rk. It turns out that the complexity of this

problem depends on how the cones intersect with each other. We consider various

cases and prove NP-hardness of some cases and provide polynomial algorithms for

some other cases.

The motivation for considering this problem is twofolds. Firstly, some variants

of this problem have very close relation with the vertex enumeration problem

and they provide another example for the VE-hard class defined in chapter 6.

Secondly, as a corollary of our results we obtain that checking whether the union

of a given set of polytopes is convex or not, is hard if the polytopes are given only

by their vertices or their facets. This answers in negative a question of Bemporad,

Fukuda and Torrisi [BFT01] about whether or not a polynomial algorithm exists

for checking if the union of a finite number of polytopes in Rd is convex.
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Finally, in Chapter 8 we try to relate the complexity of vertex enumeration to

that of graph isomorphism. This is motivated by the fact that, as we will see in this

thesis, problems that are related to vertex enumeration frequently turn out to be

NP-hard but at the same time the NP-hardness of such problems offers no useful

insight into the complexity of the vertex enumeration problem. To avoid this we try

to relate the complexity of vertex enumeration with that of graph isomorphism.

As it turns out, although we can not yet say much about vertex enumeration,

there is a natural computational question about polytope isomorphism that relates

the complexity of the vertex enumeration problem and the graph isomorphism

problem.

In particular, we consider the problem of checking whether a polytope is self-

dual or not. A polytopes is called self-dual if its face-lattice is ismorphic to that

of its polar dual. Kaibel and Schwartz [KS03] showed that given two polytopes by

their H- as well as V-representation, it is graph isomorphism complete to decide

whether these two polytopes are combinatorially isomorphic to each other, i.e.

whether their face lattices are isomorphic or not. We extend their result and show

that two polytopes P,Q are ismorphic if and only if the free-join of P with the polar

of Q is self-dual. This proves that checking self-duality of a polytope given by both

vertices and facets is graph isomorphism complete. As a corollary we obtain that

checking self-duality of a polytope given by only H- or V-representation is graph

isomorphism complete if and only if vertex enumeration is graph isomorphism easy.

The polytopes arising in our construction are not only self-dual but also have the

property that their facet-vertex incidence matrices are symmetrizable. For self-

duality transposability of the incidence matrix suffices and it is known that not

all transposable matrices are symmetrizable [BGZ06]. We also present a class of

polytopes that are self-dual but whose incidence matrix is not symmetrizable.





Chapter 2

Preliminaries

Given a set X ⊂ Rd, the affine, the conic and the convex hull of X are defined as

aff(X) =

{
x ∈ Rd

∣∣∣∣∣∑
α∈X

λαα = x,
∑
α∈X

λα = 1

}
(2.1)

cone(X) =

{
x ∈ Rd

∣∣∣∣∣∑
α∈X

λαα = x, λα ≥ 0

}
(2.2)

conv(X) =

{
x ∈ Rd

∣∣∣∣∣∑
α∈X

λαα = x,
∑
α∈X

λα = 1, λα ≥ 0

}
(2.3)

A set X is called bounded if it contains no ray and full dimensional if

aff(X) = Rd.

2.1 Polytopes and Polyhedra

A polytope is the convex hull of a finite number of points. A basic result in polytope

theory states that the set of polytopes is exactly the set of bounded intersections

of a finite number of halfspaces ([Zie95], Theorem 1.1).

A polyhedral cone is the conic hull of a finite number of points. A polyhedral

cone can also be represented as the intersection of a finite number of halfspaces

each containing origin on its boundary.

A polyhedron P ⊂ Rd is defined as the intersection of a finite number of

halfspaces.

P =
{
x ∈ Rd |Ax ≤ b

}
,

9
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where A ∈ Rm×d is an m × d matrix of real numbers and b ∈ Rm×1 is a column

vector. If the origin lies in the interior of P then each entry in b can be assumed

to be 1. A polyhedron is called pointed if it does not contain any line. Note that

a polyhedron need not be bounded.

The Minkowski-Weyl theorem [Sch86] for polyhedra states that every polyhe-

dron can be represented as the Minkowski sum conv(V ) + cone(Y ) of a polytope

conv(V ) and a polyhedral cone cone(Y ). For polytopes we have Y = ∅ while for

polyhedral cones the set V contains a single point.

A polyhedron (polytope) is called an H-polyhedron (H-polytope) if it is de-

scribed as the intersection of halfspaces, and it is called a V-polyhedron (V-

polytope) if it is described by the sets V and Y . Accordingly, these two rep-

resentations are called the H- and the V-representation, respectively.

An H-representation of a polyhedron is called non-redundant if omitting any

halfspace does not change the polyhedron. Similarly the V-representation is called

non-redundant if omitting any vectors in V or Y does not change the polyhedron.

For a pointed and full dimensional polyhedron, and hence for full dimensional

polytopes and polyhedral cones, the non-redundant H- and V-representations are

unique.

2.1.1 Faces and the face lattice of a polytope

For α ∈ Rd, β ∈ R, the inequality αTx ≤ β is said to be a valid inequality for a

polytope P if P ⊂ {x ∈ Rd|αTx ≤ β}. A set F ⊆ P is called a face of P if there

exists a valid inequality αTx ≤ β such that F = {x ∈ P |αTx = β}. In this case we

say that F is the face defined (or induced) by αTx ≤ β. The 0-dimensional faces

are called the vertices, 1-dimensional faces the edges, (d − 2)-dimensional faces

the ridges and the (d− 1)-dimensional faces are called facets. For the inequalities

OTx ≤ 0 and OTx ≤ 1 we obtain that P itself and the empty set ∅ are both faces

of the polytope. A face f of P is called a proper face if it is neither the empty set

nor P itself.

A hyperplane h = {x ∈ Rd|αTx = β} is called a supporting hyperplane of a

polytope P if the inequality αx ≤ β is not only valid for P but also induces a proper

face. A supporting hyperplane h is called a facet defining hyperplane of P if P∩h is

a facet of P . For every facet of P there is a unique facet defining hyperplane. The

vertices of P are denoted by V(P ) and the facet defining hyperplanes are denoted
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by H(P ). We will usually not differentiate between a facet of P , its defining

hyperplane {x|αTx = β}, the inequality αTx ≤ β and the halfspace defined by

this inequality, and H(P ) will refer to any of these depending on the context. Since

any of these interpretations unambiguously determines the others, quite often we

will also switch from one interpretation of H(P ) to another interpretation for

simplicity of notation.

Let F(P ) denote the set of faces of a polytope P . The poset (F(P ),⊂) defines

a lattice and is called the face lattice of P . This lattice, denoted by L(P ), can be

visualized by the Hasse diagram where the faces of polytope are arranged in levels

with P at the top (level 0). A level at depth i contains all the faces of dimension

d− i and thus the empty set is the (d+ 1)-st level. An i-level face F has an edge

with an (i+ 1)-level face G if and only if F ⊃ G. An example the face lattice of a

square pyramid is shown in Figure 2.1.

Figure 2.1: Face lattice of a square pyramid

Another equivalent characterization of the vertices of a polytope is the follow-

ing. A vertex or an extreme point of a polytope P is a point v ∈ Rd that cannot

be represented as a convex combination of two other points of P , i.e., there exists

no λ ∈ (0, 1) and v1, v2 ∈ P such that v = λv1 + (1 − λ)v2. For a polyhedron

P , a direction of P is a vector r ∈ Rd such that x0 + µr ∈ P whenever x0 ∈ P
and µ ≥ 0. An extreme direction of P is a direction r that cannot be written

as a conic combination of two other directions, i.e., there exist no non-negative
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numbers µ1, µ2 ∈ R+ and directions r1, r2 of P such that r = µ1r1 + µ2r2. We

denote the sets of extreme points and directions of a polyhedron P by V(P ) and

D(P ) respectively.

2.2 Polarity

For the discussion in this thesis, it is convenient to assume that the origin is

contained in the given polyhedron and hence the H-representation of a polyhedron

P ⊂ Rd can always be assumed to be of the form

Ax ≤ 1

Bx ≤ 0

The polar dual of P denoted by P ∗ is obtained by interpreting each row of the

matrices A and B as points in Rd and is defined as the Minkowski sum

conv (A ∪ {O}) + cone (B) .

Theorem 2.2.1. Let P ⊂ Rd be a polyhedron with H(P ) : Ax ≤ 1, Bx ≤ 0 and

V(P ) : conv(V ) + cone(Y ) then, for the polar P ∗

H(P ∗) : V x ≤ 1

Y x ≤ 0

V(P ∗) : conv(A ∪ {O}) + cone(B)

Here we list some properties of this operation. We omit the proofs and direct

the reader to [Zie95] for details.

Properties of the polar operation:

(i) P ⊆ Q implies P ∗ ⊇ Q∗,

(ii) P = P ∗∗,

(iii) 0 ∈ P ∗

Let P = conv(V ) = {Ax ≤ 1} be a polytope in Rd, and let

F = conv(V ′) = {x ∈ Rd|A′x = 1, Ax ≤ 1}
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be a face of P , with V ′ ⊂ V and A′ ⊂ A. Define,

F ∗ = conv(A′) = {x ∈ Rd|V ′x = 1, V x ≤ 1}.

Then, we have the following:

Theorem 2.2.2. Let P be a polytope with 0 ∈ int(P ), and let F,G be some faces

of P . Then

(i) F ∗ is a face of P ∗,

(ii) F ∗∗ = F,

(iii) F ⊆ G if and only if F ∗ ⊇ G∗.

Corollary 2.2.3. The face lattice of P ∗ is the opposite of the face lattice of P.

2.3 Model of Complexity

For the polyhedral computations that we consider in this thesis, the input poly-

hedron is described either by the set of its vertices and extreme rays, i.e. the sets

V and Y , or the set of inequalities Ax ≤ 1, Bx ≤ 0, or both. We define the size

of the polyhedron to include the number of entries in the matrices V, Y,A and B.

Sometimes, though, we will include the number of bits, L, required to represent the

largest entry in any of these matrices, in the notion of the size of the input. When

we do not include the parameter L in our analysis, we will assume the real-RAM

model, and when we include L we assume the bit-model. Both of these models

are described briefly in the following subsections. A more precise treatment of the

real RAM model is available in Preparata and Shamos [PS85]. The bit-model of

computation is described by Braverman and Cook in [BC06].

2.3.1 Real RAM model

In the real RAM (Random Access Machine) model the abstract computational

machine consists of a (potentially) infinite memory consisting of cells (or words)

and any arbitrary memory cell can be accessed for reading or writing in constant

time. Each memory cell can hold a real number and the machine can perform
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some “basic” arithmetic operations, like addition or multiplication, on two words

in constant time.

Thus, in such a model, the input consists of a sequence of real numbers and

the complexity (or time complexity) of an algorithm is measured in terms of the

number of basic arithmetic operations performed by the algorithm. Naturally the

power of such a machine also depends on the set of the basic operations that

the machine is equipped with. In the text “Computational Geometry: An Intro-

duction” [PS85], Preparata and Shamos list the following operations as the basic

operations:

1. The arithmetic operations (+,−,×, /).

2. Comparisons between two real numbers (<,≤,=, 6=,≥, >).

3. Indirect addressing of memory (integer addresses only).

4. k-th root, trigonometric functions, EXP, and LOG (in general, analytic func-

tions).

2.3.2 Bit-model

Since the assumption that one word of the real RAM machine can hold any ar-

bitrary real number might be unrealistic in certain scenarios, sometimes we will

consider the bit-model where each real number in a word is approximated by a

rational number which in turn can be represented by a sequence of bits encoding

the numerator and the denominator in some way. The size of a number denotes

the number of bits required to represent the numerator and the denominator, and

the time to perform any basic operation on two numbers is specified as a function

of the size of the operands. In essence, the bit-model requires that while working

in the real-RAM model we can only read any real number x in form of a rational

number p
q that approximates x to some given precision, and that we write back

rational approximations of the real numbers to the memory.

The bit-model becomes necessary in the following scenario: Suppose one wants

to solve problem Φ1 by reducing it to another problem Φ2. Since for realistic

computers one has to spend time proportional to the binary encoding for processing

and operating on a number, one has to argue that the actual numbers involved in

the representation of Φ2 are not much larger than those in the representation of

Φ1. An example of this can be seen in chapter 5.
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2.3.3 Output-sensitivity

One crucial difference between complexity notions in this thesis and the standard

notions is that in this thesis the time complexity will generally be not treated as a

function of the input size only but also of the output size. For decision problems

the output is a single bit, while for enumeration problems the output size can have

a wide range. For example, for a given set S of points on the plane the vertices of

their convex hull could either be just three points or all of the input points. If n

denotes the number of input points and h denotes the number of vertices of the

convex hull of S, then an O(n log h) algorithm is arguably better than an O(n log n

algorithm even though in the worst case they have similar complexity.

For the vertex enumeration problem the effect of considering output-sensitivity

is more pronounced. Roughly speaking a d-dimensional polytope defined by n

inequalities can have as many as O(nb
d
2
c) vertices but as few as O(n

1

b d
2 c ) vertices

where the big-oh notation hides polynomials in d. Even though worst case optimal

algorithms with time complexity O(nb
d
2
c) exist [Cha93], if the dimension is not

assumed to be a fixed constant then the worst case optimal algorithm is exponential

in d even though the output size need not always match this worst case bound.

Indeed, for all existing vertex enumeration algorithms there are classes of polytopes

such that the algorithm takes time that is not polymial in the sizes of the input and

the output for variable dimension [ABS97]. Clearly an output sensitive algorithm

with polynomial dependency on the input and the output can be of great utility

for cases where the behavior is far from the worst case.





Chapter 3

Vertices of Polyhedra

In this chapter we consider the problem of enumerating all vertices of an unbounded

polyhedron. This is a joint work with Endre Boros, Khaled Elbassioni and Vladimir

Gurvich, and is an extension of the previous work of Leonid Khachiyan, Endre

Boros, Konrad Borys, Khaled Elbassioni and Vladimir Gurvich [KBB+06]. The

results in this chapter have been accepted for publication in the journal Annals of

Operations Research and have appeared as Rutgers research report [BEGT08].

3.1 Introduction

It is known that the problem of enumerating the vertices of an H-polytope is

equivalent to the following decision problem: Given an H-polytope P and a subset

V of its vertices, is V = V(P )?

Consider the following approach to solving this decision problem. Pick any

arbitrary facet F of P and the subset V ′ ⊂ V of vertices that lie on F . F itself

is a polytope of dimension dim(P ) − 1. Verify recursively whether V ′ = V(F ) or

not. We can decide efficiently if V = V(P ) provide the following problem can be

solved in polynomial time:

Given an H-polytope P , a facet F of P and a subset V ⊆ V(P ) \ V(F ), is V =

V(P ) \ V(F )?

Essentially this newer problem requires one to verify that a given subset of

vertices of P includes all the vertices of P not lying on a particular facet F . We

will now prove that this problem is equivalent to the problem of deciding whether

17
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a given subset of vertices of an unbounded H-polyhedron includes all vertices of

P .

Let the polytope P be described by the inequalities Ax ≤ 1 and let the inequal-

ity corresponding to F be a · x ≤ 1. P can be transformed into a combinatorially

isomorphic polytope P ′ such that removing the inequality for the facet F ′ corre-

sponding to F creates an unbounded polyhedron. To see this, recall the following

facts about polar duality:

Fact 1: Given a polyhedron {Ax ≤ 1, Bx ≤ 0}, the polar dual conv(A ∪ {O}) +

cone({B}) contains the origin.

Fact 2: For a polyhedron (or polytope) P , the polar dual is an unbounded poly-

hedron if and only if P does not contain the origin in its interior.

We move the origin to lie on F and only on F so as to obtain a polytope

described by the inequalities {A′x ≤ 1, a′ · x ≤ 0}. The polar of this polytope is

conv(A′ ∪ {O}) + cone({a′}). Move the origin again to ensure that it does not lie

inside conv(A′). This gives another polyhedron conv(A′′) + cone(a′′). Taking the

polar once more we get a polytope P ′′ represented as {A′′x ≤ 1, a′′ · x ≤ 0} that

is combinatorially isomorphic to P and removing the inequality corresponding to

F (i.e. {a′′ · x ≤ 0}) produces a polyhedron {A′′x ≤ 1} that is unbounded since

conv(A′′) does not contain origin.

Now consider the following problem:

Given an H-polyhedron P and a subset X ⊆ C(P ), is X = C(P )?

In this formulation, C(P ) could be either the set of vertices V(P ), the set

of extreme rays D(P ), or the set of both the vertices and extreme rays V(P ) ∪
D(P ) of P . For the case when C(P ) is V(P ) this problem is equivalent to the

earlier mentioned problem of verifying whether a given subset of vertices of a

polytope include all the vertices of P except those that lie on a particular facet

F . Furthermore, it is well-known and also easy to see that the decision problems

for D(P ) or for V(P ) ∪ D(P ) are equivalent to that for V(P ′) where P ′ is some

polytope derived from P . It is also well-known that if the decision problem is

NP-hard, then no output polynomial-time algorithm can generate the elements of

the set C(P ) unless P=NP (see e.g. [BEGM07]).

The complexity of some interesting restrictions of these problems have already

been settled. Most notably, it was shown in [BL98], that for a 0/1-polytope, i.e.,
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for which V(P ) ⊆ {0, 1}n, given in its H-representation, the problem of finding the

vertices given the facets can be solved with polynomial delay (i.e. the time to pro-

duce each new vertex is bounded by a polynomial in the input size) using a simple

backtracking algorithm. Output-sensitive algorithms for vertex enumeration also

exist for simple and simplicial polytopes [AF92, AF96, BFM98], for network poly-

hedra and their duals [Pro94], and for some other classes of polyhedra [ADP03].

More recently, it was shown in [KBB+06] that the problem of generating the

vertices of an unbounded polyhedron P is NP-hard in general. On the other hand,

for special classes of 0/1-polyhedra, e.g. for the polyhedron of s-t-cuts in gen-

eral graphs [GV95], for polyhedra associated with the incidence matrix of bipar-

tite graphs, and for polyhedra associated with 0/1-network matrices [BEGM07],

output-sensitive algorithms for the vertex enumeration problem can be obtained

using problem-specific techniques.

This naturally raises the question whether there also exists an output-sensitive

algorithm for enumerating the vertices of any 0/1-polyhedron, extending the re-

sult of [BL98] for 0/1-polytopes. Here we show that this is not possible unless

P = NP . Our result strengthens the result of [KBB+06], which did not apply to

0/1-polyhedra. It uses almost the same construction, but goes through the char-

acterization of the vertices of the polyhedron of negative weight-flows of a graph,

defined in the next section. We also characterize the extreme rays of this polyhe-

dron and show that this polyhedron can have many more extreme rays compared

to the number of its vertices.

Ding, Feng and Zang [DFZ07] have recently shown that distinguishing whether

a polyhedron, given by its facets, is either a 0/1 polyhedron or fractional, is an NP -

hard problem. Their construction uses a polyhedron with exponentially many 0/1-

vertices, and the matrix defining the facet inequalities of the polyhedron has exactly

two ones per column. In contrast, our construction gives a similar result, but with

the further restriction that the polyhedron is integral, has only polynomially many

0/1-vertices, and the matrix defining the facet inequalities of the polyhedron is of

the form
[
A
r

]
, where A is a totally unimodular matrix having at most one ”+1”

and one ”−1” per column, and r is a row of ±1′s.

Another consequence of our construction is that checking if a polyhedron is

half-integral, i.e., if all the vertices have components in {0, 1, 1/2} is an NP-hard

problem.
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For a polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0}, the support of a vertex

x ∈ V(P ) is defined as the number of positive components of x. Finding a vertex of

a polyhedron with maximum support includes several interesting problems, such

as MAX-CUT in undirected graphs, and LONGEST-CYCLE in directed graphs.

It follows from our construction that it is NP -hard to approximate such maximum

support within a factor bigger than 12/n.

3.2 The polyhedron of negative-weight flows

Given a directed graph G = (V,E) and a weight function w : E → R on its arcs,

consider the following polyhedron:

P (G,w) =


y ∈ RE

∣∣∣∣∣∣∣∣∣∣∣∣

(F )
∑

v:(u,v)∈E

yuv −
∑

v:(v,u)∈E

yvu = 0 ∀ u ∈ V

(N)
∑

(u,v)∈E

wuvyuv = −1

yuv ≥ 0 ∀ (u, v) ∈ E


.

If we think of wu,v as the cost/profit paid for edge (u, v) per unit of flow, then

each point of P (G,w) represents a negative-weight circulation in G, i.e., assigns a

non-negative flow on the arcs, obeying the conservation of flow at each node of G,

and such that total weight of the flow is strictly negative.

A negative- (respectively, positive-, or zero-) weight cycle in G is a directed

cycle whose total weight is negative (respectively, positive, or zero). We represent

a cycle C by the subset of arcs appearing on the cycle, and denote by V (C) the

nodes of G on the cycle (we assume all cycles considered to be directed and sim-

ple). Let us denote the families of all negative, positive, and zero-weight cycles

of G by C−(G,w), C+(G,w), and C0(G,w), respectively. Define a 2-cycle to be a

pair of cycles (C1, C2) such that C1 ∈ C−(G,w), C2 ∈ C+(G,w) and C1 ∪ C2 does

not contain any other cycle of G. It is not difficult to see that a 2-cycle is either

the edge-disjoint union of a negative cycle C1 and a positive cycle C2, or the edge-

disjoint union of 3 paths P1, P2 and P3 such that C1 = P1 ∪P2 is a negative cycle,

and C2 = P1 ∪P3 is a positive cycle (see Figure 3.1). In the next section, we show

that the vertices V(P (G,w)) are in one-to-one correspondence with the negative

cycles C−(G,w), while the extreme directions D(P (G,w)) are in one-to-one corre-
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(b)(a)

C2

C1

C1

C2

P1
P3

P2

Figure 3.1: 2-cycle.

spondence with the elements of the set C0(G,w)∪{(C,C ′) : (C,C ′) is a 2-cycle)}.

3.3 Characterization of vertices and extreme

directions of P (G,w)

The negative flow polyhedron was also considered in [KBB+06] to obtain the NP-

hardness of enumerating vertices of a polyhedron. There it sufficed to show that the

vertices of this polyhedron have one-to-one correspondence with the negative cycles

of the underlying graph. But to strengthen this result to show that enumerating

vertices remains hard for a polyhedron with only 0/1 vertices, one needs to relate

the exact coordinate values of the vertices with the weights of the negative cycles.

In this section we characterize the extreme rays as a combination of positive and

negative cycles and describe the coordinates of the vertices and the extreme rays

in terms of the weights of the cycles in the underlying graph.

For a subset X ⊆ E, and a weight function w : E 7→ R, we denote by w(X) =∑
e∈X we, the total weight of X. For X ⊆ E, we denote by χ(X) ∈ {0, 1}E the

characteristic vector of X: χe(X) = 1 if and only if e ∈ X, for e ∈ E.

Theorem 3.3.1. Let G = (V,E) be a directed graph and w : E → R be a real

weight on the arcs. Then

V(P (G,w)) =
{ −1
w(C)

χ(C) : C ∈ C−(G,w)
}
, (3.1)

D(P (G,w)) = D1 ∪ D2, (3.2)
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where

D1 = { 1
|C|χ(C) : C ∈ C0(G,w)},

D2 = {µC1,C2χ(C1) + µ′C1,C2
χ(C2) : (C1, C2) is a 2-cycle},

and

µC1,C2 =
w(C2)

w(C2)|C1| − w(C1)|C2| , µ
′
C1,C2

=
−w(C1)

w(C2)|C1| − w(C1)|C2| .

are non-negative numbers computed from cycles C1 and C2.

Proof. Let m = |E| and n = |V |. We first prove (3.1). It is easy to verify

that any element y ∈ RE of the set on the right-hand side of (3.1) belongs to

P (G,w). Moreover, any such x = −χ(C)/w(C), for a cycle C, is a vertex of

P (G,w) since there are m linearly independent inequalities of P (G,w) tight at x,

namely: the conservation of flow equations at |C| − 1 vertices of C, the equation∑
e∈C weye = −1, and m− |C| equations ye = 0, for e ∈ E \ C.

To prove the opposite direction, let y ∈ RE be a vertex of P (G,w). Let

Y = {e ∈ E : ye > 0}. The proof follows from the following 3 claims.

Claim 1. The graph (V, Y ) is the disjoint union of strongly connected components.

Proof. Consider an arbitrary strongly connected component X in this graph, and

let X− be the set of components reachable from X (including X). Summing the

conservation of flow equations corresponding to all the nodes in X− implies that

all arcs going out of X− have a flow of zero.

Claim 2. There exists no cycle C ∈ C0(G,w) such that C ⊆ Y .

Proof. If such a C exists, we can define two points y′ and y′′ as follows.

y′e =

{
ye + ε, if e ∈ C
ye, otherwise,

y′′e =

{
ye − ε, if e ∈ C
ye, otherwise,

for some sufficiently small ε > 0. Then y′, y′′ clearly satisfy (F). Moreover, (N) is

satisfied with y′ since∑
e∈E

wey
′
e =

∑
e6∈C

weye +
∑
e∈C

we(ye + ε) =
∑
e∈E

weye + w(C)ε = −1.
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Similar argument shows that y′′ also satisfies (N). Thus y′, y′′ ∈ P (G,w) and

y = (y′ + y′′)/2 contradicting that y is a vertex.

Claim 3. There exist no distinct cycles C1, C2 ∈ C−(G,w) ∪ C+(G,w) such that

C1 ∪ C2 ⊆ Y .

Proof. If such C1 and C2 exist, we can define two points y′ and y′′ as follows.

y′e =


ye + ε1, if e ∈ C1 \ C2

ye + ε2, if e ∈ C2 \ C1

ye + ε1 + ε2, if e ∈ C1 ∩ C2

ye, otherwise,

y′e =


ye − ε1, if e ∈ C1 \ C2

ye − ε2, if e ∈ C2 \ C1

ye − ε1 − ε2, if e ∈ C1 ∩ C2

ye, otherwise,

where ε1 = −w(C2)
w(C1)ε2, for some sufficiently small ε2 > 0 (in particular, to insure

non-negativity of y′, y′′, ε2 must be upper bounded by the minimum of min{ye : e ∈
C2 \ C1}, |w(C1)|

|w(C2)| min{ye : e ∈ C1 \ C2}, and |w(C1)|
|w(C1)−w(C2)| min{ye : e ∈ C1 ∩ C2}).

Then it is easy to verify that y′, y′′ satisfy (F). Moreover, (N) is satisfied with

y′since∑
e∈E

wey
′
e =

∑
e6∈C1∪C2

weye +
∑

e∈C1\C2

we(ye + ε1) +
∑

e∈C2\C1

we(ye + ε2)

+
∑

e∈C1∩C2

we(ye + ε1 + ε2) =
∑
e∈E

weye + w(C1)ε1 + w(C2)ε2 = −1.

Similarly (N) is also satisfied by y′′. Thus y′, y′′ ∈ P (G,w) and y = (y′ + y′′)/2

contradicting that y is a vertex of P (G,w).

The above 3 claims imply that the graph (V, Y ) consists of a single cycle C

and a set of isolated vertices V \V (C). Thus ye = 0 for e 6∈ C. By (F) we get that

ye is the same for all e ∈ C, and by (N) we get that ye = −1/w(C) for all e ∈ C,

and in particular that C ∈ C−(G,w). This completes the proof of (3.1).

We next prove (3.2). It is easy to see that the extreme directions of P (G,w)

are in one-to-one correspondence with the vertices of the polytope P ′(G,w), ob-

tained from P (G,w) by setting the right-hand side of (N) to 0 and adding the

normalization constraint (N ′) :
∑

e∈E ye = 1. In effect, P ′(G,w) is obtained by

intersecting the cone of all extreme rays of P (G,w) with a suitable hyperplane,

giving a polytope in a lower dimensional affine space.
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We first note as before that every element of D1 ∪ D2 is a vertex of P ′(G,w).

Indeed, if y ∈ D2 is defined by a 2-cycle (C1, C2), then there are m linearly inde-

pendent inequalities tight at y. To see this, we consider two cases: (i) When C1 and

C2 are edge-disjoint, then there are |C1|−1 and |C2|−1 equations of type (F), nor-

malization equations (N) and (N ′), and m−|C1|−|C2| non-negativity inequalities

for e ∈ E \ (C1 ∪C2). (ii) Otherwise, C1 ∪C2 consists of 3 disjoint paths P1, P2, P3

of, say m1,m2 and m3 arcs, respectively. Then C1 ∪ C2 has m1 + m2 + m3 − 1

nodes giving m1 +m2 +m3 − 2 linearly independent equation of type (F), which

together with (N), (N ′) and m − m1 − m2 − m3 non-negativity constraints for

e ∈ E \ (C1 ∪ C2) uniquely define y.

Consider now a vertex y of P ′(G,w). Let Y = {e ∈ E : ye > 0}. Clearly,

Claim 1 is still valid for Y . On the other hand, Claims 2 and 3 can be replaced by

the following two claims.

Claim 4. There exist no 3 distinct cycles C1, C2, C3 such that C1 ∈ C−(G,w),

C2 ∈ C+(G,w), and C1 ∪ C2 ∪ C3 ⊆ Y .

Proof. If such C1, C2 and C3 exist, we can define two points y′ and y′′ as follows:

y′e = ye +
∑3

i=1 εiχe(Ci) and y′′e = ye −
∑3

i=1 εiχe(Ci), for e ∈ E, where ε3 > 0 is

sufficiently small, and ε1 and ε2 satisfy

ε1w(C1) + ε2w(C2) = −ε3w(C3)

ε1|C1|+ ε2|C2| = −ε3|C3|. (3.3)

Note that ε1 and ε2 exist since α def= w(C1)|C2| − w(C2)|C1| < 0. Furthermore,

since ε1 = (w(C2)|C3| − w(C3)|C2|)ε3/α and ε2 = (w(C3)|C1| − w(C1)|C3|)ε3/α,

we can select ε3 such that y′, y′′ ≥ 0. By definition of y′ and y′′, they both satisfy

(F), and by (3.3) they also satisfy (N) and (N ′). However, (y′ + y′′)/2 = y which

contradicts that y ∈ V(P ′(G,w)).

Claim 5. There exist no 2 distinct cycles C1, C2 such that C1, C2 ∈ C0(G,w), and

C1 ∪ C2 ⊆ Y .

Proof. If such C1 and C2 exist, we define two points y′ and y′′ as follows: y′e =

ye + ε1χe(C1) + ε2χe(C2) and y′′e = ye − ε1χe(C1) − ε2χe(C2), for e ∈ E, where

ε2 > 0 is sufficiently small, and ε1 = −ε2|C2|/|C1|. Then y′, y′′ ∈ P ′(G,w) and

y = (y′ + y′′)/2.
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As is well-known, we can decompose y into the sum of positive flows on cycles,

i.e., write y =
∑

C∈C′ λCχ(C), where C′ ⊆ C−(G,w) ∪ C+(G,w) ∪ C0(G,w), and

λC > 0 for c ∈ C′. It follows from Claim 4 that |C′| ≤ 2. Using (N), we get∑
c∈C′ λCw(C) = 0, which implies by Claim 5 that either C′ = {C} and w(C) = 0

or C′ = {C1, C2} and w(C1) < 0, w(C1) > 0. In the former case, we get that

y ∈ D1, and in the latter case, we get by Claim 4 that (C1, C2) is a 2-cycle, and

hence, that y ∈ D2.

In the next section we construct a weighted directed graph (G,w) in which

all negative cycles have unit weight. We show that generating all negative cycles

of G is NP-hard, thus implying by Theorem 3.3.1 that generating all vertices of

P (G,w) is also hard.

3.4 NP-hardness construction

In this section we will describe a reduction from 3-SAT to the problem of enumer-

ating the negative cycles of a directed graph. The construction is essentially the

same as in [KBB+06]; only the weights change. Note however that the weights

used in [KBB+06] are symmetric while we use asymmetric weights. This asym-

metric weighting is crucial to ensure that all the negative cycles have the same

weight and hence all the vertices of the resulting polyhedron are 0/1.

The 3SAT problem is the following decision problem: Given a CNF boolean

formula φ = C1 ∧ · · · ∧ CM on N variables x1, · · · , xN such that every clause Ci
contains exactly 3 literals, is φ satisfiable?

For any given 3SAT formula φ, we will construct a directed graph G(φ) with the

following property. G(φ) has a number of short negative cycles that is polynomial

in the size of φ and such short cycles can be easily enumerated. Furthermore,

G(φ) has long negative cycles if and only if φ is satisfiable. In the context of this

reduction, a cycle is called short if it has only two nodes and long otherwise.

p

s r

q

ba
1
2

− 1
2

0

0

− 1
2

1
2

Figure 3.2: Paths for a literal occurrence
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We distinguish each occurrence of a literal and denote an occurrence of xi in

Cj as xji . For every xji we introduce two paths (see Figure 3.2) on six vertices

p, q, a, b, r, s and six edges. The directed edges are added to define the directed

paths p, a, b, q and r, b, a, s. The added edges have the following weights:

w(p, a) = 1
2 , w(a, b) = −1

2 , w(b, q) = 0,

w(r, b) = 0, w(b, a) = −1
2 , w(a, s) = 1

2 .

It is useful to think of these two paths as separate parts of the graph as depicted

in Figure 3.3. with the nodes a, b identified with a′, b′ respectively. For a literal-

occurrence xji , we will call the path containing a, b as P(xji ) and the path containing

a′, b′ as P ′(xji ). Now, for each literal xi we create a gadget Gi which consists of two

parallel paths - one corresponding to the positive occurrences of xi in any clause

and the other corresponding to the negative occurrences. To get each of these

parallel paths we simply concatenate the various paths P(xji ).

p

sr

q

ba

b′ a′

1
2

− 1
2

0

0

− 1
2

1
2

Figure 3.3: The dotted lines indicate the nodes that are identified as one node.

To give an example, let φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

be the given 3SAT formula. The literal x1 appears in C1 and C2 in positive form

and is negated in C3. Therefore, we concatenate P(x1
1) and P(x2

1) to obtain one

path in G1 and P(x3
1) becomes the other parallel path in G1. The gadget G1 for

this example is shown in Figure 3.4.

Now, for every clause Ci we construct a gadget G′i as follows. G′i consists of three

parallel paths - each corresponding to the path P ′ of one of the literals appearing

in Ci. For the clause C1 in our example formula φ the gadget G′1 is shown again

in Figure 3.5.

For each of the gadgets Gi and G′i there is a unique source and a unique sink.
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a(x1
1)

b(x1
1) a(x2

1)

b(x2
1)

a(x3
1) b(x3

1)

1
2

− 1
2

0 1
2

− 1
2

0

1
2

− 1
2

0

Figure 3.4: Gadget for x1 in φ = (x1∨x2∨x3)∧ (x1∨x2∨x3)∧ (x1∨x2∨x3)

0

− 1
2

1
2

0 − 1
2

1
2

0

− 1
2

1
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b′(x1
1) a′(x1

1)

b′(x1
2) a′(x1

2)

b′(x1
3)

a′(x1
3)

Figure 3.5: Gadget for C1 in φ = (x1∨x2∨x3)∧ (x1∨x2∨x3)∧ (x1∨x2∨x3)
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Figure 3.6: An example of the graph construction in the proof of Theorem
3.5.1 with φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

We concatenate gadget Gi with Gi+1, for i ∈ {1, · · · , N − 1}, by simply identifying

the sink of Gi with the source of Gi+1. This gives us one gadget G for the literals.

We similarly concatenate the gadgets G′i together to get a gadget G′ for the clauses.

Next we identify the sink of G with the source of G′ and add a directed edge from

the sink of G′ to the source of G. This new edge is given the weight −h. The

precise value of h > 0 will be specified later.

The final graph that we obtain can be thought of as a sequence of parallel

chains joined together as follows (see Figure 3.6 for the graph resulting from our

running example φ):

G = v0 G1 v1 G2 v2 . . . vN−1 Gn vN G′1 v′1 G′2 v′2 . . . v′M−1 G′M v′M ,

where v0, v1, . . . , vN , v
′
1, . . . , v

′
M−1, v

′
M are distinct vertices, each Gi, for i = 1, . . . , N ,

corresponds to the literal xi, and each G′j , for j = 1, . . . ,M , corresponds to the

clause Cj . Recall that the nodes a(`) and b(`) for a literal ` in G are identified with

the nodes a′(`) and b′(`) in G′. The dotted lines in the Figure 3.6 connect nodes

that are identified as the same nodes.

Clearly the arcs (a(`), b(`)) and (b′(`), a′(`)) form a directed cycle of total

weight −1, for every literal occurrence `. Let S ⊆ C−(G,w) be the set of such

short cycles. Note that |S| = ∑M
j=1 |Cj | = 3M .

Call a cycle of G long if it contains the vertices v0, v1, . . . , vN , v
′
1, . . . , v

′
M−1, v

′
M .

Any long cycle has weight −h.
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Remark Every long cycle contains the directed edge (v′M , v0), but no short neg-

ative cycle contains this edge.

The crucial observation is the following.

Claim 6. Any negative cycle C ∈ C−(G,w) \S must either be long or have weight

at least −h+ 1.

Proof. Consider any cycle C 6∈ S, and let us write the traces of the nodes visited on

the cycle (dropping the literals, and considering a, a′ and b, b′ as different copies),

without loss of generality as follows:

p a b p a b p · · · a a′ s b′ a′ s b′ · · · b′ b p a b · · · p.

Note that the sequences a′ a and b b′ are not allowed since otherwise C contains a

cycle from S.

Let us compute the distance (i.e., the total weight) of each node on this se-

quence starting from the initial node p. Call the subsequences a a′ and b b′,

a- and b-jumps respectively. Then it is easy to verify that each a-jump causes

the distance to eventually increase by 1 while each b-jump keeps the distance at

its value. More precisely, the distance at a node x in the sequence is given by

d(x) = t(x) + d0(x) − δ(x), where t is the number of a-jumps appearing upto x,

and

d0(x) =


0 if x ∈ {p, s},
1
2 if x = a,

−1
2 if x = a′,

0 if x = b = b′,

δ(x) =

{
h if arc (v′M , v0) appears on the path from p to x

0 otherwise.

One also observes that, if the sequence has a b-jump, and it contains the nodes v0

and v′M , then it must also contain an a-jump. Thus it follows from the definition of

d(x) that any cycle with a jump must be either non-negative, if it does not contain

the nodes v0 and v′M , or have weight at least −h+ 1, if it contains v0 and v′M . So

the only possible negative cycle, not in S, of weight less than or equal to −h must

be long.
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We summarize this construction in form of the following lemma:

Lemma 3.4.1. For any 3-CNF φ with m clauses we can obtain a graph G(φ) with

18m + 1 edges such that G(φ) has 3m short negative cycles. Furthermore, every

negative cycle in G(φ) has total weight −1.

Let (G,w) be the graph with weights defined as above. Also, let S be the set

of all short negative cycles and C−(G,w) be the set of all negative cycles in G.

The following claim was established in [KBB+06].

Lemma 3.4.2. The CNF formula φ is satisfiable if and only if S ⊂ C−(G,w).

We omit the proof of this Lemma here because even with the new weights that

we use, the proof remains exactly the same.

3.5 Hardness of checking some polyhedral

properties

Let P (G(φ), w) be the polyhedron defined by the graph G(φ) and the arc weights

w, constructed for an input CNF formula φ as in the previous section. Let

X ⊆ V(P (G(φ), w)) be the vertices of P (G(φ), w) corresponding to the set S ⊆
C−(G(φ), w), defined in the previous section.

3.5.1 Generating all vertices of a 0/1-polyhedron is

hard

Let us now show that the following problem is coNP-complete:

VE-0/1: Given a polyhedron P = {x ∈ Rn| Ax ≤ b}, where A ∈ Rm×n, b ∈ Rm,

and V(P ) ⊆ {0, 1}n, and a subset X ⊆ V(P ), decide if X = V(P ).

A consequence of the coNP-completeness of the above problem is that there is

no output-sensitive algorithm to enumerate the elements of V(P ), unless P = NP .

Theorem 3.5.1. Problem VE-0/1 is NP-hard.

Proof. Set h = 1 in the construction. Then by Claim 6, any negative cycle must

either belong to S or is long. Any such cycle has weight −1. This implies by
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Theorem 3.3.1 that all vertices of P (G,w) are 0/1, and further that checking if

V(P (G(φ), w)) = X is equivalent to checking if C−(G(φ), w) = S. The latter

problem is NP-hard by Lemma 3.4.2.

Thus, it is NP-hard to generate all vertices of a 0/1-polyhedron. However, (3.2)

shows that the above construction cannot be used to imply the same hardness result

for polytopes, since the numbers of positive and negative cycles can be exponential.

In fact, for the negative cycle polyhedron arising in the construction of Theorem

3.5.1, we have the following.

Proposition 3.5.2. For the directed graph G = (V,E) and weight w : E → R used

in the proof of Theorem 3.5.1, both sets D(P (G,w)) and V(P (G,w))∪D(P (G,w))

can be generated in output-sensitive polynomial time.

Proof. This follows from the fact that for every positive cycle in G there is a nega-

tive cycle, edge-disjoint from it, and vice versa (assuming no clause consists of only

one literal). Hence, the number of 2-cycles and thus the number of extreme direc-

tions of P (G,w) satisfy |D(P (G,w))| ≥ max{|C+(G,w)|, |C−(G,w)|}+ |C0(G,w)|.
Thus D(P (G,w) and V(P (G,w))∪D(P (G,w)) can be generated by generating all

cycles of G, which can be done efficiently [RT75].

However, we do not know if the 2-cycles for general graphs can be efficiently

enumerated. In fact, there exist weighted graphs in which the number of positive

cycles is exponentially larger than the number of 2-cycles. Consider for instance,

a graph G composed of a directed cycle (x1, y1, . . . , xk, yk) of length 2k, all arcs

with weight −1, and 2k additional paths P1,P ′1, . . . ,Pk,P ′k where Pi = (xi, zi, yi)

and P ′i = (xi, z′i, yi), of two arcs each going the same direction parallel with every

second arc along the cycle, each having a weight of 2k (see Figure 3.7 for an

example with k = 4). Then we have more than 2k positive cycles, but the number

of 2-cycles is only 2k. For such graphs enumerating all cycles and then combining

the positive and the negative cycles to enumerate all 2-cycles is clearly not output-

sensitive. Note that proving the NP -hardness of enumerating 2-cycles of a given

weighted will imply the same for the vertex enumeration problem for polytopes.

3.5.2 Recognizing 0/1-polyhedra is hard

The problem of checking if a polyhedron P = {x ∈ Rn : Ax ≥ e, x ≥ 0},
where A ∈ {0, 1}V×E is the vertex-edge incidence matrix of an undirected graph
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Figure 3.7: An example where there are exponentially more positive cycles
than 2-cycles (k = 4).

G = (V,E) and e is the vector of all ones, is a 0/1 polyhedron, was shown in

[DFZ07] to be NP-hard. The 0/1-vertices of P are the edge-covers of G, whose

number is exponential in n for the graph used in the NP-hardness construction of

[DFZ07], and these are the only vertices of P which could possibly be integral. In

other words, the result of [DFZ07] implies that is hard to distinguish if a polyhedron

is 0/1 or fractional. In contrast, we show here the following.

Theorem 3.5.3. Given a polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0}, such

that A =
[
A′

r

]
has exactly one ”+1” and one ”-1” per column, r ∈ {−1,+1}m,

b = [0, . . . , 0,−2]T , and V(P ) ⊆ {0, 1, 2}n, it is NP-hard to tell if V(P ) ⊆ {0, 1}n,

even if P has a polynomial number of 0/1-vertices.

Proof. We set h = 1
2 . It follows that all short negative cycles have weight −1,

any long negative cycle has weight −1/2, and by Claim 6, there exists no other

negative cycles. In particular, by (3.1), V(P (G,w)) can be partitioned into two

sets V1,V2, where V1 is the set of vertices corresponding to short negative cycles,

and V2 are the ones corresponding to long negative cycles. The theorem follows

from the following facts

(i) P (G,w) is integral: V(P (G,w)) = V1 ∪ V2 ⊆ {0, 1, 2}E ,

(ii) V1 ⊆ {0, 1}E and V2 ⊆ {0, 2}E ,
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(iii) |V1| ≤ |E|, and

(iv) checking if V2 is non-empty is NP-hard.

Papadimitriou and Yannakakis [PY90] showed that checking if a polytope,

given by its facets, is integral is an NP-hard problem. It will be interesting to

extend their result by showing that checking if a given integral polytope is 0/1 is

also hard.

3.5.3 Checking for half-integrality is hard

Let f be an integer. A polyhedron P ⊆ Rn, with V(P ) ∈ [0, 1]n, is said to be 1
f -

integral [Vaz01] if V(P ) ⊆ {0, 1
f ,

1
f−1 , . . . ,

1
2 , 1}n. In particular, for f = 1/2, such a

polyhedron is called half-integral. For instance, if A ∈ {0, 1}E×V is the edge-vertex

incidence matrix of a graph G = (V,E), then the polyhedron P = {x ∈ RE : Ax ≥
e, x ≥ 0} is half-integral. The importance of half-integral (or more generally 1

f -

integral) polyhedra P = {x ∈ Rn : Ax = b, x ≥ 0} is that, for any c ∈ Rn, one

can approximate the optimum of min{cx : x ∈ P ∩ {0, 1}n} within a relative

factor of 2, by solving the linear programming relaxation min{cx : x ∈ P}, and

rounding to 1 all variables with value at least 1/2. Thus it will be interesting to

be able to recognize such classes of polyhedra in polynomial time. The next result

states that this is highly unlikely, unless P=NP.

Theorem 3.5.4. Given a polyhedron P , with V(P ) ⊆ [0, 1]n and an integer f ≥ 1.

It is NP-hard to decide if P is 1
f -integral.

Proof. We set h = (f + 1) in the construction. Then Claim 6 implies that any

non-long negative cycle has weight of at least −f , while a long negative cycle has

weight −(f + 1). It follows that each vertex of P (G,w) corresponding to a non-

long negative cycle has components in {0, 1, 1
2 , . . . ,

1
f }. Thus the only negative

cycle corresponding to a vertex with some component possibly less than 1/f is a

long negative cycle. But checking for the existence of such cycle is NP-hard by

Lemma 3.4.2.
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3.5.4 Hardness of approximating the maximum sup-

port

For a polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0}, where A ∈ Rm×n, the support

of a vertex x ∈ V(P ) is defined as supp(x) = |{i ∈ [n] : xi > 0}| the number of

positive components of x. Let max-supp(P ) = max{supp(x) : x ∈ V(P )}. Given

an unweighted directed graph G = (V,E), let us assign weight −1 to each arc.

Then P (G,w) is polytope whose vertices are in one-to-one correspondence with

the directed simple cycles of G. It follows that the vertex with maximum support

in V(P ) corresponds to the longest cycle in G. It was shown in [BHK04] that it

is not possible to approximate the longest cycle in directed graph within a factor

|V |1−ε, for any ε > 0, unless P = NP . It follows that max-supp(P ), for a polytope

P , is NP-hard to approximate within a factor of n1−ε, for any ε > 0. Here we show

a stronger result for polyhedra.

Theorem 3.5.5. For a polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0}, the following

problems are NP-hard:

(i) Checking if P has a vertex of support more than 2.

(ii) Checking if P has a vertex with xi > 0 for a given i.

(iii) Approximating max-supp(P ) within a factor of bigger than 12/n.

Proof. Set h = 1 in the construction of Section 3.4. (i) follows from the observation

that vertices of P (G(φ), w) corresponding to short cycles have support 2, while the

existence of a vertex of bigger support is equivalent to the existence of a long cycle.

(ii) follows from the observation that a long cycle, if one exists, must contain the

arc (v′M , v0). To see (iii), observe that the hardness construction remains valid even

if we assume that the CNF formula φ has 3 literals per clause, and each literal

appears in at least one of the clauses. With such an assumption and using the

notation of Section 3.4, we have n = |E| = 18M + 1. Any long cycle has length at

least 3(N +M) + 1 ≥ n/6 while a short cycle has length 2. Thus we can check the

existence of a long cycle if we cannot approximate max-supp(P (G(φ), w)) within

a factor bigger than 12
n .



Chapter 4

Centroid of a Polytope

4.1 Introduction

Let P be an H-polytope in Rd with vertex set V . Various notions try to capture

the essence of a “center” of a polytope. Perhaps the most popular notion is that of

the center of mass of P. Formally, the center of mass, cµ(S) of a full-dimensional

body S ⊂ Rd is defined as follows

cµ(S) =

∫
x∈S x dx∫
x∈S dx

Recently Rademacher proved that computing the center of mass of a polytope

is #P-hard [Rad07]. The proof essentially relies on the fact that the center of

mass captures the volume of a polytope perfectly and that computing the volume

of a polytope is #P-hard [DF88]. Note that, polynomial algorithms exist that

approximate the volume of a polytope within any arbitrary factor [KLS98]. It is

also easy to see that the center of mass can be approximated by simply sampling

random points from the polytope, the number of samples depending polynomially

on the desired approximation (See Algorithm 5.8 of [KLS98]).

In this chapter we study a variant of the notion of “center” defined as the

centroid (average) of the vertices of P . Despite being quite a natural feature

of polytopes, this variant seems to have received very little attention both from

theoretical and computational perspectives. Throughout this chapter we will refer

to the vertex centroid just as centroid. The reader should note that in popular

literature the word centroid refers more commonly to the center of mass. We

35
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nevertheless use the same terminology for simplicity of language. Our motivation

for studying the centroid stems from the fact that the centroid encodes the number

of vertices of a polytope. As we will see, this also makes computing the centroid

hard.

The parallels between centroid and the center of mass of a polytope mimic the

parallels between the volume and the number of vertices of a polytope. Computing

the volume and the number of vertices are both #P-complete ([Dye83, DF88,

Lin86]) and so are the problems of computing the corresponding centroids ([Rad07],

Theorem 4.2.1). The volume can be approximated quite well but approximating

the number of vertices of a polytope is an interesting open problem. Similarly, the

center of mass can be approximated quite well but (as we will see in this chapter)

obtaining a polynomial algorithm for approximating the centroid would be a very

interesting achievement.

The main results of this chapter are the following:

• Computing the centroid of an H-polytope is #P-hard.

• Even just deciding whether the centroid of an H-polytope lies in a halfspace

remains #P-hard.

• Approximating the centroid of an H-polytope is #P-easy.

• Any algorithm approximating the centroid of any polytope, contained in the

unit hypercube, within a distance d
1
2
−δ for any fixed constant δ > 0 can

be used to obtain a fully polynomial approximation scheme for the centroid

approximation problem and also an output sensitive polynomial algorithm

for the Vertex Enumeration problem.

• There is no polynomial algorithm that approximates the vertex centroid of

arbitrary H-polyhedron within a distance d
1
2
−δ for any fixed constant δ > 0,

unless P = NP .

We should remark that for the approximation of centroid, we only consider

polytopes (and polyhedra) whose vertices lie inside a unit hypercube. To see how

this assumption can easily be satisfied, notice that a halfspace h can be added to

a polyhedron P such that P ∩ h is bounded and the vertices of P are preserved in

P ∩h. Also, such a halfspace can be found in polynomial time from the inequalities

defining P . Once we have a polytope in Rd, solving 2d linear programs gives us the
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width along each coordinate axis. The polytope can be scaled by a factor depending

on the width along each axis to obtain a polytope all whose vertices lie inside a

unit hypercube. In case we started with a polyhedron P , the scaled counterpart of

the halfspace h that was added can be thrown to get back a polyhedron that is a

scaled version of P and all whose vertices lie inside the unit hypercube. In section

4.3 we provide further motivation for this assumption.

Since all the vertices of the polytope (or polyhedron) lie inside a unit hypercube,

picking any arbitrary point from inside this hypercube yield a d
1
2 -approximation

of the vertex centroid. Thus, the last result should be contrasted to the fact that

approximating the vertex centroid within a distance of d
1
2 is trivial. Also, even

though we discuss only polytopes i.e. bounded polyhedra in sections 4.2 and 4.3,

the results and the proofs are valid for the unbounded case as well. We discuss

the unbounded case explicitly only in section 4.4.

4.2 Exact Computation of the Centroid

The most natural computational question regarding the centroid of a polytope

is whether we can compute the centroid efficiently. The problem is trivial if the

input polytope is presented by its vertices. So we will assume that the polytope

is presented by its facets. Perhaps not surprisingly, computing the centroid of an

H-polytope turns out be #P-hard. We prove this by showing that computing the

centroid of an H-polytope amounts to counting the vertices of the same polytope,

a problem known to be #P-hard.

Theorem 4.2.1. Given an H-polytope P ⊂ Rd, it is #P-hard to compute its

centroid c(P).

Proof. Embed P in Rd+1 by putting a copy of P in the hyperplane xd+1 = 1 and

making a pyramid with the base P and apex at the origin. Call this new polytope

Q. Treating the direction of the positive xd+1-axis as up, it is easy to see that the

centroid of the new polytope lies at a height 1− 1
n+1 iff the number of vertices of

P is n. Thus any algorithm for computing the centroid can be run on Q and the

number of vertices of P can be read off the (d+ 1)-st coordinate.

Suppose, instead, that one does not want to compute the centroid exactly but

is just interested in knowing whether the centroid lies to the left or to the right of
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a given arbitrary hyperplane. This problem turns out to be hard too, and it is not

difficult to see why.

Theorem 4.2.2. Given an H-polytope P ⊂ Rd and a hyperplane h = {a · x = b},
it is #P-hard to decide whether a · c(P) ≤ b.

Proof. Consider the embedding and the direction pointing upwards as used in

the proof of Theorem 4.2.1. Given an oracle answering sidedness queries for the

centroid and any arbitrary hyperplane, one can perform a binary search on the

height of the centroid and locate the exact height. The number of queries needed

is only logarithmic in the number of vertices of P.

4.3 Approximation of the Centroid

As stated before, even though computing the gravitational centroid of a polytope

exactly is #P-hard, it can be approximated efficiently to any precision by random

sampling. Now we consider the problem of similarly approximating the vertex

centroid of an H-polytope. Let dist(x, y) denote the Euclidean distance between

two points x, y ∈ Rd. We are interested in the following problem:

Input: H-polytope P ⊂ Rd and a real number ε > 0.

Output: p ∈ Rd such that dist(c(P ), p) ≤ ε.

We would like an algorithm for this problem that runs in time polynomial in the

number of facets of P , the dimension d and 1
ε . Clearly, such an algorithm would be

very useful because if such an algorithm is found then it can be used to test whether

a polytope described by m facets has more than n vertices, in time polynomial in

m,n and the dimension d of the polytope by setting ε < 1
2

(
1
n − 1

n+1

)
. This in turn

would yield an algorithm that computes the number of vertices n of a d-dimensional

polytope with m facets, in time polynomial in m,n and d. As stated before, a

problem that is polynomially equivalent to the Vertex Enumeration problem is to

decide if a given list of vertices of an H-polytope is complete [ABS97]. Clearly

then, a polynomial approximation scheme for the centroid problem would yield an

output-sensitive polynomial algorithm for the Vertex Enumeration problem.

Also, the problem of approximating the centroid is not so interesting if we

allow polytopes that contain an arbitrarily large ball, since this would allow one

to use an algorithm for approximating the centroid with any guarantee to obtain
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another algorithm with an arbitrary guarantee by simply scaling the input polytope

appropriately, running the given algorithm and scaling back. So we will assume

that the polytope is contained in a unit hypercube in Rd.

Now we prove that the problem of approximating the centroid is #P-easy. We

do this by showing that given an algorithm that computes the number of vertices

of an arbitrary polytope (a #P-complete problem), one can compute the centroid

to any desired precision by making a polynomial (in 1
ε , the number of facets and

the dimension of the polytope) number of calls to this oracle. Notice that in the

approximation problem at hand, we are required to find a point within a d-ball

centered at the centroid of the polytope and radius ε. We first modify the problem

a bit by requiring to report a point that lies inside a hypercube, of side length

2ε, centered at the centroid of the polytope. (The hypercube has a clearly defined

center of symmetry, namely its own vertex centroid.) To see why this does not

essentially change the problem, note that the unit hypercube fits completely inside

a d-ball with the same center and radius
√
d

2 . We will call any point that is a valid

output to this approximation problem, an ε-approximation of the centroid c(P ).

Given an H-polytope P and a hyperplane {a · x = b} that intersects P in the

relative interior and does not contain any vertex of P , define P1 and P2 as follows:

P1 = P ∩ {x|a · x ≤ b}
P2 = P ∩ {x|a · x ≥ b}

Let V1 be the common vertices of P1 and P , and V2 be common vertices of

P2 and P . The following lemma gives a way to obtain the ε-approximation of the

centroid of P from the ε-approximations of the centroids of V1 and V2.

Lemma 4.3.1. Given P, V1, V2 defined as above, let n1 and n2 be the number of

vertices in V1 and V2 respectively. If c1 and c2 are ε-approximations of the centroids

of V1 and V2 respectively, then c = n1c1+n2c2
n1+n2

is an ε-approximation of the centroid

c∗ of P.

Proof. Let cij be the j-th coordinate of ci for i ∈ {1, 2}. Also, let c∗i be the actual

centroid of Vi with c∗ij denoting the j-th coordinate of c∗i . Since ci approximates

c∗i within a hypercube of side-length 2ε, for each j ∈ {1, · · · , d} we have

c∗ij − ε ≤ cij ≤ c∗ij + ε
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Also, since c∗ is the centroid of P ,

c∗ =
n1c
∗
1 + n2c

∗
2

n1 + n2

Hence, for each coordinate c∗j of c∗ we have

n1(c1j−ε)+n2(c2j−ε)
n1+n2

≤ c∗j ≤
n1(c1j + ε) + n2(c2j + ε)

n1 + n2

⇒ n1c1j+n2c2j

n1+n2
− ε ≤ c∗j ≤

n1c1j + n2c2j

n1 + n2
+ ε

⇒ cj − ε ≤ c∗j ≤ cj + ε

⇒ c∗j − ε ≤ cj ≤ c∗j + ε

Now to obtain an approximation of the centroid, we first slice the input poly-

tope P from left to right into 1
ε slices each of thickness at most ε. Using standard

perturbation techniques we can ensure that any vertex of the input polytope does

not lie on the left or right boundary of any slice. For each slice any point in the

interior gives us an ε-approximation of the vertices of P that are contained in that

slice. We can compute the number of vertices of P lying in this slice by using the

oracle for vertex computation and then using the previous Lemma we can obtain

the centroid of P . Thus we have the following theorem:

Theorem 4.3.2. Given a polytope P contained in the unit hypercube, the ε-

approximation of the centroid of P can be computed by making a polynomial number

of calls to an oracle for computing the number of vertices of a polytope.

Now we present a bootstrapping theorem indicating that any“sufficiently”non-

trivial approximation of the centroid can be used to obtain arbitrary approxima-

tions. For the notion of approximation let us revert back to the Euclidean distance

function. Thus, any point x approximating the centroid c within a parameter ε

satisfies dist(x, c) ≤ ε. As before we assume that the polytope P is contained in

the unit hypercube. Since the polytope is thus contained in a hyperball with origin

as its center and radius at most
√
d

2 , any point inside P approximates the centroid

within a factor
√
d. Before we make precise our notion of “sufficiently” non-trivial

and present the bootstrapping theorem, some preliminaries are in order.
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Lemma 4.3.3. Suppose (x, y), (u, u) ∈ R2d, where x, y, u ∈ Rd, then

||u− x+ y

2
|| ≤ ||(u, u)− (x, y)||√

2
,

where || · || is the Euclidean norm.

The proof of the above lemma is easy and elementary, and hence we omit it

here. Next, consider the product of two polytopes. Given d-dimensional poly-

topes P,Q the product P × Q is defined as the set {(x, y)|x ∈ P, y ∈ Q}. The

facet defining inequalities of the product of P,Q can be computed easily from the

inequalities defining P and Q.

P = {x|A1x ≤ b1},
Q = {y|A2y ≤ b2}

⇒ P ×Q = {(x, y)|A1x ≤ b1, A2y ≤ b2},

where A1 ∈ Rm1×d1 , A2 ∈ Rm2×d2 , x ∈ Rd1 , y ∈ Rd2 , b1 ∈ Rm1×1, b2 ∈ Rm2×1.

It is easy to see that the number of vertices of P × Q is the product of the

number of vertices of P and that of Q, and the number of facets of P × Q is the

sum of the number of facets of P and that of Q. Moreover, the dimension of P×Q
is the sum of the dimensions of P and that of Q.

Observation 1. If c is the centroid of a polytope P then (c, c) is the centroid of

P × P .

Suppose we are given an algorithm for finding ε-approximation of an arbitrary

polytope contained in the unit hypercube. For example, for the simple algorithm

that returns an arbitrary point inside the polytope, the approximation guarantee is
√
d

2 . We consider similar algorithms whose approximation guarantee is a function of

the ambient dimension of the polytope. Now suppose that for the given algorithm

the approximation guarantee is f(d). For some parameter k consider the k-fold

product of P with itself

k times︷ ︸︸ ︷
P × · · · × P , denoted by P k. Using the given algorithm

one can find the f(2kd) approximation of P k and using Lemma 4.3.3 one can

then find the f(2kd)
√

2
k -approximation of P . This gives us the following bootstrapping

theorem:
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Theorem 4.3.4. Suppose we are given an algorithm that computes a
√
d

g(d) -

approximation for any polytope contained in the unit hypercube in polynomial

time, where g(.) is an unbounded monotonically increasing function. Then, one

can compute an ε-approximation in time polynomial in the size of the polytope and

g−1(
√
d
ε ).

In particular, if we have an algorithm with d
1
2
−δ approximation guarantee for

finding the centroid of any polytope for some fixed constant δ > 0, then this

algorithm can be used to construct a fully polynomial approximation scheme for

the general problem.

4.4 Approximating centroid of unbounded

polyhedra

The reader should note that the analysis of sections 4.2 and 4.3 remains valid

even for the unbounded case (polyhedra). Even though we do not have any idea

about the complexity of approximating the centroid of a polytope, now we show

that for an arbitrary unbounded polyhedron the vertex centroid can not be d
1
2
−δ-

approximated for any fixed constant δ > 0. To show this we first prove that for

an H-polyhedron P ⊂ Rd the vertex centroid of P can not be 1
d -approximated in

polynomial time unless P = NP . This together with Theorem 4.3.4 completes the

proof for hardness of d
1
2
−δ-approximation of the centroid of an H-polyhedron.

The proof sketch is as follows: Given a boolean CNF formula φ, construct a

graph G(φ) such that G(φ) has a “long” negative cycle if and only if φ is satisfiable.

For a given graph G we define a polyhedron P (G) such that every negative cycle

in G is a vertex of P (G) and vice-versa. From the properties of the vertex centroid

of this class of polyhedron, we then prove that for any formula φ, 1
d -approximating

the vertex centroid of P (G(φ)) would reveal whether φ is satisfiable or not.

For the above, we can use the constructions described in Chapter 3. We

rephrase some crucial results from Chapter 3 as the following lemma:

Lemma 4.4.1. For any 3-CNF φ with m clauses we can obtain a weighted graph

G = (V,E), w : E → R and a polyhedron P (G,w) with following properties:

1. G has 18m+ 1 edges and 3m short negative cycles. (Lemma 3.4.1)
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2. Every negative cycle in G has weight −1. (Lemma 3.4.1)

3. There is an edge e that is in every long cycle but is not in any short cycle.

(Remark 3.4)

4. Vertices of P (G,w) are in one-to-one correspondence with the negative cycles

of G. (Theorem 3.3.1)

5. Vertices of P (G,w) have only 0/1 coordinates. In fact, the coordinates of

any vertex of P (G,w) treated as a vector is just the characteristic vector of

the corresponding negative cycle in G. (Theorem 3.3.1, Lemma 3.4.1)

It is clear that the polyhedron P (G,w) has dimension 18m+ 1 and 3m trivial

vertices corresponding to the short negative cycles of G. Recall that checking

whether P (G,w) has more than the 3m vertices is NP-complete.

Since there is an edge e contained in all long cycles but not in any short cycle,

the vertex centroid of P (G,w) has value 0 in the coordinate corresponding to the

edge e if there are no long negative cycles. For simplicity, we will refer to this

coordinate axis as xe. On the other hand, if there are K ≥ 1 long negative cycles

in G then in the centroid xe = K
K+3m ≥ 1

3m+1 . This implies that having an ε-

approximation for the centroid of P (G,w) for ε < 1
2(3m+1) would reveal whether

or not P (G,w) has a non-trivial vertex and hence whether or not G has a long

negative cycle. Thus we have the following theorem:

Theorem 4.4.2. There is no polynomial algorithm that computes a 1
d -approximation

of the vertex centroid of an arbitrary H-polyhedron P ⊂ Rd, unless P = NP .

An immediate consequence of Theorem 4.3.4 and Theorem 4.4.2 is that there

is no polynomial algorithm that computes any “sufficiently non-trivial” approxi-

mation of the vertex centroid of an arbitrary H-polyhedron unless P = NP . More

formally,

Corollary 4.4.3. There is no polynomial algorithm that d
1
2
−δ-approximates the

centroid of an arbitrary d-dimensional H-polyhedron for any fixed constant δ > 0

unless P = NP .
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4.5 Open Problems

Although we can show that for unbounded polyhedra almost any non-trivial ap-

proximation of the vertex centroid is hard, we can not make a similar statement for

the bounded case (i.e. polytopes. One interesting variant of Theorem 4.2.2 would

be to consider a ball of radius r instead of a halfspace. If containment of vertex

centroid in a ball of radius r can be decided in time polynomial in the number of

inequalities defining the polytope, the dimension and r then one can perform a sort

of random walk inside the polytope and approximate the centroid in polynomial

time. We leave out the details of this random walk since we do not have a method

to check containment inside a ball.



Chapter 5

Minkowski Addition and

Related Operations

In this chapter, we study three fundamental operations on polytopes and provide

hardness results for them. The results in this chapter have appeared in the pro-

ceedings of the 23rd annual Symposium on Computational Geometry 2007 [Tiw07].

A journal version has also appeared in Discrete and Computational Geometry

[Tiw08].

5.1 Introduction

For polytopes P,Q in Rd, the Minkowski addition P + Q, the convex hull of the

union CH(P ∪Q) and the intersection P ∩Q are defined as:

P +Q = {x+ y|x ∈ P, y ∈ Q}
CH(P ∪Q) = {λx+ (1− λ)y|x ∈ P, y ∈ Q, 0 ≤ λ ≤ 1}

P ∩Q = {x|x ∈ P and x ∈ Q}

We are interested in the complexity of performing these operations and pro-

viding non-redundant description of the resulting polytopes in appropriate repre-

sentation. Since the worst case size of the output for all the three operations can

be exponential in the size of input (see [FW05b, GS93]), it is natural to talk of

output sensitive algorithms.

It is easy to see that computing the non-redundant V-representation of P +Q

45
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is easy if P and Q are V-polytopes since the vertices of the result correspond to

pairs of vertices from the operands and redundancy in the output can be removed

by solving a polynomial number of Linear Programs. Computing the vertices of

CH(P ∪Q) from the vertices of P and the vertices of Q just amounts to removing

redundancies. Similarly, computing the H-representation of P ∩Q is easy if P,Q

are H-polytopes using an LP solver for removing redundancies. Therefore, we are

interested in other versions of these problems.

In this chapter, for the Minkowski sum, we consider and prove hardness results

for the version where P,Q are H-polytopes or, where one is a V-polytope while the

other is a polyhedral cone given by its facets. In both cases we want to compute

the facets of the Minkowski sum P +Q. For P ∩Q, we consider and prove hardness

results for the following three variants:

• P,Q each a V-polytope, output the vertices of P ∩Q.

• P an H-polytope, Q a V-polytope, output the vertices of P ∩Q.

• P an H-polytope, Q a V-polytope, output the facets of P ∩Q.

The convex hull of the union; and intersection operations are related via polar

duality. More precisely, if P,Q are two full dimensional polytopes (or polyhedra)

in Rd both containing origin in the relative interior, then P ∩Q is the polar dual

of CH(P ∗ ∪Q∗). The Minkowski sum, as we will shortly see, similarly relates to

the convex hull of union via the so called Cayley trick.

5.1.1 The Cayley trick

The Cayley trick ([HRS00, Str94]) is a simple embedding of d-dimensional poly-

topes P1, · · · , Pk into Rd+k−1. The embedding is obtained by appending ei−1 to

every point in Pi, where e0 = 0 and ei is the i -th unit vector of Rk−1, and taking

the convex hull of all the embedded copies. It is easy to see that the Minkowski

sum of these polytopes (up to a scaling) can be obtained from the Cayley embed-

ding by intersecting the polytope obtained after the embedding with a suitable

d-flat. To illustrate this, consider the case when k = 2. The Cayley embedding

is obtained by putting a copy of P1 in the hyperplane xd+1 = 0 and a copy of P2

in the hyperplane xd+1 = 1 and taking the convex hull of both embedded poly-

topes. The Minkowski sum (scaled by a factor half), then, is the intersection of

the resulting polytope with the hyperplane xd+1 = 1
2 .
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The rest of the chapter is organized as follows. In the next section, we describe

prior work related to performing these operations in appropriate representations

and in Section 5.3 we describe the hardness results for computing the Minkowski

sum of two polytopes. In Section 5.4 we establish hardness results for computing

the intersection of two polytopes in various representations.

5.2 Related Work

The problem of enumerating the facets of CH(P1 ∪ P2), when both P1 and P2

are given by their facets, has been studied in [Bal88] and [FLL01]. Balas [Bal88]

constructs polynomial algorithm for a special class of polytopes arising in 0-1

Mixed Integer programming, while Fukuda, Liebling and Lütolf [FLL01] present

an algorithm that has polynomial complexity if the input polytopes satisfy certain

general position assumptions. It is not clear if arbitrary polytopes can be made to

satisfy the general position assumption as described in [FLL01]. The NP-hardness

of computing the convex hull of the union of polytopes, as proved in this chapter,

suggests that these assumptions are probably unrealistic for general polytopes.

Minkowski sums have been studied much more compared to the convex hull

of the union. They frequently come up in computational algebra [GS93], robotics

and motion planning, geometric convexity, computer graphics and many other

areas. Gritzmann and Sturmfels [GS93] studied Minkowski sum in the context of

computational algebra and gave (exponential) bounds on the number of faces of

the Minkowski sum. They also gave examples of cases where the bounds are tight.

As noted before, exponential lower bounds suggest that we should search for

output sensitive algorithms so that cases where the output is far from worst case

can be handled efficiently. Fukuda and Weibel [Fuk04, FW05a] propose polynomial

algorithms for enumerating all faces of the Minkowski sum of k polytopes where

each polytope is given by its vertices. They do not consider the case when the

input polytopes are described by facets and the facets of Minkowski sum are to be

enumerated, and note this version of the problem to be open. Fukuda and Weibel,

in another work (see [FW05b]), study Minkowski sums of special polytopes that

are “well centered” and also provide better bounds on the number of faces for this

special case.
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Our main results state that the following decision problems are NP-complete

and thus there is no output-sensitive algorithm for the corresponding enumeration

problems unless P = NP :

• Given an H-polytope P1, an H-polytope P2, and an H-polytope Q, is P1 +

P2 6= Q?

• Given an H-cone P1, a V-polytope P2, and an H-polyhedron Q, is P1 +P2 6=
Q?

• Given a V-polytope P1, a V-polytope P2, and a V-polytope Q, is P1∩P2 6= Q?

• Given an H-polytope P1, a V-polytope P2, and a V-polytope Q, is P1∩P2 6=
Q?

• Given anH-polytope P1, a V-polytope P2, and anH-polytope Q, is P1∩P2 6=
Q?

For the first decision problem we provide a Turing reduction from another NP-

complete problem. Usually reductions for proving NP-completeness employ Karp

reduction. A problem A is said to be polynomial-time Turing reducible to problem

B if one can construct a polynomial time algorithm for problem A using an oracle

for B. The more common Karp reduction allows only one call to the oracle and

the answer from the oracle is returned, without modification, as the answer to

the original decision problem A. For all other decision problems we provide the

standard Karp reduction from some other NP-complete problem.

5.3 Hardness of Minkowski Addition

In this section we establish two hardness results about computing the facets of the

Minkowski sum of two polytopes. We begin by proving the hardness of enumerat-

ing the facets of the Minkowski sum of two H-polytopes. Consider the following

decision version of the enumeration problem:

Problem IncompleteMinkowski

Input: H-Polytopes P1, P2, Q.

Output: Yes, if Q 6= P1 + P2. No, otherwise.

Theorem 5.3.1. IncompleteMinkowski is NP-complete.
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It was shown by Khachiyan et. al [KBB+06] that it is NP-Hard to enumerate

all vertices of a polyhedron given by its facets. The following theorem restates the

result of [KBB+06].

Theorem 5.3.2. Given a polyhedron P in H-representation and a set V of vertices

of P , it is NP -complete to determine if P has some vertex not in V .

Now, we prove that if we have an algorithm for deciding IncompleteMinkowski

for arbitrary input polytopes, then we can invoke this oracle a polynomial number

of times and decide for some set of vertices V and an H-polyhedron P , whether

V $ vert(P ).

Let P = {x|Ax ≤ b} be a polyhedron in Rd and V ⊆ vert(P ) with |V | = n.

We want to determine whether V $ vert(P ) using a polynomial number of calls to

an oracle for IncompleteMinkowski. For this we pick some direction and order

the vertices of V in that direction. We assume that this direction is aligned with

the xd coordinate axis (after possibly applying a suitable affine transform). That

is, if ed is the unit vector (0, · · · , 0, 1) in Rd and ed is thought to be the upward

direction, then the vertices are considered in the order of increasing height, i.e.

v1 is the lowest vertex and vn is the highest vertex. We also assume that any

horizontal slice of P i.e. P ∩ {x|xd = c} is a bounded polytope for any c ∈ R. We

justify this assumption later.

Now, consider vertices vi and vi+1 for some fixed vertex subscript i and define

three polytopes in the following way:

P−1 = P ∩ {xd = vi · ed}
P1 = P ∩ {xd = vi+1 · ed}
P0 = P ∩

{
xd =

vi · ed + vi+1 · ed
2

}
where the dot product vi · ed is nothing but the xd-coordinate (height) of vi.

Informally speaking, we are interested in three slices of the polyhedron: a top

slice at the height of vi+1, a bottom slice at the height of vi and a slice at an

intermediate height.

We claim that the middle slice is the Minkowski sum of the top and the bottom

slices (with a scaling of half) if and only if there is no other (missing) vertex of P

lying at an intermediate height between vi and vi+1. The following lemma states

this formally.
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Lemma 5.3.3. 2P0 6= P−1 + P1 if and only if there exists some v ∈ vert(P ) that

is not in V and vi · ed < v · ed < vi+1.ed.

Proof. We prove the non-trivial direction only. Suppose some vertex v ∈ vert(P )

is not in V and vi · ed < v · ed < vi+1.ed for the vertex subscript i under consider-

ation. Without loss of generality we can assume that v lies above the hyperplane

containing P0. If so, there is an u ∈ vert(P−1) such that −→uv lies on some edge of

P . Clearly, −→uv intersects P0, say at w. We claim that 2w /∈ P−1 + P1.

Assume for the sake of contradiction that 2w ∈ P−1 + P1. Then there are

x ∈ P−1 and y ∈ P1 such that 2w = x + y. Since, any point on an edge of a

polytope can be uniquely represented as the convex combination of the vertices

defining the edge, it follows that x = u and y is a vertex of P1. This implies that

v is a convex combination of x, y as well and hence, v can not be a vertex of P , a

contradiction.

To complete our algorithm for determining whether a given set V of vertices

of an H-polyhedron P is the complete vertex set of P , we also need to check the

region below the lowest known vertex and above the highest known vertex. Thus,

to complete the proof of Theorem 5.3.1 we need to be able to pick the direction

“up” satisfying the following requirements:

(i) Every slice of P orthogonal to this direction is a polytope, i.e it is bounded.

(ii) Vertices of P have a unique ordering according to their heights in the “up-

ward” direction. In other words, no two vertices of P have the same height.

(iii) We can find an upper bound on the height of all vertices of the polyhedron

P . Furthermore, we require that this height be represented using a number

of bits that is polynomial in the size of the input.

Note that for a direction satisfying requirements (i) and (ii), we can assume

that the lowest vertex in the known set of V is also the lowest vertex of the

polyhedron P . Also such a vertex can be found by solving a linear program and

if V does not contain this vertex then clearly V $ vert(P ). To check the region

above the highest known vertex v of P, we take a slice of P at the height of v

and another at the height defined by (iii), above which no vertex can possibly

lie, and apply Lemma 5.3.3. We would also like that the direction satisfying the

above requirements be represented using number of bits q that is polynomial in

the number of bits used in the description of P and V .
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5.3.1 Finding the sweep direction

To satisfy the first requirement, recall that a pointed polyhedron has a unique

minimal representation as the Minkowski sum of a polytope and a cone. Also, the

cone of the polyhedron P = {x|Ax ≤ 1} is just cone(P ) = {x|Ax ≤ 0} with some

inequalities possibly redundant. So a vector α such that cone(P ) ∩ {α · x ≤ 1}
is bounded, satisfies the first requirement. Any vector picked from the interior

cone(A) does the trick, where every row of A is interpreted as a vector in Rd. In

particular the average of the row vectors of A satisfies requirement (i) and requires

a number of bits that is polynomial in the size of A.

Let N be the set of the facet normals of cone(A). Computing N is not an

easy task but for our purposes we only need an upper bound on the size of the

coefficients of these facet normals. It is known that the number of bits required

to represent N is a polynomial in the number of bits required to represent A (

See [GLS93] Page 164, Lemma 6.2.4 ). An immediate consequence of the same

Lemma is that for any polyhedron P, a polynomial upper bound on the height of

the topmost vertex can be computed. Thus assumption (iii) can be satisfied as

long as the sweep direction needs a polynomial number of bits in its representation.

The first two conditions, for any possible sweep direction a, can be rewritten

as:

〈a, η〉 < 0, ∀η ∈ N (5.1)

〈a, u− v〉 6= 0, ∀u, v ∈ vert(P ), u 6= v (5.2)

where 〈x, y〉 is the inner product of the vectors x and y.

We already have a direction α satisfying (5.1). Now, consider the directions

β =


1

x
...

xd−1


γ = xdα+ β

We show that for large enough x, the direction γ satisfies both the requirements

(5.1) and (5.2), and that the number of bits needed for x, and hence for γ, is a

polynomial in the size of the polyhedron P . We want that for γ
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〈γ, η〉 = xd 〈α, η〉+ 〈β, η〉 < 0, ∀η ∈ N (5.3)

〈γ, u− v〉 = xd 〈α, u− v〉+ 〈β, u− v〉 6= 0, ∀u, v ∈ vert(P ), u 6= v (5.4)

Notice that equations 5.3 and 5.4 involve polynomials in x. For large enough x

the sign of the polynomial in equation 5.3 is the same as the sign of 〈α, η〉. Since

α satisfies (5.1), γ satisfies (5.1) as well for large enough x. It is also clear that

the size of such an x need only be a polynomial in the size of the coefficients of

the polynomial in 5.3.

Also, any polynomial in x evaluates to a non-zero value if x is larger than the

largest possible root of the polynomial. Since the largest root of a polynomial

has size polynomial in the size of its coefficients (See [Yap00], page 148, Lemma

6.7), the size of x required to satisfy equation 5.4 and hence condition (5.2) is a

polynomial in the size of the coefficients involved in 5.4. This proves that we can

pick a direction γ satisfying all the necessary conditions and requiring a number

of bits that is polynomial in the size of P .

Thus, the polyhedron P and the vertex list V can be preprocessed so that their

sizes remain polynomial, and so that if V $ vert(P ) then Lemma 5.3.3 can be used

to find a missing vertex by checking the space between vi and vi+1 for each i, and

checking the space above the highest vertex. As stated before, any vertex of P

requires a number of bits that is bounded by a polynomial in the size of P and so

we can check the region above the highest vertex as well.

The above reduction proves that IncompleteMinkowski is NP-hard. To prove

that IncompleteMinkowski is in NP as well, notice that given a hyperplane

h : {a ·x = 1} one can easily check whether it defines a facet of the Minkowski sum

P1 +P2. To see this, let us consider the Cayley embedding of the two polytopes. If

this hyperplane defines a facet of the Minkowski sum P1 + P2, then in the Cayley

embedding as well, it corresponds to a facet of the convex hull of the union of the

two polytopes. Given a hyperplane h one can find the faces of P1 and P2 that

(possibly) define the corresponding facet of the Cayley embedding. For each Pi

this can be done by simply translating the hyperplane away from the origin until

it becomes a supporting hyperplane for Pi and taking the face of Pi contained in

the hyperplane at this point. Whether these two faces define a facet of the Cayley

embedding or not can be checked by just checking the dimension of the convex
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hull of the union of these two faces. This completes the proof of Theorem 5.3.1.

Following is an immediate corollary of Theorem 5.3.1:

Corollary 5.3.4. Given two H-polytopes P1, P2 ∈ Rd, there is no output-sensitive

algorithm that enumerates the facets of P1 + P2 unless P = NP .

Since for an H-polyhedron P and a subset of its vertices V , it is NP-complete

to decide whether V $ vert(P ), we also have the following theorem:

Theorem 5.3.5. Given an H-cone P1, a V-polytope P2, and an H-polyhedron Q,

it is NP-complete to determine whether P1 + P2 6= Q.

Proof. Any pointed polyhedron P has a unique minimal representation as the

Minkowski sum of the polytope defined by its vertices and the cone of its extreme

rays. Also, the cone of the extreme rays of the polyhedron P = {x|Ax ≤ b} is just

cone(P ) = {x|Ax ≤ 0}. Redundant inequalities of cone(P ) can be removed using

linear programming and hence conv(V )+cone(P ) = P if and only if V = vert(P ).

Thus, an algorithm for enumerating the facets of the Minkowski sum of a V-

polytope and an H-cone can be used to determine whether a given list of vertices

of a polyhedron P is complete or not.

As noted earlier, given a hyperplane it can be easily checked whether it defines

a facet of the Minkowski sum of P1 and P2. Thus, if P1 + P2 6= Q then there is

a facet defining hyperplane for P1 + P2 that does not define a facet of Q. This

proves that this decision problem is in NP as well.

It should be remarked that if the cone P1 in Theorem 5.3.5 is represented by

it’s extreme rays then the problem of determining whether P1 + P2 = Q or not, is

equivalent to the problem of computing the V -representation of a polytope from

the H-representation and vice-versa. The complexity status of the representation

conversion problem remains open despite years of research [ABS97].

5.4 Hardness of Computing Intersection

Recall that the Minkowski sum of two polytopes can be computed via computing

the convex hull of two polytopes using the Cayley embedding. To compute the

Minkowski sum of polytopes P and Q in Rd, we embed the polytopes in Rd+1 by

putting a copy of P in the hyperplane defined by {xd+1 = −1} and a copy of Q
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in the parallel hyperplane {xd+1 = 1}. If P−1 and Q1 are the copies of P and Q

respectively, then P +Q is obtained (upto a scaling factor 1
2) by taking the convex

hull CH(P−1 ∪Q1) and intersecting it with the hyperplane {xd+1 = 0}.
Note that, the operand polytopes P−1 and Q1 here are not full dimensional

i.e. even though they are embedded in Rd+1, neither of them has dimension d+ 1.

However, one can easily ensure that these polytopes are full dimensional and both

contain the origin in their relative interiors. To do this, we pick a point p in the

relative interior of CH(P−1∪Q1) and construct a pyramid with base P−1 and p as

the apex. It is easy to see that this can be done in polynomial time. Now we can

pick another point q in the relative interior of this pyramid and create a pyramid

with Q1 as the base and q as the apex. Since the convex hull of the union of these

two pyramids is the same as that of P−1 and Q1 and their intersection is a full

dimensional polytope, we can move origin in this common region. This together

with Theorem 5.3.5 gives us the following theorem:

Theorem 5.4.1. Given H-polytopes P1, P2, Q ∈ Rd, it is NP-complete to decide

whether CH(P1 ∪ P2) 6= Q.

This can be dualized since each of the polytopes is full dimensional and contains

origin in the relative interior. By considering the polar duals of P1, P2 and Q, each

of which is a full dimensional V-polytope containing the origin in the relative

interior, we have the following theorem:

Theorem 5.4.2. Given V-polytopes P1, P2, Q ∈ Rd, it is NP-complete to decide

whether P1 ∩ P2 6= Q.

Now we prove that the problem of computing either the facets or the vertices

of the intersection of two polytopes is hard for the case where one of the polytopes

is given by H-representation and the other by V-representation.

Theorem 5.4.3. Given an H-polytope P1, a V-polytope P2, and an H-polytope Q,

it is NP-complete to decide whether P1 ∩ P2 6= Q.

Proof. It is known ([FO85]) that given an H-polytope P1 and a V-polytope P2,

it is NP-complete to decide whether P1 * P2. Clearly, P1 ⊆ P2 if and only if

P1 ∩P2 = P1. This implies that checking whether a given list of facets completely

defines the intersection of an H-polytope and a V-polytope, is NP-hard.
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The problem is also in NP because for given polytopes P1, P2 and Q, if P1∩P2 6=
Q then Q has a vertex that does not lie in the intersection P1 ∩ P2. A point lies

in P1 ∩ P2 if and only if it satisfies all the facet inequalities of P1 and can be

represented as the convex combination of the vertices of P2. Both the tests can be

performed in polynomial time for rational polytopes.

As it turns out computing the vertices of the intersection of an H-polytope and

a V-polytope is hard as well.

We know from Theorem 5.3.5 that it is NP-complete to decide whether a given

list of facets of the Minkowski sum of an H-cone P1 and a V-polytope P2 in Rd,

is complete or not. As stated in the beginning of this section, we can embed P1

and P2 in Rd+1 in two parallel hyperplanes and the Minkowski sum P1 +P2 is the

intersection of the convex hull of P1 and P2 with an appropriate hyperplane. Also,

we can pick points p and q in the convex hull of P1 and P2 such that the pyramids

P ′1 and P ′2 obtained from P1 with apex p and P2 with apex q are full dimensional

and have a full dimensional intersection. Thus,

Theorem 5.4.4. Given an H-polyhedron P1 and a V-polytope P2, it is NP-hard

to compute the facets of the polyhedron CH(P1 ∪ P2).

Consider the polar duals of P1 and P2. Since both P1 and P2 are full di-

mensional and contain the origin in their relative interiors, the polar dual of P2

is bounded i.e. an H-polytope, and the polar dual of P1 is a V-polytopes with

vertices A ∪ {0} if P1 is represented as Ax ≤ 1. The vertices of P ∗1 ∩ P ∗2 are in

one-to-one correspondence with the facets of CH(P1 ∪ P2) and so we have the

following theorem:

Theorem 5.4.5. Given an H-polytope P1, a V-polytope P2 and a V-polytope Q,

it is NP-complete to decide whether P1 ∩ P2 6= Q.





Chapter 6

VE-completeness: Projection of

Polytopes

6.1 Introduction

As stated before, the problem of enumerating the vertices of a polytope given by

its facets has been studied for a long time by a number of researchers. Still the

complexity status of Vertex Enumeration problem (VE), for general dimension and

for polytopes that are neither simple nor simplicial, is unknown. It is neither known

to be in P nor is it known to be NP-complete. The dual problem of computing

H-representation from V-representation, known as Convex Hull problem (CH), is

equivalent to VE modulo solving a Linear Program. Thus, for rational input these

two problems - VE and CH - are polynomial time equivalent and a polynomial

output-sensitive algorithm for one can be used to solve the other in output-sensitive

polynomial time.

In previous chapters we considered some problems whose efficient algorithm

could yield an efficient algorithm for the vertex enumeration problem. Unfortu-

nately these problems turned out to be NP-hard. This appears to be a general

phenomenon. Problems like polytope containment [FO85], VE for polyhedra (

Chapter 3 ), intersection of polytopes ( Chapter 5 ) that arise from relaxing the

problem of vertex enumeration very slightly are NP-hard even though the NP-

hardness of VE itself is unknown. This suggests that it might be useful to define a

complexity class based on VE and identify problems that are equivalent to vertex

57
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enumeration. In this chapter we define such a class and give examples of prob-

lems related to computing projections of polytopes that are equivalent to vertex

enumeration. In chapter 7 we consider another problem of this class.

In order to be able to talk about the equivalence of Vertex Enumeration and

projection, we will define a complexity class based on Vertex Enumeration. Keep-

ing in line with other notions of completeness, we call an enumeration problem Φ

VE-complete if any output-sensitive polynomial algorithm for VE can be used to

solve Φ in output-sensitive polynomial time and vice-versa. Similarly, we call a

problem VE-easy if it can be solved in output-sensitive polynomial time using an

oracle for VE and we call a problem VE-hard if an oracle for this problem can be

used to solve VE in output-sensitive polynomial time.

6.2 The Projection Problem

Given a polytope P ⊂ Rd the orthogonal projection π(P ) of P, onto a k-

dimensional subspace spanned by the first k coordinate directions, is obtained

by dropping the last d− k coordinates from every point of P . More formally, the

projection π : Rd → Rk is a map such that

π(P ) = {x ∈ Rk|∃y ∈ R(d−k), (x, y) ∈ P}.

In general the projection need not be orthogonal and the projection directions

can be an arbitrary orthogonal set of vectors not necessarily aligned with the

coordinate axes. In such cases one can apply an affine transform to align the

projection directions along the coordinate axes, changing the polytope P in the

process to another polytope Q and then considering an orthogonal projection of

Q.

In this chapter we consider the problem of computing the projection of a poly-

tope. Apart from the relation of projection to the vertex enumeration problem,

which we will establish in this chapter, another motivation for considering this

problem arises from the fact that one frequently needs to perform this operation is

many areas like Control Theory, Constaint Logic Programming Languages, Con-

straint Query Languages etc ([Imb93]). And although many hardness proofs in

this chapter are rather simple, they don’t appear anywhere in the published liter-

ature. Furthermore, many papers seem to indicate that at least in some areas like
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Input\Output V H HV
V poly VE-Complete VE-complete
H NP-hard NP-hard VE-complete
HV poly VE-complete VE-complete

Table 6.1: Complexity of computing projection of a polytope onto an arbi-
trary subspace, for various input and output representations.

Input\Output V H HV
V poly VE-complete VE-complete
H VE-hard poly VE-complete
HV poly poly poly

Table 6.2: Complexity of computing projection of a polytope for non-
degenerate projection directions, for various input and output representa-
tions.

control theory (See, for example, [JKM04]) the quest for a polynomial algorithm

(even for the versions that we prove NP-hard) is still on.

The projection problem has many variants depending on the input represen-

tation of the polytope P and the desired output representation of π(P ). In this

chapter, we prove that for arbitrary projection directions, most versions of this

problem are either VE-complete or NP-hard. Variants that are neither of these

admit trivial polynomial algorithms. For example computing the vertices of π(P )

when P is a V-polytope can be done simply by projecting each vertex and remov-

ing redundancies using linear programming. On the other hand, computing the

facets or the vertices of π(P ) when P is an H-polytope is NP-hard (Section 6.4).

Our main results are summarized in Table 6.1 and Table 6.2. Table 6.1 summa-

rizes the complexity of computing projection along arbitrary directions while Ta-

ble 6.2 summarizes the complexity of computing projection along“non-degenerate”

projection directions. We will define the notion of non-degenerate projection di-

rections in Section 6.5. We also consider the cases where the polytopes are either

presented in both H- and V-representations or for the projection we require the

computation of both representations. We denote these cases by HV for brevity.

Our results about the hardness, and the equivalence of vertex enumeration and

computing projection (in most forms) imply that in all forms where the projection

can not be computed by a trivial algorithm, finding an output-sensitive polynomial
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algorithm will be a challenging task. Equivalently, an output-sensitive polynomial

algorithm for vertex enumeration will have significant impact in many fields outside

algorithmic polytope theory.

Since for bounded polytopes containing the origin in relative interior, projection

is an operation dual to intersection with a linear subspace, all our results can

be dualized by interchanging vertices and facets, and replacing projection with

intersection.

The rest of the chapter is organized as follows. In the next section we briefly

review some related work about computing projection of a polytope. Our result

section is divided into two parts. In section 6.4 we present the results about the

complexity of computing the projection of a polytope along arbitrary directions and

in section 6.5 we describe the complexity results for the case when the (orthogonal)

projection directions are in some sense non-degenerate.

6.3 Related Work

Perhaps the best known algorithm for computing the facets of the projection of an

H-polytope is the Fourier-Motzkin elimination discovered by Fourier in 1824 and

then rediscovered by Motzkin in 1936. This method is essentially the equivalent

of Gaussian elimination for equations and works by eliminating one variable at a

time. Since eliminating one variable from a system of m inequalities can result in⌊
m2

4

⌋
facets, the algorithm can have a terrible running time in bad cases where

the intermediate polytopes have very large (exponential) number of facets but the

final output has only a small number of facets.

Many improvements have been made over the original algorithm (See [Imb93]

for a survey) but there is no algorithm that has an output-sensitive polynomial

running time. The natural question then is whether one can find a shortcut around

the intermediate projection steps in the Fourier-Motzkin elimination and obtain

an output-sensitive polynomial algorithm. As we will see in section 6.4, the answer

is no if P 6= NP . Thus the lack of any output-sensitive algorithm, for computing

the facets of the projection of an H-polytope, is somewhat natural because the

problem turns out be NP-hard.

Farkas’ Lemma provides a way of generating a cone, although with different

dimension, whose extreme rays correspond to the facets of the projection of an
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H-polytope [Bal98], but unfortunately it does not yield a bijective mapping and

many extreme rays of the resulting cone may correspond to redundant inequalities

in the projection. Balas [Bal98] found a way to get rid of these redundancies and

provided a way to construct, given anH-polytope P , another polyhedral cone W in

polynomial time whose projection W
′

yields a one-to-one correspondence between

the extreme rays of W
′

and the facets of π(P ). Also, W has polynomially many

facets compared to P .

Jones, Kerrigan and Maciejowski [JKM04] describe an algorithm that runs

in output-sensitive polynomial time (linear) if the projection is a non-degenerate

polytope and the size and dimension of the projection is fixed. In general the

algorithm is output-sensitive polynomial when the projection directions are in

some sense non-degenerate. Assuming the projection to be non-degenerate is not

justified in general, and as we will see in the next section it is impossible to get

rid of such simplifying assumptions unless P = NP . We also present an output-

sensitive algorithm for non-degenerate projection directions. Our algorithm for

computing the projection of a polytope for non-degenerate projection directions

(Section 6.5), although discovered independently by the author, is essentially the

same as that of Jones et. al. and we include it in this chapter for completeness.

We will denote the projection of an n-dimensional polytope P onto a given

d-dimensional subspace as πd(P ). We will mostly omit the subscript and simply

refer to the projection as π(P ) and the projection subspace will depend on the

context.

Formally, we are interested in the following problem: Given a polytope P ∈ Rn

in H-, V- or HV-representation and a set Γ of k orthogonal projection directions

defining the projection space, we want to compute the non-redundant H-, V- or

HV-representation of π(P ).

6.4 Projection onto arbitrary subspaces

Depending on the input and output form, we have nine variants of the problem.

It is obvious that if the vertices are part of the input and one wants to compute

the vertices of the projection, then each vertex can be projected trivially and the

vertices that become redundant in the projection can be identified by solving one

Linear Program per vertex. Hence, we have the following:
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Lemma 6.4.1. Given a polytope P ⊂ Rn in V- or HV-representation and an arbi-

trary projection subspace, non-redundant V-representation of π(P ) can be computed

in polynomial time.

Also, it is easy to see that every polytope can be represented as the projection of

a suitable simplex1. Moreover, given a polytope P by its vertices one can compute

in polynomial time the vertices of this simplex ∆ and the projection subspace

such that P is the projection of ∆. Since it is trivial to compute the facets of a

simplex given its vertices, Vertex Enumeration can be solved in output-sensitive

polynomial time using any algorithm that computes the H- or HV-representation

of projection from V- or HV-representation of a polytope.

Clearly, one can also use any polynomial algorithm for Vertex Enumeration to

compute the H- or HV-representation of the projection of any polytope given in

V- or HV-representation in polynomial time. Hence, we have the following easy

lemma:

Lemma 6.4.2. Computing the H- or HV-representation of the projection of a

polytope given in V- or HV-representation is VE-complete.

In what follows, we assume the input polytope P is of the form

P (x, y) = {x, y|Ax+By ≤ 1}

and we want to compute the projection

π(P ) = {x ∈ Rd|(x, y) ∈ P for some y},

where A ∈ Qm×d, B ∈ Qm×k, y ∈ Rk. We also assume P to be full-dimensional and

to contain the origin in its relative interior. For rational polytopes this assumption

is justified because one can always find a point in the interior of the polytope via

Linear Programming and move the origin to this point. We will sometimes omit

details like A ∈ Qm×d, B ∈ Qm×k, x ∈ Rd, y ∈ Rk where it can be inferred from

the context.

We are now left with the three cases where the input polytope is given by H-

representation. As we will see now, computing either the facets or the vertices of

1Assuming that the vertices are numbered 0 through m − 1, simply append ei to the
i-th vertex for 0 ≤ i ≤ m − d − 2 and em−d−1 to all other vertices, where e0 is the zero
vector and ei is the i-th unit vector in Rm−d−1.
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the projection in this case in hard while computing both facets and vertices of the

projection is equivalent to Vertex Enumeration. Consider the following decision

version of the problem:

Input: Polytopes P = {x, y|Ax+By ≤ 1} and Q = {x|A′x ≤ 1}
Output: YES if Q 6= π(P ), NO otherwise.

We will now prove that this decision problem is NP-complete thus proving the

NP-hardness of the enumeration problem.

Theorem 6.4.3. Given a polytope P = {x, y|Ax+By ≤ 1} and Q = {x|A′x ≤ 1}
it is NP-complete to decide if Q 6= π(P ).

Proof. It is easy to see that deciding whether a given set of hyperplanes do not

completely define the projection of a higher dimensional polytope is in NP. So the

only thing remaining is to show that it is NP-hard as well.

It is known ([FO85]) that Given an H-polytope P = {x|Ax ≤ 1} and a V-

polytope Q = CH(V ), it is NP-complete to decide whether P * Q. Clearly,

P ⊆ Q if and only if P ∩ Q = P . Now, P ∩ Q is the projection of the following

H-polytope

Ax ≤ 1

x−
∑
v∈V

λv · v = 0∑
v∈V

λv = 1

λv ≥ 0,∀v ∈ V

The variables λ ensure that we consider only those points in P that can be

represented as a convex combination of vertices of Q. One can further, in polyno-

mial time, get a full dimensional representation of P ∩Q by eliminating the d− 1

equations. The resulting polytope is a full-dimensional polytope in R|V |−1.

Since we are interested in only the (vector) variable x, the projection of this

polytope along the axes corresponding to the variables λv gives us the facets of

P ∩Q in the subspace of variables x. It follows that P ∩Q = P if and only if the

projection of the above defined polytope onto the subspace of variables x has the

H-representation same as that of P i.e. Ax ≤ 1.

Thus any polynomial algorithm for deciding whether a given set of hyperplanes

completely define the projection of some high dimensionalH-polytope, can be used



64 6. VE-completeness: Projection of Polytopes

to decide whether an H-polytope is contained in a V-polytope, which is an NP-

complete problem.

Balas([Bal98]) has shown that for a given H-polytope (P ) and a set of projec-

tion axes, one can compute the facets of another pointed polyhedral cone W and a

set of projection axes such that the facets of π(P ) are in one-to-one correspondence

with the extreme rays π(W )2. The number of facets of W is polynomial in the

number of facets of P . It is not difficult to modify the construction in [Bal98] so

that W is bounded i.e. a polytope and the vertices in the projection of W are in

one-to-one correspondence with the facets of the projection of P . For completeness

we state the result of Balas and describe the modification here.

Lemma 6.4.4. Given an H polytope P and a set of projection directions, there

exists a polyhedral cone W , not in the same Euclidean space, and another set of

projection directions for W such that the facets of π(P ) are in one-to-one corre-

spondence with the extreme rays of π(W ). Furthermore, W has polynomially many

facets compared to P and the facets of W can be computed in polynomial time.

We will use the notion of polar duality to prove that the cone W obtained from

the construction of Balas can be turned into a bounded polytope. For a polyhedral

cone W in Rn with facet inequalities Ax ≤ 0 and extreme rays V , where A and V

are matrices with each row a vector in Rn. The polar dual W ∗ has the roles of the

extreme rays and facets reversed. In particular, the facet inequalities of W ∗ are

V x ≤ 0 and the extreme rays are the row vectors of A. We again refer the reader

to [Grü03, Zie95] for more details of the properties of this duality.

Lemma 6.4.5. Given a pointed polyhedral cone W ∈ Rn in either H- or V-

representation, and a set of projection directions Γ one can construct, in polynomial

time, a polytope Q ∈ Rn, in the same representation as W , such that the extreme

rays of π(W ) are in one-to-one correspondence with the vertices of π(Q), where

both the projections are onto the same subspace.

Proof. Clearly, none of the projection directions lie in W otherwise the projection

spans the whole subspace. Let W ∗ be the polar dual of W . For any vector α in

the interior of W ∗ the hyperplane α ·x = 0 touches W only at the origin and hence

2Note that the projections of P and W are defined in different spaces and should not
be confused as the same projection map despite the abuse of notation here.
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W ∩ {x|α · x ≤ 1} is a bounded polytope. It is actually a pyramid with the origin

as the apex.

Now consider the projection π(W ), which is a pointed cone with origin as

apex. This cone is a full-dimensional cone in the subspace containing it and we

can consider its polar dual in that subspace. Let π∗(W ) be the polar dual of π(W ).

For any vector α
′

in the interior of π∗(W ), π(W ) ∩ {x|α′ · x ≤ 1} is a bounded

polytope. Moreover, for such an α
′
, γi · α′ = 0 for all γi ∈ Γ. Since π(W ) is a

pointed cone such an α
′

exists.

Since π∗(W ) can be obtained as the intersection of W ∗ with
⋂
γi∈Γ {γi · x = 0},

a vector α
′

in the interior of π∗(W ) can be computed in polynomial time if one

knows either the vertices or facets of W . Also, α
′

lies in the interior of W ∗ as well.

Define Q = W ∩ {α′ · x ≤ 1}. Given the extreme rays (facets respectively) of W

and the projection directions Γ one can compute the vertices (facets respectively)

of Q in polynomial time.

Since α
′

is orthogonal to each of the projection directions, the vertices and

facets of π(Q) are in one-to-one correspondence with the extreme rays and the

facets of π(W ).

Theorem 6.4.3 together with Lemma 6.4.4 and Lemma 6.4.5 gives the following:

Theorem 6.4.6. Given a polytope P = {x, y|Ax + By ≤ 1} and Q = CH(V ) it

is NP-complete to decide if Q 6= π(P ).

Now we consider the last variant of the projection problem where we are given

an H-polytope and we want to compute the HV-representation of the projection.

As it turns out, although computing either the vertices or facets of the projection

is NP-hard, computing both vertices and facets is VE-complete.

Before we prove this, we would like to remark that the notion of output-

sensitiveness can have various meanings. An output-sensitive polynomial algo-

rithm for an enumeration problem (like VE) could enumerate vertices such that

a new vertex is reported within incremental polynomial delay i.e. each new re-

porting takes time polynomial in the input and the output produced so far. It is

equally conceivable that the algorithm takes total time polynomial in the input and

output but there is no guarantee that successive reportings take only incremental

polynomial delay. We will assume that if we have an output-sensitive algorithm of

the latter kind, then we actually know the complexity of its running time. Under

this assumption the two notions are same for VE.
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To see why this is true, consider the following. Given an H-polytope P and a

V-polytope Q, determining whether P = Q is polynomial time equivalent to VE

(See [ABS97]). Also, solving this problem gives an algorithm for VE that is not

only output-sensitive polynomial but also has a polynomial delay guarantee. If we

have an enumeration algorithm that has no guarantee of polynomial delay between

successive outputs, but for which we know the running time, then we can use this

procedure to create a polynomial algorithm for deciding the equivalence of H- and

V-polytopes: Simply compute the time needed by the algorithm to enumerate all

vertices of P assuming P = Q and run the enumeration algorithm for the time

required to output |V | + 1 vertices. If the procedure stops then we can compare

the list of vertices of P with that of Q in polynomial time. If, on the other hand,

the procedure doesn’t finish within the given time then P must have more vertices

than Q and hence, P 6= Q.

So for proving VE-completeness in the next theorem, when we assume the

existence of an output-sensitive polynomial algorithm for VE, we also assume that

this algorithm has a guarantee of polynomial delay between successive outputs.

Although we will work with the Convex Hull problem which is the dual version of

VE, with a slight abuse of language we will refer to this dual problem as VE as

well.

Theorem 6.4.7. Given a polytope P = {x, y|Ax+ By ≤ 1} it is VE-complete to

compute the facets and vertices of π(P ).

Proof. Since every polytope P ∈ Rn given by m vertices can be converted to a

(m − 1)-dimensional simplex ∆ such that P is a projection of ∆ it is clear that

computing HV-representation of the projection of an H-polytope is VE-hard. It is

non-trivial to prove that the problem is VE-easy well. Recall that computing the

vertices of P first, followed by projecting these vertices and computing the facets

of the projection might be too expensive since P may have many more vertices

than π(P ).

To prove that this problem is also VE-easy, we give an algorithm that uses

a routine for VE to enumerate the facets and vertices of π(P ). The algorithm

proceeds as follows: At any point we have a list of vertices V of π(P ) and we want

to verify that V indeed contains all vertices of π(P ). If the list is not complete, we

want to find another vertex of π(P ) that is not already in V . To do this, we start

enumerating facets of CH(V ) and we verify that each generated facet is indeed a
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facet of π(P ). This is easy to check because of the following:

Suppose h = {x|a · x = 1} be a hyperplane in the projection space. We say

that h intersects P properly if the intersection P ∩ {(a,
ktimes︷ ︸︸ ︷

0, · · · , 0) · (x, y) = 1} has

dimension n− 1. We will call such an intersection a proper intersection.

We claim that the defining hyperplane of every facet f of CH(V ), that is not

a facet of π(P ), intersects P properly. To see this, pick a point x1 in the relative

interior of f . Such a point exists because CH(V ) ⊂ π(P ) if some facet f of CH(V )

is not a facet of π(P ). This point also lies in the relative interior of π(P ). Also,

there is a point (x1, y1) that lies in the relative interior of P that projects to x1.

Clearly the hyperplane {(a,
ktimes︷ ︸︸ ︷

0, · · · , 0) · (x, y) = 1} contains (x1, y1) and hence the

hyperplane defining f intersects P properly.

It follows that, if V does not contain all vertices of π(P ) then there exists

a facet f = {x|a · x = 1} of CH(V ) intersecting P properly. So if the enu-

meration procedure for facets of CH(V ) stops and none of the facets intersect

P properly then V contains all the vertices of π(P ). If some intermediate facet

{a · x = 1} of CH(V ) does intersect P properly then maximizing the objective

function (a,
ktimes︷ ︸︸ ︷

0, · · · , 0) · (x, y) over P produces a vertex of P that also gives a vertex

v of π(P ) upon projection. Moreover this vertex is not in the list V . Thus, if V

is not a complete vertex description of π(P ) we can find another vertex of π(P )

in polynomial time. This gives an output-sensitive polynomial algorithm for enu-

merating all facets and vertices of π(P ). Hence, computing all vertices and facets

of the projection π(P ) of an H-polytope P is VE-easy as well.

Given that it is widely believed that P 6= NP and VE has been studied quite

closely by a number of researchers, one can infer that computing the projection

is going to be a challenging problem for arbitrary projection directions. Also, one

should note that if the projection is known to be a simple of simplicial polytope

then computing both facets and vertices of the projection can be done in output-

sensitive polynomial time because VE for simple or simplicial polytopes can be

done in output-sensitive polynomial time ([AF92, BFM98]). But if the projection

yields a degenerate polytope then we do not have such an algorithm.
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6.5 Projection along non-degenerate direc-

tions

Now we show that if the projection directions are in some sense non-degenerate,

then this problem can be solved in output-sensitive polynomial time in many cases

even if the projection is neither simple nor simplicial. To make this notion precise,

note that if P is the input polytope then every face of projection π(P ) is the

shadow of some proper face of P . Call the maximal dimensional face f ′ of P a

pre-image of the face f of π(P ) if f is obtained by projecting all vertices defining

f ′ and taking their convex hull. In general, the dimensions of f and f ′ are not the

same. This can happen if some projection directions lie in the affine hull of f ′. We

call a set of projection directions non-degenerate with respect to P if no directions

lie in the affine hull of any face of P .

Also, for non-degenerate projection directions a face f of π(P ) and its pre-

image f ′ have the same affine dimension. This is easy to see because a projection

reduces the dimension of some face f ′ of P if and only if the projection direction

lies in the affine hull of f ′ which is not possible for non-degenerate projection

directions. Thus,

Fact 2: For non-degenerate projection directions and a face f of π(P ), if f ′ is the

pre-image of f then dim(f) = dim(f ′).

Now, given a polytope P in H-representation and a set of non-degenerate

projection directions Γ we want to compute the facets of the projection π(P ).

Again, we assume that the facets of P are presented as inequalities of the form

Ax ≤ 1, where A is a matrix of size m× (d+ k) and the projection has dimension

d. Since, we will need to solve Linear Programs we also assume that the polytope

is rational i.e. the entries in A are rational numbers. We will omit Γ from the

discussion below and assume that the projection directions are aligned along a

subset of coordinate axes. If not, we can apply a suitable affine transform to P

depending on the orthogonal projection directions. Thus the reader should bear

in mind that the polytope in what follows is a result of an affine transformation

determined by a set of non-degenerate orthogonal projection directions.

Our algorithm for enumerating the facets of π(P ) proceeds as follows: Given a

partial list of facets of π(P ), for each facet f we identify its pre-image f ′ in P . For

each of these faces of P we identify their (d− 2)-dimensional faces and among all



6.5 Projection along non-degenerate directions 69

such (d − 2)-faces of f ′ some give rise to ridges in π(P ). We identify which faces

form the pre-image of some ridge of π(P ) and from the corresponding ridge, we

identify the two facets defining this ridge, thus finding a new facet of π(P ) if the

current list of facets is not complete.

Lemma 6.5.1. Given an H-polytope P and a facet f of its projection π(P ), one

can find the facets of P defining the pre-image of f in polynomial time.

Proof. Let {x ∈ Rd|a · x ≤ 1, a ∈ Qd} be the halfspace defining the facet f of

π(P ). Clearly, the hyperplane h in Rd+k with normal a′ = (a,
k times︷ ︸︸ ︷

0, · · · , 0) defines the

supporting hyperplane {x ∈ Rd+k|a′ · x = 1}. Also, P ∩ h is a face of P and is

exactly the pre-image of f . A facet F of P contains this face iff P ∩ h∩F has the

same dimensions as P ∩ h. Thus, one can find all the facets of P containing the

pre-image of f in time polynomial in the size of A.

The next lemma follows immediately from the non-degeneracy of the projection

directions, so we mention it without the proof (See Fact 2).

Lemma 6.5.2. Given P and a facet f of its projection π(P ), if g is another facet

of π(P ) sharing a ridge with f then the pre-images f ′ and g′ share a face in P .

Furthermore,

dim(f ′ ∩ g′) = dim(f ∩ g) = dim(f ′)− 1 = dim(g′)− 1 = d− 2

Since the facets of P are known, we can identify all (d − 2)-faces of f ′. The

number of these faces is at most m for each pre-image f ′ and since f ′ is itself

a polytope of dimension d − 1, we can compute the non-redundant inequalities

defining the facets (d − 2-dimensional faces) of f ′3. At this point, what remains

is to identify these ridges and the facets defining these ridges. The following two

lemmas achieve this.

Lemma 6.5.3. Let P = {(x, y)|A · (x, y) ≤ 1} be a polytope in Rd × Rk, where

A ∈ Qm×(d+k), x ∈ Rd, y ∈ Rk. Also, let f be a (d − 2)-face of P defined as

f = {(x, y)|A′ · (x, y) = 1, (x, y) ∈ P}, where A
′ ⊂ A. Then, f defines a ridge in

the projection Q(x) if and only if

3Removing redundancies can be achieved via Linear Programming.
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• there exists α ∈ Rd such that (α,
k times︷ ︸︸ ︷

0, · · · , 0) ∈ conv(A
′
), where each row of A

′

is treated as a point in Rd+k. And,

• The feasible region of all such α is a line segment.

It is not difficult to see that this lemma is just a rephrasing of the basic prop-

erties of supporting hyperplanes of a polytope. In other words, any hyperplane

whose normal is a convex combinations of the normals of facets defining the face

f , is a supporting hyperplane of P and vice-versa. Furthermore, if the normal

lies in the subspace where the projection π(P ) lives, then it is also a supporting

hyperplane of π(P ). Also, the normals of all hyperplanes that support a poly-

tope at some ridge, when treated as points, form a 1-dimensional polytope i.e. a

line segment. This formulation allows us to check in polynomial time whether a

(d− 2)-face of P forms a pre-image of some ridge of Q(x).

Lemma 6.5.4. The end points of the feasible region of α in lemma 6.5.3 are the

normals of the facets of π(P ) defining the ridge corresponding to face f .

As noted before, the normals of the hyperplanes supporting a polytope at a

ridge r form a line segment when viewed as points. The end points of the segment

represent the normals of the two facets defining the ridge r. This lemma ensures

that given a pre-image of some ridge of π(P ), one can compute the normals of the

two facets of π(P ) defining the ridge r by solving a polynomial number of linear

programs each of size polynomial in the size of input.

Putting everything together we get the following theorem:

Theorem 6.5.5. Given an H-polytope P and a set of non-degenerate orthogonal

projection directions Γ one can enumerate all facets of π(P ) in output sensitive

polynomial time.

Note, that this also gives an output-sensitive polynomial algorithm for the

case when the input is an HV-polytope irrespective of the output form as long as

the projection directions are non-degenerate. Also, if the vertices of P are given

then some tests like those in Lemma 6.5.3 and 6.5.4 become easier. We leave the

proof of this to the reader since they do not affect our main argument about an

output-sensitive polynomial algorithm.
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Corollary 6.5.6. Given an HV-polytope P and a set of projection directions Γ

that are non-degenerate with respect to P there is an algorithm that can enumerate

the vertices and/or facets of π(P ) in output-sensitive polynomial time.

It is easy to see that computing the vertices of the projection of an H-polytope

along non-degenerate directions has VE as a special case4. Hence, enumerating

vertices of the projection of an H-polytope along non-degenerate projection direc-

tions remains VE-hard even though it is not clear if it remains NP-hard. Similarly

one can argue that the complexity status of computing the projection of a V-

polytope along non-degenerate projection directions remains the same as that of

computing the projection along arbitrary directions.

4Just pick the set of projection directions to be the empty set.





Chapter 7

Union of Cones

The results in this chapter are a joint work with Khaled Elbassioni and have

appeared in the proceedings of 20th Canadian Conference on Computational Ge-

ometry [ET08].

7.1 Introduction

In the previous chapter we defined the class of problems equivalent to the ver-

tex enumeration problem for polytopes and considered the problem of computing

projection of polytopes that, in some versions of the problem, turns out to be

VE-complete. In this chapter we consider another problem whose complexity can

be related to that of vertex enumeration in many forms. We call this the cone cov-

ering problem, where one is given a set of polyhedral cones in Rd and one wants

to know whether a given object is covered by these cones or not. Naturally we do

not consider arbitrary objects that are to be covered but only very specific convex

objects. We will specify these objects later.

Apart from its relation to vertex enumeration, our motivation for studying the

above covering problems comes from the problem of checking whether the union of

a given set of polytopes is convex or not. Bemporad, Fukuda and Torrisi [BFT01]

gave polynomial-time algorithms for checking if the union of k = 2 polyhedra is

convex, and if so finding this union, no matter whether they are given in V or H
representations. They also gave necessary and sufficient conditions for the union of

a finite number of convex polytopes in Rd to be convex, and asked whether these

conditions can be used to design a polynomial time algorithm for checking if the

73



74 7. Union of Cones

union is convex. Bárańy and Fukuda give slightly stronger conditions in [BF05].

It will follow from our results that, if both d and k are part of the input, then

these conditions can not be checked in polynomial time unless P=NP.

7.2 Problem description

In this chapter we are interested in the complexity of covering problems of the

following form:

ConeCover(C, D): Given a collection of polyhedral cones C = C1, . . . , CN , and

a convex set D, does
⋃N
i=1Ci + D?

Unless otherwise specified, all the cones considered throughout the paper will

be assumed to be pointed, i.e., contain no lines, or equivalently, have only one

vertex, namely the origin. As we will see, the complexity of the above problem

depends on what the convex set D is, how the cones are represented, and whether

they are disjoint or not. We consider 3 different factors, namely:

(f1) whether the cones in C are given in V- or H-representations, or both repre-

sentations (HV),

(f2) what the set D is: we consider D = Rd and D = Rk for some arbitrary

k ≤ d.

(f3) whether the cones in C are

– (f3)-(I): pairwise disjoint in the interior and intersect only in faces;

– (f3)-(II): pairwise disjoint in the interior, i.e. int(Ci) ∩ int(Cj) = ∅ for

all i 6= j, but can intersect anywhere on the boundaries; and

– (f3)-(III): not necessarily pairwise disjoint.

We denote by ConeCover[F1, F2, F3] the different variants of the problem,

where F1 ∈ {V,H}, F2 ∈ {Rk,Rd} and F3 ∈ {I, II, III} describes cases (f1)-

(I), (f2)-(II), and (f3)-(III). Our results on the complexities of these problems are

summarized in Table 7.1.
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Rd Rk

I II III I II III
V VE-hard VE-hard NPC NPC NPC NPC
H P ? NPC P ? NPC
HV P P NPC P ? NPC

Table 7.1: Complexity of Cone Covering problem for various input represen-
tations.

Similar to the cone covering problem one can also consider the related problem

of polytope covering:

PolytopeCover(P, D): Given a collection of polytopes P = P1, . . . , PN , and a

convex polytope D, does
⋃N
i=1 Pi 6+ D?

In this chapter we also show that if all the polytopes in the above problem are

given either by only vertices or only facets then the problems is NP-complete. As

a consequence of this we prove that deciding whether the union of a given set of

H- or V-polytopes is convex or not, is NP-complete. This answers a question of

Bemporad, Fukuda and Torrisi [BFT01]

7.3 Covering sets by Cones

The following decision version of the vertex enumeration problem is known to be

equivalent to the enumeration problem [ABS97].

Given an H-polytope P ⊆ Rd and a subset of its vertices V ⊆ V(P ), Is P =

conv(V )?.

Let P be the polytope defined as {x ∈ Rd|Ax ≤ 1}, where A ∈ Rm×d. For any

vertex v of P , consider the cone of all vectors c such that v is the solution of the

following linear program:

max cT · x
s.t. Ax ≤ 1

For every vertex v of P , this cone is uniquely defined. We call this cone the

maximizer cone of v. Such a maximizer cone can be defined for every proper face
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of a polytope. The union of all such cones is also known as the normal fan of a

polytope [Zie95]. It is easy to see that if A is the maximal subset of rows of A

such that A′v = 1, then the maximizer cone of v is the conic hull of the rows of A′

treated as vectors in Rd.

Theorem 7.3.1. Problem ConeCover(V,Rd, I) is V E-hard.

Proof. Given an H-polytope P and a subset of its vertices V , the V-representation

of the maximizer cone for each vertex in V can be computed easily from the facets

of P . Clearly, the union of these cones covers Rd if and only if P = conv(V ). To

see this, note that if P 6= conv(V ) then P has a vertex v not in V and any vector

in the relative interior of the maximizer cone of v does not lie in any of the cones

corresponding to the given vertices.

Theorem 7.3.2. Problem ConeCover(V,Rk, I) is NP-complete.

Proof. ConeCover(V,Rk, I) is clearly in NP. Now, given an H-polytope P ⊂ Rd,

an affine subspace Rk and a V-polytope Q ⊂ Rk, it is NP-complete to decide

whether Q is the projection of P onto the given subspace (Chapter 6). We give a

polynomial reduction from this problem to ConeCover(V,Rk, I).

Every vertex v of Q is an image of some (possibly more than one) vertices of

P . Pick any such vertex and call it v′. We associate the maximizer cone of v′ with

v and refer to it as C(v). The V-representation of the cone associated with each

vertex of Q can be easily computed from the matrix A.

It is not difficult to see that if Q is not the projection of P onto the given

subspace Rk, then one can find a direction c parallel to the given subspace such

that a vertex that maximizes cTx in P is such that its projection is a vertex of

the projection of P but not of Q. This would imply that the unions of the cones

C(v) for each vertex of Q does not cover Rk. Conversly, if the union of C(v) for

each vertex of Q does not cover Rk then some vertex of the projection of P is

missing in Q. In particular any direction c that is parallel to the given projection

subspace, but is not covered by any of the cones C(v) of vertices of Q, corresponds

to a missing vertex of the projection. Hence, the union of cones C(v) for each

vertex v of Q covers Rk if and only if Q is the projection of P . Also, all these

cones intersect each other only at some proper face.
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For a given set of H-cones, if the union does not cover Rd then there exists a

facet, with facet normal a ∈ Rd, of at least one of these cones such that picking

a point p in the interior of this facet, p + εa lies outside every cone, for all ε > 0.

Lets call this facet a witness facet, and p a witness point of the fact that Rd is not

covered.

Theorem 7.3.3. ConeCover(H,Rd, I) can be solved in polynomial time.

Proof. If the cones are allowed to intersect only at common faces, then every point

in the interior of a witness facet is a witness point. Thus, one can determine in

polynomial time whether the union of the given cones cover Rd or not, by picking

a point in the interior of every facet, with normal a, of every cone and using linear

programming to check if p+ εa lies outside every cone for every ε > 0.

Theorem 7.3.4. ConeCover(HV,Rd, II) can be solved in polynomial time.

Proof. It is easy to see that if the cones are allowed to intersect only on the

boundary, and if the union of the given cones does not cover Rd, then the extreme

rays1 of any (possibly non-convex) “hole” are also the extreme rays of some cone.

For any such extreme ray w, if one considers a d-dimensional ball of radius ε

centered at some point on w, then for small enough ε some part of this ball is not

covered by any of the given cones.

Consider all the halfspaces {ax ≤ 0} corresponding to the facets of the input

cones that contain w, i.e. aw = 0. Let A be the matrix with each row the normal

vector of such a halfspace. The union of the given cones does not cover Rd if and

only if {Ax ≥ 0} define a full dimensional region. This can be easily checked via

linear programming.

Fact 1. For any k ∈ N, we can write Rk = ∪k+1
i=1Ri, where R1, . . . , Rk+1 are

pointed cones, pairwise-disjoint in the interior, whose H- and V-representations

can be found in in polynomial time.

Let C1 = {x ∈ Rd | A1x ≤ 0} = cone{S1} and C2 = {x ∈ Rd | A2x ≤ 0} =

cone{S2}, where A1 ∈ Rl×m, A2 ∈ Rr×n and S1 ⊆ Rm, S2 ⊆ Rn, be two polyhedral

cones. The cartesian product of C1 and C2, is defined as:

1An extreme ray of a non-convex polyhedral cone C is defined as the rays that must
occur as an extreme ray of at least one simplex cone in any subdivision of C using only
simplex cones.
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C1 × C2 = {(x, y) ∈ Rm × Rn| A1x ≤ 0, A2y ≤ 0}

= cone

({(
v

0

)
: v ∈ S1

}⋃
{(

0

v

)
: v ∈ S2

})

Theorem 7.3.5. Problems ConeCover(HV,Rd, III) is NP-complete.

Proof. Clearly the problems is in NP since a direction exists outside the union of

the given cones if they do not cover Rd. Since the facet defining inequalities of

each cone are known, it can be easily verified that such a given direction indeed lies

outside each of the given cones. For proving its NP-hardness, we use a reduction

from the following problem:

Sat(V,F ,G): Given a finite set V and two hypergraphs F ,G ⊆ 2V , is there a set

X ⊆ V such that:

X 6⊇ F for all F ∈ F and X 6⊆ G for all G ∈ G. (7.1)

When F = G, this problem is called the saturation problem in [EG95], where

it is proved to be NP-complete. Given F ,G ⊆ 2V , we construct two families of

cones CF and CG in RV , such that there is a point x ∈ RV \ (CF ∪ CG) if and only

if F and G are not saturated (i.e. there is a set X ⊆ V satisfying (7.1)).

Informally speaking, we will interpret any point x ∈ RV as subsets of {1, · · · , V }
in one of the following two ways. In one interpretation x will represent the subset

obtained by considering only those indices (coordinates) of x that are positive and

in the other representation we will interpret x as representing the subset obtained

by considering only negative coordinates. Let us call these two interpretations the

positive and the negative interpretation, respectively.

For every hyperedge F ∈ F we will define polyhedral cones such that any

point x lies in this cone if and only if its positive interpretation is a superset of F .

Similarlly, for each G ∈ G we will define cones such that any point x lies in this

cone if and only if the negative interpretation of x is a superset of G. Thus if any

point lies outside all of these cones then the positive interpretation of this point



7.3 Covering sets by Cones 79

will give the desired X satisfying (7.1). The definition of such cones turns out be

fairly straightforward, but they are usually not pointed and to make them pointed

we will need to use Fact 1. Also, for brevity of notation we will denote the set of

indices {1, · · · , N} simply by [N ].

For X ⊆ V , denote respectively by RX
≥ and RX

≤ the cones cone{ei : i ∈ X} =

{x ∈ RX : x ≥ 0} and cone{−ei : i ∈ X} = {x ∈ RX : x ≤ 0}, where ei denotes

the ith dimensional unit vector. Let X = V \X, and
⋃|X|+1
i=1 Ri(X) = RX be the

partition of RX given by Fact 1.

For each F ∈ F , we define |F | + 1 cones CiF = RF
≥ × Ri(F ), for i ∈ [|F | + 1],

and for each G ∈ G, we define |G| + 1 cones CiG = RG
≤ × Ri(G), for i ∈ [|G| + 1].

Finally, we let CF = {CiF : F ∈ F , i ∈ [|F |+ 1]}, CG = {CiG : G ∈ G, i ∈ [|G|+ 1]},
and C = CF ∪CG . Then it is not difficult to see that all the cones in C are pointed.

Suppose that X ⊆ V satisfies (7.1). Define x ∈ RV by

xi =

{
1, if i ∈ X,
−1, if i ∈ V \X.

Then x 6∈ ∪C∈CC. Indeed, if x ∈ CiF , for some F ∈ F and i ∈ [|F | + 1], then

xi ≥ 0 and hence xi = 1, for all i ∈ F , implying that X ⊇ F . Similarly, if x ∈ CiG,

for some G ∈ G and i ∈ [|G| + 1], then xi ≤ 0 and hence xi = −1, for all i ∈ G,

implying that X ⊆ G.

Conversely, suppose that x ∈ RV \ C. Let X = {i ∈ V : xi ≥ 0}. Then we

claim that X satisfies (7.1). Indeed, if X ⊇ F for some F ∈ F , then xi ≥ 0 for all

i ∈ F , and hence there exists an i ∈ [|F | + 1] such that x ∈ CiF (since the cones

R1(F ), . . . , R|F |+1(F ) cover RF ). Similarly, if X ⊆ G for some G ∈ G, then xi < 0

for all i ∈ G, and hence there exists an i ∈ [|G| + 1] such that x ∈ CiG. In both

cases we get a contradiction.

Corollary 7.3.6. Problems ConeCover(H,Rd, III), ConeCover(H,Rd, III)

and ConeCover(H,Rk, III) are NP-complete.

Proof. NP-completeness of ConeCover(V,Rd, III) and ConeCover(H,Rd, III)

follows from Theorem 7.3.5. NP-completeness of ConeCover(H,Rk, III) is an

immediate consequence of the NP-hardness of ConeCover(H,Rd, III) and the

fact that for an H-cone, the intersection of this cone with any affine subspace can

be computed easily.
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An interesting special case of problem Sat is when the two hypergraphs F and

G are transversal to each other:

F 6⊆ G for all F ∈ F and G ∈ G, (7.2)

in which case, the problem is known as the hypergraph transversal problem, denoted

HyperTrans. Even though the complexity of this problem is still open, it is

unlikely to be NP-hard since there exist algorithms that solve the problem in

quasi-polynomial time mo(logm), where m = |F| + |G| + |V |. Improving this to a

polynomial bound is a standing open question. We observe from our reduction in

Theorem 7.3.5 that ConeCover includes HyperTrans as a special case.

Corollary 7.3.7. Consider a family of cones C that can be partitioned into two

families C1 and C2 such that

int(C1) ∩ int(C2) = ∅, for all C1 ∈ C1 and C2 ∈ C2. (7.3)

Then ConeCover(C,Rd) is HyperTrans-hard.

Proof. We note in the construction used on the proof of Theorem 7.3.5 that if the

hypergraphs F and G satisfy (7.2), then the families of cones CF and CG satisfy

(7.3). Indeed, if x ∈ CiF∩CjG, for some F ∈ F , i ∈ [|F |+1], G ∈ G, and j ∈ [|G|+1],

then xk ≥ 0 for all k ∈ F and xk ≤ 0 for all k ∈ G. Thus for any k ∈ F \G (which

must exist by (7.2)), we have xk = 0, implying that x is not an interior point in

either CiF or CjG.

7.4 Covering sets by Polytopes

Freund and Orlin [FO85] proved that, for an H-polytope P and a V-polytope Q,

checking if Q ⊇ P is NP-hard. For all other representations of P and Q, checking

P ⊆ Q can be done by solving a linear program. Here we show that the union

version of this problem is hard, no matter how the polytopes are represented.

Theorem 7.4.1. Given a set of H-polytopes P = {P1, . . . , PN} and an H polytope

P , problem PolytopeCover(P, Q) is NP-complete.

Proof. Clearly the problem is in NP because if the given polytopes P do not cover

P then there is a witness x ∈ P such that x /∈ Pi for all Pi ∈ P. This can easily
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be checked since we know the facets of each polytope. To prove that it is also NP-

hard, we give a reduction from problem ConeCover[H,Rd, III] which is NP-hard

by Theorem 7.3.5.

Let Sd be a ”shifted” simplex in Rd such that 0 ∈ int({Sd}). Given cones

C1, . . . , CN , we define polytopes P1, . . . PN , where Pi = Ci ∩ Sd. Given the H-

representations of Ci, we can compute the H-representations of Pi in polynomial

time using linear programming (LP) for removing possible redundancies.

Now one can easily see that ∪Ni=1Ci = Rd iff ∪Ni=1Pi = Sd.

Theorem 7.4.2. Given a set of V-polytopes P = {P1, . . . , PN} and a V-polytope

P , problem PolytopeCover(P, Q) is NP-complete.

Proof. Similar to the proof of the previous theorem, it is easy to see that this

problem is in NP. If the given polytopes P do not cover P completely, then there

is a point in P that is not in any of the polytopes Pi ∈ P. Checking whether

a given point x lies in a V-polytope can be easily done via linear programming.

To show that this problem is also NP-hard, we give a reduction from problem

ConeCover[V,Rd, III] which is NP-hard by Theorem 7.3.5.

Recall that in the proof of Theorem 7.3.5, for each hyperedge F we construct

a set of pointed cones CiF = RF
≥ ×Ri(F ), for i ∈ [|F |+ 1]. Instead of constructing

multiple cones for each hyperedge let us just consider one cone CF = RF
≥ × R|F |

per hyperedge. Similarly for the cones corresponding to the hypergraph G. It is

clear that CF = ∪|F |+1
i=1 Ci.

Note that each such cone is not pointed but instead has a pointed part RF
≥

corresponding the the vertices in the hyperedge F and the affine space R|F | corre-

sponding to the vertices not in F . Also, RF
≥ is one orthant in R|F |.

For such cones checking whether the union covers Rd or not is NP-hard as well

(See proof of Theorem 7.3.5). Now consider the d-dimensional cross polytope βd.

It contains the origin in its interior, and the vertices of Pi = βd ∩Ci for each cone

constructed above can be easily computed. It is also easy to see that ∪ki=1Ci = Rd

iff ∪ki=1Pi = βd.

Theorem 7.4.3. Given a set of rational convex polytopes P1, . . . , Pk ⊆ Qd, it is

coNP-complete to check if their union is convex, for both H and V-representations

of the input polytopes.

Proof. First we show that the problem is in coNP. Let Q = ∪ki=1Pi. If Q is

not convex then there exist points x, y ∈ Q and λ ∈ (0, 1) such that the point
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λx+ (1− λ)y does not lie in any Pi. This can be trivially checked if we know the

facets of each Pi, and amounts to linear programming if we know only the vertices

of each Pi.

Now, consider the H-representation first. Let P = {P1, . . . , Pk} and Sd be

the polytopes used in the construction in theorem 7.4.1. We now reduce problem

PolytopeCover(P, Sd) to checking if the union of a given set of polytopes is

convex. Using an algorithm for the latter problem, we can check if P = ∪ki=1Pi is

convex. If the answer is ”No”, we conclude that P 6= Sd. Otherwise, since P ⊆ Sd,
either P = Sd, or there is hyperplane separating a vertex of Sd from P . The latter

condition can be checked in polynomial time by solving k linear programs for each

vertex.

For the V-representation the same argument as above works if we use the cross

polytope βd instead of Sd.



Chapter 8

Selfduality of Polytopes

The results in this chapter are a joint work with Khaled Elbassioni and have

appeared in the proceedings of the 24th Symposium on Computational Geometry

2008 [TE08].

8.1 Introduction

In the previous chapters we considered many problems that are closely related to

the vertex enumeration problem but that turn out to be NP-hard. Vertex Enumer-

ation has a very interesting property in that if one tries to solve it by modifying

the problem “a little bit”, one runs into two kinds of problems. One kind are those

that are polynomially equivalent to the original problem like polytope verification

[ABS97]. Such problems do not really open up possibilities for any method that

was not applicable to the original problem. The other kind of problems are ones

for which a polynomial algorithm would yield a polynomial algorithm for VE but

whose hardness has no consequence on VE. Examples include polytope contain-

ment [FO85], projection (Chapter 6), covering Rd with polyhedral cones (Chapter

7) and computing Minkowski sums (Chapter 5). Moreover, these problems usually

turn out to be NP-hard and thus shed no light on the complexity of VE.

There is a similar ambiguity in the complexity status for graph isomorphism

(GI) which, like the vertex enumeration problem, is not known to be either in P or

to be NP -complete1. So therefore it is natural to try to relate the complexities of

those two problems. The results in this chapter do not yet settle this issue, but we

1GI is known to be in NP ∩ coNP under certain assumptions ([MV99]).
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make a step in this direction by deriving interesting connections between vertex

enumeration and graph isomorphism.

For the purpose of relating vertex enumeration to graph isomorphism, we use

the definition of a complexity class of all problems that are polynomially equivalent

to GI. A problem Φ is said to be GI-easy if it can be solved in polynomial time

given an oracle for GI and GI-hard if GI can be solved in polynomial time using an

oracle for Φ. A problem that is both GI-easy and GI-hard is called GI-complete.

Note that when talking about complexity of a problem with respect to an oracle, we

assume that the oracle calls take constant (or polynomial) time. So for equivalence

we are allowed to make a polynomial number of calls to the oracle.

In this chapter, we consider the problem of checking whether a polytope given

by vertices or facets is combinatorially isomorphic to its polar dual. We will shortly

clarify the meaning of the terms isomorphic. We call this problem Self-Duality

problem (SD). SD is markedly different from the kind of problems mentioned

earlier. We show that SD is GI-hard and furthermore that it is GI-complete if and

only if VE is GI-easy. The “if and only if” in the result ensures that whichever

way the complexity of SD is settled, it will have non-trivial consequences for the

complexity of VE. To the best of our knowledge this is the first problem that opens

up the possibility of relating the complexity of VE to that of GI.

For a polytope P, recall that V(P ) and F(P ) denote the sets of vertices and

facets respectively. The facet-vertex incidence matrix I(P ) ∈ {0, 1}m×n, of a

polytope P with m = |F(P )| and n = |V(P )|, is a 0/1-matrix whose rows represent

the facets and whose columns represent the vertices and I[i, j] = 1 if and only if

the i-th facet is incident to the j-th vertex. It is known that the face lattice of a

polytope is completely determined by its facet-vertex incidence matrix ([KP02]).

A real matrix A is said to be transposable if it can be transformed into its transpose

AT via row and column permutations, and is said to be symmetrizable if it can be

transformed into a symmetric matrix via row and column permutations. For a nice

survey of transposability and symmetrizability of matrices the reader is referred

to [BGZ06].

Two polytopes P and Q are said to be combinatorially isomorphic to each

other, denoted by P ∼= Q, if their face-lattices are isomorphic. For example, any

two convex polygons with equal number of sides are combinatorially isomorphic.

Equivalently, two polytopes are isomorphic if and only if the incidence matrix of
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one can be transformed into that of the other via row and column permutations.

A polytope is said to be self-dual if it is combinatorially isomorphic to its polar

dual, i.e., if P ∼= P ∗. In terms of incidence matrices this means that for self-

dual polytopes the incidence matrix is transposable. Also, the row and column

permutation that changes the incidence matrix to its transpose is called the self-

duality map. Note that the incidence matrix of a self-dual polytope need not be

symmetrizable (See [Jen89]).

8.2 Related Work

Our work touches on various topics including vertex enumeration, isomorphism and

self-duality of polytopes, as well as transposability and symmetrizability of 0/1-

matrices. In this section, we will briefly mention some of the existing literature

pertaining to these topics.

Self-dual polytopes form an interesting subclass of polytopes and their classi-

fication is a fundamental problem in the theory of polytopes. Self-dual polytopes

have been studied extensively at least in 3-dimensions and the 3-dimensional spher-

ical and projective self-dual polytopes have been fully characterized (See [AN93]).

In higher dimensions not much appears to be known. As we will see, the free-join

of a polytope P and its polar dual2 always generates self-dual polytopes. Also, the

free-join of any two self-dual polytopes yields another self-dual polytope. These

constructions do not yield all possible self-dual polytopes but the ones that do arise

have interesting properties, namely that they also admit an involutory self-duality

map. In section 8.5, we describe3 a class of polytopes which we call roofed-prisms

that are self-dual but are not obtainable as free-join of simpler polytopes.

Kaibel and Schwartz ([KS03]) studied various isomorphism questions about

polytopes and proved that it is GI-complete to determine if two polytopes given

by their facet-vertex incidences are combinatorially isomorphic to each other. The

problem remains GI-complete even if the coordinates of vertices and facet-normals

are provided or if the polytopes are restricted to be simple or simplicial polytopes.

The authors in [KS03], however, leave open the question of checking self-duality

2Instead of the polar dual one can use any polytope combinatorially isomorphic to the
polar P ∗.

3We do not use these polytopes in our proofs but the construction is simple enough to
warrant mentioning these polytopes in this context.
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of a polytope given by its facet-vertex incidence matrix. This problem (called SDI

from now on) is a variant of SD4 and in the process of relating SD to VE, we settle

the question of Kaibel and Schwartz by proving that SDI is GI-complete as well.

As we noted before, self-duality of a polytope implies that its incidence matrix

is transposable. Also, if the self-duality map is involutory, i.e. the map applied

twice yields the identity map, then the incidence matrix is symmetrizable. Note

that every symmetrizable matrix is transposable, but there are transposable ma-

trices that are not symmetrizable [BGZ06]. Grünbaum asked in [GS88] if there

are self-dual polytopes that do not have any involutory self-duality maps. Jendrol

[Jen89] answered this question in the affirmative.

We should remark that we do not claim the novelty of the constructions pro-

vided in this chapter. Free join of two polytopes is a well known operation ([Zie95]).

The same construction is also attributed to David Eppstein [Eri00] in finding ex-

amples of polytopes with n vertices, n facets and nb d+1
3 c faces improving an earlier

bound of n
√
d by Seidel et al. [Eri00, ABS97]. The author is not aware of any

other work mentioning the roofed-prisms, that are mentioned in this chapter, as

an example of indecomposable self-dual polytopes.

8.3 Main Results

In this chapter we consider the following three problems:

VE: Given a polytope P by facets, enumerate all the vertices of P .

SD: Given a polytope P by facets or vertices, determine if P is self-dual.

SDI: Given a polytope P by its facet-vertex Incidence Matrix, determine if P is

self-dual.

Our main results are the following:

• SD is GI-hard.

• SD is GI-complete if and only if VE is GI-easy.

• SDI is GI-complete.

For proving the GI-hardness of SD and its relations to the complexity of VE,

we start by exploring the complexity of SDI. We establish that SDI is GI-complete

first and the other results are easy consequences of this fact. Our results on the

4Recall that for SD the polytope is given only by its facets or only vertices.
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complexity of SDI strengthens the result of [KS03] that it is GI-complete to de-

termine if two polytopes given by their facet-vertex incidences are combinatorially

isomorphic to each other. We arrive at this result by showing that, essentially

the free join of two polytopes is self-dual if and only if the two polytopes are

isomorphic.

8.4 Constructing Self Dual Polytopes

8.4.1 Free Join

Two affine spaces are called skew if they neither intersect nor contain any parallel

lines. The free join of two polytopes is obtained by embedding the polytopes in

skew subspaces and taking the convex hull. For example, the free join of two line

segments is a 3-dimensional tetrahedron. Since in the context of this chapter we

are interested only in the combinatorial structure of polytopes arising as free-joins

of smaller polytopes independent of the actual embedding, we will choose some

specific skew hyperplanes for the purpose of embedding the component polytopes.

Let P1 and P2 be two polytopes in Rm and Rn respectively, such that:

P1 = {x ∈ Rm | A1x ≤ 1} = conv(V1),

P2 = {x ∈ Rn | A2x ≤ 1} = conv(V2),

where A1 ∈ Rl×m, V1 ⊆ Rm, A2 ∈ Rr×n, and V2 ⊆ Rn, then the vertices of the free

join P ∗Q ⊆ Rm+n+1 are

V(P1 ∗ P2) =


 v

0

−1

 : v ∈ V(P1)


⋃

 0

v

1

 : v ∈ V(P2)


and

P1 ∗ P2 =


 x

y

z

 : 2A1x+ z · 1l ≤ 1l, 2A2y − z · 1r ≤ 1r

 ,

where 1k is a vector in Rk all whose entries are 1. The following are some easy

observations about the free join operation.
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Fact 2. Suppose P1 is an i-dimensional polytope and P2 is a j-dimensional poly-

tope. If P = P1 ∗ P2, then

(i) An i-dimensional face of P is the free join of an r-dimensional face of P1

with an s-dimensional face of P2 such that r + s+ 1 = i, and consequently,

(ii) every face of P1 or P2 is a projection of a face of P, with the same dimension,

(iii) P is an (i+ j + 1)-dimensional polytope,

(iv) |V(P )| = |V(P1)|+ |V(P2)|, and

(v) |H(P )| = |H(P1)| + |H(P2)|. Furthermore, every facet of P is either a free

join of P1 and some facet of P2, or that of P2 and some facet of P1.

8.4.2 Incidence Matrix of Free-Join

Recall that the facet-vertex incidence matrix I(P ) of a polytope P has facets as

rows and vertices as columns and the (i, j)-th entry is 1 iff the i-th facet contains

the j-th vertex. In particular, if P is full-dimensional, then no row or column of

I(P ) can consist of all ones. It follows that the incidence matrix of a polytope

P = P1 ∗ P2, that is a free join of two polytopes P1 and P2, is of the form
[
A|B
C|D

]
where A and D are submatrices all whose entries are 1’s, and B and C are the

incidence matrices of P1 and P2. The following lemma establishes that for the

incidence matrix of a polytope to be decomposable into the aforementioned form,

it is also necessary that the polytope be a free-join of other (simpler) polytopes.

Lemma 8.4.1. Let P be a full-dimensional polytope in Rd. Under suitable labeling

of vertices and facets, the incidence matrix I(P ) of P is of the form
[
A|B
C|D

]
, where

A and D are submatrices all of whose entries are 1’s, if and only if P is a free

join of two polytopes P1 and P2 with respective incidence matrices B and C.

Proof. If P is a free join of two polytopes, then the incidence matrix of P can be

written in the desired form, as explained above.

Now, suppose that the incidence matrix of P is of the required form. Suppose,

the dimensions of the matrices A,B,C,D are m1 × n1, m1 × n2, m2 × n1 and

m2×n2, respectively. Let the set of vertices corresponding to the first n1 columns

of I(P ) be V1 and the ones corresponding to the last n2 columns be V2. Similarly,
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let F1 and F2 be the sets of facets corresponding to the first m1 and last m2 rows

respectively.

Since any affine transformation preserves incidences, we can assume that P

contains the origin in the interior. Suppose that the halfspaces corresponding to

the facets F1 of P be A1x ≤ 1, and the halfspaces corresponding to the facets F2

of P be A2x ≤ 1.

Note that no row or column of B or C has all 1’s, since otherwise I(P ) has

such a row or a column. This implies that the affine hull of V1 can be obtained as

the intersection of the hyperplanes defining the facets in F1 and that of V2 can be

obtained as the intersection of the hyperplanes defining F2. Specifically, the affine

hull of V1 is {x|A1x = 1} and that of V2 is {x|A2x = 1}.

Since P is full dimensional polytope, there is no common intersection for all

the hyperplanes defining F1 ∪ F2. (Indeed, if x is a point in such intersection and

x′ ∈ int(P ), then the ray starting at x and moving through x′ must hit P at some

facet F ∈ F(P ) whose defining hyperplane contains x. But this would imply that

the whole ray belongs to this hyperplane, and hence that x′ ∈ F, in contradiction

to the fact that x′ is an interior point in P.) Hence, the affine hulls of V1 and V2

don’t intersect.

Now suppose that the affine hulls of V1 and V2 are not skew, i.e. they contain

parallel lines. Let the copy of this parallel line in the affine hull of V1 have the

parametric equation l1 = {x|x = α1 + t · u, t ∈ R}, where x, α1, u ∈ Rd. Similarly

let the copy in the affine hull of V2 be l2 = {x = α2 + t · u, t ∈ R}. Note that since

the two copies are parallel to each other their “direction” is defined by the same

vector u.

Since l1 lies in the affine space A1x = 1, we have A1 · (α1 + t · u) = 1 for all

values of t. This means A1 ·u = 0. Similarly it follows from l2 that A2 ·u = 0. But

A1 and A2 cover all rows of A and so A · u = 0. Clearly for l1 and l2 to be lines

u must not be the zero vector. But if A · x = 0 has a non-trivial solution u then

A · (λu) = 0 ≤ 1, ∀λ ∈ R. This contradicts our assumption that P is a bounded

polytope and hence does not contain any lines.

Hence, the affine hulls of V1 and V2 are skew and P is the free-join of the two

polytopes defined by these two sets of vertices.
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8.5 Complexity of SDI and SD

Our starting point is the following result of Kaibel and Schwartz [KS03]: Given two

polytopes P1 and P2 by their vertices and facets, it is GI-complete to determine

whether they are isomorphic to each other. In fact, this is true even if each polytope

Pi satisfies the following conditions, for i ∈ {1, 2}:

(C1) Pi is simple, i.e., every vertex of Pi lies on exactly d facets, where d =

dim(Pi),

(C2) |V(Pi)|+ 2 6= 2|F(Pi)|, and

(C3) |F(Pi)| > 2 dim(Pi).

(More precisely, the reduction in [KS03] constructs for a graph G = (V,E)

a simple polytope P (G) of dimension d = |V | − 1, with |V(P (G))| = |V |(|V | −
1) + 2|E|(|V | − 2) and |F(P (G))| = 2|V | + 2|E|. In particular, |V(P (G))| + 2 >

2|F(P (G))| for |V | ≥ 5, i.e., (C1), (C2), and (C3) are satisfied.)

Before we proceed with the details of our reduction, we need the following defi-

nition. Given a full-dimensional polytope P ∈ Rd, a (d+1)-dimensional bipyramid

bipyr(P ), constructed from P, is obtained by taking two points u, v ∈ Rd+1, strictly

in two different sides of aff(P ), such that the line segment connecting u and v in-

tersects the relative interior of P, and defining bipyr(P ) = conv(P ∪ {u, v}). P is

called the base of the bipyramid and u, v are called the apices.

Our reduction of GI to SDI works as follows: Given two graphs G1 and G2,

we first construct polytopes P1 and P2 as in Kaibel and Schwartz ([KS03]). Next

we consider the polytope P obtained by taking the free join of bipyr(P1) with the

polar dual of bipyr(P2). We show that under assumptions (C1), (C2) and (C3) P

is self-dual if and only if G1 and G2 are isomorphic.

Lemma 8.5.1. Let P be a full-dimensional polytope in Rd, d ≥ 3, with m facets

and n vertices such that n+ 2 6= 2m. Then the bipyramid Q = bipyr(P ) is neither

a self-dual polytope nor can it be obtained as the free join of two other polytopes.

Proof. The bipyramid Q has 2m facets and n + 2 vertices. Since Q has unequal

number of vertices and facets it is clearly not self-dual.

To prove that Q is not decomposable as free-join of smaller polytopes, consider

the two apices of Q. Suppose Q is decomposable as P1 ∗ P2. Since every pair of
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vertices from P1 and P2 generates an edge in the free-join, both apices of Q must

be part of one of the component polytopes, say P1 wlog. But then both apices

must lie in a proper face of Q contradicting the fact that they are the apices of a

bipyramid.

Lemma 8.5.2. Let P1 and P2 be two polytopes satisfying (C1) and (C3). Then

P1
∼= P2 if and only if bipyr(P1) ∼= bipyr(P2).

Proof. If P1
∼= P2, then clearly bipyr(P1) ∼= bipyr(P2). Suppose now that

bipyr(P1) ∼= bipyr(P2). Then there is an order-preserving bijection φ between

the face lattices of bipyr(P1) and bipyr(P2). Let ui, vi be the apices of bipyr(Pi),

di = dim(Pi), ni = |V(Pi)|, and mi = |F(Pi)|, for i ∈ {1, 2}. Since bipyr(P1) ∼=
bipyr(P2), we have d1 = d2 = d, n1 = n2 = n, and m1 = m2 = m. For a

point u ∈ Rd and a polytope P , we denote by f(P, u) the number of facets of

P containing u. Then f(Pi, u) = d for all u ∈ V(Pi) follows from the simplic-

ity of Pi, for i ∈ {1, 2}. Thus, f(bipyr(Pi), ui) = f(bipyr(Pi), vi) = m, while

f(bipyr(Pi), u) = 2d for all u ∈ V(bipyr(Pi))\{ui, vi}, for i ∈ {1, 2}. Since m > 2d

by (C3), it follows that φ({u1, v1}) = {u2, v2}. Then the restriction of φ on the

faces of P1 gives an isomorphism between the face lattices of P1 and P2.

Recall that a matrix is called transposable if its rows and columns can be

permuted to obtain its transpose, and is called symmetrizable if it can be converted

into a symmetric matrix by row and column permutations.

Fact 3. A polytope is self-dual if and only if its incidence matrix is transposable.

With these notions, we are ready to establish the following result.

Theorem 8.5.3. Let P1, P2 ∈ Rd be two polytopes, neither of which is self-dual

or decomposable into a free join of other polytopes. Then, P1 ∗ P2 is self-dual if

and only if P1
∼= P ∗2 .

Proof. For i ∈ {1, 2}, let Vi, Fi and Ai be respectively the set of vertices, set of

facets, and incidence matrix of Pi, and write ni = |V(Pi)| and mi = |F(Pi)|. Then

the incidence matrix of P1 ∗ P2 is of the form shown in Figure 8.1-(a).

If P1 is isomorphic to P ∗2 , then m1 = n2 = m, n1 = m2 = n, and there exist

row and column permutations σ1, ρ1 for A1 that transform it to AT2 and also, there

exist row and column permutations σ2, ρ2 for A2 that transform it to AT1 . Now
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Figure 8.1: The incidence matrix C = I(P1 ∗ P2) before and after applying
the permutations σ and ρ. In (b), the two dotted lines, crossing at y, indicate
the partition of CT resulting from the original partition of C. In particular,
the upper-right corner above y contains the matrix AT2 , while the lower-left
corner contains AT1 .

consider the following permutations σ, ρ of the rows and columns for the incidence

matrix of P1 ∗ P2 (assume the vertices of P1 ∗ P2 are numbered 1, 2, 3, . . ., and

similarly the facets):

σ(i) =

σ1(i) if i ≤ m,
m+ σ2(i−m) if i > m.

ρ(i) =

ρ2(i) if i ≤ m,
m+ ρ1(i−m) if i > m.

It is easy to see that this permutation of rows and columns applied to the incidence

matrix of P1 ∗ P2 produces its transpose and hence P1 ∗ P2 is self-dual.

Now, to prove the other direction, assume that P1 ∗ P2 is self-dual. Then

m1 + m2 = n1 + n2, and there exist row and column permutations, σ, ρ, of the

incidence matrix C = I(P1∗P2) that transform it to its transpose. Assume w.l.o.g.

that m1 ≥ n2 and hence n1 ≥ m2. Define the following subsets of row and column
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indices according to σ and ρ:

L1 = {i | i ≤ n2, ρ(i) > n2} , L2 = {i | i ≤ n2, ρ(i) ≤ n2} ,

R1 = {i | i > n2, ρ(i) > n2} , R2 = {i | i > n2, ρ(i) ≤ n2} ,

U1 = {i | i ≤ m1, σ(i) ≤ m1} , U2 = {i | i ≤ m1, σ(i) > m1} ,

D1 = {i | i > m1, σ(i) ≤ m1} , D2 = {i | i > m1, σ(i) > m1} .

In other words, if we call the initial columns corresponding to V2 left columns

and those corresponding to V1 right columns then L1 corresponds to the set of

vertices of V1 that moves to the left after applying ρ and R1 corresponds to the

set of vertices of V1 that remains in the right. Similarly, if we call the rows up or

down depending on whether they correspond to facets F1 or F2 respectively, then

U1 corresponds to the subset of F1 that remains up after the column permutation

σ and D1 corresponds to the subset that moves down (see Figure 8.1-(b)).

Since ρ, σ transform C to CT , it follows from the definitions of the above sets

that CT [i, j] = 1 for (i, j) ∈ U1 × L2, U1 × R2, U2 × L1, U2 × R1, D1 × L2, D1 ×
R2, D2 × L1, D2 ×R1 (see Figure 8.1-(b)).

We claim that |U1|+ |U2| = |L1|+ |L2|, or in other words, the two points x and

y in Figure 8.1-(b) coincide. If this was not the case, then the point y would lie in

one of the four possible corners U1 ×R2, U1 ×R1, U2 ×R2, or U2 ×R1. Consider

w.l.o.g. the situation in Figure 8.1-(b), where y ∈ U2×R2. Since the submatrix of

CT above and to the right of y is AT2 , it follows from Lemma 8.4.1 that the polytope

P ∗2 is decomposable, in contradiction to our assumptions. Similarly, in all the other

three cases for y, one can verify that there exist row and column permutations of

AT1 , such that the resulting matrix, and hence P ∗1 , have a decomposition in the

sense of Lemma 8.4.1.

Thus both |U1|+|U2| and |L1|+|L2| are equal to, say m, and hence transposing

C gives CT [i, j] = 1 for all (i, j) ∈ (U1 ∪ U2) × (L1 ∪ L2). However, CT is also

obtained by transforming C using ρ, σ, and thus we get C[i, j] = 1 for (i, j) ∈
L1 × U1, D1 × R1. Since P1 is indecomposable, it follows from Lemma 8.4.1 that

either L1 = D1 = ∅ or R1 = U1 = ∅ (any other choice would give an all 1’s row or

column in C). The latter case would imply that AT1 is mapped by row and column

permutations into AT1 , and hence is not possible, since P1 is assumed not to be
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self-dual. Hence the permutations σ, ρ leave the vertices of V1 and the facets of F1

in their own blocks. A similar argument can be made about the rows and columns

corresponding to V2 and F2. Hence, the permutations σ, ρ satisfy the following:

ρ(i) ≤ m iff i ≤ m
σ(i) ≤ m iff i ≤ m

Now we can define a permutation of rows σ
′

and columns ρ
′

of the incidence

matrix A of P as follows:

σ
′
(i) = σ(i) for i = 1 . . . ,m

ρ
′
(i) = ρ(m+ i)−m for i = m+ 1 . . . ,m+ n

This transforms A1 into AT2 and hence shows that P1 is isomorphic to the dual

of P2.

We remark that actually one need not assume that the polytopes in the previous

theorem are not self-dual and the following stronger version of Theorem 8.5.3 is

true:

Theorem 8.5.4. Let P1, P2 ∈ Rd be two polytopes that are not decomposable into

free join of other polytopes. Then, the free join P1 ∗ P2 is self-dual if and only if

either P1
∼= P ∗2 or both P1 and P2 are self-dual.

This theorem can be proved with only a slight modification of the proof of

Theorem 8.5.3 but for the purposes of our proof of GI-completeness of SDI, we

need the polytopes to not be self-dual and so we will keep working with the weaker

version of the theorem. Also, it follows from the proof of Theorem 8.5.3 that

although the notion of transposability and symmetrizability of general 0/1-matrices

are different, for the incidence matrices of the self-dual polytopes that arise from

Theorem 8.5.3, both notions are equivalent.

Corollary 8.5.5. If P and Q are two polytopes in Rd such that both P and Q are

neither decomposable nor self-dual, then P is isomorphic to Q if and only if the

incidence matrix P ∗Q∗ is symmetrizable.

Corollary 8.5.6. For a polytope P , P ∗ P ∗ is self-dual and the incidence matrix

of the free join is symmetrizable.
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Now, we can state the final theorem of this section.

Theorem 8.5.7. Let P be a polytope in Rd given by its facet-vertex incidence

matrix or both vertices and facets. It is GI-complete to determine whether P is

self-dual.

Proof. Clearly, if an oracle for GI is given then it can be used to check self-duality

of a polytope given by its incidence matrix simply by checking if P ∼= P ∗. Since the

incidence matrix can also be computed from the vertices and facets in polynomial

time, checking self-duality in this case is GI-easy.

To show that the self-duality checking is also GI-hard, we use the following

GI-complete problem [KS03]: Given two polytopes P1 and P2 by their facet and

vertex descriptions, or by their facet-vertex incidence matrix, determine if P1
∼= P2.

As mentioned at the beginning of section 8.5, we may assume that P1 and P2

satisfy conditions (C1), (C2) and (C3). From the vertices, facets or facet-vertex

incidence matrices of P1 and P2, we can construct, in polynomial-time, the vertices,

facets or incidence matrix (resp.) of P = bipyr(P1) ∗ bipyr(P2)∗. By Lemma 8.5.1,

both bipyr(P1) and bipyr(P2)∗ are neither self-dual nor decomposable as free-joins

of other polytopes. By Theorem 8.5.3, P is self-dual if and only if bipyr(P1) ∼=
bipyr(P2), and by Lemma 8.5.2, the latter condition is equivalent to P1

∼= P2.

Recall that for problem SD we want to verify whether a polytope, given by

only vertices or only facets, is self-dual. An easy corollary of Theorem 8.5.7 is that

SD is GI-hard.

Corollary 8.5.8. Let P be a polytope in Rd given by its vertices (or facets). It is

GI-hard to determine whether P is self-dual.

In the next section, we will discuss some interesting consequences of the com-

plexity of SD on the problem of enumerating vertices of a polytope given by its

facets.

We conclude this section by remarking that not all self-dual polytopes arise

from free-join of other ”smaller” self-dual polytopes. For instance, Figure 8.2 shows

an example of a 3-dimensional polytope which is self-dual but indecomposable in

the sense of free-join. This example can be generalized to yield an infinite family

of indecomposable self-dual polytopes, which we call roofed-prisms, as follows. Let

P be a d-dimensional polytope and u, v ∈ Rd+1 be two points strictly in two
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Figure 8.2: A 3-dimensional self-dual indecomposable polytope and its inci-
dence matrix.

different sides of aff(P ), such that the line segment connecting u and v intersects

the interior of P . Let P ′ be a parallel copy of P containing u and define Q(P ) =

conv(P ∪ P ′ ∪ {v}). Informally, Q(P ) is obtained by putting the pyramid of P

as a roof on the (vertical) prism of P . Then for any self-dual polytope P , the

roofed-prism Q(P ) is self-dual and indecomposable (a fact that can be proved

using Lemma 8.4.1.)

8.6 Vertex Enumeration

As noted in the introduction, a problem that is polynomially equivalent to vertex

enumeration is the problem of determining whether an H-polytope P is the same

as a V-polytope Q [ABS97], also known as polytope verification. Clearly, we

may assume that V(Q) ⊆ V(P ), and furthermore that {aff(F ) | F ∈ F(P )} ⊆
{aff(F ) | F ∈ F(Q)}, for otherwise, P and Q can not be the same. The following

theorem relates this problem (and hence VE) to the problem of checking self-duality

of a given polytope.

Theorem 8.6.1. Let P ⊂ Rd be an H-polytope and Q ⊂ Rd be a V-polytope such

that V(Q) ⊆ V(P ) and {aff(F ) | F ∈ F(P )} ⊆ {aff(F ) | F ∈ F(Q)}. Then,

P = Q if and only if P ∗Q∗ is self-dual.

Proof. It is easy to see that if P = Q then P ∗Q∗ is self-dual. On the other hand,
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if P 6= Q then |V(P )| > |V(Q)| and also |F(Q)| > |F(P )|. Hence, |F(P ∗ Q∗)| =

|F(P )|+ |V(Q)| < |F(Q)|+ |V(P )| = |V(P ∗Q∗)|. Thus P ∗Q∗ has strictly fewer

facets than vertices and hence it can not be self-dual.

As we have seen in the previous section SD is GI-hard. Now there are two

possibilities: either SD is really harder than GI in that there is a strict (non-

polynomial) gap between the complexities of SD and GI, or SD is in fact GI-easy

and hence GI-complete as well. In both cases, we get a similar statement about

the complexity of VE.

Theorem 8.6.2. VE is GI-easy if and only if SD is GI-complete.

Proof. Clearly, if SD is GI-easy then VE is GI-easy, since an oracle for GI would

solve SD, which in turn would solve polytope verification, by Theorem 8.6.1. On

the other hand, suppose that VE is GI-easy, and suppose we are given an instance

of SD, i.e., a polytope P described by, say, its facets, and we want to check whether

P is self-dual. Using the oracle for GI, we can enumerate the vertices of P . If P

has too many vertices, we know that it is not self-dual and if the number of vertices

of P is equal to the number of facets of P , then after enumerating vertices of P

we have both vertex and facet descriptions of P, and now the self-duality can be

checked using an oracle for GI. Since we know SD to be GI-hard by Corollary 8.5.8,

SD is also GI-complete.

Since GI is not believed to be NP-hard, by Theorem 8.6.2, if SD is GI-easy,

then VE is probably also not NP-hard.





Chapter 9

Conclusion

9.1 Thesis Summary

Any polytope P ⊂ Rd can be represented as either the convex hull of a finite

number of points in Rd or as a bounded intersection of a finite number of halfspaces.

Either of these representations defines the other uniquely if redundancies are not

allowed, but no output-sensitive algorithms are known that convert one of these

representations to the other. Also, depending on whether the vertex representation

or the facet representation of a polytope is known, the computational complexity of

an operation can vary wildly. This thesis considers various computational problems

about polytopes and their complexity.

The problems that we consider in this thesis, and the results that we obtain,

have the following common themes:

• Many of the problems considered in this thesis are very fundamental opera-

tions on polytopes. Operations like the intersection, Minkowski addition and

projection are very basic operations on polytopes that need to be frequently

computed in practice. The complexity results in this thesis show that often

the best way to perform these operations is by converting the representa-

tion of the input polytope first, highlighting the importance of finding an

output-sensitive vertex enumeration algorithm.

• Every problem considered in this thesis is closely related to the vertex enu-

meration problem. For most problems, an efficient algorithm would imply

and output-sensitive algorithm for vertex enumeration. Unfortunately, most

99



100 9. Conclusion

of these problems turn out to be NP -hard or #P -hard. The problem of

checking whether a polytope is isomorphic to to its polar dual (chapter 8),

on the other hand, relates the vertex enumeration problem with the well

know graph isomorphism problem. Admittedly though the connection es-

tablished in this thesis is somewhat weak.

• Every problem highlights the impact of input representation for computa-

tional problems about polytopes. For example, computing the vertex cen-

troid (chapter 4) for a V-polytope is trivial but is #P -hard for H-polytopes.

Similarly, computing the facets of the intersection of two H-polytopes is easy

but the problem is NP -hard for almost all other representations.

The main contributions of this thesis are roughly divided into different cate-

gories as mentioned in the following subsections.

9.1.1 Strengthening previous results

In chapter 3 we show that enumerating the vertices of an unboundedH-polyhedron

P is NP -hard even when P has only 0/1 vertices. This strengthens a previous re-

sult of Khachiyan et. al. [KBB+06] for general polyhedra. For generalH-polytopes

the complexity of enumerating all the vertices is unknown but for a polytope all

whose vertices are 0/1 there exists an output-sensitive algorithm [BL98]. Our

result, thus, provides a better contrast between the complexities of vertex enumer-

ation problem for polytopes and unbounded polyhedra.

Our small but very crucial modifications of the proof in [KBB+06] allows us

to obtain various other hardness results. For example, among other things, our

method shows that identifying whether an H-polyhedron is a 0/1-polyhedron or

not is possible in polynomial time unless P = NP. Many of these additional results

in chapter 3 are already known but our method allows us to unify all these results,

and although these additional results in themselves are not an improvement over

existing results, the unifying proof can arguably be considered an improvement.

In chapter 8 we prove that it is graph isomorphism complete to check if a

polytope, given by HV-representation, is combinatorially isomorphic to its polar

dual. This generalizes a previous result of Kaibel and Swartz [KS03] proving

the GI-completeness of checking combinatorial isomorphism of two HV-polytopes.

Our result is based on a simple observation characterizing the decomposability of

a polytope as free-join of smaller polytopes (Lemma 8.5.1).
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9.1.2 New Hardness results

The most important new results in this thesis concern proving that many basic

operations on polytopes like computing intersections, Minkowski sums, projection

etc can not in general be performed in output-sensitive polynomial time unless

P = NP . Although these results are negative, they do provide a positive view

for algorithmic research on polytopes - it is very important to understand the

output-sensitive complexity of vertex enumeration because many basic and prac-

tically important problems can only be efficiently solved via an intermediate step

of converting the representation of the input polytopes to a certain form.

Many results in this thesis answer questions raised by others. In chapter 7 we

derive many new hardness results related to the complexity of checking whether

a given set of polyhedral cones cover a given set1 D. As a corollary we answer a

question of Bemporad et. al. [BFT01] in the negative by proving that it is NP -

hard to decide whether the union of a given set of H- or V-polytopes is convex.

Similarly, in chapter 8 we answer a question of Kaibel and Swartz [KS03] by proving

that it is graph isomorphism complete to check whether a polytope, given by its

facets and vertices, is combinatorially isomorphic to its polar dual.

Another novel contribution in chapter 8 is the construction of a family of self-

dual polytopes via free-join. The polytopes constructed are interesting on their

own because their incidence matrices are symmetrizable. In general transposability

of the incidence matrix suffices for self-duality of a polytope and not all self-dual

polytopes have symmetrizable incidence matrices. We also provide an example of

a class of polytopes, which we call the roofed-prisms, that are self-dual but do

not arise as a free-join of other polytopes. The observation that such polytopes

exist is perhaps not surprising but roofed-prisms form an interesting class of such

polytopes.

9.1.3 Completeness for VE

In this thesis we have defined a complexity class for problems that are equivalent

to the vertex enumeration problem. This class tries to capture the notion of

completeness for VE in the same way the class of NP -complete problems does for

problems in NP . In chapter 6 the notion of a problem being equivalent, harder

1The sets that we explicitly consider are either the whole space or a linear subspace,
although one can handle the case when D is a polytope with slight modifications.
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or easier than VE is defined, and a class of problems related to computing the

projection of polytopes is used as an example for these notions. It was shown

how the various versions of the projection problem turn out to be either NP -hard,

V E-complete, V E-hard or V E-easy.

Despite years of active research neither it is known whether VE is in P nor it

is known to be NP -hard. This fact makes us believe that defining such a notion

of completeness will turn out to be useful for future research. This thesis presents

two problems that turn out to be related to this new complexity class (chapter 6,

chapter 7) and we hope that many problems will be shown to have a complexity

related to that of the vertex enumeration problem. Hopefully such new problems

will make it possible to use tools from different areas for settling the question of

the complexity of vertex enumeration.

9.1.4 Relating VE to GI

It is entirely possible that the complexity of vertex enumeration lies somewhere

between P and NP -complete. We are not aware of any work trying to relate

the complexity of vertex enumeration to some problem like graph isomorphism.

Graph isomorphism, like vertex enumeration, has a long history of research and

an unknown complexity status. Some results in this thesis try to take a step

towards establishing the connection between these two problems. Even though we

do not settle the question whether these two problems have similar complexities,

we believe the results in chapter 8 are a step in the right direction.

In particular, we show in chapter 8 that a certain isomorphism problem defined

for polytopes is graph isomorphism complete if and only if vertex enumeration is

graph isomorphism easy. The problem, which we call SD or Self Duality, is shown

to be vertex enumeration hard as well as graph isomorphism hard. As opposed

to other problems considered in this thesis, that are shown to be NP -hard but

whose NP -hardness offers no insight into the complexity of vertex enumeration,

the self-duality problem will provide non-trivial insight into the complexity of

vertex enumeration whether it turns out to be graph isomorphism complete or

strictly harder that graph isomorphism (say NP -hard).
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9.2 Future Work

The central problem that served as a motivation for this thesis - vertex enumeration

- remains unsolved; neither do we have an output-sensitive algorithm for it, nor do

we know whether it is NP -hard. Nevertheless, this thesis does offer a few insights

into how research on this problem should be direction in future:

• Trying to work on a slightly more general problem usually offers no in-

sight into the complexity of vertex enumeration. The new problems very

frequently turn out to be not only harder than vertex enumeration but also

NP -hard. It would be an interesting task to come up with problems that are

more general than vertex enumeration but nevertheless not NP -hard. Nat-

urally this assumes, without any strong evidence, that vertex enumeration

is not NP -hard itself.

• The problem of checking self-duality of an H- or V-polytope shows some

promise for at least partially settling the complexity of vertex enumeration.

What is the complexity of this problem? Perhaps a key to understanding the

complexity of this problem is to first understand the structure of self-dual

polytopes. We constructed a nice class of self-dual polytopes in this thesis

and it would be interesting to generate new classes of self-dual polytopes.

• Even the most basic operations of polytopes turn out to be either NP -

hard or at least as hard as vertex enumeration in various representations.

It would be of great help for practical applications if these operations can

nevertheless be performed in reasonable time. It is perhaps important that

when computing with polytopes we focus on the specific class of polytopes

at hand and try to obtain a polynomial algorithm for that class.
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