
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Masters’s Thesis

Precise Measurement-Based

Worst-Case Execution Time

Estimation

submitted by

Stefan Stattelmann

on September 22, 2009

Supervisor

Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm

Advisor

Dr. Florian Martin

Reviewers

Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm
Prof. Dr. Bernd Finkbeiner



ii



Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Datum / Date) (Unterschrift / Signature)

iii



iv



Abstract

During the development of real-time systems, the worst-case execution time (WCET)
of every task or program in the system must be known in order to show that all tim-
ing requirements for the system are fulfilled. The increasing complexity of modern
processor architectures makes achieving this objective more and more challenging.
The incorporation of performance enhancing features like caches and speculative
execution, as well as the interaction of these components, make execution times
highly dependent on the execution history and the overall state of the system. To
determine a bound for the execution time of a program, static methods for tim-
ing analysis face the challenge to model all possible system states which can occur
during the execution of the program. The necessary approximation of potential
system states is likely to overestimate the actual WCET considerably. On the
other hand, measurement-based timing analysis techniques use a relatively small
number of run-time measurements to estimate the worst-case execution time. As it
is generally impossible to observe all potential executions of a real-world program,
this approach cannot provide any guarantees about the calculated WCET estimate
and the results are often imprecise.

This thesis presents a new approach to timing analysis which was designed to
overcome the problems of existing methods. By partitioning the analyzed programs
into easily traceable segments and by precisely controlling run-time measurements,
the new method is able to preserve information about the execution context of
measured execution times. After an adequate number of measurements have been
taken, this information can be used to precisely estimate the WCET of a program
without being overly pessimistic. The method can be seamlessly integrated into
frameworks for static program analysis. Thus results from static analyses can be
used to make the estimates more precise and perform run-time measurements more
efficiently.

v



Contents

1 Introduction 1

1.1 Timing Analysis of Embedded Systems . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Existing Methods 4

2.1 Approaches for Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Static Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Measurement-Based Timing Analysis . . . . . . . . . . . . . . . . . . . . 5

2.4 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Context-Sensitive Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Foundations and Definitions 9

3.1 Control Flow Representation . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Basic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.4 Loops and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.5 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.6 Interprocedural Control Flow Graph . . . . . . . . . . . . . . . . 13

3.1.7 Paths in Control Flow Graphs . . . . . . . . . . . . . . . . . . . . 15

3.2 Program Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Data Flow Analysis and Abstract Interpretation . . . . . . . . . . 15

3.2.2 Cache Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Finite State Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Context-Sensitive Measurements 22

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Program Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Trace Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Call String Translation . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Cache Behavior Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.2 Cache Behavior Metrics . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.3 Joining of Program Segments . . . . . . . . . . . . . . . . . . . . 34

4.5 Timing Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



5 Implementation 37

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Tools and Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 AbsInt aiT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Infineon Technologies Multi-Core Debug Solution . . . . . . . . . 39
5.2.3 pls Universal Debug Engine . . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Infineon Technologies TriCore TC1797 Cache Behavior . . . . . . 42

5.3 Integration of Static and Dynamic Techniques . . . . . . . . . . . . . . . 44
5.3.1 Incorporation Concept . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Problems and Challenges . . . . . . . . . . . . . . . . . . . . . . . 46

6 Experiments 48

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.1 Examined Properties . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.1 DEBIE-1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Mälardalen WCET Benchmark Suite . . . . . . . . . . . . . . . . 49
6.2.3 Model-Based Code Generation . . . . . . . . . . . . . . . . . . . . 50

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Coverage Requirements . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Cache Behavior Metrics . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Comparison of Static and Dynamic Timing Analysis . . . . . . . . 51
6.3.4 Context-Sensitive and End-To-End Measurements . . . . . . . . . 53
6.3.5 Context-Sensitive and Context-Insensitive Measurements . . . . . 54

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 58

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Partitioning Algorithms 62

References 66

vii



viii



1 Introduction

1.1 Timing Analysis of Embedded Systems

The use of computer technology increasingly pervades everyday life. Almost every elec-
tronic product uses one or more built-in microprocessors to fulfil its purpose. Yet, the
presence of a computer system within the final product might not always be noticeable
for the user.

Many of these embedded systems are subject to time constraints and therefore also called
real-time systems. They can be separated into two groups: hard and soft real-time
systems. The fulfilment of the timing constraints is mandatory for the correctness of
hard real-time systems, i.e. if an operation is not performed within a fixed time frame,
the whole system fails. For soft real-time systems, however, this is only a desired property,
as the system is able to tolerate a small number of time constraint violations. If these
violations do not occur too often, the system is still able to resume normal operation,
although the quality of the service provided may be degraded.

Most real-time systems comprise several tasks sharing a common resource, e.g. the pro-
cessor. In order to determine whether all tasks are able to meet their timing requirements,
their worst-case execution time (WCET) must be known. In the following, the terms task
and program are used interchangeably, both meaning executable code that may be part
of a larger system.

There are static and dynamic methods for obtaining the worst-case execution time. Static
timing analyses try to determine a safe upper bound for all possible executions of a given
program. In contrast, dynamic methods use measurements taken during a finite number of
actual executions to determine an estimate of the WCET. The latter approach comes with
the risk of underestimating the worst-case execution time because it was not encountered
during the measurements. To overcome this problem, measurement-based timing analyses
tend to add a safety margin to the WCET estimate to increase the probability that the
actual worst-case execution time is bounded by the estimate.

On complex processor architectures, both methods do not always produce optimal re-
sults. The optimization of modern processors for average-case performance does not only
often deteriorate the worst-case performance of programs, it also makes the prediction of
execution times much harder. This is due to the fact that means meant to improve the

1



1 INTRODUCTION

performance, like caches, pipelining and speculative execution, make the time necessary
to execute certain parts of a program highly dependent on the state of the overall system.

As static timing analyses work with an abstract model of the processor, it is computa-
tionally impossible to model all possible system states during the execution of a program.
Hence the state dependence of execution time has to be resolved by conservative approx-
imations. With the increasing complexity of modern processors, the gap between the
actual worst-case execution times and the bounds reported by static timing analyses is
therefore likely to grow.

Measurement-based methods suffer from similar problems. The execution time of a few
complete runs of a program might highly deviate from the actual worst-case run because
the system was always started in a “good” state by chance. Likewise, measuring parts of
the analyzed programs with an artificially induced worst-case hardware state (however
this may be defined) and combining the partial measurements is unlikely to provide
a precise WCET estimate. Modifying the state of the observed system might lead to
wrong results because the measurements are taken during hardware states that either
never occur in practice or do not lead to a global worst-case execution. Thus, the results
of such methods are likely to exhibit a level of imprecision that renders them useless.

For applications that require hard real-time systems, like those in the aerospace industry,
measurement-based methods for the determination of worst-case execution times are out
of question because they cannot provide any guarantees about the safety of the result. In
areas where soft real-time systems are used, for example in multimedia devices or parts
of the automotive domain, measurement-based techniques might very well be applicable.
Nevertheless, there is a tendency to use static methods in those areas as well, as they
provide better results than existing measurement-based methods (as shown for example
in [Seh05]).

The inherent cost pressure of these mass-produced items motivates the development of
methods which reduce the overestimation of current timing analysis methods. Recently
developed methods for precise on-chip execution time measurements encourage a recon-
sideration of measurement-based analyses for this purpose. This may allow a better
utilization of system resources for applications that do not require safe timing bounds
and hence reduce the overall system cost.

1.2 Contribution

The goal of this thesis is to investigate whether a context-sensitive analysis of accurate
instruction-level measurements can be used to provide precise worst-case execution time
estimates. The notion of context-sensitivity is a well-known concept from static program
analysis. It has been shown that the precision of an analysis can be considerably improved
if the execution environment is considered. This especially holds if the analysis does not
only consider different call sites but also distinct iterations of loops (see [Mar99]). Up
to now, context information is mainly used in static timing analysis. In this work it will

2



1.3 Overview

be examined whether measurement-based timing analyses can benefit from the use of
context information as well.

Current embedded processors already provide the tools for accurate cycle-level tracing
(like Infineon’s Multi-Core Debug Solution [MH08]), but no methods that can make use
of the high granularity of information provided by those measurements are commonly
known. In this work it is to be investigated whether static analyses which determine fea-
sible program paths and classify the cache behavior of programs, combined with context-
sensitive measurements, will be able to provide precise estimates of the worst-case execu-
tion time. Since the process of tracing can very easily be automated, a large number of
context-sensitive measurements can effortlessly be gathered. The incorporation of context
information should enable this new method to capture the timing behavior of complex
architectures without being overly pessimistic.

It is believed that one of the keys to more precise measurement results is the distinction
of loop iterations. When a loop is executed for the first time, the performance is likely to
suffer because the body of the loop is not yet in the instruction cache. For the remaining
iterations, the loop probably is in the instruction cache and hence it will be executed
faster. A timing analysis that is not able to make this differentiation will most likely
overestimate the overall execution time. Furthermore, the number of times a loop is
executed in a routine often depends on the parameters of the routine. The arguments in
turn might deviate at different call sites of the routine. Hence the inability of any timing
analysis to consider different call sites of a routine is another source of imprecision.

Thus, investigating the adoption of methods from static timing analysis to measurement-
based approaches seems quite promising with the increasing availability of tools for pre-
cise instruction-level measurements. As recent developments in debug hardware tech-
nology offer the possibility to control cycle-accurate traces with a fully programmable
on-chip event logic, which can be used to encode state machines for example, precise
timing information can be gathered from runtime measurements. An accurate method
for measurement-based WCET estimation could be adapted to new processor architec-
tures much more easily than the models used in static timing analysis. Hence, successful
research in this area might be able to reduce the initial investment necessary to apply
exact timing analysis methods to new architectures.

1.3 Overview

The remainder of this work is organized as follows: chapter 2 presents existing methods
for the analysis of worst-case execution times. The theoretical foundations and some
notation used in the following chapters are introduced in chapter 3. A formal definition of
the method presented in this work can be found in chapter 4. The actual implementation
of the method is outlined in the next chapter. In chapter 6 the application of the method
to test cases on the Infineon TriCore TC1797 microprocessor is described and evaluated.
Chapter 7 gives a summary of the thesis and describes possible extensions.

3



2 Existing Methods

2.1 Approaches for Timing Analysis

Timing analysis tries to determine limits for the execution time of a task. Results can be
lower limits, meaning the best-case execution time (BCET) of the task, or upper limits,
meaning the worst-case execution time (WCET) of the task. The times reported by an
analysis can be either safe bounds that are guaranteed to hold, or estimates that might
not always hold, e.g. because the analysis is not able to consider every possible execution
of the program. The latter is typical for measurement-based timing analysis, whereas safe
bounds can in general only be determined by static timing analysis.

The analysis of timing properties is often decomposed into smaller steps in order to
make the problem less computationally challenging. Analyses often consist of a low-
level analysis that determines the timing of smaller units of the analyzed task. In the
subsequent high-level analysis the timing information of smaller units is combined to the
WCET of the overall program. Similar techniques can be applied in the latter phase
for static as well as for measurement-based methods since they rely on the structure of
the program, e.g. by explicitly or implicitly searching for the worst-case path through
the program. The low-level analysis on the other hand, which can also be decomposed
further, is highly dependent on the approach which was chosen to determine execution
times.

In the following section some existing methods for software timing analysis will be de-
scribed. This chapter only presents a summary of methods which are related to the
analysis that will be presented in the following chapters. A much broader overview of
existing approaches for timing analysis can be found in [WEE+08].

2.2 Static Timing Analysis

Static timing analysis methods derive bounds for the execution time of a program without
actually executing code on real hardware. Since the execution time of an instruction is no
longer a constant on current processor architectures, an abstract model of the processor
is required to determine the maximal execution time of an instruction sequence. This
model has to reflect the internal state of the processor (e.g. the content of the cache) to

4



2.3 Measurement-Based Timing Analysis

determine an upper bound for the execution time.

There are approaches, like the one described in [Wil05], which separate the timing analysis
into successive steps. The first analysis step determines possible register value. Then the
pipeline and cache behavior is determined, which results in timing information for the
basic blocks1 of the program. In the last phase the longest program path (in terms of
execution time) is identified, which yields the WCET.

An alternative to this approach is an integrated analysis that conducts the microarchi-
tectural simulation and the path analysis at the same time (see [Lun02]). But in terms of
time complexity, an integrated solution seems to be worse than a partitioned approach.

All methods that require a model of the analyzed processor suffer from the problem
that processor manufacturers do not publish complete specifications of their products.
Although this model only has to consider elements of the architecture that are relevant
for the execution time of programs, the lack of specification makes the development of
such abstract models tedious and error-prone. That is because there are no methods to
automatically generate or verify microarchitectural models, though there is some ongoing
research (e.g. [PSM09, SP07]). Hence, large parts of those models must be written by
hand, following the documentation of the manufacturer, which is likely to be incomplete.
The model then has to be tested by comparing its results with execution times measured
on real hardware. As a consequence of this complex process, the development of processor
models is expensive and time-consuming. The process must be repeated for each new
processor architecture, and the correctness of the model cannot be guaranteed because
there is no formal way to verify it.

2.3 Measurement-Based Timing Analysis

Measurement-based methods rely on gathering timing information while executing the
analyzed program. As the number of possible paths through a program becomes very
large for complex examples, exhaustive measurements are not possible. So a small number
of end-to-end measurements of a task is unlikely to capture the worst-case behavior.
Nevertheless, the observation of complete program runs only is still industry practice.

To overcome the problem of exhaustive measurements, several solutions have been de-
veloped (e.g. [DP07] and [WKRP08]) that try to partition a program into parts which
can be measured more easily. These approaches usually assume that the system can be
brought into a worst-case state before taking measurements, e.g. by clearing the cache.
This assumption may hold on simpler processors, but it is hard to fulfil it on recent
architectures that can exhibit timing anomalies.

Intuitively, a timing anomaly occurs when the overall execution time benefits if parts of
the program are executed more slowly. In other words, a local worst-case execution does
not necessarily lead to the global worst-case. The problem will only be sketched here,

1A basic block is a sequence of instructions in which the control flow enters only at the beginning and
leaves at the end with no possibility of branching except at the end.

5



2 EXISTING METHODS

a precise classification of timing anomalies can be found in [RWT+06]. In general the
reason for timing anomalies are an unwanted interference of (or between) performance
enhancing features of the processor. For example, a cache hit can improve performance
because it may allow the speculative execution to work correctly. Whereas a cache hit
in the same situation would degrade performance because it would result in a branch
misprediction whose effects have to be undone.

Another proposal to increase the parts of a program that are covered by measurements
is to generate inputs so that all paths are taken [WRKP05, WKRP08]. Although this
might be feasible if the measurements must not necessarily take place “in the field”, it
is probably quite hard, e.g. for systems that rely on complex sensor data, to generate a
realistic behavior of the analyzed task.

An alternative approach proposed in [BCP02] and [BCP03] is to determine the probability
distribution of execution times for parts of the program instead of trying to enforce and
measure a worst-case execution. What can be derived from this distributions is not a
bound for the execution time, but an estimate for which there is a high probability that
the task complies with it. Although the approach seems to consider the interdependency
of partial measurements to some extent, it is not clear if it is able to treat architectures
with timing anomalies correctly.

All current measurement-based methods for timing analysis suffer from the problem that
it is not easy to extract detailed timing information during the execution of a program
on the real hardware. Although recent developments in this area provide the means to
precisely control the generation of cycle-accurate measurement data non-intrusively, this
technology is not available for all current embedded processors yet. Hence it might by
necessary to add instrumentation code to an executable before measurements can be
taken on the target hardware for some platforms. Other approaches rely on timestamps
generated by running the task on a cycle-accurate simulator instead of the real processor.
The latter approach has downsides that are similar to those of microarchitectural models
used in static timing analysis: it might be hard to verify that the behavior of the actual
hardware and the model coincide if the later is not synthesized from a formal specification.

The addition of instrumentation code raises the question how this modification influences
the timing behavior of the analyzed task. Adding the instrumentation code during mea-
surements may result in a different timing behavior of the analyzed program and the pro-
duction code. On the other hand, leaving the (deactivated) instrumentation code in the
final executable might worsen memory and power efficiency. Therefore many of the pro-
posed methods for measurement-based analysis try to minimize the number of necessary
instrumentation points without losing too much precision. One recent example is [BB06],
but similar research has already been done in the area of program profiling [BL92].

6



2.4 Hybrid Methods

2.4 Hybrid Methods

Several researchers claim that their methods for worst-case execution time determination
are hybrid methods because they use a combination of static analyses and measurements.
In the present work, this classification will not be used. Instead, the only distinction that
will be made is between static timing analysis and measurement-based timing analysis.
The so called hybrid methods still get the information about the execution times by
measuring program runs. Static methods are merely used to analyze the structure of
the program to be measured. But this is obviously necessary for all measurement-based
methods that want to do more than end-to-end or function level measurement. Hence
calling such methods hybrid approaches is misleading in most cases because no static
timing properties are determined, but the timing behavior is still only measured.

An exception is the combination of a simple cache analysis and measurements as proposed
in [SSPH06]. The static cache analysis determines the possible number of cache misses
per basic block and hence determines potential bottlenecks of the program execution.
This information is then used to verify that the taken measurements suffice to describe
the task’s timing behavior by checking that there is a correlation between the predicted
number of cache misses and slower execution times. If this is not the case, the paper
proposes a feedback mechanism to measure those parts of the program again whose
measured behavior deviates from the prediction. This is meant to increase the probability
that the worst-case behavior is covered by the measurements used to estimate the WCET.

2.5 Context-Sensitive Tracing

To improve the precision of measurement-based timing analysis, the execution context of
the analyzed code must be taken into account. The first attempt to consider the execution
context was the structure-based approach originally proposed by Shaw in [Sha89]. But it
only aimed at a more precise combination of execution times from program parts that
were measured separately. Similar methods are still used, e.g. by [BCP03], but they lack
the ability to reflect the interaction of individual program parts.

Context-sensitive analyses are a well-known technique in data flow analysis to improve
the precision of the results. This is done by taking the calling context into account when
analyzing the body of a routine, e.g. by incorporating an abstract representation of the
call stack that would occur during an actual execution. For measurement-based methods,
the term is not as well-defined.

Uses of the term context-sensitivity in measurement-based timing analysis include consid-
ering flow-constraints, as in the structure-based approach, input-dependent path exclu-
sion like in [WE01], but also variable execution times for different call sites of functions
[BB00] and loop iterations [BB06], or a combination of flow and time constraints [MB08].
Therefore one must not confuse the different definitions of a context-sensitive analysis
when comparing various methods.

7



2 EXISTING METHODS

In the remainder of this work, the notions of contexts from data flow analysis as de-
scribed in [Mar99] will be adopted. The context-sensitive information gathered by the
measurement-based timing analysis described in the following chapters will not only con-
sider different call sites of an analyzed routine, but also different iterations of loops. This
approach was able to improve the precision of static analyses considerably and will hope-
fully do the same for a measurement-based approach. The adoption of techniques from
data flow analysis to measurement-based methods has already been done with very good
results in [ABL97], though for a slightly different purpose.

8



3 Foundations and Definitions

3.1 Control Flow Representation

This section defines the representation of program control flow used in the remainder of
this work. All analyzed programs are assumed to be in compiled binary format. Hence
the control flow is looked at on the level of machine instructions. The definition used here
is based on the one given in [The03], but several details that are not used in this work
were left out. In particular, this section will only introduce the program representation,
but not how to extract it from the executable program. Extensive work in this area has
been done by Theiling in [The03].

To illustrate some of the concepts, the example program in figure 1 will be used. It is
written in pseudo assembler. The calling convention for the example are that routines
receive their arguments in the register r30 and return the result in the same register.
Calling routines and returning from the callee to the caller is handled by the instructions
CALL and RET. The BEQZ instruction is used to implement conditional jumps. The meaning
of the other instructions in the program should be obvious, but the precise semantics do
not matter for the purpose of the example.

0x4000 test: MOV r3 r30

0x4004 CALL addnb

0x4008 BEQZ 0x4014 r30

0x400C MOV r4 r30

0x4010 CALL addnb

0x4014 RET

0x4018 addnb: LOAD r30 r1

0x401C INC r30

0x4020 LOAD r30 r2

0x4024 ADD r1 r2 r30

0x4028 RET

Figure 1: Example program

9



3 FOUNDATIONS AND DEFINITIONS

3.1.1 Basic Block

A basic block is a sequence of instructions in which control flow enters only at the be-
ginning and leaves at the end with no possibility of branching except at the end. Let V

designate the finite set of basic blocks for the whole program. Each basic block has a
unique start address from the set of instruction addresses A ⊂ N and there is a function

address : V→ A

to calculate the start address. Instructions will only be considered in terms of their
address. To calculate the respective basic block of an instruction address, the function

address−1 : A→ V

is used. Note that a basic block may contain more than one instruction and that is why
address(address−1(a)) = a does not hold for all addresses a.

3.1.2 Routines

Most programs are structured into smaller, reusable pieces called functions, procedures
or routines. To avoid confusion with mathematical functions, the term routine will be
adopted here. Let R denote the finite set of routines for a given program. Every routine
r ∈ R consists of a fixed number of basic blocks from the set Vr, whereas there is one
unique routine for each basic block. In other words, for r1, r2 ∈ R:

r1 6= r2 =⇒ Vr1
∩Vr2

= ∅

Hence there is a function

routine : V→ R

that assigns the parent routine to each basic block. Furthermore it will be assumed that
there is one unique entry block for every routine so that this basic block is the first one
to be executed for every invocation of the routine. The set of entry blocks is denoted by
Starts ⊆ V and there exists a function

start : R→ Starts

that maps each routine to its entry block. Analogously, there is a set Ends ⊆ V and a
function

end : R→ Ends

for the unique block of a routine through which the routine is left. Since there might be
more than one instruction per routine that results in leaving the routine, these blocks
might be added artificially.

10



3.1 Control Flow Representation

3.1.3 Control Flow Graph

A control flow graph (CFG) is a representation of the possible control flow through a
program in terms of a directed graph. The first step is to construct the CFG for every
routine in the program of interest. For some routine r, the control flow graph

CFGr := (Vr,Er)

consists of the basic blocks of r and the set of edges Er ⊆ Vr×Vr that represent the order
in which the basic block can be executed during an execution of the program. Control
flow graphs that only represent control flow on the level of routines are also referred to
as intraprocedural control flow graphs. An example for such a graph can be found in
figure 2.

3.1.4 Loops and Recursion

One distinctive property of the control flow representation is that loops are treated like
recursive routines. Loops are assumed to be extracted from their parent routine during
the construction of the control flow graph. During this loop transformation phase a
special routine is created for each loop in the analyzed program. Though this requires
an additional step during control flow reconstruction, uniform handling of loops and
recursion is more general and allows the analysis of loop iterations to be separated from
the analysis of the parent routine.

To keep the number of paths through the program finite, the maximal number of iterations
for every loop and the maximal recursion depth for every recursive routine must be
known. This information must be provided either by a user annotation or as the result
of a program analysis. For non-recursive routines, the iteration bound is always known
to be 1. From this information the function

iterations : R→ N

can be constructed which will be used in the remainder of this work to determine the
iteration bound for a given routine.

3.1.5 Contexts

In order to consider the execution context during the analysis of a program, the control
flow graph is extended with additional information that represents the execution context
of a routine. One way to do this is to use a call string to model the routine’s execution
history. Call strings can be seen as an abstraction of the call stack that would occur
during an execution of the program. In this work, a call string will be represented as a
sequence of elements from the set C ⊆ V×R of call string elements. A call string element
(b, r) ∈ C describes a call from the basic block b to the routine r. Only valid call string
elements will be allowed, meaning it must be possible that the last instruction of the

11



3 FOUNDATIONS AND DEFINITIONS

Figure 2: Control flow graph for routine test from program in figure 1

basic block b is executed immediately before the first instruction of routine r. Intuitively,
the last instruction of b must be a call instruction which can call r. A call string c ∈ C∗

denotes a sequence of routine calls and the respective call sites. Valid call strings consist
only of valid elements and must describe an uninterrupted sequence of routine calls that
may call each other. In other words, for valid call strings the following holds

c ∈ C∗ is valid =⇒ ∀substrings (b, r)(b′, r′) of c : r = routine(b′)

For the entry routine of the analyzed task (e.g. main in a standard C program) there is
no execution history as the execution is started by calling the respective routine. This
context is described by the empty call string ǫ. The intuition behind this representation
of an execution context is that whenever a routine is called, the call string is extended
with another element to describe the context of the function body. Therefore extending
the call string c ∈ C∗ with elements from C works similar to extending the call stack
during program execution. Since the execution history of a routine can be very complex,
its representation from the set of call strings C∗ might become very long. In order to
achieve a more compact representation of execution contexts, the maximal length of call
strings will be bounded by a constant k ∈ N0 and only call strings from the finite set
Ck := {c | c ∈ C∗, |c| ≤ k} will be used. For call strings which describe a valid execution
but exceed the maximal length, only the last k call string elements will be used to describe
the context.

By limiting the call string length, it is not possible anymore to distinguish all execution
context that might occur during a program run. Nevertheless, this limitation makes the
number of (considered) execution contexts per routine finite, they can be numbered, which
makes the representation more general and easy to work with. Information about the

12



3.1 Control Flow Representation

potential call sites of a routine and hence its possible execution contexts are determined
while reconstructing the program control flow. In the following it is assumed that there
are functions to determine information about the valid execution contexts of every routine
which are provided by the analysis framework. Let P ⊂ N denote a finite, dense interval
from the set of natural numbers. Elements from this set will be used to describe an
execution context by an execution context number called position. For this purpose, the
following functions are assumed to be available:

pos : Ck ×R→ P

con : P×R→ Ck

contexts : R→ 2P

The function pos is used to translate valid call strings to valid positions. Assuming a
fixed routine r is used, con is the inverse function of pos . The contexts function assigns
the set of all valid positions to each routine. The relation of con and pos is defined as
follows:

∀r ∈ R ∀p ∈ contexts(r) ∀c ∈ Ck, c valid for r :

con(pos(c, r), r) = c ∧ pos(con(p, r), r) = p

In the remainder of this work, the term context will refer to the execution history in
which certain parts of a program can be executed. Depending on which representation
seems more appropriate, some parts will use the call string representation, others will
use execution context numbers (positions). In both cases, the finite representation of
a potentially infinite number of possible execution histories will also be referred to as
context.

3.1.6 Interprocedural Control Flow Graph

The interprocedural control flow graph (ICFG) of a program combines the information
from all intraprocedural control flow graphs of a program with the caller/callee-relation
between routines. Additionally, the ICFG will be extended with context information.
The interprocedural control flow graph of a program is a directed graph with

ICFG := (V̂, Ê, s)

and will be constructed from the set of all basic blocks with context information

V̂ :=
⋃

r∈R

Vr × contexts(r)

Furthermore, there is the set of edges Ê ⊆ V̂ × V̂ and a start block s ∈ V̂ from which
every run of the respective program is assumed to start. It follows directly from the
definition that for every routine and every valid execution context of the routine, the

13



3 FOUNDATIONS AND DEFINITIONS

Figure 3: Interprocedural control flow graph for program in figure 1. Solid lines depict
the intraprocedural control flow, dotted lines represent call edges.

nodes of the intraprocedural control flow graph with the respective context are part of
the ICFG. Furthermore it must hold that

∀r ∈ R ∀(v1, v2) ∈ Er ∀p ∈ contexts(r) : ((v1, p), (v2, p)) ∈ Ê

to ensure no intraprocedural control flow information is lost.

To add information about the caller/callee-relation between routines to the ICFG, let
Calls ⊂ V denote the set of all basic blocks after whose execution another routine will
be entered. Since loops are translated to routines, call blocks do not necessarily have
to contain any special instructions. Every basic block in front of a loop can become a
call block. A call edge from the set (Calls × P) × (Starts × P) is used to describe the
caller/callee-relation in the ICFG. A very simple example for an interprocedural control
flow graph is displayed in figure 3.

Determining a safe approximation of the interprocedural control flow of a program is a
nontrivial task and may require a number of sophisticated analyses which are out of the
scope of this work. Hence, there will be no formal description on how to construct an
ICFG with context information for a given program here. Extensive work about how this
can be achieved and why the flexible consideration of the execution context is necessary
has been done in [The03] and [Mar99]. Instead, the given definitions will be assumed to
be available as a toolkit to direct the measurement of program executions and to annotate
the timing results to the graph in a context-sensitive way.

The beauty of the definitions presented so far is that there are no restrictions on how
many execution contexts can be distinguished for different parts of the program. In
particular it is possible to use many execution contexts for some parts of the program,
but only a few for others. This is especially useful for loops, since those are treated

14



3.2 Program Analysis

like recursive routines. Hence different iterations of a loop can be regarded as different
execution contexts, not only different call sites of the same routine. It was shown that
this approach called virtual inlining, virtual unrolling (VIVU) can improve the precision
of analyses that employ control flow information of a program considerably [MAWF98].

Intuitively, VIVU applies function inlining and loop unrolling when constructing the
interprocedural control flow graph. This may lead to several copies of the same routine
in the graph since the basic blocks for each routine are duplicated for every context. The
graph in figure 3 illustrates this by including the basic blocks for the routine addnb twice,
once for each call site. On the one hand, the number of considered execution contexts,
and hence the complexity of the ICFG, is determined by the maximal call string length.
For loops, call strings alone are not optimal and a more precise consideration of their
execution context is possible by detaching the unrolling of loops from the restrictions of
the call string length. This is the actual improvement provided by VIVU, but not the
scope of this work. Therefore it will only be assumed that all execution contexts can be
represented by some finite call string representation, but the maximal length will not be
fixed deliberately.

3.1.7 Paths in Control Flow Graphs

Let s and e denote some arbitrary nodes in an interprocedural control flow graph. Possible
paths through the graph will be represented by a sequence p ∈ V̂k, k ∈ N of nodes in
the graph. The notation s → e will be used for the set of all possible paths between
two nodes in the ICFG according to the program control flow. Note that there is no
restriction on how often a node may occur on a path in the ICFG. The definition for
paths in intraprocedural control flow graphs is accordingly.

3.2 Program Analysis

3.2.1 Data Flow Analysis and Abstract Interpretation

This section is intended to give a short introduction to data flow analysis. A more
detailed description of data flow analysis and program analysis in general, including a
formal description of the underlying theory, can be found in [NNH99].

The goal of a program analysis is to statically determine properties that hold for every
possible execution of a given program. Since most of these characteristics are undecid-
able, approximations must be used as correctness and completeness cannot be achieved
together. Hence it is generally impossible to derive exact results. Nevertheless, the ap-
proximated results of an analysis must be safe with respect to their later use. This means
an analysis may sacrifice completeness, but correctness must always be guaranteed. An
approximation is considered to be safe if and only if every possible program state is re-
flected in the analysis results. If the analysis is not able to find out something about the
desired property, which means that everything is possible, this information also has to

15



3 FOUNDATIONS AND DEFINITIONS

be present in the analysis result. This will sometimes result in over-approximation.

There are three main approaches to program analysis: constraint based analysis, type
based analysis and data flow analysis, but only the latter will be considered here. A data
flow analysis works on the control flow graph of a program and computes an analysis
result for each node in the control flow graph. This works as follows: the information the
analysis wants to compute is represented by the analysis domain. It highly depends on
the property that is analyzed. Furthermore, the analysis has to define a transfer function
that models the effect the execution of a program part has on the analysis domain. To
obtain a result, the analysis does a fixed point iteration on the control flow graph. In
the beginning, some initial value is assigned to each node in the graph. Afterwards, the
analysis goes over the graph and applies the transfer function to each node, combining
the new result with the results from previous iterations. This is done until the result
has stabilized for each node. The way the analysis selects nodes from the graph and
combines old information with new information has a great impact on the performance
of the analysis, but the details have been omitted in this brief description.

The theory of abstract interpretation [CC77] formalizes this approach by using abstract
values or value descriptions as analysis domain. The way the abstract values change
during the analysis is determined by an abstract semantics. The analysis domain usually
is a simplified version of the property to be analyzed (e.g. value intervals if one is interested
in possible register values) which can be computed more easily during the analysis than
the concrete values. The abstract semantics, meaning the effects a program statement
has on the analysis domain, is based on the concrete semantics, that is the effect a
program statement would have on a concrete value during an actual execution. Since the
approach is semantics-based, correctness proofs for program analyses are easily possible.
Moreover, the abstract semantics and hence the transfer function of an analysis can
usually be derived in a systematic way from the concrete semantics.

3.2.2 Cache Analysis

Caches have a huge influence on the execution time of a program. The execution times of
a memory access which can make use of the cache and one that misses it may differ by up
to two orders of magnitude. Hence looking at the cache behavior of a program is likely
to provide an indication in which parts of it performance may degrade. The inclusion of
the execution context of program parts will provide even greater insight. This is the case
because caches rely on the principle of locality, i.e. that the same regions in memory are
accessed again and again. In particular loops and recursive routines benefit from caches.
During their first iteration, they are likely to produce many cache misses, resulting in
a slow execution of the code. For further iterations, the cache most likely contains the
correct memory areas and hence the execution is faster than for the first iteration.

There are four important parameters to characterize a cache:

• Capacity : the number of bytes it may contain.

16



3.2 Program Analysis

• Line size or block size: the size (in bytes) of the contiguous chunks of data which
are transferred from memory and stored in the cache in case of a cache miss.

• Associativity : the number of possible locations for a single block in the cache. The
quotient #lines

associativity
describes the number of sets in the cache.

• Replacement policy : determines which cache lines are evicted once the cache is full.

The cache set to which a given memory area is mapped is only determined by its address.
If a cache block can reside in any of the cache lines, the cache is called fully associative.
On the other hand, if there is exactly one possible location for each block, the cache is
called direct mapped. A k-way set associative cache is a cache where every block can be
stored in k possible locations. Fully associative and direct mapped caches are special
cases of k-way set associative caches and so only the latter must be considered. As the
different cache sets cannot influence each other, it suffices to look at them independently.

The cache analysis described in [FMW97, Fer97] determines the possible cache states at
each program point (each node in the ICFG) by abstract interpretation. This is done by
performing two analyses, a must analysis and a may analysis. The must-cache analysis
determines which addresses must be contained in the cache and so accesses to them are
guaranteed to produce a cache hit. Accordingly, the may-cache analysis determines which
addresses may be stored in the cache. By computing the complement of these addresses,
it is possible to derive which addresses are guaranteed to produce a cache miss. The effect
of an access to addresses for which neither a cache hit nor a cache miss can be guaranteed
is unclassified and thus both cases are possible.

For each cache set of the cache, the analysis must safely approximate the effect of the
possible accesses at each program point. To do this, the destination of memory accesses
must be determined in order to know which sets are affected by an access. Determining
the destination of a memory access is relatively easy for instructions because, except for
computed routine calls or branches, the order in which instructions get executed can
be extracted from a binary program in a straightforward fashion. Thus the potential
accesses to instruction memory can be determined easily, especially since reconstructing
the control flow of a program is a prerequisite for data flow analysis. However, predicting
data accesses is not that easy in most cases. Depending on the structure of the pro-
gram, data accesses might involve sophisticated computations or indirect accesses, e.g.
because the program was originally written in C and made use of several levels of point-
ers. Consequently, the effort necessary to precisely analyze the behavior of data caches is
considerably higher. Therefore separate instruction and data caches are easier to analyze
(i.e. provide better analysis results) than a single cache which is used for both. The
replacement policy of the cache must be modeled as well and it has a great impact on
the quality of the analysis results (see [RGBW06]). Deterministic strategies like Least
Recently Used (LRU) or First In, First Out (FIFO) replacement provide better results
because their behavior can be predicted more easily. Other policies like a pseudo-random
strategy or a cache design where the replacement logic is shared by several caches makes
the behavior much harder to predict.

17



3 FOUNDATIONS AND DEFINITIONS

Further details of the cache analysis implementation will be omitted. In the remainder
of this work, it will be assumed that the results of a cache analysis for the instruction
cache are available. For this purpose, the following functions will be used to access these
results:

ah : V̂→ 2A

am : V̂→ 2A

nc : V̂→ 2A

The function ah returns the set of instruction addresses of a given node in the ICFG for
which a cache hit can always be guaranteed. Likewise, am yields the addresses for which
an access will always result in a cache miss. All other addresses, meaning instructions
for which the cache behavior cannot be classified, can be accessed with the function nc.
The sets returned by these three functions for a given node must be pairwise disjoint.
Additionally, they must cover the addresses of all instructions in the respective basic
block.

∀v̂ = (v, p) ∈ V̂ :

ah(v̂) ∪ am(v̂) ∪ nc(v̂) = {a | a ∈ A, address−1(a) = v} ∧

ah(v̂) ∩ am(v̂) = ∅ ∧ ah(v̂) ∩ nc(v̂) = ∅ ∧ am(v̂) ∩ nc(v̂) = ∅

3.3 Finite State Transducers

The formalism for controlling program measurements will be based on Mealy machines,
originally introduced in [Mea55]. Similar definitions can be found in any introductory
textbook on theoretical computer science.

Mealy Machines

A Mealy machine M = (S, s0, I, O, f, g) consists of a set of states S, an initial state
s0 ∈ S, an input alphabet I, an output alphabet O, a transition function

f : S × I → S

and an output function
g : S × I → O

The sets S, I and O must be finite. Mealy machines translate a string of symbols from the
input alphabet into a string of output symbols. This translation is done by considering
the current state as well as the current input symbol. Let in ∈ I, n ∈ N0 be the nth
element of the input string. Furthermore, let sn ∈ S be the state before reading the nth
input symbol and let on ∈ O denote the nth output symbol. State transitions and the
output of the machine are then defined as follows:

sn+1 = f(sn, in)

on = g(sn, in)

18



3.3 Finite State Transducers

Figure 4: Trace automaton example

Trace Automata

A trace automaton T = (S, s0,A,A, f, g) is a Mealy machine that describes which instruc-
tions should be traced during a run of a program for which we want to do measurement-
based timing analysis. The addresses of the instructions that are executed during a
measurement run are the input for a trace automaton. The output symbols are those
addresses for which data is stored in the trace buffer. Since the size of the trace buffer is
limited, for most of the instructions the address will not be stored. Therefore the symbol
ǫ will be used to indicate that no information should be stored in the trace buffer for
the current state of the automaton. Furthermore f and g can be partial functions. For
the case that the result of an input pair is undefined for one of the functions, it will be
assumed that no state transition occurs and no output is produced respectively.

Consider the example program from figure 1 which calls a routine addnb from address
0x4004. The return address for this particular call is 0x4008, but there are also other
calls to this routine that must not be contained in the trace which is to be created.
This can be achieved by searching for the address 0x4004 in the sequence of executed
instructions of a given program run. Afterwards, all instruction addresses are stored up to
the next occurrence of 0x4008. The trace automaton T depicted in figure 4 implements
this task, its output for a valid sequence of instructions is presented in figure 5. The
formal definition of the automaton in figure 4 is as follows:

T = ({s0, s1}, s0,A,A, f, g)

f(s, a) =











s1 if s = s0 ∧ a = 0x4004

s0 if s = s1 ∧ a = 0x4008

s otherwise

g(s, a) =

{

a if s = s1 ∧ a 6= 0x4008

ǫ otherwise

19



3 FOUNDATIONS AND DEFINITIONS

instruction address trace
1 0x4000
2 0x4004
3 0x4018 0x4018
4 0x401C 0x401C
5 0x4020 0x4020
6 0x4024 0x4024
7 0x4028 0x4028
8 0x4008
9 0x400C
10 0x4010
11 0x4018
12 0x401C
13 0x4020
14 0x4024
15 0x4028
16 0x4014

Figure 5: Result for the automaton in figure 4 and the program in figure 1

3.4 Notation

In the remainder of this work, the following shortcuts will be used to make formulae and
descriptions of algorithms more concise:

Function Updates

Let f, f ′ ∈ X → Y ; x, a ∈ X and b ∈ Y . The function update operator \ is defined as

f ′ = f \ {a 7→ b} ⇐⇒ f ′(x) =

{

b if x = a

f(x) otherwise

Trace Automata State Transitions

For a more compact representation of trace automata transitions, the function update
operator is also defined for functions of type S×A→ S and a pair of a state s and a set
of addresses Â ⊆ A.

f ′ = f \ {(s, Â) 7→ s′} ⇐⇒ f ′(ŝ, a) =

{

s′ if a ∈ Â ∧ ŝ = s

f(ŝ, a) otherwise

20



3.4 Notation

Tuple Decomposition

t := (t1, t2, ... , tn)

(v1, v2, ... , vn)← t =⇒

v1 = t1
v2 = t2

...

vn = tn

21



4 Context-Sensitive Measurements

4.1 Overview

This chapter introduces the theoretical concepts of a new technique for measurement-
based timing analysis. The method works on the interprocedural control flow graph
(ICFG) of a program executable and requires measurement hardware that can be con-
trolled by complex trigger conditions. The development of the approach was motivated
by the limited size of trace buffer memory which is available in current hardware for
on-chip execution time measurements. As a consequence of this limitation, it is not
possible to determine context-sensitive execution times from end-to-end measurements,
since it is not possible to create cycle-accurate end-to-end traces for programs of realis-
tic size. A prototype software to extract execution times from complete program traces
has been implemented in preparation of this thesis, but this will not be discussed here.
Instead of using traces of complete program runs, this work investigates the use of the
programmable trigger logic in state-of-the-art evaluation boards for embedded processors
to create context-sensitive program measurements. Current tracing technology, like the
Infineon Multi-Core Debug Solution, allows considering the execution history of a pro-
gram before starting a measurement run. This is achieved by dedicated event logic in
the actual hardware which can be used to encode state machines to model the program
state. These possibilities motivated the development of an analysis which makes use of
this additional logic to generate context-sensitive traces despite the limitations of the
trace buffer size.

The analysis is divided into several phases (figure 6).

• Initially, the ICFG is partitioned into program segments in such a way that every
possible run through the segments can be measured with the available trace buffer
memory.

• Additionally, a cache analysis is performed to estimate the number of cache hits
and misses for the instruction cache.

• The information gathered during the first two phases is used to generate trace
automata that will control the measurements. By using the results of the cache

22



4.2 Program Partitioning

Figure 6: Analysis phases

analysis, it might be possible to join some execution contexts, which reduces the
number of measurements that have to be taken.

• Taking measurements requires a sufficiently large number of actual executions of
the analyzed program on the target hardware.

• After the measurements have been taken, the context-sensitive timing information
for each basic block of the program can be extracted and annotated to the ICFG.
Further computations then yield the worst-case path through the ICFG and an
estimate of the worst-case execution time of the program.

4.2 Program Partitioning

4.2.1 Motivation

The limited size of trace buffer memory in current measurement solutions prohibits the
use of complete end-to-end instruction traces to extract context-sensitive timing informa-
tion, as for programs of realistic size and even for trivial behavior (e.g. loops with many
iterations), the number of instructions executed is unlikely to fit into the trace buffer.
Hence, cycle-accurate instruction traces of complete program runs are not possible and
therefore the execution context cannot always be reconstructed from the traces.

23



4 CONTEXT-SENSITIVE MEASUREMENTS

Figure 7: Program segments example

To allow the collection of context-sensitive timing information, even in the presence of a
trace buffer with limited size, the program to be analyzed will be partitioned into program
segments. This partitioning is done on the level of the ICFG and each of the resulting
program segments is a part of the ICFG for which every (partial) execution going through
it is guaranteed to fit into the trace buffer. Since program segments represent a part of
the ICFG, they also include an execution context.

Similar concepts already exist in the literature [WEY01, WRKP05], but the notion of
program segments that will be used here is more general and specifically designed to
be used for context-sensitive measurements. In particular this means that there will be
special segments to measure the body of a routine without calls to other routines which
might be contained in it.

Again, the example program from figure 1 will be used to illustrate the concept of program
segments. Assume the program is to be traced with a trace buffer which can hold time
stamps for at most 6 instructions. In order to extract cycle-accurate and context-sensitive
timing information, at least 3 program segments are necessary. Each of these segments
is measured individually and the results are combined during a post-processing phase.
Figure 7 illustrates one possible partitioning. In this example, a separate segment is
created for the body of the routine addnb at each call site. Additionally, the segment
for the top-level routine test is assumed to be measured without the routine it calls.
This assumption makes it possible to handle the limited trace buffer. However, to fulfil
this assumption during an actual measurement run, it must be possible to control the
measurement hardware very precisely.

24



4.2 Program Partitioning

4.2.2 Definition

A program segment describes instruction sequences on paths in the ICFG. It consists of
a start node, an end node and an execution context which has to be the same for both
nodes. Additionally, a segment descriptor will be used to classify for which nodes on the
paths between the start and the end node trace data should be collected.

Let SegmentClass := {GLOBAL,LOCAL} denote the set of program segment descrip-
tors. Segments of type GLOBAL will be used to measure instructions which are executed
on the program paths between the start and the end node of a segment. The LOCAL
segments are used to only measure the instructions of a single routine, i.e. they are used
to trace a routine without the calls it might execute. Program segments are described by
tupels from the set

Segments := {(s, e, p, c) | ∃r ∈ R : s, e ∈ Vr, p ∈ contexts(r), c ∈ SegmentClass}

For (s, e, p, c) ∈ Segments, (s, p) ∈ V̂ is the start node of the segment in the ICFG
and (e, p) ∈ V̂ is the end node in the ICFG. Therefore program segments only consist of
paths in the ICFG that start and end within the same routine and the same execution
context.

Due to the limitations of the trace buffer memory on the measurement hardware, it might
not be possible to include all instructions on the paths from the start to the end node of
a program segment in the generated traces. Therefore the segment descriptors are used
to describe which of those instructions must be included in the measurements. Let x

be the size of the trace buffer in terms of instruction addresses. For an arbitrary part
of a program run that passes through the program segment (s, e, p, c) for which s and e

are located in the routine r, let a0, ... , an−1 denote the finite sequence of instruction
addresses that are executed on this particular path from s to e. The sequence of traced
addresses t depends on the class of the program segment and is defined as follows

t :=

{

a0, ... , ak−1 if c = GLOBAL

b0, ... , bl−1 if c = LOCAL
k = min{x, n} l = min{x, |b|}

In the first case, the sequence of traced addresses is the first part of the complete address
sequence that still fits into the trace buffer. For the second case, the address sequence
with bi := ϕ(ai) is used to restrict the traced addresses to the address range of routine r.
This is described by the projection function

ϕ(a) :=

{

a if routine(address−1(a)) = r

ǫ otherwise

Using the projection excludes calls to other routines than r from tracing and hence reduces
the amount of trace memory necessary for measuring r context-sensitive. As context
information only changes when routines are entered or left, excluding callee routines
seems to be a natural approach. It allows the reduction of the memory requirements
without the need for a further analysis of the possible control flow in the called routines.

25



4 CONTEXT-SENSITIVE MEASUREMENTS

The intuition behind the definition of program segments is that the ICFG will be par-
titioned into segments so that each node is covered by at least one of them. To allow
every instruction contained in a segment to be measured cycle-accurate, segments are
constructed such that the maximal length of a trace for a segment is guaranteed to fit
into the trace buffer. Since program segments include context information, this allows
the extraction of context-sensitive timing information for each basic block from the traces
of all segments. To achieve this, the traces have to create an exact time stamp for every
instruction that is executed. Additionally, it must be guaranteed that measurements for
program segments are always taken in the correct execution context. If those conditions
are met, this approach overcomes the limitations of a finite trace buffer and therefore
makes tighter estimations of the execution time feasible.

4.2.3 Construction

Partitioning a program into traceable segments requires a search for longest paths in the
control flow graph. This is done by assigning a weight (the number of instructions) to
each basic block. Basically the partitioning algorithm performs a depth-first search (DFS)
within the ICFG, but it also makes use of the hierarchical structure of the graph during
this process. To determine the maximal length of the path from the start to the end
node of each routine, the algorithm starts with calculating the longest intraprocedural
path between those nodes. In order to overcome the interdependence of paths through
routines that call each other, a fixed point iteration is then used to determine the longest
interprocedural path from start to end for every routine in every execution context. This
step is also used to determine context-sensitive recursion and iteration bounds, though
context-insensitive bounds must be known in advance. This means that all paths in the
ICFG are known to be finite. The details of this first step are omitted here but can be
found in appendix A.

After the first part of the computation, which provides a mapping call for the maximal
interprocedural path length from start to end of every routine and a mapping iter which
provides recursion bounds, the actual partitioning of the ICFG into program segments is
done as shown in algorithm 4.1. The algorithm builds on the graph definitions given in
the previous chapter and employs the functions longestLocalPath and longestPath whose
exact definitions are given in the appendix. longestLocalPath determines the longest in-
traprocedural path between two nodes. The function longestPath determines the maximal
length of an interprocedural path between the given nodes, including the maximal num-
ber of recursive iterations for every routine which might get called on the path. However,
recursive calls to the routine of the start node are not considered in this computation.
As a consequence of this, recursion bounds have to be factored in at some points during
the partitioning process.

So to partition the ICFG into program segments, the partitioning algorithm is initialized
with the start and end node of the entry routine of the graph as initial arguments for the
start and end node of the segment that is to be partitioned. It then proceeds as follows:

26



4.2 Program Partitioning

Algorithm 4.1 Partition the ICFG into program segments with bounded length.

partition (s, e, m, Ê, l, call , iter)
s : start node
e : end node
Ê : edges of the ICFG
l : maximal length of a path in a program segment
call : mapping R×P→ N which contains the length of a routine call per context
iter : mapping R×P→ N for context-sensitive recursion bounds of routines

1: (sv, sp)← s

2: (ev, ep)← e

Require: routine(sv) = routine(ev) ∧ sp = ep

3: r ← routine(sv)
4: m1 ← empty marking
5: m2 ← empty marking
6: m3 ← empty marking
7: Er ← {(u, v) | ∃p ∈ contexts(r) : ((u, p), (v, p)) ∈ Ê

∧ routine(u) = r ∧ routine(v) = r}
8: rec ← true⇔ path from s to e contains a call to a recursive routine

9: if r is recursive ∧ sv = start(r) ∧ ev = end(r) then

10: factor ← iter [(r, sp)] // consider recursion bounds in path computation
11: else

12: factor ← 1
13: end if

14: if factor ∗ longestPath(s, e,m1, Ê, call , iter) ≤ l then

15: add segment (sv, ev, sp,HEAD)
16: else if rec = false ∧ longestLocalPath(sv, ev,m2,Er) ≤ l then

17: add segment (sv, ev, sp,LOCAL)
18: for all (r′, p′) ∈ {(r′, p′) | ∃ edge to (start(r′), p′) on some path from s to e} do

19: partition((start(r′), p′), (end(r′), p′), Ê, l, call , iter) // partition called routines
20: end for

21: else if r is recursive ∧ 2 ∗ longestPath(s, e,m3, Ê, call , iter) ≤ l then

22: add segment (sv, ev, sp,HEAD)
23: else

24: middle ← findDominator(s, e)
25: partition(s,middle, Ê, l, call , iter)
26: partition(middle, e, Ê, l, call , iter)
27: end if

27



4 CONTEXT-SENSITIVE MEASUREMENTS

• If all instructions on the longest interprocedural path (including a possible recur-
sion) from the start to the end node can be stored in the trace buffer, a valid global
program segment has been found.

• For start and end nodes which do not lie in a recursive routine and for which all
instructions on the longest intraprocedural path between them do not exceed the
maximal length, a local segment can be created. Since local segments do not cover
called routines, the partitioning must be applied to all routines that are called on
any of the local paths from the start to the end node.

• Loops and recursive routines are likely to be too big to fit completely into the trace
buffer with all their iterations. Therefore the partitioning algorithm contains a
special case for nodes in such routines. If at least two iterations of the top level
recursion (i.e. on the level of the start and end node) fit completely into the trace
buffer, the algorithm still creates a global segment for this area of the program.
This approach was designed in order to cope with loops or recursions that execute
a lot of iterations. Typically, the timing behavior of the first iterations deviates
from the others because the content of the cache or other performance enhancing
features have not stabilized yet. After some iterations, this should not be the case
anymore, which should result in a similar behavior for the following iterations. The
intention of this approach is that observing at least the first and second iteration of
a loop is still better than being unable to analyze a program at all. Additionally, it
is likely that the interesting differences in execution time can already by observed
when only looking at the first iterations. Nevertheless, this case has the potential
to produce unsafe timing results, e.g. because it is possible that the worst-case
execution of a loop body is only observed after a few iterations. That is why it can
also be switched off in the implementation of the algorithm.

• If none of the other conditions is met, the size of the program segment must be
reduced. This is done by searching for dominator nodes2 of the current end block.
One of the dominator nodes is selected and partitioning continues independently
for the start and the dominator node as well as for the dominator node and the end
node. If no dominator is found, the algorithm cannot continue and the partitioning
will be aborted. By reducing the size of program segments in this way, it is still
guaranteed that the start node of each segment is executed for each run through the
parent routine. Hence program segments are relatively independent of the paths
through the program which are taken during an actual run of it. Therefore it
becomes more likely that a segment can be covered (i.e. is executed) during an
arbitrary measurement run.

2dominator nodes for a given node lie on every path from the start node to the given one

28



4.3 Trace Automata

4.3 Trace Automata

4.3.1 Introduction

Partitioning a program into smaller segments is only the first step for taking precise
measurements and its main purpose is to overcome the memory limits of current mea-
surement hardware. What is much more important is the ability to precisely control the
traces which are assumed to create cycle-accurate timing information without interfering
with the analyzed software. The tools for creating these kind of traces exist [MH08],
but existing methods for measurement-based timing analysis lack the capability to make
use of them in a precise fashion. One of the reasons for this is that measurement-based
methods usually are not able to consider different execution contexts in a way that is as
precise as in a completely static approach. By considering the execution context already
when taking execution time measurements, it is hopefully possible to overcome some of
the limitations measurement-based approaches usually have.

The trace automata introduced in section 3.3 are the formalism to describe when to start
a trace for a given program segment. Controlling measurements in terms of a state ma-
chine allows the incorporation of conditions about the execution history of the measured
program parts in an elegant manner. By using the call string representation of an exe-
cution context for creating these automata, the context information can be preserved for
the subsequent annotation of measured execution times. Therefore a seamless integration
of this method into frameworks for static timing analysis is easily possible.

For the description of an execution context, each element of a call string describes two
conditions in terms of executed instructions: the call instruction in the call block must
be executed immediately before the first instruction of the called routine. Additionally,
the sequence of the elements constrains the order of these conditions, i.e. the order of the
calls. In principle, they can be directly translated to a trace automaton which changes its
state depending on whether the correct routines are called at the appropriate call sites.
But since most call sites call exactly one routine, the automata created by this strategy
are not minimal. On the other hand, there might be program segments which have a
common call string, but lie in a different instruction address range (e.g. if a routine gets
partitioned into two segments). Hence it is not sufficient to consider only the context
description when constructing trace automata.

4.3.2 Call String Translation

To generate a trace automaton for measuring a program segment (s, e, p, c) ∈ Segments,
the first step is to create states and transitions which correspond to the constraints
described by the call string representation c = con(p, routine(s)), c ∈ Ck of the segment’s
execution context. After that, states must be added to express which instructions on
the paths through the segment should be traced. The complete approach is depicted in
algorithm 4.2 and it proceeds as follows:

29



4 CONTEXT-SENSITIVE MEASUREMENTS

Algorithm 4.2 Create the trace automaton for a given program segment.

createAutomaton (segment)
segment : program segment

1: (start , end , position, class)← segment
2: c← con(position, routine(start)) // translate position into call string
3: S ← {s0}
4: f ← empty function
5: g ← empty function
6: (n, i)← (0, 0)
7: while i < |c| do

8: (block , routine)← ci // extract ith call string element
9: bcall ← address(block)

10: breturn ← address(block) + WORDSIZE // compute return address
11: rstart ← address(start(routine))
12: rend ← address(end(routine))
13: Rrange ← [rstart : rend ]
14: Rleft ← A \ Rrange

15: if block can only call one routine then

16: S ← S ∪ {sn+1}
17: f ← f \ {(sn, bcall) 7→ sn+1} \ {(sn+1, breturn) 7→ sn}
18: else if routine is only called from block then

19: S ← S ∪ {sn+1}
20: f ← f \ {(sn, rstart) 7→ sn+1} \ {(sn+1, Rleft) 7→ sn}
21: else

22: S ← S ∪ {sn+1, sn+2}
23: f ← f \ {(sn, bcall) 7→ sn+1} \ {(sn+1, breturn) 7→ sn}

\ {(sn+1, rstart) 7→ sn+2} \ {(sn+2, Rleft) 7→ sn+1}
24: end if

25: n← |S| − 1
26: i← i + 1
27: end while

28: tstart ← address(start)
29: tend ← max{a | address−1(a) = end}
30: if class = HEAD then

31: S ← S ∪ {sn+1}
32: f ← f \ {(sn, tstart) 7→ sn+1} \ {(sn+1, tend) 7→ sn}
33: else if class = LOCAL then

34: S ← S ∪ {sn+1, sn+2}
35: local ← [tstart : tend ]
36: other ← A \ local
37: f ← f \ {(sn, tstart) 7→ sn+1} \ {(sn+1, tend) 7→ sn}

\ {(sn+1, other) 7→ sn+2} \ {(sn+2, local) 7→ sn+1}
38: end if

39: g ← {(sn+1, a) 7→ a | a ∈ A}
40: return (S, s0,A,A, f, g)

30



4.3 Trace Automata

Figure 8: Translation of a call string element to automaton states
1) Basic block calls a unique routine
2) Routine is only called from one basic block
3) Basic block can call several routine and routine has different call sites

• Initially, the automaton has a single state, no transitions and generates no output.

• Then, at least one state for each element of the call string is added to the automaton.
How many states are added depends on the properties of the call site described by
the string element. If the call described by the element has only one possible
destination, it suffices to use the address of the call block as condition for the
transition to the next state. Similarly, if this is not the case but the destination
routine is only called at this call site, it is enough to add a single state which is
entered as soon as the entry address of the respective routine is encountered. For
call string elements which fulfil neither of the conditions, both states have to be
added to the trace automaton to model the requirements for the execution history
described by the call string elements. These three cases are illustrated in figure 8
for the one-element call string (0x4000, addnb) and the routine addnb from figure 3.

31



4 CONTEXT-SENSITIVE MEASUREMENTS

• Finally, the state for actually storing trace data is added. For program segments
which store global data this can be done by adding a single state which is entered as
soon as the start block is entered and left when the end block is left. In this state,
all instructions which will be executed will also be stored in the trace buffer. For
local segments, things are slightly more complicated and an additional state gets
necessary. The tracing state is constructed as before, but the additional state is
entered when calls are executed within the segment (i.e. when the address interval
for the segment is left) and no trace data will be generated while the automaton
is in this state. Note that no extra state for storing trace data is necessary if the
program segments covers a complete routine and all its calls. In this case, tracing
can start as soon as the addresses for all call string elements of the execution context
have been processed by the automaton. This is also illustrated in figure 8.

Algorithm 4.2 only gives an approximation of the steps which are necessary to construct
trace automata from program segments. For example, it might not always be possible
to compute the return address of a routine call by adding a constant to the address of
the call instruction, because the size of instructions is not fixed, but also because the
called routine was the result of a loop transformation. The latter case would require
additional computations because the return address of a loop call is the first address
after the loop. Additionally, the way states are created for local program segments might
produce automata which do not behave as expected when a segment is not left through
its end block, e.g. a routine might have more than one return instruction. This problem
can also easily be solved by some additional address computations, but they have been
omitted to keep the description more concise.

4.4 Cache Behavior Analysis

4.4.1 Approach

Using the VIVU concept results in a duplication of basic blocks in the ICFG. Due to this
duplication of routines for different call sites, the partitioning algorithm might produce
several program segments which lie in the same code area. This means there are segments
whose start and end nodes have the same address, but a different execution context. Thus
the approach presented so far might produce a large number of traces for the parts of the
program which are duplicated in the ICFG. As a result of this, some program parts would
be covered by a very large number of traces whereas some other parts would not. To
achieve a more even trace coverage and to utilize measurement resources more efficiently,
the execution context could be discarded for such program segments. Simply using the
address range of the respective code regions as prerequisite to start the trace for the
segments would reduce the required measurement runs in a very easy way. However, this
would also remove the context-sensitivity induced by VIVU and is likely to increase the
execution time estimates considerably.

To reduce the number of necessary measurement runs without sacrificing the increased

32



4.4 Cache Behavior Analysis

precision offered by context-sensitivity, program segments with a similar execution time
behavior are joined for tracing. Similarity is looked at on the level of the instruction
cache. So two program segments are considered to exhibit similar execution times (in
their respective execution context) if the number of cache hits and misses are roughly
identical. The cache analysis from [Fer97] which is also described in section 3.2.2 will
serve as a foundation for this process. To decide whether two program segments are
considered to be similar, cache behavior metrics will be used.

4.4.2 Cache Behavior Metrics

A cache behavior metric is a function m : Segments × Segments → R. Two program
segments s and s′ are said to be similar with respect to a cache metric m and a similarity
constant C if and only if m(s, s′) ≤ C. Cache behavior metrics rely on a previously
executed cache analysis as defined in the following.

Since processors in embedded systems often have different types of memory with differing
access times, the function penalty will be used to classify the severity of a cache hit or
miss in a certain address range. For the case that there is only one type of memory, this
function can be assumed to always return one. Furthermore, the weighted number of
accesses for a given node v̂ in the ICFG are defined as follows:

ah v̂ :=
∑

a∈ah(v̂)

penalty(a)

am v̂ :=
∑

a∈am(v̂)

penalty(a)

nc v̂ :=
∑

a∈nc(v̂)

penalty(a)

Usually all instruction memory accesses in a basic block should go to the same type
of memory. Hence the weighted access numbers just sum up the respective accesses for
which the cache is always hit, always missed or for which the effect could not be classified.
Eventually this sum is scaled by the penalty factor for the accessed memory range. Based
on the access numbers, the distance or dissimilarity of two basic blocks v̂, ŵ ∈ V̂ is defined
as:

dist(v̂, ŵ) :=
√

(ah v̂ − ahŵ)2 + (am v̂ − amŵ)2 + (nc v̂ + ncŵ)2 v̂ = (v, p) ŵ = (v, p′)

The intuition behind this definition is that the execution time of a basic block in two dif-
ferent execution contexts is roughly identical if the number of cache hits and misses in the
contexts is about the same. Note that to conservatively approximate the behavior for un-
classified accesses, the weighted number of these accesses is added in the formula. For two
program segments s = (start , end , position, class) and s′ = (start , end , position ′, class),
their set of differences δ is defined based on the distances between basic blocks in different
contexts.

s1 := (start , position) e1 := (end , position)

33



4 CONTEXT-SENSITIVE MEASUREMENTS

s2 := (start , position ′) e2 := (end , position ′)

δ′(s1, e1, s2, e2) := {dist(v̂, ŵ) | v̂ = (v, p) ∈ s1 → e1, ŵ = (v, p′) ∈ s2 → e2}

δ(s, s′) := δ′(s1, e1, s2, e2)

In this work, all cache behavior metrics will be based on these definitions. Nevertheless,
the concept of cache behavior metrics could very well be generalized, e.g. to also include
knowledge about data accesses. The following metrics were used during the practical
evaluation of this work.

Average Distance Metric:

mavg(s, s
′) :=

∑

d∈δ(s,s′)

d

|δ(s, s′)|

Maximum Distance Metric:

mmax (s, s
′) := max{d | d ∈ δ(s, s′)}

These metrics were chosen in order to evaluate whether it provides better results if a cache
behavior metric considers the whole program segment (i.e. the amortized deviation) or
just a single basic block (i.e. the local deviation). Although the metrics were chosen more
or less arbitrarily, they seem like a natural choice for this purpose.

4.4.3 Joining of Program Segments

A set of program segments with identical start and end addresses must not be distin-
guished while taking measurements if they use the same descriptor and the following
conditions are met:

• All program segments are similar with respect to a cache behavior metric m and
similarity constant C.

• The call strings of relevant program segments share a common suffix of length
k. Note that k = 0 is a valid choice, but this value can invalidate all context
information if the cache behavior metric and the similarity constant are chosen
inappropriately.

If these prerequisites are met, it suffices to construct a single trace automaton for the
segments using the common call string suffix. The measurements are then taken with
the common automaton, but the results are annotated to each segment independently.
Thereby the number of trace automata is reduced and the traces generated by a single
automaton can be used for several execution contexts of a program part. The second
condition is necessary in order to generate a trace automaton which enables tracing in
all of the similar execution contexts. Decreasing the value of k increases the probability

34



4.5 Timing Extraction

that this condition is met, but also increases the probability that one of the respective
segments does not fulfil the similarity conditions. For this reason, joining of program
segments might require user intervention to tweak the values of k and C in order to get
optimal results, as good values for these variables depend on the structure of the program
to be analyzed.

4.5 Timing Extraction

After a set of traces has been generated for each of the segments into which the program
of interest was partitioned, the maximal execution time for each basic block is extracted
from the measurements. As the traces are assumed to be cycle-accurate, this is a straight-
forward process since every instruction which gets executed during a measurement run
must also be contained in the respective trace. Additionally, the traces must contain a
(relative) timestamp for each instruction. Since tracing is controlled by (an implemen-
tation of) a trace automaton, the precise execution context of the trace data is known.
Hence the execution time for each basic block can be extracted from a trace by simply
going through the trace and the ICFG in parallel. Whenever a new basic block is entered
in the trace, the respective node must be found in the ICFG. Depending on the type of
program segment which is annotated, this search for a successor must be carried out on
the whole ICFG or just within the current routine, i.e. without following call edges. The
execution time of a basic block is determined by subtracting the timestamp of its first
instruction from the timestamp of the first instruction of its successor block. For each
node in the ICFG which was covered by a trace, this provides the execution time for this
particular run. Under the assumption that all local worst-cases were observed during
the measurements, meaning that the worst-case execution time of each node is covered
by at least one of the traces, the maximum from all of the execution times equals the
worst-case execution time. All nodes in the ICFG which never occurred in one of the
traces are assumed to be never executed during any execution of the program. Algorithm
4.3 demonstrates the concept of annotating the execution time from one of the traces to
the nodes of the respective program segment.

If a sufficiently large number of measurements has been taken under realistic conditions,
taking the maximum of the measured execution times for each node is likely to provide
the worst-case execution time or at least a realistic estimate of it. After annotating these
execution times to the ICFG, an estimate of the worst-case execution time of the whole
program can be computed by implicit path enumeration. This method was originally de-
scribed in [LM95] and it determines the worst-case execution by expressing the potential
paths through the program as an optimization problem in terms of integer linear pro-
gramming (ILP). The resulting constraint system is then solved by an ILP solver. More
precisely, the ILP solver determines the maximal sum of basic block execution times for
some path from the entry to the exit node of the ICFG. The resulting sum yields an
estimate of the program’s worst-case execution time. Since this worst-case path through
the program is determined without considering the program’s semantics, it must not nec-
essarily coincide with a path which can occur during an actual execution of the program.

35



4 CONTEXT-SENSITIVE MEASUREMENTS

Algorithm 4.3 Extract timing information for a program segment from a trace.

extractTiming (trace, segment)
trace : measurement run for the program segment
segment : program segment

1: (start , end , position, class)← segment
2: b ← start
3: a← first address in trace
4: tnew ← 0
5: told ← 0

6: repeat

7: while address−1(a) = b ∧ trace contains data do

8: (a, tnew)← next trace entry
9: end while

10: executionTime ← tnew − told
11: if annotated execution time for b < executionTime then

12: annotate executionTime to node b
13: end if

14: told ← tnew

15: if class = LOCAL then

16: b ← find successor in current routine with address a

17: else

18: b ← find successor in ICFG with address a

19: end if

20: if b is not a valid basic block ∨ address(b) 6= a then

21: abort
22: end if

23: until trace was read completely

36



5 Implementation

5.1 Overview

The timing analysis method presented in the last chapter was implemented and tested
by combining several well-established development tools which are widely used in the
automotive and avionic industry:

• The AbsInt aiT Worst-Case Execution Time Analyzers, the leading-edge product
for static timing analysis, was used as foundation for extracting control flow and
searching for worst-case paths in programs. AbsInt aiT is used e.g. by Airbus to
validate the timing behavior of safety-critical parts of flight control software, but
also by companies from the automotive domain.

• Infineon Technologies’ Multi-Core Debug Solution (MCDS) provided the means for
controlling hardware measurements by complex state machines. Furthermore, this
technology allows non-intrusive, cycle-accurate measurements of program execu-
tions without the need for changes in the analyzed program, like code instrumen-
tation.

• For measuring program executions, the Universal Debug Engine (UDE) from pls
Development Tools was utilized. For years, the Universal Debug Engine has been
used successfully for developing software components in the automotive industry.
Besides the support for MCDS-compatible devices, UDE also provides a special
purpose programming language for controlling program traces.

• Infineon’s TC1797 microcontroller was used as target platform since it can provide
sophisticated means for on-chip execution time measurements. The TC1797 is a 32-
bit high-performance microcontroller which is designed for automotive applications
and based on the TriCore CPU. It is available in the special variant TC1797ED,
which implements the Multi-Core Debug Solution technology.

In the following section, the characteristics of all the components used for the implemen-
tation will be introduced. Afterwards their incorporation and the necessary changes to
the existing software architectures will be described.

37



5 IMPLEMENTATION

5.2 Tools and Technologies

5.2.1 AbsInt aiT

AbsInt’s WCET analyzer aiT [aiT, FH04, Wil05] is a tool for deriving a safe upper
bound for the worst-case execution time of tasks in real-time systems. To determine these
bounds, which are valid for all inputs of the analyzed task and which consider every path
through the program, several microarchitectural analyses are performed. These analyses
use abstract interpretation, a semantics-based technique for static program analysis, and
require the final binary executable of a program to be able to reason about potential
register values and cache contents.

The WCET analysis is divided into several phases (figure 9):

• Initially, the (interprocedural) control flow graph is constructed by decoding the
executable. For this purpose, the user can provide an annotation file which contains
information about the control flow, like branch targets or loop bounds. Even register
or variable contents can be annotated to allow a more precise analysis by excluding
certain program paths. Loops in the program are transformed to recursive routines
in the ICFG. Furthermore, virtual inlining and virtual unrolling can be used. All
subsequent analyses work on the internal CRL representation of the program’s
control flow graph.

• The first analysis phase determines ranges of possible register values during the
task’s execution. This information can be used to determine loop bounds from loop
patterns found in the program code. All loop bounds which cannot be recognized
by this method must be annotated by the user. Additionally, results from the value
analysis can also be used to evaluate jump conditions and identify certain branches
of the ICFG that will never be executed.

• Next, an integrated cache and pipeline analysis is performed. The cache analysis
relies on the address ranges determined by the value analysis to classify whether
memory accesses are cache hits or cache misses. Afterwards, this information is used
by the pipeline analysis to calculate the maximal execution time of basic blocks by
identifying all pipeline states which can occur during the execution of the task.

• Finally, path analysis determines the worst-case path through the program by in-
teger linear programming. For doing this, the path analyzer constructs a system
of linear constraints over integer variables which reflect possible paths through the
program. Solving this system yields the WCET.

AbsInt aiT is available for a variety of embedded processor architectures. Since the overall
toolchain of aiT is very modular, it is not complicated to adopt it to new target archi-
tectures. The only exception is the pipeline analysis, as this phase relies on a complex
processor model to determine execution times. Like stated before, such models are de-
veloped manually and their correctness can only be checked by testing, but not formally

38



5.2 Tools and Technologies

Figure 9: AbsInt aiT toolchain

verified. Hence most of the work for supporting a new target processor in aiT must be
done for the development of a new pipeline analysis.

5.2.2 Infineon Technologies Multi-Core Debug Solution

The Multi-Core Debug Solution (MCDS) was developed by Infineon Technologies to
address the problem of debugging complex multi-processor systems (e.g. a System-on-a-
chip). These systems are often embedded in complicated machinery and faulty behavior
may only be observed under real-life conditions. Hence it must be possible to collect trace
data from deeply within the system without interfering with its functionality [MH08,
IPea].

The approach chosen for the MCDS is to add dedicated logic for collecting trace data on
the chip. For each processor or bus that is meant to be monitored in the traces, special
control hardware in form of a processor or bus observation block is part of the MCDS.
These observation blocks are connected to the units they monitor via special adaption
logic to make the internal state of the unit visible to the observation block. Based on this
information, the observation blocks can either store trace data directly by sending it to
the debug memory controller or generate events for the Multi-Core Crossconnect (MCX)
unit of the MCDS. The MCX is equipped with a set of counter registers which can be
modified depending on events (or boolean combinations of events) the MCX receives from
the observation blocks. It is also possible for the MCX to send signals to the observation

39



5 IMPLEMENTATION

Figure 10: Infineon Multi-Core Debug Solution

blocks depending on the values of the counter registers or other incoming events, but
the observation blocks lack the ability to preserve this information because they do not
have any storage registers. Hence, more complicated control tasks, e.g. waiting for events
happening in a certain order, must be implemented on the MCX. Nevertheless, this design
allows to define complex conditions for starting measurements or collecting other data,
for example via performance counters. Since the counter registers in the MCX, as well as
the events generated by the observation blocks and the MCX, are fully programmable,
it is possible to keep track of the overall system by representing it via a state machine.
Additionally, the MCX can interact with additional debug support in the system and
generate breakpoints for an external software debugger or even halt the whole system.
In fact, the whole process of trace data generation relies on a software component which
reads the data written to the trace buffer and reconstructs the actual trace from the
messages stored by the observation blocks or the MCX.

Figure 10 depicts the interaction of the MCDS and the other components of a system
with two processors and two buses3. The adaption logic for buses (BAL) and processors
(PAL) is not considered to be part of the MCDS. These units only provide information
about the internal state of the system to the processor observation block (POB) or the

3picture adapted from [IPeb]

40



5.2 Tools and Technologies

bus observation blocks (BOB), but their behavior cannot be influenced. On the other
hand, the behavior of the observation blocks and the MCX unit are fully programmable
and hence the user of the MCDS has full control over the data that is written to the trace
buffer. In the last step of trace generation, the contents of the trace buffer are translated
into human or machine readable form by a MCDS-compatible software debugger for
further analysis.

Since the additional hardware logic provided by the MCDS is only useful during the
development of a product, it is usually left out in the final version. Special variants of the
microcontrollers, so called Emulation Devices (ED), are used for the development phase,
while the standard version without the MCDS will be used in the release versions. These
emulation devices are available for a large number of Infineon’s microcontroller products
and the technology can also be licensed individually.

5.2.3 pls Universal Debug Engine

The Universal Debug Engine [UDE] by pls Development Tools is a software debugger
for a large variety of microcontrollers. In particular, the application offers sophisticated
facilities for generating program traces. One of the supported interfaces for this purpose
is the Multi-Core Debug Solution, i.e. the UDE can serve as the software component
of the MCDS. To facilitate the control over the generation of MCDS program traces,
the Universal Debug Engine provides the Trace Qualification Language (TQL), a special
scripting language for easily modifying the on-chip control registers of the MCDS.

By using TQL scripts, the features of the MCDS can be steered in an easy but also
very direct way. The generation of events and their exchange between the different
components of the MCDS can be controlled very precisely. Figure 11 displays the TQL
implementation of the trace automata from figure 4. The conditions for transitions in the
automaton are represented by range triggers for the TriCore PC. Thus they are activated
when the instruction at the respective address gets executed. The states and transitions
are modeled in terms of a counter register in the MCX. This means there is a single
counter for both states of the automaton. If the counter is zero, the automaton is in the
first state, otherwise it is in the second state. The counter gets modified (i.e. increased
or cleared) when the events for the transitions are activated. The second state is also the
tracing state, meaning the state where trace data is to be generated. Therefore the value
of the counter register must be forwarded to the POB, which is responsible for storing
the address of the currently executed instruction (PC). Additionally, the trace must be
started at some point. Counter-intuitively, this is done by defining the signal trace done

to be activated as soon as the transition to the tracing state is activated. After this
event has been signalled, the trace buffer will be filled with the current PC and a time
stamp until the buffer is either full or the POB stops storing the PC because the enabling
condition (correct automaton state) does no longer hold.

41



5 IMPLEMENTATION

// Global configuration

config.memorysize = 0x3ffff;

config.trigger = 0x0;

config.absmode = 0x1;

// Define trigger conditions for the TriCore PC

pob_tc.ptu_trig [0]. bound = 0xd4004;

pob_tc.ptu_trig [0]. range = 0x2;

pob_tc.ptu_trig [1]. bound = 0xd4008;

pob_tc.ptu_trig [1]. range = 0x2;

// Triggers that are forwarded to Multi Core Cross -Connect (MCX)

pob_tc.tc_act [0] = pob_tc.ptu_trig [0];

pob_tc.tc_act [1] = pob_tc.ptu_trig [1];

// Automaton states , managed by MCX

mcx.cnt_trig [0]. limit = 0x0;

// State transitions

mcx.cnt_trig [0]. inc = mcx.tc_act [0];

mcx.cnt_trig [0]. clear = mcx.tc_act [1];

// Forward register for tracing state from MCX to POB

mcx.tc_trig [0] = mcx.cnt_trig [0];

// POB stores the PC when in correct state

pob_tc.ptu_enable [0] = pob_tc.tc_trig [0];

pob_tc.ptu_sync [0] = pob_tc.tc_trig [0];

// MCX starts tracing when the tracing state is entered

mcx.trace_done [0] = rise mcx.lmb_act [0];

// Create time stamp for each instruction

mcx.tick_enable [0] = true;

Figure 11: Example TQL script

5.2.4 Infineon Technologies TriCore TC1797 Cache Behavior

The TC1797 provides an instruction as well as a data cache. For simplicity, the data
cache is completely ignored by the implementation of the cache analysis described in the
last chapter, but of course it is enabled during the measurements. The reason for not
considering the data cache is that data accesses (and hence possible contents of the data
cache) are not as easy to predict precisely as potentially executed instruction sequences.
Reasoning about data accesses precisely usually requires looking at the behavior of the
processor pipeline and this is exactly what the approach presented in this work is meant
to avoid. Hence, the data cache is ignored when comparing the cache behavior of program
parts in different execution contexts because imprecise information about data accesses
seems unlikely to provide any useful information here. In contrast, the content of the

42



5.2 Tools and Technologies

instruction cache can be predicted a lot easier and its influence is more obvious, e.g. for
different iterations of a loop.

Up to 16 kilobyte of instruction cache are available in the TC1797. The cache is a two-
way set associative cache with a Least Recently Used (LRU) replacement strategy and
it is organized as 512 cache lines with 256 bits per line. Not all memory segments are
cacheable. In addition to the instruction cache, the TC1797 also features a program
line buffer (PLB). This buffer has the same size as a single cache line. If fetching an
instruction located at a cacheable address results in a cache miss, the data to be stored
in the respective cache line is read from memory and stored in the PLB. It only gets
transfered to the instruction cache after the occurrence of the next cache miss. Program
fetch requests for non-cacheable addresses use the PLB as a single line cache. Thereby
prefetching is possible for instructions outside of cacheable memory areas.

The implementation of the cache behavior analysis used here only models the instruction
cache itself. Despite the nontrivial instruction fetch behavior of the TC1797, it was chosen
not to include the PLB in the cache analysis. Similarly, the execution of instructions
located in non-cacheable memory segments are assumed to always result in a cache miss.
These are valid assumptions because the observation of the cache behavior is not done to
produce exact numbers for cache hits or misses (or safe approximations thereof). Instead,
the cache analysis is done to determine whether the cache behavior of a specific program
part varies for different execution contexts. If the analysis is able to detect that this is not
the case, it is not necessary to distinguish the execution contexts. Hence always assuming
cache misses for certain code areas will classify all contexts as similar. Although always
expecting misses might not be an exact representation of what would happen during an
actual execution of this program part, e.g. due to the effects of the PLB, this model
suffices to classify the behavior correctly. Intuitively this should be obvious since the
execution time of instructions from non-cacheable memory areas cannot be influenced
by the state of the instruction cache. Similarly, the performance enhancing effect of the
prefetching done by the PLB is not relevant for the identification of possible variations of
execution times in non-cacheable code areas since this only has a short-term effect and
will behave the same for every execution context. Unlike the instruction cache, the PLB
is rather independent from the execution history. That is why it suffices to only look at
the instruction cache for cacheable code regions for detecting variations in execution time
as well.

The drawback of only looking at the instruction cache is that deviations in execution time
due to data accesses in different execution contexts cannot be detected. Nevertheless,
since for program segments which are considered to exhibit similar execution times, the
maximal execution time per basic block seen during a measurement run for all of the
execution contexts will be considered to be the worst-case execution time, this will only
increase the estimates for the execution time. Since the maximum will be used, this
is still a safe approximation, even if tighter bound estimates could be determined with
additional measurements.

43



5 IMPLEMENTATION

5.3 Integration of Static and Dynamic Techniques

5.3.1 Incorporation Concept

The new technique for collecting measurement-based timing information which was pre-
sented in the last chapter could be integrated into the AbsInt aiT toolchain with reason-
able effort. The implementation even extended the concepts and algorithms described
in the previous chapter in a few areas to provide even better analysis results. Figure 12
depicts an overview of the changes. In detail, the following modifications and extensions
were done:

• The control flow reconstruction phase could be used without any changes as it
already comprises the VIVU approach.

• The value analysis was also not altered. This analysis phase might remove parts of
the ICFG (i.e. mark parts which are never executed) and is also able to determine
loop bounds in addition to the ones already annotated by the user. All further
steps are capable of making use of this information.

• In contrast to the integrated cache and pipeline analysis of the original toolchain,
an independent cache analysis was added. For its implementation, most parts from
the integrated analysis have been reused, but the analysis was restricted to the
instruction cache.

• Generating trigger conditions for the measurements incorporates several steps:

– The ICFG is partitioned into program segments according to the parameters
set for the maximal length of the traces. In addition to the partitioning algo-
rithm described in section 4.2.3, several extensions were integrated to allow a
better coverage of loop routines.

– To reduce the number of measurements which have to be taken, it is deter-
mined which program segments with same start and end address but different
execution contexts are likely to exhibit similar cache behavior with respect to
the instruction cache. The decision whether two segments are considered to
behave similarly is based on the results of the cache analysis and some addi-
tional parameters to control which execution context may be considered to be
equivalent. This step only reduces the number of measurements to be taken
for the same code area. Intuitively, this step removes some of the duplications
in the ICFG which are a result of the VIVU technique.

– For each group of similar program segments, a trace automaton is created
from which a TQL script is generated that controls the measurements in the
pls Universal Debug Engine.

– To make measuring more convenient, a Visual Basic script is created to control
the UDE. This script can execute the program to be analyzed and run the TQL

44



5.3 Integration of Static and Dynamic Techniques

scripts one after another for a given number of repetitions. With this approach,
it is possible to start and stop taking measurements without interrupting the
program which is traced and there is no need for user intervention. Automating
this process allows taking a large number of measurements in a comfortable
way. Since the execution of the program is never stopped or restarted, it
becomes less likely that different measurements are taken during the same
state of the overall system. Thus it is more likely that local worst-cases are
covered by the measurements, though a correct estimate of the WCET can
only be determined if the program operates under realistic conditions during
the measurements. This means that it must still be provided with useful and
realistic input data.

– Furthermore, an XML file containing metainformation is created. This in-
formation is used during the annotation of the measured execution times to
match the traces to program segments.

• As stated earlier, the pls Universal Debug Engine debugging software is used for
the measurements. The tool is controlled by the scripts which are generated during
the trigger generation phase. A fixed number of attempts to measure each segment
is made. The number of repetitions can be controlled by a parameter, but there are
currently no checks whether an attempt to trace a program segment was successful
or if a timeout occurred which aborted the measurement. In the current prototype
implementation, which uses a TriCore TC1797ED evaluation board, call strings with
a maximal length of two are supported. The 256 kilobyte of trace buffer memory
can be used to generate cycle-accurate traces of about 100000 instructions.

• The trace data generated by the measurements is translated into an internal XML
format before the timing information is extracted. This step also removes jitter
from the traces and slightly reorganizes them for the annotation process.

• In the timing extraction phase, each trace is matched to the respective parts in the
ICFG. This provides the analysis with the execution time for each basic block which
was covered during the measurements. Additionally, the implementation is also able
to derive loop bounds for loops that were completely covered by the measurements.
This allows a tighter estimation of execution times under the assumption that the
maximal number of iterations occurred during one of the traces. Using this approach
to reduce loop bounds is especially useful if very large loop bounds were annotated
by the user as a safe approximation because exact loop bounds can neither be found
out by a static analysis nor are known to the user.

• After the timing information has been annotated to the nodes in the ICFG, the
search for the worst-case path is executed like in the original toolchain. This is
done by translating the WCET problem to an optimization problem in terms of an
integer linear program. An ILP solver is then used to find the worst-case execution
time and the corresponding path in the ICFG. Eventually, it is possible to visualize
the ICFG including the worst-case path through the program.

45



5 IMPLEMENTATION

Figure 12: Modified AbsInt aiT toolchain

5.3.2 Problems and Challenges

The limited number of trigger conditions available in current versions of the MCDS im-
poses some restrictions on the granularity with which execution contexts can be distin-
guished. Additionally, the combination of events (i.e. preconditions to start a trace) are
also limited. As a result of these limitations, only relatively small call strings can be used
to describe execution contexts. To overcome some of these limitations, the translation
of trace automata to TQL was done in such a way that different parts of an automaton
are implemented in different components of the MCDS. This was achieved by moving the
logic for starting a trace (the tracing state so to speak) to the processor observation block,
while the management of the other states remained on the central MCX unit. Besides,
some of the transition computations were moved to the otherwise unused bus observation
blocks.

Due to the nature of the MCDS, which in some sense can be seen as a distributed
system, there were some delay problems when triggering traces. This has the effect that
a trace is missing a few instructions in the beginning. These problems got even worse
when the combination of event signals was moved to unused components of the MCDS.
Nevertheless, this was necessary in order to allow a more fine-grained representation of
execution contexts. In most cases the delay problems could be resolved by adapting the
TQL generation, but it could not be solved completely. Furthermore, the delay problems
were not always easily reproducible. Especially trigger conditions which are only active
for a single cycle seemed to be problematic, e.g. when a trace is meant to be triggered after

46



5.3 Integration of Static and Dynamic Techniques

a single call instruction. Events of this kind were observed to work correctly sometimes,
but got lost or were delayed for some of the measurement runs. These problems made
the automatic generation of TQL scripts from program segments and call strings quite
tedious.

Besides the delay problems when starting a trace, instructions were sometimes left out
during traces as well. Though this was not a severe restriction, it required an adaption
of the annotation algorithm. Thus the implementation of the execution time annotation
does not rely on the assumption that only complete program traces are generated by
the measurement equipment. Instead, it suffices if the traces contain a timestamp for
at least one instruction of every basic block. As this problem occurred only rarely, the
Universal Debug Engine could be used to precisely determine basic block execution times
nonetheless.

47



6 Experiments

6.1 Methodology

6.1.1 Examined Properties

To evaluate the concepts presented in this work, the method was applied to a set of test
programs which are based on real-world embedded software. Firstly, this was done to
find out how increasing the number of measurements per program segment influences
the WCET estimates and what effect the different cache behavior metrics have on them.
It was also part of the experiments to check whether the technique is scalable and can
be applied to programs of realistic size. Finally, the resulting WCET estimates were
compared to the WCET bounds reported by a static timing analysis, to the execution
times which were observed during end-to-end measurements and to context-insensitive
WCET estimates.

In order to test the robustness and the efficiency of the partitioning and annotation
algorithms, the maximal size of the program segments was restricted for most of the
test cases. This means that the number of program segments was artificially increased
because otherwise many of the test programs could have been traced by a single program
segment. By doing this, it was possible to simulate the behavior of the algorithm for
very large programs, but the time and space requirements for taking the measurements
were minimized. Hence the results presented in the following should also be applicable
to programs which are significantly larger than the test cases which were used for the
experiments.

6.1.2 Test Setup

The experiments were conducted on an Infineon TriCore TC1797ED evaluation board.
For generating program traces version 2.04.09 of the Universal Debug Engine from pls
Development Tools was used. WCET bounds for the example programs were determined
using the aiT module of the AbsInt Advanced Analyzer a3 for TriCore, version 9.08i.

To evaluate the effect of the cache on the execution time as well as on the predicted
WCET, the code of the test programs was linked to uncached and cached portions of

48



6.2 Test Programs

instruction memory. For the first case, programs were stored in the TriCore scratchpad
RAM (SPRAM). The same memory is used for the instruction cache, so in effect fetching
an instruction from the SPRAM is as fast as fetching an instruction from the cache.
Because of the limited size of the SPRAM, this could only be done for small programs.
All other examples were stored in a cached memory area of the TriCore program flash.
In the following, for all test cases which use the program flash (and hence the instruction
cache), this is stated explicitly. If this is not the case, the test program was stored in
the SPRAM which results in the same execution time as if every instruction fetch from
a cached memory area would produce a cache hit.

6.2 Test Programs

6.2.1 DEBIE-1 Benchmark

The DEBIE-1 (DEBris In orbit Evaluator) satellite instrument is a sensor unit for detect-
ing impacts of small space debris and micro-meteoroids. Its on-board control software
was adapted to serve as a benchmark for WCET analysis tools. The software is written
in C and was originally developed by Space Systems Finland Ltd (SSF). To serve as a
benchmark, the software was adapted by Tidorum Ltd to make it more portable. An
internal simulation of I/O devices and an internal test driver were added as well. As a
result of these modifications, the benchmark can be compiled for new target architectures
with very little effort and the resulting binary already contains code to generate meaning-
ful input data for the original control software. Hence the benchmark is especially useful
for measurement-based WCET analysis methods as the system can be observed under
realistic conditions without difficulties. SSF provides the DEBIE-1 software for the use
as a WCET benchmark under specific terms. A copy of the software can be requested
from Tidorum4.

The control software comprises six tasks. In the original system, these tasks are activated
by interrupts and all of them have real-time deadlines. For the benchmark, this behavior
is only simulated, i.e. the benchmark is single-threaded. As part of the experiments, the
WCET of every task was estimated. This is along the lines of what was done during
the WCET Tool Challenge 2008 [HGB+08], for which the DEBIE-1 benchmark was also
used. Further information about the purpose of the tasks can be found in the wiki [WCC]
of the WCET Tool Challenge 2008.

6.2.2 Mälardalen WCET Benchmark Suite

Three programs from Mälardalen WCET Benchmark Suite [WCE] were chosen for the
experiments:

• Edn: The program performs Finite Impulse Response (FIR) filter calculations. This

4niklas.holsti@tidorum.fi

49



6 EXPERIMENTS

involves a lot of vector multiplications, array handling and nested loops. In total,
the program contains 12 loops.

• Nsichneu: Program for simulating an extended Petri Net. The source code was
automatically generated and contains more than 250 if-statements.

• Statemate: Automatically generated code which was produced with the Statechart
real-time code generator STARC.

The first two programs where chosen to test if the presented approach can handle pro-
grams with a large number of loops and branches respectively. The Statemate example
was used because it consists of automatically generated code and exhibits a code structure
which is commonly used in embedded applications (most work is done within a single
loop).

6.2.3 Model-Based Code Generation

To test whether the approach is suitable for programs which are developed using model-
based design tools, programs generated from MatLab Simulink and SCADE were tested
as well. Although the examples were small, it was nevertheless of interest whether their
structure could be handled by the partitioning algorithm. To generate input data for
the models, code had to be added manually. So their behavior during the run-time
measurements was not necessarily typical or realistic.

• Fuelsys: A model of a fuel rate controller created with MatLab Simulink for which
C code was generated using the Real-Time Workshop code generator. This model is
one of the examples supplied with MatLab and its interface is relatively simple, so
input data could be created easily. What is interesting about this example is that
the generated code also contained some search and interpolation routines from the
code generator. Therefore large portions of this test case are also part of real-world
programs.

• Carcontrol: This model was the result of a student project which used the Esterel
SCADE Suite to generate code for controlling a Lego Mindstorms car.

6.3 Results

6.3.1 Coverage Requirements

The goal of the first test run was to evaluate how the number of measurement runs
per program segment influences the calculated WCET estimates. For this purpose, the
test programs were stored in the SPRAM to eliminate any influence of the instruction
cache. For two test programs, the WCET was estimated by performing 10, 50 and
250 measurements for each program segment respectively. The results are displayed in

50



6.3 Results

Test Segment Traces Segments Automata WCET estimate

Carcontrol 10 2 2 1468 cycles
Carcontrol 50 2 2 1481 cycles
Carcontrol 250 2 2 1504 cycles
Fuelsys 10 10 10 8856 cycles
Fuelsys 50 10 10 8943 cycles
Fuelsys 250 10 10 9236 cycles

Table 1: Effects of increasing coverage

table 1. What can be seen immediately is that taking more measurements per program
segment results in larger WCET estimates. This observation verifies the assumption that
increasing the number of measurements makes it more likely to observe the local worst-
case for each basic block and hence makes the WCET estimate more precise. Nonetheless,
there is no clear correlation between the number of measurements and the increase of the
WCET estimates. Another result of this test run was that performing the measurements
requires a considerable amount of time and disk space, even for relatively small examples,
as the measurement phase and the timing extraction phase are not parallelized in the
current prototype implementation and the file formats are not optimized for efficient
storage. That is why all following experiments were conducted with 50 traces per program
segment in order to keep the memory requirements for the trace data within reasonable
limits.

6.3.2 Cache Behavior Metrics

The effectiveness of the two cache metrics presented in section 4.4.2 were evaluated in a
separate test run. Table 2 displays the number of trace automata generated for the differ-
ent cache metrics and the resulting WCET estimates. The results for the test programs
show that the average distance metric delivers results which are very close to those of the
maximum distance metric. As the average distance metric classifies more program seg-
ments as similar in terms of their cache behavior, it is able to reuse trace automata more
often. Hence a smaller number of measurements must be taken. Although it could be
expected that this reuse, which effectively drops some level of context-sensitivity, would
affect the WCET estimates negatively, this seems not to be the case. Based on these
observations, the average distance metric was adopted for all subsequent experiments.

6.3.3 Comparison of Static and Dynamic Timing Analysis

As the main goal of this work is to develop a precise alternative for static timing analysis,
comparing the results of the measurement-based technique with the completely static ap-
proach was of particular interest. The experiments were performed with minimal manual
intervention. This means that the static analysis was only provided with little additional

51



6 EXPERIMENTS

Test Metric Segments Automata WCET estimate

Fuelsys (cached) average 10 6 14951 cycles
Fuelsys (cached) maximum 10 10 14675 cycles
Nsichneu (cached) average 8 5 16182 cycles
Nsichneu (cached) maximum 8 7 16191 cycles

Table 2: Influence of cache metrics

information about the program structure (e.g. loop bounds), but it was not given any
user annotation to improve the precision of the results. For this reason the determined
WCET bounds are only rough, but safe approximations of the worst-case execution time.
Similarly, due to the small number of traces which were performed for each program
segment, the WCET estimates of the measurement-based technique are only a rough ap-
proximation of the WCET, too. In contrast to the static approach, these estimates are
not safe as the actual WCET value is approximated from below.

The results of the test runs are displayed in figure 15 (note that the scale is logarithmic).
Not surprisingly, the measurement-based WCET estimates are considerably smaller than
the bounds reported by the static timing analysis. Nevertheless, a closer examination
suggests the conclusion that the measurement-based estimates are closer to the actual
worst-case execution time than the bounds reported by the static analysis. Manual ex-
ploration of the results revealed that the execution time distribution reported by both
approaches was identical, i.e. both techniques identified similar worst-case paths through
the programs. However, for some program routines with memory accesses the execution
times reported by the static analysis were cosiderably larger than the execution times
determined by the measurement-based approach. Additionally, Task6 of the DEBIE-1
benchmark has been omitted in figure 15 as no plausible WCET bound could be deter-
mined for it within reasonable time.

One example where the completely static timing analysis seems to overestimate the time
of data accesses is the random number generation in the DEBIE-1 benchmark. As the
benchmark emulates the operating system functions for the original control software,
these “random numbers” are read from an array of constant values which are accessed
one after another. Some of the analyzed tasks contain a loop of moderate size which
repeatedly calls the routine which reads the next value from the array of random numbers.
Since the accesses to the respective memory region occur in a very close time frame, it is
almost impossible that all of them will result in a cache miss. Nevertheless, this is what
the static timing analysis assumes as it is unable to discover that the respective accesses
occur to consecutive memory addresses. As the said accesses occur within a loop, the
impact of this overestimation is even increased as only the first iteration was considered
separately from the remaining iterations during the analysis. Similar effects could be
observed when larger parts of memory were copied e.g. in the memcpy routine, though
the pessimistic assumptions about memory access times might be more realistic here.
Despite the obvious overestimation of the completely static approach, the measurement-

52



6.3 Results

Figure 13: Comparison of context-sensitive and end-to-end measurements

based estimates are probably slightly smaller than the actual worst-case execution time
since the number of measurements on which the estimates are based was small. Hence it
is unlikely that all local worst-cases were observed during the measurements.

6.3.4 Context-Sensitive and End-To-End Measurements

Additionally, the results of the new approach were compared to the results of simple
end-to-end measurements. The outcome of these tests (figure 13) was interesting as it
illustrates some problems inherent to all measurement-based methods for timing analysis.
Furthermore, some problems of the current implementation of the context-sensitive ap-
proach were revealed as well. The general problem of estimating the worst-case execution
time of programs based on measurements is that it is unknown under which circumstances
the worst-case occurs. Hence it cannot be guaranteed that the worst-case has been covered
by any of the measurements. Thus, end-to-end measurements are practically useless for
estimating the WCET. This was demonstrated by one of the test cases (DEBIE-1 Task4):
though a considerable effort was made for the measurements, the observed end-to-end
execution times were considerably smaller than WCET estimates reported by the other
approaches. Manual examination of the measurements showed that some routines which
were on the WCET path reported by the other approaches were never executed during
the end-to-end measurements. However, these routines could be observed in the measure-
ments of the context-sensitive approach, so there are program runs which execute these
routines. Hence this test case showed that for programs which rarely execute the routines

53



6 EXPERIMENTS

which are responsible for the worst-case execution, the context-sensitive approach seems
to be superior to simpler methods. The program partitioning and the precise control
over the measurement runs allow determining the execution time of routines which are
not executed very often, as the measurement hardware is able to wait for these program
parts before starting the actual trace. Additionally, the context-sensitive approach al-
lows the combination of local worst-case executions which were observed during different
measurement runs to obtain an estimate of the global WCET. Nonetheless, the prototype
implementation of the context-sensitive approach reported some WCET estimates which
were smaller than the maximal execution time observed during the end-to-end measure-
ments. The first reason for this are the delay problems which were already mentioned in
section 5.3.2. As a result of the potential delays, the basic blocks at the beginning of some
program segments might never be covered completely by the measurements and hence
the execution time will be underestimated. Furthermore, insufficient coverage of critical
program parts is a potential cause of underestimation. As the number of measurements
which were taken during the experiments was relatively small, it is likely that this was
another cause for the observed underestimation.

6.3.5 Context-Sensitive and Context-Insensitive Measurements

Finally, WCET estimates which consider the execution context where compared to context-
insensitive estimates. For this purpose, the analyzed programs where traced with one
single program segment to overcome the delay problems. The annotation phase for the
context-sensitive analyses was carried out as in the previous experiments. For the context-
insensitive case, the maximal execution time of every basic block was extracted from all
of the program traces without consideration of the execution history. This execution
time then was annotated to all ICFG nodes which represent the respective basic block.
A smaller number of measurements was performed for these experiments than for the
previous ones as the focus was not on precisely estimating the WCET (i.e. covering all
local worst-cases), but on investigating the effect of context information. For this reason,
the results presented in figure 14 differ slightly from the previous estimates. Nevertheless,
the outcome of the experiments shows that the use of context-information can improve
the precision of measurement-based execution time estimates. For two out of three test
cases, the context-sensitive approach seems to be able to represent cache effects correctly.
Hence, smaller WCET estimates are reported. This effect could not be observed for the
smallest of the test cases, probably since the execution time of the program does not
benefit from caches due to its linear structure. The results of this comparison suggest
that the difference between a context-sensitive and a context-insensitive analysis can be
substantial. By increasing the number of measurement runs, this effect can only be
intensified, as for every increase in the context-sensitive estimate, the context-sensitive
estimate must grow as well. Thus the execution context of execution time measurements
should be preserved whenever possible. If this is not done, cache effects cannot be deter-
mined correctly, which is why a context-insensitive evaluation might introduce a severe
amount of pessimism to the execution time estimates, which renders them less precise.

54



6.4 Evaluation

Figure 14: Improvement of WCET estimates through context information

6.4 Evaluation

The key result of the presented experiments is that the approach developed in this thesis
works and that the precision of measurement-based WCET estimates can be considerably
improved by using context information. Furthermore it has been shown that the method
can be applied to real-world programs. Despite some minor problems, this new technique
seems to be a good alternative to existing methods for static timing analysis, as long
as there is no need for guarantees about the computed WCET estimates. Effectively,
this limits the area of application to soft real-time systems. Yet a measurement-based
approach might be better suited in this case, especially if the used processor architecture
exhibits complex timing behavior or the cost pressure for the final product is very high.
The experiments have shown that the technique is able to produce realistic execution
time estimates without the intrinsic pessimism of static methods while being more accu-
rate than end-to-end or context-insensitive measurements. Although the new approach
seems to be more robust and more precise than existing methods for measurement-based
timing analysis, it does not overcome their inherent problems, like the dependence on
input data. However, controlling the collection of trace data precisely allows weakening

55



6 EXPERIMENTS

the influence of these problems to the WCET estimate e.g. because it is now possible
to enforce measurements within program parts or execution contexts which are executed
very rarely. While the precise control of trace data generation makes it more likely that
local worst-case executions can be observed, the use of context information allows the
precise combination of partial execution times. This makes the calculated WCET es-
timates less pessimistic. The results of the experiments also show that only measuring
each basic block often enough, which is the prevailing paradigm for measurement-based
timing analysis, is not enough to determine precise execution time estimates as the exe-
cution history might have a significant influence on them. Even though it is in principle
possible that the reported context-sensitive WCET estimates are larger than the WCET
bounds determined by a static analysis, for example due to an insufficient level of context-
sensitivity, the results of the experiments suggest that the WCET estimates are always
below the upper timing bound. However, it cannot be guaranteed that the estimate is
larger than the WCET, so their might be an underestimation. Nonetheless, based on
the experiments, the measurement-based estimates seem to be closer to the WCET than
the WCET bounds from a static analysis. Hence the approximation is more precise, but
potentially unsafe.

The outcome of the experiments suggests several improvements of the implementation
of the algorithms, but it has been proven that the general concepts work very well and
can be applied to programs of realistic size. As a first improvement, a closer coupling of
the measurement and annotation phase is desirable. By parallelizing the measurements
and their processing, the storage requirements for the trace data could be reduced. This
should also speed up the analysis time compared to the two-step design of the prototype
implementation which first generates the trace data and then extracts the basic block ex-
ecution times. Additionally, collecting trace data should be guided by previous program
runs to enforce certain levels of coverage. Currently, each program segment is measured
a fixed number of times and each measurement must be completed within a time bound
determined by the user. If a measurement attempt does not produce any data, e.g. be-
cause the activation conditions for starting the trace are not met within the given time
frame, this has no consequences. Instead, the implementation could be extended to reat-
tempt these measurements until certain coverage criteria are fulfilled. To avoid timeouts
during these reattempts, it would be possible to gradually increase the time frame for
measurements which did not finish in time during a previous attempt. To increase the
coverage of the measurements even further, the process of program partitioning could
be adopted to enforce tracing of all branches of a conditional, at least to some extent.
These modifications are likely to overcome the problems which were encountered during
the experiments.

56



6.4
E

valu
ation

Figure 15: Results from measurement-based and a completely static timing analysis

57



7 Conclusion

7.1 Summary

This work described a new approach to measurement-based timing analysis which makes
use of techniques from static program analysis. In order to generate cycle-accurate pro-
gram traces, the program to be analyzed is partitioned into program segments which
can be measured completely with the trace buffer memory available on the measurement
hardware. For each segment, a trace automaton is created to control the collection of
trace data during a measurement run. This allows considering a single program segment
for generating trace data, while all other segments are ignored for the respective measure-
ment run. Hence context-sensitive execution time measurements are possible despite the
limited memory for storing trace data. By incorporating results of a cache analysis, the
number of necessary measurements can be reduced by joining program segments which
exhibit similar cache behavior.

The technique was implemented within a proven framework for static program analyses
which was combined with a widely used software debugger. Experiments with the pro-
totype implementation provided highly encouraging results and suggest incorporation of
the analysis and the measurement phases. The results obtained during the experiments
show that state-of-the-art measurement hardware can be used to determine WCET es-
timates of a program automatically, while the precision of the estimates is increased by
using context information. The automation of the process does not require the user to
provide a lot of information about the analyzed program, but the measurements should
be performed in an environment which is typical or realistic for the later use of the soft-
ware. In order to get good results, a large number of measurements must be performed
since the method relies on the assumption that the local worst-case for each basic block
of the program was observed during the measurements.

The precise control of measurement runs and their accurate combination is what sets the
approach presented in this thesis apart from all other measurement-based methods for
timing analysis. The integration of results from static program analyses allows improving
its efficiency. Therefore this new method is able to combine the advantages of static and
dynamic techniques for timing analysis while overcoming some of their disadvantages.
Hence it is a valuable alternative to all existing methods for timing analysis.

58



7.2 Outlook

7.2 Outlook

While the methods presented in this work have been shown to be applicable to real-world
programs, several changes could be made to improve the results or extend the field of
application: To make the generation of trace data more efficient, the cache behavior
metrics could be modified or extended to consider additional information. For example,
accesses to data memory could be factored in without doing a full-scale data cache analysis
by using value analysis results. Even if this information is not very precise, it might still
suffice to determine the type of memory an access goes to. In effect this would make it
possible to distinguish between data accesses which go to fast or to slow memory areas
as well as between accesses to cached or uncached areas. Hence it would be possible
to determine whether the time of data accesses is likely to vary in different execution
contexts. Furthermore, the information about data accesses could be used to determine
which program segments are likely to be involved in a worst-case execution and hence
should be measured more often than program parts where this is not the case.

A more fine-grained control over the trace data generation would be helpful to improve
the quality of the WCET estimates. Though the currently available versions of the
MCDS already allow the definition of sophisticated conditions to start a program trace,
the number of events which can be combined to form such conditions are limited. These
restrictions also bound the number of execution contexts which can be distinguished
during the measurements. Apart from adding additional programmable trigger conditions
to it, the MCDS could also be improved for the purpose of WCET estimation by simply
adding additional trace buffer memory.

Instead of using real hardware to generate traces, a processor simulator or a model syn-
thesized from a specification in a hardware description language could be used as well.
While processor simulators are often simplified (e.g. because they do not simulate caches),
they might still be useful to estimate the execution time of software during early devel-
opment phases. In this case, the focus of the analysis would be to identify potential
bottlenecks in the application code instead of determining the WCET of the program.
On the other hand, processor models derived from synthesizable descriptions should be
able to create accurate traces which can be used for WCET estimation. Although this
probably requires some manual modifications of the models, the effort should be con-
siderably smaller than for creating an abstract processor model for a completely static
approach. A model synthesized from a hardware description language might also be
adapted to allow a modification of the overall system state, e.g. by clearing the cache.
So, generating a large number of context-sensitive traces from such a model, combined
with modifications of the system state, but without modifications of the analyzed pro-
gram, might be able to generate precise estimates of the worst-case execution time, even
for systems with complex cache designs.

The trace automata concept could be adopted to detect other context-sensitive properties
of a program as well. Instead of execution times, the traces could be used to detect the
maximal number of iteration for loops or the maximal recursion depth of functions.
Furthermore, it would also be possible to use trace data for control flow reconstruction

59



7 CONCLUSION

to detect the potential targets of computed call or computed jump instructions.

Finally, in contrast to other approaches for determining the worst-case execution time of
a program, the technique described in this thesis can be easily adapted to estimate the
best-case execution time of a program as well. This can be achieved by modifying the
timing extraction phase to extract the minimal execution time of a basic block from the
traces instead of searching for the maximum. Additionally, the implicit path enumeration
phase would have to be altered to determine a path with the minimal sum of basic block
execution times. Conducting these changes should require very little effort, but would
increase the area of application for the technique considerably.

60



Acknowledgements

First of all, I would like to thank Reinhard Wilhelm, Florian Martin and Christian
Ferdinand for supporting this thesis. Furthermore, I thank the whole staff of AbsInt
Angewandte Informatik GmbH for their assistance during the realization of this work,
especially Christoph Cullmann and Gernot Gebhard, who provided a cache analysis li-
brary which served as the foundation of the cache behavior analysis implementation,
Frank Fontaine, who implemented parts of the trace conversion, and Ingmar Stein, who
always willingly shared his knowledge about the TriCore architecture. Additionally, I
would like to thank Niklas Holsti for providing the DEBIE-1 benchmark, Lili Tan for
supplying the MatLab Fuel System example and Vanessa Hauck for proof-reading.

61



A Partitioning Algorithms

This part contains the algorithms which have been omitted during the description of
program partitioning in section 4.2.3. Some special cases, mainly involving recursive
routines, have not been included to make the algorithms more readable.

Algorithm A.1 Calculate the length of the longest path between two nodes in the CFG.

longestLocalPath (s, e, m, E)
s : start node
e : end node
m : mapping V→ N for storing partial results
E : edges of the CFG

1: outgoing ← {n | (s, n) ∈ E}
2: size ← |{i | i is an instruction in basic block s}|
3: longest ← 0

4: if m[s] is defined then

5: return m[s] // if node has been visited before, use the already calculated result
6: else if s = e then

7: m[s]← size
8: return size
9: end if

10: for all n ∈ outgoing do

11: path ← longestLocalPath(n, e,m,E)
12: longest ← max{longest , path}
13: end for

14: m[s]← longest + size // store result and mark node as visited
15: return m[s]

62



Algorithm A.2 Calculate the length of the longest interprocedural path between nodes
in the ICFG and determine context-sensitive recursion bounds.

longestPath (s, e, m, Ê, call , iter)
s : start node
e : end node
m : mapping V̂→ N for storing partial results
Ê : edges of the ICFG
call : mapping R×P→ N which contains the length of a routine call per context
iter : mapping R×P→ N for context-sensitive recursion bounds of routines

1: (sv, sp)← s // extract context information from ICFG node

2: outgoing ← {n | (s, n) ∈ Ê}
3: size ← |{i | i is an instruction in basic block sv}|
4: longest ← 0

5: if m[s] is defined then

6: return m[s] // if node has been visited before, use the already calculated result
7: else if s = e then

8: m[s]← size
9: return size

10: end if

11: for all (nv, np) ∈ outgoing do

12: if routine(sv) 6= routine(nv) then

13: path ← call [(routine(nv), np)] ∗ iter [(routine(nv), np)]
14: else if sp 6= np then

15: // same routine, but different context =⇒ recursive call
16: iter [(routine(nv), np)]← iter [(routine(sv), sp)]− 1 // update recursion bounds
17: path ← call [(routine(nv), np)] ∗ iter [(routine(nv), np)]
18: else if routine(nv) is not recursive then

19: path ← longestPath((nv, np), e,m, Ê, call , iter)
20: else

21: path ← 0 // ignore calls to the same routine and the same context
22: end if

23: longest ← max{longest , path}
24: end for

25: m[s]← longest + size // store result and mark node as visited
26: return m[s]

63



A PARTITIONING ALGORITHMS

Algorithm A.3 Calculate the maximal length of all interprocedural paths in the ICFG
by constructing a mapping call ∈ R × P → N which returns the maximal length of
the intraprocedural path from the start to the end node for every routine in every valid
context. Also construct a mapping iter ∈ R × P → N for context-sensitive recursion
bounds.

longestRoutinePaths (R, Ê)
R : the routines contained in the ICFG
Ê : edges of the ICFG

1: for all (r, p) ∈ {(r, p) | r ∈ R, p ∈ contexts(r)} do

2: m← empty marking
3: Er ← {(s, t) | ∃p ∈ contexts(r) : ((s, p), (t, p)) ∈ Ê

∧ routine(s) = r ∧ routine(t) = r}
4: call [(r, p)]← longestLocalPath(start(r), end(r),m,Er)
5: iter [(r, p)]← iterations(r)
6: end for

7: workList ← {(r, p) | r ∈ R, p ∈ contexts(r)}
8: repeat

9: (r, p)← pick element of workList
10: oldResult ← call [(r, p)]
11: call [(r, p)]← longestPath(start(r), end(r),m, Ê, call , iter)

12: if oldResult 6= call [(r, p)] then

13: for all (r′, p′) ∈ {(r′, p′) | ∃((s, p′), (t, p)) ∈ Ê : routine(s) = r′ ∧ routine(t) = r}
do

14: workList ← workList ∪ {(r′, p′)} // insert callers of r into work list
15: end for

16: end if

17: workList ← workList \ {(r, p)}
18: until workList = ∅

19: return (call , iter)

64



Algorithm A.4 Calculate recursion bounds and the length of interprocedural paths
before partitioning the ICFG into program segments.

partitionICFG (R, Ê, s)
entry : entry node of the ICFG
l : maximal length of a path ICFG
R : the routines contained in the ICFG
Ê : edges of the ICFG

1: (entryv, entryp)← entry
2: r ← routine(entryv)
3: exitv ← exit(r)
4: m← empty marking

5: (call , iter) = longestRoutinePaths(R, Ê)
6: partition(entry , (exitv, entryp),m, Ê, l, call , iter)

Algorithm A.5 Find nodes that have to be visited on every path between two nodes
in the ICFG. Since the start and the end node are known, this problem is less complex
than the general search for dominators of basic blocks.

findDominator (s, e, m, Ê, call , iter)
s : start node
e : end node

1: dominators ←
⋂

p∈s→e {n | n ∈ V̂, ∃k ∈ N : pk = n} // nodes on every path

2: if dominators = {s, e} then

3: abort
4: end if

5: middle ← pick element from dominators with maximal address distance to s and e

6: return middle

65



REFERENCES

References

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive Profiling. In PLDI
’97: Proceedings of the ACM SIGPLAN 1997 conference on Programming
Language Design and Implementation, pages 85–96. ACM, 1997.

[aiT] AbsInt aiT WCET Analyzer. http://www.absint.com/ait/.

[BB00] Guillem Bernat and Alan Burns. An Approach to Symbolic Worst-Case Ex-
ecution Time Analysis. In 25th IFAC Workshop on Real-Time Programming,
2000.

[BB06] Adam Betts and Guillem Bernat. Tree-Based WCET Analysis on Instrumen-
tation Point Graphs. In ISORC ’06: Proceedings of the Ninth IEEE Interna-
tional Symposium on Object and Component-Oriented Real-Time Distributed
Computing, pages 558–565. IEEE Computer Society, 2006.

[BCP02] Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET Analysis of
Probabilistic Hard Real-Time Systems. In RTSS ’02: Proceedings of the 23rd
IEEE Real-Time Systems Symposium, pages 279–288, 2002.

[BCP03] Guillem Bernat, Antoine Colin, and Stefan M. Petters. pWCET: A Tool
for Probabilistic Worst-Case Execution Time Analysis of Real-Time Sys-
tems. Technical report, Department of Computer Science, University of York,
February 2003.

[BL92] Thomas Ball and James R. Larus. Optimally Profiling and Tracing Programs.
In POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 59–70. ACM, 1992.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 238–252, Los
Angeles, California, 1977. ACM Press, New York, NY.

[DP07] Jean-François Deverge and Isabelle Puaut. Safe Measurement-Based WCET
Estimation. In Reinhard Wilhelm, editor, 5th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, Dagstuhl, Germany, 2007. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[Fer97] Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD
thesis, Saarland University, 1997.

[FH04] Christian Ferdinand and Reinhold Heckmann. aiT: Worst-Case Execution
Time Prediction by Static Programm Analysis. In Ren Jacquart, editor,

66

http://www.absint.com/ait/


REFERENCES

Building the Information Society. IFIP 18th World Computer Congress, Top-
ical Sessions, 22-27 August 2004, Toulouse, France, pages 377–384. Kluwer,
Boston, Mass., 2004.

[FMW97] Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying Com-
piler Techniques to Cache Behavior Prediction. In Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time Sys-
tems (LCTRTS ’97) on June 15-18, 1997 at Las Vegas, Nevada, pages 37–46.
ACM Press, 1997.

[HGB+08] Niklas Holsti, Jan Gustafsson, Guillem Bernat, Clément Ballabriga, Armelle
Bonenfant, Roman Bourgade, Hugues Cassé, Daniel Cordes, Albrecht Kadlec,
Raimund Kirner, Jens Knoop, Paul Lokuciejewski, Nicholas Merriam, Mari-
anne de Michiel, Adrian Prantl, Bernhard Rieder, Christine Rochange, Pascal
Sainrat, and Markus Schordan. WCET 2008 – Report from the Tool Chal-
lenge 2008 – 8th intl. Workshop on Worst-Case Execution time (WCET)
analysis. In Raimund Kirner, editor, 8th Intl. Workshop on Worst-Case Exe-
cution Time (WCET) Analysis, Dagstuhl, Germany, 2008. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany. also published in print by Aus-
trian Computer Society (OCG) under ISBN 978-3-85403-237-3.

[IPea] Infineon Multi-Core Debug Solution (MCDS).
http://www.ip-extreme.com/IP/mcds.html, as of July 13, 2009.

[IPeb] Infineon Multi-Core Debug Solution (MCDS) Brochure.
http://www.ip-extreme.com/downloads/MCDS_brochure_080128.pdf, as
of July 13, 2009.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance Analysis of Embed-
ded Software using Implicit Path Enumeration. In DAC ’95: Proceedings of
the 32nd annual ACM/IEEE Design Automation Conference, pages 456–461,
New York, NY, USA, 1995. ACM.

[Lun02] Thomas Lundqvist. A WCET Analysis Method for Pipelined Microprocessors
with Cache Memories. PhD thesis, Chalmers University of Technology, 2002.

[Mar99] Florian Martin. Generating Program Analyzers. PhD thesis, Universität des
Saarlandes, 1999.

[MAWF98] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand.
Analysis of Loops. In Kai Koskimies, editor, Proceedings of the 7th Inter-
national Conference on Compiler Construction (CC ’98), held as part of the
Joint European Conferences on Theory and Practice of Software (ETAPS)
on March 28-April 4, 1998 at Lisboa, Portugal, volume 1383 of Lecture Notes
in Computer Science, pages 80–94, Berlin, 1998. Springer.

67

http://www.ip-extreme.com/IP/mcds.html
http://www.ip-extreme.com/downloads/MCDS_brochure_080128.pdf


REFERENCES

[MB08] Amine Marref and Guillem Bernat. Towards Predicated WCET Analysis. In
Raimund Kirner, editor, 8th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

[Mea55] George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell Sys-
tems Technical Journal 34 (5), 1955.

[MH08] Albrecht Mayer and Frank Hellwig. System Performance Optimization
Methodology for Infineon’s 32-bit Automotive Microcontroller Architecture.
In DATE ’08: Proceedings of the Conference on Design, Automation and
Test in Europe, pages 962–966. ACM, 2008.

[NNH99] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

[PSM09] Markus Pister, Marc Schlickling, and Mohamed Abdel Maksoud. Semi-
automatic Derivation of Abstract Processor Models. Reports of ES PASS,
ES PASS, June 2009.

[RGBW06] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm.
Predictability of Cache Replacement Policies. Technical report, Sonder-
forschungsbereich / Transregio 14 on Automatic Verification and Analysis
of Complex Systems (AVACS), 2006.

[Ros03] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill,
fifth edition, 2003.

[RWT+06] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Po-
lian, Jochen Eisinger, and Bernd Becker. A Definition and Classification of
Timing Anomalies. In Proceedings of 6th International Workshop on Worst-
Case Execution Time (WCET) Analysis, July 2006.

[Seh05] Daniel Sehlberg. Static WCET Analysis of Task-Oriented Code for Con-
struction Vehicles. Master’s thesis, October 2005.

[Sha89] Alan Shaw. Reasoning about Time in Higher-Level Language Software. IEEE
Transactions on Software Engineering, 15:875–889, 1989.

[SP07] Marc Schlickling and Markus Pister. A Framework for Static Analysis of
VHDL Code. In Christine Rochange, editor, Proceedings of the 7th Interna-
tional Workshop on Worst-Case Execution Time (WCET) Analysis at Pisa,
Italy, 2007.

[SSPH06] Stefan Schaefer, Bernhard Scholz, Stefan M. Petters, and Gernot Heiser.
Static Analysis Support for Measurement-Based WCET Analysis. In 12th
IEEE International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, Work-in-Progress Session, 2006.

68



REFERENCES

[Tec07a] Infineon Technologies. TC1767/97ED Emulation Devices Target Specifica-
tion, v1.4, December 2007.

[Tec07b] Infineon Technologies. TC179 32-Bit Single-Chip Microcontroller Target
Specification, v1.5, November 2007.

[The03] Henrik Theiling. Control Flow Graphs for Real-Time System Analysis. Re-
construction from Binary Executables and Usage in ILP-Based Path Analysis.
PhD thesis, Saarland University, 2003.

[UDE] pls Development Tools Universal Debug Engine (UDE).
http://www.pls-mc.com.

[WCC] WCET Tool Challenge 2008 Wiki .
http://www.mrtc.mdh.se/projects/WCC08/doku.php, as of August 6,
2009.

[WCE] Mälardalen WCET Benchmark Suite .
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html, as of Au-
gust 6, 2009.

[WE01] Fabian Wolf and Rolf Ernst. Execution Cost Interval Refinement in Static
Software Analysis. Journal of Systems Architecture, 47(3-4):339–356, 2001.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan
Staschulat, and Per Stenström. The Worst-Case Execution-Time Problem
— Overview of the Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):1–53, 2008.

[WEY01] Fabian Wolf, Rolf Ernst, and Wei Ye. Path Clustering in Software Timing
Analysis. IEEE Trans. Very Large Scale Integr. Syst., 9(6):773–782, 2001.

[Wil05] Reinhard Wilhelm. Determining Bounds on Execution Times. In R. Zu-
rawski, editor, Handbook on Embedded Systems, pages 14–1,14–23. CRC
Press, 2005.

[WKRP08] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner.
Measurement-Based Timing Analysis. In Proc. 3rd Int’l Symposium on
Leveraging Applications of Formal Methods, Verification and Validation, Oct.
2008.

[WRKP05] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter Puschner.
Automatic Timing Model Generation by CFG Partitioning and Model Check-
ing. In Proc. Conference on Design, Automation, and Test in Europe, Mar.
2005.

69

http://www.pls-mc.com
http://www.mrtc.mdh.se/projects/WCC08/doku.php
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

	Introduction
	Timing Analysis of Embedded Systems
	Contribution
	Overview

	Existing Methods
	Approaches for Timing Analysis
	Static Timing Analysis
	Measurement-Based Timing Analysis
	Hybrid Methods
	Context-Sensitive Tracing

	Foundations and Definitions
	Control Flow Representation
	Basic Block
	Routines
	Control Flow Graph
	Loops and Recursion
	Contexts
	Interprocedural Control Flow Graph
	Paths in Control Flow Graphs

	Program Analysis
	Data Flow Analysis and Abstract Interpretation
	Cache Analysis

	Finite State Transducers
	Notation

	Context-Sensitive Measurements
	Overview
	Program Partitioning
	Motivation
	Definition
	Construction

	Trace Automata
	Introduction
	Call String Translation

	Cache Behavior Analysis
	Approach
	Cache Behavior Metrics
	Joining of Program Segments

	Timing Extraction

	Implementation
	Overview
	Tools and Technologies
	AbsInt aiT
	Infineon Technologies Multi-Core Debug Solution
	pls Universal Debug Engine
	Infineon Technologies TriCore TC1797 Cache Behavior

	Integration of Static and Dynamic Techniques
	Incorporation Concept
	Problems and Challenges


	Experiments
	Methodology
	Examined Properties
	Test Setup

	Test Programs
	DEBIE-1 Benchmark
	Mälardalen WCET Benchmark Suite
	Model-Based Code Generation

	Results
	Coverage Requirements
	Cache Behavior Metrics
	Comparison of Static and Dynamic Timing Analysis
	Context-Sensitive and End-To-End Measurements
	Context-Sensitive and Context-Insensitive Measurements

	Evaluation

	Conclusion
	Summary
	Outlook

	Partitioning Algorithms
	References

