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Abstract

Information-handling systems are becoming ever more complex. They may be
pure hardware or software systems, or complex systems of hardware and software
that act in a real-world environment.

Verification is a method to ensure that systems behave in the expected way,
which is a necessity for safety-critical applications like automatic railway control.
The size of such systems makes manual verification impossible. Therefore, we
need automatic or computer-aided verification procedures.

Automated reasoning is already widely used in the analysis and verification
of systems. For a restricted class of systems, the resulting verification prob-
lems are inherently finite and can be solved efficiently. For complex systems,
such finiteness cannot be expected. To express and prove properties of these
systems, we need a formal language and reasoners that can deal with univer-
sal quantification, arithmetic expressions and unbounded data structures at the
same time.

Thus, in recent years there has been new interest in the handling of first-
order formulas modulo a given background theory. The problem is known to
be undecidable in general, and research focuses mostly on methods that solve
many problem instances quickly, but sacrifice completeness. We take a different
approach and focus on instances of this problem that we can show to be decid-
able. In this way we can solve the resulting problems efficiently and guarantee
termination.

This work is based on research by Sofronie-Stokkermans on local theory
extensions and on work by Ganzinger and Korovin on instantiation-based first-
order theorem proving. We extend the existing work on local theory extensions,
giving new examples of axioms which satisfy a locality condition and using ideas
from instantiation-based first-order theorem proving to make local reasoning
more efficient. Furthermore, we show that local theory extensions allow us
to decide certain verification problems for parameterized systems and develop
increasingly complex system models of an automatic train controller on which
we demonstrate how to use local reasoning to verify safety properties of such
systems.

iii





Kurzzusammenfassung

Informationsverarbeitende Systeme werden ständig komplexer. Dies können
reine Hardware- oder Softwaresysteme sein, oder komplexe Systeme von Hard-
ware und Software, die mit ihrer physikalischen Umgebung interagieren.

Mittels Verifikation kann sichergestellt werden, dass ein System sich in der
erwarteten Weise verhält. Bei sicherheitskritischen Systemen, z.B. automati-
schen Zugsteuerungssystemen, ist dies unumgänglich. Die Größe solcher Sys-
teme macht es unmöglich, ihr Verhalten von Hand zu verifizieren. Deshalb
benötigen wir automatische oder computergestützte Verifikationsmethoden.

Bei der Analyse und Verifikation von Systemen ist automatisches Beweisen
bereits weit verbreitet. Für eine eingeschränkte Klasse von Systemen sind
die auftretenden Verifikationsprobleme von Natur aus endlich and können ef-
fizient gelöst werden. Für komplexe Systeme kann eine solche Endlichkeit nicht
angenommen werden. Um Eigenschaften solcher Systeme ausdrücken und be-
weisen zu können, brauchen wir eine formale Sprache und Beweismethoden, die
mit universeller Quantifizierung, arithmetischen Ausdrücken und unbeschränk-
ten Datentypen gleichzeitig umgehen können.

Deshalb gab es in den letzten Jahren ein neues Interesse an Methoden, die
universell quantifizierte Probleme in solchen Hintergrundtheorien lösen können.
Es ist bekannt, dass solche Probleme im Allgemeinen unentscheidbar sind, und
die Forschung konzentriert sich auf Methoden, die unter Verzicht auf Vollständig-
keit möglichst viele Probleme schnell lösen können. Wir verfolgen einen anderen
Ansatz und konzentrieren uns auf Problemklassen, deren Entscheidbarkeit wir
zeigen können. Dadurch können wir diese Probleme effizient lösen und gleich-
zeitig das Terminieren der Prozedur garantieren.

Diese Arbeit basiert auf der Forschungsarbeit von Sofronie-Stokkermans an
lokalen Theorieerweiterungen, sowie der Arbeit von Ganzinger und Korovin an
instanziierungs-basierten Methoden zum Theorembeweisen in Prädikatenlogik
erster Ordnung. Wir führen die Arbeit an lokalen Theorieerweiterungen fort,
indem wir neue Beispiele von Axiomen geben, die eine Lokalitätseigenschaft
erfüllen, und benutzen Ideen aus instanziierungs-basierten Methoden zum Theo-
rembeweisen in Prädikatenlogik, um lokales Beweisen effizienter zu machen.
Weiterhin zeigen wir, dass lokale Theorieerweiterungen es uns ermöglichen, be-
stimmte Verifikationsprobleme für parametrisierte Systeme zu entscheiden und
entwickeln eine Reihe komplexer werdender Modelle eines automatischen Zug-
steuerungssystems an denen wir demonstrieren, wie man mittels lokalen Be-
weisens Sicherheitseigenschaften solcher Systeme verifizieren kann.
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Chapter 1

Introduction

Information-handling systems have become ubiquitous in our society and are
becoming more complex day by day. They may be pure hardware or software
systems, or embedded systems of hardware and software that act in a real-world
environment, resulting in complex systems of several components. Verification
is a method to ensure that systems behave in the expected way, which is a
necessity for safety-critical applications such as computer-controlled medical
equipment, automatic transportation control for cars, trains and aircraft, as
well as computer-controlled processes in power plants, like emergency shutdown
measures in nuclear reactors. For most of these systems, their size makes it
impossible to verify their correctness by hand. Therefore, we need automatic or
computer-aided verification procedures.

A back-end of many automatic and computer-aided verification methods is
automated reasoning, which comes in different levels of complexity:

For pure hardware systems, propositional satisfiability (SAT) solving is suf-
ficient because of their finite structure. There are dedicated, technically mature
SAT solvers like Chaff [47] or MiniSAT [15], which can decide such problems
very efficiently.

Going beyond the expressiveness of SAT, we have on the one hand software
that uses unbounded data types, but is otherwise finite, e.g. in the number of
program steps. Given procedures that can decide ground satisfiability problems
in the theory of such data types, verification problems for these systems can
often be encoded as ground satisfiability modulo theories (SMT) problems. In
this case, ground SMT solvers like CVC [5], Yices [14] or Z3 [11] decide the
given problems.

On the other hand, there is software that can be abstracted from concrete
data types, but has an inherent infiniteness, e.g. because a loop may be repeated
for an unbounded number of times. Such problems can be encoded in general
first-order logic (FOL), which allows to make statements over infinitely many
elements in the same formula by universal quantification. In general, FOL with
universal quantification is only semi-decidable, i.e. termination of any automatic
procedure that tries to prove a conjecture can only be guaranteed if the con-
jecture can be proved — otherwise, the procedure may run forever. Formulas
in FOL can efficiently be handled by first-order theorem provers like E [55],
SPASS [67] and Vampire [54].

Finally, some software systems and most complex systems require to com-

1



bine reasoning modulo theories and quantification over infinitely many elements.
None of the methods above is sufficient for this kind of problems. Handling
universal quantifiers when reasoning modulo theories is in general even more
difficult than for pure FOL and not even semi-decidable. Consequently, most of
the research in this direction focuses on methods that either consider rather uni-
form background theories (as opposed to complex combinations of several back-
ground theories) that allow quantifier elimination, like linear arithmetic [68],
fragments of the theory of arrays [28, 9] or sets with cardinality constraints [43],
or on heuristics for quantifier instantiation, which work in complex theories, but
sacrifice completeness [12, 26]. There has also been some work on integrating
theory reasoning with first-order theorem proving methods [62, 23, 53], but in
general these also sacrifice completeness.

We take a different approach and focus on instances of the problem that
we can show to be decidable, even in the presence of complex background the-
ories. We use the notion of local theory extensions, introduced by Sofronie-
Stokkermans [56], which are extensions of a background theory with additional
axioms that allow for quantifier elimination and reduction of reasoning to the
background theory. In this way, we can guarantee termination of our automated
reasoning procedures even for complex background theories, resulting in either
a proof or a counterexample for any possible conjecture.

We will show that such local theory extensions allow us to reason about
many useful properties of mathematical functions, data structures and parame-
terized systems. Moreover, local reasoning gives us decision procedures for these
problems, where other state-of-the-art approaches resort to heuristics or cannot
be used at all.

Besides the research by Sofronie-Stokkermans on local theory extensions [56,
59], our work is also based on work by Ganzinger and Korovin on instantiation-
based first-order theorem proving [21, 22, 23]. In this dissertation, we give new
results in the framework of local theory extensions, bring these two strings of
research together and show applications of the resulting methods in the verifi-
cation of parameterized systems.

1.1 Contributions

This dissertation advances the state of the art by improving reasoning in local
theory extensions in several ways:

• We extend the applicability of local reasoning by identifying new local
theory extensions.

• We combine the existing local reasoning approach with ideas from first-
order instance generation, providing a more efficient method to solve the
resulting satisfiability problems incrementally.

• We provide prototype implementations of both the standard approach to
local reasoning and the new, incremental approach and give a comparison
of their behavior.

• We show applications of our results in the verification of complex systems
with a parametric number of components, as an example for verification
tasks that are beyond the state-of-the-art provers mentioned above.

2



We describe the contributions in more detail:

1.1.1 Identifying New Local Theory Extensions

We identify several theory extensions, represented as sets of axioms, that are
local with respect to a given base theory. The locality property allows us to
treat problems in the extended theory efficiently by finite instantiation of the
axioms and reduction to the base theory.

The new local theory extensions include strictly monotone functions, func-
tions that are strictly bounded by other function terms, sets of guarded bound-
edness properties with mutually exclusive guards and several combinations of
(strict) monotonicity and (strict) boundedness conditions. Furthermore, we will
show locality properties for a notion of quasi-monotone functions, recursive data
structures and functions modeling cardinality of sets.

1.1.2 An Incremental Approach to Local Reasoning

The standard approach to local reasoning instantiates the given axioms ea-
gerly to a set of instances that are known to be equisatisfiable to the original
first-order problem. We apply ideas from resolution-based instance generation
(developed by Ganzinger and Korovin [21, 22, 23]) to obtain an incremental
approach that generates only a few ground instances at a time and interleaves
instantiation with satisfiability checks on the ground level. These checks can be
done by a black-box SMT solver. If the ground problem is satisfiable, we obtain
a candidate model that can be used to guide further instantiation steps.

The benefit of this approach is that, both in the satisfiable and unsatisfiable
case, it can terminate without generating all instances that would be needed for
the reduction to the base theory with the standard approach to local reasoning.
We prove that the incremental approach remains sound and complete.

1.1.3 Implementation of Both Approaches

As a proof of concept, we have implemented the standard approach to local
reasoning as well as the new, incremental approach. We compare the standard
approach to two different strategies for incremental instance generation with
respect to their behavior, focusing on space and time efficiency. We show that
the incremental approach is more efficient for a set of crafted examples as well
as for a set of verification benchmarks taken from the SMT benchmark library
SMT-LIB.

1.1.4 Applications in Verification

We show that locality of theory extensions allows us to decide invariant check-
ing and bounded model checking problems for a certain class of parameterized
systems. We apply our results to the verification of a case study taken from
the European Train Control System (ETCS) standard. We introduce succes-
sively more complex models that can all be verified by using reasoning in local
theory extensions. The models we consider feature a parametric number of
components, which means they cannot be treated by the standard approaches.
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1.2 Outline

In Chapter 2, we introduce the notion of local theory extensions and local rea-
soning, and give some examples of local theory extensions that have been iden-
tified before. We introduce a number of new theory extensions and prove their
locality in Chapter 3. Chapter 4 introduces our incremental approach to local
reasoning. We evaluate efficiency of an implementation of the new approach,
compared to the standard approach to local reasoning. In Chapter 5, we show
that locality results allow us to decide verification problems for certain param-
eterized systems, and present in detail an application of our theoretical results
to the ETCS case study. Finally, we draw conclusions and present possible
directions for future work in Chapter 6.
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Chapter 2

Hierarchic Reasoning in
Local Theory Extensions

Research on local theory extensions is based on the notion of local theories intro-
duced by Givan and McAllester [30, 31], and results of Basin and Ganzinger [7,
20] studying these local theories. Hierarchic reasoning in local theory extensions,
or in short: local reasoning, has been introduced by Sofronie-Stokkermans [56],
based on work of Ganzinger, Sofronie-Stokkermans and Waldmann [25].

This chapter gives an overview of the previous results on local reasoning.
After defining the necessary concepts of sorted first-order logic (with equality),
we will first introduce the notion of local theory extensions, which are a gen-
eralization of local theories. Then we present the method of local reasoning,
which allows us to decide satisfiability problems in local theory extensions. Af-
ter showing how extensions with a locality property can be identified, we give
some examples of local theory extensions. Finally, we introduce a refinement of
the local reasoning approach which not only considers a single local extension,
but a chain of extensions.

2.1 Preliminaries

Signatures and Formulas

Definition 2.1 (Countable). We say that a set is countable if it is either finite
or countably infinite.

Definition 2.2 (Signature). A signature Π is a tuple (S , Σ, Pred), where:

• S is a countable set of sorts.

• Σ is a countable set of function symbols, each with an arity n ≥ 0 and a
type s1 × . . . × sn → sn+1, with si ∈ S for all i .1 Function symbols with
arity 0 are called constant symbols.

• Pred is a countable set of predicate symbols, each with a type s1× . . .×sn ,
0 ≤ n, si ∈ S for all i .

1These notions of arity and type for many-sorted logic are according to Zhang et al. [69].
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Definition 2.3 (Signature extension). Given two signatures Π = (S , Σ, Pred)
and Π′ = (S ′, Σ′, Pred′), we say that Π is a signature extension of Π′ if S ⊆ S ′,
Σ ⊆ Σ′ and Pred ⊆ Pred′. In this case we write Π ⊆ Π′.

Definition 2.4 (Variables). A variable is a symbol with an associated sort. We
assume that for a given signature Π = (S , Σ, Pred) we have a set X =

⋃

s∈S Xs

of Π-variables, where each Xs consists of a countably infinite number of variables
of sort s .

Definition 2.5 (Term, ground term). For a given signature Π = (S , Σ, Pred)
and a set of Π-variables X =

⋃

s∈S Xs , a Π-term (over X ) is defined recursively:

• every x ∈ Xs is a Π-term of sort s ,

• every constant symbol c ∈ Σ of type → s1 is a term of sort s1, and

• if f ∈ Σ is a function symbol of type s1 × . . . × sn → sn+1 and t1, . . . , tn
are Π-terms of sort s1, . . . , sn , respectively, then f (t1, . . . , tn) is a Π-term
of sort sn+1.

A term is ground if it does not contain variables. The set of all Π-terms over X
is denoted by TΣ(X ), and the set of ground Π-terms by TΣ.

Definition 2.6 (Subterm). The subterms of a term are defined recursively:

• every term is a subterm of itself, and

• the subterms of f (t1, . . . , tn) include also the subterms of the ti .

A subterm is ground if it does not contain variables.

Definition 2.7 (Atom). For a given signature Π = (S , Σ, Pred), a Π-atom is
either

• t1 = t2, where t1 and t2 are Π-terms of the same sort, or

• P(t1, . . . , tn), where P ∈ Pred with type s1 × . . . × sn , and each ti is a
Π-term of sort si .

Definition 2.8 (Literal). For a given signature Π = (S , Σ, Pred), a Π-literal is
either a Π-atom A or its negation ¬A. If A is t1 = t2 for Π-terms t1 and t2, we
write ¬A also as t1 6= t2.

Definition 2.9 (Formula, sentence). For a given signature Π = (S , Σ, Pred), a
Π-formula is defined recursively as

• a Π-literal,

• ¬F , for a Π-formula F ,

• F1 ∧ F2, for Π-formulas F1 and F2,

• F1 ∨ F2, for Π-formulas F1 and F2,

• F1 → F2, for Π-formulas F1 and F2,

• ∀ x :s . F , for a Π-formula F and a variable x of sort s ∈ S , or
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• ∃ x :s . F , for a Π-formula F and a variable x of sort s ∈ S .

A Π-formula is called a Π-sentence if every variable is bound by a quantifier.
It is prenex if it consists of a (possibly empty) sequence of quantifiers, followed
by a quantifier-free formula. It is universal if it is prenex and does not con-
tain existential quantifiers. It is a ∀ ∃ formula if it is prenex and no universal
quantifier appears after an existential quantifier.

Note that whenever Π and Π′ are signatures with Π ⊆ Π′, any Π-formula is
also a Π′-formula.

Definition 2.10 (Clause, ground clause, Horn clause). For a given signature Π,
a Π-clause C is a disjunction of Π-literals, where all variables in C are implicitly
universally quantified. We call C a ground clause if it does not contain variables,
a non-ground clause otherwise. A clause is Horn if it contains at most one
positive literal.

Definition 2.11 (Substitution). For a given signature Π = (S , Σ, Pred), a Π-
substitution is a function mapping Π-variables of sort s ∈ S to Π-terms of sort
s . For a Π-variable x , we write xσ to denote the result of applying σ to x . For
terms t and formulas F , we write tσ and Fσ, respectively, to denote the result
of applying σ simultaneously to all variables in t or F .

Definition 2.12 (Instance). If C is a Π-clause and σ a Π-substitution, then
Cσ is a Π-instance of C .

Definition 2.13 (st(F )). For a formula F , let st(F ) be the set of ground
subterms appearing in F .

In the following, whenever Π is clear from the context or we need not specif-
ically refer to it, we omit the prefix Π from all notions defined above. We use
x , y, i , j to denote variables, a, b, c, d for constants, f as a non-constant func-
tion symbol and t for terms. We write t [x1, . . . , xn ] to denote that no other
variables than x1, . . . , xn are subterms of t . A sequence of variables x1, . . . , xn

will sometimes be abbreviated as x , and a sequence of terms t1, . . . , tn as t .
L denotes literals, C and D clauses, and F formulas. The empty clause is

denoted by 2. Sets of formulas represent the conjunction of their elements. We
denote sets of clauses by K, sets of ground clauses by G.

Structures and Models

Definition 2.14 (Structure). For a signature Π = (S , Σ, Pred), a Π-structure is
a map M that assigns to every sort s ∈ S a non-empty set of elements sM , to ev-
ery f ∈ Σ with type s1×. . .×sn→sn+1 a total function fM : s1M

×. . .×snM
→sn+1M

,
and to every P ∈ Pred with type s1×. . .×sn a set PM ⊆ s1M

×. . .×snM
.

Definition 2.15 (Variable assignment). For a given Π-structure M and a set
of Π-variables X =

⋃

s∈S Xs , a Π-variable assignment is a map β that assigns
to every x ∈ Xs an element of sM . For any Π-term t , we denote by β(t) the
result of applying β recursively to its subterms.

For a given Π-variable assignment β, a Π-variable x of sort s and e ∈ sM , let
β[x 7→ e] be the Π-variable assignment that maps x to e, and otherwise behaves
like β.
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Definition 2.16 (Satisfaction, model). For a signature Π = (S , Σ, Pred) and
set of Π-variables X , we define when a pair (M , β) of a Π-structure M and a
Π-variable assignment β satisfies a Π-literal L, written (M , β) |= L:

• (M , β) |= P(t1, . . . , tm) iff (β(t1), . . . , β(tm)) ∈ PM .

• (M , β) |= ¬P(t1, . . . , tm) iff (β(t1), . . . , β(tm)) 6∈ PM .

• (M , β) |= t1 = t2 iff β(t1) = β(t2).

• (M , β) |= t1 6= t2 iff β(t1) 6= β(t2).

Then, satisfaction of formulas is defined recursively:

• (M , β) |= ¬F iff not (M , β) |= F

• (M , β) |= F1 ∧ F2 iff (M , β) |= F1 and (M , β) |= F2,

• (M , β) |= F1 ∨ F2 iff (M , β) |= F1 or (M , β) |= F2,

• (M , β) |= F1 → F2 iff (M , β) |= ¬F1 or (M , β) |= F2

• (M , β) |= ∀ x . F iff (M , β[x 7→ e]) |= F for every e ∈ sM (where x ∈ Xs),

• (M , β) |= ∃ x . F iff (M , β[x 7→ e]) |= F for some e ∈ sM (where x ∈ Xs).

We say that a Π-structure M satisfies a Π-formula F if (M , β) |= F for every
Π-variable assignment β. In this case, we write M |= F and call M a Π-model
of F . For a set of Π-formulas F , we write M |= F and call M a Π-model of F
if M |= F for every F ∈ F .

Definition 2.17 (Consequence). A Π-formula F is a Π-consequence of a set of
Π-formulas T , written T |= F , if F is satisfied by every Π-model of T .

Definition 2.18 (Unsatisfiable). A set of Π-formulas T is unsatisfiable if there
is no Π-structure2 that satisfies T . In this case we write T |= 2.

Theories and Reasoning Modulo Theories

Unlike some of the previous work on local theory extensions which allows the-
ories to be either sets of formulas or sets of structures, we restrict ourselves to
theories which are defined as certain sets of formulas. The following definition
is according to van Dalen [66].

Definition 2.19 (Theory). A Π-theory is a set T of Π-sentences that is closed
under consequences, i.e. T |= F only if F ∈ T , for every Π-formula F .

Definition 2.20 (Axiomatization, axiom). A set of Π-sentences T ′ is an ax-
iomatization of a Π-theory T if, for all Π-formulas F , T ′ |= F iff F ∈ T . The
elements of T ′ are called axioms of T .

Convention. For an axiomatization T ′ of a theory T and a formula F we have
T |= F if and only if T ′ |= F . Because of this equivalence wrt. consequences, we
will use axiomatizations to represent theories. Whenever a set of axioms is used
in place of a theory, the theory itself can be obtained from its axiomatization
by considering its closure under consequences.

2Note that if there is no Π-structure that satisfies T , then there can also be no Π′-structures,
Π ⊆ Π′, that satisfy T .
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Definition 2.21 (Universal theory). A Π-theory is universal if it can be ax-
iomatized by a set of universal Π-sentences.

Definition 2.22 (Empty theory). The empty theory is the theory that is ax-
iomatized by the empty set.

Definition 2.23 (Decidable theories, decision procedures). A Π-theory T is
decidable if there is a procedure that decides for every Π-formula F whether
T |= F . We say that the universal fragment of T is decidable if this holds for
all universal Π-formulas F . Similarly, the ∀ ∃ fragment of T is decidable if this
holds for all ∀ ∃ Π-formulas F .

A procedure that decides (a fragment of) a theory T is called a decision
procedure for (this fragment of) T .

Definition 2.24 (Arithmetic theories). In our examples and applications, we
will often refer to the theories of Presburger arithmetic [52] TN, linear integer
arithmetic TZ, linear rational arithmetic TQ and non-linear real arithmetic TR

(also known as real closed fields or elementary algebra [65]). Axiomatizations
of these theories are well-known, see e.g. Bradley and Manna [8]. All of these
theories are decidable.

Remark. As we can consider Π-formulas also as Π′-formulas, for any Π ⊆ Π′,
we can also consider Π-theories as Π′-theories. Then, decidability of a Π-theory
T depends not only on T (as a set of sentences) itself, but also on Π. E.g., TZ is
decidable when we consider it as a theory over its standard signature ΠZ (with
a function symbol for addition, constant symbols for every integer and function
symbols for multiplication with integer constants), but not when we consider it
as a theory over the extended signature Π′ ⊇ ΠZ that additionally contains a
unary function symbol f . For TZ as a Π′-theory, only the universal fragment is
decidable.3

Definition 2.25 (Theory extension, extension symbols, extension terms). Con-
sider signatures Π0 = (S , Σ0, Pred) and Π1 = (S , Σ0∪Σ1, Pred), with Σ0∩Σ1 =
∅. A Π1-theory T1 is a theory extension of a Π0-theory T0 if T0 ⊆ T1. As an
abbreviation, we say that T0 ⊆ T1 is a theory extension.

Function symbols in Σ1 are called extension symbols , terms f (t1, . . . , tn) with
f ∈ Σ1 are called extension terms .

Conventions. According to our convention that we represent theories by their
axiomatizations, we will also consider extensions of axiomatizations with addi-
tional axioms, and call them theory extensions.

In the following, we will only consider theory extensions T0 ⊆ T0 ∪ K such
that T0 is (an axiomatization of) a Π0-theory, K is a set of Π1-clauses and
Σ1 6= ∅.

Furthermore, whenever we write T |= F , we assume that F is in the signature
of T , except for additional constant symbols. Similarly, if T0 ⊆ T0∪K is a theory
extension and we write T ∪ K |= F (or T ∪ K ∪ F |= 2), we assume that F is
in the signature of T ∪ K, except for additional constant symbols.

3We will see in Section 2.5 that decidability of the universal fragment in fact follows from
previous results on local theory extensions.
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2.2 Locality of Theories and Theory Extensions

2.2.1 Local Theories

Work on local theories goes back to Givan and McAllester [31, 30], who first
looked into locality of inference relations defined as sets of Horn clauses. This
work was continued by Ganzinger [20], who defined the notion of local theories
(which are the same as local inference relations) and generalized it to stably
local theories.4

Definition 2.26 (KΘ). For a set of clauses K and a set of ground terms Θ,
define

KΘ = { Cσ | C ∈ K,Cσ ground and st(Cσ) ⊆ Θ }.

Definition 2.27 (Local theory [20]). A local theory is a set of Horn clauses K
such that for any ground Horn clause C we have K |= C only if Kst(K∪C ) |= C .

That is, to decide whether C is a consequence of K, it is enough to generate the
finite set of ground instances Kst(K∪C ) and to check whether C is a consequence
of these instances.

Definition 2.28 (KΘ). For a set of clauses K and a set of ground terms Θ,
define

KΘ = { Cσ | C ∈ K and xσ ∈ Θ for every variable x }.

Definition 2.29 (Stably local theory [20]). A stably local theory is a set of
Horn clauses K such that for any ground Horn clause C we have K |= C only if
Kst(K∪C ) |= C .

2.2.2 Local Theory Extensions

The notion of local theories has been generalized to local theory extensions by
Sofronie-Stokkermans [56]. With the following definitions, a local theory can be
defined as a local theory extension of the empty theory.

Definition 2.30 (K[G]). Let T0 ⊆ T0 ∪ K be a theory extension. For a set G
of ground clauses, let

K[G] = { Cσ | C ∈ K and σ is such that
(1.) for each extension term f (t) in C , f (t)σ ∈ st(K ∪G)
(2.) xσ = x , if x does not occur in an extension term }.

That is, K[G] is the set of instances that results from matching extension terms
in K to ground extension terms in K∪G, and not instantiating other variables.
Note that if all variables in K appear in extension terms, then K[G] = Kst(K∪G).

Definition 2.31 (Local theory extension [56]). A theory extension T0 ⊆ T0∪K
is local if it satisfies condition (Loc):5

4There is also work on locality by Basin and Ganzinger [7], who looked into sets of (not
necessarily Horn) clauses and defined the notion of order locality wrt. a given term ordering.
We will not consider order locality in this work.

5In the literature, this notion of locality is sometimes called (Locf ). There, the superscript
f refers to the restriction to finite sets of ground clauses G, while the general notion also allows
for infinite sets. For the purposes of this work, finite sets will always be sufficient.
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(Loc) For every finite set G of ground clauses,
T0 ∪ K ∪ G |= 2 ⇔ T0 ∪ K[G] ∪G |= 2.

Note that K[G]∪G is a set of clauses in the signature of the theory extension,
so a decision procedure for T0 (in its standard signature) is not sufficient for
deciding satisfiability of T0 ∪ K[G] ∪ G. The same holds for the satisfiability
problems for other notions of locality, which will be defined in the following.

We will see in Section 2.3 how we can decide such satisfiability problems,
given a decision procedure for a fragment of T0.

Other Notions of Locality

In previous work [56, 36, 35], some other notions of locality have been intro-
duced, including stable locality, extended locality, Ψ-locality and combinations
of these different notions. All of them allow for a larger fragment of first-order
logic to be treated with local reasoning, and therefore require a larger set of
instances to be generated (which can even be infinite in case of stable locality).
In the following, we want to introduce formally the notions of stable locality,
Ψ-locality and stable Ψ-locality.

Definition 2.32 (TΣ(Θ)). For a set of ground terms Θ and a set of function
symbols Σ, let TΣ(Θ) be the set of all terms generated from Θ by applying
Σ-function symbols (repeatedly) to terms in Θ.

Definition 2.33 (K[G]). Let T0 ⊆ T0 ∪ K be a theory extension . For a set G
of ground clauses, let

K[G] = { Cσ | C ∈ K and σ is such that
(1.) σ(x ) = t for some t ∈ TΣ0

(st(K ∪ G)),
if x appears in an extension term in C

(2.) σ(x ) = x , if x does not occur in an extension term }.

That is, K[G] is the set of instances that results from instantiating variables
below extension symbols to terms (of the same sort) in TΣ0

(st(K∪G)), and not
instantiating other variables. Note that if all variables in K appear in extension
terms, then K[G] = KTΣ0

(st(K∪G)).

Definition 2.34 (Stably local theory extension [56]). A theory extension T0 ⊆
T0 ∪ K is stably local if it satisfies condition (SLoc):

(SLoc) For every finite set G of ground clauses,

T0 ∪K ∪ G |= 2 ⇔ T0 ∪K[G] ∪ G |= 2.

Note that as soon as Σ0 contains non-constant function symbols, K[G] will in
general not be finite. Therefore, we will usually restrict the use of stable locality
to cases where the base theory has no function symbols that generate terms of
an input sort for our extension functions. Even though TΣ0

(st(K∪G)) can still
be infinite in this case, we will only have finitely many terms of an input sort
for our extension functions, and therefore K[G] will be finite.

We can generalize the notions of locality and stable locality by allowing
to instantiate the axioms wrt. a set of ground terms that is computed from
st(K ∪ G), instead of instantiating wrt. st(K ∪ G) itself.
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Definition 2.35 (Closure operator). A function Ψ on sets of ground terms is
a closure operator if (for all sets of ground terms Θ, Θ′):

1. Θ ⊆ Ψ(Θ)

2. if Θ ⊆ Θ′, then Ψ(Θ) ⊆ Ψ(Θ′)

3. Ψ(Ψ(Θ)) ⊆ Ψ(Θ)

Definition 2.36 (KΨ[G]). Let T0 ⊆ T0 ∪K be a theory extension. For a set G
of ground clauses and a closure operator Ψ on sets of (Σ0 ∪ Σ1)-terms, let

KΨ[G] = { Cσ | C ∈ K and σ is such that
(1.) for each extension term f (t) in C ,

f (t)σ ∈ Ψ(st(K ∪ G))
(2.) σ(x ) = x , if x does not occur in an extension term }.

Definition 2.37 (Ψ-local theory extension [36, 35]). A theory extension T0 ⊆
T0∪K is Ψ-local (for a given closure operator Ψ) if it satisfies condition (LocΨ):

(LocΨ) For every finite set G of ground clauses,
T0 ∪ K ∪G |= 2 ⇔ T0 ∪ KΨ[G] ∪ G |= 2 .

Finally, we can combine stable and Ψ-locality.

Definition 2.38 (KΨ[G]). Let T0 ⊆ T0 ∪K be a theory extension . For a set G
of ground clauses and a closure operator Ψ on sets of (Σ0 ∪ Σ1)-terms, let

KΨ[G] = { Cσ | C ∈ K and σ is such that
(1.) σ(x ) = t for some t ∈ Σ0(Ψ(st(K ∪G))),

if x appears in an extension term in C
(2.) σ(x ) = x , if x does not occur in an extension term }.

Definition 2.39 (Stably Ψ-local theory extension [36, 35]). A theory extension
T0 ⊆ T0 ∪ K is stably Ψ-local (for a given closure operator Ψ) if it satisfies
condition (SLocΨ):

(SLocΨ) For every finite set G of ground clauses,
T0 ∪ K ∪ G |= 2 ⇔ T0 ∪ KΨ[G] ∪ G |= 2 .

2.3 Local Reasoning

In this section, we show how the locality conditions defined before allow for
a special approach of reasoning, called hierarchical reasoning in local theory
extensions [56, 36], or simply local reasoning in the following.

Let T0 ⊆ T0∪K be a theory extension satisfying one of the locality conditions
(Loc), (SLoc), (LocΨ) or (SLocΨ). Let K∗[G] stand for either K[G], K[G], KΨ[G]
or KΨ[G], depending on which notion of locality is satisfied. If, for a given set
of ground clauses G, K∗[G] is finite, then the locality conditions give us a
possibility to check satisfiability of G modulo the extended theory T0 ∪ K:

Step 1: Use (stable)(Ψ-)locality.
By the locality condition, T0 ∪ K ∪ G |= 2 ⇔ T0 ∪ K∗[G] ∪ G |= 2.

Step 2: Test satisfiability of K∗[G] ∪ G.
There are two ways to check whether T0 ∪ K∗[G] ∪ G |= 2:
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i) if K∗[G]∪G contains only ground clauses6, we can solve the problem with
a procedure that solves satisfiability problems for the universal fragment
of T0 with additional free function symbols;

ii) since all terms in K∗[G] that start with Σ1-symbols are ground (by defini-
tion of K∗[G]), we can also remove the extension symbols by Ackermann’s
reduction:

(a) we replace each extension term f (t1, . . . , tn) in K∗[G] by a fresh con-
stant cf (t1,...,tn).

(b) for all extension functions f , we add the according instances of the
congruence axiom: for every pair of terms f (t1, . . . , tn), f (s1, . . . , sn)
that have been replaced by cf (t1,...,tn) and cf (s1,...,sn), respectively, we
add a clause

∧n

i=1 ti = si → cf (t1,...,tn) = cf (s1,...,sn ).

The resulting set of clauses only contains function symbols from Σ0, its
satisfiability can be checked by any satisfiability procedure for T0.

Regarding automated reasoning, the first approach is somewhat simpler: exist-
ing SMT solvers decide the universal fragment of many interesting theories and
can usually also handle additional function symbols. However, with the second
approach we can also obtain a decision procedure for the universal fragment of
T ∪ K if K∗[G] ∪ G does not necessarily consist only of ground clauses, if the
∀ ∃ fragment of the background theory is decidable (like e.g., TN, TZ or TQ).

Definition 2.40 (∀ ∃-reducing, universally reducing). A theory extension T0 ⊆
T0∪K is ∀ ∃-reducing if it satisfies (Loc), (SLoc), (LocΨ) or (SLocΨ), and K∗[G]∪
G is finite for every finite set of ground clauses G.

A ∀ ∃-reducing theory extension is universally reducing if every variable in
K has at least one appearance in an extension term.

Theorem 2.41 ([56, 36]). Consider a theory extension T0 ⊆ T0 ∪ K.

i) If T0 ⊆ T0∪K is ∀ ∃-reducing and the ∀ ∃ fragment of T0 is decidable, then
the universal fragment of T0 ∪K is decidable.

ii) If T0 ⊆ T0 ∪K is universally reducing and the universal fragment of T0 is
decidable, then the universal fragment of T0 ∪ K is decidable.

Example 2.42. Suppose T0 is any theory with a partial ordering (like TZ, TQ

or TR) and consider its extension with a monotone function f , i.e.

K = { x ≤ y → f (x ) ≤ f (y) }.

We want to check whether the following set of ground clauses G is satisfiable
with respect to the extended theory T0 ∪ K:

G = { a ≤ b, ¬(f (a) ≤ f (b)) }.

By locality of the extension T0 ⊆ T0 ∪ K, we know that

T0 ∪ K ∪G |= 2 ⇔ T0 ∪ K[G] ∪G |= 2,

6A sufficient condition for this is that every variable in K has at least one appearance below
an extension symbol.
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where K[G] = { a ≤ a → f (a) ≤ f (a), a ≤ b → f (a) ≤ f (b)

b ≤ a → f (b) ≤ f (a), b ≤ b → f (b) ≤ f (b) }.

We have two possibilities to check whether T0 ∪ K[G] ∪ G |= 2:

i) We give K[G] ∪ G to an SMT solver that decides satisfiability problems
in T0 with uninterpreted functions.

ii) We eliminate function symbol f in K[G] and G, resulting in

G ′ = { a ≤ b, ¬(c1 ≤ c2) },

K[G]′ = { a ≤ a → c1 ≤ c1, a ≤ b → c1 ≤ c2

b ≤ a → c2 ≤ c1, b ≤ b → c2 ≤ c2 },

and a singleton set of instances of the congruence axiom

D = { a = b → c1 = c2 }.

Now, T0∪K[G]∪G |= 2 is equivalent to T0∪G ′∪K[G]′∪D |= 2, and the
latter can be checked by any decision procedure for T0 (without additional
function symbols).

2.4 Identifying Local Theory Extensions

In order to apply local reasoning, we need to be sure that T0 ⊆ T0 ∪ K is
a (stably, Ψ-) local theory extension. To this end, we can either prove the
corresponding locality condition directly, or use a method developed by Sofronie-
Stokkermans [56], based on proving embeddability of partial into total models.
In this section we will introduce this method, as well as results that allow us
to combine disjoint local theory extensions such that the combined extension is
again local.

2.4.1 Additional Definitions

We will need the following additional notation:

Definition 2.43 (Partial Π-structure). For a signature Π = (S , Σ, Pred), a
partial Π-structure is a map M that assigns to every sort s ∈ S a non-empty set
of elements sM , to every f ∈ Σ with arity s1×. . .×sn→sn+1 a partial function
fM : s1M

×. . .×snM
→sn+1M

, and to every P ∈ Pred with arity s1×. . .×sn a set
PM ⊆ s1M

×. . .×snM
.

That is, a partial Π-structure is defined like a Π-structure, except that functions
can be partial. The evaluation of a term t with variables from a set V wrt. a
variable assignment β in a partial structure M is the same as for total Π-
structures, except that the evaluation is undefined for t = f (t1, . . . , tn) if at
least one of β(ti) is undefined, or if (β(t1), . . . , β(tn)) is not in the domain of
fM .

Definition 2.44 (Completion). Let f : O1 → O2 be a partial function. A total
function f : O1 → O2 is called a completion of f if f (x ) = f (x ) whenever f (x )
is defined.
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Definition 2.45 (Weak Σ-homomorphism). Let Π = (S , Σ, Pred) be a signa-
ture, M and N partial Π-structures. For every s ∈ S , let hs : sM → sN be a
total function. Let UM =

⋃

s∈S sM , UN =
⋃

s∈S sN and h : UM → UN the total
function with h(x ) = hs (x ) whenever x ∈ sM .

We call h : UM → UN a weak Σ-homomorphism if whenever fM (a1, . . . , an)
is defined, then fN (h(a1), . . . , h(an )) is also defined, and h(fM (a1, . . . , an)) =
fN (h(a1), . . . , h(an )), for every f ∈ Σ.

Definition 2.46 (Weak embedding). Let Π = (S , Σ, Pred) be a signature, and
M and N partial Π-structures. Let UM =

⋃

s∈S sM , UN =
⋃

s∈S sN .
A weak Σ-homomorphism i : UM → UN is a weak embedding of M into N if

i is injective and an embedding with respect to Pred, i.e. (i(a1), . . . , i(an )) ∈ PN

if and only if (a1, . . . , an) ∈ PM , for every P ∈ Pred. We say that a partial Π-
structure M weakly embeds into a (total) Π-structure N if there exists a weak
embedding of M into N .

Definition 2.47 (Weak satisfaction, weak partial model). We define when a
pair (M , β) of a partial Π-structure M and a Π-variable assignment β weakly
satisfies a Π-literal L, written (M , β) |=w L:

• (M , β) |=w P(t1, . . . , tn) iff either (β(t1), . . . , β(tn)) ∈ PM or β(ti) is un-
defined for some i .

• (M , β) |=w ¬P(t1, . . . , tn) iff either (β(t1), . . . , β(tn)) 6∈ PM or β(ti) is
undefined for some i .

• (M , β) |=w t1 = t2 iff either β(t1) = β(t2) or β(ti) is undefined for some i .

• (M , β) |=w t1 6= t2 iff either β(t1) 6= β(t2) or β(ti) is undefined for some i .

That is, for a given pair (M , β), we can have both (M , β) |=w L and (M , β) |=w

¬L. Based on weak satisfaction of Π-literals, weak satisfaction of Π-formulas
is defined recursively in the same way as standard satisfaction. We write
(M , β) |=w F if (M , β) weakly satisfies F . If (M , β) |=w F for all Π-variable
assignments β, we write M |=w F and call M a weak partial Π-model of F .

Similarly, we can define Evans satisfaction Evans partial models, with the
difference that we have a special treatment of the equality symbol (which is
treated like any other predicate symbol in weak partial models):

Definition 2.48 (Evans Satisfaction, Evans partial model). We define when a
pair (M , β) of a partial Π-structure M and a Π-variable assignment β (Evans)
satisfies a Π-literal L, written (M , β) |=e L:

• (M , β) |=e P(t1, . . . , tn) iff either (β(t1), . . . , β(tn)) ∈ PM or β(ti) is un-
defined for some i .

• (M , β) |=e ¬P(t1, . . . , tn) iff either (β(t1), . . . , β(tn)) 6∈ PM or β(ti) is
undefined for some i .

• (M , β) |=e t1 = t2 iff either β(t1) = β(t2) or both β(t1) and β(t2) are
undefined or β(t1) is defined, t2 = f (t ′1, . . . , t

′
n) and β(t ′i) is undefined for

some i .

• (M , β) |=e t1 6= t2 iff either β(t1) 6= β(t2) or β(ti) is undefined for some i .
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Again, Evans satisfaction of Π-formulas is defined recursively in the same way
as standard satisfaction. We write (M , β) |=e F if (M , β) (Evans) satisfies F .
If (M , β) |=e F for all Π-variable assignments β, we write M |=e F and call M
an Evans partial Π-model of F .

2.4.2 Embeddability Implies Locality

Let T0 be a theory with signature Π0 = (S , Σ0, Pred) and T1 = T0 ∪ K an ex-
tended theory with signature Π = (S , Σ0 ∪ Σ1, Pred). Theory extensions T0 ⊆ T1

satisfying locality conditions (Loc) or (SLoc) can be recognized by showing that
certain partial models of T1 can be embedded into total models. We consider
the following embeddability (and completability) conditions:7

(Embw) Every weak partial Π1-model M of T1 where Σ0-functions are total
and Σ1-functions have a finite domain weakly embeds into a (total)
Π1-model M ′ of T1.

(Compw) Every weak partial Π1-model M of T1 where Σ0-functions are total
and Σ1-functions have a finite domain weakly embeds into a (total)
Π1-model M ′ of T1 s.t. M|Π0

and M ′
|Π0

are isomorphic.

(Emb) Every Evans partial Π1-model M of T1 where Σ0-functions are total
and Σ1-functions have a finite domain weakly embeds into a (total)
Π1-model M ′ of T1.

Definition 2.49 (Σ1-flat, Σ1-linear). We say that a formula is Σ1-flat if it
does not contain occurrences of constant or function symbols below an exten-
sion symbol. A Σ1-flat formula is Σ1-linear if all extension terms that contain
the same variable are syntactically equal, and no extension term contains two
occurrences of the same variable.

The following theorem states that for Σ1-linear sets of clauses K, locality of
a theory extension follows from condition (Embw):

Theorem 2.50 ([56, 61]). Let T0 be a theory with signature Π0 = (S , Σ0, Pred)
and K a set of Π-clauses, with Π = (S , Σ0 ∪ Σ1, Pred). If all clauses in K are
Σ1-linear and the extension T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).

Similarly, for universal base theories, stable locality of a theory extension follows
from condition (Emb):

Theorem 2.51 ([56]). Let T0 be a universal theory with signature Π0 = (S , Σ0,
Pred) and K a finite set of Π-clauses, with Π = (S , Σ0 ∪ Σ1, Pred). If the
extension T0 ⊆ T1 satisfies (Emb) then it satisfies (SLoc).

Note that, as the notion of local theory extensions is a generalization of local
theories, these results are a generalization of the embeddability results for local
theories by Ganzinger [20].

Theorems 2.50 and 2.51 allow us to identify many examples of local theory
extensions and local theories (see Sections 2.5 for existing results and Chapter 3
for new results we establish in this thesis).

7Sofronie and Ihlemann [61] call these conditions (Embfd
w ),(Compfd

w ) and (Embfd), respec-
tively. There, the additional superscript fd refers to the finite domain of Σ1-functions, while
the names used here are used for more general notions that allow partial functions with an in-
finite definition domain. Since in our locality conditions we only consider finite sets of ground
clauses, we do not need embeddability conditions in their full generality.
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Restriction to Countable Models

In the literature, theory extensions have also been allowed to be collections of
structures instead of sets of (first-order) sentences. As we only consider theories
as sets of sentences, we can use slightly weaker conditions to prove locality.
Define (Embc

w), (Compc
w) and (Embc) as variants of the notions above that only

require countable models to be embeddable into total models.

Then the following is a consequence of Theorems 2.50 and 2.51:

Corollary 2.52. For theory extensions defined by sets of first-order sentences,
locality already follows from (Embc

w) (together with the other assumptions of
Theorem 2.50), and stable locality from (Embc) (together with the assumptions
from Theorem 2.51).

Proof : To show that embeddability of countable partial models implies locality,
we need to show that T0 ∪K ∪G |= 2 ⇔ T0 ∪K ∗ [G] ∪G |= 2 holds whenever
every (weak or Evans) partial model of T0 ∪ K can be embedded into a total
model of T0 ∪K, according to (Embc

w) or (Embc), respectively.

If T0 ∪ K ∗ [G] ∪ G is a set of first-order sentences, by the Downward
Löwenheim-Skolem Theorem (see e.g. Barwise [6]), it has a countable model
whenever it has any model. Let M be such a countable model. Like in the
proof by Ihlemann and Sofronie [61], we can obtain a partial model P from M
by restricting the domains of the extension functions. In our case, the resulting
partial model will be countable, and therefore embeddability of countable par-
tial models is enough to prove (stable) locality. The rest of the proof works just
like the original ones. 2

2.4.3 Combination of Local Theory Extensions

Given two local theory extensions T0 ⊆ T0 ∪K1 and T0 ⊆ T0 ∪K2 such that the
extension symbols of the extensions are disjoint, we can find cases where the
combined extension T0 ⊆ T0 ∪ K1 ∪ K2 is also local.

First consider the case where both extensions satisfy condition (Compw). It
has been shown that then their combination also satisfies condition (Compw),
and hence also condition (Loc):

Theorem 2.53 ([59]). Let T0 be a theory with signature Π0 = (S , Σ0, Pred) and
for i ∈ {1, 2}, let Ki be sets of Πi -clauses, with Πi = (S , Σ0 ∪ Σi , Pred), with
Σ1 ∩ Σ2 = ∅ and .

If both T0 ⊆ T0 ∪ K1 and T0 ⊆ T0 ∪ K2 are theory extensions and satisfy
condition (Compw), then T0 ⊆ T0∪K1∪K2 is a theory extension and satisfies
condition (Compw). If, additionally, all clauses in both Ki are Σi -linear, then
the extension T0 ⊆ T0∪K1∪K2 satisfies (Loc).

Combination results for stably local and Ψ-local extensions are currently
under investigation [35].

We will give some examples of combined local theory extensions at the end
of Section 2.5.
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2.5 Examples of Local Theory Extensions

In this section, we give an (incomplete) overview of theory extensions that have
been identified to satisfy locality conditions. In previous papers [56, 57, 58, 59,
61, 36], the following theory extensions have been proved to satisfy the following
conditions. Note that all of them except for shallow extensions are universally
reducing.

Free functions [56]. The extension of any theory with a set of free function
symbols Σ1 and

K = ∅

satisfies condition (Compw), and by Theorem 2.50 condition (Loc).

Monotonicity [56]. Consider a theory T0 with sorts A,B , binary predicates
≤A and ≤B , an extension symbol f of type A → B and an axiom

Mon(f ) = { x ≤A y → f (x ) ≤B f (y) }.

If (AM ,≤AM
) and (BM ,≤BM

) are partially ordered sets for every model M of
T0, then the extension T0 ⊆ T0 ∪ Mon(f ) satisfies (Embw). If in all models
(AM ,≤AM

) and (BM ,≤BM
) are (dense) totally-ordered sets, semilattices, dis-

tributive lattices, boolean algebras, then the extension satisfies (Compw). In
both cases, by Theorem 2.50 the extension satisfies condition (Loc).

Generalized monotonicity [61]. Let T0 be a theory with sorts A1, . . . ,An ,
B and binary predicates ≤s for every sort s , such that in all models M of T0,
the (AiM ,≤AiM

) are partially ordered sets. Consider an extension symbol f of
type A1 × . . . × An → B and an axiom

GMon(f ) = {
∧n

i=1 xi ∼i yi → f (x1, . . . , xn) ≤B f (y1, . . . , yn) },

where ∼i ∈ {=,≤AiM
} for all i . The extension T0 ⊆ T0 ∪ GMon(f ) satisfies

(Embw) if in all models M of T0, (BM ,≤BM
) is a partially ordered set, and it

satisfies (Compw) if in all models (BM ,≤BM
) is a (dense) totally-ordered set,

semilattice, distributive lattice, boolean algebra, Z or R. In both cases, by
Theorem 2.50 the extension satisfies condition (Loc).

Piecewise and blockwise monotonicity [58, 36]. Let T0 be a theory with
sort A, constants l1, . . . , lm , u1, . . . , um of type A and a binary predicate ≤ such
that in all models of T0, (AM ,≤) is a totally ordered set and l1M

≤ u1M
< l2M

≤
u2M

< . . . < lmM
≤ umM

. Consider an extension symbol f of type A → A and a
set of axioms

PMon(f ) =







l1 ≤ x ≤ y ≤ u1 → f (x ) ≤ f (y)
· · ·
lm ≤ x ≤ y ≤ um → f (x ) ≤ f (y)






.

The extension T0 ⊆ T0 ∪ PMon(f ) satisfies (Compw).
For the same base theory, the extension with a symbol f of type A → A and

axioms

BMon(f ) =







l1 ≤ x ≤ u1 < l2 ≤ y ≤ u2 → f (x ) ≤ f (y)
· · ·
lm−1 ≤ x ≤ um−1 < lm ≤ y ≤ um → f (x ) ≤ f (y)
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also satisfies (Compw).
In both cases, by Theorem 2.50 the extension satisfies condition (Loc). Sim-

ilar conditions can be defined for n-ary functions over possibly many-sorted
theories.

Boundedness [57, 61]. Let T0 be a base theory with sorts A1, . . . ,An ,B and
a binary predicate ≤ on B such that T0 |= x ≤ x . Consider an extension symbol
f of type A1 × . . . × An → B and an axiom

Boundt(f ) = { f (x ) ≤ t [x ] },

where t [x ] is a term in the base theory. The extension T0 ⊆ T0 ∪ Boundt (f )
satisfies (Compw), and by Theorem 2.50 condition (Loc).

We can also consider an extension with

Bounds,t(f ) = { s [x ] ≤ f (x ) ≤ t [x ] },

where s [x ] is another term in the base theory. If in all models M of T0, ≤M

is both reflexive and transitive and M |= s [x ] ≤ t [x ], then this extension also
satisfies (Compw).

Guarded boundedness [61]. The boundedness condition above can also be
guarded by additional constraints. Consider

GBounds,t
φ (f ) = { φ(x ) → s [x ] ≤ f (x ) ≤ t [x ] },

where φ[x ] is a conjunction of literals in the base theory with variables among x ,
and everything else is as above. The extension T0 ⊆ T0 ∪ GBounds,t

φ (f ) satisfies
(Compw), and by Theorem 2.50 condition (Loc).

Monotonicity and boundedness [57]. Like in the case of generalized mono-
tonicity, consider a base theory T0 with sorts A1, . . . ,An , B and binary predi-
cates ≤s for every sort s , such that in all models M of T0, the (AiM ,≤AiM

) are
partially ordered sets. Consider an extension symbol f of type A1×. . .×An → B
that satisfies not only GMon(f ), but is in addition bounded by a term t [x ] in
the base theory with the same monotonicity as f . That is, T0 is extended with

K = { GMon(f ), Boundt (f ) }

as defined above, and we additionally require that T0 |= GMon(t) with the same
∼i as GMon(f ) for all i .

The extension T0 ⊆ T0 ∪ GMon(f ) satisfies (Embw) if in all models M of
T0, (BM ,≤BM

) is a partially ordered set, and it satisfies (Compw) if in all mod-
els (BM ,≤BM

) is a (dense) totally-ordered set, semilattice, distributive lattice,
boolean algebra, Z or R. In both cases, by Theorem 2.50 the extension satisfies
condition (Loc).

Lipschitz functions [56]. For the base theory TR, consider an extension sym-
bol f of type R → R satisfying the Lipschitz condition for some λ at a given
point x0, i.e.

Lipλ
x0

(f ) = { |f (x ) − f (x0)| ≤ λ ·|x − x0| }.

The extension TR ⊆ TR ∪ Lipλ
x0

(f ) satisfies (Compw), and by Theorem 2.50 con-
dition (Loc).
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Injectivity [36]. Assume our base theory T0 has sorts A and B and is such
that in all models M of T0, |AM | ≤ |BM |. Consider an extension symbol f of
type A → B and a clause

Inj(f ) = { x 6= y → f (x ) 6= f (y) }.

The extension T0 ⊆ T0∪Inj(f ) satisfies (Compw), and by Theorem 2.50 condition
(Loc).

Selector functions [56]. Let T0 be a base theory with a constructor c of
type A1 × . . . × An → B . Consider extension symbols si of types B → Ai , for
1 ≤ i ≤ n, and a set of clauses

Sel(c) =







x = c(x1, . . . , xn) → c(s1(x ), . . . , sn(x )) = x ,
s1(c(x1, . . . , xn)) = x1,
· · ·
sn(c(x1, . . . , xn)) = xn







.

If in every model M of T0, cM is injective, then the extension T0 ⊆ T0 ∪ Sel(c)
satisfies (Compw), and by Theorem 2.50 condition (Loc) . Otherwise, the exten-
sion satisfies (Emb), and by Theorem 2.51 condition (SLoc).

Shallow extensions [56, 24, 25]. We call a clause shallow if extension sym-
bols only occur in positive literals and only at the root of terms. If K is a set of
shallow clauses, then for any base theory T0, the extension T0 ⊆ T0 ∪K satisfies
condition (Emb), and by Theorem 2.51 condition (SLoc).

Array properties [36, 35]. The array property fragment [9] is a fragment of
the theory of arrays with TZ as index theory and a parametric element theory
TE . Consider the disjoint combination T0 = TZ ∪ TE , and its extension with
functions read, write and clauses8:

read(write(a, i , e), i) = e,
j 6= i → read(write(a, i , e), j ) = read(a, j ).

The array property fragment is defined as follows:

An index guard is a positive Boolean combination of atoms of the form t ≤ u
or t = u where t and u are either variables of sort Z or ground terms (of
sort Z) constructed from (Skolem) constants and integers using addition and
multiplication with integers. A formula of the form (∀ i)(ϕI (i) → ϕV (i)) is an
array property if ϕI is an index guard and if any universally quantified variable
i of sort Z only occurs in a direct array read read(a, i) in ϕV . Array reads may
not be nested. The array property fragment consists of all existentially-closed
Boolean combinations of array property formulas and quantifier-free formulas.

The decision procedure proposed originally decides satisfiability of formulas in
negation normal form in the array property fragment in the following steps [9].

i) Replace all existentially quantified array variables with Skolem constants;
replace all terms of the form read(a, i) with a(i); eliminate all terms of
the form write(a, i , e) by replacing the formula φ(write(a, i , e)) with the
conjunction of the formula φ(b) (obtained by introducing a fresh array

8The considerations below are for arrays of dimension 1, the general case is similar.
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name b for write(a, i , e)) with (b(i) = e) ∧ ∀ j (j ≤ i − 1 ∨ i + 1 ≤ j →
b(j ) = a(j )).9

ii) Existentially quantified index variables are replaced with Skolem con-
stants.

iii) Universal quantification over index variables is replaced by conjunction of
suitably chosen instances of the variables.

Let F be a formula in the array property fragment. Assume that we apply
transformation steps i) and ii). In the resulting formula, let Σ1 be the set of
array function symbols, let R be the set of ground index terms that appear below
Σ1-symbols, and let B be the set of ground index terms that appear in index
guards. Furthermore, separate the resulting formula into a set of non-ground
clauses K and a set of ground clauses G, and let I = R ∪ B .

For Ψ(T ) = T ∪ { f (i1, . . . , in) | f ∈ Σ1, i1, . . . , in ∈ I }, we have

T0 ∪ K ∪G |= 2 ⇔ T0 ∪ KΨ[G] ∪ G |= 2.

That is, any K resulting from this transformation satisfies condition (LocΨ)
for Ψ chosen as above.

Local pointer data structures [36, 35]. McPeak and Necula investigated
reasoning in pointer data structures [46]. The given signature has sorts p
(pointer) and s (scalar). Sets of pointer and scalar fields are modeled by sets
Σp and Σs of function symbols of type p → p and p → s, respectively. The sort
p contains a constant null. There are no predicates of sort p (besides equality);
predicates of sort s can have any arity. Then, local equality axioms are of the
form

E ∨ C,

where E is a disjunction of positive pointer equalities, C contains arbitrary scalar
constraints, and it is assumed that for all terms f1(f2(. . . fn(p))) occurring in an
axiom, E also contains the disjunction p = null∨fn(p) = null∨· · ·∨f2(. . . fn (p)) =
null, in order to exclude null pointer errors. Quantification is only allowed over
variables of sort p.

Let Ψ(T ) = T ∪ { f (t) | t ∈ st(K) ∪ T , f ∈ Σs }. Consider a base theory
T0 = Tp ∪ Ts, where Tp is the empty theory with single sort p and Σp = {null},
and Ts is an arbitrary scalar theory.

Then, any extension T0 ⊆ T0 ∪ K, where K is a set of local equality axioms,
satisfies condition (SLocΨ).

Note that all quantified variables in K are of sort p, and in our base signature
Σ0 we do not have function symbols that generate new terms of sort p from
Ψ(st(K∪G)). Thus, KΨ[G] is finite, and even polynomial in the size of st(K∪G),
for every K and G.

Combinations of extensions. By Theorem 2.53, we can combine any number
of signature-disjoint extensions that satisfy (Compw). E.g., the base theory TR

can be extended simultaneously by two monotone functions f and g, and an
injective function h. The extension TR ⊆ TR ∪Mon(f )∪Mon(g)∪ Inj(h) is local.

9Note that, by the definition of array property formulas, if a term write(a, i , e) occurs in
the array property fragment then i is an existentially quantified index variable.
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2.6 Chains of extensions

Locality of a theory extension T0 ⊆ T0 ∪ K allows us to solve the satisfiability
problem for arbitrary set of ground clauses G modulo the extended theory T0∪K.
In Section 2.5, we have seen several examples of local theory extensions. But
even if we have a set of clauses K and a theory T0 such that T0 ⊆ T0 ∪K is not
(or not known to be) a local theory extension, we may still be able to treat it
within the local reasoning framework:

Assume that we can split K into two disjoint sets K1 and K2 such that both
T0 ⊆ T0 ∪ K1 and T0 ∪ K1 ⊆ T0 ∪ K1 ∪ K2 are local extensions. This means we
can extend the base theory T0 to T0 ∪ K1 ∪ K2 in two steps, and use the local
reasoning procedure repeatedly to reduce the problem of checking satisfiability
of a set of ground clauses in T0 ∪K1 ∪K2 to a satisfiability problem in the base
theory T0. This approach can be generalized to an arbitrary number of steps,
and also works for Ψ-local extensions. We call such a repeated extension a chain
of extensions.

2.6.1 Local Reasoning in Chains of Extensions

Consider a base theory T0 and clause sets K1, . . . ,Km . For 0 ≤ j ≤ m − 1,
let Tj+1 = Tj ∪ Kj+1 and assume that Tj ⊆ Tj+1 is a universally reducing
theory extension for 1 ≤ j ≤ m − 1, and ∀ ∃-reducing for j = 0. Then, for
every extension, we can use local reasoning to reduce the problem of checking
satisfiability of a given set of ground clauses G from theory Tj to theory Tj−1:

Tj ∪ G |= 2 ⇔ Tj−1 ∪ K
(Ψ)
j [G] ∪ G |= 2.

If we define the sets Gj recursively by

Gm = G,

Gj−1 = K
(Ψ)
j [Gj ] ∪Gj (for 1 ≤ j ≤ m),

then Tm ∪ G |= 2 ⇔ T0 ∪G0 |= 2.

Definition 2.54 (∀ ∃-reducing chain, universally reducing chain). A chain of
theory extensions T0 ⊆ T1 ⊆ . . . ⊆ Tm is ∀ ∃-reducing if the extension T0 ⊆ T1

is ∀ ∃-reducing and all extensions Tj ⊆ Tj+1, 1 ≤ j ≤ m − 1, are universally
reducing.

A ∀ ∃-reducing chain of extensions is universally reducing if T0 ⊆ T1 is also
universally reducing.

The following is a consequence of the considerations above and Theorem 2.41:

Theorem 2.55. Let T0 be a theory, K1, . . . ,Km sets of clauses and let Tj+1 =
Tj ∪Kj+1 for 0 ≤ j ≤ m−1. Consider the chain of theory extensions T0 ⊆ T1 ⊆
. . . ⊆ Tm .

i) If T0 ⊆ T1 ⊆ . . . ⊆ Tm is ∀ ∃-reducing and the ∀∃-fragment of T0 is
decidable, then the universal fragment of Tm = T0 ∪ K1 ∪ . . . ∪ Km is
decidable.

22



ii) If T0 ⊆ T1 ⊆ . . . ⊆ Tm is universally reducing and the universal fragment
of T0 is decidable, then the universal fragment of Tm = T0 ∪K1 ∪ . . .∪Km

is decidable.

Example 2.56. Consider a base theory T0 with a partial ordering ≤. Suppose
we want to define a monotone function f with

K1 = { x ≤ y → f (x ) ≤ f (y) },

and a function g that is bounded by f :

K2 = { g(x ) ≤ f (x ) }.

We want to decide the satisfiability of sets of ground clauses G in the ex-
tended theory T2 = T0 ∪K1 ∪K2. We cannot use the approach from Section 2.3
directly, since we do not know whether the extension T0 ⊆ T2 is local.

However, if we let T1 = T0 ∪ K1, then we do know that both T0 ⊆ T1 and
T1 ⊆ T2 are local extensions (see the examples in Section 2.5). Therefore, we
can use local reasoning in chains of extensions to reduce a satisfiability problem
in the theory T2 in two steps to a satisfiability problem in T0.

Suppose we want to find out whether

G = { a ≤ b,¬(g(a) ≤ f (b)) }

is satisfiable in T2. By the approach from Section 2.6.1, we have

T2 ∪ G |= 2

⇔ T1 ∪ K2[G] ∪ G
︸ ︷︷ ︸

G1

|= 2

⇔ T0 ∪ K1[G1] ∪ G1 |= 2,

where

K2[G] = { g(a) ≤ f (a) }

and

K1[G1] =

{
a ≤ a → f (a) ≤ f (a), a ≤ b → f (a) ≤ f (b),

b ≤ a → f (b) ≤ f (a), b ≤ b → f (b) ≤ f (b)

}

.

In T0, G is unsatisfiable together with g(a) ≤ f (a) and a ≤ b → f (a) ≤
f (b), where f and g are considered as free function symbols.

Note that this also proves that for K = K1 ∪ K2, the extension T0 ⊆ T0 ∪ K is
not local: for the given G we have

K[G] = { g(a) ≤ f (a), b ≤ b → f (b) ≤ f (b) },

and K[G] ∪ G is satisfiable in T0, even though we have just shown that K ∪ G
is not.
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Chains of Extensions in Verification

Chains of extensions are especially useful in the context of verification. We give
a brief overview of the method here and refer to Chapter 5 for details.

The approach described above can be used for invariant checking and bounded
model checking of parameterized systems. To this end, the initial condition and
the invariant of a system are expressed as sets of clauses (Init) and (Inv), such
that T0 ⊆ T0 ∪ (Init) and T0 ⊆ T0 ∪ (Inv) are local extensions for a suitable base
theory T0. Furthermore, the transition relation of the system is modeled by a
set of clauses (Update), where T0 ∪ (Inv) ⊆ T0 ∪ (Inv)∪ (Update) is another local
extension. We have seen several examples of extensions that can be used as ini-
tial conditions and invariants in Section 2.5. We will present new results and a
class of extensions specifically suited to model transition relations in Chapter 3.

To check whether (Inv) is a safety invariant for a given safety property (Safe),
we need to prove

i) T0 ∪ (Inv) |= (Safe),

ii) T0 ∪ (Init) |= (Inv), and

iii) T0 ∪ (Inv) ∪ (Update) ∪ ¬(Inv′) |= 2,

where (Inv′) is a variant of (Inv) with renamed function and constant symbols
(such that they refer to values of system variables after the update). We will
show in Chapter 5 that under suitable assumptions this can be done with the
method from above.

If furthermore suitably renamed variants of (Update) can be repeatedly
added, preserving a locality condition in each step, we can check whether unsafe
states can be reached in n update steps of the system by checking

T0 ∪ (Init0) ∪ (Updatei)1≤i≤n ∪ ¬(Safen) |= 2,

where formulas with subscript contain renamed function and constant symbols
which refer to their value after n transition steps of the system.

This can be done even if we cannot find an invariant that implies the safety
condition, as long as the safety condition is universal, i.e. its negation is a set
of ground clauses.
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Chapter 3

New Locality Results

In this section, we introduce some theory extensions that have before not been
known to be local, and prove their locality. Like most of the examples in Sec-
tion 2.5, all of the theory extensions we introduce are universally reducing. We
will give example applications of some of these new extensions in Chapter 5.

3.1 Enrichment with Ground Clauses

First of all, we want to show that any local extension can be enriched with an
arbitrary set of ground clauses in the extended signature without loss of locality.

Theorem 3.1. Let T0 be a base theory, K a set of clauses such that T0 ⊆ T0∪K is
a local theory extension. Then, for any set of ground clauses H in the signature
of T0 ∪ K, the extension T0 ⊆ T0 ∪ K ∪ H is local.

Proof : Assume that T0 ⊆ T0 ∪ K is a local extension, and both H and G are
arbitrary sets of ground clauses in the signature of T0 ∪ K. We want to show

T0 ∪ K ∪H ∪ G |= 2 ⇔ T0 ∪ (K ∪ H )[G] ∪ G |= 2.

By locality of T0 ⊆ T0 ∪ K, we have

T0 ∪ K ∪H ∪ G |= 2 ⇔ T0 ∪ K[H ∪ G] ∪H ∪ G |= 2.

By definition of K[G ′] for sets of ground clauses G ′, we know that K[H ∪
G]∪H = (K∪H )[G] (since in the latter, clauses in H are not instantiated and
in both cases all ground terms from K,H and G are considered). Therefore,

T0 ∪ K[H ∪ G] ∪ H ∪ G |= 2 ⇔ (T0 ∪ K ∪ H )[G] ∪ G |= 2.

2

3.2 Strictly Monotone Functions

Locality of extensions with unary, non-strictly monotone functions has already
been shown by Sofronie-Stokkermans [56], and this result was later extended to
strictly monotone functions from Z to R [40] and to monotone functions with
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arbitrary arity (and different monotonicity in different arguments) [61]. The
strictly monotone version has been used to model safety properties of param-
eterized systems (see Sections 5.4 and 5.5 for example applications). Here, we
present a generalization of the locality result for strictly monotone functions.
We first consider the case of domains with a total ordering, then domains with
a partial ordering.

3.2.1 Preliminaries

Definition 3.2 (Strict order). For any (partial) order ≤, there is an associated
strict (partial) order <, defined by

x < y ⇔ x ≤ y ∧ x 6= y.

Whenever we use two such orders ≤ and < (possibly with subscript), we assume
that ≤ is a (partial) order and < is the associated strict (partial) order.

In the following, we will consider extension functions f of type A → B , where
A = Ak1

1 × . . .×Akn
n is a product of sorts Ai , and B is a sort of the base theory

T0. For simplicity of presentation, we represent f as a unary function, although
its type can also be written as Ak1

1 × . . . × Akn
n → B . To describe monotonicity

of such n-ary function symbols, we will also need the following definition.

Definition 3.3 (Lexicographic order). Let O1, . . . ,On be sets with orders <i .
A lexicographic order < on O1 × . . . × On is defined by

(a1, . . . , an) < (b1, . . . , bn) ⇔ a1 <1 b1

∨ (a1 = b1 ∧ a2 <2 b2)
∨ . . .

∨ (
∧n−1

i=1 ai = bi ∧ an <n bn),

We say that < is based on the <i , 1 ≤ i ≤ n.

It is easy to see that a lexicographic order is total if it is based on total orders
<i , and it is strict (i.e., irreflexive) if all <i are strict.

Definition 3.4 (Monotone functions). For sets O1 and O2 with given (partial)
orders ≤1 and ≤2, a monotone (partial) function is a function f : O1 → O2 that
satisfies

x ≤1 y → f (x ) ≤2 f (y),

whenever f (x ) and f (y) are defined. It is a strictly monotone (partial) function
if it also satisfies

x <1 y → f (x ) <2 f (y)

whenever f (x ) and f (y) are defined.

Definition 3.5 (Open Set). A set O is open wrt. an irreflexive relation < if for
every a ∈ O there are a1, a2 ∈ O with a1 < a and a < a2.

Definition 3.6 (Dense Set). A set O is dense wrt. an irreflexive relation < if
for all a1, a2 ∈ O with a1 < a2 there is an a ∈ O with a1 < a < a2.
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Definition 3.7 ((Open) Interval). Let O be a set and < a binary relation on O .
An interval of O (wrt. <) is a subset of O defined by either { c ∈ O | c < a },
{ c ∈ O | a < c }, or { c ∈ O | a < c < b }, for some a, b ∈ O . It is an open
interval if < is irreflexive. In this case, intervals of the last kind are denoted by
(a, b).

Note that if O is dense wrt. <, then (a, b) is an open set for any a, b ∈ O .
Similarly, { c ∈ O | c < a } and { c ∈ O | a < c } are open sets for any a ∈ O
if O is dense and open wrt. <.

3.2.2 Totally Ordered Domains

For the proof of locality, we will need the following lemma:

Lemma 3.8. Let O1 be a countable set with strict total order <1 and O2 a set
with strict total order <2 such that O2 is dense and open wrt. <2 . Then there
is a strictly monotone function f : O1 → O2.

Proof : Since O1 is countable, there is a bijective function i : N → O1. We show
how to inductively define f (i(n)) for all n ∈ N:

Case n = 1: Assume f is nowhere defined. Then choose an arbitrary b ∈ O2

and let f (i(1)) := b. Clearly, the function defined thus far is strictly monotone
(on its domain).

Case n → n +1: Assume f : { i(1), . . . , i(n) } → O2 is strictly monotone. Let
a = i(n + 1), D− = { i(j ) | 1 ≤ j ≤ n, i(j ) <1 a } and D+ = { i(j ) | 1 ≤ j ≤
n, a <1 i(j ) }. Let l = max (D−) and r = min(D+), or let them be undefined
if the respective sets are empty. Note that only one of them can be undefined.
Then, define

f (i(n + 1)) :=







arbitrary b ∈ O2 with b <2 f (r), if l is undefined
arbitrary b ∈ O2 with b >2 f (l), if r is undefined
arbitrary b ∈ (f (l), f (r)), otherwise

Such a b can always be found, as we assumed that O2 is dense and open wrt. <2.
Based on the assumption that f : { i(1), . . . , i(n) } → O2 is strictly monotone, it
is easy to see that f : { i(1), . . . , i(n), i(n +1) } → O2 is also strictly monotone.

2

Theorem 3.9. Let T0 be a theory with sorts A1, . . . ,An ,B and a binary predi-
cate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , and <A a binary predicate1 of

type A × A, such that for every model M of T0, <AM
and <BM

are strict total
orders, and BM is dense and open wrt. <BM

. Consider an extension symbol f
of type A → B satisfying

SMon(f ) = { x <A y → f (x ) <B f (y) }.

The extension T0 ⊆ T0 ∪ SMon(f ) satisfies (Compc
w), and thus it is local .

Proof : Let M be a countable weak partial model of T0 ∪ SMon(f ), where fM (x )
is defined for each x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise, and

1In fact, <A need not be a predicate in the signature, but can also be defined as a formula
over this signature, like the lexicographic order.
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all other functions are total. Assume wlog. that ai <AM
aj if i < j . Then we

can partition AM into D and sets A0, . . . ,An such that

A0 = { a ∈ AM | a <AM
a1 },

Ai = (ai , ai+1), for 1 ≤ i ≤ n − 1, and
An = { a ∈ AM | a >AM

an }.

Since M is a partial model, we have fM (ai ) <BM
fM (aj ) if ai <AM

aj and
ai , aj ∈ D . Thus, we can partition BM into F = { fM (a1), . . . , fM (an) } and
intervals B0, . . . ,Bn such that

B0 = { b ∈ BM | b <BM
f (a1) },

Bi = (f (ai), f (ai+1)), for 1 ≤ i ≤ n − 1, and
Bn = { b ∈ BM | b >BM

f (an ) }.

Since BM is dense and open wrt. <BM
, all Bi are non-empty open sets. By

Lemma 3.8, there is a strictly monotone function fi : Ai → Bi for every pair of
sets (Ai ,Bi). Now, define

f (x ) =

{
fM (x ) if x ∈ D
fi(x ) if x ∈ Ai

f is a completion of fM . It satisfies SMon(f ) because every fi is strictly mono-
tone, and for every ai we have fi−1(x ) <BM

fM (ai ) for all x ∈ Ai−1, as well as
fM (ai) < fi(x ) for all x ∈ Ai .

Thus, define the structure N to be the same as M , except that fN (x ) = f (x )
for all x . N is a total structure and a model of T0∪SMon(f ). A weak embedding
from UM into UN is the identity function. Thus, the theory extension satisfies
(Compc

w). 2

Example 3.10. By Theorem 3.9, extensions of the following base theories (with
the usual orderings2) with SMon(f ) are local:

• TZ ∪ TQ, with f of type Z → Q,

• TQ, with f of type Q → Q,

• TZ ∪ TR, with f of type Z → R,

• TQ ∪ TR, with f of type Q → R,

• TR, with f of type R → R.

Note that because first-order logic cannot distinguish between countable
and uncountable models, we can even extend the combination TQ ∪ TR of linear
rational arithmetic and real closed fields with SMon(f ) for an extension symbol
f of type R → Q, and the resulting theory extension is not inconsistent.

Example 3.11. We can also consider extension symbols f of type A1 × . . . ×
An → B , with relations <i of types Ai×Ai and <B of type B×B that are strict
total orders in any model of the base theory. If we use the lexicographic order
based on the <i on the domain of f (and the usual order on the codomain),
extensions of the following base theories with SMon(f ) are local (again, by
Theorem 3.9):

2Actually, we can choose one of the usual orderings for every theory, i.e. either < or >.
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• TQ, with f of type Qn → Q,

• TZ ∪ TQ, with f of type Zm × Qn → Q,

• TZ ∪ TQ ∪ TR, with f of type Zl × Qm × Rn → R.

However, especially when considering n-ary functions, we would like to consider
also partial orderings, e.g. the ordering < defined by

(x1, y1) < (x2, y2) ⇔ x1 <1 x2 ∧ y1 >2 y2,

where the <i are strict total orders. Locality of extensions with SMon(f ) for
domains with partial orderings will be considered in the next section.

3.2.3 Partially Ordered Domains

Theorem 3.12. Let T0 be a theory with sorts A1, . . . ,An ,B and a binary pred-
icate <B of type B × B. Let A = Ak1

1 × . . . × Akn
n , and <A a binary predicate3

of type A×A, such that for every model M of T0, <AM
is a strict partial order

on AM and <BM
is a strict total order on BM , such that BM is dense and open

wrt. <BM
. Consider an extension symbol f of type A → B satisfying

SMon(f ) = { x <A y → f (x ) <B f (y) }.

The extension T0 ⊆ T0 ∪ SMon(f ) satisfies (Compc
w), and thus it is local.

Proof : By Szpilrajn’s Theorem [64], we can find a strict total order < on AM

such that a <A b → a < b for all a, b ∈ AM . Thus, every function f that is
monotone wrt. < is also monotone wrt. <AM

.

That is, we can use the same completion as in the proof of Theorem 3.9,
based on the total ordering <, and the resulting function f will satisfy SMon(f )
wrt. <A. Thus, the theory extension satisfies (Compc

w) and is therefore local. 2

Example 3.13. Consider a theory with sorts A1, . . . ,An and binary predicates
<i of types Ai × Ai such that every <i is a strict partial order on Ai in any
model of the theory.

Define the partial order < by

(a1, . . . , an) < (b1, . . . , bn) ⇔
∧n

i=1 ai <i bi .

By Theorem 3.12, extensions of the following base theories with SMon(f )
based on such a partial ordering < on the domain of f are local:

• TZ ∪ TQ, with f of type Zm × Qn → Q,

• TZ ∪ TQ ∪ TR, with f of type Zm × Qn × Rk → R.

3Again, <A can also be defined as a formula over the given signature.
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3.2.4 Bounded Strict Monotonicity

In our applications, we noticed that it is sometimes useful to have locality only
on a bounded interval of the given domain. The following is an easy consequence
of Theorems 3.9 and 3.12:

Corollary 3.14. Consider a theory T0 that satisfies the restrictions of Theo-
rem 3.9 or Theorem 3.12, constants a1, a2 and an extension symbol f of type
A → B satisfying

BSMon(f ) = { a1 <A x <A y <A a2 → f (x ) <B f (y) }.

Then the extension T0 ⊆ T0 ∪ BSMon(f ) satisfies (Compc
w), and thus it is local.

Proof : We can use the same completion f as in the proof of Theorem 3.9, except
that f (x ) can be arbitrary whenever a1M

<A x <A a2M
does not hold.

If <AM
is a strict partial order, we first complete it like in the proof of

Theorem 3.12 and then construct the completion f like in Theorem 3.9. 2

3.3 Strict Boundedness

Like we did for monotonicity, we can also define a strict version of the bound-
edness axiom Boundt(f ) (defined in Section 2.5). In the following, we will show
that this also results in a local extension of suitable base theories.

Theorem 3.15. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B × B such that for every model M of T0, <BM

is an
irreflexive relation and BM is open wrt. <BM

. Let A = Ak1

1 × . . . × Akn
n , and

t [x ] be a term of sort B in the base signature, with x of sort A. Consider an
extension symbol f of type A → B and an axiom

SBoundt (f ) = { f (x ) <B t [x ] }.

Then the extension T0 ⊆ T0∪SBoundt(f ) satisfies (Compc
w), and thus it is local.

Proof : Let M be a countable weak partial model of T0∪SBoundt(f ), where fM (x )
is defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise, and all
other functions are total. Since M is a partial model, we have fM (ai) <B tM [ai ]
for ai ∈ D . We define

f (a) =

{
fM (a), if a ∈ D
b with b <B tM [a] arbitrary, otherwise.

Since BM is open wrt. <BM
, there is such a value b for every a ∈ AM \ D .

Clearly, the completion f of f satisfies SBoundt (f ).
Thus, define the structure N to be the same as M , except that fN (x ) = f (x )

for all x . N is a total structure and a model of T0 ∪ SBoundt(f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

Example 3.16. Consider a term t [x ] = 5·x +7 in some arithmetical base theory
T ∈ { TZ, TQ, TR }, and f of type A → A, A ∈ { Z, Q, R }. By Theorem 3.15,
the extension of T with SBoundt (f ) is local.
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With different assumptions on the base theory, we can also prove locality for a
strict version of Bounds,t(f ).

Theorem 3.17. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B × B such that for every model M of T0, <BM

is an
irreflexive and transitive relation and BM is dense wrt. <BM

. Let A = Ak1

1 ×
. . . × Akn

n , and s [x ], t [x ] be terms of sort B in the base signature with x of sort
A and such that T0 |= s [x ] <B t [x ]. Consider an extension symbol f of type
A → B and

SBounds,t(f ) = { s [x ] <B f (x ) <B t [x ] }.

Then the extension TA ∪ TB ⊆ TA ∪ TB ∪ SBounds,t(f ) satisfies (Compc
w), and

thus it is local.

Proof : Let M be a weak partial model of T0 ∪ SBounds,t (f ), where fM (x ) is
defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise, and all
other functions are total. Since M is a partial model, we have sM [ai ] <BM

fM (ai ) <BM
tM [ai ] for ai ∈ D . We define

f (a) =

{
fM (a), if a ∈ D
b with sM [a] <BM

b <B tM [a] arbitrary, otherwise.

Since sM [a] <BM
tM [a] for every a ∈ AM and BM is dense wrt. <BM

, we can
find such a value b for every a ∈ AM \D . Clearly, the completion f of f satisfies
SBoundt (f ).

Thus, define the structure N to be the same as M , except that fN (x ) = f (x )
for all x . N is a total structure and a model of T0 ∪ SBoundt (f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

Example 3.18. Consider terms s [x ] = 5 · x + 6 and t [x ] = 5 · x + 7 in an
arithmetical base theory T ∈ { TQ, TR }, and f of type A → A, A ∈ { Q, R }.
By Theorem 3.17, the extension of T with SBounds,t(f ) is local.

3.4 Piecewise (Strict) Boundedness

The following is a generalization of GBounds,t
φ (see Section 2.5), which allows

several axioms of this kind with mutually exclusive guards, and with possibly
strict boundedness as defined in Section 3.3.

A combination of such axioms has been used to model update rules of pa-
rameterized systems [40] (see Sections 5.4 and 5.5 for example applications),
and has later been extended to this general result.

Theorem 3.19. [39, 58, 61, 36] Consider a theory T0 with sorts A1, . . . ,An ,B
and a binary predicate ≤B of type B ×B. Let A = Ak1

1 × . . .×Akn
n and consider

conjunctions φi [x ], 1 ≤ i ≤ m, of Π0-literals, with x of sort A as their only
variable, and Π0-terms si [x ] and ti [x ] of sort B with x of sort A.

Let T0 be such that T0 ∪ φi [x ]∪ φj [x ] |= 2 for i 6= j , T0 |= φi [x ] → si [x ] ≤B

ti [x ] for 1 ≤ i ≤ m, and for every model M of T0, ≤M is either a partial order
or a strict and dense partial order on BM .
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Consider an extension symbol f of type A → B and

PBound(f ) = { φi [x ] → si [x ] ≤ f (x ) ≤ ti [x ] }1≤i≤m .

Then the extension T0 ⊆ T0 ∪PBound(f ) satisfies (Compc
w), and thus it is local.

Proof : Let PBound(f ) be a set of clauses satisfying the properties from above,
and let M be a countable partial model of T0 ∪ PBound(f ), where everything
except fM is totally defined.

We extend M to a total structure by defining a completion f of fM : Assume
that fM (a) is undefined. As the φi [x ] are mutually exclusive, at most one of the
φi [a] can be satisfied by M . If this is the case for some i , define f (a) so that
siM [a] ≤ f (a) ≤ tiM [a]. This is possible since T0 |= φi [x ] → si [x ] ≤ ti [x ] for all
i , and BM is dense wrt. ≤M if ≤M is a strict order. If none of the φi(a) are
satisfied by M , we can freely define f (a) to an arbitrary value. Since the φi , si
and ti are in the base signature Π0, definitions of f on different elements are
independent and we can define f for all undefined points simultaneously.

The resulting function f satisfies PBound(f ) for every possible value a of
x : either fM (a) was already defined in M (and thus PBound(f ) is also satisfied
wrt. f ), or f (a) has been defined such that in every clause, either the antecedent
is false or the succedent is true.

Thus, define the structure N to be the same as M , except that fN (x ) = f (x )
for all x . N is a total structure and a model of T0 ∪ PBound(f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

Example 3.20. Piecewise boundedness axioms can be used to define step-
functions: consider an arithmetical base theory T0, an extension symbol f and
the set of clauses

K =







x < 0 → f (x ) = 0
x ≥ 0 ∧ x < 2 → f (x ) = 2
x ≥ 2 → f (x ) = 4

By Theorem 3.19 (with s1[x ] = t1[x ] = 0, s2[x ] = t2[x ] = 2 and s3[x ] =
t3[x ] = 4), the extension T0 ⊆ T0 ∪ K is local.

We present more applications of piecewise boundedness axioms in Section 3.8.2
and Chapter 5.

3.5 New Combinations of Monotonicity and

Boundedness

In Section 2.5, we have seen that for suitable base theories the extension with
a combination of GMon(f) and Boundt(f) is local if GMon(t) holds in the base
theory. With the strict versions of monotonicity and boundedness, we can define
several new combinations of this kind and prove their locality.

In Section 3.5.1, we consider two terms s [x ], t [x ] in the base signature that
are (not necessarily strictly) monotone and satisfy s [x ] < t [x ] in the base theory.
We show that under suitable assumptions on the base theory, extensions with
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a strictly monotone function f that is strictly bounded by s [x ] from below and
by t [x ] from above are local.

In Section 3.5.2 we prove a similar locality result: there, we consider terms
s [x ], t [x ] which are strictly monotone and satisfy s [x ] ≤ t [x ], and extend the base
theory with a function that is strictly monotone and (not necessarily strictly)
bounded by s [x ] and t [x ]. That is, we show that locality of the extension is
preserved when considering non-strict (instead of strict) boundedness between
the terms and f , if we require the terms to be strictly monotone in the base
theory. After that, we also show that locality is lost if we consider similar
extensions with a strictly monotone f , where s [x ], t [x ] are not strictly monotone
and we consider non-strict boundedness.

Finally, in Section 3.5.3 we will show that extensions with (not necessar-
ily strictly) monotone functions f with the same boundedness conditions as in
Section 3.5.1 also satisfy a locality property.

3.5.1 Strict Monotonicity and Strict Boundedness

For the proof of locality, we will need the following lemma:

Lemma 3.21. Let O1 be a countable set with strict total order <1 and O2

a set with strict total order <2 such that O2 is open and dense wrt. <2. If
fs : O1 → O2 and ft : O1 → O2 are (not necessarily strictly) monotone partial
functions with fs(x ) <2 ft (x ) for all x ∈ O1 with fs (x ) and ft (x ) defined, then
there is a (total) strictly monotone function f : O1 → O2 such that fs (x ) <2 f (x )
for all x ∈ O1 with fs(x ) defined, and f (x ) <2 ft (x ) for all x ∈ O1 with ft (x )
defined.

Proof : Since O1 is countable, there exists a bijective map i : N → O1. We show
how to inductively define f (i(n)) for all n ∈ N:

Case n = 1: Suppose f is nowhere defined on O1, and let i(1) = a. Then
choose b ∈ O2 such that fs(a) <2 b if fs(a) is defined and b <2 ft (a) if ft (a) is
defined. If both are undefined, choose b ∈ O2 arbitrary. Such a b exists since
by assumption fs(a) <2 ft (a) and O2 is dense and open wrt. <2. Let f (a) := b.
Clearly, the mapping defined thus far is strictly monotone.

Case n → n +1: Suppose f : { i(1), . . . , i(n) } → O2 is strictly monotone, and
we have fs (x ) <2 f (x ) whenever fs(x ) is defined, and f (x ) <2 ft (x ) whenever
ft (x ) is defined (for x ∈ { i(1), . . . , i(n) }). Let a = i(n + 1), and let

D− = { f (i(j )) | 1 ≤ j ≤ n, i(j ) <1 a },
D+ = { f (i(j )) | 1 ≤ j ≤ n, a <1 i(j ) }.

Then, let l = max (D− ∪ {fs(a)}) if fs (a) is defined, or l = max (D−) otherwise.
If D− = ∅ and fs(a) is undefined, l is also undefined. Similarly, let r =
min(D+ ∪ {ft(a)} if ft (a) is defined, or r = min(D+) otherwise. If D+ = ∅

and ft (a) is undefined, r is also undefined. Note that only one of l and r can
be undefined, since by assumption not both D− and D+ can be empty. Then,
define

f (a) :=







arbitrary b ∈ O2 with b <2 r , if l is undefined
arbitrary b ∈ O2 with l <2 b, if r is undefined
arbitrary b ∈ (l , r), otherwise
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By definition of l and r we have l <2 r if both are defined (f is strictly monotone
on { i(1), . . . , i(n) }, and we have fs(a) <2 ft (a) if both are defined). Since O2

is dense and open wrt. <2, we can always find such a b.
By assumption, f : { i(1), . . . , i(n) } → O2 is strictly monotone and satisfies

fs(x ) <2 f (x ) whenever fs(x ) is defined, and f (x ) <2 ft (x ) whenever ft (x ) is
defined. It is easy to see that f : { i(1), . . . , i(n), i(n + 1) } → O2 is also
strictly monotone and satisfies fs (x ) <2 f (x ) whenever fs(x ) is defined, and
f (x ) <2 ft (x ) whenever ft (x ) is defined. 2

Theorem 3.22. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , <A a binary predicate of

type A × A and s [x ], t [x ] terms of sort B in the base signature, with x of sort
A as their only variable. Furthermore, let T0 be such that for every countable
model M of T0,

i) <BM
is a strict total order on BM ,

ii) BM is dense and open wrt. <BM
,

iii) <AM
is a strict total order on AM ,

iv) Mon(sM ) and Mon(tM ) hold, and

v) sM [a] <BM
tM [a] for all a ∈ AM .

Consider an extension symbol f of type A → B satisfying

K = { SMon(f ), SBounds,t(f ) }.

Then the extension T0 ⊆ T0 ∪K satisfies (Compc
w), and thus it is local.

Proof : Let M be a countable weak partial model of T0 ∪ K, where fM (x ) is
defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise, and all other
functions are total. Since M is a partial model, we have fM (ai) <BM

fM (aj ) if
ai <A aj and ai , aj ∈ D , and sM [ai ] <BM

fM (ai ) <B tM [ai ] for all ai ∈ D .
Assume wlog. that ai <AM

aj if i < j . Then, we can partition AM into D
and open intervals A0, . . . ,An such that

A0 = { a ∈ AM | a <AM
a1 },

An = { a ∈ AM | a >AM
an }, and

Ai = (ai , ai+1) for 1 ≤ i ≤ n − 1.

Similarly, we can partition BM into open intervals B0, . . . ,Bn such that

B0 = { b ∈ BM | b <BM
fM (a1) },

Bn = { b ∈ BM | b >BM
fM (an) }, and

Bi = (fM (ai), fM (ai+1)) for 1 ≤ i ≤ n − 1.

Since BM is dense and open wrt. <BM
, all Bi are non-empty open sets. For

0 ≤ i ≤ n, let si : Ai → Bi and ti : Ai → Bi be the restrictions of (the functions
defined by) sM and tM to Ai and Bi . That is, si(x ) is undefined if sM [x ] 6∈ Bi ,
and similarly for ti(x ). Note that (by definition of the Ai ,Bi) whenever si(x )
is undefined we must have sM [x ] ≤BM

fM (ai ), and whenever ti(x ) is undefined
we must have fM (ai+1) ≤BM

tM [x ].
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By Lemma 3.21, there is a strictly monotone function fi : Ai → Bi for every
pair of intervals (Ai ,Bi) and monotone functions si : Ai → Bi and ti : Ai → Bi ,
0 ≤ i ≤ n, such that si(x ) <BM

fi(x ) for all x ∈ Ai with si(x ) defined, and
fi (x ) <BM

ti(x ) for all x ∈ Ai with ti(x ) defined. Now, define

f (x ) =

{
fM (x ) if x ∈ D
fi(x ) if x ∈ Ai

f is a completion of fM . It satisfies SMon(f ) because every fi : Ai → Bi

is a strictly monotone function, and fi(x ) <BM
fM (ai+1) for every x ∈ Ai ,

0 ≤ i ≤ n − 1.
It remains to be shown that f satisfies SBounds,t(f ): All fi are such that

si(x ) <BM
fi(x ) <BM

ti(x ) if both si(x ) and ti(x ) are defined. For x ∈ Ai

with si(x ) undefined, we have fM (ai) <BM
fi(x ) and sM [x ] ≤BM

fM (ai), which
implies sM [x ] <BM

fi(x ). Similarly, for x ∈ Ai with ti(x ) undefined, we have
fi (x ) <BM

fM (ai+1) and fM (ai+1) ≤BM
tM [x ], which implies fi(x ) <BM

tM [x ].
Finally, for x ∈ D we have sM [x ] <BM

fM (x ) <BM
tM [x ] by assumption, so

SBounds,t(f ) is satisfied for all x ∈ AM .
Thus, define the structure N to be the same as M , except that fN (x ) = f (x )

for all x . N is a total structure and a model of T0 ∪ SBounds,t(f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

The following corollary is a consequence of Theorem 3.22 and Lemma 3.21:

Corollary 3.23. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , <A a binary predicate of

type A × A, and s [x ], t [x ] terms of sort B in the base signature, with x of sort
A. Furthermore, let T0 be such that for every countable model M of T0,

i) <BM
is a strict total order on BM ,

ii) BM is dense and open wrt. <BM
,

iii) <AM
is a strict total order on AM ,

iv) Mon(sM ) and Mon(tM ) hold, and

v) sM [a] <BM
tM [a] for all a ∈ AM .

Consider an extension symbol f of type A → B satisfying either of

K1 = { SMon(f ), SBoundt (f ) },
K2 = { SMon(f ), t [x ] <B f (x ) },
K3 = { SMon(f ), SBounds,t(f ) }.

Then each of the extensions T0 ⊆ T0 ∪Ki (for i ∈ { 1, 2, 3 }) satisfies (Compc
w),

and thus is local.

Proof : For K3, this follows directly Theorem 3.22 and Lemma 3.21. For K1 and
K2, we can modify the proof of Theorem 3.22, with either only an upper or only
a lower bound. By Lemma 3.21, the needed functions between intervals Ai and
Bi exist for lower and upper bounds, so in particular they also exist for only
one bound. 2
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Example 3.24. Consider the terms s [x ] = 5 · x +6 and t [x ] = 5 · x +7 in some
arithmetical base theory, and an extension symbol f satisfying either of

i) { SMon(f ), SBounds,t(f ) }

ii) { SMon(f ), SBoundt(f ) }

iii) { SMon(f ), s [x ] <B f (x ) }.

By Theorem 3.22 and Corollary 3.23, the extensions of the following base the-
ories with one of the sets above are local:

• TZ ∪ TQ, with f of type Z → Q

• TQ, with f of type Q → Q

• TZ ∪ TR, with f of type Z → R

• TQ ∪ TR, with f of type Q → R.

Extensions with n-ary extension symbols f with types like Qn → Q are also
local, but only for total orders such that Mon(s) and Mon(t) hold. We leave
open whether the results of this Section can be generalized to partial orders on
A and/or B . The simple solution from Theorem 3.12 is not sufficient, since we
cannot be sure that s [x ] and t [x ] will also have the desired properties Mon(s)
and Mon(t) wrt. the completion of a given partial order.

3.5.2 Strict Monotonicity and (Non-strict) Boundedness

In this section, we show a similar result as in Section 3.5.1. Instead of terms
which are monotone in the base theory and are strict bounds for a strictly
monotone extension function, we consider terms which are strictly monotone,
but only consider non-strict boundedness.

Again, we will need a lemma to prove the locality result. It is similar to
Lemma 3.21, except that here we consider strictly monotone partial functions
fs and ft and show that there is a strictly monotone function f that is non-strictly
bounded by fs and ft :

Lemma 3.25. Let O1 be a countable set with strict total order <1 and O2

a set with strict total order <2 such that O2 is open and dense wrt. <2. If
fs : O1 → O2 and ft : O1 → O2 are strictly monotone partial functions with
fs(x ) ≤2 ft (x ) for all x ∈ O1 with fs(x ) and ft (x ) defined, then there is a strictly
monotone (total) function f : O1 → O2 such that fs(x ) ≤2 f (x ) for all x ∈ O1

with fs (x ) defined, and f (x ) ≤2 ft (x ) for all x ∈ O1 with ft (x ) defined.

Proof : Since O1 is countable, there exists a bijective function i : N → O1. We
show how to inductively define f (i(n)) for all n ∈ N:

Case n = 1: Suppose f is not defined for any a ∈ O1, and let i(1) = a. Then
choose b ∈ O2 such that fs(a) ≤2 b if fs (a) is defined and b ≤2 ft (a) if ft (a) is
defined. If both are undefined, choose b ∈ O2 arbitrary. Such a b exists since
by assumption fs(a) ≤2 ft (a). Let f (a) := b. Clearly, the function defined thus
far is strictly monotone.
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Case n → n +1: Suppose f : { i(1), . . . , i(n) } → O2 is strictly monotone, and
we have fs (x ) ≤2 f (x ) whenever fs(x ) is defined, and f (x ) ≤2 ft (x ) whenever
ft (x ) is defined (for x ∈ { i(1), . . . , i(n) }). Let a = i(n + 1), and let

D− = { f (i(j )) | 1 ≤ j ≤ n, i(j ) <1 a },
D+ = { f (i(j )) | 1 ≤ j ≤ n, a <1 i(j ) }.

Then, let l = max (D− ∪ {fs(a)}) if fs (a) is defined, or l = max (D−) otherwise.
If D− = ∅ and fs(a) is undefined, l is also undefined. Similarly, let r =
min(D+ ∪ {ft(a)} if ft (a) is defined, or r = min(D+) otherwise. If D+ = ∅

and ft (a) is undefined, r is also undefined. Note that only one of l and r
can be undefined, since by assumption not both D− and D+ can be empty.
Furthermore, if l = r then we must have l = fs(a) and r = ft (a): since D−

only contains values f (x ) with x <1 a and f (x ) ≤2 ft (x ) by assumption, we
know that max (D−) <2 ft (a) (since ft is strictly monotone), and with a similar
argument we conclude that fs (a) <2 min(D+). Then, define

f (a) :=







arbitrary b ∈ O2 with b <2 r , if l is undefined
arbitrary b ∈ O2 with l <2 b, if r is undefined
l if l = r (both defined)
arbitrary b ∈ (l , r), otherwise

Since O2 is dense and open wrt. <2, we can always find such a b (when neces-
sary).

By assumption, f : { i(1), . . . , i(n) } → O2 is strictly monotone and satisfies
fs (x ) ≤2 f (x ) whenever fs (x ) is defined, and f (x ) ≤2 ft (x ) whenever ft (x ) is
defined. It is easy to see that f : { i(1), . . . , i(n), i(n + 1) } → O2 is also
strictly monotone and satisfies fs(x ) ≤2 f (x ) whenever fs(x ) is defined, and
f (x ) ≤2 ft (x ) whenever ft (x ) is defined. 2

Like the previous lemma, the following theorem is similar to the corresponding
result in Section 3.5.1, in this case Theorem 3.22. The difference is again that
we consider strictly (instead of non-strictly) monotone terms, and non-strict
(instead of strict) boundedness.

Theorem 3.26. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , <A a binary predicate of

type A × A and s [x ], t [x ] terms of sort B in the base signature, with x of sort
A as their only variable. Furthermore, let T0 be such that for every countable
model M of T0,

i) <BM
is a strict total order on BM ,

ii) BM is dense and open wrt. <BM
,

iii) <AM
is a strict total order on AM ,

iv) SMon(sM ) and SMon(tM ) hold, and

v) sM [a] ≤BM
tM [a] for all a ∈ AM .

Consider an extension symbol f of type A → B satisfying

K = { SMon(f ), Bounds,t(f ) }.

Then the extension T0 ⊆ T0 ∪ K satisfies (Compc
w), and thus it is local.
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Proof : Let M be a countable weak partial model of T0 ∪ K, where fM (x ) is
defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise, and all other
functions are total. Since M is a partial model, we have fM (ai) <BM

fM (aj ) if
ai <AM

aj and ai , aj ∈ D , and sM [ai ] ≤BM
fM (ai) ≤BM

tM [ai ] for all ai ∈ D .
Assume wlog. that ai <AM

aj if i < j . Then, we can partition AM into D
and open intervals A0, . . . ,An such that

A0 = { a ∈ AM | a <AM
a1 },

Ai = (ai , ai+1), for 1 ≤ i ≤ n − 1, and
An = { a ∈ AM | a >AM

an }.

Similarly, we can partition BM into open intervals B0, . . . ,Bn such that

B0 = { b ∈ BM | b <BM
fM (a1) },

Bi = (fM (ai), fM (ai+1)), for 1 ≤ i ≤ n − 1, and
Bn = { b ∈ BM | b >BM

fM (an) }.

Since <BM
is dense and BM is open, all Bi are non-empty. For 0 ≤ i ≤ n, let

si : Ai → Bi be the reduct of sM to Ai , with si(x ) undefined if sM [x ] 6∈ Bi , and
ti : Ai → Bi the reduct of tM to Ai , with ti(x ) undefined if tM [x ] 6∈ Bi . Since
sM and tM are monotone and by assumption sM [ai ] ≤BM

fM (ai) ≤BM
tM [ai ],

we know that for x ∈ Ai with si(x ) undefined, we must have sM [x ] ≤BM
fM (ai ),

and for x ∈ Ai with ti(x ) undefined, we have fM (ai+1) ≤BM
tM [x ].

By Lemma 3.25, there is a strictly monotone function fi : Ai → Bi for every
pair of intervals (Ai ,Bi) with strictly monotone partial functions si : Ai → Bi

and ti : Ai → Bi , such that si(x ) ≤BM
fi(x ) for all x ∈ Ai with si(x ) defined,

and fi(x ) ≤BM
ti(x ) for all x ∈ Ai with ti(x ) defined. Now, define

f (x ) =

{
fM (x ) if x ∈ D
fi(x ) if x ∈ Ai

f is a completion of fM . It satisfies SMon(f ) because every fi : Ai → Bi is a
strictly monotone function, and fi(a) < fM (ai+1) for every a ∈ Ai , 1 ≤ i ≤ n.

It remains to be shown that f satisfies Bounds,t(f ): All fi are such that
si(x ) ≤BM

fi (x ) ≤BM
ti(x ) if both si(x ) and ti(x ) are defined. For x ∈ Ai

with si(x ) undefined, we have fM (ai) <BM
fi(x ) and sM [x ] ≤ fM (ai), which

implies sM [x ] ≤BM
fi(x ). Similarly, for x ∈ Ai with ti(x ) undefined, we have

fi(x ) <BM
fM (ai+1) and fM (ai+1) ≤BM

tM [x ], which implies fi (x ) ≤BM
tM [x ].

Finally, for x ∈ D we have sM [x ] ≤BM
fM (x ) ≤BM

tM [x ] by assumption, so
SBounds,t(f ) is satisfied for all x ∈ A.

Thus, define the structure N to be the same as M , except that fN (x ) = f (x )
for all x . N is a total structure and a model of T0 ∪ SBounds,t(f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

From Theorem 3.26 and Lemma 3.25, we can derive the following corollary.

Corollary 3.27. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , <A a binary predicate of

type A × A, and s [x ], t [x ] terms of sort B in the base signature, with x of sort
A as their only variable. Furthermore, let T0 be such that for every countable
model M of T0,
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i) <BM
is a strict total order on BM ,

ii) BM is dense and open wrt. <BM
,

iii) <AM
is a strict total order on AM ,

iv) SMon(sM ) and SMon(tM ) hold, and

v) sM [a] ≤BM
tM [a] for all a ∈ AM .

Consider an extension symbol f of type A → B satisfying either of

K1 = { SMon(f ), Boundt (f ) },
K2 = { SMon(f ), t [x ] ≤B f (x ) },
K3 = { SMon(f ), Bounds,t(f ) }.

Then each of the extensions T0 ⊆ T0 ∪Ki (for i ∈ { 1, 2, 3 }) satisfies (Compc
w),

and thus is local.

Proof : For K3, this follows directly Theorem 3.26. For K1 and K2, we can
modify the proof of Theorem 3.26, with either only an upper or only a lower
bound. By Lemma 3.25, the needed maps between intervals Ai and Bi exist for
lower and upper bounds, so in particular they also exist for only one bound. 2

Example 3.28. Consider the terms s [x ] = 5 · x + 6 and t [x ] = 5 · x + 7 in some
arithmetical base theory, and an extension symbol f satisfying either of

i) { SMon(f ), Bounds,t(f ) }

ii) { SMon(f ), Boundt (f ) }

iii) { SMon(f ), s [x ] ≤B f (x ) }.

By Theorem 3.26 and Corollary 3.27, the extensions of the following base the-
ories with one of the sets above are local:

• TZ ∪ TQ, with f of type Z → Q

• TQ, with f of type Q → Q

• TZ ∪ TR, with f of type Z → R

• TQ ∪ TR, with f of type Q → R

• TR, with f of type R → R.

Again, extensions with n-ary extension symbols f with types like Rn → R are
also local, but the restriction to total orders such that SMon(s) and SMon(t)
are satisfied means that they are usable only in special cases.

As before, we leave open whether these results can be extended to partial
orders on A and/or B .
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Non-strict Monotonicity of Terms and Non-strict Boundedness

In Section 3.5.1 we have seen that theory extensions with a strictly monotone
function f that is bounded by terms s [x ], t [x ] in the base theory are local, if
we assume non-strict monotonicity for the ground terms and strict boundedness
between s [x ], f (x ) and t [x ]. In this section we have seen that the same holds if
we relax the condition on boundedness by making it non-strict, if at the same
time we require s [x ] and t [x ] to be strictly monotone.

We can easily show that we lose locality if we relax both conditions, i.e. if we
have non-strictly monotone terms s [x ], t [x ] and only require non-strict bound-
edness:

Example 3.29. Consider the base theory TQ, terms s [x ] = t [x ] = 0 and K =
{ SMon(f ), Bounds,t(f ) }. Then TQ ∪ K |= 2, since there can be no strictly
monotone function which is constantly 0. Thus, TQ ∪K ∪G |= 2 for any set of
ground clauses G. However, if we consider G = { 0 = 0 }, then K[G] = ∅ and
therefore TQ ∪K[G] ∪ G is satisfiable, showing that TQ ⊆ TQ ∪K is not local.

3.5.3 (Non-strict) Monotonicity and Strict Boundedness

In this section we show that we can combine non-strict monotonicity of an
extension function with strict boundedness by terms in the base signature. As-
sumptions and results in this section are similar to Section 3.5.1, except that
we allow the extension function to be non-strictly monotone.

In this case, we do not need to prove a lemma about existence of mono-
tone functions that are strictly bounded by other monotone functions. Instead,
we will use Lemma 3.21 again: it asserts existence of strictly monotone func-
tions under the conditions we consider here, which are in particular monotone
functions.

Theorem 3.30. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , <A a binary predicate of

type A × A and s [x ], t [x ] terms of sort B in the base signature, with x of sort
A. Furthermore, let T0 be such that for every countable model M of T0,

i) <BM
is a strict total order on BM ,

ii) BM is dense and open wrt. <BM
,

iii) <AM
is a strict total order on AM ,

iv) Mon(sM ) and Mon(tM ) hold, and

v) sM [a] <BM
tM [a] for all a ∈ AM .

Consider an extension symbol f of type A → B satisfying

K = { Mon(f ), SBounds,t(f ) }.

Then the extension T0 ⊆ T0 ∪K satisfies (Compc
w), and thus it is local.

Proof : Let M be a countable weak partial model of T0 ∪ K, where fM (x ) is
defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise, and all other

40



functions are total. Since M is a partial model, we have fM (ai ) ≤BM
fM (aj ) if

ai ≤AM
aj and ai , aj ∈ D , and sM [ai ] <BM

fM (ai) <BM
tM [ai ] for all ai ∈ D .

Assume wlog. that ai <AM
aj if i < j . Then, we can partition AM into D

and open intervals A0, . . . ,An such that

A0 = { a ∈ AM | a <AM
a1 },

Ai = (ai , ai+1), for 1 ≤ i ≤ n − 1, and
An = { a ∈ AM | a >AM

an }.

Similarly, we can partition BM into open intervals B0, . . . ,Bn such that

B0 = { b ∈ BM | b <BM
fM (a1) },

Bi = (fM (ai ), fM (ai+1)), for 1 ≤ i ≤ n − 1, and
Bn = { b ∈ BM | b >BM

fM (an) }.

Since <BM
is dense and BM is open, a Bi is non-empty whenever fM (ai ) <BM

fM (ai+1). For 0 ≤ i ≤ n with Bi 6= ∅, let si : Ai → Bi be the reduct of
(the function defined by) sM to Ai , with si(x ) undefined if sM [x ] 6∈ Bi , and
ti : Ai → Bi the reduct of tM to Ai , with ti(x ) undefined if tM [x ] 6∈ Bi . Since
sM and tM are monotone and by assumption sM [ai ] <BM

fM (ai ) <BM
tM [ai ],

we know that for x ∈ Ai with si(x ) undefined, we must have sM [x ] <BM
fM (ai),

and for x ∈ Ai with ti(x ) undefined, we have fM (ai+1) <BM
tM [x ].

By Lemma 3.21, there is a strictly monotone function fi : Ai → Bi for every
pair of intervals (Ai ,Bi) (if Bi 6= ∅) with strictly monotone partial functions
si : Ai → Bi and ti : Ai → Bi , such that si(x ) <BM

fi (x ) for all x ∈ Ai with
si(x ) defined, and fi(x ) <BM

ti(x ) for all x ∈ Ai with ti(x ) defined. Every fi
is in particular a monotone function. If Bi = ∅, define fi(x ) = fM (aI ) for all
x ∈ Ai . Now, define

f (x ) =

{
fM (x ) if x ∈ D
fi(x ) if x ∈ Ai

f is a completion of fM . It satisfies Mon(f ) because every fi : Ai → Bi is
monotone, and fi(a) ≤ fM (ai+1) for every a ∈ Ai , 0 ≤ i ≤ n − 1.

It remains to show that f satisfies SBounds,t(f ). For intervals Ai with Bi 6=
∅, the fi are such that sM [a] <BM

fi(a) <BM
tM [a] for every a ∈ Ai . For

Bi = ∅, we have Ai = (ai , ai+1) with fM (ai ) = fM (ai+1). Since by assumption
sM [ai ] <BM

fM (ai ) and fM (ai+1) <BM
tM (ai+1), by monotonicity of s [x ] and

t [x ] it follows that sM [x ] <BM
fi(x ) <BM

tM [x ] holds for every x ∈ Ai also in
this case. Finally, we have sM [x ] <BM

fM (x ) <BM
tM [x ] for every x ∈ D by

assumption.
Thus, define the structure N to be the same as M , except that fN (x ) = f (x )

for all x . N is a total structure and a model of T0 ∪ SBounds,t(f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

The following corollary is a consequence of Theorem 3.30 and Lemma 3.21.

Corollary 3.31. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate <B of type B ×B. Let A = Ak1

1 × . . .×Akn
n , <A a binary predicate of

type A × A, and s [x ], t [x ] terms of sort B in the base signature, with x of sort
A as their only variable. Furthermore, let T0 be such that for every countable
model M of T0,
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i) <BM
is a strict total order on BM ,

ii) BM is dense and open wrt. <BM
,

iii) <AM
is a strict total order on AM ,

iv) Mon(sM ) and Mon(tM ) hold, and

v) sM [a] <BM
tM [a] for all a ∈ AM .

Consider an extension symbol f of type A → B satisfying either of

K1 = { Mon(f ), SBoundt (f ) },
K2 = { Mon(f ), t [x ] <B f (x ) },
K3 = { Mon(f ), SBounds,t(f ) }.

Then each of the extensions T0 ⊆ T0 ∪Ki (for i ∈ { 1, 2, 3 }) satisfies (Compc
w),

and thus is local.

Proof : For K3, this follows directly from Theorem 3.30. For K1 and K2, we can
modify the proof of Theorem 3.30, with either only an upper or only a lower
bound. By Lemma 3.21, the needed maps between intervals Ai and Bi exist for
lower and upper bounds, so in particular they also exist for only one bound. 2

Example 3.32. Consider the terms s [x ] = 5 · x +6 and t [x ] = 5 · x +7 in some
arithmetical base theory, and an extension symbol f satisfying either of

i) { Mon(f ), SBounds,t(f ) }

ii) { Mon(f ), SBoundt(f ) }

iii) { Mon(f ), s [x ] <B f (x ) }.

By Theorem 3.30 and Corollary 3.31, the extensions of the following base the-
ories with one of the sets above are local:

• TZ ∪ TQ, with f of type Z → Q

• TQ, with f of type Q → Q

• TZ ∪ TR, with f of type Z → R

• TQ ∪ TR, with f of type Q → R.

Again, we can also consider extensions with n-ary extension symbols f with
types like Qn → Q, but the restriction to total orders such that Mon(s) and
Mon(t) hold means that these are useful only in special cases.

Once more, we leave open whether the results of this section can be gener-
alized to partial orders on A and/or B .
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3.6 Strict Monotonicity with Minimum Slope

For the verification of safety properties, another generalization of strict mono-
tonicity proves to be useful [40] (see also Section 5.5.2): for a discrete domain,
not only should there be some small increase between values of a given func-
tion f for subsequent elements, but the distance between these values should
always be greater than a certain threshold. We provide here a generalization
of the original result that also works for continuous domains. In this case, the
requirement of a minimum distance d between function values f (i) and f (i +1)
generalizes to a minimum slope of d for the function f .

We will first consider the case where this minimum slope is a constant, and
then the case where the minimum slope is a function itself.

3.6.1 Constant Minimum Slope

Background theory. In the following we assume that the background theory
T0 is a combination of arithmetic theories TA and TB , where TA ∈ {TN, TZ, TQ, TR}
(with sort A), TB ∈ {TQ, TR} (with sort B), possibly extended with a suit-
ably axiomatized function symbol · of type A × B → B for multiplication. If
TA = TB = TR then we already have such a function symbol, otherwise we need
to consider an extension of the combination TA ∪ TB with such a symbol.

To improve readability, in this section we omit subscripts that indicate sorts
or evaluation in a specific model for function symbols from the signature of the
background theory.

Theorem 3.33. Let T0 be as described above. Consider a constant d of sort B
with T0 |= d ≥B 0, an extension symbol f of type A → B and

SMonDd (f ) = { x <A y → f (y) − f (x ) >B (y − x ) · d }.

Then the extension T0 ⊆ T0∪SMonDd (f ) satisfies (Compc
w), and thus it is local.

Proof : Let M be a countable weak partial model of T0 ∪ SMonDd (f ), where
fM (x ) is defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise,
and all other functions are total. Since M is a partial model, we have fM (aj )−
fM (ai ) >BM

(aj − ai) · dM for ai <AM
aj ∈ A, where (ai − aj ) · dM ≥BM

0.
Assume wlog. that ai <AM

aj if i < j . Then we can partition AM into D
and open intervals A0, . . . ,An such that

A0 = { a ∈ AM | a <AM
a1 },

Ai = (ai , ai+1), for 1 ≤ i ≤ n − 1, and
An = { a ∈ AM | a >AM

an }.

Similarly, we can partition BM into open intervals B0, . . . ,Bn such that

B0 = { b ∈ BM | b <BM
fM (a1) },

Bi = (fM (ai ), fM (ai+1)), for 1 ≤ i ≤ n − 1, and
Bn = { b ∈ BM | b >BM

fM (an) }.

For 1 ≤ i < n, let di = fM (ai+1)−fM (ai)
ai+1−ai

, and choose d0 >BM
dM , dn >BM

dM

arbitrary from BM . Note that with this definition, we have di > dM for 0 ≤
i ≤ n. Define fi : Ai → Bi as

fi(x ) = fM (ai ) + (x − ai) · di , for 1 ≤ i ≤ n, and
f0(x ) = fM (a1) + (x − a1) · d0.
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That is, every fi is a linear function with slope di >BM
dM . Now define

f (x ) =

{
fM (x ) if x ∈ D
fi(x ) if x ∈ Ai

f is a completion of fM . We need to show that it satisfies SMonDd(f ).
This is clear for every interval Ai , since for every fi , the derivative is di > dM .

Now consider an arbitrary ai and the adjacent intervals Ai−1,Ai .
For x ∈ Ai (i.e., ai <AM

x ), we have

f (x ) = fi(x ) = fM (ai) + (x − ai ) · di .

Therefore,

f (x ) − f (ai) = fM (ai) + (x − ai) · di − fM (ai)
= (x − ai) · di

>BM
(x − ai) · dM .

For x ∈ Ai−1 (i.e., x <AM
ai) and 1 < i ≤ n, we have

f (x ) = fi−1(x ) = fM (ai−1) + (x − ai−1) · di−1.

Therefore,

f (ai) − f (x ) = fM (ai) − (fM (ai−1) + (x − ai−1) · di−1)
= fM (ai) − fM (ai−1)

︸ ︷︷ ︸

=(ai−ai−1)·di−1

−(x − ai−1) · di−1

= (ai − ai−1 − x + ai−1) · di−1

= (ai − x ) · di−1

> (ai − x ) · dM

Finally, for x ∈ A0 (i.e., i = 1 and x <AM
a1), we have

f (x ) = f0(x ) = fM (a1) + (x − a1) · d0.

Therefore,

f (a1) − f (x ) = fM (a1) − (fM (a1) + (x − a1) · d0)
= (a1 − x ) · d0

>BM
(a1 − x ) · dM ,

which shows that SMonDd(f ) is satisfied.
Thus, define the structure N to be the same as M , except that fN (x ) = f (x )

for all x . N is a total structure and a model of T0 ∪ SMonDd (f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

As for strict monotonicity without distances, a bounded version of this axiom
also satisfies a locality property:

Corollary 3.34. Consider a base theory T0 as in Theorem 3.33, constants a1, a2

of sort A and an extension symbol f of type A → B satisfying

BSMonDd (f ) = { a1 <A x <A y <A a2 → f (y) − f (x ) >B (y − x ) · d }.

The extension T0 ⊆ T0 ∪ BSMonDd (f ) satisfies (Compw), and thus it is local.
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Proof : We can use the same completion as in the proof of Theorem 3.33, except
that f (x ) is arbitrary whenever a1M

<AM
x <AM

a2M
does not hold. 2

Note that if d = 0, then SMonDd is equivalent to SMon, and BSMonDd is
equivalent to BSMon.

Restriction to linear fragments. Note that we do not need the additional
multiplication function if we restrict d to be a rational constant with fixed value
in T0. In this case, the right-hand side of the implication SMonDd is equivalent to
an inequality which can be expressed by addition instead of multiplication. E.g.,
if d = 2 then the right-hand side of the implication is equivalent to f (y)−f (x ) >
(y−x )+(y−x ), and if d = 1/2 it is equivalent to (f (y)− f (x ))+(f (y)− f (x )) >
y − x .

Example 3.35. Consider some arithmetical base theory and an extension sym-
bol f satisfying

x < y → f (y) − f (x ) > (y − x ) · 5.

By Theorem 3.33, the extensions of the following base theories with the axiom
above are local:

• TZ ∪ TQ, with f of type Z → Q

• TQ, with f of type Q → Q

• TZ ∪ TR, with f of type Z → R

• TQ ∪ TR, with f of type Q → R

• TR, with f of type R → R.

In Section 5.5.2 we will see that even if d does not have a fixed value, a
decision procedure for a linear fragment of arithmetic is sufficient for certain
problems.

3.6.2 Variable Minimum Slope

For discrete domains of f , this result can be generalized by considering not
a fixed minimum distance between values of f for adjacent elements, but to
consider a term d [x ] (that is positive for all x ∈ A) in the base theory such that
the distance between f (i) and f (i + 1) should always be greater than d [i ].

Background theory. In the following we assume that the background theory
T0 is a combination of arithmetic theories TA and TB , where TA ∈ {TN, TZ, TQ, TR}
(with sort A), TB ∈ {TQ, TR} (with sort B), possibly extended with a suitably
axiomatized function symbol

∑
of type A × A × T (x ) → B for summation of

terms, where T (x ) is the set of all terms t [x ] of sort B with variable x of sort
A in the base theory.

Theorem 3.36. Let T0 be as described above. Let d [x ] ∈ T (x ) with T0 |=
d [x ] ≥B 0B , and consider an extension symbol f of type A → B satisfying

SMonVDd (f ) = { x <A y → f (y) − f (x ) >B

∑y−1
k=x d [k ] }.

The extension T0 ⊆ T0 ∪ SMonVDt (f ) satisfies (Compc
w), and thus it is local.
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Proof : Let M be a countable weak partial model of T0 ∪ SMonVDd (f ), where
fM (x ) is defined for x ∈ D = { a1, . . . , an } ⊆ AM , and undefined otherwise,
and all other functions are total. Assume that ai <AM

aj if i < j .

Since M is a partial model, we have fM (aj ) − fM (ai) >BM

∑aj−1
k=ai

d [k ] for
ai <AM

aj ∈ A, where d [k ] ≥BM
0 for all k ∈ AM . Because of density of BM ,

there exists ε ∈ BM such that fM (aj ) − fM (ai ) >BM

∑aj−1
k=ai

(d [k ] + ε) whenever
ai <AM

aj ∈ AM .
Based on this ε, we define the following completion f of fM :

• for x <AM
a1, let f (x ) = fM (a1) −

∑a1−1
i=x (d [i ] + ε).

• for x ≥ a1, define inductively:

(i) f (a1) = fM (a1), and

(ii) f (x + 1) =

{

fM (x + 1), if fM (x + 1) is defined

f (x ) + d [x ] + ε, otherwise

We show that this completion satisfies SMonVDd(f ) for all a <AM
a′ in A:

if a <AM
a′ <AM

a1, then

f (a′) − f (a) = fM (a1) −
∑a1−1

k=a′(d [k ] + ε) − (fM (a1) −
∑a1−1

k=a (d [k ] + ε))

= −
∑a1−1

k=a′(d [k ] + ε) +
∑a1−1

k=a (d [k ] + ε)

=
∑a′−1

k=a (d [k ] + ε)

>BM

∑a′−1
k=a d [k ]

and

f (a1) − f (a) = fM (a1) − (fM (a1) −
∑a1−1

k=a (d [k ] + ε))

=
∑a1−1

k=a (d [k ] + ε)

>BM

∑a1−1
k=a d [k ].

For the case ai <AM
a <AM

a′ <AM
aj , SMonVDd (f ) follows immediately from

the definition of f . Furthermore, for a ∈ (ai , ai+1) (or a > an), we have

f (a) − f (ai ) = fM (ai ) +
∑a−1

k=ai
(d [k ] + ε) − fM (ai)

=
∑a−1

k=ai
(d [k ] + ε)

>BM

∑a−1
k=ai

d [k ]

and

f (ai+1) − f (a) = fM (ai+1)
︸ ︷︷ ︸

>fM (ai)+
Pai+1−1

k=ai
(d[k ]+ε))

−(fM (ai ) +
∑a−1

k=ai
(d [k ] + ε))

> fM (ai) +
∑ai+1−1

k=ai
(d [k ] + ε)) − (fM (ai ) +

∑a−1
k=ai

(d [k ] + ε))

=
∑ai+1−1

k=ai
(d [k ] + ε)) −

∑a−1
k=ai

(d [k ] + ε))

=
∑ai+1−1

k=a (d [k ] + ε)

>BM

∑ai+1−1
k=a d [k ]

From these results and the assumption that fM (ai)−fM (aj ) >BM

∑aj−1
k=ai

(d [k ]+ε)
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whenever ai <AM
aj , it easily follows that fM (b) − fM (a) >BM

∑b−1
k=a(d [k ] + ε)

holds also when a <AM
ai ≤AM

aj <AM
b.

Thus, define the structure N to be the same as M , except that fN (x ) = f (x )
for all x . N is a total structure and a model of T0 ∪ SMonVDd (f ). A weak
embedding from UM into UN is the identity function. Thus, the theory extension
satisfies (Compc

w). 2

Finally, we can again use a bounded version of this axiom:

Corollary 3.37. Consider a base theory T0 and a term d [x ] as described above,
constants a1, a2 ∈ A and an extension symbol f of type A → R satisfying

BSMonVDd(f ) = { a1 <A x <A y <A a2 → f (y) − f (x ) >B

∑y−1
k=x d [k ] }.

The extension T0 ⊆ T0 ∪ BSMonVDt (f ) satisfies (Compc
w), and thus it is local.

Proof : We can use the same completion as in the proof of Theorem 3.36, except
that f (x ) is arbitrary whenever a1M

<AM
x <AM

a2M
does not hold. 2

Example 3.38. Consider a base theory T0 as described above and the term
d [x ] = 2 · |x | + 4. By Theorem 3.33, the extension T0 ⊆ T0 ∪ SMonVDd (f ) is
local.

Similar to what we said for extensions with SMonDd(f ), we will see in Sec-
tion 5.5.2 that for certain satisfiability problems we do not need the summation
function in the base theory, as long as sums with a fixed number of arguments
can be expressed.

Continuous domains

It should be possible to generalize the result of Theorem 3.36 also to functions
with continuous domains by considering an integration function

∫
: A × A ×

T (x ) → B instead of the summation function. We leave this as an open problem
here.

3.7 Quasi-Monotone Functions

We introduce a generalization of the known locality results for (non-strict)
monotone functions [61]: instead of defining monotonicity of a function with re-
spect to a partial order on its domain, we can use an arbitrary transitive relation
on the domain. The proof of the following theorem is mainly a demonstration
that the original proof also works without assuming reflexivity or antisymmetry.

Theorem 3.39. Let T0 be a theory with sorts A1, . . . ,An ,B, and a binary
predicate ≤B of type B ×B. Let A = Ak1

1 × . . .×Akn
n and R a binary predicate

of type A × A.4 Let T0 be such that in every model M of T0, RM is transitive
and (BM ,≤M ) is either a totally ordered set, a ∨-semilattice with 0 or a ∧-
semilattice with 1. Consider an extension symbol f of type A → B, satisfying

IMont (f ) = { R(x , y) → f (x ) ≤ f (y) }.

The extension T0 ⊆ T0 ∪ IMont(f ) satisfies (Compc
w), and therefore it is local.

4Again, R can be a predicate symbol in the signature of T0, or defined by a formula in this
signature.
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Proof : Let M be a countable partial model of T0 ∪ IMont (f ), where everything
except fM is totally defined.

First, assume that ≤M is a total order on BM . We extend M to a to-
tal structure by defining a completion f of fM . For a ∈ AM , let DFR(a) =
{ fM (y) | fM (y) defined and either RM (y, a) or y = a } and DF = { fM (y) |
fM (y) defined }. If DF = ∅, let c ∈ BM arbitrary. Then let

f (a) =







max (DFR(a)) if DFR(a) 6= ∅

min(DF ) if DFR(a) = ∅ ∧ DF 6= ∅

c else.

We need to show that IMon(f ) is satisfied. Let a, b ∈ AM arbitrary with
RM (a, b). In case DF = ∅, we immediately get f (a) = c = f (b). Other-
wise, if DFR(a) is empty, f (a) is min{ fM (y) | fM (y) defined }, and f (b) is
equal to some fM (y) that was defined, so we have f (a) ≤ f (b). If DFR(a) is not
empty, then we have DFR(a) ⊆ DFR(b) (because of RM (a, b) and transitivity
of RM ), and thus

f (a) = max (DFR(a)) ≤ max (DFR(b)) = f (b).

If (BM ,≤M ) is a ∨-semilattice with 0, we define

f (a) = sup(DFR(a)).

In a ∨-semilattice with 0 this supremum always exists — it is 0 if DFR(a)
is empty. For arbitrary elements a, b ∈ AM with RM (a, b), we again have
DFR(a) ⊆ DFR(b), and thus

f (a) = sup(D(a)) ≤ sup(D(b)) = f (b).

Finally, the case with (BM ,≤M ) a ∧-semilattice with 1 is dual: we define
DFR′(a) = { fM (y) | RM (a, y) and fM (y) defined }, and

f (a) = inf (DFR′(a)).

This infimum always exists and is 0 if DFR′(a) is empty. For arbitrary elements
a, b ∈ AM with RM (a, b), we now have DFR′(a) ⊇ DFR′(b), and thus

f (a) = inf (DFR′(a)) ≤ inf (DFR′(b)) = f (b).

Thus, define the structure N to be the same as M , except that fN (x ) = f (x )
for all x . N is a total structure and a model of T0∪IMont (f ). A weak embedding
from UM into UN is the identity function. Thus, the theory extension satisfies
(Compc

w). 2

Example 3.40. Consider a theory T0 with a total order ≤ and a monotone
function f . Then the relation R defined by

R(x , y) ⇔ f (x ) ≤ f (y)

is transitive. Thus, by Theorem 3.39, the extension of T0 with an extension
symbol f ′ satisfying

f (x ) ≤ f (y) → f ′(x ) ≤ f ′(y)

is local.
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3.8 Recursively Defined Data Structures

Recursive data structures can be seen as a constructive alternative to pointer
data structures. Recursive definition of data structures is supported in many
programming languages and is the predominant paradigm in functional pro-
gramming languages.

Automated reasoning about recursive data structures has already been stud-
ied by Nelson and Oppen [48, 51]. Their decision procedures, based on (bi-
directional) congruence closure, are still state of the art today. Recently, their
results have been extended to allow also reasoning about numerical properties
of such data structures [69], e.g. the length of lists.

In this section, we do not give new decidability results, nor a decision proce-
dure that is generally more efficient than the existing ones. However, expressing
the existing results in the framework of local theory extensions has several ben-
efits:

• In local theory extensions, we can use the hierarchical reasoning method
introduced in Section 2.3, which separates instantiation of the extension
axioms from reasoning in the base theory. In this way, the overall decision
procedure can be improved in a modular way: either by more efficient
instantiation of axioms (as we will show in Chapter 4), or by improvements
in the underlying decision procedure for the base theory (in this case the
empty theory, i.e. the theory of equality).

• By expressing several known decidability results in the local reasoning
framework, we can often identify further extensions or combinations of
these results within this framework. E.g., we have shown [36] that the
decidable pointer fragment introduced by Necula and McPeak [46] can
be expressed and extended in the local reasoning framework, and can be
combined with other local theory extensions to verify properties of systems
based on pointer data structures. Further extensions of these results are
possible and will be published in the near future.

Similarly, the locality results for recursive data structures we present here
can be extended. An extension of the results given here has recently been
published [60].

First locality results for recursive data structures have been established re-
cently [25, 56]: it has been shown that tail recursive definitions can be expressed
by shallow extensions and therefore define stably local theory extensions (see
Section 2.5), and that theory extensions with selector functions for an existing
constructor in the base theory are local (again, see Section 2.5).

Here, we extend these locality results: we will show that there are axiomati-
zations for a combined theory of constructors and selectors that satisfy (stable)
locality conditions.

3.8.1 Stable Locality of Recursive Data Structures

Theorem 3.41. Consider a theory T with sort A, an n-ary constructor c of
type An → A and n unary selectors si of type A → A, satisfying
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(Sel)







s1(c(x1, . . . , xn)) = x1

. . .

sn(c(x1, . . . , xn)) = xn

(Inv) c(s1(x ), . . . , sn(x )) = x .

The theory T satisfies (Embc), and thus it is stably local.

Proof. We prove stable locality of T by showing that it satisfies (Embc) (when
considering it as an extension of the empty theory).

Let M be a countable Evans partial model of (Sel) ∪ (Inv), where cM is
defined for finitely many elements of An

M and each of siM is defined for finitely
many elements of AM . We note that in order to satisfy (Sel), cM must be
injective (where it is defined): if there are a 6= b ∈ AM with cM (a, . . .) =
cM (b, . . .) then (Sel) implies that s1M

(cM (a, . . .)) = a and s1M
(cM (b, . . .)) =

b, contradicting functionality of s1. In the same way, the siM must satisfy
the condition

∧n

i=1 siM (x ) = siM (y) → x = y for all a, b ∈ AM where all
siM (a), siM (b) are defined. If we had

∧n
i=1 siM (a) = siM (b) for a 6= b, then (Inv)

could not be satisfied in M for both a and b, because then (by Definition 2.48)
we would have a = cM (s1M

(a), . . . , snM
(a)) and b = cM (s1M

(b), . . . , snM
(b)), as

well as cM (s1M
(a), . . . , snM

(a)) = cM (s1M
(b), . . . , snM

(b)). The same argument
holds for any total model of (Sel) ∪ (Inv).

We define completions c of cM and si of the siM , considering the following
cases:

i) |AM | = 1,

ii) |AM | ≥ 2 and n = 1, and

iii) |AM | ≥ 2 and n ≥ 2.

In case i), we can trivially complete any partial model to a total model by
defining every possible function value to be equal to the single element.

In case ii), we complete M to a total model of the same size by first defining
c(x ) = y and s(y) = x whenever cM (x ) is defined and equal to y. Note that in
an Evans partial model of (Sel) ∪ (Inv) cM (x ) is defined and equal to y if and
only if s1M

(y) is defined and equal to x .
If the resulting functions are not total, let A1 ⊆ AM be the set of elements

for which c is not defined, and A2 ⊆ AM be the set of elements for which s1 is
not defined. By definition of c and s1, we have |A1| = |A2|. Let f : A1 → A2 be
an arbitrary bijection, and define c(x ) = f (x ) for all x ∈ A1, and s1(x ) = f −1(x )
for all x ∈ A2. The resulting functions c and s1 are complete on A, and direct
inverses. Thus, they satisfy (Sel) and (Inv).

In case iii), existence of more than one element and injectivity of an n-ary
constructor implies that in any total model M ′ of T , AM ′ must have infinitely
many elements. Thus, if AM is finite, let A ⊇ AM be a countably infinite set of
elements. In order to find completions of cM and the siM , we define a bijection
s : A → A

n
. Since A is countable, there exists a bijection i : N → A. Let < be

the well-founded total order on A induced by this bijection and the usual order
on N. Let Dom(cM ) = { a ∈ An

M | cM (a) defined } and Codom(cM ) = { a ∈
AM | cM (b) = a defined for some b ∈ An

M }. We define s(i(m)) inductively for
all m ∈ N:
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Case m = 1: Assume s is not defined for any a ∈ A. If i(1) ∈ Codom(cM ),
then there is a ∈ Dom(cM ) such that cM (a) = i(1). Because of injectivity
of cM (on its domain of definition), this a is unique. Define s(i(1)) = a. If
i(1) 6∈ Codom(cM ), then siM is undefined for 1 ≤ i ≤ n, since M is an Evans
partial model of (Sel) ∪ (Inv) cM (x ). In this case, define s(i(1)) = a′, where a′

is the smallest element (wrt. to the order <) of A
n

with a′ 6∈ Dom(cM ).

Case m → m + 1: Assume s is defined for { i(1), . . . , i(m) } such that s :
{ i(1), . . . , i(m) } → A

n
is injective. Define s(i(m +1)) as above, except that in

case i(m +1) 6∈ Codom(cM ), we require that a′ 6∈ Dom(cM )∪{ i(1), . . . , i(m) }.
Because of this choice and injectivity of cM , injectivity of s : { i(1), . . . , i(m +
1) } → A

n
is immediate.

Since we always choose the smallest possible element from A
n

wrt. < (and <
is well-founded), the resulting function will also be surjective, and thus bijective.
Now, define c = s−1, and si(x ) = xi whenever s(x ) = (x1, . . . , xn). By definition
of s, these functions are completions of cM and the siM , respectively. Since c
and s are inverse, the completions satisfy (Sel) ∪ (Inv).

Thus, let the structure N be such that AN = A, cN (x ) = c(x ) and siN (x ) =
si(x ) for all x , i . N is a total structure and a model of (Sel) ∪ (Inv). A weak
embedding from UM into UN is the identity function. Thus, the theory T
satisfies (Embc). 2

Example 3.42 (Binary trees as stably local theories). An example of recursive
data structures are binary trees, built up from a constructor node of type A ×
A → A with selectors left and right , each of type A → A:

(Sel)

{
left(node(x1, x2) = x1

right(node(x1, x2) = x2

(Inv) node(left(x ), right(x )) = x

By Theorem 3.41, the theory of binary trees above is stably local.

3.8.2 Locality of Recursive Data Structures

We can prove an even stronger locality property if we flatten the axioms of T
and add axioms for injectivity of c and the si .

Theorem 3.43. Consider a theory T ′ with sort A, an n-ary constructor c of
type An → A and n unary selectors si of type A → A, satisfying

(Sel′)







x = c(x1, . . . , xn) → s1(x ) = x1

. . .

x = c(x1, . . . , xn) → sn(x ) = xn

(Inv′)
∧n

i=1 si(x ) = xi → c(x1, . . . , xn) = x

(Inj1)







c(x1, . . . , xn) = c(y1, . . . , yn) → x1 = y1

. . .

c(x1, . . . , xn) = c(y1, . . . , yn) → xn = yn

(Inj2)
∧n

i=1 si(x ) = si(y) → x = y

The theory T ′ satisfies (Embc
w), and thus it is local.
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Proof. We use essentially the same completion of cM and the siM as in the
proof of Theorem 3.41, but have to consider some additional cases of undefined
functions cM and siM (since weak partial models are less restrictive wrt. unde-
finedness than Evans partial models). Also, in weak partial models injectivity
of cM and the siM does not necessarily follow from (Sel′) and (Inv′), but they
do follow from the explicit injectivity conditions (Inj1) and (Inj2).

Let M be a countable weak partial model of (Sel′) ∪ (Inv′) ∪ (Inj1) ∪ (Inj2),
where cM is defined for finitely many elements of An

M and each of siM is defined
for finitely many elements of AM .

We define completions c of cM and si of the siM , considering the following
cases:

i) |AM | = 1,

ii) |AM | ≥ 2 and n = 1, and

iii) |AM | ≥ 2 and n ≥ 2.

In case i), we can trivially complete any partial model to a total model by
defining every possible function value to be equal to the single element.

In case ii), we complete M to a total model of the same size by first defining
c(x ) = y whenever either cM (x ) = y or s1M

(y) = x , and s(x ) = y whenever
either s1M

(x ) = y or cM (y) = x . (In contrast to Evans partial models, we
cannot expect one to be defined if the other is.) If the resulting functions are
not total, let A1 ⊆ AM be the set of elements for which c is not defined, and
A2 ⊆ AM be the set of elements for which s1 is not defined. By definition of
c and s1, we have |A1| = |A2|. Let f : A1 → A2 be an arbitrary bijection,
and define c(x ) = f (x ) for all x ∈ A1, and s1(x ) = f −1(x ) for all x ∈ A2. The
resulting functions c and s1 are complete on A, and direct inverses, which means
they must both be injective. Thus, they satisfy (Sel′) ∪ (Inv′) ∪ (Inj1) ∪ (Inj2).

In case iii), existence of more than one element and injectivity of an n-ary
constructor implies that in any total model M ′ of T , AM ′ must have infinitely
many elements. Thus, if AM is finite, let A ⊇ AM be a countably infinite set of
elements. In order to find completions of cM and the siM , we define a bijection
s : A → A

n
. Since A is countable, there exists a bijection i : N → A. Let < be

the well-founded total order on A induced by this bijection and the usual order
on N. Let Dom(cM ) = { a ∈ An

M | cM (a) defined } and Codom(cM ) = { a ∈
AM | cM (b) = a defined for some b ∈ An

M }. We define s(i(m)) inductively for
all m ∈ N:
Case m = 1: Assume s is not defined for any a ∈ A. If i(1) ∈ Codom(cM ), then
there is a ∈ Dom(cM ) such that cM (a) = i(1). Because of injectivity of cM (on
its domain of definition), this a is unique. Define s(i(1)) = a. Otherwise, define
s(i(1)) = (a1, . . . , an), where ai = siM (i(1)), if defined. For i with siM (i(1))
undefined, choose ai such that (a1, . . . , an) is the smallest element (wrt. to the
order <) of A

n
with (a1, . . . , an) 6∈ Dom(cM ). (Again, we cannot assume that

the siM are defined iff cM is defined for weak partial models.)
Case m → m + 1: Assume s is defined for { i(1), . . . , i(m) } such that s :
{ i(1), . . . , i(m) } → A

n
is injective. Define s(i(m + 1)) as above, except that

in case i(m + 1) 6∈ Codom(cM ), we require that (a1, . . . , an) 6∈ Dom(cM ) ∪
{ i(1), . . . , i(m) }. Injectivity of s : { i(1), . . . , i(m + 1) } → A

n
is immediate.

Since we always choose the smallest possible element from A
n

wrt. < (and <
is well-founded), the resulting function will also be surjective, and thus bijective.
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Now, define c = s−1, and si(x ) = xi whenever s(x ) = (x1, . . . , xn). By definition
of s, these functions are completions of cM and the siM , respectively. Since c
and s are inverse, the completions satisfy (Sel′) ∪ (Inv′) ∪ (Inj1) ∪ (Inj2).

Thus, let the structure N be such that AN = A, cN (x ) = c(x ) and siN (x ) =
si(x ) for all x , i . N is a total structure and a model of (Sel′)∪(Inv′)∪(Inj1)∪(Inj2).
A weak embedding from UM into UN is the identity function. Thus, the theory
satisfies (Embc). 2

Example 3.44 (Binary trees as local theories). We can also give a local ax-
iomatization of binary trees:

(Sel)

{
x = node(x1, x2) → left(x ) = x1

x = node(x1, x2) → right(x ) = x2

(Inv) left(x ) = x1 ∧ right(x ) = x2 → node(x1, x2) = x

(Injnode)

{
node(x1, x2) = node(y1, y2) → x1 = y1

node(x1, x2) = node(y1, y2) → x2 = y2

(Injsel) left(x ) = left(y) ∧ right(x ) = right(y) → x = y

By Theorem 3.43, the theory of binary trees above is local.

Example 3.45 (Modeling Updates of Data Structures). Using the piecewise
boundedness axioms from Section 3.4, we can model updates of data structures.
Consider a theory of binary trees, as defined in Example 3.42 or 3.44. Assume
that size is a function measuring the size of tree terms. Then the following
axioms define an update that modifies the tree such that for every parent node,
the larger child tree will be on the left after the update:

size(left(x )) ≤ size(right(x )) → left ′(x ) = right(x )
size(left(x )) ≤ size(right(x )) → right ′(x ) = left(x )
¬(size(left(x )) ≤ size(right(x ))) → left ′(x ) = left(x )
¬(size(left(x )) ≤ size(right(x ))) → right ′(x ) = right(x )

Using such local update axioms, we can apply hierarchical reasoning to an-
swer queries about the modified tree structure by instantiating the axioms above
and then reducing the problem to the base theory.

3.9 Cardinality Functions for Boolean Algebra

In this section we consider the extension of the combined theory of Boolean
algebras and Presburger arithmetic with a bridging function that allows us to
reason about cardinalities of sets. In related work, this theory (including the ex-
tension function) has been called Boolean Algebra with Presburger Arithmetic
(BAPA) [42, 44]. Constraints over such bridging functions that can model cardi-
nalities and other numerical features of sets have first been shown to be decidable
by Ohlbach and Köhler [50], and Ohlbach later generalized this work to other
set description logics [49].

As in Section 3.8, we do not give new decidability results or a more efficient
decision procedure here. Our contribution is the establishment of a locality
result, which we plan to extend in future work.
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3.9.1 Ψ-Locality of Cardinality Functions

We want to show that cardinality functions over sets can be described as Ψ-local
theory extensions. More specifically, we consider as base theory T0 the disjoint
combination of Presburger arithmetic TN with sort N and the theory of Boolean
algebra TB with sort B , constants ∅ (the empty set) and U (the universe, i.e. a
set that contains all sets in this algebra) of sort B , as well as function symbols
∩ of type B ×B → B (set intersection), ∪ of type B ×B → B (set union), and
c of type B → B (set complement). We want to extend this combination with
an extension symbol | · | of type B → N, modelling cardinality of sets.

Define

K =







x1 ∩ x2 = ∅ → |x1 ∪ x2| = |x1| + |x2|,

|∅| = 0,

|x | = 0 → x = ∅







.

We want to find a function Ψ such that for any set of ground clauses G in the
extended signature, we have

T0 ∪ K ∪ G |= 2 ⇔ T0 ∪KΨ[G] ∪ G |= 2.

To this end, consider a set of ground clauses G. Let T = st(G) and let
b1, . . . , bn be the constants of sort B in T . Define the set of terms

B(T ) = { bc1

1 ∩ . . . ∩ bcn
n | ci ∈ {1, c} } ,

where b1
i = bi . B(T ) consists of 2n elements such that TB |= e1 ∩ e2 = ∅ for all

e1, e2 ∈ B(T ) with e1 6= e2 and TB |= (
⋃

e∈B(T) e) = U . Furthermore, for every
term t of sort B in T we have

TB |= t =
⋃

e∈B(t) e,

with

B(t) = { e ∈ B(T ) | TB |= e ⊆ t } .

This means that B(T ) is a decomposition of U into atomic parts wrt. the given
set of terms T , corresponding to the partitioning of U into Venn regions wrt. the
given constants b1, . . . , bn of sort B .

As these atomic parts are all mutually disjoint, the cardinality of every term
t of sort B can be defined by the sum of the cardinalities of its atomic subsets,
i.e. if B(t) = { e1, . . . , em }, then |t | = |e1| + . . . + |em | should hold.

To achieve this, we will require that for every t ∈ T with B(t) = { e1, . . . , em },
Ψ(T ) contains |ei | for 1 ≤ i ≤ m, and a path of cardinality terms Path(t) =
{ |e1 ∪ e2|, |e1 ∪ e2 ∪ e3|, . . . , |e1 ∪ . . . ∪ em | }.

We claim that the following function satisfies our requirement from above:

Ψ(T ) = T ∪ st(K)
∪{ |e| | e ∈ B(t) for some |t | ∈ T }
∪ { Path(t) | |t | ∈ T }

Theorem 3.46. Let T0, K and Ψ as defined above. Then the extension T0 ⊆
T0 ∪ K is a Ψ-local extension.
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Proof : We show locality directly by proving that for an arbitrary set of ground
clauses G, we have T0 ∪ KΨ[G] ∪ G |= 2 ⇔ T0 ∪K ∪ G |= 2.
⇒ : obvious.
⇐ : Assume that T0 ∪ K ∪ G |= 2. In order to obtain a contradiction, assume
that there exists a model M of T0 ∪KΨ[G] ∪G. Consider the partial structure
P where BP is the Boolean subalgebra of BM generated by {eM | e ∈ B(T )},
NP = NM , predicates and functions from T0 are the restrictions of those in M
to BP and NP , and |b|P is defined for b ∈ BP iff there is a term |t | ∈ Ψ(st(G))
with tP = b. Then P is a weak partial model of KΨ[G] ∪ G. In the following
we prove that it can be completed to a total model of T0 ∪K∪G, contradicting
our first assumption.

By construction of Ψ, for every term t such that |tP |P is defined, |eP |P is
defined for all e ∈ B(t). Furthermore, |t ′P |P is defined for all |t ′| ∈ Path(t),
which implies (together with the first axiom of K and the fact that elements of
B(t) are disjoint) that |tP |P =

∑

e∈B(t) |eP |P . Finally, |∅P |P = 0P .

Now we can recursively define a completion | · | of | · |P , where

|b| =







|b|P , if defined
1P , if b = eP for some e ∈ B(T ), |eP |P undefined
∑

e∈B(t) |eP |, if b = tP for some t 6∈ B(T ) and |tP |P undefined

Note that in the second case we have b 6= ∅P , as |∅P |P must be defined.

Furthermore, |b| is well-defined in the last case, even if there are different terms
t , t ′ with b = tP = t ′P : if tP = t ′P then eP ⊆ tP if and only if eP ⊆ t ′P , for all
e ∈ B(T ), which implies B(t) = B(t ′).

Thus, we have |tP | =
∑

e∈B(t) |eP | for non-atomic terms t . Since every
element b ∈ BP can be represented as a finite union of atomic elements, we
can show that the first axiom of K is satisfied wrt. | · | by a simple inductive
argument:

i) If b, b′ are such that b = eP , b′ = e ′
P for e, e ′ ∈ (B(T ) ∪ ∅), then

|b ∪ b′| =
∑

e∈B(b∪b′) |eP | = |b| + |b′|.

ii) Else assume that b ∩ b′ = ∅ and as induction hypotheses

|b| =
∑

e∈B(b) |eP | and |b′| =
∑

e∈B(b′) |eP |.

Then

|b ∪ b′| =
∑

e∈B(b∪b′) |eP |

=
∑

e∈B(b)∪B(b′) |eP |

=
∑

e∈B(b) |eP | +
∑

e∈B(b′) |eP |

= |b| + |b′|.

It is easy to see that | · | also satisfies the third axiom in K for all atomic elements,
and by the recursive definition also for all b ∈ BP . Furthermore, by definition
of P we have tP = tM for every term t in G. Thus, the total structure based
on P , with the total function | · | instead of | · |P , is a total model of T0 ∪K∪G,
contradicting our assumption. 2
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Complexity Analysis. First, we analyze the number of terms in Ψ(T ) for a
given T . The number of atomic subsets ei for which |ei | is generated is in the
worst case exponential in the number n of constants bi . For every extension
term |t | in T , we add a path of extension terms, in the worst case containing
2n terms. If l is the number of extension terms in T , then l · 2n is an upper
bound for the number of terms in all these paths.5 Thus, overall we have

|Ψ(T )| ≤ |T | + |st(K)| + (l + 1) · 2n .

As both l and n are bounded by |T | (and |st(K)| = 1), the number of extension
terms in Ψ(T ) is in 2O(|T |).

Since there are at most two variables in every axiom of K, the number of
axiom instances that have to be generated for a given T is quadratic in the
number of extension terms in Ψ(T ).

5Note that when only counting the number of terms, we neglect the cost of l · 2n inclusion
tests e ⊆ t . Since we can assume each test to be (non-deterministic) polynomial in the size
of t , this will not change the overall complexity.
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Chapter 4

Incremental Local
Reasoning

In Section 2.3 we have introduced local reasoning, which gives us a decision
procedure for ground satisfiability problems in certain local extensions of the-
ories. Theoretically, this means that the procedure is guaranteed to terminate
on arbitrary satisfiable and unsatisfiable inputs, given sufficient resources. In
practice, generating all instances at once can be inefficient, especially for large
verification problems where unsatisfiability often only depends on a small part
of the formula. Therefore, we are looking for methods to treat local theory
extensions more efficiently.

In this chapter we introduce methods to generate the needed instances in-
crementally. This is done in a systematical way that allows termination without
generating the full set of instances in both the satisfiable and unsatisfiable case,
while preserving completeness. The idea is based on the instantiation-based the-
orem proving methods introduced by Ganzinger and Korovin [21, 22, 23]: we
keep a candidate model that satisfies the ground part of the current problem,
and only add axiom instances that evolve this candidate model, either strength-
ening or refuting it. In recent years, instantiation-based methods have shown
to be very efficient for solving effectively finite instantiation problems in pure
FOL: from 2003 to 2009, the winner of the annual automated theorem prov-
ing system competition [63] in the EPR (effectively propositional) division has
been an implementation of an instantiation-based approach. We want to trans-
fer ideas from instantiation-based reasoning into a framework with background
theories and effectively finite instantiation problems: hierarchical reasoning in
local theory extensions.

In Section 4.1, we briefly review the original instance generation method by
Ganzinger and Korovin. Section 4.2 introduces local instance generation, an
adaption of this method to the case of local theory extensions. For chains of
local theory extensions, we need a more sophisticated approach, which we will
introduce in Section 4.3. We give experimental results in Section 4.4, showing
that the incremental approaches are superior to the standard approach in many
cases. The main results of this chapter have been published in 2008 [37] and
2009 [38].
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4.1 Instance Generation and its Refinements

Resolution-based Instance Generation (IG) has been introduced by Ganzinger
and Korovin in 2003 [21] as a theorem proving method for first-order logic
without equality, and has since been refined to equational reasoning [22] and
general theory reasoning [23]. The calculus IG we present in the following is
close to the last one, but subsumes all three versions. Like in the original papers,
IG works in an unsorted framework.1

We will need the following additional definitions:

Definition 4.1 (Variable Renaming). A variable renaming is an injective sub-
stitution mapping variables to variables.

Definition 4.2 (Variant). Two clauses C1 and C2 are variants of each other if
there is a variable renaming σ such that C1σ = C2.

Definition 4.3 (Generalization). If C2 is an instance of C1, then C1 is a gen-
eralization of C2.

Definition 4.4 (Most specific generalization). Let F be a set of clauses. C1 is
a most specific generalization of C2 with respect to F if C1 is a generalization
of C2 and for every C3 ∈ F such that C3 is both an instance of C1 and a
generalization of C2, C3 is a variant of C1.

Definition 4.5 ((Partial) Herbrand interpretation). A partial Herbrand inter-
pretation for a given theory T with signature Π is a set of ground Π-literals I
such that I ∪ T is consistent. It is a total Herbrand interpretation if for every
ground Π-atom A, I contains either A or ¬A.

Definition 4.6 ((Partial) Herbrand model). A (partial) Herbrand interpreta-
tion I (for a given theory T ) is a (partial) Herbrand model of a set of clauses
F (notation: I |= F ) iff for every ground instance Cσ of a clause C ∈ F there
exists a literal L ∈ Cσ such that L ∈ I.

From Herbrand’s Theorem it follows that, for a universal theory T and a set
of clauses F , T ∪ F is satisfiable iff there exists a (partial) Herbrand model for
T and F . We assume in the rest of Section 4.1 that our background theory T
is universal.

Proof Procedure

Given a set of clauses F , IG checks satisfiability of F modulo a background
theory T (which may be the empty theory) by interleaving ground satisfiability
checks with instantiation of clauses. Let ⊥ denote both a distinguished constant
and a substitution mapping all variables to this constant. Then, IG repeats the
following two steps until termination:

(1) Ground satisfiability check. If T ∪ F⊥ |= 2, the procedure terminates
and states unsatisfiability of the input. Otherwise, generate a partial Herbrand
model M for T and F⊥.

1Even though the local instance generation method we will introduce later works in a sorted
framework, we will see that we do not have to add explicit sort information to the instance
generation part.
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(2) Instance generation. Consider a selection function sel that selects from
every clause C ∈ F a literal L ∈ C such that M |= L⊥. Then, instances are
generated according to the following inference rule:

IG
(L1 ∨ D1) . . . (Ln ∨ Dn)

(L1 ∨ D1)σ . . . (Ln ∨ Dn)σ

where each Li is selected by sel, and σ is a substitution such that
T ∪ L1σ ∪ . . . ∪ Lnσ |= 2.

Note that several variants of the same clause C ∈ F can be used as input, and
thus several instances of the same clause can be generated in the same inference.
We consider a clause C redundant with respect to F if there is a clause D ∈ F
that is a variant of C .2 If all inferences based on sel only produce instances that
are redundant with respect to F , we call F saturated under IG (with respect to
the selection function sel). If F is saturated under IG, the procedure terminates
and states satisfiability of the input. Otherwise, after an inference step that adds
at least one non-redundant clause to F , we go back to (1).

Example 4.7 (taken from [22]). Let T be the empty theory, and

F = { f (g(x )) = c ∨ g(g(x )) 6= a, g(y) = y , f (a) 6= c }.

The satisfiability check shows that F⊥ is satisfiable. Suppose the underlined
literals are selected by sel. A substitution that makes the selected literals un-
satisfiable is σ = [a/x , a/y]. The new set of clauses is obtained by applying σ
to the clauses in F and adding the resulting instances: F ′ = F ∪ { f (g(a)) =
c ∨ g(g(a)) 6= a, g(a) = a, f (a) 6= c }. F ′⊥ is unsatisfiable and the procedure
terminates.

Finding substitutions. Thus far, we have not specified how the substitution
σ for the inference is computed, or how to prove that such a σ does not exist.
For a given theory, a procedure that finds such a substitution if one exists is
called answer-complete. E.g., paramodulation is answer-complete for the empty
theory.3 In general, answer computation is undecidable.

Correctness of the IG Calculus

Definition 4.8 (IG-derivation). An IG-derivation is a sequence of sets of
clauses F0 ⊢ F1 ⊢ . . . ⊢ Fn such that for 0 ≤ i ≤ n − 1, T ∪ Fi⊥ is satisfi-
able and Fi+1 is the result of an IG-inference on Fi .

Definition 4.9 (Persisting inference). An IG-inference is called persisting if in
an infinite IG-derivation the conditions for its applicability are satisfied infinitely
often.

The following results have been proved by Ganzinger and Korovin [21, 22, 23]:

Theorem 4.10 (Soundness of IG). Let F0 ⊢ F1 ⊢ . . . ⊢ Fn be an IG-derivation.
If T ∪ Fn⊥ |= 2, then T ∪ F0 |= 2.

2Ganzinger and Korovin introduced a formal notion of redundancy, based on implication
of ground instances of clauses by smaller clauses wrt. an ordering. For the moment, we only
use this simpler definition.

3In first-order logic without equality, unification is answer-complete for the empty theory.
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Theorem 4.11 (Completeness of IG). Let F0 ⊢ F1 ⊢ . . . ⊢ Fn be an IG-
derivation. If the background theory T has an answer-complete procedure for
finding unsatisfiable instances, and T ∪ Fn is satisfiable and saturated under
IG, then T ∪ F0 is satisfiable.

Theorem 4.12 (Termination of IG). For a set of clauses F0 such that T ∪F0 is
unsatisfiable, IG will always terminate after a finite derivation F0 ⊢ F1 ⊢ . . . ⊢
Fn if every persisting inference is eventually taken, and if the background theory
T is universal and has an answer-complete procedure for finding unsatisfiable
instances.

4.2 Combining Instance Generation and Local
Reasoning

In this Section, we introduce local instance generation, an adaption of the in-
stance generation approach to the framework of local reasoning. We present
the modified instantiation procedure in Section 4.2.1 and give some examples
how local reasoning can benefit from this approach in Section 4.2.2. Finally, we
show that the method is sound, complete and terminating in Section 4.2.3.

4.2.1 Local Instance Generation (LIG)

We present a refinement of IG that uses knowledge about locality in order
to obtain a decision procedure. Assume that T0 ⊆ T0 ∪ K is a local theory
extension, and there is a decision procedure for the universal fragment of T0 plus
uninterpreted function symbols. Then, the LIG-procedure stores the extension
axioms K and ground clauses G separately, and only the ground part determines
the partial Herbrand model — selection on non-ground clauses is fixed by a
heuristic. For reasoning on ground clauses we use an SMT solver that should
allow incremental addition of constraints and must be able to return a model
for a set of satisfiable clauses. Effectively, we obtain a procedure that solves the
satisfiability problem of a ground formula G modulo an extended theory T0∪K.

We present the ideas for standard locality4, i.e. local extensions T0 ⊆ T0 ∪K
that satisfy property (Loc). Furthermore, we assume K is Σ1-linear and that
every variable in K has at least one appearance in an extension term in every
clause, i.e. T0 ⊆ T0 ∪K is universally reducing.

In contrast to IG, we do not require T0 to be universal. We will show in
Section 4.2.3 that this restriction is not needed to prove correctness of LIG.

Separation of non-ground clauses and ground clauses. In LIG, we keep
working sets of non-ground clauses K and ground clauses G. For a set of clauses
F , let sel(F ) = { sel(C ) | C ∈ F }. We define sel(K) so that for every C ∈ K,
sel(C ) is the literal L ∈ C which contains the highest number of variables, prefer-
ably so that variables occur below extension symbols. This selection is chosen in
order to enforce fast instantiation to the ground level (as explained below), and
remains fixed throughout the saturation process. Selection on ground clauses in
G will be made implicit by considering a partial Herbrand model M of T0 and
G. Then, every literal in M can be considered to be in sel(G).

4Extensions to other notions of locality are possible, but will be left for future work.
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Proof Procedure

Given a set of non-ground clauses K and a set of ground clauses G, LIG checks
satisfiability of G modulo an extended theory T0∪K by interleaving satisfiability
checks (modulo T0) with instantiation of clauses in K. The following two steps
are repeated until termination:

(1) Ground satisfiability check. We give G to an SMT solver for T0 plus
uninterpreted functions. If T0 ∪ G |= 2, then the procedure terminates and
states unsatisfiability of the input. Otherwise, the solver returns a model M
such that M |= T0 ∪ G. From M , compute a partial Herbrand model M of T0

and G.

(2) Instance generation. Instances are generated according to the following
inference rule. We depict M as an additional premise of the inference:

LIG
(L1 ∨ D1) · · · (Ln ∨ Dn) | M

(L1 ∨ D1)σ · · · (Ln ∨ Dn)σ

where:

(i) the Li ∨ Di are (variants of) clauses from K with sel(Li ∨ Di) =
Li ,

(ii) σ is a substitution such that all Liσ are ground literals,

(iii) all clauses (Li ∨ Di)σ are generalizations of clauses in K[M], and

(iv) T0 ∪ L1σ ∪ . . . ∪ Lnσ ∪M |= 2

As in IG, several variants of a clause C ∈ K can be instantiated in one inference.
Ground clauses (Li ∨ Di)σ are added to G, non-ground clauses (if any) are
added to K. The notions of redundancy and saturation apply as before. If (K,G)
is saturated under LIG, the procedure terminates and states satisfiability of the
input. Otherwise, define sel on new non-ground clauses as described above and
return to (1). Note that we do not need M anymore after the inference; a new
partial Herbrand model will be computed in (1) if necessary.

Finding substitutions. Opposed to the general case, side conditions (ii) and
(iii) allow us to restrict the search for substitutions to a finite set. The following
lemma shows how side condition (iii) can be ensured.

Lemma 4.13. Let { (L1 ∨ D1), . . . , (Ln ∨ Dn) } and M be premises of an
LIG-inference. For 1 ≤ i ≤ n, let sel(Li ∨ Di) = Li , and let Li be a set of
literals such that Li ⊆ (Li ∨ Di), and all variables from (Li ∨ Di) appear in
extension terms in Li . Then, for any substitution σ which satisfies condition
(ii) of the LIG inference rule, the following two are equivalent:

(1) σ satisfies condition (iii) of the LIG inference rule.

(2) σ is such that all ground extension terms in every Liσ are in st(M).

Proof : Suppose (1) holds. Then by (iii), all (Li ∨ Di)σ are generalizations of
clauses in K[M], which means they are either in K[M] or they can be instan-
tiated to a clause in K[M]. In any way, by definition of K[G], they can only
contain ground extension terms that are in st(M). Thus, this holds also for
every subset of every (Li ∨ Di)σ, implying (2).
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Now suppose (2) holds. Because K is Σ1-linear, for every (Li ∨ Di), all
extension terms containing the same variable are syntactically equal. Consider
an arbitrary Li as defined above. As Li contains all variables of (Li ∨ Di)
in extension terms, all non-ground extension terms in (Li ∨ Di) \ Li must be
equal to some term in Li . As all ground extension terms in Liσ are in st(M),
so must be all ground extension terms in (Li ∨ Di)σ. By definition of K[M],
every (Li ∨ Di)σ is a generalization of a clause in K[M], satisfying (iii). 2

The lemma suggests that in order to ensure condition (iii) of the inference rule,
we can watch for every clause C ∈ K a set of literals L ⊆ C such that in L,
all variables from C occur in extension terms. Together with condition (ii),
we then only need to consider substitutions σ mapping variables of sel(C ) to
ground terms such that all ground extension terms in Lσ are in st(M).

Special cases. The following special cases make the search for a substitution
easier, and justify our definition of sel on K. For any C ∈ K:

• if all variables from C occur in sel(C ), then any conclusion Cσ of an
LIG-inference will be ground.

• if furthermore all variables appear below extension terms in sel(C ), then
it is sufficient to consider L = {sel(C )}.

Sort information. Note that we do not have to add explicit sort information
to the LIG inference rule, as the restriction to clauses in K[M] ensures that
variables will only be instantiated with terms of the right sort.

Unsatisfiable cores. In order to minimize the number of generated instances,
one can eliminate premises (and conclusions) of an inference which are not
needed to satisfy condition (iv) of the LIG rule. If T0 ∪ {Liσ}1≤i≤n ∪M |= 2,
then a decision procedure for T0 can be used to compute an unsatisfiable core of
{Liσ}1≤i≤n with respect to M, i.e. a small subset L ⊆ {Liσ}1≤i≤n such that
T0 ∪ L ∪M |= 2. If we ignore premises and conclusions that do not contain a
literal Li ∈ L, we still have a valid LIG inference.

In the following we will use LIG to denote the calculus that does not use
unsatisfiable cores, and LIGuc to denote the calculus that does.

4.2.2 Examples: Behavior of LIG and LIGuc

In the following examples, we compare the different approaches to local rea-
soning. We will call the standard method from Section 2.3 eager instantiation,
as opposed to the incremental methods LIG (without unsatisfiable cores), and
LIGuc (with unsatisfiable cores). For all examples, consider the same back-
ground theory and extension as in Example 2.42 (on page 13), i.e. T0 has a
partial ordering and K = { x ≤ y → f (x ) ≤ f (y) }.

Example 4.14. Let G = { a ≤ b, ¬(f (a) ≤ f (b)) }. Then, as seen in Exam-
ple 2.42, eager instantiation generates a set of clauses K[G], with |K[G]| = 4.

When using LIG, we have sel(K) = { f (x ) ≤ f (y) } and M = G (as we
only have unit clauses in G). To satisfy the side conditions of the LIG rule,
we search for a substitution instantiating one or several variants of f (x ) ≤ f (y)
such that the resulting ground instances are unsatisfiable together with M, and
the resulting extension terms (starting with f ) already appear in M.
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In the worst case LIG considers the whole set L = sel(K)[G], containing 4
instances of the literal f (x ) ≤ f (y). As L ∪M is unsatisfiable, LIG produces
exactly the same instances as the eager instantiation.

LIGuc searches for an unsatisfiable core in L and can find out that already
{ f (a) ≤ f (b) }∪M is unsatisfiable. Thus, it will produce a ≤ b → f (a) ≤ f (b)
with its first inference and add it to G, which makes G unsatisfiable.

We can see that because G only consists of unit clauses, the LIG rule does
not reduce the number of instances. However, the additional effort of computing
an unsatisfiable core pays off: we produce exactly the one instance that is needed
to show unsatisfiability of K[G] ∪ G.

The following example shows that the effect of the incremental methods grows
with the amount of boolean structure in G and of information that does not
contribute to the proof of unsatisfiability.

Example 4.15. Let G consist of the ground clauses

(Ci ) ai ≤ bi ∨ ci ≤ di , for 1 ≤ i ≤ n

(Di) f (ai ) ≤ f (bi) ∨ f (ci ) ≤ f (di), for 1 ≤ i ≤ n

(E ) ¬(a1 ≤ b1) ∨ ¬(f (a1) ≤ f (b1))

(F ) ¬(c1 ≤ d1) ∨ ¬(f (c1) ≤ f (d1)).

For any n, this set of clauses is unsatisfiable, because the set { C1,D1,E ,F } is
already unsatisfiable in T0∪K. The instances of the monotonicity axiom needed
to prove this are a1 ≤ b1 → f (a1) ≤ f (b1) and c1 ≤ d1 → f (c1) ≤ f (d1). Let
us compare how the different approaches to local reasoning treat this problem:

The eager approach generates K[G], which consists of all instances of the
monotonicity axiom with all combinations of substituting x and y with the
constants ai , bi , ci , di , i.e. |K[G]| = (4n)2, and then checks satisfiability.

In LIG, sel(K) is as above, and M can contain an arbitrary literal out of each
clause, except for C1,D1,E and F . The dependencies between these imply that
either f (a1) ≤ f (b1) and ¬(f (c1) ≤ f (d1)) are in M, or ¬(f (a1) ≤ f (b1)) and
f (c1) ≤ f (d1). From the other Di , we have n−1 different literals in M, each with
2 extension terms that do not appear elsewhere. Thus, st(M) contains 2n + 2
extension terms and in search for a substitution we generate a set L containing
(2n+2)2 instances of the literal f (x ) ≤ f (y). L is unsatisfiable and LIG will pro-
duce all (2n +2)2 corresponding clause instances. Since f (a1), f (b1), f (c1), f (d1)
are all in st(M), among these instances are a1 ≤ b1 → f (a1) ≤ f (b1) and
c1 ≤ d1 → f (c1) ≤ f (d1), which makes G unsatisfiable after the inference.

In LIGuc, we compute an unsatisfiable core of L with respect to M. As
M must contain either ¬(f (a1) ≤ f (b1)) or ¬(f (c1) ≤ f (d1)), we can find that
either f (a1) ≤ f (b1) or f (c1) ≤ f (d1) are unsatisfiable cores. After adding the
corresponding instance of the axiom, the problem is still satisfiable, and the new
model must contain exactly those literals from C1,D1,E and F which were not
in M before. Assume that the other literals in M do not change unnecessarily.
Then, st(M) and our set L of literals will be the same as in the first inference.
Now, the unsatisfiable core consists again of one of the two literals f (a1) ≤ f (b1)
or f (c1) ≤ f (d1), namely the one that was not chosen before. The generated
instance is exactly the one that makes G unsatisfiable.
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Thus, LIG proves T0 ∪K ∪G |= 2 by generating (2n + 2)2 instances in one
step, and LIGuc needs to generate only 2 instances in 2 steps. Recall that in
contrast to this, eager instantiation generates (4n)2 instances.

Finally, we give an example how LIG and LIGuc can not only prove unsatisfia-
bility, but also generate models for satisfiable problems incrementally.

Example 4.16. Consider a modified version of Example 4.15: let K be as
before, and remove clause F from G, which makes the problem satisfiable for
all n. We will show how the different approaches generate a model for K[G]∪G.

In the eager approach, K[G] is generated completely and the search for a
model of K[G] ∪G is left to the SMT solver.

In LIG, the SMT solver generates a model M for G, from which we compute
a partial Herbrand model M. We can distinguish two cases: either (i) the
second literal of E is not in M, or (ii) it is. In case (i), LIG will not generate
any instances, since M only contains positive literals with extension symbols,
i.e. no set of instantiations of sel(K) = {f (x ) ≤ f (y)} can be unsatisfiable with
respect to M. In case (ii), LIG will find out that sel(K)[M] is unsatisfiable with
respect to M, and generate (2n + 1)2 instances. After this, LIG calls the SMT
solver for a new model of G ∪K[M]. The procedure above is repeated until we
get back a model that does not include the second literal of E , or until the set
of instances is saturated with respect to the model, i.e. all instances that can
be generated have already been generated.

In LIGuc, we can make the same case distinction. In case (i) we detect
satisfiability immediately, in case (ii) we will find out that f (a1) ≤ f (b1) is
already unsatisfiable with respect to M, and generate a1 ≤ b1 → f (a1) ≤ f (b1).
After that, the SMT solver is called again, and we can apply the same case
distinction for the new model: in case (i), we cannot generate any instances,
and in case (ii) the only instance we can generate is a1 ≤ b1 → f (a1) ≤ f (b1),
which we have already generated. Thus, the set of instances is saturated.

We see that in this case the benefit of LIG can become smaller than before,
since termination depends very much on the models supplied by the SMT solver.
For LIGuc however, we can still guarantee termination after two iterations and
generation of a single instance.

4.2.3 Correctness of LIG and LIGuc

In the following, we show that LIG and LIGuc are sound, complete and termi-
nating.

Definition 4.17 (LIG-derivation). An LIG-derivation is a sequence of tuples
(K0,G0) ⊢ (K1,G1) ⊢ . . . ⊢ (Kn ,Gn) such that G0 is a set of ground clauses,
K0 is a local extension of the background theory T0, and for 0 ≤ i ≤ n − 1, G i

is T0-satisfiable and (Ki+1,G i+1) is the result of an LIG-inference on (Ki ,G i).

An LIGuc-derivation is defined in the obvious way.

Theorem 4.18 (Soundness). Let (K0,G0) ⊢ (K1,G1) ⊢ . . . ⊢ (Kn ,Gn) be an
LIG- or LIGuc-derivation. If T0 ∪ Gn |= 2, then T0 ∪K0 ∪G0 |= 2.

Proof : All elements of Gn are instances of clauses in K0 ∪ G0. Thus, their
unsatisfiability (modulo T0) implies unsatisfiability of K0 ∪G0. 2

64



Theorem 4.19 (Completeness of LIG). Let (K0,G0) ⊢ (K1,G1) ⊢ . . . ⊢
(Kn ,Gn) be an LIG-derivation. If T0 ∪ Gn is satisfiable and (Kn ,Gn) is sat-
urated under LIG with respect to a given selection function sel and a partial
Herbrand model M, then T0 ∪K0 ∪G0 is satisfiable.

Proof : Let K0,G0,Kn ,Gn , sel and M as defined above. M is a partial Herbrand
model of T0 and Gn , where Gn ⊆ K0[G0] ∪ G0. We extend M to a partial
Herbrand model of K0[G0]∪G0 in the following way: for every Ci ∈ (K0[G0]∪
G0) \ Gn we can find a non-ground clause Di ∈ Kn s.t. Diσi = Ci and Di is a
most specific generalization of Ci wrt. Kn . For every such Ci , we add sel(Di)σi

to M, i.e. the resulting set of literals M′ contains at least one literal from each
clause in K0[G0]∪G0. Furthermore, M′ cannot be contradictory wrt. T0: if this
was the case, we would have an LIG inference with the Di and M as premises,
producing the Ci or generalizations thereof. As the Di were chosen to be most
specific generalizations of the Ci wrt. Kn , the produced instances are neither
in Gn nor Kn , thus contradicting our assumption that (Kn ,Gn) is saturated
under LIG wrt. sel and M. As M′ is not contradictory wrt. T0 and contains one
literal out of each clause in K0[G0]∪G0, we can conclude that T0∪K0[G0]∪G0

is satisfiable. By locality, T0 ∪ K0 ∪ G0 is satisfiable iff T0 ∪ K0[G0] ∪ G0 is
satisfiable. 2

Theorem 4.20 (Completeness of LIGuc). Let (K0,G0) ⊢ (K1,G1) ⊢ . . . ⊢
(Kn ,Gn) be an LIGuc-derivation. If T0 ∪ Gn is satisfiable and (Kn ,Gn) is
saturated under LIGuc with respect to a given selection function sel and a partial
Herbrand model M, then T0 ∪K0 ∪G0 is satisfiable.

Proof : The proof is the same as for LIG, except that LIGuc can ignore some
premises if the selected literals do not appear in an unsatisfiable core:

Let K0,G0,Kn ,Gn , sel and M as defined above. M is a partial Herbrand
model of T0 and Gn , where Gn ⊆ K0[G0] ∪ G0. We extend M to a partial
Herbrand model of K0[G0]∪G0 in the following way: for every Ci ∈ (K0[G0]∪
G0) \ Gn we can find a non-ground clause Di ∈ Kn s.t. Diσi = Ci and Di is a
most specific generalization of Ci wrt. Kn . For every such Ci , we add sel(Di)σi

to M, i.e. the resulting set of literals M′ contains at least one literal from each
clause in K0[G0] ∪ G0. Furthermore, M′ cannot be contradictory wrt. T0: if
this was the case, there would be an unsatisfiable core of M′, containing at
least one literal sel(Di)σi (since M itself is not contradictory). Thus, we would
have an LIGuc inference with a subset of the Di and M as premises, producing
the Ci or generalizations thereof. As the Di were chosen to be most specific
generalizations of the Ci wrt. Kn , the produced instances are neither in Gn

nor Kn , thus contradicting our assumption that (Kn ,Gn) is saturated under
LIGuc wrt. sel and M. As M′ is not contradictory wrt. T0 and contains one
literal out of each clause in K0[G0]∪G0, we can conclude that T0∪K0[G0]∪G0

is satisfiable. By locality, T0 ∪ K0 ∪ G0 is satisfiable iff T0 ∪ K0[G0] ∪ G0 is
satisfiable. 2

Theorem 4.21 (Termination). For any input (K0,G0) (where K0 and G0 are
as defined above), LIG and LIGuc terminate after a finite number of inferences.

Proof : Both LIG- and LIGuc-inferences produce only clauses that are both in-
stances of clauses in K and generalizations of clauses in K[M], where for every
sel, K[M] ⊆ K[G]. For a given input (K,G), only finitely many clauses are both
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instances of clauses in K and generalizations of clauses in K[G], and thus there
are only finitely many possible inferences. 2

Note that the difference to Theorems 4.11 and 4.12 is not only that we
terminate for any input, but we also dropped the additional requirements to
the background theory. We do not need the background theory to be universal
or to have answer-complete methods for finding unsatisfiable literal instances,
because locality of the theory extension gives us a finite search space of instances,
and thus more powerful completeness and termination arguments. In this way,
we have not only specialized the original IG-procedure, but can now effectively
apply it to background theories that were out of the scope of the original method.

4.3 Incremental Instance Generation for Chains
of Extensions

In Section 2.6.1 we showed how local reasoning can be generalized to chains
of extensions. In Section 4.2.1 we introduced LIG, an incremental method for
solving satisfiability problems modulo a local extension of a background theory,
and its refinement LIGuc which uses unsatisfiable cores to further minimize the
number of generated instances. For a chain of extensions T0 ⊆ T1 ⊆ . . . ⊆ Tm ,
LIG (and LIGuc) cannot be used as such: if we want to do the reduction from
Tm to Tm−1 incrementally, the inference rule requires that satisfiability problems
in Tm−1 can already be solved. In order to do this, we would need to use the
standard reduction for chains of extensions from Ti−1 down to T0, or call LIG
recursively. We want to do neither of both.

Instead, we will introduce a refinement LIG∗ of the LIG procedure that
can handle chains of extensions directly. This requires a more sophisticated
inference rule and infrastructure, but we are convinced that reasoning in chains
of extensions can benefit very much from incremental generation of instances,
since the set of ground clauses Gj grows polynomially with every reduction.

As for LIG, we will first introduce the method (Section 4.3.1), then give
some examples (Section 4.3.2) and finally prove its correctness (Section 4.3.3).

4.3.1 Chain-Local Instance Generation (LIG∗)

We present the procedure LIG∗, which solves the satisfiability problem of a set
of ground clauses G modulo a repeatedly extended theory T0∪K1∪ . . .∪Kn . As
in Section 4.2.1, we only support standard locality, i.e. chains of local extensions
T0 ⊆ T0 ∪ K1 ⊆ . . . ⊆ T0 ∪ K1 ∪ . . . ∪ Kn that satisfy property (Loc) for every
extension. Furthermore, we assume that all Ki are Σi -linear and that variables
in the Ki have at least one appearance in an extension term in every clause,
enforcing that Ki [G] is a set of ground clauses for every i and every set of ground
clauses G.

LIG∗ differs from LIG mainly in two points: First, for m successive ex-
tensions, non-ground clauses need to be kept in m different sets K1, . . . ,Km .
Second, the search space for possible instances is restricted to the following sets
of instances (as defined in Section 2.6.1):

Gm = G
Gj−1 = Kj [Gj ] ∪ Gj (for 1 ≤ j ≤ m),
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Proof Procedure

For a given input (K1, . . . ,Km ,G), LIG∗ keeps non-ground clauses from the
different extensions and ground clauses in separate sets. The selection function
sel is defined as in LIG, except that we have different extension symbols for
each Kj . For every j , sel(Kj ) consists of the literals with the highest number
of variables, preferably below extension symbols of Kj . Then, the following two
steps are repeated until termination:

(1) Ground satisfiability check. We give G to an SMT solver for T0 plus
uninterpreted functions. If T0 ∪ G |= 2, then the procedure terminates and
returns unsatisfiable. Otherwise, the solver returns a model M such that M |=
T0 ∪G. As before, generate from M a partial Herbrand model M of T0 and G.

(2) Instance generation. Define the following sets of literals:

Im+1 = M
Ij = sel(Kj )[

⋃

j<k≤m+1 Ik ] (for 1 ≤ j ≤ m)

Then, instances are generated according to the following rule:

LIG∗ (L1 ∨ D1) · · · (Ln ∨ Dn) | M

(L1 ∨ D1)σ · · · (Ln ∨ Dn)σ

where:

(i) the Li ∨ Di are (variants of) clauses from K1 ∪ . . . ∪ Km with
sel(Li ∨ Di) = Li ,

(ii) σ is a substitution such that all Liσ are ground literals,

(iii) if (Li ∨ Di) ∈ Kj , then (Li ∨ Di)σ is a generalization of a
clause in Kj [

⋃

j<k≤m+1 Ik ], and

(iv) T0 ∪ L1σ ∪ . . . ∪ Lnσ ∪M |= 2

Again, several variants of a clause can be instantiated in one inference. Ground
clauses are added to G, non-ground instances Cσ with C ∈ Kj are added to Kj .
The notion of saturation applies as before. If (K1, . . . ,Kn ,G) is saturated under
LIG∗, the procedure terminates and states satisfiability of the input. Otherwise,
define sel on new non-ground clauses as described above and return to (1).

Search for substitutions. Similarly to the case of LIG, the search for substi-
tutions can be restricted to a finite set. We provide a lifting of Lemma 4.13:

Lemma 4.22. Let { (L1 ∨ D1), . . . , (Ln ∨ Dn) } and M be premises of an
LIG∗-inference. For 1 ≤ i ≤ n, let sel(Li ∨ Di) = Li , and let Li be a set of
literals such that Li ⊆ (Li ∨ Di), and all variables from (Li ∨ Di) appear in
extension terms in Li . Then, for any substitution σ that satisfies condition (ii)
of the LIG inference rule, the following two are equivalent:

(1) σ satisfies condition (iii) of the LIG∗ inference rule.

(2) σ is such that for any (Li ∨ Di) ∈ Kj , all ground extension terms in Liσ
are in st(

⋃

j<k≤m+1 Ik ).
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Proof : Suppose (1) holds. Then by (iii), all (Li ∨ Di)σ are generalizations of
clauses in Kj [

⋃

j<k≤m+1 Ik ], which means they are either in Kj [
⋃

j<k≤m+1 Ik ]
or they can be instantiated to a clause in Kj [

⋃

j<k≤m+1 Ik ]. In any way, they
can only contain ground extension terms that are in st(

⋃

j<k≤m+1 Ik ). Thus,
this holds also for every subset of every (Li ∨ Di)σ, implying (2).

Now suppose (2) holds. Because every Kj is Σ1-linear, for every (Li ∨ Di),
all extension terms containing the same variable are syntactically equal. As
Li contains all variables in extension terms, all non-ground extension terms in
(Li ∨ Di) \ Li must be equal to some term in Li . As all ground extension
terms in Liσ are in st(

⋃

j<k≤m+1 Ik ), so must be all ground extension terms
in (Li ∨ Di)σ. By definition of Kj [

⋃

j<k≤m+1 Ik ], every (Li ∨ Di)σ is a
generalization of a clause in Kj [

⋃

j<k≤m+1 Ik ], satisfying (iii). 2

Thus, as before we can watch for every non-ground clause C a set of literals
L ⊆ C to ensure conditions (ii) and (iii) of the inference rule, and only need
to consider substitutions σ that map variables of sel(C ) to ground terms such
that resulting ground extension terms are in a given set of terms. In this case
we need more effort to find this set of terms, however: for clauses C ∈ Kj , we
need to compute the set st(

⋃

j<k≤m+1 Ik ).

Special cases. We have the same special cases as before. For C ∈ Kj :

• if all variables from C occur in sel(C ), then any conclusion Cσ of an
LIG∗-inference will be ground.

• if furthermore all variables appear in extension terms (of extension Kj ) in
sel(C ), then it is sufficient to consider L = {sel(C )}.

Unsatisfiable cores. Unsatisfiable cores can be computed and used as before,
eliminating unnecessary premises and conclusions. Similar to the distinction
between LIG and LIGuc, we will use LIG∗ to denote the calculus for chains
of extensions that does not use unsatisfiable cores, and LIG∗

uc to denote the
calculus that does.

4.3.2 Examples: Behavior of LIG∗ and LIG∗
uc

Based on Theorem 3.39, we can extend the examples given for LIG to chains of
extensions: consider again a base theory T0 with a partial ordering, and let

K1 = { x ≤ y → f1(x ) ≤ f1(y) },
K2 = { f1(x ) ≤ f1(y) → f2(x ) ≤ f2(y) },
K3 = { f2(x ) ≤ f2(y) → f3(x ) ≤ f3(y) }.

If we define T1 = T0 ∪ K1, T2 = T1 ∪ K2 and T3 = T2 ∪ K3, then by locality of
T0 ⊆ T0 ∪K1 and by Theorem 3.39, T0 ⊆ T1 ⊆ T2 ⊆ T3 is a chain of local theory
extensions.

In all three axioms, sel(Ki) is the last literal, since it contains both variables
below the extension symbol of the respective axiom.

Example 4.23. If we use G = { a ≤ b, ¬(f3(a) ≤ f3(b)) }, we have essentially
the same result as in Example 4.14: due to the missing boolean structure of G,
for any model M of G we have K3[M] = K3[G], and thus K2[K3[M] ∪ G] =
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K2[K3[G]∪G] and K1[K2[K3[M]∪G]∪G] = K1[K2[K3[G]∪G]∪G]. Thus, an
LIG∗-procedure that takes maximal inferences will produce exactly the same
instances as the eager instantiation:

K3[G] = { f2(a) ≤ f2(a) → f3(a) ≤ f3(a)
f2(a) ≤ f2(b) → f3(a) ≤ f3(b)
f2(b) ≤ f2(a) → f3(b) ≤ f3(a)
f2(b) ≤ f2(b) → f3(b) ≤ f3(b) }

K2[G2] = { f1(a) ≤ f1(a) → f2(a) ≤ f2(a)
f1(a) ≤ f1(b) → f2(a) ≤ f2(b)
f1(b) ≤ f1(a) → f2(b) ≤ f2(a)
f1(b) ≤ f1(b) → f2(b) ≤ f2(b) }

K1[G1] = { a ≤ a → f1(a) ≤ f1(a)
a ≤ b → f1(a) ≤ f1(b)
b ≤ a → f1(b) ≤ f1(a)
b ≤ b → f1(b) ≤ f1(b) }

LIG∗
uc will in a first step find out that the instance f3(a) ≤ f3(b) of the selected

literal in K3 is unsatisfiable in M, producing the clause instance f2(a) ≤ f2(b) →
f3(a) ≤ f3(b). A Herbrand model of this instance and G must contain ¬(f2(a) ≤
f2(b)), so in the next step the procedure will find out that the instance f2(a) ≤
f2(b) of the selected literal in K2 is unsatisfiable in M′, producing the clause
instance f1(a) ≤ f1(b) → f2(a) ≤ f2(b). A Herbrand model of G and the two
instances produced thus far must contain ¬(f1(a) ≤ f1(b)), which then leads to
generation of the instance a ≤ b → f1(a) ≤ f1(b) of K1. Together, G and these
three instances are unsatisfiable.

Thus, for this example both the eager instantiation and LIG∗ with maximal
inferences will produce 12 instances, while LIG∗

uc would need three steps to
produce exactly those 3 instances that are necessary for proving unsatisfiability
of the set of ground clauses.

We can also extend Example 4.15 to the case of LIG∗. In this case, we
assume that there is not only some redundant information on f3, but also on f2
and f1.

Example 4.24. Let G consist of the ground clauses

(Ci ) ai ≤ bi ∨ ci ≤ di , for 1 ≤ i ≤ n

(Di) f3(ai) ≤ f3(bi) ∨ f3(ci ) ≤ f3(di ), for 1 ≤ i ≤ n

(E ) ¬(a1 ≤ b1) ∨ ¬(f3(a1) ≤ f3(b1))

(F ) ¬(c1 ≤ d1) ∨ ¬(f3(c1) ≤ f3(d1))

(G) f2(e1) ≤ f2(e2) ∨ f2(e3) ≤ f2(e4))

(H ) f1(e5) ≤ f1(e6) ∨ f1(e7) ≤ f1(e8))

That is, compared to Example 4.15 we replace f by f3 and add clauses G and
H with redundant information on f2 and f1, respectively. Note that we will not
add clauses containing f2 or f1 with increasing size of our parameter, but still
the existing ground terms will lead to an increasing blow-up.
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As before, this set of clauses is unsatisfiable for every n, because the set
{ C1,D1,E ,F } is already unsatisfiable in T3. The instances of the axioms
needed to prove this are

f2(a1) ≤ f2(b1) → f3(a1) ≤ f3(b1),

f2(c1) ≤ f2(d1) → f3(c1) ≤ f3(d1),

f1(a1) ≤ f1(b1) → f2(a1) ≤ f2(b1),

f1(c1) ≤ f1(d1) → f2(c1) ≤ f2(d1),

a1 ≤ b1 → f1(a1) ≤ f1(b1),

c1 ≤ d1 → f1(c1) ≤ f1(d1).

Let us compare how the different approaches to local reasoning treat this prob-
lem:

The eager approach generates K3[G], which consists of all instances of K3

with all combinations of substituting x and y with the constants ai , bi , ci , di ,
i.e. | K3[G] |= (4n)2. With the terms in K3[G] ∪ G, we have to instantiate
x and y in K2 by the ai , bi , ci , di , as well as e1, e2, e3, e4. So here we have
| K2[G2] |= (4n + 4)2. Finally, for K1 we need to instantiate x and y with all
combinations of the ai , bi , ci , di and ei , 1 ≤ i ≤ 8. Thus, | K1[G1] |= (4n + 8)2.

In LIG∗, M can contain an arbitrary literal out of each ground clause, except
for C1,D1,E and F . The dependencies between these imply that either f (a1) ≤
f (b1) and ¬(f (c1) ≤ f (d1)) are in M, or ¬(f (a1) ≤ f (b1)) and f (c1) ≤ f (d1).
From the other Di , we have n − 1 different literals in M, each with 2 extension
terms that do not appear elsewhere. Furthermore, M will contain one literal
for each of G and H .

For the extension terms with respect to K3, the situation is as in Exam-
ple 4.15, i.e. we have 2n + 2 f3-terms in st(M). The set sel(K3)[M] ∪M then
contains f2-terms with the same instantiation as the f3-terms in M, plus the
additional f2-terms from one literal in G, i.e. altogether we have 2n +4 f2-terms.
Finally, I2 = I3 ∪M contains f1-terms with the same instantiation as the f2-
terms in I3 ∪M, plus the f1-terms from one literal in H , i.e. 2n + 6 f1-terms
altogether. Thus, a maximal LIG∗-inference will generate (2n +2)2 instances of
K3, (2n +4)2 instances of K2 and (2n +6)2 instances of K3. All of the instances
needed to prove unsatisfiability are necessarily generated in this step, and thus
the procedure terminates after checking satisfiability of the resulting instances
together with G.

LIG∗
uc will search for an unsatisfiable core of the corresponding 2n + 2 in-

stances of sel(K3), 2n + 4 instances of sel(K2), and 2n + 6 instances of sel(K1).
The Herbrand model M contains either ¬(f3(a1) ≤ f3(b1)) or ¬(f3(c1) ≤ f3(d1)),
and the corresponding positive literal is an unsatisfiable core. After generating
the according instance of K3, a Herbrand model of the resulting set must contain
at least one of the three following literals: ¬(f2(a1) ≤ f2(b1)), ¬(f2(a1) ≤ f2(b1))
or the literal from above which was not in the previous model. Thus, we will
again find a single instance of either sel(K3) or sel(K2) which is unsatisfiable in
the new model, and generate the according axiom instance. It is not difficult
to see that this process will continue until after 6 steps, all 6 of the instances
necessary for proving unsatisfiability of G in T3 have been produced.

Thus, LIG∗ with maximal inferences proves T3 ∪ G |= 2 by generating
(2n + 2)2 + (2n + 4)2 + (2n + 6)2 instances in one step, and LIG∗

uc needs to
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generate only 6 instances in 2 steps. Recall that in contrast to this, eager
instantiation generates (4n + 8)2 instances.

We will not give in detail an example that corresponds to Example 4.16, since
the behavior of LIG∗ compared to the eager method is exactly what can be
expected from Examples 4.16 and 4.24: while the eager method generates the
full set of instances, behavior of LIG∗ with maximal inferences depends very
much on the models delivered by the SMT solver. It will terminate as soon as
it obtains a model not containing ¬(f3(a1) ≤ f3(b1)), the only negative literal
with extension symbols in the problem. This can happen without generating
any instances, or never at all. In the latter case, LIG∗ will only terminate after
generating the full set of instances. LIG∗

uc can also terminate when we obtain
a model that does not contain ¬(f3(a1) ≤ f3(b1)), or when we cannot generate
any of the six instances produced in Example 4.24. Since G in this case does
not contain ¬(f3(c1) ≤ f3(d1)), only three out of those six can be generated, and
the procedure will terminate after at most 3 steps.

4.3.3 Correctness of LIG∗ and LIG∗
uc

In the following we state that LIG∗ and LIG∗
uc are sound, complete, and termi-

nating. The proofs are direct liftings of the corresponding proofs in Section 4.2.3,
with K1 ∪ . . . ∪ Km replacing K and G0 (as defined in Sections 4.3.1 and 2.6.1)
replacing K[G].

Definition 4.25 (LIG∗-derivation). Consider a base theory T0 and a chain of
extensions T0 ⊆ T1 ⊆ . . . ⊆ Tm , with Tj+1 = Tj ∪ K0

j+1. An LIG∗-derivation is

a sequence of tuples (K0
1, . . . ,K

0
m ,G0) ⊢ . . . ⊢ (Kn

1 , . . . ,Kn
m ,Gn) such that for

0 ≤ j ≤ n−1, Tj ⊆ Tj ∪K0
j+1 is a local theory extension, and for 0 ≤ i ≤ m−1,

G i is T0-satisfiable and (Ki+1
1 , . . . ,Ki+1

m ,G i+1) is the result of an LIG∗-inference
on (Ki

1, . . . ,K
i
m ,G i).

An LIG∗
uc-derivation is defined in the obvious way.

Theorem 4.26 (Soundness). Let (K0
1, . . . ,K

0
m ,G0) ⊢ . . . ⊢ (Kn

1 , . . . ,Kn
m ,Gn)

be an LIG∗- or LIG∗
uc-derivation. If T0 ∪ Gn |= 2, then Tm ∪ G0 |= 2.

Proof : All elements of Gn are instances of clauses in K0
1 ∪ . . .∪K0

m ∪G0. Thus,
their unsatisfiability implies unsatisfiability of K0

1 ∪ . . . ∪K0
m ∪ G0. 2

Theorem 4.27 (Completeness of LIG∗). Let (K0
1, . . . ,K

0
m ,G0) ⊢ . . . ⊢ (Kn

1 , . . . ,
Kn

m ,Gn) be an LIG∗-derivation. If Gn is T0-satisfiable and (Kn
1 , . . . ,Kn

m ,Gn)
is saturated under LIG∗ with respect to a given selection function sel and a
partial Herbrand model M of Gn , then Tm ∪ G0 is satisfiable.

Proof : Let K0
1, . . . ,K

0
m ,G0,Kn

1 , . . . ,Kn
m ,Gn , sel and M as defined above, and

let G0 be the search space of local instances defined by K0
1, . . . ,K

0
m and G0. M

is a partial Herbrand model of T0 and Gn , where Gn ⊆ G0. We extend M to a
partial Herbrand model of T0 and G0 in the following way: for every Ci ∈ G0\G

n

we can find a non-ground clause Di ∈ (Kn
1 ∪ . . . ∪ Kn

m) s.t. Diσi = Ci and Di

is a most specific generalization of Ci wrt. (Kn
1 ∪ . . . ∪Kn

m). For every such Ci ,
we add sel(Di)σi to M, i.e. the resulting set of literals M′ contains at least
one literal from each clause in G0. Furthermore, M′ cannot be contradictory
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wrt. T0: if this was the case, we would have an LIG∗ inference with the Di and
M as premises, producing the Ci or generalizations thereof. As the Di were
chosen to be most specific generalizations of the Ci wrt. (Kn

1 ∪ . . . ∪ Kn
m), the

produced instances are neither in Gn nor (Kn
1 ∪. . .∪Kn

m), thus contradicting our
assumption that (Kn

1 , . . . ,Kn
m ,Gn) is saturated under LIG∗ wrt. sel and M. As

M′ is not contradictory wrt. T0 and contains one literal out of each clause in G0,
we can conclude that T0∪G0 is satisfiable. By locality, T0∪K0

1n ∪ . . .∪K0
m ∪G0

is satisfiable iff T0 ∪ G0 is satisfiable. 2

Theorem 4.28 (Completeness of LIG∗
uc). Let (K0

1, . . . ,K
0
m ,G0) ⊢ . . . ⊢ (Kn

1 , . . . ,
Kn

m ,Gn) be an LIG∗
uc-derivation. If Gn is T0-satisfiable and (Kn

1 , . . . ,Kn
m ,Gn)

is saturated under LIG∗
uc with respect to a given selection function sel and a

partial Herbrand model M of Gn , then Tm ∪ G0 is satisfiable.

Proof : Let K0
1, . . . ,K

0
m ,G0,Kn

1 , . . . ,Kn
m ,Gn , sel and M as defined above, and

let G0 be the search space of local instances defined by K0
1, . . . ,K

0
m and G0. M

is a partial Herbrand model of T0 and Gn , where Gn ⊆ G0. We extend M to a
partial Herbrand model of T0 and G0 in the following way: for every Ci ∈ G0\G

n

we can find a non-ground clause Di ∈ (Kn
1 ∪ . . .∪Kn

m) s.t. Diσi = Ci and Di is a
most specific generalization of Ci wrt. (Kn

1 ∪. . .∪Kn
m). For every such Ci , we add

sel(Di)σi to M, i.e. the resulting set of literals M′ contains at least one literal
from each clause in G0. Furthermore, M′ cannot be contradictory wrt. T0:
if this was the case, we would have an unsatisfiable core of M′, containing
at least one of the sel(Di)σi (since M itself is not contradictory). Thus, we
would have an LIG∗

uc inference with a subset of the Di and M as premises,
producing the Ci or generalizations thereof. As the Di were chosen to be most
specific generalizations of the Ci wrt. (Kn

1 ∪ . . . ∪ Kn
m), the produced instances

are neither in Gn nor (Kn
1 ∪ . . . ∪Kn

m), thus contradicting our assumption that
(Kn

1 , . . . ,Kn
m ,Gn) is saturated under LIG∗

uc wrt. sel and M. As M′ is not
contradictory wrt. T0 and contains one literal out of each clause in G0, we can
conclude that T0 ∪ G0 is satisfiable. By locality, T0 ∪ K0

1n ∪ . . . ∪ K0
m ∪ G0 is

satisfiable iff T0 ∪G0 is satisfiable. 2

Theorem 4.29 (Termination). For any input (K0
1, . . . ,K

0
m ,G0) (with the K0

i

and G0 as defined above), LIG∗ and LIG∗
uc terminate after a finite number of

inferences.

Proof : LIG∗- and LIG∗
uc-inferences produce only clauses that are both instances

of a clause in one of the Kj and generalizations of clauses in Kj [
⋃

j<k≤m+1 Ik ],
where for every sel, Kj [

⋃

j<k≤m+1 Ik ] ⊆ Kj [Gj ]. For a given input (K1, . . . ,Kn ,
G), only finitely many clauses are both instances of clauses in one of the Kj

and generalizations of clauses in Kj [Gj ], and thus there are only finitely many
possible LIG∗- and LIG∗

uc-inferences. 2

4.4 Implementation: iLoRe

We implemented the incremental approaches LIG, LIGuc and LIG∗ on top of
an existing OCaml implementation of the eager approach. The iLoRe tool uses
Z3 [11] as a black-box SMT solver, because Z3 provides an OCaml API as
well as the necessary functionality (model generation, incremental addition of
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(a) Example 4.15 (b) Example 4.16

Figure 4.1: Runtime comparison of the three approaches on parameterized ex-
amples

constraints and computation of unsatisfiable cores). For our benchmark tests
we used a machine with Intel Xeon CPU at 3.16 GHz and 16 GB of RAM.

Runtime Comparison. We tested our implementation on four sets of bench-
marks. The implementation of LIGuc is still preliminary, therefore it is only
included in two of the four comparisons below.

In Figure 4.1 (a) we see runtimes of all three approaches on the parameterized
problem from Example 4.15. The incremental approaches outperform the eager
instantiation substantially, while LIGuc is a bit slower than LIG. Figure 4.1 (b)

shows runtimes for Example 4.16: here, LIGuc is significantly faster than LIG.
In Figure 4.2, we see runtimes of LIG and the eager approach on a set

of verification benchmarks taken from SMT-LIB, an independent benchmark
library for SMT problems. More specifically, we compared runtimes of the
two approaches on modified versions of all problems from the QF UFLIA/wisas

section of SMT-LIB. The problems in this section were originally benchmarks
of the Wisconsin Safety Analyzer. They are originally in the universal fragment
of TZ with additional free function symbols.

We checked satisfiability of these benchmarks in two extended theories,
which assume one of the functions to be monotone or injective, respectively.
All of the problems turned out to be unsatisfiable in both of the extended theo-
ries. Figure 4.2 (a) compares performance of the two approaches for the subset
of originally satisfiable problems. In the diagram, a point above the diagonal
means that LIG is faster than eager instantiation on a given problem, and vice
versa for points below the diagonal. We can see that LIG is faster on almost
all of the problems.

For the set of all benchmarks from the QF UFLIA/wisas section of SMT-LIB,
we had mixed results (see Figure 4.2 (b)): although LIG is faster on the vast
majority, there are some problems for which it needs much longer than the eager
method. It turned out that these problems are already unsatisfiable without the
additional axioms, but proving unsatisfiability of the original problem was much
harder than proving unsatisfiability after adding a few hundred axiom instances.

Memory Consumption. In Table 4.4, we compare memory consumption of
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Figure 4.2: Runtime comparison of LIG and eager approach on verification
problems

the different approaches. The table shows the memory in use at exit, as reported
by the Valgrind tool. We have chosen a number of problems that we also used
for timing benchmarks (with increasing complexity, otherwise random). In the
table, “Blowup n” denotes the parameterized example with parameter n. The
problems starting with “xs” are those taken from the SMT-LIB, “(+inj)” means
that we added an injectivity axiom to the original problem, “(+mon)” means
we added a monotonicity axiom. As for the time comparison, we cannot include
LIGuc in the comparison for the SMT-LIB examples.

The results are not very surprising: the incremental approaches need less
memory than the eager approach, and the version with unsatisfiable core (where
applicable) needs less than the one with maximal inferences.

4.5 Results

In this chapter we have introduced several methods for incremental generation
of the instances that make up the search space of local reasoning. We have given
examples where incremental approaches can terminate after traversing only a
small subset of the search space, and have demonstrated with an implementation
that this theoretical benefit is also reflected in a better time- and space-efficiency.

Our tests with independent verification-related benchmarks should be a good
indication that efficiency is not only considerably increased for certain toy ex-
amples, but also for a significant class of real-world applications.
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Table 4.1: Comparison: Memory in use at exit (in MB)

Problem eager LIG LIGuc

Blowup 3 1.466 1.364 1.287
Blowup 15 7.987 3.033 1.682
Blowup 75 171.442 47.762 6.150
xs 7 7 (+inj) 1.729 1.591 -
xs 7 7 (+mon) 1.777 1.679 -
xs 10 10 (+inj) 4.901 1.781 -
xs 10 10 (+mon) 2.125 1.839 -
xs 15 20 (+inj) 4.857 2.098 -
xs 15 20 (+mon) 2.647 2.245 -
xs 21 31 (+inj) 4.993 2.612 -
xs 21 31 (+mon) 3.683 3.077 -
xs 27 47 (+inj) 5.100 3.552 -
xs 27 47 (+mon) 4.372 4.153 -
xs 34 44 (+inj) 6.490 4.358 -
xs 34 44 (+mon) 5.978 5.252 -
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Chapter 5

Application: Verification of
Parameterized Systems

In Chapters 2 and 3 we have introduced the approach of local reasoning, as well
as many examples of local theory extensions. So far, we have not given detailed
examples of interesting applications.

In this chapter we show how local reasoning can be used to solve a class of
verification problems for parameterized systems. In Section 5.1, we define the
notation of our formal models and verification problems and mention a method
how to obtain such formal system models from a suitable specification language.
In Section 5.2, we show that local reasoning gives us decision procedures for a
certain class of systems and properties, provided that they can be expressed as
chains of local theory extensions.

In the rest of Chapter 5, we demonstrate that interesting systems can be
modeled in this class by describing in detail a case study taken from the Euro-
pean Train Control System (ETCS) standard. In Section 5.3, we introduce the
case study informally. In Section 5.4 we present in detail a simple model of the
case study, including verification tasks for proving a safety property and how we
can solve these problems with local reasoning. We present different extensions
of this model with increasing complexity in Section 5.5.

The main results of this chapter have been published in 2006 [39] and
2007 [40, 17].

5.1 Formal Specification and Verification

A major application area of automated reasoning is the verification of systems.
In order to apply automated reasoning methods to a system, we need a formal
system specification, called a system model, and verification methods for proving
properties of such system models.

In this section we introduce transition constraint systems, which we use as
system models. We explain how safety properties of these systems can be verified
by invariant checking and bounded model checking.
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5.1.1 Formal System Model

Definition 5.1 (Transition constraint system). Let Π0 = (S , Σ0, Pred) be a
signature and T0 a Π0-theory. Let V be a set of constant symbols and Σ a set
of non-constant function symbols, such that V , Σ and Σ0 are pairwise disjoint.

Let V ′ = { v ′ | v ∈ V } and Σ′ = { f ′ | f ∈ Σ }, and define Π =
(S , Σ0 ∪ Σ ∪V , Pred) and Π′ = (S , Σ0 ∪ Σ ∪ Σ′ ∪ V ∪ V ′, Pred).

Then, a transition constraint system (TCS) (with background theory T0)
consists of:

• the set of constant symbols V , called system variables,

• the set of function symbols Σ, called system functions ,

• a Π-formula (Init), called the initial condition, and

• a Π′-formula (Update), called the transition relation.

The system variables V model properties of the overall system. System
functions Σ model either properties of the overall system which depend on some
other values, or local properties of a parameterized number of components of
the system. In the latter case, f (i) can be seen as a local variable f of some
component i .

Definition 5.2 (System state). For a given TCS, a system state is a Π-structure
M such that M |= T0, i.e. a structure that is a model of the background theory
and assigns values to system variables and system functions.1

The initial condition (Init) describes the set of initial state of the system,
using symbols in the given background signature Π0 as well as system variables
V and system functions Σ:

Definition 5.3 (Initial state). For a given TCS, an initial state is a system
state M such that M |= (Init).

The transition relation (Update) describes the relation between system vari-
ables and system functions before and after a transition of the system, using
signature Π′. V and Σ refer to the system state before the transition, V ′ and
Σ′ to the state after the transition:

Definition 5.4 (Pre-state, post-state, successor). For a Π′-structure N , let
its pre-state be the reduct of N to the signature Π. We obtain its post-state
by considering the reduct of N to the signature (S , Σ0 ∪ Σ′ ∪ V ′, Pred), and
renaming constant symbols v ′ ∈ V to v , and function symbols f ′ ∈ Σ′ to f
(such that the result is again a Π-structure).

A system state M ′ is a successor of a system state M if there exists a Π′-
structure N such that M is the pre-state of N , M ′ is the post-state of N and
N |= (Update).

1It may seem unusual to the reader that we include the structure for the background theory
in the system state. Usually, the system state would be defined as a valuation of the symbols
in V and Σ, based on a model of the background theory. Logically, the two possible definitions
are equivalent, since the reduct of any Π-model of T0 to Π0 is a Π0-model of T0. The definition
we chose is more convenient for what follows.
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Definition 5.5 (Reachable state). A system state Mn is reachable if there is a
sequence of system states M1, . . . ,Mn such that M1 is an initial state and Mi+1

is a successor of Mi for 1 ≤ i ≤ n − 1.

Definition 5.6 (Safety property, unsafe state, safety). A safety property of a
TCS T is a Π-formula. For a given safety property (Safe), an unsafe state is
a system state M with M |= ¬(Safe). A TCS T is safe if no unsafe states are
reachable.

We present an approach for proving safety of TCSs in Section 5.1.2.

5.1.2 Invariant Checking of TCSs

A method for proving safety of systems is invariant checking. The idea is to
find an invariant of the system that implies the safety property.

Definition 5.7 (Invariant, inductive invariant, safety invariant). A Π-formula
(Inv) is an invariant of a TCS T = (V , Σ, (Init), (Update)) with background
theory T0 if M |= (Inv) for all reachable system states M .

An invariant (Inv) is inductive if T0 ∪ (Inv) ∪ (Update) |= (Inv′), where (Inv′)
is obtained from (Inv) by replacing every variable v ∈ V with v ′ and every
function symbol f ∈ Σ with f ′.

An invariant (Inv) is a safety invariant for a given safety property (Safe) if
T0 ∪ (Inv) |= (Safe)

For verification of safety properties, we are interested in inductive safety
invariants, because they allow us to reduce verification problems to first-order
satisfiability problems.

Invariant checking. Consider a TCS T = (P ,V , Σ, (Init), (Update)) with
background theory T0. To show that a Π-formula (Inv) is an inductive safety
invariant of T for a given safety property (Safe), we need to prove

(1) T0 ∪ (Inv) |= (Safe),

(2) T0 ∪ (Init) |= (Inv), and

(3) T0 ∪ (Inv) ∪ (Update) |= (Inv′).

Note that these satisfiability problems can be arbitrarily hard, depending
on the background theory T0 and formulas (Init), (Update), (Safe) and (Inv). In
Section 5.2 we will introduce restrictions on these formulas and the background
theory that allow us to decide the given problems with the local reasoning
approach.

Remark. In many cases we can simplify the verification conditions above by
explicitly separating constant and function symbols that do not change their
valuation during an execution of the system from those that do change their
valuation.

Let P ⊆ V be the set of system variables which are kept fixed by (Update),
i.e. T0 ∪ (Update) |= v = v ′ for all v ∈ P . We call them system parameters .
Similarly, let ΣP ⊆ Σ be the set of function symbols which are kept fixed by
(Update), and let ΠP = (S , Σ0 ∪ P ∪ ΣP , Pred). Then, let (Init) = (Global) ∪
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(InitV ), where (Global) is the maximal subset of (Init) which contains only ΠP -
formulas, and (Global) ∩ (InitV ) = ∅. We call (Global) the global constraints of
T . Since the valuation of all symbols in (Global) is fixed during an execution
of the system, we can assume that (Global) holds in every reachable state of
the system. Therefore, we do not need to introduce primed variants of these
symbols for the post-state of a transition.

With the separation explained above, the invariant checking problem is
equivalent to proving

(1) T0 ∪ (Global) ∪ (Inv) |= (Safe),

(2) T0 ∪ (Global) ∪ (InitV ) |= (Inv), and

(3) T0 ∪ (Global) ∪ (Inv) ∪ (Update) |= (Inv′),

where (Update) and (Inv′) are not in Π′, but in Π′
V = (S , Σ0 ∪ Σ ∪ (V ′ \ P ′) ∪

(Σ′ \ Σ′
P )), i.e. system parameters v ∈ P and system functions f ∈ ΣP only

appear in their original form, not as primed variants v ′, f ′.

Invariant checking crucially depends on the presence or the ability to find an
inductive safety invariant. If for a given candidate invariant (Inv1) we can prove
(1) and (2), but not (3), this does not mean that the system is not safe: there
may be a formula (Inv2) with T0∪(Global)∪(Inv2) |= (Inv1), and such that (Inv2)
is inductive. Finding such inductive invariants is an own branch of research
which we do not consider here. The problem is in general undecidable, but if we
cannot come up with an invariant we can still resort to bounded model checking,
described in Section 5.1.3.

5.1.3 Bounded Model Checking of TCSs

The invariant checking approach from Section 5.1.2 fails if we cannot find an
inductive safety invariant for the desired safety property (Safe). The idea of
bounded model checking (BMC) is to prove safety only for a finite number of
transition steps.

Bounded model checking. Consider a TCS T = (V , Σ, (Init), (Update))
with background theory T0.

For a given formula F and i ∈ N, let Fi be the result of replacing in F all
variables v ∈ V by vi−1, all v ′ ∈ V ′ by vi , all functions f ∈ Σ by fi−1, and all
f ′ ∈ Σ′ by fi .

To show that the system T cannot reach an unsafe state within n transition
steps, we need to prove

T0 ∪ (Init0) ∪
⋃k

i=1(Updatei) |= (Safek ),

for 1 ≤ k ≤ n.
While this approach does not depend on an inductive invariant, the satis-

fiability problems can also be arbitrarily hard in this case, depending on the
background theory T0 and formulas (Init), (Update) and (Safe), as well as the
bound n. In Section 5.2, we will introduce restrictions on these formulas and
the background theory that allow us to decide the given problems with the local
reasoning approach (for any given n).
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Remark. Similar to the invariant checking approach, we can simplify the proof
tasks for BMC by separating symbols that change their valuation during an
execution of the system from those that do not change. The BMC problem is
then equivalent to

T0 ∪ (Global) ∪ (Init0) ∪
⋃k

i=1(Updatei) |= (Safek ),

for 1 ≤ k ≤ n, where (Init0), (Updatei) and (Safek ) only contain variants with
subscript of those symbols that change their valuation during an execution of
the system.

5.1.4 Translation from a Formal Specification Language

Complex systems consisting of several interacting components, like the exam-
ples we will present in Sections 5.4 and 5.5, arise in a natural way in a wide
range of applications. In order to make automatic verification of such systems
feasible in industrial application, one needs not only the verification techniques
we introduced thus far, but also a suitable specification language.

We want to mention briefly the specification language we used for model-
ing such complex systems [17]. The detailed approach of specification in this
language and translation of specifications into TCSs is not part of this thesis.

Combination of processes, data and time. In the specification of complex
systems, one needs to take several aspects into account: On an abstract level, the
control flow of such systems can be divided into processes, which are sequences
of high-level actions. These sequences are subject to certain restrictions: certain
actions must be preceded or followed by other actions, and different processes
may have to synchronize on some of their actions. Then, for every action of
the system, we can define what are the preconditions on the values of system
variables and system functions, as well as the resulting changes on their values.
Finally, actions of the system can be subject to timing restrictions.

In our work, we used a combined language CSP-OZ-DC (COD) [34, 32] that
allows us to specify all of these aspects separately. Communicating Sequential
Processes (CSP) are used to model the high-level control flow, Object-Z (OZ)
for modeling valuations of system variables and functions, and the Duration
Calculus (DC) for timing restrictions.

Translation and Verification of COD specifications. Existing verification
approaches for COD [33, 18] are only able to deal with simple background
theories. We extended these approaches to complex theories, which allows us
to verify systems with a parametric number of components and complex data
types.

Verification of COD specifications in these previous approaches is based on
a translation into Phase Event Automata. We showed that these can easily be
converted into TCSs as introduced in Section 5.1.1. Furthermore, we extended
the approach to deal with timing parameters in the OZ part, and background
theories more complex than pure linear arithmetic.
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5.2 Local Reasoning in Verification of Parame-

terized Systems

In this section we show under which assumptions on a TCS T , the background
theory T0 and the formulas (Safe) and (Inv) we can decide the satisfiability prob-
lems resulting from invariant checking and bounded model checking of TCSs.

Deciding invariant checking problems with local reasoning. For in-
variant checking, we need to solve the following satisfiability problems:

(1) T0 ∪ (Inv) |= (Safe),

(2) T0 ∪ (Init) |= (Inv), and

(3) T0 ∪ (Inv) ∪ (Update) |= (Inv′).

For solving (1), consider T0 ⊆ T0∪(Inv) as a theory extension. By Theorem 2.41,
we can decide the universal fragment of T0 ∪ (Inv) if either the extension is ∀ ∃-
reducing and the ∀ ∃-fragment of T0 is decidable, or if the extension is universally
reducing and the universal fragment of T0 is decidable. If we can decide the
universal fragment of T0 ∪ (Inv) and (Safe) is universal, then we can decide (1).

For solving (2), consider T0 ⊆ T0 ∪ (Init) as a theory extension. With the
same argument as above, we can decide the universal fragment of T0 ∪ (Init)
if either the extension is ∀∃-reducing and the ∀ ∃-fragment of T0 is decidable,
or if the extension is universally reducing and the universal fragment of T0 is
decidable. If we can decide the universal fragment of T0 ∪ (Init) and (Inv) is
universal, then we can decide (2).

Finally, for solving (3), assume that we have solved (1), i.e. we can decide the
universal fragment of T0 ∪ (Inv) . Then we can decide the universal fragment of
T0∪(Inv)∪(Update) if the extension T0∪(Inv) ⊆ T0∪(Inv)∪(Update) is universally
reducing. If we can decide the universal fragment of T0 ∪ (Inv) ∪ (Update) and
(Inv) is universal, then we can decide (3).

Thus, the following is a consequence of Theorem 2.41 and the considerations
above:

Theorem 5.8. Let T = (V , Σ, (Init), (Update)) be a TCS with a background
theory T0 with signature Π0, and let (Safe) and (Inv) be universal Π-formulas
(Π as defined above). Assume that the theory extension T0 ∪ (Inv) ⊆ T0 ∪ (Inv)∪
(Update) is universally reducing.

i) If the theory extensions T0 ⊆ T0∪(Init) and T0 ⊆ T0∪(Inv) are ∀ ∃-reducing
and the ∀ ∃-fragment of T0 is decidable, then the invariant checking prob-
lem wrt. T , (Safe) and (Inv) is decidable.

ii) If the theory extensions T0 ⊆ T0∪ (Init) and T0 ⊆ T0∪ (Inv) are universally
reducing and the universal fragment of T0 is decidable, then the invariant
checking problem wrt. T , (Safe) and (Inv) is decidable.

Even if not all of the conditions above are satisfied, we may still be able
to use local reasoning to solve the given satisfiability problems by considering
partitionings of the formulas (Init), (Inv) and (Update) into smaller sets and
reasoning about chains of extensions wrt. these partitionings.
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E.g., if the extension T0 ⊆ T0 ∪ (Init) is neither universally nor ∀ ∃-reducing,
we can consider a partitioning KInit

1 ∪ . . . ∪ KInit
m of (Init) and the corresponding

chain of extensions

T0 ⊆ T0 ∪ KInit
1 ⊆ . . . ⊆ T0 ∪

⋃m

i=1 K
Init
i .

By Theorem 2.55, the universal theory of T0 ∪ (Init) is decidable if either this
chain of extensions is ∀ ∃-reducing and the ∀ ∃-fragment of T0 is decidable, or
this chain of extensions is universally reducing and the universal fragment of
T0 is decidable. By considering such partitionings for (Init), (Inv) and (Update)
(and the corresponding chains of theory extensions), we obtain the following
generalization of Theorem 5.8:

Theorem 5.9. Let T = (V , Σ, (Init), (Update)) be a TCS with a background
theory T0 with signature Π0, and let (Safe) and (Inv) be universal Π-formulas (Π

as defined above). Assume that there is a partitioning
⋃n

i=1 K
Update
i of (Update)

such that the corresponding chain of extensions T0 to T0∪(Update) is universally
reducing.

i) If there are partitionings
⋃l

i=1 K
Init
i of (Init) and

⋃m
i=1 K

Inv
i of (Inv) such

that the corresponding chains of extensions from T0 to T0∪ (Init) and from
T0 to T0 ∪ (Inv) are ∀ ∃-reducing and the ∀ ∃-fragment of T0 is decidable,
then the invariant checking problem wrt. T , (Safe) and (Inv) is decidable.

ii) If there are partitionings
⋃l

i=1 K
Init
i of (Init) and

⋃m
i=1 K

Inv
i of (Inv) such

that the corresponding chains of extensions from T0 to T0∪ (Init) and from
T0 to T0 ∪ (Inv) are universally reducing and the universal fragment of T0

is decidable, then the invariant checking problem wrt. T , (Safe) and (Inv)
is decidable.

Deciding BMC problems with local reasoning. For bounded model check-
ing, we need to solve satisfiability problems

T0 ∪ (Init0) ∪
⋃k

i=1(Updatei) |= (Safek ),

for 1 ≤ k ≤ n.
To this end, consider T0 ⊆ T0 ∪ (Init0) ⊆ T0 ∪ (Init0) ∪ (Update1) ⊆ . . . ⊆

T0 ∪ (Init0) ∪
⋃k

i=1(Updatei) as a chain of theory extensions. By Theorem 2.55,

we can decide the universal fragment of T0 ∪ (Init0) ∪
⋃k

i=1(Updatei) if either
this chain is ∀ ∃-reducing and the ∀ ∃-fragment of T0 is decidable, or this chain
is universally reducing and the universal fragment of T0 is decidable.

If we can decide the universal fragment of T0 ∪ (Init0) ∪
⋃k

i=1(Updatei) for
every k and (Safe) is universal (and thus (Safek ) is universal for every k), then
we can decide the given satisfiability problem for any k .

Again, we formulate the consequence of these considerations and Theo-
rems 2.41 and 2.55:

Theorem 5.10. Let T = (V , Σ, (Init), (Update)) be a TCS with a background
theory T0 with signature Π0, and let (Safe) be a universal Π-formula (Π as

defined above). Assume that the extensions T0 ∪ (Init0) ∪
⋃j−1

i=1(Updatei) ⊆ T0 ∪

(Init0) ∪
⋃j

i=1(Updatei), for every j , are universally reducing.
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i) If the theory extension T0 ⊆ T0∪(Init0) is ∀ ∃-reducing and the ∀ ∃-fragment
of T0 is decidable, then the bounded model checking problem wrt. T and
(Safe) is decidable for any k.

ii) If the theory extension T0 ⊆ T0 ∪ (Init0) is universally reducing and the
universal fragment of T0 is decidable, then the bounded model checking
problem wrt. T and (Safe) is decidable for any k.

If the premises of this theorem are not satisfied, like in the case of invariant
checking, we may find partitionings of (Init0) and (Updatei) such that the corre-
sponding chain of extensions from T0 to T0∪(Init0) is universally or ∀ ∃-reducing

and the corresponding chains of extensions from T0 ∪ (Init0)∪
⋃j−1

i=1(Updatei) to

T0 ∪ (Init0) ∪
⋃j

i=1(Updatei) (for 1 ≤ j ≤ k) are universally reducing.

Theorem 5.11. Let T = (V , Σ, (Init), (Update)) be a TCS with a background
theory T0 with signature Π0, and let (Safe) be a universal Π-formula (Π as
defined above). Assume that there is a partitioning of (Updatei) such that the

corresponding chain of extensions from T0 ∪ (Init0) ∪
⋃j−1

i=1(Updatei) to T0 ∪

(Init0) ∪
⋃j

i=1(Updatei), for every j ≥ 1, is universally reducing.

i) If there is a partitioning of (Init0) such that the corresponding chain of
extensions from T0 to T0∪ (Init0) is ∀ ∃-reducing and the ∀ exists-fragment
of T0 is decidable, then the bounded model checking problem wrt. T and
(Safe) is decidable for any k.

ii) If there is a partitioning of (Init0) such that the corresponding chain of
extensions from T0 to T0 ∪ (Init0) is universally reducing and the univer-
sal fragment of T0 is decidable, then the bounded model checking problem
wrt. T and (Safe) is decidable for any k.

Modeling systems with local theory extensions. Thus, the remaining
problem for both approaches is to show that the resulting extensions or chains
of extensions are universally or ∀ ∃-reducing, or to find partitionings that satisfy
these properties. The main problem is establishing locality of the extensions,
which can be done in two ways: we can show locality of extensions by hand, as
we did in Section 3, or we can try to model the system such that the resulting
theory extensions are already known to be local.

In the next sections we show that the locality results given in Section 2.5 and
Chapter 3 can be used as a toolbox to model interesting parameterized systems,
and that our implementation of the local reasoning approach can be used to
decide invariant checking and BMC problems for these systems automatically.

5.3 Description of the ETCS Case Study

In this Section we introduce informally a case study taken from the European
Train Control System standard (cf. [16]).

The ETCS standard has been issued by the European Commission and is an
international system that shall replace traditional, national train control systems
in the future. The main goals are to ensure cross-border interoperability and
improve railway safety and track utilization. In the final ETCS implementation-
level 3, existing national systems for detection of train speed, location, and

84



integrity will not be used anymore. Instead, values of these properties for a
moving train are detected by the train’s on-board ETCS unit in cooperation
with a so-called radio block center (RBC), which controls the traffic in a well-
defined area and grants movement authorities (MA) to trains.

Over a radio connection, the trains communicate information about their
current position (and possibly other properties) to the RBC, which collects this
information from all trains in its area. The collected information is used to issue
MAs to all trains, and every single train then has the responsibility to ensure
that it does not move beyond its MA. Together, this behavior should ensure
that the overall system is well-behaved, i.e. the trains move in a reliable and
safe way.

ETCS implementation-level 3 also considers emergency messages: their func-
tion is to ensure that in case of an accident, like a malfunction of a train or a
blocked rail track, every train that is affected comes to a standstill before col-
liding with other trains. To this end, a train that detects an emergency can
send a special emergency message to the RBC, which is then forwarded to every
train approaching the danger position. The trains acknowledge the message and
have to be able to brake to a standstill before reaching the position of another
train or the danger point. If necessary, this includes automatic application of
the emergency brakes if the driver of the train does not react in time.

In the following sections, we will introduce successively more complex mod-
els of an RBC-controlled rail track with a parametric number of trains. We
start with a very simple model and show that we can extend the complexity of
the system significantly, while still being able to reduce the problems of invari-
ant checking and bounded model checking to decidable satisfiability problems.
All the time, the number of trains as well as several other values of the system
description will be considered as parameters. That is, we prove safety proper-
ties for all possible values of these parameters at once, or even deduce certain
constraints on the parameters that guarantee safety.

5.4 Verification of a Simple Model

We start with a very simple model of the case study, where we abstract from
the communication issues and assume that at given points in time the system
has accurate knowledge about the positions of all trains. At these points, the
positions are updated and the behavior of the trains until the next update is
determined. We assume that all trains move according to the same rules, which
determine the speed until the next update by comparing the distance to the
preceding train to a given safety distance. For now, we do not consider the
length of trains, i.e. they are just points on a line. The number of trains on that
line is arbitrary, but remains fixed during a run of the system.

Convention. In this and the following sections, we use the separation of system
variables and system functions into those which do change their valuation under
(Update), and those that do not, as explained in the remark in Section 5.1.2 (and
in Section 5.1.3 for BMC).

In Section 5.5 we will introduce several extensions of this model that retract
some of these simplifications: we will consider trains that enter and leave the
area controlled by the RBC, we will introduce a safety condition that takes
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into account the length of trains and finally we will also allow non-deterministic
emergencies in addition to the standard behavior of the system.

5.4.1 TCS of the Simple Model

We define a TCS with background theory T0 = TZ ∪ TR, where Z is used as
an index sort for our components2. For the simple model, the set of system
parameters is P = { ∆t, d, min, max, n }, where:

• ∆t : R is the amount of time between two system updates,

• d : R is a safety distance,

• min : R is the minimum speed of trains on this track segment,

• max : R is the maximum speed of trains on the segment, and

• n : Z is the number of trains on the segment.

In this system we do not have system variables which change their valuation,
i.e. V = P . The set of system functions Σ consists of a single function symbol
pos of type Z → R, modeling positions of trains on the track. That is, pos(i)
denotes the position of train i on the track, if 0 ≤ i ≤ n − 1. ΣP is empty.

We impose the following global constraints on the system parameters:

(Global) ∆t > 0 ∧ 0 ≤ min ∧ min ≤ max ∧ n > 0

∧ d ≥ ∆t · max − ∆t · min

In the initial condition of the system, we define that the positions of the trains
are ordered:

(InitV ) ∀ i , j :Z. 0 ≤ i < j < n → pos(i) > pos(j )

Note that the ordering on trains requires the train with the lowest number
to have the greatest position.

Finally, we specify (Update) =
∧4

i=1 Fi , where

(F1) ∀ i :Z. i = 0 → pos(i) + ∆t · min ≤ pos′(i) ≤ pos(i) + ∆t · max

(F2) ∀ i :Z. 0 < i < n ∧ pos(i − 1) ≤ 0 → pos′(i) = pos(i)

(F3) ∀ i :Z. 0 < i < n ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) < d
→ pos′(i) = pos(i) + ∆t · min

(F4) ∀ i :Z. 0 < i < n ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) ≥ d
→ pos(i) + ∆t · min ≤ pos′(i) ≤ pos(i) + ∆t · max

The rules determine the relation between the position pos(i) before the update
and pos′(i) after the update, for 0 ≤ i < n.

The first rule states that the behavior of train number 0 is free: it can always
choose a speed between min and max. The next three rules specify the behavior

2In fact, the index theory for trains need not be the integers. We could also use an (acyclic)
list structure, or any other theory that has a non-dense strict ordering and can be combined
with real arithmetic. We use Z because it is directly supported in every state of the art SMT
solver.
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of the other trains: F2 states that for any train i , if the preceding train i − 1
has not passed position 0 yet, then i will not move at all. This models that
the positions smaller than 0 are a starting interval, from which trains will only
emerge one by one. F3 states that a train must move at minimum speed if the
distance to the preceding train is smaller than d, and F4 states that it can choose
any speed between min and max otherwise.

For the simple model, we define T1 = (V , Σ, (InitV ) ∪ (Global), (Update))
with the components defined above.

5.4.2 Invariant Checking for the Simple Model

For our case study, collision freeness is one of the most important safety prop-
erties. Since we consider a single track and model trains without length, we can
assume that we have a collision-free system if the initial strict ordering on the
train positions is preserved. I.e., our safety condition is the same ordering on
positions of trains as in our initial condition:

(Safe) = (InitV ).

In the following, we prove that (Safe) is a safety invariant of T1. Accord-
ing to the approach for invariant checking introduced in Section 5.1.2, proving
that (Safe) is an inductive safety invariant of our system T1 = (V , Σ, (InitV ) ∪
(Global), (Update)) amounts to proving

(1) T0 ∪ (Global) ∪ (Safe) |= (Safe)

(2) T0 ∪ (Global) ∪ (InitV ) |= (Safe), and

(3) T0 ∪ (Global) ∪ (Safe) ∪ (Update) |= (Safe′).

Verification conditions (1) and (2) are trivial. Verification condition (3) is
a satisfiability problem in T0 extended with sets of clauses (Global), (Safe) and
(Update), and we will use local reasoning to solve it, as shown in Section 5.2.

Locality

To prove T0∪(Global)∪(Safe)∪(Update) |= (Safe′), we consider three successive
extensions of T0:

(1) the extension T0 ⊆ T0 ∪ (Global). We call the extended theory T1.

(2) the extension T1 ⊆ T1∪ (Safe) with a function symbol pos of type Z → R.
We call the extended theory T2.

(3) the extension T2 ⊆ T2 ∪ (Update) with a function symbol pos′ of type
Z → R. We call the extended theory T3.

In order to decide whether T3 |= (Safe) using the solution from Section 5.2, we
need to show that all three extensions are either universally or ∀ ∃-reducing. For
the extension T0 ⊆ T0 ∪ (Global) this is trivial, since (Global) is ground and in
the signature of T0, except for new constant symbols. We show locality of the
other two extensions:

Corollary 5.12. The extension T1 ⊆ T1 ∪ (Safe) is universally reducing.
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Proof : Locality of the extension T1 ⊆ T1 ∪ (Safe) is a direct consequence of
Corollary 3.14. Our base theory TZ ∪ TR ∪ (Global) satisfies the conditions of
Theorem 3.9 (in our case A is Z, <A is >Z, B is R and <B is <R).3 Constants
a1 and a2 are instantiated to −1 and n, respectively (since 0 ≤Z i is equivalent
to −1 <Z i). Thus, T1 ⊆ T1 ∪ (Safe) is a local extension.

Since (Safe)[G] is finite and ground for every set of ground clauses G and
the universal fragment of T1 is decidable, the extension T1 ⊆ T1 ∪ (Safe) is
universally reducing. 2

Corollary 5.13. The extension T2 ⊆ T2 ∪ (Update) is universally reducing.

Proof : Locality is a consequence of Theorem 3.19. The base theory for this
extension is T2 = T1 ∪ (Safe), the partial order in this case is ≤R. Clearly, the
left-hand sides of the update rules are conjunctions of literals in the signature
of T2. For the right-hand sides, pos′(i) = pos(i) in rule F2 is equivalent to
pos(i) ≤ pos′(i) ≤ pos(i), and similarly for F3. Then, if we denote the right-
hand side of a rule as t1 ≤ pos′(i) ≤ t2, we have that t1 and t2 are terms in
the signature of T2, and t1 ≤ t2 for all rules (because of our restrictions on the
system variables).

Finally, we need to ensure that the left-hand sides of the rules are mutually
exclusive in T2. This is clear because the first literal of F1 contradicts the first
literal of all other rules, the second literal of F2 contradicts the second literal of
F3 and F4, and the third literal of F3 contradicts the third literal of F4. Thus,
T2 ⊆ T2 ∪ (Update) is a local extension.

Since (Update)[G] is finite and ground for every set of ground clauses G
T2 ⊆ T2 ∪ (Update) is universally reducing. 2

Hierarchical Reasoning

Since we know that all of the extensions above are universally reducing, we can
use local reasoning in chains of extensions (see Section 2.6.1) to reduce the given
satisfiability problem to an equisatisfiable problem in the base theory.

We want to check whether or not T3 |= (Safe), or equivalently

T0 ∪ (Global) ∪ (Safe) ∪ (Update) ∪ ¬(Safe′) |= 2,

since T3 = T0 ∪ (Global) ∪ (Safe) ∪ (Update).
By the locality of T2 ⊆ T2 ∪ (Update), we have

T0 ∪ (Global) ∪ (Safe) ∪ (Update) ∪ ¬(Safe′) |= 2

⇔ T0 ∪ (Global) ∪ (Safe) ∪ (Update)[¬(Safe′)] ∪ ¬(Safe′) |= 2

Since the extension is universally reducing, the set (Update)[¬(Safe′)] consists
only of ground clauses. For the second reduction, let G = (Update)[¬(Safe′)] ∪
¬(Safe′). By locality of T1 ⊆ T1 ∪ (Safe), we have

T0 ∪ (Global) ∪ (Safe) ∪ G |= 2

⇔ T0 ∪ (Global) ∪ (Safe)[G] ∪ G |= 2

3For better readability, we omit the subscripts of the orderings in the following whenever
the considered orderings are clear from the sorts of the compared terms.
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The result of this reduction is again a set of ground clauses. Since (Global)
is also ground, we can already solve this satisfiability problem with a Nelson-
Oppen combination of decision procedures for TR, TZ and free function symbols.
However, since the arithmetic constraints are non-linear, most actual SMT im-
plementations are not able to handle them, so we have to linearize them by
restricting either ∆t or both min and max to fixed values in order to use this
approach.

An alternative is to make two further reduction steps, removing function
symbols pos and pos′ by Ackermann’s reduction:

T0 ∪ (Global) ∪ (Safe)[G] ∪ G |= 2

⇔ T0 ∪ (Global) ∪ (Safe)[G]′ ∪G ′ ∪D |= 2

⇔ T0 ∪ (Global) ∪ (Safe)[G]′ ∪G ′ ∪N |= 2,

where in the first step (Safe)[G]′ ∪ G ′ results from replacing in (Safe)[G] ∪ G
all extension terms pos(ti), pos′(ui) with fresh constant symbols ci , di and D
contains for every fresh constant its definition ci = pos(ti), di = pos′(di). Now,
function symbols pos and pos′ only appear in D .

In the second step we remove D , and have to add instances of the congruence
axiom to preserve equisatisfiability: for every pair of equations ci = pos(ti), cj =
pos(tj ) in D , N contains a clause ti = tj → ci = cj , and similarly for pos′-terms.

The resulting set of clauses is ground and does not contain any free function
symbols. As a result, it can be handled by some decision procedures for TR

that cannot handle the previous problem because of the additional free func-
tion symbols, but do support non-linear real arithmetic, like the implemen-
tation of real and integer arithmetic in the computer algebra system RED-
LOG/REDUCE [13].

Also, in the absence of function symbols we can use quantifier elimination in
the combined theory of reals and integers to deduce constraints on the system
parameters that guarantee safety. We can e.g. remove some or all of the global
constraints (Global) and try to deduce a relation between the system parameters
that is sufficient for safety of the system.

In the following, we show the reductions from above in (almost) full detail.

Reductions in Detail

For this simple model, we want to show in detail how the sets of formulas are
obtained that can finally be handed to a prover of the base theory.

We want to show that T0 ∪ (Global) ∪ (Safe) ∪ (Update) ∪ ¬(Safe′) |= 2 by
reduction to a ground problem in the base theory T0, where

¬(Safe′) 0 ≤ a < b < n ∧ pos′(a) ≤ pos′(b)

is the negation of (Safe), skolemized by introduction of fresh constants a and b.
To this end, we first reduce the problem to a satisfiability problem over T2.

Reduction from T3 to T2. In order to construct the set (Update)[¬(Safe′)],
we check st((Update) ∪ ¬(Safe′)) for extension terms. Our extension symbol in
this reduction is pos′, and st((Update) ∪ ¬(Safe′)) contains only two extension
terms, pos′(a) and pos′(b). This means that (Update)[¬(Safe′)] contains two
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(F1)[a] a = 0 → pos(a) + ∆t · min ≤ pos′(a) ≤ pos(a) + ∆t · max

(F2)[a] 0 < a < n ∧ pos(a − 1) ≤ 0 → pos′(a) = pos(a)

(F3)[a] 0 < a < n ∧ pos(a − 1) > 0 ∧ pos(a − 1) − pos(a) < d
→ pos′(a) = pos(a) + ∆t · min

(F4)[a] 0 < a < n ∧ pos(a − 1) > 0 ∧ pos(a − 1) − pos(a) ≥ d
→ pos(a) + ∆t · min ≤ pos′(a) ≤ pos(a) + ∆t · max

(F1)[b] b = 0 → pos(b) + ∆t · min ≤ pos′(b) ≤ pos(b) + ∆t · max

(F2)[b] 0 < a < n ∧ pos(a − 1) ≤ 0 → pos′(a) = pos(a)

(F3)[b] 0 < b < n ∧ pos(b − 1) > 0 ∧ pos(b − 1) − pos(b) < d
→ pos′(b) = pos(b) + ∆t · min

(F4)[b] 0 < b < n ∧ pos(b − 1) > 0 ∧ pos(b − 1) − pos(b) ≥ d
→ pos(b) + ∆t · min ≤ pos′(b) ≤ pos(b) + ∆t · max

Figure 5.1: Axiom instances in (Update)[¬(Safe′)]

instances of every clause in (Update): one with i instantiated to a, the other
with i instantiated to b. (Update)[¬(Safe′)] can be seen in Figure 5.1.

To decide satisfiability of T0∪(Global)∪(Safe)∪(Update)[¬(Safe′)]∪¬(Safe),
we have to do another reduction with respect to the extension T1 ⊆ T2.

Reduction from T2 to T1. Again, we check our axioms and ground goal
for ground extension terms. For this reduction, we consider the set of ground
clauses G = (Update)[¬(Safe′)] ∪ ¬(Safe′), there is one axiom in (Safe) and
our extension symbol is pos. The set of ground extension terms contained in
st(G) is { pos(a), pos(a − 1), pos(b), pos(b − 1) }. The axiom in (Safe) contains
two variables i , j , and therefore has to be instantiated with every pair of terms
appearing below pos, giving us 16 instances. (Safe)[G] can be seen in Figure 5.2.

As mentioned before, the resulting set of ground clauses (Global)∪(Safe)[G]∪
G can now be handed to an SMT solver or a similar tool that decides T0 with
additional free function symbols, possibly after fixing values of either ∆t or min
and max.

Alternatively, we make another reduction to eliminate also the function sym-
bols: first we purify the sets of instances and our ground goal, introducing new
constants for extension terms. That is, ¬(Safe′) is purified to

(P1) 0 ≤ a < b < n ∧ c1 ≤ c2,

(Update)[¬(Safe′)] is purified to (P2) and (Safe)[(Update)[¬(Safe′)]∪¬(Safe′)] is
purified to (P3), see Figures 5.3 and 5.4.

Purification produces a set of definitions (D), from which we compute a set
N of instances of the congruence axiom for both pos′ and pos. Both (D) and
(N ) can be found in Figure 5.5.

Now, the original satisfiability problem is equivalent to satisfiability of the
resulting set of clauses (Global) ∪ (P1) ∪ (P2) ∪ (P3) ∪ (N ) in T0.

Parametric verification. If we remove some of the global constraints on
min, max and d, we find out that the system is unsafe, i.e. the problem becomes
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(Safe)[a, a] 0 ≤ a < a < n → pos(a) > pos(a)

(Safe)[a, a − 1] 0 ≤ a < a − 1 < n → pos(a) > pos(a − 1)

(Safe)[a, b] 0 ≤ a < b < n → pos(a) > pos(b)

(Safe)[a, b − 1] 0 ≤ a < b − 1 < n → pos(a) > pos(b − 1)

(Safe)[a − 1, a] 0 ≤ a − 1 < a < n → pos(a − 1) > pos(a)

(Safe)[a − 1, a − 1] 0 ≤ a − 1 < a − 1 < n → pos(a − 1) > pos(a − 1)

(Safe)[a − 1, b] 0 ≤ a − 1 < b < n → pos(a − 1) > pos(b)

(Safe)[a − 1, b − 1] 0 ≤ a − 1 < b − 1 < n → pos(a − 1) > pos(b − 1)

(Safe)[b, a] 0 ≤ b < a < n → pos(b) > pos(a)

(Safe)[b, a − 1] 0 ≤ b < a − 1 < n → pos(b) > pos(a − 1)

(Safe)[b, b] 0 ≤ b < b < n → pos(b) > pos(b)

(Safe)[b, b − 1] 0 ≤ b < b − 1 < n → pos(b) > pos(b − 1)

(Safe)[b − 1, a] 0 ≤ b − 1 < a < n → pos(b − 1) > pos(a)

(Safe)[b − 1, a − 1] 0 ≤ b − 1 < a − 1 < n → pos(b − 1) > pos(a − 1)

(Safe)[b − 1, b] 0 ≤ b − 1 < b < n → pos(b − 1) > pos(b)

(Safe)[b − 1, b − 1] 0 ≤ b − 1 < b − 1 < n → pos(b − 1) > pos(b − 1)

Figure 5.2: Axiom instances in (Safe)[(Update)[¬(Safe′)] ∪ ¬(Safe′)]

(P2) =







a = 0 → d1 + ∆t · min ≤ c1 ≤ d1 + ∆t · max

0 < a < n ∧ d3 > 0 ∧ d3 − d1 ≥ d
→ d1 + ∆t · min ≤ c1 ≤ d1 + ∆t · max

0 < a < n ∧ d3 > 0 ∧ d3 − d1 < d
→ c1 = d1 + ∆t · min

0 < a < n ∧ d3 > 0 ∧ d3 − d1 ≥ d
→ d1 + ∆t · min ≤ c1 ≤ d1 + ∆t · max

b = 0 → d2 + ∆t · min ≤ c2 ≤ d2 + ∆t · max

0 < b < n ∧ d4 > 0 ∧ d4 − d2 ≥ d
→ d2 + ∆t · min ≤ c2 ≤ d2 + ∆t · max

0 < b < n ∧ d4 > 0 ∧ d4 − d2 < d
→ c2 = d2 + ∆t · min

0 < b < n ∧ d4 > 0 ∧ d4 − d2 ≥ d
→ d2 + ∆t · min ≤ c2 ≤ d2 + ∆t · max







Figure 5.3: Purification of (Update)[¬(Safe′)]
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(P3) =







0 ≤ a < a < n → d1 > d1

0 ≤ a < a − 1 < n → d1 > d3

0 ≤ a < b < n → d1 > d2

0 ≤ a < b − 1 < n → d1 > d4

0 ≤ a − 1 < a < n → d3 > d1

0 ≤ a − 1 < a − 1 < n → d3 > d3

0 ≤ a − 1 < b < n → d3 > d2

0 ≤ a − 1 < b − 1 < n → d3 > d4

0 ≤ b < a < n → d2 > d1

0 ≤ b < a − 1 < n → d2 > d3

0 ≤ b < b < n → d2 > d2

0 ≤ b < b − 1 < n → d2 > d4

0 ≤ b − 1 < a < n → d4 > d1

0 ≤ b − 1 < a − 1 < n → d4 > d3

0 ≤ b − 1 < b < n → d4 > d2

0 ≤ b − 1 < b − 1 < n → d4 > d4







Figure 5.4: Purification of (Safe)[(Update)[¬(Safe′)] ∪ ¬(Safe′)]

(D) =







c1 = pos′(a) c2 = pos′(b)

d1 = pos(a) d2 = pos(b)
d3 = pos(a − 1) d4 = pos(b − 1)







(N ) =







a = b → c1 = c2

a = b → d1 = d2 a = a − 1 → d1 = d3

a = b − 1 → d1 = d4 b = a − 1 → d2 = d3

b = b − 1 → d2 = d4 a − 1 = b − 1 → d3 = d4







Figure 5.5: Sets of definitions (D) and congruence axioms (N ) from purification
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satisfiable.4 This gives raise to an interesting problem in a different kind of
parametric verification.

The method for hierarchical reasoning described above allows us to reduce
the problem of checking whether system properties such as collision freeness are
inductive invariants to deciding satisfiability of corresponding constraints in T0.

For the given problem, we can achieve even more: if we remove function
symbols completely, we are in the combined theory of TR ∪ TZ. For this theory,
quantifier elimination procedures exist. That is, we can transform the satisfia-
bility problem above by replacing constants with quantified variables, and then
eliminate these variables. The result is a problem that is equisatisfiable to the
original one, but only contains a subset of the original system variables. We can
consider the model without the constraints on ∆t, min and max, and then elim-
inate all variables except these three. Thus, we end up with an equisatisfiable
formula from which we can find out how to choose (constraints on) ∆t, min and
max such that the formula is not satisfiable.

5.4.3 Bounded Model Checking of the Simple Model

First, consider the TCS T1 as introduced in Section 5.4.1. Let (Init0), (Updatei)
and (Safek ) be modifications of the original formulas, as defined in Section 5.1.3.

Then, we can show absence of paths of length k that lead to an unsafe state
by proving

T0 ∪ (Global) ∪ (Init0) ∪
⋃k

i=1(Updatei) ∪ ¬(Safek ) |= 2.

Since we have proved that (Safe) is an inductive invariant of T1, we are able to
prove absence of error paths for any k .

To obtain a more interesting BMC problem, we now consider a slightly
different system than before: suppose the global constraints are

(GlobalBMC ) d = 100 ∧ min = 0 ∧ max = 100 ∧ ∆t = 1,

and our initial condition states that between two trains we have at least distance
1000, i.e.

(InitBMC ) ∀ i , j :Z. 1 ≤ i < j ≤ n → pos(i) − pos(j ) > (j − i) · 1000.

The extension T0 ∪ (GlobalBMC ) ⊆ T0 ∪ (GlobalBMC ) ∪ (InitBMC ) is local by
Corollary 3.34, and universally reducing because (InitBMC )[G] is ground for
any set of ground clauses G. Furthermore, the extension T0 ∪ (GlobalBMC ) ∪

(InitBMC ) ∪
⋃k−1

i=1 (Updatei) ⊆ T0 ∪ (GlobalBMC ) ∪ (InitBMC ) ∪
⋃k

i=1(Updatei) is
universally reducing for every k ≥ 1; the proof of Corollary 5.13 can easily be
modified to show this.

Now, consider the following safety condition:

(SafeBMC ) ∀ i :Z. 1 ≤ i < n → pos(i) > pos(i + 1).

Then, to prove safety of the system for k steps, we have to check whether

T0 ∪ (GlobalBMC ) ∪ (InitBMC ) ∪
⋃k

i=1(Updatei) ∪ ¬(SafeBMC ) |= 2.

4If we remove the constraints on ∆t or n, we simply do not have a reasonable model of the
case study anymore.
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Since all the extensions above are universally reducing, we can use the local
reasoning approach to reduce this problem (for any k) to a ground satisfiability
problem in T0.

It turns out that the system is safe for k ≤ 9, but unsafe states are reachable
if we have k ≥ 10. The reason for this is that with the given values for max and
min, the distance between trains can shrink by 100 with every step. The system
is unsafe because d is not large enough to prevent collisions: if two trains have
distance 100 before an update, the first train will be allowed to stop (i.e. go at
speed min), while the following train is allowed to go at maximum speed, having
them end up in the same position after the update.

Note that by fixing ∆t = 1 and using the modified safety condition, we
remain in an effectively linear fragment of arithmetic, even though (InitBMC )
contains a multiplication of terms containing variables.5 This allows us to use
SMT solvers for the base theory that do not support non-linear constraints.
For invariant checking this would not be an option, since the modified safety
condition (SafeBMC ) does not satisfy a locality property. However, as we only
use the negation of (SafeBMC ) in the BMC problem, this is not a problem in
this case.

5.4.4 Automatic Verification

We have seen that for a simple model of the ETCS case study, invariant check-
ing and bounded model checking problems are decidable. The corresponding
verification conditions can be expressed as first-order formulas modulo the base
theories TR ∪ TZ.

Automation by reasoning in chains of local extensions. The main prob-
lem for automatic verification is that the verification conditions contain uni-
versally quantified formulas, which have to be checked for satisfiability modulo
non-trivial theories. We solve this problem by using locality to efficiently elimi-
nate quantifiers by instantiation, resulting in a ground satisfiability problem in
a decidable fragment of the base theory. To this end, we identify corresponding
chains of theory extensionsT0 ⊆ T1 ⊆ · · · ⊆ Tk , such that Ti ⊆ Ti+1 is universally
reducing for all i . Every Ti+1 extends Ti with a set of (universally quantified)
clauses. Locality of the extensions allows us to reduce the first-order problems
to ground problems, which can be efficiently checked by existing methods.

Automatic verification with iLoRe. We can check these first-order satisfia-
bility problems automatically, using our implementation of the hierarchical rea-
soning approach. If we want a state-of-the-art SMT solver to check the ground
problem that results from instantiation of the extension axioms, we need to make
sure that we do not have non-linear arithmetic constraints in the instances given
to the tool. In the simple model, it is enough to give a fixed valuation to the
length of the time interval ∆t. Otherwise, we may give the non-linear problem
to provers that can handle non-linear problems, like REDLOG [13].

Note that the update rules and the invariant to be proved have a very spe-
cific structure: in any clause, there is exactly one literal that contains all exten-

5If variable i in the negation of (SafeBMC ) is replaced by a constant a, then variables j

and i in axiom (InitBMC ) will always be instantiated with a term of the form a(+1)∗(−1)∗ ,
i.e. a after incrementing and decrementing it a number of times. As the two resulting terms
are subtracted, a will disappear, leaving a fixed-value multiplication.
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sion terms. Because of this, the incremental approach LIG∗ produces exactly
the same instances as the eager instantiation. In contrast to this, LIG∗

uc can
give some benefit over the eager approach: manual tests with the SMT solver
Yices [14] have shown that safety of the system can be proved with only 10
out of the 28 instances of (Update) and (Safe) that the eager method generates.
However, we were not able to check behavior of the actual implementation of
LIG∗

uc because it currently does not support all features needed to treat the
given problem.

Verification without locality arguments. If we try to solve the non-ground
invariant checking problem directly with an SMT solver (i.e. without using lo-
cality of the axioms), it can only give us a conclusive answer if the problem is
unsatisfiable. For satisfiable problems, e.g. if we specify an unsafe system by
leaving out the global constraints (Global), SMT solvers run forever or return
unknown, while a local reasoning-based approach returns a model of the given
set of clauses. This is equivalent to a counterexample to safety and can there-
fore be used to find out why the system is unsafe, and refine it to exclude this
behavior.

For the BMC problem, a test with Yices shows that even for k = 1 the prob-
lem cannot be solved without local reasoning: if the axioms are not instantiated
before giving it to Yices, the prover states that this is a non-linear problem and
refuses to even start instantiating the axioms.

Next, we show that the local extensions described in Section 2.5 and Chapter 3
allow us to express models and safety properties that are more complex than
the one we considered until now. We explore some extensions of this model,
and show that the resulting problems still fall into a class that can be decided
with local reasoning.

5.5 Extensions of the Simple Model

In this Section, we present a number of extensions of the simple model intro-
duced in 5.4. In Section 5.5.1 we will show that we can model a rail track
where trains can leave at one end of the track, and new trains can enter at
the other end. That is, not only do we have a parametric number of trains,
but the number of trains can change during execution, bounded by a system
parameter. In Section 5.5.2, we no longer consider trains as points on a line,
but give them a length. This leads to a different axiomatization of collision-
freeness. Finally, in Section 5.5.3 we consider a model that not only has the
standard mode of operation, but can also handle emergencies at any point of
the track. These emergencies appear nondeterministically, and therefore safety
of the system depends on some additional properties like a bounded braking
distance of trains.

5.5.1 Incoming and Leaving Trains

In order to allow incoming and leaving trains, we introduce a modified model
T2 = (V2, Σ, (Init2) ∪ (Global2), (Update2)). In this model, we need a measure
for the number of trains on the track, and we want to have a bound on this
number. Furthermore, this specification has to be compatible with the kind of
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update rules that we identified as local extensions. This can be achieved in the
following way:

Since the number of trains is not fixed anymore, we do not need n anymore.
Instead, we have a new system parameter maxTrains : Z and system variables
first : Z and last : Z, which can change during execution and at any time give
the number of the first and last train on the track.

Since we only want trains to leave at the ends of the track, this is sufficient
to model incoming and leaving trains: first will always be the smallest of all
numbers that are assigned to trains on the track, and the train with the smallest
number should have the greatest position. If a train wants to leave the track, it
has to be this one. Thus, we can model a leaving train by simply incrementing
first, implicitly stating that the train that was first before is no longer on the
track. Similarly, last is always equal to the greatest of all numbers that are
assigned to trains, and the train with that number should have the smallest
position. A train can only enter the track behind this one, and therefore should
have a higher number. Thus, we model incoming trains by incrementing last,
implicitly stating that this number now also refers to a train on the track. In
this case, we also have to assign a suitable value to pos(last) for this new train.

The current number of trains on the track is then always equal to last −
first + 1, which should be bounded by maxTrains.

Then, for this extension T2 of the simple model, our set of system parameters
is P2 = { ∆t, d, min, max, maxTrains }. We use modified global constraints on
the system parameters:

(Global2) ∆t > 0 ∧ 0 ≤ min ∧ min ≤ max ∧ maxTrains > 0

∧ d ≥ ∆t · max − ∆t · min

The set of system variables is V2 = P ∪ { first, last } and the set of system
functions is the same as before, but we are now interested in values of pos(i)
for first ≤ i ≤ last, instead of 0 ≤ i < n.

Accordingly, the initial condition (Init2) is

(Init2) ∀ i , j :Z. first ≤ i < j ≤ last → pos(i) > pos(j )

∧ first − last + 1 ≤ maxTrains

For the extended model, we have (Update2) =
∧9

i=1 Vi , where

(V1) ∀ i :Z. i = first → pos(i) + ∆t · min ≤ pos′(i) ≤ pos(i) + ∆t · max

(V2) ∀ i :Z. first < i < last ∧ pos(i − 1) ≤ 0 → pos′(i) = pos(i)

(V3) ∀ i :Z. first < i < last ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) < d
→ pos′(i) = pos(i) + ∆t · min

(V4) ∀ i :Z. first < i < last ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) ≥ d
→ pos(i) + ∆t · min ≤ pos′(i) ≤ pos(i) + ∆t · max

(V5) last − first + 1 < maxTrains → last′ = last ∨ last′ = last + 1

(V6) last − first + 1 = maxTrains → last′ = last

(V7) last − first + 1 > 0 → first′ = first ∨ first′ = first + 1

(V8) last − first + 1 = 0 → first′ = first

(V9) last′ = last + 1 → pos′(last′) < pos′(last)
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Clauses V1−V4 are similar to F1−F4, except that the fixed bounds are replaced
by the constants first and last. V5 states that if the number of trains is less
than maxTrains, then a new train can enter. V6 says that no train may enter
if maxTrains is already reached. V7 and V8 are similar conditions for leaving
trains. Finally, V9 states that if a train enters, its position must be behind the
train that was last before the transition.

Verification of the Extended Model

As before, we want to use invariant checking to prove the absence of collisions
in our model. Like the initial condition, our safety property will not have to
hold between 0 and n − 1, but between first and last:

(Safe2) ∀ i , j :Z. first ≤ i < j ≤ last → pos(i) > pos(j ).

The verification approach is the same as before. To show that (Safe′2) is an
inductive safety invariant of T2, we need to prove

(1) T0 ∪ (Global2) ∪ (Safe2) |= (Safe2)

(2) T0 ∪ (Global2) ∪ (Init2) |= (Safe2), and

(3) T0 ∪ (Global2) ∪ (Safe2) ∪ (Update2) |= (Safe′2).

Again, verification conditions (1) and (2) are trivial (since (Init2) contains
(Safe2)). We have to prove verification condition (3).

Locality. As we want to use local reasoning, we need to show that for T1 =
T0 ∪ (Global2), T2 = T1 ∪ (Safe2) and T3 = T2 ∪ (Update2), every extension in
the chain of extensions T0 ⊆ T1 ⊆ T2 ⊆ T3 is universally reducing. Again, this
is trivial for T0 ⊆ T1 since (Global2) is ground and in the signature of T0 except
for additional constant symbols.

The following is an easy corollary of Corollary 3.14:

Corollary 5.14. The extension T1 ⊆ T1 ∪ (Safe2) is universally reducing.

Proof : Similar to Corollary 5.12, except that (Safe2) contains different constants
than (Safe). 2

Locality of the second extension is a corollary of Theorems 3.19 and 3.1, and
we can easily show that the extension is also universally reducing:

Corollary 5.15. The extension T2 ⊆ T2 ∪ (Update2) is universally reducing.

Proof : Similar to Corollary 5.13, except that (Update2) uses different constants
than (Update), and contains an additional set of ground clauses, which do not
destroy locality by Theorem 3.1. 2

Hierarchical Reasoning. Locality of the two extensions then guarantees that
the following is an equisatisfiable reduction:

T0 ∪ (Global2) ∪ (Safe2) ∪ (Update2) ∪ ¬(Safe′2) |= 2

⇔ T0 ∪ (Global2) ∪ (Safe2) ∪ (Update2)[¬(Safe′2)] ∪ ¬(Safe′2)
︸ ︷︷ ︸

G

|= 2

⇔ T0 ∪ (Global2) ∪ (Safe2)[G] ∪ G |= 2.
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Since the extensions are universally reducing, the last line is a ground satisfiabil-
ity problem in T0 with additional free function symbols, which can be solved by
standard SMT solvers. Again, we can also use Ackermann’s reduction to remove
the extension symbol and reduce the problem to an equisatisfiable problem in
T0.

Regarding the incremental approaches LIG∗ and LIG∗
uc, we have the same

situation as in the simple model: the specific structure of the invariant and
update rules lets LIG∗ produce the same instances as the eager approach, while
LIG∗

uc will generate about half of the instances, depending on the unsatisfiable
cores obtained from the SMT solver.

5.5.2 A more precise axiomatization of collision-freeness

As mentioned before, we can make the model more precise by not considering
trains as points on a line, but instead considering trains of a specific length. An
easy way to do this is to add a system parameter LengthTrain, which specifies the
standard (or maximal) length of any train that is on the track (or can enter the
track). Assume that pos(i) then specifies the rear-end of train i , i.e. every train
i occupies the track in the interval [pos(i), pos(i) + LengthTrain]. Obviously,
a monotonicity axiom like (Safe1) or (Safe2) is no longer sufficient to prove
collision freeness of such a system.

In the following, we consider systems that behave like T1 or T2 defined
before, but have an additional system parameter LengthTrain and different initial
conditions. For the system based on T1 we define

(Init3) ∀ i , j :Z. 1 ≤ i < j ≤ n
→ pos(i) − pos(j ) > (j − i) · LengthTrain,

and for the system based on T2 we define

(Init4) ∀ i , j :Z. first ≤ i < j ≤ last
→ pos(i) − pos(j ) > (j − i) · LengthTrain

∧ first − last + 1 ≤ maxTrains.

Let T3 = (V ∪{LengthTrain}, Σ, (Init3)∪ (Global), (Update)) be the modification
of T1 in this way, and T4 = (V2∪{LengthTrain}, Σ, (Init4)∪(Global2), (Update2))
the corresponding modification of T2. Note that we have a multiplication symbol
· of type Z ×R → R in these initial properties, which we would usually assume
to be a function in the base theory. We will see that this additional requirement
on the base theory is not needed if we can show the resulting theory extensions
to be universally reducing and we use a suitable representation of the invariant.

Verification of the extended models

We want to prove safety of these systems, where (Safe3) = (Init3) and

(Safe4) ∀ i , j :Z. first ≤ i < j ≤ last
→ pos(i) − pos(j ) > (j − i) · LengthTrain.

Since (Safe3) is again included in (Init3), proving that (Safe3) is an invariant of
T3 amounts to proving
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T0 ∪ (Global) ∪ (Safe3) ∪ (Update) ∪ ¬(Safe′3) |= 2.

Similarly, proving that (Safe4) is an invariant of T4 amounts to proving

T0 ∪ (Global)(Safe4) ∪ (Update2) ∪ ¬(Safe′4) |= 2.

Locality. As before, we want to show that the resulting chains of extensions
are universally reducing. First, consider the extensions for proving safety of T3.
Let T1 = T0 ∪ (Global) (the trivial extension of T0). Then the extension of T1

with (Safe3) a local theory extension by Corollary 3.34 and universally reducing
because all variables appear below extension symbols:

Corollary 5.16. The extension T1 ⊆ T1 ∪ (Safe3) is universally reducing.

Let T2 = T1 ∪ (Safe3). Locality of the extension T2 ⊆ T2 ∪ (Update) follows from
Theorems 3.19 and 3.1, and we can easily show the extension to be universally
reducing:

Corollary 5.17. The extension T2 ⊆ T2 ∪ (Update) is universally reducing.

Proof : Similar to Corollary 5.13, except that pos is defined differently in the
base theory T1. This does not affect locality, since the left-hand sides of the
implications are still mutually exclusive, and we still have pos(i) + ∆t · min ≤
pos(i) + ∆t · max for all i . 2

Now consider the extensions needed for proving safety of T4, and let T ′
1 =

T0 ∪ (Global2). Then the extension of T ′
1 with (Safe4) is a local theory extension

by Corollary 3.34 and universally reducing because all variables appear below
extension symbols:

Corollary 5.18. The extension T ′
1 ⊆ T ′

1 ∪ (Safe4) is a local theory extension.

Now let T ′
2 = T ′

1 ∪ (Safe4). Then, T ′
2 ⊆ T ′

2 ∪ (Update2) is a universally reducing
theory extension:

Corollary 5.19. The extension T ′
1 ⊆ T ′

1 ∪ (Update2) is universally reducing.

Proof : Similar to Corollary 5.15, except that pos is defined differently in the
base theory T ′

1 . As in Corollary 5.15, this does not affect locality. 2

Hierarchical Reasoning. Thus, we can use local reasoning to reduce our
satisfiability problems to equisatisfiable sets of ground clauses in T0. For the
system T3 we get

T0 ∪ (Global) ∪ (Safe3) ∪ (Update1) ∪ ¬(Safe′3) |= 2

⇔ T0 ∪ (Global) ∪ (Safe3) ∪ (Update1)[¬(Safe′3)] ∪ ¬(Safe′3)
︸ ︷︷ ︸

G

|= 2

⇔ T0 ∪ (Global) ∪ (Safe3)[G] ∪G |= 2,

and for T4

T0 ∪ (Global2) ∪ (Safe4) ∪ (Update2) ∪ ¬(Safe′4) |= 2

⇔ T0 ∪ (Global2) ∪ (Safe4) ∪ (Update2)[¬(Safe′4)] ∪ ¬(Safe′4)
︸ ︷︷ ︸

G

|= 2

⇔ T0 ∪ (Global2) ∪ (Safe4)[G] ∪ G |= 2.
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Note that the resulting ground goals still contain multiplications between integer
and real constants, which means we are not in the linear fragment of arithmetic.

We can solve this problem by not using the skolemization of the negated
invariants in the reduction, but equisatisfiable formulas with only one constant.
E.g., the skolemized negation of (Safe′3) is

1 ≤ a < b ≤ n ∧ pos′(a) − pos′(b) ≤ (b − a) · LengthTrain.

This is equisatisfiable to

1 ≤ a < n ∧ pos′(a) − pos′(a + 1) ≤ LengthTrain.

Using the second version as the initial set of ground clauses in the reduction,
variables i and j in (Safe3) will only be instantiated with a and a + 1, which
in all possible combinations results in constant values −1, 0 or 1 as left-hand
side of the multiplication. Now, standard SMT solvers can be used to prove
unsatisfiability of the resulting set of ground clauses.

Behavior of LIG∗ and LIG∗
uc on these examples is similar to what we de-

scribed for T1 and T2.

5.5.3 Handling Emergency Messages

In this section, we want to increase complexity of our system in another dimen-
sion: in addition to the normal mode of operation, we allow non-deterministic
emergencies, which trigger a special behavior of the system. This will be ex-
pressed as a more complicated transition relation, in fact consisting of two dif-
ferent transitions: the usual position update and possible emergencies.

Since in the event of an emergency we cannot expect the system to behave in
the desired way, we add a measure for the braking distance of a train at a given
speed. For emergency situations, we want every train to be able to come to a
standstill without colliding with other trains, even if those stop immediately,
e.g. because they run into an obstacle on the track.

To illustrate this example, we use an extension of our first model from Sec-
tion 5.4. After introducing the new extension, we show how it can be combined
with the other extensions introduced previously.

TCS of the Model with Emergencies

We introduce a system T5 = (V5, Σ5, (Init5), (Update5)) with components as
defined in the following. Let P5 = { ∆t, d, min, max, n, maxDec }, where maxDec
represents the deceleration of a train in case of an emergency. It is used to
model the behavior of a train in case of an emergency and to compute the
braking distance of a train at a given speed.

Furthermore, let V5 = P5 ∪ { emergTrain, newEmergTrain }, where

• emergTrain will always store the number of the foremost train which en-
countered an emergency. All subsequent trains, i.e. those with a number
greater than emergTrain, will have to stop. Initially, emergTrain is set to
a value greater than n, which means that we don’t have an emergency on
the track.
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• newEmergTrain will be used as a nondeterministic input, modeling that
any train on the track could encounter an emergency.

In addition to pos, let Σ5 contain the following function symbols:

• brakingDist of type R → R will give the braking distance of a train moving
with a given speed, and

• speed of type Z → R will give the current speed of a train.

The valuation of brakingDist will not change during execution, i.e. ΣP ,5 =
{brakingDist}.

We define the global constraints on the system parameters as

(Global5) ∆t > 0 ∧ 0 ≤ min ∧ min ≤ max ∧ n > 0

∧ maxDec > 0 ∧ d ≥ ∆t · max − ∆t · min,

and define brakingDist by

(BDist)
∀ s :R. brakingDist(s) ≥ s2

2·maxDec

∀ s1, s2 :R. s1 < s2 → brakingDist(s1) < brakingDist(s2).

Values of the function speed will change during an execution, and we assume
that initially we have

(Inits) ∀ i :Z. min ≤ speed(i) ≤ max,

which is the first part of our initial condition.

As we mentioned, we not only have to ensure that trains do not collide in
their normal mode of operation, but also that all trains are able to come to a
standstill in case of an emergency. As a second part of our initial condition, we
want to require that

∀ i :Z. 1 ≤ i ≤ n → pos(i) < pos(i − 1) − brakingDist(speed(i)).

This formula does not satisfy a locality property, but we can find an equivalent
formula that fits into the fragment defined in Corollary 3.37 (as an extension of
a theory with suitably defined functions brakingDist, speed and

∑
):

∀ i , j :Z. 1 ≤ i < j ≤ n

→ pos(j ) − pos(i) < −
∑j−1

k=i brakingDist(speed(k + 1)),

which can be rewritten to

(Initp)
∀ i , j :Z. 1 ≤ i < j ≤ n

→ pos(i) − pos(j ) >
∑j

k=i+1 brakingDist(speed(k)).

Let (Init5) = (Inits) ∪ (Initp) ∪ (Global) ∪ (BDist).

The transition relation is given as (Update5) = (PosRep) ∨ (Emerg), where

(PosRep) =
∧6

i=1 Pi with
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(P1) ∀ i :Z. i = 1 ∧ emergTrain > i → min ≤ speed′(i) ≤ max
(P2) ∀ i :Z. 1 < i < emergTrain ∧ pos(i − 1) − pos(i) ≥ d

→ min ≤ speed′(i) ≤ max
(P3) ∀ i :Z. 1 < i < emergTrain ∧ pos(i − 1) − pos(i) < d

→ speed′(i) = min
(P4) ∀ i :Z. i ≥ emergTrain

→ speed′(i) = max{speed(i) − maxDec · ∆t, 0}
(P5) ∀ i :Z. 1 ≤ i ≤ n → pos′(i) = pos(i) + speed′(i) · ∆t

(P6) newEmergTrain′ > 0,

and (Emerg) =
∧5

i=1 Ei with

(E1) newEmergTrain ≤ n
(E2) emergTrain′ = min{emergTrain, newEmergTrain}
(E3) speed′(emergTrain′) = 0
(E4) ∀ i :Z. i 6= emergTrain → speed′(i) = speed(i)
(E5) newEmergTrain′ > 0.

If emergTrain > n, then rules (P1) to (P4) are similar to (F1) to (F4), except
that they define speed′ explicitly, which is then used to assign pos′ in rule (P5).
(P6) assigns nondeterministically a positive value to newEmergTrain′, modeling
the possibility of an emergency at an arbitrary location on the track.

If there is already an emergency on the track, i.e. if emergTrain ≤ n, then all
trains i with i ≥ emergTrain apply the emergency brake, while the others move
on as usual.

Whenever newEmergTrain ≤ n, we can have an (Emerg) transition. This
assigns emergTrain′ to the value of newEmergTrain, unless we already had an
emergency at one of the preceding trains (emergTrain < newEmergTrain). The
speed of the emergency train is set to 0 immediately, while all other trains keep
their current speed and have to cope with the emergency after the next position
report.

Verification of the Model with Emergencies

Again, we want to show absence of collisions in our model, this time in presence
of nondeterministic emergencies. We already defined a more restrictive initial
condition in order to cope with braking distances. Our safety condition is defined
as (Safe5) = (Inits) ∪ (Initp).

Proving safety is similar to what we had before. (Safe5) is an inductive
invariant of T5 if and only if

T0 ∪ (Global) ∪ (BDist) ∪ (Safe5) ∪ (Update5) ∪ ¬(Safe′5) |= 2,

in a suitable background theory T0. Since (Update5) is a disjunction (PosRep) ∨
(Emerg), we can split the proof task. (Safe5) is an inductive invariant of T5 if
and only if both

T0 ∪ (Global) ∪ (BDist) ∪ (Safe5) ∪ (PosRep) ∪ ¬(Safe′5) |= 2,

and

T0 ∪ (Global) ∪ (BDist) ∪ (Safe5) ∪ (Emerg) ∪ ¬(Safe′5) |= 2.
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Locality. Again, we to show that we can split the resulting theories into chains
of universally reducing extensions. Let T1 = T0 ∪ (Global). Again, the extension
T0 ⊆ T1 is trivial.

Next, we consider T2 = T1 ∪ (BDist). The following is a corollary of Corol-
lary 3.27.

Corollary 5.20. The extension T1 ⊆ T1 ∪ (BDist) is universally reducing.

Now, consider the theory T2 ⊆ T2 ∪ (Safe5). This extension does not fit into
any class of local theory extensions that we have defined, and we cannot use
Theorem 2.53 for combining extensions since pos is defined in terms of speed,
i.e. the function symbols are not independent. Thus, we partition (Safe5) into
(Inits) ∪ (Initp) and first consider the extension T2 ⊆ T2 ∪ (Inits). The following
is a corollary of Theorem 3.19.

Corollary 5.21. The extension T2 ⊆ T2 ∪ (Inits) is universally reducing.

Now, let T3 = T2 ∪ (Inits). The following is a consequence of Corollary 3.37.

Corollary 5.22. The extension T3 ⊆ T3 ∪ (Initp) is universally reducing.

Thus far, we have shown that we can decide the universal fragment of T4 =
T0 ∪ (Global) ∪ (BDist) ∪ (Safe5) (assuming that we can decide the universal
fragment of T0). Now, we still have to consider extensions T4 ⊆ T4 ∪ (PosRep)
and T4 ⊆ T4 ∪ (Emerg). As with (Safe5), the extension with (PosRep) does not
fit into any class of local theory extensions that we have defined, and in this case
pos′ is defined in terms of speed′. We partition (PosRep) into (Pi)

4
i=1 ∪ (Pi)

6
i=5

and show that the resulting chain of extensions is universally reducing:

Corollary 5.23. The chain of extensions T4 ⊆ T4 ∪ (Pi)
4
i=1 ⊆ T4 ∪ (PosRep) is

universally reducing.

Proof : An extension of T1 with axioms (P1) to (P4) is local by Theorem 3.19:
clearly, the left-hand sides of the implications are mutually exclusive, and min <
max holds in T1. Obviously it is also universally reducing.

An extension of T4 ∪ (Pi)
4
i=1 with (P5) is again local by Theorem 3.19, and

adding the ground clause (P6) does not destroy locality by Theorem 3.1. Thus,
the extension T4 ∪ (Pi)

4
i=1 ⊆ T4 ∪ (PosRep) is local (and obviously universally

reducing).

Since both extensions are universally reducing, the chain of extensions T4 ⊆
T4 ∪ (Pi)

4
i=1 ⊆ T4 ∪ (PosRep) is universally reducing. 2

Corollary 5.24. The extension T4 ⊆ T4 ∪ (Emerg) is universally reducing.

Proof : An extension of T1 with axiom (P4) is a local extension by Theorem 3.19.
Adding the remaining ground clauses does not destroy locality by Theorem 3.1.

The extension is universally reducing since all variables appear below exten-
sion functions. 2

Hierarchical reasoning. Locality of the extensions allows us to reduce the
two satisfiability problems above to equisatisfiable ground problems over T0:
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T4 ∪ (PosRep) ∪ ¬(Safe′5) |= 2

⇔ T4 ∪ (Pi)
4
i=1 ∪ (Pi)

6
i=5[¬(Safe′5)] ∪ ¬(Safe′5)

︸ ︷︷ ︸

G0

|= 2

⇔ T2 ∪ (Safe5) ∪ (Pi)
4
i=1[G0] ∪ G0

︸ ︷︷ ︸

G1

|= 2

⇔ T2 ∪ (Inits) ∪ (Initp)[G1] ∪G1
︸ ︷︷ ︸

G2

|= 2

⇔ T1 ∪ (BDist) ∪ (Inits))[G2] ∪ G2
︸ ︷︷ ︸

G3

|= 2

⇔ T0 ∪ (Global) ∪ (BDist)[G3] ∪ G3 |= 2,

as well as

T4 ∪ (Emerg) ∪ ¬(Safe′5) |= 2

⇔ T2 ∪ (Safe5) ∪ (Emerg)[¬(Safe′5)] ∪ ¬(Safe′5)
︸ ︷︷ ︸

G′

0

|= 2

⇔ T2 ∪ (Inits) ∪ (Initp)[G
′
0] ∪G ′

0
︸ ︷︷ ︸

G′

1

|= 2

⇔ T1 ∪ (BDist) ∪ (Inits))[G
′
1] ∪ G ′

1
︸ ︷︷ ︸

G′

2

|= 2

⇔ T0 ∪ (Global) ∪ (BDist)[G ′
2] ∪ G ′

2 |= 2.

The resulting sets of ground clauses are non-linear (if we do not fix a value for
∆t), and contain summation by

∑
. To solve the resulting satisfiability problem,

we need a reasoner for the base theory that can handle constraints containing
these terms (which is not the case for state of the art SMT tools).

However, we can use a similar approach as for the model with length of trains,
i.e. using an equisatisfiable set of ground clauses instead of the skolemization of
¬(Safe′5). In particular, instead of the skolemized negation

1 ≤ a < b ≤ n ∧ pos′(a) − pos′(b) ≤
∑b

k=a+1 brakingDist(speed′(k))

of (Init′p), we can use the equisatisfiable formula

1 ≤ a < n ∧ pos′(a) − pos′(a + 1) ≤ brakingDist(speed′(a + 1)).

As a result, all sums in the instantiation of (Initp) have either 0, 1 or 2 com-
ponents and can thus easily be expressed in a base theory without summation
symbol

∑
.

For this model, we do not have evidence of how LIG∗ and LIG∗
uc would

compare to the eager approach. Its size makes manual investigation cumbersome
and error-prone, and our prototype implementation currently does not support
all features needed to handle this problem.

Combination of the Extensions

The extension with emergency handling can be combined with the extensions
from Sections 5.5.1 and 5.5.2.

When combined with the extension from Section 5.5.1, we use rules (Vi)
9
i=1

as a basis for our rules, instead of (Fi)
4
i=1. Like in the step from Section 5.4
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to 5.5.1, we introduce new system variables first, last, a new system parameter
maxTrains instead of n, and modify (PosRep) and (Emerg) accordingly. The
locality argument is the same as before, since the essential difference between
the two version is in the ground part of the update rules.

The combination with the extensions from Section 5.5.2 is even easier: we can
simply add the constant distance LengthTrain to our safety distance, i.e. replace
brakingDist(speed(i)) with brakingDist(speed(i)) + LengthTrain. As the latter is
still a term in the base theory, our locality argument remains the same.
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Chapter 6

Conclusions

In this dissertation, we have advanced the state of the art for the framework of
local theory extensions, and thus the field of automated reasoning in complex
theories, in different directions. This includes new locality results, a more effi-
cient method of local reasoning, as well as applications of local reasoning in the
verification of parameterized systems.

We have identified several local theory extensions that have not been known
to be local before. Extensions of previous results for monotone functions in-
clude different versions of strict monotonicity, as well as quasi-monotonicity,
which does not refer to a (partial) ordering in the domain of a function, but to
any transitive relation. Furthermore, we identified a class of guarded bounded-
ness axioms with a locality property. These allow us to define update rules for
parameterized systems. We proved locality of different data structure specifi-
cations via constructor and selector functions, and finally showed that axioms
modelling cardinality functions for boolean algebras also satisfy a locality prop-
erty.

By applying ideas from first-order instance generation methods, we improved
efficiency of reasoning in local theory extensions. We developed incremental
versions of reasoning modulo a single extension and a chain of extensions, and
have implemented both approaches. Experimental results give evidence that
the incremental method is in average more efficient than the standard method,
and dramatically so for a certain class of examples.

As one possible application of our decidability results we have shown that
we can decide safety properties of a certain class of parameterized systems. We
have developed successively more complex models of the ETCS case study, and
have shown that interesting safety properties for all of these systems can be
decided with local reasoning.

This dissertation demonstrates that local theory extensions can provide a
framework with unified notation and common proof methodology for a broad
range of interesting decidability results. An efficient implementation and ex-
ample applications show that from this theoretical framework we can obtain a
practical tool for verification and other applications of automated reasoning.
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6.1 Related Work

Reasoning in complex theories. Most of the existing work on automated
reasoning procedures for solving quantified satisfiability problems modulo a
background theory can be separated into two categories: On the one hand,
there are decision procedures that consider rather uniform background theories
(as opposed to complex combinations of several background theories) allow-
ing quantifier elimination, like linear arithmetic [68], fragments of the theory
of arrays [28, 9] or sets with cardinality constraints [43]. On the other hand,
there are methods that use heuristics for quantifier instantiation [12, 26]. These
work in complex theories, but sacrifice completeness. There has also been some
work on integrating theory reasoning with first-order theorem proving meth-
ods [62, 23, 53], but in general these methods also sacrifice completeness.

In contrast to these methods, we focus on classes of satisfiability problems
that we can show to be decidable, even in the presence of complex background
theories. If we can show that a set of axioms falls into one of the classes that
we have identified as a local theory extension of a background theory for which
we can decide the universal fragment (or in some cases the ∀ ∃-fragment), then
we can decide the universal fragment of the extended theory. Very recently,
a method for complete instantiation strategies for some first-order fragments
has been developed [27]. With respect to the distinction made above, this is
probably the closest to our own work.

Verification of parameterized systems. We have shown that our decision
procedures can be used to decide safety properties of systems with a parametric
number of components, where the state of each component is defined by several
values over the real numbers.

In related work, the components of such systems are often subject to restric-
tions that we do not consider here. Typical restrictions are that each component
of the system needs to be restricted to a finite number of states [4], or each com-
ponent is a timed (but otherwise finite-state) automaton [2].

On the other hand, there are approaches that allow infinite-state compo-
nents, but in turn use an approximation on the state of the overall system.
E.g., a regular model checking procedure has been developed [3], which can
handle a parametric number of homogeneous linear processes and systems oper-
ating on queues or stacks. There is also work on the analysis of safety properties
for parameterized systems with an arbitrary number of processes operating on
unbounded integer variables [1, 10, 45]. By using abstractions of the state space
or the transition relation of the system, all of these approaches sacrifice com-
pleteness.

In contrast to these approaches, our reasoning over the system is complete
and does not restrict the state representation of the components. The only
restriction we impose is that both the transition relation of the system and the
property we want to prove can be expressed in terms of a a chain of local theory
extensions of a suitable base theory. Also, we currently assume the invariant
to be user-specified and have no automatic method to generate invariants, like
some of the approaches above do. An approach which is similar to ours is taken
by Ghilardi et al. [29] for so-called array-based systems. The main differences
to our approach are on the one hand that they have a strict separation between
index and element theories, and require element theories to be decidable. On
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the other hand, they consider the more general problem of model checking for
these systems, and can also handle a class of liveness properties.

6.2 Future Work

The results of this dissertation can be separated into three directions: new local-
ity results, combination of instance generation methods and local reasoning, and
applications of local reasoning in verification problems. In all three directions,
we can identify several possibilities for future work.

New locality results. We believe that several existing decidability results
can be expressed as local theory extensions of decidable theories, e.g. bridging
functions between theories of sets and arithmetic as a generalization of cardi-
nality functions. Also, we aim at expressing more complex theories of data
structures as local theory extensions.

Instance generation and locality. The incremental instantiation procedure
we have introduced works only for standard locality, but can be extended to
stable and Ψ-locality. There are also other interesting applications of instance
generation in problems with a large but finite search space of instantiations, like
SMT-based synthesis [19] or finite model finding [41].

Applications in verification. We are currently developing another extension
of our model for the ETCS case study, which uses recent locality results that
e.g. allow us to model behavior of trains on a complex track network instead of
only a single track.

Also, with several local axiom sets that describe data structures at our dis-
posal, it seems worthwhile to investigate which software verification problems
that are problematic for other approaches can be solved by local reasoning.
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Zusammenfassung

Informationsverarbeitende Systeme sind in unserer Gesellschaft allgegenwärtig
und werden von Tag zu Tag komplizierter. Dabei kann es sich um reine Hardware-
oder Softwaresysteme handeln, oder um komplexe Systeme von Hardware und
Software, die mit ihrer physikalischen Umgebung interagieren.

Mittels Verifikation kann sichergestellt werden, dass ein System sich in der
erwarteten Weise verhält. Es gibt viele sicherheitskritische Systeme, bei denen
eine Abweichung vom erwarteten Verhalten erhebliche Risiken mit sich bringt,
wie etwa computergesteuerte medizinische Geräte, automatische Steuerungssys-
teme für Autos, Züge und Flugzeuge, oder die computergesteuerte Abschaltung
von Kernkraftwerken im Notfall.

Manuelle Verifikation von Systemeigenschaften ist mühsam und fehleranfällig.
Die Größe der genannten Systeme macht es unmöglich, ihr Verhalten vollständig
von Hand zu verifizieren. Deshalb benötigen wir automatische oder computer-
gestützte Verifikationsmethoden.

Bei der Analyse und Verifikation von Systemen ist automatisches Beweisen
bereits weit verbreitet. Für reine Hardwaresysteme und eine eingeschränkte
Klasse von Software sind die auftretenden Verifikationsprobleme von Natur aus
endlich. Entscheidungsverfahren für propositionale Logik (SAT-Solver) können
solche Probleme sehr effizient lösen. Für komplexe Systeme und andere Arten
von Software kann eine Endlichkeit der Verifikationsprobleme nicht angenom-
men werden. Um Eigenschaften solcher Systeme ausdrücken und beweisen zu
können, brauchen wir eine formale Sprache und Beweismethoden, die mit uni-
verseller Quantifizierung, arithmetischen Ausdrücken und unbeschränkten Da-
tentypen gleichzeitig umgehen können. Es gibt Beweissysteme für Prädikatenlo-
gik, die gut mit quantifizierten Formeln umgehen können, und effiziente Entschei-
dungsverfahren für (nicht quantifizierte) Probleme in Theorien von Arithmetik
und Datentypen. Um die anfallenden Verifikationsprobleme zu lösen, benötigen
wir Verfahren, die die Stärken dieser beiden Ansätze zusammenbringen.

Aus diesem Grund gab es in den letzten Jahren ein großes Interesse an Me-
thoden, die universell quantifizierte Probleme in solchen Hintergrundtheorien
lösen können. Es ist bekannt, dass solche Probleme im Allgemeinen unentscheid-
bar sind, und die Forschung konzentriert sich auf Methoden, die unter Verzicht
auf Vollständigkeit möglichst viele Probleme schnell lösen können. Die bekann-
ten Ansätze basieren entweder auf der Integration von Entscheidungsverfahren
in Beweissysteme für Prädikatenlogik, oder auf der heuristischen Instanziierung
von Quantoren. In beiden Fällen können viele Probleme aus einer bestimmten
Klasse schnell gelöst werden, aber es gibt im allgemeinen keine Garantie, dass
das Verfahren für ein gegebenes Problem terminiert.

Wir verfolgen einen anderen Ansatz und konzentrieren uns auf Problem-
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klassen, die wir als lokale Theorieerweiterungen ausdrücken und somit ihre
Entscheidbarkeit zeigen können. Liegt ein gegebenes Problem in einer solchen
Klasse, so können wir es durch endliche Instanziierung der Quantoren effizient
lösen und gleichzeitig das Terminieren der Prozedur garantieren.

Diese Dissertation basiert auf der Arbeit von Sofronie-Stokkermans an loka-
len Theorieerweiterungen, sowie der Arbeit von Ganzinger und Korovin an
instanziierungs-basierten Methoden zum Theorembeweisen in Prädikatenlogik
erster Ordnung. Wir geben einen kurzen Überblick über die bisherigen Re-
sultate in diesen beiden Bereichen, erweitern sie im Bereich lokaler Theorieer-
weiterungen und zeigen eine spezialisierte Anwendung instanziierungs-basierter
Methoden in diesem Bereich.

Wir führen die Arbeit an lokalen Theorieerweiterungen fort, indem wir neue
Beispiele von Axiomen geben, die eine Lokalitätseigenschaft erfüllen. Darunter
fallen Axiome für die Modellierung streng monotoner Funktionen mit verschiede-
nen zusätzlichen Eigenschaften wie Beschränktheit oder einer minimalen Stei-
gung sowie Funktionen mit monotonie-ähnlichen Eigenschaften. Wir zeigen
auch, dass wir mit unserem Ansatz unbeschränkte rekursive Datentypen und
Mengen mit Kardinalitätsfunktionen modellieren können. Schließlich stellen
wir eine Klasse von Axiomen vor, mit deren Hilfe das Verhalten von Systemen
modelliert werden kann.

Wir benutzen Ideen aus instanziierungs-basierten Methoden zum Theorem-
beweisen in Prädikatenlogik, um lokales Beweisen effizienter zu machen. Im
bisherigen Ansatz zum lokalen Beweisen wird eine endliche Menge von Instanzen
der Axiome berechnet, so dass das resultierende (nicht quantifizierte) Prob-
lem in der gegebenen Hintergrundtheorie genau dann erfüllbar ist, wenn das
ursprüngliche Problem in der Theorieerweiterung erfüllbar ist. Diese Menge
von Instanzen wird ohne Zwischenschritte berechnet und zusammen mit dem
ursprünglichen Problem als ganzes an ein Entscheidungsverfahren für die Ba-
sistheorie gegeben. In unserem neuen Ansatz berechnen wir diese Menge von
Instanzen inkrementell, indem wir wiederholt zwischen Instanziierung eines Teils
der Axiome und Überprüfung der Erfüllbarkeit in der Basistheorie wechseln. Die
resultierende Prozedur kann in vielen Fällen die Erfüllbarkeit oder Unerfüllbar-
keit eines Problems zeigen, ohne die vollständige Menge von Instanzen aus dem
bisherigen Ansatz zu berechnen. Unsere Experimente mit Implementierungen
beider Ansätze zeigen, dass der neue Ansatz für die Mehrheit der getesteten
Probleme effizienter ist.

Zuletzt zeigen wir Anwendungen der existierenden und der neuen Resul-
tate in der Verifikation komplexer Systeme. Wir zeigen, dass wir für eine
bestimmte Klasse von parametrisierten Systemen die Einhaltung einer bes-
timmten Klasse von Sicherheitseigenschaften entscheiden können. Als Beispiel
entwickeln wir eine Reihe komplexer werdender Modelle eines eingebetteten Zug-
steuerungssystems, deren Eigenschaften wir mit Axiomen beschreiben, die eine
Lokalitätseigenschaft erfüllen. Unsere Modellierung beschreibt Kontrollsysteme
für eine unbeschränkte Anzahl von Komponenten mit jeweils unendlich vielen
möglichen Zuständen. Wir zeigen, wie man mittels lokalen Beweisens Sicher-
heitseigenschaften solcher Systeme verifizieren kann.
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