
Template based shape processing

Carsten Stoll

Max-Planck Institut Informatik

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

November 2009

mailto:stoll@mpi-inf.mpg.de
http://www.mpi-inf.mpg.de

Date of Colloquium:

30. September 2009

Dean:

Prof. Dr. Joachim Weickert
Faculty of Mathematics and Computer Science
Saarland University
Saarbrücken, Germany

Examination Board:

Prof. Dr. Philipp Slusallek (Chair)
Saarland University

Prof. Dr. Hans-Peter Seidel
Max-Planck Institut Informatik

Dr. Christian Theobalt
Max-Planck Institut Informatik

Prof Dr. Stefan Gumhold
Technische Universität Dreseden

Dr. Thorsten Thormählen
Max-Planck Institut Informatik

ii

Abstract

As computers can only represent and process discrete data, informa-
tion gathered from the real world always has to be sampled. While it
is nowadays possible to sample many signals accurately and thus gen-
erate high-quality reconstructions (for example of images and audio
data), accurately and densely sampling 3D geometry is still a chal-
lenge. The signal samples may be corrupted by noise and outliers, and
contain large holes due to occlusions. These issues become even more
pronounced when also considering the temporal domain. Because of
this, developing methods for accurate reconstruction of shapes from
a sparse set of discrete data is an important aspect of the computer
graphics processing pipeline.

In this thesis we propose novel approaches to including semantic
knowledge into reconstruction processes using template based shape
processing. We formulate shape reconstruction as a deformable tem-
plate fitting process, where we try to fit a given template model to
the sampled data. This approach allows us to present novel solutions
to several fundamental problems in the area of shape reconstruction.
We address static problems like constrained texture mapping and se-
mantically meaningful hole-filling in surface reconstruction from 3D
scans, temporal problems such as mesh based performance capture,
and finally dynamic problems like the estimation of physically based
material parameters of animated templates.

iii

Kurzfassung

Analoge Signale müssen digitalisiert werden um sie auf modernen
Computern speichern und verarbeiten zu können. Für viele Signale,
wie zum Beispiel Bilder oder Tondaten, existieren heutzutage effek-
tive und effiziente Digitalisierungstechniken. Aus den so gewonnenen
Daten können die ursprünglichen Signale hinreichend akkurat wieder-
hergestellt werden. Im Gegensatz dazu stellt das präzise und effiziente
Digitalisieren und Rekonstruieren von 3D- oder gar 4D-Geometrie im-
mer noch eine Herausforderung dar. So führen Verdeckungen und
Fehler während der Digitalisierung zu Löchern und verrauschten Meß-
daten. Die Erforschung von akkuraten Rekonstruktionsmethoden für
diese groben digitalen Daten ist daher ein entscheidender Schritt in
der Entwicklung moderner Verarbeitungsmethoden in der Computer-
grafik.

In dieser Dissertation wird veranschaulicht, wie deformierbare geo-
metrische Modelle als Vorlage genutzt werden können, um seman-
tische Informationen in die robuste Rekonstruktion von 3D- und 4D-
Geometrie einfließen zu lassen. Dadurch wird es möglich, neue Lösungs-
ansätze für mehrere grundlegenden Probleme der Computergrafik zu
entwickeln. So können mit dieser Technik Löcher in digitalisierten 3D
Modellen semantisch sinnvoll aufgefüllt, oder detailgetreue virtuelle
Kopien von Darstellern und ihrer dynamischen Kleidung zu erzeugt
werden.

iv

Acknowledgements

First, I would like to thank my supervisor Prof. Dr. Hans-Peter
Seidel who made it possible for me to work and do my research at the
inspiring environment of the MPI Informatik, and Prof. Dr. Marc
Alexa, who ignited my interest in Computer Graphics in the first
place. I would also like to thank all the senior researchers here at
the institute who supervised me over the past years: Prof. Dr. Stefan
Gumhold, for guiding me through the beginning of my PhD; Dr. Zachi
Karni for motivating me to do research on Geometric Modeling; And
finally, Dr. Christian Theobalt for sparking my interest in motion
capture and all his support in the last few years. I am indebted to all
of them for their advice and guidance in my research.

Without the cooperation, advice and discussions of all my former and
present colleagues at the MPI many of my research projects would
not have been possible. I am especially grateful to all the co-authors
of the papers I have worked on during my PhD : Christian Rössl,
Hitoshi Yamauchi, Edislon de Aguiar, Naveed Ahmed, Nils Hasler,
Martin Sunkel, Bodo Rosenhahn, Thorsten Thormählen and Jürgen
Gall. Further, I would like to thank Boris Ajdin, Martin Fuchs and
Oliver Schall for the lively discussions, and Conny Liegl and Sabine
Budde for their help in managing day to day office life.

I would also like to thank our Maria Jacob, Yvonne Flory, Samir
Hammann, Lukas Ahrenberg and Tatjana Feldmann for allowing us
to record their performances and use them for research projects, and
Derek D. Chan for his help in dubbing our videos.

Finally, I would like to thank my family for their support, and Natascha
for just being there for me all the time.

v

vi

Contents

1 Introduction 1

1.1 Overview . 2

1.2 Contributions and structure . 4

1.3 List of publications . 8

2 Fundamentals 11

2.1 Basic data structures . 11

2.1.1 3D objects and their representations 11

2.1.2 Images and videos . 14

2.2 Scanning and surface reconstruction 15

2.2.1 3D scanning . 16

2.2.2 Surface reconstruction . 19

2.3 Shape editing . 20

2.3.1 Linear methods . 21

2.3.2 Non-linear methods . 23

2.4 Physical simulation . 24

2.4.1 Cloth simulation . 25

2.5 Performance capture . 27

2.5.1 Motion capture . 27

2.5.2 3D video . 29

2.5.3 Performance capture . 29

I Differential coordinate based shape processing using
surfaces 31

3 A deformation framework for triangle mesh based templates 35

3.1 Differential representation . 36

3.2 Reconstruction and deformation 39

vii

CONTENTS

3.2.1 Constraint types . 41

3.2.2 Harmonic interpolation . 42

3.2.3 Rotational invariance . 43

4 Inverse texture mapping 47

4.1 Initial deformation . 50

4.2 Surface Matching . 50

4.3 Results . 55

4.4 Discussion . 58

5 Template based shape reconstruction 61

5.1 Experimental setup . 64

5.2 Initial deformation and global scaling 65

5.3 Iterative improvement . 66

5.4 Results . 67

5.5 Extensions . 71

5.5.1 Laplacian updating . 72

5.5.2 Remeshing . 72

5.5.3 Surface fairing . 73

5.5.4 Results . 74

5.6 Discussion . 75

6 Surface based animation and performance capture 79

6.1 Data acquisition . 80

6.2 Animation and tracking . 80

6.2.1 Results . 82

6.3 Model refinement . 83

6.3.1 Silhouette refinement using positional constraints 84

6.3.2 Silhouette refinement using line constraints 86

6.3.3 Multi-view stereo refinement 86

6.3.4 Results . 87

6.4 Discussion . 88

II Differential coordinate based shape processing using
volumetric data 93

7 A deformation framework for tetrahedral meshes 97

7.1 Differential representation . 98

viii

CONTENTS

7.2 Iterative mesh deformation . 100

7.2.1 Iterative processing . 100

7.2.2 Controlling deformation behavior 104

7.2.3 Constraint refinement . 105

7.3 Processing high resolution meshes 105

8 Shape editing 109

8.1 Interactive mesh editing . 110

8.2 Results . 111

8.3 Discussion . 111

9 Animation and performance capture with tetrahedral meshes 117

9.1 Animation from marker trajectories 118

9.2 Performance capture . 119

9.3 Discussion . 122

III Physically based template shape processing 125

10 Optical reconstruction of animatable human body models 129

10.1 Experimental setup . 132

10.2 Performance capture . 133

10.3 Cloth segmentation . 134

10.4 Estimating hidden geometry . 136

10.5 Cloth simulation . 138

10.6 Combining simulation and reference performance 140

10.7 Parameter optimization . 141

10.8 Results and validation . 144

10.8.1 Segmentation and Cloth Parameter Estimation 145

10.8.2 User Study . 146

10.8.3 Creating New Animations 147

10.8.4 Performance . 148

10.9 Discussion . 148

11 Conclusions and future work 153

References 170

ix

CONTENTS

x

Chapter 1

Introduction

It has been an ongoing effort in the last few decades to enable computers to

analyze, understand and recreate our world (and also create and simulate new

and imagined worlds). Humans use their senses (for example sight, hearing and

touch) to perceive the world around them, while it is necessary to build special

devices that emulate these senses by digitizing the physical properties for the

computer. The field of Computer Graphics is mainly concerned with the sense

of sight, i.e. recording, processing and reproducing of what humans can see.

Traditionally, Computer Graphics was mainly viewed as the process of digitally

synthesizing and manipulating visual content. However, nowadays the field is

covering the whole pipeline of input → processing → output.

As computers can only represent and process discrete data, input information

gathered from the real world (for example images or audio signals) always have

to be sampled. Whether the sampling is dense enough to reconstruct the orig-

inal signal depends on the original frequency content and is determined by the

Nyquist-Shannon sampling theorem (Shannon (1949)). Due to the improvements

in sensor equipment we are nowadays able to sample many signals accurately

and are able to generate reasonable reconstructions (especially images and audio

data). However, in some areas it is still difficult to achieve a dense and regular

sampling of the data, especially concerning 3D data. If our signal is under-

sampled or even misses data, the only way to recover the original signal is to

apply additional knowledge about the original input signal to the reconstruction

process.

In this thesis we will present new methods and applications to introducing

additional knowledge into reconstruction processes by using a template fitting

process.

1

1.1 Overview

(a) (b) (c) (d)

Figure 1.1: Illustrating shape reconstruction : (a) Real world object. (b) A
sparse set of samples derived from the object. Note that the handle of the teapot
has not been sampled. (c) If we do not have any further information about the
object, the most we can reconstruct from the samples is a handle-less teapot. (d)
If we provide additional knowledge (for example in the form of a template), we
can reconstruct a teapot with a handle. While the handle does not accurately
represent the real handle, the created object is much closer to the real world
object than (c).

1.1 Overview

This thesis deals with template based shape processing. The definition of template

according to Wiktionary (2009) is the following :

template (plural templates) :

1. A physical object whose shape is used as a guide to make other objects

2. A generic model or pattern from which other objects are based or derived

While the first explanation specifically refers to a physical object, we reinter-

pret this in our setting to be a virtual, geometric object represented digitally in

a computer. The second definition accurately describes the processing we are

going to perform with these virtual objects, namely using them as a basis to

derive the shape of other objects from. In real world applications we would use

a template to create near identical copies of it. In the context of template based

shape processing, however, a template will be used to provide the algorithm with

additional semantic information about the general object class.

One key example of this is shape reconstruction. The goal is to create a virtual

shape that best corresponds to a set of sparse input samples taken from a real or

virtual object. These sparse samples can be acquired through different methods,

2

1. INTRODUCTION

and depending on how they were found they may exhibit different properties.

When using a 3D scanner we receive information in the form of the position of a

set of unstructured points in 3D space. Analyzing photos yields the position of

points in the 2D image plane. There exist methods for extracting time varying

information, for example from video or real-time 3D scanners. Finally, it is also

possible to incorporate user-defined constraints into this sample set (for example

by defining correspondences between the input and template).

These sampling methods often have limitations : the sample set may be noisy,

contain outliers and holes, or may be so sparse that it is near impossible to draw

conclusions about the original shape. Due to this, it may be difficult to recreate

the object accurately using only the given information.

Figure 1.1 (a) shows an image of a real teapot. We use a sampling technique to

acquire a sparse set of samples representing the original object (Figure 1.1 (b)).

However, due to occlusions during this process we are not able to create any

samples on the teapot handle. If we now try to reconstruct the shape of the

object using only the sampled data, we will not be able to recreate a full virtual

representation of the original object, but at most a teapot missing the handle

(Figure 1.1 (c)). This is because our reconstruction method does not have infor-

mation about the kind of object it is trying to reconstruct, and as such chooses

the most conservative strategy. However, if we provide our algorithm with addi-

tional knowledge about the general shape (i.e. telling it that the object we want

to reconstruct is a teapot, which usually has a handle), we will be able to recon-

struct the teapot correctly (Figure 1.1 (d)). As we do not have any information

about the missing parts of the original object, the only way we can apply this

knowledge is by copying from the template.

As can be seen in this illustration, our use of the template here is different

from its purpose in the real world. Usually, a template would be used as basis

for generating near exact copies of that object. In our example above however

we take the information given by the template and use it to complete a different

shape. Using templates for semantically meaningful completion of objects is not

a new idea. There exist methods that use a conservative shape reconstruction

technique based solely on the input samples wherever they are dense enough.

Holes are then filled by copying the information from the template (Sharf et al.

(2004)). Other methods automatically find the best fitting templates to parts of

the object from a large database and stitch them together (Pauly et al. (2005)).

3

1.2 Contributions and structure

1.2 Contributions and structure

In this thesis we propose an approach to template based shape processing that

allows us to solve a large number of different tasks using the same underlying idea.

We address static problems like constrained texture mapping and semantically

meaningful hole-filling in surface reconstruction (part I), temporal problems such

as mesh based performance capture (part I and II), and finally dynamic problems

like the estimation of physically based material parameters of templates (part III).

Instead of using the template to only fill holes, we approach all these problems

as a template fitting process. Here, we want to change the template in such

a way that it fits as accurately as possible to the data samples we have. By

approaching the problem in this way, we predefine the topology and connectivity

of our object using the template, thereby stabilizing the reconstruction process.

Another benefit of this process is that it allows us to guarantee consistency when

applying the same template to different reconstructions. The most important

factor for the quality of our results is the choice of fitting process. This will

be heavily influenced by our input data, the template structure and the desired

output.

The rest of this thesis is structured as follows :

Chapter 2 introduces the fundamental data structures and techniques used in

this thesis and also gives an overview of related work. In the following chapters

we propose three frameworks which combine into one large system for template

based shape processing and show the uses in different applications. The first two

parts will deal with shape reconstruction on different scales. The method from

part I is particularly suited for modifying the detailed shape of a template (i.e.

reconstructing high-frequency information). The framework presented in part II

is more suited for low-frequency processing, i.e. changing the fundamental pose of

the object while conserving the detail of the template. Combing the frameworks

from part I and II allows us to accurately capture detailed shapes undergoing

strong deformations. Finally, the framework presented in part III allows for the

recovery of physical material properties of the template from animated shape

reconstructions.

Part I presents a framework for template processing using triangle meshes

based on linear differential coordinates. This framework is particularly suited

for shape reconstruction given dense samples of the target object. The differen-

tial coordinate based deformation allows for a high range of deformations. The

4

1. INTRODUCTION

method can be adjusted to allow for very high frequency changes in the structure

of the template. One drawback caused by the large freedom of deformation pos-

sibilities is that it can be difficult to control the low-frequency deformations of

the object if only sparse samples are given. However, if the given set of samples

is dense enough we can reconstruct detailed shapes accurately.

Chapter 3 gives a detailed introduction to the linear differential coordinates

we use and the shape deformation framework based on them. We also contribute

a novel method of dealing with the translational insensitivity this approach is

facing (Stoll et al. (2006a)).

In Chapter 4 we apply our template deformation framework to introduce a

novel approach to constrained texture mapping called inverse texture mapping

(Stoll et al. (2006b)). The traditional approaches to constrained texture mapping

unfold a 3D model onto the plane, generating a 2D parameterization of the mesh.

The parameterization can then be used to apply the image onto the surface using

texture mapping techniques. Instead of this, we propose to regard the texture as

a planar template that is wrapped around the target shape under a number of

user specified constraints. This approach has several advantages. It is applicable

to any type of manifold surface, in particular high-genus surfaces, which needed

cutting for traditional texture mapping. It also generates a smoother and more

high resolution reproduction of the original shape. This is especially useful for

draping apparel onto virtual characters without having to resort to complex cloth

simulation algorithms.

Chapter 5 introduces a new approach to surface reconstruction from 3D point

clouds based on a template shape (Stoll et al. (2006a)). While surface recon-

struction methods that are not based on templates will always reconstruct correct

surfaces where the sampling density of the input point cloud is high enough, they

fail to produce semantically correct reconstructions if parts of the object have

not been properly scanned (see Figure 1.1 for an example). Previous work in-

corporates additional semantic knowledge into surface reconstruction by copying

geometry, or by establishing complex cross-parameterizations between a tem-

plate and scanned geometry (which requires an initial surface reconstruction of

the incomplete mesh). Instead, we extend the insights gained in Chapter 4, and

formulate surface reconstruction as a template fitting process. This allows us to

reconstruct the surface and fill holes in an intuitive and simple manner, resulting

in semantically meaningful reconstructions.

Finally, in Chapter 6 we show how template based shape processing can be

used for performance capture applications. This extends the system developed

5

1.2 Contributions and structure

in the previous Chapter to the temporal domain. Traditional marker-less motion

capture methods use a kinematic skeleton as underlying shape parameterization,

analogous to marker based systems. While this is a very compact representation,

it is a very coarse approximation of deformations of the human body, especially

if the performer is wearing wide apparel. Instead, we propose replacing the kine-

matic skeleton by our template fitting framework. This is a more flexible repre-

sentation that enables us to pose motion capture in terms of a mesh deformed

by tracked feature points in 2D images. This allows us to capture the pose of

characters in complex apparel (de Aguiar et al. (2007a,b,c)), as well as refine

surface detail and non-rigid motions of apparel from input videos (de Aguiar

et al. (2008a); Gall et al. (2009)). This level of detail could not be achieved using

traditional skeleton-based methods.

Part II presents a novel iterative framework for template based shape pro-

cessing using volumetric shapes (de Aguiar et al. (2008a); Stoll et al. (2007)).

We extend the linear differential coordinate framework presented in Part I to

tetrahedral meshes and introduce an efficient iterative update process. This com-

binations allows us to efficiently generate stable non-linear deformations that are

particularly suited to create low-frequency deformations, i.e. deformations which

influence the global pose of the object. This property makes it particularly useful

for animation and performance capture purposes, as the approach is very stable

and reliable even under a small number of constraints.

Chapter 7 gives a detailed introduction to our non-linear iterative framework.

Unlike many other non-linear deformation frameworks, it is conceptually simple

and very efficient, allowing for a real-time feedback of the results.

In Chapter 8 we introduce a framework for interactive shape editing based on

our deformation method (Stoll et al. (2007)). Given a template model and a set of

user specified constraints we want to deform our shape to match the constraints

as naturally as possible. By running the iterative deformation simultaneously to

the user interface and rendering processes the user gains real-time feedback about

the deformation. This leads to an intuitive interaction with the model.

Chapter 9 shows how we can apply our non-linear template fitting framework

in the context of animation and performance capture. By using a tetrahedral

model of the performer as template for the capture process, we can naturally

animate virtual characters given a sparse set of constraint points derived from

a marker-based motion capture system (Stoll et al. (2007)). This allows us to

6

1. INTRODUCTION

circumvent embedding a kinematic skeleton into the model, which can be a time-

consuming and expensive process. We can apply the motion of the performer

to its virtual counterpart directly by using the captured marker positions as de-

formation constraints and thus produce realistic animations with a less complex

system. The stable and locally shape-preserving deformation process also allows

us to improve on the mesh-based performance capture methods based on the

framework presented in Part I (de Aguiar et al. (2008a)). By carefully combin-

ing a sophisticated image feature extraction and tracking method with a global

optimization scheme, we are able to accurately capture the pose of characters in

wide apparel reliably, even under complex and fast motions. We are also able to

capture higher geometric detail than with the purely surface-based approaches

presented in Part I.

Part III extends the idea of template fitting to dynamic data. We presents a

method for estimating physical properties using template based shape processing

(Stoll et al. (2009)). While the previous two parts concentrated on the (temporal)

shape of objects, we are now able to estimate the physical material properties of

the input object by analyzing temporal data. This enables us to approximate

the behavior of the object under previously unobserved external influences. The

specific application we are addressing in this part is optical reconstruction of

detailed animatable human body models.

In Chapter 10 we use multi-view video of an actor and the performance capture

approaches from the previous parts of the thesis to capture reconstruct a detailed

animatable human body template (Stoll et al. (2009)). We segment a template

of the performer into cloth and non-cloth regions, and estimate cloth material

parameters. Unlike the performance capture approaches presented in Parts I

and II of this thesis, we can now not only play back the recorded performance,

but modify it and simulate the behavior of the characters apparel under the new

impulses accurately. We can create new animations in real-time, with new body

motion and cloth deformation that look as realistic as the reference sequence in

high quality. This rich performance template is reconstructed from just a 3D scan

and a set of multi-view input videos, offering artist and animators a new level of

data to work with.

7

1.3 List of publications

1.3 List of publications

The work presented in this thesis has been published in the following papers:

Geodesics Guided Constrained Texture Deformation

Carsten Stoll, Zachi Karni and Hans-Peter Seidel

Pacific Graphics (2006)

Stoll et al. (2006b)

Template Deformation for Point Cloud Fitting

Carsten Stoll, Zachi Karni, Christian Rössl, Hitoshi Yamauchi and Hans-

Peter Seidel

IEEE/EG Symposium on Point-Based Graphics (2006)

Stoll et al. (2006a)

Rapid Animation of Laser-scanned Humans

Edilson de Aguiar, Christian Theobalt, Carsten Stoll and Hans-Peter Seidel

IEEE Conference on Virtual Reality (2007)

de Aguiar et al. (2007c)

Marker-less Deformable Mesh Tracking for Human Shape
and Motion Capture

Edilson de Aguiar, Christian Theobalt, Carsten Stoll and Hans-Peter Seidel

IEEE Conference on Computer Vision and Pattern Recognition (2007)

de Aguiar et al. (2007b)

Marker-less 3D Feature Tracking for Mesh-based Motion Capture

Edilson de Aguiar, Christian Theobalt, Carsten Stoll and Hans-Peter Seidel

ICCV Workshop on Human Motion - Understanding, Modeling, Capture

and Animation (2007)

de Aguiar et al. (2007a)

8

1. INTRODUCTION

A Volumetric Approach to Interactive Shape Editing

Carsten Stoll, Edilson de Aguiar, Christian Theobalt and Hans-Peter Seidel

MPII Research Report (2007)

Stoll et al. (2007)

Performance Capture from Sparse Multi-view Video

Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-

Peter Seidel and Sebastian Thrun

ACM Transactions on Graphics Special Issue SIGGRAPH (2008)

de Aguiar et al. (2008a)

Motion Capture Using Joint Skeleton Tracking and
Surface Estimation

Jürgen Gall, Carsten Stoll, Edilson de Aguiar, Christian Theobalt, Bodo

Rosenhahn and Hans-Peter Seidel

IEEE Conference on Computer Vision and Pattern Recognition

Gall et al. (2009)

Optical Reconstruction of Detailed Animatable Human
Body Models

Carsten Stoll, Jürgen Gall, Edilson de Aguiar, Hans-Peter Seidel, Sebastian

Thrun and Christian Theobalt

MPII Research Report (2009)

Stoll et al. (2009)

Some of these papers have also been presented in the PhD theses of de Aguiar

(2008) and Gall (2009). This work focuses mainly on the mathematical frame-

works for template processing and deformation, as well as the algorithms to seg-

ment the captured animations, and estimate their physical parameters.

9

1.3 List of publications

10

Chapter 2

Fundamentals

In this chapter we will introduce some fundamental concepts and notations that

the following work is based on as well as related work in the field. We will first

introduce the basic 3D and 2D object representations. Here we concentrate on

the formats which are relevant in the following chapters. Following this, we will

show how to generate various virtual representations by scanning real objects

and reconstructing their surfaces. The next section will give an overview over

the field of shape editing, followed by a short introduction on physical simulation

focused on cloth simulation techniques. Finally we will conclude this chapter

with a section on performance capture.

2.1 Basic data structures

2.1.1 3D objects and their representations

To be able to efficiently work with geometric objects it is necessary to have a

suitable and efficient data structure. The choice of data structure is not only

influenced by the way computers work (being limited in processing power and

memory as well as only working on a discrete digital domain), but also by our

ability to mathematically describe the geometry correctly. The field of computer

graphics is mostly interested in the appearance of objects. Because of this repre-

sentations of objects are often limited to surfaces, i.e. disregarding the internal

structure of objects and focusing on shape and texture. This is sufficient when we

are dealing only with surface interactions, such as traditional rendering. Depend-

ing on the application it may become necessary to consider internal volumetric

11

2.1 Basic data structures

(a) (b) (c)

Figure 2.1: Stanford Bunny model as a point cloud in different resolutions. (a)
35947 points (b) 1013 points (c) 130 points.

information as well (for example when simulating solid objects, or when visual-

izing non-homogeneous semi-transparent materials). The representations we will

deal with in the following chapters of this thesis are all discretely sampled ob-

jects, i.e. they are defined by a finite number of values, and thus belong to the

class of piecewise parametric representations. Samples usually consist of a 3D

position and may include further information, for example a local normal vector

representing the tangent plane of the surface, color or texture coordinates.

2.1.1.1 Point clouds

The most basic representation we will deal with is the so called point cloud. A

point cloud is defined as a collection of n sample points :

P = {p1 . . .pn} , pi ∈ <3 (2.1)

Point clouds are an unstructured representation of an object, meaning that

there is no information on how points are related to each other (i.e. if they are in

close proximity to each other on the object surface). If there is a sufficient number

of sample points n, a point-cloud can be a very accurate representation of the

surface. With increasing sparsity of sample points in P it becomes increasingly

difficult to represent an object correctly (see Figure 2.1).

Additional properties enhancing the representation of a point cloud are usually

a normal vector ni ∈ <3 and/or a color value ci ∈ <3 for each sample point pi.

12

2. FUNDAMENTALS

(a) (b) (c)

Figure 2.2: Stanford Bunny model as a triangle mesh in different resolutions. (a)
35947 vertices / 69451 triangles (b) 1013 vertices / 1999 triangles (c) 130 vertices
/ 249 triangles.

2.1.1.2 Triangle meshes

Probably the most common 3D object representation in the field of computer

graphics is the triangle mesh. A triangle mesh M is defined as a collection of n

sample points (also called vertices) V and m triangular faces F connecting them.

The vertices of a triangle mesh are defined in the same way as the sample points

of a point cloud :

V = {v1 . . .vn} , vi ∈ <3 (2.2)

The set of triangular faces is a set of 3Dindex vectors to the set of vertices V :

F = {f1 . . . fm} , fi ∈ V× V× V (2.3)

A triangle mesh is a piecewise linear approximation of the object surface.

While it is also possible to use more general face sets than triangles (i.e. allowing

each face to be a polygon with arbitrary degree), there are several advantages of

using triangular meshes over these more general polygonal meshes. Three vertices

always from a planar surface, which makes interpolating data and processing of

the surface a straightforward task, as the interior of a face fi can be interpolated

easily. Due to this, the triangle is the preferred rendering primitive of modern

graphics hardware.

A triangle mesh is a structured representation of a surface, defining neighbor-

hoods on a surface and thus is a richer representation of the surface than a point

13

2.1 Basic data structures

cloud. This allows for an efficient calculation of intrinsic properties of the surface

such as curvature. Unlike a point cloud, a triangle mesh can represent an object

even at very low resolutions in a quality that it is easily recognizable by a human

observer (see Figure 2.2).

Similar to a point cloud it is possible to store additional properties for each

sample point, including normal vector ni ∈ <3 and a color value ci ∈ <3. The

normal vector can be calculated by taking a weighted average of incident face

normal vectors.

2.1.1.3 Tetrahedral meshes

In some cases it is not enough to represent only the surface of an object in the

computer. Most real world objects are solid and not just a simple shell, which

needs to be taken into account for example when simulating deformation under

forces. One of the most simple ways to model solid objects is to use tetrahedral

elements to discretize the volume. A tetrahedral mesh T is defined by a set of n

vertices V and a list of m tetrahedrons E which connect the sample points. The

set of tetrahedral elements is a set of 4D index vectors to the set of vertices V :

V = {v1 . . .vn} , vi ∈ <3 (2.4)

E = {e1 . . . em} , ei ∈ V× V× V× V (2.5)

Like a triangle mesh, a tetrahedral mesh is a structured representation of a

bounded volume. The surface of the object is defined by the set of triangular

faces of the tetrahedra which do not coincide with any other tetrahedra.

2.1.2 Images and videos

Just like 3D objects explained above, it is possible to represent 2D images in

digital form in the computer. The two most common approaches are vector-

based and pixel-based representations.

Vector images have a strong relation to the representations we have introduced

for 3D shapes before. We use a set of geometric shape primitives such as lines,

curves and polygons, which are all based on mathematical equations, to represent

a scene. This representation is very compact and easy to modify. Vector images

can be scaled freely without loss of image quality. However, one of the main

drawbacks of vector images is that it is complicated to represent small detail and

14

2. FUNDAMENTALS

texture as vector graphics, as this requires a large amount of primitives. Due to

this it is also very difficult to convert real images into vector images.

Pixel images (also called raster image) on the other hand consist of a regular

2D rectangular grid of pixels, where each pixel has a color value. While this means

that we cannot zoom into the image arbitrarily (the block structure of the grid

will become visible), the representation allows for representation of pixel-sized

detail and easy digitization of real images.

In the remainder of this thesis we will only deal with raster images recorded

using cameras. We represent an image I as a 2D array of size x× y. Each array

element consists of a 3D color pixel I(x, y) ∈ <3 representing the intensities in

red, green and blue channel respectively. A video F is a temporal sequence of N

images Fn with constant size x× y and a constant frame rate f that determines

the time that passed between recording each consecutive frame.

2.2 Scanning and surface reconstruction

In recent years we have observed increasing interest in spatial scanning devices

and the development of new and improved technologies that enable real-time

capturing of real-world objects. This is mostly due to the fact that geometry

acquisition and reconstruction are essential to many fields of application: In the

life-cycle of industrial product design, prototypes are digitized to serve as feed-

back to the designer; scanners are used along manufacture lines for quality and

process control. In medicine, the shape of internal organs is captured to detect

malfunctions and diseases using minimally invasive methods. In security and

authentication, spatial scanning introduces an additional dimension upon the

traditional image based methods. However, the most evident use of shape digi-

tization is in the entertainment industry, where digital models in games produce

realistic scenes and motion, and the movies show realistic special effects.

Independent of scanning technology and application domain, most geometry

acquisition results in unstructured point cloud data, where each point provides

a sample of the acquired object, are typically afflicted with measurement error.

Precision of measurement depends on many factors, such as acquisition device

and technology, environmental conditions, complexity of the scanned object and

many more.

The process of transferring an unstructured point cloud model into a consis-

tent discrete surface model such as a polygonal mesh is commonly referred to as

15

2.2 Scanning and surface reconstruction

surface reconstruction. Here, the main task consists of the generation of a man-

ifold mesh that approximates the input data, i.e., that captures its global shape

and topology together with its fine geometry details (see Kazhdan et al. (2006);

Kazhdan (2005) for an overview of the field).

We generally have two options to generate 3D templates for use in shape pro-

cessing. The first is to model the objects by hand using modeling software. This

is straightforward for simple shapes like planes or spheres, but quickly becomes

more involved for complex objects. Modeling a human body in reasonable accu-

racy can take a professional artist several days. The process becomes even more

complicated when a real object is to be reproduced as a model (for example an

existing building). The second possibility is to use 3D scanning to construct a

virtual model of a real object.

2.2.1 3D scanning

3D scanning techniques can be roughly separated into two categories. Active

scanners measure the shape of an object by projecting light into the scene and

measuring it, while passive scanners estimate 3D information without external

interference.

Active techniques include time-of-flight scanners, where a laser pulse is pro-

jected into the scene and the time the light needs to return to the sensor is

measured, which allows us to calculate the distance of the object the laser hit

(Figure 2.3 (a)). Due to the necessary accuracy of time measurement, the first

time-of-flight scanners were only suitable for large scale scanning, for example of

buildings (Bernardini & Rushmeier (2002)). In the recent years 3D cameras have

been developed that are able to record whole depth images of a small region at

high frame rates (see Kolb et al. (2009) for an overview). However, their mea-

surements are prone to noise and contain systematic errors and outliers. Another

possibility for scanning smaller object is the triangulation scanner (Beraldin et al.

(1995)). Here a laser line is projected on the object and recorded with a camera

positioned next to the laser source. The setup has to be calibrated, which allows

us to deduce depth information by triangulating the point of intersection on the

object (Figure 2.3 (b)). A similar result can be achieved by projecting structured

light onto the scene instead of a laser line (König & Gumhold (2008)). Here

several images are projected into the scene, whose temporal progression uniquely

determines the spatial angle in the projection device. This allows us to identify

16

2. FUNDAMENTALS

(a) (b) (c)

Figure 2.3: Different 3D scanning devices. Red boxes are light emitters, green
devices are cameras. (a) A time-of-flight scanner estimates distance by measuring
the time a laser light pulse takes to return to the scanner. (b) Laser triangulation
scanners measure depth by triangulating the 3D point position from a known
baseline distance b between laser and camera and the angles α and β. (c) Struc-
tured light scanners work similar to triangulation scanners, however instead of
using a laser as light source they use a projector showing several binary patterns
which allow for identification of the angles for each point seen by the camera.

the source angle of the projector and thus again to triangulate the intersection

point (Figure 2.3 (c)).

Passive scanning techniques do not emit any light into the scene but rather

capture the existing light using one or several cameras. For a multi-view stereo

reconstruction we take two or more images of the object from different but known

positions. By analyzing the image content we now try to identify identical points

on the object and triangulate their position (Figure 2.4 (a)). This is also called the

correspondence problem. There exist a variety of different methods of solving the

correspondence problem, ranging from brute force search (Goesele et al. (2006))

to sophisticated optimization algorithms based on feature extraction methods

(Furukawa & Ponce (2007)). An overview of recent methods can be found in Seitz

et al. (2006). Another complementary approach is to segment the object in the

images from the background and use shape from silhouette to generate a visual

hull approximation of the object (Figure 2.4 (b)). These methods can also be

combined to achieve better reconstructions (Kutulakos & Seitz (2000)).

17

2.2 Scanning and surface reconstruction

(a) (b)

Figure 2.4: Passive 3D scanning techniques. (a) Using two cameras with known
baseline width b allows us to estimate the 3D position of a point seen in both
views. (b) Visual hull approaches intersect silhouette volumes to approximate
the shape of the object (gray volume).

All of the presented 3D scanning techniques only produce semi-structured

output. This is usually a 2.5D depth-map which first is converted into a 3D

point cloud. All of the outputs contain noise due to the measurement process

and possible outliers and holes. As we need to capture several depth-maps to

cover the object completely without any major holes, we also need to register the

separate scans onto each other (Aiger et al. (2008)). After this is done, we can

perform surface reconstruction.

In the following we will present an overview of surface reconstruction tech-

niques. Our goal is to create a structured triangle mesh from the input point cloud

that represents the scanned object accurately, is smooth and does not contain any

significant holes.

18

2. FUNDAMENTALS

2.2.2 Surface reconstruction

Surface reconstruction from unstructured point cloud data has been within in-

terest of computer graphics since its early days. The further development of

acquisition techniques with increasing amount of data and the quest for accu-

racy, correctness and robustness have rendered it a topic of active research. In

the following, we cannot go into details of reconstruction methods in general, and

for an overview refer to the recent work of Kazhdan (2005) and Kazhdan et al.

(2006) and the references therein. Following Kazhdan, reconstruction methods

can be categorized as: Computational Geometry based methods, implicit func-

tion based approaches which fit and extract iso-surfaces, and such methods which

fit an explicit surface to the data. Here we will give a short overview of works

from the last category.

Early work in this direction are active meshes (Terzopoulos & Vasilescu (1991)),

where a grid structure is deformed to fit sampled intensity and range data based

on a mass-spring model. Chen & Medioni (1995) apply a dynamic physical model

to “inflate” a balloon-like mesh to fit scanned data from the inside; the process

is supported by local adaptation. An inverse shrink wrapping method Kobbelt

et al. (1999) fits meshes to meshes.

Fitting methods are particularly used in reverse engineering together with

surface classification, segmentation, and feature detection; often local regions are

processed separately as patches (see, e.g., Varady et al. (1997)). However, for

most methods it is difficult or impossible to generate reasonable results if parts

of the input data are missing. On the other hand this situation is typical for

most acquisition techniques. Nevertheless, consistency of models and efficiency

of the reconstruction process are vital for many applications. Lévy (2003) fills

missing parts smoothly by working in the parametric domain. Sharf et al. (2004)

generate local geometry based on similarity measures to existing parts.

This leads to template-based approaches, where missing or contaminated in-

put data is compensated by additional knowledge in form of a template shape.

Template-based methods were frequently used in the previous years especially for

reconstructing animated models. Kähler et al. (2002) use a detailed model of face

anatomy to generate facial animation; this is an example for a highly specialized

model. In Allen et al. (2002, 2003); Anguelov et al. (2005), a combination of tem-

plates together with learning techniques is used to reconstruct motion of a human

model with a known skeleton. Most recently, Kraevoy & Sheffer (2005) establish

19

2.3 Shape editing

maps between triangulated data and template in order to transfer missing geom-

etry. This work, together with the work by Allen et al. (2002, 2003), is built on

cross-parameterization between the template and the input model. Pauly et al.

(2005) apply global deformation, similar to Allen et al. (2003), to a collection of

templates. They determine the best fitting template parts by segmentation and

rebuild the target model from these. For non-rigid registration, warping tech-

niques based on thin-plate splines have been used Brown & Rusinkiewicz (2004);

Chui & Rangarajan (2003).

Recently, technological advances in scanning devices have made it possible

to acquire 3D scans at interactive frame rates. These animated point clouds

represent a whole new challenge for shape reconstruction algorithms. As all of

these devices only capture the object from a single point of view (effectively only

providing a single depth map), we never see the whole object at a single point

in time. While we can use this input data to efficiently scan static objects in a

short time, the more interesting applications lie in scanning and reconstructing

deforming geometry. One of the first methods for animation reconstruction was

presented by Wand et al. (2007) and later refined in Wand et al. (2009). Here,

the authors try to progressively estimate a template (called ur-shape) from the

deforming geometry and use this information to complete the shape in all time

steps. Li et al. (2000) on the other hand take a given smooth template mesh and

fit it to the animated point cloud data.

2.3 Shape editing

One of the most active fields in the area of computer graphics and geometry

processing in the recent years has been the area of shape editing. We want

to deform a shape (usually in the form of triangle meshes) to a set of (user

specified) constraints in an as natural and plausible way as possible. Unlike

simulation where we are concerned with the time-varying, physically accurate

behavior of objects under external forces, we only want to find a plausible steady

state solution given the external constraints. Another important aspect is that

the deformation control itself needs to be intuitive and user-friendly. There are

many applications for this kind of approaches, reaching from modeling over shape

reconstruction to animation.

The earliest approaches to shape modeling are free-form deformation meth-

ods as presented by Coquillart (1990); Sederberg & Scott (1986). The shape is

20

2. FUNDAMENTALS

embedded in a lattice grid and the vertex positions are encoded as linear combina-

tions of the surrounding lattice cell. The user then can freely modify the lattice

and transfer this deformation back onto the mesh. These approaches enable

high-quality shape modeling, but typically fail to reproduce physically plausible

transformation results. Additionally, the modeling metaphor of a lattice grid is

limiting and lacks intuitiveness.

A more intuitive modeling metaphor is to define handles and influence regions

directly on the shape (Kobbelt et al. (1998)). The user can then freely move and

modify the handles, influencing the region of interest while keeping the remaining

shape static. Also, physical plausibility is a highly-desirable property, as it leads

to a deformation behavior of the edited objects that a user is familiar with from

real-world experience. Therefore, it has recently become very popular to model

deformation by minimizing physically related energies.

Shape editing methods can be classified in two groups, linear methods and

non-linear methods. While linear methods are usually easy to implement and

very fast, they often lack an intuitive user control paradigm or produce unex-

pected results under larger deformation results. Non-linear methods on the other

hand are computationally more involved and have only recently become viable

for real-time applications, but usually produce more natural deformation results.

2.3.1 Linear methods

Most linear shape editing methods are linearized versions of originally non-linear

energies. One of the most popular choices here in the recent years has been to

model deformation using physically based thin membrane and thin shell energies.

The linearization of these energies lead to linear Laplacian or Poisson systems and

are sometimes also called differential methods (as they are based on differential

properties of the mesh).

The main advantage of this methods is that calculating a deformation under

a given set of constraints reduces to finding the solution of a simple sparse linear

equation system Lx = δ. Here L is the Laplacian system matrix, δ are the

Laplacian/differential coordinates and x represent the absolute vertex positions

of the mesh. This linear system can be solved easily using iterative or direct

solvers (for example the conjugate gradient method or a Cholesky decomposition).

We will explain this representation in more detail in Chapter 3. One major

drawback of this process is that this leads to artifacts under larger deformations,

as linear methods cannot properly couple translational and rotational components

21

2.3 Shape editing

(which is usually called translational insensitivity). While it is possible to specify

rotational constraints in linear settings (i.e. by explicitly rotating a handle around

a given axis) and also find plausible deformation results for these constraints, it

is not possible to induce rotational deformation effects by translation of a handle.

Using linear Laplacian coordinates was first suggested by Alexa (2001) in the

context of shape morphing. Lipman et al. (2004) suggested to include the rep-

resentation within an interactive modeling environment. They tried to address

the issue of rotational insensitivity by explicitly estimating rotations from an ini-

tial deformation. Sorkine et al. (2004) and Fu et al. (2007) implicitly included a

linear rotation optimization derived from a one-ring neighborhood of each vertex

into the system. Their implicit solution has the disadvantage of also including

isotropic scaling in the solution, which is removed by performing a second defor-

mation step with re-scaled differential coordinates. Igarashi et al. (2005) perform

2D shape deformation with a two step approach similar to that of Lipman et al.

(2004).

Lipman et al. (2005) developed a frame-based representation of the differential

coordinates. The coordinates are encoded in a locally defined frame at each

vertex. When the user specifies a deformation they first solve for new local

frame orientations followed by the actual reconstruction of the deformation. This

method was developed further in Lipman et al. (2007). It allows for handling

of much larger rotations than the previous methods while still preserving local

detail.

Other methods forgo the traditional handle-based interaction metaphor and

use sketch based interfaces in combination with linear differential representations.

Nealen et al. (2005) first proposed a sketch based editing system where the user

can select and modify silhouettes of the shape. Zhou et al. (2005) use a similar

modeling approach and extend it by integrating a volumetric graph Laplacian

into the model representing the interior of the object. This internal graph helps

preserving the local volume of the mesh during deformation.

A different approach to mesh editing was introduced by Yu et al. (2004) by

extending the gradient based methods that have been used before for images

processing (for example by Fattal et al. (2002) for HDR compression and Pérez

et al. (2003) for more general image processing) to 3D meshes. Here the gradi-

ents of the surface coordinate functions defined over the base shape were used

to build a Poisson equation system. By modifying the gradients by applying

transformations to them and then solving the Poisson system it is possible to

deform the shape. This can be seen as exploding the mesh into its components

22

2. FUNDAMENTALS

(in this case triangles), transforming each independently and finally solving for

a new connected configuration where the gradients are as close as possible to

the prescribed ones (”gluing“ the mesh back together). Botsch et al. (2006b)

showed that the resulting Poisson equation system is actually just a different way

of constructing the Laplacian system L used in other methods.

Yu et al. (2004) use geodesic propagation for interpolation of transformations

between handles. This was extended by Zayer et al. (2005) by using harmonic

interpolation instead of geodesics. They also showed how this approach can be

used to transfer the deformation of one mesh to another where local correspon-

dences have been specified. A related approach was used by Sumner & Popovic

(2004) for deformation transfer between meshes. Popa et al. (2007) generalized

the harmonic propagation to also handle material properties, allowing the user

to specify the stiffness of the material locally.

Botsch et al. (2006b) implemented a two step gradient based approach similar

to Lipman et al. (2004) by first performing a linear deformation, estimating local

rotations from this and then applying them to a gradient based approach, thereby

achieving a certain degree of translational dependence. Yoshizawa et al. (2007)

addresses the issue by calculating a medial skeleton of the mesh, which is deformed

linearly in a first step and then used to extract local rotations.

In part II of this thesis we will explain the linear Laplacian deformation ap-

proach in more detail. We will introduce a method to explicitly handle the ro-

tational insensitivity based on a skeleton graph and show several applications

which benefit of this representation (de Aguiar et al. (2007a,b,c, 2008a); Gall

et al. (2009); Stoll et al. (2006a,b)).

2.3.2 Non-linear methods

In contrast to the linear shape editing methods presented in the previous sec-

tion, non-linear methods try to minimize deformation energies without simpli-

fying them to a system of linear equations. This means that they require more

complex calculations and thus take a longer time to produce a result, often not

allowing for real-time interaction. However, the quality of the modified shapes,

especially under large deformations, is usually much higher. There exists a wide

variety of non-linear methods and we will only briefly mention some of the most

recent approaches.

The work in Sheffer & Kraevoy (2004) introduces a non-linear differential co-

ordinate representation based on angles and edge lengths. Huang et al. (2006)

23

2.4 Physical simulation

embed the shape into a control mesh using mean value coordinates (Ju et al.

(2005)) as a means of simplifying the dimension of their non-linear energy min-

imization. Botsch et al. (2006a) create a shell of prisms from a mesh and then

uses a global/local approach to minimize bending and stretching energies between

the prisms. This was extended in Botsch et al. (2007) for adaptive rigid grids

that also cover the internal volume of a shape. A method which optimizes for

an optimal non-linear combination of example shapes was proposed in Sumner

et al. (2005) and later extended in Der et al. (2006). A vector-field-based frame-

work which guarantees volume preservation was proposed by von Funck et al.

(2006). Although their approach enables the definition of advanced implicit de-

formation tools, it is not well-suited for handle-based shape modification. Sumner

et al. (2007) deform shapes by embedding a deformation graph that specifies lo-

cal transformation matrices. Through optimization of non-linear energies they

can generate natural and intuitive deformations of the graph and transfer them

back to the shape. Sorkine & Alexa (2007) and Au et al. (2006) iterate a lin-

ear Laplacian deformation with a differential update step to achieve non-linear

deformation behavior.

In part II of this thesis we introduce a non-linear shape editing method that is

based on a simple iteration scheme (de Aguiar et al. (2008a); Stoll et al. (2007)).

It was developed concurrently to Sorkine & Alexa (2007) and is closely related

to their approach. By iterating a linear Laplacian deformation of a tetrahedral

mesh and a differential update step it is possible to efficiently generate natural

and plausible non-linear deformations.

2.4 Physical simulation

The field of physical simulation overlaps the field of computer graphics to a certain

degree. In physical simulation applications, we are concerned with predicting

the behavior of objects and materials under external forces. This is achieved

by modeling the processes using the laws of physics in the computer. Physical

simulation is used for a wide range of applications, such as crash test simulations,

calculating strains and stresses for statics simulations or weather forecasts. The

main applications of physical simulation in the area of computer graphics are

special effects for movies and games. Some of the active fields here include fluid

simulation, rigid and non-rigid body simulations or simulation of muscles and

tendons for creation of realistic virtual characters. Many shape editing methods

are based on simplifications of elastic body simulations. As we are not concerned

24

2. FUNDAMENTALS

with the dynamic behavior of objects in this field, the methods are often modified

to directly find steady state solutions.

One particular field of physical simulation that will be important for part III

of this thesis is the area of cloth simulation. Because of this, we will give a brief

overview over the field in the next section. For a more in-depth review of the

common techniques we refer the reader to the extensive reports by Volino et al.

(2005) and Choi & Ko (2005).

2.4.1 Cloth simulation

Realistically simulating garments for virtual characters has been a goal in com-

puter graphics for a long time. Traditionally, cloth has been simulated as a sheet

of elastic material. By combining the Lagrange equations of motion and elas-

tic surface energy, one can derive formulas for simulating cloth (Terzopoulos &

Fleischer (1988)). The two main ways of integrating these are using finite element

methods or particle systems. While finite element methods represent a more ac-

curate discretization of the problem, their complexity has limited their use so far.

Most of today’s cloth simulation techniques therefore rely on a particle based

representation (Breen et al. (1994)). Here the cloth is represented by the ver-

tices of a polygonal mesh constituting the cloth surface. The vertices are moved

by applying forces that represent the behavior of the cloth. The most commonly

used variation of this principle is the mass-spring model (see Figure 2.5). Vertices

are modeled as infinitely small points, each having a mass, that are connected to

their neighboring vertices by springs. This allows us to compute forces acting on

the vertices and moving them through space.

Given position, velocity and forces acting on a point, there exist several meth-

ods of integrating this information along time to obtain the respective values at

the next time-step. While explicit integration schemes, like the first-order Euler

or fourth-order Runge-Kutta method (Eberhardt et al. (1996)), are simple to im-

plement and fast, they suffer from instability problems, requiring the time-step

of the simulation to be set to a small value. Implicit integration schemes (Baraff

& Witkin (1998)) on the other hand circumvent this problem, but require solving

large sparse linear equation systems that change at every time-step. Because of

this, implicit schemes are often not applicable to real-time systems.

Most real world cloth is nearly inextensible. However, many simulation schemes

share the common problem that the system becomes numerically unstable when

the material stiffness is increased (i.e. less stretching is allowed). Only in recent

25

2.4 Physical simulation

(a) (b)

Figure 2.5: (a) Simple mass-spring representation of a piece of cloth. (b) Simu-
lation of a piece of cloth hanging from two corners.

years the issue of simulating near inextensible cloth has been addressed (Golden-

thal et al. (2007); Provot (1996); Thomaszewski et al. (2009)), allowing for more

realistic and very natural simulations. There has also been some developments

in simulating cloth not as a solid sheet but rather on the level of individual fibers

(Kaldor et al. (2008)). While this dramatically increases the computational effort

required for simulation, these methods provide a much more accurate represen-

tation of the actual cloth behavior.

Another important factor influencing the quality of cloth simulation is the

employed collision resolution method. During a typical simulation we have to

resolve many cloth-environment and cloth-cloth collisions. Detecting these col-

lisions accurately and resolving them (including friction and restitution) is one

of the most time consuming tasks of cloth simulation. As the simulation runs in

discrete time-steps, collisions need to be detected not only in the spatial domain

(i.e. using bounding volume hierarchies or similar approaches for acceleration),

but also in the time-dimension (i.e. resolving when and where exactly the mov-

ing triangles/edges/vertices penetrate each other). Speed-ups can be achieved by

grouping together particles involved in multiple collisions and handling them as

a single object (Provot (1997)), adding repulsive forces and applying geometric

treatment of collisions (Baraff et al. (2003); Bridson et al. (2002)). Recent meth-

ods are able to reliable handle collisions occurring in very large meshes and when

layering many levels of cloth on top of each other (Selle et al. (2009)).

26

2. FUNDAMENTALS

2.5 Performance capture

Performance capture is the process of reconstructing a dynamic scene of one or

several performers from input video. The main applications for performance cap-

ture lie in the field of entertainment. Using these techniques allows us to capture

the motion of an actor and transfer it to a virtual avatar. This is mostly used for

special effects purposes in movies and games, where convincing and realistic mo-

tion of computer generated characters is important. Recently, these approaches

have also been used to capture the detailed facial motion of performers. A second

application field for performance capture can be found in 3D television. Here the

goal is to allow users to view a recorded scene from arbitrary points in 3D space.

First simple 3DTV approaches are already seen for analysis of sports games, but

may also have future applications in the movie industry. Performance capture

can be viewed as shape reconstruction problem. Given only a very sparse set

of samples (images or even just marker trajectories), we want to reconstruct a

detailed 3D model of the scene and performance as accurately as possible.

In the following sections we will give a brief overview of the field of performance

capture, from traditional motion capture over 3D video techniques to recent mesh-

based performance capture techniques.

2.5.1 Motion capture

Following Gleicher & Ferrier (2002) the goal of motion capture is ”to record the

movement of a performer [...] in a compact and usable manner“. Traditionally

this was achieved by approximating the human body as a small number rigid seg-

ments that are connected along joints, called kinematic skeleton. This approach

reduces the task of motion capture to finding the correct 3D skeletal configuration

given a stream of video observations of a performer (Menache (1999)). However,

the reduction of the motion of a person to a set of skeletal joint parameters is

inaccurate. Not all anatomic joints in the human body can be accurately repre-

sented by rotational joints (for example the shoulders). Additionally, the human

body cannot be accurately approximated as a set of piece-wise rigid elements.

Even if the performer wears skin-tight clothes we can observe strongly non-rigid

deformations during motion. If we allow for arbitrary clothes like for example

wide pants or even skirts, this approximation becomes even more inaccurate.

However, the skeletal representation makes the problem of capturing the move-

ment tractable, as it reduces the dimensionality of the representation drastically

27

2.5 Performance capture

(typical skeletal representations used for motion capture have somewhere between

30 and 50 degrees of freedom). Additionally, a skeleton representation simplifies

processing and editing the recorded motion. When we are using an input model

parameterized with a kinematic skeleton, motion capture is also a template-based

shape fitting process where we want to reconstruct the global pose and motion

of a performer using the template as accurately as possible.

2.5.1.1 Marker-based systems

The industry standard for approaching this problem is by using marker-based

motion capture systems. The performer is required to wear a special suit to

which a set of markers have been attached. The markers are designed so that

they can be easily located in the video streams of the cameras recording the scene.

Examples for this are passive markers, which usually consist of retro-reflective

tape reflecting under infrared lights (Vicon (2009)), or active markers consisting

of infra-red LEDs (Phasespace (2009)). The position of the markers on the body

is known and associated with the bones of the kinematic skeleton. Using this

setup it is possible triangulate the 3D position of the markers in each frame and

estimate the pose of the skeleton. While there are a lot of difficulties to overcome

with this type of setup (disambiguation, occlusions and missing markers), and

we often need to perform manual post-processing, marker-based systems allow us

to record the pose and motion of a performer very accurately. However, these

systems are also limited in their application range. The user is required to wear

the special marker suit, which is an intrusive process. Additionally, it is not

possible to capture dynamic shape, motion and textural appearance of the actor

in arbitrary apparel synchronously.

2.5.1.2 Marker-less systems

A first step to address some of the limitations of marker-based systems was the

introduction of marker-less motion capture system (see Moeslund et al. (2006)

and Poppe (2007) for an overview of methods). Instead of using the markers in the

images to estimate the skeletal pose these system use computer vision techniques

to extract features directly from the video without optical scene modification.

Marker-less systems are more flexible than marker-based systems. However, it

remains difficult for them to achieve the same level of accuracy and application

range. Image features may be very difficult to extract from the input videos and

contain a high level of noise and inaccuracies, limiting the quality of the resulting

28

2. FUNDAMENTALS

motion unless recorded in a controlled studio environment. As these systems still

rely on a kinematic skeleton as body model, it is also difficult to capture motion

or detailed shape unless the performer wears skin tight apparel.

2.5.2 3D video

A related goal is pursued in recent years by 3D video methods. Here the aim

is to render a captured real-world scene from new synthetic camera viewpoints

that were never seen by a virtual camera. The input here is similar to motion

capture approaches. Given a stream of video observations we want to render

an image from a novel viewpoint. As most 3D video methods try to be as gen-

eral as possible, they usually reject a template based approach in favor of more

general scene reconstruction techniques. These include intersecting multi-view

silhouette cones (Gross et al. (2003); Matusik et al. (2000)) and multi-view stereo

based approaches (Waschbüsch et al. (2005); Zitnick et al. (2004)). However,

as these methods process each frame separately they are not able to generate

spatio-temporally coherent geometry (i.e. models with constant connectivity).

A coherent geometry simplifies post-processing and storage of the data and is

helpful for editing the recorded scenes. Starck & Hilton (2007) and Ahmed et al.

(2008b) perform a post-processing on their data to establish a common parame-

terization over time. Carranza et al. (2003) use a template model to capture the

scene, but due to the kinematic structure used, they cannot capture performers

in arbitrary clothes.

2.5.3 Performance capture

Recently, mesh-based performance capture approaches have been introduced which

are able to overcome some of the limitations of marker-based and traditional

marker-less motion capture systems. Similar to other marker-less motion capture

systems they track the motion of a given mesh using computer vision techniques.

Instead of only relying on a kinematic skeleton as underlying shape parameter-

ization they also incorporate shape editing methods to adapt a template to the

input data.

Carranza et al. (2003) use a template model consisting of separate parts for

each bone and adjust the sizes to best fit to the input data. Allen et al. (2006)

learn a deformation model of the naked shoulder and torso from body scans in

different postures. Sand et al. (2003) use a similar idea and learn pose-dependent

29

2.5 Performance capture

body deformations by using marker-based motion capture and silhouette match-

ing. Similarly, the SCAPE model learns variations in human body shape and sur-

face deformation from laser scans of people (Anguelov et al. (2005)) and builds

a statistical model. Park & Hodgins (2008) learn a data-driven model of skin

and muscle deformation from dense marker-based motion capture data. All these

methods are suitable for more or less tightly clothed performers, but none of them

can handle people in wide apparel. Balan et al. (2007) use a template to capture

detailed motion and deformations of a piece of apparel, however are not able to

capture a whole performer or fast motions.

To facilitate reconstruction of coherent geometry of people in arbitrary cloth-

ing we propose to use deformable meshes created from static full-body laser scans

for tracking (de Aguiar et al. (2007b, 2008a)). Similar to our work in Gall et al.

(2009), the method by Vlasic et al. (2008) also reconstructs spatio-temporally

coherent geometry of people in everyday apparel by fitting a skeleton to visual

hulls and non-rigidly deforming a surface mesh to capture time-varying surface

geometry. We will explain our methods in more detail in the following parts of

this thesis.

30

Part I

Differential coordinate based
shape processing using surfaces

31

In this part of the thesis we present several novel methods using template

based shape processing based on surface meshes. We introduce a method for

constrained texture mapping using an image template, Chapter 4 (Stoll et al.

(2006b)). In contrast to previous work it is applicable to any type of manifold

surface, in particular high-genus surfaces, without any additional processing. Fol-

lowing this, we extend the template plane fitting process to arbitrary shapes, and

show how to reconstruct surfaces from incomplete 3D scans using a template,

Chapter 5 (Stoll et al. (2006a)). By formulating surface reconstruction as a tem-

plate fitting problem we are able to fill holes in a semantically meaningful way

and accurately reconstruct the surface using a simple iterative deformation pro-

cess. Finally, we propose several novel applications in the field of performance

capture applications, Chapter 6 (de Aguiar et al. (2007a,b,c, 2008a); Gall et al.

(2009)). Instead of relying on a kinematic skeleton, as traditional methods do, we

use a template fitting approach to capture both motion and surface deformation

of performers. This allows us to even reconstruct the motion actors wearing wide

apparel, which was difficult with traditional methods. All these applications have

in common that we need an efficient and practical way of processing meshes. The

primary task we need to perform is to deform them under a given set of con-

straints while preserving the overall quality of the mesh. In Chapter 3 we present

an efficient framework based on differential coordinates for mesh deformation that

enables us to perform these tasks.

33

34

Chapter 3

A deformation framework for
triangle mesh based templates

In this chapter we will present a method for deforming a template under a set

of user constraints by means of linear differential coordinates. This method will

enable us to formulate a variety of different tasks as deformable template fitting

process.

We will first discuss the choice of shape representation and explain the de-

formation framework in more detail. The choice of shape representation greatly

influences the range of processing one can perform with the object. In computer

graphics it has been common to use triangle meshes because this piecewise linear

representation provides a straightforward way to display a shape (by rasterization

or ray-tracing), analyze its structure (through the connectivity graph), and ex-

tract local geometric properties (such as curvature). While other representations

such as splines and subdivision surfaces are more commonly used for modeling, all

of these are converted into triangle meshes for display purposes in the end. Most

real-time applications (for example games) rely on them as a means of represent-

ing their objects. This makes triangle meshes the most natural choice for our

template shape representation. Additionally, a vast amount of triangle meshes

are available online in shape libraries for use in shape processing, simplifying the

search for a suitable template.

Our goal is to be able to deform a triangle mesh M under a given set of

constraints C. While it is possible to define deformation methods that work using

just the triangle mesh in its native representation (i.e. absolute vertex positions

and connectivity), switching to another form of mesh representation will simplify

our task. Differential representations have gained increased popularity in the

35

3.1 Differential representation

(a) (b)

Figure 3.1: 2D example of different weighting schemes for calculating differential
coordinates. (a) Uniform weights. (b) Geometry aware weights. Note how the
uniform differential coordinate on the left includes normal and tangential compo-
nents, while the geometry aware coordinate on the right is limited to the normal
direction.

fields of computer graphics in the recent years. They are based on the idea that

it is possible to describe a triangle mesh by representing it through differential

means (i.e. using relative coordinates instead of absolute).

In the following we first introduce the general differential representation we

use. Following this, we explain how we can apply it to deform an object using

certain constraints. Finally, we will suggest a novel solution to prevent artifacts

due to the translational insensitivity caused by the linear formulation. This novel

solution is based on a feature point graph.

3.1 Differential representation

Linear differential coordinates for a triangle mesh M are defined as the difference

between the absolute coordinates of its vertices vi and the center of mass of its

one ring neighborhood (Botsch & Sorkine (2008); Sorkine (2005)) :

δi =
∑

j∈N(i)

wij (vj − vi) . (3.1)

Here wij are weights for the edge connecting the vertices vi and vj. The

differential geometry interpretation of these coordinates is that they are a dis-

cretization of the continuous Laplace-Beltrami operator δ considering that our

mesh is a piecewise linear approximation of a smooth surface (Carmo (1976)).

The Laplace-Beltrami operator in the limit case is the mean curvature normal

of the surface (i.e. the normal vector n scaled by the mean curvature H). This

also holds for the limit case of the discretized differential coordinates (when we

36

3. A DEFORMATION FRAMEWORK FOR TRIANGLE MESH
BASED TEMPLATES

Figure 3.2: Illustration of the angles αij and βij as well as the Voronoi area Ai

necessary to calculate the discretized Laplace-Beltrami operator using cotangent
weights.

refine the mesh infinitely), meaning that then δi = −Hini (Taubin (1995)) . This

means that the differential coordinate approximates the local normal direction

and curvature of the surface.

The choice of weighting scheme greatly influences the accuracy of this approx-

imation. While in the limit case (i.e. infinite subdivision of the triangle mesh) all

reasonable weighting choices will converge toward the original Laplace-Beltrami

integral, we want to choose our weights in such a way that they approximate the

operator reasonably well at a coarse level. The most simple choice for weights are

uniform weights, i.e. setting wij = 1 for all edges. This however does not take the

geometric properties of the mesh into account. If we look at the resulting differ-

ential vector in a 2D example (see Figure 3.1 (a)) we can see that the coordinate

δi contains tangential as well as normal components. The most common choice

for geometrically motivated weights are the so called cotangent-weights (Meyer

et al. (2002); Pinkall & Polthier (1993)). Here the weights wij are dependent on

the Voronoi area Ai of the vertex vi and the angles α and β opposing the edge

(see Figure 3.2) :

wij =
1

2Ai

(cotαij + cotβij) . (3.2)

The area Ai is defined as the area of the surface region built by connect-

ing incident edges’ midpoints with triangle circumcenters (for acute triangles) or

midpoints of opposite edges (for obtuse triangles), as shown in Figure 3.2. If we

have a look at the differential vector in 2D again (see Figure 3.1 (b)) we can now

37

3.1 Differential representation

Figure 3.3: The linear Equation system from 3.3. Note that if there are no further
Equations that connect the dimensions x, y and z the system can be split into
three smaller linear systems and solved separately, increasing processing speed.
The sub matrices Lx, Ly and Lz are identical.

see that δi only includes a normal component while all tangential information is

“stored” in the weights wij.

Using Equation 3.1 we can write the discrete Laplace-Beltrami operator for

our triangle mesh M as a single sparse matrix L. Using this matrix and our

vertex positions V written in a single large vector we can formulate this as a large

Equation system

δ = LV. (3.3)

Calculating the differential coordinates is now a simple matrix-vector multi-

plication of L and V. As we are using a local relative representation of our mesh

now, the matrix L will be rank-deficient and cannot be inverted as is. This is

caused by the fact that the differential coordinates δ are invariant to translations

of V, i.e. LV = L(V + o), where o ∈ <3 is an arbitrary displacement vector. The

consequence of this is that we can easily calculate δ given L and V, but cannot

uniquely reconstruct V given L and δ only.

One drawback of using the linear formulation from Equation 3.3 is that the

differential coordinates are not invariant to transformations other than transla-

tions (i.e. rotation or scale). This means that if we compare the vector δa of a

mesh Ma to the vector δb computed from a mesh Mb which is just Ta globally

rotated or scaled, then δa 6= δb (see Figure 3.4). While it is possible to formulate

non-linear differential representations (Huang et al. (2006); Sheffer & Kraevoy

38

3. A DEFORMATION FRAMEWORK FOR TRIANGLE MESH
BASED TEMPLATES

Figure 3.4: Differential coordinates under rigid transformation. Although the
geometry for the left and right object are identical up to a rotation, the differential
coordinates are not the same, illustrating the sensitivity of linear differential
coordinates to transformations.

(2004)) which do not suffer from this limitation, complex optimization problems

need to be solved to process them.

For a more detailed overview of differential coordinates and their derivation,

please refer to Sorkine (2005) and Botsch & Sorkine (2008).

3.2 Reconstruction and deformation

Given the differential coordinates δ and the Laplacian matrix L of a mesh it is

not right away possible to reconstruct the original global coordinates x = V. As

L is rank deficient the Equation system

x = L−1δ (3.4)

cannot be solved as L is singular and cannot be inverted. We need to add at

least one positional constraint on a vertex to generate a full rank matrix (thereby

resolving the translation invariance of the coordinates), allowing it to reconstruct

the absolute mesh coordinates. If we define more constraints than necessary to

resolve this invariance, the solution of the system will be a deformed version of

the original mesh that adheres to the prescribed constraints.

Given linear constraints of the form Cx = q there are two major ways to

define constraints in our differential linear system. The first is to specify them as

hard constraints, i.e. constraints that have to be satisfied by the solution. This

39

3.2 Reconstruction and deformation

(a) (b)

Figure 3.5: Building the linear Laplacian systems. (a) Linear system with hard
constraints replacing the respective rows. (b) Adding soft constraints to the linear
system.

can be achieved by replacing rows corresponding to the constrained vertex with

the desired constraint (see Figure 3.5 (a)).

The second possibility is to specify soft constraints, i.e. constraints that do

not need to be satisfied exactly but only approximated. This can be achieved

by adding additional rows to the original linear system from Equation 3.3 (see

Figure 3.5 (b)), resulting in an Equation system of the form(
L
C

)
x =

(
δ
q

)
. (3.5)

This Equation system is overdetermined, meaning that there usually does not

exist an exact solution. However, it is possible to find a solution that minimizes

the residual in the least squares sense :

argmin
x

{
‖Lx− δ‖2 + ‖Cx− q‖2

}
. (3.6)

Using soft constraints is better suited for processing data containing uncer-

tainties, such as the 3D scans we will be processing later, as it allows us to specify

weights for constraints that regulate their importance or reliability.

We can find the minimum of Equation 3.6 analytically by solving the normal

Equations of the linear system 3.5 :

(L>L + C>C)x = L>d + C>q .. (3.7)

40

3. A DEFORMATION FRAMEWORK FOR TRIANGLE MESH
BASED TEMPLATES

The normal Equation system is symmetric and positive definite and has a

unique solution. There exist a multitude of strategies to find the solution of the

Equation system efficiently (Botsch et al. (2005)).

When the left hand side of the system (i.e. the matrix) will often stay constant

throughout the processing it is of advantage to use a direct solver. Direct solvers

pre-factorize the matrix and afterward find the solution of the Equation system

by a simple back-substitution. The most expensive part of this process is the

factorization which does not involve the right hand side of the Equation system.

As such a factorized system can be solved very efficiently several times for different

right hand sides. This is of importance when the constrained vertices are the

same over several deformations but their target positions change. We employ

a Cholesky-decomposition as a direct solver, as it allows for very efficient back-

substitutions in this setting (Golub & Loan (1996)).

In the case of constantly changing constraints, it may be more sensible to use

iterative solvers to find the solution of the system, such as conjugate gradients.

While they are usually slower than direct approaches, they do not require a

factorization of the matrix and as such are more efficient in these cases (Golub

& Loan (1996)).

The minimum of Equation 3.6 are the vertex positions of our mesh deformed

under the given constraints in the global coordinate system. The reconstruction

finds a balance between satisfying the constraints and preserving the local detail

of the mesh defined by the differential coordinates δ.

3.2.1 Constraint types

To deform the mesh the user needs to be able to specify constraints in an intuitive

way. Constraints in general can be any relation that can be described as a linear

Equation of the form

wjcj = wjqj, (3.8)

where wj is a weight assigned to that specific constraint, specifying its im-

portance for the deformation. While it is possible to prescribe relations between

several vertices (for example the differential coordinate is such a constraint), we

will concentrate here on constraints which influence the behavior of a single ver-

tex.

41

3.2 Reconstruction and deformation

3D vertex position The most simple constraint is a 3D positional constraint.

It has the form

wjvj = wjpj, (3.9)

which essentially pulls vertex vj toward the absolute 3D position pj. This kind

of constraint is used when it is possible to estimate the full 3D target position of

a vertex.

Line features The second type of constraint we are concerned with is the 2D

line constraint, which pulls a vertex toward a given parametric line in 3D space.

We can describe a line in 3D as the intersection of two planes. We can thus

constrain a point by specifying that it should lie on each plane :

wjN1vj = −wjd1

wjN2vj = −wjd2
. (3.10)

Here, N1, d1 and N2, d2 specify the implicit plane Equations. As a line

constraint only fixes two positional dimensions and leaves the third open, it is

necessary to specify at least two of them to be able to solve the linear system in

Equation 3.7 uniquely (as the system will be rank deficient otherwise).

3.2.2 Harmonic interpolation

We can also use the Laplacian formulation introduced above to interpolate sparse

data specified on some vertices across the entire surface. Instead of solving the

system from equation 3.3 under soft constraints, we can solve the equation

L§ = 0 (3.11)

under Dirichlet boundary constraints, i.e. hard constraints as introduced

above and shown in Figure 3.5. Not using the differential coordinates δ when

solving this guarantees a C1 smooth (with the exception of the constraint points

themselves) interpolation of the constrained values over the mesh. Physically the

result of this process is the steady-state solution of the heat-equation : we apply

a fixed temperature at the constraint points and wait until the temperature on

the remaining surface does not change anymore.

This process can be used to find smooth distribution of sparse values over the

mesh. For example if we are given a color value at a few vertices, we can find

colors for the remaining vertices using harmonic interpolation.

42

3. A DEFORMATION FRAMEWORK FOR TRIANGLE MESH
BASED TEMPLATES

(a) (b) (c)

Figure 3.6: Artifacts appearing under larger deformations : The object in (a) is
deformed under two point constraints shown as red and green dots. If we move
the green constraint up and to the left we would intuitively expect the object
to undergo a near rigid rotation as shown in (b). Due to the preservation of
the linear differential coordinates however the deformation instead produces the
result shown in (c), causing considerable shearing artifacts. This is also called
translational insensitivity.

3.2.3 Rotational invariance

The deformation using the linear differential coordinates obtained by finding the

minimum of Equation 3.6 generates convincing results for small deformations or

objects with low mean curvature (i.e. when all ‖δi‖2 are small). When prescribing

large deformations or when using complex objects, the system may generate un-

expected results (see Figure 3.6). This is due to the fact that the linear differential

coordinates are not rotationally invariant. Rotationally invariant representations

are by their nature non-linear.

There are several strategies to amend this issue. Sorkine et al. (2004) modify

the Laplacian matrix to include a linear approximation of similarity transfor-

mations. This leads to better behavior for smaller deformations, but introduces

scaling effects under larger deformations. Other solutions use a multi-scale ap-

proach to solve the problem. Here we first estimate the rotation at each position

on the mesh and then incorporate these rotations back into our linear system.

Our solution is related to the work by Zayer et al. (2005). They specify sparse

rotations at handle points and interpolate them over the mesh using harmonic

interpolation (equation 3.11) to generate a dense field of rotations. This field

is then incorporated into the linear system to be solved. We will present a very

similar approach here, however unlike Zayer et al. (2005) we will specify our dense

rotation field on the vertices instead of on the triangles.

43

3.2 Reconstruction and deformation

(a) (b) (c)

Figure 3.7: Skeleton generation for estimation of a dense rotation field. (a)
Model with constraint points. (b) Constructed skeleton consisting of the minimal
spanning tree and the three closest neighbors of each constraint point based on
geodesic distances. (c) Deformed mesh with applied rotation field.

Given a dense rotation field R consisting of a rotation transformation ri for

each vertex, we can modify our least squares energy from Equation 3.6 to accom-

modate these rotations :

argmin
x

{
‖Lx−Rδ‖2 + ‖Cx− q‖2

}
, (3.12)

To find this dense set of rotations R we first find a sparse set of rotations at

a few vertices (which are usually the constrained vertices from C). These sparse

rotations may either be defined manually by the user or can be extracted from a

”skeleton“ of our constraint points.

The skeleton is constructed by first finding the connectivity graph C whose

nodes n are positioned at the constraint points (Figure 3.7 (a)). Each edge eij

of the graph is assigned the approximate geodesic distance between the vertices

vi and vj as weight. We now construct the minimal spanning-tree G of this

graph considering the edge weights. This ensures that there exists a path from

each node of the graph to all others. At each node, we further insert an edge

to the three closest neighbors (considering the geodesic weights) to the graph

(Figure 3.7 (b)), ensuring that each node in the graph has at least three incident

edges.

Given the node positions p before the deformation and the target positions

p′ prescribed by the user deformation we can now estimate the rotation at the

node by estimating the transformation T that best matches the incident edges

44

3. A DEFORMATION FRAMEWORK FOR TRIANGLE MESH
BASED TEMPLATES

of G to the same edges in the target positions of G′. The 3 × 3 transformation

matrix Ti of a node i can be found by solving the least-squares equation systempi − pNi(1)
...

pi − pNi(j)

Ti =

p′
i − p′

Ni(1)
...

p′
i − p′

Ni(j)

 (3.13)

where Ni(1) to Ni(j) are the indices of the neighbor nodes of pi. The matrix

Ti will usually contain anisotropic scaling (stretching) and shearing components

and does not represent a rigid transformation as we would desire. As shown

by Shoemake & Duff (1992), we can factor Ti into an orthonormal rotation matrix

Ri and a non-rotational part Si,

Ti = RiSi . (3.14)

Technically, the rotational component can be computed by iteratively averag-

ing Ti with its inverse transpose as

H0 = Ti , Hk+1 =
1

2
(Hk + Hk

−T) . (3.15)

The decomposition iterates up to a step k after which Hk does not change

anymore, and then sets Ri = Hk.

We now have a sparse set of rotations defined at the constraint vertices. To

generate the dense set of rotations R we use harmonic interpolation. For the har-

monic interpolation the rotations are represented using 4D unit quaternions. We

then interpolate the four dimensions separately using equation 3.11. The result-

ing interpolated quaternions are normalized and converted to rotation matrices,

giving us the dense set of rotations.

Using this dense rotation field we can now solve Equation 3.12 for a deformed

mesh that adapts to the constraints in a more natural way (see Figure 3.7 (c)).

Note here that this procedure does not generally work for all kinds of defor-

mation constraints, but rather only for systems where we only specify positional

constraints such as introduced in the section above. It is also necessary to make

sure that there are constraints distributed regularly over the whole mesh. If this

is not the case, the rotation interpolation may produce unnatural results (mainly

by extrapolating rotations in an unexpected way).

45

3.2 Reconstruction and deformation

46

Chapter 4

Inverse texture mapping

In this chapter we introduce a method for constrained texture mapping based on

using an image as a planar 3D template that is deformed onto a mesh (Stoll et al.

(2006b)).

Texture mapping is a common technique in computer graphics that wraps

a two-dimensional image around a polygonal mesh model to add details and

enhance the visual appearance of the model. Constrained texture mapping is

applied when alignments are required between the model and the image. A

known application that uses constraints is facial texture mapping that requires

the alignment of prominent features of the 3D model (such as eyes, nose, mouth,

etc.) with the corresponding sections of the texture image.

In computer graphics the term mapping or parameterization refers to the pro-

cess of establishing a bijective (one-to-one and onto) correspondence between the

3D model and a 2D domain. Texture mapping is considered as a parameteriza-

tion problem in which the 3D position of the models vertices are defined as a

bi-variant piecewise-affine function and the two independent variables are used

as texture-coordinates. In constrained texture mapping the texture-coordinates

for part of the vertices are enforced and the result is a bi-variant function that

complies with the constraints and parameterizes the remaining vertices. This

makes the parameterization problem much more difficult and might even render

the problem unfeasible.

Texture mapping improves the visual appearance of a polygonal model. A

highly detailed image gives the illusion of a detailed object, although the un-

derlying geometric structure of polygons and vertices may be coarse. Hoverer,

when closely examined, the rough geometric structure becomes noticeable and

47

together with image distortion artifacts, caused by the parameterization process,

the model may look less realistic.

Our method deals with the constrained texture mapping challenge differently.

Instead of finding a parameterization of the mesh to the image plane we interpret

the 2D image domain as a planar 3D template mesh and fit it to the 3D model.

Based on a set of constrained vertices, the image plane is deformed to roughly

capture the 3D models pose and shape. Similar to Lévy (2001) the constraints

are satisfied in a least-squares manner. A matching based on geodesic distances

is then used to couple the unconstrained vertices and the image pixels. Using

the matching and the initial constraints, the image plane is deformed again into

its final shape. Our technique results in a smooth, visually pleasing and realistic

textured model that can be imposed onto or used instead of the original model.

In contrast to parameterization-based approaches, our method has the virtue

of being applicable to any type of a manifold surface, in particular high genus

models and non-triangulated meshes, as long as it supports the evaluation of

geodesic distances. Figure 4.1 shows a texture deformed to meet the shape of

a humans head model, which is of genus zero (higher genus models can be used

in the same way). Our method is not meant to be a parameterization technique

and hence does not guarantee a bijective mapping. However, for many cases it

achieves a valid parameterization and traditional texture mapping can be applied

as well.

One main application for this process of inverse texture mapping is the fitting

of cloth from 2D sewing patterns to 3D human models without having to resort to

an expensive physics simulation. For this, the mapped texture image can simply

be mapped to an offset surface of the actual mesh.

Mesh parameterization and texture mapping received significant attention

from the scientific community for several years. Rather than list them all, we

point the interested reader to the excellent survey by Floater & Hormann (2005)

and references therein for more details on this topic. We note that common to

most methods is their goal of minimizing a distortion measure while guaranteeing

a bijective mapping (a mapping that is one-to-one and onto).

Most parameterization methods focus on meshes with a topology homeomor-

phic to a disc and are limited to triangulated surfaces. To parameterize non-

disc-like meshes, it is common to first partition (segment) the mesh into disc-like

patches, parameterize each separately and pack them back together in the param-

eterization space, see Lévy et al. (2002) and references therein for more details

on atlas-based parameterization methods. A different parameterization approach

48

4. INVERSE TEXTURE MAPPING

(a) (b) (c) (d)

Figure 4.1: Deformed texture and texture mapping on a genus 0 mesh model: (a)
The mesh model, (b) Texture image, (c) Deformed texture, (d) Mesh model with
texture mapping.

can be applied to genus zero meshes with a topology equivalent to a sphere.

Gotsman et al. (2003) show how to generate a bijective mapping by generalizing

barycentric coordinate methods for planar parameterization. Saba et al. (2005)

present an optimized numerical scheme that finds a solution solution of Gotsmans

formulation efficiently.

While there exist a multitude of parameterization methods, only a few tech-

niques satisfy positional constraints. Lévy (2001) suggests adding the constraints

to the linear parameterization system. He satisfies the constraints in a least-

squares manner, yielding a “soft” constraints solution. For many applications

such a solution is sufficient. However, when adding large number of constraints

the method might result in a non bijective parameterization. Eckstein et al.

(2001) and Kraevoy et al. (2003) suggest a method that guarantees the con-

straints position together with the validity of the embedding. Both methods add

new vertices, called Steiner vertices, to the mesh when the constraints cause an

over-determined system. Kraevoys method also relies on a valid parameterization

of the original mesh. Karni & Gotsman (2000) suggest using a free-boundary lin-

ear parameterization method that compels the positional constraints into their

place. In case of an invalid solution, they suggest an iterative method that after

“several” iterations fixes the invalid areas. However, this method does not guar-

antee an upper bound on this number of iterations nor that a valid solution will

be reached.

49

4.1 Initial deformation

To the best of our knowledge, there are no methods for constrained param-

eterization of high genus models. Alexa (1999) embeds genus zero meshes on a

sphere with the presence of constraints. However, in contrast to the approach

described in this chapter, their suggestion does not guarantee a solution, even in

the event that such a case exists.

4.1 Initial deformation

Input to our method are a m × n pixel image texture I with a corresponding

image surface mesh S consisting of m × n pixels P embedded in 3D, the target

triangle mesh M, and a set of k user-given constraints K = (si,vi) each linking

an image surface vertex to a triangle mesh vertex. The image surface S is in this

case the template we want to match to the 3D object and an example of a simple

planar template.

Similar to Sorkine & Cohen-Or (2004) we start by deforming our image surface

mesh S to fit the set of 3D constraints. We work on the grid-like connectivity

structure of the image and use Equation 3.1 on the pixel neighborhood with a

constant weight of wij = 1 and build a linear system of the form(
L
Ck

)
x =

(
δ
qk

)
, (4.1)

where Ck and qk contain the positional constraints of K. Note that due to

the planar structure of the image plane it will always have δi = 0 for the internal

pixels. To deform the image surface S we now solve for the 3D “pixel” positions

x by minimizing Equation 3.6 (i.e. solving the least-squares linear system).

The deformed surface Sd now roughly captures the mesh pose as it is imposed

by the constraints. Besides mimicking the mesh pose, the initial deformation has

an important role in scaling the image surface to approximate the area of the mesh

surface. This stage is essential for the matching processes described in the next

section. Figure 4.3 shows several examples of deformed image planes based on the

constraints points alone. It is easy to notice that the intrinsic parameterization

of the image plane is preserved during the deformation.

4.2 Surface Matching

The matching stage couples the non-constrained vertices V of the mesh with

corresponding pixels from the template image S. The matching is one-to-one but

50

4. INVERSE TEXTURE MAPPING

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.2: Processing steps: (a,b) A genus 0 mesh model and the texture image
together with the constrain points, (c) Initially deformed texture, (d,e) Geodesic
distances from one constraint point along the mesh and deformed texture surfaces,
(f) Final deformed texture, (g) Texture mapping based on the geodesic distances
parameterization.

not onto, meaning that several pixels exist without a matching (it is common to

assume that the number of pixels in the image is much larger than the number

of vertices in the mesh).

The matching should capture the intrinsic properties of the two surfaces. For

example: a vertex that lies between two constraint vertices should be matched

with a pixel that lies between the corresponding constraint pixels. Zayer et al.

(2005) used vector fields generated by harmonic maps to match between two

meshes for the application of transformation transfer. The principle of the match-

ing is: Let FT and FS be the vector fields along the triangle mesh and image

51

4.2 Surface Matching

Figure 4.3: Deformed image planes based on the constraint points alone.

surface, respectively. For each vertex vi ∈ V, we match the pixels pj ∈ P such

that

j = argmin
j

(FT
i − FS

j) FT
i − FS

j < ε. (4.2)

The second term prevents the matching of points that are too far from any

constraints and thus matching of points where the difference between their vector

fields is too high. In our implementation ε is defined to be one percent of the

model’s bounding box multiplied by k (the number of constraints).

Harmonic functions have a cyclic nature that can cause the mapping to not

be bijective. Therefore, we instead base our matching on two vector fields of

geodesic distances. We calculate the distances using the method introduced by

Surazhsky et al. (2005) , starting from each constrained vertex to the entire mesh

vertices of M, and from the constraint pixels to the rest of the image pixels of

S on the deformed image surface. This generates two vector fields of dimension

k (each entry is a distance from one constraint vertex or pixel), one along the

surfaces of the mesh, the other one on the deformed image template. Figure 4.4

shows a three-dimensional subset of the vector field as [R,G,B] colors on the Igea

and face model surfaces together with their deformed image surface.

Deforming an image against a disc-like mesh surface using geodesic distances

results in a valid matching. However, when dealing with closed meshes (genus-

0) or high-genus models, a trivial geodesic distance matching might lead to a

mismatch. Figure 4.5 demonstrates the problem for a simple two-dimensional

case. The bar, analog to an image plane, is to deform around the circle, analog to

a genus-0 cylinder, using the marked constraints. Observe that the distance along

the bar between points 5 and 6 is significantly different than the distance between

the corresponding points on the circle. This might lead to matching between

points in the surroundings of point 4 on the bar to points in the surroundings of

52

4. INVERSE TEXTURE MAPPING

Figure 4.4: Geodesic distances along the surfaces of the Igea and Face models
together with their corresponding deformed image surface. Each color represents
one entry in the distances vector field.

point 6 on the circle and to a mismatch which will result in a distorted deformation

and for sure will lead to an invalid parameterization.

To avoid this problem we recognize a potential mismatch by inspecting the

distance vectors at the constraint vertices and pixels for significant variations. A

mismatch is recognized when the ratio FT
i /FS

i at the constraint points i ∈ 1, . . . , k

is below 0.8 or above 1.25. When such a mismatch is discovered, the suspected

entries are eliminated from the distance vectors for pixels and vertices close to

the suspected region. This causes the matching to disregard the dimensions of

the vector field which have strongly disagreeing entries and focus on the more

reliable distance information in the other channels.

Using the dense matching generated with the above outlined procedure we

deform the image surface again and bring it into its final pose. Similar to what

was described in section 4.1, we use the Laplacian formulation, but instead of

considering only the initial constrained points contained in Ck, the entire set of

matched points Cf is added, resulting in a new linear system of the form L
ωCk

σCf

x =

 0
ωqk

σqf

 , (4.3)

By adjusting the value of ω, the user can control the penalty measure for

any deviation from the original constraints position. High value of ω can be

considered as hard-constraints. However, forcing hard-constraints might result in

internal surface intersections and other not visually pleasing results. By adjusting

53

4.2 Surface Matching

Figure 4.5: A two-dimensional analog to the deformation of a plane (represented
as a bar) around a sphere (represented as circle) and the constraint points between
them.

the value of σ the user can control the smoothness of the deformed surface. A

small value of σ will reduce the influence of the matched points. For example,

setting its value to 0 will result in the initial smooth deformed surface.

Matching the vertices of a mesh surface to image pixels establishes texture-

coordinates and thus also a planar parameterization of the mesh (see Figure 4.6).

Therefore, we can also use the matching results to render the image plane on the

mesh surface using traditional texture mapping. Figure 4.6 shows the texture

mapping of the tiger onto the face model together with its parameterization.

However, the matching stage neither guarantees to cover the entire mesh vertices,

nor to establish a valid mapping.

Zigelman et al. (2002) used a multi-dimensional-scaling technique on the

geodesic distances to embed the mesh vertices on a 2D plane by preserving their

original distances along the mesh surface. The embedding on a plane by itself

is sufficient to generate texture-coordinates. However, their method that aims

on facial texture-mapping also does not guarantee the validity of the mapping,

and also does not satisfy positional constraints. An analog to Zigelman’s method

would be to match the mesh vertices to the image pixels based on the geodesic

distances along the mesh surface and the image plane (instead of the deformed

image surface). Calculating geodesic distances along a plane sums up to cal-

54

4. INVERSE TEXTURE MAPPING

Figure 4.6: Using the vector fields to calculate a planar parameterization of the
mesh. The picture shows the texture mapping of a tiger image onto the face
model (left) and the corresponding parameterization domain (right).

culating Euclidean distances. Figure 4.7 shows the differences between the two

approaches. It is easy to see that our approach (on the left) visually performs

better. The distortions in the Euclidean distances method (right image) and the

failure to meet the constraints are due to the differences in the distance measure-

ments, especially around the nose area. As the initial deformation step already

brings the image plane close to the shape of the 3D mesh the measured geodesic

distance matches the actual mesh distances mush better.

4.3 Results

We implemented the suggested method in an interactive system (Stoll et al.

(2006b)). The user loads a polygonal model and an image and interactively

marks pairs of constraints points between the two. From this point on the sys-

tem is completely automatic. It generates the initial deformed surface, calculates

the geodesic distances and uses them for matching. Finally, it generates the final

deformed surface. The user can then interactively add and remove constraints and

change the weights of the final least-square system (see Section 4.3) to fine-tune

the result and fit it to its needs.

We tested our method with several types of surfaces. Figure 4.9 shows a

55

4.3 Results

Figure 4.7: Deformation based on geodesic distances measured along the de-
formed image surface (left) compared with deformation based on geodesic dis-
tances measured on the image plane (right).

texture-deformation for a disc-like surface. In Figure 4.2 (e) and Figure 4.1 our

method is challenged with genus 0 models, and in Figure 4.8, a texture plane

is deformed around one handle of the Figure Eight model (a genus-2 model).

All the results show that the deformed texture-surface followed the shape of the

mesh-surface while keeping the positional constraints in place, as much as they

can be held, due to the least-squares nature of the solution.

In Figure 4.10 our method was tested with a noisy mesh. Gaussian noise

was added to the Igea model and the same texture plane as in Figure 4.2 was

deformed over it. It is evident that in spite of the noise over the mesh surface, the

matching based on geodesic distances was successful and the deformed texture-

surface inherited the noisy nature of the model surface. By fine-tuning the weights

of the second deformation stage, we were able to generate a smooth version of the

deformed texture while preserving all the facial details. The smoothed version

looks visually better and natural.

In Figures 4.2, 4.8 and 4.10 we provide a texture-mapped model based on

56

4. INVERSE TEXTURE MAPPING

Figure 4.8: Deformed texture along one handle of the Figure Eight, a genus 2
model.

(a) (b) (c) (d) (e)

Figure 4.9: Constrained Texture Deformation: (a) Polygonal surface, (b) Texture
image, (c,d,e) Deformed texture surface together with the texture image.

geodesic-distances parameterization. We did not check for the validity of the

mapping although visually we could not find any evidence for it being invalid.

In all examples the texture is well placed and the model looks visually good.

However, the smooth version of the deformed texture-surface seems to us more

natural, and in other words, better.

All experiments were preformed using an AMD Opteron-250 system with 2GB

of memory. Table 4.1 summarizes the performance of our method on several of

the models. We would like to emphasize that the timings listed in Table 4.1 are

for the initial constraints points. Adding or removing constraints requires only

an update of the already factorized deformation systems and the evaluation of

geodesic distances from the new points alone.

It is evident that the major factor in the method’s performance is the size of

57

4.4 Discussion

Model Face Igea Igea Male Eight
Vertices 1394 33K 33K 220K 1536
Pixels 40K 65K 262K 65K 65K

Constraints 24 26 26 25 26
Deform 1 2.25 4.45 35.03 4.32 4.42

Mesh Geod 0.12 14.38 14.38 31.2 0.312
Text Geod 15.36 27.56 123.24 25.44 27.56
Matching 0.01 0.49 3.36 1.17 1.17
Deform 2 2.23 4.52 36.51 4.48 4.48

Total 19.97 51.4 212.52 66.61 36.83

Table 4.1: Runtimes for the different stages of our algorithm (in seconds).

the texture image. It influences the runtime of the deformation stages and the

geodesic distance calculations. This is not surprising. In most cases the number

of pixels in the texture image is significantly larger than the number of vertices

in the mesh model. In our experiments we used small and medium sized images.

However, we would like our method to handle images with 5 to 10 Megapixels,

such as current digital cameras produce.

It is important to note that the texture image surface has the special connec-

tivity structure of a grid. Our solver, which was used in the deformation stages,

does not exploit this property. We believe that by using solvers and an algorithm

for geodesic distance computation that are dedicated to work on grid structures

(e.g., multi-grid methods), we will be able to significantly reduce the computation

time of those stages and enable the use of large images.

4.4 Discussion

In this Chapter we proposed a novel approach to constrained texture mapping

that forgoes the traditional approach of mesh parameterization. Instead, we

view the image as a 3D template surface that is fit to the surface of the target

shape. This can be viewed as the inverse process to other texture mapping

approaches. If the object to be textured is of particularly high genus or the user

wants to replace the original shape geometry with our higher resolution texture

object (which can be seen as a resampling of the surface), our method provides

a powerful tool to the user. If it is essential to guarantee a valid mapping or

preserve the original mesh geometry, it may be preferable to apply a traditional

parameterization method that establishes a map from 3D shape to image plane.

58

4. INVERSE TEXTURE MAPPING

(a) (b) (c) (d)

Figure 4.10: Deformed texture and texture mapping on a noisy mesh model: (a)
Noisy Igea mesh model, (b) Texture mapping on the noisy Igea model based on
the matched geodesic fields, (c) Deformed image plane with smoothing σ = 1.0,
(d) Deformed image plane with smoothing σ = 0.1 .

While it is possible to generate traditional texture mapping coordinates from the

results of our fitting procedure, our method does not guarantee to deliver a valid

and bijective mapping.

While most images in this Chapter show results created by mapping textures

to faces, it is of most interest for mapping sewing patterns to 3D body models.

Instead of mapping a whole rectangular grid we can simply omit all image points

that do not belong to the pattern and even connect several patterns along the

edges easily. Adding a normal offset to the found constraints allows for a straight-

forward and fast “dressing” of a model with a piece of cloth without having to

resort to a more complex simulation.

Our template based approach to constrained texture mapping offers a new

view on the problem of texture mapping and parameterization that does not

require any handling of special cases like high-genus objects. The method also is

a first step in the direction of shape reconstruction as it essentially performs a

partial reparameterization of an object. It lays the foundation for more general

template based approaches where the template is no longer limited to being a

plane. We will introduce a similar approach that incorporates semantic knowledge

in the form of a template shape in the area of shape reconstruction in the following

chapter.

59

4.4 Discussion

60

Chapter 5

Template based shape
reconstruction

In this Chapter we show how we can apply template based shape processing to the

task of semantic surface reconstruction from 3D scans (Stoll et al. (2006a)). We

build upon the insights gained in the previous Chapter, and extend the template

fitting process from planes to arbitrary template shapes.

Traditional surface reconstruction methods that do not incorporate semantic

knowledge about the object will reconstruct correct surfaces only where the sam-

pling density of the input point cloud is high enough. However, they are bound to

produce implausible results when reconstructing objects where large parts have

not been scanned. There have been previous approaches to incorporate seman-

tic knowledge into surface reconstruction for hole-filling, for example by copying

geometry from densely sampled regions (Sharf et al. (2004)) or by establishing

cross-parameterizations between a template and scanned geometry (Kraevoy &

Sheffer (2004)). However, these methods either fail in complex situations, re-

quire establishing complex parameterizations, are limited to specific objects like

faces or humans (Anguelov et al. (2005); Kähler et al. (2002)), or require large

object databases (Pauly et al. (2005)). The method we propose in this Chap-

ter formulates surface reconstruction as a template fitting problem. This allows

us to circumvent many of the issues of other methods. Using the deformation

framework presented in Chapter 3 we can semantically fill holes and accurately

reconstruct the shape surface in an intuitive and simple manner.

Typical data from 3D acquisition devices show missing surface regions even

if multiple scans are spatially aligned and combined into a single model. Any

reconstruction method is bound to fail for this data in the sense that missing

61

parts can be filled or extrapolated reasonably only if additional knowledge on

the original shape is provided. This applies locally as well as globally: without

knowledge, holes are patched smoothly (if at all), and global shape properties

such as the genus cannot be detected from incomplete data.

There are various approaches how to apply additional knowledge to surface

reconstruction. The method presented in this Chapter uses a template shape for

reconstruction of point clouds without any processing such as noise and outlier

removal. In particular no high-level tools such as parameterization or maps be-

tween surfaces are required. The only restriction is that in order to get reasonable

results, the template should share the same global structure or “nature” with the

data, e.g., a human model serves as template for reconstructing another human

although shapes are in different poses.

Our method uses a small number of correspondence points marked interac-

tively by the user to deform the template shape into the pose of the acquired

point cloud model. Successive deformations improve approximation of the data.

These deformations are guided by additional local correspondences which are es-

tablished based on certain geometric criteria, similar to Chapter 4. Throughout

the whole process, information is propagated from known to unknown parts of the

shape. Our results show that with only minimal user interaction, the approach

reconstructs a consistent and smooth surface that approximates the input data.

If suitable templates exist, template-based methods like ours carry an advantage

compared to those that work only on the plain data. We remark that in practice,

templates exist for most common applications, many of them process a certain

class of shapes, e.g., humans. This leads to another advantage to our approach:

If the same template is used for different data sets we trivially obtain a map

of correspondences between the deformed templates. Indeed, such maps are re-

quired by many applications, e.g., for texturing, and they are especially valuable

for processing time-dependent data.

Our method processes general point data with normals that are either given

from data acquisition or can be estimated (see, e.g., Jones et al. (2004)). Such

data are typically afflicted with noise and outliers, are incomplete (i.e. have

missing parts), and hence not directly appropriate for meshing. Our goal is to

deform a template mesh such that the input data is approximated in global pose

and local surface features, i.e., missing parts are filled from the template.

In order to achieve this, the user specifies a sparse set of corresponding points

on point cloud and template (cf. Figure 5.1 (a), (b) and Sec. 5.1). Corresponding

62

5. TEMPLATE BASED SHAPE RECONSTRUCTION

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Overview of the method for the camel: (a) Template with 30 oriented
markers; (b) point cloud with oriented markers; (c) initial deformation (no prior
adjustment applied on input data, which are extremely out of scale); (d) after
scaling. (e)-(g) show iterations 1,2, and 4, respectively; (h) shows the final result
from the backside with points overlaid. Front head, feet, and tail were masked
out due to missing data.

pairs are typically placed near shape features. In addition to positions, correspon-

dence in local frames is established for each pair. This is either done manually

by the user or can be estimated automatically using the method presented in

section 3.2.3.

We first compute Laplacian coordinates of the template and estimate local

rotations from the given corresponding local frames (see Chapter 3.2.3). This

information is used to obtain an initial deformation using the framework presented

in section 3.2. The result mimics the global pose of the data, however, it suffers

from improper scaling (cf. Figure 5.1 (c) and Sec. 5.2).

In order to compensate for this, we recover a global scale from averaging ratios

of discrete geodesic distances between the user specified points on the original and

on the deformed template. The reconstruction from the scaled Laplacian coordi-

nates now captures the global pose of the input data (Figure 5.1 (d)). However,

taking only into account the input correspondence so far, the deformed mesh still

resembles the template and does not yet provide sufficient local approximation of

63

5.1 Experimental setup

the data points.

We address the latter issue with an iterative process of matching and recon-

struction. For all vertices of the template, we search for matches on the data.

This search is guided by a maximum allowed radius and a maximum allowed an-

gular deviation of normals from template and data. False matches in erroneous

or insufficiently sampled data regions are avoided by masking out such regions.

For every match a weighted positional constraint is included in the linear sys-

tem, and the deformed template mesh is reconstructed. This process is iterated

based on the new deformation until the deformed template approximates the data

sufficiently (cf. Figure 5.1 (e)–(g) and Sec. 5.3).

In a final step, we estimate local displacements for all local matches in the

previous set based on the displacements from the initially deformed template

and the last deformation. The lengths of displacements are interpolated over the

template to generate new positional constraints for the final reconstruction. The

rationale of this last step is that we want to propagate the scaling information

into regions of the template with no matches or correspondences due to missing

data.

A final result is shown in Figure 5.1 (h).

5.1 Experimental setup

Given the point data, the user chooses an appropriate template mesh that will

be deformed to approximate the input. Our method is robust, and there are no

restrictions on the template in general, however, no meaningful results can be ex-

pected from fitting strongly inappropriate templates, for example with different

genus. Templates can be obtained in several ways. There exist large free online

databases for triangle meshes (for example AIM@SHAPE (2004)) that provide a

large data pool for template meshes. It is also possible to have an artist design

a template using modeling tools. If it is possible to ensure that one can scan an

object without missing data (i.e. by performing a series of range scans and com-

bining them), it is also possible to use traditional surface reconstruction methods

to generate the template.

In the next step the user identifies and marks pairs of corresponding points

on template and point data. Such correspondences are required on or near shape

features, e.g., at feet and knees for human or animal models. Local frames for the

rotation are either chosen manually by the user or generated automatically using

64

5. TEMPLATE BASED SHAPE RECONSTRUCTION

the method described in section 3.2.3. Correspondences will be used to globally

bring the template into the “pose” of the point data.

In the subsequent step, local correspondences between shapes will be searched

based on heuristics. Here, it is important to remove the influence of data regions

which are insufficiently sampled and cannot provide reasonable information. For

this reason, the user selects a global region of interest either on the point data

or on the template (as done in our examples). Points outside this region are

ignored for any subsequent matching (Sec. 5.3), i.e., for these masked-out regions

the template is deformed rigidly. The choice of this region and hence assessment

of the data is straightforward even for a non-trained person.

5.2 Initial deformation and global scaling

From the selected correspondences, we compute the initial deformation of the

template. Given the correspondences C and the rotations of local frames and

the respective interpolated rotations R we can generate an initial deformation

by applying the deformation framework we introduced in Chapter 3 and solving

Equation 3.12.

The result (see Figure 5.1 (c)) already shows the desired pose, however, ig-

noring the fact that template and input data may be (and generally are) scaled

differently may distort the resulting shape in an unacceptable way. In order to fix

this issue, we estimate a global scaling factor λ for the template which is applied

to the Laplacian coordinates d. Therefore, we compute discrete geodesic paths

(using Dijkstra’s algorithm) between marked points on the original template and

the initially deformed one. We obtain a global scale as average of the ratios of

geodesic distances on both shapes. Our experiments show that a global scale is

sufficient, and local diversification does not yield significant improvements except

for extreme configurations, which did not occur in any of our examples. On the

other hand simple global measures such as ratio of bounding box diagonals are

not reliable enough due to different poses. Hence, we now solve the same system

(3.12) again with an updated right-hand-side applying λ as scaling factor for the

differential coordinates δ. A result is shown in Figure 5.1 (d). In the following

we will re-apply the same system with updates in the constraints C,q.

65

5.3 Iterative improvement

(a) (b) (c)

Figure 5.2: The cylinder example illustrates the effect of displacement propaga-
tion for the final reconstruction. (a) Template and point cloud, there is no data
for the left half; (b) result after iterations using only data points; (c) for the final
result, displacements were propagated to the region with missing data.

5.3 Iterative improvement

The initial deformation of the template mesh using proper scaling globally cap-

tures the pose of the point cloud. However, the deformed shape does not yet

provide sufficient local approximation of the data. The following iterative pro-

cess moves the template nearer toward the data points guided by local corre-

spondences which are established from simple heuristics. This local matching is

motivated by iterative closest point (Besl & McKay (1992)) (ICP) algorithms for

finding (rigid) transformations for shape registration.

For every vertex of the template, we search for matches in the nearest data

points within a maximum distance rmax. Of all points found for a single ver-

tex j those are rejected for which their normal deviates from the vertex normal

by more than a maximum angle. From the remaining points we compute a po-

sitional constraint qj as a weighted average of the point positions. We restrict

these displacements to their contribution in direction of template normals to avoid

tangential drift. The weighting is based on point-vertex distances mapped by a

quadratic B-spline transfer function which maps distances 0 and rmax to 1 and

66

5. TEMPLATE BASED SHAPE RECONSTRUCTION

0, respectively, with C1 continuity at the interval boundaries. This information

is used to update C and q in (3.12). The updated system is then solved again,

yielding a new deformation of the template. Starting from this new configura-

tion, we search again for local matches and iterate the process. Note that this

formulation only involves changing C and q, where prior constraints are either

preserved or overwritten by updates.

The local matching for finding new constraints must fail in regions where the

point data is erroneous, e.g., due to measurement error, insufficient sampling,

and missing data. This situation cannot be compensated by manually choosing

correspondence and because of the lack of data no meaningful deformations can be

extracted. Besides the fact that such regions may require manual post-processing,

they must be excluded from local matching as they typically lead to false matches.

This is done by restricting the search not only by local distance and angular

thresholds but also by allowing the user to specify a globally defined region of

interest within the point cloud using a simple painting interface.

After a sufficient number of iterations (4-15 for all our examples), the template

mesh is deformed in a way that it approximates the point cloud in global pose

and local shape. Of course this refers only to shape regions where point data is

available (and the region of interest, respectively). In a final step, we improve on

the remaining regions of the deformed template for which no counterparts exist in

the data. We identify regions with sufficient point data simply as all vertices j for

which (local) constraints have been found before. For all such vertices, we measure

the displacement in normal direction between the initially deformed template

and the result of the last iteration, respectively. These displacements capture

shape information of the point cloud, and their lengths are then propagated

over the template mesh using harmonic interpolation, similar to the rotations.

The interpolated values are then used as normal displacements w.r.t. initial

deformation and define additional constraints, which are assigned low weights

(we used wj = 1
2
). We observe that this heuristic provides plausible results,

Figure 5.2 illustrates the effect for a simple example.

5.4 Results

We have implemented the method described above in an interactive environment

(Stoll et al. (2006a)). The user positions constraint points on the template and

point data. In rare cases it is necessary to place a few markers freely, away

from the data. This situation occurred only for the hand example in Figure 5.4,

67

5.4 Results

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5.3: Fitting of two heads. (a) Template with 11 markers; (b),(c) data sets;
(d), (e) result for (b), the overlay of points illustrates coverage of the data; (f)
result for (c).

which consist of a single scan without backside. Here we placed a free marker

to constrain the position of the tips of the fingers, which are not visible in the

scan. If necessary, the user can the use a brush-interface to mask areas on the

model and the point-cloud which should not be processed. The following steps

are completely automatic. We generate the initial deformation using our rotation

estimation graph (see Chapter 3.2.3) and calculating global scaling. This is fol-

lowed by the iterative improvement stage and finally interpolating displacements

for unmatched vertices, resulting in the final reconstruction. A typical fitting

session takes between 5–20 minutes.

68

5. TEMPLATE BASED SHAPE RECONSTRUCTION

(a) (b) (c) (d) (e)

Figure 5.4: A template hand model (a) is fitted to a single range scan (b). The
final result is shown in (c)–(e) from different views.

System response is immediate such that the overall timing is mainly influ-

enced by the time the user interaction takes. Computation times such as matrix

factorization are negligible; this fact is also known from Laplacian-based inter-

active shape editing systems (see, e.g., Sorkine (2005)). Computational cost is

dominated by matrix operations and thus size of the template (rather than near-

est neighbor searches on the point cloud), all automatic stages of iterations were

performed in less than 30 seconds for all models.

Our method successfully addresses common problems in point cloud recon-

struction: noise, outliers, fragmented scans, missing parts. The projection oper-

ator and the iterative deformation approach together with smoothness inherited

from the Laplacian operator effectively acts as a low-pass filter suppressing arti-

facts such as high-frequency noise and outliers on the point data. Our method

has even proven to be robust toward poorly aligned fragments combined in a

point cloud (Figure 5.6).

In all our examples, the scans showed a significant amount of missing data

for the scans, e.g., the belly of the camel, the back of the hand/head, and large

parts of the human models (see Figure 5.1, 5.3, 5.4, 5.6). These parts are filled

with the template shape in a natural way, transitions to such regions are hardly

noticeable in the results.

We show that our method is capable of handling extreme deformations (Fig-

ure 5.5) to different poses and even shapes. However, depending on the quality

of the input and the application it is sometimes not desirable to align each of the

small details of the template to the points. Masking out certain parts or focusing

on a region of interest enables us to preserve certain details and features of the

template model, e.g., the legs in Figure 5.5. For other applications, it is vital to

69

5.4 Results

model Figures #marks #verts #pts #err
camel 5.1 30 39024 6195 0.57%
head 1 5.3 (b) 11 16544 52954 0.12%
head 2 5.3 (c) 11 16544 65593 0.16%
hand 5.4 33 25735 114767 0.25%
woman 5.6 26 13784 11798 0.32%
bronto 5.5 41 39024 23982 0.55%
horse 5.5 33 48485 6195 0.33%

Table 5.1: Summary on datasets used. Columns refer number of correspondence
markers (# marks), vertices in the template (# verts), points in the point cloud
(# pts), and relative approximation error as ratio of one-sided Hausdorff distance
from points to results (ROI only) to length of bounding-box diagonal.

(a) (b) (c) (d) (e)

Figure 5.5: Left: The Brontocamelosaurus is an example of extreme deformation
using the camel template (Figure 1(a)). (a) Point cloud; (b) initial deformation;
(c) final result. Lower legs, tail and ears were masked out. Right: Use of the
horse (d) model as template for the camel point cloud from Figure 1 (b), result
shown in (e).

preserve parts of the template that do not match semantically to the point data

such as the open and closed eyes in Figure 5.3. Table 5.1 summarizes facts on all

of our examples.

One limitation of our method is that we are not able to reconstruct sharp

features and small details of the point cloud. This has several reasons. Due to

the smoothing required for noise suppression we lose some information. Also, the

template may not be of sufficient resolution to capture all details. Finally, since

we always regularize our fitting procedure with the initial Laplacian system using

Equation 3.12 we try to preserve details of the template at the cost of a more

accurate reconstruction. One possible solution to this would consist of extending

coating transfer Sorkine et al. (2004) to our point cloud settings. Another solution

will be presented in the following section.

70

5. TEMPLATE BASED SHAPE RECONSTRUCTION

(a) (b) (c)

Figure 5.6: Reconstruction of a female model from a noisy dataset consisting of
two fragments (front and back) which are poorly registered. Note missing parts
and artifacts from shadowing in the input data. (a) Template; (b) point cloud,
hands and supporting bars were masked out; (c) result.

5.5 Extensions

In this section we want to propose three extensions to the template fitting method

proposed before. One of the main limitations of the template fitting method is

that it is unable to reconstruct fine details of the point cloud and rather preserves

existing detail of the template. Also, if the template shape is too dissimilar to

the point cloud to be reconstructed the template might not be able to deform

sufficiently to match the object. These problems can be traced back to the way the

deformation is handled. The iterative fitting algorithm in section 5.3 regularizes

the deformation with the Laplacian matrix L and the differential coordinates δ of

the original template (albeit modified by the rotation-field and the scaling factor).

This has the implication that the solution of the linear system will always try to

preserve the local detail of the template.

To achieve a greater detail reconstruction of our point cloud we will change

the iterative procedure of 5 slightly by adapting the setup of the linear system.

We also introduce a method for remeshing, which allows us to modify the mesh

connectivity to better accommodate to the point cloud where the resolution is

insufficient. Finally we will introduce a method for surface fairing, which can

be used to prevent self-intersections when matching the surface. These three

techniques allow us to reconstruct point clouds in much higher detail and also

allows us to use more general objects for reconstruction (like a low-tessellation

sphere for reconstructing the Igea point cloud as in Figure 5.10).

71

5.5 Extensions

5.5.1 Laplacian updating

The first extension of our method will address the issue of reconstructing finer

details of the point cloud. The setup works similarly to the one presented in

section 5 up to the iterative refinement step. The user selects correspondence

points, rotation and scaling are estimated and an initial deformation of the tem-

plate mesh is generated, resulting in a triangle-mesh M0.

Instead of continuing the fitting procedure with the linear system estimated

from the template we now calculate a new Laplacian system at the beginning of

each iteration i based on our current deformed template Mi−1. We calculate the

Laplacian matrix Li and the differential coordinates δi from Mi−1 and build a

new linear system as in Equation 3.7. The positional constraints of this system

are calculated in the same way as in section 5.3, by finding nearby points that

have a similar normal and projecting along the normal. We use a lower weight for

those constraints than in the original formulation to compensate for the updating

Laplacian system, which allows for a higher range of deformation. Solving the

linear system yields a new triangle mesh Mi+1.

By iterating this procedure we allow our template to slowly adapt to the fine

details of the point cloud. The template mesh acts as a regularization during the

Laplacian deformation step, and by slowly changing the template to take into

account the deformations we can adapt the mesh much closer to the point cloud

geometry.

5.5.2 Remeshing

In this section we will describe how to modify the framework to allow the template

to adapt its mesh resolution to the detail of the point cloud by performing an

adaptive subdivision.

Following the deformation, we calculate an error term for each triangle of the

deformed template by projecting all points of the point cloud onto the mesh and

calculating the average distance di of the projected points for each triangle. To

ensure that this procedure is not influenced by outliers we disregard all vertices

that are further away than a threshold µ. We now select all vertices where di is

bigger than a threshold ε and subdivide them by simply splitting all edges at the

midpoint and replacing the triangle with 4 smaller ones. Following this step we

ensure correct triangulation by fixing all resulting T-junctions (see Figure 5.7).

This procedure creates finer tessellations for locations where the current trian-

gulation is too coarse to capture the point cloud geometry. Finally we perform

72

5. TEMPLATE BASED SHAPE RECONSTRUCTION

(a) (b) (c)

Figure 5.7: (a) The triangle in red has been marked for subdivision by error
thresholding. (b) All marked triangles are split into four smaller triangles by
edge splitting. (c) Resulting t-junctions are fixed by inserting edges.

an edge-flipping procedure, inspired by Botsch & Kobbelt (2004). Here we flip

edges of the mesh wherever this minimizes the deviation from valence 6 for the

surrounding vertices to increase the regularity of the mesh.

While this procedure effectively changes the connectivity of the template

mesh, it allows it to adapt the triangle size to the feature size of the point cloud.

Regions that can be well approximated by large triangles will keep their resolu-

tion, while regions with many details will be represented by smaller triangles.

5.5.3 Surface fairing

Finally, we will explain how to deal with possible self-intersections due to fold-

overs that can be produced by the matching procedure.

The new iteration procedure allows for a much wider range of deformations,

and as such is prone to self intersections during the projection step (see Fig-

ure 5.8). As handling these directly during the projection procedure is difficult

we instead use a subsequent fairing step to fix these problems. Similar to Botsch

& Kobbelt (2004) we perform an area-based tangential smoothing step. This

process moves each vertex towards its area-weighted centroid

gi =
1∑

j∈N(i) Aj

∑
j∈N(i)

Ajvj, (5.1)

73

5.5 Extensions

Figure 5.8: The surface mesh (red) is matched to the point cloud (blue). Due
to way the matching is performed, under some circumstances self intersections
and folding artifacts may be generated (left column). By introducing a surface
fairing step which smoothes the mesh along the point cloud surface’s tangents
these problems can be resolved (right column).

where Aj is the Voronoi area of the vertex as in Equation 3.2. To ensure that

we stay on the surface the update vector for each vertex is modified by projecting

it onto the tangential plane of the target surface.

vi = vi + λ
(
I − nin

>
i

)
(gi − vi) (5.2)

Here λ is a dampening factor to avoid oscillations. Instead of using the normal

vector of the current deformed template mesh for projection however we us the

averaged normal vector ni of the closest surrounding point cloud vertices, which

ensures that we actually smooth along the tangent of the surface we want to

reconstruct and not our current surface (see Figure 5.8).

5.5.4 Results

We have applied our extended processing pipeline to several examples. Figure 5.9

again shows the camel template from Figure 5.1 matched to its respective point

cloud using the same constraints, this time though using the Laplacian updating

and fairing procedure outlined above. Figure 5.9 shows that the resulting mesh

fits much closer to the point cloud and lost all details from the original template

in regions where surface matches were found. Also the regions around the head

and tail, which were very problematic to handle using the previous method now

accurately represent the point cloud’s geometry.

74

5. TEMPLATE BASED SHAPE RECONSTRUCTION

(a) (b)

Figure 5.9: Reconstructing the camel scan from Figure 5.1 using a template.
(a) Template fitting without Laplacian updating (head and feet were disregarded
for matching). (b) Reconstruction with enabled Laplacian updating and surface
fairing. Note that the Laplacian updating enables a more detailed reconstruction
on the flank and neck of the model.

Figure 5.10 shows the fitting of a low tessellation sphere to the Igea model.

Here, the combination of Laplacian updating, remeshing and fairing allows us to

create an accurate reconstruction of the head model with sufficient resolution to

represent all surface detail present in the mesh.

One drawback of performing the remeshing step is that we lose the origi-

nal connectivity of our template model, i.e. we no longer have a valid cross-

parameterization over all models matched to this template. However, this is a

trade-off for achieving a much better surface reconstruction quality in fine de-

tails. Depending on the application the user can select which property is more

important.

5.6 Discussion

In this chapter we proposed a new approach to surface reconstruction from 3D

point clouds that incorporates a template mesh to provide additional semantic

information. Approaching shape reconstruction as template fitting process al-

75

5.6 Discussion

(a) (b) (c)

(d) (e) (f)

Figure 5.10: Reconstructing the Igea model from a sphere. (a) Low resolution
sphere template. (b) Igea model point cloud. (c-f) Several stages of the recon-
struction process using Laplacian updating, subdivision and surface fairing to
generate an accurate reconstruction.

lows us to reconstruct the surface and semantically fill holes in a single simple

framework.

One of the main limitations of the method is that, in contrast to traditional

reconstruction approaches, it is not fully automatic. It requires user input in

terms of template selection as well as correspondence point selection. The work

of Pauly et al. (2005) includes an automatic template selection from a database,

however they need to manually label correspondence points before. Recent re-

search from Wand et al. (2007), Wand et al. (2009) and Li et al. (2000) use

automatic correspondence finding to match partial scans from a sequence of 3D

scans. Similar approaches could be added to our method to develop a fully au-

tomatic system. Given a templates database we could extract invariant feature

76

5. TEMPLATE BASED SHAPE RECONSTRUCTION

descriptors, for example the Spin-Image descriptor from Johnson (1997), and

store them. For the reconstruction, we would extract features from the 3D scan

as well and compare them to the entries in the database, finding the most likely

shape matches. This would allow us to reconstruct the surface using correspon-

dences that can be established from the features using a robust matching scheme

such as RANSAC (Fischler & Bolles (1987)). Finally, we select the reconstruction

that provides the minimum reconstruction error or let the user select his preferred

result.

We currently are not dealing with sharp features like edges or corners during

the reconstruction and will always try to reconstruct a smooth surface. While

this can be partially alleviated by applying the template subdivision extension,

a more focused approach that detects sharp features in the input data combined

with an feature preserving projection operator (like presented in Fleishman et al.

(2005)) would be the preferable solution.

The linear differential deformation framework presented here is particularly

well suited to adapt the mesh to fine details. However, it may produce unintuitive

results when the low-frequency deformation (i.e. pose change) becomes too large.

While the rotation estimation method introduced in Chapter 3.2.3 can deal with

deformations up to a certain degree, the quality of the result is strongly dependent

on the distribution of the constraint points. The quaternion interpolation method

used there is also not able to deal with rotations larger than π. This limitation

can be addressed by replacing the framework with a more powerful, but also

more costly, non-linear method, which is able to handle larger deformations more

reliably. We will introduce such a framework in Part II of this thesis.

While we concentrated on reconstructions from 3D scans generated with tri-

angulation laser scanners and structured light scanners in this part of the thesis,

we want to point out that the method is also applicable to point clouds extracted

using image based methods such as multi view stereo or shape from silhouette

techniques. We will show how we can incorporate the additional knowledge gained

from having image information to shape reconstruction in the following Chapter.

The template based shape reconstruction approach presented in this Chapter

is an easy to implement and reliable method to incorporate semantic knowledge

into shape reconstruction. Even if large parts of the model are missing, such as

in the hand example in Figure 5.4 where the 3D scan consists of a single depth

map, we are able to reconstruct a meaningful model. The projection method

is robust to noise and outliers and allows reliable reconstruction even of very

difficult scans. Our template based approach does not require pre-processing

77

5.6 Discussion

and high-level tools such as parameterization or mappings between surfaces as

previous methods. Additionally, if the same template is used for different data

sets we trivially obtain a correspondence map between the deformed templates.

78

Chapter 6

Surface based animation and
performance capture

In this Chapter we will show how we can use template based shape processing

for animation and performance capture (de Aguiar et al. (2007a,b,c, 2008a); Gall

et al. (2009)). Traditionally animation and performance capture methods param-

eterize a model of a subject in terms of a kinematic skeleton. We can then change

the joint-angles manually to generate an animation, or estimate them from ex-

ternal input data (marker trajectories or images) for motion capture. Instead of

using a kinematic skeleton as underlying scene representation we propose to pa-

rameterize a high-quality 3D scan of the performer in terms of constraints of our

mesh deformation framework and thus approach animation and motion capture

as a deformable template fitting process. Instead of being subject to the limited

modeling power of skeleton-based approaches, we can now apply arbitrary sur-

face constraints to our shape. This allows us to not only capture motion, but

also surface deformation of our performer, even when wearing wide apparel. The

downside of this is that the shape parameterization is much more complex and

higher dimensional.

While it is possible to create a shape reconstruction from input images with-

out using any template, this will produce meshes with varying connectivity and

topology in every frame. As a constant connectivity is of advantage for processing

and storing the mesh, especially for real-time applications, one has to bring the

created meshes into correspondence afterwards (Ahmed et al. (2008b); Starck &

Hilton (2007)). Using a template mesh from the beginning circumvents this step

and also can simplify the reconstruction process itself.

79

6.1 Data acquisition

On the other hand there are marker-based and marker-less motion capture sys-

tems that measure human motion in terms of a kinematic skeleton embedded into

a template model (Moeslund et al. (2006); Poppe (2007)). While this represen-

tation is very compact and has advantages in terms of computational complexity

and robustness, it does not allow dealing with situations where a skeleton is not a

good approximation of the actual deformation, for example when the performer

is wearing a skirt or very wide apparel. In these cases the tracking may even fail

completely.

In the following sections we will present methods for template based anima-

tion and tracking of the motion and shape of performers in arbitrary apparel

(de Aguiar et al. (2007a,b,c)). We will also introduce techniques for template

refinement that allow us to extract more detailed time-varying detail from input

videos (de Aguiar et al. (2008a); Gall et al. (2009)).

6.1 Data acquisition

The input data for both tracking and refinement were recorded in our multi-view

camera studio. The setup consists of k = 8 synchronized cameras recording with

a resolution of x × y = 1004 × 1004 pixels. The recorded sequences of a scene

contain n frames of video and are denoted as Fk,n. We perform a background

subtraction for all frames, yielding a set of binary silhouette images Ik,n. In the

silhouette images 0 denotes the background and 1 the foreground object. For

each camera we also reconstruct a 3 × 4 calibration matrix Ck which maps 3D

world coordinates to 2D images coordinates in the respective camera view. We

also acquire a triangle mesh model Minput of the performer using a full body laser

scanner.

6.2 Animation and tracking

In this section we will present an overview of methods that allow for animation

of template meshes and mesh based marker-less motion capture (de Aguiar et al.

(2007a,b,c)). Instead of estimating joint angles of a kinematic skeleton, all of these

methods rely on tracking 3D positions on the surface of an object and using those

to directly deform the mesh. This novel formulation allows us to capture a much

wider range of performances than traditional skeleton based techniques.

80

6. SURFACE BASED ANIMATION AND PERFORMANCE
CAPTURE

The vision pipeline used in these methods (i.e. flow calculations, feature

extraction and correspondence finding) is explained in detail in the PhD the-

sis de Aguiar (2008). However, as the template deformation process introduced

in this thesis in Chapter 3 is used to parameterize the template models, we will

explain the methods only briefly. We refer the reader to de Aguiar (2008) for

more details concerning the constraint extraction from the images.

Given the 3D mesh model Minput of the performer and the set of input videos

with their segmentations and calibration, we want to generate a mesh animation

M1...n where the mesh is deformed in such a way that the pose and motion is as

similar as possible to that of the original performer.

In all three methods we extract 3D deformation constraints for the input mesh

from the input videos in different ways and use them to generate a mesh anima-

tion M1...n. Given the constraints we use our template processing framework to

perform rotation interpolation (see Section 3.2.3) and solve for the deformed state

using Equation 3.12 in each frame.

In de Aguiar et al. (2007c) we extract deformation constraints for our template

mesh from a marker-based system and from the results captured with the marker-

less system of Carranza et al. (2003). We establish correspondence between the

input mesh Minput and the optical marker trajectories/the tracked mesh from the

marker-less system. We then apply these points as input to our framework. This

allows us to animate 3D laser scans with a simple deformation scheme without

having to rely on the complex traditional animation pipeline based on kinematic

skeletons.

In both de Aguiar et al. (2007a) and de Aguiar et al. (2007b) we directly

estimate the deformation constraints from the input videos. To achieve this we

first have to bring the 3D input model into correspondence with the first frame.

This can be achieved by using an input mesh where the pose is already close to

the first input video frame and performing an ICP-like alignment, resulting in an

initial mesh M1. Now we need to derive constraints to deform the model from

each frame Mi to the next frame Mi+1.

In de Aguiar et al. (2007b) we extract constraint points with the help of the

optical flow of Brox et al. (2004). We first calculate an unconstrained deforming

mesh animation by using optical flow to match a projectively textured version

of the input mesh to the input images and then simply displacing the vertices

according to the estimated 3D scene flow. This process is iterated until the

silhouette overlap between mesh and silhouette images is below a threshold ε.

81

6.2 Animation and tracking

Applying this procedure consecutively to all frames results in a first coarse ap-

proximation of the motion. As we do not yet take structural information about

the input mesh into account this will often fail to track the object correctly and

result in distortions. However, the information can be used to select a subset of

mesh vertices that are tracked reliably. We take these feature points and track

them again using the optical flow method from before. Instead of simply moving

the mesh vertices to the target 3D positions, we use them as constraints for our

template deformation framework. This stabilizes the tracking of the mesh, as

the differential coordinate solver acts as a regularization on the motion of the

mesh, preventing unnatural deformations. In de Aguiar et al. (2007a) this work

was extended to include SIFT feature extraction (Lowe (1999)) to stabilize the

deformation constraint extraction. The tracked local SIFT features are validated

with the optical flow. We then apply the confidence-weighted feature trajectories

as template deformation constraints to generate the final mesh animation.

6.2.1 Results

We applied the method from de Aguiar et al. (2007c) to generate several ani-

mations of characters with different input data. Using both marker trajectories

extracted from a marker-based and point constraints extracted from the marker-

less system of Carranza et al. (2003) we were able to quickly and intuitively

transfer the motion of performers onto models. This allowed us to circumvent

the complex process of fitting the skeleton to the marker data and the template

model.

We tested the methods presented in de Aguiar et al. (2007a) and de Aguiar

et al. (2007b) on several sequences with different performers wearing a wide range

of apparel, from body tight over wide to complex garments like a kimono. Our

captured sequences are usually between 100 and 500 frames long and show a wide

range of motions from simple walking to yoga exercises.

The results show that our purely passive mesh-based animation and tracking

approaches can capture both pose and surface deformation of performers. We are

able to track even complex deformations of different materials using the presented

frameworks (see Figure 6.1). Most importantly, it is not necessary to embed a

kinematic skeleton into the mesh and are able to represent motion only in terms

of moving 3D point constraints.

82

6. SURFACE BASED ANIMATION AND PERFORMANCE
CAPTURE

(a) (b) (c)

Figure 6.1: Results from different surface based performance capture meth-
ods. (a) Marker based animation transferred to a triangle mesh using de Aguiar
et al. (2007c). (b) Marker-less motion capture of a performer using optical flow
from de Aguiar et al. (2007b). (c) Capture of a performer wearing a Kimono
from de Aguiar et al. (2007a).

6.3 Model refinement

In this section we will show how we can apply our deformation framework to model

refinement from images. Unlike the methods presented in the previous section,

where we are mainly concerned with finding the low-frequency deformation (i.e.

pose) that best matches our input data, we now want to deform the already posed

model in each time-step so that it fits the input images as closely as possible also

on the finest level of detail (i.e. capture the high-frequency deformations).

In addition to the input videos and segmentations we are also given a mesh

animation consisting of n triangle meshes Mn which have already been tracked

(for example using the method presented in the previous section) and roughly

capture the pose of the subject in the video.

In the following we will present two different methods for refining our model

to match the silhouette in all views, first using projected 3D constraints and

then using 2D line constraints. Although the silhouettes only provide reliable

information on outer boundaries of the object, the vertices belonging to them

are usually evenly distributed on the surface. Hence, in general it is possible to

adapt the shape of the whole model also in areas which do not project on image

contours realistically. Unless the surface of the object has a complicated shape

83

6.3 Model refinement

with many concavities, the result of silhouette adaptation is already a realistic

representation of the correct shape.

Should the target object contain many concavities, it is necessary to employ

more sophisticated methods. We will also explain how to use a model guided

multi-view stereo approach to match parts of the object which do not lie on sil-

houette boundaries of the observed image data. This stereo refinement approach

can be freely combined with the two silhouette refinement steps if so desired, as

all of them rely on our deformation framework and can be combined into a single

linear Equation system.

All our refinement calculations will be performed on each frame of the video

and animation sequence individually, disregarding temporal coherence. If neces-

sary a temporal smoothing of vertex trajectories can be performed after all frames

have been processed, which will remove any noise introduced. While it would be

possible to include temporal coherence constraints during processing, this would

make the linear Equation systems more complicated and thus increase process-

ing time. In our experiments we could not find any benefit of including implicit

temporal coherence in this way over performing a simple explicit smoothing step

in the end. Because of this, it is sufficient to approach the problem in terms of

processing a single frame only.

6.3.1 Silhouette refinement using positional constraints

The first step for silhouette refinement is to calculate the Laplacian matrix L and

differential coordinates δ of the mesh according to Equation 3.3. We can limit

ourselves to the simple Laplacian deformation framework without any rotation

estimation as we assume that our model already has the correct low-frequency

orientation.

Following this, we identify the rim vertices of our mesh in each camera view. A

rim vertex for a camera view is a vertex which lies on the outer silhouette of the 2D

projection of the mesh in the respective camera. They can be calculated efficiently

by rendering the mesh in a solid color in the camera view and afterwards checking

which vertices project exactly onto a border of the rendered image (Figure 6.2).

For each rim vertex the closest 2D point on the silhouette image boundary

is found in the camera view that defines its rim status. Now we check if the

image gradient at the input silhouette point has a similar orientation to the

image gradient in the reprojected model contour image. If this is the case, we

back-project the vertex from 2D to 3D world coordinates, keeping the original

84

6. SURFACE BASED ANIMATION AND PERFORMANCE
CAPTURE

(a) (b) (c)

Figure 6.2: Extracting the rim vertices of the mesh : (a) Model in camera view.
(b) Solid color rendering. (c) Vertices that lie on the outer silhouette of the mesh.

depth value. This back-projected input contour point defines the target position

for the rim vertex. If the distance between back-projection and original position

is smaller than threshold ε we add it as constraint to our deformation framework

in Equation 3.6. Here we use a low weight (between 0.25 and 0.5 depending

on the quality of the segmentation) for the rim constraint points. This has a

regularizing and dampening effect on the deformation that minimizes implausible

shape adaptation in the presence of noise.

After processing all vertices, we solve for the new surface. This rim projection

and deformation step is iterated up to 20 times or until silhouette overlap can not

be improved further. Note here that we recalculate the Laplacian matrix L and

differential coordinates δ as well as the rim vertices for each iteration. Updating

the matrix and coordinates allows us to match the silhouette much closer, similar

to section 5.5.1. Updating the rim vertices is necessary as the deformation may

cause vertices to change their rim status.

85

6.3 Model refinement

6.3.2 Silhouette refinement using line constraints

In this section we will replace the 3D constrained found by back-projecting the

rim vertices with line constraints as introduced in section 3.2.1. Up to the process

of back-projecting the vertex the procedure of the algorithm is similar to the one

presented in the previous section. To generate the line constraint we first have

to split the 3× 4 calibration matrix Cj of a camera j into its translation vector

tj and the remaining 3× 3 transformation Nj. Using the 2D target screen space

coordinates ui for a rim vertex i we can now represent the line constraint using

the two linear Equations

(Nj
1 − ui

1N
j
3)xi = −tj1 + ui

1t
j
3

(Nj
2 − ui

2N
j
3)xi = −tj2 + ui

2t
j
3

. (6.1)

Here the subscripts of Nj and tj correspond to the respective rows of the

matrix/entry of the vector. These Equations force the vertex xi to lie somewhere

on the ray going through the camera’s center of projection and the pixel position

ui. Since the error of this constraint is depth-dependent and thus not linear in

the image plane, we weight each constraint such that the error is 1 for a single

pixel difference at the original vertex depth.

Similar to refinement with 3D constraints we now solve for the deformed model

and iterate the process several times.

6.3.3 Multi-view stereo refinement

In order to recover shape detail of model regions that do not project to silhouette

boundaries, such as folds and concavities in a skirt, we resort to photo-consistency

information. To serve this purpose, we can derive deformation constraints by

applying the multi-view stereo method proposed by Goesele et al. (2006). We

first estimate a depth map for each image, merge them into a single point cloud

and then project nearby vertices of our mesh onto the point cloud, similar to

what we proposed in Chapter 5.

To estimate the depth maps for each camera view we first estimate an initial

depth for each pixel di by finding the z value of the triangle mesh at the corre-

sponding 2D pixel. We also store the mesh normal ni. To calculate the photo

consistency of a 3D point we first fetch the l × l pixel back-projection of a small

rectangular patch that is tangential to the normal ni in all camera views. If the

patch is back facing in a camera view it is discarded. For all remaining views,

we calculate the normalized cross correlation over all patches. We now find the

86

6. SURFACE BASED ANIMATION AND PERFORMANCE
CAPTURE

optimal depth position by sampling the photo consistency along the viewing ray

for each pixel of each depth map in an area ±2 cm away from the initialization.

If we can find a distinct maximum in the sampling area, we store the depth,

otherwise the pixel is discarded.

As we have far less viewpoints of our subject than Goesele et al. and our

actors can wear apparel with little texture, the resulting depth maps are often

sparse and noisy. Nonetheless, they provide important additional cues about the

object’s shape. We merge the depth maps produced by stereo into a single point

cloud and then generate deformation constraints for our triangle mesh according

to section 5.3. Given the uncertainty in the data, we add the stereo deformation

constraints with lower weights.

6.3.4 Results

We have implemented the silhouette and stereo refinement approaches in two

research prototypes in the context of performance capture. In de Aguiar et al.

(2008a) we use a purely mesh-based method for reconstructing spatio-temporally

coherent geometry and motion of actors from multi-view video. The method is

split into two stages, a coarse pose-capture step and a detail recovery step. The

first stage uses a deformable volumetric mesh model to capture the rough pose

of the subject without the help of a kinematic skeleton. We will explain this

pose capture step in more detail in Part II of this thesis. In the second step,

a combination of the presented 3D silhouette refinement and multi-view stereo

refinement is used to adapt the models as closely as possible to what can be seen

in the input video. This combination allows us to even capture actors performing

fast motions and wearing wide apparel or even skirts in high quality. More details

about the vision components of this work can also be found in de Aguiar (2008).

Figure 6.3 shows an example of the mesh refinement produced by this method.

Subimage (a) shows the initial model and the silhouette constraints, (b) shows

the point cloud estimated using the multi-view stereo refinement and (c) the final

model after deformation. The mesh now fits much more closely to the original

input images than the pure low frequency pose capture result.

In Gall et al. (2009) we use a similar coarse-to-fine capture structure as de Aguiar

et al. (2008a), but use an embedded kinematic skeleton in conjunction with a lo-

cal/global optimization to estimate the pose of the subject. This is followed by

the 2D silhouette refinement as detailed above. The combination of kinematic

skeleton and local/global optimization allows for a more reliable tracking of limbs

87

6.4 Discussion

(a) (b) (c)

Figure 6.3: Model refinement using 3D image constraints and stereo cues : (a)
Model with constraints derived from silhouettes overlaid as red lines. (b) Esti-
mated multi-view stereo pointcloud. (c) Model after refinement using the data
from (a) and (b).

of human actors. On the other hand a kinematic skeleton is not a reliable repre-

sentation for surface areas whose deformations are only influenced indirectly by

the position of limbs, such as a skirt. Because of this the tracking of wide ap-

parel using this method creates slightly less natural results. More details about

the kinematic skeleton based marker-less tracking technique can be found in Gall

(2009).

Figure 6.4 shows how we adapt the posed model of a performer wearing a skirt

using the 2D silhouette constraints to closer match image silhouette, increasing

the overlap and accuracy of the reconstruction.

6.4 Discussion

In this Chapter we presented applications of template based shape processing

in the context of animation and performance capture. Instead of relying on

a kinematic skeleton as template parameterization, we approached both of the

applications as deformable template fitting process.

Our work on mesh based performance capture (de Aguiar et al. (2007a)

and de Aguiar et al. (2007b)) illustrates that using a deformable mesh template

instead of a traditional kinematic skeleton as underlying scene representation in

combination with sophisticated feature point tracking enables us to track complex

88

6. SURFACE BASED ANIMATION AND PERFORMANCE
CAPTURE

(a) (b) (c)

Figure 6.4: Model refinement using 2D image constraints : (a) Input model
overlaid on camera image. (b) Segmented silhouette image. (c) Refined model
overlaid on camera image. Note the increased accuracy especially on the skirt.

scenes that could not be captured before. We neither require any segmentation

of the model into parts, nor explicit specification of material parameters. The

methods preserve the mesh’s connectivity, which is particularly important when

it comes to further processing and storing of the data.

Nonetheless, our approaches are subject to some limitations. Both flow based

and feature based tracking are sensitive to the movement speed of the subject

(de Aguiar et al. (2007a,b)). If the performer moves very quickly, the optical flow

that is used in both methods may fail to capture the motion correctly. This can

be alleviated by recording with higher frame-rates (i.e. reducing the time-step

between frames), however this is not always possible due to hardware restrictions.

Similar to the work in the previous Chapter, the deformation framework may pro-

duce errors and unnatural deformations if the tracked poses differ too much from

the original input model. The rotation interpolation approach can compensate a

certain amount of deformation, but will fail if the pose contains rotations larger

than π. The surface based approach also does not strive to preserve the local

volume of the performer into account, and as such may produce results where

the cross-sectional area of a part of the model changes. While this is desirable

and even necessary for very non-rigid parts like wide cloth, this effect may also

appear in near rigid areas like the head or limbs. Finally, due to the low number

of extracted feature points we are not able to capture true shape variation of

high-frequency details, such as wrinkles in clothing. While they deform with the

89

6.4 Discussion

model, they will appear to be baked in.

The limitations of sensitivity to large deformations and volume changes can

be addressed by using more sophisticated deformation systems, as we will present

in Part II of this thesis. Restrictions to movement speed of the actor can

be addressed by using more sophisticated feature extraction and tracking algo-

rithms in combination with optimization frameworks. We addressed these issues

in de Aguiar et al. (2008a) and Gall et al. (2009). Both of these methods are

two-step approaches and first accurately capture the low-frequency pose of the

template, which we then further process using the model refinement approaches

presented in Section 6.3. As the template pose is already accurately captured

when performing the model refinement, the template deformation method is able

to accurately deal with the constraints extracted from silhouettes and stereo cues

and produce detailed and natural looking results.

While we use a very simple silhouette matching approach that may produce

erroneous deformations in case the topological structure of the input silhouette

is too different from the reprojected model silhouette, we never encountered this

issue in any of our test scenes. There still is a resolution limit to our deformation

capture. Some of the high-frequency detail in our final result, such as fine wrinkles

in clothing or details of the face, has been part of the laser scan in the first

place. The deformation on this level of detail is not actually captured, but it is

baked in to the deforming surface. Consequently, in some isolated frames small

local differences in the shape details between ground-truth video footage and

our deformed mesh may be observed, in particular if the deformed mesh pose

deviates very strongly from the scanned pose. This could be partially alleviated

by using image based fold extraction methods like presented in Popa et al. (2009)

and Ahmed et al. (2008a). Another solution to this detail limit will be presented

in Part III of this thesis, where we will learn an accurate physical cloth model of

the performers apparel to reproduce its behavior.

Both tracking and refinement approaches preserve the topology of the input

model over the whole sequence. For this reason, we are not able to track surfaces

which arbitrarily change apparent topology over time (e.g. the movement of hair

or deep folds with self-collisions). We also do not correct for self-intersections in

the output of our capture approach.

Despite the existing limitations, our methods are flexible, easy to implement

and reliably capture time-varying shape of a performer in arbitrary cloth with a

passive approach. They are the first systems in the literature that can capture

arbitrarily deforming meshes in a connectivity preserving way for such complex

90

6. SURFACE BASED ANIMATION AND PERFORMANCE
CAPTURE

scenes. We produce a novel dense and feature-rich output format comprising of

spatio-temporally coherent high-quality geometry, and accurate motion data. We

thus supplement and exceed the capabilities of marker-based optical capturing

systems that are widely used in industry, and can provide animators and CG

artists with a new level of flexibility in acquiring and modifying real-world content.

91

6.4 Discussion

92

Part II

Differential coordinate based
shape processing using

volumetric data

93

In this part of the thesis we will present a method for shape processing us-

ing volumetric template meshes. First, we show how to use volumetric template

models for shape editing and deformation, Chapter 8 (Stoll et al. (2007)). Us-

ing our simple iterative deformation scheme we can interactively produce natural

deformations of the template under user-defined constraints. Following this, we

highlight the advantages of using our non-linear deformable template fitting pro-

cess over a kinematic skeleton for performance capture, Chapter 9 (de Aguiar

et al. (2008a); Stoll et al. (2007)). It allows us to animate models directly using

marker trajectories from motion capture system without having to perform ex-

tensive pre-processing to fit a skeleton to the data. We can also use it to reliably

track the motion of performers from multi-view video by directly tracking feature

points on the surface, allowing us to capture the motion of actors even when

wearing wide apparel. To achieve this, we use an efficient iterative method to

perform volumetric shape-deformation based on differential coordinates, which

we will introduce in Chapter 7. This more sophisticated deformation framework

overcomes some of the limitations inherent to the linear method presented in

part I of this thesis.

95

96

Chapter 7

A deformation framework for
tetrahedral meshes

In this Chapter we will introduce a method for non-linear deformation of a volu-

metric template shape. This method produces more natural and accurate defor-

mations than the linear framework from Part I. This will enable us to perform

deformable template fitting for a larger variety of input data, especially when

handling large global pose changes.

The biggest drawback of the template shape deformation framework presented

in Chapter 3 is its translational insensitivity and the fact that it does not preserve

local volume. We either have to limit ourselves to small deformations, as for

example during model refinement presented in Chapter 6.3, or use explicit support

structures such as the shape skeleton introduced in Chapter 3.2.3. The preferable

solution is to have a framework that is able to handle rotations implicitly, allowing

for a simpler and more versatile framework.

The goal of implicit rotation handling implies the necessity of performing

non-linear operations during processing. Optimizing non-linear energies is com-

putationally expensive and often only reasonable in non-interactive applications.

However, using a tetrahedral mesh and linear differential coordinates defined on

them we can create a simple non-linear setup that is not very different from the

linear case presented in Chapter 3. While finding the energy minimum is expen-

sive, our iterative setup already produces natural and plausible deformations even

after a few iterations. In this framework, instead of solving a single linear system

to find the deformed mesh, we will perform several iterations of the linear defor-

mation process, each reducing the amount of unwanted distortion introduced and

improving the rotational invariance. Additionally, using a volumetric representa-

97

7.1 Differential representation

tion helps preserving the local volume of the shape, especially the cross-sectional

areas of parts. In the following, we will first introduce differential coordinates for

a tetrahedral mesh T and then show how we can use an iterative process to find

an as-rigid-as-possible deformation given the set of constraints C.

Our work is closely related to the works of Au et al. (2006) and Sorkine &

Alexa (2007), who also use a linear Laplacian framework in combination with

an iterative update procedure. Both methods rely on a triangle mesh as rep-

resentation and as such do not have the local volume preserving property our

formulation provides. The work of Au et al. (2006) optimizes the differential

coordinates of the dual of the input mesh by performing a linear deformation

step and afterwards rescaling the differential coordinates of the resulting mesh to

their original length. This process is iterated until convergence, after which the

mesh is transfered back to the primal domain. Sorkine & Alexa (2007) iterates a

linear differential deformation step with a rotation extraction step based on the

one-ring neighborhood of the triangle vertices. This concept is similar to ours

and was developed independently and concurrently with our framework.

7.1 Differential representation

Linear differential coordinates for tetrahedral meshes can be described in a similar

way to the differential coordinates of triangle meshes. We can construct a linear

equation system

Lx = δ (7.1)

where each δi can be constructed as a weighted sum of a vertex with its one

ring neighborhood

δi =
∑

j∈N(i)

wij (vj − vi) . (7.2)

However, there exists an alternative construction method for the Laplacian

matrix L which will allow us to simplify the later iterative steps. The Laplace

operator is also defined as the divergence of the gradient of a scalar field. We

can construct this operator in the tetrahedral setting by calculating a gradient

operator matrix Gj for each tetrahedron ej which contains the gradients of the

tetrahedron’s shape functions φi

98

7. A DEFORMATION FRAMEWORK FOR TETRAHEDRAL
MESHES

Gj = (5φ1, . . . ,5φ4)

=

 (v1 − v4)
T

(v2 − v4)
T

(v3 − v4)
T

−1 1 0 0 −1
0 1 0 −1
0 0 1 −1

Here vi are the four corner vertices of the tetrahedron. The matrices Gj can

be combined into a large 4m× n gradient operator matrix G, which can be used

to construct the Laplacian matrix as

L = GTDG , (7.3)

where D is a 4m× 4m diagonal matrix containing the tetrahedra’s volumes.

In this construction GTD is representing the discrete divergence operator and G

are the gradients of the mesh.

Using this constructions, the differential coordinates δ for the initial mesh can

be calculated explicitly using Equation 7.1 or, more importantly, based on the

tetrahedra’s gradients as in Poisson surface editing Yu et al. (2004) as

δ = GTDg . (7.4)

Here, g is the set of tetrahedron gradients, each being calculated as gj = Gjvj.

More details on the construction of the Laplacian from gradients can be found in

Botsch et al. (2006b).

Similar to the triangle mesh case, the resulting matrix L is rank deficient, as

the differential coordinates for tetrahedral meshes are also translational invariant.

This linear construction still suffers from rotational variance as well. However,

with this new gradient based reconstruction we can apply a set of tetrahedral

transformations T to the differential coordinate reconstruction : δ = GTDTg.

The transformation T can be different for each tetrahedron (in a sense ”explod-

ing“ the mesh into separate parts). If we now solve the linear equation system

and recover the global vertex positions we effectively solve for a connected con-

figuration where each deformed tetrahedrons gradient g′ is as similar as possible

to the transformed gradients Tg. Additionally, the construction of the Lapla-

cian matrix L in Equation 7.3 is invariant under rigid transformations of the

tetrahedra, meaning that the matrix will stay constant if we limit ourselves to

rotations. This properties allow us to implicitly handle rotational effects in an

iterative solver which we will now explain in more detail.

99

7.2 Iterative mesh deformation

Figure 7.1: Overview of our tetrahedral mesh deformation pipeline - (a) shows
the input model with handles in red and green and a rigid section marked in
blue. (b),(c) and (d) show the output of the individual iterative processing steps,
namely linear Laplacian deformation (b), rotation extraction/interpolation (c),
and rigid section handling (d). (e) shows the final deformed model at the end of
the user interaction.

7.2 Iterative mesh deformation

We solve the following problem : Given a set of constraints Cx = q for a tetra-

hedral mesh T we want to find a target configuration of the mesh where the

constraints are satisfied and each tetrahedron ej deforms as rigidly as possible.

We achieve this using an iterative approach comprising of several algorithmic

steps that are iterated, Figure 7.1. The individual steps of the method are as

follows (processing steps that are optional are printed in italics):

(I) Linear Laplacian deformation

(II) Rotation extraction

(III) Rotation interpolation

(IV) Rigid region handling

(V) Differential coordinate update

In the following, we explain the the pipeline in more detail.

7.2.1 Iterative processing

The first step in each iteration is a basic linear Laplacian deformation. Since

this linear step does not properly handle rotations, we perform an analysis of

the linear results to extract for each tetrahedron j an estimate of its rotational

transformation Rj. If necessary, user-defined constraint rotations are interpo-

lated across the mesh and added up to the previously extracted per-tetrahedron

100

7. A DEFORMATION FRAMEWORK FOR TETRAHEDRAL
MESHES

rotations Rj. Subsequently, we make sure that all rigid mesh regions rotate in the

same way by assigning to each rigid group of tetrahedrons its averaged rotational

transformation component. Finally, the resulting Rj are used to construct an

updated set of differential coordinates.

By iterating these steps, we achieve natural and plausible looking deforma-

tions of our object. Repeating the iterations minimizes the amount of non-rigid

deformation each tetrahedral element undergoes, leading to an as-rigid-as-possible

deformation result. The remaining non-rigid energy Enonrigid present in the mesh

can be measured from the non-rotational transformation Sj each tetrahedron

undergoes :

Enonrigid =
∑

j=1...n

‖Sj − I‖F (7.5)

In the following, we detail the individual deformation steps.

(I) Linear Laplacian deformation :

The linear deformation follows the setting outlined in Section 7.1. The matrix

L of Eq. (7.1) can be constructed following Eq. (7.3). Accordingly, the differential

coordinates can be computed based on Eq. (7.4).

Constraints are factorized into the matrix L by eliminating the corresponding

row and column in the matrix and incorporating the values into the right hand

side δ. The deformation can then be generated by solving the reduced Eq. (7.3).

This step is very similar to solving the deformation for the triangle mesh case as

detailed in Part I of this thesis.

The resulting deformed mesh T′ only looks natural for very small deforma-

tions (see Figure 7.1), as the basic Laplacian setting does not induce any kind

of rotation or scaling. The deformed mesh T′ can be computed efficiently with

the help of a Cholesky factorization of the left hand side matrix (Golub & Loan

(1996)).

(II) Rotation extraction :

We analyze the output of the linear Laplacian deformation in order to extract

for each tetrahedron ej an estimate of a rotational transformation. These per-

tetrahedron rotations are eventually used to update the differential coordinates

for the linear deformation.

101

7.2 Iterative mesh deformation

To put this idea into practice, we compare the deformed mesh T′ to the original

mesh T in its rest pose. By comparing the positions of the vertices vi of a single

tetrahedron ej in T to their new positions v′i in T′, we can calculate a 3 × 3

transformation matrix Tj as

Tj =

 (v1 − v4)
T

(v2 − v4)
T

(v3 − v4)
T

−1 (v′1 − v′4)
T

(v′2 − v′4)
T

(v′3 − v′4)
T

 (7.6)

such that (vi − v4)Tj = (v′i − v′4) for i = 1, . . . , 3.

The matrix Tj usually contains anisotropic scaling (stretching) and shearing

components and does not represent a rigid transformation as we would desire. As

shown by Shoemake & Duff (1992), Tj can thus be factored into an orthonormal

rotation matrix Rj and a non-rotational part Sj,

Tj = RjSj . (7.7)

Technically, the rotational component can be computed by iteratively averag-

ing Tj with its inverse transpose as

H0 = Tj , Hk+1 =
1

2
(Hk + Hk

−T) . (7.8)

The decomposition iterates up to a step k after which Hk does not change

anymore, and then sets Rj = Hk. In our experiments it was sufficient to perform

two computation steps and afterwards normalizing the matrices row vectors to

achieve a decent separation. Note that in our three-dimensional setting we also

have to make sure that Rj does not contain a mirroring component to keep

tetrahedra from inverting. To serve this purpose, we check the determinant and

multiply the matrix by −1 if necessary.

(III) Rotation interpolation :

If a constraint region is rotated and consists of one or more complete tetra-

hedra in which all vertices were selected we can directly apply these rotations to

the mesh to increase convergence speed. While our method adapts very well to

translational constraints, rotational constraints (especially twisting) may require

a higher number of iterations to propagate through the mesh (see Figure 7.2).

We can observe that the limit of the deformation under rotational constraints is

usually very similar to the deformation that would have been generated by using

102

7. A DEFORMATION FRAMEWORK FOR TETRAHEDRAL
MESHES

Figure 7.2: Behavior of our deformation technique when a 360◦ twist is applied
to the green handle. Top left: Original model of a bar; Bottom left: result
after applying the twist without rotation interpolation; Top right: deformation
without rotation interpolation converged after several seconds; Bottom right:
instantaneous result with rotation interpolation.

a Poisson mesh editing technique where rotations are interpolated between the

constraints. Thus, it is only natural to combine the two methods.

We decided to adapt the approach by Zayer et al. (2005), which uses a har-

monic interpolation of quaternions across the mesh, to our purpose. One major

disadvantage of quaternion-based rotation interpolation is its inability to properly

reproduce rotations by more than 180 degrees. We solve this problem by interpo-

lating tetrahedron rotations that are relative to the current estimates Rj instead

of absolute rotations with respect to the rest state. These relative rotations are

usually very subtle and can thus be easily interpolated with the harmonic inter-

polation scheme. Technically, the interpolated quaternions are simply added to

the current frames rotation matrices Rj.

(IV) Rigid region handling :

Adapting our method to handle rigid parts in the mesh is a straightforward

task. For every rigid set of tetrahedra Trigid ⊆ Ttet we can calculate an average

rotation from the Rl of all the tl ∈ Trigid. Each such tl is then assigned this

fixed average rotation. By this means, we remove the ability to bend from the set

Trigid while the averaging still allows the set to orient itself in such a way that

the deformation’s shear is minimized, Figure 7.1. This is similar to replacing the

selected region with a single element for deformation, but more efficient as we do

not have to change the connectivity of the tetrahedral mesh.

(V) Differential coordinate update :

Now that we have calculated rotations Rj for each tetrahedron it is straight-

forward to use them to calculate a new set of differential coordinates. We apply

103

7.2 Iterative mesh deformation

(a) (b)

(c) (d)

Figure 7.3: Influencing the stiffness of the model. The green handle on the bar
in (a) is rotated downwards by 90 degrees. If we specify constant stiffness the
deformation will distribute evenly across the whole bar (b). If we specify non-
uniform stiffness as in (c), where darker colors represent decreasing stiffness, the
bending will be concentrated on the middle of the bar as in (d).

the rotations to their respective tetrahedra ej from the original mesh and cal-

culate a new set of transformed tetrahedron gradients gj, from which the new δ

can be calculated using Eq. (7.4). This is similar to the ”exploding” of the mesh

in Sumner & Popovic (2004).

7.2.2 Controlling deformation behavior

The framework as presented so far does not allow for a closer specification of how

the parts of our model are allowed to deform. For some applications it might be

necessary to be able to specify stiffness of certain parts. Some parts may have

to be completely rigid (if we are deforming a human model we want bending to

only occur near skeletal joints) or of varying stiffness (for example when we want

to emulate an object made out of different materials). In the following, we will

present two simple extensions to the iterative framework which are able to handle

both cases in a simple way.

104

7. A DEFORMATION FRAMEWORK FOR TETRAHEDRAL
MESHES

The iterative setup presented also allows us to influence the stiffness of the

material in a much more subtle manner than simply deciding between totally

rigid or non-rigid. We can introduce a stiffness weight s for every tetrahedron,

which controls the allowed amount of distortion per element. These weights are

used to modify equations 7.3 and 7.4 :

L = GTDSG , (7.9)

δ = GTDSg , (7.10)

where S is now a diagonal matrix containing the per tetrahedra specified stiff-

ness. This modification downweights the error introduced by non-rigidly deform-

ing low stiffness elements and thus allows us to control the deformation behavior

non-uniformly. An example of this is illustrated in Figure 7.3, where we specify

a lower stiffness for the elements in the center of the bar. This leads to a con-

centration of the deformation in the middle of the object. Note that these are no

physically based stiffness parameters.

7.2.3 Constraint refinement

For some applications it may be necessary to place constraint points at positions

which are not occupied by vertices of the tetrahedral mesh. This can be achieved

by simply modifying the structure of the tetrahedral mesh to accommodate for

new vertices at the position of the constraints. For internal vertices we simply

find the enclosing tetrahedra and subdivide it into four new tetrahedra by adding

the constraint point to the mesh. For external points we find the closest surface

triangles to the point and create new “virtual” tetrahedra connecting the surface

triangles to the constraint point. These virtual tetrahedra are not displayed to

the user and used purely for processing needs.

7.3 Processing high resolution meshes

Despite its advantageous properties, our tetrahedral method is not suitable for

deformation of very large meshes as processing times may become prohibitively

long. Triangle meshes of moderate size can be tetrahedralized such that the sur-

face triangulation is preserved and thus a final pose transfer is not required. To

105

7.3 Processing high resolution meshes

Figure 7.4: Comparison of a real-time deformation result obtained by manipulat-
ing a decimated tetrahedral Armadillo and subsequent pose transfer (left image in
each pair), and the result of a full-resolution tetrahedral mesh deformation using
the same constraints which took several minutes to calculate. The full-resolution
deformation leads to an unnatural pose of the arm due to a local minimum.

deform meshes of very high resolution, we first apply a quadric error mesh sim-

plification method (Garland & Heckbert (1997)) to Minput and tetrahedralize the

low resolution mesh afterwards using a face-constrained Delaunay tetrahedraliza-

tion (Si & Gaertner (2005)). We then deform the low resolution tetrahedral mesh

and finally transfer the deformation back to the high resolution input mesh.

We would like to point out that this is not a principle disadvantage since it is

our primary goal to modify the low-frequency components of a model which con-

tain information about its pose. Working on a low resolution mesh is equivalent

to performing a low-pass filtering of our geometry and adding the high frequency

detail back after the low frequency components have been modified. An added

advantage of this strategy is that the energy function we minimize is smoother

on the lower resolution mesh and thus it is less likely that we run into a local

minimum which is more likely to happen if we work on the high-resolution mesh

straight away, Figure 7.4.

A fast and easy-to-implement approach to pose transfer generates for each

vertex vi of Minput a set of barycentric coordinates with respect to the closest

tetrahedron of T in the rest pose. By applying those coordinates to the deformed

tetrahedral mesh, the deformed fine mesh M′
input is reconstructed. Although this

approach is fast it has several drawbacks, the main one being that the reconstruc-

tion is only piecewise linear and thus artifacts like dents and self intersections may

appear in the reconstructed mesh.

Mean value coordinates Ju et al. (2005) provide an alternative that circum-

vents these problems. Here, a set of coefficients ci = c0
i . . . cm

i is computed for

106

7. A DEFORMATION FRAMEWORK FOR TETRAHEDRAL
MESHES

each vertex vi such that ci
TVtet = vi, i.e. each point of the input mesh is rep-

resented as a linear combination of all the points of T. Mean value coordinates

are C2-smooth and enable plausible pose transfer to Minput as shown in a similar

context in Huang et al. (2006). Unfortunately, they are very memory consuming

and mesh reconstruction takes significantly longer.

Yoshizawa et al. (2003) use displaced subdivision surfaces Lee et al. (2000) to

transfer their deformation from low resolution mesh to a high resolution input.

But this method can only construct a remeshed version of the input mesh with the

connectivity of the subdivision surface created from the low resolution version,

and therefore it is not suitable for our purpose.

We propose a method that combines the advantages of the first two methods

mentioned above. Our approach represents vertices of the input mesh as linear

combinations of tetrahedra in the local neighborhood. By selecting the coefficients

carefully, we can achieve a smooth deformation transfer with a method that is

far less memory consuming and computationally more efficient than mean value

coordinates.

To put this into practice, we find for each vertex vi in Minput the set Tr(vi) of

all tetrahedra that lie within a local spherical neighborhood of radius r (in all our

cases r was set to 5% of the mesh’s bounding box diagonal). Subsequently, we

calculate the barycentric coordinate coefficients ci(j) of the vertex with respect

to all tj ∈ Tr(vi) and compute the combined coefficient vector ci as

ci =

∑
tj∈Tr(vi)

ci(k)φ(vi, tj)∑
tj∈Tr(vi)

φ(vi, tj)
. (7.11)

φ(vi, tj) is the Wendland weighting function with respect to the distance of

vi to the barycenter of tetrahedron tj

φ(vi, tj) =

{
0 if d > r
(1− d

r
)4(4d

r
+ 1) if d ≤ r

(7.12)

with d = ‖vi − center(tj)‖ .

The coefficients for all vertices of Minput are combined into a single sparse

transfer matrix B. Thanks to the smooth partition of unity definition and the

local support of our parametrization, we can quickly compute a smooth and nat-

ural looking transformed input M′
input at moderate memory costs by calculating

new vertex positions as

V′
input = VinputB (7.13)

107

7.3 Processing high resolution meshes

108

Chapter 8

Shape editing

In this Chapter we will show that we can view shape editing as a deformable

template fitting process based on a volumetric template in combination with the

deformation framework described before (Stoll et al. (2007)). In recent years,

interactive shape deformation and editing has been a very active field of research.

The goal is the development of algorithms that enable shape deformation in

an intuitive and, more importantly, natural looking way under a given set of

constraints. This usually means that the deformation of the given shape must be

calculated in a physically plausible manner, i.e. it must satisfy the expectations

the user has due to his experience with deforming objects in the real world.

Correct physical simulation requires setting up and minimizing complex non-

linear energies, which is computationally expensive and thus often only reasonable

in non-interactive applications. Since users will usually not be happy with the first

deformation they produce and will iteratively modify the deformation constraints

until they are satisfied, offline methods are not feasible for shape editing. To

enable immediate feedback to the user and reach interactive editing performance

it is necessary to use simpler and easy-to-compute deformation techniques that

still behave plausibly (see Chapter 2.3 for an overview of linear and non-linear

shape editing approaches).

We can view shape editing as a template fitting process where the fitting data

is provided by the user in the form of handle transformations. Using the vol-

umetric template deformation framework presented in the previous Chapter we

have a powerful tool for interactive shape editing at hand. While it is essentially

a non-linear deformation approach, minimizing the remaining non-rigid energy

contained in the object (see Equation 7.5), each iteration can be computed very

109

8.1 Interactive mesh editing

Figure 8.1: Example of a deformation of a raptor created with our method.
From left to right: Reduced tetrahedral model with handles in red, original high
resolution input model, deformed input model.

efficiently and produces a valid and plausible deformation result. Directly visu-

alizing the deformation produced after each iteration allows the user to quickly

evaluate the deformation and modify the constraints. In combination with the

deformation transfer method from Chapter 7.3 this allows us to process high-

resolution meshes efficiently.

8.1 Interactive mesh editing

We have implemented the volumetric deformation framework presented in chap-

ter 7 into an interactive shape editing tool. The user can load a triangle mesh,

for which we automatically generate a lower resolution tetrahedral mesh using

quadric error decimation (Garland & Heckbert (1997)) and then building a face-

constrained Delaunay tetrahedralization (Si & Gaertner (2005)). We then calcu-

late the deformation transfer matrix B detailed in section 7.3.

After all input data is properly set up, the user defines control handles by

marking parts of T. On the one hand, handles can be complete regions of the

tetrahedral mesh. In this case, rotational constraints are automatically imposed

as the orientation for the handle is fixed by the user. On the other hand, handles

can be single vertices, which leaves the orientation of the surrounding tetrahedra

free to be determined by the deformation method.

Once all handles are set, the user can optionally specify rigid regions (see

Chapter 7.2.1(IV)). In this step, sets of tetrahedra that ought to maintain a

constant relative orientation can be marked. Conveniently, our system does not

impose any constraints on the size, shape or topology of rigid regions. It is even

possible to mark disconnected parts as belonging to the same rigid part. This

110

8. SHAPE EDITING

allows us to quickly specify a kind of pseudo-skeleton without having to define

joints or a bone hierarchy.

Following this, the user can interactively move/rotate the deformation han-

dles. During this process the user gets immediate feedback of the deformation, as

the iterative solver detailed in section 7.2 is running in the background and the

current deformation is visualized after each iteration. Once the user is satisfied

with the deformation the software transfers the deformation of the tetrahedral

mesh back to the high resolution triangle mesh for inspection.

8.2 Results

Our system was used to generate deformations of several high resolution meshes,

as shown in Figures 8.1 and 8.2. Tab. 8.1 contains detailed information on the

complexity of different models, as well as timing results for the individual pro-

cessing steps in our approach. We could show that plausible deformations can be

quickly achieved using easy-to-specify deformation handles.

In our test cases, both large region handles (prescribing position and orienta-

tion) and point handles (prescribing only position) were used to create the various

poses. Please note the natural intuitive behavior of the deformation, as well as

the authentic look of the deformations also on the high-resolution meshes. Even

when using only a few handles it is possible to easily create convincing results

that look physically plausible. We would also like to point out that thanks to the

tetrahedral setting there is no noticeable loss in volume even after very strong

pose changes.

In all our test cases and application scenarios we found that the deformation

behaves intuitively and is easy to use even for unexperienced users. The real-

time deformation process in conjunction with immediate visual feedback makes

it convenient to obtain the envisioned results.

8.3 Discussion

In this Chapter we proposed an interactive approach to shape editing based on

our simple iterative volumetric template deformation framework. We view shape

editing as template fitting process, where the target shape information is given

by the user in the form of handle transformations. Our framework allows the

111

8.3 Discussion

Figure 8.2: Results of an interactive editing session. Input models and their
tetrahedral counterparts with handles on the left, three resulting poses on the
right.

user to edit the shape in an intuitive manner, gaining immediate feedback on his

handle movements.

One of the main limitations of our method is that it is not suitable for deforma-

tion of large models in interactive environments. We circumvent this limitation

by working on a decimated version of the original model and transferring the

pose back to the high resolution shape after the interaction process. However,

we would like to point out that this is not a principle disadvantage since it is our

primary goal to modify the low-frequency components of a model which contain

information about its pose. Working on the low resolution shape is equivalent to

performing a low-pass filtering of our geometry and adding the high frequency

detail back after the low frequency components have been modified. We could

also leverage the processing power of modern multi-processor architectures like

GPUs to further increase processing speed.

As the rotation extraction and update steps (Sections 7.2.1(II) and (V))

are local in their nature, the convergence speed of the optimization is heavily

dependent on the number of tetrahedral elements. Depending on the position of

the handles, deformations (especially rotations) may only be propagated through

112

8. SHAPE EDITING

the shape element by element. While this can be partially alleviated using the

rotation interpolation step (Sections 7.2.1(III)), in some cases the convergence

behavior may still be unexpectedly slow. A solution to this issue would be using

a multi-level hierarchical solver. However, it should be noted that this issue only

appears under some very special handle placement configurations and will not be

a problem in a typical deformation session.

On the other hand, our deformation technique has several distinct advantages

over a purely linear deformation method (see Figure 8.3). While the inability

of a purely linear approach to handle rotations quickly leads to a deterioration

of the deformed geometry, Figure 8.3 (b), our iterative approach handles rota-

tions faithfully lending a plausible appearance of the transformed model, Fig-

ure 8.3 (d). Our results are also more pleasing than the ones obtained with single

step gradient-based deformation techniques such as Poisson based mesh editing

(Yu et al. (2004)), Figure 8.3 (c), as we faithfully handle translations. By iter-

atively computing small pose updates in our framework we can produce similar

results as other state-of-the-art non-linear methods, such as Botsch et al. (2007)

and Sumner et al. (2007).

Our volumetric method has more favorable shape preservation properties than

approaches working on triangulated manifolds. Due to the tetrahedral construc-

tion our approach aims at preserving distances between diametrically opposed

vertices on the model’s surface. Given an appropriately set up mesh, this can be

regarded as a tendency to preserve cross-sectional areas. Although this does not

imply global volume preservation, it comes close to a local volume preservation

which is very useful when deforming human shapes where one wants, for instance,

the thicknesses of limbs to be preserved. This property makes the approach very

suitable for animation and performance capture tasks, as we will present in the

following Chapter.

Another beneficial property of our deformation is its robustness even under

extreme conditions. Even if we completely randomize the differential coordinates

of an object constrained by a few handles we can recover the original shape after

a number of iterations. This means that it is virtually impossible to break the

deformation process by careless constraint placement.

113

8.3 Discussion

Figure 8.3: Comparison between different deformation methods. Column (a)
shows the original objects and the handles in red and green. Different types of
constraints are then applied to the green handle: rotation by 135◦ (top row),
rotation by 90◦ and translation to the right (middle row) and pure translation
(bottom row). Column (b) depicts results obtained with a linear least squares
Laplacian, column (c) shows results of gradient based deformation, column (d)
shows results of our method.

114

8. SHAPE EDITING

m
od

el
fig

in
pu

t
te

t
fa

ct
tr

an
s

de
f

ro
te

xt
ro

ti
nt

ri
gi

d
di

fu
pd

re
co

ns
fp

s
B

ar
7.

2
N

/A
85

7
/

22
89

0.
03

9
N

/A
0.

00
2

0.
00

3
0.

00
4

N
/A

0.
00

1
N

/A
≥

12
0

B
.
B

ar
7.

1
N

/A
14

40
/

43
02

0.
07

4
N

/A
0.

00
3

0.
00

5
0.

00
6

≤
0.

00
1

0.
00

3
N

/A
∼

85
P

la
ne

8.
3

N
/A

50
66

/
16

02
8

0.
33

1
N

/A
0.

01
7

0.
01

7
0.

02
6

N
/A

0.
01

2
N

/A
∼

20
C

yl
in

de
r

8.
3

N
/A

72
35

/
23

83
1

0.
56

5
N

/A
0.

02
8

0.
02

5
0.

04
4

N
/A

0.
01

5
N

/A
∼

12
D

ra
go

n
8.

2
10

00
04

30
21

/
98

02
0.

12
8

94
.5

0.
00

7
0.

01
0

0.
01

1
N

/A
0.

00
6

0.
44

2
∼

37
R

ap
to

r
8.

1
17

51
00

25
12

/
93

72
0.

13
6

16
7.

6
0.

00
6

0.
00

9
0.

01
3

N
/A

0.
00

6
0.

96
5

∼
37

A
rm

ad
ill

o
7.

4,
8.

2
19

59
48

16
88

/
53

73
0.

08
4

96
.0

0.
00

4
0.

00
5

0.
00

7
0.

00
1

0.
00

3
0.

48
4

∼
57

T
ab

le
8.

1:
T

h
is

ta
b
le

sh
ow

s
p
er

fo
rm

an
ce

fi
gu

re
s

fo
r

ou
r

te
ch

n
iq

u
e

on
an

A
M

D
X

2
50

00
+

.
T

h
e

co
lu

m
n
s

fr
om

le
ft

to
ri

gh
t

co
n
ta

in
:

M
o
d
el

n
am

e,
fi
gu

re
n
u
m

b
er

in
th

e
p
ap

er
,

n
u
m

b
er

of
in

p
u
t

m
es

h
ve

rt
ic

es
,

n
u
m

b
er

of
te

t
m

es
h

ve
rt

ic
es

/t
et

ra
h
ed

ra
;
th

er
ea

ft
er

,
ti

m
in

gs
ar

e
gi

ve
n

fo
r

p
re

-f
ac

to
ri

za
ti

on
of

th
e

le
ft

-h
an

d
si

d
e

m
at

ri
x

of
E

q
.
(7

.1
),

p
re

-
ca

lc
u
la

ti
on

of
p
os

e
tr

an
sf

er
co

effi
ci

en
ts

,
li
n
ea

r
d
ef

or
m

at
io

n
,
ro

ta
ti

on
ex

tr
ac

ti
on

,
ro

ta
ti
on

in
te

rp
ol

at
io

n
,
ri

gi
d

se
ct

io
n

h
an

d
li
n
g,

d
iff

er
en

ti
al

co
or

d
in

at
e

u
p
d
at

e,
d
ef

or
m

at
io

n
tr

an
sf

er
to

in
p
u
t

m
es

h
;
th

e
ri
gh

tm
os

t
co

lu
m

n
gi

ve
s

fr
am

es
p
er

se
co

n
d

d
u
ri

n
g

in
te

ra
ct

iv
e

ed
it
in

g
of

th
e

te
tr

ah
ed

ra
l
m

es
h
.

A
ll

ti
m

in
gs

ar
e

gi
ve

n
in

se
co

n
d
s.

115

8.3 Discussion

116

Chapter 9

Animation and performance
capture with tetrahedral meshes

In this chapter we will discuss two applications for our non-linear template

deformation framework in the context of animation and performance capture

(de Aguiar et al. (2008a); Stoll et al. (2007)). This is an extension to the work

presented in Chapter 6 of this thesis. Our goal is to perform deformable template

fitting to extracted image and marker constrains. This means that we parameter-

ize the shape of a performer in terms of constraints of our template deformation

framework instead of relying on a kinematic skeleton. The two main applications

for this are simple direct animation from marker trajectories and pose capture

from a set of input videos.

The non-linear framework presented in Chapter 7 is more suited for low-

frequency pose deformations than capturing fine shape detail. The main rea-

son for this is that the volumetric approach tries to preserve local volume and

cross-sectional areas of the original shape. Additionally, by using lower resolution

meshes for processing we are limited to capturing deformations on the detail level

of our low resolution mesh. This makes the approach unsuitable for model refine-

ment as in Chapter 6.3, where the flexibility of the linear deformation framework

presented in Part I is essential. However, since the non-linear method has better

local shape preservation property even under large pose changes and is thus more

stable, it is more appropriate for animation and capturing the pose from input

videos.

117

9.1 Animation from marker trajectories

9.1 Animation from marker trajectories

The template deformation framework presented in Chapter 7 allows us to create

natural animations from markers extracted from motion capture systems in an in-

tuitive and straight-forward way (Stoll et al. (2007)). The flexibility in constraint

positioning inside and outside a model, as well as the ability to create plausible

deformations from moving point constraints only, enables us to quickly generate

realistic animations of models using captured motion data. To demonstrate this,

we mapped motion data acquired with a marker-based optical capturing system,

as well as data captured with a marker-free motion capture algorithm (Carranza

et al. (2003)) to high-quality laser scans of humans, Figure 9.1, as well as to the

Stanford Armadillo model. We created several animations in which the models

perform complex motions, such as a cartwheel. Depending on the type of motion

data, different kinds of deformation handles can be specified.

Using our template deformation framework instead of a traditional kinematic

skeleton means that we can circumvent the complex process of fitting the skeleton

to the marker data and the model and can directly use use the raw 3D marker

trajectories as deformation constraints. This simplifies the animation process

drastically while still producing high quality results. As a preprocessing step,

we align the model to the marker positions in the first frame by hand. After

alignment, each marker is added as constraint as explained in section 7.2.3. By

this means, we bypass the labor-intensive and often error-prone reconstruction

of a kinematic skeleton from the marker data and utilize the raw measurement

output straight away. In case we are already given a template skeleton mesh (as

for example the default motion template from 3D Studio) we can pre-align our

model to it and use vertices of the skeleton joints as deformation handles in a

similar manner.

The marker-less motion capture results come already in the form of a coarse

moving kinematic body model comprising of individual triangle mesh segments.

By specifying corresponding vertices on the template and the mesh T, it becomes

straightforward to map the motion onto a scanned model. We used this framework

to generate a sequence in which the dancing performance of an actor was captured

and applied to a scan of himself.

If only few handles are used, we additionally mark a set of rigid groups on

the model to be deformed, Figure 9.1. The whole handle setup-process typically

takes only 3-4 minutes for a single animation.

118

9. ANIMATION AND PERFORMANCE CAPTURE WITH
TETRAHEDRAL MESHES

Figure 9.1: Animation of a scanned character using optical MoCap data. From
left to right: Input model, reduced tetrahedral model with rigid regions marked
roughly, 22 input handles, five frames out of a cartwheel sequence.

The final animation is computed as follows: For each frame we update the

position of the handle constraints, run the iterative deformation for a number

of cycles (typically 2-3 cycles are sufficient) and afterwards deform the input

mesh using the technique from Section 7.3. In practice, we use the tetrahedral

mesh model for real-time pre-visualization of the animation, but render the high-

quality deformation in a batch process that takes between 0.1 and 0.5 s to write

one frame, which is mainly caused by the deformation transfer overhead.

Our results show that our method provides a fast and easy-to-use algorithmic

alternative to create high-quality mesh animations from captured motion data.

Realistic smooth surface deformations and subtle motion details are faithfully

reproduced without having to rely on an intermediate skeleton representation

with associated skinning weights.

9.2 Performance capture

In this section we will present how we can use our volumetric template defor-

mation method for tracking a performer in everyday apparel (de Aguiar et al.

(2008a)). By approaching performance capture as deformable template fitting

process and parameterizing the motion of the performer in terms of the template

deformation method with arbitrary constraints, we are facing a much harder

tracking problem. However, we gain the advantage of now being able to track

non-rigidly deforming surfaces (like wide clothing) in the same way as rigidly de-

forming models and do not require prior assumptions about material distributions

or the segmentation of a model.

In combination with the model refinement approach presented in Chapter 6.3

we are able to capture performance data at a high level of detail that is applicable

119

9.2 Performance capture

Figure 9.2: Result of the performance capture method from de Aguiar et al.
(2008a) where the performer does a Capoeira motion.

to many complex scene type that could not be handled by alternative marker-

based or marker-less recording techniques. The approach we present here is a

continuation of our work in de Aguiar et al. (2007a) and de Aguiar et al. (2007b),

where we directly estimate deformation constraints for a surface-based linear

deformation framework from only multi-view video. The volumetric template

approach allows us to alleviate many of the drawbacks we faced because of the

linear model used in the previous work. We will only outline the method here as

it applies the deformation framework developed in Chapter 7 of this thesis. More

details about the extraction of the deformation constraints from videos and the

global pose optimization can be found in the PhD thesis of de Aguiar (2008).

The main advantage of using our volumetric template over the previously pro-

posed surface based tracking is robustness. The tetrahedral deformation approach

is a lot more robust to errors in the constraints and will produce a meaningful low

frequency pose even for problematic configurations. Under large deformations the

results generated using our iterative method will look a lot more natural, which

is mainly due to the implicit formulation of extracting rotations and the preser-

vation of cross-sectional areas. As such it is a lot more suited to capturing the

global pose of the performer.

The input data for our performance capture were recorded in our multi-view

camera studio. The setup consists of k = 8 synchronized cameras recording with

a resolution of x × y = 1004 × 1004 pixels. The recorded sequences of a scene

contain n frames of video and are denoted as Fk,n. We perform a background

subtraction for all frames, yielding a set of binary silhouette images Ik,n. In the

silhouette images 0 denotes the background and 1 the foreground object. For

each camera we also reconstruct a 3 × 4 calibration matrix Ck which maps 3D

world coordinates to 2D images coordinates in the respective camera view. We

120

9. ANIMATION AND PERFORMANCE CAPTURE WITH
TETRAHEDRAL MESHES

also acquire a triangle mesh model Minput of the performer using a full body laser

scanner, convert this to a lower resolution tetrahedral mesh Tinput and acquire

the deformation transfer matrix B as described in Chapter 7.

Once all of the data has been capture we automatically register the tetrahedral

template model to the first pose of the actor in the input footage using an iterative

closest points based method. Since we asked the actor to strike a pose similar to

the one she/he was scanned in, this step is greatly simplified. This step gives us

the initial mesh T1. We now use a two-step analysis-through-synthesis approach

based on image and silhouette cues to capture the shape and motion of the

performer. We first estimate the global pose of the performer from each frame Ti

to Ti+1 and then apply the model refinement techniques presented in Chapter 6.3

to capture finer detail.

In a first step, we capture reliable deformation constraints using SIFT features

(Lowe (1999)). We extract the features and match them across camera views and

time to generate a set of 3D vertex constraints. The template mesh is deformed

using those constraints, bringing it into a configuration close to the target pose

even if scene motion is rapid. However, as the distribution of 3D features on

the model surface is dependent on the scene structure (e.g. texture), it can be

non-uniform and sparse. This may lead to the pose not being entirely correct.

The feature set may also contain outliers in the correspondences, which makes

additional pose update steps unavoidable. In the next steps we thus exploit the

silhouette data to fully recover the globally correct pose.

We derive additional deformation constraints from matching the rim vertices

of the model to the image silhouettes. Rim vertices are vertices that lie on the

outer silhouette of the 2D projection of the mesh in the respective camera k.

We pull the rim vertices to the closest match of the image silhouette Ik,n and

back project the data into 3D coordinates (this process is similar to the model

refinement in Chapter 6.3.1). We now deform the mesh using the extracted

constraints, improving the global pose.

In the majority of cases, the pose of the model is now already a good match to

the input images. However, in some cases, in particular if the scene motion was

fast or the initial pose estimation using SIFT was not entirely correct, residual

pose errors remain. We therefore perform an optimization step that corrects

such errors by optimizing a subset of deformation handles until the silhouette

overlap is maximized. Before processing we handpick somewhere between 15 and

25 key handle vertices and minimize an error term containing silhouette overlap,

deformation energy Enonrigid (see equation 7.5) and key handle distance using

121

9.3 Discussion

(a) (b) (c) (d)

Figure 9.3: Results of the performance capture algorithm from de Aguiar et al.
(2008a). (a),(c) One input frame. (b),(d) Captured model from a similar camera
viewpoint.

a black-box non-linear minimization technique (see de Aguiar et al. (2008a) for

details on the energy functional).

The output of this is the template model deformed from time step i to i + 1,

i.e. a mesh Ti+1. We iterate this process for all frames, resulting in a volumetric

template sequence T1...n. We now apply the deformation transfer technique from

Chapter 7.3 to generate the high resolution triangle mesh sequence M1...n.

This is a representation of the performer comprising of spatio-temporally co-

herent geometry that captures the rough global pose and motion of the original

input. We can now apply the model refinement method from Chapter 6.3 to fur-

ther increase the quality of our capture. Results of this combination are shown

in Figure 9.3.

9.3 Discussion

In this Chapter we presented applications for template based shape processing

with volumetric templates in the context of animation and performance capture.

By replacing the traditional kinematic skeleton model with a point constraint

based parameterization and approach the tasks as deformable template fitting

process allows us to capture a much wider range of deformations. Additionally,

we can simplify some of the processes involved in animation and performance

capture. Nevertheless, the framework also brings some limitations.

In the context of animation from marker data (Stoll et al. (2007)) we are able

to directly use the raw 3D marker trajectories as deformation constraints and

circumvent the complex process of fitting the skeleton to the marker data and

the model. However, as we do not impose any constraints on the topology of

122

9. ANIMATION AND PERFORMANCE CAPTURE WITH
TETRAHEDRAL MESHES

the constraint points (i.e. we have not defined any connectivity), it is possible

that constraint points will change the distance to each other even when originally

placed on a near rigid body part. This may lead to limbs changing their length.

While this is usually not an issue with animation from marker data, it will become

apparent if users want to edit the motion, as the system will not impose bone

length restrictions on the user. If we do not specify rigid regions on arms or

legs we may observe strongly non-rigid behavior in otherwise near rigid areas,

i.e. bones may appear to bend. This is a side effect of the as-rigid-as-possible

deformation optimization, which essentially mimics elastic objects. Because of

this, the method is not immediately suitable for editing of motions.

Despite this, our approach offers a light-weight and easy-to-use algorithmic

alternative to create high-quality mesh animations from captured motion data.

Realistic smooth surface deformations and subtle motion details are faithfully

reproduced without having to rely on an intermediate skeleton representation

with associated skinning weights.

Using the volumetric template approach for performance capture (de Aguiar

et al. (2008a)) allows us to capture the pose of a performer from just a sparse set

of calibrated multi-view video streams accurately, even in difficult situations such

as when the subject is wearing wide apparel (see Figure 9.3). Even with noisy

input data and in scenes containing fast motions and complex self occlusions we

are able to track the subject reliably.

In about 13 out of over 3500 captured input frames the tracker failed to

correctly align the template to the actors pose. This was mainly caused by

motion blur and incorrect silhouette segmentations due to shadows. However,

the method recovered automatically and was able to track the motion of the

performer correctly until the end.

Analogous to the animation process our template deformation method does

not guarantee to preserve the length of limbs and bones. In practice, this was not

noticeable in any of our sequences. Rubbery effects due to the elastic deformation

process may appear in limbs. For instance, an arm may not only bend at the

elbow, but rather bend along its entire length. This artifact can usually be fixed

by applying the model refinement step from Chapter 6.3, except for in cases with

strong self occlusions.

The biggest limitation in comparison to skeleton based performance capture

however is that our final representation is an animated mesh that cannot be edited

easily. While there have been recent advances in mesh based animation editing,

for example by using mesh deformation approaches on animations Kircher &

123

9.3 Discussion

Garland (2008); Xu et al. (2007), the tools available for skeleton based animation

processing are much more sophisticated today. There exist methods that allow us

to convert mesh based animations to skeletal animations such as de Aguiar et al.

(2008b). However, this conversion process may not yield an intuitive skeleton

for performers wearing apparel such as a skirt. Additionaly, we will not be able

to generate new realistic cloth deformations for wide apparel, as its behaviour

will be controlled only by the rigid skeleton. In Part III of this thesis we will

address this issue and introduce a method that allows us to capture the physical

properties of our template from a mesh animation. Knowing these properties we

can use simulation techniques to generate arbitrary new animations that behave

similar to the originally captured data.

Despite these limitations the volumetric template processing approach allows

us to develop non-intrusive approach to spatio-temporally dense performance

capture from video. Abandoning traditional motion skeletons allows us to re-

construct a large range of real-world scenes in a spatio-temporally coherent way.

In combination with further model refinement we can exceed the capabilities of

marker-based optical capturing systems that are widely used in industry, and

capture natural and life-like animation sequences.

124

Part III

Physically based template shape
processing

125

In this part of the thesis we will present a method for estimating physical

material properties using template based shape processing (Stoll et al. (2009)).

While the previous two parts focused on fitting templates to (temporal) shapes or

constraints, we now introduce a method for estimating the material properties of

a template fitted shape by analyzing temporal data. This allows us to learn how

the template reacts to external impulses over time. We can then not only play

back or show reconstructions of data we have recorded, but also generate new

sequences by specifying new impulses that were not observed before. This newly

generated data will then convincingly exhibit the same properties as the originally

reconstructed data. While we will present a specific example for the field of

motion capture and animation (estimating dynamic cloth worn by a performer),

the methodology presented in this part of the thesis could also be applied to

other dynamic models, for example to estimate the dynamic behavior of elastic

objects. In Chapter 10 we will explain how we can use performance capture

data reconstructed with methods included in Parts I and II of this thesis to

segment the template into rigid and non-rigid (i.e. cloth) parts and estimate the

apparels physical simulation parameters. This allows us to reconstruct an detailed

animatable human body model from just a 3D scan and a set of multi-view videos.

127

128

Chapter 10

Optical reconstruction of
animatable human body models

In this Chapter we propose a novel method for estimating physical parameters of

a template model from a set of multi-view videos with help of the performance

capture methods introduced before (Chapters 6 and 9). This allows us to create

a virtual animatable human body model (Stoll et al. (2009)). Using a template

based reconstruction is essential here, as the constant connectivity and spatio-

temporal coherence is what allows us to gather information about the physical

properties. Our template now not only consists of the shape of the performer,

but rather also includes a kinematic skeleton, is segmented into cloth parts, and

features physical material parameters for each cloth part. Our goal is to fit this

complex template representation to our input data as accurately as possible.

The main motivation for this research stems from increasingly powerful com-

puting hardware, which will soon make it feasible to render characters of ever

higher visual complexity and realism even in real-time applications like games or

networked virtual worlds. Certain visual effects that were previously only seen

in feature films, such as detailed cloth animation or body models of high geom-

etry and texture detail, now also slowly find their way into consumer market

applications. The recent advent of hardware accelerated physics simulation has

expedited this trend, and more advanced simulated characters will soon become

part of many computer games.

The ability to render more complex characters also makes the animation de-

sign process a more challenging one. Each design element of a character requires

greater attention to detail, resulting in an overall more labor-intensive and costly

process. More detailed surface geometry will have to be designed or scanned,

129

more detailed textures will have to be painted or photographed, more detailed

motion will have to be keyframed or captured, and cloth simulation models will

have to be properly tuned to enable real-time rendering. Various acquisition

technologies exist to support the animator in parts of the design process, such

as motion capture systems to get skeleton motion, 3D scanners to measure static

geometry, or specialized measurement devices to analyze material parameters.

Unfortunately, using such tools can be very cumbersome and time-consuming,

and therefore often complicates animation design rather than to accelerate it.

Capture technology would be much more practical if all aspects of an animation

that were mentioned above could be obtained from real subjects in a simple, fast,

and cost-effective unified process. Being able to start off such rich new captured

performance models, animation professionals would not only save valuable time

during initial scene design. They would also be given the possibility to easily

create complete virtual doubles of real actors and their apparel even under tight

budget and time constraints. Additionally, the creative freedom of animators is

greatly enhanced since they can either directly work with unmodified captured

scenes or freely modify any aspect of a captured performance in their favorite

animation tool.

The research that has come closest to achieving this goal are template based

performance capture approaches which enable the reconstruction of detailed mo-

tion and time-varying geometry of entire human actors or pieces of apparel from

multi-view video recordings, such as de Aguiar et al. (2008a) and Gall et al. (2009)

presented partially in Part I and II of this thesis, or the work of Bradley et al.

(2008) and Vlasic et al. (2008). Unfortunately, performances captured with these

approaches can merely be played back and it is impossible to create entirely new

motion sequences with similar lifelike surface deformation. We are only able to

capture static template animation.

Contrary to those approaches, our goal is to reconstruct a fully-animatable

dynamic human character in general clothing from unmodified multi-view video

streams and an input template scan, without requiring much manual intervention

by the user. We first record a so-called reference sequence of the person whose

model is to be reconstructed (Figure 10.1(a)). In this sequence, the person walks

around for a few seconds in the same attire that should be part of the animat-

able model. From this reference sequence, we reconstruct a reference performance

which comprises of a deforming mesh sequence that represents the detailed dy-

namic surface geometry of the moving actor over time, as well as a sequence of

joint angle parameters of the underlying skeleton, Figure 10.1(b). The reference

130

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

(a) (b) (c) (d) (e)

Figure 10.1: Overview of our processing pipeline: (a) multi-view video sequence
of a reference performance; (b) performance capture result: skeleton motion +
deforming surface; (c) cloth segmentation (red=regions of loose apparel); (d)
estimated collision proxies; (e) After optimal cloth simulation parameters are
found, arbitrary new animations can be created.

performance is captured by a marker-less performance capture technique we pre-

sented in Gall et al. (2009) and includes the model refinement step presented in

Part II of this thesis. It requires no manual intervention, even if the input shows

difficult motion of a person in loose attire.

We then analyze the dynamic template surface geometry of the reference

performance and automatically decompose it into approximately rigid body parts

and non-rigidly deforming pieces of attire, Figure 10.1(c). In the same stage of the

algorithm, we reconstruct approximate collision proxy geometry for both occluded

and non-occluded parts of the body, Figure 10.1(d). These proxies are needed for

accurate and fast cloth simulation, Section 10.3. After segmentation, we fit to

each region of the deforming fabric a physics-based cloth simulation model. The

parameters of this model are numerically optimized to best reproduce the cloth

motion in the reference sequence.

The end result of this process is an enriched template model, containing a

skeleton with skinning weights for non-cloth regions, collision data, the cloth

segmentation and a physics based simulation model with optimized parameters.

Given this, arbitrary new animations of the character with realistic dynamic

surface appearance can be created by simply changing skeletal motion parameters,

Figure 10.1(e).

Many previous approaches for cloth estimation from real world samples recon-

struct deforming cloth geometry only, but not a physically-based forward simula-

tion model. Some methods use multi-view feature and stereo for vision-based de-

131

10.1 Experimental setup

forming geometry capture of square cloth samples (Pritchard & Heidrich (2003)).

Other algorithms rely on special marker patterns printed on the fabric, as well as

on a priori geometry model of a piece of apparel, to measure time-varying cloth

geometry from multi-view video (Scholz et al. (2005); White et al. (2007)). The

latter approach also learns a simple data-driven deformation model which can

approximate the wrinkling of fabric in new poses. Recently, Bradley et al. (2008)

proposed a new approach to capture deforming cloth geometry from multi-view

video without explicit markers in the scene. So far only few algorithms estimated

parameters of a physics-based cloth model. Bhat et al. (2003) learn such pa-

rameters from waving square fabric samples that were recorded with a real-time

structured light system. Hasler et al. (2006) use a similar approach but rely solely

on texture information from videos. Conceptually related is the approach by Shi

et al. (2008) who estimate parameters for simulating secondary skin deformation.

In contrast, our method does not require an a priori shape model for individ-

ual pieces of apparel, does not require any form of visual pattern in the scene,

and does not require off-line physical material measurements from fabric samples.

Our method fully-automatically identifies all cloth regions on the entire moving

human and recovers plausible forward simulation parameters.

10.1 Experimental setup

The performance of an actor is captured by k = 8 synchronized and calibrated

cameras running at 40 fps and providing x × y = 1004 × 1004 pixel resolution.

This yields multi-view video frames Fk,n for each camera and each frame n =

1, . . . , N . The image silhouettes are extracted by chroma-keying, yielding N

silhouette images Ik,n. Prior to recording, we acquire a model of the subject that

comprises of two components, a surface mesh M and an underlying bone skeleton

S. To obtain the initial geometry, we take a static full-body laser scan Mhigh of

the actor wearing the attire for the reference sequence, which we then decimate

to roughly 5000 triangles to obtain our mesh template M. The decimation is

necessary to keep both performance capture and, later, performance simulation

times in reasonable bounds. The skeleton with 36 degrees-of-freedom is inserted

into the surface mesh by manually marking the joint positions. Thereafter, the

method of Baran & Popović (2007) is employed to assign each vertex a weight

that is used to deform the surface according to the skeleton pose. The latter paper

also proposes a fully-automatic skeleton insertion approach which could be used

instead of our manual procedure. For the deformation, we rely on quaternion

132

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

blend skinning (Kavan et al. (2007)) that approximates the non-linear surface

deformation better than linear blend skinning methods.

Please note that the original laser scan may contain holes, some of them due to

bad measurements and some of them due to occlusion from the scanner, such as

at the underneath of the skirt. We first automatically fill in all holes by means of

Poisson surface reconstruction to create a closed surface. Some originally occluded

regions may have been filled in a “semantically” wrong way, such as the sheet

of triangles connecting the lower rim of skirt and the legs. We have developed a

semi-automatic tool that proposes regions of “semantically” incorrect triangles.

The user can optionally refine this proposal manually. Implausible triangles are

thereby marked as invalid. They are weighted down in the reference performance

capture and excluded from the animatable model estimation.

10.2 Performance capture

The first step after pre-processing is capturing the reference performance using

a template based approach (Gall et al. (2009)). Unlike the method we presented

in de Aguiar et al. (2008a), the method we apply here relies on a kinematic

skeleton as template parameterization for coarse pose capture and combines it

with the model refinement step explained in Chapter 6.3.2.

There are several reasons why we prefer a skeleton-based coarse template pa-

rameterization for our task at hand. Skeleton-based animation is the predominant

character animation paradigm in real-time applications. It is easier to edit ani-

mations of performers using a skeletal representation, as it intrinsically preserves

bone lengths. Since we will represent the non-rigid motion of our template using

an additional physical simulation, we will only use the skeleton to represent near

rigid parts which can be approximated well using skinning techniques. Finally,

estimating the hidden collision geometry of the performer under the potentially

wide apparel is simplified by the skeletal structure. It should be noted that it

would also be possible to use our results from de Aguiar et al. (2008a) in com-

bination with the skeleton extraction presented in de Aguiar et al. (2008b) to

generate the reference performance for our method. However, the tracking of the

method presented in Gall et al. (2009) is more reliable in sequences where people

wear wide apparel.

In the following we will only briefly outline the main aspects of our approach

from Gall et al. (2009). For each frame n of the reference sequence, the surface

geometry in terms of the mesh M(n) and the joint motion parameters S(t) are

133

10.3 Cloth segmentation

estimated. To find the body pose in the current frame, the skeletal pose S(n)

is optimized and quaternion blend skinning deforms the detailed surface M(n −
1) of the previous time step into the current time step. Once converged, we

apply the model refinement step presented in Chapter 6.3.2 to estimate the fine

surface deformation of M(n) without limiting the deformation to comply with

the skeleton.

We estimate the globally optimal skeleton pose in two phases: The first phase

searches for the nearest local minimum of an energy functional that assesses

the model-to-image alignment based on silhouettes and texture features. To this

end, the whole articulated skeleton is optimized locally. Subsequently, misaligned

bones are detected by evaluating the energy of each body part and the skeleton

is traversed to label all affected bones. The labeled bones are then re-estimated

by a particle-based global optimization similar to Gall et al. (2008) that is also

used to initialize the tracker.

The output reference performance captures the geometry of the actor in each

pose, and also captures the true look of both coarse and medium scale folds

in clothing. At the same time, the bone skeleton configurations are reliably

captured, even under occlusion by loose apparel, Figure 10.1(b).

10.3 Cloth segmentation

Our method of identifying which parts of the moving template geometry are

likely to be part of the actual body and which are likely to be cloth is inspired by

motion segmentation methods that identify approximately rigidly moving sections

in mesh animations (de Aguiar et al. (2008b); James & Twigg (2005)).

Although human motion is mainly controlled by a kinematic skeleton, even

the surface of a naked person never deforms entirely like a collection of rigid

bodies. In practice, the non-rigid surface deformation of naked skin or areas

with rather tight clothing, which is often due to muscle bulging, can be plausibly

approximated in real-time by surface skinning methods. This does, however, not

hold true for surface regions which represent loose pieces of apparel, since fabric

exhibits starkly different non-rigid deformation behavior.

We therefore analyze the deforming surface geometry of the reference perfor-

mance and automatically segment it into cloth and non-cloth regions, Figure 10.2.

To identify cloth regions, we search for surface areas that deform mainly non-

rigidly. If a body part deforms approximately rigidly, mutual distances of vertices

134

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

on that part hardly change over time. We take this insight and derive the follow-

ing simplified but efficient rule to decide if a vertex vi lies on a cloth segment:

In the first mesh pose M(1) of the reference sequence, a ray is shot from vertex

vi in the negative local normal direction and intersected with the mesh surface

on the opposite side. Vertex vi is paired with the intersection point pi, which is

described on the intersected face at sub-triangulation accuracy using barycentric

coordinates. We now compute the standard deviation σ(vi) = σ(d(vi,pi)) of the

Euclidean distance d(vi,pi) over the entire reference sequence. If this standard

deviation exceeds a threshold trigid we conclude that vi lies on a non-rigidly de-

forming surface area likely to be cloth. In other words, we find non-rigidly deform-

ing surface regions by searching for sections with non-persistent cross-sectional

areas. This is a weaker criterion than testing preservation of mutual distances

between all points on a segment, but it can be computed more efficiently and

performs well in practice.

Please note that we could also search for non-rigid segments by finding regions

with starkly varying vertex to bone distances over time. However, in practice we

found that this leads to frequent misclassification of actual body parts, in par-

ticular the arms, as cloth. The reason for this is that the skeleton of the actor

does not provide all anatomical degrees of freedom (e.g. all shoulder and spine

joints) which makes the least squares poses of the bones deviate from the true

physiological positions. This deviation can lead to unintended bone distance vari-

ations which would result in wrong classification, in particular in the arms. Our

purely surface-based decision criterion does not suffer from this problem and it

also works for performances captured with skeleton-free measurement approaches

such as presented in previous parts.

Since our final animatable performance model combines physically-based and

skeleton-based animation, we need to make sure that the transition between the

two modalities is seamless. We therefore transform the σ(vi) values into “cloth-

ness weights” δ(vi) ∈ [0, 1]:

δ(vi) = cl

(
σ(vi)− trigid

tcloth − trigid

)
. (10.1)

Here, the function cl clamps the weights to [0, 1]. tcloth represents a threshold

on σ(vi) above which vertex motion is fully determined by the physics simulation.

The motion of a vertex with δ(vi) = 0 is fully-controlled by skeleton motion +

skinning, a vertex with δ(vi) = 1 is fully cloth model controlled. Vertices with

δ(vi) ∈]0, 1[lie in the transition zone between cloth and skeleton simulation

135

10.4 Estimating hidden geometry

(a) (b) (c)

(d) (e) (f)

Figure 10.2: Cloth segmentation results and proxies found for several reference se-
quences showing different clothing styles (red=cloth, green=approximately rigid):
(a) skirt 1, dancing sequence; (b) skirt 2, walking sequence; (c) skirt 3, dancing
sequence; (d) skirt 1, walking sequence; (e) dress, dancing sequence; (f) capoeira
sequence - cloth regions and transition areas at boundaries are reliably identified.
Note that in the skirt 1 results the dent in the skirt region boundary is a woolen
cord that was automatically excluded from the cloth simulation region since it
stays mostly rigid.

(e.g. the rim of the skirt and parts of the pants in Figure 10.2). In Section 10.7

we explain how to blend the two animation types in those areas. To create a

smooth clothness distribution and fill in potential holes in the estimation, we also

perform a diffusion of the δ’s on the surface.

10.4 Estimating hidden geometry

For both the estimation of cloth simulation parameters, as well as for creating new

animations it is essential that collisions of the fabric with the body are plausibly

simulated. Unfortunately, the true shape of body geometry under wide attire is

136

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

(a) (b) (c)

Figure 10.3: 1-D proxy fitting to segmented data: (a) vertices around a bone
with weights (green = high, red = low); (b) moving vertices closer according to
their distance standard deviation σ; (c) fitting the conical section and end-caps.

not directly visible and is thus neither part of the captured mesh sequence nor

the skeleton model itself. However, by analyzing the reference performance and

by capitalizing on general assumptions about human anatomy it is feasible to

approximate even occluded body geometry.

We approximate collision geometry by fitting a capped conic shape template

to the bones in the body. Performing collision tests for these shapes is computa-

tionally very efficient. One conic collision proxy can be fitted to each bone in the

body. Depending on the sequence captured, however, it is often sufficient to only

estimate proxies for arms and legs, such as in our test data with different skirts.

The dimensions of each collision proxy are estimated from the segmented refer-

ence performance. We base our estimation procedure on the assumption that in

areas with strong cloth motion collision proxies are most likely further away from

the outer surface, whereas in mostly rigid areas the collision geometry should

coincide with the surface of the captured mesh. We therefore use the following

efficient 1-D fitting procedure to fit rotationally symmetric conic proxies to the

first captured pose of the surface mesh, Figure 10.3: Given a bone, all mesh ver-

tices closest to that bone are transformed into local cylindrical coordinates and

the rotational dimension around the bone is neglected. The parameters of the

conic in 1-D are fitted to these vertices by means of a weighted linear regression.

Since non-cloth vertices are closer to the true collision surface than cloth vertices,

each vertex is weighted by the reciprocal of its deviation. Also, the cylindrical

distance of each vertex from the bone is reduced by its standard deviation σ(vi)

that was computed to find its clothness value. Finally, we post-process all the

fitted proxies, and average the conic shapes of the corresponding bones on joints

and on the left and right body halves to enforce symmetry.

137

10.5 Cloth simulation

10.5 Cloth simulation

Having segmented the mesh M into approximately rigid and non-rigid moving

parts, we can now replace the mesh animation of the non-rigid parts using a

dynamic cloth simulation. As our segmentation is not binary but continuous,

we need to be able to incorporate the animation as soft constraints into our

simulation system. In this section we will give a brief overview of the method we

chose for our implementation.

Our cloth simulation is based on the position-based dynamics system proposed

by Müller et al. (2007). Their method differs from many other approaches in that

it uses vertex positions explicitly as part of the simulation state, instead of only

computing them by integrating velocities. In position-based dynamics vertex po-

sitions are explicit members of the simulation state which allows for direct position

manipulation during simulation. Springs connecting vertices do not apply a force

anymore that is used to update velocities, but are instead used in a projection

operation that directly moves the vertex positions to a desired target location.

The position-based dynamics framework bears a couple of advantages: it allows

for fast real-time simulation, it is very stable, and it allows us to formulate a large

variety of simulation constraints using the same mathematical framework. Here,

we only briefly review the main concepts of our approach and refer the interested

reader to the original paper for more details on the physics-based simulation.

A piece of cloth is geometrically represented by a triangular surface mesh.

The simulated geometry comprises of vertices with positions vi, and velocities ui.

Masses mi for each vertex are approximated by the respective areas on the surface

(i.e. 1
3

of the area of the adjacent triangles). In addition, the solver expects a set

of nc constraints Cj acting on the positions of the mesh vertices, as well as a set

of external forces f acting on the fabric. Each constraint Cj is represented by

means of a function defined over a subset of vertex position. The strength of each

constraint is further controlled by a stiffness parameter kj ∈ [0, 1].

The simulation loop comprises of two steps. First, an explicit Euler integration

computes new vertex positions based on the current velocities and external forces.

In a second step, a Gauss-Seidel like solver modifies the vertex position estimates

such that the constraints are satisfied. This constraint projection step works

locally, i.e. it handles all constraints separately from each other. This allows for

simple handling of even non-linear constraints. Within the overall simulation

loop, the projection of all constraints is iterated several times.

138

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

We support four types of simulation constraints in our implementation: col-

lision constraints, stretching and bending constraints, as well as positional con-

straints. Stretching constraints take the form

Cstretch(va,vb) = ‖va − vb‖ − la,b , (10.2)

where la,b is the rest length of the edge between va and vb, which is the

length of the respective edge in the original surface mesh. The bending constraint

evaluates to

Cbend(va,vb,vc,vd) = acos(nl · nr)− φ , (10.3)

where va, vb, vc, and vd are the positions of vertices of two adjacent triangles

that share a common edge, and nl and nr are the respective triangle normals.

φ is the rest-angle between the two triangle normals, which we assume to be 0

everywhere. For general pieces of apparel, the rest angle may be different from 0

and should actually be estimated from the reference sequence as well. However,

in order to keep the estimation problem tractable, we exclude the rest angles from

the optimization and set them to a constant conservative value.

A spatial hashing approach is used to quickly find collisions and self-intersections,

yielding additional collision constraints with fixed stiffness kcoll = 1.0. Finally,

we include positional constraints which take the form

Cblend(va) = pa , (10.4)

where pa is the position the vertex should reach. The stiffness of this con-

straint, kblend(va), is vertex-specific. These position constraints can be interpreted

as soft attachment and are explained in more detail in Section 10.7.

External forces comprise of gravity fg and drag fd. Unlike the original paper

by Müller et al. (2007), we use a more sophisticated model for air-resistance

similar to Bhat et al. (2003). The air drag force depends quadratically on the

velocity in direction of the surface normal, and linearly in tangential direction:

fd(vi) = −0.5A(vi)h(dn‖ui,n‖2n + dtui,t) . (10.5)

Here, A(vi) is the area of the surface patch around the vertex vi (in our case

equal to mi), and h = 0.005 the drag constant. ui,n and ui,t are the components

of ui in direction of normal n and tangential to it, respectively. The constants dn

and dt are the drag coefficients.

139

10.6 Combining simulation and reference performance

Friction and restitution are handled by directly manipulating velocities of

colliding vertices. To this end, vertex velocities are damped in the direction

perpendicular to the collision normal, and reflected in the direction of the collision

normal.

If the step size of our simulation is set to coincide with the capture rate of

our system it allows easy synchronization between the data. However, it would

be a straightforward process to decouple simulation and animation frame-rates

by expressing fractional steps using linear blending between two updates, as is

usually done in real-time simulations.

For each cloth region on the model, we therefore have to determine the three

parameters ρ = (dn, dt, kbend), i.e. the two drag coefficients, as well as the bend-

ing stiffness. Since our simulation is aimed at real-time performance the cloth

exhibits a certain amount of stretching, even if the stretching stiffness is set to

its maximum. This inherent flexibility is higher than that of all types of cloth

we recorded in our experiments. Therefore, we use a fixed stretching stiffness

of kstretch = 1. In theory, the number of simulation steps niter per time frame

of video could be considered a free parameter of our optimization problem as

well. However, we aim for a character that can be simulated in real-time, and in

real-time applications the number of iterations is usually fixed in order to balance

resources. We therefore employ the same number of iterations (niter = 16) during

both parameter optimization and creation of novel animations.

We implemented the method in a prototypical simulation system that runs

with interactive frame-rates for meshes of moderate size. Due to the local han-

dling of constraints the method is very suitable for implementation on parallel

processors. NVidia provides a version of the simulation as part of its PhysX li-

brary (NVidia (2009)), which is accelerated by graphics hardware and provides a

significant speed boost over a single threaded CPU implementation.

10.6 Combining simulation and reference per-

formance

Before explaining how to estimate cloth parameters, we describe how new poses

of our final fully-animatable performance model are created. Positions of ver-

tices with δ(vi) = 0 are solely determined by the current joint parameters of

the skeleton and dual quaternion skinning. Similarly, the positions of all pure

cloth vertices with δ(vi) = 1 are determined by the physical simulation described

140

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

Figure 10.4: Two components of the error function on the cloth section (light blue)
shown in 2D. (left) silhouette distance error: red lines between reprojected and
measured silhouette points; (right) SIFT distance: green lines between predicted
SIFT feature locations and measured SIFT feature locations.

in Section 10.5. For blend vertices, δ(vi) ∈]0, 1[, the new pose is jointly deter-

mined by cloth and skeleton simulation. To this end, the position of vi according

to skeleton motion, pi, is included as a blend constraint into the physics simu-

lation (Section 10.5) with a stiffness of kblend(vi) = (1 − δ(vi)). At each time

step, collisions of the cloth with collision proxies are tested and included into the

simulation.

10.7 Parameter optimization

In order to create new animations, we need to determine the set of three simula-

tion parameters ρ = (dn, dt, kbend, kstretch)) for each cloth region in our template.

It is our goal to find for each coherent region of cloth on the body a set of param-

eters such that the forward simulation of the cloth exhibits the same behavior as

the cloth in the training sequence. The parameters are found by running a nu-

merical optimization that strives to minimize the difference of the simulation to

the input videos. Our energy function measures two properties of the simulated

animation: 1) the alignment of the cloth region’s silhouette edges with silhouette

boundaries in all input images over time, Esil(ρ, n), and 2) the alignment of the

reprojected cloth with robust features in the interior of the fabric in all cam-

era views, Esift(ρ, n). Both error terms are evaluated over the entire reference

141

10.7 Parameter optimization

sequence and their contributions are combined, yielding the overall fitting error

Efit(ρ) =
1

N

N∑
n=1

(αEsil(ρ, n) + βEsift(ρ, n)) . (10.6)

Here, the values α = 1 and β = 10 are empirically determined weights that

are kept constant for all our estimations.

For each time step of video n and each input camera view k, a certain set

of vertices on the cloth segment under consideration should project onto the

silhouette boundary of the respective input frame. This set can be easily identified

and we call it the set of silhouette rim vertices Vk,n, Figure 10.4(left). The

silhouette error then evaluates to

Esil(ρ, t) =
1

nsil

∑
c

∑
v∈Vk,n

d2
im(qIk,n

(v),q′Ik,n
(v)) , (10.7)

where dim(qIk,n
(v),q′Ik,n

(v)) is the image space distance between the repro-

jection q′(v) of silhouette rim vertex v into silhouette image Ik,n and the closest

boundary point of the measured silhouette in the same image, qIk,n
(v). nsil is the

number of all rim vertices from all Vk,n in this frame. For each time step of video

and each camera view, we also compute a set of SIFT features (Lowe (1999)),

Ek,n. In addition, we establish correspondences between features in two subse-

quent time steps for each camera view, Figure 10.4(right). The feature-based

energy term then reads

Esift(ρ, t) =
1

nsift

∑
c

∑
e∈Ek,n

d2
im(oFk,n

(e),o′Fk,n
(e)) , (10.8)

where oFk,n
(e) is the 2D image position of feature e in image Fk,n. o′Fk,n

(e)

is the predicted image position of feature e at time t and nsift is the number

of all features from all Fk,n in this frame. For each camera c, these predicted

image positions are obtained from feature positions at the previous time step as

follows: Each feature e at time step t − 1 is projected back onto the final cloth

surface at t − 1 using the camera matrix of camera c. For each feature e, this

yields a 3D position on the surface of the mesh pk,n−1(e), expressed in barycentric

coordinates relative to the enclosing mesh triangle. The position at the current

time step t, p′
k,n(e), is predicted from pk,n−1(e) by the cloth simulation. The

predicted image positions o′Ik,n
(e) are then obtained by reprojecting p′

k,n(e) back

into each respective camera view.

142

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

Figure 10.5: Plot of the energy function over kbend on the horizontal and dn on
the vertical axis. Red color represents high energy, green low. A clear minimal
energy area can be spotted near the lower right.

When evaluating Efit, both Esil and Esift are evaluated for each frame t

after the new model pose is determined according to the method in Section 10.6,

using niter = 16 cloth simulation iterations. Please note that we intentionally

formulate our energy function in terms of image features of the original reference

sequence, and not in terms of a 3D comparison to the tracked template from the

reference performance. In this way we stay as close as possible to the measured

data and prevent unintended fitting to potential inaccuracies in the tracked 3D

reference performance. In addition, our formulations of Esil and Esift are memory

efficient as they only require storage of 2D silhouette rim points and 2D feature

locations for each input frame. Holding all image data of the reference sequence

simultaneously in memory would be impossible, and we therefore refrain from

more complex distance functions such as distance-field based evaluations.

The combination of silhouette and SIFT features is essential for our goodness-

of-fit measure. Silhouette data alone would not suffice since a lot of information on

cloth behavior can be extracted from the inner regions of the cloth in all images.

Silhouette information is important to asses the overall appearance of the cloth

boundaries. We would also like to note that our feature handling with correspon-

dence re-computation for each frame pair usually manages to make the majority

of feature points found in all images accessible to the optimization. Multi-frame

correspondence estimation more frequently leads to lost feature tracks, in partic-

ular on motions with frequent turns and occlusions.

143

10.8 Results and validation

Unfortunately, the error function Efit is non-convex and exhibits many local

minima, as shown in Figure 10.5 for two of the three simulation parameters (kbend

and dn). This multi-modalness comes as no surprise since the cloth simulation

behavior is highly non-linear causing potentially large changes in geometric cloth

appearance for only small changes in ρ. Globally, there is a distinct minimal

parameter region which we have to find. Any form of gradient-based optimization

strategy would fail to achieve this goal. We therefore resort to a sampling-based

minimization strategy which is suitable for such multi-modal error landscapes. In

particular, we employ a greedy stochastic search similar to simulated annealing.

The minimization is initialized by placing K3 (typically K = 4) samples on

regularly spaced grid positions of the space of simulation parameters, with dn ∈
[0, 10], dt ∈ [0, 50], and kbend ∈ [0, 1]. The sample with the lowest error, ρ̃, is

used as starting point for the greedy optimization ρ1 = ρ̃. To this end, we first

estimate a particle distribution from which to generate new samples. In our case,

this distribution is a three-dimensional Gaussian Nn(µ(n), Γ(n)), whose mean

µ(n) and diagonal covariance matrix Γ(n) are dependent on the iteration n of

the optimizer. Each diagonal entry of Γ(1), namely σdn(1), σdt(1), and σkbend
(1)

is set to be the average distance between the grid samples used for initialization

along the respective dimension. The covariance entries are reduced over time by

multiplying with a linear scaling function Γ(n) = g(n)Γ(1). Here g(1) = 1, and

it linearly decreases to g(n) = 0.

Starting from ρ̃, the greedy optimizer generates one new sample per iteration

by drawing from Nn. In each iteration, µ(n) is set to the optimal particle from the

previous iteration, ρn−1. A new particle is accepted if its error is lower than the

error of ρn−1, otherwise ρn = ρn−1 and a new sample is drawn. After nsam = 192

iterations, the optimizer returns the average of the ten last particles as optimum

ρmax. More advanced sampling strategies exist, but many of them, such as particle

filter variants, are ruled out due to the much larger number of required particle

evaluations that would lead to unreasonable running times.

10.8 Results and validation

The output of our reconstruction process is a fully-rigged character template

comprising of an animation skeleton, surface skinning weights, collision proxies,

and a physically-based cloth model for each region with wavy apparel. In to-

tal, we captured 14 performances with a female test subject using the method

described in Section 10.2, each comprising of between 580 and 1300 frames. In

144

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

those sequences, two actors wear six different types of apparel: a skirt made of a

fabric with medium thickness (s1), a long skirt with a rather light material (s2),

a medium length skirt with comparably stiff material (s3), a dress (s4), loose

track pants (s5), and skin-tight pants (s6). For each attire, several different se-

quences were captured with motion styles ranging from walking over dancing to

kicking and turning in the capoeira scene. Only for the first five clothing styles,

we ran our full pipeline to estimate an animatable performance model. Clothing

style s6 was only used to acquire motion data for new animations of the other

performances. In the following we discuss several aspects of our approach. All

final renderings in the paper were done by real-time transfer of the pose of the

decimated mesh M used for simulation to the high resolution body scan Mhigh

using the deformation transfer method proposed in Chapter 7.3. The mesh M

is a surface mesh consisting of triangles. However, we can simply convert the

triangles to tetrahedra by adding a point in normal direction. This allows us to

apply the method from Chapter 7.3 directly.

10.8.1 Segmentation and Cloth Parameter Estimation

For each style of apparel, we chose one reference sequence to reconstruct an

animatable performance from, Table 10.1. For skirt s1, we also reconstructed

animatable models from two different reference motions, walking and dancing, to

verify stability. Our segmentation approach was able to reliably identify the loose

cloth areas in all reference scenes using a fixed set of segmentation thresholds.

The segmentation of s1 in two different reference sequences is almost identical

demonstrating the stability of our method. The segmentation of the pants in

the capoeira sequence shows that our algorithm also faithfully handles tighter

clothing which is less wavy than the skirts. The lower end of the pants (which

is very wide in comparison to the leg) is marked as loose cloth, while segments

further up on the leg receive an intermediate clothness weight since they are closer

to the skin and thus less wavy. Here, our algorithm also correctly identifies the

sleeves of the t-shirt as slightly wider apparel, Figure 10.2(f).

Table 10.1 lists the set of cloth simulation parameters which we estimated

for the different clothing styles. According to our expectations, the stiffest skirt

s3 (Figure 10.6(middle)) was found to have the highest bending resistance, the

dress s4 (Figure 10.6(bottom)) made of fabric with medium density has a medium

bending resistance, and the light long skirt s2 (Figure 10.6(top)) a very low one.

145

10.8 Results and validation

sequence set name dn dt kbend frames
s1a: dancing ρ1a 0.5 6.8 0.36 1300
s1b: walking ρ1b 1.3 5.8 0.26 800
s2: walking ρ2 1.7 44.1 0.003 1100
s3: dancing ρ3 0.15 12.0 0.98 1200
s4: dancing ρ4 0.5 0.08 0.43 800
s5: capoeira ρ5 2.3 2.8 0.03 400

Table 10.1: Estimated cloth simulation parameters for the skirts and the pants
made of different fabrics. ρ1a and ρ1b were estimated for the same skirt from
different reference sequences.

The visual draping characteristics of all simulated skirts closely match the draping

behaviors of their real world counterparts.

When estimating parameters for the same skirt s1 from two different reference

sequences (a simple walking and a dancing sequence), very similar simulation pa-

rameters were found (see parameter sets ρ1a and ρ1b in Table 10.1). The resulting

animations with both parameter sets are, in turn, visually very similar. Although

the reliability of the parameter estimation is certainly influenced by the contents

of the reference sequence, this test shows that for reasonably long scenes with

sufficient cloth motion, parameters can be faithfully found.

Our simulation model is physically plausible and allows realistic simulation,

but it does not allow us to determine physical material parameters accurately.

Comparison to measured material properties using material science test methods

is therefore not straightforward. To nonetheless test the feasibility of estimated

parameters, we performed a cross-validation of the computed optimal parameters

for all clothing styles in terms of the cloth estimation error Efit, Table 10.2. As

one can see, the parameters found for each attire are the true optimal ones in

comparison to all other reconstructed clothing styles.

10.8.2 User Study

Since our goal is realistic simulation of new performances, and realism can ulti-

mately only be judged by a human observer, we performed a survey with 49 test

persons. Each of the participants was shown a web page with one input camera

view of the reference sequence of skirt s3, as well as three simulated performances

from the same camera view. The simulated performances used the reference

skeleton motion but different simulation parameters for the skirt: a medium light

146

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

material (video A: dn = 2.0, dt = 4.0, kbend = 0.3), a material exhibiting very high

drag (video B: dn = 8.0, dt = 4.0, kbend = 0.8), and the true estimated material

parameters (video C: ρ3). Please note that in terms of fitting error video A is

closer to the truth than video B. The users were asked to rank the simulations

according to the closeness of the simulated cloth behavior to the reference input

(1=most similar, 3=most dissimilar). 39 (79.6%) participants ranked video C

as 1. Out of these participants 32 (82.0%) also ranked video A in second place.

From those users which did not rank video C correctly, 7 still ranked video B as

the highest and video C as second highest. We therefore conclude that we can

capture and simulate cloth behavior realistically, and that users are even able to

rank simulations according to closeness of material parameters to the optimum.

10.8.3 Creating New Animations

Given a reconstructed animation model for a person, arbitrary new motions can

be simulated by simply modifying the joint motion parameters of the skeleton.

All motion sequences used for new animations were either captured by our per-

formance capture algorithm from people wearing s6, or stem from a database of

motion capture files. All new skeleton motions we employ are parts of the per-

formances that were captured with the method from Section 10.2, but not used

for reconstructing an animatable model. Note that data from any type of motion

capture system or key-frame animations created by an animator would be equally

feasible. In all new animations, both the overall appearance of the body and the

deformation behavior of the cloth are very lifelike since even subtle deformation

details are realistically reproduced, Figure 10.6.

Please note that the mesh pre-processing step described in Section 10.2 may

lead to holes in the geometry, that may become visible during new animations.

For instance, it may become visible that there is no real upper leg geometry under

the skirt. For visualization, we therefore render the collision proxies as geometry

approximation of the invisible parts of the upper leg to reduce this effect. For

the long skirt s2, however, the proxy visualization does not look pleasing and

we therefore refrain from it, exposing sometimes the missing leg geometry. In

a practical animation setting, any standard 3D package could be used to create

more sophisticated geometry in those regions.

147

10.9 Discussion

ρ1a ρ2 ρ3 ρ4

s1 132.97 137.50 137.47 134.70
s2 218.90 214.37 224.89 226.37
s3 168.97 173.54 158.26 169.10
s4 142.39 145.18 145.79 137.62

Table 10.2: Cross-validation matrix: rows = clothing style, columns = parameter
set - Entries are simulation parameter fitting errors: for one particular attire,
the optimized parameters are also optimal in comparison to all other estimated
parameter sets.

10.8.4 Performance

It takes around 2.5 hours to capture a reference performance of 1000 frames on

an Intel Core 2 Duo with 3.0 GHz. All sequences we captured, both reference

sequences and skeleton motions only used for new animations, were tracked fully-

automatically. Segmentation of cloth takes around 5 seconds. Estimation of cloth

simulation parameters takes around 3-4 hours for a reference sequence consisting

of roughly 1000 frames.

The actual computation of new poses and the transfer to the higher resolution

mesh of about 25k triangles run in real-time with ∼ 60 fps on the same machine.

Please note that our simulation code runs single-threaded and does not use any

GPU acceleration for skinning, simulation, or detail transfer. The cloth simula-

tion currently runs with the same step size as the animation input (i.e. 40 fps),

but could easily be decoupled in both rendering of new animations as well as in

the optimization procedure.

10.9 Discussion

In this Chapter we presented a method for using template based shape processing

to estimate physical properties of a shape (Stoll et al. (2009)). We capture the

performance of an actor wearing wide apparel and build an animatable virtual

template model. The output of our method is a fully-rigged character template

comprising of an animation skeleton, surface skinning weights, collision proxies,

and a physically-based cloth model for each region with wavy apparel. We faith-

fully capture the behavior of the characters apparel and are able to create new

animations by just applying new skeletal joint parameters that can stem from

148

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

(a) (b) (c) (d) (e)

Figure 10.6: Results for skirts 2, 3, and the dress model (from top to bottom).
Column (a) input frame from reference sequence; (b) the reconstructed animat-
able model simulating the same pose; (c)-(e) subsequent frames of a newly cre-
ated animation for which only motion parameters of the underlying skeleton were
given.

any source in the standard repertoire of an animator, such as motion-capture or

key-frame animations.

Our approach is subject to a few limitations. First, since we start off with a

closed full-body laser scan of a person, we are limited in what type of clothing

we can handle. Without manual post-processing it will not be possible to handle

apparel that shows difficult topology changes while moving, such as the opening

up of a coat. However, we believe that additional user input would render our

method capable of handling these situations, too. Further on, the quality of cloth

reconstruction is dependent on the type of reference sequence captured. If the

cloth does not move very much, we will not be able to identify pieces of apparel

149

10.9 Discussion

automatically. However, this is not a principal limitation of our method since in

a general recording scenario it is fair to instruct the person to move in such a way

that all pieces of apparel are exposed.

The results of the cloth parameter optimization are dependent on the input

sequence, too. If the recorded sequence does not demonstrate the behavior of

the material in a reasonable way (for example when recording only a walking

sequence without any turns), the optimization will most likely produce a different

parameter set than for a highly dynamic scene of the same skirt. Again, properly

instructing the actor remedies this problem.

We would also like to note that in a certain range different cloth simulation

parameters may lead to very similar cloth behavior. To a certain extent one can

see this in the error plot Figure 10.5. For us, however, it is sufficient to find any

such optimum within the globally low error region of the error landscape, since

either of them will lead to plausible renderings.

The chosen cloth simulation method also imposes a few limitations. The max-

imal material stiffness we are able to simulate with the step size and number of

iterations per frame we selected is limited. With our settings the cloth will always

exhibit a certain amount of stretchiness that may not be there in the real fabric,

even with maximal stiffness. Sometimes this is visible in our result animations.

We could simulate higher stretching stiffnesses by employing hierarchical meth-

ods (as presented in Müller (2008)) or by using more sophisticated simulation

methods. However, this would usually prevent us from rendering the cloth in

real-time. Another consequence of the choice of simulation is that cloth simula-

tion parameters are not independent of step size and number of iterations. This

means that we always have to estimate parameters for exactly the same simula-

tion settings that we also use for creating new animations and have to rerun the

optimization if any of these settings change.

One might argue that instead of using our motion-driven cloth segmentation,

one could identify loose apparel via distance thresholding between corresponding

surface points of two laser scans of a subject, one with full attire and one with

underwear only. However, this strategy would have several drawbacks. First,

the two scans would need to be geometrically aligned. Scan alignment is a very

difficult and potentially error prone process, in particular if the two scans ex-

hibit pose differences, or if the apparel is very loose or made of very thick fabric

yielding stark geometric differences between the scans. However, even if perfect

alignment was achieved, one cannot easily differentiate regions of tight and wavy

cloth with simple distance thresholding, let alone create a non-binary mask of

150

10. OPTICAL RECONSTRUCTION OF ANIMATABLE HUMAN
BODY MODELS

clothness weights. Such a simple geometric strategy would fail to identify regions

of loose apparel that are accidentally close to the skin in a single pose, but may

move around significantly in other postures. Only with a motion-driven segmen-

tation it is possible to identify those regions, for instance the upper seam of the

skirt and the areas of different intermediate clothness weights in the track pants,

Figure 10.2. Admittedly, one could use a scan in underwear or fit a paramet-

ric body model like to SCAPE (Anguelov et al. (2005)) to represent occluded

geometry at more detail. In practice we found that any such additional step is

unnecessary. Our proxies are very easy-to-fit, allow for faster collision handling

than more detailed geometry, and fully suffice to faithfully simulate realistic cloth

collisions with the body.

Nevertheless, the level of detail that we can achieve in any of the newly created

animations is high, and, unlike the performance capture approaches presented

previously, it is trivial to create new sequences using the standard toolbox of the

animator. As it was originally our intention, we anticipate that the reconstructed

animatable actors will be used to create more realistic real-time characters for

games and networked virtual environments. Admittedly, even though the models

are fairly detailed, they may still be too coarse for application in feature films,

where real-time rendering ability is not the primary concern. However, we are

confident that a similar methodology with higher resolution sensors and more

advanced manual post-processing will make a similar reconstruction approach

also feasible for applications with highest production standards. To the best of

our knowledge, this is the first method in the literature to capture such rich

performance models.

151

10.9 Discussion

152

Chapter 11

Conclusions and future work

In this thesis we proposed novel approaches to template based shape processing

for solving problems in the context of shape reconstruction, performance capture

and physical material estimation. We showed how to use templates for static

problems like texture mapping and semantically meaningful hole-filling for surface

reconstruction in Part I. We showed applications for temporal problems in the

field of mesh based performance capture in Part I and II. Finally, we explained

how we can apply it to dynamic problems by estimating physical parameters of

a cloth simulation for optical reconstruction of detailed animatable human body

models in Part III.

All of these applications had in common that we approached them as a tem-

plate fitting process. We were given information about our target shape in the

form of constraints that were either user defined or extracted from 3D scans, im-

ages, and videos. We then fit our template to the data as accurately as possible.

In Part I this was achieved with a simple linear deformation scheme based on

differential coordinates that performed extremely well for small scale and high-

frequency detail fitting. In Part II we used a non-linear but efficient iterative

volumetric template deformation process that better preserved the original shape

of the template and thus was well suited for low-frequency fitting. Finally, in

Part III we combined several of the approaches outlined in previous chapters and

found a set of simulation parameters by minimizing a highly non-linear energy

function using a stochastic sampling approach.

In Part I of this thesis, we introduced a framework for template deformation

based on linear differential coordinates, and showed several applications of it. In

Chapter 3 we explained how to calculate the coordinates and use linear constraints

153

to generate deformations. We also introduced a novel explicit formulation for

addressing the translational insensitivity issue inherent to the linear formulation.

This offered us a flexible and efficient framework for shape processing, especially

when dealing with detailed and high-frequency deformations.

In Chapter 4 (Stoll et al. (2006b)), we introduced a novel method for con-

strained texture mapping. Instead of viewing texture mapping as parameteri-

zation problem, we formulated it as template fitting process where the image

formed a planar template that was matched to the mesh geometry. This allowed

us to directly work with any type of manifold surface, in particular high-genus

surfaces, without any additional processing.

In Chapter 5 (Stoll et al. (2006a)), we showed how shape reconstruction from

3D scans could be approached as template fitting process. It is a generalization of

the image plane fitting process to arbitrary 3D models. This view enabled us to

incorporate semantic knowledge into the process of shape reconstruction. Even

if large parts of the model were missing we were able to reconstruct a meaningful

model, making it also robust to noise and outliers.

In Chapter 6 (de Aguiar et al. (2007a,b,c, 2008a); Gall et al. (2009)), we

used the knowledge gained for shape reconstruction and applied it to the fields

of animation and performance capture. Approaching these problems as shape

fitting process based on a deformable mesh model allowed us to abandon the

traditional parameterization based on a kinematic skeleton. A deformable mesh

model represented a much more versatile representation and, in combination with

the right feature extraction and constraint generation techniques, allowed us to

reconstruct and track performers wearing wide apparel and even a kimono.

In Part II of this thesis, we introduced a novel non-linear framework for tem-

plate deformation based on a volumetric mesh and an iterative differential coordi-

nates based solver. In Chapter 7 we explained how linear differential coordinates

could be extended using a simple iterative process to efficiently produce natu-

ral non-linear deformations. The volumetric formulation and implicit rotation

handling allowed us to handle large global pose changes during deformation in-

tuitively since local shape preservation was enforced.

In Chapter 8 (Stoll et al. (2007)), we showed how to use our non-linear frame-

work to create an interactive shape editing application. It provided an intuitive

interface and modeling metaphor to edit shapes and was robust even under ex-

tremely large deformation constraints.

154

11. CONCLUSIONS AND FUTURE WORK

In Chapter 9 (de Aguiar et al. (2008a); Stoll et al. (2007)), we presented how

to use our non-linear template fitting framework for performance capture. We

used the insights gained in Part I to build a more robust fitting process for global

pose capture from multi-view video input. Abandoning traditional motion skele-

tons allowed us to capture performers in a spatio-temporally coherent way, even

when wearing wide apparel like a skirt. In combination with the model refinement

techniques from in Chapter 6, we could exceed the capabilities of marker-based

optical capturing systems that are widely used in industry, and capture natural

and life-like animation sequences. Using the non-linear deformation approach al-

lowed us to alleviate many of the drawbacks that resulted from using the linear

framework in Chapter 6. Handling rotations implicitly and preserving local vol-

ume enabled us to generate deformations which were more natural and plausible.

In Part III of this thesis, we built upon the results from the previous parts and

introduced a method for estimating physical material parameters using template

based shape processing. The template based shape processing methods presented

in previous parts allowed us to reconstruct high quality spatio-temporally coher-

ent shape animations. The quality of these reconstructions us enabled us to learn

how our template shape reacts to external impulses and reproduce the behavior

under new conditions.

In Chapter 10 (Stoll et al. (2009)), we presented a novel method that allowed

us to optically reconstruct detailed animatable human body models. Previous

performance capture method were limited to playing back the original recon-

structed animation and did not allow for direct editing. Capitalizing upon the

techniques presented in previous parts of this thesis allowed us to fit a fully-rigged

character template comprising of an animation skeleton, surface skinning weights,

collision proxies, and a physically-based cloth model for each region with wavy

apparel, to a set of multi-view videos accurately. This rich performance model

allowed us to faithfully capture the behavior of the characters apparel and create

new animations by simply applying new skeletal joint parameters. This was the

first approach in the literature to solve this complex problem.

The template frameworks and applications we introduced in this thesis show

that template based shape processing is an important tool for computer graphics

and computer vision applications. Whenever it is necessary to incorporate se-

mantic knowledge about a shape into the processing pipeline because the input

information is otherwise too sparse for a reconstruction, a template can simplify

155

processing dramatically. We have shown that template based fitting processes en-

ables us to perform shape reconstruction and performance capture at much higher

detail than was previously possible. We are convinced that future research in the

area of template based shape processing will enable us to create reconstructions

of scenes and actors in a quality that cannot be distinguished from the real input

data anymore.

Currently, the process of template selection still requires user input (i.e. se-

lecting a template from a database or providing a 3D scan of the performer).

An interesting field of future research is how to automate this process or even

estimate the template from the sparse input data themselves. This is especially

interesting for temporal data such as animated point clouds extracted from depth

cameras and stereo and visual hull reconstructions from multi-view video. While

there has been some research on extracting a base template model from these

kind of data (Wand et al. (2007, 2009)), we are still not able to reconstruct tem-

plates that match the quality of a 3D scan or a modeled shape. Being able to

reconstruct the template from time varying data would allow handling of topol-

ogy changes in the data, which is problematic with the current formulation, as

the topology is fixed to that of the input template. One of the final goals would

be to develop an automatic pipeline that reconstructs a high-quality animatable

template of a performer, including accurately simulated layered apparel, muscle

deformation during motion, detailed geometry as well as texture and reflectance

properties from just a set of input videos.

Another area of future work is the development of more sophisticated fitting

processes. All three frameworks introduced in this thesis are based on optimiza-

tion strategies. Recent work such as Wang & Popović (2009) has shown that it

is also possible to approach this issue as an information retrieval problem. Given

a large enough database containing the input information connected with the

respective desired output shape it is possible to vastly simplify the fitting process

by initializing it with the best match from the database before continuing with

a simple fitting process. We are convinced that it is possible to develop a sys-

tem that can estimate the pose of a performer simply based on efficient database

lookups in real-time.

156

References

Ahmed, N., Theobalt, C., Dobrev, P., Seidel, H.P. & Thrun, S.

(2008a). Robust fusion of dynamic shape and normal capture for high-quality

reconstruction of time-varying geometry. In IEEE Conference on Computer

Vision and Pattern Recognition. 90

Ahmed, N., Theobalt, C., Rössl, C., Thrun, S. & Seidel, H.P. (2008b).

Dense correspondence finding for parametrization-free animation reconstruc-

tion from video. In IEEE Conference on Computer Vision and Pattern Recog-

nition, 1–8. 29, 79

Aiger, D., Mitra, N.J. & Cohen-Or, D. (2008). 4-points congruent sets for

robust pairwise surface registration. In ACM Transactions on Graphics , 1–10.

18

AIM@SHAPE (2004). Shape repository. 64

Alexa, M. (1999). Merging polyhedral shapes with scattered features. In Inter-

national Conference on Shape Modeling and Applications , 202. 50

Alexa, M. (2001). Local control for mesh morphing. In Proceedings of the In-

ternational Conference on Shape Modeling & Applications , 209. 22

Allen, B., Curless, B. & Popović, Z. (2002). Articulated body deformation

from range scans. ACM Transactions on Graphics , 21, 612–619. 19, 20

Allen, B., Curless, B. & Popović, Z. (2003). The space of human body

shapes: reconstruction and parameterization from range scans. ACM Transac-

tions on Graphics , 22, 587–594. 19, 20

Allen, B., Curless, B., Popović, Z. & Hertzmann, A. (2006). Learning

a correlated model of identity and pose-dependent body shape variation for

real-time synthesis. In Proc. of SCA, 147–156. 29

157

REFERENCES

Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J. &

Davis, J. (2005). SCAPE: Shape completion and animation of people. In ACM

TOG (Proc. SIGGRAPH ’05). 19, 30, 61, 151

Au, O.K.C., Tai, C.L., Liu, L. & Fu, H. (2006). Dual Laplacian editing

for meshes. IEEE Transaction on Visualization and Computer Graphics , 12,

386–395. 24, 98

Balan, A.O., Sigal, L., Black, M.J., Davis, J.E. & Haussecker, H.W.

(2007). Detailed human shape and pose from images. In Proc. CVPR. 30

Baraff, D. & Witkin, A. (1998). Large steps in cloth simulation. In Proceed-

ings ACM SIGGRAPH , 43–54. 25

Baraff, D., Witkin, A. & Kass, M. (2003). Untangling cloth. ACM Trans-

actions on Graphics , 22, 862–870. 26

Baran, I. & Popović, J. (2007). Automatic rigging and animation of 3d char-

acters. ACM TOG (Proc. SIGGRAPH ’07). 132

Beraldin, J.A., El-Hakim, S.F. & Blais, F. (1995). Performance evaluation

of three active vision systems built at the national research council of canada.

16

Bernardini, F. & Rushmeier, H.E. (2002). The 3d model acquisition

pipeline. Computer Graphics Forum, 21, 149–172. 16

Besl, P.J. & McKay, N.D. (1992). A method for registration of 3-d shapes.

IEEE Trans. Pat. Anal. and Mach. Intel., 14, 239–256. 66

Bhat, K.S., Twigg, C.D., Hodgins, J.K., Khosla, P.K., Popović, Z.Z.

& Seitz, S.M. (2003). Estimating cloth simulation parameters from video. In

Proc. of SCA. 132, 139

Botsch, M. & Kobbelt, L. (2004). A remeshing approach to multiresolution

modeling. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH sympo-

sium on Geometry processing , 185–192. 73

Botsch, M. & Sorkine, O. (2008). On linear variational surface deformation

methods. IEEE TVCG , 14, 213–230. 36, 39

158

REFERENCES

Botsch, M., Bommes, D. & Kobbelt, L. (2005). Efficient linear system

solvers for geometry processing. In 11th IMA conference on the Mathematics

of Surfaces . 41

Botsch, M., Pauly, M., Gross, M. & Kobbelt, L. (2006a). Primo: Cou-

pled prisms for intuitive surface modeling. In Proc. Symposium on Geometry

Processing , 11–20. 24

Botsch, M., Sumner, R., Pauly, M. & Gross, M. (2006b). Deformation

transfer for detail-preserving surface editing. In Proc. Vision, Modeling and

Visualization, 357–364. 23, 99

Botsch, M., Pauly, M., Wicke, M. & Gross, M. (2007). Adaptive space

deformations based on rigid cells. Computer Graphics Forum, 26, 339–347. 24,

113

Bradley, D., Popa, T., Sheffer, A., Heidrich, W. & Boubekeur, T.

(2008). Markerless garment capture. ACM TOG (Proc. SIGGRAPH ’08). 130,

132

Breen, D.E., House, D.H. & Wozny, M.J. (1994). Predicting the drape

of woven cloth using interacting particles. In Proceedings ACM SIGGRAPH ,

365–372. 25

Bridson, R., Fedkiw, R. & Anderson, J. (2002). Robust treatment of col-

lisions, contact and friction for cloth animation. In Proceedings ACM SIG-

GRAPH . 26

Brown, B. & Rusinkiewicz, S. (2004). Non-rigid range-scan alignment using

thin-plate splines. In Symposium on 3D Data Processing, Visualization, and

Transmission. 20

Brox, T., Bruhn, A., Papenberg, N. & Weickert, J. (2004). High ac-

curacy optical flow estimation based on a theory for warping. In European

Conference on Computer Vision, 25–36. 81

Carmo, M.D. (1976). Differential Geometry of Curves and Surfaces . Prentice-

Hall. 36

159

REFERENCES

Carranza, J., Theobalt, C., Magnor, M. & Seidel, H.P. (2003). Free-

viewpoint video of human actors. Proc. ACM SIGGRAPH , 569–577. 29, 81,

82, 118

Chen, Y. & Medioni, G. (1995). Description of complex objects from multiple

range images using an inflating balloon model. Computer Vision and Image

Understanding , 61, 325–334. 19

Choi, K.J. & Ko, H.S. (2005). Research problems in clothing simulation.

Computer-Aided Design, 37, 585–592. 25

Chui, H. & Rangarajan, A. (2003). A new point matching algorithm for

non-rigid registration. Comput. Vis. Image Underst., 89, 114–141. 20

Coquillart, S. (1990). Extended free-form deformation : a sculpturing tool for

3D geometric modeling. Research Report RR-1250, INRIA. 20

de Aguiar, E. (2008). Animation and performance capture using digitized mod-

els. In PhD Thesis . 9, 81, 87, 120

de Aguiar, E., Theobalt, C., Stoll, C. & Seidel, H.P. (2007a). Marker-

less 3d feature tracking for mesh-based motion capture. In Human Motion -

Understanding, Modeling, Capture and Animation, vol. 4814, 1–15. 6, 8, 23,

33, 79, 80, 81, 82, 83, 88, 89, 120, 154

de Aguiar, E., Theobalt, C., Stoll, C. & Seidel, H.P. (2007b). Marker-

less deformable mesh tracking for human shape and motion capture. In IEEE

Conference on Computer Vision and Pattern Recognition, vol. 6, 2502–2509.

6, 8, 23, 30, 33, 79, 80, 81, 82, 83, 88, 89, 120, 154

de Aguiar, E., Theobalt, C., Stoll, C. & Seidel, H.P. (2007c). Rapid

animation of laser-scanned humans. In IEEE Virtual Reality 2007 , 223–226. 6,

8, 23, 33, 79, 80, 81, 82, 83, 154

de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P. &

Thrun, S. (2008a). Performance capture from sparse multi-view video. In

ACM TOG (Proc. SIGGRAPH’08). 6, 7, 9, 23, 24, 30, 33, 79, 80, 87, 90, 95,

117, 119, 120, 122, 123, 130, 133, 154, 155

160

REFERENCES

de Aguiar, E., Theobalt, C., Thrun, S. & Seidel, H.P. (2008b). Au-

tomatic conversion of mesh animations into skeleton-based animations. Proc.

Eurographics EG’08 . 124, 133, 134

Der, K.G., Sumner, R.W. & Popovic, J. (2006). Inverse kinematics for

reduced deformable models. In Proc. ACM SIGGRAPH , 1174–1179. 24

Eberhardt, B., Weber, A. & Strasser, W. (1996). A fast, flexible, particle-

system model for cloth draping. IEEE Computer Graphics and Applications ,

16, 52–59. 25

Eckstein, I., Surazhsky, V. & Gotsman, C. (2001). Texture mapping with

hard constraints. Computer Graphics Forum, 20. 49

Fattal, R., Lischinski, D. & Werman, M. (2002). Gradient domain high

dynamic range compression. In Proceedings SIGGRAPH , 249–256. 22

Fischler, M.A. & Bolles, R.C. (1987). Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartography. Readings in computer vision: issues, problems, principles, and

paradigms , 726–740. 77

Fleishman, S., Cohen-Or, D. & Silva, C.T. (2005). Robust moving least-

squares fitting with sharp features. ACM Transactions on Graphics , 24, 544–

552. 77

Floater, M.S. & Hormann, K. (2005). Surface parameterization: a tutorial

and survey. In Advances in Multiresolution for Geometric Modelling , 157–186.

48

Fu, H., Au, O.K.C. & Tai, C.L. (2007). Effective derivation of similarity

transformations for implicit Laplacian mesh editing. Computer Graphics Fo-

rum, 26, 34–45. 22

Furukawa, Y. & Ponce, J. (2007). Accurate, dense, and robust multi-view

stereopsis. In CVPR. 17

Gall, J. (2009). Filtering and optimization strategies for markerless human

motion capture with skeleton-based shape models. In PhD Thesis . 9, 88

161

REFERENCES

Gall, J., Rosenhahn, B., Brox, T. & Seidel, H.P. (2008). Optimization

and filtering for human motion capture – a multi-layer framework. International

Journal of Computer Vision. 134

Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B. &

Seidel, H.P. (2009). Motion capture using joint skeleton tracking and surface

estimation. In IEEE Conference on Computer Vision and Pattern Recognition,

1–8. 6, 9, 23, 30, 33, 79, 80, 87, 90, 130, 131, 133, 154

Garland, M. & Heckbert, P.S. (1997). Surface simplification using quadric

error metrics. In Proc. ACM SIGGRAPH , 209–216. 106, 110

Gleicher, M. & Ferrier, N. (2002). Evaluating video-based motion capture.

Computer Animation, 0, 75. 27

Goesele, M., Curless, B. & Seitz, S.M. (2006). Multi-view stereo revisited.

In IEEE Conference on Computer Vision and Pattern Recognition, 2402–2409.

17, 86

Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M. & Grinspun,

E. (2007). Efficient simulation of inextensible cloth. ACM Transactions on

Graphics , 26, 49. 26

Golub, G.H. & Loan, C.F.V. (1996). Matrix Computations . The Johns Hop-

kins University Press, 3rd edn. 41, 101

Gotsman, C., Gu, X. & Sheffer, A. (2003). Fundamentals of spherical

parameterization for 3d meshes. ACM Transactions on Graphics , 22, 358–363.

49

Gross, M., Würmlin, S., Näf, M., Lamboray, E., Spagno, C., Kunz,

A., Koller-Meier, E., Svoboda, T., Gool, L.V., Lang, S., Strehlke,

K., Moere, A.V. & Staadt, O. (2003). blue-c: a spatially immersive display

and 3d video portal for telepresence. ACM TOG , 22, 819–827. 29

Hasler, N., Asbach, M., Rosenhahn, B., Ohm, J.R. & Seidel, H.P.

(2006). Physically based tracking of cloth. In In Proc. VMV 2006 , 49–56. 132

Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H.,

Guo, B. & Shum, H.Y. (2006). Subspace gradient domain mesh deformation.

In Proc. ACM SIGGRAPH , 1126–1134. 23, 38, 107

162

REFERENCES

Igarashi, T., Moscovich, T. & Hughes, J.F. (2005). As-rigid-as-possible

shape manipulation. In Proc. ACM SIGGRAPH , 1134–1141. 22

James, D.L. & Twigg, C.D. (2005). Skinning mesh animations. ACM TOG

(Proc. SIGGRAPH’05). 134

Johnson, A. (1997). Spin-Images: A Representation for 3-D Surface Matching .

Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

77

Jones, T.R., Durand, F. & Zwicker, M. (2004). Normal improvement for

point rendering. IEEE Computer Graphics and Applications , 24, 53–56. 62

Ju, T., Schaefer, S. & Warren, J. (2005). Mean value coordinates for closed

triangular meshes. In Proc. ACM SIGGRAPH , 561–566. 24, 106

Kähler, K., Haber, J., Yamauchi, H. & Seidel, H.P. (2002). Head shop:

Generating animated head models with anatomical structure. In ACM SIG-

GRAPH Symposium on Computer Animation, 55–64. 19, 61

Kaldor, J.M., James, D.L. & Marschner, S. (2008). Simulating knitted

cloth at the yarn level. In ACM Transactions on Graphics , 1–9. 26

Karni, Z. & Gotsman, C. (2000). Spectral compression of mesh geometry. In

SIGGRAPH , 279–286. 49

Kavan, L., Collins, S., Žára, J. & O’Sullivan, C. (2007). Skinning with

dual quaternions. In Symposium on Interactive 3D graphics and games , 39–46.

133

Kazhdan, M., Bolitho, M. & Hoppe, H. (2006). Poisson surface reconstruc-

tion. In Proceedings Symposium on Geometry Processing , 61–70. 16, 19

Kazhdan, M.M. (2005). Reconstruction of solid models from oriented point

sets. In Symposium on Geometry Processing , 73–82. 16, 19

Kircher, S. & Garland, M. (2008). Free-form motion processing. ACM

Transactions on Graphics , 27, 1–13. 123

Kobbelt, L., Campagna, S., Vorsatz, J. & Seidel, H.P. (1998). In-

teractive multi-resolution modeling on arbitrary meshes. In Proceedings SIG-

GRAPH , 105–114. 21

163

REFERENCES

Kobbelt, L., Vorsatz, J., Labsik, U. & Seidel, H.P. (1999). A shrink

wrapping approach to remeshing polygonal surfaces. Compututer Graphics Fo-

rum, 18, 119–130. 19

Kolb, A., Barth, E., Koch, R. & Larsen, R. (2009). Time-of-flight sensors

in computer graphics. In Proceedings Eurographics (State-of-the-Art Report).

16

König, S. & Gumhold, S. (2008). Image-based motion compensation for struc-

tured light scanning of dynamic surfaces. International Journal of Intelligent

Systems Technologies and Applications , 5, 434–441. 16

Kraevoy, V. & Sheffer, A. (2004). Cross-parameterization and compatible

remeshing of 3D models. ACM Transactions on Graphics , 23, 861–869. 61

Kraevoy, V. & Sheffer, A. (2005). Template-based mesh completion. In

Symposium on Geometry Processing , 13–22. 19

Kraevoy, V., Sheffer, A. & Gotsman, C. (2003). Matchmaker: construct-

ing constrained texture maps. ACM Trans. Graph., 22, 326–333. 49

Kutulakos, K.N. & Seitz, S.M. (2000). A theory of shape by space carving.

Int. J. Comput. Vision, 38, 199–218. 17

Lee, A., Moreton, H. & Hoppe, H. (2000). Displaced subdivision surfaces.

In Proc. ACM SIGGRAPH , 85–94. 107

Lévy, B. (2001). Constrained texture mapping for polygonal meshes. In SIG-

GRAPH , 417–424. 48, 49

Lévy, B. (2003). Dual domain extrapolation. ACM Transactions on Graphics ,

22, 364–369. 19

Lévy, B., Petitjean, S., Ray, N. & Maillot, J. (2002). Least squares

conformal maps for automatic texture atlas generation. ACM Transactions on

Graphics , 21, 362–371. 48

Li, H., Adams, B., Guibas, L.J. & Pauly, M. (2000). Robust single view

geometry and motion reconstruction. In ACM Transactions on Graphics (SIG-

GRAPH ASIA). 20, 76

164

REFERENCES

Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C. & Seidel,

H.P. (2004). Differential coordinates for interactive mesh editing. In Proc. of

Shape Modeling International , 181–190. 22, 23

Lipman, Y., Sorkine, O., Levin, D. & Cohen-Or, D. (2005). Linear

rotation-invariant coordinates for meshes. ACM Transactions on Graphics , 24,

479–487. 22

Lipman, Y., Cohen-Or, D., Ran, G. & Levin, D. (2007). Volume and shape

preservation via moving frame manipulation. ACM Transactions on Graphics ,

26. 22

Lowe, D. (1999). Object recognition from local scale-invariant features. In Proc.

ICCV , 1150–1157. 82, 121, 142

Matusik, W., Buehler, C., Raskar, R., Gortler, S. & McMillan, L.

(2000). Image-based visual hulls. In ACM TOG (Proc. SIGGRAPH’00). 29

Menache, A. (1999). Understanding Motion Capture for Computer Animation

and Video Games . Morgan Kaufmann. 27

Meyer, M., Desbrun, M., Schröder, P. & Barr, A. (2002). Discrete

differential-geometry operators for triangulated 2-manifolds. In Proc. VisMath,

35–57. 37

Moeslund, T.B., Hilton, A. & Krüger, V. (2006). A survey of advances

in vision-based human motion capture and analysis. Comput. Vis. Image Un-

derst., 104, 90–126. 28, 80

Müller, M. (2008). Hierarchical position based dynamics. In Proc. VRIPhys .

150

Müller, M., Heidelberger, B., Hennix, M. & Ratcliff, J. (2007). Po-

sition based dynamics. J. Vis. Comun. Image Represent., 18, 109–118. 138,

139

Nealen, A., Sorkine, O., Alexa, M. & Cohen-Or, D. (2005). A sketch-

based interface for detail-preserving mesh editing. In Proc. ACM SIGGRAPH ,

1142–1147. 22

NVidia (2009). Physx simulation framework. http://www.nvidia.com. 140

165

http://www.nvidia.com

REFERENCES

Park, S.I. & Hodgins, J.K. (2008). Data-driven modeling of skin and muscle

deformation. ACM TOG (Proc. SIGGRAPH’08). 30

Pauly, M., Mitra, N.J., Giesen, J., Gross, M. & Guibas, L. (2005).

Example-based 3d scan completion. In Symposium on Geometry Processing ,

23–32. 3, 20, 61, 76

Pérez, P., Gangnet, M. & Blake, A. (2003). Poisson image editing. ACM

Transactions on Graphics , 22, 313–318. 22

Phasespace (2009). Motion capture systems. http://www.phasespace.com. 28

Pinkall, U. & Polthier, K. (1993). Computing discrete minimal surfaces and

their conjugates. Experiment. Math., 2, 15–36. 37

Popa, T., Julius, D. & Sheffer, A. (2007). Interactive and linear material

aware deformations. International Journal of Shape modeling . 23

Popa, T., Zhou, Q., Bradley, D., Kraevoy, V., Fu, H., Sheffer, A.

& Heidrich, W. (2009). Wrinkling captured garments using space-time data-

driven deformation. Computer Graphics Forum (Proc. Eurographics), 28. 90

Poppe, R. (2007). Vision-based human motion analysis: An overview. CVIU ,

108, 4–18. 28, 80

Pritchard, D. & Heidrich, W. (2003). Cloth motion capture. In Proc. Eu-

rographics EG’03 . 132

Provot, X. (1996). Deformation constraints in a mass-spring model to describe

rigid cloth behavior. In Graphics Interface, 147–154. 26

Provot, X. (1997). Collision and self-collision handling in cloth model dedicated

to design garments. In Graphics interface, 177–189. 26

Saba, S., Yavneh, I., Gotsman, C. & Sheffer, A. (2005). Practical spher-

ical embedding of manifold triangle meshes. In International Conference on

Shape Modeling and Applications , 258–267. 49

Sand, P., McMillan, L. & Popović, J. (2003). Continuous capture of skin

deformation. ACM TOG (Proc. SIGGRAPH’03). 29

166

http://www.phasespace.com

REFERENCES

Scholz, V., Stich, T., Keckeisen, M., Wacker, M. & Magnor, M.

(2005). Garment motion capture using color-coded patterns. In Proc. Euro-

graphics EG’05 . 132

Sederberg, T. & Scott, R. (1986). Free-form deformation of solid geometric

models. In Proc. ACM SIGGRAPH , 151–160. 20

Seitz, S.M., Curless, B., Diebel, J., Scharstein, D. & Szeliski, R.

(2006). A comparison and evaluation of multi-view stereo reconstruction al-

gorithms. In IEEE Conference on Computer Vision and Pattern Recognition,

519–528. 17

Selle, A., Su, J., Irving, G. & Fedkiw, R. (2009). Robust high-resolution

cloth using parallelism, history-based collisions, and accurate friction. IEEE

Transactions on Visualization and Computer Graphics , 15, 339–350. 26

Shannon, C.E. (1949). Communication in the Presence of Noise. Proceedings of

the IRE , 37, 10–21. 1

Sharf, A., Alexa, M. & Cohen-Or, D. (2004). Context-based surface com-

pletion. ACM Transactions on Graphics , 23, 878–887. 3, 19, 61

Sheffer, A. & Kraevoy, V. (2004). Pyramid coordinates for morphing and

deformation. In Proc. 3D Data Processing, Visualization, and Transmission,

68–75. 23, 38

Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H. & Guo, B. (2008).

Example-based dynamic skinning in real time. ACM TOG (Proc. SIGGRAPH

’08). 132

Shoemake, K. & Duff, T. (1992). Matrix animation and polar decomposition.

In Proc. of Graphics Interface, 258–264. 45, 102

Si, H. & Gaertner, K. (2005). Meshing piecewise linear complexes by

constrained delaunay tetrahedralizations. In Proc. International Meshing

Roundtable, 147–163. 106, 110

Sorkine, O. (2005). Laplacian mesh processing. In Eurographics STAR, 53–70.

36, 39, 69

167

REFERENCES

Sorkine, O. & Alexa, M. (2007). As-rigid-as-possible surface modeling. In

Proceedings of the fifth Eurographics symposium on Geometry processing , 109–

116. 24, 98

Sorkine, O. & Cohen-Or, D. (2004). Least-squares meshes. International

Conference on Shape Modeling and Applications , 191–199. 50

Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C. & Sei-

del, H.P. (2004). Laplacian surface editing. In Proc. Symposium on Geometry

Processing , 179–188. 22, 43, 70

Starck, J. & Hilton, A. (2007). Surface capture for performance based ani-

mation. IEEE CGAA, 27(3), 21–31. 29, 79

Stoll, C., Karni, Z., Rössl, C., Yamauchi, H. & Seidel, H.P. (2006a).

Template deformation for point cloud fitting. In Symposium on Point-Based

Graphics , 27–35. 5, 8, 23, 33, 61, 67, 154

Stoll, C., Karni, Z. & Seidel, H.P. (2006b). Geodesics guided constrained

texture deformation. In Pacific Graphics , vol. 14, 144–152. 5, 8, 23, 33, 47, 55,

154

Stoll, C., de Aguiar, E., Theobalt, C. & Seidel, H.P. (2007). A volu-

metric approach to interactive shape editing. Research Report MPI-I-2007-4-

004, Max-Planck-Institut für Informatik. 6, 9, 24, 95, 109, 117, 118, 122, 154,

155

Stoll, C., Gall, J., de Aguiar, E., Seidel, H.P., Thrun, S. &

Theobalt, C. (2009). Optical reconstruction of detailed animatable human

body models. Research Report MPI-I-2009-4-006, Max-Planck-Institut für In-

formatik. 7, 9, 127, 129, 148, 155

Sumner, R.W. & Popovic, J. (2004). Deformation transfer for triangle

meshes. In Proc. ACM SIGGRAPH , 399–405. 23, 104

Sumner, R.W., Zwicker, M., Gotsman, C. & Popovic, J. (2005). Mesh-

based inverse kinematics. In Proc. ACM SIGGRAPH , 488–495. 24

Sumner, R.W., Schmid, J. & Pauly, M. (2007). Embedded deformation for

shape manipulation. In ACM Transactions on Graphics , 80. 24, 113

168

REFERENCES

Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J. & Hoppe,

H. (2005). Fast exact and approximate geodesics on meshes. ACM Transactions

on Graphics , 24, 553–560. 52

Taubin, G. (1995). A signal processing approach to fair surface design. In SIG-

GRAPH , 351–358. 37

Terzopoulos, D. & Fleischer, K. (1988). Modeling inelastic deformation:

viscolelasticity, plasticity, fracture. In Proceedings ACM SIGGRAPH , 269–278.

25

Terzopoulos, D. & Vasilescu, M. (1991). Sampling and reconstruction with

adaptive meshes. In IEEE Computer Vision and Pattern Recognition, 70–75.

19

Thomaszewski, B., Pabst, S. & Straer, W. (2009). Continuum-based

strain limiting. Computer Graphics Forum, 28, 569–576. 26

Varady, T., Martin, R.R. & Cox, J. (1997). Reverse engineering of

geometric-models: An introduction. Computer-Aided Design, 29, 255–268. 19

Vicon (2009). Motion capture systems. http://www.vicon.com. 28

Vlasic, D., Baran, I., Matusik, W. & Popović, J. (2008). Articulated

mesh animation from multi-view silhouettes. ACM TOG (Proc. SIGGRAPH

’08). 30, 130

Volino, P., Cordier, F. & Magnenat-thalmann, N. (2005). From early

virtual garment simulation to interactive fashion design. Computer-Aided De-

sign, 37, 593–608. 25

von Funck, W., Theisel, H. & Seidel, H.P. (2006). Vector field based

shape deformations. In Proc. ACM SIGGRAPH , 1118–1125. 24

Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L. &

Schilling, A. (2007). Reconstruction of deforming geometry from time-

varying point clouds. In Proc. SGP , 49–58. 20, 76, 156

Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M.,

Jenke, P., Guibas, L., Seidel, H.P. & Schilling, A. (2009). Efficient

reconstruction of nonrigid shape and motion from real-time 3d scanner data.

ACM Transactions on Graphics , 28, 1–15. 20, 76, 156

169

http://www.vicon.com

REFERENCES

Wang, R.Y. & Popović, J. (2009). Real-time hand-tracking with a color glove.

ACM Trans. Graph., 28, 1–8. 156

Waschbüsch, M., Würmlin, S., Cotting, D., Sadlo, F. & Gross, M.

(2005). Scalable 3D video of dynamic scenes. In Proc. Pacific Graphics , 629–

638. 29

White, R., Crane, K. & Forsyth, D. (2007). Capturing and animating

occluded cloth. In ACM TOG (Proc. SIGGRAPH’07). 132

Wiktionary (2009). Template. http://en.wiktionary.org/wiki/template.

2

Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q. & Guo, B. (2007). Gradient

domain editing of deforming mesh sequences. In ACM TOG (Proc. SIGGRAPH

’07). 124

Yoshizawa, S., Belyaev, A.G. & Seidel, H.P. (2003). Free-form skeleton-

driven mesh deformations. In Proc. Symposium on Solid modeling and applica-

tions , 247–253. 107

Yoshizawa, S., Belyaev, A. & Seidel, H.P. (2007). Skeleton-based varia-

tional mesh deformations. Computer Graphics Forum (Proc. EUROGRAPH-

ICS), 26, 255–264. 23

Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B. & Shum, H.Y.

(2004). Mesh editing with poisson-based gradient field manipulation. In Pro-

ceedings ACM SIGGRAPH , 644–651. 22, 23, 99, 113

Zayer, R., Rössl, C., Karni, Z. & Seidel, H.P. (2005). Harmonic guidance

for surface deformation. In Proceedings Eurographics , 601–609. 23, 43, 51, 103

Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B. & Shum,

H.Y. (2005). Large mesh deformation using the volumetric graph laplacian. In

Proc. ACM SIGGRAPH , 496–503. 22

Zigelman, G., Kimmel, R. & Kiryati, N. (2002). Texture mapping using

surface flattening via multidimensional scaling. IEEE Transactions on Visual-

ization and Computer Graphics , 8, 198–207. 54

170

http://en.wiktionary.org/wiki/template

REFERENCES

Zitnick, C.L., Kang, S.B., Uyttendaele, M., Winder, S. & Szeliski,

R. (2004). High-quality video view interpolation using a layered representation.

ACM TOG (Proc. SIGGRAPH ’04). 29

171

	1 Introduction
	1.1 Overview
	1.2 Contributions and structure
	1.3 List of publications

	2 Fundamentals
	2.1 Basic data structures
	2.1.1 3D objects and their representations
	2.1.2 Images and videos

	2.2 Scanning and surface reconstruction
	2.2.1 3D scanning
	2.2.2 Surface reconstruction

	2.3 Shape editing
	2.3.1 Linear methods
	2.3.2 Non-linear methods

	2.4 Physical simulation
	2.4.1 Cloth simulation

	2.5 Performance capture
	2.5.1 Motion capture
	2.5.2 3D video
	2.5.3 Performance capture

	I Differential coordinate based shape processing using surfaces
	3 A deformation framework for triangle mesh based templates
	3.1 Differential representation
	3.2 Reconstruction and deformation
	3.2.1 Constraint types
	3.2.2 Harmonic interpolation
	3.2.3 Rotational invariance

	4 Inverse texture mapping
	4.1 Initial deformation
	4.2 Surface Matching
	4.3 Results
	4.4 Discussion

	5 Template based shape reconstruction
	5.1 Experimental setup
	5.2 Initial deformation and global scaling
	5.3 Iterative improvement
	5.4 Results
	5.5 Extensions
	5.5.1 Laplacian updating
	5.5.2 Remeshing
	5.5.3 Surface fairing
	5.5.4 Results

	5.6 Discussion

	6 Surface based animation and performance capture
	6.1 Data acquisition
	6.2 Animation and tracking
	6.2.1 Results

	6.3 Model refinement
	6.3.1 Silhouette refinement using positional constraints
	6.3.2 Silhouette refinement using line constraints
	6.3.3 Multi-view stereo refinement
	6.3.4 Results

	6.4 Discussion

	II Differential coordinate based shape processing using volumetric data
	7 A deformation framework for tetrahedral meshes
	7.1 Differential representation
	7.2 Iterative mesh deformation
	7.2.1 Iterative processing
	7.2.2 Controlling deformation behavior
	7.2.3 Constraint refinement

	7.3 Processing high resolution meshes

	8 Shape editing
	8.1 Interactive mesh editing
	8.2 Results
	8.3 Discussion

	9 Animation and performance capture with tetrahedral meshes
	9.1 Animation from marker trajectories
	9.2 Performance capture
	9.3 Discussion

	III Physically based template shape processing
	10 Optical reconstruction of animatable human body models
	10.1 Experimental setup
	10.2 Performance capture
	10.3 Cloth segmentation
	10.4 Estimating hidden geometry
	10.5 Cloth simulation
	10.6 Combining simulation and reference performance
	10.7 Parameter optimization
	10.8 Results and validation
	10.8.1 Segmentation and Cloth Parameter Estimation
	10.8.2 User Study
	10.8.3 Creating New Animations
	10.8.4 Performance

	10.9 Discussion

	11 Conclusions and future work
	References

