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Summary in English

Graph clustering methods are defined for general weighted graphs. If data is given
in the form of points and distances between them, a neighborhood graph, such as the
r-graph or kNN-graphs, is constructed and graph clustering is applied to this graph.
We investigate the influence of the type and parameter of the neighborhood graph on
the clustering results, when n sample points are drawn independently from a density
in Euclidean space.
In Chapter 2 we study “cluster identification”: the true clusters are the connected com-
ponents of density level sets and a cluster is identified if its points are a connected
component of the graph. We compare (modifications of) the mutual and the symmetric
kNN-graph. They behave differently if the goal is to identify the “most significant”
clusters, whereas there is no difference if the goal is to identify all clusters. We give
the range of k for which the clusters are identified in the graphs and derive the optimal
choice of k, which, surprisingly, is linear in n.
In Chapter 3 we study the convergence of the normalized cut (Ncut) and the ratio cut as
n→ ∞ for cuts in the kNN- and the r-graph induced by a hyperplane. The limits differ;
consequently Ncut on a kNN-graph does something systematically different than Ncut
on an r-graph! This can be experimentally observed on toy and real data sets. Therefore,
graph clustering criteria cannot be studied independently of the type of graph to which
they are applied.
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Zusammenfassung in deutscher Sprache

Graphclustering ist für gewichtete Graphen definiert. Liegen Daten jedoch in Form von
Punkten und Abständen zwischen ihnen vor, wird zuerst ein Nachbarschaftsgraph wie
der r-Graph oder kNN-Graphen konstruiert, auf den dann Graphclustering angewandt
wird. In dieser Arbeit wird der Einfluss des Nachbarschaftsgraphen auf die Clustering-
ergebnisse untersucht, wenn n Punkte unabhängig voneinander von einer Dichte im
euklidischen Raum gezogen werden.
In Kapitel 2 wird das Problem der “Clusteridentifizierung” betrachtet: die Cluster sind
die Zusammenhangskomponenten einer Dichteniveaumenge. Ein Cluster wird identi-
fiziert, wenn seine Punkte eine Zusammenhangskomponente des Graphen bilden. Mo-
difikationen verschiedener kNN-Graphen werden verglichen. Sollen nur die “signifi-
kantesten” Cluster gefunden werden, unterscheidet sich ihr Verhalten, nicht jedoch für
die Identifizierung aller Cluster. Es wird gezeigt, für welche k die Cluster identifiziert
werden und dass die optimale Wahl von k linear in n ist.
In Kapitel 3 wird die Konvergenz der Kriterien “normalized cut” (Ncut) und “ratio
cut” für Schnitte im kNN- und r-Graphen, die von einer Hyperebene induziert werden,
gezeigt. Die Grenzwerte unterscheiden sich. Folglich bewirkt Ncut auf einem kNN-
Graphen etwas anderes als Ncut auf einem r-Graphen. Dieser Effekt kann experimen-
tell beobachtet werden. Daraus folgt, dass Graphclusteringkriterien nicht getrennt vom
Graphtyp betrachtet werden können.
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1 Introduction

Some of the most successful clustering algorithms described in the literature are graph
clustering algorithms, which find meaningful subgraphs of a given graph. However,
we often deal with data that is given in the form of sample points and distances or
similarities between them. This is the case, for example, for points sampled from some
probability distribution in an underlying metric space. In order to apply graph clus-
tering algorithms in such a setting we first have to construct a graph on the points
that reflects the similarity or dissimilarity between them, for example a neighborhood
graph. We refer to clustering methods that consist of the construction of a neighborhood
graph and the subsequent application of a graph clustering algorithm as graph-based
clustering methods.
In machine learning different types of neighborhood graphs (for example, the r-neigh-
borhood graph or the k-nearest neighbor graph) are used, and in the construction of
each graph a neighborhood parameter must be chosen (r or k, respectively). There-
fore, it is vital to investigate how the choices of the graph type and of the parameter
influence the overall results of a method based on neighborhood graphs. In fact, un-
derstanding this relationship is even more important in the domain of unsupervised
learning, including clustering, than in the domain of supervised learning, since in the
former domain we cannot use cross-validation to select the graph type and the pa-
rameter. However, for clustering neither empirical studies have been conducted (for
example: how sensitive are the results to the graph parameters?), nor do theoretical
results exist which lead to well-justified heuristics — rather different researchers use
their “gut feeling” to set these parameters. Therefore it is an essential line of research
to analyze the interplay between the choice of neighborhood graph type and its param-
eter and the performance of graph-based clustering algorithms. The final goal of this
research is to develop a theoretically sound procedure to choose the graph type and the
parameter according to the properties of the desired clustering and to the properties of
the distribution of the sample points.
In this thesis we analyze the behavior of different neighborhood graphs and choices
of parameter in two graph-based clustering settings. In the following section we give
an introduction to graph clustering in general as well as to spectral clustering, one of
the most important graph clustering methods. We present the setting of the cluster-
ing of points from a density in Euclidean space in which we will apply graph-based
clustering methods. In this setting it is possible to study the consistency of a clustering
method. We shortly introduce different notions of clustering consistency, since these
give hints on which quantities to consider in order to estimate how well an algorithms
works. In Section 1.2 we give an overview over different types of neighborhood graphs
and present some literature that is interesting for the study of neighborhood graphs in
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1 Introduction

clustering. In Section 1.3 we provide an overview of the results in this thesis. Finally, in
Section 1.4 we introduce some formal definitions and notations that will be important
for the rest of this thesis.

1.1 Clustering

Clustering is one of the most important techniques for exploratory data analysis and is
used in a wide range of disciplines, such as biology, medicine, psychology, marketing
and the social sciences. Interestingly, the study of modern clustering methods began
with work in biological taxonomy (see Jardine and Sibson [50]). Hartigan [41] defines
clustering as “the grouping of similar objects”; according to Jain and Dubes [49] clus-
tering is “the unsupervised classification of patterns into groups”.
Although clustering is an important problem in many areas of application a general
theory of clustering has not yet been developed. Indeed, little is known about the the-
oretical properties of clustering (von Luxburg and Ben-David [86]; refer to this work
also for some of the challenges in clustering theory). In Kleinberg [51] a set of axioms
for clustering functions that are “independent of any particular algorithm, objective
function, or generative data model” is suggested. However, it is shown that, although
each of the axioms sounds plausible, there cannot exist a clustering function that satis-
fies all of them. From this result often the conclusion is drawn that it is impossible to
develop a general theory of clustering, without referring to a “particular algorithm, ob-
jective function, or generative data model”, although not all authors share this opinion
(see Ackerman and Ben-David [1]).
The problem of the ill-definedness of clustering can be circumvented by formalizing
clustering as the optimization of a clustering quality measure. A clustering quality
measure is “a function that, given a data set and its partition into clusters, returns
a non-negative real number representing how strong or conclusive the clustering is”
(Ackerman and Ben-David [1]). The goal of a clustering algorithm is to find the cluster-
ing that optimizes the clustering quality measure. However, for most clustering quality
measures used in practice the optimal clustering cannot be efficiently computed. A dis-
cussion of the desirable properties of clustering quality measures, an axiomatization
and several examples can be found in Ackerman and Ben-David [1].
In this thesis two clustering scenarios will be of special importance: graph clustering,
that is, the clustering of graphs into subgraphs, and the clustering of points drawn from
a density in Euclidean space. In particular, we study the application of graph clustering
algorithms to neighborhood graphs that are constructed on points from a density in
Euclidean space.

Graph clustering In graph clustering we assume that we are given a graph consisting
of a set of vertices and a set of (possibly weighted) edges between them. The goal
is to find a clustering of the nodes, that is, a partition of the nodes into meaningful
subgraphs. Note that graph clustering in this sense should not be confused with the
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1.1 Clustering

clustering of sets of graphs. A review of the principles and methods of graph clustering
is given in Schaeffer [77].
Graph clustering is often based on the fundamental paradigm of intra-cluster density
versus inter-cluster sparsity (see Gaertler [36]). The ideal case of a clustering would
be disjoint cliques with only few connections between each other. This trade-off be-
tween intra-cluster density and inter-cluster sparsity is reflected in many graph cluster-
ing quality measures, such as Coverage, Conductance and Performance. An overview
of common graph clustering quality measures is given in Gaertler [36], many of which
rely on the cut in order to quantify “inter-cluster sparsity”. The cut of a partition into
two subgraphs is defined as the sum of the weights of the edges from one subgraph
to the other. That is, the lower the cut of a cluster, the better it is in terms of “inter-
cluster sparsity”. However, the cut does not measure “intra-cluster density” and it is
typically minimized by very unbalanced partitions, for example cutting off just one
vertex. Therefore, a suitable graph clustering quality measure has to compensate for
this effect by penalizing partitions with “low intra-cluster density” or by penalizing
unbalanced partitions. A cluster has a low “intra-cluster density” if, for example, the
ratio of the number of edges in the cluster and the maximally possible number of edges
between the points in the cluster (that is, the number of edges in the complete graph
with the same number of points) is low. A partition is unbalanced if, for example, the
distribution of vertices between the partitions is uneven, or if the total weight of edges
originating in a certain partition differs much between partitions. Combining the cut
with slight variations of these measures of “balancedness” leads to the graph cluster-
ing quality measures Conductance, Ncut and RatioCut. Having such a graph clustering
quality measure we would ideally find a clustering by optimizing the quality measure
over all possible clusterings. However, most of the relevant clustering quality mea-
sures, such as the Conductance, Ncut and RatioCut cannot be efficiently optimized
(see Šı́ma and Schaeffer [89] and Wagner and Wagner [90]). For some graph clustering
quality measures relying on a variant of the cut, there are efficient approximation algo-
rithms (see, for example, Arora et al. [3], Arora et al. [4], and Fernandez de la Vega et al.
[33]). However, the most popular graph clustering method based on graph cluster-
ing quality measures is spectral clustering, which itself is based on Ncut and RatioCut.
Here the minimization problem is formulated as a discrete optimization problem, the
relaxation of this problem is efficiently solved and the solution is re-transformed to a
discrete indicator vector.
Due to the popularity of spectral clustering we only deal with Ncut and RatioCut
in Chapter 3, although the Conductance has some theoretically appealing properties.
However, the results there can be easily carried over to the Conductance and similar
quality measures. We now give a more detailed review of spectral clustering and its
relation to Ncut and RatioCut.

A Review of Spectral Clustering One of the most popular graph clustering algorithms
is spectral clustering, which is based on the graph clustering quality measures Ncut and
RatioCut. It is simple to implement and can be solved efficiently by standard linear
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1 Introduction

algebra methods. Here we give a short review of spectral clustering for the case of
two clusters, which follows von Luxburg [85]. However, spectral clustering can be
generalized to arbitrary numbers of clusters m.
As mentioned above, the cut can be used in graph clustering quality measures to mea-
sure inter-cluster sparsity. In order to introduce a balancedness constraint we can use
the volume vol. These quantities are defined as follows: Given an undirected graph
G = (V, E) with nodes V = {v1, . . . , vn}, edges E and weights w : E → R, and a
partition of the nodes V into (C, V \ C) we define

cut(C, V \ C) = ∑
u∈C,v∈V\C

(
w(u, v) + w(v, u)

)
and vol(C) = ∑u∈C,v∈V w(u, v) .
Based on these two elements we define the graph clustering quality measures

Ncut(C, V \ C) = cut(C, V \ C)
(

1
vol(C)

+
1

vol(V \ C)

)
or “normalized cut” and

RatioCut(C, V \ C) = cut(C, V \ C)
(

1
|C| +

1
|V \ C|

)
.

Unfortunately, contrary to the computation of the minimum cut, the optimization of
Ncut and RatioCut cannot be computed efficiently (see Wagner and Wagner [90]). How-
ever, the problem minC⊆V Ncut(C, V \ C) can be shown to be equivalent, up to a con-
stant factor of two, to the discrete optimization problem

min
C

f ′L f (1.1)

subject to f = ( f1, . . . , fn) with fi =


√

vol(V\C)
vol(C) if vi ∈ C

−
√

vol(V\C)
vol(C) if vi /∈ C

D f ⊥ 1
f ′D f = vol(V),

where D = diag(d1, . . . , dn) with di = ∑n
j=1 wij, L = D −W with W = ((wij))i,j the

weight matrix, and 1 ∈ Rn the vector with all entries 1. The matrix L is called the
unnormalized graph Laplacian. Similarly, the problem minC⊆V RatioCut(C, V \ C) can
be formulated as

min
C

f ′L f (1.2)

subject to f = ( f1, . . . , fn) with fi =


√ |V\C|

|C| if vi ∈ C

−
√ |V\C|

|C| if vi /∈ C

f ⊥ 1

‖ f ‖ =
√

n.
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1.1 Clustering

Of course, these discrete optimization problems still cannot be solved efficiently. The
idea in spectral clustering is to relax the integrality condition and solve for the optimal
vector f ∈ Rn, which can be computed efficiently by linear algebra methods, namely
by solving a (generalized) eigenvalue problem involving the graph Laplacian matrix L.
In a final step, the real-valued solution vector f of the relaxed problem has to be re-
transformed into a discrete indicator vector. In the case of two clusters the simplest
way is to use the sign of f as the indicator function, that is, to put the nodes vi with
fi < 0 into one cluster and to put the nodes vi with fi ≥ 0 into the other cluster. A
heuristic improvement is the “best threshold cut algorithm”: The vertices are sorted
according to their f -values. For each index j = 1, . . . , n− 1 we compute the Ncut- or
RatioCut-value of the cut given by a splitting of the vertices into those with sorted index
≤ j and those with sorted index > j. The split that provides the best Ncut- or RatioCut-
value is chosen. Another variant to obtain a discrete indicator vector considers the
coordinates of fi as points in R and clusters them into two groups using the k-means
algorithm. This variant can be adapted to the case of more than 2 clusters and is used
in the experiments in Chapter 3.
Spectral clustering based on the normalized cut objective, that is, the optimization prob-
lem in Equation (1.1), is called “normalized spectral clustering” algorithm, whereas the
spectral algorithm based on the RatioCut objective, that is, the optimization problem in
Equation (1.2), is called “unnormalized spectral clustering” algorithm. The consistency
of normalized spectral clustering was shown in von Luxburg et al. [87].
Although spectral clustering works well in practice there are no constant-factor approx-
imation guarantees: Guattery and Miller [40] introduce the so-called “roach graphs” as
an example where spectral clustering using the sign of the elements of f to assign the
nodes to clusters performs badly: For a roach graph with n nodes the ratio of the best
cut found by spectral clustering and the optimal cut is (up to a constant) lower bounded
by n. If we use spectral clustering with the best threshold cut, we achieve a constant
factor approximation on the roach graphs. However, on the so-called tree-cross-path
graphs, which were introduced in Guattery and Miller [40] as well, the ratio of the best
cut found by the best threshold cut algorithm and the optimal cut is (up to a constant)
lower bounded by 3

√
n, where n again denotes the number of vertices. Furthermore, it

is shown in the same paper that any spectral algorithm that chooses a threshold t and
puts the nodes with fi < t into one cluster and the nodes with fi ≥ t into the other
cluster cannot achieve a better quotient than 3

√
n in the worst case, no matter how the

threshold t is computed.
Bühler and Hein [17] present a generalized version of spectral clustering that uses the
graph p-Laplacian instead of the standard graph Laplacian. It is shown that for p → 1
this algorithm converges to the cut with minimum Conductance, which is bounded by
twice the minimum of the normalized cut. In experiments the results of this algorithm
are often better than that of standard spectral clustering, but it is numerically much
more involved.
Recently, there has been some interest in spectral properties of directed graphs (see, for
example, Chung [21]) and spectral clustering methods for these (see Meila and Pentney
[62]). However, in this thesis we apply spectral clustering only to undirected graphs.
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1 Introduction

When does graph clustering work? One way to study how well a given clustering
method works is to define a clustering quality measure and show that the clusterings
found by the method are sufficiently close to the optimal value of the quality measure
achievable on the given data. If the graph clustering algorithm itself is based on a
different quality measure, this approach seems inconsistent. However, there is some
influential work where this approach is used.
In Vempala et al. [84] the clustering quality measure that is proposed compares the
minimal conductance within a cluster with the ratio of the weight of inter-cluster and
intra-cluster edges. They present worst case guarantees for the clusterings found by a
variant of spectral clustering, and show that if there is a good clustering with respect
to the proposed measure, this algorithm will find a close approximation. Spielman and
Teng [80] consider the ratio of vertices removed to edges cut as the clustering qual-
ity measure. They show that this measure is bounded for the clusterings found by
some variant of spectral clustering on bounded-degree planar graphs and finite ele-
ment meshes. In Bilu and Linial [11] the notion of stability of a clustering instance is
introduced: an instance is stable if the optimal clustering does not change when the
instance is slightly perturbed. It is shown that a spectral heuristic can approximate the
maximum cut partition well if the instance is sufficiently stable. It is presumably possi-
ble that this kind of analysis could be carried over to other clustering quality measures
that use some variant of the cut.
Of course, if the clustering algorithm relies on the approximate minimization of a clus-
tering quality measure and the approximation factor is known, this gives a trivial bound
on the worst-case difference between the optimal clustering and the clustering found
by the approximation algorithm (in terms of the clustering quality measure). How-
ever, it is usually difficult to interpret what such an approximation factor means for
the computed clustering. For spectral clustering it is known that it does not provide a
constant-factor approximation to the original problem of optimizing Ncut or RatioCut.
We refer the reader to the discussion in the review of spectral clustering above.

Graph-based clustering In machine learning, graph clustering algorithms are often
applied to data which does not possess an inherent graph structure, but rather con-
sists of points together with corresponding pairwise distance or similarity values. In
this case, we perform two steps: First, the similarity information is used to construct a
neighborhood graph on the data points, and then a graph clustering algorithm is ap-
plied to this neighborhood graph. We call this procedure graph-based clustering. In the
following paragraph we introduce the clustering scenario of the clustering of points
from a probability distribution in Euclidean space. In the rest of this thesis we will
study graph-based clustering in this setting.

Clustering of points from a probability distribution in Euclidean space One of the
most important clustering scenarios considered in machine learning is the clustering
of points drawn from some probability distribution in a metric space. In this thesis
we only consider the Euclidean space and probability distributions that have a density
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1.1 Clustering

with respect to the Lebesgue measure. In this scenario we assume that there is a “true
clustering” of the underlying space that depends on the probability distribution. For
example, if the support of the density consists of two balls with unit radius and positive
distance from each other, we would intuitively claim that the “true clustering” would
be to put the points of one ball into one cluster and the points of the other ball into the
other cluster respectively. Having such a ground truth for clustering opens the door to
the study of questions of consistency for clustering algorithms. However, it is not easy
to define formally what true clusterings are.
In this thesis we consider two approaches of how to define a “true clustering” if the
probability distribution is given by a density: In the first approach we consider the con-
nected components of the set of all points where the density exceeds a certain threshold
level as the “true clusters”, and call these high-density clusters (also denoted in the litera-
ture as density-contour clusters or population clusters). In this approach only the level
set parameter has to be chosen to define the clusters; however, it is not clear how to set
this parameter. Note that in general in this clustering model not all the sample points
belong to a high-density cluster. Rather there is a distinction between “background
noise” and “interesting data”, which offers the possibility to account for a foreground-
background structure in the data. On the other hand, in many applications it is not
desirable to have points which are not assigned to a cluster.
The second approach is to define a true clustering as a partition of the whole space,
namely each point of the space belongs to exactly one part of the partition. Here, each
sample point lies in exactly one true cluster. However, the partition of the space given
the density is not obvious, although there are some intuitive notions of a good bound-
ary between clusters, for example that it cuts through regions of low density rather
than through regions of high density. This can be formalized by introducing a quality
measure on a subset of the partitions of the space and define the true clustering as the
partition out of this set that minimizes the quality measure.
Another approach to the clustering of points from a density, which will not be used in
this thesis, is model-based clustering. In the easiest case, it is assumed that the true
density can be represented as a mixture of Gaussians, where each Gaussian defines
a cluster. Clustering then is the estimation of the mixture parameters. The number of
clusters may be estimated by comparing different mixtures using a criterion such as the
Bayes information criterion (BIC) for model selection. For an overview of model-based
clustering and extensions to this framework, see, for example, Banfield and Raftery [7]
and Fraley and Raftery [35].

Clustering consistency in this setting In this thesis we want to investigate how well
graph-based clustering algorithms work when different types of neighborhood graphs
or parameter choices are used. Having a notion of a “true clustering” makes it pos-
sible to evaluate the performance of clustering algorithms by studying, for example,
questions of consistency.
Intuitively, consistency means that for more and more sample points the empirical clus-
ters become infinitesimally close to the true clusters. However, the exact definition
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1 Introduction

of clustering consistency depends on the definition of true clustering we use and the
meaning of the term consistency is surprisingly inconsistent in the literature. In the
following we first study notions of consistency for the high-density cluster definition
and then for the definition of clusters as partitions of the space.
Formally, a “true clustering” of d-dimensional Euclidean space Rd with probability
measure µ defines the

• true clusters C(1), . . . , C(m) ⊆ Rd as subsets of Rd with µ(C(i) ∩ C(j)) = 0 for all
i, j = 1, . . . , m; i 6= j. Using the high-density cluster model the true clusters are
the connected components of the level set of the density and the union of the true
clusters in general does not cover the support of µ. In the definition of clustering
as a partition of the space the true clustering is often given as the partition that
minimizes a clustering quality measure on partitions of the space.

Applying a clustering algorithm on a finite set of sample points x1, . . . , xn sampled from
the distribution µ we obtain either empirical or sample clusters:

• Empirical clusters Ĉ(1)
n , . . . , Ĉ(m′)

n ⊆ Rd are subsets of Rd whose pairwise intersec-
tion is a set of measure zero. If the true clustering is given as a partition of the
space, the empirical clusters form a partition of Rd as well.

• Sample clusters C̃(1)
n , . . . , C̃(m′)

n are pairwise disjoint subsets of the sample points.
In the high-density cluster model not all sample points belong to a sample cluster,
but there are also background points, whereas all sample points belong to exactly
one sample cluster in the partition model.

If the algorithm computes empirical clusters we assume that the sample clusters are the
intersection of the empirical clusters and the sample points: C̃(i)

n = Ĉ(i)
n ∩ {x1, . . . , xn}

for i = 1, . . . , m′. Conversely, it is not as simple to obtain reasonable empirical clusters
from sample clusters (see discussion below).
In the high-density cluster model a definition of consistency must take into account
that there could be sample points that do not belong to any of the true clusters. In
the influential paper by Hartigan [42] on the consistency of single-linkage clustering,
these points are ignored in the sense that it does not matter with respect to consistency
whether a sample cluster contains such points and how many of them.
Hartigan [42] defines “full consistency” to be the property that with probability 1 as
the sample size tends to infinity, for each “true” high-density cluster there is a sample
cluster containing all of its sample points, and the sample clusters are mutually dis-
joint. The weaker property of “fractional consistency” is defined to be the property,
that asymptotically, there will be two disjoint sample clusters that include a positive
fraction of the sample points in the “true” high-density clusters. Wong and Lane [95]
define “strong set consistency” for a hierarchical clustering: If, for each sample size, we
choose the smallest sample clusters that contain all the sample points of the true high-
density clusters, then almost surely for all but finitely many sample sizes the sample
clusters are disjoint. Accordingly, we have “weak set consistency” if we replace “al-
most surely” by “with probability approaching one”. Basically, set consistency is the
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full consistency of Hartigan [42], where the choice of the hierarchy level is built in into
the definition of consistency. Note that all the notions of consistency defined here only
compare the true clusters and the sample clusters — there is no need to estimate the
empirical clusters from the sample.
A special case of high-density clusters is the situation, where the support of the density
consists of finitely many connected subsets having positive distance from each other
and where we assume that the density is bounded away from zero on its support. Then
the connected components of the support correspond to the high-density clusters if we
set the density level to the infimum of the density on its support. In Chapter 2 we call
this setting the “noise-free case” because the assumptions cannot hold if we disturb
even a very well-behaved density (such as the uniform density on a ball) by Gaussian
noise. If we can show “full consistency” in this setting for the appropriate density level
parameter, namely the infimum of the density on its support, then the points of each
high-density cluster form exactly one empirical cluster and there does not exist any
sample point not belonging to a high-density cluster.
When we use the definition of the true clustering as a partition of the space the situation
becomes even more diverse than in the high-density cluster model. In the following
analysis if the number m′ of empirical or sample clusters is smaller than the number m
of true clusters, we set the empirical clusters Ĉ(i)

n = ∅ and the sample clusters C̃(i)
n = ∅

for i = m′ + 1, . . . , m.
If the clustering algorithm under consideration estimates the empirical clusters we can
use a distance measure between partitions of the space which can account for the prob-
ability distribution to compare clusterings. One possibility for such a distance mea-
sure would be the probability mass in the symmetric difference of the true and the
empirical cluster, where the symmetric difference of two sets A and B is defined as
A∆B = (A \ B) ∪ (B \ A). That is, a clustering algorithm is said to be consistent if
we can order the empirical clusters for each sample size in such a way, that for all
i = 1, . . . , m we have

µ
(

C(i)∆Ĉ(i)
n

)
→ 0 (1.3)

for n → ∞. Note here, that it is not necessary that m = m′, since the probability in all
empirical clusters Ĉ(i)

n that do not correspond to a true cluster clearly has to approach 0,
since the probability mass in Ĉ(1)

n , . . . , Ĉ(m)
n has to approach one if the condition holds.

Many clustering algorithms do not compute the empirical clusters, but rather the sam-
ple clusters. In order to use the definition of consistency above, we have to extend the
sample clustering to the whole space and thus — at least implicitly — compute empiri-
cal clusters. The extension of the clustering is basically a classification task and we can
use a classifier such as a suitable k-nearest neighbor classifier.
Another way to define clustering consistency is to use only the sample clusters and the
restriction of the true clusters to the sample points. A clustering algorithm is defined to
be consistent if for all i = 1, . . . , m and n→ ∞

1
n

∣∣∣(C(i) ∩ {x1, . . . , xn}
)

∆C̃(i)
n

∣∣∣→ 0. (1.4)
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This definition of consistency seems to be in accordance with the definitions of consis-
tency in the high-density cluster case, where the consistency of an algorithm depended
only on the sample clusters. However, it would be interesting to investigate the rela-
tionship between this definition and the definition above: Suppose, for example, that
the empirical clusters are computed by extending the sample clusters to the whole space
using a consistent classifier. Under which conditions does consistency in the sense of
Equation (1.4) imply consistency in the sense of Equation (1.3) then?
For clustering algorithms based on the optimization of a clustering quality measures
that is defined on partitions of the space it is possible to define consistency through the
convergence of the clustering quality measure as in von Luxburg et al. [88] and Bubeck
and von Luxburg [16]. If Q denotes the quality measure, that is Q({C(1), . . . , C(m)})
denotes the value of the quality measure for the partition of the space into C(1), . . . , C(m),
then a clustering algorithm that computes empirical clusters is consistent, if

Q
(
{Ĉ(1)

n , . . . , Ĉ(m′)
n }

)
→ Q

(
{C(1), . . . , C(m)}

)
for n→ ∞, where C(1), . . . , C(m) are the clusters of the optimal partition according to Q.
A similar idea is used in Pollard [72] to show the consistency of k-means clustering. The
k-means algorithm is special in the sense, that it automatically computes both, sample
clusters and empirical clusters. Here, the possible partitions of the space are restricted
to the set of all Voronoi partitions of at most k points. A quality measure that takes into
account the density is defined on the partitions (that is, on the k center points). For each
finite sample size an estimator of the quality measure is optimized over all partitions.
It is shown that the Voronoi centers of the optimal partition of the estimator converge
almost surely to the centers of the optimal Voronoi partition of the density, and that the
minimum value of the estimator of the quality measure converges almost surely to the
actual minimal value of the quality measure on the density.
As demonstrated, it is interesting to study the relationship between clustering quality
measures defined on the density and the actual clusterings computed by a clustering
algorithm or (ideally) by the minimization of a clustering quality measure on a finite
set of sample points. In Chapter 3 of this thesis we fix a partition of the space and
build certain types of neighborhood graphs on our sample points. We investigate the
limits of Ncut and RatioCut for the cuts in the neighborhood graphs that are induced
by the fixed partition of the space. The neighborhood graphs we use are presented in
the following section.

1.2 Neighborhood Graphs

Using graphs to model real world problems is one of the most widely used techniques
in computer science. This approach usually involves two major steps: building an
appropriate graph which represents the problem in a convenient way, and then con-
structing an algorithm which provides a solution to the problem on the given type of
graph. While in some cases there exists an obvious natural graph structure to model
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the problem, in other cases one has much more choice when constructing the graph. In
this thesis we consider neighborhood graphs, which are a popular choice of graph type
in many applications of computer science.
Neighborhood graphs are random geometric graphs that use concepts of “nearness” or
neighborhood of points to define a graph. Random geometric graphs are graphs whose
vertices are points that are randomly distributed in some metric space. The existence
and the weight of an edge between two points depends only on the position of all the
points — in other words, it is not random given the points. This distinguishes random
geometric graphs from classical random graphs such as Erdős-Rényi random graphs,
wherein the edges are inserted randomly (see Bollobas [12] for an overview).
Neighborhood graphs include k-nearest neighbor graphs, r-neighborhood graphs, rel-
ative neighborhood graphs, Gabriel graphs, sphere-of-influence graphs and sphere-of-
attraction graphs. An overview of these types of neighborhood graphs and their use in
statistical pattern recognition is presented in Marchette [59]. In this thesis we only treat
the two most common types of neighborhood graphs, the r-neighborhood graph and
the k-nearest neighbor graph (often abbreviated to kNN-graph). In the r-neighborhood
graph we choose a radius r and connect two points if their distance is less than or
equal to r. Since the metric is symmetric there is a canonical way to convert a directed
r-neighborhood graph into an undirected one and vice versa. The idea behind the k-
nearest neighbor graphs is to connect each point to the k points closest to it. This yields
a directed graph and, unlike the metric, the k-nearest neighbor relation is not symmet-
ric. In order to construct an undirected k-nearest neighbor graph we have to decide
whether to insert an edge between two points where one point is among the k-nearest
neighbors of the other point but not vice versa. In the mutual k-nearest neighbor graph
this edge is not inserted — there is only an edge between two points if both points are
among the k nearest neighbors of the other point. In the symmetric k-nearest neighbor
graph this edge is inserted, there is already an edge between two points if one of them
is among the k nearest neighbors of the other one. Formal definitions of these two types
of neighborhood graphs can be found in Section 1.4.
Neighborhood graphs are used in a wide range of scientific disciplines: from modeling
sensor networks and ad-hoc networks in computer science, to modeling the spread
of diseases in medicine and the connections in the brain in neurology. Due to their
ubiquitous use in many diverse application areas, neighborhood graphs have recently
received a lot of attention in mathematics. It is reasonable to assume that the properties
of neighborhood graphs will depend on the distribution of the points on which they are
constructed. Thus, in order to study the properties of neighborhood graphs we make
some assumptions on the distribution of the points — for example, that they are drawn
independently from a probability density.
As previously mentioned, there exists a lot of results in the literature on the properties
of different types of neighborhood graphs in various settings. However, there are two
drawbacks to most of the published results: First, they usually treat the case of samples
from a uniform density on the cube or torus or from a homogeneous Poisson process,
and it is not clear how to generalize these results for more general distributions. In clus-
tering, however, we consider the opposite of this scenario: a uniform density does not
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contain any clusters at all. Second, the results are on asymptotic convergence proper-
ties when the number of points tends to infinity. The question of whether these results
also provide clues on the properties of random graphs for finite samples is hardly dis-
cussed. However, the ideal results in the context of clustering would be non-asymptotic
results on the properties of different types of neighborhood graphs on a finite point set
which has been drawn from a highly clustered distribution.
A monograph on many properties of neighborhood graphs is Penrose [67]. The proper-
ties that are particularly interesting for clustering are the connectivity of the graph, the
size of its connected components, the relationship to the minimum spanning tree (of
neighborhood graphs and of the complete graph where an edge between two points is
weighted by their distance), and the longest edge of the kNN-graph.
Connectivity, especially of the r-neighborhood graphs, has been studied recently in the
context of ad-hoc and sensor networks (see Estrin et al. [31] and Pottie and Kaiser
[73]). Most of the results in this area are concerned with random graphs in the two-
dimensional plane, since this setting is motivated by the application. Avin and Ercal
[5] study the limits of certain properties of random walks on r-neighborhood graphs in
the plane. Santi and Blough [76], Bettstetter [9] and Kunniyur and Venkatesh [53] study
the connectivity of ad-hoc and sensor networks that are modeled by r-neighborhood
graphs. Connectivity results for neighborhood graphs are also closely related to the
study of percolation, see for example, Stauffer and Aharony [82], Grimmett [38] and
Bollobas and Riordan [13]. In Brito et al. [15] the authors study the connectivity of the
random mutual k-nearest neighbor graphs and suggest a test for the presence of outliers
in the data based on these connectivity properties. The size of connected components
in the 1-nearest neighbor graph on points from a homogeneous Poisson process in Rd is
studied in Kozakova et al. [52]. A central limit theorem for the total edge length and the
number of components of the k-nearest neighbor graph on points from a homogeneous
Poisson process or from a uniform distribution is shown in Penrose and Yukich [70].
In Penrose and Yukich [71] a weak law of large numbers is shown for the total edge
length and is also shown for the number of connected components of the k-nearest
neighbor graph on points drawn independently from a density in d-dimensional space.
The connection between the minimal spanning tree and the k-nearest neighbor graph is
studied in Gonzàlez-Barrios and Quiroz [37]. They show that k ∼ log n is the smallest
k such that the k-nearest neighbor graph contains the minimal spanning tree of the
complete graph if the weight of the edge between two points is their Euclidean distance.
The limit distribution of the length of the longest edge of the 1-nearest neighbor graph
on points uniformly distributed in the unit d-cube is shown in Dette and Henze [26].
For points generated by a Poisson process in the unit square a central limit theorem for
the total edge length of the k-nearest neighbor graph is shown in Avram and Bertsimas
[6]. Penrose [68] shows the weak convergence of the length of the longest edge of the
minimal spanning tree and for the 1-nearest neighbor graph for uniform distributions in
the unit square. A strong law for the length of the longest edge of the minimal spanning
tree for points sampled independently from a density in Rd is shown in Penrose [69].
However, Caroni and Prescott [18] claim that this result is inapplicable on small data
sets that are not uniformly distributed.
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1.3 Overview of the results

We wish to study the influence of the construction of the neighborhood graph on the
graph-based clustering of points sampled from a density in Euclidean space. Ideally,
we would like to be able to decide which neighborhood graph and which neighborhood
parameter to choose in order to achieve good results in graph-based clustering. As a
step towards this goal we study the interrelation between “true clusters” of densities
in Euclidean space, namely either high-density clusters or partitions of the density, on
the one hand, and “sample clusters” (found by graph-based clustering methods) and
graph clustering quality measures on the other hand.

Chapter 2 In Chapter 2 we use the high-density cluster definition and study the prob-
lem of cluster identification: Clusters are said to be roughly identified in a graph, if
the connected components of the graph correspond to the true underlying clusters.
The connected components may still contain points which do not belong to any high-
density cluster. We say that a cluster is exactly identified if the proportion of these
points to the cluster points asymptotically approaches zero. The graphs we consider are
modifications of the mutual and the symmetric k-nearest neighbor graph: the points at
which the estimated density is below a certain threshold as well as too small connected
components are removed. We prove bounds on the probability that clusters are identi-
fied successfully in these graphs, both in the special case of the noise-free setting, where
the density is bounded away from zero on its support, and in the general noisy setting,
where the density does not have to be bounded from below. Using these bounds we
compare the (modified) mutual and symmetric k-nearest neighbor graphs with respect
to cluster identification and determine the optimal choice of the parameter k to maxi-
mize the probability of rough cluster identification. It turns out that the optimal choice
is surprisingly high, rather of the order n than of the order log n. Our second conclusion
is that the major difference between the mutual and the symmetric k-nearest neighbor
graph occurs when one attempts to detect the most significant cluster only, that is the
cluster that is most easily identified. Furthermore, we show that for growth rates of the
parameter k between logarithmic and linear (with suitable constants) the clusters are
exactly identified asymptotically almost surely in the constructed graphs. Chapter 2 is
based on Maier et al. [56] and Maier et al. [57].

Chapter 3 In Chapter 3 we consider as “true clusters” partitions of Rd by hyperplanes
and clusterings of finite sets of sample points induced by these partitions. On a finite
sample we construct the directed r-neighborhood and k-nearest neighbor graphs and
investigate the limit for the graph clustering quality measures Ncut and RatioCut for
the given clusterings as the sample size tends to infinity. We find that the limit ex-
pressions are different for the two different types of neighborhood graph under con-
sideration. Furthermore, we can find simple examples of densities, for which the op-
timal partition out of a set of reasonable partitions is substantially different. In other
words: Ncut on a kNN graph does something systematically different than Ncut on an
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r-neighborhood graph. This finding shows that graph clustering quality measures can-
not be studied independently of the type of neighborhood graph when they are applied
in the graph-based clustering of points from a density in Euclidean space. We also pro-
vide examples which demonstrate that these differences can be observed when spectral
clustering is applied to toy and real data sets of rather small sample sizes. Chapter 3 is
based on Maier et al. [58].

1.4 General definitions and notations

In this section we introduce definitions and notations that will be used throughout the
rest of this thesis. For an overview of the notation see also the table of notations on
page 127 and the following pages.

Setting: space and sample We always work on the space Rd endowed with the
Euclidean metric dist. The distance is extended to sets A, B ⊆ Rd via dist(A, B) =
inf{dist(x, y) | x ∈ A, y ∈ B}, and similarly dist(x, A) = inf{dist(x, y) | y ∈ A} for
x ∈ Rd. The Euclidean norm of x ∈ Rd is denoted by ‖x‖, the standard dot product
between x, y ∈ Rd by 〈x, y〉.
The data points x1, ..., xn are sampled independently from some probability measure µ
which has a density p with respect to the Lebesgue measure in Rd. That is, for a mea-
surable set A ⊆ Rd we set µ(A) =

∫
A p(x) dx.

Neighborhood Graphs For a point xi (i = 1, . . . , n) let πi be a bijective mapping
of {1, . . . , n − 1} to the indices 1, ..., i − 1, i + 1, ..., n such that dist(xi, xπi(1)) ≤ . . . ≤
dist(xi, xπi(n−1)). Then for k ∈ {1, . . . , n − 1} the k-nearest neighbor radius (kNN ra-
dius) Rk(xi) of a point xi is defined as Rk(xi) = dist(xi, xπi(k)). For i = 1, . . . , n set
kNN(xi) = {xπi(1), . . . , xπi(k)}, that is the k nearest neighbors of point xi. Note that
the mapping πi and therefore the set kNN(xi) is not unique, whereas the kNN radius
Rk(xi) is unique. However, in the rest of this thesis we always construct neighborhood
graphs on points randomly sampled from a density in Rd endowed with the Euclidean
metric. In this case there almost surely exists a unique mapping πi for all i ∈ {1, . . . , n}.
Clearly, the k-nearest neighbor relationship is not symmetric, that is xj ∈ kNN(xi)
does not necessarily imply xi ∈ kNN(xj). That is why we first define the directed
neighborhood graphs. All of them have vertex set x1, . . . , xn and we denote the edge
set by E. The edge set of the r-neighborhood graph Gr(n, r) is E = {(xi, xj) | i, j =
1, . . . , n; i 6= j; dist(xi, xj) ≤ r}, whereas the edge set of the directed k-nearest neighbor
graph GkNN(n, k) is E = {(xi, xj) | i, j = 1, . . . , n; i 6= j; xj ∈ kNN(xi)}. That is, in the

• r-neighborhood graph Gr(n, r) there is an edge from xi to xj if dist(xi, xj) ≤ r,
whereas in the

• k-nearest-neighbor graph GkNN(n, k) there is an edge from xi to xj if xj ∈ kNN(xi).
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Since many algorithms rely on undirected graphs we have to construct undirected
graphs from these neighborhood graphs. For the r-neighborhood graph there is a
canonical way to do this, since, due to the symmetry of the distance function, if there is
an edge from xi to xj then there is also an edge from xj to xi. Therefore we can just set
E = {{xi, xj} | i, j = 1, . . . , n; i 6= j; dist(xi, xj) ≤ r} for the undirected r-neighborhood
graph Gu

r (n, r). As mentioned above the k-nearest neighbor relationship is not symmet-
ric and thus there is not one natural way to construct an undirected graph. However,
there are two variants that are widely used: the symmetric k-nearest-neighbor graph
Gsym(n, k), in which E = {{xi, xj} | i, j = 1, . . . , n; i 6= j; xi ∈ kNN(xj) or xj ∈ kNN(xi)}
and the mutual k-nearest-neighbor graph Gmut(n, k), in which E = {{xi, xj} | i, j =
1, . . . , n; i 6= j; xi ∈ kNN(xj) and xj ∈ kNN(xi)}. To summarize, for i, j = 1, . . . , n; i 6= j
in the

• undirected r-neighborhood graph Gu
r (n, r): the points xi and xj are connected if

dist(xi, xj) ≤ r,

• symmetric k-nearest-neighbor graph Gsym(n, k): the points xi and xj are connected if
xi ∈ kNN(xj) or xj ∈ kNN(xi),

• mutual k-nearest-neighbor graph Gmut(n, k): the points xi and xj are connected if
xi ∈ kNN(xj) and xj ∈ kNN(xi).

Note that the literature does not agree on the names for the different kNN graphs. In
particular, the graph we call “symmetric” usually does not have a special name.

Minimal curvature radius For a smooth hypersurface M in Euclidean space we use
the minimal curvature radius κ in order to state assumptions on the maximal curvature:
At any point p ∈ M the shape operator sp is a self-adjoint linear transformation on the

tangent space Tp M to M at p. The eigenvalues r(p)
1 , . . . , r(p)

d−1 of sp are called the principal

curvatures of M at p. Define κ(p) = 1/(max{|r(p)
i | | i = 1, . . . , d− 1}) if at least one of

the principal curvatures is different from 0 and κ(p) = ∞ otherwise. Then the minimal
curvature radius κ is defined as κ = infp∈M κ(p).
The geometric meaning of the minimal curvature radius is the following: For any point
p and any unit tangent vector v at p let Ev denote the plane through p spanned by v
and the normal np in p. The intersection of M and Ev is locally a curve. The Euclidean
curvature of this curve in the point p is the dot product of the tangent vector v and the
shape operator sp applied to v. Then 1/κ(p) (where we set 1/∞ = 0) is an upper bound
on the curvature of such a curve in p. Taking the infimum we obtain a bound over all
points p in M.

Further notation For a measurable set A ∈ Rd we denote the Lebesgue measure by
Ld(A). Similarly, for a subset B of a (d− 1)-dimensional affine subspace Ld−1(B) de-
notes the (d− 1)-dimensional Lebesgue measure in that subspace. Furthermore, we set
L0(A) = |A|. When applied to a finite union of smooth (d− 1)-dimensional surfaces
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S ⊆ Rd without boundary or with smooth boundaries, the symbol Ld−1(S) denotes
the (d− 1)-dimensional area and similarly for lower-dimensional entities. Technically,
this is an overloading of notation. However, in the context where both definitions are
applicable they coincide. Furthermore, it reflects the intuitive notion of the “content”
of a set irrespective of the strict mathematical details.
For x ∈ Rd and r ∈ R≥0 we set B(x, r) to be the closed ball of Euclidean radius r
around x, that is B(x, r) = {y ∈ Rd | dist(x, y) ≤ r}. The volume of the Euclidean unit
ball in Rd is denoted by ηd, that is ηd = Ld(B(0, 1)). We set η0 = 1.
Bin(n, p) denotes the discrete probability density of the binomial distribution with pa-
rameters n and p.
In order to state an asymptotic upper bound on the growth and decay rates for se-
quences ( fn)n∈N, (gn)n∈N in R≥0 we use the Landau O notation: fn = O(gn) if there
exist positive constants c and n0 such that 0 ≤ fn ≤ cgn for all n ≥ n0.
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2.1 Introduction

In graph-based clustering we use graph clustering algorithms on neighborhood graphs
in order to cluster points from a density in Euclidean space. In general, we are in-
terested in the question of how the choices of neighborhood graph and its parameter
influence the clustering result. This is related to the question of which graph to choose
and how to set the parameter in order to obtain the best clustering results. In this chap-
ter we wish to answer these questions for a very simple graph clustering algorithm.
As described in Section 1.1 graph clustering algorithms are often based on graph clus-
tering quality measures that reflect the trade-off between intra-cluster density and inter-
cluster sparsity. A minimal requirement for intra-cluster density would be the connect-
edness of each cluster in the graph. An extreme case of inter-cluster sparsity would be
to require different clusters to be disconnected in the graph. Combining these require-
ments we come to the simple definition of graph clusters as the connected components
of the graph. That is, a simple graph clustering algorithm would identify the connected
components of a graph as the graph clusters.
Suppose that we apply this simple algorithm for the graph-based clustering of points
sampled from a density in Euclidean space: A neighborhood graph is constructed on
the points and the connected components of this graph are taken to be the sample clus-
ters. In this setting we can define a true clustering of the density via the high-density
cluster model. Having defined the true clusters we can study “cluster identification”:
Do the sample clusters found by the graph-based clustering algorithm, that is, the con-
nected components of the neighborhood graph, correspond to the true high-density
clusters? Specifically, in this chapter we study the question of how to construct an
undirected k-nearest neighbor graph in order to maximize the probability of cluster
identification: Is the mutual or the symmetric k-nearest neighbor graph better suited
for the task? How should we choose its connectivity parameter k, which determines
the size of the neighborhood?
Our results on the choice of the graph type and the parameter k for cluster identification
can be summarized as follows. Concerning the question of the choice of k, we obtain the
result that k should be chosen surprisingly high, namely of the order of O(n) instead
of O(log n) (the latter would be the rate one would “guess” from results in standard
random geometric graphs). Concerning the types of graphs, it turns out that different
graphs have their advantages in different situations: if one is only interested in iden-
tifying the “most significant” cluster (while some clusters might still not be correctly
identified), then the mutual kNN graph should be chosen. If one wants to identify
many clusters simultaneously, the bounds show no substantial difference between the
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mutual and the symmetric kNN graph.
This chapter is based on Maier et al. [56], which received the E. M. Gold Award at the
Conference on Algorithmic Learning Theory in 2007, and Maier et al. [57].

2.2 Main constructions and results

In this section we provide a brief overview of the setup and techniques we use in the
following. Mathematically exact statements will follow in the next sections.

Sample and Neighborhood graphs. We are in the setting described in Section 1.4. The
neighborhood graphs we consider in this chapter are the undirected k-nearest neighbor
graphs Gsym(n, k), and Gmut(n, k) defined there. Most of the questions we study are
much easier to solve for the undirected r-neighborhood graph Gu

r (n, r), than for kNN
graphs. The reason is that whether two points xi and xj are connected in the r-graph
only depends on dist(xi, xj), while in the kNN graph the existence of an edge between
xi and xj also depends on the distances of xi and xj to all other data points. However,
the kNN graph is the one which is mostly used in practice. Hence we focus on kNN
graphs. Most of the proofs can easily be adapted for the r-neighborhood graph.

The cluster model. We use the high-density cluster model, that is, we define clusters
as the level sets of the density. Given the underlying density p of the data space and
a parameter t > 0, we define the t-level set L(t) as the closure of the set of all points
x ∈ Rd with p(x) ≥ t. Clusters are then defined as the connected components of the
t-level set (where the term “connected component” is used in its topological sense and
not in its graph-theoretic sense).

The cluster identification problem. Given a finite sample from the underlying distri-
bution, our goal is to identify the sets of points which originate from different connected
components of the t-level set, that is from different high-density clusters. In the rest of
this chapter we will write shortly “cluster” for the true high-density clusters. We study
this problem in two settings:
The noise-free case. Here we assume that the support of the density consists of sev-
eral connected components which have a positive distance from each other. Between
these components, there is only “empty space” (density zero). Each of the connected
components is called a cluster. Given a finite sample x1, ..., xn from such a density, we
construct a neighborhood graph G based on this sample. We say that a cluster is iden-
tified in the graph if there is exactly one corresponding connected component in the
neighborhood graph. That is, all of the points originating in the same underlying clus-
ter are connected in the graph, and they are not connected to points from any other
cluster. Examples illustrating the influence of the graph parameter k of the symmetric
kNN graph on cluster identification in the noise-free case in a simple example can be
found in Figure 2.1. We call this setting the noise-free case, because the assumption that
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Figure 2.1: The influence of the graph parameter k on cluster identification in the noise-
free case: We plot the symmetric k-nearest neighbor graph for k = 2 (left),
k = 4 (middle) and k = 8 (right) constructed on a sample of 100 points
from two clusters with uniform density (the grey discs). The subgraph of
the upper cluster is disconnected for k = 2. For k = 4 both clusters are
identified, whereas for k = 8 there are connections between the clusters.

the density is 0 between the clusters cannot hold any more if we add Gaussian noise to
all the points, even if the original density was very well-behaved.
The noisy case. Here we no longer assume that the clusters are separated by “empty
space”, but allow the underlying density to be supported everywhere. Clusters are
defined as the connected components of the t-level set L(t) of the density (for a fixed
parameter t chosen by the user), and points not contained in this level set are considered
as background noise. A point x ∈ Rd is called a cluster point if x ∈ L(t) and background
point otherwise. As in the previous case we will construct a neighborhood graph G on
the given sample. However, we will remove points from this graph which we consider
as noise. The remaining graph G̃ will be a subgraph of the graph G, containing fewer
vertices and fewer edges. As opposed to the noise-free case, we now define two slightly
different cluster identification problems. They differ in the way background points are
treated. The reason for this more involved construction is that in the noisy case, one
cannot guarantee that no additional background points from the neighborhood of the
cluster will belong to the graph.
We say that a cluster is roughly identified in the remaining graph G̃ if the following
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properties hold:

• all sample points from a cluster are contained as vertices in the graph, that is, only
background points are dropped,

• the vertices belonging to the same cluster are connected in the graph; that is, there
exists a path between every pair of two distinct vertices, and

• every connected component of the graph contains only points of exactly one clus-
ter (and maybe some additional noise points, but no points of a different cluster).

We say that a cluster is exactly identified in G̃ if

• it is roughly identified for all but finitely many n almost surely, and

• the ratio of the number of background points and the number of cluster points
in the graph G̃ converges almost surely to zero as the sample size approaches
infinity.

If all the clusters have been roughly identified, the number of connected components
of the graph G̃ is equal to the number of connected components of the level set L(t).
However, G̃ might still contain a significant number of background points. In this
sense exact cluster identification is a much stronger problem, as we require the frac-
tion of background points in the graph to approach zero. Exact cluster identification is
an asymptotic statement, whereas rough cluster identification can be verified on each
finite sample. Due to the statement about the background points exact cluster iden-
tification is stronger than full consistency in Hartigan [42] and strong set consistency
in Wong and Lane [95], because there the background points are ignored. Finally, note
that in the noise-free case rough and exact cluster identification coincide.

The clustering algorithms. To determine the clusters in the finite sample, we proceed
as follows. Initially, we construct a neighborhood graph on the sample. This graph
looks different, depending on whether we allow noise or not:
Noise-free case. Given the data, we simply construct the mutual or the symmetric k-
nearest neighbor graph (Gmut(n, k) respectively Gsym(n, k)) on the data points, for a
certain parameter k, based on the Euclidean distance. Clusters are then the connected
components of this graph.
Noisy case. Here we use a more complex procedure:

• As in the noise-free case, construct the mutual (symmetric) kNN graph Gmut(n, k)
(resp. Gsym(n, k)) on the samples.

• Estimate the density p̂n(xi) at every sample point xi (for example, by kernel den-
sity estimation).

• If p̂n(xi) < t′, remove the point xi and its adjacent edges from the graph (where t′
is a parameter determined later). The resulting graph is denoted by G′mut (n, k, t′)
(resp. G′sym (n, k, t′)).
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• Determine the connected components of G′mut (n, k, t′) (resp. G′sym (n, k, t′)), for
example by a simple depth-first search.

• Remove the connected components of the graph that are “too small”, that is,
which contain less than δn points (where δ is a small parameter determined later).

• The resulting graph is denoted by G̃mut (n, k, t′, δ) (resp. G̃sym (n, k, t′, δ)); its con-
nected components are the clusters of the sample.

Note that by removing the small components in the graph the method becomes very
robust against outliers and “fake” clusters (small connected components just arising by
random fluctuations). In the rest of this chapter the modified graphs G̃mut and G̃sym
will be called mutual and symmetric k-nearest neighbor graph, since the modifications
are rather minor with respect to the points in reasonably large high-density regions.

Main results, intuitively. We would like to outline our results briefly in an intuitive
fashion. Exact statements can be found in the following sections.

Result 1 (Range of k for successful cluster identification) Under mild assumptions, and
for n large enough, there exists constants c1, c2 > 0 such that for any k ∈ [c1 log n, c2n], all
clusters are identified with high probability in both the mutual and symmetric kNN graph. This
result holds for cluster identification in the noise-free case as well as for the rough and the exact
cluster identification problem (the latter seen as an asymptotic statement) in the noisy case (with
different constants c1, c2).

For the noise-free case, the lower bound on k has already been proven in Brito et al. [15],
for the noisy case it is new. Importantly, in the exact statement of the result all constants
have been worked out more carefully than in Brito et al. [15], which is very important
for proving the following statements.

Result 2 (Optimal k for cluster identification) Under mild assumptions, and for n large
enough, the parameter k which maximizes the probability of successful identification of one
cluster in the noise-free case has the form k = c1n + c2, where c1, c2 are constants which depend
on the geometry of the cluster. This result holds for both the mutual and the symmetric kNN
graph, but the convergence rates are different (see Result 3). A similar result holds as well for
rough cluster identification in the noisy case, with different constants.

This result is completely new, both in the noise-free and in the noisy case. In the light
of the existing literature, it is rather surprising. So far it has been well known that in
many different settings the lower bound for obtaining connected components in a ran-
dom kNN graph is of the order k ∼ log n. However, we now can see that maximizing
the probability of obtaining connected components on a finite sample leads to a dramatic
change: k has to be chosen much higher than log n, namely of the order n itself. More-
over, we were surprised ourselves that this result does not only hold in the noise-free
case, but can also be carried over to rough cluster identification in the noisy setting.
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For exact cluster identification we did not manage to determine an optimal choice of k
due to the very difficult setting. For large values of k, small components which can be
discarded will no longer exist. This implies that a lot of background points are attached
to the real clusters. On the other hand, for small values of k there will exist several small
components around the cluster which are discarded, so that there are less background
points attached to the final cluster. However, this trade-off is very hard to grasp in
technical terms. We therefore leave the determination of an optimal value of k for ex-
act cluster identification as an open problem. Moreover, as exact cluster identification
concerns the asymptotic case of n → ∞ only, and rough cluster identification is all one
can achieve on a finite sample anyway, it is more than acceptable to be able to prove the
optimal rate in this case.

Result 3 (Identification of the most significant cluster) For the optimal k as stated in Re-
sult 2, the convergence rate (with respect to n) for the identification of one fixed cluster C(i) is
different for the mutual and the symmetric kNN graph. It depends

• only on the properties of the cluster C(i) itself in the mutual kNN graph

• on the properties of the “least significant” (the “worst” out of all) clusters in the symmet-
ric kNN graph.

This result shows that if one is interested in identifying the “most significant” clusters
only, it is better to use the mutual kNN graph. When the goal is to identify all clus-
ters, then there is not much difference between the two graphs, because both of them
have to deal with the “worst” cluster anyway. Note that this result is mainly due to
the different between-cluster connectivity properties of the graphs, the within-cluster
connectivity results are not so different (using our proof techniques at least).

Proof techniques, intuitively. Given a neighborhood graph on the sample, cluster
identification always consists of two main steps: ensuring that points of the same clus-
ter are connected and that the points of different clusters are not connected to each
other. We call these two events “within-cluster connectedness” and “between-cluster
disconnectedness” (or “cluster isolation”).
In order to treat within-cluster connectedness we work with a covering of the true clus-
ter. We cover the whole cluster by balls of a certain radius z/4. Then we wish to ensure
that, first, each of the balls contains at least one of the sample points, and second, that
points in neighboring balls are always connected in the kNN graph. These are two con-
tradicting goals. The larger the z/4 is, the easier it is to ensure that each ball contains
a sample point. The smaller the radius z/4 is, the easier it is to ensure that points in
neighboring balls will be connected in the graph for a fixed number of neighbors k. So
the first part of the proof consists in computing the probability that for a given radius
z/4 both events occur at the same time and finding the optimal radius z/4. An example
of a z/4-covering can be seen in Figure 2.2.
Between-cluster connectivity is easier to treat. Given a lower bound on the distance
u between two clusters, all all that is required is to make sure that edges in the kNN
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z
4

Figure 2.2: A covering of a cluster with balls of radius z/4, where each one contains
at least one sample point. If the minimal k-nearest-neighbor radius of the
sample points is at least z, then points in neighboring balls are connected in
the kNN graph.

graph never become longer than u, that is we have to prove bounds on the maximal
kNN distance in the sample.
In general, those techniques can be applied with small modifications both in the noise-
free and in the noisy case, provided we construct our graphs in the way described
above. The complication in the noisy case is that if we just used the standard kNN
graph as in the noise-free case, then naturally the whole space would be considered as
one connected component, and this would also show up in the neighborhood graphs.
Thus, one must artificially reduce the neighborhood graph in order to remove the back-
ground component. Only then can one hope to obtain a graph with different connected
components corresponding to the different clusters. The way we construct the graph
G̃ ensures this. First, under the assumption that the error of the density estimator is
bounded by ε, we consider the (t − ε)-level set instead of the t-level set we are inter-
ested in. This ensures that we do not remove “true cluster points” in our procedure.
A second challenging complication in the noisy case is that with a naive approach, the
radius z of the covering and the accuracy ε of the density estimator would be coupled
to each other. We would need to ensure that the parameter ε decreases with a certain
rate depending on z. This would lead to complications in the proof as well as very slow
convergence rates. The trick by which we can avoid this is to introduce the parameter δ
and throw away all connected components which are smaller than δn. Thus, we ensure
that no small connected components are left over in the boundary of the (t− ε)-level set
of a cluster, and all remaining points which are in this boundary strip will be connected
to the main cluster represented by the t-level set. Note, that this construction allows us
to estimate the number of clusters even without exact estimation of the density.

Building blocks from the literature. To a certain extent, our proofs follow and com-
bine some of the techniques presented in Brito et al. [15], Cuevas et al. [23] and Biau
et al. [10].
In Brito et al. [15] the authors study the connectivity of random mutual k-nearest neigh-
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bor graphs. They are, however, mainly interested in asymptotic results; they only
consider the noise-free case and do not attempt to make statements about the opti-
mal choice of k. Their main result is that in the noise-free case, choosing k at least of the
order O(log n) ensures that in the limit where n tends to infinity connected components
of the mutual k-nearest neighbor graph correspond to true underlying clusters.
In Cuevas et al. [23] and Biau et al. [10], the authors study the noisy case and define clus-
ters as connected components of the t-level set of the density. As in our case, the authors
use density estimation to remove background points from the sample, but then work
with an r-neighborhood graph instead of a k-nearest neighbor graph on the remaining
sample. Connectivity of this kind of graph is much easier to treat than the one of k-
nearest neighbor graphs, as the connectivity of two points in the r-neighborhood graph
does not depend on any other points in the sample (this is not the case in the k-nearest
neighbor graph). Cuevas et al. [23] prove results on the estimation of the number of
clusters, whereas Biau et al. [10] prove asymptotic results for the estimation of the con-
nected components of the level set L(t). Both papers furthermore do not investigate the
optimal choice of their graph parameter r. Moreover, due to our additional step where
we remove small components of the graph, we have a much weaker coupling of the
density estimator and the clustering algorithm. Therefore, we can provide much faster
rates for the estimation of the components.

2.3 General assumptions and notation

Density and clusters. As in Section 1.4, let p be a bounded probability density with
respect to the Lebesgue measure on Rd and µ be the measure on Rd induced by p. Given
a fixed level parameter t > 0, the t-level set of the density p is defined as

L(t) = {x ∈ Rd | p(x) ≥ t}.
where the bar denotes the topological closure (note that level sets are closed by assump-
tions in the noisy case, but this is not necessarily the case in the noise-free setting).
Geometry of the clusters. We define clusters as the connected components of L(t)
(where the term “connected component” is used in its topological sense). The number
of clusters is denoted by m, and the clusters themselves by C(1), . . . , C(m). We set β(i) =
µ(C(i)), that means, β(i) denotes the probability mass in cluster C(i).
We assume that each cluster C(i) (i = 1, . . . , m) is a compact and connected subset of Rd,
whose boundary ∂C(i) is a smooth (d− 1)-dimensional submanifold in Rd with mini-
mal curvature radius κ(i) > 0. For ν ≤ κ(i), we define the collar set Col(i)(ν) = {x ∈
C(i)

∣∣ dist(x, ∂C(i)) ≤ ν} and the maximal covering radius ν
(i)
max = maxν≤κ(i){ν | C(i) \

Col(i)(ν) connected }. These quantities will be needed for the following reasons: It will
be necessary to cover the inner part of each cluster by balls of a certain fixed radius z,
and these balls are not supposed to extrude. Such a construction is only possible under
assumptions on the maximal curvature of the boundary of the cluster. This will be par-
ticularly important in the noisy case, where all statements about the density estimator
only hold in the inner part of the cluster.
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For an arbitrary ε > 0, the connected component of L(t− ε) which contains the cluster
C(i) is denoted by C(i)

− (ε). Points in the set C(i)
− (ε) \ C(i) will sometimes be referred to

as boundary points. To express distances between the clusters, we assume that there
exists some ε̃ > 0 such that dist(C(i)

− (2ε̃), C(j)
− (2ε̃)) ≥ u(i) > 0 for all i, j ∈ {1, . . . , m}.

The numbers u(i) will represent lower bounds on the distances between cluster C(i) and
the remaining clusters. Note that the existence of the u(i) > 0 ensures that C(i)

− (2ε) does
not contain any other clusters apart from C(i) for ε < ε̃. Analogously to the definition of
β(i) above, we set β̃(i) = µ(C(i)

− (2ε̃)). That means, β̃(i) denotes the mass of the enlarged

set C(i)
− (2ε̃). These definitions are illustrated in Figure 2.3. Furthermore, we introduce a
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Figure 2.3: An example of our cluster definition. The clusters C(1), C(2) are defined as
the connected components of the t-level set of the density (here t = 0.07).
The clusters are subsets of the sets C(1)

− (2ε), C(2)
− (2ε) (here for ε = 0.01).

lower bound on the probability mass in balls of radius u(i) around points in C(i)
− (2ε̃)

ρ(i) ≤ inf
x∈C(i)

− (2ε̃)
µ
(

B(x, u(i))
)

.

In particular, under our assumptions on the smoothness of the cluster boundary we can
set ρ(i) = O(i)tηd(u(i))d for an overlap constant

O(i) = inf
x∈C(i)

− (2ε̃)

(
Ld(B(x, u(i)) ∩ C(i)

− (2ε̃))
Ld(B(x, u(i)))

)
> 0.

The way it is constructed, ρ(i) becomes larger the larger the distance of C(i) to all the
other clusters and is upper bounded by β̃(i), the probability mass of the extended cluster

C(i)
− (2ε̃).

Example in the noisy case. All assumptions on the density and the clusters are satisfied
if we assume that the density p is twice continuously differentiable on a neighborhood
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of {p = t}, for each x ∈ {p = t} the gradient of p at x is non-zero and dist(C(i), C(j)) =
u′ > u(i).
Example in the noise-free case. Here we assume that the support of the density p consists
of m connected components C(1), . . . , C(m) which satisfy the smoothness assumptions
above, and such that the densities on the connected components are lower bounded by
a positive constant t. Then the noise-free case is a special case of the noisy case.
Sampling. As always in this thesis we assume that our n sample points x1, ..., xn
are sampled independently from the underlying probability distribution given by the
density p.
Density estimation in the noisy case. In the noisy case we will estimate the density
at each data point xj by some estimate p̂n(xj). For convenience we state some of our
results using a standard kernel density estimator, see Section A.3 for some background
on kernel density estimation. However, our results can be easily rewritten with any
other density estimate.
Further notation. Let the kNN radius Rk(xj) of a point xj be defined as in Section 1.2.

R(i)
min denotes the minimal kNN radius of the sample points in cluster C(i), whereas

R̃(i)
max denotes the maximal kNN radius of the sample points in C(i)

− (2ε̃). Note here the
difference in the point sets that are considered.
An overview of the most important notations that are used in this chapter can be found
in Table 2.1 and in the list of notations starting on page 127.

Table 2.1: Table of notations
p(x) Density
p̂n(x) Density estimate in point x
t Density level set parameter
L(t) t-level set of p
C(1), . . . , C(m) Clusters, i.e. connected components of L(t)
C(i)
− (ε) Connected component of L(t− ε) containing C(i)

β(i), β̃(i) Probability mass of C(i) and C(i)
− (2ε̃) Respectively

p(i)
max Maximal density in cluster C(i)

ρ(i) Lower bound on probability of balls of radius u(i) around points
in C(i)

− (2ε̃)
κ(i) Minimal curvature radius of the boundary ∂C(i)

ν
(i)
max Maximal covering radius of cluster C(i)

Col(i)(ν) Collar set for radius ν

u(i) Lower bound on the distances between C(i) and other clusters
ε̃ Parameter such that dist(C(i)

− (2ε), C(j)
− (2ε)) ≥ u(i) for all ε ≤ ε̃

ηd Volume of the d-dimensional unit ball
k Number of neighbors in the construction of the graph
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2.4 Exact statements of the main results

In this section we are going to state all of our main results in a formal way. In the
statement of the theorems we need the following conditions:

• Condition 1: Lower and upper bounds on the number of neighbors k,

k ≥ 4d+1 p(i)
max

t
log
(
2 8d p(i)

max Ld(C(i)) n
)
,

k ≤ (n− 1) min
{ ρ(i)

2
− 2 log(β̃(i)n)

(n− 1)
, 2 4d ηd p(i)

max min
{
(u(i))d, (ν

(i)
max)d}}.

• Condition 2: The density p is twice continuously differentiable with uni-
formly bounded derivatives, β(i) > 2δ, and εn sufficiently small such that

µ
(⋃

i(C(i)
− (2εn) \ C(i))

) ≤ δ/2.

Condition 1 is necessary for both, the noise-free and the noisy case, whereas Condition 2
is only needed for the noisy case. Note that in Theorems 1 to 3 εn is considered small
but constant and thus we drop the index n there.
In our first theorem, we present the optimal choice of the parameter k in the mutual
kNN graph for the identification of one cluster. This theorem treats both the noise-free
and the noisy case.

Theorem 2.1 (Optimal k for identification of one cluster in the mutual kNN graph)
The optimal choice of k for identification of cluster C(i) in Gmut(n, k) (noise-free case) respec-
tively rough identification in G̃mut (n, k, t− ε, δ) (noisy case) is

k = (n− 1)Γ(i) + 1, with Γ(i) =
ρ(i)

2 + 1
4d

t
p(i)

max

,

provided this choice of k fulfills Condition 1.

In the noise-free case we obtain with Ω(i)
noise-free = ρ(i)

2 4d+1 p(i)
max

t +4
and for sufficiently large n

Pr
(
Cluster C(i) is identified in Gmut(n, k)

) ≥ 1− 3 exp
(
−(n− 1)Ω(i)

noise-free

)
.

For the noisy case, assume that additionally Condition 2 holds and let p̂n be a kernel density
estimator with bandwidth h. Then there exist constants C1, C2 such that if h2 ≤ C1ε we get
with

Ω(i)
noisy = min

{
ρ(i)

2 4d+1 p(i)
max
t + 4

,
n

n− 1
δ

6
,

n
n− 1

C2 hd ε2
}

and for sufficiently large n

Pr
(
Cluster C(i) roughly identified in G̃mut (n, k, t− ε, δ)

) ≥ 1− 8 exp
(
−(n− 1)Ω(i)

noisy

)
.
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This theorem has several remarkable features. First, we can see that both in the noise-
free and in the noisy case, the optimal choice of k is roughly linear in n. A surprising
result, given that the lower bound for cluster connectivity in the kNN graphs is k ∼
log n. We will discuss the important consequences of this result in the last section.
Second, we can see that for the mutual kNN graph the identification of one cluster C(i)

only depends on the properties of the cluster C(i), but not on those of any other cluster.
This is a unique feature of the mutual kNN graph which comes from the fact that if
cluster C(i) is very “dense”, then the neighborhood relationship of points in C(i) never
links outside of cluster C(i). In the mutual kNN graph this implies that any connections
of C(i) to other clusters are prevented. Note that this is not true for the symmetric
kNN graph, where another cluster can simply link into C(i), irrespective of the internal
properties of C(i).
For the mutual graph, it therefore makes sense to define the most significant cluster as
the one with the largest coefficient Ω(i), since this can be identified with the fastest rate.
In the noise-free case one can observe that the coefficient Ω(i) of cluster C(i) is large
given that

• ρ(i) is large, which effectively means a large distance u(i) of C(i) to the closest other
cluster,

• p(i)
max/t is small, so that the density is rather uniform inside the cluster C(i).

Note that those properties are the most simple properties one would think of when
imagining an “easily detectable” cluster. For the noisy case, a similar analysis still holds
as long as one can choose the constants δ, h and ε small enough.
Formally, the result for the identification of single clusters in the symmetric kNN graph
looks very similar to the one above.

Theorem 2.2 (Optimal k for identification of one cluster in symmetric kNN graph)
We use the same notation as in Theorem 2.1 and define ρmin = mini=1,...,m ρ(i). Then all state-
ments about the optimal rates for k in Theorem 2.1 can be carried over to the symmetric kNN
graph, provided one replaces ρ(i) with ρmin in the definitions of Γ(i), Ω(i)

noise-free and Ω(i)
noisy. If

Condition 1 holds and the condition k ≤ (n− 1)ρmin/2− 2 log(n) replaces the corresponding
one in Condition 1, we have in the noise-free case for a sufficiently large n

Pr
(
C(i) is identified in Gsym(n, k)

) ≥ 1− (m + 2) exp
(
−(n− 1)Ω(i)

noise-free

)
.

If additionally Condition 2 holds, we have in the noisy case for sufficiently large n

Pr
(
C(i) roughly identified in G̃sym (n, k, t− ε, δ)

) ≥ 1− (m + 7) exp
(
−(n− 1)Ω(i)

noisy

)
.

The constant ρ(i) has now been replaced by the minimal ρ(j) among all clusters C(j),
that means that the rate of convergence for the symmetric kNN graph is governed by
the constant ρ(j) of the “worst” cluster, the one which is most difficult to identify. Intu-
itively, this “worst” cluster is the one which has the smallest distance to its neighboring
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clusters. In contrast, for the mutual kNN graph the rate for identification of C(i) is gov-
erned by the cluster C(i) itself. This is a big disadvantage of the symmetric kNN graph if
the goal is to only identify the “most significant” clusters. For this purpose the mutual
graph has a clear advantage.
On the other hand, as we will see in the next theorem, the difference in the behavior
between the mutual and symmetric graphs vanishes as soon as we attempt to identify
all clusters.

Theorem 2.3 (Optimal k for identification of all clusters in the mutual kNN graph)
We use the same notation as in Theorem 2.1 and define ρmin = mini=1,...,m ρ(i), pmax =
maxi=1,...,m p(i)

max. The optimal choice of k for the identification of all clusters in the mutual
kNN graph in Gmut(n, k) (noise-free case) respectively rough identification of all clusters in
G̃mut (n, k, t− ε, δ) (noisy case) is given by

k = (n− 1)Γall + 1, with Γall =
ρmin

2 + 1
4d

t
pmax

,

provided this choice of k fulfills Condition 1 for all clusters C(i). In the noise-free case we get the
rate

Ωnoise-free =
ρmin

2 4d+1 pmax
t + 4

,

such that for sufficiently large n

Pr
(
All clusters exactly identified in Gmut(n, k)

) ≥ 1− 3m exp
(−(n− 1)Ωnoise-free

)
.

For the noisy case, assume that additionally Condition 2 holds for all clusters and let p̂n be
a kernel density estimator with bandwidth h. Then there exist constants C1, C2 such that if
h2 ≤ C1ε we get with

Ωnoisy = min
{

ρmin

2 4d+1 pmax
t + 4

,
n

n− 1
δ

6
,

n
n− 1

C2 hd ε2
}

and for sufficiently large n

Pr
(
All clusters roughly identified in G̃mut (n, k, t− ε, δ)

)
≥ 1− (3m + 5) exp

(−(n− 1)Ωnoisy
)

.

We can see that as in the previous theorem, the constant which now governs the speed
of convergence is the worst case constant among all the ρ(j). In the setting where we
wish to identify all clusters this is unavoidable. Of course the identification of “insignif-
icant” clusters will be difficult, and the overall behavior will be determined by the most
difficult case. This is reflected in the above theorem. The corresponding theorem for
identification of all clusters in the symmetric kNN graph looks very similar, and we
omit it.
So far for the noisy case we have mainly considered the case of rough cluster identifi-
cation. As we have seen, in this setting the results of the noise-free case are very similar
to the ones in the noisy case. Now we would like to conclude with a theorem for exact
cluster identification in the noisy case.
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Theorem 2.4 (Exact identification of clusters in the noisy case) Let p be twice continu-
ously differentiable with uniformly bounded derivatives and let the gradient of p be non-
zero in a neighborhood of {p = t}. Let p̂n be a kernel density estimator with band-
width hn = h0(log n/n)1/(d+4) for some h0 > 0. For a suitable constant ε0 > 0 set
εn = ε0(log n/n)2/(d+4). Then there exists constants c1, c2 such that for n → ∞ and
c1 log n ≤ k ≤ c2n we obtain

Cluster C(i) is exactly identified in G̃mut (n, k, t− εn, δ).

Note that as opposed to rough cluster identification, which is a statement about a given
finite nearest neighbor graph, exact cluster identification is an inherently asymptotic
property. The complication in this asymptotic setting is that one has to balance the
speed of convergence of the density estimator with the one of the “convergence of the
graph”. The exact form of the density estimation is not important. Every other density
estimator with the same convergence rate would yield the same result, possibly even
under weaker assumptions. Finally, note that since it is technically difficult to grasp the
graph after the small components have been discarded, we could not prove what the
optimal k in this setting should be.

2.5 Proofs

The propositions and lemmas containing the major proof steps are presented in Sec-
tion 2.5.1. The proofs of the theorems themselves can be found in Section 2.5.2. An
overview of the proof structure can be seen in Figure 2.4.

2.5.1 Main propositions for cluster identification

In Proposition 2.5 we identify some events whose combination guarantees the con-
nectedness of a cluster in the graph and at the same time ensures that there is not a
connected component of the graph that consists of background points only. The prob-
abilities of the events appearing in the proposition are then bounded in Lemmas 2.6 –
2.9. In Proposition 2.10 and Lemma 2.11 we examine the probability of connections
between clusters. The section concludes with Proposition 2.12 and Lemma 2.13, which
are used in the exact cluster identification in Theorem 2.4, and some remarks about the
differences between the noise-free and the noisy case. In the proofs we make frequent
use of Theorem A.1 stating tail bounds for the binomial distribution, which have been
introduced by Hoeffding.

Proposition 2.5 (Connectedness of one cluster C(i) in the noisy case) Let C(i)
n denote

the event that in G̃mut (n, k, t− εn, δ) (respectively G̃sym (n, k, t− εn, δ))

• all the sample points from C(i) are contained in the graph,

• the sample points from C(i) are connected in the graph,
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Theorem 2.4
Theorem 2.1
Theorem 2.2
Theorem 2.3

Proposition 2.5

Lemma 2.7 Lemma 2.8 Lemma 2.9

Proposition 2.10 Proposition 2.12

Lemma 2.6

Lemma 2.11 Lemma 2.13

Figure 2.4: The structure of our proofs. Proposition 2.5 deals with within-cluster
connectedness and Proposition 2.10 with between-cluster disconnectedness.
Proposition 2.12 bounds the ratio of background and cluster points for the
asymptotic analysis of exact cluster identification.

• there exists no component of the graph which consists only of sample points from out-
side L(t).

Then under the conditions

1. β(i) > 2δ,

2. εn sufficiently small such that µ
(⋃

i(C(i)
− (2εn) \ C(i))

) ≤ δ/2,

3. k ≥ 4d+1 p(i)
max
t log

(
2 8d p(i)

max Ld(C(i)) n
)
,

k ≤ (n− 1)2 4d ηd p(i)
max min

{
(u(i))d, (ν

(i)
max)d} ,

and for sufficiently large n, we obtain

Pr
(
(C(i)

n )c) ≤ Pr
(
(A(i)

n )c)+ Pr
(
(B(i)

n )c)+ Pr(E c
n) + Pr(Dc

n)

≤ 2 exp

(
− k− 1

4d+1
t

p(i)
max

)
+ 2 exp

(
−n

δ

6

)
+ 2 Pr(Dc

n),

where the events are defined as follows:

• A(i)
n : the subgraph consisting of points from C(i) is connected in G′mut(n, k, t− εn) (resp.

G′sym(n, k, t− εn)),
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• B(i)
n : there are more than δn sample points from cluster C(i),

• En: there are less than δn sample points in the set
⋃

i
(
C(i)
− (2εn) \ C(i)), and

• Dn: | p̂n(xi)− p(xi)| ≤ εn for all sample points xi, i = 1, . . . , n.

Proof. We bound the probability of C(i)
n using the observation thatA(i)

n ∩B(i)
n ∩En∩Dn ⊆

C(i)
n implies

Pr
(
(C(i)

n )c) ≤ Pr
(
(A(i)

n )c)+ Pr
(
(B(i)

n )c)+ Pr(E c
n) + Pr(Dc

n). (2.1)

This results from the following chain of observations. If the event Dn holds, no point
with p(xi) ≥ t is removed, since on this event p(xi)− p̂n(xi) ≤ εn and thus p̂n(xi) ≥
p(xi)− εn ≥ t− εn, which is the threshold in the graph G′(n, k, t− εn).
If the samples in cluster C(i) are connected in G′(n, k, t− εn) (A(i)

n ), and there are more
than δn samples in the cluster C(i) (B(i)

n ), then the resulting component of the graph
G′(n, k, t− εn) is not removed in the algorithm and is thus contained in G̃(n, k, t− εn, δ).
Conditional on Dn all remaining samples are contained in

⋃
i C(i)
− (2εn). Thus all non-

cluster samples lie in
⋃

i(C(i)
− (2εn) \ C(i)). Given that this set contains less than δn sam-

ples, there exists no connected component only consisting of non-cluster points, which
implies that all remaining non-cluster points are connected to one of the clusters.
The probabilities for the complements of the events A(i)

n , B(i)
n and En are bounded in

Lemmas 2.7 – 2.9 below. Plugging in those bounds into Equation (2.1) leads to the de-
sired result. �

In the following lemmas we derive bounds for the probabilities of the events introduced
in the proposition above.

Lemma 2.6 (Within-cluster connectedness (A(i)
n )) As in Proposition 2.5 let A(i)

n de-
note the event that the points of cluster C(i) are connected in G′mut(n, k, εn) (respectively
G′sym(n, k, εn)). For z ∈ (0, 4 min{u(i), ν

(i)
max}),

Pr
(
(A(i)

n )c) ≤ n β(i) Pr(M ≥ k) + N
(

1− t ηd
zd

4d

)n

+ Pr
(Dc

n
)
,

where M is a Bin(n− 1, p(i)
maxηdzd)-distributed random variable and we have the upper bound

N ≤ 8dLd(C(i))/(zdηd).

Proof. Given that Dn holds, all samples lying in cluster C(i) are contained in the graph
G′(n, k, εn). Suppose that we have a covering of C(i) \ Col(i)(z/4) with balls of radius
z/4. By construction every ball of the covering lies entirely in C(i), so that t is a lower
bound for the minimal density in each ball. If every ball of the covering contains at
least one sample point and the minimal kNN radius of samples in C(i) is larger than
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or equal to z, then all samples of C(i) \ Col(i)(z/4) are connected in G′(n, k, εn) given
that z ≤ 4ν

(i)
max. Moreover, one can easily check that all samples lying in the collar set

Col(i)(z/4) are connected to C(i) \ Col(i)(z/4). In total, all sample points lying in C(i)

are connected. Figure 2.5 illustrates the covering of the collar set and the implications
for the connectivity of the kNN graph.
Denote by F (i)

z the event that one ball in the covering with balls of radius z/4 contains
no sample point. Formally, {R(i)

min > z} ∩ (F (i)
z )c implies connectedness of the samples

lying in C(i) in the graph G′(n, k, εn).
Define Ns = |{j 6= s | xj ∈ B(xs, z)}| for 1 ≤ s ≤ n. Then {R(i)

min ≤ z} = ∪n
s=1

{{Ns ≥
k} ∩ {xs ∈ C(i)}}. We have

Pr
(

R(i)
min ≤ z

) ≤ n

∑
s=1

Pr
(

Ns ≥ k | xs ∈ C(i)) Pr
(
xs ∈ C(i)) ≤ nβ(i) Pr(U ≥ k),

where U ∼ Bin(n− 1, supx∈C(i) µ(B(x, z)). The final result is obtained using the upper

bound supx∈C(i) µ(B(x, z)) ≤ p(i)
maxηdzd.

A standard construction using a z/4-packing provides us with the covering. Since
z/4 ≤ ν

(i)
max we know that balls of radius z/8 around the packing centers are subsets of

C(i) and are disjoint by construction. Thus, the total volume of the N balls is bounded
by the volume of C(i) and we get N(z/8)dηd ≤ Ld(C(i)). Since we assume that Dn
holds, no sample lying in C(i) has been discarded. Thus the probability for one ball of
the covering being empty can be upper bounded by (1− t ηd zd/4d)n, where we have
used the fact that the balls of the covering are entirely contained in C(i) and thus the
density is lower bounded by t. In total, a union bound over all balls in the covering
yields,

Pr
(F (i)

z
) ≤ N (1− t ηd zd/4d)n + Pr

(Dc
n
)
.

Utilizing both results together yields the final result. �
In Lemma 2.6 we provided a bound on the probability which includes two competing
terms for the choice of z. One favors small z whereas the other favors large z. The next
lemma will show how to choose the radius z in terms of k.

Lemma 2.7 (Choice of k for within-cluster connectedness (A(i)
n )) If the parameter k ful-

fils Condition (3) of Proposition 2.5, we have for sufficiently large n

Pr
(
(A(i)

n )c) ≤ 2 exp

(
− k− 1

4d+1
t

p(i)
max

)
+ Pr (Dc

n) .

Proof. The upper bound on the probability of (A(i)
n )c given in Lemma 2.6 has two terms

dependent on z. The tail bound for the binomial distribution is small if z is chosen to be
small, whereas the term from the covering is small given that z is large. Here, we find
a choice for z which is close to optimal. Define p = p(i)

maxηdzd and α = k/(n− 1). Using
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z
4

Figure 2.5: A cluster C(i) (in dark grey) with a covering of the set C(i) \ Col(i)(z/4)
(in light grey), where each ball of the covering contains at least one sample
point. Since z/4 ≤ κ(i) every point in in the collar set Col(i)(z/4) has a
distance at most z/4 to some point in C(i) \ Col(i)(z/4). Thus, if all the balls
of the covering contain a sample point, those in the collar set are connected
in the k-nearest neighbor graph as well. Due to the condition z ≤ 4 ν

(i)
max the

dark set is connected and thus all the sample points are connected if their
minimal k-nearest neighbor radius is greater than z.

Theorem A.1 we obtain for M ∼ Bin(n− 1, p) and a choice of z such that p < α,

nβ(i) Pr(M ≥ k) ≤ nβ(i) exp
(
−(n− 1)

(
α log

(
α

p

)
+ (1− α) log

(
1− α

1− p

)))
≤ nβ(i) exp

(
−(n− 1)

(
α log

(
α

p

)
+ p− α

))
,

where we have used log(z) ≥ (z− 1)/z for z > 0. Now introduce θ = ηdzd/α such that
p = p(i)

max θ α, where p ≤ α implies 0 ≤ θ p(i)
max ≤ 1. Then,

nβ(i) Pr(M ≥ k) ≤ nβ(i) exp

(
−k

(
log

(
1

p(i)
maxθ

)
+ θp(i)

max − 1

))

≤ exp

(
− k

2

(
log

(
1

p(i)
maxθ

)
+ θp(i)

max − 1

))
, (2.2)

where we used in the last step an upper bound on the term nβ(i) which holds given

k ≥ (2 log(β(i)n)
)
/
(

log(1/(θp(i)
max)) + θp(i)

max − 1
)
. On the other hand,

N
(

1− t ηd zd

4d

)n

= N exp
(

n log
(

1− t ηd zd

4d

))
≤ N exp

(
−n t ηd zd

4d

)
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where we used log(1− x) ≥ −x for x ≤ 1. With ηdzd = θα and the upper bound on N
we get using n/(n− 1) ≥ 1,

N exp
(
−n t ηd zd

4d

)
≤ exp

(
−n t θ α

4d + log

(
Ld(C(i))8d

θ α

))

≤ exp

(
−k

t θ

4d + log

(
Ld(C(i))8d

θ α

))
≤ exp

(
−k

t θ

2 4d

)
, (2.3)

where the last step holds given k ≥ 2 4d log(nLd(C(i))8d/θ)/(tθ). Upper bounding the
bound in (2.2) with the one in (2.3) requires,

tθ
2 4d ≤

1
2

(
log

(
1

p(i)
maxθ

)
+ θp(i)

max − 1

)
.

After introducing γ = θ p(i)
max, the inequality γt/(4d p(i)

max) ≤ (− log(γ) + γ − 1) is
equivalent to the last one. Note, that t/(4d p(i)

max) ≤ 1/4. Thus, the above inequality
holds for all d ≥ 1 given that − log(γ) ≥ 1− 3γ/4. A simple choice is γ = 1/2 and
thus θ = 1/(2p(i)

max), which fulfills θp(i)
max ≤ 1. In total, we obtain with the result from

Lemma 2.6,

Pr
(
(A(i)

n )c) ≤ 2 exp

(
− k

4d+1
t

p(i)
max

)
+ Pr (Dc

n) ≤ 2 exp

(
− k− 1

4d+1
t

p(i)
max

)
+ Pr (Dc

n) .

We insert the choice of θ into the lower bounds on k. One can easily find an upper
bound for the maximum of the two lower bounds which gives,

k ≥ 4d+1 p(i)
max

t
log
(
2 8d p(i)

max Ld(C(i)) n
)
.

The upper bound, z ≤ 4 min{u(i), ν
(i)
max}, translates into the following upper bound on

k, k ≤ (n− 1)2 4d ηd p(i)
max min

{
(u(i))d, (ν

(i)
max)d}. �

The result of this lemma means that if we choose k ≥ c1 + c2 log n with two constants
c1, c2 that depend on the geometry of the cluster and the respective density, then the
probability that the cluster is disconnected approaches zero exponentially in k.
Note that due to the constraints on the covering radius, we have to introduce an upper
bound on k which depends linearly on n. However, as the probability of connectedness
is monotonically increasing in k, the value of the within-connectedness bound for this
value of k is a lower bound for all larger k as well. Since the lower bound on k grows
with log n and the upper bound grows with n, there exists a feasible region for k if n is
large enough.
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Lemma 2.8 (Event B(i)
n ) As in Proposition 2.5 let B(i)

n denote the event that there are more
than δn sample points from cluster C(i). If β(i) > 2δ then

Pr
((
B(i)

n

)c) ≤ exp
(
−1

4
nδ

)
.

Proof. Let M(i) be the number of samples in cluster C(i). Then M(i) ∼ Bin(n, β(i)) and
we have

Pr
(

M(i) < δn
) ≤ Pr

(
M(i) <

δ

β(i)
β(i)n

)
= Pr

(
M(i) <

(
1−

(
1− δ

β(i)

))
β(i)n

)

≤ exp

−1
2

nβ(i)

(
1− δ

β(i)

)2
 ≤ exp

(
−1

4
nδ

)
,

where we used the tail bound for the binomial distribution in Theorem A.2. �

Lemma 2.9 (Event En) As in Proposition 2.5 let En denote the event that there are less than δn
sample points in all the boundary sets C(j)

− (2εn) \ C(j) together. If ∑m
j=1 µ

(
C(j)
− (2εn) \ C(j)) <

δ/2, we have Pr(E c
n) ≤ exp(−δn/6).

Proof. By assumption we have ∑m
j=1 µ(C(j)

− (2εn) \ C(j)) < δ/2 for the probability mass
in the boundary strips. Then the probability that there are at least δn points in the
boundary strips can be bounded by the probability that a Bin(n, δ/2)-distributed ran-
dom variable V exceeds δn. We obtain

Pr (V > δn) = Pr
(

V > 2
δ

2
n
)

= Pr
(

V > (1 + 1)
δ

2
n
)
≤ exp

(
−1

3
δ

2
n
)

= exp
(
−1

6
δn
)

using the tail bound from Theorem A.2. �

The proposition and the lemmas above are used in the analysis of within-cluster con-
nectedness. The following proposition deals with between-cluster disconnectedness.
We say that a cluster C(i) is isolated if the subgraph of G̃mut (n, k, t− εn, δ) (resp.
G̃sym (n, k, t− εn, δ)) corresponding to cluster C(i) is not connected to another sub-
graph corresponding to any other cluster C(j) with j 6= i. Note, that we assume
minj=1,...,m dist(C(i)

− (2εn), C(j)
− (2εn)) ≥ u(i) for all εn ≤ ε̃. The following proposition

bounds the probability for cluster isolation. This bound involves the probability that
the maximal k-nearest-neighbor radius is greater than a given threshold. Therefore in
Lemma 2.11 we derive a bound for this probability. Note that the paper Maier et al. [56],
which this chapter is partly based on, contained an error in the result corresponding to
Lemma 2.11, which changed some constants but did not affect the main results.
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Proposition 2.10 (Cluster isolation) Let I (i)
n denote the event that the subgraph of the sam-

ples in C(i)
− (2εn) is isolated in G̃mut (n, k, t− εn, δ). Then given that εn ≤ ε̃, k < ρ(i)n/2−

2 log(β̃(i)n), we obtain

Pr
(
(I (i)

n )c) ≤ Pr
(

R̃(i)
max ≥ u(i) )+ Pr

(Dc
n
)

≤ exp

(
−n− 1

2

(
ρ(i)

2
− k− 1

n− 1

))
+ Pr

(Dc
n
)
.

Let Î (i)
n be the event that the subgraph of samples in C(i)

− (2εn) is isolated in G̃sym(n, k, t− εn, δ).
Define ρmin = mini=1,...,m ρ(i) and β̃max = maxi=1,...,m β̃(i). Then for εn ≤ ε̃n, k < ρminn/2−
2 log(β̃max n), we obtain

Pr
(
(Î (i)

n )c) ≤ m

∑
j=1

Pr
(

R̃(j)
max ≥ u(j) )+ Pr

(Dc
n
)

≤ m exp
(
−n− 1

2

(
ρmin

2
− k− 1

n− 1

))
+ Pr

(Dc
n
)
.

Proof. We have Pr((I (i)
n )c) ≤ Pr((I (i)

n )c | Dn)+ Pr(Dc
n). Given the eventDn, the remain-

ing points in G̃mut(n, k, t− εn, δ) are samples from C(j)
− (2εn) (j = 1, . . . , m). By assump-

tion we have for εn ≤ ε̃ that minj 6=i dist(C(i)
− (2εn), C(j)

− (2εn)) ≥ u(i). In order to have

edges from samples in C(i)
− (2εn) to any other part in G̃mut(n, k, t− εn, δ), it is necessary

that R̃(i)
max ≥ u(i). Using Lemma 2.11 we can lower bound the probability of this event.

For the symmetric kNN graph there can be additional edges from samples in C(i)
− (2εn)

to other parts in the graph if those lying in C(i)
− (2εn) are among the k nearest neighbors

of samples in C(j)
− (2εn), j 6= i. Let uij be the distance between C(i)

− (2ε̃) and C(j)
− (2ε̃).

There can be edges from samples in C(i)
− (2εn) to any other part in G̃sym(n, k, εn, δ) if the

following event holds: {R̃(i)
max ≥ u(i)} ∪ {∪j 6=i{R̃(j)

max ≥ uij}}. Using a union bound we
obtain

Pr
((Î (i)

n
)c | Dn

) ≤ Pr
(

R̃(i)
max ≥ u(i))+ ∑

j 6=i
Pr
(

R̃(j)
max ≥ uij).

With u(j) ≤ uij and Lemma 2.11 we obtain the result for G̃sym(n, k, εn, δ). �

Note that the upper bound on the probability that C(i) is isolated is the same for all
clusters in the graph based on the symmetric kNN graph. The upper bound is loose in
the sense that it does not respect specific geometric configurations of the clusters where
the bound could be smaller. However, it is tight in the sense that the probability that
cluster C(i) is isolated in G̃sym(n, k, εn, δ) always depends on the worst cluster. This is
the main difference to the mutual kNN graph, where the properties of cluster C(i) are
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independent of the other clusters. This is illustrated by the following example: Given
two clusters C(1) and C(2) in a distance which is larger than their diameter, and let n(1)

and n(2) denote the number of points in the clusters. Then a point in C(1) has a k-nearest
neighbor in the other cluster if and only if k > n(1)− 1 and a similar statement holds for
the other cluster. So there are connections between the clusters in the symmetric kNN
graph if and only if k > n(1) − 1 or k > n(2) − 1, whereas there are connections in the
mutual kNN graph if and only if k > n(1) − 1 and k > n(2) − 1. Should the weights β(1)
and 1− β(1) of the clusters be very different, then it is obvious that the condition for the
mutual graph is much stronger.
The following lemma states the upper bound for the probability that the maximum
k-nearest neighbor radius R̃(i)

max of samples in C(i)
− (2εn) used in the proof of Proposi-

tion 2.10.

Lemma 2.11 (Maximal kNN radius) Let k < ρ(i)n/2− 2 log(β̃(i)n). Then

Pr
(

R̃(i)
max ≥ u(i)) ≤ exp

(
−n− 1

2

(
ρ(i)

2
− k− 1

n− 1

))
.

Proof. Define Ns = |{j 6= s | xj ∈ B(xs, u(i))}| for 1 ≤ s ≤ n. Then {R̃(i)
max ≥ u(i)} =⋃n

s=1{Ns ≤ k− 1 ∩ xs ∈ C(i)
− (2ε̃)}. Thus,

Pr
(

R̃(i)
max ≥ u(i)) ≤ n

∑
s=1

Pr
(

Ns ≤ k− 1 | xs ∈ C(i)
− (2ε̃)

)
Pr
(
xs ∈ C(i)

− (2ε̃)
)
.

Let M ∼ Bin(n− 1, ρ(i)). Then Pr(Ns ≤ k− 1 | xs ∈ C(i)
− (2ε̃)) ≤ Pr(M ≤ k− 1). Using

the tail bound from Theorem A.1 we obtain for k− 1 < ρ(i)(n− 1),

Pr
(

R̃(i)
max ≥ u(i)) ≤ n β̃(i) Pr(M ≤ k− 1) ≤ nβ̃(i) exp

(
−(n− 1)

(
ρ(i)

2
− k− 1

n− 1

))

≤ exp

(
−n− 1

2

(
ρ(i)

2
− k− 1

n− 1

))
,

where we use that log(x) ≥ (x − 1)/x, that −w/e is the minimum of x log(x/w)
attained at x = w/e and (1 − 1/e) ≥ 1/2. Finally, we use that under the stated
condition on k we have log(nβ̃(i)) ≤ [(n− 1)ρ(i)/2− (k− 1)]/2. �

The following proposition quantifies the rate of exact cluster identification, that means
how fast the fraction of points from outside the level set L(t) approaches zero.

Proposition 2.12 (Ratio of boundary and cluster points) Let NCluster and NNoCluster be
the number of cluster points and background points in G̃mut (n, k, t− εn, δ) (resp.
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G̃sym (n, k, t− εn, δ)) and let Call
n denote the event that the points of each cluster form a con-

nected component of the graph. Let εn → 0 for n → ∞ and define β = ∑m
i=1 β(i). Then there

exists a constant D̄ > 0 such that for sufficiently large n,

Pr
(

NNoCluster/NCluster > 4
D̄
β

εn

∣∣∣∣ Call
n

)
≤ exp

(
−1

4
D̄εnn

)
+ exp

(
−n

β

8

)
+ Pr(Dc

n).

Proof. According to Lemma 2.13 we can find constants D̄(i) > 0 such that
µ(C(i)

− (2εn)\C(i)) ≤ D̄(i)εn for n sufficiently large, and set D̄ = ∑m
i=1 D̄(i). Sup-

pose that Dn holds. Then the only points which do not belong to a cluster lie in
the set ∪m

i=1C(i)
− (2εn) \ C(i). Some of them might be discarded, but since we are in-

terested in proving an upper bound on NNoCluster that does not matter. Then with
p = E NNoCluster/n ≤ D̄εn and α = 2D̄εn we obtain with Theorem A.1 and for suf-
ficiently small εn,

Pr
(

NNoCluster ≥ 2D̄εnn
∣∣∣ Call

n ,Dn

)
≤ exp (−nK(α||p)) ≤ exp (−n εn D̄ (2 log(2)− 1)) ,

where K denotes the Kullback-Leibler divergence. Here we have used that for p ≤ D̄εn
we have K(α||p) ≥ K(α||D̄εn), and with log(1 + x) ≥ x/(1 + x) for x > −1 we have
K(2D̄εn||D̄εn) ≥ D̄εn(2 log 2− 1) ≥ D̄εn/4. Given that Dn holds and the points of each
cluster are a connected component of the graph, we know that all cluster points remain
in the graph and we have

Pr
(

NCluster ≤ βn
2

∣∣∣∣ Call
n ,Dn

)
≤ exp

(
−n

β

8

)
using Theorem A.1 and similar arguments as above. �

Lemma 2.13 Assume that p ∈ C2(Rd) with ‖p‖∞ = pmax and that for each x in a neighbor-
hood of {p = t} the gradient of p at x is non-zero, then there exists a constant D̄(i) > 0 such
that for εn sufficiently small,

µ
(
C(i)
− (2εn) \ C(i)) ≤ D̄(i)εn.

Proof. Under the conditions on the gradient and εn small enough, one has C(i)
− (2εn) ⊆

C(i) + C1εnB(0, 1) for some constant C1. Here ” + ” denotes set addition, that is for
sets A and B we define A + B = {a + b | a ∈ A, b ∈ B}. In the case d = 1, due
to the connectedness of the clusters L1(C(i)

− (2εn) \ C(i)) ≤ 2C1εn. In the case d ≥ 2,
since the boundary ∂C(i) is a closed smooth (d − 1)-dimensional submanifold in Rd

with a minimal curvature radius κ(i) > 0, there exists γ1 > 0 and a constant C2 such
that Ld(C(i) + εnB(0, 1)) ≤ Ld(C(i)) + C2εnLd−1(∂C(i)) for εn < γ1 (see Theorem A.14).
Thus, by the additivity of the volume,

Ld
(
C(i)
− (2εn) \ C(i)) ≤ Ld

(
C(i) + C1εnB(0, 1)

)−Ld
(
C(i))

≤ C1C2Ld−1
(
∂C(i))εn.
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2 Cluster Identification

Since p is bounded, we obtain, µ(C(i)
− (2εn) \ C(i)) ≤ C1 C2 Ld−1(∂C(i)) pmax εn, for εn

small enough. Setting D̄(i) = C1 C2 Ld−1(∂C(i)) pmax the result follows. �

Noise-free case as special case of the noisy one. In the noise-free case, by definition
all sample points belong to a cluster. That means

• we can omit the density estimation step, which was used to remove background
points from the graph, and drop the event Dn everywhere,

• we work with L(t) directly instead of L(t− ε),

• we do not need to remove the small components of size smaller than δn, which
was needed to get a grip on the “boundary” of L(t− ε) \ L(t) .

In particular, setting δ = 0 we trivially have Pr((B(i)
n )c) = 0 and Pr(E c

n) = 0 for all
i = 1, . . . , m and all n ∈N.
As a consequence, we can directly work on the graphs Gmut(n, k) and Gsym(n, k), re-
spectively. Therefore, the bounds we gave in the previous sections also hold in the
simpler noise-free case and can be simplified in this setting.

2.5.2 Proofs of the main theorems

Proof of Theorem 2.1. Given that we are working on the complement of the event I (i)
n of

Proposition 2.10, there are no connections in G̃mut (n, k, t− ε, δ) between the subgraph
containing the points of cluster C(i) and points from any other cluster. Moreover, by
Proposition 2.5 we know that the event C(i)

n = A(i)
n ∩ B(i)

n ∩ En ∩ Dn implies that the
subgraph of all the sample points lying in cluster C(i) is connected and all other sample
points lying not in in the cluster C(i) are either discarded or connected to the subgraph
containing all cluster points. That means we have identified cluster C(i). Collecting the
bounds from Proposition 2.5 and Proposition 2.10, we obtain

Pr
(
Cluster C(i) not roughly identified in G̃mut (n, k, t− ε, δ)

)
≤ Pr

(
(I (i)

n )c)+ Pr
(
(C(i)

n )c)
≤ Pr

(
(I (i)

n )c)+ Pr
(
(A(i)

n )c)+ Pr
(
(B(i)

n )c)+ Pr(E c
n) + Pr(Dc

n)

≤ exp

(
−n− 1

2

(
ρ(i)

2
− k− 1

n− 1

))
+ 2 exp

(
− k− 1

4d+1
t

p(i)
max

)

+ 2 exp
(
−n

δ

6

)
+ 3 Pr(Dc

n).

In the noise-free case the events B(i)
n , En and Dn can be ignored. The optimal choice for

k follows by equating the exponents of the bounds for (I (i)
n )c and (A(i)

n )c and solving
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for k. One gets for the optimal k,

k = (n− 1)
ρ(i)

2 + 1
4d

t
p(i)

max

+ 1, and a rate of (n− 1)
ρ(i)

2 4d+1 p(i)
max
t + 4

.

In the noisy case, we know that if n is sufficiently large we can select a value of ε that is
small enough (ε is small and fixed) such that the condition ∑m

j=1 µ(C(j)
− (2ε) \C(j)) < δ/2

holds.
According to Corollary A.9 under our conditions on p there exist constants C1, C2 such
that Pr(Dc

n) ≤ exp(−C2nhdε2), if we estimate the density with a kernel density estima-
tor with a bandwidth h that fulfils h2 ≤ C1ε. Inserting result into the bounds above the
rate of convergence is determined by the worst exponent,

min
{ (n− 1)ρ(i)

4
− k− 1

2
,

k− 1
4d+1

t

p(i)
max

, n
δ

6
, C2nhdε2

}
.

However, since the other bounds do not depend on k the optimal choice for k remains
the same. �

Proof of Theorem 2.2. Compared to the proof for cluster identification in the mutual kNN
graph in Theorem 2.1 the only part which changes is the connectivity event. Here we
have to replace the bound on Pr((I (i)

n )c) by the bound on Pr((Î (i)
n )c) from Proposi-

tion 2.10. With ρmin = mini=1,...,m ρ(i) we obtain

Pr
(
(Î (i)

n )c) ≤ m exp
(
−n− 1

2

(
ρmin

2
− k− 1

n− 1

))
+ Pr(Dc

n).

Following the same procedure as in the proof of Theorem 2.1 provides the result (for
both, the noise-free and the noisy case). �

Proof of Theorem 2.3. We set Call
n =

⋂m
i=1 C(i)

n and Iall
n =

⋂m
i=1 I (i)

n . By a slight modification
of the proof of Proposition 2.5 and pmax = maxi=1,...,m p(i)

max

Pr
(
(Call

n )c) ≤ 2
m

∑
i=1

exp

(
− k− 1

4d+1
t

p(i)
max

)
+ 2 exp

(
−n

δ

6

)
+ 2 Pr(Dc

n)

≤ 2 m exp
(
− k− 1

4d+1
t

pmax

)
+ 2 exp

(
−n

δ

6

)
+ 2 Pr(Dc

n).

By a slight modification of the proof of Proposition 2.10 with ρmin = mini=1,...,m ρ(i),

Pr
(
(Iall

n )c) ≤ m

∑
i=1

exp

(
−n− 1

2

(
ρ(i)

2
− k− 1

n− 1

))
+ Pr(Dc

n)

≤ m exp
(
−n− 1

2

(
ρmin

2
− k− 1

n− 1

))
+ Pr(Dc

n).
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Combining these results we obtain

Pr
(

Not all Clusters C(i) roughly identified in G̃mut (n, k, t− ε, δ)
)

≤ m exp
(
−n− 1

2

(
ρmin

2
− k− 1

n− 1

))
+ 3 Pr(Dc

n)

+ 2 m exp
(
− k− 1

4d+1
t

pmax

)
+ 2 exp

(
−n

δ

6

)
.

The result follows with a similar argumentation to the proof of Theorem 2.1. �

Proof of Theorem 2.4. According to Corollary A.9 we have ∑∞
n=1 Pr(Dc

n) < ∞. Moreover,
let Call

n denote the event that the points of each cluster form a connected compo-
nent of the graph. Then it can be easily checked with Proposition 2.12 that we
have ∑∞

n=1 Pr(NNoCluster/NCluster > 4D̄εn/β | Call
n ) < ∞. Moreover, similar to the

proof of Theorem 2.3, one can show that there are constants c1, c2 > 0 such that for
c1 log n ≤ k ≤ c2n cluster C(i) will be roughly identified almost surely as n → ∞.
(Note here that the bounds on k for which our probability bounds hold are also
logarithmic and linear, respectively, in n). Thus, the event Call

n occurs almost surely and
consequently NNoCluster/NCluster → 0 almost surely. �

2.6 Discussion

In this chapter we studied the problem of cluster identification in kNN graphs. As op-
posed to earlier work (Brito et al. [15], Biau et al. [10]) which was only concerned with
establishing connectivity results for a certain choice of k (respectively r in case of an r-
neighborhood graph), our goal was to determine for which value of k the probability of
cluster identification is maximized. Our work goes considerably beyond Brito et al. [15]
and Biau et al. [10], concerning both the results and the proof techniques. In the noise-
free case we come to the surprising conclusion that the optimal k is rather linear in n
than of the order of log n as many people had suspected, both for mutual and symmet-
ric kNN graphs. A similar result also holds for rough cluster identification in the noisy
case. Both results were quite surprising to us — our first naive expectation based on the
standard random geometric graph literature had been that k ∼ log n would be optimal.
In hindsight, our results perfectly make sense. The minimal k to achieve within-cluster
connectedness is indeed of the order log n. However, clusters can be more easily iden-
tified the tighter they are connected. In an extreme case where clusters have a very
large distance to each other, increasing k only increases the within-cluster connected-
ness. Only when the cluster is fully connected (that is, k coincides with the number of
points in the cluster, that is k is a positive fraction of n), connections to other clusters
start to arise. Then the cluster will not be identified any more. Of course, the standard
situation will not be as extreme as this one, but our proofs show that the tendency is
the same.
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2.6 Discussion

While our results on the optimal choice of k are appealing in theory, in practical ap-
plication they are often hard to realize. The higher the constant k in the kNN graph is
chosen, the less sparse the neighborhood graph becomes, and the more resources we
need to compute the kNN graph and to run algorithms on it. This means that one has to
face a trade-off: even if in many applications it is impossible to choose k linear in n for
computational restrictions, one should attempt to choose k as large as one can afford,
in order to obtain the most reliable clustering results.
When comparing the symmetric and the mutual kNN graph, in terms of the within-
cluster connectedness both graphs behave similarly. But note that this might be an
artifact of our proof techniques: the better connectivity properties of the symmetric
kNN graph are not reflected in our within-cluster connectedness results. Concerning
the between-cluster disconnectedness, however, the difference between the graph types
is reflected in our results: To ensure disconnectedness of one cluster C(i) from the other
clusters in the mutual kNN graph, it suffices to make sure that the nearest neighbor of
all points of C(i) are again elements of C(i). In this sense, the between-cluster discon-
nectedness of an individual cluster in the mutual graph can be expressed in terms of
properties of this cluster only. In the symmetric kNN graph this is different. Here some
other cluster C(j) can link inside C(i), no matter how nicely connected C(i) is. In par-
ticular, this affects the setting where the goal is to identify the most significant cluster
only. While this is simple in the mutual kNN graph, in the symmetric kNN graph it is
not easier than identifying all clusters given that the between-cluster disconnectedness
is governed by the worst case.
From a technical point of view there are some aspects about our work which could
be improved. First, we believe that the geometry of the clusters does not influence
our bounds in a satisfactory manner. The main geometric quantities which enter our
bounds are simple things such as the distance of the clusters to each other, the mini-
mal and maximal density on the cluster, and so forth. However, intuitively it seems
plausible that cluster identification depends on other quantities as well, such as the
shapes of the clusters and the relation of those shapes to each other. For example, we
would expect cluster identification to be more difficult if the clusters are in the form of
concentric rings than if they are rings with different centers aligned next to each other.
Currently we cannot deal with such differences. Second, the covering techniques we
use for proving our bounds are not well adapted to small sample sizes. We first cover
all clusters completely by small balls, and then require that there is at least one sample
point in each of those balls. This leads to the unpleasant side effect that our results are
not valid for a very small sample size n. However, we did not find a way to circum-
vent this construction. The reason is that as soon as one has to prove connectedness of a
small sample of cluster points, one would have to explicitly construct a path connecting
each two points. While some techniques from percolation theory might be used for this
purpose in the two-dimensional setting, we did not see any way to solve this problem
in high-dimensional spaces.
In the current chapter, we worked primarily with a cluster definition widely used in the
statistics community, namely the high-density cluster definition. In practice, most peo-
ple try to avoid performing clustering by first applying density estimation – density
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2 Cluster Identification

estimation is inherently difficult on small samples, in particular in high-dimensional
spaces. On the other hand, we have already explained earlier that this inherent com-
plexity of the problem can also pay off. In the end, not only have we detected where
the clusters are, but we also know where the data only consists of background noise.
In this chapter we only considered simple “yes/no” events (such as “cluster is con-
nected” or “clusters are not connected to each other”) to determine if we have a valid
clustering or not. However, graph clustering is often solved via partitioning algorithms
that (attempt to) optimize a graph clustering quality measure that favors balanced cuts
such as spectral clustering, variants of which are based on the normalized cut Ncut. The
next logical step would be to extend our analysis to this partitioning setting, which is
technically more challenging: instead of “yes/no” events one has to carefully “count”
how many edges one has in different areas of the graph. In Chapter 3 we go one step
towards the analysis of graph clustering quality measures in a graph-based clustering
setting, although we have not proved results on the optimal choice of k yet.
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3 Influence of graph construction on
graph-based clustering quality measures

3.1 Introduction

In the graph-based clustering of points from a density in Euclidean space we use graph
clustering methods to cluster the neighborhood graph on the points. There are differ-
ent neighborhood graphs and a neighborhood parameter has to be chosen, so it is an
interesting question whether and how the results of graph-based clustering algorithms
are affected by the neighborhood graph type and the parameter choice.
One way to study this question is to investigate the behavior of a graph-based cluster-
ing algorithms for more and more points: Suppose we apply it on any finite sample of
data points from the density. Do the clusterings obtained by this procedure in the limit
of infinitely many points correspond to a reasonable partition of the space? If so, to
which one? Furthermore, do the partitions differ depending on which neighborhood
graph we choose?
Unfortunately, it is hard to make statements about the asymptotic behavior of the so-
lution of most graph-based clustering algorithms. However, many such algorithms are
based on a graph clustering quality measure. So we examine a simpler but closely
related problem in this chapter: Instead of the asymptotic behavior of clusterings ob-
tained by an algorithm we examine that of graph clustering quality measures: A par-
tition of the space is fixed and on each finite sample from the density a neighborhood
graph is constructed. The partition of the space induces a clustering of the neighbor-
hood graph. We examine the limits of the clustering quality measure of this clustering
as the sample size tends to infinity and compare the limits for different neighborhood
graph types: the directed r-neighborhood and the directed k-nearest neighbor graphs.
The graph clustering quality measures we consider are the normalized cut Ncut and
the RatioCut, which are used in the derivation of spectral clustering.
To our own surprise, when studying this convergence it turns out that, depending on
the type of neighborhood graph, the normalized cut converges to different limit values.
That is, the (suitably normalized) values of Ncut tend to different limit functionals, de-
pending on whether we use the r-neighborhood graph or the kNN graph on the finite
sample. Intuitively, what happens is as follows: On any given graph, the normalized
cut is one unique, well-defined mathematical expression. But of course, given a fixed
partition of a sample of points, this Ncut value is different for different graphs con-
structed on the sample (different graph constructions put different numbers of edges
between points, which leads to different Ncut values). It can now be shown that even
after appropriate rescaling, such differences remain visible in the limit for the sample
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3 Influence of graph construction on graph-based clustering quality measures

size tending to infinity. For example, we will see that depending on the type of graph,
the limit functional integrates over different powers of the density. This can lead to the
effect that the minimizer of Ncut on the kNN graph is different from the minimizer of
Ncut on the r-graph.
This means that ultimately, the question about the “best Ncut” clustering, given infinite
amount of data, has different answers, depending on which underlying graph we use.
This observation opens Pandora’s box on clustering criteria: the “meaning” of a cluster-
ing criterion does not only depend on the exact definition of the criterion itself, but also
on how the graph on the finite sample is constructed. In the case of Ncut this means
that Ncut is not just “one well-defined criterion”, but it corresponds to a whole bunch
of criteria, which differ depending on the underlying graph. More sloppy: Ncut on a
kNN graph does something different than Ncut on an r-neighborhood graph. Similar
results hold for the RatioCut graph clustering quality measure.
In Section 3.2 we give the formal definitions of the clustering quality measures we an-
alyze and state the assumptions of our setting. Section 3.3 is devoted to the statement
(without proofs) of our our results. We investigate how and under which conditions
the Ncut criterion converges on the different graphs, and what the corresponding limit
expressions are. In Section 3.4 we show experimentally that these findings are not only
of theoretical interest, but that they also influence concrete algorithms such as spectral
clustering in practice. We give examples of well-clustered distributions (mixtures of
Gaussians), where the optimal limit cut on the kNN graph is different from the one on
the r-neighborhood graph. Moreover, these results can be reproduced with finite sam-
ples. That is, given a finite sample from some well-clustered distribution, normalized
spectral clustering on the kNN graph produces systematically different results from
spectral clustering on the r-neighborhood graph. In Section 3.6 we give the full techni-
cal proofs of our results.
The convergence results of this chapter (without the convergence rates) were published
in the paper Maier et al. [58], which received an Outstanding Student Paper Award at
the Neural Information Processing Systems (NIPS) Conference in 2008.

3.2 Definitions and assumptions

Given a graph G = (V, E) with weights w : E → R and a partition of the nodes V into
(U, V \U) we define

cut(U, V \U) = ∑
u∈U,v∈V\U

(
w(u, v) + w(v, u)

)
,

vol(U) = ∑u∈U,v∈V w(u, v), card(U) = |U|,

Ncut(U, V \U) = cut(U, V \U)
(

1
vol(U)

+
1

vol(V \U)

)
, (3.1)
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and

RatioCut(U, V \U) = cut(U, V \U)
(

1
card(U)

+
1

card(V \U)

)
. (3.2)

We consider the setting described in Section 1.4 and the two types of directed neighbor-
hood graphs defined there: the directed r-neighborhood graph Gr(n, r) and the directed
k-nearest neighbor graph GkNN(n, k). The density p has to fulfil some technical condi-
tions that are defined later.
On the space Rd we want to study partitions which are induced by some hypersur-
face S. Given a surface S which separates the space Rd into two non-empty parts H+

and H−, each of which contains positive probability mass, we denote by cutn,r(S) the
number of edges in Gr(n, r) that go from a sample point on one side of the surface to
a sample point on the other side of the surface. The corresponding quantity for the
directed k-nearest neighbor graph is denoted by cutn,k(S). For a set A ⊆ Rd the volume
of {x1, . . . , xn} ∩ A in the graph Gr(n, r) is denoted by voln,r(A), and correspondingly
voln,k(A) in the graph GkNN(n, k). We further define cardn(A) to be the number of sam-
ple points in A (note that this quantity does not depend on the graph type). Accordingly
we define Ncutn,r(S), Ncutn,k(S), RatioCutn,r(S) and RatioCutn,k(S).
While the setting introduced so far is very general, we make some substantial simplifi-
cations in this thesis. First, we consider all graphs as unweighted graphs (the proofs are
already technical enough in this setting). We would expect that weights on the edges
might lead yet to other limit expressions. Moreover, we consider directed graphs for
simplicity. In general, we want to study the setting where one wants to find two clus-
ters which are induced by some hypersurface in Rd. Here we only consider the case
where S is a hyperplane. See also the discussion in Section 3.5 on future work that
might extend our setting to more general cases.
In the rest of this chapter we assume that the following technical assumptions hold:
General assumptions in the whole chapter:

• The data points x1, ..., xn are drawn independently from some density p on Rd. The
measure on Rd that is induced by p is denoted by µ; that means, for a measurable set
A ⊆ Rd we set µ(A) =

∫
A p(x) dx.

• The density p is bounded from below and above, that is 0 < pmin ≤ p(x) ≤ pmax. In
particular, it has compact support C.

• In the interior of C, the density p is twice differentiable and ‖∇p(x)‖ ≤ p′max for a
p′max ∈ R and all x in the interior of C.

• The boundary ∂C of C is a set of Lebesgue measure 0. Furthermore, we can find constants
γ > 0 and rγ > 0 such that for all r ≤ rγ we have Ld(B(x, r) ∩ C) ≥ γLd(B(x, r)) for
all x ∈ C.

• The hyperplane S splits Rd into two halfspaces H+ and H− (both including the hyper-
plane S) with positive probability masses, that is µ(H+) > 0, µ(H−) > 0. The normal
of S pointing towards H+ is denoted by nS. Furthermore, S intersects the interior of C.
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• The (d− 1)-dimensional Lebesgue measure of S ∩ ∂C is zero, that is Ld−1(S ∩ ∂C) = 0.

For the statements giving convergence rates we need the following conditions in di-
mension d ≥ 2, which we will refer to later as “rate conditions”.
Rate conditions:

• The boundary ∂C is a compact, smooth (d− 1)-dimensional surface with minimal curva-
ture radius κ > 0 and denote by nx the normal to the surface at the point x ∈ ∂C.

• We can find an angle α ∈ (0, π/2) such that |〈nS, nx〉| ≤ cos α for all x ∈ S ∩ ∂C.

3.3 Limits of quality measures

In this section we study the asymptotic behavior of the aforementioned quantities for
both the unweighted directed kNN graph and the unweighted r-graph. We state simple
convergence results under our general assumptions as well as results on the optimal
convergence rates under the rate assumptions. Here, “optimal” means the best trade-
off between our bounds for different quantities. Note that it might be possible to proof
faster convergence rates using a more refined proof method. Detailed proofs can be
found in Section 3.6. Let (kn)n∈N be an increasing sequence in N. Given a finite sample
x1, ..., xn from the underlying distribution, we will construct the graph GkNN(n, kn) and
study the convergence of Ncutn,kn(S), the Ncut value induced by S evaluated on the
graph GkNN(n, kn). Similarly, given a sequence (rn)n∈N in R of radii, we consider the
convergence of Ncutn,rn induced by S on the graph Gr(n, rn). In the following

∫
S ds

denotes the (d− 1)-dimensional Lebesgue integral in the affine subspace S. Here is our
main result for the Ncut clustering quality measure:

Theorem 3.1 (Limit values of Ncut on different graphs) Assume that the general as-
sumptions hold. For the kNN graph, assume that (kn)n∈N ⊂ N is a sequence in N with
kn/n → 0. In the case d = 1, assume that kn/

√
n log n → ∞, in the case d ≥ 2 assume

kn/ log n→ ∞. Setting

NcutLimkNN =
2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds
(( ∫

H+
p(x) dx

)−1
+
( ∫

H−
p(x) dx

)−1
)

we have for n→ ∞

d

√
n
kn

Ncutn,kn(S) a.s.−→ NcutLimkNN .

Let, furthermore, the rate conditions hold. Then the optimal convergence rate is achieved for
kn = k0n2/(d+2)(log n)d/(d+2) if d ≥ 2 and kn = k0

4
√

n3 log n if d = 1 for suitable constants
k0. For this choice of (kn) almost surely

∣∣∣∣ d

√
n
kn

Ncutn,kn(S)−NcutLimkNN

∣∣∣∣ =


O
(

d+2
√

log n
n

)
if d ≥ 2

O
(

4
√

log n
n

)
if d = 1.
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3.3 Limits of quality measures

For the r-neighborhood graph let (rn)n∈N ⊂ R>0. Assume rn → 0 and nrd+1
n / log n→ ∞

for n→ ∞. Setting

NcutLimr =
2ηd−1

(d + 1)ηd

∫
S

p2(s) ds
(( ∫

H+
p2(x) dx

)−1
+
( ∫

H−
p2(x) dx

)−1
)

we have for n→ ∞
1
rn

Ncutn,rn(S) a.s.−→ NcutLimr .

If, furthermore, the rate conditions hold, the optimal convergence rate is achieved for rn =
r0

d+3
√

log n/n for a suitable constant r0 > 0. For this choice of (rn) almost surely∣∣∣∣ 1
rn

Ncutn,rn(S)−NcutLimr

∣∣∣∣ = O

(
d+3

√
log n

n

)
.

The following theorem is our main result for the RatioCut graph clustering quality
measure:

Theorem 3.2 (Limit values of RatioCut on different graphs) Assume the general as-
sumptions hold. For the kNN graph, assume that (kn)n∈N ⊂ N is a sequence in N with
kn/n → 0. In the case d = 1, assume that kn/

√
n log n → ∞, in the case d ≥ 2 assume

kn/ log n→ ∞. Setting

RatioCutLimkNN =
2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds
(( ∫

H+
p(x) dx

)−1
+
( ∫

H−
p(x) dx

)−1
)

we have for n→ ∞

1
kn

d

√
n
kn

RatioCutn,kn(S) a.s.−→ RatioCutLimkNN .

Let, furthermore, the rate conditions hold. Then the optimal convergence rate is achieved for
kn = k0n2/(d+2)(log n)d/(d+2) if d ≥ 2 and kn = k0

4
√

n3 log n if d = 1 for suitable constants
k0. For this choice of (kn) almost surely

∣∣∣∣ 1
kn

d

√
n
kn

RatioCutn,kn(S)− RatioCutLimkNN

∣∣∣∣ =


O
(

d+2
√

log n
n

)
if d ≥ 2

O
(

4
√

log n
n

)
if d = 1.

For the r-neighborhood graph, assume rn > 0, rn → 0 and nrd+1
n / log n→ ∞ for n→ ∞.

Setting

RatioCutLimr =
2ηd−1

(d + 1)ηd

∫
S

p2(s) ds
(( ∫

H+
p(x) dx

)−1
+
( ∫

H−
p(x) dx

)−1
)

we have for n→ ∞

1
nrd+1

n
RatioCutn,rn(S) a.s.−→ RatioCutLimr .
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3 Influence of graph construction on graph-based clustering quality measures

If, furthermore, the rate conditions hold the optimal convergence rate is achieved for rn =
r0

d+3
√

log n/n for a suitable constant r0 > 0. For this choice of (rn) almost surely∣∣∣∣ 1
nrd+1

n
RatioCutn,rn(S)− RatioCutLimr

∣∣∣∣ = O

(
d+3

√
log n

n

)
.

The proof of these main theorems is based on propositions about the convergence of
the suitably normalized random variables cutn,k, voln,k, cardn and the corresponding
random variables for the r-neighborhood graphs.
Since there are a lot of different graph clustering quality measures that are based on
these or similar random variables, we state the convergence results explicitly. For the
cut and the volume random variables there are two propositions: One stating the (prob-
abilistic) convergence of the random variable to its expectation and the other one stating
the (deterministic) convergence of the expectation to some constant. In the case of the
cardinality we treat both convergences in one proposition.
In the following the absolute value of the difference between the value of a random
variable and its expectation is also called the variance term, whereas the difference be-
tween the expectation and the limit of the expectation is called the bias term.

Proposition 3.3 (Limit values of E cutn,kn and E cutn,rn ) Let the general assumptions hold.
For the kNN graph, define

CutLimkNN =
2ηd−1

d + 1
η−1−1/d

d

∫
S

p1−1/d(s) ds.

If kn/n→ 0 and kn/ log n→ ∞ for n→ ∞, then

E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)
→ CutLimkNN .

Let, furthermore, the rate conditions hold. Then∣∣∣∣E( 1
nkn

d

√
n
kn

cutn,kn(S)
)
−CutLimkNN

∣∣∣∣ = O

(√
log n

kn
+ d

√
kn

n

)
.

Therefore, the optimal convergence rate is

∣∣∣∣E( 1
nkn

d

√
n
kn

cutn,kn(S)
)
−CutLimkNN

∣∣∣∣ = O

(
d+2

√
log n

n

)
.

which is achieved for kn = k0n2/(d+2)(log n)d/(d+2) and any k0 > 0.
For the r-neighborhood graph, define

CutLimr =
2ηd−1

d + 1

∫
S

p2(s) ds.
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If rn > 0 and rn → 0 for n→ ∞, then

E

(
cutn,rn(S)

n2rd+1
n

)
→ CutLimr .

If, furthermore, nrn → ∞ for n→ ∞ and the rate conditions hold, we have∣∣∣∣E(cutn,rn(S)
n2rd+1

n

)
−CutLimr

∣∣∣∣ = O (rn) .

Proposition 3.3 already shows one of the most important differences between the limits
of the expected cut for the different graphs: For the r-graph we integrate over p2, while
we integrate over p1−1/d for the kNN graph. This difference comes from the fact that
the kNN-radius is a random quantity, which is not the case for the deterministically
chosen radius rn in the r-graph.

Proposition 3.4 (Deviation of cutn,kn and cutn,rn from their means) Let the general as-
sumptions hold. For the kNN graph, define

CutVarkNN(n, kn) =
∣∣∣∣ 1
nkn

d

√
n
kn

cutn,kn(S)−E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)∣∣∣∣ .

Then

Pr (CutVarkNN(n, kn) > ε) ≤ 2 exp
(
−2ε2n1−2/dk2/d

n
(3τd)2

)
,

where τd denotes the kissing number in dimension d,that is, the number of unit hyperspheres in
Rd which can touch a unit hypersphere without any intersections . In particular, let kn/n→ 0
and assume kn/

√
n log n → ∞ if the dimension d = 1 or kn/ log n → ∞ for d ≥ 2. Then

CutVarkNN(n, kn)
a.s.−→ 0 for n→ ∞.

For the r-neighborhood graph, define

CutVarr(n, rn) =
∣∣∣∣ 1
n2rd+1

n
cutn,rn(S)−E

(
1

n2rd+1
n

cutn,rn(S)
)∣∣∣∣ .

Let rn > 0, rn → 0 for n → ∞. Then there exists a constant c > 0 such that for n sufficiently
large and all ε > 0 sufficiently small

Pr (CutVarr(n, rn) ≥ ε) ≤ 2 exp
(
−nrd+1

n ε2

16c

)
.

In particular, if nrd+1
n / log n→ ∞ we have CutVarr(n, rn)

a.s.−→ 0 for n→ ∞.

The following two propositions are used to show the convergence of the suitable nor-
malized volume functionals in both graph types considered. Proposition 3.5 considers
the bias term, whereas Proposition 3.6 considers the variance term.
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3 Influence of graph construction on graph-based clustering quality measures

Proposition 3.5 (Limit values of E voln,kn and E voln,rn ) Let the general assumptions hold,
and let H = H+ or H = H−. Then, for the kNN graph we have

E

(
1

nkn
voln,kn(H)

)
= µ(H).

For the r-neighborhood graph, we define

VolLimr = ηd

∫
H

p2(x) dx.

If rn > 0, rn → 0 for n→ ∞, we have

E

(
1

n2rd
n

voln,rn(H)
)
−→ VolLimr .

If, furthermore, the rate conditions hold and nrn → ∞ for n→ ∞,∣∣∣∣E( 1
n2rd

n
voln,rn(H)

)
−VolLimr

∣∣∣∣ = O (rn) .

The following proposition states bounds for the variance term of the suitable scaled
volume functionals.

Proposition 3.6 (Deviation of voln,kn and voln,rn from their means) Let the general as-
sumptions hold and let H = H+ or H = H−. For the kNN graph define

VolVarkNN(n, kn) =
∣∣∣∣ 1
nkn

voln,kn(H)−E

(
1

nkn
voln,kn(H)

)∣∣∣∣ .

Then we have Pr (VolVarkNN(n, kn) > ε) ≤ 2 exp(−2ε2n) . In particular,
VolVarkNN(n, kn)

a.s.−→ 0 for n→ ∞.
For the r-neighborhood graph, define

VolVarr(n, rn) =
∣∣∣∣ 1
n2rd

n
voln,rn −E

(
1

n2rd
n

voln,rn

)∣∣∣∣ .

If rn → 0 we have for n sufficiently large and all sufficiently small ε > 0

Pr (VolVarr(n, rn) ≥ ε) ≤ 2 exp
(
− nrd

nε2

16pmaxηdµ(H)

)
.

In particular, if nrd
n/ log n→ ∞ we have VolVarr(n, rn)

a.s.−→ 0 for n→ ∞.

Finally, we state both the bias term and the variance term of the cardinality, which is
used in RatioCut. Note that the bias term is zero and therefore only stated implicitly.
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3.4 Examples where different limits of Ncut lead to different optimal cuts

Proposition 3.7 (Limit value of E cardn and its deviation from the mean) Let the gen-
eral assumptions hold and let H = H+ or H = H−. Then we have

E

(
1
n

cardn(H)
)

= µ(H).

Define

CardVar(n) =
∣∣∣∣ 1n cardn(H)−E

(
1
n

cardn(H)
)∣∣∣∣ .

Then for every ε > 0 we have Pr (CardVar(n) > ε) ≤ 2 exp
(−2ε2n

)
. In particular,

CardVar(n) a.s.−→ 0 for n→ ∞.

Other convergence results. In the literature, we know only of one other limit result for
graph cuts by Narayanan et al. [66]. The authors study the case of a fully connected
graph with Gaussian weights wt(xi, xj) = 1/(4πt)d/2 exp(−dist(xi, xj)2/4t). Denoting
the corresponding cut value by cutn,t, the authors show that if tn → 0 such that tn >
1/n1/(2d+2), then

√
π

n
√

tn
cutn,tn →

∫
S

p(s) ds a.s.

By comparing this result to ours, we can see that it corroborates our finding: yet another
graph leads to yet another limit result (for cut, as the authors did not study the Ncut
criterion).

3.4 Examples where different limits of Ncut lead to different
optimal cuts

In Theorem 3.1 we have seen that the kNN graph leads to a different limit functional
for Ncut(S) than the r-neighborhood graph. Now we want to show that this difference
is not a mathematical subtlety without practical relevance: If we select an optimal cut
based on the limit criterion for the kNN graph we can obtain a different result than if
we use the limit criterion based on the r-neighborhood graph. Moreover, this finding
does not only apply to the limit cuts, but also to cuts constructed on finite samples. This
shows that on finite data sets, different constructions of the graph can lead to systematic
differences in the clustering results.
Consider a density p in one and two dimensions which is a Gaussian mixture distribu-
tion that is set to zero where it is below a threshold value θ and then rescaled properly.
That is, if p′ denotes the Gaussian mixture distribution of three isotropic multivariate
Gaussians whose means only differ in the first coordinate

p′(x = (x1, . . . , xd)) = (2π)−d/2
3

∑
i=1

αi

σd
i

exp

(
− 1

2σ2
i

(
(x1 − µi)

2 +
d

∑
j=2

x2
j

))
,
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Figure 3.1: Truncated mixtures of three Gaussian densities in the examples in Sec-
tion 3.4. In the two-dimensional case, we plot the informative dimension
(marginal over the other dimension) only. The dashed blue vertical line
depicts the optimal limit cut of the r-graph and the solid red vertical line
represents the optimal limit cut of the kNN graph.

we set A = {x ∈ Rd | p′(x) ≥ θ}, and obtain our thresholded density p by

p(x) =
p′(x)1A(x)∫

A p′(x) dx
.

We used the following specific parameters

dim µ1 µ2 µ3 σ1 σ2 σ3 α1 α2 α3 θ

1 0 0.5 1 0.4 0.1 0.1 0.66 0.17 0.17 0.1
2 −1.1 0 1.3 0.2 0.4 0.1 0.4 0.55 0.05 0.01

Thresholding the density by ignoring the low-density regions is sensible for two rea-
sons: On the one hand we assumed in our theoretical results that the density is bounded
away from zero on its support. On the other hand, by sampling from a distribution
with areas of very low density we obtain points that are far away from their neigh-
bors. This can lead to isolated points in the r-neighborhood graph and to very large
k-nearest neighbor radii for the kNN graph. So we see that the assumptions we made
to derive our theoretical results also make sense from an experimental point of view.
In Figure 3.1 we plot the marginal densities for the first dimension. The vertical lines
indicate the position of the hyperplanes perpendicular to the x1-axis that minimize our
limit expressions for Ncut (for details see below).
We initially investigate the theoretic limit Ncut values, for hyperplanes which cut per-
pendicular to the first dimension (which is the “informative” dimension of the data).
For the chosen densities, the limit Ncut expressions from Theorem 3.1 can be computed
analytically for a given hyperplane. We chose hyperplanes between x1 = −2 and x1 = 2
with distances of 0.1 The plots in Figure 3.2 show the theoretic limits of Ncut as dashed
lines, where the horizontal axis indicates the x1-position of the hyperplane. The vertical
lines indicate the minimum of the prediction over all the hyperplanes for the respective
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Figure 3.2: Comparison of the theoretical predictions (dashed) and empirical means
(solid) for Ncut. The optimal cut is indicated by the dotted line. The top
row shows the results for the kNN graph, the bottom row for the r-graph.
In the left column the result for dimension 1, in the right column for dimen-
sion 2.

graph. In particular, the minimal Ncut value in the kNN case is obtained at a different
position than the minimal value in the r-neighborhood case.
This effect can also be observed in a finite sample setting. We sampled n = 2000 points
from the given distributions and constructed the unweighted symmetric kNN graph. In
the results presented here we chose a parameter k for the k-nearest neighbor graph and
then set r to the mean k-nearest neighbor radius. This is done to ensure that the graphs
are “comparable”, namely to make sure that our results are not due to the different
neighborhood sizes considered, but rather because of the different graph types. The
parameter k was chosen to be small but such that all the graphs we use are connected
or have only few isolated points or small components.
We evaluated the empirical Ncut values for all hyperplanes which cut perpendicular
to the informative dimension, as detailed in the last paragraph. This experiment was
repeated 100 times. Figure 3.2 shows the means of the Ncut values of these hyperplanes,
evaluated on the sample graphs. In order to compare the behavior of the empirical
functional to the limit we rescaled the functional with the factor that gave the best
match between the functions. We can see that the behavior of the empirical mean is very
close to the behavior of the limit, that is the two local minima are in approximately the
same position and the global minimum of the empirical mean coincides with the global
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Figure 3.3: Results of spectral clustering in two dimensions, for r-graph (left) and kNN
graph (right) with parameters corresponding to each other. We can see that
the results differ substantially.

minimum of the limit.
Moreover, we applied normalized spectral clustering (cf. Section 1.1 and von Luxburg
[85]) to the mixture data sets. As standard spectral clustering is not defined for directed
graphs, we had to use an undirected kNN graph instead of the directed one: We used
the symmetric kNN graph, in which two points are connected if one point is among the
k nearest neighbors of the other one, or vice versa.
We tried a range of reasonable values for the parameters k and r and the results we
obtained were stable over a range of parameters. Here we present the results for the
30- (for d = 1) and the 150-nearest neighbor graphs (for d = 2) and the r-graphs with
corresponding parameter r, that is r was set to be the 30- and 150-nearest neighbor
radius (see above).
We compare different clusterings by the minimal matching distance:

dMM(Clust1, Clust2) =
1

2n
min

π

n

∑
i=1

1Clust1(xi) 6=π(Clust2(xi))

where the minimum is taken over all permutations π of the labels. In the case of two
clusters this distance corresponds to the 0-1-loss as used in classification: a minimal
matching distance of 0.39, for instance, means that 39% of the data points lie in differ-
ent clusters. In our spectral clustering experiment, we could observe that the cluster-
ings obtained by spectral clustering are usually very close to the theoretically optimal
hyperplane splits predicted by theory (the minimal matching distances to the optimal
hyperplane splits were always in the order of 0.03 or smaller). As predicted by theory,
both types of graph give different cuts in the data. An illustration of this phenomenon
for the case of dimension 2 can be found in Figure 3.3. To give a quantitative evalua-
tion of this phenomenon, we computed the mean minimal matching distances between
clusterings obtained by the same type of graph over the different samples (denoted
d̂kNN− kNN and d̂r−r), and the mean distance d̂kNN−r between the clusterings obtained
by different graph types. In order to compare clusterings of different samples from the
same distribution, we have to extend a clustering of one sample to the other sample.
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3.4 Examples where different limits of Ncut lead to different optimal cuts

We do this by computing for each point the 11 nearest neighbors from the other clus-
tering and assign the cluster of the majority of the neighbors. Of course, this is another
neighborhood size that might influence our results, but we think that this effect can be
neglected in the experiments we did with their well-behaved densities.
We obtained the following distances between the clusterings:

Example d̂kNN− kNN d̂r−r d̂kNN−r
1 dim 0.0005± 0.0006 0.0003± 0.0004 0.346± 0.063
2 dim 0.005± 0.0023 0.001± 0.001 0.49± 0.01

We can see that for the same graph, the clustering results are very stable (differences
in the order of 10−3), whereas the differences between the kNN graph and the r-
neighborhood graph are substantial (0.35 and 0.49, respectively). This difference is ex-
actly the one induced by assigning the middle mode of the density to different clusters,
which is the effect predicted by theory.
It is tempting to conjecture that these effects might be due to the fact that the number
of Gaussians and the number of clusters we are looking for do not coincide. Yet this is
not the case: for a density in one dimension as above but with only two Gaussians with
parameters

µ1 µ2 σ1 σ2 α1 α2 θ

0.2 0.4 0.05 0.03 0.8 0.2 0.1

the same effects can be observed. The density is depicted in the left plot of Figure 3.4.
In one dimension we can compute the place of the boundary between two clusters, that
is the middle between the rightmost point of the left cluster and the leftmost point of
the right cluster. We did this for 100 iterations and plotted histograms of the location
of the cluster boundary. In the middle and the right plot of Figure 3.4 we see that these
coincide with the optimal cut predicted by theory.
Finally, we conducted an experiment similar to the last one on two real data sets (breast
cancer and heart from the Data Repository by Gunnar Rätsch [25]). Here we chose the
parameters k = 20 for both data sets, r = 3.2 for breast cancer and r = 4.3 for heart
(among the parameters we tried, these were the parameters where the results were
most stable, that is where d̂kNN− kNN and d̂r−r were minimal). Then we ran spectral
clustering on different subsamples of the data sets (n = 200 for breast cancer, n = 170
for heart). To evaluate whether our clusterings were any useful at all, we computed
the minimal matching distance between the clusterings and the true class labels and
obtained distances of 0.27 for the r-graph and 0.44 for the kNN graph on breast can-
cer and 0.17 and 0.19 for heart. These results are reasonable (standard classifiers lead
to classification errors of 0.27 and 0.17 on these data sets). Moreover, to exclude other
artifacts such as different cluster sizes obtained with the kNN or r-graph, we also com-
puted the expected random distances between clusterings, based on the actual cluster
sizes we obtained in the experiments. We obtained the following table when we com-
pared clusterings produced with the same graph
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Figure 3.4: The example with the sum of two Gaussians, that is two modes of the den-
sity. In the left the figure of the density with the optimal limit cut of the
r-graph (dashed blue vertical line) and the optimal limit cut of the kNN
graph (the solid red vertical line). The two figures on the right show the his-
tograms of the cluster boundary over 100 iterations for the two graph types.

Example d̂kNN− kNN rand. d̂kNN− kNN d̂r−r rand. d̂r−r
breast cancer 0.13 ± 0.15 0.48 ± 0.01 0.14 ± 0.10 0.22 ± 0.01
heart 0.06 ± 0.02 0.47 ± 0.02 0.06 ± 0.02 0.44 ± 0.02

and the following table when we compared clusterings produced with different graph
types

Example d̂kNN−r rand. d̂kNN−r
breast cancer 0.40 ± 0.10 0.44 ± 0.01
heart 0.07 ± 0.03 0.47 ± 0.02

We can see that in the example of breast cancer, the mean distances d̂kNN− kNN and d̂r−r
are much smaller than the mean distance d̂kNN−r. This shows that the clustering results
differ considerably between the two types of graph (and compared to the expected ran-
dom effects, this difference does not look random at all). For heart, on the other hand,
we do not observe significant differences between the two graphs.
This experiment shows that for some data sets a systematic difference between the clus-
terings based on different graph types exists. But of course, such differences can occur
for many reasons. The different limit results might just be one potential reason, and
other reasons might exist. However, independent of the reason it is interesting to ob-
serve these systematic differences between graph types in real data.

3.5 Discussion

We have investigated the influence of the graph construction on graph-based clustering
measures such as the normalized cut and RatioCut. We have seen that depending on
the type of graph, the Ncut and RatioCut criteria converge to different limit results. We
computed the exact limit expressions for the r-neighborhood graph and the kNN graph.
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3.5 Discussion

Moreover, another different limit result for a complete graph using Gaussian weights
exists in the literature (see Narayanan et al. [66]). The fact that all these different graphs
lead to different clustering criteria shows that these criteria cannot be studied isolated
from the graph type they are applied to.
From a theoretical side there are several directions in which our work can be improved.
We proved our results for the directed r- and kNN graphs. However, most graph-based
clustering methods use the undirected graph. This is not a problem in the case of the
r-graph since there the neighborhood relation is symmetric. Yet it is not clear how to
prove similar results for the (symmetric or mutual) kNN graph, since in order to decide
if there is an edge between two nodes in these graphs, we have to take into account the
k-nearest neighbor radii of both points. However, these are stochastically dependent
and therefore much harder to estimate. So it would be an interesting line of research to
study if and how our results change for undirected k-nearest neighbor graphs.
Another interesting line of research would be to consider weighted graphs. For tech-
nical reasons we proved our results in this chapter only for the unweighted graphs.
However, in practice weighted graphs are frequently used, since it is reasonable to give
edges between points which are far away from each other less weight. This seems to be
of particular concern in the case of the k-nearest neighbor graph, since very long edges
can occur in regions of low density in this graph. Indeed it would be interesting to
examine the influence of different weighting schemes on the limit expressions we have
studied so far. The weighting scheme for the k-nearest neighbor graph that seems par-
ticularly interesting to us is the following: edges are weighted with Gaussian weights
whose variance is set to the mean k-nearest neighbor radius. This graph combines the
advantage of the r-neighborhood graph, that only points close to each other are con-
nected with a high weight, with the advantage of the k-nearest neighbor graph that
there are no isolated points and under certain conditions the whole graph is connected.
Although it would be much more technically involved, it seems possible to adapt our
convergence proofs to this weighted graph.
Another valuable extension would be to formally prove our results for other surfaces
than hyperplanes. Intuitively, this should not be a problem for a sufficiently smooth
surface, since in the limit we only consider local quantities and these surfaces can be ap-
proximated in the limit locally by a hyperplane. However, technically the proof would
be very involved. Having these results it would not be difficult to prove uniform con-
vergence results over a suitable class of surfaces. Here one just has to take care that a
suitably restricted class of candidate surfaces S is used (note that uniform convergence
results over the set of all partitions of Rd are impossible, cf. von Luxburg et al. [88]).
Our results on the convergence rate above indicate that for uniform convergence the
surface would have to fulfil many different requirements, for example regarding the
probability mass on both sides of it, the volume of the intersection of the surface and
the support of the density and so on.
For practice it will be important to study how the different limit results influence clus-
tering results. So far, we do not have much intuition about when the different limit ex-
pressions lead to different optimal solutions, and when these solutions will show up in
practice. The examples we provided above already show that different graphs indeed
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can lead to systematically different clusterings in practice. Gaining more understand-
ing of this effect will be an important direction of research if one wants to understand
the nature of different graph clustering criteria. Assuming a density with reasonable
mild assumptions, our distant goal would be to relate the clustering quality measure to
(intuitively understandable) properties of a desired clustering.

3.6 Proofs

This section contains the full technical proofs of the results previously stated in Sec-
tion 3.3 under the assumptions defined in Section 3.2. This section is divided into five
parts: The first two parts are devoted to the proof of convergence for the bias and vari-
ance term of the scaled cut-functionals, that is the proofs of Proposition 3.3 and Propo-
sition 3.4. In the third part we proof the corresponding convergences for the volume
functionals, that is Proposition 3.5 and Proposition 3.6, and in the fourth part for the car-
dinality, that is Proposition 3.7. Finally, in the last part we proof the main Theorems 3.1
and 3.2.
In each of the parts we first describe the ideas of the proofs in a more intuitive way, then
we state and prove the necessary lemmas, if any. Finally we present the full technical
proofs of the propositions or theorems.
An overview of the structure of our proofs can be seen in Figure 3.5 on page 73.

3.6.1 Convergence of the bias term of cutn,rn and cutn,kn

In this section we prove Proposition 3.3, that is the convergence of the (suitably scaled)
expectation of cutn,rn and cutn,kn .
Before we state the formal proofs, we give a proof sketch without technical details in
order to identify the different steps of the proof and to motivate the technical lemmas.
In the proof the probability mass in the intersection of balls with a certain radius and
the other side of the hyperplane will play an important role:

Definition 3.1 We define g : Rd ×R≥0 → [0, 1],

g(x, r) =

{
µ(B(x, r) ∩ H+) if x ∈ H− and x /∈ S
µ(B(x, r) ∩ H−) if x ∈ H+.

We also state here the properties of g we will make use of in the proofs:

• For all x ∈ Rd and r > 0 we clearly have 0 ≤ g(x, r) ≤ 1 due to the properties of
probability measures.

• g(x, r) is monotonically increasing in the second argument, that is, if r2 > r1 we
have g(x, r2) ≥ g(x, r1): Without loss of generality we assume x ∈ H+. Then for
x ∈ H−

g(x, r2)− g(x, r1) = µ(B(x, r2) ∩ H+)− µ(B(x, r1) ∩ H+)
= µ((B(x, r2) \ B(x, r1)) ∩ H+) ≥ 0.
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Theorem 3.2
RatioCut

Theorem 3.1
NCut

Proposition 3.6
Variance Vol

Proposition 3.5
Bias Vol

Proposition 3.4
Variance Cut

Proposition 3.3
Bias Cut

Proposition 3.7
Bias and Var. Card

Lemma 3.8
Expectation 
as Integral

Lemma 3.9
Limit of

Integration

Lemma 3.12
Volume of
Boundary

Lemma 3.10
Bound on

prob. of caps 

Lemma 3.11
Integral over
cap volume

Figure 3.5: The structure of our proofs. The proofs of the two main theorems are in
Section 3.6.5. The proof of the proposition concerning the convergence of
the bias term for the cut, (Proposition 3.3) and all the results necessary in
that proof can be found in Section 3.6.1. The proof for the convergence of
the variance term of the cut, (Proposition 3.4) can be found in Section 3.6.2.
The proof for the converge of bias and variance term for the volume can be
found in Section 3.6.3, whereas the corresponding proof for the cardinality
can be found in Section 3.6.4.

The proof sketch mainly deals with the r-neighborhood graph before we show how the
proof can be adapted for the k-nearest neighbor graph.
By Nij (i, j = 1, ..., n; i 6= j) we denote the random variable indicating if there is an edge
in the rn-neighborhood graph from point xi to point xj and the points are on different
sides of the cut surface S. As all points are sampled i.i.d, we have

E (cutn,rn(S)) =
n

∑
i=1

n

∑
j=1
j 6=i

ENij = n(n− 1)EN12 = n(n− 1) Pr(N12 = 1),

since N12 is an indicator variable. Suppose the position of the first point is x. Then
N12 = 1 if the second point falls in the ball B(x, rn) (then the points are connected) and it
also falls on the other side of the hyperplane, which means that it falls in the intersection
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3 Influence of graph construction on graph-based clustering quality measures

S

r

x

B(x, r) ∩H+

H+H−

Figure 3.6: For x ∈ Rd and r ∈ R the function g(x, r) specifies the probability mass in
the intersection of the ball B(x, r) with the halfspace that does not contain
the point x.

of B(x, rn) and the other side of the hyperplane. Setting g(x, rn) as in Definition 3.1 we
have Pr(N12 = 1 | x1 = x) = g(x, rn). Integrating this conditional expectation over all
positions of the point x in Rd gives

E
(

cutn,rn(S)
)

= n(n− 1)
∫

Rd
g(x, rn)p(x) dx.

For the k-nearest neighbor graph the connectedness is harder to treat since it depends
on the k-nearest neighbor radius of a point, that is, the distance of a data point to its k-th
nearest neighbor, which is itself a random variable. However, we can give upper and
lower bounds on the integral that use the expected k-nearest neighbor radius, rescaled
by a factor close to 1. The lemma which is used in this part of the proof is Lemma 3.8.
The second important idea is that instead of integrating over Rd, we initially integrate
over the hyperplane S and then, at each point s ∈ S, along the normal line through s,
that is the line s + tnS for all t ∈ R. This leads to

n(n− 1)
∫

Rd
g(x, rn)p(x) dx = n(n− 1)

∫
S

∫ ∞

−∞
g(s + tnS, rn)p(s + tnS) dt ds.

This has two advantages. First, if x is far enough from S (that is, dist(x, s) > rn for all
s ∈ S), then g(x, rn) = 0 and the corresponding terms in the integral vanish. Second, if
x is close to s ∈ S and the radius rn is small, then the density on the ball B(x, rn) can be
considered approximately homogeneous, that is p(y) ≈ p(s) for all y ∈ B(x, rn). Thus,∫ ∞

−∞
g(s + tnS, rn)p(s + tnS) dt =

∫ rn

−rn

g(s + tnS, rn)p(s + tnS) dt

≈ 2
∫ rn

0
p(s)Ld

(
B(s + tnS, rn) ∩ H−

)
p(s) dt.

It is not difficult to see that Ld
(

B(s + tnS, rn) ∩ H−
)

= rd
n A(t/rn), where A(t/rn) de-

notes the volume of the cap of the unit ball capped at distance t/rn. Solving the integrals
leads to ∫ rn

0
Ld
(

B(s + tnS, rn) ∩ H−
)

dt = rd+1
n

∫ 1

0
A(t) dt = rd+1

n
ηd−1

d + 1
.
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This integration is performed in Lemma 3.9. For the r-neighborhood graph this lemma
is easy to apply, since we know the radii of the balls we have to integrate over. For the
k-nearest neighbor graph we use that for kn/n→ 0 the expected kNN radius converges
to zero. Consequently, for large n we only have to integrate over balls of approximately
homogeneous density. In a region of homogeneous density p̃, the expected kNN radius
is given as (kn/((n− 1)ηd p̃))1/d and we can easily find suitable bounds for the radius.
As previously mentioned, in the proof for the kn-nearest neighbor graph the expected
kn-nearest neighbor radius plays an important role. This is why we define a function
r̃(x, q), which gives us for a point x ∈ Rd the expected kn-nearest neighbor radius if we
set q = kn/(n− 1).

Definition 3.2 Under our general assumptions we define for x ∈ Rd and q ∈ [0, 1]

r̃(x, q) = min{r ∈ R≥0 | µ(B(x, r)) = q}.

Remark 1 We must show that r̃ is well-defined: For a fixed x ∈ Rd we have µ(B(x, 0)) = 0
and due to the compactness of the support of p we can find r̄ ∈ R such that µ(B(x, r̄)) = 1. Now
we show that the function r → µ(B(x, r)) is continuous on the interval [0, r̄]. Let r1, r2 ∈ [0, r̄]
and r1 ≤ r2. Then

µ(B(x, r2))− µ(B(x, r1)) = µ(B(x, r2) \ B(x, r1))

≤ pmaxLd(B(x, r2) \ B(x, r1)) = pmaxηd(rd
2 − rd

1).

If r2 → r1 we have µ(B(x, r2)) → µ(B(x, r1)) and therefore the function r → µ(B(x, r)) is
continuous. Consequently, {r | r ∈ R, r ≥ 0, µ(B(x, r)) = q} 6= ∅. Since the level sets of
continuous functions are closed, the minimum exists.

Lemma 3.8 (Expectation of cutn,r and cutn,k as integral over Rd) Let the general assump-
tions hold, g : Rd × R≥0 → [0, 1] as in Definition 3.1 and (rn)n∈N ⊆ R>0. For the rn-
neighborhood graph we have

E(cutn,rn(S)) = n(n− 1)
∫

Rd
g(x, rn)p(x) dx.

Let r̃ : Rd × [0, 1] → R≥0 be as in Definition 3.2. Let (kn)n∈N ⊆ N with kn < (n− 1)/2
and (δn)n∈N ⊆ (0, 1/2) and δnkn > 1. Then for the kn-nearest neighbor graph we have

E(cutn,kn(S)) ≤ n(n− 1)
∫

Rd
g(x, r̃(x, (1 + δn)αn))p(x) dx + 2 exp(2 log n− δ2

nkn/4)

E(cutn,kn(S)) ≥ n(n− 1)
∫

Rd
g(x, r̃(x, (1− δn)αn))p(x) dx− 2 exp(2 log n− δ2

nkn/4),

where αn = kn/(n− 1).

Proof. First we consider properties of the expectation of the cut which are independent
of the graph type. So we denote the cut by cutn(S) and the neighborhood graph by
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3 Influence of graph construction on graph-based clustering quality measures

G(n), such that G(n) = Gr(n, rn) or G(n) = GkNN(n, kn). For i, j ∈ {1, . . . , n}, i 6= j we
define a random variable Nij with

Nij =

{
1 if xi ∈ H+, xj ∈ H− or vice versa and (xi, xj) edge in G(n)
0 otherwise.

Clearly,

cutn(S) =
n

∑
i=1

n

∑
j=1
j 6=i

Nij,

and, since the points are independent and identically distributed,

E(cutn(S)) =
n

∑
i=1

n

∑
j=1
j 6=i

E(Nij) = n(n− 1)E(N12).

Conditioning on the location of the points and using that Nij = 0 if x1, x2 ∈ H+ or
x1, x2 ∈ H−, we obtain

E(N12) =
∫

Rd

∫
Rd

E(N12 | x1 = x, x2 = y)p(y) dy p(x) dx

=
∫

H+

∫
H−

E(N12 | x1 = x, x2 = y)p(y) dy p(x) dx

+
∫

H−

∫
H+

E(N12 | x1 = x, x2 = y)p(y) dy p(x) dx, (3.3)

where we have used that the joint density of x1 and x2 is the product of the marginal
densities since the two variables are assumed to be independent. Note that technically
the conditional expectation does not exist if x /∈ C or y /∈ C. However, this does not
pose a problem since in this case p(x) = 0 or p(y) = 0, so we can set the conditional ex-
pectation to an arbitrary fixed number without changing the integral. In the following
we set E(N12 | x1 = x, x2 = y) = 0 if x /∈ C or y /∈ C.
Now we will examine the inner integrals for x ∈ H+, y ∈ H−. The other integral can
be dealt with similarly.
For the rn-neighborhood graph we have N12 = 1 if dist(x, y) ≤ rn and x and y are on
different sides of S, and 0 otherwise. So, for given x ∈ H+ ∩ C and y ∈ H− ∩ C, we
have

E(N12 | x1 = x, x2 = y) =

{
1 if dist(x, y) ≤ rn

0 otherwise,

and thus for a given x ∈ H+ ∩ C∫
H−

E(N12 | x1 = x, x2 = y)p(y) dy =
∫

H−∩B(x,rn)
p(y) dy = g(x, rn).
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Applying the same procedure for the other integral, that is for x ∈ H− ∩ C, we obtain
for the rn-neighborhood graph

E(N12) =
∫

H+
g(x, rn)p(x) dx +

∫
H−

g(x, rn)p(x) dx

=
∫

Rd
g(x, rn)p(x) dx. (3.4)

For the k-nearest neighbor graph, we have for x ∈ H+ ∩ C, y ∈ H− ∩ C

E(N12 | x1 = x, x2 = y) = Pr(C12 = 1 | x1 = x, x2 = y),

where C12 is the indicator variable of the event that there is an edge from x1 to x2. We
have

Pr(C12 = 1 | x1 = x, x2 = y) = Pr(U < kn),

where U ∼ Bin(n− 2, µ(B(x, dist(x, y)))).
Since 0 < δn < 1/2 and 0 < αn < 1/2 we have (1 + δn)αn ∈ (0, 1) and therefore
r̃(x, (1 + δn)αn) and r̃(x, (1− δn)αn) exists for every x ∈ Rd. Now suppose dist(x, y) ≤
r̃(x, (1− δn)αn) and let U′ ∼ Bin(n− 2, µ(B(x, r̃(x, (1− δn)αn))), so U′ ∼ Bin(n− 2, (1−
δn)αn). Then, under the conditions on δn and kn we can use the tail bound for the
binomial distribution in Corollary A.3 and obtain

Pr(U < kn) ≥ Pr(U′ < kn) = 1− Pr(U′ > kn − 1)

≥ 1− exp
(
−1

3
(kn − 1− (n− 2)(1− δn)αn)2

(n− 2)(1− δn)αn

)
.

Now we clearly have (since 0 < δn < 1/2 and n > 2, and using αn = kn/(n− 1))

(kn − 1− (n− 2)(1− δn)αn)2

(n− 2)(1− δn)αn
=

(
kn − 1− (n− 2)(1− δn) kn

n−1

)2

(n− 2)(1− δn) kn
n−1

≥
(
kn − 1− (1− 1

n−1

)
(1− δn)kn

)2

kn
=

((
δn − δn

n−1 + 1
n−1

)
kn − 1

)2

kn

≥
(

δn − δn
n−1 + 1

n−1

)2
k2

n − 2
(

δn − δn
n−1 + 1

n−1

)
kn

kn

≥
(

δn +
1− δn

n− 1

)2

kn − 2
(

δn +
1

n− 1

)
≥ δ2

nkn − 2,

where in the last step we use kn/(n − 1) ≤ 1. That is, in the case of a small distance
dist(x, y) ≤ r̃(x, (1− δn)αn) we have

Pr(C12 = 1 | x1 = x, x2 = y) ≥ 1− exp
(
−δ2

n
3

kn +
2
3

)
. (3.5)

77



3 Influence of graph construction on graph-based clustering quality measures

Suppose dist(x, y) ≥ r̃(x, (1 + δn)αn) and let V ′ ∼ Bin(n− 2, µ(B(x, r̃(x, (1 + δn)αn))),
that is V ′ ∼ Bin(n− 2, (1 + δn)αn). Then under our conditions on δn and kn we can use
the tail bound for the binomial distribution in Corollary A.3 and obtain

Pr(U < kn) ≤ Pr(V ′ < kn) ≤ exp
(
− 1

2
((n− 2)(1 + δn)αn − kn)2

(n− 2)(1 + δn)αn

)
.

As 0 < δn < 1/2 and n > 2

((n− 2) (1 + δn) αn − kn)
2

(n− 2) (1 + δn) αn
=

((
1− 1

n−1

)
(1 + δn) kn − kn

)2

(n− 2) (1 + δn) kn
n−1

=

((
δn − 1+δn

n−1

)
kn

)2

(1 + δn)kn

≥ δ2
n

1 + δn
kn −

2δn
1+δn
n−1

1 + δn
kn =

δ2
n

1 + δn
kn − 2δn

kn

n− 1
≥ δ2

n
2

kn − 1.

In the case dist(x, y) ≥ r̃(x, (1 + δn)αn) we have

Pr(C12 = 1 | x1 = x, x2 = y) ≤ exp
(
−δ2

n
4

kn +
1
2

)
. (3.6)

We set X = {x1 = x, x2 = y}, B−n = B(x1, r̃(x, (1− δn)αn)) and B+
n = B(x, r̃(x, (1 +

δn)αn)). Then

∫
H−

E(N12 | X )p(y) dy =
∫

H−∩C
Pr(C12 = 1 | X )p(y) dy

=
∫

H−∩B−n ∩C
Pr(C12 = 1 | X )p(y) dy +

∫
H−∩(B−n )c∩C

Pr(C12 = 1 | X )p(y) dy

≥
∫

H−∩B−n ∩C
Pr(C12 = 1 | X )p(y) dy ≥ min

y∈H−∩B−n ∩C
Pr(C12 = 1 | X )

∫
H−∩B−n

p(y) dy

= g(x, r̃(x, (1− δn)αn)) min
y∈H−∩B−n ∩C

Pr(C12 = 1 | X ),

and using the result of Equation (3.5)

≥ g(x, r̃(x, (1− δn)αn))
(

1− exp
(
−δ2

n
3

kn +
2
3

))
≥ g(x, r̃(x, (1− δn)αn))− exp

(
−δ2

n
3

kn +
2
3

)
.
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On the other hand, using the result of Equation (3.6)∫
H−

E(N12 | X )p(y) dy =
∫

H−∩C
Pr(C12 = 1 | X )p(y) dy

=
∫

H−∩B+
n ∩C

Pr(C12 = 1 | X )p(y) dy +
∫

H−∩(B+
n )c∩C

Pr(C12 = 1 | X )p(y) dy

≤
∫

H−∩B+
n

p(y) dy + max
y∈H−∩(B+

n )c∩C
Pr(C12 = 1 | X )

∫
H−∩(B+

n )c
p(y) dy

≤ g(x, r̃(x, (1 + δn)αn)) + max
y∈H−∩(B+

n )c∩C
Pr(C12 = 1 | X )

≤ g(x, r̃(x, (1 + δn)αn)) + exp
(
−δ2

nkn

4
+

1
2

)
.

The same analysis can be carried out for the other integral, that is for x ∈ H−. Inserting
these bounds for the inner integral into Equation (3.3) we obtain

E(N12) ≥
∫

H+

(
g(x, r̃(x, (1− δn)αn))− exp

(
−δ2

n
3

kn +
2
3

))
p(x) dx

+
∫

H−

(
g(x, r̃(x, (1− δn)αn))− exp

(
−δ2

n
3

kn +
2
3

))
p(x) dx

=
∫

Rd
g(x, r̃(x, (1− δn)αn))p(x) dx− exp

(
−δ2

n
3

kn +
2
3

)
≥
∫

Rd
g(x, r̃(x, (1− δn)αn))p(x) dx− 2 exp

(
−δ2

n
4

kn

)
,

where we use exp(2/3) < 2 and

E(N12) ≤
∫

Rd
g(x, r̃(x, (1 + δn)αn)) dx + exp

(
−δ2

n
4

kn +
1
2

)
≤
∫

Rd
g(x, r̃(x, (1 + δn)αn)) dx + 2 exp

(
−δ2

n
4

kn

)
.

�

The following lemma is a technical lemma, which essentially states that the integral
over the whole space in Lemma 3.8 can be replaced by an integral over the hyperplane S
under certain conditions. In the proof of Proposition 3.3 we show that the conditions
in this lemma hold for the r-neighborhood graph and the k-nearest neighbor graph.
We give here a more intuitive description of the conditions: The parameter r̃n(x) in
the original integral must be bounded from above uniformly over all x in C by rmax

n .
Intuitively, rmax

n denotes an upper bound on the distance of points to which a sample
point at position x can be connected, that is on the neighborhood radius. The second
condition means that for a point s on the hyperplane and far enough from the boundary
of C we can bound the radii r̃n(x) of points x close to s in terms of rn(s). The radius rn(s)
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is basically the expected neighborhood radius of a sample point at s. The third condition
gives lower and upper bounds on the density close to the hyperplane. The values of νn
and ξn describe how close the estimates of the neighborhood radius and the density are
to the actual value. This “closeness” in the second and the third condition depends on
the upper bound on the neighborhood radius rmax

n . For the graphs under consideration
we show that ξn can be chosen linear in rmax

n and νn is set to zero for the r-graph and
linear in rmax

n for the kNN-graph. In fact, making stronger differentiability assumptions
on the density we could improve the dependence of νn and ξn on rmax

n . However, this
would not improve the convergence rates in the end, since these are determined by νn,
ξn and Ld−1(S ∩ Rn), where the last can be shown to be linear in rmax

n under the rate
conditions.

Lemma 3.9 (Integral over Rd bounded in terms of integral over S) Let (rn)n∈N,
(r̃n)n∈N be sequences of functions rn, r̃n : Rd → R for all n ∈N and (rmax

n )n∈N a sequence of
reals. Suppose the following conditions hold:

1. rn(x) ≤ rmax
n and r̃n(x) ≤ rmax

n for all x ∈ C and n ∈N,

2. we can find a sequence (νn)n∈N ⊆ [0, 1) such that if B(s, 3rmax
n ) ⊆ C for s ∈ S then for

all x ∈ B(s, rmax
n ) we have

d
√

1− νnrn(s) ≤ r̃n(x) ≤ d
√

1 + νnrn(s), (3.7)

3. we can find a sequence (ξn)n∈N ⊆ (0, 1) such that if B(s, 3rmax
n ) ⊆ C for s ∈ S then for

all y ∈ B(s, 3rmax
n ) we have

(1− ξn)p(s) ≤ p(y) ≤ (1 + ξn)p(s). (3.8)

Then we have∫
Rd

p(x)g(x, r̃n(x)) dx ≤(1 + ξn)2(1 + νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

+ 2ηd p2
max(rmax

n )d+1Ld−1(S ∩Rn),

and ∫
Rd

p(x)g(x, r̃n(x)) dx ≥(1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

− 2ηd−1 p2
max(rmax

n )d+1Ld−1(S ∩Rn),

where we have setRn = {x ∈ Rd | dist(x, ∂C) ≤ 3rmax
n }.

Proof. We have by a translation and rotation of the coordinate system∫
Rd

p(x)g(x, r̃n(x)) dx =
∫

S

∫ ∞

−∞
p(s + tnS)g(s + tnS, r̃n(s + tnS)) dt ds (3.9)

=
∫

S
hn(s) ds, (3.10)
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where we have set

hn(s) =
∫ ∞

−∞
p(s + tnS)g(s + tnS, r̃n(s + tnS)) dt. (3.11)

Let Rn be defined as above, In = C \ Rn and An = Rd \ (In ∪ Rn) . Then we can
decompose the integral into∫

S
hn(s) ds =

∫
S∩In

hn(s) ds +
∫

S∩Rn

hn(s) ds +
∫

S∩An

hn(s) ds.

Let s ∈ S ∩An. Then dist(s, C) ≥ rmax
n and thus for |t| ≤ rmax

n we have p(s + tnS) = 0.
If |t| > rmax

n and s + tnS /∈ C then p(s + tnS) = 0 as well. Otherwise if s + tnS ∈ C we
have r̃n(s + tnS) ≤ rmax

n but d(s + tnS, S) ≥ rmax
n and thus g(s + tnS, r̃n(s + tnS)) = 0.

Therefore ∫
S∩An

hn(s) ds = 0. (3.12)

Now let s ∈ S ∩Rn. We have for any s ∈ S and t ∈ R

p(s + tns)g(s + tnS, r̃n(s + tnS)) ≤ pmaxg(s + tnS, rmax
n ),

since either p(s + tnS) = 0 (for s + tnS /∈ C) or p(s + tnS) ≤ pmax and r̃n(s + tnS) ≤ rmax
n

(for s + tnS ∈ C). Therefore we have for s ∈ S ∩Rn

hn(s) ≤
∫ rmax

n

−rmax
n

pmaxg(s + tnS, rmax
n ) dt ≤

∫ rmax
n

−rmax
n

p2
maxηd(rmax

n )d dt

= p2
maxηd(rmax

n )d2rmax
n = 2p2

maxηd(rmax
n )d+1,

and thus ∫
S∩Rn

hn(s) ds ≤ 2p2
maxηd(rmax

n )d+1
∫

S∩Rn

1 ds

= 2p2
maxηd(rmax

n )d+1Ld−1(S ∩Rn). (3.13)

Finally, we consider the case s ∈ S ∩ In, that means B(s, 3rmax
n ) ⊆ C.

Since r̃n(x) ≤ d
√

1 + νnr(s) for x ∈ B(s, rmax
n ) and νn < 1, we have r̃n(x) ≤ 2rmax

n and
therefore B(x, r̃n(x)) ⊆ B(s, 3rmax

n ) ⊆ C by definition. That is, we can use the definition
of ξn in Assumption 3 and the monotonicity of g to obtain

hn(s) =
∫ ∞

−∞
p(s + tnS)g(s + tnS, r̃n(s + tnS)) dt

≤
∫ d√1+νnrn(s)

− d√1+νnrn(s)
(1 + ξn)p(s)g(s + tnS, d

√
1 + νnrn(s)) dt

= (1 + ξn)p(s)
∫ d√1+νnrn(s)

− d√1+νnrn(s)
g(s + tnS, d

√
1 + νnrn(s)) dt.
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3 Influence of graph construction on graph-based clustering quality measures

Setting A(t) = Ld(B(0, 1) ∩ {x = (x(1), . . . , x(d))|x(1) ≥ t}) and applying Lemma 3.10
we obtain

hn(s) ≤ (1 + ξn)p(s)
∫ d√1+νnrn(s)

− d√1+νnrn(s)
(1 + ξn)p(s)( d

√
1 + νnrn(s))d A

( |t|
d
√

1 + νnrn(s)

)
dt

= (1 + ξn)2(1 + νn)p2(s)rd
n(s)2

∫ d√1+νnrn(s)

0
A
(

t
d
√

1 + νnrn(s)

)
dt.

Substituting in the integral u = t/( d
√

1 + νnrn(s)) we have dt = d
√

1 + νnrn(s) du and
obtain

hn(s) ≤ (1 + ξn)2(1 + νn)p2(s)rd
n(s)2

∫ 1

0
A(u) d

√
1 + νnrn(s) du

= (1 + ξn)2(1 + νn)1+1/d p2(s)rd+1
n (s)2

∫ 1

0
A(u) du

= (1 + ξn)2(1 + νn)1+1/d 2ηd−1

d + 1
p2(s)rd+1

n (s),

where we apply Lemma 3.11 in the last step. Hence∫
S∩In

hn(s) ds ≤ (1 + ξn)2(1 + νn)1+1/d 2ηd−1

d + 1

∫
S∩In

p2(s)rd+1
n (s) ds. (3.14)

Similarly, we show∫
S∩In

hn(s) ds ≥ (1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1

∫
S∩In

p2(s)rd+1
n (s) ds.

WithRn, An, and In as above we certainly have∫
S

p2(s)rd+1
n (s) ds

=
∫

S∩In

p2(s)rd+1
n (s) ds +

∫
S∩Rn

p2(s)rd+1
n (s) ds +

∫
S∩An

p2(s)rd+1
n (s) ds

=
∫

S∩In

p2(s)rd+1
n (s) ds +

∫
S∩Rn

p2(s)rd+1
n (s) ds.

Therefore, ∫
S∩In

p2(s)rd+1
n (s) ds

=
∫

S
p2(s)rd+1

n (s) ds−
∫

S∩Rn

p2(s)rd+1
n (s) ds

≥
∫

S
p2(s)rd+1

n (s) ds− p2
max(rmax

n )d+1Ld−1(S ∩Rn),
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and finally∫
S

hn(s) ds =
∫

S∩In

hn(s) ds +
∫

S∩Rn

hn(s) ds +
∫

S∩An

hn(s) ds

≥
∫

S∩In

hn(s) ds

≥ (1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1

∫
S∩In

p2(s)rd+1
n (s) ds

≥ (1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

− (1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1
p2

max(rmax
n )d+1Ld−1(S ∩Rn)

≥ (1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

− 2ηd−1 p2
max(rmax

n )d+1Ld−1(S ∩Rn).

On the other hand, combining the bounds in (3.14), (3.13) and (3.12), we obtain∫
S

hn(s) ds =
∫

S∩In

hn(s) ds +
∫

S∩Rn

hn(s) ds +
∫

S∩An

hn(s) ds

≤ (1 + ξn)2(1 + νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

+ 2p2
maxηd(rmax

n )d+1Ld−1(S ∩Rn).

�

Lemma 3.10 (Lower and upper bound on probability mass in caps) Let the general as-
sumptions and notations hold. Let s ∈ S, t ∈ R and r > 0. Then g(s + tnS, r) = 0 if |t| ≥ r.
Otherwise, if p̃min ≤ p(y) ≤ p̃max for all y ∈ B(s + tnS, r) we have

p̃minrd A
( |t|

r

)
≤ g(s + tnS, r) ≤ p̃maxrd A

( |t|
r

)
,

where
A(t) = Ld

(
B(0, 1) ∩

{
z = (z1, . . . , zd) ∈ Rd

∣∣∣ z1 ≥ t
})

.

Proof. Suppose t ≥ 0 so that s + tnS ∈ H+ (the other case can be treated analogously).
We use that by a translation and a rotation of the coordinate system (such that the origin
is at s + tnS and −nS is the direction of the first unit vector) and the invariance of the
Lebesgue measure with respect to linear transformations we have

Ld(B(s + tnS, r) ∩ H−) = Ld

(
B(0, r) ∩

{
z = (z1, . . . , zd) ∈ Rd

∣∣∣ z1 ≥ t
})

.
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3 Influence of graph construction on graph-based clustering quality measures

By scaling we obtain

Ld

(
B(0, r) ∩

{
z = (z1, . . . , zd) ∈ Rd

∣∣∣ z1 ≥ t
})

= rdLd

(
B(0, 1) ∩

{
z = (z1, . . . , zd) ∈ Rd

∣∣∣∣ z1 ≥ t
r

})
.

Considering that the probability mass can be bounded by the product of the minimal
or maximal density and the Lebesgue measure we obtain the statement about the
probability mass. �

Lemma 3.11 (Integral over cap volume) With A(t) defined as in Lemma 3.10 we have∫ 1

0
A(t) dt =

ηd−1

d + 1
.

Proof. We have∫ 1

0
A(t)dt =

∫ 1

0
Ld

(
B(0, 1) ∩

{
z = (z1, . . . , zd) ∈ Rd

∣∣∣ z1 ≥ t
})

dt

=
∫ 1

0

∫ 1

t
ηd−1

√
1− r2

d−1
dr dt =

∫ 1

0

∫ r

0
ηd−1

√
1− r2

d−1
dt dr

=
∫ 1

0
ηd−1

√
1− r2

d−1
∫ r

0
dt dr =

∫ 1

0
ηd−1r

√
1− r2

d−1
dr.

Substituting r = cos θ, we have to integrate from θ = arccos(0) = π/2 to θ =
arccos(1) = 0, and have dr = − sin θ dθ. Thus,∫ 1

0
A(t) dt = ηd−1

∫ π/2

0
cos θ sind θ dθ = ηd−1

[
1

d + 1
sind+1 θ

]π/2

0
=

ηd−1

d + 1
.

�

Lemma 3.12 (Convergence Ld−1({s ∈ S | dist(x, ∂C) ≤ νn})→ 0 for νn → 0) Let the
general assumptions hold and let (νn)n∈N ⊆ R>0 be a sequence with νn → 0 for n → ∞.
Define

Rn = {x ∈ Rd | dist(x, ∂C) ≤ νn}.
Then we have Ld−1(S ∩ Rn) → 0 for n → ∞. In the case d = 1, furthermore, Ld−1(S ∩
Rn) = 0 for all but finitely many n. If d ≥ 2 and the rate conditions hold then for νn sufficiently
small

Ld−1(S ∩Rn) ≤ 6νn

sin(α/2)
Ld−2(S ∩ ∂C).
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Proof. We first show the statements in the more interesting case d ≥ 2. For the proof
of convergence we assume without loss of generality that (νn)n∈N is monotonically
decreasing. If this is not the case then we will show the result for a suitable monotonic
subsequence and use the fact that the sequence (νn) converges to 0.
We haveR1 ⊇ R2 ⊇ . . . and Ld−1(S ∩R1) < ∞. The limit limn→∞ Ld−1(S ∩Rn) exists
because Ld−1(S ∩ R1) < ∞, the sequence Ld−1(S ∩ Rn) is decreasing and bounded
from below. By the continuity of the Lebesgue measure

Ld−1

(
∞⋂

n=1

(S ∩Rn)

)
= lim

n→∞
Ld−1(S ∩Rn).

On the other hand S ∩ ∂C = ∩∞
n=1(S ∩Rn). Therefore

Ld−1(S ∩ ∂C) = lim
n→∞
Ld−1(S ∩Rn).

Suppose Ld−1(S ∩ Rn) 6→ 0 for n → ∞ and remember that Ld−1(S ∩ ∂C) = 0 by
assumption. The limit v = limn→∞ Ld−1(S ∩Rn) exists and by our assumption v > 0.
Therefore Ld−1(S ∩ ∂C) = v > 0, which is a contradiction.
In order to prove the convergence rate we first show that for sufficiently small νn we
have

S ∩Rn = {s ∈ S | dist(s, ∂C) ≤ νn} ⊆
{

s ∈ S
∣∣∣∣ dist(s, S ∩ ∂C) ≤ 2νn

sin(α/2)

}
.

In the following let dist∂C(x, y) denote the geodesic distance in ∂C of x, y ∈ ∂C. We
have for x, y ∈ ∂C∣∣〈ny, nS〉

∣∣ =
∣∣〈ny − nx + nx, nS〉

∣∣ =
∣∣〈ny − nx, nS〉+ 〈nx, nS〉

∣∣
≤ ∣∣〈ny − nx, nS〉

∣∣+ |〈nx, nS〉| ,

and with the Cauchy-Schwartz inequality

≤ ‖ny − nx‖‖nS‖+ |〈nx, nS〉| = ‖ny − nx‖+ |〈nx, nS〉|
≤ dist∂C(x, y)

κ
+ |〈nx, nS〉| ,

where in the last step we use that, according to Lemma A.15, ‖nx − ny‖ ≤
dist∂C(x, y)/κ. In particular, if x ∈ S ∩ ∂C, y ∈ ∂C and dist∂C(x, y) ≤ κ(cos(α/2) −
cos α) we have

∣∣〈ny, nS〉
∣∣ ≤ cos(α/2).

Define

Birr = {x ∈ ∂C | dist∂C(x, S ∩ ∂C) ≥ κ(cos(α/2)− cos α)} ,

which is a compact set. Therefore the function dist(., S) must attain its minimum on
Birr and we set birr = argminx∈Birr

dist(x, S). Clearly dist(birr, S) > 0, since otherwise
birr ∈ S which is a contradiction to the construction of Birr.
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3 Influence of graph construction on graph-based clustering quality measures

In the following suppose that νn < dist(Birr, S). Let s be a point in S with dist(s, ∂C) ≤
νn and let s′ ∈ ∂C such that dist(s, s′) = dist(s, ∂C) (such a point must exist due to
the compactness of ∂C and the continuity of dist(s, .)). In the following we set h =
dist(s, s′). If h = 0 we have s = s′ and thus dist(s, S ∩ ∂C) = 0. Next we will consider
the case h > 0.
Since dist(s′, s) = h ≤ νn but dist(Birr, S) > νn we have s′ /∈ Birr and therefore for the
normal ns′ that |〈nS, ns′〉| ≤ cos(α/2). Let T denote the tangential hyperplane to ∂C in
the point s′ and nT its normal vector, that is nT = ns′ . Since ∂C is a smooth (d − 1)-
dimensional surface we can represent it locally as a smooth function over the tangent
plane. That is, there is a radius R such that for any unit vector u ∈ T the intersection of
∂C with the plane spanned by nT and u can be represented locally by a smooth function
fu : R→ R, such that the intersection curve is given by

s′ + ξu + fu(ξ)nT,

for |ξ| ≤ R. Furthermore fu(0) = 0 and f ′u(0) = 0, that is with a Taylor-expansion
around 0 we obtain

fu(ξ) = fu(0) + ξ f ′u(0) +
ξ2

2
f ′′u (θξ) = ξ2 f ′′u (θξ)

with θ ∈ (0, 1).
Now we show that the vector s− s′ is perpendicular to the tangent plane T in s′. Let u
be a unit vector in T. For |ξ| ≤ R the point

s′′ = s′ + ξu + fu(ξ)nT

is on the surface ∂C. Now we have

‖s− s′′‖2 = ‖s− s′ − ξu− fu(ξ)nT‖2

= ‖s− s′‖2 + ‖ξu− fu(ξ)nT‖2 − 2〈s− s′, ξu + fu(ξ)nT〉
= ‖s− s′‖2 + ξ2 + f 2

u(ξ)− 2ξ〈s− s′, u〉 − 2 fu(ξ)〈s− s′, nT〉

and using the Taylor expansion of fu with a θ ∈ (0, 1)

= ‖s− s′‖2 + ξ2 +
ξ4

4
f ′′2u (θξ)− 2ξ〈s− s′, u〉 − ξ2 f ′′u (θξ)〈s− s′, nT〉.

We can find R2 > 0 such that | f ′′u (x)| ≤ 2| f ′′u (0)| for −R2 ≤ x ≤ R2. Therefore, if
|ξ| ≤ R2 we have

‖s− s′′‖2 ≤ ‖s− s′‖2 − 2ξ〈s− s′, u〉+ ξ2 + 4
ξ4

4
| f ′′u (0)|2 + 2ξ2| f ′′u (0)||〈s− s′, nT〉|.

Suppose 〈s− s′, u〉 6= 0. Then we can find ξ such that for the corresponding point s′′ we
have

‖s− s′′‖2 < ‖s− s′‖2,
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That is we have found a point s′′ on ∂C that is closer to s than s′. This is a contradiction
to dist(s, s′) = dist(s, ∂C)! Therefore 〈s− s′, u〉 = 0 and since the tangent vector u was
arbitrary, s− s′ is perpendicular to the tangent plane T.
Due to the condition on the angle α the intersection S∩ T is a (d− 2)-dimensional affine
subspace of Rd. Now let p be the orthogonal projection of s′ onto the subspace S ∩ T,
that is

p = argmin
x∈S∩T

‖s′ − x‖2.

Clearly s′ − p is a vector in the hyperplane T and therefore perpendicular to s− s′, that
is by Pythagoras

‖s− p‖2 = ‖s− s′ + s′ − p‖2 = ‖s− s′‖2 + ‖s′ − p‖2,

and thus p is also the orthogonal projection of s onto S ∩ T.
Define v1 = (s − p)/‖s − p‖ and v2 = (s′ − p)/‖s′ − p‖. Clearly, v1 is a vector in
the hyperplane S and v2 in T. Due to the choice of p the vectors nS, nT and v1, v2 span
a (2-dimensional) plane and we have 〈nS, v1〉 = 0 and 〈nT, v2〉 = 0. Since we are in
a 2-dimensional subspace it is clear that |〈v1, v2〉| = |〈nS, nT〉|. Now we consider the
plane

E =
{

s′ + u1
p− s′

‖p− s′‖ + u2
s− s′

‖s− s′‖
∣∣∣∣ u1, u2 ∈ R

}
and in this plane we consider the coordinate system with its origin at s′ and orthonor-
mal basis (p− s′)/‖p− s′‖ and (s− s′)/‖s− s′‖. In this coordinate system s′ = (0, 0)
and the intersection of T and E is the horizontal line. Since h = ‖s − s′‖ we have
s = (0, h). The cosine of the angle at p in the triangle spanned by s,s′ and p is |〈v1, v2〉|
and therefore the angle is bounded from below by α/2. In the following we assume
that this angle equals α/2. Then we have p = (h/ tan(α/2), 0). Thus the intersection of
S with E is given by the function gS : R→ R with gS(x) = h− x tan(α/2). Let f denote
the local representation of the surface from above. Clearly we can find a radius R3 > 0
such for all 0 ≤ x ≤ R3 we have f (x) ≥ fl(x) with fl(x) = −(x tan(α/2))/2. Since the
minimal curvature radius is bounded away from 0 on ∂C we can even find the radius
R3 > 0 such that it is independent of the exact s′. The intersection of fl with gS is the
point (2h/ tan(α/2),−h). Figure 3.7 illustrates these functions in the plane E.
Now suppose that h ≤ (R3 tan(α/2))/2. Then f (0) = 0 < gS(0) but

f
(

2h
tan(α/2)

)
≥ fl

(
2h

tan(α/2)

)
= −h = gS

(
2h

tan(α/2)

)
,

and therefore there exists a point q = (q1, q2) ∈ S∩ ∂C ∩ E with 0 ≤ q1 ≤ 2h/ tan(α/2).
Clearly,

dist(s, q) ≤
√

4h2 +
4h2

tan2(α/2)
= 2h

√
1 +

cos2(α/2)
sin2(α/2)

= 2h

√
1 +

1− sin2(α/2)
sin2(α/2)

=
2h

sin(α/2)
,
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T ∩ E

S ∩ E = gS

s

s′

p

∂C ∩ E = f

fl

h

α/2
q

Figure 3.7: An illustration of the points s, s′, p and the functions gS, f in the plane E
where the angle between nT and nS equals α/2. Locally the function f is
bounded from below by the linear function gS. Since gS and fl intersect
there must also be an intersection point q of f and gS. The distance of q to s
cannot be greater than the distance of the intersection of gS and fl to s.

and therefore dist(s, S∩ ∂C) ≤ 2h/ sin(α/2). Since s was arbitrary, we have shown that

S ∩Rn = {s ∈ S | dist(s, ∂C) ≤ νn} ⊆
{

s ∈ S
∣∣∣∣ dist(s, S ∩ ∂C) ≤ 2νn

sin(α/2)

}
.

According to Lemma A.18 S ∩ ∂C consists of finitely many connected components in
the (d− 1)-dimensional subspace S and the relative boundary of each one is a closed,
smooth (d− 2)-dimensional surface without a boundary.
Therefore, we have with Lemma A.14, applied to the (d − 1)-dimensional affine sub-
space S, that for νn sufficiently small

Ld−1

({
s ∈ S

∣∣∣∣ dist(s, S ∩ ∂C) ≤ 2νn

sin(α/2)

})
≤ 3Ld−2(S ∩ ∂C)

2νn

sin(α/2)

=
6νn

sin(α/2)
Ld−2(S ∩ ∂C).

In the case d = 1 the hyperplane S is a single point and the condition Ld−1(S ∩ ∂C) = 0
implies that S /∈ ∂C. Due to the compactness of C we can find an ε > 0 such that
B(S, ε) ∩ C = ∅. That means, for νn sufficiently small S ∩ Rn = ∅ and therefore
L0(S ∩Rn) = 0 for all but finitely many n. �

Proof of Proposition 3.3. We first show the statement for the r-neighborhood graph.
According to Lemma 3.8 and the linearity of the expectation we have

E

(
cutn,rn(S)

n2rd+1
n

)
=

n− 1
n

1
rd+1

n

∫
Rd

g(x, rn)p(x) dx.
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Setting rn(x) = r̃(x) = rmax
n = rn in Lemma 3.9 we can clearly choose νn = 0 for all

n ∈N.
Assume s ∈ S and B(s, 3rmax

n ) ⊆ C. For all y ∈ B(s, 3rmax
n ) we have

p(s)− 3p′maxrmax
n ≤ p(y) ≤ p(s) + 3p′maxrmax

n ,

or, written differently and using rmax
n = rn,

p(s)
(

1− 3
p′max
p(s)

rn

)
≤ p(y) ≤ p(s)

(
1 + 3

p′max
p(s)

rn

)
.

Setting ξn = 3p′maxrn/pmin Equation (3.8) in Lemma 3.9 holds if ξn < 1. In the follow-
ing let n be sufficiently large such that rn < pmax/(3pmin), that is ξn < 1. Applying
Lemma 3.9 we obtain

E

(
cutn,rn(S)

n2rd+1
n

)
≤ n− 1

n
1

rd+1
n

(
(1 + ξn)2(1 + νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

+ 2ηd p2
max(rmax

n )d+1Ld−1(S ∩Rn)
)

≤ (1 + ξn)2 2ηd−1

d + 1

∫
S

p2(s) ds + 2ηd p2
maxLd−1(S ∩Rn), (3.15)

and

E

(
cutn,rn(S)

n2rd+1
n

)
≥ n− 1

n
1

rd+1
n

(
(1− ξn)2(1− νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

− 2ηd−1 p2
max(rmax

n )d+1Ld−1(S ∩Rn)
)

≥ n− 1
n

(1− ξn)2 2ηd−1

d + 1

∫
S

p2(s) ds− 2ηd−1 p2
maxLd−1(S ∩Rn). (3.16)

We simplify the expressions in Equation (3.15) using ξn < 1 and ηd ≤ 6 for all d ≥ 1

E

(
cutn,rn(S)

n2rd+1
n

)
≤ 2ηd−1

d + 1

∫
S

p2(s) ds + 18ξn

∫
S

p2(s) ds + 12p2
maxLd−1(S ∩Rn),

and

E

(
cutn,rn(S)

n2rd+1
n

)
≥ 2ηd−1

d + 1

∫
S

p2(s) ds− 6
(

2ξn +
1
n

) ∫
S

p2(s) ds− 12p2
maxLd−1(S ∩Rn).

Clearly
∫

S p2(s) ds ≤ p2
maxLd−1(S ∩ C), and thus∣∣∣∣E(cutn,rn(S)

n2rd+1
n

)
− 2ηd−1

d + 1

∫
S

p2(s) ds
∣∣∣∣

≤ 6 (3ξn + 1/n) p2
maxLd−1(S ∩ C) + 12p2

maxLd−1(S ∩Rn)

= 6
(

9p′max
pmin

rn +
1
n

)
p2

maxLd−1(S ∩ C) + 12p2
maxLd−1(S ∩Rn).
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Since we assumed rn → 0 for n → ∞ the convergence towards zero for n → ∞ of the
first term is clear. Under the condition Ld−1(S ∩ ∂C) = 0 we have by Lemma 3.12 that
Ld−1(S ∩Rn) → 0 for n → ∞, and therefore the second term also converges towards
zero for n→ ∞.
Under the condition nrn → ∞ we have for n sufficiently large, nrn ≥ pmin/p′max, and
thus

6
(

9p′max
pmin

rn +
1
n

)
p2

maxLd−1(S ∩ C) ≤ 60p′max
pmin

p2
maxLd−1(S ∩ C)rn.

For d = 1 we have with Lemma 3.12 that Ld−1(S ∩Rn) = 0 for all but finitely many n.
For d ≥ 2 and under the rate conditions we have with the same lemma for n sufficiently
large

12p2
maxLd−1(S ∩Rn) ≤ 12p2

max
18rn

sin(α/2)
Ld−2(S ∩ ∂C) =

216Ld−2(S ∩ ∂C)
sin(α/2)

p2
maxrn.

In the following we show the statement for the k-nearest neighbor graph. According to
Lemma 3.8 and the linearity of the expectation we have for δn < 1/2 and kn < (n− 1)/2

E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)
≤ n− 1

kn

d

√
n
kn

∫
Rd

g(x, r̃(x, (1 + δn)αn))p(x) dx

+
1

nkn

d

√
n
kn

2 exp(2 log n− δ2
nkn/4)

≤ n− 1
kn

d

√
n
kn

∫
Rd

g(x, r̃(x, (1 + δn)αn))p(x) dx

+ 2 exp(2 log n− δ2
nkn/4). (3.17)

In the following, we bound the integral∫
Rd

g(x, r̃(x, (1 + δn)αn))p(x) dx

using Lemma 3.9.
Set

rmax
n = d

√
(1 + δn)αn

γpminηd
and rn(x) = d

√
(1 + δn)αn

p(x)ηd
.

By definition rn(x) ≤ rmax
n for all x ∈ C since pmin ≤ p(x) and γ ≤ 1. We identify

r̃n(x) = r̃(x, (1 + δn)αn)) and have r̃n(x) ≤ rmax
n for all x ∈ C given that rmax

n < rγ:
Computing the probability mass in balls of radius rmax

n for an arbitrary x ∈ C, we have

µ(B(x, rmax
n )) = µ

(
B
(

x, d

√
(1 + δn)αn

γpminηd

))
≥ pminLd

(
B
(

x, d

√
(1 + δn)αn

γpminηd

)
∩ C

)

≥ pminγLd

(
B
(

x, d

√
(1 + δn)αn

γpminηd

))
= pminγ

(1 + δn)αn

γpminηd
ηd

= (1 + δn)αn,

90



3.6 Proofs

and therefore we have r̃n(x) ≤ rmax
n for all x ∈ C.

Now we consider the second condition in Lemma 3.9. Assume that s ∈ S and
B(s, 3rmax

n ) ⊆ C. For all y ∈ B(s, 3rmax
n ) we have

p(s)− 3p′maxrmax
n ≤ p(y) ≤ p(s) + 3p′maxrmax

n ,

or, written differently,

p(s)
(

1− 3
p′max
p(s)

rmax
n

)
≤ p(y) ≤ p(s)

(
1 + 3

p′max
p(s)

rmax
n

)
.

Setting ξn = 3p′maxrmax
n /pmin we have

p(s)(1− ξn) ≤ p(y) ≤ p(s)(1 + ξn). (3.18)

Now we show that for ξn < 1/2 we can set νn = 2ξn. Under this condition we have
νn < 1,

1 + 2ξn =
(1 + 2ξn)(1− ξn)

1− ξn
=

1 + ξn − 2ξ2
n

1− ξn
>

1
1− ξn

,

and

1− 2ξn =
(1− 2ξn)(1 + ξn)

1 + ξn
=

1− ξn + 2ξ2
n

1 + ξn
<

1
1 + ξn

.

Therefore, for x ∈ B(s, rmax
n ) we have

µ(B(x, d
√

1 + 2ξnrn(s)) > µ

(
B
(

x, d

√
1

1− ξn
rn(s)

))

≥ (1− ξn)p(s)Ld

(
B
(

x, d

√
1

1− ξn
rn(s)

))

= (1− ξn)p(s)
(

d

√
1

1− ξn
rn(s)

)d

ηd

= p(s)ηdrn(s)d = (1 + δn)αn,

and

µ(B(x, d
√

1− 2ξnrn(s)) < µ

(
B
(

x, d

√
1

1 + ξn
rn(s)

))

≤ (1 + ξn)p(s)Ld

(
B
(

x, d

√
1

1 + ξn
rn(s)

))

= (1 + ξn)p(s)
(

d

√
1

1 + ξn
rn(s)

)d

ηd

= p(s)ηdrn(s)d = (1 + δn)αn.
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The strict inequalities hold, because the balls B(x, d
√

1 + 2ξnrn(s)) and
B(x, d
√

1− 2ξnrn(s)) lie completely within C. Therefore, we have
d
√

1− 2ξnrn(s) ≤ r̃n(x) ≤ d
√

1 + 2ξnrn(s).

Inserting this into Lemma 3.9 we obtain:∫
Rd

p(x)g(x, r̃n(x)) dx ≤ (1 + ξn)2(1 + νn)1+1/d 2ηd−1

d + 1

∫
S

p2(s)rd+1
n (s) ds

+ 2ηd p2
max(rmax

n )d+1Ld−1(S ∩Rn),

and since νn = 2ξn > 0 and ξn < 1/2

≤ (1 + 16ξn)
2ηd−1

d + 1

∫
S

p2(s)
(

(1 + δn)αn

p(s)ηd

)1+1/d

ds

+ 2ηd p2
max

(
(1 + δn)αn

γpminηd

)1+1/d

Ld−1(S ∩Rn)

≤ (αn(1 + δn))
1+1/d

[
2ηd−1(1 + 16ξn)
(d + 1)η1+1/d

d

∫
S

p1−1/d(s) ds

+
2p2

max

(γpmin)1+1/dη1/d
d

Ld−1(S ∩Rn)

]
.

Since αn = kn/(n− 1) we have

n− 1
kn

d

√
n
kn

α1+1/d
n =

n− 1
kn

d

√
n
kn

(
kn

n− 1

)1+1/d

= d

√
n

n− 1
≤ 1 +

2
n

.

Employing this result in Equation (3.17), using n ≥ 2 and δ < 1

E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)
≤
(

1 +
2
n

)
(1 + δn)2

[
2ηd−1(1 + 16ξn)
(d + 1)η1+1/d

d

∫
S

p1−1/d(s) ds

+
2p2

max

(γpmin)1+1/dη1/d
d

Ld−1(S ∩Rn)

]
+ 2 exp(2 log n− δ2

nkn/4)

≤
(

1 +
2
n

)
(1 + 3δn)(1 + 16ξn)

2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds

+
16p2

max

(γpmin)1+1/dη1/d
d

Ld−1(S ∩Rn) + 2 exp(2 log n− δ2
nkn/4)

≤ 2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds

+
(

3δn + 64ξn +
72
n

)
2ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

+
16p2

maxηd

(γpminηd)1+1/dLd−1(S ∩Rn) + 2 exp(2 log n− δ2
nkn/4).
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For the lower inequality we obtain similarly with Lemma 3.9∫
Rd

p(x)g(x, r̃n(x)) dx ≥ (αn(1− δn))
1+1/d

[
2ηd−1(1− 6ξn)
(d + 1)η1+1/d

d

∫
S

p1−1/d(s) ds

− 2ηd−1 p2
max

(γpmin)1+1/dη1+1/d
d

Ld−1(S ∩Rn)

]
.

Inserting this result back into Equation (3.17) and using ηd ≤ 6 for all d ≥ 1

E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)
≥ (1− 2δn)(1− 6ξn)

2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds

− 2ηd−1 p2
max

(γpmin)1+1/dη1+1/d
d

Ld−1(S ∩Rn)− 2 exp(2 log n− δ2
nkn/4)

≥ 2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds− (2δn + 6ξn)
2ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

− 12p2
max

(γpminηd)1+1/dLd−1(S ∩Rn)− 2 exp(2 log n− δ2
nkn/4).

Combining the lower and the upper bound from above and using

ξn = 3
p′max
pmin

rmax
n = 3

p′max
pmin

d

√
(1 + δn)αn

γpminηd
≤ 6p′max

p1+1/d
min

d
√

γηd

d

√
kn

n− 1
≤ 12p′max

p1+1/d
min (γηd)1/d

d

√
kn

n

we obtain∣∣∣∣E( 1
nkn

d

√
n
kn

cutn,kn(S)
)
− 2ηd−1

d + 1
η−1−1/d

d

∫
S

p1−1/d(s) ds
∣∣∣∣

≤
(

3δn + 64
12p′max

p1+1/d
min (γηd)1/d

d

√
kn

n
+

72
n

)
2ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

+
96p2

max

(γpminηd)1+1/dLd−1(S ∩Rn) + 2 exp(2 log n− δ2
nkn/4).

Since for n ≥ 2

1
n
≤ 1

d
√

n
=

1
d
√

kn

d

√
kn

n
,

we can subsume the term 72/n under two times the d
√

kn/n-term for sufficiently large
n and obtain∣∣∣∣E( 1

nkn

d

√
n
kn

cutn,kn(S)
)
− 2ηd−1

d + 1
η−1−1/d

d

∫
S

p1−1/d(s) ds
∣∣∣∣

≤
(

3δn +
1536p′max

p1+1/d
min (γηd)1/d

d

√
kn

n

)
2ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

+
96p2

max

(γpminηd)1+1/dLd−1(S ∩Rn) + 2 exp(2 log n− δ2
nkn/4).
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Choosing δn = 4
√

(log n)/kn and applying Lemma 3.12, the right hand side converges
to zero for n→ ∞ and thus we obtain the convergence result.
Now we will show the convergence rates. For d = 1 we have with Lemma 3.12 that
Ld−1(S ∩Rn) = 0 for all but finitely many n. For d ≥ 2 and under the rate conditions
we have with the same lemma for n sufficiently large

96p2
max

(γpminηd)1+1/dLd−1(S ∩Rn) ≤ 96p2
max

(γpminηd)1+1/d
18rmax

n
sin(α/2)

Ld−2(S ∩ ∂C)

=
96p2

max

(γpminηd)1+1/d
18

sin(α/2)
d

√
(1 + δn)kn

γpminηdn
Ld−2(S ∩ ∂C)

≤ 3456p2
maxLd−2(S ∩ ∂C)

(γpminηd)1+2/d sin(α/2)
d

√
kn

n
.

In the following we do not consider the case d = 1 separately, since the proof in this
case is the same as for the case d ≥ 2 when we ignore the Ld−2(S ∩ ∂C)-term.
Plugging in the result for d ≥ 2 under the rate conditions we obtain∣∣∣∣E( 1

nkn

d

√
n
kn

cutn,kn(S)
)
− 2ηd−1

d + 1
η−1−1/d

d

∫
S

p1−1/d(s) ds
∣∣∣∣

≤
(

3δn +
1536p′max

p1+1/d
min (γηd)1/d

d

√
kn

n

)
2ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

+
3456p2

maxLd−2(S ∩ ∂C)
(γpminηd)1+2/d sin(α/2)

d

√
kn

n
+ 2 exp(2 log n− δ2

nkn/4).

Clearly there is a trade-off in the choice of δn: For the convergence of the first term δn
should go to zero quickly, whereas for the convergence of the third term δn should be
as large as possible. We have

exp
(

2 log n− δ2
nkn

4

)
= exp

(
log n

(
2− δ2

nkn

4 log n

))
= n2− δ2

nkn
4 log n .

Therefore, the lowest growth rate such that this term converges is δn = a
√

(log n)/kn

with a >
√

12. In the following we set δn = 4
√

(log n)/kn such that

exp
(

2 log n− δ2
nkn

4

)
=

1
n2 .

In fact, this choice of a is arbitrary, since for every a >
√

12 the exponential term con-

verges faster than 1/n and therefore faster than d
√

kn
n . If δn is set in this way we have

δn → 0 since we assumed kn/ log n → ∞ for n → ∞, and thus for n sufficiently large
we have δn < 1/2 and δnkn > 1. Clearly, for a value of n that is sufficiently large we can
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subsume the last term exp(2 log n− δ2
nkn/4) = 2/n2 under two times the d

√
kn/n term

in the bracket and obtain∣∣∣∣E( 1
nkn

d

√
n
kn

cutn,kn(S)
)
− 2ηd−1

d + 1
η−1−1/d

d

∫
S

p1−1/d(s) ds
∣∣∣∣

≤
(

3δn +
3072p′max

p1+1/d
min (γηd)1/d

d

√
kn

n

)
2ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

+
3456p2

maxLd−2(S ∩ ∂C)
(γpminηd)1+2/d sin(α/2)

d

√
kn

n
.

Plugging in the definition of δn and setting

c1 =
24ηd−1

η1+1/d
d

p1−1/d
max Ld−1(S ∩ C)

and

c2 =
6144p′maxηd−1 p1−1/d

max Ld−1(S ∩ C)
p1+1/d

min (γηd)1/dη1+1/d
d

+
3456p2

maxLd−2(S ∩ ∂C)
(γpminηd)1+2/d sin(α/2)

we obtain

∣∣∣∣E( 1
nkn

d

√
n
kn

cutn,kn(S)
)
− 2ηd−1

d + 1
η−1−1/d

d

∫
S

p1−1/d(s) ds
∣∣∣∣ ≤ c1

√
log n

kn
+ c2

d

√
kn

n
.

Setting kn = k0n2/(d+2) (log n)d/(d+2) for any k0 > 0 we have√
log n

kn
=

√
1
k0

n−
2

d+2 (log n)1− d
d+2 =

√
1
k0

n−
1

d+2 (log n)
1

d+2 =

√
1
k0

d+2

√
log n

n
,

and

d

√
kn

n
=

d
√

k0n
2

d+2−1 (log n)
d

d+2 =
d
√

k0n−
d

d+2 (log n)
d

d+2 = d
√

k0
d+2

√
log n

n
.

That is, for this choice of kn the two terms converge equally fast. Clearly, if the growth
rate of kn is faster, then the convergence of the second term is slower, whereas for a
slower growth rate of kn the convergence of the first term is slower. Therefore, the
convergence rate achieved for this choice of kn is optimal. �
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3.6.2 Convergence of the variance term of cutn,rn and cutn,kn

This section considers the proof of Proposition 3.4, that is with the convergence of the
variance term of cutn,rn and cutn,kn , which is the convergence of the suitably scaled
random variables cutn,rn and cutn,kn to their expectations.
In the case of the kNN graph we use McDiarmid’s bounded differences inequality
with a kissing number argument to obtain the bounded differences condition to derive
exponential decay rates for the deviation probabilities and thus convergence in proba-
bility. In the case of the r-neighborhood graph the same is achieved using Theorem A.6,
that is a concentration-of-measure inequality for self-bounding functions. Almost sure
convergence can be obtained using the Borel-Cantelli lemma.

Proof of Proposition 3.4. We first show the statement for the k-nearest neighbor graph.
Let x1, . . . , xn be points drawn i.i.d. from our density p and let x̄i ∈ Rd. Let cut(i)

n,kn
(S)

denote the cut induced by S in the kn-nearest neighbor graph that is constructed on the
points x1, . . . , xi−1, x̄i, xi+1, . . . , xn. The number of outgoing edges of each point xi is kn
and according to Miller et al. [63] the number of incoming edges is bounded by τdkn,
where τd denotes the kissing number in d dimensions, that is the number of unit hy-
perspheres in Rd which can touch a unit hypersphere without any intersections. Thus,
changing the position of point xi to x̄i at most kn + 2τdkn ≤ 3τdkn edges across the cut
can change. This implies ∣∣∣cutn,kn(S)− cut(i)

n,kn
(S)
∣∣∣ ≤ 3τdkn.

Hence, ∣∣∣ 1
nkn

d

√
n
kn

cutn,kn(S)− 1
nkn

d

√
n
kn

cut(i)
n,kn

(S)
∣∣∣ ≤ 3τdkn

nkn

d

√
n
kn

=
3τd

n
d

√
n
kn

.

Thus by McDiarmid’s inequality,

Pr
(∣∣∣∣ 1

nkn

d

√
n
kn

cutn,kn(S)−E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)∣∣∣∣ > ε

)

≤ 2 exp

− 2ε2

n( 3τd
n

d
√

n
kn

)2

 = 2 exp
(
−2ε2n1−2/dk2/d

n
(3τd)2

)
.

Therefore, for every ε > 0 we have

∞

∑
n=1

Pr
(∣∣∣∣ 1

nkn

d

√
n
kn

cutn,kn(S)−E

(
1

nkn

d

√
n
kn

cutn,kn(S)
)∣∣∣∣ > ε

)
< ∞,

if n1−2/dk2/d
n / log n → ∞. That is, under this condition we have almost sure conver-

gence by Borel-Cantelli. In the case d = 1, the condition kn/
√

n log n→ ∞ implies that
n1−2/dk2/d

n / log n = k2
n/(n log n) → ∞. In the case d = 2 we have n1−2/dk2/d

n / log n =
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kn/ log n and thus we have almost sure convergence if kn/ log n → ∞. For d ≥ 3 we
have n1−2/dk2/d

n / log n ≥ n1/3/ log n, which certainly diverges to infinity and thus im-
plies almost sure convergence.
Now we proof the statement for the r-neighborhood graph. For j, l ∈ {1, . . . , n}, j 6= l
set

Nj,l =

{
1 if (xj, xl) edge in Gr(n, rn) and xj and xl on different sides of S,
0 otherwise.

Clearly,

cutn,rn(S) =
n

∑
j=1

n

∑
l=1
l 6=j

Nj,l .

Define

g(x1, . . . , xn) =
1

2n
cutn,rn(S) =

1
2n

n

∑
j=1

n

∑
l=1
l 6=j

Nj,l .

We demonstrate that g fulfills the self-bounding property of Definition A.2 in order to
apply Theorem A.6.
We have

gi(x1, . . . , xi−1, xi+1, . . . , xn) =
1

2n

n

∑
j=1
j 6=i

n

∑
l=1
l 6=i,j

Nj,l .

Then, using the symmetry Nj,i = Ni,j,

g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn) =
1

2n

n

∑
l=1
l 6=i

Ni,l +
1

2n

n

∑
j=1
j 6=i

Nj,i =
1
n

n

∑
l=1
l 6=i

Ni,l

and since 0 ≤ Ni,j ≤ 1 and n− 1 < n,

0 ≤ g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1.

Furthermore
n

∑
i=1

(g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn)) =
1
n

n

∑
i=1

n

∑
l=1
l 6=i

Ni,l = 2g(x1, . . . , xn).

Consequently, g is (2, 0)-self-bounding and we can apply the concentration-of-measure
inequality for self-bounding functions in Theorem A.6. We have

Eg(x1, . . . , xn) = E

(
1

2n
cutn,rn(S)

)
=

1
2

nrd+1
n E

(
1

n2rd+1
n

cutn,rn(S)
)

.

97



3 Influence of graph construction on graph-based clustering quality measures

According to Equation (3.15) in the proof of Proposition 3.3 and by the linearity of
expectation we have

Eg(x1, . . . , xn) ≤ 1
2

nrd+1
n

((
1 +

3p′max
pmin

rn

)2 2ηd−1
d + 1

∫
S

p2(s) ds + 2ηd p2
maxLd−1(S ∩Rn)

)
.

We set

c = max
n

((
1 +

3p′max
pmin

rn

)2 2ηd−1

d + 1

∫
S

p2(s) ds + 2ηd p2
maxLd−1(S ∩Rn)

)
,

which exists since the expression on the right-hand side is monotonically decreasing in
rn and rn converges to 0 from above. We obtain Eg(x1, . . . , xn) ≤ cnrd+1

n /2. Applying
Theorem A.6 we have for t ≤ Eg(x1, . . . , xn)

Pr (|g(x1, . . . , xn)−Eg(x1, . . . , xn)| ≥ t) ≤ 2 exp
(
− t2

8Eg(x1, . . . , xn)

)
≤ 2 exp

(
− t2

4cnrd+1
n

)
.

Now, for nrd+1
n ε/2 ≤ Eg(x1, . . . , xn), that is ε ≤ E(n−2r−d−1

n cutn,rn(S)), we have

Pr
(∣∣∣∣ 1

n2rd+1
n

cutn,rn(S)−E

(
1

n2rd+1
n

cutn,rn(S)
)∣∣∣∣ ≥ ε

)
= Pr

(∣∣∣∣ 1
2n

cutn,rn(S)−E

(
1

2n
cutn,rn(S)

)∣∣∣∣ ≥ nrd+1
n ε/2

)
= Pr

(
|g(x1, . . . , xn)−Eg(x1, . . . , xn)| ≥ nrd+1

n ε/2
)

≤ 2 exp
(
− (nrd+1

n ε/2)2

4cnrd+1
n

)
= 2 exp

(
−nrd+1

n ε2

16c

)
.

Here we use that the expectation E(n−2r−d−1
n cutn,rn(S)) exists and converges to a posi-

tive limit for n→ ∞. Under the condition nrd+1
n / log n→ ∞ we have for every ε > 0

∞

∑
n=1

2 exp
(
−nrd+1

n ε2

16c

)
< ∞,

and thus we have almost sure convergence by the Borel-Cantelli lemma. �

3.6.3 Convergence of bias and variance terms for voln,rn and voln,kn

In the following we give the proof of Proposition 3.5 concerning the convergence of
the bias term of the volume, and Proposition 3.6 concerning the convergence of the
variance term of the volume.
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The ideas in the proof of the convergence of the bias term include the following: In
the graph GkNN(n, kn) there are exactly kn outgoing edges from each node. Thus the
expected number of edges originating in H depends on the number of sample points
in H only, which is binomially distributed with parameters n and µ(H). For the graph
Gr(n, rn) we decompose the volume into the contributions of all the points, and for a
single point we condition on its location. The number of outgoing edges, provided the
point is at position x, is the number of other points in B(x, rn), which is binomially
distributed with parameters (n− 1) and µ(B(x, rn)). If rn is sufficiently small we can
approximate µ(B(x, rn)) by ηdrd

n p(x) under our conditions on the density.
In order to show the convergence of the variance term of the volume we use McDi-
armid’s inequality for the k-nearest neighbor graph and a concentration-of-measure
inequality for self-bounding functions for the r-neighborhood graph.

Proof of Proposition 3.5. First we state the proof for the k-nearest neighbor graph. Here,
the expected number of points in H is nµ(H), each of them has exactly kn outgoing
edges, thus

E(voln,kn(H)) = nknµ(H).

Now we state the proof for the r-neighborhood graph. Let En,rn denote the edges of the
graph Gr(n, rn). With

Mi =

{
|{(xi, xj) ∈ En,rn ‖ j = 1, . . . , n}| if xi ∈ H
0 otherwise,

we have
voln,rn(H)) = M1 + . . . + Mn

and thus, due to the independent identical distribution of the sample point,

E(voln,rn(H)) = nE(M1).

Conditioning on the position of x1, we have

E(voln,rn(H)) = n
∫

Rd∩C
E(M1 | x1 = x)p(x) dx

= n
∫

H∩C
(n− 1)µ(B(x, rn))p(x) dx

and thus

E
( 1

n2rd
n

voln,rn(H)
)

=
n− 1

n
1
rd

n

∫
H∩C

µ(B(x, rn))p(x) dx. (3.19)

SettingRn = {x ∈ H ∩ C | dist(x, ∂(H ∩ C)) ≤ rn} and In = (H ∩ C) \ Rn , we have

1
rd

n

∫
H∩C

µ(B(x, rn))p(x) dx

=
1
rd

n

∫
Rn

µ(B(x, rn))p(x) dx +
1
rd

n

∫
In

µ(B(x, rn))p(x) dx.
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Let x ∈ In. Under our conditions on the differentiability of p we have for all y ∈ B(x, rn)

|p(y)− p(x)| ≤ p′maxrn.

Hence, we can approximate the integral

1
rd

n

∫
In

µ(B(x, rn))p(x) dx ≤ 1
rd

n

∫
In

(p(x) + p′maxrn)rd
nηd p(x) dx

=
1
rd

n

∫
In

p(x)2rd
nηd dx +

1
rd

n

∫
In

p′maxrnrd
nηd p(x) dx

≤ ηd

∫
In

p(x)2 dx + ηd p′maxrn

∫
In

p(x) dx

≤ ηd

∫
In

p(x)2 dx + ηd p′maxrn.

Similarly we can show the lower bound, and thus∣∣∣ 1
rd

n

∫
In

µ(B(x, rn))p(x) dx− ηd

∫
In

p2(x) dx
∣∣∣ ≤ ηd p′maxrn.

Now we turn to the border stripRn. We have

1
rd

n

∫
Rn

µ(B(x, rn))p(x) dx− ηd

∫
Rn

p2(x) dx

≤ 1
rd

n

∫
Rn

pmaxηdrd
n p(x) dx− ηd

∫
Rn

p2(x) dx

= ηd

∫
Rn

pmax p(x) dx− ηd

∫
Rn

p2(x) dx = ηd

∫
Rn

(pmax − p(x))p(x) dx

≤ ηd pmax

∫
Rn

p(x) dx

≤ ηd p2
maxLd(Rn).

Therefore,

1
rd

n

∫
H∩C

µ(B(x, rn))p(x) dx ≤ ηd p2
maxLd(Rn) + ηd

∫
In

p2(x) dx + ηd p′maxrn

≤ ηd

∫
H∩C

p2(x) dx + ηd p2
maxLd(Rn) + ηd p′maxrn.

Inserting this in into Equation (3.19) we obtain

E
( 1

n2rd
n

voln,rn(H)
)
≤ n− 1

n

(
ηd

∫
H∩C

p2(x) dx + ηd p2
maxLd(Rn) + ηd p′maxrn

)
≤ ηd

∫
H∩C

p2(x) dx + ηd p2
maxLd(Rn) + ηd p′maxrn.
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On the other hand,

1
rd

n

∫
H∩C

µ(B(x, rn))p(x) dx ≥ 1
rd

n

∫
In

µ(B(x, rn))p(x) dx

≥ ηd

∫
In

p2(x) dx− ηd p′maxrn

= ηd

∫
H∩C

p2(x) dx− ηd

∫
Rn

p2(x) dx− ηd p′maxrn

≥ ηd

∫
H∩C

p2(x) dx− ηd p2
maxLd(Rn)− ηd p′maxrn.

Using this in Equation (3.19) we obtain

E
( 1

n2rd
n

voln,rn(H)
)
≥ n− 1

n

(
ηd

∫
H∩C

p2(x) dx− ηd p2
maxLd(Rn)− ηd p′maxrn

)
≥ ηd

∫
H∩C

p2(x) dx− ηd p2
maxLd(Rn)− ηd p′maxrn − ηd

n

∫
H∩C

p2(x) dx

≥ ηd

∫
H∩C

p2(x) dx− ηd p2
maxLd(Rn)− ηd p′maxrn − ηd pmax

n
.

Combining lower and upper bound we obtain∣∣∣∣E( 1
n2rd

n
voln,rn(H)

)
− ηd

∫
H∩C

p2(x) dx
∣∣∣∣ ≤ ηd p2

maxLd(Rn) + ηd p′maxrn +
ηd pmax

n
.

For d = 1 we clearly have L1(Rn) ≤ 2L0(∂(H ∩ C))rn, which shows the convergence
rate. Now let d ≥ 2. Without loss of generality we assume that the sequence (rn) is
monotonically decreasing. Otherwise we choose a monotonic subsequence and use the
fact that the sequence (rn) converges to 0. Then R1 ⊇ R2 ⊇ . . . and therefore by the
continuity of the Lebesgue measure

lim
n→∞
Ld(Rn) = Ld (∩∞

i=1Rn) = Ld (∂(H ∩ C)) .

We have ∂(H ∩ C) ⊆ ∂H ∪ ∂C. Therefore Ld (∂(H ∩ C)) ≤ Ld(∂H) +Ld(∂C) = 0, since
∂H is the hyperplane S and Ld(∂C) = 0 by assumption. This shows the convergence of
the expectation.
Now we prove the convergence rate under the rate conditions for d ≥ 2. Due to
Corollary A.17 the support of the density C can consist of only finitely many con-
nected components. The boundary of the intersection of a connected component of
C with H consists of a submanifold of ∂C, possibly with a smooth boundary S ∩ ∂C,
and, possibly, finitely many connected components of C ∩ S, each with a smooth
boundary (see Lemma A.18). Thus the boundary of H ∩ C is the union of finitely
many connected, closed and smooth (d − 1)-dimensional surfaces without bound-
aries or with smooth boundaries. For rn sufficiently small we have with Lemma A.14
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Ld(Rn) ≤ 3rnLd−1(∂(H ∩ C)). Consequently,∣∣∣∣E( 1
n2rd

n
voln,rn(H)

)
− ηd

∫
H∩C

p2(x) dx
∣∣∣∣

≤ 3ηd p2
maxLd−1(∂(H ∩ C))rn + ηd p′maxrn +

ηd pmax

n
.

Under the condition that nrn → ∞ for n→ ∞ we have∣∣∣∣E( 1
n2rd

n
voln,rn(H)

)
− ηd

∫
H∩C

p2(x) dx
∣∣∣∣

≤
(

3ηd p2
maxLd−1(∂(H ∩ C)) + ηd p′max +

ηd pmax

nrn

)
rn,

and for sufficiently large n such that nrn ≥ pmax/p′max∣∣∣∣E( 1
n2rd

n
voln,rn(H)

)
− ηd

∫
H∩C

p2(x) dx
∣∣∣∣ ≤ (3p2

maxLd−1(∂(H ∩ C)) + 2p′max
)

ηdrn.

Clearly
∫

H∩C p2(x) dx =
∫

H p2(x) dx since p(x) = 0 for x /∈ C. �

In the following we prove Proposition 3.6, the convergence of the variance term of the
volume. The statement for the k-nearest neighbor graph is proved using McDiarmid’s
inequality whereas the statement for the r-neighborhood graph is shown using an
inequality for the concentration of self-bounding functions.

Proof of Proposition 3.6. First we state the proof for the k-nearest neighbor graph. Chang-
ing the position of one point will change the volume by at most kn, thus with McDi-
armid’s inequality for every ε > 0

Pr
(∣∣∣ 1

nkn
voln,kn(H)−E

(
1

nkn
voln,kn(H)

) ∣∣∣ > ε
)

< 2 exp
(
− 2ε2

n( kn
nkn

)2

)
= 2 exp

(
− 2ε2n

)
.

Clearly, for every ε > 0

∞

∑
n=1

Pr
(∣∣∣ 1

nkn
voln,kn(H)− µ(H)

∣∣∣ > ε
)

< ∞,

and therefore we have almost sure convergence by the Borel-Cantelli lemma.
Now, we state the proof for the r-neighborhood graph. For j, l ∈ {1, . . . , n}, j 6= l set

Nj,l =

{
1 if (xj, xl) edge in Gr(n, rn) and xj ∈ H
0 otherwise.
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Clearly,

voln,rn(H) =
n

∑
j=1

n

∑
l=1
l 6=j

Nj,l .

Define

g(x1, . . . , xn) =
1

2n
voln,rn =

1
2n

n

∑
j=1

n

∑
l=1
l 6=j

Nj,l .

We show that g fulfills the self-bounding property of Definition A.2 in order to apply
Theorem A.6.
We have

gi(x1, . . . , xi−1, xi+1, . . . , xn) =
1

2n

n

∑
j=1
j 6=i

n

∑
l=1
l 6=i,j

Nj,l .

Then, using symmetry,

g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn) =
1

2n

n

∑
l=1
l 6=i

Ni,l +
1

2n

n

∑
j=1
j 6=i

Nj,i =
1
n

n

∑
l=1
l 6=i

Ni,l ,

and since 0 ≤ Ni,l ≤ 1 and n− 1 < n,

0 ≤ g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1.

Furthermore
n

∑
i=1

(g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn)) =
1
n

n

∑
i=1

n

∑
l=1
l 6=i

Ni,l = 2g(x1, . . . , xn).

Consequently, g is (2, 0)-self-bounding and we can apply the concentration-of-measure
inequality for self-bounding functions in Theorem A.6.
We have

Eg(x1, . . . , xn) =
1

2n

n

∑
j=1

n

∑
l=1
l 6=j

ENj,l =
1
2

(n− 1) EN1,2 ≤ 1
2

n Pr(N1,2 = 1).

Conditioning on the location of point x1 we have Pr(N1,2 = 1) = 0 if x1 /∈ H. Otherwise
Pr(N1,2 = 1) ≤ pmaxrd

nηd. Therefore

Pr(N1,2 = 1) ≤ pmaxrd
nηd Pr(xi ∈ H) = pmaxrd

nηdµ(H),
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and thus

Eg(x1, . . . , xn) ≤ 1
2

npmaxrd
nηdµ(H) =

1
2

pmaxηdµ(H)nrd
n.

Applying Theorem A.6 we have for t ≤ Eg(x1, . . . , xn)

Pr (|g(x1, . . . , xn)−Eg(x1, . . . , xn)| ≥ t) ≤ 2 exp
(
− t2

8Eg(x1, . . . , xn)

)
≤ 2 exp

(
− t2

4pmaxηdµ(H)nrd
n

)
.

Now, for nrd
nε/2 ≤ Eg(x1, . . . , xn), that is ε ≤ E(n−2r−d

n voln,rn), we have

Pr
(∣∣∣∣ 1

n2rd
n

voln,rn −E

(
1

n2rd
n

voln,rn

)∣∣∣∣ ≥ ε

)
= Pr

(∣∣∣∣ 1
2n

voln,rn −E

(
1

2n
voln,rn

)∣∣∣∣ ≥ nrd
nε/2

)
= Pr

(
|g(x1, . . . , xn)−Eg(x1, . . . , xn)| ≥ nrd

nε/2
)

≤ 2 exp

(
− (nrd

nε/2)2

4pmaxηdµ(H)nrd
n

)
= 2 exp

(
− nrd

nε2

16pmaxηdµ(H)

)
.

Here we use that under our general assumptions the expectation E(n−2r−d
n voln,rn) ex-

ists and converges to a positive limit for n→ ∞.
Under the condition nrd

n/ log n→ ∞ we have for every ε > 0
∞

∑
n=1

2 exp
(
− nrd

nε2

16pmaxηdµ(H)

)
< ∞,

and thus we have almost sure convergence by Borel-Cantelli. �

3.6.4 Convergence of bias and variance terms for cardn

Proof of Proposition 3.7. Clearly the expected number of points in H is nµ(H), thus

E(cardn(H)) = nµ(H).

Changing the position of one point will change cardn(H) by at most 1, thus with Mc-
Diarmid’s inequality

Pr
(∣∣∣ 1

n
cardn(H)− µ(H)

∣∣∣ > ε
)

< 2 exp
(
− 2ε2

n( 1
n )2

)
= 2 exp

(
− 2ε2n

)
.

Clearly, for every ε > 0
∞

∑
n=1

Pr
(∣∣∣ 1

n
cardn(H)− µ(H)

∣∣∣ > ε
)

< ∞,

and therefore we have almost sure convergence. �
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3.6.5 Proofs of the main Theorems

We give a detailed proof of Theorem 3.1, which states the convergence and convergence
rates for Ncut on both, the k-nearest neighbor graph and the r-neighborhood graph.
Theorem 3.2 can be proven analogously and we do not present the details here.
In the proofs we first use the fact that the (properly rescaled) random variables Ncutn,rn

and RatioCutn,rn are simple functions of the (properly rescaled) random variables
cutn,rn , voln,rn and cardn. Using Corollary A.13 we can decompose the distance of
Ncutn,rn and RatioCutn,rn to their suspected limits into a weighted sum of the distances
of cutn,rn , voln,rn and cardn from their respective limits, where the weights depend
on the limits but not on the sample size n. In a second step we decompose the latter
distances into bias and variance term. Then we can apply Propositions 3.3 – 3.7 to
bound these terms and find the optimal choice of rn such that we achieve the highest
almost sure convergence rate. Analogously for Ncutn,kn and RatioCutn,kn .

Proof of Theorem 3.1. For the r-neighborhood graph we set Cn = n−2r−(d+1)
n cutn,rn(S),

C = (2ηd−1/(d + 1))
∫

S p2(s) ds, V+
n = n−2r−d

n voln,rn(H+), V+ = ηd
∫

H+ p2(x) dx,
V−n = n−2r−d

n voln,rn(H−), V− = ηd
∫

H− p2(x) dx. Note that we overload the notation C
here. However, in this proof we do not have to refer to the support of p which was also
denoted by C before. Then∣∣∣∣ 1

rn
Ncutn,rn(S)− 2ηd−1

(d + 1)ηd

∫
S

p2(s) ds
(( ∫

H+
p2(x) dx

)−1
+
( ∫

H−
p2(x) dx

)−1
)∣∣∣∣

=
∣∣∣∣ 1
rn

Ncutn,rn(S)− 2ηd−1
d + 1

∫
S

p2(s) ds
((

ηd

∫
H+

p2(x) dx
)−1

+
(

ηd

∫
H−

p2(x) dx
)−1

)∣∣∣∣
=

∣∣∣∣∣∣ 1
n2rd+1

n
cutn,rn(S)

 1
1

n2rd
n

voln,rn(H+)
+

1
1

n2rd
n

voln,rn(H−)

− C
(

1
V+ +

1
V−

)∣∣∣∣∣∣
=
∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣ .

For the k-nearest neighbor graph we set Cn = n−1+1/dk−1−1/d
n cutn,kn(S), C =

(2ηd−1/(d + 1))η−1−1/d
d

∫
S p1−1/d(s) ds, V+

n = (nkn)−1 voln,kn(H+), V+ =
∫

H+ p(x) dx,
V−n = (nkn)−1 voln,kn(H−), and V− =

∫
H+ p(x) dx. Then∣∣∣∣∣ d

√
n
kn

Ncutn,kn(S)− 2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds
(( ∫

H+
p(x) dx

)−1
+
( ∫

H−
p(x) dx

)−1
)∣∣∣∣∣

=

∣∣∣∣∣ 1
nkn

d

√
n
kn

cutn,kn(S)

(
1

1
nkn

voln,kn(H+)
+

1
1

nkn
voln,kn(H−)

)
− C

(
1

V+ +
1

V−

)∣∣∣∣∣
=
∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣ .

Under the conditions |Cn − C| ≤ C, |V+
n − V+| ≤ V+/2 and |V−n − V−| ≤ V−/2 we
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have with Corollary A.13∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣
≤ 4C

(V+)2 |V+
n −V+|+ 4C

(V−)2 |V−n −V−|+ V+ + V−

V+V−
|Cn − C|

≤ 4C
(V+)2

(|V+
n −EV+

n |+ |EV+
n −V+|)+

4C
(V−)2

(|V−n −EV−n |+ |EV−n −V−|)
+

V+ + V−

V+V−
(|Cn −ECn|+ |ECn − C|)

≤ 4C
(V+)2 |EV+

n −V+|+ 4C
(V−)2 |EV−n −V−|+ V+ + V−

V+V−
|ECn − C|

+
4C

(V+)2 |V+
n −EV+

n |+
4C

(V−)2 |V−n −EV−n |+
V+ + V−

V+V−
|Cn −ECn|,

and the conditions above hold for |Cn−ECn| ≤ C/2, |ECn−C| ≤ C/2, |V+
n −EV+

n | ≤
V+/4, |EV+

n −V+| ≤ V+/4, and |V−n −EV−n | ≤ V−/4, |EV−n −V−| ≤ V−/4 .
Note that the three terms in the second to last line can be seen as bias terms, whereas
the terms in the last line can be seen as variance terms, so we have effectively done a
standard decomposition into bias and variance terms.
Assuming that the general conditions hold, the non-probabilistic convergence of the
bias terms is shown in Propositions 3.3 and 3.5, and almost sure convergence of the
variance terms is shown in Propositions 3.3 and 3.5 provided that the respective condi-
tions on n, kn and rn hold.
Hence, for sufficiently large n all the terms become sufficiently small for our conditions
to hold and we have ∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣ a.s.−→ 0.

In the following paragraphs we show the convergence rates for both graph types.
Therefore we assume that the rate conditions hold.
First we show the convergence rate for the r-neighborhood graph. Due to Proposi-
tions 3.3 and 3.5 we can find a constant Cbias independent of the choice of rn such
that under the condition nrn → ∞ and for n sufficiently large |EV+

n − V+| ≤ Cbiasrn,
|EV−n − V−| ≤ Cbiasrn, and |ECn − C| ≤ Cbiasrn, that is all three bias terms can be
bounded by Cbiasrn.
According to Proposition 3.4 we have for a constant c > 0

Pr (|Cn −ECn| ≥ Cbiasrn) ≤ 2 exp

(
−nrd+1

n C2
biasr

2
n

16c

)
,

and according to Proposition 3.6

Pr
(|V+

n −EV+
n | ≥ Cbiasrn

) ≤ 2 exp

(
− nrd

nC2
biasr

2
n

16pmaxηdµ(H+)

)
,
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and a similar term for Pr (|V−n −EV−n | ≥ Cbiasrn). Set

Crate = 2
(

4C
(V+)2 +

4C
(V−)2 +

V+ + V−

V+V−

)
Cbias.

Then for n sufficiently large, and a suitable constant C̃ > 0

Pr
(∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣ ≥ Cratern

)
≤ 2 exp

(
−nrd+3

n C2
bias

16c

)
+ 2 exp

(
− nrd+2

n C2
bias

16pmaxηdµ(H+)

)
+ 2 exp

(
− nrd+2

n C2
bias

16pmaxηdµ(H−)

)
≤ 6 exp

(
−C̃nrd+3

n

)
.

Setting rn = r0
d+3
√

(log n)/n with r0 = d+3
√

2/C̃ we have −C̃nrd+3
n = −2 log n and

therefore

∞

∑
n=1

Pr
(∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣ ≥ Cratern

)
< ∞. (3.20)

Application of the Borel-Cantelli-Lemma shows that the event

∣∣∣∣Cn

(
1

V+
n

+
1

V−n

)
− C

(
1

V+ +
1

V−

)∣∣∣∣ ≥ Cratern

almost surely can occur for only finitely many n ∈N.

Note that this is the optimal convergence rate: For a faster convergence rate we would
have to choose a faster convergence of rn to 0 since the convergence of the bias terms is
determined by rn. However, the sum of probabilities in Equation (3.20) would diverge
then.

Now we deal with the k-nearest neighbor graph. We remark first that we can ignore
the bias terms of the volume since |EV+

n −V+| = 0 and |EV−n −V−| = 0.

According to Proposition 3.3 the optimal convergence rate for the bias term of the cut is
|ECn − C| = O( d+2

√
(log n)/n) which is achieved for kn = k0n2/(d+2)(log n)d/(d+2) and

a constant k0 > 0. That is, for this choice of kn we can find a constant Cbias, which may
depend on k0, such that |ECn − C| ≤ Cbias

d+2
√

(log n)/n.

With Proposition 3.4 we have, plugging in the optimal rate for the bias term with a
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factor C̃ > 0,

Pr

(
|Cn −ECn| ≥ C̃ d+2

√
log n

n

)
≤ 2 exp

(
−2C̃2((log n)/n)2/(d+2)n1−2/dk2/d

n
(3τd)2

)

= 2 exp

(
−2C̃2k2/d

0
(3τd)2 (log n)2/(d+2)n1−2/d−2/(d+2)n4/(d(d+2))(log n)2/(d+2)

)

= 2 exp

(
−2C̃2k2/d

0
(3τd)2 (log n)4/(d+2)n1−4/(d+2)

)

≤ 2 exp

(
− log n

2C̃2k2/d
0

(3τd)2

(
n

log n

)1−4/(d+2)
)

.

For d = 2 we have 1− 4/(d + 2) = 0. Setting k0 = ((3τ2)2/C̃2)d/2 we obtain in this case

Pr

(
|Cn −ECn| ≥ C̃ 4

√
log n

n

)
≤ 2

n2 .

For d > 2 we have 1− 4/(d + 2) > 0 and thus (n/(log n))1−4/(d+2) → ∞. Therefore,
for d ≥ 2 and any choice of k0

∞

∑
i=1

Pr

(
|Cn −ECn| ≥ C̃ d+2

√
log n

n

)
< ∞.

Applying Borel-Cantelli we obtain that the event |Cn −ECn| ≥ C̃ d+2
√

(log n)/n almost
surely occurs only finitely often.
Clearly, we cannot find a better rate of kn, since for any other rate of kn the convergence
of the bias term would become slower.
For the variance terms of the volume we have with Proposition 3.6

Pr

(
|V−n −EV−n | ≥ C̃ d+2

√
log n

n

)
≤ 2 exp

(
−2C̃2

(
log n

n

)2/(d+2)

n

)
= 2 exp

(
−2C̃2(log n)2/(d+2)nd/(d+2)

)
,

which for all d ≥ 2 implies

∞

∑
i=1

Pr

(
|V−n −EV−n | ≥ C̃ d+2

√
log n

n

)
< ∞.

With Borel-Cantelli we obtain that the event |V−n − EV−n | ≥ C̃ d+2
√

(log n)/n almost
surely occurs only finitely often, and similarly for the other volume term.
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Combining the terms as we do in the convergence proof we obtain that we can find a
k0 > 0 and a constant Ĉ such that almost surely there exists an n0 > 0 with∣∣∣∣ d

√
n
kn

Ncutn,kn(S)−NcutLimkNN

∣∣∣∣ ≤ Ĉ d+2

√
log n

n

for all n ≥ n0.
For d = 1 we have according to Proposition 3.3 that we can find a constant Cbias not
depending on k0 such that |ECn − C| ≤ Cbias(

√
(log n)/kn + kn/n). Plugging these

rates in into Proposition 3.4 we obtain

Pr

(
|Cn −ECn| ≥ Cbias

√
log n

kn

)
≤ 2 exp

(
− 2C2

bias((log n)/kn) n−1k2
n

(3τ1)2

)
= 2 exp

(
− log n

2C2
bias

(3τ1)2
kn

n

)
,

and

Pr
(
|Cn −ECn| ≥ Cbias

kn

n

)
≤ 2 exp

(
− 2C2

bias(k2
n/n2) n−1k2

n

(3τ1)2

)
≤ 2 exp

(
− log n

2C2
bias

(3τ1)2
k4

n
n3 log n

)
.

Since we assume kn/n → 0 for n → ∞ we cannot find a rate for kn such that |Cn −
ECn| ≥ Cbias

√
log n

kn
with very low probability. However, choosing kn = 4

√
k0n3 log n

with k0 = (3τ1)2/C2
bias we obtain

Pr
(
|Cn −ECn| ≥ Cbias

kn

n

)
≤ 2

n2 .

Furthermore,√
log n

kn
≤
√

log n
4
√

k0n3 log n
= k−1/8

0 n−3/8(log n)3/8 = k−1/8
0

(
log n

n

)3/8

and

d

√
kn

n
=

kn

n
=

4
√

k0n3 log n
n

= k1/4
0 n−1/4(log n)1/4 = k1/4

0

(
log n

n

)1/4

.

Therefore, we have

|ECn − C| ≤ Cbias

(√
log n

kn
+

kn

n

)
= Cbias

(
k−1/8

0

(
log n

n

)3/8

+ k1/4
0

(
log n

n

)1/4
)

≤ Cbias

(
k−1/8

0 + k1/4
0

)( log n
n

)1/4
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and for the variance term

Pr

(
|Cn −ECn| ≥ Cbiask1/4

0

(
log n

n

)1/4
)
≤ 2

n2 ,

which implies

∞

∑
n=1

Pr

(
|Cn −ECn| ≥ Cbiask1/4

0

(
log n

n

)1/4
)

< ∞.

With Borel-Cantelli this event can occur only finitely often.
This choice of kn is optimal: If we chose a higher rate for kn then the convergence of
|ECn − C| would become slower. On the other hand, the lowest rate of εn for which
the sum of Pr (|Cn −ECn| ≥ εn) over n converges is εn ∼

√
n log n/kn. Therefore, if we

chose a lower rate of kn then the rate of the variance term would get worse.
For the variance terms of the volume we have with Proposition 3.6 and for any con-
stant C̃ > 0

Pr

(
|V−n −EV−n | ≥ C̃ 4

√
log n

n

)
≤ 2 exp

(
−2C̃2

(
log n

n

)2/4

n

)
= 2 exp

(
−2C̃2

√
n log n

)
.

The sum over these events converges and therefore only finitely many of these events
can occur by Borel-Cantelli.
Combining the terms for the cut and the volume we obtain the result.

�

Proof of Theorem 3.2. We have for the r-neighborhood graph

1
n2rd+1

n
cutn,rn(S)

(
1

1
n cardn(H+)

+
1

1
n cardn(H−)

)
=

1
nrd+1

n
RatioCutn,rn(S),

and similarly for the k-nearest neighbor graph

1
nkn

d

√
n
kn

cutn,kn(S)

(
1

1
n cardn(H+)

+
1

1
n cardn(H−)

)
=

1
kn

d

√
n
kn

RatioCutn,kn(S).

Analogously to the proof of Theorem 3.1 and with Proposition 3.7 instead of the corre-
sponding statements for the volume one can show:

1
nrd+1

n
RatioCutn,rn(S) a.s.−→ 2ηd−1

d + 1

∫
S

p2(s) ds

((∫
H+

p(s) ds
)−1

+
(∫

H+
p(s) ds

)−1
)

,
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and

1
kn

d

√
n
kn

RatioCutn,kn(S)

a.s.−→ 2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds

((∫
H+

p(s) ds
)−1

+
(∫

H+
p(s) ds

)−1
)

,

and the corresponding statements about the convergence rates, where we consider that
the expressions for the cut do not change and the variance term of cardn is similar to
the variance term of the volume for the k-nearest neighbor graph. All the conditions
on kn in the proof of Theorem 3.1 came from the cut. �
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A.1 Tail bounds for sums of random variables

Basic large deviation inequalities for the binomial distribution are due to Bernstein
and Chernoff [19]. These results have been generalized by Hoeffding [48] to the case of
the sum of independent random variables that are bounded. However, we only present
the Hoeffding bound for the case of binomial variables.

Theorem A.1 (Hoeffding, [48]) Let M ∼ Bin(n, p) and define α = k/n. Then, if α ≥ p we
have

Pr(M ≥ k) ≤ exp (−n K(α||p)) ,

and for α ≤ p we have

Pr(M ≤ k) ≤ exp (−n K(α||p)) ,

where K(α||p) is the Kullback-Leibler divergence of (α, 1− α) and (p, 1− p),

K(α||p) = α log
(α

p

)
+ (1− α) log

(1− α

1− p

)
.

The following tail bound, which according to Srivastav and Stangier [81] is most useful
for binomial distributions with small expectations and probabilities respectively, is due
to Angluin and Valiant [2].

Theorem A.2 (Angluin and Valiant [2]) Let M ∼ Bin(n, p) and 0 < δ ≤ 1. Then

Pr(M > (1 + δ)np) ≤ exp
(
− 1

3
δ2np

)
,

Pr(M < (1− δ)np) ≤ exp
(
− 1

2
δ2np

)
.

Corollary A.3 Let M ∼ Bin(n, p) and define α = k/n. Then,

Pr(M > k) ≤ exp
(
− 1

3
(k− np)2

np

)
for p < α ≤ 2p,

Pr(M < k) ≤ exp
(
− 1

2
(np− k)2

np

)
for 0 ≤ α < p.
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Proof. We show the proof for the first inequality, the proof for the second inequality is
similar. We have

Pr(M > k) = Pr
(

M >
k

np
np
)

= Pr
(

M >
(

1 +
( k

np
− 1
))

np
)

.

Using α = k/n and Theorem A.2 we obtain for 0 < α/p− 1 ≤ 1

Pr(M > k) ≤ exp
(
− 1

3

(α

p
− 1
)2

np
)

.

The condition 0 < α/p− 1 ≤ 1 translates into the condition p < α ≤ 2p. �

The following inequality for the sum of independent random variables is a classical
result by Bernstein. It can be derived from Bennett’s inequality published in Bennett [8]
by applying an elementary inequality (refer to Lugosi [55] for details). We follow the
presentation in Rao [75], where it is called “Bennett’s inequality”.

Theorem A.4 (Bernstein’s inequality) Let Yi, 1 ≤ i ≤ n be i.i.d. random variables with
E(Yi) = 0 and let Sn = ∑n

i=1 Yi. If Y1 takes values in [a, b] with probability one and if
g = b− a, σ2 = E(Y2

i ) < ∞, then, for all ε > 0

Pr
(∣∣∣∣ 1n Sn

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− nε2

2σ2 + gε

)
.

A.2 Concentration-of-measure inequalities

In this section we follow the presentation of the corresponding concentration-of-
measure inequalities in Lugosi [55] but quote a stronger result for the concentration
of self-bounding functions from McDiarmid and Reed [61]. Let X be a measurable
space.

Definition A.1 (bounded differences property) A function g : X n → R has the bounded
differences property, if for some non-negative constants c1, . . . , cn, we have for all 1 ≤ i ≤ n

sup
x1,...,xn,x′i∈X

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x′i , xi+1, . . . , xn)| ≤ ci.

Theorem A.5 (McDiarmid’s bounded differences inequality [60]) Assume the function
g satisfies the bounded differences property with constants c1, . . . , cn and that x1, . . . , xn are in-
dependent identically distributed random variables taking values in X . Set Z = g(x1, . . . , xn).
Then

Pr (|Z−EZ| > t) ≤ 2 exp
(
− 2t2

∑n
i=1 c2

i

)
.
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Definition A.2 ((a, b)-self-bounding function) Let a, b ≥ 0 and g : X n → R a non-
negative function. Define gi : X n−1 → R as

gi(x1, . . . xi−1, xi+1, . . . , xn) = inf
x′∈X

g(x1, . . . xi−1, x′, xi+1, . . . , xn).

Then the function g is (a, b)-self-bounding if for all x1, . . . , xn ∈ X and all i = 1, . . . , n

0 ≤ g(x1, . . . , xn)− gi(x1, . . . xi−1, xi+1, . . . , xn) ≤ 1

and
n

∑
i=1

(g(x1, . . . , xn)− gi(x1, . . . xi−1, xi+1, . . . , xn)) ≤ ag(x1, . . . , xn) + b.

Theorem A.6 (McDiarmid and Reed [61]) Assume that g : X n → R is an (a, b)-self-
bounding function and that x1, . . . , xn are independent identically distributed random variables
taking values in X . Set Z = g(x1, . . . , xn). Then for every t > 0

Pr (Z−EZ ≥ t) ≤ exp
(
− t2

2(aEZ + b + at)

)
,

and

Pr (Z−EZ ≤ −t) ≤ exp
(
− t2

2(aEZ + b + t/3)

)
.

A.3 Density Estimation

We give a simple review of some facts on kernel density estimation that are used in
Chapter 2. We loosely follow the presentation in Rao [75], Theorem A.7 is similar to
Theorem 3.1.4 of this book, whereas our Theorem A.8 is similar to Theorem 3.1.5 in Rao
[75]. We refer the reader to Silverman [79] and Devroye and Lugosi [27] for background
reading on density estimation.

Definition A.3 (Kernel density estimator) Let p be a density in Rd that is two times con-
tinuously differentiable with bounded derivatives and let p(u) ≤ pmax for all u ∈ Rd. Let
K : Rd → R be a kernel function with

• ∫
Rd K(u) du = 1

• K(u) = K(−u) for all u ∈ Rd

• K(u) ≥ 0 for all u ∈ Rd

• supz∈Rd K(z) < ∞

• ∫
Rd ‖u‖2K(u) du < ∞
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Let x1, . . . , xn be sample points from p and let hn > 0. Then the function

p̂n(x) =
1

nhd
n

n

∑
j=1

K
(

x− xj

hn

)

is called the kernel density estimator with kernel K and bandwidth hn.

All the conditions on the kernel function K hold, for example for the Gaussian kernel

K(x) =
1

(2π)d/2 exp
(
−1

2
‖x‖2

)
,

and the multivariate Epanechnikov kernel

K(x) =

{
d+2
2ηd

(
1− ‖x‖2) for ‖x‖ ≤ 1

0 otherwise.

which has some theoretically appealing properties.

Theorem A.7 (Bias of kernel density estimation) Let the assumptions in Definition A.3
hold. Then there exists a constant C1 such that for all x ∈ Rd and hn sufficiently small

|E( p̂n(x))− p(x)| ≤ C1h2
n.

Proof. We have

E( p̂n(x)) =
1

nhd
n

n

∑
j=1

∫
Rd

K
(

x− y
hn

)
p(y) dy =

∫
Rd

1
hd

n
K
(

x− y
hn

)
p(y) dy

=
∫

Rd
K (u) p(x− uhn) du.

Now we make a Taylor expansion of p around x and obtain

p(x− uhn) = p(x)−
d

∑
i=1

hnui
∂p(x)

∂xi
+

1
2

d

∑
i=1

d

∑
j=1

h2
nuiuj

∂2 p(x− θuuhn)
∂xi∂xj

with θu ∈ (0, 1) for all u ∈ Rd. Clearly,∫
Rd

K(u)p(x) du = p(x).

We have for all i = 1, . . . , d with the substitution v = −u∫
Rd

uiK(u) du =
∫

Rd
−viK(−v) dv = −

∫
Rd

viK(v) dv
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since K(v) = K(−v) by assumptions. Therefore the integral must be 0 and we have

∫
Rd

K(u)
d

∑
i=1

hnui
∂p(x)

∂xi
du = hn

d

∑
i=1

∂p(x)
∂xi

∫
Rd

uiK(u) du = 0.

Thus,

|E( p̂n(x))− p(x)| ≤
∣∣∣∣∣12 d

∑
i=1

d

∑
j=1

∫
Rd

K(u)h2
nuiuj

∂2 p(x− θuuhn)
∂xi∂xj

du

∣∣∣∣∣
≤ h2

n
d2

2
sup

{∣∣∣∣∂2 p(z)
∂xi∂xj

∣∣∣∣ ∣∣∣∣ z ∈ Rd; i, j, k = 1, . . . , d
} ∫

Rd
‖u‖2K(u) du,

where we have used |ui| =
√

u2
i ≤

√
u2

1 + . . . + u2
d = ‖u‖. Since the integral and the

bounds for the partial derivatives exist, there is a constant C1 > 0 such that

|E( p̂n(x))− p(x)| ≤ C1h2
n.

�

Theorem A.8 (Variance of kernel density estimation) Let the assumptions in Defini-
tion A.3 hold and let ε ≤ pmax. Then there exists a constant C2 > 0 such that for sufficiently
large n for all x ∈ Rd

Pr (| p̂n(x)−E( p̂n(x))| ≥ ε) ≤ 2 exp
(
−C2nhd

nε2
)

.

Proof. We have

p̂n(x)−E( p̂n(x)) =
1
n

n

∑
j=1

1
hd

n
K
(

x− xj

hn

)
− 1

n

n

∑
j=1

∫
Rd

1
hd

n
K
(

x− y
hn

)
p(y) dy

=
1
n

n

∑
j=1

(
1
hd

n
K
(

x− xj

hn

)
−
∫

Rd

1
hd

n
K
(

x− y
hn

)
p(y) dy

)
Setting

Zi =
1
hd

n
K
(

x− xi

hn

)
and Yi = Zi −E(Zi), we have

p̂n(x)−E( p̂n(x)) =
1
n

n

∑
i=1

Yi.
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Clearly, Y1, . . . , Yn are i.i.d. random variables with E(Y1) = 0 and |Y1| ≤
h−d

n supz∈Rd K(z), since Zi, E(Zi) ∈ [0, h−d
n supz∈Rd K(z)]. Furthermore,

E(Y2
1 ) = E

(
(Z1 −E(Z1))2) = E

(
Z2

1 − 2Z1E(Z1) + (E(Z1))2) = E
(
Z2

1
)− (E(Z1))2

≤ E
(
Z2

1
)

=
∫

Rd

(
1
hd

n
K
(

x− y
hn

))2

p(y) dy

≤ 1
hd

n
sup
z∈Rd

K(z)
∫

Rd

1
hd

n
K
(

x− y
hn

)
p(y) dy

=
1
hd

n
sup
z∈Rd

K(z)E( p̂n(x)).

Applying Theorem A.4, that is Bernstein’s inequality, we obtain

Pr (| p̂n(x)−E( p̂n(x))| ≥ ε)

≤ 2 exp

− nε2

2 1
hd

n
supz∈Rd K(z)E( p̂n(x)) + h−d

n supz∈Rd K(z)ε


= 2 exp

(
− nhd

nε2

2 supz∈Rd K(z)E( p̂n(x)) + supz∈Rd K(z)ε

)

For sufficiently large n we have due to Theorem A.7 E( p̂n(x)) ≤ 2pmax, and thus for
ε ≤ pmax

Pr (| p̂n(x)−E( p̂n(x))| ≥ ε) ≤ 2 exp
(
− nhd

nε2

5pmax supz∈Rd K(z)

)
Setting

C2 =
1

5pmax supz∈Rd K(z)
,

we obtain the result. �

Corollary A.9 Let the assumptions of Definition A.3 hold. For a sequence hn let p̂n be the
kernel density estimator with bandwidth hn and let εn be a sequence in R>0. Define the event

Dn = {| p̂n(xi)− p(xi)| ≤ εn | i = 1, . . . , n}.
If εn = ε > 0 is fixed there exist constants C̃1 and C̃2 such that setting the bandwidth hn =
h ≤ C̃1

√
ε we obtain for sufficiently large n

Pr (Dc
n) ≤ exp

(
−C̃2nhdε2

)
.
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If we set εn = ε0(log n/n)2/(d+4) and hn = h0(log n/n)1/(d+4) for suitable constants ε0, h0 >
0, then

∞

∑
i=1

Pr (Dc
n) < ∞.

Proof. For an arbitrary point x ∈ Rd we can split the deviation of the density estimator
from the true density into bias and variance term:

| p̂n(x)− p(x)| ≤ | p̂n(x)−E( p̂n(x))|+ |E( p̂n(x))− p(x)|.
In the following we use the fact that the left term must be bounded by εn if both the
terms on the right hand side are bounded by εn/2.
According to Theorem A.7 there exists a constant C1 such that for sufficiently large n we
have |E( p̂n(x))− p(x)| ≤ C1h2

n. That is, if h2
n ≤ εn/(2C1) we have |E( p̂n(x))− p(x)| ≤

εn/2 for all x ∈ Rd and for sufficiently large n.
According to Theorem A.8 there exists a constant C2 such that for all x ∈ Rd and suffi-
ciently large n

Pr
(
| p̂n(x)−E( p̂n(x))| ≥ εn

2

)
≤ 2 exp

(
−C2

nhd
nε2

n
4

)
.

Therefore, under the condition h2
n ≤ εn/(2C1), for sufficiently large n

Pr (Dc
n) ≤ 2n exp

(
−C2

nhd
nε2

n
4

)
≤ exp

(
log 2 + log n− C2

4
nhd

nε2
n

)
.

If εn = ε is fixed, we set hn = h for 0 < h ≤ √ε/(2C1) and C̃2 = C2/8 which implies
Pr (Dc

n) ≤ exp
(−C̃2nhdε2) for sufficiently large n.

In the other case let h0 > 0 be arbitrary. We have,

h2
n = h2

0

(
log n

n

)2/(d+4)

≤ h2
0

ε0
ε0

(
log n

n

)2/(d+4)

=
h2

0
ε0

εn,

that is, if we choose ε0 ≥ 2C1h2
0, the condition h2

n ≤ εn/(2C1) holds for all n ∈ N. We
have

nhd
nε2

n = hd
0ε2

0n
(

log n
n

) d
d+4
(

log n
n

) 4
d+4

= hd
0ε2

0 log n,

and thus for n sufficiently large,

Pr (Dc
n) ≤ exp

(
log 2 + log n− C2

4
hd

0ε2
0 log n

)
≤ exp

(
log n

(
2− C2

4
hd

0ε2
0

))
.

That is, for ε0 ≥ 4/
√

C2hd
0, we have Pr (Dc

n) ≤ 1/n2 for sufficiently large n, which
implies with Borel-Cantelli that Dn occurs almost surely for all but finitely many n. �

119



A Mathematical Appendix

A.4 Inequalities to show Convergence

The following inequalities are used in the proof of Theorem 3.1 and 3.2 to show that
the convergence of cutn,kn , voln,kn and cardn implies the convergence of Ncutn,kn and
RatioCutn,kn and to show the convergence rate (and similarly for the corresponding
quantities of the r-neighborhood graph). The result we will use in the end is Corol-
lary A.13, which is proved using the Lemmas A.10 – A.12.

Lemma A.10 Let A, B, a, b ∈ R. Then we have

|A + B− (a + b)| ≤ |A− a|+ |B− b|.
Proof. With the triangle inequality we have

|A + B− (a + b)| = |A− a + B− b| ≤ |A− a|+ |B− b|.
�

Lemma A.11 Let A, B, a, b ≥ 0. If |A− a| ≤ a then

|AB− ab| ≤ 2|B− b|a + |A− a|b.

Proof. Under the conditions above we have with the triangle inequality

|AB− ab| = |(A− a + a)(B− b + b)− ab|
= |(A− a)(B− b) + (A− a)b + a(B− b) + ab− ab|
≤ |A− a||B− b|+ |A− a|b + |B− b|a
= |B− b| (a + |A− a|) + |A− a|b
≤ 2|B− b|a + |A− a|b.

�

Lemma A.12 Let A, a > 0. If |A− a| ≤ a/2 we have∣∣∣∣ 1
A
− 1

a

∣∣∣∣ ≤ 2|A− a|
a2 .

Proof. Under the condition |A− a| ≤ a/2 we have∣∣∣∣ 1
A
− 1

a

∣∣∣∣ =
∣∣∣∣ a− A

aA

∣∣∣∣ =
|A− a|

|a(A− a + a)| =
|A− a|

|a(A− a) + a2| ≤
|A− a|

−a|A− a|+ a2

≤ |A− a|
a(a− |A− a|) ≤

2|A− a|
a2 .

�
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Corollary A.13 Let A, B1, B2, a, b1, b2 > 0. If |A− a| ≤ a, |B1− b1| ≤ b1/2 and |B2− b2| ≤
b2/2 we have∣∣∣∣A( 1

B1
+

1
B2

)
− a

(
1
b1

+
1
b2

)∣∣∣∣ ≤ 4a
b2

1
|B1 − b1|+ 4a

b2
2
|B2 − b2|+ b1 + b2

b1b2
|A− a|.

Proof. If |A− a| ≤ a we have with Lemma A.11∣∣∣∣A( 1
B1

+
1
B2

)
− a

(
1
b1

+
1
b2

)∣∣∣∣ ≤ 2a
∣∣∣∣ 1
B1

+
1
B2
−
(

1
b1

+
1
b2

)∣∣∣∣+ |A− a|
(

1
b1

+
1
b2

)
≤ 2a

∣∣∣∣ 1
B1
− 1

b1

∣∣∣∣+ 2a
∣∣∣∣ 1
B2
− 1

b2

∣∣∣∣+ |A− a|
(

1
b1

+
1
b2

)
and for |B1 − b1| ≤ b1/2 and |B2 − b2| ≤ b2/2 with Lemma A.12

≤ 4a
b2

1
|B1 − b1|+ 4a

b2
2
|B2 − b2|+ b1 + b2

b1b2
|A− a|.

�

A.5 Properties of hypersurfaces

Theorem A.14 (Volume of {x | dist(x, S) < r} for hypersurfaces S) Let d ≥ 2 and let
S be a finite union of closed smooth hypersurfaces in Rd without boundaries or with smooth
boundaries. Then for every constant C > 0 there exists r0 > 0 such that for r ≤ r0

Ld ({x | dist(x, S) < r}) ≤ (2 + C)rLd−1(S).

Proof. According to Steffen [83] a set that can be covered by a finite or countable union of
smooth (d− 1)-dimensional submanifolds in Rd is (d− 1)-rectifiable. Since S is closed
we have with Theorem 3.2.39 in Federer [32]

lim
r→0+

Ld({x | dist(x, S) < r})
2r

= Hd−1(S),

whereHd−1 denotes the (d− 1)-dimensional Hausdorff measure. Under the conditions
on S we have Hd−1(S) = Ld−1(S). Thus, for every constant C > 0 there exists r0 > 0
such that for all r < r0

Ld({x | dist(x, S) < r})
2r

≤ Ld−1(S) +
C
2
Ld−1(S),

and thus Ld({x | dist(x, S) < r}) ≤ (2 + C)rLd−1(S) . �
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Lemma A.15 (Change of normal and geodesic distance) Let d ≥ 2, ∂C be a smooth hy-
persurface in Euclidean space Rd with minimal curvature radius κ and let N denote its normal
vector field. Furthermore, for x, y ∈ ∂C let dist∂C(x, y) denote the geodesic distance in ∂C of x
and y. Then for any x, y ∈ ∂C

‖N(x)− N(y)‖ ≤ dist∂C(x, y)
κ

.

Proof. Let γ be a unit speed geodesic in ∂C connecting x and y, that means γ :
[0, dist∂C(x, y)] → ∂C, γ(0) = x, γ(dist∂C(x, y)) = y and ‖γ̇(t)‖ = 1 for all t ∈
[0, dist∂C(x, y)]. Using the Weingarten equation for Euclidean hypersurfaces (see Lee
[54]), we obtain

N(x)− N(y) =
∫ dist∂C(x,y)

0
∇γ̇(t)N(γ(t)) dt =

∫ dist∂C(x,y)

0
−sγ(t) γ̇(t) dt,

where ∇γ̇(t)N(γ(t)) denotes the derivative of N at the point γ(t) in the direction of
γ̇(t) and sγ(t) denotes the shape operator of ∂C at the point γ(t) (see the remark after the
definition of the minimal curvature radius in Section 1.4 for the geometric interpretation
of the shape operator). Therefore, by the triangle inequality for integrals

‖N(x)− N(y)‖ ≤
∫ dist∂C(x,y)

0
‖sγ(t) γ̇(t)‖ dt.

The shape operator sγ(t) at any point γ(t) is a self-adjoint linear transformation of the
tangent space at γ(t). Let e1, . . . , ed−1 denote the eigenvalues of sγ(t). By the definition
of the minimal curvature radius κ ≤ mini=1,...,d−1 |1/ei|. Since γ̇(t) is a unit vector in
the tangent space at γ(t) we have ‖sγ(t) γ̇(t)‖ ≤ 1/κ. Consequently

‖N(x)− N(y)‖ ≤ 1
κ

∫ dist∂C(x,y)

0
dt =

dist∂C(x, y)
κ

.

�

Lemma A.16 (Ball of certain radius κ̃ contained in C) Let d ≥ 2 and let C be a compact
set in Rd whose boundary ∂C is a smooth compact (d− 1)-dimensional submanifold of Rd with
minimal curvature radius κ > 0. For x ∈ ∂C let nx denote the normal to ∂C in x pointing
towards the interior of C. Then we can find a radius κ̃ > 0 such that for any point x ∈ ∂C we
have B(x + κ̃nx, κ̃) ⊆ C.

Proof. For any x ∈ ∂C we define O(x) = {y ∈ ∂C | dist∂C(x, y) < πκ} and the function

ρ(x) = inf
y∈∂C\O(x)

dist(x, y)

(compare also the construction in the proof of Lemma 2.22 in Hein [45]). Since ∂C \O(x)
is compact and the Euclidean distance is continuous we can find a y for every x such
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that dist(x, y) = ρ(x). Suppose that we can find a sequence x1, x2, . . . with ρ(xn) → 0
for n → ∞. Then we can find a corresponding sequence y1, y2, . . . with yi ∈ ∂C \O(xi)
and dist(xi, yi) = ρ(xi). Both are sequences in the compact hypersurface ∂C and thus
we can find x, y ∈ ∂C and subsequences xil and yil that converge to x and y for l → ∞,
that is dist∂C(x, xil )→ 0 and dist∂C(y, yil )→ 0 for l → ∞. We have

dist(x, y) ≤ dist(x, xil ) + dist(xil , yil ) + dist(yil , y)
≤ dist∂C(x, xil ) + dist(xil , yil ) + dist∂C(yil , y)→ 0

for l → ∞, which implies x = y and therefore dist∂C(x, y) = 0. But then

dist∂C(xil , yil ) ≤ dist∂C(xil , x) + dist∂C(x, y) + dist∂C(y, yil )
= dist∂C(xil , x) + dist∂C(y, yil )→ 0

for l → ∞. This is a contradiction to the fact that dist∂C(xil , yil ) ≥ πκ since yil /∈ O(xil ).
Thus ρ(x) must be bounded away from 0 on ∂C, that is, there exists ρmin > 0 with
ρ(x) ≥ ρmin for all x ∈ ∂C.
Set κ̃ = min{κ, ρmin/2}. Let x ∈ ∂C and remember that the normal nx points towards
the interior of C. Then B(x + κ̃nx, κ̃) ⊆ C, since the interior of this ball cannot contain
any point from ∂C: A point y ∈ ∂C with dist∂C(x, y) ≤ πκ cannot be in the interior of
B(x + κnx, κ) ⊆ C due to the curvature constraints but B(x + κ̃nx, κ̃) ⊆ B(x + κnx, κ).
For y ∈ ∂C with dist∂C(x, y) ≥ πκ we have dist(x, y) ≥ ρmin, and thus y cannot be in
the interior of B(x + κ̃nx, κ̃) since κ̃ ≤ ρmin/2. Thus the interior of B(x + κ̃nx, κ̃) is a
subset of C; since C is closed we also have B(x + κ̃nx, κ̃) ⊆ C. �

Corollary A.17 (Minimum volume of connected components of C) Let the conditions
and notations of Lemma A.16 hold. Then for any connected component G ⊆ C we have
Ld(G) ≥ κ̃dηd.

Lemma A.18 (Finitely many surfaces with smooth boundary in S ∩ C) Let the condi-
tions and notations of Lemma A.16 hold and let S be a hyperplane in Rd with normal nS.
Suppose further that for an α ∈ (0, π/2) and all x ∈ S ∩ ∂C we have |〈nS, nx〉| ≤ cos(α).
Then S ∩ C consists of finitely many connected surfaces with a smooth (d − 2)-dimensional
boundary.

Proof. Let G be a connected component of S∩C and let x ∈ G∩ ∂C, that is, x is a point on
the relative boundary of G. Let β ∈ [α, π/2) such that |〈nS, nx〉| = cos(β). According to
Lemma A.16 there exists a κ̃ > 0, which is independent of x, such that B(x + κ̃nx, κ̃) ⊆
C. Since x ∈ S ∩ B(x + κ̃nx, κ̃) and the intersection is connected S ∩ B(x + κ̃nx, κ̃) ⊆ G.
We have dist(x + κ̃nx, S) = |〈κ̃nx, nS〉| = κ̃ cos(β) < κ̃. Thus S ∩ B(x + κ̃nx, κ̃) is a
(d− 1)-dimensional unit ball with radius

√
κ̃2 − κ̃2 cos2(β) = κ̃ sin(β). Therefore

Ld−1(G) ≥ Ld−1(S ∩ B(x + κ̃nx, κ̃)) ≥ κ̃d−1 sind−1(β) ηd−1 ≥ κ̃d−1 sind−1(α) ηd−1.
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Since C is compact Ld−1(S ∩ C) is finite; the (d− 1)-dimensional area Ld−1(G) of each
connected component is bounded away from zero. Thus there can exist only finitely
many connected components.
The smoothness of the relative boundary of ∂C ∩ S in x can be shown with the implicit
function theorem: Since x ∈ ∂C we can find a tangent hyperplane Tx with normal nx.
Due to |〈nS, nx〉| = cos(β) with β > 0 we have nS 6= nx and the intersection S ∩ Tx is a
(d− 2)-dimensional affine subspace.
We choose an orthonormal coordinate system in Tx with its origin at x and basis vectors
u1, . . . , ud−1, such that u1, . . . , ud−2 span S ∩ Tx. Then u1, . . . , ud−1, nx is an orthonormal
basis of Rd. There must be a representation nS = 〈nS, nx〉nx + 〈nS, ud−1〉ud−1. Since
all the vectors are unit vectors and |〈nS, nx〉| = cos(β) we conclude that |〈nS, ud−1〉| =
sin(β). We assume without loss of generality that 〈nS, ud−1〉 = sin(β).
In the above basis of Rd we have S = {v = (v1, . . . , vd) ∈ Rd | 〈nS, v〉 = 0}, but
〈nS, v〉 = vd−1〈nS, ud−1〉 + vd〈nS, nx〉 = vd−1 sin(β) + vd cos(β). Thus S = {v =
(v1, . . . , vd) ∈ Rd | vd = −vd−1 tan(β)} and the function fS : Rd−1 → R with
fS(v1, . . . , vd−1) = −vd−1 tan(β) is a representation of the hyperplane S.
Due to the smoothness of ∂C there exists an open set W ⊆ Rd−1 and a smooth function
f∂C : W → R with ∇ f∂C(0) = 0 that is locally a representation of ∂C.
Now we consider the difference of the two functions. Setting f = f∂C − fS we have
f (0) = 0 and

∂ f (0)
∂ud−1

=
∂ f∂C(0)
∂ud−1

− ∂ fS(0)
∂ud−1

= −∂ fS(0)
∂ud−1

= tan(β) 6= 0.

Furthermore, f has the same differentiability properties as f∂C, since fS is infinitely
differentiable. With the implicit function theorem we conclude that there exist open
sets U = U(0) ⊆ Rd−2, V = V(0) ⊆ R and a function g : U → V (with the same
differentiability properties as f ) such that f (y, g(y)) = 0 and for all (y, z) ∈ U×V ⊆W
f (y, z) 6= 0 if z 6= g(y). Furthermore

∇g(0) = −
(

∂ f (0)
∂ud−1

)−1 (∂ f (0)
∂u1

. . .
∂ f (0)
∂ud−2

)
= − tan(β)

(
∂ f (0)
∂u1

. . .
∂ f (0)
∂ud−2

)
= 0.

By construction of f locally the intersection ∂C∩ S are the points (y, g(y),−g(y) tan(β))
with y ∈ U, g(y) ∈ V.
Setting u′d−1 = cos(β)ud−1 − sin(β)nx we have

〈u′d−1, nS〉 = cos(β)〈ud−1, nS〉 − sin(β)〈nx, nS〉 = 0,

and clearly ‖u′d−1‖ = 1 and 〈u′d−1, ui〉 = 0 for i = 1, . . . , d− 2. Furthermore,

nx = 〈nx, nS〉nS + 〈nx, u′d−1〉u′d−1 = cos(β)nS + 〈nx, cos(β)ud−1 − sin(β)nx〉u′d−1

= cos(β)nS − sin(β)u′d−1,

and

ud−1 = 〈ud−1, nS〉nS + 〈ud−1, u′d−1〉u′d−1 = sin(β)nS + cos(β)u′d−1.
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Thus, for y ∈ U ⊆ S ∩ Tx

y + g(y)ud−1 − g(y) tan(β)nx = y + g(y) (ud−1 − tan(β)nx)
= y + g(y)

(
sin(β)nS + cos(β)u′d−1 − tan(β)

(
cos(β)nS − sin(β)u′d−1

))
= y + g(y)u′d−1 (cos(β) + tan(β) sin(β)) = y +

1
cos(β)

g(y)u′d−1.

That is, in the orthonormal coordinate system of S with its origin at x and unit
vectors u1, . . . , ud−2, u′d−1 we can represent S ∩ ∂C locally as the graph of the function
g̃ : Rd−2 → R defined by g̃(v1, . . . , vd−2) = g(v1, . . . , vd−2)/ cos(β). Furthermore
∇g̃(0) = 0, that is S ∩ Tx is tangential to S ∩ ∂C in x. �

A.6 Upper bound on ηd

Lemma A.19 For all d ≥ 1 we have ηd ≤ 6.

Proof. We have

ηd =
πd/2

Γ(1 + d/2)
=

π(d−2)/2

Γ(1 + (d− 2)/2)
π

d/2
=

π(d−2)/2

Γ(1 + (d− 2)/2)
2π

d
= ηd−2

2π

d
.

So for d < 7 we have ηd > ηd−2, whereas for d ≥ 7 we have ηd < ηd−2. Therefore
η5 = 8π2/15 ≈ 5.26 is the maximum ηd with uneven d and η6 = π3/6 ≈ 5.17 is the
maximum ηd with even d. �
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List of basic notations used in the text

Here we present a list of the notations that are used in this thesis and that are of more
than local significance. First, the general mathematical notations that are used through-
out the thesis are presented, followed by more special notations in the single chapters.

N set of natural numbers
R set of real numbers
R≥0 set of non-negative real numbers
R>0 set of positive real numbers
|A| cardinality of the set A
A ∩ B intersection of the sets A and B
A ∪ B union of the sets A and B
Ac complement of the set A
1 vector with all entries 1, that is 1 = (1, . . . , 1)′
diag(v1, . . . , vn) diagonal matrix with entries v1, . . . , vn on the diagonal
1A(x) indicator function of the set A, that is 1A(x) = 1 if x ∈ A,

otherwise 0
〈x1, x2〉 Euclidean dot product of x1, x2 ∈ Rd

‖x‖ Euclidean norm of x ∈ Rd, i.e. ‖x‖ =
√〈x, x〉

|a| absolute value of a ∈ R

dist(x1, x2) Euclidean distance between x1, x2 ∈ Rd, i.e. dist(x1, x2) =
‖x1 − x2‖

dist∂C(x, y) geodesic distance in ∂C of x and y
∂C boundary of the set C
L the Lebesgue volume
Ld−1 the (d − 1)-dimensional Lebesgue measure in a (d − 1)-

dimensional affine subspace or the (d − 1)-dimensional
area of a (d− 1)-dimensional surface

Ld−2 the (d− 2)-dimensional area of a (d− 2)-dimensional sur-
face

B(x, r) the closed ball of radius r around x ∈ Rd, that is, B(x, r) =
{y ∈ Rd | dist(x, y) ≤ r}

ηd volume of the d-dimensional unit ball in the Euclidean met-
ric, that is, ηd = Ld(B(0, 1))

Pr(A) probability of the event A
E(U) expectation of the random variable U
Var(U) variance of the random variable U
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Bin(n, p) discrete density of the binomial distribution with parame-
ters n and p

a.s.→ almost sure convergence
f = O(g) f is bounded above by g asymptotically up to a constant

factor
∇ f (x) gradient of f at x
∂ f (x)

∂xi
partial derivative of the function f in the direction xi

Gr(n, r) directed r-neighborhood graph
Gu

r (n, r) undirected r-neighborhood graph
GkNN(n, k) directed k-nearest neighbor graph
Rk(xi) k-nearest neighbor radius of sample point xi
Gsym(n, k) undirected k-nearest neighbor graph with an edge between

two points if one is among the k-nearest neighbors of the
other

Gmut(n, k) undirected k-nearest neighbor graph with an edge between
two points if both are among the k-nearest neighbors of the
other

p(x) density, points are sampled from
p̂n(x) density estimate at point x
µ measure induced by the density p, that is, µ(A) =∫

A p(x) dx
n sample size
x1, . . . , xn sample points
m number of true clusters
m′ number of empirical or sample clusters
t density level set parameter for high-density clusters
L(t) t-level set of p
C(1), . . . , C(m) true clusters, that is for high-density clusters the connected

components of L(t)
Ĉ(1)

n , . . . , Ĉ(m′)
n empirical clusters

C̃(1)
n , . . . , C̃(m′)

n sample clusters
C(i)
− (ε) connected component of L(t− ε) containing C(i)

β(i), β̃(i) probability mass of C(i) and C(i)
− (2ε̃), respectively

p(i)
max maximal value of the density in cluster C(i)

ρ(i) lower bound on probability of balls of radius u(i) around
points in C(i)

− (2ε̃)
κ(i) minimal curvature radius of the boundary ∂C(i)

ν
(i)
max maximal covering radius of cluster C(i)

Col(i)(ν) collar set of cluster C(i) for radius ν

u(i) lower bound on the distances between C(i) and other clus-
ters
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ε̃ parameter ε such that dist(C(i)
− (2ε), C(j)

− (2ε)) ≥ u(i) for all
ε ≤ ε̃

R(i)
min minimal k-nearest neighbor radius of the sample points in

cluster C(i)

R̃(i)
max maximal k-nearest neighbor radius of the sample points in

cluster C(i)

G′mut (n, k, t′) the mutual kNN graphs on points with a density estimate
over t′

G′sym (n, k, t′) the symmetric kNN graph on points with a density esti-
mate over t′

G̃mut (n, k, t′, δ) the graph G′mut (n, k, t′) where connected components of
less than δn points have been removed

G̃sym (n, k, t′, δ) the graph G′sym (n, k, t′) where connected components of
less than δn points have been removed

cut(C, V \ C) cut size of the cut defined by (C, V \C) in the graph G(V, E)
vol(C) volume of C ⊆ V in the graph G(V, E)
card(C) number of vertices in C ⊆ V in the graph G(V, E)
Ncut(C, V \ C) the normalized cut measure for the partition (C, V \ C) in

the graph G(V, E)
RatioCut(C, V \ C) the RatioCut measure for the partition (C, V \ C) in the

graph G(V, E)
S hyperplane in Rd that defines the cuts we consider in the

neighborhood graphs
H+, H− halfspaces of Rd defined by S
cutn,r(S) cut size of cut in Gr(n, r) defined by S
cutn,k(S) cut size of cut in GkNN(n, k) defined by S
voln,r(A) volume of sample points in the set A in Gr(n, r)
voln,k(A) volume of sample points in the set A in GkNN(n, k)
cardn(A) number of sample points in the set A
Ncutn,r(S) normalized cut of cut in Gr(n, r) defined by S
Ncutn,k(S) normalized cut of cut in GkNN(n, k) defined by S
RatioCutn,r(S) RatioCut of cut in Gr(n, r) defined by S
RatioCutn,k(S) RatioCut of cut in GkNN(n, k) defined by S
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