
MENON

Automating a Socratic Teaching Model

for Mathematical Proofs

Dimitra Tsovaltzi

Saarbrücken, 2010

Dissertation zur Erlangung des Grades des Doktors der

Ingenieurwissenschaften der Naturwissenschaftlich-Technischen

Fakultäten der Universität des Saarlandes

ii

Dekan Prof. Dr. Joachim Weickert, Universität des Saarlandes,
Saarbrücken

Vorsitzender Prof. Dr. Raimund Seidel, Universität des Saarlandes,
Saarbrücken

Gutachter Prof. Dr. Jörg Siekmann, Universität des Saarlandes,
Saarbrücken
Prof. Dr. Roland Brünken, Universität des Saarlandes,
Saarbrücken
Dr. Bruce M. McLaren, Carnegie Mellon University, Pitts-
burgh
Dr. Colin Matheson, the University of Edinburgh, Edinburgh

Beisitzer Priv.-Doz. Dr. Helmut Horacek
Kolloquium 11. März 2010

iii

v

“And it won’t be as a result of any teaching that he’ll have become knowledge-
able: he’ll just have been asked questions, and he’ll recover the knowledge by
himself, from within himself.”

Menon, Plato (85d).

vi

vii

Acknowledgments

I would like to thank from the heart my advisor Prof. Dr. Jörg Siekmann
who gave me the opportunity to do this research and supported me throughout
the years towards its completion, both intellectually and morally. From the
beginning of my PhD research and until now, I have always admired his sharp
scientific grasp, as well as his open mind and his readiness to endorse the inter-
ests of other people. I am indebted to the members of my PhD committee Dr.
Bruce M. McLaren and Dr. Colin Matheson for their meticulous and insightful
feedback on the PhD that was beyond my expectations. Both of them, each one
in his own way, have been a source of inspiration and motivation to continue in
the demanding arena of scientific research. I would also like to sincerely thank
Prof. Dr. Roland Brünken who generously agreed to be a member of my PhD
committee. I look up to his research in educational psychology.

I have had the luck to work in two research groups during my PhD research.
I have felt at home and have thoroughly enjoyed working in both of them.
In particular, I would like to thank the Omega group for their willingness to
provide help whenever I needed it, and the ActiveMath group for giving me
a future perspective that motivated me to carry the PhD through. I would
especially like to express my gratitude to Dr. Armin Fiedler who believed in
me, invited me to the Omega group and helped me in my very first steps as
an independent researcher. I have learned a lot from him, from his intellectual
clarity and scientific integrity. Special thanks also to Dr. Chad Brown and
Dr. Helmut Horacek who sacrificed their precious time to review this work and
provide acute and critical comments.

I cannot be grateful enough to my mother, my sisters and their families in
Greece who have never seized to support me and wholeheartedly embrace my
successes and failures, my happy and sad moments.

My husband, Florian, and my daughter, Sophia, have had to tolerate me, or
my necessary absence in the past years. I thank them for all their patience, for
accepting my aspirations and for their love that drives me at difficult times.

viii

ix

Brief Abstract

This thesis presents an approach to adaptive pedagogical feedback for arbi-
trary domains as an alternative to resource-intensive pre-compiled feedback,
which represents the state-of-the-art in intelligent tutoring systems today. A
consequence of automatic adaptive feedback is that the number of tasks with
pedagogical feedback that can be offered to the student increases, and with
it the opportunity for practice. We focus on automating different aspects of
teaching that together are primarily responsible for learning and can be inte-
grated in a unified natural-language output. The automatic production and
natural-language generation of feedback enables its personalisation both at the
pedagogical and the natural-language dialogue level. We propose a method
for automating the production of domain-independent adaptive feedback. The
proof-of-concept implementation of the tutorial manager Menon is carried out
for the domain of set-theory proofs.

More specifically, we define a pedagogical model that abides by schema and
cognitive load theory, and by the synergistic approach to learning. We imple-
ment this model in a Socratic teaching strategy whose basic units of feedback
are dialogue moves. We use empirical data from two domains to derive a taxon-
omy of tutorial-dialogue moves, and define the most central and sophisticated
move hint. The formalisation of the cognitive content of hints is inspired by
schema theory and is facilitated by a domain ontology.

x

xi

Kurzzussammenfassung

Die vorliegende Arbeit präsentiert eine Annäherung an adaptives pädagogisches
Feedback für beliebige Domäne. Diese Herangehensweise bietet eine Alternative
zu ressource-intensivem, vorübersetztem Feedback, dass das heutige “state-of-
the-art” in intelligenten tutoriellen Systemen ist. Als Folge können zahlreiche
Aufgaben mit pädagogischem Feedback für die Praxis angeboten werden. Der
Schwerpunkt der Arbeit liegt auf der Automatisierung verschiedener Aspekte
des Lehrprozesses, die in ihrer Gesamtheit wesentlich den Lernprozess beein-
flussen, und in einer einheitlichen Systemausgabe Natürlicher Sprache integri-
ert werden können. Die automatische Produktion und die Systemgenerierung
von Feedback in Natürlicher Sprache ermöglichen eine Individualisierung des
Feedback auf zwei Ebenen: einer pädagogischen und einer dialogischen Ebene.
Dazu schlagen wir eine Methode vor, durch die adaptives Feedback automa-
tisiert werden kann, und implementieren den tutoriellen Manager Menon als
“proof-of-concept” beispielhaft für die Domäne von Beweisen in der Mengen-
theorie.

Konkret definieren wir ein pädagogisches Modell, das sich auf Schema- und
Kognitionstheorie sowie auf die synergetische Herangehensweise an Lernen stützt.
Dieses Modell wird in einer Sokratischen Lehrmethode implementiert, deren
basale Feedback-Elemente aus Dialogakten bestehen. Zur Bestimmung einer
Taxonomie Tutorielle-Dialogakte sowie des zentralen und komplexen Dialogakts
hint (Hinweis) wenden wir empirische Daten aus zwei Domänen an. Die For-
malisierung des kognitiven Inhaltes von Hinweisen folgt der Schematheorie und
basiert auf einer Domänenontologie.

xii

xiii

Abstract

Adaptive teaching strategies that take the needs of different learners into ac-
count are a prerequisite for successful intelligent tutoring systems. They should
ideally incorporate elements of all facets of teaching that together are responsi-
ble for learning. One such facet is natural language tutorial dialogue, which is
crucial to the application of teaching strategies by human teachers.

Although there is an increasing amount of research on teaching strategies and
on tutorial dialogues, an analysis of the multiple facets of feedback in the context
of a tutorial dialogue remains to be investigated. State-of-the-art approaches
do not do justice to either of these aspects. Commonly, intelligent tutoring
systems concentrate on cognitive and domain-specific content and resort to pre-
compiled feedback. This feedback is either derived from learning theories, or
is dictated by human tutors. The feedback is then associated with pre-defined
input for specific tasks, and is presented to the student as canned or template-
based natural-language output in fixed sequences. As a result, adaptivity and
non-cognitive aspects of feedback are sacrificed for precision of cognitive and
domain-specific content designed for individual tasks. Moreover, these menu-
based variants of dialogue management do not preserve the characteristics of
natural-language dialogue that make it effective, such as dialogical and rhetorical
structure, expressive power, and mixed initiative of the collocutors.

This thesis presents techniques to automatically integrate different aspects
of teaching in a unified natural-language output. The automatic production and
natural-language generation of feedback enables its personalisation both at the
pedagogical and at the natural-language dialogue level. As a result, feedback
can be tailored to the needs of the individual students and the discourse context.
Our approach moves away from resource-intensive pre-compiled feedback and
towards producing adaptive feedback for arbitrary tasks. As a consequence, the
number of tasks with pedagogical feedback that can be offered to the student
increases, and with it the opportunity for practice.

We propose a method for automating adaptive feedback and implement the
tutorial manager Menon as a proof-of-concept for the domain of set theory proofs.
More specifically, we define a pedagogical model that abides by schema theory
and cognitive load theory, and by the synergistic approach to learning. We im-
plement this model in a Socratic teaching strategy whose basic units of feedback
are dialogue moves. We use empirical educational data from two domains: an
existing corpus on electricity and electronics, and a corpus which we collected

xiv

on tutoring set-theory proofs. Based on that data we derive a taxonomy of
tutorial-dialogue moves, and define the most central and sophisticated move
hint. The formalisation of the cognitive content of hints is inspired by schema
theory and is facilitated by a domain ontology. The domain ontology extends
the knowledge representation of the mathematical assistance system Omega for
the purposes of tutorial dialogues.

xv

Contents

1 Introduction 3
1.1 The Research Topic . 3
1.2 General Overview and State of the Art 6

1.2.1 ITSs with NL Dialogue Management and Tutoring Strate-
gies . 10
1.2.1.1 AutoTutor . 11
1.2.1.2 CIRCSIM-Tutor 13
1.2.1.3 WHY-ATLAS . 14
1.2.1.4 PROPL . 15
1.2.1.5 LeActiveMath 17
1.2.1.6 Summary . 18

1.2.2 ITSs with Tutoring Strategies 18
1.2.2.1 Andes . 18
1.2.2.2 Cognitive Tutors 21
1.2.2.3 SQL-Tutor . 23
1.2.2.4 Sherlock . 24
1.2.2.5 Why System . 25
1.2.2.6 The MDP Approach 26
1.2.2.7 Summary . 29

1.2.3 ITSs with Tutorial Dialogue Management 30
1.2.3.1 STEVE . 30
1.2.3.2 BEETLE . 30
1.2.3.3 Summary . 32

1.2.4 ITSs Promoting Self-Explanation 32
1.2.4.1 SE-Coach . 32
1.2.4.2 PACT Geometry Tutor and Geometry Cognitive

Tutor . 33
1.2.4.3 Summary . 34

1.2.5 ITSs Promoting Motivation 34
1.2.5.1 Wayang-West . 34

1.2.6 Theoretical Work on Designing Feedback Strategies . . . 35
1.2.7 Dialogue Systems: Discourse vs. Task Planning 37

1.3 The Research Problem and our Approach 39
1.3.1 The Research Problem . 39

xvi CONTENTS

1.3.2 General Approach to NL Tutorial Dialogue 44
1.3.3 Our Approach to Automatic Feedback for NL Tutorial

Dialogue . 49
1.3.4 An Example . 53

1.3.4.1 Dialogue Example 53
1.3.5 The Particular Aspects of our Approach 58
1.3.6 Goals and Scientific Contributions 68

1.4 Methodology . 69
1.4.1 The top-down vs. bottom-up cycle 70
1.4.2 A Pilot Wizard-of-Oz Experiment 71

1.4.2.1 Experiment Design and Procedure 71
1.4.2.2 Experiment Results and Discussion 74

1.5 Conclusion . 80

2 A Pedagogical Model for Tutoring 83
2.1 Introduction . 83
2.2 Motivation of the Teaching Model 84

2.2.1 Schema Theory . 84
2.2.2 Worked Examples vs. Problem Solving 86
2.2.3 Kinds of Problem Solving 89
2.2.4 The Motivation Theory Standpoint 90
2.2.5 Non-goal-specific Socratic Teaching 93
2.2.6 Forward reasoning instructions 95
2.2.7 Declarative vs. procedural learning: Effects of self-explanation

and meta-reasoning instructions 99
2.3 Tutoring Framework and Teaching Model 103

2.3.1 The Tutoring Framework 103
2.3.2 Tutorial Goals . 104

2.3.2.1 Global Tutorial Goals, Means, and Proposed Strat-
egy . 104

2.3.2.2 Local Tutorial Goals 105
2.3.3 The Teaching Model . 106

2.3.3.1 Characterisation of the Tutoring Model 107
2.3.4 Guidelines for the Realisation of our Tutorial Goals . . . 109

2.4 Conclusion . 111

3 Instructional Points and Blueprint for Problem Solving 113
3.1 Introduction . 113
3.2 Definition of the Instructional Points and the Blueprint 114
3.3 Mathematical Domain Knowledge:

The Omega System . 122
3.3.1 Enhancing the Omega Ontology 124

3.4 Formalisation of Instructional Points 125
3.4.1 Domain-Object Instructional Points 125

3.4.1.1 Relevant Concept 126
3.4.1.2 Subordinate Concept 126

CONTENTS xvii

3.4.1.3 Relevant-Concept Meta-Reasoning 127
3.4.1.4 Subordinate-Concept Meta-Reasoning 127

3.4.2 Domain-Relation Instructional Points 129
3.4.3 Rule-of-Inference Instructional Points 129

3.4.3.1 Domain Technique 130
3.4.3.2 Rules of Inference 131
3.4.3.3 Connect Relevant-Subordinate-Concept 133
3.4.3.4 Elaborate Domain Object 133

3.4.4 Substitution Instructional Points 133
3.4.4.1 Substitution . 133
3.4.4.2 Rule-of-Inference Application 134

3.4.5 Proof-Step Instructional Points 135
3.4.5.1 Proof Step . 135
3.4.5.2 Proof Method 137

3.4.6 Use of the Domain Ontology and the Instructional Points 138

4 Dialogue Moves and Hints 141
4.1 Introduction . 141
4.2 Dialogue Move Taxonomy . 141

4.2.1 General Description of the Dialogue Move Taxonomy . . . 142
4.3 Dialogue-Move Analysis . 144

4.3.1 Conventional Task-Management Dialogue Moves 144
4.3.1.1 Initiate-task . 145
4.3.1.2 Close-task . 145
4.3.1.3 Initiate-subtask 146
4.3.1.4 Close-subtask (constructed) 146

4.3.2 Conventional Communication-Management Dialogue Moves146
4.3.2.1 Initiate-dialogue 146
4.3.2.2 Close-dialogue 146
4.3.2.3 Initiate-subdialogue 147
4.3.2.4 Close-subdialogue 147
4.3.2.5 Discourse-marking 147

4.4 Task Dimension . 148
4.4.1 Student-task Dialogue Moves 148

4.4.1.1 Request-assistance 148
4.4.1.2 Resign . 149
4.4.1.3 Request-evaluation 149
4.4.1.4 Time-out . 150

4.4.2 Tutor-task dialogue moves 150
4.4.2.1 Domain-contribution 150
4.4.2.2 Check-origin-problem 152
4.4.2.3 Align . 152
4.4.2.4 Domain-contribution-evaluation 153
4.4.2.5 Encourage . 154
4.4.2.6 Prompt . 154
4.4.2.7 Hint . 155

xviii CONTENTS

4.5 Hint Taxonomy . 156
4.5.1 Motivation and Structure of the Hint Taxonomy 156

4.5.1.1 The Domain-Knowledge Dimension 156
4.5.1.2 The Elicitation-Status Dimension 158
4.5.1.3 The Problem-Referential-Perspective Dimension 158
4.5.1.4 The Inferential-Role Dimension 158

4.5.2 Hint Categories . 160
4.5.2.1 DPC Hints . 161

4.5.2.1.1 Domain-Relation Hints 161
4.5.2.1.2 Domain-Object Hints 162
4.5.2.1.3 Inference-Rule Hints 163
4.5.2.1.4 Substitution Hints 165
4.5.2.1.5 Proof-Step Hints 166

4.5.2.2 DMRC . 166
4.5.2.2.1 Domain-Relation Meta-Reasoning Hints 167
4.5.2.2.2 Domain-Object Meta-Reasoning Hints . 168
4.5.2.2.3 Inference-Rule Meta-Reasoning Hints . 171
4.5.2.2.4 Substitution Meta-Reasoning Hints . . 175
4.5.2.2.5 Proof-Step Meta-Reasoning Hints . . . 177

4.5.2.3 Pragmatic Hints 179
4.5.2.3.1 Speak-To-Answer Hints 180
4.5.2.3.2 Point-to-Information Hints 181
4.5.2.3.3 Take-For-Granted Hints 182

4.6 Subdialogues and Subtasks . 183
4.7 Natural Language Automation of Hints 186
4.8 Relation of Hints to other Dialogue Moves 187
4.9 Conclusion . 191

5 Hinting Session Status 195
5.1 Introduction . 195
5.2 Motivation of HSS . 196
5.3 Hinting Session Status Fields . 196

5.3.1 External Tutoring Management: ETM 198
5.3.2 Tutoring History: TH . 199
5.3.3 Tutorial Goal Status: TGS 200

5.3.3.1 Instructional Points 206
5.3.3.2 Pragmatic Information 208
5.3.3.3 Proof Status: PS 208

5.3.4 Motivation and Cognitive Load: MCL 209
5.3.4.1 Global Motivation and Cognitive Load: GMCL . 209
5.3.4.2 Local Motivation and Cognitive Load: LMCL . . 210

5.4 External Input vs. Internal Fields 211
5.4.1 External Input . 211
5.4.2 Fields Maintained Inside Menon 212

5.5 Types of Mistakes . 212
5.6 Conclusion . 213

CONTENTS xix

6 Socratic Teaching-Strategy 215
6.1 Introduction . 215
6.2 Overview of Menon . 215
6.3 Tutoring Control . 216
6.4 Strategies: The Socratic Teaching Strategy 218

6.4.1 Socratic Output for Hinting Situations 220
6.4.1.1 External Tutoring Management 220
6.4.1.2 Tutoring History 221
6.4.1.3 Motivation and Cognitive Load 222
6.4.1.4 Tutorial Goal Status 222

6.5 Substrategies . 233
6.5.1 Diagnostics Subdialogue 234
6.5.2 Pragmatic Subtask . 235
6.5.3 Performable-step Subtask 236
6.5.4 Meta-reasoning Subtask 237
6.5.5 Request-assistance Subtask 238
6.5.6 Near-miss Subtask . 240
6.5.7 Explain-misconception Subtask 241
6.5.8 Aligning Subtask . 242
6.5.9 Spell-out-task Subtask 243
6.5.10 Recapitulation Subtask 244

6.6 General Examples . 245
6.6.1 First proof step with no correct answers 246
6.6.2 First and second proof steps with partial and correct answers251
6.6.3 Multiple steps and multiple substrategies 255
6.6.4 Backtracking to previous turns 263

6.7 Conclusions . 267

7 Evaluation 269
7.1 Introduction . 269
7.2 Background . 269
7.3 Description of the Evaluation . 270

7.3.1 Experimental Design . 271
7.3.2 Experimental procedure: 272

7.4 Materials . 273
7.5 Results . 275

7.5.1 Overall Choice of Strategy 275
7.5.2 Choice of Individual Feedback 276

7.5.2.1 Results for the First Tutorial Dialogue 276
7.5.2.2 Results for the Second Tutorial Dialogue 278

7.6 Discussion . 279
7.7 Conclusions . 282

xx CONTENTS

8 Conclusion 283
8.0.1 Domain Independence . 284

8.1 Future Work . 286
8.1.1 Tutoring Model Extensions 286
8.1.2 Teaching Strategy Enhancements 287
8.1.3 Empirical Studies . 289

Appendices 291

Appendix A The Mathematical Theory in Omega and the Defini-
tions of Relations 293
A.1 Concepts for Set Theory . 293
A.2 Inference Rules and Notation Examples 294

A.2.1 Basic Deduction Rules . 294
A.2.2 Definitions . 295
A.2.3 Theorems . 296
A.2.4 Definitions of Relations for Tutoring 297

A.2.4.1 Relations . 297

Appendix B Menon’s Interface Language 301

Appendix C Dialogue Move Taxonomy 307
C.1 Philosophy of Taxonomy . 307

C.1.1 DAMSL dimensions . 308
C.1.2 Adaptations to DAMSL 308

C.2 Overview of The Taxonomy . 309
C.2.1 The Dimensions in the Taxonomy 309

C.2.1.1 Forward-Looking Dimension 309
C.2.1.2 Backward-looking Dimension 310

C.3 The Dialogue Move Taxonomy 311
C.3.1 Segmentation . 311
C.3.2 Forward-Looking Dimension 311

C.3.2.1 Statement . 312
C.3.2.1.1 Assert 312
C.3.2.1.2 Reassert 313
C.3.2.1.3 Other-statement 313

C.3.2.2 Influencing-addressee-future-action 313
C.3.2.2.1 Open-option 313
C.3.2.2.2 Action-directive 314

C.3.2.3 Info-request . 315
C.3.2.4 Diagnostic-query 316
C.3.2.5 Understanding-query 317
C.3.2.6 Committing-speaker-future-action 317

C.3.2.6.1 Commit 317
C.3.2.6.2 Offer 318

C.3.2.7 Conventional . 318

CONTENTS xxi

C.3.2.7.1 Conventional-opening 318
C.3.2.7.2 Conventional-closing 318

C.3.2.8 Apologise . 319
C.3.2.9 Gratitude . 319
C.3.2.10 Signalling-emotion 320

C.3.2.10.1 Frustration 320
C.3.2.10.2 Satisfaction 320

C.3.2.11 Other-forward-function 320
C.3.3 Backward-Looking Dimension 321

C.3.3.1 Agreement . 321
C.3.3.1.1 Accept 322
C.3.3.1.2 Accept-part 322
C.3.3.1.3 Maybe 322
C.3.3.1.4 Reject 323
C.3.3.1.5 Reject-part 323

C.3.3.2 Understanding 324
C.3.3.2.1 Signal-non-understanding (SNU) 324
C.3.3.2.2 Request-clarification 325
C.3.3.2.3 Signal understanding 326
C.3.3.2.4 Correct-misspeaking 327

C.3.3.3 Answer . 328
C.3.3.4 Information-relation 328

C.3.3.4.1 Address-action-directive 328
C.3.3.4.2 Address-question 329
C.3.3.4.3 Address-statement 329
C.3.3.4.4 Address-SNU 330
C.3.3.4.5 Address-other 330

C.3.4 Communicative Status Dimension 330
C.3.4.1 Uninterpretable 330
C.3.4.2 Abandoned . 331
C.3.4.3 Self-talk . 331

Appendix D NL Examples of Hint Categories 333

Appendix E Strategy Manager Functions: Main functions, performable-
step and meta-reasoning subtasks 343

Appendix F Evaluation Study Materials 347
F.1 The Original Materials in German 347

F.1.0.4 Erster Tutorieller Dialog 349
F.1.0.5 Zweiter Tutorieller Dialog 352

F.2 The Experimenter’s Materials in English 358
F.2.0.6 First Tutorial Dialogue 360
F.2.0.7 Second Tutorial Dialogue 363

xxii CONTENTS

xxiii

List of Figures

1.1 The architecture of the prototype NL tutorial dialogue system of
the Dialog project . 45

1.2 The architecture of the prototype NL tutorial dialogue system of
the Dialog project . 48

1.3 Tutorial Manager Cycle . 49
1.4 An Example of a proof task . 54
1.5 The use of the instructional points and the other hint specifica-

tions for automatic NL hint realisation 65
1.6 Experiment Tasks . 72
1.7 Correct but irrelevant answer . 78
1.8 Subdialogue . 79
1.9 Refer-to-lesson, Participant 20. 79

2.1 There is no one-to-one correspondence between the instructional
blueprint and the schema that it helps give rise to. 110

3.1 The instructional blueprint as a graph. 119
3.2 Overview of the domain ontology 121
3.3 Domain-Objects Instructional Points 128
3.4 Domain-Relation Instructional Points 129
3.5 Rule-of-Inference Instructional Points 134
3.6 Substitution Instructional Points 135
3.7 Proof Step . 136
3.8 Proof Method . 139
3.9 The Use of the Ontology in Automating NL Hinting for Schema

Acquisition . 140

4.1 Definition of Hint Categories via Hint dimensions 157
4.2 Example of hint category with its values in the four dimensions. 160
4.3 Summary of the taxonomy of hints 185
4.4 Forward-looking function: decision tree 193
4.5 Backward-looking function: decision tree 194

6.1 Menon architecture . 216

xxiv LIST OF FIGURES

6.2 An instance of Menon’s output class 217

1

List of Tables

1.1 Descriptive statistics of the pre- post-test comparison 75

4.1 Summary of taxonomy of hints with dimensions representation
and examples of hint categories in them 184

5.1 Table of the HSS fields without their instances. 197

7.1 Evaluation of Menon’s overall strategy 276
7.2 Evaluation of Menon’s individual feedback 277

2 LIST OF TABLES

3

Chapter 1

Introduction

1.1 The Research Topic

The implementation of teaching strategies within Intelligent Tutoring Systems
(ITSs) remained until recently underrepresented in the community. A lot of
theoretical work on teaching strategies exists and their necessity is well recog-
nised. Moreover, human tutors, who make extensive use of teaching strategies,
are considered the model for ITSs especially since an influential paper [Bloom,
1984] that revealed the effectiveness of one-to-one human tutoring as opposed
to teaching in the classroom. However, the complexity of teaching strategies
makes them a less successful branch of research in ITSs even to date, especially
with regard to their automation.

This thesis concentrates on automating feedback as a means for imple-
menting adaptive teaching strategies. It explores the possibility of integrat-
ing automatic feedback in a natural language (NL) dialogue tutorial system.
Empirical evidence has shown that NL dialogue capabilities are a crucial fac-
tor to making human explanations effective [Moore, 1993; Core et al., 2000;
Porayska-Pomsta and Pain, 2000; DiPaolo et al., 2004; Carenini and Moore,
2006]. Such capabilities include, for instance, the possibility to refer to pre-
vious dialogue chunks, to use appropriate discourse1 markers, to include basic
dialogue phenomena such as acknowledgements and back-channel feedback in
general, and to employ multiturn tutoring feedback. In the genre of tutorial
dialogue alone back-channel feedback that is sensitive to the student’s input is
provided at a rate of 2.71 per minute by human tutors, as was observed in a
corpus of human-to-human tutorial dialogues [Rajan et al., 2001].

Moreover, the use of teaching strategies that abide by active learning is be-
coming a prerequisite for tutoring systems. Such strategies are often referred
to as dialectic or Socratic [Stevens and Collins, 1977] and are contrasted with
the more traditional didactic tutoring style characterised by long explanations,

1We use the term “discourse” to refer to goal-targeted conversation and the term “dialogue”
to refer to free conversation.

4 Chapter 1. Introduction

where the tutor has control of the tutoring and the learner is regarded as the
passive recipient of knowledge [Rosé et al., 2001b]. Socratic strategies, on the
contrary, are student-oriented. They use a dialectic form in order to instruct
the student and monitor the learning process, and they put emphasis on elicit-
ing as much information from the student as possible. Socratic strategies have
been demonstrated several times to be superior to pure explanations, especially
regarding their long-term effects and transfer of knowledge [Chi et al., 1994;
Rosé et al., 2001b; Ashley et al., 2002; DiPaolo et al., 2004]. Researchers hy-
pothesise that requesting students to use NL input forces them to self-explain
what they are doing, which makes them think harder. Consequently, an in-
creasing, though still limited number of state-of-the-art tutoring systems inves-
tigate natural-language interaction and automatic teaching strategies, normally
including some notion of hints, which are thought to implement the Socratic
style of teaching. Additionally, problem solving is known to promote learn-
ing [Delclos and Harrington, 1991; Wilson and Cole, 1991; Lim et al., 1996;
Wu, 2001], and high student control during problem solving of the kind that
hints can foster has a motivational effect [Keller, 1987; Weiner, 1992; de Vi-
cente and Pain, 1998]. Finally, hints can prevent students from taking wrong
paths while learning actively and direct them to productive paths [DiPaolo et
al., 2004].

Although some work on hinting exists [Hume et al., 1996b; DiPaolo et al.,
2004; Murray et al., 2004; Horacek, 2006], there is on the whole a lack of research
in the area of automatically adaptive feedback. The standard pre-compiled
feedback does not do justice to the role of hints in learning. Hints should ideally
take the student’s frame of mind into account in order to address the relevant
piece of information at each point and trigger active learning. They should
also be tailored to the need of the student for affective support. Incorporating
this kind of adaptivity into an ITS faces, of course, the problem of reasoning
about the student’s frame of mind and affective state. However, it becomes
impossible when using pre-compiled feedback. Moreover, in providing canned
NL feedback, the adaptivity of human tutoring that is owed to expressing oneself
in natural language is lost. With it natural argumentation also suffers, which
is characterised by human-like reasoning, dialogical and rhethorical structure,
expressive power, and effectiveness of argument [Reed and Grasso, 2004]. A
big part of adaptivity in tutorial dialogue for anything but the most simple
domains and tasks is also the possibility that the student can take the initiative
in solving the task, for example by asking a question, and the tutor leads the
student through multistep feedback tailored to the question [Freedman, 2000].
Therefore, there is a need for dialogue-based ITSs that allow mixed initiative
and provide automatic feedback for free student input that adapts depending
on the tutoring and dialogue context.

The high value of providing a greater variety of feedback strategies in a
flexible NL dialogue context, as opposed to using fixed sequences, and the sig-
nificance of the thorough investigation of hinting are well recognised in the
field [du Boulay and Luckin, 2001; VanLehn, 2006]. The fact that there is room
for research in integrating dialogue theories and educational teaching strategies

1.1. The Research Topic 5

into tutorial dialogue approaches for ITSs is also common knowledge in the com-
munity [Zinn, 2002]. More specifically, further research is needed to understand
the multifunctionality of hints, the way these multiple functions are combined
in one hint, the connection of hints to other forms of pedagogical feedback and
to dialogue moves (DMs), and their place in tutorial dialogues.

This thesis investigates the possibility of automating a Socratic teaching
strategy. It defines a teaching model based on prominent learning theories.
It investigates pedagogical feedback for realising the model (e.g. motivational
feedback) and scrutinises hints as the main and most demanding characteristic
of this model. Hints are defined as the means for encouraging active learning.
They take the form of eliciting information that students are unable to access
without the aid of prompts, or information that students can access, but are
unaware of its relevance for the problem at hand. A hint can also point to
an inference that students are expected to make based on knowledge available
to them [Hume et al., 1996b; DiPaolo et al., 2004]. The thesis undertakes the
research of hints in the context of problem solving and NL tutorial dialogue.
It presents a way of automatically producing student, situation, and discourse
sensitive hints.

In terms of pedagogical consideration that the Socratic teaching strategy
takes into account, we use four main theoretical models for defining the tutorial
model that the strategy implements. First, we subscribe to schema theory and
the definition of schemata as heuristic models, which can be re-applied and mod-
ified for solving more or less similar problems respectively. They are learned via
experience in the domain [Delclos and Harrington, 1991]. Second, we take into
account considerations deriving from cognitive load theory, which is based on
research on working memory capacity and influences schema acquisition [Owen
and Sweller, 1985]. We use this theory to guide the way we regulate the load
imposed on the student in order for learning to occur. Third, we model as-
pects of motivation theory concerned with how much effort students put into
learning [Keller, 1987]. Fourth, we follow a synergistic approach to learning by
promoting primarily implicit and some explicit learning, when necessary [Sun
et al., 2001].

An evaluation of the teaching strategy and the automatically produced feed-
back that we implement gave positive results. More specifically, 4 out of 5
mathematicians who evaluated our teaching strategy and were either teachers
or had strong pedagogical background preferred Menon’s feedback to equivalent
feedback of a strategy that was previously shown to effect learning.

In this chapter, we first give a general overview of ITSs and an account of
the current state in our general research area in Section 1.2. We then define
our research problem in Section 1.3, our specific goals and scientific contribu-
tions in Section 1.3.6. We present our methodology for achieving these goals in
Section 1.4 and an example that illustrates our overall approach 1.3.4.1.

6 Chapter 1. Introduction

1.2 General Overview and State of the Art

ITSs are systems that use computer support and AI techniques to simulate or
assist teaching. Developers of ITSs aim to have their systems participate in
teaching and contribute to various facets of it, either by offering technological
support, or by increasing the tutoring hours per student. Assistance can be
provided to a student, a group of students, or a teacher.

The following three main research techniques have been commonly applied
in building ITSs, which have helped derive guidelines for what the behaviour of
the ITS should be [du Boulay and Luckin, 2001]:

1. Observing and simulating the behaviour of human tutors [Graesser et al.,
2001]

2. Reviewing learning theories and deriving a teaching theory [Anderson et
al., 1995]

3. Observing students and deriving a teaching theory [VanLehn et al., 2005]

There are various aspects of learning and teaching that are simulated or dealt
with by ITSs. The following areas of research constitute development choices
for simulating the required behaviour that have become standard throughout
the years. AI techniques are used to implement this behaviour and to meet the
challenges that each of the above areas of ITS development presents.

Learning Environment This is the environment in which the user works. It
is the sine qua non of ITSs. It provides an interface for solving the task and
for the interaction between student and tutor. It also provides computer tools
for helping the student solve the task and facilitate the interaction. The stu-
dent tools included in a learning environment may comprise graphical support
for plotting and organising knowledge, natural language input, representation
of the learner’s model (often referred to as “open learner model” [Dimitrova
et al., 1999]), automatic calculations of values, synchronised actions (collab-
orative systems) etc. [Koedinger and Anderson, 1997; VanLehn et al., 2005].
For the teacher, typically authoring tools are provided, which allow teachers to
author the teaching material of the ITS to fit the needs of their class, or the
goals of their preferred teaching model [Murray, 2003]. Another support for the
teacher is monitoring tools, which may provide an overview of the student’s or
the class’s activities and hence support curriculum planning, and the choice of
feedback [Groot et al., 2007]. The interface may also include natural language
dialogue capabilities for accepting NL input from the student and formulating
the teacher’s output [Evens et al., 2001; Jordan et al., 2006].

Knowledge Representation The knowledge representation in ITSs concerns
the domain knowledge that the ITS teaches. This must be represented in a way
that makes it possible to assess the knowledge of the student, to decide which
knowledge must be taught further, and to present this knowledge to the student.

1.2. General Overview and State of the Art 7

The first of these issues relates to student modelling. The other two relate to
teaching strategies. Moreover, knowledge has to be represented efficiently, so
that a large number of tasks can be handled by the ITS given the same knowl-
edge representation and small implementation effort. An example of this are
systems that can generate their own tasks from the knowledge representation
(e.g [Mitrovic, 2003; Ullrich et al., 2006]). Knowledge representation also has
to cater for the needs of the learning theory and the teaching strategy that the
ITS uses. To this aim, developers of ITSs employ teachers who are responsi-
ble for representing both the tasks and the best feedback for potential errors
while solving these tasks (e.g. [VanLehn et al., 2005]). Authoring tools medi-
ate this procedure by accepting user friendly input and translating it into the
representation that the ITS uses.

The granularity with which knowledge is represented is commonly one of the
pitfalls of knowledge representation [VanLehn, 2006]. If too big sub-steps for
solving a task are assumed, errors in finer steps will be overlooked. If too small
steps are represented, abstracting away from detail is difficult. Such abstraction
is often necessary to avoid overloading students and allow them to concentrate
on the specific objectives of the lesson. The granularity of the represented
knowledge also restricts the feedback, which has to be of the same granularity.
In a physics task, for instance, if the arithmetic involved is not represented, but
only the reasoning in terms of laws of physics, then errors caused at the math
level will not be tracked down and cannot be remediated. This however might
be the objective of an ITS that teaches the laws of physics and wants to spare
students the details of the math.

A knowledge representation that is the aggregate of a representation for every
task is not efficient, but it allows providing feedback tailored to every problem
based on the teaching strategy of choice. An efficient knowledge representation
abstracts from the specific tasks to the effect that some of the uniqueness and
hence the quality of the feedback may be lost. These two concerns pose a
great challenge to ITSs: To represent knowledge efficiently and at the same
time in a way that it can enable pedagogically appropriate feedback for every
task. Knowledge must be represented so that it can be used as the domain
content of feedback no matter what teaching strategy this feedback implements.
An example of such an approach is the ActiveMath system which uses the
OmDoc (Open Mathematical Documents) markup language to represent domain
knowledge as a uniform interface for structured theories [Kohlhase, 2006].

Student Modelling Student modelling is a specific subarea of user modelling
which concerns itself with formalising attributes that play a role in learning so
that they are readily available for assisting teaching [Corbett et al., 1997]. Such
attributes may represent for each student one or more of the following general
categories: the degree of mastery of knowledge, the evaluation of the student’s
metacognitive abilities, the estimation of the student’s affective state and mo-
tivation. In general, student modelling is an attempt to operationalise those
attributes. The degree of mastery of knowledge is by far the most common

8 Chapter 1. Introduction

attribute modelled in ITSs. In operationalising them, the ITS developers de-
fine the attributes for the specific ITS. For example, degree of mastery may
be defined based on how many tasks a student has solved, of what difficulty,
and in how much time. These are domain-independent attributes. Another
operationalisation that can be common across domains may be modelling mo-
tivation by representing for example attention, relevance, confidence, and satis-
faction [Keller, 1987].

On the other hand, the operationalisation may differ a lot between domains,
for instance if one wants to directly operationalise the mastery of chunks of
knowledge one has to specify the relevant chunks and what it means to master
them. For example, for physics tasks this may include which laws of physics a
student has to know, as well as what it means to know them. It may mean to
be able to write down a formula for them, or to solve tasks by applying them.
Potential errors that the student may make and which the ITS developer wishes
to track and remediate must also be represented. Capturing such errors is often
used to operationalise of the degree of mastery. In that case, a student who
commits such errors will not have mastered the related chunks of knowledge.

Due to decisions like the ones we mentioned, the operationalisation of the
attributes involved in student modelling is closely intertwined with the teaching
strategies and the general pedagogical approach that is implemented by the ITS,
as well as with the overall knowledge representation.

Teaching Strategies Teaching strategies concern themselves with helping
students to acquire knowledge by instruction. This presupposes choosing a
domain like mathematics, physics, etc, specifying a curriculum for this domain
with the specific domain knowledge that the student must acquire, and defining
what it means that the student has acquired this knowledge. Teaching strategies
are closely related to cognitive theories of knowledge representation and learning
theories, which play an increasingly important role in defining them. General
principles of learning can be outlined from such theories, which help in turn
to derive general guidelines for teaching. General guidelines have limitations in
that they do not cater for individual learning styles that largely affect learning
process. Therefore, a main issue concerning teaching strategies is adapting the
various aspects of teaching to the needs of the student.

Aspects of learning that teaching strategies aim to influence include:

1. Cognitive processes, which pertain to learning directly and to how students
acquire knowledge

2. Metacognitive process, through which students can control their own learn-
ing

3. Affect and motivation, which relate to if and how much students are willing
to learn. Social processes are considered here, too as the macro-level
counterpart of affect and motivation

1.2. General Overview and State of the Art 9

Cognitive processes have been in the focus of research on teaching strategies,
while metacognitive and affective processes have only recently started getting
due attention.

There are general issues that a teaching strategy must take a stance on [Cor-
bett et al., 1997; du Boulay and Luckin, 2001; VanLehn, 2006]. If and how much
scaffolding one will provide is one issue. Too little scaffolding like free explo-
ration can be demotivating for the learner, who is required to navigate through
a domain or a task with no or minimum help, even when students feel they
need it. Too much scaffolding, like giving hints for all steps before students
have made an attempt on their own, can lead to little learning, as there might
be little room for the student to make the cognitive effort that is necessary for
learning to occur.

What kind of scaffolding one will provide is another issue. For example,
whether scaffolding will consist of tutor feedback, or adaptation of the task dif-
ficulty. The tutor feedback can be given on request or when the tutor judges it
necessary. In either case, the tutor may decide to provide help on a spectrum
that includes giving simple evaluation of the student attempt (correct or incor-
rect), to giving a hint on improving the attempt, to giving away the answer.
Which hint to give is itself a very complicated decision and involves among
other issues choosing the right moment to give a hint, the right level of hint
to promote learning, the domain knowledge to address, and the way to address
it. This latter point often requires that the system recognises the step that
the student is attempting and identifies the best next step to address. Such
requirements pertain to AI planning that is an area of research in its own right.

The choice of task is based on the student model, which represents the
knowledge that the student should acquire and reasons about the mastery of
the domain knowledge by the student. The kind and level of task to be assigned
next is instructed by the teaching theory. It involves decisions like progressing
slowly through the knowledge taught or presenting a more difficult problem
that challenges the student, and if the next task should deal with the same
sub-part of the domain or move to a new one. A theoretical work in this
direction that is favoured among ITS developers is Vygotsky’s “zone of proximal
development” [Vygotsky, 1978].

How one will deal with errors is a third issue concerning teaching strategies.
More particularly, decisions involve if all errors will be treated, which would
put emphasis on reacting to erroneous knowledge rather than constructing new
knowledge. When the errors to be treated are selected, an ITS has to decide if
they will be treated all together by a unified feedback or separately by giving
specific feedback for each error. Moreover, one has the choice of treating errors
as they occur, with the argument of preventing further confusion, or at a more
opportune time through delayed feedback, to avoid distracting the student too
much.

As far as metacognition is concerned, a system can promote reflection, in
the sense of having students think about the task and their own actions and
answers more carefully. Further metacognitive processes that can be promoted
are related to self-regulated learning, where students learn to judge what they

10 Chapter 1. Introduction

know and understand, when they need to practice more, whether they need help
and what kind of help [Gama, 2004; Roll et al., 2007].

Affect and motivation are also attracting more and more attention in the
ITS community [Barrow et al., 2008; Mavrikis et al., 2003; Beal and Lee, 2005].
Issues to be considered here are, for instance, how to manage a balance between
challenging students without demotivating them, how to recognise that affective
support is needed, how to cater for differences in sex or culture that seem to
play an important role.

Tutorial Dialogue One-to-one tutoring most commonly takes the form of a
dialogue between the tutor and the student, where the teacher uses dialogical
methods to teach the student. Such dialogical methods have a bearing on dif-
ferent aspects of ITSs, but they are particularly related to teaching strategies
and the learning environment. Tutorial dialogues, and especially NL tutorial
dialogues, are used to implement tutoring strategies, especially in an attempt
to simulate the behaviour of human tutors, which typically use NL dialogue in
teaching [Graesser et al., 2001].

A main issue in the application of NL dialogue in the context of ITSs is
handling the student input. This issue has three facets. One is the problem
of NL understanding, that is, making sense of the input provided by the stu-
dent, which constitutes a separate area of research. A second facet is that free
student input requires sophisticated dialogue management in a difficult genre
like tutorial dialogue. Finally, evaluating free student input with regard to its
domain content and reasoning about appropriate feedback constitute a major
bottleneck for implementing tutorial dialogues in ITSs. An efficient although
simple solution to these issues has been to use menu-based dialogue. Students
are required to select their input from a menu. The entries in the menu are
associated with pedagogical feedback that is normally pre-formulated in NL.

Speech is also starting to be part of ITSs and especially speech produc-
tion is used by pedagogical agents to demonstrate emotion by use of intona-
tion [Graesser et al., 2001].

1.2.1 ITSs with NL Dialogue Management and Tutoring

Strategies

In this section, we describe the ITSs that have common characteristics with our
research topic and concentrate on the aspects of them that are most relevant to
our approach. These include pedagogical knowledge, various kinds of feedback
strategies, and NL dialogue capabilities. Throughout our accounts of the sys-
tems, we point out the problematic areas that we propose to address. We cluster
the descriptions based on the aspects that are more developed in the reviewed
systems. We also look at theoretical work on the design of feedback strategies
for interactive learning tasks, and at research on task-oriented dialogue.

1.2. General Overview and State of the Art 11

1.2.1.1 AutoTutor

AutoTutor is an ITS that employs conversation to teach students Newtonian
qualitative physics, computer literacy and research methods [Person et al., 2000;
Graesser et al., 2001; 2003; Person and Graesser, 2003]. It uses a talking head
as a pedagogical agent with facial expressions and variations in intonation to
express discourse cues. These are used as non-verbal feedback and aim at in-
fluencing the student’s emotional state like human tutors do. AutoTutor also
simulates the discourse strategies applied by non-expert tutors on human-to-
human tutorials. Curriculum scripts are used to represent the lesson content
in form of topics, didactic descriptions, tutor questions, examples, figures and
diagrams.

The student’s input, in the form of a short essay, is analysed with Latent
Semantic Analysis (LSA), which is a probabilistic method used to assess the
student answer. The pedagogical feedback to this student input aims at self-
explanation, which is defined as having the student articulate expected answers.
Emphasis is put on active learning, in the sense of constructivism that encour-
ages learner’s to discover knowledge for themselves, and on deep reasoning.
Feedback is associated with each curriculum script and the focal question that
it deals with. A set of good answer aspects are defined for each focal question,
together with associated feedback for eliciting or presenting these aspects. A
set of anticipated bad answers for each aspect and a matching correction are
also represented.

The kind of feedback used includes: (i) asking a question, e.g. to repair an
error, to redirect the student’s activity, to request a clarification, (ii) hints,
(iii) additional examples, e.g. an easier one, (iv) reminding the student of
a similar example, (v) answering a student question, (vi) rearticulating, (vii)
affective feedback, e.g. commenting on the student’s ability, etc. AutoTutor
additionally provides back-channel feedback, that is feedback that facilitates
the conversation but carries no further meaning. Moreover, positive feedback
is expressed by “Yeah”, “OK”, “Right”, and is meant to motivate the student,
neutral feedback is expressed by “Uh-huh”, and negative feedback by “No”.
Finally, the tutor gives summaries of the interaction.

Dialogue management in AutoTutor [Graesser et al., 2004] handles the di-
alogue between the agent and the student and is specialised for the domain
taught. It is based on an augmented finite state transition network, where nodes
refer to knowledge goal states, normally the aspect that the student should self-
explain next, or dialogue states, e.g. that the student has provided an assertion
in an attempt to answer a previous question by the tutor. Arcs in the network
refer to tutor dialogue moves or discourse markers complementing the tutor
output. Transitions require the fulfilment of conditions, which implement the
pedagogical and dialogue model. These conditions take into account the knowl-
edge goal state, the curriculum scripts, the dialogue state, the LSA measures
etc.

Dialogue management consists of four components: (i) a dialog Advancer
Network, (ii) a set of fuzzy production rules, (iii) the selection of the next

12 Chapter 1. Introduction

good answer aspect to cover, (iv) the articulation of the selected good answer
aspect. The Dialog Advancer Network chooses discourse markers, tutor turn
categories, and standard expressions for the realisation of the tutor turn. The
second component of AutoTutor defines a set of fuzzy production rules, which
incorporate knowledge about the dialogue history, and an evaluation of the
student’s input. The evaluation assigns a value of correctness on a correct-
incorrect continuum, and assesses the coverage of good answer aspects in the
student input. The fuzzy rules are a kind of feedback selection mechanism. The
third component is responsible for the selection of the next good answer aspect
to cover, which forms the next dialogue topic. This is based on a classification
from 0 to 1 of the coverage of each good answer aspect, which is done during the
LSA analysis of the student input. The next aspect to address is chosen based on
pedagogical principles, like Vygotsky’s zone of proximal development [Vygotsky,
1978], which chooses the aspect with the highest coverage but below a given
correctness threshold. The fourth component deals with self-explanation that
is realised by the articulation of the next good answer aspect by the student.
AutoTutor aims to get the student to articulate each noun phrase, propositional
phrase or clause in every good answer aspect. To that end, aspects are associated
with a series of three hints, which are produced in an order from less to more
specific until the aspect is covered.

The dialogue engine of AutoTutor follows the form-filling approach, where
a form defines the information a system needs to acquire, before a topic is
considered closed and allows a flexibility in the order this information is entered
by the user [Person et al., 2000]. Such an approach is designed for systems
that mainly require strictly information from the user, like dates, or names of
companies in the travel domain. The output of such systems consists of canned
phrases that ask for this information and is not appropriate for producing flexible
system output.

AutoTutor was evaluated in a course on computer literacy at the University
of Memphis with approximately 200 students in a within-subject study. All
students were subjected to three conditions for different curriculum topics. One
topic was taught using AutoTutor, a second topic was taught by re-reading a
chapter, and all of the remaining topics were the control and they were nei-
ther re-read nor tutored but the students had read them before. Tests for the
different topics were solicited. The results showed a significant raise in learn-
ing gains for the topic that was taught by AutoTutor. Additional evaluations
of the naturalness of AutoTutor’s dialogue moves and quality of pedagogical
feedback by experts showed that the experts found the conversation smooth as
opposed to awkward and its pedagogical quality good rather than bad. In a
later study, student’s were asked to distinguish between dialogue moves pro-
duced by AutoTutor and real tutors. The results showed that they were not
able to discriminate between the two.

One of the versions of the AutoTutor system [Graesser et al., 2004] has
implemented two explicit functions of hints: redirecting the student back to the
topic, directing the student to a specific aspect of the expected answer. These
functions are realised by either presenting facts, or asking leading questions,

1.2. General Overview and State of the Art 13

or re-framing the problem. This implementation exhibits an awareness that
hints in the context of tutorial dialogues function on more than one dimension.
However, it is restricted in two ways: It does not separate between dialogue
and cognitive functions, and it does not propose a way of composing the various
aspects into one hint. It thus fails to capture all functions of hints and it does
not provide a structured analysis of hints for formalising them.

To evaluate this implementation, simulated student contributions were used.
The evaluation showed that from a pedagogical perspective the hints were rather
poor. A second evaluation was done that collected think-alouds of students
working with AutoTutor. The feedback was on the whole moderate and the de-
velopers report three main challenges: (i) producing more appropriate discourse
markers, (ii) disambiguating between hints to which the student is supposed to
respond actively and assertions by the tutor, and (iii) improving the intonation.

The pre-compiled feedback and the dialogue management that mixes domain
and dialogue considerations are restrictions on the flexibility of the feedback
produced by AutoTutor on both of these aspects.

1.2.1.2 CIRCSIM-Tutor

CIRCSIM-Tutor [Hume et al., 1996a; Yujian et al., 1999; Zhou et al., 1999;
Evens et al., 2001; Lee et al., 2002] is an intelligent tutoring system for blood
circulation. Tasks set by the tutor typically provide a description of a physi-
ological condition and require that students name the variables related to this
condition and that they predict their values. CIRCSIM incorporates a lesson
planner that generates topics and from them sets subtopics, which then serve
as discourse tasks. The lesson planner also decides on the sequence topics and
subtopics will be taught. A domain-knowledge concept map is used, which ex-
plicitly represents variables in the domain, relations, and causal links among
them. An algorithm iterates through the concept map and specifies the parts
of the required answer for the task at hand. The algorithm makes use of three
meta-concepts, which are defined in the concept map, namely, the related pa-
rameters that have to hold for a physiological condition to be identified, same
characteristics between those parameters, and distinguishing characteristics of
each parameter. The parts of the answer are then elicited from the student,
who learns the static domain representation this way.

A discourse planner controls the interaction between the student and the tu-
tor. It is responsible for covering all discourse tasks that deal with the subtopics
set by the lesson planner, for choosing a plan to tutor them, and for produc-
ing feedback tactics. The system implements four types of plans, each with a
corresponding feedback tactic:

1. tutor, associated with asking questions

2. give answer, associated with giving some declarative knowledge away

3. hint, associated with reminding the student of some fact

14 Chapter 1. Introduction

4. acknowledge, associated with four forms of informing students of the qual-
ity of their answer

CIRCSIM-Tutor uses five types of single or multiturn hints, which are posi-
tioned on a passive-active continuum, depending on the effort required by the
student to find the targeted answer after the hint has been provided. The most
active hint is point to information, which alludes to some information needed.
The most passive one is an explanation of the required answer.

Hints are related to the three meta-concepts that are defined for every vari-
able in the concept map being taught. A procedure selects and returns a list of
hint categories. Both the types of feedback and their choice model observations
from a corpus on human-to-human tutoring in the domain and do not claim to
implement a learning theory or pedagogical model. A tutoring history is kept to
avoid giving the same hint twice and returning to the same discourse task that
has been dealt with already. There was an original modest attempt to separate
between the content and the form of hints, however the hint continuum collapses
this distinction.

The realisation of hints is template-based for pre-written NL phrases. The
variables in the templates are domain-specific and their values are filled in for
each task by consulting the concept map. The domain concept map is first
searched for availability of content to fill in for each of the hints, until the search
satisfies the content of one of the hints in the list. This is necessary because
not all relations and causal links are explicitly represented, so that some hints
cannot be realised for all tasks. The text of the tutor output is typically a
sequence of an acknowledgement, followed by a hint or by giving the answer
away, followed by the question addressing the next sub-task. There is some
possibility of combining these separate phrases with a comma and of leaving
out an acknowledgement to vary this structure.

On the whole, domain knowledge representation is flexible, although not
motivated by any cognitive theory, leaving the question of cognitive soundness
open. Furthermore, dialogue and tutoring management are not separated and
feedback tactics are blended in with discourse plans. As far as hints are con-
cerned, only two dimensions of possible functions are considered: active vs.
passive, and content. Therefore, although there is some room for adaptivity,
this is also constrained by these limitations.

1.2.1.3 WHY-ATLAS

WHY-ATLAS [Jordan and VanLehn, 2002] is a dialogue-based system that mod-
els tutorial dialogues for the domain of qualitative physics. It is based on finite
state technology. It uses the concept of recipes to implement tutoring strategies
as discourse tasks. Recipes are a kind of AI plan, which are authored by domain
experts for specific problems. The different kinds of recipes are loaded based
on the evaluation of an essay, which the student submits. They can be inter-
twined, but typically only the remediation recipe is called within other recipes.
States in the finite state network correspond to primitives, which produce tutor

1.2. General Overview and State of the Art 15

feedback and represent tutoring goals (e.g. to give an explanation) together
with their NL realisations for the specific problem. Arcs correspond to correct
student input, which requires no feedback, and pushes correspond to incorrect
student responses, which require feedback. Pushes call recipes. Authors define
the sequence of primitives and arcs, and specify which recipe should be called
from each arc.

Due to the large cost of pre-authored feedback for each problem, Jordan and
colleagues [Jordan et al., 2005] turned to the solution of making it easy for non-
programmers to author their own course content. They introduced a scripting
language, which authors use to specify recipes. The student’s essay is evaluated
and a recipe is loaded to correct any mistakes. This is repeated until there are no
flaws to be corrected. To make it possible to connect more than one output with
one goal, authors are required to label tutor dialogue moves that have similar
content and therefore may serve the same goal. Authors additionally provide
optional steps for each recipe, and difficulty levels for recipes and primitives in
order to avoid redundancy. Primitives correspond to dialogue moves that define
the degree of difficulty of the tutor feedback, that is, how much effort is left
to the student by the feedback. Student dialogue moves are also labelled for
similarity of content, which together with the dialogue history maintained by the
system, serves as a kind of student modelling and can be used for adaptation.
The dialogue history keeps track of the student actions, which are the only
ones available to the dialogue manager. When a student dialogue move is in
the dialogue history, the current student move shares the same semantic label
with it, and the tutor response to it has been labelled as an optional step, the
dialogue manager can skip this step. Repetition is thus prohibited. Moreover,
if a primitive that is associated with a dialogue move is in the dialogue history
and the student has responded to that dialogue move correctly, then the next
time the same semantic label appears, a more difficult dialogue move is chosen
as tutor feedback. For instance, a “why” question, is followed by a “how”
question. There is some evidence that reducing redundancy makes the system
more effective.

Recipes merge discourse plans and tutoring strategies. Some flexibility exists
on the choice of tutoring strategy. However, the sequences, the appropriate
function of feedback, and the NL realisations are all pre-authored, which confines
adaptivity and raises the development cost. Discourse flexibility is also not a
highlight of the system.

1.2.1.4 PROPL

PROPL [Lane and VanLehn, 2005] is a dialogue-based system that elicits goal
decomposition and abstract plans for programming tasks from the students. It
teaches skills implicitly through natural language tutoring. It uses expert-like
programming knowledge, represented in reusable “chunks” of solution paths.
These are called schemas and their instantiations for specific problems are called
plans. Two kinds of skills are taught. Decomposition, which skills involve
identifying programme goals and suitable schemas, and composition skills, which

16 Chapter 1. Introduction

involve implementing and integrating the correct plans.
Lane and VanLehn [Lane and VanLehn, 2005] claim that the difference be-

tween novices and experts is that novices do not have a library of schemas yet
available to them. Therefore, PROPL aims at teaching schemas, as a means of
promoting expert-like skills. It uses a three-step feedback that aims to elicit the
goal, then the schema for achieving it, and finally the specific plan. The feedback
consists of schema steps pre-authored for every programming task and posted
as notes for the students once a goal has been identified. The plan is elicited
through NL dialogue, which is structured in pre-authored problem-specific tu-
toring tactics in the form of Knowledge Construction Dialogues (KCD). KCDs
are chunks of dialogue that concentrate on a main task topic and bottom-up
utterances that give away the answer. Tutoring tactics include eliciting hypo-
thetical situations and abstractions, and setting situations for discussion via
concrete examples. KCDs and bottom-up feedback can be intertwined. KCDs
are an evolution from the Atlas Planning Engine(APE) [Freedman, 2000], which
was an attempt to introduce mixed initiative dialogue to Atlas. KCDs were in-
troduced when APE proved to be too expensive, because an increase in content
led to increase in the content-specific operators, which are required by the task-
based dialogue management, as well as increase in meaning representation for
the NL understanding component [Rosé et al., 2001a].

Thanks to the hierarchical structure of KCDs, which implement a main line
of reasoning with many subdialogues, KCDs can allow for flexibility in choosing
tutoring tactics for different tutoring situations. The main line of reasoning
consists of tutorial goals realised typically by a question, which is associated
with a couple of expected answers. Remediation goals are associated with each
non-correct expected answer. Each remediation goal may have one or two lines
of reasoning, which realise it and take the form of subdialogues. What kind of
feedback the subdialogues give depends on the detected problem. For example,
they may give an explanation, or rephrase a previous question that the student
could not answer the first time, or it may consist of more steps in case the
problem itself can be decomposed into subproblems.

A study was conducted using PROPL to test the effect of the added NL
capability on conceptual learning [Rosé et al., 2001a]. There were two groups,
one used PROPL and a control used a version of it without the NL dialogue. It
was found that after intervention the PROPL group were better at composition
and worked at a more abstract level of schemas and plans. The same behaviour
was not observed for decomposition. Rosé and colleagues [Rosé et al., 2001a]

interpret that as the result of the fact that the schema steps were posited in the
form of notes on how to go about the problem that students had at their dis-
posal, whereas they should have been elicited from the students. However, they
argue against using content-free prompts for eliciting schema steps in order to
remediate this problem. The pre-authored feedback used by the system does not
allow for the alternative of using domain-content feedback that would promote
schema acquisition. This would require more adaptivity than KCDs provide, so
that the hint content would fit the current cognitive needs of the student and
enable the schema to emerge based on the knowledge structure of the student.

1.2. General Overview and State of the Art 17

Also, to deal with the complicated goal of schema acquisition, NL flexibility
would be necessary where a lot of structure can be mirrored, e.g. through dis-
course cues, and where students can recognise the connections between different
bits and pieces presented to them. This additional structure advances coherence
and minimises the students cognitive load, who can concentrate on the task.

1.2.1.5 LeActiveMath

In the framework of the project LeActiveMath, an ITS was built for the domain
of symbolic differentiation. An integrated course planner generates learning
material for students adaptively [Ullrich et al., 2006; Reiss et al., 2005]. The
main educational principle behind the course generation is moderate construc-
tivism, which means that students are advised as to what would be the best
course to follow, but they are not forced to follow it. Based on this function-
ality the system can provide students with guiding hints, called global hints,
as to what kind of course material they need to concentrate on. For example,
whether they need another exercise to practice new learned concepts. In accor-
dance to the principle of moderate constructivism, it is left to the student to
decide to read the hints, take them into account, or ignore them. There is a
hinting module [Callaway et al., 2006; Porayska-Pomsta and Mellish, 2007] that
produces hints for interactive exercises, which is the relevant part to our work.
This module is part of the domain reasoner and provides three sorts of messages
for every task representing ideal feedback turns for students of different perfor-
mance and confidence levels. These messages were derived from the analysis of
a corpus of human-to-human tutorial dialogues, and they are task-dependent.
Hints are either remedial, referring to an incorrect answer, or pro-active, helping
the students move on when they are stuck.

Two functions of tutorial feedback are represented in the system: autonomy
and confidence. The first refers to the amount of contribution to the task the
student is allowed. The second refers to the degree of motivation the student
needs. The tutorial planner in the dialogue manager is responsible for choosing
the message to output to the student based on the confidence and performance
level of the current student. The tutorial planner also takes the output of the
domain reasoner, information about the dialogue context and other parameters
of the situation like the confidence and performance level. It then manipulates
the level of specificity of the message in deciding which of the three possible
messages is the most appropriate in context. It may also chose to give the
answer away. The student’s degree of autonomy is thus controlled. It also
determines the level of approval to include in the message by making it more or
less verbose based on the level of confidence.

At the realisation front of the tutoring system, the text generation sys-
tem BUG generates NL realisations of tutorial feedback [Callaway et al., 2006;
Porayska-Pomsta and Mellish, 2007]. BUG specialises in the symbolic differenti-
ation domain. It takes as input dialogue moves enriched with rhetorical relations
such as join – to indicate that two chunks of language must be joined together
– and information about the dialogue context, for instance if the same feedback

18 Chapter 1. Introduction

was produced before. From that it constructs verbalisations for the system tu-
torial feedback by adding pronouns and discourse markers as appropriate, and
transforming dialogue segments into natural prose.

This system implements automatic NL generation of tutorial feedback. The
hinting mechanism is similar to ours in that it separates the diagnosis from the
tutorial strategy. Nonetheless, the implemented tutorial strategy is not very so-
phisticated. Although the notions of autonomy and confidence are pedagogically
motivated there is no clear and unified tutorial model for generating automatic
hints for the interactive exercises. Moreover, the researchers do not base the
derivation of their hinting algorithm on a theoretical model or on learning effects
in general, but on a metric for short term, turn-to-turn performance. This is an
adequate metric for deriving their criteria for NL generation, but not for deriv-
ing a hinting strategy. Hints are a means to effecting long term learning gains.
Therefore, it can be argued that the purpose of hinting is defeated by basing
their automation on such short-term effects. Maybe it is for this reason that the
researchers talk of a remediation strategy, rather than of a hinting strategy. In
addition, there is no analysis of the cognitive functions of hints as such. Finally,
there is no clear distinction between the function of hints as opposed to other
tutor dialogue moves and of those two to other functions of dialogue moves.

1.2.1.6 Summary

The systems reviewed here have two main limitations. They do not distinguish
between:

1. tutoring and dialogue functions of feedback

2. cognitive functions and the dialogue move realisation of hints

This poses restrictions on the flexibility and on the possibility of automating
the feedback that affect both the tutoring and the dialogue aspects. We propose
to address these points by defining a taxonomy of dialogue moves for tutorial
dialogues that includes a multidimensional taxonomy of hints. We capture the
distinct tutoring and dialogue functions of dialogue moves and the cognitive
and dialogue functions of hints in the different dimensions. We also define a
pedagogical model and a teaching strategy that realises it whose main unit of
feedback are dialogue moves and hints.

1.2.2 ITSs with Tutoring Strategies

1.2.2.1 Andes

Andes is a system that teaches college-level students introductory physics [Van-
Lehn et al., 2005]. The goal of Andes is that tutoring pedagogical feedback is
separated from content, so that content can be authored by expert teachers.
Authoring involves formally representing a problem, checking if Andes can find
all possible proofs (i.e. solutions) for the problem, and if the hints provided
automatically by the system make sense. Any spotted failure leads to revision

1.2. General Overview and State of the Art 19

in the knowledge base of Andes. The student input is a whole derivation of the
solution to a task, which includes forms for defining variables, drawing vectors,
writing equations, etc. The proof generated by Andes for the task is also an
attempt to model the reasoning behind the student’s input. Desirable student
reasoning and responses, which are used for evaluating the input, are defined
based on extensive cognitive task analysis and are represented formally for each
problem. This makes evaluation expensive.

Andes provides feedback on the correctness of the student input. This feed-
back is two-value: red for wrong, and green for correct. Correct are all answers
that are valid. For wrong answers, students can require clarifying feedback. An-
des also generates feedback on request when a conceptual error is diagnosed, and
unsolicited help for careless mistakes. There is no unified learning theory behind
the hints, as Andes does not abide by any, but hopes to facilitate implicit learn-
ing of expert-like heuristics. The philosophy of Andes is constraining students’
reasoning as little as possible so as to increase transfer of knowledge. There are
some exceptions to this rule, which serve efficient learning like requiring that
students define the variables that they use.

Unsolicited conceptual hints are normally not provided. First, because An-
des does not have a within-session student model, which does not allow reason-
ing about which hint would be appropriate. Second, because the hints provided
are specific to the equation attempted, but Andes cannot reason about which
equation the student meant from the input equation. Therefore, the feedback
mechanism works as follows. When students request help, Andes asks them
which equation principle they are trying to apply in order to deduce from that
the correct equation. As a consequence, errors are not always remediated, but
when they are, high quality remediation hints are generated. In general, hints
are designed to help students figure out the main relevant principles and defi-
nitions, and apply them. They are typically presented in a pre-defined order,
the hint sequence, from ones that lead students less to ones that give away the
correct answer. The hint sequence starts either with a prompt to self-explain
the next step in the task, or to correct an error in the student’s input by point-
ing out the general problematic area. The second hint directs students to the
relevant piece of knowledge. The third hint tells students exactly what they are
expected to write. Hints on request can be generated to help students with the
next step. In this case, Andes chooses the step and the hints ask the students
to identify the main principle involved. Next steps are also associated with a
problem solving method, which is a kind of general method for solving similar
problems. Because Andes provides solicited hints, help “abuse” is reported,
which is the tendency of students to figure out what the hint sequence is and
to require a hint by keep clicking on a button until they get the correct answer.
To overcome this problem and force students to read hints, Andes hints are
presented in a window that freezes and points are deducted from a score total
for every answer that the system gives away. This discourages students from
requesting too many hints.

An integration of Andes with the Atlas system [Rosé et al., 2001a], was an
attempt to allow Andes to pursue its pedagogical goals for some of the problems

20 Chapter 1. Introduction

that Andes can diagnose via natural language dialogue. Knowledge Construc-
tion Dialogues (KCDs) [Freedman, 2000], which we described in Section 1.2.1 for
PROPL system, were used to this end. Inside Andes, KCDs provide the possi-
bility to give some unsolicited help in the context of a directed line of reasoning,
which leads the student through a dialogue specialising in treating a specific
problem typical for the task. This is diagnosed based on the pre-specified non-
correct expected answers for the task. In order to provide unsolicited help,
recognising which step the student is attempting to perform is necessary so as
to provide help relevant to it. Conceptual Helper is a tool within Andes that
searches the solution graph produced for a task and compares the student ac-
tion with an action in the graph. KCDs, however, do not handle NL dialogue
interactions when students have a problem with equations, or they simply do
not know what to do next.

An evaluation of Andes showed that students using Andes were better at
the aspects that Andes explicitly aims at tutoring, such as recognising main
principles, but not in any other aspects.

A comparative study [Ringenberg and VanLehn, 2006] between two versions
of the Andes system showed no significant results between using the standard
Andes hints vs. worked-out examples in place of hints. They were both provided
on student’s request. The post-test asked students to identify similar tasks
among a number of tasks. Similarity referred to equivalent underlying domain
principles that have to be applied to solve the task. Only near transfer was
tested. An interesting result was that the students in the worked-examples
intervention chose to do significantly less training problems before they felt they
had mastered the tasks. This lead the researchers to suggest ways of integrating
hints and worked examples, rather than using one or the other.

Another empirical study [VanLehn et al., 2004] examined the difference be-
tween teaching problem-solving strategies explicitly or implicitly. Two groups
of participants used two different systems: Andes, for implicit teaching, and
Pyrenees, a model-tracing ITS for explicit teaching of problem-solving strate-
gies. The participants had necessary background knowledge in math for the
physics tasks assigned, but had taken no college physics courses. The results
showed no significant difference in pre-test vs. post-test, when only the correct
answers were considered. However, when the same tests were scored based on
the progress of the work that led to the final answers, the group that was taught
strategies explicitly did better, although they did not reach the required correct
answers. In particular, they were able to produce lines of reasoning that in-
cluded the strategies that they had earlier been taught. This means that there
was progress in the reasoning applied by the students and that Andes at least
partially succeeds in teaching the lines of reasoning that are implemented in
it, but this is not enough to effect correct answers. Such results might be an
indication that the students who use Andes do not really acquire a schema that
would be necessary for exhibiting the required transfer of knowledge, although
they learn an imposed schema, namely the lines of reasoning taught by Andes.

In conclusion, feedback in Andes is only learner-adaptive to a very limited
extent. The limited adaptivity creates artifacts like help “abuse”, as the hint

1.2. General Overview and State of the Art 21

tactics are very predictable. As both the student modelling and the feedback
are designed for every specific problem, feedback is also resource-intensive. Still,
the huge development effort that this requires does not produce the required
learning effects. This may also be a consequence of the fact that no unified
learning theory and analysis of hints are implemented. Cognitive task analysis
may be necessary for accessing the cognitive difficulties of a task, but it does
not translate into a theory of feedback.

1.2.2.2 Cognitive Tutors

Cognitive tutors is a group of ITSs that are based on the ACT theory [Anderson,
1993]. The main principle of the ACT is that learning is the transformation of
declarative knowledge (e.g. definitions) into procedural knowledge (e.g. prov-
ing) represented as production rules. Cognitive tutors use production rules in
an attempt to model the architecture of human cognition as perceived by the
ACT theory. Production rules are heuristics for the applicability of a rule of
inference to the current situation, which can also provide the conclusion that
should be drawn from the application of the rule of inference. They can be
abstractions for the application of various rules of inference, therefore there is
no one-to-one correspondence between production rules and rules of inference.
Rather rules are clustered together based on common characteristics. Produc-
tion rules are employed in creating a model of the ideal student, i.e. a domain
expert. Moreover, special production rules, called “buggy” rules are also used
to model sub-optimal behaviour and incorrect behaviour. Specific production
rules for each problem are written, based on an analysis of expert actions when
working on the cognitive task involved. Although the student model works on
the basis of modelling what a student knows, Anderson and colleagues [An-
derson et al., 1993] recognise that there is probably little overlap between the
production rules represented in their system and the way students represents
the same knowledge, which also varies from student to student.

Cognitive tutors also implement mastery learning, a theory that states that
complex skills can be learned better when broken down into their components.
The part of the cognitive model of the tutors that is called knowledge tracing
estimates the probability that these components have been mastered, and assists
the choice of appropriate tasks to help students master all skill components. The
part of the cognitive model that is called model tracing matches the student’s
attempts to ones that can be generated by the model of the expert student.
Thus it monitors the student’s progress. When the student’s actions deviate
from those within the range of the ideal model, the system assumes that the
student has not mastered the relevant piece of knowledge. Buggy production
rules are associated with specific hints, which are provided when such rules are
diagnosed [Anderson et al., 1995].

Geometry Tutor Geometry Tutor [Anderson et al., 1993] is a cognitive tu-
tor [Anderson et al., 1995] that teaches Euclidean Geometry proofs. The tutor
tries to elicit a proof by breaking it down into various steps of inference. Each

22 Chapter 1. Introduction

step of inference consists of premises, a rule of inference, and a conclusion. Stu-
dents are prompted to input the premises for a step, by choosing from a list
of provided statements. Then they are prompted to type in first the rule of
inference to which the premises belong, and then the conclusion that follows
from the rule.

The general feedback in Geometry Tutor is based on eight tutoring prin-
ciples including minimising working memory load and other principles of cog-
nition. Nevertheless, there is no analysis of hints and hints in the system are
semi-automatic. They are short template-based messages that may explain why
a student action is wrong, or what the next action should be. Hints are always
delivered in the same pre-defined order and only produced on demand. This
creates the problem of having to convince or tutor the students to request help.
Moreover, hints are composed for the production rule and the bug that it is
meant to remediate. Such “buggy” production rules are written for every cog-
nitive aspect of a task along with the correct rules. Help in Geometry Tutor
is in consequence expensive. The specific content of a hint is inserted in the
template for each individual task. A similar template-based approach would
not work for longer human-like NL messages, which is not among the aims of
the system.

PAT PAT [Koedinger and Anderson, 1997] is a very successful cognitive tutor,
which was developed in collaboration between educators responsible for design-
ing an algebra curriculum for schools in Pittsburgh and the Carnegie Mellon
research group. The main objective was to produce a curriculum, which com-
bines the analysis of real-world problems tailored to high-school students in
Pittsburgh with the use of computational tools. The goal is that students ac-
quire algebraic skills that they need in real life. The tutor provides an organised
curriculum of problems. To help students solve the problems, it also provides
tools like spreadsheets, graphs and symbolic calculators, which the students are
required to use in analysing the problems, and an Equation Solver, which assists
students with solving the equations they create during the analysis.

Feedback in PAT is a mixture of immediate and on-request feedback. Flag
feedback is always given for errors, and an accompanying explanation is provided
if the error is included in the cognitive model. Misconceptions and common slips
are also always treated, this time though by explaining where the problem lies,
and suggesting an alternative. The choice of hints that suggest a next activity
makes use of production rules. The rules provide information on the students’
focus of activity, the status of their solution, and on interdependencies between
different problem aspects. A standard sequence of hints is used in connection
with each problem aspect. Initial hints simply point students to what is relevant
for consideration based on the interdependencies. For instance, the cost of
renting from Avis is relevant in calculating the driving distance. The next hint
points students to how cost is relevant by asking them to calculate the distance
given a specific budget and a rental cost, without providing the exact equation
(budget/rental cost = distance). The more requests for hints a student makes

1.2. General Overview and State of the Art 23

on one aspect of the solution, the more specific the hints become. Hints are
produced in a pre-determined order.

The system was tested in vivo in three high-schools in the city of Pittsburgh
with almost 500 students. In the experimental condition there were two inde-
pendent variables, the new curriculum using real world problems, and the use of
PAT in 25 out of 180 hours of classes. The second condition did not use either of
those, but continued with the traditional curriculum. Two skills were assessed,
using standardised tests, such as Math SAT (Standard Aptitude Test), which
is a standard mathematics test in the U.S. that uses multiple-choice questions
for problem solving tasks. First, the students’ competence in investigating the
real world algebra problems, and second, their competence in translating the
problems between the various representations supported by the system. The
experimental condition scored 1 standard deviation better on the competen-
cies that the new curriculum targeted, and a bit better on standard algebraic
skills. Teachers particularly liked that they had more time to work with weaker
students and provide individualised feedback on top of PAT’s feedback.

This is indeed a unique effort and its results particularly impressive for the
ITS community, since the PAT tutor, and its descendants, are widely used in
U.S. schools. Still, there is room for improvement as far as help messages are
concerned. The underlying help mechanism is very similar to that of Geometry
Tutor and the system is faced with the same problems of high development cost
and of having to get the students to use the available on-request help. Also,
human-like natural language messages are not provided.

1.2.2.3 SQL-Tutor

SQL-Tutor [Mitrovic and Ohlsson, 1999] and its Web-enabled equivalent SQTL-
web [Mitrovic, 2003] are constraint-based tutors. They teach query formation
to databases using the SQL language. They maintain a student model that
makes use of constraints for reaching correct solutions. A constraint consists of
two clauses, the relevance and the satisfaction condition. The general format is
“If <relevance condition> is true, then <satisfaction condition> had better also
be true, otherwise something has gone wrong”. The constraints are manually
defined by the designers of the system based on classroom experience for each
subdomain. The educational goal is that students acquire evaluative knowledge,
which allows them to monitor and correct their mistakes. Therefore, the con-
straints represented do not constitute ideal solutions. Any solution that does
not contradict the constraints is accepted.

The student model keeps track of correct applications or violations of the
constraints, as well as the tasks that require these constraints as part of their
solution. It is a loose student model, which is selective as to the kind of knowl-
edge it represents for pedagogical purposes and does not pick on every mistake.
A curriculum is produced for individual students, leading them from simpler
to more complex knowledge units, which are represented by the constraints.
Multiple solutions to a problem are accepted as correct due to the nature of
constrained-based modelling, provided that they meet the constraints.

24 Chapter 1. Introduction

A pre-determined sequence of feedback is used in principle. However, since
student initiative is allowed and feedback is associated with steps, when the
sequence of steps is altered by the student, feedback is produced according to this
new sequence. Students’ attempts are not evaluated step-by-step, but only after
the student has submitted a solution. Submissions may also be empty. Upon
submission, the tutor provides information on how many mistakes the student
committed in total and the place where they occurred. Moreover, the tutor
provides hints in the form of general and more detailed descriptions of the error,
a correction for every individual error, and the ideal solution to the problem for
the student to consult. However, more particular feedback is provided only
on one of the committed mistakes, every time the student fails to find the
correct answer. A maximum of five attempts to give the right answer is allowed.
Students can choose to be shown part or whole of the solution if they wish
to. A pre-composed hint in NL is associated with each constraint and this
hint is provided every time the same constraint is violated. Students also have
unrestricted access to descriptions of databases, tables, attributes, and other
basic tools for forming their queries, so that they can abstract from the details
and concentrate on the conceptualisation of the queries.

A series of non-controlled evaluations used senior computer science students
who were taking an SQL course at the University of Canterbury in New Zealand.
Volunteers were recruited for the experimental condition and the rest of the
course participants were used as the comparison. The comparison group were
by default not using the system. The amount of training was not controlled
but involved a minimum of 2 hours using SQL-tutor. Results showed that the
experimental condition did significantly better than their course mates in a post-
test. Moreover, they mastered individual constraints depending on exposition
to learning opportunities of these constraints. This means that the more they
solved problems that included such constraints, the better they learned them.
The experimental condition also produced a learning curve in compliance with
the power law, which says that learning starts fast and stabilises at a high point
over time.

Two great advantages of constraint-based tutors are the effective knowledge
representation and the student modelling. Evaluating student solutions based
on constraints saves the effort of having to generate all possible solutions. How-
ever, there is no guarantee that this is not an artifact of the existing structure
of domains like posing SQL queries already. Most importantly, SQL-Tutor is
missing an underlying learning theory, which results in ad hoc feedback. This
feedback is nonetheless expensive, because it has to be pre-defined for each
constraint.

1.2.2.4 Sherlock

Sherlock [Lesgold et al., 1992] and its follow-up Sherlock 2 [Katz et al., 1998]

simulate an electronics troubleshooting environment for malfunctioning aircraft
electronic modules. It is used by technicians who practise how to trace the
source of the problems detected by the F-15 Manual Avionics Test Station.

1.2. General Overview and State of the Art 25

The goal is to make the environment as close to the original as possible so as to
model situated learning, that is, learning in its natural environment and learning
opportunities. It provides an abundance of problem situations for practice in
a short amount of time that otherwise would take years for every trainee to
encounter. It has been shown to effect the same level of expertise with 20-25
hours of training as 4 years of actual experience.

Feedback is mostly given on request with two exceptions: Hints that aim at
preventing students from continuing on an obviously wrong solution path, and
hints that are produced after redundant actions to inform the trainee of the
redundancy. When help is requested, the system offers a planning menu, which
requires the student to step back, look at the actions taken, and re-think the
overall strategy for attacking the problem. Otherwise, feedback is provided in
the form of hints. The troubleshooting routine consists of four abstract phases,
which are ordered and define its structure. When all levels of hints in one
phase have been exhausted, the system provides hints for the next phase. The
appropriate hint to produce includes two decisions: (i) which of the four abstract
phases of troubleshooting to address, and (ii) how much information to reveal
following a 1-5 scale from less to more information. The first decision depends on
which phases the student has completed already. The second decision depends
on an estimate of the expected performance of the student at the point in
troubleshooting. In the hint scale, level-1 hints are a dynamic recapitulation of
the actions the student has taken so far. Levels 2-5 consist of hints composed
by experts for every problem solution in a solution space, which are explicitly
represented. So, although level-1 hints are automatically produced, the overall
hint cost of the system rises significantly with every task and every solution that
have to be represented, and due to the addition of hints by experts for each of
the solutions.

1.2.2.5 Why System

The Why System [Stevens and Collins, 1977] is a system that implements a
Socratic strategy in NL dialogue. It teaches reasoning about the factors of
rainfall in different regions.

The domain theory is implemented by production rules of the form “If in
situation X, do Y” to express it in a procedural manner and abstract from the
content of specific problems. Expert knowledge is further organised in scripts
and subscripts under the assumption that this is how knowledge is indeed or-
ganised in human cognition. Scripts and subscripts represent temporal steps
and causal factors concerning rainfall. These define the tutorial goals for the
problem and are used to lead the dialogue on the problem, which is represented
by a script. This script essentially goes through the steps and factors and tries
to elicit them. Subscripts decompose the scripts and represent tutorial sub-
goals. They are evoked whenever the student has a problem with one of the
goals of the primary script in order to resolve the problem. Tutorial goals are
dependent on the structure of the knowledge that has been taught. A semantic
grammar and a matching procedure try to interpret the student’s input and

26 Chapter 1. Introduction

recognise such steps and factors in it. Natural language understanding in the
system can handle only very simple NL input, as it does not deal with anaphora
or conjunction.

The Why System concentrates on the characteristic of the Socratic method
known as entrapment, which challenges students to realise the faults in their
reasoning. The general tutorial goals of the Why System are to refine the
student’s causal model, reasoning, predictive ability, and self-correction of bugs
in the student’s knowledge. Based on these goals, the system chooses examples
to tutor, which exemplify the knowledge that the system wants to teach. It
models tutoring techniques, which characterise observed human tutoring.

The kind of bugs that may occur in the student’s input and that the system
considers are categorised in five classes:

1. factual bugs

2. severe misconceptions that are not directly relevant to the tutorial goal

3. overgeneralisation of situations

4. overdifferentiation of situations

5. reasoning strategy bugs

Bugs of categories 1 and 2 are dealt with by simply correcting the student.
For categories 3 and 4 the tutor uses counterexamples to demonstrate that
students have not used sufficient factors or that they have used superfluous
factors. Treating category 5 bugs depends on the specific problematic reasoning
strategy. For example, to teach how to form a hypothesis, the tutor asks students
to look at the relevant factors and tries to lead them to extract patterns that
can form a hypothesis [Collins and Stevens, 1991].

This is a system with elaborate teaching tactics and an advanced representa-
tion of tutorial goals. What it is lacking is an analysis of feedback at the bottom
level that realises these tutorial goals of the kind hints and dialogue moves can
provide.

1.2.2.6 The MDP Approach

The MDP (Markov decision processes) approach [Barnes and Stamper, 2008]

is an attempt to use educational data mining to create student models and
provide hints. The original idea started from making use of the cognitive tutors
model and learning from previous data to automatically generate production
rules for problems [Stamper, 2007]. The feedback associated with these rules
could then be provided. MDPs, which is a reinforcement learning technique, are
used to learn from passed student data. The probability of the next step that
the student should attempt is estimated and based on this next step hints are
automatically generated. Each proof attempt is represented as a graph with a
sequence of states (the premises produced after a student attempt) representing
the partial solution up to each point. Student actions (the application of rules

1.2. General Overview and State of the Art 27

to the premises) connect the different states. The solution graphs of all passed
student attempts are combined into a single graph to represent the space of all
solution paths followed previously. Reinforcement learning is then applied to
find an optimal solution to the MDP.

Hinting with this method is not adaptive, but the following sequence of four
on-request hints is generated for each step:

1. indicate a goal expression to derive

2. indicate the rule to apply next

3. indicate the premises (lines) where the rule can be used and

4. bottom-out hint combining 1–3

These hints are contextualised and aim at helping the student to concentrate
on an appropriate next sub-goal. They are verbalised by experts once and the
canned verbalisations are produced every time the particular hint appears on
the screen of a student.

Hint Factory, which uses the MDP approach, is an extension that was added
to the system Deep Thought to provide automatic contextualised hints for de-
ductive logic [Barnes et al., 2008]. Hint Factory comprises an offline MDP
generator and an hint provider, which produces hint files for each step online.
Hint Factory’s ability to generate online hints was tested by using the system
in a class of 40 on four problems in 2008. MDPs were generated automatically
from processed data of the 2007 class that used Deep Thought without Hint
Factory.

The most interesting of the results reported is that a hint could have been
produced 48% of the time if the students had requested a hint after every at-
tempt. However, the system did produce a hint in 91% of the cases when the
students did actually hit the hint button. Barnes and colleagues [Barnes et al.,
2008] conjecture that there might be some pattern in the cases when the stu-
dents request a hint that would coincide with special difficulties in the domain.
Unfortunately, no data is available on the use and effect of hints over time.

LeActiveMath
(From D24) The goal of the LeActiveMath project is to design an intelli-

gent Web-based e-learning system for mathematics. One of its major features is
adaptivity. The mathematical course material presented to learners is adapted
to the learners’ goals, the learning scenario, the learners’ competency-level, and
their individual preferences. Furthermore, LeActiveMath integrates tools that
can be used in exercises and for exploratory learning. The Tutorial Component
is the central component for the adaptivity of LeActiveMath and the provi-
sion of moderate constructivist learning opportunities. The adaptive features
are motivated by pedagogical and cognitive research. In particular, LeActive-
Math is learner-centered and supports the learners initiative. The technology
as well as the content that is developed to evaluate the technology realizes a
moderate constructivist and problem-based approach to learning and teaching
mathematics.

28 Chapter 1. Introduction

The aim of LeActiveMath is that students become autonomous learners, but
wants to support weak students by organising their course material for them to
facilitate access to content. Pedagogical strategies help students develop learn-
ing paths through the content. (This is again at the macro level. Strategies
refer to strategies for organising the learning material, rather than strategies for
attacking problems in an interactive session, to the effect that the LAM strategy
would tell the student to do an interactive exercise. It is more meta-cognitive.
A strategy assists students at organising their courses, where each course con-
sists of a sequence of learning objects like Exercise, Simulation,Questionnaire,
Diagram, Figure, Self-Assessment etc. Menon can be seen as a submodule to
be support the Exercise learning object.) For instance, the LearnNew strategy
(cite D20) would include introducing the new topic, teach the new concepts,
pracise via exercises, make any connections to known material and reflect on
what was learned.

The Exercise Sequencer within LeActiveMath is the interactive task module,
which chooses the sequences of tasks and presents feedback on individual tasks.
Competencies are used in the determination of the exercise sequence. The aim
of the Exercise Sequencer is to lead the learner to the next competency level.
The Suggestion Agent is responsible for providing local and global feedback on
the student’s activities in solving an exercise. Global feedback suggests ways of
consulting the learning material. The local feedback, which is relevant to our
work, provides feedback on individual exercises.

The architecture of the LeActiveMath server for providing global feedback
includes various components. The Action Capturing component informs the
server about the student’s actions. The Basic Diagnoser analyses the various
observable values of the student actions, included an assessement of level of com-
petency. The Diagnostic Reasoner is responsible for diagnosing non-observable
problems. The Suggestion Reasoner can provide one of the following sugges-
tion objects: a summary, a feedback message or a speech act to be realised in
NL. This approach is similar to ours in that the presentation of the suggestion
objects is not pre-determined, but is send for realisation to the Suggestion Ren-
derer. Menon goes beyond this approach in that it formalises hints in terms of
dialogue moves and hence allows for dialogue and NL adaptivity in the local
feedback.

The tutorial component has to provide an interface for the tutorial dialog
components. As we learned from our previous experience, this is a non-trivial
task. Among the difficult research problems are: (1) react to diagnoses of the
learners activities and state may come from different As we learned from our
previous experience, this is a non-trivial task. Among the difficult research
problems are: (1) react to diagnoses of the learners activities and state may
come from different.

Requirement 4.12: The tutorial component (TC) allows to represent and
execute different pedagogical strategies, e.g. problem-based, traditional didac-
tical approach. Supports Different ways of teaching/learning. Because Different
ways of teaching use different pedagogical strategies. Check-rule Empirical test
with small groups using different strategies.

1.2. General Overview and State of the Art 29

They implement different pedagogical strategies. An ontology provides the
instructional purpose of learning materials in order to allow re-usability of con-
tent and pedagogical knowledge and is used for the implementation of the mul-
tiple pedagogical strategies. This is the macro level of our ontology for hints.

The tutorial component generates symbolic representations of transitions,
introductions, and summarisations to be verbalised into English by the NLG
component in order to avoid boring the students with canned text.

The pedagogical strategies and the adaptive content selections support the
notion of competencies in the sense of the Program for International Student As-
sessment (PISA) study. A competence may be seen as the observable application
of knowledge that allows a student to perform a task. Acquiring different compe-
tencies makes up mathematical literacy. The formalised pedagogical strategies
are a basis for content selection accordking to the student model. The aim is to
capture information about the student’s current knowledge state, preferences,
learning history and style, misconceptions etc. However, there is no ontology to
support switching between different learner models with varied representations
of individual information. Our ontology uses the abstract representation of hint
content in terms of instructional points that are in turn used by the the session
model (HSS).

Requirement 4.17 The TC offers scenarios that target competencies. Sup-
ports Competency-level pedagogy as used in PISA and other studies.

An evaluation of the automaticc course generation vs. pre-generated courses
that included 11 subjects yielded moderately positive results for liking the sys-
tem more. There was no between-groups difference in the assessment of the
usefulness of the system. A lab study where 11 subjects took place and did
not include the Tutorial Component gave overall positive results, with some
complaints about complexity of the system for. Results also suggested that stu-
dents were expecting to see at least some of the functionalities that the Tutorial
Component provides, like suggesting exercises based on the student’s knowledge.

1.2.2.7 Summary

These are the main drawbacks of these systems that we propose to address.
Some or all of these drawbacks apply to each of the systems.

1. limited adaptivity of pedagogical feedback for different students

2. limited adaptivity of NL realisation of feedback

3. expensive pre-compiled feedback for particular problems and solutions

The analysis of the multiple dimensions of dialogue moves and hints that we
undertake makes it possible to model the various underlying functions of them
explicitly and relate them to the tutoring and dialogue context dynamically.
This adds flexibility at the pedagogical level and opens the road for more flex-
ibility at the NL realisation level. As an alternative to pre-compiled feedback,
we define a domain ontology that is inspired by schema theory and defines ab-
stract concepts and relations that serve as instructional points in tutoring. We

30 Chapter 1. Introduction

use these along with other domain-independent parameters to define tutoring
situations. The teaching strategy that we implement involves numerous sub-
strategies that select the appropriate dialogue moves and hints according to the
tutoring situation. The domain content of the chosen hint is specified by such
abstract instructional points, which can be instantiated for arbitrary problems
and solutions in a domain.

1.2.3 ITSs with Tutorial Dialogue Management

1.2.3.1 STEVE

STEVE [Rickel et al., 2000] is an evolved version of a series of tutors built by
the same group, which are all domain-independent task-oriented dialogue sys-
tems. STEVE uses a pedagogical agent that cohabits a virtual environment and
teaches the operation of complex equipment like air compressors. It supports
both actions and utterance input by students, but no natural language. It can
demonstrate actions in the environment, gaze and gesture to capture and direct
the student’s attention. It explicitely represents procedural tasks in terms of
steps with ordering constraints, causal links, and end goals.

This mixed-initiative dialogue system implements SharedPlans [Grosz and
Sidner, 1986; Rich and Sidner, 1998], a model of planning in task-oriented di-
alogue, which centralises the goal of the task and emphasises the collaboration
between the collocutors for achieving a common plan at each time during dis-
course. As a consequence, when students interact with STEVE they can propose
a goal, debate who should perform the goal and how it could be achieved, and
can discuss the values of the parameters of a goal. STEVE provides explanations
to students in the form of text. The system learns the text for the explanations
by running the procedures representation on specific problems and producing
the solutions to them.

Within the framework of STEVE [Rickel et al., 2000], Diligent [Angros et
al., 2002] is a tool for learning domain procedural knowledge and providing
respective explanations in natural language. It acquires knowledge by observing
an expert’s performance of a task, as a first step and subsequently conducting
self-experimentation. Finally, human authors correct what Diligent has taught
itself.

The only kind of hints STEVE delivers are suggestions on the next step of
the task. Causal links are used for automatically generating explanations of
how the suggested steps contribute to the task. Hints for helping the student
to come up with the next step are not delivered.

1.2.3.2 BEETLE

BEETLE [Core et al., 2000; 2001; Zinn et al., 2003] is a system that teaches
electronics and electricity implementing a constructivist model and NL dialogue.
It uses conversation games, which is a kind of recipe for managing dialogue situ-
ations. Emphasis is put on managing tutorial dialogue. An architecture is pro-
posed where the knowledge sources of pedagogical strategies, domain knowledge,

1.2. General Overview and State of the Art 31

and dialogue management strategies are clearly separated [Zinn, 2002]. The ar-
chitecture is based on the information state approach to dialogue, which is a data
structure that can be dynamically updated with pre- and post-conditions for
performing dialogue moves and other relevant domain-dependent and domain-
independent information for managing dialogue, like a dialogue history [Bohlin
et al., 1999]. The architecture comprises three modules: (i) Interpretation anal-
yses the student input with respect to its content, the dialogue acts it performs,
and its contribution to the task. (ii) Update is responsible for planning the
next dialogue move to perform at the dialogue level. (iii) Response generation
chooses appropriate tutorial feedback and generates the NL realisation of it,
adding other relevant dialogue aspects.

The Response Generation module uses a 3-tier planning. The top tier com-
poses abstract plans that consist of discourse tasks, including tutorial feedback,
which should be performed next. It writes the discourse plans into a task agenda.
It is activated when the tutor agent is engaged in a tutorial dialogue to create
an initial abstract plan, or later to repair a plan on the fly if it fails. It also
monitors the satisfaction of discourse obligations, which is the discourse the-
ory implemented in the system. The middle tier groups and describes ways
for performing the tasks in the agenda in different dialogue situations, which
translates into specifying dialogue acts to be performed. The bottom tier gets
a sequence of dialogue acts and compiles a natural language utterance that re-
alises them. This architecture makes the system re-configurable for different
domains, dialogue, and pedagogical theories.

The system implements directed lines of reasoning that are abstract domain-
independent tutoring tactics. Directed lines of reasoning are chosen based on
an agenda of unachieved tutoring goals and dependent on fulfilling constraints
and preconditions that are associated with them. They are associated with spe-
cific conversational games. Conversational games consist of particular dialogue
moves that realise directed lines of reasoning at the dialogue level. No hints as
such are implemented, although the dialogue moves involved in conversational
games do include some hint functions, like prompting the student.

The direction was changed towards more research on tutoring feedback in
the BEETLE2 tutorial dialogue system [Dzikovska et al., 2008]. BEETLE2 uses
a tutorial planner that defines classes of dialogue acts, like accept. These dia-
logue acts can be specified further and they can be verbalised in different ways
depending on tutoring context. A deep generation system is responsible for the
verbalisation. It uses deep syntactic structures and lexical items. This architec-
ture is used to implement a tutoring strategy that adapts to the diagnosis. A
corpus of human-human tutoring on D.C. circuits was collected transcribing tu-
torial dialogues between 30 students taught by 3 expert tutors. The corpus was
analysed to derive first basic guidelines on an appropriate tutoring strategy.
The diagnoser was built based on this analysis that revealed the importance
that correct, incorrect and missing parts are taken into account in the design
of tutorial feedback. The diagnoser uses a comparison of the student answer to
the three categories of possible correct answers. Depending on the combination
of correct, incorrect and missing parts, the tutorial strategy chooses to address

32 Chapter 1. Introduction

any errors, acknowledge the correct parts and prompt for the missing ones, or
indicate an irrelevant answer and try to focus the student to the topic of interest.
The innovative aspect of this research is that it introduces the notion of different
possible correct answers, meaning that the tutor should accept answers even if
they are not ideal, but should provide additional feedback on the already correct
answer. Therefore, the categories ideal, good, and minimal correct answer are
implemented. Depending on the degree of correctness, the system just accepts
ideal answers, accepts good answers and repeats the key point, or accepts and
rephrases minimal answers to model a better answer.

BEETLE2 is based on the realisation that diagnosis, feedback strategy, di-
alogue planning and feedback generation should be separate. However, the
research concentrates on the verbalisation end of the feedback and not on the
cognitive function of hints. The diagnosis technique is a good start for this pur-
pose, but for the purpose of more cognitive and pedagogically oriented feedback
the bigger picture of the student model must be integrated. An obvious starting
point would be to decide on rephrasing or not a minimal correct answer depend-
ing on whether there are reasons to believe that students might be overwhelmed
by rephrasing it.

1.2.3.3 Summary

These systems have developed dialogue management and/or generation tech-
niques, but are lacking on the whole elaborate feedback mechanisms and hints
in particular. This is the kind of feedback that we investigate in this thesis.

1.2.4 ITSs Promoting Self-Explanation

We dedicate a section to systems dealing with self-explanation, as there is a
trend in the ITS community of systems that concentrates on this specific aspect
of tutoring. The relevance to our work is that these systems make use of hints
to promote self-explanation.

1.2.4.1 SE-Coach

SE-Coach [Conati and VanLehn, 1999] was built as a module embedded in An-
des to help students learn through examples and self-explanation. The domain
is Newtonian Physics and the focus on metacognitive skills. SE-Coach provides
wrong vs. correct evaluation feedback. In addition, it uses a probabilistic stu-
dent model based on current student actions and prior student knowledge to
assess problems and remedy them via promoting self-explanation.

The student is provided with a list of “self-explanations” and is required to
choose the applicable one each time. Hints help students to monitor their learn-
ing at the metacognitive level. “Self-explanations” are pre-formulated for each
problem and hints are pre-compiled. Apart from the standard problems this
creates, a valid self-critique by the developers is that not only are pre-compiled

1.2. General Overview and State of the Art 33

“self-explanations” inefficient, but also the system can potentially hinder effec-
tive self-generated self-explanation. In a sense, pre-compiled “self-explanations”
defeat the point of self-explaining, which is to activate deep cognitive processes
in the students by requiring that they come up with their own explanation.

1.2.4.2 PACT Geometry Tutor and Geometry Cognitive Tutor

New-generation cognitive tutors have been developed on similar principles. The
PACT Geometry Tutor [Aleven et al., 1999] is a cognitive tutor, which teaches
high-school geometry with real-world situation problems and is used in US
schools. Students working with the PACT Geometry Tutor must calculate the
unknown quantities in a problem and must explain their step by choosing a
geometry theorem or definition from a provided glossary. The main features of
the tutor’s feedback are hints on request, which encourage the student to use
the glossary in the described way, and the ability to highlight a smaller number
of options in the glossary to reduce search. The tutor also uses additional feed-
back for eliciting self-explanation, which was shown to increase learning gains
in a preliminary study (ibid.).

An advanced version of Geometry Cognitive Tutor [Anderson et al., 1993],
which elicits self-explanations in NL dialogue, requires students to use their
own words to explain their answers. There are two main principles behind the
approach of asking students to self-explain in their own words. First, it forces
students to recall the relevant pieces of information from memory. Second,
it is less likely that students will have problems with the use of jargon and
terminology [Aleven et al., 2001]. Feedback in the new system is based on a
classification of the explanation that the students provide. Detailed feedback,
which does not give away but elicits the explanation, is used. It consists of
problem specific questions, which pick up key words from the student’s solution
and explanation up to the point, and ask the students to state the general rule
for the principle behind those key words.

A comparative study between the form of self-explanation used by PACT
Geometry Tutor and using one’s own words to self-explain showed that when
students used their own explanations they did not overall learn better. However,
this sort of self-explanation in combination with high-quality feedback gave bet-
ter results. Moreover, students who did not mention general principles in their
self-explanations, but rather specific problem examples learned less [Aleven and
Koedinger, 2000a].

As these tutors use the same help mechanisms as all cognitive tutors, the
same possible improvements apply. Additionally, the results of the study reveal
the importance of feedback as opposed to mere self-explaining. The results also
emphasised a problem with menu-based approaches to student input, namely
that students are far more likely to guess, rather than try to think. A side-effect
of this is that the system is driven away from estimating the actual level of skill
of the student, and it is hard to diagnose and remediate problems.

34 Chapter 1. Introduction

1.2.4.3 Summary

The systems reviewed in this section concentrate on only one of the pedagog-
ical aspects of the feedback that we consider for the definition of our teaching
strategy and hints, namely self-explanation. They also use either menu-based
approaches or pre-defined hints, which result in limited flexibility on the NL
dialogue level and on the tutoring level respectively. We address both of these
issues by separating these two levels. We scrutinise the tutoring level and pro-
vide the basis for flexibility on the NL dialogue level.

1.2.5 ITSs Promoting Motivation

1.2.5.1 Wayang-West

There is a plentitude of work on motivation, but we only mention here that of
Beal and colleagues [Beal and Lee, 2005]. Their system, Wayang-West, teaches
mathematics to secondary school students based on SAT-Math tests. It is en-
gaged in providing instruction in a motivationally informed manner. Their
rationale is that the student who is not motivated will not attend to the in-
struction. Their system aims at directly increasing motivation and engagement
in an adaptive way, due to the fact that personality traits affect if a person is
motivated or demotivated by the same feedback.

Wayang-West uses a model that takes such issues into account as (i) self-
report on motivation, (ii) indications of lack of motivation, e.g. the student
making a habit out of asking for help or requesting all help available in a row, (iii)
the cognitive ability of the student, judged on the basis of previous interactions
and the knowledge the student should have, and (iv) the kind of help that seems
to have an effect on the student’s progress.

Student engagement and motivation is promoted by varying the system out-
put depending on the student model. The aim is not to solely avoid frustrating
the student by giving unrestrained help, but rather to involve students in the
task, in order to let them experience the joy of learning and practice to overcome
frustration. The system thus balances providing instruction and maintaining
student motivation. This may include providing or refusing help. Help may be
refused for example, in case the student’s cognitive ability represented by the
model indicates that the student should be able to do without help. Motivation
is also controlled by reporting progress and by the way progress is reported to
the student. Motivational feedback is provided together with progress report,
modelling human tutors. Motivational feedback may consist of positive feed-
back, like I know you can do it, or feedback on how much effort is needed. Other
aspects of tutoring that can be adapted pertain to adjustments made previous to
the interactive session. Such adjustments are no are not dynamic. For instance,
the difficulty to the assigned task can be adapted.

This work is a good example for what is involved in taking motivation into
account in designing and providing feedback. It highlights what is missed out
by systems that do not treat motivation and it points to the necessity of in-
corporating a motivation aspect to hinting. However, it does not implement

1.2. General Overview and State of the Art 35

automatic multidimensional cognitive feedback, but rather only empahsises the
affective aspect.

1.2.6 Theoretical Work on Designing Feedback Strategies

In this section we explore the work of Interactive Two Feedback-Loops Model or
ITFL-model [Narciss, 2003]. Although this is only theoretical work, we give an
account of it here because it is the only work to our knowledge that attempts
to provide a structured analysis of tutorial feedback. This analysis can be seen
as the macrolevel equivalent of tutorial feedback, in general, and to the analysis
this thesis undertakes for hints, in particular. It aims to provide guidelines to
ITS developers for composing tutorial feedback based on multiple dimensions.

The ITFL-model is a theoretical model for designing tutorial feedback. The
model identifies the interaction between an internal and an external feedback
loop as the point where learning takes place. The internal loop refers to feedback
that processes variables to which the learner has direct access. They relate
to prior knowledge, metacognitive skills, and cognitive skills, e.g. perceived
effort, self-assessment of skills, and representation of a task. The external loop
relates to learning material or instruction. Types of variables processed by
the external loop, are the instructional goals, the diagnostic procedures, and
the feedback quality. The external feedback loop is the one most relevant to
designing tutorial feedback, but it is always dependent on the internal loop due
to the prerequisite interaction between them for learning to occur, and especially
from the perspective of active or self-regulated learning.

According to the ITFL-model, the distinction between internal and external
feedback loops requires certain key processing tools, which may be seen as tools
for efficient instruction:

• Sensors, which register the current values of variables. In ITSs, this is
normally the job of the student model.

• Reference values, which define desirable values of the variables and are
dependent on individual goals (for internal variables), and on tutorial goals
(for external variables). In ITSs, this is typically done by defining cognitive
skills, or learning components and their respective desirable values.

• Controller, which compares the current values registered by the sensors
with the reference values. ITSs typically model an external controller,
which compares the current values of the student’s cognitive skills or mas-
tery of learning components with the values required by the tutorial goals.

In case of discrepancies between the current and the reference values, the
controller is also responsible for producing control actions to remediate the dis-
crepancy, e.g. some instruction. For successful instruction, the control actions
are produced based on a well-defined control process, which acts on equally
well-defined variables, and specifies how these are measured and regulated. In
ITSs this involves identifying the requirements associated with the instructional

36 Chapter 1. Introduction

content, the tutorial goals and the taught tasks. For example, the difficulty of
the task must be represented, as instruction should be more elaborate for tasks
of medium complexity, but the same degree of elaboration is not needed for easy
or for very complex tasks.

The ITFL-model sets specific prerequisites for the external loop, and hence
for the design of instruction. Learning goals must be operationalised so that
reference values can be defined and used for the evaluation of the success of
instruction. Indicators of mastery must be defined in a valid and reliable way.
Instruction must be able to transform the discrepancy value into a piece of
instruction that provides information highly relevant to the previously set re-
quirements for mastering the task.

Various functions of external feedback currently used in ITSs are identified.
These include an acknowledging or reinforcing function, an informing function,
a guiding or steering function, a regulatory or correcting function, a motiva-
tional function and an instructional function. However, these functions are not
specific enough for the purposes of the ITFL-model, as Susanne Narciss argues:

Since finer differentiations of feedback functions make it possible
to work out which information will be useful in which settings, the
careful selection and specification of the intended feedback func-
tions provides the basis for designing tutorial feedback (p.13)

Therefore, a more detailed analysis of feedback functions is provided by the
model. Functions are divided into three major categories with their subcate-
gories:

1. Cognitive functions. These relate to errors that may occur, because the
learner is lacking some content-related, procedural or strategic knowledge,
or because the knowledge is interlinked incorrectly, or because the condi-
tions for using the knowledge are incorrect or ill-defined. Cognitive func-
tions are subdivided into:

(a) an informative function, which provides the required information in
case no further diagnosis of the committed error is possible

(b) a completion function, which provides lacking knowledge

(c) a connective function, which provides information about connecting
pieces of knowledge

(d) a differentiation function, which provides information to clarify im-
precise knowledge

(e) and a restructuring function, which provides information on correct-
ing wrongly connected pieces of knowledge

2. Metacognitive functions. These refer to external feedback for improving
metacognitive skills. They are subdivided into:

(a) an informative function, for providing feedback about metacognitive
strategies

1.2. General Overview and State of the Art 37

(b) a specification function, for providing feedback about criteria for
monitoring goals or the conditions of application of metacognitive
strategies

(c) a corrective function, for providing corrective feedback on metacog-
nitive strategies

(d) and a guiding function, for encouraging students’ self-regulated learn-
ing and the deduction of strategies for self-regulation

3. Motivational functions. These functions are normally an integral part of
all types of feedback, even if they are not explicit. Sub-functions include:

(a) an incentive function, which makes the results of processing the task
visible

(b) a task facilitation function, for providing information on overcoming
difficulties with the task

(c) a self-efficacy function, for providing information that helps master-
ing the task, despite the committed errors and the difficulties with
the task

(d) and a reattribution function, for providing information that allows
connecting mastery experiences to personal causation

Finally, a distinction is made at the utterance level between an evaluative
and informative function, which according to the model should be the two com-
ponents of the feedback utterance.

There are two major differences between this model and our work. First,
this model only wishes to equip ITS developers with guidelines on the many
dimensions that one must take into account when implementing tutorial feed-
back. It is therefore not detailed enough to be implementable and leaves the
specifics of how these dimensions can be used to deliver automatic feedback
open. Second, although the model is somewhat aware of the different dialogue
function of tutorial feedback, it does not lay out how dialogue and cognitive
feedback relate, or how they should be treated separately in ITSs, which is one
of the main contributions of our research.

1.2.7 Dialogue Systems: Discourse vs. Task Planning

Looking at it from a different but similar perspective to that of BEETLE [Zinn,
2002], tutorial dialogue is a form of task-oriented dialogue [Allen et al., 2001a;
2001b]. The task is to solve a problem collaboratively with the user (student),
irrespective of the specifics of how this collaboration should exactly look. This
is dependent on the pedagogical model and the tutoring goals of every ITS. ITSs
can benefit from existing research that investigates task-oriented dialogues in
the dialogue community. Here, we look at an example of a system from that
area of research.

TRIPS [Allen et al., 2001a] is a dialogue system where task and discourse
planning are clearly separated. The latter needs to be informed by the former in

38 Chapter 1. Introduction

order to interpret the user’s utterances, but keeping them separate allows flexi-
bility. TRIPS consists of four main components, which work asynchronously:

1. Interpretation Manager: This interprets the raw input, assigns dialogue
moves and task content to the input, which involves recognising the in-
tentions of the collocutors in the domain, and informs the status of the
discourse context, which is a separate module.

2. Behavioural Agent: This plans the system’s utterances based on its goals,
on pending obligations, on the user utterances, and on any changes in
the world. For the latter, a world model is consulted, which is kept by
the system as a representation of what modifications the users undertake
in the physical worlds vis-a-vis the decisions made during their dialogue
interaction, i.e. in performing the task.

3. Generation Agent: This receives actions and directives from the behavioural
agent and plans their NL realisation based on pending obligations.

4. Task Manager: This uses an abstract problem-solving strategy and is
responsible for interpreting what the objects referred to in this abstract
solution mean, and the way operations on them happen. It must create a
solution for the problem, build a specific course of action from the abstract
one, and evaluate the intention recognition behind the dialogue acts that
the interpretation manager reads in the user’s utterances. Its output is
then used by the interpretation manager, the behavioural agent, and the
generation manager.

The flexibility that characterises the separation of task (task manager) and
discourse planning (behavioural agent) in this architecture also affects the sub-
sequent improvements that the system might need. The two planning levels
make it easier to test and detect problems in the levels separately, as well as
make adjustments to one level without necessarily having to adjust the other.
Most relevant to tutorial dialogues is that this architecture makes incremental
processing possible, as not all kinds of input need to be treated uniformly by
the dialogue manager. A simple example of this is handling acknowledgements,
for example saying “OK” to signal that one has understood the linguistic mean-
ing of an utterance by one’s collocutor. Acknowledgements are part of what is
called grounding, that is the process of making sure that the collocutors agree
between them on what has been established so far in the dialogue, which is
common practice among humans and very important in task-oriented dialogues
in view of the need to collaborate in resolving the common task. The genera-
tion manager in TRIPS may generate an acknowledgement based on adjacency
pairs, which are dialogue moves that are typically produced one after the other.
No problem solving interference needs to be involved in this simple planning.
In the meantime, the behavioural agent may still be planning the next actions
that require the involvement of the task manager. Moreover, the system may
need to plan an acknowledgement at the discourse level, but reject the content

1.3. The Research Problem and our Approach 39

of the utterance at the task level. In tutorial dialogues this happens quite of-
ten in case of a wrong contribution by the student. The tutor acknowledges
the contribution, as for instance the theory of discourse obligations predicts (cf.
Chapter 4), but then rejects its content. In consequence, the system can rea-
son about producing an acknowledgement, while the information related to the
tutoring task is being processed in parallel.

In ITSs in general, by maintaining different dialogue and task plans, a sys-
tem may implement a dialogue and discourse theory at the dialogue level, and
a distinct learning theory at the task level, thus doing justice to both of these
complex issues. As a result, the task plan remains the same even when the
dialogue plan, which is responsible for the interaction rather than the perfor-
mance of the task, needs to change on the fly [Larsson et al., 2002]. The task
plan in ITSs refers to the choice of topic or step to teach next and the choice
of the feedback strategy to teach it, which depend both on the content of the
history of the interaction, e.g. on the student model. The dialogue plan refers
to the way the feedback strategy should be expressed in dialogue moves and
discourse markers. The next step and the feedback strategy can be determined
by the tutoring situation already and may be the same for different dialogue
situations. On the contrary, the dialogue plan must be adjusted to the dialogue
situation, and hence to the specific previous dialogue move of the student. Note
that adaptation is needed on both levels, which makes managing adaptation in
tutorial dialogues complicated and requires separate deliberation.

The kind of flexibility reflected in such an architecture and the possibility of
adaptation that it facilitates is what is missing from current tutorial dialogue
ITS. Such characteristics would enable paying due attention to the separate
aspects of tutorial dialogue feedback in developing ITS. The same characteristics
would also make it possible to tease apart the different parameters of feedback
to test them and give insight into what makes feedback effective.

1.3 The Research Problem and our Approach

In this section we define the research problem, describe the general approach to
NL tutorial dialogues that is the background of our research, and analyse the
specific approach to automatic feedback for NL tutorial dialogues, which is the
topic of this thesis.

1.3.1 The Research Problem

The insight that natural language is important in tutoring is obvious in early
attempts at building NL tutorial dialogue systems like the Why System [Stevens
and Collins, 1977]. Notably, however, these research directions did not seem to
be aware of the complexity and the varied constituting parts of human tutoring,
namely adaptive cognitive content and dialogue/discourse sensitivity. Moreover,
these first attempts were also hindered at the time by the immature theories
and computational models of dialogue and discourse [Corbett et al., 1997]. In

40 Chapter 1. Introduction

order to circumvent this problem, subsequent approaches to NL tutorial dialogue
systems were directed toward simplified models of dialogue management for
specific genres and domains (e.g. [Person et al., 2000]). In such approaches,
tutorial feedback is inseparable from dialogue phenomena posing limitations on
both.

Some twenty years later, NL dialogue/discourse management has matured
and dialogue managers have been built that can handle complex genres (e.g.
[Core and Allen, 1993; Poesio and Traum, 1998; Cooper et al., 1999; Porayska-
Pomsta and Pain, 2000; Allen et al., 2001a; 2001b; Zinn, 2002; Dzikovska et
al., 2007; Ferguson and Allen, 2007]). A dialogue manager is the component
in a dialogue system where the interaction of the different components in the
system is managed, and the dialogue theory is implemented. The decision on
which is the best response to the user is based on the dialogue theory. There
are different approaches to dialogue management, with the main ones being
finite-state based, form-filling, and information state management.

Finite state automata are the simplest way of modelling dialogue manage-
ment. There is always an initial state. States are normally defined with certain
expectations as to what the system can have as input. Different transitions are
defined that take the user input into account in order to decide what the new
system state is. As soon as a particular input is recognised by the system, a
predefined behaviour is produced by the system. That results in the system
being set to another state, which is itself predefined. Finite-state based systems
are easy to build for simple domains. The increase in complexity of the domain
and the dialogue phenomena that need to be modelled lead to an exponential
increase of states and transitions to define. This poses limitations to what gen-
res and domains can be modelled with this technology. Therefore, finite-state
based dialogue managers are normally used for domains where the system asks
questions and the user provides the information required and the set of ques-
tions and possible answers is small. An example of such a manager is the CSLU
toolkit [McTear, 1998].

Form-filling approaches are a bit more advanced than automata. Slots are
used to represent and store information. Form-filling systems are organised
around a list of slots with specifications for the kind of information that can
fill in the slots. At its simplest form a dialogue is conducted by the system
asking a question in order to elicit the information for each slot and the user
providing the information. Normally the system has the dialogue initiative.
However, there are certain possibilities for the user to take initiative, some of
them defined in the form of sub-dialogues. Dialogue context consists of the
collection of the values of the slots already filled in as well as the information
that still has to be elicited by the user. The latter is based on the slots that are
still empty. This makes the engine easy to reuse for other domains by changing
the definitions of the slots. The dialogue specifications need not change. On the
other hand, no dialogue history is maintained in form-filling and this design can
only allow a rigid dialogue context. An example of such a system is the Philips
train information dialogue system, which is an automatic inquiry system [Aust
and Oerder et al, 1995]. AutoTutor also uses a kind of form-filling dialogue

1.3. The Research Problem and our Approach 41

management [Graesser et al., 1999].
The information-state approach uses a central data structure, the informa-

tion state (IS) that stores information on the history and the current state of
the dialogue. IS implements the view that sees dialogue as the information that
each participant has at every point in the progress. All the information that
is related to the way the transitions should be handled constitutes static infor-
mation. It represents the desired behaviour in a dialogue and remains constant
during the dialogue. Everything that changes, or becomes updated, with the
utterances is the dynamic part of the information. The way the dynamic part
is updated is determined by the static information. Update rules are used for
updating the representation of the information state. They include details of if
and how each field in the information state should be informed by the current
utterance. Updates are composed of conditions and effects. The IS is the com-
munication platform for all other modules in the dialogue system. It can consist
of different fields containing different kinds of information about the IS assumed.
Divergent approaches to dialogue modelling can be implemented by defining dif-
ferent fields. The IS structure makes it possible to handle complex domains by
defining fields to accommodate the information coming from multiple modules
and integrating it in this structure. The update rules can also be complex and
take care of multidimensional dialogue phenomena. The IS approach is im-
plemented in the TrindiKit system [Larsson et al., 1999; Bohlin et al., 1999;
Larsson and Cooper, 2000].

New technologies like the information state in dialogue management open
the way to implementing complex dialogue genres like tutorial dialogues and
exploring the different components of what makes it efficient. A research area
that remains open is the function and automation of tutorial feedback in general
and of hinting in particular in NL tutorial dialogues.

As we saw, existing approaches to tutorial feedback either do not distin-
guish the dialogue model from the teaching model, or they not do distinguish
between tutoring and dialogue functions of hints. The cognitive functions and
the dialogue move realisation of hints are also not distinguished, although there
is research pointing to the necessity of such separation (e.g. [DiPaolo et al.,
2004]). This makes hinting non-flexible, both with regard to its content and
with regard to how this content is realised in different discourse and tutor-
ing contexts. Such non-flexible hinting hinders the naturalness of the tutorial
dialogue [Tsovaltzi and Fiedler, 2005] and consequently its effectiveness. Addi-
tionally, this approach makes systems using it potentially hard to maintain or
reuse as a whole.

Moreover, such approaches are limited in capturing the various underlying
functions of hints explicitly and relating them to the domain knowledge and
tutoring context dynamically. The state-of-the-art in this direction, which has
brought ITSs a long way, is to represent the taught knowledge or the cognitive
skills required in solving a task explicitly, and then use a pre-defined sequence
of hints for each piece of knowledge or skill, and associate text templates with
that hint sequence. Variables in the pre-written text templates can be filled in
automatically for the current problem (e.g. [Anderson et al., 1995; VanLehn,

42 Chapter 1. Introduction

2006]). Commonly, the pre-defined sequences start with an abstract hint that
prompts the student for the answer, continue with a hint that provides some
knowledge to help the student find this answer, and conclude by giving the
answer away. It is now becoming clearer that more research is needed in the
area of hinting mechanisms that provide a full automation of the content of
hints, of the choice of appropriate hint, and on the on-the-fly realisation of
hints, all based on the tutoring context [du Boulay and Luckin, 2001; VanLehn,
2006].

Hint production could be a bit more adaptive than the state-of-the-art hint
sequences if it took the overall level of students and their motivational state
into account in order to at least skip hints in the pre-defined sequence. A sig-
nificantly more adaptive approach would first of all require more kinds of hints,
and would present them to students when appropriate based on their current
cognitive needs for the focal point in the task and their overall learner pro-
file. It would also ideally consider various feedback strategies to handle such
hints. Feedback strategies should include other pedagogical feedback to serve
functions apart from those performed by hints. Strategies can implement ped-
agogical principles and accommodate different aspects of learning theories that
seem to be competing, but actually only apply to different learners and situ-
ations. Without the adequate amount of adaptivity, developers are forced to
make choices on which of such aspects to implement, where a choice is not really
necessary or appropriate. For instance, whether to provide feedback on request
or unsolicited feedback is not a matter of an absolute context-independent deci-
sion, but depends on the situation. Students who ask for too much help should
be directed into trying harder on their own. To take the other extreme, a stu-
dent who is not progressing in the task and does not request feedback should be
given unsolicited feedback. There can also be various other student behaviours
in between. With the adaptive approach we sketched, this kind of decision
is possible on the fly. In general, adaptivity of feedback would be possible in
the choice of strategy, in the choice of pedagogical feedback or hint inside the
strategy, and in the order these are presented.

From the existing systems, some employ more and some less pedagogical
principles from learning theories in defining hints. Nonetheless, when such prin-
ciples are used they remain general guidelines for choosing feedback, for example
to provide immediate feedback or not. They are not captured in any structured
way in the choice and composition of the feedback itself. This would involve
breaking down feedback to its composite functions across processes, that is cog-
nitive, metacognitive and affective processes. Such functions should be defined
at a fine-grained level to capture all the constituent functions of one unified
tutorial feedback.

Moreover, the huge cost of building NL dialogue ITSs makes the need to
build reusable systems for different domains imperative. A first major step in
this direction would be accomplished by separating dialogue and tutoring ca-
pabilities. An ITS would then be reusable if it implemented general tutorial
dialogue techniques that are common among all domains in this genre. Tutorial
management can be built on top of this domain-independent platform. Tutorial

1.3. The Research Problem and our Approach 43

management itself should be conceptualised and implemented in a way that it
may be reused for different domains. This means that the pedagogical princi-
ples captured in tutoring strategies should be content free. That is, the content
of feedback must be distinguished from the tutoring function of the feedback.
Consequently, the same tutoring strategies can be used for different domains.
Under this scenario, feedback content is the only level where additional imple-
mentation effort is needed to build an ITS for a new domain. If there are also
guidelines on how to represent such knowledge so that the content of the feed-
back may be chosen automatically as well and so that it may be integrated with
the pedagogical knowledge and the NL dialogue knowledge, then this would take
ITSs yet another step further towards adaptivity.

This thesis undertakes research on automating tutorial dialogue feedback
that contributes to adaptivity in the above directions. It concentrates on au-
tomating feedback as a means for implementing adaptive teaching strategies. It
looks at the general possibility of combining flexible dialogue management of
the kind we reviewed and explores the integration of automatic feedback in a
NL dialogue tutorial system. It argues that NL dialogue is most suitable for
implementing the required adaptivity in one unified system output with func-
tions on multiple levels and dimensions. One level represents the distinction
between dialogue and tutoring functions. Each of these two comes with its mul-
tiple dimensions. In dialogue, multiple dimensions represent dialogue functions.
Respectively, in tutoring, multiple kinds of feedback represent cognitive, moti-
vational and other pedagogical feedback. The function of hints is also a special
case, which is itself defined across multiple dimensions.

In terms of pedagogical principles and teaching strategies, the thesis inves-
tigates the automation of a Socratic teaching strategy. It defines a domain-
independent teaching model based on prominent learning theories with schema
theory at the foreground. It specifies domain-independent pedagogical feedback
for realising the model (e.g. motivational feedback) and scrutinises hints with
its many dimensions as the main and most complicated kind of feedback in this
model. Multiple cognitive functions are defined, which are captured in differ-
ent hint dimensions. They are domain-independent apart from the one where
domain knowledge comes into play. However, an approach to structuring the
tutoring domains and defining instructional points so as to represent schema
theory is suggested, with emphasis on problem solving domains. This structure
allows using the represented knowledge to deliver domain-independent feedback
that promotes schema acquisition. The choice of feedback is handled by sub-
strategies that realise our Socratic teaching strategy. Eight out of the total ten
substrategies are domain-independent. The other two substrategies that handle
domain-knowledge may be used for other domains to the extent that they can be
represented by the abstract definitions of instructional points that we suggest.

Overall, the thesis suggests an approach to automatically producing stu-
dent, situation, and discourse adaptive feedback and hints. An example of such
adaptivity that our approach can handle is to decide on-the-fly about provid-
ing solicited or unsolicited help. A further decision that it handles is what
kind of form this help should take. Moreover, the fine-grained analysis and

44 Chapter 1. Introduction

representation of the components of tutorial feedback enables yet another form
of adaptivity, namely dialogue and discourse context adaptivity. As the pro-
duction and content of hints are adaptive, there is no need for pre-formulated
NL dialogue feedback. This opens up the possibility of generating automatic
NL realisations and thereby also of making the NL realisations of the feedback
dialogue and discourse sensitive. Our analysis of tutorial dialogue functions
constitutes a contribution to this end.

Finally, the thesis presents the tutorial manager Menon, which implements
the suggested approach to automatic production of feedback for problem solving.
It further produces output that can be used for the automatic dialogue and NL
generation of feedback.

1.3.2 General Approach to NL Tutorial Dialogue

Our approach is oriented towards integrating adaptive feedback in NL tutorial
dialogue [Tsovaltzi and Karagjosova, 2004] and allowing for dynamic NL reali-
sation of tutorial feedback. In this context, and in the framework of the Dialog

project [Benzmüller et al., 2003a], a prototype NL tutorial dialogue system was
built [Buckley and Benzmüller, 2005; 2006]. This prototype proposes a variant
of the typical ITS architecture, and focuses on NL dialogue management and
flexibility (Figure 1.1). The system depended on an existing specialised domain
reasoner, the proof system Omega [Siekmann et al., 2002] for the task manage-
ment in set theory. This system design enables reasoning about the student’s
action for arbitrary problems in the domain and bears the potential of elaborate
adaptive system feedback without the need to pre-compile it for each problem.

More specifically, the dialogue manager in Figure 1.1 is responsible for man-
aging the dialogue and for the communication among the different modules.
It is based on the information-state approach that can handle the amount of
complexity of tutorial dialogues and our multidimensional approach to tutoring.
Every module connected to the dialogue manager provides information about
its own state, which is also written in the IS. Update rules are responsible for
changing the IS based on incoming utterances by the user or changes in the state
of the other modules in the system. The discourse theory is also implemented
in the update rules. All communication between the modules is done through
the dialogue manager and the IS.

Before we explain the architecture in Figure 1.1 in more detail, here is a
snapshot of the kind of dialogue that can be handled by such an architecture.
In brackets, we provide the dialogue moves produced for the tutor turns and
the evaluation of any domain contributions for the student turns2.

2Throughout the thesis, we use the following font conventions:
names of hint dimensions → script-size small capitals

names of dimension classes → script-size mono-space
names of hints → mono-space

names of dialogue moves → slanted

names of strategies and substrategies → slanted mono-space

names of functions → small capitals

Hinting Session Status and its subfields → sans-serif

1.3. The Research Problem and our Approach 45

HSS
Hints

Task DMs/

Strategy Manager

Tutoring Control
Strategies

Sub−strategies

...

Menon

Tutoring−task
Input

Analyser

Backtracking

Initialiser

Didactic

Diagnostics

Performable−step

Meta−reasoning

Socratic

Generic Tutoring

Buffer
Output

Manager
Dialogue

Input Analyser
NL Generator

Dialogue−Move
Recogniser

Manager

Reasoner
Domain

Proof

Domain−Info
Manager

GUI

Figure 1.1: The architecture of the prototype NL tutorial dialogue system of
the Dialog project

T0: (initiate-dialogue) Hello.
S0: Hello.

T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me
anything you can think of for proving the following: If A is a
subset of K(B), then B is a subset of K(A)!

S1: (partial-answer(ia)) I have to identify what’s given and what
I have to prove.

T2: (encourage) Great! (signal-pa) You’re on the right track.
(initiate-subtask-proof-step-meta-reas) We’re taking it
from the start. So, go ahead and (elicit-prem-conc) find what
is assumed and what you have to prove.

names of relations → slanted sans-serif

names of instructional points → sans-serif and capital first letter

We also use italics where a term is defined for the first time or is extensively discussed.

46 Chapter 1. Introduction

S2: (correct) I have to prove that B ⊆ K(A), and A ⊆ K(B) is
assumed.

T3: (signal-accept) Correct! (elicit-specific-method) Now,
how can you manipulate the expression to prove what you want?
. . .

The first two turns T0 and S0 do not have any tutoring content, so they
require NL analysis and dialogue management, but any modules that deal with
domain knowledge or the tutorial manager (Menon) do not have to be involved
in dealing with them. T1 sets the task, which must be chosen by the domain
reasoner. Menon produces the dialogue moves and specifications for them. The
proof task must be instantiated with the chosen task for the NL realisation of the
dialogue move initiate-task, as this is its domain-content specification defined
by Menon. In S1, the student makes a first attempt at solving the task. This
fact must be recognised by the system, which has to identify the dialogue move
performed as a domain-contribution. Domain-contributions must be analysed
for their domain content in order to assess their correctness. They must also
be analysed for any further relevant aspects for tutoring, for instance, if there’s
reason to believe that the student is demotivated. Based on this analysis, the
tutorial manager can provide appropriate pedagogical feedback. The production
of the dialogue moves in turn T1 by the tutorial manager are the result of this
analysis of S1. The NL realisation for the moves in this turn can be done by
only taking into account the dialogue and the discourse context. For example,
the move elicit-prem-conc, which is a hint, may be also realised as “Can
you tell me now what is assumed and what you have to prove?”, or “I would
like to know what is assumed and what has to be proved”, and so on. These
realisations refer to the same domain-content as the one in the example – the
premise and the conclusion – but would sound strange in the specific dialogue
context. The first one because it sounds as if the student has not already
suggested what the hint is asking her to do, and the second because it sounds
way too demanding in the context. Both may put the student off. S2 is similar
to S1, but it additionally has to be assessed for whether it identifies the premise
and the conclusion correctly in the particular task. The tutorial manager needs
to know this before it can consider them known and can choose the next domain
knowledge to address. Since the premise and the conclusion are correct, the
tutorial manager decides in T3 to move on and draw the student’s attention on
the method to use for tackling the step3.

Let us now turn to the architecture of the Dialog demonstrator. To be able

3Note that the student’s answer does not name exactly the premise and the conclusion of
the deduction rule Implication Introduction, whose premise is B ⊆ K(A) under hypothesis
A ⊆ K(B) and its is conclusion A ⊆ K(B) ⇒ B ⊆ K(A) (cf. Chapter 3). So, the answer
is underspecified from a logical point of view. However, for the purposes of the proof this
answer is sufficient and the proof manager should categorise it as correct. The proof manager
should also provide the same instantiation for the instructional point premise-conclusion for
the NL realisation of the relevant hint that gives it away. For more on this phenomenon that
is investigated by the Omega group and is considered assertion level proving, we refer the
reader to [Vo et al., 2003]

1.3. The Research Problem and our Approach 47

to handle this kind of dialogue, the IS in the Dialog prototype is informed by
the following modules:

GUI (graphical user interface) : The GUI accepts typed input from the
student and presents the system’s feedback.

Input Analyser: The input analyser is responsible for the NL analysis and it
provides an underspecified representation of the mathematical content in
the student’s input.

Dialogue Move Recogniser: The dialogue move recogniser is responsible for
assigning dialogue moves to chunks of input based on the dialogue state.

Proof Manager: The proof manager monitors and maintains the proof task,
and provides information relevant to the evaluation of the student input.

Domain Information Manager: The domain information manager determines
the content of the mathematical information for the proof step at hand.
It is responsible for identifying this information in the student’s attempt
and for the instantiation of the domain-dependent hint specifications, for-
malised in a domain ontology (cf. Chapter 5). It also represents declara-
tive knowledge, ie. definitions, theorems, lemmata etc.

Tutorial Manager (Menon): The tutorial manager is responsible for the peda-
gogical feedback. It manages all task dialogue moves and chooses the kind
of hint or other task move to be produced as general pedagogical feedback.
It provides the domain-dependent specifications for the NL realisation of
the dialogue moves.

NL Generator: The NL generator is responsible for the sentence realisation.
It uses pedagogical output and takes into account dialogue and discourse
considerations to generate a NL realisation of the dialogue moves that
make up the system’s response. This is the overall system output, which
is shown in the GUI.

The information flow in the system, which is regulated by the dialogue man-
ager, is as follows. The student inputs an utterance in natural language in the
GUI, which can be seen in Figure 1.24. The input analyser specifies the linguistic
meaning of the input and builds an underspecified representation of its math-
ematical content. The proof manager communicates with the domain reasoner
Omega, and attempts to restore a full representation of the student’s attempt
from the underspecified one built from the input analyser. It, hence, determines
the proof step attempted, and evaluates the student attempt for relevance, gran-
ularity, and completeness. The dialogue move recogniser assigns dialogue moves
to the student input in the domain, based on its linguistic meaning.

The dialogue manager makes decisions on the functions of the output dia-
logue moves apart from the task dimension. The domain information manager

4This interface was originally developed by [Fiedler and Gabsdil, 2002]

48 Chapter 1. Introduction

Figure 1.2: The architecture of the prototype NL tutorial dialogue system of
the Dialog project

compares the student’s attempt to the complete step and assigns finer-grained
evaluation, e.g. whether the step is a near-miss, or just wrong, or which of the
expected domain information is present in the student’s attempt. The tutorial
manager represents the state of the tutoring task, and implements a tutorial
strategy that decides which dialogue moves should be produced by the system
next at the tutoring level. It is responsible for producing adaptive pedagogical
feedback. The domain information manager instantiates any domain-dependent
specifications that are included in the tutorial manager’s output. Finally, the
NL generator realises the system output by putting together all the functions of
the dialogue moves that have been determined by the dialogue manager and the
tutorial manager along with the domain-dependent specifications, and further
discourse considerations, such as discourse markers, to generate an NL realisa-
tion. This is output to the GUI and the system is ready to receive the next
input. At the time of the development of the prototype system, the dialogue
move recogniser, and the domain information manager did not produce their
output automatically, but this was hard-coded for specific proofs. Relevant re-
search for the development these modules since then. For the dialogue move
recogniser see [Tsovaltzi and Karagjosova, 2004], Chapter 4 and Appendix C.
For the domain information manager, see Chapter 3 and [Autexier et al., 2004;
Autexier and Fiedler, 2006].

The tutorial manager used in this prototype system was conceptualised and
designed as part of this thesis and was the first stage in the development of

1.3. The Research Problem and our Approach 49

the approach to adaptive feedback that we investigate here. This first naive
implementation was done by the Omega group. In this thesis, we present the
enhanced and full version of the tutorial manager Menon, which involved the
extention of our original concept and design, as well as the reimplementation of
the first naive version.

1.3.3 Our Approach to Automatic Feedback for NL Tuto-

rial Dialogue

In the context described in Section 1.3.2, the present research takes into account
the different constituents of tutorial dialogue that make it efficient, allows for
the possibility to integrate them, and concentrates on the pedagogical aspect
and the cognitive functions of feedback. In particular, it scrutinises the multiple
functions of hints within tutorial dialogues. Our aim is to dynamically produce
general tutorial feedback and hints for arbitrary proof tasks, which fit the needs
of the student with regard to the current proof. Dialogue management can then
adjust this automatic feedback to the dialogue and discourse context and a NL
generator can provide the final verbalised output to the reader. The tutorial
manager Menon, implements this approach to automating feedback.

Tutor
Actions

Pedagogical
Model

Tutoring State

Analysed
Student

Manager
Dialogue

Input

Figure 1.3: Tutorial Manager Cycle

Menon’s output implements a non-goal-specific instructional tutoring model,
which allows the students to build their own knowledge on existing mental struc-
tures and form helpful schemata without super-imposing a particular cognitive
model. To that end, proof step matching allows matching the student’s attempt
to one of the possible correct proof steps, which we call the expected proof step,
and the subparts of this attempt to the expected subparts. The result of com-

50 Chapter 1. Introduction

paring the expected step with the student’s attempt is an evaluation of the
student’s input, which depends on domain knowledge and constitutes input to
Menon. Proof step matching is similar to model tracing in the sense that more
possible solution paths are available, but it is more dynamic, as the use of a the-
orem prover, which it presupposed, makes the explicit definition of these paths
obsolete. We also use tutoring concepts, which we call instructional points, and
define them in a domain ontology (cf. Chapter 3) that allows matching specific
mathematical concepts, relations and terms in the proof step, to the abstractly
defined instructional points. Instructional points are abstract representations
of the knowledge required for solving a problem. The tutor points the student
to the instructional points, so that the student can acquire the corresponding
knowledge by looking at particular steps in the task. This aspect of instruc-
tional points is equivalent to the notion of knowledge components [VanLehn,
2006]. The extraction of hint categories is based on the defined instructional
points. This way, Menon produces feedback for the proof step that the student
attempts on the fly and there is no need to impose a precompiled solution.
However, our hinting strategy provides help primarily when the system judges
that help is needed, and not when the student asks for it. Evidence supports
that the latter may be a weak tactic as students cannot generally monitor their
own progress and need for help [Aleven and Koedinger, 2000b].

We borrow the theoretical construct schema from cognitive psychology to
explain learning to define a blueprint for hinting. Traditionally, a schema
has been seen as a complex structure for organising knowledge. It may be
used to represent objects, relations, perceptions, situations, events, and se-
quences of events. It comprises concepts connected by relations that represent
the structure of the world [Russell and Norvig, 2003]. Most importantly for
our work, according to Rumelhart and Ortony [Rumelhart and Ortony, 1977;
Rumelhart, 1980], a schema is a network representing meaningful knowledge
that is built actively through experience5. With the notion of schema in mind,
we define a blueprint to use as our hint-choice strategy. This blueprint is a
possible heuristic model for problem solving in our domain, as suggested by
instructional theory (cf. Chapter 2). The definition of the blueprint is based
on the relation between the instructional points, on pedagogical considerations,
on the analysis of empirical data from two different domains [Moore, 2000;
Benzmüller et al., 2003b; Wolska et al., 2004], and on the structure of our do-
main (cf. Chapter 3). We incorporate motivation in our teaching model both
in the form of explicit encouragement captured by a dialogue move, as well as
in the form of informed tutoring choices, which aim at promoting attention,
relevance, confidence and satisfaction (cf. Section 2.2.4). Motivation is also
promoted through the personalisation of the learning process [Ross and Fulton,
1994].

Reduction of cognitive load is another goal of our teaching strategy. Cog-
nitive load theory emphasises the importance of providing right amounts and
the appropriate level of help to alleviate extraneous load [Sweller, 1989]. We

5We expand on the notion of schema in Chapter 2

1.3. The Research Problem and our Approach 51

define the hint taxonomy with this aim in mind (cf. Chapter 4). Therefore,
we identify small meaningful domain-knowledge chunks, which the hint-choice
strategy makes use of for personalised instruction (cf. Chapters 4 and 6). The
student’s personal needs are captured in a model – the Hinting Session Status
– that uses information of the tutoring session to operationalise these needs (cf.
Chapter 5). Hence, our goal is that the only source of cognitive load for the stu-
dents is the organisation of the knowledge provided by the instructions, which is
relevant to the schema acquisition [Paas et al., 2004]. Our teaching strategy also
encourages forward-looking proving as long as the students can manage it, but
assists students when they can only apply a means-ends technique, to reduce
the unnecessary cognitive load that this imposes [Chi et al., 1982; Sweller, 1989;
Koedinger and Anderson, 1990]. Finally, the strategy fosters implicit learning
as a mechanism for recognising family resemblance [Mathews et al., 1989], which
enables the re-application of learned schemata to other problems and domains.
We lay out the derivation and the details of the tutorial model that Menon

implements in Chapter 2.
At an abstract level, Menon works following the cycle in Figure 1.3. The tu-

toring state is updated every time there is a new student action. The information
passed on to it by the dialogue manager is the analysed student input, which
includes an evaluation of the student input (e.g. wrong, irrelevant, near-miss)
and which of the expected domain information is present in it (e.g. if the correct
rule of inference is used). Based on the new tutoring state, and the pedagogical
model represented in its teaching strategy, the tutorial manager chooses the
next tutor action. The choice involves defining which tutoring-task functions
the output should have, and which domain information should be addressed
next. The tutoring state is internally updated to represent information relevant
to the previous tutor action (e.g. which task dialogue moves were output, which
substrategy was used, which information was requested or given away). In the
next cycle this information together with the new analysed student input will
define the new tutoring state. The tutorial manager sends its output to the
dialogue manager and awaits the next analysed input from it.

The Socratic strategy that realises the tutorial model has different compo-
nents that allows divergent behaviours based on the current tutoring situation.
We now describe the basics of this behaviour, which we analyse in Chapter 6.
The most general tutoring behaviour accepts complete steps by the student
and calls a recapitulation substrategy to recapitulate a proof when it is com-
pleted. To treat any other answers by the student, the strategies component
is called. Once the hinting has started, any answer that covers a previous ac-
tive hint counts as correct (cf. Chapter 4). The tutoring feedback is divided
into (i) pedagogically-motivated generic output, (ii) production of appropriate
hints based on the formalisation in Chapter 4. Pedagogically-motivated generic
output comprises:

1. encouraging students if their performance is not optimal

2. signalling the evaluation of the students’ domain-contribution

52 Chapter 1. Introduction

3. signalling the closing and initiation of substrategies when they occur and

4. prompting students to perform an action

The production of hints is managed as follows. If the student gives a non-
correct answer and the tutor could not immediately diagnose the problem, a
diagnostics subdialogue takes place in order to pick a substrategy for dealing
with it. When the student input bears interesting non-content characteristics,
such as a missing element from a list, an appropriate pragmatic hint is given.
These hints give little information away, but can help the student nonetheless.
If such a hint works, the student is motivated. In any other case a conceptual
hint is chosen, which addresses the more fine-grained proof level of the proof
step – the different instructional points – in order to lead the student to the
complete and accurate step. To summarise the principles of such hints, without
diving yet into how we operationalise the student’s needs, here’s a sketch of
them.

1. Conceptual hints that address the performable step are given for as long
as students seem to follow them and their performance is good to average.
Such hints provide a moderate amount of help without explanations.

2. When students are not following anymore (many hints are given and a lot
of non-correct answers follow) and they give a completely wrong answer,
the proof step is given away along with an explanation.

3. If students are not following, but their answer is not completely wrong,
a strategy is called, which does not give away the proof step, but leads
students closely through the task, gives local answers away more easily
and explains more. This strategy is stopped when the number of correct
answers exceeds the number of non-correct answers.

4. Finally, if hints appear not to work at all, a hint instructs the student to
read the preparation material again. After that, the interactive session
and the whole hinting process starts afresh.

Parallel to this process, meta-reasoning hints, which are more related to explicit
learning and explain more, are provided as a reinforcement to the performable-
step hints when these do not work well alone. Moreover, we treat common
misconceptions, wrong or missing declarative knowledge that is crucial to the
current step, and wrong formulations and terminology use when the student
level is high. If students request help, we decide whether to provide it or not
based on their performance and their requests for help up to the point, and on
their estimated motivation. According to the student performance, we provide
regular static or interactive recapitulations of the progress in a proof step. We
also allow the student to take back a turn, a proof step, or even to start with a
new solution.

In Section 1.3.4 we look at an example dialogue, to give the reader a better
idea of the kind of interaction that Menon supports. This example is a more

1.3. The Research Problem and our Approach 53

extended version of the one we saw in Section 1.3.2. It concentrates on Menon’s
approach and its automatic feedback. It is a real example of the dialogue moves
Menon produces. Although Menon produces these moves as output and even the
domain-dependent NL specifications for the hint moves, the natural language
formulations shown in the example are not generated by Menon, but are made-
up. We only use them to demonstrate the approach that Menon supports as
a whole, but do not make claims as to the appropriateness of the NL realisa-
tion, which we do not investigate or implement in this thesis. A system like
BUG [Callaway et al., 2006], described in Section 1.2.1.5, could be used for the
NL generation. BUG takes as input dialogue moves, like Menon’s output, and
additionally rhetorical relations and the dialogue context, which are provided
from a dialogue manager, to deliver verbalisations for tutorial feedback6. We
explain particular aspects of our approach to tutorial feedback in Section 1.3.5.

1.3.4 An Example

One of the tasks that we used to collect data in the domain of set theory
(cf. Section 1.4.2) and a valid proof that the students may perform are in
Figure 1.4. The proof is in natural language as it was phrased by a human
tutor. We enumerate the proof steps performed. Figure 1.4 also includes an
explanation of the first step of this proof in the form of a worked example
to familiarise the reader with the style of reasoning that our approach delivers.
The system assumes a tutoring phase, which precedes the interactive phase that
Menon implements, where students get familiar with such examples.

1.3.4.1 Dialogue Example

In the example, student turns are marked S and tutor turns T. The dialogue
begins with standard greetings and the tutor sets the task. The first tutor turn
T1 consists of setting the task and prompting the student to start. The first
answer in S1 is a partial one, since what the student states is a correct subpart,
but not the complete proof step, as expected at this point. The student’s answer
shows an understanding of how to start handling the problem. The tutor starts
in T2 with general pedagogical feedback. The tutor first encourages the student
and informs her of the status of her answer. You’re on the right track also in-
cludes an encouragement, so the two dialogue moves encourage and signal-pa

could be collapsed, for instance to avoid repetition in a following similar turn.
The next dialogue move initiate-subtask-proof-step-meta-reas also aims
to make the student aware of the discourse structure so as to increase the rel-
evance of the following content feedback and, hence, maximise coherence. The
NL realisation of it may be different, e.g. Let’s take it from the start, when the

6For research work in linguistics on the use of natural language by human tutors to inform
intelligent NL tutors and the role of politeness in tutorial dialogue we refer the reader, for
example, to [Porayska-Pomsta and Pain, 2000; Mellish, 2004; Porayska-Pomsta and Mellish,
2004; Porayska-Pomsta and Pain, 2004; Dzikovska et al., 2007]. For empirical and controlled
studies on the effects of personalised and polite language in the context of ITSs and e-Learning,
see [Mayer et al., 2006; McLaren et al., 2006; 2007]. Also see Section 2.2.4.

54 Chapter 1. Introduction

The task tutored: If A ⊆ K(B), then B ⊆ K(A)
The steps of the proof:

1. First we assume the validity of A ⊆ K(B), as this is the assumption. We
will show that B ⊆ K(A) follows.

2. Then we take an arbitrary element x ∈ B and show, that it has to be in
K(A) as well.

3. Let x be in B.

4. Then x is not in K(B) and therefore according to the assumption also not
in A.

5. But if x is not in A, it is in K(A), which concludes the proof as x was
arbitrary.

A worked example of our approach for Proof Step 1:

We start by identifying what we have to assume and prove. Here we have to
assume that A is a subset of K(B) and prove that B is a subset of K(A). Then
we concentrate on the if-then relation which is central to our mathematical
expression and therefore helps us prove what we want. Now we can consider
what we know about the if-then relation which can help us further with the
step. This is that the if-then relation tells us what we need to prove. Taking
that into account, the rule we need to use to get rid of the if-then relation is
that if x then y, assume x and prove y. Finally, we substitute the if-then with
this rule, which means that we assume that A ⊆ K(B) and we will prove that
B ⊆ K(A).

Figure 1.4: An Example of a proof task

tutor wants to indicate that something new is starting, which is not initiated
by the student. Here we use the alternative We’re taking it from the start, as
the student has already used some relevant domain information that is handled
by the subtask proof-step-meta-reas, namely the instructional point Starting

Point, which captures how one should start handling a problem. Therefore, the
subtask initiation is not solely the initiative of the tutor. In indicating this,
the tutor would be clarifying the structure of tutoring in the hope to help the
student to follow the steps taken. We refer to domain information that we use
for instruction, like the Starting Point, as instructional points (cf. Section 1.3.5).
Menon decides that this dialogue move has to be produced and the NL genera-
tor may decide on the appropriate realisation. Just to point out the importance
of this kind of adaptivity at the sentence realisation level, Let’s take it from
the start would actually wrongly indicate that it is purely the tutor’s initia-
tive to start gradually by identifying the premise and the conclusion. This is
however wrong, and it may give students the impression that what they say

1.3. The Research Problem and our Approach 55

is not being considered, which is suboptimal for their motivation. It may also
confuse students as to what they are expected to do if they thought indeed
that they were taking it from the start, and the tutor still prompts them to
do that. Finally, regarding the hinting part of the feedback in T2, a concep-
tual hint is given, as there are no pragmatic characteristics in the student’s
answer that can be used for tutoring. Since the student has not provided the
premise and the conclusion, which we define as instructional points, the next
hint elicit-premise-conclusion addresses them. It is a meta-reasoning hint
of a class of hints that addresses the proof step as a whole and hence also the
reasoning of how to start attacking the step. Therefore, they are produced at
the beginning. The premise and the conclusion are elicited because the session
has just started and the student performance is good, so we want to give the
student the possibility to find the answers alone, in the typical Socratic way.
The hint category, which is a sub-category of the dialogue move hints, is the
specification provided by Menon. Based on this the NL generator can formulate
an appropriate sentence to ask the student for the premise and the conclusion.

T0: (initiate-dialogue) Hello.
S0: Hello.

T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me
anything you can think of for proving the following: If A is a
subset of K(B), then B is a subset of K(A).

S1: (partial-answer(ia)) I have to identify what’s given and what
I have to prove.

T2: (encourage) Great! (signal-pa) You’re on the right track.
(initiate-subtask-proof-step-meta-reas) We’re taking it
from the start. So, go ahead and (elicit-prem-conc) find what
is assumed and what you have to prove.

S2: (correct) I have to prove that B ⊆ K(A), and A ⊆ K(B) is
assumed.

T3: (signal-accept) Correct! (elicit-specific-method) Now,
how can you manipulate the expression to prove what you want?

S3: (correct) I have to simplify what we are trying to prove.

T4: (signal-accept)Correct! (close-subtask-proof-step-meta-
reas) OK. (initiate-subtask-rel-con-meta-reas) Let’s see,
then. (elic-meta-reas-rel-con) Try to find something in the
expression that would help you simplify the problem.

S4: (correct) Do you mean the if-then?

T5: (signal-accept) Exactly! (close-subtask-rel-con-meta-
reas) All right then. (initiate-subtask-domain-object)
Now, (elicit-sub-concept) what do you know about the if-
then relation which can help you handle the expression?

S5: (correct) Something about what I need to prove?

56 Chapter 1. Introduction

T6: (signal-accept) Exactly! (close-subtask-domain-object,
initiate-subtask-inf-rule) So, (elicit-inf-rule) can you
tell me now which rule you can use here?

S6: (correct) Yes, if X ⇒ Y, then let X and prove Y.

T7: (encourage) Good, (signal-accept) that’s correct! (close-
subtask-inf-rule) OK. (initiate-subtask-subst) Now,
(elicit-substitution) try to apply this rule to the expression.

S7: (correct) Let A ⊆ K(B) and prove that B ⊆ K(A).

T8: (signal-accept) Correct! (prompt-step) Move on to the next
step!

S8: (correct) Let x ∈ of B, we will show that x ∈ K(A)

T9: (signal-accept) Correct! (prompt-step) What’s the next
step?

S9: (wrong) Also let y ∈ of A

T10: (signal-wrong) That’s not right, actually. (initiate-sub-
task-proof-step-meta-reas) Let’s take it from the start again.
First, (elicit-prem-conc) find what is assumed and what you
have to prove.

S10: (partial-answer) x ∈ B is assumed and I have to prove that B
subset K(A)

T11: (encourage) OK. (signal-pa) Almost right. (give-away-
prem-conc) What is assumed is x ∈ B, and what you have to
prove is x ∈ K(A)
. . .

The student answers the eliciting hint correctly in S2. The domain infor-
mation manager can instantiate the premise and the conclusion for the current
proof step with the content of S2. The content of S2 is identified in the stu-
dent’s input by the input analyser. The domain information manager passes on
the information to Menon that the premise and the conclusion are known. No
encouragement is judged necessary at this point, as overt motivation would be
too much. The step is not completed, but the student is doing well on the whole,
so the next hint is produced in T3, which still elicits information, rather than
giving it away. It asks the student for the instructional point Specific Method.
In our domain, this instructional point captures the proof direction, i.e. forward
or backward step. In this case the Specific Method is backward, which means
decomposing the goal. The discourse cue “now” may be added to the NL re-
alisation as shown here, to indicate that the task is progressing and help the
student follow what is going on.

With her answer in S3, the student provides the Specific Method and covers
the rest of the instructional points that are defined for dealing with the proof-
step meta-reasoning. Again, the domain information manager would instantiate
this instructional point for the current proof step with backward, and Menon is
informed accordingly. The tutor signals the end of the subtask with a simple
“OK”, again to add structure to tutoring and spare students the cognitive effort

1.3. The Research Problem and our Approach 57

of looking for this structure themselves. This is general pedagogical feedback.
The dialogue move for this signalling is provided by Menon, as tutoring tasks are
managed by it. The start of a new subtask is then indicated in T4. The hint
produced still elicits information, but at the same time it explains the reasoning
behind the step – the meta-reasoning – at this point, because the student has
still not given the complete proof step and might need this sort of explanation in
order not to feel lost and not be overwhelmed by the cognitive load. Still, hinting
seems to be working and there is no need to give the whole answer away. The
instructional point addressed is the Relevant Concept, and the hint explains its
function in the process of proving. The definition of the Relevant Concept in the
domain ontology is available for that. We will see the definitions of all instruc-
tional points in Chapter 3. Informally, the Relevant Concept is the concept that
is present in the expression to be handled next and is necessary for the applica-
tion of the Rule of Inference for the step. Menon provides the specifications for
the hint, i.e. the hint category elicit-meta-reasoning-relevant-concept

and the instructional point Specific Method. The NL realisation only mentions
a description of the Specific Method: “simplify the problem”.

The domain information manager informs Menon that the Relevant Concept

is identified in the student’s input in S4. As this is the ultimate goal of the
current subtask, no further hints are necessary from it. The subtask is closed
in T5 and the new subtask is initiated. Both student and tutor (e.g. T5)
refer to the implication as “if-then”, for a more intuitive name than the logic
term. Menon outputs the domain-dependent specification Relevant Concept for
the next hint. However, the NL generator is responsible for this realisation of
the implication relation, as well as for the realisation of the whole hint. Notice
also the different way of signalling that the student input is correct from that
in T4, how the phrasing for closing the task differs, and the discourse marker
“now” before the hint. The student is doing very well, despite the slow progress,
which is expected in the application of the Socratic strategy.

Therefore, no more meta-reasoning explanations are provided, but we switch
back to addressing the performable step only. A hint that asks for the instruc-
tional point Subordinate Concept is chosen from the new subtask. Again infor-
mally, the Subordinate Concept is the concept in the expression that the student
derives after the application of the Rule of Inference and is necessary for applying
the rule. For this proof step, the subordinate concept is what has to be proven,
namely that B ⊆ K(A). The domain-dependent specification of the hint is the
Relevant Concept, which has to be mentioned to elicit the Subordinate Concept.
Moreover, the hint is formulated differently from the one in T4. Namely, it is
a question rather than a suggestion. We have chosen the formulation based on
what we think sounds better, as it is beyond our research topic to investigate
when each formulation is appropriate. However, the specification of two hints in
terms of hint category and domain information allows for the different realisa-
tion of them. The rest is the job of the dialogue manager and the NL generator
in a system.

The next turns continue in the same fashion, until S7 that completes the
first proof step. In T8 the tutor prompts the student for the following step

58 Chapter 1. Introduction

without any hinting to allow student initiative anew. The student gives the
complete next step in S8, but then gives a wrong answer in S9. This causes
hinting to start again in T10, following the same schema-promoting hinting.
The discourse markers “actually” and “first” are added for the NL realisation
of the turn. The initiation of the new subtask uses the marker “Let’s” this time,
as opposed to turn T2, because as the student has not contributed to moving
into this tutoring direction, namely the new subtask. The hint starting-point
is left out this time, since the student has already performed a step, and it would
be too tiring to repeat it. Instead, the premise and conclusion are elicited di-
rectly. In turn S10, the student’s answer to the eliciting hint is only partially
correct, so the tutor provides the passive hint that gives the answer to the
previous eliciting hint away in order to boost the student’s attempt a bit, but
without giving away the whole step. The specifications for the hint are its cate-
gory give-away-premise-conclusion and the instructional points premise and
conclusion. Given that there was a previous hint asking for this information,
the NL formulation of give-away-premise-conclusion indicates this. Alter-
natively, the hint might have been formulated as We assume x ∈ B and prove
that x ∈ K(A).7

1.3.5 The Particular Aspects of our Approach

Pedagogical Model and Teaching Strategy In terms of feedback choice,
we propose a full-fledged tutorial model based on learning theories and empirical
data. We model a Socratic teaching style, which allows us to manipulate aspects
of learning, such as promoting schema acquisition, help the student build a
deeper understanding of the domain, eliminate cognitive load, and manipulate
motivation levels [Wilson and Cole, 1991; Weiner, 1992; Lim and Moore, 2002],
all in the context of NL dialogue interaction (cf. Chapter 2).

Let us look at a few advantages of our general approach with regard to im-
plementing our pedagogical model, as opposed to standard feedback methods.
We believe, like [Beal and Lee, 2005] that no matter how good the cognitive
preparation of a hint is, student cannot make any use of it if they are not mo-
tivated to resolve the task and learn. Consequently, we view motivation theory
as complementary to other learning theories, but inseparable from any other
cognitive goal. Menon integrates elements of motivation theory into a unified
tutoring model and binds motivation considerations with schema theory. As
a whole, our approach contributes to motivation in two ways. First, dynamic
feedback production may increase confidence, as students are allowed to build
their own input. Second, dynamic realisation of tutorial feedback may con-
tribute to maintaining attention, as the change in NL realisation of feedback
can make the hints of the same category less boring when they have to be
produced many times [Keller, 1987]. Menon’s feedback is produced dynamically
and promotes active participation of the student, while at the same time tries to

7The same example dialogue can be found in Chapter 6 Section 6.6 with more elaborate
comments on the operationalisation of the choices made by the strategy implemented in Menon.

1.3. The Research Problem and our Approach 59

help the students with solving the task by step-wise hints. This approach aims
at increasing confidence, relevance and satisfaction [Keller, 1987; Weiner, 1992;
de Vicente and Pain, 1998]. Moreover, Menon’s output in the form of dialogue
moves that can be realised by an NL generator based on the dialogue context
intends to contribute to maintaining the student’s attention. Finally, Menon

models dialogue moves that explicitly motivate the student when necessary.
Additionally, we aim at the promotion of schemata, which we represent

through abstractly defined but meaningful knowledge chunks: the instructional
points. Since reduction of cognitive load is a prerequisite for the acquisition of
schemata [Sweller, 1989], the definition of the hint taxonomy based on instruc-
tional points takes that into account. The Socratic strategy, in turn, makes
use of the instructional points to make hint choices and to provide help in right
amounts and at the appropriate level in order to minimise extraneous load. This
way, we try to restrict the source of cognitive load to the assimilation of the
instructions that fosters the acquisition of schemata.

In general, the fully adaptive teaching strategy can make the feedback un-
predictable to students to a large extent, because it implements a variety of
feedback methods, and a mixture of hints and general pedagogical feedback.
For example, when the student requests help, the strategy chooses between
giving the answer away, encouraging the student to try harder, or requesting
that the student prepares better before trying again. This choice is based on
striking a balance between providing necessary instruction and fostering engage-
ment. At the same time, the multiple possibilities of feedback constitute precau-
tions to the students “gaming” or “abusing”the system [VanLehn et al., 2005;
Baker, 2007], as they cannot take it for granted that answers will be provided
on request.

Such aspects taken together aim at scaffolding students to a level where
active learning is possible, promoting motivation for students to work on the
task alone as long as they manage, and providing the right level of feedback at
appropriate times to help the student in the acquisition of schemata.

Pedagogical Knowledge Representation We define a domain ontology to
assist us in producing adaptive tutorial feedback for arbitrary proofs. Hence, the
domain ontology specifies abstract variables and relations, which we call instruc-
tional points, that are pedagogically motivated and capture human-oriented
reasoning for tutoring proofs and deduction in general. These were derived top-
down, first, in the attempt to define the Socratic teaching strategy, and second,
by looking at existing formalisations of the domain and extracting potentially
useful structures for tutoring purposes. The defined variables and relations were
then specified further bottom-up, according of the analysis of empirical data,
which excluded some original top-down definitions and revealed the need to de-
fine others. The final variables and relations constitute instructional points for
tutoring arbitrary proofs (cf. Chapter 3). In Section 1.3.4.1 we saw examples
of instructional points, such as the Starting Point, the Specific Method, the Rele-

vant Concept, etc. The use of the variables and the relations in the ontology to

60 Chapter 1. Introduction

define instructional points is also motivated by schema theory. By using them
we aim to implement a counterpart for instruction (tutoring) for the concept of
anchoring points , which refers to the way cognition is organised and learning
works (cf. Chapter 2). Once students have acquired a schema, they can apply
it to solve similar problems. Moreover, the identification of instructional points
is crucial for providing automatic feedback based on schema theory, as opposed
to dealing with pre-authored tasks. This approach to schema-based feedback is
problem independent and can be used to tutor arbitrary proofs.

Student Modelling Rather than modelling the student, which is an AI com-
plete problem, we prefer to think of our approach as modelling the tutoring
session. In doing this, we avoid the pitfall of making claims about the student’s
actual frame of mind or affective state. We rather adapt feedback to different
aspects of the tutoring session and consequently to the student progress as it is
reflected in it. These aspects include:

1. information on how the proof task is evolving in the tutoring session and
in the current step, e.g. if the proof step or the proof has been completed

2. information on how the tutoring task is evolving in the tutoring session
and in the current step, e.g. which were the previous hints provided, or
substrategies applied

3. knowledge that helps to assess the demonstrated level of understanding,
e.g. which instructional points are present in the student input

4. knowledge that helps to assess the demonstrated level of motivation and
the imposed cognitive load, e.g. how may hints have been given without
much success in helping the student understand, and if the student resigns
from the task directly or indirectly.

Part of what is represented in the analysis of the student input are the in-
structional points. Instructional points assist this analysis in so far as they direct
the search for required knowledge. They constitute the information that should
be present in the student input for an answer to be complete. If this information
is missing, it should be addressed during tutoring. Proof step matching is used
for that purpose. This is a technique for matching the student’s attempt to one
of the possible correct proof steps, which we call the expected proof step, and
the subparts of the attempt to the expected subparts. The instructional points
are matched to specific mathematical concepts, relations and terms in the proof
step. The result of comparing the expected step with the student’s attempt is
an evaluation of the student’s input, which depends on domain knowledge and
constitutes input to Menon. The use of instructional points enables some shal-
low student modelling (cf. Chapters 3 and 5), which is characteristic of expert
tutors. We use it in lack of evidence that more elaborate methods are more
effective [Wiemer-Hastings, 2004]. Our approach also follows the behaviour
of human tutors who take the student’s input into consideration, but do not

1.3. The Research Problem and our Approach 61

scrutinise the student’s knowledge before offering help [Graesser et al., 2001;
Narciss, 2003].

Dialogue Move and Hint Taxonomies To enable adaptation for the var-
ious aspects of tutoring feedback, we have built a dialogue-move taxonomy for
tutorial dialogues, which includes a taxonomy of hints (cf. Chapter 4). In this
respect, we abide by the theoretical definition of [Narciss, 2003] that sees in-
formative feedback as “a multidimensional instructional measure” (p. 22). We
consider most of the feedback functions identified in the analysis of this research
(cf. Section 1.2.6), leaving out metacognitive functions, which are not part of
our tutorial goal and therefore we do not address them in any direct way. We
also dive into the cognitive function of hints and contribute additional subfunc-
tions that deal with: (i) the amount of information provided or elicited, (ii)
views on discovering an inference that the feedback points to, and (iii) the type
of inference about the information addressed by the feedback. Moreover, we
move one step further from this theoretical work and define our multidimension
and multilevel taxonomies as a means to capture if and how these multiple di-
mensions relate to each other and may be combined in one feedback message.
This perspective to tutorial feedback is reflected in the different dimensions of
the dialogue-move taxonomy, which models the fact that one dialogue move
may have various functions that can be combined. It is also reflected in the way
multiple dimensions are interleaved inside it. In our approach, hint is considered
a dialogue move in the task dimension, which we define for the proof and the
tutoring tasks in the tutorial dialogue genre. The cognitive function of hints is
only one of its functions as a dialogue move, i.e. the task function. Given its
complexity, we define a multidimensional taxonomy of the cognitive functions
of hints. Each dimension in the hint taxonomy defines a decision point for the
associated hint function. Hint categories are points in the space defined by the
dimensions, where the decisions for the different functions are the coordinates
of the points [Tsovaltzi et al., 2004a]. We propose how this can be combined to
produce pedagogically meaningful hint categories. For example, in turn T4, in
Section 1.3.4.1, the hint category elicit-meta-reasoning-relevant-concept

captures the meta-reasoning in one dimension, and refers to the Relevant Concept

instructional point, which is a choice in a different dimension. It also refers to
the domain information conceptually and is an active hint. These four decisions
make up the category. A use of this explicit representation that we explained in
our example dialogue is that the meta-reasoning function can be applied when a
change in the student performance occurs that requires it, while the other hint
functions can be kept the same. We emphasise making the cognitive functions
of hints explicit in order to be able to use these functions in the choice of hints.
To this aim, we define situations where separate hint functions are appropriate,
rather than situations where a whole pre-compiled hint is appropriate. This
adds to the adaptivity of feedback, and allows us to capture their educational
power. We also provide a way to formalise the hint categories and thus make the
automation of multifunctional feedback possible within an ITS (cf. Chapter 3).

62 Chapter 1. Introduction

Automatic Feedback Choice The appropriate feedback is chosen automat-
ically by help of a selection procedure, which implements the Socratic teaching
strategy. Hints and other tutoring-task dialogue moves are the basic units of
the teaching strategy concerned with cognitive feedback. The Socratic strat-
egy chooses task dialogue moves, which are domain independent but strategy
dependent. For example, whether to signal the end and beginning of subtasks,
which we saw in Section 1.3.4.1 in the example dialogue, is a domain indepen-
dent decision. However, it must be among the goals of the tutoring strategy to
make students aware of the structure of the task in order to reduce the students’
cognitive effort and allow them to concentrate on other aspects of the task. This
fact renders it strategy dependent.

The Socratic strategy also calls substrategies. Substrategies apply to differ-
ent hinting situations and make a number of decisions.

1. They decide whether to produce a hint or another task-dialogue move, e.g.
an encouragement.

2. They choose which dialogue move to produce and its parameters, repre-
senting some pedagogically motivated feedback. For example, a general
encouragement produced because the student seems to be struggling may
be realised as It’s a bit difficult, right?, or You’re doing well!. Whereas
an encouragement produced after the student has requested an evaluation
may be realised as It’s not easy, but you’ll get there!.

3. They specify which functions the hint should have, e.g. whether the in-
formation addressed should be elicited or given away

4. The order in which feedback will be produced, e.g. in case of multiple
feedback messages.

5. They decide when the feedback will be produced, e.g. misconceptions are
not treated immediately, but after the system has checked their origin.

Substrategies can be called recursively and within one another. They are di-
vided into subtasks and subdialogues based on their primer function. That
is, respectively, they give feedback to the student input directly, or they ini-
tiate a subdialogue, which assists the system in choosing the appropriate task
feedback. Subtasks are part of the main task, which is the overall task of tu-
toring the proof. They may implement a way to deal with specific situations
in tutoring, like misconceptions. Subtasks may also pick one of the hints that
belong to the same class of instructional points. We refer to these subtasks as
class subtasks . They take into consideration the tutoring situation to choose
the appropriate functions of the hint to produce, and hence choose a hint cat-
egory. More specifically, choosing the appropriate formulation of the dialogue
move initiate-subtask-proof-step-meta-reasoning in T2 of our example dialogue
in Section 1.3.4.1 has no bearing on domain decisions. Moreover, any domain
that uses some form of rules of inference, that is deduction, will require that a
rule of inference is tutored when the student has not provided it yet.

1.3. The Research Problem and our Approach 63

In effect, the procedure chooses hint categories through the choice of the
right cognitive function in every dimension that is represented in:

1. the choice of subtasks

2. the choice of instructional point for tutoring within class subtasks

3. the choice of eliciting or giving the instructional point away also within
class subtasks

In this thesis, we implement the Socratic strategy that chooses the auto-
matic feedback and the model of the tutoring session with its different fields that
operationalise it. We also define the dialogue moves that are relevant to tutor-
ing and a domain ontology for automatically instantiating the domain-content.
This can be used for recognising instructional points in the student’s answer
and for instantiating the instructional points that constitute domain-content
hint specifications. However, we do not implement the ontology that analyses
student input and the NL generation of hints are not part of our research. In
Section 1.3.2 we discussed the different modules responsible for analysis and
generation in the Dialog project, and we provided references for their work in
this direction.

Distinction between NL Dialogue and Tutorial Management We use
the domain ontology in the dimension that captures domain knowledge, and
show how the definition of instructional points makes domain knowledge read-
ily available for tutoring decisions and automatic generation of hints within a
NL tutorial manager. Namely, instructional points inform both the choice of
an appropriate hint category and the specifications of the actual hint to be
produced [Fiedler and Tsovaltzi, 2005]. For example, in T4 in our dialogue
example in Section 1.3.4.1, the hint elicit-subordinate-concept is chosen
because this instructional point was not yet used in the student input so far,
although all other instructional points that precede it in the reasoning for the
step have been covered. As we saw in the example, such instructional points
include, among others, the Starting Point and the Relevant Concept. Therefore,
at this point the analysed student input that is sent to Menon must represent
whether the Subordinate Concept is present in the student input.

In order to make hint realisation adaptable to the dialogue and discourse
context, we define each hint category based on the instructional points. Since
the hint content is chosen automatically, there is no need for pre-formulated
NL hints. The automatic choice of content is only one of the aspects that de-
fine a hint. However, when the content is automatically determined, the other
cognitive functions of hints as well as the dialogue functions that a hint should
have in a given dialogue context can also be determined automatically. The
same holds for discourse decisions. We complement those with other domain
information, which assists the NL realisation of the hint. For example, the
specifications of the hint give-away-inference- rule include the name of the
rule of inference and the Relevant Concept. For the rule of inference in the first

64 Chapter 1. Introduction

step of our example proof task in Figure 1.4 the name for the rule is Introduc-
tion of Implication and the Relevant Concept is the implication. These values
for the hint specifications can be instantiated by the module in the dialogue
manager that represents the task with its mathematical knowledge, e.g. the
domain information manager, and can be passed on to the NL generator. The
NL generator can then produce a NL realisation like You have to get rid of
the “if-then” relation. Since the ontology defines the instructional points like
Rule-of-Inference and Relevant Concept, it enables the mapping of the generic
descriptions of domain knowledge onto the actual objects or relations that are
used in the particular context, that is, in the particular proof and the proof
step under consideration. Finally, the hint category itself constitutes the spe-
cific dialogue move in the super-category hint, which is represented in the task
dimension of the dialogue-move taxonomy and should be realised as all dialogue
moves based on information defined in the NL generator for its realisation. To
illustrate this, the active hint elicit-inference-rule, which we saw in Sec-
tion 1.3.4.1, does not need domain-dependent specifications as it does not name
any instructional points. The NL generator can formulate it as Which rule can
you apply here? based only on NL dialog-move specifications, just as it may for-
mulate the move signal-non-understanding, which is not a task dialogue move,
as What do you mean?. Over 40% of the dialogue moves that Menon produces
as output are of this kind, and almost 15% of them are hints. The rest are hints
whose domain-dependent specifications are abstractly defined.

Figure 1.5 abstracts from the specifics of the prototype NL tutorial dialogue
system and illustrates how the instructional points and the other hint specifi-
cation are used for the automatic NL hint realisation. The domain information
manager can use the definitions of the instructional points in the domain on-
tology to compare the representation of the incomplete proof step attempted
by the student input (which is derived by the input analyser) to the complete
proof step (which is identified by the proof manager) in order to track the in-
structional points that are present in the student input. Again for the hint
give-away-inference-rule, the input analyser would send a representation
that does not include the Rule of Inference, the proof manager would return a
complete representation of the step where the Rule of Inference is the Definition
of Powerset. The domain information manager, will look for the instructional
point Rule of Inference and will recognise that the Definition of Powerset is not
present in the student input and this information will be passed on to Menon.
This is represented in Menon as part of the new tutoring status. The Socratic
strategy will decide that the hint to produce is give-away-inference-rule

and return this hint category and the domain-dependent specifications for the
category discussed above. The domain information manager will instantiate
Definition of Powerset for the name of the rule, and powerset for the Relevant

Concept. These instantiated hint specifications and the hint category will be
passed on to the NL generator, which will integrate them with additional dia-
logue and discourse specifications and generates the final NL hint realisation.

Note that by providing hint categories and domain-dependent specifications
as Menon does, the final sentence realisation of hints can also become dialogue

1.3. The Research Problem and our Approach 65

Proof Manager

Manager

S
te

p
A

tte
m

pt
ed

 P
ro

of

Representation
of

Student Step

Dialogue Manager

Input Analyser

Domain Info
NL Generator

Hint Specifications
Instantiated

NL Hint Realisaion

Tutorial Manager (Menon)

Model
Tutoring Session State

Updated Tutoring

Socratic Strategy

In
st

ru
ct

io
na

l P
oi

nt
s

U
se

d

Hint
Specifications

Figure 1.5: The use of the instructional points and the other hint specifications
for automatic NL hint realisation

adaptive, in that any dialogue and discourse specifications can be added to
these tutorial-feedback specifications and influence the actual NL realisation of
the feedback. This gives tutorial feedback the best of both worlds in tutoring
dialogue systems: adaptive cognitively-oriented domain-specific feedback due
to the definition of hint categories as dialogue moves and the specifications
of hints using instructional points, and dialogue adaptivity in tutoring, due
to the possibility of taking other dialogue and discourse content into account.
We saw examples of such dialogue and discourse sensitivity in Section 1.3.4.1,
e.g. adding discourse markers and choosing one dialogue move formulation over
another. This aspect of our approach is similar to the approach for managing
tutorial dialogues in BEETLE [Zinn, 2002]. BEETLE suggests an architecture
and a planning mechanism to enable such separate manipulations of the different
aspects of tutorial dialogues as we envision. In this thesis, we look into the
same phenomenon from the perspective of automating feedback in NL, which
can be situated in an architecture like the 3-tier planning in BEETLE. Our
approach is an equivalent micro-perspective of the tutorial dialogue management
considerations investigated in BEETLE.

66 Chapter 1. Introduction

As we have argued already, separating general pedagogical feedback from tu-
torial feedback, and that from dialogue moves that are not related to the task,
allows simultaneous processing and fast discourse manipulations that would
otherwise be impossible. An example of such manipulations is back-channel
feedback [Graesser et al., 2001], which is far more frequently provided than
other feedback, a lot of the time before students have completed their input.
To this end Menon provides conversational cues to structure the discourse in
the form of general pedagogical feedback. As we saw in our example dialogue,
such cues include signals of opening and closing tasks, subtasks and subdia-
logues, e.g. OK in places like “OK. Let’s see then.” Moreover, the architecture
suggested also supports the implementation of back-channel feedback to pump
the student input on the fly, by dealing with them before the tutorial manager
has provided its feedback, as such phenomena can be directly handled by the
dialogue manager, which manages discourse structure.

Another advantage of our approach to automating hinting is that we can
promote natural argumentation [Reed and Grasso, 2004] in two fashions. First,
it is captured in the dialectic of reaching a common ground towards resolving
the proof task, which we implement by the Socratic teaching strategy. The
two parties participating in the dialectic are the student, collaborating with
the tutor to find a proof and to learn, and the system, trying to reason with
students on the basis of their input but towards a valid solution. This models
natural argumentation with its characteristic dialogical structure and expressive
power. Second, the fact that we keep the mathematical logic as the basis of
our domain ontology, but abstract from it and capture it in a human oriented
way for the definition of instructional points, is also characteristic of natural
argument [Tsovaltzi and Fiedler, 2003a].

Reconfigurability An important effect of our feedback design is that di-
alogue and discourse management can be independent of tutoring strategy.
With respect to discourse management, we provide an analysis of pedagog-
ical feedback in terms of dialogue moves, which constitutes the infrastruc-
ture for implementing the theory of social obligations [Traum and Allen, 1994;
Matheson et al., 2000]. This theory views discourse as underpinned on the de-
ployment of dialogue moves that pose or discharge obligations defined by the
social context in which the dialogue takes place. Social obligations provide a
solid background for explaining tutorial dialogues in general and the character-
istic function of hints at the level of discourse [Tsovaltzi, 2001; Tsovaltzi and
Matheson, 2002]. We take obligations into consideration for the development of
our dialogue-move taxonomy.

In terms of applying this approach to other domains, we define different hint
dimensions and represent domain-knowledge separately in one of the domains.
The functions of hints captured in the other three dimensions and the rest of the
dialogue moves are domain-independent. In effect, most of the teaching strategy
and pedagogical considerations of the tutorial manager is domain independent
and can be retained for different domains. Moreover, the domain-knowledge

1.3. The Research Problem and our Approach 67

dimension is conceptualised in such a way that hint categories abstract from
the specific values of this knowledge. This conceptualisation, as well as the way
we have structured our domain-knowledge dimension may be used by developers
as guidelines for structuring their own domains, with the closest ones being other
problem solving domains. The idea behind this structure is simple and generic.
It concentrates on general concepts that are common in problem solving, like:

• what is given and what has to be found or shown, which is very standard
in problem solving

• what is the rule of inference that justifies a step

• how one can reason about finding the appropriate rule and

• how one applies it to the problem at hand

These are all related to the line of reasoning in finding a problem. An example
of another domain where such a general approach might fit in well is physics.
VanLehn and colleagues [VanLehn et al., 2005] already recognise the fact that
solutions in physics can be considered to be proofs, and that they can be ex-
plained based on physics principles that are used as justifications in a solution.
This is equivalent to the rules of inference that are also used as justifications in
mathematics proofs. As a matter of fact, the Rule of Inference is one of our cen-
tral instructional points and the definitions of Relevant Concept and Subordinate

Concept capture the reasoning for finding the Rule of Inference.
In conclusion, from the systems reviewed in this chapter, our work is mostly

similar to but different from two other research efforts, the ITFL-model [Narciss,
2003] and the BEETLE system [Zinn, 2002]. The ITFL-model aims to provide
general guidelines to ITS developers for composing tutorial feedback based on
multiple dimensions. It distinguishes between cognitive, metacognitive and mo-
tivational aspects of feedback. We, on the contrary, move away from general
guidelines and provide a model of the multiple dimensions of tutorial feedback
and an implementation of the multiple dimensions of hints. In doing that, we
also differentiate between dialogue and cognitive feedback; a necessity of which
the ITFL-model seems to be aware of, but does not capture. We investigate
how dialogue and cognitive feedback relate to each other, and how they should
be treated separately in ITSs. Moreover, we implement pedagogically informed
feedback strategies that incorporate the orchestrated use of the dialogue move
dimensions, the cognitive hint dimensions, and of motivational aspects of feed-
back. BEETLE suggests a 3-tier architecture and a planning mechanism to
enable such separate manipulations of the different aspects of tutorial dialogues
as we envision and that involve the separation between cognitive and dialogue
functions of feedback. However, no such analysis of feedback is undertaken
or is implemented in the system. We provide and implement this analysis of
feedback. Consequently, our approach is an equivalent micro-perspective of the
tutorial dialogue management considerations investigated in BEETLE and of
the general guidelines for composing feedback proposed by the ITFL-model. It

68 Chapter 1. Introduction

is also the meeting point of the two, as it combines the idea of multiple dimen-
sions of feedback, like the ITFL-model, but explores the dialogue level as one
of these dimensions, which is important in the BEETLE system.

1.3.6 Goals and Scientific Contributions

In summary, given the above considerations, the specific goals and scientific
contributions of this thesis are:

1. To propose a method for automatically producing general pedagogical
feedback and hints.

This has three aspects:

(a) The separation of task vs. discourse.

We propose a multidimensional dialogue move taxonomy [Tsovaltzi
and Karagjosova, 2004] specially designed for tutorial dialogues, which
includes an elaborate task dimension. This multidimensional ap-
proach makes it possible to capture the tutoring task aspect of dia-
logue moves without ignoring their other functions that are impor-
tant for dialogue adaptivity. In the case of hints, it allows treating
the cognitive and dialogue functions of them separately and enables
adapting both based on tutoring and dialogue/discourse considera-
tions.

(b) Automatic production of appropriate hint categories based on the
student level and needs.

This aim is realised in the thesis by the hint taxonomy and the hinting
strategy. The hint taxonomy captures the underlying cognitive func-
tions of hints for the production of pedagogically justified feedback
and defines hint categories based on those functions. The Socratic
teaching strategy chooses the appropriate category for different stu-
dents and different tutoring situations.

(c) Dynamic realisation of the produced hint categories based on dialogue
and linguistic context.

We define hint categories as dialogue moves and based on abstract
variables and relations, but do not make further claims about their
NL realisation. We separate out the underlying cognitive functions of
hints from dialogue functions, which might be common for different
cognitive functions [Collins and Stevens, 1982; 1991; Tsovaltzi and
Matheson, 2002]. To this end, we include the dialogue move hint in
the task dimension of our dialogue-move taxonomy and use the hint
taxonomy that captures the cognitive function of hints to handle this
complex dialogue move. This allows the investigation of both aspects
in isolation, and at the same time facilitates their re-integration for
the natural language generation of the feedback. The actual sentence
level realisation of a hint can then be based on decisions regarding

1.4. Methodology 69

the function that better serves the tutoring goals, as well as decisions
regarding the dialogue and discourse context, which take advantage
of NL dialogue capabilities. Although the possibility of this second
aspect is provided in this thesis, it is beyond its scope to explore this
issue further, except for the task dialogue moves (cf. Chapter 4).

2. To define a pedagogical model for teaching proving in our domain.

Although cognitive models and instructional strategies exist (e.g. [Collins
and Stevens, 1982; Anderson et al., 1995; Anderson, 1993]), recently re-
searchers have also started to try to combine the two traditions [Wilson
and Cole, 1991]. The thesis undertakes the investigation of state-of-the-art
research in the learning sciences , that is mainly cognitive science, educa-
tional psychology, computer science, information sciences, neuroscience,
education, and instructional design. It explores the derivation of instruc-
tion guidelines for teaching proving. An added value of defining such a
strategy and implementing it for use in ITSs is the careful and controlled
application of such research, as it is observed that even the most experi-
enced tutors do not consistently use the wealth of knowledge on learning,
which psychological research has given us. This is partly due to the com-
plexity of the psychological findings, and partly due to the lack of a model
that unifies them to the level that tutors need in order to apply them.

3. To derive a teaching model for our implementation.

This requires (i) making use of the guidelines derived from state-of-the-
art research in learning and from our experimental data as the basis the
definition of our teaching model, (ii) turning this definition into a concrete
teaching strategy, our Socratic teaching strategy, for teaching proving in
set theory. This is a well defined domain, used in formal proving. Proving
involves using a certain set of givens, logic rules and domain rules of
inference to reach a certain conclusion. In this context, we also investigate
the use of hints so as to incorporate them better in our Socratic teaching
strategy.

4. To provide an implementation as a proof of concept for the proposed
method of automating hints and the teaching model.

This involves implementing the Socratic teaching strategy that automati-
cally and adaptively chooses dialogue moves and hints that are appropriate
in the tutoring context. It also specifies the domain-knowledge that must
be used to realise the hints, whose instantiation should be provided by
another module, a domain reasoner.

1.4 Methodology

A well practised methodology in ITSs is to implement tutoring strategies as
human tutors apply them. Although this is a valid method, we believe like [du

70 Chapter 1. Introduction

Boulay and Luckin, 2001] that it should be used with caution. Modelling human
tactics from observation of tutor-student interactions involves a multilayer inter-
pretation of the principles of learning that are employed. Learning theorists run
controlled experiments and based on the results build progressive models and
theories on learning. Educational theorists interpret these models for specific
learning goals and provide general guidelines for their applications to tutoring.
Tutors interpret these guidelines and are trained to use them and apply them to
concrete tutoring situations. Finally, researchers reconstruct tutoring strategies
from observing human tutors.

This series of interpretations may obscure the principles of learning and
result in an unorthodox use of them in the third layer, which is often further
burdened by personal unsubstantiated preferences of the tutors, or in the fourth
layer, as observation is not a controlled research method. Hence, building a
model of tutoring based on observed tutor actions should only be done with
moderation. It should be used to inform those parts of the model, which pertain
to the concrete application to tutoring situations. For example, the way a tutor
applies a pre-defined pedagogical goal in a specific domain, or how dialogue
techniques and discourse markers are applied.

1.4.1 The top-down vs. bottom-up cycle

We employ an iteration of different recommended methodologies for developing
our tutorial module [du Boulay and Luckin, 2001]. We combine expert tutoring
and bottom-up observations of student behaviour in the domain [Benzmüller
et al., 2003b], with top-down perspectives. These top-down perspectives in-
clude guidelines from learning theories (e.g. cognitive theory of schema, moti-
vation theory, implicit learning), and automating considerations (formal proving
and formal proof representation for instructional points) [Tsovaltzi and Fiedler,
2003b].

The specific steps of our methodology were as follows. We developed a first
hint taxonomy and a hinting strategy that draws on that taxonomy [Fiedler
and Tsovaltzi, 2003a]. The hint taxonomy and the strategy were based on data
collected for the domain of basic electricity and electronics from a corpus that
transcribed NL dialogue interactions between a human tutor applying a Socratic
teaching strategy and a student [Rosé et al., 2001b; Tsovaltzi, 2001]. Domain
information requirements for the taxonomy and the strategy were derived by
help of a mathematical ontology that captured domain knowledge for our do-
main: set theory [Tsovaltzi and Fiedler, 2003b]. The hint taxonomy defined
two dimensions of cognitive functions of hints; one captured domain informa-
tion based on the domain ontology and the other distinguished between the
active and passive function of hints. The hint taxonomy was used by a hinting
algorithm that produced different hints according to an implicit student model
and the Socratic teaching method [Fiedler and Tsovaltzi, 2003b]. An imple-
mentation of the Socratic hinting algorithm was provided. Moreover, to classify
the student’s input, we developed a categorisation scheme for student answers,
which drew on the mathematical ontology.

1.4. Methodology 71

We then collected data on our preliminary approach to hinting in an experi-
ment where participants were asked to prove simple theorems in our domain via
dialogue interaction [Benzmüller et al., 2003b; Wolska et al., 2004]. The analysis
of the collected data gave us valuable insight into the domain and into neces-
sary improvements to our hint-choice algorithm. We augmented our preliminary
domain ontology, added more dimensions to our hint taxonomy, and enhanced
our hint-choice algorithm to incorporate these dimensions. The algorithm was
turned into the implementation of the now advanced teaching model.

We will now look into the first part of this methodology, which involved
two cycles of data analysis before we analyse the final version of the various
aspects of our approach to automating a Socratic teaching strategy, for which
we dedicate a corresponding chapter in this thesis.

1.4.2 A Pilot Wizard-of-Oz Experiment

The experiment that helped us collect data on improving our preliminary ap-
proach to hinting was a Wizard-of-Oz experiment. In a Wizard-of-Oz exper-
iment, the participant interacts through an interface with a human “wizard”
simulating the behaviour of a system [Bernsen et al., 1998]. The Wizard-of-Oz
methodology is commonly used to investigate human-computer interaction in
systems under development. In subsequent experiments, implemented compo-
nents can be substituted for some of the tasks carried out by the wizard, while
preserving the overall experimental setup.

The reason we used the Wizard-of-Oz methodology is that it allowed us to
formalise the aspects of the model that we want to implement in our system
and have the wizard follow it. Our formalisation consisted of the preliminary
approach to tutorial feedback resulting in the Socratic hinting algorithm. It also
involved loose definitions of the control and the compare conditions. This way
(i) dialogue data that represents the users’ behaviour in interactions following
the specific model is collected and (ii) early feedback on the model is acquired.

1.4.2.1 Experiment Design and Procedure

The original goals of our experiment design were (i) to facilitate the collection
of useful data for the formalisations and of unbiased linguistic data and (ii) to
check the learning effect of the strategies. After the preliminary formalisations of
our approach to automatic tutorial feedback we were able to define the original
goals of the experiment more precisely. In particular, we tested and collected
qualitative data on:

1. The sufficiency and effectiveness of the formalised hint categories

2. The appropriateness of the domain ontology for the automatic production
of hints and the categorisation of the student’s answer

3. The drawbacks and possible improvements of the hinting algorithm

4. The applicability of the student answer categories and ways to refine it

72 Chapter 1. Introduction

5. The use of subdialogues

6. The dialogue behaviour of the student and the tutor in the defined tutoring
context

7. The use of natural language for realising the hints

8. The use of natural language in the student’s answers

We do not look into the last two points, which are not part of the research
presented here.

The experiment consisted of three main phases.

Phase 1: Before Tutoring During the experiment we first administered a
questionnaire to collect personal details and data on the participants’ mathe-
matical knowledge. We asked the participants to give definitions of some domain
concepts and assess their own level. We then gave them written instructions on
the experiment. These included a description of the phases of the experiment
and what they would be asked to do. The participants were told that they
would be evaluating a tutoring dialogue system.

All participants then read a lesson material without a time limit, but 15
minutes were suggested. It included all domain knowledge needed for the tasks
and some extra material. Domain knowledge comprised an introduction to
the set theory, definitions of concepts, theorems and lemmata. After having
read the lesson participants did a timed pre-test for the task, that is, they
attempted a proof (cf. Figure 1.6: Task 1). All tasks used in the experiment were
chosen based on their difficulty for the level of the participants. We targeted
participants who had some background in mathematics but had not had college-
level background in the domain of set theory. Prior to the experiment, the chosen
tasks were administered to a class of first year computer science students in the
University of Saarland who were asked to solve them. This was meant to control
for a possible ceiling effect, in case the tasks were too easy. Such indications
were not observed.

1. Pre-test task: K(A) ∈ P (K(A ∩ B)), where K denotes the complement

2. Dry-run task: K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩ K(B)) ∪ (K(C) ∩ K(D)))

3. Tutored task: A ∩ B ∈ P ((A ∪ C) ∩ (B ∪ C)), where P denotes the power
set of a set

4. Tutored task: if A ⊆ K(B) then B ⊆ K(A)

5. Post-test task: K(A ∪ B) ∈ P (K(A))

Figure 1.6: Experiment Tasks

1.4. Methodology 73

Phase 2: Tutoring Participants were split into three groups, one for every
teaching method that made up our three experimental conditions: Socratic, di-
dactic, and minimal feedback. Participants were assigned to different strategies
at random and the order of strategies was also randomised.

Participants first got technical instructions on how to use our interface and
the tutoring system, which they thought they were evaluating. The interface,
DiaWoz [Fiedler and Gabsdil, 2002] was a simple Java applet with mathematical
symbols where the participants typed in their input, and a supporting engine
that allowed online annotations and logging. After reading the instructions, the
participants did a dry-run (cf. Figure 1.6: Task 2) on an easy proof to familiarise
themselves with the interface and the tutoring.

When they had completed the familiarisation proofs, all students were tu-
tored on two more difficult proving tasks (cf. Figure 1.6: Tasks 3 and 4) pre-
sented in a randomised order. Due to time restrictions, participants could run
out of time during an attempt, whereupon the session would be terminated.

The people involved in running the experiment were the experimenter and
the wizards. The experimenter answered questions relevant to the experiment,
for example, on the questionnaires and the interface. The experimenter was the
only person the participants had contact with. There were three wizards. The
tutor was a holder of a masters in mathematics with experience in tutoring and
was responsible for the keyboard communication with the participants. Prior
to the experiment, the tutoring methods with their pedagogical ramifications
were explained to the tutor in the form of instructions of what to do in different
situations. The tutor was then trained on using the Socratic tutoring method,
which was by far the most complicated one.

During the interactions, the tutor first classified the participant’s contribu-
tion. A standard time-out for responding to the system’s utterances was used,
when the participant remained totally idle. Then the wizard decided what
dialogue moves to perform next and verbalised them. Depending on the tu-
toring strategy employed by the wizard for a given participant, the obligatory
dialogue moves to be performed by the tutor in one turn included informing par-
ticipants about the quality of their answer on a scale from complete-accurate
to incomplete-inaccurate and its in-between values (all conditions), giving hints
on how to proceed further or entering into a clarification dialogue (Socratic
condition), giving away the step under consideration (didactic condition), and
prompting for the next step (all conditions). The tutor was also free to perform
any other dialogue moves. At the end of every session, and irrespective of the
performance of the participant the tutor presented the answers to the proofs
on the computer screen. The classification of the contribution and the hint
category produced were annotated electronically on the spot.

The tutor had two assistants who were the developers of the formalisations
and the algorithm and were siting in the same room with the tutor during the
experiment. For the Socratic condition in particular, the assistants told the
tutor which hint to realise each time, as these were chosen by the implemented
naive hinting algorithm. The way to realise it was left totally to the tutor.
Moreover, although it was the tutor’s decision to produce a hint at all or initiate

74 Chapter 1. Introduction

a subdialogue, the tutor’s behaviour was restricted by the assistants in cases
where they judged that the behaviour would be impossible to model. For the
didactic and minimal conditions, the tutor was simply informed about how to
realise the respective strategy.

Two adjacent rooms with a one-way window were used. The participants
were in one room, the wizards and the experimenter in the other with the
ability to see the participant. Communication between the experimenter and the
participants was possible via headphones and microphones. The wizards could
see the student’s window as well as their own. The students could only see their
own screen. Each session lasted approximately two hours. Data was collected
by questionnaires, in form of notes by everybody involved, and by logging the
computer interaction electronically. The sessions were also videotaped to collect
think-alouds. The electronically collected data constitutes our corpus on tutorial
dialogues in mathematics [Wolska et al., 2004].

Phase 3: After Tutoring All participants were asked to attempt a final task
on paper (cf. Figure 1.6: Proof 5). This was a variant of the original pre-test task
in that it involved using domain concepts also included in the tutored proofs.
Finally, the participants were asked to fill in a questionnaire addressing various
aspects of the system, including both the interface and the tutoring and its
usability. The questionnaire consisted of questions that asked the participants
to rate specific attributes of the system in a scale, and open questions, which
asked for descriptive answers.

1.4.2.2 Experiment Results and Discussion

The Wizard-of-Oz experiment was a pilot study that aimed at getting general
impressions and qualitative data in order to develop our approach and its differ-
ent aspects. In total, 24 participants participated in the experiment. They were
students with a humanities or science background. Their prior mathematical
knowledge ranged from little to moderate. Only the data from 19 participants
were appropriate for final analysis. The rest were used for trials of the exper-
iment that helped to improve the complicated experimental set-up. The small
number of participants and the large standard deviations in the learning effects
did not allow any significant results. However, our pre- and post-test compari-
son supported the didactic method, which was the only condition that appears
to have learned, as shown in Table 1.1. The minimal condition, which was the
control, did poorly as expected, and showed a negative effect of the strategy on
learning. It was also not surprising that the Socratic condition did not do well,
as the Socratic method used was a very preliminary and incomplete one and a
major purpose of the experiment was to collect data on improving it. Indeed,
the difference between the didactic and the Socratic condition left room for
interpretation of the results and corresponding improvements to our approach.

Interpretation of Results and Post-Analysis We analysed the data fur-
ther to identify specific areas of improvement and combine the best aspects used

1.4. Methodology 75

Condition didactic Socratic minimal
Mean 0.33 -1.63 -0.41
Stdv 2.84 2.35 1.99

Table 1.1: Descriptive statistics of the pre- post-test comparison

across conditions for our final teaching strategy. Although the results from this
analysis can only be seen as indications due to the small sample, they neverthe-
less gave good directions for improvements and further development. On the
whole, as expected the available tutoring time was too little for learning. For
the Socratic method in particular, participants had a late start because of the
nature of the strategy, which tries to elicit the answers from the students rather
than giving them away, and hence is more time consuming, especially until the
students have become familiar with this teaching style [Lim et al., 1996]. Due
to time constraints, sessions had to be stopped, in most cases just as the partic-
ipants had started following the hints. A side-effect of the slow start was that
the didactic condition participants were tutored on a larger part of every proof.
In summary, the minimal feedback group saw the whole proof in the predefined
amount of time, the didactic saw a fair amount, and the Socratic did not man-
age to get any tutoring beyond the first two proof steps because of the late start
effect. There was, in effect, an advantage for the minimal and didactic condi-
tions and a disadvantage for the Socratic group. This advantage may influence
learning as it is connected to two default principles. First, that the more cases a
student experiences, the higher the possibility of schema acquisition is [Delclos
and Harrington, 1991]. Second, that the more complete solutions a student sees,
the higher the chances are that learning will occur [VanLehn et al., 2005].

We also conjectured that the didactic participants had a higher level already
before the tutoring intervention. An ANCOVA test was run to test if the didactic
condition participants were better in the pre-test. The didactic and the Socratic
groups were used as samples, the pre-test scores as concomitant variable and the
post-test scores as dependent variable. As hypothesised, there was a significant
difference in the distributions of the two samples (a = 0.05, F (1, 9) = 5.81,
p = 0.039). This sheds some light as to why the didactic condition learned more
than the Socratic condition participants, even thought they did not improve
significantly. Namely, the participants had already a significantly better level
to begin with. On the contrary, the preliminary formalised hinting strategy was
missing an explanatory aspect, which students of a lower level require in order
to learn.

Some interesting results came from the post-questionnaires that the partic-
ipants filled in. This data shows that despite the results of the post-test, the
Socratic condition participants stated that they learned more about set the-
ory than the didactic condition participants did (mediansoc= 3.5 varsoc=0.67,

76 Chapter 1. Introduction

mediandid= 3 vardid=2.97). Although this cannot be counted as evidence that
they did learn more, it is an indication that these participants found our hints
helpful. One might hypothesise that given more time and since the partici-
pants liked the hints and tried to learn from them, a learning effect might have
occurred. However, there was an indication in the questionnaire that the di-
dactic condition participants had more fun with the system (mediansoc= 3.5
varsoc=0.67, mediandid= 5 vardid=2). From this we suspected that they were
more motivated during the post-test, which followed immediately after tutor-
ing. A parameter that could indicate that in post-analysis is the amount of
time spent on the post-test. An ANCOVA test with concomitant variable the
time spent on the post-test and dependent variable the post-test scores for the
samples of the didactic and Socratic conditions, showed significance at a = 0.05
with F (1, 9) = 6.39 and p = 0.032. This supports our suspicion that the par-
ticipants in the didactic condition were on the whole more motivated in the
post-test.

Moreover, open questions on the students’ opinion of the feedback highlight
more interesting points. All participants of the didactic condition complained
about the system feedback, for instance for not having been given the opportu-
nity to reach the solution themselves (“I felt confused by the feedback, because
the answer was given away too quickly”), or for not having received more step-
by-step hints (“[I would have liked] more instructions towards the solution”), or
for having been given too much instruction for their level (“The system could
not discriminate between a beginner and an expert”). Similar complaints were
not registered by the Socratic condition participants. On the contrary, five out
of six participants in the Socratic condition chose aspects of the feedback as the
best attribute of it. For example “[I liked best] the human-like questions”, “[I
liked best] that it was helpful but straightforward and the recapitulation of the
proof at the end”. We believe that the issues described by the complaints of the
didactic participants can be taken care of by the Socratic teaching method (cf.
Chapter 2). In addition, all but one participants said that they would use the
system in a mathematics course at university. The participant who would not
use the system had one of the best performances among all conditions, and was
taught with the didactic method. This participant also explicitly stated that
feedback that would elicit answers rather than give them away would have been
more appropriate.

General Enhancements The issues discussed above should not be consid-
ered as significant results of an evaluation. However, they did give us insights
into what changes, enhancements, or additions where necessary to make our
Socratic method more effective, which was the purpose of the experiment. For
example, the analysis of the better aspects of the didactic condition led us to
search for improvements in the way this strategy was performed, our objective
being to get the best of both worlds. An additional reason for looking into the
application of the didactic condition, was that the human tutor who applied all
three conditions, did not actually follow our definition of our didactic method

1.4. Methodology 77

and gave feedback under this condition, which would have been more appropri-
ate for the Socratic method. There may be two reasons for this behaviour. One
is that the didactic condition was less well defined than the Socratic, which was
even based on an implemented algorithm, as we were actually only trying to
collect data on developing a Socratic strategy. This fact allowed the tutor the
freedom to use some of her own preferred tutoring style. Another reason might
be that the tutor liked the feedback in the Socratic condition for which the
tutor was also trained, and could not switch it off under the didactic condition.
These two reasons combined resulted in producing feedback under the didactic
condition that can be incorporated in our improved Socratic strategy.

The most striking characteristic of the didactic method as we defined it was
the fact that the tutor gave meta-reasoning explanations that involved the rea-
soning necessary for deriving the proof step but is not directly represented in the
proof steps. However, our tutor never gave the kind of long answers and expla-
nations, which are characteristic of the traditional didactic method. In effect,
not only can such meta-reasoning reinforce the creation of schemata, but it also
reduces the students’ cognitive load. Moreover, meta-reasoning hints are con-
cise rule-like observations. They are equivalent to production rules [Anderson,
1993], or what tutors normally require as self-explanations in the correspond-
ing tradition [Collins and Stevens, 1991]. As such, they provide students not
possessing a schema the way to acquire one. This probably means for the So-
cratic condition that among the reasons they did not learn was specifically the
lack of meta-reasoning hints. All the more so, as these participants were also
weaker at the beginning and may have needed exactly this kind of support to
reduce their cognitive effort for learning to occur. Therefore, our major im-
provement to hinting was to formalise meta-reasoning, starting from defining
such hint aspects and conceptualising their incorporation in the hint taxonomy
(cf. Chapter 4 and 6). The short explanations that our human tutor gave in
the didactic condition offered themselves for this new investigation.

The tutoring that took place in the Socratic condition allowed us to observe
more closely where students need instruction. Since it is the nature of this
teaching style and of our implementation of it to provide more fine-grained
feedback, we could observe these needs as tutoring evolved. Although we were
expecting that students would need tutoring on general proving techniques, we
were surprised by the lack of students’ ability to use backward steps. More
specifically, students were comfortable with using forward steps, although they
were often not sure which rule to apply. On the contrary, they did not even seem
to be aware of the backward technique of decomposing the goal. In fact, this was
the main time consuming aspect of the Socratic tutoring strategy used in the
experiments, and the part on which some essential tutoring took place, despite
the naive formalisations available at the time and in contrast to the didactic
condition whose teaching method does not allow such detailed tutoring.

Specific Enhancements on Formalisations: Qualitative Results As
expected, we collected valuable data on the formalisations, which was our main

78 Chapter 1. Introduction

goal in the Wizard-of-Oz experiment. We present here some indicative cases
with relation to the preparations of the experiment.

Student Answer Evaluation: We spotted problematic or insufficient areas in
the categorisation scheme that was used. We will mention only a few. First, a
better definition of parts, was necessary. We originally dealt with this issue in
[Tsovaltzi and Fiedler, 2003a], and a final categorisation scheme, which includes
our new definition of parts is presented in Chapter 5. To mention one change,
we define our instructional points as the necessary parts of a complete answer,
because the data showed that we need a way to automate how tutors orient
themselves in the student’s input and reasons about the feedback to provide,
without necessarily trying to represent exactly what the student knows. Sec-
ond, the data reveals specific needs for building and using a representation that
enables matching the students’ contributions to the proof to an expected contri-
bution. In particular, handling implicit inference steps, over-answering, correct
irrelevant answers, starting the proof from scratch and choosing the expected
(intended) proof step were all issues that could be addressed by use of the data.
These phenomena relate to the tasks of different modules in the system. The
tutorial manager is directly responsible for handling some of them, and is de-
pendent on how others are handled. In Figure 1.78, for example, the student
says something right, but the tutor cannot match it to any proof. Therefore,
the student is asked to show she is getting at, assuming that the student would
not be able to continue. After a couple of turns it actually turned out that the
participant did not know how to continue.

T1: “Bitte zeigen Sie: Wenn A ⊆ K(B), dann B ⊆ K(A)!”
[Please prove: If A ⊆ K(B), then B ⊆ K(A)!]

S1: “K(B) = U \ B”
T2: “Das ist richtig, aber wie geht es weiter?”

[That is correct, but how do you want to continue?]

Figure 1.7: Correct but irrelevant answer

Moreover, we refined the categories in the categorisation scheme. We iden-
tified possible answers that can be considered as near-misses (e.g. bracketing
problems, use of a ‘∈” instead of “⊂”), how these differ from misconceptions de-
pending on the context, and possible ways to treat them. This information also
helped us model substrategies as well as subdialogues, whose use was allowed
in the experiment, but were not formalised. In the example in Figure 1.8, the
tutor could not make sense of the student’s utterance unless she substituted ∩
for 6=. The tutor tried to elicit a self-correction. The student could not provide
it, although she realised from the question that she had used the wrong symbol.
In addition, this kind of data pointed us to the sub-division of the original cat-
egory wrong into two cases, namely wrong, the student gives a wrong answer,
and the task dialogue-move resign, the student gives up without any attempt.

Hinting: In terms of hinting, we included in the hinting algorithm hint

8All examples include a translation from German in italics, where necessary.

1.4. Methodology 79

S5: “wenn A ⊆ K(B), dann A 6= B, weil B 6= K(B)”
[if A ⊆ K(B), then A 6= B, because B 6= K(B)]

T6: “meinen Sie wirklich 6= oder etwas anderes?”
[Do you really mean 6= or something else?]

S6: “6⊆”

Figure 1.8: Subdialogue

categories that we had already defined before the experiment (e.g. from the
BEE corpus), but had not included in the preliminary algorithm, as we did not
know how they should be managed in the specific domain. An example of this
is the category refer-to-lesson. An instance of this can be seen in Figure 1.9.
The student confuses two rules and the tutor refers her to the lesson to look up
the rules.

T4: “Meinen Sie wirklich: P (C ∪ (A ∩ B)) = P (C) ∪ P (A ∩ B)?”
[Do you really mean: P (C ∪ (A ∩ B)) = P (C) ∪ P (A ∩ B)?]

S4: “ich denke doch: P (A) ∪ P (B) = P (A ∪ B)”
[yes, I think so: P (A) ∪ P (B) = P (A ∪ B)]

T5: “Das ist nicht richtig! Vielleicht sollten Sie noch einmal in Ihrem Be-
gleitmaterial nachsehen.”
[That is not correct! Maybe you should look it up in your study mate-
rial.]

Figure 1.9: Refer-to-lesson, Participant 20.

In addition, we extended the hint taxonomy by adding two more dimensions
to it to capture new functions that were revealed through the data analysis. We
were able to make observations on how the four dimensions interact, but were
also pointed to a further investigation of learning theories in order to specify
this interaction in a pedagogically and cognitively motivated way. For example,
the meta-reasoning function discussed above was added after additional theo-
retical investigation. It was assigned the role of dealing with underlying domain
principles and general strategies. The way the meta-reasoning function should
be used in tutoring was also defined more precisely. In addition, a pragmatic
function was distinguished from the conceptual one used in the experiment. The
new function captured a way of referring to domain information by means of
cues that have to do with the form of the expected answer, rather than with its
content. For example, the possibility of telling the student how many parts make
up the expected answer was added, rather than naming these parts. We could
then define more specific hint functions in this dimension. For example, the tu-
tor explicitly connected the current state of the proof to something mentioned
before. We formalised this into the pragmatic hint function point-backwards.

We used the same data for enhancing the hinting algorithm. For one, the

80 Chapter 1. Introduction

student model that was implicit in the algorithm was separated from it. The
original student model gave rise to an explicit and enhanced version, which is
our current modelling of the Hinting Session Status explained in Chapter 5. For
example, this version was modified to take into account subdialogues, which
were not part of the implicit student model, as they had not been formalised.
The algorithm was in general augmented to accommodate possible student an-
swers better, based on the data. This attempt was also complemented by our
theoretical investigations that we explore in Chapter 2.

Dialogue Management: An extended analysis of general tutorial dialogue
phenomena was based on the data from the experiment. The results of this
analysis were used to define our dialogue-move taxonomy for tutorial dialogues
(cf. Chapter 4). For example, the need to add an expanded task dimension
was revealed, as we realised the level of complexity of handling both task and
dialogue phenomena in order to adapt both for the final tutorial feedback.

All the above observations influenced the conceptualisation of the general
architecture of the prototype tutorial dialogue system of the Dialog project
(Section 1.3.2) and of the architecture of Menon in particular. For example,
defining a strategy in Menon where domain-independent tutorial feedback is
handled and dividing substrategies into subdialogues and subtasks, were both
instructed by our observations.

The particular ways in which we adapted and enhanced our formalisations
were further informed by suggestions that our human tutor made and by our
detailed pedagogical model that underpins our work psychologically. We explore
the pedagogical model in Chapter 2. We also indicate the tutor’s input where
the relevant improvements are mentioned in the thesis.

1.5 Conclusion

The purpose of this thesis is to contribute to the research on automatic feedback
for arbitrary problems and thus reduce the cost of pedagogical feedback and
increase the number of tasks that can be included in an ITS for practice. By
doing this, we hope to provide extra support for students, who might otherwise
be at a disadvantage. The typical exposure of students to a few, at best, example
problems in the classroom is a poor learning method [Sweller, 1989; Collins and
Stevens, 1991]. This teaching method, vastly applied at schools worldwide,
requires students to solve a larger number of problems at home, with feedback
coming only much later than the attempt. The feedback mostly consists of
a minimal marking of the homework by the tutor. Still, there are not enough
human resources to tutor students in an interactive manner on solving problems,
which is a superior method no matter what the particular teaching strategy used
is (e.g. [Bloom, 1984; Cooper and Sweller, 1987; Corbett et al., 1997]).

It is common practice in learning theories that learning is correlated with the
amount of experience a student has in the domain [Eysenck and Keane, 2000].
VanLehn and colleagues [VanLehn et al., 2005], for example, credited the success
of their system largely to the fact that they implement many problems for the

1.5. Conclusion 81

students to practice, as well as the style of tutoring they use, namely hints.
They put the emphasis not on the quality of the hints so much, as to the fact
that there are hints produced following certain educational principles for a great
number of problems. On the other hand, they also point out that hard-coding
hints, as they do, involves huge effort, time and human resources, as a constant
collaboration with domain experts is necessary.

The approach to automating hints for arbitrary problems and solutions pre-
sented in this thesis is an attempt to tackle this problem. ITSs that teach well-
defined domains, which is the most common case, are already dependent on
formal representations of the domain knowledge and theorem provers for eval-
uating different solutions. Given that this infrastructure is required anyhow,
the effort for structuring the domain in the way we suggest would be much less
compared to authoring feedback for every task, every solution to that task, and
every possible subpath or mistake in this solution. With regard to the Socratic
teaching strategy that we implement, as this is largely domain independent,
any adaptations to cater for the needs of other domains would be relevant to
functions that deal with the domain-knowledge dimension of hints. The odds
are that the quality of hints automatically produced by the system will not
be as high as those produced by human tutors. However, producing hints for
arbitrary problems gives students the possibility to practise on more problems
and hence learn more. Moreover, the general advantage of a tutorial system
over human tutors, namely that there is no upper time restriction, can only be
taken advantage of if hinting is automated. Otherwise the feedback limitation
restricts also the practising time. The automatic choice and the automatic con-
tent determination of hints undertaken in this thesis [Tsovaltzi et al., 2004b],
adds the possibility of providing feedback on arbitrary problems and solutions.
This renders the hard-coding of feedback for every single proof unnecessary and
reduces the cost of implementing feedback. Moreover, the adaptivity of hints in
terms of NL generation makes up for at least some of the lost quality of hints
in comparison to feedback that is pre-written and tailored to specific problems.

The definition of hints and the teaching strategy as a whole based on their
constituents allows a later scientific approach to investigating learning. The
different constituents can be manipulated separately and the study of many
variables that influence learning can be operationalised for further empirical
investigations. For instance, the pragmatic hints, or the meta-reasoning dimen-
sion, or a specific instructional point in the meta-reasoning dimension etc. can
be switched off and the effectiveness of the resulting strategy can be compared
to that of the Socratic teaching strategy as it stands. Such empirical studies can
provide insight into the function of hints and into effective teaching strategies.

An evaluation that aimed at getting indicative feedback on the implemen-
tation of Menon’s Socratic teaching strategy gave very promising results. More
specifically, we asked 5 evaluators to rate Menon’s Socratic teaching strategy
as a whole, and individual instances of the automatic feedback produced by
Menon in particular tutoring situations, and to compare it to equivalent feed-
back of the “winning” strategy in the Wizard-of-Oz study. The major finding
of this evaluation was that Menon’s automatic feedback was considered better

82 Chapter 1. Introduction

than the previous “winning” strategy’s feedback that was produced by a human
tutor. 4 out of 5 evaluators preferred Menon’s teaching strategy as a whole. An
evaluation of how Menon’s overall strategy with specific reference to our global
tutorial goals – defined in Chapter 2 – and Bloom’s [Bloom, 1956] Affective and
Cognitive levels gave good results, which means that the automatic feedback
serves our tutorial goals to a large extent. Additionally, 55% of the evalua-
tors’ choices of individual instances of feedback favoured Menon’s feedback to
equivalent feedback of the previous “winning” strategy. The evaluation of this
individual feedback instances with regard to our global tutorial goals was in
total very good. These results can only be seen as a tendency, since the sample
was small, but they show that the direction we have taken in the development
of Menon is the right one.

83

Chapter 2

A Pedagogical Model for

Tutoring

2.1 Introduction

This chapter presents and motivates our teaching model. It reviews the state of
the art in the learning sciences, namely cognitive and experimental psychology,
educational psychology and other scientific investigations in learning. The aim
of the chapter is to make use of the prominent theoretical notion of schemata (cf.
Sections 2.2.1 and 2.2.5) as well as the highly influential theories of cognitive
load and motivation, and to derive a teaching model. The final outcome is the
definition of the teaching model for the implementation in the tutorial manager
Menon.

In this chapter, we also define our general tutorial goals. The global tutorial
framework and the model, which we presuppose, set the context for our tutoring
model. We then concentrate on the Socratic teaching model, as well as on the
more specialised hinting process that we adopt in order to realise the Socratic
model.

In summary, the teaching model defined here strikes a balance between (i)
non-goal-specific tutoring, which allows students to build their own knowledge
on existing structures and form helpful schemata, and (ii) making use of the tu-
tor’s expertise without super-imposing any cognitive model. Our general goals
assume as a theoretical cognitive basis the following main themes: (a) motiva-
tion during tutoring, (b) assistance in the construction of cognitive structures
(schemata) via heuristic instructions, (c) reduction of cognitive load and (d)
promotion of implicit learning with moderate explicit learning.

84 Chapter 2. A Pedagogical Model for Tutoring

2.2 Motivation of the Teaching Model

Teaching proofs has been part of school curricula worldwide for decades. Its
value as a subject goes beyond the narrow goal of teaching students how to
prove. Although the latter is a important aim in itself, the reason proofs have
been taught for so long is that there is a recognised value in the fact that
teaching proofs increases the students’ ability for logical deduction and its ap-
plication [Wu, 1996]. Wu [Wu, 2001] states that “it is well known that logical
reasoning is synonymous with theorem proving. What is less well known is that
logical reasoning is also the same as problem solving.” [Wu, 2001] (p.3). The
teaching model that we adopt is designed to enhance problem solving skills.

In the following sections we follow a thematic exposition of the prominent
issues that need to be considered in choosing our teaching model. We look at
the different issues always from the point of view of their impact on teaching
and learning, even though they may have further cognitive and computational
implications.

2.2.1 Schema Theory

The main cognitive theory that informs the pedagogical model discussed in this
chapter is the schema theory. It was proposed as a complete theory by Rumel-
hart and Ortony [Rumelhart and Ortony, 1977; Rumelhart, 1980]. Although
similar principles had been previously advocated by Minksy [Minsky, 1975] who
used the term “frames” instead of schemata and Schank and Abelson [Schank
and Abelson, 1977], who used the term “scripts”, both frames and scripts aimed
at explaining declarative representation of knowledge. Schema theory, on the
contrary, supports that schemata are built actively by learners and any new
information is assimilated in the structures of the existing schema, thus revis-
ing it. These revisions depend on the situations experienced and account for
learning. Knowledge is represented in meaningful chunks and is constructed
actively by the learner in networks of propositions. Wittgenstein has made a
distinction between proposition and expression that clarifies this [Wittgenstein,
1975] (3:3111). According to him, expression, which is what schema theory re-
ally refers to, is the abstract form of all the propositions in which the expression
can potentially occur and it is the carrier of meaning. Schemata have also been
described as generalised, reapplicable descriptions of similar problems and their
solution, e.g. [Cooper and Sweller, 1987]. An example of a schema application
from [Sweller, 1989] (p.458), is the following. If the problem to solve is the equa-
tion (a + b)/c = d, an applicable schema would help to recognise this problem
as one where the first step is to multiply both parts of the equation with the
denominator c, in order to get rid of the fraction. Schemata capture this kind
of reasoning in a step-wise manner.

Schema theory gave rise to artificial intelligence notions like explanation-
based learning [Russell and Norvig, 2003]. They implemented the idea of gener-
alising from examples and forming explicit rules for learning that are applied in
new situations, which turned out to slow down the learning process. Case-based

2.2. Motivation of the Teaching Model 85

reasoning [Russell and Norvig, 2003], which is a successor of explanation-based
learning, took these lessons into account. A case consists of the context, that is
the world situation in which the problem occurred, the solution to that prob-
lem, and the state of the world after the case. Learning is based on experiencing
different cases [Watson and Marir, 1994]. This approach offers itself to situated
learning [Collins and Stevens, 1991], as it deals very well with the situation
where the student is presented with the appropriate tasks (cases) to deal with
at each point [Watson and Marir, 1994]. Since we are concerned in this the-
sis with promoting schema acquisition in human learners via the process of
hinting, it is important to have a way to represent a schema in the form of its
constituents, which are the elementary sub-schemata [Rumelhart, 1980]. In fact,
the representation of cases is a matter of contention in the case-based reasoning
community [Watson and Marir, 1994]. Furthermore, case-based reasoning does
not provide a way of attacking this problem.

The definitions of schema used in experience-based learning and case-based
reasoning proved to be too poor to capture the cognitive processes of under-
standing and learning that the abstract theoretical construct of the schema
captures. A main reason for this inadequacy is that schema theory clearly
stresses the need for a large exposure to varied learning situations before the
schema acquisition can take place [Eysenck and Keane, 2000], whereas algorith-
mic applications are concerned with efficiency, and hence aim at generalisations
from as few examples as possible using additional heuristics [Russell and Norvig,
2003]. Our aim is to lead students to acquiring such heuristics through the pro-
cess of learning in a personalised manner. The acquisition of schemata is not
observable as such, but the acquisition of the heuristics is, as one can observe
the student student making steps that correspond to the ones included in the
heuristics.

Later connectionist theories and models [Rumelhart et al., 1986; Sun et
al., 1996; 2001], have gone beyond the somewhat static idea of schemata to
an active organisation of knowledge that implies intractable forms of learning.
The theory of schemata finds its application in tutoring in the convergence of
instructional design and cognitive teaching models and in particular with regard
to problem solving [Rumelhart and Ortony, 1977; Rumelhart, 1980; Price et al.,
1997; Widmayer, URL].

In our model, we propose to represent constituent meaningful parts of schema-
ta and to use those as instructional points for the definition of the domain con-
tent of hints. Therefore, we do not claim to represent the complete schema. We
only use the instructional points to help the student build a schema, even though
we do not know which schema that is precisely. The reasoning here is analogous
to that used in studies that seek to attribute the use of an expert-like method
to solving problems to the acquisition of relevant schemata [Chi et al., 1982;
Lim and Moore, 2002]. They use the theoretical notion of a schema to explain
how learning occurs, but are not interested in what this schema looks like.

86 Chapter 2. A Pedagogical Model for Tutoring

2.2.2 Worked Examples vs. Problem Solving

In this section, we review studies on the two main approaches that have been
proposed for teaching skill acquisition similar to proving: Worked examples and
direct problem solving. We investigate their advantages and disadvantages for
different educational purposes and choose the most appropriate for teaching
proving and problem solving in the interactive phase that Menon implements.

Sweller and Cooper [Cooper and Sweller, 1987] as well as Owen and Sweller
[Owen and Sweller, 1985] tested the use of worked examples with respect to
learning gains. Worked examples are solved tasks, in our case examples of
proofs, which the students study. The examples provide explanations of the
problem solving steps. The comparison was a problem solving condition that
asked students to solve new problems as a training method. In this condition no
explanation was given and the only feedback was whether the solution was cor-
rect or wrong at the end. Sweller and Cooper found that high-level students with
experience in mathematics when learning from worked examples were able to
solve problems similar to the training problems better than students in the tra-
ditional problem-solving teaching condition. Sweller and Cooper were also able
to support the hypothesis that the ability to transfer skills to different problems
was higher in the worked examples condition and the time that students took
to solve problems was less. The experimenters note, however, that the students
in the traditional problem solving condition were of significantly lower-level and
were taught for less time than the students in the worked-examples condition.

The most striking result of this research was that Sweller and Cooper estab-
lished a connection between cognitive load and worked examples. cognitive load
theory [Sweller, 1988] results from findings that working memory has limited ca-
pacity [Miller, 1956] and since information is first processed in working memory,
learning is conditioned upon minimising the working load in short term mem-
ory. Making use of these concepts, Sweller and Cooper claimed that worked
examples reduce the cognitive load that is predominant in problem solving, due
to the fact that students do not have to be concerned with the application of
domain rules that would impose extra load. They can, thus. concentrate better
on the global solution strategy, learn better, and transfer what they learn to
different problems.

Another reason for the reduction of the cognitive load and consequent better
learning is that students do not have to concentrate on solving the problem as in
the traditional goal-oriented teaching method. They can direct their attention
to the different stages of problems and how they relate to the application of
previously acquired knowledge. Over long learning periods, this way of learning
enables useful acquisition of sophisticated schemata that include the automation
of domain rules. Schemata are useful for evaluating how information can be
used and they also facilitate the application of appropriate knowledge. This
may be evidence for the superiority of instructional strategies targeting schema
acquisition.

A later study by Sweller [Sweller, 1989] investigated in more detail what
makes the teaching of science and mathematics effective. His line of reasoning

2.2. Motivation of the Teaching Model 87

was that problem solving is domain specific in nature, and students need to
learn through domain-specific problem-solving schema acquisition, as they are
already aware of general problem-solving techniques and how to apply them. His
experimental evidence shifted the interest from the kind of teaching strategy to
the presentation of the domain-specific material taught.

However, one could claim that the worked-example conditions in the vari-
ous experiments were actually using problem-solving methods due to the way
the strategies applied. These strategies involved students studying worked ex-
amples, asking questions, explaining the goals behind the choices made in the
worked examples with the help of the tutor, and finally performing additional
problem solving exercises, e.g. [Owen and Sweller, 1985; Cooper and Sweller,
1987]. This fact renders it difficult to draw conclusions on the worked-example
teaching strategies. Therefore, it is better to argue with Sweller [Sweller, 1989]

that what really matters is the exact way of presentation, rather than the dis-
tinction between worked-example vs. problem-solving strategy. Following Wil-
son’s [Wilson and Cole, 1991] argument that all instruction is one way or the
other embedded in some problem solving and that some domains by definition
require problem solving for situated learning, problem solving appears to be a
good environment for teaching how to prove.

Lim and colleagues [Lim et al., 1996] performed a more detailed study on
what enhances learning in particular individuals. They conducted a study in or-
der to compare worked examples with problem solving. In the training phase of
their experiment, they employed a non-traditional problem-solving method, that
is a strategy that asks students to use the forward technique [Chi et al., 1982]

and just work from givens irrespective of a final goal1. They contrasted that to
the traditional strategies that look at only one specific goal, which they used in
the worked-examples condition. The participants in this condition saw worked
examples of the solutions in the training phase. Both groups were then asked
to solve goal-specific problems. They showed that participants in both condi-
tions improved, but the non-goal-specific condition participants improved more,
demonstrated more transfer skills, and maintenance, and were more efficient
in problem-solving, although no help was provided other than correct-incorrect
feedback. Echoing Sweller [Sweller, 1989], the experimenters attribute this dif-
ference to the fact that schema acquisition is hindered in the worked-examples
condition, due to a split-attention effect that the worked-examples presenta-
tion induces. The split-attention effect in this case derived from separating the
target problems from the example sources. In general this effect characterises
the cognitive overload noticed when people have to process information from
disparate sources [Sweller, 1988].

The presentation of worked examples and problem solving exercises one after
the other, as used in the model by Lim and colleagues, was also investigated by
Trafton and Reiser [Trafton and Reiser, 1993]. They criticised the worked ex-
amples studies for not testing the degree of transferability achieved through the
particular teaching model. They, thus, tested the results that the dissociation

1This strategy will be further discussed in Sections 2.2.3 and 2.2.5.

88 Chapter 2. A Pedagogical Model for Tutoring

of examples and problems brings about, by separating the examples from the
equivalent target problems the students were presented during problem solving.
They concluded that the effectiveness of studying worked examples reduces sig-
nificantly when the examples are not available to the subjects directly before
they are asked to solve each target problem. They put this effect down to the
fact that students did not have the possibility to refer back to the examples,
and conjectured that students could also not recall the examples from memory.
They further showed that both worked examples and problem solving are impor-
tant in tutoring. Examples should be presented first and followed by problem
solving exercises.

McLaren and colleagues [McLaren et al., 2008] summarised the results of
their own studies as well of other similar studies that investigated the inter-
leaving of worked examples and problem solving as a means to combine their
strenghts and effectiveness. They viewed worked examples and problem solving
as methods that provide different degrees of assistance to the student. They can
be split themselves into low and high-assistance methods according to whether
explanations of tutoring is offerred along with worked examples of problem solv-
ing, respectively. This gives rise to the following continuum from less to more
assistance: plain problem solving – tutored problem solving – worked exam-
ples with explanations – plain worked examples. Their research question was
which combination of these methods yields the better learning results. Their
own studies on Stoichiometry concentrated on comparing two conditions: one
using worked-examples followed by multiple-choice questions that elicit self-
explanation, and one using a tutoring system that provides hints on request
and error messages. Both conditions learned but there was no difference in the
learning effects. However, the worked-examples condition was more efficient.
In general, McLaren and colleagues concluded that although no one method or
combination has been consistently shown to be superior accorss studies, there
is a tendency that the combinations in the middle of the assistance continuum
produce better results.

Delclos and Harrington [Delclos and Harrington, 1991] came to similar con-
clusion in terms of the use of worked examples in combination with problem
solving. They found evidence that students must be given the opportunity to
make use of their taught knowledge in a real problem-solving situation, which
constitutes the experience on which schema acquisition is based. The proce-
dural nature of this type of experience is what promotes schema acquisition.
This opportunity should be accompanied by instruction both before and during
problem-solving exercises and should partly concentrate on enhancing reflection
on the student’s own strategies. They, thus, made a shift towards the kind of
instruction used.

In the same direction, Ian Robertson [Robertson, 2000] studied the effect
of particular styles of presentations of worked examples. He analysed algebra
word problems in order to investigate transfer and predict problematic areas
depending on the previous presentation style, even though the worked examples
were available during the problem solving exercises. Like [Sweller, 1989], he does
not argue for or against worked examples vs. problem solving, but he suggests

2.2. Motivation of the Teaching Model 89

specific ways of presentation. Namely, he found that transfer increases with
general abstract instructions on the procedure, instead of on specific inferences
relevant only to the examples presented. He claims that this allows students
to generalise from the studied examples and transfer the acquired knowledge to
near or distant variants.

Mathematicians have doubted the benefit of studying worked examples in
the domain of theorem proving. Wu [Wu, 2001], argued that there are elements
in the proving process that are not captured in the static representation of the
same proof. For example, he claims that the order in which the proof is pre-
sented for better understanding does not necessarily match the order in which
the step is arrived at. That may cause students to learn a counter-productive
way of proving, which hampers rather than assists the proving process. Worked
examples constitute static representations by definition, and are hence vulnera-
ble to this criticism. Wu does, however, agree with Trafton and Reiser [Trafton
and Reiser, 1993], to the extent that he advocates the use of many examples in
a constructive way and as necessary, before students are asked to solve problems
themselves.

The above exposition indicated that the two approaches to tutoring problem
solving, worked examples and direct problem solving, are not so much competi-
tors as appropriate for different phases of tutoring and different tutorial goals.
We choose problem solving as the context of the interactive tutoring sessions
for proving that we implement for two main reasons: first, because it seems to
be more appropriate for teaching the procedural nature of proving, second, be-
cause it is a better platform for exposing students to the kind of experience that
promotes schema acquisition. With regard to worked examples, we assume the
students’ prior exposure to them, although we are not concerned with modelling
the tutoring phases in which they would be used. Moreover, we also take into
account the observations on the specific ways of instruction that make problem
solving as a tutoring method more effective, which we discuss more extensively
in the next section.

2.2.3 Kinds of Problem Solving

In this section we consider the use of non-goal-specific problem solving in or-
der to support schema acquisition and resolve the cognitive load drawback of
traditional goal-specific problem solving.

Sweller [Sweller, 1989] examined the source of the success of the worked
example strategy that he had earlier proposed. He showed that problem solving
becomes powerful when a shift from goal orientation to learning orientation is
made. The theoretical justification for these findings is that the aim of solving
the problem in goal-oriented approaches inflicts extra, unnecessary cognitive
load that is counter-productive to learning. This load is lifted by the shift to
non-goal-specific problem solving.

Lim and Moore [Lim et al., 1996; Lim and Moore, 2002], came to similar
conclusions with regard to the factors that facilitate learning in general, and
schema acquisition in particular. As we saw, they compared the learning effects

90 Chapter 2. A Pedagogical Model for Tutoring

between a worked-examples instruction strategy and a non-goal-specific problem
solving instruction strategy in geometry. More specifically, the non-goal-specific
strategy, this asked students to calculate as many angles as possible, as opposed
to calculating a particular angle that, which was demonstrated by use of a
worked example. They found that non-goal-specific problem solving is superior
to worked examples that involve a specific goal in the interactive phase. The
group of students tutored by use of the non-goal-specific strategy solved more
problems, faster, with less errors, using a technique more similar to the experts’
technique [Chi et al., 1982]. These subjects were also better able to transfer
their skills to other problems, as well as maintain their skills over time. This
experiment indicates certain aspects of the non-goal-specific problem solving
that are relevant to the interactive tutoring phase that we want to model.

At first glance, it seems somewhat problematic to define a non-goal-specific
teaching model for proving, that is for teaching natural deduction. In particular,
it might seem like the learning goal coincides with the proof goal. In other words,
part of the tutorial goal is that the student becomes able at some point to arrive
at a given goal based on some specific givens and a knowledge base. This is the
aim of our module. However, there is a clear distinction between learning how
to prove in general and learning how to prove a particular problem. A student
might never be able to solve a particular problem, but still acquire valuable
knowledge on proving.

We adapt a non-goal-specific teaching model that allows the student to find
any route towards the proof goal. Students can thereby learn to work with the
constituents of proving, rules, methods, techniques etc., irrespective of how, or
if at all the goal is reached. The type of the instruction we use is, therefore,
non-goal-specific and students can draw as many inferences from the givens as
possible and they can rely on the computer to tell them which ones are applica-
ble or to guide them to applicable ones. Using non-goal-specific problem solving
for the interactive phase, which Menon models, appears to be the state-of-the-art
answer to what has been often perceived as an incompatibility between attention
and cognitive load theory, on the one hand, and constructivism and schema the-
ory, on the other hand [Goldman, 1991; Chandler and Sweller, 1991]. Such views
have criticised cognitive load theory for not taking into account the approach
of constructivism and schema theory that is in favour of some cognitive load
to allow the construction of schemata. However, cognitive load theory argues
for eliminating unnecessary or extraneous cognitive load in order to promote
schema acquisition and extraneous cognitive load is defined as everything that
is does not add to schema acquisition [Sweller and Chandler, 1991]. The ap-
parent incompatibility of the two theories dissolves when one combines problem
solving, which creates the situation for schema acquisition, and non-goal-specific
instruction, which is a means of eliminating the extraneous cognitive load.

2.2.4 The Motivation Theory Standpoint

In this section we look into arguments from motivation theory [Keller, 1987;
Weiner, 1992; de Vicente and Pain, 1998] to compliment our teaching model.

2.2. Motivation of the Teaching Model 91

We devote a section to it, as motivation theory is a field in and of itself, which
requires special attention. Note, nonetheless, that this work concerns itself with
motivation to the extent that it can be served via our primery goal; automating
hinting. This is consistent with the view that sees motivation as a meta-model
that guides specific instructional decisions.

Motivation theory does not deal with what or how much students learn,
which is what we have been looking at so far in this chapter. Rather, it deals
with what students are willing to do and how much effort they are willing to put
into learning. The aim is to increase motivation and thereby increase students’
interest and their ambition to learn. This can be done in different ways, for
instance, by presenting the learning task as a game to make it appear more
interesting, or by informing the teaching strategy accordingly. Here we are in-
terested in how the teaching strategy functions as a medium for motivation pur-
poses. Motivation influences the student’s ability indirectly to the extent that
the learning effects are dependent on the amount of time the student spends
learning and the degree of attention applied. These two variables are just in-
dicative, and they do not cover the range of psychological ramifications that are
captured by the term motivation. They are mentioned here as the ones that can
more easily be measured and also correlated to learning gains. There is, how-
ever, research in the direction of motivation diagnosis [Rebolledo-Méndez, 2003;
Mavrikis et al., 2003].

Let us now look at the principles of motivation theory. The father of mo-
tivation theory is Abraham Maslow [Maslow, 1943], who was the first to state
in this context the interconnection between bodily and intellectual needs. He
sketched the original picture that depicts the role motivation plays in humans.
His theory, pioneering as it was, was too abstract with many vaguely defined
concepts and processes. Consequently, it cannot be operationalised for the pur-
poses of this thesis, that is for the definition and implementation of a tutoring
model. Therefore, we concentrate on later research, and more specifically on the
theory of J. Keller [Keller, 1987]. Keller used previous motivation theories and
combined them into a unified one with the aim of applying them to instructional
strategies. Hence, his research is most appropriate for our purposes. According
to Keller, there are four main levels of motivation: (i) attention, (ii) relevance,
(iii) confidence, and (iv) satisfaction. We briefly look into them and what they
involve, and we propose a way of incorporating them in our instructional strat-
egy.

Attention describes the degree and the persistence of engagement of the stu-
dent at any time. The feature of instructional strategies that can help maintain
the student’s attention is providing at each point the right amount of information
that would help the student with the task without giving away too much. Giv-
ing hints is a way to realise this, instead of the traditional didactic explanations
that tend to give too much information at once and be long. Such explanations
are, therefore, counter-productive for maintaining or increasing attention. Hi-
royoshi Watanabe [Watanabe et al., 2003] in his work with intelligent tutoring
systems has found that students learn better via short hints than detailed ex-
planations, which tend to be too long and boring for them and fail to maintain

92 Chapter 2. A Pedagogical Model for Tutoring

their attention. Ashley and colleagues [Ashley et al., 2002] also reached conclu-
sions supportive of this view. They called their strategy, that is analogous to
what we call Socratic strategy “dialectic”. They observed an increased level
of involvement in the condition using the dialectic strategy, in contrast to the
compare group where didactic explanations were used. Although involvement
is not the same as attention, it is an indicator of increased attention.

Moreover, according to motivation theory, people mostly pay attention to
things they already know something about [Keller, 1987]. The use of hints in
itself as well as trying to give hints for the solution that the student has in mind,
raise the student’s attention. Problem solving itself has an advantage in this
regard. By its nature it tends to involve the learner in the task as a contributor.
The use of questions in the form of hints increases the engagement of the learner
[Keller, 1987].

Relevance refers to the students feeling that the specific instructions that
they get cater for their personal needs and goals. It mostly relates to the feeling
of achievement in terms of meeting goals and succeeding in things. Achievement
describes the desire to overcome obstacles, accomplish goals and succeed in
tasks. It also relates to the feeling of power; that is, the feeling that the student
influences and has control over the task. This latter point can be a side-effect of
computer tutoring systems, since the user already feels superior in many senses
and in control by default. The feeling of achievement can be realised by the
system trying to make use of everything in the student’s attempts that is useful
for any proof. This presupposes looking for necessary key points in the student’s
input that are useful for the proof, and using them to make the students feel
that they are contributing to the task.

Exactly those features also contribute to creating confidence, that is, giving
the students the feeling that they are managing well and that they are going
to succeed in the task. This level of motivation speaks against goal-specific
strategies, which often deprive students of the feeling of success, as students
are more likely to fail the more restricted the goal is. Both disallowing the
student to find just any proof they could, and asking them to find a better
proof afterwards can have the effect of learned helplessness. Learned helplessness
describes the result of dissatisfaction deriving from such constant attempts to
succeed and finding success almost impossible. Learned helplessness reduces
effort. Confidence is also related to how much the tutor believes that the student
will accomplish the task. Although this can be read by the student in the tutor’s
instruction choices, additional emphasis can be put on the positive aspects of the
student’s input and extra encouragement in natural language can be provided
as part of the Socratic instructional strategy, in order to increase the student’s
perception of confidence building features in the behaviour of the tutor. Ashley
and colleagues [Ashley et al., 2002], for example, found that students in the
dialectical (Socratic) condition feel less judged for their mistakes, which can
explain why they have high levels of confidence.

Explicit encouragement from the tutor caters also for satisfaction, which is
the fourth and last of the basic levels of motivation. Satisfaction can be effected
by extrinsic motivation, which is possible to manipulate in an instructional

2.2. Motivation of the Teaching Model 93

Socratic tutoring dialogue system. The most important form of satisfaction,
though, comes from intrinsic motivation and is at the same time difficult to
observe and to manipulate. Intrinsic motivation is promoted when the other
three levels of motivation are met.

Contrary to human tutors, though, computers lack any ability to discipline
the student in the sense of having them pay attention and attending to the
task. Students are aware that they are in control. Superficial as this might
be for the purposes of motivation, it can turn out to be detrimental for any
intelligent tutoring system that does not cater for motivation. Namely, it can
result in the student simply switching the computer off. For this reason, along
with aiming at the cognitive state of students, we also try to take motivational
aspects into account in the particular model of the Socratic style that we
adopt, although it is not in the focus of this research and we keep in mind
the special aspects that feature in human-computer interaction, as opposed to
human-human interaction [Shechtman and Horowitz, 2003].

Various researchers are also investigating politeness as the counterpart of
motivation in terms of language use. [McLaren et al., 2007] have integrated
politeness in an existing e-Learning system for Stoichiometry. They conducted
in-vivo empirical studies comparing polite feedback vs. the standard feedback
of the system. They found a trend for better learning effects when polite feed-
back was provided, although the particular integration of politeness in their
system did not show significant results. [Porayska-Pomsta and Mellish, 2004;
Porayska-Pomsta and Pain, 2004; Mayer et al., 2006] investigate models of NL
generation to accommodate politeness in the feedback provided and in the way
it is presented to the student. Autonomy, letting the student do as much of the
work as possible, and approval , providing as much positive feedback as possible,
are employed by Porayska-Pomsta and colleagues. Although this work concen-
trates on NL generation, it is relevant to our work first, in that we recognise
autonomy and approval as the possible instigators of attention, relevance, confi-
dence and satisfaction, and second, in that we believe that the use of automatic
NL tutorial dialogue can incorporate and promote such aspects of affect.

2.2.5 Non-goal-specific Socratic Teaching

The term Socratic signifies any teaching strategy where a dialectic tutoring style
is used that aims at eliciting information from the students and promotes active
learning, e.g. [Stevens and Collins, 1977; Rosé et al., August 2001]. Socratic

strategies emphasise the need for instruction and for monitoring the learning
process. For instance, the snapshot from the example that we saw in Sec-
tion 1.3.4 shows how the tutor directs the student to finding the next proof step
by trying to elicit the relevant aspects of it from the student.

. . .
T2: (encourage) Great! (signal-pa) You’re on a good track.

(initiate-subtask-proof-step-meta-reas) We’re taking it
from the start. So, go ahead and (elicit-prem-conc) find what
is assumed and what you have to prove.

94 Chapter 2. A Pedagogical Model for Tutoring

S2: (correct) I have to prove that if A ⊆ K(B), then B ⊆ K(A),
and A ⊆ K(B) is given.

T3: (signal-accept) Correct! (elicit-specific-method) Now,
how can you manipulate the expression to prove what you want?

S3: (correct) I have to simplify what we are trying to prove.

T4: (signal-accept)Correct! (close-subtask-proof-step-meta-
reas) OK. (initiate-subtask-rel-con-meta-reas) Let’s see,
then. (elic-meta-reas-rel-con) Try to find something in the
expression that would help you simplify the problem.

S4: (correct) Do you mean the if-then?
The motivation for using the Socratic teaching model for our purposes is

discussed in this section. More specifically, we present studies that examined
what can be improved in non-goal-specific problem solving in order to further
reduce cognitive load. In this context, we also look into promoting schema
acquisition in more detail.

As we mentioned in Section 2.2.3, Lim and Moore’s [Lim and Moore, 2002]

experiments aimed at measuring the acquisition of schemata. We now turn
to the aspects of their study that specifically refer to schema acquisition. In
particular, Lim and Moore argued, against Cooper and Sweller, that the ad-
vantage of worked examples is that they provide enough information to the
students in order to avoid cognitive load and allow the formation of schemata.
They hypothesised that using appropriate instructions for students during non-
goal-specific problem solving would result in even higher cognitive gains. They
analysed, among other factors, the students’ responses during learning, compar-
ing two groups: one group with additional instructions and one without. Their
experiments confirm their hypothesis, showing that better schema acquisition
was possible for the group that was instructed through leading questions during
problem solving.

Wilson and Cole [Wilson and Cole, 1991] pointed out the connection between
cognitive teaching models and the more established at the time instructional the-
ory. They provided an argument for combining cognitive teaching models with
instructional methods. Instructional theory supports providing heuristically
based chunks of instruction during the learning process. Instruction is given
in an incremental manner and in a simple-to-complex progression. The basis is
behaviouristic, connecting learning goals with teaching strategies, but leaving
out how the goals are realised cognitively. In the cognitive models tradition, on
the other hand, instructions are meant to accompany exposure to experiences,
or better be part of the experience every time. The experience itself is what
gives rise to schema acquisition and learning [Delclos and Harrington, 1991;
Driscoll, 1994].

Delclos and Harrington [Delclos and Harrington, 1991] also tested the effects
of monitored learning, which promotes student control. They asked subjects to
read preliminary domain instructions and evaluated the learning gains among
three groups: one that received no further training, one that was left to self-
monitored problem-solving training and one that received monitored problem

2.2. Motivation of the Teaching Model 95

solving. The monitored group received additional instructions during training,
which encouraged them to monitor their problem solving. The results made
evident the superiority of the combined training and monitored group. They
therefore argued for the importance of instructions that promote strategy mon-
itoring in problem solving.

Furthermore, a comparative study [Rosé et al., August 2001] for the effects of
traditional didactic teaching strategy vs. the more dialectically oriented Socratic
one, which provides scaffolding instructions, has indicated that students under
the Socratic condition learned more. Notably, the study investigated dialogue
interactions between the tutor and the student in natural language. Although
the two teaching strategies were not formalised for the study, there is an obvious
difference in the quantity and the quality of feedback in the two conditions
observable in the corpus collected in the study [Moore, 2000]2.

There are a number of further advantages to a Socratic instructional tu-
toring model. First, it can simulate the reduction of cognitive load, as recom-
mended by the work we already looked at in this section due to its controlled
instructive nature. Second, it takes advantage of the beneficial use of natural
language in tutoring, as it has been argued in the literature, e.g. [Moore, 1993],
in the form of hints. A good example of this is the automatic use of appropriate
discourse markers, such as “as we have seen before”, “as you know”, “moreover”
etc., which make information processing easier, hence minimising cognitive load.
The flexibility that natural language, and with it dialogue, allows for simulating
some of the motivation aspects in tutoring, which we discuss in the following
section, which are difficult to manipulate otherwise. Third, the dialectic nature
of instructional tutoring opens up an area of manipulation of other cognitive
facets that tutoring should take into account, namely those that can be handled
by natural argument [Reed and Grasso, 2004]. For instance, we saw how the use
of natural language allows manipulating discourse coherence and with it task
coherence, and how the different factors of tutoring feedback are combined in
the instructions provided by Menon in the example in Section 1.3.4.

2.2.6 Forward reasoning instructions

So far we have looked into general teaching strategy issues. We now go into
more detail and support the use of instructions that enhance schema acquisition
by providing step-wise hints. More specifically, we look into what the order
and the content of hints should be, in terms of the abstract problem-solving
technique that the students are guided to. For that we examine two more major
issues in teaching how to prove; teaching forward vs. backward proving, and
teaching declarative vs. procedural knowledge. This section tackles instructions
on forward vs. backward proving.

An early study by Chi and colleagues [Chi et al., 1982] compared the prob-
lem solving techniques used by novices to the ones used by experts. They found

2In the first phase of our formalisation of the tutoring model, we used this corpus as an
empirical basis for our work (cf. Chapter 1).

96 Chapter 2. A Pedagogical Model for Tutoring

that experts use a forward-reasoning technique for easy problems, moving pro-
gressively from one goal to the next, until they have reached the end goal with
minimum manoeuvring. On the other hand, novices working on the same prob-
lems seem to oscillate between the current stage and the goal, and use many
unordered steps, which they then re-order and bring together, as they approach
the final goal. This is called the means-end technique. Their research suggested
that the reason behind this difference is the possession of schemata, in the case
of experts, and the corresponding lack of them, in the case of novices. The
reasoning is that when a schema exists, the next step to be taken is encoded as
part of the schema, which enables the possessor of the schema to move forward
taking one step after the other in an ordered manner. By the same token, when
a schema is not available, a person solving a problem must reason backwards
from the goal, in order to decide which step to take next on the basis of what
would help with reaching this goal.

Matsuda and VanLehn [Matsuda and VanLehn, 2003] looked into the hinting
strategies used by humans, and the behaviour of students when solving geometry
proof problems. They also observed that students did not use a consistent
forward or backward , working from the goal, proving style, that is, they used
the mixed directionality of the kind that Chi and colleagues have found to be
characteristic of novices. That lead them to speculate that it would be beneficial
if the tutor adapted the hints to this opportunistic technique and, in effect,
used no expert model to guide them. In a later study [Matsuda and VanLehn,
2005] they compared two strategies, each concentrating on one of the aspects
of the early study. Namely, one was teaching forward reasoning and the other
backward reasoning. Both of these strategies are implemented in the Advanced
Geometry Tutor intelligent tutoring system, e.g., [Matsuda and VanLehn, 2005].
They found that the forward chaining teaching strategy effected more learning
gains than the backward chaining teaching strategy. Data analysis specified the
disadvantage of the backward chaining strategy to the difficulty faced by the
students to set subgoals necessary for backward reasoning. They interpreted
those results as consistent with previous studies that have found that novices
find backward reasoning difficult.

We will now look at research that addressed the question of directionality as
part of a teaching strategy aiming at learning, on the one hand, and as part of
the reasoning employed normally by problem solvers irrespective of instruction,
on the other.

In the mathematics educators forum Wu [Wu, 1996; 2001] has argued that
when teaching how to prove, a model must be provided. This model should assist
the learning process with specific reference to the directionality of a proof. More
specifically, he states that students should be taught appropriate heuristics for
finding a proof, but should be made aware of the difference between heuristics
and proof.

Cognitive studies have also concerned themselves a lot with the issue of direc-
tionality. Owen and Sweller [Owen and Sweller, 1985] claim that the means-end
technique identified first by [Greeno, 1978; Chi et al., 1982], although it achieves
the goal of solving the problem, hampers schema acquisition and, hence, learn-

2.2. Motivation of the Teaching Model 97

ing. The speculated reason is the useless extra cognitive load posed by the
means-end technique. They were able to show, by a series of experiments in
trigonometry [Owen and Sweller, 1985], that leading subjects to a represen-
tation of key points in the problem solving helped them reduce errors both
during treatment and subsequently. Subjects also demonstrated better transfer
of learned skills, arguably due to the creation of helpful, expert-like schemata,
which allowed them to apply the acquired knowledge to new situations.

Lim and Moore [Lim and Moore, 2002] also used a forward-looking non-goal-
specific problem-solving condition in their experiments. They tested specifically
directionality, among other things. Their findings showed that subjects under
this condition improved in the application of forward directionality, that is, they
used very early on the expert, forward technique. On the contrary, subjects on
the non-instructional condition mostly did not manage to achieve the required
directionality at all. Moreover, there was a correlation between the number of
errors and the directionality used. Subjects using forward directionality made
fewer errors and were in general better at the performance of the task. Addi-
tionally, they maintained their problem solving abilities over time to a higher
degree than the non-instructed subjects.

Sweller [Sweller, 1989] observed that the means-end technique used by nov-
ices, which also uses backward reasoning, is indispensable for problem solving.
Still, it is all the same inappropriate as a tutoring model for instruction. He ar-
gues that the extra cognitive load imposed by such a technique hinders learning
rather than assisting it. This cognitive load derives from having to split one’s
attention between the goal, the givens, and the relation between them, while
this is the same for any subgoals. In tutoring proving, where the goal is neces-
sarily part of the problem, non-goal-specific tutoring is only feasible in the sense
of allowing any possible solution. To alleviate extra cognitive load imposed by
split attention, extra help can be provided that indicates when a backward step
(starting from the goal) should be applied. Then the student does not have to
constantly bear in mind the goal.

Moreover, [Lim et al., 1996] observed a similar phenomenon, while experi-
menting primarily with non-goal-specific vs. worked-example instruction strate-
gies. They could not show a clear correlation between the proving technique
used and learning. Some students who used the forward technique did not learn
or maintain any learning, while other students who used mixed directionality
both learned and maintained learning gains. Lim and colleagues could not ac-
count for this phenomenon based on existing learning models. However, the
phenomenon is possible to explain in the light of other research results. First,
no instructions towards a forward technique were used that would help the stu-
dents who did not have a schema yet to acquire one [Sweller, 1989]. Second, the
students were deprived of the default means-end technique, due to the applica-
tion of the non-goal-specific strategy that did not provide the student with an
end [Greeno, 1978]. The combination of these two drawbacks seems to be what
prevented learning for certain subjects. [Greeno, 1978] showed the means-end
strategy can be applied more successfully when hints for one of the intermediate
proof steps are provided.

98 Chapter 2. A Pedagogical Model for Tutoring

In our own Wizard-of-Oz experiment, all students could easily learn to use
forward steps, even if they were not sure which rule to use. On the contrary,
they had great difficulty with backward steps. This was observed in 17 out of 19
students across conditions. It was very puzzling for the students and the main
time-consuming aspect of the Socratic teaching strategy used in the experiments
where the forward step was requested. One could hypothesise that the extra
cognitive load imposed by insisting on the students learning the backward rea-
soning in the Socratic condition hindered the learning process [Sweller, 1989].
In the context of the Geometry Tutor [Anderson et al., 1993] as well, explicit
tutoring of backward steps had to be taken out of the system, because it was
problematic. Although the system provided a useful diagrammatic display, the
students were confused. They tried to set subgoals for proving something that
the goal implied, instead of ones that implied the goal. Another alternative to
standard backward steps is making use of what is present in the given situation,
thus saving on memory storage, choosing applicable operators with reference to
the situation only, and combining operations based on schemata [Greeno, 1978].

In summary, the research cited here shows that the two techniques are com-
plementary for learning. However, if the aim of instruction is to turn novices
into experts, then the forward technique should be promoted. Therefore, in our
tutoring model we favour forward reasoning as much as possible, but instruct on
the use of backward steps when these are necessary in order to support students
who use the means-ends technique. We, thus, hope to permit the creation of
schemata that will eventually arise from the exposure of the learner to problem
solving situations.

An additional issue about the style of tutoring, which becomes relevant at
this point, concerns the choice between delayed and immediate feedback. Both
cognitive load and the forward directionality argue for immediate feedback. De-
layed feedback goes against these principles, as the student is left without help
for some time, while moving without orientation. This creates unnecessary cog-
nitive load and does not take advantage of instructing the student to use the
more advantageous forward directionality. Empirical evidence to the support
of immediate feedback comes, for example, from Person and colleagues [Per-
son and Graesser, 2003], who observed a preference for it in human tutoring.
Additionally, Freedman and colleagues [Freedman et al., 1998] found that local
evaluation is more important for choice of feedback. This finding also points
to producing immediate feedback, as any local evaluation is rendered useless
otherwise.

Moreover, findings from the open model community3 support that reflection
is at most promoted with the interaction of student and tutor. A study by
Zapata-Rivera and Greer [Zapata-Rivera and Greer, 2003] examined the effect
on reflection, by use of a taxonomy of different reflective acts. They found that
deeper reflection is evidenced when immediate feedback is given.

Bearing in mind the issues discussed and given the nature of proving that

3The main philosophy of this community is that reflection is promoted when the student
model maintained by the system is made available to the student herself, e.g. [Dimitrova et

al., 1999].

2.2. Motivation of the Teaching Model 99

necessarily involves backward steps, we suggest the use of immediate feedback to
help the student in the relevant situations. We also set the goal of concentrating
on elements of knowledge that are present and can be referred to, and develop
hinting around them.

2.2.7 Declarative vs. procedural learning: Effects of self-

explanation and meta-reasoning instructions

In this section, we discuss declarative and procedural knowledge and their con-
nection to instruction. We look into the connection between these two kinds of
knowledge processing with the use of self-explanation and meta-reasoning in in-
struction. We identify advantages in both and propose ways of integrating them
in our tutoring model so that procedural knowledge is the goal and declarative
knowledge is used as a means to this goal.

In artificial intelligence, declarative knowledge has been used to mean knowl-
edge encoded explicitly as facts. This is opposed to procedural knowledge,
which is a direct representation of behaviour [Russell and Norvig, 2003]. Rep-
resented facts are declarative knowledge, whereas inference rules that allow fur-
ther knowledge to be induced from those facts are procedural knowledge. In
psychology, declarative knowledge is also defined as factual knowledge that is
represented explicitly. It is manifested largely in the ability to recollect the
facts causing the knowledge. Procedural knowledge, in contrast, is knowledge
represented implicitly without conscious awareness. It is manifested in skilled
performance. Declarative knowledge creates reference points that serve as points
of attentional expectancies. Attention, in turn, advances procedural knowledge.
However, declarative and procedural knowledge are dissociated, as one is not
necessary for the acquisition of the other [Willingham et al., 1989]. Although
there is the general potential for transforming knowledge of one form into the
other, not all implicit knowledge can be brought to consciousness and made
explicit.

In the following research review, we preserve the preferred terminology of
the researchers each time, but recognise a connection between declarative and
explicit, on the one hand, and procedural and implicit, on the other.

We will now look at studies that investigated different models of learning,
with particular emphasis on the distinction between targeting declarative or
procedural, non-conscious knowledge acquisition. We will use this as a basis
for justifying our only moderate use of self-explanation, a notion that has been
widely adapted in the field of intelligent tutoring systems (e.g., [Person et al.,
2000; Conati and VanLehn, 1999; Aleven and Koedinger, 2000a]). The goal
of self-explanation can be described as prompting students to articulate their
thinking in order to transform implicit knowledge into explicit [Collins, 1991].

The highly influential study by Chi and colleagues [Chi et al., 1989] sup-
ported the notion that self-explanation enhances learning. This was based on
discovering that better human problem solvers can better explain themselves,
that is explain what they are doing and why [Chi et al., 1982]. However, there
can be a number of reasons behind this observation. The fact that some people

100 Chapter 2. A Pedagogical Model for Tutoring

are better problem solvers might mean that they did at some point possess the
declarative knowledge (or similar declarative knowledge) that self-explanation
presupposes. This knowledge they can now retrieve from memory. Most im-
portantly their high level in problem solving means that they can afford to
self-explain, as they do not bear a heavy cognitive load. This kind of cognitive
load might be the reason that disallows self-explanation abilities in less capable
problem solvers.

Researchers have also looked into the distinction between acquiring proce-
dural vs. declarative knowledge. The early hybrid model Clarion built by
Sun and colleagues [Sun et al., 1996] was designed to learn skills from proce-
dural knowledge, without presupposing any declarative knowledge. Clarion

unifies connectionist, symbolic, and reinforcement learning. It succeeded in
demonstrating that this bottom-up approach facilitates transferability and even
helps the learning process on-line. Another more elaborate study by the same
group [Sun et al., 2001], which was based on an advanced version of Clarion,
modelled again a bottom-up approach to learning. Their architecture promotes
bottom-up skill learning in reactive sequential decision tasks, whose nature is
similar to problem solving. The agent learns in a sequence of interactions with
the world, without the use of preconceived declarative concepts and knowledge
on how to perform a task. Procedural skills and high-level knowledge are ac-
quired via this kind of learning process, with declarative knowledge rising from
the procedural knowledge acquired.

This learning model takes a counter view to Anderson’s more conservative
learning model [Anderson, 1993], as well as to the models reviewed by Van-
Lehn and his colleagues [VanLehn et al., 1992; VanLehn, 1996], which report
on domains and specific knowledge that are suited for the use of top-down
learning, and do not adapt as well to implicit learning as proving does. Wu
captures this procedural nature of proving in the concise utterance: “. . . no in-
tuition, no proof” [Wu, 2001] (p.31), intuition being nothing else but what is
not declaratively available. The claim of the supporters of learning based on
declarative knowledge is that procedural knowledge can arise from declarative
knowledge [Anderson, 1993]. VanLehn and colleagues explicitly claim that self-
explanation facilitates learning, as it evokes the formation of declarative knowl-
edge. Sun and colleagues’ [Sun et al., 2001] more radical learning model further
shows that bottom-up learning in synergy with moderate top-down learning is
preferable, as it promotes transferability of the learned skill. It also has been
shown to occur naturally in tasks that are rule based, like mathematics [Math-
ews et al., 1989]. However, learning is potentially slower, because procedural
knowledge cannot be learned in one incidence. The repetition of similar tasks
is an absolute prerequisite for its construction.

Other researchers have also posited views in favour of de-emphasising forc-
ing students to acquire declarative knowledge. Berry and Broadbent [Berry and
Broadbent, 1984], for instance, argued for the dissociation between learning and
awareness. They found that subjects who could answer questions demonstrat-
ing explicit knowledge did worse at their tasks. They suggested that in order
to have a learning effect, subjects have to be guided on the content of verbal-

2.2. Motivation of the Teaching Model 101

isation and not be asked to verbalise their thoughts. Only then can learning
occur with subsequent requests for verbalisation. They recommend verbal in-
structions for achieving this. In later experiments [Berry and Broadbent, 1988]

demonstrated that forcing learners to explicitly extract verbalisable rules while
learning can impair performance on tasks as well as transfer. This is condi-
tioned upon, first, the degree of saliency of the presentation of the rules to be
learned, second, specifying relevant points that make the rules more salient.
Since implicit and explicit learning can be operationalised this way, they claim
that they are not mutually exclusive but work in parallel. Based on the de-
gree of saliency of rules in a task, which may vary a lot in complex tasks, one
kind of learning will prevail over the other. This point on explicit and implicit
knowledge working together also fits in well with the connection found between
attentional expectancies build by declarative (explicit) knowledge that assist
procedural (implicit) knowledge [Willingham et al., 1989].

More directly, Lewicki and his colleagues [Lewicki et al., 1992] have vigor-
ously supported the promotion of implicit, non-conscious learning. They argued
that too much declarative knowledge can actually hinder learning of rules, and
that non-implicit learning is much more efficient and structurally more sophis-
ticated than consciously controlled learning. It is nonetheless intractable and
cannot be formalised, as the human consciousness is unable to handle the com-
plexity in which this kind of learning and the derived knowledge organises itself.
That, in effect, has three consequences. First, during problem solving, a lot of
knowledge is formed unconsciously in an implicit manner. Second, it is impossi-
ble for students to turn all implicit, procedural knowledge that they potentially
acquire, into declarative knowledge [Mathews et al., 1989]. Third, forcing stu-
dents to report on the knowledge that they have acquired in the self-explanation
fashion puts additional cognitive load on them, which hinders non-conscious pro-
cesses. Moreover, it directs the students’ attention to the consciously tractable
knowledge, which Lewicki and colleagues [Lewicki et al., 1992] claim to be infe-
rior. Thus, an excessive demand for self-explanation can be counter-productive
as far as learning skills is concerned.

Conati and VanLehn [Conati and VanLehn, 1999] have empirically observed
that students are not inclined to generate goal-oriented explanations, which
generally builds highly transferable skills. Moreover, studies in the Intelligent
Tutoring Systems community, e.g. [Heffernan and Koedinger, 1998] have actu-
ally shown that it is more difficult for students to explain verbally what they
want to do, rather than do it. This was shown for algebra problems, where
verbalising a solution is more difficult than performing the solution in algebra.

Such observations concur with the earlier conjecture of Stanley and col-
leagues [Stanley et al., 1989], who interpreted their experiment results as evi-
dence for the indispensability of implicit learning. Their experiments gave evi-
dence that learning on complicated tasks takes place implicitly until a very high
level of expertise is reached. Only after reaching this level are learners capable
of verbalising the acquired knowledge, possibly due to already complex forms
of mental representations of the knowledge. They concluded that implicit pro-
cessing is essential to acquiring the knowledge, and that short verbalisations or

102 Chapter 2. A Pedagogical Model for Tutoring

verbal instructions assist the learning process when based on heuristics relating
to the task.

For our purposes, the conclusions on implicit and explicit learning mean
that forcing students to verbalise their actions is not appropriate for a task
such as proving, where procedural learning is the aim, because it fortifies top-
down processes at the expense of the bottom-up processes required for proving.
However, moderate request for verbalisation is beneficial. More specifically,
Sun and colleagues [Sun et al., 2001] arue that the heuristic process used for
skill performance must be both implicit and explicit. It must be implicit in
“making decisions based on current information in accordance with the ’policy’
that implicitly takes into account future steps”(p.35). This speaks for schema
promoting hints. “Explicit” refers to a more declarative approach. This can
be done by explaining the meta-reasoning behind the heuristics applied dur-
ing the promotion of skill learning in a rule fashion. This is also instructed
for our domain by Wu [Wu, 2001; 1996] who is in favour of making students
aware of the logical reasoning that informs proving. Moreover, Schoenfeld and
Herrmann [Schoenfeld and Herrmann, 1982] also support the need to provide
instructions relevant to the meta-reasoning. Their research concentrated on the
differences of the structures of knowledge in novices and experts. They showed
that experts rely more on deeper understanding of the principles of the domain,
that is the meta-reasoning, rather than surface characteristics like words in the
problem or syntax of the mathematical expression, in the case of mathematics,
which is typical of novices. On the other hand, meta-reasoning plays the role of
abstract instructions, as opposed to instructions specific only to the particular
proof and proof step, and increases transferability [Robertson, 2000].

We propose to concentrate on skill acquisition, emphasising implicit knowl-
edge where possible, but not restricting all learning to it. That means that we
do not aim at bottom-up concept learning, although the declarative knowledge
concerning concepts that the students already possess can be proceduralised
during the skill acquisition. We rather aim at bottom-up skill learning. More-
over, we in fact need to rely on some top-down knowledge anyway at a different
level, to the extent that we presuppose the lesson material for learning concepts,
rules, examples and methods to be used during the tutoring session phase, which
simulates implicit learning. This is in line with what Sun and colleagues [Sun
et al., 2001] propose.

Since we deal with novices, we do consider instruction that looks at sur-
face characteristics, which is the typical approach they take to problem solving.
Such instruction is captured in two aspects of our hinting. First, in the prag-
matic aspect that makes use of surface characteristics of the expected answer
to guide the student. For example, the number of expected sub-parts in the ex-
pected answer. Second, in the use of instructional points that point to surface
characteristics of the problem that are present at the point the instruction is
provided. We use those as a means to guide the student’s attention to the more
generalisable underlying characteristics, which lead to procedural knowledge.

The fact that we try to follow what the student does and provide instructions
on the proof the student is attempting is an attempt to let students use their

2.3. Tutoring Framework and Teaching Model 103

knowledge in a way suitable to them, which improves their learning. At the
same time, we accept that this use of their knowledge is intractable to both
us and them, as it is based on overly complex implicit structures and we do
not try to make it overtly available to them by asking them to self-explain.
Additionally, we define a teaching model that uses heuristic-based hinting that
promotes implicit knowledge, with moderate self-explanation and exposition of
declarative knowledge. More specifically, we let students work on their own for
as long as they seem to be making progress in the task. Only when this is not
working and students seem to slow down, which is an indication of cognitive load,
do we interfere and tackle meta-reasoning that provides heuristics declaratively
to give students a way out. We, thus, support useful expert schema acquisition,
manipulate the synergistic effect, and contribute to the reduction of cognitive
load [Stevenson, 1998].

2.3 Tutoring Framework and Teaching Model

In this section we formulate the tutoring model that informs the formalisation
and implementation of our system. We follow, to a large extent, the phase sep-
aration proposed by Collins and Stevens [Collins and Stevens, 1982]. First, we
enumerate the assumptions of the tutoring framework that the model presup-
poses (Section 2.3.1). Second, we specify the tutorial goals, global and local,
which the tutoring model sets out to realise (Section 2.3.2). Third, we explain
what the specific teaching strategy we implement is, which derives from the the-
oretical and empirical considerations analysed so far in this chapter, the tutorial
goals set, and the general tutoring model (Section 2.3.3).

2.3.1 The Tutoring Framework

The tutoring framework presented in this thesis, which we presuppose for the
automation of the hinting process in our implementation, comprises the follow-
ing phases:

1. Lesson material

2. Proof presentation

3. Problem solving session (interactive tutoring session)

Lesson material refers to the material that the student consults for prepa-
ration. It should include the declarative domain knowledge that the student is
supposed to know and that is presupposed for the interactive proving session.
Proof presentation also belongs to the preparation phase. It should include
proofs demonstrating the use of the domain knowledge presented in the corre-
sponding lesson material. Both of these are prerequisites for the final problem
solving phase and equally important for the learning process, although they
serve different purposes. The problem solving session is the interactive session

104 Chapter 2. A Pedagogical Model for Tutoring

where the student is required to apply the knowledge acquired in the previous
two phases, while at the same time practising problem solving skills in general.

The definition and implementation of the lesson material and the proof pre-
sentation are not undertaken here, but we assume that they are supplied by the
larger system of which this is a module. Hence, we only mention them to the
extent that they influence the focus of the thesis, namely the problem solving
session, and more specifically the motivation of the hinting process adopted for
formalisation. The problem solving session itself is discussed at length in Sec-
tion 2.2.2. We will, thus, restrain ourselves to saying that the lesson material
and the proof presentation should capture the same educational principles (Sec-
tion 2.3.2.1, global tutorial goal) and the same learning goals of the tutoring
session (local tutorial goal) as the problem solving itself. They should be pre-
pared based on a user model of the overall system, which should also determine
the appropriate task to be set for the student for each tutoring session. An
example of what this consistency should capture is that the proof presentation
should be in the form of worked examples that capture the forward proving
technique that experts use and also some backward reasoning, where this is
necessary [Sweller, 1989] (cf. Section 2.2.2). This would allow students to get
a better understanding of the procedure, although the static representation of
worked examples is not the best representation for capturing it [Collins and
Stevens, 1991]. Then when students are required to find a proof themselves
in the interactive phase, they will be more prepared to assimilate and apply
dynamic aspects of proving.

Let us now move on to the definition of these tutorial goals.

2.3.2 Tutorial Goals

The tutorial goals inform the choice of the teaching model as well as its exact
definition and internal choices at all times. For conceptualisation purposes, they
can be separated into global and local tutorial goals, although in reality it is
hard to tease them apart, as there is a lot of interplay between them.

2.3.2.1 Global Tutorial Goals, Means, and Proposed Strategy

The global cognitive goals that we wish to realise every time through the teach-
ing model are the following:

1. distant transfer

2. near transfer

3. implicit learning

4. self-sufficiency

5. motivation to learn more

2.3. Tutoring Framework and Teaching Model 105

Distant transfer – also called ”far transfer”– refers to the ability of the
student to apply any knowledge acquired over a maximally extended period
of time, or to problems that do not have surface similarities to the tutored
problems. For example, two problems that both require an indirect proof, but
do not make use of the same mathematical concepts, should be recognised as
similar.

Near transfer refers to the ability to use the acquired knowledge under mul-
tiple different circumstances and apply it to variants of the tutored problems.
For example, when the definition of a concept has been replaced for the instance
of a concept in a mathematical tasks, the student should be able to see the same
concept in a following similar task and remember to replace the definition for
the concept.

Implicit learning refers to the acquisition of problem solving skills that are
intractable in themselves, but affect the overall performance of students. For
example, the student does not need to be aware of the notions of forward and
backward reasoning, as most humans aren’t, but should be able to apply them,
as humans do.

Self-sufficiency describes the goal that students reach a point in which they
do not need the help of the tutor, and they are confident without it. For
example, after solving a number of problems using indirect proofs with the help
of instruction by the tutor, the student should be able to recognise that an
indirect proof should be applied without any help by the tutor.

Motivation to learn more means that the student wishes to indulge in more
learning without any external motivation. For example, when students come
across difficulties in solving a problem, they should be able to self-regulate their
motivation, for instance, by remembering similar situations that they resolved
before and by appreciating the exhilaration that resolving difficulties alone can
release. They should not need to get external credit or to be reminded that
difficulty is part of problem.

2.3.2.2 Local Tutorial Goals

The local tutorial goals that we assume define the learning goals each time, that
is, the domain learning goals of each session. In particular we want to teach:

1. Application of domain concepts

2. Application of new theorems/lemmata/definitions/axioms

3. Application of new proving techniques (controlled through the choice of
proving task)

4. Correct use of argumentation (deductive reasoning)

5. Correct notation

6. Correct jargon

106 Chapter 2. A Pedagogical Model for Tutoring

These goals are realised in every proving task keeping in mind the global
tutorial goal that is captured by our tutoring model. The latter is informed
by state-of-the-art studies in educational and cognitive psychology (learning
theories) as examined in this chapter.

2.3.3 The Teaching Model

We propose the simulation of a non-goal-specific instructional teaching model.
More specifically, we adopt the problem solving paradigm, which is more appro-
priate for our tutorial manager, as this is a module responsible for the interac-
tive phase of the learning framework. We use non-goal-specific problem solving,
which advances the benefits of problem solving in the training phase and lessens
the problem of extra cognitive load imposed by the goal-oriented strategies. For
the domain of proving this translates into allowing and supporting students to
find any solution to the task. Moreover, we choose instructional problem solving
and with it the Socratic teaching model, driven by the goal to further reduce
any unnecessary cognitive load, take motivational issues into account, and allow
for more fine-grained manipulation of the tutoring session towards our global
tutorial goals. In that context, we also allow for making use of adaptive natural
language realisations of the instructions provided. Furthermore, we take into
account the divergent views on promoting declarative (explicit) or procedural
(implicit) learning and decide on a synergistic model with emphasis on implicit
learning for our teaching model. This means that we aim at implicit learning,
with minimal explicit learning only when judged necessary.

In addition, as we have seen (Section 2.2.1), schema theory underlies our
teaching model and all decisions relevant to it. Schema theory and cognitive
load theory are adapted for teaching problem solving by instructional learning
theories [Rumelhart and Ortony, 1977; Rumelhart, 1980; Price et al., 1997;
Paas et al., 2004; Widmayer, URL]. We borrow the ideas from these three
theories. We use the schema analogy and aim at the active building of logical
expressions, which are the building blocks of schemata, at an abstract level.
We use instructional points to represent the building blocks of schemata and to
provide attentional anchors for procedural skill acquisition. For that purpose, we
abide by instructional theory that advocates in general the teaching of mental
models for schema acquisition and stresses the need for multiple exposure to
schema building situations before the schema can be re-applied fluently. This
is reinforced by appropriate instruction (Section 2.2.5). In the same spirit,
the common criticism against the claim that learners must acquire problem
solving abilities through exposure to known situations, points out that schemata
acquired this way may over-fit the learning situations, become rigid, and useless
for more general

application [Wu, 2001; Widmayer, URL]. A case of over-fitting the data for
the schema example in Section 2.2.1 would be that the learner acquires a schema
for solving equations of the form (a + b)/c = d with natural numbers only in
place of the variables a, b, c, d and cannot use the same schema for the same
sort of equation with real numbers. Additionally, there is evidence that problem

2.3. Tutoring Framework and Teaching Model 107

solving is domain specific in nature, and students need to learn through domain-
specific knowldge so that they can approximate the mental representations of
domain experts [Chi et al., 1982; Schoenfeld and Herrmann, 1982; Sweller, 1989].
These two views taken together suggest that teaching abstract mathematical
principles applied to specific learning situations and domain knowledge as the
best known way to acquire problem solving

skills [Driscoll, 1994; Price et al., 1997; Widmayer, URL]. Therefore, we
employ such principles as they also offer themselves for instructing the students
to a useful way of problem solving for the particular theory taught [VanLehn et
al., 2005]. We also implement a hinting style which guides the student to the
more efficient directionality, forward or backward, at each point, provided that
motivational issues are warranted. We base the hinting line on heuristics that
constitute a proving path, equivalent to a possible schema, and point the stu-
dents to a possible proof without imposing it as the only solution (See Chapters
5, 4 and 6).

2.3.3.1 Characterisation of the Tutoring Model

We now provide a characterisation of our tutoring model based on the estab-
lished work by Collins and colleagues [Stevens and Collins, 1977; Collins and
Stevens, 1982; Stevens et al., 1982; Collins and Stevens, 1991; Collins, 1991] for
reference purposes. We make use of the issues for tutoring identified by Wilson
and Cole [Wilson and Cole, 1991] and largely taken over from Collins [Collins,
1991]. We briefly position our model with regard to each of these categories.

Content In terms of content taught, we provide domain knowledge typically
found in textbooks when it is relevant to the proof at hand, but it is not our
goal to teach this knowledge independently of finding the proof. We also employ
heuristically based instruction (cf. Section 2.3.4), but we do not enforce heuristic
strategies or aim at metacognitive skills as such, where students are required to
explicitly learn to monitor their own progress.

Situated learning Theorem proving is a real-life application of problem solv-
ing. We emphasise problem solving as part of our teaching strategy and aim at
learning through experience, since this is also a prerequisite of schema acqui-
sition. The combination of those two aspects makes our approach affiliated to
situated learning, in the wider sense [Collins, 1991]. However, we provide hints
and additional instruction to accelerate and enhance learning through experi-
ence (cf. Section 2.3.4), which is not part of standard situated learning.

Modelling and Explanation Modelling of the proving process is inherent
in our domain to the extent that we allow students to find a proof dynamically
and, hence, appreciate the dynamic evolution of proofs, as opposed to the static
representation included in textbooks. For that reason, we also partially model
the expert performance by supporting forward steps, but allow the student to

108 Chapter 2. A Pedagogical Model for Tutoring

take potentially more backward steps than an expert might do. We do not
work with explanation of worked examples, though, as this is not part of the
particular phase in tutoring that we are concerned with here.

Coaching Coaching is a main characteristic of our teaching strategy. Issues of
cognitive load, motivation, and schema acquisition are all pointers to recognising
which information, how much information, and in which way information should
be presented when coaching the student. Our teaching strategy is based on
getting the students to do as much as possible on their own and intervene only
when coaching is necessary. However, we do not view problem solving just as
a way to create the teaching moment [Wilson and Cole, 1991], but we rather
see problem solving itself as the platform for learning through experience, while
coaching is only a corrective mechanism for this kind of learning.

Articulation We aim at minimal articulation and explicit learning at points
where implicit learning seems to fail.

Exploration Our model includes some exploration because we encourage stu-
dents to work towards a solution of their own in real-life application such as
theorem proving. We let them take back their current contribution or the step
they are working on and try another one, or to start a completely new proof.
Still, we do not promote exploration in the sense that students set tasks for
themselves. The system sets the tasks that students work on.

Reflection Reflection is promoted via hints in our model in so far as we make
use of the students’ own reasoning and provide feedback based on that. This
forces students to reflect upon their own answers [Tsovaltzi and Fiedler, 2003a].

Sequencing We do not deal with the choice of tasks that is essential to Collins
and colleagues [Stevens et al., 1982; Collins and Stevens, 1982; 1991]. Therefore,
sequencing from less to more complex tasks falls out of our scope of research.
Our aim is to provide feedback on proofs and their proof steps after the proof
task has been chosen. We guide the student on performing the next proof step
and provide feedback on errors during the performance of a step. This may
involve subtasks where a misconception is remedied, but it does not involve
presenting the student with a new task that will help resolve the misconception.

On the whole, as our aim is to automate feedback, we rather take an approach
of looking for the defining characteristics of every tactic proposed by Collins and
colleagues. Namely, we identify the underlying psychological or educational
principle that makes the tactic applicable. These inform the multiple decisions
that the tutor makes at every point and are implemented in our model as the
choice of general pedagogical feedback, choices on the multiple hint dimension
(Chapter 4), and choice of substrategies (Chapter 6) that all contribute to the
final decision on the appropriate feedback.

2.3. Tutoring Framework and Teaching Model 109

2.3.4 Guidelines for the Realisation of our Tutorial Goals

Let us now briefly explain the methodology for realising these goals in a concrete
teaching strategy and its implementation, as instructed by the research reviewed
in this chapter.

We undertake a full automation of hints, i.e., we employ the concept of
proof step matching (cf. Section 2.2), and regulate our feedback according to
it in order to follow the students’ own line of reasoning. Proof step matching
means that the student’s attempt, underspecified as it might be, is matched
to one of the possible correct proof steps, which we call the expected proof
step. Then the subparts of the attempted proof step are also matched to the
expected-step subparts4. The result of this comparison is an evaluation of the
student’s attempt, which depends on domain knowledge and constitutes input to
Menon. We also use tutoring concepts – the instructional points – defined as part
of a domain ontology, which allows matching specific mathematical concepts,
relations and terms in the proof step, to the abstractly defined instructional
points (cf. Chapter 3). The extraction of hint categories is based on these
instructional points and the instantiation of the domain-specific knowledge of
hints is facilitated by the domain ontology. This way, Menon produces feedback
for the proof steps that the student chooses to attempt on the fly and there
is no need to impose a precompiled solution. Moreover, our hinting strategy
provides help primarily when the system (tutor) judges that help is needed, and
not when the student asks for it, as evidence supports that the latter may be a
weak tactic as students are generally bad in monitoring their own progress and
need for help [Aleven and Koedinger, 2000b].

Motivation comes into play in our teaching model both in the form of explicit
encouragement captured verbally, as well as in the form of informed tutoring
choices, which aim at promoting attention, relevance, confidence and satisfaction
(cf. Section 2.2.4). The personalisation of the learning process is an additional
motivation technique in its own right [Ross and Fulton, 1994].

Reduction of cognitive load relates in a seemingly antagonistic way to moti-
vation. The latter supports challenging the student, which translates into an ef-
fort requirement, while cognitive load theory emphasises the importance of pro-
viding right amounts and the appropriate level of help to alleviate unnecessary
effort. This aim is undertaken, as much as possible, in the definition of the hint
taxonomy (cf. Chapter 4), which identifies small meaningful domain-knowledge
chunks along the lines of schema theory, and in the hint-choice strategy, which
evokes these knowledge chunks for instruction based on the performance of each
student (cf. Chapters 4 and 6). The student’s performance is assessed by help
of a model that we call the Hinting Session Status and represents the status
of the session (cf. Chapter 5). Hence, our goal is that the organisation of the
instructions relevant to the schema acquisition is responsible for any necessary
cognitive load imposed [Paas et al., 2004].

To promote the forward-proving technique typically applied by experts [Chi

4In the Dialog project, a proof manager based on the theorem prover Omega [Siekmann
et al., 2002] was used to this end. For more details see Chapter 5.

110 Chapter 2. A Pedagogical Model for Tutoring

 |

BlueprintSchema

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����������������
����������������
����������������
����������������

�������
�������
�������

�������
�������
�������

Figure 2.1: There is no one-to-one correspondence between the instructional
blueprint and the schema that it helps give rise to.

et al., 1982; Sweller, 1989], our hint-choice strategy helps students to make
forward steps whenever possible. Thus, we also encourage them to make use
of deep domain structures that requires the application of a schema [Sweller,
1989; Koedinger and Anderson, 1990]. The alternative, that is backward steps
characteristic of novices, makes use of surface structures, such as what the
required goal looks like. On the other hand, our strategy helps students when a
backward step is on call, hence allowing them to consider the goal when this is
necessary, but preventing that the students move aimlessly back and forth. This
means-end technique [Koedinger and Anderson, 1990] is necessary for novices
to acquire schemata, even though it becomes obsolete when the schema already
exists.

The aim of assisting the construction of cognitive structures (mental schema-
ta) directs the way we organise our domain ontology, as well as the definition
of our instruction units (the hints) and our hint-choice strategy. We do not
make any ontological claims about schemata. We only borrow the state-of-the-
art theoretical construct schema from cognitive psychology to explain learn-
ing. In the rest of this thesis, the mention of schemata is used only with
that intention, while we define a blueprint to use as our hint-choice strat-
egy, which is a possible heuristic model for problem solving in our domain,
as suggested by instructional theory (cf. Figure 2.1). The definition of the
blueprint is a two-step process. First, we define instructional points for tutoring
problem solving based on the pedagogical considerations that we have moti-
vated, on analysis of empirical data [Moore, 2000; Benzmüller et al., 2003b;
Wolska et al., 2004] (see also Chapter 1), and on the structure of our do-
main [Schreiner, 2004]. Second, we make use of these instructional points and
how they relate to each other for the derivation of the blueprint. The definitions

2.4. Conclusion 111

of the blueprint and the instructional points can be found in Chapter 3.
Implicit learning is another consideration for the way our teaching strategy

is organised. We follow Mathews and colleagues [Mathews et al., 1989], who
propose a framework in which implicit learning is the mechanism for recognis-
ing family resemblance. This recognition is essential for the application of the
appropriate schema. Therefore, the use of the general blueprint to guide stu-
dents to acquire a potential schema of their own aims at such implicit learning.
The schema acquired cannot be identified exactly and is also not our aim to
observe it.

In general, we subscribe to instructional theory and, through it, to the ap-
plication of schema theory to tutoring [Delclos and Harrington, 1991; Driscoll,
1994]. Following Lim and Moore [Lim and Moore, 2002] as well as Cooper
and Sweller [Cooper et al., 1999], we suggest the use of a blueprint to repre-
sent a generic pattern of moves towards solutions in mathematical proofs that
capture the underlying similar solution path for seemingly different problems.
Our purpose is not to impose that blueprint on the student. Rather we want
to use the blueprint as a guide to the problem solving in our domain and the
way the instructional points can be presented to the student, as Stanley and
colleagues [Stanley et al., 1989] propose. Both the instructional points and the
blueprint definition follow this general philosophy.

A more detailed presentation of the actual Socratic strategy that we imple-
ment, expanding on how the teaching guidelines mentioned in this section are
realised, is presented in Chapter 6.

2.4 Conclusion

Our approach is oriented towards modelling the student’s attempt with respect
to the task in the domain. We break the proof steps into their constituent
domain knowledge - the instructional points - and shift the evaluation of cor-
rectness to those constituents. Therefore, a proof step as a whole is attributed
a third correctness value, apart from correct and wrong, namely partially cor-
rect, when only some of the constituents are correct. In modelling the student’s
attempts, we track these instructional points and provide feedback accordingly.
We count on the student for building the schema required for learning, in that we
only base our instruction on these instructional points and on an abstract mini-
malistic heuristic blueprint abiding by Wilson’s statement that “Given the right
design, incomplete learning specifications can nonetheless lead toward complete
learning outcomes” [Wilson and Cole, 1991] (p.12). This has two advantages.
First, that it supports our intention to not superimpose any assumed best cog-
nitive structure, but try to help students to learn on their existing structures.
Second, that it makes the cost of implementing automatic feedback manageable
(cf. Chapter 1).

The rest of this thesis is concerned with the necessary definitions and use of
artificial intelligence techniques for building a system, Menon, which implements
the derived teaching model. The approach to producing automated feedback

112 Chapter 2. A Pedagogical Model for Tutoring

for arbitrary problems and solution, and the implemented teaching strategy are
described.

113

Chapter 3

Instructional Points and

Blueprint for Problem

Solving

3.1 Introduction

In Chapter 2, we argued for the importance of the underlying domain principles
in tutoring and we motivated the definition of instructional points and of an
instructional blueprint that represents a possible reasoning for arriving at proof
steps. In this chapter, we look more closely into the instructional points and we
define our instructional points and blueprint as part of an ontology for adaptive
hinting. In this context, we also present the proving domain and the Omega

system as a suitable domain reasoner for tutoring in this domain.
The role of the ontology derived in this chapter in automating hinting is

twofold. First, it influences the choice of the appropriate hint category since
it is represented in the Hinting Session Status (HSS) that is the input to the
Socratic tutoring strategy [Fiedler and Tsovaltzi, 2003a]. Second, it determines
the domain content of the hint to be generated. More specifically, it can be used
to map the instructional points, which are the domain-information specifications
of hints, onto their instantiations in the proof and proof step at hand represented
in the domain reasoner. The ontology was derived by combining a top-down and
a bottom-up approach. The top-down approach was the theoretical exposition
of schema acquisition, which provided us with the notion of instructional points
and blueprint for structuring the domain for tutoring and was presented in
Chapter 2. The bottom-up approach consisted of two methods of analysis: (i)
The exploration of the domain for potentially useful concepts and relations to
consider as instances for our instructional points, which was done in preparation
of the Wizard-of-Oz experiment of the Dialog project [Tsovaltzi and Fiedler,
2003b]. (ii) The data analysis of the Wizard-of-Oz experiment, where we aimed

114 Chapter 3. Instructional Points and Blueprint for Problem Solving

to identify those useful instructional points in students’ common mistakes.
We first define abstract instructional points for tutoring and the blueprint

for problem solving that makes use of these instructional points in Section 3.2.
To this end, we try to stay faithful to previous definitions of schemata and
empirical evidence on schema acquisition. We then introduce the formalisation
of the abstract instructional points as part of the domain ontology for tutoring
proving in Section 3.4. We base our formalisations on our bottom-up analyses.

3.2 Definition of the Instructional Points and

the Blueprint

For the derivation of the instructional points we follow the Eysenck and Keane’s
[Eysenck and Keane, 2000] definition of schemata. According to this, schemata
consist of relations, variables, and values for the variables. Relations can vary
from binary to causal. Variables are place holders for concepts or other schemata
that have to fulfil certain pre-conditions. It follows that schemata can be em-
bedded in other more general schemata. A situation is considered an instance
of a schema, although not all possible variables are already instantiated. In that
case, the corresponding relations of these variables cannot be evaluated either.

Domain knowledge comprises anchoring points , which are elementary for
the acquisition of the schema by the student and all other knowledge is based
on them. In our domain, such anchoring points are meaningful subparts of the
proof, which serve as building blocks for the whole proof. A new situation might
fit the schema representation by matching some or all of these anchoring points,
hence, making up an instance of the schema [Russell and Norvig, 2003].

Anchoring points are used to describe the organisation of knowledge in the
human mind. Since our aim is to assist the creation of this knowledge and not
to describe it, we are interested in defining corresponding instructional points
for teaching purposes. Therefore, we talk about instructional points , a name
reminiscent of the instructional theory paradigm that it echoes. Our assumption
is that by using the blueprint with its instructional points to instruct the student
via hints, the possibility is promoted that the student acquires a related schema.
This will help students learn in a structured way and assist in improving their
skills in the task.

We define instructional points that are meaningful domain-knowledge units,
following research in the field of genetic algorithms that demonstrated that using
an analogous representation of schemata as comprising of meaningful subparts
works best. As an example outside the proving domain, meaningful subparts
for representing an antenna are reflectors, deflectors etc. [Russell and Norvig,
2003]. In our domain straightforward equivalent examples are the proof steps
of a proof and the rule used as the justification for making a specific proof step.

In general, we identify appropriate instructional points informed by experi-
mental evidence on the underlying deep understanding of experts, as opposed to
surface characteristics that novices depend on for solving problems [Schoenfeld

3.2. Definition of the Instructional Points and the Blueprint 115

and Herrmann, 1982; Chi et al., 1982]. The same studies also suggested that this
deep understanding is required for solving problems. The underlying principles
of mathematics that experts are guided by and that we wish students to acquire
as knowledge should be captured in our instructional points [Owen and Sweller,
1985; Sweller, 1989; Lim and Moore, 2002; VanLehn et al., 2005]. We borrow
this structure as depicted by Wolfgang Schreiner for formal proving [Schreiner,
2004] and modify it to make explicit further implicit points in the structure that
are useful for tutoring. Still, we do not want to involve students in the formal
proof techniques directly, which may be unintuitive for humans, but want to
instruct students in the standard way proving is communicated among humans,
that is using the mathematical vernacular.

On the other hand, our job is to provide a way of uncovering these underlying
similarities between problems, which are obvious to experts but not to novices.
Chi et al. [Chi et al., 1982] have found that experts and novices can recognise the
relevant information alike. The difference in their expertise lies on the reasons
for perceiving them as relevant, or on the knowledge that relevant features
trigger. In particular, to identify relevant features, they both have to rely on
surface characteristics of the problem. However, novices rely on these surface
characteristics for classifying the problem. Experts, on the other hand interpret
them as pointers to the underlying principles and categorise problems based
on those underlying principles. Therefore, we include instructional points that
correspond to the feature characteristics, but also ones that reveal their use
as pointers to the underlying principles. We associate the second with meta-
reasoning.

We now define our abstract instructional points for a proof and a proof step.
Proof steps are solution steps that comprise applications of domain rules to
previous proof steps, making up the chain of reasoning, which is the proof itself.
We refer to such domain rules in our domain as inference rules and to proof
steps as inference steps. The following is the standard form of an inference step
in set theory, where ϕ1, . . . , ϕn are the premises, ψ is the conclusion, and P is
the inference rule:

ϕ1, . . . , ϕn

ψ
P

We categorise the instructional points in classes to capture the structure of
the domain. We shall then discuss the different classes.

Let Es be the expected proof step in a particular proof, consisting of the
premises, the conclusion and the inference rule applied. Let Pi be an instruc-
tional point. We say that Pi is an instructional point for Es if Pi falls under
one of the following categories:

Domain Relation: Pi is a binary relation between mathematical concepts in
the domain. For example, antithesis holds between ∈ and /∈. These rela-
tions hold independent of Es.

Domain Object:

116 Chapter 3. Instructional Points and Blueprint for Problem Solving

Domain Object: Pi is a function representing a relation between the premise/-
s, the conclusion, the inference rule (see below) and an entity in the proof
step that constitutes a prerequisite for the application of the inference
rule for making the inference in Es. In Section 3.4 we define Relevant and
Subordinate Concept, as instances of Domain Object.

Relevant-Concept Meta-Reasoning: Pi is a relation between the Relevant Con-

cept and Es. That is, considering the Relevant Concept helps making the
inference in Es.

Subordinate-Concept Meta-Reasoning Pi is a relation between the Relevant

Concept the Subordinate Concept and Es. That is, considering the Rel-

evant Concept in connection to the Subordinate Concept helps making the
inference in Es.

Rule of Inference:

Rule of Inference: Pi is the rule used as the justifications for making the
inference in Es from the givens.

Domain Technique: Pi is a relation between the Rule of Inference and the
Relevant Concept in Es. For example, case split is the Domain Technique

in Es, where the Rule of Inference are the different cases deriving from a
disjunctively defined concept.

Connect Relevant-Subordinate-Concept: Pi is a relation between the domain
objects and the Rule of Inference. Namely, that the applicable Rule of

Inference involves the domain objects; Relevant and Subordinate Concept.

Elaborate Domain Object Pi is a relation between the Relevant Concept, the
Rule of Inference and the Domain Technique in Es, namely that the Domain

Technique is used to apply the Rule of Inference with regard to the Relevant

Concept.

Substitution:

Substitution: Pi is a relation between the premise, the Rule of Inference and
the conclusion, which stands for the application of the Rule of Inference

for Es.

Inference-Rule Application: Pi is a relation between the Domain Technique the
Rule of Inference and the relevant concept. Pi represents the substitution
of the relevant concept based on the Rule of Inference.

Proof step:

Starting Point: Pi is as a relation between the premise, the conclusion and Es,
representing that the reasoning about the step should start by identifying
the premise and the conclusion.

3.2. Definition of the Instructional Points and the Blueprint 117

Premise-Conclusion: Pi are the premise/-s and conclusion of the present ex-
pression.

Abstract Method: Pi is the abstract method applied in the proof. We consider
direct and indirect proof as abstract methods.

Specific Method: Pi is the specific method applied in the proof. We consider
forward and backward steps as specific methods.

Step Meta-Reasoning: Pi is a relation representing the connection among the
different parts constituting the proof step. It includes, for instance, meta-
reasoning-relevant-concept and meta-reasoning-subordinate-concept.

Our instructional points are ordered with respect to the amount of informa-
tion they reveal towards the completion of a proof step. We call this ordering
relation subordination and it captures the partial ordering that human tutors
use as a strategy for choosing their next tutoring action. It serves as an indi-
cation of whether the student might or might not know a domain-knowledge
element. If the student knows an element that presupposed the knowledge of
other elements, it can be safely assumed that the student also knows those el-
ements [Collins and Stevens, 1982]. Exceptions to this rule can derive from
partial ordering of inference steps. Other exceptions might be hidden miscon-
ceptions. However, this is a complicated issue, which requires special treatment
(cf. Chapter 6). The subordination relation helps us derive the gross blueprint
for problem solving, and it also takes care of motivation issues discussed in
Section 2.2.4; For example, providing the right amount of information at each
time.

The domain relation class captures relations between concepts in the do-
main. A better understanding of such relations allows noticing patterns for
schema acquisition and selection [Price et al., 1997; Koedinger and Anderson,
1990].

The domain object instructional points capture the fact that selection of
schemata is based on relevant information on which attention should be con-
centrated [Collins and Stevens, 1991; Price et al., 1997]. The meta-reasoning
instructional points, explain this reasoning with respect to the different domain
objects defined. In schema theory terminology [Rumelhart, 1980], domain ob-
jects and their meta-reasoning are the equivalent of “feature detectors” (p. 42).

The instructional points of the class rule of inference straightforwardly
capture the fact that there must be a rule of inference. Rules of inference are
organised in more general categories of domain techniques. When a domain
technique applies, only the rules of inference which make use of it may be
applied. The domain technique is useful for reducing the search space of rules
of inference that apply in a situation. The meta-reasoning instructional points
explain how the domain objects can help to derive the Rule of Inference and the
domain technique. In terms of schemata, this relation captures the way variable
binding is constraint by the presence of already bound variables [Rumelhart,
1980].

118 Chapter 3. Instructional Points and Blueprint for Problem Solving

The substitution class instructional points refer to the final use of the pre-
vious instructional points for actually deriving the proof step.

The instructional points of the class proof step deal with relevant informa-
tion to be considered for the proof as a whole and the relation of the proof step
to the proof. They also explain how this information can be used to derive
the next step. Abstract Method has been specifically shown to be beneficial for
problem solving tasks [Price et al., 1997].

The instructional points in the classes domain relation, domain step, rule

of inference and proof object suggest a way of understanding [Greeno, 1978;
Chi et al., 1982] the problem. This means that they are the elements of the
representation of the initial state of the problem and the goal (Starting Point

and Premise-Conclusion in proof object), or of the problem-solving operators
(domain objects, rule of inference), and of the different relational structures
among them (domain relation). The class substitution corresponds to the
inferences that can be made based on the above elements.

Instructional points are also separated into two categories: performable-
step instructional points, which are directly relevant to deriving the proof step,
and meta-reasoning instructional points, which are relevant to instantiating the
former. Performable-step instructional points are defined in the classes domain

object, rule of inference, and substitution. The rest of the classes include
only meta-reasoning instructional points.

Let us now turn to the blueprint itself. In general, the blueprint represents a
possible reasoning for finding proof steps. Instructional points are the building
blocks of our domain rules, which need to be mastered. Hints either point to
instructional points and their connection to the domain rules, or they point to
the rules directly. Alternatively, they point to meta-rules for deriving a schema,
which in effect make up the blueprint itself (cf. Chapter 4).

Based now on our instructional points and the considerations mentioned
above, we define the problem solving blueprint for deriving a proof step, rep-
resented as a graph in Figure 3.11. The nodes represent instructional points.
Step meta-reasoning is not included as it only concerns tutoring and not the
decision process towards a step itself. Some nodes include both the performable-
step instructional point and the meta-reasoning instructional points relevant to
it. We capture the loop of trying to instantiate the performable-step instruc-
tional point this way for the sake of simplification and clarity. The directed arcs
represent decisions on which point to consider next. “No” loops represent the
places where the instructional point in question should be directly addressed
next, so that if the premise and the conclusion are not known, they should be
addressed next. The blueprint guides the instructions generated by Menon as a
means to help the student out of endless looping. The specific instructions are
investigated in Chapter 6.

Our blueprint attempts to represent the most abstract possible schema,
bringing together similarities and common solution steps among all problems

1Note that the blueprint does not represent error debugging, which is dealt with in Chap-
ter 6.

3.2. Definition of the Instructional Points and the Blueprint 119

Substitution
known?

Proof step

the proof step?
Can you deal with

known?
Rule of Inference

known?
Rule of Inference

known?
Rule of Inference

no
Rel. Con. and

Meta−Reas. known?

known?
Rule of Inference

Meta−Reas. known?

Sub−Con. Meta−Reas.
and Rel−Sub−Con.no

known?
Rule of Inference

no
Domain Tech. and

Elaborate Domain Tech.
known?

no

yes

no

no

yes

yes

yes

yes no

no

no

no yes

yes yes

yes

known? known?

known?

Abstract Method

Premise and Conclustion

Specific Method

Application known?
Inference−Rule

no

yes

no

yes

no

yes yes

Figure 3.1: The instructional blueprint as a graph.

120 Chapter 3. Instructional Points and Blueprint for Problem Solving

in the domain [Sweller, 1989]. Moreover, the blueprint, following the subor-
dination relation, makes use of the idea that the basic sub-schemata activate
the related more abstract super schemata, which then can activate more sub-
schemata [Rumelhart, 1980]. The activation is consequently spread across all
relevant schemata. Therefore, domain relation and domain objects that are
more elementary are addressed before the Rule of Inference, which is more ab-
stract and depends on the domain objects (cf. Section 3.4). The Substitution is
addressed after the Rule of Inference as it is even more specific.

Proof step instructional points especially represent the most abstract domain
principles. Chi et al. [Chi et al., 1982] identify underlying domain principles used
by experts, including the justifications applied, with methodological principles.
Following this and the other theoretical standpoints summarised in this section,
and especially the work by Koedinger and Anderson [Koedinger and Anderson,
1990], the blueprint starts by addressing proof step instructional points, as these
are common among many proofs. For instance, since proofs can either be direct
or indirect in terms of the Abstract Method, many proofs will share the same
Abstract Method. This already narrows down the search space for the schema.
However, the blueprint points to the proof step as a whole only if the student
does not seem to have the information needed (represented by the instructional
points). Therefore, the blueprint only requests that information about the proof
method is explicitly handled if no schema is available which would allow the
student to reason about the proof method implicitly. If students still cannot
proceed alone, then they are pointed to how to reason about finding the right
inference; First abstractly, and then via the use of what domain knowledge is
available in the expression.

In Section 1.3.4, we saw a possible path through this blueprint created inter-
actively by the student and the tutor. That path was as follows. The student
knows how to deal with the proof step (S1, Starting Point), so the tutor elicits
the premise and the conclusion (T2, premise-conclusion). The student finds the
premise and the conclusion (S2), but does not know the Rule of Inference, so the
check for the rest proof-step meta-reasoning instructional points is done. Since
the Abstract Method is direct, it is considered known, but the student does not
know the Specific Method, which is elicited (T3), and the student provides it
(S3). The Rule of Inference is still not known, so the search for the domain con-
cepts starts and the Relevant-Concept Meta-Reasoning is addressed, as a result
(T4). The student finds it (S4), so it is known for the next cycle through the
blueprint, and the next instructional point addressed is the Subordinate Concept

(T5), as neither the Rule of Inference is known yet, nor is there any concept
used that bears a domain relation to the Subordinate Concept. When the stu-
dent provides the Subordinate Concept (S5), the Rule of Inference is addressed
(T6). As soon as this is known (S6), the Substitution is addressed (T7). The
student finds it (S7) and the tutor prompts for the next step (T8, Proof Step),
which closes a complete iteration. The implementation of the blueprint in our
Socratic strategy is explored in Chapter 6. More possible paths through the
blueprint are also detailed in the examples in Section 6.6.

3.2. Definition of the Instructional Points and the Blueprint 121

Elaborate−Dom−Obj

Proof Step

Abstract Method
Specific Method

Step−Meta−Reas
Starting Point

Direct proof
Indirect proof

Backward step
Forward step

Substitution

Application
Rule−of−Inference

Proof−step
Instructional Points

Instructional Points
Domain−Relation

Instructional Points
Rule−of−Inference

Instructional Points
Substitution

Sub−Con Meta−Reas

Rel−con meta−reas

Subordinate Concept

Math. concepts
andlogical concepts

Rule of Inference

Connect−Rel−Sub−Con

Relevant Concept

premise

Proof Method

Domain Technique

Instructional Points
Domain−Object

subset

forall

element

Case−dist. steps
Induction steps

Def. of quantifiers
Def.of connectives

Def. of constants

Occ−state of conne

Occ−state of quant
Induction

Case distinction
Occ−state of const

Prem−Conc

Instructional Points

instance
Antithesis
Duality

Hypotaxis

Specialisation
Generalisation

Conversion

Primitive

...

conclusion

not element

Figure 3.2: Overview of the domain ontology

122 Chapter 3. Instructional Points and Blueprint for Problem Solving

3.3 Mathematical Domain Knowledge:

The Omega System

This thesis proposes a general approach to automating feedback in tutorial di-
alogues. As an application of this approach, we explore the domain of proving
in set theory. In a tutoring system for proving there are two aspects of repre-
senting the proof. The first aspect refers to the proof which we want to teach
the student. This aspect addresses the needs of tutoring proofs at the level
found in a textbook. The second aspect considers the system-level of proofs
which is necessary for the automated reasoning inside a domain reasoner and
can provide the information necessary for tutoring a proof. Menon represents
the tutored-proof level through instructional points for tutoring which mediate
the proof representation for tutoring and the system-level of proof represented
in a domain reasoner. In the architecture that we discussed in Section 1.3.2,
the domain reasoner responsible for the system-level proof representation is the
Omega system (see Figure 1.1). Although this representation needs to be ex-
tended for tutoring proofs, the Omega system represents human-oriented proofs
which is far closer to the tutored task than the standard logic-level proof. We
will now describe the Omega system and the proof representation in it in more
detail.

Omega [Autexier et al., 2008; Benzmüller et al., 1997; Fiedler et al., 2002] is
a mathematical assistant system which aims to support working mathematicians
in their everyday research. Omega uses various proof search techniques which
all work on a main proof object. This is represented in the proof data structure
(PDS) which is a collection of directed acyclic graphs making up a proof forest.
The PDS is an elaborate representation of a proof at different levels of abstrac-
tion from more detailed (logic level) to less detailed (human-oriented level). It
also records alternative proof attempts. This representation is dynamic as it
maintains the status of the proof search during the development of the proof.
Each conjectured lemma is represented by its own tree and it becomes a task to
be proved by reducing a goal to a conjunction of subgoals. Each lemma can be
applied to each proof tree as an inference. Different reductions of the same goal
give rise to different proofs, or different abstraction levels. Subgoals comprise
tasks and subtasks for the TaskLayer.

The TaskLayer is the central component in the Omega architecture where
tasks become concrete proof-construction steps. It supports representation at
the assertion level, meaning that definitions, axioms, theorems and hypotheses
can also be used as justifications of proof steps, much like in textbook proofs.
Assertion-level theorem proving thus moves away from the machine-like logic-
rule justifications. The TaskLayer also supports defining foci of attention on
subformulas. A task is reduced to a possibly empty set of subtasks using proof
construction steps like weakening and decomposing subformulas, or the appli-
cation of inferences. Inferences are the basic reasoning steps and may take the
form of assertion application, proof planning methods, or calls to external spe-
cialised systems (e.g computer algebra systems). Each inference is a proof step

3.3. Mathematical Domain Knowledge:

The Omega System 123

consisting of premises and conclusions. Additional information on such proof
steps includes:

• possible hypotheses for each premise (in the case of backward applications
of inference rules)

• application conditions for the inference as a whole,

• completion functions that compute the values of premises and conclusions
from other premises and conclusions and

• an expansion function that refines the abstract inference step

Omega supports proof planning at an abstract level where an incomplete
proof sketch is created, rather than the expanded proof2. The basic unit of
a proof plan are methods, that is plan operators that represent mathematical
techniques applied by mathematicians. Control rules are used to decide between
various applicable methods. An ordered accumulation of methods and control
rules is called a strategy. Strategies are particularly useful in capturing the tricks
of the trade for domain-specific problems.

A reactive parallel proof search is applied based on the Ω-Ants-system. This
system supports capturing each inference into an agent, the inference ant. In-
ference ants inspect the proof development and bid for their application at a
proof state, resulting in potentially multiple bids in every proof situation. The
task of the Ω-Ants-system is to find complete partial argument instantiations, in
which case the inference is considered applicable. This architecture allows proof
construction by joining the forces of various heterogenous reasoning systems.

Knowledge representation in Omega as a whole is organised as a hierarchy of
nested mathematical theories. Each theory includes definitions of mathematical
concepts, lemmata and theorems about them, and inference rules, which can
be seen as lemmata that the proof planner can directly apply. Moreover, each
theory inherits all definitions, lemmata and theorems as well as all inference
rules from higher theories.

As mentioned above, the most important aspect of the Omega system for
our work is that, whereas classical theorem provers represent proofs at the logic
level of particular proof calculi, which is far from the textbook proof that we aim
to tutor, the abstract-proof representation in the Omega system makes it an
optimal candidate as a domain reasoner for tutoring proving. In the context of
tutoring mathematical proofs like the one investigated in the Dialog project, a
domain reasoner is expected to dynamically process the informal student’s input
for soundness, relevance, granularity (level of detail), and ambiguity resolution
which is caused by the informal and underspecified student input. Omega

was used (i) to reconstruct proof steps from such informal and underspecified
student attempts, (ii) to represent and maintain the mathematical knowledge
the student is allowed to use and (iii) to maintain the open-ended developing
proof and the varied proofs that may derive from it.

2Note that this approach is consistent with cognitive models of expert-like problem solv-
ing [Koedinger and Anderson, 1990]

124 Chapter 3. Instructional Points and Blueprint for Problem Solving

All these points together are relevant to evaluating the student’s attempt
with respect to correctness and completeness. Completeness here refers to the
human-oriented proofs where a proof may be considered complete although a lot
of information represented in a formal proof is omitted. Especially maintaining
the open-ended proof attempted by the student, which is done in the PDS, is
particularly important in the context of this thesis as it is a prerequisite for
providing feedback in the form of hints to help the student perform a next
appropriate step. In general, Omega calculates the possible development of
the proof after each student attempt, which is a proof state in the PDS. If no
possible proof development can be found from the student’s attempt, then this
attempt is incorrect. If one or more possible proof developments are found from
the previous attempt and a new student attempt matches one of them, then
the new attempt is correct. If the student cannot proceed and does not enter
any new attempt, the possible developments calculated for the previous student
attempt, can be used to lead the student to a complete proof.

In the Omega group, a language of underspecificaton (S0) has been created
to extend the proof represantation for tutorial dialogues [Autexier and Fiedler,
2006]. S0 is an example of how the values for the instructional points can
be derived for the NL generation of hints. By use of such a representation
language, the proof manager can compare the expected (correct) answer to the
student input attempted and thus provide: (i) information on existing mistakes
in the student’s attempt, which the student may need to correct, (ii) the missing
information from the student’s attempted step, which the student may need
to complete, (iii) the information on the reasoning for achieving the missing
parts of the next step, or the whole step, which can be used appropriately for
guiding the student. These are the three categories of information required
by our hint specifications (See Chapter 4). The possible proof development
represented in the PDS is the source of the domain information for instantiating
our instructional points.

3.3.1 Enhancing the Omega Ontology

Reasoning about the completeness of a proof and proof step for tutoring pur-
poses requires defining parts of them that are essential even for human-oriented
and textbook proofs. An additional parameter relevant to completeness in a
tutoring setting are the pedagogical goals that the tutoring is trying to achieve.
This parameter restricts the range and defines the kind of domain information
that is relevant to tutoring and needs to be tracked, identified, and evaluated
for correctness by the domain reasoner, or has to be provided by the domain
reasoner for use in hinting. In our approach, instructional points define such
domain knowledge and hence mediate the task of a domain reasoner such as
Omega in a tutoring setting.

In view of the Wizard-of-Oz experiment, conducted in the Dialog project,
and in order to capture the domain needs for hinting in tutoring and define
instructional points, the existing domain ontology for set theory of the Omega

system [The Omega group, url] was enhanced. Since definitions, lemmata, the-

3.4. Formalisation of Instructional Points 125

orems and inference rules in Omega draw on mathematical concepts defined
in the mathematical theories, the mathematical database implicitly represents
many relations that can potentially be used in tutorial dialogues. Those implicit
relations can inform the attempt to identify the instructional points that need
to be addressed, and can capture the kind of student reasoning that learning
should be based on, but does not strictly abide by the rules of logic. Such rela-
tions useful for tutoring purposes were defined by comparing the definitions of
concepts and inference rules in Omega and tracing common patterns among
them. In particular, relations between mathematical concepts, relations be-
tween mathematical concepts and inference rules, as well as relations between
concepts, formulae and inference rules were defined. We include examples of
the mathematical knowledge for set theory that is represented in Omega in
Appendix A. The additional relations for tutoring purposes that were defined
for the Wizard-of-Oz experiment of the Dialog project and were later adjusted
based on the experimental data are also in Appendix A. Moreover, Figure 3.2
gives an overview of the expanded ontology. It depicts the instructional points
with their subclasses and instances. This enhanced ontology is an interface be-
tween Menon and the Domain Manager of Figure 1.1. The examples we use are
for clarifying how this interface can be applied in this context and illustrate the
mapping of the instructional points to the entities in a proof step.

3.4 Formalisation of Instructional Points

In this section, we define instructional points relevant to a proof and an inference
step, based on the relations for tutoring purposes and as part of the enhanced
ontology. The enhanced ontology has not been implemented as it depends on
the overall mathematical knowledge representation which is not in the scope of
Menon. Menon generates the abstract concepts (instructional points) which are
to be instantiated by the concrete ontology in the Domain Information Manager
that communicates with the Domain Reasoner for that purpose (see Figure 1.1).
All names of inference rules and relations in Section 3.4 refer to the definitions
in Appendix A.

3.4.1 Domain-Object Instructional Points

Let Es be the inference step in a particular proof, which comprises the premises
ϕ1, . . . , ϕn, the conclusion ψ and the Rule of Inference instructional point3 P.
Let s be the source expression, and t the target expression of Es. Let also σ and
σ′ be mathematical concepts or expressions (e.g., logical quantifiers and con-
nectives, the concepts of premise and conclusion, sets). We define the following
instructional points:

3Defined in Section 3.4.3.2.

126 Chapter 3. Instructional Points and Blueprint for Problem Solving

3.4.1.1 Relevant Concept

Relevant Concept: σ is a Relevant Concept for P in Es when:

1. in(σ, s), and

2. extracts(σ, P), and

3. relevant-to(σ, P)

Let σ1, σ2, . . . , σn fulfil the conditions of the definition of Relevant Con-

cept. Then we choose one as the Relevant Concept, the one that appears
less often in the premises. If more than one of σ1, σ2, . . . , σn appear equally
often, but less often than others, then it suffices to choose one of them as
the Relevant Concept arbitrarily4.

Notation: Rel-Con(σ,P, s), that is, σ is the Relevant Concept in P in rela-
tion to s.

Examples: Let Es be Step 1 of the proof in Figure 1.4 and s the source (i.e.
A ⊆ K(B)⇒ B ⊆ K(A)):
Rel-Con(⇒,⇒-I, s), that is, the ⇒ is the Relevant Concept for ⇒-I in relation
to s.

Let Es be Step 2 of the proof in Figure 1.4, s the source (i.e. B ⊆ K(A)):
Rel-Con(⊆, Definition of Subset, s), that is, the ⊆ is the Relevant Concept for
the Definition of Subset in relation to s.

More examples of Relevant Concepts for particular proof steps can be found in
Section 6.6.

3.4.1.2 Subordinate Concept

Subordinate Concept: σ is a Subordinate-Concept for P in Es when:

1. in(σ, t), and

2. inserts(σ, P), and

(a) either

i. P is the definition of σ, and

ii. Rel-Con(σ′,P), and

iii. hypotaxon(σ, σ′),

(b) or

i. P is the definition of σ′, and

4If such σ1, σ2, . . . , σn existed, then this would mean that the inference rules that insert
them can all be applied, giving rise to different proof steps. Since this instructional point
is employed to help the student find the inference rule for the step, choosing one of them
arbitrarily will just result in instructing the student to finding one of these inference rules.

3.4. Formalisation of Instructional Points 127

ii. Rel-Con(σ′,P), and

iii. hypotaxon(σ′, σ)

(c) or relevant-to(σ, P)

Let σ1, σ2, . . . , σn fulfil the conditions of the definition of Subordinate Con-

cept. Then we choose one as the Subordinate Concept, the one that appears
less often in the conclusion. If more than one of σ1, σ2, . . . , σn appear
equally often, but less often than others, then it suffices to choose one of
them as the Subordinate Concept arbitrarily.

Notation: Sub-Con(σ,P, t), that is, σ is the Subordinate Concept for P in
t.

Examples: Let Es be Step 1 of the proof in Figure 1.4, Ep be the part of
the expression that has to be proved (B ⊆ K(A) in Es) and t the target
(i.e. assume A ⊆ K(B) and prove B ⊆ K(A)):
Sub-Con(Ep,⇒-I, t), that is the Subordinate Concept for ⇒-I is the ex-
pression that has to be proved in t.

Let Es be Step 2 of the proof in Figure 1.4 and t the target (i.e. ∀x : x ∈
B, x ∈ K(A)):
Sub-Con(∈, Definition of Subset, t), that is, ∈ is the Subordinate Concept

for the Definition of Subset in t.

More examples of Subordinate Concepts for particular proof steps can be
found in Chapter 6, Section 6.6.

3.4.1.3 Relevant-Concept Meta-Reasoning

Let Es be the expected inference step in a particular proof. Then this Relevant-

Concept Meta-Reasoning is a relation between the Relevant Concept and Es.
That is, considering the Relevant Concept helps in finding the right inference
rule for Es.
Notation: Rel-Con-Meta-Reas(Rel-Con,Es)

Examples: Let Es be Step 1 of the proof in Figure 1.4:
Rel-Con-Meta-Reas(⇒, Es), that is, considering the ⇒ helps in finding the right
inference rule for Es.

3.4.1.4 Subordinate-Concept Meta-Reasoning

Let Es be the expected inference step in a particular proof. The Subordinate-

Concept Meta-Reasoning is a relation between the Relevant Concept the Subordi-

nate Concept and Es. That is, considering the Relevant Concept in connection
to the Subordinate Concept helps in finding the right inference rule for Es.

128 Chapter 3. Instructional Points and Blueprint for Problem Solving

relates

Rule of Inf. Math. Concept

Source

Subord. Concept

Rule of Inf. Math. Concept Relevant Cocnept

Subord. Concept

Proof Step

Meta−Reas
Sub−Con

Proof Step

Meta−Reas
Rel−Con

.

Relevant Concept

Relevant Concept

Target

Domain Objects

Figure 3.3: Domain-Objects Instructional Points

Notation: Sub-Con-Meta-Reas(Sub-Con,Rel-Con,Es)

Examples: Let Es be Step 1 of the proof in Figure 1.4 and Ep the part of the
expression that has to be proved in Es:
Sub-Con-Meta-Reas(Ep,⇒, Es), that is, the expression A ⊆ K(B)⇒ B ⊆ K(A)
includes ⇒ (Relevant Concept). Therefore, one has to consider the part of the
expression that needs to be proved (Subordinate Concept) in connection to ⇒.
The Subordinate Concept in this step is B ⊆ K(A).

Let Es be Step 2 of the proof in Figure 1.4:
Sub-Con-Meta-Reas(∈,⊆, Es), that is because the mathematical expression B ⊆
K(A) includes ⊆ (Relevant Concept), one has to consider the ∈ (Subordinate

Concept) in connection to ⊆.

Figure 3.3 gives an overview of the Domain-Object instructional points.

3.4. Formalisation of Instructional Points 129

3.4.2 Domain-Relation Instructional Points

Let Es be the expected inference step in a particular proof, consisting of the
premises ϕ1, . . . , ϕn, the conclusion ψ and the rule P. A domain relation is a bi-
nary relation between a mathematical concept and a Domain Object, that is, the
Relevant Concept or Subordinate Concept. Let σ be a Domain Object and σ′ be
another mathematical concept that is related to σ with one of the interrelations
of mathematical concepts, presented in Section A.2.4.1, namely: antithesis, du-
ality, conversion, hypotaxis, primitive, specialisation, generalisation.
Notation: Dom-Rel(σ, σ′), that is, σ is a Domain Relation to σ′ (cf. Figure 3.4).

Examples: In Step 2 of the proof in Figure 1.4, the Relevant Concept is ⊆ and
the Subordinate Concept is ∈. If the student wanted to use 6⊆ instead of ⊆, then
this would be a antithetical concept. If the student wanted to use ⊇ instead of
⊆, then this would be a converse concept. If the student wanted to use ∈ instead
of ⊆, that would be a hypotaxon. If the student wanted to use ⊂ instead of ⊆,
that would be a specialisation. By informing students of such relations we try
to make them more aware of the structure of the domain, and help them draw
the necessary inference for the step.

We look at examples of how Domain Relations can be used in tutoring in
Section 6.6.

Math. Concept

Domain Relation

Domain Object

relates

.

Figure 3.4: Domain-Relation Instructional Points

3.4.3 Rule-of-Inference Instructional Points

The instructional point Rule of Inference includes the justification in terms of
inference rule and domain technique for a proof step. The general pedagogical
notion of a Rule of Inference is the rule that justifies the current reasoning
step. That is, it is a schema for deriving a formula, the conclusion, from other
formulae, the premises . It can be applied forwards to infer the conclusion from
the given premises, or backwards to obtain the premises needed to infer a desired
conclusion.

130 Chapter 3. Instructional Points and Blueprint for Problem Solving

3.4.3.1 Domain Technique

Let Es be the expected inference step in a particular proof, P the instructional
point Rule of Inferences, Rc the Relevant Concept in Es, and D is either the do-
main technique that the Rule of Inference uses (i.e. case distinction or induction)
or else the occurrence state of the Relevant Concept that the application of P
influences. Then Domain Technique is a relation between D, P and Rc, that is,
that D is the Domain Technique that P uses to handle Rc.
Notation: Dom-Tech(D,Rc,P).

Examples: Let Es be Step 1 of the proof in Figure 1.4:
Dom-Tech(extract,⇒,⇒-I), that is the Domain Technique that⇒-I uses for ⇒
is extract.

We use occurrence state as the Domain Technique in place of elimination and
introduction of defined constants, quantifiers and connectives for pedagogical
purposes. Namely, to allow students to extract useful patterns and apply for-
ward reasoning as much as possible. Any reference to the logical concepts of
elimination and introduction has to make use of backward and forward appli-
cation of inference rules that is counter-intuitive and adds extra cognitive load
(cf. Chapter 2). We leave the acquisition of any other necessary knowledge to
implicit learning. The choice between reducing the cognitive load and instruct-
ing the student based on logical concepts is not an obvious one and it might
be unsuitable. However, in such a complicated domain as proving (see, for ex-
ample, the complexity of Figure 3.2) implicit learning is an important tool for
learning (cf. Chapter 2).

The Domain Techniques that we consider in our domain are the following:

Occurrence state of defined constants Elimination and introduction of pre-
dicates and functions, e.g. definitions, theorems, lemmata, tautologies.

Examples: For the forward application of the rule P-I:
Dom-Tech(insert,P ,P-I), that is, the Domain Technique in P-I relevant
to the P is insert.

Case distinction Case distinction is applied when we have a disjunctive defi-
nition. The cases are then the terms of the disjunction.

Examples: For case distinction applied for the Definition of Union (A∪B =
{x|x ∈ A or x ∈ B}):
DomTech(case distinction, ∪, Definition of Union), that is, the Domain

Technique in the Definition of Union relevant to the ∪ is case distinction.

Induction Induction is applied, when we have an inductive definition. The in-
ductive cases are the base step, the inductive hypothesis and the inductive
step.

3.4. Formalisation of Instructional Points 131

Examples: Let’s assume the following inductive definition: Pf (X) is the
set of all finite subsets of X if: (i) ∅ ∈ Pf (X) (ii) A ∈ Pf (X), x ∈ X ⇒
A ∪ {x} ∈ Pf (X).

For induction applied to the definition of Pf :
Dom-Tech(induction, Pf , definition of the Pf), that is, the Domain Techni-

que in the definition of Pf relevant to the Pf is induction.

Case distinction and induction are considered as Domain Techniques. The
cases that realise the case distinction or the induction are the instances of
the instructional point Rule of Inference each time.

Occurrence state of quantifiers Elimination and introduction of universal
and existential quantifiers.

Examples: For the forward application of the rule ∀-E:
Dom-Tech(extract, ∀, ∀-E), that is, the Domain Technique in ∀-E relevant
to ∀ is extract.

Occurrence state of connectives Elimination and introduction of conjunc-
tion, disjunction, implication, equivalence, and equation.

Examples: For the forward application of the rule ∧-I:
Dom-Tech(insert, ∧,∧-I), that is the Domain Technique in ∧-I relevant to
∧ is insert.

More examples of Domain Techniques for particular proof steps can be found
in Section 6.6.

3.4.3.2 Rules of Inference

Let Es be the expected inference step in a particular proof, consisting of the
premises ϕ1, . . . , ϕn, the conclusion ψ and the rule P. The instructional point
Rule of Inference is the rule P used as the justification for making the inference
in Es.
Notation: Rule-of-Inf(P, Es).

Examples: Let Es be Step 1 of the proof in Figure 1.4:
Rule-of-Inf(⇒-I, Es), that is ⇒-I is the instructional point Rule of Inference in
Es.

We subdivide the instructional point Rule of Inference based on the Domain

Technique that Rules of Inference involve. This categorisation aims at capturing
the underlying deep understanding of experts and is based on the structure
suggested by Schreiner [Schreiner, 2004] for formal proving.

Let us see how the Domain Techniques are related to the instructional point
Rules of Inference.

132 Chapter 3. Instructional Points and Blueprint for Problem Solving

Occurrence state of defined constants, substitution, etc: The defini-
tions in Appendix A are the Rule of Inference instructional points considered
under this Domain Technique.

Examples: Commutativity of Union
Definition of Subset

Case distinction: The cases of the case distinction are the Rule of Inference

instructional points.

Examples: For the case distinction of the Definition of Union (A∪B = {x|x ∈ A
or x ∈ B}), the Rule of Inference instructional points are the cases: x ∈ A or
x ∈ B.

Induction: The inductive steps are the Rule of Inference instructional points.

Examples: For induction applied to the definition of Pf (Pf (X) is the set of all
finite subsets of X if: (i) ∅ ∈ Pf (X) (ii) A ∈ Pf (X), x ∈ X ⇒ A∪{x} ∈ Pf (X))
if we want to prove that Φ(B) holds for all B ∈ Pf (X), the steps are (i) Φ(∅)
and (ii) for A ∈ Pf (X) and x ∈ X if Φ(A) holds, then Φ(A ∪ {x}) holds.

Note that in case distinction as well as in induction, once the step is com-
pleted, the next step becomes simply the first case or step to be proved. Hinting
is based on that.

Occurrence state of quantifiers: This includes the rules for the universal
and the existential quantifiers, presented in Appendix A.

Examples: ∀-E
∀-I

Occurrence state of connectives: This includes the rules for conjunction,
disjunction, implication, equivalence, and equality that are included in Sec-
tion A. These logical connectives share the same pattern for instantiating the
Domain Objects relevant to them (cf. instructional point in Section 3.4.1).

Examples: ∧-I
∧-EL

∧-ER

More examples of Rule of Inference instructional points for particular proof
steps can be found in Section 6.6.

3.4. Formalisation of Instructional Points 133

3.4.3.3 Connect Relevant-Subordinate-Concept

Let Es be the expected inference step in a particular proof, P the instructional
point Rule of Inference, Rc the Relevant Concept, and Sc the Subordinate Concept

(cf. Section 3.4.1). Then, Connect Relevant-Subordinate-Concept is a relation be-
tween Rc, Sc and P. Namely, that the application of P in Es involves Rc and
Sc.
Notation: Con-Rel-Sub(Rc, Sc,P).

Examples: Let Es be Step 1 of the proof in Figure 1.4 and Ep the part of the
expression that needs to be proved, which is determined by the application of
⇒-I:
Con-Rel-Sub(⇒, Ep,⇒-I), that is the ⇒-I connects the ⇒ and the part of the
expression that needs to be proved, which is B ⊆ K(A) in Step 1.

Let Es be Step 2 of the proof in Figure 1.4: Con-Rel-Sub(⊆, ∈, Definition of
Subset), that is, the Definition of Subset connects the ⊆ and the ∈.

3.4.3.4 Elaborate Domain Object

Let Es be the expected inference step in a particular proof, P the instructional
point Rule of Inference, Rc the Relevant Concept, and D the Domain Technique.
Then, this is a relation between P, Rc and D in Es. Namely, that P handles Rc

via D. Notation: Elab-Dom-Obj(P, D,Rc).

Examples: For Step 1 of the proof in Figure 1.4:
Elab-Dom-Obj(⇒-I, extracts,⇒), that is the ⇒-I extracts the ⇒.

Figure 3.5 gives an overview of the Rule-of-Inference instructional points.

3.4.4 Substitution Instructional Points

3.4.4.1 Substitution

Let Es be the expected inference step in a particular proof, consisting of the
premises ϕ1, . . . , ϕn, the conclusion ψ and the instructional point Rule of Infer-

ence P. The Substitution is a relation between ϕ1, . . . , ϕn, ψ and P, that is the
substitution for P is done by replacing premises and the conclusion of P with
the relevant parts of the expression at hand in Es.
Notation: Substitution(P, ϕ1, . . . , ϕn, ψ).

Examples: In Step 1 of the proof in Figure 1.4:
Substitution(⇒-I, A ⊆ K(B), B ⊆ K(A)), that is, the substitution for ⇒-I is
done by replacing A with A ⊆ K(B) and B with B ⊆ K(A).

134 Chapter 3. Instructional Points and Blueprint for Problem Solving

Domain
Technique

Domain
Technique

.

Rule of Inf.

Rule of Inf.

Rule of Inf.

Rule of Inf.

Relevant Concept Relevant Concept

Relevant Concept

Subord. Concept

Proof Step

Dom. Tech.

Occ. State
 or

Elab−Dom−Obj.

Rel−Sub−Con
Connect

relates

Rule of Inference consists of

Figure 3.5: Rule-of-Inference Instructional Points

3.4.4.2 Rule-of-Inference Application

Let Es be the expected inference step in a particular proof, D the Domain Tech-

nique, Rc the Relevant Concept, and P the instructional point Rule of Inference

in Es. Then Rule-of-Inference Application is a relation between D, Rc, and P.
Namely, using P to apply D on Rc is the substitution in Es.
Notation: Rule-of-Inf-Appl(D,Rc,P, Substitution).

Examples: Let Es be Step 1 of the proof in Figure 1.4 and S be the substitution

in Es:
Rule-of-Inf-Appl(extract,⇒,⇒-I, S), that is the ⇒ has to be extracted by ⇒-I
so that we assume A ⊆ K(B) and prove B ⊆ K(A) (Substitution).

Figure 3.6 gives an overview of the Substitution instructional points.

3.4. Formalisation of Instructional Points 135

Rule of Inf. Substitution

.

Substitution

Application
Rule−of−Inf.

Relevant Concept
Domain Technique

relates

Premise Conclusion

Rule of Inf.

Substitution

Figure 3.6: Substitution Instructional Points

3.4.5 Proof-Step Instructional Points

The Proof Step instructional point consists of the premises, the conclusion and
the applied Rule of Inference instructional point. It also comprises proof methods
such as proof by contradiction (indirect proof). Let Es be the expected inference
step in a particular proof, consisting of the premises ϕ1, . . . , ϕn, the conclusion
ψ and the instructional point Rule of Inference P. We define the following:

3.4.5.1 Proof Step

Let Ex be the mathematical expression that we want to prove. Proof Step

includes three instructional points.

Premise-Conclusion: These are the premises ϕ1, . . . , ϕn, and the conclusion
ψ in Es.
Notation: Prem-Conc(ϕ1, . . . , ϕn, ψ, Es).

Examples: In Step 1 of the proof in Figure 1.4, the premise is B ⊆ K(A)
under hypothesis A ⊆ K(B) and the conclusion A ⊆ K(B)⇒ B ⊆ K(A).

136 Chapter 3. Instructional Points and Blueprint for Problem Solving

This instructional point deals with the premises and the conclusion to-
gether, as one cannot reason about the one without at the same time
reasoning about the other. Also, dealing with them together allows us to
use source and target for instruction without having to differentiate be-
tween premise and conclusion that is often an unintuitive distinction, for
example in backward steps.

Starting Point: The Starting Point is a relation between ϕ1, . . . , ϕn, ψ, and
expression that we want to prove (Ex). It represents that the reasoning
about Es should start by identifying the ϕ1, . . . , ϕn and ψ.
Notation: Start-Point(Prem-Conc, Ex).

Examples: In the proof in Figure 1.4:
Start-Point(Prem-Conc, A ⊆ K(B)⇒ B ⊆ K(A)), that is, the reasoning
has to start from identifying the premise and the conclusion of A ⊆
K(B)⇒ B ⊆ K(A).

.

Proof Step

Conclusion

math. expressionPrem−Conc

relates

consists of

Premise

Prem−Conc

Starting Point

to prove

Rel−Con Meta−Reas

Elab−Dom−Obj.

Rule−of−Inf.
Application

Domain Technique

Prem−Conc

Specific Method

Step−Meta−Reas

Figure 3.7: Proof Step

3.4. Formalisation of Instructional Points 137

Step-Meta-Reasoning: The Step-Meta-Reasoning is a relation representing
the connection among the different instructional points in Es, namely
that all together they amount to the derivation of Es.
Notation: Step-Meta-Reas(Prem-Conc,Spec-Method,Rel-Con-Meta-Reas,
Dom-Tech,Elab-Dom-Obj,Rule-of-Inf-Appl, Es)

Examples:Let Es be Step 1 of the proof in Figure 1.4, P-C the Premise-

Conclusion, Sp the Specific Method, RCm the Relevant-Concept Meta-Reaso-

ning, D the Domain Technique, Edo the Elaborate Domain Object, and Pa

the instructional point Rule-of-Inference Application, all in Es:
Step-Meta-Reas(P-C,Sp, RCm, D,Edo,Pa, Es), that is, first we identify the
premise A ⊆ K(B) and the conclusion B ⊆ K(A). Then we consider the
⇒ because it helps us simplify the step, and we apply the rule ⇒-I to
extract the ⇒, by assuming A ⊆ K(B) and proving B ⊆ K(A).

We will see more examples of this instructional point and how it is used
in tutoring in Section 6.6.

Figure 3.7 gives an overview of the Proof-Step instructional points.

3.4.5.2 Proof Method

Let P be a proof consisting of its proof steps P1, . . . , Pn. Proof Method includes
two instructional points.

Abstract Method: The Abstract Method is the most abstract method applied
in the proof, which in our domain is the proof directness Pd.
Notation: Abs-Method(Pd, P).

We consider:

• Direct Proof: Assuming the premises and proving conclusion.

Examples: Let P be the proof in Figure 1.4:
Abs-Method(direct-proof, P), that is, the Abstract Method in P is di-
rect proof (we assume the premise A ⊆ K(B) and prove from that
the conclusion B ⊆ K(A)).

• Indirect Proof: Assuming the negation of the conclusion and proving
a contradiction.

Examples: Let P be the following proof, which is a proof by contra-
diction for the same task as in Figure 1.4 (namely, if A ⊆ K(B) ⇒
B ⊆ K(A))

1. Let A ⊆ K(B), we will show that B 6⊆ K(A).

2. Let x such that x ∈ B and x 6∈ K(A).

3. Then x ∈ A.

4. If x ∈ A, then x ∈ K(B).

138 Chapter 3. Instructional Points and Blueprint for Problem Solving

5. But then x ∈ K(B) and x ∈ B, which is a contradiction.

6. Therefore if x ∈ B, then x ∈ K(A).

7. From that it follows that B ⊆ K(A).

Then, Abs-Method(indirect-proof, P), that is, the Abstract Method in
P is indirect proof (we assume the opposite of B ⊆ K(A) and we
prove a contradiction).

Specific Method: The Specific Method is the specific method applied in the
proof, which in our domain is the proof direction Pr.
Notation: Spec-Method(Pr, Es) (cf. Figure 3.8)

We consider:

• Forward step: A Proof Step where new knowledge is derived from
known facts. The method is applying rules to manipulate the ex-
pression towards the goal.

Examples: Let Es be Step 4 of the proof in Figure 1.4:
Spec-Method(forward,Es), that is, the Specific Method in Es is for-
ward (we apply the inference rule Definition of Complement to ma-
nipulate the expression towards the goal A ⊆ K(B)⇒ B ⊆ K(A)).

• Backward step: A step where the goal is decomposed and the reason-
ing starts from a hypothesis. The method is decomposing the goal.

Examples: Let Es be Step 3 of the proof in Figure 1.4:
Spec-Method(backward,Es), that is, the Specific Method in Es is
backward (we decompose the goal B ⊆ K(A) by assuming that x ∈ B
and showing that x ∈ K(A)).

Figure 3.5 gives an overview of the Proof-Method instructional points.

3.4.6 Use of the Domain Ontology and the Instructional

Points

The overall purpose of the ontology is to enable the automation of the Socratic
teaching-model. As shown in Figure 3.9, the ontology was developed for use in
the analysis of the student answer. This analysis should identify which instruc-
tional points are used in the student answer, and thus capture the students’
level of performance and their ability to apply the domain knowledge for the
task. In this chapter we saw how the domain ontology defines the instructional
points that are useful for tutoring in general and for learning how to prove in
particular. We represent this analysis of the student answer in the (HSS), which
constitutes the input to the teaching strategy (cf. Chapter 5).

The representation of the domain ontology in the HSS is additionally evoked
by the Socratic teaching strategy in the determination of the hint category to

3.4. Formalisation of Instructional Points 139

Abstract Method Specific Method

.

Proof Method

Indirect ProofDirect Proof Forward Step Bacward Step

consists of

Figure 3.8: Proof Method

be produced. Our goal is to dynamically produce hints that fit the cognitive
needs of the student with regard to the particular proof. However, we want to
be able to do that for arbitrary proofs in a domain. Therefore we cannot restrict
ourselves to a gamut of static hints which is compiled by associating elements of
the student answer with a unique response by the system. As an alternative to
such approaches, we use the definition of hint categories based on instructional
points. The role of the ontology is to assist in mapping the instructional points
onto the actual objects or relations that are used in the particular context.
That means that once the hint category has been chosen, the domain ontology
captures the necessary instantiations of instructional points for the particular
proof and the proof step under consideration. This is the actual information
that Menon provides for the natural language realisation of the hint category (cf.
Chapter 6). Our ontology is a first step towards an infrastructure for plugging
in any domain reasoner that can provide the needed domain-specific information
and converting it into a database that includes the relations that are necessary
for hinting.

Moreover, the motivation for this work derives from the need to formalise
the cognitive functions that underly hints, in order to produce adequate and
psychologically justified feedback. One of our central goals is also to separate out
such underlying functions of hints from dialogue-move functions, which might be
common for different cognitive functions. The domain ontology is a tool to this
end, singling out and representing cognitive aspects of hints via instructional
points to promote the acquisition of schemata. Namely, the abstract definitions
of instructional points derived in Section 3.2 are used to define the domain-
information content of hints that is a cognitive function. The ontology, in turn,

140 Chapter 3. Instructional Points and Blueprint for Problem Solving

Arbitrary attempted
Proof

Schema acquisition

HSS: Assessment of student level

Hint determination

Hint content: Schema instructional points

Adaptive and contextual hints

Domain
Ontology

Student
Input Step

Expected
Arbitrary

Figure 3.9: The Use of the Ontology in Automating NL Hinting for Schema
Acquisition

enables the instantiation of these abstract instructional points specifically for
the proof and proof step at hand.

The instructional points facilitate the acquisition of schemata for problem
solving in the domain (cf. Chapter 2). The definition of the instructional
points is also the first step towards the definition of hint specifications. The
specifications are complemented by additional tutoring information, which is
captured in other dimensions of the hint taxonomy. This completes the task-
related information. The task information can then be further enhanced by
dialogue and discourse information for the dialogue in progress. All of this
information together provides the possibility of adaptive and contextualised
hint realisation (cf. Chapter 4).

141

Chapter 4

Dialogue Moves and Hints

4.1 Introduction

In this chapter we present an analysis of dialogue moves for tutorial dialogues
captured in a taxonomy of six dimensions [Tsovaltzi and Karagjosova, 2004]. We
concentrate on the dimensions task, conventional task-management, and conventional

communication-management, as the moves in these dimensions are the ones manip-
ulated in Menon. The rest of the dimensions and the complete background of
the dialogue-move taxonomy can be found in Appendix C. As the focus of our
analysis, we provide an investigation of the move hint. This investigation re-
sults itself in a multidimensional hint taxonomy, which supports the automatic
production and natural language realisation of user-adaptive hints for arbitrary
tasks.

4.2 Dialogue Move Taxonomy

We extend standard dialogue-move taxonomies for the genre of tutorial dia-
logues [Tsovaltzi, 2001] and develop a dialogue-move taxonomy based on an
analysis of our empirical data on tutoring set theory [Wolska et al., 2004]. The
taxonomy draws on DAMSL [Allen and Core, 1997], which is an attempt to
provide a standard top-level structure for annotating dialogues for reusable an-
notation schemes. We make use of the DAMSL multiple-level structure, which
allows us to cater for the various functions an utterance may have in dialogue.

We modified and extended the dialogue moves in DAMSL with moves from
the BE&E (Basic Electricity & Electronics) annotation scheme [Core et al.,
2002], which was developed for the tutorial-dialogue genre. The BE&E annota-
tion scheme is based itself on DAMSL, however without distinguishing all levels
that DAMSL provides for. Furthermore, it provides additional dialogue moves,
derived from a tutorial-dialogue corpus. We adopt some of these moves, but
in order to cater for more genre-specific (tutorial dialogue) and domain specific
(e.g. proving in set theory) phenomena, we define new dialogue moves and

142 Chapter 4. Dialogue Moves and Hints

group them in a separate task level, following DAMSL. The need for such sepa-
ration in dialogue systems has also been advocated by [Allen et al., 2001b] who
use a modular architecture for dialogue and task planning for the domain of
route planning. Moreover, [Zinn, 2002] argues for its advantages in the tutorial-
dialogue genre.

4.2.1 General Description of the Dialogue Move Taxon-

omy

Our taxonomy features six dimensions, one for every function that an utterance
might have. The actual detailed description of what the utterance effects in the
dialogue corresponds to one of the categories of dialogue moves. In every dimen-
sion, there are different levels of description of the dialogue moves. These are
structured in classes and subclasses, up to three levels deep. The six dimensions
in the taxonomy are:

1. Forward Looking

2. Backward Looking

3. Task

4. Conventional task-management

5. Conventional communication-management

6. Communicative status

We propose an expanded task dimension and define dialogue moves in a
bottom-up manner using our empirical data (cf. [Wolska et al., 2004]). We are
additionally guided by tutorial-dialogue specific moves defined in [Core et al.,
2002], as well as by psychological considerations regarding teaching [Wilson and
Cole, 1991; Lim and Moore, 2002; Weiner, 1992]. We claim that adding the task
dimension helps to separate generic dialogue management, from manipulating
genre and domain specific phenomena, involved in modelling different teaching
models and domains. This provides a better framework for capturing what is
generic in dialogue management and, hence, reusable between genres, from what
is specific to the genre or the domains. modelling the genre and the

In such a framework, tutorial systems can leverage the advantages of NL
capabilities in tutoring, which have been discussed in [Moore, 1993], indepen-
dently from their preferred teaching strategies. Teaching models that presup-
pose dialogue interaction have been demonstrated to be a beneficial ingredient
of tutoring [Chi et al., 1994; Rosé et al., 2001b]. Additionally, the modelling of
such dialogue-based teaching strategies can help manipulate psychological as-
pects of learning, such as help the student build a deeper understanding of the
domain, eliminate cognitive load, and promote schema acquisition [Wilson and
Cole, 1991; Lim and Moore, 2002].

4.2. Dialogue Move Taxonomy 143

In our expanded task dimension, task-level moves are clearly defined for use
in tutorial dialogues. Such definitions facilitate our understanding of the phe-
nomena in tutorial dialogues. Task-dimension dialogue moves are often indirect
ones and acquire their specific function only due to the tutorial genre or require
special treatment in the genre. They can also only be planned by use of spe-
cial modules that deal with domain knowledge (cf. [Benzmüller et al., 2003a;
Buckley and Benzmüller, 2005]) or after consulting information on the current
student progress. For instance, before any reasonable feedback can be given to
the student, the student’s input has to be evaluated. There are, however, two
categories of student input that are relevant to tutoring. There is input that
does not contribute to the task but carries information relevant to tutoring,
such as the level of motivation of the student. This aspect of the input is useful
for the genre irrespective of the teaching model implemented. For example, it
is useful to represent the move resign (Example 4.1)1, i.e., the student stating
that she does not wish to continue with the task. The way this move will be
treated can be decided according to the pedagogical model of choice. To name
two opposing cases, it may cause the tutor to give away the solution to the task
or to use some strategy that would motivate the student to move on again.

(4.1) S3: “Gebe auf.”
[I give up.]

On the other hand, there is task-related input with which the student tries to
handle the task. It is characteristic of this kind of input, first, that it is domain-
specific and, second, that it needs to be evaluated with respect to its success
in bringing the task forward. More specifically, the dialogue move domain-
contribution must be available in order to represent attempts to bring the task
forward. Once this is represented, it is up to the implementor to decide on cat-
egories for the evaluation of this attempt, that is the domain-contributions rele-
vant to the tutoring purposes. This decision is both domain dependent (different
domains might require divergent evaluation methods) and teaching-strategy de-
pendent (the information useful for tutoring may vary between models). Hence,
it lies beyond the scope of dialogue management. Chapters 5 and 6 deal with
such formalisations, which are external resources for the dialogue manager.

In general, a clear distinction with regard to dialogue-move functions, like the
one we are suggesting, offers itself as a valuable basis for specifying interfaces
between the dialogue manager and other modules in a dialogue system (cf.
Chapters 1 and 6).

1The examples are from the DIALOG corpus if not otherwise indicated. The reference
name of the particular dialogue signifies, from right to left, the teaching method, the number
of the subject and the proof that constituted the task. We provide the turn number, where
relevant, next to the indication of who is uttering the turn, e.g., T: tutor, and S: student.

144 Chapter 4. Dialogue Moves and Hints

4.3 Dialogue-Move Analysis

In this section, we show the dimensions that are relevant to tutorial dialogues
based on the theory of obligations [Traum and Allen, 1994; Matheson et al.,
2000; Tsovaltzi and Matheson, 2002; Tsovaltzi, 2001]. This theory introduces
the notion of discourse and social obligation as a way of analysing some of the
social aspects of interactions and provides an explanation for behaviour that
other theories do not predict. It is an augmentation of the representation of
the intentions [Rich and Sidner, 1998] of dialogue participants that attempts to
capture the natural flow of conversation.

Treating tutorial dialogues in terms of obligations is a way of analysing and
predicting some specific kinds of dialogue behaviour that do not seem to follow
the rules of everyday discourse. For example, SharedPlans [Grosz and Sidner,
1986], which is a predominant model in the intentions tradition, do not explain
why the tutor does not just give all answers away to the student. This violates
the principle of co-operativity, which is central in such intention-based theories.

According to the obligation-driven framework, on the other hand, intentions
are necessary but not the only driving force behind an utterance. For example,
only if one considers it the students’ obligation to address the tutor’s questions
and follow her directives is it possible to interpret the total lack of overt signals
from the students that they intend to cooperate. Such signals are normally
central to collaboration. In the context of the overall obligations the tutor
knows what the students’ intentions are, and will be able to interpret their
actions correctly, because the tutorial-dialogue genre does not permit any other
behaviour. That means that it is the students’ obligation to follow the tutor’s
directives.

In the following, for each of the dialogue moves explored we include and
intuitive definition, specifications, obligations, NL examples, relations to moves
in other dimensions, and extra notes wherever these apply.

4.3.1 Conventional Task-Management Dialogue Moves

This dimension captures utterances that explicitly address the management of
the structure of the task. It also includes implicit dialogue moves. In DAMSL
tutoring-task and conventional task-management are collapsed into one dimen-
sion called “task management”. As we have explained though, the tutoring task
is way too important in the tutorial-dialogue genre and it deserves a separate
dimension that makes the manipulations necessary in it clear. Moreover, al-
though those manipulations might be contentious and subject to many changes
to cater for different teaching models, conventional task management is much
more straightforward and need not be affected by changes at the tutoring-task
level. This makes reconfigurability easier. Therefore, we break the task man-
agement into two dimensions: tutoring-task and conventional task-management.

In [Allen and Core, 1997], this dimension captures utterances that “explic-
itly address the problem solving process and experimental procedure”, including
utterances that involve coordinating the activities of the interlocutors (“Let’s

4.3. Dialogue-Move Analysis 145

work on getting the train to Avon first”), asking for help on the procedures
(“Do I need to state the problem?”) or asking about the status of the pro-
cess (“Are we done?”). DAMSL distinguishes between utterances that are part
of the task, and utterances involving the problem solving process (task man-
agement)2. We capture the following dialogue moves initiate-task, close-task,
initiate-subtask and close-subtask in order to add the necessary discourse struc-
ture which corresponds to the tutoring-task structure and make it easier for the
student to follow the purpose of subtasks. In consequence, initiate-subtask and
close-subtask have to be dynamically realised for the current subtask to take
the discourse structure into account and maximise coherence.

There are no obligations in this dimension. Only NL specifications are ap-
plicable based on the dialogue-move category as, for example, noone expects a
user to reply to a greeting from the computer.

4.3.1.1 Initiate-task

An utterance with which the task is initiated.

NL Examples

(4.2) T1: “Bitte zeigen Sie:. . . ”
[Please, show:. . .] (soc5k)

(4.3) T: “OK, let’s look at a proof! Tell me everything you can think of
for proving the following:. . . ” (constructed example)

Relation to moves in other dimensions Initiate-task can be at the same
time also initiate-dialogue if there is no explicit initiate-dialogue.

Notes In principle, all domain-contributions address this utterance in addition
to whichever utterance their backward-looking function addresses.

4.3.1.2 Close-task

An utterance that indicates that the task is completed/closed.

NL Examples

(4.4) T4: “Damit ist die Aussage schon bewiesen.”
[With that, the expression is already proven.] (did15d)

Relation to moves in other dimensions Close-task can be at the same
time also close-dialogue if there is no explicit close-dialogue.

2Note that we have two tasks, proof task and tutoring task (cf. Section 4.4.2).

146 Chapter 4. Dialogue Moves and Hints

Notes The last move of the hinting session may also serve as close-task (e.g.,
did15p T8).

4.3.1.3 Initiate-subtask

An utterance with which a subtask is initiated.

NL Examples(constructed)

(4.5) T: “Let’s look at it”

4.3.1.4 Close-subtask (constructed)

An utterance that indicates that a subtask is completed/closed.

NL Examples

(4.6) T: “OK”

(4.7) T: “OK, so much for that”

4.3.2 Conventional Communication-Management Dialogue

Moves

This dimension concerns utterances that explicitly manage the structure of the
dialogue. It comprises the following moves: Initiate-dialogue, close-dialogue,
initiate-subdialogue,close-subdialogue, discourse-marking. These moves have
also a forward-looking function, that is conventional-opening or conventional-
closing.

There are no obligations in this dimension, which is a fact special to human-
computer interaction. Only NL specifications are applicable based on the dialo-
gue-move category.

4.3.2.1 Initiate-dialogue

An utterance with which the dialogue is initiated.

NL Examples (constructed)

(4.8) T: “Hello!”

Relation to moves in other dimensions It can be implicit in the utterance
with which the task is initiated, namely initiate-task.

4.3.2.2 Close-dialogue

An utterance that indicates that the dialogue is finished/closed.

4.3. Dialogue-Move Analysis 147

NL Examples (constructed)

(4.9) T: “Bye!”

Relation to moves in other dimensions It can be implicit in the utterance
that closes the task, namely close-dialogue.

4.3.2.3 Initiate-subdialogue

An utterance with which a subdialogue is initiated.
It is commonly a request-clarification, or a signal-non-understanding in the

backward-looking dimension.

NL Examples (constructed)

(4.10) T: “Let’s see. . . ”

Notes Initiate-subdialogue and initiate-subtask may coincide in the same way
that initiate-dialogue and initiate-task may.

4.3.2.4 Close-subdialogue

An utterance with which a subdialogue is ended/closed.

NL Examples (constructed)

(4.11) T: “So. . . ”

4.3.2.5 Discourse-marking

Utterances that mark the discourse structure, i.e., indicate how the current
utterance relates to the preceding or succeeding context.

NL Examples

(4.12) T4: “Dies mache ich nun.”
[I’m going to do that then] (did16k)

Relation to moves in other dimensions Discourse-marking refers to ut-
terances as opposed to subdialogues or subtasks as initiate-subtask and initiate-
subdialogue.

Notes Discourse-marking is not handled in Menon, as it relates to discourse
structure.

148 Chapter 4. Dialogue Moves and Hints

4.4 Task Dimension

The task dimension is divided into two subdimensions in order to distinguish
between the two tasks that are performed while tutoring, namely the proof
task and tutoring task, and make their dialogue management transparent. The
proof task is concerned with resolving the domain task for the session. In our
domain the task is finding a mathematical proof to a problem. The tutoring
task subdimension includes dialogue moves that do not try to resolve the task
directly. This captures the intuition that it is not the task of the tutor to find a
solution, but rather to help the student find it. This subdimension constitutes
the framework for manipulating different teaching strategies. The proof and
tutoring tasks are parallel. Separating their dialogue management makes the
tutoring task reusable for different problems and domains.

We now define the task dialogue moves. For the purposes of this thesis we
talk about student-task vs. tutor-task dialogue moves.

4.4.1 Student-task Dialogue Moves

The following student-task dialogue moves constitute special requests from the
student. The analysis provided here is necessary for the identification and clas-
sification of such dialogue moves, in order to be able to provide tutorial feedback
for them. In performing such dialogue moves, the student takes the dialogue
initiative. However, the tutor is still responsible for the task initiative to be in
a position to give feedback. Therefore, there need to be two levels of dialogue
management to capture this two forms of initiative.

4.4.1.1 Request-assistance

An utterance with which the speaker requests assistance with the task. It con-
cerns only specific information requests, e.g., about concepts.

Specifications It is a superclass with values all kinds of assistance that can be
dealt with, namely the domain information captured in passive hint categories.
It also comprises two more categories: one representing that the requested as-
sistance is irrelevant, and one representing that it belongs to a different theory.

Obligations The tutor is obliged to address it, but will really only answer
request-assistance based on teaching model considerations.

NL Examples

(4.13) S1: “Ich kann nicht anfangen.”
[I can’t start] (soc5k)

(4.14) S: “What is a P?” (constructed example)

4.4. Task Dimension 149

Relation to moves in other dimensions The forward-looking function is
info-request, statement, or action-directive.

Notes This move is analysed for the possible aspects in the domain in Chap-
ter 5.

4.4.1.2 Resign

An utterance with which students indicate that they are giving up the proof-
task, as opposed to asking for specific help.

Specifications No further specifications are required or provided by Menon.

Obligations The tutor has to address it at least. The rest of the behaviour
is dependent on the teaching model.

NL Examples

(4.15) S3: “Gebe auf.”
[I give up.] (soc5p)

(4.16) S7: “Komme nicht weiter.”
[Can’t move on.] (did15p)

(4.17) S5: “Ich moechte die antwort wissen.”
[I want to know the answer.] (soc5k)

(4.18) S2: “Wenn ich das wuesste!”
[If only I knew that!] (soc20k)

Relation to other moves It is different from request-assistance, because the
student states that they are giving up, one way or the other.

“I don’t know” is a reject (and statement) in DAMSL, not an answer,
whereas in [Core et al., 2002] it is an answer, because according to the speaker
the question is being answered. We understand an answer as resolving a ques-
tion and an address-info-request as just addressing it. So, “I don’t know” effect
utterances are not treated as answers, but rather as resigns and address-info-
requests at the backward-looking level.

4.4.1.3 Request-evaluation

An utterance with which students inquire explicitly about their progress.

Specifications No further specifications are required by Menon.

150 Chapter 4. Dialogue Moves and Hints

Obligations The tutor has to address it and probably answer it, depend-
ing on the teaching strategy, by either an encourage (“You are doing fine”), a
domain-contribution-evaluation (“Your answer is mainly correct, but ...”) or a
combination of the two (“You are doing fine, but you have to concentrate on
the ...”).

NL Examples (constructed)

(4.19) S: “How am I doing?”. This is requesting an evaluation of the overall
performance.

(4.20) S: “Was that right?”. This is requesting an evaluation of the current
student answer.

4.4.1.4 Time-out

A period of time where the student remains idle.

Specifications No further specifications are required by Menon.

Obligations The tutor has to address it and try to find out the reason for
the idleness.

Notes This is not strictly speaking a dialogue move. For the formalisation of
the task dimension, though, it transpired that it functions rather as a dialogue
move, as it requires general pedagogical feedback.

4.4.2 Tutor-task dialogue moves

Proof Task It is concerned with resolving the domain task, in our domain
finding a mathematical proof to a problem. It comprises the following dialogue
moves.

4.4.2.1 Domain-contribution

An utterance that attempts to directly resolve the proof task or a related issue
to the best of the speaker’s capacity, even if wrong or irrelevant.

Specifications It always takes as a parameter the domain-contribution cate-
gory assigned to it. This can differ according to the teaching model. We analyse
the categories assumed in our model in Chapter 5, Section 5.3.3.

Obligations The tutor is obliged to acknowledge it and also perform one of
the domain-contribution-evaluation dialogue moves.

4.4. Task Dimension 151

NL Examples

(4.21) S2: “Wegen A ⊆ K (B) = A ∩ B = ∅ (obiger Schritt) und analog B
⊆ K (A) = B ∩ A = ∅ und A ∩ B = ∅ = B ∩ A (offensichtlich)
folgt die Behauptung A ⊆ K (B) = B ⊆ K (A)”
[Because A ⊆ K (B) = A ∩ B = ∅ (above step) and analogously
B ⊆ K (A) = B ∩ A = ∅ und A ∩ B = ∅ = B ∩ A (obviously)
follows the hypothesis that A ⊆ K (B) = B ⊆ K (A)]

(4.22) T: “Is A a subset of B?”
S: “Yes” (= A is a subset of B) (constructed example)

Contrasting examples

(4.23) S5: “Habe Probleme mit Potenzmenge...”
[I’m having problems with the powerset...] (did15p). This is not
a domain-contribution although it mentions powerset. It can be
handled by the dialogue manager without consulting the proof
manager.

(4.24) S: “What is a K(A)?” (constructed example) This is not a domain-
contribution, but a request-assistance.

(4.25) T2: “Das ist nicht richtig! Sie müssen als erstes die wenn-dann-
Beziehung betrachten.”
[This is not correct. First, you have to deal with the if-then
relation.] (soc23k).
This is a hint, as the tutor is not advancing the proof task to
the best of her ability. That would mean giving away the whole
proof. She is, however, contributing to the tutoring task by
giving this piece of information and hoping to effect learning.

Notes The tutor does not contribute to the proof task, but to the tutoring
task.

Domain-contribution may contain domain knowledge, but this is not a deci-
sive factor either way. On the contrary, any utterance from the student that does
not contain domain knowledge, but needs to be evaluated (e.g., Example 4.22)
is a domain-contribution and requires linguistic interpretation for what counts
as an answer to it (in the example “yes”, “no”).

152 Chapter 4. Dialogue Moves and Hints

Tutoring Task It includes dialogue moves that do not try to resolve the
task directly, as in the Proof Task subdimension, but rather aim at assist the
student resolve the task. It comprises the following dialogue moves.

4.4.2.2 Check-origin-problem

A question that the tutor asks in order to find out if and what problem the
student has. It does not advance the proof task.

Specifications It may take as parameters either the student-task dialogue
move that caused it, or the domain-contribution category if it was caused by
one.

Obligations This move discharges the obligation of the tutor to address a
preceding question or assertion by the student. The student has to address it.
This is taken care of by the forward-looking level.

NL Examples

(4.26) T10: “Koennen Sie das noch genauer erklaeren?”
[Can you explain that in more detail?] (soc20k)

(4.27) T: “What is it that you do not understand?”(constructed example)

4.4.2.3 Align

An utterance with which the person who knows more (the tutor) tries to get
evidence that the interlocutor shares the same knowledge, as the speaker believes
is the case.

Specifications It takes as a parameter a hint, the content of which is the
target of the align. That is, the tutor is trying to make sure that the student
understands this content.

Obligations An align imposes the obligation on the student to answer it, but
a simple “yes” does not discharge the obligation to answer it. This is taken care
of at the forward-looking function, where it is a diagnostic-query.

NL Examples

(4.28) T6: “. . . Warum haben wir zuerst die wenn-dann Beziehung betra-
chtet?”
[Why did we first deal with the if-then relation] (soc21k).
This is an align when the tutor is trying to re-elicit that informa-
tion after having given it once.

4.4. Task Dimension 153

Relation to moves in other dimensions In the forward-looking dimension
align is probably always a diagnostic-query.

4.4.2.4 Domain-contribution-evaluation

An utterance that provides an evaluation of the student’s performance by sig-
nalling each of the domain-contribution categories. As such, it is a supercategory
and its subcategories comprise signalling the particular domain-contribution cat-
egories.

Specifications This is a superclass that comprises one subcategory for every
defined domain-contribution category in the model. We identify the domain-
contribution categories: signal-accept, signal-irrelevant, signal-step-size, signal-
misconception, signal-ill-formed, signal-complete-inaccurate, signal-partial-an-
swer, signal-complete-partially-accurate, signal-near-miss, signal-unknown, sig-
nal-missing-basic-knowledge, signal-wrong-linguistic-term, signal-wrong, signal-
other. When it is produced after a request-evaluation, it takes this dialogue
move as a parameter. This makes possible a different NL realisation if necessary.
For example, a domain-contribution-evaluation can be implicit, but when it is
specified by the parameter request-evaluation then it should rather be explicit
and more verbose.

Obligations It discharges the obligation to answer a request-evaluation.

NL Examples (constructed) Signal-near-miss can be implicit and taken
care of by the hint that follows it.

NL Examples

(4.29) T: “Is this really what you wanted to say?”
This is a discrepancy hint and at the same time an implicit
signal-near-miss.

(4.30) T: “There’s a minor problem with your answer.”
This is an explicit signal-near-miss.

(4.31) T: “What you said is very close to the correct answer, apart from a
minor problem.”
This is an explicit signal-near-miss with request-evaluation as a
parameter.

Notes This category comprises dialogue moves that are the task dimension
counterpart of the backward-looking moves accept, accept-part, reject and reject-
part. Domain-contribution-evaluation is produced regularly, to let students
know how their contribution was. However, students might also ask explicitly
for an evaluation.

154 Chapter 4. Dialogue Moves and Hints

4.4.2.5 Encourage

The speaker (tutor) gives some positive feedback to the hearer (student) in order
to encourage her to continue. It does not presuppose that the speaker accepts
the domain contribution as in 4.33, but it might, as in 4.32, where the adverb
“vollkommen” (absolutely) indicates that it is an encourage.

Specifications If produced after a request-evaluation it takes this as param-
eter.

Obligations It discharges the obligation to address a resign.

NL Examples

(4.32) T6: “Das ist vollkommen richtig!” (soc17d)
[This is absolutely right!]

(4.33) T9: “Sehr gut!”
[Very well!] (soc20k)

(4.34) T4: “Der ansatz ist richtig.”
[The beginning is correct] (soc2k)

NL Examples (constructed)

(4.35) T: “Good.”
This is an encourage without any parameter.

(4.36) T: “It’s not easy, but you’ll get there!”
This is an encourage without parameter request-evaluation.

Notes As with domain-contribution-evaluation, when an encourage is pro-
duced after a request-evaluation, it takes the request-evaluation as a parameter
for adapting the NL realisation of it.

4.4.2.6 Prompt

An utterance that requests the hearer explicitly to proceed with the task and
provide further information.

Specifications Depending on what exactly the student is being prompted for,
it takes one of the parameters prompt-action, prompt-step, or prompt-resign.
The last captures prompting the student after a resign to try harder.

Obligations The student is obliged to address it by trying to proceed with
the task.

4.4. Task Dimension 155

Relation to moves in other dimensions It can be realised as a diagnostic-
query or an info-request in the forward-looking dimension (e.g., Example 4.37).

NL Examples

(4.37) T3: “Wie geht es weiter?”
[How does one continue?] (did15d)

(4.38) T2: “Wie koennte das gehen?”
[What could the answer be?] (did16k)

(4.39) T4: “Wie koennte es damit weitergehen?”
[How could one continue with this?] (did15k)

Notes It is usually the tutor who would utter prompts. For the student such
an utterance will be a resign at the task level and info-request forward-looking.

4.4.2.7 Hint

A hint can take the form of eliciting information that students are unable to
access without the aid of hints, or information whose relevance to the problem at
hand is not clear to the students. Alternatively, a hint can point to an inference
that students are expected to make based on knowledge available to them, which
helps the general reasoning needed to deal with a problem [Hume et al., 1996b].

The initiation of hints can be due to various reasons:

(i) the speaker (tutor) observes that the other interlocutor (student) is not
making any progress in the task

(ii) the interlocutor (student) asks a question and the speaker (tutor) does
not want to answer it directly

(iii) the interlocutor (student) gives the wrong answer or asks the wrong ques-
tion in response to a speaker’s (tutor) question

Obligations Partial answers from the tutor in the form of hint discharge the
obligation to address the student’s questions or utterances. There are examples
in the BE&E corpus where the tutor explicitly states her method or the student
shows she is aware of it, such as “Very good. You answered your own question”
or “I’ll give you another hint.”, from the tutor and “I need another hint”,
from the student. Statements like these constitute additional support for the
obligations involved. They show the dialogue participants’ awareness of their
respective roles in this special social context [Tsovaltzi and Matheson, 2002;
Hulstijn, 2003].

In the next section, we scrutinise the dialogue move hint, we provide specifi-
cations for every hint category defined and extensive examples. In Section 4.8,
we discuss the relation of hint to other moves in the dialogue-move taxonomy.

156 Chapter 4. Dialogue Moves and Hints

4.5 Hint Taxonomy

We now explore hints and show how their definition makes further use of our
instructional points and pedagogical model. In order to capture the different
underlying cognitive functions of a hint in our hint taxonomy, we define hint
categories across different dimensions. The cognitive functions of a hint can
be common for different surface realisations, therefore we define hint categories
within the top level dialogue-move taxonomy.

4.5.1 Motivation and Structure of the Hint Taxonomy

We define four dimensions of hints:

1. The domain knowledge dimension captures the needs of the domain, dis-
tinguishing different instructional points for skill acquisition in problem
solving.

2. The elicitation status dimension distinguishes between the information
being elicited and degrees in which it is provided.

3. The problem referential perspective dimension distinguishes between views
on discovering an inference. It includes the conceptual perspective, which
points to an inference by referring to relations between pieces of domain
information, and the pragmatic perspective, which addresses pragmatic
aspects of pointing to an inference like the number of parts expected for
an answer to be complete.

4. The inferential role dimension captures the type of inference concerning
the instructional point being addressed. For conceptual hints, we distin-
guish between whether what is addressed is the inference per se, or some
control on top of it, its meta-reasoning. For example, the rule of inference
can be elicited directly, or the reasoning for finding the right rule of infer-
ence can be elicited. For pragmatic hints, the inferential role refers to the
applicable pragmatic reasoning, for example whether pragmatic elements
of the student’s answer are addressed (speak-to-answer), or whether the
student is pointed to some relevant infrormation (point-to-information).

A hint category is determined by the combination of these four dimensions (cf.
Figure 4.1). That is, one category is a point in the space defined by the four
dimensions, where the point itself is defined by the choices made on each of
the dimensions. Different combinations are potentially useful, for alternative
teaching models.

We shall first describe the four dimensions in detail and then give example
hint categories, as defined for our teaching model.

4.5.1.1 The Domain-Knowledge Dimension

In Chapter 2 we discussed the pedagogical and cognitive relevance of instruc-
tional points and in Chapter 3 we defined the different instructional points that

4.5. Hint Taxonomy 157

Elicit vs. Give Away Conceptual vs. Pragmatic

concept vs. inference rule... Hint
Categories

Domain

Knowledge

Instuctional Poitns: relevant vs. subordinate

Inferential

Role

Elicitation

Status Perspective

Problem−Referential

Performable vs. Meta−Reasoning Step vs.
Pragmatic−Reasoning Type

Figure 4.1: Definition of Hint Categories via Hint dimensions

make up this dimension, in terms of the domain knowledge they refer to. Here,
we look at the pedagogical and cognitive relevance of the instructional points
and at their use for the definition of hint categories.

In this dimension, we classify instructional points under five classes, based
on a subordination relation, that is their order with respect to the amount of
information they reveal. The classes are:

1. Domain relation

2. Domain object

3. Rule of inference

4. Substitution

5. Proof step

These classes correspond to the categories of instructional points defined in
Chapter 3. The domain knowledge captured in them, that is the concepts and
relations that we define, are used as possible hint aspects for each of the above
classes. In other words, they constitute one decision point in the hint taxonomy,
which represents the domain knowledge to be addressed by the hint.

158 Chapter 4. Dialogue Moves and Hints

4.5.1.2 The Elicitation-Status Dimension

This dimension draws a distinction between the active and passive function of
hints. The active function of hints looks forward and seeks to help students
in accessing further information that will bring them closer to the solution by
means of eliciting. Students have to think of and produce the answer that is
hinted at. Active hints enable the creation of personalised schemata. They are
a means to avoid providing specific declarative knowledge, but guide students
to form their own knowledge, and hence a schema that they can re-apply [Price
et al., 1997].

The passive function of hints refers to the piece of declarative information
that is provided each time in order to bring the student closer to some an-
swer. The tutor gives away some information, which might have been previ-
ously elicited without success. This captures the basic idea of scaffolding, i.e.,
of providing the knowledge that the learner does not possess while requiring the
use of already possessed knowledge [Wood et al., 1976].

4.5.1.3 The Problem-Referential-Perspective Dimension

This dimension distinguishes between two modes of referring to the instruc-
tional points; conceptual and pragmatic. Conceptual hints directly refer to in-
structional points using domain information. In our domain, they make use of
mathematical concepts or reasoning, like the premise and the conclusion, the
rule of inference, the proof step. Pragmatic hints, in contrast, are opposed to
the analytic and deductive way of thinking that is reflected in the conceptual
hints. For instance, a pragmatic hint may inform the student of the number of
subparts that are necessary for an answer to be complete, or point the student
to a previous occurance of some domain information in the course of the same
tutoring session, or correct some mistake in terminology.

The pragmatic class takes the cognitive state of students into account and
aims at increasing the students’ motivation. For instance, the tutor may think
that the student has a basic understanding of the conceptual aspect and is not
far from the desired answer, therefore the pragmatic information is enough.
Pragmatic hints, in effect, only point to conceptual information that is implicit
(not available to consciousness or verbalisable) and cannot be taught as such.
It takes advantage of patterns that do not themselves constitute instructional
points, but help to recognise them. This in turn assists the building or selection
of the appropriate schema [Price et al., 1997].

4.5.1.4 The Inferential-Role Dimension

This dimension captures the kind of inference that is addressed by the hint. For
conceptual hints, we distinguish between performable-step and meta-reasoning
instructional points. Performable-step instructional points have to be explicitly
represented in the proof step. Meta-reasoning instructional points help derive
the performable step, but are not necessarily represented in the proof step.

4.5. Hint Taxonomy 159

Performable Steps Performable steps are the steps that can be found in
the proof. These include premises, conclusion and inference methods such as
lemmata, theorems, definitions of concepts etc.

Performable-step hints take care of declarative knowledge necessary for elim-
inating errors. Their active function aims in a sense at forcing students to
pay attention to such aspects of the proof that are relevant to identifying the
schema to be applied. These aspects are normally pre-consciously recognised if
the schema already exists [Price et al., 1997].

Meta-reasoning Steps Meta-reasoning steps consist of everything that leads
to the performable step, but cannot be found in the proof as such. To be more
specific, meta-reasoning consists of everything that could potentially be applied
to proofs in general. It consists of everything that explains the performable
step, building the motivation for the instructional points. It involves general
proving techniques and methodology, which are theory independent. As soon
as a general technique is instantiated for the particular proof, it belongs to the
performable step level. For example, although the process of substituting results
in a performable step, the process itself is meta-reasoning.

The meta-reasoning could be abstracted from performable-step hints in the
form of schemata built by students and suiting their cognitive state. If students
are not capable of this abstraction, meta-reasoning hints help them do so by mo-
tivating the performable-step instructional points and thus providing additional
help. Such rule-based instruction has been found to be inappropriate on its own,
as it hinders the acquisition of personalised schemata [Price et al., 1997]. How-
ever, in combination with performable-step hints, they elevate cognitive load,
motivate the student and reinforce instructional points. In particular, active
meta-reasoning hints (cf. Elicitation Status Dimension) are pedagogically speaking
appropriate for students who already have some schema, but get stuck in apply-
ing it, as our experiments have shown (cf. Chapter 1). Those subjects seemed
to be hampered by performable-step information hints.

Passive meta-reasoning hints subsume the corresponding passive performable-
step hints, that is, they include their information. Furthermore, meta-reasoning
subclasses capture the class subordination in so far as they motivate the domain
hints, which themselves follow the subordination.

For pragmatic hints the inferential role corresponds to the way hints can
help with inferring the domain knowledge by reference to pragmatic aspects of
it (cf. Problem Referential Dimension). We identify three classes:

1. speak-to-answer, which addresses the student’s domain-contribution di-
rectly

2. point-to-lesson, which addresses the declarative knowledge that has been
presented to the student in the lesson material

3. take-for-granted, which refers to information that the student is not re-
quired to know, as the current session does not deal with it

160 Chapter 4. Dialogue Moves and Hints

1. Domain knowledge: premise-conclusion → the current premise and conclusion

2. Inferential role: meta-reasoning

3. Elicitation status: give away information

4. Problem-referential perspective: conceptual

Figure 4.2: Example of hint category with its values in the four dimensions.

4.5.2 Hint Categories

We now examine the hint categories that serve our pedagogical goals and also
help Menon to provide as much specification as possible for the NL realisation.

Based on our tutoring model in Chapter 2, the hint categories we define
are, in general, pointers to the instructional points from different perspec-
tives, but always give non-redundant information, as cognitive load theory ad-
vises [Sweller, 1988]. Moreover, they do not include explicit mention of a schema,
but only suggest some basic heuristics, as the former would mean imposing a
particular schema. This in turn inflicts unnecessary cognitive load and disallows
learning based on the existing cognitive structures as well as implicit learning
[Stanley et al., 1989]. In that spirit, hints do not make the relation between
instructional points explicit, and the instructional points defined in Chapter
3 were conceived with the aim of keeping them abstract enough to allow the
schema acquisition [Sweller, 1988; 1989]. At the same time, the realisation of
the hints does not present the definition of the instructional point itself, but
its instantiation for the particular proof and proof step, that is, the problem at
hand. This is also crucial for the full automation of NL hints, as instructional
points can be instantiated for any proof currently constituting the task.

Figure 4.2 shows and example of how the decisions in the hint dimensions
define a hint category. The task assumed is to prove that if A ⊆ K(B), then
B ⊆ K(A). The hint category is give-away-premise-conclusion. Given
the values in the four dimensions, a realisation that could be produced by the
NL generator for this hint would be: “What we want to prove here is that if
A ⊆ K(B), then B ⊆ K(A) holds, by proving B ⊆ K(A) under the assumption
that A ⊆ K(B)”.

In the following, we provide examples of possible surface realisations of hints.
We keep the phrasing in examples of one hint category the same and provide
templates for NL formulation, to allow the comparison between the same hint
category for instantiation of different instructional points. For an analysis of
linguistic phenomena in tutorial dialogue and a computational model for surface
realisation of tutorial feedback see, for example, [Porayska-Pomsta and Pain,
2000]. To illustrate some assumptions made in our NL realisations and the

4.5. Hint Taxonomy 161

possibilities that our approach provides for generating contextual realisations
of hints, here are some constructed examples of different possible realisations
depending on dialogue context.

The hint give-away-relevant-concept can be realised in many ways, for
instance:

(4.40) . . .
S: (the student is silent for some time)
T: “You can start by considering the < Relevant Concept >.” (statement,

open-option)

(4.41) . . .
S: “What shall I do now?” (info-request, request-assistance)
T: “Start by considering the < Relevant Concept >.” (action-directive,

address-question)

(4.42) . . .
S: “I want to know the answer.” (statement, resign)
T: “Why don’t you try first to consider the < Relevant Concept >.” (open-

option, address-statement)

In Example 4.40, the tutor reads in the student’s silence that she might not
know how to continue. Hence, she cautiously states a possibility to proceed.
In Example 4.41, the student indicates that she is at a loss, so the tutor just
instructs her to use the Relevant Concept without further ado to avoid more
confusion. In Example 4.42, the student does not know how to proceed and
does not want to try either. The tutor is not prepared to give the answer away,
for pedagogical reasons, but she has to address the student’s request. So, she in-
forms the student how she can carry on trying, but addresses her wish to resign.
Clearly, such NL realisations may also depend on student model considerations
and are produced in varied discourse contexts (here for simplicity this consists
of the previous student turn only) and intend different communicative goals,
which the tutor wants to achieve on top of presenting the underlying cognitive
content. However, all examples realise the same pedagogical feedback (here
they realise the hint give-away-relevant-concept). Such nuances in realisa-
tion play an important role in what makes human tutors effective [Moore, 1993;
Porayska-Pomsta and Pain, 2000; DiPaolo et al., 2004; Freedman, 2000]. The
approach to automating feedback presented here takes that into account and
allows the possibility of varying the NL realisations to cater for those nuances.

4.5.2.1 DPC Hints

The hints categories defined here combine the aspects Domain Information, Per-
formable Step, and Conceptual. We present the active and the passive equivalent
of the hints.

4.5.2.1.1 Domain-Relation Hints The domain-relation class belongs to
the meta-reasoning (cf. Section 4.5.2.2) and has no function in the performable
step.

162 Chapter 4. Dialogue Moves and Hints

4.5.2.1.2 Domain-Object Hints Domain-object hints address an object in
the domain.

Elicit-relevant-concept It asks the student for the most prominent con-
cept in the proposition or formula under consideration. This might be, for in-
stance, the concept whose definition the student needs to use in order to proceed
with the proof, or the concept that will in general lead students to understand
which Rule of Inference they have to apply.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Look for the thing in the expression with which you can start
working.” or
“What is the thing in the expression from which you can start working?”

Give-away-relevant-concept It gives the relevant concept away and asks
the student to consider the Relevant Concept for the proof step.

Specifications Relevant Concept3.

NL Examples “You can start by considering the < Relevant Concept > (e.g.,
powerset).”4.

Notes For a definition of Relevant Concept based on the Rule of Inference, see
Chapter 3.

Elicit-subordinate-concept It asks the student for the Subordinate Concept

in connection to the Relevant Concept.

Specifications Relevant Concept.

NL Examples “Think of what you know about the < Relevant Concept >
(e.g., powerset) that can help you manipulate the expression.” or
“Is there anything that connects to the < Relevant Concept > (e.g., pow-
erset) and can help you manipulate the expression ?”

Notes It is provided when the Relevant Concept is known.

3The specifications refer to the definitions in Chapter 3 and to Appendix B.
4Where appropriate in the NL examples, we keep them generic, providing the hint speci-

fications to show how these specifications would be used for the automatic realisation of the
hints. We also give an example for the possible instantiation or realisation of the specifica-
tions. We employ a categorisation based on the Domain Techniques defined in Chapter 3. A
more extensive list of NL examples is available in Appendix D.

4.5. Hint Taxonomy 163

Give-away-subordinate-concept It gives the subordinate concept away.

Specifications Subordinate Concept.

NL Examples “Think of the < Subordinate Concept > (e.g., subset).”

Notes For a definition of the Subordinate Concept based on the Rule of Inference,
see Chapter 3.

The passive function of domain-object hints is used to elicit the applicable
Rule of Inference, and, therefore, constitutes the active function of the respective
class.

4.5.2.1.3 Inference-Rule Hints The instructional point Rule of Inference

should not be confused with the rule of inferences of logic, as it does not share all
their attributes. So, although statically extraction and insertion are the same,
the instantiation of them for the instructional point Rule of Inference is different,
because direction plays a role. That means that pedagogically they are different
rules.

Elicit-inference-rule It asks the student to name the rule that needs to
be applied.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “What rule can you use here?”

Notes Elicit-inference-rule is used to elicit the Substitution of the rule for
the problem at hand.

Give-away-inference-rule It names the Rule of Inference to be used.

Specifications Rule of Inference, Relevant Concept.

NL Examples

NL Template: “You have to use < Rule of Inference > of< Relevant Concept>.”

• Occurrence state5 of definitions or substitutions: “You have to use the
definition of powerset.”

• Case distinction: “You have to use the cases deriving from the disjunctive
definition of the union ∪.”, where the union ∪ is a disjunctively defined
concept, defined as U ∪ V = {x|x ∈ U or x ∈ V } and the cases deriving
from its definition would be x ∈ U or x ∈ V .

5For the definition of occurrence state see Applendix A, Section A.2.4.1

164 Chapter 4. Dialogue Moves and Hints

• Induction: “You have to use the steps deriving from the inductive defini-
tion of the set of all finite subsets of X.”, where the set of all finite subsets
of X is the inductively defined concept, and Pf (X) is the set of all finite
subsets of X if: (i) ∅ ∈ Pf (X) (ii) A ∈ Pf (X), x ∈ X ⇒ A∪ {x} ∈ Pf (X).

• Occurrence state of quantifier: “You have to use the rule elimination of
the universal quantifier for the for all.”, where for all is a realisation for
the Relevant Concept, which is the quantifier type for all or there exists.

• Occurrence state of connectives: “You have to use the rule elimination of
the equivalence for the equivalence.”, where equivalence is a realisation for
the Relevant Concept, which is the connective type equivalence, equality,
implication, conjunction, or disjunction.

Notes The Rule of Inference for case distinction and induction, includes the
cases and the inductive steps, respectively.

Elicit-basic-knowledge It asks the student for the Basic Knowledge, that is
some declarative knowledge, which the tutor has become aware that the student
was missing. That knowledge can be definitions of concepts, definition of Rule

of Inferences etc. (cf. Chapter 5).

Specifications Basic Knowledge Reference.

NL Examples “What is the < Basic Knowledge Reference > (e.g., the defini-
tion of powerset, or implication elimination etc.)?”

Notes Basic Knowledge is not strictly speaking an instructional point, but it
is a domain mistake that is related to this class in the domain knowledge
dimension, as it refers to definitions of either rules or Domain Techniques
(cf. Chapter 5). The Basic Knowledge elicits, in effect, the Rule of In-

ference, as all hints do before the Rule of Inference is known. Therefore,
the corresponding class subtask (cf. Chapter 6) deals also with Basic
Knowledge.

Give-away-basic-knowledge It gives away the information on the defined
constants that the student does not know.

Specifications Basic Knowledge Reference, Basic Knowledge, Relevant Con-

cept.

NL Examples

NL Template: “The rule for the < Basic Knowledge Reference > is: < Basic
Knowledge >”

• Occurrence state of definitions or substitutions: “The rule for the defini-
tion of powerset is: P (V) = {U |U ⊆ V }.”

4.5. Hint Taxonomy 165

• Case distinction: “The rule for the case distinction of the union ∪ is: for
the expression to hold for the union of U and V it has to hold for the
different cases deriving from its disjunctive definition x ∈ U or x ∈ V .”

• Induction: “The rule for the induction of the set of all finite subsets of X
is: for the expression to hold for the set of all finite subsets of X, it has
to hold for the different steps deriving from its definition ∅ ∈ Pf (X) and
A ∈ Pf (X), x ∈ X ⇒ A ∪ {x} ∈ Pf (X).

• Occurrence state of quantifiers: “The rule for the elimination of the for
all is: for an expression to hold for all x, it has to hold for an arbitrary
but fixed x.”

• Occurrence state of connectives: “The rule for the elimination of equiva-
lence ⇔ is: an expression with an equivalence holds if it holds from left
to right and from right to left”.

4.5.2.1.4 Substitution Hints Performable-step Substitution hints deal with
how the Substitution should be done. The result of the substitution is the proof
step and is dealt with by the proof-step hints below. (cf. Section 4.5.2.2).

Elicit-substitution It asks the student to apply the Rule of Inference to the
given expression, that is to bind the variables in it.

Specifications Rule of Inference.

NL Examples “Try now to apply the rule < Rule of Inference > (e.g., the
definition of powerset) to the expression.”

Give-away-substitution It explains to the student the way the substitution
is done. Any wrong substitution (i.e., of the source, target or Rule of Inference)
is always nonetheless a substitution and treated here.

Specifications Substitution.

NL Examples “You can substitute the appropriate parts of the expression you
are dealing with for the variables in the rule you are applying.”

Notes References to substitution of variables appeared in our corpus. e.g.,
“That is not totally right. The element of which set do you have to
handle?” (soc2K, T3), where the student correctly wanted to handle the
problem by using the element of a set, but she talked about the element
of A instead of B, which was the correct set.

This hint gives general instructions on substituting. Problems with substi-
tuting specific parts are treated by elicit- and give-away-ill-formed,
as well as by the domain-relation hints. We leave it for future work to
guide the student even more closely through the substitution, as for the
moment there is no evidence that it is necessary, but it would be an ex-
pensive task.

166 Chapter 4. Dialogue Moves and Hints

Elicit-ill-formed It informs students that their formulation is not mathe-
matically correct, and asks them to correct it. It thus elicits the correct Substi-

tution.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “What you wrote there is syntactically not completely correct.
Can you correct it?”

Notes Ill-formed is a domain mistake that relates to the Substitution.

Give-away-ill-formed It lets the student know what is wrong in their for-
mulation, without giving away the whole Substitution.

Specifications Correct Formulation.

NL Examples “The right way to write this is < Correct Formulation > (e.g.
P (C ∪ (A ∩B)) instead of PC ∪ (A ∩B).”

4.5.2.1.5 Proof-Step Hints

Elicit-proof-step It asks the student to write the complete proof step.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Can you now write the whole step?”

Give-away-proof-step It gives away the whole proof step.

Specifications Proof Step.

NL Examples So, this step is < Proof Step > (e.g. Let A ⊆ K(B), we will
prove that B ⊆ K(A)).”

4.5.2.2 DMRC

The hints categories defined here combine the aspects Domain Information,
Meta-Reasoning Step, and Conceptual. We present the active and the passive
equivalent of the hints.

Meta-reasoning is used to motivate the performable step and what is present
in it. For example, relevant-concept and subordinate-con- cept should be
accompanied by their equivalent meta-reasoning. In the case of domain relation
concepts though (antithesis, duality etc.) any meta-reasoning is captured in the
hint itself. Namely, that the concept chosen by the student stands in such a
relation to the desired concept.

The meta-reasoning that we provide is informed by the principle of “local
axiomatics”. For instance, we provide information on the techniques to be

4.5. Hint Taxonomy 167

used (e.g., universal quantifier elimination), but do not enter the logic level of
explaining the techniques themselves (e.g., why it suffices to prove an expression
that involves a universal quantifier for an arbitrary constant). Our aim is rather
that the student understands when and how to apply the techniques.

For the definition of most hints in this dimension we made use of the didactic
condition feedback, which consisted always of a passive hint plus its motivations,
as our wizard-tutor was instructed to do.

4.5.2.2.1 Domain-Relation Meta-Reasoning Hints All hints that cor-
respond to the domain relations defined in the taxonomy belong here. We do
not make use of their active function, as it is not part of the tutorial goal. The
active function would be applicable if we were really concentrating on teaching
concepts (declarative knowledge), or making the student aware of the domain
hierarchy.

For all passive domain relation hints, the fact that they bear the specific
relation to the required concept is also the content of the realisation, as for the
NL example for antithesis and hypotaxis below. The relations are defined in
Appendix A.

So we identify the following hints:

Give-away-antithesis It informs the student that the concept used is in an-
tithesis to the one expected.

Give-away-duality It informs the student that the concept used is in duality
to the one expected.

Give-away-converse It informs the student that the concept used is the con-
verse to the one expected.

Give-away-hypotaxis It informs the student that the concept used is in hy-
potaxis to the one expected.

Give-away-specialisation It informs the student that the concept used is a
specialisation of the one expected.

Give-away-generalisation It informs the student that the concept used is a
generalisation of the one expected.

Give-away-primitive It informs the student that the concept used is primitive
to the one expected.

Specifications Domain-Relation Name, Domain-Relation Concept.

NL Examples

• Antithesis NL Template: “The < Domain-Relation Concept > is the
< Domain-Relation Name > of the concept you need here.”
Antithesis NL Example: “The ∈ is the opposite of the concept you need
here.”’, where the concept needed is the 6∈.

168 Chapter 4. Dialogue Moves and Hints

• Hypotaxis NL Template: “The < Domain-Relation Concept > is the
< Domain-Relation Name > of the concept you need here.”
Hypotaxis NL Example: “The ∈ is the hypotaxon of the concept you need
here.”, where the concept needed is the subset ⊆.

Notes In the examples above, “opposite” is the NL realisation for the Domain-
Relation Name antithesis, and “part of the definition” for hypotaxon. The
realisations for the rest of the domain relations would be equivalent, but
with a different NL description based on the domain relation they handle.

4.5.2.2.2 Domain-Object Meta-Reasoning Hints

Elicit-relevant-concept-meta-reasoning It elicits the reasoning for find-
ing the Relevant Concept as well as the role it plays for finding the next proof
step in general.

Specifications Specific Method.

NL Examples

• Forward: “Now, you should look for something in the problem that would
help you < Specific Method > (e.g., manipulate the expression towards
what you are trying to prove).”

• Backward: “Now, you should look for something in the problem that
will help you < Specific Method > (e.g., simplify what you are trying to
prove).”

Notes To be produced when the Subordinate Concept is not known.

The Specific Method can be used to differentiate between NL realisations
for forward vs. backward steps, as in the NL Examples above.

Give-away-relevant-concept-meta-reasoning It gives away the Relevant

Concept and the meta-reasoning for it.

Specifications Specific Method, Relevant Concept.

NL Examples

NL Template: “We start with the < Relevant Concept > because it’s central
in the problem and can help you < Specific Method >.”

• Forward: “We start with the powerset, because it’s central in the problem
and can help you manipulate what you want to prove.”

• Backward: “We start with the if-then relation, because it’s central in the
problem and can help you simplify it.”

4.5. Hint Taxonomy 169

Notes To be produced when the Subordinate Concept is not known.

Examples from our corpus are:

• “We deal first with the if-then relation to simplify the whole expres-
sion” (soc23k, T8), where the Relevant Concept is the if-then relation
(the implication).

• “. . . You only have to consider that both the terms in (P (A)∪P (C))∩
(P (B) ∪ P (C)) are connected by intersection” (soc17p, T4), where
intersection is the Relevant Concept.

Elicit-relevant-concept-meta-reasoning(subordinate-concept) It asks
the student for the Relevant Concept by explaining its relation to the Subordinate

Concept.

Specifications Subordinate Concept.

NL Examples

NL Template: “Now, find something in the expression, which you can connect
to the < Subordinate Concept > and can help you <Specific Method>.”

“Now, find something in the expression, which you can connect to the
subset and can help you find the right rule for the next step.”, where
the Relevant Concept is the powerset, the Inference Rule the definition of
powerset, and the step is forward.

Notes To be produced when the Subordinate Concept is known.

Give-away-relevant-concept-meta-reasoning(subordinate-concept) It
gives away the Relevant Concept and explains its use in connection to the Sub-

ordinate Concept.

Specifications Specific Method, Relevant Concept, Subordinate Concept.

NL Examples

NL Template: “You can consider the < Relevant Concept >, because it is
connected to < Subordinate Concept > and, therefore, you can use it to
< Specific Method >.”

“You can consider the powerset, because it is connected to the subset and,
therefore, you can use it to manipulate the expression.”, where the step is
forward.

Notes To be produced when the Subordinate Concept is known.

170 Chapter 4. Dialogue Moves and Hints

Elicit-subordinate-concept-meta-reasoning It asks for the Subordinate

Concept in connection to the relevant concept by explaining its function.

Specifications Relevant Concept.

NL Examples

NL Template: “Think of what you need to prove and how you can connect
that to the < Relevant Concept >.”

• Occurrence state of definitions or substitutions: “Think of what you need
to prove and how you can connect that to the powerset.”

• Case distinction: “Think of what you need to prove and how you can
connect that to the union ∪.”, i.e., the disjunctively defined concept.

• Induction: “Think of what you need to prove and how you can connect
that to the set of all finite subsets of X.”, i.e., the inductively defined
concept.

• Occurrence state of quantifiers: “Think of what you need to prove and
how you can connect that to the for all.”, i.e., the quantifier type.

• Occurrence state of connectives: “Think of what you need to prove and
how you can connect that to the equivalence⇔.”, i.e., the connective type.

Notes In general, the Relevant Concept for case distinction is the disjunc-
tively defined concept, for induction the inductively defined concept,
for occurrence state of quantifier is the Quantifier type, and for oc-
currence state of connective the connective type.

The hint is to be produced when the Relevant Concept is known.

Give-away-subordinate-concept-meta-reasoning It gives away the Subor-

dinate Concept and explains its function, in finding the proof.

Specifications Relevant Concept, Subordinate Concept.

NL Examples

NL Template: “You can consider the < Subordinate Concept > and how it
connects to the < Relevant Concept >.”

• Occurrence state of definitions or substitutions: “You can consider the
subset and how it connects to the powerset.”

• Case distinction: “You can consider the different cases that you have to
prove, deriving from the disjunctive definition of the union ∪.”, where the
< Relevant Concept > is the disjunctively defined concept, here the union
∪.

4.5. Hint Taxonomy 171

• Induction: “You can consider the different steps that you have to prove,
deriving from the inductive definition of the set of all finite subsets of X.”,
where the < Relevant Concept > is the inductively defined concept, here
the set of all finite subsets of X.

• Occurrence state of quantifiers:
NL Template: “In order for the expression to hold for < Relevant Con-

cept > we need to prove it for < Subordinate Concept>, as it is not possible
to prove it for all x,y,. . . ”

“In order for the expression to hold for for all we need to prove it for some
constants x,y,. . . , as it is not possible to prove it for all x,y,. . . ”, where
the Relevant Concept is the Quantifier type and the Subordinate Concept

the new goal formula.

Notes The Relevant and Subordinate Concepts are the Quantifier type and the
new goal formula (i.e., the variables to be used), respectively.

The new hypothesis and the new goal formula and name are included in
the Rule of Inference field for the realisation of the hint in the case of
occurrence state of quantifier and connective.

• Occurrence state of connectives:
NL Template: “In order for the expression with the < Relevant Concept >
to hold, you have to prove < Subordinate Concept >.”

“In order for the expression with the equivalence ⇔ to hold, you have to
prove both directions of the expression”, where the Relevant Concept is
the connective type and the Subordinate Concept the new goal formula.

4.5.2.2.3 Inference-Rule Meta-Reasoning Hints

Elicit-domain-technique It elicits the Domain Technique, as defined in
Chapter 3.

Specifications Relevant Concept.

NL Examples

• Occurrence state of definitions or substitutions: “What should you do
here in order to deal with the < Relevant Concept > (e.g., the powerset,
or if-then relation).”

• Case distinction: “What should you do here in order to deal with the
disjunctive definition of the < Relevant Concept >?”

• Induction: “What should you do here in order to deal with the inductive
definition of < Relevant Concept >?”

172 Chapter 4. Dialogue Moves and Hints

• Occurrence state of quantifiers: “What should you do here in order to deal
with the < Relevant Concept >” (i.e., the quantifier type).

• Occurrence state of connectives: “What should you do here in order to
deal with the < Relevant Concept >?” (i.e., the connective type).

Give-away-domain-technique It gives away the Domain Technique, as defined
in Chapter 3.

Specifications Domain Technique, Relevant Concept.

NL Examples

NL Template: “You have to < Domain Technique> the < Relevant Concept >.”

• Occurrence state of definition: “You have to get rid of the powerset.”,
where the < Domain Technique > is extract.

• Case distinction: “You have to apply case distinction to the union ∪”,
where the Relevant Concept is the disjunctively defined concept union.

• Induction: “You have to apply induction of the set of all finite subsets of
X”, where the < Relevant Concept > is the inductively defined concept the
set of all finite subsets of X.

• Occurrence state of quantifier: “You have to get rid of the for all.”, where
the < Domain Technique > is extract and < Relevant Concept > is the
quantifier type.

• Occurrence state of connective: “You have to get rid of the equivalence
⇔.”, where< Domain Technique> is extract and the< Relevant Concept>
is the connective type.

Give-away-inverse-rule It informs the student that the rule used is an in-
version of the expected rule.

Specifications Inversion.

NL Examples “The rule that you want to apply is the < Inversion > inverse
of the rule needed here.”

Notes Inverse rule, like basic knowledge is not an instructional point, but deals
with domain mistakes related to the meta-reasoning of the Rule of Inference

class only. It is defined in Appendix A. The corresponding hint is given
when the student gives a rule and the relation inversion from our ontology
holds. The NL realisation of the relation inversion might be different.
Note that the active equivalent is not used, in the same way that other
active hints relating to domain relations are not used.

This hint is motivated by our wizard-tutor’s comment (soc23k, T3), which
expressed the wish to inform the student that she was starting from the

4.5. Hint Taxonomy 173

wrong direction of the implication, instead of asking if she knows how to
break the implication, which the student obviously didn’t know.

Using the Inverse Rule by affirming the consequent is, in general, a very
common mistake that humans make and its correction significantly im-
proves problem-solving performance [Price et al., 1997].

Elicit-connect-relevant-subordinate-concept It is given when the Do-

main Technique is not known and elicits the way the Relevant Concept is con-
nected to the Subordinate Concept, by pointing to their function of this con-
nection with regard to finding the Rule of Inference.

Specifications Relevant Concept, Subordinate Concept.

NL Examples

NL Template: “Think of a theorem or lemma that you can apply and involves
the < Relevant Concept > and the < Subordinate Concept >.”

• Occurrence state of definitions or substitutions: “Think of a theorem or
lemma that you can apply and involves the powerset and the subset.”

• Case distinction: “Think of a rule that you can apply and involves the
disjunctively defined concept union ∪ and what you have to prove.”

• Induction: “Think of a rule that you can apply and involves the inductively
defined concept the set of all finite subsets of X and what you have to
prove.”

• Occurrence state of quantifiers: “Think of a rule that you can apply and
involves the for all and what you need to prove.”, where the < Relevant

Concept > is the quantifier type and < Subordinate Concept > is the new
goal formula.

• Occurrence state of connectives: “Think of a rule that you can apply
and involves the equivalence ⇔ and what you need to prove.”, where the
< Relevant Concept > is the connective type and < Subordinate Concept >
is the new goal formula.

Notes For occurrence state of quantifier the Relevant Concept and the Sub-

ordinate Concept are the quantifier type and the variables to be used, re-
spectively. For occurrence state of connective the Relevant Concept and the
Subordinate Concept are the connective type and what has to be proven,
respectively.

Give-away-connect-relevant-subordinate-concept It gives away the Rule

of Inference and explains why it applies, in connection to the Relevant and the
Subordinate Concepts.

Specifications Relevant Concept, Subordinate Concept, Rule of Inference.

174 Chapter 4. Dialogue Moves and Hints

NL Examples

NL Template: “What connects the < Relevant Concept > and the < Subor-

dinate Concept > is < Rule of Inference >.”

• Occurrence state of definitions or substitutions: “What connects the pow-
erset and the subset is the definition of powerset.”

• Case distinction: “What connects the disjunctively defined concept union
and what you have to prove are the cases deriving from the definition of
the union.”

• Induction: “What connects the inductively defined concept the set of all
finite subsets of X and what you have to prove are the inductive steps
deriving from its definition.”

• Occurrence state of quantifier: “What connects the for all and what you
have to prove is the elimination of the for all.

• Occurrence state of connective: “What connects the equivalence ⇔ and
what you have to prove is the the elimination of the equivalence.”

Notes The instantiation of the subordinate concept can be derived from the
new goal formula.

Elicit-elaborate-domain-object It elicits the Rule of Inference by explain-
ing its connection to the Domain Technique and the Relevant Concept.

Specifications Domain Technique, Relevant Concept.

NL Examples

NL Template: “Think of a theorem or lemma (a rule) that explains how to
< Domain Technique > the < Relevant Concept >.”

• Occurrence state of definitions or substitutions: “Think of a theorem or
lemma (a rule) that explains how to get rid of the powerset.”

• Case distinction: “Think of a rule that explains how to apply case distinc-
tion to the disjunctively defined concept union ∪.”

• Induction: “Think of a rule that explains how to apply induction to the
inductively defined concept the set of all finite subsets of X.”

• Occurrence state of quantifiers: “Think of a rule that would help you get
rid of the for all.”

• Occurrence state of connectives: “Think of a rule that tells you how to
get rid of the equivalence ⇔.”

4.5. Hint Taxonomy 175

Notes It is given when the Domain Technique is known.

Elicit-connect-relevant-subordinate-conceptgives away the Domain

Technique together with the Rule of Inference, whereas in elaborate-

domain-object the Domain Technique is already known and just repeated.

This hint was inspired by our wizard-tutor’s comment that the Relevant

Concept should be elaborated, as it is on its own not very helpful.

Give-away-elaborate-domain-object It gives away the Rule of Inference and
explains why it applies in connection to the Relevant Concept and the Domain

Technique.

Specifications Domain Technique, Relevant Concept, Rule of Inference.

NL Examples

NL Template: “What helps you < Domain Technique > the < Relevant Con-

cept > is < Rule of Inference >.”

• Occurrence state of definitions or substitutions: “What helps you get rid
of the powerset is the definition of powerset.”

• Case distinction: “What helps you apply case distinction to the disjunc-
tively defined union ∪ are the cases deriving from the definition of the
union”.

• Induction: “What helps you apply induction to the inductively defined
set of all finite subsets of X are the inductive steps deriving from its defi-
nition.”

• Occurrence state of quantifiers: “What helps you get rid of the for all is
elimination of the for all.”

• Occurrence state of connectives: “What helps you get rid of the equiva-
lence ⇔ is elimination of the equivalence.”

4.5.2.2.4 Substitution Meta-Reasoning Hints Meta-reasoning Substi-

tution hints explain why we should substitute the particular terms given the
domain information of the proof step and given the way we do substitutions,
which is explained in the performable-step hint give-away-substitution.

Elicit-inference-rule-application It elicits the application of the Rule of

Inference by requesting the substitution of the Relevant Concept.

Specifications Domain Technique, Relevant Concept.

NL Examples

NL Template: “What do you have to write down instead of the < Relevant

Concept > to < Domain Technique > it?”

176 Chapter 4. Dialogue Moves and Hints

• Occurrence state of definitions or substitutions: “What do you have to
write down instead of the powerset to get rid of it?”

• Case distinction: “What do you have to write down instead of the dis-
junctively defined union ∪ to apply case distinction to it?”

• Induction: “What do you have to write down instead of the inductively
defined set of all finite subsets of X to apply induction to it?”

• Occurrence state of quantifiers: “What do you have to write down instead
of the for all to get rid of it?”

• Occurrence state of connectives: “What do you have to write down instead
of the equivalence ⇔ to get rid of it?”

Give-away-inference-rule-application It gives away the way the substi-
tution has to preceed in connection to the Relevant Concept, the Domain Tech-

nique, and the Rule of Inference.

Specifications Domain Technique, Relevant Concept, Rule of Inference.

NL Examples

NL Template: “You have to < Domain Technique > the < Relevant Concept >
by writing down < Rule of Inference > instead.’

• Occurrence state of definitions or substitutions: “You have to get rid of
the powerset by writing down the definition of powerset instead.”

• Case distinction: “You have to apply case distinction for the union ∪
by writing down the cases deriving from the disjunctive definition of the
union instead.’

• Induction: “You have to apply induction for the set of all finite subsets of
X by writing down the inductive steps deriving from its definition instead.”

• Occurrence state of quantifiers: “You have to get rid of the for all by
writing down the rule for the elimination of the for all instead. ”

• Occurrence state of connectives: “You have to get rid of the equivalence⇔
by writing down the rule for the elimination of the equivalence instead.”

Notes Examples of instances of such hints in our corpus are:

• “You have to assume that the assumption holds and derive the propo-
sition from this” (soc17k, T4)

• “You have to break down the relation by assuming the validity of
the assumption to be able to prove the validity of the proposition”
(soc21k, T4)

4.5. Hint Taxonomy 177

4.5.2.2.5 Proof-Step Meta-Reasoning Hints The Proof-step meta-rea-
soning hints address the step as a whole and not a subpart of it. Because of
their overview nature, the production of some of these hints makes sense at the
beginning of the hinting session to motivate the whole proof. Hence, these hints
capture a cycle defined in the actual hinting algorithm. That is, the hinting
session for a step starts with a proof-step meta-reasoning hint and finishes with
a proof-step performable-step hint, namely give-away-performable-step.

Elicit-starting-point It elicits the reasoning for how one should tackle a
problem.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “How can you start handling the problem?”

Notes This is a better realisation than the very general “Do you understand
the problem”. It avoids the abstractness that has been criticised in the
case of Polya’s instructions. “Do you understand the problem” is really a
check-origin-problem in our dialogue-move taxonomy.

Give-away-starting-point It gives away the reasoning for how one should
tackle a problem.

Specifications Starting Point.

NL Examples “You have to identify what is given and what you have to
prove.”

Notes The starting point passive and active hints are only produced at the
beginning of the proof before the first step. The particular hints belong
to meta-reasoning, as they address aspects that are not part of the proof,
although they still comprise information used for deriving the proof step.
It is characteristic that they are defined independent of any theory.

Elicit-premise-conclusion It elicits the premise/-s of the problem at hand
and the desired conclusion.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “What is assumed here and what do you have to prove?”

Give-away-premise-conclusion It gives away the premise/-s and the con-
clusion.

Specifications Premise-Conclusion.

178 Chapter 4. Dialogue Moves and Hints

NL Examples “What is assumed is < Premise > and what you have to prove
is < Conclusion >.”

Notes Note that, in case of a connective, once the connective has been elim-
inated, the expression to be proved becomes one that either does not
include a connective, or the connective is different. In the latter case, the
source and the target for the following step are defined accordingly. Only
if the next step is a subproof would these coincide with the premise and
the conclusion of the proof.

Elicit-abstract-method It elicits the Abstract Method, that is whether a
direct or an indirect proof applies.

Specifications Target.

NL Examples “You have to decide now if you should try to prove the < Tar-
get > or assume the opposite of it?”

Notes This hint is produced when the proof is indirect.

Both elicit and give-away-abstract-method, which follows, address
the instructional point proof method in our domain. They capture the
method that is not particular to the specific theory in the domain, but
methods that are more generally used in the problem solving of the do-
main.

Give-away-abstract-method It gives away the Abstract Method.

Specifications Abstract Method.

NL Examples

• Direct proof: “You have to try to manipulate what is given in order to
reach your goal.”

Notes This case is included only for the case that the student asks about
it with a request-assistance.

• Indirect proof: “You have to assume the validity of the opposite of the
< Target > and prove a contradiction based on what you know.”

Elicit-specific-method It elicits the Specific Method for tackling the prob-
lem. In our domain whether a forward or a backward step applies.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Ask yourself in which ways you can manipulate an expression
to prove what you want and choose the right one to apply here. ”

4.5. Hint Taxonomy 179

Give-away-specific-method It gives away the Specific Method for tackling
the problem.

Specifications Specific Method.

NL Examples

• Forward steps: “You manipulate an expression by using what you know
and applying rules that help you get to what you want to prove”

• Backward steps: “You manipulate an expression by simplifying what you
want to prove”

Give-away-step-meta-reasoning It gives away a summary of the meta-rea-
soning for the whole step by explaining the main instructional points for deriving
the step.

Specifications The passive equivalent of all meta-reasoning hints produced for
the step already, plus the central ones from the rest. These are:

• give-away-premise-conclusion

• give-away-specific-method

• give-away-relevant-concept-meta-reasoning

• give-away-domain-technique

• give-away-elaborate-domain-object

• give-away-inference-rule-application

NL Examples “The reasoning for this step is as follows: First, we have to
simplify the expression. We want to show that if A ⊆ K(B), then B ⊆
K(A) holds, by provingB ⊆ K(A) under the assumption that A ⊆ K(B).
We concentrate on the if-then relation, which can help us simplify the
expression to prove the conclusion. We try to think of a rule that will
help us eliminate the if-then, so we apply the rule if X ⇒ Y, then let X
and prove Y”.

Notes This is a recapitulation of the meta-reasoning for a whole proof step. It
is an instructional point as it addresses the explanation of the proof step
as a unit. Its active form is the same as an align, so it is not used.

The hint was motivated by the complaint of several subjects in our exper-
iment that they often lost the overview of the proof.

4.5.2.3 Pragmatic Hints

Pragmatic hints always give away the respective pragmatic information. How-
ever, in the domain knowledge dimension they address whatever domain informa-
tion is being dealt with at the point they are produced. This way, pragmatic

180 Chapter 4. Dialogue Moves and Hints

hints also implicitly follow the passive-active distinction, as far as the hint cat-
egory gives some information away in order to elicit some other piece of infor-
mation. By the same token, pragmatic hints also aim at eliciting performable
step or meta-reasoning information. The classes for pragmatic hints indicate
the pragmatic cognitive function of the hints. The choice of the hint category
by the algorithm reflects the choice of the class, as well. We now look into the
different classes of pragmatic hints and the hint categories they include.

4.5.2.3.1 Speak-To-Answer Hints Speak-to-answer hints refer to the pre-
ceding answer of the student and comment on pragmatic aspects in it. They
pick at a particular point about it that gives rise to the specific hint.

Ordered-list It informs the student that there is an element missing from
the expected answer, which is a list. It specifically refers to the order in the list
in which the expected answer appears.

Specifications List Position.

NL Examples “You are missing the < List Position > (e.g., the third case)”,
where the list is the cases of the case distinction.

Or “You still have to figure out a < List Position > (e.g., a third point).”
.

Notes Examples of lists are the cases of the case distinction and the steps of
the induction. The element missing is one or more of the cases or steps
respectively.

Unordered-list It points the student to the fact that the expected answer
corresponds to a list and prompts for its missing elements in the student’s
answer. It only refers to the number of elements in the list.

Specifications List Elements, Rest List Element.

NL Examples

• “You have now < Rest List Element > (e.g., two cases), but you need
< List Elements > (e.g., three). Which one are you missing?”

• “And what more?”

Notes The difference to ordered-list is that the list has no particular order,
and so the missing element/-s are not referred to with respect to any order
either.

4.5. Hint Taxonomy 181

Narrow-down-choice It helps the student find the expected answer by restrict-
ing the search space. Examples of narrow-down-choice can be abstract-method
and specific-method, where there is only a limited number of methods available.

Specifications List Elements.

NL Examples “You can do < List Elements > (e.g., case distinction, or in-
duction). Which one applies here?”

Notes This hint is connected with what [Wood and Middleton, 1975] call “re-
duction of degrees of freedom” (p. 98). They describe the way tutors
reduce the possible moves, in order to allow the student the possibility to
complete it.

Discrepancy It refers to a discrepancy between the student’s answer and the
expected answer.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Really?”

Notes This simple NL realisation was used by our wizard-tutor. [Wood and
Middleton, 1975] call this kind of feedback “marking of critical features”
(p. 98).

4.5.2.3.2 Point-to-Information Hints These hints point the student to
some information given previously, either during the dialogue or in the lesson
material. They make the relation between the hint and the information it
addresses with its context more obvious. They also make the student more
aware of the material at their disposal, leaving them nonetheless free to choose
the exact way they will use it. There is some element of metacognition here,
but we are not on the whole addressing metacognition.

Point-backwards It refers the student to a previous use of the information at
hand to reactivate it and highlight its context.

Specifications Same Domain Information, that is the information that the
tutor points back to.

NL Examples “We have already looked at a similar case in this proof. Have
a look back and try to move on with the proof.”

Notes This hint was also produced by our wizard-tutor.

It brings to memory the original context where the relevant information
was discussed [Price et al., 1997], and it enables assimilation of new infor-
mation in existing schemata [Widmayer, URL].

182 Chapter 4. Dialogue Moves and Hints

Currently in Menon, we implement giving away the information that is
the same if the student can still not find it after the point-backwards.
Same Domain Information comprises the content of any of the passive
conceptual hints (cf. Chapter 6).

Refer-to-lesson It points the student to some specific piece of information
in the lesson material, which comprises the current expected answer.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Look it up in your lesson material!”

Notes The pedagogical motivation of this pragmatic aspect is that the student
is pointed to consulting the available material better, while being at the
same time directed to the piece of information currently needed for the
task. This information can be anything available in the lesson material;
from a concept, to the Rule of Inference, to an example, etc. The aim is
to make the connection to the current situation obvious.

Point-to-lesson It points students to the lesson material as a whole and asks
them to read it again.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Please, read your lesson material carefully once more. Let me
know when you are ready.”

Notes This hint is produced when it appears that students cannot be helped
by tutoring, probably because they have not read the material carefully.

4.5.2.3.3 Take-For-Granted Hints Take-for-granted hints ask students
to accept some information without further explanation or elaboration, for ex-
ample, because that would require to delve into another mathematical topic,
which would shift the focus of the tutorial session. This is motivated by the
notion of “local axiomatics” [Wu, 2001], prominent in teaching mathematics. It
was also recognised by [Wood and Middleton, 1975] who included it under the
tutorial goal with the name “direction maintenance” (p. 98).

Correct-information It asks the student to accept a chunk of information.

Specifications Only NL specifications are applicable based on the hint cate-
gory.

NL Examples “Let’s not look into this now.”

4.6. Subdialogues and Subtasks 183

Correct-term It provides the correct terminology to be used, which is not
known by the student.

Specifications Correct Linguistic Term, Wrong Linguistic Term.

NL Examples “Just say < Correct Linguistic Term > instead of < Wrong
Linguistic Term > to be accurate.”

Notes The correct linguistic term can be “element of”, correcting a wrong
linguistic term “belongs to”, which was used in our corpus when the hint
was produced by our wizard-tutor.

Misconception

Specifications Misconception Type.

NL Examples “Keep in mind that...(explanation of misconception follows,
based on the < Misconception Type >.)”

Notes We allow the possibility of treating misconceptions in our teaching model
and we include its treatment in our Socratic teaching strategy. We have
defined misconception exactly from the point of view of the teaching strat-
egy. In Chapter 5 we clarify what counts as a misconception in Menon.
The explanation of the misconception is dependent on the misconception
type.

4.6 Subdialogues and Subtasks

We now define subdialogue and subtask as the units where dialogue moves
reside.

A subdialogue or the subtask is initiated by a dialogue move when a subdia-
logue or a subtask is the result of the move having been performed. For instance,
a request-clarification initiates the clarifications subdialogue that follows it and
a request-assistance can initiate a subtask to deal with the request. Note that
conventional-management dialogue moves, such as initiate-subdialogue, do not
themselves initiate a subdialogue or a subtask, but signal its initiation.

Subdialogue A subdialogue is defined at the dialogue level. It comprises every
side-tracking necessary to continue with the tutoring task. As a result subdi-
alogues are initiated by either student or tutor turns. When the tutor cannot
categorise the student input and performs a clarification move, a subdialogue is
initiated. The student can initiate a subdialogue by, e.g., a request-clarification.
Check-origin-problem initiates a subdialogue, no matter how it might be realised
at the forward-looking level. The move that initiates it is neither a domain-
contribution that can be categorised for its contribution to the task, nor any
dialogue move that comprises domain feedback. For example, align does not

184 Chapter 4. Dialogue Moves and Hints

Proof and Proof

Step Information

Meta-reasoning vs.

Performable Step

Active vs. Passive Pragmatic vs.

Conceptual

domain relation domain relation

antithesis antithesis

duality duality

conversion conversion

hypotaxis hypotaxis

specialisation specialisation

generalisation generalisation

domain object domain object elicit speak-to-answer

rel-con rel-con-meta-reas elicit-rel-con unordered-list

sub-con sub-con-meta-reas elicit-start-point ordered-list

. . . narrow-down-choices

. . . discrepancy

rule of inference rule of inference give-away point-to-information

inference-rule connect-rel-sub-con give-away-rel-con point-backwards

basic-knowledge elaborate-domain-object give-away-start-point refer-to-lesson

inverse-rule . . . point-to-lesson

domain-technique . . .

substitution substitution take-for-granted

substitution inf-rule-application correct-info

ill-formed correct-term

misconception

proof step proof step

starting-point

abstract-method

specific-method

premise-conclusion

proof-step-meta-reas

Table 4.1: Summary of taxonomy of hints with dimensions representation and
examples of hint categories in them

4.6. Subdialogues and Subtasks 185

1. Domain Information - Performable

Step - Conceptual - Active vs. Pas-

sive

• Domain-object Hints

– elicit-relevant-concept

– give-away-relevant-concept

– elicit-subordinate-concept

– give-away-subordinate-concept

• Rule-Of-Inference Hints

– elicit-inference-rule

– give-away-inference-rule

– elicit-basic-knowledge

– give-away-basic-knowledge

• Substitution Hints

– elicit-substitution

– give-away-substitution

– elicit-ill-formed

– give-away-ill-formed

• Proof-Step Hints

– elicit-proof-step

– give-away-proof-step

2. Domain Information - meta-reasoning

- Conceptual - Active vs. Passive

• Domain-Relation Meta-Reasoning

Hints

– give-away-antithesis

– give-away-duality

– give-away-conversion

– give-away-hypotaxis

– give-away-specialisation

– give-away-generalisation

– give-away-primitive

• Domain-Object Meta-Reasoning

Hints

– elicit-relevant-concept-meta-
reasoning

– give-away-relevant-concept-
meta-reasoning

– elicit-relevant-concept(subordinate-
concept)

– give-away-relevant-concept(subordinate-
concept)

– elicit-subordinate-concept-meta-
reasoning

– give-away-subordinate-concept-
meta-reasoning

• Rule-Of-Inference Meta-Reasoning

Hints

– elicit-domain-technique

– give-away-domain-technique

– give-away-inverse-rule

– elicit-connect-relevant-subordinate-
concept

– give-away-connect-relevant-
subordinate-concept

– elicit-elaborate-domain-object

– give-away-elaborate-domain-
object

• Substitution Meta-Reasoning Hints

– elicit-inference-rule-application

– give-away-inference-rule-application

• Proof-Step Meta-Reasoning Hints

– elicit-starting-point

– give-away-starting-point

– elicit-premise-conclusion

– give-away-premise-conclusion

– elicit-abstract-method

– give-away-abstract-method

– elicit-specific-method

– give-away-specific-method

– give-away-step-meta-reasoning

3. Pragmatic

• Speak-To-Answer Hints

– ordered-list

– unordered-list

– narrow-down-choices

– discrepancy

• Point-To-Information

– point-backwards

– refer-to-lesson

– point-to-lesson

• Take-For-Granted

– correct-information

– correct-term

– misconception

Figure 4.3: Summary of the taxonomy of hints

186 Chapter 4. Dialogue Moves and Hints

initiate a subdialogue, because the task carries on as before. It constitutes the
feedback, when the tutor can categorise the domain-contribution and chooses
align only to make sure that the student really understands. Subdialogues ini-
tiated by the student are not treated by Menon.

Subtask A subtask is defined at the task level and contrasts with the main
task, which is tutoring the proof. The move initiating it constitutes tutoring
feedback. A subtask comprises a set of dialogue moves that aim at fulfilling
the same subgoal at the proof-task level, whose goal is to help the student find
the proof. The fact that the tutor employs a subtask means that the choice of
tutoring feedback was possible, and thus the tutoring task is running smoothly.
Any task dialogue move can initiate a subtask.

All moves can be part of subtasks or subdialogues. A subdialogue can take
place within a subtask without influencing the flow of the task itself. The
relation among subtasks is dependent on the teaching strategy.

General Remarks on the Hint Taxonomy In this section, we have only
seen combinations of the four dimensions that are motivated by our teach-
ing model. However, combinations of aspects like active, conceptual, domain-
relation, and performable-step would serve the specific purpose of explicitly
teaching such relations in the form of declarative knowledge, which is not one
of our tutorial goals. Such hints would elicit the relation between two math-
ematical objects in the proof step (e.g., the converse between ⊆ and ⊇). The
passive counterpart, in contrast, can be used to elicit, for example, the Relevant

Concept. If the student mentioned ⊆ instead of ⊇ a hint could be formulated
like: “Not really ⊆, but something closely related.”

4.7 Natural Language Automation of Hints

The specification of the tutor task-dialogue moves in Section 4.4.2 are provided
for the NL realisation of hints. They may affect the exact realisation in conjunc-
tion with other dialogue model consideration every time. An example of how
this may relate to the tutor model is given in the analysis of encourage above.
This thesis provides a basis for such analysis, but does not undertake it.

Although we have provided examples of hints formulated in natural lan-
guage, we do not make any claims about the sentence-level realisation of the
hint categories. These examples were only produced to help the reader picture
the final production of hints. We have implemented such templates for NL
formulations of hints in Menon where the domain information can be instan-
tiated by a domain reasoner. As usual in a cascaded NL generation process,
this provides an interface and more or less any of the existing systems could be
connected to Menon via this interface.

However the aim of this thesis is to provide the means for automatically pro-
ducing hints. For this purpose, we also provide the full representation language
of Menon’s input and output in Appendix B. The input fields are provided by

4.8. Relation of Hints to other Dialogue Moves 187

either the domain reasoners (proof manager, math KB) or, in a few cases, by the
sentence analyser, and can be passed on to the generator as parameters of the
hint categories. They can be requested from the responsible domain reasoner
after the hint algorithm has determined the hint category and its specifications.
This way the domain reasoner only has to calculate the information necessary
for the hint generation. The ontology can be used by the domain reasoners
to instantiate the instructional points for the current step. The current step
itself is found by comparing the proof to the student input. Note that the
student sees only the natural language realisation for the instantiations of the
specifications that are produced by the generator. The NL generator can then
takes dialogue and discourse aspects into account and can provide a contextual
natural language realisation of the produced hints.

4.8 Relation of Hints to other Dialogue Moves

This section provides some theoretical observations to illustrate the relation of
hints as task-dialogue moves to the other move functions in the dialogue-move
taxonomy.

To start with some general remarks, hints should be realised by the dialogue
move that most precisely asks for the content of the hint in order not to confuse
the student with imprecise questions. For instance, indirect formulations of the
sort “Do you know . . . ” should be avoided. Students may take them literally
and reply with “yes” or “no”, failing to abide by the obligations of the genre.

Hints have more or less the same communicative function, so there probably
is a direct relationship between the optimal realisation of hints and the hint
function in a given dimension of the hint taxonomy. An example of this is
the hint dimension of elicitation status, which distinguishes between the functions
active and passive. Active hints are either asserts, communicating a claim about
the world [Allen and Core, 1997] or diagnostic-queries, testing whether students
know a piece of information by asking them to supply the information (ibid.).
Passive hints could be asserts, open-options, that is utterances that suggest a
course of action or state a possibility (ibid.)6, or action-directives, which are
utterances that request an action to be performed. Assert means in this case
that the tutor gives some piece of information away. Open-option (e.g., “Try
to use P”) and action-directive (e.g., “Use P”) are used when the tutor offers a
solution and probably the worse the student performance the more appropriate
an action-directive would be.

Note that these possibilities span the different dimensions of dialogue-move
functions. That is, hints of a specific cognitive function may also have a function
in each of the dialogue-move dimensions, e.g., a hint in the task dimension, an
assert in the forward-looking dimension, and so on. These functions all influence
the final NL realisation of the hint.

6For as long as the student is not totally committed to a proof, hints are likely to be
open-options.

188 Chapter 4. Dialogue Moves and Hints

We implement the idea of multiturn hints by subtasks like spell-out-task,
which capture the fact that a trail of thought is carried through the multiple
turns. However, the trail of thought itself does not constitute the basic unit
of instruction, but our hints and task dialogue moves do. This should not be
confused with multiutterance hints, which just means that it might be better
to break a hint category into more than one turn for its NL realisation.

We will now consider some confusing cases, which seem to disobey the dif-
ference between hints and other task dialogue moves, as well as some cases of
relations of dialogue moves between them. We include the decision trees for the
complicated dimensions forward looking and backward looking that are analysed in
Appendix C for quick reference. The decision trees in Figures 4.4 and 4.5 cap-
ture the relation of the dialogue moves within the same dimension in that they
represent how one can decide on which of the functions described in a dimension
are fulfilled by an utterance7.

Info-request vs. Diagnostic-query An info-request is performed when the
speaker really does not know the answer to the content of the question involved.
For example, in the info-request 4.43 (soc1p), the wizard-tutor did not know
what the student was getting at. On the contrary, a diagnostic-query is a test
for the student’s knowledge when the tutor knows the relevant information. In
the diagnostic-query in 4.44 (soc1k), the tutor knows that the powerset has
nothing to do with this proof, but wants to check to what extent the student
realises this. A subtask is initiated by this move.

(4.43) T4: . . . , aber wie bringt das den Beweis weiter?
. . . , but how does this help with the proof?

(4.44) T2: “. . . , aber was hat die Potenzmenge mit diesem Beweis zu tun?”
. . . , but what does the powerset have to do with this proof?

Hint vs. Check-origin-problem The difference between check-origin-prob-
lem and hint is that a hint at forward-looking level can be a diagnostic-query,
whereas a check-origin-problem will most commonly be an info-request as the
tutor often really does not know the answer to the question “What is wrong?”,
“Can you not go on?”.

Acknowledge vs. Signal-dom-con-evaluation Another interesting case
is acknowledge. ‘Acknowledgements are utterances consisting of short phrases
such as “ok”, “yes”, “uh-huh”, that signal that the previous utterance was un-
derstood without necessarily signalling acceptance [Allen and Core, 1997]. It
is important from a tutoring perspective, because of the obligations involved.
Namely, when the student addresses the tutor, the tutor is obliged to acknowl-
edge it, even if it is only to reject the offer to talk about the issue that the

7The decision tree is partly based on the ones provided in [Allen and Core, 1997] and [Core
et al., 2002].

4.8. Relation of Hints to other Dialogue Moves 189

student has raised. The preferred way of doing the latter is in an explicit man-
ner that would be too condescending and evasive in other genres: “Before we
get to that,. . . ” An explanation for that is that, because the tutor does not
give direct answers, an indication is on call to show that the student’s answer
is taken into account and is not just ignored.

However the student is not obliged to do any explicit acknowledge. Some-
times they don’t do any implicit acknowledge either. They just go silent and
assume that the tutor knows that they are listening and thinking about the
problem. The assumption is that in any other case the student would ask for
clarification. An explanation for that is that both students and tutor are aware
of the obligations that their respective social roles bring. Since it is the students’
obligation to take what the tutor, as the expert, says into account students do
not feel that they need to indicate that they are doing so.

Align vs. Discrepancy vs. Check-origin-problem With align, the per-
son who knows more tries to get evidence that the interlocutor shares the same
knowledge, as in Example 4.45 (soc21k).

(4.45) T6: “. . . Warum haben wir zuerst die wenn-dann Beziehung betra-
chtet?”
[Why did we deal first with the if-then relation?].

Discrepancy is a pragmatic-hint. There are two possible ways of realising it.
The first is a simple “Why?” or “Really?”, that attempts to make students
realise that they have made a mistake, without pointing out the specific mis-
take, as in Example 4.46, T6 (Soc20p). Following this hint, the student indeed
corrects herself in S6.

(4.46) S5: “entschuldigung , es gilt natürlich: P (C ∪ (A ∩ B)) ⊆ P (
C) ∪ P (A ∩ B)< /s >”
[I’m sorry, it holds of course: P (C ∪ (A ∩ B)) ⊆ P (C)
∪ P (A ∩ B)< /s >]

T6: “Wirklich?” [Really?]
S6: “nein doch nicht...andersrum.”

[no indeed not...the other way round.]

This is appropriate when the mistake is one symbol, but so central, that it
makes the whole domain-contribution wrong.

In this case, saying “Do you really mean that”, could be mistaken for a
check-origin-problem. This realisation disambiguates it, showing that the tutor
is doubting the correctness of what the student wrote.

The other possible realisation of discrepancy points to the part of the an-
swer that is wrong in order to allow the student to correct it (self-correction).
e.g., “Did you really mean x?”, “Can you clarify what you mean by x?”.
Discrepancy can be realised as a request-clarification at the backward-looking
level, and as a diagnostic-query at the forward-looking level. Other possibilities
of realising discrepancy at the forward-looking level are, as with all hints, the
following:

190 Chapter 4. Dialogue Moves and Hints

• By an action-directive, e.g., “Check your answer again.”

• By an open-option, e.g., “Try to correct your answer.”

Note that the cognitive function of the two realisations is the same. They try to
find out if the student really made a conceptual mistake or not, but still point
out that there was a mistake. Finally, discrepancy does not start a subdialogue
or a subtask, as it constitutes feedback that is based on the evaluated domain
contribution (cf. Section 4.6).

Check-origin-problem, on the other hand, (e.g., “Can you clarify what you
mean?” “What do you mean?”) does not give away any information and,
hence, it is not a hint. When performing it, the tutor is certain that there is a
conceptual mistake, but is not exactly sure what it is and, therefore, cannot cate-
gorise the domain-contribution in order to give the appropriate feedback. Check-
origin-problem realised as a signal-non-understanding in the backward-looking
dimension (e.g., “Can you check your answer again?”) expresses exactly this
inability to understand. Otherwise, it may be realised by a request-clarification,
as in Example 4.47 T3 is from the BE&E corpus, and Example 4.48 T3 from
our corpus.

(4.47) T1: “OK, now what is the miliampmeter telling you about? Current,
voltage, or resistance?”

S2: “resistance”
T3: “what is it that makes you think so?”
S4: “the directions were talking about resistance and miliamps”
T5: “Look again at the subsubsection that talks about playing with dif-

ference values on the rheostat. . . ”

(4.48) S2: “A 6⊆ B”
T3: Warum? [Why?] (soc13k)

In Example 4.48 S2, although the student’s domain-contribution was not
incorrect or irrelevant, as it was not what was expected at that point in the
proof, but it might appear as a valid later step. Therefore, the tutor could not
categorise it and asked “why”.

Hint vs. Domain-contribution A hint attempts to resolve the proof task
or issues related to the proof task indirectly and characteristically not to the
best of the speaker’s ability. A domain-contribution, on the contrary, tries to
advance the proving task directly and to the best of the speaker’s ability.

To illustrate that the same hint category could have different realisations,
let’s examine an example of a hint. Example 4.50 shows a hint in the task
dimension and it has a passive relevant-concept hint function. The particular
realisation is an open-option in the forward-looking dimension. Given a different
dialogue context, however, the same underlying hint function could just as well
be an action-directive without altering the hint function at the cognitive level,
but serving the dialogue context better, as in the constructed Example 4.50.
This approach is contrary to previous attempts to model tutorial dialogues,

4.9. Conclusion 191

which do not distinguish between the cognitive and dialogue function of hints
and have, thus, provide no clear account of the status of hints in the proposed
dialogue-move taxonomies [Person and Graesser, 2003; Core et al., 2002].

(4.49) T2: “Sie müssen als erstes die wenn-dann-Beziehung betrachten.”
(soc17k)
[First you have to consider the if-then relation.]

(4.50) T: “Consider first the if-then relation.” (constructed)

4.9 Conclusion

We have presented a dialogue-move taxonomy, which attempts to clearly sepa-
rate the general dialogue-management attributes of utterances from the genre
and domain specific ones. We looked at how such a separation facilitates a
deeper understanding of the appropriate manipulation of the genre specific phe-
nomena and showed how it allows their formalisation. That in turn, enables
building a reusable and easily reconfigurable dialogue manager, based on such
principles.

In terms of the relationships between the task dimension and moves in other
dimensions, the separation suggested here allows us to capture the special sta-
tus that moves have for the tutorial-dialogue genre. As task-dimension moves
are commonly indirect speech acts that attain their function based on the con-
ventions in the genre, it is highly unlikely that they serve the same purpose in
other genres. For instance, a signal-non-understanding at the backward-looking
function can be read as the student asking for assistance, that is, as a request-
assistance at the task dimension. It is necessary to represent and recognise the
move, albeit not to commit as to the tutoring feedback that will be produced
to treat it. Representing such indirect dialogue moves, in general, allows their
easy manipulation according to the desired teaching model, without restricting
the choice of the model. The task dimension of the dialogue-move taxonomy
captures this flexibility. In Chapter 5 we explain how the Hinting Session Sta-
tus represents the information that is relevant to the tutoring task. The specific
context for the recognition and planning of the perlocutionary force of dialogue
moves in task-oriented dialogues is the task itself [Traum, 1999]. Therefore,
the Hinting Session Status is input to the Socratic procedure, which uses the
tutoring-task information represented in it to determine the task-dialogue moves
to be produced as tutorial feedback (cf. Chapter 6).

Especially within the task dimension, the analysis of the functions of hints
facilitates the main goal of this thesis. Namely, to capture the cognitive function
of hints and provide the necessary hint specifications for the generator, but allow
the freedom to the dialogue manager and the NL modules to manipulate the
phrasing. This opens up the path to integrating NL capabilities into an ITS as in
the LeActiveMath project [Callaway et al., 2006] that we reviewed in Chapter 1,
but also to additionally preserve the benefits of sophisticated tutorial feedback.

192 Chapter 4. Dialogue Moves and Hints

The analysis of hints that we presented is an attempt to advance the un-
derstanding of hints and attempts to automate hinting. On the whole, the
elicitation status dimension is the only one that most other approaches capture
explicitly through designing sets of related hints with increasing degrees of preci-
sion in revealing the required information. The three dimensions domain knowledge,
inferential role, and problem referential perspective are typically merged grossly un-
der what we separate out as the elicitation status.

4.9. Conclusion 193

Does the speaker make a claim about the world?

Yes

Is the speaker asking for information?Is the speaker making a new claim
about the world?

Does the speaker indicate that the
claim has already been made?

Does the speaker already
know this information?

Is the speaker requesting an action?

Is the speaker asking
whether the hearer understood?

Yes No

 assert

 understanding−query

 statement

 diagnostic−query

Is the speaker suggesting potential actions to the addresse

action−directive −

reassert

open−option

info−request

No

Yes No

NoYes

Yes No

Yes No

Yes No

Is the speaker potentially committing
to intend to perform a future action?beyond answering a request for information?

Yes No

Is the speaker asking the hearer to perform
an action, as opposed to simply suggesting it?

NoYes

Is the commitment contingent on the
addressee’s agreement?

Yes No

conventional communicative
action?

Is the utterance expressing a

NoYes

Is the speaker
apologising?

Yes No

Is he expressing
gratitude?

Is he signalling emotions?

Is he signalling positive
emotions?

Is it summonning the addressee to
start the interaction?

Yes
Yes No

Yes No

Yes No

Yes No

Is it used as dialogue closing?

No

Yes No

 no move

 offer commit

 apologise

 no move
 gratitude

 satisfaction frustration

 no move

 conventional−opening

onventional−closing

Figure 4.4: Forward-looking function: decision tree

194 Chapter 4. Dialogue Moves and Hints

Is the utterance directly addressing previous utterance(s) by another speaker?

Is the speaker signalling any lack of understanding?

Is the speaker explicitly signalling understanding?

Does the speaker repeat or paraphrase what was just said?

Does the speaker finish or add to the clause that
a speaker is in the middle of constructing?

Does the speaker indicate that the previous speaker
has not said what he actually intended?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No
Yes No

Yes No

Is he addressing a statement?

Is he addressing a SNU?

Is he addressing another move?

Yes No

Yes No

Yes No

Yes No

Yes No

NoYes

Is the speaker addressing a question?

Does the utterance (positively
or negatively) resolve it?

Yes

Yes No

request or claim?
Is the speaker agreeing to all the proposal,

Yes No

No

Yes No

Is the speaker disagreeing with all of the

NoYes

Does the speaker explicitly state
that he cannot give a definite answer?

Is the speaker signalling that they understood none of the previous utterance(s)?

NoYes

Is the speaker addressing an action_directive?

Is the speaker merely signalling either understanding or non−understanding?

 address−question

 completion acknowledge

 answer

 accept

 reject

 no move

 no move

 maybe

 no move

 no move

Is the speaker explicitly agreeing to part of the proposal, request, or claim?

proposal, request or, claim?

 signal−non−understanding

 request−clarification

 repeat−rephrase

 accept−part

− reject−part

 address−action−directive

 address−statement

 address−SNU

 address−other

Is the speaker disagreeing with part of the proposal, request, or claim?

Is the speaker addressing a previous proposal, request, question, or claim/statement?

correct−misspeaking

Figure 4.5: Backward-looking function: decision tree

195

Chapter 5

Hinting Session Status

5.1 Introduction

In order to provide adaptive feedback, we need to have a model of the progress of
the student in the hinting session. In other words, we need to take into account
various aspects of the student’s performance, interpret them, and mould the
feedback in accordance. We define the hinting session as a session where one
proof task is being dealt with, from the moment the tutor sets the task, until it
is completed.

The student modelling necessary in a tutoring system can then be divided
into two types:

1. The model commonly referred to as the user model . It corresponds to
what VanLehn [VanLehn, 2006] calls the outer loop, that is, the choice of
problem to be assigned as a task for the student. Therefore, it is static
during one hinting session. It informs such choices as the kind and level
of the proof task, the level of abstraction allowed, the domain knowledge
that the student should already possess, etc1.

2. A model of the student while performing one task, which VanLehn refers
to as the inner loop. It influences the choice of feedback to be provided
for each problem step. This model is dynamically updated within one
hinting session. It represents knowledge on the student’s performance for
the session and is not relevant to other sessions.

Since the aim of this thesis is to automate the intra-session feedback, this chapter
concerns itself with the second type of student model. In Menon this is called
Hinting Session Status .

1These choices are part of our global tutorial goal (See Chapter 2.)

196 Chapter 5. Hinting Session Status

5.2 Motivation of HSS

The Hinting Session Status (HSS) is a collection of parameters relevant to tu-
toring decisions during one hinting session. The set of values of the parameters
at every point defines a tutoring situation.

The HSS can be thought of as the pedagogical representation of the proof
task. It is based on the proof representation used in the task manager of the
dialogue manager (cf. Chapter 1). It captures information that is of pedagogical
value, because of the inferences that can be based on it. In a nutshell, this is
information about the development of the proof and tutoring task, which allows
making assumptions about the student’s level of understanding, motivation and
cognitive load. Therefore, feedback can be based on it.

The parameters of the HSS derive from our tutorial goals and the teaching
model that we defined to achieve those goals (cf. Chapter 2). Consequently, we
represent those aspects of the student’s performance that help us recognise a
certain behaviour. This is the behaviour that according to our teaching model
requires treatment. Treatment takes the form of feedback, and aims at remedi-
ating problems, encouraging the existing desired behaviour, or promoting new
desired behaviour, all towards the goal of promoting good proving and learning
practice.

The organisation of the HSS reflects our tutorial goals and comprises the
following classes with their subclasses, which we analyse in the next section:

1. External Tutoring Management

2. Tutoring History

3. Tutorial Goal Status

(a) Instructional Points

(b) Pragmatic Information

(c) Proof Status

4. Motivation and Cognitive Load

(a) Global Motivation and Cognitive Load

(b) Local Motivation and Cognitive Load

The Socratic procedure, examined in Chapter 6, takes the HSS as input and
is then responsible for interpreting the hinting situation and deciding on the
appropriate feedback.

5.3 Hinting Session Status Fields

The HSS fields (see Table 5.1 for quick reference) represent the parameters
that influence the pedagogical behaviour of the tutorial manager. Some of the
parameters comprise several categories with subgategories. They are used to

5.3. Hinting Session Status Fields 197

HSS fields
Class Subclass (if applicable) Fields

ETM – task, strategy, undo

TH – previous hint, substrategy, previous
substrategy, tutor task dm

TGS – student-task dm

– previous student task dm

– domain-contribution

Instructional points relevant concept used, subordinate
concept used, domain relation used,
rule of inference used, technique
used, starting point used, premise
used, conclusion used, directness
used, direction used

Pragmatic points different theory, same domain infor-
mation, ordered list, unordered list

Proof status proof step complete, proof complete

MCL GMCL

proof-step-C, unknown-C, miscon-
ception-C, missing-basic-knowledge-
C, request-asssistance-C, resign-C,
wrong-C, step-size-C, irrelevant-C,
ill-formed-C, wrong-linguistic-term-
C, time-out-C, domain-contribution-
C

LMCL local-wrong-C, local-correct-C, local-
domain-contribution-C, local-hint-C

Table 5.1: Table of the HSS fields without their instances.

198 Chapter 5. Hinting Session Status

model the student’s performance in a tutoring session. Not all dialogue moves
at the tutoring-task level have a bearing on the task at hand (i.e. the proof)
the way hints do. They might, however, require general pedagogical feedback,
which can be realised via another dialogue move. This influences learning in
general, but is not specific to proving. For example, a request by the student
to evaluate her performance, which we call request-evaluation2, does not affect
the hint choice, but it is taken into account by the Socratic strategy for the
kind of feedback to produce. It is, therefore, represented in HSS. Prompting
the student is another example of such pedagogical feedback. Prompts often
accompany a hint. The student is asked to take the hint into account and try
to make use of it in order to proceed with the task.

We are now going to inspect the fields of the HSS. For every one of the fields
we include:

1. Explanations of what the field represents.

2. Specifications for the field.

3. Motivation for the inclusion of the field in our HSS.

Our analysis follows the subdivision of the HSS in classes. For examples on the
use of the following fields, see Chapter 6, Section 6.6.

5.3.1 External Tutoring Management: ETM

This class represents any decisions on tutoring made outside Menon. The pos-
sibility to take such decisions into account adds to the flexibility of Menon as a
tutorial manager. The ETM consists of three fields:

Task ← a string representing the task of the session, which is decided by the
inter-session user model, where the decision about the right level of task to be
set is made. For example, to prove that if A ⊆ K(B), then B ⊆ K(A).

Strategy ← a symbol representing the kind of teaching strategy chosen for
the session. Currently, only the Socratic is implemented.

It sets the strategy to be used, which may be chosen by the learner or the
teacher responsible for the learner.

Undo ← a symbol representing undoing the previous turn only, the previous
step, or the previous proof.

It captures a decision by the student to take back part of the previous input.
It pops the necessary values from various fields in LMCL, Tutoring History, and
Tutorial Goal Status, but not the GMCL that represents the overall performance
of the student within one hinting session.

2For definitions of dialogue moves see Chapter 4

5.3. Hinting Session Status Fields 199

5.3.2 Tutoring History: TH

Tutoring history represents all tutoring decisions up to the current Proof Step.
It consists of four fields:

Previous hint ← a list of symbols of hint categories already produced in the
session. The hint categories it can hold are the ones defined in Chapter 4, such as
elicit-relevant-concept, elicit-subordinate-concept, give-away-infe-
rence-rule, give-away-antithesis, elicit-domain-technique, etc.

It captures domain knowledge that students should know, as it has been
previously given to them via a hint, as well as the kind of feedback already
provided. It is different from the domain knowledge checks, as the student
might still not be able to use the content of the hints given. Hints giving
domain knowledge away increase the possibility of getting a correct answer,
but do not affect domain knowledge, or mastery of it [Gertner et al., 1998].
In order to counter-balance this effect, we check for use of domain knowledge
independently, and we penalise the hinting session status for the number and
kind of hints given (how much domain knowledge has been given away).

Substrategy ← a symbol, the kind of current substrategy. It takes as values
the substrategies defined in Chapter 6, that is:

1. performable step

2. diagnostics

3. recapitulation

4. misconception

5. spell-out-task

6. request-assistance

7. aligning

8. the meta-reasoning tasks

This field is used for providing information to the dialogue manager that is
relevant to the discourse and dialogue structure (cf. Chapter 6).

Previous substrategy ← a list of the kinds of substrategies used in the ses-
sion. The substrategies are the same as in substrategy.

It helps to keep track of what has already been tried out, in order to chose
the next strategy (cf. Chapter 6).

200 Chapter 5. Hinting Session Status

Tutor task dialogue-move ← a list of the dialogue moves performed by the
tutor in each turn of the session.

It allows monitoring the previous pedagogical feedback in order to decide on
the next feedback. The elements of the list can be any of the tutor-task dialogue-
moves defined in Chapter 4, namely check-origin-problem, encourage, align,
signal-dom-con-eval, prompt, hint, as well as all conventional-task management
and conventional-dialogue management dialogue moves.

5.3.3 Tutorial Goal Status: TGS

Here we capture information on how well the student follows our tutorial goals.
We then fine-tune our feedback based on it. The TGS consists of three sub-
classes, i.e., instructional points, pragmatic information, proof status, and of
the following three fields:

Student task dialogue-move ← a super-class of the dialogue-moves that the
student performs at the tutoring-task level3. The student task-dialogue-moves
held in these fields are mutually exclusive.

Let us investigate the different possible instances of the super-class. An
analysis of these instances with regard to the dialogue model and the obligations
deriving from the dialogue model can be found in Chapter 4.

1. Resign ← a symbol representing that a resign has occurred.

Resign is an utterance with which students indicate that they give up the
proof-task, as opposed to asking for specific help in an attempt to solve
the task (cf. Chapter 4). Therefore, we use it as an indicator of low moti-
vation, demonstrated as lack of effort, that needs to be treated differently
from wrong answers [de Vicente and Pain, 1998; du Boulay and Luckin,
2001]. Moreover, it has been observed that humans behave differently with
computers than with other humans [Shechtman and Horowitz, 2003]. For
our purposes, this might translate into a reluctance to cooperate, in which
case resign can be an indication of such a reluctance.

2. Time-out ← a symbol representing that a time-out has occurred.

It shows that students have some difficulty. At best, they are taking too
long to answer. Otherwise, they do not know what to do at all. It is
better than resign, as students might be trying for the answer but taking
too long and be lost [Lim and Moore, 2002].

3. Request-assistance← a symbol representing that a request-assistance has
occurred.

Request-assistance concerns only specific information requests, e.g., about
concepts. We represent Request-assistance in the HSS to be able to provide

3Domain-contribution does not belong here, as it is not an object of tutoring task, but of
proof task.

5.3. Hinting Session Status Fields 201

the assistance requested, depending on other considerations (cf. Chap-
ter 6). Request-assistance is represented through the assistance requested,
as follows.

(a) Assistance-requested ← a symbol representing the kind of assistance
that the student requests. It is a super-class of the possible kinds of
assistance requested, that is some piece of domain knowledge. Its in-
stances are, (i) some of the domain knowledge represented in passive
hint categories, e.g., which is the Relevant Concept, which is the Spe-

cific Method, why is this the Proof Step, a definition that constitutes
Basic Knowledge for the step etc., (ii) that the domain information
requested belongs to a different theory than the one in the current
proof task, or (iii) that the domain information requested is casted
as irrelevant to the session and the task.

(b) Previous assistance-requested ← a symbol, the kind of assistance re-
quested that has already been dealt with in the session. The values
are the same as in assistance-requested.

It makes it possible to reason about how to handle a request for
assistance if it is of the same type as a previous request for assistance.

4. Request-evaluation← a symbol representing that a request-evaluation has
occurred.

Request-evaluation is an utterance with which the student inquires ex-
plicitly about his progress. For example “How am I doing?” requests an
evaluation of the overall performance, and “Was that right?” requests an
evaluation of the current student answer, be that a whole proof step, or
part of it (cf. Chapter 4). In both cases, the fact that the student is
requesting an evaluation of her performance can be a sign of demotivation
and need for reassurance.

Previous student task dialogue-move ← a super-class of the dialogue-
moves that the student performed in the previous turn at the tutoring-task
level. The instances of the class and motivation are as in student task-dialogue-

move.

Domain-contribution ← a symbol representing that a domain-contribution
has occurred. Because it pertains to the proof task, it demands the corre-
sponding manipulation of it by the tutorial manager. It is always assigned a
domain-contribution category.

Domain-contribution category ← a super-category of the categories correct,

wrong etc. that we will now define and that represent the category of the
domain-contribution.

This is the most local evaluation of the student’s input, which is also the most
important for the decision on feedback [Freedman et al., 1998]. Although it is
not within the scope of this thesis to formally define a categorisation scheme for

202 Chapter 5. Hinting Session Status

the domain-contribution category, we present here a partial formalisation, which
was developed in the context of the Dialog project [Tsovaltzi and Fiedler,
2003a]. The scheme was put to test in the Wizard-of-Oz experiment, as the
human wizard used it to annotate the student input with a domain-contribution

category [Wolska et al., 2004; Benzmüller et al., 2003b].
The student’s answer is evaluated by use of an expected answer.

Expected answer: The expected answer is the proof step that is expected next
according to the formal proof that the system has chosen for the problem
at hand.

We want to make use of the students’ own reasoning in helping them with the
task and avoid super-imposing a particular solution. Omega models that by
trying to match the student’s answer to a proof step in one of the valid proof
developments derived from previous student attempt (cf. Section 3.3). This we
call proof-step matching. At the cognitive level, proof-step matching is a means
of promoting implicit learning, motivation, and schema acquisition in general
(cf. Chapter 2 and [Tsovaltzi and Fiedler, 2003a]).

We also define the expected sub-answer.

Expected sub-answer: The expected sub-answer is a part of the expected
answer that is in the focus of the tutoring, i.e., the previous active hint is
requesting the domain information involved in it.

Parts of Answers and Over-Answering We now look at the relevant units
for the categorisation of the student answer by the domain reasoners.

Part: A part is a premise, the conclusion or the inference rule of a proof step.
The two former are mathematical formulae and must be explicitly men-
tioned for the proof step to be complete. The Rule of Inference can either
be referred to by name, or it can be represented as a formula itself. This
is up to the student.

Subpart: A subpart is any of the instructional points defined in Chapter 3
except the ones that are defined as parts.

Over-answering (accurate or inaccurate) may be considered as several dis-
tinct answers. That is, if the student’s answer has more proof steps than one,
the steps are considered as multiple answers. The categorisation would normally
be applied to them separately. Nevertheless, there are cases where the order of
the presentation of the multiple answers is crucial. For example, a correct an-
swer that is inferred from a previous wrong answer cannot be counted, since it
would have to follow from a wrong premise.

The predicates complete and accurate are also necessary for the categorisa-
tion of the student answer in the Wizard-of-Oz experiment:

Complete: An answer is complete if and only if all parts of the expected answer
are mentioned.

5.3. Hinting Session Status Fields 203

Accurate: A part or a subpart of an answer is accurate if and only if the
propositional content of the part or subpart is the expected one.

Completeness We distinguish between getting the expected domain object
right and instantiating it correctly. The latter does not follow from the former.
Completeness is a two-value relation. It refers to the presence of the object but
not to its correct instantiation. In other words, a place holder for an expected
object in the answer is enough for attributing completeness, no matter if the
object itself is the expected one. That issue is dealt with by accuracy.

Accuracy Accuracy refers to the appropriateness of a part or subpart in the
student answer with respect to the expected one. A part or subpart is accurate
if and only if it is the exact expected one. Contrary to completeness, accuracy
is fully dependent on the domain ontology.

Based on this analysis, a complete and accurate proof step is always a cor-
rect domain-contribution. However, it is possible that the domain-contribution
is considered correct, although the step is not completed. Namely when the
student input is complete and accurate with respect to the content of an im-
mediately preceding hint that elicits some specific part or subpart of the proof
step. For example, when the preceding hint elicits the Rule of Inference and the
student’s domain-contribution provides the accurate Rule of Inference for the
step. This is a correct domain-contribution despite the fact that in terms of the
proof step completion it would be considered incomplete-accurate. Therefore,
the same input when no hint precedes should be categorised as a partial-answer

domain-contribution (For examples, cf. Chapter 6, Section 6.6).
We made the following enhancements to the original categorisation scheme,

based on the data from the Wizard-of-Oz experiment.
First, for the purposes of the original procedure used in the Wizard-of-Oz

experiments, we counted the categories complete-partially-accurate, incomplete-

partially-accurate, and complete-inaccurate as wrong. However, after the experi-
ment, we represent complete-inaccurate explicitly.

Second, the analysis of our experimental data also showed that it is more
useful to define in more detail which parts are missing or which are incor-
rect. Therefore, we collapse incomplete-accurate, incomplete-partially-accurate to
partial-answer and instead we enriched our instructional points and use them
as meaningful parts that are pedagogically interesting and are represented in
the HSS (cf. Chapter 3). These are now the subparts of the expected answer
that we consider in the student’s contribution for categorising it. The category
complete-partially-accurate was kept only for informing the student of the quality
of the answer, but it is otherwise also treated as a partial-answer.

Third, the old scheme used accuracy as a two-value relation in the same way
as completeness. The data revealed additional interesting values of accuracy,
apart from accurate and inaccurate. Therefore, we now also consider intermedi-
ate categories useful. All the categories below, apart from correct, partial-answer,
complete-inaccurate, and wrong, are alternative values of accuracy.

204 Chapter 5. Hinting Session Status

The domain information classes and the instructional points used by them
also follow the accuracy vs. completeness dichotomy. The questions that the
domain information classes consider for every instructional point are:

1. Is the instructional point present?

2. Is the present instructional point accurate?

3. If the instructional point is not accurate, does it bear a domain relation
to the expected subpart?

The difference between the instructional points that we define and other possible
subparts of an expected answer is that instructional points are meaningful parts
used for schema acquisition. Therefore, hinting concentrates on them.

We now explore the instances of the domain-contribution category and how
they are important to the HSS.

1. Correct ← a domain-contribution that is both complete and accurate.

2. Partial-answer ← this may be one of the following:

(a) Incomplete-accurate← a domain-contribution that is incomplete, but
all parts or subparts that are present in it are accurate.

(b) Incomplete-partially-accurate← a domain-contribution that is incom-
plete and some of the parts or subparts in it are inaccurate.

3. Complete-partially-accurate← a domain-contribution that is complete, but
some parts in it are inaccurate.

4. Complete-inaccurate ← a domain-contribution that is complete, but all
parts in it are inaccurate.

5. Wrong ← a domain-contribution that is both incomplete and inaccurate.

From this point on, all categories deal with values of accuracy other than
inaccurate and accurate.

6. Unknown ← a domain-contribution that cannot be categorised otherwise,
although the linguistic content is parsed.

7. Misconception ← a domain-contribution that reveals a problem with a
part or subpart that affects not only the current proof step and proof,
but potentially the understanding of the whole domain. Such a domain-
contribution may at the same time have different degrees of correctness
and completeness, but the fact that it is a misconception overrides for the
purposes of tutoring any other categories that might apply to it.

The misconceptions that we currently model comprise the following:

(a) Any instance when students do not understand that a near-miss is
a wrong use of the domain relation involved, after receiving a hint
on it. The misconception is the wrong understanding of the domain
relation (cf. Chapter 3 and Appendix A).

5.3. Hinting Session Status Fields 205

(b) A domain-contribution that is classified as a hypotaxis, which is not
corrected after the relevant hint.

(c) A domain-contribution that is classified as a primitive, which is not
corrected after the relevant hint.

(d) step-size if students do not realise that they are missing intermediate
steps, and they do not just consider them trivial, after receiving a
hint about it.

Once the NL analysis has recognised the domain-contribution and the fact
that the student has not answered correctly the hint produced as reaction
to the domain-contribution each time, Menon can identify these types of
misconception. The misconception types are needed as parameters for the
NL generator to provide the right explanation.

8. Missing basic knowledge ← a domain-contribution that shows that the
student does not know some defined constants, i.e., declarative knowledge
like definitions of concepts, definition of Rules of Inference etc.4. The
missing basic knowledge relates to a part or subpart of the expected answer.

These definitions are included in the lesson material that the student reads
as preparation for the interactive phase of tutoring investigated in Chap-
ter 6. The basic knowledge is always relevant to the Rule of Inference to
be applied, as it is either the Rule of Inference itself or it is related to the
Relevant or the Subordinate Concept whose role is to assist the student in
finding the right Rule of Inference.

9. Step-size ← a domain-contribution that does not follow from the previous
steps without proving it. In other words, intermediate steps are required.

Step-size is handled by the proof manager, as part of the issue of granu-
larity [Schiller et al., 2006] and is also relevant to over-answering.

We aim at tutoring correct deduction, so students must learn to justify
what they do [Wu, 2001].

10. Irrelevant ← a domain-contribution that is correct (the theorem prover
will indeed prove it), but does not contribute anything to the solution of
the task at hand.

For motivation and accuracy reasons, we inform the student that the math-
ematical statement is correct, but it is not useful for this proof.

Missing basic knowledge and misconceptions are different from irrelevant

domain-contributions (normally questions) that are ignored completely,
because they would just sidetrack too much from the task. Such knowledge
involves what is in principle part of some other theory, or not directly
associated with what is being taught. In the domain of set theory proofs,
everything that belongs to logic falls under this category.

4Missing basic knowledge is different from primitive concept, which is a misconception

category.

206 Chapter 5. Hinting Session Status

11. Ill formed ← a domain-contribution with a syntactic mistake in a part or
subpart of the expected answer.

It is basically related to the Substitution of some inference rule. For in-
stance, the student misses a bracket, or wants to say B and says b, that
is the student wants to refer to a set and instead refers to the elements
of the set as in (x ∈ b), where B denotes a set whereas b denotes an
element [Horacek and Wolska, 2006a].

We represent syntactic errors since accuracy in mathematics is impor-
tant [Wu, 2001].

12. Wrong linguistic-term ← a domain-contribution with terminology errors
relating to a part or subpart of the expected answer.

For example, the student wants to say “element of” and says “contained
in”, or “the union of sets” and says “both sets together” [Horacek and
Wolska, 2006b]. The use of correct terminology is one of our tutorial goals
and another aspect of accuracy in mathematics [Wu, 1996].

13. Near-miss ← a partial answer domain-contribution that differs from the
expected answer in one part or subpart. This part or subpart is not the
expected one, but bears one of the following Domain Relations to the ex-
pected one: antithesis, duality, conversion, specialisation, generalisation.
This is a subset of the domain relations defined in our domain ontology.
Otherwise, a near-miss is a complete partially-accurate proof step, whose
inaccurate part or subpart is a wrong linguistic-term or an ill formed one.

In general, a near-miss is an answer that differs from the expected answer
only by one concept5. This is different from a domain-contribution where
the only correct element is the concept that bears a Domain Relation to
the expected concept. That would not be a near-miss, but a wrong an-
swer. The HSS is affected differently and so is the choice of the procedure
behaviour, namely to carry on hinting or not.

The motivation behind this category is that it captures the students’ ex-
isting mental structures and thus may help the satisfaction and the sense
of achievement of the students.

Previous domain-contribution ← the previous domain-contribution per-
formed by the student.

It is analogous to the current domain-contribution and hence is also charac-
terised by one of the domain-contribution categories.

5.3.3.1 Instructional Points

We represent instructional points, which are required for building both the
proof and also mental schemata for constructing the proof. We now list our

5This is the definition given by our human tutor’s in the Wizard-of-Oz experiments, who
made use of this distinction.

5.3. Hinting Session Status Fields 207

instructional points.

Relevant Concept used ← a Boolean representing whether the student
knows/has used the Relevant Concept.

Subordinate Concept used ← a Boolean representing whether the student
knows/ has used the Subordinate Concept.

Domain Relation used ← a symbol, the kind of Domain Relation used, if
any at all. It captures a Boolean representing whether the student knows or has
used a concept that stands in a Domain Relation with the required concept e.g.,
antithesis, duality etc. It is relevant when the expected subpart is this concept
only.

Rule of Inference used ← a Boolean representing whether the student
knows/has used the Rule of Inference.

Inverse rule used ← a Boolean representing whether the student has used
the inverse of the Rule of Inference required.

It refers to the relation inversion, defined in our domain ontology. It captures
the fact that the student might be on the right track, but made a mistake
regarding the direction of the rule application6.

Technique used ← a Boolean representing whether the student knows/has
used the needed technique.

Starting Point used ← a Boolean representing whether the student knows
where the reasoning should start from.

If students know the premise and the conclusion, or if they have stated that
they have to start from finding out what the premise and the conclusion are,
then the value of the field is true.

Premise used ← a Boolean representing whether the student knows/has used
the premise of the current step.

Conclusion used ← a Boolean representing whether the student knows/has
used the conclusion of the current step.

Directness used ← a Boolean representing whether the student knows whether
the proof is direct or an indirect.

Direction used ← a Boolean representing whether the student knows which
proof direction to use (forward vs. backward steps).

6It was observed and used as a hint in the Wizard-of-Oz experiments.

208 Chapter 5. Hinting Session Status

5.3.3.2 Pragmatic Information

These fields concern information about the Proof Step that is different from
information relevant to the domain-contribution category. Therefore, a domain-
contribution may be annotated for the category at the conceptual level and at
the same time for one of the parameters listed here for the pragmatic charac-
teristics available. Pragmatic information may be, for example, the number of
subparts that are necessary for an answer to be complete, or that there is a pre-
vious occurance of some domain information in the course of the same tutoring
session, or that there is some mistake in terminology, etc.

Different theory ← a Boolean representing whether some information be-
longs to a different theory than the one in current the hinting session.

At the moment, it takes only one value: next step. It allows the tutor to
stay within the limit of the theory intended for tutoring.

Same Domain Information ← a symbol, the kind of domain information
that is potentially the same between two different proof steps.

The values are the same as those in assistance requested (apart from irrele-
vant assistance requested), representing all possible instructional points of the
performable step and the meta-reasoning. An example is that the Rule of Infer-

ence for two different steps in the same proof is the same.
It allows references to previous explanations of the same piece of information

for more structure in tutoring.

Ordered list available ← a Boolean representing whether the expected an-
swer is an ordered list as presented in the lesson material. It means that there is
a list of points that need to be made in the expected answer in a specific order
(e.g., the cases in a case split), and the student’s domain-contribution is missing
out at least one point.

Unordered list available ← a Boolean representing whether the student is
missing some or all elements of a list that is presented in the lesson material
as an unordered list. The domain-contribution can be wrong or partial-answer

(incomplete-accurate), and the points in the expected answer do not have to
occur in any particular order.

5.3.3.3 Proof Status: PS

The proof status provides basic information that influences the updating of the
MCL, as well as the continuation of the tutoring task.

Proof Step completed ← a Boolean representing whether the Proof Step is
completed.

Proof completed ← a Boolean representing whether the proof is completed.

5.3. Hinting Session Status Fields 209

5.3.4 Motivation and Cognitive Load: MCL

The MCL is split into global and local. The first represents the performance
of the student throughout a hinting session. The second represents the perfor-
mance during one proof step only.

5.3.4.1 Global Motivation and Cognitive Load: GMCL

The GMCL represents the student performance in the hinting session as a whole.
All counts below contribute to this representation either directly, as they show
the level of the students’ understanding and cognitive load, or more indirectly, as
they constitute situations in which students might be demotivated or frustrated.
The rationale here is simply that low performance often demotivates students.
The GMCL consists of thirteen counts.

The GMCL informs the decision on the substrategy to be used and whether
information should be elicited or given away.

Proof-step-count ← the number of performable steps so far performed by
the student.

It is relevant to understanding and frustration. The number of proof steps
performed is a measure of cognitive load, as it indicates how slow or fast the
student is moving in the task [Sweller and Chandler, 1991].

Unknown-count ← the number of unknown (unclassifiable) domain-contri-
butions.

It is an indication of a low performance.

misconception-count ← the number of misconceptions.
This is not only relevant to the current hinting session, but does also show

that the student has a more general problem, which also affects the current
performance. Therefore, it is included in the GMCL.

Missing-basic-knowledge-count ← the number of missing-basic-knowledge
domain-contributions.

It shows that the student does not possess enough domain knowledge of that
presupposed by the current learning goal for the session.

Request-assistance-count ← the number of request-assistance dialogue mo-
ves.

It shows inability to proceed and possibly low confidence.

Resign-count ← the number of resign dialogue moves.
It shows low confidence, dissatisfaction, and lack of motivation.

210 Chapter 5. Hinting Session Status

Wrong-count ← the number of wrong domain-contributions.
It indicates a problem in understanding, as do the next five fields.

Step-size-count ← the number of step-size domain-contributions.

Irrelevant-count ← the number of irrelevant domain-contributions.

Ill-formed-count ← the number of ill-formed domain-contributions.

Wrong-linguistic-term-count ← the number of wrong-linguistic-term do-
main-contributions.

Time-out-count ← the number of time-outs.

Domain-contribution-count ← the number of domain-contributions.
By representing the domain-contribution-count, we can take into account the

non-wrong (as opposed to only correct) answers so far in the session, which
also shows the extent to which the student is following the hints, or the task
in general. We do that since in our model it is not so much wrong answers
that are decisive as the non-wrong domain-contributions. This means that as
long as the student gets something right, we carry on hinting. The domain-

contribution-count is also used to allow for a slow start, which is common for
Socratic-oriented teaching strategies [Mathews et al., 1989].

We use the GMCL counts in the following way. We add all previous counts
and divide by the domain-contribution-count. We call the derived aggregate
the Global Motivation and Cognitive Load Aggregate (GMCLA). If GMCLA ≤
0.5, then the domain-contributions that show poor performance are lower than
the mean of the domain-contributions. This allows us to make the following
inferences, which guide our Socratic strategy:

1. GMCLA ≤ 0.75: A very good performance.

2. GMCLA ≤ 0.5: A performance above average.

3. GMCLA > 0.5: A performance below average.

4. GMCLA ≥ 0.3: A very poor performance.

These inferences are intuitive, but it is still an open empirical question whether
they are accurate or not.

5.3.4.2 Local Motivation and Cognitive Load: LMCL

The LMCL applies to one proof step only. As with the GMCL, it is used to cap-
ture situations in which a student might be demotivated or frustrated and situ-
ations which may indicate that unnecessary cognitive load is imposed upon the

5.4. External Input vs. Internal Fields 211

student. However, the LMCL fields carry more weight with regard to the feed-
back decisions, exactly because they relate to the very local performance [Freed-
man et al., 1998]. Therefore, these fields are inputted explicitly to the Socratic
procedure. The LMCL consists of four counts:

Local wrong-count ← the number of wrong domain-contributions during a
proof step.

Local correct-count ← the number of correct domain-contributions during
a proof step.

Local domain-contribution-count ← the number of domain-contributions
during a proof step.

Local hint-count ← the number of hints during a proof step.

As with the proof-step-count, the number of hints provided is a measure of
cognitive load, as it shows if the student is fast in following the hints.

For Menon’s complete input representation language, see Appendix B.

5.4 External Input vs. Internal Fields

In this section we look at which of the HSS fields are input to Menon and which
are maintained by Menon. We also provide indications on which modules in
the dialogue manager architecture in Chapter 1 provide the information for the
respective fields.

5.4.1 External Input

Any HSS field that depends on domain reasoning, or linguistic and dialogue
analysis, as well as user decisions represented in the HSS constitutes input to
Menon. In particular, the input is:

1. all fields of the External Tutoring Management (ETM), as they are user
choices to be communicated via the dialogue manager

2. the two Proof Status fields, but only when the completion is done by the
last domain-contribution performed by the student (in that case, both
fields relate to the proof task represented in proof manager, which reasons
about the completion of the step and proof).

3. the recognition of the instructional points in a domain-contribution that
involves domain reasoning (cf. Chapter 3)

212 Chapter 5. Hinting Session Status

4. the student task-dialogue-move and the domain-contribution with its cate-
gory each time, both of which pertain to the analysis of the input (the
domain-contribution category requires additional domain reasoning, which
is obvious when looking at the formalisations presented in Section 5.3.3).

5.4.2 Fields Maintained Inside Menon

Fields that are internally maintained consist of everything in the HSS that
is related to previous tutor output, pedagogical interpretations of the student
input, or previous values of fields that are kept for pedagogical interpretations.
These include:

1. all fields of the Tutoring History

2. instructional points, when those are given away by a hint, as opposed to
them being included in the student’s input

3. all of the counts of MCL, as well as the dynamic value of the GMCLA

4. the Proof Status values, Proof Step completed and proof completed if they
are completed by the hint produced by the tutor

5. previous assistance-requested, previous student task-dialogue-move, and pre-

vious domain-contribution

These fields are updated internally.
Finally, all HSS fields are reset as required by the teaching strategy (cf.

Chapter 6).

5.5 Types of Mistakes

To provide an overview of the kinds of mistakes that students might make,
the HSS represents the following mistakes, detected during the lignuistic and
domain analysis of the student input:

1. Mistakes that capture the result of the comparison of the expected an-
swer to the student domain-contribution, or the pedagogical information
available for the expected answer.

2. Mistakes that manifest a more general problem with the domain knowl-
edge.

The first type of mistakes are represented in Menon by the instructional
points and their analysis, as well as by the different subcategories of near-miss

(see above), the pedagogical information that we look for in the answer, and the
tracking of other relations defined in the domain ontology (currently the inverse
rule). Since our instructional points also cover the meta-reasoning for the step,
we also cover mistakes relevant to the meta-reasoning.

5.6. Conclusion 213

We represent the more general domain mistakes mainly by the categories
misconception and missing basic knowledge. Under this type, we also consider
mistakes that are not part of the domain theory under investigation, in our
case the mathematical theory being taught. We do not treat such mistakes in
the same way as we treat ones in the current mathematical theory, but we do
acknowledge them (cf. Chapter 6).

In general, different kinds of mistakes are treated via the choice of hint
dimensions and what they capture (cf. Chapter 4), as there is naturally a
correspondence between the hints provided and the kind of mistakes in the
student input.

5.6 Conclusion

The task-level dialogue-moves, which are used by the HSS, require formalisation
at the level of the linguistic input. Although a first attempt has been made
towards this end (cf. Chapter 4 and [Tsovaltzi and Karagjosova, 2004]) this
is the task of the natural language analysis, which is not within the scope of
this thesis. This also holds for other HSS fields where linguistic information
is relevant, e.g., wrong linguistic-term, ill formed etc. Linguistic research in this
direction might disclose aspects of the student input that are not covered by the
existing categories available to the tutorial manager. This is always a possibility,
as both the student input recognition and the problem of providing appropriate
feedback are AI complete problems.

214 Chapter 5. Hinting Session Status

215

Chapter 6

Socratic Teaching-Strategy

6.1 Introduction

This chapter analyses the teaching strategy. It provides an overview of the
architecture of Menon, explains the Socratic teaching strategy that we implement
and how this is realised in Menon. Moreover, the chapter details the outcome
of the Socratic teaching strategy, based on the relevant hinting-session status,
and motivates the choices of the strategy from a pedagogical perspective. We
include an explanation of the output for specific domain-contribution categories,
as well as a description for subtasks, subdialogues, and dialogue moves produced
by the tutor.

6.2 Overview of Menon

Before we look at Menon’s architecture, let us explain its general design. Strate-
gies are generic teaching methods that are based on a pedagogical teaching
model implementing it. Strategies consist of generic pedagogical feedback and
substrategies. Substrategies are the different methods, which assist in realising
the strategy and are applied for different hinting situations. In other words,
they define the top level strategy. Substrategies can be called recursively and
within one another. They are divided into subtasks and subdialogues based on
their primary function (cf. Section 6.5). Class subtasks correspond to the group
of hints relating to one instructional point. They pick the appropriate hint from
the group of hints that address a main instructional point (cf. Chapter 3). Hints
and other tutor-task dialogue-moves are the basic units of the teaching strategy
concerned with cognitive feedback.

We now describe the architecture of Menon (right-hand side of Figure 6.1) and
how the task dialogue-moves and the hint definitions (cf. Chapter 4), as well as
the HSS (cf. Chapter 5) are used. In order to set Menon in context, we also give
at places brief descriptions of a potential tutorial-dialogue manager, in which
Menon constitutes the tutorial manager module. The tutorial-dialogue manager

216 Chapter 6. Socratic Teaching-Strategy

HSS
Hints

Task DMs/

Manager
Dialogue

Reasoner
Domain

Tutoring−task
Input

Analyser

Strategy Manager

Tutoring Control

Backtracking

Initialiser

Strategies

Didactic

Diagnostics

Performable−step

Meta−reasoning

Socratic

Generic Tutoring

Buffer
Output

...

Menon

Recogniser

Input Analyser

Manager

GUI

NL Generator

Manager
Proof

Dialogue Move

Domain Info

Substrategies

Figure 6.1: Menon architecture

we look at (left-hand side of Figure 6.1) is that of the Dialog project [Buckley
and Benzmüller, 2005; 2006]. In the context of such a tutorial-dialogue man-
ager, Menon is responsible for the production of all tutoring feedback. This
involves choosing the appropriate type of feedback, making hint-dimension and
substrategy choices, and providing explicit motivation.

Menon was implemented in Common Lisp on a Linux workstation.
We will now examine the individual submodules of Menon, illustrated in 6.1.

Cylinders represent data bases and boxes procedures. Arrows represent the
flow of information to the submodule where the arrow points to. The input to
Menon is the analysed student input (written in the HSS). The output consists
of dialogue moves and their potential parameters and is organised into general
pedagogical feedback, conventional management and main feedback to mirror
the analysis presented in Chapter 4. Figure 6.2 shows an instance of the output
Lisp class.

6.3 Tutoring Control

Tutoring control (cf. Figure 6.1) takes care of control issues and any tu-
toring behaviour that is independent of strategy choice. More specifically, first

6.3. Tutoring Control 217

(#< IO+OUTPUT-CLASS
:genFeedback (#<DM+TUTORTASKDMS-CLASS :kind ENCOURAGE :dm-
par NIL>

#<DM+DOMCONEVAL-CLASS :kind SIGNAL-PA :dmpar
NIL>)

:conMan (#<DM+CONTASKMANDMS-CLASS :kind INITIATESUBTASK
:dmpar #<SS+METAREAS-CLASS :mode METAREAS :type PROOFSTEPM>>)

:mainFeedback (#<DM+CONCEPTUAL-HINTS :category PREMCONC
:elicitation ACTIVE :dom-know PROOFSTEP :infRole METAREAS :dmpar
NIL>)
>)
>)

Figure 6.2: An instance of Menon’s output class

it initialises the module. Second, it initiates the Tutoring-Task Input Analyser,
which reads the input to Menon. This analysed input consists of information,
which pertains to the analysis part of a dialogue system, and is dependent on
either natural language, dialogue, or proof-task analysis. The input updates the
HSS fields that hold external information, that is the Tutorial Goal Status and
the External Tutoring Management (cf. Chapter 5). This updating of the HSS

is done recursively after every output by Menon and input to it. Task DMs and
Hints is also loaded.

Third, generic tutoring is called, which takes care of issues that are com-
monplace among different teaching strategies and sets the strategy of choice
for the tutoring session. It initiates the dialogue and then the task upon
the student’s response1. It accepts any correct answers and calls the subtask
recapitulation if the answer completes the proof, to recapitulate the steps of
the proof. If further or alternative feedback is necessary, it calls strategies (cf.
Section 6.4). Finally, if the student takes back a turn, a step or decides to start
with the new proof, the function backtracking is called. This down-dates the
HSS, based on what the student has taken back.

Every output produced by the different modules in Menon is combined in
the Output Buffer and sent to the Dialogue Manager. Any mathematical in-
stantiations for the particular proof step and the domain knowledge included
in the hints takes place in the domain reasoners Proof Manager and Math KB.
Any non-tutoring-related output can be generated for the student while Menon

processes the new input and before the tutoring feedback is produced. All out-

1Menon assumes an external student model, which is responsible for choosing the right level
of task for each session.

218 Chapter 6. Socratic Teaching-Strategy

put information concerning tutoring, natural language, dialogue and discourse
is finally sent to the NL Generator. There, it is collected for the sentence level
realisation of the feedback to the student while Menon is expecting the next
input.

6.4 Strategies: The Socratic Teaching Strategy

Strategies may include any desired teaching strategy and the functionality
of choosing among strategies is provided. We implement our Socratic teaching
strategy in Socratic. It is the implementation of our pedagogical model (cf.
Chapter 2).

Hinting starts if the student does anything apart from performing the next
correct performable step. However, once the hinting has started, other answers
count as correct, as well. That is, whatever matches the content of the passive
hints counts as a correct answer to the corresponding active hint (cf. Chapter 4).
The more non-correct answers the student gives, the more likely it is that the
tutor2 will switch into a more guiding substrategy in order to prevent both giving
the answer away and frustration on the part of the student, always depending
on the general hinting situation as well. We call this spell-out-task (cf.
Section 6.5).

The tutoring feedback is divided into (i) production of appropriate hints
based on the formalisation in Chapter 4, (ii) pedagogically-motivated generic
output. The theory of discourse obligations [Matheson et al., 2000], adapted
for the genre of tutorial dialogues [Tsovaltzi and Matheson, 2002], along with
motivation-theory considerations inform the choice of pedagogical feedback other
than hints (cf. Chapter 4).

Hint categories are selected through the choice of the right cognitive function
in every dimension (see Chapter 4), represented either in the choice of subtask
for pragmatic vs. conceptual and performable step vs. meta-reasoning, or in the
choice of class subtasks and instructional point (Domain Relation vs. Domain

Object vs. Rule of Inference vs. Substitution vs. Proof Step). The active vs.
passive decision is made inside the subtasks.

Inside Socratic, socratic generic (cf. Appendix E) is a control function,
which does the following:

1. it produces any applicable generic Socratic-feedback, e.g., motivational
feedback

2. it calls the appropriate substrategy, e.g., performable-step

3. it makes the choice between pragmatic vs. conceptual in the Problem-
Referential Perspective dimension

Generic Socratic-feedback comprises, (i) encouraging the student, (ii) sig-
nalling the evaluation of the student’s domain-contribution, (iii) as well as sig-
nalling the closing and initiation of substrategies.

2“Tutor” will be used from now on to mean the tutorial manager.

6.4. Strategies: The Socratic Teaching Strategy 219

The decision on calling a substrategy involves if a subtask or a subdia-
logue is appropriate for the current hinting situation (cf. Section 6.4.1) and
which subdialogue or subtask is appropriate. The subtasks that we imple-
ment are: pragmatic, performable-step, meta-reasoning, spell-out-task,
request-assistance, explain-misconception, aligning, near-miss and re-

capitulation. Performable-step and meta-reasoning are subdivided in
class subtasks . We also implement the diagnostics subdialogue, which is a
means of pinpointing the problem, in order to pick a subtask for dealing with it
(cf. Section 6.5).

The choice between pragmatic vs. conceptual is made by calling pragmatic,
or conceptual. Pragmatic, chooses the appropriate pragmatic hint, when the
analysis which is passed on to Menon detects that the student input bears inter-
esting non-content characteristics (cf. Section 6.5.2). Conceptual is a control
strategy for choosing among the various subtasks that produce conceptual hints.
Hence, conceptual controls all other subtasks involved in hinting, apart from
the pragmatic subtask, which is orthogonal to it. Conceptual does though use
a pragmatic hint, that is the hint that instructs the student to read the prepa-
ration material again, exactly at the point when the conceptual hints appear
not to work and the whole hinting process starts afresh.

The principles of conceptual (cf. Appendix E) where derived from the
informal analysis of the BEE [Moore, 2000] and Dialog [Wolska et al., 2004]

corpora, from previous work on hinting [Hume, 1995] and from the guidelines of
our tutoring model (cf. Chapter 2). These principles are summarised as follows.

1. Up to three wrong domain-contributions from the student and two hints
from the system, it calls the performable-step subtask (cf. Section 6.5).
Although Gregory Hume [Hume, 1995] found that two is the right num-
ber of wrong domain-contributions, we increased it by one, as two wrong
answers seemed too few in our experiments, where the human wizard felt
that the students were not given enough opportunity to find the answer
themselves, and based on our analysis of the BEE corpus.

2. Up to five hints, when the current domain-contribution is wrong or irrel-
evant, but at least half of the domain-contributions are correct or when
the current and previous domain-contributions are correct, it still calls
performable-step. In both cases, the student seems to be following hints
reasonably. Therefore, there is no reason to stop, as the motivation levels
should be high enough.

3. If less than half the domain-contributions are correct, then the tutor gives
the pending answer away, as well as the current proof step with its meta-
reasoning, to prevent frustrating the student.

4. For any other domain-contribution category, the spell-out-task subtask
is called, which is far more assistive in that it gives answers away more
easily to avoid demotivating the student. If the student gives more correct
answers again after switching to the subtask (spell-out-task), this is a

220 Chapter 6. Socratic Teaching-Strategy

sign that the student is following the proof again. Thus, the tutor need
not explain anymore and the procedure switches back to the standard
Socratic strategy.

Performable-step (cf.Appendix E) makes three choices:

(a) how informative the hint should be, that is which instructional point
needs to be addressed

(b) if the hint will be active or passive, as defined in Chapter 4

(c) or if one of the meta-reasoning subtasks should be called (cf. Sec-
tion 6.5.3)

5. Finally, if the hints become more than five, we only call the subtask
spell-out-task, as long as the domain-contributions are correct. In
any other case, we interrupt the hinting session and ask the student to
read the lesson preparations material. This behaviour was observed in the
BEE corpus. We adopted it because continuing hinting when the student
does not follow well would probably just result in further demotivation,
or in the student getting the answers without understanding them (cf.
Chapter 2).

6.4.1 Socratic Output for Hinting Situations

In this section we look into the more detailed output, departing from the abstract
strategy choices. We show the output that Socratic produces based on specific
HSS fields, which constitutes the Socratic teaching strategy [Collins and Stevens,
1982]. This presentation aims at allowing the reader to see directly how the HSS

fields influence the output. Therefore, it does not reflect the implementation
structure of the feedback, as the previous section did. Examples are provided
where clarification is necessary. The examples of this chapter are based on the
current output of Menon and the NL phrasing of the student input and the
tutor output are constructed examples, unless otherwise indicated. T stands
for tutor and it represents the output by Menon. S stands for student. Before
each separate output, the type with any parameters of the output is shown
in brackets. Wherever original text from the corpus is used, we provide the
German version and an English translation, as well as the participant’s code.
Wherever “K” is used it stands for “complement” and “P” for “powerset”.

Virtually all hints can be used at any point if students themselves take the
task initiative and ask something that requires a specific kind of hint. This is
implemented in subtask request-assistance (cf. Section 6.5.5). The following
constitutes output of the strategy manager when the task initiative is maintained
by the tutoring system.

6.4.1.1 External Tutoring Management

The external tutoring management in general allows setting values of Menon ex-
ternally if necessary.

6.4. Strategies: The Socratic Teaching Strategy 221

Task It is used as a parameter in the dialogue-move initiate-task, to set the
task for the session.

Strategy It allows setting the teaching strategy externally. It is provided for
engineering purposes.

Undo It allows students to take back a turn, step or even start the proof from
scratch. In other words, it allows students to do something wrong and change
it, or even to start an attempt but finally move to a solution they are more
comfortable with. This is all part of the non-goal oriented teaching model. (cf.
Example 6.6.4) The following cases are implemented:

1. If the student takes back the whole proof, and in effect starts a new proof,
we reset the HSS.

2. If the student takes back a step, we reset the LMCL, the tutoring history,
and the tutorial goal status, which hold values relevant to the current step.

3. If the student takes back a turn, we reset the local hint-count and reload
the values of the HSS before the last turn.

6.4.1.2 Tutoring History

Previous hint It assists the choice of output based on domain information
given away in the previous turn. It helps decide first on the focus of the feed-
back, and then between eliciting or giving away information (cf. Example 6.6.2,
T10-T12) and which exactly that domain information shall be. For example,
if the hint give-away-inference-rule fails, then the procedure will choose a
substitution-class hint, calling the corresponding function. Whether the stu-
dent possesses the knowledge of the content of the most informative hint in
every class is the condition of termination of the corresponding substrategy.

Substrategy It is used to signal the initialisation of a new subtask to stru-
cure the tutoring. Tutors in both the BE&E corpus did that consistently. See
Example 6.6.3, eg. T2, T4, T5, T7.

Previous substrategy It is used to keep track of the substrategies applied in
order to maintain a consistent approach to the treatment of the student’s in-
put. For instance, when a misconception is being treated, the same substrategy
(explain-misconception) is called until there is nothing more to do for the
misconception. See Example 6.6.3, eg. S4-T7.

Tutor task dialogue-move The tutor dialogue-move produced before has a
consequence on the choice of the next one. For example, if the previous move
is check-origin-problem, this will not be produced again in the next turn. See
Example 6.6.1, S4 - T6.

222 Chapter 6. Socratic Teaching-Strategy

6.4.1.3 Motivation and Cognitive Load

It consists of GMCL and LMCL. The use of them and their subfields is already
explained in Chapter 5. The influence the subfields have on the behaviour of
the procedure relates to the GMCL and LMCL as a whole. They are, namely,
used for drawing conclusions about the performance of the student, and hence
have an impact on the strategy manager feedback with regard to motivation
levels and cognitive load considerations. See Example 6.6.13.

6.4.1.4 Tutorial Goal Status

Student task dialogue-move

• Time-out It causes the diagnostics subdialogue to be called. We choose
to interrupt students after some time, to prevent them from getting lost
into a means-ends way of reasoning, which imposes extra cognitive load
[Cooper and Sweller, 1987]. The choice of doing a diagnostics subdi-
alogue after time-out was further suggested by the human tutor of our
Wizard-of-Oz experiments. Then, if the student is really in need of help,
we can try to hint based on the result of the diagnostics subdialogue
and point the student to a strategic, schema-promoting method [Cooper
and Sweller, 1987].

• Request assistance It causes request-assistance to be called, which de-
cides whether to treat the request or not, and how (See Section 6.5.5).

• Request evaluation It encourages students who ask explicitly for evalu-
ation, which might be a sign that they are feeling demotivated. It in-
forms them how they did in the last domain contribution by doing signal-
domConCat-evaluation. In Example 6.1, the student asks for a general
evaluation of her performance and there’s no domain-contribution in the
same turn, so Menon produces a general encouragement.

(6.1) . . .
S: (request-evaluation) How am I doing?
T: (encourage-red-eval) It’s not easy, but you’ll get there!

• Resign It produces the following behaviour:

1. If the student input includes some dialogue-move other than resign,
then we just do encourage to treat the resign move. Otherwise we
concentrate on the other move and ignore the resign. Students out
of habit or frustration tend to state that they do not know what to
do, but do in fact provide some further attempt, which we can make
use of to decide on the next feedback.

3In the examples, we use the following notation: LH (local-hint count), LW (local wrong-
answer count), LC (local correct count)

6.4. Strategies: The Socratic Teaching Strategy 223

2. If there is no other dialogue-move in the same turn, first we encourage
the student. Then, we do the following:

(a) If the student performance is low, we prompt the student to
try to answer and re-produce the previous hint. The dialogue
move prompt realised as ”Try again” is used to this end. That
is an attempt to prohibit students from just asking until they
eventually get the answer, and make them think actively and
harder.

(b) For the student who does not make a habit out of resigning (re-
sign count < 2) or exhibits a good performance (above average,
GMCLA ≤ 0.5), the subdialogue diagnostics is called to further
investigate the reason that the student is not able to progress in
the task.

(c) If the student performance is high but there have been at least
two resign moves already, we do a spell-out-task. The tutor
should not give the answer away to discourage constant resigning,
but just another hint is not appropriate either. Spell-out-task
recognises the student’s need for help in a more methodical way.

The fields that we looked at so far are employed in the choice of the right
pedagogically-motivated dialogue-move and in the choice of the referential
perspective (pragmatic vs. conceptual) and substrategy. Let us now turn
to the HSS fields that concern domain knowledge and are hence used by
the performable step, meta-reasoning and pragmatic subtasks. They
inform the choice for the inferential role and domain knowledge dimensions.

See Example 6.6.1, S3 - T4.

Previous student task dialogue-move

Domain contribution In general, student dialogue-moves except domain-con-
tributions are treated differently by the procedure. Domain contribution together
with its domain-contribution category are used for informing students of their
performance in the particular domain-contribution via a signal-domConCat-
evaluation. This is necessary for making students aware of their progress and not
giving them the impression that their effort is pointless. Therefore, we do it after
every domain-contribution. Moreover, we normally provide signal-domConCat-
evaluation in combination with feedback that gives students a suggestion on
how to deal with errors or inability to move on to avoid demotivating them.

We consider the following domain-contribution categories:

• Correct causes the procedure to either simply accept the answer or to call
the subtask aligning if the student performance is below average (GMCLA

> 0.5) and after five hints on the same step have been produced, since the
last time we called the aligning subtask. This is the way the system
checks whether students really understand the reasoning, when they give

224 Chapter 6. Socratic Teaching-Strategy

a correct answer. The number of hints indicates that the student has
just started following, in which case aligning reinforces the schema by
re-eliciting the reasoning that got us to this point in the task. Another
possibility is that the correct answer was a coincidence, so we want to
make sure that the student understands why this answer is the correct one,
based on the reasoning we have applied. The process of aligning is common
practice in the BE&E corpus [Tsovaltzi, 2001]. See Example 6.6.2.

• Partial-answer causes the procedure to do explicit encourage if the student
performance is lower than average (GMCLA ≤ 0.5). There are two issues
involved here. First, motivation should be taken care of before any content
guidance in order to engage the student in the task at all [Keller, 1987;
Wood and Middleton, 1975]. Second, empirical findings [Beal and Lee,
2005] suggest that similar behaviour has a negative effect on high perform-
ing students, as it inflicts a worry that they will not be able to sustain
the hard effort. In general, realisation of encourage like positive feedback,
“You are doing fine” and effort-sustaining feedback “It is a difficult task,
just keep on trying” should be used interchangeably to cater for both the
need of the student for appraisal (positive experience) and for the recog-
nition that effort is required, so that the student has the right idea about
the correlation between effort and success. (cf. Example 6.6.2, S1-T2).

Encourage is hence a kind of a place holder for different methods of moti-
vating the student, which are not explored in this thesis further. From an
engineering point of view, though, encourage makes their later integration
possible. In addition to encourage, after a partial answer the procedure
chooses a class subtask for hinting.

• Complete-inaccurate effects the production of the hint discrepancy if the
student’s performance is not too bad. It tries to make students realise
the discrepancy on their own. If this does not work or if the student’s
performance is too low, we do an explicit encourage and treat complete-

inaccurate as wrong. Example 6.2 is taken from participant socratic1, and
the tutor did do elicit-substitution in T4. We keep turns S3, T4 and
S4 as they occur in the actual corpus, and only add here encourage and
initiate-subtask-subst that Menon currently produces. The proof handled
is A∩B ∈ P ((A∪C)∩ (B ∪C)). The student gives a complete-inaccurate
answer, in that she uses the correct Rule of Inference, and all parts of
Substitution are present, but they are not correctly substituted. Because
she has not been doing well until this turn, discrepancy would probably
be confusing, so she is asked to apply the rule correctly in T4. This hint
helps her to correct her mistake and get the step right in S4.

6.4. Strategies: The Socratic Teaching Strategy 225

(6.2) . . .
S3: (complete-inaccurate) Distributivität von Vereinigung

über Durchschnitt: [Distributivity of union over intersec-
tion:] A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

T4: (encourage) It’s a bit difficult, right? (signal-ci) That’s
not exactly right. (initiate-subtask-subst) Let’s look
at it. (elic-subst) Wie hätten Sie diese Regel anwenden
müssen? [How should you apply the rule?]

S4: (A ∪ C) ∩ (B ∪ C) = (A ∩B) ∪C

• Wrong initiates a search for the appropriate conceptual or pragmatic sub-
task. Wrong is also a major factor for calling the spell-out-task. See
Section 6.5.9 and Example 6.6.1, S1 - T2 and S5 - T6.

• Unknown results in calling the diagnostics subdialogue, to find out what
the problem is. However, if the previous move is either time-out, or un-

known, meaning that diagnostics has already been called, then we just
treat the answer as wrong and call the function conceptual. In other
words, in these two cases we do not expect any more that students can
provide useful information on why they cannot proceed, and we do not
want to intimidate them by asking too many questions that they cannot
answer.

In the Wizard-of-Oz experiment, unknown was also followed by a check-
origin-problem, which is the first move of the diagnostics subdialogue.
See Example 6.6.1, S4 - T5.

• Misconception should be treated whenever it is encountered, whether rel-
evant to the current task or not, as a misconception undermines the stu-
dent’s understanding of the domain as a whole. Misconception is treated by
the subtask explain-misconception. See Section 6.5 and Example 6.6.3,
S4 - T7.

• Missing Basic Knowledge yields the give-away-basic-knowledge hint,
which provides the missing knowledge (cf. Chapter 4). Missing basic

knowledge relates to too basic a concept to be ignored. This is motivated
by the fact that the student should not sidetrack too much from the focus
of the session for reasons of relevance [Keller, 1987] (cf. Chapter 2), and
from research that supports teaching some declarative knowledge when
it is necessary for the task [Sun et al., 2001]. In Example 6.3, the proof
is K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩ K(B)) ∪ (K(C) ∩ K(D)). In S2,
participant socratic5 wanted to apply the rule of inference De Morgan 2
(defined in the lesson material as K(A ∩ B) = K(A) ∪ K(B)), which is
the correct rule of inference here, but wrote the definition of De Morgan
1 (defined in the lesson material as K(A ∪ B) = K(A) ∩ K(B)). Menon

just gives the Basic Knowledge away.

226 Chapter 6. Socratic Teaching-Strategy

(6.3) . . .
S2: (miss-basic-know) K((A ∪ B) ∩ (C ∪ D)) = K(A ∪ B) ∩

K(C ∪D)
T3: (signal-miss-basic-know) There’s a problem here. (in-

itiate-task-inf-rule) You see (give-away-basic-know)
the De Morgan 2 is the following: K(A∩B) = K(A)∪K(B)
(prompt-action) Try to go on!

• Step-size is a reason to ask students to justify what they have done. Al-
ternatively, we do the following

1. If the students’ performance is low (GMCLA ≥ 0.3), or if it is the
first step-size in the session, the procedure asks the students if they
think they have provided all justification needed, to make sure that
students realise what they are doing. To do that, we produce the
discrepancy realised as a “Why?” question, when the students’
performance is above average.

2. If a step-size has occurred before in the same session or the perfor-
mance is bad, we check what students think they have done via a
check-origin-problem.

3. If the students cannot explain, hence demonstrate a lack of awareness
of what needs to be proven, we treat this as a misconception.

See Example 6.6.1, S5 - T6 and 6.6.3, S4 - T7.

• Irrelevant gives rise to informing the student that the mathematical state-
ment is correct, but it is not useful at this point. That is, we do a signal-
irrelevant dialogue-move. This avoids confusing students by telling them
that something is wrong when it is in principle correct. Apart from that,
is treated as a wrong answer.

When the student gives an irrelevant proof step that we cannot accom-
modate as a valid step, then it is worth checking if the student is starting
a new proof by doing a diagnostics subdialogue. See Section 6.5.1 and
Example 6.6.1, S2 - T3.

• Ill formed can be treated in two ways.

1. When the student performance is good (GMCLA ≤ 0.3), it causes the
production of the hint elicit-ill-formed, and then give-away-

ill-formed, which corrects the performable-step formulation.

2. If the students’ performance is much lower than average (GMCLA >
0.3), we just prompt for the next step, ignoring the ill formed so as
not to overload students with issues that they cannot handle.

This behaviour was informed by research in cognitive science [Sweller,
1989; Sweller and Cooper, 1985], arguing against splitting the student’s
attention. When students are showing a high performance, other aspects

6.4. Strategies: The Socratic Teaching Strategy 227

of the task can be pointed out that would normally require part of their
attention and impose cognitive load. The student, for instance, may have
mastered the domain rules and, thus, may not need much memory space
for processing them. Therefore, the student can probably handle the cog-
nitive load of correcting the syntax error, which might sidetrack a low-
performing student.

In Example 6.4, the proof is A ∩B ∈ P ((A ∪B) ∩ (B ∪C)). The student
writes the first step almost correctly, but misses a bracket, as participant
didactic15 did. Menon just ignores this, since we are at the beginning of
the session and there hasn’t been enough opportunity to assess the level
of the student, so we assume a bad model, so as not to discourage the
student from the start. As a matter of fact, the tutor in the experiment
decided to delve into this mistake, which caused a lot of confusion to the
student. Menon just prompts the student for the next step.

(6.4) . . .
S1: (ill formed) P ((A ∪B) ∩ (B ∪ C)) = PC ∪ (A ∩B)
T2: (signal-ill-formed) That’s fine. (prompt-step) What’s

the next step?

• Wrong Linguistic Term yields a correct-terminology hint, when the stu-
dent performance is very good (GMCLA ≤ 0.3), which is always followed by
the appropriate conceptual hint. The hint correctterminology repeats
exactly what the student said, but for a substitution of the right term for
the wrong term that the student has used. If the student performance is
poor(GMCLA ≥ 0.3), we just ignore the wrong linguistic term and treat the
domain contribution as correct. Reduction of cognitive load is considered
in the same way as it is for ill formed.

In Example 6.5, the proof is A ∩B ∈ P ((A ∪B) ∩ (B ∪C)). The student
knows the relevant concept (intersection), and the tutor tries to elicit
the Subordinate Concept (union) (T4). The student provides it, but uses
the wrong terminology (S4). The tutor in T5 points out the correct
terminology and goes on to the logical next hint.

(6.5) . . .
T4: (elicit-sub-con-meta-reas) Think of what is connected

to the intersection and you can use it to prove what you
want.

S4: (wrong-ling-term) The combination of two sets.
T5: (encourage) It’s a bit difficult, (signal-wrong-ling-

term) but you’re right. (initiate-subtask-sub-con-
meta-reas) OK. (initiate-subtask-infer-rule) So,
(prompt-step) just say “union” instead of “combination”
to be accurate. (elicit-inf-rule) What rule can you use
here, then? (prompt-step) Go on, then?

228 Chapter 6. Socratic Teaching-Strategy

• Near-miss causes the pragmatic hint discrepancy to be produced, when
the students’ level is good. Discrepancy just prompts the student to
reconsider their answer. The idea is that it might have been a mistake
out of lack of concentration, but in any case, something that the student
is aware of in principle. Otherwise, if the student still does not realise
the mistake, then the subtask near-miss is called (cf. Section 6.5). The
hint discrepancy was suggested by our human tutor in the Wizard-of-Oz
experiments. See Example 6.6.3, T2 - T4.

Instructional Points

• Relevant Concept used is employed both for eliciting the Subordinate Con-

cept and eliciting the Rule of Inference. In both cases it constitutes pre-
requisite knowledge, based on the heuristics we use for promoting schema
acquisition (cf. Chapter 2). See Example 6.6.2, T4 - S4.

• Subordinate Concept used, with the same rationale, is employed for eliciting
the Relevant Concept, provided the Subordinate Concept is known, and for
eliciting the inference rule, in combination to the Relevant Concept (cf.
Chapter 2). See Example 6.6.2, T5 - S5.

There are two major contradictory views that have a bearing on this deci-
sion. Lim and Moore [Lim and Moore, 2002] argue for the elimination of
cognitive load via providing appropriate stepwise instruction with the aim
of promoting expert-schema acquisition. The evidence for what schemata
experts use comes from a study on the comparison between novice and ex-
pert problem solving [Chi et al., 1982]. Lim and Moore’s view argues for
always dealing with the Relevant and the Subordinate Concepts, because
they are instructional points.

On the other hand, Motivation Theory [Keller, 1987; de Vicente and Pain,
1998; Weiner, 1992] suggests to use as little instruction as possible in or-
der to enhance the student’s feeling of achievement. That is an argu-
ment against always tutoring the Subordinate and the Relevant Concept

if the student already knows the Rule of Inference to apply. The knowl-
edge has been proceduralised and there is no need to make it declarative
again [Lewicki et al., 1992], which would also add unnecessary cognitive
load. There is also the danger that the schema that the student has is
somewhat different from the one we are trying to elicit. Therefore, we only
use the Subordinate and Relevant Concept when it is necessary in order to
promote procedural knowledge for choosing the applicable Rule of Infer-

ence (see also 2). Thus, we combine the contradictory aspects of cognitive
load elimination and increasing motivation.

• Domain Relation used causes the corresponding passive Domain Relation

hint to be produced. This is a way of eliciting the domain concepts when
a related concept is present in the student input. As a side-effect, it
reinforces the awareness of the domain structure. Example 6.6.3, T2 -

6.4. Strategies: The Socratic Teaching Strategy 229

T4 shows how a domain relation is used to identify a near-miss domain-
contribution.

• Rule of Inference used is a prerequisite for eliciting the Substitution for the
proof step. See Example 6.6.2, T6 - S6.

• Inverse Rule used helps to inform students of the fact that they are using
the inverse to the Rule of Inference. The corresponding hint is produced.
In Example 6.6, the proof is if A ⊆ K(B), then B ⊆ K(A). In S2,
which is taken from participant socratic23, the tutor noted that the stu-
dent started from the wrong direction of the implication, and that she
should be informed accordingly. Here we show Menon’s behaviour, after
the incorporation of the tutor’s comment. The tutor in T4 informs the
student of having used the inverse rule and we are now inside subtask
inf-rule-meta-reas, so the hinting will go on at the level of the Rule of

Inference.

(6.6) . . .
S2: (wrong) A ⊆ K(K(A))
T3: (signal-wrong) That’s not quite right. (give-away-inv-

rule) The rule that you want to use applies to the opposite
direction of what you need here. (prompt-action) Try to
go on now!

• Technique used is employed to elicit the Rule of Inference. See Exam-
ple 6.6.2 T6 - S6, where the technique is that the if-then has to be
eliminated.

• Starting Point used is employed to elicit the Proof Step, as it constitutes
part of the meta-reasoning for arriving at it. See Example 6.6.2, T1 - S1.

• Premise used indicates an awareness of the basic meta-reasoning of what
the proof problem is, and is used in the process of eliciting the performable
step as a whole. See Example 6.6.2, T2 - S2.

• Conclusion used has the same effect as premise used. Premise and conclu-
sion are used together as one depends on the other. It aims at making
the student aware of the problem solving situation before embarking on
finding out which rule applies to the situation. See Example 6.6.2, T2 -
S2.

• Directness used is employed in eliciting the Proof Step, which can be a
subproof. It is the most abstract level of a technique, which does not refer
to manipulations inside one step. The relevant hint is only used when the
proof to be performed is indirect, as direct is the default case, and there
is no reason to confuse the student. See Example 6.6.4, S8 - T9.

• Direction used, like directness used, is employed in eliciting the Proof Step.
It influences the choice of inference rule. See Example 6.6.2, T3 - S3.

230 Chapter 6. Socratic Teaching-Strategy

Premise used, conclusion used, directness used and direction used all trigger
hints that refer to the meta-reasoning of the Proof Step. However, unlike
the performable-step hints, which are produced last in the hinting process
for one step, these hints are produced at the beginning. This is due to
the fact that they address the step as a whole and understanding them is
necessary for understanding the following instructional points in the proof
(cf. Section 6.5.4).

Pragmatic information

• Different Theory causes Socratic to ask the student to take for granted the
information that belongs to a different theory [Collins and Stevens, 1982].
The ”local axiomatics” notion [Wu, 2001] motivates this, as the student
should not be dealing with too many things at the same time. Practically,
in the Diagram Configuration model [Koedinger and Anderson, 1990] for
geometry proofs, ignoring algebraic inferences resulted in a reduction of
the search space, which translates into a reduction of cognitive load. In
Example 6.7, the proof is if A ⊆ K(B), then B ⊆ K(A). The student
requests an explanation of why in case of implications we can assume the
premise. This would require going into logic, so the tutor just indicates
that this is nothing to concern the student and urges her to go on.

(6.7) . . .
T4: (signal-wrong) That’s not quite right. (give-away-

proof-step) We assume that A ⊆ K(B) and prove that
B ⊆ K(A)

S4: (req-ass-dif-theory) Why are we allowed to do that?
T5: (initiate-subtask-req-ass) OK. (correct-info) Let’s

not look into this now. (prompt-action) Try to move on
now.

• Same Domain Information results in referring the student back to the ses-
sion. Based on what the values of the same information are and whether
the student level is good enough, the tutor points the student to the
previous occurrence of that domain information. This is done with the
pragmatic information hint point-backwards, since the student is only
asked to look back and find the information needed for the proof cur-
rently. If the student is unable to track it, then the information is given
away with a passive conceptual hint. Other pedagogical considerations
are also taken into account. For instance, the student is pointed back to
a previous occurrence of the same Domain Technique only if the technique
was also applied on the same Relevant Concept. This is done to increase
the connection between the two uses.

To demonstrate how Same Domain Information works, in Example 6.8, the
proof is if A ⊆ K(B), then B ⊆ K(A). The student knows the Relevant

Concept and the Rule of Inference (S1) right after the initiation of the task,

6.4. Strategies: The Socratic Teaching Strategy 231

so the tutor elicits the Substitution (T2). The student provides it (S2) and
with that the first step is completed. In S10, the student has to apply the
same rule and states the Relevant Concept (if-then) and the Subordinate

Concept (the expression that has to be proved). So, the Rule of Inference is
elicited (T11), but the student names the wrong Rule of Inference (S11).
Since the Rule of Inference here constitutes the Same Domain Information,
the hint point-backwards is produces, as described above.

. . .
S1: (partial-answer) I have to use if-then and the rule let x

and prove y.
T2: (encourage) Great! (signal-pa) you’re on the right

track. (initiate-subtask-subst) Let’s look at it.
(elicit-subst) Try now to apply the rule (rule of infer-
ence) to the expression.

S2: (correct) Assume A is a subset K(B), and show B is a
subset of K(A)!

T3: (signal-accept) Correct! (prompt-step) What’s the
next step?
. . .

S10: (partial-answer)Now I have the if-then again, and I have
to think of what I need to prove.

T11: (encourage) Great! (signal-pa) you’re on the
right track. (initiate-subtask-inf-rule) Let’s see.
(elic-inf-rule) What rule can you use here, then?

S11: (wrong) The de Morgen.
T12: (signal-wrong) That’s not quite right.

(point-backwards) We have already looked at a similar
case in this proof. Have a look back and try to move on
with the proof. (prompt-action) Give it a go.
. . .

(6.8)

• Ordered List Available causes the pragmatic hint orderedlist to be pro-
duced, which makes use of the pragmatic information available. If the stu-
dent does not respond correctly to this hint, the pragmatic hint refer-to-
lesson is produced, as this information is in the lesson preparation mate-
rial. Students can learn to use this material better when they know what
they are supposed to be looking for. In Example 6.9, we are assuming
that the student has to do an inductive proof, and is being asked about
the first case in T3, but cannot provide it. The tutor in T4 tells her that
there are three cases and asks her for the first in order. When the student
provides a wrong answer again in S4, the tutor resorts to referring her to
the specific place in the lesson, which she has to read.

232 Chapter 6. Socratic Teaching-Strategy

(6.9) . . .
T3: (elicit-inf-rule) Which rule can you apply, then?
S3: (resign) I don’t know.
T4: (encourage) It’s a bit difficult, right? (ordered-list) You

need to analyse the problem into three cases. Which is the
first one?

S4: (wrong) Where I talk about all instances.

T5: (encourage) Don’t worry. (signal-wrong) That’s not
quite right. (refer-to-lesson) Just, go back and
read about the cases of an inductive proof again.
(prompt-action) Give it a go.
. . .

• Unordered List Available causes the pragmatic hint unordered-list to be
produced if the student’s domain-contribution is a partial answer with
some parts missing. It aims at allowing students to figure out the rest of
the elements of the unordered list by themselves. If after that the student
does not answer correctly and when the student level is high (above av-
erage), the hint narrow-down-choices is produced. This gives students
the chance to provide the correct answer by practically reminding them
of the options and narrowing the search space for the potentially correct
answer.

In Example 6.10, the proof is A∩B ∈ P ((A∪B)∩ (B ∪C)). The student
in S3 asks for the Rule of Inference, after having been given the Relevant

Concept. The tutor first informs her in T4 that there are three attributes
(as there were in our lesson material in the Wizard-of-Oz experiment),
hoping to remind her of them and prompt her to name them. When the
student in S4 does not provide the right answer, the tutor gives her a
choice between two of the attributes.

(6.10) . . .
T3: (give-away-rel-con) You have to use powerset.
S3: (req-ass-inf-rule) What exactly about the powerset do

I have to use?
T4: (unordered-list) There are eleven attributes, which one

do you need?
S4: (resign) I don’t know.
T5: (narrow-down-choices)Do you need the definition or the

attribute that says that if A ⊆ B, then P (A) ⊆ P (B)?
. . .

Proof Status

• Proof Step Completed causes the HSS to be reset, if the student perfor-
mance is high. The new proof step will start with new information on the
student performance for that step. For a low student performance, the

6.5. Substrategies 233

subtask aligning (cf. Section 6.5.8) is called for the completed step. See
Example 6.6.3, T - last.

• Proof Completed is used to do a recapitulation of the proof for students
with a bad overall performance, and to reset the HSS. Apart from assigning
the student with the right level of task, whose choice we assume, we give
students the opportunity to start without any preconceptions on how they
will perform on the task. See Example 6.6.1, S14 - T17.

6.5 Substrategies

We first give an overview of the notion of a substrategy. Then we describe the
different substrategies and provide motivation for their behaviour according to
our teaching strategy.

The following substrategies are implemented:
Subdialogues:

1. Diagnostics, which attempts to identify the problem that causes the
student’s problematic behaviour

Subtasks:

1. Pragmatic, which picks a hint based on any pragmatic information avail-
able

2. Performable-step, which picks an appropriate hint to address the perfor-
mable step

3. Meta-reasoning, which picks an appropriate hint to address the meta-
reasoning of the step

4. Request-assistance, which deals with requests for assistance from the
student

5. Near-miss, which handles near-miss domain contributions

6. Explain-misconception, which handles diagnosed misconceptions

7. Aligning, which tries to make sure that the student has understood a
previous series of hints

8. Spell-out-task, which guides the student closely through completing the
proof step

9. Recapitulation, which recapitulates completed steps and the proof, at
the end of one session

234 Chapter 6. Socratic Teaching-Strategy

Substrategies are selected based on HSS situations, but also depending on
the student performance by means of the GMCLA. Performable-step subtasks
are the core of the teaching strategy and assist schema acquisition. Note that
every substrategy can only provide the hints that are relevant to its function.
For example, meta-reasoning will not produce any performable-step hints, as
they cohabit the same hint dimension and, hence, are counter exclusive.

6.5.1 Diagnostics Subdialogue

Hinting Situations Diagnostics is the only subdialogue currently initiated
by the tutorial manager. It is called when the system cannot categorise the
student’s input with the precision necessary for deciding upon appropriate feed-
back.

The cases it handles are the following:

1. when there is an unknown domain-contribution

2. when there is a time-out

3. when students resign, so we cannot know what the specific problem they
had with the task was

4. when students perform a step-size (does not prove some in between step),
in which case we do not know if they just consider the step trivial or if
they do not realise that normally they would need to prove it

5. when the step is irrelevant but correct, in which case we check the possi-
bility that students are attempting a new proof

6. when students request assistance and their performance is low, in which
case we try to find out what the actual problem is

7. when the domain-contribution is wrong, after a point-to-lesson hint,
because the problem might not be what we thought, and this might be
the reason why the point-to-lesson did not work

Behaviour Diagnostics starts with a simple check-origin-problem dialogue-
move. This gives students the opportunity to explain the problem they are
having or even show that there is no problem. However, if there indeed appears
to be a problem after the check-origin-problem move, but it is still unclear
exactly what it is, the appropriate active meta-reasoning eliciting hints are called
(based on the domain information being handled). As soon as a student inputs a
domain-contribution that can be evaluated, we start providing the active meta-
reasoning hints. However, the aim of those hints is to find out which domain
information (Instructional Point) the student has a problem with. When the
procedure hits on a hint that the student cannot answer, the respective subtask
is called to deal with it. By eliciting such information, we avoid asking the
student “What is wrong” type of questions, which are normally ineffective, as

6.5. Substrategies 235

students are usually bad at evaluating their own problem solving [Aleven and
Koedinger, 2000b]. Moreover, a most common phenomenon is that students
state that they do not know the answer, presumably hoping that they will get it
from the tutor with minimal effort, instead of trying to find it. It is telling that in
the Dialog corpus eight out of nine “Do you know...” questions were answered
with “no” by the students4. Therefore, it is the tutor’s responsibility to find out
what the problem is, as well as to try to deal with it. The strategy also skips
the original check-origin-problem in cases where diagnostics is called after
point-to-lesson, or after request-assistance. In both instances the student
level is too low to pose the abstract question “What is the problem?”. In fact,
in the case of a request-assistance, students think they know what the problem
is, but we distrust their judgement.

Although the NL realisation of hints is not the subject matter of this thesis,
let us note that both the dialogue-move check-origin-problem and the meta-
reasoning hints may be realised as ”Wh-questions”. The check-origin-problem
dialogue-move is produced with a parameter, namely the student input that does
not allow a categorisation for appropriate feedback and causes the subdialogue
to be called. For example, the most obvious case is when the student input is
not understood at all at the domain knowledge level (as opposed to the linguistic
level), in which case we want to ask students to explain what they meant, rather
than what problem they are having.

Justification The idea of the diagnostics subdialogue is to understand the
exact problem of the student so as to be able to decide on the feedback. There-
fore, it facilitates the choice of subtasks. The dialogue manager alone cannot
handle the subdialogue, as pedagogical knowledge is necessary for it.

Examples See Example 6.6.1, S4 - T6.

6.5.2 Pragmatic Subtask

Hinting Situations Pragmatic hints in general motivate the student, as they
are good for providing minimal feedback based on the student input. Therefore,
pragmatic is called whenever possible, that is when some pragmatic information
is available (cf. Chapter 5).

Behaviour The subtask pragmatic picks a hint based on the pragmatic in-
formation available.

1. Wrong linguistic term gives rise to the hint correct-term, which gives the
term away.

2. A complete-inaccurate domain-contribution produces a discrepancy, for
high level students.

4In the case students knew the answer, they provided it.

236 Chapter 6. Socratic Teaching-Strategy

3. An ordered list available results in the corresponding hint, and if this is
not answered in a refer-to-lesson, so that the student can benefit by
consulting the study material that includes the list (cf. Chapter 5).

4. An unordered list available causes the production first of the corresponding
hint, and then of narrow-down-choices, to help the student find the
missing element of the list.

Justification A pragmatic hint might help the student get back on track with
minimal possible feedback (cf. Chapter 4). Pragmatic hints are often considered
as prompts and are favoured by tutors [Tsovaltzi, 2001; Graesser et al., 2005].

Examples See Example 6.5.

6.5.3 Performable-step Subtask

Hinting Situations Performable-step is a subtask that comprises four class
subtasks, namely domain-object, inference-rule, substitution and proof-

step, and the main function controlling the choice of class subtask called per-

formable-step. Performable-step class subtasks correspond to the main in-
structional points, apart from Domain Relation. There is no class subtask for
Domain Relation for the performable step, as Domain Relations only have a func-
tion related to meta-reasoning in our teaching strategy.

In function performable-step, instructional points are addressed in an
order from more abstract to closer to the performance of the step, as the more
abstract information consists of the heuristics for deriving the performed step.
For example, the domain-object class subtask, which is an instructional point
used for finding the Rule of Inference, is called before the inference-rule itself.
We consider some information known:

1. if the hint that gives it away has been used

2. if the student has used the information

3. if it is a prerequisite for some other piece of information, which is known

Behaviour The performable-step class subtasks choose a hint for produc-
tion from the ones available for the main instructional point, which they deal
with. Hints are chosen based on logical priority and elicitation status. The
former makes sure that the information offered by the hint is not given away
before any prerequisite information, given by another hint. This translates into,
for instance, only eliciting explicitly the Rule of Inference, when the Relevant and
the Subordinate Concepts are already known (cf. Appendix E).

In addition, we elicit when the student performance is good enough to allow
inferring a high level of motivation and the possibility that the student is able
to answer the eliciting hint. If not, we directly provide the passive hint, which
just gives some information to try to help the student derive the proof step.

6.5. Substrategies 237

Another aspect of the performable-step subtask is that it calls the meta-
reasoning subtask at appropriate places for every instructional point (cf. Sec-
tion 6.5.4).

Justification The general philosophy of the performable-step subtask is
captured in the heuristic blueprint presented in Chapter 2. Elicitation status refers
to the fact that an active hint is always produced before the equivalent passive
one. With regard to this, observations from the BE&E show that if the concept
has already been dealt with previously in the tutorial session [Tsovaltzi, 2001],
established (or grounded) then the tutor will give it away. If not, then the tutor
will elicit it [Freedman et al., 1998]. The more elaborate way in which we deal
with the elicitation status choice is informed by the research results from the
learning sciences. Hence, we take the student performance into account.

Examples See Example 6.6.2, S4 - T8.

6.5.4 Meta-reasoning Subtask

Hinting Situations Meta-reasoning is called when the domain content of
a specific hint has not been dealt with yet, but the student seems to need
extra supportive instructions to arrive at the step. To infer this, the proce-
dure consults the GMCLA and if this is less than average (GMCLA ≤ 0.5), the
meta-reasoning subtask is entered, by directly calling the subtask that corre-
sponds to the instructional point being handled at that moment.

Otherwise, since students do not seem to need the extra support, we choose
not to interfere with that level of cognition (we provide little instruction), to
allow them to build their own schema on the most minimal feedback possible.

Behaviour Inside the meta-reasoning subtasks, we elicit the meta-reasoning
only if the student performance is high (GMCLA ≥ 0.75), since eliciting the meta-
reasoning may impose cognitive load that cannot be handled by students of a
poorer performance. Otherwise, we give it directly away.

The meta-reasoning class subtasks are called via the corresponding class
subtasks of the performable-step subtask, because they reinforce the main in-
structional points of the performable-step subtask. For the same reason, the
meta-reasoning for a class subtask covers also the content of performable-step
hints that belong to the same class subtask. Meta-reasoning hints also com-
ply with the subordination, hence the meta-reasoning subtask chooses a hint
based on this relation. So, the hint subordinate-concept-meta-reasoning is
produced before the hint inference-rule-meta-reasoning.

The proof-step meta-reasoning addresses the step as a whole. It provides
an overview of the proving procedure and is produced at the beginning, as an
exception, in order to motivate the whole step. This means that the hinting for
a step starts with the proof-step meta-reasoning hints and ends with the
performable-step hints of the same class. This reflects the proving cycle of

238 Chapter 6. Socratic Teaching-Strategy

looking forward at what has to be proved, and back again at what needs to be
done locally to reach that goal [Wu, 2001].

Finally, the meta-reasoning for the step comprises passive meta-reasoning
hints from all classes that are general enough to be used in the derivation of
every step. Proof-step hints, in particular, are only produced if any of them
have been produced in the course of tutoring the Proof Step instructional point.
If not, we do not trouble students with that abstract level, which they were
already comfortable with.

Justification Giving meta-reasoning hints is motivated by cognitive load the-
ory. More advanced learners may be hindered in the process of learning by the
same information which helps beginners. For the advanced learners this infor-
mation will require unnecessary processing load for something that has already
been automated via a schema [Paas et al., 2004]. In addition, meta-reasoning
plays the role of abstract instructions increases transferability, as they help the
promotion of a more general schema [Robertson, 2000].

The need to include the meta-reasoning was explicitly recognised by the
human tutor in our Wizard-of-Oz experiments (cf. Section 1.4.2). Moreover,
additional support for the meta-reasoning comes from the mathematics re-
search. Wu [Wu, 2001; 1996] favours making the students aware of the logical
reasoning behind proving.

This two-level approach of providing both performable-step and meta-reason-
ing hints complies with the synergistic view of bottom-up and top-down learn-
ing [Sun et al., 2001]. The performable-step subtask may help the more
abstract meta-reasoning to be built bottom-up. If not, meta-reasoning points
to the concrete performable step top-down (cf. Chapter 2).

Examples See Example 6.6.1, T2 - T7.

6.5.5 Request-assistance Subtask

Hinting Situations The subtask is called after the student task dialogue-
move request-assistance in order to decide how to deal with the request. The
initiative of the student to request some specific assistance takes us out of the
conceptual method of deriving a proof.

Behaviour The kinds of assistance that we provide when explicitly requested
are all possible values of the HSS field assistance-requested (cf. Chapter 5).

1. If the student performance is lower than average, and there has been at
most one previous request-assistance so far, we give the answer away, in
the form of a correct-informationpragmatic hint, since this does not re-
ally follow the main conceptual schema building and students should stop
troubling themselves with it. The student has not tried to take advantage
of the fact that we do give answers away and would be demotivated if we
did not give the answer.

6.5. Substrategies 239

2. If the student performance is good, we encourage the student, who feels
in need of assistance, and we call the diagnostics subtask, to find out
the exact problem before we can help the student.

3. If the answer to the student’s inquiry belongs to a different theory than the
one being taught, then the system informs the student that the inquiry
will not be dealt with via a correct-information and, thus, asks the
student to take it for granted.

4. If what the student asks is not relevant to the current session, that is it is
neither one of the domain information captured in the HSS (an Instruc-
tional Point) nor some Basic Knowledge, the system tells the student to
concentrated on the current goal (ignoring the question), and re-states
the last tutor-task DM, which the student is supposed to respond to or
produces a prompt to carry on with the task.

5. If what the student has asked about is some piece of domain knowledge
that has been dealt with before in the course of this proof step, we tell
the student to look back for it with the pragmatic hint point-backwards,
in order to enhance the student’s ability to bring all the information of a
session together and take this piece of information for granted.

6. When the student inquires about some basic knowledge or something ill

formed dealt with before, we just give the information to the student
by providing a pragmatic hint correct-information, as the student
should now accept the information, and move on with the task. The
correct-information hint reproduces the hint that gave this informa-
tion away before.

7. If students after the point-backwards still do not know the answer to their
request-assistance, the system gives the answer away in the same fash-
ion. For example, if the Subordinate Concept was first mentioned by using
the hint give-away-relevant-concept-meta-reasoning, we reproduce
that, instead of this hint instead of give-away-subordinate-concept.

Justification Point-backwards lets students note that they should now ac-
cept the information that has appeared before and move on with the task, taking
this piece of information, which has been dealt with before, for granted. This
realises the inferential role function of the hint point-backwards. Prompt and
point-backwards are used in the same context as motivation fortifiers in the
model of Beal and colleagues [Beal and Lee, 2005], which deals exclusively with
when to provide help or not, taking into account motivational aspects of the
student’s behaviour.

We do not point backwards in the case of basic knowledge or something
ill-formed dealt with before (represented in the previous used hint and its spec-
ifications). This might be confusing. Inquiring about some Basic Knowledge
through a request-assistance dialogue-move means that students are generally

240 Chapter 6. Socratic Teaching-Strategy

not following and are not performing well. Informing them that we have talked
about what they ask again would probably demotivate them. Their level is not
good enough for such fine-grained tutoring. It is also difficult to refer clearly to
a previous occurrence of such issues.

When giving the answer away after a fruitless point-backwards, the stu-
dent can easily spot the information in question and make the connection with-
out being confused. Note that the discourse module could add here some-
thing along the lines of “Remember, we said that...” in the realisation of
correct-information produced after a point-backwards, based on other dis-
course issues to be taken care of and the dialogue model for the genre5.

Examples See Example 6.6.3, T7 - T9 and Example 6.6.4, S9 - T10.

6.5.6 Near-miss Subtask

Hinting Situations Near-miss is a subtask, which causes a slight sidetrack-
ing from the main reasoning method followed towards the completion of the
proof step. It potentially occupies multiple turns.

Behaviour After a near-miss domain-contribution, discrepancy is used, whi-
ch is a pragmatic hint, to point out that there is some discrepancy in the almost
correct answer.

1. If the student does not realise the mistake with the use of the discrepancy
hint, then the next hint depends on the type of the near-miss answer. The
near-miss chooses the appropriate hint, which tries to help the student
more to identify the error:

(a) If the near-miss corresponds to a domain relation, the equivalent pas-
sive meta-reasoning domain-relation hint is produced, to inform the
student which the mistake is.

(b) If the near-miss refers to a wrong linguistic-term or an ill-formed
structure, the student is informed of the corresponding mistake, but
apart from that the next appropriate hint is produced to help the
student proceed with the proof as normal. For students who can still
correct the near-miss, this information gives them the opportunity
to do it. Otherwise, providing the next hint is a way of not paying
further attention to the minor mistake of the near-miss.

2. If the student’s response to the near-miss hint is still not correct, we return
to the proof-step subtask.

5This might be inappropriate, for instance, if the student has previously answered the
point-backwards with “I don’t remember”. In that case it would be frustrating to ask students
if they remember just after they have stated that they do not (even though it is a rhetorical
question). This is the kind of flexibility our hinting modelling provides. A fine distinction,
which might have a lot of cognitive impact [Moore, 1993].

6.5. Substrategies 241

Justification The near-miss subtask serves the relevance and confidence as-
pects of the student’s motivation [Keller, 1987] (cf. Chapter 2). However, there
is no obvious pedagogical value on insisting that near-misses are resolved, as
this would be counter-productive if the student does not understand the mis-
take easily.

Examples See Example 6.6.3, T2 - T4.

6.5.7 Explain-misconception Subtask

Hinting Situations The explain-misconception is called when a miscon-

ception occurs, depending on the GMCLA.

Behaviour The subtask keeps checking for misconceptions by doing check-
origin-problem for the original input first and after that for the following student
input, until no misconception is input. Otherwise, the explain-misconception

explains each misconception that is encountered.
At the moment we automatically recognise the following misconceptions (cf.

Chapter 5):

1. a near-miss connected to any of the Domain Relations that we define

2. a hypotaxis domain-contribution

3. a primitive domain-contribution

4. a step-size domain-contribution

5. an inverse-rule domain-contribution

We originally treat those student responses as plain mistakes. The student
might get momentarily confused and correct it after the hint that draws atten-
tion to it. If, however, this does not happen, then we check more explicitly
whether the mistake is really a misconception by calling subtask explain-mis-

conception on it.
Apart from the above misconceptions, the subtask can also treat any other

misconceptions that may be recognised, for instance, based on a database of
domain-specific misconceptions [Stevens et al., 1982; Burton, 1982].

Justification The idea behind checking for consecutive misconceptions is that
one misconception is commonly based on another one, which we want to discover
with this opportunity [Stevens et al., 1982]. The first check-origin-problem also
gives students the opportunity to correct themselves, in case the misconception
was wrongly assessed.

Examples See Example 6.6.3, S4 - T7.

242 Chapter 6. Socratic Teaching-Strategy

6.5.8 Aligning Subtask

Hinting Situations The aligning subtask is called, provided that the stu-
dent performance is low, when:

1. The student gives a correct answer for the first time after at least five
hints.

2. A proof step is completed by the student on which some hints have been
produced.

These situations give reason to believe that maybe the student does not fully
understand the followed process for arriving at the answer.

Behaviour Aligning subtask goes back as many hints as there have been
produced for the step until now, provided there are at least five hints on which
no aligning has been done yet, and reproduces their equivalent active hint. If
the student answer is anything but correct, it gives the answer to that hint
away and produces the next active hint. The following issues are central to the
subtask:

1. Aligning is realised by the dialogue-move align the active hint already
produced in the session when eliciting the answer, or the equivalent passive
hint when giving away the answer.

2. Not all previous hints are addressed. Only one of the hints that address
the same point is produced in the course of aligning. This is no more
as detailed as the subtasks that originally produced the hints, namely
performable-step and meta-reasoning.

3. The meta-reasoning hint is preferred if it happens to be available for re-
production to the performable step equivalent, as the former includes the
latter.

4. We also do not reproduce pragmatic hints, passive domain-relation hints,
or any of the hints produced in the subtasks that are not directly related
to the line of reasoning, as the aim is to concentrate on the reasoning until
now and provide a run-through for it.

At the moment, we are focusing on the repetition of the minimal number of
hints to avoid overload and frustration. If it proves insufficient we will consider
the addition of all-proof-step-meta-reasoning for a rounder schema acquisition,
even when such hints have not been produced during the session before.

Justification Aligning is a common tactic used among tutors who prefer
dialectic tutoring. The idea is that if the student was able to come to grips
with the last hint and provides the answer, she might have started to follow the
correct reasoning and be able to understand the previous steps better.

6.5. Substrategies 243

Gertner and colleagues [Gertner et al., 1998] use the notion of making sure
that the student has learned. In their probabilistic student model, they use
different weights for representing that the student has acquired some piece of
knowledge when the student makes use of it directly, as opposed to that piece
of knowledge being given away by a hint. In the latter case they use a strategy
similar to aligning.

Examples See Example 6.6.3, T11 - T17.

6.5.9 Spell-out-task Subtask

Hinting Situations This subtask is called when the student shows some un-
willingness to proceed, or the GMCLA allows us to infer that the student is
frustrated and needs closer guidance. We come out of the spell-out-task

subtask if the number of correct answers for one step exceeds the number of
wrong answers, or if the proof step is completed.

Behaviour Spell-out-task consists of taking the student through all the
substeps of the task (all instructional points that need to be addressed) and
giving the answer away more easily. If there is a wrong answer, it gives the cor-
responding sub-answer away. On the whole, it treats all domain-contributions
as wrong, apart from the categories, ill formed, wrong linguistic term, misconcep-

tion and missing basic know. That makes the substrategy less eliciting and more
guiding.

In case of student input other than domain-contributions, the behaviour is
as follows:

1. If students resign from the task, the system asks them to read the lesson
material again, before the close guidance can carry on.

2. If there is a request-assistance, there are two cases:

(a) When the answer to the assistance requested has been dealt with
before in the session, the subtask provides it again by a correct-
information.

(b) Otherwise, the answer is not provided, since spell-out-task is going
to lead the student to it at the appropriate point, anyway.

3. A time-out is treated as a wrong domain-contribution and not via diagno-

stics.

4. A request-evaluation results in a signal-evaluation, after first encouraging
the student.

244 Chapter 6. Socratic Teaching-Strategy

Justification The motivation for applying the more guiding subtask (spell-
out-task) is that eliciting is still present, but the student is not left unguided at
any point. This, of course, means that the student also does not have the task
initiative anymore.

Spell-out-task replaces the switch to the didactic strategy, which was used
in the Wizard-of-Oz experiments, as it is far more consistent with our Socratic
teaching model. It carries on with hinting, hence it does not require a huge
change in the style of tutoring, and provides a better opportunity to students
to start getting back on track with the help of hints, and in the end complete
as much of the task by themselves as possible.

Examples See Example 6.6.3, T8 - S10.

6.5.10 Recapitulation Subtask

Hinting Situations Recapitulation is called at the end of every proof step
and at the end of the proof.

Behaviour It recapitulates the proof step or the proof respectively, based
on the particular proof that the student develops, as well as on the guidance
that has been provided in terms of hints. We produce all main meta-reasoning
hints and all hints that were produced in the course of the proof step as these
summarise the reasoning for the step. The recapitulation of the proof should
be a summary of the proof performed by the student, which is a matter of NL
generation. There are tools that provide NL generation of proofs, e.g. [Fiedler,
2001b; 2001a].

Justification Recapitulating the proof is really another reminder of the steps
which have been followed during the proof. It is the most standard tactic used
by human tutors, even the more didactic oriented ones. The tutor recapitulates
in the best possible way, using correct terminology and causal links appropri-
ately. Therefore, recapitulation also shows students the best way to formulate
proof steps. Wood and Middleton [Wood and Middleton, 1975] refer to this as
“demonstration” (p. 98).

In addition, recapitulation is a way of increasing the perceived relevance
of the task. It helps to increase the continuity of the task and its different steps,
thus contributing to the motivation of the student [Keller, 1987]. Delclos and
Harrington [Delclos and Harrington, 1991] have experimentally tested recapit-
ulations by using review and discussion as part of their training phase. The
relevant condition performed better in subsequent problem solving.

Examples See Example 6.6.1, T - last.

6.6. General Examples 245

6.6 General Examples

In this section we examine some examples which Menon produces with more
steps involved to demonstrate how the strategy develops over multiple turns.
Example 6.6.1 deals with tutoring the first step, and Example 6.6.2 the first
and second step of the same proof. They depict the behaviour of Menon for
different student responses and different student levels. Example 6.6.3 still uses
the same proof, to allow comparison, but develops over more steps and shows
more explicitly how substrategies work. Finally, Example 6.6.4 explores the
different possibilities for students to take back what they did before and the
corresponding behaviour of Menon. In some cases there is no corresponding NL
formulation for each part of the feedback, which means that the formulations
for two parts have been collapsed (e.g., Example 6.6.3, T8). For every example,
we explore the student and the tutor turn that follows it in pairs. We include
comments first for the student turn and then for the tutor feedback to it. We
also provide the uncommented version of the example, for a better overview.
The exact dialogue moves which constituted Menon’s output can be found in
brackets proceeding their NL formulation. For brevity, we do not show the
specifications of the dialogue moves that Menon also provides and were detailed
in Chapter 4. Such specifications are represented in Menon as dialogue-move
parameters (:dmpar in Figure 6.2). All NL formulations are just examples that
we made up for the purposes of demonstration, as Menon does not provide NL
output. The same holds for discourse cues, where they are not annotated with
a dialogue act. The annotated ones are provided by Menon. Note that the
instructional points addressed in the examples and the order in which they are
addressed depict different applications of the instructional blueprint introduced
in Section 3.2.

Before we move on to the examples, we list the proof steps in the proof pre-
sented here and the rules of inference for them in the form of give-away-infer-
ence-rule hints, for the orientation of the reader. The steps are given at a very
low level of abstraction. Step 1, for instance, might seem obvious, however all
students in the Wizard-of-Oz experiment had to be explicitly instructed on it
as presented here. The German sentences are actual formulations by the tutor
in the experiment.

Give-away-inference-rule hints for all proof steps
The task was given in the form:
Wenn A ⊆ K(B), dann B ⊆ K(A)
[If A ⊆ K(B), then B ⊆ K(A)]

1. Zunächst setzen wir die Gültigkeit von A ⊆ K(B) voraus, denn dies ist
die Voraussetzung, und wir beweisen, dass B ⊆ K(A) daraus folgt.
[To begin with, we assume that A ⊆ K(B) holds, as this is the premise,
and we prove that B ⊆ K(A) follows.]

[A ⊆ K(B)]

246 Chapter 6. Socratic Teaching-Strategy

.

.

.
B ⊆ K(A)

———————————–
A ⊆ K(B) ⇒ B ⊆ K(A)

(give-away-inf-rule) You have to get rid of the implication (if-then relation)
by assuming the hypothesis and proving the conclusion from that.

2. Dann müssen wir zeigen, dass alle Elemente aus B, auch in K(A) sind.
[Then we have to show that all elements of B are also in K(A)]

(give-away-inf-rule) Apply the definition of subset.

3. Dann nehmen wir ein beliebiges Element x ∈ B und zeigen, daß dieses
auch in K(A) sein muß.
[Then we take an arbitrary element x ∈ B and show that this must also
be in K(A)]

(give-away-inf-rule) You have to use the rule that tells you how to prove
something for all elements.

4. Dann ist x nicht in K(B)
[Then x is not in K(B)]

(give-away-inf-rule) Use the definition of complement.

5. Aber wenn x ist nicht in K(B) und A ⊆ K(B), das heisst, dass x ist nicht
in A
[But if x is not in K(B) and A ⊆ K(B), that means that x is not in A]

(give-away-inf-rule) Here you have to use that A ⊆ K(B) and you know
that x ∈ B.

6. Wenn x aber nicht in A ist, so ist es in K(A).
[But if x is not in A, then it is in K(A)]

(give-away-inf-rule) Use the definition of complement

6.6.1 First proof step with no correct answers

In this example, the student responses up to S5, where the step was given away,
are taken from the Dialog corpus (participant socratic23). Apart from S5, for
which a new category was introduced after the analysis of the corpus, the cat-
egorisation of the student input is the one done by the tutor-wizard. S6 is a
wrong answer taken from participant socratic13, in order to demonstrate the
prolongation of the session by one turn. In all places, the feedback is the one
currently produced by Menon.

6.6. General Examples 247

Commented Example

At the beginning of the session the dialogue is initiated.

T0: (initiate-dialogue) Hello!
S0: Hello!

Since the HSS is empty, the tutoring task is initiated, and the student is
prompted for the next step, as the proof is not complete.

T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me
anything you can think of for proving the following: If A is a
subset of K(B), then B is a subset of K(A)!

S1: (wrong) A ⊆ B

This answer is categorised as wrong, since it does not contain any accu-
rate parts. The algorithm calls the strategy Socratic, which produces the
dialogue-move signal-wrong (as general pedagogical feedback) and calls the sub-
task conceptual, as no pragmatically interesting elements are found in the
answer.

Since the number of hints produced so far is LH = 0, the number of wrong
answers LW = 1 and since there is no domain knowledge relevant to the proof
step expected6, subtask proof-step-meta-reasoning is called through first
subtask per-step and then subtask domain-object.

Note that the search for domain knowledge is done by help of the domain
ontology, represented in the HSS. The first applicable hint is produced, which
tries to get the student to reason about what to do first, and the indication that
this is a subtask. The instructional point is Proof Step and more specifically
Starting Point. The hint is active, because the GMCLA ≤ 0.75, give-away-
relevant-concept is produced. The Relevant Concept is the implication, which is
referred to as “the if-then relation”. The active function of this hint is to elicit
the Rule of Inference, as will become evident later on in the example.

T2: (signal-wrong) This is not quite right. (initiate-subtask-
proof-step-meta-reas) Let’s see now. (elicit-starting-
point) First think of how can you start handling the problem?

S2: (irrelevant) A ⊆ K(K(A))

6As an example of domain knowledge here, the Relevant Concept is the implication.

248 Chapter 6. Socratic Teaching-Strategy

With this hint, the LH is incremented by 1. However, the hint is not suffi-
cient to help the student. She gives an answer that is correct in principle, but
does not lead anywhere. We call such answers irrelevant and they increase the
LW . The same functions are called, but this time another hint is produced,
which tells the student where the reasoning should start. This is a passive hint,
hence a prompt is also produced.

T3: (signal-irrelevant) That’s correct, but not really relevant
at the moment. (give-away-starting-point) Identify rather
what’s given and what you have to prove. (prompt) Go on!

S3: (resign) Nein [No]

The new student answer is equivalent to “I don’t know”, which we categorise
as a resign, and increments the LW . Therefore, the function socratic produces
an explicit encourage, which prompts the student to try to answer the previous
hint, and reproduces that hint. The counters are now LH = 2 and LW = 3.

T4: (encourage) It’s a bit difficult, right? (prompt-resign) But give
it a go and see what you can do! Try to identify what’s given
and what you have to prove.

S4: (unknown) A ⊆ K(B) ≡ B ⊆ K(A)

The student answer cannot be categorised at all. Therefore the tutor points
this out, closes the previous subtask and calls the diagnostics subdialogue,
which first checks what the problem is.

T5: (close-subtask-proof-step-meta-reas) OK. (signal-
unknown) I’m not sure I understand what you are getting
at. (initiate-subdial-diagnostics) So, (check-origin-
problem) can you explain a bit more?

S5: (step-size) A ⊆ K(B) daraus folgt B ⊆ K(A)
[A ⊆ K(B) from that it follows B ⊆ K(A)]

The student’s response to the clarification subdialogue is categorised as step-
size, which means that what the student inputs is correct, but it needs to be
proved. This however counts as a wrong answer in our model, and we now have
LH = 3 and LW = 4. The tutor moves on with the reasoning, and asks the
student to think about the premise and the conclusion.

6.6. General Examples 249

T6: (signal-step-size) Right, that’s quite a big step though. Do
just (elicit-prem-conc) concentrate on what is assumed and
what you have to prove first.

S6: (wrong) A 6⊆ B

With this wrong answer, the student model is too bad to carry on hinting
for this step. The tutor gives away any pending answers, the step and its meta-
reasoning.

T7: (signal-wrong) OK! Now, that’s not quite correct.
(give-away-prem-conc) What we have to assume is that A is a
subset of K(B) and we have to prove that B is a subset of K(A)
(close-subdial-diagnostics) So, (give-away-proof-step)
the proof step is: Let A ⊆ K(B), we will show that B ⊆ K(A).
(initiate-subtask-step-meta-reas) Let’s just look at the
whole step now. (give-away-proof-step-meta-reas) We start
by identifying what we have to assume and prove, here we have
to assume that A is a subset of K(B) and prove that B is a
subset of K(A). Then we concentrate on the if-then relation
that is central to our mathematical expression and therefore
helps us prove what we want. So, we use the inference if x
then y, assume x and prove y, to get rid of the if-then relation.
Finally, we substitute the if-then with this rule, which gives us
the step: Let A ⊆ K(B), will show that B ⊆ K(A). OK, now
(prompt-step) try the next step!

Now, the LH is again incremented by 1 and LH = 5, so we switch to the
more guiding subtask spell-out-task, which we do not depict here.

At the end of the session, the last tutor turn recapitulates the whole proof.
We provide here the recapitulations of the proof that the tutor in the WoZ ex-
periments formulated for participant socratic23, based on the proof steps that
were actually used in this session.

T-l: (initiate-subtask-recap-(proof)) Ich zeige Ihnen nun den
gesamten Beweis: Zunächst setzen wir die Gültigkeit von A ⊆
K(B) voraus, denn dies ist die Voraussetzung. Dann nehmen
wir ein beliebiges Element x ∈ B und zeigen, daß dieses auch
in K(A) sein muß. Sei also x in B. Dann ist x nicht in K(B)
und deshalb nach Voraussetzung auch nicht in A. Wenn x aber
nicht in A ist, so ist es in K(A), was den Beweis abschließt, da
x beliebig war.

250 Chapter 6. Socratic Teaching-Strategy

[Now I’m going to show you the whole proof: First we assume
the validity of A ⊆ K(B), as this is the hypothesis. Then we take
an arbitrary element x ∈ B and show, that it has to be in K(A)
as well. Let x be in B. Then x is not in K(B) and therefore
according to the assumption also not in A. But if x is not in
A, it is in K(A), which concludes the proof as x was arbitrary.]
(close-dialogue) This task is now complete.

Uncommented Example

T0: (initiate-dialogue) Hello!
S0: Hello!
T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me

anything you can think of for proving the following: If A is a
subset K(B), then B is a subset of K(A)!

S1: (wrong) A ⊆ B
T2: (signal-wrong) This is not quite right. (initiate-subtask-

proof-step-meta-reas) Let’s see now. (elicit-starting-
point) First think of how can you start handling the problem?

S2: (irrelevant) A ⊆ K(K(A))
T3: (signal-irrelevant) That’s correct, but not really relevant

at the moment. (give-away-starting-point) Identify rather
what’s given and what you have to prove. (prompt) Go on!

S3: (resign) Nein [No]
T4: (encourage) It’s a bit difficult, right? (prompt-resign) But give

it a go and see what you can do! Try to identify what’s given
and what you have to prove.

S4: (unknown) A ⊆ K(B) ≡ B ⊆ K(A)
T5: (close-subtask-proof-step-meta-reas) OK. (signal-

unknown) I’m not sure I understand what you are getting
at. (initiate-subdial-diagnostics) So, (check-origin-
problem) can you explain a bit more?

S5: (step-size) A ⊆ K(B) from that it follows B ⊆ K(A)
T6: (signal-step-size) Right, that’s quite a big step though. Do

just (elicit-prem-conc) concentrate on what is assumed and
what you have to prove first.

S6: (wrong) A 6⊆ B

6.6. General Examples 251

T7: (signal-wrong) OK! Now, that’s not quite correct.
(give-away-prem-conc) What we have to assume is that A is a
subset of K(B) and we have to prove that B is a subset of K(A)
(close-subdial-diagnostics) So, (give-away-proof-step)
the proof step is: Let A ⊆ K(B), we will show that B ⊆ K(A).
(initiate-subtask-step-meta-reas) Let’s just look at the
whole step now. (give-away-proof-step-meta-reas) We start
by identifying what we have to assume and prove, here we have
to assume that A is a subset of K(B) and prove that B is a
subset of K(A). Then we concentrate on the if-then relation
that is central to our mathematical expression and therefore
helps us prove what we want. So, we use the inference if x
then y, assume x and prove y, to get rid of the if-then relation.
Finally, we substitute the if-then with this rule, which gives us
the step: Let A ⊆ K(B), will show that B ⊆ K(A). OK, now
(prompt-step) try the next step!

T-l: Now I’m going to show you the whole proof: First we assume the
validity of A ⊆ K(B), as this is the hypothesis. Then we take
an arbitrary element x ∈ B and show, that it has to be in K(A)
as well. Let x be in B. Then x is not in K(B) and therefore
according to the assumption also not in A. But if x is not in
A, it is in K(A), which concludes the proof as x was arbitrary.
(close-dialogue) This task is now complete.

6.6.2 First and second proof steps with partial and correct

answers

Commented Example

T0: (initiate-dialogue) Hello!
S0: Hello!

The HSS is empty, the tutoring task is initiated, and the student is prompted
for the next step.

T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me
anything you can think of for proving the following: If A is a
subset K(B), then B is a subset of K(A)!

S1: (partial-answer(ia)) I have to identify what’s given and what
I have to prove.

This answer is a partial one, since what the student states is a correct sub-

252 Chapter 6. Socratic Teaching-Strategy

part, but is not the Proof Step, as expected at this point. The local counts are
LH = 0, LW = 0, LC = 0 and the GMCLA ≤ 0.3. Subtask proof-step-meta-

reasoning is called for the step. The student understands the starting point,
so the active hint to address the Premise and Conclusion instructional points is
produced.

T2: (encourage) Great! (signal-pa) You’re on the right track.
(initiate-subtask-proof-step-meta-reas) We’re taking it
from the start. So, go ahead and (elicit-prem-conc) find what
is assumed and what you have to prove.

S2: (correct) I have to prove that B is a subset of K(A), and A ⊆
K(B) is assumed.

The student response answers the eliciting hint, so it is correct, but the step
is not completed, so the next hint elicits the proof direction. Note that the proof
is direct, therefore the abstract method (Directness) is not addressed.

T3: (signal-accept) Correct! (elicit-specific-method) Now,
how can you manipulate the expression to prove what you want?

S3: (correct) I have to simplify what we are trying to prove.

With this answer, the student has covered all proof-step meta-reasoning in-
structional points, so the subtask rel-con-meta-reasoning is called and since
the GMCLA is still ≤ 0.3 (there have been not more non-correct answers), the
meta-reasoning for the Relevant Concept is elicited.

T4: (signal-accept)Correct! (close-subtask-proof-step-meta-
reas) OK. (initiate-subtask-rel-con-meta-reas) Let’s see,
then. (elic-meta-reas-rel-con) Try to find something in the
expression that would help you simplify the problem.

S4: (correct) Do you mean the if-then?

The student names the Relevant Concept correctly, and with that answer we
move out of the meta-reasoning and the proof-step subtask domain-object is
initiated, which asks for the Subordinate Concept.

T5: (signal-accept) Exactly! (close-subtask-rel-con-meta-
reas) All right then. (initiate-subtask-domain-object)
Now, (elicit-sub-concept) what do you know about the if-
then relation that can help you manipulate the expression?

6.6. General Examples 253

S5: (correct) Something about what I need to prove?

The Subordinate Concept is indeed what has to be proven, so the subtask
inference-rule is called next, and produces the hint that just asks for the
inference hint directly.

T6: (signal-accept) Exactly! (close-subtask-domain-object,
initiate-subtask-inf-rule) So, (elicit-inf-rule) can you
tell me then which rule you can use here?

S6: (correct) Yes, if X ⇒ Y, then let X and prove Y.

The student knows the Rule of Inference, so the subtask substitution now
just asks her to apply it.

T7: (encourage) Good, (signal-accept) that is correct! (close-
subtask-inf-rule) OK. (initiate-subtask-subst) Now,
(elicit-substitution) try to apply this rule to the expression.

S7: (correct) Let A ⊆ K(B) and prove that B ⊆ K(A).

The student applies the rule, and with that performs the first proof step.
The tutor accepts it and prompts for the next step. All HSS apart from the
GMCL are reset.

T8: (signal-accept) Correct! (prompt-step) Move on to the next
step!

S8: (correct) Let x ∈ of B, we will show that x ∈ K(A)

This is the next Proof Step, so the answer is correct and the tutor just ac-
cepts it and prompts the student for the following step.

T9: (signal-accept) Correct! (prompt-step) What’s the next
step?

S9: (wrong) Also let y ∈ of A

This is a wrong answer, so hinting starts from the proof-step-meta-reas-

oning subtask again, but this time leaving out the hint starting-point, since
the student has already performed a step, and should know where to start. In-

254 Chapter 6. Socratic Teaching-Strategy

stead, the premise and conclusion are elicited.

T10: (signal-wrong) That’s not right, actually. (initiate-sub-
task-proof-step-meta-reas) Let’s take it from the start again.
First, (elicit-prem-conc) find what is assumed and what you
have to prove.

S10: (partial-answer) x ∈ B is assumed and I have to prove that B
subset K(A)

The student cannot answer the eliciting hint, so the tutor provides the pas-
sive hint that gives the answer to the previous eliciting hint away.

T11: (encourage) OK. (signal-pa) Almost right.
(give-away-prem-conc) What is assumed is x ∈ B, and
what you have to prove is x ∈ K(A)
. . .

Uncommented Example

T0: (initiate-dialogue) Hello!
S0: Hello!
T1: (initiate-task, promp) OK, let’s look at a proof! Tell me

anything you can think of for proving the following: If A is a
subset K(B), then B is a subset of K(A)!

S1: (partial-answer(ia)) I have to identify what’s given and what
I have to prove.

T2: (encourage) Great! (signal-pa) You’re on the right track.
(initiate-subtask-proof-step-meta-reas) We’re taking it
from the start. So, go ahead and (elicit-prem-conc) find what
is assumed and what you have to prove.

S2: (correct) I have to prove that B is a subset of K(A), and A ⊆
K(B) is assumed.

T3: (signal-accept) Correct! (elicit-specific-method) Now,
how can you manipulate the expression to prove what you want?

S3: (correct) I have to simplify what we are trying to prove.
T4: (signal-accept)Correct! (close-subtask-proof-step-meta-

reas) OK. (initiate-subtask-rel-con-meta-reas) Let’s see,
then. (elic-meta-reas-rel-con) Try to find something in the
expression that would help you simplify the problem.

S4: (correct) Do you mean the if-then?

6.6. General Examples 255

T5: (signal-accept) Exactly! (close-subtask-rel-con-meta-
reas) All right then. (initiate-subtask-domain-object)
Now, (elicit-sub-concept) what do you know about the if-
then relation that can help manipulate the expression?

S5: (correct) Something about what I need to prove?
T6: (signal-accept) Exactly! (close-subtask-domain-object,

initiate-subtask-inf-rule) So, (elicit-inf-rule) can you
tell me now which rule you can use here?

S6: (correct) Yes, if X ⇒ Y, then let X and prove Y.
T7: (encourage) Good, (signal-accept) that’s correct! (close-

subtask-inf-rule) OK. (initiate-subtask-subst) Now,
(elicit-substitution) try to apply this rule to the expression.

S7: (correct) Let A ⊆ K(B) and prove that B ⊆ K(A).
T8: (signal-accept) Correct! (prompt-step) Move on to the next

step!
S8: (correct) Let x ∈ of B, we will show that x ∈ K(A)
T9: (signal-accept) Correct! (prompt-step) What’s the next

step?
S9: (wrong) Also let y ∈ of A
T10: (signal-wrong) That’s not right, actually. (initiate-sub-

task-proof-step-meta-reas) Let’s take it from the start again.
First, (elicit-prem-conc) find what is assumed and what you
have to prove.

S10: (partial-answer) x ∈ B is assumed and I have to prove that B
subset K(A)

T11: (encourage) OK. (signal-pa) You’re almost right.
(give-away-prem-conc) So, what is assumed is x ∈ B,
but what you have to prove is x ∈ K(A)
. . .

6.6.3 Multiple steps and multiple substrategies

Commented Example

T0: (initiate-dialogue) Hello!
S0: Hello!
T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me

anything you can think of for proving the following: If A is a
subset of K(B), then B is a subset of K(A)!

S1: (partial-answer) OK, prove B ⊆ K(A) and simplify the if-then.

The student knows the Relevant Concept, that she has to deal with a direct
proof, and that she needs to do a backward step. Therefore, the tutor asks for
the Subordinate Concept in relation to the Relevant Concept.

256 Chapter 6. Socratic Teaching-Strategy

T2: (encourage) Great! (signal-pa) You are on the right track.
(initiate-subtask-rel-con-meta-reas) Next (elicit-sub-
con-meta-reas) consider what you know about the if-then rela-
tion that can help you find the right rule for the next step?

S2: (near-miss) Do you mean what I have to assume?

The student writes “assume” instead of “prove”, and the two are converse
to each other (cf. Chapter A). Here the student’s answer is categorised first
as a near-miss, as it’s possible that the student really meant to write ”prove”
instead of ”assume”. The student is doing well, so there is hope that she can
correct her own mistake. Therefore, the tutor just points out the discrepancy.

T3: (encourage) Right. (near-miss) There’s a minor problem with
your answer. (discrepancy) Is that really what you wanted to
say? (prompt-action)

S3: (wrong) Yes.

The confirmation by the student makes her answer wrong, and by that the
subtask near-miss is initiated, to treat the problem.

T4: (close-subtask-rel-con-meta-reas) OK, then (signal-
wrong) that’s not quite right. (initiate-subtask-near-miss)
Let’s see. (give-away-converse) What you said is the reverse
of what you need. (prompt-action) Try once more!

S4: (step-size) A subset K(B) from that follows B subset K(A).

The student restates the expression to be proven (which was an actual step-
size in the corpus, cf. Example 6.6.1 S5). Since there has been no other step-
size, we don’t assume there’s a relevant misconception. However, the student
also does not correct her answer based on the give-away-converse hint, so we
consider that as a misconception. She might not be clear about the difference
between premise and conclusion. The subtask misconception is called, which
starts by asking the student to explain the problematic input a bit more. The
student input is a parameter to the dialogue move, which Menon provides.

T5: (close-subtask-near-miss) OK. (signal-step-size) That is
big a step. (initiate-subtask-miscon) Let’s see. (check-
origin-problem(converse)) Can you explain first what you
meant by “what I have to assume” above?

6.6. General Examples 257

S5: (step-size) I meant that A is a subset of K(B) and that it
follows that B is a subset of K(A).

The student insists on the step-size, although she was pointed to it. We
don’t treat the previous misconception just yet, as we have encountered an-
other one already. Therefore, we now think there is a misconception relevant to
the step-size. The student might not understand when something needs to be
proven, so we ask her to explain that. The subtask misconception repeats this
process until there are no further misconceptions encountered and then deals
with all encountered misconceptions.

T6: (signal-misc) There seems to be some misconception here.
Again, that step is too big. (check-origin-problem(step-
size)) Can you explain it?

S6: (partial-answer) I have to use if-then and say let x and prove
y.

The student names the Rule of Inference and seems to be out of the miscon-
ceptions cycle. We explain to her the misconceptions encountered via miscon-
ception pragmatic hints, and now we are over five hints, so we switch to subtask
spell-out-task and elicit the Substitution.

T7: (encourage) Great! (signal-pa) you’re making progress!
(close-subtask-explain-miscon) So, (misconception-con-
verse) keep in mind that what you assume is your
premises and what you have to prove is your conclusion.
(misconception-step-size) Also remember that you have to
prove or justify everything that is not a premise, or not
shown before. (initiate-subtask-spell-out-task) Now,
(elicit-substitution) try to apply the rule let x and prove
y to the expression.

S7: (request-assistance) How do I apply it?

The student doesn’t know how to apply the rule and asks for explicit help.
Because the purpose of the spell-out-task is to take them step-by-step through
the task and she is going to be led to the application of the rule anyhow, the
request assistance remains unanswered. Rather, we inform the student that
this is a more guiding strategy and we insist that she answers the active hint
produced before, and reproduce it.

258 Chapter 6. Socratic Teaching-Strategy

T8: (encourage) It’s a bit difficult, (initiate-subtask-spell-
out-task) so let me help you do this step-by-step.
(elicit-substitution) First see if you can apply the rule to
the expression.

S8: (request-assistance) Which rule?

The student insists on asking for help, but this time she asks for the Rule of

Inference, which is already known for this step. So, the tutor just gives it away
with the pragmatic hint that indicates that it should be taken for granted, and
insists again on eliciting the Substitution.

T9: (encourage) (correct-info-(give-away-inf-rule)) The rule
if X⇒ Y, then let X and prove Y. (elicit-substitution) Can
you apply it? (prompt-action) Can you apply it now?

S9: (correct) Let A subset K(B), then prove that B subset K(B).

The student seems to know how to substitute but instead of writing “B
subset K(A)” she has written “B subset K(B)”. This is considered an ill-formed

near-miss to begin with, so the student is informed about it and the answer
to the previous hint is provided, as we are inside spell-out-task, before the
student is prompted to write the step.

T10: (encourage) Good! Now, (signal-nearMiss) your answer is not
exactly accurate, so think carefully. (give-away-substitution)
You have to substitute the appropriate parts of your expression,
for the variables in the rule. (elicit-proof-step) Now write
the whole step!

S10: (correct) Let A subset of K(B), and prove that B subset K(A).

The student applies the rule correctly this time, and with this completes
the step. Because so many hints were needed for this step, a recapitulation is
produced and the hinting for the next step starts.

6.6. General Examples 259

T11: (signal-accept) Correct! (encourage) Very good! (step-
meta-reas) So, once again, the reasoning for this whole
step is as follows: (give-away-prem-conc) We assume that
A ⊆ K(B) and what we have to prove is that B ⊆ K(A).
(give-away-spec-meth) Next, we want to simplify the expres-
sion. (give-away-rel-con-meta-reas) So, we start with the
if-then relation, because it’s central in the expression and can
help us simplify the problem. (give-away-dom-tech) We have
to get rid of the if-then, and (give-away-elab-dom-obj) the
rule that helps us here is “if x then y, assume x and prove
y”. (give-away-inf-rule-appl) Finally, we substitute the vari-
ables in the rule by the corresponding values in our expres-
sion. (elicit-start-point) Now, how can you start attacking
(prompt-step) the next step?

S11: (partial-answer) I have to look for a rule to handle this, right?

The student knows the abstract method, but nothing else about the step at
this point. The student performance requires the meta-reasoning subtask to be
called for more support, but it is good enough to yield eliciting hints. So, the
tutor elicits the meta-reasoning for the Relevant Concept.

T12: (encourage) Right! (signal-pa) That’s a good start
(initiate-subtask-rel-con-meta-reas) Now, (elicit-rel-
con-meta-reas) what can you see in the expression that might
help you simplify the problem?

S12: (correct) The subset.

The Relevant Concept is provided, which makes the response correct. The
tutor accepts it and elicits the meta-reasoning for the Subordinate Concept.

T13: (signal-accept) Correct! (close-subtask-rel-con-meta-
reas) OK then. (initiate-subtask-sub-con-meta-reas) So,
(elic-sub-con-meta-reas) what is connected to the subset and
can help you prove what you want.

S13: (wrong) The K.

The student has a problem with the Subordinate Concept, so this is given
away and the student is prompted for the next action.

260 Chapter 6. Socratic Teaching-Strategy

T14: (signal-wrong) That’s not quite right. (give-away-sub-con-
meta-reas) You can consider the concept element and how
it connects to the subset to manipulate the expression.
(prompt-action) Can you move on?

S14: (correct) I got it! All elements of B should also be elements of
K(A)

This is enough for the student to complete the step, but the student perfor-
mance is not good. To make sure that the reasoning is understood, the tutor
starts the aligning subtask, and reproduces the active equivalent of the first
hint for this step.

T15: (signal-accept) Correct! (close-subtask-sub-con-meta-
reas) So, (initiate-subtask-aligning) let us look at our
steps once again. (align-elicit-rel-con-meta-reas) Which
is the concept from which we start simplifying the problem?

S15: (correct) With the subset.

The answer is correct, so the teacher moves on with the next hint already
produced, as part of aligning, with a different phrasing.

T16: (signal-accept)Correct! (align-elicit-sub-con-meta-reas)
And what was connected to the subset that can help you prove
what you want?

S16: (resign) Yeah, yeah...

The student, still does not know the answer to this hint. Since we are inside
the subtask aligning, the tutor just gives this information away. There have
been no other hints for this step, so no elicit align hint is produced for this turn
and aligning for the step is now completed. The tutor prompts for the next step.

T17: (encourage) OK, then (align-give-away-sub-con-metareas)
As we said, you need to consider the element and how it connects
to the subset to manipulate the expression. (prompt-step) Now,
what’s the next step?
. . .

6.6. General Examples 261

Uncommented Example

T0: (initiate-dialogue) Hello!
S0: Hello!
T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me

anything you can think of for proving the following: If A is a
subset of K(B), then B is a subset of K(A)!

S1: (partial-answer) OK, prove B ⊆ K(A) and simplify the if-then.
T2: (encourage) Great! (signal-pa) You are on the right track.

(initiate-subtask-rel-con-meta-reas) Next (elicit-sub-
con-meta-reas) consider what you know about the if-then rela-
tion that can help you find the right rule for the next step?

S2: (near-miss) Do you mean what I have to assume?
T3: (encourage) Right. (near-miss) There’s a minor problem with

your answer. (discrepancy) Is that really what you wanted to
say? (prompt-action)

S3: (wrong) Yes.
T4: (close-subtask-rel-con-meta-reas) OK, then (signal-

wrong) that’s not quite right. (initiate-subtask-near-miss)
Let’s see. (give-away-converse) What you said is the reverse
of what you need. (prompt-action) Try once more!

S4: (step-size) A subset K(B) from that follows B subset K(A).
T5: (close-subtask-near-miss) OK. (signal-step-size) That is

big a step. (initiate-subtask-miscon) Let’s see. (check-
origin-problem(converse)) Can you explain first what you
meant by “what I have to assume” above?

S5: (step-size) I meant that A is a subset of K(B) and that it
follows that B is a subset of K(A).

T6: (signal-misc) There seems to be some misconception here.
Again, that step is too big. (check-origin-problem(step-
size)) Can you explain it?

S6: (partial-answer) I have to use if-then and say let x and prove
y.

T7: (encourage) Great! (signal-pa) you’re making progress!
(close-subtask-explain-miscon) So, (misconception-con-
verse) keep in mind that what you assume is your
premises and what you have to prove is your conclusion.
(misconception-step-size) Also remember that you have to
prove or justify everything that is not a premise, or not
shown before. (initiate-subtask-spell-out-task) Now,
(elicit-substitution) try to apply the rule let x and prove
y to the expression.

S7: (request-assistance) How do I apply it?

262 Chapter 6. Socratic Teaching-Strategy

T8: (encourage) It’s a bit difficult, right?
(initiate-subtask-spellout-task) so let me help you
do this step-by-step. (elicit-substitution) First see if you
can apply the rule to the expression.

S8: (request-assistance) Which rule?
T9: (encourage) (correct-info-(give-away-inf-rule)) The rule

if X⇒ Y, then let X and prove Y. (elicit-substitution) Can
you apppy it? (prompt-action) Can you apply it now?

S9: (correct) Let A subset K(B), then prove that B subset K(B).
T10: (encourage) Good! Now, (signal-nearMiss) your answer is not

exactly accurate, so think carefully. (give-away-substitution)
You have to substitute the appropriate parts of your expression,
for the variables in the rule. (elicit-proof-step) Now write
the whole step!

S10: (correct) Let A subset of K(B), and prove that B subset K(A)
T11: (signal-accept) Correct! (encourage) Very good! (step-

meta-reas) So, once again, the reasoning for this step is
as follows: (give-away-prem-conc) We assume that A ⊆
K(B) and what we have to prove is that B ⊆ K(A).
(give-away-spec-meth) Next, we want to simplify the expres-
sion. (give-away-rel-con-meta-reas) So, we start with the
if-then relation, because it’s central in the expression and can
help us simplify the problem. (give-away-dom-tech) We have
to get rid of the if-then, and (give-away-elab-dom-obj) the
rule that helps us here is “if x then y, assume x and prove
y”. (give-away-inf-rule-appl) Finally, we substitute the vari-
ables in the rule by the corresponding values in our expres-
sion. (elicit-start-point) Now, how can you start attacking
(prompt-step) the next step?

S11: (partial-answer) I have to look for a rule to handle this, right?
T12: (encourage) Right! (signal-pa) That’s a good start

(initiate-subtask-rel-con-meta-reas) Now, (elicit-
rel-con-meta-reas) what can you see in the expression that
might help you simplify the problem?

S12: (correct) The subset.
T13: (signal-accept) Correct! (close-subtask-rel-con-meta-

reas) OK then. (initiate-subtask-sub-con-meta-reas) So,
(elic-sub-con-meta-reas) what is connected to the subset and
can help you prove what you want.

S13: (wrong) The K.
T14: (signal-wrong) That’s not quite right. (give-away-sub-con-

meta-reas) You can consider the concept element and how
it connects to the subset to manipulate your expression.
(prompt-action) Can you move on?

S14: (correct) I got it! All elements of B should also be elements of
K(A)

6.6. General Examples 263

T15: (signal-accept) Correct! (close-subtask-sub-con-meta-
reas) So, (initiate-subtask-aligning) let us look at our
steps once again. (align-elicit-rel-con-meta-reas) Which
is the concept from which we start simplifying the problem?

S15: (correct) With the subset.
T16: (signal-accept)Correct! (align-elicit-sub-con-meta-reas)

And what was connected to the subset that can help you ma-
nipulate the expression?

S16: (resign) Yeah, yeah...
T17: (encourage) OK, then (align-give-away-sub-con-

meta-reas) As we said, you need to consider the element
and use it to manipulate the expression. (prompt-step) Now,
what’s the next step?
. . .

6.6.4 Backtracking to previous turns

This examble illustrates how Menon can deal with the student taking back what
she did before. Although it is not realistic that students will change their mind
so many times in a row, we consider it here as it is a good illustration of how
such a complicated case can be accommodated.

Commented Example

T0: (initiate-dialogue) Hello!
S0: Hello!
T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me

anything you can think of for proving the following: If A is a
subset K(B), then B is a subset of K(A)!
. . .

S4: (partial-answer) I have to use if-then and say that if, let x and
prove y.

We assume here the proceeding turns and we are at the point where the
Proof Step has been given away by the tutor after the partial answer by the
tutor. The subtask proof-step is called.

264 Chapter 6. Socratic Teaching-Strategy

T5: (encourage) Great! (signal-pa) You’re on the right track.
(initiate-subtask-proof-step-meta-reas) Now, let’s see.
(give-away-proof-step) The whole step is : Let A ⊆
K(B), we will show that B ⊆ K(A) (give-away-step-meta-
reas-(prem-conc, spec-meth, rel-con-meta-reas, elab-

dom-obj, dom-tec, inf-rule-applic)). The reasoning for
this step is as follows: First, we assume that A ⊆ K(B) and
we have to prove that B ⊆ K(A). Then we have to simplify the
expression. We concentrate on the if-then relation, which can
help us simplify the expression and prove what we want. We try
to think of a rule that will help us eliminate the if-then, so we
apply the rule if X ⇒ Y, then let X and prove Y to the current
step. (prompt-step) What’s the next step?

S5: (undo-proof) I want to start over.

The student wants to start a new proof, therefore the whole HSS is reset
apart from the GMCL and the tutor just accepts the student’s wish.

T6: (prompt-action) Go on, then.
S6: (partial-answer) As I said before, I have to use if-then and say

let x and prove y.

The student repeats the last answer S4, and since the GMCL is the same,
the tutor also repeats the feedback given in T5, formulated differently to point
out the repetition.

T7: Again, (signal-pa) you’re thinking is good, (initiate-sub-
task-proof-step-meta-reas) but consider now the whole
step...(as in T5)

S7: (undo-step) No, no, I’ll start again with this step. (partial-
answer) First I have to find out what’s assumed and what I have
to prove.

The student now wants to try another step and starts in the same turn
by naming the Starting Point, which she realises from the step-meta-reasoning
hint. The LMCL is reset, the student answer is partially accurate, the subtask
proof-step is initiated, and the tutor asks for the Premise and the Conclusion.

6.6. General Examples 265

T8: (encourage) Good, (signal-pa) but you’re getting
there. (initiatesubtask-proof-step-meta-reas) So,
(elicit-prem-conc) what can you assume and what do you
want to prove?

S8: (partial-answer) OK, prove B ⊆ K(A) and break down the
if-then... (resign) I don’t know.

The proof is direct and the student knows both the Relevant Concept and the
Domain Technique, but she actually resigns, at the end. This resign is ignored,
as there is a domain-contribution in the same turn. The subtask changes now
to domain-object and the tutor tries to elicit the Subordinate Concept to help
in a structured way.

T9: (encourage) Good! (signal-pa) You’re still on the right track.
(initiate-sub-task-sub-con) Now, (elicit-sub-concept)
what do you know about the if-then which can help you ma-
nipulate the expression?

S9: (partial-answer) The rule says to break down the if-then let
x and prove y. (request-assistance) So, what do I have to
prove here?

The student’s statement does not answer the previous elicit hint, so it is not
correct, but only a partial answer domain-contribution again, which names the
Rule of Inference. That means that the subordinate concept is not needed any
more to find the Rule of Inference, the subtask changes to substitution, and
the tutor just asks for the substitution of the rule.

T10: (encourage) Great! (signal-pa) You’re close. (close-
subtask-sub-con) Now, (initiate-subtask-subst) (elicit-
subst) why don’t you try to apply the rule to the expression.

S10: (undo-turn) No, I take that back. (correct) I need to think of
what I have to prove to help me get the Rule of Inference.

The student takes back the last turn, and actually answers the hint that
tried to elicit the Subordinate Concept. So, the subtask spell-out-task is
loaded now, as the hint count has exceeded five, and the tutor asks for the Rule

of Inference, which was taken back by the undo. From now on, the tutoring is
more guiding.

266 Chapter 6. Socratic Teaching-Strategy

T11: (correct) Correct! (close-subtask-subst) So, (initiate-
subtask-spell-out-task) tell me (elicit-inference-rule)
which rule you can use here.
. . .

Uncommented Example

T0: (initiate-dialogue) Hello!
S0: Hello!
T1: (initiate-task, prompt) OK, let’s look at a proof! Tell me

anything you can think of for proving the following: If A is a
subset K(B), then B is a subset of K(A)!
. . .

S4: (partial-answer) I have to use if-then and say that if let x and
prove y.

T5: (encourage) Great! (signal-pa) You’re on the right track.
(initiate-subtask-proof-step-meta-reas) Now, let’s
see. (give-away-proof-step) The whole step is: Let A ⊆
K(B), we will show that B ⊆ K(A) (give-away-step-meta-
reas-(prem-conc, spec-meth, rel- con-meta-reas, elab-

dom-obj, dom-tec, inf-rule-applic)). The reasoning for
this step is as follows: First, we assume that A ⊆ K(B) and
we have to prove that B ⊆ K(A). Then we have to simplify the
expression. We try to think of a rule that will help us eliminate
the if-then, so we apply the rule if X ⇒ Y, then let X and prove
Y to the current step. (prompt-step) What’s the next step?

S5: (undo-proof) I want to start over.
T6: (prompt-action) Go on, then.
S6: (partial-answer) As I said before, I have to use if-then and say

let x and prove y.
T7: Again, (signal-pa) your thinking is good, (initiate-sub-

task-proof-step-meta-reas) but consider now the whole
step...(as in T5)

S7: (undo-step) No, no, I’ll start again with this step. (partial-
answer) First I have to find out what’s assumed and what I have
to prove.

T8: (encourage) Good, (signal-pa) you’re getting
there. (initiatesubtask-proof-step-meta-reas) So,
(elicit-prem-conc) what can you assume and what do you
want to prove?

S8: (partial-answer) OK, prove B ⊆ K(A) and break down the
if-then... (resign) I don’t know.

6.7. Conclusions 267

T9: (encourage) Good! (signal-pa) You’re still on the right track.
(initiate-sub-task-sub-con) Now, (elicit-sub-concept)
what do you know about the if-then which you can help you
manipulate the expression.

S9: (partial-answer) The rule says to break down the if-then, let
x and prove y. (request-assistance) So, what do I have to
prove here?

T10: (encourage) Great! (signal-pa) You’re close. (close-
subtask-sub-con) Now, (initiate-subtask-subst) (elicit-
subst) why don’t you try to apply the rule to the expression.

S10: (undo-turn) No, I take that back. (correct) I need to think of
what I have to prove to help me get the Rule of Inference.

T11: (correct) Correct! (close-subtask-subst) So, (initiate-
subtask-spell-out-task) tell me (elicit-inference-rule)
which rule you can use here.
. . .

6.7 Conclusions

Menon provides templates for NL formulations as most state-of-the-art sys-
tems [VanLehn, 2006]. Nonetheless, using such templates makes obvious how
the possibility of the hint realisation is restricted and how the expressiveness of
hints is affected.

As an alternative which supports flexible NL realisation, Menon implements
tutorial feedback in the form of dialogue moves chosen through a complex teach-
ing strategy. In the examples we saw in this chapter, there is a variety of
possible NL realisations for the same dialogue move. For instance, encourage,
signal-(domain-contribution-category) and initiate-subtask occur very often in
the examples, but their NL formulation is adapted to the context and attention
is paid to avoid constant repetition. The reader can thus get a feeling of the im-
portance of this differentiation that a real NL generator can provide, given the
flexibility that Menon allows. Menon always provides the subtask to be initiated
as a parameter to initiate-subtask, and the category of the domain-contribution
as parameter to encourage and signal-(domain-contribution-category). A NL
generator can thus adjust the phrasing for the task accordingly. This is already
a means for taking care of issues of discourse coherence that assist the learning
process [Moore, 1993]. Note, however, that our goal is to separate the tutoring
from the dialogue and sentence-level specifications of tutorial feedback, but not
to provide the complete specifications necessary for the NL generation of feed-
back. However, by defining this separation and automatically providing tutorial
feedback and its specification at the tutoring level, we enable the flexible realisa-
tion through further dialogue-move definitions and sentence-level specifications.
These specifications can make allowance for issues such as coherence, motiva-
tion and politeness, which we discussed in Chapters 1, 2, and 4. We claim that,

268 Chapter 6. Socratic Teaching-Strategy

since all of these elements play a role in learning, the complex tutorial feedback
should be composed by integrating them. Menon deals with those elements that
pertain to tutoring, but not with the natural language or dialogue aspects of it.
However, it suggests dialogue moves as the unit where these elements can be
integrated. Within this general approach, Menon implements the tutoring as-
pect and provides an infrastructure for the integration of the different elements
of tutorial feedback.

269

Chapter 7

Evaluation

7.1 Introduction

As an evaluation of our Socratic strategy, we asked 5 evaluators to rate:

• Menon’s Socratic teaching strategy as a whole, and

• individual instances of the automatic feedback produced by Menon in par-
ticular tutoring situations.

We found that 4 out of 5 evaluators preferred Menon’s teaching strategy as a
whole to the didactic strategy that was the “winner” of our Wizard-of-Oz exper-
iment (cf. Chapter 1). An evaluation of how well Menon’s overall strategy serves
our global tutorial goals (cf. Chapter 2) and Bloom’s [Bloom, 1956] affective
and cognitive levels gave average to very good results. Additionally, 55% of the
evaluators’ choices of individual instances of feedback favoured Menon’s feedback
to equivalent feedback of the previous “winning” strategy. The evaluation of
this individual feedback instances with regard to our global tutorial goals was
in total very good.

7.2 Background

Our comparative Wizard-of-Oz experiment showed that the instantiation of the
didactic teaching strategy was the best strategy and resulted in better learning.
Moreover, it was far better than the preliminary Socratic strategy which at that
point only aimed at collecting data for developing and implementing a full-scale
Socratic strategy. Our aim in the evaluation presented here was to compare the
“winning” strategy in the Wizard-of-Oz experiment, with the enhanced full-scale
Socratic strategy, which Menon implements.

Our participants were mathematics teachers and mathematics students in
the final stage of their studies. They were all educated and taught in Germany.
In order to have a more reliable result, we tried for pluralism in the sample.

270 Chapter 7. Evaluation

As such, the participants had different degrees of teaching experience. The
major difference was that some participants had taught at schools for decades,
and some had just finished their teaching training as part of their university
studies and had experience from one-to-one tutoring. This difference in teaching
experience reflected a variety of teaching styles as the younger generations are
exposed to more modern theories of learning and teaching approaches during
their university studies and training. Finally, participants differed in age and
gender.

The materials in the study consisted of 7-point Likert-scale questionnaires.
The scales included statements and the degree these statements were true of
the participants, with 1 representing complete agreement and 7 complete dis-
agreement. The evaluation was carried out electronically and communication
between the experimenter and the participants took place through e-mail.

7.3 Description of the Evaluation

This evaluation had two facets: One was to get a first impression on how pro-
fessionals assess Menon’s strategy as a whole. The second was to get feedback
on possible improvements of the individual feedback produced by Menon.

We used questionnaires to collect demographic data on the participants, on
their teaching style and pedagogical background, and on their perceived ability
to carry the evaluation through. The evaluators saw two tutorial dialogues and
were asked to rate some selected feedback. This feedback was only a sample of
the possible feedback that Menon can provide, as Menon’s feedback is adaptive.
However, what was important was to capture this adaptivity. We did this by
presenting the feedback to be evaluated as part of the more general context of
tutoring a proof. In this context, feedback has to adapt based on the student’s
performance and needs and based on the way the task is developing. In effect,
participants were evaluating how well the feedback fits the context and, hence,
the appropriateness of Menon’s feedback in the specific context.

A questionnaire was used to collect data on the evaluators’ preferred individ-
ual instances of feedback and overall strategy. Menon’s feedback was presented
in natural language. Therefore, when compiling the questionnaires, we were
careful to distinguish between evaluating the content of the feedback, which
Menon is responsible for and which we wanted to evaluate, from the natural
language phrasing of the feedback. As we have discussed in previous chapters,
we do not make any claims about the appropriateness of the phrasings, so it
was important to make this distinction in order to be able to keep only the
feedback which really evaluated the content. These were then evaluated based
on six main aspects of Menon’s feedback. The overall strategy was additionally
assessed for how well it serves Bloom’s objectives on the affective and cognitive
levels, which concern our domain. Since Bloom’s objectives cover our tutorial
goals to a large extent, we used them as a stricter test.

7.3. Description of the Evaluation 271

Population: We recruited two secondary-school mathematics teachers, two
mathematics students just before they took their final exams, and one mathe-
matician who had completed his final exams, but was not yet practising teaching
in a school. Consistent with the difference in their teaching experience, their
descriptions of their teaching styles also varied quite a lot, and included charac-
terisations like “conservative”, “question-oriented”, and “defined by clear rules
and expectations”. Only one of them stated an awareness of schema theory at
all, and they were not much aware of cognitive load theory (median=2, var=2.7),
but they were all more or less aware of motivation theory (median=5, var=2.5).
They stated that they supported strongly the promotion of self-sufficiency (me-
dian=6, var=0.3), but they were only moderately familiar with learner-oriented
teaching (median=5, var=0.7), and they also moderately stated that they base
their teaching on the needs of the student (median=5, var=1.5). The perceived
competence items gave a satisfactory result (median=5, var=1.39), meaning
that the evaluators felt capable of ranking the feedback.

7.3.1 Experimental Design

Hypothesis: We hypothesised that the evaluators would prefer Menon’s feed-
back more often than that of the previous “winning” strategy. We also hypoth-
esised that the evaluators would give Menon’s feedback better ratings for serving
our tutorial goals and Bloom’s objectives.

Confounds elimination: We foresaw a few confounds, which we tried to
eliminate.

• The participants might evaluate the NL formulations of the feedback in-
stead of its content, which is what Menon produces automatically. There-
fore, we collected separate data on NL formulation and content and hoped
to reveal such a bias if it occurred.

• The participants might evaluate the system interface, rather than the
feedback itself. Therefore, we asked them to evaluate feedback generated
by the system, but presented it as a Word document.

• The participants might be too biased by their own teaching style, therefore
we collected data on their teaching styles to be able to factor out such
biases in post-analysis.

• The participants might not be familiar at all with the pedagogical theories
behind the tutorial goals for which the feedback is testing. Therefore we
collected data on their familiarity with these pedagogical theories.

A restriction to the design of the questionnaire was that we could not ran-
domise the order in which the feedback choices were presented. We called the
didactic feedback Alternative A and Menon’s feedback Alternative B. Following
these categories, we asked at the end for an overall comparison and evaluation

272 Chapter 7. Evaluation

of feedback Alternatives A and B. Therefore, we always presented the didactic
feedback first, giving it a step ahead.

7.3.2 Experimental procedure:

The experiment consisted of 4 main phases, which we describe in the following.

Pre-Evaluation This phase had two subphases:

1. The participants read a short introduction on the goals and the structure
of the study.

2. The participants filled in a questionnaire on demographic data, and on
their pedagogical and mathematics background.

Evaluation This phase had various subphases, which we enumerate in the
order they occurred.

1. The participants read instructions on filling in the evaluation question-
naires.

2. The participants were shown a worked-out example of the task that was
tutored in the tutorial dialogues that the participants evaluated.

3. The participants were presented with two tutorial dialogues between a
student and a tutor on a proof task. They were also shown various indi-
vidual feedback alternatives for particular points in the dialogue and the
proof. These alternatives represented the didactic feedback (Alternative
A) and Menon’s feedback (Alternative B). The participants were asked first
to state their preference between the two alternatives of feedback. They
were then asked to evaluate it by responding to specific questions. These
questions aimed at having the evaluators rank how well the feedback meets
our tutorial goals.

4. When they were done with the evaluation of the individual feedback al-
ternatives, they were asked to state their overall strategy preference, by
choosing either Alternatives A or Alternatives B as a whole for the indi-
vidual feedback fragments. The participants then evaluated their overall
choice based on how well it fulfilled our global tutorial goals and Bloom’s
educational objectives.

Post-Evaluation In this phase, the participants were asked to fill in a post-
questionnaire, which consisted of two parts:

1. The first part collected data on the previous experience of the participants
with and their attitude towards our tutorial goals and pedagogical theories
that underly them.

2. The second part asked the participants to report on their perceived com-
petence to evaluate the feedback.

7.4. Materials 273

7.4 Materials

We now explain the motivation of the design of the experiment materials. The
original materials in German and an English translation of the experimenters
materials can be found in Appendix F.

Participants’ Instructions The evaluators were told that they would eval-
uate tutorial feedback for set theory and that their evaluation would be used
to find the best feedback for the tutoring situation each time. They were also
given instructions on what they were going to evaluate and on how to evaluate
it. These instructions included the worked-out example of the task that was
tutored in the tutorial dialogues that were evaluated.

Pre-Questionnaire: We designed the pre-questionnaire so that the items in
it would not reveal our hypothesis. Therefore, we refrained at this point from
asking any questions that concerned our tutorial goals and our preferred peda-
gogical theories.

Evaluation Proofs, Scales, and Items We used two tutorial dialogues (cf.
Appendix F) as the background of the feedback alternatives that were evaluated.
Both dialogues dealt with the same proof, but with different tutoring situations
to depict Menon’s behaviour for different student responses and different student
levels and have a larger sample evaluated of the possible feedback that Menon

can provide. In the first dialogue, the feedback was short and consisted of
general pedagogical feedback, motivational feedback, where necessary, and hints.
The feedback in the second dialogue also consisted of these basic elements, but
developed over more turns and depicted the use of Menon’s substrategies to help
the student solve the task. This was juxtaposed in both dialogues with standard
didactic feedback that gives away the answer.

The proof task tutored in the dialogues was the same one we used in the
Wizard-of-Oz experiment. This allowed us to use the original feedback that the
human tutor gave in the Wizard-of-Oz experiment for the didactic condition,
wherever the tutoring situation had also occurred in the dialogues that took
place in the experiment. For all other tutoring situations, we created the didactic
feedback ourselves, based on the definition of the strategy and including any
extra features that our human tutor added to it in the Wizard-of-Oz experiment.
The feedback consisted of two parts. The first part informed the student of the
categorisation of her answer (wrong, correct, etc.). The second part either
just prompted the student for the next step if the answer was correct, or gave
away the answer and explained it, in any other case. We also tried to use
NL formulations that were similar to the ones produced by the human wizard.
To create the tutoring situations we used student answers from the Wizard-
of-Oz experiment, where available, as well as virtual answers to simulate new
tutoring situations. To produce Menon’s feedback that would be evaluated, we
fed these student answers to Menon and recorded its output. This is similar to

274 Chapter 7. Evaluation

the evaluation design used by [DiPaolo et al., 2004], with the exception that
they used only virtual student answers, for lack of real ones. Finally, since
Menon’s output consists of dialogue moves, we constructed NL formulations for
this output based on the definitions of the dialogue moves.

The length of the questionnaire and the time it would require to complete
it constrained us to evaluating certain features of the feedback only, due to the
time-restrictions of the evaluators. We selected more instances of innovative
feedback in order to get a first impression of how teachers like it. We also
included a bit more conventional feedback for comparison. The feedback also
differed in the number of dialogue turns it involved.

The evaluators were asked to rank the individual feedback instances of their
preference based on five main aspects of Menon’s output:

1. promoting schema acquisition,

2. motivating the student,

3. domain content of hints,

4. feedback content in the dialogue context,

5. cognitive load alleviation.

They were additionally asked to complete open questions if they had personal
suggestions on NL formulations or other aspects of the feedback. With these
questions we aimed at collecting data for improving the feedback.

The evaluators also ranked their overall strategy choice in a 7-point Likert
scale that included 6 constructs. The first four represented our general peda-
gogical goals, and were:

1. distant transfer,

2. near transfer,

3. implicit learning, and

4. self-sufficiency

Distant transfer was defined as helping the student to learn general problem
solving techniques and be able to apply them to other domains. Near transfer
was defined as the equivalent for similar problems in the same domain. Implicit
learning was defined as acquiring schemata that are not explicitly taught. Self-
sufficiency was defined as providing a better chance to find a solution alone and
bringing the student to the point of solving problems alone later.

The other two constructs that were included in the questionnaire repre-
sented the affective and cognitive levels in Bloom’s objectives. They consisted
of multiple items each, which represented the sub-objectives in Bloom’s tax-
onomy. The affective level included the sub-objectives receiving, responding,

7.5. Results 275

valuing, organising, and characterising. The cognitive level included the sub-
objectives knowledge, comprehension, application, analysis, synthesis, and eval-
uation. Where necessary and to the extent that it was possible, we tried to
adopt the items in our scale to our domain. At the same time we kept the
items general enough to mirror Bloom’s understanding of the objectives. For
example, the sub-objective application, was expressed as follows: “The student
is more likely to solve problems in situations by applying the domain knowledge,
proving techniques and rules in different ways”, where the specification of the
knowledge (“domain knowledge, proving techniques and rules”) referred to our
domain. These educational objectives were the criteria that the evaluators used
to rate their strategy of choice.

It should be noted that since the evaluators could only speculate on the
learning effects of the feedback based on the defined tutoring goals, what this
study evaluated was whether the feedback produced by Menon is closer to what
the evaluators as educators would have used than that of the didactic strategy.
This is no substitute to evaluating the learning effects directly, but can give
indications on the appropriateness of the feedback and possible enhancement,
before embarking on large-scale studies with students. Such studies are the
only way to avoid the fallacies which teachers are often prone to called the
“expert blind spot” [Nathan and Koedinger, 2000]. This phenomenon describes
the common failure of teachers and researchers to assume the viewpoint of the
student due to their expertise in the domain. As a consequence, they are often
poor judges of what kinds of difficulties students face in learning a particular
domain, as well as when and which kind of help students need.

Post-Questionnaire: In the post-questionnaire, we collected data on all as-
pects of the evaluators’ background that we could not refer to before the study.
We asked them questions on their pedagogical background and specific questions
on their preferred teaching style that addressed our tutorial goals. We used the
validated questionnaire by [Williams et al., 1998; Williams and Deci, 1996] that
we adopted to capture the participants’ perceived competence to evaluate the
feedback.

7.5 Results

7.5.1 Overall Choice of Strategy

Four out of five evaluators chose Menon’s feedback as their preferred overall
strategy. The results of their evaluation of this strategy with regard to our
tutorial goals can be seen in Table 7.1. Since only one evaluator chose the
didactic strategy, it does not make sense to compare the medians of the two
strategies. The evaluators chose as the best characteristic of Menon’s overall
strategy that it promotes distant transfer, near transfer, and self-sufficiency,
and that it would have a positive influence on the students’ affective state.
Implicit learning scored a bit more than average, and Bloom’s cognitive level

276 Chapter 7. Evaluation

scored exactly average.

construct distant
transfer

near
transfer

implicit
Learning

Self-
Sufficiency

affective
level

cognitive
level

medianmen 5 5.5 4.5 5 5.5 4

varmen 0.67 0.92 1.67 1.87 1.79 1.77

Table 7.1: Evaluation of Menon’s overall strategy

7.5.2 Choice of Individual Feedback

On the whole, evaluators were asked to choose between 8 individual feedback
instances (4 one-turn and 4 multiturn ones) and to evaluate them. Since we
had 5 evaluators, an aggregate of 40 choices was made. Out of these 40 choices,
22 choices (55%) favoured Menon’s output and the minority 18 choices (45%)
favoured the feedback that simulated the “winning” didactic strategy in the
Wizard-of-Oz experiment. Running an inter-rater agreement test per feedback
choice and evaluation item was not appropriate because there were 5 evaluators
rating on a 7-point Likert scale. For the same reason, it was not surprising
that we found no significant results when comparing the scores on individual
evaluation items across all feedback choices and evaluators. We will now look
into more specific results for each feedback choice. These should be read with
caution; however, they provide valuable impressions on the appropriateness of
Menon’s feedback and directions for possible enhancements.

Table 7.2 is a summary of the results. It shows every one of the individual
feedback choices. We represent the individual feedback choices by the name of
the main feedback that Menon’s alternative delivered. Namely, either the name
of the hint, for one-turn feedback, or the name of the subtask, for multiturn
feedback. One-turn feedback was provided in the first tutorial dialogue and
multiturn feedback in the second tutorial dialogue. The exact Socratic feedback
and the alternative didactic feedback for every feedback choice can be found in
Appendix F. The variance is shown where more than one evaluators chose this
feedback, or where the construct consisted of more than one item in the ques-
tionnaire. These medians and variances are calculated for the sum of scores that
one feedback got when it was chosen. The table shows the median and variance
for Menon’s feedback (medianmen, varmen) and the median and variance for
the didactic feedback (mediandid, vardid) for every construct (e.g. schema pro-
motion) in every feedback choice. The most important of the results depicted
in Table 7.2 are highlighted. We discuss the results in the following section.

7.5.2.1 Results for the First Tutorial Dialogue

The first output tested if the evaluators would prefer hinting at the beginning
of the session, rather than giving away the answer, even though the hint given
addresses the meta-reasoning and starts with the basics of proving, namely
identifying the premise and the conclusion. All participants preferred Menon’s

7.5. Results 277

one-turn hints multiturn subtasks

construct individual

feedback

elic-

prem-

conc

elic-

spec-

meth

elic-

inf-

rule

elic-

subst

misc-

oncep

req-

ass

rel-

con-

meta-

reas

align-

ing

schema medianmen 5.5 4.5 5 4.5 5.5 5 4 5

varmen 1.56 0.5 2.25 2.21 0.92 1.5 0.97 2.25

mediandid – 5 3.5 3 4.5 4.5 5 5

vardid – 1.93 3.07 – 2.17 4.25 1.58 1.87

formulation medianmen 6 6 5.5 5 5.5 6 5 4.5

varmen 1.7 – 0.5 1 4.5 3 4 2.25

meddid – 5 5 2 5 4.5 4.5 5

vardid – 3.3 1 – 1.3 0.5 0.5 1

content medianmen 5 6 5 5 6 6 6 4.5

varmen 1.3 – 0 1 0 1.33 4.33 2.25

meddid – 3.5 6 6 5 4.5 4.5 5

vardid – 10.25 0.33 – 0.33 4.5 0.5 0

cognit. load medianmen 6 5 6.5 5.5 4 5 5 6.5

varmen 1.2 – 0.5 0.92 0.5 1.33 0.33 0.25

meddid – 6 5 3 3 6.5 6.5 6

vardid – 0.67 0.33 – 2 0.5 0.5 1

dial. context medianmen 6 6 5 6 6.5 6 6 4

varmen 1.2 – 2 0.25 0.5 2.33 3 1

meddid – 5.5 5 7 5 6 5 6

vardid – 0.92 1 – 2.33 0 2 0.33

motivation medianmen 6.5 5 6 6 3 4 6 6

varmen 0.40 2 1.33 1.41 0.67 1.2 0.8 2.25

meddid – 6.5 4 2.5 4 6 6 5.5

vardid – 2.5 4.17 0.5 1.5 3 0.67 0.67

Table 7.2: Evaluation of Menon’s individual feedback

output to the output of the human tutor in the previous “winning” strategy,
despite the fact that Menon’s output addressed a very basic proof level. This
was consistent with what we expected, as mathematicians are familiar with the
notions of premise and conclusion. The highest scores for particular tutorial
goals were for better formulation, limited cognitive load, better information in
the dialogue context, and more motivation.

The second output included an instance of the meta-reasoning hint for the
elicit-specific-method. We were trying to test if the evaluators would carry on
hinting and if they would find the hint appropriate, especially since we were
expecting that they would not be familiar with either schema theory, or the
particular way of breaking down the deductive process that we employed. This
was indeed verified by the analysis of the post-questionnaires. We chose the
hint that we thought would be out of the ordinary and maybe too abstract. Not
surprisingly, only one participant chose this hint. However, another evaluator
commented that the reason her did not choose this hint was not due to its
content, but due to the NL formulation, which is not what we were evaluating.
The same evaluator criticised the didactic feedback for potentially demotivating
the student. The greatest differences in score were for better content, where
Menon’s feedback scored higher, and for motivation, where the didactic method

278 Chapter 7. Evaluation

scored higher. All other scores were comparable between the two strategies. The
overall data showed that the evaluators would prefer to let students work alone
at this point in tutoring and motivate them, since they seem to have a grasp of
the proof. Therefore, in this case the didactic feedback was chosen, which just
accepted the answer and prompted for the next step. A comment also pointed
out that Menon should provide more articulate motivational feedback. Rather
than just “Good!”, it should also explain how the “good” answer contributes to
the task.

The hint given in the third feedback dealt with the Rule of Inference. Two
out of three evaluators chose it, although the student had already received more
hints than standard teachers normally give. The hint got mostly higher scores,
for example for schema promotion, limited cognitive load, and for motivation.
The rest of the scores are comparable.

The fourth feedback asked the student to apply the Rule of Inference, which
she knows already. Four out of five evaluators chose this feedback. The highest
differences in scoring were in favour of Menon’s output, and concerned schema
promotion, better formulation, limited cognitive load, and motivation.

7.5.2.2 Results for the Second Tutorial Dialogue

The feedback in the second tutorial dialogue tested the choice between using
a substrategy or giving away the proof step. We were hoping to uncover the
evaluators’ attitude towards substrategies that consist of many turns and require
the student to think hard. The results in this example were mixed.

The first feedback in this dialogue is given because the student restates the
expression to be proven and it is not clear if she knows that she has not proved
it. The subtask misconception is called to deal with this situation. It extends
over several turns until it transpires that the student is really not aware of
the fact that she has to prove everything that is not part of the assumption.
Two evaluators preferred this feedback. It received high scores for promoting
schema acquisition, for its content, and for appropriateness of information in the
dialogue context. The scores were lower for cognitive load and for motivation.
A critique of the didactic feedback by an evaluator who actually chose it was
that it gives too much information away and does not help the student move
on with the task, whereas the evaluator praises Menon’s output for motivating
the student. However, the evaluator criticised Menon’s feedback for giving too
many directions.

The second feedback in this dialogue applies the substrategy spell-out-task,
which is triggered because the number of hints produced already is more than
five. This substrategy leads the student step-by-step to completing the proof
step. Hints are still chosen based on the student’s demonstrated skill, but hint-
ing will not stop until the step is completed. Finally, because many hints were
needed for this step, a recapitulation is produced before the hinting for the next
step starts. Three evaluators chose this feedback as opposed to just giving the
step away. Highlights in scoring for Menon’s feedback included better formula-
tion and content. On the contrary, the didactic feedback got better scores for

7.6. Discussion 279

limited cognitive load and motivation. One evaluator expressed a worry that
Menon’s feedback was too motivating, presumably meaning that the student
might feel patronised.

The third feedback in this proof calls two meta-reasoning substrategies for
the Relevant Concept and for the Subordinate Concept. They elicit the meta-
reasoning for the respective instructional points. The student finds the first,
but the tutor decides to give the other one away and prompts the student to
continue. Again, three evaluators preferred this feedback. Menon’s feedback was
rated higher for content, but the didactic feedback scored better on cognitive
load. There were no other major differences.

The last feedback was an instance of the substrategy aligning, which makes
sure that the student has understood the process and its substeps if there were
many hints used for a step. Two evaluators chose this feedback. The scores on
individual items were on the whole similar, with the exception of appropriateness
in dialogue context, where the didactic feedback scored higher. It is also worth
mentioning that one of the evaluators specifically praised Menon’s feedback for
promoting schema acquisition. This is actually the purpose of the aligning

subtask.

7.6 Discussion

The most striking result of the evaluation was that 4 out of 5 evaluators preferred
Menon’s overall teaching strategy. Menon’s goal is to promote schema acquisition
as a means of of promoting learning. With this evaluation we were aiming at
showing that teachers find our teaching strategy better for learning and that it
can pass the test of more general and independently defined criteria than our
tutorial goals alone. Therefore, we included Bloom’s educational objectives as
part of our evaluation scale. As it turned out, Menon’s teaching strategy obtained
high rankings for most of our tutorial goals, as well as as for the affective level in
Bloom’s taxonomy. These results taken together, reveal a positive assessment of
our teaching strategy in general. The cases where Menon’s individual feedback
was not mostly preferred and the low rankings it got can be viewed as possible
points of improvement of the current strategy.

As an overall observation for hinting, it seems like evaluators were skeptical
about things that they were not already familiar with, so they chose and scored
based on what seemed more conservative. This should have been expected as
evaluators can only make predictions of learning effects on the kinds of feedback
that they have used, or of kinds of feedback that is based on theories that the
evaluators are at least are aware of.

There was a comment that Menon’s feedback in general was too verbose, and
another one that it is too motivating. This may explain the low scores that the
feedback got for motivating the student to pay attention. It is also a valid point
that students can be demotivated if asked to read long feedback messages [An-
derson et al., 1995]. However, it is not clear whether this comment was meant as
a criticism for the multiturn feedback, or only for the shorter feedback. More-

280 Chapter 7. Evaluation

over, surprisingly enough, it was the same evaluator who expressed the wish for
more articulate motivational feedback. Still, the criticism about the length of
the feedback should be taken seriously into consideration in the design of NL
formulations, which the criticism is mostly relevant to.

We collected separate data on NL formulation and content and hoped to
reveal a possible bias against Menon’s feedback due to the NL formulations that
we made up. What became obvious from the study was that the evaluators did
not even realise that Menon’s feedback formulations were made-up, as opposed
to the didactic feedback that was produced by an experienced human tutor.
On the contrary, in a few cases the made-up formulations got a better score
than the ones produced naturally by the human tutor. There may be two
explanations for this. The first is that the NL formulations were indeed better.
We know, however, from a dry-run of the questionnaire that this was not the
case, as the evaluator complained about the formulations not sounding natural.
This leads us to a second hypothesis, that the participants under “formulation”
understood the general way of expressing oneself and scored the formulation for
whether it was appropriate to use with a student. Unfortunately, this does not
allow accurate interpretations, but it may be regarded as a positive outcome for
the way Menon uses dialogue moves to produce motivational feedback.

There was a comment that pointed out how the evaluator was negatively
influenced against some feedback due to the previous response of the student,
which made the student appear demotivated. The particular student input
was constructed and it should be noted that when constructing it we were not
aware of this subtlety. This observation emphasises the importance of natural
language not only in the output, but also in the input, as it is the medium of
such subtleties that are otherwise not registered.

One evaluator made it clear that tutoring the first step of the proof should
be skipped, and that the deductive process should not be broken down in such
small steps, but rather only concentrate on tutoring the Rule of Inference. We
conjecture that this would be possible for high level students who already have
a schema that allows them to consider the first step trivial and for finding the
Rule of Inference. However, such an approach does not do much for schema
acquisition as it gives too much information away at once and still does not
explain how the tutor came about this information. This evaluator expressed a
worry that the feedback expected the student to guess what was on the teacher’s
mind. There are two sides to this. One concerns implicit learning. If the student
is advanced enough to learn with little feedback, then the positive outcome is
that implicit learning is promoted. On the other hand, if students are not that
advanced, asking them to find the Rule of Inference without guidelines on how to
do that is probably not going to help them with finding the rule alone next time.
In fact, in this case the feedback is prone to the exact same criticism, that the
teacher expects students to find out what she has in her mind, however without
support this time. In addition, the expert blind point phenomenon [Nathan and
Koedinger, 2000] should warn developers of the fact that teachers prefer to let
students work more independently in cases where actually students learn better
when they receive help. Nonetheless, Menon’s output could be improved to

7.6. Discussion 281

accommodate better the student’s level and take into account both of the issues
discussed. This could be done, for instance, if hinting did not start immediately
at the beginning of a session when the student input is a partial answer, as it
currently does not start when the answer is correct. What one could conclude
from the data in general is that the more demanding hints are the ones that
elicit concepts that the evaluators are not familiar with, like the Relevant Concept

and Subordinate Concept. Therefore, another appropriate improvement could be
that we need to increase the threshold of the student level that permits eliciting
such concepts and rather give them away more often.

The suggestion to provide acknowledgements with more content as responses
to the students’ correct answers can be addressed by acknowledging the correct
parts explicitly, as proposed by Dzikovska and colleagues [Dzikovska et al., 2008].
In fact, since we already represent the correct parts in terms of used instruc-
tional points the extension needed would be to add the instructional points as
a parameter to the dialogue move acknowledge in Menon’s output. The NL
generator could then realise an such explicit acknowledgement.

In terms of the overall strategy, all except for two aspects of Menon’s feedback
were ranked high. The two aspects that were ranked just above average and
just average were implicit learning and Bloom’s cognitive level, respectively. The
fact that implicit learning scored only just above average is consistent with the
comments on the individual feedback choices, which complained about leading
the student too much. This consistency is a good indication that despite the
small sample the improvement that we discussed above is called for. This would
allow students to work longer without hinting at the beginning of a session, or
when they give partial answers, but their overall performance in the session is
good. Such an improvement could also prove a good solution for finding the
golden rule between breaking the tutored deductive process into too small and
too big steps.

As far as Bloom’s cognitive level is concerned, the low score it got for the
overall strategy is a bit contradictory to the high score distant and near transfer
got. Some of the sub-objectives of the cognitive level are equivalent to distant
and near transfer, but are phrased more verbosely and are maybe not so clear.
For instance, the item for distant transfer was phrased as “The student is more
likely to apply what she learned in other domains as a general problem solving
technique”. The equivalent item in the cognitive level construct was phrased
as “The student is more likely to make inferences and find evidence to support
generalisations, analyse domain knowledge, relations and organisational prin-
ciples”. Arguably, the verbose description of the second item is only another
way to refer to “a general problem solving technique”. We also suspect that the
verbose phrasings made the same points sound more demanding, which might
have added to the evaluators’ reluctancy to rank them similarly.

Moreover, Bloom’s cognitive level is very widely defined, and it also includes
sub-objectives that either do not apply well in our domain, or that the evalua-
tors cannot assess because of their general nature. For example, the objective of
promoting Synthesis requires students to present and defend opinions by making
judgements about information and validity of ideas (e.g., judgements in terms

282 Chapter 7. Evaluation

of internal evidence). We did not manage to formulate this and similar objec-
tives in a way that they would apply to our domain and goals, but they would
still preserve Bloom’s definition. Therefore, it is only natural that evaluators
were reluctant to give high scores for such objectives. It is actually quite an
achievement that Menon’s feedback was ranked average in total for the cognitive
level.

7.7 Conclusions

The major finding of this evaluation was that Menon’s feedback was considered
better than the didactic feedback that was the “winning” strategy in the Wizard-
of-Oz study and was produced by a human tutor. This can only be seen as a
tendency, as the sample was small, but it shows that the direction we have taken
in the development of Menon appears to be the right one.

An unexpected result was that the NL formulations that we constructed
for Menon’s output were quite often given higher ranks than those of the human
tutor. We suggested an interpretation based on which the evaluators were rather
indicating a general agreement with the way the tutor (Menon in this case)
expressed herself in the framework of tutoring. This in turn reflects a positive
disposition towards the dialogue moves produced by Menon that define such
ways of expression. For instance, dialogue moves that represent motivational
feedback are part of what determines the appropriateness of the way a tutor
expresses herself.

The data we collected can be used as pointers for Menon’s feedback that
could be improved in situations where the didactic feedback was chosen more
frequently and got better results. The results of the ranking were not significant
and our evaluators were not sufficiently aware of or trained in most aspects of
the teaching style that we abide by. This fact may add to the objectivity of
the evaluators, but is at the same time a reason for reading the results with
caution. A study that would compare two alternatives, the old one and the new
with corrections as indicated in Section 7.6, could clarify the issues that rose
from the evaluation and provide stronger claims for possible improvements.

The next step would be a study that would compare learning effects of
students. This study could also evaluate particular aspects of the feedback
against each other. For instance, it could evaluate when it is better to provide
meta-reasoning hints as opposed to performable-step hints, and the same for the
rest of the hint dimensions, or when it is better to produce generic pedagogical
feedback or call a substrategy. Such detailed evaluation is only possible because
of the clarity of definition of Menon’s strategy, which allows manipulation its
feedback at this fine-grained level.

283

Chapter 8

Conclusion

We presented an approach to automating tutorial feedback and, in particular,
the most complicated aspect of it, hinting. Our approach is an attempt to
produce automatic feedback that is adaptive on two equally important levels:
the dialogue and the tutoring level. We subdivided our investigation into a
number of smaller research issues, each of which is summarised in the following.

From state-of-the-art research in learning science, we derived guidelines for
instruction in teaching proofs. These guidelines and our observations from ex-
perimental data served as the basis for a teaching model which was then trans-
lated into a concrete Socratic teaching strategy. This Socratic strategy repre-
sents the controlled application of various pedagogical theories, as opposed to
the common practice of most tutors, who do not consistently use such theories.

Looking at hints and their use in tutorial dialogue, we proposed a method
for their automation. In particular, we separated task and discourse by defin-
ing a multidimensional dialogue move taxonomy which separates cognitive and
dialogue function of hints. We investigated the cognitive functions of hints in
more depth.

Our model of a tutoring session, the HSS, is organised into classes and sub-
classes which represent knowledge to estimate the students’ level of understand-
ing, their motivation and the cognitive load imposed on them. Each class or
subclass is subdivided into fields and the aggregate of the values of the fields at
each point define a tutoring situation. The Socratic strategy uses these tutoring
situations to reason about appropriate automatic feedback.

We captured domain-content specifications for the hint categories in a sep-
arate dimension of the hint taxonomy, the domain knowledge dimension, which
captures the abstract variables and relations that constitute our instructional
points. We provided formalisations of the instructional points in a domain on-
tology for set theory. The definition of such instructional points was inspired
by schema theory.

Various aspects of our approach are specifically designed to facilitate a dy-
namic natural language realisation of hints:

284 Chapter 8. Conclusion

1. the definition of hints as dialogue moves in which we separate dialogue
from cognitive functions

2. the specification of the domain content of hints in terms of abstract in-
structional points, which allows on-the-fly instantiation of this content for
specific tasks

The constituents of hints represent different aspects whose choice dependents
on the dialogue and tutoring context, a prerequisite for producing feedback that
is dialogue and tutoring context adaptive.

Our tutorial manager Menon is a proof-of-concept implementation which au-
tomatically chooses the tutorial feedback and provides specifications for nat-
ural language generation of this feedback. The domain-content specifications
are instantiated by a domain reasoner and are used along with the dialogue
move definitions to bring together the different aspects of the tutorial feed-
back and discourse structure into a meaningful natural language piece of feed-
back. The domain content instantiation and the natural language generation
of the tutorial feedback are not currently implemented, however, a prototype
of the overall approach to tutorial dialogue management that integrates all as-
pects discussed here was built and evaluated as part of the Dialog project
(cf. Chapter 1), and more research in that direction has taken place since then
(see, for example, [Tsovaltzi and Karagjosova, 2004], [Autexier et al., 2004;
Autexier and Fiedler, 2006]).

8.0.1 Domain Independence

An important aspect of our approach is that it can be used in other domains
as well. To begin with, we explored data in another domain, namely basic elec-
tricity and electronics from a BEE corpus [Rosé et al., 2001b] and applied the
hint categories defined for the domain of set theory [Tsovaltzi, 2001]. A second
important source for the definition of our hints was the research done in the
domain of physiology and blood circulation in the CIRCSIM project [Hume,
1995]. Many elements of the strategy we implemented were motivated from this
research. For example, the subtask spell-out-task was inspired by a tactic
defined in the CIRCSIM project and was a strategy in our first attempt to define
domain independent hint categories from the BEE corpus. Based on this idea,
we defined the current subtask spell-out-task. A similar process gave rise to
the subtask diagnostics. Moreover, out of the ten dialogue moves defined in
the task dimension of our dialogue move taxonomy seven were already defined
for the BEE corpus. The basic principle in our current definitions of the Rele-

vant and Subordinate Concepts, for example, were also inspired by the BEE data.
Out of a total of thirteen hint categories that were originally described based
on this data, ten were retained and further defined for our new taxonomy, one
was converted to a subtask (spell-out-task), one was analysed into further
categories (the pragmatic level) and one – encourage – was newly defined as
a task dialogue moves rather than as a hint. As far as the HSS is concerned,

285

the basics of the operationalisation of the global and local HSS were identi-
fied already in the process of modelling the BEE tutorial dialogues and seven
categories of our current domain-contribution categories were also identified but
were actually defined in this thesis. For example, the category partial answer

was defined through the definition of our instructional points. Furthermore,
domain-independent characteristics were derived through comparison with the
hints and Socratic algorithm that were designed in our attempt to model the
phenomena observed in the BEE corpus. The distinction between dialogue vs.
cognitive, pragmatic vs. conceptual and active vs. passive functions of feedback
were already conceptualised in this first attempt.

Moreover, the domain knowledge dimension is domain dependent, everything
else is not. Consequently, the definition of hints based on dimension choices is
domain independent up to the choice of the instructional point to be addressed.
The domain content defined by the choice of instructional points in the domain
knowledge dimension is domain dependent.

Our work has also given rise to guidelines for structuring a domain in order
to automate the domain-dependent content of hints, for example:

1. A justification for every step must be captured in an instructional point
like the Rule of Inference.

2. If possible, the different justifications in a domain should be classified into
more general domain techniques, as in our Domain Technique.

3. Instructional points that help the student identify the right justification to
apply, like the Relevant and the Subordinate Concept, must also be defined.

4. The meta-reasoning relevant to the defined instructional points must also
be captured in corresponding instructional points.

We expect that the greatest overlap will be for other mathematical domains,
or other well-defined domains that have a similar structure and which often
use theorem provers, for example problem solving in physics [VanLehn et al.,
2005]. More specifically, for a different proving domain, both the class structure
and the dialogue move and hint dimensions can be kept the same, but the
formalisation of the hint categories will have to be adapted. However, for a
shift to a non-proving but still a problem-solving domain, there might be a need
to add more classes, or more hint categories within the existing classes. The
hint and dialogue dimensions will still be the same.

The hinting session status HSS, in turn, is a representation of the way the
tutoring session evolves. It consists of the local HSS (LMGL), which represents
domain contributions and other student dialogue moves for local evaluation, and
of the global HSS (GMCL), which looks into the whole proof step and tutoring
session. The student dialogue moves and the domain-contribution categories
in the LMGL are not domain specific, but the formalisation of the domain-
contribution categories is of course domain specific. The GMCLA is an aggregate
of the values of a number of other fields in the HSS that is motivated by general

286 Chapter 8. Conclusion

domain-independent pedagogical considerations. On the whole, the structure of
the HSS with its fields and their subfields can be retained as is, whereas only
the domain-contribution categories must be defined for the new domain each
time.

Additionally, our Socratic strategy makes no use of any domain-specific char-
acteristics of the categories and moves that it employs and can thus be applied
to a different problem-solving domain, especially the ones that have a structure
similar to proving.

In summary, the enhanced ontology shows a way to capture domain notions.
The hint taxonomy shows where these notions fit in terms of tutoring. The HSS

operationalises the different guidelines of the tutorial model and allows defining
tutoring situations for hinting. The implemented Socratic strategy shows how
they can all be used for implementing the tutorial model but without reference
to a specific domain.

8.1 Future Work

Our work is still a first attempt and the results from our evaluation are only
indicative. There is room for improvement to the feedback that Menon offers at
the moment, and more work needs to be done in the direction of automating
feedback in general.

8.1.1 Tutoring Model Extensions

To start from our global tutorial goals, affect is represented in our system by
basic criteria like how many times a student has asked for help, or if she wants
to quit. To represent affective aspects more consistently and to capture more
motivational issues, one could, for example, represent explicitly more dialogue
moves like resign related to affect. Such dialogue moves may already be defined
in our dialogue move taxonomy, however the fact that they are informative as
to the affectional state of a student is not recognised and they do not have a
function in the task dimension. Therefore, Menon does not deal with them at
the moment. To make such additions a more precise inquiry must be assumed
into the way affect manifests itself in general, but also with specific reference to
natural language.

There is also empirical evidence that metacognition may be important to
acquiring problem-solving skills. [Delclos and Harrington, 1991], for instance,
found that monitored problem solving helps students reflect on their problem
solving. They compared two conditions, one where students monitored their
actions and one where they just solved problems. In particular, students in
the monitoring condition were encouraged to pay attention to the strategies
they used during problem solving in the training phase of the experiment. This
increased their ability to transfer in the problem solving phase that followed.
Aleven and colleagues [Aleven et al., 2006; Roll et al., 2006] have implemented
metacognitive hints that help the students seek help at appropriate places. They

8.1. Future Work 287

used the Cognitive Tutors technology and implemented additional production
rules that capture good and buggy help-seeking behaviour. These rules are
based on three main criteria: (i) the time needed for deliberate action, (ii) the
skills involved in a step and the probability that the student masters the skills,
(iii) what the student has already done in a step, e.g., the number of success-
ful and unsuccessful attempts and the number of previous hints. The buggy
behaviour is clustered in four super-categories: (a) Help Abuse, (b) Help Avoid-
ance (c) Try-Step Abuse and (d) Miscellaneous Bugs. The student’s actions
are then traced and hints are provided that prompt the student to exhibit the
most appropriate help-seeking behaviour at every point. This might involve
encouraging the student to request a hint, advising the student to slow down
etc.

Before metacognition can be included in Menon a thorough investigation is
needed to establish the relation between cognitive, metacognitive and affective
functions, and the interplay between the inherent metacognitive function of hints
and hints that aim only at reinforcing metacognition must be elucidated. The
architecture of Menon enables extensions. In order to incorporate metacognitive
feedback in Menon, three additions are necessary. First, a submodule should be
added to the HSS to represent modelling metacognitive aspects in the tutor-
ing session. Second, a new substrategy should be implemented to manage the
choice of appropriate metacognitive feedback, based on tutoring situations de-
fined by the new metacognitive aspects in the HSS. Third, the control strategy,
Generic Tutoring, should be extended to incorporate when the metacognitive
substrategy should be called.

8.1.2 Teaching Strategy Enhancements

A result from our evaluation was that the evaluators would have preferred a
less intrusive strategy at the beginning of a tutoring session, which would allow
students to think more for themselves. Since this critique was expressed for the
same feedback that was also given low scores for motivating the student, one
can suspect that students might be more motivated if they were allowed more
freedom at the beginning of a session, or that they might feel lost. One option
for taking the evaluators preference into account would be to give student more
freedom at the start, but only after they have become familiar with how hinting
works, e.g. after the first step.

Another relevant recommendation for improving our feedback suggested
more verbose motivational feedback that would include indicating what the stu-
dent has done right. A more accurate place in our implementation for dealing
with that comment would be to provide a more detailed signal evaluation, which
is already part of every feedback turn. At the moment, signal evaluation is re-
stricted to informing students of the evaluation of their domain-contribution. A
more detailed version of it should include informing the student what is right
in the domain-contribution, as recommended by the evaluator, before hinting
at what is wrong. There were also a couple of instances of this behaviour in
the Socratic condition of the Wizard-of-Oz experiment. For example, when the

288 Chapter 8. Conclusion

student knows the Starting Point, the premise and the conclusion, the tutor can
inform the student that this was the right thing to do first and then hint for the
next instructional point. The feedback may look like this:

T: (signal evaluation) “You are right to begin with identi-
fying what you can assume and what you need to prove.”
(elicit-rel-con) “Can you now find the thing in the expression
with which you can start working on the step?”

This behaviour could easily be automated in Menon by extending the spec-
ification of the move signal evaluation to include the instructional points that
the student has covered.

A general advancement in our system would be to give feedback on student
requests other than the content of the existing hints. For example, an ill-formed

domain-contribution is one where everything else is correct, but a part of it is
ill formed. After such a domain contribution, the student might ask which part
exactly of the answer is ill formed. In such cases, Menon currently only points
out that there is something ill formed and then produces the correct formula-
tion. We could extend Menon to be able to answer the student’s request for
the position where the ill formed syntax occurred by naming the part that was
wrongly substituted. The equivalent addition can also be made with regard to
a the domain-contribution wrong-linguistic-term. This is a domain-contribution
where everything is correct except for a part where the wrong term has been
used. In that case, it would be possible to respond to a student’s request for
the exact term that is expressed using wrong terminology. As we said in Exam-
ple 6.4, when the task is to prove A ∩B ∈ P ((A ∪B) ∩ (B ∪ C)), an ill-formed

domain-contribution would be:
P ((A ∪B) ∩ (B ∪ C)) = PC ∪ (A ∩B)

At the moment, Menon would tell an advanced student that there is a problem
with the syntax by producing the hint:

T: (Elicit-ill-formed) “What you wrote there is not completely
correct syntactically. Can you correct it?”

If the student cannot correct the mistake, Menon would respond with the hint:

T: (Give-away-ill-formed) “The right way to write this is P ((A∪
B) ∩ (B ∪ C)) = P (C ∪ (A ∩B))”.

The extention we are suggesting is that when the student after the first hint
asks where the syntactic mistake is, the system can point to the right hand-
side of the equation and give the student another chance to correct it. This
extension is dependent on the analysis module to be able to provide the exact
spot of the syntactic error. It is important for Socratic tutoring that students
are not denied an opportunity to correct their own errors when possible. It is
also important to ITSs in general to be able to deal with students’ requests for

8.1. Future Work 289

help like human tutors.
We would also like to provide a better way to connect the hints between steps,

so that the sense of continuity is increased and the student develops a better
feeling of the reasoning. The hint point-backwards already provides this func-
tionality, but only for the current step. However, if we could point students back
to previous steps for how they dealt with meta-reasoning hints, in particular, this
would not only avoid just repeating the same hint with different domain content,
but it could also increase the understanding of the abstract schema. For exam-
ple, if we have produced the hint elicit-relevant-concept-meta-reasoning-
(subordinate-concept) for a previous step, we can point the student to the
previous mention of it even though the hint specifications for the new step (the
Relevant Concept and the Subordinate Concept) would be different. When it is
produced for the first time, the hint could be phrased as:

T: “Now, find something in the expression, which you can connect
to the subset and can help you find the right rule for the next
step.”, where the “subset” is the Relevant Concept.

A point-backwards that takes as hint specification the hint produced in the
previous turn (here elicit-relevant-concept-meta-reasoning), could be
phrases as:

T: “Remember there was a step where you also knew from which
concept to start. What did we do then to help us find the right
rule for the next step? ”

However, a closer investigation of the benefits of this addition would have to
be made first, in order to really provide such hints when it could be beneficial.
It has been, namely, observed that too much looking backwards and searching
for similarities may result in a split attention effect [Sweller, 1988] and can be
detrimental for learning [Berry and Broadbent, 1988].

A further improvement to the system and the potential to capture individual
needs of students would be to extend the HSS to keep track of which kind of
hints a student responds better to. If this is represented, we can reason about
which kind of hints to avoid and which to prefer.

8.1.3 Empirical Studies

In general, large-scale evaluations with students to test specific features are
necessary. Menon can be used as a platform for testing the different aspects
of the tutoring model and hence contribute to the empirical investigations in
this direction. Maybe the most important contribution in this respect is the
proof–of-concept implementation of schema theory which allows to scientifically
test this theory and its role in learning. For example, [Lim et al., 1996] stated
a difficulty in explaining why students who were inclined to use a forward tech-
nique did not learn better, as would have been predicted by studies like [Chi et

290 Chapter 8. Conclusion

al., 1982]. Our hypothesis would be that the students did not have the means-
ends technique available to them, which is the actual way novices set out to
learn in general [Owen and Sweller, 1985]. On the other hand, there was no
guidance to help them apply a forward-technique, which presupposes that they
already possess a relevant schema. Consequently, the students were at a loss.
Using Menon, one could test the hypothesis that such students who don’t have
a schema for problem solving would benefit most from our hinting towards a
forward problem-solving technique.

291

Appendices

293

Appendix A

The Mathematical Theory

in Omega and the

Definitions of Relations

In this appendix we provide examples of the mathematical knowledge on set
theory that is represented in Omega. This knowledge is in the form of natural
deduction rules both for presentation purposes and also because our domain is
very close to natural deduction. However, Omega represents this knowledge
as abstract inference rules. We also outline the additional relations that were
first defined for tutoring purposes for the Dialog project Wizard-of-Oz exper-
iment [Tsovaltzi and Fiedler, 2003b] and we then adapted and augmented for
our enhanced model of automatic hinting presented in this thesis.

A.1 Concepts for Set Theory

The following draws on sets and on inhabitants of sets. This is the list of
concepts necessary for tutoring set theory:

∈ : element of 6∈ : not element of
∩ : intersection
∪ : union
· : set complement
\ : set difference
⊆ : subset 6⊆ : not subset
⊂ : strict subset 6⊂ : not strict subset
⊇ : superset 6⊇ : not superset
⊃ : strict superset 6⊃ : not strict superset
P : powerset
∅ : empty set
⊤ : truth ⊥ : falsity

294 Chapter A. The Mathematical Theory in Omega and the Definitions of Relations

A.2 Inference Rules and Notation Examples

Let Es be the expected inference step in a particular proof, consisting of the
premises ϕ1, . . . , ϕn, the conclusion ψ and the rule P. Inferences in our domain
usually have the form:

ϕ1, . . . , ϕn

ψ
P

Let A,B be sets and let x be an inhabitant. Then an example is the Union
in Powerset: If A ∈ P(C) and B ∈ P(C), then A ∪ B ∈ P(C), can be written
in the form of an inference rule as follows:

A ∈ P(C) B ∈ P(C)

A ∪B ∈ P(C)
∪ P

These are the inference rules as defined in the underlying logic of Omega[The
Omega group, url].

A.2.1 Basic Deduction Rules

These are the basic deduction rules needed and are represented in the Omega

ontology in the highest of the nested theories.

1. ∨-IR Disjunction Introduction, the rule is applied to the right: if A, then
A ∨B.

2. ∨-IL Disjunction Introduction, the rule is applied to the left: if A, then
B ∨A.

3. ∨-E Disjunction Elimination: ifA∨B, and both C holds under assumption
A and C holds under assumption B, then C.

4. ∧-I Conjunction Introduction: if A and B, then A ∧B.

5. ∧-EL Conjunction Elimination, the rule is applied to the left: if A ∧ B,
then A.

6. ∧-ER Conjunction Elimination, the rule is applied to the right: if A ∧B,
then B.

7. ⇒-I Implication Introduction: if assume A and prove B, then A⇒ B.

8. ⇒-E Implication Elimination: if A⇒ B and A, then B.

9. =-I Equivalence Introduction: if we can prove B under the assumption A
and we can prove A under the assumption B, then we have A = B.

10. =-ER Equivalence Elimination, the rule is applied to the right: if A = B
and A, then B.

A.2. Inference Rules and Notation Examples 295

11. =-EL Equivalence Elimination, the rule is applied to the right: if A = B
and B, then A.

12. ¬-I Negation Introduction: if assume A and prove a contradiction, then
¬A.

13. ¬-E Negation Elimination: if A and ¬A, then C.

14. 2¬-I Double Negation Introduction: If A, then ¬¬A.

15. 2¬-E Double Negation Elimination: If ¬¬A, then A.

16. ∃-I Existential Introduction: if A[t← x], then ∃xA.

17. ∃-E Existential Elimination: if ∃xA, and we can prove that A[a← x]⇒ B
(where a is new), then B.

18. ∀-E Universal Elimination: if ∀xA, then A[t← x].

19. ∀-I Universal Introduction: if A[a← x] (where a is new), then ∀xA

A.2.2 Definitions

These are the basic definitions included in Omega

Definition of Element: The elements of a set are its inhabitants: x ∈ A if and
only if x is an inhabitant of A.

Definition of Intersection: The intersection of two sets is the set of their com-
mon elements: A ∩B = {x |x ∈ A and x ∈ B}.

Definition of Union: The union of two sets is the set of the elements of both
sets: A ∪B = {x |x ∈ A or x ∈ B}.

Definition of Subset: A set is a subset of another set if all elements of the former
are also elements of the latter: A ⊆ B if and only if for all x ∈ A follows
that x ∈ B.

Definition of Strict Subset: A set is a strict subset of another set if the latter
has at least one element more: A ⊂ B if and only if A ⊆ B and there is
an x ∈ B such that x 6∈ A.

Definition of Superset: A set is a superset of another set if all elements of the
latter are also elements of the former: A ⊇ B if and only if for all x ∈ B
follows that x ∈ A.

Definition of Strict Superset: A set is a strict superset of another set if the
former has at least one element more: A ⊃ B if and only if A ⊇ B and
there is an x ∈ A such that x 6∈ B.

Definition of Powerset: The powerset of a set is the set of all its subsets: P(B) =
{A |A ⊆ B}.

296 Chapter A. The Mathematical Theory in Omega and the Definitions of Relations

Definition of Complement: Given a universal set U and a subset A of U , the
complement of A is the set of all members of U that are not members of
A: K(A) = {x|x ∈ U ∧ x /∈ A}.

Set Equality If A ⊆ B and B ⊆ A then A = B.

Set Difference: A\B = {x : x ∈ A ∧ x /∈ B}.

A.2.3 Theorems

These are examples of the theorems of the set theory that are represented in
Omega.

1. ⊆-Ref Introduction of a formula that expresses the reflexivity property of
subset (⊆): for A in sets , A ⊆ A

2. ⊆-Comp Introduction of set complements relative to a subset relation: if
B ⊆ A, then A ⊆ B

3. ⊆-Diff Introduction of set difference relative to a subset relation: if A ⊆ B,
then A = B\C, where C = A\B

4. ⊆-∩-Ibranch Introduction of set intersection relative to a subset relation
(branching). Rule is applied to the superset: if A ⊆ B ∧ A ⊆ C, then
A ⊆ B ∩ C

5. ⊆-∩-E Elimination of set intersection relative to a subset relation. The
rule is applied to the subsets.: if A ⊆ B ∩C, then A ⊆ B ∧A ⊆ C

6. ⊆-∩-IL Introduction of set intersection relative to a subset relation. The
rule is applied to the (Left) subset: if B ⊆ C, then A ∩B ⊆ C

7. ⊆-∩-IR Introduction of set intersection relative to a subset relation. The
rule is applied to the (Right) subset: if A ⊆ C, then A ∩B ⊆ C

8. ⊆-∪-IL Introduction of set union relative to a subset relation. The rule is
applied to the (Left) superset: if A ⊆ C ∧B ⊆ C, then A ∪B ⊆ C

9. ⊆-∪-IR Introduction of set union relative to a subset relation. The rule is
applied to the (Right) superset: if A ⊆ C, then A ⊆ B ∪ C

10. P-I Introduction of the powerset: if A ⊆ B, then A ∈ P(B)

11. P-I Elimination of the powerset: if A ∈ P(B), then A ⊆ B

12. ∪-P Union of Powersets: P(A) ∪ P(B) ⊆ P(A ∪B).section

13. ∪-Com Commutativity of Union: A ∪B = B ∪A.

14. ∪-Assoc Associativity of Union: (A ∪B) ∪ C = A ∪ (B ∪ C).

15. ∪-Distr Distributivity of Union: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

A.2. Inference Rules and Notation Examples 297

16. ∩-Distr Distributivity of Intersection: A ∩ (B ∪C) = (A ∩B) ∪ (A ∩ C).

17.
⊆-∪-IR
⊆-∪-IL

}

= ⊆-∪-Icom: if A ⊆ B or A ⊆ C, then A ⊆ B ∪ C

18.
⊆-∩-IR
⊆-∩-IL

}

= ⊆-∩-Icom: if A ⊆ C or B ⊆ C, then A ∩B ⊆ C

The result of collapsing the two rules in each of the set of rules 17 and 18
with the application of commutativity to one of them (i.e., with respect to ∪
and ∩ respectively) may be considered as one rule. Representing this as an
explicit rule makes the rule available for the hinting process.
⊆-∩-Icom that refers to commutativity and applies to subset, is not to be

confused with ⊆-∩-Ibranch that refers to branching, and applies to superset,
that is, the application of the operation on both sides. The rule ⊆-∩-Icom says:
if A ⊆ C, then A ∩ B ⊆ C; whereas ⊆-∩-Ibranch says: if A ⊆ B and A ⊆ C,
then A ⊆ B ∩ C.

Since definitions, theorems or lemmata can all be written as inference rules,
they are all considered inference rules.

A.2.4 Definitions of Relations for Tutoring

We now present the relations for tutoring that were defined in view of the
Wizard-of-Oz experiment, conducted in the context of the Dialog project.
These relations were defined by comparing the definitions of concepts and in-
ference rules in Omega with respect to common patterns [Fiedler and Tso-
valtzi, 2005]. In particular, relations between mathematical concepts, relations
between mathematical concepts and inference rules, and relations between con-
cepts, formulae and inference rules were defined. In Chapter 3, we used these
relations to define our instructional points. Figure 3.2 is an overview of the
enhanced ontology. It depicts the instructional points with their subclasses and
instances.

A.2.4.1 Relations

We now present the relations that were identified by looking at the Omega

ontology.

Relations between Mathematical Concepts Let σ, σ′ be mathematical
concepts.

Antithesis: σ is in antithesis to σ′ if they are opposite concepts (i.e., one is
the logical negation of the other).
Notation: antithesis(σ, σ′).

Examples: antithesis(∈, 6∈)
antithesis(⊆, 6⊆)
antithesis(⊂, 6⊂)

298 Chapter A. The Mathematical Theory in Omega and the Definitions of Relations

antithesis(⊇, 6⊇)
antithesis(⊃, 6⊃)

Duality: ∩ is dual to ∪.

This relation can probably be generalised, but this is not necessary for the
purposes of tutoring set theory.

Converse: σ and σ′ are converses if for all a, b holds that aσb⇔ bσ′a.
Notation: converse(σ, σ′).

Examples: converse(⊆,⊇)
converse(⊂,⊃)

Hypotaxis: σ is in hypotaxis to σ′ if and only if σ′ is defined using σ. Then,
σ is a hypotaxon of σ′, and σ′ is a hypertaxon of σ.
Notation: hypotaxon(σ, σ′) and hypertaxon(σ, σ′).

Examples: hypotaxon(∈,⊆)
hypotaxon(∈,⊇)
hypotaxon(∈,∪)
hypotaxon(⊆,P)

Primitive: σ is a primitive if and only if there is no hypotaxon of σ.
Notation: primitive(σ).

Examples: primitive(∈)
primitive(⊤)

Specialisation: σ is a specialisation of σ′ if and only if for all x1, . . . , xn holds
that σ(x1, . . . , xn) implies σ′(x1, . . . , xn).
Notation: specialisation(σ, σ′).

Examples: specialisation(⊂,⊆)
specialisation(⊃,⊇)

Generalisation: σ is a generalisation of σ′ if and only if σ′ is a specialisation
of σ.
Notation: generalisation(σ, σ′).

Examples: generalisation(⊆,⊂)
generalisation(⊇,⊃)

Relations between Mathematical Concepts and Rule of Inferences
Let σ, σ′ be mathematical concepts, P be an inference rule, s the source expres-
sion, that is the expression which P is applied on, and t the target expression,
that is the expression which we arrive at after the application of P on s. Note
that although s might coincide in some cases with the premises and t with the
conclusion of a step, this is not always the case. Source and target are used in-
stead, as tutoring should be based on leading the student from the source to the
target, as the tangible units for deriving the next proof step. For forward steps,
the source are the premises and the target is the conclusion. The reverse holds

A.2. Inference Rules and Notation Examples 299

for backward steps (cf. Chapter 2 and Section 3.4.3). The following relations
are defined:

Relevance: σ is relevant to P if and only if P can only be applied when σ is
part of s or t.
Notation: relevant-to(σ,P).

Examples: relevant-to(⊆,⊆-∩-Icom)
relevant-to(∩,⊆-∩-Icom)

Dominance: σ is dominant over σ′ for rule P if and only if σ appears in both
in s and t , but σ′ does not. σ′ has to appear in either s or t.
Notation: dominant(σ, σ′,P).

Examples: dominant(⊆,∩,⊆-∩-Icom)
dominant(⊆,∪,⊆-∪-Icom)

Subordination: σ is subordinate to σ′ for rule P if and only if σ′ is dominant
over σ for rule P.
Notation: subordinate(σ, σ′,P).

Examples: subordinate(∩,⊆,⊆-∩-Icom)
subordinate(∪,⊆,⊆-∪-Icom)

Relations between Concepts, Formulae and Rule of Inferences Let σ
be a mathematical concept, P be an inference rule, s the source expression, and
t the target expression.

Occurrence State: A relation that captures how the occurrence of an instance
of σ in t and s is influenced. There are two occurrence states:

Insert: σ is inserted by rule P if and only if σ occurs in t, but not in s.
Notation: inserts(σ,P).

Extract: σ is extracted by rule P if and only if σ occurs in s but not in t.
Notation: extracts(σ,P).

Examples: If the rule Set Equality

A ⊆ B B ⊆ A

A = B

is applied backwards it inserts the ⊆ to both targets A ⊆ B and B ⊆ A, and
extracts = from the source A = B. If applied forwards, the rule inserts = from

300 Chapter A. The Mathematical Theory in Omega and the Definitions of Relations

the target A = B, and extracts ⊆ from both sources A ⊆ B and B ⊆ A.

Let also Ex be a mathematical expression.

Inversion: Let P and P′ be two rules, ϕ and ϕ′ the major premises (the non-
trivial ones)1 of P and P′, respectively, and let ψ and ψ′ be the conclusions
of P and P′, respectively. Then P is an inverse of P′ and vice-versa if and
only if ϕ = ψ′ and ϕ′ = ψ.

Notation: inverse(P,P′).

Examples: inverse(P-E,P-I).

In: σ is in Ex if and only if σ occurs in Ex.
Notation: in(σ,Ex).

Examples: in(⊆, A ⊆ B)
in(⇒, A ⊆ K(B)⇒ B ⊆ K(A))

1The non-trivial premises are the ones that contain the Relevant Concept, which we define
in Section 3.4.1.1

301

Appendix B

Menon’s Interface Language

In the following, we use square brackets to designate an optional specification.
The output specifications in bold and their analysis are the ones that are not
provided by Menon as they pertain to domain reasoning (cf. Chapter 5).

Input ::= task
| strategy
| undo
| tut-goal-status

task ::= a string for the task
strategy ::= socratic

| didactic
undo ::= turn

| step
| proof

tut-goal-status ::= studTaskDM
| domCon
| instructionalPoints
| pragmaticInfo
| proofStatus

instructionalPoints ::= relConU
| subConU
| domRelU
| iRU
| inverseRuleU
| techniqueU
| startPointU
| premiseU (the source expression)
| conclusionU (the target expression)
| directnessU
| directionU

pragmaticInfo ::= difTheory

302 Chapter B. Menon’s Interface Language

| sameDomInfo
| orderedListA
| unorderedListA

orderedListA ::= boolean
unorderedListA ::= boolean
difTheory ::= difNextStep
sameDomInfo ::= domInfoCat
domInfoCat ::= domInfoCat

| whichRelCon
| whyRelCon
| whichSubCon
| whySubCon
| whichIR
| whyIR
| domTech
| basicKnow
| basicKnowRef
| illFormed
| howSubst
| whySubst
| whichProofStep
| whyProofStep
| startPoint
| premConc
| absMethod
| specMethod
| irrAssReq

proofStatus ::= proofStepCompleted
| proofCompleted

proofStepCompleted ::= boolean
proofCompleted ::= boolean
studTaskDM ::= STDM ∧ [STDM specifications]
STDM ::= reqEval

| reqAss
| resign
| timeout

STDM specifications ::= assReq
| domConCat

assReq ::= domInfoCat except irrAssreq
domConCat ::= correct

| pa
| ci
| wrong
| unknown
| misc
| missBasicknow

303

| stepsize
| irrel
| illFormed
| wrongLingTerm
| nearMiss
| other

nearMiss ::= antithesis
| duality
| conversion
| specialisation
| generalisation
| nearMissWLT
| nearMissIllFormed

relConU ::= boolean
subConU ::= boolean
domRelU ::= domain relations
domain relations ::= antithesis (all as defined in ontology)

| duality
| conversion
| hypotaxis
| specialisation
| generalisation
| primitive

iRU ::= boolean
inverseRuleU ::= boolean
techniqueU ::= boolean
premiseU ::= boolean
conclusionU ::= boolean
startPointU ::= boolean
directionU ::= boolean
directnessU ::= boolean

Output ::= substrategy
| tutorTaskDM
| conTaskManDM
| conComManDM

substrategy ::= substrCat ∧ [subsrtPar]
substrCat ::= subtask | subdialogue
subdialogue ::= diagnostics
subtask ::= metareas

| per-step
| recapitulation
| requset-assistance
| explain-misc
| spell-out-task

304 Chapter B. Menon’s Interface Language

| aligning
| nearmiss

subsrtPar ::= completeProof
| completeStep

tutorTaskDM ::= TTDM ∧ [TTDM specifications]
TTDM ::= hint

| domConEval
| checkOrProb
| prompt
| encourage
| align

conComManDM ::= CMDM ∧ [TTDM specifications]
CMDM ::= initiateDial

| closeDial
|initiateSubdial
| closeSubdial

conTaskManDM ::= TMDM ∧ [TTDM specifications]
TMDM ::= initiateTask

| closeTask
| initiateSubtask
| closeSubtask

hint ::= all possible values of hint in HSS ∧ [TTDM
specifications]

domConEval ::= all domConEval cats
TTDM specifications ::= pragmatic info

| instructional points
| studTaskDM
| promptStep (just string for generator)
| promptAction (just string for generator)
| task (provided by student model module)
| substask
| subdialogue
| domConCat (all values of domConCat in
HSS)
| hint (for align, step-meta-reas and point-
backwards)
| assReq (all possible values of assReq in HSS)

pragmatic info ::= speak to answer info
| point to info info
| take for granted info

speak to answer info ::= [list position] (the position of the missing
element in a list)
∧ [list elements]
∧ [rest list elements]

point to info info ::= sameDomInfo (the info the student is
pointed back to)

305

take for granted info | misconception
::= correctTerm
| correctInfo

correctTerm ::= correctLingTerm
| wrongLingTerm

misconception ::= miscType
miscType ::= step-size

| hypotaxis
| inversion
| primitive

correctInfo ::= [hint]
instructional points ::= domain objects

| domain relation
| rule of inference
| substitution
| proof step

domain objects ::= relevant concept
| subordinate concept

domain relations ::= domain-relation name | domain-relation
concept

domain-relation name ::= antithesis (all as defined in ontology)
| duality
| conversion
| hypotaxis
| specialisation
| generalisation
| primitive

domain-relation
concept

::= antithetical concept

| dual concept
| junctive concept
| hypotactical concept
| specialisation concept
| generalisation concept
| primitive concept

rule of inference ::= basic knowledge (as in HSS)
| rule of inference
| inversion (as in ontology)
| domain technique

substitution ::= substitution (the proof step)
| correct formulation (for the ill-formed defined
in HSS)

proof step ::= starting point
| premise+-conclusion+ (the source
expression/-s and the target expression/-s)
| directness

306 Chapter B. Menon’s Interface Language

| direction
| proof step

basic knowledge ::= basic knowledge reference ∧
the basic knowledge

rule of inference ::= [rule of inference name] ∧
| [formula]

rule of Inference
name

::= names of definitions

| theorems
| lemmata
| tautologies

domain technique ::= occurrence state of defined constant
| occurrence state of quantifier
| occurrence state of connective
| case distinction
| induction

directness ::= direct proof
| indirect proof

direction ::= forward step
| backward step

307

Appendix C

Dialogue Move Taxonomy

C.1 Philosophy of Taxonomy

In this taxonomy, we focus on the separation of generic dialogue management
phenomena, on the one hand, and the manipulation of genre- and domain-
specific phenomena involved in modelling different teaching models and do-
mains, on the other hand. The latter we view as only a subpart of the dialogue
manager. In order to achieve that, we propose a dialogue-move taxonomy in
the tradition of the multidimensional structure of DAMSL [Allen and Core,
1997] to capture the multifunctionality of utterances. This possibility is an
advantage of DAMSL compared to other major proposals, such as the Verbmo-
bil dialogue-act annotation scheme [Alexanderson et al, 1997]. The Verbmobil
scheme represents a flat hierarchical structure with growing specificity towards
the leaves. The core of the dialogue moves defined for Verbmobil is moreover
specific to the task, namely appointment scheduling, which renders it hard to
reuse the annotation scheme.

We mainly divert from other approaches in that we suggest an expanded task

dimension for clearly separating out and defining the genre and domain spe-
cific characteristics of dialogue [Tsovaltzi and Karagjosova, 2004]. This further
facilitates the original idea of the DAMSL attempt for reusability and recon-
figurability, as it provides a better framework for capturing what is generic in
dialogue management and reusable between genres, and, on the contrary, what
is specific to the genre or even the different domains. The latter also makes
modelling the genre, and the different domains in it more straightforward. We
define dialogue moves using empirical data (cf. [Wolska et al., 2004]), as well
as based on previous taxonomies [Allen and Core, 1997; Core et al., 2002]. We
seek interrelations among the moves in the different dimensions.

We now briefly describe the DAMSL scheme and then analyse our particular
adaptations to it.

308 Chapter C. Dialogue Move Taxonomy

C.1.1 DAMSL dimensions

DAMSL allows multilevel annotation. It distinguishes four dimensions according
to the unit’s purpose and role in dialogue:

• Communicative status: It captures whether the utterance is intelligible
and whether it was successfully completed, or uninterpretable, abandoned,
self-talk, etc.

• Information level: It provides an abstract characterisation of the semantic
content of the utterance:

– Task: “Doing the task”, i.e., utterances that advance the task.

– Task-management: “Talking about the task”, i.e., utterances that
discuss the problem solving process or experimental scenario.

– Communication management: “Managing the communication”, i.e.,
conventional phrases that maintain contact, perception, and under-
standing during the communication process: greetings, closings, ac-
knowledgements (“Okay”, “uh-huh”), stalling for time (“Okay”, “Let
me see”), signals of speech repairs (“oops”) or misunderstandings
(“sorry?”, “huh?”).

– Other-level.

• Forward-looking function: It characterises what effect an utterance has on
subsequent dialogue and interaction.

• Backward-looking function: It captures the way the current utterance is
related to the previous dialogue.

C.1.2 Adaptations to DAMSL

We assume six dimensions instead of only four in DAMSL. More specifically, we
make the DAMSL sublevels task, task-management and communication manage-
ment separate dimensions of their own for more clarity. These sublevels belong
to the information level in DAMSL. Turning them into separate dimensions is
necessary in tutorial dialogues to capture the complex phenomena observed (cf.
Section C.2.1).

We modified and extended the dialogue moves in DAMSL with moves from
the BE&E annotation scheme [Core et al., 2002], which was developed for the
tutorial dialogue genre. The BE&E annotation scheme is based on DAMSL,
however it does not distinguish all levels that DAMSL provides. The BE&E
annotation scheme additionally provides additional dialogue moves derived from
a tutorial dialogue corpus. We adopt some of these moves, but in order to cater
for more tutorial dialogue genre- and domain-specific phenomena, we define new
dialogue moves and group them in a separate task level, following DAMSL (cf.
Chapter 4). The need for such a separation in dialogue systems became obvious
by our tutorial dialogue corpus and has also been advocated by [Allen et al.,

C.2. Overview of The Taxonomy 309

2001b] who use a modular architecture for dialogue and task planning, for the
domain of route planning.

C.2 Overview of The Taxonomy

In this section, we describe the dimensions in the taxonomy and state their prac-
tical use. The dimensions task, conventional-task management, and conventional-com-

munication management are scrutinised in Chapter 4. Here we examine the dimen-
sions forward-looking, backward-looking, and commu-

nicative status.

C.2.1 The Dimensions in the Taxonomy

The taxonomy features many different dimensions to capture the fact that an
utterance produced by a speaker may have many functions (serve many pur-
poses) at the same time, much in the DAMSL fashion [Allen and Core, 1997].
Every one of the dimensions represents one of these potential different func-
tions. The actual detailed description of what the utterance’s function is in the
particular context (the dialogue at hand) corresponds to one of the categories of
dialogue moves defined in the dimensions themselves. In every dimension, there
are different levels of description of the dialogue moves. These are structured
in classes and subclasses up to three different levels deep. The current function
of an utterance is represented on the deepest level of subclasses, which inherit
the properties of the respective superclasses. There are in total six dimensions
in the taxonomy.

C.2.1.1 Forward-Looking Dimension

The forward-looking dimension characterises the effect an utterance has on the
subsequent dialogue [Allen and Core, 1997]. In this dimension there are 11
classes of dialogue moves (DMs), some of them with subclasses. Most of the
DMs are adopted from DAMSL with slightly modified definitions, two are taken
from BE&E, and four are newly defined. An instance of a dialogue move in this
dimension is info-request. We define it as an utterance that requests information
that the speaker does not possess. This definition differs from the one provided
in DAMSL, according to which any utterance that creates an obligation for the
hearer to provide information is an info-request. However, in tutorial dialogues
it is necessary to distinguish between questions the answer to which the speaker
knows but does not want to give away, and questions to which the speaker really
does not know the answer. This is especially important in the case where the
speaker is the tutor. We consider only the latter to be info-request. For the
former case, we adopt the dialogue move diagnostic-query defined in [Core et
al., 2002] as an utterance by which “the speaker is testing whether a listener
knows a piece of information by asking him to supply the information” (p.4).
An example of an info-request from our corpus is C.1 and of a diagnostic-query
C.2.

310 Chapter C. Dialogue Move Taxonomy

(C.1) T: “Glauben Sie, dass Sie das nun beweisen müssen oder ist das eine
Folgerung aus dem Obigen?” (soc23p)
[Do you think that you have to prove that now, or does it follow
from the above?]

(C.2) T: “Wissen Sie, wie Sie diese Beziehung benutzen können?” (soc12k)
[Do you know how to use this relation?]

C.2.1.2 Backward-looking Dimension

The backward-looking dimension captures how the current utterance relates to the
previous discourse [Allen and Core, 1997]. Every move in this dimension has an
antecedent, i.e., a dialogue move in the preceding discourse, which is affected
by the backward move currently performed. Note that the antecedent need not
be necessarily in the immediately preceding discourse, but can be more distant.
A move can also have multiple antecedents.

Most of the dialogue moves in this dimension are also adopted from DAMSL.
An exception is the category information-relation that DAMSL suggests as a
possible aspect of the backward-looking function but does not elaborate on. We
define five address moves that apply when neither of the more specific dialogue
moves in this dimension accept, reject and answer apply. The main motivation
for having address moves is to distinguish between the aspects resolvedness vs.
aboutness of answers to questions, following [Ginzburg, 1996]. Resolvedness
and aboutness are relations between questions and answers. An answer resolves
a question when the answer provides information that positively or negatively
resolves the question [Larsson, 2002]. “About” is a relation that accounts for the
range of information associated with a question [Ginzburg, 1994]. An answer
move always resolves the question. If the question is followed by an utterance
that does not resolve it, but is about it, we consider it as an address-info-request.
For instance, the tutor’s utterance in Example C.3 is not an answer according to
the distinction resolve vs. about: it does not answer the student’s question but
rather refuses to answer it. However, it does address the question and realises,
thus, an address-info-request move:

(C.3) S: “was ist K (a)?” (min11d)
[what is K (a)?]

T: “Das kann ich nicht beantworten”
[I cannot answer this]

We modify the definition of answer as an utterance that complies with an
info-request action in the antecedent and resolves it. An example of an answer
move from our corpus is C.4 below, where the student gives an answer to the
tutor’s info-request and resolves it:

C.3. The Dialogue Move Taxonomy 311

(C.4) T: “Ist das noch derselbe Lösungsweg wie in der vorigen Antwort?”
(did10p)
[Is this still the same solution as in the previous answer?]

S: “Nein”
[No]

C.3 The Dialogue Move Taxonomy

C.3.1 Segmentation

The basic units that realise dialogue moves are sentences and coordinate clauses.
In some cases, two or more clauses of one sentence that are coordinate may
perform separate moves in one and the same dimension. For instance, the
sentence in Example C.5 is segmented into two units, where the first clause is
an assert and the second an info-request, both in the forward-looking dimension.

(C.5) T: “Das ist richtig,” (assert) “aber wie bringt das den Beweis weiter?”
(info-request) (soc1p)
[This is correct, but how does it help with the proof?]

However, a complex sentence can also realise one single move. Therefore,
basic units can also be grouped together and perform a single dialogue move.
Each unit realises at most one dialogue move per dimension.

C.3.2 Forward-Looking Dimension

In this dimension there are 11 classes of dialogue moves, some of them with
subclasses. Only direct (explicit) speech acts are assumed1.

1. Statement

(a) Assert

(b) Reassert

(c) Other-statement

2. Influencing-addressee-future-action

(a) Open-option

(b) Action-directive

3. Info-request

4. Diagnostic-query

1Decision trees for the dimensions forward and backward-looking can be found in Chapter 4
to help the reader disambiguate among the moves in these dimension.

312 Chapter C. Dialogue Move Taxonomy

5. Understanding-query

6. Committing-speaker-future-action

(a) Commit

(b) Offer

7. Conventional

(a) Conventional-opening

(b) Conventional-closing

8. Apologise

9. Gratitude

10. Signalling-emotion

(a) Frustration

(b) Satisfaction

11. Other-forward-function

C.3.2.1 Statement

Its primary purpose is to make explicit claims about the world. Intuitively,
an utterance that can be followed by “That’s not true” is a statement. Weak
forms of statement such as hypothesising or suggesting that something might
be true also belong to this class. Statements can be asserts, reasserts, or other-
statements [Allen and Core, 1997].

C.3.2.1.1 Assert The speaker is trying to make the addressee adopt a belief
by communicating a claim about the world [Allen and Core, 1997].

Obligations The hearer has to address it, that is, she cannot ignore it. Any
utterance addressing an assert will discard this obligation [Kreutel and Mathe-
son, 2001]2.

Examples

(C.6) T: “. . . Gäbe es ein Element x ∈ A ∩ B, dann wäre x ∈ A und x 6∈
K (B), was ein Widerspruch zur Annahme ist.” (soc13k)
[If there existed an element x ∈ A ∩ B], then both x ∈ A and x 6∈
K (B) would hold, which is a contradiction to the hypothesis.

2In the DIALOG corpus, we had signs that students ignored the ”computer” tutor, which
would be specific to human-computer interaction [Tsovaltzi and Karagjosova, 2004]. Related
research also exists in [Shechtman and Horowitz, 2003].

C.3. The Dialogue Move Taxonomy 313

C.3.2.1.2 Reassert The same as assert, but the speaker believes that the
claim has already been made and indicates this belief.

Notes Only statements that are old can be reasserts, since we take the speaker’s
intentions into account, not the objective familiarity status of the utterances.

Reasserts are probably informationally redundant utterances (IRUs), that
is utterances that provide information that has already been established in the
dialogue [Karagjosova, 2003].

Obligations Same as for assert, namely a reassert poses the obligation to
address it. Any utterance addressing a reassert will discard this obligation.

Examples

(C.7) T2: “Sie müssen zuerst die wenn-dann-Beziehung auflösen”
(give-away-relevant-concept hint) (soc5k)
[First you have to eliminate the if-then relation]
. . .

T5: “. . . Wir müssen ja zuerst die wenn-dann-Beziehung auflösen.”
(elaborate-domain-object hint)
[. . .We have to eliminate the if-then relation first, though.]

C.3.2.1.3 Other-statement Any statement that is neither an assert nor a
reassert.

Notes This dialogue move is included for the sake of completeness.

C.3.2.2 Influencing-addressee-future-action

The primary purpose of this aspect is to influence the addressee’s future non-
communicative actions as in the case of requests and suggestions. The hearer
can coherently respond to it with “I can’t do that”. Questions also belong to
this class if they suggest a course of action in addition to asking a question [Allen
and Core, 1997]. This class is subdivided into open-option and action-directive.

C.3.2.2.1 Open-option An utterance that suggests a course of action or
states a possibility [Allen and Core, 1997]. Imperatives are normally not open-
options.

Obligations It poses an obligation to the student to address it. There are no
obligation for the tutor.

314 Chapter C. Dialogue Move Taxonomy

Examples

(C.8) T: “Zuerst moechte ich, dass Sie. . . ” (did15p)
[First I want you to. . .]

(C.9) T: “Sie muessen nun versuchen,. . . ” (soc12d)
[Now you have to try to. . .]

(C.10) T: “Diesen Schritt muessen Sie noch naeher erlaeutern.” (soc17k)
[You have to clarify this step more precisely.]

(C.11) T: “Vielleicht sollten Sie noch einmal in Ihren Begleitmaterial nach-
sehen.” (soc20p)
[Maybe you should have another look at your accompanying mate-
rial.]

(C.12) S: “Ich moechte die antwort wissen.” (soc5k)
[I want to know the answer.] (Resign at task level)

Counter-example

(C.13) S: “nehmen wir an, dass. . . ” (soc1k)
[we assume that]
(This is not an open-option, but a statement.)

Relation to moves in other dimensions Open-option may be a hint in the
task dimension.

C.3.2.2.2 Action-directive An utterance that requests an action to be
performed, i.e., commands, pleas, etc.

Obligations The listener is obliged to either perform the requested action
or respond to the request, e.g., refuse to perform the action [Allen and Core,
1997]. In other words, she does not have the permission to ignore it [Traum and
Allen, 1994]. The action-directive can also be rejected (e.g., the hearer refuses
to perform the action, like the student saying “I want to try something else”),
or it can be addressed (e.g., the hearer wants the speaker to clarify the request).

Examples

(C.14) T1: “Bitte zeigen Sie. . . ” (soc5k)
[Please show. . .]

C.3. The Dialogue Move Taxonomy 315

Notes The obligation is different from [Allen and Core, 1997] where open-
option does not put an obligation on the hearer, i.e., the hearer can ignore it
without any negative effect.

In the tutorial dialogue genre, both pose an obligation to address them.
Hints can be realised either by an open-option or an action-directive, based
on other issues, e.g., how strongly the tutor feels about the command being
followed.

C.3.2.3 Info-request

An info-request is an utterance that requests information that the speaker does
not possess.

Obligations In tutorial dialogues, the student is obliged to answer every tutor
question. If the question is domain related, the student is obliged to resolve
it or attempt to resolve it. This involves an obligation to answer, i.e., assert,
reject or ask (info-request), which is a request-clarification at the backward-looking

function [Kreutel and Matheson, 1999]. This obligation does not hold for the
tutor who can refuse to answer questions, or ignore them. The tutor will really
only answer info-requests that are either non-domain related (they have no
function at the task level), or otherwise based on teaching model considerations.
Example C.15 illustrates the obligation. In T4 the tutor performs an info-
request. The student in S3 ignores the tutor’s question, so the tutor in T5
states the obligation explicitly and not allowing the student to overlook it.

(C.15) T4: “Glauben Sie, daß Sie das nun beweisen müssen oder ist das
eine Folgerung aus dem Obigen?” (soc23p)
[Do you think that you have to prove this now, or does it follow
from the previous?]

S3: “A ∩ B ∈ P ((C ∪ A) ∩ (C ∪ B)) = A ∩ B ∈ P (C ∪ A)
∩ P (C ∪ B)” (unknown domain-contribution)

T5: “Bitte beantworten Sie zuerst meine Frage, bevor Sie mit dem
Beweis fortfahren.”
[Please, answer my question first, before you move on with the
proof.]

Notes An info-request performed by the tutor initiates a clarification subdi-
alogue.

Examples

(C.16) T: “. . . , aber wie bringt das den Beweis weiter?” (soc1p)
[. . . , but how does this help with the proof?] (This utterance is an
info-request and not a diagnostic-query, because the tutor really
does not know the answer.)

316 Chapter C. Dialogue Move Taxonomy

(C.17) T: “. . . , aber was hat die Potenzmenge mit diesem Beweis zu tun?”
(soc1k)
[. . . , but what does the powerset have to do with this proof?] (This
is indeed a diagnostic-query. The tutor knows that the powerset
has nothing to do with this proof. It is a rhetorical question, a
kind of prompting students to correct their own mistake.)

Relation to other moves in the same dimension In DAMSL, an info-
request is any utterance that creates an obligation for the hearer to provide
information. It includes all questions: yes/no-questions, WHO-questions, as-
sertive questions, indirect questions (e.g., “Tell me the time”), requests for
other actions that provide information (e.g., “Show me where the city is on
the map”).3 However, since we also consider diagnostic-queries, we only treat
the latter as an info-request (See C.3.2.4).

It is different from understanding-query that just asks the collocutor to signal
that she understands.

Relation to moves in other dimensions It is different from request-clar-
ification, which requests specific information about a previous vague utterance.

C.3.2.4 Diagnostic-query

An utterance with which “the speaker is testing whether the listener knows a
piece of information by asking him to supply the information”. The speaker,
normally the tutor, already knows the answer. It is often a question, but can be
also a request, e.g., “. . . tell me how electricity flows through the circuit” [Core
et al., 2002].

Obligations It poses the obligation on the student to answer it (addressing
it is not enough here).

Examples

(C.18) T: “(Sie haben die Regel aber nicht richtig angewendet.) Wie haetten
Sie diese Regel anwenden muessen?” (soc1p)
[(Only you did not apply the rule correctly). How should you have
applied the rule?]

Counter-example

(C.19) T: “Können Sie das noch genauer erklaeren?” (soc20k)
[Can you explain that more precisely?]
(This is not a diagnostic-query, because the tutor does not know
what to expect as an answer. It is a check-origin-problem at the
task level, realised as a request-clarification and into-request or
open-option).

3We would rather consider those as action-directives.

C.3. The Dialogue Move Taxonomy 317

Relation to other moves in the same dimension Diagnostic-query differs
from info-request and understanding-query in that the speaker already knows
the answer.

Relation to moves in other dimensions It can be a hint, an align, or a
checkorigin-problem in the task dimension.

C.3.2.5 Understanding-query

An utterance that asks the listener whether she understood without making her
prove it [Core et al., 2002]. It takes a “yes” or “no” as an answer.

Obligations It poses the obligation to address it. It does not pose the obli-
gation to explain more or to prove it.

Examples

(C.20) T: “Verstehen Sie jetzt, wie das mit der Implikation zusammen-
haengt?” (soc12k)
[Do you understand now how this is connected to the implica-
tion?]

Relation to other moves in the same dimension It is different from
diagnostic-query where the speaker does not know the answer. The realisation
of the two can be the same (e.g., “Do you understand?”), but the obligations
that they pose are different; diagnostic-queries require more than “yes” or “no”
as an answer.

It is different from info-request, because it asks the speaker to signal under-
standing.

C.3.2.6 Committing-speaker-future-action

Utterances that potentially commit the speaker to some future course of action.
The commitment can be conditional on the listener’s agreement (offer) or not
(commit) [Allen and Core, 1997].

C.3.2.6.1 Commit An utterance with which the speaker commits herself
to a future course of action.

Obligations Commit does not pose an obligation on the hearer to respond,
but poses a future obligation on the speaker to perform the action she has
committed herself to.

318 Chapter C. Dialogue Move Taxonomy

Examples

(C.21) T4: “Dies mache ich nun.” (did16k)
[I’m going to do this now.]
(This is a discourse-marking at the communication management
level.)

Notes An utterance that accepts an action-directive or open-option will typ-
ically be a commit [Allen and Core, 1997]. The speaker’s commitment does not
depend on the acceptance of the commitment by the hearer, e.g., as in the case
of a promise.

C.3.2.6.2 Offer An utterance by which the speaker indicates willingness to
commit to an action if the hearer accepts it [Allen and Core, 1997].

Obligations In the tutorial genre, it does not pose an obligation on students
to address it explicitly, because they are obliged to accept it. In the same way,
the tutor is not obliged to wait for the student to accept it in order to perform
the offered action.

If the student makes an offer, the tutor is obliged to address it.

Examples

(C.22) T: “Let’s look at an example” (constructed)

In [Allen and Core, 1997], offer poses an obligation on the hearer to address
it (accept or reject also count as addressing), and on the speaker to bring about
the action that she committed to.

C.3.2.7 Conventional

This category captures the function of utterances as conventional communicative
actions, such as greetings and saying goodbye. In [Allen and Core, 1997] conven-
tional includes also explicit performatives (e.g., “You are fired”), exclamations
(e.g., “Ouch”), and forward-looking functions not captured by the scheme, such
as holding/grabbing the turn (e.g., “Right”, “Okay”).

C.3.2.7.1 Conventional-opening An utterance that is a phrase conven-
tionally used to summon the addressee and/or start the interaction (e.g., “Can
I help you”, “Hi”) [Allen and Core, 1997].

Obligations The collocutor is obliged to address it.

C.3.2.7.2 Conventional-closing An utterance that is a phrase conven-
tionally used in a dialogue closing or used to dismiss the addressee (e.g “Good-
bye”) [Allen and Core, 1997].

C.3. The Dialogue Move Taxonomy 319

Obligations None.

C.3.2.8 Apologise

An utterance by which the speaker expresses regret. According to [Searle, 1975],
it is an expressive speech act, that is, the speaker expresses a psychological state
or reaction.

Obligations None.

Examples

(C.23) S: “(Hab keine ahnung mehr.) Tut mir leid!” (min14k)
[I have no idea any more. I’m sorry!]

(C.24) T: “Das ist nicht richtig.”
[That is not right.]

S: “Das tut mir leid.” (constructed)
[I’m sorry]
(The student performs an address-statement, backward-looking

function, and an apologise, forward-looking function.)

(C.25) S: “Entschuldigung, es gilt natuerlich. . . ” (soc20p)
[Excuse me, of course it holds. . .]
(This is not a self-correction, because the tutor has pointed the
student to the material. Otherwise, every student move after
a hint would have to be a self-correction. Instead, we consider
“Entschuldigung” an apologise, and what follows it asserts.)

Relation to moves in other dimensions Its backward-looking function is
address-statement.

Notes It is forward-looking, because it does not arise from a previous obliga-
tion/intention.

There is a move apology in the DARPA 9 Communicator system [Walker
and Passonneau, URL] that captures utterances that the system produces to
apologise for misunderstandings, e.g., “I am sorry. I am having trouble under-
standing you.”

C.3.2.9 Gratitude

An utterance that expresses gratitude.

Obligations There is no obligation to address it, but the listener may say
“You’re welcome”.

320 Chapter C. Dialogue Move Taxonomy

Examples

(C.26) S: “Danke.” (soc20k)
[Thank you]
(This was a reaction to an encourage)

(C.27) S: “That is nice of you.” (constructed)
(“Thank you” cannot be an assert. “That is nice of you.” can.)

Notes It is forward-looking, because it does not arise from a previous obliga-
tion/intention.

Relation to moves in other dimensions Its backward-looking function is
address-statement.

C.3.2.10 Signalling-emotion

We use this, instead of exclamation such as “Ouch”, which is used in [Allen and
Core, 1997].

C.3.2.10.1 Frustration An utterance that expresses a negative emotion.

Obligations The tutor is obliged to do an encourage. This is captured in the
task dimension, where such an utterance is considered a resign.

Examples

(C.28) S: “Wenn ich das wuesste!” (soc20k)
[If only I knew this!]

Relation to moves in other dimensions It can realise a resign move at
task level.

C.3.2.10.2 Satisfaction An utterance that expresses a positive emotion.

Obligations None.

Examples

(C.29) S: “I did well!” (constructed)

C.3.2.11 Other-forward-function

This captures any action not captured by any other forward-looking function [Allen
and Core, 1997].

C.3. The Dialogue Move Taxonomy 321

C.3.3 Backward-Looking Dimension

This dimension captures how the current utterance relates to the previous dis-
course. Only direct (explicit) speech acts are considered.

1. Agreement

(a) Accept

(b) Accept-part

(c) Maybe

(d) Reject

(e) Reject-part

2. Understanding

(a) Signal-non-understanding (SNU)

(b) Request-clarification

(c) Signal understanding

i. Repeat-rephrase

ii. Acknowledge

iii. Completion

(d) Correct-misspeaking

3. Answer

4. Information-relation

(a) Address-action-dir

(b) Address-question

(c) Address-statement

(d) Address-SNU

(e) Address-other

C.3.3.1 Agreement

This aspect covers how the utterance unit affects what the participants believe
they have agreed to, typically at the task level, or whatever the topic of discussion
is. These relations occur in contexts where the one agent has made some kind
of proposal, such as a request that the hearer does something, an offer that the
speaker does something, or a claim about the world. The current utterance then
indicates the other participant’s view of the proposal. An agent may explicitly
accept or reject all or part of the proposal, be non-committal, or leave it open
by requesting additional information, or exploring the consequences.

For instance, the utterance in Example C.30 is not explicitly accepting the
student utterance.

322 Chapter C. Dialogue Move Taxonomy

(C.30) T: Sehr gut! (soc20k)
[Very well!]

(C.31) T: “There’s something missing.” (constructed)
(This is accept at task level, because it accepts what was said and
indicates additionally that something is missing.)

An utterance may explicitly accept part of the previous utterance, but im-
plicitly reject part of it, however, this aspect only covers what is explicitly
accepted or rejected by a response [Allen and Core, 1997].

C.3.3.1.1 Accept An utterance that accepts a proposal, request, statement
or information request. The following is an example from [Allen and Core, 1997]:

(C.32) A: “Can you tell me the time?”
B: “Yes” (accept)

Obligations Whenever a forward-looking move is accepted, there is the obliga-
tion to carry the accepted move through [Matheson et al., 2000]. For instance,
an accepted offer incurs an obligation to follow it. An acceptance of a suggestion
or request to perform an action poses the obligation to attempt to achieve the
action [Traum and Allen, 1994].

Accept, however, does not apply to all forward-looking moves. Moreover, the
acceptance of an assert does not pose any obligations to perform any actions.

Examples

(C.33) T: “Der Ansatz ist richtig.” (soc2k)
[The approach is correct]

C.3.3.1.2 Accept-part An utterance that accepts part of a proposal, re-
quest, statement or information request. Implicitly, it rejects another part of the
utterance, but this only covers what is explicitly accepted. When an utterance
does both explicitly, it consists of two segments.

Obligations Same as for accept for the part that is accepted.

Examples

(C.34) T: “P (C) ∪ P(A ∩ B) ⊆ P (C ∪ (A ∩ B)): das ist richtig! A ∩
B ⊆ P (A ∩ B): das ist nicht richtig!” (min11p)
P (C) ∪ P(A ∩ B) ⊆ P (C ∪ (A ∩ B)): this is right! A ∩
B ⊆ P (A ∩ B): this is not right!]

C.3.3.1.3 Maybe An utterance with which the speaker “explicitly states
that he cannot give a definite answer at the moment” [Allen and Core, 1997].

C.3. The Dialogue Move Taxonomy 323

Obligations None.

Examples

(C.35) “I’ll have to think about it.” (constructed)

Notes It is a response to an offer.
In our domain it is not likely to have a maybe, because it is clear that one

has to think before responding.

C.3.3.1.4 Reject An utterance that rejects a proposal, request, statement
or information request. It says nothing positive about the antecedent and pos-
sibly indicates an error. It can be implicit or contain ”no” or “not” [Core et al.,
2002].

Obligations Student are obliged to justify or elaborate on a reject that they
perform.

Examples

(C.36) T: “Das ist keine Aussage” (signal-ill-formed) (did18d)
[This is not an expression]

(C.37) T: “Das kann man nicht so folgern” (soc13k)
[One cannot infer this]

(C.38) T: “Das ist nicht der richtige Weg” (soc1k)
[That is not the right way]

(C.39) T: “Was Sie geantwortet haben, ist nicht eindeutig.” (soc12p)
[What you replied is not unambiguous.]

(C.40) T: “Das ist keine vollstaendige Aussage” (did15p)
[This is not a complete utterance]

(C.41) T: “Das ist kein vollstaendiger Ausdruck.” (did19p)
[This is not a complete expression.]

(C.42) T: “Sie haben die Regel aber nicht richtig angewendet.” (soc1p)
[Only you have not applied the rule correctly]

Note: In tutorial dialogues, “no” is very seldom used, and only when the
student is totally wrong.

C.3.3.1.5 Reject-part An utterance that rejects partly a proposal, request,
statement or information request. It implicitly accepts another part of the
utterance, but reject-part only covers what is explicitly rejected.

324 Chapter C. Dialogue Move Taxonomy

Obligations As in reject, the tutor is obliged to justify the rejection or elab-
orate on it.

The tutor might signal which part is being rejected. This depends on
the teaching model and on the possibility of realising a domain-contribution-
evaluation, which indicates the problematic part.

Examples

(C.43) T: “Das ist nicht ganz richtig” (did4p)
[This is not totally right]

(C.44) T: “P (C) ∪ P(A ∩ B) ⊆ P (C ∪ (A ∩ B)): das ist richtig! A ∩
B ⊆ P (A ∩ B): das ist nicht richtig!” (min11p)
P (C) ∪ P(A ∩ B) ⊆ P (C ∪ (A ∩ B)): this is right! A ∩
B ⊆ P (A ∩ B): this is not right!]

C.3.3.2 Understanding

C.3.3.2.1 Signal-non-understanding (SNU) An utterance that signals
that the speaker has not understood the previous utterance, i.e., did not hear
it or could not make sense of it.

Instances for that move are “I don’t understand” and variants of it like
“What did you say?”.

Obligations SNU poses an obligation to address it (e.g., via a clarification).

Examples

(C.45) T “Ich verstehe Ihre Frage nicht” (did15k)
[I don’t understand your question]

(C.46) T “Was wollen Sie damit sagen?” (soc17k)
[What do you mean by that?]

(C.47) T “Was meinen Sie?” (soc17d)
[What do you mean?]

Relation to other moves in the same dimension The difference to request-
clarification is the following: An utterance is an SNU, when the interlocutor
does not understand anything of the preceding contribution, and a request-
clarification when she understands, but not completely [Core et al., 2002].

Relation to moves in other dimensions An SNU can have the forward-looking

functions statement or info-request.

C.3. The Dialogue Move Taxonomy 325

Notes SMUs are “utterances that explicitly indicate a problem in understand-
ing the antecedent”. An applicability test is the rough paraphrase “What did
you say/mean?” [Allen and Core, 1997]. We have narrowed down this definition
to cases like “I don’t understand” and variants. [Allen and Core, 1997] point
out that not all clarification questions are also SNUs, they could be holds, for
example.4

An SNU can be addressed (address-SNU), when it is a question, and it can
also be responded to. The response is then an answer, or if the SNU is not
resolved, an address-SNU.

SNUs introduce clarification subdialogues.
For NL realisation purposes we distinguish between SNU and request-clarifi-

cation. The formulation of one or the other can prove useful for letting the
collocutor know how much she needs to clarify.

C.3.3.2.2 Request-clarification A move that applies when some of the
input has been understood [Core et al., 2002]. It has, basically, the form of a
question, but can be also an imperative, i.e., it can be an action-directive in the
forward-looking dimension.

Obligations It poses an obligation to address it (e.g., via a clarification).

Examples

(C.48) T: “Was meinen Sie mit. . . ” (did15p)
[What do you mean by. . .]

(C.49) T: “Meinten Sie wirklich. . . ?” (did16p)
[Did you really mean. . .]

(C.50) T: “Was soll das x darstellen?” (soc17p)
[What is x supposed to represent?]

(C.51) T: “Was soll das heissen?” (did19k)
[What is that supposed to mean?]

(C.52) T: “Ist das die antwort auf meine Frage oder ein neuer Loesungsver-
such?” (soc21p)
[Is this the answer to my question or an attempt at a new proof?]

(C.53) T: “Bitte erklaeren Sie Ihren Schritt genauer!” (soc12p)
[Please, explain your step more precisely!]

Relation to moves in the same dimension SNU applies when none of the
input has been understood.

4Hold in DAMSL is meant as a reaction to proposals. It seems to be an attempt to have
an all-encompassing move, instead of accounting for subdialogues. This is not sufficient for
us, as subdialogues are important in tutorial dialogues.

326 Chapter C. Dialogue Move Taxonomy

Notes There is no move request-clarification in DAMSL.
Request-clarifications are only questions in [Core et al., 2002].

C.3.3.2.3 Signal understanding It is an utterance that signals under-
standing. Any utterance that does not explicitly signal non-understanding im-
plicitly indicates understanding, so we don’t cover this [Allen and Core, 1997].
It comprises three subclasses.

• Repeat-rephrase This move is “. . . used for utterances that repeat or
paraphrase what was just said in order to signal that the speaker has
been understood. . . [repeat-rephrases] do not necessarily make any further
commitment as to whether the responder agrees with or believes the an-
tecedent.” [Allen and Core, 1997]

Obligations None.

Notes It is in nature really an acknowledge.

• Acknowledge

“Acknowledgements are utterances consisting of short phrases such as OK,
yes, uh-huh, that signal that the previous utterance was understood with-
out necessarily signalling acceptance” [Allen and Core, 1997]. They do
not resolve the content of the utterance that they address.

Obligations When the student addresses the tutor, the tutor is obliged
to acknowledge, even if it is only to reject the offer to talk about the issue
that the student has raised. The preferred way of doing the latter is in
an explicit manner that would be too condescending in other genres. For
example, “Before we get to that,. . . ”, is implicitly acknowledges the pre-
vious utterance, but is actually reject. This is the case, because the tutor
does not give direct answers, and therefore she must indicate somehow
that she is taking the student’s answer into account, so as not to give
the impression that she is ignoring it. However, students are not obliged
to perform any acknowledge. Sometimes they don’t do any implicit ac-
knowledging either. They are just silent and assume that the tutor knows
that they are listening and thinking about the problem. Otherwise, the
student would ask for clarification. An explanation for that is that both
student and tutor are aware of the obligations that their respective social
roles carry. Since it is the students’ obligation to take what the tutor says
into account in order to proceed with the task (expertise plays a role),
students do not feel that they need to indicate that this is what they are
doing [Tsovaltzi and Matheson, 2002].

C.3. The Dialogue Move Taxonomy 327

Examples

(C.54) S: “schon klar.” (soc20k)
[that is clear.]

Relation to other moves in the same dimension It might well be
the case that “yes”, “OK” and “right” are accepts. In that case the tutor
allows the task to move on and does not insist on eliciting the correct
domain contribution.

“Good”, “very good”, “that’s right” serve always as accept. Whereas
“right”, “all right” and “OK” are ambiguous. They are commonly only
an acknowledge when they are followed by a hint. “OK” is often used
after a not totally wrong answer.

Notes There is only a realisation difference from repeat-rephrase and
acknowledge. Namely, that acknowledge can only be a short response.

When the tutor does a check-origin-problem, there is normally no acknowl-
edge preceding it.

• Completion

An utterance that shows “understanding by finishing or adding to the
clause that a speaker is in the middle of constructing” [Allen and Core,
1997].

Obligations None.

C.3.3.2.4 Correct-misspeaking They are “. . . utterances that by offering
a correction indicate that the hearer believes that the speaker has not said what
she actually intended” [Allen and Core, 1997]. It applies only to cases where
the current speaker makes a correction to what was previously uttered, that is,
to the utterance that is addressed by the current correct-misspeaking.

There is no dimension for annotating self-corrections currently in DAMSL.

Obligations None.

Examples

(C.55) S: “A is a subcategory of B.” (where “subcategory” is the wrong
terminology) (constructed)

T: “That’s right, A is a subset of B.” (correct-misspeaking) “But
why?”

328 Chapter C. Dialogue Move Taxonomy

Relation to moves in other dimensions It can be a correct-info hint
in the task dimension.

C.3.3.3 Answer

An utterance that complies with an info-request action in the antecedent and
resolves it.5

Obligations None.

Examples

(C.56) T: “Ist das noch derselbe Lösungsweg wie in der vorigen antwort?”
(Info-request) (did10p)
[Is this the same solution as in the previous answer?]

S: “Nein” (correct domain-contribution)
[No]
“ich habe mich umentschieden: Ich zerlege jetzt die Potenzmenge:
P (C ∪ (a ∩ B)) ⊇ P (C) ∪ P (a ∩ B)” (answer to T)
[I changed my mind. I am now using the powerset: P (C ∪ (a
∩ B)) ⊇ P (C) ∪ P (a ∩ B)]

Relation to moves in other dimensions Answers will always be asserts in
the forward-looking dimension even if they are imperative, since the forward-looking

function is to provide information, not to influence the future action [Allen and
Core, 1997].

C.3.3.4 Information-relation

This category “captures how the content of the current utterance relates to the
content of its antecedent”. It is not further elaborated in DAMSL, but is left
for future study [Allen and Core, 1997]. It is useful in connection to the proof
manager and in disambiguating between what a current utterance is and what
its relation to the overall context is, e.g., in case a subdialogue intervenes. As
pointed out before, address-sth applies when neither accept, reject or answer
apply. These entail an implicit address anyhow.

The following categories are all new, defined based on the DIALOG corpus.

C.3.3.4.1 Address-action-directive Any utterance that addresses a pre-
vious (not necessarily an immediately preceding turn) action-directive move,
but is not a reject, reject-part, accept, or accept-part.

Obligations None.

5See footnote on aboutness vs. resolvedness.

C.3. The Dialogue Move Taxonomy 329

Examples

(C.57) T: “Bitte zeigen Sie: K ((a ∪ B) ∩ (C ∪ D)) = (K (a) ∩
K (B)) ∪ (K (C) ∩ K (D))!” (did10d)
[Please show: K ((a ∪ B) ∩ (C ∪ D)) = (K (a) ∩ K (B))
∪ (K (C) ∩ K (D))!] (action-directive)

S: “K ((a ∪ B) ∩ (C ∪ D)) = K (a ∪ B) ∪ K (C ∪ D)”
(a correct domain-contribution and address-action-directive to T)

C.3.3.4.2 Address-question Any utterance that addresses a preceding info-
request, understanding-query, or diagnostic-query move without resolving it.

Obligations None.

Examples

(C.58) S: “was ist K (a)” (info-request) (min11d)
[What is K (a)]

T: “Das kann ich nicht beantworten.” (address-info-request to S)
[I cannot answer this.]

C.3.3.4.3 Address-statement Any utterance that addresses a preceding
statement, assert or reassert, without being an explicit reject, reject-part, ac-
cept, or accept-part.

Obligations None.

Examples

(C.59) S: “das stimmt schon. verstehe die definition nicht, einfaches Beispiel
wuerde mir weiter helfen” (statement) (did15p)
[that is of course correct. I don’t understand the definition, a
simple example would help me more]

T: “Sei die Menge X={1, 2}. Dann ist die Potenzmenge von X die
Menge P(X)= {0, {1}, {2}, {1, 2}}.” (address-statement to S)
[Let the set X={1, 2}. Then the powerset of X is the set P(X)=
{0, {1}, {2}, {1, 2}}.]

Relation to moves in other dimensions In the task dimension, such ques-
tions can be pragmatic hints, e.g., elicit-discrepancy, or a check-origin-problem.

Notes We use this instead of followup that is a backward-looking move in BE&E,
e.g., “Why do you think that?”, “How are you going to do that?”. Followup
is defined as a reaction of the tutor to a student answer in form of a followup
question asking for more detail, or asking a question about an answer [Core et
al., 2002]. An example from our corpus is “Warum?” [Why?], (soc13k).

330 Chapter C. Dialogue Move Taxonomy

C.3.3.4.4 Address-SNU Any utterance that addresses a previous SNU.

Obligations None.

Examples

(C.60) T: “Ich verstehe Ihre antwort nicht, denn das ist kein vollständiger
deutscher Satz: Den Durchschnitt der Menge K (a) und der
Menge K (B), also K ((a ∪ B) ∩ (C ∪ D))” (soc21d)
[I don’t understand your answer, because it is not a complete Ger-
man sentence: Then union of the set K (a) and of the set K (B),
therefore K ((a ∪ B) ∩ (C ∪ D))](SNU)

S: “Ist x der Durchschnitt der Menge K (a ∪ B) und der Menge
K (C ∪ D), dann ist K ((a ∪ B) ∩ (C ∪ D))” (a wrong
domain-contribution and an address-SNU to T)
[If x is the union of the set K (a ∪ B) and of the set K (C ∪
D), then it is K ((a ∪ B) ∩ (C ∪ D))]

Obligations None.

C.3.3.4.5 Address-other Utterances addressing other moves apart from
the ones defined above and apart from reject, reject-part, accept, or accept-
part, which also address utterances. e.g. address-request-clarification, address-
diagnostic-query, address-understanding-query, address-open-option, address-
commit, address-offer, address-emotion, address-apologise, address-gratitude,
address-agreement, address-signal-understanding, address-correct-misspeaking,
address-answer.

For the analysis of the moves in the dimensions task, conventional-task manage-

ment, and conventional-communication management see Chapter 4.

C.3.4 Communicative Status Dimension

This dimension captures features of an utterance unit such as whether it was
interpretable. These features mark exceptional cases, therefore, most utterance
units won’t have functions in this dimension [Allen and Core, 1997]. The features
are:

• Uninterpretable

• Abandoned

• Self-talk

C.3.4.1 Uninterpretable

Utterances that are not comprehensible fall under this category. These utter-
ances are usually word fragments, or utterances containing misspelled or mis-
pronounced words such that it is impossible to understand them.

C.3. The Dialogue Move Taxonomy 331

C.3.4.2 Abandoned

An utterance or utterance fragment that does not provide content to the dia-
logue, i.e., “the import of the dialogue would not change if these utterance units
were removed” [Allen and Core, 1997].

Notes In written communication, such utterances are likely not to be submit-
ted, i.e., to be deleted before submission.

C.3.4.3 Self-talk

“The utterance unit consists of one speaker talking to himself.” [Allen and Core,
1997]. It does not normally occur in written communication.

332 Chapter C. Dialogue Move Taxonomy

333

Appendix D

NL Examples of Hint

Categories

In this appendix we present a more detailed list of the NL examples of the
hint categories in Chapter 4 whose specifications include the Domain Technique.
Therefore, we follow a listing based on the Domain Technique.

Give-away-inference-rule

NL Examples

NL Template: “You have to use < Rule of Inference > of< Relevant Concept>.”

• Occurrence state of definitions or substitutions: “You have to use the
definition of powerset.”

• Case distinction: “You have to use the cases deriving from the disjunctive
definition of the union ∪.”, where the union ∪ is the disjunctively defined
concept, defined as U ∪ V = {x|x ∈ U or x ∈ V } and the cases deriving
from its definition would be x ∈ U or x ∈ V .

• Induction: “You have to use the steps deriving from the inductive defini-
tion of the set of all finite subsets of X.”, where the set of all finite subsets
of X is the inductively defined concept, and Pf (X) is the set of all finite
subsets of X if: (i) ∅ ∈ Pf (X) (ii) A ∈ Pf (X), x ∈ X ⇒ A∪{x} ∈ Pf (X)).
For example, if we want to prove that Φ(B) holds for all B ∈ Pf (X), the
steps are (i) Φ(∅) and (ii) for A ∈ Pf (X) and x ∈ X if Φ(A) holds, then
Φ(A ∪ {x}) holds.

• Occurrence state of quantifiers (where the Relevant Concept is the quanti-
fier type):

– Universal quantifier: “You have to use the elimination of the for all.”

334 Chapter D. NL Examples of Hint Categories

– Existential quantifier: “You have to use the elimination of the there
exists.”

• Occurrence state of connectives (where the Relevant Concept is the con-
nective type):

– Equivalence: “You have to use the elimination of the ⇔.”

– Equality: “You have to use the elimination of the equality =.”

– Implication: “You have to use the elimination of the implication⇒.”

– Conjunction: “You have to use the elimination of the conjunction
and.”

– Disjunction: “You have to use the elimination of disjunction or for
the disjunction.”

Give-away-basic-knowledge

NL Examples

NL Template: “The rule for the < Basic Knowledge Reference > is: < Basic
Knowledge >.”

• Occurrence state of definitions or substitutions: “The rule for the defini-
tion of powerset is: P (V) = {U |U ⊆ V }.”

• Case distinction: “The rule for the case distinction of the union ∪ is: for
the expression to hold for the union of U and V it has to hold for the
different cases deriving from its disjunctive definition x ∈ U or x ∈ V .”

• Induction: “The rule for the induction of the set of all finite subsets of
X is: for the expression to hold for the set of all finite subsets of X, it
has to hold for the different steps deriving from its inductive definition
∅ ∈ Pf (X) and A ∈ Pf (X), x ∈ X ⇒ A ∪ {x} ∈ Pf (X).

• Occurrence state of quantifiers:

– Universal quantifier: “The rule for the elimination of the for all is:
for an expression to hold for all x, it has to hold for an arbitrary but
fixed x.”

– Existential quantifier: “The rule for the elimination of the there exists
is: if there exists an x for which something holds, then it has to hold
for at least one particular x.”

• Occurrence state of connectives:

– Equivalence: “The rule for the elimination of equivalence ⇔ is: an
expression with an equivalence holds if it holds from left to right and
from right to left”.

335

– Equality: “The rule for the elimination of equality = is: an expression
with an equality holds if you assume the left hand-side and you can
prove the right hand-side.”1

– Implication: “The rule for the elimination of implication is: an ex-
pression with an implication ⇒ holds if you assume the hypothesis
and you can prove from that the conclusion.”

– Conjunction: “The rule for the elimination of conjunction and is:
an expression with a conjunction holds if it holds for every term
connected by the and separately.”

– Disjunction: “The rule for the elimination of disjunction or is: an
expression with a disjunction holds if it holds for at least one of the
terms connected by the or.”

Elicit-subordinate-concept-meta-reasoning

NL Examples

NL Template: “Think of what you need to prove and how you can connect
that to the < Relevant Concept >.”

• Occurrence state of definitions or substitutions: “Think of what you need
to prove and how you can connect that to the powerset.”

• Case distinction: “Think of what you need to prove and how you can
connect that to the union ∪.”, where the < Relevant Concept > is the
disjunctively defined concept, here the union ∪.

• Induction: “Think of what you need to prove and how you can connect
that to the set of all finite subsets of X.”, where the < Relevant Concept >
is the inductively defined concept, here the set of all finite subsets of X.

• Occurrence state of quantifiers (where the < Relevant Concept > is the
quantifier type):

– Universal quantifier: “Think of what you need to prove and how you
can connect that to the for all.”

– Existential quantifier: “Think of what you need to prove and how
you can connect that to the there exists.”

• Occurrence state of connectives (where the < Relevant Concept > is the
connective type):

– Equivalence: “Think of what you need to prove and how you can
connect that to the equivalence ⇔.”

– Equality: “Think of what you need to prove and how you can connect
that to the equality =.”

1Note that this is a definition of equality only for set theory.

336 Chapter D. NL Examples of Hint Categories

– Implication: “Think of what you need to prove and how you can
connect that to the implication ⇒.”

– Conjunction: “Think of what you need to prove and how you can
connect that to the conjunction and.”

– Disjunction: “Think of what you need to prove and how you can
connect that to the disjunction or.”

Give-away-subordinate-concept-meta-reasoning

NL Examples

NL Template: “You can consider the < Subordinate Concept > and how it
connects to the < Relevant Concept >.”

• Occurrence state of definitions or substitutions: “You can consider the
subset and how it connects to the powerset.”

• Case distinction: “You can consider the different cases that you have to
prove deriving from the inductive definition of the least set.”, where the
< Relevant Concept > is the disjunctively defined concept, here the union
∪.

• Induction: “You can consider the different steps that you have to prove,
deriving from the inductive definition of the set of all finite subsets of X.”,
where the < Relevant Concept > is the inductively defined concept, here
the set of all finite subsets of X.

• Occurrence state of quantifiers:
NL Template: “In order for the expression to hold for < Relevant Con-

cept > we need to prove it for < Subordinate Concept >”, where the
Relevant Concept is the quantifier type and the Subordinate Concept is the
new goal formula.

– Universal quantifier: “In order for the expression to hold for the for
all we need to prove it for some arbitrary x, y, . . . ”

– Existential quantifier: “In order for the expression to hold for some
term, we need to prove it for a specific term <T>.”

• Occurrence state of connectives:
NL Template: “In order for the expression with the < Relevant Concept >
to hold, you have to prove < Subordinate Concept >”, where the Relevant

Concept is the connective type and the Subordinate Concept the new goal
formula.

– Equivalence: “In order for the expression with the equivalence ⇔ to
hold, you have to prove both directions of the expression”

– Equality: “In order for the expression with the equality = to hold,
you have to prove the right hand-side of it.”

337

– Implication: “In order for the expression with the implication ⇒ to
hold, you have to assume the left hand-side of it and from that prove
the right hand-side.”

– Conjunction: “In order for the conjunction and to hold, you have to
prove all terms connected by it.”

– Disjunction: “In order for the disjunction or to hold, you have to
prove at least one of the terms connected by it.”

Notes The instantiation of the subordinate concept can be derived from the
new goal formula.

Elicit-domain-technique

NL Examples

• Occurrence state of definitions or substitutions: “What you should you do
here in order to deal with the < Relevant Concept >, e.g., the powerset,
or if-then relation, etc.”

• Case distinction: “What should you do here in order to deal with the
disjunctive definition of the < Relevant Concept > ?”, e.g., union (i.e., the
disjunctively defined concept).

• Induction: “What should you do here in order to deal with the inductive
definition of < Relevant Concept > ?”, e.g., the set of all finite subsets of
X (i.e., the inductively defined concept).

• Occurrence state of quantifiers: “What should you do here in order to deal
with the < Relevant Concept > ”, e.g., the for all (i.e., the quantifier type,
which can be for all or there exists).

• Occurrence state of connectives: “What should you do here in order to
deal with the < Relevant Concept > ?”, e.g., the equivalence ⇔ (i.e., the
connective type, which can be any of equivalence, equality, implication,
conjunction, or disjunction).

Give-away-domain-technique

NL Examples

NL Template: “You have to < Domain Technique> the < Relevant Concept >.”

• Occurrence state of definition: “You have to get rid of the powerset.”,
where the < Domain Technique > is extract.

• Case distinction: “You have to apply case distinction to the union ∪”,
where the Relevant Concept is the disjunctively defined concept, here the
union ∪.

338 Chapter D. NL Examples of Hint Categories

• Induction: “You have to apply induction of the set of all finite subsets of
X”, where the < Relevant Concept > is the inductively defined concept,
here the set of all finite subsets of X.

• Occurrence state of quantifier: “You have to get rid of the for all.”, where
the < Domain Technique > is extract and < Relevant Concept > is the
quantifier type, which can be for all, or there exists.

• Occurrence state of connective: “You have to get rid of the equivalence
⇔.”, where < Domain Technique > is extract and the < Relevant Con-

cept > is the quantifier type, which cab be equivalence, equality, implica-
tion, conjunction, or disjunction.

Elicit-connect-relevant-subordinate-concept

NL Examples

NL Template: “Think of a theorem or lemma that you can apply and involves
the < Relevant Concept > and the < Subordinate Concept >.”

• Occurrence state of definitions or substitutions: “Think of a theorem or
lemma that you can apply and involves the powerset and the subset.”

• Case distinction: “Think of a rule that you can apply and involves the
disjunctively defined concept union ∪ and what you have to prove.”

• Induction: “Think of a rule that you can apply and involves the inductively
defined concept set of all finite subsets of X and what you have to prove.”

• Occurrence state of quantifiers (where the < Relevant Concept > is the
Quantifier Type and < Subordinate concept > is the new goal formula.):

– Universal: “Think of a rule that you can apply and involves the for
all and what you need to prove.”

– Existential: “Think of a rule that you can apply and involves the
there exists and what you need to prove.”

• Occurrence state of connectives (where the < Relevant Concept > is the
connective type and < Subordinate Concept > is the new goal formula.):

– Equivalence: “Think of a rule that you can apply and involves the
equivalence ⇔ and what you need to prove.”

– Equality: “Think of a rule that you can apply and involves the equal-
ity = and what you need to prove.”

– Implication: “Think of a rule that you can apply and involves the
implication and what you need to prove.”

– Conjunction: “Think of a rule that you can apply and involves the
conjunction and what you need to prove.”

339

– Disjunction: “Think of a rule that you can apply and involves the
disjunction and what you have to prove.”

Notes The instantiation of the subordinate concept can be derived from the
new goal formula.

Give-away-connect-relevant-subordinate-concept

NL Examples

NL Template: “What connects the < Relevant Concept > and the < Subordi-

nate Concept > is < Rule of Inference >.”

• Occurrence state of definitions or substitutions: “What connects the pow-
erset and the subset is the definition of powerset.”

• Case distinction: “What connects the disjunctively defined concept union
and what you have to prove are the cases deriving from the definition of
the union.”

• Induction: “What connects the inductively defined concept set of all finite
subsets of X and what you have to prove are the inductive steps deriving
from its definition.”

• Occurrence state of quantifier:

– Universal: “What connects the for all and what you have to prove is
the elimination of the for all.”

– Existential: “What connects the exists and what you have to prove
is the elimination of the there exists.”

• Occurrence state of connective:

– Equivalence: “What connects the equivalence ⇔ and what you have
to prove is the elimination of the equivalence.”

– Equality: “What connects the equality = and what you have to prove
is the elimination of the equality.”

– Implication: “What connects the implication ⇒ and what you have
to prove is the elimination of the implication.”

– Conjunction: “What connects the conjunction and and what you
have to prove is the elimination of the conjunction.”

– Disjunction: “What connects the disjunction or and what you have
to prove is the elimination of the disjunction.”

Notes The instantiation of the subordinate concept can be derived from the
new goal formula.

340 Chapter D. NL Examples of Hint Categories

Elicit-elaborate-domain-object

NL Examples

NL Template: “Think of a rule that explains how to < Domain Technique >
the < Relevant Concept >.”

• Occurrence state of definitions or substitutions: “Think of rule that ex-
plains how to get rid of the powerset.”

• Case distinction: “Think of a rule that explains how to apply case distinc-
tion to the disjunctively defined concept union ∪.”

• Induction: “Think of a rule that explains how to apply induction to the
inductively defined concept set of all finite subsets of X.”

• Occurrence state of quantifiers:

– Universal: “Think of a rule that would help you get rid of the for
all.”

– Existential: “Think of a rule that would help you get rid of the there
exists.”

• Occurrence state of connectives:

– Equivalence: “Think of a rule that tells you how to get rid of the
equivalence ⇔.”

– Equality: “Think of a rule that tells you how to get rid of the equality
=.”

– Implication: “Think of a rule that tells you how to get rid of the
implication ⇒.”

– Conjunction: “Think of a rule that tells you how to get rid of the
conjunction and.”

– Disjunction: “Think of a rule that tells you how to get rid of the
disjunction or.”

Give-away-elaborate-domain-object

NL Examples

NL Template: “What helps you < Domain Technique > the < Relevant Con-

cept > is < Rule of Inference >.”

• Occurrence state of definitions or substitutions: “What helps you get rid
of the powerset is the definition of powerset.”

• Case distinction: “What helps you apply case distinction to the disjunc-
tively defined union ∪ are the cases deriving from the definition of the
union”.

341

• Induction: “What helps you apply induction to the inductively defined
concept set of all finite subsets of X are the inductive steps deriving from
its inductive definition.

• Occurrence state of quantifiers:

– Universal: “What helps you get rid of the for all is the elimination
of it.”

– Existential: “What helps you get rid of the there exists is the elimi-
nation of it.”

• Occurrence state of connectives:

– Equivalence: “What helps you get rid of the equivalence ⇔ is the
elimination of the equivalence.”

– Equality: “What helps you get rid of the equality = is the elimination
of the equality.”

– Implication: “What helps you get rid of the implication ⇒ is the
elimination of the implication.”

– Conjunction: “What helps you get rid of the conjunction and is the
elimination of the conjunction.”

– Disjunction: “What helps you get rid of the disjunction or is the
elimination of the disjunction.”

Elicit-inference-rule-application

NL Examples

NL Template: “What do you have to write down instead of the < Relevant

Concept > to < Domain Technique > it?”

• Occurrence state of definitions or substitutions: “What do you have to
write down instead of the powerset to get rid of it?”

• Case distinction: “What do you have to write down instead of the dis-
junctively defined union ∪ to apply case distinction to it?”

• Induction: “What do you have to write down instead of the inductively
defined set of all finite subsets of X to apply induction to it?”

• Occurrence state of quantifiers:

– Universal: “What do you have to write down to get rid of the for
all?”

– Existential: “What do you have to write down to get rid of the there
exists?”

• Occurrence state of connectives:

342 Chapter D. NL Examples of Hint Categories

– Equivalence: “What do you have to write down instead of the equiv-
alence ⇔ to get rid of it?”

– Equality: “What do you have to write down instead of the equality
= to get rid of it?”

– Implication: “What do you have to write down instead of the impli-
cation ⇒ to get rid of it?”

– Conjunction: “What do you have to write down it instead of the
conjunction and to get rid of it?”

– Disjunction: “What do you have to write down instead of the dis-
junction or to get rid of it?”

Give-away-inference-rule-application

NL Examples

NL Template: “You have to < Domain Technique > the < Relevant Concept >
by writing down < Rule of Inference > instead.’

• Occurrence state of definitions or substitutions: “You have to get rid of
the powerset by writing down the definition of powerset instead.”

• Case distinction: “You have to apply case distinction for the union ∪
by writing down the cases deriving from the disjunctive definition of the
union instead.’

• Induction: “You have to apply induction for the set of all finite subsets of
X by writing down the inductive steps deriving from its definition instead.”

• Occurrence state of quantifiers:

– Universal: “You have to get rid of the for all by writing down the
rule for the elimination of the for all instead. ”

– Existential: “You have to get rid of the there exists by writing down
the rule for the elimination of the there exists instead. ”

• Occurrence state of connectives:

– Equivalence: “You have to get rid of the equivalence ⇔ by writing
down the rule for the elimination of the equivalence instead.”

– Equality: “You have to get rid of the equality = by writing down the
rule for the elimination of the equality instead.”

– Implication: “You have to get rid of the implication ⇒ by writing
down the rule for the elimination of the implication instead.”

– Conjunction: “You have to get rid of the conjunction and by writing
down the rule for the elimination of the conjunction instead.”

– Disjunction: “You have to get rid of the disjunction or by writing
down the rule for the elimination of the disjunction instead.”

343

Appendix E

Strategy Manager

Functions: Main functions,

performable-step and

meta-reasoning subtasks

In the example functions of the Strategy Manager that follow, we use the nota-
tion:

• LH – the number of hints produced

• LC – the number of local (current proof step) correct domain contributions

• LW – the number of wrong answers

• LDCC – the number of domain contributions

• DC – the domain contribution

• DCC – the current domain-contribution category

• PDCC – the previous domain-contribution category

• GMCLA – the Global Motivation and Cognitive Load Aggregate

• PH – hint produced already in this proof step

• STDM – the current student task-dialogue-move

• SBSTR – the current substrategy

• PSTR – the previous substrategy

344
Chapter E. Strategy Manager Functions: Main functions, performable-step and

meta-reasoning subtasks

1 Main Functions

Function tutoring-controlRead the analysed student inputCase the student takes something bakthen all baktraking
{treats diffrent backtrackings}Case this is the beginning of the sessionthen initiate the taskelse if the proof is ompletedthen do reapitulationCase the proof step is ompletedthen reset LMCL andif the student ompletes itthen aept the answer andif GMCLA ≥ 0.3then all sorati-generi

{or any preferred strategy}else prompt for next stepelse all sorati-generi
Function socratic-genericCall enourage
{produces appropriate encouragement, if needed}Call signal-evaluation
{produces evaluation based on DCC}Case PSTR is near-missthen if PDCC hypotaxis and PH is give-away-hypotaxisor PDCC is primitive and PH is give-away-primitiveor PDCC is primitive and PH is give-away-inverse-ruleor DCC is step-size and there's been another step-sizethen all misoneption on near-miss, hypotaxis,primitie, inverse-rule, or step-size respetivelyCase when inside misoneptionthen all misoneption on everymisoneption enounteredand arry on from the state before misoneptionCase when inside spell-out-taskthen while LC is less than LDCCthen all spell-out-taskelse all oneptualCase PSTR is near-missthen if PH is discrepancyand DCC is not orretthen near-missCase PSTR is diagnostis or request-assistanethen all the same substrategy again,until what aused it has been dealt withCase STDM is resign or request-evaluationthen if there's also a DCthen ignore the STDM and treat the DCelse treat the STDMCase there is a DCthen all domConCat-output

{produces output based on DCC}else all studTaskDM-output
{produces output based on STDM}If PSTR is not the same as the SBSTRthen signal the losing of PSTRand the initiation of SBSRT

Function conceptualCase LH ≤ 2 and LW ≤ 3all per-stepCase 2 < LH ≤ 5 or LW > 3then if DC is wrong or irrelevantthen if LC/DC > 0.5
{at least half answers correct}then all per-stepelse give away pending answer,produe give-away-proof-step and

step-meta-reasoningelse if DC and prevDC are orretthen all per-stepelse reset LDCC , LC and all spell-out-taskCase LH > 5then if DC is orret and LC/DC > 0.5then give away pending answer,produe step-meta-reasoning and
give-away-proof-step, reset LDCC , LCand all spell-out-taskelse all per-taskelse give away pending answer,produe step-meta-reasoning and

give-away-proof-step, point-to-lesson andreset all ounters
2 Performable-Step Subtasks

Subtask per-stepCase student knows the relevantand the subordinate oneptif student knows the inferene rulethen if students an substitutethen all proof-stepelse all substitutionelse all inferene-ruleCase student knows the relevantor the subordinate oneptthen if GMCLA ≤ 0.75then all domain-objetelse all inferene-ruleelse if student knows proof-step meta-reasoningthen all domain-objetelse all proof-step-meta-reasoning

345

Subtask domain-objectCase student doesn't know the relevantor subordinate oneptand there's a domain relation usedthen if ≤ GMCLA 0.5then all dom-rel-meta-reasoningCase student knows the relevant oneptthen if GMCLA ≤ 0.5then produe elicit-subordinate-conceptelse if GMCLA ≤ 0.75then all sub-on-meta-reasoningCase student knows the subordinate oneptthen if GMCLA ≤ 0.5then produe elicit-relevant-conceptelse GMCLA ≤ 0.75then all rel-on-meta-reasoningCase student knows neither oneptthen all rel-on-meta-reasoningCase all inferene-rule
Subtask proof-stepif PH is elicit-proof-stepthen produe give-away-proof-step and

step-meta-reasoningelse produe elicit-proof-step

Subtask inference-ruleCase if student is missing some basi knowledgethen produe give-away-basic-knowledgeCase student knows the subordinate oneptCase student knows the relevant oneptif PH is elicit-inf-rulethen if GMCLA ≤ 0.5then produe give-away-inf-ruleelse all inf-rule-meta-reasoningelse produe elicit-inf-ruleCase relevant onept not knownthen produe give-away-rel-conCase subordinate onept not knownCase student knows the relevant oneptthen produe give-away-sub-conCase relevant onept not knownif GMCLA ≤ 0.5then produe give-away-rel-conelse all rel-on-meta-reasoning
Subtask substitutionCase PH is elicit-substitutionthen if the substitution is ill-formedthen if GMCLA > 0.3

{student is doing very well}or PH is elicit-ill-formedthen produe give-away-ill-formedelse produe elicit-ill-formedelse GMCLA > 0.5then all subst-meta-reasoningelse produe give-away-substitutionCase produe elicit-substitution

1 Meta-Reasoning Subtasks

Subtask proof-step-meta-reasoningif student does not know the diretion orthe diretnessthen if this is not the �rst stepor student knows the starting point
{student knows how to start with the proof}then all all-proof-step-meta-reasoningelse if this is the �rst stepand either PH is elicit-starting-pointor GMCLA > 0.75then produe give-away-starting-pointelse produe elicit-starting-point

Function all-proof-step-meta-reasoningCase student knows premise and onlusionCase student knows the diretness (or diret proof)then if diretion not knownthen if PH is elicit-specific-methodor GMCLA > 0.75then produe give-away-specific-method

{gives direction based on infer. rule}else produe elicit-specific-methodelse if diretion knownthen if prev. hint elicit-abstract-methodor GMCLA > 0.75then produe give-away-abstr-methelse produe elicit-abstr-methodCase diretness not knownthen if diretion not knownthen if PH is elicit-specific-methodor GMCLA > 0.75then produe give-away-specific-methodelse produe elicit-specific-methodCase premise and onlusion not knownthen if PH is elicit-premise-conclusionor GMCLA > 0.75then produe give-away-premise-conclusionelse produe elicit-premise-conclusion

Subtask rel-con-meta-reasoningCase there's a domain relation usedthen all dom-rel-meta-reasoningase the meta-reasoning for relevant is knownor the meta-reasoning for both the relevant andthe subordinate onept is known,or GMCLA > 0.75then if subordinate onept not knownthen produe give-away-meta-reas-rel-conelse give-away-meta-reas-rel-sub-conCase no meta-reasoning is knownand GMCLA ≤ 0.75then if the subordinate onept is not knownthen produe elicit-meta-reas-rel-sub-Conelse produe elicit-meta-reas-rel-Con

346
Chapter E. Strategy Manager Functions: Main functions, performable-step and

meta-reasoning subtasks

Subtask sub-con-meta-reasoningif student knows the relevant oneptthen if PH is elicit-meta-reas-sub-conor GMCLA > 0.75then produe give-away-meta-reas-sub-conelse produe elicit-meta-reas-sub-con

Subtask inf-rule-meta-reasoningCase student uses the inverse of the inferene rulethen give-away-inverse-ruleCase student knows the domain tehniquethen if PH is elicit-elaborate-domain-objor GMCLA > 0.75then produe give-away-elaborate-domain-objelse produe elicit-elaborate-domain-objCase PH is elicit-connect-rel-sub-conor GMCLA > 0.75then produe give-away-connect-rel-sub-conelse if PH is elicit-domain-techthen produe give-away-domain-techelse produe elicit-domain-techelse produe elicit-connect-rel-sub-con

Subtask subst-meta-reasoningif PH is elicit-inf-rule-applicationor GMCLA > 0.75then produe give-away-inf-rule-applicationelse produe elicit-inf-rule-application

347

Appendix F

Evaluation Study Materials

F.1 The Original Materials in German

Beschreibung der Studien

Vorliegende Studie versucht festzustellen, welche Art Feedback am besten
geeignet ist, um Studenten beim Erlernen von Beweisen in Mengentheorie zu
unterstützen. Ihre Aufgabe besteht darin, das Feedback zu evaluieren. Durch
Ihre Bewertung helfen Sie uns, das angemessene Feedback für die jeweilige Un-
terrichtssituation zu finden. Das Feedback wird Studenten gegeben, während sie
Beweise üben, die sie zuvor als Theorie und anhand von Musterlsungen gelernt
haben.

Fragebogen vor der Studie

Bitte füllen Sie die folgenden Informationen aus, bzw. markieren Sie mit “x”
die treffende Antwort. Diese Informationen sind nötig für die Datenanalyse. Es
gibt keine richtige oder falsche Antwort.

1. Emailadresse:

2. Alter:

3. Geschlect: mänlich / weiblich

4. Ich bin: Student / Lehrer/ Sonstiges (was?)

5. Ich habe veranstaltungen in Mengetheorie besucht: ja / nein

6. Ich habe Mengetheorie unterrichtet: ja / nein

348 Chapter F. Evaluation Study Materials

7. Wenn Sie Mengentheorie unterrichtet haben, wo haben Sie sie unter-
richtet? Schulle / Nachhilfe/ Sonstiges (was?):

8. Wie würden Sie Ihren Unterrichtsstil beschreiben?

9. Wenn Sie Student sind:

(a) Ich habe bereits alle Pflichtveranstaltungen in Erziehungswissenschaft
besucht: ja / nein

(b) Wie viele Veranstaltungen in Erziehungswissenschaft haben Sie be-
sucht?

10. Wie betrachtet mann eine Implikation A⇒ B?

Evaluations Fragebogen

Auswahl Einzelne Rückmeldung

Im Folgenden werden zwei tutorielle Dialoge zwischen einem Tutor T und
einem Studenten S vorgestellt, die den ersten und zweiten Schritt des folgenden
Beweises betrachten (K bezeichnet das Komplement):
A ⊆ K(B)⇒ B ⊆ K(A)
Nimm an, daßA ⊆ K(B). Wir werden zeigen, dass B ⊆ K(A)
Sei belibiges Element x ∈ B.
Wir müssen zeigen, dass auch x ∈ K(A).
Wenn x ∈ B, dann x /∈ K(B) und deshalb, nach der Voraussetzung auch nich
in A.
Aber wenn x /∈ A, dann x ∈ K(A). Es folgt, nach der Definition der ⊆,
B ⊆ K(A), weil x belibig ist.

Der Tutor bietet Feedback zu den Lösungsversuchen des Studenten. Für
bestimmte Lösungsansätze gibt es zwei Alternativen von Lehrerrückmeldungen
(Alternative A und Alternative B). Wir bitten Sie darum, die Alternativen zu
vergleichen und durch Unterstreichen zu kennzeichnen, welche der beiden Alter-
nativen Sie bevorzugen. Im Anschluss daran beantworten Sie bitte die Fragen
zu Ihren bevorzugten Alternativen, die Sie im Anschluss an jeden tutoriellen
Dialog finden. Schließlich bitten wir Sie um eine allgemeine Evaluation des
Feedbacks.

F.1. The Original Materials in German 349

F.1.0.4 Erster Tutorieller Dialog

T0: Hallo!
S0: Hallo!
T1: Also, sehen wir uns mal einen Beweis an! Erzähl mir alles, was

dir einfält in Bezug auf folgenden Ausdruck: Wenn A ⊆ K(B),
dann B ⊆ K(A)!

S1: Ich muss identifizieren, was ich annehmen und was ich beweisen
soll.

Feedback zu S1
Alternative A

T2: Das ist nicht vollständig. Zuerst nehmen wir an, dass A ⊆ K(B)
gilt, denn das ist die Voraussetzung in dieser Behauptung. Wie
ist der nächste Schritt?
Alternative B

T2: Gut! Du bist auf der richtigen Spur. Wir machen es also von
Anfang an. Na los, was sollst du denn annehmen und was sollst
du beweisen?

Ich bevorzuge: Alternative A Alternative B

S2: Ich soll beweisen, dass B ⊆ K(A), und A ⊆ K(B) ist angenom-
men.
Feedback zu S2
Alternative A

T3: Das ist Rictig! Wie geht’s weiter?
Alternative B

T3: Richtig! Nun, wie kannst du den Ausdruck manipulieren, um
dein Ziel zu beweisen?

Ich bevorzuge: Alternative A Alternative B

S3: Ich muss das Ziel vereinfachen.
T4: Richtig! Nun lass uns mal schauen. Versuch etwas im Ausdruck

zu finden, das dir helfen kann, das Problem zu vereinfachen.
S4: Meinen Sie, die if-dann Beziehung?
T5: Genau! Gut, was weißt du über die Wenn-Dann-Beziehung das

dir helfen kann, den Ausdruck zu manipulieren?
S5: Irgentetwas was ich beweisen muss.

Feedback zu S5
Alternative A

T6: Das ist wieder nicht vollständig. Der Beweis beginnt mit der
Annahme, dass A ⊆ K(B) gilt, denn das ist die Voraussetzung.
Damit knnen wir die Wenn-Dann-Beziehung auflsen. Wie knnte
es damit weitergehen?

350 Chapter F. Evaluation Study Materials

Alternative B
T6: Genau! Also, kannst du mir denn sagen, welche Regeln du an-

wenden musst?

Ich bevorzuge: Alternative A Alternative B

S6: Muss ich die Regel anwenden “wenn X ⇒ Y, dann nehmen wir
X an und beweisen wir Y”?

Feedback zu S6
Alternative A

T7: Das ist nicht richtig. Wie gesagt, der Beweis beginnt mit der
Annahme, dass A ⊆ K(B) gilt, denn das ist die Vorausset-
zung. Damit können wir die wenn-dann-Beziehung aflösen. Wie
könnte es damit weitergehen?
Alternative B

T7: Gut. Nun, versuch den Regeln auf die Ausdrucke anzuwenden.

Ich bevorzuge: Alternative A Alternative B

S7: Sei A ⊆ K(B), so wir müssen beweisen, dass B ⊆ K(A).
T8: Richtig! Jetzt weiter zum nächsten Schritt!

. . .

Beantworten Sie jetzt bitte, inwiefern die aufgeführten Begründungen zu
Ihrer Wahl passen oder nicht (markieren Sie mit “x” die treffende Antwort).
Gehen Sie von der Annahme aus, dass die Studenten ausreichend Erfahrung
mit ähnlichen tutoriellen Dialogen haben. Es gibt keine richtige oder falsche
Antwort (Ihre Antworten finden Sie auf den Seiten 2 und 3 dieses Dokumentes.
Sie können die Miniaturseiten auf der linken Seite benutzen, um schnell zurück
zu gehen und sich Ihre Antworte wieder anzusehen. Sie sind hier auf der Seite
4.).

Die Begründung für meine Wahl zu S1 ist:

1. Es ist wahrscheinlicher, dass der Student ein Schema/ Muster lernen wird,
um ähnliche Beweissituationen zu bewältigen.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

2. Es ist wahrscheinlicher, dass der Student diese Beweisaufgabe gut lernen
wird, auch wenn er kein Schema erworben hat.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

F.1. The Original Materials in German 351

3. Das Feedback ist besser formuliert.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

4. Der Inhalt ist besser.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

5. Es ist wahrscheinlicher, dass der Student von der mitgeteilten Information
überfordert wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

6. Die mitgeteilte Information ist hilfreicher an dieser Stelle des Dialogs.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

7. Es ist wahrscheinlicher, dass der Student dazu motiviert wird, den Beweis
alleine zu schaffen, und besser darauf aufpasst, was der Tutor ihm erklärt.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

8. Es ist wahrscheinlicher, dass der Student nicht versuchen wird, das Feed-
back des Tutors zu begreifen.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

9. Wenn Ihnen zu den Feedback eine bessere Formulierung einfällt, geben Sie
diese bitte hier an:

10. Falls Sie zusätzliche Anmerkungen bezüglich des Feedbacks haben, geben
Sie diese bitte hier an:

Die Begründung für meine Wahl zu S2 ist:
. . .

Die Begründung für meine Wahl zu S5 ist:
. . .

Die Begründung für meine Wahl zu S6 ist:
. . .

352 Chapter F. Evaluation Study Materials

F.1.0.5 Zweiter Tutorieller Dialog

. . .
T1: Lass uns einen Beweis ansehen! Erzähl mir alles, was dir zu

folgendem Ausdruck einfällt: Wenn A ⊆ K(B), dann B ⊆ K(A)!
S1: Nun, beweise B ⊆ K(A), und man muss die wenn-dann

Beziehung vereinfachen.
T2: Gut. Du bist auf der richtigen Spur. Nun überleg dir, was du

über die Wenn-Dann-Beziehung weißt, das dir helfen kann, die
richtige Regel für den nächsten Schritt anzuwenden.

S2: Meinen Sie, was ich annehmen soll?
T3: Okay. Es gibt aber noch eine Sache. Ist das wirklich genau das,

was du sagen wolltest?
S3: Ja.
T4: Nun, das stimmt so eigentlich nicht. Lass uns mal sehen. Was du

gesagt hast, ist die Kehrseite von dem, was du brauchst. Weiter
gehts!

S4: A Teilmenge K(B), daraus folgt B Teilmenge K(A).

Feedback zu S4
Alternative A

T: Das ist noch nicht vollständig, denn du musst noch beweisen,
dass B Teilmenge K(A).
Alternative B

T: Das ist ein großer Schritt. Nun lass uns mal sehen. Kannst du
zuerst erklären, was du meinst mit “was ich annehmen soll”?

S: Ich meine, dass A Teilmenge von K(B) ist und dass daraus folgt,
dass B Teilmenge von K(A) ist.

T: Anscheinend gibts hier eine falsche Annahme. Wie gesagt, dieser
Schritt ist viel zu groß. Kannst du versuchen, ihn zu erklären?

S: Ich muss die Wenn-Dann-Beziehung betrachten und dann sagen
“sei x und beweise y”.

T: Gut, du machst Forschritte! So, merk dir, dass das, was du an-
nimmst, deine Voraussetzung ist und dass das, was du beweisen
musst, deine Folgerung ist. Denk auch daran, dass du alles be-
weisen musst, was keine Voraussetzung ist oder noch nicht be-
wiesen ist. Nun versuch die Regel “sei x und beweise y” auf den
Ausdruck anzuwenden.

Ich bevorzuge: Alternative A Alternative B

S5: Wie kann ich ihn anwenden?

F.1. The Original Materials in German 353

Feedback zu S5
Alternative A

T: Du musst annehmen, dass A ⊆ K(B) und beweisen dass B ⊆
K(A). Wie geht’s weiter?
Alternative B

T: Es ist ein wenig schwer, nicht? Wir probieren es mal Schritt
für Schritt. Also, sieh zuerst, ob du die Regel auf den Ausdruck
anwenden kannst.

S: Welchen Regel soll ich nehmen?
T: Die Regel, “wenn X ⇒ Y, dann nehmen wir X an und beweisen

wir Y”. Kannst du die jetzt anwenden? Na los, versuchs mal!und
wend ihn auf die Ausdrucke an. Na los, dann!

S: Sei A ⊆ K(B), wir müssen beweisen, dass B ⊆ K(A).
T: Gut, aber deine Antwort ist nicht ganz richtig. Also überleg mal.

Du musst die richtigen Teile des Ausdrucks nehmen statt der
Variabeln in der Regel. Nun schreib mal den ganzen Schritt aus!
S: Sei A Teilmenge K(B), werden wir beweisen, dass B Teil-
menge K(A)!

S: Sei A Teilmenge K(B), wir werden beweisen, dass B Teilmenge
K(A)

T: Richtig! Sehr gut! Also noch einmal, die Beweisführung für
diesen Schritt ist folgende: Wir nehmen an, dass A K(B) ist,
und müssen beweisen, dass B K(A) ist. Dann, um den Aus-
druck zu manipulieren, müssen wir das vereinfachen, was wir be-
weisen wollen. Also, fangen wir mit der Wenn-Dann-Beziehung
an, denn das ist ein Hauptkonzept im Ausdruck und kann uns
helfen. Nun müssen wir die Wenn-Dann-Beziehung auflsen, und
die Regel, die uns hier weiter bringt, ist “wenn x dann y, nimm x
an und beweise y”. Dies erreichen wir, indem wir die Variabeln
durch die richtigen Teile in unserem Ausdruck ersetzen. Wie
kannst du jetzt mit dem nächsten Schritt weitermachen?
Ich bevorzuge: Alternative A Alternative B

S: Ich muss einen Regel suchen, mit dem ich dies betrachten kann,
stimmt’s?

Feedback zu S6
Alternative A

T: Das ist rictig, du musst die Definition der subset benutzen und
beweisen, daß wenn x ∈ B, dann x ∈ K(A).
Alternative B

T: Richtig! Du führst dich gut ein. Also, versuch etwas im Ausdruck
zu finden, das dir helfen kann, das Problem zu vereinfachen.

S: Die Teilmenge.

354 Chapter F. Evaluation Study Materials

T: Richtig! OK, womit ist die Teilmenge verbunden, das dir helfen
kann, dein Ziel zu beweisen?

S: K.
T: Das stimmt eigentlich nicht. Du kannst das Konzept des Ele-

mentes betrachten, und wie das Element mit der Teilmenge ver-
bunden ist, um deinen Ausdruck zu manipulieren. Kannst du
weitermachen?
Ich bevorzuge: Alternative A Alternative B

S7: Ich hab’s! Alle Elemente im B müssen auch Element im K(A)
sein.

Feedback zu S7
Alternative A

T: Richtig! Wie kannst du weiter machen?
Alternative B

T: Richtig! Also, lass uns mal wiederholen. Mit welchem Konzept
fangen wir an, um den Ausdruck zu vereinfachen?

S: Teilmenge.
T: Richtig! Und was war mit der Teilmenge verbunden, das uns

helfen kann, den Ausdruck zu manipulieren?
S: Ja, ja...
T: OK. Du musst das Element betrachten und dazu benutzen, den

Ausdruck zu manipulieren. Nun, wie gehts weiter mit dem
nächsten Schritt?
. . .

Ich bevorzuge: Alternative A Alternative B

Beantworten Sie jetzt bitte, inwiefern die aufgeführten Begründungen zu
Ihrer Wahl passen oder nicht (markieren Sie mit “x” die treffende Antwort).
Gehen Sie von der Annahme aus, dass die Studenten ausreichend Erfahrung
mit ähnlichen tutoriellen Dialogen haben. Es gibt keine richtige oder falsche
Antwort (Ihre Antworten finden Sie auf den Seiten 2 und 3 dieses Dokumentes.
Sie können die Miniaturseiten auf der linken Seite benutzen, um schnell zurück
zu gehen und sich Ihre Antworte wieder anzusehen. Sie sind hier auf der Seite
4.).

Die Begründung für meine Wahl zu S4 ist:
. . .

Die Begründung für meine Wahl zu S5 ist:
. . .

F.1. The Original Materials in German 355

Die Begründung für meine Wahl zu S6 ist:
. . .

Die Begründung für meine Wahl zu S7 ist:
. . .

Bewertung des gesamten Feedback

Im Folgenden bitten wir Sie um eine Gesamtevaluation aller Alternativen,
die Sie im Einzelnen evaluiert haben. Bitte geben Sie Ihre Gesamtpräferenz
an (unterstreichen). Danach beantworten Sie bitte, welche der Begründung auf
Ihre Gesamtpräferenz zutrifft (mit “x” markieren). Gehen Sie von der Annahme
aus, dass die Studenten ausreichend Erfahrung mit änlichen tutoriellen Dialogen
haben. Es gibt keine richtige oder falsche Antwort.

Insgesamt bevorzuge ich: Alternativen A Alternativen B

1. Es ist wahrscheinlicher, dass der Student das Gelernte als allgemeine Prob-
lemlösungsstrategie auf andere Domänen anwenden wird.

1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

2. Es ist wahrscheinlicher, dass der Student das Gelernte auf andere Prob-
leme in der gleichen Domäne anwenden wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

3. Es ist wahrscheinlicher, dass der Student Schemata für Beweise erwerben
wird, die nicht explizit unterrichtet werden.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

4. Das Feedback eröffnet dem Studenten mehr Möglichkeiten, die Beweise
alleine zu lösen.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

5. Es ist wahrscheinlicher, dass der Student Selbssicherheit gewinnt, um
eigenständig zu lernen.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

356 Chapter F. Evaluation Study Materials

6. Es ist wahrscheinlicher, dass der Student aufmerksamer mitarbeitet.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

7. Es ist wahrscheinlicher, dass der Student sich aktiv am Lernverfahren
beteiligen wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

8. Es ist wahrscheinlicher, dass der Student das Gelernte und dessen Wert
internalisieren wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

9. Es ist wahrscheinlicher, dass der Student den Zusammenhang von ver-
schiedenen Werten, Informationen, und Ideen endecken wird und diese in
sein Schema integrieren wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

10. Es ist wahrscheinlicher, dass der Student eine durch das Gelernte bewirkte
Verhaltensänderung zeigen wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

11. Es ist wahrscheinlicher, dass der Student den gelernten Stoff im Gedächtnis
behält, indem er Fakten, Terminologien, Grundkonzepte, und Antworten,
ins Gedächtnis zurückruft.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

12. Es ist wahrscheinlicher, dass der Student allgemeine Konzepte und gen-
eralisierende Abstraktionen, Prinzipien und Generalisierungen, Theorien
und Strukturen in der Domäne erwirbt.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

13. Es ist wahrscheinlicher, dass der Student ein Verständnis von Fakten
und Ideen aufzeigen wird, indem er in eigenen Worten die Schritte der
Durchführung der Aufgabe erklärt.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

14. Es ist wahrscheinlicher, dass der Student Probleme durch Verwendung von
Domänenkenntnissen, Beweismethoden und Regeln in unterschiedlichen
Weisen lsen wird.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

F.1. The Original Materials in German 357

15. Es ist wahrscheinlicher, dass der Student Schlussfolgerungen und Beweise
finden wird, um Generalisierungen zu machen, und dass er Domänenkenntnisse,
Relationen und Organisationsprinzipien analysiert.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

16. Es ist wahrscheinlicher, dass der Student Informationen dadurch zusam-
menstellen wird, dass er Domänenkenntnisse mit neuen Mustern auf ver-
schiedene Weise verknüpft oder alternative Lösungen findet.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

17. Es ist wahrscheinlicher, dass der Student durch Urteile und Validierungen
von Ideen Meinungen präsentieren und vertreten wird,. z.B. Urteile in
Bezug auf interne Beweise.
1 2 3 4 5 6 7

trifft zu trifft eher zu trifft voll zu

Fragebogen nach der Studie

Bitte beantworten Sie zum Abschluss die unten stehenden Aussagen (mit
“x” markieren). Es gibt keine richtige oder falsche Antwort.

1. Mir war Schematheorie bereits vor der Studien bekannt.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

2. Mir war Motivationstheorie bereits vor der Studien bekannt.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

3. Mir waren Theorien zu Überforderungen von Lernern bereits vor der Studie
bekannt.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

4. Ich stimme Selbstständigem Lernen zu.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

5. Ich kenne mich mit lernerorientiertem Unterricht aus.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

6. Ich richte meinen Unterricht am Lerner aus.

358 Chapter F. Evaluation Study Materials

1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

7. Ich bin selbstsicher in meiner Fähigkeit, das Feedback evaluieren zu können.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

8. Ich fühle mich dazu in der Lage, das Feedback in Bezug auf die gestellten
Fragen zu evaluieren.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

9. Ich fühle mich dazu in der Lage, das Ziel dieser Evaluationsstudie zu
erfüllen.
1 2 3 4 5 6 7
trifft zu trifft eher zu trifft voll zu

10. Ich fühle mich dazu in der Lage, der Aufforderung nachgekommen zu sein,
das Feedback in Bezug auf die gestellten Fragen zu evaluieren.
1 2 3 4 5 6 7

trifft zu trifft eher zu trifft voll zu

F.2 The Experimenter’s Materials in English

Description of the study

In this study, we are trying to find out what is the best feedback to provide
to students in order to help them learn proving in set theory. We would like
you to rate the feedback as instructed below and help us choose the appropri-
ate feedback each time. This feedback is provided when students are presented
with proving tasks to handle as practice on what they have learned in previous
learning phases through theory and worked examples.

Pre-Questionnaire

Please fill in the following information to the best of your knowledge. The
information is needed for analysis purposes.

1. Email address:

2. Age:

3. Gender: male /female

F.2. The Experimenter’s Materials in English 359

4. I am a: university student / teacher/ other (specify)?

5. I have taken courses on Set Theory: yes / no

6. I have teaching experience in Set Theory: yes / no

7. If you have experience, which kind? school / private lessons/ other (spec-
ify):

8. How would you describe your teaching style?

9. If you are not a teacher:

(a) I have already completed all compulsory pedagogy modules? yes /
no

(b) How many pedagogy modules have you taken? yes / no

10. How does one prove an implication: A⇒ B?

Evaluation Questionnaires

Choice of Individual Feedback

You will now read examples of tutorial dialogues between a tutor T and a
student S on the first and second steps of the following proof, where K stands
for the complement:

A ⊆ K(B)⇒ B ⊆ K(A)
We assume that A ⊆ K(B), as this is the hypothesis, and we prove that
B ⊆ K(A) follows.
Then we have to show that all elements of B are also in K(A). Let arbitrary
element x ∈ B.
We have to show that x ∈ K(A) as well.
If x ∈ B, then x /∈ K(B) and therefore, according to the assumption also not
in A.
But if x /∈ A, then x ∈ K(A). Therefore, by the definition of ⊆ B ⊆ K(A),
because x is arbitrary.

The tutor provides feedback to the student’s attempts at the proof. For some
student attempts, where it is indicated, we provide two alternatives of tutor
feedback (Alternative A and Alternative B). You are asked to compare and

360 Chapter F. Evaluation Study Materials

evaluate the alternatives through specific questions, which follow the tutorial
dialogue each time. At the end, you are also asked for an overall evaluation of
the feedback.

F.2.0.6 First Tutorial Dialogue

T0: Hello!
S0: Hello!
T1: OK, let’s look at a proof! Tell me anything you can think of for

proving the following: If A is a subset K(B), then B is a subset
of K(A)!

S1: I have to identify what’s assumed and what I have to prove.

Feedback to S1
Alternative A

T2: That’s not the complete answer. First we assume that A ⊆ K(B)
applies, as this is the assumption in this proposition B ⊆ K(A).
What’s the next step?
Alternative B

T2: Good! You’re on the right track. So, we’re taking it from the
start. Go on then, what is assumed and what do you have to
prove?

Between the feedback alternatives in S1 I prefer:
Alternative A Alternative B

S2: I have to prove that B ⊆ K(A), and A ⊆ K(B) is assumed.

Feedback to S2
Alternative A

T3: This is Correct! How can you go on?
Alternative B

T3: Correct! Now, can you manipulate the expression to prove what
you want.

Between the feedback alternatives in S2 I prefer:
Alternative A Alternative B

S3: I have to simplify the goal.
T4: Correct! OK. Let’s see, then. Try to find something in the

problem that would help you simplify it.
S4: Do you mean the if-then?
T5: Exactly! All right then, what do you know about the if-then

relation that can help you manipulate the expression.
S5: Something about what I need to prove?

F.2. The Experimenter’s Materials in English 361

Feedback to S5
Alternative A

T6: This is again not the complete answer. The proof starts with
the assumption that A ⊆ K(B) applies, as this is the hypothesis.
With that, we can break down the if-then relation. How can we
go on?
Alternative B

T6: Exactly! So, can then which rule you can use here?

Between the feedback alternatives in S5 I prefer:
Alternative A Alternative B

S6: Do I have to use the rule “if X ⇒ Y, then let X and prove Y”?

Feedback to S6
Alternative A

T7: That is not the complete answer! The proof starts with the as-
sumption that A ⊆ K(B) applies, as this is the hypothesis. With
that, we can break down the if-then relation. How can we go on?
Alternative B

T7: Good, that is correct! Now, try to apply the rule to the expres-
sion.

Between the feedback alternatives in S6 I prefer:
Alternative A Alternative B

S7: Let A ⊆ K(B) and prove that B ⊆ K(A).
T8: Correct! Move on to the next step, now!

. . .

Now, respond to each of the items that follow in terms of how true it is
for you with respect the feedback that you indicate as your preference. Assume
sufficient practice through similar tutoring dialogues. There is no right or wrong
answer to the questions.

7-Point Likert Scale:
1 2 3 4 5 6 7
not at all true somewhat true very true

The reason for my choice in S1 is:

1. Schema Promotion

(a) The student is more likely to learn a schema/pattern for handling
similar cases in proving.

362 Chapter F. Evaluation Study Materials

(b) The student is more likely to learn this proof very well, even if he is
not able to acquire a schema (reverse item).

2. Feedback Content

(a) The feedback is better formulated.

(b) The content is more appropriate.

(c) The information given away is more likely to overwhelm the student
(reverse item).

(d) The information given away is more appropriate in the context of the
dialogue up to this point.

3. Motivation

(a) The student is more likely to be motivated to complete the proof on
his own and pay attention to what the tutor explains to him.

(b) The student is less likely to try to understand the tutor’s feedback.
(reversed item)

4. Open Feedback

(a) If you can think of a more appropriate formulation, please write it
here:

(b) If you have any additional comments on the feedback, please provide
them here:

The reason for my choice in S2 is:
. . .

The reason for my choice in S5 is:
. . .

The reason for my choice in S6 is:
. . .

F.2. The Experimenter’s Materials in English 363

F.2.0.7 Second Tutorial Dialogue

. . .
T1: OK, let’s look at a proof! Tell me anything you can think of for

proving the following: If A is a subset K(B), then B is a subset
of K(A)!

S1: OK, prove B ⊆ K(A) and simplify the if-then.
T2: Good. You are on a good track. Now, consider what you know

about the if-then relation that you can help you find the right
rule for the next step.

S2: Do you mean what I have to assume?
T3: Right. There’s a minor problem with your answer. Is that really

what you wanted to say?
S3: Yes.
T4: That’s not quite right. Let’s look at it. What you said is the

reverse of what you need. Move on, now!
S4: A subset K(B) from that follows B subset K(A).

Feedback to S4
Alternative A

T: That’s not complete yet, because you have to prove that B subset
K(A).
Alternative B

T: That is big a step. OK. Let’s see. Can you first explain what
you meant by “what I have to assume” above?

S: I meant that A is a subset of K(B) and that it follows that B is
a subset of K(A).

T: There seems to be some misconception here. As I say, that is
too big a step. Can you explain it?

S: I have to use if-then and say let “x and prove y”.
T: Good, you’re making progress! So, keep in mind that what you

assume is your premises and what you have to prove is your
conclusion. Also remember that you have to prove or justify
everything that is not a premise, or you have not shown before.
Now, try apply the rule “let x and prove y” to the expression.

Between the feedback alternatives in S4 I prefer:
Alternative A Alternative B

S5: How do I apply it?

364 Chapter F. Evaluation Study Materials

Feedback to S5
Alternative A

T: You have to assume A ⊆ K(B) and prove that B ⊆ K(A). How
can you move on?
Alternative B

T: It’s a bit difficult, right? Let’s try to do this together. Please,
see first if you can apply the rule to the expression.

S: Which rule do I have to use?
T: Just use the rule if X ⇒ Y, then let X and prove Y and apply it

to the expression. Can you apply it now?
S: Let A subset K(B), then prove that B subset K(A).
T: Good! But there’s a minor problem with your answer. So, think

carefully. You can substitute the appropriate parts of the expres-
sion you are dealing with, for the variables in the rule you are
applying. Now write the whole step!

S: Let A subset of K(B), and prove that B subset K(A)
T: Correct! Very good! The reasoning for this step is as follows:

We assume A ⊆ K(B) and what we have to prove is B ⊆ K(A).
Next, to manipulate the expression we simplify what we want to
prove. So, we start with the if-then relation, because it’s central
in the problem and can help us simplify what we are trying to
prove. Now, we have to get rid of the if-then, and the rule that
helps us here is “if x then y, assume x and prove y”. Finally, we
do that by substituting the variables by the corresponding values
in our expression. Now, how can you start attacking the next
step?

Between the feedback alternatives in S5 I prefer:
Alternative A Alternative B

S: I have to look for a rule to handle this, right?

Feedback to S6
Alternative A

T: That’s right, you have to use the definition of subset and prove
that if x ∈ B, then x ∈ K(A).
Alternative B

T: Right! That’s a good start. Let’s see. Try to find something in
the problem that would help you simplify the problem.

S: The subset.

F.2. The Experimenter’s Materials in English 365

T: Correct! OK then. Now, what is connected to the subset and can
help you prove what you want.

S: The K.
T: That’s not quite right. You can consider the concept element,

since you can use it to manipulate the expression. Can you move
on?

Between the feedback alternatives in S6 I prefer:
Alternative A Alternative B

S7: I got it! All elements of B should also be elements of K(A).

Feedback to S7
Alternative A

T: Correct! How can you move on?
Alternative B

T: Correct! So, let us look at it again. Which is the concept from
which we start simplifying the problem?

S: The subset.
T: Correct! And what was connected to the subset that can help you

manipulate the expression?
S: Yeah, yeah...
T: Ok, you need to consider the element and use it manipulate the

expression. What’s the next step?
. . .

Now, respond to each of the items that follow in terms of how true it is
for you with respect the feedback that you indicate as your preference. Assume
sufficient practice through similar tutoring dialogues. There is no right or wrong
answer to the questions.

The reason for my choice in S4 is:
. . .

The reason for my choice in S5 is:
. . .

The reason for my choice in S6 is:
. . .

The reason for my choice in S7 is:
. . .

366 Chapter F. Evaluation Study Materials

Choice of Overall Feedback

The following statements require an overall evaluation on the feedback alter-
natives that you just evaluated one by one. Please read all statements once and
provide your overall choice of feedback based on them at the end. Then respond
to each of them in terms of how true you think it is with respect to your overall
preference. For example, if you choose feedback alternatives A as your overall
preference, then indicate how much you agree that with this feedback as a whole
“The student is more likely to apply what he learned in other domains, as a
general problem solving technique.” and so on for the rest of the statements.
Assume sufficient practice through similar tutoring dialogues. There is no right
or wrong answer to the questions.

Overall I prefer the feedback in: Alternatives A Alternatives B

7-Point Likert Scale:
1 2 3 4 5 6 7
not at all true somewhat true very true

The reason for my choice is:

1. Distant Transfer

(a) The student is more likely to apply what he learned in other domains,
as a general problem solving technique.

2. Near Transfer

(a) The student is more likely to apply what he learned in other problems
in the same domain.

3. Implicit Learning

(a) The student is more likely to acquire schemata for theorem proving
that are not explicitly taught.

4. Self-Sufficiency

(a) The feedback gives the student more chances to find the solution
alone.

(b) The student is more likely to become confident in working alone.

5. Evaluation based on Bloom’s Taxonomy:

• Affective

F.2. The Experimenter’s Materials in English 367

(a) The student is more likely to pay attention. (Receiving)

(b) The student is more likely to participate in the learning process
actively. (Responding)

(c) The student is more likely to internalise what is learned and the
value of what is learned. (Valuing)

(d) The student is more likely to put together different values, in-
formation, and ideas and accomodate them within their own
schema, comparing, relating and elaborating on what he learns.
(Organising)

(e) The student is more likely to exhibit behaviour that is charac-
terised by what he or she learned. (Characterising)

• Cognitive

(a) The student is more likely to acquire knowledge of facts, termi-
nology, basic concepts, and answers, and to be able to deal with
them.

(b) The student is more likely to acquire knowledge of universals and
abstractions in the field - principles and generalisations, theories,
and structure. (Knowledge)

(c) The student is more likely to demonstrate an understanding of
facts and ideas by explaining in their own words the steps of
performing the task. (Comprehension)

(d) The student is more likely to solve problems in situations by
applying the domain knowledge, proving techniques and rules in
different ways. (Application)

(e) The student is more likely to make inferences and find evidence
to support generalisations, analyse domain knowledge, relations
and organisational principles. (Analysis)

(f) The student is more likely to compile information together in
different ways by combining domain knowledge in new patterns
or finding alternative solutions, e.g. make a plan and propose a
set of operations, derive a set of abstract relations. (Synthesis)

(g) The student is more likely to present and defend opinions by
making judgements about information and validity of ideas, e.g.,
judgements in terms of internal evidence. (Evaluation)

Post-Questionnaire

Please fill in the following questionnaire. There is no correct answer. The
questions aim at helping us analyse the data collected in this study.

7-Point Likert Scale:
1 2 3 4 5 6 7
not at all true somewhat true very true

368 Chapter F. Evaluation Study Materials

1. Participants background

(a) I knew about schema theory before.

(b) I knew about motivation theory before.

(c) I knew about cognitive load theory before.

(d) I know what worked examples are.

(e) I abide by active learning.

(f) I have had training on student oriented teaching.

(g) I apply student oriented teaching myself.

2. Perceived Competence to evaluate the feedback

(a) I feel confident in my ability to evaluate this feedback.

(b) I am capable of evaluating the feedback based on the asked questions.

(c) I am able to fulfil the purpose of this evaluation.

(d) I feel able to meet the challenge of evaluating the feedback based on
the asked questions.

F.2. The Experimenter’s Materials in English 369

-

370 Chapter F. Evaluation Study Materials

371

Bibliography

Vincent Aleven and Kenneth Koedinger. The need for tutorial dialog to support
self-explanation. In Rosé and Freedman [Rosé and Freedman, 2000], pages
65–73.

Vincent Aleven and Kenneth R. Koedinger. Limitations of student control:
Do students know when they need help? In G. Gauthier, C. Frasson, and
K. VanLehn, editors, Proceedings of the 5th International Conference on
Intelligent Tutoring Systems, ITS 2000, pages 292–303, Montreal, Canada,
2000.

Vincent Aleven, Kenneth Koedinger, and Karen Cross. Tutoring answer expla-
nations fosters learning with understanding. In S. P. Lajoie and M. Vivet,
editors, Proceeding of World Conference on Artificial Intelligence in Educa-
tion, AIED-99, Frontiers in Artificial Intelligence, pages 199–206, Amster-
dam, 1999. IOS Press.

Vincent Aleven, Ocav Popescu, and Kenneth R. Koedinger. A tutorial dialogue
system with knowledge-based understanding and classification of student
explanations. In Working Notes of 2nd IJCAI Workshop on Knowledge and
Reasoning in Practical Dialogue Systems., Seattle, USA, 2001.

Vincent Aleven, Bruce M. McLaren, Ido Roll, and Kenneth R. Koedinger. To-
ward meta-cognitive tutoring: A model of help-seeking with a cognitive tu-
tor. International Journal of Artificial Intelligence in Education, 16:101–130,
2006.

Jan Alexanderson et al. Dialogue acts in verbmobil-2. Technical report
verbmobil-report 204, DFKI GmbH Saarbrcken, Universitt Stuttgart, Tech-
nische Universitt Berlin,Universitt des Saarlandes, 1997.

James Allen and Mark Core. Draft of DAMSL: Dialogue act markup in several
layers. DRI: Discourse Research Initiative, University of Pennsylvania, 1997.

James Allen, George Ferguson, and Amanda Stent. An architecture for more
realistic conversational systems. In Proceedings of Intelligent User Interface,
IUI01, pages 14–17, Santa Fe, New Mexico, USA, 2001.

372 Bibliography

James F. Allen, Donna K. Byron, Myroslava Dzikovska, George Ferguson, Lu-
cian Galescu, and Amanda Stent. Towards conversational human-computer
interaction. AI magazine, 2001.

John R. Anderson, Francis S. Belleza, and C. Franklin Boyle. The geometry
tutor and skill acquisition. In Rules of the Mind. NJ:Erlbaum, 1993.

John R. Anderson, Albert T. Corbett, Kenneth R. Keodinger, and Ray Polletier.
Cognitive tutors: Lessons learned. The Journal of Learning Sciences, 4:167–
207, 1995.

John R. Anderson. Rules of the Mind. NJ:Erlbaum, 1993.

Richard Angros, Jr., W. Lewis Johnson, Jeff Rickel, and Schorel Andrew. Learn-
ing domain knowledge for teaching procedural skills. In Proceedings of AA-
MAS’02, Bologna, Italy, 2002.

Kevin D. Ashley, Ravi Desai, and John M. Levine. Teaching case-based argu-
mentation concepts using dialectic arguments vs. didactic explanations. In
S. A. Cerri, G. Gouardéres, and F. Paraguaçu, editors, Proceedings of the
6th International Conference on Intelligent Tutoring Systems, pages 585–
595. Berlin: Springer Verlag. A. L. Brown and M. J. Kane, 2002.

Harald Aust and Martin Oerder et al. The philips automatic train timetable
information system. Speech Communication, 17:249–262, 1995.

Serge Autexier and Armin Fiedler. Textbook proofs meet formal logic — the
problem of underspecification and granularity. In Michael Kohlhase, editor,
Mathematical Knowledge Management: 4th International Conference, MKM
2005, number 3863 in LNAI, pages 96–110. Springer Verlag, 2006.

Serge Autexier, Christoph Benzmller, Armin Fiedler, Helmut Horacek, and
Bao Quoc Vo. Assertion-level proof representation with under-specification.
Electronic Notes in Theoretical Computer Science, 93:5–23, 2004.

Serge Autexier, Christoph Benzmller, Dominik Dietrich, and Jrg Siekmann.
Resource adaptive processes in automated reasoning systems. In Matthew
Crocker and Jrg Siekmann, editors, Resource Adaptive Cognitive Processes,
LNAI, pages 28–64. Springer, 2008.

R.S.J.d. Baker. Is gaming the system state-or-trait? educational data mining
through the multi-contextual application of a validated behavioral model.
In Complete On-Line Proceedings of the Workshop on Data Mining for User
Modeling at the 11th International Conference on User Modeling 2007, pages
76–80, 2007.

Tifanny Barnes and John Stamper. Toward automatic hint generation for logic
proofs tutoring using historical student data. In The 9th International Con-
ference on Intelligent Tutoring Systems (ITS2008), pages 373–382, Berlin
Heidelberg, 2008. Springer-Verlang.

Bibliography 373

Tifanny Barnes, John Stamper, Lorrie Lehmen, and Marvin Croy. A pilot study
on logic proof tutoring using hints generated form historical student data. In
R.S.J.d. Baker, T. Barnes, and J.E. Beek, editors, Educational Data Mining
2008: 1st International Conference on Educational Data Mining, pages 197–
201, Montréal, Québec, Canada, 2008.

D. Barrow, A. Mitrovic, S. Ohlsson, and M. Grimley. Assessing the impact of
positive feedback in constraint-based tutors. In The 9th International Con-
ference on Intelligent Tutoring Systems (ITS2008), pages 23–27, Montreal,
Canad, 2008.

Carole R. Beal and Hyokyeong Lee. Creating a pedagogical model that uses
student self reports of motivation and mood to adapt its instruction. In
AIED 05 Workshop on Motivation and Affect in Educational Software, pages
39–46, Amsterdam, 2005.

C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siek-
mann, and V. Sorge. Ωmega: Towards a mathematical assistant. In W. Mc-
Cune, editor, Proceedings of the 14th Conference on Automated Deduction,
number 1249 in LNAI, pages 252–255. Springer, 1997.

Christoph Benzmüller, Armin Fiedler, Malte Gabsdil, Helmut Horacek, Ivana
Kruijff-Korbayová, Manfred Pinkal, Jörg Siekmann, Dimitra Tsovaltzi,
Bao Quoc Vo, and Magdalena Wolska. Tutorial dialogs on mathematical
proofs. In Proceedings of the IJCAI Workshop on Knowledge Representation
and Automated Reasoning for E-Learning Systems, pages 12–22, Acapulco,
2003.

Christoph Benzmüller, Armin Fiedler, Malte Gabsdil, Helmut Horacek, Ivana
Kruijff-Korbayová, Manfred Pinkal, Jörg Siekmann, Dimitra Tsovaltzi,
Bao Quoc Vo, and Magdalena Wolska. A wizard-of-oz experiment for tu-
torial dialogues in mathematics. In Vincent Aleven, Ulrich Hoppe, Judy
Kay, Riichiro Mizoguchi, Helen Pain, Felisa Verdejo, and Kalina Yacef, ed-
itors, AIED2003 — Supplementary Proceedings of the 11th International
Conference on Artificial Intelligence in Education, volume VIII: Advanced
Technologies for Mathematics Education, pages 471–481, Sidney, Australia,
2003. School of Information Technologies, University of Sydney.

N.O. Bernsen, H. Dybkjær, and L. Dybkjær. Designing Interactive Speech Sys-
tems — From First Ideas to User Testing. Springer, 1998.

D. Berry and D. Broadbent. On the relationship between task performance and
the associated verbalizable knowledge. Quarterly Journal of Experimental
Psychology, 36(A):209–231, 1984.

D. Berry and D. Broadbent. Interactive tasks and the implicit-explicit distinc-
tion. British Journal of Psychology, 79:251–272, 1988.

374 Bibliography

B. S. Bloom. Taxonomy of educational objectives: The classification of educa-
tional goals. Handbook I: Cognitive Domain. Longmans, Green, NewYork,
1956.

B. S. Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational Researcher, 13:4–26, 1984.

Peter Bohlin, Robin Cooper, Elisabeth Engdahl, and Larsson Staffan. Informa-
tion states and dialogue move engines. In Jan Alexanderson, editor, Proceed-
ings of the IJCAI-99 Workshop on Knowledge and Reasoning in Practical
Dialogue systems, 1999.

Mark Buckley and Christoph Benzmüller. System Description: A Dialogue
Manager supporting Natural Language Tutorial Dialogue on Proofs. In
David Aspinall and Christoph Lüth, editors, Proceedings of the ETAPS
Satellite Workshop on User Interfaces for Theorem Provers (UITP), pages
40–67, Edinburgh, Scotland, 2005.

Mark Buckley and Christoph Benzmüller. A Dialogue Manager supporting Nat-
ural Language Tutorial Dialogue on Proofs. Electronic Notes in Theoretical
Computer Science, 2006. To appear.

Richard R. Burton. Diagnosing bugs in a simple procedural skill. In D. Slee-
man and S. J. Brown, editors, Intelligent Tutoring Systems, Computers and
Poeple, pages 157–183. Academic Press, 1982.

Ch. Callaway, D. Dietrich, M. O. Dzikovska, , E. Farrow, M. Homik, M Marques-
Pita, C. Matheson, E. Melis, J. D. Moore, and C. Ullrich. Refined nlg and
nlu. Technical report, The consortium collaborators, 2006.

G. Carenini and J. Moore. Generating and evaluating evaluative arguments.
Artificial Intelligence Journal, 170:925–952, 2006.

Paul Chandler and John Sweller. Cognitive load theory and the format of
instruction. Cognition and Instruction, 8(4):293–332, 1991.

M. T. H. Chi, R. Glaser, and E. Rees. Expertise in problem solving. Advances
in the Psychology of Human Intelligence, pages 7–75, 1982.

Michelene T. H. Chi, Matthew W. Lewis, Peter Riemann, and Robert Glaser.
Self-explanations: How students study and use examples in learning to solve
problems. Cognitive Science, 13:145–182, 1989.

Michelene T. H. Chi, Nicholas de Leeuw, Mei-Hung Chiu, and Christian La-
vancher. Eliciting self-explanation improves understanding. Cognitive Sci-
ence, 18:439–477, 1994.

Allan Collins and Albert L. Stevens. Goals and strategies of inquiry teachers.
Advances in Instructional Psychology, 2:65–119, 1982.

Bibliography 375

A. Collins and A. L. Stevens. A cognitive theory of inquiry teaching. In
P. Goodyear, editor, Teaching Knowledge and Intelligent Tutoring, pages
203–230. Ablex Publishing Corporation, Norwood, New Jersey, 1991.

Allan Collins. Cognitive apprenticeship and instructional technology. In L. Idol
and B. F. Jones, editors, Educational Values and Cognitive Instruction, pages
121–138. Erlbaum, Hillsdale, NJ, 1991.

Cristina Conati and Kurt VanLehn. Teaching meta-cognitive skills: implemen-
tation and evaluation of a tutoring system to guide self-explanation while
learning from examples. In Proceedings of AIED ’99, 9th World Conference
of Artificial Intelligence and Education, pages 297–304, Amsterdam: IOS
press, 1999.

Graham Cooper and John Sweller. Effects of schema acquisition and rule au-
tomation on mathematical problem transfer. Journal of Educational Psy-
chology, 79(4):347–362, 1987.

Robin Cooper, Staffan Larsson, Colin Matheson, Massimo Poesio, and David
Traum. Coding instructional dialogue for information states. Technical
report, University of Gothenburg, 1999.

A. Corbett, K.R. Koedinger, and J.R. Anderson. Intelligent tutoring systems.
In M. Helaner and T.K. Landauer, editors, Handbook of Human-Computer
Interaction, Second Edition, pages 849–874. Amsterdam: Elsevier Science,
1997.

Mark G. Core and James F. Allen. Coding dialogues with DAMSL annotation
scheme. In AAAI Fall Symposium on Communicative Action in Humans
and Machines, pages 28–35, Boston, MA, 1993.

Mark G. Core, Johanna D. Moore, and Claus Zinn. Supporting constructive
learning with a feedback planner. In Proceedings of the AAAI Fall Sympo-
sium: Building Dialogue Systems for Tutorial Applications, Falmouth, MA,
2000. AAAI Press.

Mark G. Core, Johanna D. Moore, Claus Zinn, and Peter Wiemer-Hastings.
Modeling human teaching tactics in a computer tutor. In Proceedings of the
6th IEEE International Conference on Advanced Learning Technologies Na-
tional ACM conference, NAACL-2001, Workshop on Adaptation in Dialogue
Systems, Pittsburgh, PA, 2001.

Mark G. Core, Johanna D. Moore, and Claus Zinn. Draft: Tutorial annotation
scheme. September 11, 2002.

A. de Vicente and H. Pain. Motivation diagnosis in intelligent tutoring systems.
In Proceedings of the Fourth International Conference on Intelligent Tutoring
Systems, volume 1452 of Lecture Notes in Computer Science, pages 86–95,
Berlin, 1998. Springer.

376 Bibliography

Victor R. Delclos and Christine Harrington. Effects of strategy monitoring and
proactive instruction on children’s problem solving performance. Journal of
Educational Psychology, 83(1):35–42, 1991.

Vania Dimitrova, John Self, and Paul Brna. The interactive maintenance of
open learner models. In S.P. Lajoie and M. Vivet, editors, In Artificial
intelligence in education, pages 405–412. IOS Press, Amsterdam, 1999.

R.E. DiPaolo, A.C. Graesser, H.A. White, and D.J. Hacker. Hints in human
and computer tutoring. In M. Rabinowitz, editor, The design of instruction
and evaluation, pages 155–182. Mahwah, NJ: Erlbaum, 2004.

M. Driscoll. Psychology of Learning for Instruction. Allyn and Bacon, Boston,
1994.

Benedict du Boulay and Rosemary Luckin. Modelling human teaching tactics
and strategies for tutoring systems. International Journal of Artificial In-
telligence in Education, 12:235–256, 2001.

M. O. Dzikovska, C. B. Callaway, E. Farrow, M. Marques-Pita, C. Matheson,
and J. D. Moore. Adaptive tutorial dialogue systems using deep nlp tech-
niques. In Proceedings of NAACL-2007 Demo Session, Rochester, NY, USA,
2007.

Myroslava Dzikovska, Gwendolyn Campbell, Charles Callaway, Natalie Stein-
hauser, Elaine Farrow, Johanna Moore, Leslie Butler, and Colin Matheson.
Diagnosing natural language answers to support adaptive tutoring. In Pro-
ceedings of the 21st FLAIRS Conference, Miami, Florida, 2008.

Martha W. Evens, Stefan Brandle, Ru-Charn Chang, Reva Freedman, Michael
Glass, Leeand Leem Seop Shim Yoon Hee, Chong Woo Woo, Yuemei Zhang,
Zhou Yujian, Joel A. Michael, and Allen A. Rovick. Circsim-Tutor: An
intelligent tutoring system using natural language dialogue. In Proceedings
Twelfth Midwest AI and Cognitive Science Conference, MAICS 2001, pages
16–23, Oxford, 2001.

Michael W. Eysenck and Mark T. Keane. Cognitive Psychology: A student’s
handbook. Psychology Press, USA and Canada, 4th edition, 2000.

G. Ferguson and J. Allen. Mixed-initiative dialogue systems for collaborative
problem-solving. AI Magazine: Special Issue on Mixed-Initiative Assistants,
28(2):23–32, 2007.

Armin Fiedler and Malte Gabsdil. Supporting pogressive refinement of Wizard-
of-Oz experiments. In Carolyn Penstein Rosé and Vincent Aleven, editors,
Proceedings of the ITS 2002 — Workshop on Empirical Methods for Tutorial
Dialogue Systems, pages 62–69, San Sebastián, Spain, 2002.

Bibliography 377

Armin Fiedler and Dimitra Tsovaltzi. Automating hinting in an intelligent
tutorial system. In Proceedings of the IJCAI Workshop on Knowledge Rep-
resentation and Automated Reasoning for E-Learning Systems, pages 23–35,
Acapulco, 2003.

Armin Fiedler and Dimitra Tsovaltzi. Automating hinting in mathematical
tutorial dialogue. In Proceedings of the EACL-03 Workshop on Dialogue
Systems: Interaction, Adaptation and Styles of Management, pages 45–52,
Budapest, 2003.

Armin Fiedler and Dimitra Tsovaltzi. Domain-knowledge manipulation for
dialogue-adaptive hinting. In 12th International Conference on Artificial
Intelligence in Education (AIED 2005), Amsterdam, 2005.

Armin Fiedler, Andreas Franke, Helmut Horacek, Markus Moschner, Martin
Pollet, and Volker Sorge. Ontological issues in the representation and pre-
sentation of mathematical concepts. In Jérôme Euzenat, Asuncion Gómez
Pérez, Nicola Guarino, and Heiner Stuckenschmidt, editors, Proceedings of
the ECAI 2002 Workshop on Ontologies and Semantic Interoperability, pages
62–66, Lyon, France, 2002.

A. Fiedler. Dialog-driven adaptation of explanations of proofs. In B. Nebel,
editor, Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1295–1300, Seattle, WA, 2001. Morgan Kauf-
mann.

A. Fiedler. User-adaptive proof explanation. PhD thesis, Department of Com-
puter Science, Universität des Saarlandes, Saarbrücken, Germany, 2001.

Reva Freedman, Zhou Yujian, Michael Glass, Jung Hee Kim, and Martha W.
Evens. Using rule induction to assist in rule construction for a natural-
language based intelligent tutoring system. In Proceedings Twentieth Annual
Conference of the Cognitive Science Society, pages 362–367, Madison, 1998.

Reva Freedman. Plan-based dialogue management in a physics tutor. In
Proceedings of the Sixth Applied Natural Language Processing Conference
(ANLP ’00), Seatle, 2000.

Claudia Gama. Metacognition in interactive learning environments: The reflec-
tion assistant model. In ITS2004 [ITS2004, 2004], pages 668–677.

Abigail S. Gertner, Christina Conati, and Kurt VanLehn. Procedural help in
Andes: Generating hints using a bayesian network student model. In Pro-
ceedings of the 15th National Conference on Artificial Intelligence, pages
106–111, Madison, Wisconsin, 1998. AAAI Press/MIT Press.

Jonathan Ginzburg. An update semantics for dialogue. In Proceedings of the
International Workshop on Computational Semantics, Tilburg, 1994.

378 Bibliography

Jonathan Ginzburg. Interrogatives: Questions, facts and dialogue. In The
Handbook of Contemporary Semantic Theory. Blackwell, Oxford, 1996.

Susan R. Goldman. On the derivation of instructional applications from cogni-
tive theories: Commentary on chandler and sweller. Cognition and Instruc-
tion, 8(4):333–342, 1991.

A.C. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings, R. Kreuz, and Tu-
toring Research Group U.o.M. Autotutor: A simulation of a human tutor.
Cognitive Systems Research, 1:35–51, 1999.

Arthur C. Graesser, Natalie K. Person, Derek Harter, and the Tutoring Re-
search Group. Teaching tactics and dialogue in autotutor. International
Journal of Artificial Intelligent in Education, 2001.

A.C. Graesser, K. Moreno, J. Marineau, A. Adcock, A. Olney, and N. Persons.
Autotutor improves deep learning of computer literacy: Is it the dialog or
the talking head? In Proceedings of the Conference on Artificial Inteligence
in Education, pages 47–54, Sydney, 2003.

A.C. Graesser, S. Lu, G.T. Jackson, H. Mitchell, M. Ventura, A. Olney, and
M.M. Louwerse. Autotutor: A tutor with dialogue in natural language. Be-
havioral Research Methods, Instruments, and Computers, 36:180–193, 2004.

A.C. Graesser, D.S. McNamara, and K. VanLehn. Scaffolding deep compre-
hension strategies through point&query, autotutor, and istart. Educational
Psychologist, 40:225–234, 2005.

J. G. Greeno. Natures of problem solving abilities. In William K. Estes, editor,
Handbook of learning and cognitive processes, volume 5. Hillsdale, N.J., 1978.

R. De Groot, R. Drachman, R. Hever, B. Schwarz, A. Harre U. Hoppe, M. De
Laat, R. Wegerif, B. M. McLaren, and B. Baurens. Computer supported
moderation of e-discussions: the argunaut approach. In Proceedings of
the Conference on Computer Supported Collaborative Learning (CSCL-07),
pages 165–167, 2007.

B.J. Grosz and C.L. Sidner. Attention, intention and the structure of discourse.
Computational Linguistics, 12(3):175–204, 1986.

Neil T. Heffernan and Kenneth R. Koedinger. A development model for algebra
symbolization: The results of a difficulty factors assessment. In Proceedings
of the Twentieth Annual Conference of the Cognitive Science Society, pages
484–489, Hillsdale, NJ, 1998. Lawrence Erlbaum Associates.

Helmut Horacek and Magdalena Wolska. Handling errors in mathematics for-
mulas. In Tak-Wai Chan Mitsuru Ikeda, Kevin D. Ashley, editor, Proceed-
ings of the 8th International Conference, ITS 2006, pages 337 –348, Jhongli,
Twaiwan, 2006. Springer.

Bibliography 379

Helmut Horacek and Magdalena Wolska. Interpreting semi-foormal utterances
in dialoggs about mathematical proofs. Data and Knowledge Engineering,
58:90–106, 2006.

Helmut Horacek. Up-to-the-point hints in tutoring mathematical theorem prov-
ing. In Cybernetic and Systems Vol 2, Proceedings of the 18th European
Meeting on Cybernetic and System Research, Austrian Society for Cyber-
netic Studies, 2006.

Joris Hulstijn. Roles in dialoguemarked. In Ivana Kruijff-Korbayová and Clau-
dia Kosny, editors, Proceedings of DiaBruck’03, the 7th Workshop on the
Semantics and Prgmatics of Language, Saarbrücken, Germany, 2003.

Gregory Hume, Joel Michael, Allen Rovick, and Martha Evens. Student re-
sponses and follow up tutorial tactics in an ITS. In Proceedings of the
9th Florida Artificial Intelligence Research Symposium, pages 168–172, Key
West, FL, 1996.

Gregory D. Hume, Joel A. Michael, Allen A. Rovick, and Martha W. Evens.
Hinting as a tactic in one-on-one tutoring. Journal of the Learning Sciences,
5(1):23–47, 1996.

Gregory D. Hume. Using Student Modelling to Determine When and How to
Hint in an Intelligent Tutoring System. PhD thesis, Illinois Institute of
Technology, Chicago, IL, 1995.

Intelligent Tutoring Systems – 7th International Conference, ITS 2004, LNCS.
Springer, 2004.

Pamela W. Jordan and Kurt VanLehn. Discourse processing for explanatory
essays in tutorial applications. In Proceedings of the 3rd SIGdial Workshop
on Discourse and Dialogue, Philadelphia, USA, 2002.

P. Jordan, P. Albacete, and K. VanLehn. Taking control of redundacy in
scripted tutorial dialogue. In Proceedings of International Conference on
Artificial Intelligence in Educations (AIED05), pages 314–321, 2005.

Pamela Jordan, Maxim Makatchev, Umarani Pappuswamy, Kurt VanLehn, and
Patricia Albacet. A natural language tutorial dialogue system for physics.
In Proceedings of the 19th International FLAIRS conference, 2006.

Elena Karagjosova. Marked informationally redundant utterances in tutorial
dialogue. In Ivana Kruijff-Korbayová and Claudia Kosny, editors, Proceed-
ings of DiaBruck’03, the 7th Workshop on the Semantics and Prgmatics of
Language, Saarbrücken, Germany, 2003.

S. Katz, A. Lesgold, E. Hughes, D. Reters, , G. Eggan, and M. Gordin et al.
Sherloch 2: An intelligent tutoring system built on the lrdc frameword. In
C.P. Bloom and R.B. Loftin, editors, Facilitating the development and use
of interactive learning environments, pages 227–258. Hilisdale NJ: Erlbaum,
1998.

380 Bibliography

J. M. Keller. Strategies for simulating the motivation to learn. Performance
and Instruction, 26(8):1–7, 1987.

Kenneth R. Koedinger and John R. Anderson. Abstract planning and percep-
tual chunks: Elements of expertise in geometry. Cognitive Science, 14:511–
550, 1990.

Kenneth R. Koedinger and John R. Anderson. Intelligent tutoring goes to school
in the big city. International Journal of Artificial Intelligence in Education,
8:30–43, 1997.

Michael Kohlhase. OmDoc – An Open Markup Format for Mathematical Doc-
uments [Version 1.2], volume 4180 of LNAI. Springer, 2006.

Joern Kreutel and Colin Matheson. Modelling questions and assertions in dia-
logue using obligations. In Proceedings 3rd International Workshop on the
Semantics and Pragmatics of Dialogue, Amstelogue, University of Amster-
dam, 1999.

Joern Kreutel and Colin Matheson. Context-dependent interpretations and
implicit dialogue acts. In BI-DIALOG, Bielfeld, 2001.

H. Chad Lane and K. VanLehn. Teaching the tacit knowledge of program-
ming to novices with natural language tutoring. Computer Science Edu-
cation, Special Issue on Doctoral Research in Computer Science Education,
15(3):183–201, 2005.

Staffan Larsson and Robin Cooper. An information state approach to natu-
ral interactive dialogue. In Proceedings LREC2000 Workshop on Natural
Interactive Dialogue, 2000.

Staffan Larsson, Peter Bohlin, Johan Bos, and David Traum. Trindikit 1.0
manual. University of Gothenburgh, 1999.

Staffan Larsson, Gabriel Amores, Elena Karagjosova, David Milward, and Dim-
itra Tsovaltzi. Flexible dialogue. Technical report siridus project deliverable
d1.4, University of Gothenburgh, 2002. Distribution: PUBLIC.

Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Department
of Linguistics, Goeteborg University, Sweden, 2002.

Chung Hee Lee, Jai Hyun Seu, and Martha W. Evens. Building an ontology
for CIRCSIM-Tutor. In Proceedings of the 13th Midwest AI and Cognitive
Science Conference, MAICS-2002, pages 161–168, Chicago, 2002.

A. Lesgold, S. Lajoie, M. Bunzo, and G. Eggan. Sherlock: A coached prac-
tice environment for an electronics troubleshooting job. In J. Larkin
and R. Chabay, editors, Computer-assised instruction and intelligent tu-
toring systems. Shared goals and complementary approaches. Hilisdale, NJ:
Lawrence Erlbaum Associates, 1992.

Bibliography 381

Pawel Lewicki, Thomas Hill, and Maria Czyzewska. Nonconscious acquisition
of information. Journal of American Psychologist, 47:796–801, 1992.

Eng Leong Lim and Dennis W. Moore. Problem solving in geometry: Com-
paring the effects of non-goal specific instruction and conventional worked
examples. Journal of Educational Psychology, 22(5):591–612, 2002.

E. L. Lim, R. S. Dixon, and D. W. Moore. Worked examples vs. non goal-
specific problems: A test of schema development in geometry. Educational
Psychology, 16:421–431, 1996.

A. H. Maslow. A theory of human motivaton. Psychological Review, 50:370–396,
1943.

Colin Matheson, Massimo Poesio, and David Traum. Modelling grounding and
discourse obligations using update rules. In Proceedings NAACL 2000, Seat-
tle, 2000.

R. Mathews, R. Buss, W. Stanley, F. Blanchard-Fields, J. Cho, and N. Druhan.
Role of implicit and explicit processes in learning from examples: a syner-
gistic effect. Journal of Experimental Psychology, 15:1083–1100, 1989.

Noboru Matsuda and Kurt VanLehn. Modelling hinting strategies for geometry
theorem proving. In P. Brusilovsky, A. Corbett, and F. de Rosis, editors,
Proceedings of the 9th International Conference on User Modeling, pages
373–377, Pittsburgh, PA, 2003. Berlin, Heidelberg: Springer.

Noboru Matsuda and Kurt VanLehn. Advanced geometry tutor: An intelligent
tutor that teaches proof-writing with construction. In C. K. Looi et al.,
editor, Artificial Intelligence in Education, pages 443–450. IOS Press, 2005.

Manolis Mavrikis, Antony Maciocia, and John Lee. Targeting the affective
state of students studying mathematics in a web-based ile. In Proceedings of
AIED2003 Conference of Artificial Intelligence in Education, pages 77–82,
Sydney, 2003.

Richard E. Mayer, W. Lewis Johnson, Erin Shaw, and Sahiba Sandhu. Con-
structing computer-based tutors that are socially sensitive: Politeness in
educational software. Int. J. Human-Computer Studies, 64(1):36–42, 2006.

B.M. McLaren, S. Lim, F. Gagnon, D. Yaron, and K.R. Koedinger. Studying
the effects of personalized language and worked examples in the context of a
web-based intelligent tutor. In Proceedings of the the 8th International Con-
ference on Intelligent Tutoring Systems (ITS-2006), pages 318–328, Jhongli,
Taiwan, 2006. IOS Press.

B.M. McLaren, S. Lim, D. Yaron, and K.R. Koedinger. Can a polite intelligent
tutoring system lead to improved learning outside of the lab? In Proceedings
of the of the 13th International Conference on Artificial Intelligence in Ed-
ucation (AIED 2007), pages 443–440, Amsterdam, The Netherlands, 2007.
IOS Press.

382 Bibliography

Bruce M. McLaren, Sung-Joo Lim, and Kenneth R. Koedinger. When and
how often should worked examples be given to students? new results and
a summary of the current state of research. In V. M. Sloutsky B. C. Love,
K. McRae, editor, Proceedings of the 30th Annual Conference of the Cogni-
tive Science Sociaty, pages 2176–2181, Austin, TX, 2008. Cognitive Science
Society.

M. F. McTear. Modelling spoken dialogues with state transition diagrams:
Experiences with the cslu toolkit. In Proceedings of the 5th International
Conference on Spoken Language Processing, Sydney, Australia, 1998.

Chris Mellish. Modelling politeness in natural language generation. In Proceed-
ings of the International Natural Language Generation Conference, 2004.

Goerge A. Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. The Psychological Review, 63:81–97,
1956.

Marvin Minsky. A framework for representing knowledge. The Psychology of
Computer Vision, 1975.

Antonija Mitrovic and Stellan Ohlsson. Evaluation of a contraint-based tutor
for a database language. International Journal of Artificial Intelligence in
Education, 10:238–256, 1999.

Antonija Mitrovic. An intelligent sql tutor on the web. International Journal
of Artificial Intelligence in Education, 13(2-4):197–243, 2003.

Johanna Moore. What makes human explanations effective? In Proceedings
of the Fifteenth Annual Meeting of the Cognitive Science Society, Hillsdale,
NJ, 1993. Lawrence Erlbaum Associates.

Johanna et al Moore. The BE&E corpus, 2000. www.hcrc.ed.ac.uk/~jmoore/
tutoring/BEE_corpus.html.

C. Murray, K. VanLehn, and J. Mostow. Looking ahead to select tutorial ac-
tions: A decision-theoretic approach. International Journal of Artificial In-
telligence in Education, 14(3-4):235–278, 2004.

T. Murray. Eon: Authoring tools for content, instructional strategy, student
model, and interface design. In T. Murray S. Blessing and S. Ainsworth,
editors, Authoring Tools for Advanced Technology Learning Environments.
Kluwer Academic/Springer, Netherlands, 2003.

Susanne Narciss. Feedback strategies for interactive learning tasks. In J. M.
Spector, M. D. Merrill, J. J. G. van Merrinboer, and M. P. Driscoll, edi-
tors, Handbook of Research on Educational Communications and Technology,
pages 125–143. Mahwah, NJ: Lawrence Erlbaum, 2003. 3rd ed.

Bibliography 383

M.J. Nathan and K.R. Koedinger. Teachers’ and researchers’ beliefs of early
algebra development. Journal for Research in Mathematics Education,
31(2):168–190, 2000.

E. Owen and J. Sweller. What do students learn while solving mathematical
problems? Journal of Educational Psychology, 77:272–284, 1985.

Fred Paas, Alexander Renkl, and John Sweller. Cognitive load theory: Instruc-
tional implications of the interaction between information structures and
cognitive architecture. Instructional Science, 32(1-8), 2004.

Natalie K. Person and Arthur Graesser. Fourteen facts about human tutoring:
Food for thought for ITS developers. In aied2003, Supplementary Procced-
ings, pages 355–344, Sydney, 2003.

Natalie K. Person, Arthur C. Graesser, Derek Harter, Eric Mathews, and the
Tutoring Research Group. Dialog move generation and conversation man-
agement in AutoTutor. In Rosé and Freedman [Rosé and Freedman, 2000],
pages 45–51.

Massimo Poesio and David Traum. Towards an axiomatisation of dialogue acts.
In J. Hulstij and A. Nijholt, editors, Proceedings Twentieth Workshop on the
Formal Semantics and Pragmatics of Dialogues, pages 207–222, Enschede,
1998.

K. Porayska-Pomsta and C. Mellish. Modelling politeness in natural language
generation. In Srpinger, editor, Proceedings of the 3rd International Confer-
ence on Natural Language Generation, pages 141–150, 2004.

K. Porayska-Pomsta and C. Mellish. Determining tutorial remediation strate-
gies from a corpus of human-human tutoring dialogues. In Proceedings of the
11th European Workshop on Natural Language Generation (ENLG), pages
123–130, Schloss, Dagstuhl, 2007.

K. Porayska-Pomsta and C. Mellish H. Pain. Aspects of speech act categori-
sation: Towards generating teachers’ language. International Journal of
Artificial Intelligence in Education, 11, 2000.

K. Porayska-Pomsta and H. Pain. Providing cognitive and affective scaffold-
ing through teaching strategies. In Srpinger, editor, Proceedings of the 7th
International Conference on Intelligent Tutoring Systems (ITS2004), pages
77–86, 2004.

E. Price, Cotton, and R. Klatzky M. Priscoll. An inquiry into the spontaneous
transfer of problem solving skill. In Contemporary Educational Psychology,
volume 22 (4), pages 472–494, 1997.

S. Rajan, S.D. Craig, B. Gholson, N.K. Person, and A.C. Graesser. Autotu-
tor: Incorporating back-channel feedback and other human-like conversa-
tional behaviors into and intelligent tutoring system. International Journal
of Speech Technology, 4(2):117–126, 2001.

384 Bibliography

Genaro Rebolledo-Méndez. Modelling the motivational state of the learner in a
vytotskyan inspired its. In Proceedings of AIED2003 Conference of Artificial
Intelligence in Education, pages 95–100, Sydney, 2003.

Chris Reed and Floriana Grasso, editors. Special Issue on Computational Mod-
els of Natural Argument of the International Journal of Intelligent Systems
(IJIS). John Wiley & Sons, 2004.

K. Reiss, M. Moormann, Ch. Gro, and C. Ullrich. Formalized pedagogi-
cal strategies. Technical report, Universität of Augsburgh and Deutsches
Forschungszentrum für Künstliche Intelligenz (DFKI), 2005.

Charles Rich and Candace L. Sidner. Collagen: A collaboration manager for
software interface agents. User Modeling and User-Adapted Interaction,
8(3/4):315–350, 1998.

Jeff Rickel, Rajaram Ganeshan, Charles Rich, Candance L. Sidner, and Neal
Lesh. Task-oriented tutorial dialogue: Issues and agents. In Rosé and Freed-
man [Rosé and Freedman, 2000], pages 52–57.

Michael A. Ringenberg and Kurt VanLehn. Scaffolding problem solving with
annotated workrd-out examples to promote deep learning. In Tak-Wai Chan
Mitsuru Ikeda, Kevin D. Ashley, editor, Proceedings of the 8th International
Conference, ITS 2006, pages 625–634, Jhongli, Twaiwan, 2006. Springer.

Ian Robertson. Imitating problem solving: Why transfer of learning often fails
to occur. Instructional Science, 28:263–289, 2000.

Ido Roll, Vincent Aleven, Bruce M. McLaren, Eunjeong Ryu, Ryan Baker, and
Kenneth R. Koedinger. The help-tutor: Does metacognitive feedback im-
prove students’ help-seeking actions, skills and learning? In Srpinger Ver-
lang, editor, Proceedings of the 8th International Conference on Intelligent
Tutoring Systems (ITS2006), pages 360–369, Berlin, 2006.

I. Roll, V. Aleven, B. M. McLaren, , and K. R. Koedinger. Can help seeking
be tutored? searching for the secret sauce of metacongitive tutoring. In
International Conference on Artificial Intelligence in Education 2007, Los-
Angeles, CA, 2007.

Carolyn Penstein Rosé and Reva Freedman, editors. Building Dialog Systems
for Tutorial Applications—Papers from the AAAI Fall Symposium, North
Falmouth, MA, 2000. AAAI press.

C. P. Rosé, P. Jordan, M. Ringenberg, S. Siler, Kurt VanLehn, and Anders
Weinstein. Interactive conceptual tutoring in atlas-andes. In Proceedings of
AI in Educations 2001 Conference (AIED01), 2001.

Carolyn P. Rosé, Johanna D. Moore, Kurt VanLehn, and David Allbritton.
A comparative evaluation of socratic versus didactic tutoring. In Johanna
Moore and Keith Stenning, editors, Proceedings 23rd Annual Conference

Bibliography 385

of the Cognitive Science Society, pages 869–874, University of Edinburgh,
Scotland, UK, 2001.

Carolyn Perstein Rosé, Johanna D. Moore, Kurt VanLehn, and David Allbrit-
ton. A comparative evaluation of socratic versus didactic tutoring. In Pro-
ceedings 23rd Annual Conference of the Cognitive Science Society, Edin-
burgh, Scotland, UK, August 2001.

Michael R. Ross and Robert B. Fulton. Active learning strategies in the ana-
lytical chemistry classroom. Journal of Chemical Education, pages 141–143,
1994.

D.E. Rumelhart and A. Ortony. The representation of knowledge in memory.
In R.J. Spiro R.C. Anderson and W.E. Montauge, editors, Schooling and the
acquisition of knowledge. Lawrence Erlbaum Associates Inc., Hillsdale, NJ,
1977.

D.E. Rumelhart, P. Smolensky, J.L. McClellant, and G.E. Hinton. Schemata
and sequential thought processes in pdp models. In J.L. McClellan, D.E.
Rumelhart, and PDP Research Group, editors, Parallel distributed process-
ing: Psychological and biological models, volume 2. MIT Press, Cambridge,
MA, 1986.

D.E. Rumelhart. Schemata: The basic building blocks of cognition. In B. Bruce
R. Spiro and W. Brewer, editors, Theoretical issues in reading comprehen-
sion. Lawrence Erlbaum Associated Inc., Hillsdale, NJ, 1980.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education Inc., N.J., 2003. 2nd edition.

Roger C. Schank and Robert P. Abelson. Scripts, plans, goals and understand-
ing: an inquiry into human knowledge structures. Erlbaum, Hillsdale, N. J.,
1977.

Marvin Schiller, Christoph Benzmüller, and Ann Van de Veire. Judging gran-
ularity for automated mathematics teaching. In LPAR 2006 Short Papers
Proceedings, Phnom Pehn, Cambodia, 2006.

A. H. Schoenfeld and D. J. Herrmann. Problem perception and knowledge
structure in expert and novice mathematical problem solvers. Journal of
Experimental Psychology, 8:484–494, 1982.

Wolfgang Schreiner. Mathematics 2 (Formal Proving). Technical report, Uni-
versity of Applied Sciences at Hagenberg, 2004.

J. R. Searle. A taxonomy of illocutionary acts. Language, Mind and Knowledge,
Minnesota Studies in the Philosophy of Science, pages 344–369, 1975.

386 Bibliography

Nicole Shechtman and Leonard M. Horowitz. Media inequality in conversation:
how people behave differently when interacting with computers and people.
In Proceedings of the CHI 2003 conference on human factors in computing
systems, pages 5–10, Florida, USA, 2003.

Jörg Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad
Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek, Michael
Kohlhase, Andreas Meier, Erica Melis, Markus Moschner, Immanuel Nor-
mann, Martin Pollet, Volker Sorge, Carsten Ullrich, Claus-Peter Wirth, and
Jürgen Zimmer. Proof development with Ωmega. In Andrei Voronkov,
editor, Automated Deduction — CADE-18, number 2392 in LNAI, pages
144–149. Springer Verlag, 2002.

John Stamper. Automating the generation of student models for intelligent tu-
toring systems. In Proceedings of the of the 13th International Conference on
Artificial Intelligence in Education (AIED07), pages 701–702, Amsterdam,
The Netherlands, 2007. IOS Press.

W. Stanley, R. Mathews, R. Buss, and S. Kotler-Cope. Insight without aware-
ness: on the interaction of verbalization, instruction and practice in a sim-
ulated process control task. Quarterly Journal of Experimental Psychology,
41(A):553–577, 1989.

Albert L. Stevens and Allan Collins. The goal structure of a socratic tutor.
In Proceedings of the National ACM conference, pages 256–263, New York,
1977. Association for computing Machinery.

Albert Stevens, Allan Collins, and Sarah E. Goldin. Misconceptions in students’
understanding. In D. Sleeman and S. J. Brown, editors, Intelligent Tutoring
Systems, Computers and Poeple, pages 13–24. Academic Press, 1982.

Rosemary J. Stevenson. Training quality and learning goals: Towards effective
learning for all. Behavioral and Brain Sciences, 21(3):426–427, 1998.

Ron Sun, Todd Peterson, and Edward Merrill. Bottom-up skill learning in re-
active sequential tasks. In 18th Cognitive Science Society Conference, pages
684–690, Hillsdale, NJ, 1996.

Ron Sun, Edward Merrill, and Todd Peterson. From implicit skills to explicit kn-
woledge: A bottom-up model of skill learning. Cognitive Science, 25(2):203–
244, 2001.

John Sweller and Paul Chandler. Evidence for cognitive load theory. Cognition
and Instruction, 8(4):351–362, 1991.

J. Sweller and G.A. Cooper. The use of worked examples as a substitute for
problem solving in algebra. Cognition and Instruction, 2(1):59–89, 1985.

J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12:257–285, 1988.

Bibliography 387

J. Sweller. Cognitive technology: Some procedures for facilitating learning and
problem solving in mathematics and science. Journal of Educational Psy-
chology, 81:457–466, 1989.

The Omega group. The nested mathematical theories implemented in Ωmega,
url. http://www.ags.uni-sb.de/ mbase/content/omega/.

J. Trafton and B. Reiser. The contributions of studying examples and solving
problems to skill acquisition, 1993.

D. R. Traum and J. F. Allen. Discourse obligations in dialogue processing.
In Proceedings 32nd Annual meeting of the Association for Computational
Linguistics (ICSLP92), pages 1–8, 1994.

David R. Traum. Speech acts for dialogue agents. Foundations of Rational
Agency, pages 169–201, 1999.

Dimitra Tsovaltzi and Armin Fiedler. An approach to facilitating reflection in a
mathematics tutoring system. In Proceedings of AIED Workshop on Learner
Modelling for Reflection, pages 278–287, Sydney, Australia, 2003.

Dimitra Tsovaltzi and Armin Fiedler. Enhancement and use of a mathematical
ontology in a tutorial dialogue system. In Proceedings of the IJCAI Work-
shop on Knowledge and Reasoning in Practical Dialogue Systems, pages 19–
28, Acapulco, Mexico, 2003.

Dimitra Tsovaltzi and Armin Fiedler. Human-adaptive generation of natural
language hints. In International Joint Conference on Artificial Intelligence
IJCAI05—5th Workshop on Computational Models of Natural Argument,
2005.

Dimitra Tsovaltzi and Elena Karagjosova. A dialogue move taxonomy for tuto-
rial dialogues. In Michael Strube and Candy Sidner, editors, Proceedings of
5th SIGdial Workshop on Discourse and Dialogue, Boston, USA, 2004.

Dimitra Tsovaltzi and Colin Matheson. Formalising hinting in tutorial dia-
logues. In Proceedings of EDILOG: 6th Workshop on the Semantics and
Pragmatics of Dialogue, pages 185–192, Edinburgh, Scotland, UK, 2002.

Dimitra Tsovaltzi, Armin Fiedler, and Helmut Horacek. A multi-dimensional
taxonomy for automating hinting. In James C. Lester, Rosa Maria Vicari,
and Fábio Paraguaçu, editors, Intelligent Tutoring Systems — 7th Inter-
national Conference (ITS 2004), number 3220 in LNCS, pages 772–781.
Springer, 2004.

Dimitra Tsovaltzi, Helmut Horacek, and Armin Fiedler. Building hint spec-
ifications in a NL tutorial system for mathematics. In Proceedings of the
16th International Florida AI Research Society Conference (FLAIRS-04),
Florida, USA, 2004.

388 Bibliography

Dimitra Tsovaltzi. Formalising hinting in tutorial dialogues. Master’s thesis,
The University of Edinburgh, Scotland, UK, 2001.

C. Ullrich, E. Andres, P. Krger, E. Melis, and M. Moormann. Tutorial compo-
nent. Technical report, Deutsches Forschungszentrum für Künstliche Intel-
ligenz (DFKI), 2006.

K. VanLehn, R. M. Jones, and M. T. H. Chi. A model of the self-explanation
effect. Journal of the Learning Sciences, 2(1):1–60, 1992.

Kurt VanLehn, Dumiszewe Bhembe, Min Chi, Colling Lynch, Kay Schulze,
Robert Shelby, Linwood Taylor, Don Treacy, Andres Weinstein, and Mary
Wintersgill. Implicit versus explicit learning of strategies in a non-procedural
cognitive skill. In ITS2004 [ITS2004, 2004], pages 521–529.

Kurt VanLehn, Collin Lynch, Kay Schulze, Joel A. Shapiro, Robert Schelby,
Linwood Taylor, Don Treacy, Anders Weinstein, and Mary Wintersgill. The
andes physics tutoring system: Lessons learned. International Journal of
Artificial Intelligence in Education, pages 147–204, 2005.

Kurt VanLehn. Cognitive skill acquisition. Annual Review of Psychology,
47:513–539, 1996.

Kurt VanLehn. The behaviour of tutoring systems. International Journal of
Artificial Intelligence in Education, 16(3):227–265, 2006.

B. Quoc Vo, C. Benzmüller, and S. Autexier. Assertion application in theorem
proving and proof planning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003. poster
description).

L. S. Vygotsky. Mind in Society. Harvard University Press, Cambridge, M.A.,
1978.

Marilyn Walker and Rebecca Passonneau. Date: A dialogue act tagging scheme
for evaluation of spoken dialogue systems, URL. http://www.citeseer.

nj.nec.com/walker01date.html.

Hiroyoshi Watanabe, Kumiko Takai, Masayuki Arai, and Shigeo Takei. Case-
based adviser for near-miss programs. In Proceedings of AIED2003 Confer-
ence of Artificial Intelligence in Education, pages 149–156, Sydney, 2003.

Ian Watson and Farhi Marir. Case-based reasoning: A review. The Knowledge
Engineering Review, 9, 1994.

B. Weiner. Human Motivation: metaphor, theories, and research. Sage Publi-
cations Inc., 1992.

Sharon Alayne Widmayer. Schema theory: An introduction, URL.
http://chd.gse.gmu.edu/immersion/knowledgebase.

Bibliography 389

Peter Wiemer-Hastings. The design and architecture of research methods tu-
tor, a second generation dialog-based tutor. In Proceedings of Dialog-based
Intelligent Tutoring Systems: State of the Art and New Research Directions.
Held in conjunction with ITS04, the Seventh International Conference on
Intelligent Tutoring Systems, pages 55–63, Maceiö, Brasil, 2004.

G.C. Williams and E.L. Deci. Internalization of biopsychosocial values by med-
ical students: A test of self-determination theory. Journal of Personality
and Social Psychology, 70:767–779, 1996.

G.C. Williams, Z.R. Freedman, and E.L. Deci. Supporting autonomy to moti-
vate glucose control in patients with diabetes. Diabetes Care, 21:1644–1651,
1998.

D. Willingham, M. Nissen, and P. Bullemer. On the development of procedural
knowledge. Journal of Experimental Psychology, 15:1047–1060, 1989.

Brent Wilson and Peggy Cole. A review of cognitive teaching models. Educa-
tional Technology Research and Development, 39 (4):46–64, 1991.

Lubwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge Classics, Lon-
don, 1975.

Magdalena Wolska, Bao Quoc Vo, Dimitra Tsovaltzi, Ivana Kruijff-Korbayová,
Elena Karagjosova, Helmut Horacek, Malte Gabsdil, Armin Fiedler, and
Christoph Benzmüller. An annotated corpus of tutorial dialogs on math-
ematical theorem proving. In Proceedings of International Conference on
Language Resources and Evaluation (LREC 2004), pages 1007–1010, Lis-
bon, Portugal, 2004. ELDA.

David Wood and David Middleton. A study of assisted problem solving. British
Journal of Psychology, 66:181–191, 1975.

D. J. Wood, J. S. Bruner, and G. Ross. The role of tutoring in problem solving.
Journal of Child Psychology and Psychiatry, 17:89–100, 1976.

H. Wu. The mathematician and the mathematics education reform. In Notices
of the American Mathematical Society, December 1996.

H. Wu. What is so difficult about the preparation of mathematics teachers. In
National Summit on the Mathematical Education of Teachers: Meeting the
Demand for High Quality Mathematics Education in America, November
2001.

Zhou Yujian, Reva Freedman, Michael Glass, Joel A. Michael, Allen A. Rovick,
and Martha W. Evens. What should the tutor do when the student can-
not answer a question? In AAAI Press, editor, Proceedings of the Twelfth
International Florida AI Research Society Conference (FLAIRS-99), pages
187–191, Orlando, FL, 1999.

390 Bibliography

Juan-Diego Zapata-Rivera and Jim E. Greer. Analysing student reflection in
The Learning Game. In Proceedings of AIED Workshop on Learner Mod-
elling for Reflection, pages 288–297, Sydney, Australia, 2003.

Yujian Zhou, Reva Freedman, Michael Glass, Joel A. Michael, Allen A. Rovick,
and Martha W.. Evens. Delivering hints in a dialogue-based intelligent tutor-
ing system. In AAAI Press and MIT Press, editors, Proceedings Sixteenth
National Conference on Artificial Intelligence (AAAI-99), pages 128–134,
Orlando FL, 1999. Published in one volume with Eleventh Conference on
Innovative Applications of Artificial Intelligence (IAAI-99).

Claus Zinn, Johanna D. Moore, Mark G. Core, Sebastian Varges, and Kaśka
Porayska-Pomsta. The be&e tutorial learning environment (beetle). In Pro-
ceedings of Diabruck, the 7th Workshop on the Semantics and Pragmatics
of Dialogue, Saarbrücken, Germany, 2003.

Claus Zinn. A 3-tier planning architecture for managing tutorial dialogue. In
S. A. Cerri, G. Gouardéres, and F. Paraguaçu, editors, Proceedings of Intel-
ligent Tutoring Systems, Sixth International Conference, Biarritz, France,
2002.

391

Index

Relevant Concept, 127
Subordinate-Concept, 128

Motivation, 109
satisfaction, 96
Self-sufficiency, 109

Abstract Method:, 120
accurate, 211
Achievement, 96
active, 161
anchoring points, 63, 118
antithesis, 313
approval, 97
Attention, 95
Autonomy, 97

backward, 100
backwards, 130
blueprint, 122

Case-based reasoning, 89
Class subtasks, 224
class subtasks, 66, 226
cognitive load theory, 90
complement, 312
complete, 211
conclusion, 130
confidence, 96
Connect Relevant-Subordinate-Concept:,

120
converses, 314

Distant transfer, 109, 285
domain knowledge, 159
Domain Object:, 119
Domain Technique:, 120
domain-contribution, 211

dominant, 315
dual, 314

Elaborate Domain Object, 120
elements, 311
elicitation status, 159
ETM, 206
expected answer, 210
expected proof step, 52, 64, 113
expected sub-answer, 210
explanation-based learning, 88
expression, 88
extracted, 315

forward technique, 91
forward-reasoning technique, 100
forwards, 130

generalisation, 314
Global Motivation and Cognitive Load

Aggregate, 219
GMCL, 218

hint, 158
hinting session, 203
Hinting Session Status, 54, 113, 203,

204
Hints, 9
hypertaxon, 314
hypotaxis, 314
hypotaxon, 314

Implicit learning, 109, 285
in, 316
Inference-Rule Application:, 120
inferential role, 159
inhabitants, 309
inserted, 315

392 INDEX

instance, 118
Instructional points, 53
instructional points, 118
Instructional theory, 98
intentions, 146
intersection, 311
inverse, 316

Learned helplessness, 96
learning sciences, 72
Lesson material, 107
LMCL, 219

MCL, 217
means-end technique, 100
meta-reasoning, 80
Meta-reasoning steps, 162
monitored learning, 99

Near transfer, 109, 285
non-goal-specific, 91

obligations, 146
occurrence state, 131

part, 210
passive, 161
Performable steps, 162
powerset, 311
Premise-Conclusion:, 120
premises, 130
primitive, 314
problem referential perspective, 159
problem solving session, 108
Proof presentation, 108
proof status, 217
Proof step matching, 64, 113
proof step matching, 52
Proof steps, 122
proof task, 151
proof-step matching, 210

Relevance, 96
relevant, 315
Relevant-Concept Meta-Reasoning:, 119
Rule of Inference, 130
Rule of Inference:, 120

schema, 53, 163, 212
Schema theory, 88
Self-sufficiency, 285
sets, 309
Socratic, 7, 97
source, 314
specialisation, 314
Specific Method:, 120
split-attention effect, 91
Starting Point:, 120
Step Meta-Reasoning:, 120
Strategies, 225
strategies, 223
strict, 311
subdialogue, 189
subordinate, 315
Subordinate-Concept Meta-Reasoning,

119
subordination, 121
subordination relation, 160
subpart, 211
subset, 311
Substitution:, 120
Substrategies, 223
subtask, 192
superset, 311

target, 314
TGS, 208
Tutoring history, 207
tutoring situation, 204
tutoring task, 151

union, 311
user model, 203

Worked examples, 90
working memory, 90

