
U
N

IV
E R SITA

S

S
A

R A V I E N S
I S

Dissertation

Zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

ILP-based Path Analysis on Abstract
Pipeline State Graphs

von Diplom-Informatiker

Ingmar Jendrik Stein
aus Saarbrücken

Saarbrücken 2010

Tag des Kolloquiums: 28. Mai 2010
Dekan: Prof. Dr. Joachim Weickert
Vorsitzender: Prof. Dr. Raimund Seidel
Gutachter: Prof. Dr. Dr. h. c. mult. Reinhard Wilhelm

Prof. Dr. Sebastian Hack
Akademischer Mitarbeiter: Dr.-Ing. Philipp Lucas

Impressum
Copyright © 2010 by Ingmar Stein
Herstellung und Verlag: epubli GmbH, Berlin, http://www.epubli.de
Printed in Germany
ISBN: 978-3-86931-538-6

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.d-nb.de abrufbar.

http://www.epubli.de
http://dnb.d-nb.de

Abstract

This thesis presents a novel approach to path analysis which is an integral

part of the WCET analysis. Up to now, there have been two different methods

for this step, each with its respective advantages and disadvantages. The

new ILP-based path analysis on abstract pipeline state graphs supersedes

the existing ones and combines the positive aspects of both but does not

introduce new limitations. It provides high precision and the flexibility of

user-provided annotations at the same time while opening up new possibilities

for optimizations such as a new kind of persistence analysis.

iii

Zusammenfassung

Diese Arbeit präsentiert einen innovativen Ansatz für die Pfadanalyse, ein

integraler Bestandteil der WCET-Analyse. Bisher gab es zwei verschiedene

Methoden für diesen Schritt, jede mit ihren spezifischen Vor- und Nachteilen.

Die neue ILP-basierte Pfadanalyse auf abstrakten Pipelinezustandsgraphen

ersetzt die beiden existierenden und kombiniert die positiven Aspekte, ohne

neue Beschränkungen einzuführen. Sie bietet sowohl eine hohe Präzision

als auch die Flexibilität benutzerbestimmter Annotationen. Darüber hinaus

bietet sie neue Optimierungsmöglichkeiten wie zum Beispiel eine neuartige

Persistenzanalyse.

v

Acknowledgements

First of all, I very much thank Prof. Dr. Dr. h. c. mult. Reinhard Wilhelm for the

opportunity to write my thesis about this challenging and interesting topic.

He provided me with a lot of freedom for approaching my goals.

Thanks go to Prof. Dr. Sebastian Hack for his willingness to examine this work.

I am also indebted to Dr.-Ing. Philipp Lucas and Dr. Reinhold Heckmann for

proof-reading parts of this work and giving valuable hints. Dr.-Ing. Florian

Martin had the initial vision of the topic and had good ideas for future en-

hancements and improvements. Furthermore, I thank all colleagues at AbsInt

Angewandte Informatik GmbH for a very pleasant working atmosphere.

Last but not least, I would like to thank my family for their support during

the time of my research.

vii

Contents

Abstract – iii

Zusammenfassung – v

Acknowledgements – vii

1 Introduction – 1

2 Overview – 5

2.1 The aiT Toolchain – 5

2.1.1 Control-flow Reconstruction – 6

2.1.2 Loop Analysis – 8

2.1.3 Value Analysis – 8

2.1.4 Cache/Pipeline Analysis – 8

2.1.5 Path Analysis – 10

2.2 Calling Contexts – 13

3 Theoretical Background – 15

3.1 Lattice Theory – 15

3.2 Fixed Point Iteration – 18

3.3 Galois Theory – 20

3.4 Abstract Interpretation – 21

3.5 Integer Linear Programming – 24

3.5.1 Linear Programs – 24

3.5.2 Simplex Algorithm – 26

Contents

3.5.3 Integer Linear Programs – 28

3.5.4 Branch and Bound Algorithm – 28

4 ILP-based Path Analysis – 31

4.1 ILP – 31

4.1.1 Objective Function – 31

4.1.2 Program Start Constraints – 33

4.1.3 Structural Constraints – 33

4.1.4 Loop Constraints – 34

4.1.5 Time-based Loop Constraints – 36

4.1.6 User Added Constraints – 37

4.2 Implementation – 40

5 Path Analysis on Abstract Pipeline State Graphs – 41

5.1 Prediction Files – 43

5.2 Implementation – 47

6 ILP-based Path Analysis on Abstract Pipeline State Graphs – 49

6.1 Graph Compression – 50

6.1.1 Chain Compression – 51

6.1.2 Basic Block Compression – 54

6.1.3 Infeasible Nodes – 57

6.1.4 ε-transition Elimination – 58

6.1.5 Buddy Nodes – 58

6.1.6 Chain Combination – 62

6.1.7 Fixed Point – 65

6.1.8 Lossy Compression – 66

6.1.9 Inter-block Compression – 66

6.2 Loop and User Constraints – 67

6.3 Predictability – 68

7 Cache Persistence Analysis – 69

7.1 Cache Analysis – 69

7.1.1 Must Analysis – 71

7.1.2 May Analysis – 71

x

Contents

7.1.3 Persistence Analysis – 72

7.2 Precise Use of Cache Persistence Analysis – 74

7.3 Automatic Persistence Scopes – 75

7.4 Persistence Constraints – 75

7.5 Generalization – 76

8 Implementation and Evaluation – 79

8.1 Implementation – 79

8.1.1 Platforms – 80

8.1.2 Prediction File Library – 81

8.1.3 ILP Solvers – 81

8.1.4 ILP Solver Optimization – 84

8.1.5 Visualization – 85

8.1.6 Memory Usage – 86

8.2 Evaluation – 88

8.2.1 Precision – 88

8.2.2 Graph Compression – 89

8.2.3 ILP Complexity – 93

8.2.4 ILP Solver Comparison – 94

8.2.5 Cache Persistence Analysis – 95

8.2.6 Features – 96

9 Outlook – 97

9.1 SQL-based Node Storage – 97

9.2 More Architectures – 98

9.3 More Constraints – 99

9.4 Parallelization – 99

9.5 Detecting Timing Anomalies – 100

9.6 Best-Case Execution Time – 100

10 Summary – 101

A Examples – 103

A.1 CRL2 File – 103

A.2 Prediction File – 109

xi

Contents

A.3 ERG File – 111

A.4 GDL File – 112

A.5 Abstract Pipeline State – 115

List of Tables – 119

List of Figures – 121

Listings – 123

List of Algorithms – 125

Bibliography – 127

Index – 135

xii

Chapter

1 Introduction

Today, microprocessors are pervasive not only in personal computers, but

also in cars, planes and entertainment electronics. The information processing

systems contained therein are called embedded systems. The programming

of these systems differs significantly from ordinary application development.

For example, many embedded systems have to fulfill real-time requirements,

i. e. programs must guarantee to finish within a given timespan (deadline).

If embedded systems with real-time requirements fulfill tasks relevant to

security, they are subject to hard real-time requirements, because it may have

catastrophic consequences if the maximum response time is exceeded. For

example, the electronic control unit of a thrust-reverser has to comply with

hard real-time, because a failure can lead to a plane crash.

To make sure that such systems work correctly, it is essential to find upper

bounds for the execution time (worst-case execution time, WCET) of programs.

In the majority of cases, it is not sufficient to only measure the runtime of a

program with a given input because it is usually impossible to prove that this

input leads to the maximum execution time (cf. figure 1.1). Similarly, it is often

not feasible to measure the program with all possible inputs because the set

of inputs may be prohibitively large. Therefore, an analysis is needed which

determines the maximum runtime of a program statically, i. e. an analysis

which calculates an upper bound for the runtime without actually running

the program with any particular input. However, modern processors employ

1

1. Introduction

Execution time

P
ro

b
ab

il
it

y

av
er

ag
e

ex
ec

u
ti

o
n

 t
im

e

h
ig

h
es

t
m

ea
su

re
d

 t
im

e

w
o
rs

t-
ca

se
 e

xe
cu

ti
o
n

 t
im

e

W
C

E
T

 p
re

d
ic

ti
o

n

overestimation

Figure 1.1.: Typical probability of observed execution times

different techniques to enhance performance that make such an analysis

difficult: caches, pipelines and branch prediction. The state-of-the-art of

solving this problem is a combination of abstract interpretation and integer

linear programming (ILP) as it is used in the aiT component of the a3 analysis

framework by AbsInt Angewandte Informatik GmbH.

The new tool presented in this thesis enhances aiT by providing a better path

analysis which replaces the existing one. It improves the precision of the worst-

case execution time estimation, i. e. it reduces the amount of overestimation

by up to 20 %. At the same time, it offers a high level of versatility and

opens up new opportunities for further optimizations of the WCET prediction

precision.

This thesis is structured as follows: the next chapter 2 presents an overview

over this work and the analysis framework it is integrated into, followed by

chapter 3 with the mathematical fundamentals which constitute the theoretical

foundation for the following chapters. The next two chapters 4 and 5 describe

the existing path analysis methods—the classical ILP-based path analysis and

2

its counterpart which works on abstract pipeline state graphs. A detailed

description of the new analysis which improves upon the former can be found

in chapter 6. Chapter 7 introduces a method to improve the WCET precision by

using the results of a cache persistence analysis within the new path analysis.

Implementation details, an evaluation and test results are contained in chapter

8. Chapter 9 gives an outlook on possible future work and extensions. Finally,

chapter 10 summarizes the findings of this work. Appendix A includes some

selected examples.

3

Chapter

2 Overview

The focus of this work is a novel approach to path analysis, which is an

integral part of the WCET analysis. So far, there existed two different methods

for this step, each with its respective advantages and disadvantages. The

new approach tries to supersede the existing ones and combines the positive

aspects of both but does not introduce new limitations.

2.1. The aiT Toolchain

The new path analysis method is a part of aiT , a modular WCET analysis

framework. Figure 2.1 on page 10 depicts the components it is comprised of

and shows how they interact. The individual framework modules as described

in [Ferdinand and Heckmann, 2008] are:

• Control-flow reconstruction decodes, i. e. identifies instructions and

reconstructs the control-flow graph (CFG) from the binary program.

• Loop analysis determines upper bounds for the number of iterations of

loops.

• Value analysis computes value ranges for registers and memory cells

and address ranges for instructions accessing memory.

5

2. Overview

• Cache/pipeline analysis classifies memory references as cache misses

or cache hits and predicts the behavior of the program on the processor

pipeline.

• ILP generator transforms the basic block execution times and the control

flow into an integer linear program (ILP).

• ILP solver solves the ILP.

• Evaluation computes the worst-case execution path of the input program

from the optimal ILP solution and computes the WCET contributions of

the individual routines.

• Visualization generates a graph in the graph description language (GDL)

to visualize the WCET path.

2.1.1. Control-flow Reconstruction

The result of this phase is a control flow graph stored in a CRL2 file. The CRL2

format is used as the data exchange format of the different phases.

CRL2 stands for Control Flow Representation Language Version 2. This lan-

guage was developed by the Transferbereich 14 and describes the control

flow graph of a program in a textual form. Design goals were efficient sup-

port of analyses and optimizations. The underlying structure is organized

hierarchically: a graph consists of operations, instructions, basic blocks (cf.

definition 2.1.2) and routines where the former are always contained within

the latter. Example A.1.1 shows how a decoded binary program looks like

when it is stored in CRL2 format.

Definition 2.1.1 (Control Flow Graph (CFG)). A control flow graph is a four-

tuple K = (V , E, s, x) with a set of nodes V , a set of directed edges E ⊆ V × V ,

6

2.1. The aiT Toolchain

a unique start node s and a unique end node x. The start node s fulfills:

∀u ∈ V : (u, s) ∉ E

The end node x fulfills:

∀u ∈ V : (x,u) ∉ E

Furthermore, a function F : V → P must exist to map nodes to program

fragments. P designates the set of program fragments, e. g. given by the

syntax tree representation.

Remark. The requirement for unique start and end nodes is no restriction,

because each graph can simply be extended by two additional nodes. The

construction of control flow graphs is described at length in [Allen, 1970].

Definition 2.1.2 (Basic Block). Let K = (V , E, s, x) be a control flow graph. A

sequence of nodes (n1, . . . , nk) forms a basic block, if ∀i ∈ {1, . . . , k− 1}:

ni is the only predecessor of ni+1

∧ ni+1 is the only successor of ni

Definition 2.1.3 (Maximal Basic Block). A basic block is called maximal if it can-

not be extended by including adjacent nodes without violating definition 2.1.2.

In the following, basic blocks are always assumed to be maximal.

Remark. A basic block has a single entry point and a single exit point. The

start of a basic block may be the target of more than one branch instruction.

The end of a basic block is either a branch instruction or the instruction

preceding the destination of a branch instruction.

7

2. Overview

2.1.2. Loop Analysis

WCET analysis requires that upper bounds for the iteration numbers of all

loops be known. aiT tries to determine the number of loop iterations by loop

bound analysis. The loop bound analysis consists of two parts: a pattern

matcher which recognizes loop patterns as generated by the most commonly

used compilers and a data flow analysis which interprets the machine in-

structions in loop bodies to derive loop bounds [Cullmann, 2006]. Bounds

for the iteration numbers of the remaining loops must be provided as user

annotations.

2.1.3. Value Analysis

Value analysis tries to determine the values in the processor memory for every

program point and execution context [Sicks, 1997, Fritz, 2001]. Its results are

used to determine possible addresses of indirect memory accesses—important

for cache analysis. The precision of the value analysis is usually so high that

only a few indirect accesses cannot be determined exactly. Address ranges for

these accesses may be provided by user annotations.

2.1.4. Cache/Pipeline Analysis

Pipeline analysis models the pipeline behavior to determine execution times

for basic blocks of instructions. It takes into account the current pipeline

state(s), in particular resource occupancies, contents of prefetch queues,

grouping of instructions, and includes a cache analysis for the classification

of memory references. The result is an execution time for each basic block in

each distinguished execution context.

The cache/pipeline analysis uses abstract interpretation—a concept that will

be described in greater detail in section 3.4. Basically, the cache/pipeline

8

2.1. The aiT Toolchain

analysis models the behavior of the pipeline of a specific processor by using

abstract descriptions for the concrete pipeline states [Thesing, 2004]. The

abstract pipeline states are used to solve a data flow problem on the input

program and the result is an abstract pipeline state graph.

Definition 2.1.4 (Abstract Pipeline State Graph). An abstract pipeline state

graph is a weighted graph G = (V , E,C), C : E → N, where V consists of the

abstract pipeline states for the given input program. An edge weight C((u,v))
describes the costs in CPU cycles associated with the transition from the

abstract state u to the abstract state v .

What exactly is abstracted in an abstract pipeline state highly depends on the

processor architecture. Usually, the model includes abstractions for internal

buffers, caches, jitter and queues. As a reference, the textual representation of

an abstract pipeline state for the Motorola MPC755 is given in example A.5.1.

The pipeline analysis splits an abstract pipeline state into two or more suc-

cessor states when it encounters imprecise information. This happens for

instance when a memory access cannot be classified as cache hit or cache miss.

How many successor states are generated depends on the WCET computation

mode:

Global worst-case: all successor states are created and the pipeline analysis

follows their further evolution.

Local worst-case: the pipeline immediately decides which successor likely

leads to the worst-case execution time and follows the evolution of this

single state. Splits may still occur; they are triggered by situations in

which it is not clear which is the locally worst successor state.

The local worst-case computation mode leads to a massive reduction of the

runtime of the pipeline analysis, but there is a risk that the successor state

that seems to be worst from a local point of view does not lead to the global

worst-case execution time.

9

2. Overview

2.1.5. Path Analysis

Using the results of the micro-architecture analyses, path analysis determines

a safe estimate of the WCET by computing a worst-case path through the

program.

Path Analysis with ILP Generator

The first variant of the path analysis models the program’s control flow by an

integer linear program so that the optimal solution to the objective function

is the predicted worst-case execution time for the input program. Variables in

the integer linear program correspond to basic blocks so that execution and

traversal counts for every basic block and edge can be computed.

Control-flow
reconstruction

Value analysis

Loop analysis ILP generator

ILP solver

EvaluationCache/pipeline
analysis

Executable program

machine code

CRL

CRL

LP

User annotationsAIS

Visualization

CRL

CRL

Static Analyses Path analysis

Figure 2.1.: aiT toolchain with ILP generator

10

2.1. The aiT Toolchain

Path Analysis on Abstract Pipeline State Graphs

A drawback of the path analysis with an ILP generator is that it uses the

worst-case path through the pipeline states for each basic block. It therefore

combines execution traces which might not represent an actual execution of

the program. The resulting over-estimation can be eliminated by computing

the worst-case path right from the pipeline state graph.

For this method, the toolchain is changed as follows: the ILP generator and

ILP solver components are replaced by a single tool called predan which

implements the path analysis using the abstract pipeline state graph stored in

the so-called prediction file (cf. figure 2.2).

Control-flow
reconstruction

Value analysis

Loop analysis predan

EvaluationCache/pipeline
analysis

Executable program

machine code

CRL

prediction file

User annotationsAIS

Visualization

CRL

CRL

Static Analyses Path analysis

Figure 2.2.: aiT toolchain with prediction file

11

2. Overview

ILP-based Path Analysis on Abstract Pipeline State Graphs

Both path analysis variants above have some limitations: the ILP-based analysis

suffers from inherent imprecisions and the path analysis on abstract pipeline

state graphs does not handle loops and user annotations.

The variant that is introduced in this work overcomes these limitations by

using the abstract pipeline state graph to generate an ILP which is able to

incorporate loop constraints and user annotations while still providing the

highest level of precision.

The toolchain is modified from the original ILP-based method as follows:

the ILP generator is replaced by the new implementation which reads the

prediction file in addition to the control flow graph and the evaluation step is

adapted to the changed semantics of the ILP variables (cf. figure 2.3).

Control-flow
reconstruction

Value analysis

Loop analysis predpathan

ILP solver

EvaluationCache/pipeline
analysis

Executable program

machine code

CRL

CRL + prediction file

LP

User annotationsAIS

Visualization

CRL

CRL

Static Analyses Path analysis

Figure 2.3.: aiT toolchain with ILP solver and prediction file

12

2.2. Calling Contexts

2.2. Calling Contexts

In an over-simplified view, a static program analysis computes some abstract

information for every program point p. The abstract information for p has

to be a correct approximation of the concrete program state at p whenever

control reaches p (no matter what happened before). Thus, the abstract

information for a program point p in a routine R must approximate all

program states at p in all calls of R.

To be more concrete, consider a value analysis that computes an interval of

possible values for every register r . The interval for r is a correct approxima-

tion of a concrete program state if it contains the value of r in this program

state. Suppose now a routine R is called twice, once with parameter 0 and once

with parameter 3. Then the best abstract information that can be obtained

for the parameter register is the interval [0,3], which indicates that the value

of the register might be 0, or 1, or 2, or 3. The precision of the analysis can

be improved considerably if the analysis does not compute a single abstract

value for each program point in R, but two different ones, one for each call of

R. In the example considered above, these are the intervals [0,0] for the call

with parameter 0 and [3,3] for the call with parameter 3. The values 1 and 2

are thus excluded successfully.

To be more general again, the analyses compute an abstract information for

every pair of a program point p and a possible calling context of p. All

program points in a given routine R have the same set of calling contexts.

Each calling context indicates a particular way of calling R.

13

Chapter

3 Theoretical Background

The path analysis builds upon the results of diverse data flow analyses, one of

which is the combined cache/pipeline analysis. A data flow analysis is an ap-

plication of abstract interpretation on control flow graphs. Thus, this chapter

gives an overview over the mathematical foundations of the concepts used in

abstract interpretation. For that purpose, it introduces the fundamental terms

of lattice theory, Galois theory and fixed point iteration.

The two ILP-based path analysis methods use integer linear programming as a

means to solve the path analysis problem. Subsequently to the foundations of

abstract interpretation, this chapter describes the structure of linear programs

and the NP-hard class of integer linear programs and points out some of

their important properties. It also outlines algorithms to solve linear and

integer linear programs.

3.1. Lattice Theory

Definition 3.1.1 (Partial and Total Order). Let M be a set. A binary relation

⊑ ⊆ M ×M is called partial order of M , if:

1. Reflexivity:

∀x ∈ M : x ⊑ x

15

3. Theoretical Background

2. Transitivity:

∀x,y,z ∈ M : x ⊑ y ∧y ⊑ z =⇒ x ⊑ z

3. Antisymmetry:

∀x,y ∈ M : x ⊑ y ∧y ⊑ x =⇒ x = y

The relation is called total order of M , if additionally:

∀x,y ∈ M : x ⊑ y ∨y ⊑ x

A set M together with a partial order ⊑ is called a partially ordered set (M,⊑).

The relation ⊑ has a pointwise extension for functions:

f ⊑ g ⇐⇒ ∀x : f(x) ⊑ g(x)

Definition 3.1.2 (Upper/Lower Bound). Let (M,⊑) be a partially ordered set

and N ⊆ M . An element x ∈ M is called an upper bound of N , if:

∀y ∈ N : y ⊑ x

x is called least upper bound of N (
⊔
N), if:

1. x is an upper bound of N

2. x ⊑ z holds for all upper bounds z of N

⊔
is called union. The least upper bound of two elements x and y is denoted

by x ⊔y .

16

3.1. Lattice Theory

The lower respectively greatest lower bound of N (
d
N) are defined analo-

gously.
d

is then called intersection.

Definition 3.1.3 (ω-Chain). Let (M,⊑) be a partially ordered set. An ω-chain1

of a partial order is an ascending chain of elements x0, x1, x2, . . . of M with:

x0 ⊑ x1 ⊑ x2 ⊑ · · · ⊑ xi ⊑ · · ·

If an ω-chain additionally fulfills:

x0 ä x1 ä x2 ä · · · ä xi ä · · ·

then it is called a strictly ascending ω-chain. Here, x ä y is defined by

x ä y ⇐⇒ x ⊑ y ∧ x ≠ y .

Definition 3.1.4 (Complete Partial Order). Let (M,⊑) be a partially ordered set.

(M,⊑) is called a complete partial order (CPO) if there exists a least upper

bound of the set {xi | i ∈ω} for eachω-chain x0 ⊑ x1 ⊑ x2 ⊑ · · · ⊑ xi ⊑ · · ·
with xi ∈ M .

Definition 3.1.5 (Ascending Chain Condition). A partially ordered set (M,⊑)
fulfills the ascending chain condition, if each ω-chain is finite, i. e. has only

finitely many different elements.

Remark. A partially ordered set with ascending chain condition is a complete

partially ordered set.

Definition 3.1.6 (Complete Lattice). A partially ordered set (M,⊑) is called

complete lattice, if each subset of M has a least upper bound and a greatest

lower bound. A lattice is written as a tuple (M,⊥,⊤,⊑,⊔,⊓) with ⊥ =
d
M

and ⊤ =
⊔
M .

Remark. A complete lattice is especially a complete partially ordered set.

1The ordered set (N,≤) is denoted by ω.

17

3. Theoretical Background

Definition 3.1.7 (Dual Lattice). Let (M,⊥,⊤,⊑,⊔,⊓) be a complete lattice. The

dual lattice is given by swapping the following symbols: ⊑ by ⊒, ⊔ by ⊓ and ⊥
by ⊤.

Definition 3.1.8 (Monotonic Function). A function f : A → B of two partially

ordered sets (A,⊑A) and (B,⊑B) is called monotonic, if:

∀x,y ∈ A : x ⊑A y =⇒ f(x) ⊑B f(y)

Definition 3.1.9 (Distributive Function). A function f : A→ B of two complete

lattices (A,⊑A) and (B,⊑B) is called distributive, if:

∀x,y ∈ A : f(x)⊔ f(y) = f(x ⊔y)

Remark. A distributive function is always monotonic.

Definition 3.1.10 (Continuous Function). A function f : A→ B of two complete

partially ordered sets (A,⊑A) and (B,⊑B) is called continuous, iff for all ω-

chains x0 ⊑A x1 ⊑A x2 ⊑A · · · ⊑A xi ⊑ · · · in A holds:

⊔
i∈ω

f (xi) = f
⊔
i∈ω

xi

Remark. A continuous function is always monotonic.

3.2. Fixed Point Iteration

In abstract interpretation, recursive systems of equations need to be solved,

where the values to be defined also appear on the right side of the equation.

For example, this is the case when using abstract interpretation to analyze the

behavior of programs that contain loops or recursive functions.

18

3.2. Fixed Point Iteration

A popular example for such a system of equations is the factorial function

fac(n) =

1 if n = 0,

n · fac(n− 1) else.

A solution is expected to fulfill the equation. To solve these recursive defini-

tions, there exists a simple, iterative approach: starting with the least element

of the solution space ⊥, an element is inserted in the definition equation. This

yields the definition for the next greater element. This process is repeated n
times and so defines a function on the interval [0, . . . , n−1]. The sought-after

function of the natural numbers is found by forming the limit for n→∞.

Definition 3.2.1 (Prefixed Point). Let f : M → M be a function. An element

x ∈ M is called prefixed point of f , if:

f(x) ⊑ x

Definition 3.2.2 (Fixed Point). Let f : M → M be a function. An element x ∈ M
is called fixed point of f , if:

f(x) = x

Theorem 3.2.1 (Fixed Point Iteration). Let (M,⊑) be a complete partially or-

dered set with the least element ⊥ and f : M → M a continuous function. Let

fix : (M → M)→ M be defined by:

fix(f) =
⊔
i∈ω

f i(⊥)

Then fix(f) is a fixed point of f and the least prefixed point of f . Therefore, it

holds:

1. f(fix(f)) = fix(f)

2. ∀x ∈ M : f(x) ⊑ x =⇒ fix(f) ⊑ x

19

3. Theoretical Background

Remark. Because each fixed point is also a prefixed point, it follows that fix(f)
is the least fixed point of f .

Definition 3.2.3 (Least and Greatest Fixed Point). The least fixed point of a

function f is also called lfp(f), the greatest fixed point gfp(f).

3.3. Galois Theory

Abstract interpretation works with representatives of concrete values. The

abstraction of elements of a concrete data space is carried out with the

help of concepts from Galois theory. The concepts required for this work

are given below. Further information and many examples can be found in

[Nielson et al., 1999].

Definition 3.3.1 (Galois Connection). Let (L,⊑) and (M,⊑) be complete lattices

and α : L→ M and γ : M → L monotonic functions. The four-tuple (L,α, γ,M)
is called Galois connection between the two lattices, iff:

• γ ◦α ⊒ idL

• α ◦ γ ⊑ idM

The function α is also called abstraction function and the function γ is also

called concretization function.

In a Galois connection (L,α, γ,M), multiple elements M can exist which are

an abstraction of the same element of L, because the abstraction function α is

not required to be injective. On the other hand, the lattice M might contain

more elements than necessary for the abstraction of L. The following variation

of the Galois connection is used in abstract interpretation to avoid this:

Definition 3.3.2 (Galois Insertion). Let (L,α, γ,M) be a Galois connection. It is

20

3.4. Abstract Interpretation

called a Galois insertion, iff:

α ◦ γ = idM

Consequently, no precision is lost when first concretizing and then abstracting

an element within a Galois insertion.

3.4. Abstract Interpretation

Abstract interpretation is a general concept of program analysis and was

first introduced by Cousot and Cousot in 1977 [Cousot and Cousot, 1977,

Cousot and Cousot, 1992]. Because data flow analysis can be interpreted as a

special case of abstract interpretation, this section presents a short overview

over the theoretical framework.

Abstract interpretation aims to replace concrete semantics by abstract seman-

tics. This is done by replacing concrete values by abstract values in such a

way that both have a fixed relation, i. e. for each concrete value k, an abstract

value k should exist which describes k. This is expressed by the abstraction

function: k = α(k). For each operation op within the concrete semantics, an

abstraction op must exist, so that it holds:

α(k1 op k2) ⊑ (α (k1))op (α (k2))

This ensures that the chosen operation op correctly abstracts the operation

op. op is called abstract operation on the abstract domain of the abstract

semantics which should approximate the corresponding operation on the

concrete domain. A big challenge of abstract interpretation is to choose the

abstract semantics. It should be designed in such a way that calculations

always terminate and that the results allow for usable conclusions on the

behavior of the original program.

21

3. Theoretical Background

Example 3.4.1 (Sign Determination). The following example determines the

sign of arithmetic expressions with the help of abstract semantics. Allowed

operators are addition (+) and multiplication (×). For the abstract semantics,

the abstract domain is chosen to be
{
neg, zero,pos, ?

}
where the question

mark stands for values with an unknown sign. The abstraction function is

given by the signum function σ :

σ(x) =

neg x < 0

zero x = 0

pos x > 0

The abstract operators ⊕ und ⊗ adhere to the calculation rules given in

table 3.1.

⊕ pos zero neg ?

pos pos pos ? ?

zero pos zero neg ?

neg ? neg neg ?

? ? ? ? ?

⊗ pos zero neg ?

pos pos zero neg ?

zero zero zero zero zero

neg neg zero pos ?

? ? zero ? ?

Table 3.1.: Calculation rules for ⊕ and ⊗

Extended by a smallest element ⊥, the set of abstract values represents a

complete lattice. Figure 3.1 illustrates the lattice together with its ordering.

?

neg

;;wwwwwwwwww
zero

OO

pos

ccGGGGGGGGG

⊥

ccHHHHHHHHH

OO ;;wwwwwwwww

Figure 3.1.: Complete lattice of the abstract values

22

3.4. Abstract Interpretation

After the introductory example, abstract interpretation will be formally de-

fined during the course of this section. To begin with, the concept of local

consistency is needed:

Definition 3.4.1 (Local Consistency). Let (L,α, γ,M) be a Galois insertion. A

concrete function f : L → L and an abstract function f ′ : M → M are called

locally consistent, if it holds that:

∀x ∈ L : f(x) ⊑ γ
(
f ′ (α (x))

)
Figure 3.2 illustrates this relation.

α(x)
f ′ // f ′(α(x))

γ⊑
��

x
f //

α

OO

f(x)

Figure 3.2.: Local consistency

With the help of this notion, abstract interpretation can now be defined as

follows:

Definition 3.4.2 (Abstract Interpretation). An abstract interpretation consists

of two components:

• a Galois insertion (L,α, γ,M) and

• a pair of locally consistent functions f : L→ L and f ′ : M → M .

Instead of proving properties of function f , one can now also prove them for

its abstraction f ′. The two conditions above guarantee for the correctness.

Fixed point iteration is needed to compute a result if f respectively f ′ contain

a recursion. In this regard, the following relation is useful:

23

3. Theoretical Background

Theorem 3.4.1 (Fixed Point Relation). Given an abstract interpretation by

means of the Galois insertion (L,α, γ,M) and the locally consistent functions f
and f ′. The following relations hold for the fixed points of both functions:

• lfp (f) ⊑ γ (lfp (f ′))

• gfp (f) ⊑ γ
(
gfp (f ′)

)

3.5. Integer Linear Programming

3.5.1. Linear Programs

This section introduces the structure of Linear Programs. How they can be

solved will be shown in the next section.

Definition 3.5.1 (Comparison of Vectors). Let ∆ ∈ {≤,=,≥} be a comparison

operator and let a,b ∈ Rn. Then we define

a∆b ⇐⇒ ai∆bi ∀i = 1, . . . , n

Definition 3.5.2 (Linear Combination). Let x ∈ Rn be variable and let a ∈ Rn
be constant. Then aTx is called a linear combination of x.

Definition 3.5.3 (Linear Program). Let t ∈ Rd,b ∈ Rm,A ∈ Rm×d be known

and constant. A Linear Program (LP) is the task to maximize tTx in such a

way that x ∈ Rd≥0 ∧ Ax ≤ b. In short, this is written:

max tTx : Ax ≤ b,x ∈ Rd≥0

Definition 3.5.4. In definition 3.5.3 the function C : Rd → R where C(x) = tTx
is called objective function. The inequalities given by Ax ≤ b are called

constraints. x is said to be a feasible solution, if it satisfies Ax ≤ b. Let

24

3.5. Integer Linear Programming

P =
{
x ∈ Rd≥0 : Ax ≤ b

}
be the set of feasible solutions. x∗ is said to be an

optimal solution, if tTx∗ = max
{
tTx : x ∈ P

}
.

To reduce a problem of minimizing to one of maximizing, the objective

function can be multiplied by −1.

There are three cases that can occur when an LP is tried to be solved:

1. P = �: the LP is infeasible.

2. P ≠ �, but sup
{
tTx : x ∈ P

}
: the LP is unbounded.

3. P ≠ �, and ∃max
{
tTx : x ∈ P

}
: the LP is feasible and has a finite solu-

tion.

To find the solution of a linear program, upper bounds of the objective

function must be computed. The problem of finding the least upper bound is

also an LP that is defined as follows.

Definition 3.5.5 (Primal and Dual Problem). Let max tTx : Ax ≤ b,A ∈ Rm×d,

x ∈ Rd≥0 be a linear program. Let this program be called primal problem. The

dual problem is the problem of finding the least upper bound of tTx, which is

defined as follows: minyTb : yTA ≥ tT,y ∈ Rm≥0.

The two following theorems hold (Duality Theorems of Linear Programming):

Theorem 3.5.1 (Weak Duality). Let x̄ be a feasible solution of the primal prob-

lem max tTx : Ax ≤ b,A ∈ Rm×d,x ∈ Rd≥0 and let ȳ be a feasible solution of its

dual problem minyTb : yTA ≥ tT,y ∈ Rm≥0. Then it holds that:

ȳTb ≥ tTx̄

Proof. Because x̄ ≥ 0, ȳ ≥ 0 and b ≥ Ax̄, it holds that ȳTb ≥ ȳTAx̄. Since

ȳTA ≥ tT, it follows: ȳTb ≥ tTx̄.

25

3. Theoretical Background

Theorem 3.5.2 (Strong Duality). Let x∗ be a feasible solution of the primal

problem max tTx : Ax ≤ b,A ∈ Rm×d,x ∈ Rd≥0 and let y∗ be a feasible

solution of its dual problem minyTb : yTA ≥ tT,y ∈ Rm≥0. Then it holds that:

y∗Tb = tTx∗ ⇐⇒ x∗ and y∗ are optimal

Corollary 3.5.1. If the primal problem is unbounded, the dual problem is infea-

sible.

Corollary 3.5.2. If there are feasible solutions of the primal and the dual

problems, then there is an optimal solution. The values of the objective function

of the two problems are equal for the optimal solution.

The following Simplex algorithm exploits that corollary 3.5.2 can be used

to check if a solution x of the primal problem is optimal. Starting with an

initial solution, it improves the solution in each iteration until the following

conditions imply optimality: x is optimal iff ∃y such that

Ax ≤ b (primal feasible) (3.1)

yTA ≥ tT (dual feasible) (3.2)

yT (Ax − b) = 0 (complementary) (3.3)(
yTA− tT

)
x = 0 (slackness) (3.4)(

yTA− tT
)
i
· xi = 0 (binding constraints) (3.5)

3.5.2. Simplex Algorithm

This section introduces a non-formal description of the Simplex algorithm,

created by George Dantzig in 1947. There is a vast amount of literature about

LP solving and the Simplex algorithm available for the interested reader, e. g.

[Chvátal, 1983, Schrijver, 1996, Nemhauser and Wolsey, 1988].

26

3.5. Integer Linear Programming

Each constraint of a linear program specifies a half-space in Rd≥0. Their

intersection is the set of all feasible variable assignments. This convex area

is either empty, unbounded or a polytope. An optimal solution is found in

one of the vertices of this polytope. Starting with an arbitrary vertex, a better

solution of the objective function is searched by following one of the outgoing

edges of that vertex. This is repeated until no adjacent vertex has a better

value, which means that the optimal solution has been found. Figure 3.3

illustrates this algorithm.

x1

x
2

Direction of optimization

Starting solution

Steps of the Simplex algorithm

Optimum

C
on

st
ra

in
t

Feasible area

Figure 3.3.: The Simplex algorithm in R2
≥0

The Simplex algorithm can be used to solve large problems, since for most

constraint systems, its runtime is O(n) for n constraints. However, Klee and

Minty showed in 1972 that the worst-case runtime is exponential by giving an

example (a distortion of an n-dimensional cube) where the Simplex algorithm

visits all 2n vertices before finding the optimal solution (cf. [Chvátal, 1983]),

its asymptotic complexity is therefore O(2n). There are better algorithms

from the complexity point of view, e. g. the Ellipsoid method or the Projective

27

3. Theoretical Background

Scaling algorithm by Karmarker, which have polynomial runtime.

3.5.3. Integer Linear Programs

Many problems require the solution of a linear program to be integer, i. e. in

definition 3.5.3 on page 24 it must additionally hold that x ∈ Nd0 .

This type of constraint will be particularly important for the path analysis

variants in chapter 4 that use linear programs where the variables of the LP

are execution counts of basic blocks or abstract pipeline states, which are

naturally integers.

Definition 3.5.6 (Integer Linear Program). Let t ∈ Rd,b ∈ Rm,A ∈ Rm×d be

known and constant. An Integer Linear Program (ILP) is the task to maximize

tTx in such a way that x ∈ Nd0 ∧ Ax ≤ b.

max tTx : Ax ≤ b,x ∈ Nd0

The corresponding relaxed LP is obtained by omitting the integer requirement:

max tTx : Ax ≤ b,x ∈ Rd≥0

3.5.4. Branch and Bound Algorithm

The basic idea of the Branch and Bound algorithm is to solve the relaxed LP

and then split the domain of feasibility into two sub-problems in order to

satisfy the demand for integer variables. Each sub-problem is then solved

until all variables are integers.

Let Ψ be an ILP and let Ψ ′ be the relaxed problem. If it is feasible, solving Ψ ′

yields a solution x̂ ∈ Rd≥0.

28

3.5. Integer Linear Programming

x1

x
2

Direction of optimization

Feasible solutions of the ILP

C
on

st
ra

in
t

Feasible solutions of the LP

Optimum

Figure 3.4.: Domain of feasibility of an ILP (grid points) and the correspond-
ing domain of the relaxed problem (shaded area)

29

3. Theoretical Background

If x̂ ∈ Zd, then x̂ is also a solution for Ψ . Otherwise, a coordinate i ∈ {1, . . . , n}
is chosen such that x̂i ∉ Z. Ψ ′ is partitioned into the two subproblems Ψ̃1 and

Ψ̃2 by adding one of the following inequalities to Ψ ′:

xi ≤ ⌊x̂i⌋ (3.6)

xi ≥ ⌈x̂i⌉ (3.7)

These constraints exclude x̂ as a solution for Ψ̃1 and Ψ̃2. This method is

repeated until all variables are integers.

30

Chapter

4 ILP-based Path Analysis

4.1. ILP

This section describes how an ILP is generated for worst-case path analysis.

The first publications about path analysis using implicit path enumeration

were [Li et al., 1995, Li and Malik, 1995a, Li and Malik, 1995b]. In the same

year, Puschner and Koza compiled a technical report about this topic (see

[Puschner and Koza, 1995]). The following description is based on the ap-

proach that splits the ILP-based path analysis from the micro-architecture

analysis. This technique was introduced in [Theiling and Ferdinand, 1998]

and improved upon in [Theiling, 2003].

4.1.1. Objective Function

The ILP-based path analysis uses nodes n ∈ V to represent basic blocks of

the source program. Let T((u,v), c) be the length of the longest path from

any start state of basic block u to any start state of block v in context c as

determined by the combined cache and pipeline analysis (see section 2.1.4).

Furthermore, let C(e,c) be the execution count, which indicates how often

control passes along edge e in context c. If one knows for a specific run of

the code the execution counts C(e, c) for each edge e in each context c, then

31

4. ILP-based Path Analysis

one can get an upper bound for the time of this run by taking the sum of

C(e, c) · T(e, c) over all edge-context pairs (e,c). Thus, the task of obtaining

a global WCET estimation can be solved by finding a feasible assignment of

execution counts C(e,c) to edge-context pairs that maximizes the objective

function

max :
∑

(e,c)∈E∗
C(e, c) · T(e, c) (4.1)

The value of this sum is then the desired global WCET estimate.

In formula 4.1, E∗ ⊆ E×U is the set of all edge-context pairs (e, c) that appear

in the program, U denotes the set of all contexts. The ILP variables are C(e, c),
the values T(e, c) are constant.

Figure 4.1 illustrates the representation of basic blocks in the integer linear

program. It shows three basic blocks b1, b2 and b3, their pipeline state graphs

and the edges connecting them. The ILP for this graph would contain variables

for the execution counts of the edges e1 and e2 in every context c.

b1

b2 b3

e1 e2

Figure 4.1.: Basic blocks with pipeline states and edges

32

4.1. ILP

4.1.2. Program Start Constraints

Let v0 be the start node of the program and c0 the start context. Since the

WCET for one execution of the program is to be derived, the sum of the

execution counts of all edges leaving v0 is 1.

∑
C((v0,w), c0) = 1 ∀(v0,w) ∈ E

4.1.3. Structural Constraints

For all nodes, we sum up the outgoing and incoming control flow. The

following constraints are generated from the CFG:

∀v ∈ V :
∑

((u,v),c)∈E∗
C((u,v), c) =

∑
((v,w),c)∈E∗

C((v,w), c)

Infeasible Edges

The data flow analyses preceding the path analysis are able to find infeasible

paths in many cases. For example, the value analysis uses its knowledge about

register contents to predict the outcome of conditional branches. If it is able

to prove that a branch is either taken or not taken, it marks the other outcome

as infeasible.

Example 4.1.1 (Infeasible Code). Let the input program be the binary program

produced by the translation of the following C code:

if (i >= 0 && i < 10)

array[i] = i;

33

4. ILP-based Path Analysis

else

printf("Index out of bounds!");

Listing 4.1: Infeasible code

Suppose that the register corresponding to the variable i is known to contain

a value in the range [0 . . .9] in the analyzed execution context. Then, the basic

block corresponding to the else-case is marked as infeasible.

In some cases, the micro-architecture analysis is also able to find infeasible

edges, for example if the user tries to resolve a memory access by annotating

an address range, but specifies an invalid range. This error will not be detected

until the micro-architecture analysis reaches this memory access. As a result,

the block containing the invalid access will also be infeasible.

To account for these by preventing that infeasible nodes are considered in

the path analysis, an additional constraint is generated for each edge (u,v)
leading to a node v that is infeasible in context c:

∀u ∈ V s. t.((u,v), c) ∈ E∗ : C((u,v), c) = 0

4.1.4. Loop Constraints

Loop constraints bound the number of iterations of a loop. They are specified

as the minimum and maximum number of iterations for each invocation of

the loop (i. e. for each calling context c).

Definition 4.1.1. Let l be a loop and e ∈ entries(l) one of its entry edges.

The minimum loop execution count of l via e in context c is written as

nmin(e, c).

34

4.1. ILP

The maximum loop execution count of l via e in context c is written as

nmax(e, c).

A loop is executed as many times as its header is executed. To limit the number

of iterations of the loop per entry, the execution count of the header must be

compared to the traversal counts of the loop’s entry edges (cf. figure 4.2).

loop entry node

loop header

back node

exit node

loop

exit edge

back edge

entry edge

Figure 4.2.: A simple loop with all the important edges

Loop bound constraints are generated as follows for each loop l with loop

header h:∑
c∈Γ (h)

∑
n∈succ(h)

C((h,n), c) ≥
∑

e∈entries(l)

∑
c∈Γ (e)

nmin(e, c) · C(e, c)∑
c∈Γ (h)

∑
n∈succ(h)

C((h,n), c) ≤
∑

e∈entries(l)

∑
c∈Γ (e)

nmax(e, c) · C(e, c)

where Γ (n) : V → P(U) is a function that returns the set of possible contexts

for a given node in the control flow graph.

35

4. ILP-based Path Analysis

The above are simplified loop constraints used to illustrate the concept. The

actual implementation uses more complex and more precise constraints which

are described in detail in [Theiling, 2003].

4.1.5. Time-based Loop Constraints

Some loops cannot be bounded by a fixed number of iterations. Typically,

such loops implement some form of busy waiting, i. e. the loops are executed

repeatedly while waiting for an external event. A busy waiting loop can be

used to block a process until a certain condition is true or to stall the CPU

while waiting for an I/O transfer to complete.

while (!can_read_io()) {

// wait

}

Listing 4.2: Busy waiting loop

In order to bound this type of loop, a user can provide an annotation:

snippet routine "main" + 1 loop takes max 42 cycles;

For each such annotation, a new constraint is added to the ILP. The constraint

bounds a subset of the objective function by the number of cycles given in

the annotation.

The final constraint has the form∑
x∈L

C(x) · T(x) ≤ A

where A is the time given in the annotation and L contains all edge-context

pairs that are reachable when performing a depth-first search starting at the

loop’s start node and ending at the loop’s exit.

36

4.1. ILP

4.1.6. User Added Constraints

Users may have additional knowledge about their program which can be used

to improve the precision of the WCET analysis, e. g. they might know that

two paths are mutually exclusive—a fact which may not be apparent for a

static analysis which tries to detect infeasible paths. The framework allows

users to add linear constraints to the ILP using annotations which look like

the following

flow each c0 * (pp0) + . . . + cn * (ppn) (4.2)

= cn+1 * (ppn+1) + . . . + cm * (ppm) + cm+1

flow sum c0 * (pp0) + . . . + cn * (ppn) (4.3)

= cn+1 * (ppn+1) + . . . + cm * (ppm) + cm+1

Instead of =, the operators ≤ and ≥ may be used as well. The variables ppi
denote program points given as basic block addresses, ci ∈ N are constant

factors.

The qualifiers each and sum define whether the flow constraint applies to all

contexts cumulatively or to each context separately. With sum, the constraint

does not apply to the execution counts in individual contexts, but to the sum

over the number of executions in all contexts. In contrast, the syntax 4.2 can

be used to specify a constraint which applies to each context individually.

Example 4.1.2. Given the following C code snippet:

if (mode == 0)

do_expensive_calculations();

/* ... */

if (mode == 1)

37

4. ILP-based Path Analysis

do_other_stuff();

Listing 4.3: Mode-driven code

Suppose that the value analysis cannot determine the exact value of the mode

variable, e. g. because it is initialized in initialization code which is not part of

the analyzed task. The WCET analysis is then unable to deduce that the two

calls to do_expensive_calculations and do_other_stuff are mutually

exclusive. The resulting control flow graph is depicted in figure 4.3.

0x100:
if (mode == 0)

0x108:
if (mode == 1)

0x104:
do_expensive_calculations();

0x10C:
do_other_stuff();

0x110:

Figure 4.3.: Use-case for user constraints

The worst-case path without additional user-added constraints is given by

(0x100,0x104,0x108,0x10C,0x110) although this path is not feasible (assum-

ing that mode is unchanged in this program). To reduce the overestimation,

38

4.1. ILP

the user can add a flow-constraint like

flow each (0x104) + (0x10C) = (0x110)

The constraint means “in each context, the sum of the execution counts of

blocks 0x104 and 0x10C is equal to the execution count of block 0x110”.

The two possible WCET paths are now (0x100,0x104,0x108,0x110) and

(0x100,0x108,0x10C,0x110).

Example 4.1.2 is a common scenario during the analysis of embedded control

systems. Many of these systems work in different operating modes such

as start-up, stand-by or shut-down. It it also often the case that the same

program is deployed on many different systems where each instance uses a

different mode which decides which parts of the program should be active for

this instance. An introduction to operating mode specific WCET analysis can

be found in [Lucas et al., 2009].

A way to detect path exclusions for mode-driven code was presented in

[Stein and Martin, 2007] where flow-annotations are generated automatically

to improve the precision of the WCET prediction.

Another common use-case for user constraints are non-natural loops, i. e.

loops with multiple entry points (rarely generated by compilers, almost only

occur with handwritten assembly code). In that case, an annotation

flow each (entry1) + . . . + (entryn) = (dom)

bounds the execution counts of the loop entry points entryi by the execution

count of a block dom dominating all entries.

39

4. ILP-based Path Analysis

4.2. Implementation

The ILP-based path analysis in aiT was implemented by Henrik Theiling in

2002 as the tool pathan (short for path analysis). It serves as a frontend with

a user interface for the libpathan library which contains the algorithms and

data structures.

40

Chapter

5 Path Analysis on Abstract
Pipeline State Graphs

The path analysis on prediction files is a new approach developed by Niklas

Matthies in [Matthies, 2006].

A prediction file is an optional output of the pipeline/cache analyzer which

describes all possible pipeline states in a condensed form together with the

external bus events. This file was mainly meant for comparing hardware traces

with aiT predictions.

This abstraction was chosen since using the full representation of the state

graphs (including the content of abstract pipeline states) for all basic blocks

and all contexts for trace validation seemed to be impossible at that time.

It turned out that for applications with moderate size the prediction files

might also be used for path analysis, although the graph representation in a

prediction file can take more than 1 GB size.

The approach presented in chapter 4 leads to overestimations that result

from the way pathan computes the WCET: for each basic block the maximum

number of cycles is calculated that are spent in the instructions contained in

the basic block. This does not take into account that it might not be possible

to spend the maximal number of cycles in each of two consecutive basic blocks

(see figure 5.1).

41

5. Path Analysis on Abstract Pipeline State Graphs

The computed WCET using path analysis on prediction files should always

be less or equal the global WCET computed with pathan in combination with

an ILP solver. The overestimations which are avoided by the path analysis on

prediction files are those, where the cache/pipeline analysis splits the states

due to unknown states of the processor, e. g. due to unknown cache states as

it can be seen in figure 5.1. The pathan approach for this example calculates a

WCET of 2+5+8 = 15 whereas the method based on prediction files calculates

2+ 1+ 8 = 11.

2

5

1

2

8

B1 B2

Cache
Miss

Cache
Hit

Figure 5.1.: Split due to unknown cache state

As mentioned in section 2.1.4 on page 8, the local WCET analysis avoids some

of the splits due to unknown states and follows only the case taking locally

more cycles, which is a cache miss in this example. But in some cases, it is

locally undecidable, which decision will be the local worst-case, so there are

still some split events left. Table 5.1 on the next page shows in which cases the

local WCET analysis also splits, exemplified by the micro-architecture analysis

for the Motorola MPC755.

42

5.1. Prediction Files

Event Split

Cache hit or miss ✗

Cache clash ✗

Cache manipulation ✓

Inexact jitter ✗

Inexact PCI jitter ✗

Option --data-wait=perhaps (not default) ✓

Unknown SDRAM tag register ✗

Imprecise SDRAM access ✓

Instruction DCBT (Data Cache Block Touch) ✓

Instruction DCBTST (Data Cache Block Touch for Store) ✓

Instruction DCBST (Data Cache Block Store) ✗

Instruction DCBF (Data Cache Block Flush) ✗

Arithmetic operations (IU1, IU2, SRU) ✗

Unknown branch prediction ✓

Table 5.1.: Splits during local WCET analysis for the MPC755

Due to the fact that the pipeline analysis also splits while computing the local

worst-case, the problem described in figure 5.1 may still arise. Thus, the WCET

computed by the path analysis on prediction files may be smaller than the

WCET computed by pathan using the local worst-case option of the pipeline.

5.1. Prediction Files

The state graph generated by the micro-architectural analysis is stored in

a so-called prediction file. The syntax of this textual file is defined in ta-

ble 5.2 starting on page 46. It contains a sequence of the following types of

elements:

Normal edges These elements (non-terminal normal_edge) describe an edge

in the abstract pipeline state graph and consist of the IDs of the source

43

5. Path Analysis on Abstract Pipeline State Graphs

and target nodes, the execution time for this edge (in CPU cycles) and

optionally the addresses of the associated basic block and instruction,

the execution context as well as a list of events. If the code location for

an edge is not specified, it belongs to the same location as the previous

edge. The event list is not relevant for path analysis and is used by other

tools which work on prediction files.

Subsume edges The pipeline analysis connects two states with a subsume

edge (non-terminal subsume_edge) if an abstract state is subsumed by

another abstract state (i. e. it is a subset of the other state). Subsume

edges are similar to normal edges with an execution time of zero.

Node aliases Aliases (non-terminal equal_node) are generated by the micro-

architectural analysis to identify two nodes with the same abstract state.

They consist of two node IDs where the first occurs for the first time and

now represents an alias for the second ID. The first node ID is called

alias node, the second referenced node.

Start/end markers These elements (node_start, node_end, edge_start and

edge_end) represent the start and end of the current CFG item1, respec-

tively.

End of block This element (non-terminal basic_block_end) marks the end of

the current basic block.

The formal grammar of the prediction file format is given below:

start → items

items → item items

| ε
item → node

| edge

| marker

continued on next page

1here: either a node or an edge in the control flow graph.

44

5.1. Prediction Files

continued from previous page

node → start_node

| equal_node

| keep_node

| final_node

start_node → S id

equal_node → E id1 : id2

keep_node → k id

final_node → F id

marker → node_start

| node_end

| edge_start

| edge_end

| basic_block_end

node_start → n node_id : context

node_end → N

edge_start → t edge_id : context

edge_end → T

basic_block_end → B

edge → normal_edge

| subsume_edge

normal_edge → e id1 d id2 c num code_info events

code_info → i adr1

| i adr1 , adr2

| i adr1 , adr2 , ctx

events → event events

| ε
event → tstart

| tack

| aack

| cache

tstart → S a1 , a2 l len access_type segment_type

continued on next page

45

5. Path Analysis on Abstract Pipeline State Graphs

continued from previous page

access_type → r

| w

segment_type → c

| d

tack → |a

aack → |A

cache → |c cache_event_list

cache_events → cache_event , cache_events

| ε
cache_event → cache_type access_type a1 , a2 , s1 , s2

| cache_type event_type abstract_cache tag

cache_type → i

| d

event_type → e

| l

abstract_cache → u

| a

subsume_edge → s id1 : id2

Table 5.2.: Prediction file syntax

The abstract pipeline state graph G = (V , E,C) can be reconstructed from the

prediction file as follows:

• an abstract pipeline state v ∈ V is represented by an integer identifier,

i. e. V ⊂ N. The actual content of the abstract state including the abstract

cache state is not needed for path analysis.

• an edge (u,v) is part of E if either a normal or a subsume edge connect

the two state identifiers u and v .

• the cost C(e) of an edge e is either 0 if e is a subsume edge or the number

of CPU cycles as given in the prediction file.

46

5.2. Implementation

5.2. Implementation

The implementation of the path analysis on abstract pipeline state graphs

in the modular analysis framework aiT is called predan and was described

in [AbsInt Angewandte Informatik GmbH, 2006a]. It exploits the facts that

the pipeline state graph modulo loops is a DAG (directed acyclic graph) and

that the edges in the prediction file occur in topological order. Given those

two prerequisites, it can employ a very fast algorithm based on depth-first

search to find the longest path.

47

Chapter

6 ILP-based Path Analysis on Ab-
stract Pipeline State Graphs

Following the introduction of the existing path analyses and the theoretical

background, this chapter represents the core of this thesis and presents the

newly developed path analysis.

While predan is very fast because it uses a depth-first search on the state

graph, it does not allow the user to specify additional constraints in the AIS

annotations. The new approach combines the advantages of both methods,

i. e. it is now possible to use user constraints together with the path analysis

on prediction files.

However, the analysis time is expected to increase by an order of magnitude

(dominated by the time it takes the ILP solver to solve the ILP).

The prediction files can become very large even for medium-sized programs.

Therefore, predpathan employs several techniques to compress the pipeline

state graph. The compression algorithms reduce the complexity of the state

graph (and therefore of the ILP) in ways that do not alter the WCET path. In

the absence of user constraints, predpathan produces the exact same result

49

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

as the predan approach.

6.1. Graph Compression

The following graph compression methods substitute subgraphs of the ab-

stract pipeline state graph S ⊂ G with equivalent subgraphs S′ so that

G′ = (G \ S)∪ S′ and

wcet(G′) = wcet(G) (6.1)

Definition 6.1.1 (In-Edges). The in-edges in(n) of a node n ∈ V are defined as

in(n) Í {(m,n) ∈ E}

Definition 6.1.2 (out-Edges). The out-edges out(n) of a node n ∈ V are defined

as

out(n) Í {(n,m) ∈ E}

Definition 6.1.3 (In-Degree). The in-degree indeg(n) of a node n ∈ V is de-

fined as

indeg(n) Í |in(n)|

Definition 6.1.4 (Out-Degree). The out-degree outdeg(n) of a node n ∈ V is

defined as

outdeg(n) Í |out(n)|

Definition 6.1.5 (Extended Graph). The extended graph G∗ of a graph G =

50

6.1. Graph Compression

(V , E) is given by G∗ = (V∗, E∗), where

V∗ Í V ∪ {s, e}
E∗ Í E

∪
{
(s, s′) : s′ ∈ V ∧ indeg(s′) = 0

}
∪
{
(e′, e) : e′ ∈ V ∧ outdeg(e′) = 0

}
s ∉ V

e ∉ V

That is, the graph G is extended by a new start node s which has edges to all

nodes which have no predecessor and a new end node e which is connected

to all nodes which have no successor.

For each compression method, a proof is given that condition 6.1 holds by

showing that the same is true for the respective extended graphs S∗ and

S′∗.

6.1.1. Chain Compression

The pipeline analysis can produce long chains of states which resemble the

cyclewise evolution of the pipeline. A chain of states which have a single

predecessor and a single successor can be merged into two states: one state

for the start of the chain and one for the end of the chain. The cost of the

edge between the start and end node is the sum of the edge weights on the

chain.

Definition 6.1.6 (Chain Compression). The sequence of nodes n1, . . . , nx ∈ V

51

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

is called a compressible chain of length x > 2, iff

succ(ni) = {ni+1} ∀1 ≤ i ≤ x − 1

pred(ni) = {ni−1} ∀2 ≤ i ≤ x

A subgraph S for the chain compression consists of the nodes in a compress-

ible chain and the edges connecting them, i. e.

S = ({n1, . . . , nx}, {(ni, ni+1) : 1 ≤ i ≤ x − 1})

It is replaced by S′ where

S′ = ({n1, nx} , {(n1, nx)})

and

C′((n1, nx)) =
∑

1≤i≤x−1

C((ni, ni+1))

Correctness

Claim.

wcet(S∗) = wcet(S′∗)

Proof. Let n1, . . . , nx be a chain of length x > 2. Then

wcet(S∗) =
∑

i∈in(n1)
C(i)+

∑
1≤i≤x−1

C((ni, ni+1))+
∑

o∈out(nx)
C(o)

=
∑

i∈in(n1)
C(i)+ C′(n1, nx)+

∑
o∈out(nx)

C(o)

= wcet(S′∗)

52

6.1. Graph Compression

Runtime

In order to find the chains in an abstract pipeline state graph G, the algo-

rithm only needs to look at each node n ∈ V once, because it can easily

be checked if n is part of a chain. n is removed by the chain compression,

iff indeg(n) = outdeg(n) = 1. Therefore, the runtime of the compression

method is O (|V |).

Example 6.1.1. Figure 6.1 shows the effect of the chain compression.

n1

n2

n3

n4

n5

c1

c2

c3

c4

(a) Subgraph before applying the chain
compression

n1

n5

c1 + c2 + c3 + c4

(b) Subgraph after applying the chain
compression

Figure 6.1.: Chain compression example

53

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

6.1.2. Basic Block Compression

For each basic block b and one of its contexts c, the basic block graph Gb,c is

the part of the state graph that lies in b and belongs to context c. Each basic

block graph is a weighted directed acyclic graph (DAG). For the purposes of

path analysis, it can be reduced to a graph which consists only of the start

and end nodes of the basic block connected by edges which represent the

longest paths between them. The DAG-property allows to use a very fast

multiple-sources multiple-targets longest-path algorithm.

The algorithm begins by sorting the basic block graph topologically.

Definition 6.1.7 (Topological Ordering). A topological ordering of a graph is

a total ordering of its nodes which is compatible with the partial order R
induced on the nodes where x comes before y (x R y) if there is a directed

path from x to y in the graph.

Theorem 6.1.1. A graph has a topological ordering if and only if it is a directed

acyclic graph.

The sorting algorithm is based on depth-first search:

Algorithm 1 Topological sort

1: run DFS(G), computing finish time f[v] for each vertex v
2: As each vertex is finished, insert it onto the front of a list

3: return the list

Runtime Θ(|V | + |E|)

54

6.1. Graph Compression

Algorithm 2 Depth-first search

1: procedure DFS(G)

2: for all u ∈ V(G) do

3: color[u] = white

4: end for

5: time = 0

6: for all u ∈ V(G) do

7: if color[u] == white then

8: DFSVisit(u)

9: end if

10: end for

11: end procedure

1: procedure DFSVisit(u)

2: color[u] = gray

3: d[u] = ++time

4: for all v ∈ adj(u) do

5: if color[v] == white then

6: DFSVisit(v)
7: end if

8: color[u] = black

9: f[u] = ++time

10: end for

11: end procedure

Runtime Θ(|V | + |E|)

After sorting the graph, the longest paths can be computed be repeatedly

solving the single-source multiple-targets longest-path problem for each start

node s with indeg(s) = 0 in the basic block graph:

55

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

Algorithm 3 Single-source multiple-targets longest-path

1: procedure SSMT(G, s)
2: for all vertex y ∈ G do

3: d(s,y) = ∞ ◃ initialization

4: end for

5: d(s, s) = 0

6: for all vertex y in a topological ordering of G do

7: choose edge (x,y) maximizing d(s,x)+ C((x,y))
8: d(s,y) = d(s,x)+ C((x,y))
9: end for

10: end procedure

Runtime O(|V | + |E|).

Algorithm 4 Multiple-sources multiple-targets longest-path

1: procedure MSMT(G)

2: for all vertex s ∈ G with indeg(s) = 0 do

3: compute SSMT(G, s)
4: end for

5: end procedure

Runtime O(|S| · (|V | + |E|)) where S =
{
n ∈ V : indeg(n) = 0

}
.

The results of the multiple-sources multiple-targets longest-path algorithm

are stored in d(x,y) where d(x,y) = ∞ means that y is not reachable from

x, otherwise d(x,y) contains the cost of the longest path from x to y .

Formally, the basic block compression can be defined as follows: let Gb,c =
(Vb,c, Eb,c) be the basic block graph. Then, G′b,c = (V ′b,c, E′b,c) is derived from

56

6.1. Graph Compression

G where

V ′b,c =
{
v ∈ Vb,c : indeg(v) = 0∨ outdeg(v) = 0

}
E′b,c =

{
(s, e) ∈ V2

b,c : indeg(s) = outdeg(e) = 0∧ d(s, e) ≠∞
}

C′((s, e)) = d(s, e) ∀(s, e) ∈ E′b,c

The correctness of the graph substitution follows directly from the construc-

tion and the correctness of the multiple-sources multiple-targets longest-path

algorithm.

6.1.3. Infeasible Nodes

The pipeline analysis can mark nodes as infeasible when it finds out that

a path results in inconsistent states, that is, abstract states which have no

corresponding concrete state. This often occurs when the pipeline analysis

handles a branch instruction and splits the abstract pipeline state for each

possible successor. When the branch is resolved, all states except the one with

the correctly predicted successor are marked as infeasible.

The infeasible nodes are removed from the ILP along with all paths only leading

to infeasible nodes, i. e. the infeasible property is propagated backwards:

57

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

Algorithm 5 Purge infeasible nodes

1: while ∃i ∈ infeasible do

2: V = V \ {i}
3: infeasible = infeasible \ {i}
4: for all (x, i) ∈ E do

5: E = E \ {(x, i)}
6: if outdeg(x) = 0 then

7: infeasible = infeasible∪ {x}
8: end if

9: end for

10: end while

6.1.4. ε-transition Elimination

Edges with 0 cost (e. g. subsume edges) are removed from the ILP by merging

the nodes connected by them.

6.1.5. Buddy Nodes

Definition 6.1.8. The function pred : V → P(V) computes the predecessors of

a node n ∈ V :

pred(n) Í {v : (v,n) ∈ E}

The successors are defined analogously by succ : V → P(V):

succ(n) Í {v : (n,v) ∈ E}

Nodes which have the same set of predecessors or successors with equal edge

costs are called buddy nodes and can be merged.

58

6.1. Graph Compression

Mpred =
{
(u,v) : u,v ∈ V ∧ pred(u) = pred(v)∧ Cpred(u,v)

}
Msucc =

{
(u,v) : u,v ∈ V ∧ succ(u) = succ(v)∧ Csucc(u,v)

}
where the two predicates Cpred : V2 → B and Csucc : V2 → B are defined as:

Cpred(x,y) Í ∀z ∈ pred(x) : C((z,x)) = C((z,y))
Csucc(x,y) Í ∀z ∈ succ(x) : C((x, z)) = C((y, z))

Update for (u,v) ∈ Msucc :

V ′ = V \ {v}
E′ = E \

{
(x,y) ∈ E : x = v ∨y = v

}
∪
{
(x,u) : x ∈ pred(v)

}
C′((x,u)) =

C((x,v)) x ∈ pred(v)∧ x ∉ pred(u)

max(C((x,u)), C((x,v))) x ∈ pred(v)∧ x ∈ pred(u)

Analog update for (u,v) ∈ Mpred .

Runtime

In order to find buddy nodes in an abstract pipeline state graph, the algorithm

does not need to compare each node n ∈ V with each other node to check if

they are buddy nodes. Instead, it can test the in-siblings and out-siblings:

Definition 6.1.9 (In-Siblings). The in-siblings siblingsin(x) of a node x ∈ V are

defined as

siblingsin(x) Í
⋃

y∈pred(x)
succ(y)

Definition 6.1.10 (Out-Siblings). The out-siblings siblingsout(x) of a node x ∈

59

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

V are defined as

siblingsout(x) Í
⋃

y∈succ(x)
pred(y)

The in-siblings of n are the candidates for the buddy nodes of n with equal

incoming edges and the out-siblings of n are the candidates for the buddy

nodes of n with equal outgoing edges. Therefore, a small number of nodes

and edges has to be visited for each node, so that the runtime of the buddy

node compression algorithm is usually O (|V | + |E|).

The two different cases for buddy nodes are shown in figures 6.2 and 6.3 on

the facing page.

u v

Figure 6.2.: Buddy Nodes (same incoming edges with equal costs)

60

6.1. Graph Compression

u v

Figure 6.3.: Buddy Nodes (same outgoing edges with equal costs)

The result of merging the buddy nodes in figure 6.3 can be seen in figure 6.4.

u

Figure 6.4.: Merged Buddy Nodes

61

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

Correctness

Claim. Merging buddy nodes does not alter the WCET.

Proof. Let u,v ∈ V be buddy nodes with the same outgoing edges with equal

costs. The WCET of the uncompressed extended subgraph S∗ is given by

wcet(S∗) = max
b∈{u,v}

(
max
e∈in(b)

C(e)+ max
x∈succ(b)

(
C(b,x)+ max

e∈out(x)
C(e)

))

= max
b∈{u,v}

(
max
e∈in(b)

C(e)+ max
x∈succ(u)

(
C(u,x)+ max

e∈out(x)
C(e)

))

= max
b∈{u,v}

(
max
e∈in(b)

C(e)
)
+ max
x∈succ(u)

(
C(u,x)+ max

e∈out(x)
C(e)

)

= max
x∈pred({u,v})

C((x,u))+ max
x∈succ(u)

(
C(u,x)+ max

e∈out(x)
C(e)

)
= wcet(S′∗)

Analog proof for buddy nodes with the same incoming edges.

6.1.6. Chain Combination

The chain compression does not collate chains of pipeline states which cross

basic block boundaries. If, however, some chains that span several basic

blocks have the same start and end nodes, only the chain with the highest

aggregate cost has to be added to the ILP (cf. figure 6.5 on page 65).

The formal specification of the chain combination algorithm requires the

following definition:

Definition 6.1.11 (uv-chain). A sequence of nodes (n1, . . . , nx) with x > 2 is

62

6.1. Graph Compression

called a uv-chain of length x, iff

n1 = u
nx = v
n2 ∈ succ(u)

nx−1 ∈ pred(v)

succ(ni) = {ni+1} ∀2 ≤ i ≤ x − 1

pred(ni) = {ni−1} ∀2 ≤ i ≤ x − 1

C(u,v) designates the set of all chains starting at u and ending at v .

Using this definition, the chain combination is given in algorithm 6:

Algorithm 6 Chain combination

1: while ∃(u,v) ∈ V × V : |C(u,v)| > 1 do

2: m = () ◃ compute the uv-chain m with the maximum cost

3: for all k ∈ C(u,v) do

4: if
∑

1≤i≤|k|−1 C((ki, ki+1)) >
∑

1≤i≤∈|m|−1 C((mi,mi+1)) then

5: m = k
6: end if

7: end for

8: for all k ∈ C(u,v) do ◃ remove all other uv-chains

9: if k ≠m then

10: remove k from G
11: end if

12: end for

13: end while

Claim. The chain combination does not alter the WCET.

Proof. Let u,v ∈ V with |C(u,v)| > 1. The relevant subgraph of G is S =

63

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

{u,v} ∪ {n ∈ k : k ∈ C(u,v)}.

wcet(S∗)

= max
e∈in(u)

C(e)+ max
k∈C(u,v)

 ∑
1≤i≤|k|−1

C((ki, ki+1))

+ max
e∈out(v)

C(e)

=wcet(S′∗)

64

6.1. Graph Compression

u

v

(a) Combinable chains

u

v

(b) Combined chains

Figure 6.5.: Chain combination example

6.1.7. Fixed Point

The optimization phases are executed in a loop until the abstract pipeline

state graph is irreducible, i. e. until the fixed point is reached. This is because

the execution of one compression algorithm may open up new opportunities

65

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

for further compression using other algorithms. For example, merging buddy

nodes may create new chains that can be reduced by chain compression.

Usually, this converges quite quickly. The termination is guaranteed by the

fact that each step can only reduce the number of nodes and never increase

it.

6.1.8. Lossy Compression

If the user is willing to exchange WCET precision for analysis time, he can

use the --lossy switch advertised by the tool. This switch enables some

optimizations that further compress the state graph but do so at the expense

of precision, i. e. the predicted WCET increases. For example, the definition

of buddy nodes in section 6.1.5 on page 58 is changed by dropping the

requirement for equal edge costs. In lossy mode, the edges are merged by

computing the maximum costs. This option is disabled by default.

6.1.9. Inter-block Compression

In addition to this, the user can get a faster result with the --fast option

which enables optimizations that span several basic blocks. By default, com-

pression algorithms such as the chain compression stop at the basic block

boundary, so that each block is represented by at least one variable in the

ILP. That way, a WCET contribution can be calculated for each block when

reconstructing the critical path. If the only requirement is a figure for the

global WCET and the visualization of the WCET contributions for the individ-

ual blocks may be incomplete, this option can reduce the size of the ILP and

speed up the solving process.

66

6.2. Loop and User Constraints

6.2. Loop and User Constraints

Loop constraints and user constraints are computed as described in sec-

tions 4.1.4 and 4.1.6, respectively. They have in common that they operate on

items of the control flow graph: loop constraints correlate loop entry edges

and loop headers while user constraints are linear constraints on basic blocks.

In order to represent these constraints in the ILP generated from the abstract

pipeline state graph, each edge is associated with a CFG item in the prediction

file (cf. table 5.2).

This association defines a reverse mapping function m : I ×U → P(E) which

maps pairs of CFG items (I) and contexts to sets of edges in the abstract

pipeline state graph.

The simple loop constraints become:∑
c∈Γ (h)

∑
n∈succ(h)

C(m((h,n), c)) ≥
∑

e∈entries(l)

∑
c∈Γ (e)

nmin(e, c) · C(m(e, c))∑
c∈Γ (h)

∑
n∈succ(h)

C(m((h,n), c)) ≤
∑

e∈entries(l)

∑
c∈Γ (e)

nmax(e, c) · C(m(e, c))

Time-based loop constraints become:∑
x∈L

C(m(x)) · T(x) ≤ A

where C : P(E)→ N is the canonical extension of C for sets, i. e.

C(s) Í
∑
e∈s
C(e)

67

6. ILP-based Path Analysis on Abstract Pipeline State Graphs

6.3. Predictability

It is assumed that there is a connection between the predictability of a hard-

ware architecture and the compressibility of the respective abstract pipeline

state graphs.

The term predictability is still an active research topic. The current state-

of-the-art of designing predictable hardware architectures is described in

[Thiele and Wilhelm, 2004, Wilhelm et al., 2009a] and [Wilhelm et al., 2009b].

Roughly speaking, good predictability of an architecture implies that a pipeline

analysis has to split rarely. Inversely, a pipeline analysis for an architecture

with bad predictability needs to split very often because of imprecise informa-

tion to handle all possible cases.

This thesis establishes the hypothesis that the graph compression algorithms

can mitigate the effects of bad predictability to some extent. This hypothesis

is tested empirically in section 8.2.2.

68

Chapter

7 Cache Persistence Analysis

7.1. Cache Analysis

A cache analysis is necessary to provide a tight WCET estimation for systems

with instruction or data caches. It would be an overly pessimistic assumption

that all accesses miss the cache that would lead to a huge overestimation.

This section sums up the cache analysis as described in [Ferdinand, 1997] to

understand how the new path analysis can use its results to provide an addi-

tional increase of precision not available to the other path analysis methods.

A cache can be characterized by three major parameters:

• capacity is the number of bytes it may contain

• line size is the memory quantum in bytes that is transferred from

memory to the cache in one transfer. The cache can hold at most

n = capacity/linesize lines.

• associativity is the number of cache locations where a particular line may

reside. n/associativity is the number of sets of a cache.

If a line can reside in any cache location, then the cache is called fully associa-

69

7. Cache Persistence Analysis

tive. If a line can reside in exactly one location, then it is called direct mapped.

If a line can reside in exactly A locations, then the cache is called A-way set

associative.

In the case of an associative cache, a cache line has to be selected for replace-

ment when the cache is full and the processor requests further data. This is

done according to a replacement policy. The following description assumes a

LRU (Least Recently Used) policy.

The domain for the abstract interpretation consists of abstract cache states.

In the following, a cache is a set of cache lines L = {l1, . . . , ln} and S =
{s1, . . . , sm} denotes a set of memory blocks.

Definition 7.1.1 (Concrete Cache State). A concrete cache state is a function

c : L→ S. C denotes the set of all concrete cache states.

Definition 7.1.2 (Abstract Cache State). An abstract cache state c̃ : L → P(S)
maps cache lines to sets of memory blocks. C̃ denotes the set of all abstract

cache states.

The update function for abstract cache states is depicted in figure 7.1.

{b}
{c, d}
{}
{a}

{b}
{d}
{a}
{c}

[c]

young

old

age

Figure 7.1.: Update of an abstract fully associative cache

70

7.1. Cache Analysis

7.1.1. Must Analysis

The must analysis determines a set of memory blocks that must be in the

cache at a given program point upon any execution. It uses abstract cache

states where the positions of the memory blocks in the abstract cache state

are upper bounds of the ages of the memory blocks in the concrete states it

represents.

The join function which combines the information from different control flow

paths is similar to set intersection. Two abstract cache states are combined

by keeping only those memory blocks which are contained in both states and

assigning them the oldest of the two ages (see figure 7.2).

{b}
{c, d}
{}
{a}

{b}
{a}
{e}
{c}

{b}
{a, c}
{}
{}

Figure 7.2.: Join function for the must analysis

7.1.2. May Analysis

The may analysis determines all memory blocks that may be in the cache at a

given program point. It can be used to guarantee the absence of a memory

block in the cache. It uses abstract cache states where the positions of the

memory blocks in the abstract cache state are lower bounds of the ages of the

71

7. Cache Persistence Analysis

memory blocks in the concrete states it represents.

The join function is similar to set union. Two abstract cache states are

combined by merging the memory blocks from both states and assigning them

the youngest of the two ages (see figure 7.3).

{b}
{c, d}
{}
{a}

{b}
{a}
{e}
{c}

{b}
{d}
{e}
{a, c}

Figure 7.3.: Join function for the may analysis

7.1.3. Persistence Analysis

Cache persistence analysis is a way to improve the precision of the must and

may based cache analysis. Its goal is to determine the persistence of a cache

line, i. e., the absence of the possibility that a cache line l is removed from

the cache. If there is no possibility to remove l from the cache, then the first

access to l may result in a cache miss, but all further accesses to l are cache

hits.

To exemplify this, consider a small loop containing conditional code (cf.

figure 7.4). The may and must cache analyses cannot classify the access to the

conditional code as a sure hit or sure miss and therefore the pipeline analysis

splits in each iteration of the loop since it may happen that the conditional

72

7.1. Cache Analysis

code is executed for the first time in this iteration. The path analysis then

computes a longest path which may contain several cache misses. The cache

persistence analysis provides the additional information that the conditional

code cannot be replaced in the cache during the execution of the loop after

it was loaded the first time. Using this information the WCET analysis can

conclude that only the first execution of the conditional code can be a cache

miss, whereas all other executions will be cache hits.

Loop

branch

entry

load

exit

branch

Figure 7.4.: Code that benefits from the cache persistence analysis

An abstract cache state for the persistence analysis is a combination of the

states for the must and may analyses: the positions of the memory blocks

are upper bounds of the ages of the memory blocks (like must) and the join

function is similar to set union (like may). In addition to the memory blocks

which may be in the cache, the abstract cache state also collects all memory

blocks which may have been evicted from the cache in a special line l⊥, i. e.

whenever a block is about to be evicted from the abstract cache, it is added to

73

7. Cache Persistence Analysis

l⊥. This special line is used when classifying an access to a cache line l: the

access cannot be persistent if l ∈ l⊥.

7.2. Precise Use of Cache Persistence Analysis

Until now, the results of a persistence analysis could not be directly used in the

pipeline analysis of aiT because the persistence analysis provides information

for a set of accesses to a memory location, but not for each access as usually

required by aiT. The new path analysis enables a precise use of the results of

the persistence analysis in a safe way.

With the traditional ILP-based path analysis, the persistence information is not

usable because it is lost after the pipeline analysis annotates each basic block

with the computed WCET. Using the pipeline state graph from the prediction

file, it is now possible to add additional constraints to the ILP expressing that

only one execution of the conditional code can be a cache miss.

The prediction file format has been extended with two new events. When the

cache analysis classifies a cache access as persistent, the pipeline analysis

splits the current pipeline state into two: one state for the cache hit, one for

the cache miss. The edge leading to the cache miss is annotated with an “m”

event, the edge leading to the cache hit is annotated with an “n” event. The

events carry two additional parameters, the scope identifier (called scope_id)

and the cache line.

cache_event → pers_event scope_id , cache_line

pers_event → m | n

Table 7.1.: Extended prediction file syntax for persistence events

74

7.3. Automatic Persistence Scopes

7.3. Automatic Persistence Scopes

The persistence analysis is performed locally inside given scopes. This is

because very few cache lines would be classified as persistent if the analysis

is performed for the whole program. Therefore, the persistence analysis can

be be restricted to smaller program snippets, where the likelihood of a cache

line being evicted by later cache allocations is small. Generally speaking, the

probability of a cache access being classified as persistent is higher if the

snippet is smaller.

The user can add persistence scopes manually via annotations when spot-

ting a program snippet which is likely to benefit from a persistence scope.

Nonetheless, this can be difficult to get right or to be exhaustive. To alleviate

this problem, a pre-analysis is performed when the persistence analysis is

enabled. This pre-analysis implements a heuristic which tries to guess suitable

persistence scopes by marking routines that

1. are a loop, and

2. do not call routines that belong to another persistence scope, and

3. have at least two different paths containing at least one load instruction

or call a sub-routine that fulfills this criterion

7.4. Persistence Constraints

Definition 7.4.1 (Persistence identifier). Let s be a persistence scope and l a

cache line, then the tuple (s, l) is called a persistence identifier .

Let P be the set of persistence identifiers, E the set of edges. Then, a new

75

7. Cache Persistence Analysis

constraint is generated for each i ∈ P∑
e∈Mi

c(e) ≤ 1

where c(e) denotes the execution count of an edge e ∈ E, Mi the set of edges

with “m” events and persistence identifier i.

The state graph compression algorithms pay special attention not to remove

any node which is part of such a persistence constraint.

Note that these constraints allow at most one cache miss for each persistence

identifier. Ideally, they would only allow the first access to be a cache miss,

however this cannot easily be expressed as a linear constraint.

7.5. Generalization

The precise use of the persistence analysis is just one instance of a whole

class of problems which can be solved with the ILP-based path analysis on

abstract pipeline state graphs.

The generalization is a hardware event for which the micro-architectural

analysis can compute a set E of locations where that event might possibly

occur, but only n of the m = |E| events are actually feasible. The general

constraints have the form

∑
e∈E

c(e) ≤ n

For the persistence analysis, the event is a persistent miss with persistence

identifier i, E = Mi and n = 1. Other cases which might fall into this problem

76

7.5. Generalization

class are:

• non-LRU caches

• TLB misses

• writebacks

Definition 7.5.1 (Timing Anomaly). Intuitively, a timing anomaly is a situation

where the local worst-case does not entail the global worst-case. For instance,

a cache miss—the local worst-case—may result in a shorter execution time,

than a cache hit, because of scheduling effects. For a formal definition of a

timing anomaly, see [Reineke et al., 2006].

Definition 7.5.2 (Compositional Architecture). If the absence of timing anoma-

lies can be proven for a given hardware architecture, it is called a compositional

architecture.

On compositional architectures, TLB misses and writebacks can simply be

counted whenever they might occur in the program, and if a penalty time

for a single miss/writeback can be quantified in processor cycles, the WCET

can just be incremented by the product of the event count and the penalty

cycles. However, this simple counting method is not safe for architectures

with timing anomalies. In order to safely bound the number of these events on

non-compositional architectures, they can be incorporated into ILP constraints

similar to the cache persistence analysis results.

To precisely predict memory writebacks, for example, one could imagine an

enhanced cache analysis which calculates a set of possibly evicted memory

blocks for each cache access. The cache analysis would need to know both

the minimum and maximum ages of the memory blocks to identify a range of

accesses which cause the replacement of the same cache item.

Consider an abstract cache state containing a memory block m with an age in

77

7. Cache Persistence Analysis

[associativity − 3,associativity − 1] followed by 3 accesses to the same cache

set (all misses). m is either evicted by the first, second or third access, but only

exactly once. This information could be used to generate an ILP constraint as

described above.

78

Chapter

8 Implementation and Evaluation

This chapter first describes the implementation of the ILP-based path analysis

on abstract pipeline state graphs and then goes on to evaluate several aspects

of the analysis, such as runtime performance, precision and ILP solvers.

8.1. Implementation

Here is a list of programs and libraries that were implemented as part of this

thesis.

predpathan The path analysis on abstract pipeline state graphs is imple-

mented in a tool called predpathan. The total implementation consists

of approximately 7800 lines of code.

libpredfile This library encapsulates the reading and writing of predic-

tion files. It it a shared component of the cache/pipeline analysis,

predpathan, a trace validation tool and other programs operating on

prediction files. The implementation totals approximately 3000 lines of

code.

predsolve2crl2 This is the tool which handles the visualization of path

analysis results. A description follows in section 8.1.5 on page 85. The

implementation totals approximately 1400 lines of code.

79

8. Implementation and Evaluation

The programming language used to develop the tools and libraries is C++

[International Organization for Standardization, 2003]. They are documented

throughout with doxygen [van Heesch, 2007] and can be compiled using the

GNU Compiler Collection [FSF (Free Software Foundation), 2005] or Microsoft

VisualC++. The resulting binaries are tested on GNU/Linux, Microsoft Windows

and MacOS X.

8.1.1. Platforms

The predpathan analysis has been integrated into the aiT WCET analysis

framework as a mostly platform-independent module. At the time of this

writing, it supports the analysis of the following hardware platforms:

1. AMD Am486 DX4

2. ARM7

3. Texas Instruments TMS320VC33

4. HC11

5. HCS12 (STAR12)

6. i386

7. LEON2

8. LEON3

9. Renesas M32C

10. Motorola M68020

11. PowerPC MPC55xx

12. PowerPC MPC5xx

13. PowerPC MPC603e

14. PowerPC MPC7448

15. PowerPC MPC755

16. PowerPC PPC750

17. Infineon TriCore (TC1766, TC1796 and TC1797)

18. Infineon PCP2 (TriCore Peripheral Control Processor)

19. V850

80

8.1. Implementation

8.1.2. Prediction File Library

Because prediction files (also called TRC files for historical reasons) tend

to be quite big, they are compressed on-the-fly using the well-known zlib

library [Roelofs and Gailly, 2010]. Their textual representation is more or less

human readable and contains a fair bit of redundancy which allows for good

compression factors (cf. table 8.1).

File Uncompressed Compressed Reduction

[bytes] [bytes]

dcbf 27 759 7791 72 %

do_char_008 49 078 12 504 75 %

dry2_1 406 807 116 443 71 %

edn 54 459 951 8 864 774 84 %

loop3 7 377 700 1 817 575 75 %

minmax 461 981 129 561 72 %

morswi 3 519 312 561 813 84 %

Table 8.1.: Prediction file compression

8.1.3. ILP Solvers

Solving integer linear programs is an NP-hard problem. There are many

different ILP solvers available which all implement different sets of heuristics

to speed up the solving process. Because of that, one solver may solve a

particular problem very quickly but might have problems with others. Thus,

aiT offers the user the choice of a set of ILP solvers:

81

8. Implementation and Evaluation

lp_solve

lp_solve [lp_solve, 2008] is a free (LGPL) linear (integer) programming solver

based on the revised simplex method and the branch-and-bound method for

the integers. It was originally developed by Michel Berkelaar at Eindhoven

University of Technology and is now maintained by the new developers Kjell

Eikland and Peter Notebaert.

CLP+CBC

CLP [CLP, 2009] is a high quality open-source LP solver and is available under

the Common Public License (CPL) 1.0. Its main strengths are its Dual and

Primal Simplex algorithms. It also has a barrier algorithm for Linear and

Quadratic objectives. The branch-and-bound algorithm is implemented in the

CBC [CBC, 2009] part. Both are sub-projects of COIN-OR [COIN-OR, 2009], the

Computational Infrastructure for Operations Research.

GLPK

The GLPK [GLPK, 2009] (GNU Linear Programming Kit) is a callable library

for solving large-scale linear programming (LP), mixed integer programming

(MIP), and other related problems. It is available under the GNU Public License

(GPL).

CPLEX

CPLEX [CPLEX, 2008] is a commercial mixed integer optimizer by ILOG S.A.

which employs state-of-the-art algorithms and techniques to solve difficult

82

8.1. Implementation

mixed integer programs, including problems with quadratic terms in the

objective function and/or constraints.

The predpathan tool has C++ interfaces for lp_solve and CPLEX to pass the

ILP in-memory to the solver libraries. However, it can also write LP files in

formats suitable for the respective command line tools (cf. table 8.2). See

[LPFF, 2008] and [ILOG S. A., and ILOG, Inc., 2006] for a comparison of these

file formats. Figure 8.1 shows how the in-memory toolchain differs from the

standard toolchain using LP files.

Solver In-Memory File

lp_solve ✓ ✓

CLP+CBC ✗ ✓

GLPK ✗ ✓

CPLEX ✓ ✓

Table 8.2.: ILP solvers and their interfaces to predpathan

pipe

predpathan

solver

predsolve2crl2

crl22gdl

Graph

CRL, TRC

LP

ERG

CRL

GDL

CRL

(a) external ILP solver

pipe

predpathan

predsolve2crl2

crl22gdl

Graph

CRL, TRC

CRL

GDL

CRL

ERG

(b) internal ILP solver

Figure 8.1.: predpathan toolchain

83

8. Implementation and Evaluation

8.1.4. ILP Solver Optimization

predpathan generates ILPs which are always of the same type. This fact can

be used to provide hints to the ILP solver. The solvers must be able to solve

any generic integer linear program but might perform better if they know

some properties of the program. For example, the predpathan-generated

programs benefit from a presolving phase in which the solver pre-processes

the program to simplify it before feeding it to the actual solver.

The following settings empirically proved to be advantageous for the lp_solve

solver (the descriptions of the options are taken from the lp_solve reference

guide):

PRESOLVE_ROWS Presolve rows.

PRESOLVE_LINDEP Eliminate linearly dependent rows.

PRESOLVE_REDUCEGCD Reduce (tighten) coefficients in mixed integer mod-

els based on greatest common divisor (GCD) argument.

PRESOLVE_ROWDOMINATE Idenfify and delete qualifying constraints that

are dominated by others, also fixes variables at a bound.

PRESOLVE_COLDOMINATE Deletes variables (mainly binary), that are domi-

nated by others (only one can be non-zero).

PRESOLVE_IMPLIEDSLK Converts qualifying equalities to inequalities by con-

verting a column singleton variable to slack. The routine also detects

implicit duplicate slacks from inequality constraints, fixes and removes

the redundant variable. This latter removal also tends to reduce the risk

of degeneracy. The combined function of this option can have a dramatic

simplifying effect on some models.

PRESOLVE_COLFIXDUAL Variable fixing and removal based on considering

signs of the associated dual constraint.

84

8.1. Implementation

PRESOLVE_BOUNDS Does bound tightening based on full-row constraint in-

formation. This can assist in tightening the objective function bound,

eliminate variables and constraints. At the end of presolve, it is checked

if any variables can be deemed free, thereby reducing any chance that

degeneracy is introduced via this presolve option.

Furthermore, it turned out to be favorable to disable the scaling algorithm

and to use the Devex pricing [Harris, 1973] as the pivot rule.

The commercial CPLEX solver has a much more sophisticated auto-detection

for problem properties and finds the best settings automatically. However,

predpathan indicates a MIP emphasis so that CPLEX’s MIP optimizer empha-

sizes optimality over feasibility. This is because predpathan requires the

solution to be optimal, a feasible but sub-optimal solution is not necessarily

an upper bound for the worst-case execution time.

The same settings can also be used for pathan-generated ILPs which have

basically the same structure but are naturally much smaller.

8.1.5. Visualization

After the ILP is solved, its results need to be mapped back to the control

flow graph, i. e. the calculated critical path (the path which leads to the WCET

prediction) is visualized so that the user can examine it. In case the prediction

shows that the allotted time limit might be exceeded, the visualization is

instrumental in finding the program points which contribute the most to the

overall WCET.

The tool which implements the integration of the ILP results into the CRL2

graph is called predsolve2crl2. Figure 8.1 shows its place in the predpathan

toolchain. The inputs for this phase are the CRL2 graph and the optimal ILP

solution in the ERG format. An example for an ERG file is given in A.3.1.

85

8. Implementation and Evaluation

The ERG file contains the value of the objective function along with the values

(execution counts) for the ILP variables (representing edges). In order to map

ILP variables to CFG items, predpathan uses the following scheme for the

variable names:

e_source_target_item_context_time

During parsing the ERG file, predsolve2crl2 decomposes the variable names

into the following components:

source the source node of this edge in the abstract pipeline state graph.

target the target node of this edge in the abstract pipeline state graph.

item the corresponding item (node or edge) in the control flow graph.

context the context this edge belongs to.

time the cost of this edge in processor cycles.

Using this information, the edge costs are assigned to CFG items. As a next

step, predsolve2crl2 computes the cumulative WCET contributions for each

routine, i. e. the contribution of each routine including the subroutines it

calls.

The resulting graph annotated with the critical path and the cumulative

WCET information is transformed into the Graph Description Language (GDL,

[GDL, 2010]) with the help of the tool crl22gdl. The GDL graph can be viewed

with aiSee [aiSee, 2010] or similar graph visualization programs.

8.1.6. Memory Usage

predpathan compresses the abstract pipeline state graph while reading the

prediction file in order to keep the memory usage low. It uses two separate

86

8.1. Implementation

graph structures: a local graph to store the nodes belonging to the current

basic block in the current context and a global graph which keeps the com-

pressed nodes. When an end-of-block marker is encountered in the prediction

file, the chain compression and the basic block compression are applied on

the local graph. Afterwards, the compressed local graph is merged into the

global graph and the local graph is cleared.

Therefore, the memory usage increases continuously when reading the pre-

diction file, but the maximum usage is usually only the sum of the size of

the largest basic block and the compressed graph preceding this block (cf.

figure 8.2 on the following page). It would be much higher if the uncompressed

abstract pipeline state graph was completely read into memory before apply-

ing the compression algorithms. Uncompressed graphs can be so large that

they do not fit into the main memory of standard PCs anyway, so this process

only now enables the analysis in these cases.

The remaining compression methods are executed after the last block has

been read because they require a complete graph. For example, infeasible

nodes can only be removed in a complete graph because this algorithm would

otherwise remove the nodes which do not have any successor in the current

local graph, if the successors appear later in the prediction file.

Compression method Scope

Chain compression local + global

Basic block compression local

Buddy nodes global

Infeasible nodes global

Chain combination global

ϵ-transition elimination global

Table 8.3.: Local vs. global graph compression

87

8. Implementation and Evaluation

Time

M
em

o
ry

 c
o
n

su
m

p
ti

o
n

size of prediction file

local compression

global com
pression

re
ad

 b
as

ic
 b

lo
ck

Figure 8.2.: Schematic graph of the memory consumption while reading a
prediction file

8.2. Evaluation

This section quantifies the gain in precision offered by the ILP-based path

analysis on abstract pipeline state graphs compared to the other path analysis

methods. It also evaluates the effectiveness of the different graph compression

algorithms and the graph compression as a whole. Furthermore, it examines

the complexity of the generated ILP and of the particular constraint classes.

Last but not least, it proves the advantages of the cache persistence analysis

for some example programs and compares the features of all three presented

path analyses.

8.2.1. Precision

Table 8.4 compares the precision of the different path analysis methods

presented in chapters 4, 5 and 6. The benchmark is the IOM application which

88

8.2. Evaluation

includes user-added flow constraints.

Path Analysis Variant WCET Relative Time

[cycles]

predpathan (lossy, with flow constraints) 1 025 993 158 % 4.4 h

predpathan (without flow constraints) 790 196 122 % 42.9 h

predan 790 196 122 % 8.5 min

pathan (with flow constraints) 770 931 119 % 36.6 min

predpathan (fast, with flow constraints) 648 950 100 % 30.5 h

predpathan (with flow constraints) 648 950 100 % 38.0 h

Table 8.4.: Results for the different path analysis variants for the IOM appli-
cation

8.2.2. Graph Compression

One design goal of predpathan was to reduce the abstract pipeline state

graph so that the resulting ILP becomes small enough to be solvable in a

reasonable amount of time. Table 8.5 shows the results of the algorithms

presented in section 6.1 in non-lossy mode for a set of example programs.

The compression works best for the edn example which has very long basic

blocks containing arithmetic instructions, so that the chain compression and

basic block compression methods are able to reduce the graph by a large

margin (cf. table 8.7 on page 92). In contrast to that, the minmax program has

short basic blocks and many calls/branches so that it cannot be compressed

as well.

All tests above were performed with the pipeline analysis for the PowerPC

MPC755. Table 8.6 on the following page compares the graph compression

results for a number of hardware architectures.

89

8. Implementation and Evaluation

Program Uncompressed Compressed Ratio1

Nodes Edges Nodes Edges

minmax 14 792 22 259 1719 3290 86 %
morswi 52 230 66 940 4556 5170 92 %
drhystone 10 167 13 467 1244 1669 88 %
prime 39 599 56 473 2842 4181 93 %
fac 3129 4802 247 397 92 %
edn 753 507 1 223 574 9746 18 892 99 %

Table 8.5.: Results of the graph compression for several
example programs

1 combined ratio for nodes and edges

Processor Compiler Compression Ratio

drhystone minmax

PowerPC MPC755 DiabData 5.3.1.0 88 % 86 %

HC11 Cosmic 64 % 67 %

i386 Intel 98 % 97 %

LEON3 GCC 3.4.4 97 % 95 %

Renesas M32C IAR 2.11a 62 % 54 %

Motorola M68020 GCC 4.2.1 59 % 61 %

TriCore TC1797 Hightec 3.4.5.1 81 % 76 %

V850E1F Greenhills 67 % 56 %

Table 8.6.: Graph compression comparison for various hardware architec-
tures

As can be seen in table 8.6, the compression works better on architectures

which are supposed to have “bad predictability”: MPC755 (complex pipeline,

instruction and data caches), i386 (decoupled instruction fetch and decode),

LEON3 (caches with valid bits for cache lines) and TriCore TC1797 (complex

memory hierarchy, instruction and data caches) show the highest compression

ratios. The simpler architectures with “good predictability” have lower ratios:

90

8.2. Evaluation

HC11 (no cache, compositional), Renesas M32C (no cache), M68020 (instruction

cache only) and V850E1F (no cache) are all below the 70 % mark.

Figure 8.3 shows the abstract pipeline state graphs for a single example before

and after compression.

(a) Uncompressed (36.595 states)

START

18748

1

155481554715532

15550

15905 1590615903 15904

15952 1595115953

15992 1599415993

16033 1603116032

1607316071 16072

16114 1611216113

1614916148 16150

16190 16189 16188

16230 1623116229

16272 1627016271

1630916308 16310

1634616348 16347

16388 1639016389

1643016431 16429

16465 1646816467

165081650916510

1840218451

END

(b) Compressed (59 states)

Figure 8.3.: Abstract pipeline state graph of do_char_008 before and after
compression

Table 8.7 on the next page shows the contribution of each compression

algorithm to the overall graph compression and the number of rounds needed

to reach the fixed point.

91

8. Implementation and Evaluation

minmax morswi drhystone prime fac edn ∅

Chain

compression 34.16 % 9.38 % 65.48 % 59.94 % 36.70 % 43.71 % 41.56 %

Basic block

compression 31.32 % 4.90 % 19.15 % 13.24 % 23.52 % 46.06 % 23.03 %

Buddy

nodes 31.82 % 2.08 % 11.99 % 24.92 % 29.44 % 9.72 % 18.33 %

Infeasible

nodes 1.79 % 83.62 % 1.26 % 0.24 % 4.42 % 0.11 % 15.24 %

Chain

combination 0.21 % 0.01 % 2.10 % 1.66 % 5.68 % 0.40 % 1.68 %

ϵ-transition

elimination 0.71 % 0.01 % 0.03 % 0.00 % 0.24 % 0.00 % 0.16 %

Fixed point 4 11 9 7 8 135 29

Table 8.7.: Breakdown of the graph compression by algorithm

42%

23%

18%

15%
2%

0%

Chain compression Basic block compression
Buddy nodes Infeasible nodes
Chain combination ε-transition elimination

Figure 8.4.: Average contribution of each compression algorithm

As can be seen in figure 8.4, the local compression methods (chain and basic

block compression) account for the majority of the graph reduction, but the

92

8.2. Evaluation

global methods also contribute significantly to a further refinement of the

pipeline stage graph.

8.2.3. ILP Complexity

The different constraint types have a different impact on the time needed to

solve the ILP. Although it is impossible to say exactly how a single constraint

affects the solving time, given the heuristics which differ between the various

solver implementations, the following is a rough complexity estimate for the

constraint types (ordered from cheap to expensive):

1. Structural constraints: if the ILP only consists of structural constraints,

it is a maximum-cost network flow program. This type of problem can be

solved efficiently as it does not allow for many alternatives during the

branch-and-bound process. The structural constraints are therefore the

cheapest constraint class.

2. Loop constraints: if the loop bodies are small, loop constraints have a

quite local effect, i. e. the corresponding nodes are close to each other in

terms of the length of the paths between them. As the loop constraints

are confined to a single routine (the loop routine), the influence on the

solving time is usually small.

3. Persistence constraints: the cost of a persistence constraint depends on

the number of accesses inside the persistence scope. As a rule of thumb,

a persistence constraint is cheap, if its persistence scope is small.

4. Time-based loop constraints: a constraint of this class replicates a part of

the objective function, which is generally considered bad for the solver.

Again, the dimension of the adverse effect on the solving time depends

on the size of the loop body (including its children in the call graph, i. e.

subroutines).

93

8. Implementation and Evaluation

5. User constraints: flow constraints can span multiple routines and have

the largest potential to have non-local effects. They might increase

the solving time by an order of magnitude because they increase the

search-space for the branch-and-bound step.

8.2.4. ILP Solver Comparison

Table 8.8 on the next page is a performance comparison of the predpathan

toolchains (cf. figure 8.1 on page 83) using different ILP solvers. The three test

programs are all parts of the IOM application:

IOM1 small code snippet consisting of 1 routine, 4 basic blocks and 37 ma-

chine instructions. The prediction file contains 3255 items. The gener-

ated ILP has 70 variables and 31 constraints.

IOM2 medium-sized code snippet consisting of 14 routines, 86 basic blocks, 2

loops and 412 machine instructions. The prediction file contains 398 297

items. The generated ILP has 18 744 variables and 6482 constraints.

IOM3 large code snippet consisting of 25 routines, 338 basic blocks, 9 loops

and 1584 machine instructions. The prediction file contains 24 464 997

items. The generated ILP has 1 418 138 variables and 869 462 constraints.

The tests were performed on an Intel®Core™2 Duo E8400 clocked at 3.0 GHz

with 8 GB of main memory.

94

8.2. Evaluation

Solver1 IOM1 IOM2 IOM3

glpsolve 0.56 s 4.20 s 33.76 h

clpsolve 0.56 s 1.39 s 29.57 h

CPLEX (external) 0.56 s 1.45 s 41.04 min

CPLEX (in-memory) 0.56 s 1.33 s 39.89 min

none 0.55 s 0.92 s 2.62 min

Table 8.8.: ILP solver performance comparison

1 for external solvers, the given time includes the

time needed to generate and write the ILP file with

predpathan

Table 8.8 illustrates that the solvers don’t scale equally well with the prob-

lem size. For small problems, there is virtually no difference between all

solvers. For large problems, however, the well-engineered heuristics of CPLEX

outperform all alternatives.

8.2.5. Cache Persistence Analysis

Table 8.9 shows the effectiveness of the cache persistence analysis in combi-

nation with predpathan.

Program w/o Persistence w/ Persistence Improvement

[cycles] [cycles]

simple 5990 5612 6.31 %

FCGU 23 016 21 483 6.66 %

IOM 707 483 647 386 8.49 %

Table 8.9.: Results of the cache persistence analysis

95

8. Implementation and Evaluation

8.2.6. Features

The final feature matrix for the three path analysis variants can be concluded

from the above results and is given by table 8.10.

Variant Scope User Persis- Loops Busy Precision Speed

con. tence waiting

pathan block ✓ ✗ ✓ ✓ low slow

predan global ✗ ✗ ✗ ✗ high fast

predpathan global ✓ ✓ ✓ ✓ highest slow

Table 8.10.: Feature matrix of the different path analysis variants

96

Chapter

9 Outlook

The following chapter presents several ideas how the predpathan technology

might be adapted for further use-cases and how it might be improved in the

future.

9.1. SQL-based Node Storage

predpathan is already pretty smart about keeping graphs in memory—it

only stores the compressed graph and allocates enough memory to hold the

uncompressed graph for the largest basic block. However, there are micro-

architectures with bad predictability where a static pipeline analysis needs to

split very often and generates a huge state graph for certain input programs.

In this case, the tool needs to page out parts of the graph to a mass-storage

medium because it cannot keep all nodes in-memory. In order to achieve this,

we have experimented with an SQLite-based node storage.

SQLite describes itself as “a software library that implements a self-contained,

serverless, zero-configuration, transactional SQL database engine. SQLite is

the most widely deployed SQL database engine in the world. The source code

for SQLite is in the public domain.” [SQlite, 2010]

A simplified SQL schema to store the abstract pipeline state graph is pictured

in figure 9.1. It proved too expensive to load each node from the database

97

9. Outlook

when it is needed for the graph compression algorithms and to write it back

after modification. Therefore, the algorithms were broken down into several

larger operations which have been formulated directly as SQL queries to

reduce the number of transfers from/to the database.

It remains to be seen if this storage backend can be optimized enough to be

competitive with the standard backend. Although the SQLite database was

configured as an in-process, in-memory database which only swaps to disk

when the graph grows very large, its performance was only sufficient for small

examples.

cost

INTEGERsource
target INTEGER

INTEGER
code_info_id INTEGER

edges

INTEGER PRIMARY KEY

BOOLEAN
BOOLEAN

BOOLEANinfeasible
final
start
id

nodes

INTEGER PRIMARY KEY
INTEGER
INTEGERcontext

item_id
id

code_infos

Figure 9.1.: SQL schema

9.2. More Architectures

In its current state, predpathan already supports a long list of hardware plat-

forms. This ever-expanding list will be extended by even more architectures

in the near future, e. g. with the Infineon C16x/ST10.

98

9.3. More Constraints

9.3. More Constraints

As described in section 7.5 on page 76, it is possible to use the ILP-based

path analysis on abstract pipeline states to improve the analysis of certain

hardware events. As future work, one could explore which events also fall

into this class in addition to the ones already mentioned.

9.4. Parallelization

A means to reduce the analysis runtime is to take advantage of multi-core

processors to speed up predpathan. In order to benefit from the parallelism,

the analysis needs to be broken down into smaller subproblems which can be

run in parallel.

A natural way to partition the graph compression is to process each basic

block in a dedicated worker thread—possibly from a thread pool. Because the

basic block graphs are independent from each other, a worker thread does

not require additional locking to operate on the graph data. After a thread

has finished the compression, it needs to acquire a lock for the global graph

in order to merge it with the newly-compressed subgraph.

Further research is necessary to find out if the basic block level is a good level

of granularity. For input programs with many small basic blocks, the overhead

to copy the uncompressed graphs to thread-local memory, locking and the

increased memory usage can be significant.

Some ILP solvers are already optimized to exploit the opportunities of shared-

memory multi-core machines. For example, CPLEX is able to parallelize the

process of solving nodes of the branch-and-cut tree and offers a special parallel

barrier optimizer.

99

9. Outlook

9.5. Detecting Timing Anomalies

Besides calculating the longest path, the ILP-based path analysis on abstract

pipeline state graphs could be used to detect timing anomalies. For some

split events, the pipeline analysis is able to designate one edge as the local

worst-case. The prediction file format could be extended to mark all other

edges as being a non-local worst-case. After solving the ILP, the evaluation

component could inspect the calculated path to see if it contains any non-local

edge. Any non-local edge which is part of the critical path indicates a timing

anomaly.

9.6. Best-Case Execution Time

For various reasons, customers might also be interested in the best-case

execution time (BCET). This extension could easily be added to predpathan:

the optimization direction of objective function of the ILP needs to be changed

from max to min and the lossy graph compression methods must be changed

to compute the minimum edge costs. The loop analysis needs to compute

minimum iteration counts and the user needs to specify minimum execution

times for busy-waiting loops.

100

Chapter

10 Summary

The preceding chapters presented a new approach to path analysis—an im-

portant component in the WCET analysis complex. Two previously existing

methods have been combined into a new algorithm which is able to replace

both of them. The flexibility and precision that it offers proved to be superior

to both older path analyses.

The gain in precision with the new path analysis increases the range of pro-

grams that can be analyzed with a static WCET analysis. The increased

precision lowers the computed upper bound for the worst-case execution time,

so that programs whose WCET prediction exceeded the allocated time slice

using the older path analysis methods might now become certifiable if the

more precise WCET is smaller than the hard deadline.

In those cases where the static WCET analysis yields results that are above

any measured run-times, companies often resorted to measurement-based

methods. Measurements are of course unsafe, because they do not offer any

guarantees. Therefore, the new path analysis also increases the safety because

fewer people have to rely on hardware measurements.

The implementation has successfully been deployed at several clients of AbsInt

Angewandte Informatik and has been used for the certification of avionics

software.

101

Appendix

A Examples

The following pages contain a listing of examples.

A.1. CRL2 File

Example A.1.1 (CRL2 file). Listing A.1 contains an example CRL2 file (slightly

edited for brevity). The corresponding control flow graph is illustrated in

figure A.1 on page 108.

// -*- Mode: CRL -*-

crl

specification ’f375656e-a41e-4623-aac9-b5dbb261c4bd’

implementation ’18399358-21ba-45b1-8339-33592c28f594’

version 2 1 5 1003000 120770;

attributes global

attribute_change_code,

attribute_safety_code,

clock_rate,

compiler_name,

decoder_name,

input_file_name,

mapping,

reader_name,

start: routine[];

attributes routine

address,

103

A. Examples

end: block,

name,

section,

start: block,

surface_address;

attributes block

address,

buddy: block,

surface_address,

type: enum;

attributes edge

linear: bool,

source: block,

target: block,

type: enum;

attributes instruction

address: address<64>,

surface_address,

width: unsigned<64>;

attributes operation

cat,

conditional,

dst,

ext,

genname,

mnemonic: symbol,

op,

op_id,

predicted_taken,

src,

target,

type;

attributes data

address,

byte_order,

executable,

file_size,

mem_size,

name,

readable,

surface_address,

type,

writable;

104

A.1. CRL2 File

global g1: attribute_change_code=4, attribute_safety_code=4, clock_rate=0x2625a00..0

x2625a00, compiler_name="Tasking Tricore C/C++ compiler v2.0r3", decoder_name="

Infineon TriCore",

input_file_name="main.elf",

mapping="VIVU-4,len=inf,def_unroll=2",

reader_name="ELF 32", start=1*[r0];

routine r0: address=0xd4000018, name="main", section=".text.main", surface_address="

0xd4000018" {

pag context c5: ;

block b0 (start): {

edge e6 (linear) -> b2: ;

}

block b1 (end): ;

block b2: address=0xd4000018, surface_address="0xd4000018" {

edge e8 (true) -> b7: ;

edge e9 (false, linear) -> b3: ;

instruction i10 0xd4000018:2: surface_address="0xd4000018" {

operation o11 "sub.a a10, 8": cat=0*{}, dst=1*[’a10’], ext=3*[2*{

genname=’AGPR’, op=1*[’a10’] }, 2*{ genname=’AGPR’, op=1*[’a10’]

}, 2*{ genname=’Const’,

op=1*[8] }], genname=’suba’, op=3*[’a10’, ’a10’, 8], op_id=0

x20, src=3*[1=’a10’, 8];

}

instruction i12 0xd400001a:2: surface_address="0xd400001a" {

operation o13 "mov d4, d4": cat=0*{}, dst=1*[’d4’], ext=2*[2*{ genname

=’DGPR’, op=1*[’d4’] }, 2*{ genname=’DGPR’, op=1*[’d4’] }],

genname=’mov’,

op=2*[’d4’, ’d4’], op_id=2, src=2*[1=’d4’];

}

instruction i14 0xd400001c:2: surface_address="0xd400001c" {

operation o15 "mov.aa a4, a4": cat=0*{}, dst=1*[’a4’], ext=2*[2*{

genname=’AGPR’, op=1*[’a4’] }, 2*{ genname=’AGPR’, op=1*[’a4’] }

], genname=’movaa’,

op=2*[’a4’, ’a4’], op_id=0x40, src=2*[1=’a4’];

}

instruction i16 0xd400001e:2: surface_address="0xd400001e", 4, 0x20, 0

xd0009ff8] {

operation o17 "ld.w d15, [a10]": cat=1*{ mem_read }, dst=1*[’d15’], ext

=3*[2*{ genname=’DGPR’, op=1*[’d15’] }, 2*{ genname=’AGPR’, op

=1*[’a10’] }, 2*{ genname=’Const’,

op=1*[0] }], genname=’ldw’, op=4*[’d15’, ’a10’, 0, ’Mem’],

op_id=0x54, src=4*[1=’a10’, 0, ’Mem’];

}

instruction i18 0xd4000020:4: surface_address="0xd4000020", 4, 0x20, 0

xd0009ffc] {

105

A. Examples

operation o19 "ld.w d0, [a10] +4": cat=1*{ mem_read }, dst=1*[’d0’],

ext=3*[2*{ genname=’DGPR’, op=1*[’d0’] }, 2*{ genname=’AGPR’, op

=1*[’a10’] }, 2*{ genname=’Const’,

op=1*[+4] }], genname=’ldw’, op=4*[’d0’, ’a10’, +4, ’Mem’],

op_id=0x9000009, src=4*[1=’a10’, +4, ’Mem’];

}

instruction i20 0xd4000024:4: surface_address="0xd4000024" {

operation o21 "jlt d0, d15, 0xd4000034 <0xd4000034>": cat=2*{ branch,

taken }, conditional=1, ext=4*[1=2*{ genname=’DGPR’, op=1*[’d0’]

}, 2*{ genname=’DGPR’,

op=1*[’d15’] }, 2*{ genname=’Const’, op=1*[0xd400003a] }],

genname=’j_cond’, op=4*[’lt’, ’d0’, ’d15’, 0xd400003a],

op_id=0x3f, predicted_taken=0, src=4*[’lt’, ’d0’, ’d15’, 0

xd4000034], target=0xd4000034,

type=’branch’;

}

}

block b3: address=0xd4000028, surface_address="0xd4000028" {

edge e23 (true, linear) -> b7: ;

instruction i24 0xd4000028:4: surface_address="0xd4000028" {

operation o25 "lea a4, [a10] +0": cat=0*{}, dst=1*[’a4’], ext=3*[2*{

genname=’AGPR’, op=1*[’a4’] }, 2*{ genname=’AGPR’, op=1*[’a10’]

}, 2*{ genname=’Const’, op=1*[

+0] }], genname=’lea’, op=3*[’a4’, ’a10’, +0], op_id=0

xa000049, src=3*[1=’a10’, +0];

}

instruction i26 0xd400002c:4: surface_address="0xd400002c" {

operation o27 "lea a5, [a10] +4": cat=0*{}, dst=1*[’a5’], ext=3*[2*{

genname=’AGPR’, op=1*[’a5’] }, 2*{ genname=’AGPR’, op=1*[’a10’]

}, 2*{ genname=’Const’, op=1*[

+4] }], genname=’lea’, op=3*[’a5’, ’a10’, +4], op_id=0

xa000049, src=3*[1=’a10’, +4];

}

instruction i28 0xd4000030:2: surface_address="0xd4000030" {

operation o29 "mov.aa a4, a4": cat=0*{}, dst=1*[’a4’], ext=2*[2*{

genname=’AGPR’, op=1*[’a4’] }, 2*{ genname=’AGPR’, op=1*[’a4’] }

], genname=’movaa’,

op=2*[’a4’, ’a4’], op_id=0x40, src=2*[1=’a4’];

}

instruction i30 0xd4000032:2: surface_address="0xd4000032" {

operation o31 "mov.aa a5, a5": cat=0*{}, dst=1*[’a5’], ext=2*[2*{

genname=’AGPR’, op=1*[’a5’] }, 2*{ genname=’AGPR’, op=1*[’a5’] }

], genname=’movaa’,

op=2*[’a5’, ’a5’], op_id=0x40, src=2*[1=’a5’];

}

}

block b7: address=0xd4000034, surface_address="0xd4000034" {

edge e128 (true) -> b8: ;

106

A.1. CRL2 File

instruction i129 0xd4000034:2: surface_address="0xd4000034" {

operation o130 "mov d2, d2": cat=0*{}, dst=1*[’d2’], ext=2*[2*{

genname=’DGPR’, op=1*[’d2’] }, 2*{ genname=’DGPR’, op=1*[’d2’] }

], genname=’mov’,

op=2*[’d2’, ’d2’], op_id=2, src=2*[1=’d2’];

}

instruction i131 0xd4000036:2: surface_address="0xd4000036" {

operation o132 "j 0xd4000082 <0xd4000082>": cat=2*{ branch, taken }, ext

=1*[2*{ genname=’Const’, op=1*[0xd4000082] }], genname=’j’, op

=1*[0xd4000082],

op_id=0x3c, src=1*[0xd4000082], target=0xd4000082, type=’branch’;

}

}

block b8: address=0xd4000082, surface_address="0xd4000082" {

edge e134 (true) -> b1: ;

instruction i135 0xd4000082:2: surface_address="0xd4000082" {

operation o136 "ret": cat=2*{ return, taken }, genname=’ret’, op_id=0

x9000, type=’return’;

}

}

}

data d308: address=0xd4000008, byte_order=’x0123’, executable=1, file_size=8,

mem_size=8, name=".text.libc.csa_areas", readable=1, surface_address="0xd4000008

", type=’code’, writable=0;

end

Listing A.1: CRL2 description of a control flow graph

107

A. Examples

main

0xd4000018

sub.a a10, 8

mov d4, d4

mov.aa a4, a4

ld.w d15, [a10]

ld.w d0, [a10] +4

jlt d0, d15, 0xd4000034 <0xd4000034>

0xd4000028

lea a4, [a10] +0

lea a5, [a10] +4

mov.aa a4, a4

mov.aa a5, a5

0xd4000034

mov d2, d2

j 0xd4000082 <0xd4000082>

0xd4000082

ret

end

Figure A.1.: Control flow graph for listing A.1

108

A.2. Prediction File

A.2. Prediction File

Example A.2.1 (Prediction file). Listing A.2 contains an excerpt from a predic-

tion file.

S1

n66:0

e1d17c16i0x80000114,0x80000114,0

e17d28c10i0x80000114,0x80000118,0

e28d61c32i0x80000114,0x8000011a,0

e61d80c18i0x80000114,0x8000011e,0

e80d83c2i0x80000114,0x80000122,0

k83

N

t69:0

e83d89c5i0x80000114,0x80000124,0

k89

T

t68:0

e83d94c5i0x80000114,0x80000124,0

k94

T

B

n76:0

e94d106c12i0x80000126,0x80000126,0

e106d117c10i0x80000126,0x8000012a,0

k117

N

t80:0

e117d144c26i0x80000126,0x8000012e,0

k144

T

B

n4:0

e144d159c15i0x80000094,0x80000094,0

e159d186c26i0x80000094,0x80000098,0

e186d204c17i0x80000094,0x8000009c,0

e204d222c17i0x80000094,0x800000a0,0

e222d236c13i0x80000094,0x800000a2,0

e236d246c9i0x80000094,0x800000a4,0

e246d274c27i0x80000094,0x800000a6,0

k274

N

t6:0

e274d294c19i0x80000094,0x800000a8,0

k294

109

A. Examples

T

B

n86:0

e294d307c13i0x80000134,0x80000134,0

k307

N

t87:0

e307d311c3i0x80000134,0x80000136,0|a

k311

T

B

n90:0

e89d328c17i0x80000138,0x80000138,0

k328

N

t92:0

e328d332c3i0x80000138,0x8000013a,0

k332

T

n110:0

N

t91:0

e328d335c3i0x80000138,0x8000013a,0

k335

T

B

n95:0

e335d343c8i0x8000013c,0x8000013c,0

e343d356c12i0x8000013c,0x8000013e,0

e356d366c9i0x8000013c,0x80000140,0

k366

N

t99:0

e366d393c26i0x8000013c,0x80000142,0

k393

T

B

n18:0

e393d408c15i0x800000d4,0x800000d4,0

e408d435c26i0x800000d4,0x800000d8,0

e435d453c17i0x800000d4,0x800000dc,0

k453

N

t21:0

e453d459c5i0x800000d4,0x800000e0,0

k459

T

t20:0

110

A.3. ERG File

e453d464c5i0x800000d4,0x800000e0,0

k464

T

B

Listing A.2: Representation of an abstract pipeline state graph in a prediction

file

A.3. ERG File

An ERG file stores a solution for an ILP. It consists of two sections:

1. the value of the objective function

2. the ILP variables and their values in the solution

Example A.3.1 (ERG file). Listing A.3 contains an example for an ERG file.

Value of objective function: 881

e_677_759_39_0_40 1

e_307_311_87_0_3 0

e_948_968_6_2_19 1

e_117_144_80_0_26 0

e_1300_1320_124_0_19 1

e_328_332_92_0_3 0

e_328_335_91_0_3 1

e_294_307_86_0_13 0

e_759_763_41_0_3 0

e_759_766_40_0_3 1

e_335_366_95_0_29 1

e_664_677_37_0_13 1

e_763_1050_58_0_45 0

e_1210_1300_123_0_50 1

e_459_759_39_0_58 0

e_514_644_4_1_124 1

e_1199_1206_116_0_7 1

e_274_294_6_0_19 0

e_311_1192_110_0_30 0

e_89_328_90_0_17 1

e_83_89_69_0_5 1

e_83_94_68_0_5 0

e_1_83_66_0_78 1

111

A. Examples

e_393_453_18_0_58 1

e_1196_1225_121_0_15 0

e_1225_1300_123_0_35 0

e_1103_1110_107_0_6 1

e_332_1192_110_0_32 0

e_1192_1196_112_0_3 0

e_1192_1199_111_0_3 1

e_766_785_45_0_18 1

e_487_514_30_0_26 1

e_982_1050_58_0_41 1

e_785_818_49_0_32 1

e_644_664_6_1_19 1

e_464_487_26_0_22 1

e_1050_1065_59_0_14 1

e_453_459_21_0_5 0

e_453_464_20_0_5 1

e_968_982_56_0_14 1

e_366_393_99_0_26 1

e_818_948_4_2_124 1

e_1206_1210_117_0_3 1

e_1065_1103_106_0_38 1

e_144_274_4_0_124 0

e_94_117_76_0_22 0

e_1110_1192_110_0_25 1

e_18446744073709551615_1_0_4294967295_0 1

e_1320_18446744073709551614_0_4294967295_0 1

Listing A.3: ILP solution stored in an ERG file

A.4. GDL File

Example A.4.1 (GDL file). Listing A.4 contains an example for a GDL file

(slightly edited for brevity).

graph: {

title: "Crl2Gdl Graph"

classname 3: "Basic Block Edges"

graph: {

title: "r0/*main*/"

label: "main"

graph: {

title: "/*r0:main*/b2/*main*/"

label: "0xd4000018"

112

A.4. GDL File

info1: "Source: minmax.c:29"

info2: "0xd4000018"

node: {

title: "i10/*main*/"

label: "sub.a a10, 8"

info1: "Source: minmax.c:29"

info2: "0xd4000018 = virt(0xd4000018)"

}

node: {

title: "i12"

label: "mov d4, d4"

info1: "Source: minmax.c:30"

info2: "0xd400001a = virt(0xd400001a)"

}

node: {

title: "i14"

label: "mov.aa a4, a4"

info1: "Source: minmax.c:30"

info2: "0xd400001c = virt(0xd400001c)"

}

node: {

title: "i16"

label: "ld.w d15, [a10]"

info1: "Source: minmax.c:31"

info2: "0xd400001e = virt(0xd400001e)"

}

node: {

title: "i18"

label: "ld.w d0, [a10] +4"

info1: "Source: minmax.c:32"

info2: "0xd4000020 = virt(0xd4000020)"

}

node: {

title: "i20"

label: "jlt d0, d15, 0xd4000034 <0xd4000034>"

info1: "Source: minmax.c:32"

info2: "0xd4000024 = virt(0xd4000024)"

}

}

edge: { source: "i20" target: "i34" thickness: 4 class: 3 }

edge: { source: "i20" target: "i24" thickness: 4 class: 3 }

graph: {

title: "/*r0:main*/b3"

label: "0xd4000028"

info1: "Source: minmax.c:32"

info2: "0xd4000028"

node: {

title: "i24"

113

A. Examples

label: "lea a4, [a10] +0"

info1: "Source: minmax.c:32"

info2: "0xd4000028 = virt(0xd4000028)"

}

node: {

title: "i26"

label: "lea a5, [a10] +4"

info1: "Source: minmax.c:32"

info2: "0xd400002c = virt(0xd400002c)"

}

node: {

title: "i28"

label: "mov.aa a4, a4"

info1: "Source: minmax.c:32"

info2: "0xd4000030 = virt(0xd4000030)"

}

node: {

title: "i30"

label: "mov.aa a5, a5"

info1: "Source: minmax.c:32"

info2: "0xd4000032 = virt(0xd4000032)"

}

}

edge: { source: "i30" target: "i34" thickness: 4 class: 3 }

graph: {

title: "/*r0:main*/b4"

label: "0xd4000034"

info1: "Source: minmax.c:35"

info2: "0xd4000034"

node: {

title: "i34"

label: "mov d2, d2"

info1: "Source: minmax.c:35"

info2: "0xd4000034 = virt(0xd4000034)"

}

node: {

title: "i36"

label: "j 0xd4000082 <0xd4000082>"

info1: "Source: minmax.c:35"

info2: "0xd4000036 = virt(0xd4000036)"

}

}

edge: { source: "i36" target: "i40" thickness: 4 class: 3 }

graph: {

title: "/*r0:main*/b5"

label: "0xd4000082"

info1: "Source: minmax.c:36"

info2: "0xd4000082"

114

A.5. Abstract Pipeline State

node: {

title: "i40"

label: "ret"

info1: "Source: minmax.c:36"

info2: "0xd4000082 = virt(0xd4000082)"

}

}

edge: { source: "i40" target: "/*r0:main*/b1" thickness: 4 class: 3 }

node: {

title: "/*r0:main*/b1"

label: "end"

info1: ""

info2: "/*r0:main*/b1"

}

}

}

Listing A.4: Graph Description Language example

A.5. Abstract Pipeline State

Example A.5.1 (Abstract Pipeline State). Listing A.5 contains the textual repre-

sentation of an abstract pipeline state (including the abstract cache) for the

Motorola MPC755.

Jitter: [1.5, 2.0]=0x18

Fetch and Branch Prediction Unit:

=================================

State: ignore(0x194, 3)

Instruction index: 0

Prediction[0]: NONE, branch: NONE, ctx: NONE

Prediction[1]: NONE, branch: NONE, ctx: NONE

SPR knowledge: LR: 1, CTR: 1, CR: 1

external stall: 0

SpecSplitState: invalid

Dispatch Unit:

==============

Free shadow registers: (GPR: 5, FPR: 6, CTR: 1, CR: 0, LR: 1)

Completion Unit:

================

CQ: empty

115

A. Examples

Retirement Delay Count: 0

Integer Unit 1:

===============

Reservation Station: NONE

Working Stage: NONE, cycles 0

Integer Unit 2:

===============

Reservation Station: NONE

Working Stage: NONE, cycles 0

System Register Unit:

=====================

Reservation Station: NONE

Working Stage: NONE, cycles 0

EIEIO: NONE

Floating Point Unit:

====================

Reservation Station: NONE

Working Stage[0]: NONE, cycles 0

Working Stage[1]: NONE

Working Stage[2]: NONE

Pipeline is not blocked.

Load/Store Unit:

================

Reservation Station[0]: NONE

Reservation Station[1]: NONE

Effective Address Stage: NONE

Access Stage: NONE

Store Queue[0]: [NONE-NONE](0), index: NONE

Store Queue[1]: [NONE-NONE](0), index: NONE

Store Queue[2]: [NONE-NONE](0), index: NONE

State: idle

Load/Store Clash Index: 0, recheck required: yes

Number of Accesses: 0

Memory Index: 0

Store is not prioritized.

ICache Busy: 0, DCache Busy: 0

BU_IC: 0x30(2) cacheable CL: 0x30, FF: 1, FGET: 4, FGO: 1(0) BUSY=0

BU_DC: [0x400004, 0x400004] (4) write, DCLASH: 0, DGET: 1, DGO=1(0) BUSY=0

BU_ACC: [(SRC: Write, ADDR: [0x3ffff8--0x3ffff8] , LEN: 4, STATE: AACK, CNT: 1),

(SRC: Write, ADDR: [0x3ffffc--0x3ffffc] , LEN: 4, STATE: TS, CNT: 1)]

BU_IDATA: 0, BU_DDATA: 0

BU_IDO: 0, BU_DDO: 0, BU_DELAY: 1

116

A.5. Abstract Pipeline State

BU_TS([0x3ffff8,0x3ffff8], RW:0[data], Len:4)

CSU/DBSM: State=NONE Addr=[NONE,NONE], Len=0..7 RW=0 Ctr=0 ta_n=1

CSU/Reg: Ctr=0

CSU/CE: AACK=PATCH, TAG_REG=[0x3fffe8,0x3fffe8] (invalid), DW:0 Purge:0

INSERV: PATCH, TSPATCH=0, TYPATCH=00,

eodOutPatch: 0(0), curLen=0..7, curTy=02

aackBE_r=1(1) Reads=0

DataSelect=PATCH, EodOccursFirst=0, AACK_EDC_slave=1

TS_EDC_slave=1, TS_BE_W=1, TS_BE_R=1

EDCengine=IDLE, PipedRead=1, CurAddr=[0x3fffe8,0x3fffe8]

TyCPU=01, EODoutEDCslave=0

CSU/SD: RowOpen=[0x0--0x0, 0x0--0xffff, 0x0--0xffff, 0x0--0xffff]

PageHit=0, State=ROWACT, doActivate=0, doPrecharge=0

TSsdramIdl=1, Cmd=DC, WaitRAC=0, stopApcb=0

TSsdram=1, WaitRD=0, WaitWR=0, BrstCntR=0, BrstCntW=0

singleTerm=0, TA_BE_V_O=1

CSU/PCI: R_TA=1, PPCState=IDLE, PCIState=IDLE

Busy=0, Gnt=1, curAddr=[NONE,NONE], Write,

brst=0, reqCnt=0, STScnt=0, TAread=1, TAwrite=1

mrxCnt=0, mtxCnt=0, cycles=[0-0]

CSU/VHDL: GO=(S:1, P:1, R:1) AACK=(S:1, P:1, R:1) TA=(S:1, P:1, R:1)

STOPwrite=0, BE=(TS:1, AACK=1, TA=1(1), EODIN:0)

DS_TA:0 DS_AACK:0

NEXTBRANCH: 1

BRANCH: TFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

SPEC: (63, 63)

BRANCHES: [0,

0, 0, 0, 0, 0, 0, 0, 0]

REL_REF_ACCESS[0]: NONE

REL_REF_CONTEXT[0]: NONE

REL_REF_ACCESS[1]: NONE

REL_REF_CONTEXT[1]: NONE

PERS_ID: -1

ACT_CTX: 0

NOP_CNT: 0

NOP_SPEC_CNT: 0

Instruction Cache:

must:

1: {{0x20}{}{}{}{}{}{}{}}

11: {{0x160}{}{}{}{}{}{}{}}

12: {{0x180}{}{}{}{}{}{}{}}

Data Cache:

must:

127: {{0x3fffe0}{}{}{}{}{}{}{}}

Evictions: 0

Listing A.5: MPC755 pipeline state

117

List of Tables

3.1 Calculation rules for ⊕ and ⊗ – 22

5.1 Splits during local WCET analysis for the MPC755 – 43

5.2 Prediction file syntax – 46

7.1 Extended prediction file syntax for persistence events – 74

8.1 Prediction file compression – 81

8.2 ILP solvers and their interfaces to predpathan – 83

8.3 Local vs. global graph compression – 87

8.4 Results for the different path analysis variants for the IOM appli-

cation – 89

8.5 Results of the graph compression for several example pro-

grams – 90

8.6 Graph compression comparison for various hardware architec-

tures – 90

8.7 Breakdown of the graph compression by algorithm – 92

8.8 ILP solver performance comparison – 95

8.9 Results of the cache persistence analysis – 95

8.10 Feature matrix of the different path analysis variants – 96

119

List of Figures

1.1 Typical probability of observed execution times – 2

2.1 aiT toolchain with ILP generator – 10

2.2 aiT toolchain with prediction file – 11

2.3 aiT toolchain with ILP solver and prediction file – 12

3.1 Complete lattice of the abstract values – 22

3.2 Local consistency – 23

3.3 The Simplex algorithm in R2
≥0 – 27

3.4 Domain of feasibility of an ILP (grid points) and the correspond-

ing domain of the relaxed problem (shaded area) – 29

4.1 Basic blocks with pipeline states and edges – 32

4.2 A simple loop with all the important edges – 35

4.3 Use-case for user constraints – 38

5.1 Split due to unknown cache state – 42

6.1 Chain compression example – 53

6.2 Buddy Nodes (same incoming edges with equal costs) – 60

6.3 Buddy Nodes (same outgoing edges with equal costs) – 61

6.4 Merged Buddy Nodes – 61

6.5 Chain combination example – 65

7.1 Update of an abstract fully associative cache – 70

7.2 Join function for the must analysis – 71

121

List of Figures

7.3 Join function for the may analysis – 72

7.4 Code that benefits from the cache persistence analysis – 73

8.1 predpathan toolchain – 83

8.2 Schematic graph of the memory consumption while reading a

prediction file – 88

8.3 Abstract pipeline state graph of do_char_008 before and after

compression – 91

8.4 Average contribution of each compression algorithm – 92

9.1 SQL schema – 98

A.1 Control flow graph for listing A.1 – 108

122

Listings

4.1 Infeasible code – 33

4.2 Busy waiting loop – 36

4.3 Mode-driven code – 37

A.1 CRL2 description of a control flow graph – 103

A.2 Representation of an abstract pipeline state graph in a prediction

file – 109

A.3 ILP solution stored in an ERG file – 111

A.4 Graph Description Language example – 112

A.5 MPC755 pipeline state – 115

123

List of Algorithms

1 Topological sort – 54

2 Depth-first search – 55

3 Single-source multiple-targets longest-path – 56

4 Multiple-sources multiple-targets longest-path – 56

5 Purge infeasible nodes – 58

6 Chain combination – 63

125

Bibliography

[AbsInt Angewandte Informatik GmbH, a] AbsInt Angewandte Informatik

GmbH. AbsInt: Advanced Compiler Technology for Embedded Systems

[online]. Available from: http://www.absint.com/.

[AbsInt Angewandte Informatik GmbH, b] AbsInt Angewandte Informatik

GmbH. aiT: Worst-Case Execution Time Analyzers [online]. Available from:

http://www.absint.de/ait/.

[AbsInt Angewandte Informatik GmbH, 2006a] AbsInt Angewandte Infor-

matik GmbH (2006a). Path Analysis on Prediction Files in aiT for PowerPC

MPC755.

[AbsInt Angewandte Informatik GmbH, 2006b] AbsInt Angewandte Infor-

matik GmbH (2006b). Worst-Case Execution Time Analyzer aiT for PowerPC

MPC755 (Hurricane Chip Set).

[aiSee, 2010] aiSee Graph Layout Software [online]. (2010). Available from:

http://www.aisee.com/.

[Allen, 1970] Allen, F. E. (1970). Control flow analysis. ACM SIGPLAN Notices,

5(7):1–19.

[CBC, 2009] CBC [online]. (2009). Available from: http://www.coin-or.

org/projects/Cbc.xml.

127

http://www.absint.com/
http://www.absint.de/ait/
http://www.aisee.com/
http://www.coin-or.org/projects/Cbc.xml
http://www.coin-or.org/projects/Cbc.xml

Bibliography

[Chvátal, 1983] Chvátal, V. (1983). Linear Programming. W. H. Freeman and

Company.

[CLP, 2009] CLP [online]. (2009). Available from: http://www.coin-or.org/

projects/Clp.xml.

[COIN-OR, 2009] COIN-OR [online]. (2009). Available from: http://www.

coin-or.org/index.html.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract In-

terpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixed Points. In Conference Record of

the 4th ACM Symposium on Principles of Programming Languages, pages

238–252, Los Angeles. ACM Press.

[Cousot and Cousot, 1992] Cousot, P. and Cousot, R. (1992). Abstract Inter-

pretation Frameworks. Journal of Logic and Computation, 2(4):511–547.

[CPLEX, 2008] ILOG CPLEX [online]. (2008). Available from: http://www.

ilog.com/products/cplex.

[Cullmann, 2006] Cullmann, C. (2006). Statische Berechnung sicherer

Schleifengrenzen auf Maschinencode. Diplomarbeit an der Universität des

Saarlandes FB 6.2 (Wilhelm), Universität des Saarlandes, Saarbrücken. Avail-

able from: http://babylon2k.de/publications/diplom.pdf.

[Esterel Technologies,] Esterel Technologies. SCADE Suite – The Standard

for the Development of Safety-Critical Embedded Software in the Avionics

Industry [online]. Available from: http://www.esterel-technologies.

com/products/scade-suite/overview.html.

[Ferdinand, 1997] Ferdinand, C. (1997). Cache Behavior Prediction for Real-

Time Systems. PhD thesis, Universität des Saarlandes.

[Ferdinand and Heckmann, 2008] Ferdinand, C. and Heckmann, R. (2008).

128

http://www.coin-or.org/projects/Clp.xml
http://www.coin-or.org/projects/Clp.xml
http://www.coin-or.org/index.html
http://www.coin-or.org/index.html
http://www.ilog.com/products/cplex
http://www.ilog.com/products/cplex
http://babylon2k.de/publications/diplom.pdf
http://www.esterel-technologies.com/products/scade-suite/overview.html
http://www.esterel-technologies.com/products/scade-suite/overview.html

Bibliography

Worst-Case Execution Time – A Tool Provider’s Perspective. In 11th IEEE

International Symposium on Object/component/service-oriented Real-time

distributed Computing ISORC 2008, Orlando, Florida, USA.

[Ferdinand et al., 1999] Ferdinand, C., Kästner, D., Langenbach, M., Martin, F.,

Schmidt, M., Schneider, J., Theiling, H., Thesing, S., and Wilhelm, R. (1999).

Run-Time Guarantees for Real-Time Systems - The USES Approach. In

Proceedings of Informatik ’99 - Arbeitstagung Programmiersprachen, pages

410–419.

[Freescale Semiconductor, Inc., 2001] Freescale Semiconductor, Inc. (2001).

MPC750 RISC Microprocessor Family User’s Manual. Available from: http:

//www.freescale.com/files/32bit/doc/ref_manual/MPC750UM.pdf.

[Freescale Semiconductor, Inc., 2005] Freescale Semiconductor, Inc. (2005).

MPC755 RISC Microprocessor Hardware Specifications, 7. edition.

Available from: http://www.freescale.com/files/32bit/doc/data_

sheet/MPC755EC.pdf.

[Fritz, 2001] Fritz, N. (2001). Generische Value-Analyse für Maschinenpro-

gramme. Diplomarbeit an der Universität des Saarlandes FB 6.2 (Wilhelm),

Universität des Saarlandes.

[FSF (Free Software Foundation), 2005] FSF (Free Software Foundation). GNU

Compiler Collection [online]. (1987–2005). Available from: http://gcc.

gnu.org.

[GDL, 2010] Graph Description Language in a Nutshell [online]. (2010). Avail-

able from: http://www.aisee.com/gdl/nutshell/.

[GLPK, 2009] GLPK [online]. (2009). Available from: http://www.gnu.org/

software/glpk/.

[Harris, 1973] Harris, P. M. (1973). Pivot Selection Methods of the Devex LP

Code. Mathematical Programming, 5(1):1–28.

129

http://www.freescale.com/files/32bit/doc/ref_manual/MPC750UM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MPC750UM.pdf
http://www.freescale.com/files/32bit/doc/data_sheet/MPC755EC.pdf
http://www.freescale.com/files/32bit/doc/data_sheet/MPC755EC.pdf
http://gcc.gnu.org
http://gcc.gnu.org
http://www.aisee.com/gdl/nutshell/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

Bibliography

[ILOG S. A., and ILOG, Inc., 2006] ILOG S. A., and ILOG, Inc. (2006). ILOG CPLEX

10.0 File Formats. Available from: http://www.lix.polytechnique.fr/

~liberti/teaching/xct/cplex/reffileformatscplex.pdf.

[International Organization for Standardization, 2003] International Organi-

zation for Standardization (2003). ISO/IEC 14882:2003: Programming

Languages — C++. American National Standards Institute, International

Organization for Standardization, Second edition. Available from: http:

//www.iso.org/iso/catalogue_detail.htm?csnumber=38110.

[Kästner and Wilhelm, 2002] Kästner, D. and Wilhelm, S. (2002). Generic con-

trol flow reconstruction from assembly code. In ACM SIGPLAN Notices,

volume 37, pages 46–55.

[Li and Malik, 1995a] Li, Y.-T. S. and Malik, S. (1995a). Performance Analysis

of Embedded Software Using Implicit Path Enumeration. In Proceedings of

the 32nd ACM/IEEE Design Automation Conference.

[Li and Malik, 1995b] Li, Y.-T. S. and Malik, S. (1995b). Performance Analysis

of Embedded Software Using Implicit Path Enumeration. In Proceedings of

the ACM SIGPLAN 1995 Workshop on Languages, Compilers, & Tools for

Real-Time Systems (LCT-RTS), number 30(11) in SIGPLAN Notices, pages

88–98, La Jolla, California, USA. ACM Press.

[Li et al., 1995] Li, Y.-T. S., Malik, S., and Wolfe, A. (1995). Performance Estima-

tion of Embedded Software with Instruction Cache Modeling. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design.

[LPFF, 2008] LP file format [online]. (2008). Available from: http://lpsolve.

sourceforge.net/5.5/lp-format.htm.

[lp_solve, 2008] lp_solve [online]. (2008). Available from: http://lp_solve.

sourceforge.net.

[Lucas et al., 2009] Lucas, P., Parshin, O., and Wilhelm, R. (2009). Operating

130

http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/reffileformatscplex.pdf
http://www.lix.polytechnique.fr/~liberti/teaching/xct/cplex/reffileformatscplex.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38110
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38110
http://lpsolve.sourceforge.net/5.5/lp-format.htm
http://lpsolve.sourceforge.net/5.5/lp-format.htm
http://lp_solve.sourceforge.net
http://lp_solve.sourceforge.net

Bibliography

Mode Specific WCET Analysis. In Seidner, C., editor, Proceedings of the

3rd Junior Researcher Workshop on Real-Time Computing (JRWRTC), pages

15–18.

[Martin, 1999] Martin, F. (1999). Generating Program Analyzers. PhD thesis,

Universität des Saarlandes.

[Martin et al., 1998] Martin, F., Alt, M., Wilhelm, R., and Ferdinand, C. (1998).

Analysis of Loops. In Koskimies, K., editor, Proceedings of the 7th Interna-

tional Conference on Compiler Construction, volume 1383 of Lecture Notes

in Computer Science, pages 80–94. Springer.

[Matthies, 2006] Matthies, N. (2006). Präzise Bestimmung längster Pro-

grammpfade anhand von Zustandsgraphen unter Berücksichtigung von

Schleifen-Nebenbedingungen. Diplomarbeit an der Universität des Saarlan-

des FB 6.2 (Wilhelm), Universität des Saarlandes.

[May et al., 1994] May, C., Silha, E., Simpson, R., and Warren, H., editors (1994).

The PowerPC Architecture – A Specification for a New Family of RISC Proces-

sors. Morgan Kaufmann Publishers, Second edition.

[Nemhauser and Wolsey, 1988] Nemhauser, G. and Wolsey, L. (1988). Integer

and Combinatorial Optimization. John Wiley and Sons, New York.

[Nielson et al., 1999] Nielson, F., Nielson, H. R., and Hankin, C. L. (1999). Prin-

ciples of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,

USA.

[Puschner and Koza, 1995] Puschner, P. and Koza, C. (1995). Computing Maxi-

mum Task Execution Times with Linear Programming Techniques. Technical

report, Technische Universität Wien, Institut für Technische Informatik, Vi-

enna, Austria.

[Reineke et al., 2006] Reineke, J., Wachter, B., Thesing, S., Wilhelm, R.,

Polian, I., Eisinger, J., and Becker, B. (2006). A Definition and

131

Bibliography

Classification of Timing Anomalies. In Proceedings of 6th In-

ternational Workshop on Worst-Case Execution Time (WCET) Analy-

sis. Available from: http://rw4.cs.uni-saarland.de/~reineke/

publications/TimingAnomaliesWCET06.pdf.

[Roelofs and Gailly, 2010] Roelofs, G. and Gailly, J.-I. zlib – A Massively Spiffy

Yet Delicately Unobtrusive Compression Library [online]. (2010). Available

from: http://www.zlib.net.

[Schlickling, 2005] Schlickling, M. (2005). Generisches Slicing auf Maschi-

nencode. Diplomarbeit an der Universität des Saarlandes FB 6.2 (Wil-

helm), Universität des Saarlandes, Saarbrücken. Available from: http:

//rw4.cs.uni-sb.de/~schlickling/GenStaSlicing.pdf.

[Schrijver, 1996] Schrijver, A. (1996). Theory of Linear and Integer Program-

ming. John Wiley and Sons.

[Sharir and Pnueli, 1981] Sharir, M. and Pnueli, A. (1981). Two Approaches

to Interprocedural Data Flow Analysis. In Muchnick, S. S. and Jones, N. D.,

editors, Program Flow Analysis: Theory and Applications, chapter 7, pages

189–233. Prentice-Hall.

[Sicks, 1997] Sicks, M. (1997). Adreßbestimmung zur Vorhersage des Verhal-

tens von Daten-Caches. Diplomarbeit an der Universität des Saarlandes FB

6.2 (Wilhelm), Universität des Saarlandes.

[Souyris et al., 2005] Souyris, J., Pavec, E. L., Himbert, G., Jégu, V., Borios, G.,

and Heckmann, R. (2005). Computing The Worst Case Execution Time Of

An Avionics Program By Abstract Interpretion. In Proceedings of the 5th

International Workshop on Worst-Case Execution Time Analysis (WCET2005),

pages 21–24. Available from: http://artist.cs.uni-sb.de/WCET05/

Papers/WCET2005Proceedings.pdf.

[SQlite, 2010] SQLite – a self-contained, serverless, zero-configuration, trans-

132

http://rw4.cs.uni-saarland.de/~reineke/publications/TimingAnomaliesWCET06.pdf
http://rw4.cs.uni-saarland.de/~reineke/publications/TimingAnomaliesWCET06.pdf
http://www.zlib.net
http://rw4.cs.uni-sb.de/~schlickling/GenStaSlicing.pdf
http://rw4.cs.uni-sb.de/~schlickling/GenStaSlicing.pdf
http://artist.cs.uni-sb.de/WCET05/Papers/WCET2005Proceedings.pdf
http://artist.cs.uni-sb.de/WCET05/Papers/WCET2005Proceedings.pdf

Bibliography

actional SQL database engine [online]. (2010). Available from: http:

//sqlite.org/.

[Stein, 2006] Stein, I. (2006). ILP-based Path Analysis on Prediction Files.

Technical report, AbsInt Angewandte Informatik GmbH.

[Stein and Martin, 2007] Stein, I. and Martin, F. (2007). Analysis of Path Exclu-

sion at the Machine Code Level. In Rochange, C., editor, 7th Intl. Workshop

on Worst-Case Execution Time (WCET) Analysis, Dagstuhl, Germany. Interna-

tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss

Dagstuhl, Germany. Available from: http://drops.dagstuhl.de/opus/

volltexte/2007/1196.

[Theiling, 2003] Theiling, H. (2003). Control Flow Graphs for Real-Time System

Analysis. PhD thesis, Saarland University.

[Theiling and Ferdinand, 1998] Theiling, H. and Ferdinand, C. (1998). Com-

bining Abstract Interpretation and ILP for Microarchitecture Modelling and

Program Path Analysis. In Proceedings of the 19th IEEE Real-Time Systems

Symposium (RTSS), pages 144–153, Madrid, Spain. IEEE Computer Society

Press.

[Theiling et al., 2003] Theiling, H., Martin, F., Schneider, J., and Schmidt, M.

(2003). Specification of the Standard for a File Format used for Exchanging

Results of Different Parts of a Run-Time Analysis (ERD). Technical report,

Universität des Saarlandes, AbsInt Angewandte Informatik GmbH.

[Thesing, 2004] Thesing, S. (2004). Safe and Precise WCET Determination

by Abstract Interpretation of Pipeline Models. PhD thesis, Universität des

Saarlandes.

[Thiele and Wilhelm, 2004] Thiele, L. and Wilhelm, R. (2004). Design for Tim-

ing Predictability. Real-Time Systems, 28:157–177.

[van Heesch, 2007] van Heesch, D. (2007). doxygen – Manual for version 1.6.2.

133

http://sqlite.org/
http://sqlite.org/
http://drops.dagstuhl.de/opus/volltexte/2007/1196
http://drops.dagstuhl.de/opus/volltexte/2007/1196

Bibliography

Available from: http://www.doxygen.org.

[Wilhelm et al., 2009a] Wilhelm, R., Ferdinand, C., Cullmann, C., Grund, D.,

Reineke, J., and Triquet, B. (2009a). Designing Predictable Multicore Archi-

tectures for Avionics and Automotive Systems. In Workshop on Reconciling

Performance with Predictability (RePP).

[Wilhelm et al., 2009b] Wilhelm, R., Grund, D., Reineke, J., Schlickling, M.,

Pister, M., and Ferdinand, C. (2009b). Memory Hierarchies, Pipelines, and

Buses for Future Architectures in Time-critical Embedded Systems. IEEE

Transactions on CAD of Integrated Circuits and Systems, 28(7):966–978.

[Wilhelm, 2001] Wilhelm, S. (2001). Generische Rekonstruktion von Kon-

trollflußgraphen aus Assemblerprogrammen. Diplomarbeit an der Uni-

versität des Saarlandes FB 6.2 (Wilhelm), Universität des Saarlandes.

134

http://www.doxygen.org

Index

A

abstract cache state 70

abstract interpretation 23

abstract pipeline state 9

abstract pipeline state graph 9

abstraction function.20

aiT . 5

algorithm

Branch and Bound.28

Simplex . 26

analysis

cache persistence 72

path . 5

static . 1

WCET . 5

associative

A-way set- . 70

fully . 70

B

basic block . 7

graph. .54

BCET . 100

best-case execution time see BCET

block

basic . 7

compression . 54

maximal basic .7

bound

greatest lower 17

least upper . 16

lower . 17

upper . 16

Branch and Bound 28

buddy nodes . 58

C

cache . 69

associativity . 69

capacity . 69

line size . 69

set .69

cache state

abstract . 70

concrete . 70

135

Index

CBC. .82

CFG . 6

chain

ω- . 17

combination . 62

compression . 51

strictly ascending ω- 17

chain condition

ascending . 17

CLP . 82

COIN-OR . 82

compositional architecture 77

compression

basic block .54

chain . 51

inter-block . 66

lossy . 66

concrete cache state 70

concretization function 20

consistency

local . 23

constraint

loop . 34

program start.33

structural . 33

time-based loop 36

user added. .37

constraints . 24

control flow graph see CFG

CPLEX . 82

D

DAG . 47

deadline . 1

dual problem . 25

E

edge

normal . 43

subsume . 44

extended graph . 50

F

factorial . 19

feasible. .24, 25

fixed point . 19

greatest . 20

least . 20

fixed point iteration 19

function

abstraction . 20

concretization 20

continuous. .18

distributive . 18

monotonic . 18

G

Galois

connection . 20

insertion . 21

theory . 20

GLPK . 82

graph

abstract pipeline state 9

basic block .54

control flow see CFG

directed acyclic see DAG

136

Index

extended . 50

I

ILP . 28

in-degree . 50

in-edges . 50

in-siblings .59

infeasible . 25

Integer Linear Program see ILP

interpretation

abstract . 23

intersection . 17

L

lattice

complete . 17

dual . 18

linear combination 24

Linear Program . 24

relaxed . 28

local consistency 23

loop

execution count

maximum. 35

minimum . 34

lossy . 66

lp_solve . 81

LRU. .70

N

node

alias . 44

referenced . 44

O

objective function 24

optimal. .25

order

complete partial 17

partial .15

total . 16

ordering

topological . 54

out-degree . 50

out-edges . 50

out-siblings . 59

P

path analysis . 5

persistence. .72

analysis . 72

identifier . 75

scope. .75

policy

replacement . 70

predecessors. .58

predictability . 68

prefixed point . 19

primal problem . 25

R

replacement policy 70

requirements

real-time. .1

hard . 1

137

Index

S

semantics

abstract . 21

concrete. .21

set

cache . 69

partially ordered 16

Simplex . 26

SQLite . 97

successors . 58

systems

embedded . 1

T

timing anomaly . 77

U

unbounded . 25

union .16

W

WCET . 1

computation mode 9

global .9

local . 9, 42

worst-case execution time . . see WCET

Z

zlib . 81

138

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	2 Overview
	2.1 The aiT Toolchain
	2.1.1 Control-flow Reconstruction
	2.1.2 Loop Analysis
	2.1.3 Value Analysis
	2.1.4 Cache/Pipeline Analysis
	2.1.5 Path Analysis

	2.2 Calling Contexts

	3 Theoretical Background
	3.1 Lattice Theory
	3.2 Fixed Point Iteration
	3.3 Galois Theory
	3.4 Abstract Interpretation
	3.5 Integer Linear Programming
	3.5.1 Linear Programs
	3.5.2 Simplex Algorithm
	3.5.3 Integer Linear Programs
	3.5.4 Branch and Bound Algorithm

	4 ILP-based Path Analysis
	4.1 ILP
	4.1.1 Objective Function
	4.1.2 Program Start Constraints
	4.1.3 Structural Constraints
	4.1.4 Loop Constraints
	4.1.5 Time-based Loop Constraints
	4.1.6 User Added Constraints

	4.2 Implementation

	5 Path Analysis on Abstract Pipeline State Graphs
	5.1 Prediction Files
	5.2 Implementation

	6 ILP-based Path Analysis on Abstract Pipeline State Graphs
	6.1 Graph Compression
	6.1.1 Chain Compression
	6.1.2 Basic Block Compression
	6.1.3 Infeasible Nodes
	6.1.4 epsilon-transition Elimination
	6.1.5 Buddy Nodes
	6.1.6 Chain Combination
	6.1.7 Fixed Point
	6.1.8 Lossy Compression
	6.1.9 Inter-block Compression

	6.2 Loop and User Constraints
	6.3 Predictability

	7 Cache Persistence Analysis
	7.1 Cache Analysis
	7.1.1 Must Analysis
	7.1.2 May Analysis
	7.1.3 Persistence Analysis

	7.2 Precise Use of Cache Persistence Analysis
	7.3 Automatic Persistence Scopes
	7.4 Persistence Constraints
	7.5 Generalization

	8 Implementation and Evaluation
	8.1 Implementation
	8.1.1 Platforms
	8.1.2 Prediction File Library
	8.1.3 ILP Solvers
	8.1.4 ILP Solver Optimization
	8.1.5 Visualization
	8.1.6 Memory Usage

	8.2 Evaluation
	8.2.1 Precision
	8.2.2 Graph Compression
	8.2.3 ILP Complexity
	8.2.4 ILP Solver Comparison
	8.2.5 Cache Persistence Analysis
	8.2.6 Features

	9 Outlook
	9.1 SQL-based Node Storage
	9.2 More Architectures
	9.3 More Constraints
	9.4 Parallelization
	9.5 Detecting Timing Anomalies
	9.6 Best-Case Execution Time

	10 Summary
	A Examples
	A.1 CRL2 File
	A.2 Prediction File
	A.3 ERG File
	A.4 GDL File
	A.5 Abstract Pipeline State

	List of Tables
	List of Figures
	Listings
	List of Algorithms
	Bibliography
	Index

