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Abstract

The display of high dynamic range images and video requires atone mapping algorithm
to depict their original appearance on existing display devices whose capabilities in
terms of dynamic range are insufficient. The insightful application of knowledge about
human visual system can assure high fidelity of depiction in such an algorithm.

In this thesis, we design new tone mapping models and improveexisting algorithms
by an informed use of human perception to provide a high fidelity depiction of high
dynamic range. We develop a real-time tone mapping solutionwhich reproduces the
subjective appearance of dynamic HDR contents by accounting for perceptual effects
that significantly contribute to the appearance of natural scenes. We design a computa-
tional model of lightness perception that can be applied to high quality tone mapping
for static images to reproduce their original HDR appearance in terms of lightness.
We identify common distortions typical to tone mapping which may hinder the com-
prehension of image contents, we design appropriate metrics to measure the perceived
magnitude of these distortions and evaluate existing tone mapping algorithms accord-
ingly. To compensate for observed distortions, we introduce a method which improves
the tone mapping results beyond numerically optimized solution by using techniques
strongly based on perception of contrasts. Presented solutions can be efficiently in-
tegrated in varied HDR applications including photography, playback of HDR video,
image synthesis, light simulations, predictive rendering, and computer games.

Kurzfassung

Die Anzeige von Bildern und Videos mit hohem Kontrastumfang(HDR) erfordert
einen Algorithmus f̈ur die Tonabbildung, um ihr ursprüngliches Aussehen auf vorhan-
denen Bildschirmen, deren Fähigkeiten in Kontrastumfang unzureichend sind, darzu-
stellen. Die aufschlussreiche Anwendung des Wissensüber das menschliche visuelle
System kann die Wiedergabetreue eines solchen Algorithmusgeẅahrleisten.

In dieser Doktorarbeit entwerfen wir neue Modelle für die Tonabbildung und verbes-
sern vorhandene Algorithmen durch eine informative Anwendung von menschlicher
Wahrnehmung um die Wiedergabetreue der HDR zu gewährleisten. Wir entwickeln
eine Echtzeit-Tonabbildung Lösung, die das subjektive Aussehen von dynamischem
HDR Inhalt reproduziert dadurch dass die Wahrnehmungseffekte, die erheblich zum
Aussehen der natürlichen Szenen beitragen, berücksichtigt werden. Wir entwerfen ein
Computermodell der menschliches Helligkeitsvorstellungwelches wir in eine Tonab-
bildung anwenden, um damit das ursprüngliche HDR Aussehen von statischen Bildern
in hoher Qualiẗat zu reproduzieren. Weiterhin identifizieren wir die Verzerrungen, die
bei Tonabbildungen typisch sind und das Verständnis des Bildinhalts hindern könnten.
Wir entwerfen passende Metriken, um die wahrgenommenen Größe dieser Verzerrun-
gen zu messen und vorhandene Algorithmen dementsprechend zu bewerten. Zur Kom-
pensierung der Verzerrungen führen wir eine Methode vor, die das Tonabbildungser-
gebnis basierend auf eine Kontrastwahrnehmungüber die numerisch optimierte Lösung
hinaus verbessert. Die vorgestellten Lösungen k̈onnen in vielseitigen HDR Anwendun-
gen einschließlich Fotographie, Wiedergabe von HDR Videos, Bildsynthese, Globale
Beleuchtung, und Computerspielen effizient integriert werden.
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Summary

The high dynamic range (HDR) techniques overcome the legacyconstraint of limited
contrast and tonal range in digital images and video which are now adequate to accom-
modate the complete information about light in nature. The display of HDR contents,
however, requires a tone mapping algorithm to depict their original appearance on ex-
isting display devices whose capabilities in terms of dynamic range are insufficient.
Unfortunately, the tone mapping process inherently decreases the original quality of
HDR contents. By taking the interdisciplinary approach in which we combine com-
puter graphics and image processing with the knowledge of human visual perception,
we design new tone mapping models, evaluate existing algorithms and improve their
results to provide a high fidelity depiction of HDR appearance.

The subjective appearance of natural scenes is highly influenced by the perceptual ef-
fects caused in the early stages of human vision. These effects are stimulated by abso-
lute luminance levels and are not present when observing standard displays. To account
for this, we develop computational models that predict and simulate these perceptual
effects and we embed their appearance in the tone mapped visual contents such that the
depicted scenes are perceived by the human vision in the sameway as in the natural
conditions. We efficiently combine these models with a high quality tone mapping and
achieve real-time performance.

The key perceptual dimension of image appearance related totonal range is lightness.
Therefore the high fidelity depiction of HDR contents requires that lightness is well re-
produced during the tone mapping. To address this, we designa computational model
of the modern lightness perception theory and apply it to obtain high quality tone map-
ping for static images. A comparison with the existing methods demonstrate that our
model leads to a more accurate reproduction of appearance ofHDR scenes.

The reduction of tonal range during tone mapping inherentlydistorts contrasts of orig-
inal HDR data and a too strong distortion impedes the comprehension of image con-
tents. By simulating the human perception of contrasts we design objective metrics
that can measure the perceived magnitude of such distortions and we evaluate existing
tone mapping operators accordingly. Our evaluation provides perceptually meaningful
information and facilitates the choice of an appropriate tone mapping algorithm.

Finally, to overcome the observed distortions we introducea method which improves
the tone mapping results beyond numerically optimized solution by using techniques
inspired by contrast illusions. We automatically identifyimage features which require
restoration and insert into an image the so called countershading profiles which robustly
enhance the perceived magnitude of contrasts with a sparinguse of tonal range. We
further develop a visual detection model which assures thatour enhancement are not
perceived as objectionable artifacts. Our new image processing tool generalizes the
well-known unsharp masking.

Overall, the methods presented in this dissertation successfully improve and evaluate
the fidelity of tone mapping by an insightful use of knowledgeabout human visual per-
ception. Presented solutions can be efficiently integratedin varied HDR applications
including photography, playback of HDR video, image synthesis, lighting simulation,
predictive rendering, and computer games.
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Zusammenfassung

Methoden f̈ur hohen Kontrastumfang (HDR)überwinden die Abẅartsbeschr̈ankungen
für Kontrast- und Tonumfang in Digitalbildern und Videos, die jetzt ausreichend sind
um die kompletten Informationen̈uber Licht in der Natur aufzunehmen. Die Anzeige
des HDR Inhalts erfordert jedoch einen Algorithmus für Tonabbildung, um das ur-
spr̈ungliche Aussehen auf vorhandenen Bildschirmen, deren Fähigkeiten im Kontrast-
umfang unzureichend sind, darzustellen. Leider verringert der Tonabbildungsprozess
schon an sich die ursprängliche Qualiẗat des HDR Inhalts. Um eine hohe Qualität der
Wiedergabetreue der HDR zu gewährleisten, kombinieren wir Computergraphik und
Bildverarbeitung mit dem Wissen der menschlichen Wahrnehmung. Damit entwerfen
wir neue Tonabbildungsmodelle, bewerten vorhandene Algorithmen und verbessern
die Ergebnisse von existierenden Algorithmen.

Wir entwickeln eine Echtzeit-Tonabbildungslösung, die das subjektive Aussehen des
dynamischen HDR Inhalts unter Berücksichtigung der Wahrnehmungseffekte, die er-
heblich zum Aussehen der natürlichen Szenen beitragen, reproduziert. Das subjekti-
ve Erscheinungsbild der natürlichen Szenen wird stark durch die Effekte, die in den
frühen Stadien des menschlichen Sehens verursacht werden, beeinflusst. Diese Wahr-
nehmungseffekte werden von absoluten Luminanzniveaus angeregt und sind bei der
Beobachtung auf geẅohnlichen Bildschirmen nicht vorhanden. Um dieses zu berück-
sichtigen, entwickeln wir Berechnungsmodelle die diese Wahrnehmungseffekte vor-
aussagen und simulieren. Wir lassen diese Effekte in die Tonabbildungsergebnisse
einfließen, so dass die auf dem Bildschirm dargestellten Szenen genauso wie unter
naẗurlichen Bedingungen wahrgenommen werden. Wir kombinieren diese Modelle mit
einer hoch-qualitativen Tonabbildung und erzielen Echtzeitleistung.

Das wichtigste Wahrnehmungsmaß des Bildaussehens bezüglich Tonumfang ist die
Helligkeit. Infolgedessen erfordert eine hohe Wiedergabetreue des HDR Inhalts eine
gute Reproduktion der Helligkeitsvorstellung während der Tonabbildung. Dafür ent-
werfen wir ein Berechnungsmodell basierend auf der Theorieder Helligkeitswahrneh-
mung und wenden es für die Tonabbildung von statischen Bildern an. Ein Vergleich mit
vorhandenen Methoden zeigt, dass unser Modell zu einer realistischeren Wiedergabe
des Aussehens der HDR Szenen führt.

Die Tonumfangreduzierung ẅahrend der Tonabbildung verzerrt Kontraste der ursprüng-
lichen HDR Daten, und eine zu starke Verzerrung behindert das Versẗandnis des Bild-
inhalts. Daher entwerfen wir Metriken, die die wahrgenommene Gr̈oße dieser Verzer-
rungen messen indem sie die menschliche Wahrnehmung von Kontrasten simulieren.
Dadurch sind wir in der Lage vorhandene Tonabbildungsalgorithmen entsprechend
auszuwerten. Unsere Auswertung liefert wahrnehmungssinnvolle Informationen und
erleichtert die Wahl einer passenden Tonabbildungsmethode.

Schließlich, zum abgleichen beobachteter Verzerrungen führen wir eine Methode vor,
die das Tonabbildungsergebnisüber die numerisch optimierte Lösung hinaus verbes-
sert, indem sie eine starke optische Kontrasttäuschung ausnutzt. Wir identifizieren au-
tomatisch die Bildregionen welche eine Wiederherstellungerfordern und f̈ugen so ge-
nanntecountershadingProfile ein. Diese Profile steigern robust die Wahrnehmung von
Kontrasten und verbrauchen dabei sparsam den Kontrastumfang. Weiterhin entwickeln
wir einen Erkennungsmodel das gewährleistet, dass unsere Kontrastwiederherstellun-
gen als keine sichtbaren Artefakte wahrgenommen werden. Unser neues Bildverarbei-
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tungswerkzeug generalisiert eine Standardmethode die alsunsharp maskingbekannt
ist.

Die aufschlussreiche Anwendung des Wissensüber das menschliche visuelle System
in unseren Methoden, die in dieser Doktorarbeit dargestellt werden, erlaubt eine er-
folgreiche Auswertung und Verbesserung der Wiedergabetreue des HDR Inhalts. Die
dargestellten L̈osungen k̈onnen in vielseitigen HDR Anwendungen einschlielich Foto-
graphie, Wiedergabe von HDR Videos, Bildsynthese, GlobaleBeleuchtung, und Com-
puterspielen effizient integriert werden.
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Chapter 1

Introduction

The recent advances in digital image processing known as High Dynamic Range (HDR)
imaging bring a totally new visual experience to recording and displaying real-world
equivalent images and video. The HDR techniques promise unconstrained capture of
complete light information about scenes, high quality processing, and reproduction on
various media with a high fidelity to the real-world appearance.

Historically, the 8-bit representation of visual data, which prevails in both digital cap-
ture and display devices, sets a hard limit on the range of tones that can be recorded,
processed, and viewed. The choice of such representation seemed to be well moti-
vated in 90s, when digital image processing proliferated, because it corresponded to
the technical capabilities of devices at that time and offered comparable characteris-
tics to analogue photography and video which could have served as a requirements’
reference. Nowadays, practically all devices related to the main-stream digital image
and video processing are manufactured according to the standards developed at that
time despite significant technological advances in the field. While such a long-term
standardization is advantageous in bridging varied technologies in video and media
industry, this so called display-referred representationof visual contents significantly
confines the visual experience of digital images and video compared to the real-world
experience.

The HDR techniques abandon these legacy constraints and present a revolutionary ap-
proach to capturing, storing, processing and displaying ofvisual contents. Primarily,
the quality of these processes is not any more driven by the capabilities of existing de-
vices but is adequate to accommodate the complete information about light in nature.
The intensity of tones in a usual natural scene may strongly vary between major image
areas and very finely within details of materials and textures. The 8-bit representation
of visual data often causes that very bright image areas are clipped to white, very dark
ones to black, and subtle light changes are rounded due to quantization, thus in each
of these cases a part of information about the original sceneis lost. In contrast, the
HDR representation imposes no limit on the tonal range and aims at no loss of fine
details. Such a rich description of visual data permits an unprecedented visual expe-
rience of watching movies and photographs, playing computer games, or inspecting
visualizations.

We are currently observing a rapid development of HDR technologies at all stages of

1
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image and video processing pipeline. The HDR can now be captured both with the
new types of imaging sensors and also using standard camerasand special software
techniques. Recently, even off-the-shelf digital camerasare equipped with exposure
bracketing feature which delivers HDR capture to amateur photographers and the re-
quired algorithms are implemented in most of image processing packages. Last years
have also brought dedicated file formats and compression techniques for HDR with
a notable example of OpenEXR which is now widely supported. However, the final
stage of the pipe-line – the presentation is still in its mostlegacy form, despite the
rapid growth of technical capabilities of displays including resolution, contrast range,
and peak luminance levels. Even though the HDR displays present a significant step
forwards and give an exciting foretaste of HDR experience, their current capabilities
are not yet on a par with the real-world appearance. To bridgethe gap between displays
and the rest of the pipeline, prior to display the HDR contents need to be processed us-
ing the so called tone mapping algorithm to adjust their tonal range to the devices’
capabilities.

This dissertation is dedicated to an in-depth analysis of the tone mapping problem.
We approach the topic from an interdisciplinary point of view, because we observe
that a successful design of a tone mapping algorithm needs tocombine the knowledge
of computer graphics and image processing with the substantial understanding of the
human visual perception. While much research has been already done in the area, in
this thesis we do not limit our interest to introducing yet another new algorithm. Rather,
our aim is to select and apply the aspects of perception whichshould be considered
in the context of displaying HDR content, to investigate andevaluate the perceptual
quality of existing tone mapping solutions, and to seek further possibilities for quality
improvement by exploiting knowledge of human visual system.

1.1 Problem Statement

The extensive range of tones available in high dynamic rangeimages and video offers a
high fidelity representation of natural scenes. Yet, the technical capabilities of existing
display devices are insufficient to directly depict such rich visual contents. Therefore
a tone mapping algorithm is required which prior to display reduces the tonal range
of HDR data to match the devices’ capabilities. While such a reduction inherently
decreases the original quality of HDR contents, a successful tone mapping algorithm
should strive to depict HDR images with high fidelity to theiroriginals and at a minimal
side effect on quality.

The high fidelity of depiction requires that the appearance of a tone mapped image
matches closely the true appearance of the original HDR scene and that the ability of
observes to comprehend image contents remains unaffected.A thorough understanding
of human visual perception is necessary to both estimate thetrue appearance of HDR
and to design an algorithm that reduces the tonal range whilemaintaining the appear-
ance unchanged. In particular, one needs to identify which aspects of human visual
perception have a significant contribution to the appearance and to build corresponding
computational models. For real-time applications, additionally a balance between the
complexity of the models and their accuracy has to be found.

The reduction of tonal range inherently distorts the original HDR data to some extent
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and a too strong distortion impedes the comprehension of image contents. The quality
of tone mapping operators could be measured by the degree to which the distortions
have been avoided. For this, a metric has to be designed that is able to compare the
perceptibility of corresponding image contents between two images with different tonal
range – the tone mapping result and the original HDR. Further, to achieve the highest
fidelity of HDR depiction the perceivable distortions detected by the metric should be
restored in a post tone mapping step. Although, if one assumes that tone mapping
results are obtained as the most optimal numerical solution, such a restoration would
have to overcome the numerical limits.

In the scope of this dissertation we cover all of the said aspects of tone mapping. We
first develop a real-time tone mapping solution which reproduces the subjective appear-
ance of dynamic HDR contents by accounting for perceptual effects that significantly
contribute to the appearance of natural scenes. We then design a computational model
of lightness perception that can be applied to high quality tone mapping for static im-
ages to reproduce the original HDR appearance of tones. Next, we identify common
distortions typical to tone mapping which may hinder the comprehension of image
contents, we design appropriate metrics to measure the perceived magnitude of these
distortions, and evaluate existing tone mapping algorithms accordingly. To compen-
sate for observed distortions, we introduce a method which improves the tone mapping
results beyond numerically optimized solution by using techniques strongly based on
perception of contrasts. Presented solutions can be efficiently integrated in varied HDR
applications including photography, playback of HDR video, image synthesis, lighting
simulation, predictive rendering, and computer games.

1.2 Main Contributions

The fundamental ideas discussed in this dissertation have already been partially pub-
lished in international journals and presented at conferences. They have been further
summarized in the overview papers [Mantiuk et al. 2007a, Mantiuk et al. 2007b],
in the books [Krawczyk et al. 2007b, Myszkowski et al. 2008], and at the tutorial
[Myszkowski and Heidrich 2005]. Here, they are combined under the common con-
cept of applying the knowledge of human visual perception tothe processing of high
dynamic range visual contents for standard displays. With respect to these publications,
we revise presented methods and demonstrate improved results. The key contributions
can be summarized as follows:

• Real-time tone mapping with simulation of perceptual effects. We design a real-
time implementation of the photographic tone reproductionin graphics hardware
and extend it at a minimal computational cost with selected perceptual effects
which significantly influence the appearance of scenes. Sucheffects convey the
subjective impression of night scenes and bright light sources which normally
is not communicated on standard displays. We use this tone mapping algorithm
in the HDR video player and in real-time realistic image synthesis. [Krawczyk
et al. 2005c, Mantiuk et al. 2004, Dmitriev et al. 2004, Havran et al. 2005].

• Computational model of lightness perception. Based on a descriptive model of
the anchoring theory of lightness perception we develop a computational model
which aims at the accurate reproduction of HDR image appearance in terms
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of lightness. We validate the model by simulating the appearance of known
perceptual illusions and apply it to tone mapping for high fidelity reproduction
of HDR. [Krawczyk et al. 2005b, Krawczyk et al. 2006, Krawczyk et al. 2007a].

• Objective evaluation of tone mapping operators. We identify contrast distortions
that typically happen in tone mapping because of the dynamicrange reduction.
We design appropriate metrics that measure the perceived magnitude of these
distortions, and evaluate existing tone mapping algorithms accordingly. Our
evaluation facilitates the choice of an appropriate tone mapping algorithm un-
der certain known requirements and permits to easily compare new algorithms
to the state-of-the-art. [Smith et al. 2006].

• Contrast restoration by adaptive countershading. The results of our evaluation
indicate that all existing tone mapping operators introduce a certain degree of
contrast degradation. We observe that the perceived magnitude of contrast can
be robustly increased with a sparing use of tonal range by theso called coun-
tershading profiles. We automatically identify the image features which require
restoration and insert suitable profiles into the tone mapping result. A supra-
threshold visual detection model assures that our enhancement do not introduce
objectionable artifacts. [Krawczyk et al. 2007c].

1.3 Chapter Overview

This dissertation is structured as follows. In the next chapter, we give general infor-
mation on image representations and introduce the field of High Dynamic Range. In
Chapter3 we explain the fundamentals of human visual perception which are relevant
to the topics discussed in this thesis. Our real-time tone mapping method for dynamic
HDR contents is presented in Chapter4. The computational model of lightness percep-
tion is derived in Chapter5 together with the demonstration of various applications. We
evaluate existing tone mapping operators in Chapter6 and design a contrast restoration
method in Chapter7. The dissertation is summarized in Chapter8 with conclusions
and outlook for future work. Additionally, in AppendixA we describe in details the
calibration of standard and HDR cameras which is useful to capture HDR contents
used throughout this thesis and in AppendixB we describe our Open Source software
for working with HDR images and video.



Chapter 2

High Dynamic Range Imaging

We start this dissertation with an introduction to the field of high dynamic range (HDR)
imaging. We explain here the difference between the standard digital image representa-
tion and the new high dynamic range imaging and indicate the advantages of the latter.
We give an overview of capture techniques that can provide HDR images and HDR
video which are used as input in the methods presented in the following chapters. We
further explain in detail the process of tone mapping which is the main focus of this
thesis. For a broader picture, we also briefly review the examples of applications in
which high dynamic range imaging is particularly attractive.

2.1 Digital Images and Color Spaces

The topics discussed in this thesis focus around digital images and video. The digital
image is a numerical data structure for representation of visual contents. It consists of
usually rectangular matrix of image elements – pixels. Eachpixel has an individually
defined intensity. The intensity is usually described by three numbers to define color,
but it can also be one number for monochrome images or more numbers for multi-
spectral data. The numbers are called color components.

The way in which the color components determine the actual color is defined by the
specific color space that is used. The most popular color space for digital images is
sRGB [Stokes and Anderson 1996]. It defines color by three primaries: red, green,
blue, and follows the additive mixing model [Hunt 1995]. The additive mixing model
means that each number defines how much of each of the primary lights have to be
emitted to create the desired color. The sRGB standard defines the spectral specifica-
tion of these three primaries, which is the same as the recommendation for standard
displays [ITU 1990], and the nonlinear transformation between the physical intensity
of these primaries and the actual 8-bit number stored in the digital image – the gamma
correction. This color space is matched to the so called standard display whose spec-
ifications are a reference for the manufactures and guarantee a similar appearance of
visual contents on various media that follow the standard including also cameras, scan-
ners, and printers. Unfortunately, the sRGB specification is tailored for displays and
it is not capable of representing the complete light information in the scene. The rep-
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name formula example context

contrast ratio CR= 1 : (Ypeak/Ynoise) 1:500 displays

log exposure range D= log10(Ypeak)− log10(Ynoise) 2.7 orders HDR imaging,

L = log2(Ypeak)− log2(Ynoise) 9 f-stops photography

signal to noise ratio SNR= 20· log10(Ypeak/Ynoise) 53 [dB] digital cameras

Table 2.1: Measures of dynamic range and their context of application. The example
column illustrates the same dynamic range expressed in different units.

resentation of certain colors or brightness levels requires values that lay outside the
specified 8-bit range.

The CIE XYZ is a special color space, which is based on direct measurements of the
human eye, that can describe all apparent colors at all lightlevels. Although the tris-
timulus representation does not define all possible spectra, it does allow to recreate all
possible perceptible colors because ofmetamerism(see [Hunt 1995]). Metamerism
occurs when two color samples of different spectral power distribution appear to be of
the same color. It happens because color is sensed by human vision with three types
of photoreceptors that respond to a cumulative energy from acertain range of wave-
lengths (Section3.1.2). The primaries of XYZ color space, however, do not correspond
to these response functions. Instead, the Y component has been designed to correspond
to luminance – the amount of luminous power perceived by a human eye, and X, Z pri-
maries have been optimized for metameric matches. All components are described by
non-negative real numbers.

The CIE XYZ is a generic color space and it serves as a basis from which many other
color spaces are defined, but itself is not popular in practical use, because the majority
of devices are based on RGB primaries. To combine the generality of XYZ space with
the popularity of RGB, the non-linearity and 8-bit restriction of sRGB color space is
dropped. The RGB intensities are in this case linearly related to luminance, but the
representation of some colors requires negative values of the primaries which is not
physically correct. Nevertheless, such linear RGB representation of digital images is
particularly common in high dynamic range imaging which is described further in this
chapter. Digital images and video with linear RGB representation can be captured us-
ing photometrically calibrated camera systems as explained in AppendixA, or obtained
through color space conversions. These conversions are precisely specified by math-
ematical equations and can be found for instance in [Hunt 1995, Wyszecki and Stiles
2000].

2.2 Dynamic Range

In principle, the termdynamic rangeis used in engineering to define the ratio between
the largest and the smallest quantity under consideration.With respect to images, the
observed quantity is the luminance level and there are several measures of dynamic
range in use depending on the applications. They are summarized in Table2.1.

Thecontrast ratiois a measure used in display systems and defines the ratio between
the luminance of the brightest color it can produce (white) and the darkest (black). In
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case the luminance of black is zero, as for instance in HDR displays [Seetzen et al.
2004], the first controllable level above zero is considered as the darkest to avoid infin-
ity. The ratio is usually normalized by the black level for clarity.

The log exposure rangeis a measure commonly adopted in high dynamic range imag-
ing to measure the dynamic range of scenes. Here the considered ratio is between the
brightest and the darkest parts of a scene given in luminance. The log exposure range is
specified in orders of magnitude which permits the expression of such ratios in a con-
cise form using the logarithmic base 10 and is usually truncated to one floating point
position. It is also related to the measure of allowed exposure error in photography –
exposure latitude. Theexposure latitudeis defined as the luminance range the film can
capture minus the luminance range of the photographed sceneand is expressed using
logarithm base 2 with precision up to1/3. The choice of logarithm base is motivated by
the scale of exposure settings, aperture closure (f-stops)and shutter speed (seconds),
where one step double or halfs the amount of captured light. Thus the exposure lati-
tude tells the photographers how large a mistake they can make in setting the exposure
parameters while still obtaining a satisfactory image. This measure is mentioned here,
because its units,f-stop stepsor f-stopsin short, are often perhaps incorrectly used in
HDR photography to define the luminance range of a photographed scene alone.

Thesignal to noise ratio(SNR) is most often used to express the dynamic range of a
digital camera. In this context, it is usually measured as the ratio of the intensity that
just saturates the image sensor to the minimum intensity that can be observed above
the noise level of the sensor. It is expressed in decibels [dB] using 20 times base-10
logarithm.

The actual procedure to measure dynamic range is not well defined and therefore the
numbers vary. For instance, display manufacturers often measure the white level and
the black level with a separate set of display parameters that are fine-tuned to achieve
the highest possible number which is obviously overestimated and no displayed image
can show such a contrast. On the other hand, HDR images often have very few pixels
of extremely bright or dim value. An image can be low-pass filtered before the actual
dynamic range measure is taken to assure a reliable estimation. Such filtering averages
the minimum luminance thus gives a reliable noise floor, and smoothes single pixels
with very high luminance thus gives a reasonable maximum amplitude estimate. Such
a measurement is more stable compared to the non-blurred maximum and minimum
luminance.

2.3 Low vs. High Dynamic Range

The termlow dynamic range(LDR) refers in general to the 8-bit and 16-bit represen-
tations of visual contents, which are currently the most common standards in digital
imaging. Such LDR representation is practically supportedby all consumer products
including digital cameras, scanners, displays, printers,storage formats and media. Im-
portantly, the term does not, however, refer to the number ofbits per se, but rather to the
maximum dynamic range that such representation can accommodate and to its output
oriented design.

The LDR contents do not actually store the measured scene colors captured by a cam-
era, but their processed version which can be directly depicted on a typical display
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Camera Dynamic Range

Display Contrast

Image Representation

Fidelity

Quantization

50 dB 120 dB

1:200 1:15,000

floating point or variable8-bit or 16-bit

scene-referreddisplay-referred

display-limited as good as the eye can see

Standard (Low) Dynamic Range High Dynamic Range

Figure 2.1: The advantages of HDR compared to LDR from the applications point
of view. The quality of the LDR image have been reduced on purpose to illustrate a
potential difference between the HDR and LDR visual contents. The given numbers
serve as an example and are not meant to be a precise reference.

device. Such direct depiction will closely match the appearance of the photographed
scene as long as a display follows the “standard display recommendations” [ITU 1990].
These specifications, developed in the 90s, are adjusted to the capabilities of the dis-
plays at that time and are also appropriate for other media such as prints and projectors.
For the price of compatibility, these specifications are very restrictive and in principle
limit both the maximum dynamic range and the color gamut of visual contents. More-
over, they are currently outdated by rapid advances in capture and display technology.

The main goal ofhigh dynamic range(HDR) imaging is to abandon such legacy restric-
tions and to provide the precise representation of real world light intensities that define
the entire scene appearance. Unlike thedisplay-referredrepresentation typical to LDR
contents, the precision of such ascene-referredrepresentation matches or surpasses
capabilities of human vision and in principle corresponds to the original light values
captured from a scene. In practice, the term high dynamic range is used with respect
to the visual contents whose dynamic range is higher than that of LDR contents and
whose intensities are linearly proportional to the original luminance or actually equal
to it. The accommodate such a rich representation, data is stored in variable precision
formats, often directly in floating point format. The perceptually best motivated repre-
sentation of the HDR contents is the CIE XYZ color space, favorably photometrically
calibrated [Mantiuk et al. 2007a].

From an applications point of view, the HDR technologies deliver more capture and
display contrast, more precise quantization, and higher color fidelity. In photography,
the true range of real world luminance permits scene captures that are free of under-
and over-exposures. These qualities are summarized and simulated in Figure2.1. There
is, however, one caveat. The display-referred representation guarantees approximately
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the same appearance of visual contents on any media as long asthey follow the stan-
dards, because they have been stored according to the standards. The scene-referred
representations are in most cases impossible to be directlydepicted on even the most
current devices and require that an appropriate rendering happens prior to or during the
display. New recommendations can hardly be proposed in viewof constantly improv-
ing display capabilities. A reasonable assumption, which could guarantee the same as
display-referred representations, is that a display rendering algorithm should aim at the
reproduction of the original appearance of a scene given thecapabilities of the particu-
lar device. Such appearance reproduction for display purposes is the main focus of this
dissertation.

2.4 Capture Techniques Capable of HDR

In recent years several new techniques have been developed that are capable of cap-
turing images with a dynamic range of up to 8 orders of magnitude at video frame
rates. In principle, there are two major approaches to capturing such a high dynamic
range: to develop new HDR sensors or to expose LDR sensors to light at more than
one exposure level and later recombine these exposures intoone high dynamic range
image by means of a software algorithm. With respect to the second approach, the
variation of exposure level can be achieved in three ways. The exposure can change
in time, meaning that for each video frame a sequence of images of the same scene is
captured, each with a different exposure. The exposure can change in space, such that
the sensitivity to light of pixels in a sensor changes spatially and pixels in one image
are non-uniformly exposed to light. Alternatively, an optical element can split light
onto several sensors with each having a different exposure setting. We summarize such
software and hardware solutions to HDR capture in the following sections.

2.4.1 Temporal Exposure Change

This is probably the most straightforward and the most popular method to capture HDR
with a single low dynamic range sensor. Although such a sensor captures at once only
a limited range of luminance in the scene, its operating range can encompass the full
range of luminance through the change of exposure parameters. Therefore a sequence
of images, each exposed in such a way that a different range ofluminance is captured,
may together acquire the whole dynamic range of the scene, see Figure2.2. Such
captures can be merged into one HDR frame by a simple averaging of pixel values
across the exposures, after accounting for a camera response and normalizing by the
exposure change (for details on the algorithm refer to Appendix A). Theoretically,
this approach allows to capture scenes of arbitrary dynamicrange, with an adequate
number of exposures per frame, and exploits the full resolution and capture quality of
a camera.

HDR capture based on the temporal exposure change has, however, certain limitations
especially in the context of video. Correct reconstructionof HDR from multiple im-
ages requires that each of the images capture exactly the same scene at a pixel level
accuracy. This requirement cannot be practically fulfilled, because of camera motion
and motion of objects in a scene, and pure merging techniqueslead to motion arti-
facts and ghosting. To improve quality, such global and local displacements in images
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Luminance [cd/m2]

exposure t1 exposure t2 exposure t3 HDR frame

1 100 10000

t1

t2
t3

HDR

Figure 2.2: Three consecutive exposures captured at immediate time stepst1, t2, t3
contain different luminance ranges of a scene. The HDR framemerged from these
exposures contains the full range of luminance in this scene. HDR frame tone mapped
for illustration using a lightness perception inspired technique [Krawczyk et al. 2005b].

within an HDR frame must be re-aligned using for instance optical flow estimation.
Further, alignment of images that constitute one frame has to be temporarily coherent
with adjacent frames. A complete solution that captures twoimages per frame and
allows for real-time performance with 25 fps HDR video capture is described in [Kang
et al. 2003]. An alternative solution that captures a much larger dynamic range of
about 140dB, but does not compensate for motion artifacts isavailable from [Uner and
Gustavson 2007].

The temporal exposure change requires a fast camera, because the effective dynamic
range depends on the amount of captures per frame. For instance a 200Hz camera is
necessary to have a 25fps video with 8 captures per frame thatcan give an approximate
dynamic range of 140dB [Uner and Gustavson 2007]. With such a short time per image
capture, the camera sensor must have a sufficiently high sensitivity to light to be able
to operate in low light conditions. Unfortunately, such a boosted sensitivity usually
increases noise.

2.4.2 Spatial Exposure Change

To avoid potential artifacts from motion in the scene, the exposure parameters may
also change within a single capture [Nayar and Mitsunaga 2000], as an alternative to
the temporal exposure change. The spatial exposure change is usually achieved using
a mask which has a per pixel variable optical density. The number of different optical
densities can be flexibly chosen and they can create a regularor irregular pattern. Nayar
and Mitsunaga [Nayar and Mitsunaga 2000] propose to use a mask with a regular
pattern of four different exposures as shown in Figure2.3. Such a mask can be then
placed directly in front of a camera sensor or in the lens between primary and imaging
elements.
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Figure 2.3: Single exposure using a standard image sensor cannot capture full dynamic
range of the scene (left). The mask with per pixel varying optical densitiese3 = 4e2 =
16e1 = 64e0 (middle) can be put in front of a sensor. Using such a mask at least one
pixel per 4 is well exposed during the capture (right). The right image is best viewed
in the electronic version of the thesis.

For the pattern shown in Figure2.3, the full dynamic range can be recovered either by
aggregation or by interpolation. The aggregation is performed over a small area which
includes a capture of that area through each optical density, thus at several different
exposures. The different exposures in the area are combinedinto one HDR pixel by
means of a multi-exposure principle explained in the previous section, at the cost of
a reduced resolution of the resulting HDR frame. To preservethe original resolution,
HDR pixel values can also be interpolated from adjacent pixels in a similar manner
as colors from the Bayer pattern. Depending on the luminancelevels, aliasing and
interpolation artifacts may appear.

The effective dynamic range in this approach depends on the number of different op-
tical densities available in the pattern. A regular patternof 4 densities, as shown in
Figure2.3, such thate3 = 4e2 = 16e1 = 64e0 gives a dynamic range of about 85dB for
an 8-bit sensor [Nayar and Mitsunaga 2000]. The quantization step in the reconstructed
HDR frame is non-uniform and increases for high luminance levels. The size of the
step is, however, acceptable, because it follows the gamma curve.

An alternative implementation of spatial exposure change,Adaptive Dynamic Range
Imaging (ADRI), utilizes an adaptive optical density mask instead of a fixed pattern
element [Nayar and Branzoi 2003]. Such a mask adjusts its optical density per pixel
informed by a feedback mechanism from the image sensor. Thussaturated pixels in-
crease the density of corresponding pixels in the mask, and noisy pixels decrease. The
feedback, however, introduces a delay which can appear as temporal over- or under-
exposure of moving high contrast edges. Such a delay, which is minimally one frame,
may be longer if the mask with adapting optical densities hashigh latency.

Another variation of spatial exposure change is implemented in a sensor whose pixels
are composed of more than one light sensing element each of which has a different
sensitivity to light [Street August 1998]. This approach is, however, limited by the size
of the sensing element per pixel, and practically only two elements are used. Although
in such a configuration, one achieves only a minor improvement in the dynamic range,
so far only this implementation is applied in commercial cameras (Fuji Super CCD).



12 CHAPTER 2. HIGH DYNAMIC RANGE IMAGING

2.4.3 Multiple Sensors with Beam Splitters

Following the multi-exposure approach to extending dynamic range, one can capture
several exposures per video frame at once using beam splitters [Aggarwal and Ahuja
2004]. The idea, so called split aperture imaging, is to direct the light from the lens
to more than one imaging sensor. Theoretically this allows to capture HDR without
making any quality trade-offs and without motion artifacts. In practice, however, the
effective dynamic range depends on the number of sensors used in the camera and such
a solution may become rather costly when a larger dynamic range is desired. Further,
splitting the light requires an increased sensitivity of the sensors.

2.4.4 Solid State Sensors

There are currently two major approaches to extend the dynamic range of an imag-
ing sensor. One type of sensor collects charge generated by the photo current. The
amount of charge collected per unit of time is linearly related to the irradiance on the
chip (similar to a standard CCD chip [Janesick 2001]), the exposure time is however
varying per pixel (sometimes called “locally auto-adaptive” [Lulé et al. 1999]). This
can for instance be achieved by sequentially capturing multiple exposures with differ-
ent exposure time settings or by stopping after some time theexposure of the pixels
that would be overexposed during the next time step. A secondtype of sensor uses the
logarithmic response of a component to compute the logarithm of the irradiance in the
analog domain. Both types require a suitable analog-digital conversion and generate
typically a non-linearly sampled signal encoded using 8–16bits per pixel value. Sev-
eral HDR video cameras based on these sensors are already commercially available.
Such cameras allow to capture dynamic scenes with high contrast, and compared to
software approaches, offer considerably wider dynamic range and quality independent
of changes in the scene content as frame-to-frame coherenceis not required. The prop-
erties of two of such cameras: HDRC VGAx from IMS-CHIPS [Hoefflinger 2007] and
Lars III from Silicon Vision are studied in detail in SectionA.4.

2.5 Tone Mapping

The contrast and brightness range in typical HDR images exceeds capabilities of cur-
rent display devices or print. Thus these media are inadequate to directly reproduce the
full range of captured light. Tone mapping is a technique forthe purpose of reducing
contrast and brightness in HDR images to enable their depiction on LDR devices. The
process of tone mapping is performed by a tone mapping operator.

Particular implementations of a tone mapping operator are varied and strongly depend
on a target application. A photographer, computer graphicsartist or a general user
will most probably like to simply obtain nice looking images. In such cases, one most
often expects a good reproduction of appearance of an original HDR scene on a display
device. In simulations or predictive rendering, the goals of tone mapping may be stated
more precisely: to obtain a perceptual brightness match between HDR scene and tone
mapped result, or to maintain equivalent object detection performance. In visualization
or inspection applications often the most important is to preserve as much of fine detail
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information in an image as possible. Such a plurality of objectives lead to a large
number of different tone mapping operators.

Various tone mapping operators developed in recent years can be generalized as a trans-
fer function which takes luminance or color channels of an HDR scene as input and
processes it to output pixel intensities that can be displayed on LDR devices. The input
HDR image can be calibrated so that its luminance is expressed in SI unitscd/m2 or
it may contain relative values which are linearly related toluminance. The transfer
function may be the same for all pixels in an image (global operator) or its shape may
depend on the luminance of spatially local neighbors (localoperator). In principle, all
operators reduce the dynamic range of input data. Since mostof the algorithms pro-
cess only luminance, color images have to be converted to a color space that decouples
luminance and chrominance, e.g. Yxy. After processing, thetone mapped intensities
are used instead of the original luminance in the inverse transform to the original color
space of the image.

2.5.1 Luminance Domain Operators

The most näıve approach to tone mapping is to “window” a part of luminance range in
an HDR image. That is to map a selected range of luminance using a linear transfer
function to a displayable range. Such an approach, however,renders dark parts of
image black and saturates bright areas to white, thus removing the image details in the
areas. A basic sigmoid function:

L =
Y

Y +1
, (2.1)

maps the full range of scene luminanceY in the domain[0, inf) to displayable pixel
intensitiesL in the range of[0,1). Such a function assures that no image areas are
saturated or black, although contrast may be strongly compressed. Since the mapping
in equation (2.1) is the same for all pixels, it is an example of a global tone mapping
operator. Other global operators include logarithmic mapping [Drago et al. 2003], the
sigmoid function derived from photographic process [Reinhard et al. 2002], a mapping
inspired by the response of photoreceptors in the human eye [Reinhard and Devlin
2005], a function derived through histogram equalization [Ward et al. 1997]. The subtle
difference in tone mapping result using these functions is illustrated in Figure2.4.
Usually, one obtains a good contrast mapping in the medium brightness levels and
low contrast in the dark and bright areas of an image. Therefore, intuitively, the most
interesting part of an image in terms of its contents should be mapped using the good
contrast range. The appropriate medium brightness level for the mapping is in many
cases automatically determined as a logarithmic average ofluminance values in an
image:

YA = exp

(

∑ log(Y + ε)

N

)

− ε, (2.2)

whereY denotes luminance,N is the number of pixels in an image, andε denotes a
small constant representing the minimum luminance value. TheYA value is then used
to normalize image luminance prior to mapping with a transfer function. For example,
in equation (2.1) such a normalization would map the luminance equal toYA to 0.5
intensity which is usually displayed as middle-gray (before the gamma correction).
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linear logarithmic

sigmoid histogram eq.

Figure 2.4: Comparison of global transfer functions. The plot illustrates how lumi-
nance values are mapped to the pixel intensities on a display. The steepness of the
curve determines the contrast in a selected luminance range. Luminance values for
which display intensities are close to 0 or 1 are not transferred. Source HDR image
courtesy of Greg Ward.

TheYA is often called the adapting luminance, because such a normalization is similar
to the process of adaptation to light in human vision.

2.5.2 Local Adaptation

While global transfer functions are simple and efficient methods of tone mapping, the
low contrast reproduction in dark and bright areas is a disadvantage. To obtain a good
contrast reproduction in all areas of an image, the transferfunction can be locally ad-
justed to a medium brightness in each area:

L =
Y′

Y′
L +1

, (2.3)

whereY′ denotes HDR image luminance normalized by the globally adapting lumi-
nanceY′ = Y/YA andY′

L is the locally adapting luminance. The value of globally
adapting luminanceYA is constant for the whole image, while the locally adapting
luminanceY′

L is an average luminance in a predefined area centered around each tone
mapped pixel. Practically, theY′

L is computed by convolving the normalized image
luminanceY′ with a Gaussian kernel. The standard deviation of the kernelσ defines
the size of an area influencing the local adaptation and usually corresponds in pixels
to 1 degree of visual angle. The mechanism of local adaptation is again inspired by
similar processes occurring in human eyes. Figure2.5 illustrates the improvement in
tone mapping result through introduction of local adaption.

The details are now well visible in dark and bright areas of the image. However, along
high contrast edges one can notice a strong artifact visibleas dark and bright outlines
– the halo. The reason why such artifact appears is illustrated in Figure2.6. Along a
high contrast edge the area of local adaptation includes both high and low luminance,
therefore the computed average in the area is inadequate forany of them. On the side
of high luminance the local adaptation is more and more under-estimated as the tone
mapped pixels are closer to the edge, therefore equation (2.3) gradually computes much
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Figure 2.5: Tone mapping result with global, equation (2.1), and local adaptation, equa-
tion (2.3). The local adaptation (right) improves the reproduction of details in dark and
bright image areas, but introduces halo artifacts along high contrast edges.

bright outline

dark outline

Figure 2.6: The halo artifact along a high contrast edge (left) and plots illustrating the
marked scanline. Gaussian blur (under-) over-estimates the local adaptation (red) near
a high contrast edge (green). Therefore the tone mapped image (blue) gets too bright
(too dark) closer to such an edge.

higher intensities than appropriate. The reverse happens on the side of low luminance.
A larger blur kernel spreads the artifact over a larger area,while a smaller blur kernel
reduces the artifact but also reduces the reproduction of details.

2.5.3 Prevention of Halo Artifacts

Many image processing techniques have been researched to prevent the halo artifacts
out of which the notable solutions are automatic dodging andburning [Reinhard et al.
2002] and the use of bilateral filtering instead of Gaussian blur [Durand and Dorsey
2002].

The automatic dodging and burning technique derives intuitively from the observation
that a halo is caused by a too large adaptation area, Figure2.6, but also a large area is
desired for a good reproduction of details. Therefore, the size of the local adaptation
area is adjusted individually for each pixel location such that it is as large as possible
but does not introduce halo. The halo artifact appears as soon as both very high and
very low luminance values exist in an adaptation area and significantly change the
estimated local adaptation. Therefore, by progressively increasing the adaptation area



16 CHAPTER 2. HIGH DYNAMIC RANGE IMAGING

for each pixel, the following test can detect the appearanceof halo:

|YL(x,y,σi)−YL(x,y,σi+1)| < ε. (2.4)

For each pixel, the size of the adaptation area, defined by thestandard deviation of
the Gaussian kernelσi , is progressively increased until the difference between the two
successive estimates is larger than a predefined thresholdε. The result of the Gaussian
blur for the largestσi that passed the test is then used for given pixel in equation (2.3).
The example of estimated adaptation areas is illustrated inFigure 2.7. The whole
process can be very efficiently implemented using the Gaussian pyramid structure as
described in [Reinhard et al. 2002].

Figure 2.7: Estimated adaptation areas for pixels marked asblue cross. In each case,
the green circle denotes the largest, thus the most optimal adaptation area. A slightly
larger areas denoted as red circles would change the local adaptation estimateYL more
than acceptable threshold in equation (2.4) and would introduce a halo artifact.

Bilateral filtering is an alternative technique to prevent halos [Durand and Dorsey
2002]. The reason for halos, Figure2.6, can also be explained by the fact that the
local adaptation for a pixel of high luminance is incorrectly influenced by pixels of
low luminance. Therefore, excluding pixels of significantly different luminance from
local adaptation estimation prevents the appearance of halo in a smilar way as in equa-
tion (2.4). The bilateral filter [Tomasi and Manduchi 1998] is a modification of the
Gaussian filter which includes an appropriate penalizing function:

Yp
L = ∑

q∈N(P)

fσs(‖p−q‖) ·Yq ·gσr (|Yp−Yq|). (2.5)

In the above equation,p denotes the location of the tone mapped pixel,q denotes pixel
locations in the neighborhoodN(p) of p. The first two terms of equation,fσs ·Yq, define
Gaussian filtering with spatialσs. The last term,gσr , excludes from the convolution
those pixels whose luminance value differs from the tone mapped one by more than
σr . Both f andg are Gaussian functions, and luminance is usually expressedin the
logarithmic space for the purpose of such filtering. The bilateral filtering process is
shown in Figure2.8.

Compared to the automatic dodging and burning, the bilateral filter better reproduces
details at the edges, because in most cases a relatively larger area is used for estimation
of local adaptation. Although the exact computation of equation (2.5) is very expensive,
a good approximation can be computed very efficiently [Durand and Dorsey 2002,
Chen et al. 2007].
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Figure 2.8: Bilateral filtering of a similar scanline as in Figure2.6, here marked in
magenta. The penalizing functiong improves the estimation of the local adaptation
(red) by excluding pixels in the neighborhoodf (magenta) whose luminance value is
outside the defined range (orange). Thus, the local adaptation for the pixel marked
with a cross (left image) is estimated only from the pixels inthe area outlined in green,
while the Gaussian blur would also include pixels in the areaoutlined in red.

2.5.4 Contrast Domain Operators

The tone mapping methods discussed so far perform the dynamic range reducing oper-
ations directly on luminance or on color channel intensities. However, one can observe
that an image with a wide range of luminance also contains a large range of contrasts.
Therefore, as an alternative to luminance range compression, contrast magnitudes in
the image can be reduced. Since the contrasts convey semantical information in im-
ages, such a control over contrast can be advantageous. For instance, small contrasts
usually represent the reflectance properties of surfaces, like texture, medium contrasts
often define the outlines of objects, and large contrasts represent changes in illumina-
tion. Particularly, large contrasts are in most cases the cause of a high dynamic range.
By preserving small and medium contrasts, and reducing large contrasts, one can re-
duce the dynamic range of illumination and at the same time preserve good visibility of
details from the original HDR image. Such a contrast based processing gives a better
control over transferred image information than the luminance based operators. The
latter, however, give a better control over brightness mapping. In fact, it is hard to
impose a target luminance range for contrast based compression.

A typical contrast based tone mapping operator includes thefollowing steps. First, the
input luminance is converted to a contrast representation.The magnitudes of contrasts
are then modulated using a transfer function for contrast – the tone mapping step. Next,
the modulated contrast representation is integrated to recover the luminance informa-
tion, and such luminance is then scaled to fit the available dynamic range. Finally, since
the result of integration is calculated with an unknown offset, the image brightness of
the tone mapping result is adjusted.

Contrast in tone mapping applications is most often measured as a logarithmic ratio of
luminance:

C = log
Yp

Yq , (2.6)

whereYp andYq denote luminance of adjacent pixel location. The contrast represen-
tation of an image is computed as a gradient of logY, since the logarithm of division is
equal to the difference of logarithms. For tone mapping, such a representation is often
multi-resolution to measure contrasts between adjacent pixels (full resolution) and ad-
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jacent areas in an HDR image (coarser resolutions). The contrasts are then modulated
by a transfer function, for example [Fattal et al. 2002]:

T(C) =
α
|C| ·

( |C|
α

)β
. (2.7)

Given thatβ ∈ (0,1), such a function attenuates gradients that are stronger than α
and amplifies smaller ones. Thus, ifα is equal to medium contrasts in an image,
equation (2.7) reduces the dynamic range caused by large differences in illumination
and enhances fine scale details. More complex transfer functions are also possible
including for instance contrast equalization [Mantiuk et al. 2006]. As the final step,
the modulated contrast representation of an HDR image has tobe integrated in order to
obtain intensities in a tone mapped image. The integration step is performed by solving
the Poisson equation and the image brightness adjustment step is left for manual setting
by a user. The stages of the contrast domain tone mapping process are illustrated in
Figure2.9.

(a) HDR image, clipped (b) contrast representation (c) contrast transfer map (d) tone mapping result

Figure 2.9: Contrast domain tone mapping. The HDR image (a) is transformed to a
contrast representation (b) which is multiplied by a contrast transfer function (c). The
contrast representation is then integrated to obtain a tonemapped image (d). In (b)
white denotes strong local contrast and black no contrast. In (c) black denotes strong
contrast attenuation and white marks no change in local contrast.

2.5.5 Summary

In the previous sections we have introduced the general ideas behind tone mapping
algorithms. Many variations of such algorithms exist that differ in subtle details from
each other and we refer the reader to [Reinhard et al. 2005] for detailed descriptions.

Remarkably, all tone mapping operators change the pixel intensities in a tone mapped
image and their relations with spatial neighbors with respect to the original HDR. The
nature of the algorithms is mostly inspired by typical imageprocessing or computer
vision approaches and with some equations adopted from known processes happening
in early stages of human vision. This imposes certain mathematical properties of tone
mapped images and assures that basic appearance properties, like adaptation to light,
are preserved. However, as explained in Chapter3, the appearance of images is largely
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influenced by processes occuring in later parts of the visualsystem. Such later stages,
the cognitive processes, have so far not been studied in the context of tone mapping.
We argue that these process need to be considered to preservethe original appearance
of HDR images during tone mapping, and in Chapter5 we propose a tone mapping
operator which is inspired by such a cognitive interpretation of scenes.

With a large number of available tone mapping algorithms whose results differ only
subtly, an evaluation framework would facilitate the choice of an appropriate operator
for a given application. While several psychophysical evaluations have already been
conducted [Drago et al. 2002, Kuang et al. 2004, Yoshida et al. 2005, Ledda et al.
2005] which offer a form of ranking of available algorithms, the particular reasons why
some operators are preferred over others is not well understood. Also, it is not easy to
evaluate new algorithms and include them in such rankings. Therefore, in Chapter6 we
propose an objective evaluation of tone mapping operators which allows to understand
the effect of tone mapping algorithms in terms of perceptualchange of contrasts and
brightness. We evaluate several state-of-the-art operators accordingly.

2.6 HDR Applications

High dynamic range imaging offers an unprecedented qualityof capture and represen-
tation of visual contents. Such a complete visual information, including the true range
of real world luminance, can improve the quality of many computer graphics applica-
tions and can enable simulations or measurements that before have not been possible.

Currently the most popular application is HDR photography in which the high dynamic
range permits to capture photos free of under- and over-exposures with an unprece-
dented level of details. New tone reproduction algorithms provide the users with a
better control over tones, contrast, and levels of detail intheir photography.

The capture of physically accurate light measurements, enabled by HDR techniques,
opens new possibilities in realistic image synthesis. For instance, a digital representa-
tion of light surrounding a certain scene can be captured andused to synthesize com-
puter graphics objects with a high fidelity to the natural light conditions [Havran et al.
2005]. This permits the simulation of real-world light conditions in computer graphics
visualizations [Dmitriev et al. 2004]. The true light information permits also to model
the behavior of human visual system and to simulate the actual scene appearance in var-
ious illumination conditions. Precise light measurements, offered by HDR techniques,
further increase the quality of acquisition of objects’ appearance. The reflectance prop-
erties of their complex materials can be measured and used inrealistic rendering of
digitized objects to obtain high quality virtual reproductions [Gösele 2004].

Emerging HDR displays [Seetzen et al. 2004], whose capabilities outperform those
of modern displays, offer interesting visualization possibilities. For instance, the er-
gonomics of LCD displays can be directly investigated in various illumination condi-
tions by taking a display-in-display approach [Dmitriev et al. 2004]. The calculated
light interaction with LCD panel can be directly visualizedon the HDR display whose
display range can easily accommodate such information. It can be envisaged that fur-
ther ideas for applications will appear with the growing popularity of HDR imaging.
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Chapter 3

Human Visual Perception

Visual information about our surroundings is available to us through the act of see-
ing. The ability to see involves capturing light with our eyes and interpreting it with
our brain in such a way that we can understand what we see, remember it, react to
it. Human eyes successfully operate in an incredibly variedrange of light conditions
from the darkest night to the brightest day and in all these conditions we consistently
recognize known objects, faces, materials, our environment. From the moment the
light enters our eyes, the full process of perception is facilitated by a complex system
that consists of several stages. First, the light is focusedin the eye with a lens onto
the light sensitive back of the eye where photoreceptors transform captured photons
into the neuronal signals. These signals are then transmitted to the brain where they
are decomposed in a hierarchical way and processed in the visual cortex. Only such
processed visual information appears to us as the images that we see and understand.

The human visual system is well adapted to its tasks, but is not perfect. The optics of an
eye, like any solid optical element, have certain characteristic and limits. The photore-
ceptors are distributed on the retina with a finite resolution that can be reduced under
circumstances to increase sensitivity but impairing the visual acuity. The channels that
transmit signals to brain have a relatively low bandwidth compared to the amount of
captured data and some information is sent to the brain in a faster but reduced form. On
the other hand, cognitive interpretation of transmitted signals is subjective and highly
influenced by our prior knowledge. In the end, observed scenes do not necessarily
appear to us exactly the same as they actually are.

The investigation of true perception of scenes as performedby the human visual system
is very worthwhile in the context of this dissertation. The knowledge of how human
vision works may let us focus on those aspects that are important when depicting HDR
scenes on devices with limited capabilities or when measuring the perceptual quality of
such depictions. For instance, the ability to adapt to a change in light levels such that
the perceived scenes appear with a roughly constant overallbrightness is a fundamental
process of the human visual system that makes tone mapping atall possible. Further
analysis may indicate what effects typical to our visual system contribute to the overall
subjective appearance of scenes and perhaps to what extent they should be accounted
for during tone mapping. Likewise, the understanding of howthe visual information
is in fact interpreted by the human brain may help to prepare the depictions of HDR

21
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Figure 3.1: The general plan of the human eye and the retina with the names of their
principal parts. Original image of the eye courtesy of Rhcastilhos, Wikimedia Com-
mons.

in accordance with the mechanisms of perception such that visual communication is
facilitated.

The aim of this chapter is to introduce the basic knowledge ofhuman vision and visual
perception, and to point the reader to those aspects that areparticularly interesting in
view of the topics addressed in this thesis. In the followingsections, we give rather
succinct descriptions of the terms that are necessary to understand the further chapters
of this dissertation and refer the reader for detailed descriptions to related text books
[Palmer 1999, Fairchild 1998, Wyszecki and Stiles 2000, Wandell 1995]. We further
elaborate on each of the topics in the relevant chapters of the thesis where we also cite
research papers.

3.1 The Eye

The act of seeing starts with the moment light enters our eyesand generates a visual
stimulus. The physical construction of an eye (Figure3.1) and the means by which
the light is registered determines the physical appearanceof images. The human eye is
an organ of approximately spherical shape filled with a cleargel, the vitreous humour,
which separates the lens and the retina. The eyeball is fixed in an eye socket and is
moved with extrinsic muscles to aim at a point of fixation.

The visual process which happens in the human eye can be divided into the optical part
and the sensory part. The optical part gathers the light entering our eyes with a lens
which focuses it on the back of the eye – the retina. The retinacontains pigment cells
and underlying photoreceptors which actually respond to light. The photoreceptors
transform captured photons into the neuronal signals and thus begin the sensory part.
The neuronal signals of photoreceptors are passed through various intermediate cells
and are aggregated by ganglion cells whose axons form an optic nerve which connects
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to the brain. Each part of this process interferes to some extent with the original visual
information. In the following sections we describe these parts in detail and discuss
their impact on image appearance.

3.1.1 Optical System

The optical part of the visual system is embodied in the eyeball and in the main part
consist of cornea, pupil, iris, and lens (refer to Figure3.1). The cornea is the transpar-
ent front of the eye which is the most exposed part to light. Together with the lens it
refracts light and whereas it has the major contribution to the eye’s optical power its
refraction parameter is fixed. The iris is the most recognized component of the eye
with a characteristic pigment. It contains the muscles thatallow to contract and extend
the pupil. The pupil is a black opening in the eye that regulates the amount of light
that enters it. The variable size of the pupil with respect tothe level of light is the most
apparent indication of the adaptation of human visual system to light. The adaptation
to light is, however, primarily a sensory process and the actual contribution of variable
pupil size is minor. The main task of the optical system of theeye is the accommo-
dation. It is the process of adjusting the shape of the lens using the ciliary muscles to
allow focusing on various distances. The accommodation guarantees that objects of
interest form a sharp image on the retina.

The optical system of the eye, like any man-made optical lens, has its characteristics
and limitations. The primary observable limitation is the scattered light in the eye as
it passes through the cornea, lens, and vitreous humour [Wyszecki and Stiles 2000].
It can affect vision when for instance an eye is observing a bright light source against
a dark background as illustrated in Figure3.2. The veiling glare that is observed in
such cases causes a decrease in contrast and increase in brightness in the vicinity of
such bright areas. The amount of light scatter can be measured and described in the
form of a point spread function (PSF) dependent on the pupil diameter [Wandell 1995].
The PSF gives the relative amount of light registered by photoreceptors at a specified
angular distance on the retina from the place where the pointlight source is directly
projected. As the pupil diameter increases, the amount of scattering also increases. An
example of PSF function can be found in Section4.2.5where we use it to simulate
such glare effects in tone mapping.

The visual effect of light scatter in the eye has an interesting perceptual implication.
People so strongly associate the perception of glare as being caused by a strong source
of light that painting such a visual effect around an area in an image causes this area to
appear to be much brighter than it actually is. This phenomenon is visible in Figure3.2.

3.1.2 Sensory Part

The sensory part of the visual system starts when the light focused by the optical part
falls on the retina (Figure3.1) and triggers a chain of neural events that eventually
transform captured photons to a coded signal which is sent through the optic nerve
to the brain for visual interpretation. The retina is a thin layer of neural cells which
contains light sensitive photoreceptors and a non-photosensitive melanin pigment. The
photons that hit photoreceptors are absorbed by the photosensitive pigment and elicit
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Figure 3.2: In the image above, the rising sun is hidden exactly behind the street lamp.
When looking at this lamp, the light scatter causes that the middle parts of the lamp
create much weaker contrast with the background than the rest and that the area around
has a higher brightness. Additionally, the presence of glare makes the area inside the
lamp appear luminous and brighter than the square beside given for reference and the
rest of the sky, although their brightness is equal.

signal that passes through the neural cells in the retina. The photons which miss the
photoreceptors are absorbed by the melanin pigment.

There are two kinds of photoreceptors: rods and cones containing the actual photosen-
sitive pigment. Cones are less sensitive to light than the rod cells, but their response
times are faster. There are three kinds of cones which together allow the perception of
color and whose absorption properties define the spectrum ofthe visible light which
is 350nm - 750nm. The three cone types have their peek response approximately to
yellowish-green (L cones), green (M cones), and bluish-violet (S cones). While the
human visual system can directly measure only three colors,according to the oppo-
nent color theory [Wyszecki and Stiles 2000] the full color gamut is visible by actually
measuring the relative differences between the responses of different cone types. There
is only one type of rod cell that absorbs a similar spectrum asthe summary response
of the cones, but being more sensitive to the blue part and almost not sensitive to the
wavelengths above the red part. There are on average 6 million cone cells with the
highest density around the central part of the retina – the fovea (Figure3.1) provid-
ing high visual resolution of the object in focus. On average100 million rod cells are
densely located on the outer area of the fovea supporting theperipheral vision.

The actual neural processes that happen in the retina are notwell understood and the ex-
planations given in the literature are considered to be moreor less speculative, although
supported by profound evidence [Wyszecki and Stiles 2000]. In general, the ganglion
cells (Figure3.1) receive signals from bipolar and horizontal cells which themselves
receive input from the photoreceptors. A ganglion cell receives input from several pho-
toreceptors which creates a single receptive field. The receptive fields are organized in
a center/surround manner such that the light falling on their center is activating the
response and the light falling on the immediately surrounding region is inhibiting the
response. Such an organization provides an efficient edge enhancement but also indi-
cates that the brain receives encoded differences in signals rather than their absolute
intensity levels registered by the photoreceptors. This leads to an important conclusion
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which is that the human visual system interprets information given in the form of local
intensity differences – contrasts.

Various properties of photoreceptors and their distribution on the retina have a visible
impact on the appearance of scenes and we explain the relevant aspects in the following
sections.

3.1.3 Vision Modes

Cones, which allow to distinguish colors, respond well in dim to bright light (10−1 to
10+8 cd/m2). Rods, which are much more sensitive to light than cones, respond best in
darkness and up to moderate light (10−6 to 10+1 cd/m2), but are blinded by luminances
above 10+2 cd/m2 and do not output any usable signals at such illumination levels.
These luminance characteristics of photoreceptors determine three vision modes of
the human visual system: photopic, mesopic and scotopic, which are illustrated in
Figure3.3.

monochromatic vision

limited visual acuity

good color perception

good visual acuity

SCOTOPIC MESOPIC PHOTOPIC

−6 −4 −2 0 2 4 6 8

rod activity cone activity
Luminance [log cd/m2]

Vision mode:

daylightoffice lightnight light

Mode properties:

Figure 3.3: Vision modes of the human visual system with an illustration of usual scene
appearance.

Photopic vision is active under well-lit conditions which usually occur in daylight.
During photopic vision only cone photoreceptors are active, while rods are blinded by
too strong illumination. Photopic mode is characterized bygood color perception and
sharp vision.

The scotopic vision mode refers to dim and dark illuminationconditions and occurs
mostly at night. The light is registered only by rods, because the sensitivity of cones is
too low. Since cones are inactive, colors are not distinguishable. As the illumination
decreases the neural signal is aggregated over larger groups of rods to increase the
effective sensitivity of the visual system. Such aggregation, however, reduces the actual
resolution of rods on the retina which is sensed as a decreasein the visual acuity.

The mesopic vision occurs under dim illumination and is a transition mode between
photopic and scotopic vision. Both cones and rods are activeresulting in a color vision
with slightly stronger sensitivity to blue colors over the red ones. This is known as
Purkinje shift.
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The difference in vision modes has a strong impact on image appearance. As illustrated
in Figure 3.3, the daylight vision is associated with good perception of colors and
good acuity, while at night most things look colorless and details are not well visible.
These appearance properties are very common and the scenes that depict the properties
of scotopic vision are immediately thought to have low illumination levels. This is
among others exploited in movies: the night scenes are post-processed to have realistic
night vision qualities, because display devices cannot depict images at sufficiently low
luminance levels such that these quality appear naturally.

3.1.4 Photoreceptor Response

The light captured by a photoreceptor is transformed into the neuronal signal of pro-
portional strength. There is a significant evidence that therelation is non-linear [Hunt
1995] and the response of both rods and cones is usually approximated with a sigmoid
function shown in Figure3.4. Such a response has several important properties. When
the intensity of the stimulus is low, the capture noise is suppressed by the lower non-
linearity. When the intensity is very high, the response gradually reaches its maximum
beyond which no signal increase is registered. The main partis approximately lin-
ear, so that the differences between intensity signals of moderate luminance are well
transferred.
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Figure 3.4: Sigmoid response to light of a photoreceptor. The luminance difference
dY causes a much more pronounced signal differencedR1 if the response range is well
adapted to light conditions, compared to the differencedR2 observed in an unadapted
state.

Under constant ambient light conditions, the photoreceptors successfully register the
luminance range of about 4 orders of magnitude. However, therange of luminance
in nature can be as high as 108 during the day and as low as 10−4 in the night. To
accommodate such a much wider range, the photoreceptors adapt their response range
to the current ambient light level. This can be observed as a shift in the response
curve with respect to the medium luminance range as illustrated in Figure3.4. Such
an adaptation is the fundamental ability of the eye which leads to an approximately
similar sensory appearance of a scene independently of the absolute luminance level,
except for changes in the vision modes.

The shape of the response function and the adjustment of the response range with
respect to the medium luminance in the scene inspired several tone mapping operators,
including the one discussed in Section4.2.1.
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3.1.5 Temporal Light and Dark Adaptation

The process of adjusting the response range of photoreceptors to match the illumination
condition, mentioned in the previous section, is not immediate. Normally, the adapta-
tion processes are mostly not noticed because the changes inthe illumination during
the course of day and night are very slow. Sudden changes, however, cause visible
loss in the sensitivity as illustrated in Figure3.5. For instance, when on a sunny day
one immediately enters a dark theatre, the interior is at first dark and no details can be
discerned – only after several seconds the silhouettes of objects start to appear.

adapted state
adaptation to light

adaptation to dark

sudden change in illumination

adapted state

Figure 3.5: Visual experience in certain time intervals during the temporal adaptation
to light and to dark caused by a sudden change in illumination. The visibility improves
with time because the response range of photoreceptors adjusts to the medium illumi-
nation in the scene as illustrated in Figure3.4.

The adaptation of photoreceptors response to light is a temporal process. In a sim-
ple form, the adaptation is accomplished by neural processes attributed to cell inter-
connections in the retina and by chemical processes of bleaching and regeneration of
photosensitive pigment. The neural processes react very fast and are mostly accom-
plished after several seconds. The chemical processes account for significant changes
in illumination, are much slower and visibly asymmetric. The adaptation from bright
sunlight to complete darkness takes up to 30 minutes while the reverse process is fully
accomplished in about 5 minutes.

The precise time course of adaptation can be measured with threshold sensitivity ex-
periments. In such experiments, the subjects are first exposed to a certain ambient
illumination for enough time to adapt to its intensity. Next, the illumination changes
suddenly and experimenters measure the subjects’ ability to detect a small luminance
difference on a test stimulus. If we recall Figure3.4, in the adapted state the difference
in the luminance on the stimuli falls on the linear part of thephotoreceptors response
thus produces the strongest difference in output signal. Aslong as the adaptation pro-
cess is not complete, the difference of output signal is compressed by the non-linear
part and the stimulus has to be stronger to be perceived. In the adapted state the visi-
bility of the luminance difference in the test stimuli is thestrongest.

The measured time course of dark and light adaptation is shown in Figure3.6. The
plots start with a sudden change in illumination which results in high detection thresh-
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(a) dark adaptation, rods and cones
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(b) light adaptation − rods
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(c) light adaptation − cones
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Figure 3.6: Time course of dark adaptation (a) and light adaptation (b,c) as a function
of threshold sensitivity. Dark adaptation was to complete darkness, light adaptation to
the specified luminance levels. Plots after [Ferwerda et al. 1996].

olds, thus low sensitivity. The sensitivity of both rods andcones progresses asymp-
totically. During dark adaptation, the process of cones is faster but cones soon reach
their maximum sensitivity. The sensitivity level is for a moment constant because the
rods still have not recovered from the strong illumination.With time, rods dominate
vision and continue the adaptation process until maximum sensitivity is reached. The
light adaptation in the scotopic range is extremely rapid and nearly 75% of the process
is accomplished within first 400ms. The cone system adapts tolight much slower and
requires about 3 minutes to reach maximum sensitivity whichthen slightly decreases.
Due to their asymptotic nature, the adaptation processes are often approximated with
an exponential function as explained in Section4.2.2.

3.1.6 Perceptual Implications

The optical and sensory parts of early vision have a definitive impact on the subjective
appearance of scenes. The properties of rods and cones defineclearly distinguishable
vision modes, photopic and scotopic, which deliver a totally different appearance of the
same scene depending on the absolute luminance of ambient illumination. The course
of light and dark adaptation has a temporal but significant influence on the appearance
of dynamic scenes in which the illumination changes suddenly.

Further, we are so strongly accustomed to the effects related to early vision that we
tend to associate appropriate illumination levels to matchthe corresponding image ap-
pearance [Spencer et al. 1995]. Therefore simulation of scotopic vision conveys to
the observers the message of low illumination conditions. The veiling glare in images
indicates the presence of light sources and causes that the areas centered in the glare
appear to be brighter than they actually are.

Existing display devices show images at the luminance levels largely corresponding to
the mesopic vision. When, for instance, the low luminance levels of night scenes are
transposed to the luminance range of a display their subjective appearance is not any
more observed. Since the characteristics of these early vision processes have been mea-
sured, it seems reasonable to simulate them during the display to convey the subjective
appearance of scenes with luminance levels outside the display range. We propose an
appropriate solution in Chapter4.
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3.2 Visual Sensitivity

Contrast, which is a difference in luminance between adjacent or distant areas, is the
primary form of visual information that is delivered to the brain. The visual sensitiv-
ity is therefore measured by our ability to respond to physical contrasts of different
properties across different observation conditions.

Contrast is captured by the receptive fields and neural interconnections in the retina.
According to the multi-resolution theory of vision, for interpretation the visual signal is
split into several channels each dedicated to contrasts of aparticular spatial and tempo-
ral frequency, and orientation. The sensitivity to the information in different channels
varies and depends on the significance of their information in terms of recognition of
natural scenes. Further, all contributing components are highly adaptive and the visual
sensitivity changes as a function of light intensity.

The understanding of human response to contrast is interesting in the context of tone
mapping algorithms, because from the technical side their essential goal is to reduce
the contrast in the HDR contents. In the following sections we focus on the measured
observations that characterize the effective human perception of contrast, while the un-
derlying processes are fundamentally described in handbooks [Wandell 1995, Palmer
1999].

There are two main aspects of contrast perception. The ability of detecting signal on a
uniform background – contrast detection (threshold aspect), and the ability to judge if
one signal generates a stronger contrast than the other – contrast discrimination (supra-
threshold aspect). The difference between the two is illustrated in Figure3.7. In con-
trast detection (a), the difference in luminancedY between the background and the
patch is measured. For the patch to be discernible it needs tobe stronger than the visi-
bility threshold. In contrast discrimination (b), the difference between contrasts of two
patches with their backgroundsd2Y is measured. It needs to be strong enough so that
the difference in brightness between the two patches is discernible. The performance
of contrast perception depends on the ambient illuminationlevel, spatial frequency of
the signal, and the presence of other signals in the area of interest.

(a) contrast detection (b) contrast discrimination

background luminance level

visibility threshold

dY1 dY2

d2Y

Figure 3.7: Test stimuli and luminance profiles illustrating contrast detection and con-
trast discrimination.

3.2.1 Luminance Masking

The most basic response to contrast is measured by the ability of detecting a luminance
changedY on a uniform background of luminanceY (Figure3.7). This directly corre-



30 CHAPTER 3. HUMAN VISUAL PERCEPTION

sponds to the psychophysical measure ofjust noticeable difference – jndfor luminance.
For a single stimulus in a form of patch shown in Figure3.7, the smallest detectable
luminance difference, the detection threshold, changes asa function of the background
luminance. The effect is called luminance masking, becausethe existing luminance
in the background masks the visibility of stimuli whose luminance is slightly lower or
higher.

Initially, according to Weber’s Law the relation of just noticeable difference in lumi-
nance with respect to the background luminance has been assumed to be constant.
Currently, several more precise threshold versus intensity (tvi) functions are in use, in-
cluding the one defined in the CIE standard [CIE 1981] which we use in the further
chapters of this dissertation. The tvi function is plotted in Figure3.8 for reference.
In photopic vision the ratio of the visibility threshold to the background luminance is
approximately constant and Weber’s law gives a good prediction. In the mesopic and
scotopic range, however, the detection thresholds do not decrease significantly with
respect to the background.
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Figure 3.8: Visibility threshold as the function of background luminance (tvi) from the
CIE standard [CIE 1981] (solid line) and Weber’s Law for reference (dashed line).

3.2.2 Spatial Contrast Sensitivity

The human vision response to contrasts in complex images varies depending on the fre-
quencies of their components. When observing periodic signals, which can be thought
of as an approximation of natural images, the detection thresholds discussed in the
previous section further depend on the spatial frequency ofthe signal. The effect is
illustrated in Figure3.9.

The pattern shown in Figure3.9measures the spatial contrast sensitivity function (CSF)
for human vision. The CSF in principle increases the visibility thresholds given by the
tvi function for low and high frequencies. It also indicatesthat our perception is best at
detecting medium frequencies which usually define the outlines of objects in a scene.
The sensitivity is expressed in terms of cycles per degree ofvisual angle, therefore the
ability to perceive contrast in a pattern of certain frequency changes with the viewing
distance.
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Figure 3.9: Spatial contrast sensitivity chart after [Campbell and Robson 1968]. The
amplitude of signal decreases uniformly for each frequency, but the perceived signal
disappears non-uniformly as approximately outlined by therelative sensitivity plot.

3.2.3 Contrast Masking

The ability of human vision to detect signals of certain frequencies is further impeded
by the presence of other visible signals in the area of interest which have a similar
frequency and spatial orientation. This is because existing contrasts mask the new
contrast of the introduced signal. The effect can be observed in Figure3.10.

test signal masking signal (image) with the test signal

superimposed

Figure 3.10: Contrast masking example. The visibility of the test signal in the image
depends on the local image contents. It is hardly perceivable in the areas with high
frequency textures or with patterns of similar orientation. The test signal consists of
periodic countershading profiles introduced in Chapter7.

Contrast masking is measured by finding a necessary amplitude of the test signal such
that it is visible when super-imposed on the existing signal. If the existing signal is uni-
form, this is the same effect as the luminance masking therefore the visibility thresholds
are equivalent. When the amplitude of contrasts of the existing signal increases, the
initial visibility threshold changes as described by a threshold elevation function. The
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threshold elevation function increases the detection threshold as a function of the local
contrast of the same frequency and orientation and is usually modeled by a power func-
tion with a typical exponent between 0.65 - 1, mostly 0.7 [Daly 1993] (Figure3.11).
The function has two asymptotic regions, one with slope of zero and one with slope
near 1. The zero slope occurs for low contrasts of the maskingsignal (the existing
signal) that are not visible and therefore do not change the visibility threshold which
in this case is the same as for the uniform background. As soonas the local sub-band
contrast of masking signal is greater than the threshold contrast, the contrast of the test
signal must be stronger to be visible.
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Figure 3.11: Necessary difference in the physical contrastdW, so that it is visible in
the presence of the existing contrastW. Plot based on the threshold elevation function
after [Daly 1993].

3.2.4 Visual Detection Models

The measurements of human visual sensitivity to various properties of physical con-
trasts are often used to design computational models of contrast detection and discrim-
ination. Such models permit to estimate whether certain visual signals are visible to
an average observer. These signals can be both useful information, which should be
strong enough to be above the visibility threshold, and undesired information like com-
pression artifacts whose magnitude should be kept below thepredicted visibility level.
In this dissertation we exploit both of these aspects and usesuch models to evaluate
the quality of contrast reproduction (Chapter6) and to predict the potential visibility of
contrast enhancement as a halo artifact (Chapter7).

3.2.5 Processing of Visual Information

While both color contrasts and luminance contrasts deliver information to the brain, the
luminance is the primary source and colors are supplementary information. Figure3.12
illustrates a color image and two versions of it: one contains only luminance contrasts
and the other only color contrasts. The recognition of imagecontents is equally good
in the luminance image as it is in the original image. In contrary, the contents of the
color only image are recognized with a substantial difficulty and some information is
missing.
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(a) luminance contrasts only (b) luminance and color contrasts

     (original image)

(c) color contrasts only

Figure 3.12: The original image (b) decomposed into the luminance contrasts alone (a)
and the color contrasts (c).

The theoretical approach to processing of visual information distinguishes two visual
pathways: magnocellular and parvocellular [Wandell 1995], also popularly known
as the “where system” and the “what system” respectively [Livingstone 2002]. The
“where system” is responsible for the perception of depth and motion, for the spatial
organization of scene objects, and for the figure/ground segregation. It can be charac-
terized by a fast response to changes and high contrast sensitivity, but it is color blind
and its visual acuity is lower by a factor of 2 compared to the “what system”. The
“what system” is color selective and has a high visual acuity, but its sensitivity to con-
trast is low and it responds slower to changes. The “what system” is responsible for
recognition of objects, including faces, and perception ofcolors. It can be subdivided
into the “form system” which uses luminance and color to define shapes of objects, and
the “color system” which identifies color of surfaces.

We have focused our discussion in the previous sections on luminance contrast alone,
because it appears to be the major factor in the successful interpretation of scenes.
Luminance contrast is the common component of both “where” and “what” systems
and permits the perception of objects and their spatial organization in the scene. Since
it is directly affected by the process of tone mapping, we argue that it requires closer
perceptual investigation. Consequently, we evaluate existing tone mapping operators
in terms of their good reproduction of luminance contrasts (Chapter6) and develop a
contrast enhancement technique that facilitates the perception of image features after
tone mapping (Chapter7).

3.2.6 Contrast Illusions

The visual information is sensed locally, through the receptive fields, and registered
as contrasts due to the center-surround construction of such fields. Therefore lumi-
nance differences deliver useful information which is propagated over the uniform ar-
eas. Also, a contrast needs to be sufficiently strong so that it is above the visibility
threshold and can be interpreted by the visual system. Too weak luminance differences
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Figure 3.13: The appearance of the right image matches the left one, although the
luminance profiles of these images differ (bottom plots). The gradual darkening and
brightening at the borders of areas of equal luminance creates a perceived brightness
difference between them – the Craik-O’Brien-Cornsweet illusion (right image).

are sensed as uniform areas.

The insensitivity to certain visual signals leads to strongcontrast illusions. A carefully
shaped luminance profile at an edge between two areas, like inFigure 3.13, causes
change in the brightness of the whole areas and increases theperceived contrast be-
tween them [Dooley and Greenfield 1977]. Apparently, the gradual change of the lu-
minance away from the edge towards the mean value is not well observed by the human
visual system. The only information in the image, immediatecontrast at the edge, de-
fines the brightness relation between the two patches which is propagated over the
whole area of the patches – hence the illusory brightness difference. Such a perceived
contrast between image areas is strong and appears even for aconsecutive combination
of profiles or when an area is isolated from the area which contains the profile.

The appearance of illusion is not limited to simple uniform areas. Interestingly, it seems
to be stimulated not only by physical aspects of the visual signal, but also by cognitive
interpretation [Purves et al. 1999]. For instance, certain visual cues that the profile
is caused by a difference in the illumination, possibly confirmed by the perspective
information, strongly enhances the effect. In the example shown in Figure3.14, a
rough Cornsweet profile on the border of two pages creates theillusion but the same
profile overlaid on an out-of-context area gives a very weak effect.

Such illusory contrast effects permit to influence the change in the brightness appear-
ance of larger image areas only by modifying their borders. Thus an informed use of
such Cornsweet profiles can be used for image enhancement with a very sparing use
of dynamic range. We take advantage of such possibility and design the appropriate
image processing tool in Chapter7.

3.3 Image Appearance

The final appearance of visual contents is a product of the cognitive processes highly
influenced by our understanding of scene components and their remembered appear-
ance. After [Fairchild and Johnson 2003] one can give the following scene to interpret:
a yellow house with the blue door viewed during sunset. A closer inspection of the
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Figure 3.14: An open book illuminated from the right createsa profile similar to Corn-
sweet (bottom plot). Due to the perceptual illusion, the left page of the book appears
to be brighter than the right page, although their luminanceis identical apart from the
profile shape. The plot illustrates the intensities of a scanline at the level of the page
footer. The illusion appearing on the book is articulated bycontextual information –
the same luminance profile shown in the right image does not exhibit such a strong
effect.

scene reveals that a nearby wall casts a shadow precisely on the door which means
that the blue color is actually caused by the pure illumination from the sky. Since it is
now apparent that the blue is a property of the illumination,the appearance of the door
changes from blue to yellow – its true reflectance. This illustrates the ability of the
human visual system to identify the illumination in the scene and to discard it during
the interpretation of objects’ appearance. This effect is known as lightness and color
constancy and leads to a similar appearance of scenes independent of the illumination.

The appearance of objects is first determined through the interpretation of their visual
stimuli. The stimuli can be perceived as: illuminant, illumination, surface, volume, or
unrelated stimuli [Fairchild and Johnson 2003]. The illuminant attribute is assigned to
objects which are perceived as being a source of light. The illumination appearance
is attributed to the properties of prevailing illuminationrather than objects and is me-
diated by illuminated objects that reflect light and cast shadows. In the presence of a
physical and recognizable object the stimulus can be attributed as the property of its
surface. The stimuli can also be interpreted as the cause of transparency and, in a spe-
cial case, as unrelated information when the stimuli is observed in an out of context
mode, for instance through an aperture. By determining suchclasses of visual stimuli,
the human visual system tries to discard the illumination information in the observed
scenes. A failure in the correct interpretation can lead to avisible difference in the
image appearance as illustrated by the yellow house example.

The interpreted stimuli are further defined by five perceptual attributes: brightness,
lightness, hue, colorfulness, and chroma. Brightness is the perceived luminance com-
ing for the scene, discarding its contextual properties. Lightness is a contextual inter-
pretation of brightness and is judged relative to the brightness of a similarly illuminated
area that appears to be white. Hue is defined by the dominant wavelength of stimuli.
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Chroma defines the color purity as a difference from the gray tone. Colorfulness is
the subjective impression of color purity determined by theabsolute luminance level
(the Hunt effect [Fairchild and Johnson 2003]). Lightness and chroma can only be at-
tributed to objects in the scene and are not a property of illumination, while colorfulness
is an interaction of illumination with an object. Further, brightness and colorfulness are
related to the absolute amount of energy emitted from observed objects.

In the context of reproducing the appearance of scenes on displays in changed obser-
vation conditions the following can be observed. The hue attribute is in general not
affected by changes in illumination (excluding extreme cases of monochromatic illu-
mination). On the other hand, the brightness and colorfulness cannot be reproduced at
all if a scene is displayed with a different luminance range than the original, which is
usually the case, because these attributes depend on the absolute luminance level. For
a good reproduction of appearance, the effort should therefore be focused on a good
match of lightness and chroma between the original scene andits displayed depiction.
For the most part, lightness requires the correct estimation of luminance perceived as
white, and chroma requires the correct estimation of lightness and the perceived satu-
ration of the color [Fairchild and Johnson 2003]. The correct estimation of lightness is
one of the topics of this dissertation and in the next sectionwe briefly review existing
lightness perception theories.

3.3.1 Perception of Lightness

Any luminance value can be perceived as literally any lightness value (shade of gray)
depending on its context within the image. Initially, lightness has been assumed to
be equivalent with reflectance which can be obtained by dividing luminance by the
estimated illumination – a straightforward realization oflightness constancy. This as-
sumption, however, has been undermined with empirical evidence.

The problem of lightness perception and lightness constancy has been studied exten-
sively in the last two centuries for which a detailed accountcan be found in [Palmer
1999]. At first, the Gestalt theorists rejected the assumption that luminance per se is
the stimulus for lightness. The most prominent theories follow Wallach’s observation
[Wallach 1948] that the perceived lightness depends on the ratio of the luminance at
edges between neighboring image regions. This inspired theretinex theory [Land and
McCann 1971], in which it is assumed that even for remote image regions such a ratio
can be determined through the edge integration of luminanceratios along an arbitrary
path connecting those regions.

Lightness can be well modeled by the retinex algorithm underthe condition that the
illumination changes slowly, which effectively means thatsharp shadow borders can-
not be properly processed. To overcome this problem, Gilchrist and his collaborators
suggested that the human visual system performs an edge classification to distinguish
illumination and reflectance edges [Gilchrist 1977]. This led to the concept of the
decomposition of retinal images into the so called intrinsic images [Barrow and Tenen-
baum 1978, Arend 1994] with reflection, illumination, depth and other information
stored in independent image layers. The lightness perception theories based on in-
trinsic images can predict lightness constancy very successfully. However they define
only relative lightness values for various scene regions. Their important shortcoming
is the lack of a rule which would define the association between the predicted relative



3.3. IMAGE APPEARANCE 37

lightness and the perceived white, grays and black across the whole scene. Further-
more, being developed for good lightness prediction, thesetheories fail to account for
lightness constancy failures typical to human vision [Gilchrist et al. 1999].

The mapping of relative lightness to the perceived shades ofgray is solved by anchor-
ing. There are several rules of anchoring, each of which defines a method to assign
one particular absolute lightness value (e.g. white, black, middle gray) to one relative
lightness value – the so called anchor value. The remaining mapping can be imme-
diately found through the known lightness ratios. In particular, the anchoring can be
directly applied to the intrinsic image models, although initially it was not included, by
mapping the maximum value in the reflectance layer to white.

The problem of lightness constancy failures and absolute lightness assignment, al-
together, is addressed by the anchoring theory of lightnessperception developed by
Gilchrist et al. [Gilchrist et al. 1999]. One of the key arguments of the theory is that
lightness mapping can differ even within a single image depending on the considered
context of the image. In this theory, such ambiguity is accounted for by the concept
of frameworks. Frameworks are image components which are grouped by the terms of
Gestalt principles: mainly by common illumination, but also by proximity, similarity,
co-planarity, good continuation, and common fate. An imageis composed of multiple
frameworks whose areas can overlap. The anchoring rule can give correct lightness
estimates when considered only within one framework. The net lightness of a surface
in an image can be found by estimating the influence of each of the frameworks on that
surface and by calculating the weighted product of lightness mappings within each of
the frameworks.

The main weakness of the lightness perception theories is that they are given in a de-
scriptive form and lack computational models. To account for correct lightness re-
production in tone mapping, we formulate the computationalmodel of the anchoring
theory of lightness perception in Chapter5. Our choice for this theory is motivated by
its sound explanation of the particular appearance of many experimental scenes and its
extensive experimental studies with human subjects.
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Chapter 4

Real-time Tone Mapping for
HDR Video

Low dynamic range (LDR) image and video contents, which are stored in the display-
referred representation, are usually directly shown on a display. The parameters of a
reference display and the preferable observation conditions are well defined in stan-
dards [ITU 1990] and guarantee that such in a sense oblivious depiction delivers good
quality. While the general parameters of displays usually follow the standard, the obser-
vation conditions, however, may not match the reference. Users are able to compensate
this mismatch by adjusting few parameters like contrast, brightness and saturation to
improve the picture, however the range of adjustment is limited. Moreover, the exces-
sive adjustment of these controls may not only lay beyond thecapabilities of a display,
but may also reveal artifacts in the image contents. This happens because the display-
referred representation contains only sufficient image andvideo quality to produce
good results under the assumed conditions. For instance, too strong contrast amplifica-
tion would show contouring artifacts. On the other hand, strong increase of brightness
would not reveal the details of dark picture parts as perhapsone would expect, because
the brightness of these parts lays outside the dynamic rangeof a reference display and
therefore their contents have not been stored in the stream.

Contrary to the display-referred contents, scene-referred HDR contents are not lim-
ited to the capabilities of typical displays. HDR video compression [Mantiuk et al.
2004], for example, stores as wide luminance range as the human eye can observe in a
real-world scene. This in most cases largely exceeds capabilities of displays, therefore
such scene-referred contents require processing (tone mapping) prior to display. Such
processing is performed on the side of the target display andthus has several notable
advantages with respect to the display-referred representation. First, the HDR contents
can be processed in such a way that delivers the best quality on the actually used dis-
play under the actual observation conditions. Second, the limited range of brightness
and contrast adjustments can be relaxed and moreover the quality of their effect is im-
proved. For instance, the brightness correction of HDR datareveals contents of too
bright or too dark picture parts because, unlike in the case of LDR data, the informa-
tion there is not clipped. Finally, the ample amount of luminance information in HDR
video permits to add new controls that take advantage of the available dynamic range

39
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and can increase the realism of a picture. We observe, that for a range of luminance
levels typical to certain scenes like nights or sunny days, the depiction of true lumi-
nance is not feasible on displays. Hence all such scenes appear in an almost similar
way on the screen, although an average observer would expectto see bright saturated
colors only on a sunny day, while subdued grayish tones with low acuity are common
in the night and a veiling glare usually appears around bright lights. When these phe-
nomena are ignored, well visible details appear unrealistic in dimly illuminated scenes,
because the acuity of human vision is normally degraded in such conditions. On the
other hand, perceptual effects like glare cannot be evoked because the maximum lumi-
nance of typical displays is not high enough. However, we areso used to the presence
of such phenomena, that adding glare to an image can increasethe subjective bright-
ness of the tone mapped image [Spencer et al. 1995]. Therefore by simulating such
perceptual phenomena, we can increase the realism of HDR contents by reducing the
appearance mismatch between the real-world and display.

In our work, we focus on a real-time implementation of a high quality tone mapping
operator and on the introduction of new controls that take advantage of the luminance
range available in the stream. To match the real-world appearance of recorded HDR
scenes, we enhance the tone mapping algorithm by incorporating the most significant
perceptual effects that are related to the absolute luminance levels in the scene and to
the optics of the eye (Section3.1). Improving over previous work, we observe that
these effects have much in common in terms of spatial analysis and show that making
use of such similarities have a tremendous impact on the performance. Further, we
add the functionality for convenient inspection of verbatim information in a selectable
dynamic range. Such an inspection tool is necessary in caseswhen it is required to view
the exact contents of the recorded scene, as for instance in forensic applications. We
implement our approach in the graphics hardware as a stand-alone HDR image/video
processing module and achieve a real-time performance. Thecomputational overhead
of our extensions to tone mapping is negligible. Although weprimarily demonstrate
the module in the context of HDR video playback, it can be as well applied to the final
stage of a real-time renderer or to other stream of HDR contents like an input from a
surveillance camera or data for visualization.

4.1 Previous Work

The tone mapping of HDR contents has been widely addressed inresearch and we
have introduced most of the existing algorithms in Section2.5. Simple algorithms,
which are based on a tone reproduction curve, can be implemented very efficiently in
the graphics hardware [Drago et al. 2003], but such methods fail in reproducing fine
details in the HDR scenes. Most of the recent algorithms deliver a higher quality but at
the cost of the increased complexity and only few are able to achieve interactive rates
at 1Mpx resolution [Goodnight et al. 2003]. In contrast, our work is unique in a sense
that we aim at real-time tone mapping performance wihout compromising the quality
of HDR.

Certain perceptual effects, like the lack of visual acuity or color perception in night
scenes, have already been accounted for in several tone mapping algorithms [Ferwerda
et al. 1996, Ward et al. 1997, Durand and Dorsey 2000, Pattanaik et al. 2000]. These
effects, however, have been discussed only in the context ofglobal operators and have
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been applied to the whole image with a uniform intensity. Such an approach can lead
to the unrealistic depiction when a wide range of luminance is present in the scene
and certain phenomena should be observed only in a part of thescene. Furthermore,
the proposed solutions have been composed of multiple stages each involving complex
processing such as convolutions. Although the implementation of individual perceptual
effects on graphics hardware is intuitive, a naı̈ve combination to include all of them
does not even allow for an interactive performance on the graphics hardware currently
available.

4.2 Computational Models

With many tone mapping algorithms available, we want to use amethod that provides
good, widely acknowledged results for static images. The parameters of the method
should provide sufficient control to enable maintaining temporal coherence of picture
during the HDR video playback. Furthermore, we require thata real-time performance
is feasible for at least a reasonable approximation of such amethod and that the trade
off between the quality and performance can be adjusted to adapt to the capabilities
of available graphics hardware. At the same time we want thatthe spatial analysis
involved in tone mapping bear some similarities to the nature of perceptual effects that
we plan to simulate. We have found that photographic tone reproduction [Reinhard
et al. 2002] satisfies our requirements. In the following sections, we justify our choice
by briefly explaining the tone mapping algorithm and each of the perceptual effects that
we include, and by showing the apparent similarities in the spatial analysis of perceived
images.

Throughout the tone mapping pipeline, we assume the RGB color model where each
channel is described by a positive floating point number. Forthe proper estimation of
the simulated perceptual effects, the pixel intensity values in the HDR contents should
be calibrated tocd

m2 . Such calibrated contents can be obtained using the photometric
calibration procedure outlined in AppendixA from both standard and HDR cameras
described in Section2.4. In our implementation, we consider the values to be in the
range from 10−4 to 108, which is sufficient to describe the luminance intensities per-
ceivable by human vision. The algorithm produces tone mapped RGB floating point
values in the range[0:1] which are then quantized to 8-bit values by an OpenGL driver.

4.2.1 Tone Mapping

The algorithm proposed by Reinhard et al. [Reinhard et al. 2002] operates on the lu-
minance values which can be extracted from RGB intensities using the standard CIE
XYZ transform (Section2.1). The method is a global operator, sigmoid scaling func-
tion, combined with a local dodging & burning technique thatallows to preserve fine
details as described in Section2.5.3. The results are driven by two parameters: the
adapting luminance for the HDR scene and the key value. The adapting luminance en-
sures that the global scaling function provides the most efficient mapping of luminance
to the display intensities for given illumination conditions in the HDR scene. The key
value controls whether the tone mapped image appears relatively bright or relatively
dark. While the general background for this tone mapping operator has been given in
Section2.5, here we focus on a precise definition of the used method.
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Figure 4.1: Tone mapping of an HDR image with a low key (left) and a high key (right).
The curve on the histograms illustrates how the luminance ismapped to normalized
pixel intensities.

In this algorithm, the source luminance valuesY are first mapped to the relative lumi-
nanceYr :

Yr =
α ·Y

Ȳ
, (4.1)

whereȲ is the logarithmic average of the luminance in the scene, which is an approx-
imation of theadapting luminance, andα is the key value. The relative luminance
values are then mapped to the displayable pixel intensitiesL using the following func-
tion:

L =
Yr

1+Yr
. (4.2)

The above formula maps all luminance values to the[0 : 1] range in such way that
the relative luminanceYr = 1 is mapped to the pixel intensityL = 0.5. This property
is used to map a desired luminance level of the scene to the middle intensity on the
display. Mapping a higher luminance level to middle gray results in a subjectively dark
image (low key) whereas mapping a lower luminance to middle gray will give a bright
result (high key) (see Figure4.1). The modulation of the key value in equation (4.1)
with respect to the adapting luminance in the scene allows tosimulate a relatively dark
appearance of night scenes compared to bright day scenes. Weexplain our solution in
Section4.3.1.

The tone mapping function in equation (4.2) may lead to the loss of fine details in the
scene with wide dynamic range due to the extensive contrast compression. Reinhard et
al. [Reinhard et al. 2002] propose a solution to preserve local details by employing a
spatially variant local adaptation valueV in equation (4.2):

L(x,y) =
Yr(x,y)

1+V(x,y)
. (4.3)
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The local adaptationV equals to an average luminance in the surround of a pixel. The
size of the surround, however, has to be carefully chosen. Asexplained in Section2.5.2,
larger areas guarantee good detail preservation, but a too large surround covering a
high contrast edge will lead to well known inverse gradient artifacts,halos. To find an
appropriate value ofV for a pixel, the size of the surround is successively increased
as long as it does not introduce any artifacts. For this purpose a Gaussian pyramid is
constructed with successively increasing kernel:

g(x,y,s) =
1

πs2 ·e−
x2+y2

s2 . (4.4)

The spatial extent of the Gaussian kernel for the first scale is one pixel wide which is
obtained withs= (2

√
2)−1. On each successive scale the spatial extent parameters is

1.6 times larger. The Gaussian functions used to construct seven scales of the pyramid
are plotted in Figure4.2. As we later show, such a pyramid is very useful in introducing
the perceptual effects to tone mapping.
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Figure 4.2: Plot of the Gaussian profiles used to construct the scales of the pyramid
used for local dodging & burning in the tone mapping algorithm. The smallest scale is
denoted as #1 and the largest #8. The plots are normalized by the maximum value for
illustration purposes.

4.2.2 Temporal Luminance Adaptation

The luminance values in the HDR video can significantly change from frame to frame
and cause unnatural brightness change in the tone mapping results. The human vision
reacts to such changes through the temporal adaptation processes (Section3.1.5). The
time course of adaptation differs depending on whether we adapt to light or to darkness,
and whether we perceive mainly using rods (during night) or cones (during a day).
While several models have been introduced to computer graphics, it seems that it is
not as important to faithfully model the process as to somehow account for it at all
[Goodnight et al. 2003].

In the tone mapping algorithm chosen by us, the luminance adaptation can be modeled
using the adapting luminance term in equation (4.1). Instead of using the actual adapt-
ing luminanceȲ for the displayed frame, a filtered valuēYa can be used. The value of
Ȳa changes according to the adaptation processes in human vision, eventually reach-
ing the actual value if the adapting luminance is stable for some time. The process of
adaptation can be modeled using an exponential decay function [Durand and Dorsey
2000]:

Ȳnew
a = Ȳa +(Ȳ−Ȳa) · (1−e−

T
τ ), (4.5)
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whereT is the discrete time step between the display of two frames, and τ is the time
constant describing the speed of the adaptation process. The time constant is different
for rods and for cones:

τrods = 0.4sec τcones= 0.1sec, (4.6)

thus the speed of the adaptation depends on the level of the illumination in the scene.
The time required to reach the fully adapted state depends also whether the observer is
adapting to light or dark conditions. The values in equation(4.6) describe the adapta-
tion to light. For practical reasons the adaptation to dark is not simulated because the
full process takes up to tens of minutes. Instead, we performthe adaptation symmetri-
cally, neglecting the case of a longer adaptation to dark conditions.

4.2.3 Scotopic Vision

Human vision operates in three distinct adaptation conditions: scotopic, mesopic, and
photopic (Section3.1.3). The photopic and mesopic vision provide color vision, while
in the scotopic range color discrimination is not possible because only rods are active.
The cones start to loose their sensitivity at about 3.4 cd

m2 and become completely insen-

sitive at 0.03cd
m2 where the rods are dominant. We model the sensitivity of rodsσ after

[Hunt 1995] with the following function:

σ(Y) =
0.04

0.04+Y
, (4.7)

whereY denotes the luminance. The sensitivity valueσ = 1 describes the perception
using rods only (monochromatic vision) andσ = 0 perception using cones only (full
color discrimination). The plot of equation (4.7) is shown in Figure4.3.
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Figure 4.3: The influence of perceptual effects on vision depending on the luminance
level. For details on rods sensitivity and visual acuity refer to Sections4.2.3and4.2.4
respectively.

4.2.4 Visual Acuity

Perception of spatial details in human vision is not perfectand becomes limited with
a decreasing illumination level. The performance of visualacuity is defined by the
highest resolvable spatial frequency and has been investigated in [Shaler 1937]. [Ward
et al. 1997] offer the following function fit to the data provided by Shaler:

RF(Y) = 17.25·arctan(1.4log10Y +0.35)+25.72, (4.8)
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whereY denotes the luminance andRF is the highest resolvable spatial frequency in
cycles per degree of the visual angle. The plot of this function is shown in Figure4.4.
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Figure 4.4: Plot of the highest resolvable spatial frequency for a given luminance level
which illustrates the effect of loss of the visual acuity. Spatial frequency is given in
cycles per degree of visual angle. The horizontal line marksthe maximum displayable
spatial frequency on a 15 inch LCD in typical viewing conditions.

To simulate the loss of visual acuity on a display device we need to map the visual
degrees to pixels. Such a mapping depends on the size of the display, the resolution,
and the viewing distance. For a typical observation of a 15 inch screen from half a
meter at 1024×768 resolution we assume 45 pixels per 1 degree of the visual angle. It
is important to note that the highest frequency possible to visualize in such conditions
is 22 cycles per visual degree. Therefore, technically we can simulate the loss of visual
acuity only for luminance below 0.5 cd

m2 . The irresolvable details can be removed from
an image by the convolution with the Gaussian kernel from equation (4.4) wheres is
calculated as follows [Ward et al. 1997]:

sacuity(Y) =
width
f ov

· 1
1.86·RF(Y)

. (4.9)

width denotes width in pixels andf ov is the horizontal field of view in visual degrees.
For typical observations thewidth to f ov relation equals 45 pixels. We plot the profile
of the kernel, according to equation (4.4), for several luminance values in Figure4.5.

In Figure4.3 we show the amount of lost visual acuity with respect to the luminance
level. Apparently the loss of the visual acuity correlates with the increasing sensitivity
of rods, and is therefore only present in monochromatic vision.
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Figure 4.5: Plot of the profiles of the Gaussian kernels whichcan be used to simulate
the loss of visual acuity at different luminance levels.
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4.2.5 Veiling Luminance

Due to the scattering of light in the optical system of the eye, sources of relatively
strong light cause the decrease of contrast in their vicinity – glare (Section3.1.1). The
amount of scattering for a given spatial frequencyρ under a given pupil apertured is
modeled by an ocular transfer function [Deeley et al. 1991]:

OTF(ρ,d) = exp
(

− ρ
20.9−2.1·d

1.3−0.07·d)
,

d(Ȳ) = 4.9−3tanh(0.4log10Ȳ +1).

(4.10)

In a more practical manner the scattering can be representedin the spatial domain as a
point spread function. In Figure4.6we show point spread functions for several adapt-
ing luminance levels, which were numerically found by applying the inverse Fourier
transform to equation (4.10).
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Figure 4.6: The point spread function illustrating scattering of light in the optical sys-
tem of the eye for several adapting luminance levels.

Another model of the glare effect was introduced in computergraphics by Spencer et al.
[Spencer et al. 1995]. They describe this phenomenon with four point spread functions
linearly combined with three sets of coefficients for different adaptation conditions
(scotopic, mesopic and photopic). Since their model is complex, and it is not obvious
how to apply it in continuously changing luminance conditions, we decided to employ
the model developed by Deeley at al. [Deeley et al. 1991], which describes the effect
with one function that changes continuously for all adaptation levels.

4.2.6 Similarities in Spatial Analysis

Apparently, the visual acuity and the veiling luminance arebased on the spatial analy-
sis of an image modeled using the point spread functions. At the same time, a Gaussian
pyramid is required to perform local tone mapping. Interestingly, convolution on par-
ticular scales corresponds to the convolution required to simulate visual acuity and
glare at various luminance levels. This is an important observation which allows to
model these effects by reusing the appropriate levels of theGaussian pyramid without
additional impact on the performance. The correspondence between the scales from
the tone mapping (Figure4.2) and the appropriate convolutions for visual acuity and
veiling luminance are plotted in Figure4.7.
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Figure 4.7: The correspondence between the scales from the tone mapping (Figure4.2)
and the appropriate convolutions for visual acuity (Figure4.5) and veiling luminance
(Figure4.6).

The Gaussian pyramid constructed for the purpose of tone mapping contains only lu-
minance values. This is sufficient to simulate the light scattering in the eye, but at first
glance, visual acuity requires to perform the convolution on all three RGB channels.
However, Figure4.3 illustrates that the noticeable loss of visual acuity is present only
in the scotopic vision where colors are not perceived. Sincewe simulate the loss of
visual acuity combined with scotopic vision, we can simulate it using the luminance
channel only.

4.3 Method

We present a method that successfully combines tone mappingwith the effects men-
tioned in the previous section, which we implement in the graphics hardware for a
real-time performance. We first show some of our improvements to the tone mapping
method in terms of perceived brightness and luminance adaptation process and then
explain technical details of our hardware implementation.

4.3.1 Key value

The key value, explained in Section4.2.1, determines whether the tone mapped image
appears relatively bright or dark, and in the original paper[Reinhard et al. 2002] is
left as a user choice. In his follow-up paper [Reinhard 2002], Reinhard proposes a
method of automatic estimation of the key value that is basedon the relations between
minimum, maximum and average luminance in the scene. Although the results are
appealing, we feel this solution does not necessary correspond to the impressions of
everyday perception. The critical changes in the absolute luminance values may not
always affect the relation between the three values. This may lead to dark night scenes
appearing too bright and very light too dark.

The key value,α in equation (4.1), takes values from[0 : 1] range where 0.05 is the
low key, 0.18 is a typical choice for moderate illumination, and 0.8 is the high key. We
propose to calculate the key value based on the absolute luminance. Since the key value
has been introduced in photography, there is no scientifically based experimental data
which would provide an appropriate relation between the keyvalue and the luminance,
so the proper choice is a matter of experience. We therefore empirically specify key
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values for several illumination conditions and interpolate the rest using the following
formula:

α(Ȳ) = 1.03− 2
2+ log10(Ȳ +1)

, (4.11)

whereα is the key value and̄Y is an approximation of the adapting luminance. The
plot of this estimation is shown in Figure4.8.
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Figure 4.8: Key value related to the adapting luminance in a scene.

4.3.2 Temporal Luminance Adaptation

We model the temporal luminance adaptation based on equation (4.5). However, in our
algorithm we do not perform separate computations for rods and cones, which makes
it difficult to properly estimate the adaptation speed having two time constantsτrod and
τcone instead of one. To account for this, and still be able to correctly reproduce the
speed of the adaptation, we interpolate the actual value of the time constant based on
the sensitivity of rods (equation4.7):

τ(Ȳ) = σ(Ȳ) · τrod +(1−σ(Ȳ)) · τcone, (4.12)

which we then use to process the adaptation value using equation (4.5).

4.3.3 Hardware Implementation

In order to perform tone mapping with perceptual effects, weneed to compose three
maps: a local adaptation map for the tone mapping, a map of visible spatial details
to simulate visual acuity, and a map of light scattering in the eye for the glare effect.
We will refer to these maps asperceptual data. Because different areas of these maps
require different spatial processing, they cannot be constructed in one rendering pass.
Instead, we render successive scales of the Gaussian pyramid and update the maps by
filling in the areas for which the current scale has appropriate spatial processing. In the
last step we use these three maps to compose the final tone mapped result.

Technically, we implement our tone mapping method as a stand-alone module, which
can be added at the final rendering stage to any real-time HDR renderer or HDR video
player. The only requirement is that the HDR frame is supplied to our module as a
floating point texture, which can be efficiently realized using for instancepixel buffers.
In addition to a texture which holds the HDR frame, our modulerequires the allocation
of five textures for processing: two textures for storing adjacent scale levels, two for
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Figure 4.9: Illustration of the rendering process for tone mapping which includes com-
puting the local adaptation, visual acuity and glare. The input is an HDR frame with
RGB channels and the output is a display. The blue boxes represent the texture data and
yellow boxes represent rendering steps. The rendering steps marked by a gray rectan-
gle are repeated for each scale to successively create the coarser scales of the Gaussian
pyramid. After the rendering of each scale, the textures representing the perceptual
data and the adjacent scales are swapped.

holding the previous and the current set of perceptual data (due to the updating process),
and one intermediate texture for the convolutions. Since the three maps contain only
luminance data, we can store them in a single texture in separate color channels.

The process of rendering the perceptual data is illustratedin Figure4.9. We start with
calculating the luminance from the HDR frame and mapping it to the relative luminance
according to equation (4.1). We calculate the logarithmic average of the luminanceȲ in
the frame using the down sampling approach described in [Goodnight et al. 2003], and
apply the temporal adaptation process (equation4.5). The map of relative luminance
values constitutes the first scale of the Gaussian pyramid. At each scale of the Gaus-
sian pyramid, we render the successive scale by convolving the previous scale with
the appropriate Gaussian (equation4.4). We perform the convolution in two rendering
passes: one for the horizontal and one for the vertical convolution. To increase the per-
formance we employ down-sampling, where the factor of down sampling is carefully
chosen to approximate the kernel. Refer to Figure4.10 for our choice of the scaling
factors and the corresponding approximations of the Gaussian kernels from Figure4.2.
Having the current and the previous scales, we update the perceptual data on a per pixel
basis in a separate rendering pass. The local adaptation is computed using the measure
of the difference between the previous and the current scaleas described in [Reinhard
et al. 2002]. For the acuity map, we first estimate the proper scale for the luminance of
the current pixel. If it falls between the previous and current scales, we interpolate the
final value and update the map. In the other case the previous value is copied without
change. The mapping from luminance to scale for visual acuity (Figure4.7) is cached
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in a look-up texture to skip redundant computations. We update the glare map in the
same manner, with one difference: the appropriate scale forglare depends on the adapt-
ing luminance and is uniform for the whole frame so we supply it as a parameter to the
fragment program. Before descending to the next scale of theGaussian pyramid, the
texture containing the current scale becomes the previous scale, and the texture with
the current set of the perceptual data becomes the previous set.
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Figure 4.10: The effective approximation (solid lines) of the Gaussian kernels (dotted
lines) from Figure4.2 due to the down sampling. The values in parenthesis show the
down sampling factor for each scale. For scale #1 we use the original image.

After descending to the lowest scale of the Gaussian pyramid, the perceptual data tex-
ture is complete. In the final rendering step, we tone map the HDR frame and apply
the perceptual effects. For this, we use equation (4.3) from Section4.2.1in a slightly
modified form to account for the loss of the visual acuity and the glare:

L(x,y) =
Yacuity(x,y)+Yglare(x,y)

1+V(x,y)
, (4.13)

whereL is the final pixel intensity value,Yacuity is the spatially processed luminance
map that represents the visual acuity,Yglare is the amount of additional light scattering
in the eye, andV is the local adaptation map. Because the glare map in fact contains the
relative luminance from the appropriate scale of the Gaussian pyramid, we estimate the
additional amount of scattering in the following way to include only the contribution
of the highest luminance:

Yglare = Ygmap·
(

1− 0.9
0.9+Ygmap

)

, (4.14)

whereYgmapdenotes the glare map from the perceptual data.

We account for the last perceptual effect, the scotopic vision, while applying the final
pixel intensity value to the RGB channels in the original HDRframe. Using the follow-
ing formula, we calculate the tone mapped RGB values as a combination of the color
information and the monochromatic intensity proportionally to the scotopic sensitivity:





RL

GL

BL



 =





R
G
B



 · L · (1−σ(Y))

Y
+





1.05
0.97
1.27



 ·L ·σ(Y), (4.15)

where{RL,GL,BL} denotes the tone mapped intensities,{R,G,B} are the original
HDR values,Y is the luminance,L is the tone mapped luminance, andσ is the scotopic



4.4. RESULTS 51

Figure 4.11: The sample results of our method showing the simulated perceptual ef-
fects: glare (left) and scotopic vision with loss of visual acuity (right). The close-up in
the right image inset shows the areas around the car in such way that their brightness
match to illustrate the loss of visual acuity. The source HDRanimation “Rendering
with Natural Light” (left) courtesy of Paul Debevec.

sensitivity from equation (4.7). The constant coefficients in the monochromatic part
account for the blue shift of the subjective hue of colors forthe night scenes [Hunt
1995].

An alternative implementation of this tone mapping method,although without per-
ceptual effects, was previously introduced in [Goodnight et al. 2003]. They propose
a method to vectorize luminance which allows for efficient convolutions with large
support kernels. However, we resigned from their approach due to the performance
reasons – the real-time performance of this algorithm for a 512×512 frame is reached
only when the computations are limited to two scales, which is not sufficient to intro-
duce the perceptual effects. On the other hand, the down-sampling approach provides
higher performance with sufficient accuracy of computations.

4.4 Results

We demonstrate our method in combination with an HDR video player. The player
renders the compressed HDR video stream [Mantiuk et al. 2004] to a floating point
texture, which is then processed as described in Section4.3.3. The sample results of
our method including the perceptual effects are shown in Figure4.11. The left image
depicts a computer generated scene in moderate lighting conditions with strong illu-
mination coming from behind the trees in the background. Such a setup would evoke
a glare effect in the real-world perception, which is not visible when pure local tone
mapping is applied (left part). However, accounting for this perceptual phenomenon
not only contributes to the realism of the rendered image butalso increases a subjec-
tive impression of the dynamic range (right part). The rightimage shows a car driving
scene in day light and at night. Two perceptual phenomena aretypical to night illumi-
nation: the scotopic vision and the loss of visual acuity. Clearly, in the perceptual tone
mapping of the night scene (right part), it is difficult to distinguish the colors and the
overall brightness is low, which suggests the low illumination of the scene. The inset
shows a close-up of the car with increased brightness for thenight scene to illustrate
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the simulated loss of visual acuity.

4.4.1 Dynamic Range Exploration Tool

Particularly in the context of HDR video [Mantiuk et al. 2004], in order to fully benefit
from the HDR information encoded in such a video stream we additionally develop a
convenient dynamic range exploration tool. The dynamic range exploration tool allows
the user to view a selected range of luminance in a rectangular window displayed on
top of the video (see Figure4.12). The user can move the window interactively and
choose which part of dynamic range should be linearly mappedto the display for closer
inspection. When smaller range of luminances is chosen than the capabilities of the
display, the tool linearly increases the contrast of contents in the exploration window.

On a technical level the dynamic range exploration tool simply by-passes the tone
mapping process and displays linearly mapped part of the dynamic range in a selected
window. Such a tool is, however, very convenient in the context of applications which
require that the displayed data are exactly the same as in theoriginal scene without any
image processing. This is for instance required in medical and forensic applications.

Figure 4.12: Dynamic range exploration tool in form of a window that reveals verbatim
details in HDR video contents.

4.4.2 Performance

We measured the performance of our method on a desktop PC witha Pentium4 2GHz
processor and a NVIDIA GeForce 6800GT graphics card. We givethe time-slice re-
quired for the tone mapping with our method at several frame resolutions in Table4.1.
In a configuration with an HDR video player, where additionaltime is required for
the decompression of the HDR video stream, we were able to obtain the playback at
27Hz. It is important to note that the performance of our solution is scalable. If the
time-slice required for our method is too long for a certain application, the number of
rendered scales can be limited at the cost of local performance of the tone mapping and
the accuracy of the visual acuity processing for very low illumination conditions.

The main bottleneck in the performance is caused by the amount of context switching
required for the multi-pass rendering using thepixel buffersextension. The currently
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320x240 640x480 1024x768
8 scales 8ms (58Hz) 25ms (27Hz) 80ms (10Hz)
6 scales 7ms (62Hz) 21ms (30Hz) 66ms (12Hz)
4 scales 6ms (62Hz) 16ms (30Hz) 51ms (14Hz)

Table 4.1: Time-slice required for the display of an HDR frame using our method at
several frame resolutions and several sizes of the Gaussianpyramid. In the parenthe-
sis, we give the playback frame rate which we obtained with our method plugged to
an HDR video player (note that the resolution also affects the frame decompression
speed).

developedframe buffer objectextension to OpenGL may provide an improvement, be-
cause it eliminates the need for such context switching between the rendering passes
thus reducing the delays. Also, current OpenGL drivers do not implement linear in-
terpolation of floating point textures during the up-sampling. Such an interpolation
is crucial for the quality of the results and currently is implemented in the fragment
program as an additional operation.

In relation to the previous tone mapping techniques which accounted for perceptual
effects, our method has the following advantages: we employa local tone mapping
technique, the perceptual effects are applied locally depending on the luminance in a
given area, and we make use of the apparent similarities in spatial analysis between the
effects to provide a very efficient implementation. The importance of simulating the
scotopic vision and the loss of visual acuity was noticed by Ferwerda et al. [Ferwerda
et al. 1996]. However, they applied these effects only in the context ofglobal tone map-
ping with uniform intensity over the whole image. This may lead to visible inaccuracies
when a dark scene with an area of considerably brighter illumination is processed. In
such an area, the loss of color would be unrealistic, and too low spatial frequencies
would be removed there. This fact was noticed by Ward et al. [Ward et al. 1997] who
proposed to apply the perceptual effects locally, still in combination with a global tone
mapping method. Yet, in their work each of the effects has been treated separately
and involved complex processing making it inapplicable to real-time processing. In
the attempt to provide an interactive tone mapping solution, Durand et al. [Durand and
Dorsey 2000] reverted to global application of the perceptual effects,which in fact had
the same drawbacks as the [Ferwerda et al. 1996] model.

Our real-time implementation leads as well to several constraints. For instance only
the tone mapping algorithms, which make use of the Gaussian pyramid, can be im-
plemented in such an efficient combination with the perceptual effects. Therefore, our
framework is not appropriate for several different approaches to tone mapping like
decomposition into intrinsic images [Durand and Dorsey 2002] or contrast domain al-
gorithms [Fattal et al. 2002]. Also, more complex functions for glare effect simulation
may not benefit from our framework, if for instance their point spread functions cannot
be approximated with the supplied Gaussian kernels.

4.5 Conclusions

In view of the increasing application of HDR images and video, we showed how to
process such data in order to be able to render them on typicaldisplay devices with
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a substantial dose of realism. We emphasize that it is not only necessary to reduce
the contrast in such data, but it is also equally important toaccount for the percep-
tual effects which would appear in real-world observation conditions. Owing to the
observation that the perceptual effects share similarities in the spatial analysis of the
perceived image with the tone mapping algorithm, we were able to efficiently combine
them into a stand-alone rendering module and reached real-time performance. The im-
plementation of our method can be built upon any real-time rendering system which
outputs HDR frames or any HDR video player. To demonstrate the importance of the
account for perceptual effects, we plugged our method into an HDR video player lead-
ing to an enhanced realism of the displayed video. We improved the standard methods
of simulation of the perceptual effects by applying them locally depending on the illu-
mination in an area, and by providing smooth transition between different adaptation
conditions. We envisage that in future the use of such a module will be standard in
every real-time HDR renderer and HDR video player.



Chapter 5

Lightness Perception in Tone
Mapping

When presenting tone mapped HDR images on display media, it isdesirable to re-
produce the appearance of corresponding real world (HDR) scenes. In Section3.3,
we have discussed five perceptual dimensions which define theappearance of a scene:
brightness, lightness, colorfulness, chroma and hue. Intuitively, during the dynamic
range compression of an HDR scene these dimensions should remain unchanged. While
most of the tone mapping operators given in Section2.5 do not change the hue, the
change in brightness and colorfulness of a scene cannot be prevented because these
qualities depend on the absolute amount of light energy. Consequently, the preserva-
tion of appearance requires careful reproduction of lightness and chroma during the
tone mapping. Throughout this chapter we focus on analysis and reproduction of light-
ness.

Lightness is a perceptual quantity measured by the human visual system which de-
scribes the amount of light reflected from a surface normalized for the illumination
level. Contrary to brightness, which describes a visual sensation according to which an
area exhibits more or less light, the lightness of a surface is judged relative to the bright-
ness of a similarly illuminated area that appears to be white. This leads to a similar
appearance of perceived objects independently of the lighting and viewing conditions,
which is known as lightness constancy [Palmer 1999]. The existence of lightness con-
stancy enables the reproduction of appearance in tone mapping in which both lightning
and viewing conditions change between the original and the reproduced scenes.

The lightness constancy achieved by the human visual systemis not perfect and many
of its failures appear in specific illumination conditions or even due to changes in the
background over which an observed object is imposed [Gilchrist 1988]. It is well
known that lightness constancy increases for scene regionsthat are projected over wider
retinal regions [Rock 1983]. This effect is reinforced for objects whose perceived size
is larger even for the same retinal size [Gilchrist and Cataliotti 1994]. The reproduc-
tion of HDR images on various media not only limits the luminance range but also
introduces further constraints like a narrow field of view. Some failures of lightness
constancy still appear in such conditions (simultaneous contrast for instance), but other
effects, such as the Gelb illusion, are only observed if a scene covers the complete
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field of view. The appearance of an HDR image cannot be correctly reproduced if a
tone mapping operator does not take into account such phenomena. In Section3.3.1,
we have briefly reviewed several lightness perception theories which strive to explain
how the human visual system perceives lightness in scenes. However, only recently the
anchoring theory of lightness perception [Gilchrist et al. 1999] provides a sound expla-
nation for an unprecedented number of perceptual experiments on lightness constancy
and lightness constancy failures.

In this chapter, we investigate in detail the anchoring theory of lightness perception
[Gilchrist et al. 1999] in the context of tone mapping. The principal concept of this
theory is the perception of complex scenes in terms of groupsof consistent areas –
frameworks. Such areas, following the Gestalt theorists, are defined by regions of
common illumination. The key aspect of image perception is the estimation of light-
ness within each framework through anchoring to the luminance perceived as white,
followed by the computation of the global lightness. We derive a computational model
for automatic decomposition of HDR images into frameworks which is based on the
heuristics defined in the theory. We use the model in a tone mapping operator which
predicts lightness perception of the real world scenes and aims at its accurate repro-
duction on low dynamic range displays. Furthermore, we observe that a decomposi-
tion into frameworks opens new grounds for local image analysis in view of human
perception.

5.1 Previous Work

A number of tone mapping operators is to a certain extent influenced by theories of
perception of brightness and lightness. Initially, the algorithms were based on the
power-law relationship between the brightness and the corresponding luminance, as
proposed in [Stevens and Stevens 1960]. The main objective was to preserve a constant
relationship between the brightness of a scene perceived ona display and its real coun-
terpart for any lighting condition. Implementations of this approach were presented
in [Tumblin and Rushmeier 1993] (Stevens law) and in [Drago et al. 2003] (Weber-
Fechner law). Further attempts in lightness reproduction lead to direct application of
the Retinex theory [Land and McCann 1971] to tone mapping. Jobson et al. [Jobson
et al. 1997] proposed a multi-resolution Retinex algorithm for luminance compression,
which unfortunately leads to halo artifacts for HDR images along high contrast edges.
Inspired by the lightness perception model based on contrast integration, Fattal et al.
proposed a successful gradient domain tone mapping operator [Fattal et al. 2002]. The
concept of intrinsic images [Barrow and Tenenbaum 1978, Arend 1994] to separate
the illumination and reflectance (detail) layers inspired many algorithms. The idea was
first implemented in [Tumblin et al. 1999] where it was assumed that these layers were
explicitly provided which is the case only for synthetic images. Later, several methods
for an automatic layer separation have been introduced. TheLCIS operator [Tumblin
and Turk 1999] separates the image into large scale features (presumablyillumination)
and fine details. A much better separation has been achieved using the bilateral filter
[Durand and Dorsey 2002].

Evidently, perception theories have been inspiring tone mapping algorithms to a certain
extent. Although the early operators are based on simple theories which do not account
well for lightness in complex scenes, the new algorithms build upon intrinsic images
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and contrast models which are very advanced theories. The separation into illumina-
tion and reflectance presents a convenient image processingtool for detail preserving
dynamic range compression. However the theory remains vague about how to map
luminance to lightness in such separated layers so that the scene appearance is well
preserved. Moreover, the intrinsic image models fail to address the apparent failures
in lightness constancy [Gilchrist et al. 1999]. On the other hand, the algorithms in-
spired by Retinex and contrast theories focus on optimizingbrightness relations and
leave the aspect of lightness mapping to the user. The resulting images look as if
enhanced through numerical optimizations rather than having the original appearance
reproduced. Overall, many questions in the area of appearance reproduction remain
open, motivating us to develop a computational model of the currently most advanced
theory of lightness perception and to examine it with analysis in the context of natural
scenes.

5.2 Anchoring Theory Of Lightness Perception

The anchoring theory of lightness perception by [Gilchrist et al. 1999] is qualitatively
different from other recent lightness models and is based ona combination of global
and local anchoring of lightness values. In the following sections we explain the main
concepts of this theory. First, we discuss the estimation oflightness within the simple
scenes (background/patch stimuli) using the anchoring rules. Next, we explain how to
extend the anchoring of lightness to complex scenes using frameworks.

5.2.1 Anchoring Rule

In order to relate luminance values to lightness, it is necessary to define at least one
mapping between the luminance value and the value on the scale of perceived gray
shades –the anchor. The anchor cannot be defined once for absolute luminance values,
because each luminance level can be perceived as any shade ofgray depending on the
observation conditions. It therefore must be tied to a measure of relative luminance.
Two such measures are commonly used for anchoring: the average luminance rule and
the highest luminance rule. Once the anchor is defined for thescene, the lightness value
for each luminance value can be estimated by the luminance ratio between the value
and the anchor. This mapping is referred to asscaling. Although usually a veridical
scaling is assumed, the compression or expansion of the range is possible if necessary.

The average luminance rule derives from the adaptation-level theory [Helson 1964] and
states that the average luminance in the visual field is perceived as middle gray. Thus
the relative luminance values in a scene should be anchored by their average value to
middle gray. This assumption was later commonly adopted in tone mapping techniques
[Ferwerda et al. 1996, Tumblin et al. 1999, Pattanaik et al. 2000, Reinhard et al. 2002].

The highest luminance rule initially defined the anchor as a mapping of the highest
luminance in the visual field to a lightness value perceived as white. However, the
evident perception of self-luminous surfaces (lighter than white) leads to an extended
definition. According to [Li and Gilchrist 1999] there is a tendency of the highest
luminance to appear white and a tendency of the largest area to appear white. When
the highest luminance covers the largest area, the highest luminance becomes a stable
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anchor and is mapped to white. However, if the darker area becomes larger, the highest
luminance starts to be perceived as self-luminous and the anchor becomes a weighted
average of the luminance proportionally to the occupying area.

The experimental evaluation of the average luminance rule versus the highest lumi-
nance rule was presented in [Li and Gilchrist 1999]. In this study, the visual field of the
observers was limited to a large acrylic hemisphere with onehalf painted matte black
and the other half painted middle-gray. The experiment was conducted in isolated con-
ditions to prevent the uncontrolled influence of other stimuli. Li and Gilchrist reported
that the middle-gray half was seen by the observers as fully white, while the black half
was seen as dark gray. Additionally, when the black area was increased and became
considerably larger than the middle-gray area, the perceptual effect of self-luminosity
for the middle-gray part was reported. Other findings, basedon Mondrians [Palmer
1999], which are more complex stimuli, agree with these conclusions [Gilchrist and
Cataliotti 1994]. The experimental evidence decisively favors the highestluminance
rule over the average luminance rule.

5.2.2 Complex Images

The anchoring rule, described in the previous section, cannot be applied directly to
complex images. Instead, [Gilchrist et al. 1999] introduce the concept of decomposi-
tion of an image into segments,frameworks, in which the anchoring rule can be applied
directly. In their theory, following the Gestalt theorists, frameworks are defined by re-
gions of common illumination. For instance, all objects being under the same shadow
would constitute a framework. Additionally, proximity is also considered as a grouping
factor. A real-world image is usually composed of multiple frameworks.

Framework regions can be organized in an adjacent or a hierarchical way and their areas
may overlap. Additionally, the whole scene constitutes an additionalglobal framework
with its global anchor. The lightness of a target in a scene iscomputed according to
the anchoring rule in each framework. A target in a complex scene that belongs to
more than one framework, may have different lightness values when anchored within
different frameworks. According to the model, the net lightness of a given target is
predicted as a weighted average of its lightness values in each of the frameworks in
proportion to their strength and with a certain constant level of influence of the global
framework. The strength of a framework is mainly determinedby its size and the
variety of luminance values it contains –articulation. Frameworks with lower variance
or smaller sizes have less influence on the net lightness.

5.3 Computational Model

The anchoring theory has been presented without a formal model. On a technical level
this requires the development of a method for automatic segmentation of an image
into frameworks, to build heuristics estimating the influence of each framework on
total lightness, and to estimate the anchors within the frameworks. Furthermore, the
algorithm must perform accurately when used with natural scenes.

The presented model takes an image with relative luminance values as an input. Such
values can be computed from RGB channels of an HDR image according to the CIE
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XYZ luminous efficiency functions. We first segment the inputimage into the overlap-
ping frameworks and define the probabilities with which pixels belong to each frame-
work. Next, we estimate the anchor in each framework and finally calculate the net
lightness in the scene.

5.3.1 Decomposition into Frameworks

We define the framework as a probability map over the whole image in which each pixel
is assigned a probability of being part of that framework. The framework, in order to
be valid, must be defined by a number of pixels which belong to this framework with
a very high probability, for instance above 95%. In principle, the task of segmentation
into frameworks is to identify luminance values which potentially represent a common
illumination and to assign to each pixel for each framework the probability that the
pixel is under considered illumination. Due to the lack of explicit information about the
distribution of illumination, we assume here that the contrast range typical to everyday
situations is wide enough to allow us to identify such separate illumination areas based
on luminance. It is for example possible to identify shadowed areas on a sunny day,
dim interior of a room with a window view, street light illumination in a night scene,
and similar.

Initially, we have experimented with several segmentationalgorithms in order to find
a plausible decomposition into frameworks. The mean shift segmentation [Comaniciu
and Meer 2002] has produced the most appropriate results. However, segmentation al-
gorithms in general assign a pixel to only one segment and therefore do not implement
the notion of probability of belonging to a segment. A borderbetween two frameworks
which might occur on a smooth gradient in the image is in such asituation impossible
to represent correctly. We therefore decide to tailor a custom decomposition method.

As mentioned before, our method is based on the luminance intensities in the HDR
image. We start with the standard K-means clustering algorithm to find the centroids
that provide an appropriate segmentation of the HDR image into frameworks. We
operate on a histogram in the log10 of luminance. We initialize the K-means algorithm
with values ranging from the minimum to maximum luminance inthe HDR image with
a luminance step equal to one order of magnitude and we execute the iterations until
the algorithm converges. Upon convergence, we remove centroids representing empty
segments.

Given the centroid values, we initially assign the probability values based on the dif-
ference between the pixel value and the centroid. We model such an attribution to the
centroid with a Gaussian function:

Pi(x,y) = e
−(Ci−Y(x,y))2

2σ2 , (5.1)

wherePi represents the probability map for frameworki, Ci is the centroid for that
framework,Y denotes the luminance of the HDR image (bothCi andY are in the log10
space), and the varianceσ equals to the maximum distance between adjacent centroids.
The attribution values are normalized to correctly represent the probabilities.

Often at this stage, pairs of centroids may represent similar frameworks – all pixels
in an image belong with a similar probability to both of them.We iteratively merge
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the centroids whose probability maps differ by less than 20%on average, and the new
centroid value is equal to the weighted average of both proportionally to their area:

Ci, j =
Ci ·Si +Cj ·Sj

Si +Sj
, (5.2)

whereCi andCj are the values of the too similar centroids, andSi andSj denote the
number of pixels clustered to these centroids. After the merge, probability values are
recalculated according to (5.1), and the iteration is repeated until no centroids need to
be merged.

As the next step, we spatially process the probability map ofeach framework to include
the proximity aspect of Gestalt grouping factors. The spatial processing smoothes local
variations in the probability values which may appear due totextured surfaces. High
local variations, however, cannot be smoothed because theymay define the outline of
objects or frameworks. The bilateral filter [Tomasi and Manduchi 1998] is an appro-
priate image processing tool for this purpose. We filter the probability map of each
framework with a bilateral filter in which the range varianceis set to 0.2 and the spatial
variance to 17 pixels.

(a) luminance channel of an HDR
image

(b) intensity based frameworks(c) spatially processed frameworks

Figure 5.1: The decomposition of an HDR image into frameworks before and after
spatial processing. Notice the artifacts in the intensity based frameworks decomposi-
tion (marked area) which are corrected after the spatial processing. The HDR image
appears dark because it has been exposed for details in the clouds. The original image
courtesy of Greg Ward.
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Figure 5.2: The histogram of the HDR image from Figure5.1(a)illustrating the esti-
mation of centroids which provide an appropriate decomposition into frameworks. In
the middle and right histograms the probability distributions are shown for each frame-
work. The maxima of the probabilities do not always match thecentroids due to the
normalization.

We demonstrate the decomposition procedure on an example HDR image shown in
Figure5.1 with details of decomposition in Figure5.2. First, we converge the initial
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segmentation to identify luminance values that would represent the most accurate de-
composition into frameworks, Figure5.2(a). We then calculate the probabilities and
merge one centroid which does not represent a valid framework, Figures5.2(b), 5.2(c).
The final centroids define the probability maps based only on the luminance property
and contain several incorrect assignments visible in Figure 5.1(b). The reflections on
the logs at the bottom of the image are incorrectly assigned to a framework which
mainly contains clouds. We refine the probability maps to include also spatial interac-
tions as shown in Figure5.1(c).

5.3.2 Strength of Frameworks

Apart from the illumination conditions, the strength with which a framework influences
the lightness of a given surface also depends on the articulation of the framework and
its relative size. If a framework is highly articulated, thepixels tend to be strongly
anchored within this framework. Also, large frameworks have a higher influence on
the lightness than small ones. Strength of a framework is defined as the product of the
articulation and size factors.

We estimate the articulation factor independently for eachframework based on the
mean contrast calculated as a standard deviation of logarithmic luminance in the frame-
work. The articulation factorAi is the mean contrast in the framework divided by the
mean contrast in the image. Thus the frameworks which contain a larger part of the
contrasts in the image have a stronger influence on the lightness.

Similarly, a larger framework will have a tendency to have a higher influence on the
lightness of surfaces, while a relatively small framework will have a rather limited
impact. We estimate the size factor in the following way:

Xi = 1−e
−(Si )

2

2·0.032 , (5.3)

whereXi denotes the size factor of the frameworki, andSi represents the normalized
relative area of a framework. Here we attenuate the influenceof frameworks with a
size below 10% of the total image area. The 10% value is chosenarbitrarily and can
be modified if necessary. Although, it is not as important to derive a precise number as
to include the factor at all. The lack of the factor may lead toan excessive influence of
unimportant frameworks on the net lightness estimation.

We apply the strength factor to the frameworks by multiplying their probability mapsPi

by their respective articulation factorAi and size factorSi . We then normalize the prob-
ability maps again and obtain the final result of the decomposition into frameworks.
Most of the time, all frameworks in an image will have a similar articulation. Some-
times however, a uniform area like a background may constitute a framework due to
its unique illumination. Articulation prevents such a background framework to play an
important role in the computation of the net lightness by minimizing the local anchor-
ing of pixels to this framework in favor of other frameworks.In an extreme situation,
when all frameworks have minimum articulation, the framework with the highest an-
chor is assigned a maximum articulation, thus imposing the global anchoring in the
image.
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5.3.3 Estimation of Anchor

After the HDR image is decomposed into frameworks, we estimate the anchor within
each framework. Since we employ the highest luminance rule,we need to find the
luminance value that would be perceived as white in case a given framework would be
observed as stand-alone.

(a) anchoring for framework #1 (b) anchoring for framework #2 (c) net lightness

Figure 5.3: Local anchoring in the frameworks and the net lightness calculated as
described in Section5.3.4.

Although we apply the highest luminance rule, we cannot directly use the highest lumi-
nance in the framework as an anchor. As discussed in Section5.2.1, there is a relation
between what is perceived as white and its area relatively tothe surround. This im-
plies that a spatial filtering is required prior to the estimation of the local anchor. Our
procedure is to filter the area of a framework with a medium sized Gaussian kernel to
suppress plausible small areas with high luminance. We thuseliminate potential self-
luminous areas, allowing us to take the highest luminance ofthe rest of the pixels as
the anchor. In Figure5.3we show the two frameworks identified in the example HDR
image with their lightness computed according to the local anchor.

Alternatively, the self-luminance areas could be identified using image processing tools
which remove highlights. Numerous algorithms are available as for instance [Schluens
and Koschan 2000, Wesolkowski et al. 2001]. However, we have noticed throughout
our experiments that such algorithms can at most remove specular highlights in HDR
images. The direct light sources, which are also self-luminous, or larger highlights are
left in the image. On average these methods performed less robustly. Therefore we
excluded them from consideration.

Ultimately, it would be interesting to know which luminancein each framework is as-
sumed to be white by an average human observer. Interestingly, the perceptual evidence
of preferred brightness adjustment in images may be helpfulhere. In an experiment,
[Yoshida et al. 2006] asked subjects to adjust the contrast and brightness to match
their preference in a number of LDR images (an LDR image has only one framework).
While the preferred brightness and contrast adjustments aretotally different between
subjects, they observed that after the adjustment all subjects align histograms along
a very similar luminance value depicting white. Apparently, the subjects performed
the anchoring to white. Therefore, if one can build a model which predicts the pre-
ferred brightness of images, indirectly this could also be used as the model to predict
anchoring to white. In the recent evaluation of such models [Krawczyk et al. 2007a],
the preferred brightness in a set of 33 images is best predicted by a combined anchor-
ing to white, middle gray, and black, which in effect maps to 60% reflectance. The
predictions based on image processing methods directly applying anchoring to white
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were less accurate. Since the anchoring to white has been confirmed in the original
experiment, the lower accuracy is most probably caused by imprecise estimation of
luminance perceived as white.

5.3.4 Net Lightness

Given the decomposed frameworks and estimated local anchors we compute the net
lightness of the pixels by merging the frameworks. We process each framework indi-
vidually. We sum the original luminance values of the HDR image normalized by the
locally estimated anchor value and proportionally to the probability map:

L(x,y) = 30%·∑
i
(Y−Wi) ·Pi(x,y)+70%· (Y−W0), (5.4)

whereL denotes the final lightness value,Y the original luminance of the HDR im-
age,Wi the local anchor of frameworki, W0 the anchor in the global framework (all
these values are in the log10 space), andPi is the probability map. The 30% and 70%
coefficients for local and global anchor influence respectively are arbitrarily suggested
in [Gilchrist et al. 1999] and can be modified if necessary. In Figure5.3 we illustrate
how the net lightness has been computed for the sample HDR image. A comparison of
the net lightness result to the original HDR image in Figure5.1illustrates an improved
perception of image contents in the processed image.

5.4 Model Analysis

The main focus of this chapter is the computational model of the lightness perception
theory applied to the tone mapping of HDR images. A thorough verification of the pre-
sented model would require a psychophysical experiment which is beyond the scope
of this thesis. Instead, we test our computational model by simulating two experiments
related to the perception of lightness. The first one analyzes the accuracy of the decom-
position into frameworks for natural scenes and the second experiment is a simulation
of the Gelb illusion using various lightness mapping algorithms for HDR images (tone
mapping operators).

5.4.1 Frameworks within Multi-Illuminant Scenes

According to the anchoring theory of lightness perception,successfully identified frame-
works should define the areas in which the lightness is perceived homogeneously
[Gilchrist et al. 1999]. The evidence for such lightness perception can be obtained
through a distribution of probe disks of constant known luminance value across an im-
age. The disks should have the same lightness within a framework independently of
the ratio of their luminance to the background luminance on which they are placed.

Such an experiment has recently been presented by Gilchristand Radonjic [Gilchrist
and Radonjic 2005]. In Figure5.4we provide an HDR reproduction of this experiment
using an image similar to the original material. We decompose the HDR image into
frameworks using our computational model and place severalprobe disks of constant
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(a) probe discs in natural scene (b) probe discs (c) identified frameworks

Figure 5.4: The probe discs of constant luminance (middle) are inserted to a multi-
illuminant natural scene (left). The perceived brightnessof the probes changes in the
context the scene, but is constant within the two identified frameworks (right) and is
independent of the local background luminance. The contrast ratios of the probes with
the background range in the shadow framework from 1:2 to 1:9 (disc is an increment)
and in the light framework from 9:1 to 2:1 (disc is a decrement).

luminance value in various areas of the image. The contrast ratios between the probe
disks and the background in both shadow and light frameworksrange from 1:2 to 1:9.
The lightness of the probes is perceived consistently within the area of the frameworks
independently of the background. These leads to the same conclusions as in the orig-
inal experiment: lightness is determined by the frameworksand the influence of local
contrasts is minimal. Our contribution here is not to confirmthe theory, but to pro-
vide an automated method for obtaining an appropriate decomposition. In this sense,
the reproduction of the experiment serves as the evidence that frameworks areas are
accurately identified using our computational model.

5.4.2 Anchoring in the Gelb Illusion

The Gelb Effect is a well known illusion which provides a goodexample of lightness
constancy failure [Gilchrist et al. 1999]. In the illusion, one observes perceptual dark-
ening of a surface despite its constant reflectance and constant illumination. The failure
is caused by the appearance of new brighter surfaces in the scene. The illusion can be
reproduced in a darkroom with low ambient light using several patches of gray paper
with a different reflectance. A single beam of light should first illuminate only the dark-
est paper, which will appear to be white. Placing a bit brighter paper beside the existing
one causes perceptual darkening of the darkest paper which has initially appeared to be
white. Each time a brighter paper is added to the scene, it becomes white and all others
immediately become darker. This perceptual illusion can bydefinition be attributed to
the anchoring in general and to the highest luminance rule inparticular. It can neither
be explained with the contrast theories because the papers do not have to be placed
adjacent to each other [Gilchrist et al. 1999], nor with intrinsic image models because
the illumination does not change. Furthermore, if the sceneoccupies only a part of the



5.4. MODEL ANALYSIS 65

visual field, like a tone mapped image observed on a display, the perceptual darkening
will not appear because other visible surfaces may serve as awhite reference. There-
fore it needs to be reproduced during tone mapping to preserve the appearance of the
original scene.

(a) scene setup for Gelb illusion (b) decomposed frameworks (c) illumination layer

Figure 5.5: Photograph of the scene in which the Gelb effect can be observed (left).
The middle image shows the decomposition into frameworks obtained from our model
– red, green, and blue define the distinct frameworks, yellowmarks the shared influence
of the red and the green frameworks. The right image shows theillumination layer
obtained with the bilateral filtering which is used in the intrinsic images model.

We have performed a study of this experiment to validate the results of our algorithm.
For comparison, we chose two other methods whose principle goal includes the re-
production of appearance of the original image. The photographic tone reproduction
algorithm presented by Reinhard et al.[Reinhard et al. 2002] is based on a sigmoid
function and follows the rule of anchoring to middle-gray. The fast bilateral filtering
presented by Durand and Dorsey[Durand and Dorsey 2002] is inspired by the theory of
intrinsic images. We will refer to the first one as themiddle-gray anchoringand to the
latter as theintrinsic images model. In the study, we used four HDR captures of exactly
the same scene setup, showing from one to four patches with progressively increasing
maximum reflectance. The relative reflectance of the patcheswas respectively equal to
39%,56%,72%, and 100% with the reference to the brightest one. The area, inwhich
we showed the patches, was illuminated from the top and in ourconditions the Gelb il-
lusion was reproduced. A photograph of the setup with all thepatches visible is shown
in Figure5.5.

The results of tone mapping of the four HDR images are shown inFigure 5.6 and
the respective reproductions of lightness of the patches are plotted in Figure5.7. All
tone mapping methods reveal the objects placed outside of the main illumination that
are not visible in a standard photograph in Figure5.5. The intrinsic images model
maps the lightness of the patches in each of the images to an approximately constant
value and maintains the overall brightness of the scene background constant. This is
in accordance with the lightness constancy rule, but contrary to what was observed in
the real setup. The middle-gray anchoring reproduces the perceptual darkening of the
patches, however the brightest one is mapped to white only when all four patches are
visible. Further, each brighter patch causes the darkeningof scene background which
was originally not observed. The lightness perception model presented in this chapter
reproduces both the Gelb illusion on the patches and holds the lightness constancy of
the objects in the scene background.
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Figure 5.6: Simulation of the Gelb Effect by three tone mapping methods. The map-
ping of lightness by each of the tone mapping is plot in Figure5.7. The intrinsic
images modelrefers to [Durand and Dorsey 2002] operator, themiddle-gray anchoring
to [Reinhard et al. 2002], and lightness perception modelto the operator presented in
this chapter.

Analysis

The decomposition of the scene into frameworks (shown in Figure5.5) in the lightness
perception model permits the processing of patches and the rest of the scene separately.
The estimation of local anchors using the highest luminancerule estimates the appear-
ance of patches in accordance with the observations in the original conditions. The
net lightness calculation with the influence of a global anchor maintains the brightness
relation between the frameworks.

The lightness constancy of the intrinsic images model can beexplained as follows. In
the illumination layer (shown in Figure5.5), obtained by processing the original HDR
image with the bilateral filter, the brightness of each patchis approximately equal while
the actual differences are in the reflectance layer. The tonemapping reduces the dy-
namic range of the illumination layer and overlays the unmodified reflectance layer.
Since the intensities in the illumination layer do not significantly change between the
four images, the lightness mapping is constant. Therefore,neither the average lumi-
nance rule nor the highest luminance rule applied to the illumination layer could repro-
duce the Gelb illusion. The application of the highest luminance rule to the reflectance
layer or to the final tone mapping result could reproduce the darkening of the patches,
however it would also cause the undesired darkening of otherimage parts.

The middle-gray anchoring reproduces the darkening of the patches because the addi-
tion of a new brighter patch causes change in the average luminance of the scene. When
the average luminance increases in a new image, the patches,which have constant lu-
minance, are mapped to darker gray shades. Unfortunately, such a global connection
causes the overall darkening of the scene which is not expected, and the brightest patch
is mapped to white only when all four patches are present in the scene.
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Figure 5.7: The plots illustrate how the mapping of luminance of the patches to light-
ness changes between the four images in case of each of the three tone mapping oper-
ators. On the scale of lightness, the value 100 maps to white and 0 to black. Refer to
the corresponding images in Figure5.6.

5.5 Applications

The computational model of lightness perception theory opens new possibilities in pro-
cessing of HDR images. As a direct application we present a tone mapping operator
which aims at the reproduction of lightness as closely as possible to the lightness per-
ceived in a natural scene. Besides, decomposition into frameworks defined by homo-
geneous illumination gives an interesting possibility to perceptually supported image
processing.

5.5.1 Tone Mapping

Based on the computational model of lightness perception, we derive a tone mapping
algorithm for contrast reduction in HDR images. The algorithm takes as input an HDR
image defined by floating point RGB values that are linearly related to luminance and
produces a displayable LDR image as a result. The contrast reduction process is based
on the luminance channel.

The main technical goal of tone mapping is to reduce the contrast of the original HDR
image. While through the net lightness computation the dynamic range in the image is
reduced, it may still exceed the capabilities of the displaydevice. Hence, an additional
dynamic range reduction may be necessary to achieve good results. For the purpose
of tone mapping we use a modified version of net lightness computation (5.4) which
includes a dynamic range reduction (scaling) by a factorDi :

L(x,y) = 70%·∑
i

(Y−Wi)

Di
·Pi(x,y)+30%· (Y−W0). (5.5)

The value ofDi can be set individually for each framework in such way that itscales
down the dynamic range of a framework if it exceeds the capabilities of the target
display device. Also the influence of the global framework has been limited, because
it counteracts the luminance range compression goal.

We first calculate the luminance from the RGB colors using theCIE Yxy color space
and segment the input scene into the frameworks. Next, we estimate the anchor in each
framework, i.e. the luminance value perceived as white. We then compute the local
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pixel lightness within each framework. Finally, we calculate the net lightness of each
pixel using equation (5.5). We recover the color information with an inverse CIE Yxy
transform, using the computed lightnessL instead of luminance channelY. The result
is suitable to be viewed on an LDR display device.

To illustrate the performance of our tone mapping algorithm, we have selected several
HDR images which contain various distinct illumination features. We present our re-
sults in Figure5.8, where each row contains the source HDR image, the tone mapping
result, and a map of framework areas. The decomposition intoframeworks obtained
using our model correlates with the intuitive impression ofwhich areas have common
illumination: daylight, shadow, desk lamp, room interior,exterior, etc. The separation
performs well even in presence of occluders like the gratingstructure of the window
pane. The extracted frameworks are plausible despite the lack of semantic information,
which might seem to be necessary to perform a successful decomposition. In the re-
sults shown here, the scalingDi has not been necessary, however we have sometimes
reduced the influence of the global framework down to 10% for images with a partic-
ularly high dynamic range. Interestingly, the images tend to be decomposed only into
two or three frameworks, although there is no restriction onthe number.

One important issue is that Gilchrist’s model generally assumes approximately diffuse
surfaces and if self-luminous areas exist, they occupy a limited field of view. In our ap-
plication we use this theory for complex scenes beyond what has originally been tested
but we do not observe any problems invalidating our approach. To our knowledge, per-
ceptual models of lightness perception able to deal with natural scenes, which contain
large self-luminous surfaces, do not exist.

The evaluation of aesthetic properties of this tone mappingcan be done with recently
presented methodology [Ledda et al. 2005, Yoshida et al. 2005]. In Figure 5.9, we
provide analysis of how the luminance values are mapped to the lightness levels in
three different tone mapping techniques: the presented lightness perception model, the
global version of photographic tone reproduction [Reinhard et al. 2002] which is a sig-
moid mapping function, and the fast bilateral filtering [Durand and Dorsey 2002] which
is inspired by the intrinsic images model. The technical quality of a tone mapping algo-
rithm can be measured by the efficiency in use of the availablelimited dynamic range
on a display device. In our example, the global operator performs a strictly monotonic
reproduction, thus leads to the loss of fine details as explained in Section2.5. The
local adaptation using the bilateral filtering enables a more efficient use of the avail-
able dynamic range. The preservation of details can be observed as a deviation from
the monotonic mapping of luminance. However, the tone mapping using frameworks
permits to break this monotonicity and perform partially independent mapping of lumi-
nance in two distinct image areas, resulting in an even more efficient use of the dynamic
range. The mapping within the frameworks is not uniform because of the varying in-
fluence of the global framework. We further evaluate the properties of the lightness
perception tone mapping in Chapter6, where we analyze it in terms of communication
of contrast in images.

5.5.2 Local Image Processing

Image processing algorithms are usually applied with uniform parameter settings over
the whole image. When the algorithm is localized, the parameters for the method are
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source HDR image

(linear mapping)

lightness perception

tone mapping
decomposition

into frameworks

Figure 5.8: Results of lightness perception tone mapping. The left column (apart from
the last row) contains the source HDR image shown with the linear mapping. The mid-
dle column contains results of the presented tone mapping method. The right column
depicts the decomposition into frameworks. Red, blue and green colors depict the dis-
tinct frameworks. Higher saturation of the color illustrates stronger anchoring within
the framework and the intermediate colors depict the influence of more frameworks
on an image area. The HDR images in the 2nd and 5th row from the top courtesy of
SpheronVR, and the HDR image in the 4th row courtesy of Byong Mok Oh.
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(a) global tone mapping (b) bilateral filtering (c) lightness perception model

Figure 5.9: Comparison of three tone mapping operators: global sigmoid function,
local tone mapping with bilateral filter, and lightness perception tone mapping. Color
of the mapping functions in the plots correspond to the marked areas of frameworks
(inset in image (c)). HDR image courtesy of SpheronVR.

set based on some constant local neighborhood. However, it may often be desired to
vary the parameters of such algorithms between the areas of an image. In this case it
often has to be done manually by the user. With the use of frameworks decomposi-
tion, it is now possible to identify the areas that are perceived homogeneously in an
image. For the purpose of automated image processing, this permits to estimate the
most appropriate parameters for a given algorithm individually for each framework.

In digital photography, it often happens that an image contains two different sources
of illumination – for instance daylight from a cloudy sky andwarm indoor tungsten
light as in Figure5.10. Such an image requires a white balance correction. However,
correcting for the daylight will result in an increased orange cast in the tungsten light.
The decomposition into frameworks allows the identification of such separate areas
and enables different white balance correction in each of them. Again, frameworks
represented as probability maps guarantee proper blendingof edges where differently
processed areas merge. One can envisage further possibilities in which our decompo-
sition into frameworks reduces the required amount of manual interaction.

5.5.3 Performance

The estimation of lightness in a 4Mpx image using our computational model takes
below a minute on a modern PC. The timing mainly depends on thenumber of decom-
posed frameworks, since the majority of computations is spent on the decomposition
stage. Once the frameworks are known, the estimation of anchor and net lightness
computation consists of simple operations. The K-means algorithm operates on a his-
togram and is therefore independent of the image resolution. The only bottleneck is
the spatial processing using the bilateral filter, althoughwe use an efficient approach
presented by Durand and Dorsey [Durand and Dorsey 2002].
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(a) global white balance (b) white balance within frameworks (c) frameworks

Figure 5.10: The daylight from a cloudy sky dominates the white balance in image
(a) and causes the orange color cast in the interior illuminated by a tungsten light.
The frameworks (c) can be used to separate such areas of different illumination and to
perform an independent white balance in each of them (b).

5.6 Conclusions

We have presented a computational model of the anchoring theory of lightness per-
ception. The model provides a practical implementation of the key concepts of this
theory and aims at an accurate estimation of lightness in real world scenes captured
as HDR images. We leveraged the theory to handle complex images by developing
an automatic method for image decomposition into frameworks. Through the estima-
tion of local anchors we formalized the mapping of the luminance values to lightness.
We examined the accuracy of our model by reproducing the results of two perceptual
experiments that were initially conducted to prove the accuracy of the theory.

We have demonstrated a novel tone mapping operator which aims at the accurate re-
production of lightness perception of real world scenes on low dynamic range displays.
The strength of our operator is especially evident for difficult shots of real world scenes,
which involve distinct regions with significantly different luminance levels. Moreover,
the decomposition of an image into frameworks gives additional potential for auto-
mated image processing fine tuned to the perceptual aspects of the HVS.
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Chapter 6

Objective Evaluation of Tone
Mapping

Existing tone mapping algorithms can be generalized as a transfer function in the
form of a “black box” which converts scene luminances to displayable pixel inten-
sities. While the universal goal of such a transfer function is to reduce the original
dynamic range and at the same time preserve the original appearance of an HDR im-
age, a particular realization of it can be variable and depends on the objectives of a
target application. In many cases one may wish to simply obtain nice looking im-
ages that resemble the original HDRs, but the requirements may also be more precise:
perceptual brightness match, good visibility of details, equivalent object detection per-
formance in tone mapped and corresponding HDR image, etc. Inview of the technical
limitations and constrained observation conditions for standard displays, such require-
ments can only be met at the cost of other image properties. For instance, if an available
dynamic range is assigned to enable good visibility of details (local contrasts), there is
no dynamic range left to depict global contrast variations in the scene. The trade-off
between these conflicting goals is often balanced through anoptimization process, but
sometimes the design of an algorithm is focused on the requirements and is oblivious
to the side-effects. In the end, the overall impact of image processing operations on
the perceived image quality or fidelity to the real world appearance is not thoroughly
understood.

Recent psychophysical studies attempt to evaluate tone mapping operators in terms of
subjects’ preference or fidelity of the real world scene depiction [Drago et al. 2002,
Kuang et al. 2004, Ledda et al. 2005, Yoshida et al. 2005]. In such studies each op-
erator is treated as a “black box” and its performance is compared on the whole with
respect to other operators, without an attempt at understanding the reasons for subjects’
judgments. While some studies of tone mapping operators go further and take into ac-
count the reproduction of overall brightness, global contrast or details (local contrast)
in dark and bright image regions [Ledda et al. 2005, Yoshida et al. 2005], they remain
focused on comparing the operator performance for each of these tasks. These studies,
however, provide no deeper analysis of how the pixels of an HDR image have been
transformed by tone mapping and in what way the outcome of such a transformation
depends on image content.

73
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In this chapter, instead of subjective analysis, we focus ondeveloping objective met-
rics which could help in understanding how particular imagecharacteristics, such as
contrast or brightness, are distorted by tone mapping and determining the impact of
such distortions on perceived image quality. We identify that major distortions in tone
mapped images with respect to their HDR originals come from global and local con-
trast modulations. We create relevant metrics which evaluate the magnitude ofGlobal
Contrast ChangeandDetail Visibility Changealong a perceptually meaningful scale
and perform a corresponding study of 8 tone mapping algorithms. Besides the eval-
uation, the output of these metrics can be used as a feedback for perceptual enhance-
ments [Smith et al. 2006].

6.1 Related Work

A number of perception-based visible difference (fidelity)metrics for image pairs have
been developed, mostly for image compression and color reproduction applications
(refer to [Winkler 2005] for a recent survey of such metrics). State of the art fidelity
metrics such as the Visible Differences Predictor (VDP) [Daly 1993] or the Sarnoff
Visual Discrimination Model (VDM) [Lubin 1995] include many important character-
istics of the HVS, such as eye optic imperfections, luminance masking, the contrast
sensitivity function (CSF), and pattern masking, making them very general metrics.
However, such complex metrics may perform worse than simpler metrics specialized
for the task of detecting well-defined distortion types, such as blocking artifacts that
arise in image compression [Winkler 2005]. The majority of existing fidelity metrics
are based on HVS models developed through threshold psychophysical experiments,
the goal of which is to determine the magnitude of a simple stimulus so that it becomes
just noticeable. Such metrics successfully detect the presence of perceivable image dis-
tortions, but perform poorly in estimating the magnitude ofsuprathreshold distortions
and predicting their distraction to the human observer [Chandler and Hemami 2003].
With its spatial features for estimating imperceptible texture details, the iCAM model
[Fairchild and Johnson 2003] is an exception. However, since the magnitude of per-
ceptual responses to local contrast is not available, it cannot be used to determine the
change in detail visibility.

In this work, we are mostly concerned with one well defined suprathreshold distortion:
contrast compression due to tone mapping. While much work hasbeen done in the
subjective evaluation of different tone mapping operators[Ledda et al. 2005, Yoshida
et al. 2005], to our knowledge, we present the first feature-based characterization and
objective perceptual measure of tone mapping distortion. Since fidelity metrics dealing
with image pairs of significantly different dynamic ranges have not so far been pro-
posed, and since we have found existing models to be ill-suited for our purposes, we
present custom fidelity metrics for comparing perceived contrast differences between
an original HDR image and its tone mapped LDR counterpart.

6.2 Distortion Metrics

All successful tone mapping operators balance the tradeoffbetween accurate repro-
duction of the luminance range and preservation of details.One can argue that the
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photographic tone reproductionoperator [Reinhard et al. 2002] best reproduces global
contrast, while thegradient domain compression[Fattal et al. 2002] operator best pre-
serves details. However, the accuracy of such statements may depend on the particular
HDR image, and as concluded by evaluations of tone mapping operators [Yoshida et al.
2005, Ledda et al. 2005], it is difficult for one tone mapping operator to be well-suited
to all types of images. Regardless of technique, each tone mapping operator introduces
a degree of distortion into the resulting LDR tone mapped image. Drawing conclusions
from previous evaluations and our own observations, we identify two major contrast
distortions resulting from tone mapping:

Global Contrast Change the ratio between lightest and darkest areas of the HDR is
reduced in the LDR,

Detail Visibility Change (textures and contours) the high frequency contrasts of the
HDR image become less prominent, disappear, or become exaggerated in the
LDR.

A significant Global Contrast Change is undesirable not onlyfor esthetic reasons, but
also because of changes in image understandability, despite good detail visibility. Cer-
tain specialized tone mapping operators assign a wider dynamic range to detailed re-
gions to preserve textures and contours, which results in a narrower dynamic range
available for global luminance changes, decreasing the ratio between lightest and dark-
est areas. Detail Visibility Change occurs either because aregion becomes entirely
saturated or because an area is mapped to very few or very low brightness levels. The
second case is especially interesting from the perceptual point of view, because the
physical contrasts still exist in the LDR image, however thedetails are invisible to the
human observer.

Our goal is to determine the apparent distortion in detail visibility and global contrast
change which were introduced during the tone mapping of HDR image. We focus on
the luminance compression aspect of the operators. Insteadof analyzing particular al-
gorithms one by one, we consider tone mapping as an unknown transformation applied
to the luminance of an HDR image, resulting in an LDR image. Todo so, we use
knowledge of human perception to compare a real world or synthetic scene, captured
as an HDR image, to its LDR tone mapping as depicted on a given display device. The
output of our metric consists of a single value representingthe global contrast change
factor and a map representing the magnitude of change in detail visibility. The units
of the detail visibility map are Just Noticeable Differences (JND), which allows for an
informed use of this information for potential perceptually based corrections [Smith
et al. 2006].

To compare images of significantly different dynamic rangeswe compare the lumi-
nance of an HDR image, denoted asY, to the luminance shown on a display device,
denoted asL. To accurately predict the displayed luminance, we assume that sufficient
characteristics of the display device are known so that we can calculate the luminance
value incd/m2 of each LDR image pixel. For an sRGB monitor, this requires black and
white levels increased by an ambient illumination level. Similarly, a photometrically
calibrated HDR image is desirable.

We transform the gamma corrected intensity values1 y of the LDR image to display
luminance valuesL. Given the display blackLblack and whiteLwhite levels incd/m2

1image luminance is calculated from the RGB channels accordingto the [ITU 1990] standard.
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and assuming sRGB response, the transformation is the following:

L = Lblack+sRGB−1(y) · (Lwhite−Lblack). (6.1)

If the absolute luminance values of an HDR image are unknown,we align the relative
HDR valuesY to the LDR valuesL according to the average logarithmic luminance,
a method often used as an adaptation estimate in tone mapping[Drago et al. 2003,
Reinhard et al. 2002].

6.2.1 Global Contrast Change

The change in ratio between brightest and darkest points of an image is a traditional
definition of global contrast change that is necessarily adjusted by tone mapping, and
so would not be considered a distortion. Particularly, since tone mapping algorithms
most often use the whole display dynamic range, above definition always results in a
constant global contrast. Yet images resulting from different tone mapping operators
can create starkly different impressions of global contrast, meaning that such a naı̈ve
measure is not appropriate. Contrary to this definition and others, such as one using the
multi-resolution definition given by [Matkovic et al. 2005], we consider global contrast
change to be a characteristic defined by the shape of the tone mapping function, thus
removing the emphasis on extreme lights and darks which haveless impact on the
impression of global contrast. Our definition of global contrast change is more closely
related to image comprehension, which according to Gestalttheorists, involves the
cognitive task of separating the image into recognizable objects, most importantly, the
separation of foreground objects from the background [Livingstone 2002]. As such, a
decrease in global contrast may make comprehension of the LDR image more difficult,
indicating a loss in visual communication efficacy.

While it is sensible to analyze tone mapping functions to obtain a global contrast esti-
mate, these functions are either unknown or not well-defined, as in the case ofgradient
domain compression. However, we argue that a general approximation of the tone map-
ping function is sufficient for estimating global contrast.In our metric, we approximate
the tone mapping function using linear regression in the logarithmic domain:

log10L ≈ TM(log10Y) = C · log10Y +B, (6.2)

whereC and B are estimated coefficients, andY and L are the luminances of the
HDR and LDR images. The meaning of logarithm in equation (6.2) is two-fold. First,
the logarithm of luminance provides a crude approximation of brightness and the cal-
culated values of the coefficients reflect the brightness mapping. Further, the linear
regression estimates a general tendency of the mapping rather than being prone to de-
tail enhancing procedures which do not influence global contrast relations. Second, if
we exponentiate the equation (6.2), we obtain a standard contrast scaling equation in
image processing [Pratt 1991]:

L ≈ TM(Y) = YC ·10B, (6.3)

whereC adjusts contrast and 10B adjusts brightness. Summarizing, equations (6.2,6.3)
estimate the shape of the tone mapping curve and relate the contrast in LDR imageL
to its original HDRY. Therefore the coefficientC obtained through linear regression
denotes the Global Contrast Change, such thatC < 1 indicates a decrease in the global
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contrast in the LDR image, whereasC > 1 indicates an increase with respect to the
original HDR.

The result of applying our measure of Global Contrast Changeto two tone mappings
(one global and one local) is shown in Figure6.1. While both methods make use of the
entire available dynamic range, the shapes of their mappingfunctions differ: the global
mapping function is well-defined, as opposed to the non-uniform and scattered local
mapping function. Higher global contrast is obtained with the global tone mapping
method, whereas the detail preserving local method exhibits a smaller ratio between
bright and dark areas (the function approximation is nearlyflat).
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Figure 6.1: Global Contrast estimation for global [Reinhard et al. 2002] (left) and local
[Fattal et al. 2002] (right) tone mapping. Each plot shows pixel-by-pixel mapping
between HDR and LDR, linear brightness mapping estimation,and dynamic ranges
(d.r.) of LDR and HDR. Global Contrast Change for global tonemapping isC = 0.49
and for localC = 0.10.

6.2.2 Detail Visibility Change

Details of textures and contours can be described as the highfrequency contrast be-
tween a pixel and its adapting field. Visibility, the response of the HVS to the mag-
nitude of such contrasts, is not linear and depends on the adaptation level. Contrast
visibility can be analyzed in terms of contrast detection and contrast discrimination.
We use contrast detection for identifying visible details in both the HDR and LDR
images, and we use contrast discrimination for identifyingthe magnitude of visible
difference in detail contrast between the HDR and LDR images.

We start by identifying high frequency contrasts that presumably create texture and
contour details in the image. For each pixelYi we estimate the adapting luminanceYsp

i
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in its neighboring area and calculate the contrast expressed as a logarithmic ratio of
luminance values:

G(Yi ,Y
sp
i ) = log10

max(Yi ,Y
sp
i )

min(Yi ,Y
sp
i )

. (6.4)

We simulate the adaptation to low spatial frequencies in an image and we take special
care to prevent the influence of significantly different luminance values on an adapta-
tion level. We obtain the adaptation mapYsp by processing the HDR image with a low
pass bilateral filter in the logarithmic domain. Such a filterremoves high frequencies
while preserving high contrast edges. The adaptation map isrefined by eliminating
frequencies above 20 cycles per pixel and preserving edges of logarithmic contrast ra-
tio higher than 0.25. We calculate the high frequency contrasts of the LDR image in
the same way. It is important to note that the particular choice of the bilateral filter
for estimating the adaptation map is not critical. Other algorithms known from tone
mapping can be used as well, as long as they do not introduce artifacts at high contrast
edges.

To estimate the Detail Visibility Change between two imagesof significantly different
dynamic range, knowledge of the hypothetical HVS response to given physical con-
trasts under given adaptation conditions is required. A reasonable prediction for a full
range of contrast values is given by the following transducer function that is derived
and approximated by Mantiuk et al. [Mantiuk et al. 2006]:

T(G) = 54.09288·G0.41850, (6.5)

with the following properties:

T(0) = 0 and T(Gthreshold) = 1. (6.6)

The transducer function estimates the HVS response to physical contrast in Just Notice-
able Difference (JND) units. Thus for a given contrast threshold,Gthreshold, a transducer
value equals 1 JND. It is important to note that this measure holds for suprathreshold
measurements, since it not only estimates the detection, but also the magnitude of
change.

The approximation given by Equation (6.5) has been derived with the assumption of
1% contrast detection threshold2, i.e. Gthreshold= log10(1.01). Although such an as-
sumption is often made in image processing for LDR, the detection threshold depends
on an adapting luminance level and is described by the Threshold Versus Intensity
(TVI) function [CIE 1981]. The TVI function shows that this threshold varies in the
luminance range of displays and the dynamic range in HDR is often high enough to
make this 1% assumption for the detection threshold inaccurate. We therefore derive a
scaling factort(Ysp) for the transducer function (6.5) which adjusts its properties (6.6)
to match the TVI function given an adapting luminance:

t(Ysp) =
log101.01

log10
Ysp+tvi(Ysp)

Ysp

. (6.7)

Such a scaling factor is appropriate because the approximation of the transducer func-
tion (6.5) was derived with starting conditions from (6.6), and since the influence of the

2While equation (6.5) gives a good approximation of the response to contrast in a wide range of physical
contrasts, it actually has a slightly larger fitting error for near-threshold values. Thus equation (6.5) does not
precisely satisfy equation (6.6) for 1% detection threshold. For detailed derivation see [Mantiuk et al. 2006]
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threshold is multiplicative [Mantiuk et al. 2006]. Figure6.2 illustrates the magnitude
of change in the HVS response depending on the adapting luminance. The response
changes by a factor of almost 1 order of magnitude within the visible range of lumi-
nance on a display. In practice, the scaling factor reduces the response to contrast in
the dark areas of an image.
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Figure 6.2: Plot of the scale factor from equation (6.7). Luminance range of a typical
LCD display is 2 to 200cd/m2.

Given the scaled transducer function, we can estimate the hypothetical response of the
HVS to the high frequency contrasts measured with equation (6.4):

T∗(Yi ,Y
sp) = T(G(Yi ,Y

sp
i )) · t(Ysp

i ). (6.8)

The responseT∗ is expressed in JND units, which means that a detailYi is visible
under given luminance conditions only ifT∗ > 1. Given this relation, we are able to
estimate the details of a displayed LDR image and the detailsof an HDR image which
would be visible to a human observer. Furthermore, since thetransducer function is a
suprathreshold measure, we are able to estimate change by comparing the magnitude
of detail visibility in a displayed LDR image to its HDR version (spatial arguments are
omitted for brevity):

∆T∗(Yi ,Li) =







1 for T∗(Yi) > 1 > T∗(Li),
0 for ‖T∗(Yi)−T∗(Li)‖ < 1,
T∗(Yi)−T∗(Li) otherwise.

(6.9)

For practical reasons, we consider the average detail visibility measure over its neigh-
boring pixels, denoted asT∗, because we are interested in general detail visibility in a
certain small area. As shown in equation6.9, we consider three cases of detail visibility
change. When a response to high frequency contrast in the HDR image is attenuated
from above 1 JND to below 1 JND in the tone mapped image, the change is 1 JND.
When the difference in response is below 1 JND, the change is deemed invisible and
is set to 0. In all other cases, the magnitude of Detail Visibility Change is set to the
difference in responsesT∗. We illustrate the performance of this measure in Figure6.3.

6.3 Analysis of Tone Mapping Algorithms

We analyzed the performance of 8 tone mapping methods in terms of Global Contrast
Change and Detail Visibility Change using the presented metrics. The analysis was per-
formed on a set of 18 HDR images with an average dynamic range of approximately 4
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A CB

Figure 6.3: Detail Visibility. HDR image (A) contains subtle reflection on a surface
of the cup. A global tone mapping (B) reveals the coffee beansin the shadow but the
reflection details become indiscernible. The areas of the image with lost details are
predicted by our metric (C), where red color marks∆T∗ > 1.

orders of magnitude and a resolution between 0.5 and 4 megapixels. The set contained
a variety of scenes with differing lighting conditions and included panoramic images.
We tested the following global (spatially uniform) tone mapping algorithms:gamma
correction(γ = 2.2), adaptive logarithmic mapping[Drago et al. 2003], photographic
tone reproduction (global)[Reinhard et al. 2002], photoreceptor[Reinhard and Devlin
2005]; and the following local (detail preserving algorithms):gradient domain com-
pression[Fattal et al. 2002], bilateral filtering [Durand and Dorsey 2002], lightness
perception(Chapter5), photographic tone reproduction (local)[Reinhard et al. 2002].
The tone mapped LDR images were obtained either from the authors of these methods
or by using publicly available implementations:pfstmo, AppendixB. Tone mapping
parameters were fine tuned whenever default values did not produce satisfactory im-
ages.

In practice, the contrast detection component of our DetailVisibility Change metric
required calibration to correctly estimate the visibilityof subtle details in extreme dark
and light regions. We introduced a scaling factor to equation 6.7 to increase the pre-
dicted response of the HVS to contrasts, and found that a value of 1.89 led to satisfac-
tory predictions in our set of test images. The display characteristics corresponded to
a typical consumer LCD with an sRGB response, black level at 2.5cd/m2, and white
level at 210cd/m2 measured in office illumination conditions.

We measure the Global Contrast Change according to the description in Section6.2.1
and the results of our analysis are summarized in Figure6.4. There is an apparent ad-
vantage of thephotographic tone reproduction (local & global)methods in conveying
the global contrast impression almost without any change. These methods were also
among the top rated in other studies [Ledda et al. 2005, Yoshida et al. 2005]. In con-
trast thegradient domain compressioncauses a severe decrease in the global contrast.
Other local methods perform moderately. Particularly, in case of thelightness percep-
tion model the decrease of global contrast is caused by the optimization of difference in
luminance between the frameworks. The superior performance of the global methods
is traded for less efficient reproduction of details as observed in the further analysis.

We analyze the Detail Visibility Change for two cases that are part of equation (6.9):
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Figure 6.4: The influence of various tone mapping operators on the change of the global
contrastC from equation (6.2). The negative values denote the decrease in global
contrast and 0 means no change. The red bars show the median, whiskers denote 25th

and 75th percentile of data, and the red crosses are outliers.

the loss of detail visibility and the change in the magnitudeof the detail visibility. The
loss of detail visibility refers to theT∗(Yi) > 1 > T∗(Li) case in equation (6.9) and
describes the situation in which details have been visible in the HDR image but are
not perceivable in the tone mapped image. To measure the change in the magnitude
of detail visibility we analyze the areas in which the details are visible both in the
HDR and in the tone mapped image and the analysis refers to theT∗(Yi)−T∗(Li) case
in equation (6.9). The average decrease and increase of the visibility are calculated
separately. Following [Yoshida et al. 2005], we further split the analysis into the dark
and bright image areas. To segment these areas, we assign 33%of the darkest pixels in
an image to the dark area, and 33% of the brightest pixels to the bright area. The results
are summarized in Figures6.5 and6.6. The results of the increase in detail visibility
are not shown because they can be only observed for thegradient domain compression.

The analysis of Figure6.6indicates that the dynamic range compression and the change
in luminance levels lead to a decreased perception of details in case of all operators.
The magnitude of change, however, is in most cases below 1 JND. This means that
the loss of detail visibility, largely observed in Figure6.5, is unlikely caused by the
stark luminance range compression, but rather even a minor compression causes the
magnitudes of details to drop below the visibility threshold. This would suggest that
a minimal correction is sufficient to restore the visibility. The detail preserving tools
implemented in local tone mapping methods seem to perform well in bright image ar-
eas, however the dark image areas are often not well reproduced with the exception
of thegradient domain compressionand theadaptive logarithmic mapping. Notably,
the adaptive logarithmic mapping, which is a global operator, preserves details ex-
ceptionally well in dark image areas. This advantage comes at the cost of a slightly
higher loss of details in bright areas. Thelightness perceptiontone mapping performs
on par with other local methods, being slightly advantageous in the bright image ar-
eas. Thegradient domain compressionis particularly interesting, because the results of
this detail preserving method indicate both the increase and decrease in detail visibility
while at the same time the visibility of any details is not lost. Such behavior indicates
good performance of the contrast transfer function which attenuates large contrasts and
increases the small ones as explained in Section2.5.4.
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Figure 6.5: The influence of various tone mapping operators on the loss of the details
visibility. The analysis are split into dark (left) and bright (right) image areas. The
percentage denotes the part of the dark/bright image area inwhich details have been
visible in the HDR image but are not perceivable in the tone mapped image.
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Figure 6.6: The average decrease of the magnitude of detailsvisibility caused by the
analyzed tone mapping operators. The analysis are split into dark (left) and bright
(right) image areas. The average is calculated over the parts where details are visible
both in the HDR and in the tone mapped image. 0 denotes no change in visibility and
1 JND denotes a visible change.

Overall, the better performance of the global tone mapping operators in the analysis of
Global Contrast Change is not surprising. However, the performance of the algorithms
in terms of Detail Visibility Change is very unstable acrossthe test images and there
is no obvious winner of the evaluation. Interestingly, the enhancements required to
improve the results do not necessarily need to be strong. While the discovery of a new
universal operator seems unlikely, our analysis motivatesthe development of enhance-
ment algorithms that could restore the missing informationin tone mapped images
based on their HDR originals. Such enhancements can be obtained using colors [Smith
et al. 2006] or carefully shaped countershading profiles as explained in Chapter7.

6.4 Conclusions

Based on experience and conclusions from previous work we identified two major dis-
tortions introduced to luminance while tone mapping: Global Contrast Change and
Detail Visibility Change. To our knowledge, we present the first objective perceptual
metric for the measure of contrast distortions between an HDR image and its LDR
depiction. To construct these metrics, we extended the transducer function to handle
HDR luminance levels. We analyzed selected tone mapping operators using our met-
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rics and we provided an indicative characterization of these operators in terms of global
contrast and detail preservation in dark and light regions.Since only luminance val-
ues are evaluated by our distortion metrics, their application is most suitable for the
luminance-based subset of tone mapping operators. Our techniques for distortion de-
tection and magnitude evaluation can be used with other methods of perceived contrast
enhancement [Calabria and Fairchild 2003, Smith et al. 2006], including luminance
manipulation at contrasting edges – an enhancement method exploited in Chapter7.
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Chapter 7

Restoration of Lost Contrast

Successful comprehension of observed images and scenes depends on our ability to
distinguish their features. Human vision identifies scene features through the appar-
ent contrasts that they create within their context. Well visible contrasts facilitate the
recognition of objects in a scene, identification of their texture, understanding of their
spatial distribution, and the ability to judge brightness between adjacent and distant
areas. Together, these features directly influence people’s assessment of overall image
quality [Janssen 2001]. Therefore, a well pronounced rendition of perceived contrasts
is an important goal of computer graphics algorithms which process visual informa-
tion. Unfortunately, often this goal is not achieved due to either technical limitations or
poor input data. In tone mapping for instance, the insufficient capabilities of displays
require reduction of the dynamic range in images, which inevitably leads to attenuation
of contrasts and loss of visual information as shown in Chapter 6. In rendering on the
other hand, poor design of illumination or bad shading algorithms produce low con-
trast images in which comprehension of scene content is strongly confined [Luft et al.
2006].

In this chapter we are concerned with the problem of communicating contrasts in im-
ages that suffered from contrast degradation with respect to their original. In case
of a tone mapped image, the original is its source High Dynamic Range (HDR) ver-
sion. Such HDR images can be captured with HDR cameras, usingmulti-exposure
techniques, or obtained in many rendering application in particular in realistic image
synthesis and lighting simulation as explained in Chapter2. Even if rendering leads
to low dynamic range images, e.g. non-photorealistic rendering, contrasts from the
depth map can be used for similar purposes [Luft et al. 2006]. Unlike in typical con-
trast enhancement tools such as histogram equalization or contrast equalization, we
do not want to change the general appearance of processed images. Nor de we try
to restore the physical contrasts in the image, especially given that most often it is
not possible due to the dynamic range restrictions. Instead, we propose to enhance
the perceived contrasts through a gradual modulation of brightness in the vicinity of
the contrasting edge inspired by a family of known perceptual illusions [Kingdom and
Moulden 1988]: Craik, O’Brien, Cornsweet. These illusions, which we have briefly in-
troduced in Section3.2.6, address several models of gradual darkening and lightening
of areas towards their common edge to which we in general refer ascountershading
profiles. Our approach has particular advantages in that the contrast enhancement can

85



86 CHAPTER 7. RESTORATION OF LOST CONTRAST

be achieved within the available dynamic range, and the modifications do not change
the general appearance of an image because they are limited to areas along the edges of
the enhanced features. Furthermore, the perceived contrast may be larger than would
be normally achievable on a target display. Similar techniques have since long time
been used by artists to obtain better contrasts in paintings, as explored by Livingstone
[Livingstone 2002].

We present an image processing tool that creates countershading profiles for an image
to enhance perceived contrast of features degraded with respect to the original. Our
tool can be considered as a generalization ofunsharp masking– an image enhancement
technique which in certain cases also creates countershading profiles by overlaying the
difference of an image and its blurred version. The development of a new algorithm
is motivated by the disadvantages of the traditional unsharp masking which cannot be
applied to automatically correct individual image features. To deliver the automatic
correction with respect to a reference image, we combine thecountershading algo-
rithm with a multi-resolution contrast metric. The metric measures local contrast of
features at different scales, compares the processed imageto its reference, and drives
the spatial extent and the strength of countershading profiles. We first demonstrate how
to match the physical amplitude of a reference contrast withthe amplitude at the pro-
filed edge, and later we adjust the amplitude according to findings in psychophysics
to reduce the perceptual difference between them. Finally,excessive countershading
profiles may become visible as halo artifacts and degrade theimage quality, which in
most cases is unacceptable and in fact reduces the strength of the contrast enhance-
ment. We employ the visual detection model to estimate the maximum amplitude of a
countershading profile that is not objectionable in a given area based on the luminance
threshold, contrast sensitivity and the contrast masking effects.

We start with a review of unsharp masking and contrast enhancement techniques re-
cently used in computer graphics in Section7.1, and we summarize relevant findings
in psychophysics in Section7.2. Next, in Section7.3 we present a new algorithm to
create the countershading profiles. In Section7.4 we introduce the visual detection
model used to adjust the adaptive countershading to preventundesired halo artifacts,
and draft the implementation in Section7.5. Finally, we illustrate and discuss possible
applications in Section7.6.

7.1 Previous Work

Unsharp masking [Pratt 1991] is the technique in which a Gaussian blurred imageYσ
is subtracted from its original luminanceY to create an unsharp mask that is added to
the original image with a coefficientc:

Y = Y +c· (Y−Yσ ), (7.1)

whereY is the enhanced image andσ determines the spatial extent of the Gaussian
kernel. The magnitude of the correctionc needs to be adjusted by the user and all
pixels in the image are corrected with the same coefficient. However, the enhancement
happens in two dissimilar ways: through the countershadingand through the reintro-
duction of features. The highest quality of correction is gained only for image features
whose scale is similar to or larger than the size of the Gaussian kernel [Neycenssac
1993], because they obtain valid countershading profiles. Smallkernels, however, lead
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Figure 7.1: Countershading using unsharp masking gives correct results when the ker-
nel size is adjusted to the size of the feature (left). If unsharp masking is used to
enhance the contrast lost on a step edge with details, the filter models the countershad-
ing profile on the edge but also strongly amplifies all the features of a smaller scale
(right).

to sharpening effects at the edges of larger features [Neycenssac 1993] and have limited
capabilities to enhance contrast [Kingdom and Moulden 1988]. All features smaller
than the kernel size are reintroduced with a varied strengthwhich is influenced by
their scale and the difference from the local average, as illustrated in Figure7.1. The
noise amplification caused by such a reintroduction of the small scale features and the
sharpening artifacts at the high contrast edges can be minimized with the adaptive un-
sharp masking [Polesel et al. 2000, Ramponi et al. 1996]. Psychophysical findings,
which show that the uniform physical correction is perceived as stronger in the dark
parts of an image than in light areas, motivated the non-linear adaptive unsharp mask-
ing [Ramponi et al. 1996]. In spite of the numerous improvements to this technique,
we are not aware of any method for an automatic enhancement using individually ad-
justed kernel sizes and profile magnitudes to create the countershading profiles that are
appropriate for enhanced features without distorting other parts of the restored image.

The influence of weak contrasts on a limited comprehension ofthe spatial distribution
of objects in a scene has been studied by Luft et al. [Luft et al. 2006]. They show
that unsharp masking using the depth map of a scene strongly enhances the cognition
of spatial distribution of objects. Their results are very good because depth maps ex-
tract precisely the edges which outline objects in a scene and correction of these edges
improves the perception of the spatial organization. The intensity of countershading,
however, depends only on the depth relations of objects behind, and therefore unnat-
urally looking dark outlines may appear over the objects further behind in the scene.
The visual model presented here limits the countershading strength based on the ac-
tual image contents to prevent the visible degradation of images, thus limiting such
artifacts.

The loss of communicated information is also typical for tone mapping, where the con-
trasts are explicitly reduced in an HDR image to fit into the dynamic range of a display
or print. In Chapter6 we show that, despite the different approaches to tone mapping,
each algorithm suffers from a certain amount of contrast degradation leaving space for
improvements towards the reference HDR. To better communicate lost contrast infor-
mation, fine details can be corrected with opposite colors guided by a single-resolution
local contrast metric, and the largest contrast can be restored with a segmentation based
countershading technique adjusted by a single global contrast measure [Smith et al.
2006]. Unfortunately, in such an approach all features of the intermediate size remain
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Figure 7.2: Different countershading profiles and their influence on the perceived
brightness. Plots after [Kingdom and Moulden 1988].

uncorrected and the countershading is applied to only one arbitrary edge in the image.
We propose to strongly couple the countershading with a multi-resolution local con-
trast metric and automatically correct features at variousscales in a consistent manner
with the individually adjusted profiles. Further, we provide a perception model which
counteracts the objectionable halo artifacts.

A comprehensive model of the human visual system is embeddedin the Visual Dif-
ferences Predictor [Daly 1993], which detects the differences between the reference
and distorted images. Such a visual model accounts for luminance masking, spatial
contrast sensitivity, and contrast masking in spatial frequency and orientation bands.
However, it is computationally expensive and therefore is often simplified in computer
graphics applications. Predicting visible rendering artifacts [Ramasubramanian et al.
1999], for instance, is successfully done with a simpler model which ignores the ori-
entation bands. We derive a similar detection model to prevent the countershading
profiles from appearing as the halo artifacts. While these models are more focused on
the near-threshold noise detection, in our context the supra-threshold effects of lower
frequencies are of more interest.

7.2 Perceptual Background of Countershading

In Section3.2.6, we have introduced the illusion of perceived brightness difference be-
tween two adjacent surfaces of equal intensity. This difference is induced by a carefully
shaped brightness profile at the border between these surfaces – this particular exam-
ple of countershading is the Cornsweet profile. We have observed that the perceived
difference appears both on simple uniform patches, Figure3.13, and in natural images
Figure3.14. The latter figure illustrates also that contextual information, like shape or
perspective, articulate the effect of the illusion.

While the Craik-O’Brien-Cornsweet illusion describes onlyseveral cases, Kingdom
et al. [Kingdom and Moulden 1988] summarize a family of border profiles and their
influence on the brightness of adjacent areas. As shown in Figure7.2, practically any
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Figure 7.3: Apparent contrast of the Cornsweet profile as a function of the peak contrast
of the profile and its width in degrees of visual angle. The straight line (red) denotes the
actual step edge (Cornsweet profile of infinite size). Plot after [Dooley and Greenfield
1977, Fig.4], contrasts given in Michelson measure.

form of countershading and the combination of them leads to amagnification of the
perceived contrast. Such profiles can be modeled using the Gaussian function in which
the amplitude and the standard deviation determine the intensity of countershading.
The modeling algorithm is technically similar to unsharp masking, and leads to alike
profiles (compare with Figure7.1).

The informed use of such an illusion to enhance images requires, however, that the per-
ceptual properties of the profiles are well understood. Dooley and Greenfield [Dooley
and Greenfield 1977] determined the relation that gives the amplitude of a countershad-
ing profile that is required to obtain a perceptual contrast match with a step edge with
respect to a simple stimulus. Additionally, Burr [Burr 1987] observed the increase of
perceived contrast when a countershading profile is added toan existing step edge. It
has also been found that the spatial extent of a profile determines the maximum possi-
ble enhancement and has to be appropriate for the magnitude of the corrected contrast.
For instance, a Cornsweet profile of 1 visual degree can simulate an edge of up to 0.25
Michelson contrast (i.e. strong supra-threshold contrast), but further amplification of
this profile leads in fact to a decreased illusion as illustrated in Figure7.3. As soon
as the low frequency of the profile can be independently detected, the profile is clearly
distinguished at an edge and the increase in the amplitude has no effect on the per-
ceived contrast [Burr 1987]. This suggests that the contrast enhancement using the
countershading profiles should be guided by a visual detection model. Finally, the illu-
sions created by the spatially larger profiles are not affected by an additive noise [Burr
1987], thus the countershading profiles applied to the differently textured areas give
consistent effects.

The strength of the perceived contrast enhancement due to countershading is influ-
enced by visual cues. In particular, a contextual hint that the countershading profile
results from a difference in the illumination of two surfaces, possibly confirmed by the
perspective information, almost doubles the strength of the effect [Purves et al. 1999].
This is confirmed by the success of the Luft et al. [Luft et al. 2006] approach, in which
objects separated by different depths are likely to be differently illuminated as well.
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In contrary, the confidence that a profile is a feature of the surface reflectance signif-
icantly reduces the illusion. These observations, especially related to the larger scale
contrasts, cannot be explained by the receptive field properties of the lower order vi-
sual neurons, or by the fact that both the step edge and the countershading profile have
almost the same frequency characteristics when normalizedby the contrast sensitivity
function [Kingdom and Moulden 1988].

While the early explanations of the Cornsweet effect are based on threshold sensitivity,
the illusion is clearly supra-threshold and in fact a consistent theory explaining all
experimental findings has not been found so far. Our decisionto use the modified supra-
threshold sensitivity [Dooley and Greenfield 1977] is motivated by the fact that this
model explains well the results of the experiments which measure the apparent contrast,
including the supra-threshold effects, of up to 0.7 in Michelson measure. Clearly, the
visual cues strongly articulate the effect [Purves et al. 1999], but even if an appropriate
model was available, it would require a robust decomposition into illumination and
reflectance which practically is only possible in image synthesis.

7.3 Image Processing for Countershading

We develop a method that creates the countershading profilesto enhance the perceived
contrasts of edges in the restored (input) image that are less pronounced than the cor-
responding contrasts in the specified reference image. We identify such edges in the
restored image by comparing it to the reference image using the multi-resolution local
contrast metric. Guided by the metric, we create the profilesfrom the sub-band compo-
nents such that the profiles are individually adjusted to thecorrected features without
distorting information that has been well preserved from the reference.

7.3.1 Multi-resolution Local Contrast Metric

We use a metric which measures the physical local contrast atseveral frequency bands
in a similar manner to Peli [Peli 1990]. We decompose an image into a Gaussian pyra-
mid, in which each lower level is filtered by a 5×5 kernel and its resolution is halved
as described in [Burt and Adelson 1983]. Such a decomposition splits the image fre-
quencies into octaves which corresponds to the frequency separation observed for the
human visual system [Peli 1990]. Thus, on the highest level we measure the contrast of
fine details, and on the lowest level the contrasts between the major areas in the image.
The lowest level we consider is 4 pixels long in the smaller dimension, and we ignore
the base band. For each pixel at each pyramid levell , we calculate the local sub-band
contrastCl using the formula:

Cl =
|Y−Ymean|

Ymean
, (7.2)

whereY is the luminance of a pixel at the pyramid levell andYmean is the local mean
luminance. In practiceYmeanis taken from the corresponding pixel at the lower pyramid
level. The final output of the metric is the pyramid that contains the ratios of the



7.3. IMAGE PROCESSING FOR COUNTERSHADING 91

corresponding local contrasts between the input image and its reference:

Rl = min(
Cinp

l

Cre f
l

,1). (7.3)

In this equation, the input and reference image pair can for instance be a tone mapping
result and its original HDR image. The ratioRl is limited to the maximum value of 1
because the detail amplification with respect to the reference is not considered.

7.3.2 Adaptive Countershading

We develop a method which selectively adds the countershading profiles to the restored
image guided by the sub-band local contrast ratio (7.3) from the metric. We start with
an observation that the addition of successive levels of thefull resolution Difference of
Gaussians up to a certain level (here the example for 3 levels):

U = (Y−Yσ(1))+(Yσ(1)−Yσ(2))+(Yσ(2)−Yσ(3)), (7.4)

gives the same result as unsharp mask, equation (7.1), for this level:

U = (Y−Yσ(3)),

whereσ(l) = 2l−1/
√

2 denotes the Gaussian blur at levell andY is the luminance of
the reference image. When the terms of such a sum are further multiplied by the output
of the multi-resolution metric which locally adjusts the amplitudes of the sub-band
components:

P =
N

∑
l=1

(1− ↑ Rl )× (logYre f
σ(l−1)

− logYre f
σ(l)), (7.5)

we obtain the countershading profilesP which are adjusted to match the contrasts in
the reference image. In equation (7.5) l denotes the level of the Gaussian pyramid
with N being the lowest,Rl are the contrast ratios from the metric at the selected
level, operator(↑) denotes upsampling to the full resolution, operator× is the element-
wise multiplication, andYre f

σ(0)
is the luminance of the reference image. The difference

(logYre f
σ(l−1)

− logYre f
σ(l)) is a sub-band component of the countershading profile at the

level l . The luminanceY and the countershading profilesP are calculated in the loga-
rithmic space. Such a coarse approximation of brightness prevents too strong darkening
which would happen in the linear space. The sub-band components are not taken from
the contrast metric, but are stored in the full resolution inorder to preserve the phase
information which would be lost by the resolution reduction. The contrasts in the in-
put image are restored by adding the countershading profilesP to the luminance of the
input image in the logarithmic space.

Equation (7.5) has several good properties. The uncontrolled amplification of features
does not happen because the algorithm is adjusted to the reference image. The counter-
shading profiles are created from the reference image, because certain features might
have been lost in the input image, thus both detail enhancement and detail reintro-
duction are solved using one framework. The sharp edges of large scale features are
detected by the contrast metric at the top level and at all thelevels down to the scale
corresponding to the size of these features. Therefore the countershading for such
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Figure 7.4: Countershading profile for a step edge with details (top), where the step
edge is attenuated while the details are preserved with respect to the reference. Adap-
tive countershading (bottom) recovers the smooth profile which prevents artifacts. The
unsharp mask profile is distorted by the high frequency contents of the reference edge
and exaggerates details during enhancement as shown in Figure 7.1. Unlike in our
method, unsharp masking also requires manual adjustment ofthe spatial extent and the
amplitude of the profile.

edges is progressively composed from the sharp components and the components with
a larger spatial extent. This is illustrated in Figure7.4along with a comparison to the
traditional unsharp masking.

At this stage, the multi-resolution contrast metric assures that the physical contrast of
the features in the image restored with the countershading profiles are equal to their
physical contrast in the reference image.

7.3.3 Saturation of Profiles

Countershading profiles may increase or decrease luminancevalues beyond the avail-
able dynamic range and cause the saturation to black or white, removal of details, and
clearly reveal the presence of a profile. Therefore, the parts of the profile that correct
beyond the available range have to be attenuated, as shown inFigure7.5. The atten-
uation is performed successively starting from the lowest frequency sub-bands, and
separately for the darkening and the lightening parts of theprofiles. Each sub-band
component is attenuated so that the restored image plus the countershading profiles
does not exceed the dynamic range. We motivate our bottom-upapproach with the
fact that the saturation is mostly caused by the much larger amplitudes of the low-
frequency components. Although the strength of the contrast enhancement is reduced
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Figure 7.5: Countershading may exceed the dynamic range limit and cause clipping:
the profile is then distorted and fine details are removed (left). Successive attenuation
of a profile retains all details and as much of the profile as possible (right).

in such case, the asymmetric profiles still increase the perceived contrast, as shown in
Figure7.2, and the degradation of the restored image is prevented.

7.3.4 Natural Image Statistics

One aspect evident in the analysis of Cornsweet [Dooley and Greenfield 1977], is that
strong contrasts cannot be corrected with small profiles. However, according to find-
ings in natural image statistics [Bovik et al. 2000], the average amplitudes of frequen-
cies in images tend to decay as a power function, being large for low frequencies and
small for high frequencies. Such a phenomenon is known as thepower law for the am-
plitude of frequencies. This observation assures that in the context of natural images
we are highly unlikely to encounter the necessity to correcta very high contrast with a
small profile.

7.4 Perception of Countershading Profiles

The countershading profiles modulate physical contrasts atedges in an image in or-
der to increase the perceived contrasts between features. However, as soon as the low
frequency of a profile can be independently detected, the whole profile is distinguish-
able at an edge, and the increase in the profile amplitude has no further effect on the
perceived contrast [Burr 1987]. To counteract such situations, we develop a visual de-
tection model which assures that the sub-band components ofprofiles remain below
the objectionable amplitude.

We use a model which explains the behavior of the Cornsweet illusion with a good ac-
cordance to the perceptual experiments which match the apparent contrast of a profile
with the contrast of a step edge [Dooley and Greenfield 1977]. The model is based on
a spatial contrast sensitivity function (CSF), but its sensitivity to the frequencies varies
with the amplitude of a profile, as shown in Figure7.6. It therefore estimates the ampli-
tude thresholds above which the components of the profile become individually visible
and render a much weaker Cornsweet illusion with objectionable halo artifacts. This
model, however, analyzes single Cornsweet profiles on a uniform 2D background and
it may be too conservative for natural images. The contrast masking effect, explained
in Section3.2.3, suggests that in areas which already contain features of certain spatial
and orientation characteristics, the acceptable amplitude of the profile may be higher
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Figure 7.6: Contrast sensitivity function for the threshold effects and the supra-
threshold model of tolerance to the magnitude of sub-band components of the Corn-
sweet profile added to an existing step edge of Michelson contrastm. Vertical lines
denote frequency ranges of sub-bands at pyramid levels numbered in the top.

if the profile is composed of signals with similar characteristics. Such a selectivity of
independent visual channels fits well to our multi-resolution contrast analysis which
uses filter banks motivated by the visual channels in human perception. We therefore
improve the model by accounting for this strong effect in human perception.

An important insight from [Dooley and Greenfield 1977], shown in Figure7.6, is that
the sensitivity to the higher frequencies in the Cornsweet profile and in the step edge
is similar which justifies our approach to equal the contrastat the profile edge to the
contrast of the feature edge.

We take a standard approach to modeling visual detection models which we have
briefly introduced in Section3.2.4. In such a model we combine three effects typical
to human vision: luminance masking, spatial contrast sensitivity and contrast masking.
For the sub-band component at levell of our pyramid representation, the maximum
amplitude of a profile∆Y expressed in luminance is calculated as follows:

∆Y =
tvi(Ymean)

cs fl
·masking(Cl ,Ymean), (7.6)

whereYmean is the local mean luminance in the sub-band (considered as the adapting
luminance) andCl is the sub-band contrast at the levell . tvi is the threshold versus
intensity function [CIE 1981], cs fl is the relative loss of contrast sensitivity for the
spatial frequency bandl [Daly 1993], andmaskingdescribes the contrast masking at
the given contrastCl . The∆Y is calculated for each pixel at the sub-band levell .

The threshold versus intensity functiontvi describes the luminance masking effect, ex-
plained in Section3.2.1, by giving the minimum luminance change which is visible at
the adapting luminance level. Whiletvi describes the thresholds for a patch shown on
a uniform background, the human visual response to complex images varies depending
on the frequencies of the components. Our sensitivity to thecontrast at a given spatial
frequency is described by the contrast sensitivity function (CSF), which we give in Sec-
tion 3.2.2. In practice, the CSF function increases the luminance thresholds estimated
by tvi for very high and low frequencies.
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In our model, however, instead of using the typical CSF whichdescribes the detection
thresholds, we use the function given in [Dooley and Greenfield 1977, Fig.6] which
determines the tolerable amplitudes of the countershadingprofiles and also accounts
for the increase in sensitivity to low frequencies when a profile is added to an existing
edge of Michelson contrastm. Due to the lack of an equation, we provide a fit based
on the normalized CSF [Daly 1993]:

cs fl (m) = cs f0.74−0.83·m0.35

l (7.7)

This function replacescs fl in equation (7.6) for levelsl with frequencies lower than the
frequency of peak sensitivity≈ 5cpd. Since in the original publication this relation is
expressed using Michelson contrast, for compatibility we recalculate here our contrast
measureC. The plot is given in Figure7.6.

Signals added to textured areas are harder to perceive than if added to uniform areas. In
Section3.2.3, we have shown that the existing contrasts in an area mask thecontrast of
the introduced signal. Contrast masking elevates the detection threshold as a function
of the local sub-band contrastCl in the corrected image:

masking(Cl ,Ymean) = max

(

1,(
Cl

TC(Ymean)
)0.7

)

, (7.8)

whereTC is the threshold contrast for the local mean luminance levelYmean, and

TC(Ymean) =
tvi(Ymean)

Ymean
.

Contrast masking is modeled by a power function with a typical exponent 0.7 [Daly
1993], which increases the thresholds as soon as the local sub-band contrast is greater
than the threshold contrast. Contrast masking is normally considered within the fre-
quency band and the orientation band [Daly 1993]. We ignore the orientation bands
due to the high computational costs. In case of the low frequencies, the introduced pro-
file in our case has the same orientation as the existing signal (corrected edge) which
gives a strong masking effect.

The maximum tolerable amplitude of the profile∆Y from equation (7.6) sets the limit
for the amplitude of the sub-band component of the countershading profile at the given
location.

7.5 Implementation

The adaptive countershading algorithm restores the degraded imageYinp with respect
to its referenceYre f and outputs an enhanced version ofYinp. The algorithm operates
only on luminance values. To process a color image, the RGB channels are converted
to Yxy color space and reverted back to RGB with an enhanced luminance channel Y.
We clip the colors that are mapped out of the sRGB gamut after processing. Nonstan-
dard references, such as depth maps, may be directly used instead of contrast ratiosR.
However, such ratios have to be manually scaled to reasonably guide the strength of
the contrast enhancement.

The algorithm outline is given in Figure7.7. The process is fully automatic given the
reference imageYre f or arbitrary data passed as the contrast ratiosR. Initially, the
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Adaptive Countershading(Yinp,Yre f)

1 Cinp = contrastspyramid(Yinp)
2 Cre f = contrastspyramid(Yre f)

3 PC = profile components(log10(Y
re f))

4 P = 0 // countershading profile

5 n = log2(min(width,height))
6 for l := n..1
7 R(l) = Cinp(l)/Cre f(l)
8 AR = 1−min(1,R(l))
9 AS = saturationlimit(log10(Y

inp)+P,PC(l))
10 AV = visual model limit(Yinp,Cinp(l),PC(l))
11 P+ = PC(l) ·upsample(min(AR,AS,AV))

12 RESULT= 10(log10(Y
inp)+P)

Figure 7.7: Pseudocode implementation of adaptive countershading for contrast
restoration in a tone mapped HDR image.

“contrastspyramid” function measures local contrasts in the input images at different
resolution levels as described in Section7.3.1. Then the “profilecomponents” function
calculates the sub-band components of the countershading profiles which are used in
equation (7.5). The main loop in lines 6-11 builds the countershading profilesP from
the sub-band componentsPC. For each spatial location at the resolution levell , we
calculate the desired and the maximum allowed amplitudes ofthe sub-band component
PC(l) of the profile.AR is the desired amplitude of the profile component which would
match the original contrast.AS is the maximum amplitude of the profile component
which does not saturate the input image enhanced by already calculated profilesP,
andAV is the maximum amplitude of the profile that cannot be detected in the image,
equation (7.6). In line 11, the countershading profileP is enhanced with the new sub-
band component at the magnitude required to match the original contrastAR, but not
larger thanAS andAV . The resolutions ofAR,AS,AV correspond to the resolution of
the local contrast metric at the given level, and the profile components are in the full
resolution of the restored image. The result of the process is the input imageYinp

modulated by the calculated countershading profilesP.

The visual model, embedded in the “visualmodel limit” function, assumes an sRGB
display and requires that the image frequencies are calculated in cycles per degree of
visual angle which depend on the screen resolution and the viewing distance. The
results in Section7.6 are obtained for the resolution 1280× 1024 viewed from the
distance of 1.5× the screen height. An enhancement of a 1Mpx image requires about a
minute on a modern PC. The bottleneck of the algorithm are theconvolutions, three are
calculated per pyramid level: to measure the contrasts inYre f , contrasts inYinp, and to
calculate the components ofP. A linear filter is used for upsampling.
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(a) reference image, DR=2.2 (b) tone mapped image, DR=1.6

(d) unsharp masking of tone mapped image, DR=1.6(c) countershading of tone mapped image, DR=1.6

(e) countershading profiles

Figure 7.8: Test pattern for the contrast restoration by adaptive countershading.DR
describes the dynamic range in log10 units of luminance. In the image (e), the blue
countershading profiles darken the image and red lighten, their intensity corresponds
to the profile magnitude. The right patch in (e) obtained no lightening because of the
dynamic range limit. Refer to Section7.6for details.

7.6 Results and Applications

We first demonstrate adaptive countershading on a test pattern, Figure7.8. The refer-
ence image (a) contains a textured background and two textured patches. After the tone
mapping (b), the texture of the right patch has been preserved, while the textures of the
background and the left patch have been attenuated. Also, the contrast between both
patches and background has been attenuated. Thus the left patch illustrates global tone
mapping and the right one local. The goal of the correction isto restore the contrast
between the patches and the background, to restore the visibility of the textures in the
background and the left patch, to assure that the texture of the right patch is not empha-
sized and that objectionable halo artifacts do not appear. The image (a) spans the full
dynamic range and in the images (b,c,d) the dynamic range is artificially limited for
demonstration purposes. The countershading (c) visibly enhances the contrasts com-
pared to the tone mapped image (b). The texture details of thebackground and the left
patch are restored to almost the same level as in the reference image (a). The contrast
and the brightness of the right patch have also improved, although it cannot match the
reference due to the dynamic range restrictions. The details of the right patch remain
unchanged, which is confirmed in the map (e). Unsharp maskingwith the spatial extent
and the magnitude manually adjusted for correction of the patch to background con-
trast is shown in image (d). The image is visibly enhanced, however, when compared
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countershading of tone mapped image

tone mapped image unsharp masking of tone mapped image

countershading profiles

Figure 7.9: Image tone mapped using the contrast equalization [Mantiuk et al. 2006]
(top/left) and restored by adaptive countershading (bottom/left). The restored image
better communicates the brightness relations and the depthin the image. (top/right)
shows unsharp masking with parameters set manually to equaldominant countershad-
ing profile. Although overall enhancement of unsharp masking is impressive, the
changes are hardly controllable and modify the style of the image.

to the reference (a), the background and the right patch details have clearly too strong
magnitude. The undesired halo is well visible in the right patch where also some areas
became saturated.

7.6.1 Post Tone Mapping Restoration

In Chapter6 we observe that tone mapping inevitably leads to the attenuation of con-
trasts and loss of visual information with respect to the original HDR, because the
insufficient capabilities of displays require the reduction of dynamic range in HDR im-
ages. In Figure7.9an HDR image has been tone mapped with a contrast equalization
technique [Mantiuk et al. 2006] to reveal the details. Unfortunately, the result does not
depict any more the strong brightness difference between the clouds and the building
which is very apparent in the original image. This has been detected by the multi-
resolution contrast metric and corrected with the appropriate countershading profiles to
reintroduce the brightness difference. After the enhancement, the overall appearance
of the tone mapped image including the fine details is not changed. Such a correction
is not possible with unsharp masking, although the size and the magnitude of the blur
in the mask has been manually adjusted according to the metric data. The reason is
that the larger kernel, which is required for this correction, amplifies details so strong
that the countershading effect disappears. Another example is shown in Figure7.10,
where an HDR image has been tone mapped with the logarithmic mapping [Drago et al.
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tone mapped image

countershading of tone mapped image

countershading profiles

Figure 7.10: Image tone mapped using logarithmic mapping [Drago et al. 2003] (top)
and restored using adaptive countershading (middle). Subtle changes to the image
bring back the contrast at the horizon and the details, but donot change the style of the
image. Image courtesy of SpheronVR.

2003]. After using this global operator, some cloud details in the sky are not visible
any more, the area around the sun becomes almost isoluminant, and much contrast has
been lost in the horizon area. This is automatically restored with the adaptive coun-
tershading and the style of the particular tone mapping algorithm is not changed. In
both examples the halo artifacts are not disturbing even though a stronger correction
was allowed by the visual detection model in Figure7.9 because of the masking by
the clouds. Figure7.11illustrates tone mapping of an HDR image with two different
techniques. The global operator (a) preserves well brightness relations between lit and
shadowed image areas but looses the texture due to a large dynamic range compres-
sion. The local operator (b) equalizes all contrasts in the image so that all information
is preserved from the original HDR. However, since both lit and shadowed areas are
very detailed, there is not enough dynamic range left to depict the shadow boundaries.
The brightness relations between image parts are not pronounced. The adaptive coun-
tershading automatically restores missing image featuresin both tone mapping results,
rendering a rich image which preserves the original look of each of the operators.

7.6.2 Adaptive Depth Sharpening

Unsharp masking using the depth map of a scene strongly enhances cognition of the
spatial distribution of objects [Luft et al. 2006]. We obtain a similar enhancement using
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(b) contrast equalization tone mapping

(a) global tone mapping

tone mapped image countershading result countershading profiles

tone mapped image countershading result countershading profiles

Figure 7.11: An HDR image tone mapped with two different techniques: global op-
erator [Reinhard and Devlin 2005] and contrast equalization [Mantiuk et al. 2006].
Adaptive countershading automatically restores the visibility of texture details in the
globally tone mapped image. The shadow boundaries, which became weak after the
contrast equalization tone mapping, are automatically enhanced by adaptive counter-
shading so that the brightness relations between the image areas can be well recognized.
Note that the particular style of the tone mapping operator remains unchanged.

the adaptive countershading by measuring the relation of a depth map of an image to a
uniform map in place of the contrast ratiosR in equation (7.3) and by using the depth
map instead of the reference luminance in equation (7.5). In our approach, Figure7.12,
the intensity of countershading does not only depend on the depth relations of objects,
but is also guided by the visual model which prevents the appearance of unnaturally
looking dark outlines over objects further behind in the scene. The visual model limits
the countershading strength based on the actual image contents and prevents visible
degradations.

7.7 Conclusions

Based on findings from psychophysics, we have explained how to enhance contrast in
images using the Craik-O’Brien-Cornsweet illusion in a controlled way by employing
the multi-resolution local contrast metric to guide the strength of enhancement and the
visual detection model to prevent the appearance of objectionable artifacts. Counter-
shading in most cases cannot be expected to restore the original contrast of the refer-
ence, however the enhancement is well visible when profiles are well adjusted and are
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(a) original image (b) depth map

(d) unsharp masking of depth(c) countershading of depth

Figure 7.12: Poor design of illumination in the scene results in a “flat” look of the
image (a). Countershading using depth information (b) enhances cognition of the spa-
tial distribution of objects in the scene (c). The visual models limits the appearance of
countershading as halo artifacts. Unnaturally looking dark outlines may appear over
objects further behind in the scene if only depth relations are considered, image (d)
from [Luft et al. 2006]. Image and depth data from [Scharstein and Szeliski 2003].

masked by image contents.

We have presented an image processing tool to create countershading profiles which
are individually and automatically adjusted to enhance selected image features that
require such correction when compared to the reference. Thesame framework is also
able to reintroduce lost contrast information. We have demonstrated how it can be used
to enhance images using their HDR originals or the depth information as the reference.
Comparing to the results of traditional unsharp masking, the enhanced images better
communicate information through contrast while the overall appearance is not distorted
and the enhancement is achieved within the available dynamic range.

This research direction can be furthered by evaluating the achieved corrections in a per-
ceptual experiment. Such an experiment could measure the actually perceived strength
of the countershading enhancement in complex images for stimuli of different scales
and given a variety of contrast references.
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Chapter 8

Summary

In the following we summarize the contributions of this thesis, draw conclusions, and
we end with an outlook on future work.

8.1 Conclusions

The continuing interest of this dissertation was to approach various aspects of tone
mapping with a strong emphasis on human visual perception. Through this interdisci-
plinary point of view, the several methods presented in thisthesis successfully improve
and evaluate the fidelity of tone mapping.

By approaching the human visual system as a black box we have identified the per-
ceptual effects which significantly contribute to the appearance of scenes and included
them in real-time tone mapping with a minimal overhead. These effects are simulated
according to known behavior of human visual system with respect to the absolute lu-
minance levels in a scene. This leads to an increased level ofrealism in the depiction
of dynamic HDR contents particularly in applications for HDR video playback or real-
time realistic image synthesis. Such effects convey the subjective impression of ap-
pearance of night scenes and bright light sources which normally is not communicated
on standard displays.

The appearance of natural images is influenced by both sensory and cognitive pro-
cesses. The knowledge acquired from perception theories lets us design a computa-
tional model of the anchoring theory to obtain accurate reproduction of HDR image
appearance in terms of lightness. We demonstrated the application of the model to
tone mapping, including difficult examples that are not wellhandled by other algo-
rithms, and we validated the fidelity of its reproduction by successfully simulating the
appearance of known perceptual illusions.

Psychophysical models of contrast perception let us investigate the quality of tone map-
ping in terms of communicating original HDR contents. Such an objective evaluation
gives a perceptually meaningful ranking without the burdeninvolved in evaluations
with human subjects, and furthermore permits the study of underlying reasons for bet-
ter visual performance of some algorithms over others. The output of our metric can
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be further used to guide the restoration processes.

The perceptual illusions of contrast inspired us to exploitthe possibility of strong per-
ceived contrast enhancement within the available dynamic range. Our adaptive coun-
tershading can automatically fix any imperfections of an arbitrary tone mapping result
through the use of such illusions even if the numerical result is well optimized. Our
technique generalizes unsharp masking, a common enhancement tool in photography,
by enabling a selective enhancement of image features of various sizes with no manual
intervention. Finally, the known characteristics of humanperception of contrasts let us
build a supra-threshold visual detection model which assures that our enhancements do
not introduce objectionable visual artifacts.

The results of presented methods show that the merge of imageprocessing with knowl-
edge of human visual perception can deliver an improved fidelity when depicting HDR
contents on displays with limited capabilities. Although the contrast and luminance
range of consumer displays grows rapidly, their match to thereal-world seem to be
still distant and a certain degree of tone mapping is necessary. In that sense, meth-
ods presented in this thesis may have long lasting application in the fields of computer
graphics, digital photography, video, and cinema. While many aspects of perception
have been addressed in this thesis, our work motivates further research in the area. To-
gether with this dissertation, we provide an Open Source software for working with
HDR images and video, and we hope it will promote the HDR techniques and facilitate
further developments.

8.2 Future Work

Future work in the area of HDR depiction will always be to research techniques that
produce results with an increased fidelity to the real-world. One particularly interest-
ing direction to pursue is the appearance of color. The correct reproduction of color is
in general neglected under the assumption that it is not significantly influenced by dy-
namic range reduction. However, certain findings in psychophysics, including the Hunt
effect, indicate that this is not entirely true. Also our evaluation and restoration tech-
niques could be more accurate if extended to consider visualinformation represented
by color.

The majority of the methods presented in this thesis is developed for static images.
Further investigation could be made, to verify if adaptive countershading and light-
ness perception model are applicable to time sequences. Particularly, the concept of
frameworks gives a unique possibility for a correct simulation of time-dependent local
adaptation. A näıve approach to simulate the effect of local adaptation is tosmooth the
changes of individual pixel values over time, thus simulating the luminance adaptation
of the photo receptors. For moving objects that have a significantly different lumi-
nance level than the background, this may lead to ghosting effects. In fact, the HVS
performs a tracking of moving objects of interest with smooth-pursuit eye movements,
therefore the retinal image of these objects is unchanged despite their movement on
the display. With the help of frameworks we could follow the objects and perform the
local adaptation correctly.

Finally, we recognize that certain techniques presented inthe thesis could be improved.
Particularly, we would like to design a more robust estimator of luminance perceived as
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a white surface within the framework for the lightness perception model. Furthermore,
several psychophysical evaluations which are beyond the scope of this thesis would
be beneficial to the presented techniques. For instance, theevaluation framework uses
psychophysical models obtained for a simple stimulus to compare contents of complex
images. Although we have not noticed any incorrectness, a psychophysical validation
of the models in the new context is an important next step. Similarly, the actual strength
of countershading corrections could be verified in a study with human subjects in which
one would compare the original HDR to a restored tone mappingresult. Finally, we
have presented only a limited number of enhancements made possible by our adaptive
countershading technique and we believe that this restoration framework could support
more applications.



106 CHAPTER 8. SUMMARY



Bibliography

[Aggarwal and Ahuja 2004] AGGARWAL, M., AND AHUJA, N. 2004. Split aper-
ture imaging for high dynamic range.Int. J. Comput.
Vision 58, 1, 7–17.

[Arend 1994] AREND, L. 1994. Lightness, Brightness, and Trans-
parency. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates, ch. Intrinsic image models of human color per-
ception, 159–213.

[Barrow and Tenenbaum 1978] BARROW, H., AND TENENBAUM, J. 1978. Recov-
ering intrinsic scene characteristics from images. In
Computer Vision Systems. Academic Press, 3–26.

[Bovik et al. 2000] BOVIK , A. C., GIBSON, J. D.,AND BOVIK , A., Eds.
2000.Handbook of Image and Video Processing. Aca-
demic Press, Inc., Orlando, FL, USA.

[Burr 1987] BURR, D. 1987. Implications of the Craik-O’Brien
illusion for brightness perception.Vision Resarch 27,
11, 1903–1913.

[Burt and Adelson 1983] BURT, P. J.,AND ADELSON, E. H. 1983. The Lapla-
cian pyramid as a compact image code.IEEE Trans-
actions on Communications COM-31, 4 (April), 532–
540.

[Calabria and Fairchild 2003] CALABRIA , A., AND FAIRCHILD , M. 2003. Per-
ceived image contrast and observer preference: The
effects of lightness, chroma, and sharpness manipula-
tions on contrast perception.The Journal of Imaging
Science and Technology 47, 479–493.

[Campbell and Robson 1968] CAMPBELL , F. W., AND ROBSON, J. G. 1968. Ap-
plication of Fourier analysis to the visibility of grat-
ings. Journal of Physiology 197, 551–556.

[Chandler and Hemami 2003] CHANDLER, D., AND HEMAMI , S. 2003.
Suprathreshold image compression based on contrast
allocation and global precedence. InHuman Vision
and Electronic Imaging VIII, SPIE, volume 5007,
SPIE, 73–86.

107



108 BIBLIOGRAPHY

[Chen et al. 2007] CHEN, J., PARIS, S.,AND DURAND, F. 2007. Real-
time edge-aware image processing with the bilateral
grid. ACM Trans. on Graphics (Siggraph’07)(Aug.).

[CIE 1981] CIE. 1981.An Analytical Model for Describing the
Influence of Lighting Parameters Upon Visual Perfor-
mance, vol. 1. Technical Foundations, CIE 19/2.1. In-
ternational Organization for Standardization.

[Comaniciu and Meer 2002] COMANICIU , D., AND MEER, P. 2002. Mean
shift: A robust approach toward feature space anal-
ysis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 24, 5.

[Daly 1993] DALY, S. 1993. Digital Images and Human Vision.
MIT Press, ch. 14: The Visible Differences Predictor:
An Algorithm for the Assessment of Image Fidelity,
179–206. ISBN: 0-262-23171-9.

[Debevec and Malik 1997] DEBEVEC, P. E.,AND MALIK , J. 1997. Recovering
high dynamic range radiance maps from photographs.
In SIGGRAPH 97 Conference Proceedings, Addison
Wesley, T. Whitted, Ed., Annual Conference Series,
ACM SIGGRAPH, 369–378. ISBN 0-89791-896-7.

[Deeley et al. 1991] DEELEY, R., DRASDO, N., AND CHARMAN , W. N.
1991. A simple parametric model of the human ocu-
lar modulation transfer function.Ophthalmology and
Physiological Optics 11, 91–93.

[Dmitriev et al. 2004] DMITRIEV, K., ANNEN, T., KRAWCZYK , G.,
MYSZKOWSKI, K., AND SEIDEL, H.-P. 2004.
A CAVE System for interactive modeling of global
illumination in car interior. InACM Symposium
on Virtual Reality Software and Technology (VRST
2004), ACM Press, New York, NY, USA, R. Lau and
G. Baciu, Eds., 137–145.

[Dooley and Greenfield 1977] DOOLEY, R. P., AND GREENFIELD, M. I. 1977.
Measurements of edge-induced visual contrast and a
spatial-frequency interaction of the Cornsweet illu-
sion. Journal of the Optical Society of America 67.

[Drago et al. 2002] DRAGO, F., MARTENS, W. L., MYSZKOWSKI, K.,
AND SEIDEL, H.-P. 2002. Perceptual evaluation
of tone mapping operators with regard to similarity
and preference. Tech. Rep. MPI-I-2002-4-002, Max-
Planck-Institut f̈ur Informatik, Im Stadtwald 66123
Saarbr̈ucken, Germany, October.

[Drago et al. 2003] DRAGO, F., MYSZKOWSKI, K., ANNEN, T., AND

CHIBA , N. 2003. Adaptive logarithmic mapping
for displaying high contrast scenes. InProc. of Eu-



BIBLIOGRAPHY 109

rographics, P. Brunet and D. Fellner, Eds., EG, 419–
426.

[Durand and Dorsey 2000] DURAND, F.,AND DORSEY, J. 2000. Interactive tone
mapping.11th Eurographics Workshop on Rendering,
219–230.

[Durand and Dorsey 2002] DURAND, F., AND DORSEY, J. 2002. Fast bilat-
eral filtering for the display of high-dynamic-range
images. InProc. of ACM SIGGRAPH 2002, Com-
puter Graphics Proceedings, Annual Conference Se-
ries, ACM.

[Fairchild and Johnson 2003] FAIRCHILD , M., AND JOHNSON, G. 2003. Image ap-
pearance modeling. InHuman Vision and Electronic
Imaging VIII, SPIE, volume 5007, SPIE, 149–160.

[Fairchild 1998] FAIRCHILD , M. D. 1998.Color Appearance Models.
Addison-Wesley. ISBN 0-201-63464-3.

[Fattal et al. 2002] FATTAL , R., LISCHINSKI, D., AND WERMAN, M.
2002. Gradient domain high dynamic range compres-
sion. InProc. of ACM SIGGRAPH 2002, ACM, 249–
256.

[Ferwerda et al. 1996] FERWERDA, J. A., PATTANAIK , S., SHIRLEY, P.,
AND GREENBERG, D. P. 1996. A model of vi-
sual adaptation for realistic image synthesis. InSIG-
GRAPH 96 Conference Proceedings, Addison Wes-
ley, H. Rushmeier, Ed., Annual Conference Series,
ACM SIGGRAPH, 249–258.

[Gilchrist and Cataliotti 1994] GILCHRIST, A., AND CATALIOTTI , J. 1994. An-
choring of surface lightness with multpile illumina-
tion levels. Investigative Ophthamalmology and Vi-
sual Science 35.

[Gilchrist and Radonjic 2005] GILCHRIST, A., AND RADONJIC, A., 2005.
Probe disks reveal framework effects within multi-
illuminant scenes. Eurpoean Conference on Visual
Perception, A Corũna, Spain.
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gorz Krawczyk, Karol Myszkowski, Matthew Trenta-
coste.

[Myszkowski et al. 2008] MYSZKOWSKI, K., MANTIUK , R., AND

KRAWCZYK , G. 2008. High Dynamic Range
Video. Synthesis Lectures on Computer Graphics
and Animation. Morgan & Claypool Publishers.
http://www.morganclaypool.com/toc/cgr/1/1.

[Nayar and Branzoi 2003] NAYAR , S., AND BRANZOI, V. 2003. Adaptive dy-
namic range imaging: Optical control of pixel expo-
sures over space and time. InProc. of IEEE Interna-
tional Conference on Computer Vision (ICCV 2003),
IEEE, 1168–1175.

[Nayar and Mitsunaga 2000] NAYAR , S., AND M ITSUNAGA, T. 2000. High Dy-
namic Range Imaging: Spatially Varying Pixel Expo-
sures. InIEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 1, 472–479.

[Neycenssac 1993] NEYCENSSAC, F. 1993. Contrast enhancement us-
ing the laplacian-of-a-gaussian filter.CVGIP: Graph.
Models Image Process. 55, 6, 447–463.

[Palmer 1999] PALMER , S. 1999.Vision Science: Photons to Phe-
nomenology. The MIT Press, ch. 3.3 Surface-Based
Color Processing.



114 BIBLIOGRAPHY

[Pattanaik et al. 2000] PATTANAIK , S. N., TUMBLIN , J. E., YEE, H., AND

GREENBERG, D. P. 2000. Time-dependent visual
adaptation for fast realistic image display. InProc.
of ACM SIGGRAPH 2000, ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, Annual Confer-
ence Series, SPIE, 47–54. ISBN 1-58113-208-5.

[Peli 1990] PELI , E. 1990. Contrast in complex images.Journal
of the Optical Society of America A 7(Oct.), 2032–
2040.

[Polesel et al. 2000] POLESEL, A., RAMPONI, G., AND MATHEWS, V.
2000. Image enhancement via adaptive unsharp mask-
ing. IEEE Transactions on Image Processing 9, 505–
510.

[Pratt 1991] PRATT, W. K. 1991. Digital image processing (2nd
ed.). John Wiley & Sons, Inc., New York, USA.

[Purves et al. 1999] PURVES, D., SHIMPI , A., AND LOTTO, B. R. 1999.
An empirical explanation of the Cornsweet effect.J.
Neurosci. 19, 19, 8542–8551.

[Ramasubramanian et al. 1999] RAMASUBRAMANIAN , M., PATTANAIK , S. N.,AND

GREENBERG, D. P. 1999. A perceptually based phys-
ical error metric for realistic image synthesis. InProc.
of ACM SIGGRAPH 1999, ACM Press, ACM, 73–82.

[Ramponi et al. 1996] RAMPONI, G., STROBEL, N., MITRA , S. K., AND

YU, T.-H. 1996. Nonlinear unsharp masking meth-
ods for image contrast enhancement.Journal of Elec-
tronic Imaging 5(July), 353–366.

[Reinhard and Devlin 2005] REINHARD, E., AND DEVLIN , K. 2005. Dynamic
range reduction inspired by photoreceptor physiol-
ogy. IEEE Transactions on Visualization and Com-
puter Graphics 11, 1, 13–24.

[Reinhard et al. 2002] REINHARD, E., STARK , M., SHIRLEY, P., AND

FERWERDA, J. 2002. Photographic tone reproduction
for digital images.ACM Transactions on Graphics 21,
3, 267–276.

[Reinhard et al. 2005] REINHARD, E., WARD, G., PATTANAIK , S., AND

DEBEVEC, P. 2005. High Dynamic Range Imag-
ing: Acquisition, Display, and Image-Based Lighting.
Morgan Kaufmann.

[Reinhard 2002] REINHARD, E. 2002. Parameter estimation for photo-
graphic tone reproduction.Journal of Graphics Tools:
JGT 7, 1, 45–52.

[Robertson et al. 2003] ROBERTSON, M. A., BORMAN, S., AND STEVEN-
SON, R. L. 2003. Estimation-theoretic Approach to



BIBLIOGRAPHY 115

Dynamic Range Enhancement Using Multiple Expo-
sures. Journal of Electronic Imaging 12, 2 (April),
219–228.

[Rock 1983] ROCK, I. 1983.The logic of perception. MIT Press.

[Scharstein and Szeliski 2003] SCHARSTEIN, D., AND SZELISKI , R. 2003. High-
accuracy stereo depth maps using structured light.
CVPR, 195.

[Schluens and Koschan 2000] SCHLUENS, K., AND KOSCHAN, A. 2000. Global
and local highlight analysis in color images. InProc.
1st Int. Conf. on Color in Graphics and Image Pro-
cessing (CGIP), 300–304.

[Seetzen et al. 2004] SEETZEN, H., HEIDRICH, W., STUERZLINGER, W.,
WARD, G., WHITEHEAD, L., TRENTACOSTE, M.,
GHOSH, A., AND VOROZCOVS, A. 2004. High dy-
namic range display systems. InProc. of ACM SIG-
GRAPH 2004.

[Seger et al. 1993] SEGER, U., GRAF, H.-G., AND LANDGRAF, M. E.
1993. Vision Assistance in Scenes with Extreme Con-
trast. IEEE Micro 12, 1, 50–56.

[Shaler 1937] SHALER, S. 1937. The relation between visual acuity
and illumination. Journal of General Physiology 21,
165–188.

[Smith et al. 2006] SMITH , K., KRAWCZYK , G., MYSZKOWSKI, K.,
AND SEIDEL, H.-P. 2006. Beyond tone mapping:
Enhanced depiction of tone mapped HDR images.
In EUROGRAPHICS 2006 (EG’06), Blackwell, Vi-
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Appendix A

Photometric Calibration of
HDR Cameras

Ideally, in a photometrically calibrated system the pixel value output by a camera would
directly inform about the amount of light that this camera was exposed to. However,
in view of display-referred representation it has become important to obtain a visually
pleasant image directly from a camera rather than such a photometric image. With the
advance of high dynamic range imaging, however, the shift ofemphasis in require-
ments can be observed. Many applications such as HDR video, capture of environment
maps for realistic rendering, image-based measurements require photometrically cal-
ibrated images with absolute luminance values per pixel. For instance, the visually
lossless HDR video compression [Mantiuk et al. 2004] is based on a model of human
vision performance in observing differences in absolute luminance. An incorrect esti-
mation of such performance due to the uncalibrated input mayresult in visible artifacts
or less efficient compression. The capture technologies, however, especially in the con-
text of HDR, are very versatile and a simple solution to obtain the photometric output
from all types of cameras is not possible.

In this chapter we explain how to perform the absolute photometric calibration of HDR
cameras and we validate the accuracy of two HDR video camerasfor applications
requiring such calibration. For camera response estimation, we adapt an existing tech-
nique by Robertson et al. [Robertson et al. 2003] to the specific requirements of HDR
camera systems [Krawczyk et al. 2005a]. We determine the absolute photometric cal-
ibration to obtain camera output in luminance units. We compare the measurements
obtained with the absolute photometric calibration to measurements performed with a
luminance meter and discuss the achieved accuracy in the light of possible applications.

A.1 Camera Response to Light

An image or a frame of a video is recorded by capturing the irradiance at the cam-
era sensor. At each pixel of the sensor, photons collected bya light sensitive area are
transformed to an analog signal (electric charge) which is in turn read and quantized by
a controller. Such a quantized signal is further processed to reduce noise, interpolate
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i – image index

j – pixel position index

ti – exposure time of imagei

yi j – pixel value of input imagei at positionj

I(·) – camera response function

x j – estimated irradiance at pixel positionj

w(·) – weighting function from certainty model

m – pixel value from a set of possible camera output values

Table A.1: Symbols and notation in formulas for response estimation.

color information from the Bayer pattern, or enhance image quality, and is finally out-
put from a camera. The camera response to irradiance, or light, describes the relation
between incoming light and produced output value. The details of the capture process
are often unknown thus the camera response is conveniently analyzed as a black box,
which jointly describes the sensor response and built-in signal processing. In principle,
the estimation of a camera response can be thought of as reading out the camera values
for each single light quantity, although this is practically not feasible.

The camera response to light can be inversed to retrieve original irradiance value. Di-
rectly, the inverse model produces values that are only proportional (linearly related)
to the true irradiance. The scale factor in this linear relation depends on the exposure
settings and has to be estimated by additional measurements.

The HDR cameras have a non-linear and sometimes non-continuous response to light
and their output range exceeds 8 bit. Our choice of the framework for response esti-
mation explained in the following section is motivated by its generality and the lack of
restricting assumptions on the form of the response.

A.2 Mathematical Framework for Response Estimation

The camera response is estimated from a set of input images based on the expectation
maximization approach [Robertson et al. 2003]. The input images capture exactly the
same scene, with correspondence at the pixel level, but the exposure parameters are
different for each image. The exposure parameters have to beknown and the camera
response is observed as a change in the output pixel values with respect to a known
change in irradiance. For the sake of clarity, in this section we assume that the only
parameter is the exposure time, but in general case it is necessary to know how many
times more or less energy has been captured during each exposure. Since the exposure
time is proportional to the amount of light captured in an image sensor, it serves well
as the required factor. In the mathematical formulas below,we obey the notation given
in TableA.1 and consider only images with one channel.

There are two unknowns in the estimation process. The primary unknown, the camera
response functionI , models the relation between the camera output values and the
irradiance at the camera sensor, or luminance in the scene. The camera output values
for a scene are provided as input images, but the irradiancex coming from the scene
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is the second unknown. The estimation process starts with aninitial guess on the
camera response function, which for instance can be a linearresponse, and consists of
two steps that are iterated. First, the irradiance from the scene is computed from the
input images based on the currently estimated camera response. Second, the camera
response is refined to minimize the error in mapping pixel values from all input images
to the computed irradiance. The process is terminated when the iteration step does not
improve the camera response any more. We explain the detailsof the process below.

Estimation of Irradiance

Assuming that the camera response functionI is correct, the pixel values in the input
images are mapped to the relative irradiance by using the inverse functionI−1. Such
relative irradiance is proportional to the true irradiancefrom the scene by a factor in-
fluenced by the exposure parameters (e.g. exposure time), and the mapping is called
linearization of camera output. The relative irradiance isfurther normalized by the ex-
posure timeti to estimate the amount of energy captured per unit of time in the input
imagesi at pixel positionj:

xi j =
I−1(yi j )

ti
. (A.1)

Each of thexi images contains a part of the full range of irradiance valuescoming
from the scene. This range is determined by the exposure settings and is limited by the
dynamic range of the camera sensor. The complete irradianceat the sensor is estimated
from the weighted average of this partial captures:

x j =
∑i wi j ·xi j

∑i wi j
. (A.2)

The weightswi j are determined for camera output values by the certainty model dis-
cussed later in this section. Importantly, the weights for the maximum and minimum
camera output values are equal to 0, because the captured irradiance is bound to be
incorrect in the pixels for which the sensor has been saturated or captured no energy.

Refinement of Camera Response

Assuming that the irradiance at the sensorx j is correct, one can recapture the camera
output valuesy′i j in each of the input imagesi by using the camera response:

y′i j = I(ti ·x j). (A.3)

In the ideal case when the camera responseI is perfectly estimated, they′i j is equal to
yi j . During the estimation process, however, the camera response function needs to be
optimized for each camera output valuemby averaging the recaptured irradiancex j for
all pixels in the input imagesyi j that are equal tom:

Em = {(i, j) : yi j = m}, (A.4)

I−1(m) =
1

Card(Em) ∑
i, j∈Em

ti ·x j . (A.5)
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Certainty model

The presence of noise in the capture process is convenientlyneglected in the capture
model in equations (A.1, A.3). A complete capture model would require characteri-
zation of possible sources of noise and incorporation of appropriate noise terms to the
equation. This would require further measurements and analysis of particular capture
technology in the camera, thus is not practical. Instead, the noise term can be accounted
for by an intuitive measure of confidence in the accuracy of captured irradiance. In typ-
ical 8-bit cameras, for instance, one would expect high noise in the low camera output
values, quantization errors in the high values, and good accuracy in the middle range.
An appropriate certainty model can be defined by the following Gaussian function:

w(m) = exp

(

−4· (m−127.5)2

127.52

)

. (A.6)

The certainty model can be further extended with knowledge about the capture process.
Normally, longer exposure times, which allow to capture more energy, tend to exhibit
less random noise than short ones. Therefore an improved certainty model for input
imagesyi j can be formulated as follows:

wi j = w(yi j ) · t2
i . (A.7)

Such weighting function minimizes the influence of noise on the estimation of irradi-
ance in equation (A.2). This happens apart from noise reducing properties of the image
averaging process itself.

Minimization of Objective Function

After the initial assumption on the camera responseI , which is usually linear, the re-
sponse is refined by interactively computing equations (A.2) and (A.5). At the end of
every iteration, the quality of estimated camera response is measured with the follow-
ing objective function:

O = ∑
i, j

w(yi j ) · (I−1(yi j )− ti ·x j)
2. (A.8)

The objective function measures the error in the estimated irradiance for input images
yi j when compared to the simulated capture of the true irradiance x j . The certainty
model requires that the camera output values in the range of high confidence give more
accurate irradiance estimates. The estimation process is terminated as soon as the
objective functionO falls below predetermined threshold.

The estimation process requires an additional constraint,because two dependent un-
knowns are calculated simultaneously. Precisely, the values ofx j depend on the map-
ping of I and the equations are satisfied by infinitely many solutions to I which differ
by a scale factor. Convergence to one solution is enforced, in each iteration, through
normalization of the inverse camera responseI−1 by the irradiance causing the medium
camera output valueI−1(mmed).
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A.3 Procedure for Photometric Calibration

In the following sections we outline a step-by-step procedure for photometric calibra-
tion of HDR cameras.

Scene Setup for Calibration

The response estimation algorithm requires that each camera output value is observed
in more than one input image. Moreover, frequent observations of the value reduce
the impact of noise. Therefore, an ideal scene for calibration is static, contains a range
of luminance wider than the expected dynamic range of the camera, and smoothly
changing illumination which gives a uniform histogram of output values. Additionally,
neutral colors in the scene can minimize the possible impactof color processing in a
color camera.

When calibrating HDR cameras, a static scene with a sufficiently wide dynamic range
may not be feasible to create. In such a case, it is advisable to prepare several scenes,
each covering a separate but partially overlapping luminance range, and stitch them
together into a single image.

Capture of Images for Calibration

Input images for the calibration process capture exactly the same scene with varying
exposure parameters. A steady tripod and remote control of acamera are essential
requirements. A slight out-of-focus reduces edge aliasingdue to sensor resolution and
limits potential sharpening in a camera, thus makes the estimation process more stable.

HDR cameras often do not offer any adjustment of exposure parameters or available
adjustments are not bound to have a linear influence on captured energy. The aperture
value cannot be changed to adjust the exposure, because it modifies the depth-of-field,
vignetting, and diffraction pattern, thus practically changes the scene between input
images. Instead, the optical filters, such as neutral density (ND) filters, can be mount
in front of the lens to limit the amount of irradiance at the sensor at a constant exposure
time. The ND filters are characterized by their optical density which defines the amount
of light attenuation in logarithmic scale. In the response estimation framework, such
optical density can be used to calculate a simulated exposure time of captured images:

ti = t0 ·10Di , (A.9)

whereti is simulated exposure time of imagei captured through an optical filter of
densityDi calculated with respect to the true exposure timet0. If t0 is not known from
the camera specifications, it can be assumed equal to 1. One should make sure that
the optical filters are spatially uniform and equally reducethe intensity of all captured
wavelengths.

Following the analysis in [Grossberg and Nayar 2003], it can be suggested to acquire
two images that are exposed similarly and one that is considerably different. Addi-
tionally, when calibrating a video camera one may capture a larger number of frames
for each of the exposures. Such a superfluous number of input images will reduce the
influence of image noise on the response estimation.
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Figure A.1: Cameras used in our experiment: HDRC VGAx (lowerleft), Silicon Vision
Lars III (center), Jenoptik C14 (lower right), and Minolta LS-100 luminance meter
(top).

Absolute Photometric Calibration

The images of the calibration scene are input to the estimation framework from Sec-
tion A.2 to obtain a camera response. For an RGB or multi-spectral camera, the cam-
era response has to be estimated for each color channel separately. Here, we assume
that a camera captures monochromatic images with spectral efficiency corresponding
to luminance. In case of an RGB camera, an approximation of luminanceY can be
calculated from color channels using RGB to XYZ color transform.

The relative luminance values obtained from the estimated response curve are linearly
proportional to the absolute luminance with a scale factor dependent on the exposure
parameters and the lens system. Absolute calibration is based on the acquisition of a
scene containing patches with known luminanceY. The scale factorf is determined
by minimizing relative error between known and captured luminance values:

Y = f · I−1(m). (A.10)

A.4 Example Calibration of HDR Video Cameras

We demonstrate photometric calibration of two HDR video cameras: the Silicon Vi-
sion Lars III camera and the HDRC VGAx camera. For comparisonpurposes we also
include the Jenoptik C14 – a high-end, CCD based LDR camera (see FigureA.1). The
Lars III sensor is an example of a locally auto-adaptive image sensor [Lulé et al. 1999]:
the exposure is terminated for each individual pixel after one out of 12 possible ex-
posure times (usually powers of 2). For every pixel, the camera returns the amount
of charge collected until the exposure was terminated as a 12-bit value and a 4-bit
timestamp. The HDRC sensor is a logarithmic-type sensor [Seger et al. 1993] and the
camera outputs 10-bit values per pixel [Hoefflinger 2007].
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Figure A.2: Three scene setups for the estimation of response curves (tone mapped for
presentation). The histogram shows the luminance distribution in the stitched images
for acquisition without filter, and using ND filters with×1.5 and×10 optical density.
This setup covers 8 orders of luminance magnitude.

Estimation of Camera Response

To cover the expected dynamic range of calibrated cameras, we acquire three scene
setups with varied luminance characteristic (see FigureA.2): a scene with moderate
illumination, the same scene with a strong light source, anda light source with reflector
shining directly towards the cameras. Stitching these three images together yields an
input for the response estimation algorithm covering a dynamic range of more than
8 orders of magnitude. Each scene setup has been captured without any filter and with
a×1.5 ND filter and a×10 ND filter. The response of C14 camera was estimated using
a series of 13 differently exposed images of a GretagMacbethColorChecker.

The estimated responses of the three cameras are shown in FigureA.3. The certainty
functions have been modeled using equation (A.6) such that maximum confidence is
assigned to the middle of operational luminance range and limits to zero at the camera
output levels dominated by noise. A single response curve has been estimated for
the monochromatic Lars III camera and separate curves have been determined for the
three color channels of the other cameras. As we had access tothe raw sensor values
of the HDRC camera before Bayer interpolation, we estimatedthe response curve for
each channel directly from corresponding pixels in order toavoid possible interpolation
artifacts.

FigureA.3 shows that the response curves of the two HDR cameras both cover a con-
siderably wider range of luminance than the high-end LDR camera that covers a range
of about 3.5 orders of magnitude. The different shapes of theHDR response curves are
caused by their respective sensor technology and the encoding. The logarithmic HDRC
VGAx camera has the highest dynamic range (more than 8 ordersof magnitude), but
an offset in the A/D conversion makes the lower third of the 10-bit range unusable.
The multiple exposure values of the locally auto-adaptive Lars III camera are well vis-
ible as discontinuities in the response curve. Note that theluminance range is covered
continuously and gaps are only caused by the encoding. The camera covers a dynamic
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Figure A.3: The estimated response curves and corresponding weighting functions
from the certainty model (value 1.0 represents the full confidence in capture accuracy,
0.0 represents no confidence). The peaks of the weighting functions are centered at the
middle of the operational range of each camera.
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Figure A.4: The results of absolute calibration. The estimated response curves were
fitted to the measurements of 6 gray patches of GretagMacbethColorChecker chart
under 6 different illumination conditions.

range of about 5 orders of magnitude. Noise at the switching points between exposure
times is well visible.

Results of Photometric Calibration

The inverse of the estimated responses convert the camera output values into relative
luminance values. To perform an absolute calibration, we acquired a GretagMacbeth
ColorChecker chart under 6 different illumination conditions. The luminance of the
gray patches was measured using a Minolta LS-100 luminance meter yielding a total
of 36 samples and an optimal scale factor was determined for each camera. The ac-
curacy of the absolute calibration for the 36 patches can be seen in FigureA.4. The
calibrated camera luminance values are well aligned to the measured values proving
that the response curve recovery was accurate. To quantify the quality of the abso-
lute calibration, we calculated the average relative errorfor these data points. For the
HDRC camera, relative error in the luminance range of 1–10,000[cd/m2] is 13% while
the relative error for the Lars III camera in the luminance range of 10–1,000[cd/m2]
amounts to 9.5%. Note that these results can be obtained with a single acquisition.
Using multiple exposures, the C14 camera is capable of an average relative error of
below 7% in the range 0.1–25,000[cd/m2], thus giving the most accurate results.

A.5 Quality of Luminance Measurement

The described procedure for photometric calibration of HDRcameras proved to be
successful, however the accuracy obtained for example HDR cameras is not very high.
Although one should not expect to match the measurement quality of a luminance
meter, still the relative error of the LDR camera is lower than of HDR cameras. Besides,
both HDR cameras keep the error below 10% only in the range of luminance that is
much narrower than their operational range. The low accuracy in low illumination is
mostly caused by noise in the camera and can be hardly improved in the calibration
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process. On the other hand, the low accuracy in high luminance range can be affected
by the calibration process: a very bright scene was requiredto observe high camera
output values. The only possibility to get a bright enough scene was to directly capture
a light source, but the intensity of the light source might not have been stable during
the capture and an additional noise have been introduced to the estimation process.

To improve the results, we fit the estimated response to an a priori function appropri-
ate for the given HDR sensor. Thus, for the HDRC camera we fit the parameters of
a logarithmic functiony j = a∗ log(x j)+b and for the decoded values1 of the Lars III
camera we fit a linear functiony j = a∗x j +b. We compare the relative errors achieved
by the pure response estimation including absolute calibration and the function fit in
Figure A.5. The average relative error is equal to about 6% for the HDRC camera
and luminance values above 1[cd/m2]. For the Lars III camera it is also about 6%
for luminance values above 10[cd/m2]. Especially for high luminance values above
10,000[cd/m2], the calibration via function fitting provides more accurate results. In
addition, the fitting approach allows to extrapolate the camera response for values be-
yond the range of the calibration scene. To verify this, we acquired an extremely bright
patch (194,600[cd/m2]) and compared the measurement of the light meter to the cal-
ibrated response of the HDR cameras. Only the readout from the HDRC camera de-
rived via function fitting is reliable while the HDRC response curve seems to be bogus
in that luminance range. The Lars III camera reached the saturation level and yielded
arbitrary results. Likewise, this patch could not be recorded with the available settings
of the LDR camera.

 0

 20

 40

 60

 80

 100

 120

 0.1  1  10  100  1000  10000  100000

re
la

tiv
e 

er
ro

r 
[p

er
ce

nt
s]

luminance [cd/m2]

HDRC VGAx video camera

recovered response
fitted response

 0

 20

 40

 60

 80

 100

 120

 0.1  1  10  100  1000  10000  100000

re
la

tiv
e 

er
ro

r 
[p

er
ce

nt
s]

luminance [cd/m2]

Silicon Vision Lars III video camera

recovered response
fitted response

Figure A.5: Comparison of the relative errors in luminance measurement achieved by
the pure response estimation including absolute calibration and by the function fit.

1according to the data sheet, the 16-bit output value of Lars III camera is in fact a composite of a 12-bit
mantissam and a 4-bit exponent valuee; i.e. y j = m·2e.
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A.6 Alternative Response Estimation Methods

In principle, three different approaches can be used to estimate the response of 8-bit
cameras ([Reinhard et al. 2005] provides a good survey). The method of Robertson et
al. [Robertson et al. 2003] has been selected, because of its unconstrained applicability
to varied types of sensors in cameras. For completeness, we briefly discuss here the
remaining two methods in view of possible application to photometric calibration of
HDR cameras.

The algorithm developed by Debevec and Malik [Debevec and Malik 1997] is based
on the concept that a particular pixel exposure is defined as aproduct of the irradi-
ance at the film and the exposure time, transferred by the camera response function.
This concept is embedded in an objective function which is minimized to determine
the camera response curve. The objective function is additionally constrained by the
assumption that the response curve is smooth, which is essential for the minimization
process. Whereas this assumption is generally true for LDR cameras based on CCD
technology, the response curve is normally not smooth in locally autoadaptive HDR
sensors. Furthermore, the process of recovering the response curve is based on solving
a set of linear equations. While the size of the matrix representing these linear equa-
tions is reasonable for 8-bit data, memory problems may occur for arbitrary precision
data typical to HDR acquisition so that extensive sub-sampling is required.

The method proposed by Mitsunaga and Nayar [Mitsunaga and Nayar 1999] computes
a radiometric response function approximated using a high-order polynomial without
precise knowledge of the exposures used. The refinement of the exposure times dur-
ing the estimation process is major advantage, however the process itself is limited to
computation of the order of the polynomial and its coefficients. The authors state that
it is possible to represent virtually any response curve using a polynomial. This fact
is true for LDR cameras based on a CCD sensor, however it is notpossible to approx-
imate the logarithmic response of some CMOS sensors in this manner. Polynomial
approximation also assumes that the response curve is continuous, which depends on
the encoding.

A.7 Discussion

The ability to capture HDR data has a strong impact on variousapplications, because
the acquisition of dynamic sequences that can contain both very bright and dark lu-
minance (such as sun and deep shadows) at the same moment is unprecedented. Pho-
tometrically calibrated HDR contents offer further benefits. Perceptually enabled al-
gorithms employed in compression or tone mapping can appropriately simulate the
behavior of human visual system. Dynamic environment maps can be captured in real
time to faithfully convey the illumination conditions of the real world to rendering al-
gorithms. The results of global illumination solutions canthan be directly compared to
the real world measurements.

We presented estimation approach for photometric calibration of HDR cameras ex-
tended with a function fit. Although the relative error achieved by the function fitting
approach is lower, the response estimation algorithm is useful to obtain the exact shape
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of the camera response and to give confidence that the chosen apriori function is cor-
rect. It can also help to understand the behavior of the sensor, especially if the encod-
ing is unknown. The low precision of the measurements in the luminance range below
10[cd/m2] is a clear limitation which can be explained by the high noiselevel in the
sensors. The quality of a high-end CCD camera such as the Jenoptik C14 combined
with traditional HDR recovery algorithms still cannot be achieved consistently over the
whole dynamic range of the HDR cameras.

The function fitting approach has strong advantages in the quality of the results and
the ability to extrapolate from the calibration data. The confidence in extrapolated
measurements is however limited and the error cannot be predicted because the ex-
act shape of the response function in this range is unknown. Finally, the accuracy of
the photometric calibration is not the only important quality measure. Depending on
the application, other issues such as the quantization of the luminance values might
have an important influence on the quality of the measurements and need to be further
investigated.



Appendix B

Software

To facilitate the work with HDR we have developed a set of software tools that provide
a wide range of image and video processing functionality. The tools share a common
design pattern based on system pipes which permits to combine them in form of filters
in a processing pipeline, similar to thenetpbmtoolkit. Such a pipeline starts with an
input program that reads a list of images and forwards the data in a uniform manner to
the next tool. The subsequent tools can perform certain image processing operations
including cropping, rotating, and tone mapping. The last tool in the pipeline usually
stores the processed content.

The communication in the pipeline is facilitated by a generic protocolpfswhose imple-
mentation is offered as a C++ library. The protocol is also straightforward to implement
in other languages. The tools exchange data using the pipes commonly supported by
many operating systems. Such a design eases the implementation of new tools and
permits to transparently combine programs written in various programing languages
including MATLAB R©and GNU Octave scripts, Perl, Python and many others. This
is very advantageous in rapid prototyping often required inresearch. The design prin-
ciples, including the choice of data representation in the pipeline, are published in
[Mantiuk et al. 2007a].

The main package of the software ispfstoolsand it is currently extended withpfstmo
andpfscalibration. The whole software is Open Source and can be compiled on several
operating systems. It is supported by an active news-group that gathers users and de-
velopers. The HDR software code has been adopted to several new 3rd party projects.
More details and download options can be found on the projectpage:
http://www.mpi-inf.mpg.de/resources/pfstools/

B.1 pfstools

pfstoolsis the main package of the software. It implements the generic communication
protocol in the stand-alone librarylibpfs, and contains numerous basic image process-
ing tools including an HDR capable viewer.pfstoolssupports many HDR and standard
file formats including: Radiance RGBE, OpenEXR, Tiff, LogLuv, PFM, PPM, RAW
formats of digital cameras, and practically all 8-bit formats through ImageMagickR©.
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Project page:
http://www.mpi-inf.mpg.de/resources/pfstools/

B.2 pfscalibration

pfscalibrationpackage provides an implementation of the [Robertson et al. 2003] method
for the recovery of the response curve of arbitrary cameras.Tools provided in this pack-
age can be used for photometric calibration of both off-the-shelf digital cameras and
HDR cameras as described in AppendixA, and for the recovery of high dynamic range
images from the set of low dynamic range exposures as explained in Section2.4.1.

Project page:
http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html

B.3 pfstmo

pfstmopackage contains implementations of the state-of-the-arttone mapping opera-
tors, including those described in Section2.5. The implementations are suitable for
convenient processing of both static images and animations, and in the most part have
been used throughout this dissertation.

Project page:
http://www.mpi-inf.mpg.de/resources/tmo/

http://www.mpi-inf.mpg.de/resources/pfstools/
http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html
http://www.mpi-inf.mpg.de/resources/tmo/
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