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Kurzzusammenfassung

Typische Suchmaschinen, wie z.B. Google, erreichen Antwortzeiten deutlich unter einer Sekunden, selbst für einen Ko-
rpus mit mehr als einer Milliarde Dokumenten. Sie schaffen dies durch die Nutzung eines (parallelisierten) invertierten
Index. Da der invertierte Index jedoch hauptsächlich f̈ur die Bearbeitung von einfachen Schlagwortsuchen konzipiert
ist, bieten Suchmaschinen nur selten die Möglichkeit, komplexere Anfragen zu beantworten, die sich nicht in solch eine
Schlagwortsuche umformulieren lassen, u.U. mit der Zurhilfenahme von speziellen Kunstworten.

Wir haben f̈ur die CompleteSearch Suchmaschine, konzipiert und implementiert am Max-Planck-Institut für Infor-
matik, spezielle Datenstrukturen entwickelt, die ein deutlich größeres Spektrum an Anfragetypen unterstützen, ohne dabei
die Effizienz zu opfern. Die CompleteSearch Suchmaschine baut auf einem kontext-sensitiven Präfixsuch- und Ver-
vollständigungsmechanismus auf. Dieser Mechanismus ist einerseits einfach genug, um eine effiziente Implementierung
zu erlauben, andererseits hinreichend mächtig, um die Bearbeitung zusätzlicher Anfragetypen zu erlauben.

Wir stellen zwei neue Datenstrukturen vor, die eingesetzt werden k̈onnen, um das zu Grunde liegende Präfixsuch-
und Vervollsẗangigungsproblem zu lösen. Die erste der beiden, AutoTree genannt, hat die theoretisch wünschenswerte
Eigenschaft, dass sie für nicht entartete Korpora eine Bearbeitungszeit linear inder aufsummierten Größe der Ein- und
Ausgabe zul̈asst. Die zweite, HYB genannt, ist auf die Komprimierbarkeit der Daten ausgelegt und ist für Szenarien
optimiert, in denen der Index nicht in den Hauptspeicher passt, sondern auf der Festplatte ruht. Beide schlagen den
Referenzalgorithmus, der den invertierten Index benutzt,um einen Faktor von 4-10 hinsichtlich der durchschnittlichen
Bearbeitungszeit. Ein direkter Vergleich zeigt, dass im Allgemeinen HYB schneller ist als AutoTree.

Dank der HYB Datenstruktur kann die CompleteSearch Suchmaschine auch anspruchsvollere Anfragetypen, wie
Facettensuche für Kategorieninformation, Vervollständigung zu Synonymen, Anfragen im Stile von elementaren, rela-
tionalen Datenbankanfragen und die Suche auf Ontologien, effizient bearbeiten. F̈ur jede dieser F̈ahigkeiten beweisen wir
die Realisierbarkeit unseres Ansatzes durch Experimente.Schließlich demonstrieren wir durch eine kleine Nutzerstudie
mit Mitarbeitern des Helpdesks unseres Institutes auch denpraktischen Nutzen unserer Arbeit.
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Abstract

Traditional search engines, such as Google, offer response times well under one second, even for a corpus with more than
a billion documents. They achieve this by making use of a (parallelized) inverted index. However, the inverted index is
primarily designed to efficiently process simple key word queries, which is why searchengines rarely offer support for
queries which cannot be (re-)formulated in this manner, possibly using “special key words”.

We have contrived data structures for the CompleteSearch engine, a search engine, developed at the Max-Planck
Institute for Computer Science, which supports a far greater set of query types, without sacrificing the efficiency. It is
built on top of a context-sensitive prefix search and completion mechanism. This mechanism is, on the one hand, simple
enough to be efficiently realized by appropriate algorithms, and, on the other hand, powerful enough to be employed to
support additional query types.

We present two new data structures, which can be used to solvethe underlying prefix search and completion problem.
The first one, called AutoTree, has the theoretically desirable property that, for non-degenerate corpora and queries,its
running time is proportional to the sum of the sizes of the input and output. The second one, called HYB, focuses on
compressibility of the data and is optimized for scenarios,where the index does not fit in main memory but resides on
disk. Both beat the baseline algorithm, using an inverted index, by a factor of 4-10 in terms of average processing time.
A direct head-to-head comparison shows that, in a general setting, HYB outperforms AutoTree.

Thanks to the HYB data structure, the CompleteSearch engineefficiently supports features such as faceted search
for categorical information, completion to synonyms, support for basic database style queries on relational tables and
the efficient search of ontologies. For each of these features, we demonstrate the viability of our approach through
experiments. Finally, we also prove the practical relevance of our work through a small user study with employees of the
helpdesk of our institute.
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Zusammenfassung

Ist das “Suchproblem” denn noch nicht gel̈ost? Es gibt doch immerhin Google!

Wenn man sich bewusst macht, dass heutzutage kommerzielle Internetsuchmaschinen mehrere Milliarden von
Webseiten in deutlich unter einer Sekunde durchsuchen können, um anschließend dem Anwender eine sortierte
Liste mit (hoffentlichen) relevanten Dokumenten zu präsentieren, erscheint es vielleicht unklar, warum es
lohnend sein k̈onnte, an einer neuen Suchmaschinentechnologie zu arbeiten. Als Ausgangspunkt und Moti-
vation für die in dieser Dissertation vorgestellte Arbeit ist es daher hilfreich, die Stärken und Schẅachen eines
Systems wie Google genauer zu betrachten.

Google1 undähnliche Internetsuchmaschinen2 beeindrucken durch ihre unglaubliche Geschwindigkeit, mit
der sie dem Anwender Suchergebnisse präsentieren. Nutzer haben verstanden, dass sie, solange sie ihr Informa-
tionsbed̈urfnis in klare, eindeutige Schlagworte fassen können, auf Google vertrauen können, wenn es darum
geht (hoffentlich) relevante Dokumente in deutlich unter einer Sekunde zu finden. Google funktioniert großar-
tig für solche Schlagwort-basierten Suchanfragen, denn dies ist genau die Anwendung, f̈ur die es konzipiert
ist. Es gibt allerdings auch andere wünschenswerte F̈ahigkeiten, die man konzeptuell leicht einem Anwender
bieten k̈onnte.

Eine solche F̈ahigkeit istPräfixsuche. Hier tippt der Nutzer lediglich die ersten paar Buchstaben eines
Wortes und alle Dokumente mit einem Wort, das mit dieser Buchstabenfolge beginnt, werden dann f̈ur ihn
gefunden. Dies erspart ihm das Tippen von weiteren Buchstaben, wenn der Pr̈afix bereits hinreichend eindeutig
ist (greenp3), es findet automatisch Wortvariationen mit verschiedenen Endungen (demokra4), und es gibt dem
Anwender die Chance den Korpus zu “erkunden”, indem automatisch Worte für das selbe Konzept in Betracht
gezogen werden (pneumo5).

Eine weitere F̈ahigkeit, die des̈Ofteren von Nutzen ẅare, istFacettensuche, bei der die Suchergebnisse in
verschiedene Kategorien gruppiert werden,ähnlich wie man es von e-commerce Seiten wie ebay6 kennt. Eine
automatische Aufschlüsselung der Google Suchergebnisse (i) nach Sprache des Dokumentes, (ii) ob es eine
private, wissenschaftliche oder kommerzielle Seite ist, oder (iii) nach Dateiformat, k̈onnte den Filterprozess
des Anwenders einfacher machen. Dadurch würde es aucḧuberfl̈ussig, manuell Kriterien f̈ur die “erweiterte
Suche” angeben zu m̈ussen, und dabei evtl. die Suchanfrageüberzuspezifizieren, so dass man am Ende keinerlei
Ergebnis bekommt.

Eine dritte, konzeptuell sehr einfache Fähigkeit ẅare die Kombination von Informationen, dieüber ver-
schiedene Dokumente verteilt sind. Z.B. erlaubt Google’s “Scholar” System7 die Suche in wissenschaftlichen
Arbeiten, wobei man sich dabei (in der “erweiterten Scholar-Suche”) auf bestimmte Autoren oder Konferenzen
beschr̈anken kann. Dennoch erlaubt es dem Nutzer nicht, in einer Anfrage nach allen Autoren zu fragen, die
sowohl in der SIGIR als auch in der SODA Konferenz einen Beitrag veröffentlicht haben.

Der Grund f̈ur das Fehlen dieser Fähigkeiten ist derselbe Grund, der Google undähnlichen Systemen ihre
außerordentliche Performanz gibt: die Nutzung des invertierten Index. Alle großen Suchmaschinen basieren
auf einem invertierten Index, der für jeden Term eine sortierte Liste von Dokumenten (oder genauer gesagt
Dokumenten-Identifikationsnummern) bereithält. Der invertierte Index wird im n̈achsten Kapitel im Detail

1http://www.google.com
2http://www.live.com, http://search.yahoo.com
3Greenpeace.
4Demokratisch, Demokratie, Demokrat oder Demokraten.
5Pr̈afix der Worte zum Thema Atmung und Lunge umfasst.
6http://www.ebay.com
7http://scholar.google.com
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vorgestellt. Hier reicht es, sich einiger Charakteristika, die seinen Einsatzso attraktiv machen, bewusst zu
sein: Das erste ist seine fast perfekte Zugriffslokaliẗat, da die Bearbeitung dieser Listen normaler Weise ein
lineares Durchgehen beinhaltet. Der zweite Vorteil besteht darin, dass diese Listen stark komprimierbar sind,
was somit sowohl den Platzbedarf als auch die Lesezeit stark reduziert.Drittens ist es leicht m̈oglich, einen
invertierten Indeẍuber mehrere Maschinen zu verteilen. Die Aufteilung kann dabei sowohlnach Termen (jede
Maschine entḧalt die Dokumentenlisten für ausgeẅahlte Terme) wie nach Dokumenten (jede Maschine enthält
die kompletten Informationen für bestimmte Dokumente) geschehen. Viertens kann ein invertierter Index ef-
fizient gebaut werden, selbst wenn die Daten nicht mehr in den Hauptspeicher passen. Dies geschieht mit
Hilfe von für externen Speicher optimierten Sortieralgorithmen. Zusätzlich ist der invertierte Index durch das
Hinzufügen von neuen Termen leicht erweiterbar.

Überraschender Weise ermöglicht der invertierte Index jedoch nicht die effiziente Bearbeitung von Anfra-
gen der oben beschriebenen Typen. Hierfür gibt es haupts̈achlich zwei Gr̈unde: Erstens kann der invertierte
Index nur (effizient) die Informationen f̈ur einzelne Terme bereitstellen. Aber z.B. braucht man sowohl für
die Pr̈afixsuche, f̈ur die eine alphabetische Folge von Worten relevant ist, als auch für die Facettensuche, wo
die Menge der Kategoriennamen potentiell erheblich sein kann, die Informationen f̈ur eine (große) Menge von
Worten, was f̈ur den invertierten Index ein Problem darstellt. Zweitens gibt eine Anfragean einen invertierten
Index “nur” Dokumente zur̈uck. Um jedoch Autoren zu finden, die in zwei bestimmten Konferenzen etwas
publiziert haben, muss man im Wesentlichen zwei Anfragen stellen, eine für jede Konferenz, und dann die
Liste der Autoren (d.h. Terme) dieser Dokumente schneiden. Solch eine Operation (in der Datenbanksprache
ein “Verbund” oder auf englisch “join” genannt) wird von Natur nicht ohne weiteres vom invertierten Index
effizient untersẗutzt.

Wir haben Datenstrukturen für die CompleteSearch Suchmaschine entwickelt, die all diese Anfragetypen
und noch weitere effizient untersẗutzen. Diese Datenstrukturen bieten eine effiziente Umsetzung eines ein-
fachen aber dennoch mächtigen Mechanismus, der im nächsten Abschnitt informell vorgestellt wird, bevor er
im nächsten Kapitel formal erfasst wird. Man beachte hierbei, das der Bezug dieses Mechanismus zu den
drei oben besprochenen fehlenden Fähigkeiten nicht sofort offensichtlich ist. In der Tat besteht ein Beitrag
dieser Arbeit darin, die Anwendbarkeit dieses Mechanismus für die Bereitstellung verschiedenere Fähigkeiten
darzulegen.

Beschreibung des Kernmechanismus

Kontext-sensitive Autovervollständigungs-Suche bildet das Herzstück unserer CompleteSearch Suchmaschine.
Autovervollsẗandigung, in ihrer einfachsten Form, ist der folgende Mechanismus: DerAnwender tippt die er-
sten paar Buchstaben eines Wortes und dabei wird, entweder durch dieBeẗatigung einer bestimmten Taste oder
automatisch nach jedem Tastendruck, eine Methode aufgerufen, die alle Worte anzeigt, die Vervollständigungen
der bisher getippten Buchstabenfolge sind. Dies hilft dem Anwender, mit möglichst geringem Aufwand schnell
zu einer bestimmten Information zu navigieren, wobei auch nur ein teilweisesWissen (ein Pr̈afix) des Zieles
an sich ben̈otigt wird. Das wohl bekannteste Beispiel dieses Mechanismus ist die Tabvervollsẗandigung in der
Unix Shell.

Das Problem, das wir in dieser Dissertation betrachten, beruht auf einer anspruchsvolleren Form der Au-
tovervollsẗandigung, die auch denKontext, in dem das zu vervollständigende Wort getippt wurde, in Betracht
zieht. Hier sollen (sofort nach jedem Tastendruck) nur die Vervollständigungen des letzten (teilweise) getippten
Suchwortes angezeigt werden, die zu einem Treffer führen, also zu einem Dokument das alle (auch vorherige)
Suchworte entḧalt. Man nehme zum Beispiel an, dass ein Anwenderinformation ret8 getippt hat. Vielver-
sprechende Vervollständingungen k̈onnten dann u.a.retrieval oderreturn sein, aber z.B. nicht,retire,
da dies Wort an sich zwar vielleicht häufig vorkommt, die Kombinationinformation retire aber nur zu
wenigen (oder keinen) guten Treffern führt. Das zu Grunde liegende algorithmische Problem ist in Definition
1 im nächsten Kapitel formal erfasst. Diese Suchfähigkeit bezeichnen wir alsAutovervollständigungssuche(da
Autovervollsẗandigung mit Suche kombiniert wird), oder auch, etwas länger aber dafür pr̈aziser, alsPräfixsuche
mit Vervollständigung.

8Man beachte, dass unser System echte Präfixsuche macht. D.h. alle Dokumente, die die Anfrageinformation* ret* erfüllen,
werden als Treffer gewertet.
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Figure 1: Bildschirmanzeige des Ergebnisses unserer Suchmaschine für die Anfrageinformation ret.
Durchsucht wird eine Dokumentensammlung mit ungefähr 20.000 Publikationen aus dem Bereich Informatik,
jede mit Volltext und Metadaten. Das Vervollständigungsfeld links und die Treffer auf der rechten Seite werden
automatisch und ohne wesentliche Verzögerung nach jedem Tastendruck neu berechnet. Daher fehlt jede Art
von Suchknopf v̈ollig. Man beachte, dass die vorgeschlagenen Vervollständigungen neben normalen Worten
(“return”), auch Phrasen (“retrieval system”) und Kategoriennamen(“Ernest Retzel, the AUTHOR”) beinhal-
ten k̈onnen. Die Zahl in Klammern hinter jeder Vervollständigung ist die Anzahl der Treffer, die man er-
hielte, wenn man diese Vervollständigung per Mausklick oder durch Eintippen auswählen ẅurde. Allerdings
besteht keinerlei Zwang, ein angefangenes Wort zu Ende zu tippen, da unsere Suchmaschine standardmäßig
für alle Suchbegriffe eine Pr̈afixsuche ausführt. Sollte der Anwender zum Beispiel ein neues Wort anfangen
undinformation ret data tippen, so k̈amen die Vervollsẗandigungen und Treffer für data (zum Beispiel
databases) aus den 13.672 Treffern für information ret. Die unteren beiden Felder schlagen mögliche
Verfeinerungen der Treffer durch Kategorieninformation vor, sofern diese Information zum Index hinzugef̈ugt
wurde. Dies ist die Facettensuche, die in Kapitel6 genauer beschrieben wird.

Abbildung 1 zeigt die Bildschirmanzeige unserer CompleteSearch Suchmaschine mit dem Ergebnis f̈ur
die Anfrageinformation ret. Eine List mit online verf̈ugbaren Demonstratoren der Suchmaschine für ver-
schiedene Dokumentensammlungen findet sich unterhttp://search.mpi-inf.mpg.de/. Die zus̈atzlichen
Suchf̈ahigkeiten, wie z.B. die in der Abbildung erkennbare Facettensuche, so wie weitere F̈ahigkeiten die im
nächsten Abschnitt erẅahnt und in sp̈ateren Kapiteln detailliert erörtert werden, lassen sich alle (effizient) durch
ein und denselben Mechanismus realisieren.

Wissenschaftlicher Beitrag und Inhalts̈ubersicht

Die grobeÜbersicht dieser Dissertation ist einfach: Zuerst geben wir die formale Problemdefinition und disku-
tieren disbez̈uglich relevante Arbeiten. Dann stellen wir unsere Algorithmen zur Lösung des Problems vor.
Anschließend pr̈asentieren wir verschiedene Erweiterungen und Anwendungen des zuGrunde liegenden Mech-
anismus, bevor wir, vor dem Fazit, schließlich noch einige wichtige Implementierungsaspekte betrachten. Es
folgt eine detailliertere Inhaltsaufschlüsselung und kurze Zusammenfassung unseres Beitrages für jedes Kapi-
tel.
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In Kapitel 2 formalisieren wir das algorithmische Problem, welches im Zentrum unserer Suchmaschine
steht. Ferner zeigen wir, wie die gängigste Datenstruktur im Bereich Information Retrieval, der invertierte In-
dex, zur L̈osung dieses Problemes eingesetzt werden kann. Hierfür geben wir eine theoretische Analyse seiner
Laufzeit und zeigen, wo seine Schwächen liegen. Der invertierte Index ist die Referenzdatenstruktur in dieser
Dissertation, und wir vergleichen unsere Datenstrukturen dagegen. Wirdiskutieren auch die Anwendbarkeit
anderer existierender Datenstrukturen für unser Problem, insbesondere die von Suffixarrays.

In Kapitel 3 stellen wir unsere erste Datenstruktur (AutoTree) vor. Wir beweisen sowohl theoretisch, unter
milden Bedingungen, und experimentell, dass seine Laufzeit Ausgabe-abhängig (output-sensitive) ist. D.h.
die Laufzeit des Algorithmus ist proportional zur Ergebnismenge. Wir zeigen experimentell dass AutoTree
für eine große Klasse von Anfragen deutlich kürzere Antwortzeiten als der invertierte Index bietet. Dieses
Kapitel beruht auf gemeinsamer Arbeit mit Holger Bast und Christian Worm Mortenssen und wurde in einer
vorläufigen Fassung in der Konferenz SPIRE 2006 (13th International Conference on String Processing and
Information Retrieval) [Bast 06b] präsentiert.

Im darauf folgenden Kapitel4 wird unsere zweite Datenstruktur (HYB) vorgestellt. HYB ist bezüglich
I/O (Eingabe/Ausgabe) Performanz optimiert und sein Platzverbrauch kommt nahe an dietheoretische untere
Schranke der Entropie heran. Obwohl HYB sogar eine gewisse Mindestlaufzeit hat, schl̈agt er den invertierten
Index für nicht-entartete Anfragen. Wir vergleichen auch AutoTree und HYB experimentell miteinander und
zeigen, dass im Allgemeinen HYB mit seiner Zugriffslokaliẗat vorzuziehen ist. Der Großteil dieses Kapitels
wurde im Konferenzband von SIGIR 2006 (29th International Conference on Research and Development in
Information Retrieval) ver̈offentlicht [Bast 06c] und ist gemeinsame Arbeit mit Holger Bast.

Während die Kapitel2-4 sich auf eine effiziente Umsetzung der Kernfähigkeit konzentrieren, wird in Kapi-
tel 5 zun̈achst erneut der Nutzen der Autovervollständigungssuche erörtert, bevor wir unser System mit ver-
schiedenen anderen Systemen vergleichen, die jeweilsähnliche Suchm̈oglichkeiten wie die CompleteSearch
Suchmaschine bieten. In diesem Kapitel diskutieren wir auch einige einfache Erweiterungen des grundle-
genden Autovervollständigungsmechanismus, die den Nutzen der Grundfähigkeit weiter erḧohen. Dies sind:
Relevanzsortierung der Trefferdokumente und Vervollständigungen, N̈ahesuche, Bearbeitung von ODER und
NICHT Anfragen, Teilwortsuche und Autovervollständigung zu Phrasen. Ẅahrend die Erweiterungen in der
obigen Liste in keiner Weise an den Präfixsuchmechanismus gebunden sind, bedürfen die Erweiterungen, die
in den anschließenden Kapiteln6-9 präsentiert werden, einer effizienten Implementierung unseres Kernmecha-
nismus.

In der Facettensuche wird die Navigation in Verzeichnissen, für Dokumentensammlungen die gemäß ver-
schiedenen Kategorien klassifiziert sind, kombiniert mit normaler Schlagwortsuche. Im Kapitel6 zeigen wir,
wie man unsere Arbeit leicht anwenden kann, um effiziente Facettensuchfähigkeiten zu erhalten. Dies ist
eine Zusammenarbeit mit Holger Bast und wurde in einem Workshopüber Facettensuche bei der SIGIR 2006
vorgestellt [Bast 06d]. Unseres Wissens nach war dies das erste Mal, dass statt der Nutzbarkeit der Effizienza-
spekt der Facettensuche untersucht wurde.

In Kapitel7 erweitern wir den Autovervollständigungsmechanismus so, dass nicht nur Vervollständigungen
eines Pr̈afixes sondern auch verwandte Terme oder Synonyme vorgeschlagenwerden. Wir zeigen wie man,
sofern man Gruppen von verwandten Termen oder Synonymen kennt, (i)dieses Wissen ausnutzen kann, um für
einen bestimmten Anfragekontext diese Vorschläge effizient zu erhalten und (ii) wie man dabei eineüberm̈aßige
Vergrößerung des Indexes verhindern kann. Dieses Kapitel basiert auf gemeinsamer Arbeit mit Holger Bast und
Debapriyo Majumdar und wird bei CIKM 2007 (16th Conference on Information and Knowledge Management)
[Bast 07b] vorgestellt.

In Kapitel 8 zeigen wir, wie die CompleteSearch Suchmaschine mit ihrer effizienten Pr̈afixsuche und,
wie sich zeigen wird, Verbundberechnung (englisch: “join”) benutzt werde kann, um eine Mischung aus
Datenbankanfragen (“Welche Autoren haben sowohl in SIGIR wie auch in SODA ver̈offentlicht?”) und Voll-
textsuchanfragen (“Finde alle Veröffentlichungen, die sowohl die Worte ‘Datenbank’ wie auch ‘Relevanz-
sortierung’ enthalten.”) zu bearbeiten. Dadurch wird zumindest teilweise eine Br̈ucke zwischen klassischen
Datenbanksystemen und Suchmaschinen geschlagen. Der Inhalt diese Kapitels entstand in Zusammenarbeit
mit Holger Bast und wurde zum Großteil im Konferenzband von CIDR 2007 (Third Biennial Conference on
Innovative Data Systems Research) veröffentlicht [Bast 07c].

Kapitel 9 baut stark auf den Ideen des vorangehenden Kapitels auf und erweitert diese noch. In diesem
Kapitel zeigen wir, wie man die CompleteSearch Suchmaschine zu einer semantischen Suchmaschine erweitern
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kann. Sie ist in dem Sinne “semantisch”, als sie ontologisches Wissen nutzt, um das Suchen nach Entitäten
mit bestimmten Eigenschaften, z.B. Personen die in einem bestimmten Jahr geboren oder Mitglieder einer
bestimmten Gruppe sind, zu ermöglichen. Dies Kapitel beruht auf einer Zusammenarbeit mit Holger Bast,
Alexandru Chitea und Fabian Suchanek. Es wurde im Konferenzband von SIGIR 2007 (30th International
Conference on Research and Development in Information Retrieval) [Bast 07a] veröffentlicht.

Der Ausgangspunkt unserer Arbeit war der Glaube (oder damals eher die Hoffnung), dass unser System für
den Nutzer einen spührbaren Mehrwert darstellen würde. Wir haben eine kleine Nutzerstudie mit Angestellten
des Helpdesks unseres Institutes durchgeführt, um diesen Glauben züuberpr̈ufen. Diese Nutzerstudie wird in
Kapitel 10 vorgestellt und ihre (ermutigenden) Ergebnisse wurden im Konferenzband von GWEM 2007 (Ger-
man Workshop on Experience Management) [Bast 07d] veröffentlicht. Dieser Workshop fand in Verbindung
mit der vierten Konferenz Professionelles Wissensmanagement (WM 2007) statt.

Eine Reihe von wichtigen Implementierungs- und Designentscheidungen werden in Kapitel11 erörtert.
Diese sind teilweise von einer Art, wo sie für die effiziente Bearbeitung von Anfragen relevant sind, und
teilweise von einer Art, wo sie die einfache Ergänzungen von neuen Suchmöglichkeiten f̈ur unser System
ermöglich(t)en.

Nur wenig Hintergrundwissen des nun folgenden Kapitels2, insbesondere jedoch Definition1, wird in
sp̈ateren Kapiteln vorausgesetzt (oder ist dort zumindest nützlich). Davon abgesehen sind alle Kapitel in
sich selbst abgeschlossen und enthalten, wo dies Sinn macht, einen eigenen Abschnitt mit experimenteller
Evaluierung. Experimente für die erweiterten Suchm̈oglichkeiten (Kapitel6 - 10) wurden nur mit der HYB
Datenstruktur gemacht, da sie sich im Allgemeinen als die bessere Datenstruktur erwies (siehe Abschnitt4.6)
und das Herzstück unserer CompleteSearch Suchmaschine bildet.
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Chapter 1

Introduction

1.1 Is the “search problem” not solved? I mean, there’s Google!

Given that nowadays commercial internet search engines can search through several billions of web documents
in well under one second, and then present the user with a ranked list of(hopefully) relevant documents, it
might not be clear, why it could be fruitful to work on a new search enginetechnology. As a starting point and
motivation for the work in this dissertation, it is helpful to ponder for a moment the strengths and weaknesses
of a Google-like system.

Google1 and similar web search engines2 impress by the blazing speed, with which they present results to
the user. Users have learned that, as long as they can phrase their information need in terms of unambiguous,
unique key words, they can rely on Google to provide them with a set of (hopefully) relevant documents in well
under one second. Google works great for such key word based retrieval, because this is exactly what it is built
for. There are, however, other desirable search features, which would conceptually be easy to offer to the users.

One such feature isprefix search, where the user only enters the first few letters of a word and all docu-
ments containing a word starting with this sequence are retrieved. This features saves typing, when a prefix
(greenp3) is already discriminative enough, it will automatically retrieve word variationswith different end-
ings (democra4), and it gives the user a chance to “explore” the corpus by automatically including other words
for the same concept (pneumo5).

Another often desirable feature isfaceted search, where the search results are grouped into different cat-
egories, similar to what is done on e-commerce sites such as ebay6. An automatic breakdown of the Google
search results according to (i) the document language, (ii) whether it comes from more of a private, scien-
tific or a commercial site, or (iii) the file format, could make the result filtering process by the user easier,
while removing the burden of having to specify “advanced search” options, possibly over-specifying the result
requirements.

A third conceptually easy feature involves the combination of information, spread across several documents.
For example, Google’s “scholar” search7 offers a search of scientific documents refined (in the “advanced
search” options) by author or by conference. Yet it does not allow theuser to pose a query asking for all authors
who have published in both the SIGIR and the SODA conference.

The reason that such features are not supported is the same reason that gives Google and similar systems
their extraordinary performance: the use of the inverted index. All major search engines are based on an
inverted index, which precomputes for every term a sorted list of all documents (or rather their ids) containing
the term. The inverted index will be discussed in more detail in the next chapter, but for now it suffices to
note some of its characteristics, which make it so attractive to use. The first isthat it has an almost perfect
locality of access, as handling these lists usually involves linear scans. Thesecond advantage is that these lists
are highly compressible, vastly reducing the amount of space needed to store them and the time to read them.

1http://www.google.com
2http://www.live.com, http://search.yahoo.com
3Greenpeace.
4Democratic, democracy, democrat or democrats.
5Prefix pertaining to breathing, respiration and the lungs.
6http://www.ebay.com
7http://scholar.google.com
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Thirdly, an inverted index can be easily distributed among multiple machines, bothwith respect to terms (where
each machine holds the document lists for selected terms) and with respect to documents (where each machine
is responsible for the data pertaining to certain documents). Fourthly, it canbe efficiently constructed, even
when the data no longer fits in main memory, using external memory sorting routines. Finally, it can be easily
extended by adding new terms to the index.

Somewhat surprisingly, the inverted index does not allow the processing of queries of the types mentioned
above in an efficient manner. The reason for this is essentially two-fold: On the one hand,the inverted index
can only (efficiently) provide information about individual terms. But, e.g., in the cases ofprefix search, where
a range of words is of relevance, or for faceted search, where the set of labels for directories could be potentially
considerable, information about a (large) set of words is required, which poses a problem for the inverted index.
On the other hand, the inverted index returns “only” documents. But to findauthors who have published in two
given conferences, we essentially need to retrieve documents for two queries, one for each conference, and
then intersect the lists of authors (i.e., terms) for these documents. Such an operation (a database “join”) is not
inherently supported by an inverted index.

We have developed data structures for the CompleteSearch engine, whichefficiently provide all of the
features mentioned above, as well as several others. These data structures offer an efficient realization of a
simple, yet powerful mechanism, which will be introduced informally in the nextsection, before it is formalized
in the next chapter. Note that the applicability of this mechanism to the three features missing in Google,
mentioned above, will not be immediately obvious. Indeed, showing the connection between this mechanism
and various features is one of the contributions of this work and the relationwill become clear in later chapters.

1.2 Description of the Core Mechanism

A context-sensitive autocompletion search is at the heart of our CompleteSearch engine. Autocompletion,
in its most basic form, is the following mechanism: the user types the first few letters of some word, and
either by pressing a dedicated key or automatically after each keystroke a procedure is invoked that displays all
relevant words that are continuations of the typed sequence. This helpsthe user to navigate to a desired piece
of information quickly and with as little effort as possible and only requires partial knowledge (a prefix) of
the information itself. The most prominent example of this feature is the tab-completion mechanism in a Unix
shell.

The problem we address in this dissertation, is derived from a more sophisticated form of autocompletion,
which takes into account thecontextin which the to-be-completed word has been typed. Here, we would
like an (instant) display of only those completions of the last query word whichlead to hits, i.e., documents
containing all the entered query words, as well as a display of such hits. For example, assume a user has typed
information ret8. Promising completions might then beretrieval, return, etc., but not, for example,
retire, assuming that, althoughretire by itself is a frequent word, the queryinformation retire leads
to only a few good hits. The underlying algorithmic problem is formalized in Definition 1 in the next Chapter.
This is the feature we refer to asautocompletion search(as it combines autocompletion with search) or, more
concretely but somewhat less concisely, asprefix search and completion.

Figure1.1shows a screenshot of our CompleteSearch engine responding to the queryinformation ret.
For a list of available live demos, seehttp://search.mpi-inf.mpg.de/. The additional features, such as
faceted search, which can also be seen in the screenshot, and others mentioned in the next section and discussed
in detail in later chapters, can all be (efficiently) supported via the same mechanism.

1.3 Contributions and Outline

The rough outline is simple: first the formal problem definition and related work, then our algorithms for its
solutions, followed by various extensions and applications of the basic mechanism, and, before the conclusions,
finishing with important implementation aspects of the CompleteSearch engine, which we have built. A more
detailed chapter-by-chapter breakdown, with a short summary of the contributions, follows.

8Observe that our system does full prefix search. So any document matchinginformation* ret* would be returned as a hit.
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Figure 1.1: A screenshot of our search engine for the queryinformation ret searching in a collection of
about 20,000 computer science articles, each with full text and meta data. The completion boxes on the left and
the hits on the right are updated automatically and instantly after each keystroke, hence the absence of any kind
of search button. Note that the suggested completions can be words (“return”), phrases (“retrieval system”),
and category names (“Ernest Retzel, the AUTHOR”). The number in parentheses after each completion is
the number of hits that would be obtained if that completion was selected or typed. Query words need not be
completed, however, because the search engine, by default, does an implicit prefix search on all query words. If,
for example, the user continued typinginformation ret data, completions and hits fordata (for example,
databases, would be from the 13,672 hits forinformation ret. The two lower boxes suggest possible
refinements of these hits via whatever category information was added to the index. This is the faceted search
feature described in Chapter6.
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In Chapter2, we formalize the algorithmic problem that is at the heart of our engine. We also show how
an inverted index, the standard data structure in information retrieval, can be used to solve this problem, we
given a theoretical analysis of its running time and show where its shortcomings lie. The inverted index will
be the baseline algorithm throughout this dissertation, and we will compare our data structures against it. We
also discuss various other existing data structures, in particular suffix arrays, that might be used to tackle the
problem.

In Chapter3, we present the first data structure developed by us, called AutoTree. We prove both theoret-
ically, under mild assumptions, and experimentally that its running time is output-sensitive, i.e., the algorithm
takes time proportional to the size of the output. We demonstrate through experiments that AutoTree outper-
forms the inverted index on a wide range of inputs. This chapter is based onjoint work with Holger Bast and
Christian Worm Mortenssen and was presented in preliminary form in the 13thInternational Conference on
String Processing and Information Retrieval (SPIRE 2006) [Bast 06b].

In the following Chapter4, our second data structure HYB is introduced, which is optimized for I/O perfor-
mance and whose space consumption gets close to theoretical lower boundsderived from the entropy. Although
HYB actually has a certain minimal running time, it beats the inverted index for general inputs. We also give
an experimental comparison of AutoTree vs. HYB to show that in most settingsHYB, with its locality of ac-
cess is preferable in practice. Most of this chapter, was published in the proceedings of the 29th International
Conference on Research and Development in Information Retrieval (SIGIR 2006) [Bast 06c] and is joint work
with Holger Bast.

Whereas Chapters2-4 focus on efficient realizations of the feature, Chapter5 assesses the usefulness of
autocompletion search again, before comparing several other systems, each providing a service similar to our
CompleteSearch engine. In that chapter, we also discuss various simple extensions of the basic autocompletion
mechanism, which add to its usefulness. These are the ranking of the matchingresults and completions, prox-
imity search, OR and NOT queries, subword search and autocompletion to phrases. Whereas the extensions
listed above are not prefix search specific but are independent of this, the ones presented in the then following
Chapters6-9 heavily depend on an efficient realization of our central mechanism.

In faceted search, directory browsing is combined with key word based search, for document collections
which are organized by various categories. In Chapter6, we show how to apply our work to easily obtain
efficient faceted search capabilities. This is joint work with Holger Bast and was presented at the Workshop on
Faceted Search at SIGIR 2006 [Bast 06d]. To our knowledge, this was the first time that the efficiency aspect,
rather than the usability aspect, of faceted search was studied.

In Chapter7, we extend our autocompletion mechanism from suggesting only completions for a prefix to
also suggest related terms or synonyms. We show how, given sets of related terms or synonyms, we can harvest
this information in such a way that we can (i) find, for the query context given, these suggestions efficiently,
and (ii) we do not inadequately increase the size of the index doing this. Thework in this chapter is joint work
with Holger Bast and Debapriyo Majumdar, and will be presented at the 16thConference on Information and
Knowledge Management (CIKM 2007) [Bast 07b].

In Chapter8, we demonstrate how with its efficient prefix search and, as we will show, join mechanism
the CompleteSearch engine can be used, to answer a mix of classical db-style (“Which authors have published
both in SIGIR and SODA?”) and full-text queries (“List all publications containing the words database and
ranking.”), partly bridging the gap between DB and IR systems. Most of Chapter8 is work published in the
proceedings of the Third Biennial Conference on Innovative Data Systems Research (CIDR 2007) [Bast 07c]
and is joint work with Holger Bast.

Chapter9 heavily builds upon and extends the ideas from the previous chapter. Here we show how to
incorporate our CompleteSearch engine into a semantic search engine. It is“semantic” in the sense that it
(efficiently) uses ontological knowledge to allow searching for entities with certainproperties, e.g., people born
in a given year or members of a given group. This is joint work with Holger Bast, Alexandru Chitea and
Fabian Suchanek. It was published in the proceedings of the 30th International Conference on Research and
Development in Information Retrieval (SIGIR 2007) [Bast 07a].

The initial starting point for our work was the belief (or at that time rather the hope) that our system would
give a noticeable added value to the user. We conducted a small user studywith employees from our institute’s
helpdesk to (successfully) verify this belief. This user study is presented in Chapter10 and its (encouraging)
results, again joint work with Holger Bast, were published in the proceedings of the German Workshop on
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Experience Management (GWEM 2007) [Bast 07d], which was held in conjunction with the Vierte Konferenz
Professionelles Wissensmanagement (WM 2007).

A number of important implementation and design choices are discussed in Chapter 11. These are partly
of a nature, where they are relevant for efficient query processing, and partly of a nature, where they allow(ed)
a simple addition of new features to the system.

Only some background from the now following Chapter2, in particular Definition1, is assumed (or at least
helpful) in the later chapters. Apart from this, all chapters are self-contained and, where applicable, contain a
section with experimental evaluation. Experiments for the advanced features and extensions (Chapters6 - 10)
are for the HYB index only, as it came out as the preferable data structurein a general setting, see Section4.6,
and as it is at the heart of our CompleteSearch engine.





Chapter 2

Problem Definition and Baseline Algorithm

In the following Section2.1, we formalize the aforementioned autocompletion search mechanism. The then
following Section2.2gives further insights related to the difficulty of the problem by presenting a first concrete
solution. This solution uses inverted lists and serves as a baseline throughout this dissertation. The last but one
Section2.3discusses other algorithms, which could be applied to our algorithmic problem, most notably suffix
arrays. Finally, Section2.4 summarizes the (little) notation used in this and the remaining chapters, which is
mostly given for reference purposes.

2.1 Formal Problem Definition

The following problem definition formalizes the algorithmic problem underlying the autocompletion search
feature, described informally in Section1.2. Chapters3 and4 then present our AutoTree and HYB data struc-
tures, which can be used to solve this problem.

Definition 1 An autocompletion search queryis a pair (D,W), where W is a range of words (all possible
completions of the last word which the user has started typing), and D is a set of documents (the hits for the
preceding part of the query). To process the query means to computethe setΦ of all word-in-document pairs
(w,d) with w ∈ W and d∈ D, as well as both the set of matching documents D′ = {d : ∃(w,d) ∈ Φ} and the
set of matching words W′ = {w : ∃(w,d) ∈ Φ}. (Note that for the very first query word, D is the set of all
documents.)

Remark.Algorithms based on the intersection of (sorted) lists of document ids, such as INV, discussed in this
chapter, or HYB, discussed in Chapter4, will require both the input setD and the output setD′ to besorted
sequences, rather than an unsorted sets. Our AutoTree algorithm, discussed in the following Chapter3, does
not require this additional property.

Given an algorithm for solving autocompletion queries according to the definition above, we obtain the
desired search feature from Section1.2 as follows: For the example queryinformation ret , W would be
all words from the vocabulary starting withret , andD would be the set of all hits for the queryinformation
. The outputΦ would be all word-in-document pairs (w,d), wherew starts with ret andd containsw as well
as a word starting withinformation , 1 D′ would be all such documentsd andW′ the corresponding union
of wordsw.

Now if the user continues with the last query word, e.g.,information retri , the set of candidate
documentsD does not change. This allows us to simply filter the sequence of word-in-document pairs from the
previous query (with the sameD but a largerW), keeping only those pairs (w′,d′), wherew′ starts withretri
. This will, in practice, always be faster than relaunching a full autocompletion search query. Note that this
filtering is independent of the method used to compute the initial result. See Section 11.8for details on this and
other uses of result caching.

If, on the other hand, the user starts a new query word, e.g.,information ret meth , then we have an-
other autocompletion query according to Definition1, where nowW is the set of all words from the vocabulary

1We always assume an implicit prefix search, that is, we are actually interested in hits for all wordsstartingwith information ,
which is usually what one wants in practice. Whole-word-only matching canbe enforced by introducing a special end of word symbol
$ .
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starting with meth , andD is the set of all hits forinformation ret . In a general setting, this set of the new
candidate documents can be obtained from the sequence of matching word-in-document pairs for the last query
by sorting the matching (w,d) pairs according tod. This sort takes timeO((

∑

w∈W |D∩Dw|) log(
∑

w∈W |D∩Dw|))
and, while finding the unique elements, also guarantees that the elements ofD will be sorted. However, both
of our algorithms, presented in the next two chapters, manage to avoid this cost, by either not requiring the
elements ofD to be sorted (as is the case for AutoTree), or by working with blocks already sorted by document
id (as is the case for HYB). Details are given in the respective chapters.

In practice, we are actually interested in thebesthits and completions for a query. This can be achieved by
following standard approaches and is discussed in detail in Section5.4. In fact, the main reason that we chose
all matching (w,d) pairsΦ to be part of the output in Definition1, rather than only the matching documentsD′

and wordsW′, is that we will usually requireall matching pairs to give an appropriate ranking.

2.2 Using the Inverted Index to Answer Autocompletion Search Queries

In this section, we will first define what we mean by an “inverted index”. Then we will analyze its space
consumption, before we show how to answer an autocompletion search query (Definition 1) using an inverted
index. This will be the main focus of this section. It will be done through a formal analysis of its processing
time for such queries, presenting upper and lower bounds, as well as anaverage case analysis. Extensions, such
as compression of the index and the incorporation of positional information,will be discussed in later chapters,
when the machinery required for the corresponding analysis has been set up. The aim of this section is (i) to
provide the reader with more intuition concerning the problem itself, and (ii) to give us a baseline against which
we will compare our data structures both theoretically and through experiments.

2.2.1 The Inverted Index: Definition and Space Analysis

Definition 2 By INV (inverted index) we mean the following data structure:
For each word w, store the list of all (ids of) documents Dw containing that word, sorted in ascending order.

The elements of the inverted lists, are just a rearrangement of the sets of allword-in-document pairs. The
cardinality of this set, which is essentially the size of the corpus, we denote byN. Each document id can be
encoded with⌈log2 n⌉ bits. So the total (uncompressed) space usage is given by the following lemma. Space
for storing the lengths of the lists is not included in this bound.

Lemma 1 The inverted lists for INV can be stored uncompressed using a total of at most N· ⌈log2 n⌉ bits.

INV’s intrinsic space efficiency (the “entropy”) and its compressibility will be discussed in Section4.3.1,
once the required terms and concepts have been introduced. Compression will not change its asymptotic pro-
cessing time, which is discussed in the following.

2.2.2 INV’s Processing Time

In the rest of this section, we analyze the time complexity of processing autocompletion search queries with
INV and point out two inherent problems at the end of this section.

Lemma 2 With INV, an autocompletion query(D,W) can be processed in the following time, where Dw denotes
the inverted list for word w:

|D| · |W| +
∑

w∈W

|Dw| +
∑

w∈W

|D ∩ Dw| · log |W|.

Assuming that the elements of W, D, and the Dw are picked uniformly at random from the set of m words and
the set of n documents, respectively, this bound has an expected value of

|D| · |W| +
|W|
m
· N +

|D|
n
·
|W|
m
· N · log |W|.

INV’s processing time is bounded below byΩ(
∑

w∈W min{|D|, |Dw|}).
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Remark.By picking the elements of a setS at random from a supersetU, we mean that each subset ofU of
size |S| is equally likely forS. We arenot making any randomness assumption on thesizesof W, D, andDw

above.
Proof. The obvious way to use an inverted index to process an autocompletion query (D,W) is to compute,
for eachw ∈ W, the intersectionsD ∩ Dw. Then,W′ is simply the set of allw for which the intersection
was non-empty, andD′ is the union of all (non-empty) intersections and, to obtainΦ, for each element in
d ∈ D ∩ Dw we add (w,d) to the output. The intersections can be computed in time linear2 in the total input
volume

∑

w∈W(|D| + |Dw|). The unionD′ can be computed by a|W|-way merge, which requires on the order of
log |W| time per element scanned. Note that the total sum of the lengths|Dw| over allmwords in the vocabulary
is N, which is the total number of word-in-document pairs. With the randomness assumptions, the expected size
of a single listDw is thusN/m. Assuming that the elements of bothD andDw are picked uniformly at random
from the set of all documents of sizen, the expected size of the intersection|D ∩ Dw| is |D|/n · N/m, as the
probability that a certain element is contained in both sets is|D|/n · N/(mn). For the lower bound, observe that
INV computes one intersection for eachw ∈W and any algorithm for intersectingD andDw has to differentiate
between 2min{|D|,|Dw|} possible outputs. Assuming it is a comparison-based intersection algorithm, it will for a
general input need at least min{|D|, |Dw|} comparisons.3

Lemma2 highlights two problems of INV. The first is that the term|D| · |W| can become prohibitively large:
in the worst case, whenD is on the order ofn (i.e., the first part of the query is not very discriminative) andW
is on the order ofm (i.e., only few letters of the last query word have been typed), the bound ison the order of
n · m, that is, quadratic in the collection size. The second problem is due to the required merging. While the
volume

∑

w∈W |D ∩ Dw| will typically be small once the first query word has been completed, it will be large
for the first query word, especially when only few letters have been typed. As we will see in Sections3.6and
4.5, INV frequently takes seconds for some queries, which is quite undesirable in an interactive setting. This is
exactly what motivated us to develop more efficient index data structures.

Note that both problems ultimately arise because INV does not exploit the factthe elements inW form a
range. The very same running times could be obtained if the elements inW were arbitrary elements.

2.3 Related Work

This section discusses work related to the generalalgorithmic problemgiven in Definition1, as the following
two chapters will focus on data structures, which can be used to solve this problem. Aspects related to (i) the
usability of the correspondingautocompletion search featureor (ii) a particular feature (such as faceted search),
which hinges on an efficient solution to the algorithmic problem of Definition1, arenot discussed here but in
the corresponding chapters.

There is a large variety of alternatives to the inverted index in the literature. The ones that apply to the
autocompletion search problem are discussed here. One of the most straightforward ways to process an au-
tocompletion search query (D,W), would be to explicitly search each document fromD for occurrences of a
word from W. However, this document-by-document approach has a very poor locality of access and would
give us a non-constant query processing time per element ofD, completely independent of the respective|W| or
output size

∑

w∈W |D ∩ Dw|. For these reasons, we do not consider this approach further in this work. Another
approach would be to useSignature files, which store supersets of items in a manner similar to bloom filters.
However, in [Zobel 98] they were found to be in no way superior to (but significantly more complicated than)
the inverted index in all major respects.

Our autocompletion problem is related to, but distinctly different frommulti-dimensional range searching
problems, where the collection consists of tuples (of some fixed dimension, for example, pairs of word prefixes),
and queries are asking for all tuples that match a given tuple of ranges [Gaede 98; Arge 99; Ferragina 03;
Alstrup 00]. These data structures could be used for our autocompletion search problem, provided that we
were willing to limit the number of query words. For fast processing times, however, the space consumption

2There are asymptotically faster algorithms for the intersection of two lists [Baeza-Yates 04; Demaine 00], but in our experiments,
we got the best results with the simple linear-time intersect, which we attribute to itscompact code and perfect locality of access.

3We don’t know of any intersection algorithm that is (i)notcomparison-based and (ii) does not need to scan either of the two input
lists completely.
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of any of these structures would be on the order ofN1+d, whereN is the size of an inverted index, andd > 0
grows (fast) with the dimension. For our autocompletion search queries, wecan achieve fast query processing
times and space efficiency at the same time because we have the set of documents matching the partof the query
before the last word already computed (namely when this part was being typed). In a sense, our autocompletion
problem is therefore a 1 1/2 - dimensional range searching problem.

When searching for prefixes (or arbitrary patterns) in a text collection,suffix arrays are a standard choice
[Manber 90; Grossi 00; Grossi 04]. Although these approaches are not directly applicable to our autocomple-
tion problem, we could indeed use suffix arrays to produce the list of all documents that contain words with a
given prefix (or even infix). This list could then be intersected with the setD.

The reason why we have taken INV as our baseline, and not an algorithmbased on suffix arrays, as just
outlined, is as follows. Uncompressed suffix arrays use too much space, as they index every character of
the collection.4 Compressed suffix arrays are not competitive with respect to running time when it comes to
reportingand not justcountingthe occurrences of an infix, because each reported occurrence requires a large
number (depending on the compression ratio) of operations and typically incurs at least one cache miss.

Note that the situation would (seem to) be different, if we wanted context-sensitive infix search. Suffix
arrays would give that just as easily as prefix search, but for the inverted index the problem then becomes
much harder. Somewhat surprisingly, even for this setting, an inverted index, built for an appropriate choice
of k-grams as “words”, was experimentally shown in [Puglisi 06] to outperform suffix arrays. Furthermore,
the application behind our problem definition really calls for prefix search and not for infix search. Infix
search would return too many, mostly irrelevant matches. For example, whentyping “search aut”, we are most
certainly not looking for completions like “flautist” or “aeronautics”. (On theother hand, our algorithm can be
easily extended to consider reasonable subwords like the “vector” in “eigenvector”; we can simply add these to
the index without increasing the total index size considerably. See Section5.8.)

Still, as our AutoTree data structure (introduced in the next chapter) shares certain characteristics with suffix
arrays, e.g., the need for random accesses, we also compared it experimentally against suffix arrays. The results
(favorable for AutoTree) are presented in Section3.8.

Concerning efficient implementations of search engines (or database systems), there is alsolots of work on
query optimization via choosing a clever execution plan. For a multi-word query and an inverted index this can,
e.g., involve first intersecting the shortest lists to quickly limit the set of candidate matches. However, these
approaches do not apply to our fully interactive setting, because there isno choice here but to evaluate the query
in a strict order, from left to right.

2.4 Notation

The following notation will be used throughout the dissertation. Although the (few) symbols will usually be
explained again in the context where they are used, it is helpful to familiarizeoneself with them. They are given
here mostly for reference purposes.

N = total number of word-in-document pairs (w,d)
m = total number of distinct words (“vocabulary”)
n = total number of documents
L = average number of word-in-document pairs in a document, i.e.,L = N/n
W = consecutive words (a “word range”) corresponding to a prefix
D = matching (sorted) document ids for the previous part of a query
Dw = (sorted) document ids for documents containing the wordw
Φ = matching word-in-document pairs (w,d) for an autocompletion search query
W′ = {w : ∃(w,d) ∈ Φ}, i.e., the matching completions for an autocompletion search query
D′ = {d : ∃(w,d) ∈ Φ}, i.e., matching documents for an autocompletion search query

4If the number of characters in the collection isN′, an uncompressed suffix array needs at leastN′⌈log2(N
′)⌉ bits, which exceeds

theN⌈log2(n)⌉ bits required for an inverted index built over the words by a factor of at least the average word length.



Chapter 3

AutoTree Index

In the last chapter, we explained how to use the inverted index to solve autocompletion search queries. In this
chapter, we present our first data structure, called AutoTree, for solving such queries. It is designed for use
in main memory and makes extensive use of bit vectors. AutoTree has the desirable property that its running
time depends, for realistic corpora and queries, linearly on the size of the output. The details are given by the
following theorem.

3.1 Main Result

Theorem 1 Given a collection with n documents, m distinct words, N≥ 25 ·m word-in-document pairs, and a
(constant) average number of distinct words per document L= N/n, there is a data structure AutoTree with the
following properties:

(a) AutoTree can be constructed in O(N) time.

(b) AutoTree uses at most N⌈log2 n⌉ bits of space (which is the space used by an ordinary uncompressed
inverted index)1.

(c) AutoTree can process an autocompletion search query(D,W) (according to Definition1) in time

O ((α + β)|D| + Φ) ,

whereΦ =
∑

w∈W |D ∩ Dw| and Dw is the set of documents containing word w. Hereα = N|W|/(mn),
which is bounded above by1, unless the word range is very large (e.g., when completing a single letter),
and by L, regardless of assumptions about W. If we assume that the words in a document with l words
are a random size-l subset of all words,β is at most2 in expectation. In our experiments,β is indeed
around2 on the average and about4 in the (rare) worst case; our analysis implies a general worst-case
bound ofmin(log(mn/N), Lmax), where Lmax is the maximum document length.

Note that for constantα andβ, the running time is asymptotically optimal, as it takesΩ(|D|) time to merely read
in all of D and it takesΩ(Φ + |W| + |D|) = Ω(Φ) time to output the result.2 Also note that asymptotically, as
the corpus grows,N, n, mandW will become large butLmax, the maximum document length, and henceL, the
average document length, can be assumed to remain bounded. In that case, alpha and beta are bounded even
in the theoretical worst case. The necessary ingredients for the proofof Theorem1 are developed in the next
sections and they are finally assembled in Section3.5.

The condition onN is a technicality and is satisfied for any realistic document collection. Details aregiven
in Section3.5. Intuitively speaking, the condition says thatn, the number of documents grows at least as fast
asm, the number of terms (assuming thatL, the average document length, stays constant). This condition
will guarantee that AutoTree requires less space than BASIC, which canbe understood intuitively as follows:
BASIC only needs to encode, for each word-in-document pair, a singledocumentid (neglecting the small

1Strictly speaking, an uncompressed inverted index needs even more space, to store the list lengths.
2The statement about the required time to read in the (usually “random”) set D tacitly assumesD is explicitly represented element-

by-element. Of course, for the first prefix, whenD is the set of all documents, this is not the case.
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overhead for storing the list lengths and the word, a list pertains to). Thusits space requirement directly depends
on the number of documents. AutoTree, as we will explain in the following sections, essentially encodes each
such pair using itsword id.

We implemented AutoTree, and in Section3.6 show that its processing time correlates almost perfectly
with the bound from Theorem1(c) above (for constantα andβ). In that Section, we also compare it to the
inverted index (see Section2.2), which AutoTree outperforms by a factor of 10 in worst-case processing time
(which is key for an interactive feature), and by a factor of 4 in average-case processing time.

3.1.1 Related Work

Work related to the general autocompletion search problem according to Definition 1, has already been dis-
cussed in Section2.3. Here, we merely discuss data structures with certain similarities to ours, in particular
wavelet trees [Grossi 03; Ferragina 06].

A wavelet tree consists of a tree, built over a fixed alphabet, where eachnode contains a bitvector. These
bitvectors are “relative” as the bits in the left/right child of a bit vector in a node correspond to the 1/0 bits in its
parent. So the length of a particular bit vector depends on the number of 1/0 bits of its parent node. To allow
for constant-time rank and select operations on these bit vectors, auxiliary data structures are built [Munro 96].
Our data structure also makes use of relative bitvectors, but these servea different purpose than in wavelet
trees: in our tree both children of a node store only information corresponding to the 1 bits of their parent node,
andnothing for 0 bits. Furthermore, an integral part of our data structure is a “witness” stored by each 1 bit
(whereas in a wavelet tree one only obtains the final information after descending to the leaf level).

In the description of our data structures we will point out some interesting analogies to the geometric
range-search data structures from [Chazelle 88] and [McCreight 85].

3.1.2 Outline of the Rest of This Chapter

In the following sections, we explain the indexing scheme AutoTree, with the properties given in Theorem1.
A combination of four main ideas will lead us to this scheme: a tree over the words(Section3.2), relative bit
vectors (Section3.3), pushing up the words (Section3.4), and dividing into blocks (Section3.5). In Section
3.6, we will complement our theoretical findings with experiments on a large test collection.

3.2 Building a Tree Over the Words (TREE)

The idea behind our first scheme on the way to Theorem1 is to increase the amount of preprocessing by
precomputing inverted lists not only for words but also for their prefixes. More precisely, we construct a
complete binary tree withm leaves, wherem is the number of distinct words in the collection. We assume here
and throughout this chapter thatm is a power of two. For each nodev of the tree, we then precompute the sorted
list Dv of documents which contain at least one word from the subtree of that node. The lists of the leaves are
then exactly the lists of an ordinary inverted index, and the list of an inner node is exactly the union of the lists
of its two children. The list of the root node is exactly the set of all non-emptydocuments. A simple example
is given in Figure3.1.

Figure 3.1: Toy example for the data structure of scheme TREE with 10 documents and 4 different words.
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Given this tree data structure, an autocompletion search query given by aword rangeW and a set of documents
D is then processed as follows.

1. Compute the unique minimal sequencev1, . . . , vℓ of nodes with the property that their subtrees cover
exactly the range of wordsW. Process theseℓ nodes from left to right, and for each nodev invoke the
following procedure.

2. Fetch the listDv of v and compute the intersectionD∩Dv. If the intersection is empty, do nothing. If the
intersection is non-empty, then ifv is a leaf corresponding to wordw, report for eachd ∈ D∩Dv the pair
(w,d). If v is not a leaf, invoke this procedure (step 2) recursively for each of the two children ofv.

Scheme TREE can potentially save us time: If the intersection computed at an inner nodev in step 2 is empty,
we know that none of the words in the whole subtree ofv is a completion leading to a hit, that is,with a single
intersection we are able to rule out a large number of potential completions. However, if the intersection atv
is non-empty, we know nothing more than that there isat least one wordin the subtree which will lead to a hit,
and we will have to examine both children recursively. The following lemma shows the potential of TREE to
make the query processing time depend on the output size instead of onW as for INV. Since TREE is just a
step on the way to our final scheme AutoTree, we do not give the exact query processing time here but just the
number of nodes visited, because we need exactly this information in the nextsection.

Lemma 3 When processing an autocompletion search query(D,W) with TREE, at most2(|W′| + 1) log2 |W|
nodes are visited, where W′ is the set of all words from W that occur in at least one document from D.

Proof. A node at heighth has at most 2h nodes below it. So each of the nodesv1, . . . , vl has height at most
⌊log2 |W|⌋. Further, no three nodes fromv1, . . . , vl have identical height, which implies thatl ≤ 2⌊log |W|⌋.
Similarly, for each word inW′ we need to visit at most two additional nodes, each at height below⌊log |W|⌋.

The price TREE pays in terms of space is large. In the worst case, each level of the tree would use just as much
space as the inverted index stored at the leaf level, which would give a blow-up factor of log2 m.

3.3 Relative Bitvectors (TREE+BITVEC)

In this section, we describe and analyze TREE+BITVEC, which reduces the space usage from the last section,
while maintaining as much as possible of its potential for a query processing time depending onW′, the set
of matching completions, instead of onW. The INV trick will be to store the inverted lists via relative bit
vectors. The resulting data structure turns out to have similarities with the static 2-dimensional orthogonal
range counting structure of Chazelle [Chazelle 88].

In the root node, the list of all non-empty documents is stored as a bit vector: whenN is the number of
documents, there areN consecutive bits, and theith bit corresponds to document numberi, and the bit is set to
1 if and only if that document contains at least one word from the subtree of the node. In the case of the root
node this means that theith bit is 1 if and only if document numberi contains any word at all.

Now consider any one childv of the root node, and with it store a vector ofN′ bits, wereN′ is the number
of 1-bits in the parent’s bit vector. To make it interesting already at this pointin the tree, assume that indeed
some documents are empty, so that not all bits of the parent’s bit vector are set to one, andN′ < N. Now the
jth bit of v corresponds to thejth 1-bit of its parent, which in turn corresponds to a document numberi j . We
then set thejth bit of v to 1 if and only if document numberi j contains a word in the subtree ofv.

The same principle is now used for every nodev that is not the root. Constructing these bit vectors is
relatively straightforward; it is part of the construction given in Section3.4.1.

Lemma 4 Let stree denote the total lengths of the inverted lists of algorithm TREE. The total number of bits
used in the bit vectors of algorithm TREE+BITVEC is then at most2stree plus the number of empty documents
(which cost a0-bit in the root each).
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Figure 3.2: The data structure of TREE+BITVEC for the toy collection from Figure3.1.

Proof. The lemma is a consequence of two simple observations. The first observation is that wherever there
was a document number in an inverted list of algorithm TREE there is now a 1-bit in the bit vector of the same
node, and this correspondence is 1− 1. The total number of 1-bits is thereforestree.

The second observation is that if a nodev that is not the root has a bit corresponding to some document
numberi, then the parent node also has a bit corresponding to that same document,and that bit of the parent is
set to 1, since otherwise nodev would not have a bit corresponding to that document.

It follows that the nodes, which have a bit corresponding to a particular fixed document, form a subtree that
is not necessarily complete but where each inner node has degree 2, and where 0-bits can only occur at a leaf.
The total number of 0-bits pertaining to a fixed document is hence at most the total number of 1-bits for that
same document plus one. Since for each document we have as many 1-bits at the leaves as there are words in
the documents, the same statement holds without the plus one.

The procedure for processing a query with TREE+BITVEC is, in principle, the same as for TREE. The only
difference comes from the fact that the bit vectors, except that of the root,can only be interpreted relative to
their respective parents.

To deal with this, we ensure that whenever we visit a nodev, we have the setIv of those positions of the
bit vector stored atv that correspond to documents from the given setD, as well as the|Iv| numbers of those
documents. For the root node, this is trivial to compute. For any other nodev, Iv can be computed from its
parentu: for eachi ∈ Iu, check if theith bit of u is set to 1, if so compute the number of 1-bits at positions less
than or equal toi, and add this number to the setIv and store by it the number of the document fromD that was
stored byi. With this enhancement, we can follow the same steps as before, except thatwe have to ensure now
that whenever we visit a node that is not the root, we have visited its parentbefore. The lemma below shows
that we have to visit an additional number of up to 2 log2 m nodes because of this.

Lemma 5 When processing an autocompletion search query(D,W) with TREE+BITVEC, at most2(|W′| +
1) log2 |W| + 2 log2 m nodes are visited, with W′ defined as in Lemma3.

Proof. By Lemma3, at most 2(|W′| + 1) log2 |W| nodes are visited in the subtrees of the nodesv1, . . . , vl that
coverW. It therefore remains to bound the total number of nodes contained in the paths from the root to these
nodesv1, . . . , vl .

First consider the special case, whereW starts with the leftmost leaf, and extends to somewhere in the
middle of the tree. Then each of thev1, . . . , vl is a left child of one node of the path from the root tovl . The
total number of nodes contained in thel paths from the root to each ofv1, . . . , vl is then at mostd − 1, whered
is the depth of the tree. The same argument goes through for the symmetric case when therange ends with the
rightmost leaf.

In the general case, whereW begins at some intermediate leaf and ends at some other intermediate leaf,
there is a nodeu such that the leftmost leaf of the range is contained in the left subtree ofu and the rightmost
leaf of the range is contained in the right subtree ofu. By the argument from the previous paragraph, the paths
from u to those nodes fromv1, . . . , vl lying in the left subtree ofu then contain at mostdu − 1 different nodes,
wheredu is the depth of the subtree rooted atu. The same bound holds for the paths fromu to the other nodes
from v1, . . . , vl , lying in the right subtree ofu. Adding the length of the path from the root tou, this gives a total
number of at most 2d − 3
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3.4 Pushing Up the Words (TREE+BITVEC +PUSHUP)

The scheme TREE+BITVEC+PUSHUP presented in this section gets rid of the log2 |W| factor in the query
processing time from Lemma5. The idea is to modify the TREE+BITVEC data structure such that for each
element of a non-empty intersection, we find a new word-in-document pair (w,d) that is part of the output.
For that we store with each single 1-bit, which indicates that a particular document contains a word from a
particular range, one word from that document and that range. We do this in such a way that each word is
stored only in one place for each document in which it occurs. When thereis only one document, this leads to a
data structure that is similar to the priority search tree of McCreight, which wasdesigned to solve the so-called
3-sided dynamic orthogonal range-reporting problem in two dimensions [McCreight 85].

Let us start with the root node. Each 1-bit of the bit vector of the root node corresponds to a non-empty
document, and we store by that 1-bit thelexicographically smallestword occurring in that document. Actually,
we will not store the word but rather its number, where we assume that we have numbered the words from
0, . . . ,m− 1.

More than that, for all nodes at depthi (i.e., i edges away from the root), we omit the leadingi bits of its
word number, because for a fixed node these are all identical and can be computed from the position of the node
in the tree. However, asymptotically this saving is not required for the spacebounds in Theorem1 as dividing
the words into blocks will already give a sufficient reduction of the space needed for the word numbers.

Now consider anyone childv of the root node, which has exactly one halfH of all words in its subtree. The
bit vector ofv will still have one bit for each 1-bit of its parent node, but the definition ofa 1-bit ofv is slightly
different now from that for TREE+BITVEC. Consider thejth bit of the bit vector ofv, which corresponds to
the jth set bit of the root node, which corresponds to some document numberi j . Then this document contains
at least one word — otherwise thejth bit in the root node would not have been set — and the number of the
lexicographically smallest word contained is stored by thatjth bit. Now, if documenti j contains other words,
and at least one of theseother words is contained inH, only then thejth bit of the bit vector ofv is set to 1,
and we store by that 1-bitthe lexicographically smallest word contained in that document that has not already
been stored in one of its ancestors(here only the root node).
Figure3.3explains this data structure by a simple example. The construction of the data structure is relatively
straightforward and can be done in timeO(N). Details are given in Section3.4.1.

Figure 3.3: The data structure of TREE+BITVEC+PUSHUP for the example collection from Figure3.1. The
large bitvector in each node encodes the inverted list. The words stored bythe 1-bits of that vector are shown in
gray on top of the vector. The word list actually stored is shown below the vector, where A=00, B=01, C=10,
D=11, and for each node the common prefix is removed, e.g., for the node marked C-D, C is encoded by 0
and D is encoded by 1. A total of 49 bits is used, not counting the redundant 000 vectors and bookkeeping
information like list lengths etc.

To process a query we start at the root. Then, we visit nodes in such anorder that whenever we visit a
nodev, we have the setIv of exactly those positions in the bit vector ofv that correspond to elements fromD
(and for eachi ∈ Iv we know its corresponding elementdi in D). For each such position with a 1-bit, we now
check whether the wordw stored by that 1-bit is inW, and if so output (w,di). This can be implemented by
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random lookups into the bit vector in timeO(|Iv|) as follows. First, it is easy to intersectD with the documents
in the root node, because we can simply lookup the document numbers in the bitvector at the root. Consider
then a childv of the root. What we want to do is to compute a new setIv of document indices, which gives
the numbering of the document indices ofD in terms of the numbering used inv. This amounts to counting
the number of 1-bits in the bitvector ofv up to a given sequence of indices. Each of these so-calledrank
computations can be performed in constant time with an auxiliary data structure that uses space sublinear in the
size of the bitvector [Munro 96].

Consider again the check whether a wordw stored by a 1-bit corresponding to a document fromD is
actually inW. This check can only fail for relatively few nodes, namely those with at least one leaf not from
W in their subtree. These checks do not contribute an element to the output set, and are accounted for by the
factorβ mentioned in Theorem 1, and Lemmas6 and8 below.

Lemma 6 With TREE+BITVEC+PUSHUP, an autocompletion search query(D,W) can be processed in time
O
(

|D| · β +
∑

w∈W |D ∩ Dw|
)

, whereβ is bounded bylog2 m as well as by the average number of distinct words
in a document from D. For the special case, where W is the range ofall words, the bound holds withβ = 1.

Proof. As we noticed above, the query processing time spent in any particular nodev can be made linear in the
number of bits inspected via the index setIv. Recall that eachi ∈ Iv corresponds to some document fromD.
Then for reasons identical to those that led to the space bound of Lemma4, for any fixed documentd ∈ D, the
set of all visited nodesv which have an index in theirIv corresponding tod form a binary tree, and it can only
happen for the leaves of that tree that the index points to a 0-bit, so that the number of these 0-bits is at most
the number of 1-bits plus one.

Let againv1, . . . , vl denote the at most 2 log2 m nodes covering the given word rangeW (see Section3.2).
Observe that, by the time we reach the first node fromv1, . . . , vl , the index setIv will only contain indices from
D′, as all the 1-bits for these nodes correspond to a word inW′. Strictly speaking, this is only guaranteed after
the intersection with this node, which accounts for an additionalD in the total cost. Thus, each distinct word
w we find in at least one of the nodes can correspond to at most|D ∩ Dw| 1-bits met in intersections with the
bitvectors of other nodes in the set, and each 1-bit leads to at most two 0-bitsmet in intersections. Summing
over allw ∈W gives the second term in the equation of the lemma.

The remaining nodes that we visit are all ancestors of one of thev1, . . . , vl , and we have already shown in
the proof of Lemma5 that their number is at most 2 log2 m. Since the processing time for a node is always
bounded byO(|D|), that fraction of the query processing time spent in ancestors ofv1, . . . , vl is bounded by
O(|D| log2 m).

Lemma 7 The bit vectors of TREE+BITVEC+PUSHUP require a total of at most2N + n bits.

Proof. Just as for TREE+BITVEC, each 1-bit can be associated with the occurrence of a particular word in a
particular document, and that correspondence is 1− 1. This proves that the total number of 1-bits is exactlyN,
and since word numbers are stored only by 1-bits and there is indeed one word number stored by each 1-bit, the
total number of word numbers stored is alsoN. By the same argument as in Lemma4, the number of 0-bits is
at most the number of 1-bits plus 1 for each document. This can alternativelybe seen as follows: Start with an
empty document and, iteratively, insert the lexicographically smallest of its words, which has not been inserted
yet. Each such word-in-document pair, which corresponds to a 1 in a bitvector, will be pushed up in the tree as
far as possible, thereby replacing one 0-bit and creating (at most) two new 0-bits in its children. Less than two
0-bits (and in fact none at all) will only be created, if the 1-bit was alreadyat the bottom level.

3.4.1 The Index Construction for TREE+BITVEC +PUSHUP

The construction of the tree for algorithm TREE+BITVEC+PUSHUP is relatively straightforward and takes
constant amortized timeper word-in-document occurrence (assuming each document containsits word sorted
in ascending order).
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1. Process the documents in order of ascending document numbers, andfor each documentd do the follow-
ing.

2. Process the distinct words in documentd in order of ascending word number, and for each wordw do the
following. Maintain acurrent node, which we initialize as an artificial parent of the root node.

3. If the current node does not containw in its subtree, then set the current node to its parent, until it does
containw in its subtree. For each node left behind in this process, append a 0-bit tothe bit vector of those
of its children which have not been visited.

Note: for a particular word, this operation may take non-constant time, butonce we go from a node to its
parent in this step, the old node will never be visited again. Since we only visitnodes, by which a word
will be stored and such nodes are visited at most three times, this gives constant amortized time for this
step.

4. Set the current node to that one child which containsw in its subtree. Store the wordw by this node. Add
a 1-bit to the bit vector of that node.

3.5 Divide Into Blocks (TREE+BITVEC +PUSHUP+BLOCKS)

This section is our last station on the way to our main result, Theorem1.
For a givenB, with 1 ≤ B ≤ m, we divide the set of all words in blocks of equal sizeB. We then construct

the data structure according to TREE+BITVEC+PUSHUP for each block separately. As we only have to
consider those blocks, which contain any words fromW, this gives a further speedup in query processing time.
An autocompletion query given by a word rangeW and a set of documentsD is then processed in the following
three steps.

1. Determine the set ofℓ (consecutive) blocks, which contain at least one word fromW, and fori = 1, . . . , ℓ,
compute the subrangeWi of W that falls into blocki. Note thatW =W1∪̇ · · · ∪̇Wℓ.

2. Fori = 1, . . . , ℓ, process the query given byWi andD according to TREE+ BITVEC+PUSHUP, resulting
in a set of matchesMi := {(w,d) ∈ C : w ∈Wi ,d ∈ D}, whereC is the set of of word-in-document pairs.

3. Compute the union of the sets of matching word-in-document pairs∪ℓi=1Mi (a simple concatenation).

Lemma 8 With TREE+BITVEC+PUSHUP+BLOCKS and block size B, an autocompletion search query(D,W)
can be processed in time O

(

|D| · (α + β) +
∑

w∈W |D ∩ Dw|
)

, whereα = |W|/B andβ is bounded bylog2 B as
well as by the average number of distinct words from W1 ∪Wℓ (the first and the last subrange from above) in a
document from D.

Proof. Let Wi denote the subset ofW pertaining to blocki. Since each block contains at mostB words,
according to Lemma6, we need time at mostO(|D| log2 B +

∑

w∈Wi
|D ∩ Dw|) for a block i. However, for all

but at most two of these blocks (the first and the last) it holds that all wordsof the blocks are inW, so that
according to the special case in Lemma6, the query processing time for each of the at most|W|/B inner blocks
is actuallyO(|D| +

∑

w∈Wi
|D ∩ Dw|) . Summing these up gives us the bound claimed in the lemma.

Lemma 9 TREE+BITVEC+PUSHUP+BLOCKS with block size B requires at most2N + n · ⌈m/B⌉ bits for its
bit vectors and at most N⌈log2 B⌉ bits for the word numbers stored by the1-bits. For B ≥ mn/N, this adds
up to at most4N for the bit vectors, and N(4 + ⌈log2 B⌉) bits in total. The auxiliary data structure (for the
constant-time rank computation) requires at most an additional N/4 bits.

Proof. To count the number of bits in the relative bitvectors, we use the same argument as for Lemma7: there
is exactly one 1-bit for each of theN word-in-document occurrences. The total number of 0-bits is at most the
total number of bits in the roots of the blocks (which givesn · ⌈m/B⌉), plus the total number of 1-bits. So the
total space for the bit vectors is bounded byN + n⌈m/B⌉ + N ≤ 2N + n⌈N/n⌉ ≤ 4N. The space for the word
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numbers is exactlyN⌈log2 B⌉, as it requires⌈log2 B⌉ bits to encode a word in a block of sizeB. Finally, as the
total length of the bit vectors is bounded by 4N, we can construct the auxiliary data structure to require at most
N bits [Munro 96].3

With all the required machinery in place, we can now prove Theorem1. Part (a) of Theorem1 is established
by the construction given in Section3.4.1. Part (b) of Theorem1 follows from Lemma9 by choosingB =
⌈nm/N⌉. This choice ofB minimizes the space bound of Lemma9, and we call the corresponding data structure
AutoTree. Note that it is here that we use the factN ≥ 25 · m, as it ensures 5+ log2(nm/N) ≤ log2 n and
ultimately 5+ ⌈log2 B⌉ ≤ ⌈log2 n⌉. Part (c) of Theorem1 follows from Lemma8 and the following remarks.
If the words in a document withL words are a random size-L subset of all words, then the average number of
words per document that fall into a fixed block is at most 1. In our experiments, the average value forβ was
2.2.

As mentioned just before Lemma6, β counts the number of bitvector lookup operations for a candidate
document inD, which do not contribute any element to the result set. If the wordrangeW spans multiple tree
blocks of sizeB = ⌈nm/N⌉ = ⌈m/L⌉, then such “useless” bitvector lookups can also occur at the root nodes of
the intermediate tree blocks. However, these comparisons are accounted for by the factorα, which bounds the
number of such intermediate blocks, andβ only counts such bitvector lookups in the boundary blocks, which
also contain at least one word not inW. Note thatα is trivially bounded by the total number of blocks, which
is ⌈m/B⌉ ≤ 1+ L, which is constant.

Formally,β is defined as the number of bitvector lookups that need to be performed in the boundary blocks
(of which there are at most two) for a candidate document inD until either (a) this document can be ruled
out as an element ofD′ (as it contains no valid completions) or (b) a relevant completion is reported from this
document (at which point the total number of additional bitvector lookups is bounded by twice the number
of matching output elements for this document). A small, constantβ thus indicates a strong output-sensitive
behavior of the algorithm. Note thatβ is bounded by 2Lmax, the maximum number of words in any document.

Finally, it remains to explain, how to obtainW′ andD′ from Φ. Theoretically, this can be done by having
two bit vectors of lengthsmandn respectively, which are to be reused for all queries. Note that the extraspace
required is negligible compared to the size of the data structure itself. Then, while inspecting the elements
(w,d) ∈ Φ, we set the bit corresponding tow in the bit vector of dimensionm to 1, if it is not set already, and
addw to the setW′. In a similar fashion, we proceed forD′. This takes timeΘ(|Φ|). Finally, to be able to reuse
the two bit vectors, we pass through all elements inD′ andW′ and reset the corresponding bits to 0. These
passes take timeO(|Φ|). In the end, the elements ofW′ and in particular ofD′ will be unsorted. At first glance,
this could cause a problem, asD′ will be the inputD for following autocompletion queries. But AutoTree does
not require the elements ofD to be sorted (unlike INV).

In practice, we simply sort the elements (w,d) ∈ Φ by w within each block, to obtain the setW′. Similarly,
to obtainD′, we merge the output lists of elements (w,d) for individual nodes as, ifD is sorted, these will be
sorted byd.4 We chose this approach mainly as (i) it makes the use and aggregation of scores easier, (ii) we
can, in fact, use the same sorting/scoring methods for documents for INV and AutoTree (which made software
maintenance easier), (iii) the absolute time for sorting is small compared to the time to find the matches, and,
(iv) the logarithmic factor in the time required for sorting is small compared to constant costs for, e.g., copying
and other simple manipulations, so that we still obtain an almost perfect linear correlation with the size of the
Φ, even as the size ofΦ varies.

3.6 Experiments

We tested both AutoTree and our baseline INV on two corpora. First, on thecorpus of the TREC 2004 Robust
Track (ROBUST ’04), which consists of the documents on TREC disks 4 and 5, minus the Congressional
Record [Voorhees 04]. Second, on the English Wikipedia (WIKIPEDIA), using only article pages and not
discussion or user pages.

3Note that we do not count book keeping information (neither for AutoTree nor for BASIC), such as space needed to store the
lengths of the bit vectors (or the lengths of the inverted lists), as this additional space is asymptotically negligible.

4Interestingly, the total number of such lists is bounded byL · 2Lmax, as each of theL blocks contributes at most 2Lmax non-empty
nodes. This is independent ofn, m, N or W, which might seem trivial, but which is something that INV fails to achieve.
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In both cases, we implemented AutoTree with an optimal block size (according to Section3.5), which was
4096 for the ROBUST’04 collection and 65,536 for WIKIPEDIA. Block sizes were rounded to the nearest
power of two.

The following table gives details on the collections and on the space consumption of the two schemes; as
we can see, AutoTree does indeed use no more space (and for both collections, in fact, significantly less) than
INV, as guaranteed by Theorem1.

bits per word-in-doc pair

Collection raw size n m L B∗ INV AT

ROBUST’04 1.9 GB 528,025 771,189 219 4,096 20.0 13.9

WIKIPEDIA 6.0 GB 2,363,363 7,138,267 128 65,536 22.0 17.3

Table 3.1: The characteristics of our test collections:n= number of documents,m= number of distinct words,
L = N/n= (rounded) average number of distinct words in a document,B∗ = space-optimal choice for the block
size. The last two columns give the space usage of INV and AT() in bits per word-in-document pair, not
including the (small) additional space for storing list lengths and the auxiliary data structure for constant-time
rank operations. Both collections satisfy the condition onN for Theorem1.

For the ROBUST’04 collection, queries are derived from the 200 “old”5 queries (topics 301-450 and 601-
650) of the TREC Robust Track in 2004 [Voorhees 04]. For the WIKIPEDIA collection, we generated 200
queries randomly as follows: For each query we picked a random document with uniform probability and
sampled 4 terms of length at least 4 from it. Terms were sampled according to their tf-idf values, i.e., each
term had a probability of being sampled proportional tot f · log(n/d f), wheret f is the number of occurrences
in the given document,n is the total number of documents andd f is the number of documents containing this
particular term. See Table3.2for some examples of such random queries.

Query 1: highexplosives normal pyrotechnics primarysources
Query 2: remained growth overview europe
Query 3: legislatures seats typically apportion
Query 4: salisbury inheriting westmoreland thomas
Query 5: italy mayor frazioni baroque

Table 3.2: Five of the random 200 queries generated for the WIKIPEDIA collection. From these queries, we
constructed 800 autocompletion search queries as described below.

In both cases, these queries were then “typed” from left to right, taking aminimum word length of 4 for
the first query word, and 2 for any query word after the first. From these autocompletion search queries we
further omitted those, which would be obtained by simple filtering from a prefix according to the explanation
following Definition 1 in the previous chapter. This filtering procedure is identical for AutoTreeand INV and
takes only a small fraction of the time for the autocompletion search queries processed according to Definition
1, which is why we omitted it from consideration in our experiments. To give an example, for the ad hoc query
world bank criticism , we considered the autocompletion search queriesworl , world ba , and world
bank cr . For the ROBUST’04 collection, we considered a total number of 513 suchautocompletion search
queries. For the WIKIPEDIA collection, exactly 800 such autocompletion queries were obtained (as all of the
200 “raw” queries contained exactly 4 words).

We implemented INV and AutoTree in C++ and measured query processing times on a Dual Opteron
machine, with 2 Intel Xeon 3 GHz processors, 8 GB of main memory, running Linux. We measured the time
for producing the output according to Definition1.

As we implemented a sort-based approach to derive the unique elements inD′ fromΦ (see the remarks at
the end of Section3.5), the time for scoring and ranking would be essentially identical for AutoTree and INV,
and would, according to a number of tests, take only a small fraction of the aforementioned processing time.
We therefore excluded it from our measurements. For INV, we implemented afast linear-time intersect, which,

5They are “old” as they had been used in previous years for TREC.
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in preliminary experiments not reported here, turned out to be faster than itsasymptotically optimal relatives
[Demaine 00], due to its almost perfect locality of access.

ROBUST’04 (513 queries)

Scheme Max Mean StdDev Median 90%-ile 95%-ile Correl.

INV 14.8secs 0.22secs 0.83secs 0.042secs 0.39secs 0.98secs 0.99

AT 1.15secs 0.07secs 0.12secs 0.042secs 0.17secs 0.24secs 0.99

WIKIPEDIA (800 queries)

Scheme Max Mean StdDev Median 90%-ile 95%-ile Correl.

INV 71.9secs 2.20secs 7.28secs 0.351secs 4.77secs 10.04secs 0.99

AT 2.17secs 0.17secs 0.25secs 0.032secs 0.47secs 0.63secs 0.99

Table 3.3: Processing times statistics of INV and AT() for all queries for both test collections. The
6th and 7th column show thekth worst processing time, wherek is 10% and 5%, respectively, of the number
of queries. The last column gives the correlation factor between query processing times and total list volume
∑

w∈W(|D| + |Dw|) for INV, and input size plus total output volume|D| + 10 ·
∑

w∈W |D ∩ Dw| for AutoTree.

The results from Table3.3conform nicely to our theoretical analysis. Four main observations can bemade:
(i) with respect to maximal query processing time, which is key for an interactive application, AutoTree im-
proves over INV by a factor of more than 10; (ii) in average processingtime, which is significant for throughput
in a high-load scenario, the improvement is still a factor of 3 for the smaller collection and 13 for the larger
collection; (iii) processing times of AutoTree are sharply concentrated around their mean, while for INV they
vary widely (in both directions as we checked); (iv) the almost perfect correlation between query processing
times and our analytical bounds (explained in the caption of Figure3.3) demonstrates both the soundness of
our theoretical modeling and analysis as well as the accuracy of our implementation.

ROBUST’04 (513 queries)

1-word (199 queries) multi-word (314 queries)

Scheme Max Mean Max Mean

INV 0.11secs 0.01secs 14.82secs 0.35secs

AutoTree 0.67secs 0.12secs 1.15secs 0.05secs

WIKIPEDIA (800 queries)

1-word (200 queries) multi-word (600 queries)

Scheme Max Mean Max Mean

INV 0.23secs 0.03secs 71.85secs 2.92secs

AutoTree 1.36secs 0.41secs 2.17secs 0.09secs

Table 3.4: Breakdown of query processing for INV and AutoTree by number of query words.

Table3.4, finally, breaks down query processing times by the number of query words. As we can see, INV
is significantly faster than AutoTree for the 1-word queries, however, not because AutoTree is slow, but because
INV is extremely fast on these queries. This is so, because INV does nothave to compute any intersections for
a 1-word query but merely has to copy all relevant listsDw to the output, whereas AutoTree has to extract, for
each output element, bits from its (packed) document id and word id vectors. On multi-word queries, INV has
to process a much larger volume than AutoTree, and we see essentially the situation discussed above for the
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overall figures.

3.7 Incorporating Positional Information in AutoTree

Our implementation of AutoTree doesnot support the use of positional information. In particular, the use of
phrase or proximity search is currently not possible. One obvious approach to remedy this would be to consider
each region of interest, e.g., a phrase or, in the extreme case, every position as a separate document and to
also keep track of which of these “micro-documents” belong to the same “macro-document”, i.e., ordinary
document.

However, such an approach would inherently destroy any output-sensitive behavior for the (common) case,
where we would like the usual document-level completion, disregarding possible positional information. We
have to commit to a certain “unit”, for which we want an output-sensitive behavior, and this unit cannot be
dynamically changed. A solution involving the duplication of several AutoTrees with different notions of a
“document” would lead to an increase of space.

In practice, it might still be feasible to commit to a single unit of granularity and then, for broader queries,
merge the results from the “micro-documents”. We did, however, not followthis approach to the end, as we
started developing our alternative and generally superior (see Section4.6) HYB data structure, presented in the
next chapter. HYB easily allows the incorporation of positional information and also comes with guarantees on
the compressibility of this information.

3.8 AutoTree vs. Suffix Arrays

As already discussed in Section2.3, suffix arrays could also readily be applied to find all occurrences of a given
prefix. Here, we will give experimental evidence that suffix arrays do indeed (i) take too much space or (ii) take
long to report all occurrences.

We compared AutoTree against a state-of-the art implementation of SuccinctSuffix Arrays (version 2)
[Mäkinen 04] (SSA2), which can be downloaded from the Pizza&Chili website athttp://pizzachili.dcc.

uchile.cl/. We also experimented with the other available suffix array variants available on that site, but
SSA2 performed best and, for the same reason, was chosen as a baseline in [Puglisi 06].

SSA2 comes with two crucial tuning parameters, which govern the space-time trade-off. The sampling
rate, which controls the gaps between positions sampled in the full suffix array, and a factor, which governs
the amount of space for the auxiliary data structure, which is used for the constant time rank queries for bit
vectors.6 Slightly confusingly, alow sampling rate, in the authors’ terminology, means thatmanypositions are
sampled, that the gaps are thus small, and that therefore the space consumption goes up while the processing
time goes down. In Table3.5, we show the performance of SSA2 for various choices of this parameter. We
also tried out several values for the factor pertaining to the space of the auxiliary data structure. However, this
turned out to have only a very small effect and the default value of 4, so that at most 1/4-th of the space of a bit
vector is used for the constant time rank data structure, tended to give the best performance.

As AutoTree returns documents, and not positions, for a given prefix,we built a single string for our text
corpus, where multiple word-in-document occurrence were combined to asingle occurrence of that word.
This way, the number of occurrences returned by both methods was identical. The corpus, we used for this
experiment, containedn = 51,671 documents from the domain of homeopathic medicine. In total, there
were N = 13,970,105 word-in-document pairs and the total size of the (uncompressed) string on disk was
97 MB. We compared the time that both SSA2 and AutoTree take to report all occurrences of 200 random
(but occurring) 4-letter prefixes. Note that|D| = n in this case, which constitutes the worst-case for our data
structure. As AutoTree cannot easily reproduce the original corpus from its index, whereas SSA2 can, we also
counted the size of the string toward the size of AutoTree. Numbers in parentheses in the table refer to the
setting, where this string is compressed with gzip, which reduces its size from97 to 26 MB. The time to sort
the occurrences isnot included in the time for AutoTree, as SSA2 also returns a list ofunsortedoccurrences.

Table3.5 shows that even in worst case setting for AutoTree, where|D| = n and the full, uncompressed
string is counted toward AutoTree’s index size, the state-of-the-art SSA2 suffix array needs at least 17% more

6AutoTree also uses such an auxiliary data structure.
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SSA2 sample rate
(disk space SSA2)/ (average time SSA2)/

(disk space AutoTree) (average time AutoTree)

64 0.63 (1.15) 14.9
32 0.70 (1.30) 6.89
16 0.86 (1.58) 2.87
8 1.17 (2.17) 0.94
4 1.79 (3.30) 0.21

Table 3.5: Comparison of relative space and time consumption for AutoTree and SSA2. Both data structures
were used to find the (unsorted) occurrences of 200 4-letter prefixes, which yields AutoTree’s worst case of
|D| = n. SSA2 was built for all possible sample rates between 64 and 4. The spacerefers to the space of
both data structures on disk. The space for storing the string, representing the corpus, is counted toward space
consumption for AutoTree. The numbers in parentheses in the 2nd column refer to the scenario, where this
string is compressed using gzip.

space, for an improvement in average running time of a mere 6%. If one counted the space of the compressed
string instead, or if one considered cases where|D| << n, the comparison would be far more lopsided, which is
why we disregarded the use of suffix arrays for our autocompletion search setting.



Chapter 4

HYB Index

4.1 Introduction

In this chapter, we present the data structure, named HYB, which our CompleteSearch engine is built upon.
It uses no more space than a state-of-the-art compressed inverted index, and can respond to autocompletion
queries as described in Definition1 within a small fraction of a second, for collections up to about a Terabyte in
raw size. HYB is optimized for settings where the index is too large to fit in main memory and resides on disk.

Our main competitor in this chapter is, as before, the inverted index (INV). Other data structures that could
be directly applied to our problem either use a lot of space or have other limitations; see the discussion in
Section2.3 and also the comparison to the AutoTree index in Section4.6. We give a rigorous mathematical
analysis of HYB with respect to both space usage and query processingtimes and we complement the analysis
of INV, given in Section2.2, by analyzing INV’s space usage when its document lists are compressed. Our
analysis accurately predicts the real behavior on our test collections.

Concerning space usage, we define a notion ofempirical entropy[Ferragina 05] [Williams 99], which cap-
tures the inherent space complexity of an index independent of a particular compression scheme. We prove that
the empirical entropy of HYB is essentially equal to that of INV, and we find that the actual space usage of our
implementation of the two index data structures is indeed almost equal, for each of our three test collections.

Concerning processing times, we give a precise quantification of the number of operations needed, from
which we derive bounds for the worst, best, and average-case behavior of HYB. The corresponding bounds for
INV are given in Section2.2. We also take into account the different latencies of sequential and random access
to data [Aggarwal 88].

We compare INV and HYB on three test collections with different characteristics. One of our collections
has been (semi-)publicly searchable over the last years, so that we have autocompletion search queries from
real users for it. Our largest collection is the TREC Terabyte benchmark with over 25 million documents
[Clarke 05].

On all three collections and on all the queries we considered, HYB outperforms INV by a factor of 30− 60
in worst-case query processing time, and by a factor of 5−15 in average case query processing time. In absolute
terms, HYB achieves average query processing of less than one tenth ofa second on all collections, on a single
machine and with the index on disk (and not in main memory).

4.2 Definition of Empirical Entropy

To analyze the inherent space complexity of INV and HYB independently ofthe specialties of a particular com-
pression scheme, we introduce a notion ofempirical entropy, which is supposed to quantify the minimal number
of bits required to store the respective data. Both INV and HYB are essentially a collection of (multi)sets and
sequences. The following definition gives a natural notion of entropy for each such building block, and for
arbitrary combinations of them (similar definitions have been made in [Ferragina 05] and [Williams 99]). The
reader might first want to skip the following definition and come back to it whenit is first used in the analysis
that follows.

43
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Definition 3 We defineempirical entropyfor the following entities, whereH(p1, . . . , pl) = −
∑l

i=1(pi · log2 pi)
is the l-ary entropy function.

(a) For asubsetof size n′ with elements from a universe of size n, the empirical entropy is n·H(n′/n,1−n′/n)
(include each element of the universe into the subset with probability n′/n), which is

n′ · log2
n
n′
+ (n− n′) · log2

n
n− n′

.

(b) For a multisubsetof size n′ with elements from a universe of size n, the empirical entropy is(n + n′) ·
H(n′/(n+n′),n/(n+n′)) (consider a bitvector of size n+n′, and let a bit be0 with probability n′/(n+n′)
and1 otherwise; the prefix sums at the0-bits give the multisubset), which is

n′ · log2
n+ n′

n′
+ n · log2

n+ n′

n
.

(c) For asequenceof n elements from a universe of size l, where the ith element occurs ni times (n1+· · ·+nl =

n), the empirical entropy is n·H(n1/n, . . . ,nl/n) (for each position, pick element i with probability ni/n),
which is

n1 · log2
n
n1
+ · · · + nl · log2

n
nl
.

(d) For a collection of l entities with empirical entropiesH1, . . . ,Hl , the empirical entropy is simplyH1 +

· · · +Hl .

4.3 INV, HYB, and Their Analysis

In this section we will first give a brief recap of INV and then analyze its empirical entropy, as it will serve
as a baseline. We then go on and describe HYB, and analyze it with respect to its empirical entropy and
its processing time for autocompletion search queries according to Definition1. Query processing times will
be quantified in terms of all relevant parameters; from this we can easily derive worst-case, best-case, and
average-case bounds. Our average-case bounds make simplifying assumptions on the distribution of words in
the documents, but nevertheless turn out to predict the actual behavior quite well. Section4.4 compares the
empirical entropy of both INV and HYB when (optionally) positional information is available. Implementation
issues and the actual performance of our implementations of INV and HYB willbe discussed in Section4.5.
We briefly comment on index construction times in Section4.3.3

4.3.1 Empirical Entropy of INV

The inverted index is described and analyzed in Section2.2. Simply recall though that, for each word, it stores
a sorted list of document (ids) containing this word. In the following, we estimate the inherent space efficiency
(empirical entropy) of INV. We do not consider enhancements such as skip pointers [Moffat 96] (which allow
for a faster intersection of such lists), which we would expect to give similarbenefits for both INV and HYB,
however at the price of an increased space usage.

Lemma 10 Consider an instance of INV with n documents and m words, and where theith words occurs in
ni distinct documents (so that n1 + · · · + nm is the total number of word-in-document pairs). LetHinv be the
empirical entropy according to Definition3. Then

Hinv ≤

m
∑

i=1

(

ni ·
1

ln 2
+ ni · log2

n
ni

)

,

and for all collections considered in this paper (where most ni are much smaller than n) this bound is, in
practice, tight up to2%.
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Proof. According to Definition3 (a) and (d), we have

Hinv =

m
∑

i=1

(

ni · log2
n
ni
+ (n− ni) · log2

n
n− ni

)

.

To prove the lemma, it suffices to observe that because 1+ x ≤ ex for any realx,

(n− ni) · log2
n

n− ni
=

n− ni

ln 2
· ln

(

1+
ni

n− ni

)

≤
ni

ln 2
.

Now, for almost all wordswi , we haveni << n. This means thatni/(n− ni) is close to zero, which means
1+ x ≈ ex. For our collections, the (averaged) difference was less than 2%.

Lemma10 tells us that if the documents in each list were picked uniformly at random, then aGolomb-
encoding of the gaps[Witten 99] from one document id to the next (for listi, the expected size of a gap would
ben/ni) would achieve a space usage very close toHinv bits. In our implementation, we opted to encode gaps
with the Simple-9 encoding from [Anh 05], which is easy to implement, and achieves very fast decompression
speeds at the price of only a moderate loss in compression efficacy; details are reported in Section4.5.

4.3.2 Our New Data Structure (HYB)

The basic idea behind HYB is simple:precompute inverted lists for prefixes instead of individual words. As-
sume an autocompletion search query (D,W), where the union of all lists for word rangeW have been precom-
puted. We would then getD′ with a single intersection (ofD with the precomputed list). However, from this
precomputed list alone we can no longer infer the setW′ of completions leading to a hit. SinceW can be an
arbitrary word range, it is also not clear which unions should be precomputed, especially when we do not want
to use more space than an (optimally compressed) inverted index.

The analysis given in this section suggests the following approach: groupthe words in blocks so that the
lengths of the inverted lists in each block sum to (approximately)c · n, for some constantc < 1 (we will later
choosec ≈ 0.2). For each block, store the union of the covered inverted lists as a compressedmultiset, using an
effective gap encoding scheme just as done for INV (repetitions of the same element in the multiset correspond
to a gap of zero). In parallel to each multiset, for each elementx store the id of the word that led to the inclusion
of (this occurrence of)x in the multiset. This gives a sequence of word ids, the length of which is exactlythe
size of the multiset. Encode these word ids with code length (approximately) log2((n1 + · · · + nl)/ni) for the
ith word, whereni is the number of documents containing theith word, andl is the number of words in the
respective block.

Here is an example. Let one of the blocks comprise four wordsA, B, C, andD, with inverted lists

A:3, 5, 6, 8, 9, 11, 12, 15
B:5, 11
C:3, 7, 11, 13
D:3, 8

We would then like to store, in compressed form, the multiset (of document ids) and the sequence (of word ids)

3 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15
A C D A B A C A D A A B C A C A

The optimal encoding of the wordsA, B, C, D would use code lengths log2(16/8) = 1, log2(16/2) = 3,
log2(16/4) = 2, log2(16/2) = 3, respectively, for exampleA = 0, B = 110,C = 10, D = 111. An optimal
encoding of the four gaps 0, 1, 2, 3 that occur in the above multiset of document ids would be 0, 10, 110, 111,
respectively. What we actually store are then the two bit vectors (where the | are solely for better readability;
the codes in this example are prefix-free)

111|0|0|110|0|10|10|10|0|10|110|0|0|10|10|110
0|10|111|0|110|0|10|0|111|0|0|110|10|0|10|0
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Note that due to the two different encodings the two lists end up having different lengths in compressed form,
and this is also what will happen in reality.

The following analysis will make very clear that, to obtain bounds on the total space usage, (i) one should
choose blocks of equal list volume (and not, for example, of equal number of words), (ii) this volume should be
a small but substantial fraction of the number of documents (and neither smaller nor larger), and (iii) the lists
of document ids should be “gap-encoded” while the lists of word ids shouldbe “entropy-encoded”.

As for the space usage, we will first derive a tight bound on the entropyof HYB, and then show that,
somewhat surprisingly, if we only choose the block volume to be a small enough fraction of the number of
documents, the entropy of HYB is almost exactly that of INV.

We will then show how HYB can be used to process autocompletion queries in timelinear in the number of
documents, provided that the blocks are chosen of sufficiently large volume and the given word range is not too
large (that is, the prefix to be completed is not too unspecific). In that case, HYB will provide for an excellent
locality of access, since the basic operation will be one of scanning long lists.

Lemma 11 Consider an instance of HYB with n words and m documents, where the ith word occurs in ni
documents, and where for each block the sum of the ni with i from that block is c· n, for some c> 0. Then the
empirical entropyHhyb, defined according to Definition3, satisfies

Hhyb ≤

m
∑

i=1

(

ni ·
1+ c/2

ln 2
+ ni · log2

n
ni

)

,

and the bound is tight as c→ 0.

Proof. Consider a fixed block of HYB, and letni denote the number of documents containing theith word
belonging to that block. Throughout this proof, let

∑

i ni denote the sum over all theseni (so that the sum over
all
∑

i ni from all blocks gives the
∑m

i=1 ni from the lemma). According to Definition3 (b), (c), and (d), the
empirical entropy of this block is then

∑

i ni · log2
n+
∑

i ni
∑

i ni
+ n · log2

n+
∑

i ni

n
+
∑

i
ni log2

∑

i ni

ni
.

Now adding the first and the last term, the arguments of the logarithms partially cancel out (!), and we get

∑

i
ni · log2

n+
∑

i ni

ni
+ n · log2

n+
∑

i ni

n
.

Now using that, by assumption,
∑

i ni = c · n, we obtain

∑

i
ni

(

(1+ 1/c) log2(1+ c) + log2
n
ni

)

.

Since (1+ 1/c) ln(1+ c) ≤ 1+ c/2 for all c > 0 1, we can upper bound this (tightly, asc→ 0) by

∑

i
ni

(

1+ c/2
ln 2

+ log2
n
ni

)

.

This bounds the empirical entropy of a single block of HYB (the sum goes over all words from that block).
Adding this over all blocks gives us the bound claimed in the lemma.

Comparing Lemma11with Lemma10, we see that if we let the blocks of HYB be of volume at mostc · n,
for some small fractionc, then the empirical entropy of HYB is essentially that of an inverted index. InSection

1To see that (1+ 1/c) ln(1 + c) ≤ 1 + c/2 for c > 0, first note that the Taylor expansion of (1+ 1/c) ln(1 + c) aboutc = 1 is
1 + c/2 +

∑∞
i=1 c2i(c/((2i + 1) · (2i + 2)) − 1/((2i) · (2i + 1))). Forc ≤ 1 all the individual summands are negative, and the total sum

is trivially smaller than 1+ c/2. Forc > 1, we have (1+ 1/c) ln(1 + c) ≤ 2 ln(1+ c) ≤ 1 + c/2. This follows from the observations
that (i) both 2 ln(1+ c) and 1+ c/2 are strictly increasing inc, (ii) the second derivative of 2 ln(1+ c) is always negative, whereas the
second derivative of 1+ c/2 is zero, (iii) the derivative of 2 ln(1+ c) is always smaller than that of 1+ c/2 for c > 3, and, finally, (iv)
2 ln(1+ 3) < 1+ 3/2 for c = 3.
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4.4, we will see that when we take positional information into account, the empiricalentropy of HYB actually
becomeslessthan that of INV, for any choice of block volumes.

In our implementation of HYB, we first reduce the sorted lists of document ids toa list of gaps, i.e.,
differences between doc ids. If we would then encode a gap of sizex with a universal encoding[MacKay 02]
using∼ log2 x bits, we would attain the empirical entropy of Definition 2.2. In practice, we encode these gaps
using a Simple-9 encoding, just as describe for INV before, which gets very close to the theoretical optimal
space consumption while also giving very fast decompression speeds.

For the lists of word ids, entropy-optimal compression could be achieved bytechniques such as arithmetic
encoding [Witten 99] or Huffman encoding. But, if we assume that the word frequencies in a block have a
Zipf-like distribution, i.e. that thei-th most frequent term has a relative frequency proportional to 1/i, then,
as for the gaps, an encoding using∼ log2 x for the numberx would also be (near) entropy optimal.2 These
frequency ranks we then encode again using the Simple-9 encoding.

Concerning block boundaries, our implementation deviates slightly from the equal-volume strategy sug-
gested by our theoretical analysis. Namely, we group all words with a commonprefix of a given fixed length
into one block, for example, all words starting withinf. This length is fixed such that the average block size
is a fraction of the number of documents, as suggested by our analysis. Note that it is not necessary that the
block-defining prefixes are all of the same length. We nevertheless choose them this way, accepting a number
of very specific prefixes, for examplerts, with very small blocks. It can be seen from our analysis, that for
such small blocks, the gap encoding of the lists of doc ids is suboptimal, but that this effect is attenuated by
the fact that word ids from the small words ranges of such blocks can beencoded more efficiently. In practice,
we found that choosing blocks based on fixed-length prefixes gives essentially the same index size as if blocks
were chosen of a corresponding equal volume.

Lemma 12 Using HYB with blocks of volume N′, autocompletion queries(D,W) can be processed in the
following time, where Dw is the inverted list for word w

O















(|D| + |N′|) · (1+ ⌈
∑

w∈W

|Dw|/N
′⌉) +

∑

w∈W

|D ∩ Dw| · log(1+ ⌈
∑

w∈W

|Dw|/N
′⌉)















.

For N′ = Θ(n) and |W| ≤ m · n/N, and assuming that the elements of D, Dw, and W are picked uniformly at
random from the set of all n documents or all m words, respectively, theexpectedprocessing time is bounded
by O(n).

Proof. According to Definition1, we have to compute, given (D,W), the setW′ of words fromW contained
in documents fromD, as well as the setD′ of documents containing at least one such word. For each block
B containing at least one word fromW, a straightforward linear intersection of the givenD with the list of
document-word pairs fromB, gives us in timeO(|D| + |N′|) the setW′B of all words fromW′ from block B, as
well as the setD′B of all documents fromD′ which contain a word fromB.

From these,D′ can be computed by ak-way merge in timeO(
∑

w∈W |D∩Dw| log(k)), wherek is the number
of blocks that contain a word fromW, andW′ can be computed by a simple linear-time sort intoW buckets
(becauseW is a range). Combining the time for intersection and merging, the total time isO(k · (|D| + |N′|) +
∑

w∈W |D ∩ Dw| log(k)).
The numberk of blocks is at most 1+ ⌈

∑

w∈W |Dw|/N′⌉, which gives the general statement of the lemma.
The randomness assumptions stated in the lemma simply mean that the proportion of word-in-doc pairs from
words inW is proportional toW. In other words, doubling|W| results in (roughly) doubling

∑

w∈W |Dw|. Given
this assumption

∑

w∈W |Dw| = O(|W|N/m). If the prefix corresponding to the word rangeW is not too unspecific
(such as “a*” or “t*”), then|W| ≤ m · n/N and we haveO(|W|N/m) = O(n). Thus, forN′ = Θ(n) the expected
numberk of blocks is constant and the total processing time isO(n).

4.3.3 Index Construction Time

Getting from a collection of documents (files) to INV is essentially a matter of one big external sort [Witten 99].
This can, e.g., be done in batches, where in one round we read as much data as fits into main memory, and then

2This can be easily seen using the definition of the entropy and the two approximations (i)
∑k

i=1 1/i ≈ ln(k) and (ii)
∑k

i=1 log2(i)/i ≈
0.5 ln2(k)/ ln(2)
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we sort and compress this, and we write it back to disk. At the end, we mergethe individual lists [Heinz 03].
HYB does not require a full inversion of the data, but can be implemented withonly two passes over the data:
one pass for a rough sorting by block index, and another pass for sorting the blocks. For our experiments,
however, we built the compressed indices for both INV and HYB from an intermediate fully inverted text
version of the collection, which takes essentially the same time for both.

4.4 Empirical Entropy with Positional Information

If positional information of each word occurrence is available, then, forthe same word, different occurrences
in the same document can be distinguished, and phrase search and proximitysearch, where the search terms
are required to appear close to each other, becomes possible. This feature is discussed in more detail in Section
5.5. Here, we are mostly concerned with the additional space requirements.

It is not hard to extend both INV and HYB to accommodate positional information: in the document lists
(INV and HYB) as well as in the word lists (HYB only), we duplicate each entry as many times as it occurs in
the corresponding document, and store the positions in a parallel array ofthe same size. Word and document
lists are compressed just as before, and the lists of positions are gap-encoded by Simple-9, just like the lists of
document ids. The intersection routine is adapted to consider a proximity window as an additional parameter.

We can extend our analysis from Section4.3to give bounds on the relative space consumption of INV and
HYB. As we will see in Section4.5.3, the position lists increase the index size by a factor of 4-5, for both INV
and HYB (without any kind of stopword removal).

Lemma 13 Let Ni be the total number of occurrences of the ith words, and let N be the total number of word
occurrences. Then

Hhyb∗ ≤ Hinv∗ ≤

m
∑

i=1

(

Ni/ ln 2+ Ni · log2(N/Ni)
)

,

whereHinv∗ andHhyb∗ denote the empirical entropy of INV and HYB, respectively, with positionalinformation.
That is, with positional information, HYB is always more space-efficient than INV, irrespectively of how we
divide into blocks.

Proof. According to Definition3, the empirical entropy of INVwith positional informationis

Hinv∗ =

m
∑

i=1

Ni · log2
N
Ni
+

m
∑

i=1

(N − Ni) · log2
N

N − Ni

≤

m
∑

i=1

(

Ni/ ln 2+ Ni · log2(N/Ni)
)

.

The last inequality follows from ln(1+ x) ≤ x. If we incorporate positional information into HYB, the empirical
entropy for a single block with volume

∑

i Ni becomes

Hhyb∗ =
∑

i

Ni · log2
N
∑

j N j
+ (N −

∑

i

Ni) · log2
N

N −
∑

j N j

+
∑

i

Ni · log2

∑

j N j

Ni

=
∑

i

Ni · log2
N
Ni
+ (N −

∑

i

Ni) · log2
N

N −
∑

j N j
,

where the summand
∑

i Ni · log2(
∑

j N j/Ni) is the empirical entropy of the word ids. Summing the empirical
entropy over all blocks, using

∑∑

i Ni = N and the fact that the functionf (x) = (N − x) · log2
N

N−x is concave,
it is easy to see that

m
∑

i=1

(N − Ni) · log2
N

N − Ni
≥
∑

(N −
∑

i

Ni) · log2
N

N −
∑

j N j
,
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and henceHhyb∗ ≤ Hinv∗ .

In practice,Ni · log2(N/Ni) ≈ 2Ni · log2(n/ni) and since on average a word occurs about 2-3 times in a
document, this is just 4-5 timesni log2(n/ni), which was the corresponding term in the entropy bound for INV
or HYB without positional information (Lemmas10and11).

4.5 Experiments

We implemented both INV and HYB in compressed format, as described in Sections 2.2 and 4.3.2. Each
index is stored in a single file with the individual lists concatenated and an array of list offsets at the end. The
vocabulary (which is the same for INV as for HYB) is stored in a separate file. All our code is in C++. All our
experiments were run on a Dual Opteron machine, with 2 Intel Xeon 3 GHz processors, 8 GB of main memory,
and running Linux. We ensured that the index was not cached in main memory.

4.5.1 Test Collections

We compared the performance of INV and HYB on three collections of different characteristics. The first col-
lection is a mailing-list archive plus several encyclopedias on homeopathic medicine (http://www.homeonet.
org). This collection has been searchable via our engine over the past two years by an audience of several hun-
dred people. The second collection consists of a complete dump of the EnglishWikipedia from February 2007
(http://search.mpi-inf.mpg.de/wikipedia_en). The third collection is the large TREC Terabyte col-
lection [Clarke 05], which served as a stress test for our index structures (and for the authors as well). Details
about all three collection are given in Table4.1, where the “raw size” of a collection is the total size of the
original, uncompressed files in their original formats (e.g., HTML or PDF).

4.5.2 Queries

For the Homeopathy collection, we used 47,509 queries from a fixed time slice of our query log for that
collection. In most cases, each such query was part of a sequence such asaci, acid, acidu, acidum, acidum
pho, andacidum phos, but in some cases, when the user typed very fast or just pasted the whole query,
a query might just be an individual full word. For the Wikipedia collection, autocompletion queries were
generated from a set of 100 randomly generated queries. For each query we picked a random document with
uniform probability and sampled between 1 and 5 terms of length at least 4 from it. Terms were sampled
according to their tf-idf values, i.e., each term had a probability of being sampled proportional tot f · log(n/d f),
wheret f is the number of occurrences in the given document,n is the total number of documents andd f is
the number of documents containing this particular term. Furthermore, the terms were required to lie within
a small enough window as to ensure at least one proximity hit. The number of query terms for these queries
was chosen with a mean of 2.2 and a median of 2, which are realistic values forweb search queries [Spink 02].
These raw queries where then “typed” from left to right, using a minimal prefix length of 4 for the first term
and 3 for later terms. So the raw query “slang alcohol” would yield the autocompletion queriesslan, slang,
slang alc, slang alco etc. For the Terabyte collection, autocompletion queries were generated in again the
same way but with a minimal prefix length of 4 for each query word, from the (stemmed) 50 ad-hoc queries of
the Robust Track Benchmark [Clarke 05], e.g.,squirrel control protect. For all collections, where we
did not generate queries artificially, we removed queries containing wordsthat had no completion at all in the
respective collection, as such queries would trivially lead to empty result sets. For the generated queries, such
words were not contained in the first place.

For Homeopathy we included full positional information (according to Section4.4) in the index and some
of the queries were indeed proximity queries. (But even for the others queries positional information was
used for the ranking.) For Wikipedia,all queries were run as proximity queries (using again a full positional
index), while for Terabyte, they were executed as ordinary document-level queries. For all collections, both
completions and hits were ranked as we described it in Section5.4.

Each autocompletion query was processed according to Definition1, e.g., foracidum pho, we compute all
completions ofpho that occur in a document which also contains a word starting withacidum, as well as the set
of all such documents. The result for each autocompletion query is remembered in ahistory, so that we do not
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Collection Homeopathy Wikipedia Terabyte

Raw size 599 MB 9.0 GB 426 GB

#documents 51,670 2,698,964 25,204,103

#words 287,283 7,762,159 25,263,176

#items 14 [31] million 0.3 [0.8] billion 3.5 billion

Vocabulary 3.2 MB 122 MB 239 MB

Entropy 6.6 [13.1] bits 8.8 [14.0] bits 8.4 bits

INV

index size 16 [81] MB 0.7 [2.4] GB 4.6 GB

-per item 9.1 [21.5] bits 15.6 [25.5] bits 11.0 bits

HYB

index size 18 [70] MB 0.7 [2.1] GB 4.9 GB

-per item 10.9 [18.9] bits 15.1 [22.9] bits 11.6 bits

-per doc 2.3 [12.4] bits 7.8 [17.9] bits 7.6 bits

-per word 8.6 [6.5] bits 7.3 [5.0] bits 4.0 bits

Table 4.1: Properties of our three test collections, and the space consumption of INV versus HYB. The entries
in square brackets are for a full positional index, without any word whatsoever removed.

need to recompute the set of documents matching the first part of the query.E.g., when processingacidum pho,
we can take the set of documents matchingacidum from the history; see the explanation following Definition
1.

We nevertheless include the filtered queries in our experiments here, because in reality we will always get a
mix of both kinds of queries. Table4.3will provide figures for just the difficult (unfiltered) queries. We remark
that the history is useful also for caching purposes, but in our experiments we used it solely for the purpose of
filtering. See Section11.8for other uses of the history.

4.5.3 Index Space

Table4.1shows that INV and HYB use essentially the same space on all three test collections. For a full posi-
tional index, HYB is slighter more compact than INV, while for an index withoutpositional information it is the
other way round. This is exactly what Lemmas10and11, and the derivation in Section4.4predicted! The sizes
for both INV and HYB exceed that predicted by the empirical entropy by about 50%. This is due to our use of
the Simple-9 compression scheme, which trades very fast decompression timefor about this increase in space
usage [Anh 05]. A combination of Golomb and arithmetic encoding would give us a space usage closer to the
empirical entropy. However, decompression would then become the computational bottleneck for almost all
queries, see Table4.3. We remark that, by the way we did our analysis, any new compression scheme with im-
proved compression ratio/decompression speed profile, would immediately yield a corresponding improvement
for both INV and HYB.

4.5.4 Query Processing Time

Table4.2shows that in terms of query processing time, HYB outperforms INV by a large margin on all collec-
tions. With respect to maximum processing time, which is especially critical for aninteractive application, the
improvement is by a factor of 30-50. With respect to average processingtime, which is critical for throughput
in a high-load scenario, the improvement is by a factor of 5-10. Note that for all collections the majority of
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Collection Method mean 90% 99% max

Homeopathy
INV 0.029secs 0.012secs 0.477secs 24.92secs

HYB 0.005secs 0.016secs 0.062secs 0.540secs

Wikipedia
INV 0.404secs 0.207secs 11.19secs 71.11secs

HYB 0.031secs 0.098secs 0.423secs 0.975secs

Terabyte
INV 1.356secs 0.933secs 46.74secs 72.32secs

HYB 0.077secs 0.232secs 1.290secs 2.105secs

Table 4.2: Average, 90%-ile, 99%-ile and maximum processing times in seconds for INV versus HYB on
our three test collections. The statistics are for both filtered and unfiltered queries (see comments after the
Definition Section1).

queries is answered by filtering a previous result (see the comments after Definition 1). Since this filtering is
identical for both INV and HYB, the median processing times are identical andare not given in Table4.2.

The reason that for the Homeopathy collection HYB’s 90%-ile processing timeis actuallylarger than INV’s
90%-ile time, stems from the fact that for this collection the queries (taken froma real log file) also contain
several instances of long query words with 5 or more letters, which are are not of a sequence of queries (such
assy, sym, symp, ..., sympton) and could thus not be computed by filtering. For these long prefixes with a
very small word rangeW, INV has to process a significantly smaller data volume than HYB and is thus faster.
However, HYB’s worst case behavior is clearly superior, so that this phenomenon disappears for the mean, the
99%-ile and the maximum processing time, where INV suffers from its very poor performance on some hard
queries.

Table4.3gives interesting insights into where exactly INV loses against HYB. The table shows a breakdown
of the running times of those queries for the Terabyte collection, which werenot answered by filtering as
discussed above. (Note that the breakdown of the filtered queries wouldbe identical for both methods.) The
table differentiates betweenone-word querieslike squi, squir, etc. andmulti-word querieslike squirrel
contr or squirrel control prot.

For the one-word queries, no intersections have to be computed for eitherINV or HYB. The relevant lists
merely have to be copied into a buffer and then be sorted (for INV) or have their words checked for containment
in the relevant prefix-range (for HYB). According to Lemma2, the merging of the intersections then dominates
for INV, and this indeed shows in the first column of Table4.3. For multi-word queries, the result volume
∑

w |D∩Dw| (Lemmas2and12) goes down, and, according to Lemma2, the intersection costs dominate for INV,
which shows in the third column of Table4.3. In contrast, columns two and four demonstrate that HYB achieves
a better balance of the costs for reading, uncompressing, and intersecting, and none of these essential operations
becomes the bottleneck. HYB avoids merging altogether since, by construction, the potential completions from
the given word rangeW always lie within a single block.

The read time of HYB is about 35% larger than that of INV. This is partly because HYB’s total volume
is slightly larger, so that for each query more data is read, and partly because INV’s data is read in (consecu-
tive) chunks, so that the disk cache can perform some precaching, i.e.,while the current lists is used in main
memory the hard disk can, in parallel, already prefetch bits of the next list and bring it into the disk cache, thus
interleaving I/O and computation times. The reason why HYB spends more time decompressing than INV has
two reasons: one is that HYB has to handle (slightly) more data; the other is that decompression of the word
ids takes 40% longer (for the same compressed input volume) than decompression of the document ids. As we
remarked in Section5.4, the absolute time for ranking is the same for both methods. Ranking takes more time
on average for the one-word queries, because these tend to have larger result sets; for HYB this time dominates
everything else. Note that the time for ranking includes the time for duplicate removal (as we want to only
present matching completions/hits once to the user). The comparison with the time needed for the maintenance
of the history, which is nothing but memory allocation and copying, shows thatall of HYB’s operation are
essentially fast list scans.
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Query size 1-word multi-word

Index type INV HYB INV HYB

average time 0.45secs 0.18secs 6.08secs 0.17secs

read .02 secs 4% .03 secs 15% .04 secs .7% .06 secs 32%

decompress .01 secs 2% .02 secs 8% .02 secs .3% .04 secs 21%

intersect —— —— 5.94 secs 98%.04 secs 25%

merging .26 secs 59% —— .02 secs .3% ——

ranking .11 secs 24% .11 secs 62% .01 secs .1% .01 secs 4%

history .03 secs 6% .03 secs 15% .02 secs .3% .03 secs 15%

Table 4.3: Breakdown of average processing times for INV and HYB, for the difficult (unfiltered) queries on
Terabyte.

4.6 AutoTree vs. HYB - Experimental Comparison

Given that we have introduced two new data structures, AutoTree (see the previous Chapter3) and HYB, for the
autocompletion problem, the natural question arises, which one is better. Bothdata structures were designed
with very different goals in mind. AutoTree was designed for main memory, as it heavily depends on random
accesses (bit vector lookups) and its goal was to have theoretically appealing properties with respect to its
running time, namely an output-sensitive behavior. HYB was designed for external memory and is based on
linear scans. It has a non-negligible minimum processing time even for empty queries, but reduces the worst
case running time.

In our experiments we examined the differences along two dimensions. First, we ran experiments both
for internal and external memory3. Second, we used two slightly different query sets. The first query set
corresponded to a large|W| but small|D|, a setting where AutoTree is expected to shine. The second query set
had a less skewed distribution with respect to|W| and|D|. The underlying collection was, again, the ROBUST
collection (see Section3.6 for details). Queries were derived in the same manner as described in thatsection
but, to obtain the two different sets, we used different prefix lengths. For the first query set, which is identical
to the one in Section3.6, we used a prefix length of 4 for the first prefix and 2 for the later ones.The (long)
prefix length of 4 for the first term, filters out some very short 3-letter words and ensures that, when the full
word is typed, the setD′ (and hence the newD) will not be too large. The (short) prefix length of 2 for the
latter query words, gives a large|W| for these autocompletion queries. This query set is labeled “4-2” in Table
4.4. The second query set, labeled “3-3”, uses a prefix length of 3 for allprefixes. Table4.4shows the factor in
mean processing times for both AutoTree as compared to HYB, for both query sets, and for both external and
internal memory. Note that for the first query set a HYB index with blocks chosen for prefix length 2 was built,
whereas for the second query set an index for prefix size 3 was built.

The main observation from Table4.4 is that HYB is, in terms of average processing time, never worse
than AutoTree. But it can also be seen that, somewhat surprisingly, AutoTree does hardly suffer, in relative
performance compared to HYB, when the index resides on disk. The reason for this is that, on the average, the
time for reading the whole data of a single block of AutoTree from disk (and each query required data from one
or at most two blocks) is dominated by the computation time of a query, most notablythe time for the random
bit vector lookups (see Section3.4). That is, on the average, query processing with AutoTree is not IO-bound,
at least not for the collection sizes we have experimented with. Since the number of operations required for a
query is proportional to its input+ output size, and that in turn is on average roughly proportional to the sizeof
a block of AutoTree, we would expect the same behavior for larger collections too. The observations just made
hold true on the average only. The smaller the output size of a query, the more IO-bound the processing is going

3To ensure that the data was not cached by the operating system, and really had to be read from disk, before each experiment
we read two different very large (20 GB) files from disk several times in a row. Within each experiment (running all queries for a
collection), nothing was done to prevent caching by the operating system though.
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query type internal/external memory
(average time AutoTree)/

(average time HYB)

4-2
internal 1.2
external 1.5

3-3
internal 3.5
external 4.0

Table 4.4: A relative performance comparison between AutoTree and HYBfor the ROBUST’04 collection and
for two types of queries. HYB’s average running time is always better thanAutoTree’s.

to be. In a worst case, each step of the algorithm (inspection of a word-in-document pair) might incur one disk
seek. In absolute times, both HYB and AutoTree are about 15% slower, when the index resides on disk. This
goes up to about 40%, when the time for scoring, which is always done in mainmemory, is not included in the
processing time.

It should also be mentioned that it is easy to find individual queries where both AutoTree and HYB outper-
form their “opponent” by a factor of 4− 10. E.g., AutoTree will be preferable for 2-word queries, where the
first part is very specific (environmentalist) and the second part is extremely broad (co). Still, overall, HYB
turned out to be the more performant data structure. This, along with the fact that the integration of positional
information is easier, was the reason we built our CompleteSearch engine ontop of HYB and the experiments
in the following chapters are done for HYB only.





Chapter 5

Autocompletion Search and Simple
Extensions

5.1 Introduction

In Chapter1 we already gave a few hints, why the basic autocompletion feature might be useful in practice.
Here, in the following Section5.2, we discuss the virtues of this feature a bit more. In Section5.3, we look at
search engines and other systems offering a related feature. Then we go on to discuss various extensions, such
as ranking (Section5.4), proximity search (Section5.5), OR and NOT operators (Section5.7) and completions
for subwords or to phrase (Section5.8). These extensions are partly essential to a good search engine (suchas
ranking), but are not related to the basic autocompletion search feature or the problem given in Definition1.
Features discussed in the following chapters, starting with faceted searchin Chapter6, are of a different nature.
They require the core functionality of the CompleteSearch engine for an efficient realization.

5.2 Autocompletion Search Revisited

The basic autocompletion search feature was already introduced in Chapter 1, where also some of its possible
advantages were discussed. The algorithmic core was abstracted in the Definition 1. Here we more closely
examine the possible benefits of this feature before discussing related systems in Section5.3.

Recall that autocompletion search incorporates two theoretically unrelated features. First, prefix search
(with an instant display of the results) and, second, a display of relevantcompletions (for the last prefix).

As an example, for a case where this feature might be useful, suppose a user is searching the Wikipedia
for information about the current pope. However, either he has forgotten the exact name or he is unsure about
spelling variants (“benedict”, “benedikt”, “benedictus”, ...). He starts typing the querypope bene and is
then presented with a list of matching documents, as well as a list of matching completions, which occur
in documents also containing the term “pope”. He now has the option of (a) refining his search further by
continuing to type his query or by selecting a particular spelling variant, or (b) going through the result list for
the broader query as it is. Figure1.1 (in Chapter1) shows a user interface which provides this feature along
with a number of extensions.

This feature is useful in a variety of ways. It saves typing. It spares the user the experience of overspecifying
the query, when already a (much) shorter query would give the desiredresult. It helps the user exploring
formulations used in the collection, substantially reducing the amount of guesswork required. Note that without
the context-sensitivity this feature would lose most of its worth; for example, there are hundreds of completions
of bene, but only few that make sense in the context of words starting withpope.

5.3 Related Work

One of the early uses of an automatic prefix completion mechanism was in the UnixShell, where pressing the
tabulator key gives a list of all file names that start with whatever has been typed on the command line after the
last space. Nowadays, we find a similar feature in most text editors, and in alarge variety of browsing GUIs.
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Even when it comes to web search, similar features exist. E.g., Google Suggest (http://www.google.
com/webhp?complete=1) offers completions coming from a precompiled list of popular queries.1 This way
a “typical” user only has to typebr to be presented with the completionbritney spears. The two main
differences to our feature are that (i) Google’s completions do not come fromthe full text of the documents
(e.g., the phraseautocompletion search, which occurs in web documents, is not be suggested, even when
typingautocompletion sear) and (ii) no results are presented until a particular completion is chosen. Still,
in an attempt to save typing effort for the typical user, this approach is certainly sensible. Observe that for
these kinds of applications we can easily achieve fast response times by twobinary or B-tree searches in the
(pre)sorted list of candidate strings.

AlltheWeb Livesearch (http://livesearch.alltheweb.com/) offers the very same feature, but addi-
tionally automatically launches a web search for the most prominent completion. This way, e.g., a user only has
to typebr to launch a web search forbritney spears. Neither Google Suggest nor AlltheWeb Livesearch
perform a prefix search over the full document collection.

Copernic Desktop Search (http://www.copernic.com/en/products/desktop-search/) offers such
a prefix search feature for the collection of private documents kept on the local hard drive of a PC. However,
even for a collection of roughly 30,000 text documents, the search takes about half a second (which is not slow
but not comparable to CompleteSearch), no list of completions is provided and it is not possible to rank the
results by relevance score, but only by, e.g., date or size.

The autocompletion feature as described so far is also reminiscent ofstemming, in the sense that by
stemming, too, prefixes instead of full words are considered [Witten 99]. But unlike stemming, our auto-
completion feature gives the user feedback on which completions of the prefix typed so far would lead to
highly ranked documents. The user can then assess the relevance of these completions to his or her search
desire, and decide to (i) type more letters for the last query word (for example, continue typing the query
from Figure1.1 asinformation retriev); or (ii) to start a new query word (for example, continue typing
information ret data); or (iii) click on one of the hits displayed on the right side, in case it looks promis-
ing. There is no way to provide this feature by a stemming preprocessing Thiskind of user interaction is well
known to improve retrieval effectiveness in a variety of situations [Voorhees 94].

While our autocompletion feature is for the purpose offinding information, autocompletion has also been
employed for the purpose ofpredicting user input, for example, for typing messages with a mobile phone, for
users with disabilities concerning typing, or for the composition of standard letters [Bickel 05] [Grabski 04]
[Stocky 04] [Darragh 90] [Jakobsson 86]. In [Finkelstein 01], contextual information has been used to select
promising extensions for a query. Paynter et al. have devised an interface with a zooming-in property on
the word level, based on the identification of frequent phrases [Paynter 00]. We get a related feature by the
subword/phrase-completion mechanism described in Section5.8.

5.4 Ranking

So far, we have considered the following problem (from Definition1): while the user is typing a query, compute
after each keystroke the list ofall completions of the last query word that lead to at least one hit, as well as the
list of all hits that would be obtained by any of these completions. In practice, only aselectionof items from
these lists can and will be presented to the user, and it is, of course, crucial that the most relevant completions
and hits are selected.

The standard approach for this task in ranked keyword search is as follows [Witten 99]. Have a precomputed
scorefor each word-in-document pair. For a given query, compute for each document an aggregation of the
scores pertaining to the occurrences of the query words in that document. Return the documents with the
highest such aggregated score to the user. All of INV, AutoTree and HYB can be easily adapted to implement
any such scoring and aggregation scheme: store by each word-in-document pair its precomputed score, and
when intersecting, aggregate the scores.

In our setting, however, we have to deal with two issues which are not present in standard ranked retrieval.
The first is that we do not only have to rank matchingdocumentsfrom D′ but also matchingwordsfrom W′.
The second issue is that the score aggregation is now a two-step process. Consider the document scores. In
ordinary ranked retrieval, we obtain them by aggregating scores from the individual query terms. In our setting,

1We remark that a prototype of our engine already existed when Google Suggest was launched.
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each such query term in fact corresponds to a whole range of words,the scores of which we have to reconcile
first. The impact of this dual scoring mechanism on search result quality is by itself an interesting topic of
research, but beyond the scope of this dissertation.

Our implementation allows for a plug-in of arbitrary functions for the various aggregations. Our default
aggregation to reconcile the scores of different completions of the same prefix is as follows: when merging the
intersections (which gives the setD′ according to Definition1), compute for each document inD′ themaximal
score achieved for some completion inW′ contained in that document, and compute for each completion inW′

the sum of themaximalscores achieved for this completion for each of the elements fromD′.
Our default aggregation of the scores from the various parts (prefixes) of the query to give the final score

of a document is essentially by summing the individual contributions. But we (i)promote matches of words in
the title; (ii) promote matches of two words close to each other, see Section5.5; and (iii) promote exact word
matches (as opposed to strict prefix matches). These heuristics work wellon our test collections, since they
arespam-freein the sense that title information or the number of matching occurrences of a word are reliable
indicators of relevance.

Concerning space consumption, we use a single byte to hold individual scores of a word-in-document (or
word-at-position) pair. The more significant bits are used to mark title matches or proximity matches.

For the basic Definition1 and our theoretical analysis, both concerning (i) running time and (ii) space
consumption, we factored out the issue of ranking. This is because, (i) asymptotically the inclusion of ranking
does not affect the time bounds derived in Lemmas2 and12, and our experiments show that ranking rarely takes
more than half of the total query processing time and (ii) the required extra space is identical for INV, AutoTree
and HYB. However, even without this extra information one can do basic scoring by counting occurrences and
aggregating these counts in various ways as discussed above.

5.5 Proximity/Phrase Search

With a properly chosen scoring function, such as the one outlined above,mere ranking by score aggregation
often gives very satisfactory precision/recall behavior. There are many queries, however, where the decisive
cue on whether a particular document is relevant or not lies in the fact whether certain of the query words occur
close to each otherin that document. See [Metzler 04] for a recent positive result on the use of proximity
information in ad-hoc retrieval.

The proximity operator increases the of our autocompletion feature, because the use of this operator will
strongly narrow down the list of completions displayed to the user, which in turn makes it easier for the user
to filter out irrelevant completions. For example, when searching the Wikipedia collection the most relevant
completion for the non-proximity querymax pl would beplace (becausemax andplace are both frequent
words), but for the proximity querymax..pl it is planck. Here the two dots.. indicate that words should
occur withinx words of each other, for some user-definable parameterx. In fact, we chose our score aggregation
function such that phrase or proximity matches get a higher score, even ifthe user did not explicitly specify a
proximity requirement for a match.

Recall that, when positional information is included in the index, HYB requiresless space than INV. See
Section4.4for a proof of this. AutoTree, on the other hand, has certain inherent problems with using positions
information, at least if the desirable output-sensitivity should to be preserved. See Section3.7for details.

5.6 Structured Search in XML Documents

Any kind of full-text index with support for proximity search can be easily extended to take advantage of
semi-structured text, by which we here mean text enriched with XML tags. A generic way is to add all XML
tags as special words (that is, recognizable as such), for example,tag:email or tag:subject. It is then
straightforward to extend the proximity operator such that a word is considered close to a particular tag if and
only if it occurs between a corresponding tag pair. In CompleteSearch, we use the syntax.. (two dots) for
both normal proximity search (as discussed above) and the search within tags. An example query would be
tag:email..tag:subj..dbworld, which would retrieve all email messages (tagged as such) mentioning (a
word starting with)dbworld in their subject line.
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This simple trick of using a generalization of “proximity” is, in a certain sense, generic and not Com-
pleteSearch specific. It does not exploit the prefix search and autocompletion mechanism, which is why we
do not claim that the CompleteSearch engine is more apt than other (efficient) systems for the purpose of
XML retrieval. Still, with this simple trick we can support a subset of theXPathquery syntax, called NEXI
[Trotman 04]. XML support has been added in a similar way to the TopX engine [Theobald 05b], which we
will briefly discuss in Section8.2 in the context of database style retrieval. Note that CompleteSearch permits
free mixing of queries using tag information with any of the other query types.

5.7 OR and NOT Operator

Most search engines like Google also support the “advanced” query operators OR and NOT. E.g., the Google
query(web OR internet) search will return documents containing the wordsearch and at least one of
the wordsinternet andweb. Similarly, the querysurfing -internet, where- (minus) is used as the
symbol for the NOT operator, will return documents containingsurfing but not containinginternet. Both
of these features we also implemented for the CompleteSearch engine and bothof these features also work with
prefixes.

To implement the NOT operator, a small modification of the intersection routine wassufficient. This routine
takes two lists of document ids (and, optionally, positions) and parallel wordids and, normally, outputs elements
from the second list that correspond to document ids contained in both lists.For the NOT variant, we have to
output elements from thefirst list which correspond to document idsnot contained in the second list. Note the
following two slight oddities here. First, whereas usually the result set becomessmalleras the last prefix gets
longer and hence more specific, for the NOT operator the result set becomeslarger in this case. Second, the
completions we display are for thelast but oneprefix, as we prefer to display information about the matching
documents (and completions), rather than non-matching ones. Also note thatwe do not allow the use of the
NOT operator for the very first query word, as it is difficult to support efficiently (the result can be enormous,
consider-xyz) and is also not very sensible to use (“Show me all documents not containinga certain prefix.”).
The usual (implicit) AND operator requires intersections of lists. The OR operator on the other hand, requires
themergingof lists, and we also implemented this operation. For words grouped by| (pipe), this operator will
be used.

5.8 Phrase and Subword Completion

Another simple yet often useful extension to the basic autocompletion featureis, to consider as potential
matches not only the (full) words as they occur in the collection, but also meaningful subwords and phrases.
An example involving a subword would be: for the querynormal..vec we might want to seeeigenvector
as one of the relevant completions.2 An example involving a phrase would be: for the queryinforma we
might want to see the phraseinformation retrieval as one of the relevant completions. The autocom-
pletion according to Definition1 will automatically provide this feature if only weadd the corresponding
subwords/phrases to the index. For example, for each occurrence of the term “eigenvector”, we also add the ar-
tificial term “vector:eigenvector” to our index. This term then matches the prefix vector and the “:eigenvector”
lets us know that we should display the termeigenvector to the user. Similarly, for every occurrence of the
phrase “information retrieval”, we add the term “informationretrieval” to our index, which will be displayed
asinformation retrieval.

The problem offindingmeaningful subwords and phrases to add to the index, is orthogonal to our work.
In practice, for the subwords we use a simple greedy approach to find allwords of minimal length which
appear sufficiently often as subwords of longer words. To identify meaningful phrases, we exploit the fact
that such phrases are often written (i) with hyphens, (ii) with underscores or (iii) even as a single long word.
These “misspellings” give us a small, high-quality set of word combinations, which we can check for phrase
occurrences. Details on this can be found in [Klein-Heyl 07].

2Note that we deliberately do not want full substring search, as this would give mostly irrelevant matches for short prefixes.



Chapter 6

Faceted Search

6.1 Introduction

When it comes to finding documents in large collections, the 1-box web searchinterface approach seems to be
predominant. The user enters a couple of keywords and is then presented with a list of matching documents
ranked by (ideally) relevance. Such interfaces are very intuitive to useand suffice in many cases. On the
other hand, in settings where the focus is more on data exploration than on information retrieval, a hierarchical
organization of the documents is often used, allowing the user to browse anddrill down into subcategories.
Online shopping sites nowadays present the user with both options at the same time: the option of entering
queries as usual while also allowing the user to refine his search by drilling down into the matching categories.
By pro-actively supporting this kind of query refinement, the user needsto know less about the structure and
the items in the database and is spared the experience of over-specifying arequest using an “advanced search”
form.

In this chapter, we demonstrate how our HYB (see Chapter4) algorithm and the CompleteSearch engine
can be directly applied to obtain both features: pro-active support for both the query formulation (by presenting
relevant completions) and for the query refinement through categories (by presenting matching categories). We
have built and tested a prototype with these capabilities and verified its practicability in terms of efficiency
by experiments with a collection of scientific articles and with the English Wikipedia.To our knowledge,
this is the first experimental study of faceted search under the efficiency aspect. Figure1.1 (in Chapter1)
provides a screenshot of our search engine in action and gives an explanation of its main features. Seehttp:
//search.mpi-inf.mpg.de/dblp-plus/ for a live demo of this.

6.2 Related Work

The number of websites which offer some kind of faceted search is enormous and spans all information do-
mains. If one loosely defines a faceted search interface as one which, inaddition to showing ranked results
for keyword queries as usual, also organizes query results by categories, then nowadays almost every online
shopping portal offers a faceted search interface (http://www.ebay.com, http://www.amazon.com).

The archetypical, fairly intuitive user interface shows a search box on top, a subset of the most relevant
results below and a list of matching categories (usually organized in a hierarchical manner) on the left. These
matching categories can then be used for further refining the query. Variations of this interface include ex-
tensions to search in the category names themselves. See, e.g., the demos of the Flamenco Project (http:
//flamenco.berkeley.edu). These type of interfaces are in their simpler form also used in other domains
such as medical databases (http://www.medlineplus.gov, provided by Recommind), news archives (http:
//browse.guardian.co.uk, provided by Endeca) and tagged webpages (http://www.rawsugar.com, pro-
vided by RawSugar). Other systems, such as Facetmap, provide no search facility but only allow faceted
browsing (http://www.facetmap.com).

A number of content providers support the user in finding relevant termsfor his query. Some sites (http:
//fastsearch.com/search.aspx, http://kayak.com) use a precompiled list of plausible queries similar
to Google Suggest (http://www.google.com/webhp?complete=1), from which they display completions
to the user. These lists are typically only useful if one is looking for “mainstream” information and for spelling

59



60 CHAPTER 6. FACETED SEARCH

suggestions. For fully exploring the database’s content they are inadequate, as already after a single highly
specialized term the list of queries suggested collapses completely. Such interfaces are usually referred to
by the term “live search” (see [Rønn-Jensen 06] for a discussion and more related links). In the domain of
library search, the AquaBrowser interface (http://aqua.queenslibrary.org) uses data mining, machine
translation and spelling corrections to find other related query terms on-the-fly. These are then presented to
the user in a star-like graph. However, these terms seem to be often (i) quitegeneral and (ii) unrelated. For
the queryinformation retrieval, broad and partly irrelevant terms such as “service”, “technology” and
“freedom” are displayed as associations, along with the supposed spellingvariant “Euro-travel” and the sup-
posed translation “enlightenment”.1 Following a fully term-centered approach, it is also plausible to disregard
the hierarchical structures for the documents altogether and rather focus on organizing the terms in the collec-
tion. Such a taxonomy can then be used to guide the user through the query formulation process, displaying
synonyms and other related terms at every step [Binding 04].

For the case of a well-controlled database, whose structural data integritycan be ensured, a query language
is presented in [Ross 05], which allows answering faceted database queries in time quadratic in the number
of items with linear space complexity. The problem of faceted search can alsobe viewed more generally as
a problem of multidimensional visualization and navigation. To show the relation between two independent
dimensions the use of 2-D heat maps was proposed in [Arentz 04] and their benefit is demonstrated by a small
user study. Similar ideas are explored in [Shneiderman 00]. Larger user studies to demonstrate the advantages
of the Flamenco faceted search user interface have also been conducted in [English 02; Yee 03].

In scenarios, where hierarchical structures or any kind of categorization are not a priori given, it is still
possible to apply the paradigm of organizing the result set in a structured way by clustering the results on-the-
fly. In [Hearst 06] the relative (dis-)advantages of result clustering and faceted categories are compared. Besides
the lack of quality of the resulting clusters (meaning that clusters can be veryheterogeneous), even for state-of-
the-art systems (http://www.vivisimo.com), other disadvantages include the lack of predictability (a user
does not know in advance how his results will be organized) and the diverse mix of the obtained subcluster
hierarchies (many facets get mixed when a cluster is broken down).

In our work, we completely factor out the issue of how (hierarchical) labeled categories can be obtained.
If one hopes to accumulate a large set of documents, manually labeled, the only viable approach is to have a
dedicated community of people all contributing to this project. Such a contributioncan be made by manually
inserting a web document into a taxonomy, as in the case of the open directoryproject (http://www.dmoz.
org), or by sharing (organized) bookmarks and assigning short tags to a currently visited web site (http:
//www.rawsugar.com, http://www.flickr.com, http://del.icio.us). The latter approach is often
referred to as “social tagging” with the resulting structures being nick-named “folksonomies” (http://en.
wikipedia.org/wiki/Folksonomy).

6.3 Faceted Search with Autocompletion

In the previous chapter, we discussed the basic “Autocompletion Search”feature and some of its extensions.
The focus of our work in the current chapter is on showing how the algorithm HYB for this “ordinary” autocom-
pletion search problem (see Definition1), can be extended to include faceted search capabilities. Specifically,
we show how the following three features can be obtained:

• a display of matching completions for query terms (occurring in at least one hit) and their use for query
refinement,

• a display of matching categories (containing at least one hit) and their use for query refinement, and

• a display of matching category names (starting with the prefix and containing atleast one hit for the
remaining query) and their use for query reformulation.

The first feature is just the “normal” autocompletion search feature, whichwas discussed (with extensions)
in the previous chapter. Making the changes necessary to provide the other two features will only involve
adding special words to our index and will leave the functionality of the basicfeature unchanged. The other
two features, related to the use of the category information, will be discussed in the following subsections.

1It is, however, encouraging to know that our research area is part of the path to eternal bliss.
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6.3.1 Finding Categories Containing Matches

To be able to find and display matching categories, we simply add the information about categories to our index
by inserting an artificial term, e.g.,cat:living_people, into a Wikipedia article about a living person before
our index structure is built. The same is done for other categories and documents. The colon: serves to distin-
guish artificial words from ordinary words.2 In the case where we have hierarchical or orthogonal categories,
we encode the structure using multiple:, such ascat:author:Donald_Knuth or cat:conference:SIGIR,
but for the Wikipedia we worked with a single “flat” categorization.

To process a query, e.g.,pope bene, we first run the usual autocompletion search query as explained in
detail in Chapter4, also benefiting from extensions discussed in the previous Chapter5. This gives the set of
matching documents in form of a ranked list. Then, in a second step, we run the querypope bene cat: as a
regular autocompletion search query. Due to the way we inserted the artificial terms, the completions for the
termcat: will now exactly correspond to the list of categories containing a matching document for the query
pope bene.

The set of matching documents for this artificial query is, on the other hand,not relevant as we do not
assume that every document is forcibly tagged with at least one category.In the case of orthogonal taxonomies,
where each document is guaranteed to have a label for each facet, the set will be the same as for the query
pope bene. In general, however, it can be an arbitrary subset.

When these matching categories are presented to the user, he then has the option of refining his search by
limiting the search scope to matches within a chosen category. In our example, he might choose the Wikipedia
category “Popes”. This choice then reduces both the number of matching documents, as well as the relevant
completions forbene. Figure1.1(in Chapter1) shows matching categories listed as “Refine by” options. Here
the name of an author and a year of publication are also considered categories.

In our user interface, the category selection is done by simply clicking on a relevant category. This follows
the standard conventions for providing such a feature and is implemented in asimilar manner in all major search
interfaces for faceted search (http://www.rawsugar.com, http://flamenco.berkeley.edu, http://
www.ebay.com, http://www.amazon.com, ...).

Observe that selecting a particular category is, from the point of view of our algorithm, the same as entering
an additional query term, where the query term in this case is an artificial term.Just as there is no limit on the
number of query terms the user can enter, there is no limit on the number of categories which can be selected
during the iterative query refinement process.

In scenarios where the total number of matching categories can be very large, as is the case for the Wikipedia
collection, we only present the most relevant ones to the user. Again, forthis we can employ the very same
ranking mechanism which we already used to select the most promising completions (see Section5.4).

To ensure efficient query processing, all artificial terms of the formcat:* should be in the same block
for HYB. That is, our data structure is built such that we have the sorted list of documents containing at least
one of these special words precomputed. Given such a choice of blocks, we can then answer a query of the
form pope bene cat: above with a single list intersection. Exactly for these cases, where the list of potential
categories (i.e., “words” starting withcat) is large, HYB shows the best performance compared to an approach
based on the inverted index, which would have to iterate over these candidates.

6.3.2 Finding Matching Category Names

In some cases, the user’s intention for the querypope benemight be of a different nature: Maybe when typing
such a query the user is looking forcategoriesstarting withbene and containing a document with the term
pope. For the Wikipedia such matching categories would include “Benedictines” oreven “Benefitalbums”.
The “Categories matching” field in Figure1.1 (in Chapter1) contains an example where a particular author is
suggested as a matching category.

Using exactly the same setup as before with the same artificial words included inthe index, such matching
completions can be found by answering the autocompletion querypope cat:bene.

Again, the user can now choose from any of these matching categories. But, different from before, a
selection of a particular category does not correspond to a query refinement with respect to the base query

2This trick will be used repeatedly in the following chapters.
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pope bene, as now one query word (bene) getsreplacedby another (cat:bene) whereas before a query word
wasadded.

The selection of such a desired category is again done by clicking on the name of the category in our user
interface. This feature is less common but, if present, is usually provided viathe same mechanism, as in the
Flamenco System (http://flamenco.berkeley.edu).

If the blocks for HYB are chosen optimally as for the feature above, then we can again answer a query of
the formpope cat:bene above with a single list intersection and avoid any merge operations. In practice,
these types of query will be easier to answer than the query types of the preceding subsection, as the relevant
word range (all category names starting withbene) is narrower than before (whereall category names had to
be considered).

6.4 Experiments

We integrated the faceted search feature into our CompleteSearch engine,whose core is written in C++. The
experiments were done on an Opteron dual 2.4 GHz processor machine with8 GB of RAM, with the (com-
pressed) index on disk. In our experiments, we measured the time for processing both the “normal” and the
derived autocompletion search queries, as described in Sections6.3.1, and6.3.2. We didnot measure the time
for the transmission of the query and the results over the network.

6.4.1 Collections and Queries

Our first data set, DBLP, consists of 11,685 scientific articles listed in DBLP (http://dblp.uni-trier.

de), both the full text and the DBLP meta data, including information about authors, conferences and year of
publication. Note that all of the three facets (author, conference, year) are “flat” in the sense that they do not
come with a hierarchy.

Our second data set, WIKIPEDIA, consists of the full set of 2,172,832 articles of the May 2006 dump of
the English Wikipedia (http://en.wikipedia.org). As meta data for this collection, we took the Category
information which the Wikipedia articles themselves provide (at the bottom). This information is much more
diverse than for DBLP: some articles carry a dozen of different category labels, about half of the articles,
especially if they have been recently added or are navigational pages, are listed under no category at all.

For both collections we generated 500 standard keyword queries with a realistic distribution of query length
(short queries are more common) and keyword selection. As for our other experiments, where queries were
generated artificially, we ensured that content-bearing words were morecommon in the queries than very fre-
quent words by usingt f − id f based sampling. See Section4.5.2for details. Each query was then “typed” letter
by letter (beginning with a 3-letter prefix for each query word), resulting ina chain of autocompletion queries.
For example, the keyword querypope benedict gives rise to the 8 autocompletion queriespop, pope, pope
ben, pope bene, . . . ,pope benedict. Like this we obtained 6024 autocompletion search queries for DBLP,
and 5320 autocompletion search queries for WIKIPEDIA.

From each such autocompletion search query, then three queries were derived: the “normal” query itself
(to find relevant documents and word completions as discussed in the previous Chapter5), the query with the
query word prefixcat: added at the end (to find matching categories as described in Section6.3.1), and the
query with the last query word prefixed bycat: (to find matching category names, as described in Section
6.3.2).

6.4.2 Results

Table6.4.2shows the average running times per query on both DBLP and WIKIPEDIA, with a breakdown for
the three sub-queries described above. Three main observations are tobe made. First, for both collections,
queries are processed in a fraction of a second, which yields the desired interactive behavior. Second, the query
processing time is dominated by the second type of subqueries. This is easy tounderstand, since for the second
type of query, we have to screen each matching document for its categorylabels. This is a work-intensive task,
but as explained in Section6.3.1, this is exactly the kind of queries where our HYB data structure shines, and
improves over the standard inverted-index based approach by an order of magnitude (see Chapter4 for details).
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Collection DBLP WIKIPEDIA

Average time 24 millisecs 341 millisecs

- ordinary 6 millisecs 53 millisecs

- categories 17 millisecs 274 millisecs

- cat. names 1 millisecs 14 millisecs

Table 6.1: Average running times for the faceted autocompletion queries on DBLP and WIKIPEDIA, with a
breakdown with respect to the three subqueries discussed in Section6.3.

Third, the last type of sub-queries hardly takes any processing time, since for most autocompletion queries, the
last query word does not match any category name at all (in which case thecost for this sub-query is zero).





Chapter 7

Synonym Search

7.1 Introduction

One of the central problems of keyword-based search is that often there is not a unique set of keywords to
identify a topic. Sometimes words referring to the same concept are merely morphological variants (compute,
computer, computing) which can be identified by stemming [Porter 80], i.e., reducing words to their “normal-
ized” form, or even less trouble-some by using prefix search, as supported by the CompleteSearch engine,
where it is left up to the user to decide whether he effectively wants to use stemming (and only type a shorter
prefix) or not (and type the full word).

But almost always there are also closely related terms, e.g. car, automobile or vehicle, which are not
just morphological variants. Adding such related terms to the query in orderto increase recall, is an old and
much-researched technique commonly known asquery expansion. A recent, very good overview is provided
in [Billerbeck 05]. In this chapter, we show how we can use the CompleteSearch engine forquery expansion.
Our work is different from the traditional approach in two respects.

Efficiency The standard way to implement query expansion is to replace each query word by thedisjunc-
tion (OR)of its related terms, and thenmergethe individual inverted lists [Billerbeck 05]. Since each step of
such a merge is logarithmic in the number of lists, expansion is typically limited to a few important words.
Sophisticated top-k techniques, like in [Theobald 05a], try to prune expansion words which are unlikely to lead
to an improved ranking.

Interactivity & context-sensitivity Our feature interactively suggests words related to the word currently
being typed, and the suggestions are ranked by their ability to lead to good hitstogether with the preceding part
of the query. For example, for the queryrussia metal from Figure7.1, aluminum is high up in the list of
words related tometal, because there are many news articles about aluminum production in Russia. Similar
interactive features have been discussed in the literature [Fonseca 05], but with the focus on effectiveness and
not on efficiency.

We do not claim novelty for any of these individual points (efficient, interactive, context-sensitive). How-
ever, we have not seen them presented in combination, and we want to stress the simplicity with which we
realize this feature here, using CompleteSearch’s efficient prefix completion mechanism.

7.2 Query Expansion via Prefix Completion

Given knowledge about related terms, we could, when the user is typingrent automo, suggest the term “car”
to him, assuming that the queryrent car would lead to a hit.

One way to obtain such a feature would be as follows. In a first phase, gothrough each completion of
automo (e.g., automobile, automotive, automower) and for each such completion get the list of synonyms (e.g.,
car, vehicle, wagon). In a second phase, for each such synonym we could launch the corresponding query such
asrent car, rent vehicle or rent wagon. The subset of such queries, which leads to a hit, gives us the
“completions” to display to the user.

The obvious problem with this approach is that a single initial query can now lead to several queries in the
second phase, not exploiting HYB’s strength to deal with prefixranges. This can be avoided by introducing
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Figure 7.1: The proposed feature, integrated into the CompleteSearch engine. The box under the search field
shows words related to the last query word, metal in this case, that would lead to good hits, and to the right the
best such hits are displayed. Both related words and hits are updated automatically after each keystroke.

artificial prefixes corresponding to groups of synonyms. Then the desired feature becomes a matter of a few
prefix completion operations, which are efficiently supported by HYB. We realize this as follows:

0. As input, assume we haveclustersof related terms. These clusters may overlap, for example the wordcase

may be in one cluster together withcover, shell, etc. as well as in another cluster together withbox,
chest, etc.

1. For each occurrence of a term<t> that occurs in a cluster with id<id>, add the artificial terms:<id>:<t>,
in the same document and at exactly the same position.

(Document position is important for proximity and phrase search. We remarkthat the HYB index does not
mind several terms at the same position in the same document.)

Also add, but onlyoncefor each such term and in a special document that is used for no other purpose, the
artificial terms:<t>:<id>. The number of words in this document is just the total size of all clusters.

2. For a given query<q1> ... <ql> <p>, we then realize our feature via one or two prefix completion
operations as follows: We first check whether<q1> ... <ql> s:<p> has a unique completion of the
form s:<t>:<id>. If so, this completion gives us the id<id> of the cluster containing<t>. Then the query
<q1> ... <ql> s:<id>: gives us the desired completions and hits.

(Note that the part<q1> ... <ql> is evaluated only once, just after its last letter being typed, and stored
by a cache-like mechanism from then on, see Section11.8for details.)

The terms added under point 2. above do, of course, lead to an increase in the total space usage. By how
much depends on (i) for how many words we have synonymy information, (ii)how often these words occur in
the corpus and (iii) in how many synsets these words are contained. It does, however, not depend on the sizes
of the synsets. If we chose the straight-forwards approach of introducing all of the synset’s elements (e.g, car,
automobile, vehicle, ...) for every occurrence of a word (e.g., car) fromthe synset, then the space blowup could
become dramatic.

7.3 Term Clusters

We implemented and tested our feature for two collections: the TREC Robust collection (1.5 GB, 556,078
documents), and the English Wikipedia (8 GB, 2,863,234 documents). For each of the collections we used a
different method to derive the clusters of related terms, one unsupervised and one supervised. The following
two subsections give details on each of the methods. The results of the experiments are given in Section7.4.
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7.3.1 Unsupervised Approach - Spectral Method

For the Robust collection, we used a completely unsupervised approach based on the technique from [Bast 05],
as follows.

1. Since Eigenvector computations on large matrices are very expensive,we first removed common stop-
words, and restricted ourselves to a set of frequent nouns, which weidentified using the TnT tagger
[Brants 00]. We then ran Porter’s stemming[Porter 80] algorithm on these nouns and got a set of 10,098
terms to work with.

2. We obtained a set of related term pairs from these 10,098 terms using the smoothness test described in
[Bast 05]. We used a high smoothness threshold to select term pairs to ensure that no two unrelated
(or not closely related) terms qualify as related terms. Figure7.2 shows the kind of term-term relations
extracted this way.

3. We used the Markov Clustering Algorithm (MCL) algorithm1 from [van Dongen 00] to derive clusters
from the list of term pairs, as required by our approach.

metal

zinc

smelter

aluminum

nickel

copper

Mooney

LME

tin

Figure 7.2: One of the clusters of related terms automatically obtained from the Robust collection. Edges
present in the graph denote term-term relations found by the smoothness test from [Bast 05]. The cluster itself
was then found using the clustering algorithm from [van Dongen 00]. Indeed, all the terms in the cluster are
closely related: most of them are different metals, LME stands for London Metal Exchange, and Richard
Mooney is the author of several articles regarding the general topic of metal.

Note that this approach makes the result of this unsupervised learning algorithm, and its effect on the
search results, completely transparent to the user. In contrast, methods inthe spirit of latent semantic indexing
[Deerwester 90] are often criticized for their incomprehensibility on the side of the user concerning why a
certain document show up high in the ranking. It would be interesting to verify the significance of this difference
in a user study.

1http://micans.org/mcl
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7.3.2 Supervised Approach - WordNet

For the Wikipedia, we made a straightforward use of WordNet [Fellbaum 98] to obtain clusters of related
terms. Namely, we put two words that occur somewhere in Wikipedia in the same cluster if and only if they
share the same most frequent synset. E.g., for the term “car” the synsetcorresponding to “auto”, “automobile”,
“machine” and “motorcar” was used, butnot the ones corresponding to “railcar” or “gondola”. Table7.1shows
all synsets for the term “car”. This heuristic leads to only about 30% more tokens in the index. Usingall synets,
would spoil both efficiency and usefulness of our feature.

1. car, auto, automobile, machine, motorcar (a motor vehicle with four wheels;usually propelled by an
internal combustion engine) “he needs a car to get to work”

2. car, railcar, railway car, railroad car (a wheeled vehicle adapted tothe rails of railroad) “three cars had
jumped the rails”

3. car, gondola (the compartment that is suspended from an airship and that carries personnel and the cargo
and the power plant)

4. car, elevator car (where passengers ride up and down) “the car was on the top floor”

5. cable car, car (a conveyance for passengers or freight on a cable railway) “they took a cable car to the top
of the mountain”

Table 7.1: A complete list of the WordNet synsets for the noun “car”. For our experiments, we assigned each
word only to its most frequent synset, so for “car” we used the first setin the list above. The term “machine”
would in the end not be used as a synonym for car, as its most frequent synset refers to a different concept.

Furthermore, we only used single terms and ignored compound nouns in open form (“lawn tennis”), as we
build our index for individual terms.2 The descriptions and the example phrases for the synsets were also not
used, as they do not explicitly contain any synonymy information.

7.4 Experiments

We integrated the described feature with our CompleteSearch engine, and measured its efficiency on two query
sets. The first query set is derived from the 200 “old”3 queries (topics 301-450 and 601-650) of the TREC
Robust Track in 2004 [Voorhees 04]. For the second query set, we started with 100 random queries, generated
as follows: For each query, we picked a random document with uniform probability and sampled 1 to 5 terms
according to their tf-idf values from it, i.e., each term had a probability of being sampled proportional to
t f · log(n/d f), wheret f is the number of occurrences in the given document,n is the total number of documents
andd f is the number of documents containing this particular term. The terms were required to lie within a small
enough window as to ensure at least one proximity hit. The number of queryterms for these queries was chosen
with a mean of 2.2 and a median of 2, which are realistic values for web searchqueries [Spink 02].

For both query sets, these raw queries were then “typed” from left to right, using a minimal prefix length
of 3. So the raw query “cult lifestyles” would yield the autocompletion queriescul, cult, cult lif, cult
life and so on. Additionally, whenever for a prefix<p> the querys:<p> led to a unique term cluster with id
<id>, we added an OR (for which we use the “|”) with the prefixs:<id>:. E.g., one autocompletion query in
the sequence for “airport security” isairport|s:399: secu|s:385:.

All experiments were run on a machine with two 2.8 GHz AMD Opteron processors (two cores each, but
only one of them used per run), with 16 GB of main memory, operating in 32-bitmode, running Linux.

Table7.2 shows that, by using the term clusters, the average processing time increases by roughly 50%
(but not more) with respect to queries without synonymy information, and itis still well within the limits of
interactivity. Somewhat surprisingly, the maximum processing time islower for the querieswith synonymy
information. This is because the queries which take the longest to process are those with a very unspecific
last query word, for example,cont. Such words tend to have more than one completion for which synonymy

2Inclusion of such compound nouns is theoretically possible, but it was not implemented for this study.
3They had been used in previous years for TREC.



7.4. EXPERIMENTS 69

Table 7.2: Breakdown of processing times for both of our query sets. For “normal” queries there was no
synonymy information to be used.

Query set Average 90%-tile 99%-tile Max

Robust (all) 32 ms 90 ms 375 ms 970 ms
- normal 22 ms 55 ms 329 ms 970 ms
- synonyms 57 ms 129 ms 385 ms 655 ms

Wikipedia (all) 64 ms 238 ms 614 ms 1218 ms
- normal 42 ms 128 ms 569 ms 1218 ms
- synonyms 35 ms 356 ms 799 ms 841 ms

information is available, and in that case our interface, as described above, does not show any related terms, but
only syntactic completions.





Chapter 8

DB-style Search

8.1 Introduction

In this chapter, we show how we can use CompleteSearch to process a wideclass of database-style queries.
First, we discuss other work related to the topic of “bridging the gap betweenDB and IR” in the following
Section8.2. Then, in Section8.3we explain that, by creating special documents with the appropriate artificial
words, we can put an arbitrary relational table into a form, where it can beprocessed by the CompleteSearch
engine. Section8.4gives examples of the types of query that the CompleteSearch engine can,with these arti-
ficial words added, process and how this is done. Interestingly, we easily obtain support for a mix of key word
and db-style queries, thus taking a step toward DB+IR integration. Besides CompleteSearch’s autocompletion
feature, the capability to processjoins will be central for this. Section8.5 discusses how arbitrary joins can
be processed. Finally, in Section8.6, we prove experimentally that this added functionality does not impede
CompleteSearch’s ability to efficiently handle even advanced queries.

8.2 Related Work

The QUIQ engine [Kabra 03] is another recent attempt to integrate IR and DB functionality into a single system
in a uniform manner. QUIQ is built on top of a DBMS, partly motivated by their focus ondynamic updates(to
which we give only relatively little attention, see Section12.2.3). Like CompleteSearch, QUIQ makes extensive
use of the idea to “map non-text data to pseudo-keywords that cannot beconfused with actual keywords of text”,
and for the case of CompleteSearch this will be discussed in the next section.

TheTopXengine, developed by our colleagues at MPII [Theobald 05b], combines search in semi-structured
(XML) data with techniques for top-k retrieval, with a strong focus on the latter. As explained in Section5.6,
CompleteSearch supports exactly the same subset of XPath queries as TopX. Like QUIQ, TopX is built on top
of an off-the-shelf DBMS (Oracle).

The HySpirit system [Fuhr 98] was designed for “hypermedia retrieval integrating concepts from infor-
mation retrieval and deductive databases.” The system is based on a probabilistic model of Datalog. Like
CompleteSearch, it can combine ranked retrieval with database queries. Like QUIQ and TopX, HySpirit is built
on top of a DBMS.

Our work on CompleteSearch addresses some of the issues and challenges raised in a recent overview pa-
per by Chaudhuri, Ramakrishnan, and Weikum [Chaudhuri 05]. Our central completion mechanism might
be viewed as an instance of the “storage-level core system with RISC1-style functionality” argued for in
[Chaudhuri 05]. We certainly agree with their point of view that an integrated IR&DB (or DB&IR) system
shouldnot be built on top of an SQL-engine or a vanilla B-tree implementation, for reasons of efficiency.
This is discussed in more detail in Chapter11 (in particular see Table11.1). Flexible scoring and ranking
and high-performance query processing, the first two items on the requirement list of [Chaudhuri 05], are at
the core of the design of CompleteSearch. See Section5.4 for details on the scoring mechanism used by the
CompleteSearch engine.

1Reduced Instruction Set Computer. See [Chaudhuri 00] for a discussion of the relation of this concept to DB-system design.
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For a more thorough overview of the area of IR&DB-integration, we referthe reader to the SIGMOD’05
panel discussion [Amer-Yahia 05], in particular its references. A classification of existing schemes according
to criteria such as integration architecture and general approach is attempted in [Raghavan 01]. In the following
sections we discuss our approach to combine basic IR and DB functionality.

8.3 Putting Data Tables into Document Form

Consider a collection of computer science articles, where for each article we have its conference, the authors
and the year of publication. Let’s, for now, assume that we have only this metadata and no full text. How can
we preprocess this data, such that it is in a form “digestible” by our CompleteSearch engine?

We do this by transforming the corresponding table, with the schema (conference, author, year), as follows:
we add special words of the from<category name>:<category instance> to a (new) document pertaining
to the article. The colon simply serves to distinguish these words from ordinary words. For example, we
might addconference:vldb, or author:jon kleinberg, or year:2006. Generally, given any table with
attributesattr 1 up toattr n we add the attribute-value pairs asattr 1:<val 1> up toattr n:<val n>, where
<val i> is the entry for attributei. All the words of this document will then correspond to arow of the relational
table where the doc id acts as an implicit, unique ID for each row. All the wordscorresponding to a special
prefix, e.g.,conference:, will correspond to acolumnof this table. If we have more than one table, we also
add the table name, sayABC, astable:ABC to each such document.

Recall from Chapter4 that, when the block boundaries are chosen appropriately, HYB stores the word-in-
document pairs for such a special prefix contiguously in memory, just by the way it works. This is known in the
database world ascolumn store[Stonebraker 05], which is generally preferred in systems optimized for read,
rather than for write access. With such a layout one can efficiently obtain all the information in a particular
column. If we later also want to support queries for the full text, we simple add the whole text to the same
document with the artificial words.

8.4 Supported DB-style and Mixed Queries

Consider thetwo queriesconference:sigir author: andconference:sigmod author: . According to
Definition 1, the first query produces a list of authors (as completions) who have published at SIGIR, along
with the corresponding publications (as hits). Similarly, the second query produces a list of authors who have
published at SIGMOD, along with the corresponding publications. Now let us us intersect the two lists of
authors, that is, the lists of (ids of)completionsof the two queries. Details will be given in the following
section. Note the duality to the archetypical search engine operation of intersecting lists of (ids of)documents.
The intersection of the two lists of completions gives us the lists of all authors, which have published at both
SIGIR and SIGMOD, and the two lists of documents provide the witnesses of these facts. That is, we have
effectively computed aself-join on the table which he have implicitly created by the addition of the special
words. In Section8.5, we explain how to generalize this to arbitrary joins. Note that the information required
to process this kind of query is spread over several documents, which issomething standard IR-style keyword
search cannot handle. For example, the queryconference:sigir conference:sigmod author: would not
match any document, because no document is a SIGIR paper and a SIGMODpaper at the same time.

If we prependedir db integration to the two queries above, we would obtain the join table restricted
to documents matching this query, and we would obtain a list of authors which have published at both SIGIR
and SIGMOD about the topic of IR&DB integration. This is a first example of how CompleteSearch can
combine IR-style with DB-style querying and what kind of more advanced queries we can process, given the
join capability. Our semantic search engine, built on top of CompleteSearch and presented in Chapter9, will
make heavy use of such combined queries and of the join operation.

8.5 General DB-style Joins

In this section, we explain in detail how we can process arbitrary joins with theCompleteSearch engine. Sup-
pose that we are given two tablesABC andXZY and, as a starting point, that we would like to compute their
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inner join for the attributeattr k. We then launch the queriestable:ABC attr k: andtable:XYZ attr k:
as prefix search and completion queries according to Definition1. For the two result sets, we then have to
intersect the lists of matchingcompletions(not documents). Unfortunately, such lists of word ids cannot be
intersected just as easily as the document ids, because the lists of word ids are unsorted. One approach, called
merge join, would be to first sort the lists by word id and then intersect. An alternative would be to use a hash
join (computing the list of word ids that occur in both lists via hashing). As the word ids always come from a
smallrange, we can compute the intersection efficiently via a realization of a hash join with two bit vectors. We
experimented with both variants (see Section8.6 for details) and the hash join was generally faster by a factor
of 3-5. A general discussion about join processing can be found in [Mishra 92].

Once we have computed this intersection, the elements contained in both lists are exactly the matching
attribute-value pairs for the join attribute. To obtain the corresponding rowsof the join result table efficiently,
we profit from the fact that whenever we are intersecting lists of word idswith HYB, we are actually handling
pairs. I.e., we also have the corresponding document id at hand (and vice versa when we are intersecting lists
of document ids). This way we can easily obtain the corresponding document ids, which correspond to the
matching rows in both tables. By slightly modifying the intersection routine to outputNULL when a word id is
present in only one of the two lists, we can use the same procedure to computeleft, right or outer joins as well.

Since the special words for a particular attributek (starting with the prefixattr k:) of any such table share
a common prefix, they will be stored in consecutive locations by HYB, and willeither form their own block, or
be part of a single block. This allows for an efficient processing of join queries. Note that the complex problem
of join ordering [Swami 89; Steinbrunn 97] does not occur in our interactive setting, because the fact that we
want results after every keystroke demands an evaluation of the query ina strict order from left to right.

8.6 Experiments

To test, if the join operation becomes the bottleneck for processing advanced autocompletion search queries,
we experimented with such advanced queries on two different collections.

The first collection (DBLP) consists of about 20,000 scientific articles. For each of these articles the index
contains both the full text and meta data from the DBLP data set2. The meta data we used comprises information
for 24,028 authors, for 26 conferences, and for 33 years of publication.3 The queries we used were of the type
discussed at the beginning of Section8.4. Namely, for each of the 325 pairs of (distinct) conferences we asked
(i) for a list of authors, who have published in both conferences, as well as (ii) the list of their publications.

For our second collection (Wiki+Yago) we combined the Wikipedia with the Yago ontology [Suchanek 07],
which makes it possible to answer certain moresemanticqueries. This collection and its applications will be
discussed in detail in the following Chapter9. For the queries (which are the “hard ontology queries” from
Section9.9.1) we used 1000 persons, present in both the Wikipedia and the ontology, and for each such person
we asked for the death dates of all persons that were born in the same year as the given person. Processing
these queries involves a join on the (common) birth years. The data comprisesa total of 2.9 million documents
and information about the birth years of 165,000 people.

The experiments were done on an Opteron dual 2.4 GHz processor machine with 8 GB of RAM. The
index resided in main memory (disk cache). While running the queries we made extensive use of our result
caching mechanism (see Section11.8) to avoid, e.g., that the information for the prefixauthor: has to be read
multiple times from disk. The time it takes to transmit the results over the network was not included in the
measurements.

For the DBLP collection, all the queries were, due to the collection size, easyto process with an average
processing time of a mere 2.2 milliseconds (using hash joins). For the Wiki+Yago collection, the average
processing time for the advanced queries was 65 milliseconds (also using hash joins). However, the absolute
processing time was not under investigation here. More interestingly, the hash join turned out to be 4− 6 times
faster than the merge join and did not make up more than 30% of the average total processing time.4 Details
are given in Table8.1. Note that the relative processing time would decrease further if the index had resided on

2http://www.informatik.uni-trier.de/˜ley/db/index.html
3This collection is a more recent version of the DBLP collection already usedfor the experiments in Chapter6.
4An experimental evaluation of the HYB data structure (underlying the CompleteSearch engine) for the basic prefix search and

completion queries was given in Section4.5.
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Collection Merge join Hash join

DBLP 30% (0.9ms) 9% (0.2ms)

Wiki+Yago 71% (121ms) 30% (20ms)

Table 8.1: Query processing times for advanced queries involving a join operation. The percentage refers to
the percentage of the average total processing time, when the particular joinimplementation is used. The time
in parentheses is the average time spent in the join operation.

disk (and we had ensured that no disk caching was performed by the operating system) and if we had not used
any result caching mechanism. Further experiments for other advanced queries involving the join capability are
given at the end of Chapter9.



Chapter 9

Semantic Search

9.1 Introduction

In the previous Chapter8, we showed that, by adding a join functionality and by augmenting the corpus with
the appropriate special keywords, CompleteSearch could do much more than only ranked keyword (or rather
prefix) search. Here, we take these ideas to the next level by using the CompleteSearch engine to handle queries,
which are of a moresemanticnature. For example, consider the query “which musicians are associatedwith
The Beatles”. This requires a search not for the literalword musician, but rather forinstances of the classit
denotes.

Already this simple query highlights two of the main challenges of semantic search: (1) obtain the necessary
semantic information, in this case, identify each occurrence of a musician in thegiven text collection; and (2)
make that information searchable in a convenient and efficient way.

Concerning (1), there are actually two problems hiding in here. First, we need to find out which entities are
musicians. Second, given such a list of musicians (including “Elvis Presley” and “Britney Spears”), we need
to identify occurrences of these entities in the corpus, which might look like “king of rock” or “teen pop star”.
For our concrete application of the CompleteSearch engine to the Wikipedia, we used the YAGO ontology
[Suchanek 07] to address the first issue and the link structure present in Wikipedia for the second issue. Details
will be given in the following sections.

The focus of this chapter, however, is on (2): given semantic information, make it searchable fast and
conveniently. The main problem here is that standard IR data structures likethe inverted index (see Section
2.2) do not provide the necessary functionality. All research prototypes that we know of either use an ad-hoc
extension of the inverted index or they are built on top of a general-purpose database management system. In
either case, they do not scale well for retrieval tasks on large collections: they either use a lot of space, or they
are slow, and sometimes both. This is discussed more in Section9.3.

The remainder of this Chapter is structured as follows. Section9.2 gives a short summary of the results
presented in this section. The following Section9.3 discusses a number of other systems which also combine
full-text and ontology search. Section9.4 will provide details on our query engine. Section9.5 will describe
how we add the ontology as artificial words to the corpus. Section9.6 will describe how entity recognition
gives us combined full-text and ontology search. In Section9.7we prove that with this approach can handle all
basic SPARQL graph-pattern queries, and in Section9.8we describe an intuitive user interface to the low-level
query engine. In Section9.9, we describe our experiments with regard to both efficiency and search quality.

9.2 Results

In this Chapter, we show how to use the CompleteSearch engine to obtain a modular system for highly efficient
combined full-text and ontology search. Besides the CompleteSearch engine itself, such a system requires (i)
an ontology, (ii) an entity recognizer, and (iii) a special user interface. The job of the ontology is to provide
us with basic knowledge about existing entities (“John Lennon is a musician”). The entity recognizer then
“applies” this knowledge to the corpus by assigning words or phrases to entities they refer to. Finally, the user
interface maps simple queries input by the user to the only two basic operationsthe CompleteSearch engine
supports:prefix search with autocompletionandjoin. The main challenge in the design of such a system was
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Figure 9.1: A screenshot of our CompleteSearch engine for the querybeatles musicia searching the English
Wikipedia. As for the other applications, the list of completions and hits is updated automatically and instantly
after each keystroke, and the number in parentheses after each completion is the number of hits that would be
obtained for that particular completion. The upper box suggests words and phrases that start withmusicia and
that occur together with the wordbeatles. The lower box suggestsinstances of musiciansthat occur together
with the wordbeatles. In fact, fast processing of this apparently simple query requires the whole complexity
of our system in the background: prefix queries, join queries, entity recognition, and ontological knowledge;
see Section9.6. Our interactive and proactive (suggest-as-you-type) user interface hides this complexity from
the user as much as possible. See Section9.8 for other types of queries which the CompleteSearch engine,
when the appropriate information is added to its index, can handle in a similar fashion.

to map the knowledge from the ontology and the output of the entity recognizerto artificial words such that
complex semantic queries can be processed by mere prefix search and joinoperations. We show how this can
be done efficiently for all basic SPARQL graph pattern queries.

As a proof of concept, we have implemented the whole system with an entity recognizer following insights
from [Dill 03], and a user interface, with a similar look to, but (partly) different functionality from the one
of our “standard” CompleteSearch engine. The ontological knowledge was provided by the YAGO ontology
[Suchanek 07]. For this whole system, we conducted a variety of experiments regarding both efficiency and
search quality. The key novelties are as follows:

Scalability By building on the CompleteSearch engine, we can process complex semantic queries extremely
fast, with a very compact index. On the Wikipedia corpus, which has about3 million documents, together with
the YAGO ontology, which has about 2.5 million facts, we achieve processingtimes of a fraction of a second
for a variety of complex queries, with an index size of just about 4 GB. Thiscomes close to state of the art
full-text search with respect to both query processing time and index size,but with much enhanced querying
capabilities; see Section9.9. Compared to systems with comparable querying capabilities, this is faster by up
to two orders of magnitude; see Section9.3.

Modularity Each of our system’s components is easily exchangeable. We could use another data structure
for the query engine, as long as it can process the two required basic operations: prefix search and join. For
example, one could replace the underlying HYB data structure (Chapter4 by AutoTree (Chapter3). Similarly,
the only requirement concerning the user interface is that it translates whatever input it gets from the user to
these two basic operations. Since the task of the entity recognizer is independent of the indexing and query
processing, both it and the ontology used are easily exchangeable, too.

Queries supported We show how our system can solve arbitrary basic SPARQL graph-pattern queries, by
reducing them to the basic operations of prefix search and join. If the SPARQL query is a tree withm edges,
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we can show that at most 4m basic operations are needed. SPARQL is one of the standard query languages for
ontologies, and a query is essentially a labeled graph to be matched against the ontology graph; see Section9.7.

User interface We carefully designed the user interface, so that it is intuitive (easy to use), interactive (short
response time) and proactive (automatically trying out “sensible” interpretations of the query). For example,
when a user has typedbeatles musician, the system will give instant feedback that there is semantic in-
formation on musicians, and it will execute, in addition to an ordinary full-text query, a query searching for
instances of that class (in the context of the other parts of the query), and it will show the best hits for either
query. See Figure9.1 for a screenshot of the system in action for that query. Our user interface builds on
experience we gained from the extension of CompleteSearch to also support faceted search (see Chapter6).
Note that by “user interface” we do not so much refer to graphical design and layout issues, but really to the
issue of an adequateinterfacebetween the user, who should not be bothered with complicated syntax, andthe
system in the background, which only understands a low-level “language”.

Entity recognition For the entity recognition component, we implemented a general-purpose semi-supervised
algorithm following ideas and insights from [Dill 03]. For our Wikipedia application, we took the links between
Wikipedia pages as training data. We achieve a precision of about 90%, which is similar to what is reported in
[Dill 03] for a collection of 264 million web pages.

9.3 Related Work

There are still relatively few systems that explicitly combine full-text and ontology search. In none of the
systems we know, efficiency was a primary design goal, and performance measurements are often available
only as anecdotal evidence. A typical example is the recent system of [Castells 07], which supports essentially
the same class of combined semantic and full-text queries as our system. The authors report an “average
informally observed response time on a standard professional desktop computer [of] below 30 seconds” on
a corpus (CNN news) with 145,316 documents and an ontology (KIM) with 465,848 facts; index size is not
reported. This has to be contrasted with the subsecond query times achieved using our system, based on the
CompleteSearch engine, on the 2.8 million document Wikipedia, with a provably compact index.

The powerful XQuery language can be used for the kind of queries weconsider here. However, experiments
(not reported in detail here) with the currently fastest engine, MonetDB/XQuery [Boncz 06], have shown pro-
cessing times that are two to three orders of magnitude slower than what we achieve using our system. Another
alternative is the XML fragment search of [Carmel 03], which deals with a subset of XQuery and which can be
used for some, though not all of our queries. While most semantic search engines are built on top of a database
management system, with queries being translated into SQL, the engine of [Carmel 03] builds on an inverted
index. Similar to the CompleteSearch engine, prefix search on artificial words is used, but without an efficient
implementation, and neither query times nor index size are reported.

Völkel et al., in their “Semantic Wikipedia” paper [Völkel 06], propose a semantic Wiki engine which
makes it easy for users to add semantic information while creating or editing Wikipages. This approach,
if accepted by the community, will combine semantic information with full text information, but it will not
provide a means of searching this information efficiently.

The general idea of enhancing full-text search by the addition of artificial words is, of course, not new. In
the QUIQ system [Kabra 03] this idea has been employed in the context of DB&IR integration. For the XML
fragments search from [Carmel 03] enclosing tags have been prepended to indexed words. In [Schenkel 07],
the Wikipedia corpus has been enriched with XML tags. None of these systems uses any specialized index data
structures, which does not let them scale well to large collections.

There are several works concerned with intuitive user interfaces forsemantic search engines. Prominent ex-
amples are Haystack [Karger 05], Magnet [Sinha 05], and the Simile tools [Huynh 05]. Our proactive user inter-
face is essentially that of our “normal” CompleteSearch engine and is inspired by the faceted-search paradigm
[Hearst 02]. To our knowledge, our system is the first to combine semantic search with an interactive and
proactive user interface.
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9.4 The Query Engine

The CompleteSearch engine with its HYB data structure is at the core of our system. However, the query engine
is modular and only requires the following characteristics:

• Prefix search: Given aposting list, sorted by its document ids D, anda range W of word ids, it must be
able to compute the (sorted) posting list of all occurrences with a document idfrom the given setD and
a word id from the given rangeW.

• Join: Given two posting lists, it must be able to compute the single posting list consisting of all items
whose word ids occur in both lists, and which is sorted by document id.

By “posting list” we mean a list of tuples, where each tuple consists of (doc id,word id, position, score). The
reason that we need to have both document ids and the corresponding word ids bundled is that we will make
use of a kind of duality, e.g., outputting word ids while intersecting document idsor vice versa. Positional
information is required as in Section9.5, where we will carefully construct artificial documents, we will make
heavy use of the positional information to put certain keywords at fixed positions. Scores for individual word-
in-document pairs (or rather word-at-position pairs) are optional but will in practice always be present, as they
allow for a highly customizable ranking of the results. HYB stores such sets as parallel lists, sorted by document
id.

The first item in the list above (prefix search) essentially refers to the central Definition 1 and at the
corresponding algorithmic problem, which HYB and AutoTree address. Itis needed as in Section9.5 we
will use a mechanism to put database-like information into artificial documents similar to the one in Section
8.3. With this prefix search operation alone, we can already answer basic semantic queries of the following
type. Assume that in our collection we have replaced each reference toJohn Lennonby the artificial word
musician:john lennon, and accordingly for all mentionings of a musician. We can then find all mentionings
of a musician on pages mentioning thebeatles by two prefix search queries: First, get the sorted list of all
ids of documents containing the wordbeatles, by solving the prefix search query whereW contains only the
id of that word, andD is the set of all documents. Then perform another prefix+completion search whereD is
the list of these document ids andW is the list of ids of all words starting withmusician:. This will give us
the list of all mentionings of a musician in documents that also contain the wordbeatles. We will write the
corresponding query asbeatles musician:*. For another example, assume that every musician has its own
document (as is the case in Wikipedia) and that, along with the artificial word for the musician’s name, we also
added the birth year as, for example,borninyear:1940. In the same manner as for the previous example, we
would then obtain the list of all musicians born in 1940 by the queryborninyear:1940 musician:*.

The join mechanism is needed, as our system depends on the ability to process db-style queries similar
to those discussed in the Section8.4. For example, consider the two prefix search queries from above: the
first gave us a list of all musicians occurring in the context of the Beatles; the second gave us the list of all
musicians born in 1940. Since the ids in both lists are of words of the same kind (artificial words starting with
musician:), a join of these lists gives us the list of all musicians who are mentioned in the context of the
Beatlesandwho were born in 1940. The list of document ids of the result list can be seen as “witnesses” of its
individual items. Note that this example queryassembled information from different documents; this is a kind
of functionality which an ordinary inverted index cannot provide.

9.5 Mapping the Ontology to Artificial Words

We assume the ontology to be given as a directed graph, where the nodes are labeled with entities, and the
arcs are labeled with names of relations. As a minimum, we require the relationsis a andsubclass ofwith
the obvious (standard) semantics that will become clear by the following examples. For our application of the
system to the Wikipedia, we picked the YAGO ontology from [Suchanek 07], which beyond the requiredis a
andsubclass of, contains relations such asborn in year, died in year, andlocated in. YAGO was obtained by
a clever combination of Wikipedia’s category informations with the WordNet hierarchy [Fellbaum 98]. The
YAGO graph has about 2.5 million arcs. Example arcs, written as ordered entity-relation-entity triples areJohn
Lennon is a musician, John Lennon born in year 1940, musician subclass of artist.
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In Section8.3, we showed how arbitrary relational tables could be put into a form such that the Com-
pleteSearch engine can process it. In the following, we describe how we cast YAGO, and similarly any other
ontology which has at least theis aandsubclass ofrelation, intoartificial words, so that we can answer complex
semantic queries efficiently using the two basic operations (prefix search and join) described inthe previous
section.

Ontology items as artificial words We assume that for each entity in the ontology there is a canonical
document. For the Wikipedia collection and the YAGO ontology this is indeed the case; if it is not, we can
simply add such canonical documents to the corpus. The construction that follows has, as a parameter, a set of
top-level categories. The right setting of this parameter will be key to an efficient query processing. Intuitively,
this set contains classes that are high up in thesubclass ofhierarchy, likeentity, person, substance, etc.

Now consider an arc (x, r, y) from the ontology wherex and y are the entities of the source and target
node, respectively, andr is the relation of the arc. We then add the following artificial words to the canonical
document for the entityx: At position 0, we add<c>:<x>, for each top-level categoryc of which x is an
instance; at position 1, we add<r>:<p>, and at positionp we addentity:<y>, wherep is unique for relation
r. For the specialis a relation we further add, for each chain of triples (x, is a, y1), (y1, subclass o f, y2), . . .,
(yl , subclass o f, z), the artificial wordclass:<z>.

For the three example triples from above, assuming that John Lennon is in thetop-level categories entity
and person, this would add (the first column gives the positions):

0 entity:john lennon

0 person:john lennon

1 is a:2

2 class:musician

2 class:artist

1 born in year:3

3 entity:1940

Note thatentity:john lennon andperson:john lennon are added only once, irrespectively of in how
many triples the entity occurs, that all relations are added at position 1, and that the relation name contains
a reference to the position of the entities from the target domain of the relation.Also note that there is no
problem, if in the occurrence lists processed by the CompleteSearch engineseveral words occupy the same
position in the same document.

Ontology queries Let us give a simple example for how we can make use of these artificial words. Assume
we want to know the birth date of John Lennon. First, the query

entity:john lennon + born in year:*

which is of the kind we have already discussed above, would give us the idof the canonical document for the
entity John Lennon, as well as the (word id of the artificial word containing the) position 3. Then the query

entity:john lennon + born in year:* ++ entity:*

gives us the (id of the word containing the) desired year. Here the plusesare CompleteSearch’s proximity
operators:<x> + <y> means that<y> must occur at the position following<x>, andn pluses say that the
words must have a gap ofn− 1 positions between them. Analogously, the CompleteSearch engine providesthe
negative proximity operator-, with <x> - <y> meaning<y> + <x>1. Note that the basic definition of prefix
search given at the beginning of Section9.4can easily be extended to perform proximity search; see Chapter4
for details on how to incorporate positional information in HYB, and Section5.5 for details on the general use
of proximity search.

In Section9.7, we will see that with artificial words added as described, we can handle arbitrary SPARQL
queries. In Section9.8we will see how the artificial words together with the prefix search operationenable us
to free the user from having to know any special syntax or names of relation in a completely interactive and
proactive way.

1The symbols+ and- are only used for clarity here. The syntax used internally is less intuitive (.,. and.;,), but these queries
will never be entered by the user directly, as they are constructed by the user interface. The- is actually used for the NOT operator (see
Section5.7).
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9.6 Entity Recognition and Combined Queries

The example queries in the previous section are purely semantic in the sense that they are operating on the
ontology alone. In this section, we show how we can combine full-text and ontology search in an integrative
manner, providing a functionality that is more than the sum of the two components.

Entity recognition We add, at the position of each occurrence of a word or phrase in the text collection that
refers to an entityx from the ontology, the artificial word<c>:<x> for each top-level categoryc of which
x is an instance. For example, if we take the same top-level categories as in the example from the previous
subsection, then whereverJohn Lennonis mentioned (either by his full name, parts of his name, or however),
we would add the artificial words

entity:john lennon

person:john lennon

Here we see that the set of top-level categories must not be too large: otherwise, a large number of artificial
words would be added for each occurrence of an entity in the corpus, which would blow up our index beyond
manageability.

Combined full-text and ontology queries Let us give an example of which kinds of queries are possible now.
Assume that we want to find all occurrences ofpersonsin documents that also contain the wordbeatles (see
Section9.9.2for a discussion of when and why this kind of query makes sense). Thenthe simple prefix query
beatles person:* would give us the desired list. But now assume that we are looking for all occurrences
of musiciansin the set of documents matchingbeatles. Further assume that musician is not a top-level
category so that we do not have artificial words of the kindmusician:<x>. However, note that in the canonical
document of each entityx that is a musician, we have the artificial wordclass:musician. Then the query
class:musician - is a:* - person:* will give us a list of all (ids of words containing the names of)
personsthat are musicians, where- is the above-mentioned negative proximity operator. A simple join of this
list with the list of the previous query will now give us the desired list of allmusiciansthat occur in documents
which also contain the wordbeatles.

In Section9.7, we show that in this fashion any basic SPARQL graph-pattern query canbe processed by a
combination of prefix search and join operations.

Efficiency We have already seen that, in order to keep the index size small, we have to keep the number of
top-level categories small, so that for each reference to an entity in the corpus, we add only few artificial words
(one for each top-level category to which that entity belongs). The question arises, why we then not just take
the top categoryentity(to which each entity belongs) as the only top-level category.

The problem is, that for a query like the one above, we would then have to execute the two queries

beatles entity:*

class:musician - is a:* - entity:*

and join them. Nowentity:* will have very many completions; indeed, one for every occurrence ofany
entity in the corpus. However, the prefix search queries can be processed efficiently only when the number of
occurrences of words from the input word range (occurrences ofwords starting withentity: in this case) is
not too large; see Chapter4 for details. We must therefore choose the set of top-level categories such that for
every sensible2 query of the kind above, there is a top-level category above the category we are looking for,
which does not have too many completions.

Realization for Wikipedia For our Wikipedia application, we identify occurrences of words or phrases that
refer to an entity from the collection as follows. Recall our assumption that, without loss of generality, each
entity in the ontology has a canonical document in the collection. Now Wikipedia has a lot of internal links,
which, for selected words or phrases do exactly what we are looking for: they associate them with an entity.
We use these links as training set for a simple but effective learning algorithm, which essentially follows the
approach from [Dill 03].

In a nutshell, the approach proceeds in two phases: a training phase, and a disambiguation phase. In the
training phase, we compute, for each word or phrase that is linked at least 10 times to a particular entity, what

2A query for allentities(people, substance, abstractions, etc.) associated with The Beatles will always be very expensive, for the
reasons just explained. But it is not a very sensible query precisely because it is looking for entities from a very, very general class.
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we call aprototype vector: this is a tf.idf-weighted, normalized list of all terms which occur in one of the
neighborhoods (we consider 10 words to the left and right) of the respective links. Note that one and the same
word or phrase can have several such prototype vectors, one for each entity linked from some occurrence of
that word or phrase in the collection.

In the second phase, we iterate over all words or phrases that have been encountered in the training phase.
For each of them, we compute the similarity to each of the possible prototype vectors, by adding up those values
in the prototype vector which occur in the neighborhood of the word or phrase we are disambiguating. We then
assign the meaning with the highest similarity. Similarly as in [Dill 03], we achieve a precision of around 90%,
see Section9.9.

9.7 SPARQL Queries

SPARQL [W3C 05] has been proposed by the W3C as a query language for ontologies. A SPARQL query
corresponding to our (purely semantic) query “musicians born in 1940” from Section9.4would be:

SELECT ?who WHERE {

?who is a musician .

?who born in year 1940 .

}

These so-calledbasic graph patternsare at the core of SPARQL, and for the purpose of this section we will
consider them as instances of the followingbinary constraint satisfaction problem (BCSP)[Kumar 92]:

Given a directed graphG, a finite setS, for each nodex a subsetSx ⊂ S of values, and for each edgee
of the graph an arbitrary relationRe ⊆ S × S. Then compute all possible assignments of values ofS to the
nodes ofG that satisfy all relations, that is, all assignments such that for each edgee with valuex assigned to
its source node, and valuey assigned to its target node, (x, y) ∈ Re.

The example SPARQL query from above would correspond to a graph withthree nodesx, y, andz, and two
edges (x, y) and (x, z), whereSx is the set of all possible values,Sy consists of the single entitymusician, Sz

consists of the single entity1940, S(x,y) is theis a relation, andS(x,z) is theborn in yearrelation.
The simplest algorithm for solving an instance of BCSP will iterativelyrelax the arcs of the given graph as

follows: for an arc (x, r, y), where the current set of values forx is X, and the current set of values fory is Y,
replaceX by all values which are related, with respect tor, to a value fromY, and, analogously, replaceY by
all values which are related, with respect tor, to a value fromX. Like this, relax the nodes in some fixed order
and repeat until the sets of values do not change anymore.

There are a number of more sophisticated algorithms making use of the same basic relaxoperation [Kumar 92].
It is not hard to see that in the important special case, where the query is atree (and the vast majority of mean-
ingful SPARQL queries are trees), it suffices to relax each arc exactly once (going from the leafs to the root).
It is also not hard to see that, for our system, each relax operation is a matterof at most two prefix search
queries and two join queries. TheX andY from above correspond to lists<X> and<Y> of occurrences in the
CompleteSearch engine. To compute the set of ally ∈ Y which are related, viar, to somex ∈ X, we first execute
the query <X> + <r> ? <c>:* wherec is the (top-level category encompassing the) domain ofr, and?
is to be replaced by the proximity operator pertaining tor. A join of the matching completions for the prefix
<c>:* in the query above with the result list of<Y> then gives the desired subset ofY. The desired subset ofX
is obtained analogously. We therefore have the following theorem.

Theorem: Following the approach above, we can process an arbitrary given basic SPARQL graph-pattern
query with at most 2m prefix search and 2m join queries, wherem is the number of relaxations required for
the solution of the corresponding binary constraints satisfaction problem. If the SPARQL query is a tree, one
relaxation per arc of that tree is sufficient.

9.8 User Interface

By “user interface” we do not mean the choice of colors and the like but really the interface, or “query trans-
lation device” between the user and the CompleteSearch engine in the background. Neither SPARQL nor
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CompleteSearch’s low-level query language (combinations of prefix searches and joins) are suitable for a front
end to a search engine, where users are accustomed to extremely simple interfaces (namely, keyword search).

Inspired by the works of [Hearst 02] and addressing similar issues as for the case of faceted search (see
Chapter6), we have therefore devised an interactive and proactive user interface, which handles the most
common types of semantic queries in a simple and intuitive manner. We have seen afirst example in Figure
9.1. Here, we describe the other features in words and by example. Each ofthe following kinds of queries are
a matter of a small SPARQL query that is a tree, and can therefore be solvedefficiently by the theorem proved
in the previous section.

Semantic completion of the last prefix This is the feature, an example of which is shown in Figure9.1. At
every keystroke, the system checks whether the last prefix of the current query string matches a class name.
This is easily realized via artificial words as follows. For each class name, such as musician , we add an
artificial word of the type cn:musician:person , where “person” would generally be the nearest top-level
category containing the respective class, to a special document containing only such words. From the matching
completions to the querycn:music , which is launched automatically in the background, we then get the
information that the prefix music could also be interpreted as a class name. If more than one class name
matches, a box with possible choices is displayed. For example, for the query beatles music, we get

Musical instrument (Object)

Music Genre (Relation)

Musician (Person)

Clicking on one of these choices then gives a picture similar to the one of Figure9.1.

Proactive display of properties of an entity If we click on one of the musician’s names in the lower box
shown in Figure9.1, the right panel will show documents referring to that musician prominently. On the left
side, the lower box then shows a list of prominent properties of that entity according to the ontology, for exam-
ple

John Lennon born in year 1940

John Lennon died in year 1980

John Lennon is a pacifist

Narrowing down a class Another frequent query is for entities from a given class which have a particular
property. For example, assume we are looking for songs by German musicians. This can be formulated as
the query musician[german] song for which the system displays occurrences of songs in documents that
mention a musician, which in this or any other document occurs together with the word german. Note the
subtle difference to the querygerman musician song for which all occurrences of songs in documents
which contain the word German and mention a musician are displayed. Both kindsof queries are needed
from time to time, but the user interface can be configured to translate the latter kind of query into the former
automatically.

9.9 Experiments

We have implemented the whole system as described above. For the query engine we used the CompleteSearch
engine, but the only required features are described in Section9.4. The entity recognizer was described in
Section9.6, and the user interface in Section9.8. We have applied it to the Wikipedia corpus combined with
the YAGO ontology. Our version of the Wikipedia corpus has 2,863,234 documents and a raw size of the
corresponding xml file of 8.0 GB. Our version of the YAGO ontology graphhas 984,361 nodes (entities) and
2,505,638 arcs (facts). The total number of word occurrences, including the artificial words, is 1,513,596,408,
which the CompleteSearch engine manages to hold in an index of size 4.1 GB, including 300 MB for the
(compressed) vocabulary. Our experiments were run on a machine with 16GB of main memory, 2 dual-core
AMD Opteron 2.8 GHz processors (but we used only one core at a time), operating in 32 bit mode, running
Linux. The ontology-only queries were run on an Intel Pentium 4, 3 GHz,with 1 GB of main memory, running
Windows. We verified that the running times on these two machines are comparable.
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9.9.1 Efficiency

As we discussed in Sections9.2 and9.3, efficiency aspects have hardly been considered for other semantic
search engines with similar capabilities as the ones offered by our system. Preliminary experiments (not further
reported in this chapter) have pointed to performance differences of up to two orders of magnitude.

For a more challenging performance assessment, we therefore devised the following, somewhat extreme,
stress test. We constructed five query sets, three of which are purely ontological, while two others com-
bine full-text and ontology search. For the pure ontology queries, preliminary experiments with Jena’s ARQ
[Seaborne 05], a state of the art SPARQL engine, have again pointed to performance differences of up to two
orders of magnitude; we instead chose to compete with the highly tuned (ontology-only) search engine that
comes with YAGO [Suchanek 07]. For the combined queries, we compare our system to a state of the art
engine for full-text search; for this we took our own implementation which we already used as a baseline in
Chapter4.

This comparison is extremely unfair because both the ontology-only and the full-text only system are highly
tuned toward their specific task, and cannot be used for the respectiveother task. Moreover, YAGO’s ontology-
only search is realized via a database management system with one large facts table, with indexes built over
each possible attribute, which means that it has the set of answers for all basic fact queries precomputed. The
space requirement is accordingly high: roughly 3 GB. This has to be compared with the about 4 GB which the
CompleteSearch engine requires for the whole full-text+ ontology index. A version of our system built for
ontology search alone has an index size of only about 100 MB.

Queries We considered the following five queries sets. Note that queries from the first three sets can be
answered from the ontology alone, and do not need the full-text searchcapability. For our experiments, we
always used the complete index though.

Simple ontology queries:These ask for a list of triples from the ontology. Namely, for 1000 persons from the
ontology, we ask for their birth year.

Advanced ontology queries:These queries require following paths in the ontology graph. Namely, for 100
relatively general classes, like biologists, social scientists, etc., we ask for all entities from that class.

Hard ontology queries:These queries require the combination of several facts from the ontology. Namely, for
1000 persons, we asked for the death dates of all persons that were born in the same year as the given person.

Combined full-text+ ontology queries, Easy:These queries require the combination of full-text and ontology
search as described in Section9.5. For the easy set, we asked 50 queries for all counties of a given US state.
The counties class is in our frontier set, so these queries can be processed via prefix search queries alone, e.g.,
alabama counties:*.

Combined full-text+ ontology queries, Hard:These 50 queries ask for all computer scientists of a given
nationality. Since the computer scientist class is not in our frontier set, but only the more general scientists
class, these queries require more expensive prefix search queries as well as a join; see Section9.6.

Results Table9.1 summarizes the results of our efficiency experiments. Given the unfairness of the com-
parison, discussed above, the fact that the CompleteSearch’s query processing times are comparable to the
respective specialized baselines is a strong result in favor of our approach.

For the full-text only queries, we simply replaced all entity prefixes by corresponding index words, e.g.,
alabama county or german computer scientist. Note that these queries hardly retrieve any relevant
documents. We provide these figures merely to show that unlike the systems discussed in Section9.3, Com-
pleteSearch manages to stay in the same order of magnitude as state of the art full-text search. Also note that
for the full-text only search, the hard query set can be processed faster than the easy set because there are more
occurrences of the wordcounty than of the wordscientist in the Wikipedia. Finally, note that the Com-
pleteSearch engine manages to keep also worst-case (max.) query processing times low (which was in fact one
main design goal as discussed in Chapter4); this is especially important for the interactive, suggest-as-you-type
user interface.

9.9.2 Search Result Quality

Thequalityof the search results provided by our system, or any other semantic search engine of a similar kind,
depends on three main factors: (1) the quality of the ontology; (2) the qualityof the entity recognizer; and (3)
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CompleteSearch
Onto-only or

Full-text only

avg. max. avg. max.

Onto Simple 2ms 5ms 3ms 20ms

Onto Advanced 9ms 31ms 3ms 794ms

Onto Hard 64ms 208ms 78ms 550ms

Onto+ Text Easy 224ms 772ms 90ms 498ms

Onto+ Text Hard 279ms 502ms 44ms 85ms

Table 9.1: Query processing times on five query sets

the principal ability of the combined full-text and ontology search to provide interesting results.

Quality of the ontology We employ an existing ontology, namely YAGO from [Suchanek 07]. In that paper
the authors estimate, by extrapolation from human assessment on a sample, that 95% of YAGO’s facts are
correct.

Quality of the entity recognizer Table9.2shows the quality of our entity recognizer, described in Section9.6.
For this assessment we held out 10% of the words or phrases for which the corresponding entities are known
(because they link to some Wikipedia page), and measured the percentage of entities recognized correctly
(precision). We compare our implementation (OUR) against two simple baselines: the naive scheme that
assigns every word to the most common sense that has been encountered for that word in the training set
(TOP), and the scheme that assigns every word to a random sense (RANDOM).

Scheme all words 2 senses3 senses≥ 4 senses

OUR 93.4% 88.2% 84.4% 80.3%

TOP 91.9% 83.5% 77.2% 77.6%

RANDOM 71.5% 50.2% 33.4% 14.0%

Table 9.2: The precision of the entity recognizer used by our system

Combined ontology and full-text queries quality Since there are no benchmarks for combined full-text and
ontology queries on the Wikipedia, we came up with the following twogeneric(as opposed to hand-crafted)
query sets:

People associated with universities (PEOPLE, 100 queries):We took the first 100 lists from the Wikipedia page
“Category:Lists of people by university in the United States”, for example “List of Carnegie Mellon University
people”. For each such list, we generated a combined ontology and full-text query, for example, carnegie
+ mellon + university person:* and computed the percentage of relevant entities which appear in the
result list (RECALL) and the percentage of relevant entities among the top 10 (P@10), considering the entities
listed on the respective Wikipedia page as the relevant ones.

Interestingly, our system found a number of false-negatives: for example, among the top ten entities for the
above query, Andrew Carnegie was returned, who is not listed on the respective Wikipedia page.

Counties of American states (COUNTIES, 50 queries):For the second query set, we took 50 Wikipedia lists of
the form “List of counties in<US state>”.

Results As shown in Table9.3, CompleteSearch enriched with the ontological knowledge achieves an almost
perfect recall and a reasonable precision on both query sets. Unfortunately we could achieve these precisions
only withoutthe additional entities learned by our recognizer, while recall is not affected much. This may sound
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paradoxical at first but there is a simple explanation: the amount of information provided by the Wikipedia
links (our training data) is already very complete, e.g., at least the first mentioning of a person on a Wikipedia
page almost always contains a link to that person’s entry in the Wikipedia. This means that for the broad
kinds of queries from our two sets, tagging more entities only creates more noise. The entity recognizer would
obviously help if we had additional documents with interesting information, but without human-labeled entities,
for example, news articles. Here we could then, e.g., ask for politicians mentioned in a news article containing
the word “nuclear power”, or for countries occurring together with “taxincrease”. This issue requires further
investigation.

PEOPLE COUNTIES

P@10 37.3% 66.5%

RECALL 89.7% 97.8%

Table 9.3: Precision and recall on two query sets





Chapter 10

User Study

10.1 Introduction

Fast response time is one of the keys to user satisfaction: for user interfaces in general, and for knowledge
management systems in particular. Our CompleteSearch engine was designedto provide a set of “intelligent”
search features, yet with response times suitable for a fully interactive (per-keystroke) user interface, even for
very large amounts of text.

In this chapter, we describe how we combined CompleteSearch with our institute’s helpdesk system, which
contains over 7,000 records from a few hundred users. We conducted a small user study with five members
from our helpdesk staff, who each performed ten typical tasks, alternatingly using CompleteSearchand Google
Desktop Search (desktop.google.com).

All five users preferred CompleteSearch over Google Desktop, mainly because of its speed, the feeling
of being in power, and the enhanced search facilities. The interactive behavior with its instant response time
was unanimously perceived as the single, greatest strength of the system.Although this did not come unex-
pected for us, it is somewhat surprising given the many other intelligent (semantic) search features provided by
CompleteSearch, and given that Google Desktop Search is by no means slow (though not as interactive) either.

In Section10.3, we describe the adaptations we made to the CompleteSearch engine to optimize it for the
helpdesk setting. In Section10.4, we discuss work related to the problem of experience management in general,
and to helpdesk systems in general. In Section10.5, we describe the setup of our user study and discuss the
results.

Following our study, the helpdesk staff is now using CompleteSearch on a daily basis. For privacy reasons,
we cannot offer a demo of the CompleteSearch setup for our helpdesk system. However,a list of related demos,
can be found athttp://search.mpi-inf.mpg.de/.

10.2 The Helpdesk System

Our institute’s helpdesk system is essentially a database ofshort text fragmentsgrouped into threads, called
tasks. Each fragment has an author, user privileges, etc. and each task has a priority, a status, someone
responsible for it, etc. Customers can initiate or react to a task by email or via aweb interface. At the time of
our user study, the database contained about 7,300 tasks. Tasks are inthe literature sometimes also referred to
as ‘trouble tickets’.

10.3 Adapting the CompleteSearch Engine to the Helpdesk System

The screenshot of Figure10.1shows our CompleteSearch engine in action for the collection of helpdesk tasks.
Note that the basic autocompletion search feature (see Section5.2) is a purely syntactic one: it is all

about words starting with a particular sequence of letters. We next show,by a few examples, how by adding
appropriate artificial words to the index, a surprising variety of more and more semantic features can be realized,
too. The examples here are for the particular use case of our helpdesk system. A far more thorough study of

87
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Figure 10.1: A screenshot of the CompleteSearch engine in action for the queryssh pass on a collection of
over 7,000 tasks of our helpdesk system, indexed with full text+ category information. The list to the right
shows documents which contain a word starting withssh together with a word starting withpass. The first box
below the search field shows words, subwords, and phrases starting with pass (passwort, password, passphrase,
etc.) that lead to the best hits. The other boxes show a breakdown of the whole set of 2,302 hits by various
categories: requesting user, who is responsible, task status, etc. All thisinformation is updated instantly after
every single keystroke, hence the absence of any kind of search button. All features are obtained via one and
the same highly efficient and scalable prefix search and completion mechanism.

how the CompleteSearch engine can be used to allow more semantic queries waspresented in the previous
Chapter9.

Semantic annotations.Assume the wordkmhp81001 has been identified, as a printer name. We would
then add the wordsprinter:kmhp81001 andkmhp81001:printer to the index. If a user then typedproblem
pri, one of the completions might beprinter:kmhp81001 (which in our current GUI would be displayed as
kmhp81001, the PRINTER), provided that there is at least one document in the collection which contains
both problem andkmhp81001. And similarly so for the queryproblem kmhp. For our institute, we could
simple obtain an exhaustive inventory list of all printers, notebooks and desktop, for which we then added this
information.

Faceted search.Assume that a document is known to belong to certain categories, saylinux andmail.
We would then add the wordscat:linux andcat:mail to the system. Then, for the querynetwork slow
cat:, the list of completions would give a breakdown into categories of the hits forthe querynetwork slow.
In the actual GUI, users do not have to type thecat: but a query with this word appended is launched auto-
matically after every keystroke. See Figure10.1 for an example. This feature, known asfaceted searchand
described in detail in Chapter6, gives the user complete freedom to alternate between keyword-based searching
and directory-style browsing. This category information, e.g., the current status of the request or the person
responsible, was already provided with the document itself in the database inthe background.

More features could be added in this vein, following the approach given inSection8.3. With the help
of DB-style joins (see Section8.5), we could then even find information spread over several documents, for
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example: which PhD students have notebooks of a particular type. Here one document could mention the
name of the student (without mentioning his position) and the type of his notebook, and another document
could mention that this particular person is PhD student. Other features of theCompleteSearch engine, such as
proximity search (see Section5.5) or the OR and NOT operators (see Section5.7), work out-of-the-box.

10.4 Related Work

In our user study, we concentrated on theretrieval aspect of managing a helpdesk system. Indeed, in a study
of Brandt [Brandt 02], only 14% of all helpdesk calls were new problems that required seriousattention. For
the helpdesk system of our institute, where the majority of the customers are computer experts themselves, this
percentage is somewhat larger, but finding existing bits of information is still the predominant task. Most of the
existing helpdesk systems can be viewed as a combination of some kind of content management system with
some kind of search engine [Sinnett 04].

In case-base reasoning (CBR), equal attention is paid to the problem ofaddingnew cases to the system (in
order to maximize utility for the solution of similar future cases) [Leake 96; Bergmann 04]. While we did not
directly address this problem in our user study, the combination of CompleteSearch with any kind of content
management system shares many desirable features with full-blown CBR systems like HOMER [Göker 99].
Such CBR systems require a hierarchy of category labels that is carefullyadjusted to the application at hand.
These category labels are then used to guide the search for existing cases similar to a given one, as well as the
task of storing new cases in the right place in the hierarchy. By appropriately adding these category labels to
the search index, CompleteSearch, with its context-sensitive completion facility, has the potential for achieving
much of this too. We consider an in-depth investigation of this relationship as a very promising direction for
future research.

10.5 The User Study

10.5.1 Setup of Study

For our study we asked five volunteers from the helpdesk staff to use both Google Desktop Search (GDS) and
our CompleteSearch (CS) system to each process a set of ten fictitious problems, modeled after typical helpdesk
requests. For example, the first two problems were:

P1. I’ll be away for a couple of weeks soon: How can I configure my IMAP account to send an automatic reply “I’ll
be back in X weeks”?

P2. When I run matlab on the compute server ’dude’ some windowswith dialogues (e.g., to save/open files) have all
the text unreadable, i.e., only symbols rather than lettersare displayed. What can I do?

After a minimum of 1 minute and a maximum of 5 minutes, each participant answered the following nine
multiple choice questions for each problem:

M1. How much time did you spend on this request? [1-5 minutes]
M2. How realistic was the given problem? [1= completely artificial/would never happen, 4= could happen/has

happened]
M3. How easy was it to find enough relevant information for this request? [1= impossible, 4= trivial]
M4. How many relevant documents did you find? [None, One or two, three to five, six to ten, more than 10]
M5. How empowered by the system did you feel? [1= I felt powerless/very lost, 4= I had all the control and power

one could hope for]
M6. GDS only: Did you use GDS advanced search syntax? [yes, no]
M7. CS only: Did you use the categories (status, requester, responsible)? [yes, no]
M8. CS only: Did you use the proximity (‘..’) or phrase (‘.’) operator? [yes, no]
M9. CS only: Did you use the completions under the search box?[yes, no]
After having attempted to find information for all ten of the problems, they were given six more questions

concerning the whole CS system and its perceived benefits. For example,the first two questions were:
G1. Overall, in your everyday work, would you use GDS or CS? [Always GDS, mostly GDS, mostly CS, always CS]

G2. For the particular helpdesk application, distribute a total of 20 points among the following eight features. Design,
speed, useful completions, useful categories, proximity and phrase search, high quality ranking, high quality snippets,
usability

Finally, there was also a short personal interview at the end to have a chance to get more explicit feedback.
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10.5.2 Division of Problem Sets Into Two Halves

The set of 10 problems was split into two halves. Each of the five participantsused GDS for one half and CS
for the other. Three participants first used CS and then GDS, two used thesystems in the other order. In total,
both CS and GDS were used for 25 problems. This way we tried to ensure that (a) all problems were attempted
by both systems (to avoid biases from differences between easy and difficult problems) and (b) all participants
used both systems (to avoid biases from differences between lenient and critical users).

As it turned out, the first half of the problems was significantly more difficult. The average ease of finding on
a 4-point scale (question M3) was 2.2 for the first half set compared to 2.6for the second half. Correspondingly,
the number of relevant documents found (question M4) was smaller for this set. The average selected category
(of five possible) was only 2.4 compared to 3.2 for the other set. Our systemhappened to be used more often
on the difficult set of queries.

10.5.3 Main Findings of Study

All users prefer CS.Four of the five test users always prefer CS (question G1). One usermostly prefers CS.1

It’s easier to find information with CS. All except one test user found it easier to find results with CS
than with GDS. For these four users the average response to Question M3(ease of finding information) was
higher when using CS than when using GDS.1 The overall average ease of finding, on a 4-point scale with more
meaning “easier” was 2.6 for CS vs. 2.2 for GDS.

More relevant documents are found with CS.Correspondingly, more relevant documents were found
with CompleteSearch (question M4). The average selected category, on a5-point scale with 1 being no relevant
document at all, was 3.0 for CS vs. 2.6 for GDS.

Users feel more empowered by CS.Four of the five test users felt more empowered by CS than by GDS.
For these participants the average response to Question M5 was higher for CS than for GDS.1 The overall
average “feeling of empowerment” was 3.0 for CSE vs 2.3 for GDS.

Problems were found to be realistic.To ensure the relevance of the study to the helpdesk’s daily business,
we asked the participants to evaluate the realism of the given problems. The average rating was 3.4 on a 4-
point scale, with 1 corresponding to “completely artificial/would never happen” and 4 corresponding to “could
have/has happened before”.

Relative importance of features.Question G2 was targeted at the relative importance of various ingredi-
ents of a search engine as perceived by the user. The users had to distribute a total of 20 points among eight
features, which means that a score above 2.5 indicates an important feature.

The three most important ones turned out to be (i) general speed (3.3), (ii) proximity and phrase queries
(3.0) and (iii) to present good completions to the user (2.8). Indeed, proximity and phrase queries were tried
for 19 of the 25 problems for which CS was used. Users stated to have used the displayed completions (in
whatever way) for 13 of the same set of 25. Interestingly, the GDS advanced syntax (phrase queries, negation
operator) was used for only 7 of 25 problems.

Observations from interview. All participants unanimously explained that, for their everyday use, the
categories (see Section10.2) areactually useful, despite the fact that in the study they only used this information
to refine search results for two of 25 problems. The reason for this is thatthe category information isnot very
useful for information finding tasks (where any category can contain relevant information), butis useful for
navigational tasks (where the student is looking for aparticular request and might remember the current status
of that request).

All users stated that they heavily depended on the short document previews to select documents to inspect
more closely. One user asserted that with CS he never (!) went to the actual document (which takes about 2-5
seconds to open), but simply used CS’s feature to increase the size of thesnippet. This way he could view all
of the document’s content in less than a second, without leaving the searchinterface. Interestingly, in the list of
8 most important aspects (question G2), high quality snippets only got an average score of 2.3, leaving it 6th in
the list.

Two of the three users who used CS for the first set of queries unsolicitedly mentioned that they felt a
considerable “oh no”-effect, when they had to use GDS for the second half. Now they had to type more, had to
wait longer for their results and had no option to adjust the size of the snippets.

1The single ‘outlier’ used CS for the more difficult first problem set.
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Some of the participants of our study pointed out that a lot of their search time isdevoted to repeated query
formulations in both English and German. As a partial solution, we have, afterthe study, integrated ‘semantic
tags’ for certain words. For example, all terms starting with any of the prefixes ‘druck’, ‘print’ or ‘lpr’ (and
others) are now tagged to belong to the category ‘printer’.





Chapter 11

Implementation and Design Choices

11.1 Introduction

Without an efficient data structure, such as HYB (see Chapter4 or AutoTree (see Chapter3) to handle au-
tocompletion search queries (according to Definition1), our CompleteSearch engine would not nearly be as
powerful as it is. Still, when building the system, there were many crucial decisions to be made, which were
not necessarily of an algorithmic nature but often more of a software engineering nature. They all had a direct
impact on the usability (as perceived by the end user), the extensibility (with respect to new features) or the
efficiency.

11.2 Maximizing Locality of Access

It is a truism that sequential access to data is faster than random access.For a typical disk, average seek time is
5 milliseconds versus an average transfer rate of 50 Megabytes per second. But even when the data is entirely
in main memory, sequential access is up to 100 times faster than random access. This factor tends to be smaller
for complex applications (or programs in higher-level languages, see theparagraph after the next), but when
other factors of inefficiency are eliminated it plays a crucial role. Indeed, our first index data structure AutoTree
is theoretically close to optimal, in that we could prove its query processing time to be asymptotically bounded
by the size of the output, for corpora with a realistic average case behavior. Yet, our follow-up scheme HYB
without this theoretically desirable property, but highly optimized for locality ofaccess, beats AutoTree by a
factor of 1.2− 4.0, depending on the input/output volume of the query. See Section4.6for details.

11.3 Minimizing the Amount of Data to Read

To reduce the amount of data that have to be read from disk and processed per query, the HYB index makes
extensive use of compression. Further, it is one of the distinguishing features of HYB that the index data is laid
out such that the processing of a query requires merescansof portions of the data. In particular, no sorting or
other non-linear or non-local operations of large portions of the data are required to find the matching word-
in-document pairs. Such operations are only performed on the (small) setof these matching pairs (for scoring)
when they are in main memory, but not on the whole data that is processed from disk to obtain them.

11.4 Choosing the Right Programming Language

Concerning implementation of the core compute module, C++ was the programming language of choice.1 It
is often debated how much faster an implementation in C++ really is compared to, say, a program written in
JAVA, or queries to a DBMS like Oracle or MySQL. Indeed, anecdotal evidence as well as a study by Prechelt
[Prechelt 00] have it that the choice of programming language does not make much of a difference for the
average program. However, when it comes to algorithms highly optimized for sequential access to data, the

1Of course, the user interface used AJAX (Php and Javascript) and in preprocessing steps we extensively used Perl.
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C++ JAVA MySQL Perl

1800 MB/s 300 MB/s 16 MB/s 2 MB/s

Figure 11.1: Average processing rate (in Megabytes per second) forfour different programming lan-
guages/environments scanning an ordinary (in-memory) array of 10 million 4-byte integers, measured on a
Linux PC with two 3 GHz Intel Xeon processors and 4 GB of main memory. The rate for C++ is close to the 2
GB/s memory bandwidth specified for that machine.

difference is enormous. See Table11.1, where for a simple scanning task, C++ wins over JAVA by factor of 6,
over a MySQL application by a factor of more than 100, and over a scriptinglanguage like Perl by a factor of
almost 1000.

We made extensive use oftemplating, to reduce the code complexity without compromising instruction-
cache efficiency (few instructions in the inner loops) and branch predictability (no conditionals in the inner
loops, wherever possible).

11.5 The Right Building Blocks

HYB’s and also AutoTree’s inherent duality, in the sense that they always work with word-in-document pairs,
made the later addition of the join functionality (see Section8.5) easy. Rather than intersecting the document
ids, we now had to intersect the word ids. The intersection algorithm suddenly is different (as word ids are not
sorted), but apart from that the same framework holds. Similarly, it allowedus to easily integrate customizable
scoring for the matching completions, as we also had the scores for each word-in-document pair.

These parallel lists of document ids, word ids, positions and scores, arealso the main building blocks to
be processed by our system. All central routines, such as intersection or join, take as input two such lists and
output a new one. This choice of data encapsulation helped to facilitate the addition of new features.

11.6 Keeping the Core System Simple

It proved to be of enormous benefit to have chosen just the right level of abstraction for the central mechanism.
The prefix search and completion mechanism, with the join functionality added later, turned out to be powerful
enough to provide a wide range of features, yet simple enough to allow foran efficient implementation. The
addition of these advanced features later, which were not foreseen atall when we started with our system,
turned out to generally require no or only very minor modifications of the core completer engine. Most features
such as faceted search (Chapter6) or even the whole semantic search (Chapter9) could be implemented by (i)
choosing the right artificial words to add and (ii) modifying the user interface slightly.

11.7 Hiding the Complexity From the User

We tried to design the system such that the user has to know as little as possible about the features available and
their syntax. In fact, he could even choose to ignore the basic prefix search mechanism and simply type full
words as usual. Then our system would work as a normal search engine. Similarly, in cases where categorical
information is available, the user does not need to know about the syntax ofthe artificial words to exploit the
faceted search feature. This becomes even more relevant for the semantic search feature, which is built on top of
such an intricate use of artificial words that no user could be expected to handle it directly. In all of these cases
the mechanism to hide the complexity from the user is the same: the user interfacelaunches complex queries
automatically in the background and, if they give the appropriate results, displays this additional information to
the user, who can ignore this information completely or try to make use of it.
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11.8 Result Caching

Besides the use of an efficient data structure such as HYB to process autocompletion search queries, the single
most important “detail” to obtain short processing times, is a clever reuse of results already computed in the
(recent) past. Recent queries (and the corresponding results) are kept by our system in a cache, which we refer
to as “history”. All the use cases discussed below are independent of the algorithm used to compute the results,
and apply equally well to INV, AutoTree or HYB.

The simplest application of the history would be to do a simple lookup for the exact same query and, if
found, return the cached result. This mechanism is already required to process a normal sequence of auto-
completion search queries, corresponding to a user typing one query word after the other. Once the user starts
typing a new (partial) word, we first do a lookup for the part of the querypreceding this last prefix. If it is in the
history, as it always will be if the query has been typed normally, we then immediately obtain the result for this
first part, including theD (according to Definition1) to be used in combination with the last prefix. Without
this mechanism, a query withk prefixes/words would be roughly a factork slower.

The mechanism, which we call “result filtering”, was already mentioned in Section 2.1. We dicuss it
here again for completeness. It has a less dramatic effect than the crucial result caching above, but it is still
of very practical relevance. It is applicable to query sequences suchasinfo, infor, ..., information, or
information ret, ..., information retrieval. Here, we can exploit the fact that the sequence of auto-
completion search queries is of the form (D,W), (D,W′), (D,W′′), ..., whereW ⊇ W′ ⊇ W′′ ⊇ . . .. The result
of the current/last query, sayΦ′′, is hence a subset of the resultΦ′ for the previous query. That is, we merely
have to scan the elements (d,w) ∈ Φ′ once and filter out those for whichw ∈ W′′. This is in practice always
faster than launching a full recomputation.

A slightly more intricate method of filtering works, when theW in a sequence such as above remains
constant but theD gets smaller (where bothW andD are with respect to the very last prefix). This can happen
when, as described in Section6.3.1, we always add the same constant prefix after each query typed by the
user. For the case of faceted query, we would, e.g., always add the prefix cat:author to get a breakdown
of the results by author. While typingretrieval, the following sequence might be generated in this way:
retr cat:author, retri cat:author, ...,retrieval cat:author. To optimize the performance for this
case, we do the following. We get the list for the last prefix the user has entered, sayretriev, and intersect it
with the result list for the last query from the sequence in the history, sayretrie cat:author. This way we
avoid processing the potentially long list forcat:author in such a setting altogether. In a similar fashion, we
can obtain the result forinformation ret cat:author by intersecting the results forinformation ret
andinformation cat:author.

11.9 Running Several Threads in Parallel

Although our HYB data structure was built with the aim of minimizing worst case running times in mind, there
are still instances where our CompleteSearch engine cannot guarantee afully interactive response time. This
happens when the query is of a very unspecific nature such aspro or the2, where the input volume to process is
enormous and the output volume is of a similar size. (Also see the following section.) During times, when the
query load is very high, a single worst case query could cause many other request to wait for an unacceptable
amount of time. This can be avoided by processing each request in a separate CPU thread.

Making the CompleteSearch engine multi-threaded, was relatively straight-forward, as most (small) data
elements, such as counters, did not need to be shared between threads.The only data element, whichmustbe
shared for efficient processing, is the history, with its cached results of recent queries. Here problems could
occur if two threads both try to concurrently create the same entry in the result cache, or if one thread tries to
read a recent result, which is still under construction. In such cases, the second thread needs to wait for the first
one to finish, before it can access the cached result.

2We usually do not remove any stop words, such as “the” or “and”, from the documents.
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11.10 Not Making Life Harder Than Necessary

The hypothetical queryt, which asks for all documents containg a word starting with “t”, ranked by relevance,
along with a list of such words, would for the Wikipedia collection take more thana minute for our Complete-
Search engine. But this, and similar queries, are of no practical use to theuser, and so we simply disallow them.
That is, we require a certain minimal length of a prefix, while it is typed, before we (i) launch any query at all
and (ii) do a full prefix search, rather than treating it as an exact match query (without the implicit “*” at the
end). This takes a significant amount of load of the system, without sacrificing the usability of the system. In
practice, we choose a minimum length of 2− 3, before we launch a query. For this minimum length, the last
prefix is interpreted as a full word and a “*” isnot yet implicitly added. For prefixes of at least 3− 4 letters, we
then provide the usual autocompletion search feature.

11.11 Putting Everything Together

Building an interactive web application like CompleteSearch that is supposed todisplay its GUI via any stan-
dard web browser, was a very challenging task.

It starts with the design, which is all but obvious. The completion server necessarily has a non-negligible
start-up cost and cannot be started from scratch for every query, but has to run as a background process contin-
uously. But letting the client’s web browser communicate with a program on a remote computer is a security
problem. We solved this by a three-step approach: the web page displayedto the client contains JavaScript
code, which for each user action triggers the loading of a special web page via an AJAX3 protocol. This web
page is dynamically created via PHP, in particular taking care of the communication with the completion server,
and generating the HTML as well as the JavaScript code. Figure11.2shows a simple diagram of the data flow.

Figure 11.2: The communication between the user client and the web server isdone via AJAX. The web server
exchanges data directly with the compute server via socket communication.

The advantage of this approach is that no installation or special software isrequired on the side of the
user; any standard web browser will do. Nor can any firewall settings be a problem: if web browsing works,
CompleteSearch works too. The price for this is complex code on three different machines (completion server,
web server, client machine) which interacts with each other in a non-trivialmanner, and can be hard to debug.
Missing standards and inconsistencies concerning the way web browsers process JavaScript, render a complex
layout, or deal with the browser history (back button) are a constant source of trouble.

3“Asynchronous JavaScript and XML”. Uses the JavaScript XMLHttpRequest object to trade data with the web server, without
reloading the page.
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11.12 Keeping in Touch with the Users

The CompleteSearch engine would not be close to what it is today without the feedback of our users. In this
section we report on some of the main lessons we learned from this feedback loop.

The first users were ourselves. When starting the project 3 years ago, we first wrote a prototype (in Perl) to
see the search engine in action, on a real collection. Many of the featureswere born in that way, e.g., the search
within tags (see Section5.6), such as the “From” or the “Subject” field in a collection of email messages from
a newsgroup.

One of the lessons we had to learn was that the vast majority of (our) usersis not willing to read even the
tiniest bit of documentation before using a search engine, not even if the search does not give the expected
results. Actually, we anticipated this to some extent, and tried to keep the user interface intuitive and simple
right from the beginning. And after all, the whole approach of CompleteSearch is a proactive one: display
completions, hits, refinements, alternatives, etc. as the user is typing. If heor she opts to ignore this information,
the basic functionality of a search engine is still there.

But the following surprised us: below the search field we put a very short note saying ”Type ? for help”,
and the mechanism was such that typing? at any point in the query would instantaneously display a few
sentences on the most important advanced operators which can help improve search results. Well, hardly any
user ever pressed the? key, let alone read the help information. After this experience we abandoned all our
plans for more elaborate help pages, feedback forms, etc. and focused on making our whole system as proactive
as possible.

Still, we have not given up on receiving feedback at least on a smaller scale. Our user study (see Chapter
10) was an opportunity to do this. The personal, short interviews with the volunteers at the end gave us valuable
insights into the “user perspective”, e.g., clarifying how they use which kind of information on a regular basis.
We also continue to receive feedback from interested colleagues, who use our system to search in a collection
of scientific articles. Seehttp://search.mpi-inf.mpg.de/ for a list of available online demos.





Chapter 12

Conclusions

12.1 Recap of Main Contributions

We have built a search engine, called CompleteSearch, which efficiently supports a wide range of features. It is
built on top of a mechanism to solveprefix search and completionqueries: Given a set of documents (containing
all the query words typed so far) and a prefix (corresponding to the query word currently being typed), find (i)
the most promising completions of the prefix which, if fully typed, would yield at least one matching document
from the given set, as well as (ii) the most relevant such documents.

In the first part of this dissertation, we formalized this problem (Chapter2) and presented two data struc-
tures, AutoTree (Chapter3) and HYB (Chapter4), which address the corresponding algorithmic problem.
AutoTree has the desirable property that, for realistic corpora and queries, its running time depends linearly on
the size of the output. HYB is optimized for scenarios, where the index is too large to fit in main memory, and
offers space bounds in terms of the empirical entropy of the corpus. For bothdata structures, we performed
extensive experiments to evaluate their performance relative to a baseline using the inverted index, and also to
evaluate their performance relative to each other. In a general setting, HYB outperforms AutoTree.

In the following chapters, we then discussed various extensions and applications of our CompleteSearch
engine. These included a list of features, such as ranking or proximity search, which are applicable to any
search engine, and which do not rely on the prefix search and completionmechanism for an efficient realization
(Chapter5), but also more advanced features, which depend on this mechanism, such as faceted search of
hierarchical information (Chapter6), interactive completion to synonyms (Chapter7), support for database-
style queries (Chapter8) and efficient search of ontologies (Chapter9). We also combined our CompleteSearch
engine with the database of the helpdesk of our institute. This we used to perform a small user study, to prove
the usefulness of your system (Chapter10). All of the additional features are provided in a proactive manner.
That is, the user does need to know about the feature, and can even ignore it completely. Some of the lessons
learned from building our system, and some crucial details not directly related to the the other chapters, were
discussed in Chapter11.

We obtained an efficient realization of these advanced features mentioned above using one and the same
mechanism, namely our context-sensitive prefix search and completion, by only adding suitable words to the
documents. Note the relevance to a web scenario, where users have control over their documents, but not over
the search engine.1

12.2 Loose Ends and Possible Improvements

Although our CompleteSearch engine has certainly matured well beyond the stage of a mere ephemeral pro-
totype to be only used to give running times for a comparative experiment, there are still a number of issues,
which can be improved. These issues are discussed in the following sections.

1It will indeed be interesting to see, if any major search engine will in the nearfuture offer (small) content-providers the possibility,
to provide additional semantic information about the pages, or parts thereof, in a well-defined format, e.g., by using special key
words/tags for persons or place names, going well beyond the html<meta> tags. Such information could be harvested to improve the
search quality and to offer new features, but it also poses the usual risk of creating just another source of search engine spam.
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12.2.1 Improving the User Interface

The user interface could be improved in several ways. For example, categories with a hierarchical structure
should be displayed in a tree-like fashion and not as a flat list, as we currently do. Furthermore, the user should
in such a setting have the possibility to limit his search scope to any of the subcategories. Fortunately, as a
hierarchical structure (e.g., ‘Subject’->‘Computer Science’->‘Information Retrieval’) can easily be encoded
via the appropriate prefixes (e.g.,cat:subject:computer_science:information_retrieval ), this does
not pose any principal problem.

Some users also pointed out the lacking possibility to display completions for oneof theprevious prefixes,
when a user, after having typed several prefixes, moves the cursor back to edit an earlier term. Here, it might
be desirable, to show completions for the prefix, which is currently being edited, rather than for the last prefix.
This feature could be easily implemented by duplicating the prefix, currently focused on, and appending it
(again) to the end of the query. This could be done automatically by the user interface and the completions
returned would then naturally be for the prefix of interest.2

Another nice-to-have feature would be a button to remove query words that have been added by a refine-by-
category operation. Similarly, it might be desirable to select more than one category at the same time (and then
display matches from any of these). So far we concentrated on providingcertain new features, and showing
that we can support them very efficiently. Over time, and with helpful input from our users, these additional
improved features will be added.

12.2.2 Improving the Algorithms

As, ultimately, the user is only interested in themost relevantdocuments (and completions), our approach of
first computingall matches, and then rank them in a second phase, seems to leave room for improvement in
terms of efficiency. Indeed, standard techniques fortop-k retrieval[Fagin 03; Bast 06a] seem to lend themselves
nicely to this problem. They address the issue of efficiently reporting the topk items from multiple lists, which
pertain to the best aggregated score (where, e.g., scores from different lists are summed for a fixed item). All
approaches try to limit the depth to which the lists involved have to be scanned, hoping that the bestk items can
be reported without scanning all the lists to the end, which is exactly what onewould hope to achieve for the
HYB algorithm.

Unfortunately, none of the approaches is immediately applicable without non-trivial modifications. The
reason for this is that, while it is sufficient to onlydisplay the, say, top 10 document from the setD′ to the
user, we need thefull such set, if the user starts typing a new prefix, as theD′ now becomes the newD. Two
possible approaches to remedy this would be as follows. (i) We could give up on the strict left-to-right order
of processing an autocompletion search query. Then the “usual machinery” would apply directly, as we are
dealing with a (small) number of lists which need to be (partially) intersected according to document ids, while
reporting elements with high aggregated scores as early as possible. This,if implemented unmodified, would
most likely incur higher processing costs, as we are no longer exploiting thefact that we have already computed
the result for all parts, except the very last part of the query. (ii) We could implement a more involved re-use
of previously computed items (see Section11.8), such that no full recomputation of the newD is required.
E.g., we could compute the top 100 documents, but only display the top 10 to the user. Then, ideally, in the
computation for the following result, these 100 results will contain the new top 10results. Obviously, as more
and more prefixes are added to the query, we will have to go back and extend our knowledge, i.e., compute
more hits, for previous entries in the history. In the same spirit, we could compute the top 10 hits quickly, and
present these to the user, but at the same time, in the background, continueto computeall (or a sufficiently
large number of) hits, so that for anticipated future requests the requiredinformation is already precomputed.
This way, we would use the time the user spends inspecting the results for useful computations.

These issues are worth further investigation, especially as the corpus size (and the result size) continue to
grow.

2There is a small caveat involved here, if this prefix is part of a phrase (inform.ret) or is required to be close to another prefix
(unit..ameri). Then one needs to use the corresponding “inverse proximity operator”, similar to the use of positive and negative
proximity operators in Section9.5.
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12.2.3 Improving the Index Management

In Section10.4, we mentioned the similarity between the classical case-based reasoning approach used in sys-
tems like Homer, and a corresponding tagging used in conjunction with the context-aware completion mecha-
nism of CompleteSearch. It would indeed be interesting to integrate the CompleteSearch engine into a content
management system, such that users can input the documents (and tags) themselves directly.

A closely related aspect, to which we have paid little attention so far, is the question of how to deal with
dynamic updates. So far, our philosophy has been to split large collections into several parts, to have one small
part into which all the changes are immediately incorporated, and to rebuild partial indices from scratch when
it becomes necessary. In the IR world this is actually considered one of themost effective ways of updating
[Lester 04]. Still, there is work to do for us here, especially in automating this process.

There is also the issue of distributing our indices over several machines, tobe able to scale up to not just
millions but billions of documents. Both standard techniques [Moffat 06], either using a term based partitioning
(where each machine becomes responsible for a subset of key words)or a document based partitioning (where
each machine becomes responsible for a subset of documents), immediately apply to our setting.

12.2.4 Evaluating the Search Quality

Finally, the general focus of this dissertation has been on theefficient realization of certain features. The
question of thequality of the search results, or even the features themselves has generally been left open.
The results from our user study (Chapter10), however, already provided strong indications that the approach
of proactively and efficiently providing advanced search features has a positive practical impact. It would
be interesting to conduct a user study on the perceived usefulness of the individual features, in particular
concerning the type of semantic queries supported by our system (Chapter 9), and, indeed, semantic queries in
general.

As with all the features provided by the CompleteSearch engine, the hope is that they allow the user to find
more relevant information in less timethan with a traditional search engine, while requiringless knowledge
about the corpus at hand.
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