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Abstract

Cancer is the consequence of genetic alterations that influence the behavior of affected

cells. While the phenotypic effects of cancer like infinite proliferation are common hall-

marks of this complex class of diseases, the connections between the genetic alterations

and these effects are not always evident. The growth of information generated by experi-

mental high-throughput techniques makes it possible to combine heterogeneous data from

different sources to gain new insights into these complex molecular processes. The de-

mand on computational biology to develop tools and methods to facilitate the evaluation of

such data has increased accordingly. To this end, we developed new approaches and bioin-

formatics tools for the analysis of high-throughput data. Additionally, we integrated these

new approaches into our comprehensive C++ framework GeneTrail. GeneTrail presents a

powerful package that combines information retrieval, statistical evaluation of gene sets,

result presentation, and data exchange. To make GeneTrail’s capabilities available to the

research community, we implemented a graphical user interface in PHP and set up a web-

server that is world-wide accessible. In this thesis, we discuss newly integrated algorithms

and extensions of GeneTrail, as well as some comprehensive studies that have been per-

formed with GeneTrail in the context of cancer research. We applied GeneTrail to analyze

properties of tumor-associated antigens to elucidate the mechanisms of antigen candidate

selection. Furthermore, we performed an extensive analysis of miRNAs and their puta-

tive target pathways and networks in cancer. In the field of differential network analysis,

we employed a combination of expression values and topological data to identify patterns

of deregulated subnetworks and putative key players for the deregulation. Signatures of

deregulated subnetworks may help to predict the sensitivity of tumor subtypes to therapeu-

tic agents and, hence, may be used in the future to guide the selection of optimal agents.

Furthermore, the identified putative key players may represent oncogenes, tumor suppres-

sor genes, or other genes that contribute to crucial changes of regulatory and signaling

processes in cancer cells and may serve as potential targets for an individualized tumor

therapy. With these applications, we demonstrate the usefulness of our GeneTrail package

and hope that our work will contribute to a better understanding of cancer.
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German Abstract

Krebs ist eine Folge von tiefgreifenden genetischen Veränderungen, die das Verhalten

der betroffenen Zellen beeinflussen. Während phänotypische Effekte wie unaufhörliches

Wachstum augenscheinliche Merkmale dieser komplexen Klasse von Krankheiten sind,

sind die Zusammenhänge zwischen genetischen Veränderungen und diesen Effekten oft-

mals weit weniger offensichtlich. Mit der stetigen Zunahme an Daten, die aus Hochdurch-

satz-Verfahren stammen, ist es möglich geworden, heterogene Daten aus verschiedenen

Quellen zu kombinieren und neue Erkenntnisse über diese Zusammenhänge zu gewin-

nen. Dementsprechend sind auch die Anforderungen an die Bioinformatik gewachsen,

geeignete Applikationen und Verfahren zu entwickeln, um die Auswertung solcher Daten zu

vereinfachen. Zu diesem Zweck haben wir neue Ansätze und bioinformatische Werkzeuge

für die Analyse von entsprechenden Daten für die Krebsforschung entwickelt, welche wir in

unser umfangreiches C++ System GeneTrail integriert haben. GeneTrail stellt ein mächtiges

Softwarepaket dar, das Informationsgewinnung, statistische Auswertung von Gen Men-

gen, visuelle Darstellung der Resultate und Datenaustausch kombiniert. Um GeneTrail’s

Fähigkeiten der Forschungsgemeinschaft zugänglich zu machen, haben wir eine graphis-

che Benutzerschnittstelle in PHP implementiert und einen Webserver aufgesetzt, auf den

weltweit zugegriffen werden kann. In der vorliegenden Arbeit diskutieren wir neu integri-

erte Algorithmen und Erweiterungen von GeneTrail, sowie umfangreiche Untersuchungen

im Bereich Krebsforschung, die mit GeneTrail durchgeführt wurden. Wir haben GeneTrail

angewendet, um Eigenschaften von Tumorantigenen zu untersuchen, um aufzuklären,

welche dieser Eigenschaften zur Selektion dieser Proteine als Antigene beitragen. Des

Weiteren haben wir eine umfangreiche Analyse von miRNAs und deren potentiellen Zielp-

faden und -netzen in verschiedenen Krebsarten durchgeführt. Im Bereich differentieller

Netzwerkanalyse kombinierten wir Expressionswerte und topologische Netzwerkdaten, um

Muster deregulierter Teilnetzwerke und mögliche Schlüsselgene für die Deregulation zu

identifizieren. Signaturen deregulierter Teilnetzwerke können helfen die Sensitivität ver-

schiedener Tumorarten gegenüber Therapeutika vorherzusagen und damit zukünftig eine

optimal angepasste Therapie zu ermöglichen. Außerdem können die identifizierten po-

tentiellen Schlüsselgene Oncogene, Tumorsuppressorgene, oder andere Gene darstellen,

die zu wichtigen Änderungen von regulatorischen Prozessen in Krebszellen beitragen, und

damit auch als potentielle Ziele für eine individuelle Tumortherapie in Frage kommen. Mit

diesen Anwendungen untermauern wir den Nutzen von GeneTrail und hoffen, dass unsere

Arbeit in Zukunft zu einem besseren Verständnis von Krebs beiträgt.
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German Summary

Krebs ist eine der häufigsten Todesursachen in Industrieländern. Im Jahr 2004 starben

weltweit ca. 7,4 Millionen Menschen an dieser Gruppe von Krankheiten. Die Projektionen

für das Jahr 2030 erwarten sogar noch weiter steigende Zahlen an Todesfällen. Daher ar-

beiten weltweit viele Forschungsinstitute daran, wie es zur Entstehung von Krebs kommt,

bis hin zur Diagnose und Therapie von Krebs. Moderne Therapiestrategien zur Behand-

lung von Krebs greifen direkt in komplexe zelluläre Prozesse ein, wobei die Nebenwirkun-

gen oftmals nicht vorhersehbar sind. Daher ist Grundlagenforschung zu einem besseren

Verständnis dieser molekularen Prozesse immer noch notwendig um in Zukunft eine ge-

zieltere individuelle Behandlung zu ermöglichen.

Durch den explosiven Anstieg verfügbarer experimenteller Daten, der durch die technologi-

schen Fortschritte im Bereich der Hochdurchsatz-Verfahren entstanden ist, ist die Analyse

molekularer Prozesse in Krebs auf verschiedenen Ebenen mit bioinformatischen Methoden

ermöglicht worden. In der vorliegenden Arbeit stellen wir computergestützte Verfahren vor,

die die Auswertung und Interpretation von Daten aus Hochdurchsatz-Verfahren erleichtern

sollen. Zu diesem Zweck haben wir ein umfangreiches System zur Gen-Mengen Analyse

– genannt GeneTrail – entwickelt, dessen Funktionalität und Vielseitigkeit wir unter Beweis

stellen, indem wir verschiedenen aktuellen Fragestellungen im Bereich Krebsforschung

nachgehen.

GeneTrail selbst ist ein modular aufgebautes C++ System, dessen generelle Funktionalität

der Detektion von statistisch angereicherten oder abgereicherten biologischen Kategori-

en mit Genen untersuchter Datenmengen dient. Unser System wurde ständig weiterent-

wickelt, um eine möglichst große Vielzahl an biologischen Kategorien, Organismen, und

statistischen Methoden zu unterstützen. Des Weiteren wurde die Funktionalität von Gene-

Trail beispielsweise durch die Vorverarbeitung von Microarray Roh-Daten durch Gene-

TrailExpress, einer dynamischen Netzwerk-Visualisierung durch BiNA, sowie der Fähigkeit

zur Durchführung differentieller Netzwerkanalysen ergänzt. Um GeneTrail’s Fähigkeiten

der Forschungsgemeinschaft zugänglich zu machen haben wir eine graphische Benutzer-

schnittstelle in PHP implementiert und einen Webserver aufgesetzt, auf den weltweit zu-

gegriffen werden kann.

Während GeneTrail nicht nur zum Zwecke der Krebsforschung entwickelt wurde und auch
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in anderen Bereichen eingesetzt werden kann, untersuchen wir in der vorliegenden Arbeit

dennoch ausschließlich aktuelle Themengebiete der Krebsforschung. Als erste Anwen-

dung führen wir eine umfangreiche Untersuchung potentieller Eigenschaften von Antige-

nen durch, die möglicherweise dafür verantwortlich sind, dass diese Antigene in Tumor-

oder Autoimmun-Erkrankungen eine Immunantwort auslösen. Unsere Resultate zeigen

Gemeinsamkeiten und Unterschiede zwischen Tumor- und Autoantigenen auf. Außerdem,

weisen die untersuchten Antigene eine gewisse Prävalenz an Sequenzähnlichkeiten zu

Proteinen in anderen Organismen auf, welches eine mögliche Begründung für das be-

grenzte Autoantikörper Repertoire darstellen könnte.

Als nächstes untersuchen wir die möglichen Zielpfade und -netwerke von miRNAs in ver-

schiedenen Krebsarten. miRNAs sind eine Gruppe von nicht-codierender RNA, die direkt

in die Genregulation komplementärer RNA eingreifen können. Wir führen eine Untersu-

chung mit Expressionsprofilen verschiedener Tumorarten durch und können zeigen, dass

die Zielgene verschiedener miRNAs signifikant angereichert oder abgereichert sind. Des

Weiteren finden wir Hinweise darauf, dass die Regulation durch miRNAs vermutlich eher

auf Wechselwirkungen zwischen deren Konzentrationen basiert, statt auf Regulation ein-

zelner wichtiger Hubs im regulatorischen Netzwerk. Unsere Resultate bestätigen die Rolle

von miRNAs als Schlüsselkomponenten bei der Genregulation in Krebserkrankungen.

Als letztes Beispiel führen wir differentielle Netzwerkanalysen mit zwei verschiedenen neu

entwickelten Algorithmen durch. Der erste Algorithmus – FiDePa – basiert auf der dyna-

mischen Programmierung für die Berechnung von exakten Wahrscheinlichkeiten bei dem

ungewichteten “Gene Set Enrichment Analysis” Verfahren. FiDePa findet deregulierte Pfa-

de in einem regulatorischen Netzwerk, die statistisch signifikant sind. Für die differentielle

Netzwerk Analyse mit diesem Algorithmus setzen wir Expressionsprofile von hochgradi-

gen Glioma Erkrankungen in Vergleich zu Normalgeweben und zeigen, dass es möglich

ist, Patienten-spezifische Teilnetzwerke aus der Vereinigung der berechneten signifikant

deregulierten Pfade herzuleiten. Unser zweiter Algorithmus wendet ein ILP an und berech-

net direkt den am meisten deregulierten Teil eines regulatorischen Netzwerkes, der zudem

von einem Wurzelknoten ausgeht, von dem alle anderen Knoten des Teilnetzes erreichbar

sind. Dieses Modell erzwingt, dass der Wurzelknoten die Eigenschaften einer potentiellen

Schlüsselkomponente im Netzwerk hat, die direkten Einfluss auf die beobachteten Unter-

schiede der betrachteten Konditionen hat. Um die Stärke dieses Ansatzes unter Beweis zu

stellen, berechnen wir das deregulierte Netzwerk für Expressionsprofile von BRCA1 Mu-

tationsträgern im Vergleich zu Nicht-Mutationsträgern. Unsere Auswertung deutet darauf
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hin, dass oxidativer Stress eine wichtige Rolle in den Epithelzellen von BRCA1 Mutati-

onsträgern spielt, welcher möglicherweise zu der späteren Entwicklung von Brustkrebs

beiträgt. Beide Anzätze könnten in Zukunft in solch komplexen und heterogenen Krankhei-

ten wie Krebs eingesetzt werden, um die Auswahl optimal angepasster Therapeutika zu

erleichtern, sowie neue potentielle Zielmoleküle für eine individuelle Therapie zu identifi-

zieren.

Zusammenfassend ist GeneTrail ein umfangreiches System zur Analyse und Auswertung

von Daten aus Hochdurchsatz-Verfahren. Der modulare Aufbau unseres Systems erlaubt

ein einfaches Erweitern und Anpassen, um aktuellen Fragestellungen aus unterschied-

lichsten wissenschaftlichen Bereichen nachgehen zu können wie mit den Anwendungen

in der vorliegenden Arbeit gezeigt. Ein weiteres Ziel unserer Arbeit ist auch anderen For-

schungsgruppen die Möglichkeit zu geben, von unseren Entwicklungen zu profitieren, um

damit neue Erkenntnisse für ihre eigenen Forschungen erlangen zu können.
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Weiterhin möchte ich allen Mitarbeitern des Lehrstuhls von Prof. Lenhof, sowie der Nach-

wuchsgruppe Hildebrandt meinen Dank aussprechen. Dabei möchte ich besonders Benny
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CHAPTER 1

INTRODUCTION

Cancer is one of the most common causes of death in industrial countries promoted by

the increase of age in the population. In 2004, cancer accounted for 7.4 million deaths

(approximately 13%) worldwide. The projection for deaths from cancer for 2030 estimate

rising numbers of over 12 million deaths worldwide as demonstrated in Figure 1.1 [1].
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Decomposition of projected changes in cause-
specific deaths

Projected changes in numbers of deaths may be due 
to changes in age-specific disease and injury death 
rates, or due to demographic changes that alter the 
size and age composition of the population, or both. 
Death rates are strongly age dependent for most 
causes, so changes in the age structure of a popula-
tion may result in substantial changes in the number 
of deaths, even when the age-specific rates remain 
unchanged. 

The relative impact of demographic and epi-
demiological change on the projected numbers of 
deaths by cause is shown in Figure 17. The change in 
the projected numbers of deaths globally from 2004 
to 2030 can be divided into three components. The 
first is population growth, which shows the expected 
increase in deaths due to the increase in the total 
size of the global population, assuming there are no 
changes in age distribution. The second is popula-
tion ageing, which shows the additional increase in 
deaths resulting from the projected changes in the 
age distribution of the population from 2004 to 
2030. Both the population-related components are 

calculated assuming that the age- and sex-specific 
death rates for causes remain at 2004 levels. The 
final component, epidemiological change, shows the 
increase or decrease in numbers of deaths occurring 
in the 2030 population due to the projected change 
from 2004 to 2030 in the age- and sex-specific death 
rates for each cause. 

For most Group I causes, the projected reduction 
in global deaths from 2004 to 2030 is due mostly 
to epidemiological change, offset to some extent 
by population growth. Population ageing has lit-
tle effect. For noncommunicable diseases, demo-
graphic changes in all regions will tend to increase 
total deaths substantially, even though age- and 
sex-specific death rates are projected to decline for 
most causes, other than for lung cancer. The impact 
of population ageing is generally much more impor-
tant than that of population growth. For injuries, 
demographic change also dominates the epidemio-
logical change. The total epidemiological change for 
injuries is small in most regions, because the pro-
jected increase in road traffic fatalities is offset by 
projected decreases in death rates for other uninten-
tional injuries.

Figure 16: Projected global deaths for selected causes, 2004–2030
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Figure 1.1: Projected global deaths for selected causes, 2004–2030.
Source: World Health Organization - Global Burden of Disease1

As a consequence, many research institutes are engaged in cancer research compris-

ing cancer development, cancer diagnosis, and cancer therapy. Today, cancer treatment

tries to interfere with the complex biochemical processes and signaling cascades in cancer

cells. However, the aftermath of these treatments on the cells’ behavior and the influence

on healthy tissue are rarely exactly known as exemplified in the clinical trial of the mono-

1http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_part2.pdf

1

http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_part2.pdf
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clonal antibody TGN1412, originally intended for the treatment of B-cell chronic lympho-

cytic leukemia, which gained notoriety as the so-called TGN1412 tragedy [2]. The reasons

for this incidence were allegedly a lack in knowledge about the biological processes as

summarized to the point by the following citation:

“Where mAbs have produced unpleasant surprises in the clinic, it is usually

because of insufficient grasp of the biology of the target antigen, especially in

murky, relatively unexplored areas.” [3]

Therefore, basic research concerning the molecular processes in diseased tissue is still

necessary to develop individual therapies.

With the advent of experimental high-throughput techniques (e.g. microarray expression

profiling) to screen samples on a large scale, it became possible to study cancer associated

processes on different levels with bioinformatics approaches. In the following, we give an

overview of the current statistical methods, available tools, and sophisticated algorithms for

evaluating high-throughput data. A timeline and summary of the presented approaches is

illustrated in Figure 1.2.

In the early stages, microarray studies tried to identify single differentially expressed genes

to explain the observed differences between the investigated conditions. However, when

differences in gene expression are marginal, the task to distinguish the key players of the

alterations from noise is very difficult. To this end, so-called Gene Set Analysis (GSA)

approaches have been developed taking into account that genes do not act individually

but in a coordinated fashion. In general, these approaches compute a score for a list of

genes that is dependent on their expression values and their occurrence in a pre-defined

biological category (e.g. the genes of a biochemical pathway) and estimate the significance

of this score with permutation tests. The most popular of these methods known as Gene

Set Enrichment Analysis (GSEA) was developed by Mootha et al. [4], which is similar to the

simultaneously proposed method by Lamb and coworkers [5]. Furthermore, comparable

methods such as SAM-GS [6] and the maxmean approach of Efron and Tibshirani [7] exist,

which differ in the computation of scores for estimating the significance. For a detailed

review and comparison of gene set enrichment methods the interested reader is kindly

referred to [8].

Most of these GSA methods or variations thereof have been integrated in various web-

based applications or downloadable programs like FatiScan [9], GeneTrail [10], GSEA-

p [11], and SAM-GS [6]. The demand on computational biology for the development of

2



easy-to-use analysis methods and applications for evaluating high-throughput data is also

mirrored in the vast amount of publications describing such tools in recent years (reviewed

in [12,13]).

2001 2010• •
GSA

• 2003 Mootha et al. [4]

• 2003 Lamb et al. [5]

• 2007 Dinu et al. [6]

• 2007 Efron and Tibshirani [7]

GSA Tools
• 2005 GSEA-p [11]

• 2007 GeneTrail [10]

• 2007 FatiScan [9]

• 2007 SAM-GS [6]

Network Algorithms
• 2002 Ideker et al. [14] • 2005 Rahnenführer et al. [15]

• 2005 Rajagopalan and Agarwal [16]

• 2005 Cabusora et al. [17]

• 2006 Liu et al. [18]

• 2007 Liu et al. [19]

• 2008 Ulitsky et al. [20]

• 2008 Dittrich et al. [21]

Figure 1.2: Timeline of presented approaches and algorithms

However, the above described GSA methods can only reveal the enrichment of genes in

pre-defined gene sets, e.g. canonical biological pathways. Therefore, the research focus

has shifted towards analysis methods that integrate topological data mirroring the biolog-

ical dependencies and interactions between the involved genes or proteins. Several ap-

proaches for integrating network and gene expression data are described in the literature.

Ideker et al. proposed a method for the detection of active subnetworks by devising a scor-

ing function and an algorithm for detecting high-scoring subnetworks [14]. Similar methods,

which are based on scoring networks given experimental data, have also been published

by other groups [15–17, 22]. Additionally, topology-based classification technologies have

been successfully applied to cancer [18,23]. Recently, Liu et al. published a method called

’Gene Network Enrichment Analysis’, which is similar to standard ’Gene Set Enrichment

Analysis’ and applies hypothesis testing to evaluate pathways [19]. In 2008, Ulitsky and
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coworkers presented an algorithm for detecting disease-specific dysregulated pathways by

using clinical expression profiles [20]. Since the underlying combinatorial problem of find-

ing high-scoring subnetworks is NP-hard, usually all described approaches use heuristics

to solve this problem. By contrast, Dittrich et al. devised the first approach to solve the

maximal-scoring subgraph problem optimally by integer-linear programming (ILP) [21].

In this work, we focus on the development and application of tools and algorithms for the

evaluation of high-throughput data to contribute to a better understanding of cancer as

depicted in the general information flow in Figure 1.3. To this end, we developed and

implemented the gene set analysis framework GeneTrail [10]. GeneTrail has evolved since

its publication in 2007 to one of the most comprehensive web-based applications due to

its statistical capabilities, the variety of biological categories available for analysis, and

its sophisticated graphical output for displaying results. Our tool has been designed for

the evaluation of high-throughput data, but is not limited to a special type of experimental

data, since the input consists solely of lists of “interesting” genes. To facilitate the usage

of experimental raw data like microarray expression values, we added a pre-processing

pipeline for this type of data, called GeneTrailExpress [24]. GeneTrailExpress provides

comprehensive normalization and scoring functions for pre-processing microarray data.

The processed data is directly passed to GeneTrail for statistical evaluation in an extensive

gene set analysis.

High-Throughput Data

• Microarrays

• Sequencing

Computer-aided Evaluation

•ORA

•GSEA

•Differential Network Analysis

Interpretation

• biological pathways

• functional categories

new insights?

Figure 1.3: Information flow
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Furthermore, since the GeneTrail C++ framework already supported information retrieval

from the Biochemical Network Database BNDB [25], we extended our framework with a

graph data structure to make use of the network topology. Using this functionality, we de-

veloped two approaches for detecting differentially regulated components of a regulatory

network. The first approach, called FiDePa (Finding Deregulated Paths) [26], is a dynamic

programming algorithm and relies on a statistical test similar to a standard gene set en-

richment analysis. The results of the FiDePa algorithm are the most significant paths of a

chosen length. Applying FiDePa to expression profiles of 100 high-grade glioma samples

in comparison to 158 profiles of normal tissue samples, we demonstrated that it is possible

to derive patient specific deregulated subnetworks from the union of computed significant

paths. Our second approach is an ILP algorithm that reveals the most deregulated subnet-

work of a certain size. The computed subnetwork is furthermore rooted in a special node

from which all other nodes in the subnetwork are reachable. This way, it is much easier

for researchers to interpret the resulting subnetworks and to verify whether this node can

serve as a potential target for therapies. We employed the ILP algorithm on expression

profiles of BRCA1 mutation carriers and non-mutation carriers. Our evaluation indicates

that oxidative stress plays an important role in epithelial cells of BRCA1 mutation carriers

that may contribute to the later development of breast cancer.

Beside the development of bioinformatics tools for gene set analysis, we attach great im-

portance in this thesis to the application of those tools to different fields of cancer research.

One of those fields focuses on miRNAs and their putative targets in the context of cancer.

While the expression of gene coding mRNAs was the primary target of research over the

last three decades, the emphasis of research shifted lately to the analysis of non-coding

RNAs, especially so-called microRNAs (miRNAs). These miRNAs play a crucial role in

regulating gene expression, e.g. through binding to mRNA and enabling the degradation

or silencing of their target mRNAs [27]. Furthermore, their function as potential tumor sup-

pressors or oncogenes has been demonstrated [28, 29]. To further elucidate the methods

of action of miRNAs in cancer, we performed a comprehensive study of different cancer ex-

pression profiles which showed that targets of specific miRNAs were significantly enriched

or depleted in these sets. Our findings confirm the important role of miRNAs as key players

of gene regulation in cancer.

Another field of cancer research covered in this thesis is the immunogenicity of tumor

associated antigens (TAAs). TAAs have the potential to function as biomarkers for early

detection of human neoplasms [30]. However, the reasons why these antigens become
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immunogenic remains for the most part elusive. In this work, we test different hypotheses

as causes for the immunogenicity, e.g., if mutations, SNPs, or similarities to proteins in

other organisms play a role. Our results suggest that there is a certain prevalence of

sequence similarities to proteins of other organisms in the tested antigen sets, which may

be a possible cause why the autoantibody repertoire seems restricted to a limited number

of self-proteins.

Taken together, we focus on the detection of molecular changes in cancer and their ef-

fects on the level of mRNA expression, miRNA expression, the immune system, and re-

lated regulatory networks. Our tools and algorithms have been successfully applied by our

group and researchers worldwide to contribute to a better understanding of cancer. This

knowledge may help identifying mechanisms of disease origin, progression, and ultimately

detecting new starting points for individual therapies.

This thesis is structured as follows: in the next chapter we give a detailed overview of the

bioinformatics tools we implemented. Afterwards, we describe in Chapters 3–5 our findings

concerning tumor associated antigens, miRNAs and cancer, and our pathway and network

algorithms for finding deregulated paths/subgraphs in regulatory networks. Finally, this

thesis concludes with a summary of our contribution to cancer research.

6



CHAPTER 2

TOOLS FOR CANCER RESEARCH

In this chapter, we introduce the newly developed bioinformatics tools for cancer research

that have been implemented in the course of this thesis. As previously mentioned in the

introduction, computer-aided methods for the statistical evaluation of high-throughput data

are nowadays essential for gaining insights into complex molecular processes. In gen-

eral, these high-throughput experiments serve to quantify changes in the genome and

proteome in response to a given condition, e.g., in which way gene expression in a tu-

mor tissue differs from gene expression in normal tissue. The subsequent challenge is to

group, analyze, and interpret the vast amount of heterogeneous data provided by these

methods. Computer-aided gene set analysis tools are tailored for grouping and analyzing

such data by identifying significantly enriched functional categories, which facilitates the

interpretation.

To study the enrichment of gene sets, two basic approaches have been developed. The

first method, the so-called “Over-Representation Analysis” (ORA), compares the set of in-

terest to a reference set. When considering a certain functional category, e.g. a Gene

Ontology (GO) [31] term, this method tries to detect if this category is over-represented

or under-represented in the respective set and estimates how likely this is due to chance.

The second method is called “Gene Set Enrichment Analysis“ (GSEA) [4]. Here, the input

set is sorted by some specific criteria (e.g. gene expression values). When considering an

arbitrary functional category, GSEA tests if the genes in the set that belong to the category

are uniformly distributed or accumulated on top or on bottom of the sorted input list. Addi-

tionally, the usage of other statistical tests like the Wilcoxon-Mann-Whitney test [32,33] or a

Monte Carlo permutation test can be applied for evaluating whether the parent populations

of two samples of observations (e.g., the number of SNPs in a test set compared to the

number of SNPs in the reference set) are identical.

The demand on computational biology for the development of easy-to-use applications for
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evaluating high-throughput data is also mirrored in the vast amount of publications describ-

ing such tools in the recent years (reviewed in [12, 13]). However, most of these tools are

either restricted to a certain type of experimental data or to a few biological categories.

Gene Ontology based tools, e.g., FatiGO [34], BiNGO [35], and GOstat [36] to name a

few, rank among the most frequent type of developed applications. Tools that focus on

certain types of high-throughput data (e.g. microarray expression data) are ErmineJ [37],

CRSD [38], or GSEA-P [39]. Furthermore, some tools, like Catmap [40], do not include

biochemical categories and it is left to the user to define these categories. A few tool

packages, however, allow for the analysis of different types of functional categories, e.g.

WebGestalt [41] and Babelomics [42].

The central part of this thesis was the development of the comprehensive gene set analysis

framework GeneTrail [10], which is described in detail in Section 2.1. GeneTrail is not only

a user-friendly web-based online application, but has also evolved into a sophisticated C++

framework that efficiently combines information retrieval from various data sources, statis-

tical evaluation, and a suitable presentation of the results, which are essential prerequisites

for a state-of-the-art gene set analysis tool. In Section 2.2, we describe an extension of

GeneTrail, called GeneTrailExpress [24], tailored for pre-processing data from microarray

experiments. Finally, this chapter concludes with the description of GraBCas [43] in Sec-

tion 2.3, a tool for the prediction of granzyme B and caspase cleavage sites, which has

also been integrated in GeneTrail.

2.1 GeneTrail

In this section, we give a detailed description of the features of our gene set analysis frame-

work GeneTrail [10]. GeneTrail has been developed to facilitate the statistical evaluation of

arbitrary high-throughput data by providing support for ORA and GSEA approaches (de-

scribed in Section 2.1.3). Our implementation of the unweighted GSEA method includes

a novel algorithm that computes the correct p-value instead of estimating it by permuta-

tion tests. Since our tool relies to some extent on the comprehensive integrative system

BN++ [44], GeneTrail allows the evaluation of a broad range of functional categories. The

capabilities of the GeneTrail C++ framework are impressively demonstrated in the devel-

opment of the so called FiDePa algorithm (see Section 2.1.4.6 and Chapter 5.1), which

efficiently combines the information retrieval, construction of a regulatory network, and sta-

tistical evaluation of deregulated paths in this network. Furthermore, the online version of

8
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GeneTrail provides a user-friendly interface and visualizes the computed results in a clear

and concise manner (Section 2.1.5). GeneTrail has been developed in collaboration with

Andreas Keller, who developed and implemented the dynamic programming algorithms for

the unweighted GSEA method and FiDePa.

2.1.1 Workflow

GeneTrail is implemented in the programming language C++ and can be used either di-

rectly via command line or indirectly via the graphical user interface (GUI) that is written

in PHP and accessible with a web-browser. However, the web-application offers not all

functions that the command line version does. The input for GeneTrail consists of a list of

interesting or sorted gene/protein IDs when performing an ORA or GSEA, respectively. In

the former case, a reference set is additionally needed. The different input steps of the

web-application are presented in Figure 2.1.

Select analysis 
method

Select 
organism

Select 
identifier type

Select test / 
reference set

Select 
biological 
categories

• H. sapiens

• M. musculus

• R. norvegicus

• D. melanogaster

• A. thaliana
• C. elegans
• S. cerevisiae
• …

• Gene Set Enrichment Analysis
• Over-Representation Analysis

• NCBI Gene  / 
Protein

• NCBI GI

• Gene Symbol

• Ensembl IDs

• UniProt ID

• Affymetrix IDs

• Self-defined IDs

• …

• KEGG
• Transpath
• Transfac
• GO

• SNPs
• miRNAs
• …

flatfiles in GeneTrail
compatible format

ID2112<return>
ID23231<return>
ID54<return>
ID652<return>

Figure 2.1: Overview of the subsequent input steps for the GeneTrail web-application

9



Tools for Cancer Research

After successful computation of the statistical significance for the selected biological cate-

gories, an output in HTML, plain text, PDF, and XML is created illustrating the results.

2.1.2 Integrated resources

GeneTrail provides several pre-defined biological categories for statistical evaluation. In

this section, we briefly summarize the most important data sources of these pre-defined

categories. In addition, we give an overview of the supported gene/protein identifiers and

organisms. Further details can be found in [10,45] or in Appendix C.

2.1.2.1 Biological categories

The different biological categories supported by GeneTrail stem from various data sources,

e.g., MySQL databases or downloadable flatfiles. For all of these data sources, we gen-

erate flatfiles in special formats (see Section 2.1.4.2) during the update process (Section

2.1.4.8). This guarantees a fast access to the information that is independent of the avail-

ability of a database connection or external resources. An overview of GeneTrail’s inte-

grated pre-defined biological categories is illustrated in Figure 2.2.

protein-protein 
interactions   

DIP, HPRD, IntAct, 
MINT

pathway 
information 

KEGG, 
TRANSPATH

transcription 
factors

TRANSFAC

functional 
annotations

GO

chromosomal 
location,  gene / 

exon length   
NCBI, Ensembl

orthologs, 
homologs

eggNOG, 
Homologene

miRNAs

MicroCosm, 
miRBase

single nucleotide 
polymorphisms               

dbSNP

protein 
domains

CATH, PFAM

user-defined 
categories

subcellular
location

UniProt

Figure 2.2: Pre-defined biological categories integrated in GeneTrail
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BNDB: The Biochemical Network database (BNDB) [25] is part of the biological infor-

mation retrieval system BN++ [44, 46]. BN++ is a C++ library tailored for modelling bio-

chemical networks and is based on a comprehensive and easily extensible data model,

called BioCore. The BioCore model has been implemented as C++ and Java framework,

as presented by BN++ and BiNA (see also 2.1.5.1), respectively, and additionally as a rela-

tional database (BNDB). Figure 2.3 illustrates the architecture of BN++ and the coherences

between the data model and its implementations.

BioCore

implements

implements

C++
library

BGL

yFiles

Java
library

uses

uses

uses

uses

BN++ DB
(MySQL)

BN++
Framework

BiNA

SQL

SQL

Plugin Plugin Plugin

MINT

TransPath

TransFac

BioCyc

RefSeq

KEGG

IntAct

HPRD

DIP

implements

contains

Export
Filter MIF

XML

Figure 2.3: Architecture of BN++. Source: PhD thesis Jan Küntzer [46]

The BN++ framework provides importers for various databases, e.g. the pathway databases

KEGG [47] and TRANSPATH [48], the transcription factor database TRANSFAC [49], and

the protein interaction databases DIP [50], MINT [51], IntAct [52], and HPRD [53]. Gene-

Trail uses the BNDB as interface to retrieve the pathway and interaction information from

these different databases. Hence, it is not necessary that GeneTrail itself has to support

different database formats and importers. However, the disadvantage of using the BNDB

is that building this database from external sources is very time-consuming. The down-

load, import and merging of data can take several days and is not suitable for performing

automatic and regular updates.
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KEGG: The Kyoto Encyclopedia of Genes and Genomes1 (KEGG) database [47] rep-

resents a comprehensive resource of metabolic and regulatory pathways. The KEGG

database contains canonical pathways for different organisms. For using the pathway

information from KEGG, we have implemented two variants. We can either access the

information from KEGG using the BNDB or directly retrieve the information from the KEGG

homepage via their SOAP interface. The second variant is preferred for doing updates on

a regular basis when only the membership of genes/proteins to their respective metabolic

or regulatory pathways is needed. If the topological information, in which way the genes or

proteins interact, is required, we still use the BNDB.

Gene Ontology: The Gene Ontology (GO) [31] database consists of a controlled vocab-

ulary that can be used to describe the attributes of a gene product in an organism. GO

comprises three sets of independent vocabularies or ontologies: the molecular function,

the biological process, and the cellular component. A gene product can be associated with

one or more GO terms and belong to different GO ontologies. The structure of the GO

hierarchy can be visualized by a directed acyclic graph (DAG). For GeneTrail, we use a

local version of a current MySQL dump of the GO database.

MicroCosm: One of the more recent extensions of GeneTrail’s pre-defined categories

comprises miRNAs and their putative target genes. We integrated the MicroCosm targets2

(formerly miRBase targets) that are identified by the miRanda algorithm [54–56]. The

putative miRNA targets are labelled with a p-value which is an estimated probability of

the same miRNA family hitting multiple transcripts for different species in an orthologous

group. The lower this p-value, the more specific are the predicted targets of a miRNA for

an organism. In GeneTrail, we included three miRNA target thresholds: p-value < 0.01,

p-value < 0.001, p-value < 0.0001. An extensive analysis of putative targets of miRNAs

and their pathways in cancer is described in Chapter 4.

User-defined categories: In addition to GeneTrail’s pre-defined biological categories, we

provide the possibility to use GeneTrail’s statistical evaluation capabilities with user-defined

categories. We support several standard gene set formats as the .gmx and .gmt format, as

well as a simple self-defined format (.gtf) besides the formats that GeneTrail uses internally.

The different file formats are described in more detail in Section 2.1.4.2.
1http://www.genome.jp/kegg/
2http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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2.1.2.2 Supported gene/protein identifiers

GeneTrail was designed to analyze sets of genes. Due to the various biological databases,

many different accession numbers for a single gene exist. We decided to use NCBI Entrez

Gene IDs (see also Appendix C.1) as central gene identifier for GeneTrail, because these

IDs are unique for one gene and are closely connected to other information and identifiers

made available by NCBI. Additionally, this data can be downloaded as flatfiles from NCBI’s

ftp-server, which is regularly updated.

Besides the different NCBI identifier types (Entrez Gene, RNA/Protein RefSeq, RNA/Protein

GI, UniGene), we additionally support the official gene symbols from the HUGO Gene

Nomenclature Committee3, UniProt accession numbers, and Ensembl Gene/Protein IDs.

Furthermore, we provide transcript IDs for different popular Affymetrix microarray platforms

and the Amersham Whole Genome Human array. However, not all of these ID types are

available for all supported organisms. For some organisms we added special IDs that are

only available for a specific organism, e.g. the TAIR4 IDs for A. thaliana or the SGD5 ORF

IDs for S. cerevisiae.

As described above, GeneTrail can evaluate user-defined categories. To further enhance

this capability, the user-defined categories can consist of user-defined IDs instead of the

standard supported IDs. This enables the user to be completely independent of the pro-

vided IDs and categories in GeneTrail. However, in this case, no mapping to NCBI Gene

IDs can be performed, and therefore, this identifier type is not applicable with the pre-

defined biological categories.

Additional information about external data sources that are integrated in GeneTrail can be

found in Appendix C.

2.1.2.3 Organisms

GeneTrail covers a large number of model organisms to make efficient gene set analysis

available to a broad clientele of users working in different research areas. Until now, we

have added support for Homo sapiens, Saccharomyces cerevisiae, Mus musculus, Rat-

tus norvegicus, Staphylococcus aureus N315, Corynebacterium glutamicum ATCC 13032,

Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Aspergillus fumi-

3http://www.genenames.org/index.html
4http://www.arabidopsis.org/
5http://www.yeastgenome.org/
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gatus Af293, and Danio rerio. Of course, not all pre-defined biological categories and IDs

are available for all these organisms. However, we try to provide as many analyses for the

supported organisms as possible. KEGG, GO, and MicroCosm targets are the best cov-

ered biological categories for these organisms. The most pre-defined biological categories

are available for H. sapiens.

2.1.3 Statistics

In this section, we introduce the statistical tests provided by GeneTrail. First, we present the

general approaches ORA and GSEA. In the latter case, we will also describe the dynamic

programming algorithm for the computation of exact p-values in more detail. Addition-

ally, we provide information about the Wilcoxon-Mann-Whitney (WMW) test and the Monte

Carlo permutation test that can be applied to non-binary biological categories. At last, we

describe the implemented methods for performing a multiple testing adjustment.

2.1.3.1 Over-Representation Analysis

The ”Over-Representation Analysis“ (ORA) compares a set of interesting genes (test set)

to a background distribution (reference set) concerning a certain biological category (e.g.

a canonical pathway). The ’interesting’ genes are determined in a selection step after

performing a high-throughput experiment (Figure 2.4). Given a set of n test set genes,

of which k belong to a category C, and a reference set of m genes, of which l belong

to C. The probability to find exactly k genes that belong to C can be modelled as a

sampling problem without replacement for a random variable X using the formula of the

hypergeometric distribution:

P (X = k) =

(
l
k

)(
m−l
n−k

)(
m
n

)
Since l elements of the reference set belong to C, we expect to find E(X) = n·l

m elements

in the test set belonging to C. If k > E(X), C is said to be enriched or over-represented,

otherwise C is said to be depleted or under-represented in the test set. Depending on

the expectation value, we can compute a one-tailed p-value for the probability of having at

most (at least) k genes belonging to C:
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p-value =


∑n

i=k
(l

i)(
m−l
n−i)

(m
n) ifk > E(X)∑k

i=0
(l

i)(
m−l
n−i)

(m
n) ifk ≤ E(X)

If the computed p-value is smaller than the previously defined α-level, we consider the

result as significant.

Observation: 
disease

determine differentially 
expressed genes

extract gene properties

explain observation?

gene selection

find enriched/depleted 
biological categories

compute statistical significance

Microarray Experiment:
normal vs. diseased

results of data analysis

Subset of interesting
genes

Figure 2.4: Workflow of an ORA. After performing a high-throughput experiment, e.g., a microarray
analysis, a gene selection step follows that filters genes meeting a certain threshold
(e.g. genes that are 2-fold over-expressed). The selected genes are compared to the
background distribution (e.g. all genes on the microarray) concerning certain biological
categories. For enriched or depleted biological categories, the significance is estimated
by a suitable statistical test. If the significant categories give new insights concerning
the observations of the initial microarray analysis, more refined experiments can be
performed and the process starts over.

2.1.3.2 Gene Set Enrichment Analysis

In contrast to the ORA, the ’interesting’ genes for a Gene Set Enrichment Analysis (GSEA)

are not selected by some arbitrary threshold, but are altogether sorted by a criterion that

mirrors the differences in expression between the investigated states (Figure 2.5). For

computing the statistical significance of an arbitrary biological category C given a sorted

15



Tools for Cancer Research

list of genes of size m, we apply the so-called unweighted GSEA as proposed by Lamb

et al. [5]. Using a Kolmogorov-Smirnov-like test that computes whether the genes in C

are equally distributed in the sorted list or accumulate on top or on bottom of the list, we

determine if the considered category is significantly enriched or depleted. If l genes of the

sorted list belong to C, we compute the running sum by processing the input list, adding

m − l to the running sum if the considered gene belongs to C, or subtracting l otherwise.

This means, we sum up l · (m − l) for the genes in C in total and (m − l) · (−l) for

the genes not in C in total. Therefore, the running sum’s final value will always be zero

and we can reach a maximal possible sum of l · (m − l) and a minimal possible sum of

(m − l) · (−l). The value of interest is the running sum’s maximal deviation from zero,

denoted as RSC . An example of the procedure is provided in Figure 2.6. The significance

value (p-value) is computed as the probability that any running sum reaches a greater

absolute value than RSC . Such a probability can either be approximated with permutation

tests or exactly calculated by a dynamic programming algorithm that computes the exact

number of possible running sum statistics with greater deviation than RSC as described in

the following. We adopt here the presentation of concepts from our BMC Bioinformatics

publication [57].

Computation of exact p-values for unweighted GSEA

As mentioned above, the p-value for a GSEA can be computed by nonparametric permu-

tation tests, i.e., RSC is calculated for permuted gene lists and compared to the value of

the original list. In general, two ways have been proposed for performing permutation tests

in this case. First, the sorted gene list can be randomly permuted. Second, if the list is

sorted by the median expression quotient of expression values in one group divided by

the median expression value in another group, the samples are randomly assigned to the

two groups, the median fold quotient of the new groups is computed and thereby permuted

gene lists are generated. Notably, these methods do not always yield the same results. The

permutation procedure is repeated t times and the running sum statistics together with the

corresponding maximal deviations from zero, denoted as RSi, i ∈ 1, ..., t, are computed.

Usually, the p-value is computed as the fraction of RSi values that are larger or equal than

the original RSC value:

p-value =
1
t

t∑
i=1

I(RSi ≥ RSC)
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Microarray Experiment:Microarray Experiment:
normal vs. diseased

sort genes 
e.g. by expression values

Observation: 
disease

extract gene properties

explain observation?

find enriched/depleted 
biological categories

compute statistical significance

results of data analysis

Figure 2.5: Workflow of an GSEA. After performing a high-throughput experiment, e.g., a microar-
ray analysis, the genes are sorted by a criterion that mirrors the differences in gene
expression between the considered states. This sorted list serves directly as input for
a GSEA, which determines if genes that belong to a certain biological category are
significantly accumulated on top or on bottom of this list. If the significant categories
give new insights concerning the observations of the initial microarray analysis, more
refined experiments can be performed and the process starts over.

Kolmogorov‐Smirnov

RSC

genes sorted by expression values

Kolmogorov‐Smirnov
non‐parametric rank 

statistic

un
ni
ng

 s
um

genes sorted by expression values
annotated with a biological category

ru

sorted genes

Figure 2.6: Example of a running sum statistic. The list of sorted genes is traversed from left to
right. If a gene belongs to the considered biological category (genes having a ’flag’ in
the picture), the running sum increases, otherwise it decreases.
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Here, I is an indicator function:

I(RSi ≥ RSC) =

1 : RSi ≥ RSC

0 : RSi < RSC

Such permutation tests are widely used for estimating the significance, however, such tests

entail three disadvantages:

First, repeated runs of the permutation test algorithm may lead to different significance

values because of the random sampling.

Second, the permutation test procedure causes problems if the significance values are

small. Given a running sum statistic whose true p-value is 0.00001. If, as usual, 1000

permutation tests are performed, probably none will have a higher maximal deviation as

the original running sum statistics. According to the formula given above, the p-value would

compute as 0 = 0/1000, which may be a bad estimation. Since GSEA is often applied to

many biological categories, p-values have to be adjusted for multiple testing by suitable

methods (e.g. Bonferroni, Benjamini & Hochberg). However, given the above estimation

and the known multiple testing methods, the p-value cannot be adjusted in an appropriate

way.

Third, it is difficult to estimate how many permutations should be performed to obtain a

sample of reasonable size. Obviously, if m = 20000 and l = 2000, a sample size of

1000 permutations may be by far too small. Remarkably, the number of possible different

running sum statistics amounts to
(
m
l

)
. On the example given above, the number of differ-

ent running sums adds up to approximately 4 · 102821, emphasizing that 1000 permutation

represent a very small sample. The required large number of permutation tests leads to

an unacceptable computational effort, especially if thousands of biological categories are

tested. An alternative, parametric method is the so called Parametric Analysis of Gene Set

Enrichment (PAGE) method [58] that calculates a z-score for a given gene set and infers

the significance value of this z-score against standard normal distribution.

In this section, we address the exact and efficient p-value computation for unweighted

Gene Set Enrichment Analysis. Unweighted means that the number by which the running

sum statistic is increased if a gene of C is found and the number by which the running

sum statistic is decreased if the gene does not belong to C are constants. The dynamic

programming method is similar to the ”DRIM” approach [59] that computes the optimal
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partition of a gene set in a target and a background set.

As mentioned before, the value of interest is the running sum’s maximal deviation from

zero, denoted as RSC . The p-value can be computed as the probability that any running

sum reaches a maximal deviation greater or equal than RSC . We compute this probability

via the complement of the event as:

p-value = 1− X

Y
,

where X is the number of running sum statistics with a maximum deviation of at most

RSC − 1. Y is the number of all possible different running sum statistics that can be

computed as
(
m
l

)
. To computeX, we count all running sum statistics that have a maximum

deviation of at most RSC − 1.

We use a matrix M of dimension (2l(m − l) + 1) × (m + 1), where the different rows

represent all possible values of the running sum and the columns represent the indices of

the sorted list from 1, ...,m and an initialization column with index 0. Let M(j, i) denote the

number of running sum statistics with value j in step i whose maximum deviation of zero is

less than RSC − 1. The entries of M are computed using dynamic programming, starting

with the first column. M(0, 0) is set to 1 and all other values are set to 0.

We fill the matrix column by column, where the matrix entryM(j, i) is recursively computed

as:

M(j, i) =

M(j −m+ l, i− 1) +M(j + l, i− 1) if (∗)

0 else
(2.1)

where the constraint

(∗)− |RSC | < j < |RSC |

ensures that only the running sum statistics with maximal deviation smaller than RSC are

counted. The total number of running sum statistics with maximum deviation smaller than

RSC can be found at matrix entry M(0,m). An computation example is provided in Figure

2.7.

At first glance, the presented algorithm seems to be inefficient concerning both, space

requirement and runtime, which are of orderO(m2l). For example, ifm = 20000 genes and
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Example: m = 8, l = 4, m-l = 4

increase by m-l, if gene at position i is in C

decrease by l, if gene at position i is not in C

after i = m steps: M(0,m) contains the number of running 
sum statistics with a maximum deviation less than RSC

i: index of gene in sorted list

j:
 v

al
u

e 
o

f 
ru

n
n

in
g 

su
m

8 0 0 1 0 3 0 9 0 27

4 0 1 0 3 0 9 0 27 0

0 1 0 2 0 6 0 18 0 54

-4 0 1 0 3 0 9 0 27 0

-8 0 0 3 0 3 0 9 0 27

0 1 2 3 4 5 6 7 8

→ exact p-value = 1 – 54/70 = 0,229

Figure 2.7: Computation example with the dynamic programming algorithm for unweighted GSEA.
The upper figure shows all possible running sum statistics for a sorted list of 8 genes
of which 4 belong to an arbitrary biological category. The colored running sum statistic
has an RSC value of 12. Below, the corresponding dynamic programming matrix is
depicted. Matrix entries unequal zero are highlighted in green. The matrix entries in
the upper and lower right corner do not have to be computed due to the extended side
constraints. The number of running sum statistics with a smaller deviation from zero
(RSC value) than 12 add up to 54. Given this result, the p-value can be computed and
amounts to 0.229.
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a functional category with l = 2000 genes is considered, M would have about 1.44 · 1012

entries. As the recurrence Equation 2.1 implies, filling the ith column of M only requires

the values of the i− 1th column. Thus, the dynamic programming approach requires only

two columns of the matrix reducing the memory requirements to O(ml). Additionally, the

matrix M is sparse, i.e., it contains many entries of 0 and certain parts of M do not have

to be computed at all as described in the following.

The running time of the algorithm can be further reduced by adding a second constraint

(∗∗)−m2 + l ·m+ i ·m− i · l ≤ j ≤ l ·m− i · l

for each column i to the recurrence equation. The right side of the constraint holds be-

cause, for column i, the value j of the running sum can be computed as

j = a · (m− l) + (i− a) · (−l)

where a is the number of genes that belong to C up to index i in the ordered list. Since a

can be at most l, the following inequality holds

j ≤ l · (m− l) + (i− l) · (−l)

⇔ j ≤ l ·m− i · l

⇔ j ≤ l · (m− i)

Equivalently, for the left side of constraint (∗∗) and column i the following equation holds:

j = (i− b) ·m− i · l

⇔ j = −b ·m+ i ·m− i · l

where b is the number of genes that do not belong to C up to index i in the ordered list.

Since b can be at most m− l:
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j ≥ −(m− l) ·m+ i ·m− i · l

⇔ j ≥ −m2 +m · l + i ·m− i · l

Although the additional constraint does not lead to an asymptotically improved runtime, an

increased performance has been measured, especially for small p-values.

The dynamic programming algorithm was integrated in GeneTrail with some minor adap-

tations. Since we are in general interested if a biological category is enriched or depleted,

the algorithm was accordingly adjusted to compute an one-tailed p-value instead of the

above described computation that corresponds to a two-tailed p-value.

2.1.3.3 Wilcoxon-Mann-Whitney test

The Wilcoxon-Mann-Whitney (WMW) test [32, 33] is a nonparametric statistical test for

comparing the medians of two distributions. It is used to test the null hypothesis that two

independent samples were drawn from the same population. For a sample S1 of size m

and a second sample S2 of size n, a test statistic U can be computed as follows:

U = m · n+
m(m+ 1)

2
− T, (2.2)

where T is the rank sum of sample S1.

The rank sum T is computed by sorting the values in both samples and summing up the

resulting ranks for the values in sample S1. For large samples, the distribution of the test

statistic approximates the normal distribution, with known mean µ = m·n
2 and standard

deviation σ =
√

m·n(m+n+1)
12 . Thus, we can compute a z-score:

Z =
U − µ
σ

, (2.3)

that can be directly used to determine the corresponding p-value with the cumulative stan-

dard normal distribution. The z-score expresses the divergence of U from the most proba-

ble result µ in numbers of standard deviations. The larger the value of the z-score is, the

less probable is the value of the test statistic U due to chance. In the presence of ties
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(equal values in the samples), median ranks are assigned to these values. This influences

the standard deviation that can be corrected as follows:

σ =

√
m · n

N(N − 1)
·
(
N3 −N

12
− C

)
, (2.4)

where N = m + n and C =
∑

i(
t3i−ti

12 ) [60]. C is the so called tie correction and ti is

the number of values with equal ranks i. If there are no ties, C equals 0 and the standard

deviation in Equation 2.4 equals the uncorrected standard deviation.

We included the WMW test in GeneTrail to be able to test non-binary categories (e.g.

numbers of SNPs, gene length) for enrichment.

2.1.3.4 Monte Carlo permutation test

In addition to the WMW test, we implemented a permutation test to estimate the signif-

icance of an observed difference of means between two samples. In brief, we compute

the difference of the means of the values in the test set (of size n) and the reference set.

Then, the test set and the reference set are combined to one common set, from which we

randomly draw n values. This way, we obtain a new distribution of the values in a new test

and reference set. We compute the differences of means of the values in the two new sets.

This procedure is repeated at least 1000 times. A p-value can be computed by counting

the number of resampled differences with a better score than the difference of the original

sets and dividing by the number of permutations.

2.1.3.5 Multiple testing adjustment

The multiple testing corrections are used when several independent statistical tests are

performed simultaneously. When testing many hypotheses, the probability for false positive

predictions increases. If we perform a testing of n independent hypotheses to a specified

significance level α, we can expect n ·α hypotheses to be significant by chance. Therefore,

an adjustment of p-values is necessary for multiple hypotheses testing. We implemented

two p-value correction algorithms in GeneTrail, the Bonferroni and the false discovery rate

(FDR) correction.
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The Bonferroni correction

The Bonferroni p-value correction is a very conservative method, which means that the

reduction of false positives is bought with an increase of false negatives. This method is

often too restrictive for biological questions because of the high information loss.

The Bonferroni adjustment can be performed in two ways: Either the significance level is

adjusted by dividing by the number of tested hypotheses or alternatively, the p-values can

be adjusted after computation with the unadjusted significance level by multiplying with the

number of tested hypotheses. The Bonferroni correction thereby controls the probability of

committing any type I error considering all tests.

The FDR correction

The FDR correction was developed by Benjamini and Hochberg (1995) [61]. Instead of

controlling the probability of committing any type I error, the FDR controls the expected

proportion of errors among the rejected null hypotheses and is therefore less strict than the

Bonferroni method.

FDR = E
(number of falsely rejected null hypotheses

number of rejected null hypotheses

)
The FDR controlling procedure works as follows:

Let p(1) ≤ p(2) ≤ ... ≤ p(m) be the ordered p-values for the tested hypothesesH1, H2, ...,Hm

and their corresponding p-values p1, p2, ..., pm, and denote by H(i) the null hypothesis cor-

responding to p(i). To control FDR at level α, reject the hypothesis H(j) for j = 1, ..., j∗,

where j∗ = max{j : p(j) ≤ j
mα}.

Adjusted p-values can be computed as follows [62]:

p∗(j) = min
k=j,...,m

{
min

(m
k
p(k), 1

)}
This method controls the FDR for independent test statistics as well as under certain de-

pendence structures (positive regression dependency) as shown by Benjamini & Yekutieli

(2001) [63].
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2.1.4 C++ framework

The GeneTrail C++ framework provides all necessary components for performing efficient

gene set analyses comprising information retrieval, data integration, statistical evaluation,

result presentation, and data exchange. In the following, we will present the basic concepts

of the GeneTrail data model and its implementation. Furthermore, we discuss some special

features of GeneTrail and the way of extending GeneTrail’s integrated biological categories,

identifier types and organisms.

2.1.4.1 Data model

In this section, we briefly describe the most important base classes of GeneTrail and their

function. The class DataObject is the parent class of GeneTrail’s internal data structures.

We implemented object-oriented data structures for gene set analyses that are hierarchi-

cally constructed (see Figure 2.8). The Parameter class provides parsing of the command

line options, collects all necessary information for performing the statistical evaluation, and

finally contains the results of the analysis. An instance of Parameter stores the Testset(s)

and the Referenceset. These data sets contain the information which genes belong to

them and the categories that are statistically evaluated. For each biological category that is

analyzed an instance of Category is created which itself is filled with the different subcat-

egories. A Subcategory has crosslinks to the genes of the data set that are contained in

this subcategory. The statistical evaluation is performed for each subcategory and the com-

puted raw p-value or adjusted p-values are stored within the corresponding Subcategory

instance. The class Analysis is the central base class for all derived specific analyses and

provides methods for filling the Category data structure by parsing the corresponding flat-

files. These methods can be overridden if necessary in the derived classes. Furthermore,

the specific derived analysis classes comprise methods for generating and updating their

flatfiles. The class Statistics is the base class for all statistical evaluations. The derived

classes are responsible for a specific statistical test. Furthermore, the base class provides

methods for performing the multiple testing adjustment. For the result presentation and

data exchange, we have implemented the base class Serializer and its derived classes

that provide the options to serialize the data structures in different data formats as XML,

HTML, LATEX, and plain text.

A class diagram of GeneTrail’s most important classes can be found in Appendix B. The

red classes are specific analysis classes derived from the Analysis base class. The
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Parameter

TestsetReferenceset

0..1 0..*
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Gene Category
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Figure 2.8: Simplified UML diagram of the internal data structures in GeneTrail

statistics classes derived from the base class Statistics are colored in yellow. Green

colored classes derived from DataObject represent the internal data structure classes in

our model. The classes colored in blue are responsible for generating the output of the

results of the analyses in different file formats. The classes derived from the Output base

class are obsolete and are replaced by the new Serializer derived classes. The latter

classes are better integrated in the data model and GeneTrail’s data structures and can be

more easily extended for (de-)serialization of various file formats.

2.1.4.2 File formats

GeneTrail handles different file formats as input that are adjusted to their usage sites. We

describe here the simple file formats for test and reference sets, identifier mapping files,

binary and non-binary biological category files, and the supported standard gene set file

formats.

File format for test / reference sets: The input file format for test and reference sets

consists of a plain text file that contains one ID per line.
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23744<return>

51<return>

872<return>

All identifier types can be used that are supported by GeneTrail for the selected organism.

In any case, we insist that for all test and reference sets that are involved in an analysis the

same ID type is used.

File formats for pre-computed categories and identifier mapping: Depending on the

type of statistical evaluation, we use different file formats for the pre-defined and user-

defined biological categories in GeneTrail. For binary categories, we designed a simple file

format containing the Gene ID and tab-separated the category this gene belongs to, e.g.:

12345<tab>categoryA<return>

12345<tab>categoryB<return>

44456<tab>categoryA<return>

57382<tab>categoryD<return>

All pre-computed binary biological categories are deposited in this format during the up-

date process (Section 2.1.4.8). We name these flatfiles according to this convention:

<analysis> annotated <opt> <org> <taxid>.txt, where<analysis> is the biological cat-

egory, <org> the three letter code for an organism, and <taxid> the NCBI taxonomy

ID for the organism. The <opt> parameter is only needed in special cases, e.g. we

provide for GO flatfiles containing either all annotations (<opt> = ”all“) or only manu-

ally curated annotations (<opt> = ”manu“). This file format is also utilized for mapping

Gene IDs to other identifier types. In this case, the naming convention is the following:

map geneid <id> <org> <taxid>.txt. For analyzing user-defined (binary) categories, we

support three different additional file formats:

• The GeneTrail format (.gtf): The category name starts with a #-sign; the IDs are listed

underneath their category separated by newline symbols

#CategoryName1<return>

ID1<return>

ID2<return>

ID43<return>

#CategoryName2<return>

27



Tools for Cancer Research

ID23<return>

ID2<return>

ID54<return>

ID4<return>

• The gene matrix transposed file format (.gmt): Each row in this file format represents

a gene set. The first column consists of the gene set names, the second column can

contain a description for the gene set, the remaining columns comprise the genes

belonging to the gene set. All columns are delimited by tabs.

CategoryName1<tab>na<tab>ID1<tab>ID2<tab>ID43<return>

CategoryName2<tab>na<tab>ID23<tab>ID2<tab>ID54<tab>ID4<return>

• The gene matrix file format (.gmx): Each column in this file format represents a gene

set. The first row consists of the gene set names, the second row can contain a

description for the gene set, the remaining rows comprise the genes belonging to the

gene set. All columns are delimited by tabs.

CategoryName1<tab>CategoryName2<return>

na <tab> na <return>

ID1 <tab>ID23<return>

ID2 <tab>ID2 <return>

ID43<tab>ID54<return>

<tab>ID4<return>

In the case of non-binary categories, where the genes are mapped to a number (e.g.

number of SNPs for a gene or gene length), we need to use a different format. This kind

of data is deposited in a tab-delimited matrix format, where the first column contains the

Gene IDs, the first row the category names, and at position (i, j) of the matrix the numerical

property of gene i for category j.

GENEID<tab>SNPs in exons<tab>SNPs in introns<tab>SNPs in total<return>

12345<tab> 4 <tab> 2 <tab> 6 <return>

44456<tab> 23 <tab> 10 <tab> 33 <return>

57382<tab> 8 <tab> 5 <tab> 13 <return>

The naming convention for these non-binary flatfiles is similar to the above, but we replace

”annotated“ with ”flatfile“: <analysis> flatfile <opt> <org> <taxid>.txt
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2.1.4.3 Information retrieval: MySQL databases

GeneTrail supports a wide range of biological categories. The original data sources of

these categories are present in various data formats or deposited in databases. For the

latter, we integrated the information retrieval from MySQL databases in GeneTrail. Up to

now, it was sufficient to provide an interface for MySQL databases, but this functionality can

be extended to other relational database systems as Oracle, DB2, or PostgreSQL, since we

are using Qt6 as external library that supports all major database drivers. An analysis class

that is dependent on a database connection is derived from the class DatabaseDerived

in our data model that provides the necessary functions for establishing a database con-

nection and querying the database.

2.1.4.4 Serialization concept

Since we are storing the results of the computation in the internal data structures of Gen-

eTrail’s C++ framework, we need a way to output the results in a user-friendly format. To

this end, we integrated a serialization concept that is capable to output the data structures

in various formats. So far, we implemented serializer for XML, HTML, plain text, and LATEX.

For XML, we also provide a deserializer that re-creates the data objects in memory when

parsing an XML file in our own format. This is a very useful feature, because we can, e.g.,

filter the information later on or re-compute the p-values if some thresholds have changed.

The serialization concept is realized in a way that allows for easy modification of our data

structure classes and facilitates adding new serializers. In brief, each data structure class

tells the serializer which information should be serialized. The serializer itself does not

need to know about the internal structure of a data structure class and is, therefore, inde-

pendent of the data structure classes. If new information is added to a data structure class,

only this class has to be adapted, the serializer does not need to be changed.

2.1.4.5 Graph data structure for topology usage

The GeneTrail C++ framework supports information retrieval from the BNDB [25] as de-

scribed previously in Section 2.1.2.1. In order to take full advantage of the provided infor-

mation, we extended our framework with a graph data structure using the efficient boost

graph library (BGL) [64]. We implemented the generation of a compound graph, a bipartite

6http://qt.nokia.com/products/library/modular-class-library
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reaction graph, and an event graph from the data in BNDB as adapted from the original

code in BN++. The different graph representations of a simple metabolic reaction are illus-

trated in Figure 2.9.

Biochemical Reaction

Glucose
Glucose 6-
phosphate

Fructose 6-
phospate

ATP ADP

Bipartite Reaction Graph

Compound Graph

Event Graph

Hexokinase
Phosphoglucose

isomerase

ATP ADP

Hexokinase Phosphoglucose
isomeraseGlucose 6-

phosphateGlucose
Fructose 6-
phospate

Hexokinase
Phosphoglucose

isomerase

ATP ADP

Glucose
Fructose 6-
phospate

Hexokinase
Phosphoglucose

isomerase

Glucose 6-
phosphate

Figure 2.9: The different graph representations of the first two steps in the glycolysis pathway. Blue
nodes depict participants, orange nodes events as, e.g., reactions. The edge direction
is derived from the role the participant is playing in the event. In the compound graph
representation the dashed arrows illustrate the optional edges for side educts and side
products. Adapted from [46].

The Topology class and its implementation for building a compound graph for the regula-

tory network derived from KEGG has been applied in our ILP approach for finding dereg-

ulated subnetworks using expression profiles (described in detail in Chapter 5.2). The

nodes in this network correspond to proteins, protein families, or protein complexes, the

edges represent either directed reactions, e.g., an activation or inhibition, or interactions

that are undirected for which we add two directed edges in both directions. Our graph class

provides the possibility to split protein families and protein complexes that contain protein

families into their components if desired. Given a protein family, we replace the family node

by a set of nodes where each node represents a family member. Each new node is con-

nected to all neighbors of the original family node, i.e., it has the same set of incoming and

outcoming edges as the original family node. Here, we assume that all family members

interact in the same manner with the neighboring nodes of the original family node.
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Furthermore, our Topology class provides some additional features. We support the Cy-

toscape [65] format for networks (.sif), as well as for node and edge attributes (.na, .ea). We

can output a graph in this format and reconstruct the graph when reading back the output.

For analyzing network characteristics, we implemented some measures that are often ap-

plied: computation of the graph diameter, clustering coefficient, average distance, degree

distribution. Additionally, we provide methods for filtering the original graph and extracting

subgraphs, computation of connected components, and converting directed to undirected

graphs to mention a few. Furthermore, we can map a selection of genes/proteins to the

graph nodes and compute the resulting subnetwork of shortest paths between the selected

nodes.

2.1.4.6 Combination of topology and statistics: FiDePa

To demonstrate the capabilities of our GeneTrail C++ framework, we combined the infor-

mation retrieval, the network topology, and the statistics of the unweighted GSEA dynamic

programming algorithm to develop a novel method for finding deregulated paths (FiDePa).

As described in Section 2.1.3.2, we integrated a variant of unweighted GSEA in GeneTrail

to compute a p-value given a sorted list of input genes and a biological category. With this

test we can verify whether there is a significant enrichment or depletion of the biological

category, which means that the genes belonging to the category are accumulated on top or

on bottom of the sorted list. The disadvantage of this method is that we can only test pre-

defined biological categories. FiDePa identifies deregulated paths in regulatory networks.

These deregulated paths can consist of different parts of various canonical pathways that

are connected in the regulatory network. The FiDePa algorithm and an application of

FiDePa to glioma expression profiles is described in detail in Chapter 5.1.

2.1.4.7 Testing

The GeneTrail C++ framework must ensure that the results when performing statistical

evaluations are correct. As a consequence, our framework must provide a way for auto-

matic testing of the implemented objects and functions. To this end, we use the CppUnit7

testing framework. For the most important data structures and functions, as well as for

the statistical computations, we provide test cases assuring the reliability of GeneTrail’s

computations. Furthermore, we have implemented a program which compares the XML

7http://sourceforge.net/projects/cppunit/
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output of two GeneTrail executions and states the differences if there are any. This is a

useful feature, if we compare the GeneTrail developer version with the version running as

web-application before updating the web server to the new version. We have written over

60 different test calls to assure the high quality and reliability of our program.

2.1.4.8 Updates

A crucial issue for gene set analysis tools is to keep the data they use up-to-date. For

GeneTrail, we implemented an Update class, which handles the updates for the different

analysis classes (biological categories) and identifier types. The main program for perform-

ing the updates provides several command line options so that, e.g., only single analyses

or some specific organisms can be updated. First, the new data is downloaded from their

original sources. The file ”update urls.txt“ in the ’resources’ folder contains all necessary

organism specific and general download URLs for this task. Second, the downloaded data

is processed and GeneTrail compatible flatfiles for the biological categories are generated.

To this end, the update program creates instances of each analysis class to update and

calls the method for generating flatfiles from the original data. Mapping files for the different

identifier types can also be updated if desired. The file ”files to parse.txt“ in the ’resources’

folder contains the information which columns to parse during the update process for tab-

separated flatfiles as, e.g., the files downloaded from NCBI (gene2accession, gene info)

that provide most of the identifier mapping informations for GeneTrail. An additional feature

of the update process is the option to compare the newly generated flatfiles to the files in

another ’data’ folder. This way, we can asses how many changes between two GeneTrail

updates occurred and can also detect error or failures during the update process.

2.1.4.9 Adding new analyses / IDs / organisms

Since GeneTrail is modularly constructed, an extension for additional analyses is straight-

forward. A new specific analysis class must only be created if, e.g., special update and

parsing methods are necessary for generating the flatfiles of this analysis. For testing new

biological categories with GeneTrail, it is only necessary that flatfiles in the above described

format(s) are available. Adding new mappings for different identifier types to NCBI Gene

ID is just as simple. The new mapping file must be available in the corresponding format,

be named according to our convention, and be present in the designated GeneTrail ’data’

folder. In the GeneTrail ’resources’ folder, we provide a file named ”organisms.txt“, which
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contains the information which analyses and ID mappings are available for the organisms

in GeneTrail. This file is parsed during the update process to generate organism specific

flatfiles and in the web-application to dynamically create the websites. If additional analy-

ses and identifier types should be made available for an organism, this file must be edited.

2.1.5 Web-based application

To make GeneTrail’s analysis capabilities available to non-developers, we provide an easy-

to-use web-application. The web-application is written in PHP and determines stepwise

the parameters for the analysis to perform (see also Figure 2.1). The available identifier

types and analyses for one organism are dynamically layouted in PHP. User queries are

queued, so that the web-server is not overloaded with computation jobs. The results are

created in HTML and we use JavaScript to enhance the capabilities of the otherwise static

HTML output. The advantage of using HTML with JavaScript instead of PHP for the results

page is that the users can download the results and view them offline while preserving

the functionality. JavaScript provides the possibility to fade in/out large tables or additional

information, or to sort the results according to p-value, subcategory name, expected and

observed number of genes in a subcategory. An excerpt of a typical results page for a

KEGG pathway analysis is presented in Figure 2.10.

Furthermore, we provide for each test set a link to a table that summarizes the genes that

occur in the different significant subcategories. The genes are sorted by the number of

significant subcategories they belong to (Figure 2.11). This view provides a quick overview

of the genes that play a role in many biological categories. In addition, we provide this

information as binary matrix that is suitable to be used in the generation of heatmaps.

Besides the HTML results page, we provide a link to a plain text version of the results that

can be more easily used for the import into office applications, and a PDF version. To

facilitate the download of the results, the HTML page has a link to a zip file that contains

the results in all formats as well as the generated images etc.

2.1.5.1 Network visualization with BiNA

To further improve the visualization of the results, we provide the possibility to view the

KEGG pathways in the Biological Network Analyzer (BiNA). BiNA is a visual analytics tool

for biochemical networks written in Java that consists of two parts, the platform and a
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Figure 2.10: Excerpt of the HTML view for a KEGG analysis. The detailed results can be faded in
by clicking ”Show details“. The columns of the significant subcategories’ table can be
sorted by subcategory name, p-value, expected and observed number of genes. If
more than 20 genes belong to a subcategory, the view is limited to the first 20 genes
in this subcategory. The remaining genes can be faded in and out by clicking ”more“
or ”less“ in the corresponding field. For the KEGG pathways available in the SQLite
database version for BiNA, we provide additional links that directly open the pathway
in the visualizer.
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Figure 2.11: The ”genes in significant subcategories“ view.

plugin system. While the platform contains the graphical user interface and many common

utilities, it does not have any possibilities for displaying or analyzing networks. For this task,

BiNA provides a powerful plugin structure, which can be used to extend BiNA for a variety

of applications.

BiNA builds upon the integrative system BN++ [44] and the underlying comprehensive

data warehouse BNDB [25]. This warehouse system ensures a full semantic integration

of many databases, including KEGG [47] and TRANSPATH [48]. Since GeneTrail relies

on the same data warehouse system, the usage of BiNA ensures that the user gets visual

representations of exactly the data that are analyzed by our gene set analysis tool. For

GeneTrail, we use a Java Webstart version of BiNA allowing the seamless integration into

websites. On the HTML results page, GeneTrail adds for each significant KEGG pathway

that is available in the database a link to a jnlp file (Figure 2.10). By following this link,

the user directly generates a visualization of the respective network. To integrate the path-

way data, BiNA provides an SQLite interface to the BN++ database BNDB. If a pathway

visualization is started for the first time, BiNA and all available topological network infor-

mation are downloaded (about 40 MB) and stored on the local hard drive. Whenever BiNA

is used again, a version control is carried out ensuring that the newest version of BiNA

and the pathway topology information are available on the local disk. Thereby, an efficient

visualization is guaranteed, even if the respective networks are large.

A key feature of BiNA is the comprehensive set of available graph layout algorithms. It

includes most standard graph layouts (e.g., organic, circular, and hierarchical), but, in ad-

dition, also provides biologically inspired graph layouts, implementing the drawing conven-

tions common in textbooks and allowing for a dynamical visualization of the networks using

the static KEGG layout information. The visualizer BiNA and the utilized plugins have been

implemented by Andreas Gerasch from the Eberhard Karls University in Tübingen.
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2.1.6 GeneTrail usage statistics

GeneTrail has been successfully applied in different projects of our own group [24–26,66],

in collaborations with groups of the Saarland University [67–70], and in external groups

working in various research areas [71–74]. Our web-based application has been pub-

lished in 2007 for the first time and gained many users throughout the world ever since.

From 15.01.07 – 31.03.10 we had accesses from about 1500 different IP addresses and

performed more than 12000 analyses. The numbers of accesses are still increasing as

illustrated in Figure 2.12. In the meantime, GeneTrail has been cited in about 34 publica-

tions of external groups. Most analyses are performed for human, followed by mouse, thale

cress, yeast, rat, and S. aureus. The most popular categories are KEGG and GO.

0

100

200

300

400

500

600

700

800

900

0
1
.0

7

0
2
.0

7

0
3
.0

7

0
4
.0

7

0
5
.0

7

0
6
.0

7

0
7
.0

7

0
8
.0

7

0
9
.0

7

1
0
.0

7

1
1
.0

7

1
2
.0

7

0
1
.0

8

0
2
.0

8

0
3
.0

8

0
4
.0

8

0
5
.0

8

0
6
.0

8

0
7
.0

8

0
8
.0

8

0
9
.0

8

1
0
.0

8

1
1
.0

8

1
2
.0

8

0
1
.0

9

0
2
.0

9

0
3
.0

9

0
4
.0

9

0
5
.0

9

0
6
.0

9

0
7
.0

9

0
8
.0

9

0
9
.0

9

1
0
.0

9

1
1
.0

9

1
2
.0

9

0
1
.1

0

0
2
.1

0

0
3
.1

0

Figure 2.12: Usage statistics for the online version of GeneTrail from January 2007 until March
2010. The y-axis shows the number of program executions, the x-axis the month and
year.
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2.2 GeneTrailExpress

GeneTrail was developed to serve as an easy to use application for researchers working

in different fields. Therefore, the input for GeneTrail consists solely of lists of ”interesting“

genes, which are independent of the type of performed experiments. However, this means

that the pre-processing to create these gene lists is left to the researchers. To overcome

this issue, we added a pre-processing pipeline, called GeneTrailExpress [24], for preparing

raw expression data from microarray experiments.

Several approaches have been developed that focus on the pre-processing of microarray

data and provide basic statistical analysis: PMmA [75] was one of the first tools for the

detection of differentially expressed genes. The program NMPP [76] is tailored for the pre-

processing of self-designed NimbleGen microarray data. Other tools, as AMDA [77] offer

clustering methods and functional annotation of the differentially regulated genes. More

examples of tools focusing on pre-processing and basic statistical evaluation are ArrayP-

ipe [78], one of the first web-based application, or GEPAS [79], which provides clustering

methods and can correlate its results to diverse clinical outcomes. Most recently, Morris et

al. [80] described a comprehensive collection of perl modules for microarray management

and analysis. However, none of these tools provide a dynamic graphical representation of

the detected pathways. This has to be done manually using one of the existing network

visualization tools. One of the most popular visualizers with a large user and developer

base is Cytoscape [65], which also offers a plug-in architecture allowing to extend the func-

tionality, e.g., for integrating data analysis methods. Other visualization tools for biological

interaction data are VisANT [81], which has been designed specifically for the integrative

visual data-mining of biological pathways, and OSPREY [82], which has been developed

to explore large networks.

The usage of GeneTrailExpress comprises several steps. First, the expression data is up-

loaded or selected. Then, the user can select different normalization and gene scoring

methods. The resulting list of interesting genes is directly subjected to GeneTrail’s exten-

sive gene set analysis methods and relevant findings are correspondingly visualized. The

GeneTrailExpress pre-processing has been implemented by Maher Al-Awadhi during his

bachelor thesis.
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2.2.1 Input

GeneTrailExpress offers three options for uploading expression data. The user can either

upload (1) their own expression matrix that must contain two groups of microarrays, e.g.

control versus treatment, or (2) a list of genes with scores. A third possibility is the usage

of a database connection to the NCBI Gene Expression Omnibus (GEO). In this case, the

user can select two GEO GDS expression profiles of the same microarray platform. When

uploading an expression matrix or using expressing profiles from GEO, GeneTrailExpress

continues with normalization and scoring of the data.

2.2.2 Normalization

Microarray experiments can be influenced by many factors, as systematic and random

biases. To overcome this issue, normalization techniques are applied to make different mi-

croarray experiments comparable to each other. GeneTrailExpress offers several standard

statistical normalization techniques, including mean value normalization, median value nor-

malization, or a normalization of mean and variance. The distributions of expression values

before and after normalization are presented via bar charts to visualize the effects of the

normalization on the expression values.

2.2.3 Scoring

Following the normalization, the next step is to identify differentially expressed transcripts.

The following scoring functions for the computation of the differential expression are avail-

able in GeneTrailExpress: mean fold-change, median fold-change, unpaired t-test, paired

t-test, Wilcoxon-Mann-Whitney test, ANOVA, and Wilcoxon Rank-Sum test. For facilitating

the usage, scoring methods that are not suitable for the given input are disabled. The re-

sulting scores of the genes can be manually inspected along with their distribution shown

as a histogram. The final gene list is directly subjected to GeneTrail for a ORA or a GSEA

as explained previously.

2.2.4 Network visualization with expression values

As we described in Section 2.1.5.1, we use a Java WebStart version of BiNA for a dynami-

cal visualization of significant KEGG pathways in GeneTrail. Besides visualizing pathways,
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BiNA allows to map arbitrary scalar data, like expression data, onto the biological networks.

When using GeneTrailExpress, the computed scores for the genes in an expression exper-

iment can be used to color the nodes of the visualized significant pathway, which facilitates

the interpretation of the statistical evaluation. Figure 2.13 shows BiNA’s graphical user

interface visualizing a real biological example. A GSEA of lung cancer expression data

reveals overexpression of lung cancer genes in the Cell Cycle, indicated by the red-colored

genes.

Figure 2.13: BiNA visualization of the cell cycle with mapped expression values. For the gene
expression omnibus data set GDS1312, containing human lung cancer samples and
normal controls, we used GeneTrailExpress to compute the quotient of medians for
these expression experiments. The subsequent gene set enrichment analysis found
the KEGG pathway cell cycle significantly enriched, which provides evidence for a
clear up-regulation of the cell cycle in lung cancer. All genes are colored with respect
to their quotient of median scores. The pale green complexes correspond to protein
complexes.

2.3 GraBCas

In this section, we introduce GraBCas, a tool written in Java to predict granzyme B and

caspase cleavage sites. Caspases are enzymes orchestrating the cellular pathways that

lead to apoptosis and inflammatory signals. Besides these functions they are supposed to
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be involved in other cellular processes, such as development, cell cycle, cell proliferation,

cell migration and receptor internalization [83, 84]. Caspases are cysteine proteases with

specificity for an aspartic acid residue at position P1 of the substrate. This primary speci-

ficity is shared by the serine protease granzyme B, which induces cytotoxic T lymphocyte-

mediated target cell DNA fragmentation and apoptosis [85, 86]. Granzyme B-mediated

cleavage also plays a role in the induction of autoimmunity [87].

A more comprehensive knowledge of caspase and granzyme B substrates is essential

to understand the biological roles of these enzymes in more detail. The relatively high

variability in their recognition sequence often complicates the identification of cleavage

sites. At the time of publication in 2005, GraBCas was the first tool that allowed identifi-

cation of caspase and/or granzyme cleavage sites differing from the consensus sequence.

Other available tools at that time were the PeptidCutter program provided by the ExPasy

Server8 that considers only the preferred peptide substrate sites and ’PEPS’, a tool of

Lohmüller et al. [88], that is restricted to caspase 3 and cathepsin B and -L substrates. In

the meantime, more recent applications make use of SVMs to predict the cleavage sites of

caspases [89, 90] or combine sequence and structure information to predict substrates of

endoproteases [91]. In the work of Wee and coworkers [92], GraBCas has been integrated

to reduce efficiently the number of false positives when predicting caspase cleavage sites.

In the following, we briefly summarize the score-based prediction of potential cleavage sites

integrated in GraBCas for the caspases 1-9 and granzyme B as presented in our NAR Web

Server Issue publication [43].

2.3.1 Design of cleavage site scoring matrices

We developed position specific scoring matrices (PSSMs) for the endopeptidases granzyme

B and caspase 1-9 based on experimentally determined substrate specificities for the

cleavage site positions P4, P3, and P2 of these proteases [93]. Thornbery et al. [93] deter-

mined the substrate specificities using positional scanning synthetic combinatorial libraries.

Cleavage was fluorimetrically determined with maximum value annotated with 100 for the

best cleavage site and the values for the remaining cleavage sites given as percentage of

the observed maximum rate. These experimental values provided the basis for creating

our PSSMs.

The values for each amino acid at position Pi are shown in Table D.1 in Appendix D. For

8http://www.expasy.org/tools/peptidecutter
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a better readability we decided to set the maximum values to 1000 instead of 100 and

adjusted the other values accordingly. For each endopeptidase the scores of the amino

acids were entered in a 3 x 20 matrix. The rows of such a matrix correspond to positions

P4, P3 or P2 of a possible cleavage site. Each column represents one amino acid and

contains the relative frequencies of the amino acid measured in the study of Thornbery et

al. [93]. We are working with PSSM that can be interpreted as probability matrices. Since

probabilities of value 0 should be avoided in such probability-based position scores, all

entries of experimental relative frequencies with value 0 were set to 1. The amino acids

cysteine and methionine were not part of the study of Thornbery et al. [93]. The entries for

these amino acids were also set to 1 in Table D.1.

2.3.2 Computing the scores of endopeptidase cleavage sites

For computing the score, the GraBCas program screens for tetrapeptides with Asp (D) at

their last position (P1) in a given amino acid sequence. Given the tetrapeptide A4A3A2D

(≈ P4P3P2P1) of a potential cleavage site, its score for a given endopeptidase is computed

by the formula in Equation 2.5. The corresponding matrix entries of A2 at position P2, A3

at position P3, and A4 at position P4 are multiplied. The product is divided by the value

of the product of the consensus recognition motif for normalization and multiplied by 100,

yielding a total score between 0 and 100.

Score(A4A3A2D) = 100 · ScoreP4(A4) · ScoreP3(A3) · ScoreP2(A2)
10003

(2.5)

2.3.3 Sensitivity-specificity plot for granzyme B

For determining the specificity and sensitivity of the GraBCas predictions and an optimal

cutoff for the PSSM scores, we used the known cleavage sites of granzyme B [86,87,93–

97] and the known non-substrates of granzyme B [87]. The x-axis of the plot in Figure

2.14 represents the cutoff values (with respect to the PSSM scores), while the y-axis rep-

resents the percentage of the specificity or sensitivity of the predictions made by GraBCas,

respectively.

The specificity is computed as follows:

Specificity =
Number of true negatives

Number of false positives + Number of true negatives
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Figure 3
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Figure 2.14: Sensitivity-specificity plot for granzyme B cleavage sites according to GraBCas. x-
axis: scores by the GraBCas program; y-axis: percentage of specificity or sensitivity.

The true negatives are the known non-substrates, where the maximal PSSM score of all

tetrapeptides ending with a D is smaller than the chosen cutoff value. Analogously, the

false positives correspond to the non-substrates that are falsely classified as substrates

given the chosen cutoff value. A specificity of 1 means that all known non-substrates were

below the cutoff, i.e. all known non-substrates were correctly classified as negatives.

The sensitivity is defined as:

Sensitivity =
Number of true positives

Number of true positives + Number of false negatives

where true positives are the known cleavage sites with a score larger than the chosen

cutoff value. Analogously, the false negatives correspond to the substrates that are falsely

classified as non-substrates given the chosen cutoff value. A sensitivity of 1 means that

all cleavage sites of our test set have a score higher than the chosen cutoff and that they

have been correctly classified as positives.

In total, we collected 29 substrates with 30 cleavage sites for granzyme B and additionally

17 sequences which are non-substrates of this endopeptidase. We computed the scores

of all putative cleavage sites in these sequences and extracted the best hit by GraBCas
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for each of these (non-)substrates. The sensitivity-specificity plot for granzyme B in Figure

2.14 shows that we obtain a sensitivity of 80% and a specificity of 82% when using a

cutoff value of 1.2 in the GraBCas program. The cutoff value can be adjusted if a higher

specificity or sensitivity is needed for the cleavage site prediction.

Given these findings for granzyme B, we integrated the GraBCas prediction for granzyme

B in GeneTrail using a cutoff of 1.2.

2.4 Conclusion

In this chapter, we presented the comprehensive gene set analysis framework GeneTrail.

Although the competition in this field is immense, we were able to establish GeneTrail in

this area as demonstrated by the usage statistics and the citations of external groups.

The continuous development and extensions lead to a powerful C++ framework that is

not only useful for gene set analyses, but also builds the basis to answer more complex

questions when using the network topology. Over the years, we integrated many ideas and

suggestions of users and enhanced the functionality and the user-friendliness of the web-

application. In summary, GeneTrail presents one of the most powerful non-commercial

gene set analysis tools that are available for the research community.

In the next three chapters, we further demonstrate the usefulness of GeneTrail by perform-

ing comprehensive analyses for different fields of cancer research comprising the analysis

of characteristics of tumor associated antigens, the putative target pathways of miRNAs,

and differential network analyses concerning glioma versus normal and BRCA1 mutation

carriers versus non-mutation carriers.
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CHAPTER 3

TUMOR ASSOCIATED ANTIGENS

Tumor associated antigens (TAAs) are capable to elicit an immune response in cancer

patients. Since these antigens stem for example from proteins which are also expressed

under normal conditions in healthy tissues, there must exists reasons why they become

immunogenic in cancer tissue. In cancer prognosis/diagnosis some TAAs are already ap-

plied as biological marker (e.g. PSA, prostate specific antigen) [30]. Although the detection

and usage of TAAs is already widely possible, the mechanisms which lead to a humoral

immune response against these antigens are for the most part elusive. In this work, we

will try to shed some light into this topic by testing different hypotheses for immunogenicity.

First, we give a short overview concerning immune response in general and the discussed

mechanisms for eliciting an immune response in autoimmune diseases and cancer. Sec-

ond, we describe the experimental methods available for detecting antigens and the data

sets used in this work. Third, we apply bioinformatics approaches for verifying if the stated

hypotheses can be generalized for TAAs.

3.1 Immune response and autoimmunity

The defense mechanisms of the immune system of higher multicellular organisms origi-

nate from the fact that their bodies provide an optimal environment for the reproduction of

microorganisms such as bacteria, viruses, and parasites. In general, the immune system

can be divided into two types of defense mechanisms: the innate and the adaptive immune

system [98].

The innate immune system encompasses unchanging mechanisms that are continuously

in force, as for example the skin as a physical barrier, which pathogens have to overcome.

These non-specific mechanisms contribute to a basic resistance of an organism against
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foreign pathogens. In contrast to the innate immune system, the adaptive immune sys-

tem is characterized by a high degree of specificity. The reaction of the adaptive immune

system is elicited by the recognition of specific molecules called antigens, or rather by

the recognition of some specific surface structures of the antigen, called epitopes. The

recognition of pathogen specific antigens is a multi-step process, which starts with the di-

gestion of pathogens by macrophages or immature dendritic cells. Subsequently, these

cells become activated or mature to so-called antigen presenting cells (APCs). The di-

gested antigens are fragmented to peptides of about 9-15 amino acids, which are pre-

sented to T-helper cells by means of major histocompatibility complexes (MHCs) on the

surface of the APCs (Figure 3.1). T-helper cells specific for recognizing the peptide:MHC

structure become activated and start to secrete cytokines, which activate in turn cytotoxic

T-lymphocytes, antibody-secreting B-cells, macrophages, etc. resulting in the activation of

the humoral and/or cellular immune response. The function of the humoral immunity is to

recognize and to destroy extracellular pathogens and foreign substances. B-cells activated

by their corresponding antigen and the cytokines of the CD4 T-helper cells will start to pro-

liferate and differentiate into antibody secreting plasma cells. The antibodies secreted by

the plasma cells bind to their specific epitope on the antigen, thereby disabling the anti-

gen, and mark it for processes leading to its destruction. By contrast, the function of the

cellular immunity is to detect intracellular pathogens. The main components of the cellular

immunity are CD8 T-helper cells and cytotoxic T-lymphocytes (CTLs). To distinguish nor-

mal cells from modified cells, a mechanism is necessary that reports the cells’ state. The

proteins expressed in a cell are again decomposed to some extent. The protein fragments

or peptides are presented on the cell surface by MHC class I molecules. CTLs can rec-

ognize cells presenting non-self peptides like virus-infected cells or tumor cells expressing

modified proteins and induce cell death by secreting toxins.

The reasons for the loss of the so-called self-tolerance in autoimmune diseases or can-

cer, which results in the activation of the humoral immune response against self-antigens,

are still elusive for the most part and can have many potential causes, some related to

the immune system itself, and some related to the antigen targets. For some autoim-

mune diseases the loss of self-tolerance originates from the similarity of self proteins to

pathogenic antigens, which is called molecular mimicry. This theory proposes that the im-

mune reaction initially elicited by a foreign antigen, which is structurally similar to a human

protein, can result in a cross-reaction against the human protein [99]. While the loss of

self-tolerance often comes along with autoimmunity, the immune response in cancer pa-

tients may be initiated by alterations in the tumor itself. Such alterations comprise, e.g.,
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T ll

MHC class 
II

T‐cell 
receptor

T‐cell 
receptor

Ag
MHC class II

Figure 3.1: The humoral immune response. Antigen processing cells (APCs) ingest and process
an antigen. The processed antigen is presented by MHC class II molecules to CD4 T-
cells. The activation of antigen-specific CD4 T-cells leads to lymphoproliferation and cy-
tokine secretion. The activation of a B-cell comprises several steps. Antigen-antibody
complexes on the surface of the B-cell are internalized by receptor-mediated endocyto-
sis and degraded to peptides. These are presented by MHC class II on the membrane
to CD4 T-helper cells. Specific T-helper cells recognize the peptide:MHC structure and
additional co-stimulatory signals, which lead to the activation of the T-helper cell. The
activated T-helper cell secretes cytokines that help the B-cell to differentiate into an
antibody secreting plasma cell.
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mutated proteins or differential expression that may result in an increased immunogenicity

of self-antigens [100].

3.2 Experimental techniques

In order to identify serum antibodies, several experimental techniques can be applied. The

most commonly used techniques include Enzyme-Linked ImmunoSorbent Assays (ELISA)

[101], SErological identification of antigens by Recombinant EXpression cloning (SEREX)

[102–104], Protein Arrays [105], and Two-Dimensional Polyacrylamide Gel Electrophoresis

(2D-PAGE) [106]. In the following, we describe the SEREX method and the protein arrays

in more detail, since the data sets analyzed in this thesis have been generated with these

methods. The corresponding experiments have been carried by the group of Prof. Eckart

Meese.

3.2.1 SEREX

The SEREX (SErological identification of antigens by Recombinant EXpression cloning)

method was developed by Sahin et al. [102] and serves to identify antigens eliciting an

immune response in cancer patients. For the application of the SEREX method, first, a

cDNA expression library is built by extracting mRNA of (tumor) tissue. Subsequently, E.

coli cells are transfected with the cDNA library and plated on agar plates, where they

express the recombinant proteins. The expressed proteins are incubated with the serum

of a patient and if this serum contains antibodies against a certain protein of the cDNA

library, this can be detected with a color reaction. The methods allows for the identification

of the clone expressing the protein by sequencing the cDNA of the positive clone. The

corresponding gene of the clone is determined by sequence alignment.

3.2.2 Protein arrays

Protein arrays present a further a high-throughput method for detecting autoantibodies. In

general, proteins which can stem from different sources (purified or recombinant proteins,

synthetic peptides, or fractioned proteins from tumor tissue or cell lines) are immobilized

on the array and then incubated with specific sera. The antibody-antigen reaction can be

detected via enzymatic labeling or fluorescent dyes.
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For the primary screening, we used high-density protein arrays consisting of 38016 E. coli

expressed proteins from the hex1 cDNA expression library [105], of which about 4000 rep-

resent known genes. These arrays were screened with sera from patients with various

human diseases including cancer and inflammatory diseases, as well as blood sera from

healthy controls. The screening was performed with minor variations as described in [107].

To lower the experimental costs, a second customized protein array was designed contain-

ing only those clones (about 1800) that showed reactivity in at least one of the pools of the

primary screening.

Besides using cDNA expression libraries, protein arrays can also be spotted with peptides

from Phage Display Libraries. A phage display library is constructed from tumor tissue or

a cell line. The candidate antigen peptides are expressed and displayed on the surface of

a phage. One advantage of these libraries is that peptides that are specifically recognized

by patient serum can be enriched using a process called biopanning. On the other hand,

this method has the limitation that the peptide sequences are short and the results may be

difficult to interpret if the peptide stems from a non-coding sequence.

3.3 Data sets

The antigen sets used in this thesis stem either directly from experimental methods (SEREX,

protein arrays) or from literature search. In the following we compose the name for the

different data sets of: (1) their source (’Lit’ for ’collected from literature’, ’CIDB’ for the

database the antigens stem from, or ’Exp’ if found in experiments performed by the Human

Genetics Department of Prof. Meese), (2) the experimental method (e.g. ’Serex’, ’Chip’,

and ’PhageDisplay’ for the corresponding experimental method if available), and (3) the

type of antigens contained in the data set (AAG for autoimmune antigens, HAG for anti-

gens occurring in healthy persons, TAG for tumor antigens, INAAG for antigens occurring

in non-tumor diseases comprising inflammatory, neural, and autoimmune diseases, AG for

antigens containing mixtures of AAGs, HAGs, and TAGs). If we build subsets of an antigen

data set, we add the extended criterion for building the subset to the name of the original

set (e.g. ’dataset>5%Sera’ means that we take all antigens from ’dataset’ that were found

in at least 5% of the screened sera).

The first data set we consider here was extracted from the ”Cancer Immunome Database” 1

(CIDB). The antigen set CIDB-Serex-AG contains 1471 known genes for which antibodies
1http://ludwig-sun5.unil.ch/CancerImmunomeDB/
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could be detected primarily in patients with different cancer types. The method applied

for the detection of these antigens is SEREX. The CIDB data we use in this thesis was

downloaded in February 2009. For excluding such antigens that may be in these sets

because of experimental errors, e.g. the subjective optical evaluation of positive spots on

the SEREX filters, we collected two data sets containing antigens that were found with

at least two sera (CIDB-Serex-AG>1Serum) or were represented by at least two clones

(CIDB-Serex-AG>1Clone).

The second and third data set were collected by the group of Prof. Meese using the SEREX

method. For the set Exp-Serex-HAG, the screening was performed with sera of healthy

donors to detect natural occurring autoantibodies yielding 86 known genes. The data

set Exp-Serex-TAG contains 74 antigens detected when screening sera of glioma, menin-

gioma, and lung cancer patiens.

Besides the antigen sets that have been isolated with the SEREX method, we also consider

here antigens found when screening protein macroarrays. The set Exp-Chip-AG contains

298 antigens that were positive for at least one pool of sera in the primary screening (see

Section 3.2.2), not distinguishing between cancer, healthy, or other diseases. In more de-

tail, the primary screening was performed with pools of sera including prostate cancer, lung

cancer, meningioma, glioma, morbus crohn, colitis, stroke, and healthy controls. From this

base antigen set, we derived 5 more specific sets. The set Exp-Chip-AG>1Pool consists

of antigens found in at least 2 pools of the primary screening with the original chip. Using

the positive clones found in the primary screening of the chip, a second customized chip

was designed. This customized chip was used in further disease specific and healthy con-

trol screenings with more than 500 sera. The results of these screenings are of course

also subsets of the original set, therefore we keep the naming. The set Exp-Chip-AG>5%

contains antigens that were positive in at least 5% of the tested sera in total. Analogously,

the sets Exp-Chip-HAG>5% and Exp-Chip-TAG>5% contain antigens that were found in

at least 5% of the healthy control sera or tumor sera, respectively. In addition, several

autoimmunity associated, neural, and inflammatory diseases were screened (e.g. colitis,

chronic obstructive pulmonary disease, morbus crohn, multiple sklerosis). These antigens

that were found in at least 5% of patients are summarized in the set Exp-Chip-INAAG>5%.

Furthermore, we consider in our analysis two data sets that were collected by literature

search. The Lit-PhageDisplay-TAG set contains 84 tumor antigens that were isolated with

the Phage Display library method. The antigen set Lit-AAG consists only of genes as-
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Table 3.1: Data sets for our analyses and their publication bias illustrated with the help of their
GO annotations (GO version: January 2010). The average number of GO annota-
tions and the percentage of high-quality annotations thereof are a indication for the
publication bias underlying the genes in the set. The more interesting a gene is, the
more annotations in total and the more high-quality GO annotations it is likely to have
assigned. Most of our data sets show about the same average GO annotation, with
exception of the Lit-AAG set showing the highest number of average GO annotations,
and the ProteinCodingGenes with the lowest number of average GO annotations.

Data Set Subset Number of known Genes GO annotationsa

CIDB-Serex-AG 1471 10.16 (23.30%)

CIDB-Serex-AG>1Clone 446 11.12 (25.16%)

CIDB-Serex-AG>1Serum 306 11.04 (26.14%)

Exp-Serex-HAG 85 9.48 (17.95%)

Exp-Serex-TAG 74 11.86 (25.66%)

Exp-Chip-AG 298 10.10 (23.93%)

Exp-Chip-AG>1Pool 130 9.77 (25.76%)

Exp-Chip-AG>5% 217 9.58 (23.24%)

Exp-Chip-HAG>5% 211 9.61 (23.12%)

Exp-Chip-INAAG>5% 222 9.63 (23.57%)

Exp-Chip-TAG>5% 241 9.60 (22.87%)

Lit-PhageDisplay-TAG 84 13.45 (26.86%)

Lit-AAG 348 15.88 (28.51%)

ALL 2079 10.99 (24.14%)

ProteinCodingGenes 23583 8.50 (18.71%)

a The average number of GO terms annotated per gene. The number in parentheses corresponds to
the percentage of high-quality annotations (with evidence tags ’inferred from direct assay’ or
’traceable author statement’) amongst all annotations for genes in the group.
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sociated with autoimmune diseases, is available online2, and contains 348 genes. This

set was initially collected to analyze the occurrences of SNPs (single nucleotide polymor-

phisms) in autoantigens [108]. SNPs are DNA sequence variations of single nucleotides in

the genome. Such a variation must occur in at least 1 % of the population to be considered

as SNP. Stadler et al. found that the occurrence of SNPs is significantly higher in these

autoantigens than in remaining human genes [108].

The ALL set contains the union of all antigens of the data sets Lit-AAG, Exp-Serex-HAG,

Exp-Chip-AG, Exp-Serex-TAG, CIDB-Serex-AG, and Lit-PhageDisplay-TAG. This set can

help to find prevalent patterns of antigens if there exist common causes for eliciting the

immune response in cancer patients, autoimmunity, and healthy controls.

As reference set, we used all human protein coding genes excluding the above mentioned

antigens (human protein coding genes minus genes in the ALL set). The different data

sets are summarized in Table 3.1.

We performed the analyses with GeneTrail for all antigen sets, if not mentioned other-

wise, using the following parameters: significance level: 0.05; minimum number of genes

in a subcategory: 2; p-value computation: FDR correction; reference set: ProteinCod-

ingGenes. When performing an ORA (Section 2.1.3.1), we filtered the results afterwards

for significantly enriched subcategories that contained at least 5% of the genes of the test

set that had an annotation for the considered category. This way, we focused on subcate-

gories that show a certain prevalence in our antigen sets.

3.4 Influence of genetic alterations and changed expression

levels

Alterations on the molecular level in the cell can lead to the production of aberrant proteins.

The production of these modified proteins can have many possible causes, e.g., a mutation

on DNA basis can directly either influence the expression level or the amino acid sequence

of the resulting protein. A changed expression in tissues where a protein is normally not

expressed could lead to its increased presentation on MHC complexes. In general, all

processes influencing the final protein expression may cause the presentation of aberrant

self-peptides to the immune system, and therefore, may be responsible for eliciting an im-

mune response in cancer patients. In the following, we test different hypotheses to analyze

2http://www.wiley-vch.de/contents/jc_2040/2005/25481_s.pdf
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whether genetic alterations and/or changed expression levels are possible initiators for a

humoral immune response.

3.4.1 Mutations

One of the characteristics of cancer is the accumulation of genetic alterations in the DNA.

For the integrative analysis of heterogeneous data from several cancer-related sources we

have developed the cancer-associated protein database (CAP) [109]. To study the con-

nection between mutations and immunogenicity, CAP has been employed on data derived

from SEREX experiments and data extracted from Cancer GeneticsWeb (CGW)3, which

provides general information and literature references about cancer-related genes. Out of

723 genes from SEREX experiments and the 606 genes contained in CGW, we found only

17 genes occurring in both data sets. Additionally, we analyzed if the genes in the over-

lap of both data sets have been found in the same cancer types. A total of seven genes

were identified, where only two (TP53 and GSTT1) are known to carry specific mutations

or polymorphisms, whereas the remaining five are over-expressed in the respective tu-

mors. TP53 has been found to cause immune responses in primary colon carcinoma and

in breast carcinoma, both known to carry TP53 mutations [110, 111]. Mutations in TP53

have also been found in a large number of other tumor types where the patients have no

antibodies against TP53. The same holds for GSTT1, where antibody responses occur in

patients with breast cancer that is associated with specific GSTT1 polymorphisms [112].

However, these types of polymorphisms also occur in other tumors including head and

neck cancer without an antibody response [113]. From the data used in this analysis, it

does not seem likely that the genetic alterations are primarily responsible for causing an

immune response in cancer. However, we performed this analysis in the year 2004 with a

limited amount of available data, so these findings represent only preliminary results.

As a more current data source, we used the “Roche Cancer Genome Database” (RCGDB)4

[114] that combines different sources of human mutation databases including amongst

others the Catalogue of Somatic Mutations in Cancer (COSMIC), the Cancer Genome

Atlas, and Online Mendelian Inheritance in Man (OMIM). For our analysis we extracted for

each gene in this database the different types of somatic mutations and the number of their

occurrences in cancer. We performed a Wilcoxon-Mann-Whitney (WMW) test (described

in Section 2.1.3.3) to check the hypothesis whether our antigen sets have a higher number

3http://www.cancer-genetics.org
4http://rcgdb.bioinf.uni-sb.de/MutomeWeb/
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of somatic mutations compared to the reference. The results are illustrated in Figure 3.2.
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Figure 3.2: Heatmap of the results of the WMW test for comparing the distribution of somatic mu-
tations in the antigen sets and the reference. Red = significantly enriched compared to
the reference. Green = not significant.

The heatmap shows that there is an enrichment for almost all data sets for the subcat-

egory “Substitution - Missense” except for the data sets Lit-AAG, Exp-Serex-HAG, Exp-

Serex-TAG, and Exp-Chip-AG>1Pool. The latter set shows no enrichment for any so-

matic mutation subcategory. The data sets showing the most significantly enriched so-

matic mutations are the Exp-Chip-AG, the Lit-PhageDisplay-TAG, and the ALL set, how-

ever, there are only a few overlaps. Besides the “Substitution - Missense” subcategory,

they have the categories “Splice Site” and “Complex - insertion inframe” in common. In-
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terestingly, the CIDB-Serex-AG set and its more specific sets (CIDB-Serex-AG>1Clone,

CIDB-Serex-AG>1Serum) cluster together, as well as the specific Exp-Chip-AG sets (Exp-

Chip-INAAG>5%, Exp-Chip-HAG>5%, Exp-Chip-TAG>5%, Exp-Chip-AG>5%). These

results indicate that somatic mutations play a more important role than previously sug-

gested. Especially the finding of the significantly enriched subcategory “Substitution - Mis-

sense” in almost all data sets that contain primarily tumor derived antigens in contrast to

the data sets Lit-AAG, Exp-Serex-HAG (autoimmune diseases and healthy controls), and

Exp-Chip-AG>1Pool (contains additionally antigens of inflammatory diseases) seems to

be of major importance. However, the Exp-Serex-TAG set containing antigens from lung,

glioma, and meningioma is an exception from this observation.

3.4.2 Expression levels

To test if changes in expression levels have an influence on the immune response in can-

cer patients, we correlated all cancer-related genes in the CAP database found by SEREX

experiments with expression data from the NCI60 microarray project [115]. In this project,

cDNA microarrays are used to explore the variation of gene expression in 8000 genes from

60 cancer cell lines. These 60 cell lines are also used by the National Cancer Institute for

screening potential cancer drugs. The expression data provided by NCI include fluores-

cence ratios, normalized against a pool of 12 cancer cell lines. For our analysis we only

considered genes that showed at least a 2-fold increase in expression levels and were

measured in at least 4 of the 60 cell lines resulting in 319 genes of CAP having expression

levels. In total, we found 277 (87%) of the genes to be over-expressed in at least one cell

line. Out of the 277 genes, 69 were found to have an over-expression in at least 10% of

all evaluated cell lines. In a more cancer-specific analysis, we extracted expression levels

for genes that were found in the same cancer type in both SEREX experiments and the

NCI60 data. A total of 13 genes meeting this restriction showed over-expression in at least

3 tumor-specific cell lines. These findings indicate that over-expression may contribute to

the antibody responses against tumor antigens. The majority of the 319 genes are actually

found to be over-expressed in the NCI60 data set. However, this result might be somewhat

biased from the selection of genes tested for expression levels, since the NCI60 data set

was designed to explore the variation in gene expression among different cancer types.
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3.4.3 SNPs

Stadler et al. found an enrichment of SNPs in autoantigens and discussed these as the

cause for the immunogenicity [108]. We verified whether this hypothesis also holds for

TAAs or antigens in general. To this end, we extracted the different SNPs for every gene

as deposited in dbSNP [116] from NCBI and performed a WMW test. The results of this

statistical test are depicted in Figure 3.3.
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Figure 3.3: Heatmap of the results of the WMW test for comparing the distribution of SNPs in the
antigen sets and the reference. Red = significantly enriched compared to the reference.
Green = not significant or depleted.

As can be directly seen, there is a striking difference between the protein array derived sets

and the remaining antigen sets. In the protein array set not any SNP type is significantly
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enriched. With our results we can also confirm the results of Stadler et al., since the

Lit-AAG set contains the most significantly enriched SNP types including those already

mentioned in their paper ((non-)synonymous SNPs, (non-)synonymous SNPs normalized).

The SEREX derived sets show similar significantly enriched SNP types (e.g. SNPs total,

synonymous SNPs, SNPs in exons, nonsynonymous SNPs). However, the exon length

in these data sets is also significantly greater than in the reference, so these findings

can be biased. The corresponding normalized SNP categories are not significant, with the

exception of “synonymous SNPs normalized” in the ALL and CIDB-Serex-AG>1Clone data

set. In summary, our findings confirm the results of Stadler et al. that SNPs are enriched

in autoantigens. For the other antigen sets, the results may be biased by the higher-than-

average exon length of the genes in the data sets and may therefore be not really relevant.

Possible reasons for the separation of the protein array and the SEREX sets might be the

limited selection of proteins on the chip or the bias of the SEREX method for detecting

different proteins.

3.4.4 OMIM and cancer-related genes

Online Mendelian Inheritance in Man (OMIM)5 is a comprehensive collection of human

genes and genetic disorders. The focus of this database lies primarily on inherited, or heri-

table, genetic diseases. OMIM also contains about 900 genes that are related to the terms

“oncogene” and “tumor suppressor gene” when querying the database. However, these

genes may not directly serve as oncogenes or tumor suppressor genes themselves, but

may be candidate tumor suppressor or oncogenes, or genes that interact with onco-/tumor

suppressor genes. Unfortunately, the query cannot be more exactly specified when using

the OMIM web-interface. The obtained genes were used as an additional subcategory in

our analysis. We performed an ORA (described in Section 2.1.3.1) to test if there is an

enrichment for disease-associated or “onco-/tumor suppressor-related genes” in our data

sets.

The results of this analysis are summarized in Table 3.2. There are no significantly enriched

OMIM subcategories in our antigen data sets that meet the 5% bound except the “onco-

/tumor suppressor-related genes” subcategory that is significantly enriched in the antigen

sets ALL, Exp-Chip-AG, Lit-PhageDisplay-TAG, and Lit-AAG. Interestingly, the autoantigen

set contains about 9% of these cancer-related genes. The SEREX sets and the more

specific Exp-Chip-AG sets show no enrichment for the “onco-/tumor suppressor-related
5http://www.ncbi.nlm.nih.gov/omim/
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Table 3.2: Overview of the data sets with significantly enriched onco-/tumor suppressor-related
genes. The coverage states how many genes are oncogenes or tumor suppressor-
related genes in comparison to the genes in the data set that have an OMIM annotation.

Data Set Coverage Onco-/Tumor suppressor-related genes p-value (FDR)
ALL 128 / 1622 = 7.89% 0.037
Exp-Chip-AG 21 / 230 = 9.13% 0.037
Lit-PhageDisplay-TAG 10 / 73 = 13.70% 0.011
Lit-AAG 31 / 343 = 9.04% 0.019

genes” subcategory. On the basis of currently available data, this analysis indicates that

onco-/tumor suppressor-related genes are not in general prevalent candidates for antigens.

3.5 Functional groups, processes, and subcellular location

Paul Plotz discussed in his paper “The autoantibody repertoire: searching for order” [117]

several factors that might influence the selection of autoantigens, e.g., certain structural

properties as the presence of coiled-coils [118] or Granzyme B cleavage sites [87]. Fur-

thermore, certain amino acid motifs possess interesting properties that could make them

possible targets for the immune system. The ELR motif is supposed to be a functional

domain that bears chemotactic properties and plays a role in CXC chemokines [119]. CXC

chemokines containing this motif are important for the activation of leukocytes that take

part in phagocytosis of microbes and foreign antigens [120] and therefore have the ability

to activate the immune system. RGD motif bearing peptides are able to directly induce

apoptosis [121]. In addition to analyzing these sequence-based properties, we verified the

hypothesis whether certain functional groups (GO terms), processes (GO terms, KEGG

pathways) or subcellular locations play a central role in the antigen candidate selection

process.

3.5.1 GrB cleavage sites, coiled-coils, amino acid motifs

As representatives for sequence-based properties of antigens, we analyzed our data sets

for the presence of GranzymeB (grb) cleavage sites [43], coiled-coils [122], ELR and RGD

motifs. We performed an ORA and tested if these amino acid properties are enriched in

our antigen sets. The results are illustrated in Figure 3.4.

58



Functional groups, processes, and subcellular location

Li
t−

P
ha

ge
D

is
pl

ay
−

T
A

G

Li
t−

A
A

G

A
LL

C
ID

B
−

S
er

ex
−

A
G

E
xp

−
S

er
ex

−
T

A
G

E
xp

−
S

er
ex

−
H

A
G

E
xp

−
C

hi
p−

T
A

G
>

5%

E
xp

−
C

hi
p−

IN
A

A
G

>
5%

E
xp

−
C

hi
p−

H
A

G
>

5%

E
xp

−
C

hi
p−

A
G

>
5%

E
xp

−
C

hi
p−

A
G

>
1P

oo
l

E
xp

−
C

hi
p−

A
G

C
ID

B
−

S
er

ex
−

A
G

>
1C

lo
ne

C
ID

B
−

S
er

ex
−

A
G

>
1S

er
um

RGD

coils

ELR

grb

Figure 3.4: The heatmap illustrates the significantly enriched sequence features in our antigen
sets. Red = significantly enriched compared to the reference. Green = not significant
or depleted.

Evidently, the sequence-based properties Granzyme B cleavage sites and ELR seem to be

strongly represented in the genes of our data sets. These two categories are significantly

enriched for all our antigen sets. Furthermore, the coiled-coils category is enriched in all

data sets except the Lit-PhageDisplay-TAG set. The RGD motif is the weakest property of

these four considered, because this category is only enriched in the sets ALL, Lit-AAG, and

CIDB-Serex-AG. However, these analyses are strongly dependent on which amino acid

sequence is used for a gene if it has several splice-variants. In addition, the Granzyme B

cleavage sites and the coiled-coils are predicted and not necessarily real cleavage sites or

secondary structures, respectively.

3.5.2 KEGG

KEGG is a comprehensive database that contains regulatory as well as metabolic path-

ways [47, 123]. Here, we wanted to explore if our antigen sets have certain pathways in

common and if these pathways are involved in immunogenic processes. We performed an

ORA as previously explained and summarized the results in Figure 3.5.
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Ribosome
Spliceosome
Glycolysis / Gluconeogenesis
Tight junction
Adherens junction
Leukocyte transendothelial migration
Viral myocarditis
Endocytosis
Pathogenic Escherichia coli infection
Hypertrophic cardiomyopathy (HCM)
Arrhythmogenic right ventricular cardiomyopathy (ARVC)
Dilated cardiomyopathy
Systemic lupus erythematosus
Small cell lung cancer
Jak−STAT signaling pathway
Hematopoietic cell lineage
ECM−receptor interaction
Antigen processing and presentation
Complement and coagulation cascades
Ubiquitin mediated proteolysis
Regulation of actin cytoskeleton
Focal adhesion
Pathways in cancer
VEGF signaling pathway
Thyroid cancer
RNA degradation
Protein export
Prostate cancer
Parkinson's disease
Pancreatic cancer
Oxidative phosphorylation
Non−small cell lung cancer
Neurotrophin signaling pathway
Melanoma
Homologous recombination
Glioma
ErbB signaling pathway
Endometrial cancer
Chronic myeloid leukemia
Alzheimer's disease
Bladder cancer

Figure 3.5: The heatmap illustrates the significantly enriched KEGG pathways in our antigen sets.
Red = significantly enriched compared to the reference. Green = not significant or
depleted.
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When comparing the different antigen sets we find the subcategories Ribosome and Spli-

cosome often covered throughout the different data sets. The only exceptions where none

of these two subcategories is enriched is CIDB-Serex-AG>1Serum, Exp-Serex-TAG, and

the Exp-Serex-HAG set, whereas the Exp-Serex-HAG set shows no enriched pathways

at all. In general, we find only a few metabolic pathways enriched in our set, compared

to many regulatory, signal-transduction and cancer pathways. Most of the cancer path-

ways that are enriched in our analysis are covered by the Lit-PhageDisplay-TAG set, which

makes sense, because this set consists solely of antigens that were detected in cancer pa-

tients. The Exp-Chip-AG derived sets show almost the same enriched pathways with minor

deviations with regard to the Glycolysis pathway. The CIDB-Serex-AG set and the more

specific sets CIDB-Serex-AG>1Clone and CIDB-Serex-AG>1Serum show a quite differ-

ent behaviour. The more specific sets show predominantly the same enriched pathways,

however, the only pathway these three data sets have in common is “Tight junction”. Inter-

estingly, the Lit-AAGs show enriched pathways that are not covered by any other antigen

set. These comprise pathways of the immune system (“Complement and coagulation cas-

cades”, “Antigen processing and presentation”, “Hematopoietic cell lineage”), the “ECM-

receptor interaction”, the “Jak-STAT signaling pathway”, and the autoimmune disease “Sys-

temic lupus erythematosus”. This supports the hypothesis that there are other/additional

processes or failures of the immune system responsible for the occurrence of self-antigens

in autoimmune diseases compared to cancer or healthy controls.

3.5.3 Gene Ontology

The Gene Ontology (GO) is a hierarchical collection of terms that aid to group genes or

proteins in different functional groups [31]. The GO hierarchy is built of three main groups:

molecular function, cellular component, biological process. For the ORA of GO terms, we

used only the manually curated GO annotations, not the computationally assigned annota-

tions (with “IEA” evidence code). Since this analysis yielded more than 450 subcategories

that were significant in at least one antigen set, we decided to present the results for the

three GO hierarchies separately.

The analysis of the molecular function hierarchy is illustrated in Figure 3.6. Obviously,

“binding” and more specific variations of this term (especially “protein binding”, “nucleic

acid binding”, “RNA binding”, “DNA binding”) seem to be a predominant property of the

antigen sets. Other variations of binding can be found scattered throughout the different

data sets. In contrast to the other antigen sets, the CIDB-Serex-AG>1Clone set has an
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hydrolase activity, acting on acid anhydrides, in phosphorus−containing anhydrides

pyrophosphatase activity
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cytoskeletal protein binding

identical protein binding

molecular_function

transcription factor binding

transcription regulator activity

DNA binding

nucleic acid binding

RNA binding

structural molecule activity

binding

protein binding

Figure 3.6: The heatmap illustrates the significantly enriched GO terms of the molecular function
hierarchy in our antigen sets. Red = significantly enriched compared to the reference.
Green = not significant or depleted.

enrichment in different enzymatic functions as e.g. hydrolase activity and pyrophosphatase

activity. As observed previously, the CIDB-Serex-AG set and its derived sets, as well as

the Exp-Chip-AG derived sets cluster together.

The analysis of the cellular component hierarchy is depicted in Figure 3.7. The Exp-Serex-

HAG set shows no enrichment in any subcategory of this hierarchy meeting the 5% bound.

There is a strong cluster of significantly enriched GO terms in almost all antigen set (except

Exp-Serex-HAG, Exp-Serex-TAG) that comprises the components “nucleus”, “cytoplasm”,

“organelle”, and derived terms. The Exp-Serex-TAG set joins the cluster of the other anti-

gen sets with terms derived from “intracellular”. The CIDB-Serex-AG derived sets along

with the ALL and Lit-AAG set show a difference to the Exp-Chip-AG derived sets and the
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cytoplasmic vesicle part
extracellular region part
membrane−bounded vesicle
vesicle
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Figure 3.7: The heatmap illustrates the significantly enriched GO terms of the cellular component
hierarchy in our antigen sets. Red = significantly enriched compared to the reference.
Green = not significant or depleted.

Lit-PhageDisplay-TAG set in terms concerning “ribosome”, where the latter show an en-

richment. Interestingly, the Lit-AAG set exhibits a collection of enriched GO terms that the
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other sets do not show. Amongst others, these terms belong to “extracellular region/space”,

“plasma membrane part”, “vesicle”, and “secretory granule”. These findings indicate that

the proteins in the Lit-AAG set have the tendency to get secreted or have an extracellular

location where they have a potentially higher chance to stimulate an immune reaction.

As third analysis, we computed the significant GO terms of the biological process hierarchy,

which yields the most diverse results. We find here more than 160 GO terms that are sig-

nificantly enriched in at least one of our antigen sets. Since the number of GO terms is too

comprehensive to be readable in the heatmap in a printed version of this thesis, we moved

this illustration to the appendix for the sake of completeness (Figure D.1). The Exp-Serex-

TAG and Exp-Serex-HAG set show no significantly enriched GO terms for this hierarchy.

The Lit-AAG set is most different from all other antigen sets. There are more than 40 terms

uniquely enriched in the Lit-AAG set comprising for example the terms “immune system

process”, “immune response”, “cell communication”, “cell adhesion”, “cell differentiation”,

and “response to stimulus”. Furthermore, the Lit-AAG set along with the Lit-PhageDisplay-

TAG and ALL set show an enrichment of GO terms that are concerned with “apoptosis”:

“cell death”, “regulation of cell death”, “programmed cell death”, “regulation of apoptosis”,

etc. Some GO terms most of our antigen sets have in common are metabolic or synthetic

processes like “(cellular) biosynthetic process”, “protein/cellular metabolic process”, and

“RNA metabolic process”.

Taken together, the analysis of the different GO hierarchies showed that our antigen sets

possess some similarities like the binding derived terms in the molecular function hierarchy

or the predominant intracellular location in the cellular component hierarchy. Nevertheless,

some differences between the autoantigen data set and the various tumor-/normal-antigen

sets have emerged. The most striking difference seems to be that the genes of the Lit-

AAG set have a direct association to the immune system. Furthermore, these genes take

part in processes like cell communication and cell death, and show a tendency to get

secreted or for an extracellular location. As we mentioned before, these findings indicate

that the genes/proteins of the Lit-AAG set have a higher chance to interact with the cells

of the immune system, which is presumably one major cause why these autoantigens

are prone to elicit immune responses or at least partly explains the pathogenic effect the

autoantibodies of the corresponding autoimmune diseases have.
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3.5.4 Subcellular location

In addition to the GO annotations derived from the “cellular component” hierarchy, we de-

cided to use the subcellular locations annotated from UniProt (see also Appendix C.4). To

this end, we downloaded the UniProtKB/Swiss-Prot flatfile6, parsed the necessary informa-

tion and created a GeneTrail compatible flatfile. We performed an ORA of all antigen data

sets against the ProteinCodingGenes as reference. The results are depicted in Figure 3.8.
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Figure 3.8: The heatmap illustrates the significantly enriched subcellular locations in our antigen
sets. Red = significantly enriched compared to the reference. Green = not significant
or depleted.

Interestingly, if we compare the Lit-AAG set to all other antigen sets, we almost get a

complete negative image. The Lit-AAG set is only enriched for “Secreted”, whereas all

other antigen sets are enriched for “Nucleus” (with exception of the Exp-Serex-TAG set) and

“Cytoplasm”. On the other hand, this finding contradicts partly the results of the significant

6ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/

uniprot_sprot.dat.gz
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GO terms of the cellular component hierarchy, because we find here terms like “cytoplasm”

and “nucleus” also enriched for the Lit-AAG set. However, we found GO terms – unique

to the Lit-AAG set – that indicated an extracellular location or secretory property. Taken

together, this confirms the assumption that autoantigens are often proteins that are more

exposed to the immune system, because of their extracellular location. If the TAAs of

our antigen sets become immunogenic although they are mostly intracellularly located,

different processes and ways may be responsible for an immune reaction in that case.

3.6 Mimicry hypothesis

Molecular mimicry has been discussed for years in conjunction with autoimmunity [99,117,

124]. The theory proposes that an infectious agent elicits an immune response and that a

cross-reaction occurs because of a structural resemblance to a human protein. In this sec-

tion we try to verify if the molecular mimicry hypothesis also holds for self-antigens in gen-

eral. To this end, we analyze the relatedness of the proteins in our antigen sets to proteins

in other organisms on different levels using miscellaneous data sources: homologs in eu-

karyotes, orthologs in the three kingdoms of life (Bacteria, Eukaryota, Archaea), prevalent

and universal protein domains, and a BLAST analysis of human proteins against complete

sequenced organisms. An overview of the terms and dependencies between homologs,

orthologs, and paralogs is illustrated in Figure 3.9.

3.6.1 HomoloGene

HomoloGene7 is a database of both curated and calculated orthologs and homologs for

the organisms represented in NCBI’s UniGene database. Computed orthologs and ho-

mologs are identified from BLAST nucleotide sequence comparisons between all UniGene

clusters for each pair of organisms. HomoloGene provides homologs of several completely

sequenced eukaryotic genomes of which we consider here: Homo sapiens, Mus musculus,

Rattus norvegicus, Caenorhabditis elegans, Danio rerio, Arabidopsis thaliana, Drosophila

melanogaster, and Saccharomyces cerevisiae. For comparing the distribution of homologs

in our antigen sets and the reference, we collected for each gene its number of homologs

in the different organisms and performed a WMW test for each of these organisms. The

results are summarized in Figure 3.10.

7http://www.ncbi.nlm.nih.gov/homologene
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Homologs
Common Ancestor

Speciation 1

Gene Duplication

Paralogs
Speciation 2

Paralogs

OrthologsOrthologs

Species A Species B
Gene Y

Species C
Gene Y

Species B
Gene X

Species C
Gene X

Figure 3.9: Formation of orthologs and paralogs. The evolutionary tree shows five homologous
genes from three species designated A, B and C. The gene duplication event (red box)
produced paralogs X and Y in the ancestor of B and C. The genes X in species B and
X in species C are orthologs.

We can observe that there is in general an enrichment for homologs in different eukaryotes

for the genes of our antigen sets. The Exp-Serex-HAG set shows only an enrichment for the

homologs in Danio rerio. The sets Exp-Chip-AG, ALL, CIDB-Serex-AG, Lit-AAG, and Exp-

Chip-HAG>5% are enriched for all tested organisms. Interestingly, we find Rattus norvegi-

cus and Mus musculus – the two organisms which are the most closely related species

to Homo sapiens in this analysis – enriched in the least number of antigen sets. Unfor-

tunately, there is no real tendency recognizable when considering the taxonomic distance

of the different species to Homo sapiens, since e.g. Danio rerio, Drosophila melanogaster,

and Caenorhabditis elegans are less distant to Homo sapiens than Saccharomyces cere-

visiae and Arabidopsis thaliana, but the former are enriched by more antigen sets. Since

HomoloGene covers only eukaryotes, we extended our analysis to species comprising also

the other parts of the taxonomic tree of life in the following subsections.
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Figure 3.10: Heatmap of the results of the WMW test for comparing the distribution of homologs
in the antigen sets and the reference. Red = significantly enriched compared to the
reference. Green = not significant.

3.6.2 Protein families

The following analyses concern predefined “protein families” that we extracted from dif-

ferent data sources. We examine so called orthologous groups and protein domains that

were derived from protein sequences or structures. First, we explore if there are prevalent

protein families in our antigen sets. Second, we analyze if there is an accumulation of

universal or ancient protein families.

3.6.2.1 Orthologous groups

Orthologous Groups (OGs) consist of orthologous proteins from different organisms. The

Clusters of Orthologous Groups of proteins (COGs) are based on protein sequence com-

parisons of complete sequenced genomes comprising prokaryotes and unicellular eukary-

otes [125]. An extension of this system was applied to construct clusters of predicted or-

thologs of different eukaryotic genomes, named KOGs after eukaryotic orthologous groups

[126]. By contrast, NOGs (non-supervised orthologous groups) are orthologous groups

which are assembled automatically by computer-aided inference of functional categories
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taken from the original COG/KOG databases. The extended groups are deposited in the

eggNOG database [127, 128]. We used the extended OGs from eggNOG since they pro-

vide a more current and comprehensive coverage of organisms than the original COGs/KOGs.

3.6.2.2 Protein domains

We analysed structure-based and sequence-based protein domains from CATH [129] or

Pfam [130, 131], respectively, for enrichment in our data sets. The Pfam database con-

sists of conserved protein families and domains. The protein families are derived from

sequences deposited in UniProt with each family represented by multiple sequence align-

ments and profile hidden Markov models (HMMs). For our analyses we used Pfam-A,

which consists of high quality, manually curated families. CATH is a database of manu-

ally derived structural domains from the Protein Data Bank (PDB) [132] that are placed

within a hierarchy including topology, homology, and conservation. The CATH database

contains only crystal structures from the PDB with a better resolution than 4.0 angstroms,

together with NMR structures. Unfortunately, the CATH domains are only available for

about 2000 human proteins. Therefore, we decided to use additionally the CATH domain

annotation generated by Gene3D [133, 134]. Gene3D provides comprehensive structural

and functional annotation of most available protein sequences, including the UniProt, Ref-

Seq and Integr8 resources. The main structural annotation is generated through scan-

ning these sequences against the CATH structural domain database profile-HMM library.

Hence, Gene3D transfers the structural annotation to thousands of sequences resulting in

an annotation of about 9500 human proteins. The advantage of using a structure-based

domain database is the capability to infer more ancient and divergent homology relation-

ships than with using solely sequence-based approaches. For the following analyses of

structure-based protein domains we extracted the CATH domains deposited in the Gene3D

database v5.2.0 (updated August 2007).

3.6.2.3 Prevalent enriched protein families

To analyze if there is a prevalence of protein families consisting of a certain structure or

sequence, we subjected our data sets to an ORA for CATH, Gene3D and Pfam domains,

and the orthologous groups from eggNOG. To this end, we extracted for each gene/protein,

of which protein families it is composed and saved the information for each data source

separately in a GeneTrail compatible file format. Since we are especially interested in
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protein families that occur frequently among the antigens, we only present here significantly

enriched domains that appear in at least 5% of the annotated proteins of one data set. The

results are summarized in Figure 3.11.
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1.25.40.20 (Gene3D)
Zinc/RING finger domain, C3HC4 (zinc finger) (Gene3D)
3.30.70.330 (cath)
Ubiquitin C−terminal Hydrolase Uch−l3 (cath)
Classic Zinc Finger (Gene3D)
Laminin (Gene3D)
3.40.50.410 (cath)
Fibronectin type III (cath)
1.20.1250.10 (cath)
Immunoglobulins (cath)
EF−hand (cath)
2.30.42.10 (cath)
1.25.40.20 (cath)
3.30.565.10 (Gene3D)
PH domain (pfam)
3.30.565.10 (cath)
2.40.50.100 (cath)
winged helix repressor DNA binding domain (cath)
Leucine−rich Repeat Variant (cath)
Zinc finger, C2H2 type (pfam)
COG5048 FOG: Zn−finger (OG)
KOG1721 FOG: Zn−finger (OG)
3.10.50.40 (cath)
RNA recognition motif (pfam)
3.30.70.330 (Gene3D)

Figure 3.11: The heatmap illustrates the significantly enriched protein families (from CATH,
Gene3D, Pfam, eggNOG) in the antigen data sets. Red = significantly enriched com-
pared to the reference. Green = not significant.

There are only a few domains of several thousand that meet the 5% threshold in our data

sets. This analysis separates our antigen sets into two clusters, the first consisting of

the Exp-Chip-AG derived sets and the second consisting of the remaining sets where the

SEREX method prevails. The Exp-Chip-AG derived sets show an enrichment for protein

families with a Zinc finger motif or an RNA recognition motif. Furthermore, the Exp-Serex-

HAG and CIDB-Serex-AG derived sets are enriched in a CATH domain named “Zinc/RING

finger domain”. Interestingly, Zinc finger motifs are in general DNA-binding motifs that are

often found in transcription factors. These findings also confirm our previous GO results
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where “binding” and its variations were predominantly present in our antigen sets.

3.6.2.4 Analysis of universal protein families

Following the mimicry hypothesis, we investigated whether our antigen data sets contain

predominantly “ancient” protein families. Lee et al. analyzed the distribution of different

domain architectures in completed genomes from all kingdoms of life [135]. In 2005, they

extracted 219 domain families that were found in at least 70% of the genomes from each

of the three kingdoms of life and hypothesized that these domains may correspond to

universal families with essential functions.

For our analysis, we extracted not only for each gene/protein such protein families occur-

ring in at least 70% of the genomes from each of the three kingdoms of life (UNIVER-

SAL INTERSECT), but also families occurring in at least 70% of the genomes of one king-

dom (UNIVERSAL BACTERIA, UNIVERSAL ARCHAEA, UNIVERSAL EUKARYOTA), or

of at least one kingdom (UNIVERSAL UNION). Additionally, we had to exclude such or-

ganisms that were not completely sequenced or those having only a very small number

of protein family annotations. The first problem was solved using the list of completely

sequenced and published genomes from the Genomes OnLine Database (GOLD) v3.08

comprising 742 organisms. The second problem predominantly affected the Pfam do-

mains. When including too many organisms with a low domain annotation, we had only a

few universal domains meeting the 70% restriction. Excluding too many organisms led to

a bad distribution of organisms for the different kingdoms of life. Therefore, we decided to

use a threshold of at least 150 protein families per organism. This way, we had a similar

distribution of organisms for CATH and Pfam domains (Table 3.3) and an average num-

ber of domains per taxon of about 450. The orthologous groups from eggNOG were not

affected by this threshold. These are widely spread through the different organisms, but

often contain only a very low number of genes or proteins, respectively.

The distribution of the universal protein families in the different data sources for the three

kingdoms of life separately, unified, and intersected is depicted in Table 3.4. The UNIVER-

SAL INTERSECT class is the most restrictive of these groups, the UNIVERSAL UNION

class the least restrictive. As denoted previously, the NOGs have almost a 1:1 relation of

genes to protein families, i.e. an OG often consists only of one gene per organism. There-

fore, these OGs are very organism and gene specific. In addition, this table shows that

8http://genomesonline.org/index2.htm
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Table 3.3: Number of complete sequenced organisms in the three kingdoms of life having at least
150 protein family annotations for Pfam, CATH (Gene3D), or NOG.

Bacteria Eukaryota Archaea
Pfam 313 22 15
CATH 202 21 20
NOG 374 20 36

the structure-based CATH domains from Gene3D cover much more genes in the different

“universal” classes than the sequence-based domains from Pfam. This supports the theory

that these structure-based domains are more suitable to infer divergent homologies than

sequence-based approaches.

Table 3.4: Overview of the distribution of universal protein families from CATH (Gene3D), Pfam,
and eggNOG in human genes. We considered only such organisms that were com-
pletely sequenced and had at least an annotation for 150 protein families for each
data source. The protein families had to be present in at least 70% of: one kingdom
of life (UNIVERSAL BACTERIA, UNIVERSAL ARCHAEA, UNIVERSAL EUKARYOTA),
at least one kingdom of life (UNIVERSAL UNION), each kingdom of life (UNIVER-
SAL INTERSECT).

CATH (Gene3D) Pfam eggNOG
UNIVERSAL INTERSECT 139 families in 2796 genes 4 families in 8 genes 185 families in 638 genes
UNIVERSAL UNION 609 families in 7545 genes 337 families in 3201 genes 12792 families in 10644 genes
UNIVERSAL EUKARYOTA 476 families in 7479 genes 42 families in 2597 genes 11903 families in 10634 genes
UNIVERSAL BACTERIA 290 families in 3202 genes 223 families in 508 genes 600 families in 1399 genes
UNIVERSAL ARCHAEA 257 families in 3381 genes 137 families in 315 genes 1061 families in 1130 genes

Performing an ORA, we tested the hypothesis if there is an enrichment for universal pro-

tein families in our data sets using the above collected UNIVERSAL sets as special sub-

categories of the corresponding protein family category (Pfam, Gene3D, eggNOG). The

heatmap in Figure 3.12 summarizes the results of this analysis.

In general, we notice an enrichment for the different universal classes throughout our tested

antigen sets. Each of our data sets shows an enrichment in at least three universal classes.

However, the data sets are again clustered in two major groups. The first consists of the

Exp-Serex-HAG, Lit-PhageDisplay-TAG, Lit-AAG, and Exp-Serex-TAG set, the second of

the remaining ALL and CIDB-Serex-AG/Exp-Chip-AG derived sets. The latter group shows

an enrichment for almost all tested universal classes with some minor exceptions, whereas

the enrichment of the universal classes in the former group is scattered and restricted

to a few cases. The UNIVERSAL INTERSECT class for Pfam and NOG families was
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UNIVERSAL_BACTERIA_NOG (OG)

UNIVERSAL_ARCHAEA_PFAM (PFAM)

UNIVERSAL_EUKARYOTA_PFAM (PFAM)

UNIVERSAL_INTERSECT_CATH (Gene3D)

UNIVERSAL_ARCHAEA_CATH (Gene3D)

UNIVERSAL_BACTERIA_CATH (Gene3D)

UNIVERSAL_EUKARYOTA_CATH (Gene3D)

UNIVERSAL_UNION_CATH (Gene3D)

UNIVERSAL_ARCHAEA_NOG (OG)

UNIVERSAL_EUKARYOTA_NOG (OG)

UNIVERSAL_UNION_NOG (OG)

UNIVERSAL_BACTERIA_PFAM (PFAM)

UNIVERSAL_UNION_PFAM (PFAM)

Figure 3.12: Heatmap summarizing the enriched universal protein families in the considered data
sets. Red = significantly enriched compared to the reference. Green = not significant.

not enriched for any data set. By contrast, the corresponding class for CATH domains

is enriched in most of the antigen sets of the second group as are the remaining CATH

universal classes. Interestingly, the CATH universal classes are not enriched in the first

group with the exception of UNION and EUKARYOTA for the Exp-Serex-HAG set.

3.6.3 BLink and BLAST

In the following, we explored whether our antigen sets have more similar sequences in

other organisms than the reference using the Basic Local Alignment Search Tool (BLAST)

[136]. BLAST is a well-established method for finding local sequence similarities of a

search pattern against a database of sequences. BLink (”BLAST Link”) is available on-

line on the NCBI homepage and displays the results of BLAST searches that have been

done for every protein sequence in the Entrez Proteins data domain. Some features of

BLink are the graphical presentation of pre-computed “blastp” results against the protein

non-redundant (nr) database, and the display of the number of organism hits, the number
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of protein hits, and the number of overall hits. We downloaded the information for 21441

proteins in total. For each of these proteins, we collected the information of how many hits

in total the sequence of this protein has (all hits are counted, even several hits to the same

protein), the number of proteins it is similar to (only one hit per protein is counted), and the

total number of hits in different organisms (each organism is only counted once), each for

a similarity score threshold ≥ 100.

When we analyzed our antigen sets with the Wilcoxon-Mann-Whitney test against the Pro-

teinCodingGenes reference for these numbers, we found that we have a significant en-

richment in our data sets concerning number of hits, proteins, and organisms. In addition,

we analyzed the number of splice variants of the genes of our antigen sets, which were

also enriched in all of our antigen sets compared to the reference. Since we cannot distin-

guish with the downloaded information which organisms were completely sequenced and

to which taxonomy they belong, we performed a BLAST analysis of the 21441 proteins

against the protein sequences from RefSeq release 30 (including sequences from 5395

different organisms). Furthermore, the BLAST analysis has the advantage that we can

also find sequence similarities that do not belong to a pre-defined functional domain, but

may also be candidates for eliciting immune responses via molecular mimicry. In brief, we

extracted for each of the 21441 proteins the BLAST hits that had at least a similarity score

of 100 and at most an E-value of 0.001. To retrieve the information, to which kingdom of life

these hits belong, we mapped the hits to their corresponding organisms. Additionally, we

investigated, if there are certain taxa (families, classes, etc.) that show a significant accu-

mulation of hits. To this end, we built up the taxonomy tree as follows and considered each

node as a subcategory for an ORA: The organisms represent the leaves of the taxonomy

tree, internal nodes represent taxa that group the organisms hierarchical into classes, or-

ders, families, etc. In a first step, we added the human proteins – we performed the BLAST

analysis with – to the organism nodes they had a hit. In an additional step, we traversed

the taxonomy tree from the leaves to the root and assigned each internal node the union

of the proteins of its children. Hence, we are able to analyze if there is a significant accu-

mulation of sequence similarities for the different taxonomic lineage levels when using the

protein sets of the internal nodes as subcategories. For excluding hits to not completely se-

quenced organisms, we filtered the taxonomy tree using the list of completely sequenced

and published genomes from GOLD.

Since the ORA performed for all nodes of the complete taxonomy tree yielded too many

significantly enriched taxa, we decided to analyze the kingdoms Bacteria, Archaea, and
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Eukaryota separately to get a better overview. The number of nodes and leaves (organ-

isms) of the three disjoint subtrees are summarized in Table 3.5. The table shows that we

had the most BLAST hits in Bacteria, followed by Eukaryota, and Archaea. However, this

mirrors primarily the distribution of the kingdoms in the list of completed genomes.

Table 3.5: Number of nodes and leaves that had BLAST hits for the disjoint subtrees of the three
kingdoms of life.

Bacteria Eukaryota Archaea
leaves (organisms) 447 82 39
nodes 1272 509 154

Interestingly, the ORA performed for the three trees showed that almost all possible taxa

were significantly enriched in at least one of our data sets. In detail, we found 1248 of 1272

possible taxa significantly enriched in the kingdom Bacteria for at least one of our antigen

sets. We obtained similar numbers for Archaea (150/154) and Eukaryota (408/509). When

we restricted the ORA to the leaf nodes, we found 61/82 for Eukaryota, 441/447 for Bac-

teria, 39/39 for Archaea significantly enriched in at least one tested set. However, these

findings may strongly depend on the thresholds we have chosen for the BLAST analysis.

We used a lower bound for the BLAST score of 100 to be able to compare the results to

BLink and because we also wanted to include alignments of shorter lengths in our analy-

sis. The upper bound of 0.001 for the E-value should be sufficient to exclude coincidental

findings on a large scale. In the following, we will briefly discuss the results for the enriched

eukaryotes (Figure 3.13).

Based on the findings for the protein families and the assumption that the results are not

biased, we observe that the eukaryotic organisms are predominantly enriched for our data

sets. The Exp-Serex-HAG set shows the lowest number of enriched organisms, followed by

the Lit-AAG, Lit-PhageDisplay-TAG, and Exp-Serex-TAG set. The remaining sets present

almost a uniform image of enriched organisms. Taking a closer look at the types of organ-

isms included in Figure 3.13, we find well-known representatives of parasites. In addition,

these parasites had most often the lowest p-values for our different data sets, e.g., Theileria

parva strain Muguga, Theileria annulata strain Ankara, Plasmodium falciparum 3D7, Plas-

modium yoelii yoelii str. 17XNL, Cryptosporidium parvum Iowa II, Entamoeba histolytica

HM-1:IMSS, Cryptosporidium hominis, and Brugia malayi to mention the most important

of these parasites.

The results for the different Archaea and Bacteria species showed a more differential pic-
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Takifugu rubripes
Equus caballus
Ciona intestinalis
Bos taurus
Macaca mulatta
Nematostella vectensis
Aspergillus oryzae RIB40
Monodelphis domestica
Mus musculus
Ornithorhynchus anatinus
Rattus norvegicus
Bombyx mori
Canis lupus familiaris
Gallus gallus
Apis mellifera
Drosophila melanogaster
Tribolium castaneum
Caenorhabditis elegans
Brugia malayi
Drosophila pseudoobscura
Anopheles gambiae str. PEST
Monosiga brevicollis MX1
Guillardia theta
Leishmania major strain Friedlin
Trypanosoma brucei TREU927
Chlamydomonas reinhardtii
Ostreococcus lucimarinus CCE9901
Aedes aegypti
Theileria annulata strain Ankara
Theileria parva strain Muguga
Trypanosoma cruzi strain CL Brener
Arabidopsis thaliana
Oryza sativa Japonica Group
Cryptosporidium parvum Iowa II
Cryptosporidium hominis TU502
Plasmodium yoelii yoelii str. 17XNL
Debaryomyces hansenii CBS767
Kluyveromyces lactis NRRL Y−1140
Gibberella zeae PH−1
Candida albicans SC5314
Laccaria bicolor S238N−H82
Malassezia globosa CBS 7966
Plasmodium falciparum 3D7
Dictyostelium discoideum AX4
Cryptococcus neoformans var. neoformans JEC21
Ustilago maydis 521
Saccharomyces cerevisiae
Hemiselmis andersenii
Vanderwaltozyma polyspora DSM 70294
Aspergillus niger CBS 513.88
Paramecium tetraurelia strain d4−2
Neurospora crassa OR74A
Pichia stipitis CBS 6054
Tetrahymena thermophila SB210
Entamoeba histolytica HM−1:IMSS
Encephalitozoon cuniculi GB−M1
Candida glabrata CBS 138
Yarrowia lipolytica CLIB122
Magnaporthe grisea 70−15
Giardia lamblia ATCC 50803
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Figure 3.13: Heatmap summarizing the enriched eukaryotic organisms in the considered data sets.
Red = significantly enriched compared to the reference. Green = not significant.

ture. The Exp-Serex-HAG and Lit-PhageDisplay-TAG set showed no enrichment at all for

Bacteria or Archaea. The ALL, CIDB-Serex-AG and its derived sets had the most enriched

organisms for Bacteria, whereas ALL, CIDB-Serex-AG, Exp-Chip-AG and its derived sets

had the most significantly enriched organisms for Archaea. Taken together, these results

confirm in general our previous findings that there is a certain similarity of the proteins in

our antigen sets especially to proteins in other eukaryotic species, in which parasites seem

to play an important role.
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3.7 Feature subset selection: differences between TAAs and

AAGs

Besides testing different hypotheses for the possible causes of humoral immune responses

in autoimmune diseases and cancer, we wanted to verify if the analyzed properties from

above are suitable to discriminate between tumor associated antigens and autoantigens.

To this end, we applied a classification based on a so called “feature subset selection”

(FSS), a method that is widely employed in bioinformatics to reduce the number of fea-

tures available to the ones that are relevant and sufficient to discriminate between different

classes. In our case, these classes correspond to the labelling of a gene as “autoantigen”

or “tumor antigen”.

The classification was performed with a Naı̈ve-Bayes Classifier. For the FSS, we apply here

a method developed by Andreas Keller, Alexander Rurainski, and Matthias Hein [137,138].

In their approach, they use the mutual information as measure for the computation of the

statistical dependency not only between features and class labels, but also between the

features themselves. The problem of finding the subset maximizing the statistical depen-

dency can be formulated as a quadratic 0-1-program. As solver for the quadratic 0-1-

program, the commercial software CPLEX9 (version 11.1.1) was used. The quality of the

selected features was estimated by computing the classification accuracy with the Naı̈ve-

Bayes Classifier performing a 10-fold cross-validation. For the technical details of the com-

putation and more detailed background information we kindly refer the interested reader to

the PhD thesis of Alexander Rurainski [138].

As input for the algorithm, we assembled a feature matrix containing the following prop-

erties for each gene: SNP counts (dbSNP), somatic mutation counts (RCGDB), number

of homologs in different eukaryotes (HomoloGene), BLink hits, number of splice variants,

oncogene / tumor suppressor-related gene (OMIM), and locations (UniProt). Because not

all of these features are categorical, a pre-processing step to bin the data was performed

where necessary. In total, we tested three different classification problems. For the first

problem, we assembled a feature matrix containing the autoantigens from the Lit-AAG set

that had no overlaps with any of our other antigen sets, and the remaining genes from

the ALL set that had no overlap with the Lit-AAG set. Since the ALL set also contains the

Exp-Serex-HAG set consisting of genes found in healthy persons, we assembled a sec-

ond and a third matrix where we added the Exp-Serex-HAG genes to the autoantigens or

9http://www-01.ibm.com/software/integration/optimization/cplex/
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removed them completely from the input. Hence, we were able to verify if these natural

occurring antigens are more similar to autoantigens or tumor antigens. The classification

accuracy and the corresponding most commonly selected features for these three cases

are summarized in Table 3.6.

Table 3.6: Overview of the classification accuracy and the selected features for the three different
autoantigen versus tumor antigen matrices.

AAGs vs TAAs plusHAGs AAGs plusHAGs vs TAAs AAGs vs TAAs
Classification 88.76% 86.44% 88.22%
Accuracy

somatic mutation “unknown” somatic mutation “unknown” somatic mutation “unknown”
Selected and location “Secreted”; and location “Secreted” and location “Secreted”
Features somatic mutation “unknown” and sequence feature “coiled coils”

and location “Cytoplasm” and “onco-/ts related gene”

Interestingly, we find that the classification accuracy is the highest when we count the

genes of the Exp-Serex-HAG set to the TAAs. On the basis of this data, we can discrim-

inate autoantigens from tumor antigens with a classification accuracy of about 88% using

only two features: either somatic mutation “unknown” and location “Secreted” or somatic

mutation “unknown” and location “Cytoplasm”, which had the same number of occurrences

in the 10-fold cross-validation. The location difference has already been obvious in our pre-

vious analysis. By contrast, the meaning of the somatic mutation “unknown” is elusive, but

it may indicate that somatic mutations play a more important role than previously sup-

posed. However, the data source for the somatic mutations is the “Roche Cancer Genome

Database”, from which we extracted the number of occurrences of different somatic mu-

tations in cancer, which may lead to a certain bias when comparing antigens from cancer

patients and autoimmune diseases, where we do not have informations about the somatic

mutation state. Unfortunately, we could not include all of the above analyzed properties or

perform the feature selection for TAAs versus non-TAAs, because of memory restrictions

of the FSS algorithm.
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3.8 Discussion and Conclusion

In this chapter, we presented a comprehensive analysis of a collection of putative proper-

ties of antigens. In recent years, different hypotheses and models have been discussed

for the immunogenicity of self-antigens. The molecular mimicry hypothesis has been the

target of diverse arguments in the context of autoimmune diseases. On the one hand, ev-

idence exists for single cases of autoimmunity that the infection with a pathogen and the

following cross-reactivity with a self-antigen was the autoimmune response eliciting factor,

e.g., the gastric autoimmunity that is associated with Helicobacter pylori antigens [139].

On the other hand, this theory cannot account for the seemingly limited repertoire of au-

toantibodies associated with human diseases [117].

Considering the results of this work, we could argue that because of the general increased

similarity of the proteins in the antigen sets to proteins in other species, these have a

higher probability to become immunogenic than proteins that are more specific for human.

The adaptive immune system must be flexible enough to detect a wide range of possible

pathogenic targets, even those that are similar to self-antigens. However, this flexibility

comes with the risk of autoimmune diseases [140]. One way, in which proteins of cancer

cells can stimulate an immune reaction is by necrotic processes or a defective apopto-

sis. While apoptosis is normally an anti-inflammatory process [141], where cell debris is

removed by phagocytic cells, an abnormal apoptosis could lead to APC activation and

presentation of self-antigens. Furthermore, necrosis is in general a pro-inflammatory pro-

cess [142] that can occur during tumor growth and exposes the contents of the cell to the

immune system. Hence, those proteins that possess a high similarity to foreign proteins

may be more susceptible to elicit immune responses against self-antigens than others.

By contrast, recent findings suggest that not the structural differences define self and for-

eign antigens, but the strength of avidity during the thymocyte activation steps [143–145].

Furthermore, the diversity of the immunoglobuline repertoire is of the order of at least 106

possible combinations and is supposed to be “sufficiently large to recognize, with moder-

ate affinity, essentially any molecular shape” [146]. If this is the case, sequence similarities

between self and foreign antigens should not be the main decisive factor, but are probably

a secondary side effect of other influences.

In this work, we analyzed several of these factors in question. Interestingly, sequence-

based properties, such as Granzyme B cleavage sites, coiled-coils, and ELR motifs seem

to be dominant in our antigen sets. However, we should keep in mind that the cleavage sites
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and the coiled-coils are based on predictions that may be more or less reliable [43, 122].

When considering pathways, GO terms, and locations, we highlighted several differences

and similarities between autoantigens and tumor antigens. Autoantibodies in autoimmune

diseases can be directed against intra- and extracellular targets, whereas extracellular

targets can often be directly linked to the pathogenesis of the disease [147]. In contrast, the

antigens contained in our TAA sets are predominantly located intracellular. Furthermore,

we showed for the first time that tumor antigens and autoantigens can be discriminated

by a few features, such as the locations “Secreted” and “Cytoplasm” and an “unknown”

somatic mutation. Using these features we can correctly classify a gene as autoantigen

or tumor antigen with an accuracy of about 88%. Naturally occurring antigens seem to be

more similar to TAAs than to autoantigens when comparing the classification accuracies

and the number of selected features. However, we will have to confirm these preliminary

findings, because we extracted the somatic mutations from cancerous diseases and may

have introduced a bias when using these informations as features. In addition, the sets

may give some sort of biased impression depending on their sources, e.g., from literature

or from different experimental methods, or depending on the types of features selected as

input for this analysis.

Considering tumor associated antigens in detail, we hypothesize that the genes found im-

munogenic in cancer underlie a certain selection pressure that makes them more suscep-

tible for genetic alterations or altered expressions. Such genes must either be key players

influencing directly crucial cellular processes like the apoptosis or the cellular proliferation

or contribute indirectly to these processes, e.g., by regulating expression and translation of

other genes. We found that the TAAs in our data sets are enriched for molecular functions

such as binding, protein binding, DNA and RNA binding. Furthermore, at least a significant

part of our antigen sets showed an enrichment for Zinc-finger motifs that are often found in

transcription factors. These have a high chance to be over-expressed themselves in can-

cer driving the proliferation in these cells. Another interesting result is that we find many

proteins involved in ribosomes in our antigen sets. Ribosomes are discussed to play an

active role in tumorigenesis [148, 149]. Antibodies against famous key players as p53 are

frequently found in different cancer types [100]. Some antibodies even occur frequently and

specifically in certain cancer types and are potential diagnostic biomarkers [150]. Follow-

ing our theory, the corresponding antigens must have a certain crucial function in theses

cancer types. However, since tumors are in general quite heterogeneous entities as is the

immune system unique in each individual, we will not always find the same antibodies for

the same cancer types in different persons. Tan et al. also reported that TAAs are often
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proteins that play a crucial role in carcinogenesis and presented in their paper a detailed

overview [151].

A crucial point that influences the results of all performed analyses is the selection of

antigen sets that were used in this thesis. As we have seen, the properties of the antigen

sets seem to be at least in part dependent on their experimental isolation technique, since

the antigens derived from the SEREX method and the protein chip often built separate

clusters in our analyses. Furthermore, most of the considered antigens were detected with

few sera and the mode of detecting positive antigen-antibody reactions during isolation is

commonly error-prone. Taking these factors into consideration, we were still able to gain

significant insights in a highly complex field of research that will probably improve with the

increase of data in the future.

Taken together, we provided further indications for differences and similarities in tumor

antigens and autoantigens. However, the picture that emerged is by far not complete.

More effort and research will be necessary to deepen our understanding in this area of

research and to reveal the processes of antigen candidate selection.
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CHAPTER 4

miRNAS AND CANCER

Despite recent advances in sequencing methodology, microarray expression profiling is still

a commonly applied technique for studying natural and pathogenic biochemical processes.

While in the past decade the analysis of coding RNA molecules, mostly messenger RNAs

(mRNAs) were in the focus of research, the relevance of non-coding RNAs has not been re-

alized as of recent years. Especially microRNAs (miRNAs) are of increased interest. These

endogenous non-coding small RNAs usually of length 19 to 23 nucleotides are known to

regulate the translation of the coding mRNAs in a sequence-specific manner, e.g. through

binding and enabling the degradation or silencing of their target mRNAs [27]. miRNAs

seem to be involved in almost all biological processes, including cellular development, dif-

ferentiation, proliferation or apoptosis [152, 153]. Evidently, these molecules also play an

important role in cancer, as recently reviewed by Drakaki et al. [28]. A variety of studies

describe that miRNAs can function either on tumor suppressor genes or on oncogenes

and thus acting as major regulators of gene expression. While they were so far considered

to be negative regulators, recent studies impressively demonstrate that miRNAs can also

have positive effects on gene expression [29].

In addition to experimental approaches for the identification of miRNA targets, a variety of

computer-aided target prediction algorithms have been developed [154–157]. These algo-

rithms are trained by well-known miRNA-mRNA interaction rules gained from microarray

data in order to identify novel miRNA targets. One of the most comprehensive resources

for miRNA targets is MicroCosm, a web resource developed by the Wellcome Trust Sanger

Institute and now hosted by the European Bioinformatics Institute (EBI) containing com-

putationally predicted targets for miRNAs across many species. The targets of Micro-

Cosm have been predicted with the miRanda algorithm [154]. As recently reviewed by

Bartel [158], several other methods exist that either use conservation information including

TargetScan [159], PicTar [160], or PITA [161] or do not rely on this conservation information
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as RNA22 [162]. The analyses in this work rely on MicroCosm, because (1) this algorithm

acknowledges complementarity at the 5′ end of the microRNA, where a rather strict com-

plementarity is required, (2) excludes non stable conformations by using the Vienna RNA

folding approach, and (3) in addition checks whether the site is conserved in orthologous

transcripts from other species.

To further improve our understanding of the mode of action of miRNAs and their function,

gene set analysis based approaches can be used. Most recently, the group of Hatzige-

orgiou proposed two approaches, DIANA-microT [163] and DIANA-mirPath [164]. The

DIANA-mirPath software performs an enrichment analysis of multiple miRNA target genes

comparing each set of miRNA targets to all known KEGG pathways [47, 123] and thus is

a valuable tool for elucidating targets that are affected by deregulated miRNAs. Given the

increasing amount of mRNA and miRNA data measured from the same disease or even

the same individuals, more and more computer-aided tools for the integrative analysis of

these data are developed and published. Among the most popular tools, developed for

this purpose is ”microRNA and mRNA Integrated Analysis” (MMIA) developed by Nam and

co-workers [165] that interprets miRNA and mRNA data in the context of gene ontologies

and biochemical pathways.

In this chapter, we aim at an improved understanding of miRNA and mRNA relations by ad-

dressing three issues. First, as a sequel of the study by Hatzigeorgiou and coworkers, we

carry out a comprehensive gene set analysis of the miRNA target sets by considering not

only KEGG Pathways but also TRANSPATH networks [48], TRANSFAC [49] transcription

factors, and Gene Ontology (GO) terms [31]. Second, we perform a network analysis of all

target genes of all miRNAs. Third, we screen differentially expressed mRNAs for enrich-

ment of specific miRNA targets. With the help of this analysis we exemplify once more the

extensive capabilities of our comprehensive gene set analysis pipeline GeneTrail [10,24].

4.1 miRNA target enrichment analysis

In order to detect target pathways of miRNAs, we carried out a standard Over-Repre-

sentation Analysis (ORA) as described in Section 2.1.3.1. In brief, for each of the human

miRNAs in the Sanger miRBase (“MicroCosm Targets Version v5“)1 [54–56] we extracted

their target genes along with their significance value. The lower this value, the higher

the chance that the respective gene is actually targeted by the respective miRNA. For
1http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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the following analysis, we extracted the target genes for each human miRNA to a signifi-

cance threshold of 0.0001. The resulting approximately 800 gene sets for Homo sapiens

were separately evaluated with GeneTrail analyzing about 13000 biological pathways and

categories including KEGG Pathways, TRANSPATH pathways, Gene Ontology terms and

others using all human genes as reference set. The significance level for the ORA was

set to 0.05 and the computed p-values were adjusted by the FDR correction method as

proposed by Benjamini-Hochberg [61].

Of 13160 screened biological categories, 1766 are significant for at least a single miRNA.

The highest number of hits are achieved by the categories ”Metabolic Pathways” (30),

”Cell Cycle” (23), and ”Pathways in cancer” (20) followed by a long list of disease relevant

pathways including TGF-beta and MAPK signaling cascade (see also Table 4.1, categories

which are significant for more than 10 miRNA target sets).

Table 4.1: Categories that are most frequently enriched with miRNA target gene sets
Category Number of significant

miRNA target gene sets

Metabolic pathways 30
Cell cycle 23
Pathways in cancer 22
Focal adhesion 15
TGF-beta signaling pathway 13
Fatty acid metabolism 13
catalytic activity 12
cellular ketone metabolic process 12
ECM-receptor interaction 11
Fc Epsilon RI signaling pathway 11
Organic acid metabolic process 11
Carboxylic acid metabolic process 11
MAPK signaling pathway 11
substrate-specific transporter activity 11
substrate-specific transmembrane transporter activity 11
oxoacid metabolic process 11
transporter activity 10
E2F network 10
Valine,leucine and isoleucine degradation 10
p53 signaling pathway 10
Colorectal cancer 10
Toll-like receptor signaling pathway 10

For target sets of 254 miRNAs, at least one significant category has been found. On

average each miRNA has 5 significant categories. The miRNAs with the highest number

of significant categories was miR-202 (90) followed by miR-101 (65). A list of miRNAs

whose targets are enriched in more than 40 significant categories is provided in Table 4.2.

To improve our understanding of the putative pathways or biological categories that miR-

NAs may regulate or influence, we carried out a clustering approach. First, we removed
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Table 4.2: miRNAs with highest number of significant categories
Number of significant categories

miRNA Gene Ontology KEGG TRANSFAC TRANSPATH total
hsa-miR-202 89 1 0 0 90
hsa-miR-101 64 0 0 1 65
hsa-miR-613 55 6 0 0 61
hsa-miR-936 58 0 0 0 58
hsa-miR-196a 54 0 2 0 56
hsa-miR-1 53 1 1 0 55
hsa-let-7f 49 0 1 0 50
hsa-miR-302b* 48 1 0 0 49
hsa-miR-23b 47 0 1 0 48
hsa-miR-212 43 4 0 0 47
hsa-miR-23a 47 0 0 0 47
hsa-miR-196b 44 0 2 0 46
hsa-miR-29c 40 5 1 0 46
hsa-miR-191 45 1 0 0 46
hsa-miR-181c* 45 0 0 0 45
hsa-let-7a 44 0 1 0 45
hsa-miR-801 43 0 0 0 43
hsa-miR-29a 37 3 1 0 41
hsa-miR-199b-5p 39 1 0 0 40
hsa-miR-29b 36 3 1 0 40

miRNAs with less than 5 significant categories and categories that are enriched for less

than 5 miRNA target sets. The clustering is based on a binary matrix that describes

which categories (rows) are enriched with respect to the corresponding miRNA target sets

(columns), i.e., the matrix contains a 1 at position (i, j) if the targets of miRNA j are en-

riched in category i and a 0 otherwise. Based on this matrix we carried out a hierarchical

clustering of miRNAs and categories separately. In more detail, we applied bottom-up hier-

archical clustering using the Euclidian distance for measuring the distances between pairs

of column and row vectors. The result of this clustering is shown in Figure 4.1. In the lower

left corner of the heatmap, a cluster containing the let-7 family can be detected. These

miRNAs seem to control, among others, categories as ”transporter activity”, ”RNA inter-

ference”, ”macrolide binding” or ”drug binding”. The second cluster in the lower left corner

contains miRNAs hsa-miR-525-3p, hsa-miR-524-3p, hsa-miR-506, hsa-miR-614, hsa-miR-

920, hsa-miR-124, hsa-miR-376a, and hsa-miR-376b that control metabolic pathways.

We also addressed the question how specific the detected pathways or categories are and

whether there are pathways or categories that are triggered by miRNAs in general. To

this end, we set up three lists, containing genes that are targets of at least one miRNA

at a threshold level for the probability of the predicted targets of 0.01, 0.001 and 0.0001,

respectively. These lists containing 16217, 13168 and 8508 genes have been processed

using GeneTrail performing an ORA. For the most unspecific miRNA target threshold of

0.01 no significant KEGG pathways have been detected. The target threshold values of
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Figure 4.1: This heatmap presents significant miRNA to putative pathway or category correspon-
dences. The heatmap has a red spot at position (i, j) if the targets of a miRNA j are
significantly enriched in category i. In the bottom left corner, a cluster containing the
let-7 family can be detected.
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Table 4.3: KEGG pathways targeted by all miRNAs for different thresholds. The values in the cells
of the table correspond to the FDR adjusted p-values computed for the pathway. – = not
significant

Pathway 0.01 0.001 0.0001

ABC transporters – 0.0362 –
Aminoacyl-tRNA biosynthesis – – 0.0050
Basal cell carcinoma – 0.0154 0.0250
Complement and coagulation cascades – 0.0447 –
ECM-receptor interaction – 0.0447 0.0056
Epithelial cell signaling in Helicobacter pylori infection – 0.0495 –
Focal adhesion – – 0.0090
Glycine, serine and threonine metabolism – 0.0154 –
Lysosome – 0.0362 –
MAPK signaling pathway – 0.0018 0.0103
Metabolic pathways – 0.0119 0.0173
p53 signaling pathway – – 0.0420
Pathways in cancer – 0.0236 0.0269
Purine metabolism – – 0.0003
Steroid biosynthesis – 0.0447 –
Toll-like receptor signaling pathway – 0.0109 –
TGF-beta signaling pathway – – 0.0239

0.001 and 0.0001 showed increased numbers of pathways and additionally entailed a sig-

nificant overlap between both sets. For 0.001 (0.0001), we detected 12 (10) putative target

pathways. Of these, 5 pathways were significant for both sets including ”Basal cell carci-

noma”, ”ECM-receptor interaction”, ”MAPK signaling pathway”, ”Metabolic pathways”, and

”Pathways in cancer”. A summary of all pathways and all threshold values is presented in

Table 4.3.

4.2 miRNA target network analysis

For the network analysis of miRNAs we retrieved the KEGG regulatory network for Homo

sapiens from our Biochemical Network Database (BNDB) [25] as described in Section

2.1.2.1. The resulting graph contains 1679 nodes and 2509 edges in total. Since not all

predicted targets of the available 851 human miRNAs could be mapped onto the regulatory

network, we removed those miRNAs where less than 10% of the targets could be mapped

or the overall number of mapped targets was < 3, resulting in 695 remaining miRNAs. In

the following analyses we used the threshold value of 0.001 for the miRNA targets.

For the considered miRNAs, we wanted to investigate if the average distance between pairs

of targets for the different miRNAs is significantly lower in comparison to randomly selected

nodes from the complete network. To this end, we computed for each pair of targets or ran-

domly selected nodes vi and vj their distance. Since our considered regulatory network
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is directed, the distance of two nodes dist(vi, vj) is not necessarily equal to dist(vj , vi).

Therefore, we chose for each pair (vi, vj) the minimum of these distances for the compu-

tation of the average distance. If there exists no path between two nodes, the distance

was set to the diameter of the complete regulatory network to penalize the absence of a

path. The sum of the pair distances is finally divided by the number of pairs considered.

To estimate if the average distance of the m targets of a given miRNA is significant, we

carried out 1000 permutation tests for each target set size m. To this end, we randomly

selected m nodes from the complete network and calculated the average distance for the

random node set. The distribution of the average distances of randomly selected nodes

against the average distances of the miRNA targets is shown in Figure 4.2. For testing the

significance, we performed an unpaired two-tailed t-test, which yielded a p-value < 10−9

confirming that miRNA target pairs have a lower average distance than randomly selected

nodes.

Figure 4.2: Comparison of the distributions of the average distances between randomly selected
nodes on the left hand side and the miRNA targets on the right hand side. The y-axis of
this back-to-back histogram presents the distance between nodes and the x-axis shows
how many percent of random node pairs and of miRNA targets have this distance. The
distribution of the miRNA targets is slightly shifted towards smaller distances.

Furthermore, we analyzed the coverage of all miRNA targets and the complete regulatory

network considering only such nodes that are proteins (not protein families or complexes).
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When regarding the union of the targets of each of the 695 miRNAs that can be mapped to

proteins in the network, we reach a coverage of the regulatory network of 640 / 825 (78%).

If we take the number of all human genes having an amino acid sequence as reference

set (25673), we would expect to find about 414 proteins mapped on the network instead

of 640, if we choose 12885 miRNA targets from the reference set coding for proteins. The

hypergeometric distribution test yields a p-value of < 10−60 for obtaining such a coverage

per chance. This finding significantly points out the crucial role these miRNAs play in the

regulation of biochemical processes and indicates that the regulation takes place on basis

of balance and interplay of concentrations of miRNAs rather than by regulating some few

important targets or hubs in the network.

4.3 Deregulated cancer mRNAs as potential miRNA targets

In this section, we analyze whether the deregulation of genes in cancer could be caused

by miRNAs. More exactly, we investigated if genes that are deregulated in cancer are

statistically significant enriched with targets of certain miRNAs. This hypothesis has been

tested on two independent cancer entities, lung cancer and glioma and both comparisons

are directly compared to each other.

Lung cancer

We extracted expression profiles of squamous lung cancer biopsy specimens and paired

normal specimens from 5 different patients (GDS1312, [166]) from the Gene Expression

Omnibus [167]. For this data set a standard Gene Set Enrichment Analysis (GSEA) has

already revealed a manifold of deregulated pathways, including core regulatory pathways

as the cell-cycle [24]. The GDS1312 data set contains 10 samples, five normal lung tissue

expression profiles and 5 profiles of cancer patients. Using GeneTrailExpress [24], we

computed for each gene on the microarray the fold quotient of medians in the control and

diseased group. The resulting list of genes sorted by the fold quotient serves as input

for GeneTrail. On the basis of this list, we carried out analyses for detecting miRNAs

whose targets are significantly up- or down-regulated using standard GSEA. Here again,

we considered targets with thresholds of 0.01, 0.001 and 0.0001 separately.
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For the threshold value of 0.01 we detected 44 miRNAs to be significant. For 42 of these

miRNAs, the targets were significantly up-regulated in tumor tissue and for two down-

regulated. Most of these miRNAs can be related to cancer in the literature, e.g., the most

significant miRNA of these, hsa-miR-146b is known to be down-regulated in lung cancer

[168]. For the miRNA target threshold of 0.001, we detected no significant miRNAs, while

for the threshold of 0.0001 we detected the three miRNAs miR-29a, miR-29b and miR-

29c as significant. Notably, all these miRNAs are also known from the literature to be

down-regulated in lung cancer (miRNAs miR-29a [169, 170], miR-29b [168–170], miR-

29c [169, 170]). In addition, we carried out a blood screening of healthy individuals and

lung cancer patients as described by Keller et al. [171] using the Geniom RT Analyzer

(febit biomed gmbh, Heidelberg, Germany) and found these miRNAs at least 4 times down-

regulated compared to the control. For the most down-regulated miRNA, miR-29c, the

target network is presented in Figure 4.3 and the significant categories for its target genes

are listed in Table 4.4.

If we now go back to our primary analysis of target pathways presented in Section 4.1, we

detected for miRNAs miR-29b and miR-29c the KEGG pathway ”Small cell lung cancer”

to be significantly regulated by these miRNAs. This means that we can find the predicted

target pathway directly in the expression data providing evidence for the performance of

the target pathway prediction.

High grade glioma

For high grade gliomas (WHO grade III and IV astrocytomas) we considered two data

sets of the Gene Expression Omnibus, GDS1975 and GDS1815 that have been analyzed

separately. As control we used for both expression profiles the data set GDS596 [172] con-

taining 158 profiles from 79 physiologically normal tissues obtained from various sources.

As described above, we pre-processed the data with GeneTrailExpress, first normalizing

the data sets using median normalization, then computing the sorted list of fold quotients

of medians in the control and diseased group, and finally submitting the resulting list as

input for GeneTrail to perform a GSEA.

We extracted the data set GDS1975 containing 85 tumors for comparison against the con-

trol set GDS596. Here, we found 115 miRNAs, 74 enriched and 41 depleted. The most

significant miRNAs were hsa-miR-101, hsa-miR-200b, and hsa-miR-200c. For the data

set GDS1815 that contains 100 samples, we carried out the same analysis. Here, we de-
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Figure 4.3: This figure presents the target network of the miRNA hsa-miR-29c. The subgraph
consists of the nodes of the shortest paths between the miRNA targets. The targets of
the miRNA are colored in blue.
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Table 4.4: Overview of the significant categories for the target genes of miR-29c for a threshold
value of 0.0001

Gene Ontology KEGG TRANSFAC
collagen ECM-receptor interaction T09836 (hsa-miR-29c)
extracellular matrix part Focal adhesion
proteinaceous extracellular matrix Primary immunodeficiency
extracellular matrix Small cell lung cancer
extracellular matrix structural constituent Lysine degradation
structural molecule activity
anchoring collagen
extracellular region part
basement membrane
collagen type IV
sheet-forming collagen
fibrillar collagen
extracellular region
extracellular matrix organization
membrane part
intrinsic to membrane
membrane
integral to membrane
chromatin
microfibril
protein binding, bridging
localization
FACIT collagen
collagen fibril organization
androgen receptor binding
cell adhesion
biological adhesion
fibril
lysine N-methyltransferase activity
protein-lysine N-methyltransferase activity
histone-lysine N-methyltransferase activity
extracellular structure organization
S-adenosylmethionine-dependent methyltransferase activity
nuclear chromatin
nuclear hormone receptor binding
androgen receptor signaling pathway
steroid hormone receptor binding
histone methyltransferase activity
hormone receptor binding
protein methyltransferase activity
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tected by far more significant miRNAs, 168 of which 108 are enriched, and 60 depleted.

In addition, we compared the two sets of significant miRNAs. The first set contained 115

miRNAs, the second set 168 miRNAs. The overlap between both sets was 103, i.e., of the

115 miRNAs detected for the smaller set, 90% were also significant for the independent

second set.

For the larger data set containing 100 samples, we also investigated the influence of the

miRNA-mRNA target threshold. For the target gene thresholds of 0.01, 0.001, and 0.0001,

388 (205 up, 183 down), 168 (108 up, 60 down) and 62 (53 up, 9 down) have been identi-

fied. To reveal the similarity between the three target gene threshold sets, we produced a

three-way Venn Diagram, which is shown in Figure 4.4. This diagram outlines that, e.g, the

62 significant miRNAs for threshold 0.0001 split in the following four groups: 6 are signifi-

cant only for this threshold, 3 are also contained in the set for threshold 0.001, 6 are also

contained in the set for threshold 0.01. However, the majority of 47 miRNAs is significant

for all three thresholds.

!"!!!#$

Figure 4.4: Three-way Venn diagram for the three glioma data sets computed for the miRNA target
thresholds 0.01, 0.001 and 0.0001, respectively.

The three miRNAs with highest significance values included hsa-miR-1, miR-200b, and

miR-144. These miRNAs are known to be deregulated in various human neoplasms [173].

Looking specifically at miRNAs known to be related to glioma tumors, we find several

occurrences among the significant miRNAs in the analyzed data sets, including hsa-miR-
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181a and hsa-miR-181b. However, some other popular miRNAs connected to Glioma are

not detected to be significant in our study, including hsa-miR-221 and hsa-miR-222.

Overlap between lung cancer and glioma

As a final comparison, we computed for the miRNA target threshold level of 0.01 the overlap

between 44 lung cancer miRNAs and 388 glioma miRNAs of the GDS1815 data set. The

result of this comparison is shown as Venn diagram in Figure 4.5. In detail, 22 of the 44 lung

cancer miRNAs have also been detected with glioma. On top of this list, miR-146b can be

found (the complete list is provided in the supplemental material). This miRNA is known to

be related to a manifold of human cancers from literature including the two cancer entities

whose expression profiles are the basis of this analysis, i.e., lung cancer [168] and glioma

[174]. Besides these two tumor types it has also been found to be deregulated in breast

cancer [175], Leukemia [176], Pancreatic cancer [175], Prostate cancer [175] and Thyroid

neoplasms [177]. These results provide further evidence for the common deregulation of

some miRNAs in cancer, which can very accurately be re-detected in cancer expression

profiles.

!"#$% $!&'()%
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Figure 4.5: Venn diagram for the glioma and lung cancer data sets computed for the miRNA target
threshold of 0.01
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4.4 Conclusion

Our computational analysis deepens the understanding of miRNAs and their putative tar-

gets in biochemical networks. We provide a comprehensive ”dictionary” of miRNAs to

possible target pathways that may be regulated by this miRNAs. This dictionary enables

researchers to look up the target pathways of differentially regulated miRNAs that can be

used, e.g., for functional studies. As an additional key result, the study also provides fur-

ther evidence that miRNAs are key-players in the regulation of oncogenetic processes.

Thus, our results demonstrate that an integrative screening of miRNAs and mRNAs can

contribute to an improved understanding of human diseases, finally providing new starting

points for disease diagnosis, prognosis and monitoring.
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CHAPTER 5

IDENTIFYING DEREGULATED

REGULATORY SUBGRAPHS

In the last decade, microarray-based gene expression profiles have become a central data

resource to study deregulated molecular processes of diseases. Initially, microarray studies

focused on single differentially expressed genes. Later, Gene Set Analysis (GSA) and

related approaches were taking into account that genes do not act individually but in a

coordinated fashion [4, 6, 9]. The disadvantage of this type of methods is that they can

only reveal the enrichment of genes in predefined gene sets, e.g., canonical biological

pathways. In recent years, the research focus has shifted towards analysis methods that

integrate topological data mirroring the biological dependencies and interactions between

the involved genes or proteins. In general, these graph-based approaches use scoring

functions that assign scores or weights to the nodes and/or edges and make strong efforts

to identify high-scoring pathways or subgraphs.

A seminal work in this area is the paper of Ideker et al. who proposed a method for the de-

tection of active subgraphs by devising a scoring function and a heuristic approach for de-

tecting these subgraphs [14]. Other groups reported similar methods, which are all based

on scoring networks given experimental data [16, 17, 22]. In 2008, Ulitsky and cowork-

ers presented an algorithm for detecting disease-specific deregulated pathways by using

clinical expression profiles [20]. However, the abovementioned approaches focused on

protein-protein interaction (PPI) networks (undirected graphs) and used heuristics to find

the subgraphs. Dittrich et al. devised the first approach to solve the maximal-scoring sub-

graph problem optimally by Integer Linear Programming (ILP) in the context of undirected

PPI networks [21].

In this chapter, we present two novel approaches for detecting deregulated components in
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regulatory networks using expression profiles. The first approach, called FiDePa (Finding

Deregulated Paths), is a dynamic programming algorithm that identifies deregulated paths

of a certain length [26] relying on standard Gene Set Enrichment Analysis (GSEA) [4,5,57].

Our second approach is an ILP algorithm which reveals the most deregulated connected

subnetwork of a certain size. FiDePa has been developed in collaboration with Andreas

Keller, who developed and implemented the dynamic programming algorithm. The ILP

approach emerged from the collaboration with Alexander Rurainski, who developed and

implemented the ILP.

5.1 FiDePa

In this section, we present a novel algorithm for detecting differentially regulated paths in a

regulatory network that is based on the unweighted GSEA as described in Chapter 2.1.3.2.

The input of FiDePa is a list of genes that are sorted with respect to their expression dif-

ferences between two investigated states, e.g. cancer and normal tissue, and a regulatory

network. As data source for the network information, we imported the KEGG [47] and the

TRANSPATH [48] database into the Biochemical Network Database (BNDB) [25]. We ex-

tracted the complete human regulatory network from the BNDB and projected the ranks of

the genes in the list onto the corresponding nodes. The algorithm does not consider nodes

that are not contained in the sorted list.

For the computation of the deregulated paths, the algorithm interprets each path p of a

certain length l in the given network as a biological category Cp that consists of the l

genes represented by the nodes of the path p. Using a Kolmogorov-Smirnov-like test that

computes whether the set of genes Cp belonging to the path p are equally distributed in

the expression list or accumulate on the top or bottom of the list, we determine if the given

path p is deregulated (contains a large number of up- or downregulated genes) or not. The

applied Kolmogorov-Smirnov-like test is a standard test of GSEA [5] that computes the

running sum of all genes in the sorted list. Hereby, the sorted list consisting of n genes is

processed from top to bottom. Whenever a gene belonging to Cp is detected, the running

sum is increased by n−l, otherwise it is decreased by l. The value of interest is the running

sum’s maximal deviation from zero, for which a p-value can be computed [57]. Since the

number of paths is growing exponentially with the length l, the brute-force approach that

enumerates all paths of length l and computes the running sum for each path separately is

applicable only for very small values of l.
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To identify the most significant paths efficiently, FiDePa computes the paths of length l with

the smallest p-value. In order to facilitate the interpretation of the findings, the resulting

paths have to be visualized in a well-arranged manner. To this end, we added respective

functionality to our Biological Network Analyzer (BiNA) [44] that enables the user to visu-

alize and compare significant paths. An overview of the workflow of the whole analysis

procedure is summarized in Figure 5.1.

Normal
profiles

Cancer
profile

sorted list 
of genes

Gene
Expression
Omnibus Evaluation

FiDePa
Network Visualization

Figure 5.1: Workflow of the FiDePa algorithm

In the following, we describe the dynamic programming algorithm in more detail as pre-

sented in our Bioinformatics publication [26]. Afterwards, we present the results of the

application of FiDePa to expression profiles of 100 glioma patients (WHO grades III and

IV, extracted from the Gene Expression Omnibus (GEO) [167] dataset GDS1815 [178])

against a control group of 158 expression profiles (GDS596 [179]) of physiologically unaf-

fected tissues.

5.1.1 The dynamic programming algorithm

Biological networks are often represented as directed graphs G = (V,E), where the ver-

tices (nodes) V = {v1, ..., vq} represent genes, proteins or other compounds and the

directed edges e(vi, vj) ∈ E represent interactions or reactions between the respective

compounds. A path of length l in G is a sequence vp1 , .., vpi , vpi+1 , .., vpl
of l nodes, where

each pair vpi , vpi+1 of consecutive nodes is connected by a directed edge, which starts in

vpi and ends in vpi+1 . We denote the set of all paths of length l by Pl and the subset of

paths in Pl that end in the node vk by Pl(vk). The set N(vk) of predecessors of node vk is
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defined as

N(vk) = {vs ∈ G|∃e(vs, vk) ∈ E}

Besides the graph G, the input of the algorithm consists of a gene list S of length n. The

genes in the list S are sorted with respect to an arbitrary criterion, e.g. their fold changes of

expression values between two investigated states. Given a gene represented by a node

v in the graph G, we denote the rank of the gene in the sorted list S as r(v).

To compute significance values of a path p of length l, we carried out an unweighted GSEA

as described in 2.1.3.2. In brief, the sorted list is processed from top to bottom to compute

a running sum statistic RS. Whenever a gene belonging to Cp is detected, the running

sum is increased by n − l, otherwise it is decreased by l. The value of interest is the

running sum’s maximal deviation from zero, denoted as RSp. The significance value of the

scoreRSp can be calculated by our dynamic programming algorithm introduced in Chapter

2.1.3.2.

We define the number of nodes on the path p that have a rank smaller equal i in S as:

bp[i] = |{v ∈ Cp|r(v) ≤ i}|. (5.1)

Our algorithm relies on the fact that the running sum value at position i can be computed

as:

RSp[i] = bp[i] · (n− l)− l · (i− bp[i]) (5.2)

In order to compute the most significant paths p ∈ Pl of length l, where l ranges from

1 to a user-defined upper bound m, we will first focus on the subset Pl(vk) of paths that

end in a certain node vk and have a fixed length of l. Hereby, we will derive a recurrence

scheme for filling the 3-dimensional matrix M [l, k, i] of size m · |V | · n that allows to solve

the problem for all nodes and the considered range of path lengths in an efficient manner.

Equation 5.2 implies that the best score of any path p of length l ending in vk can be

computed as:

M∗[l, k] = max
i=1,...,n

(M [l, k, i] · (n− l)− l · (i−M [l, k, i]), (5.3)
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where

M [l, k, i] = max
p∈Pl(vk)

bp[i]. (5.4)

If M has been filled, we can easily calculate the best running sum score for any length l

and any node vk and the corresponding paths can be determined by a simple standard

backtracking procedure. If no path of length l ending in node vk exists, we set M [l, k, i] =

−1 for all indices i = 1, ..., n.

Since the path of length 1 ending in a node vk consists only of the node vk itself, the

computation of the first matrix layer M [1, k, i] is straightforward:

M [1, k, i] =

{
1 : r(vk) ≤ i
0 : r(vk) > i

In the following, we derive the recurrence formula that allows for computing all values

M [l, ∗, ∗] of layer l from the values M [l − 1, ∗, ∗] of layer l − 1. The idea behind the

approach is similar to the principle used in shortest/longest path calculations. In order to

compute the best path of length l leading to vk, we determine the optimal paths of length

l − 1 ending in one of the predecessor nodes vs ∈ N(vk) and add the path of length 1

consisting of the node vk:

M(l, k, i) =

{
maxvs∈N(vk)M [l − 1, s, i] + 1 : r(vk) ≤ i
maxvs∈N(vk)M [l − 1, s, i] : r(vk) > i

(5.5)

The pseudocode in Algorithm 5.1 is applied to fill the remaining layers 2, ...,m.

Algorithm 5.1 The computation of the dynamic programming matrix in the FiDePa algo-
rithm

DYNAMIC PROGRAMMING:
for l ∈ 2..m do // for all layers (path lengths)

for i ∈ 1..n do // for all genes in the sorted list
for k ∈ 1..|V | do // for all nodes

if (N(vk) == ∅||maxvs∈N(vk)M [l − 1, s, i] == −1) then
M [l, k, i] = −1

else
if (r(vk) ≤ i) then
M [l, k, i] = maxvs∈N(vk)M [l − 1, s, i] + 1

else
M [l, k, i] = maxvs∈N(vk)M [l − 1, s, i]
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Here, the first if statement evaluates whether any path of length l ends up in vk. If this con-

dition does not hold, M [l, k, i] is set to −1. Otherwise, the value M [l, k, i] is calculated via

the previously described recurrence Equation 5.5. Since we had to avoid cycles, we added

a further condition which is not listed in the pseudocode described above: our algorithm

searches for the best path ending in one of the predecessor nodes vs ∈ N(vk) that does

not contain node vk. An example of the dynamic programming approach is provided in Fig-

ure 5.2 for a small network with 6 nodes. In this example, the layers 1-3 ofM are computed.

5.1.2 Deregulated glioma paths

We applied our dynamic programming algorithm to study deregulated signaling cascades

in glioma tumors. To this end, we analyzed 100 glioma expression profiles of WHO grades

III and IV [178]. As background distribution, we used 158 expression profiles (GDS596)

[179] of physiologically unaffected tissues. Control and cancer expression profiles were

downloaded from GEO and all profiles were quantile normalized. Then, for each transcript

t, the mean value µt and the standard deviation σt of the transcript in the control profiles

were computed. For a given cancer profile, we computed the z-score zt for transcript t with

expression value xt as follows:

zt =
xt − µt

σt

The corresponding genes were sorted in decreasing order with respect to the absolute

value of their z-scores, resulting in one sorted gene list for each cancer profile. The input

of the FiDePa algorithm consisted of the sorted z-score lists and the union of the KEGG and

TRANSPATH networks that was imported from our BNDB database [25]. For each cancer

profile, we carried out the following computation steps: the z-scores of the genes present

in the network were assigned to the corresponding nodes, the ranks of the nodes were

calculated, the dynamic programming algorithm was carried out and the resulting paths

plus their p-values were computed. Hereby, the considered path lengths ranged from 2

to 8 edges. Afterwards, the union graph unifying all detected paths was constructed and

stored. Finally, we analyzed the obtained results by carrying out comprehensive statistical

tests that will be described below.
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4 1 1 1 1 0 0 

5 1 1 1 1 0 1 

6 1 1 1 1 1 1 
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1 1 0 0 1 0 -1 

2 1 1 0 2 0 -1 

3 1 2 1 2 0 -1 

4 1 2 2 2 1 -1 

5 2 2 2 2 1 -1 

6 2 2 2 2 2 -1 
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6 -1 3 3 3 3 -1 

Figure 5.2: Dynamic Programming Algorithm of FiDePa. Example of the dynamic programming
algorithm for a network G with |V | = 6 nodes, the path length m = 6, and a sorted
list S of n = 6 genes. The initialization and computation for the first three layers are
presented. The last column in the second layer reveals that no pathways of length 2
ends in node F . The entry (4, E) = 1 in the second layer means that a pathway of
length 2 exists that ends in node E and has one gene in the sorted list with position in
the sorted list smaller or equal than 4. Source: PhD thesis Andreas Keller [137]
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5.1.2.1 Enrichment analysis of genes of the union graph

First, we studied the glioma union graph, consisting of the union of edges that proved to

be significant in at least one of the analyzed glioma expression profiles. The union graph

consisted of a total of 192 nodes and 549 edges. The genes that occurred most frequently

in the deregulated subnetworks are ATF4 (45), ELK1 (43), DDIT3 (39), MAP2K2 (38),

MAPKAPK5 (37), ATF2 (36), MOS (36), TP53 (36), JUN (34), MAP2K7 (34), CDC25B (32),

MAP2K3 (32), MAP3K10 (32), MYC (32), ELK4 (31), MAP2K1 (31) and MAPT (31). Here,

the numbers in brackets denote the number of cancer profiles where FiDePa detected

paths containing the respective genes. A literature inquiry revealed that all these genes

are closely connected to cancer development or progression, most of them are also directly

connected to glioma. As the gene list indicates, many of the above genes belong to the

MAPK (mitogen-activated protein kinase) signaling pathway or to the Apoptosis pathway.

To detect the significantly enriched biochemical pathways, we used GeneTrail [10] (see

also Chapter 2.1).

We carried out an over-representation analysis, comparing the genes of the union network

to all human genes using GeneTrail’s standard parameters. Our analysis revealed a total

of 26 significantly enriched KEGG pathways (Table 5.1). On top of the results list appeared

the MAPK signaling pathway, with an expected number of 18 genes and an observed

number of 69 genes. The pathway with the second best significance value was the Natural

killer cell-mediated cytotoxicity, with an expected number of 9 genes and an observed

number of 34 genes, followed by the Apoptosis with 25 observed genes and 5 expected

genes. The list, of course, entailed several cancer pathways, including colorectal cancer,

pancreatic cancer and glioma.

To compare the results of our FiDePa algorithm with an analysis, which does not con-

sider the network topology, we carried out a standard GSEA by using GeneTrail. The

KEGG pathway analysis identified 16 enriched pathways, including several pathways that

were also identified by FiDePa, e.g. the Natural killer cell-mediated cytotoxicity or the T-

cell receptor signaling pathway. However, some clearly cancer-related pathways including

Apoptosis, Glioma cancer, Pancreatic cancer, MAPK signaling pathway and others were

only identified by the FiDePa analysis, while they were missed using the standard GSEA.
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Table 5.1: Significant KEGG Pathways of the union network
pathway # expected genes # observed genes sig. value
MAPK signaling pathway 18 69 1.6−25

Natural killer cell mediated cytotoxicity 9 34 1.39−11

Apoptosis 5 25 9.29−11

Epithelial cell sig. in H. pylori infection 3 17 5.01−10

Focal adhesion 9 26 2.52−06

Adherens junction 5 18 1.38−05

T cell receptor signaling pathway 5 18 1.46−05

Chronic myeloid leukemia 4 16 1.65−05

Fc epsilon RI signaling pathway 4 16 1.85−05

Toll-like receptor signaling pathway 5 17 5.53−05

Colorectal cancer 2 10 9.40−05

Pancreatic cancer 4 14 0.0001
Cytokine-cytokine receptor interaction 14 30 0.0001
Adipocytokine signaling pathway 4 14 0.0001
mTOR signaling pathway 2 10 0.0002
GnRH signaling pathway 6 17 0.0003
B cell receptor signaling pathway 4 11 0.0013
Insulin signaling pathway 9 20 0.0013
Cell cycle 5 13 0.0014
Glioma 4 11 0.0030
Type II diabetes mellitus 3 9 0.0033
VEGF signaling pathway 5 12 0.0059
Type I diabetes mellitus 0 3 0.0059
Leukocyte transendothelial migration 5 11 0.0135
Axon guidance 8 15 0.0173
Maturity onset diabetes of the young 2 5 0.0386

5.1.2.2 Single patient analysis

To demonstrate the applicability of the FiDePa algorithm, we compared two WHO grade

III gliomas, both without microvascular proliferation and necrosis. Both patients were of

similar age with 39 and 35 years. However, the respective survival time were quite different

with 41 weeks and 477 weeks. The comparison of the deregulated networks of both tumors

revealed a very small overlap, as shown in Figure 5.3.

5.1.3 Discussion and Conclusion

In this section, we presented a dynamic programming algorithm that aims at detecting the

significantly deregulated signaling cascades in tumor cells. The FiDePa algorithm inter-

prets expression differences between tumor and normal tissue and relies on GSEA. Since

FiDePa enables the comparison of a single tumor expression profile with the control group,

it provides information on regulatory features that are specific for the corresponding tumor
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Figure 5.3: BiNA visualization of the two patients A (blue, survival time 477 weeks) and B (red,
survival time 41 weeks). Edges on significant paths in both tumors are colored green.
The network shows the relevant part of the complete consensus network, whereas the
non-relevant part of the consensus network is presented by gray edges and nodes in
the background.
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and that can contribute to a personalized medicine by tailoring the tumor therapy to the

specific regulatory tumor features identified by FiDePa.

The application of FiDePa to a glioma dataset showed that the algorithm is able to de-

tect the relevant signaling cascades that are known to be glioma and/or cancer related.

The most significant pathway was the MAPK signaling cascade, followed by the Natural

killer cell-mediated cytotoxicity and the Apoptosis. It is well known that both pathways are

deregulated in glioma: the MAPK signaling cascade, e.g. is described to be deregulated

in glioma in various studies [180–183]. An upregulation of the MAPK signaling cascade in

cultured glioma cells mediated by fibroblast growth factors indicated that MAPK pathway

participates in the FGF-dependent glioma development [181]. As for the MAPK signaling

pathway, we were able to retrieve all other significant pathways in the glioma literature,

providing evidence for the effectiveness of the FiDePa algorithm. However, besides the

results coherent with the findings in the literature some additional glioma-related pathways

are cited in the literature. For example, Phillips et al. [178] suggest that Akt and Notch

signaling are hallmarks of a poor prognosis of gliomas, while these pathways were not

ostentatious in our work. This, however, might be explained by the fact that our FiDePa

analysis did not focus on prognosis, but on the comparison of glioma and normal tissue. In

2008, two large-scale integrated studies on glioblastoma have been published by McLen-

don et al. [184] and Parsons et al. [185]. McLendon and co-workers identified ERBB2,

NF1 and TP53 as key players in glioblastoma together with the RTK signaling, the p53

and RB tumor suppressor pathways. In our expression pattern-based study, we identified

the TP53 component, while the other pathways play a less important role. In contrast to

our results, the MAPK signaling cascade is non-significant in the study of McLendon et al.,

which is based on genetic alterations including validated somatic nucleotide substitutions,

homozygous deletions and focal amplifications. Parson and co-workers identified the gene

IDH1 as CAN-gene (candidate cancer gene) by integrating of sequencing, copy number

and expression data. However, this gene does not show significant deregulation in our

data and thus is not included in our union network. Other CAN genes identified by Parson

et al. were included in our network, e.g. TP53, RB1 or EGFR.

In this work, the FiDePa algorithm has been applied for studying regulatory networks, which

play an essential role for cancer development and progression. However, our algorithm

can, of course, be applied to arbitrary networks, including protein-protein interaction net-

works. Here, an additional preprocessing step is necessary for matching the proteins in

the network to the genes in the sorted list.
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In the light of the ongoing discussion on the quality and effectiveness of gene set analysis

methods [8,186,187], we would like to underline that our dynamic programming approach

can be easily adapted to other gene set analysis method or gene scoring approaches, e.g.

Wilcoxon rank-sum test, median, mean, SAM-GS, and some other approaches discussed

in Ackermann and Strimmer [8]. Actually, the dynamic programming algorithm can be

simplified for most of the other gene set analysis methods. However, the direct p-value

computation usually has to be replaced by more laborious permutation tests.

5.2 ILP based approach

In contrast to the FiDePa algorithm, our branch-and-cut based ILP approach computes

subgraphs or subnetworks instead of simple paths. The input of our algorithm consists of

a regulatory network and a list of genes that are scored according to their deregulation.

In this work, the underlying regulatory network was taken from the KEGG database [47,

123]. Since KEGG pathways also contain nodes for protein families, we transformed the

original KEGG pathways by splitting the nodes of protein families into their components as

described in Section 2.1.4.5.

The second necessary input for our algorithm is a list of scored genes. These scores can

be derived, e.g., from expression experiments. In brief, if we want to compare the differ-

ences in expression of two conditions, we compute for each transcript on the microarray a

score that mirrors the difference between the considered states. In general, we can use

any measure that is also applied for finding differentially expressed genes as, e.g., the fold

change. In an additional step, the transcript IDs are converted to gene identifiers. The

resulting list contains for each gene on the microarray a score that mirrors the deregula-

tion of the gene under the considered conditions, i.e., the higher the expression difference

between the two considered states, the larger the score of a gene.

Before the computation, the genes of the list have to be mapped to the network nodes.

Since not all nodes or gene identifier of the network are also available on the microarray,

we cannot assign a calculated score to every node of the regulatory network. Missing

scores are assumed to be zero. In our tests, about an eighth of all nodes had a zero score.

Given this input, our ILP-based algorithm computes the heaviest connected subnetwork of

size k, i.e. the most deregulated subnetwork with the highest sum of node scores. Here,

we define a subgraph G as connected if it contains at least one root node vr from which all
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other nodes in G are reachable, i.e., for each node v in G, a path from vr to v consisting

only of nodes in G exists. The vision implicated by the proposed connectivity model is to

identify – besides the most deregulated components – the root node that may represent a

key player in the pathogenic process. This key player may be responsible for the observed

differences between the investigated conditions and may serve as a potential target for

therapy purposes.

The results of the computation can be visualized in the Biological Network Analyzer (BiNA)

[44], which is a Java application suited for the visualization of metabolic and regulatory

networks. An overview of the different steps of our approach is presented in Figure 5.4.

In the following, we describe the formulation of the ILP in more detail. Afterwards, we

present the results of the application of our algorithm to gene expression profiles of nonma-

lignant mammary epithelial cells from BRCA1 mutation carriers and non BRCA1 mutation

carriers [188]. We explore the effect of the mutations on the regulatory processes to gain

new insights how these mutations may contribute to the development of breast cancer.

5.2.1 Integer linear program

The problem of finding a connected subgraph of size k which maximizes the sum of the

scores is formulated as an Integer Linear Program (ILP) and then solved by a branch-and-

cut approach. Here, we define a subgraph G as connected if it contains at least one root

node vr from which all other nodes in G are reachable, i.e., for each node v in G, a path

from vr to v consisting only of nodes in G exists. We assign a score (absolute value of the

corresponding real data if available) to every node in the network. Since not all nodes or

gene identifier of the network are also available on the microarray chip, we cannot assign

a calculated score to every node of the regulatory network. Missing scores are set to zero.

Our ILP formulation uses two variables for each node i: xi and yi. The variable xi ∈ {0, 1}
determines whether its corresponding node is contained in the subgraph (xi = 1) or not

(xi = 0). The variable yi ∈ {0, 1} indicates that its corresponding node i is the root node

(yi = 1) or not (yi = 0). Let si be the score of node i then the optimization problem can be

formulated as

max
x

∑
i

sixi.
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Human Regulatory Pathways Gene Expression Profiles

Human Regulatory Network

Genes
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ILP formulation

Maximal Deregulated Subgraph of Size k

Genes
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g3

g4

g5
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Figure 5.4: Workflow of our ILP-based algorithm for the computation of deregulated subgraphs.
Our algorithm requires as input a biological network and a list of genes with scores that
have been derived from expression data and express the degree of deregulation. After
the scores of the genes have been mapped to the corresponding nodes of the network,
our ILP-based branch-and-cut approach calculates the most deregulated subgraph.
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The constraint that the subgraph has a predefined size of k nodes, is given by

∑
i

xi = k.

We ensure that we obtain one root node by

∑
i

yi = 1.

The inequalities

yi ≤ xi for all i

guarantee that a designated root node is also chosen. All remaining constraints concern

the connectivity of the desired subgraph. Let In(i) be the set of indices of the predecessors

of node i, i.e. there exists an in-edge into node i, then we ensure that a chosen node has

either a predecessor or it is the designated root node by

xi − yi −
∑

j∈In(i)

xj ≤ 0 for all i.

Unfortunately, this kind of constraints is also fulfilled in cycles since every node in a cycle

has a predecessor. Hence, a subgraph generated by the above constraints alone may

have disconnected cycles. Let C be the indices of a cycle and analogously In(C) the set

of indices of nodes which share an in-edge into this cycle, then the extension of the above

constraint to the cycle C is given by

xi −
∑
j∈C

yj −
∑

j∈In(C)

xj ≤ 0 for all i ∈ C. (5.6)

In theory, the complete description of our optimization problem as given above requires

a constraint for every cycle, resulting in millions of inequalities of type (5.6) for the con-

sidered problem instances. In practice, branch-and-cut algorithms start with a basic set

of constraints, solve the relaxed underlying LP problem, and check if the result violates

constraints. If so, the violated constraints are added and the solver is restarted. As our

set of basic cycle constraints we only consider cycles with two or three nodes. In order to

identify violated constraints, we implemented an efficient algorithm that searches in given

LP solutions for cycles which do not satisfy inequalities of type (5.6). These inequalities will

be added to the constraint set. This procedure is iterated until either we obtain an optimal

subgraph, i.e, an integer solution without violated constraints, or we have a non-integral
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Figure 5.5: Branch-and-Cut workflow for solving the ILP.

solution, but we cannot identify further violated constraints. In the latter case we perform

a branching step. In this study, we used the branch-and-cut framework of CPLEX1, ver-

sion 11.110, with the “traditional mixed integer search method”. This commercial library

provides the possibility to branch using automatically detected favorable strategies. We

used CPLEX’s default settings. A general workflow of such branch-and-cut algorithms is

presented in Figure 5.5. For a detailed survey of branch-and-cut algorithms the interested

reader is referred to Nemhauser [189] and Schrijver [190].

Our reference implementation is a single thread application, i.e. we could further speed up

the solution process by parallelization techniques. However, all calculations finished within

a few minutes on an Intel Xeon CPU, 2.5GHz. Thus, we did not incorporate advanced

programming methods.

1http://www-01.ibm.com/software/integration/optimization/cplex/
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5.2.2 Nonmalignant primary mammary epithelial cells

For the evaluation of our method, we downloaded and analyzed the GSE13671 data set

from GEO. The GSE13671 set contains expression data from nonmalignant primary mam-

mary epithelial cells with and without BRCA1 mutations and was published in a study of

Burga et al. [188]. We computed the fold difference for the mean of the BRCA1 mutation

carriers against the mean of non-mutation carriers given the normalized and log trans-

formed expression values. The Affymetrix chip IDs were mapped to NCBI Gene IDs and

the resulting list containing genes and corresponding expression values served as input for

our algorithm. To explore the stability of the core components in this case, we computed

the most deregulated subgraphs for different subgraph sizes ranging from 10 to 25 nodes.

We denote the union of all nodes and edges that appear in at least one of the 16 calculated

optimal subgraphs as the union graph. The less nodes this union graph consists of, the

more stable are the core components of the subgraphs in the total regulatory network.

Figure 5.6 shows the best subgraph for 25 nodes and, additionally, the remaining nodes

of the union graph as isolated vertices. The corresponding genes along with their number

of occurrence in the different 16 subgraphs are also listed in Table 5.2. Figure 5.6 reveals

that the complete union graph is very compact (only 34 vertices for the most deregulated

subgraphs consisting of 10-25 nodes), which means that the most deregulated part of the

network seems to be stable. The core components occurring in all of these subgraphs are

the path EGLN3 (PHD3)→ EPAS1 (HIF-2α)→ VEGF→ KDR (VEGFR2) with the desig-

nated root node EGLN3 and, more downstream located, the subgraph rooted in MAPK13

consisting of the genes TP53, DDIT3, RRM2, and GADD45B. It is interesting to note that

the root node is very stable, i.e., independent of the size of the subgraph, EGLN3 is always

the designated root node.

For testing the significance of the computed subgraph of size 25 and root node EGLN3, we

carried out 1000 permutation tests, where we permuted the scores of the network nodes

and computed the best subgraph of the same size with this root. The p-value was calcu-

lated as the number of permutations reaching an equal or better score than our original

subgraph rooted in EGLN3 divided by the number of permutations. No other subgraph of

this size with this root node reached a better score in 1000 permutation tests (p-value <

0.001).

When performing an ORA for the genes of the subgraph of size 25 as test set and the

genes of the regulatory network as reference set, we find many pathways significantly en-
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Figure 5.6: The most deregulated subgraph for BRCA1 mutation carriers against non mutation
carriers for a network size of 25 with root node EGLN3 (p-value < 0.001). The isolated
nodes are part of the union network of the deregulated subgraphs of size 10-25.
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riched that are associated with cancer, e.g., the KEGG pathways: “VEGF signaling path-

way”, “MAPK signaling pathway”, “Focal adhesion”, “ErbB signaling pathway”, and the “p53

signaling pathway”. These pathways have in common that they influence crucial cell pro-

cesses as proliferation, differentiation, cell motility, and survival. Furthermore, we can

confirm the results of Burga et al. [188], since the genes of the detected subgraph are also

enriched in the EGF pathway (MSigDB), as well as in the GO terms cell cycle and cell cy-

cle arrest. Interestingly, we also find pathways or categories significantly enriched that are

associated with hypoxia and oxidative stress, as e.g. “Hypoxia review”, “Hypoxia normal

up”, and “Oxstress breastca up” from MSigDB. An overview of significantly enriched path-

ways from KEGG or MSigDB which cover at least 4 genes of the deregulated subgraph is

summarized in Table 5.3.

To compare the results of our algorithm to a standard gene set enrichment analysis, we

subjected the input list containing the genes sorted by the absolute values of their fold

differences to the GSEA variant implemented in GeneTrail. The analysis revealed many

significantly deregulated pathways (p-value < 0.05, FDR adjusted), amongst others the

KEGG pathways “cell cycle”, “DNA replication”, and “missmatch repair”. When regard-

ing the MSigDB gene sets, we find the breast cancer related categories “BRCA ER neg”,

“BRCA ER pos”, “Breast cancer estrogen signaling”, and “Breast ductal carcinoma genes”,

as well as the hypoxia related category “Hypoxia reg up” significantly deregulated. Inter-

estingly, in this analysis neither the p53 signaling pathway nor the EGF signaling pathway

was significantly deregulated.
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Table 5.2: List of genes found in the 16 computed deregulated subgraphs of sizes 10-25 and num-
ber of occurrences.

Gene ID
Gene

Symbol
Gene Description

Number of
deregulated
subgraphs

7157 TP53 tumor protein p53 16
6241 RRM2 ribonucleotide reductase M2 16
5603 MAPK13 mitogen-activated protein kinase 13 16
4616 GADD45B growth arrest and DNA-damage-inducible, beta 16
1649 DDIT3 DNA-damage-inducible transcript 3 16
7422 VEGFA vascular endothelial growth factor A 16

3791 KDR
kinase insert domain receptor (a type III receptor ty-
rosine kinase)

16

2034 EPAS1 endothelial PAS domain protein 1 16
112399 EGLN3 egl nine homolog 3 (C. elegans) 16
83667 SESN2 sestrin 2 15
998 CDC42 cell division cycle 42 (GTP binding protein, 25kDa) 15

8503 PIK3R3
phosphoinositide-3-kinase, regulatory subunit 3
(gamma)

14

5063 PAK3 p21 protein (Cdc42/Rac)-activated kinase 3 13
3576 IL8 interleukin 8 11
5837 PYGM phosphorylase, glycogen, muscle 9
51806 CALML5 calmodulin-like 5 9

5507 PPP1R3C
protein phosphatase 1, regulatory (inhibitor) subunit
3C

9

10000 AKT3
v-akt murine thymoma viral oncogene homolog 3
(protein kinase B, gamma)

9

891 CCNB1 cyclin B1 8

5533 PPP3CC
protein phosphatase 3 (formerly 2B), catalytic sub-
unit, gamma isoform

5

7043 TGFB3 transforming growth factor, beta 3 5
3725 JUN jun oncogene 2
8399 PLA2G10 phospholipase A2, group X 1

5879 RAC1
ras-related C3 botulinum toxin substrate 1 (rho family,
small GTP binding protein Rac1)

1

5608 MAP2K6 mitogen-activated protein kinase kinase 6 1
5602 MAPK10 mitogen-activated protein kinase 10 1
5595 MAPK3 mitogen-activated protein kinase 3 1

5106 PCK2
phosphoenolpyruvate carboxykinase 2 (mitochon-
drial)

1

50487 PLA2G3 phospholipase A2, group III 1

399694 SHC4
SHC (Src homology 2 domain containing) family,
member 4

1

2353 FOS FBJ murine osteosarcoma viral oncogene homolog 1
2308 FOXO1 forkhead box O1 1
9047 SH2D2A SH2 domain protein 2A 1
5747 PTK2 PTK2 protein tyrosine kinase 2 1
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Table 5.3: Significantly enriched pathways which are covered by the genes of the deregulated sub-
graph of size 25. The p-values were computed by using the hypergeometric distribution
test (ORA) with the genes of the subgraph as test set and the genes of the regulatory
graph as reference set. The p-values are FDR adjusted.

Pathway
Source

Pathway Name p-value
number of
genes in
subgraph

KEGG Pathways in cancer 0.000442969 12
KEGG MAPK signaling pathway 0.000442969 11
KEGG Focal adhesion 0.000442969 10
KEGG VEGF signaling pathway 3.22812e-07 10
KEGG Neurotrophin signaling pathway 4.64128e-05 9
KEGG Renal cell carcinoma 5.15226e-07 9
KEGG T cell receptor signaling pathway 0.000288768 8
KEGG Toll-like receptor signaling pathway 0.000442969 7
KEGG ErbB signaling pathway 0.000442969 7
KEGG GnRH signaling pathway 0.000482278 7
KEGG Insulin signaling pathway 0.00272689 7
KEGG Chemokine signaling pathway 0.00333032 7
MSigDB BOQUEST CD31PLUS VS CD31MINUS UP 0.017504 7
KEGG Glioma 0.000452846 6
KEGG Pancreatic cancer 0.000587537 6
KEGG Fc epsilon RI signaling pathway 0.000879813 6
KEGG Colorectal cancer 0.00118209 6
KEGG B cell receptor signaling pathway 0.00333032 5
MSigDB HYPOXIA REVIEW 0.00484667 5
KEGG Chronic myeloid leukemia 0.00486093 5
KEGG Bladder cancer 0.00235075 4
KEGG mTOR signaling pathway 0.00507319 4
KEGG Epithelial cell signaling in Helicobacter pylori infection 0.00507319 4
KEGG Non-small cell lung cancer 0.00670911 4
KEGG Endometrial cancer 0.00803437 4
MSigDB SHEPARD CRASH AND BURN MUT VS WT UP 0.00860306 4
MSigDB CHEN HOXA5 TARGETS UP 0.00922605 4
MSigDB HYPOXIA NORMAL UP 0.0130697 4
MSigDB METPATHWAY 0.014913 4
MSigDB KERATINOCYTEPATHWAY 0.0205406 4
KEGG Melanoma 0.0206123 4
KEGG p53 signaling pathway 0.0210982 4
KEGG Fc gamma R-mediated phagocytosis 0.0210982 4
MSigDB SIG PIP3 SIGNALING IN CARDIAC MYOCTES 0.0267726 4
KEGG Prostate cancer 0.0273038 4
KEGG Small cell lung cancer 0.0288885 4
KEGG Vascular smooth muscle contraction 0.0304471 4
MSigDB ST INTEGRIN SIGNALING PATHWAY 0.046262 4
MSigDB RAS ONCOGENIC SIGNATURE 0.0471463 4
MSigDB INSULIN SIGNALING 0.0488835 4
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5.2.3 Comparison to FiDePa

To compare the results of our ILP approach to FiDePa, we subjected the sorted list of

genes containing the absolute values of the computed fold differences of the GSE13671

data set to a FiDePa analysis. We computed all significant paths of lengths up to eight.

For each path length, the computation resulted in several hundred significant paths. Fur-

thermore, the number of significant paths increased with the path length (147 at length

3, 478 at length 8). Interestingly, we found only four significant paths of different lengths

that contained EGLN3 (see Table 5.4), which was the stable root node in the ILP analysis.

Moreover, the overlap of these four significant paths to the most deregulated subgraph of

size 25 in the ILP approach is two, namely EGLN3 and EPAS1. In addition, the most sig-

nificant paths of length eight in the FiDePa analysis show only a minimal overlap with the

most deregulated subgraph of the ILP approach.

Length Path p-value
4 EGLN3→ EPAS1→ PDGFB→ PDGFRA→ PDGFRB 0.027
6 EGLN3→ EPAS1→ TGFA→ ERBB2→ EGFR→ JAK1→ STAT1 0.027
8 EGLN3→ EPAS1→ TGFA→ ERBB2→ EGFR→ JAK1→ STAT3→ PRKAB2→ AGRP 0.032
8 EGLN3→ EPAS1→ TGFA→ ERBB2→ EGFR→ JAK1→ STAT3→ PRKAB2→ SLC2A1 0.032

Table 5.4: Four significant paths computed with FiDePa containing EGLN3

The most obvious disadvantage of the FiDePa approach is the huge number of significant

paths that are found. This complicates the interpretation and evaluation of the results.

Furthermore, the biological dependencies are much better mirrored in the computation of

a deregulated subnetwork than in a simple path. Such a path cannot capture all effects

that the deregulation has on the different components of a regulatory network. Therefore,

we used in our previous application of the FiDePa algorithm the union graph consisting of

the computed deregulated paths. The ILP approach computes direcly the most deregu-

lated connected subgraph, however, this approach is dependent on the manual selection

of a size for this network that influences the results. At the moment, we are working on

an improvement of this algorithm to remove the dependency of this threshold. Moreover,

our ILP approach enforces that the computed deregulated subnetwork is rooted in a pos-

sible key player. This key player may be responsible for the observed differences between

the investigated conditions. In cancer, oncogenes, tumor suppressor genes, or other ge-

netically altered genes that contribute to significant and crucial changes of regulatory and

signaling processes can be considered as such key players. The long-term objective of this

proposed model is to help identifying putative targets for an individualized tumor therapy.
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5.2.4 Discussion and Conclusion

The identification of patterns of pathway deregulation is a crucial task in differential network

analysis. Moreover, the determination of the initiators of the observed differences between

the investigated conditions is a major challenge. With our connectivity model we do not

only identify the most deregulated subgraph, but also a root node which may be one of the

key players for the deregulation. We applied our method to expression profiles of nonma-

lignant primary mammary epithelial cells (PMECs) isolated from BRCA1 mutation carriers

and women without BRCA1 mutations. BRCA1 germline mutations are associated with a

predisposition for developing breast cancer. The cumulative breast cancer risk by 70 years

of age in BRCA1 mutation carriers was estimated to be 65% [191]. Although familial breast

cancers have been intensely studied, the exact processes influenced by the BRCA1 muta-

tion which eventually result in the development of breast cancer are still elusive. Burga and

co-workers found that the nonmalignant PMECs from BRCA1 mutation carriers contained

a subpopulation of progenitor cells which showed an altered proliferation and differentiation

in cell culture [188]. In concordance to these morphologic observations, the comparison

of the expression profiles of the PMECs with and without BRCA1 mutations revealed an

upregulation of the EGFR pathway, which they discussed as possible cause for the al-

tered growth and differentiation properties. Our study confirms these results, since we

also find in our deregulated subgraphs components of the EGF and p53 signaling pathway

significantly enriched. Even more interesting, we were able to associate the genes in our

deregulated subgraphs with oxidative stress. The designated root node of our deregulated

network is the gene PHD3 (EGLN3), which is known to play an important role in hypoxia.

Yan et al. [192] found that the occurrence of a HIF-1α positive phenotype and a PHD3

negative phenotype is correlated with BRCA1 tumors. However, in this study we find that

PHD3 is overexpressed in the nonmalignant PMECs with BRCA1 mutations. Ginouves et

al. discussed overactivation of PHDs during chronic hypoxia and its effects on HIFα [193].

They found that PHDs are the key enzymes triggering a feedback mechanism, which leads

to a desensitization of HIF1/2α and protects cells against necrotic cell death. Additionally,

the GADD (growth arrest and DNA damage-inducible) genes (GADD45B, DDIT3) found in

our deregulated subgraph are involved in cell cycle arrest, repair mechanisms and apopto-

sis. An increased expression of these genes has also been described in studies examining

cells in stressful conditions [194, 195]. The genes GADD45B and DDIT3 (GADD153) are

also overexpressed in the BRCA1 mutation carrier expression data. This is another indica-

tion that the cells seem to be in a stressful state which may have origins in the processes
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involved in the hypoxia regulation. A recent study of Dai et al. [196] discussed the role of

oxidative stress in dependence of obesity as a possible cause for increased breast cancer

risk. When regarding cell cultures of PMECs as in our case, this factor should admittedly

be of no relevance. We hypothesize that the described different growth properties of the

PMECs with BRCA1 mutations are responsible for a disturbance in O2 homeostasis, so

that this may induce oxidative stress. Additionally, the activation of the aforementioned

stress proteins can result in avoidance of necrosis or apoptosis and in this way lead to an

increased overall survival of cells with genetic alterations. If the cells in risk of cancerous

transformation show a different growth behavior which results in oxidative stress, target-

ing the genes involved in these processes to induce cell death may be a possible starting

point for preventing the outbreak of the disease. The idea of using, e.g., PHDs, HIF-1α or

its downstream targets as a potential therapeutic strategy has been already suggested by

Ginouves et al. and Yan et al., respectively.

Taken together, the nonmalignant mammary epithelial cells with BRCA1 mutations exhibit

many properties that are known from breast cancer. Our study indicates that the cells are

in a stressful state potentially originated from the processes involved in the regulation of

long-term oxidative stress. Moreover, it seems that it is a very thin line between a cancer-

ous outcome and non-cancerous phenotype for BRCA1 mutated mammary epithelial cells

considering the accumulated deregulation affecting multiple signaling pathways visible in

our computed subgraphs. Performing a GSEA also reported hypoxia as a significant find-

ing. However, since this category was just one of some hundred significant categories we

may have as well missed this result or at least not have attached that much importance to

it.

With our approach the most deregulated part of a network can be visualized and experts

can directly grasp the processes involved in the deregulation. Although the interpretation

is not always straightforward, our approach is at least a very powerful complement to the

standard gene set and single gene analysis methods for microarray data. Furthermore,

we showed that the application of our algorithm to already published data can yield new

insights. As expression data and network data are still growing, methods as our ILP-based

algorithm will be valuable to detect deregulated subgraphs in different conditions and help

contribute to a better understanding of diseases.
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5.3 Conclusion

In this chapter, we presented two sophisticated new algorithms for identifying deregulated

components of regulatory networks. With FiDePa, we demonstrated that it is possible to

derive patient specific deregulated subnetworks from the union of computed significant

paths. Thus, we were able to impressively highlight the differences in network components

for patients with same disease but different survival times. Our second algorithm uses an

ILP and computes directly the most deregulated subgraph that is rooted in a special node

from which all other nodes in the subgraph are reachable. With this model, we enforce

that this root node has the properties of a putative key player that directly influences the

observed differences in the considered states and may serve as a potential target for an

individualized tumor therapy. Both approaches are helpful for gaining new insights from

expression profiles.
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CHAPTER 6

CONCLUSION

In this thesis, we have presented a comprehensive gene set analysis framework and its

applications to different fields in cancer research. With GeneTrail we have developed a

novel modular C++ framework suitable for the integration of various data sources, statis-

tical methods, and algorithms for the computer-aided evaluation of high-throughput data.

The basic functionality of GeneTrail is the detection of statistically enriched or depleted bi-

ological categories concerning the genes of examined data sets. Furthermore, we added

a variety of features to our framework, e.g., the handling of expression data with Gene-

TrailExpress, the dynamical pathway visualization with BiNA, and the capability to perform

differential network analysis.

GeneTrail is suitable for distinct groups of users, researchers without programming knowl-

edge and developers. For the first group, we provide a straightforward and easy-to-use

graphical interface as presented by our web-application that is worldwide accessible. The

user is guided through the different necessary input steps and can access the results of

the computation in different well-arranged file formats. For advanced users having at least

a basic knowledge of the programming language C++, GeneTrail can be used as a rapid

prototyping library to realize new biological categories, statistical methods, etc. or for pro-

cessing and filtering the computed results.

While GeneTrail’s capabilities are not limited to cancer related problems, we applied our

framework to answer topical questions in different fields of cancer research. As a first

application, we performed a comprehensive analysis of various putative characteristics of

antigens that render them possible candidates for eliciting immune responses in cancer

and autoimmune diseases. Our results provided further evidence for differences and sim-

ilarities between tumor antigens and autoantigens. Furthermore, we disclosed a certain

prevalence of sequence similarities to proteins of many organisms throughout all kingdoms

of life in the tested antigen sets, which may be a possible cause why the autoantibody

repertoire seems restricted to a limited number of self-proteins.

Second, we analyzed the putative target pathways and networks of miRNAs in different

cancer types to further elucidate the methods of action of miRNAs in cancer. We per-
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formed a study of different cancer expression profiles which showed that targets of specific

miRNAs were significantly enriched or depleted in these sets. Furthermore, we computed

and illustrated the putative target networks of miRNAs and found indications that the reg-

ulation takes place on basis of balance and interplay of concentrations of miRNAs rather

than by regulating some few important targets or hubs in the network. In summary, our

findings confirmed and enforced the important role of miRNAs as key players of gene reg-

ulation in cancer.

Third, we performed differential network analyses with two different newly developed al-

gorithms. The first algorithm, FiDePa, is based on the dynamic programming algorithm

for the unweighted GSEA. Instead of computing the statistical significance of pre-defined

biological pathways, FiDePa detects deregulated paths in a regulatory network that are

statistically significant. Applying FiDePa to expression profiles of 100 high-grade glioma

samples in comparison to 158 profiles of normal tissue samples, we demonstrated that it

is possible to derive patient specific deregulated subnetworks from the union of computed

significant paths. Our second algorithm for differential network analysis uses an ILP and

computes directly the most deregulated subgraph that is rooted in a special node from

which all other nodes in the subgraph are reachable. With this model we enforce that this

root node has the properties of a putative key player that directly influences the observed

differences in the considered states. To demonstrate the potential of this method, we com-

puted the deregulated network of size 25 given expression profiles of BRCA1 mutation

carriers and non-mutation carriers. Our evaluation indicates that oxidative stress plays an

important role in epithelial cells of BRCA1 mutation carriers that may contribute to the later

development of breast cancer. Both approaches may be suitable for facilitating the selec-

tion of optimal therapeutic agents and the identification of novel potential targets for an

individualized therapy of cancer.

In summary, this thesis has led to the development of one of the most comprehensive

non-commercial gene set analysis frameworks available for the research community. Be-

sides our own contributions using GeneTrail for topical problems in cancer research, our

web-application has also been successfully employed by groups worldwide working in var-

ious research areas and has been frequently cited. With the ongoing development and

increasing user counts, we hope that our work will have a continuing positive impact on the

research of other groups.
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tures from human blood – promising biomarkers for human diseases. Manuscript

in preparation.

– Schuler, M., Keller, A., Backes, C., Phillipar, K., Lenhof, HP, Bauer, P. A compre-

hensive strategy for identifying functional categories from transcriptomic data

sets in Arabidopsis thaliana. Manuscript in preparation.

– Backes, C., Meese, E., Lenhof, HP, and Keller, A. A dictionary on microRNAs

and their putative target pathways. Nucleic Acids Research.

– Backes, C., Rurainski, A., Gerasch, A., Klau, G., Küntzer, J., Eggle, D., Hein, M.,

Keller, A., Burtscher, H., Kaufmann, M., Meese, E., and Lenhof, HP. An integer

linear programming approach for finding deregulated subgraphs in regulatory

networks using expression profiles. Submitted.

• 2009

– Keller, A., Backes, C., Gerasch, A., Kaufmann, M., Kohlbacher, O., Meese, E.,

and Lenhof, H.-P. (2009). A novel algorithm for detecting differentially regulated

paths based on Gene Set Enrichment Analysis. Bioinformatics

• 2008

– Keller, A., Backes, C., Al-Awadhi, M., Gerasch, A., Küntzer, J., Kohlbacher,

O., Kaufmann, M., and Lenhof, H.-P. (2008). GeneTrailExpress: a web-based

pipeline for the statistical evaluation of microarray experiments. BMC Bioinfor-

matics (9), 552.

– Keller, A., Ludwig, N., Backes, C., Romeike, B.F., Comtesse, N., Henn, W.,

Steudel, W.I., Mawrin, C., Lenhof, H.-P. and Meese, E. (2008). Genome wide

expression profiling identifies specific deregulated pathways in meningioma. Int

J Cancer

• 2007

– Küntzer, J., Backes, C., Blum, T., Gerasch, A., Kaufmann, M., Kohlbacher, O.,

and Lenhof, H.-P. (2007). BNDB - The Biochemical Network Database. BMC
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Bioinformatics, 8, 367.

– Keller, A., Backes, C., and Lenhof, H.-P. (2007). Computation of significance

scores of unweighted Gene Set Enrichment Analyses. BMC Bioinformatics, 8,

290.

– Elnakady, Y. A., Rohde, M., Sasse, F., Backes, C., Keller, A., Lenhof, H.-P.,

Weissmann, K. J., and Müller, R. (2007). Evidence for the Mode of Action

of the Highly Cytotoxic Streptomyces Polyketide Kendomycin. Chembiochem.

8(11), 1261-72.

– Backes, C., Keller, A., Küntzer, J., Kneissl, B., Comtesse, N., Elnakady, Y. A.,

Müller, R., Meese, E., and Lenhof, H.-P. (2007). GeneTrail–advanced gene set

enrichment analysis. Nucleic Acids Res., 35, W186-192.

• 2006

– Küntzer, J., Blum, T., Gerasch, A., Backes, C., Hildebrandt, A., Kaufmann, M.,

Kohlbacher, O., and Lenhof, H.-P. (2006). BN++ - A Biological Information Sys-

tem. Journal of Integrative Bioinformatics, 3(2), 34.

• 2005

– Backes, C., Küntzer, J., Lenhof, H.-P., Comtesse, N., and Meese, E. (2005).

GraBCas: a bioinformatics tool for score-based prediction of caspase- and

granzyme b-cleavage sites in protein sequences. Nucleic Acids Res., 33, 208-

213.

– Comtesse, N., Zippel, A., Walle, S., Monz, D., Backes, C., Fischer, U., Mayer, J.,

Ludwig, N., Hildebrandt, A., Keller, A., Steudel, W.-I., Lenhof, H.-P., and Meese,

E. (2005). Complex humoral immune response against a benign tumor: fre-

quent antibody response against specific antigens as diagnostic targets. PNAS,

102(27), 9601-06.

• 2004

– Dönnes, P., Höglund, A., Sturm, M., Comtesse, N., Backes, C., Meese, E.,

Kohlbacher, O., and Lenhof, H.-P. (2004). Integrative analysis of cancer-related

data using cap. FASEB J., 18(12), 1465-7.
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Conference posters

• 2008

– Klatte, A., Schuler, M., Backes, C., Keller, A., Philippar, K., Fink-Straube, C.,Wirtz,

M., Hell, R., Bauer, P. Nicotianamine is required for iron homeostasis and seed

iron loading an example for applying the web-based gene chip data analysis

software tool ’GeneTrail’. 5th Tri-National Arabidopsis meeting 2008.

– Backes, C., Keller, A., Kuentzer, J., Gerasch, A., Kaufmann, M. and Lenhof,

HP. GeneTrail - statistical evaluation and visualization of biological pathways. In

BioSysBio 2008 conference.
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APPENDIX B: CLASS DIAGRAM OF GENETRAIL

Figure B.1: Simplified class diagram of GeneTrail
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Class Diagram of GeneTrail
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APPENDIX C: DATA SOURCES

C.1 NCBI Entrez Gene

Entrez Gene1 is the successor of the LocusLink database. This database provides infor-

mation to genes and proteins, their official symbol, the gene description, PubMed links,

and functional information if known. The Gene ID is a unique accession number which

corresponds to exactly one gene in one organism. In GeneTrail we use this accession

number as the origin for all analyses. If the user input contains other gene identifiers, we

first transform them into Gene IDs before starting the analysis.

C.2 NCBI RefSeq

The NCBI reference sequences2 (RefSeqs) are a non-redundant set of standard sequences

including genomic DNA, transcript (RNA), and protein products. Additionally, the RefSeqs

are annotated with information like chromosomal location or associated gene. RefSeq

mRNAs have NM- or XM-prefixes, proteins NP- or XP-prefixes, correspondingly. We use

these accession numbers to retrieve an amino acid sequence for the corresponding Gene

ID. One Gene ID can be mapped to one or more RefSeq amino acid sequences (isoforms),

but one RefSeq sequence can be mapped to exactly one Gene ID.

C.3 NCBI UniGene

The NCBI UniGene database3 contains clustered sequences of transcripts. Each Uni-

Gene entry represents a set of transcript sequences that appears to come from the same

transcription locus (gene or expressed pseudogene). Therefore, a UniGene ID is not nec-

essarily unique for one gene. Different transcripts of a gene may be mapped to different

UniGene cluster and vice versa one UniGene cluster can consist of transcripts of different

genes. This type of accession number can be found frequently on microarray chips and

can therefore be used for GeneTrail analyses.

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
2http://www.ncbi.nlm.nih.gov/RefSeq/
3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
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Data sources

C.4 UniProt

The UniProt4 Knowledgebase (UniProtKB) is a very comprehensive data source concern-

ing functional information on proteins. Each UniProtKB entry contains besides the core

data (amino acid sequence, protein name, taxonomic data, etc.) information about bio-

logical ontologies, classifications, and cross-references if available. The UniProtKB con-

sists of a manually-annotated section (referred to as “UniProtKB/Swiss-Prot”) and a sec-

tion with computationally analyzed records that await manual annotation (referred to as

“UniProtKB/TrEMBL”). For our analyses, we always used the manually-annotated version

of UniProtKB.

C.5 Ensembl

The Ensembl5 project provides comprehensive species specific databases containing se-

quence information and additional annotations. For H. sapiens, we downloaded and in-

stalled a local version of the Ensembl MySQL core database. This database is the main

source for gene and exon lengths, as well as for the mapping of NCBI Gene to Ensembl pro-

tein/gene IDs, and PDB6 accession numbers. In addition, Ensembl provides web-services

that can be accessed via a Perl API. We use this feature to retrieve a mapping of Ensembl

IDs to NCBI Gene IDs for M. musculus. This way, we do not need to install an additional

local database for this organism.

C.6 GEO

The Gene Expression Omnibus7 (GEO) is a public repository for microarray, next-generation

sequencing, and other forms of high-throughput data. GEO supports the MIAME (Minimum

Information About a Microarray Experiment) standard that outlines the minimum informa-

tion that should be included when publishing microarray data. GeneTrail and GeneTrailEx-

press make use of data and expression experiments in GEO, either for identifier mapping

or for pre-processing deposited microarray experiments.

4http://www.uniprot.org/
5http://www.ensembl.org/index.html
6http://www.rcsb.org/pdb/home/home.do
7http://www.ncbi.nlm.nih.gov/geo/
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Transpath

C.7 Transpath

The Transpath8 database focuses on regulatory pathways. The information available in

Transpath has been manually curated from publications. Transpath provides detailed infor-

mation about the intracellular signal transduction pathways, from signal induction on cell

surface to the final target. Additionally, Transpath contains data about all molecules playing

a role in signal transduction, as well as their reactions.

C.8 Transfac

Transfac9 provides information about eukaryotic transcription factors, their genomic binding

sites and DNA-binding profiles. Transfac is also integrated in the BNDB. GeneTrail uses

this information to compute significant transcription factors regulating genes in an input set.

8http://www.gene-regulation.com/pub/databases.html
9http://www.gene-regulation.com/pub/databases.html
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APPENDIX D: SUPPLEMENTAL MATERIAL

Table D.1: Scoring matrices for granzyme B and caspases 1-9. Amino acid preference distribution
for each position Pi was extracted from Thornberry et al. [93] giving the most common
amino acid a value of 1000.
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Figure D.1: The heatmap illustrates the significantly enriched GO terms of the biological process
hierarchy in our antigen sets. Red = significantly enriched compared to the reference.
Green = not significant or depleted.
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APPENDIX E: TABLE OF ABBREVIATIONS

APC Antigen Presenting Cell

API Application Programming Interface

BiNA Biological Network Analyzer

BNDB Biochemical Network Database

cDNA complementary DNA

CSS Cascading Style Sheets

CTL Cytotoxic T Lymphocyte

DAG Directed Acyclic Graph

DNA DeoxyriboNucleic Acid

ECM ExtraCellular Matrix

GEO Gene Expressin Omnibus

GO Gene Ontology

GSEA Gene Set Enrichmen Analysis

GUI Graphical User Interface

HLA Human Leukocyte Antigen

HTML HyperText Markup Language

ID IDentifier

IEA Inferred from Electronic Annotation

KEGG Kyoto Encyclopedia of Genes and Genomes

MHC Major Histocompatibility Complex

MIAME Minimum Information About a Microarray Experiment

miRNA microRNA

mRNA messenger RNA

NCBI National Center for Biotechnology Information

ORA Over-Representation Analysis

ORF Open Reading Frame

PHP Hypertext PreProcessor

PSSM Position Specific Scoring Matrix

RCGDB Roche Cancer Genome Database
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Table of Abbreviations

RNA RiboNucleic Acid

rRNA ribosomal RNA

SEREX SErological identification of antigens by Recombinant EXpression cloning

SGD Saccharomyces Genome Database

SVM Support Vector Machine

TAIR The Arabidopsis Information Resource

tRNA transfer RNA

TS tumor suppressor

UML Unified Modeling Language

UniProtKB UniProt Knowledgebase

WMW Wilcoxon-Mann-Whitney

WWW World Wide Web
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