
Saturation-based Decision Procedures
for Fixed Domain

and Minimal Model Validity

Matthias Horbach

Dissertation zur Erlangung des Grades
des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Saarbrücken
2010

Tag des Kolloquiums 22. Juli 2010
Dekan Prof. Dr. Holger Hermanns
Vorsitzender des Prüfungsausschusses Prof. Dr. Markus Bläser
Berichterstatter Prof. Dr. Christoph Weidenbach

Prof. Deepak Kapur, PhD
Prof. Dr. Jürgen Giesl

Akademischer Mitarbeiter Dr. Johannes Lengler

iii

Abstract

Superposition is an established decision procedure for a variety of first-order logic the-
ories represented by sets of clauses. A satisfiable theory, saturated by superposition,
implicitly defines a minimal Herbrand model for the theory. This raises the question in
how far superposition calculi can be employed for reasoning about such minimal mod-
els. This is indeed often possible when existential properties are considered. However,
proving universal properties directly leads to a modification of the minimal model’s term-
generated domain, as new Skolem functions are introduced. For many applications, this
is not desired because it changes the problem.

In this thesis, I propose the first superposition calculus that can explicitly represent
existentially quantified variables and can thus compute with respect to a given fixed
domain. It does not eliminate existential variables by Skolemization, but handles them
using additional constraints with which each clause is annotated. This calculus is sound
and refutationally complete in the limit for a fixed domain semantics. For saturated
Horn theories and classes of positive formulas, the calculus is even complete for proving
properties of the minimal model itself, going beyond the scope of known superposition-
based approaches.

The calculus is applicable to every set of clauses with equality and does not rely
on any syntactic restrictions of the input. Extensions of the calculus lead to various
new decision procedures for minimal model validity. A main feature of these decision
procedures is that even the validity of queries containing one quantifier alternation can
be decided. In particular, I prove that the validity of any formula with at most one
quantifier alternation is decidable in models represented by a finite set of atoms and
that the validity of several classes of such formulas is decidable in models represented by
so-called disjunctions of implicit generalizations. Moreover, I show that the decision of
minimal model validity can be reduced to the superposition-based decision of first-order
validity for models of a class of predicative Horn clauses where all function symbols are
at most unary.

v

Zusammenfassung

Superposition ist eine bewährte Entscheidungsprozedur für eine Vielzahl von Theorien
in Prädikatenlogik erster Stufe, die durch Klauseln repräsentiert sind. Eine erfüllbare
und bezüglich Superposition saturierte Theorie definiert ein minimales Herbrand-Modell
dieser Theorie. Dies wirft die Frage auf, inwiefern Superpositionskalküle zur Argumen-
tation in solchen minimalen Modellen verwendet werden können. Das ist bei der Be-
trachtung existenziell quantifizierter Eigenschaften tatsächlich oft möglich. Die Anal-
yse universell quantifizierter Eigenschaften führt jedoch unmittelbar zu einer Modi-
fizierung der termgenerierten Domäne des minimalen Modells, da neue Skolemfunktionen
eingeführt werden. Für viele Anwendungen ist dies unerwünscht, da es die Problemstel-
lung verändert.

In dieser Arbeit stelle ich den ersten Superpositionskalkül vor, der existenziell quan-
tifizierte Variablen explizit darstellen und daher Berechnungen über einer gegebenen
festen Domäne anstellen kann. In ihm werden existenziell quantifizierte Variablen nicht
durch Skolemisierung eliminiert sondern mithilfe zusätzlicher Constraints gehandhabt,
mit denen jede Klausel versehen wird. Dieser Kalkül ist korrekt und im Grenzwert wider-
spruchsvollständig für eine domänenspezifische Semantik. Für saturierte Horntheorien
und Klassen positiver Formeln ist der Kalkül sogar korrekt für den Beweis von Eigen-
schaften des minimalen Modells selbst. Dies übersteigt die Möglichkeiten bisheriger
superpositionsbasierter Ansätze.

Der Kalkül ist auf beliebige Klauselmengen mit Gleichheit anwendbar und erlegt der
Eingabe keine syntaktischen Beschränkungen auf. Erweiterungen des Kalküls führen
zu verschiedenen neuen Entscheidungsverfahren für die Gltigkeit in minimalen Model-
len. Ein Hauptmerkmal dieser Verfahren ist es, dass selbst die Gültigkeit von Anfragen
entscheidbar ist, die einen Quantorenwechsel enthalten. Insbesondere beweise ich, dass
die Gültigkeit jeder Formel mit höchstens einem Quantorenwechsel in durch endlich viele
Atome repräsentierten Modellen entscheidbar ist, und gleiches gilt für die Gültigkeit
mehrerer Klassen solcher Formeln in durch sogenannte Disjunktionen impliziter Ver-
allgemeinerungen repräsentieren Modellen. Außerdem zeige ich, dass für eine Klasse
prädikativer Hornklauseln, bei denen alle vorkommenden Funktionssymbole maximal
einstellig sind, die Entscheidbarkeit der Gültigkeit in minimalen Modellen auf superpo-
sitionsbasierte Entscheidbarkeit in Prädikatenlogik erster Stufe reduziert werden kann.

vii

Acknowledgements

The research that has gone into this thesis has been thoroughly enjoyable. This enjoy-
ment is largely a result of the interaction that I have had with my colleagues at the
Automation of Logics group and also of the support by my family and friends, who
brought other things to my mind when it became necessary (or who at least tried to).

First and foremost, I thank my advisor Christoph Weidenbach, who accepted me as
his doctoral student, for his constant support and for the time and energy he invested
in our joint work.

I thank Uwe Waldmann, both for introducing me to the subject of automated reason-
ing and for his availability whenever stupid questions arose.

I thank Willem Hagemann for the countless informal discussions about mathematics
and logics. I have always considered such discussions as a major source of the joy of
scientific work.

I thank the anonymous reviewers of the publications that are incorporated in this
thesis. Their comments have helped me considerably in obtaining a fresh view on some
problems and in improving both my results and my presentation thereof.

Even more has helped me the feedback from my colleagues and friends who proof-
read parts of this thesis in various stages of its formation: Arnaud Fietzke, Thomas
Hillenbrand, Andrea Horbach, Daniela Kundolf, and Patrick Wischnewski.

I also thank Michel Ludwig and Ullrich Hustadt, who brought my attention to ulti-
mately periodic interpretations and indirectly prompted a more detailed examination of
disunification.

I thank Deepak Kapur, Jürgen Giesl, Markus Bläser and Johannes Lengler for joining
my thesis committee, as well as for interesting discussions and helpful comments.

This work has been supported by the International Max Planck Research School and
by the German Research Foundation (DFG), in particular by the German Transregional
Collaborative Research Center SFB/TR 14 AVACS. I am thankful for their financial
support.

Finally, I thank the (yet to come) readers of this thesis for their interest in my work.
I sincerely hope that you can benefit from it.

ix

Contents

1 Introduction 1
1.1 Saturation-based First-Order Theorem Proving 1

1.2 First-order, Fixed Domain and Minimal Model Semantics 3

1.3 Automated Theorem Proving in Minimal Models 6

1.3.1 Proof by Consistency . 7

1.3.2 Implicit Induction . 8

1.3.3 The Saturation Approach . 9

1.3.4 The Completion Approach . 11

1.3.5 The Description-specific Approach 13

1.4 Contributions of This Thesis . 13

1.4.1 Superposition for Fixed Domain and Minimal Model Reasoning . . 14

1.4.2 Disunification and Predicate Completion 15

1.4.3 A Superposition-based Decision Procedure for DIG Interpretations 16

1.4.4 Reducing the Decidability of Minimal Model Validity
to Superposition-based First-order Decidability 17

2 Preliminaries 19
2.1 Mathematical Foundations . 19

2.2 Syntax . 21

2.2.1 Terms and Formulas . 21

2.2.2 Constrained Clauses . 24

2.2.3 Substitutions . 25

2.2.4 Term and Clause Orderings . 26

2.2.5 Predicates . 29

2.3 Semantics . 29

2.3.1 Interpretations and Entailment . 29

2.3.2 Semantics of Formulas and Constrained Clauses 30

2.4 Calculi . 35

2.4.1 Inferences, Redundancy and Derivations 35

2.4.2 Soundness, Completeness and Termination 36

3 Disunification and Predicate Completion 39
3.1 Introduction . 39

3.2 Disunification . 41

3.2.1 The Disunification Algorithm PDU 41

3.2.2 Correctness and Termination of PDU 45

xi

Contents

3.3 Predicate Completion . 50

3.3.1 The Predicate Completion Algorithm PC 50

3.3.2 Disunification-based Quantifier Elimination 51

3.3.3 Solved Form Computation . 54

3.3.4 Predicate Completion and Unique Herbrand Models 59

3.4 Decidability of the Satisfiability of Equational Formulas 60

3.5 Implementation . 61

3.6 Conclusion . 65

4 A Superposition Calculus for Fixed Domains 67
4.1 Introduction . 67

4.2 First-Order Reasoning in Fixed Domains 67

4.2.1 The Superposition Calculus for Fixed Domains SFD 68

4.2.2 Model Construction and Refutational Completeness 74

4.2.3 Other Herbrand Models of Constrained Clause Sets 83

4.3 Minimal Model Reasoning . 87

4.3.1 Relations between First-order, Fixed Domain and Minimal Model
Validity . 88

4.3.2 The Inductive Superposition Calculus IS(H) 92

4.4 Conclusion . 98

5 A Superposition-Based Decision Procedure for Minimal Model Validity 101
5.1 Introduction . 101

5.2 The Constrained Ordered Resolution Calculus ORFD 103

5.3 Clausal Representations of Disjunctions of Implicit Generalizations 105

5.3.1 Disjunctions of Implicit Generalizations 105

5.3.2 Clausal Representations . 106

5.3.3 Completed Clausal Representations 108

5.4 Decidability Results . 110

5.4.1 Decidability of Ground Queries . 111

5.4.2 Decidability of DIG Equivalence 111

5.4.3 Decidability of Formula Entailment 115

5.5 Implementation . 116

5.6 Conclusion . 120

6 Generic Superposition-based Decidability of Minimal Model Validity 121
6.1 Introduction . 121

6.2 Preliminaries . 124

6.2.1 Substitution Expressions and Regular Constraint Clauses 124

6.2.2 Semantics of Regular Constraint Clauses 125

6.2.3 Inferences and Redundancy . 127

6.3 A Resolution Calculus for Regular Constraint Clauses 128

6.3.1 Melting and the Calculus ORM . 129

6.3.2 Soundness and Completeness of ORM 133

xii

Contents

6.3.3 Termination of ORM . 135
6.4 Generalized Substitutions as Clause Sets 139

6.4.1 Equivalence of Substitution Expressions and Clause Sets 142
6.4.2 Predicate Completion for Substitution Expressions 148

6.5 Decidability of Minimal Model Validity 151
6.6 Conclusion . 152

7 Conclusion 155
7.1 Resumé . 155
7.2 Outlook . 156

Bibliography . 159

Index . 167

xiii

List of Figures

1.1 The Elevator Example . 4
1.2 The Elevator Example: Alternative Models 5

2.1 Negation Normal Form Transformation Rules 32

3.1 Normalization Rules of the Calculus PDU 42
3.2 Rules of the Calculus PDU for both Free and Ultimately Periodic Sorts . . 43
3.3 Rules of the Calculus PDU for Ultimately Periodic Sorts 44
3.4 Solved Form Conversion Rules . 55

4.1 Rules of the Calculus SFD (1) . 70
4.2 Rules of the Calculus SFD (2) . 71
4.3 The Additional Rule of the Calculus SFD+ 84
4.4 The Induction Rule . 95

5.1 Rules of the Calculus ORFD . 104

6.1 The Ordered Query Resolution Rule . 130
6.2 The Melting Rule . 131

xv

1 Introduction

In this thesis, I propose the first superposition calculus that can explicitly represent
existentially quantified variables in computations with respect to a given fixed domain,
giving rise to various new decision procedures for minimal model validity. The thesis is
structured as follows: To give the reader an overview of the contents, I will in Chapter 1
present a historical background and an introduction to the problem of theorem proving
with respect to a fixed domain or minimal model semantics as well as a synopsis of
the contributions of this work. For this chapter, I assume that the reader is familiar
with basic concepts of first-order logics, like the notions of first-order formulas and their
(Herbrand) models. In Chapter 2, I will then thoroughly define all notions needed in
this thesis. This includes both a roundup of the syntax and semantics of first-order
logics and an explanation of concepts that are newly introduced in this thesis. The main
contributions are presented in Chapters 3–6. Finally, I will in Chapter 7 give a resumé
and an outlook on possible future developments.

1.1 Saturation-based First-Order Theorem Proving

Among the many ways to prove theorems in first-order logics, the one that has proven
most useful for automation is refutational theorem proving , or reductio ad absurdum.
In this style of reasoning, it is proved that a hypothesis φ is valid in all models of a
finite set N of formulas, written N |= φ, by showing that N ∪ {¬φ} is contradictory.
For first-order reasoning, the formulas can without loss of generality be assumed to be
in clause normal form, i.e. in the form ∀x1, . . . , xk.A1 ∧ . . . ∧ Am → B1 ∨ . . . ∨ Bn, or
A1, . . . , Am → B1, . . . , Bn for short.

For ground (i.e. variable-free) clauses, unsatisfiability can be decided by saturation,
i.e. by systematically adding implied ground clauses: Consider the following inference
rules, where Γ stands for a conjunctively interpreted and ∆ for a disjunctively interpreted
list of atoms:

Ground Resolution:
Γ1 → ∆1, A Γ2, A→ ∆2

Γ1,Γ2 → ∆1,∆2

Ground Factoring:
Γ→ ∆, A,A

Γ→ ∆, A

This notation means that if the clauses above the line (the premises) are elements of the
current clause set, then the one below the line (the conclusion) can be added. A set of

1

1 Introduction

equation-free ground clauses is unsatisfiable if, and only if, a contradiction, namely the
empty clause, can be derived using these two inference rules.

For general clauses, the problem of deciding unsatisfiability can be reduced to the
ground case: Herbrands theorem (Herbrand, 1930) states that a finite set of clauses is
unsatisfiable if, and only if, there is a finite set of ground instances of these clauses that
is unsatisfiable. Of course, blindly guessing the ground instances needed to derive a con-
tradiction is infeasible, because there are usually infinitely many such ground instances.
A first breakthrough to overcome this problem was the work by Robinson (1965). He
showed how to interleave the instance-generation process with the derivation of a con-
tradiction, namely by performing inferences directly on non-ground clauses that are only
instantiated on a by-need basis along the way: A ground instance Γ → ∆, A can only
contribute to the refutation if there is another ground instance in which A appears on
the left hand side of the implication. He showed that if a set of clauses is unsatisfiable,
then the empty clause can be derived by saturating N with the following two inference
rules:

Resolution:
Γ1 → ∆1, A1 Γ2, A2 → ∆2

(Γ1,Γ2 → ∆1,∆2)σ

Factoring:
Γ→ ∆, A1, A2

(Γ→ ∆, A1)σ

The unsatisfiability of full first-order clauses is not decidable, however it is semi-
decidable and the rules Resolution and Factoring are refutationally complete: If a set N
of clauses is inconsistent, then the empty clause can be derived using saturation with
those two rules. But still, there is one important predicate which the resolution calculus
cannot handle well: equality. The reason is that, if the axioms for equality (reflexivity,
commutativity, transitivity and monotonicity) are explicitly added to the input, the
search space explodes. A better way of treating equality is by integrating it directly into
the calculus in the form of specialized rules like Paramodulation (Robinson and Wos,
1969; Brand, 1975):

Paramodulation:
Γ1 → ∆1, l'r Γ2 → ∆2, A2[l′]

(Γ1,Γ2 → ∆1,∆2, A2[r])σ

(and similarly if A2 is in the antecedent of the clause), where σ = mgu(l, l′) unifies l and a
non-variable subterm l′ of A2. The meaning of this rule is that an occurrence of l′σ in A2

can be replaced by rσ if the side conditions of the equation l'r are fulfilled. This joins
multiple applications of the monotonicity and possibly commutativity of equality in a
single rule application and eliminates the need for the explicit application of the equality
axioms. The combination of Paramodulation, Resolution, Factoring and Reflexivity is
refutationally complete for clauses with equality, but although Paramodulation provides

2

1.2 First-order, Fixed Domain and Minimal Model Semantics

a serious improvement over just adding the axioms for equality, this rule is still too
prolific to provide a decision procedure.

This problem still arises if only unit equations are considered, i.e. clauses of the form
→ s't. Knuth and Bendix (1970) introduced the idea of driving the computation
from more complicated to simpler equations: They used a term ordering � to orient
the equations and only enable Paramodulation inferences between the larger sides of
equations. However, equations like f(x, y)'f(x, z) cannot be oriented, so the algorithm
fails for such equations. The solution in this context is unfailing completion (Hsiang and
Rusinowitch, 1987; Bachmair, Dershowitz, and Plaisted, 1989), an extension of Knuth-
Bendix completion the main element of which is that not the equations themselves but
only the instances needed for an inference must be oriented. Then an inference between
equations → l'r and → s[l′]'t is possible if lσ � rσ and sσ � tσ.

Combining this ordering-based idea with the treatment of full clauses by Paramod-
ulation yields the most successful saturation-based calculus developed so far: (Strict)
Superposition (Bachmair and Ganzinger, 1990, 1991, 1994; Nieuwenhuis and Rubio, 2001;
Weidenbach, 2001), which restricts all inferences to maximal sides of maximal equations
in each clause. Moreover, so-called redundant clauses that are implied by strictly smaller
clauses need not be considered as premises to an inference. The success of Superposition
is in particular demonstrated by Superposition-based calculi effectively deciding many
known decidable classical subclasses of first-order logic, e.g. the monadic class with equal-
ity (Bachmair et al., 1993), the guarded fragment with equality (Ganzinger and Nivelle,
1999) and the Bernays-Schönfinkel class (Hillenbrand and Weidenbach, 2007), as well
as a number of first-order classes that have been proven decidable for the first time by
means of the Superposition calculus (Nieuwenhuis, 1996; Jacquemard et al., 1998; Wei-
denbach, 1999; Jacquemard et al., 2006), for none of which there are decision procedures
based on Resolution calculi in the style of Robinson or Paramodulation calculi in the
style of Robinson and Wos.

1.2 First-order, Fixed Domain and Minimal Model Semantics

The calculi presented so far derive conclusions φ that are provably valid in every model
of a clause set N . This is, however, often too coarse an approach: For a number of
applications, this semantics is not sufficient to determine an intended interpretation
precisely and hence to prove all properties of interest. It is often essential to work more
fine-grained, in the sense that the focus lies on statements that only hold in selected
models of the premises.

Example 1.1 (Two Elevators)
Different semantics are of relevance, for example, in proving properties of computer
systems. Consider the simple example of a building with three floors (Figure 1.1). The
bottom ground floor and the top restaurant floor of the building are open to the public
whereas the middle floor is occupied by a company and only open to its employees. In
order to support this setting, there are two elevators a and b in the building. Elevator a
is for the employees of the company and stops on all three floors whereas elevator b is for

3

1 Introduction

Restaurant

Company

Ground


   `````̀

p q

a b

Figure 1.1: The Elevator Example

visitors of the restaurant, stopping solely on the ground and restaurant floors. Initially,
there is a person p in elevator a and a person q in elevator b, both on the ground floor.
Leaving out temporal aspects, the system can be modeled by three binary predicates
G, C, R for the different floors, respectively, that take as arguments an elevator and a
person. For example, G(a, p) means that person p stands in elevator a on the ground
floor. The initial state of the system and the potential upward moves are modeled by
the clause set NE consisting of the following clauses:

Clause Meaning

→G(a, p) Person p is on the ground floor in elevator a.
→G(b, q) Person q is on the ground floor in elevator b.

G(a, x)→C(a, x) Anyone on the ground floor in elevator a
can reach the company floor with this elevator.

C(a, x)→R(a, x) Anyone on the company floor in elevator a
can reach the restaurant floor with this elevator.

G(b, x)→R(b, x) Anyone on the ground floor in elevator b
can reach the restaurant floor with this elevator.

Some structural properties of the system actually hold for all models of NE , i.e. all
buildings described by theses clauses. Some of these models are depicted in Figures 1.1
and 1.2. For example, whenever any person (not necessarily p or q) sits on the ground
floor in elevator a, they can reach the restaurant floor, i.e. NE |= ∀x.G(a, x)→ R(a, x).

Other properties do not hold for every model: In the described system, every elevator
can reach the restaurant floor. However, the given clauses allow for the existence of, say,
a third elevator c for use by the company management that only connects the ground
and company floors as in the right model in Figure 1.2. Of course, this third elevator was
never mentioned in the system description. To exclude models containing such spurious
elements, reasoning must be constrained to elements of the given domain, in this case
to {a, b, p, q}. When models are considered in which only these two persons and two
elevators exist, the restaurant floor is indeed reachable by all elevators, i.e. the formula
∀x, y.G(y, x)→ R(y, x) holds in all these models.

But even if the domain is restricted to {a, b, p, q}, the description does not completely
model the system: There are models of NE in which elevator b also connects all three

4



1.2 First-order, Fixed Domain and Minimal Model Semantics

   
   `````̀

p q

a b

Restaurant

Company

Ground


   `````̀

p q

a b c

Figure 1.2: The Elevator Example: Alternative Models

floors, e.g. the left model in Figure 1.2. The intended semantics of the elevator sys-
tem, however, coincides with the so-called minimal model of NE , where none but the
specified elevator movements are possible. To prove that elevator b cannot reach the
company floor, all non-minimal models have to be excluded as well, such that only the
one model remains for which the description was designed. In the remaining model, only
the following ground atoms are true: G(a, p), C(a, p), R(a, p), G(b, q), R(b, q).

Formally, models that are restricted to the given fixed domain Σ in this sense are the
Herbrand models of N , i.e. models the universe of which consists of the terms built over
Σ. The validity of φ in all such models of N is denoted by N |=Σ φ and called fixed
domain validity . The intended semantics for system descriptions is the one where only
the minimal Herbrand model (minimal with respect to set inclusion) of N is considered,
denoted by IN . In this model, intuitively every ground atom that is not explicitly made
true by the clauses in N is false. If e.g. N = {P (a)} and the signature contains two
constants a and b, then P (b) is false in IN . Validity of φ in this unique model is written
IN |= φ or alternatively N |=Ind φ and called minimal model validity . The notation |=Ind

stems from the alternative widespread designation of minimal model validity as inductive
validity . (If the clauses in N are not Horn, i.e. contain more than one positive literal, the
minimal model is not necessarily unique. For example, the single clause { → P (a), P (b)}
has the two minimal models {P (a)} and {P (b)}. The different minimal models can be
distinguished by additionally fixing a term ordering that in turn induces an ordering on
the models. For the sake of a more concise presentation, I ignore this complication for
the moment.)

For the models that are considered in each of the three semantics minimal model
semantics, fixed domain semantics, and first-order semantics, the following relations
hold:

IN ∈ {I | I is a Herbrand interpretation over Σ and I |= N} ⊆ {I | I |= N} .

Conversely, the following holds for the sets of formulas that are valid with respect to the
different semantics:

{φ | N |=Ind φ} ⊇ {φ | N |=Σ φ} ⊇ {φ | N |= φ}.

5



1 Introduction

In the simple elevator example, all appearing function symbols are constants and the
Herbrand domain is finite. Hence the quantification over all elements of the domain,
i.e. the restriction to |={a,b,p,q}, could be encoded explicitly by changing a query like
∀y, x.G(y, x) → R(y, x) to ∀y, x.(y'a ∨ y'b) ∧ (x'p ∨ x'q) ∧ G(y, x) → R(y, x). A
property extended in this way is valid in all models of NE if, and only if, it is valid in
all Herbrand models of NE , i.e. fixed domain reasoning can be reduced to first-order
reasoning in this case. This reduction is, however, not possible when the domain is
infinite.

This is exemplified by the following small example:

Example 1.2 (The “One Greater Than” Relation)
Consider the clause set NGT = {→ GT(s(0), 0), GT(x, y) → GT(s(x), s(y)) }. The
minimal model INGT

in this example consists of all atoms GT(t1, t2) where t2 is a ground
term over the signature Σnat = {s, 0} and t1 = s(t2). So the domain of INGT

is isomorphic
to the naturals and the interpretation of GT in INGT

is the “one greater than” relation.
Consider some formulas that are valid with respect to the different semantics:

• The formula GT(s(s(0)), s(0)) can be derived by resolution from the clauses in
NGT, so it is valid in every model of NGT.

• The formula ∀x.GT(s(x), x) is valid in every Herbrand model of NGT over the
domain Σnat. However, it is not valid in every model of NGT, for example not in
a model containing an additional copy a, s(a), s(s(a)), . . . of the natural numbers
such that GT(t1, t2) never holds if t1, t2 are elements of this copy.

• The formula ∀x.¬GT(x, x) holds in the minimal model of NGT, because no natural
number is one greater than itself. It does not hold in the model over the natural
numbers in which GT is interpreted as the “one greater than or equal to” relation.

So the following validity relations hold for the different formulas and semantics:

NGT |= GT(s(s(0)), s(0)) NGT |=Σnat GT(s(s(0)), s(0)) NGT |=Ind GT(s(s(0)), s(0))
NGT 6|= ∀x.GT(s(x), x) NGT |=Σnat ∀x.GT(s(x), x) NGT |=Ind ∀x.GT(s(x), x)
NGT 6|= ∀x.¬GT(x, x) NGT 6|=Σnat ∀x.¬GT(x, x) NGT |=Ind ∀x.¬GT(x, x)

1.3 Automated Theorem Proving in Minimal Models

Minimal model (|=Ind) and fixed-domain (|=Σ) theorem proving are more difficult prob-
lems than first-order (|=) theorem proving: It follows from Gödel’s incompleteness theo-
rem (Gödel, 1931) that minimal model validity is neither decidable nor semi-decidable,
and the same holds for fixed domain validity. In fact, the standard model of Peano
arithmetic can be encoded in a fixed domain setting as follows: Given the signature
ΣPA = {s, 0,+, ·}, let NPA consist of the clauses x + 0'x and x + s(y)'s(x + y) defin-
ing addition, x · 0'0 and x · s(y)'(x · y) + x defining multiplication, and s(x)6'0 and
s(x)'s(y) → x'y stating that all numbers are different. Then NPA has exactly one
Herbrand model over ΣPA, and this model is isomorphic to the natural numbers. So an

6



1.3 Automated Theorem Proving in Minimal Models

arithmetic formula φ is valid over the natural numbers if, and only if, NPA |=Ind φ if,
and only if, NPA |=ΣPA

φ.
In spite of this complication, there are several approaches to automated theorem

proving with respect to the minimal model of a set of clauses. They are either targeted
at a decidable fragment of the problem or they sacrifice completeness or termination
guarantees to be as widely applicable as possible. In what follows, I will give a short
overview of some of the most important such approaches.

1.3.1 Proof by Consistency

Classically, the first extensively studied interpretations given as minimal models of clause
sets were data type specifications. To manually prove properties of such specifications,
structural induction is usually the method of choice. However, induction always requires
non-trivial steps like choosing the induction variables, a suitable problem instance to
apply the induction hypothesis to, and intermediate lemmas required for the induction
to work. Hence explicit induction usually requires user interaction.

To automatize proofs that would normally use induction, several authors like Musser
(1980), Goguen (1980), Lankford (1981) and Huet and Hullot (1980) proposed the al-
ternative approach of proof by consistency . In the terminology of Musser (1980), proofs
are performed as follows: Specifications of data types can be expressed by a finite set
of orientable equations, i.e. by a rewrite system. If equality can be completely defined ,
i.e. if an equality predicate eq and constants ctrue and cfalse can be added to the minimal
model I of the specification such that

I |= t1't2 ⇐⇒ I |= eq(t1, t2)'ctrue and

I |= t1 6't2 ⇐⇒ I |= eq(t1, t2)'cfalse ,

(where t1, t2 are not true, false or eq(u1, u2)) then a set E of equations holds in the
minimal model of the specification if, and only if, adding E to the original equations
and completing the equations by using the Knuth-Bendix procedure does not lead to an
inconsistency (i.e. an equality true'false).

Example 1.3
For the data type of integers with constructors 0 and s, the following equations form a
complete definition of equality:

eq(x, x)'ctrue

eq(s(x), 0)'cfalse

eq(0, s(x))'cfalse

eq(s(x), s(y))'eq(x, y)

The equation s(s(0))'s(0) can be disproved by adding it to the above clauses and
completing the set: Overlapping the new equation with eq(s(x), s(y))'eq(x, y) leads
to eq(s(0), s(y))'eq(s(0), y). A further overlap of this equation with the first equation
leads to eq(s(0), 0)'ctrue, which reduces to cfalse'ctrue using the second equation.

7



1 Introduction

The requirement of complete definitions of equality is quite strong: Even simple sets
of equations like {s(p(x))'x, p(s(x))'x} cannot be completely defined in a finite way.
Nevertheless, replacing induction by a completion procedure has become the base of
a variety of approaches to minimal model theorem proving. In fact, all approaches
presented in the following sections have their roots in these ideas.

1.3.2 Implicit Induction

Explicit induction cannot be automatized, but a related concept called implicit induction
can: In implicit induction, the induction schema is not predefined, but an individual
schema (which, in essence, is a finite representation of the minimal model) is computed
for each problem that then serves as the basis of a proof by consistency.

Well-known methods in the area of implicit induction are the test set (Bouhoula and
Rusinowitch, 1995; Bouhoula and Jouannaud, 1997; Bouhoula and Jacquemard, 2008;
Kapur, Narendran, and Zhang, 1991), cover set (Zhang, Kapur, and Krishnamoorthy,
1988), and rewriting methods (Reddy, 1990). Implicit induction led to the development
of several dedicated tools for minimal model theorem proving, among them the test
set-based RLL (Kapur and Zhang, 1988) and the cover set-based SPIKE (Bouhoula,
Kounalis, and Rusinowitch, 1992), and to combinations of implicit induction methods
with existing decision procedures (Kapur and Subramaniam, 2000; Giesl and Kapur,
2003; Falke and Kapur, 2006). In this short overview, I will concentrate on the test set
method.

Roughly, implicit induction using test sets works as follows: To prove that a conjecture
equation t1't2 holds in the minimal model of a set of equations given as a rewrite
system R, a test set for R is computed. A test set consists of a finite set of terms that
describe the ground terms that are irreducible with respect to the R. Then the induction
variables of the conjecture are instantiated with these terms. Finally, it is proved that
the instantiated conjectures follow from the specification and smaller instances of the
conjecture by showing the consistency of the overall set.

Example 1.4 (Bouhoula et al., 1995)
Consider the positive natural numbers with a subtraction operator (with cut-off) speci-
fied by the following rewrite system:

x− 0 _ x
0− x _ 0

s(x)− s(y) _ x− y

A test set for this specification is {0, s(x)}. To prove that the equation x− x' 0 holds
in the minimal model of this specification, the variable x in this equation is instantiated
with the elements of the test set, and these instances are then checked by simplification.

The instance 0 − 0' 0 is directly reduced to the trivial identity 0' 0. The instance
s(x)− s(x)' 0 is reduced to the same trivial identity using the rule s(x)− s(y) _ x− y
and the induction hypothesis x− x _ 0. Hence the equation is valid.

8



1.3 Automated Theorem Proving in Minimal Models

1.3.3 The Saturation Approach

For the analysis of more general representations of interpretations, it is useful to no-
tice that there is a strong connection between saturation with Superposition and the
minimal model semantics: The model IN can explicitly be constructed from a satu-
rated and consistent clause set N . For Horn clauses, this construction roughly takes the
form of iteratively including an atom A in the model when there is a ground instance
B1, . . . , Bn → A of an element of N for which all antecedent atoms B1, . . . , Bn are al-
ready known to be valid in the model. If B1, . . . , Bn → A is the smallest clause from
which a new atom can be derived, it is said to produce A. The technical details of the
model construction will be explained in Section 2.3.2.

Its success in the first-order world raises the question whether Superposition can also
be employed for reasoning with respect to the minimal model semantics without the
use of induction. Based on initial work by Stuber (1991), Ganzinger and Stuber (1992)
addressed exactly this question. In a first-order world, the consistency of N ∪ {C} is
decided by computing a saturation N∗ of N ∪{C} and checking whether this saturation
contains the empty clause. If it does and if N itself is not contradictory, then N |= ∃~x.¬C
and hence also N |=Ind ∃~x.¬C. On the other hand, if N∗ does not contain the empty
clause, this does not necessarily mean that IN is a model of N∗:

Example 1.5
Consider a unary function symbol s, a constant 0 and a binary relation GE, intended to
describe the “greater than or equal to” relation on natural numbers. Let NGE contain
the following two clauses:

(1) →GE(x, 0)
(2) GE(x, y)→GE(s(x), s(y))

This clause set is saturated (for every partial ordering � for which G(s(x), s(y)) �
G(x, y)) and the model INGE is indeed isomorphic to the natural numbers with the
less-or-equal relation. If one of the clauses

C1 GE(0, s(0))→
C2 →GE(0, s(0))
C3 →GE(s(0), s(0))

is added, then N ∪ {Ci} is still saturated. However, adding one of these clauses affects
the minimal model of the overall clause set in different ways:

The clause C1 is purely negative, so it does not contribute to the minimal model and
INGE∪{C1} = INGE , which implies NGE |=Ind C1.

The clause C2 adds the atom GE(0, s(0)) to the minimal model, i.e. INGE∪{C2} )
INGE , which implies NGE 6|=Ind C2.

The clause C3 does not fit nicely into this picture: It does contribute the atom
GE(s(0), s(0)) to the minimal model, but this atom would otherwise have been pro-
duced by clause (2) anyway. So although C3 is productive, INGE∪{C3} = INGE and
NGE |=Ind C3.

9



1 Introduction

The idea of Ganzinger and Stuber was to try and exclude the possibility that N∗ \N
contains any clauses for which they cannot decide productivity. They made use of two
ingredients:

(i) They assumed that the validity of ground clauses in IN was decidable by external
means. They claim that this is a reasonable assumption, since otherwise theorem
proving for the minimal model of N would be hopeless anyway. (I will in this
thesis discard that prerequisite.) Decidability of ground clauses can be achieved
by restricting N to universally reductive clauses, i.e. clauses that are either purely
negative or that have a unique maximal positive literal (with respect to the term
ordering used for Superposition) containing all variables of the clause.

(ii) They used negative literal selection (Bachmair and Ganzinger, 1994). This is a well-
known technique in first-order saturation, where negative literals of each clause can
be selected, and inferences using such a clause must work on one of the selected lit-
erals. This does not affect refutational completeness, and if a clause in a saturated
set contains a selected literal, then it cannot be productive.

So the key was to make all derived non-ground clauses contain a selected literal. Since
positive clauses like→P (x) do not contain any selectable literals, Ganzinger and Stuber
artificially added negative literals:

(i) They introduced a new unary predicate Gnd supposed to hold for all ground terms.
The set N was then enriched by the clause set

NGnd = {Gnd(x1), . . . ,Gnd(xn)→ Gnd(f(x1, . . . , xn)) | f is a signature symbol} .

(ii) Finally, the conjecture C = Γ→ ∆ was changed to

Gnd(C) = Gnd(y1), . . . ,Gnd(ym),Γ→ ∆ ,

where the yi are the variables of C.

This procedure is sound in the sense that N |=Ind ∃~x.¬C if, and only if, N ∪NGnd |=Ind

∃~x.¬Gnd(C). By selecting one of the Gnd literals in the antecedent of Gnd(C) and every
derived clause, it can be avoided that any derived non-ground clause is productive.

Example 1.6
Consider a unary function symbol s, a constant 0 and a binary relation GE, intended to
describe the “greater than or equal to” relation on natural numbers. Let NGE contain
the following two clauses:

(1) →GE(x, 0)
(2) GE(x, y)→GE(s(x), s(y))

The model INGE
is indeed isomorphic to the natural numbers with the less-or-equal

relation. The set of ground terms is defined by

10



1.3 Automated Theorem Proving in Minimal Models

(3) →Gnd(0)
(4) Gnd(x)→Gnd(s(x))

To prove that the relation is total, i.e. for all x, y it holds that GE(x, y) or GE(y, x), the
clause

(5) Gnd(x),Gnd(y)→GE(x, y),GE(y, x)

is added. The underlining indicates that the atom Gnd(x) is selected in this clause.
Each of the two clauses (3) and (4) can be resolved with the selected atom in clause (5),
which results in the following two clauses:

(6) Gnd(y)→GE(0, y),GE(y, 0)

(7) Gnd(x),Gnd(y)→GE(s(x), y),GE(y, s(x))

The first clause is redundant because of clause (1) and does not have to be considered
for further inferences. The clauses (3) and (4) can be resolved with the selected atom in
clause (7), which results in:

(7) Gnd(x),→GE(s(x), 0),GE(0, s(x))
(8) Gnd(x),Gnd(y)→GE(s(x), s(y)),GE(s(y), s(x))

The first clause is redundant because of clause (1) and the second clause is redundant
because of clauses (2) and (5). There are no additional inferences between non-redundant
clauses, i.e. the clause set {(1), . . . , (8)} is saturated. Since all derived clauses in this set
contain a selected atom, they are not productive, which means that the relation LE is
indeed total in INLE

, i.e. NLE |=Ind GE(x, y) ∨GE(y, x)

The greatest drawback of this approach is the requirement to select a negative Gnd
literal, because this selection effectively makes the algorithm often not terminate. The
reason for this is that the selection basically initiates an enumeration of all ground
instances of a clause. For example for the conjecture→P (x) and empty N , all the ground
clauses →P (s(. . . s(0) . . .)) are successively derived. In Example 1.6, this enumeration
could be avoided by a carefully chosen selection strategy, it is not known how to derive
this strategy automatically. In particular, no decidability results based on approach by
Ganzinger and Stuber have been known so far.

1.3.4 The Completion Approach

The main problem with the approach by Ganzinger and Stuber is the that an enumer-
ation of all ground terms is used to decide whether the derivation always talks about
IN . Comon and Nieuwenhuis (2000) started from a different angle: If the initial clause
set is consistent, then every model of the final saturated set is also a model of the (also
saturated) input set N . If N has at most a single Herbrand model, then this property is
clearly maintained throughout the derivation. Hence Comon and Nieuwenhuis propose
to complete N , i.e. to add a new set N ′ of clauses such that IN is the only Herbrand
model of N ∪ N ′. Then a fair saturation of N ∪ N ′ ∪ {C} produces (in the limit) an
empty clause if, and only if, N 6|=Ind C.

11



1 Introduction

Example 1.7
Consider again the “greater than or equal to” relation on natural numbers from Exam-
ple 1.6 described by the clause set NGE containing the following two clauses:

(1) →GE(x, 0)
(2) GE(x, y)→GE(s(x), s(y))

Note that the literal GE(s(x), s(y)) is maximal in the second clause, so every inference
with clause (2) has to use this literal. A completion of this clause set is given by the
following clauses:

(3) GE(0, s(y))→
(4) GE(s(x), s(y))→GE(x, y)

This completion is computed using a predicate completion procedure that will be the
central theme of Chapter 3. Note that there are no non-trivial inferences between the
clauses (1)–(4). To prove again that the relation is total, i.e. for all x, y it holds that
GE(x, y) or GE(y, x), the clause

(5) →GE(x, y),GE(y, x)

is added. There are two possible inferences using (without loss of generality) the left
literal of clause (5), namely either with clause (3) or (4), leading to:

(6) →GE(s(y), 0)
(7) →GE(x, y),GE(s(y), s(x))

Clause (6) is an instance of (1) and can be ignored, and the only remaining inference,
between clauses (7) and (4), leads back to clause (5). So the set {(1), . . . , (7)} is sat-
urated and, since it does not contain the empty clause, consistent. This means that
{(1), . . . , (7)} has a Herbrand model over {s, 0}, and since {(1), . . . , (4)} has only one
such model, namely INGE

, in particular clause (5) must be valid in INGE
. This means

that NGE |=Ind ∀x, y.GE(x, y) ∨GE(y, x) is proved.

While this approach is more likely than the one of Ganzinger and Stuber to result
in a terminating procedure once the completion has been computed, it still suffers from
several shortcomings:

(i) Completion as presented by Comon and Nieuwenhuis only works if all clauses in
N are universally reductive and Horn.

(ii) Completion is also restricted to clause sets in which no positive equations occur.

(iii) Even if the completion N ′ of N is computable, it does not inherit nice properties
from N : Even if N is Horn and non-equational, the same does not hold for IN .
For example, the clause set {P → Q(x, y), → Q(x, x)} is completed by the clause
Q(x, y) → P, x'y, which is not Horn and contains an equation. So termination
arguments for N ∪ {C} do not carry over to N ∪N ′ ∪ {C}.

Due to these problems, the approach by Comon and Nieuwenhuis also did not give rise
to new decidability results. However, I will use the idea of completion in settings where
suitable extensions of conditions (i) and (ii) are met and refine the idea of completing
the input N in such a way that the problem (iii) vanishes.

12



1.4 Contributions of This Thesis

1.3.5 The Description-specific Approach

The previously mentioned approaches all try to tackle model descriptions of a maximal
variety. When the range of descriptions is reduced, decision procedures become more
easily available. I will concentrate here on two types of descriptions:

A Herbrand interpretation can be regarded as a (usually infinite) set of ground atoms.
The most natural finite representations of Herbrand models are finite sets of possibly non-
ground atoms, so-called Atomic Representations of Term Models (ARMs), representing
the interpretation where all ground instances of these atoms hold. For example, the ARM
{P (0), P (s(s(x))} denotes the interpretation containing all atoms of the form P (0) or
P (s(s(t))), where t is a ground term over s and 0.

To examine more expressive interpretations, Lassez and Marriott (1987) studied so-
called Disjunctions of Implicit Generalizations, which are sets of non-ground atoms each
of which is equipped with a set of restriction atoms. For example, a single implicit gener-
alization might take the form P (x)/{P (0), P (s(s(x)))}, which denotes the interpretation
where all instances of the left hand side P (x) of this expression hold, except those that
are instances of an atom on the right hand side, i.e. of P (0) or P (s(s(x))). In this
example, this leaves only the ground atom P (s(0)).

For both kinds of representations, several decidability results are known: Gottlob and
Pichler (2001) showed that the validity of a clause in an interpretation represented by
an ARM is decidable, as is the equivalence of two ARMs. Fermüller and Pichler (2005;
2007) proved the same results for DIGs.

The methods used to derive these decidability results are specialized for the given
problems, and I will not detail them here. However, I will revisit both types of rep-
resentations in this thesis: Taking a different approach, namely a specialization of an
algorithm in the spirit of Comon and Nieuwenhuis to DIGs, I will extend the mentioned
decidability results and show the decidability of the validity of more expressive formula
classes.

1.4 Contributions of This Thesis

In this thesis, I extend Superposition to a sound and refutationally complete calculus
for the fixed domain semantics. The algorithm can handle equality and is not restricted
to clauses of any special syntactic form. Based on an additional induction rule, I further
extend the calculus to reason over minimal models. I also show how the calculus can
be used as a decision procedure for validity in interpretations that are represented by
ARMs and DIGs, extending the fragment for which validity in such interpretations is
known to be decidable. Finally, I present a generic method to derive minimal model
decidability results for Horn clauses over signatures of at most unary function symbols
from saturation-based first-order decidability results. All these calculi use variants of
disunification and predicate completion. I extend disunification and predicate comple-
tion accordingly and justify the initial use of disunification in predicate completion that
was proposed by Comon and Nieuwenhuis. The contributions of this thesis are detailed
in the following sections.

13



1 Introduction

1.4.1 Superposition for Fixed Domain and Minimal Model Reasoning

Conceptual problems in using Superposition for fixed domain and minimal model reason-
ing arise when a conjecture contains both universally and existentially quantified vari-
ables. In this case, Superposition cannot be used for fixed domain and minimal model
reasoning any more: Universally quantified conjectures that become existentially quanti-
fied after negation cannot be handled by standard Superposition because Superposition
works only on universally quantified clauses. The usual remedy for this problem in first-
order reasoning is to Skolemize the existential variables. But as soon as this happens,
the computation no longer works over the initial signature Σ, but over Σ ∪ {f1, . . . , fn},
where f1, . . . , fn are the introduced Skolem functions. This approach is in general not
faithful to the problem: In the Elevator Example 1.1, NE |={a,b,p,q} ∀y.∃x.G(y, x),
i.e. there is a person in every elevator on the ground floor (namely p in elevator a
and q in elevator b), but the negation ∃y.∀x.¬G(y, x) becomes ∀x.¬G(c, x) after Skolem-
ization, where c is the fresh Skolem constant introduced for y. This formula corresponds
to the query ∃x.G(c, x) which does not hold in the minimal model INE because there is
no elevator c in this model. In particular, the approach is not refutationally complete:
Even if N |=Σ φ, the empty clause cannot always be derived.

This inability to Skolemize leads to another problem: If existential quantification is
somehow incorporated into the notion of clauses, the scope of existential quantifiers
must not be restricted to single clauses but they must range over the whole clause set.
Otherwise a calculus for clauses with existential variables cannot be complete: Consider
for example the unsatisfiable set {P (x)→Q(x), P (x),Q(x)→, ∃y.→P (y)}. Resolution
of the first and third clauses yields ∃z.→Q(z), and resolution of this clause with the
second one yields ∃w.P (w)→. But a contradiction can only be derived by keeping track
of the fact that w can be instantiated by the same value as y.

In Chapter 4, I show how to address these complications by explicitly integrating
existential variables (the scope of which ranges over a whole clause set) directly into
the calculus. To this end, Skolemization is avoided; instead, clauses are enriched by
constraints that keep track of instantiations of the existential variables. For exam-
ple, the negated conjecture in the example above results in the constrained clause
v'y ‖G(y, x)→ with existential variable v. This constrained clause represents the for-
mula ∃v.∀x, y. v'x → G(y, x). The extended notion of constrained clauses gives rise
to the Superposition calculus SFD for fixed domains. In addition to standard first-order
equational reasoning, the inference and reduction rules of this calculus also take care of
the constraint. SFD is sound and refutationally complete for the fixed domain semantics
and queries of the form ∀∗∃∗φ, where φ is quantifier-free (Section 4.2). On a set of
unconstrained clauses, SFD behaves just like first-order Superposition.

A fixed domain unsatisfiability proof of a constrained clause set with SFD in general re-
quires the computation of infinitely many empty clauses, which means that compactness
is lost. This does not come as a surprise because it must be proved that an existentially
quantified clause cannot be satisfied in a term-generated infinite domain. For Exam-
ple 1.2, proving the unsatisfiability of the set NGT ∪ {v'x ‖GT(s(x), x)→} over the
signature {0, s} amounts to the successive derivation of the clauses v'0 ‖�, v's(0) ‖�,

14



1.4 Contributions of This Thesis

v's(s(0)) ‖�, and so on. In order to represent such an infinite set of empty clauses
finitely, an induction rule, based on the minimal model semantics, can be employed
(Section 4.3).

In contrast to previous calculi, SFD is extremely flexible: It is neither restricted to
special model descriptions like DIGs nor to clauses that satisfy a given syntactic property
like universal reductiveness, and it can handle a quantifier alternation, which has not
been possible before.

Most of the results in this chapter have been published as (Horbach and Weidenbach,
2008, 2009e, 2010).

1.4.2 Disunification and Predicate Completion

A set of constrained clauses that is saturated by SFD is Herbrand-unsatisfiable if, and
only if, the constraints of the empty clauses are covering . For example, the constrained
clause set {v'0 ‖�, v's(x) ‖�} is covering for the signature {s, 0} because whatever
value is chosen for the shared existential variable v, an instance of one of the clauses is a
contradiction; for v 7→ s(s(0)), for example, instantiating x by s(0) leads to the instance
s(s(0))'s(s(0)) ‖�, which provides a contradiction. Hence the clause set does not have
a Herbrand model over {s, 0}.

The decision of coverage is a so-called disunification problem. While unification is the
task of finding for an equation s't substitutions σ of the variables in s and t such that
sσ and tσ are syntactically equal, i.e. such that sσ'tσ holds in the free term algebra
T (Σ), disunification is the more general task of finding the instantiations of the free
variables of a given equational formula under which this formula holds in T (Σ). In the
example, the the formula v 6'0∧∀x.v 6's(x) must be considered, which does not have any
solutions in T (Σnat). In a more general framework, instances making the formula valid
in a specific interpretation are computed, for example interpretations in which some
function symbols are interpreted as associative or commutative.

Disunification is also the basic ingredient of predicate completion, the procedure that
Comon and Nieuwenhuis use to guarantee that a given predicative Horn clause set has
a unique Herbrand model. Predicate completion plays an important role in further
developing SFD into a decision procedure for various classes of interpretations in Chap-
ters 5 and 6 (cf. the overview in Sections 1.4.3 and 1.4.4). The clause classes arising in
the development of the decision procedures of Chapter 5 are partially non-Horn and I
extend predicate completion in Section 3.3 to predicative non-Horn clauses sets and to
clause sets containing a simple form of equations (see below). As a side product, I also
give the first correctness proof of the original predicate completion proposed by Comon
and Nieuwenhuis.

The first part of Chapter 3 is devoted to reviewing a disunification algorithm by Comon
and Delor (1994) and extending it to ultimately periodic interpretations. Ultimately
periodic interpretations are Herbrand interpretations in which equations of the form
sl(x)'sk(x) hold, and they occur for example as models of formulas of propositional
linear time temporal logic. As a first application of the extended disunification algorithm,
I prove in Section 3.4 that the satisfiability of equational formulas in ultimately periodic

15



1 Introduction

interpretations is decidable. Considering these interpretations is not essential for the
remainder of this thesis. However, they provide candidates for interpretations in which
also validity of predicative clauses is decidable using a suitable version of SFD. The
presented algorithms have been implemented on top of the automated theorem prover
Spass (Weidenbach et al., 2009). The implementation is described in Section 3.5 and
to my knowledge provides the first publicly available program for disunification and
predicate completion.

The main results of this chapter have been published as (Horbach, 2010).

1.4.3 A Superposition-based Decision Procedure for DIG Interpretations

For special representations of interpretations like DIGs, decision procedures for (minimal
model) validity of clauses do already exist (cf. Section 1.3.5). As a first evidence to the
practical usefulness of SFD, I show in Chapter 5 that a fragment of SFD, the resolution
calculus ORFD, provides a decision procedure on the basis of which all known decidability
results for DIGs can be derived. Moreover, ORFD allows me to extend these results
considerably.

To do so, I first show how to translate DIGs into sets of constrained clauses (Sec-
tion 5.3). Left and right hand sides of a DIG are described separately, for example the
very simple DIG {P (x, y)/{P (a, y), P (x, b)}} over the two-element domain {a, b}, that
describes the interpretation containing only P (b, a), is translated into the clauses

• → Ṗ (x, y) describing the left hand side,

• → P̌ (a, y) and → P̌ (x, b) describing the restrictions, and

• Ṗ (x, y)→ P̌ (x, y), P (x, y) linking the two descriptions.

Then the predicates in this non-Horn clause set are completed using the extended pred-
icate completion algorithm from Chapter 3, which results in a clause set N . The only
Herbrand model of N over the given signature is just the original DIG-represented in-
terpretation. Because this obviously implies that the minimal model and fixed domain
semantics agree for N , ORFD is complete with respect to the minimal model semantics
for N . I show in Section 5.4 how this allows me to recover the known results that the
equivalence of interpretations and the validity of clauses are decidable (cf. Fermüller and
Pichler, 2005, 2007), and how decidability extends to several more expressive classes of
queries, for example queries of the form ∀~x.∃~y.C where C is a clause or queries ∀~x.∃~y.φ
and ∃~x.∀~y.φ where φ is a purely positive or purely negative quantifier-free formula. For
ARMs, i.e. minimal models of finitely many non-ground atoms, I even prove that the
validity of any formula with at most one quantifier alternation is decidable. The calculus
ORFD has also been implemented on top of Spass and the implementation is described
in Section 5.5.

These decidability results have been published as (Horbach and Weidenbach, 2009a,d).

16



1.4 Contributions of This Thesis

1.4.4 Reducing the Decidability of Minimal Model Validity
to Superposition-based First-order Decidability

Superposition terminates on many fragments of first-order logic, thus providing a decision
procedure for these fragments. The similarities between standard Superposition and SFD

raises the question whether similar results can be achieved for minimal model reasoning.
In particular: Is it possible to reduce the (higher-order) problem of minimal model
decidability in a generic way to first-order decidability?

In Chapter 6, I pursue this question. In the presence of clauses with equality, it
is easy to see that termination of Superposition on unconstrained clauses does not
carry over to constrained clauses even for very simple problems. For example, uncon-
strained Superposition terminates on ground unit clauses, but SFD does not terminate on
→s(0)'0 and v'0 ‖�, because it enables the successive derivation of all clauses of the
form v's(. . . (s(0)) . . . ) ‖�. The situation improves considerably when only predicative
clauses are considered. I show in Section 6.3 that, if the description N consists of uncon-
strained predicative Horn clauses and a query of the form ∀x.∃y1, . . . , ym.

∨
i

∧
j Aij (cor-

responding after negation to the constrained clauses ~v'~x ‖Ai1, . . . , Aini → ) is consid-
ered, the termination of Superposition on N∪{A11, . . . , A1m1 →, . . . , An1, . . . , Anmn →}
already almost implies the termination of the calculus SFD on the constrained clause set
N ∪ {~v'~x ‖A11, . . . , A1m1 →, . . . , ~v'~x ‖An1, . . . , Anmn →}. Almost because the only
reason for non-termination is a regular increase in the constraints. This increase can
be captured by an extension of the notion of a constraint to regular expressions like
v's∗(0) and by an additional Melting inference rule. In the example above, Melting
would derive the constrained clause v's∗(0) ‖� from v'0 ‖� and v's(0) ‖�. This
constrained clause comprises all the constrained clauses v's(. . . (s(0)) . . . ) ‖� and ef-
fectively prevents non-termination. I show that Melting is sound for the considered
fragment and use this rule as the basis of an inference calculus that terminates on
N ∪ {~v'~x ‖A11, . . . , A1m1 →, . . . , ~v'~x ‖An1, . . . , Anmn →}.

Deciding Herbrand-unsatisfiability is more complex for clauses with these more ex-
pressive constraints than for the original constrained clauses used in the context of SFD
and ORFD. The reason is that coverage of such constrained clauses cannot directly be
translated into a disunification problem. In Section 6.4, I show how the decision of
coverage can instead again be regarded as a problem of minimal model validity. This
problem is decidable if all function symbols in the signature are constant or unary and
the positive literal in every clause on N is linear. In Section 6.5, I combine these results
to prove that it is decidable whether N |=Ind ∀x.∃y1, . . . , ym.

∨
i

∧
j Aij holds whenever

(i) all function symbols in Σ are at most unary,

(ii) N is a set of Horn clauses and all positive literals in N are linear, and

(iii) N ∪ {A11, . . . , A1m1 →, . . . , An1, . . . , Anmn →} belongs to a class that can be
finitely saturated by Ordered Resolution.

These results have been published as (Horbach and Weidenbach, 2009b,c).

17





2 Preliminaries

2.1 Mathematical Foundations

In this section, I will shortly recall the basic definitions of multisets, orderings and
equivalence relations. In the context of superposition calculi, equations and clauses are
traditionally defined as multisets of terms or literals, respectively. While a definition
using sets instead of multisets is equally possible, multisets have the advantage of being
more explicit and closer to actual implementations (cf. Definitions 2.9 and 2.10).

The extensive use of orderings on the literals in a clause and of the terms in an
equation is, as noted in the introduction, one of the major advantages of superposition
compared to previous calculi and throughout this thesis, I will make use of several such
orderings (see e.g. Definitions 2.21 and 2.27). Finally, there is a strong correspondence
between equivalence relations on terms that are compatible with the term structure and
Herbrand interpretations (cf. Definition 2.29).

Definition 2.1 (Natural Numbers)
The set N of natural numbers contains all non-negative integers, i.e. N = {0, 1, 2, . . .}.

Definition 2.2 (Multisets)
A multiset M over a set T is a function M : T → N. The union M1,M2 of two multisets
M1 and M2 over T is the function mapping t ∈ T to M1(t) + M2(t). The element-of
relation for multisets is defined by t ∈ M if, and only if, M(t) 6= 0. A multiset M over
T is empty if M(t) = 0 for all t ∈ T . Like the empty set, the empty multiset is denoted
by ∅.

If M is a multiset over T and S ⊆ T is a subset of T , M ⊆ S means that M(t) 6= 0
implies t ∈ S for all t ∈ T and M ∩ S = ∅ means that t ∈ S implies M(t) = 0 for all
t ∈ T .

Multisets are written in a set-like notation, e.g. {t, t, t} denotes the multiset M where
M(t) = 3 and M(t′) = 0 for all t′ 6= t in T . If M is a multiset over T and t ∈ T , then
M, t denotes the multiset union M ∪ {t}.

Definition 2.3 (Orderings)
A partial ordering � on a set T is a binary relation on T that is

(i) reflexive, i.e. t � t for all t ∈ T ,

(ii) antisymmetric, i.e. t1 � t2 and t2 � t1 implies t1 = t2 for all t1, t2 ∈ T , and

(iii) transitive, i.e. t1 � t2 and t2 � t3 implies t1 � t3 for all t1, t2, t3 ∈ T .

A strict partial ordering � on a set T is a binary relation on T that is

(i) asymmetric, i.e. t1 � t2 implies t2 6� t1 for all t1, t2 ∈ T , and

19



2 Preliminaries

(ii) transitive, i.e. t1 � t2 and t2 � t3 implies t1 � t3 for all t1, t2, t3 ∈ T .

If = is the identity relation on T and � is a partial ordering on T , then the relation
� defined as � = (� \=) is a strict partial ordering. Conversely, if � is a strict partial
ordering on T , then the relation � defined as � = (� ∪=) is a partial ordering.

A partial ordering � is total or an ordering on T ′ ⊆ T if t1 � t2 or t2 � t1 for all
t1, t2 ∈ T ′. A strict partial ordering � is total or a strict ordering on T ′ ⊆ T if t1 � t2
or t2 � t1 or t1 = t2 for all t1, t2 ∈ T ′.

Definition 2.4 (Lexicographic and Multiset Orderings)
A strict partial ordering � on a set T can be extended to a strict partial ordering �mul
on multisets over T as follows: M �mul N if

(i) M 6= N and

(ii) whenever there is a t ∈ T such that N(t) � M(t), then M(t′) � N(t′) for some
t′ � t.

It can be extended to a strict partial ordering �lex on n-tuples over T as follows:
(t1, . . . , tn) �lex (t′1, . . . , t

′
n) if there is an index 1 ≤ i ≤ n such that

(i) tj = t′j for all 1 ≤ j < i and

(ii) ti � t′i.

Analogously, a partial ordering � on a set T can be extended to a partial ordering �mul
on multisets over T and a partial ordering �lex on n-tuples over T .

Definition 2.5 (Minimal and Maximal Elements)
Let � be a strict partial ordering on a set T and let S be a subset of T or a multiset
over T . With respect to � and S, an element t ∈ S is called

• maximal if there is no element s ∈ S with s � t,

• minimal if there is no element s ∈ S with t � s,

• strictly maximal if t is maximal and, if S is a multiset, S(t) = 1,

• strictly minimal if t is minimal and, if S is a multiset, S(t) = 1.

Definition 2.6 (Reflexive, Symmetric and Transitive Closure)
Let R be a binary relation on a set T . The relation R ∪ {(t, t) | t ∈ T} is the reflexive
closure of R, and R ∪ {(t1, t2) | R(t2, t1)} is the symmetric closure of R.

Let relations Rn be inductively defined by

(i) R0 = {(t, t) | t ∈ T} and

(ii) Rn+1 = {(t1, t2) | R(t1, t
′) and Rn(t′, t2) for some t′ ∈ T}.

The union
⋃
n∈NR

n is the transitive closure of R.

20



2.2 Syntax

Definition 2.7 (Equivalence Relations and Quotients)
An equivalence relation ∼= on a set T is a binary relation on T that is

(i) reflexive, i.e. t ∼= t for all t ∈ T ,

(ii) symmetric, i.e. t1 ∼= t2 implies t2 ∼= t1 for all t1, t2 ∈ T , and

(iii) transitive, i.e. t1 ∼= t2 and t2 ∼= t3 implies t1 ∼= t3 for all t1, t2, t3 ∈ T .

For every element t ∈ T , the subset [t]∼= = {t′ ∈ T | t ∼= t′} of T is called the equivalence
class of t. Note that t ∼= t′ if, and only if, [t]∼= = [t′]∼=. The set T/∼= = {[t]∼= | t ∈ T}
is the quotient of T by ∼=. If the considered equivalence relation is unambiguous, [t]∼= is
also written simply as [t].

2.2 Syntax

I will now introduce the syntax of terms, clauses and formulas as well as of term rewrite
systems, partially relying on definitions from Baader and Snyder (2001), Bachmair and
Ganzinger (2001) and Comon (2001). The only non-standard concepts are those of sub-
stitutions and their domains, which are defined in an unusual way, and of the constrained
clauses that I introduce to include existential variables into the notion of clauses.

2.2.1 Terms and Formulas

Definition 2.8 (Signatures)
A (many-sorted) signature is a tuple Σ = (S,F ,X , τS), where

(i) S is a finite and non-empty set of sort symbols,

(ii) F is a finite and non-empty set of function symbols,

(iii) X is an infinite set of variables

(iv) F and X are disjoint, and

(v) τS is a sort assignment , i.e. a mapping that assigns

a) to every symbol in F a non-empty tuple of sorts and

b) to every variable in X a sort, such that infinitely variables are mapped to
each sort,

such that for every sort S ∈ S there is at least one symbol f ∈ F with τS(f) = S.

A sort assignment τS(x) = S for x ∈ X or τS(f) = (S1, . . . , Sn, S) for f ∈ F and n ≥ 0
is usually written as x : S or f : S1, . . . , Sn → S, respectively. The number n is called
the arity of f . A function symbol of arity 0 is called a constant , a function symbol of
arity 1 is called unary and a function symbol of arity 2 is called a binary .

The letter S is usually used as a sort symbol, f, g are used as as function symbols,
and u, v, x, y, z as variables.

Σ will often only contain a single sort and the current set of variables and the sort
assignment for all function symbols will be clear from the context. In this case, it is
sometimes given (ambiguously) as Σ = F .

21



2 Preliminaries

The restriction to a finite set of function symbols is necessary because disunification,
one of the basic algorithms used throughout this thesis, is restricted to finitely many
function symbols.

Definition 2.9 (Terms)
Let Σ = (S,F ,X , τS) be a signature. The set TS(Σ,X ) of terms (over Σ) of sort S is
defined as the smallest set such that

(i) x ∈ TS(Σ,X ) for all x : S in X
(ii) f(t1, . . . , tn) ∈ TS(Σ,X ) whenever f : S1, . . . , Sn → S and ti ∈ TSi(Σ,X )

For a subset X ′ ⊆ X , the subset of TS(Σ,X ) of terms of sort S the construction of which
uses only variables from X ′ in step (i) is denoted by TS(Σ,X ′); the subset of terms of
sort S that are constructed without the use of step (i) is also denoted by TS(Σ).

The relation t ∈ TS(Σ,X ) is also written as t : S. The set T (Σ,X ) of terms (over Σ)
is defined as T (Σ,X ) =

⋃
S∈S TS(Σ,X ), and analogously T (Σ,X ′) =

⋃
S∈S TS(Σ,X ′)

and T (Σ) =
⋃
S∈S TS(Σ).

To improve readability, a list t1, . . . , tn of terms is often written as ~t, and the n-fold
application f(. . . (f(t)) . . .) of a unary function symbol f to a term t is written as fn(t).

Definition 2.10 (Equations)
Let Σ be a signature. An equation over Σ is a multiset of two terms t1, t2 of the same
sort, written as t1't2.

Definition 2.11 (Atoms, Literals, and Formulas)
Let Σ be a signature. An atom over Σ is an equation over Σ.

The set of formulas over Σ is the smallest set such that

(i) every atom is a formula,

(ii) the two logical constants > and ⊥ (true and false) are formulas,

(iii) if φ1, φ2 are formulas, then so are the negation ¬φ1, the conjunction φ1 ∧ φ2 and
the disjunction φ1 ∨ φ2, and

(iv) if x ∈ X and φ is a formula, then ∃x.φ and ∀x.φ are formulas.

A literal is a formula of the form A or of the form ¬A, where A is an atom. A literal
¬(t1't2), called disequation, is also written as t1 6't2. A literal is called positive if it is
an atom, and negative otherwise. A general formula that does not use the constructor
symbol ¬ is also called positive.

Definition 2.12 (Abbreviations for Formulas)
Formulas are often written in a more intuitive or compressed form. Let φ, φ1, . . . , φn be
formulas and let ~x = x1, . . . , xm be a list of variables:

• A multiset s1't1, . . . , sn'tn of equations is often written as ~s'~t.
• The notation φ1 → φ2 denotes the formula ¬φ1 ∨ φ2.

• The notations
∨
i∈I φi and

∧
i∈I φi, where I is a set, are inductively defined as

follows:

22



2.2 Syntax

(i)
∨
i∈∅ φi = ⊥ and

∧
i∈∅ φi = >

(ii)
∨
i∈{i0} φi = φi0 and

∧
i∈{i0} φi = φi0

(iii)
∨
i∈I∪{i0} φi = (

∨
i∈I φi) ∨ φi0 and∧

i∈I∪{i0} φi = (
∧
i∈I φi) ∧ φi0 for I 6'∅.

This notation is ambiguous because the order of the indices (and hence of the
formulas) is not fixed.

• The notation ∀~x.φ denotes the formula ∀x1 . . . ∀xm.φ, and ∃~x.φ denotes the formula
∃x1 . . . ∃xm.φ. In the case where ~x is empty, ∀∅.φ and ∃∅.φ both denote φ.

Definition 2.13 (Subterms and Subformulas)
Let Σ be a signature. An expression over Σ is a term or a formula over Σ. A path is
a finite sequence of natural numbers, and concatenation of two paths p, q is denoted by
p.q. For an expression e and a path p, the subexpression e|p of e at position p is defined
recursively as

• e|p = e if p is empty, and

• e|p = ei if p = i.q and either

– e = f(e1, . . . , en) and i ≤ n, or

– e = e1 ∨ e2 or e = e1 ∧ e2 and i ≤ 2, or

– e = ¬e1 or e = ∃x.e1 or e = ∀x.e1 and i = 1.

The expression e is said to contain e′ and e′ occurs in e if e′ is a subexpression of e. If e′

is a subexpression of e and e′ 6= e, then e′ is a strict subexpression of e. A subformula is
a subexpression that is a formula and a subterm is a subexpression that is a term. The
number of paths p for which e|p is defined is called the size of e and denoted by |e|. A
formula is quantifier-free if it does not contain a subformula ∃x.φ or ∀x.φ.

If e1, e2 are two expressions and p is a position in e1 such that e1|p and e2 are two
formulas or two terms of the same sort, then e1[e2]p is the result of replacing e1|p by e2

in e1: Formally, e = e1[e2]p is the unique expression such that

• e|q = e2|p′ if q is a path of the form q = p.p′ and e2|p′ is defined, and

• e|q = e1|q if q is not of this form and e1|q is defined.

Definition 2.14 (Variables and Universal and Existential Closure)
Let Σ be a signature and let e be a formula or a term over Σ. The set var(e) of variables
of e is defined as the set of all variables that are subterms of e. If e does not contain
any variables, it is ground . In particular, T (Σ) is the set of all ground terms over Σ.

A variable x occurs freely in a formula φ if φ|i1...in = x and none of the subexpressions
φ|i1...im , m ≤ n, is of the form φ|i1...im = ∃x.φ1 or φ|i1...im = ∀x.φ1. A formula that does
not contain any free variable occurrences is closed . If x1, . . . , xn are the free variables in
φ, then ∀x1. · · · ∀xn.φ and ∃x1. · · · ∃xn.φ are the universal closure and existential closure
of φ, respectively.

23



2 Preliminaries

2.2.2 Constrained Clauses

To model problems that encompass both universal and existential variables, I will employ
constrained clauses. They consist of two parts: A clause Γ→ ∆ that, as usual, captures
the universal fragment of the problem, and a constraint α consisting of equations and
disequations that keep track of instantiations of the existential variables.

Definition 2.15 (Clauses)
Let Σ = (S,F ,X , τS) be a signature. A clause over Σ is a pair (Γ,∆) of multisets of
atoms over Σ, written Γ → ∆. The multiset Γ is called antecedent and the multiset ∆
is called the succedent of the clause. A clause Γ → ∆ is a (syntactical) tautology if ∆
contains an equation t't or Γ ∩ ∆ is non-empty. The clause is Horn if ∆ contains at
most one atom. The empty clause, where Γ = ∆ = ∅, is denoted by �.

The set var(C) of variables occurring in C contains exactly the variables occurring in
a literal of Γ or ∆.

Definition 2.16 (Universal and Existential Variables)
Let Σ = (S,F ,X , τS) be a signature. Let V = {v1, . . . , vn} ⊆ X be a finite set of
variables. The elements of V are called existential variables and those in X \V universal
variables.

Existential variables are usually denoted by u or v.

Definition 2.17 (Constraints)
Let Σ = (S,F ,X , τS) be a signature and let V = {v1, . . . , vn} ⊆ X be a finite set of
existential variables, where the vi are pairwise distinct. A constraint α over Σ and V is a
multiset of equations s't and disequations t6't′ where s ∈ T (Σ,X ) and t, t′ ∈ T (Σ,X\V)
and every existential variable occurs at most once in α.

The multiset of equations in α is denoted by α' and the multiset of disequations by
α 6'. The constraint α' is the positive part of α and α is positive if α = α'.

The notion of subterms naturally lifts to positive constraints containing each exis-
tential variable by the definition α|i.p = ti|p, where vi'ti is the unique equation in α
containing vi.

The set var(α) of variables of α is defined as the set of all variables that occur in one
of the equations or disequations of α. If α does not contain any universal variables, it
is ground .

Definition 2.18 (Constrained Clauses)
A constrained clause α ‖C over Σ and V consists of a constraint α over Σ and V and a
clause C over Σ, such that

(i) the positive part α' of α contains exactly one equation for each element of V,
i.e. α' = v1't1, . . . , vn'tn, and

(ii) C does not contain any existential variables, i.e. var(C) ∩ V = ∅.

24



2.2 Syntax

If α is a positive constraint, then α ‖C is called a positively constrained clause.
The set var(α) ∪ var(C) of variables occurring in α or C is denoted by var(α ‖C). A

constrained clause α ‖C is called ground if it does not contain any universal variables,
i.e. if var(α ‖C) ⊆ V (and hence var(α ‖C) = V). I regularly omit constraint equations
between variables that do not occur elsewhere in the constrained clause, i.e. I abbreviate
(α', β) ‖C as β ‖C if

(i) all equations in α' are of the form vi'xi for a variable xi,

(ii) var(α') ∩ (var(β) ∪ var(C)) = ∅, and

(iii) no variable appears twice in α'.

Such a constrained clause is called unconstrained if β is empty. Clauses are regarded as
a special case of constrained clauses by identifying a clause C with ‖C.

For example for V = {u, v}, I write u'x ‖P (x) for u'x, v'y ‖P (x). These abbrevi-
ations are justified because all constrained clauses (α', β) ‖C that are abbreviated as
β ‖C have the same semantics (cf. Lemma 2.42).

2.2.3 Substitutions

Definition 2.19 (Substitutions)
Let Σ = (S,F ,X , τS) be a signature. A Σ-substitution (or simply substitution) σ is a
map from a finite set X ′ ⊆ X of variables to T (Σ,X ) such that if x is mapped to t,
then x and t are of the same sort. The set dom(σ) = X ′ is called the domain of σ. The
application of a substitution σ to a variable x is denoted by xσ, and the image of σ is
the term set im(σ) = {xσ | x ∈ dom(σ)}.

If X ′′ ⊆ X , then the restriction σ|X ′′ of σ to X ′′ denotes the substitution with domain
X ′′ that agrees with σ on X ′′ ∩ X ′ and maps every variable in X ′′ \ X ′ to itself.

A substitution σ is linear if no variable occurs twice in im(σ). A bijective substitution
σ : X ′ → X ′′ is a variable renaming . If σ : X ′ → X ′′ is a variable renaming, then the
unique renaming σ−1 : X ′′ → X ′ satisfying xσσ−1 is the inverse renaming of σ.

A substitution σ is identified with its homomorphic extension to terms, quantifer-free
formulas, clauses and constrained clauses, where it is applied to both constraint and
clausal part. A substitution σ is grounding for a term (or quantifer-free formula or
clause or constrained clause) t if tσ is ground.

The notion of substitution is extended to all formulas by (∀x.φ)σ = ∀y.(φσ′), where

(i) y is a fresh variable of the same sort as x and

(ii) σ : X ′ ∪ {x} → T (Σ,X ) is defined by xσ′ = y and x′σ′ = x′σ for x′ ∈ X ′ \ {x}.

The way substitutions and their domains and images are defined here is non-standard:
Usually, a substitution is considered as a map X → T (Σ,X ) defined on all variables
while its domain is the set of all variables on which the substitution operates non-
trivially. However, I want to be able to distinguish between substitutions like {x 7→
f(x)} and {x 7→ f(x), y 7→ y}. This has several reasons. One is that it simplifies
several proofs, notably in Section 4.3. But more importantly, it is essential for the
definition of substitution expressions, a generalization of substitutions that is introduced

25



2 Preliminaries

in Chapter 6: In this chapter, I will use predicative atoms (those are formally defined in
Section 2.2.5 below) to describe substitutions, and clauses for substitution expressions.
The arity of these predicates corresponds to the size of the substitution’s domain. The
substitutions σ = {x 7→ x} and τ = {x 7→ a}, for example, are described by the atoms
Pσ(x) and Pτ (a), and the composition σ ◦ τ of the two substitutions by the clause set
{→ Pτ (a), Pτ (x)→ Pσ(x)}. An important feature of this clause set is that the succedent
in each clause contains all variables of the clause. Were σ considered as a substitution
with empty domain, as one would classically do, and described by the propositional atom
P ′σ, the clause set for σ ◦ τ would be {→ Pτ (a), Pτ (x)→ P ′σ} and the succedent in the
second clause would not contain the variable x.

The price to pay for this increased expressivity is that the definition of most general
unifiers is slightly more awkward than usual:

Definition 2.20 (Unifiers and Most General Unifiers)
Let Σ be a signature. Two terms s, t over Σ are unifiable if they are of the same sort
and there is a substitution σ such that sσ = tσ. Two atoms A,B are unifiable if there
is a substitution σ such that Aσ = Bσ. The substitution σ is called a unifier .

Let X ′ be the variables in s and t (or of A and B, respectively). If the restriction τ |X ′
of every unifier τ of s and t (or of A and B) is of the form (στ ′)|X ′ , then σ is called a most
general unifier of s and t (or of A and B). The most general unifier is unique up to a
variable renaming and up the addition to or retraction from its domain of variables that
are mapped to themselves. It is (ambiguously) denoted by mgu(s, t) (or mgu(A,B)).

If s1, . . . , sn and t1, . . . , tn are terms over Σ such that, for every i ∈ {1, . . . , n}, si and ti
are of the same sort, then a substitution σ is a simultaneous unifier of (s1, t1), . . . , (sn, tn)
if siσ = tiσ for all i. Most general simultaneous unifiers are defined accordingly, and they
are again unique up to a variable renaming and domain elements that are mapped to
themselves. If α1 and α2 are positive constraints of the form α1 = v1's1, . . . , vn'sn and
α2 = v1't1, . . . , vn'tn, then mgu(α1, α2) denotes a most general simultaneous unifier of
(s1, t1), . . . , (sn, tn).

2.2.4 Term and Clause Orderings

One of the strengths of superposition is that only inferences involving maximal literals in
a clause have to be considered, and that the conclusion of an inference is always smaller
than the maximal premise. To state such ordering conditions, a given ordering on terms
must be extended to literal occurrences inside a clause, to clauses and to constrained
clauses.

Definition 2.21 (Clause Orderings)
Let Σ = (S,F ,X , τS) be a signature. A partial ordering � on T (Σ) induces a partial
ordering � on T (Σ,X ) by t1 � t2 if, and only if, t1σ � t2σ for all grounding substitutions
σ. This partial ordering can in turn be extended to atoms over T (Σ,X ) (which are
multisets of terms) as its multiset-extension.

Clauses are considered as multisets of occurrences of atoms. The occurrence of an
atom A in the antecedent is identified with the multiset {A,A}; the occurrence of an

26



2.2 Syntax

atom A in the succedent is identified with the multiset {A}. Now a partial ordering on
atoms lifts to atom occurrences as its multiset extension, and to clauses as the multiset
extension of this partial ordering on atom occurrences. By abuse of notation, all these
partial orderings are denoted by �.

If, for example, u � t � s, then the atom occurrences in the clause s't, t't → s'u
are ordered as s'u � t't � s't, because {s'u} � {t't, t't} � {s't, s't}. Note that
an occurrence of an atom A in the antecedent is strictly larger than an occurrence of
the same equation in the succedent because {A,A} � {A}.

The partial ordering � extends to positive constraints by

v1's1, . . . , vn'sn � v1't1, . . . , vn'tn if, and only if, s1 � t1 ∧ . . . ∧ sn � tn.

and to negative parts of constraints as the multiset extension �mul of �. General
constraints are ordered with priority on their positive parts, i.e. α � β if, and only if,

(i) α' � β' and

(ii) α' = β' implies α 6' � β 6'.

Constrained clauses are ordered lexicographically with priority on the constraint, i.e.
α ‖C � β ‖D if, and only if,

(i) α � β and

(ii) α = β implies C � D.

It is also possible to consider positive constraints as multisets when ordering them, or
to extend the partial ordering lexicographically. While all results of this thesis remain
valid in both cases, the latter approach is less natural because it relies on an ordering
on the existential variables.

When a superposition calculus is defined on clauses, an ordering that is total on all
ground clauses is usually required. The partial ordering on ground constrained clauses
defined here is not total, e.g. the constrained clauses u'a, v'b ‖� and u'b, v'a ‖� are
incomparable, but the ordering is strong enough to support an extension of the usual
notion of redundancy to constrained clauses an the completeness results that are based
on this notion.

Definition 2.22 (Universal Reductiveness)
Let � be a partial term ordering that is total on ground terms. A clause Γ → ∆ is
universally reductive if either ∆ = ∅ or if ∆ = ∆′, s't such that

(i) all variables of Γ→ ∆ occur in s and

(ii) for every grounding substitution σ, it holds that sσ � tσ and (s't)σ is strictly
maximal in (Γ→ ∆)σ.

Example 2.23
The clauses x'0→ s(x)'0 and P (x), Q(y)→ S(z), T (x, y, z) are universally reductive.
The clause P (x), Q(y) → S(z), T (x, y, y) is not universally reductive because no succe-
dent atom contains all three variables, and x'0→ s(x)'s(0) is not universally reductive
because both sides of the equation s(0)'s(0) in the ground instance 0'0 → s(0)'s(0)
are equal.

27



2 Preliminaries

Definition 2.24 (Properties of Relations on Terms)
Let Σ = (S,F ,X , τS) be a signature. Let R be a binary relation on T (Σ,X ).

Then R is well-founded if there is no infinite chain t1, t2, . . . such that R(ti, ti+1) for
all i. It has the subterm property if R(t[t′]p, t

′) for all t, t′ where t[t′]p 6= t′. It is stable
under substitutions if R(t, t′) implies R(tσ, t′σ) for all t, t′ and all substitutions σ. It is
monotonic if R(t, t′) implies R(u[t]p, u[t′]p) for all terms u and positions p in u.

Let f be a binary function symbol and let ∼=AC(f) be smallest congruence such
that f(x, y) ∼=AC(f) f(y, x) and f(f(t1, t2), t3) ∼=AC(f) f(t1, f(t2, t3)) for all t1, t2, t3 ∈
T (Σ,X ). The relation R is compatible with associativity and commutativity of f if
R(t1, t2) and t1 ∼=AC(f) t

′
1 and t2 ∼=AC(f) t

′
2 implies R(t′1, t

′
2).

A congruence relation is a monotonic equivalence relation on terms.
A reduction ordering is a well-founded partial ordering on terms that has the subterm

property and is stable under substitutions.

Definition 2.25 (Rewrite Systems)
Let Σ = (S,F ,X , τS) be a signature. A binary relation _ on T (Σ,X ) is a rewrite
relation if it is

(i) stable under substitutions and

(ii) monotonic.

The symbol _̂ denotes the symmetric closure of _, and
∗
_ (and

∗
_̂, respectively)

denotes the reflexive and transitive closure of _ (and _̂).
A set R of equations is called a rewrite system with respect to a strict partial term

ordering � if s � t or t � s for each equation s't ∈ R. Elements of R are called rewrite
rules. A position p in a term u is a redex for a rewrite rule s _ t if u|p = s. If s � t,
then s't ∈ R is also written s _ t ∈ R. The relation _R is defined as the smallest
rewrite relation for which s _R t whenever s _ t ∈ R. A term s is reducible by R if
there is a term t such that s _R t, and irreducible or in normal form (with respect to R)
otherwise. The same notions also apply to formulas and to positive constraints instead
of terms.

The rewrite system R is ground if all equations in R are ground. It is terminating
if _ is well-founded, and it is confluent if for all terms t, t1, t2 satisfying t _∗R t1 and
t _∗R t2 there is a term t3 such that t1 _∗R t3 and t2 _∗R t3.

If R is a rewrite system, then _∗R is a partial ordering. If furthermore R is terminating,
i.e. _∗R \= is a well-founded partial ordering, it can be used for Noetherian induction.

There are several ways to extend partial orderings on the set F of function symbols
to the set T (Σ) of terms over Σ. The ones presented here are the recursive path or-
dering (Dershowitz, 1982) and the associative path ordering (Bachmair and Plaisted,
1985). Let F be a set of function symbols equipped with a partial ordering � and let
stat : F → {lex,mul} be a function assigning to every function symbol either lexico-
graphic or multiset status.

Definition 2.26 (Recursive Path Ordering)
The recursive path ordering �rpo on T (Σ) is given as follows: For terms t = f(t1, . . . , tm)
and t′ = g(t′1, . . . , t

′
n) over Σ, t �rpo t

′ holds if either

28



2.3 Semantics

(i) ti = t′ or ti �rpo t
′ for some i or

(ii) t �rpo t
′
i for all 1 ≤ i ≤ n and either

a) f � g or

b) f = g and (t1, . . . , tm) �stat(f)
rpo (t′1, . . . , t

′
n).

Definition 2.27 (Associative Path Ordering)
Let F contain the symbols ∧ and ∨. For a term t ∈ T (Σ), let t↓ be the normal form of
t with respect to the distributivity rule t0 ∧ (t1 ∨ t2) _ (t0 ∧ t1) ∨ (t0 ∧ t2). Define the
associative path ordering �apo on T (Σ) as follows: t �apo t

′ if

(i) t↓ �rpo t
′↓ or

(ii) t↓ = t′↓ and |t′| > |t|.
The ordering �apo is monotonic, has the subterm property, is compatible with the

associativity and commutativity of ∧ and ∨, and is well-founded.

2.2.5 Predicates

This notion of formulas and clauses does not natively support predicates. However,
predicates can as usual be included as follows: First the signature is extended by

(i) a new sort Sbool ,

(ii) a new constant ctrue : Sbool of the new sort, and

(iii) for each predicate symbol P taking arguments of sorts S1, . . . , Sn a new function
symbol fP of sort S1, . . . , Sn → Sbool .

Then P (t1, . . . , tn) is regarded as an abbreviation for the equation fP (t1, . . . , tn)'ctrue. A
given partial term ordering � is extended to the new symbols such that ctrue is minimal.

Atoms, formulas or clauses that only contain equations between terms of the form
t'ctrue and no variables of sort Sbool , are called predicative. On the other hand, an
atom, formula or clause that does not contain equations of sort Sbool (and, in the case
of a formula, no quantifier binding a variable of sort Sbool ) is called equational . The
exclusion of variables of the predicative sort Sbool is made to avoid that substitutions
introduce symbols of this sort.

Signatures with predicates will often be given in the form Σ = (S,P,F ,X , τS), de-
noting the signature Σ = (S ∪ {Sbool},F ∪ {ctrue} ∪ {fP | P ∈ P},X , τS). Again, an
abbreviation is used if S contains only a single sort and the set of variables and the sort
assignments are clear from the context: Σ = (P,F).

2.3 Semantics

2.3.1 Interpretations and Entailment

Definition 2.28 (Interpretations)
Let Σ = (S,F ,X , τS) be a signature. A first-order interpretation over Σ, or interpre-
tation for short, is a pair I = (U, I) consisting of a non-empty set U , the domain or
universe, and a function I that assigns

29



2 Preliminaries

(i) to every sort S in S a subset I(S) of U such that the sets assigned to different
sorts are disjoint, and

(ii) to every function symbol f : S1, . . . , Sn → S in the set F a function I(f) of type
I(S1)× . . .× I(Sn)→ S.

An assignment for I is a function µ : X ′ → U such that X ′ ⊆ X and µ(x) ∈ I(τS(x))
for all variables x ∈ X ′. The homomorphic extension of µ to terms in T (Σ,X ′) is denoted
by Iµ, i.e. Iµ is the unique map T (Σ,X ′)→ U such that

(i) Iµ(x) = µ(x) for x ∈ X ′ and

(ii) Iµ(f(t1, . . . , tn)) = I(f)(Iµ(t1), . . . , Iµ(tn)) for f ∈ F .

Definition 2.29 (Herbrand Interpretations)
An interpretation I = (U, I) over Σ = (S,F ,X , τS) is a Herbrand interpretation if

(i) there is a congruence relation ∼= on T (Σ) such that U = T (Σ)/∼= is a quotient of
T (Σ) and

(ii) every ground term over Σ is interpreted by its equivalence class, i.e. for every
function symbol f it holds that I(f)([t1]∼=, . . . , [tn]∼=) = [f(t1, . . . , tn)]∼=, where [t]∼=
is the ∼= equivalence class of t in T (Σ).

As a Herbrand interpretation is uniquely defined by its universe U , it will often be
denoted by U alone. For example, T (Σ) or T (Σ)/∼= denote Herbrand interpretations over
Σ. If E is a set of equations over Σ, then T (Σ)/E stands for the Herbrand interpretation
T (Σ)/∼=E , where ∼=E is the smallest congruence relation on T (Σ) containing E.

A Herbrand interpretation T (Σ)/∼= is sometimes identified with ∼=. This can be a
more natural point of view, especially when describing the semantics of formulas and
clauses (see below).

Definition 2.30
Let Σ be a signature, let I = T (Σ)/∼= be a Herbrand interpretation over Σ, and let Γ,∆
be multisets of equations over Σ. Write

• Γ ⊆ I if t1 ∼= t2 for every equation t1't2 ∈ Γ, and

• ∆ ∩ I = ∅ if t1 6∼= t2 for every equation t1't2 ∈ ∆.

2.3.2 Semantics of Formulas and Constrained Clauses

Definition 2.31 (Semantics of Formulas)
Let Σ = (S,P,F , τS) be a signature and let I = (U, I) be an interpretation over a Σ. An
assignment µ : X ′ → U for I satisfies a formula φ over Σ containing only free variables
from X ′, written I, µ |= φ if

• φ = >, or

• φ = t1't2 and Iµ(t1) = Iµ(t2), or

• φ = ¬φ1 and I, µ 6|= φ1, pr

• φ = φ1 ∨ φ2 and I, µ |= φ1 or I, µ |= φ2, or

30



2.3 Semantics

• φ = φ1 ∧ φ2 and I, µ |= φ1 and I, µ |= φ2, or

• φ = ∃x.φ1 and there is an element u ∈ U of the universe such that I, µ′ |= φ1,
where µ′ : X ′ ∪{x} → U maps x to u and is identical to µ on all other variables of
its domain, or

• φ = ∀x.φ1 and for every element u ∈ U of the universe it holds that I, µ′ |= φ1,
where µ′ : X ′ ∪{x} → U maps x to u and is identical to µ on all other variables of
its domain.

A formula φ is satisfiable in I if I, µ |= φ for some assignment µ of the free variables
of φ. It is called satisfiable if there is an interpretation I such that φ is satisfiable in I.
An interpretation I entails φ, written I |= φ, if I, µ |= φ for every assignment µ of the
free variables of φ for I. The same statement is expressed by saying that φ is valid in I
or that I is a model of φ.

It is often not only of interest whether a formula is satisfiable in an interpretation,
but also which assignments are witnesses of this satisfiability:

Definition 2.32 (Solutions)
Let I = (I, U) be an interpretation and φ a formula over Σ = (S,F ,X , τ) and let
X ′ ⊆ X . The set Sol(φ,X ′, I) of solutions of φ in I with respect to X ′ is defined as

Sol(φ,X ′, I) = {µ : X ′ → U | I, µ |= φ} .

Two formulas φ, φ′ are equivalent with respect to I if Sol(φ,X ′, I) = Sol(φ′,X ′, I), where
X ′ consists of the free variables of φ and φ′. Two formulas are equivalent if they are
equivalent with respect to every interpretation.

If I is a Herbrand interpretation over Σ, then Sol(φ,X ′, I) is the substitution set
Sol(φ,X ′, I) = {σ : X ′ → T (Σ) | I |= φσ}.

Definition 2.33 (Negation Normal Form)
A formula φ is in negation normal form if

(i) every subformula of φ of the form ¬φ1 is a literal and

(ii) no strict subformula of φ equals > or ⊥.

The formula φ is in conjunctive normal form if it is in negation normal form and

(iiic) no subformula of φ of the form φ1 ∨ φ2 contains a subformula of the form ψ1 ∧ψ2.

The formula φ is in disjunctive normal form if it is in negation normal form and

(iiid) no subformula of φ of the form φ1 ∧ φ2 contains a subformula of the form ψ1 ∨ψ2.

It is well-known that the rewrite system from Figure 2.1 is confluent and terminating
and transforms every formula into a unique equivalent formula in negation normal form.

31



2 Preliminaries

Propagation of Negation:
¬> _ ⊥
¬⊥ _ >

¬(φ ∨ φ′) _ ¬φ ∧ ¬φ′
¬(φ ∧ φ′) _ ¬φ ∨ ¬φ′

¬(∃x.φ) _ ∀x.¬φ
¬(∀x.φ) _ ∃x.¬φ ¬¬φ _ φ

Propagation of Truth and Falsity:
> ∧ φ _ φ
⊥ ∧ φ _ ⊥
φ ∧ > _ φ
φ ∧ ⊥ _ ⊥

> ∨ φ _ >
⊥ ∨ φ _ φ
φ ∨ > _ >
φ ∨ ⊥ _ ⊥

∃x.> _ >
∃x.⊥ _ ⊥
∀x.> _ >
∀x.⊥ _ ⊥

Figure 2.1: Negation Normal Form Transformation Rules

Definition 2.34 (Semantics of Clauses)
Clauses are interpreted as the conjunction of the antecedent atoms implying the dis-
junction of the succedent atoms, i.e. an interpretation I over Σ entails a clause C =
A1, . . . , Am → B1, . . . , Bn, written I |= C, if it entails the formula ∀~x.φC , where
φC = A1 ∧ . . .∧Am → B1 ∨ . . .∨Bn and ~x are the variables occurring in C. Clause sets
are interpreted conjunctively, i.e. I entails a clause set N , written I |= N , if it entails
every clause in N . In this case, I is a model of N .

If I is a Herbrand model, then I entails a ground clause C = Γ → ∆ if, and only if,
Γ 6⊆ I or ∆ ∩ I 6= ∅ (cf. Definition 2.30).

Bachmair and Ganzinger (1994) introduced the construction of a special Herbrand
interpretation I�N derived from a clause set N and an ordering �:

Definition 2.35 (I�N)
Let � be a well-founded strict reduction ordering that is total on ground terms. Proceed
by induction on the clause ordering � to define ground rewrite systems ProdC and RC
and Herbrand interpretations IC for ground clauses C over Σ.

If C = Γ→ ∆, s't is a ground instance of a clause from N such that

(i) s't is a strictly maximal occurrence of an atom in C and s � t,
(ii) s is irreducible by RC ,

(iii) Γ ⊆ IC , and

(iv) ∆ ∩ IC = ∅,
then let ProdC = {s _ t}. In this case, C is productive and C produces s _ t,
respectively. Otherwise ProdC = ∅. In both cases, define RC =

⋃
C�C′ ProdC′ and

IC = {s't | s _ t ∈ R∗C}. Finally, define a ground rewrite system RN =
⋃
C Prod(C)

as the set of all produced rewrite rules and the Herbrand interpretation I�N over T (Σ)
as the quotient I�N = T (Σ)/RN . If the ordering is clear from the context, I�N is usually
abbreviated as IN .

In Section 4.2.2, I will extend this construction of IN to constrained clauses (Defini-
tion 4.5). At several points in this thesis, I will use the following properties of I�N that
have been proved by Bachmair and Ganzinger:

32



2.3 Semantics

Lemma 2.36 (Properties of I�N)
The rewrite system RN is confluent and terminating. If N is consistent and saturated
with respect to a refutationally complete inference system (see below), then IN is a
minimal model of N with respect to set inclusion.

Definition 2.37 (Semantics of Constraints)
Constraints are interpreted as conjunctions and ' and 6' as syntactic equality and
disequality, respectively:

For a constraint α over Σ and V, let φα =
∧
L∈α L be a conjunction of all equations and

disequations in α. The constraint α is satisfiable if there is a substitution σ : V → T (Σ)
such that T (Σ) |= ∀~x.φασ, where ~x are the universal variables in α.

The negative part α 6' of α is syntactically valid if T (Σ) |= ∀~x.φα 6' .

Definition 2.38 (Clauses and Constraints as Formulas)
Let α be a constraint and let C be a clause. By a slight abuse of notation, α and φα
as well as C and φC are occasionally identified. For example, I |= ∀~x.C is a shorthand
notation of I |= ∀~x.φC .

Definition 2.39 (Coverage)
A set A of constraints over a signature Σ is covering (for Σ) if for every positive ground
constraint β over Σ there is a satisfiable ground instance ατ of a constraint α ∈ AN such
that β = α'τ .

Example 2.40
For the signature Σnat = {s, 0} with a unary function symbol s and a constant function
symbol 0, each of the constraint sets

(i) {v'0, v's(0), v's(s(0)), . . .},
(ii) {v'0, v's(x)}, and

(iii) {v'x}
is covering. However, the singleton constraint set {v'x, s(x) 6's(s(0))} is not covering
because the ground constraint v's(0) does not appear as the positive part of a satisfiable
ground instance: It appears in the ground instance v's(0), s(s(0))6's(s(0)), but this
instance is not satisfiable.

When considering constrained clauses, the usual definition of the semantics of a con-
strained clause α ‖C (where all variables are universally quantified) in the literature is
simply the set of all ground instances Cσ such that σ is a solution of α (cf. Bachmair
and Ganzinger, 2001; Nieuwenhuis and Rubio, 2001). This definition does not meet the
current needs because the constraints here contain existentially quantified variables, and
as explained in the introduction (Section 1.4.1), these are supposed to interconnect all
clauses in a given constrained clause set.

Definition 2.41 (Semantics of Constrained Clause Sets)
Let N be a constrained clause set over Σ and V, A Herbrand interpretation I = (U, I)
over Σ entails N , written I |= N , if there is a substitution σ : V → T (Σ) such that for

33



2 Preliminaries

every constrained clause α ‖C ∈ N and every substitution τ : var(α ‖C) \ V → T (Σ), it
holds that I |= αστ → Cτ . In this case, I is a model of N .

A constrained clause set N is Herbrand-satisfiable (over Σ) if it has a Herbrand model
over Σ, and Herbrand-unsatisfiable (over Σ) otherwise.

Let M and N be two (constrained or unconstrained) clause sets. The expression
N |=Σ M means that each Herbrand model of N over Σ is also a model of M , and
N |=Ind M means that IN |= N and IN |= M .

Constrained clauses are considered equal up to renaming of non-existential variables.
For example, the two constrained clauses u'x, v'y ‖→ P (x) and u'y, v'x ‖→ P (y)
are considered equal (x and y have been exchanged), but they are both different from
the constrained clause u'y, v'x ‖→ P (x), where u and v have been exchanged:

Lemma 2.42 (Renaming of Universal Variables)
Let N ∪ {α ‖C} be a set of constrained clauses over Σ = (S,F ,X , τS) and V and let
ρ : var(α ‖C)\V → X \V be a variable renaming. Then N ∪{α ‖C} |=Σ N ∪{(α ‖C)ρ}.

Proof. Let I be a Herbrand model of N ∪ {α ‖C} over Σ. By definition, there is a
substitution σ : V → T (Σ) such that for every constrained clause α0 ‖C0 ∈ N ∪ {α ‖C}
and every substitution τ : var(α0 ‖C0) \ V → T (Σ), it holds that I |= α0στ → C0τ . It
suffices to show that this implication also holds for α ‖C.

Let τ : var(α ‖C) \ V → T (Σ). Then I |= αρστ if, and only if, I |= ασρτ , because
the domains and codomains of σ and ρ are disjoint. Because I is a Herbrand model of
N ∪ {α ‖C}, this implies I |= Cρτ . ♦

Lemma 2.43 (Coverage of Empty Clause Constraints and Herbrand-Unsatisfiability)
Let N be a set of constrained empty clauses over Σ and V. If the constrained clause set
{α | (α ‖�) ∈ N} is covering for Σ, then N does not have a Herbrand model over Σ.

Proof. Let I be a Herbrand model of N over Σ. Then there is a substitution σ :
V → T (Σ) such that for every constrained clause α ‖C ∈ N and every substitution
τ : var(α ‖C) \ V → T (Σ), it holds that I |= αστ → Cτ . I show that the constraint
ασ = v1'v1σ, . . . , vn'vnσ is not covered by AN .

It clearly holds that I |= ασσ because ασσ only consists of equations of the form t't.
If the constraint ασ were of the form ασ = ατ for a constrained clause α ‖� ∈ N and
some substitution τ , it would thus follow that I 6|= α ‖�, which contradicts the fact that
I is a model of N . ♦

This shows that coverage is a generalization of the first-order concept of a contradiction
(the empty clause): While a set of unconstrained clauses is unsatisfiable if it contains
the empty clause, a set of constrained clauses is Herbrand-unsatisfiable if it contains a
set of constrained empty clauses with covering constraints.

34



2.4 Calculi

2.4 Calculi

2.4.1 Inferences, Redundancy and Derivations

Calculi that reason about sets of constrained clauses will be described by inference rules
that characterize how a new constrained clause can be derived from the given constrained
clauses.

Definition 2.44 (Inference Calculi)
An inference rule is a relation on constrained clauses. Its elements are called inferences
and written as

α1 ‖C1 . . . αk ‖Ck
α ‖C .

The constrained clauses α1 ‖C1, . . . , αk ‖Ck are called the premises and α ‖C the con-
clusion of the inference. An inference calculus, or simply calculus, is a set of inference
rules.

Given a calculus C, there are two ways how to alter a given constrained clause set N :
The obvious way is to use inferences with premises inN to derive new constrained clauses.
Additionally, the set can be condensed by eliminating so-called redundant constrained
clauses, that are already implied by smaller constrained clauses in N . The notion of
redundancy is also a means to reduce the number of inferences that need to be considered,
which is one of the reasons why superposition calculi have become so successful; for
example, an inference involving a redundant premise will only lead to information that
could equally well be deduced using only smaller clauses, so it need not be performed.

Definition 2.45 (Redundancy and Saturation)
A ground constrained clause α ‖C is called redundant with respect to a set N of con-
strained clauses if α is unsatisfiable or if there are ground instances α1 ‖C1, . . . , αk ‖Ck
of constrained clauses in N with satisfiable constraints and the common positive con-
straint part α'1 = . . . = α'k = α' such that αi ‖Ci ≺ α ‖C for all i and C1, . . . , Ck |= C
(or C1, . . . , Ck |=Σ C, which is equivalent because |= and |=Σ agree on ground clauses).
A non-ground constrained clause is redundant if all its ground instances are redundant.

A ground inference with conclusion α ‖C is redundant with respect to N if

(i) some premise is redundant, or

(ii) there are ground instances α1 ‖C1, . . . , αk ‖Ck of constrained clauses in N with
satisfiable constraints and the common positive constraint part α'1 = . . . = α'k =
α' such that

a) all αi ‖Ci are smaller than the maximal premise of the inference and

b) C1, . . . , Ck |= C.

A non-ground inference is redundant if all its ground instances are redundant.

A constrained clause set N is saturated with respect to a calculus C if every inference
in C with premises in N is redundant with respect to N .

35



2 Preliminaries

Definition 2.46 (Derivations and Fairness)
Let C be a calculus. A pair (N,N ′) of constrained clause sets is called a C-derivation
step if either

(i) there is an inference in C with premises in N and conclusion α ‖C such that
N ′ = N ∪ {α ‖C}, or

(ii) there is a clause α ‖C ∈ N that is redundant with respect to N and N ′ = N \
{α ‖C}.

A C-derivation is a finite or infinite sequence N0, N1, . . . of constrained clause sets such
that for each i, (Ni, Ni+1) is a C-derivation step.

A C-derivation N0, N1, . . . is fair if every inference in C with premises in the constrained
clause set N∞ =

⋃
j

⋂
k≥j Nk is redundant with respect to

⋃
j Nj .

2.4.2 Soundness, Completeness and Termination

The most important property of every calculus is its soundness, i.e. that only inferences
can be made that do not change the semantics of the problem.

Definition 2.47 (Soundness)
A calculus C is sound with respect to a set S of constrained clauses and an entailment
relation ` (typically ` is one of |=, |=Σ or |=Ind) if N ` N ′ for every C-derivation step
(N,N ′) with N ⊆ S.

If a calculus is supposed to result in a (semi) decision procedure, it must also derive an
obvious contradiction whenever the input is contradictory. In the introduction, I have
already presented several calculi like Robinson’s Resolution calculus that are refutation-
ally complete for unconstrained clauses. In the unconstrained setting, a contradiction
is reached when an empty clause has been derived. For constrained clauses, cover-
age of the derived constrained empty clauses is the right generalization of this concept
(cf. Lemma 2.43):

Definition 2.48 (Refuational Completeness)
A calculus C is refutationally complete with respect to a set S of constrained clauses and
an entailment relation ` (typically ` is one of |=, |=Σ or |=Ind) if for every set N ⊆ S
of constrained clauses over a signature Σ that is saturated with respect to C and that
satisfies N ` ⊥, the set AN = {α | (α ‖�) ∈ N} of constraints of empty constrained
clauses in N is covering.

Usually, the set S is clear from the context and not explicitly given. For example,
first-order Resolution is sound and refutationally complete with respect to the set of
unconstrained clauses.

The final ingredient for a decision procedure is its termination. Usually, many different
inferences can be applied to a given constrained clause set, and the choice in which order
they are performed will naturally have an impact on a calculus’ termination behavior.

36



2.4 Calculi

Definition 2.49 (Strategies)
A derivation strategy for a calculus C is a mapping S from sets of constrained clauses
to sets of constrained clauses such that (N,N ∪ {α ‖C}) is a C-derivation step for every
α ‖C ∈ S(N).

A C-derivation N0, N1, . . . follows a strategy S if Ni+1 ⊆ Ni ∪ S(Ni) for each i.

Definition 2.50 (Termination)
A calculus C with a derivation strategy S is terminating if every C-derivation N0, N1, . . .
that follows the strategy S is finite.

Note that while I follow Ganzinger and Stuber (1992) in regarding refutational com-
pleteness as a a property that talks about static objects (namely saturated sets), it is
sometimes considered as talking about dynamic objects (fair derivations). In this case,
termination of the calculus is usually included in the completeness notion. Then the
notion defined above might be called refutational completeness in the limit, meaning
that a contradiction would be derived in the limit of each fair derivation (independently
of termination).

37





3 Disunification and Predicate Completion

3.1 Introduction

Originally, unification (Robinson, 1965) was the task of finding solutions to an equation
t't′ of terms with respect to the free term algebra T (Σ), i.e. substitutions σ that instan-
tiate the free variables of t and t′ in such a way that tσ and t′σ are syntactically equal.
The notion was then generalized to solving systems (i.e. conjunctions) of equations, and
unification was recognized as a procedure that can be expressed using transformations
of such systems (Jouannaud and Kirchner, 1991; Baader and Snyder, 2001).

From there on, the idea of unification was extended in at least two directions that
are relevant for this work: On the one hand, Lassez et al. (1986) examined systems of
disequations, and later on a unified framework for the analysis of both equations and
disequations was finally found in disunification (Mal’cev, 1971; Maher, 1988; Comon
and Lescanne, 1989). Algorithmically, disunification procedures are algorithms rewrit-
ing first-order formulas over syntactic equality atoms into an equivalent normal form.
On the theoretical side, they provide a decision procedure for the satisfiability in T (Σ)
of (possibly quantified) formulas containing equality ' as the only predicate symbol.
Disunification has various applications, in particular in areas such as logic program-
ming (Colmerauer, 1984), automated model building (Caferra and Zabel, 1992; Fermüller
and Leitsch, 1996) and minimal model theorem proving (Comon, 1991; Comon and
Nieuwenhuis, 2000, and Chapters 5 and 6 of this Thesis).

On the other hand, Plotkin (1972) integrated sets E of equational axioms into the
transformation rules used for unification, effectively unifying with respect not to T (Σ)
but to quotients T (Σ)/E (see also Jouannaud and Kirchner, 1986). Similar extensions
were also made to disunification: Comon (1988) developed disunification algorithms
with respect to quotients T (Σ)/E where E is a so-called quasi-free or compact axiom-
atization. Examples of such axiomatizations include sets of associativity and commu-
tativity axioms. Fernández (1992) used a narrowing-based approach to show that if E
is a ground convergent rewrite system, then the existential fragment of disunification is
semi-decidable but in general not decidable even if E-unification is decidable and finitary
(i.e. there are always only finitely many different most general E-unifiers).

In this chapter, I extend disunification to more general interpretations: Instead of
considering only quotients of T (Σ), I allow minimal many-sorted Herbrand models of
predicative clauses and equations of the form sl(x)'sk(x) for some sorts. I will call such
interpretations ultimately periodic. They occur naturally as quotients of the natural
numbers or when models of formulas from propositional linear time temporal logics are
described by clause sets (Ludwig and Hustadt, 2009). The extended algorithm gives rise
to a decision procedure for the satisfiability of equational formulas in ultimately periodic

39



3 Disunification and Predicate Completion

interpretations.

My algorithm is based on the disunification algorithm by Comon and Delor (1994).
While there are other disunification algorithms available, this one has the advantage of
being flexible in the sense that the control on its rules is kept as weak as possible. Ear-
lier algorithms like the ones of Comon and Lescanne (1989) and Comon (1991) required
an often inefficient normal form (e.g. conjunctive normal form) computation after every
step. The weak control used by Comon and Delor leaves wide space for the development
of efficient instances in concrete implementations, which is important because disuni-
fication over an infinite domain is NP-complete (NP-hardness can easily be shown by
encoding SAT by x 7→ x'true and ¬x 7→ x'false; for completeness see Pichler, 2003).
On the downside, the weak control makes the termination argument considerably more
complicated than when formulas are kept strongly normalized.

In addition to flexibility, the emphasis in Comon and Delor’s algorithm lies in a very
rich constraint-based sort structure. This sort structure and the consideration of quotient
algebras are orthogonal problems. To restrict the presentation of the current results to
its essential kernel, I will mostly ignore the sort constraints here.

Predicative atoms are often integrated into a multi-sorted equational framework not
explicitly but by adding a new sort bool, replacing each atom P (t1, . . . , tn) by an equa-
tion fp(t1, . . . , tn)'true between terms of this sort (cf. Section 2.2.5), and then using
algorithms designed for the purely equational setting. This is not so trivial for dis-
unification because it does not prevent the need to extend disunification to a quotient
T (Σ)/E , where E encodes the set of valid predicative atoms.

The addition of predicative atoms often makes disunification applicable for the com-
pletion of predicates, i.e. for the computation of those instances of a predicate that do
not hold in a given interpretation. Comon and Nieuwenhuis (2000) gave an algorithm
how to complete predicates in minimal Herbrand models of universally reductive Horn
clause sets but did not formally prove its correctness. I will generalize their approach to
ultimately periodic models and prove the correctness of this generalization, which also
implies the correctness of the original algorithm.

This chapter is structured as follows: In Section 3.2, I will present a disunification
algorithm for ultimately periodic interpretations and prove it correct and terminating.
As a first application, I will show in Section 3.3 how to use disunification to compute the
completion of predicates in ultimately periodic interpretations and in minimal models
of saturated non-Horn clause sets. In Section 3.4, I combine results from the previous
sections to prove that the satisfiability of equational formulas in ultimately periodic
interpretations is decidable. Finally, I will shortly present an implementation of the
various presented algorithms in Section 3.5.

The main results of this chapter have been published as (Horbach, 2010).

40



3.2 Disunification

3.2 Disunification

3.2.1 The Disunification Algorithm PDU

Disunification provides a means to transform an equational formula φ into a simpler
equational formula φ′ for which satisfiability with respect to the considered interpretation
is easily decidable.

Example 3.1
Consider the most elementary case of reasoning with respect to the Herbrand interpre-
tation T (Σ). In the formula φf = ∃y.f(x, y)6'f(s(s(x)), 0) ∧ f(x, y)6'f(s(s(x)), s(0))
over a signature containing two sorts S, T and the function symbols 0 : S, s : S → S
and f : S, S → T , the disequations can be decomposed as x 6'(s(s(x))) ∨ y 6'0 and
x 6'(s(s(x))) ∨ y 6's(0), respectively. Because for every instantiation σ the two terms xσ
and s(s(x))σ are syntactically different, the subformula x6'(s(s(x))) is equivalent to the
constant >, which means that the whole formula is equivalent to >. Since > is trivially
satisfiable with respect to T ({0,s,f}), so is the initial formula φf .

Disunification algorithms usually have the aim to simplify a formula while preserving
its solution set with respect to an interpretation. The base algorithm can in general not
compute the solutions with respect to a general equational theory T (Σ)/E , where E is a
set of equations: For E = {s(s(x))'x}, the formula φ from Example 3.1 is unsatisfiable
in T ({0, s, f})/E . One of the problems is that x 6'(s(s(x))) is not equivalent to > in this
interpretation.

Because a terminating disunification procedure with respect to an equational theory
T (Σ)/E results in a decision procedure for satisfiability in T (Σ)/E , disunification with
respect to equational theories is in general not possible. I will now show that disunifica-
tion can nevertheless be extended to interpretations as in the previous example, where
the equalities in E are restricted to the form sl(x)'sk(x).

Definition 3.2 (Ultimately Periodic Interpretation)
Let Σ = (S,P,F ,X , τ) be a signature. Let S1, . . . , Sn be n different sorts such that all
ground terms of sort Si are of the form smi (0i) for two function symbols si, 0i. A finite set
E = {sl11 (x)'sk1

1 (x), . . . , slnn (x)'sknn (x)} of equations between terms in S1, . . . , Sn, with
li > ki for all i is called a set of ultimate periodicity equations. Each sort Si, 1 ≤ i ≤ n,
is called ultimately periodic of type (ki, li). All other sorts are called free.

Let � be a well-founded strict reduction ordering that is total on ground terms and
let N be a finite set of predicative and universally reductive clauses that is saturated
with respect to a refutationally complete calculus such that N ∪ E is satisfiable. The
Herbrand interpretation IN∪E of N ∪E with respect to � (cf. Definition 2.35) is called
an ultimately periodic interpretation.

The disunification procedure for ultimately periodic interpretations is based on a dis-
unification algorithm by Comon and Delor (1994), which I will call DU. They treat the
sorting discipline explicitly by enriching formulas (over an unsorted signature) with sort-
ing constraints of the form t ∈ S, where t is a term and S is a so-called sort expression,

41



3 Disunification and Predicate Completion

Normalization:
The Normalization rules comprise the negation normal form transformation rules
from Figure 2.1 and the two rules

P1: ∀~x.φ[∀~y.φ′]p _ ∀~x, ~y.φ[φ′]p
P2: ∃~x.φ[∃~y.φ′]p _ ∃~x, ~y.φ[φ′]p
if ~x and ~y are not empty and there is none of the symbols ¬,∀,∃ between the
two joined quantifiers; if a variable of ~y occurs in φ[>]p, it is renamed to avoid
capturing.

Formulas are always kept normalized with respect to these rules.

Figure 3.1: Normalization Rules of the Calculus PDU

e.g. Nat ∨ f(Nat,Nat). On the one hand, this allows very rich sort structures. On
the other hand, it constitutes an additional considerable technical complication of the
algorithm. Since multi-sorting can nicely be expressed by formulas over a sorted signa-
ture and the addition of sort constraints is a rather orthogonal problem, the variation
of the algorithm used below does not rely on explicit sort constraints but on implicit
well-sortedness.

Since most rules occur in two dual versions, it will be useful to be able to talk about
equations and disequations at the same time.

Definition 3.3 (t1'̇t2)
Let t1, t2 be two terms of the same sort. The expression t1'̇t2 stands for either t1't2 or
t1 6't2.

Definition 3.4 (PDU)
Let E be a set of ultimate periodicity equations. The Periodic Disunification Calculus
PDU for E consists of the rules in Figures 3.1, 3.2 and 3.3. All rules can be applied at
any position in a formula and they are applied modulo associativity and commutativity
of ∨ and ∧ and modulo the identities ∃~x, ~y.φ = ∃~y, ~x.φ and ∀~x, ~y.φ = ∀~y, ~x.φ.

The rules of Figures 3.1 and 3.2 are essentially identical to the rules of DU. The only
exceptions are Q7/8, Finite Sort Reduction, and Explosion, which differ from the original
formulation in that they are a straightforward combination of originally unsorted rules
with rules that manipulate explicit sorting constraints. The original rule Ex1 also always
required ~x to be non-empty. This is too weak for the completion algorithm of Section 3.3,
which is why PDU uses a version of Ex1 by Comon and Lescanne (1989).

Example 3.5
For Example 3.1 and E2 = {s(s(x))'x}, the normalization with respect to PDU runs as
follows:

φ _∗D2 ∃y.(x 6's(s(x)) ∨ y 6'0) ∧ (x 6's(s(x)) ∨ y 6's(0))
_∗PR ∃y.(x 6'x ∨ y 6'0) ∧ (x 6'x ∨ y 6's(0)) _∗normalize ∃y.y 6'0 ∧ y 6's(0)
_PS2 (06'0 ∧ 0 6's(0)) ∨ (s(0) 6'0 ∧ s(0)6's(0)) _∗normalize ⊥

42



3.2 Disunification

Decomposition, Clash, and Occurrence Check:
D1: f(u1, . . . , un)'f(u′1, . . . , u

′
n) _ u1'u′1 ∧ . . . ∧ un'u′n

D2: f(u1, . . . , un) 6'f(u′1, . . . , u
′
n) _ u1 6'u′1 ∨ . . . ∨ un 6'u′n

C1: f(u1, . . . , um)'g(u′1, . . . , u
′
n) _ ⊥ if f 6= g

C2: f(u1, . . . , um)6'g(u′1, . . . , u
′
n) _ > if f 6= g

O1: t'u[t] _ ⊥ if u[t] 6= t
O2: t6'u[t] _ > if u[t] 6= t
if f(u1, . . . , un), t and u[t] belong to a free sort

Quantifier Elimination:
Q1: ∃~x.φ1 ∨ φ2 _ (∃~x.φ1) ∨ (∃~x.φ2) if ~x ∩ var(φ1, φ2) 6= ∅
Q2: ∀~x.φ1 ∧ φ2 _ (∀~x.φ1) ∧ (∀~x.φ2) if ~x ∩ var(φ1, φ2) 6= ∅
Q3: ∃~x, x.φ _ ∃~x.φ if x 6∈ var(φ)
Q4: ∀~x, x.φ _ ∀~x.φ if x 6∈ var(φ)
Q5: ∀~x, x.x 6't ∨ φ _ ∀~x.φ{x 7→ t} if x 6∈ var(t)
Q6: ∃~x, x.x't ∧ φ _ ∃~x.φ{x 7→ t} if x 6∈ var(t)
Q7: ∀~z, ~x.y1't1 ∨ . . . ∨ yn'tn ∨ φ _ ∀~z.φ
Q8: ∃~z, ~x.y1 6't1 ∧ . . . ∧ yn 6'tn ∧ φ _ ∃~z.φ
if in Q7 and Q8 yi 6= ti and var(yi'̇ti)∩~x 6= ∅ for all i and var(φ)∩~x = ∅ and the
sorts of all variables in ~x contain infinitely many ground terms (in particular, all
ti are of a free sort).
Q1 and Q2 also require that no redex for P1 or P2 is created.

Finite Sort Reduction:
S1: ∀~x, x.φ _ ∀~x.φ{x 7→ t1} ∧ . . . ∧ φ{x 7→ tn}
S2: ∃~x, x.φ _ ∃~x.φ{x 7→ t1} ∨ . . . ∨ φ{x 7→ tn}
if the sort S of x is free and finite and t1, . . . , tn are the finitely many ground
terms in S.

Distribution:
N1: ∀~x.φ[φ0 ∨ (φ1 ∧ φ2)]p _ ∀~x.φ[(φ0 ∨ φ1) ∧ (φ0 ∨ φ2)]p
N2: ∃~x.φ[φ0 ∧ (φ1 ∨ φ2)]p _ ∃~x.φ[(φ0 ∧ φ1) ∨ (φ0 ∧ φ2)]p
if φ0, φ1, φ2 are quantifier-free, var(φ1)∩~x 6= ∅, φ1 is not a conjunction in N1 and
not a disjunction in N2 and does not contain a redex for N1 or N2, and there is
no negation and no quantifier in φ along the path p.

Explosion:
Ex1: ∃~x.φ _

∨
f∈F ′ ∃~x, ~xf .y'f(~xf ) ∧ φ{y 7→ f(~xf )}

if y is free in φ, no other rule except Ex2 can be applied, there is in φ a literal
y'̇t where t contains a universally quantified variable, and ~x is non-empty or φ
is of the form φ = ∀~x′.φ′. If y is of sort S, then F ′ ⊆ F is the set of function
symbols of sort S1, . . . , Sn → S.
Ex2: ∀~x.φ _

∧
f∈F ′ ∀~x, ~xf .y 6'f(~xf ) ∨ φ{y 7→ f(~xf )}

if y is free in φ, no other rule can be applied, there is in φ a literal y't or y 6't
where t contains an existentially quantified variable, and ~x is non-empty. If y is
of sort S, then F ′ ⊆ F is the set of function symbols of sort S1, . . . , Sn → S.

Figure 3.2: Rules of the Calculus PDU for both Free and Ultimately Periodic Sorts

43



3 Disunification and Predicate Completion

Periodic Reduction:
PR: A[sl(t)]p _ A[sk(t)]p
if A is an atom and sl(t) belongs to an ultimately periodic sort of type (k, l).

Periodic Decomposition:

PD1: s(t)'s(t′) _



t't′ if t and t′ are ground
t'sk−1(0) ∨ t'sl−1(0) if t is not ground

and s(t′) = sk(0)
t't′ if t is not ground

and t′ is ground
and s(t′) 6= sk(0)

t't′ ∨ (t'sk−1(0) ∧ t′'sl−1(0))
∨ (t'sl−1(0) ∧ t′'sk−1(0)) if t and t′ are not ground

PD2: s(t)6's(t′) _



t 6't′ if t and t′ are ground
t 6'sk−1(0) ∧ t 6'sl−1(0) if t is not ground

and s(t′) = sk(0)
t 6't′ if t is not ground

and t′ is ground
and s(t′) 6= sk(0)

t 6't′ ∧ (t6'sk−1(0) ∨ t′ 6'sl−1(0))
∧ (t6'sl−1(0) ∨ t′ 6'sk−1(0)) if t and t′ are not ground

if s(t) belongs to an ultimately periodic sort of type (k, l) and s(t)'̇s(t′) is irre-
ducible by PR.

For k = 0, the atom ⊥ replaces t'sk−1(0) and > replaces t6'sk−1(0).

Periodic Clash Test:

PC1: s(t)'0 _
{
t'sl−1(0) if k = 0 and t is not ground
⊥ if k > 0 or t is ground

PC2: s(t) 6'0 _
{
t6'sl−1(0) if k = 0 and t is not ground
> if k > 0 or t is ground

if s(t) belongs to an ultimately periodic sort of type (k, l) and s(t)'̇0 is irreducible
by PR.

Periodic Occurrence:

PO1: x'sn(x) _
{
x'sk(0) ∨ . . . ∨ x'sl−1(0) if l − k divides n
⊥ if l − k does not divide n

PO2: x 6'sn(x) _
{
x 6'sk(0) ∧ . . . ∧ x 6'sl−1(0) if l − k divides n
> if l − k does not divide n

if x and sn(x) belong to an ultimately periodic sort of type (k, l) and n > 0.

Periodic Sort Reduction:
PS1: ∀~x, x.φ _ ∀~x.φ{x 7→ 0} ∧ . . . ∧ φ{x 7→ sl−1(0)}
PS2: ∃~x.x.φ _ ∃~x.φ{x 7→ 0} ∨ . . . ∨ φ{x 7→ sl−1(0)}
if x belongs to an ultimately periodic sort of type (k, l) and x occurs in φ.

Figure 3.3: Rules of the Calculus PDU for Ultimately Periodic Sorts

44



3.2 Disunification

3.2.2 Correctness and Termination of PDU

I will first show that _PDU rewrite steps do not change the solutions of a formula.

Theorem 3.6 (Correctness)
Let I = IN∪E be an ultimately periodic interpretation and let φ, φ′ be two formulas
such that φ _PDU φ

′. Let X ′ be a set of variables containing the free variables of φ.
Then Sol(φ,X ′, I) = Sol(φ′,X ′, I).

Proof. For free sorts and all rules but Ex1, this has been proved by Comon and Delor
(1994, Proposition 1). For any sort, correctness of Ex1 has been shown by Comon and
Lescanne (1989, Proposition 3). For ultimately periodic sorts, correctness of all the rules
in Figures 3.1 and 3.2 and Periodic Sort Reduction follows easily.

Periodic Reduction is correct because I |= sl(x)'sk(x) implies that I |= A[sl(t)]pσ
holds if, and only if, I |= A[sk(t)]pσ holds.

For Periodic Decomposition, let I |= (s(t)'s(t′))σ. For free sorts, this is equivalent
to I |= (t't′)σ, but for periodic sorts, it is also possible that s(t)σ's(t′)σ'sk(0) and
tσ 6't′σ, namely if tσ'sl−1(0) and t′σ 6'sl−1(0) or vice versa. In this case, t′σ (or tσ,
respectively) must be equal to sk−1(0) in I. On the other hand, it is easy to verify that
every solution of the reduct is also a solution of s(t)'s(t′): If, e.g., I |= (t'sk−1(0) ∧
t′'sl−1(0))σ, then I |= s(t)'sk(0)'sl(0)'s(t′).

For Periodic Clash Test, assume that I |= (s(t)'0)σ. This is equivalent to s(t)σ _∗E 0.
For k 6= 0, such a reduction is not possible. For k = 0, sl(0) _E 0 implies that I |=
(s(t)'0)σ is equivalent to I |= (s(t)'sl(0))σ. The equivalence with I |= (t'sl−1(0))σ
follows as for PD, using k = 0.

If Periodic Occurrence is applicable to a literal x'̇sn(x), n ≥ 0, then any ground

instance of the literal must be of the form sm(0)'̇sn+m(0). Then sm(0)
∗
_̂E s

n+m(0) if,
and only if, l − k divides n and m ≥ k. ♦

To prove the termination of the system, I will use many ideas of the termination
proof for DU from (Comon and Delor, 1994). However, the original course of action
makes extensive use of symmetries in the rules and cannot be taken over because the
generalized Explosion creates an asymmetry.

The proof consists of two steps: First I prove that the number of rule applications
between two successive applications of the Explosion rules is finite, then I show that
the number of applications of the Explosion rules is also finite. Both parts of the proof
rely on a transformation of formulas, during which variable occurrences are annotated
by two values: The number of ∀∃ quantifier alternations above the binding position and
the number of variables bound by the same quantifier.

Definition 3.7 (Nφ(x), slφ(x))
Let φ be a formula in which each variable is bound at most once and let x be a variable
occurring in φ. Associate to x and φ two integers Nφ(x) and slφ(x): If x is free in φ,
define slφ(x) to be the number of free variables in φ and Nφ(x) = 0. If x is bound in φ
at position p, define slφ(x) to be the number of variables bound at the same position of
φ, and Nφ(x) is one plus the number of ∀∃ quantifier alternations in φ above p.

45



3 Disunification and Predicate Completion

This definition of Nφ(x) is different from the one in (Comon and Delor, 1994), where
both ∀∃ and ∃∀ quantifier alternations are counted. This difference is negligible for
rules that do not introduce any quantifiers because Nφ(x) (non-strictly) decreases for all
variables with respect to both definitions. However, the difference is crucial when the
generalized Explosion rule Ex1 is considered.

Definition 3.8 (�I)
For a signature Σ = (S,P,F ,X , τ), let F ′ = F ∪ P ∪ {', 6',∃,>,⊥,∧,∨,¬, g, h, a} be
an extension of F and P by fresh symbols. All elements of F ′ are considered as function
symbols over a single sort S. The symbols >,⊥, a are constants, ∃,¬, h are unary, and
', 6',∧,∨, g are binary. For a formula φ over Σ, that is assumed to be renamed such that
each variable is bound at most once in φ, inductively define a function Iφ(.) from formulas
over Σ and terms over F to terms over F ′ as follows. First every universal quantifier
occurrence ∀~x.ψ′ in the argument is replaced by ¬∃~x.¬ψ′ and the result is normalized
by the Normalization rules from Figure 3.2 except ¬(∃~x.φ) 6_ ∀~x.¬φ. Finally

Iφ(ψ1 ◦ ψ2) = Iφ(ψ1) ◦ Iφ(ψ2) for ◦ ∈ {∧,∨}
Iφ(∃x1, . . . , xn.ψ) = ∃n(Iφ(ψ))

Iφ(¬P (~t)) = Iφ(P (~t))

Iφ(¬ψ) = ¬Iφ(ψ) if ψ is not an atom

Iφ(◦(t1, . . . , tn)) = ◦(Iφ(t1), . . . , Iφ(tn)) for ◦ ∈ F ∪ P ∪ {>,⊥,', 6'}
Iφ(x) = g(hNφ(x)(a), hslφ(x)(a))

Assume the partial ordering ¬ � g � h � f � a � ' � 6' � P � > � ⊥ � ∃ � ∧ � ∨
on F ′ (for all f ∈ F and P ∈ P), and symbols within F and within P, respectively, are
incomparable. The symbols ∧,∨,', 6' have multiset status and g and all symbols in F
and P have lexicographic status. Define a strict partial ordering �I by φ �I φ′ ⇐⇒
Iφ(φ) �apo Iφ′(φ

′).

Example 3.9
If t is a term that contains at least one variable and t′ is a ground term, then Iφ(t) �apo

Iφ′(t
′) for any formulas φ, φ′. In fact, Iφ(t) contains a subterm of the form g(hn(a), hm(a))

which is already greater than Iφ′(t
′) because the latter term contains only symbols from

F ∪ {', 6'} and g is greater than all these symbols.

I will show that the combination of a rule application and the following normalization
decreases �I for all rules except Explosion. Since normalization is obviously terminating,
this implies that only a finite number of transformation steps can occur between two
successive explosions.

Proposition 3.10 (Termination of PDU without Explosion)
There is no infinite chain φ1, φ2, . . . of formulas such that φ1 _PDU φ2 _PDU · · · and none
of the steps is an Explosion.

46



3.2 Disunification

Proof. I will show that φ �I φ′ holds whenever φ _PDU φ′ by application of a non-
Explosion rule. The proposition follows because, as an associative path ordering, �I is
well-founded.

For the rules in Figure 3.2, φ �I φ′ was proved by Comon and Delor (1994, Lemmas
3–9). Periodic Sort Reduction is a syntactic variation of Finite Sort Reduction, so the
proofs for both rules are identical.

For Periodic Reduction A[t] _ A[t′], note that Nφ(x) = Nφ′(x) and slφ(x) = slφ′(x).
This implies that Iφ′(t

′) is a strict subterm of Iφ(t). So Iφ(t) �apo Iφ′(t
′), i.e. Iφ(φ) �apo

Iφ′(φ
′) by monotonicity of �apo.

For Periodic Clash Test and k > 0 or ground t, the proposition follows from the order-
ing '̇ � >,⊥ on the top symbols and monotonicity of �apo. For k = 0 and non-ground t,
consider the rewriting s(t)'̇0 _ t'̇sl−1(0). By monotonicity of �apo, it suffices to show
that Iφ(s(t)'̇0) �apo Iφ′(t'̇sl−1(0)), which reduces after application of the definition of
I to s(Iφ(t))'̇0 �apo Iφ′(t)'̇sl−1(0). Again, N and sl do not change in this step, and so
Iφ(t) = Iφ′(t). By definition of �apo, it suffices to show that s(Iφ(t))'0 �apo Iφ(t) and
s(Iφ(t))'0 �apo s

l−1(0) and {s(Iφ(t)), 0} �mulapo {Iφ(t), sl−1(0)}. All three relations follow

from s(Iφ(t)) �apo s
l−1(0) (c.f. Example 3.9), and the subterm property of �apo.

For Periodic Decomposition, it suffices to show Iφ(s(t)'̇s(t′)) �apo Iφ′(A) for all newly
introduced atoms A (remember that '̇ � ∧ and '̇ � ∨). Clearly Iφ(s(t)'̇s(t′)) �apo

Iφ′(t'̇t′) holds by the subterm property of �apo. For all other atoms, the relation
Iφ(s(t)'̇s(t′)) �apo Iφ′(A) follows as in the case of Periodic Clash Test and k = 0.

For Periodic Occurrence, the proposition follows from monotonicity and the ordering
'̇ � >,⊥ on the top symbols if the literal is replaced by > or ⊥; the argument is
analogous to the one for Periodic Decomposition if the literal is replaced by a conjunction
or disjunction. ♦

An application of Explosion to a formula does not reduce the formula with respect to
�I . Because of this, a different ordering is needed to handle explosions. This ordering
will be a lexicographic combination of orderings based on Iφ(ψ).

Lemma 3.11 (Decreasing Number of ∀∃ Quantifier Alternations)
For a formula φ, let H(φ) be one plus the maximal number of ∀∃ quantifier alternations
along a path in φ. Then every application of a rule in PDU non-strictly decreases H.

Proof. The only rules that can add new quantifier symbols to a formula are Q1/2 and the
Sort Reduction, Distribution and Explosion rules. Q1/2, Sort Reduction and Distribu-
tion only duplicate existing quantifiers and cannot introduce new quantifier alternations.
Both Ex1 applied at an existential quantifier position and Ex2 obviously also do not in-
troduce a new quantifier alternation. Because Explosion only applies to a formula to
which the rule P1 is not applicable, Ex1 also does not introduce a new ∀∃ quantifier
alternation if it is applied to at a universal quantifier position. ♦

Definition 3.12 (�ω)
Let φ, ψ be formulas over the signature Σ = (S,P,F ,X , τ), let ω be a new function

47



3 Disunification and Predicate Completion

symbol, and let i ≥ 1. Define the formula Ωφ,i(ψ) as the normal form of ψ under the fol-
lowing rewrite system that is confluent modulo associativity and commutativity (Comon
and Delor, 1994, Lemma 12):

◦(ω, . . . , ω) _ ω if ◦ ∈ F ∪ P ∪ {', 6',∨,¬}
x _ ω if Nφ(x) < i

ψ1 ∧ ω _ ω

¬ψ1 ∨ ω _ ¬ψ1

∀~x.ψ1 _ ¬∃~x.¬ψ1

∃x.ψ1 _ ψ1 if x 6∈ var(ψ1)

(∃x.ψ1) ∨ ω _ ∃x.ψ1 if ∃x.ψ1 is irreducible

Let Ωi(φ) = Ωφ,i(φ). Extend the previous strict partial ordering from Definition 3.8
by > � ω � ∃. Moreover, define strict partial orderings �i and �ω by φ �i φ′ ⇐⇒
Iφ(Ωi(φ)) �apo Iφ′(Ωi(φ

′)) and φ �ω φ′ ⇐⇒ there is an index i such that Iφ(Ωj(φ)) =
Iφ′(Ωj(φ

′)) for all j > i and φ �i φ′.

Lemma 3.11 implies that Ωj(φn) = ω holds for all formulas φn in a derivation φ1 _PDU

φ2 _PDU · · · and all j above the fixed boundary H(φ1). Hence �ω is well-founded
on {φ1, φ2, . . .} as a lexicographic combination of the well-founded partial orderings
�H(φ1), . . . ,�2,�1 .

Lemma 3.13 (Non-Explosion Rules are Non-Strictly Decreasing)
Let φ _ φ′ not be an Explosion. Then φ �i φ′ for all i ≥ 1.

Proof. For the rules in Figure 3.2, this was proved by Comon and Delor (1994, Lemma
15).

For Periodic Reduction A[t]p _ A[t′]p, it holds that Nx(φ) = Nx(φ′) and hence Ωφ′,i(t
′)

is a subterm of Ωφ,i(t).
For Periodic Clash Test and k > 0 or ground t, note that the top symbol of the

subterm Ωφ,i(s(t)'̇0) of Ωφ,i(φ) is either '̇ or ω, and both are larger than ⊥. For k = 0
and non-ground t, consider the rewriting s(t)'̇0 _ t'̇sl−1(0). Again, N does not change
in this step, and so applying Ωφ,i and Ωφ′,i, respectively, yields the normal form ω for
both sides if t reduces to ω, and the literals s(t′)'̇ω and t′'̇ω if t reduces to some other
term t′. In both cases, Iφ(Ωφ,i(s(t)'̇0)) �apo Iφ′(Ωφ′,i(t'̇sl−1(0))).

For Periodic Decomposition, let ψ = s(t)'̇s(t′) reduce to ψ′. If t and t′ are ground,
then Ωφ,i(ψ) = Ωφ′,i(ψ

′) = ω. So let t not be ground. It suffices to show that Iφ(Ωφ,i(ψ))
is at least as large as Iφ(Ωφ,i(A)) = Iφ′(Ωφ′,i(A)) for all newly introduced literals A.
By definition of recursive path orderings, the relation Iφ(Ωφ,i(ψ)) �apo Iφ(Ωφ,i(t'̇t′))
follows from the relations Iφ(Ωφ,i(ψ)) �apo Iφ(Ωφ,i(t)) and Iφ(Ωφ,i(ψ)) �apo Iφ(Ωφ,i(t

′))
and {Iφ(Ωφ,i(s(t))), Iφ(Ωφ,i(s(t

′)))} �mulapo {Iφ(Ωφ,i(t)), Iφ(Ωφ,i(t
′))}, that all hold by the

subterm property of �apo. The ground term sl−1(0) reduces to the minimal term ω,
and so Iφ(Ωφ,i(ψ)) �apo Iφ(Ωφ,i(t'̇t′)) �apo Iφ(Ωφ,i(t'̇sl−1(0))). The same holds for the
three literals t′'̇sl−1(0), t'̇sk−1(0), and t′'̇sk−1(0).

48



3.2 Disunification

For Periodic Occurrence, the proposition follows from Ωφ′,i(>) = Ωφ′,i(⊥) = ω and
the ordering '̇, ω ≥ ω if the literal is replaced by > or ⊥; otherwise it follows as for
Periodic Decomposition. ♦

The strict partial ordering �ω is still not strong enough to show directly that the
Explosion rules are decreasing in some sense. In fact, if φ _Ex1/2 φ

′, then φ′ �ω φ.
However, the non-Explosion rule applications following such a step revert this increase.
The proofs of the following Lemmas 3.15–3.17 are almost identical to the respective
proofs for DU (Comon and Delor, 1994, Lemmas 16–18); they are presented anyway
because it is there that the difference in definitions of Nφ(x) is of importance.

Definition 3.14 (Explosion Level Lφ)
Let φ _Ex1/2 φ′ be an explosion using the literal y'̇t[z]. The explosion level Lφ is
defined as Lφ = Nφ(z).

By the control on Ex1/2, it holds that Nφ(z) ≥ Nφ(y).

Lemma 3.15
Let φ _Ex1

∨
f φf or φ _Ex2

∧
f φf be an explosion at the root position of φ and let

φf _∗
PDU\{Ex1,Ex2} ψf such that every ψf is irreducible with respect to PDU \ {Ex1,Ex2}.

Then for every f there is an index i ≥ Lφ such that

(i) Iφf (Ωj(φf )) = Iψf (Ωj(ψf )) for every j > i and

(ii) φf �i ψf .

Proof. Let i be the largest index such that Iφf (Ωi(φf )) 6= Iψf (Ωi(ψf )). The side con-
ditions of Ex1/2 guarantee that i exists and i ≥ Lφ. By Lemma 3.13, Iφf (Ωi(φf )) ≥
Iψf (Ωi(ψf )) and since, by definition of i, they are distinct, φf �i ψf follows. ♦

Lemma 3.16
Let φ _Ex1

∨
f φf or φ _Ex2

∧
f φf be an explosion at the root position of φ and

let
∨
f φf _∗

PDU\{Ex1,Ex2} ψ, or
∧
f φf _∗

PDU\{Ex1,Ex2} ψ, respectively, such that ψ is

irreducible with respect to PDU \ {Ex1,Ex2}. Then it holds that φ �ω ψ.

Proof. I show the proposition for Ex1; the case of Ex2 is analogous. By definition of
Ω and Lφ, Iφ(Ωi(φ)) = Iφf (Ωi(φf )) for every f and every i ≥ Lφ. Note that for Ex1,
this does not hold for the original definition of Nφ(x) by Comon and Delor, because an
additional quantifier level may have been introduced. No rule can affect two disjuncts at
the same time unless one becomes equal to > and the whole problem reduces to > and
hence obviously decreases with respect to �ω. So let ψ =

∨
f ψf and φf _∗

PDU\{Ex1,Ex2}
ψf . Then φ �ω ψf for every f because of Lemma 3.15. Let if be the index from this
lemma for φf and let i be the maximum of the if . The top symbol of φ can only be
a quantifier, i.e. the top of Iφ(Ωi(φ)) is either ∃¬ or ¬ and hence greater than the top
symbol of Iψ(Ωi(ψ)). Hence φ �ω ψ. ♦

Lemma 3.17
Let φ _Ex1/2 φ

′ _∗
PDU\{Ex1,Ex2} ψ _Ex1/2 · · · . Then it holds that φ �ω ψ.

49



3 Disunification and Predicate Completion

Proof. Lemma 3.16 shows this when Ex1 or Ex2 is applied at the top position of φ. At
other positions, no rule can modify the context of the exploded subformula, unless this
subformula itself reduces to > or ⊥. But if this happens, the part which disappears is
deeper than the part which is modified and φ �ω ψ. ♦

Theorem 3.18 (Termination)
There is no infinite chain φ1, φ2, . . . of formulas such that φ1 _PDU φ2 _PDU · · · .

Proof. Because of Lemma 3.17, each chain can only contain a finite number of Explosion
steps. Because of Proposition 3.10, there can also only be finitely many successive non-
Explosion steps.

♦

3.3 Predicate Completion

3.3.1 The Predicate Completion Algorithm PC

When an interpretation is given as a minimal model IN of a set N of clauses, it is
often of interest to enrich N to a set N ′ in such a way that N ′ does not have any
Herbrand models other than IN . The key to this enrichment is the so-called completion
of predicates (Clark, 1977): For each predicate P , the set N ′ has to describe for which
arguments P does not hold in IN .

Example 3.19 (Completion of the Even Predicate)
If NEven = {Even(0), Even(x) → Even(s(s(x)))} describes the even numbers over the
single-sorted signature ΣEven = ({Even}, {s, 0}), with Even : Nat, s : Nat → Nat and
0 : Nat, then Even(sn(0)) holds in the minimal model INEven

if, and only if, n is an
even number. Let N ′Even contain NEven and the additional clauses Even(s(0)) → and
Even(s(s(x)))→ Even(x). Then INEven

is the only Herbrand model of N ′Even over ΣEven.

For predicative clause sets N , ' is interpreted as syntactic equality in IN . Comon
and Nieuwenhuis (2000, Section 7.3) used this fact to develop a predicate completion
procedure for predicative and universally reductive Horn clause sets based on a disuni-
fication algorithm. They did not, however, give a formal proof of the correctness of the
procedure. In this section, I will extend the predicate completion algorithm to clause sets
describing ultimately periodic interpretations and prove its correctness and termination.

Definition 3.20 (PC)
Let Σ = (S,P,F ,X , τ) be a signature and let � be a well-founded strict reduction
ordering that is total on ground terms. Let IN∪E be an ultimately periodic interpretation
over Σ as in Definition 3.2 (in particular, all clauses in N with non-empty succedent have
a unique strictly maximal positive literal occurrence).

The Predicate Completion Algorithm PC works as follows:

(i) For every P ∈ P, let NP ⊆ N be the set of clauses in N of the form Γ→ ∆, P (~t),
where P (~t) is a strictly maximal literal occurrence. Combine all these clauses into

50



3.3 Predicate Completion

the single formula ∀~x.(φP → P (~x)) where

φP = ∃~y.
∨

Γ→∆,P (~t)∈NP

(x1't1 ∧ . . . ∧ xn'tn ∧
∧
A∈Γ

A ∧
∧
B∈∆

¬B) ,

the yi are the variables appearing in NP , and the xj are fresh variables. In partic-
ular if NP is empty, then φP = ⊥.

(ii) In the interpretation IN , the formula ∀~x.(φP → P (~x)) is equivalent to the for-
mula ∀~x.(¬φP → ¬P (~x)). Transform ¬φP using the algorithm PDU for E into an
equivalent formula φ′P that does not contain any universal quantifiers.

(iii) Write the formula ∀~x.(φ′P → ¬P (~x)) as a set finite N ′P of clauses.

(iv) Let N ′ be the union of N and all sets N ′P , P ∈ P.

The idea of the algorithm was already introduced by Clark in 1977, who executed steps
(ii) and (iii) by hand and did not discuss the question if they can be automatized. He
showed that, given that the transformation of ¬φP to φ′P is correct and ∀~x.(φ′P → ¬P (~x))
does correspond to a set of clauses, N ′ is a completion of N . So the critical steps are
(ii) and (iii): It is neither obvious that the universal quantifiers can be eliminated from
¬φP , nor is it obvious that, once the universal quantifiers are gone, the result can be
written as a finite set of clauses.

3.3.2 Disunification-based Quantifier Elimination

To prove that the universal quantifiers can in fact be eliminated from ¬φP , I will examine
an invariant that holds for ¬φP (Lemma 3.23), is preserved during the application of
PDU (Lemma 3.24), and holds only for such normal forms that do not contain universal
quantifiers (Lemma 3.27).

In this section, I always implicitly assume a set E of ultimate periodicity equations to
be given.

Invariant 3.21
Let φ↓ be the normal form of a formula φ under the Normalization rules, Decomposition,
Periodic Decomposition and Distribution. Consider the following properties of φ:

(1) No subformula of φ↓ of the form ∀~x.φ′, where the top symbol of φ′ is not a universal
quantifier, contains a quantifier.

(2) Universally quantified variables occur in φ↓ only in predicative literals or in dis-
equations t[x]6't′ where all variables in t′ are free or existentially quantified.

For every predicative literal occurrence Ax in φ↓ containing a universally quantified
variable x, there is a subformula of φ↓ of the form Ax ∨ Bx ∨ φx where Bx is a
disequation containing x.

Condition (1) in Invariant 3.21 is a special case of φ not containing nested quantifiers:

51



3 Disunification and Predicate Completion

Definition 3.22 (Nested Quantifiers)
A formula φ contains nested quantifiers if either

(i) φ = φ[∀x.φ1[∃y.φ2]p]q or φ = φ[∃x.φ1[∀y.φ2]p]q, or

(ii) φ = φ[∃x.φ1[∃y.φ2]p]q or φ = φ[∀x.φ1[∀y.φ2]p]q and the top symbol of φ1 is not a
quantifier.

Lemma 3.23 (Invariant Holds Initially)
Let N be a universally reductive clause set and let φP be defined as in Definition 3.20.
Then Invariant 3.21 holds for ¬φP .

Proof. The normal form (¬φP )↓ of ¬φP is

(¬φP )↓ = ∀~y.
∧

Γ→∆,P (~t)∈NP

(x1 6't1 ∨ . . . ∨ xn 6'tn ∨
∨
A∈Γ

¬A ∨
∨
B∈∆

B) .

Invariant 1 holds because there are no nested quantifiers in (¬φP )↓. Invariant 2 holds
because all clauses in N are universally reductive, and so every variable that occurs in
a predicative literal A or B also occurs in one of the disequations xi 6'ti in the same
conjunct of (¬φP )↓. ♦

Lemma 3.24 (Invariant is Preserved)
Let φ _PDU φ

′. If φ satisfies Invariant 3.21 then so does φ′.

Proof. Invariant 1: The only rule to introduce a possibly critical quantifier symbol is
the rule Ex1 applied to a subformula of the form ∀~x.ψ′:

φ[∀~x.ψ′]p _ φ[
∨
f∈F ′

∃~xf .y'f(~xf ) ∧ ∀~x.ψ′{y 7→ f(~xf )}]p

If the new existential quantifier ∃~xf is in the scope of a universal quantifier in φ′ and
φ′↓, then so was the original universal quantifier ∀~x in φ and φ↓.
Invariant 2: This invariant can only be destroyed by

• introducing new universally quantified variables into a literal,

• disconnecting Ax and Bx, or

• altering a disequation Bx.

It is easy to see that all rules that do not replace variables or reduce Bx preserve the
invariant.

If C2, O2, PC2 or PO2 reduces Bx to >, then the whole subformula Ax ∨ Bx ∨ φx is
reduced to > by the normalization rules, i.e. the invariant is maintained. Alternatively,
PC2 can alter Bx by s(t[x])6'0 _ t6'sl−1(0). By PD2 and Normalization, this literal
either reduces to > or to a formula ψ consisting of disjunctions, conjunctions and literals
such that ψ contains x in disequations t′′[x]6't′ as required for the invariant. In the former
case, the whole disjunction Ax ∨ ψ ∨ φx reduces to >; in the latter, the distribution
rule is applicable because the disequation is in the scope of a universal quantifier and

52



3.3 Predicate Completion

Invariant 1 guarantees that there is no existential quantifier in between. Distribution
brings Ax∨ψ∨φx into the form ψ′1∧ . . .∧ψ′n where each ψ′i is of the form Ax∨x 6't′∨ψ′′i ,
i.e. the invariant is preserved.

PO2 is not applicable to a disequation Bx because one side contains a universal quan-
tifier and the other one does not.

The Sort Reduction rules only replace variables by ground terms and thus are harmless.

If Q5: φ[∀~x, x.x 6't∨ψ]p _ φ[∀~x.ψ{x 7→ t}]p works on a universally quantified variable
x (and Bx may or may not be x6't), then every occurrence of x is replaced by a term that,
by Invariant 1, does not contain any universally quantified variables, which maintains
the invariant.

When Q6: φ[∃~y, y.y't ∧ ψ]p _ φ[∃~y.ψ{y 7→ t}]p is applied, then t contains only free
or existentially quantified variables because of Invariant 1. Again, the invariant is not
affected.

An Explosion Ex1: φ[∃~x.ψ]p _ φ[
∨
f∈F ′ ∃~x, ~xf .y'f(~xf ) ∧ ψ{y 7→ f(~xf )}]p replaces a

variable y that is free in ψ. By Invariant 1, this variable is existentially quantified or
free in φ and the replacement f(~xf ) contains only existentially quantified variables. The
same holds for the second version of Ex1.

An Explosion Ex2: φ[∀~x.ψ]p _ φ[
∧
f∈F ′ ∀~x, ~xf .y 6'f(~xf ) ∨ ψ{y 7→ f(~xf )}]p cannot be

executed because it relies on the existence of a variable that is existentially quantified
in ψ, which is excluded by Invariant 1. ♦

Lemma 3.25 (Irreducibility of Subformulas)
Let φ be a formula that is irreducible by PDU. Then every subformula ψ of φ is also
irreducible by PDU.

Proof. The proof of this proposition is identical to the proof of the corresponding lemma
for DU (Comon and Delor, 1994, Lemma 21):

The only contextual conditions in the control part of the rules are irreducibility con-
ditions; the only situations where the control can prevent a reduction φ[ψ]p _PDU φ[ψ′]p
when ψ _PDU ψ

′ are such that there is another redex in φ. ♦

Lemma 3.26 (Normal Forms and Nested Quanfitiers)
Normal forms with respect to PDU do not contain nested quantifiers.

Proof. Comon and Delor showed that normal forms with respect to DU do not contain
nested quantifiers (Comon and Delor, 1994, Lemma 22). Because PDU contains DU, every
well-sorted formula that is reducible by DU is also reducible by PDU. ♦

Lemma 3.27 (Normal Forms Without Universal Quantifiers)
A normal form φ with respect to PDU that

(i) fulfills Invariant 3.21 or

(ii) does not contain any predicative literals

is free of universal quantifiers.

53



3 Disunification and Predicate Completion

Proof. Consider a formula that fulfills the invariant or does not contain any predicative
atoms, but that contains a subformula ∀~x.φ. Assume that the whole formula and hence,
by Lemma 3.25, ∀~x.φ is irreducible by PDU. This will result in a contradiction.

By Lemma 3.26, φ can only be a disjunction, a conjunction, or a literal. If it is a
conjunction, then Q2 is applicable. The case that φ is a literal arises as the special case
of a disjunction with only one disjunct. So let φ be a disjunction. If a disjunct contains
a variable from ~x, then it must be a literal: If it is a conjunction, then rule N2 applies
and the top symbol cannot be a quantifier because of Lemma 3.26.

So φ can be written as φ = φ1 ∨ . . . ∨ φn ∨ φ′, where the φi are literals containing
universal variables and φ′ does not contain any universal variables. Because of the
Normalization rules, each φi can only be a predicative literal or an equational literal.

φi cannot be a disequation: Because of the decomposition rules, it would be either
x 6't or y 6't[x] where x ∈ ~x and y is free in φ. In the former case, Q5 is applicable, in
the latter Ex1.

φi can only be predicative in variant (i) of the lemma, and then Invariant 2 requires
that one of the other φj is a disequation containing a variable from ~x. This possibility
has already been refuted.

If φi is an equation, the decomposition rules only leave the possibilities x't and y't[x]
where x ∈ ~x and y is free in φ. In the latter case, Ex1 applies, so only x't is possible.

All in all, φ is of the form φ = xi1't1 ∨ . . . ∨ xin'tn ∨ φ′ and Q6 applies. ♦

Corollary 3.28 (Universal Quantifier Elimination)
Let N be a universally reductive clause set and let φP be defined as in Definition 3.20
and let φ′P be a normal form of ¬φP with respect to PDU. Then φ′P does not contain any
universal quantifiers.

Proof. This corollary is a straightforward combination of the preceding Lemmas 3.23,
3.24, and 3.27(i). ♦

3.3.3 Solved Form Computation

To address the second issue of transforming the formula ∀~x.(φ′P → ¬P (~x)) into a set of
clauses, I will make use of the fact that certain normal forms with respect to PDU can be
transformed into a particularly simple form:

Definition 3.29 (Solved Forms)
Let I be an ultimately periodic interpretation. A formula φ is a solved form with respect
to I if φ = >, φ = ⊥, or φ is a disjunction φ = φ1 ∨ . . .∨ φm and each φj is of the shape

φj = ∃~y.xi1't1 ∧ . . . ∧ xin'tn ∧A1 ∧ . . . ∧Ak ∧ ¬B1 ∧ . . . ∧ ¬Bk′ ∧ z1 6't′1 ∧ . . . ∧ zl 6't′l ,

where xi1 , . . . , xin occur only once in φj , the Ai and Bi are predicative atoms, the zi are
variables and zi 6= t′i, and φj is irreducible by Periodic Reduction.

The transformation into a solved form is again performed using a rewrite system:

54



3.3 Predicate Completion

Quantifier Elimination:
Q1: ∃~x.φ1 ∨ φ2 _ (∃~x.φ1) ∨ (∃~x.φ2) if ~x ∩ var(φ1, φ2) 6= ∅
Q6: ∃~x, x.x't ∧ φ _ ∃~x.φ{x 7→ t} if x 6∈ var(t)
All formulas are kept normalized with respect to Q1.

Distribution:
N2’: φ0 ∧ (φ1 ∨ φ2) _ (φ0 ∧ φ1) ∨ (φ0 ∧ φ2)

Replacement and Merging:
R : ∃~x.x't ∧ φ _ ∃~x.x't ∧ φ{x 7→ t} if x is free and x 6∈ var(t)

and if t ∈ X then t ∈ var(φ)
M: x't1 ∧ x't2 _ x't1 ∧ t1't2 if t1 is not a variable

and |t1| ≤ |t2|

Figure 3.4: Solved Form Conversion Rules

Definition 3.30 (SF)
Let E be a set of ultimate periodicity equations. The Solved Form Transformation
Algorithm SF for E consists of the Normalization rules of Figure 3.1, the (regular and
periodic) rules Decomposition, Clash and Occurrence rules as well as the rule Periodic
Reduction from Figures 3.2 and 3.3 and the rules of Figure 3.4.

This calculus is an extension of a corresponding calculus used by Comon and Delor
(1994, Section 6.3). The proofs of the following lemmas are almost identical (in the case
of Lemma 3.31) or based on the proof ideas for their calculus (in the case of Lemma 3.32).

Lemma 3.31 (SF Produces Solved Forms)
Let φ =

∨
i∈I ∃~xi.φi be a formula where the φi are quantifier-free conjunctions. If φ is

normal form with respect to SF, then φ is a solved form.

Proof. Because of the (normal and Periodic) Decomposition and Clash rules, each equa-
tional literal must be of the form x'̇t. So each disjunct is of the form

∃~y.xi1't1 ∧ . . . ∧ xin'tn ∧A1 ∧ . . . ∧Ak ∧ ¬B1 ∧ . . . ∧ ¬Bk′ ∧ z1 6't′1 ∧ . . . ∧ zl 6't′l

where the xi, yi and zi are variables and the Ai and Bi are predicative atoms. Because
of Q6, the xi must be free variables. Moreover, each xi occurs only once: Either ti is not
a free variable and x occurs only once because of R, O1 and PO1, or ti is a free variable,
in which case R guarantees that one of xi and ti occurs only once; by symmetry, this
variable is without loss of generality xi. Finally, zi 6= t′i is guaranteed by O2 and PO2
and φ is irreducible by Periodic Reduction by definition. ♦

Lemma 3.32 (Termination of SF)
Let φ =

∨
i∈I ∃~xi.φi be a formula where the φi are quantifier-free conjunctions. Then SF

terminates on φ.

55



3 Disunification and Predicate Completion

Proof. Note that, because formulas are kept in normal form with respect to Q1 and the
Normalization rules, they always stay in the given shape (where any ~xi may be empty
and the main disjunction and the subordinate conjunctions may degenerate to ranging
only over one or zero elements).

To prove that SF terminates, I show that it is decreasing for a well-founded strict
ordering �SF on formulas of the given form. To define this ordering, let ISF(

∨
i∈I ∃~xi.φi),

where φi is quantifier-free, be the multiset

{(I1(∃~xi.φi), I2(∃~xi.φi), I3(∃~xi.φi), I4(∃~xi.φi), I5(∃~xi.φi)) | i ∈ I} ,

where the five components of each tuple are defined as follows:

(i) I1(∃~xi.φi) is the number of variables in ~xi.

(ii) I2(∃~xi.φi) is the number of variables in φi that are not solved; a variable x in φi is
solved if φi = x't ∧ φ′i and x occurs only once in φi, and unsolved otherwise.

(iii) I3(∃~xi.φi) is a term over the set F3 = {∨,∧, g, f, a,>,⊥} of function symbols,
inductively defined by

• I3(∃~xi.φi) = I3(φi)

• I3(ψ1 ∨ ψ3) = I3(ψ1) ∨ I3(ψ3)

• I3(ψ1 ∧ ψ3) = I3(ψ1) ∧ I3(ψ3)

• I3(t1'̇t3) = g(fmax{|t1|,|t3|}(a)) if t1 and t3 are not ground
I3(t1'̇t3) = fmax{|t1|,|t3|}(a) if t1 and t3 are ground,
I3(t1'̇t3) = g(f |t1|(a)) if t1 is not ground and t3 is ground

• I3(P (~t)) = I3(¬P (~t)) = a if P is a predicate symbol.

• I3(>) = > and I3(⊥) = ⊥

(iv) I4(∃~xi.φi) is the number of redexes for PR in ∃~xi.φi.

(v) I5(∃~xi.φi) is the number of redexes for M in ∃~xi.φi.

Terms over F3 are ordered by the associative path ordering �3 extending the strict
ordering g � f � a � ∧ � ∨ � > � ⊥. The function symbol g serves as a marker for
non-ground equations that makes such equations larger than all ground equations. The
other components are ordered by the usual ordering on N. Let φ �SF ψ if, and only if,
ISF(φ) is greater than ISF(ψ) with respect to the multiset extension of the lexicographic
combination of the five orderings on the components. SF is indeed decreasing with
respect to this ordering:

• If ψ _Normalize ψ or ψ _C1/2 ψ or ψ _O1/2 ψ, then the numbers of quantified and
unsolved variables cannot increase and the strict decrease in the third component
is obvious because > and ⊥ are minimal with respect to �3.

• If ψ _D1/2 ψ, then the first two components are unaffected. Since every term on
the right hand side of D1/2 is has a smaller size than the maximal term on the left
hand side, and they can only contain variables if the left hand side does, the third
component decreases strictly.

56



3.3 Predicate Completion

• If ψ _PD1/2 ψ, then the first component is unaffected, the second one cannot
increase, and the third one strictly decreases:

– If s(t)'̇s(t′) _ t'̇t′ then the decrease follows from the subterm property of
the associative path ordering �3.

– If t is not ground and s(t′) = sk(0) then I3(s(t)'̇s(t′)) = g(f1+|t|(a)) and
I3(t'̇sn(0)) = g(f |t|(a)), so the left hand side is larger than every atom on
the right hand side, and the strict decrease follows from g � ∧ and g � ∨ as
in the previous proofs that used associative path orderings.

– If both t and t′ are not ground, the same argument applies again because
I3(s(t)'̇s(t′)) = g(f1+max{|t|,|t′|}(a)) is larger than I3(t'̇sn(0)) = g(f |t|(a))
and I3(t′'̇sn(0)) = g(f |t

′|(a)).

• If ψ _PC1/2 ψ or ψ _PO1/2 ψ, then again the first component is unaffected, the
second one cannot increase, and the third one strictly decreases because of the
same argumentation as either for C1/2 and O1/2 or for PD1/2, depending on
whether or not the reduct equals > or ⊥.

• If ψ _PR ψ, then none of the first three components can increase and the fourth
one strictly decreases.

• If ψ _Q1 ψ, then one component ∃~xi.φi of φ is split into two components and each
of the resulting components is obviously smaller than ∃~xi.φi (the first component
is unaffected, the second does not increase and the third one decreases because of
the subterm property of the associative path ordering �3).

• If ψ _Q6 ψ, then the number of existential variables decreases by one. So the first
component is strictly decreasing.

• If ψ _N2’ ψ and the result is normalized with Q1, then the first component is
unaffected, the second one cannot increase and the third component decreases
because of the subterm property of the associative path ordering �3).

• If ψ _R ψ, then the number of existentially quantified variables decreases by one.

• If ψ _M ψ, then the first component is unaffected. The number of unsolved
variables cannot increase because t1 is not a variable. The third component does
not change if t2 is non-ground, it non-strictly decreases if t2 is ground while t1
is not (because I3(x't2) = g(f |t2|(a)) �3 g(f |t1|(a)) = I3(t1't2)), and it strictly
decreases if both t1 and t2 are ground (because I3(x't2) = g(a) �3 f |t2|(a) =
I3(t1't2)). The fourth component is not increased because no new terms are
introduced. In any case, the last component strictly decreases. ♦

Corollary 3.33 (Equivalence to Solved Forms)
Let I be an ultimately periodic interpretation and let φ be a formula in negation normal
form that does not contain any universal quantifiers. Then φ can be transformed into an
equivalent solved form. If furthermore φ is irreducible by PDU, then all bound variables
of the solved from are of infinite sorts.

57



3 Disunification and Predicate Completion

The second part of this corollary is not relevant to the current considerations, but it
will be used in Section 3.4.

Proof. Using Q1, N2’ and the rule (∃x.ψ1) ∧ ψ2 _ ∃x.(ψ1 ∧ ψ2), where x is renamed if
it occurs in ψ2 to avoid capturing (this rule is well-known to be correct for any interpre-
tation), φ can be transformed into a disjunction of formulas of the form ∃~x.

∧
Li with

literals Li.

By the preceding Lemmas 3.31 and 3.32, the calculus SF transforms this formula
into a solved form. The algorithm preserves the solutions of a formula with respect to
every interpretation I: The correctness of the all rules except Replacement and Merging
follows from the correctness of PDU (Theorem 3.6; the correctness of N2 is independent of
the constraint on the context) and the correctness of the remaining two rules is obvious
because they replace equals by equals.

If φ is irreducible by PDU, then it is in particular irreducible by Finite and Periodic
Sort Reduction and does not contain any bound variables of a finite free or ultimately
periodic sort. Since the transformation algorithm does not introduce any new quantifier
symbols, this invariant is preserved throughout the transformation. ♦

So the formula φ′P appearing in the predicate completion procedure (Definition 3.20)
can be transformed into a solved form, and the formula ∀~x.(φ′P → ¬P (~x)) is equivalent
to either

• >, i.e. to the empty clause set, or to

• ∀x.¬P (~x), i.e. to the singleton clause set {P (~x)→}, or to

• ∀~x.
∧
j(φ
′
j → ¬P (~x)), and each conjunct can equivalently be written as a clause of

the form

A1, . . . , Ak, P (~x){xi1 7→ t1, . . . , xin 7→ tn} → B1, . . . , Bk, z1't′1, . . . , zl't′l.

Corollary 3.28 states that PDU eliminates the universal quantifiers from ¬φP . Together
with Corollary 3.33 and the correctness and termination of disunification (Theorems 3.6
and 3.18), this implies the applicability and the termination of the predicate completion
algorithm PC.

Theorem 3.34 (Predicate Completion)
Let IN∪E be an ultimately periodic interpretation over Σ as in Definition 3.2.

Then PC terminates on IN∪E with a completion of N .

Example 3.35 (Completion of the Even Predicate)
For Example 3.19, φEven is given by φEven = x'0∨∃y.y's(s(x))∧Even(y) and a normal
form of ¬φEven with respect to PDU and an equation E = {sl(x)'x} is

φ′Even =


x 6'sl−1(0) ∧ ¬Even(x) for l ∈ {1, 2}
(x's(0) ∧ ¬Even(sl−1(0)))
∨(∃z.x's(s(z)) ∧ ¬Even(z) ∧ z 6'sl−2(0)) for l > 2 .

58



3.3 Predicate Completion

This formula corresponds to the following clauses in N ′Even:
Even(x)→ Even(x), x'sl−1(0) for l ∈ {1, 2}
Even(s(0))→ Even(sl−1(0))
and Even(s(s(z)))→ Even(z), z'sl−2(0) for l > 2

3.3.4 Predicate Completion and Unique Herbrand Models

Comon and Nieuwenhuis (2000, Lemma 47) showed that the minimal model of a satisfi-
able universally reductive and predicative Horn clause set is the unique Herbrand model
of its completion:

Lemma 3.36 (Completions of Horn Clause Sets)
Let N be a satisfiable universally reductive predicative Horn clause set over Σ and let N ′

be a completion of N . Then the minimal model of N (with respect to set inclusion) is
the unique Herbrand model of N ′ over Σ in which ' is interpreted as syntactic equality
(i.e. t1't2 holds if, and only if, t1 = t2) on non-predicative terms.

The previous result also extends to some classes of non-Horn clause sets. Non-Horn
clause sets may have more than one minimal model, a simple example being {→ P,Q}
with minimal models {P} and {Q}. Given a well-founded strict reduction ordering �
that is total on ground terms, one of them can be distinguished using the construction of
Definition 2.35. This Herbrand interpretation is called I�N . It turns out that completion
singles out the same interpretation:

Lemma 3.37 (Completions of Universally Reductive Saturated Clause Sets)
Let � be a well-founded strict reduction ordering that is total on ground terms. Let
N be a satisfiable set of universally reductive predicative clauses that is saturated with
respect to a refutationally complete calculus and let M be a Herbrand model of the
completion N ′ of N . If ' is interpreted in M as syntactic equality (i.e. M |= t1't2 if,
and only if, t1 = t2) on non-predicative terms, then M equals I�N .

Proof. Because N is saturated, I�N is a minimal model of N with respect to set inclusion
(Lemma 2.36) and M cannot be a strict subset of N .

Assume, contrary to the proposition, that M \ I�N 6= ∅ and let P (~s) ∈ M \ I�N be
minimal with respect to �. BecauseM is a model of the completion and the algorithms
PDU and SF are correct, the formula ∀x.P (~x) → φp holds in M. In particular, M |=
φp{~x 7→ ~s}. This formula has the following shape:

φP = ∃~y.
∨

Γ→∆,P (~t)∈NP

(s1't1 ∧ . . . ∧ sn'tn ∧
∧
A∈Γ

A ∧
∧
B∈∆

¬B)

Because the equality predicate is interpreted syntactically, each of the disjuncts can only
hold inM if ~s = ~t. The remaining literals are by definition strictly smaller (with respect
to �) than P (~t) and hence also strictly smaller than P (~s). By minimality of P (~s), they
all hold in M if, and only if, they hold in I�N . Because ' is interpreted as syntactic

59



3 Disunification and Predicate Completion

equality on non-predicative terms in I�N as well, it follows that I�N |= φp{~x 7→ ~s}.
Because I�N |= N , the formula ∀x.φp → P (~x) also holds in N . This implies I�N |= P (~s),
which contradicts the choice of P (~s). Hence M⊆ I�N , i.e. M⊆ I�N . ♦

Note that this means that I�N agrees with all Herbrand models of N ′ over Σ on
the validity of predicative atoms (and formulas), i.e. minimal model and fixed domain
validity coincide:

Theorem 3.38
Let Σ be a signature and let � be a well-founded strict reduction ordering that is total
on ground terms. Moreover, let N be a satisfiable set of universally reductive predicative
clauses that is saturated with respect to a refutationally complete calculus and let A be
a predicative atom. Then N |=Ind A if, and only if, N ′ |=Σ A.

Further examples of the completion of non-Horn clause sets will occur in Chapter 5
(especially in Example 5.17).

3.4 Decidability of the Satisfiability of Equational Formulas

It is obvious that the decidability of the satisfiability of equational formulas in models
over free sorts implies the decidability of the satisfiability of equational formulas in
models over both free and ultimately periodic sorts: As there are only finitely many
non-equivalent terms of each ultimately periodic sort, variables of such sorts can be
eliminated by immediate grounding of quantified variables (e.g. with the rules PS1, PS2)
and free variables (by the transformation φ _ φ{x 7→ 0}∨ . . .∨φ{x 7→ sl−1(0)}) in both
model description and query formula. If then every term of an ultimately periodic sort
is replaced by a unique representative of its equivalence class, the original disunification
algorithm decides satisfiability.

The eager grounding leads, however, to a huge blow-up of both the set N of clauses
describing the model and the query formula. The combination of the results of the
previous sections provides a more flexible decision procedure for the satisfiability of
an equational formula φ in a given ultimately periodic interpretation I that allows to
postpone grounding and thus improve the practical efficiency of the decision procedure:

Lemma 3.39 (Satisfiability of Solved Forms)
Let I be an ultimately periodic interpretation and let φ 6= ⊥ be a solved form in which
all variables are of infinite sorts and all atoms are equational. Then φ has at least one
solution in I.

Proof. For φ = >, this is trivial. Otherwise consider a disjunct as in Definition 3.29.
Since all variables appearing in z1 6't′1∧ . . .∧zl 6't′l are of infinite sorts, these disequations
have a common solution σ (cf. e.g. Comon and Delor, 1994, Lemma 2). Then the
substitution {xi1 7→ t1σ, . . . , xin 7→ tnσ} is a solution of the considered disjunct (and
hence also of φ) with respect to I and the variables xi1 , . . . , xin . This solution can
trivially be extended to a solution for all free variables of φ. ♦

60



3.5 Implementation

Theorem 3.40 (Decidability of Satisfiability)
Let I be an ultimately periodic interpretation over the signature Σ. Then satisfiability
in I of an equational formula φ over Σ is decidable.

Proof. Let ~x be the free variables in φ of finite (e.g. ultimately periodic) sorts. Then φ
is satisfiable in I if, and only if, ∃~x.φ is. Using PDU, ∃~x.φ can be transformed into an
equivalent normal form φ′. Because φ does not contain any predicative atoms, neither
does φ′. Lemma 3.27(ii) implies that φ′ is free of universal quantifiers and Corollary 3.33
states that it can be transformed into an equivalent solved form. By Lemma 3.39, it is
decidable whether this solved form (and hence also φ) has a solution in I. ♦

The same does not hold for formulas containing predicative atoms, as e.g. ∀y.P (y) is
a normal form with respect to PDU if y is of a free and infinite sort.

3.5 Implementation

I have implemented a single-sorted version of the presented algorithms on top of the
automated theorem prover Spass (Weidenbach et al., 2009). Spass is a theorem prover
for full first-order logic with equality and a number of non-classical logics and provides
support for first-order formulas with both equational and predicative atoms.

I represent the ultimate periodicity equation describing an ultimately periodic sort
using a globally accessible data structure that provides constant-time access to the values
k and l−k, the constructors of the ultimately periodic sort (e.g. s and 0) and the regularly
needed terms sk−1(0) and sl−1(0):

typedef struct upi_info {

int stick_length; /* length of the non-periodic part */

int loop_length; /* length of a minimal loop in the periodic part */

SYMBOL state_start; /* the constant constructor */

SYMBOL state_iter; /* the unary constructor */

TERM stick; /* succ^{stick_length-1}(0) */

TERM sticknloop; /* succ^{stick_length+loop_length-1}(0) */

} UPI_INFO;

Formulas are represented using the term module of Spass. To improve the efficiency
of the implementation of PDU, I adapted the data structures to grant instant access to
regularly needed information. In particular, I used parent links to efficiently navigate
through formulas. Since some rules like Q5/6, Sort Reduction and Explosion perform
non-local changes in the formula, it is not possible to normalize the formula in one run,
e.g. bottom up, but multiple successive runs are needed. To keep track of which sub-
formulas are normalized, every subformula is additionally equipped with a normality
marker. This marker is set when the subformula is normalized and only reset for subfor-
mulas in which a replacement takes place. This avoids multiply traversing subformulas
where all reduction steps have already been performed.

The nondeterminism of PDU allows for a wide variety of normalization strategies. In
my concrete implementation, I made the following decisions:

61



3 Disunification and Predicate Completion

I traverse the formula in a depth search pattern. The reason is that this allows me to
early decompose equations deep in the formula which then often lead to a > or ⊥ literal
that can directly be propagated far up in the formula tree and considerably reduces the
size of the formula. It also allows me to effectively update and use the normality marker.

The rules that are most critical for the size of the formula (because subformulas are
duplicated) are the Sort Reduction, Distribution and Explosion rules. To delay the blow-
up that is induced by them as long as possible, I only apply those rules to terms that
are normalized with respect to all other rules. According to the side conditions of the
Explosion rules, they must only be applied to terms that are normalized by all other rules.
Nevertheless, the Sort Reduction rules are even postponed until after Explosion in the
implementation. I have not explicitly proved in this chapter that this is uncritical for the
termination of the algorithm, but the proof is not complicated. Delaying the application
of Sort Reduction in this way has led to a considerable speed-up and predominantly
more compact normal forms.

The disunification algorithm by Comon and Lescanne (1989) restricts its version of
the Quantifier Elimination rules to quantifier-free formulas. Although this is done to
simplify the termination proof and not as a speed-up technique, I temporarily mim-
icked this approach by performing rewritings on quantifier-free formulas before rules on
subformulas with quantifiers. To make the information on the existence of quantifiers
efficiently available, I used a marker indicating whether a subformula is quantifier-free.
This marker was updated on the go, similar to the normalization marker. Experimen-
tal experience showed, however, a slowdown when this strategy was applied. This may
be due to an increased number of passes through the formula that is not sufficiently
compensated by a decreased formula size. Hence I do not use this strategy any more.
Since Normalization is the only rule where quantifiers in arguments must be avoided
to guarantee termination, quantifier-freeness is now simply checked on demand and the
marker has been dropped.

Further improvements might include the precomputation of more regularly needed
information, like the result of a Periodic Occurrence rewriting or a template for the
result of a Periodic Decomposition inference on a (dis-)equation s(t)'̇s(t′) between two
non-ground terms. Moreover, an extension to explicit many-sorting is of course possible.

The implementation of PC consists of several steps: First the input is parsed, the
ultimate periodicity information extracted and the input clauses partitioned with respect
to the predicate of their maximal succedent atom. For each predicate, the formula φP
is then created and the implementation of PDU is used to compute a normalization of
¬φP . The solved form computation of SF is performed by the same implementation in a
post-processing step. Finally, the resulting completion is extracted in a straightforward
way.

Since the completed clause set can directly be used as an input for Spass, this imple-
mentation effectively allows Spass to perform minimal model reasoning with a first-order
machinery. The implementation has been tested on and optimized with the help of the
problems in the TPTP library (Sutcliffe, 2009). To be able to use a broad range of prob-
lems from the different problem classes in this library, I allowed every first-order problem

62



3.5 Implementation

from this library as an input. To make them match the applicability restrictions of PC,
I eliminated those clauses in each problem that were not obviously universally reductive
or that contained equations. The implementation is available from the Spass homepage
(www.spass-prover.org/prototypes/).

Example 3.41
To complete the Even predicate as in Example 3.35 with the equation E = {s3(0)'0},
a file even.dfg containing the following input is given to Spass:

begin_problem(X).

list_of_descriptions.

name({*PC Example*}).

author({*Matthias Horbach*}).

status(satisfiable).

description({*Demonstrates Predicate Completion for Even*}).

end_of_list.

list_of_symbols.

predicates[(Even,1)].

functions[(s,1),(0,0)].

end_of_list.

list_of_formulae(axioms).

formula(Even(0)).

formula(forall([x],implies(Even(x),Even(s(s(x)))))).

formula(equal(s(s(s(0))),0)).

end_of_list.

list_of_settings(SPASS).

{*

set_flag(PComp,1).

*}

end_of_list.

end_problem.

The list_of_descriptions contains some information on the problem. In the fol-
lowing list_of_symbols, the signature is fixed to ΣEven, and the clauses describing the
ultimately periodic interpretation, i.e. the Even predicate and the periodicity equation,
are given in the list_of_formulae. Finally, Spass is told in the list_of_settings to
apply the predicate completion algorithm to the input. The output of Spass when run
on this input begins with the following lines:

Perfect SPASS: Input completed.

--------------------------SPASS-START-----------------------------

This states that predicate completion was successful and Spass is ready to work with
the completed clause set. Then the completion is output:

Input Problem:

1[0:Inp] || -> Even(0)*.

2[0:Inp] || Even(U) -> Even(s(s(U)))*.

63

www.spass-prover.org/prototypes/


3 Disunification and Predicate Completion

3[0:Inp] || -> equal(s(s(s(0))),0)**.

4[0:Inp] || Even(s(0)) -> Even(s(s(0)))*.

5[0:Inp] || Even(s(s(0)))* -> Even(0).

The clauses with numbers 1–3 are the clauses describing the interpretation, and clauses
4 and 5 complete the Even predicate. Note that the completion procedure found a
completion that is different from the one in Example 3.35 due to a different normalization
strategy. The clause list is followed by some output indicating Spass’ analysis of the
completed clause set:

This is a first-order Horn problem containing equality.

This is a problem that contains sort information.

Axiom clauses: 5 Conjecture clauses: 0

Inferences: IEmS=1 ISoR=1 ISpR=1 ISpL=1 IORe=1

Reductions: RFRew=1 RBRew=1 RFMRR=1 RBMRR=1 RObv=1 RUnC=1 RTaut=1 RSSi=1

RFSub=1 RBSub=1 RCon=1

Extras : Input Saturation, Dynamic Selection, No Splitting, Full Reduction,

Ratio: 5, FuncWeight: 1, VarWeight: 1

Precedence: s > nequal > div > id > Even > 0

Ordering : KBO

In the end, Spass by default computes a saturation of the completed clause set:

Processed Problem:

Worked Off Clauses:

Usable Clauses:

1[0:Inp] || -> Even(0)*.

2[0:Inp] || -> equal(s(s(s(0))),0)**.

3[0:Inp] Even(U) || -> Even(s(s(U)))*.

4[0:Inp] || Even(s(0)) -> Even(s(s(0)))*.

Given clause: 1[0:Inp] || -> Even(0)*.

Given clause: 2[0:Inp] || -> equal(s(s(s(0))),0)**.

Given clause: 3[0:Inp] Even(U) || -> Even(s(s(U)))*.

Given clause: 4[0:Inp] || -> Even(s(s(0)))*.

Given clause: 7[0:SpR:2.0,3.1] || -> Even(s(0))*.

SPASS V 3.5c

SPASS beiseite: Completion found.

Problem: even.dfg

SPASS derived 1 clauses, backtracked 0 clauses, performed -1 splits

and kept 4 clauses.

SPASS allocated 28364 KBytes.

SPASS spent 0:00:00.13 on the problem.

0:00:00.01 for the input.

0:00:00.01 for the FLOTTER CNF translation.

0:00:00.00 for the input completion.

0:00:00.00 for inferences.

0:00:00.00 for the backtracking.

0:00:00.00 for the reduction.

--------------------------SPASS-STOP------------------------------

64



3.6 Conclusion

3.6 Conclusion

In this chapter, I have presented the disunification algorithm PDU for ultimately pe-
riodic interpretations, proved its correctness and termination, and used the algorithm
to establish the decidability of satisfiability for equational formulas in such interpreta-
tions. I have also presented the disunification-based predicate completion algorithm PC

for ultimately periodic interpretations defined by universally reductive clauses and gen-
eralized a unique model result for predicate completion to saturated non-Horn clause
sets. This extends work by Comon and Lescanne (1989), Comon and Delor (1994) and
Comon and Nieuwenhuis (2000). An instance of both PDU and PC has been implemented
as part of a predicate completion procedure on top of the first-order theorem prover
Spass (Weidenbach et al., 2009).

The approach of widening the scope of disunification that is most closely connected
to mine is the one by Comon (1988), who adapted a predecessor of the algorithm by
Comon and Delor to interpretations T (Σ)/E where E is a so-called quasi-free or compact
axiomatization. This approach only results in a terminating procedure if (among other
conditions) all equations have at most depth 1.

Another way to extend disunification is by considering not only term algebras but
more general structures. Maher (1988) and Comon and Lescanne (1989) considered
rational tree algebras and Comon and Delor (1994) extended disunification to classes of
non-regular tree algebras.

In this thesis, I will use disunification to decide the coverage of sets of constraints
(Section 4.2.2) and I will exploit the unique model property of completed clause sets to
link reasoning with respect to fixed domains and to minimal models (Section 5.3) and
to transform totality problems into better understood emptiness problems (Section 6.4).
This will result in a number of decidability results for minimal model validity.

Another possible application of both disunification for ultimately periodic interpre-
tations in general and predicate completion in particular is saturation-based theorem
proving for propositional linear time temporal logic: Ultimately periodic interpretations
appear naturally in this setting as minimal models of formula sets (Ludwig and Hustadt,
2009) and methods based on the mentioned calculi developed later in this thesis might
be useful in this context. The pursuit of this relationship is subject to further work.

65





4 A Superposition Calculus for Fixed
Domains

4.1 Introduction

In this Chapter, I will generalize superposition to a sound and refutationally complete
calculus for |=Σ. The algorithm can handle equality and is not restricted to clauses of
any special syntactic form. Based on an additional induction rule, I further extend the
calculus to reason over |=Ind.

The basis for the calculus has been formed in Chapters 2 and 3: As explained in the
introduction, existential variables cannot be eliminated by Skolemization in the context
of reasoning over a fixed domain. Instead, constrained clauses (Section 2.2.2) will be
used to handle existential variables. Disunification (Section 3.2) then provides a means
to decide whether a saturated set of clauses provides a contradiction.

In Section 4.2, I will first explain how the semantics of constrained clauses supports
reasoning over fixed domains and introduce the superposition calculus for fixed domains
SFD. I will prove its refutational completeness and soundness and show how, in case of
termination, it can be used to decide queries of the form N |=Σ ∀∗∃∗φ. In Section 4.3,
I will shift the focus to minimal model reasoning. I will analyze when minimal model
validity corresponds to first-order or fixed domain validity. Then I present an extension of
SFD by an induction rule and examples where this extension makes saturation terminate
and allows for the derivation of minimal model validity results.

The results in this chapter have been published as (Horbach and Weidenbach, 2008,
2009e, 2010).

4.2 First-Order Reasoning in Fixed Domains

In this section, I will present a saturation procedure for sets of constrained clauses
over a signature Σ and show how it is possible to decide whether a saturated set of
positively constrained clauses possesses a Herbrand model over Σ. The calculus extends
the superposition calculus of Bachmair and Ganzinger (1994).

Before I come to the actual inference rules, I want to shortly review the semantics of
constrained clauses by means of a simple example. Consider the constrained clause set

{ ‖ → GT(s(x), 0) ,
u'x, v'y ‖ GT(x, y) → }

over the signature ΣGT = ({GT}, {s, 0}). This constrained clause set corresponds to the
formula ∃u, v.(∀x.GT(s(x), 0)) ∧ ¬GT(u, v). In each Herbrand interpretation over ΣGT,

67



4 A Superposition Calculus for Fixed Domains

this formula is equivalent to the formula

∃u, v.(∀x.GT(s(x), 0)) ∧ ¬GT(u, v) ∧ (∀x.u6=s(x) ∨ v 6=0) ,

which corresponds to the following constrained clause set:

{ ‖ → GT(s(x), 0) ,
u'x, v'y ‖ GT(x, y) → ,
u's(x), v'0 ‖ � }

Hence these two constrained clause sets are equivalent in every Herbrand interpretation
over the signature ΣGT.

An aspect that catches the eye is that, although the clausal part of the last constrained
clause is empty, this does not mean that the constrained clause set is unsatisfiable
over ΣGT. The empty clause is constrained by u's(x) ∧ v'0, which means that, for
example, the clause set is not satisfiable under the instantiation u 7→ s(0) and v 7→ 0. In
fact, the instantiated formula (∀x.GT(s(x), 0)) ∧ ¬GT(s(0), 0) ∧ (∀x.s(0)6=s(x) ∨ 06=0)
is unsatisfiable. On the other hand, the clause set is satisfiable under the instantiation
u 7→ 0 and v 7→ s(0).

Derivations using the calculus will usually contain multiple, potentially infinitely many,
constrained clauses with empty clausal parts. I explore in Theorem 4.12 how the unsatis-
fiability of a saturated set of constrained clauses over Σ depends on a covering property
of the constraints of constrained clauses with empty clausal part. In Theorem 4.6, I
prove that this property is decidable for finite constrained clause sets. Furthermore,
I show how to saturate a given set of constrained clauses (Theorem 4.16). Finally, I
present in Section 4.2.3 an extension of the calculus that allows for the deduction of a
wider range of Herbrand models of Σ-satisfiable constrained clause sets.

The calculus is refutationally complete only for sets of positively constrained clauses.
This is not a problem because every formula of the form ∃∗∀∗φ obviously corresponds
to a set of positively constrained clauses and the calculus does not produce constraint
disequations if they are not already present in the input. It would be possible to extend
the calculus in order to be refutationally complete for clauses with arbitrary constraints,
but the resulting calculus is very complicated and, due to an interference between equa-
tional clauses and constraint disequations, requires that much of the work of Bachmair
and Ganzinger (1994) must be redone in the current setting. Since positively constrained
clauses suffice for the current considerations anyway, I will avoid these complications.
When the saturation of clauses with general constraints becomes important in Chapter 5,
all clauses will be predicative and the difference will not be visible.

4.2.1 The Superposition Calculus for Fixed Domains SFD

To reason about positively constrained clauses, consider the inference rules presented in
Figures 4.1 and 4.2, which are defined with respect to a reduction ordering � on T (Σ,X )
that is total on ground terms and with respect to a selection function that assigns to
every clause a (possibly empty) set of literals in its antecedent. Most of the rules are

68



4.2 First-Order Reasoning in Fixed Domains

quite similar to the usual superposition rules (Bachmair and Ganzinger, 1994), just
generalized to positively constrained clauses. However, they require additional treatment
of the constraints to avoid inferences like

v'f(x) ‖→ a'b v'g(y) ‖ a'c→
v'f(x), v'g(y) ‖ b'c→

the conclusion of which contains the existential variable v more than once in its constraint
and hence is not a constrained clause. In addition, there are two rules that rewrite
constraints.

As usual, I consider the universal variables in different appearing premises to be re-
named apart. If α1 = v1's1, . . . , vn'sn and α2 = v1't1, . . . , vn'tn are two positive
constraints, I write α1'α2 for the equations s1't1, . . . , sn'tn. Note that α1'α2 does
not contain any existential variables. The notion of the most general unifier of two
positive constraints has been formally introduced in Section 2.2.3.

Definition 4.1 (SFD)
Let � be a well-founded strict reduction ordering on atoms over Σ that is total on ground
terms. The Superposition Calculus for Fixed Domains SFD consists of the inference rules
in Figures 4.1 and 4.2, where all (strict) maximality constraints have to be considered
with respect to �.

Note that the maximality conditions in all rules do not consider the constraint part.

I unify α'1 and α'2 in the two-premise rules for efficiency reasons: A natural alterna-
tive would be to consider constraints with multiple occurrences of the same existential
variable and to take (α1, α2)σ1σ2 instead of (α1, α

6'
2 )σ1σ2 as the constraint of the con-

clusion. But since constraint equations are syntactic, if α'1 and α'2 are not unifiable
then any variable-free instance of α1, α2 is unsatisfiable anyway, so this would not add
expressiveness to the calculus. Further refinements are of course possible, for example
by restricting all inferences to instances where (α 6'1 , α

6'
2 )σ1σ2 is satisfiable.

This inference system contains the standard universal superposition calculus as the
special case when there are no existential variables at all present, i.e. V = ∅ and all
constraints are empty: The rules Equality Resolution, Equality Factoring, and Left and
Right Superposition reduce to their non-constrained counterparts and the Constraint
Superposition and Equality Elimination rules become obsolete.

While the former rules are thus well-known, a few words may be in order to explain
the idea behind Constraint Superposition and Equality Elimination. They have been
introduced to make the calculus refutationally complete, i.e. to ensure that constrained
clause sets that are saturated with respect to the inference system and that do not have
a Herbrand model over the given signature always contain “enough” constrained empty
clauses (cf. Definition 2.39 and Theorem 4.12).

A notable feature of Constraint Superposition is how the information of both premise
constraints is combined in the conclusion. Classically, the existential variables would be
Skolemized and the constraint of a constrained clause would be regarded as part of its
antecedent. In this setting, superpositions into the constraint part as considered here

69



4 A Superposition Calculus for Fixed Domains

Equality Resolution:
α ‖Γ, s't→ ∆

(α ‖Γ→ ∆)σ

where

(i) σ = mgu(s, t), and

(ii) either s't is selected in the premise
or no literal is selected and (s't)σ is maximal in (Γ, s't→ ∆)σ.

Equality Factoring:
α ‖Γ→ ∆, s't, s′'t′

(α ‖Γ, t't′ → ∆, s′'t′)σ

where

(i) σ = mgu(s, s′),

(ii) no literal is selected in the premise
and (s't)σ is maximal in (Γ→ ∆, s't, s′'t′)σ, and

(iii) tσ 6� sσ

Left Superposition:

α1 ‖Γ1 → ∆1, l'r α2 ‖Γ2, s[l
′]p't→ ∆2

(α1, α
6'
2 ‖Γ1,Γ2, s[r]p't→ ∆1,∆2)σ1σ2

where

(i) σ1 = mgu(l, l′), σ2 = mgu(α'1 σ1, α
'
2 σ1),

(ii) no literal is selected in the first premise
and (l'r)σ1σ2 is strictly maximal in (Γ1 → ∆1, l'r)σ1σ2,

(iii) either s't is selected in the second premise
or no literal is selected and (s't)σ1σ2 is maximal in (Γ2 → ∆2, s't)σ1σ2,

(iv) rσ1σ2 6� lσ1σ2 and tσ1σ2 6� sσ1σ2, and

(v) l′ is not a variable.

Figure 4.1: Rules of the Calculus SFD (1)

70



4.2 First-Order Reasoning in Fixed Domains

Right Superposition:

α1 ‖Γ1 → ∆1, l'r α2 ‖Γ2 → ∆2, s[l
′]p't

(α1, α
6'
2 ‖Γ1,Γ2 → ∆1,∆2, s[r]p't)σ1σ2

where

(i) σ1 = mgu(l, l′), σ2 = mgu(α'1 σ1, α
'
2 σ1),

(ii) no literal is selected in any of the premises
and (l'r)σ1σ2 is strictly maximal in (Γ1 → ∆1, l'r)σ1σ2

and (s't)σ1σ2 is strictly maximal in (Γ2 → ∆2, s't)σ1σ2,

(iii) rσ1σ2 6� lσ1σ2 and tσ1σ2 6� sσ1σ2, and

(iv) l′ is not a variable.

Constraint Superposition:

α1 ‖Γ1 → ∆1, l'r α2[l′]p ‖Γ2 → ∆2

(α2[r]p, α
6'
1 ‖α'1'α'2 [r]p,Γ1,Γ2 → ∆1,∆2)σ

where

(i) σ = mgu(l, l′),

(ii) no literal is selected in the first premise
and (l'r)σ is strictly maximal in (Γ1 → ∆1, l'r)σ,

(iii) rσ 6� lσ, and

(iv) l′ is not a variable, and

(v) p is a position in the positive part α'2 of α2.

Equality Elimination:
α1 ‖Γ→ ∆, l'r α2[r′]p ‖�

(α1, α
6'
2 ‖Γ→ ∆)σ1σ2

where

(i) σ1 = mgu(r, r′), σ2 = mgu(α'1 σ1, α
'
2 [l]pσ1),

(ii) no literal is selected in the first premise
and (l'r)σ1σ2 is strictly maximal in (Γ→ ∆, l'r)σ1σ2,

(iii) rσ1σ2 6� lσ1σ2,

(iv) r′ is not a variable, and

(v) p is a position in the positive part α'2 of α2.

Figure 4.2: Rules of the Calculus SFD (2)

71



4 A Superposition Calculus for Fixed Domains

would not even require a specialized rule but occur naturally in the following form:

α1,Γ1 → ∆1, l'r α2[l′],Γ2 → ∆2

(α1, α2[r],Γ1,Γ2 → ∆1,∆2)σ

Translated into the language of constrained clauses, the conclusion would, however, not
be a well-formed constrained clause. In most inference rules, I circumvent this problem
by forcing a unification of the constraints of the premises, so that I can use an equivalent
and admissible conclusion. For Constraint Superposition, this approach turns out to
be too weak to make the calculus refutationally complete, and in particular to prove
Proposition 4.8 below. Therefore, I instead replace α1 by α1'α2[r] in this inference rule
to regain an equivalent and admissible constrained clause.

The resulting Constraint Superposition rule alone is still not sufficient to obtain refu-
tational completeness. Abstractly speaking, it only transfers information about the
equality relation from the clausal part into the constraint part. For completeness, a
transfer must also occur the other way round. Once terms are exhibited that cannot be
solutions to the existentially quantified variables, this information must be propagated
through the respective equivalence classes in the clausal part. This propagation is per-
formed by the rule Equality Elimination, which deletes equations that are in conflict
with the satisfiability of constrained empty clauses.

The rules Constraint Superposition and Equality Elimination are the main reason why
SFD can manage theories that are not constructor-based, i.e. where the calculus cannot
assume the irreducibility of certain terms.

Example 4.2 (Constraint Superposition and Equality Elimination)
Constraint Superposition and Equality Elimination allow to derive, for example, v'b ‖�
from v'b ‖→ a'b and v'a ‖�, although v'a and v'b are not unifiable:

If b � a, then v'b ‖� is derived by one step of Equality Elimination:

v'b ‖→ b'a v'a ‖�
v'b ‖� Equality Elimination

Otherwise, v'b ‖� follows from a step of Constraint Superposition and the subsequent
resolution of a trivial equality:

v'b ‖→ a'b v'a ‖�
v'b ‖ b'b→

Constraint Superposition

v'b ‖� Equality Resolution

When I work with predicative atoms in the examples, I will not make the translation
into the purely equational calculus explicit. If, for example, P is a predicate symbol that
is translated into the function symbol fP , I write a derivation

α1 ‖Γ1→∆1, fP (s1, . . . , sn)'ctrue α2 ‖Γ2, fP (t1, . . . , tn)'ctrue→ ∆2

(α1, α
6'
2 ‖Γ1,Γ2, ctrue'ctrue → ∆1,∆2)σ1σ2

Left Superposition

(α1, α
6'
2 ‖Γ1,Γ2 → ∆1,∆2)σ1σ2

Equality Resolution

72



4.2 First-Order Reasoning in Fixed Domains

consisting of a superposition of predicative atoms and the subsequent resolution of the
atom ctrue'ctrue in the following condensed form:

α1 ‖Γ1 → ∆1, P (s1, . . . , sn) α2 ‖Γ2, P (t1, . . . , tn)→ ∆2

(α1, α
6'
2 ‖Γ1,Γ2 → ∆1,∆2)σ1σ2

Superposition

Example 4.3 (The Elevator)
For a simple example involving only superposition on predicative atoms, consider the
clause set

NE = {→ G(a, p), → G(b, q), G(a, x)→ C(a, x), C(a, x)→ R(a, x), G(b, x)→ R(b, x)}

that describes the elevator example presented in the introduction, and the two con-
strained clauses u'x, v'y ‖R(y, x)→ and u'x, v'y ‖→ G(y, x). These clauses state
that there are a person and an elevator, such that the person can reach the ground floor
but not the restaurant floor in this elevator.

Assume a strict term ordering � for which R(y, x) � C(y, x) � G(y, x). With this
ordering, the succedent is strictly maximal in each clause of NE . Because Superposition
inferences always work on maximal atoms (condition (ii)), only two inferences between
the given constrained clauses are possible:

C(a, x)→ R(a, x) u'x, v'y ‖R(y, x)→
u'x, v'a ‖C(a, x)→

G(b, x)→ R(b, x) u'x, v'y ‖R(y, x)→
u'x, v'b ‖G(b, x)→

The first conclusion can now be superposed with the third clause of NE :

G(a, x)→ C(a, x) u'x, v'a ‖C(a, x)→
u'x, v'a ‖G(a, x)→

The last two conclusions can in turn be superposed with u'x, v'y ‖→ G(y, x):

u'x, v'y ‖→ G(y, x) u'x, v'a ‖G(a, x)→
u'x, v'a ‖�

u'x, v'y ‖→ G(y, x) u'x, v'b ‖G(b, x)→
u'x, v'b ‖�

Now the only remaining SFD inferences are those between the two constrained clauses
→ G(a, p) and u'x, v'a ‖G(a, x)→ and between → G(b, q) and u'x, v'b ‖G(b, x)→.
They are both redundant with respect to the last two conclusions. This means that they
do not give any new information on the system and I can ignore them.

73



4 A Superposition Calculus for Fixed Domains

In order to present such a series of inferences in a more concise manner, I will write
them down as follows, where all constrained clauses are indexed and premises to an
inference are represented by their indices:

clauses in NE : 1 : ‖ → G(a, p)
2 : ‖ → G(b, q)
3 : ‖ G(a, x) → C(a, x)
4 : ‖ C(a, x) → r(a, x)
5 : ‖ G(b, x) → r(b, x)

additional clauses: 6 : u'x, v'y ‖ R(y, x) →
7 : u'x, v'y ‖ → G(y, x)

Superposition(4,6) = 8 : u'x, v'a ‖ C(a, x) →
Superposition(5,6) = 9 : u'x, v'b ‖ G(b, x) →

Superposition(3,7) = 10 : u'x, v'a ‖ G(a, x) →
Superposition(7,9) = 11 : u'x, v'b ‖ �

Superposition(7,10) = 12 : u'x, v'a ‖ �

4.2.2 Model Construction and Refutational Completeness

By treating each constraint equation as a part of the antecedent and each constraint dis-
equation as a part of the succedent, constrained clauses can be regarded as a special class
of unconstrained clauses. Because of this, the construction of a Herbrand interpretation
for a set of constrained clauses is strongly connected to the one for universal clause sets
(Bachmair and Ganzinger, 1994, c.f. Definition 2.35). The main difference is that I now
have to account for existential variables before starting the construction. To define a
Herbrand interpretation IN of a set N of constrained clauses, I proceed in two steps:
First, I identify an instantiation of the existential variables that does not contradict any
constrained clauses with empty clausal part, and then I construct the model of a set of
unconstrained clause instances.

Although the scope of SFD only encompasses positively constrained clauses, the model
construction need not be restricted to this setting. Indeed, the construction will later
be reused in a context where full constraints occur.

Definition 4.4 (AN , αN)
Let � be a well-founded strict reduction ordering on atoms over Σ that is total on
ground atoms. Given a set N of constrained clauses, let AN be the set of all constraints
of constrained clauses in N with empty clausal part, i.e. AN = {α | (α ‖�) ∈ N}.

I distinguish one ground constraint αN :

• If AN is not covering (cf. Definition 2.39), then let αN = ~v'~t be a minimal (with
respect to �) positive ground constraint that is not equal to the positive part of
any satisfiable ground instance of a constraint in AN .

• If AN is covering, then let αN be an arbitrary ground constraint.

74



4.2 First-Order Reasoning in Fixed Domains

For the remainder of this chapter, I will always assume that a well-founded strict
reduction ordering � on atoms over Σ that is total on ground atoms has been fixed and
that this fixed strict ordering is used in both SFD inferences and in the construction of
AN .

Note that even if AN is not covering, αN is usually not uniquely defined. E.g. for the
constrained clause set N = {u'0, v'0 ‖�} over Σnat, it holds that AN = {(u'0, v'0)}
and both α1

N = {u'0, v's(0)} and α2
N = {u's(0), v'0} are valid choices. When

necessary, this ambiguity can be avoided by using an ordering on the existential variables
as a tie breaker.

Definition 4.5 (IN)
Let N be a set of constrained clauses with associated ground constraint αN . The Her-
brand interpretation IαNN is defined as the interpretation IN |αN associated with the
unconstrained ground clause set

N |αN = {Cσ | (α ‖C) ∈ N and σ : var(α ‖C) \ V → T (Σ) and αN = α'σ

and ασ is satisfiable and α ‖C does not contain selected literals}

as described in Definition 2.35.
It is obvious that the interpretation IαNN is independent of αN if all clauses in N are

unconstrained. Even if that is not the case, the constraint αN is usually not mentioned
explicitly and IN abbreviates IαNN if no ambiguities arise from this.

If (α ‖C) ∈ N contributes an instance Cσ to N |αN that produces a rewrite rule
s _ t during the construction of IN , then I will also say that (α ‖C)σ is productive and
produces s _ t.

Note that, since the same element of N |αN can correspond to more than one element
of N , there may be several constrained clauses producing the same rewrite rule. E.g.
both constrained clauses are productive in the set N = { ‖→ P (0), v'x ‖→ P (x)} for
αN = v'0. However, none of these constrained clauses contains any selected literals.

While it is well known how the construction of IN works once αN is given, it is not
that obvious that it is decidable whether AN is covering and, if it is not, effectively
compute αN . This is, however, possible for finite AN :

Theorem 4.6 (Decidability of Finite Coverage)
Let N be a set of constrained clauses such that AN is finite. It is decidable whether AN
is covering, and αN is computable if AN is not covering.

Proof. Consider the formula

φ =
∧

(v1's1,...,vn'sn,t1 6't′1,...,tm 6't′m ‖�)∈N

v1 6's1 ∨ . . . ∨ vn 6'sn ∨ t1't′1 ∨ . . . ∨ tm't′m

and let {x1, . . . , xk} ⊆ X \ V be the set of universal variables occurring in φ. The set
AN is not covering if, and only if, the formula ∀x1, . . . , xk.φ is satisfiable in T (Σ). In
Chapter 3, a terminating algorithm was presented that decides the satisfiability of such
a disunification problem and returns an explicit representation of its solutions (cf. in
particular Theorem 3.40). ♦

75



4 A Superposition Calculus for Fixed Domains

For saturated sets of positively constrained clauses, the information contained in the
constrained empty clauses is already sufficient to decide whether Herbrand models exist:
Specifically, I will now show that a saturated set N of positively constrained clauses
has a Herbrand model over Σ (namely IN ) if, and only if, AN is not covering. In this
case, IN is a minimal model of the unconstrained clause set used in its construction,
and I will also call it the minimal model of N (with respect to αN ). Observe, however,
that for other choices of αN there may be strictly smaller models of N with respect
to set inclusion: For N = { ‖→ P (s(0)), v'x ‖→ P (x)}, it holds that αN = v'0 and
IN = IαNN = {P (0), P (s(0))}, and IN strictly contains the model {P (s(0))} of N that
corresponds to the constraint v's(0).

Since IN is defined via a set of unconstrained clauses, it inherits all properties of
minimal models of unconstrained clause sets. Above all, I will use the property that the
rewrite system RN constructed in parallel with IN is confluent and terminating.

Lemma 4.7 (Irreducibility of αN)
Let N be a set of positively constrained clauses that is saturated with respect to the
calculus SFD. If AN is not covering then αN is irreducible by RN .

Proof. Assume, contrary to the proposition, that AN is not covering and αN is reducible.
Then there are a position p and a rule lσ _ rσ ∈ RN produced by a ground instance
(β ‖Λ→ Π, l'r)σ of a positively constrained clause β ‖Λ→ Π, l'r ∈ N , such that
lσ = αN |p. By definition of productivity, no literals are selected in this constrained
clause.

Because of the minimality of αN and because αN � αN [rσ]p, there must be a positively
constrained clause γ ‖� ∈ N and a substitution σ′ such that γσ′'αN [rσ]p. Since, by
definition, αN is not an instance of γ, the position p is a non-variable position of γ. Since
furthermore βσ = αN = γσ′[lσ]p and σ is a unifier of γ|p and r and γσ′|p = rσ, there is
an Equality Elimination inference as follows:

β ‖Λ→ Π, l'r γ ‖�
(β ‖Λ→ Π)σ1σ2

σ1 = mgu(γ|p, r), σ2 = mgu(βσ1, γ[l]pσ1)

Because of the saturation of N , the ground instance

(β ‖Λ→ Π, l'r)σ (γ ‖�)σ′

(β ‖Λ→ Π)σ

of this derivation is redundant. The first premise cannot be redundant because it is pro-
ductive; the second one cannot be redundant because there are no clauses that are smaller
than �. This means that the constrained clause (β ‖Λ→ Π)σ follows from ground in-
stances of constrained clauses in N all of which are smaller than the maximal premise
(β ‖Λ→ Π, l'r)σ. But then the same ground instances imply (β ‖Λ→ Π, l'r)σ, which
means that this constrained clause cannot be productive. A contradiction. ♦

Lemma 4.8
Let N be a set of positively constrained clauses that is saturated with respect to SFD

76



4.2 First-Order Reasoning in Fixed Domains

and let AN not be covering. If IN 6|= N and if (α ‖C)σ is a minimal ground instance of
a constrained clause in N such that IN 6|= (α ‖C)σ, then

(i) for every variable x ∈ var(α ‖C), it holds that xσ is irreducible by RN , and

(ii) ασ = αN .

Proof. To prove the first statement, let x ∈ var(α ‖C) and assume that xσ _RN t. Let
τ be the substitution that coincides with σ except that xτ = t. Because IN 6|= (α ‖C)σ
and IN |= xσ'xτ , it follows that IN 6|= (α ‖C)τ and hence (α ‖C)τ contradicts the
minimality of (α ‖C)σ.

For the second statement, let C = Γ→ ∆. By definition of entailment, IN 6|= (α ‖C)σ
implies that IN |= αN'ασ, or equivalently αN _̂∗RN ασ. I have already shown in
Lemma 4.7 that αN is irreducible. Because of the confluence of RN , either ασ = αN or
ασ must be reducible.

Assume the latter, i.e. that ασ|p = lσ′ for a position p and a rule lσ′ _ rσ′ ∈ RN that
has been produced by the ground instance (β ‖Λ→ Π, l'r)σ′ of a positively constrained
clause β ‖Λ→ Π, l'r ∈ N . By definition of productivity, no literals are selected in this
constrained clause.

If p is a variable position in α or not a position in α at all, then the rule actually
reduces σ, which contradicts the minimality of (α ‖C)σ. By (i), p is a non-variable
position in α. So there is a Constraint Superposition inference

β ‖Λ→ Π, l'r α ‖Γ→ ∆

(α[r]p ‖β'α[r]p,Λ,Γ→ Π,∆)τ
τ = mgu(α|p, l) .

Consider the ground instance δ ‖D := (α[r]p ‖β'α[r]p,Λ,Γ→ Π,∆)σσ′ of the conclu-
sion. This constrained clause is not modeled by IN . On the other hand, that N is
saturated implies that the above inference and in particular its ground instance

(β ‖Λ→ Π, l'r)σ′ (α ‖Γ→ ∆)σ

(α[r]p ‖β'α[r]p,Λ,Γ→ Π,∆)σσ′

is redundant. The premises cannot be redundant, because (β ‖Λ→ Π, l'r)σ′ is pro-
ductive and (α ‖C)σ is minimal, so the constrained clause δ ‖D follows from ground
instances of constrained clauses of N all of which are smaller than δ ‖D. Since more-
over δ ‖D ≺ (α ‖C)σ because δ ≺ ασ, all these ground instances hold in IN , hence
IN |= δ ‖D by minimality of (α ‖C)σ. This is a contradiction to IN 6|= δ ‖D. ♦

Proposition 4.9 (IN is a Model)
Let N be a set of positively constrained clauses such that N is saturated with respect
to SFD and AN is not covering. Then IN |= N .

Proof. Assume, contrary to the proposition, that N is saturated, AN is not covering, and
IN 6|= N . Then there is a minimal ground instance (α ‖C)σ of a positively constrained
clause α ‖C ∈ N that is not modeled by IN . In particular it holds that IN 6|= Cσ, and
Lemma 4.8(ii) shows that ασ = αN . I will refute the minimality of (α ‖C)σ, proceeding

77



4 A Superposition Calculus for Fixed Domains

by a case analysis of the position of the maximal in Cσ and whether C contains selected
literals. As usual, I assume that the constrained clauses appearing as premises in an
inference do not share any universal variables. First consider the case that no literal in
C is selected.

(i) C = Γ, s't → ∆ and sσ'tσ is maximal in Cσ with sσ = tσ. Then s and t are
unifiable, and so there is an inference by Equality Resolution as follows:

α ‖Γ, s't→ ∆

(α ‖Γ→ ∆)σ1
σ1 = mgu(s, t)

Consider the ground instance (α ‖Γ→ ∆)σ of the conclusion. From this con-
strained clause, a contradiction can be obtained as in the proof of Lemma 4.8.

(ii) C = Γ, s't → ∆ and sσ'tσ is maximal in Cσ with sσ � tσ. Since IN 6|=
Cσ, it follows that sσ'tσ ∈ IN , and because RN only rewrites larger to smaller
terms, sσ must be reducible by a rule lσ′ _ rσ′ ∈ RN produced by a ground
instance (β ‖Λ→ Π, l'r)σ′ of a positively constrained clause β ‖Λ→ Π, l'r ∈ N .
So sσ|p = lσ′ for some position p in sσ. By Lemma 4.8(i), p is a non-variable
position in s. Since βσ′ = αN = ασ and sσ|p = lσ′, there is an inference by Left
Superposition as follows:

β ‖Λ→ Π, l'r α ‖Γ, s't→ ∆

(β ‖Λ,Γ, s[r]p't→ Π,∆)σ1σ2
σ1 := mgu(s|p, l), σ2 = mgu(βσ1, ασ1)

As before, a contradiction can be derived from the existence of the ground instance
(β ‖Λ,Γ, s[r]p't→ Π,∆)σσ′ of the conclusion.

(iii) C = Γ → ∆, s't and sσ'tσ is maximal in Cσ with sσ = tσ. Then Cσ is a
tautology, contradicting IN 6|= Cσ.

(iv) C = Γ → ∆, s't and sσ'tσ is strictly maximal in Cσ with sσ 6= tσ, i.e. without
loss of generality sσ � tσ. Since IN 6|= Cσ, it follows that IN |= Γσ, IN 6|=
∆σ, and IN 6|= sσ'tσ, and thus C did not produce the rule sσ _ tσ. The
only possible reason for this is that sσ is reducible by a rule lσ′ _ rσ′ ∈ RN
produced by a ground instance (β ‖Λ→ Π, l'r)σ′ of a positively constrained clause
β ‖Λ→ Π, l'r ∈ N . So sσ|p = lσ′ for some position p in sσ. By Lemma 4.8(i), p
is a non-variable position in s. Since βσ′ = αN = ασ and sσ|p = lσ′, there is an
inference by Right Superposition as follows:

β ‖Λ→ Π, l'r α ‖Γ→ ∆, s't
(β ‖Λ,Γ→ Π,∆, s[r]p't)σ1σ2

σ1 := mgu(s|p, l), σ2 = mgu(βσ1, ασ1)

As before, a contradiction can be derived from the existence of the ground instance
(β ‖Λ,Γ→ Π,∆, s[r]p't)σσ′ of the conclusion.

78



4.2 First-Order Reasoning in Fixed Domains

(v) C = Γ → ∆, s't and sσ'tσ is maximal but not strictly maximal in Cσ with
sσ � tσ. Then ∆ = ∆′, s′'t′ such that s′σ't′σ is also maximal in Cσ, i.e. without
loss of generality sσ = s′σ and tσ = t′σ. Then there is an inference by Equality
Factoring as follows:

α ‖Γ→ ∆′, s't, s′'t′

(α ‖Γ, t't′ → ∆′, s′'t′)σ1
σ1 = mgu(s, s′)

In analogy to the previous cases, a contradiction can be derived from the existence
of the ground instance (α ‖Γ, t't′ → ∆′, s′'t′)σ of the conclusion.

(vi) Cσ does not contain any maximal literal at all, i.e. C = �. Since ασ = αN by
Lemma 4.8(ii) but IN 6|= ασ'αN by definition of αN , this cannot happen.

If C = Γ, s't → ∆, where s't is selected, there are two possibilities: If sσ = tσ, then
the same derivation as in case (i) leads to a contradiction. And if sσ 6= tσ, then the same
holds for case (ii). Since a contradiction is obtained in each case, the initial assumption
must be false, i.e. the proposition holds. ♦

For the construction of IN , I require αN to be minimal. For non-minimal αN , the
proposition does not hold:

Example 4.10 (Non-Minimal Constraints)
If Nab = {v'a ‖→ a'b, v'b ‖ a'b→} and a � b, then no inference rule from SFD is
applicable to Nab, so Nab is saturated. However, Nab implies v'a ‖�. So the Herbrand
interpretation constructed with αNab = {v'a} is not a model of Nab.

In Section 4.2.3, I will show how to extend SFD in order to ensure that also interpre-
tations constructed from non-minimal constraints are models.

Proposition 4.9 implies that N has a Herbrand model over Σ when AN is not covering.
On the other hand, whenever N has any Herbrand model over Σ, then AN is not covering:

Proposition 4.11 (Herbrand-Unsatisfiability)
Let N be a set of constrained clauses over Σ for which AN is covering. Then N does
not have any Herbrand model over Σ.

Proof. This follows directly from Lemma 2.43, which states that already the set of
constrained empty clauses in N does not have a Herbrand model over Σ. ♦

A constrained clause set N for which AN is covering may nevertheless have both non-
Herbrand models and Herbrand models over an extended signature: If the constant a is
the only function symbol and N = {v'a ‖�} then AN is covering, but any first-order
interpretation with a universe of at least two elements is a model of N .

Propositions 4.9 and 4.11 constitute the following theorem:

Theorem 4.12 (Refutational Completeness)
Let N be a set of positively constrained clauses over Σ that is saturated with respect to
SFD. Then N has a Herbrand model over Σ if, and only if, AN is not covering.

79



4 A Superposition Calculus for Fixed Domains

Moreover, the classical notions of (first-order) theorem proving derivations and fairness
from Bachmair and Ganzinger (1994) carry over to the current setting.

Definition 4.13 (Theorem Proving Derivations)
A (finite or countably infinite) |=Σ theorem proving derivation is a sequence N0, N1, . . .
of sets of constrained clauses, such that either

• (Deduction) Ni+1 = Ni ∪ {α ‖C} and Ni |=Σ Ni+1, or

• (Deletion) Ni+1 = Ni \ {α ‖C} and α ‖C is redundant with respect to Ni.

If N is a saturated set of positively constrained clauses for which AN is not covering,
a |=Ind theorem proving derivation for N is a sequence N0, N1, . . . of constrained clause
sets such that N ⊆ N0 and either

• (Deduction) Ni+1 = Ni ∪ {α ‖C} and N |=Ind Ni =⇒ N |=Ind Ni+1, or

• (Deletion) Ni+1 = Ni \ {α ‖C} and α ‖C is redundant with respect to Ni.

Due to the semantics of constrained clauses and specifically the fact that all con-
strained clauses in a set are connected by common existential quantifiers, it does not
suffice to require thatNi |=Σ α ‖C (orNi |=Ind α ‖C, respectively). E.g. for the signature
Σ = {a, b} and b � a, the constrained clause α ‖C = v'x ‖→ x'b is modeled by every
Herbrand interpretation over Σ, but {v'x ‖→ x'a} 6|=Ind {v'x ‖→ x'a} ∪ {α ‖C}.

The calculus SFD is sound, i.e. I may employ it for deductions in both types of theorem
proving derivations:

Lemma 4.14
Let N be a set of constrained clauses over Σ, let β ‖D be the conclusion of a SFD inference
with premises in N and let I be a Herbrand interpretation. Then N and N ∪ {β ‖D}
have the same solutions in I.

Proof. Surely every solution of N ∪ {β ‖D} in I is a solution of the subset N .

For the converse implication let σ0 : V → T (Σ) be a solution of N and let τ be a
substitution that is grounding for β ‖D such that I |= βσ0στ . It remains to be shown
that I |= Dτ .

Note that if β ‖D is the conclusion of an inference

α1 ‖C1 α2 ‖C2

β ‖D

involving the unifier σ = σ1σ2, then the premises can be assumed to be renamed such that
they do not share any universal variables and τ can hence be extended to a grounding
substitution with domain var(β ‖D) ∪ var(α1 ‖C1σ) ∪ var(α2 ‖C2σ).

Consider the different possible inferences that could produce β ‖D:

80



4.2 First-Order Reasoning in Fixed Domains

• Let β ‖D be the conclusion of an Equality Resolution inference:

α ‖Γ, s't→ ∆

(α ‖Γ→ ∆)σ

Assume that I |= ασ0στ and Γστ ⊆ I hold. It must be shown that ∆στ ∩ I 6= ∅.
Because σ0 is a solution of N in I and στ is grounding for the premise, i.e. I |=
(Γ, s't→ ∆)στ , this implies that either (s't)στ does not hold in I or ∆στ∩I 6= ∅.
Because sστ = tστ , the equation (s't)στ holds in I, so ∆στ ∩ I 6= ∅.

• Let β ‖D be the conclusion of an Equality Factoring inference:

α ‖Γ→ ∆, s't, s′'t′

(α ‖Γ, t't′ → ∆, s′'t′)σ

Assume that I |= ασ0στ and (Γ, t't′)στ ⊆ I hold. Because σ0 is a solution of
N in I and στ is grounding for the premise, i.e. I |= (Γ → ∆, s't, s′'t′)στ , this
implies that (∆, s't, s′'t′)στ ∩I 6= ∅. Because of sστ = s′στ and the assumption
I |= (t't′)στ , it holds that I |= (s't)στ if, and only if, I |= (s′'t′)στ . Hence
(∆, s′'t′)στ ∩ I 6= ∅.

• Let β ‖D be the conclusion of a Left Superposition inference:

α1 ‖Γ1 → ∆1, l'r α2 ‖Γ2, s[l
′]p't→ ∆2

(α1, α
6'
2 ‖Γ1,Γ2, s[r]p't→ ∆1,∆2)σ

Assume that I |= (α1, α
6'
2 )σ0στ and (Γ1,Γ2, s[r]p't)στ ⊆ I hold. Because α'1 στ =

α'2 στ and σ0 is a solution of N in I and στ is grounding for the premises, i.e. I |=
(Γ1 → ∆1, l'r)στ and I |= (Γ2, s[l

′]p't→ ∆2)στ , this implies that

(i) ∆1στ ∩ I 6= ∅ or I |= (l'r)στ , and

(ii) I 6|= (s[l′]p't)στ or ∆2στ ∩ I 6= ∅.

If ∆1στ ∩ I = ∆2στ ∩ I = ∅, then I |= (l'r)στ and I 6|= (s[l′]p't)στ and the
additional identity l′στ = lστ lead to I 6|= (s[r]p't)στ , which contradicts the
assumption. So it holds that ∆1στ ∩ I 6= ∅ or ∆2στ ∩ I 6= ∅.

• Let β ‖D be the conclusion of a Right Superposition inference:

α1 ‖Γ1 → ∆1, l'r α2 ‖Γ2 → ∆2, s[l
′]p't

(α1, α
6'
2 ‖Γ1,Γ2 → ∆1,∆2, s[r]p't)σ1σ2

Assume that I |= (α1, α
6'
2 )σ0στ and (Γ1,Γ2)στ ⊆ I hold. Because α'1 στ = α'2 στ

and σ0 is a solution of N in I and στ is grounding for the premises, i.e. I |= (Γ1 →
∆1, l'r)στ and I |= (Γ2 → ∆2, s[l

′]p't)στ , this implies that

(i) ∆1στ ∩ I 6= ∅ or I |= (l'r)στ , and

(ii) I |= (s[l′]p't)στ or ∆2στ ∩ I 6= ∅.

81



4 A Superposition Calculus for Fixed Domains

If ∆1στ ∩ I 6= ∅ or ∆2στ ∩ I 6= ∅, then I |= Dστ . Otherwise I |= (l'r)στ and
I |= (s[l′]p't)στ . The additional identity l′στ = lστ leads to I |= (s[r]p't)στ ,
and again I |= Dστ .

• Let β ‖D be the conclusion of a Constraint Superposition inference:

α1 ‖Γ1 → ∆1, l'r α2[l′]p ‖Γ2 → ∆2

(α2[r]p, α
6'
1 ‖α'1'α'2 [r]p,Γ1,Γ2 → ∆1,∆2)σ

Assume that I |= (α2[r]p, α
6'
1 )σ0στ and (α'1'α'2 [r]p,Γ1,Γ2)στ ⊆ I hold. Because

σ0 is a solution of N in I and στ is grounding for the premises, this implies that

(i) I |= α1σ0στ implies ∆1στ ∩ I 6= ∅ or I |= (l'r)στ , and

(ii) I |= α2[l′]pσ0στ implies ∆2στ ∩ I 6= ∅.

Assume that ∆1στ ∩ I = ∆2στ ∩ I = ∅. Then I 6|= α2[l′]pσ0στ . Because
of I |= α2[r]pσ0στ and l′στ = lστ , this directly implies I 6|= (l'r)στ . So
(i) yields I 6|= α1σ0στ , which in combination with I |= α'1'α'2 [r]p contradicts
I |= (α2[r]p, α

6'
1 )σ0στ . So it holds that ∆1στ ∩ I 6= ∅ or ∆2στ ∩ I 6= ∅.

• Let β ‖D be the conclusion of a Equality Elimination inference:

α1 ‖Γ→ ∆, l'r α2[r′]p ‖�
(α1, α

6'
2 ‖Γ→ ∆)σ

Assume that I |= (α1, α
6'
2 )σ0στ and Γστ ⊆ I hold. Because σ0 is a solution

of N in I and στ is grounding for the premises, i.e. I |= (Γ → ∆, l'r)στ and
I 6|= α2[r′]pσ0στ , this implies that

(i) ∆στ ∩ I 6= ∅ or I |= (l'r)στ , and

(ii) I 6|= α'2 [r′]pσ0στ .

Assume I |= (l'r)στ . The additional identity r′στ = rστ leads to I 6|= α'2 [l]pσ0στ ,
which contradicts I |= α'1 σ0στ because α'1 σ = α'2 [l]pσ.

So ∆στ ∩ I 6= ∅, an hence I |= Dστ . ♦

Proposition 4.15 (Soundness)
The calculus SFD is sound for |=Σ and |=Ind theorem proving derivations:

(i) Let α ‖C be the conclusion of a SFD inference with premises in N . Then N |=Σ

N ∪ {α ‖C}.

(ii) Let N be saturated with respect to SFD, let AN not be covering, and let α ‖C be
the conclusion of a SFD inference with premises in N ∪ N ′. Then N |=Ind N

′ if,
and only if, N |=Ind N

′ ∪ {α ‖C}.

Proof. This follows directly from Lemma 4.14. ♦

82



4.2 First-Order Reasoning in Fixed Domains

As usual, fairness can be ensured by systematically adding conclusions of non-redun-
dant inferences, making these inferences redundant.

Because it relies on redundancy and fairness rather than on a concrete inference cal-
culus (as long as this calculus is sound), the proof of the next theorem is exactly as in
the unconstrained case (Bachmair and Ganzinger, 1994, Theorem 5.12):

Theorem 4.16 (Saturation)
Let N0, N1, N2, . . . be a fair |=Σ theorem proving derivation. Then the set N∞ =⋃
j

⋂
k≥j Nk is saturated. Moreover, N0 has a Herbrand model over Σ if, and only

if, N∞ does.

Let N0, N1, . . . be a fair |=Ind theorem proving derivation for N . Then the set N ∪N∞
is saturated. Moreover, N |=Ind N0 if, and only if, N |=Ind N∞.

Example 4.17 (The Elevator, Revisited)
Consider again the example of the elevator presented in Examples 1.1 and 4.3. I will
now prove that ∀y, x.G(y, x) → R(y, x) is valid in all Herbrand models of NE over the
signature ΣE containing two constants a, b of sort SPerson and two constants e, f of sort
SElevator, i.e. that NE ∪ {¬∀y, x.G(y, x)→ R(y, x)} does not have any Herbrand models
over ΣE . Following the line of thought presented above, the negated query is transformed
into the constrained clause set

{ u'x, v'y ‖R(y, x)→, u'x, v'y ‖→ G(y, x) } ,

where x : SPerson and y : SElevator, and then saturated together with NE . This saturation
is exactly what happened in Example 4.3. The derived constrained empty clauses are
u'x, v'a ‖� and u'x, v'b ‖�. Their constraints are covering for ΣE , which means that
the inital constrained clause set does not have any Herbrand models over ΣE , i.e. that
NE |=ΣE ∀y, x.G(y, x)→ R(y, x).

4.2.3 Other Herbrand Models of Constrained Clause Sets

A so far open question in the definition of the minimal model IN is whether there is the
alternative of choosing a non-minimal constraint αN . Example 4.10 shows that this is in
general not possible for sets N that are saturated with respect to the present calculus,
but I have also shown after Theorem 4.6 that models corresponding to non-minimal
constraints may well be of interest. Such a situation will occur again in Example 4.28
and in Chapter 5, where knowledge about all models will allow me to find a complete
set of counterexamples to a query.

To include also Herbrand models arising from non-minimal constraints, I now change
the calculus. The trade-off is that I introduce a new and prolific inference rule that may
introduce constrained clauses that are larger than the premises. This makes even the
saturation of simple constrained clause sets non-terminating. E.g. a derivation start-
ing from { ‖→ f(a)'a, v'a ‖→ P (a)} will successively produce the increasingly large
constrained clauses v'f(a) ‖→ P (a), v'f(f(a)) ‖→ P (a) and so on.

83



4 A Superposition Calculus for Fixed Domains

Generalized Equality Elimination:

α1 ‖Γ1 → ∆1, l'r α2[r′]p ‖Γ2 → ∆2

(α2[l]p, α
6'
1 ‖α'1'α'2 [l],Γ1,Γ2 → ∆1,∆2)σ

where

(i) σ = mgu(r, r′),

(ii) no literal is selected in the first premise
and lσ'rσ is strictly maximal in (Γ1 → ∆1, l'r)σ,

(iii) rσ 6� lσ,

(iv) r′ is not a variable, and

(v) p is a position in the positive part α'2 of α2.

Figure 4.3: The Additional Rule of the Calculus SFD+

Definition 4.18 (SFD+)
The Extended Superposition Calculus for Fixed Domains SFD+ arises from SFD by replac-
ing the Equality Elimination inference rule by the more general rule from Figure 4.3.

Example 4.19 (Treatment of Non-Minimal Constraints)
Reconsider the constrained clause set Nab = {v'a ‖→ a'b, v'b ‖ a'b→} from Exam-
ple 4.10. The only witness of the Herbrand satisfiability of this set is the instantiation
v 7→ b.

For b � a, the alternative v 7→ a can be excluded using SFD by applying Constraint
Superposition:

clauses in Nab: 1 : v'a ‖ → b'a
2 : v'b ‖ b'a →

Constraint Superposition(1,2) = 3 : v'a ‖ a'a, a'a →
Equality Resolution(3) = 4 : v'a ‖ a'a →
Equality Resolution(4) = 5 : v'a ‖ �

For a � b, the set Nab is saturated with respect to SFD and v 7→ a is only implicitly
by the minimality requirement. However, additional inferences are possible using SFD+,
resulting in a derivation similar to the one above:

clauses in Nab: 1 : v'a ‖ → a'b
2 : v'b ‖ a'b →

Generalized Equality Elimination(1,2) = 3 : v'a ‖ a'a, a'a →
Equality Resolution(3) = 4 : v'a ‖ a'a →
Equality Resolution(4) = 5 : v'a ‖ �

So all non-covered constraints of the SFD+-saturated set provide models of Nab.

The extended calculus is also sound:

84



4.2 First-Order Reasoning in Fixed Domains

Lemma 4.20
Let N be a set of constrained clauses over Σ, let β ‖D be the conclusion of a SFD+

inference with premises in N and let I be a Herbrand interpretation. Then N and
N ∪ {β ‖D} have the same solutions in I.

Proof. Surely every solution of N ∪ {β ‖D} in I is a solution of the subset N .

For the converse implication let σ0 : V → T (Σ) be a solution of N and let τ be a
substitution that is grounding for β ‖D such that I |= βσ0στ . It remains to be shown
that I |= Dτ .

The only new case compared to Lemma 4.14 is the one where β ‖D is the conclusion
of a Generalized Equality Elimination inference:

α1 ‖Γ1 → ∆1, l'r α2[r′]p ‖Γ2 → ∆2

(α2[l]p, α
6'
1 ‖α'1'α'2 [l],Γ1,Γ2 → ∆1,∆2)σ

Again, τ can without loss of generality be considered as extended to a substitution that
is also grounding for the premises.

Assume that I |= (α2[l]p, α
6'
1 )σ0στ and (α'1'α'2 [l],Γ1,Γ2)στ ⊆ I hold. Because σ0 is

a solution of N in I and στ is grounding for the premises, this implies that

(i) I |= α1σ0στ implies ∆1στ ∩ I 6= ∅ or I |= (l'r)στ , and

(ii) I |= α2[r′]pσ0στ implies ∆2στ ∩ I 6= ∅.
Assume that ∆1στ ∩ I = ∆2στ ∩ I = ∅. Then I 6|= α2[r′]pσ0στ . Because of I |=
α2[l]pσ0στ and r′στ = rστ , this directly implies I 6|= (l'r)στ . So (i) yields I 6|= α1σ0στ ,
which in combination with I |= α'1'α'2 [l]p contradicts I |= α2[l]pσ0στ .

So the assumption was false and ∆1στ ∩ I 6= ∅ or ∆2στ ∩ I 6= ∅ holds, and hence
I |= Dστ . ♦

Note that in a purely predicative setting, i.e. when all equations outside constraints
are of the form t'ctrue, the separation of the predicative sort from all other sorts prevents
the application of both the original and the new Equality Elimination rule. So the calculi
SFD and SFD+ coincide in this case.

Definition 4.21 (αN)
Let N be a set of constrained clauses. If AN is not covering, then let αN be any ground
constraint that is not an instance of any constraint in AN (note that αN does not have
to be minimal). Otherwise let αN be arbitrary.

Since the proof of Lemma 4.7 depends strongly on the minimality of αN , I have to
change the proof strategy and cannot rely on previous results.

Lemma 4.22
Let N be a set of positively constrained clauses that is saturated with respect to SFD+.
Assume that AN is not covering and fix some αN . If IN 6|= N , then there is a ground
instance (α ‖C)σ of a constrained clause in N such that IN 6|= (α ‖C)σ and ασ = αN .

85



4 A Superposition Calculus for Fixed Domains

Proof. Let (α ‖C)σ be the minimal ground instance of a constrained clause in N such
that IN 6|= (α ‖C)σ. I first show that it suffices to examine the case where αN rewrites
to ασ using RN and then solve this case.

IN 6|= (α ‖C)σ implies IN |= ασ'αN , thus by confluence of RN , it holds that

ασ _∗RN α0 and αN _∗RN α0 ,

where α0 is the normal form of αN under RN . I show that ασ = α0.

If ασ 6= α0, there is a rule lσ′ _ rσ′ ∈ RN that was produced by the ground in-
stance (β ‖Λ→ Π, l'r)σ′ of a positively constrained clause β ‖Λ→ Π, l'r ∈ N such
that ασ[lσ′]p →RN ασ[rσ′]p. By definition of productivity, no literals are selected in this
constrained clause.

If p is a variable position in α or not a position in α at all, then the rule actually
reduces σ, which contradicts the minimality of (α ‖C)σ. So p must be a non-variable
position of α. Let C = Γ → ∆. Then there is a Constraint Superposition inference as
follows:

β ‖Λ→ Π, l'r α ‖Γ→ ∆

(α[r]p ‖β'α[r]p,Λ,Γ→ Π,∆)τ
τ = mgu(α|p, l)

The ground instance δ ‖D := (α[r]p ‖β'α[r]p,Λ,Γ→ Π,∆)σσ′ of the conclusion is not
modeled by IN . On the other hand, because N is saturated, the ground instance

(β ‖Λ→ Π, l'r)σ′ (α ‖Γ→ ∆)σ

(α[r]p ‖β'α[r]p,Λ,Γ→ Π,∆)σσ′

of the above inference is redundant. The first premise cannot be redundant because
it is productive; the second one cannot be redundant because of the minimality of
(α ‖Γ→ ∆)σ. This means that the conclusion follows from ground instances of con-
strained clauses in N all of which are smaller than the maximal premise (α ‖Γ→ ∆)σ.
All these ground instances are modeled by IN , and so IN |= δ ‖D.

So whenever IN 6|= N , there is a ground instance (α ‖C)σ of a constrained clause in

N such that IN 6|= (α ‖C)σ and ασ = α0. In particular αN
∗→RN ασ. Let n ∈ N be the

minimal number for which there is a ground instance (α ‖C)σ of a constrained clause
α ‖C = α ‖Γ→ ∆ in N such that IN 6|= (α ‖C)σ and αN rewrites to ασ via RN in n
steps, written αN _n

RN
ασ. I have to show that n = 0.

Assume n > 0. Then the last step of the derivation αN _n
RN

ασ is of the form
ασ[lσ′]p →RN ασ[rσ′]p = ασ, where the rule lσ′ _ rσ′ ∈ RN has been produced by a
constrained clause β ‖Λ→ Π, l'r ∈ N with βσ′ = αN . By definition of productivity,
no literals are selected in this constrained clause. There are two cases to consider:

• If p is a variable position in α or not a position in α at all, let p = p′p′′ such that
α|p′ = x is a variable. Let τ be the substitution that coincides with σ except that
xτ = xσ[lσ′]p′′ . Then IN 6|= (α ‖C)τ and αN _n−1

RN
ατ contradicts the minimality

of n.

86



4.3 Minimal Model Reasoning

• Otherwise there is an Equality Elimination inference as follows:

β ‖Λ→ Π, l'r α ‖Γ→ ∆

(α[l]p ‖β'α[l]p,Λ,Γ→ Π,∆)τ
τ = mgu(α|p, r)

The ground instance δ ‖D := (α[l]p ‖β'α[l]p,Λ,Γ→ Π,∆)σσ′ of the conclusion is
not modeled by IN . In particular, IN |= δ and IN 6|= D.

Since the inference, and hence also the constrained clause δ ‖D is redundant,
there are constrained clauses δ1 ‖D1, . . . , δm ‖Dm ∈ N together with substitu-
tions σ1, . . . , σm, such that all δiσi are satisfiable and δ' = δ'i σi for all i and
D1σ1, . . . , Dmσm |= D. This implies that IN 6|= (δi ‖Di)σi for at least one of the
constrained clause instances (δi ‖Di)σi. Since αN _n−1

RN
δ'i σi = δ' = ασ[lσ′]p,

this contradicts the minimality of n.

So n = 0 follows, which proves ασ = αN . ♦

With this preparatory work done, Proposition 4.11 and Theorem 4.12 can be reproved
in this new setting:

Proposition 4.23 (IN is a Model)
Let N be a set of positively constrained clauses that is saturated with respect to SFD+.
Then IαNN |= N for any ground constraint αN that is not covered by AN .

Proof. The proof is almost identical to the proof of Proposition 4.9. The only difference
is that, instead of reasoning about the minimal ground instance (α ‖C)σ of a positively
constrained clause α ‖C ∈ N that is not modeled by IN , the minimal such instance
that additionally satisfies ασ = αN can be considered. Lemma 4.22 states that this is
sufficient. ♦

Theorem 4.24 (Refutational Completeness)
Let N be a set of positively constrained clauses over Σ that is saturated with respect to
SFD+. Then N has a Herbrand model over Σ if, and only if, AN is not covering.

4.3 Minimal Model Reasoning

Given a constrained or unconstrained clause set N , it is often not only of interest whether
N is (un)satisfiable (with or without respect to a fixed domain), but which properties
specific Herbrand models of a N over Σ have, especially IN . These are not always
disjoint problems: I will show in Proposition 4.25 that, for some N and queries of the
form ∃~x.A1 ∧ . . . ∧An, first-order validity and validity in IN coincide, so that the latter
can be explored with first-order techniques.

The result can be extended further: I will use the superposition calculus SFD to demon-
strate classes of constrained clause sets N and H for which N |=Σ H and N |=Ind H
coincide (Proposition 4.26). Finally, I will present a way to improve the termination of
the approach for proving properties of IN (Theorem 4.34).

87



4 A Superposition Calculus for Fixed Domains

In this context, it is important to carefully observe the semantics of an expression
N |=Ind H when N is constrained. Consider for example a signature containing two
constants a, b with a � b, NP = {v'x ‖→ P (x)} and HP = {v'x ‖P (x)→}. Then
NP ∪HP is unsatisfiable, but nevertheless HP is valid in the model INP = {P (b)}, i.e.
NP |=Ind HP . These difficulties vanish when the existential variables in NP and HP are
renamed apart.

4.3.1 Relations between First-order, Fixed Domain
and Minimal Model Validity

Even with standard first-order superposition, it is possible to prove that first-order va-
lidity and validity in IN coincide for some N and properties Γ:

Proposition 4.25 (Minimal Model and First-order Validity)
If N is a saturated set of unconstrained Horn clauses over Σ and Γ is a conjunction of
positive literals over Σ with existential closure ∃~x.Γ, then

N |=Ind ∃~x.Γ ⇐⇒ N |= ∃~x.Γ .

Proof. N |= ∃~x.Γ holds if, and only if, the set N ∪ {∀~x.¬Γ} is unsatisfiable. N is Horn,
so during saturation of N ∪ {¬Γ}, where inferences between clauses in N need not be
performed, only purely negative, hence non-productive, clauses can appear. That means
that the Herbrand interpretation IN ′ is the same for every clause set N ′ in the derivation.
So N ∪ {¬Γ} is unsatisfiable if, and only if, N 6|=Ind ∀~x.¬Γ, which is in turn equivalent
to N |=Ind ∃~x.Γ. ♦

If N and Γ additionally belong to the Horn fragment of a first-order logic (clause)
class decidable by unconstrained superposition, such as for example the monadic class
with equality (Bachmair et al., 1993) or the guarded fragment with equality (Ganzinger
and Nivelle, 1999), it is thus decidable whether N |=Ind ∃~x.Γ.

Given the superposition calculus for fixed domains SFD, it is also possible to show that
a result similar to Proposition 4.25 holds for universally quantified queries.

Proposition 4.26 (Minimal Model and Fixed Domain Validity)
If N is a saturated set of Horn clauses over Σ and Γ is a conjunction of positive literals
over Σ with universal closure ∀~v.Γ, then

N |=Ind ∀~v.Γ ⇐⇒ N |=Σ ∀~v.Γ .

Proof. N |=Σ ∀~v.Γ holds if, and only if, N ∪ {∃~v.¬Γ} does not have a Herbrand model
over Σ.

If N∪{∃~v.¬Γ} does not have a Herbrand model over Σ, then obviously N 6|=Ind ∃~v.¬Γ.
Otherwise, consider the positively constrained clause α ‖∆→ corresponding to the

formula ∃~v.¬Γ and assume without loss of generality that the existential variables in N
and α are renamed apart. The minimal models of the two sets N and N ∪{α ‖∆→} are
identical, since during the saturation of N ∪ {α ‖∆→} inferences between clauses in N
need not be performed and so only purely negative, hence non-productive, constrained
clauses can be derived. This in turn just means that N |=Ind ∃~v.¬Γ. ♦

88



4.3 Minimal Model Reasoning

These propositions can also be proved using arguments from model theory. The
shown proofs using standard superposition or SFD, respectively, notably the argument
about the lack of new productive clauses, illustrate recurring crucial concepts of super-
position-based theorem proving in minimal models. Example 4.28 will show that other
superposition-based algorithms often fail because they cannot obviate the derivation of
productive clauses.

Example 4.27
Consider the partial definition of the usual ordering on the naturals given by NGT =
{→ GT(s(0), 0), GT(x, y)→ GT(s(x), s(y))} over the signature ΣGT = ({GT}, {s, 0}),
as shown in the introduction. I will use Proposition 4.26 to check whether or not
NGT |=ΣGT

∀x.GT(s(x), x). The first steps of a possible derivation are as follows:

clauses in N : 1 : ‖ → GT(s(0), 0)
2 : ‖ GT(x, y) → GT(s(x), s(y))

negated conjecture: 3 : v'x ‖ GT(s(x), x) →
Superposition(1,3) = 4 : v'0 ‖ �
Superposition(2,3) = 5 : v's(y) ‖ GT(s(y), y) →
Superposition(1,5) = 6 : v's(0) ‖ �
Superposition(2,5) = 7 : v's(s(z)) ‖ GT(s(z), z) →

In the sequel, the constrained clauses 1 and 2 are repeatedly superposed into (descen-
dants of) the constrained clause 5. This way, all constrained clauses of the forms
v'sn(x) ‖GT(s(x), x)→ and v'sn(0) ‖� are successively derived, where sn(0) denotes
the n-fold application s(. . . s(s(0)) . . .) of s to 0, and analogously for sn(x). Since the
constraints of the derived constrained empty clauses are covering in the limit, it follows
that NGT |=ΣGT

∀x.GT(s(x), x).

Because saturation does not terminate on the previous example, an automated proof
of NGT |=ΣGT

∀x.GT(s(x), x) using SFD alone is not possible. I will later present two
extensions of the calculus for which saturation does terminate and the proof thus becomes
completely automated (cf. Examples 4.36 and 6.52).

Using Proposition 4.26, the calculus SFD can be employed for fixed domain reasoning
to also decide properties of minimal models. This is even possible in cases for which
neither the approach of Ganzinger and Stuber (1992, cf. Section 1.3.3) nor the one of
Comon and Nieuwenhuis (2000, cf. Section 1.3.4) works.

Example 4.28
Consider yet another partial definition of the usual ordering on the naturals given by
the saturated set N ′GT = {→ GT(s(x), 0), GT(x, s(y))→ GT(x, 0)} over the signature
ΣGT. I will compare different approaches to proving N ′GT 6|=Ind ∀x, y.GT(x, y).

• I start with the constrained clause u'x, v'y ‖GT(x, y)→ and do the following

89



4 A Superposition Calculus for Fixed Domains

one step derivation:

clauses in N : 1 : ‖ → GT(s(x), 0)
2 : ‖ GT(x, s(y)) → GT(x, 0)

negated conjecture: 3 : u'x, v'y ‖ GT(x, y) →
Superposition(1,3) = 4 : u's(x), v'0 ‖ �

All further inferences are redundant (even for the extended calculus SFD+ from
Section 4.2.3), thus the counter examples to the query are exactly those for which
no constrained empty clause was derived, i.e. instantiations of u and v which are
not an instance of {u 7→ s(x), v 7→ 0}. Hence, these counter examples take on
exactly the form {u 7→ 0, v 7→ t2} or {u 7→ t1, v 7→ s(t2)} for any t1, t2 ∈ T (ΣGT).
Thus N ′GT 6|=ΣGT

∀x, y.GT(x, y), and since the query is positive, it also follows that
N ′GT 6|=Ind ∀x, y.GT(x, y).

• In comparison, the algorithm by Ganzinger and Stuber starts a derivation with
the clause → GT(x, y), derives in one step the potentially productive clause →
GT(x, 0) and terminates with the answer “don’t know”.

Ganzinger and Stuber also developed an extended approach that uses a predicate
Gnd defined by {→ Gnd(0), Gnd(x) → Gnd(s(x))}. In this context, they guard
each free variable x in a clause of N and the conjecture by a literal Gnd(x) in
the antecedent. These literals mimic the effect of restricting the instantiation of
variables to ground terms over ΣGT. The derivation then starts with the following
clause set:

clauses defining Gnd: → Gnd(0)
Gnd(x) → Gnd(s(x))

modified N : Gnd(x) → GT(s(x), 0)
Gnd(x),Gnd(y),GT(x, s(y)) → GT(x, 0)

conjecture: Gnd(x),Gnd(y) → GT(x, y)

Whenever the conjecture or a derived clause contains negative Gnd literals, one of
these is selected, e.g. always the leftmost one. This allows a series of superposition
inferences with the clause Gnd(x) → Gnd(s(x)), deriving the following infinite
series of clauses:

Gnd(x),Gnd(y) → GT(x, y)
Gnd(x1),Gnd(y) → GT(s(x1), y)
Gnd(x2),Gnd(y) → GT(s(s(x2)), y)

. . .

The extended algorithm diverges without producing an answer to the query. For
other selection strategies, the concrete derivation will change, but the algorithm
still diverges.

• The approach by Comon and Nieuwenhuis fails as well. Before starting the actual
derivation, a completion of GT has to be computed. As presented in Chapter 3,

90



4.3 Minimal Model Reasoning

this involves a quantifier elimination procedure, that fails since the succedent of
the clause GT(x, s(y))→ GT(x, 0) does not contain all variables of the clause: GT
is defined in the minimal model IN ′GT

by

GT(x, y) ⇐⇒ (y = 0 ∧ ∃z.x = s(z)) ∨ (y = 0 ∧ ∃z.GT(x, s(z))) ,

so its negation is defined by

¬GT(x, y) ⇐⇒ (y 6= 0 ∨ ∀z.x 6= s(z)) ∧ (y 6= 0 ∨ ∀z.¬GT(x, s(z))) .

Quantifier elimination simplifies this to

¬GT(x, y) ⇐⇒ (y 6= 0 ∨ x = 0) ∧ (y 6= 0 ∨ ∀z.¬GT(x, s(z))) ,

but cannot get rid of the remaining universal quantifier:

¬GT(x, y) ⇐⇒ (y 6= 0 ∨ ∀z.x 6= s(z))
∧ (y 6= 0 ∨ ∀z.¬GT(x, s(z)))

⇐⇒ (y 6= 0 ∨ (∀z.x 6= s(z) ∧ x = 0)
∨ (∃w.∀z.x 6= s(z) ∧ x = s(w)))
∧ (y 6= 0 ∨ ∀z.¬GT(x, s(z))) by Explosion on x

⇐⇒ (y 6= 0 ∨ x = 0
∨ (∃w.∀z.x 6= s(z) ∧ x = s(w)))
∧ (y 6= 0 ∨ ∀z.¬GT(x, s(z)))

⇐⇒ (y 6= 0 ∨ x = 0)
∧ (y 6= 0 ∨ ∀z.¬GT(x, s(z)))

Almost all rules are reduction or simplification rules. The only exception is the
Explosion rule which, as shown in Chapter 3, performs a signature-based case
distinction on the possible instantiations for the variable x: either x = 0 or x = s(t)
for some term t.

No rule is applicable to the last formula, but there is still a universal quantifier
left. Hence the completion is not successful.

The previous example can, alternatively, be solved using test sets (Bouhoula and
Rusinowitch, 1995; Bouhoula and Jouannaud, 1997). Test set approaches describe the
minimal model of the specification by a set of rewrite rules in such a way that the query
holds if, and only if, it can be reduced to a tautology (or a set thereof) by the rewrite
rules. Such approaches rely on the decidability of ground reducibility (Plaisted, 1985;
Kapur et al., 1991; Kounalis, 1992; Comon and Jacquemard, 1997).

Following Bouhoula and Jouannaud, N ′GT corresponds to the following term rewrite
system:

GT(s(x), 0) _ true

GT(x, 0) _ GT(x, s(y))

GT(0, y) _ false

91



4 A Superposition Calculus for Fixed Domains

To prove N ′GT 6|=Ind ∀x, y.GT(x, y), the algorithm maintains a set of currently re-
garded formulas with side conditions, which are reducible to tautologies if, and only
if, N ′GT |=Ind ∀x, y.GT(x, y). It starts with the query {GT(x, y)'true}. Using the
Rewrite Splitting rule, a case distinction based on the possible applications of rewrite
rules to GT(x, y)'true is performed. The result is the formula set

{ true'true if x = s(x′) ∧ y = 0 ,
GT(x, y′)'true if y = 0 ∧ y′ = s(y′′) ,
false'true if x'0 } .

Since the last formula is not reducible to a tautology, N 6|=Ind ∀x, y.GT(x, y) follows.

Here is a second example where all previously mentioned methods fail:

Example 4.29
The formula ∀x.∃y.x6'0 → GT(x, y) is obviously valid in each Herbrand model of the
theory N ′GT = {→ GT(s(x), 0), GT(x, s(y))→ GT(x, 0)} from Example 4.28 over the
signature ΣGT, i.e. it holds that N ′GT |=ΣGT

∀x.∃y.x6'0→ GT(x, y). Using SFD, this can
again be proved in a two step derivation:

clauses in N : 1 : ‖ → GT(s(x), 0)
2 : ‖ GT(x, s(y)) → GT(x, 0)

negated conjecture: 3 : v'x ‖ x'0 →
4 : v'x ‖ GT(x, y) →

Equality Resolution(3) = 5 : v'0 ‖ �
Superposition(1,4) = 6 : v's(x) ‖ �

The constraints v'0 and v's(x) of the constrained empty clauses are covering, which
proves that N ′GT |=ΣGT

∀x.∃y.x6'0→ GT(x, y).

However, all previously mentioned approaches fail to prove even the weaker proposi-
tion N ′GT |=Ind ∀x.∃y.x6'0 → GT(x, y), because they cannot cope with the quantifier
alternation.

4.3.2 The Inductive Superposition Calculus IS(H)

As Example 4.27 shows, a proof of fixed domain validity using SFD may require the
computation of infinitely many constrained empty clauses. This is not surprising, be-
cause the task is to show that an existentially quantified formula cannot be satisfied in a
term-generated infinite domain. In the context of the concrete model IN of a saturated
and Σ-satisfiable constrained clause set N , additional structure provided by this model
can be exploited. To do so, I introduce a further inference that enables the termination
of derivations in additional cases. The given version of this rule is in general not sound
for the general fixed domain semantics but glued to the currently considered model IN ;
however, analogous results hold for every Herbrand model of N over Σ and even for
arbitrary sets of such models, in particular for the set of all Herbrand models of N over
Σ.

92



4.3 Minimal Model Reasoning

Over any domain where an induction theorem is applicable, i.e. a domain on which a
(non-trivial) well-founded partial ordering can be defined, this structure can be exploited
to concentrate on finding minimal solutions. I do this by adding a form of induction
hypothesis to the constrained clause set. If, e.g., P is a unary predicate over the natural
numbers and n is the minimal number such that P (n) holds, then it is trivial that at
the same time P (n − 1), P (n − 2), . . . do not hold. This idea will now be cast into
an inference rule (Definition 4.32) that can be used during a SFD-based |=Ind theorem
proving derivation (Theorem 4.34).

Definition 4.30 (Ordering on IN)
Let > be a well-founded strict partial ordering on on the elements of IN , i.e. on T (Σ)/RN .
If s, t are non-ground terms with equivalence classes [s] and [t], then define [s] > [t] if,
and only if, [sσ] > [tσ] for all grounding substitutions σ: X ′ → T (Σ), where X ′ ⊆ X .
The definition lifts to equivalence classes [σ], [ρ]: X ′ → T (Σ,X )/RN of substitutions,
where the ordering > is extended by defining [ρ] > [σ] if, and only if, [xρ] > [xσ] for all
x ∈ X ′.

Lemma 4.31
Let N be a saturated constrained clause set over Σ and V and let AN be not covering.
Let V = {v1, . . . , vk}, let α = v1'x1, . . . , vk'xk be a positive constraint that contains
only variables and let Xα = {x1, . . . , xk} be the set of non-existential variables in α.
Let H = {α ‖C1, . . . , α ‖Cn} be a set of constrained clauses containing only variables in
V ∪ Xα. Furthermore, let ρ1, ρ2: Xα → T (Σ,X \ V) be substitutions with [ρ2] > [ρ1].

If IN |= H and if [σmin]: V → T (Σ)/RN is a minimal (with respect to >) solution of
H in IN , then IN |= ασminτ implies IN |= ¬C1ρ1τ ∨ . . . ∨ ¬Cnρ1τ for every grounding
substitution τ .

Proof. Let Xρ2 be the set of variables in the codomain of ρ2 and let τ : Xρ2 → T (Σ) be a
substitution such that IN |= ασminρ2τ . Note that these ground equations take the form
v1σmin'x1ρ2τ, . . . , vkσmin'xkρ2τ because the domains of ρ2τ and σmin are disjoint.

To achieve a more concise representation of the proof of IN |= ¬C1ρ1τ∨. . .∨¬Cnρ1τ , I
employ the symbols ∀ and ∃ on the meta level, where they are also used for higher-order
quantification. The restriction of a substitution σ to the set V of existential variables is
denoted by σ|V , and σα: V → T (Σ,X ) is the substitution induced by α, i.e. σα maps vi
to xi.

[ρ2] > [ρ1]

⇐⇒ [σαρ2] > [σαρ1]

because Xα ∩ V = ∅
=⇒ [(σαρ2τ)|V ] > [(σαρ1τ)|V ]

Since IN |= ασminρ2τ , the former class equals [σmin].

=⇒ (σαρ1τ)|V is not a solution of H in IN
because of the minimality of [σmin]

93



4 A Superposition Calculus for Fixed Domains

=⇒ ∃τ ′. T (Σ) |= α(σαρ1τ)|Vτ ′ and IN 6|= C1τ
′ ∧ . . . ∧ Cnτ ′

=⇒ ∃τ ′. ∀i. viσαρ1τ = xiτ
′ and IN 6|= C1τ

′ ∧ . . . ∧ Cnτ ′

because τ ′ and (σαρ1τ)|V affect different sides of each equation in α

=⇒ ∃τ ′. ∀i. xiρ1τ = xiτ
′ and IN 6|= C1τ

′ ∧ . . . ∧ Cnτ ′

=⇒ ∃τ ′. ∀x ∈ Xα. xρ1τ = xτ ′ and IN |= ¬C1τ
′ ∨ . . . ∨ ¬Cnτ ′

because C1τ
′ ∧ . . . ∧ Cnτ ′ is ground

=⇒ IN |= ¬C1ρ1τ ∨ . . . ∨ ¬Cnρ1τ

because var(Ci) ⊆ Xα

for i ∈ {1, . . . , k} and τ ′: Xα → T (Σ). This completes the proof. ♦

Usually when sets of constrained clauses are considered, all constrained clauses are
supposed to have been renamed in advance so that they do not have any universal
variables in common. I deviate from this habit here by forcing the common constraint
α = v1'x1, . . . , vk'xk upon all constrained clauses in H. Note that this does not affect
the semantics because of the order of existential and universal quantifiers. For example,
the constrained clause set {v'x ‖P (x)→, v'y ‖→ P (y)} has the semantics

∃v.∀x, y.(v 6'x ∨ ¬P (x)) ∧ (v 6'y ∨ P (y)),

which is equivalent to the semantics

∃v.∀x.(v 6'x ∨ ¬P (x)) ∧ (v 6'x ∨ P (x))

of the constrained clause set {v'x ‖P (x)→, v'x ‖→ P (x)}.
The formula ¬C1ρ1 ∨ . . . ∨ ¬Cnρ1 can usually not be written as a single equivalent

clause if some Ci contains more than one literal. However, if D1∧. . .∧Dm is a conjunctive
normal form of ¬C1∨. . .∨¬Cn, then each Dj is a disjunction of literals and so αρ2 ‖Djρ1

is a constrained clause. Then the previous lemma can be restated as [σmin] also being a
solution of these constrained clauses.

These ideas will now be cast into an inference rule.

Definition 4.32 (IS(H))
The Inductive Superposition Calculus IS(H) with respect to a finite constrained clause
set H is the union of SFD and the inference rule from Figure 4.4.

Lemma 4.31 ensures that all constrained clauses derived by the Induction inference
rule with respect to H will have a common solution with the initial query H, because
the preserved solution [σmin] is independent of the choices of ρ1 and ρ2.

Example 4.33
Let ΣP = ({P}, {0, s}) and NP = {→ P (s(s(x)))}. All clauses derivable by the In-
duction inference rule with respect to HP = {v'x ‖→ P (x)} are of one of the forms
v'sn+m(0) ‖P (sn(0))→, v'sn+m(0) ‖P (sn(x))→ or v'sn+m(x) ‖P (sn(x))→ for nat-
ural numbers n,m with m > 0. All these formulas and the initial constrained clause set
HP have in INP the common solution {v 7→ s(s(0))}.

94



4.3 Minimal Model Reasoning

Induction with respect to H:

α ‖C1 . . . α ‖Cn
αρ2 ‖Dρ1

where

(i) H = {α ‖C1, . . . , α ‖Cn}
(ii) α = v1'x1, . . . , vm'xm is a positive constraint containing only equations

between variables (and V = {v1, . . . , vm}),
(iii) all variables of the premises occur in α,

(iv) ρ1, ρ2 : {x1, . . . , xm} → T (Σ,X \ V) and [ρ1] < [ρ2], and

(v) D is an element of the conjunctive normal form of ¬C1 ∨ . . . ∨ ¬Cn.

Figure 4.4: The Induction Rule

To decide the validity of H in IN , the Induction inference rule for H can thus be used
in a theorem proving derivation:

Theorem 4.34 (Soundness of the Induction Rule)
Let N be a positively constrained clause set that is saturated with respect to SFD and let
AN be not covering. Let V = {v1, . . . , vk}, let α = v1'x1, . . . , vk'xk be a constraint that
contains only variables and let Xα = {x1, . . . , xk} be the set of non-existential variables
in α. Let H be a finite set of constrained clauses containing only variables in V ∪ Xα.

If N ∪H ′ is derived from N ∪H using IS(H), then IN |= H if, and only if, IN |= H ′.

Proof. This follows directly from Proposition 4.15, which implies that the solutions of
H are not changed by the rules in SFD, and Lemma 4.31, which states that minimal
solutions are invariant under the Induction inference rule for H. ♦

This theorem basically states that the addition of constrained clauses of the presented
form is a valid step in a |=Ind theorem proving derivation that starts from N and H
and uses the calculus SFD. Before I come to applications of the Induction rule, I want
to shortly investigate the side conditions to this rule. Conditions (iv) and (v) are direct
consequences of the ideas developed at the beginning of this section. Conditions (i)–(iii)
are needed to guarantee soundness.

Example 4.35 (Conditions on the Applicability of the Induction Rule)
I present some examples to show how a violation of one of the conditions (i)–(iii) makes
the Induction rule unsound.

(i) It is important to use the Induction rule on the whole query set only (condition
(i)), because the minimal solution of a subset of the query may not be equal to
the minimal solution of the whole query. Consider for example the constrained
clause set N(i) = {→ P (x), Q(a) →, → Q(b)} over the signature ({P,Q}, {a, b})
where [b] < [a], and the query H(i) = {v'x ‖→ P (x), v'x ‖→ Q(x)}. The set

95



4 A Superposition Calculus for Fixed Domains

N(i)∪H(i) is satisfiable over {a, b}: just set v 7→ b. Using the Induction rule for H(i),
only the redundant constrained clause v'b ‖P (a), Q(a)→ is derivable, namely for
ρ1(x) = b and ρ2(x) = a. If the Induction rule is applied for {v'x ‖→ P (x)}
instead of H(i), ignoring condition (i), the constrained clause v'b ‖P (a)→ can be
derived. The combined set N(i)∪H(i)∪{v'b ‖P (a)→} is unsatisfiable over {a, b}.

(ii) For an example illustrating the need for condition (ii), consider the constrained
clause set N(ii) = {s(0)'0→, → s(s(x))'x} over the signature Σnat = ({}, {s, 0}).
In the minimal model of N(ii), all ground terms representing even numbers are
equivalent, as are all ground terms representing odd numbers, i.e. there are exactly
two equivalence classes, [0] and [s(0)]. Let [0] < [s(0)] and consider the query
H(ii) = {v's(x) ‖→ x'0}. The instantiation v 7→ 0 is a witness of the validity
of H(ii) in the minimal model of N(ii). However, applying the Induction rule on
H(ii) in violation of condition (ii) with ρ1(x) = 0 and ρ2(x) = s(0), the constrained
clause v's(s(0)) ‖ 0'0→ can be derived. The only instantiation validating this
constrained clause in the minimal model of N(ii) is v 7→ 0, i.e. the combined set
H(ii) ∪ {v's(s(0)) ‖ 0'0→} is not valid in this model.

(iii) Now consider the empty theory N(iii) = {} over the signature Σnat with [0] <
[s(0)] < [s(s(0))] < . . . and the query H(iii) = {v'x ‖ y'x→ y's(0)}. The instan-
tiation v 7→ s(0) shows that H(iii) is valid in the minimal model T (Σnat) of N(iii).
Note that no other instantiation of v can show this. By ignoring condition (iii)
and applying the Induction rule to H(iii) with ρ1(x) = x and ρ2(x) = s(x), the
constrained clause v's(x) ‖ y's(0)→ can be derived. This constrained clause can
only be satisfied in the minimal model of N(iii) by the instantiation v 7→ 0. Since
this instantiation is not suited for H(iii), the set H(iii)∪{v's(x) ‖ y's(0)→} is not
valid in the minimal model of N(iii).

Some further examples will demonstrate the power of the extended calculus IS(H).
In these examples, there will always be a unique (non-empty) set H satisfying the side
conditions of the Induction rule, and I will write IS instead of IS(H).

In contrast to the other inference rules, which have a finite number of possible conclu-
sions for each given set of premises, the Induction rule will often enable the derivation
of an unbounded number of conclusions. So the exhaustive application of this rule in all
possible ways is clearly unfeasible. It seems appropriate to employ it only when a conclu-
sion can directly be used for a Superposition inference simplifying another constrained
clause. I will use this heuristic in the examples below.

Example 4.36
Reconsider the partial definition of the usual ordering on the naturals given by the set
NGT = {→ GT(s(0), 0), GT(x, y)→ GT(s(x), s(y))}, as shown in the introduction and
in Example 4.27. Again, I want to check whether or not NGT |=ΣGT

∀x.GT(s(x), x).
While the derivation in Example 4.27 diverges, a derivation using IS terminates after

96



4.3 Minimal Model Reasoning

only a few steps:

clauses in NGT: 1 : ‖ → GT(s(0), 0)
2 : ‖ GT(x, y) → GT(s(x), s(y))

negated conjecture: 3 : v'x ‖ GT(s(x), x) →
Superposition(1,3) = 4 : v'0 ‖ �
Superposition(2,3) = 5 : v's(y) ‖ GT(s(y), y) →

Induction(3) = 6 : v's(z) ‖ → GT(s(z), z)
Superposition(6,5) = 7 : v's(z) ‖ �

The Induction rule was applied using H = {v'x ‖GT(s(x), x)→}, ρ1(x) = z and
ρ2(x) = s(z). At this point, the constrained clauses v'0 ‖� and v's(z) ‖� have
been derived. Their constraints are covering for {s, 0}, which means that NGT |=Ind

∀x.GT(s(x), x). Because of Proposition 4.26, this implies NGT |=ΣGT
∀x.GT(s(x), x).

Example 4.37
A standard equational example that can be solved by various approaches (e.g. Ganzinger
and Stuber, 1992; Comon and Nieuwenhuis, 2000) is the theory of addition on the natural
numbers: N+ = {→ 0 + y'y, → s(x) + y's(x+ y)} over Σ+ = ({}, {0, s,+}). A proof
of N+ |=Ind ∀x.x+ 0'x with IS terminates quickly:

clauses in N+: 1 : ‖ → 0 + y'y
2 : ‖ → s(x) + y's(x+ y)

negated conjecture: 3 : v'x ‖ x+ 0'x →
Superposition(1,3) = 4 : v'0 ‖ 0'0 →

Equality Resolution(4) = 5 : v'0 ‖ �
Superposition(2,3) = 6 : v's(y) ‖ s(y + 0)'s(y) →

Induction(3) = 7 : v's(z) ‖ → z + 0'z
Superposition(7,6) = 8 : v's(z) ‖ s(z)'s(z) →

Equality Resolution(8) = 9 : v's(z) ‖ �

The Induction rule was applied using H = {v'x ‖x+ 0'x→}, ρ1(x) = z and ρ2(x) =
s(z). At this point, the constrained clauses v'0 ‖� and v's(z) ‖� have been derived.
Their constraints cover all constraints of the form v't, t ∈ T (Σ+,X \ V), which means
that N+ 6|=Ind v'x ‖x+ 0'x→, i.e. N+ |=Ind ∀x.x+ 0'x.

Without the Induction rule, the derivation in this example would resemble the one in
Example 4.27 and diverge. It would thus not even reveal information about the |=Σ+

validity of the query. Here, however, Proposition 4.26 can be applied to show additionally
that N+ |=Σ+ ∀x.x+ 0'x.

Along the same lines, one can also prove that addition is symmetric, i.e. N+ |=Ind

∀x, y.x+ y'y + x. In this case, the Induction rule must be applied twice to obtain the
additional clauses

u'x, v's(y′) ‖→ x+ y′'y′ + x

and
u's(x′), v'y ‖→ x′ + y'y + x′ .

97



4 A Superposition Calculus for Fixed Domains

Example 4.38
Given the theory NEven = {→ Even(0), Even(x) → Even(s(s(x)))} of the natural
numbers together with a predicate Even describing the even numbers, I show that
NE 6|=Ind ∀x.Even(x). A possible derivation runs as follows:

clauses in NEven: 1 : ‖ → Even(0)
2 : ‖ Even(x) → Even(s(s(x)))

negated conjecture: 3 : v'x ‖ Even(x) →
Superposition(1,3) = 4 : v'0 ‖ �
Superposition(2,3) = 5 : v's(s(y)) ‖ Even(y) →

Induction(3) = 6 : v's(s(z)) ‖ → Evenz)
Superposition(6,5) = 7 : v's(s(z)) ‖ �

The Induction rule was applied using H = {v'x ‖Even(x)→}, ρ1(x) = z and ρ2(x) =
s(s(z)). The set {(1) − (7)} is saturated with respect to SFD. One could, of course,
use the Induction rule to derive one more non-redundant constrained clause, namely
v's(z) ‖→ Even(z). However, this constrained clause cannot be used in any further
inference. All other constrained clauses derivable by the Induction rule are redundant.

The derived constrained empty clauses are v'0 ‖� and v's(s(z)) ‖�. Their con-
straints are not covering: They miss exactly the constraint v's(0), and in fact it holds
that NE |=Ind Even(s(0))→.

Note that, although it also holds that NE |=Ind Even(s(s(s(0)))) →, this cannot be
derived, nor can any other additional counterexample. This is due to the fact that the
application of the Induction rule preserves only the minimal solution.

4.4 Conclusion

I have presented the superposition calculi SFD and SFD+, which are sound and refuta-
tionally complete for a fixed domain semantics for first-order logic. Compared to other
approaches to reasoning over fixed domains, my approach is applicable to a larger class
of clause sets. I have shown that standard first-order and fixed domain superposition-
based reasoning, respectively, delivers minimal model results for some cases. Moreover, I
presented a way to prove the validity of minimal model properties by use of the calculus
IS(H), combining SFD and a specific Induction rule.

The most general theorem proving methods for minimal models based on saturation
so far are those by Ganzinger and Stuber (1992) and Comon and Nieuwenhuis (2000).
Both approaches work only on sets of purely universal and universally reductive (Horn)
clauses. Given such a clause set N and a query ∀~x.C, Comon and Nieuwenhuis compute
a so-called I-axiomatization A such that N |=Ind A and N ∪ A has only one Herbrand
model, and then check the first-order satisfiability of N ∪ A ∪ {C}. Like mine, this
method is refutationally complete but not terminating. In fact, the clause set A does
in general not inherit properties of N like universal reductiveness or being Horn, so
that the saturation of N ∪ A ∪ {C} does not necessarily terminate even if N ∪ {C}
belongs to a finitely saturating fragment. Ganzinger and Stuber, on the other hand,

98



4.4 Conclusion

basically saturate N ∪ {C}. Even if N ∪ {C} saturates finitely, this results in a non-
complete procedure because productive clauses may be derived. They also present a
way to guarantee completeness by forcing all potentially productive atoms to the ground
level. This effectively results in an enumeration of ground instances, at the cost that the
resulting algorithm almost never terminates.

I gave an example of a purely universal minimal model theorem proving problem that
can be solved using SFD while neither of the above approaches works (Example 4.28).
Additionally, I showed how one can also prove formulas with a ∀∃ quantifier alternation,
i.e. check the validity of ∀∗∃∗-quantified formulas. The opposite ∃∀ quantifier alternation
or subsequent alternations can currently not be tackled by the calculus and are one
potential subject for future work.

Another intensely studied approach to theorem proving in minimal models is via test
sets (Bouhoula and Rusinowitch, 1995; Bouhoula and Jouannaud, 1997). Test sets rely
on the existence of a set of constructor symbols that are either free or specified by
unconditional equations only. Such properties are not needed for the applicability of
the calculus SFD. However, in order to effectively apply the induction rule, the strict
ordering > on IN , i.e. on the RN equivalence classes, must be decidable. The existence
of constructor symbols is often useful to establish this property. Examples 4.27 and 4.29
are not solvable via test sets, whereas Example 4.28 is.

Finally, works in the tradition of Caferra and Zabel (1992) or Kapur (Kapur et al.,
1991; Kapur and Subramaniam, 2000; Giesl and Kapur, 2003; Falke and Kapur, 2006)
consider only restricted forms of equality literals and related publications by Peltier
(2003) pose strong restrictions on the clause sets (for example that they have a unique
Herbrand model).

In summary, my approach does not need many of the prerequisites required by previous
approaches, like solely universally reductive clauses in N , solely Horn clauses, solely
purely universal clauses, solely non-equational clauses, the existence and computability
of a completion making the minimal model the unique Herbrand model, or the existence
of explicit constructor symbols.

For universally reductive clause sets N , it is possible to make the calculus IS(H) refu-
tationally complete for a minimal model semantics, following the approach of Ganzinger
and Stuber (1992) as depicted in Section 1.3. As in their context, the particular required
superposition strategy carries the disadvantage of enumerating all ground instances of
all clauses over to the current setting. So it can hardly be turned into a decision pro-
cedure for clause classes having infinite Herbrand models. In some cases, the induction
rule might constitute a remedy: In case a clause set N can be finitely saturated, the
ordering < on its minimal model IN may become effective and hence the induction rule
may be effectively usable to finitely saturate clause sets that otherwise have an infinite
saturation.

The hope connected to SFD is of course that the success of the superposition-based
saturation approach on identifying decidable classes with respect to the classical first-
order semantics can be extended to new classes for the fixed domain and minimal model
semantics. Decidability results for the fixed domain semantics are hard to obtain for

99



4 A Superposition Calculus for Fixed Domains

infinite Herbrand domains but the problem can now be attacked using the sound and
refutationally complete calculus SFD. In the next chapters, I will present classes of models
where this is indeed possible.

100



5 A Superposition-Based Decision
Procedure for Minimal Model Validity

5.1 Introduction

In general, SFD derivations do not necessarily terminate. When they do, however, they
can be used to decide fixed domain validity. I will now explore a framework in which
SFD is indeed guaranteed to terminate and even decides not only fixed domain but also
minimal model validity.

Given a model representation formalism, according to Fermüller and Leitsch (1996)
and Caferra et al. (2004), each model representation should ideally

(i) represent a unique single interpretation,

(ii) provide an atom test deciding ground atoms,

(iii) support a formula evaluation procedure deciding arbitrary formulas, and

(iv) support an algorithm deciding equivalence of two model representations.

By definition, the model generation by Bachmair and Ganzinger (1994, cf. Defini-
tion 2.35) produces a unique minimal model IN∗ out of the saturation N∗ of a clause
set N according to a term ordering �. This satisfies the above uniqueness postulate. As
first-order logic is only semi-decidable, the saturated set N∗ may be infinite and hence
decision procedures for properties of IN∗ are in general hard to find. Even if N∗ is
finite, any other properties like the ground atom test, formula evaluation, and equiva-
lence of models are still undecidable in general. This shows the expressiveness of the
saturation concept. For particular cases, however, more is known. The ground atom
test is decidable if N∗ is finite and all clauses Γ → ∆, s't ∈ N∗ are universally reduc-
tive, i.e. var(Γ → ∆, s't) ⊆ var(s) and s is the strictly maximal term in Γ → ∆, s't
(Ganzinger and Stuber, 1992). This basically generalizes the well-known decidability
result of the word problem for convergent rewrite systems to full clause representations.
Even for a finite universally reductive clause set N∗, clause evaluation (and therefore
formula evaluation) and the equivalence of the minimal models of two such clause sets
remain undecidable.

More specific resolution strategies produce forms of universally reductive saturated
clause sets with better decidability properties. An eager selection strategy results in
a hyper-resolution style saturation process where, starting with a Horn clause set N ,
eventually all clauses contributing to the model IN∗ are positive units. Such strategies
decide, e.g., minimal model validity for the clause classes VED and PVD (Fermüller

101



5 A Superposition-Based Decision Procedure for Minimal Model Validity

and Leitsch, 1996; Caferra et al., 2004). The positive unit clauses in N∗ represent
so-called ARMs (Atomic Representations of term Models). Saturations of resolution
calculi with constraints (Nieuwenhuis and Rubio, 2001; Caferra et al., 2004) produce in
a similar setting positive unit clauses with constraints. Restricted to syntactic disequality
constraints, the minimal model of the saturated clause set can be represented by a DIG
(a Disjunction of Implicit Generalizations). DIGs generalize ARMs in that positive units
may be further restricted by syntactic disequations. They were first studied by Lassez
and Marriott (1987). Fermüller and Pichler (2005; 2007) showed that the expressive
power of DIGs corresponds to the one of so-called contexts used in the model evolution
calculus (Baumgartner and Tinelli, 2003) and that the ground atom test as well as the
clause evaluation test and the equivalence test are decidable.

I will now extend the results of Fermüller and Pichler for DIGs and ARMs to more
expressive formulas with quantifier alternations using saturation-based techniques. I do
so in three steps:

(i) First a DIG D is transformed into a set N0(D) of constrained predicative clauses
the minimal model of which is the interpretation described by the DIG.

(ii) This set is then completed using the predicate completion algorithm PC from Chap-
ter 3. The resulting completion N(D) has a unique Herbrand model over its sig-
nature, which means that fixed domain and minimal model semantics coincide for
N(D).

(iii) Finally, the Ordered Resolution Calculus for Fixed Domains ORFD, a restriction of
SFD to this setting, will be employed as a decision procedure for model equivalence
and minimal model validity for DIGs.

I will first restrict the superposition calculus for fixed domains SFD to predicative clauses
in Section 5.2, which results in the sound and complete calculus ORFD (Theorem 5.5).
The translation of ARMs and DIGs into suitable representations by saturated sets of
constrained clauses will be explained in Section 5.3. In Section 5.4, I will present the
new ORFD-based decidability results. In particular, I will, given an ARM representation
N , show that

IN |= ∀~x.∃~y.φ and IN |= ∃~x.∀~y.φ

are both decidable, where φ is an arbitrary quantifier-free formula (Theorem 5.25). For
more expressive DIG representations N , I show among other results that

IN |= ∀~x.∃~y.C and IN |= ∃~x.∀~y.C ′

are decidable for any clause C, and for any clause C ′ in which no predicate occurs both
positively and negatively (Theorem 5.24).

The main results in this chapter have been published as (Horbach and Weidenbach,
2009a,d).

102



5.2 The Constrained Ordered Resolution Calculus ORFD

5.2 The Constrained Ordered Resolution Calculus ORFD

In Chapter 4, I introduced the superposition-based calculus SFD to address the problem
whether a query ∀~x.∃~y.φ holds in every Herbrand model of N over the signature Σ,
written N |=Σ ∀~x.∃~y.φ, where N is a set of unconstrained clauses and φ is a quantifier-
free formula over Σ. There, both N and φ may contain equational atoms.

As examples like 4.27 demonstrate, derivations with respect to SFD do in general not
terminate. This is especially due to the two rules Constraint Superposition and Equality
Elimination, that will often produce clauses with ever increasing constraints.

The calculus SFD works on clauses of general equational atoms. As explained in
the preliminaries, predicates are encoded as equations as usual, i.e. P (~t) is encoded as
fP (~t)'ctrue, where ctrue is a new and minimal constant symbol. Because of the focus on
predicative clauses, signatures in this chapter will always be given in the form Σ = (P,F)
(cf. Section 2.2.5). When only predicative atoms are present, several of the rules of SFD
are not applicable, among them the two just mentioned. The resulting calculus ORFD is
presented in this section, along with proofs of its soundness and refutational completeness
with respect to Herbrand satisfiability. As in the case of SFD, the inference rules in ORFD

are defined with respect to a well-founded strict reduction ordering � on atoms over Σ
that is total on ground atoms and with respect to a selection function that assigns to
every clause a (possibly empty) set of antecedent atoms.

Definition 5.1 (ORFD)
Let � be a well-founded strict reduction ordering on atoms over Σ that is total on
ground atoms. The Ordered Resolution Calculus for Fixed Domains ORFD consists of
the two inference rules from Figure 5.1, where all (strict) maximality constraints have
to be considered with respect to �.

As in Chapter 4, I will always implicitly assume that a well-founded strict reduction
ordering � on atoms over Σ that is total on ground atoms is fixed for all following
considerations.

When all clauses are predicative, the calculi SFD and SFD+coincide. Hence the choice
of αN need not be restricted to minimal constraints:

Definition 5.2 (αN)
Let N be a set of constrained clauses. If AN is not covering, then let αN , as in Sec-
tion 4.2.3, be any ground constraint that is not an instance of any constraint in AN .
Otherwise let αN be arbitrary.

Example 5.3
As an example consider the signature ΣNat = (∅, {0, s}), where 0 is a constant and
s is unary, a single existential variable v and the two constrained clause sets M =
{v'0 ‖�, v's(0) ‖�, v's(s(0)) ‖�, . . .} and N = {v's(x), x6'0 ‖�}. Then AM is
covering but AN is not, and either {v'0} or {v's(0)} may be chosen for αN .

In contrast to Chapter 4 (in particular Proposition 4.9), this calculus is also refuta-
tionally complete for constrained clauses with constraints that contain disequations:

103



5 A Superposition-Based Decision Procedure for Minimal Model Validity

Ordered Resolution:
α1 ‖Γ1 → ∆1, A1 α2 ‖Γ2, A2 → ∆2

(α1, α
6'
2 ‖Γ1,Γ2 → ∆1,∆2)σ1σ2

where

(i) σ1 = mgu(A1, A2) and σ2 = mgu(α'1 σ1, α
'
2 σ1),

(ii) no atom is selected in the first premise
and A1σ1σ2 strictly maximal in (Γ1 → ∆1, A1)σ1σ2, and

(iii) either A2 is selected in the second premise,
or no atom is selected and A2σ1σ2 is maximal in (Γ2, A2 → ∆2)σ1σ2.

Ordered Factoring:
α ‖Γ→ ∆, A,A′

(α ‖Γ→ ∆, A)σ

where

(i) σ = mgu(A,A′) and

(ii) no atom is selected in the premise and Aσ is maximal in (Γ→ ∆, A,A′)σ.

Figure 5.1: Rules of the Calculus ORFD

Proposition 5.4 (Σ-Completeness for Saturated Clause Sets)
Let N be set of constrained clauses over Σ such that N is saturated with respect to ORFD

and AN is not covering for Σ. Then IN |= N for any admissible choice of αN .

Proof. Let αN = v1't1, . . . , vn'tn and assume, contrary to the proposition, that IN 6|=
N . Then there are a constrained clause α ‖C ∈ N and a substitution σ : var(α ‖C) →
T (F) such that IN 6|= (α ‖C)σ. Because IN contains only predicative atoms, this implies
that σ(vi) = ti for all i, ασ is satisfiable, and IN 6|= Cσ. Let Cσ be minimal with these
properties.

I will refute this minimality. I proceed by a case analysis of the position of selected or
maximal literal occurrences in Cσ.

• Cσ does not contain any literal at all, i.e. C = �. Then the satisfiability of ασ
contradicts the choice of αN .

• C = Γ, A → ∆ and Aσ is selected or Aσ is maximal and no literal is selected in
Cσ. Since IN 6|= Cσ, it holds that Aσ ∈ IN . The literal A must be produced by a
ground instance (β ‖Λ→ Π, B)σ′ of a constrained clause in N in which no literal is
selected. Note that both ground constrained clauses (α ‖C)σ and (β ‖Λ→ Π, B)σ′

are not redundant with respect to N .

Because α'σ = β'σ′ = αNσ and because σ is a unifier of A and B, i.e. an instance

104



5.3 Clausal Representations of Disjunctions of Implicit Generalizations

of σ1 := mgu(A,B), there is an inference by ordered resolution as follows:

β ‖Λ→ Π, B α ‖Γ, A→ ∆

(α, β 6' ‖Λ,Γ→ Π,∆)σ1σ2

σ2 = mgu(β'σ1, α
'σ1)

The ground instance δ ‖D = (α, β 6' ‖Λ,Γ→ Π,∆)σ of the conclusion shows that
δ is satisfiable and IN 6|= D.

On the other hand, as the inference is redundant, so is the constrained clause δ ‖D,
i.e. D follows from ground instances δ ‖Ci of constrained clauses of N all of which
are smaller than (α ‖C)σ. Because of the minimality of Cσ, all Ci hold in IN . So
IN |= D, which contradicts IN 6|= D.

• C = Γ→ ∆, A and Aσ is strictly maximal in Cσ. This is not possible, since then
either Cσ or a smaller clause must have produced Aσ, and hence IN |= Cσ, which
contradicts the choice of Cσ.

• No literal in C = Γ→ ∆, A is selected and Aσ is maximal but not strictly maximal
in Cσ. Then ∆ = ∆′, A′ such that A′σ = Aσ. So there is an inference by ordered
factoring as follows:

α ‖Γ→ ∆′, A,A′

(α ‖Γ→ ∆′, A′)σ1
σ1 = mgu(s, s′)

As above, ασ is satisfiable and both IN |= (Γ→ ∆′, A′)σ and N 6|= (Γ→ ∆′, A′)σ
can be derived, which is a contradiction. ♦

As a reduct of SFD and SFD+, ORFD hence satisfies the following theorem:

Theorem 5.5 (Saturation)
If N0, N1, . . . is a fair ORFD derivation. The constrained clause set N∞ =

⋃
j

⋂
k≥j Nk is

saturated with respect to ORFD. Moreover, N0 has a Herbrand model over Σ if, and only
if, AN∗ is not covering.

Proof. This is a direct consequence of Theorem 4.16 and Proposition 5.4. ♦

5.3 Clausal Representations
of Disjunctions of Implicit Generalizations

5.3.1 Disjunctions of Implicit Generalizations

In Chapter 4 and the previous section, I showed how saturated sets of constrained
clauses can be regarded as (implicitly) representing certain Herbrand models. Other
representations of Herbrand interpretations include sets of non-ground atoms or the
more flexible so-called disjunctions of implicit generalizations of Lassez and Marriott
(1987). I will now show how both types of representation can be regarded as special
cases of the representation by saturated constrained clause sets.

105



5 A Superposition-Based Decision Procedure for Minimal Model Validity

Based on this view, I reprove that the equivalence of any given pair of representations
by disjunctions of implicit generalizations is decidable, and extend the known results on
the decidability of clause and formula entailment (cf. Fermüller and Pichler, 2007). To do
so, I translate a query I |= φ over a signature Σ, where I is represented by a disjunction
of implicit generalizations, into a constrained clause set that is Herbrand-unsatisfiable
over Σ if, and only if, I |= φ holds. The Herbrand-unsatisfiability can then be decided
using the calculus ORFD.

Definition 5.6 (Disjunctions of Implicit Generalizations)
An implicit generalization G over Σ is an expression of the form G = A/{A1, . . . , An},
where A,A1, . . . , An are predicative atoms over Σ. A finite set D of implicit generaliza-
tions over Σ is called a disjunction of implicit generalizations or DIG . A DIG D is an
atomic representation of a term model (ARM), if all implicit generalizations in D are of
the form A/{}.

The Herbrand interpretation I({A/{A1, . . . , An}}) represented by a DIG consisting
of a single implicit generalization A/{A1, . . . , An} is exactly the set of all atoms that
are instances of the atom A but not of any Ai. The interpretation I(D) represented
by a general DIG D = {G1, . . . , Gm} is the union I({G1}) ∪ . . . ∪ I({Gm}) of the
interpretations represented by the implicit generalizations in D.

Example 5.7
Let Σ = ({P}, {s, 0}), where 0 is a constant, s is a unary function symbol and P is a
binary predicate. Let D = {G1, G2} be a DIG over Σ, where the two implicit general-
izations in D are given by G1 = P (s(x), s(y))/{P (x, x)} and G2 = P (0, y)/{P (x, 0)}.
The interpretation represented by D is

I(D) =
{
P (t, t′)

∣∣ t, t′ ∈ T ({s, 0}) and t 6= t′ and t′ 6= 0
}
.

If an implicit generalization G = A/{A1, . . . , An} contains an atom Ai that cannot be
unified with A, then eliminating Ai from G does not change the Herbrand interpretation
represented by {G}. If Ai and A can be unified by a most general unifier σ, then replacing
Ai by Aiσ in G does not change the Herbrand interpretation represented by {G} either.

Without loss of generality, it may thus be assumed for each implicit generalization
G = A/{A1, . . . , An} that all atoms A1, . . . , An are instances of A.

Definition 5.8 (DIG over {P1, . . . , Pn})
If A is of the form A = P (~t), then G = A/{A1, . . . , An} is an implicit generalization
over P . If G1, . . . , Gn are implicit generalizations over P1, . . . , Pn, respectively, then
{G1, . . . , Gn} is a DIG over {P1, . . . , Pn}.

5.3.2 Clausal Representations

I will now translate each DIG D into a set of constrained clauses whose minimal model
is I(D). My first approach to this translation will result in a set N0(D) that has the
desired minimal model but may also have other Herbrand models. This means that in
general |=Ind and |=Σ do not agree for N0(D). Hence the calculus ORFD is not complete

106



5.3 Clausal Representations of Disjunctions of Implicit Generalizations

for I(D) based on N0(D) alone. In Section 5.3.3, I will use the predicate completion
procedure from Section 3.3 to enrich N0(D) by additional constrained clauses, such that
the resulting clause set N(D) has exactly one Herbrand model over the given signature.

Definition 5.9 (N0(D))
For each DIG D, define a constrained clause set N0(D) as follows: If D = {G1, . . . , Gn}
is a DIG over {P}, let Ṗ1, P̌1, . . . Ṗn, P̌n be fresh predicates.

For Gi = P (~si)/{P (~si1), . . . , P (~sin)}, the predicate Ṗi will be used to describe the
atom P (~si) and serve as an over-approximation of P , and P̌i will be used to describe the
atoms P (~sij). Define auxiliary clause sets

N0(Gi) = {→Ṗi(~si), →P̌i(~si1), . . . , →P̌i(~sin)}.

Then

N0(D) =
⋃

1≤i≤n
N0(Gi) ∪ {Ṗi(~x)→ P̌i(~x), P (~x)} .

If D = D1 ∪ . . .∪Dm such that each Di is a DIG over a single predicate and Di and Dj

are DIGs over different predicates whenever i 6= j, let

N0(D) = N0(D1) ∪ . . . ∪N0(Dm) .

Let fresh predicates be smaller with respect to ≺ than all predicates from the original
signature and let Ṗi ≺ P̌j for all fresh predicates Ṗi and P̌j .

Example 5.10
Consider the DIG D from Example 5.7. The sets N0(G1) and N0(G2) consist of the
following unconstrained clauses:

N0(G1) = {→ Ṗ1(s(x), s(y)), → P̌1(x, x)}
N0(G2) = {→ Ṗ2(0, y), → P̌2(x, 0)}

N0(D) additionally contains the unconstrained clauses

Ṗ1(x, y)→ P̌1(x, y), P (x, y) and

Ṗ2(x, y)→ P̌2(x, y), P (x, y) .

Note that each clause in N0(D) has a unique strictly maximal literal occurrence and
that this occurrence is in the succedent. Hence N0(D) is saturated with respect to ORFD

(with a selection function selecting no literals at all) and IN0(D) is a minimal Herbrand
model of N0(D) over the extended signature.

Proposition 5.11 (Equivalence of D and N0(D))
Let D be a DIG. Then I(D) = IN0(D).

107



5 A Superposition-Based Decision Procedure for Minimal Model Validity

Proof. Let D = {G1, . . . , Gm} and let P (~t) be a ground atom. Then I(D) |= P (~t) holds
if, and only if, there is an implicit generalization Gi such that I({Gi}) |= P (~t). For Gi =
P (~s)/{P (~s1), . . . , P (~sn)}, this is equivalent to P (~t) being an instance of P (~s) but not of
any P (~sj). This in turn is equivalent to N0({Gi}) |=Ind Ṗi(~t) and N0({Gi}) 6|=Ind P̌i(~t).
That this holds for some i is equivalent to N0(D) |=Ind P (~t). ♦

In general, the set N0(D) will have more than one Herbrand model over the given
extended signature:

Example 5.12
The set N0(D) from Example 5.10 has several Herbrand models over the signature
({P, Ṗ1, Ṗ2, P̌1, P̌2}, {s, 0}). One of them is I(D), another one is the interpretation in
which all of Ṗ1(t, t′), Ṗ2(t, t′), P̌1(t, t′), P̌2(t, t′), and P (t, t′) are valid for all ground terms
t, t′.

In the next section, I will remedy this ambiguity by completing the set N0(D).

5.3.3 Completed Clausal Representations

Using the predicate completion algorithm PDU from Section 3.3, it is possible to extend
the clause set N0(D) in order to exclude non-minimal models.

Definition 5.13 (N(D))
Let D be a DIG. If N ′0(D) is the completion of N0(D), as defined in Section 3.3, then
define the set N(D) as arising from N ′0(D) by moving all succedent equations into the
constraint:

N(D) =
{

(α 6' ‖Γ→ ∆) | Γ→ ∆, E ∈ N ′0(D),
∆ is predicative and E is equational,
α 6' = {t1 6't2 | t1't2 ∈ E}

}
The set N0(D) is obviously universally reductive:

Lemma 5.14 (Universal Reductiveness of N0(D))
Let D be a DIG. Then all clauses in N0(D) are universally reductive.

Proof. All clauses of N0(D) are either positive units or of the form

Ṗi(~x)→ P̌i(~x), P (~x) ,

where the literal P (~x) is strictly maximal and contains all variables of the clause. Both
types of clauses are universally reductive. ♦

Hence Theorem 3.38 states that minimal model validity of predicative queries for
N0(D) coincides with fixed domain validity for N(D):

108



5.3 Clausal Representations of Disjunctions of Implicit Generalizations

Lemma 5.15 (N0(D) and N(D))
Let D be a DIG over Σ = (P,F) and let P ′ be the set of fresh predicates in N0(D).
Then for every predicative formula φ over Σ′ = (P ∪P ′,F), it holds that N0(D) |=Ind φ
if, and only if, N(D) |=Σ φ if, and only if, the set N(D)∪{¬φ} is Herbrand-unsatisfiable
over Σ′.

Together with Proposition 5.11, this implies that validity in I(D) is equivalent to
validity in all Herbrand models of N(D):

Corollary 5.16 (Equivalence of D and N(D))
Let D be a DIG and let φ be a formula over Σ. Then I(D) |= φ if, and only if,
N(D) |=Σ φ.

Example 5.17
Consider the DIG D and the set N0(D) from Examples 5.7 and 5.10. To compute N(D),
inspect the sets of clauses defining the predicates Ṗ1, Ṗ2, P̌1, P̌2, and P :

NṖ1
= {→ Ṗ1(s(x), s(y))} NP̌1

= {→ P̌1(x, x)}

NṖ2
= {→ Ṗ2(0, y)} NP̌2

= {→ P̌2(x, 0)}

NP = {Ṗ1(x, y)→ P̌1(x, y), P (x, y) , Ṗ2(x, y)→ P̌2(x, y), P (x, y)} .

The negation of Ṗ1 in the minimal model of N0(D) is obviously defined by the equivalence
¬Ṗ1(x, y) ⇐⇒ ¬∃x′, y′.x's(x′) ∧ y's(y′). Disunification simplifies the right hand
side ¬∃x′, y′.x's(x′) ∧ y's(y′) of this equivalence to x'0 ∨ y'0. This results in the
unconstrained completion

N ′
Ṗ1

= {Ṗ1(0, y)→, Ṗ1(x, 0)→} .

Analogously, the negation of P̌1 in the minimal model of N0(D) is defined by the equiv-
alence ¬P̌1(x, y) ⇐⇒ x 6'y. The corresponding completion is not unconstrained:

N ′
P̌1

= {x6'y ‖ P̌1(x, y)→}

The completions of Ṗ2 and P̌2 are computed analogously as

N ′
Ṗ2

= {Ṗ2(s(x), y)→} and

N ′
P̌2

= {P̌2(x, s(y))→} .

For P , note that the clauses in NP could equivalently be written as

Ṗ1(x, y) ∧ ¬P̌1(x, y)→ P (x, y) and

Ṗ2(x, y) ∧ ¬P̌2(x, y)→ P (x, y) ,

and P (x, y) is maximal in both cases. Hence ¬P (x, y) ⇐⇒ (¬Ṗ1(x, y) ∨ P̌1(x, y)) ∧
(¬Ṗ2(x, y)∨ P̌2(x, y)). Rewriting the right hand side of this equivalence to its disjunctive

109



5 A Superposition-Based Decision Procedure for Minimal Model Validity

normal form

(P̌1(x, y) ∧ P̌2(x, y))

∨ (P̌1(x, y) ∧ ¬Ṗ2(x, y))

∨ (P̌2(x, y) ∧ ¬Ṗ1(x, y))

∨ (¬Ṗ1(x, y) ∧ ¬Ṗ2(x, y))

forms the basis to translate this definition into the following clause set:

N ′P = {P (x, y), P̌1(x, y), P̌2(x, y)→ ,

P (x, y), P̌1(x, y)→ Ṗ2(x, y) ,

P (x, y), P̌2(x, y)→ Ṗ1(x, y) ,

P (x, y)→ Ṗ1(x, y), Ṗ2(x, y)}

The set N(D) is then the union of the starting set N0(D) and all partial completions
N ′Q for Q ∈ {Ṗ1, Ṗ2, P̌1, P̌2, P}.

In this example, constraints consisting of disequations appear exactly in the completion
of NP̌1

= {→ P̌1(x, x)}, because the completion has to capture the fact that P1(x, y)
can only be false if x and y are different. In general, such constraints always arise from
clauses in which the maximal literal is non-linear, i.e. whenever a variable appears twice
in this literal. E.g. the completion of {→ Q(x, x, x)} adds the clauses x 6'y ‖Q(x, y, z)→,
x 6'z ‖Q(x, y, z)→, and y 6'z ‖Q(x, y, z)→. Such non-linearities are also the only reason
for the appearance of constraint disequations.

Because SFD and SFD+ are sound and refutationally complete for the semantics |=Σ,
the same of course also holds for their restriction ORFD in a purely predicative setting.
Hence Corollary 5.16 implies that the calculus ORFD can be used to reason about validity
in I(D). In the next section, I will explore when this approach results in a decision
procedure.

5.4 Decidability Results

Representing DIGs as sets of constrained clauses allows for the deduction of various
superposition-based decidability results. Because of the simple shape of the clauses inN0,
a lemma by Ganzinger and Stuber (1992) guarantees that the validity of ground queries in
DIG-represented interpretations is decidable (Corollary 5.19). More general queries can
be decided using ORFD: For interpretations represented by ARMs, the validity of formulas
of the form ∀~x.∃~y.φ and ∃~x.∀~y.φ with quantifier-free φ is decidable (Theorem 5.25).
For DIGs, the validity of several subclasses is decidable (Theorem 5.24). This extends
results by Fermüller and Pichler, who proved the validity of unconstrained clauses to be
decidable (Fermüller and Pichler, 2005, 2007).

110



5.4 Decidability Results

5.4.1 Decidability of Ground Queries

The question whether a ground query holds in I(D) is decidable even without comple-
tion, using an approach by Ganzinger and Stuber (1992). This approach relies only on
the saturation of N0(D) and its universal reductiveness (cf. Definition 2.22).

Lemma 5.18 (Ganzinger and Stuber, 1992, Lemma 4)
Let N be a saturated, finite and universally reductive set of clauses. Then it is decidable
whether a ground atom A is valid in IN .

Proof. If IN |= A, then there must be a ground instance (Γ → ∆, B)σ of a clause
Γ→ ∆, B ∈ N producing A. This is the case if, and only if,

(i) A = Bσ is an instance ofB (assuming without loss of generality thatBσ is maximal
in (Γ→ ∆, B)σ),

(ii) every atom of Γσ is true in IN , and

(iii) every atom of ∆σ is false in IN .

Because Γ → ∆, B is universally reductive and Bσ is ground, every atom of Γσ and
∆σ is ground. Moreover, every such atom is strictly smaller than A, so deciding their
validity is strictly simpler than deciding the validity of the original query A. ♦

Because N0(D) is indeed saturated and universally reductive (Lemma 5.14), it directly
follows that ground queries are decidable for DIGs.

Corollary 5.19 (Decidability of Ground Queries)
Let D be a DIG and let A be a ground atom. Then it is decidable whether I(D) |= A.

5.4.2 Decidability of DIG Equivalence

Let me investigate in more detail what the constrained clauses in the completion N(D)
of N0(D) look like.

Consider first a single implicit generalization G = P (~t)/{P (~s1), . . . , P (~sn)}. All con-
strained clauses in N0(G) are unconstrained units. The only clause in N0(G) defining Ṗ
is → Ṗ (~t), i.e. ~x'~t =⇒ Ṗ (~x) is valid in every model of N0(G). In the minimal model,
both implications ~x'~t =⇒ Ṗ (~x) and ~x'~t ⇐= Ṗ (~x) hold. So the complement of Ṗ in
the minimal model of N0(G) is defined by ¬Ṗ (~x) ⇐⇒ ¬(~x'~t), or (in addition to the
clause → Ṗ (~t)) by the constrained clauses

xi 6'ti ‖ Ṗ (~x)→ .

In the case of P̌ , there are several defining clauses, and the completion consists of the
constrained clauses of the form

xi1 6's1,i1 , . . . , xin 6'sn,in ‖ P̌ (~t)→ .

For a DIG D, N0(D) contains, in addition to the clauses presented above, only clauses
of the form Ṗi(~x) → P̌i(~x), P (~x), where P (~x) is the maximal literal occurrence. So P

111



5 A Superposition-Based Decision Procedure for Minimal Model Validity

is defined in the minimal model of N0(D) by P (~x) ⇐⇒
∨

1∈{1...n} Ṗi(~x) ∧ ¬P̌i(~x). Its

complement is hence defined by ¬P (~x) ⇐⇒
∧

1∈{1...n} ¬Ṗi(~x) ∨ P̌i(~x), or, bringing the
right hand side into disjunctive normal form, by

¬P (~x) ⇐⇒
∨

i1,...,in∈{1...n}

P̌j1(~x) ∧ . . . ∧ P̌jm(~x) ∧ Ṗjm+1(~x) ∧ . . . ∧ Ṗjn(~x) ,

where Ṗj1 , P̌j1 , . . . , Ṗjn , P̌jn are the fresh predicates introduced for P . The disjuncts
correspond to the unconstrained clauses

P (~x), P̌j1(~x), . . . , P̌jm(~x)→ Ṗjm+1(~x), . . . , Ṗjn(~x) .

Note that all constrained non-unit clauses contain a unique literal that is maximal for
all instances of the constrained clause, namely P (~x).

The calculus ORFD does not terminate on every input. If, however, the input is a set
N(D)∪N where N contains only constrained unit clauses, then only constrained clauses
belonging to a very restricted class can be derived:

Lemma 5.20
Let D be a DIG over Σ = (P,F) and let P ′ be the set of fresh predicates in N(D).
Then the set of predicative constrained clauses over (P ∪ P ′,F) of the following forms
is closed under the inference rules of ORFD:

(i) α ‖→ A or α ‖A→ or α ‖�

(ii) α ‖ Ṗi(~t)→ P̌i(~t)

(iii) α ‖ P̌i1(~t), . . . , P̌ik(~t), Ṗik+1
(~t), . . . , Ṗil(~t)→ Ṗil+1

(~t), . . . , Ṗim(~t)
where each part of the constrained clause may be empty and all predicates have
identical term arguments.

Moreover, the saturation of a finite set of such constrained clauses with ORFD and an
empty selection function terminates.

Proof. Ordered Factoring inferences can only take constrained clauses of type (iii) as
premise and obviously yield a constrained clause of type (iii) again. Because of the
fact that Ṗi ≺ P̌j for all Ṗi, P̌j ∈ P ′ and thus Ordered Resolution primarily works on
predicates P̌j , one easily checks closure under Ordered Resolution.

To show termination, extend the partial ordering ≺ to a complete ordering on the set
P ∪ P ′ of all predicates and write P ∪ P ′ = {Q1, . . . , Qn} such that Qi+1 ≺ Qi for all
1 ≤ i < n. Given a constrained clause α ‖C, let pi be the number of positive and qi
the number of negative occurrences of the predicate Qi in C. In each inference between
constrained clauses of the given form, the tuple (p1, q1, . . . , pn, qn) is lexicographically
strictly smaller for the conclusion than for each premise: This is obvious for factoring
inferences. An Ordered Resolution inference always has the form

α1 ‖Γ1 → ∆1, Qk(~t1) α2 ‖Γ2, Qk(~t2)→
(α1, α

6'
2 ‖Γ1,Γ2 → ∆1,∆2)σ1σ2 .

112



5.4 Decidability Results

Note that for constrained clauses of form (i)–(iii), all literals in the first (or second,
respectively) premise are of the form Qi(~t1) (or Qi(~t2)) with identical argument terms,
Qk(~t1)σ1σ2 is strictly maximal in the first premise and Qk(~t2)σ1σ2 is maximal in the
second premise with respect to ≺. Hence Qk is the maximal predicate appearing in both
premises and it occurs only once in the first premise and only negatively in the second
premise. So for the first premise, the first non-zero component of (p1, q1, . . . , pn, qn) is
pk = 1; for the second premise, it is qk. For the conclusion, the first possibly non-zero
component is qk, and this component is one smaller for the conclusion than for the second
premise.

So the conclusion of every inference is smaller (in a well-founded way) than all premises.
Hence only finitely many clauses (up to renaming of universal variables) can be derived
using ORFD from a finite set of such constrained clauses.

Note that, while redundancy is undecidable in general, the very restricted notion of
redundancy that suffices here, where an inference is redundant if its conclusion or a
variant thereof has already been derived, is obviously decidable. ♦

Lemma 5.21 (Decidability of Unit Queries)
Let D be a DIG over Σ = (P,F) and let P ′ be the set of fresh predicates in N(D). If
N is a set of predicative constrained clauses over Σ containing at most one literal each,
then it is decidable whether N(D) ∪N is Herbrand-satisfiable over Σ′ = (P ∪ P ′,F).

Proof. Let M∗ be a saturation of M = N(D) ∪N by the calculus ORFD with a selection
function that does not select any literals. By Theorem 5.5, Herbrand-unsatisfiability of
M over Σ′ is equivalent to the coverage of AM∗ , which by Theorem 4.6 is decidable if
M∗ is finite.

To prove that M∗ is finite, I show that any derivation starting from M is finite. I first
show that only finitely many constrained clauses containing predicates from P can be de-
rived. The only constrained clauses containing at least two literals and a predicate sym-
bol of P are of the form Ṗi(~x)→ P (~x), P̌i(~x) or of the form P (~x), P̌j1(~x), . . . , P̌jm(~x)→
Ṗjm+1(~x), . . . , Ṗjn(~x), where P ∈ P, and where Ṗj1 , . . . , Ṗjn , P̌j1 , . . . , P̌jn ∈ P ′ are the

fresh predicates introduced for P . Note that for each i, either Ṗji(~x) or P̌ji(~x) occurs in
each constrained clause of the latter type, and P (~x) is the maximal literal occurrence
in both types of constrained clauses (cf. the initial remarks in this Section). Since each
inference between constrained clauses containing a predicate symbol of P eliminates this
predicate, there are only finitely many such inferences.

The conclusion of an inference

‖ Ṗi(~x)→ P (~x), P̌i(~x) ‖P (~x), P̌j1(~x), . . . , P̌jm(~x)→ Ṗjm+1(~x), . . . , Ṗjn(~x)

‖Γ→ ∆

between two constrained clauses in N(D) using P ∈ P is a tautology (and thus redun-
dant), because either Ṗi(~x) or P̌i(~x) appears in both Γ and ∆. The remaining derivable
constrained clauses over (P ′,Σ) obey the restrictions of Lemma 5.20, hence the satura-
tion terminates. ♦

113



5 A Superposition-Based Decision Procedure for Minimal Model Validity

With this preliminary work done, it can be decided whether two DIGs represent the
same model:

Theorem 5.22 (DIG Equivalence)
Equivalence of DIGs is decidable by ORFD.

Proof. Let D,D′ be two DIGs. Because I(D) =
⋃
G∈D I({G}), and because I(D) =

I(D′) if, and only if, I(D) ⊆ I(D′) and I(D′) ⊆ I(D), it suffices to show the decidability
of I(D) ⊆ I(D′) in the case where D = {G} consists of a single implicit generalization
G = P (~s)/{P (~sσ1), . . . , P (~sσn)}.

Without loss of generality, assume that P (~s) and P (~sσ1), . . . , P (~sσn) do not share any
variables. Let ~x be the variables in P (~s) and let ~y be the variables in P (~sσ1), . . . , P (~sσn).
The implicit generalization G states that the formula ∀~x.(∀~y.~x 6'~xσ1 ∧ . . .∧~x 6'~xσn) =⇒
P (~s) holds in I(D).

By Proposition 5.16, I(D) ⊆ I(D′) holds if, and only if, N(D′) |=Σ P (~t) for every
atom P (~t) ∈ I(D). Equivalently, the set N(D′)∪{∃~x.∀~y.~x 6'~xσ1 ∧ . . .∧ ~x 6'~xσn ∧¬P (~s)}
does not have a Herbrand model over Σ. The latter formula corresponds to the set
{~v'~xσ1 ‖�, . . . , ~v'~xσn ‖�, ~v'~x ‖P (s)→} of constrained clauses, and so N(D′) ∪
{~v'~xσ1 ‖�, . . . , ~v'~xσn ‖�, ~v'~x ‖P (s)→} also does not have a Herbrand model over
Σ. By Lemma 5.21, whether this constrained clause set has a Herbrand model over Σ is
decidable by means of the calculus ORFD. ♦

Example 5.23
The DIG D′ = {P (x, s(y))/{P (s(x′), s(x′))}} and the DIG D from Examples 5.7, 5.10
and 5.17 describe the same model. I only show that I(D) ⊇ I(D′).

Expressing this as a satisfiability problem of constrained clauses, amounts to check-
ing whether N(D)∪{v1'x, v2'y ‖P (x, s(y))→, v1's(x′), v2'x′ ‖�} is Herbrand-satis-
fiable over Σ. To do so, I saturate this set with respect to ORFD.

Since N(D) ∪ {v1's(x′), v2'x′ ‖�} is saturated, all non-redundant inferences use at
least one descendant of v1'x, v2'y ‖P (x, s(y))→. The following constrained clauses
can be derived. The new constrained clauses are indexed by (0). . . (9). Each of these
constrained clauses is derived from one clause in N(D) (which is not repeated here) and
another clause that is indicated by its index:

index constrained clause derived from

(0) v1's(x′), v2'x′ ‖ �
(1) v1'x, v2'y ‖ P (x, s(y))→
(2) v1'x, v2'y ‖ Ṗ1(x, s(y))→ P̌1(x, s(y)) (1)

(3) v1'x, v2'y ‖ Ṗ2(x, s(y))→ P̌2(x, s(y)) (1)

(4) v1's(x), v2'y ‖ → P̌1(s(x), s(y)) (2)

(5) v1's(x), v2'y, x6's(y) ‖ Ṗ1(x, s(y))→ (2)
(6) v1's(x), v2'y, s(x)6's(y) ‖ � (4) or (5)

(7) v1'0, v2'y ‖ → P̌2(0, s(y)) (3)

(8) v1'x, v2'y ‖ Ṗ2(x, s(y))→ (3)
(9) v1'0, v2'y ‖ � (7) or (8)

114



5.4 Decidability Results

No further non-redundant constrained clauses can be derived. The constraint set

{(v1's(x′), v2'x′), (v1's(x), v2'y, s(x) 6's(y)), (v1'0, v2'y)}

consisting of the constraints of the constrained clauses (0), (6), and (9) is covering, which
means that the whole constrained clause set is Herbrand-unsatisfiable over the extended
signature Σ′, i.e. that I(D) ⊇ I(D′).

5.4.3 Decidability of Formula Entailment

Going beyond deciding equivalence of DIG representations, it can be decided for formulas
from a number of classes whether they are true in interpretations represented by DIGs.

Theorem 5.24 (Decidability of DIG Formula Entailment)
Let D be a DIG and let φ be a quantifier-free predicative formula over Σ with variables
~x, ~y. The following problems are decidable:

(i) I(D) |= ∀~x.∃~y.φ is decidable if one of the following holds:

a) φ is a clause

b) φ is a conjunction of clauses of the form → ∆

c) φ is a conjunction of clauses of the form Γ→
d) φ is a conjunction of unit clauses where no predicate appears in both a positive

and a negative literal

(ii) I(D) |= ∃~x.∀~y.φ is decidable if one of the following holds:

a) φ is a conjunction of literals

b) φ is a conjunction of clauses of the form Γ→
c) φ is a conjunction of clauses of the form → ∆

d) φ is a clause where no predicate appears in both a positive and a negative
literal

Proof. First consider the case (i,a). Let Σ = (P,F) and let P ′ be the set of fresh
predicates in N(D). Let φ = C = A1, . . . , An → B1, . . . , Bm and let

N = {~v'~x ‖→ A1, . . . , ~v'~x ‖→ An, ~v'~x ‖B1 →, . . . , ~v'~x ‖Bn →} .

By Proposition 5.16, I(D) |= ∀~x.∃~y.φ is equivalent to N(D) |=Σ ∀~x.∃~y.φ. This in turn
is equivalent to the Herbrand-unsatisfiability of N(D) ∪ {∃~x.∀~y.¬φ}, or equivalently
of N(D) ∪ N , over the signature Σ′ = (P ∪ P ′,F). By Lemma 5.21, the Herbrand-
unsatisfiability of N(D) ∪N over Σ′ is decidable.

The proofs for (i,b)–(i,d) are exactly analogous, using slight variations of Lemma 5.21.
The decidability of the problems (ii,a)–(ii,d) reduces to (i,a)–(i,d), respectively, because
I(D) |= ∃~x.∀~y.φ if, and only if, I(D) 6|= ∀~x.∃~y.¬φ. ♦

The simple nature of atomic representations makes it possible to go one step further:

115



5 A Superposition-Based Decision Procedure for Minimal Model Validity

Theorem 5.25 (Decidability of ARM Formula Entailment)
Let D be an ARM over Σ and let φ be a quantifier-free predicative formula over Σ with
variables ~x, ~y. It is decidable whether I(D) |= ∀~x.∃~y.φ and whether I(D) |= ∃~x.∀~y.φ.

Proof. I first show the decidability of I(D) |= ∀~x.∃~y.φ. Let Σ = (P,F) and let P ′ be
the set of fresh predicates in N(D). Write the formula ¬φ as an equivalent finite set
N¬φ of unconstrained clauses and set N = {(~v'~x ‖C) |C ∈ N¬φ}.

Consider first some unconstrained clause C = A1, . . . , Am → B1, . . . , Bn and assume
that constrained clauses in N(D) and C do not share any universal variables. Because
all elements of N(D) are constrained unit clauses, it holds that I(D) 6|= C if, and only
if, there are constrained clauses αi ‖→ A′i and βj ‖B′j → in N(D) and a substitution
τ : X → T (Σ) such that

(i) Aiτ = A′iτ ,

(ii) Bjτ = B′jτ ,

(iii) and αiτ and βjτ are satisfiable for all i, j (note that all βj are purely negative and
so none of them contains any existential variables).

By definition of N(D), all positive clauses in N(D) are unconstrained, so this is equiv-
alent to the formula

∨
βτ being satisfiable, where the disjunction ranges over all β =

β1, . . . , βk and τ such that there are constrained clauses ‖→ A′i and βj ‖B′j → in N(D)
and τ is a most general simultaneous unifier of all (Ai, A

′
i) and (Bj , B

′
j).

Coming back to the validity of N , it holds that I(D) 6|= N if, and only if, for every
substitution σ : V → T (Σ) there is a substitution τ : var(α ‖C) \ V → T (Σ) and
a constrained clause α ‖C ∈ N , such that αστ is satisfiable and I 6|= Cτ . By the
considerations above, this is equivalent to the satisfiability of the formula

∧
α ‖C∈N

∨
ατ∧

βτ , which can be decided by disunification, e.g. with the algorithm PDU.
I(D) |= ∃~x.∀~y.φ is decided analogously, without negating φ. ♦

5.5 Implementation

I have implemented a the algorithm ORFD on top of the automated theorem prover
Spass (Weidenbach et al., 2009), using the implementation of PDU and PC presented in
Section 3.5. Spass is superposition-based and provides a powerful saturation machinery,
which makes this prover well-suited as a basis for the calculus.

Because the current version of Spass does not support constraints, a constrained
clause ~v'~t, s1 6's′1, . . . , sn 6's′n ‖Γ→ ∆ is modeled internally by a regular clause of the
form Ex(~t),CDis(s1, s

′
1), . . . ,CDis(sn, s

′
n),Γ→ ∆, where Ex and CDis are new predicates

that remember the current instantiation of the existential variables and the constraint
disequations, respectively. An unconstrained clause ‖Γ→ ∆ is not equipped with a Ex
literal, i.e. the abbreviation used in this chapter carries over to the code.

The inference rules in ORFD (Figure 5.1) are defined in such a way that only the clausal
part is considered for all maximality conditions, but due to the modeling of constraints as
part of the antecedent, Spass will also consider the constraint literals. To deter literals
with the predicates Ex and CDis from interfering with the saturation process, they are

116



5.5 Implementation

artificially kept minimal in the superposition ordering. To avoid the accumulation of
multiple Ex literals, the code of Resolution inferences in Spass has been changed such
that Ex literals are additionally unified during each inference step. This is the only
change to the actual saturation machinery of Spass: The whole saturation process for
ORFD can then be performed with the built-in mechanisms.

To use ORFD as a decision procedure for DIGs, the implementations of the single
algorithms are combined as follows: First the input, which consists of the clauses in
N0(D), is completed using the implementation of PC and equations in the completion
are transferred into the constraint as in Definition 5.13. The query formula of the form
∃~x.∀~y.φ is changed to ∀~x, ~y.Ex(~x) → φ to eliminate the existential variables and then
transformed into a set of clauses using Flotter, the clause normal form generator
of Spass. The resulting clauses are automatically guarded by the antecedent atom
Ex(~x). The input clauses, their completion and the transformed query are then saturated
together. Finally, coverage of the constrained empty clauses is checked by means of the
implementation of PDU. This implementation constitutes a decision procedure for all
decidability problems presented in Theorem 5.24.

So far, only simple optimizations have been implemented, like the addition of a clause
CDis(x, x)→ that directly makes all clauses with unsatisfiable constraints redundant and
hence, for example, excludes inferences between clauses in N(D). On the other hand, two
strong optimizations in Spass must be deactivated for the work with constrained clauses:
Splitting changes the minimal model and is hence unsound and the especially efficient
algorithms for reasoning about sort theories interferes with the semantics of constrained
clauses because they select Ex and CDis literals. While splitting is inherently unsuited
for minimal model reasoning, the latter could be remedied by an explicit integration of
constraints into the clause language of Spass.

Because there are no libraries of theorem proving problems for DIGs, the implementa-
tion has been tested on hand-crafted problems. It is available from the Spass homepage
(www.spass-prover.org/prototypes/).

Example 5.26
To show that the formula ∃x.P (s(x), x) holds in the model of the DIG D′ from Exam-
ple 5.23, the following input is given to Spass:

begin_problem(X).

list_of_descriptions.

name({*DIG Example*}).

author({*Matthias Horbach*}).

status(satisfiable).

description({*Proves a DIG Property*}).

end_of_list.

list_of_symbols.

functions[(s,1),(0,0)].

predicates[(P,2), (Pp,2), (Pn,2)].

end_of_list.

list_of_formulae(axioms).

117

www.spass-prover.org/prototypes/


5 A Superposition-Based Decision Procedure for Minimal Model Validity

formula(forall([x,y],Pp(x,s(y)))).

formula(forall([x],Pn(s(x),s(x)))).

formula(forall([x,y],implies(Pp(x,y),or(Pn(x,y),P(x,y))))).

end_of_list.

list_of_formulae(conjectures).

formula(exists([x],P(s(x),x))).

end_of_list.

list_of_settings(SPASS).

{*

set_flag(PComp,1).

set_flag(Select,0).

set_flag(Sorts,0).

set_precedence(P,Pp,Pn).

set_DomPred(P,Pn,Pp).

*}

end_of_list.

end_problem.

The list_of_descriptions contains some information on the problem. In the fol-
lowing list_of_symbols, the signature is fixed (Pp denotes Ṗ and Pn denotes P̌ ), and
the clauses of N0(D′) are given in the list_of_formulae. Finally, Spass is told in the
list_of_settings to apply the predicate completion algorithm to the input, disable
selection and the special handling of sorts and choose the precedence P � Pn � Pp. The
last setting causes constraint literals to be minimal. The output of Spass when run on
this input begins with the following lines:

Perfect SPASS: Conjecture prepared.

Perfect SPASS: Input completed.

--------------------------SPASS-START-----------------------------

This signals that the conjecture has been transformed into a constrained clause and
the input has been completed. Then the completion is output:

Input Problem:

1[0:Inp] || -> Pp(U,s(V))*.

2[0:Inp] || -> Pn(s(U),s(U))*.

3[0:Inp] || ExVars(U) -> P(s(U),U)*.

4[0:Inp] || Pp(U,V) -> P(U,V)* Pn(U,V).

5[0:Inp] || P(U,V)* -> Pp(U,V).

6[0:Inp] || P(U,V)* Pn(U,V) -> .

7[0:Inp] || Pn(s(U),V)* CDis(V,s(U)) -> .

8[0:Inp] || Pn(0,U)* -> .

9[0:Inp] || Pp(U,0)* -> .

10[0:Inp] || CDis(U,U)* -> .

Clause 3 is the conjecture, the clauses 1,2 and 4–9 form the completed set N(D′) and
clause 10 is the additional clause x 6'x ‖�. Spass then analyses and saturates the input
using the adapted inference rules:

118



5.5 Implementation

This is a first-order Non-Horn problem without equality.

Axiom clauses: 9 Conjecture clauses: 1

Inferences: IORe=1 IOFc=1

Reductions: RFMRR=1 RBMRR=1 RObv=1 RUnC=1 RTaut=1 RFSub=1

RBSub=1 RCon=1

Extras : Input Saturation, No Selection, Full Splitting,

Full Reduction, Ratio: 5, FuncWeight: 1, VarWeight: 1

Precedence: s > nequal > div > id > CDis > P > Pp > Pn > ExVars > 0

Ordering : KBO

Processed Problem:

Worked Off Clauses:

Usable Clauses:

8[0:Inp] || Pn(0,U)* -> .

9[0:Inp] || Pp(U,0)* -> .

10[0:Inp] || CDis(U,U)* -> .

1[0:Inp] || -> Pp(U,s(V))*.

2[0:Inp] || -> Pn(s(U),s(U))*.

3[0:Inp] || ExVars(U) -> P(s(U),U)*.

5[0:Inp] || P(U,V)* -> Pp(U,V).

6[0:Inp] || Pn(U,V) P(U,V)* -> .

4[0:Inp] || Pp(U,V) -> Pn(U,V) P(U,V)*.

7[0:Inp] || CDis(U,s(V)) Pn(s(V),U)* -> .

Given clause: 8[0:Inp] || Pn(0,U)* -> .

Given clause: 9[0:Inp] || Pp(U,0)* -> .

Given clause: 10[0:Inp] || CDis(U,U)* -> .

Given clause: 1[0:Inp] || -> Pp(U,s(V))*.

Given clause: 2[0:Inp] || -> Pn(s(U),s(U))*.

Given clause: 3[0:Inp] || ExVars(U) -> P(s(U),U)*.

Given clause: 5[0:Inp] || P(U,V)* -> Pp(U,V).

Given clause: 11[0:Res:3.1,5.0] || ExVars(U) -> Pp(s(U),U)*.

Given clause: 12[0:Res:11.1,9.0] || ExVars(0)* -> .

Given clause: 6[0:Inp] || Pn(U,V) P(U,V)* -> .

Given clause: 13[0:Res:3.1,6.1] || ExVars(U) Pn(s(U),U)* -> .

Given clause: 7[0:Inp] || CDis(U,s(V)) Pn(s(V),U)* -> .

Given clause: 4[0:Inp] || Pp(U,V) -> Pn(U,V) P(U,V)*.

SPASS V 3.5c

SPASS beiseite: Completion found.

The only derived constrained empty clause is clause 12: u'0 ‖�. Consequently, the
final coverage check yields that the conjecture holds for all other instantiations of the
existential variable:

Conjecture holds in the minimal model of the axioms

for the following instances: (not (equal U (0)))

Problem: dig.dfg

SPASS derived 6 clauses, backtracked 0 clauses, performed 0 splits

and kept 13 clauses.

SPASS allocated 25242 KBytes.

119



5 A Superposition-Based Decision Procedure for Minimal Model Validity

SPASS spent 0:00:00.16 on the problem.

0:00:00.02 for the input.

0:00:00.02 for the FLOTTER CNF translation.

0:00:00.00 for the input completion.

0:00:00.00 for inferences.

0:00:00.00 for the backtracking.

0:00:00.00 for the reduction.

0:00:00.00 for the coverage check.

--------------------------SPASS-STOP------------------------------

5.6 Conclusion

I have extended the decidability results of Fermüller and Pichler (2005, 2007) for ARMs
to arbitrary formulas with one quantifier alternation and for DIGs to several more re-
strictive formula structures with one quantifier alternation. This provides a first concrete
application where the calculi SFD/SFD+ result in decision procedures.

The approach has potential for further research. I restricted my attention to a non-
equational setting, whereas the initial fixed domain calculus considers equations as well.
It is an open problem to what extend the presented results also hold in an equational
setting. In Fermüller and Pichler (2005, 2007), the finite and infinite signature semantics
for DIGs were considered. My results refer to the finite signature semantics where
actually only the signature symbols of a finite saturated set are considered in the minimal
model. It is not known what an infinite signature semantics means to this approach, or
if the employed predicate completion procedure can be extended to infinite signatures.
Finally, in Fermüller and Pichler (2007) the question was raised what happens if one
considers more restrictive, e.g. linear, DIGs. Linear DIGs require less effort in predicate
completion than general DIGs but it is an open question whether this has further effects
on decidability or complexity results.

120



6 Generic Superposition-based Decidability
of Minimal Model Validity

6.1 Introduction

As I have shown in the previous chapter, the special shape of the interpretation-descri-
bing clauses in the case of disjunctions of implicit generalizations makes the validity of
a variety of queries decidable. The main reason for this is that the description does not
exhibit a recursive behaviour. For minimal models of more general clauses, decidability
quickly fails. The following example shows that even if all signature symbols are at most
unary and all positive literals in N are linear, unsatisfiability in the minimal model is
already undecidable:

Example 6.1 (Post Correspondence Problem)
Consider a Post correspondence problem over the alphabet {a, b} with given word pairs
(ui, vi). Words are modeled by monadic terms over the unary function symbols a and b
with empty word 0. Then the Post correspondence problem has a solution if, and only
if, the following Horn clause set is unsatisfiable:

→ PCP(0, 0)
PCP(x, y)→ PCP(ui(x), vi(y))

PCP(a(x), a(x))→
PCP(b(x), b(x))→

Equivalently, it has a solution if, and only if,

{→ PCP(0, 0), PCP(x, y)→ PCP(ui(x), vi(y))}
|=Ind ∃x.PCP(a(x), a(x)) ∨ PCP(b(x), b(x)) .

Note that describing the goal by PCP(x, x) is too simplistic, because it would yield a
contradiction by resolution with the first clause.

In this chapter, I identify a range of classes of clause sets and of query formulas for
which validity in the minimal model is decidable. The main result is as follows:

Let N be a satisfiable set of predicative Horn clauses over a signature Σ and let Aij
be predicative atoms over Σ with empty succedent, where

(1) all function symbols in Σ are at most unary,

(2) all positive literals in N are linear, i.e. every variable occurs at most once, and

121



6 Generic Superposition-based Decidability of Minimal Model Validity

(3) N ∪ {A11, . . . , A1m1 →, . . . , An1, . . . , Anmn →} can be finitely saturated by Or-
dered Resolution, where deletion steps are restricted to the deletion of variants
and tautologies.

Then the problem

N |=Ind ∀x.∃y1, . . . , ym.φ

is decidable, where φ =
∨
i

∧
j Aij and x, y1, . . . , ym are the variables in φ. There are no

restrictions on purely negative clauses as well as no restrictions on the structure of the
terms appearing in negative literals.

The unsatisfiability problem for Horn classes satisfying conditions (1)–(2) is still un-
decidable, as the above encoding of the Post correspondence problem shows. Therefore,
the basis of the presented decidability result is finite first-order saturation (3). The
side conditions (1)–(2) as well as the restriction to variant subsumption and tautology
deletion for the saturation process are needed for the current proof. The latter is not an
essential restriction, since most decidability results based on saturation show termina-
tion by restricting the depth of the occurring terms and the number of variables in each
clause, which corresponds exactly to a saturation modulo variants and tautologies (cf.
e.g. Ganzinger and Nivelle, 1999).

The proof of this result is constructive. I will demonstrate it on the example clause
set

NGT = { → GT(s(s(0)), s(0)) ,
GT(x, y)→ GT(s(x), s(y)) ,

GT(s(x), s(y))→ GT(x, y) }

with query ∀x.∃y.GT(y, x). In the minimal model of NGT, the relation GT is again the
“one greater than” relation on the naturals. The clause set N satisfies conditions (1)–(2)
and can be finitely saturated by Ordered Resolution, generating one additional clause
→ GT(s(0), 0). It can also be finitely saturated after adding GT(y, x)→.

To use the calculus SFD of Chapter 4 for the current example, the query is negated and
transformed into the constrained clause v'x ‖G(y, x)→. In general, the application of
SFD does not terminate, i.e. it does not decide (and not even semi-decide) whether a given
query holds in a minimal model. This even holds on a set N and a constrained query
clause that satisfy conditions (1)–(3). In the example, infinitely many non-redundant
constrained clauses

v'x ‖G(y, x)→, v's(x) ‖G(y, x)→, v's(s(x)) ‖G(y, x)→, . . . and
v'0 ‖�, v's(0) ‖�, v's(s(0)) ‖�, . . .

are generated.

The contribution of this chapter is to generalize the previously developed constraint
language to “regular” substitution expressions for the existentially quantified variables
(Section 6.2). For example a constraint v'xσ∗ represents all possible constraints of
the form v'xσn. Together with conditions (1)–(3), this enables the termination of the
saturation process (Proposition 6.32). For the above example, the derived constrained

122



6.1 Introduction

clauses can be represented as

v'x ‖G(y, x)→, v'xσ ‖G(y, x)→, v'xσ2 ‖G(y, x)→, . . . and
v'xτ ‖�, v'xστ ‖�, v'xσ2τ ‖�, . . .

for σ = {x 7→ s(x)}, τ = {x 7→ 0}. When these constrained clauses are melted, the two
additional constrained clauses

v'xσ∗ ‖G(y, x)→ and
v'xσ∗τ ‖�

are obtained.
What remains to be shown is that the substitutions in the constraints of all derived

constrained empty clauses are covering, i.e. represent all possible instantiations for the
variables ~x: If this is the case, then the clause set does not have a Herbrand model
over the given signature. The conjunction of all regular substitution expressions for the
constrained empty clauses can be transformed into a monadic Horn clause set containing
only linear clauses whose head literal contains all variables of the clause (Section 6.4.1).
The initial substitution expressions are covering if, and only if, a certain predicate P
introduced in the translation is interpreted as the total relation in the minimal model
of the generated Horn clause set. For the example above, this translation results in the
following Horn clauses:

→ P1(0)
P (x)→ P2(s(x))
P1(x)→ P (x)
P2(x)→ P (x)

Deciding totality for such clause sets is usually difficult. However, several results are
known about the decidability of emptiness. Applying a variant of the predicate comple-
tion algorithm PC from Chapter 3, I will generate a Horn clause set for the complement
of P , named P̌ , for any Horn clause set generated from a substitution expression, such
that P is total if, and only if, P̌ is empty in the minimal models of the respective Horn
clause sets (Section 6.4.2). The clause set for P̌ is simpler than the one for P : It does
not contain function symbols in negative literals anymore. Moreover, because of the
restriction of the signature to unary function symbols, the translation causes the clause
set to contain monadic predicates only. These properties enable the final decidability of
the emptiness of P̌ by ordered resolution (Theorem 6.49). The complement P̌ of P for
the example is defined by the clauses

→ P̌1(s(x))

→ P̌2(0)

P̌ (x)→ P̌2(s(x))

P̌1(x), P̌2(x)→ P̌ (x)

that belong to a class where emptiness is decidable by ordered resolution (Weidenbach,
1999; Seidl and Verma, 2004). For the above clause set, the theory of the relation P̌ is
empty in the minimal model, hence N |=Ind ∀x.∃y.G(y, x) holds.

The presented results have been published as (Horbach and Weidenbach, 2009b,c).

123



6 Generic Superposition-based Decidability of Minimal Model Validity

6.2 Preliminaries

In this section, I will formally introduce the extended notion of regular constraint clauses
mentioned in the introduction and define the semantics of these clauses. The basis of
the extensions are substitution expressions, regular expressions built over substitutions
by serial and parallel composition and iteration.

6.2.1 Substitution Expressions and Regular Constraint Clauses

Definition 6.2 (Substitution Expressions)
Let Σ = (S,F ,X , τS) be a signature. The set of Σ-substitution expressions (or simply
substitution expressions) is the smallest set such that

(i) every Σ-substitution σ is a substitution expression,

(ii) if σ̄1, σ̄2 are substitution expressions, then so are σ̄1 ◦ σ̄2, σ̄1|σ̄2, and σ̄∗1.

A substitution expression σ̄1 ◦ σ̄2 is called a composition, σ̄1|σ̄2 a disjunction, and σ̄∗1 a
loop. A composition σ̄1 ◦ σ̄2 is often written more compactly as σ̄1σ̄2

Definition 6.3 (Domain and Variable Range)
The domain dom(σ̄) and the variable range VRan(σ̄) of a substitution expression are
defined inductively as follows:

dom(σ) = {x1, . . . , xn}
where σ : {x1, . . . , xn} → T (Σ,X )

dom(σ̄ ◦ τ̄) = dom(σ̄)
dom(σ̄1|σ̄2) = dom(σ̄1) ∪ dom(σ̄2)

dom(σ̄∗) = dom(σ̄)

VRan(σ) = var(x1σ, . . . , xnσ)
where σ : {x1, . . . , xn} → T (Σ,X )

VRan(σ̄ ◦ τ̄) = VRan(τ̄)
VRan(σ̄1|σ̄2) = VRan(σ̄1) ∩VRan(σ̄2)

VRan(σ̄∗) = dom(σ̄)

The definition of the variable range for a loop is admittedly dubious at this point. The
idea behind the function VRan is that it maps a substitution expression σ̄ to the set of
variables that are introduced by every substitution represented by σ̄, provided that σ̄ is
in some sense well-behaved (cf. Section 6.4.1).

A term t can be regarded as the image xσ of a variable x under a substitution σ
mapping x to t, which makes expressions of the form xσ̄ a generalization of terms.
Constraints and clauses are now extended in this spirit:

Definition 6.4 (Regular Constraints)
Let Σ = (S,F ,X , τS) be a signature and V = {v1, . . . , vn} ⊆ X be finite, where the vi are
pairwise distinct. A regular equation over Σ and V is a pair (v, xσ̄) where v ∈ V, x ∈ X
and σ̄ is a substitution expression over Σ such that x ∈ dom(σ̄). A regular constraint α
over Σ and V is a multiset of regular equations such that

124



6.2 Preliminaries

(i) every existential variable occurs exactly once in α and

(ii) all regular equations in α feature a common substitution expression σ̄

(iii) existential variables do not occur in the image of any subexpression of σ̄.

A regular constraint v1'x1σ̄, . . . , vn'xnσ̄ is also written as ~v'~xσ̄.

Definition 6.5 (Regular Constraint Clauses)
A regular constraint clause α ‖C over Σ and V consists of a regular constraint α over
Σ and V and a clause C over Σ such that C does not contain any existential variables,
i.e. var(C) ∩ V = ∅.

To keep the presentation more concise, a regular constraint that is part of a regular
constraint clause is often just called a constraint.

A regular constraint clause ~v'~xσ ‖C where σ maps xi to ti is written more compactly
as ~v'~t ‖C. In particular, it is written as ~v'~x ‖C if σ is the identity substitution on ~x.

If σ̄ is a variable renaming and C does not contain any variables of ~v'~xσ̄, then
~v'~xσ ‖C is abbreviated as ‖C. A regular constraint clause ‖C is called unconstrained
and identified with its clausal part C.

Now I will formalize which substitutions are represented by a given substitution ex-
pression.

6.2.2 Semantics of Regular Constraint Clauses

Definition 6.6 (Denotations)
Let Σ be a signature. The denotation [[.]] of a substitution expression is defined induc-
tively as a set of substitutions as follows:

[[σ]] = {σ}
[[σ̄1 ◦ σ̄2]] = {σ1πσ2 | σ1 ∈ [[σ̄1]], σ2 ∈ [[σ̄2]] and π is a variable renaming

π : var(im(σ1)) \ dom(σ2)→ X \ var(im(σ2))}
[[σ̄1|σ̄2]] = [[σ̄1]] ∪ [[σ̄2]]

[[σ̄0]] = {{x 7→ x |x ∈ dom σ̄}}
[[σ̄n+1]] = [[σ̄n ◦ σ̄]]

[[σ̄∗]] =
⋃
n≥0[[σ̄n]]

The expressions σ̄n are only auxiliary constructs used in this definition, not full-fledged
substitution expressions.

If ~t is a tuple of terms in T (Σ,X ), define ~t[[σ̄]] =
{
~tσ |σ ∈ [[σ̄]]

}
.

For a regular constraint clause ~v'~xσ̄ ‖C, let [[~v'~xσ̄ ‖C]] be the (potentially infi-
nite) formula set [[~v'~xσ̄ ‖C]] = {∀~y.~v'~xσ → C |σ ∈ [[σ̄]]}, where the universal quantifier
ranges over the variables of the term list ~xσ and of C.

For a set N of constrained clauses, let [[N ]] =
⋃

(~v'~xσ̄ ‖C)∈N [[~v'~xσ̄ ‖C]].

The notion of VRan might now become clearer. For the above-mentioned well-behaved
substitution expressions, VRan(σ̄) is the set of all variables that appear in the image

125



6 Generic Superposition-based Decidability of Minimal Model Validity

of each element of [[σ̄]]. For the substitution σ = {x 7→ f(x, y)}, for example, only x is
contained in all terms xσn (because x[[σ0]] = {x}), hence VRan(σ∗) = {x}.

The rationale behind the variable renaming introduced in the denotation of compo-
sitions is that compositions are supposed to accumulate the unifiers used in a series of
inferences. Consider for example the inferences

v'x ‖P (x)→ P (x′)→ P (f(x′, y′))

v'f(x, y) ‖P (x)→

and
v'f(x, y) ‖P (x)→ P (x′)→ P (f(x′, y′))

v'f(f(x, y), y′) ‖P (x)→ ,

where the conclusion of the first inference is used as a premise in the second inference.
Although in both inferences P (x) and P (f(x′, y′)) are unified using the same unifier
σ = {x 7→ f(x, y), x′ 7→ x, y′ 7→ y}, variables that do not occur in the unified atoms must
be renamed in the second inference. So the constraint of the last clause is not v'xσσ,
which would translate to v'f(f(x, y), y), but v'xσπσ, where π maps the variable y to
a fresh variable.

Because of the associativity of set union, [[(σ̄1|σ̄2)|σ̄3]] = [[σ̄1|(σ̄2|σ̄3)]], i.e. | is associa-
tive. It is also easy to check that [[(σ̄1 ◦ σ̄2) ◦ σ̄3]] = [[σ̄1 ◦ (σ̄2 ◦ σ̄3)]] holds. This justifies
the following abbreviating notation:

Definition 6.7 (Abbreviations for Substitution Expressions)
Brackets are often omitted in the description of nested compositions and disjunctions.
In particular, σ̄1 ◦ σ̄2 ◦ σ̄3 ambiguously denotes both (σ̄1 ◦ σ̄2) ◦ σ̄3 and σ̄1 ◦ (σ̄2 ◦ σ̄3), and
σ̄1|σ̄2|σ̄3 ambiguously denotes both (σ̄1|σ̄2)|σ̄3 and σ̄1|(σ̄2|σ̄3).

I will now extend the notion of coverage to substitution expressions. To reach more
natural and concise formulations later on, coverage is formally defined as a property
of the substitution expressions themselves, not of regular constraints. The concrete
connection between coverage of constraints and substitution expressions will be clarified
in Lemma 6.9.

Definition 6.8 (Coverage)
A substitution expression σ̄ over Σ and X with domain dom(σ̄) = {x1, . . . , xn} is covering
for a set T ⊆ T (Σ,X )n of n-tuples of terms if all ground instances of elements of T are
instances of an element of (x1, . . . , xn)[[σ̄]]. If σ̄ is covering for T (Σ)n, then σ̄ is simply
called covering.

Lemma 6.9
A finite set {α1, . . . , αn} of positive constraints (not regular constraints) over Σ and
V is covering in the sense of Definition 2.39 if, and only if, the substitution expression
σα1 | . . . |σαn is covering, where σαi : V → T (Σ) is the substitution mapping an existential
variable v to t whenever v't is an equation in αi.

126



6.2 Preliminaries

Example 6.10
Consider the signature Σnat and substitutions σ = {x 7→ s(x)}, τ = {x 7→ 0} and
ρ = {x 7→ s(x), y 7→ z}. The substitution expressions σ|τ , σ∗ and ρ∗ are covering. The
substitution expressions σ, τ and ρ themselves are not covering because σ does not cover
the term 0, τ does not cover the term s(0), and ρ does not cover the pair (0, 0).

Definition 6.11 (Entailment)
An interpretation I = (U, I) entails a set N of regular constraint clausesover Σ and X ,
written I |= N , if, and only if, there is an assignment µ : V → U such that I, µ |= φ for
every φ ∈ [[N ]]. In this case, I is called a model of N . A set of regular constraint clauses
is satisfiable if it has a model. If M and N are two sets of regular constraint clauses,
the expression N |= M means that each model of N is also a model of M . If N is Horn
and satisfiable, then N has a unique minimal Herbrand model over Σ, and N |=Ind M
denotes that this minimal model entails M .

In analogy to the case of constrained clauses, universal variables in regular constraint
clauses can be renamed without changing the semantics. The main complication for
regular constraint clauses is that this renaming cannot just be applied to the regular
constraints, because applying a substitution to a substitution expression is not defined.
Instead, the involved substitution expressions must be extended by concatenating the
renaming and then denotations must be compared.

Definition 6.12 (Variants)
Two regular constraint clauses ~v'~xσ̄ ‖C and ~v'~yσ̄′ ‖C ′ are variants if there is a variable
renaming π : VRan(σ̄) ∪ var(C)→ VRan(σ̄′) ∪ var(C ′) such that

(i) π maps the variables of VRan(σ̄) to VRan(σ̄′),

(ii) Cπ = C ′, and

(iii) ~x[[σ̄π]] = ~y[[σ̄′]].

If both C and C ′ are unconstrained, this reduces to the usual notion of variants.
Indeed, the denotations of variants agree up to a renaming of bound variables. This
justifies the abbreviation ‖C of Definition 6.5 because all regular constraint clauses
that are abbreviated as ‖C are variants.

Example 6.13
Let σ = {x 7→ s(x)}, τ1 = {y 7→ s(y)} and τ2 = {y 7→ s(s(y))}. The two regular
constraint clauses v'xσ∗ ‖→ P (x) and v'y(τ∗2 |(τ1τ

∗
2 )) ‖→ P (y) are variants because

of the variable renaming π = {x 7→ y}: The denotation of σ∗ comprises exactly the
substitutions of the form x 7→ sn(x) and τ∗2 |(τ1τ

∗
2 ) those of the form y 7→ sn(y). So both

~x[[σ∗π]] and ~y[[τ∗2 |(τ1τ
∗
2 )]] consist of the terms of the form sn(y).

6.2.3 Inferences and Redundancy

The notions of inferences, inference rules, inference calculi and derivations from Defi-
nition 2.44 carry over naturally to regular constraint clauses. However, the same does

127



6 Generic Superposition-based Decidability of Minimal Model Validity

not hold for the notion of redundancy from Definition 2.45. The main reason is that the
accumulative nature of regular constraints allows for a new redundancy notion based on
subset relations between the denotations of regular constraints.

Definition 6.14 (Redundancy and Saturation)
A regular constraint clause ~v'~xσ̄ ‖C is redundant with respect to a set N of regular
constraint clauses if

(i) C is a tautology or

(ii) there is a variant ~v'~xτ̄ ‖C of a regular constraint clause in N such that [[σ̄]] ( [[τ̄ ]].

An inference is redundant with respect to N if its conclusion is redundant with respect
to N or if a premise α ‖C of the inference is redundant with respect to N . A set of
regular constraint clauses N is saturated with respect to a given inference calculus if
each inference in the calculus with premises in N is redundant with respect to N .

Redundancy usually defines a well-founded partial ordering on clauses. The notion of
redundancy introduced here is not well-founded as, e.g., each regular constraint clause in
the sequence v'xσ1 ‖C, v'x(σ1|σ2) ‖C, v'x(σ1|σ2|σ3) ‖C, . . . with pairwise different
substitutions σi : {x} → T (Σ) is redundant with respect to its successor. Hence the
termination of saturation for calculi in the context of regular constraint clauses cannot be
proved by using such a property. This will affect the termination proof in Section 6.3.3.

6.3 A Resolution Calculus for Regular Constraint Clauses

I will now introduce an inference system for regular constraint clauses. This inference
system is based on the calculus SFD presented in Chapter 4. In Section 6.3.1, I will
show how SFD behaves in the predicative Horn setting described in the introduction. I
will then identify an adaption of SFD using a constraint melting rule, called ORM, that
allows to decide the class of so-called existential query problems. Soundness, refuta-
tional completeness and termination of ORM for existential query problems are proved in
Sections 6.3.2 and 6.3.3.

The running example in this section will be representation of the “one greater than”
relation that was introduced in the introductionand I will shortly recall how this example
is translated into the language of regular constraint clauses:

Example 6.15
In the example of the “one greater than” relation, where the set of existential variables
is V = {v}, the correspondence between the components of the initial problem and
their respective representations as regular constraint clauses is as follows (σx denotes
the substitution σx = {x 7→ x}):

→ G(s(s(0)), s(0)) =̂ v'xσx ‖ → G(s(s(0)), s(0))
G(x, y)→ G(s(x), s(y)) =̂ v'xσx ‖ G(y1, y2) → G(s(y1), s(y2))

G(s(x), s(y))→ G(x, y) =̂ v'xσx ‖ G(s(y1), s(y2)) → G(y1, y2)
negation of ∀x.∃y.G(y, x) =̂ v'xσx ‖ G(y, x) →

128



6.3 A Resolution Calculus for Regular Constraint Clauses

Since I usually omit the explicit mentioning of σx and of constraint equations the vari-
ables of which do not occur in the clausal part (cf. Definition 6.5), this can also be
written as follows:

→ G(s(s(0)), s(0)) =̂ ‖ → G(s(s(0)), s(0))
G(x, y)→ G(s(x), s(y)) =̂ ‖ G(y1, y2) → G(s(y1), s(y2))

G(s(x), s(y))→ G(x, y) =̂ ‖ G(s(y1), s(y2)) → G(y1, y2)
negation of ∀x.∃y.G(y, x) =̂ v'x ‖ G(y, x) →

6.3.1 Melting and the Calculus ORM

The negation of a query of the form ∀~x.∃~y.φ with positive and quantifier-free φ cor-
responds to a set of regular constraint clauses of the form ~v'~x ‖Γ→, i.e. with empty
succedent. This motivates the following definition:

Definition 6.16 (Existential Query Problems)
An existential query problem is a the set of regular constraint clauses all of which are of
the form

(i) ‖Γ→ A or

(ii) ~v'~x ‖Γ→.

The only useful rule of SFD in a non-equational Horn setting is Left Superposition
(followed by an elimination of the equation ctrue'ctrue in the antecedent): Equality
Resolution, Constraint Superposition, and Equality Elimination are never applicable
if all atoms are of the form fP (~t)'ctrue (which is abbreviated as P (~t)) and Equality
Factoring is not applicable to Horn clauses. Right Superposition might be applicable,
but it only creates clauses that contain a positive atom ctrue'ctrue and are tautologies.

When inferences are drawn between regular constraint clauses in an equational query
problem, the resulting regular constraint clauses are still either unconstrained or have
an empty succedent, i.e. are of the form

(i) ‖Γ→ A or

(ii) ~v'~xσ ‖Γ→.

Hence the first premise of a Left Superposition inference between regular constraint
clauses derived from an existential query problem always has an empty constraint. Writ-
ten down its predicative form and adapted to this setting and to regular constraints, Left
Superposition becomes the Ordered Query Resolution rule presented in Figure 6.1.

Note that Ordered Query Resolution can as usual be restricted by means of a literal
selection function. Moreover, the (unconstrained) Ordered Resolution rule is included
as the restriction of Ordered Query Resolution to unconstrained clauses.

The main weakness of the calculus SFD, and also of Ordered Query Resolution alone,
is that it does not terminate even in very simple cases.

Example 6.17
Consider again the example of the “one greater” relation defined by the unconstrained

129



6 Generic Superposition-based Decidability of Minimal Model Validity

Ordered Query Resolution:

Γ1 → A1 ~v'~xσ̄ ‖Γ2, A2 → ∆2

~v'~xσ̄τ ′ ‖Γ1τ,Γ2τ → ∆2τ

where

(i) τ is the most general unifier of A1 and A2,

(ii) τ ′ : VRan(σ̄) → T (Σ,X ) maps y to yτ if y ∈ dom(τ) and to y otherwise,
and

(iii) A1τ is strictly maximal in (Γ1 → A1)τ
and A2τ is maximal in (Γ2, A2 → ∆2)τ ,
where ∆2 is either empty or contains a single atom.

Figure 6.1: The Ordered Query Resolution Rule

clauses
→ G(s(s(0)), s(0))

G(x, y)→ G(s(x), s(y))
G(s(x), s(y))→ G(x, y)

and the query ∀x.∃y.G(y, x).

Starting from the translation of the problem into the language of regular constraint
clauses in Example 6.15, a possible derivation with Ordered Query Resolution (or with
SFD) runs as follows. Remember that I omit constraints whose variables do not occur in
the clausal part.

clauses defining G: 1 : ‖ → G(s(s(0)), s(0))
2 : ‖ G(y1, y2)→ G(s(y1), s(y2))
3 : ‖ G(s(y1), s(y2))→ G(y1, y2)

negated query: 4 : v'x ‖ G(y, x)→
resolve(1,3) = 5 : ‖ → G(s(0), 0)
resolve(5,4) = 6 : v'0 ‖ �
resolve(2,4) = 7 : v's(x) ‖ G(y, x)→
resolve(5,7) = 8 : v's(0) ‖ �
resolve(2,7) = 9 : v's(s(x)) ‖ G(y, x)→

resolve(5,9) = 10 : v's(s(0)) ‖ �
resolve(2,9) = 11 : v's(s(x)) ‖ G(y, x)→

resolve(5,11) = 12 : v's(s(s(0))) ‖ �
. . .

Clause 2 can now be resolved with clause 11 (and its descendants) an arbitrary number
of times, and clause 5 can be resolved with each of the conclusions. So similar regular
constraint clauses will now be computed with ever increasing regular constraints, making
the derivation non-terminating.

130



6.3 A Resolution Calculus for Regular Constraint Clauses

Melting:
~v'~xσ̄ ‖C ~v'~xσ̄τ̄ ′ ‖C ′

~v'~xσ̄′′ ‖C

where

(i) ~v'~xσ̄ ‖C is an ancestor of ~v'~xσ̄τ̄ ′ ‖C ′,
(ii) there is a substitution expression τ̄

such that ~v'~xσ̄τ̄ ′ ‖C ′ is a variant of ~v'~xσ̄τ̄ ‖C, and

(iii) a) either σ̄ is of the form σ̄ = σ̄1σ̄
∗
2 and σ̄′′ = σ̄1(σ̄2|τ̄)∗, or

b) σ̄ is not of this form and σ̄′′ = σ̄τ̄∗.

Figure 6.2: The Melting Rule

A human observer of the previous example will quickly see that regular constraint
clauses with empty clausal part, i.e. contradictions, will be derived successively for all
regular constraints of the form v'sn(0), where sn(0) denotes the n-fold application
s(. . . s(0) . . .) of s to 0. He might thus replace all these infinitely many constrained
clauses by only one constrained “super” clause, writing it, e.g., as v's∗(0) ‖�. In fact, I
will show that such repetitive behavior is the only reason for non-termination, and that
the melting of the repeated clauses into one regular constraint clause subsuming them
all can be automated.

To do so, I now extend the calculus SFD to an inference system consisting of Ordered
Query Resolution and a rule that executes this melting.

Definition 6.18 (Ancestors and ORM)
Let � be a well-founded strict reduction ordering on atoms over Σ that is total on ground
atoms. To define the Melting inference rule, every regular constraint clause is annotated
with a set of regular constraint clauses, called its ancestors. The Ordered Resolution
Calculus with Melting ORM consists of the two rules in Figures 6.1 and 6.2, where all
(strict) maximality constraints have to be considered with respect to �.

A regular constraint clause that serves as the rightmost premise of a Melting inference
is called meltable. The leftmost premise of a Melting inference is called the base clause
for the melting, and the conclusion the melted clause.

As before, I will implicitly assume that a well-founded strict reduction ordering � on
atoms over Σ that is total on ground atoms is fixed for all following considerations.

Example 6.19
With Melting, it is possible to combine the regular constraint clauses v'x ‖G(y, x)→
and v'xσ ‖G(y, x)→, as they appeared in the introduction and in Example 6.17, into
the regular constraint clause v'xσ∗ ‖G(y, x)→:

v'x ‖G(y, x)→ v'xσ ‖G(y, x)→
v'xσ∗ ‖G(y, x)→

131



6 Generic Superposition-based Decidability of Minimal Model Validity

The Melting rule is in general unsound. For example, the regular constraint clauses
v'x ‖G(y, x)→ and v'xσ ‖G(y, x)→ by themselves do not imply v'xσ∗ ‖G(y, x)→;
it is only the context in which they appear that validates the melting. Hence the choice
of the ancestor sets of the regular constraint clauses appearing in a ORM derivation has
to ensure that Melting is sound:

Definition 6.20 (Existential Query Derivations)
A ORM derivation N0, N1, . . . is an existential query derivation if

(i) N0 is an existential query problem and

(ii) The ancestors of the regular constraint clauses in the derivation are defined as
follows:

a) For every regular constraint clause in N0, the ancestor set in N0 is empty.

b) For every regular constraint clause in Ni+1 that is also contained in Ni, the
set of ancestors in Ni+1 is the set of ancestors in Ni.

c) If Ni+1 = Ni ∪ {α ‖C} and α ‖C 6∈ Ni is the conclusion of an Ordered
Query Resolution inference between regular constraint clauses in Ni, then
the ancestors of α ‖C in Ni+1 are the rightmost premise of the inference and
all of its ancestors in Ni.

d) If Ni+1 = Ni∪{α ‖C} and α ‖C 6∈ Ni is the conclusion of a Melting inference
between regular constraint clauses in Ni, then the ancestors of α ‖C in Ni+1

are ancestors of the base clause of the inference in Ni (but not the base clause
itself).

Note that if a regular constraint clause is an element of two sets Ni and Nj in a
derivation, its ancestors as an element of Ni and of Nj may be different, for example
because the regular constraint clause was at some point in the derivation deleted and
later re-derived. However, this will usually not occur, and I will simply speak of ancestors
of a regular constraint clause if no ambiguities arise from this.

Example 6.21
A possible existential query derivation for the introductory example looks as follows,
where the substitutions σ and τ are defined by σ = {x 7→ s(x)} and τ = {x 7→ 0}:

clauses defining G: 1 : ‖ → G(s(s(0)), s(0))
2 : ‖ G(x, y)→ G(s(x), s(y))
3 : ‖ G(s(x), s(y))→ G(x, y)

negated query: 4 : v'x ‖ G(y, x)→
resolve(1,3) = 5 : ‖ → G(s(0), 0)
resolve(5,4) = 6 : v'xτ ‖ �
resolve(2,4) = 7 : v'xσ ‖ G(y, x)→

melt(4,7) = 8 : v'xσ∗ ‖ G(y, x)→
resolve(5,8) = 9 : v'xσ∗τ ‖ �

The only regular constraint clauses with non-empty ancestor set are 5, 6, 7, and 9, with
ancestors {3}, {4}, {4}, and {8}, respectively. The set of regular constraint clauses
{1,. . . ,9} is saturated with respect to ORM.

132



6.3 A Resolution Calculus for Regular Constraint Clauses

6.3.2 Soundness and Completeness of ORM

To establish the soundness of ORM in existential query derivations, I have to show the
soundness of the two rules Ordered Query Resolution and Melting. While the former is
easy, the main objective will be to prove that all elements of the conclusion’s denotation
in a Melting inference step are really consequences of the premises.

Lemma 6.22 (Soundness of Ordered Query Resolution)
The Ordered Query Resolution rule is sound.

Proof. For an inference

Γ1 → A1 ~v'~xσ̄ ‖Γ2, A2 → ∆2

~v'~xσ̄τ ′ ‖Γ1τ,Γ2τ → ∆2τ

to be sound, it suffices that each inference

Γ1 → A1 ~v'~xσ ‖Γ2, A2 → ∆2

~v'~xστ ′ ‖Γ1τ,Γ2τ → ∆2τ

for σ ∈ [[σ̄]] is sound. This is the case because of the soundness of the SFD rule Left
Superposition (or its ORFD counterpart Ordered Resolution), c.f. Proposition 4.15. ♦

The soundness of Melting is not that obvious: The Melting rule introduces regular
constraint clauses that do not directly follow from the premises. For example, the regular
constraint clauses v'x ‖G(y, x)→ and v'xσ ‖G(y, x)→ by themselves do not imply
v'xσ∗ ‖G(y, x)→. In fact, the soundness of Melting strongly depends on the context,
e.g. on the clauses it is applied to but also on other available inference. Above all,
the requirement that the left-most premise of Ordered Query Resolution inferences is
unconstrained is imperative:

Example 6.23
Assume that Ordered Resolution inferences in the style of ORFD were allowed (cf. Chap-
ter 5), i.e. with a constrained first premise. Consider an inference between the two
regular constraint clauses v's(x) ‖P (x)→ P (s(x)) and v'x ‖P (x)→:

v's(x) ‖P (x)→ P (s(x)) v'x ‖P (x)→
v's(x) ‖P (x)→

The application of Melting to v'x ‖P (x)→ as an ancestor of v's(x) ‖P (x)→ is un-
sound, because v's(s(x)) ‖P (x)→ is not implied by the given constrained clauses.

To establish the soundness of Melting for existential query derivations, observe the
following:

(i) Since the leftmost premise of each Ordered Query Resolution inference is uncon-
strained (by definition), an Ordered Query Resolution inference with rightmost
premise ~v'~xσ̄ ‖C and conclusion ~v'~xσ̄τ ‖D can also be made with any other

133



6 Generic Superposition-based Decidability of Minimal Model Validity

regular constraint clause ~v'~xσ̄′ ‖C with the same clausal part but a different con-
straint, then resulting in the regular constraint clause ~v'~xσ̄′τ ‖D:

Γ→ A v'xσ̄ ‖C
~v'~xσ̄τ ‖D

 Γ→ A v'xσ̄′ ‖C
~v'~xσ̄′τ ‖D

If the former inference is sound, so is the latter.

(ii) The second observation is that, if a ORM derivation starts from an existential query
problem, i.e. from regular constraint clauses that do not contain any loops σ̄∗, then
all loops appearing in constraints during the derivation have been introduced by
Melting steps.

Lemma 6.24 (Soundness of Melting)
For existential query derivations, the Melting rule is sound.

Proof. Melting derivations can take one of two shapes, corresponding to the two side
conditions (ii,a) and (ii,b).

Consider a derivation step from a set N of regular constraint clauses to N ′ where a
Melting inference

~v'~xσ̄1σ̄
∗
2 ‖C ~v'~xσ̄1σ̄

∗
2 τ̄
′ ‖C ′

~v'~xσ̄1(σ̄2|τ̄)∗ ‖C

of type (ii,b) is performed. I will show that, for each integer n ≥ 0, ~v'~xσ̄1(σ̄2|τ̄)n ‖C is
implied by the regular constraint clauses in N .

Since the derivation started from regular constraint clauses whose constraints do not
contain any loops, the regular constraint clause ~v'~xσ̄1σ̄

∗
2 ‖C must have been derived

from a regular constraint clause ~v'~xσ̄1 ‖C or ~v'~xσ̄1σ̄
′∗ ‖C to account for the loop

around σ̄2.
So the case n = 0 is trivial.
If n > 0, assume that the regular constraint clause ~v'~xσ̄1(σ̄2|τ̄)n−1 ‖C is implied.

Moreover, inductively assume that all previous steps in the derivation are sound.
Following the remarks preceding this lemma, the same set of inference steps needed

to derive ~v'~xσ̄1σ̄
∗
2 ‖C from ~v'~xσ̄1 ‖C could be used to derive the regular constraint

clause ~v'~xσ̄1(σ̄2|τ̄)n−1σ̄∗2 ‖C from ~v'~xσ̄1(σ̄2|τ̄)n−1 ‖C. This regular constraint clause
directly implies ~v'~xσ̄1(σ̄2|τ̄)n−1σ̄2 ‖C.

Along the same lines, the same set of inference steps needed to derive ~v'~xσ̄1σ̄
∗
2 τ̄ ‖C

from ~v'~xσ̄1σ̄
∗
2 ‖C could be used to derive ~v'~xσ̄1(σ̄2|τ̄)n−1τ̄ ‖C.

Thus, both ~v'~xσ̄1(σ̄2|τ̄)n−1σ̄2 ‖C and ~v'~xσ̄1(σ̄2|τ̄)n−1τ̄ ‖C are implied regular con-
straint clauses, and hence also ~v'~xσ̄1(σ̄2|τ̄)n−1(σ̄2|τ̄) ‖C is implied.

If the Melting inference is of type (ii,a), i.e. of the shape

~v'~xσ̄1 ‖C ~v'~xσ̄1τ̄
′ ‖C ′

~v'~xσ̄1τ̄
∗ ‖C ,

the argumentation is analogous, except that the suffix σ̄2 neen not be re-derived. ♦

134



6.3 A Resolution Calculus for Regular Constraint Clauses

Concerning completeness, I can make use of the following proposition:

Proposition 6.25 (Completeness)
Let N be a finite existential query problem, let N∗ be a finite saturation of N with
respect to Ordered Query Resolution, and let ~v'~xσ̄1 ‖�, . . . , ~v'~xσ̄m ‖� be the regular
constraint clauses in N∗ with empty clausal part. Then N has a Herbrand model if, and
only if, σ̄1| . . . |σ̄m is not covering.

Proof. By Lemma 6.9, that links coverage of constraints and of substitution expressions,
this proposition is an instance of Theorem 4.12. ♦

As the Ordered Query Resolution rule alone is already complete, the same holds for
the combination of Ordered Query Resolution and Melting.

Hence, provided saturation with ORM terminates, I can express the initial problem
whether N |=Ind ∀~x.∃~y.φ for positive and quantifier-free φ in terms of a coverage problem:

Corollary 6.26
Let N be a satisfiable set of unconstrained Horn clauses, let N∗ be a finite saturation of
the set N ∪{~v'~x ‖A11, . . . , A1m1 →, . . . , ~v'~x ‖An1, . . . , Anmn →} of regular constraint
clauses with respect to ORM, and let ~v'~xσ̄1 ‖�, . . . , ~v'~xσ̄m ‖� be the set of regular
constraint clauses in N∗ with empty clausal part. Then the following are equivalent:

(i) N |=Ind ∀~x.∃~y.
∨
i

∧
j Aij

(ii) σ̄1| . . . |σ̄m is not covering.

6.3.3 Termination of ORM

I now show that, if a clause set N ∪ {Γ1 →, . . . , Γn →} can be finitely saturated by
Ordered Resolution (modulo variants and tautologies), then the calculus ORM finitely
saturates the set N ∪ {~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →}. Termination also ensures that
derivations are fair, i.e. that every possible inference between derived regular constraint
clauses will finally be redundant.

The derivation strategy that ensures termination of existential query derivations pro-
ceeds in two stages. First a set of regular constraint clauses is derived using Ordered
Query Resolution only, then (the constraints of) these clauses are updated by meltings
in such a way that the resulting clause set is saturated:

Derivation Strategy 6.27
Proceed according to the following two stages:

(i) Perform inferences by Ordered Query Resolution on the inital set of regular con-
straint clauses N∪{~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →} according to the given strategy
that would finitely saturate the unconstrained set N ∪{Γ1 →, . . . , Γn →}. When-
ever a meltable regular constraint clause is derived, do not consider this clause for
any further Ordered Query Resolution inferences.

135



6 Generic Superposition-based Decidability of Minimal Model Validity

(ii) When no more inferences as in (i) are possible, start melting: Perform a (non-
redundant) Melting inference and update the derivation: Repeat, starting from
the melted clause, all previous (non-redundant) Ordered Query Resolution infer-
ences that have the base clause as an ancestor and all (non-redundant) Melting
inferences that are possible with the newly derived regular constraint clauses, as
well as all deletion steps. This is called an elementary update. Afterwards continue
recursively with updates for the repeated Meltings.

When the update is finished, reiterate this stage with another Melting inference.

When updates have been performed for all Meltings, terminate.

An update can be viewed as a generalization of the constraints expressions of previ-
ously derived regular constraint clauses. When this happens, the “old” regular constraint
clauses with their more specific regular constraints become redundant. This means that
they can and will be ignored for the rest of the derivation and are effectively replaced by
their more general counterparts.

Lemma 6.28
If regular constraint clauses in an existential query derivation are arranged in a graph
defined by the direct ancestor relation, then this graph is a forest (a set of trees).

Proof. Initially, each regular constraint clause forms its own tree. These initial regular
constraint clauses are and remain roots of the forest.

Recall that the ancestors of a regular constraint clause do not form a binary tree but a
line, because basically one premise is always ignored. Because of this, each inference by
Ordered Query Resolution extends the tree of the rightmost premise by one fresh leaf.

In Melting inferences, the conclusion becomes a sibling of the base clause, i.e. it either
becomes a fresh leaf in the tree of the base clause or, if the base clause is a root, it forms
a new root of its own.

In any case, no inference can connect existing trees or introduce loops. ♦

Example 6.29
For Example 6.17, the graph looks as follows, where regular constraint clauses are rep-
resented by their numbers:

1 2 3 4

5 6 7

8 9

10

For Example 6.21, which in fact follows Strategy 6.27, the graph looks as follows. The
dotted lines are not part of the graph but illustrate replacements caused by the melting

136



6.3 A Resolution Calculus for Regular Constraint Clauses

of clauses 4 and 7 into clause 8 and the following update:

1 2 3 4
((
8

5 6 557

..

9

Lemma 6.30 (Termination of Updates)
The update following a Melting inference step in an existential query derivation following
Strategy 6.27 terminates.

Proof. Each elementary update is terminating, since there are only finitely many infer-
ences to repeat. I show that the number of elementary updates in an update is finite
and proceed by induction over the depth of the base clause in the ancestor-based forest.

Consider the case of a Melting inference as follows:

~v'~xᾱσ̄∗ ‖C ~v'~xᾱσ̄∗τ̄ ′ ‖C ′

~v'~xᾱ(σ̄|τ̄)∗ ‖C

Let
~v'~xβ̄ ‖E ~v'~xβ̄ρ̄′ ‖E′

~v'~xβ̄1(β̄2|ρ̄)∗ ‖E

be a Melting inference that is redundant before the current elementary update. There
are several possible cases, depending on whether and where one of the premises of the
initial Melting inference appears as an ancestor of ~v'~xβ̄ρ̄′ ‖E′:

• ~v'~xᾱσ̄∗ ‖C is not an ancestor of ~v'~xβ̄ρ̄ ‖E. Then this Melting inference is not
affected by the elementary update.

• E = C. Then also β̄ = ᾱσ̄∗, and the first elementary update leads to a Melting
candidate

~v'~xᾱ(σ̄|τ̄)∗ ‖C ~v'~xᾱ(σ̄|τ̄)∗ρ̄ ‖C
~v'~xβ̄(σ̄|τ̄ |ρ̄)∗ ‖C

Since the original Melting inference was redundant before, [[ρ̄]] ⊆ [[σ̄]]. So the new
Melting candidate is also redundant and this branch of the update stops before
the Melting inference.

• ~v'~xᾱσ̄∗ ‖C is an ancestor of ~v'~xβ̄ ‖E, but not vice versa. Then β̄ = ᾱσ̄∗π̄ and
the elementary update leads to a Melting candidate

~v'~xᾱ(σ̄|τ̄)∗π̄ ‖E ~v'~xᾱ(σ̄|τ̄)∗π̄ρ̄ ‖E
~v'~xᾱ(σ̄|τ̄)∗π̄1(π2|ρ̄)∗ ‖E

where π̄ = π̄1π̄
∗
2, Since the original Melting inference was redundant before, [[ρ̄]] ⊆

[[π̄2]]. So the new Melting candidate is also redundant and this branch of the update
stops before the Melting inference.

137



6 Generic Superposition-based Decidability of Minimal Model Validity

• ~v'~xβ̄ ‖E is an ancestor of ~v'~xᾱσ̄∗ ‖C. Then this Melting inference has a base
that lies strictly above the base of the originally inspected Melting inference in
the ancestor-based clause forest. Because of Lemma 6.28, it may inductively be
assumed that the update initiated by the Melting of ~v'~xβ̄ ‖E terminates.

This shows that the number of elementary updates is finite in this case. The case of a
Melting inference

~v'~xᾱ ‖C ~v'~xᾱτ̄ ′ ‖C ′

~v'~xᾱτ̄∗ ‖C

works similarly. ♦

Lemma 6.31 (Saturation)
Let N ∪{Γ1 →, . . . ,Γn →} be a finite set of Horn clauses. If an existential query deriva-
tion that uses Strategy 6.27 and starts from the set N ∪{~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →}
terminates with a set N∗, then N∗ is saturated with respect to ORM.

Proof. I have to show that all Melting and Ordered Query Resolution inferences with
premises in N∗ are redundant.

All possible Melting inferences with premises in N∗ are redundant because, by as-
sumption, the second stage of the derivation terminates.

For any given Melting inference, redundancy can have one of three reasons, all of which
imply that the leftmost premise of the Melting inference is redundant: If the conclusion
is redundant, then so are both premises. If the rightmost premise is redundant, then so
is the leftmost, because it was derived from a redundant regular constraint clause. Or
finally, the leftmost premise itself might be redundant.

All in all, each meltable regular constraint clause in N∗ is redundant, which means
that also all Ordered Query Resolution inferences with a meltable clause are redundant.

The same holds for all Ordered Query Resolution inferences with premises that are not
meltable: They are redundant by construction after the first stage and this can easily
be seen to be maintained by each elementary update.

So all ORM inferences with premises in N∗ are redundant, i.e. N∗ is saturated. ♦

Theorem 6.32 (Termination)
Let N ∪ {Γ1 →, . . . ,Γn →} be a finite set of Horn clauses that can be finitely saturated
by Ordered Resolution, where deletion steps are restricted to the deletion of variants
and tautologies. Then ORM finitely saturates the set N ∪ {~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →}
of regular constraint clauses using Strategy 6.27.

Proof. Because Lemma 6.31 shows that the strategy yields a saturated set, it remains
to show the termination of the existential query derivation starting from the set N ∪
{~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →}. I do so by proving the termination of each stage:

(i) Let M be the (possibly infinite) set obtained after the first stage of the existential
query derivation starting from N ∪ {~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →}. I first show
that M is finite. To do so, I show that the ancestor-based forest G for M is finite,
i.e. it has only finitely many roots, is of finite depth, and is finitely branching.

138



6.4 Generalized Substitutions as Clause Sets

• Only the finitely many regular constraint clauses in the initial existential
query problem N ∪ {~v'~x ‖Γ1 →, . . . , ~v'~x ‖Γn →} can appear as roots.

• Let N∗0 be a finite saturation of N∪{Γ1 →, . . . ,Γn →} with respect to Ordered
Resolution.

Consider two clauses ~v'~xσ̄ ‖C and ~v'~xσ̄τ̄ ‖C ′ on a common branch, such
that none of them is a leaf. Because of the strategy of forbidding ordered
query resolution inferences with clauses that can be melted with an ancestor,
the two clauses cannot be melted. So there is no substitution expression τ̄ ′

such that ~v'~xσ̄τ̄ ‖C ′ is a variant of ~v'~xσ̄τ̄ ′ ‖C.

This means that every branch in G contains only a finite number of inner
nodes for each element C of N∗0 : There is at most one for each subset of
var(C), since these correspond to the possibilities for VRan(σ̄τ̄)∩var(C) and
hence to regular constraint clauses with clausal part C that are not variants
and hence cannot be melted.

So the graph is of finite depth.

• Finally, each node in G has a finite arity, as only finitely many inferences into
the regular constraint clause at this node have been possible (namely from
some of the finitely many unconstrained clauses only).

Since G is finite, and the same holds for M .

(ii) It remains to show that the second stage terminates.

The number of meltable regular constraint clauses is finite when stage (1) is left,
because M is finite. There are only finitely many iterations of stage (2), because
each such iteration decreases the number of unreplaced meltable regular constraint
clauses by one: The initial Melting inference replaces both its premises (and in par-
ticular one meltable and unreplaced regular constraint clause), and each inference
step in an update keeps the number of unreplaced meltable regular constraint
clauses constant.

Moreover, I have proved in Lemma 6.30 that each update, i.e. each iteration,
terminates.

So the whole second stage terminates.

Since both stages terminate, so does the whole derivation. ♦

6.4 Generalized Substitutions as Clause Sets

To make use of the completeness result Corollary 6.26, the task remains to decide whether
a finite disjunction σ̄1| . . . |σ̄n of substitution expressions is covering.

For a finite disjunction σ1| . . . |σn of substitutions (or equivalently a finite set of con-
straints), I have shown that this can be done using the predicate completion algorithm

139



6 Generic Superposition-based Decidability of Minimal Model Validity

PC (Theorem 4.6). To do so, the problem is considered as a disunification problem and
reduced to an emptiness problem that is trivially decidable.

For the general case of substitution expressions, there is no obvious translation of
coverage into a disunification problem. Instead, I follow a related approach. I will
introduce a predicate Pσ̄ for every substitution expression σ̄ that is defined by a Horn
clause set Nσ̄ in such a way that a ground atom Pσ̄(~s) holds in the minimal model of
Nσ̄ if, and only if, ~s lies in ~x[[σ̄]], where ~x is the domain of σ̄. A clause Pσ̄(~s) → Pτ̄ (~t)
will mean that if a ground instance ~sρ of ~s is a ground instance of an element of ~x[[σ̄]],
then every ground instance of ~tρ is a ground instance of an element of ~y[[τ̄ ]], where ~x, ~y
are the respective domains.

In particular, this means that σ̄ is covering if, and only if, Pσ̄ is the total relation in
the minimal model of Nσ̄, i.e. if, and only if, Nσ̄ |=Ind ∀~x.Pσ̄(~x).

A variation of the predicate completion procedure, the Negating Predicate Completion
Algorithm NPC (see Definition 6.46), will generate a Horn clause set Ňσ̄ for the comple-
ment of Pσ̄, named P̌σ̄, such that Pσ̄ is total in the minimal model of Nσ̄ if, and only
if, P̌σ̄ is empty in the minimal model of Ňσ̄. The completion procedure ensures that Ňσ̄

has only one Herbrand model over the given signature, which means that emptiness of
P̌σ̄ in the minimal model of Ňσ̄ is equivalent to the emptiness of P̌σ̄ in every Herbrand
model of Ňσ̄. Since Ňσ̄ is composed of unconstrained clauses, the problem can even be
considered as a first-order problem that can be decided by ordered resolution. This is,
for example, a direct consequence of Proposition 4.25.

I will start the discussion by establishing the link between substitution expressions
and clauses. Afterwards, I will recall the predicate completion procedure and explain
how to adapt it to substitution expressions, and finally show that it permits to decide
the coverage of substitution expressions (Section 6.4.2).

Definition 6.33 (Substitutions and Predicates)
Given a substitution expression σ̄, assign a predicate Pτ̄ to every occurrence of a substi-
tution expression τ̄ that is a subexpression of σ̄:

• If τ̄ is a substitution or disjunction or loop, then Pτ̄ is a fresh predicate of arity
|dom(τ̄)|.
• If τ̄ = τ̄1τ̄2 is a concatenation, then Pτ̄ = Pτ̄1 .

Note that predicates are assigned not to substitution expressions themselves but to
occurrences of substitution expressions. For example in a substitution expression like
{x 7→ x} ◦ {x 7→ x}, two different predicates are assigned to the two occurrences of
{x 7→ x}.

Example 6.34
Consider the two substitutions σ = {x 7→ s(x)} and τ = {x 7→ 0} appearing in Ex-
ample 6.21. For the substitution expression σ∗τ , fresh predicates Pσ, Pτ and Pσ∗ are
assigned to σ, τ and σ∗ and the predicate Pσ∗τ assigned to σ∗τ is identical to Pσ∗ .

Definition 6.35 (Substitutions and Clauses)
Translate substitution expressions σ̄ to clause sets N0

σ̄ (which is just an intermediate

140



6.4 Generalized Substitutions as Clause Sets

representation) andNσ̄ as follows: Let Pglue be a fresh predicate of arity 0. This predicate
will be used as a means to glue together the sets corresponding to different (occurrences
of) substitution expressions. Assume a strict ordering ≺ on the set X of variables and
write ~x = dom(σ̄) if dom(σ̄) = {x1, . . . , xn} and x1 ≺ . . . ≺ xn.

Let N [B/A] denote textual replacement of every occurrence of the atom A in the
clause set N by the atom B.

N0
σ = {Pglue → Pσ(~xσ)} where ~x = dom(σ)

N0
σ̄τ̄ = N0

τ̄ ∪N0
σ̄ [Pτ̄ (dom(τ̄))/Pglue]

N0
σ̄∗ = {Pglue → Pσ̄∗(dom(σ̄))}

∪N0
σ̄ [Pσ̄∗(dom(σ̄))/Pglue]

∪ {Pσ̄(dom(σ̄))→ Pσ̄∗(dom(σ̄))}
N0
σ̄1|σ̄2

= N0
σ̄1
∪ {Pσ̄1(~x1)→ Pσ̄1|σ̄2

(~y)}

∪N0
σ̄2
∪ {Pσ̄2(~x2)→ Pσ̄1|σ̄2

(~y)}
where ~xi = dom(σ̄i) and ~y = dom(σ̄1|σ̄2)

The set Nσ̄ arises from N0
σ̄ by deletion of all occurrences of Pglue:

Nσ = { → Pσ(~xσ)} where ~x = dom(σ)

Nσ̄τ̄ = Nτ̄ ∪N0
σ̄ [Pτ̄ (dom(τ̄))/Pglue]

Nσ̄∗ = { → Pσ̄∗(dom(σ̄))}
∪N0

σ̄ [Pσ̄∗(dom(σ̄))/Pglue]

∪ {Pσ̄(dom(σ̄))→ Pσ̄∗(dom(σ̄))}
Nσ̄1|σ̄2

= Nσ̄1 ∪ {Pσ̄1(~x1)→ Pσ̄1|σ̄2
(~y)}

∪Nσ̄2 ∪ {Pσ̄2(~x2)→ Pσ̄1|σ̄2
(~y)}

where ~xi = dom(σ̄i) and ~y = dom(σ̄1|σ̄2)

Example 6.36
Consider the two substitutions σ = {x 7→ s(x)} and τ = {x 7→ 0} appearing in Exam-
ples 6.21 and 6.34 as parts of the substitution expression σ∗τ . Then N0

τ = {Pglue →
Pτ (0)}, and N0

σ = {Pglue → Pσ(s(x))}. Hence

N0
σ∗ = { Pglue→Pσ∗(x) ,

Pσ∗(x)→Pσ(s(x)) ,
Pσ(x)→Pσ∗(x) }

and finally (note that Pσ∗τ = Pσ∗ as seen in Example 6.34)

N0
σ∗τ = { Pglue→Pτ (0),

Pτ (x)→Pσ∗τ (x) ,
Pσ∗τ (x)→Pσ(s(x)) ,
Pσ(x)→Pσ∗τ (x) } .

141



6 Generic Superposition-based Decidability of Minimal Model Validity

As the predicate Pglue is only used to glue clause sets together, its occurrences can be
thrown away. This leads to the final representation of σ∗τ as a clause set:

Nσ∗τ = { →Pτ (0),
Pτ (x)→Pσ∗τ (x) ,

Pσ∗τ (x)→Pσ(s(x)) ,
Pσ(x)→Pσ∗τ (x) }

The set Nσ∗τ can be regarded as building terms in x[[σ∗τ ]] a bottom-up approach: The
first clause creates the constant 0 (which is the only term in x[[τ ]]), the second clause
enters the σ loop, and the last two clauses allow to repeatedly wrap applications of s( )
around a term (corresponding to the terms sn(0) in x[[σ∗τ ]]).

6.4.1 Equivalence of Substitution Expressions and Clause Sets

I will now show that each clause set Nσ̄ describes exactly the (instances of the) term
tuples generated by the respective substitution expression σ̄, provided that this substi-
tution stems from a suitable derivation.

Definition 6.37 (Derivation Substitution)
Let ~v'~xσ̄1, . . . , ~v'~xσ̄n be finitely many constraints appearing in an existential query
derivation. Then σ̄1| . . . |σ̄n is called a derivation substitution.

Such substitution expressions are especially well-behaved. For example, if disjunctions
σ̄1|σ̄2 appear, then σ̄1 and σ̄2 share the same domain.

Lemma 6.38
Let σ̄ be a derivation substitution. Then VRan(τ̄1) = dom(τ̄2) for all subexpressions
τ̄1 ◦ τ̄2.

Proof. This is true initially and can be easily seen to be maintained during each inference
step. ♦

Lemma 6.39
Let σ̄ be a derivation substitution. Then dom(τ̄1) = dom(τ̄2) for all subexpressions τ̄1|τ̄2.

Proof. If σ̄ = σ̄1| . . . |σ̄n was created from the regular constraints ~v'~xσ̄1, . . . , ~v'~xσ̄n,
then the domains of all σ̄i are equal by definition. A disjunction τ̄1|τ̄2 inside σ̄i can only
have been introduced during a Melting inference of type (ii,b) involving two constraints
~v'~xσ̄′τ̄∗1 and ~v'~xσ̄′τ̄∗1 τ̄2. Hence dom(τ̄2) = VRan(τ̄∗1 ) = dom(τ̄1) by Lemma 6.38 and
the definition of VRan. ♦

Lemma 6.40
Let σ̄ be a substitution expression. In each clause inN0

σ̄ of the form Pglue → P (t1, . . . , tn),
the literal P (t1, . . . , tn) contains all variables in VRan(σ̄).

Proof. This follows directly from the definitions. ♦

142



6.4 Generalized Substitutions as Clause Sets

The clauses in N0
σ̄ and Nσ̄ are particularly simple. On the one hand, all terms appear-

ing in the antecedent of a (Horn) clause in N0
σ and Nσ are variables, on the other hand,

I will now show that the clauses are universally reductive, i.e. all antecedent variables
also occur in the succedent, a property that is necessary for the applicability of predicate
completion.

Proposition 6.41 (Universal Reductiveness of Nσ̄)
Let σ̄ be a derivation substitution. Then all clauses in Nσ̄ are universally reductive.

Proof. If the clauses in N0
σ̄ are universally reductive, then obviously so is Nσ̄. Hence it

suffices to show that the clauses in N0
σ̄ are universally reductive. I proceed by structural

induction on the derivation substitution.

The clause Pglue → Pσ(x1σ, . . . , xnσ) for a single substitution σ is universally reductive
because no variables occur in the antecedent.

In a conjunction σ̄τ̄ , inductively, the clauses in N0
σ̄ and N0

τ̄ are universally reductive.
Moreover, VRan(σ̄) = dom(τ̄) by Lemma 6.38, so the clauses in N0

σ̄ [Pτ̄ (dom(τ̄))/Pglue]
are also universally reductive by Lemma 6.40.

The same argument applies to N0
σ̄∗ , except that in this case VRan(σ̄) = dom(σ̄) by

definition of VRan.

For σ̄1|σ̄2, inductively, the clauses in both N0
σ̄1

and N0
σ̄2

are universally reductive.
Moreover, since dom(σ̄1), dom(σ̄2) ⊆ dom(σ̄1|σ̄2), the newly introduced clauses are also
universally reductive. ♦

In the following propositions, I write N `∗ A if N is a Horn clause set and A is an
atom and either a variant of A is containted in N or A can be derived from the clause
set N by a finite number of Resolution inference steps.

Lemma 6.42 (Derivation Decomposition)
Let σ̄ be a derivation substitution. Let M be a clause set that does not contain any
predicates of Nσ̄, and let P be a predicate appearing in M . For terms ~s, the following
are equivalent:

(i) N0
σ̄ [P (~y)/Pglue] ∪M `∗ Pσ̄(~s).

(ii) There are terms ~s1, ~r, such that

• var(~s1) ∩ var(~r) ⊆ ~y,

• ~s = ~s1{y1 7→r1, . . . , yn 7→rn},
• M `∗ P (~r) and

• Nσ̄ `∗ Pσ̄(~s1).

This lemma formalizes a generalization of the idea that, if derivation substitutions are
properly described by the corresponding clause sets, e.g. every atom Pσ1(~s) that can be
derived by Nσ̄1σ̄2 should correspond to an element of ~x[[σ̄1σ̄2]] and hence be composed
as Pσ1(~s) = Pσ1(~xσ1σ2) with σi ∈ [[σ̄i]], such that Pσ1(~xσ̄1) can be derived by Nσ̄1 and
Pσ2(~yσ̄2) can be derived by Nσ̄2 .

143



6 Generic Superposition-based Decidability of Minimal Model Validity

Proposition 6.43 (Equivalence of Derivation Substitutions and Clauses)
Let σ̄ be a derivation substitution. Then Nσ̄ `∗ Pσ̄(~t) if, and only if, there is a variable
renaming π such that ~tπ ∈ ~x[[σ̄]].

I prove Lemma 6.42 and Proposition 6.43 in parallel. The proofs rely on each other,
however they do so in a well-founded way: The proof of Proposition 6.43 for a given
substitution σ̄ uses Lemma 6.42 only for strict subexpressions of σ̄, and the proof of
Lemma 6.42 for σ̄ uses Proposition 6.43 for (possibly non-strict) subexpressions of σ̄.
In both proofs, I use existential quantifiers on the meta-level to denote the existence of
terms with a given property.

Proof of Lemma 6.42. Proceed by induction over the structure of the substitution ex-
pression. Throughout this proof, I will abbreviate the application of a substitution
{y1 7→ r1, . . . , yn 7→ rn} to a term tuple ~s as ~s{~y 7→ ~r}.

• Consider a substitution σ with N0
σ = {Pglue → Pσ(~xσ)}. If {P (~y) → Pσ(~xσ)} ∪

M `∗ Pσ(~s), then the last step in the derivation must have used the clause P (~y)→
Pσ(~xσ̄), i.e. M `∗ P (~r) for some ~r (for which without loss of generality var(~r) ∩
var(~xσ) ⊆ ~y) and ~s is of the form ~s = ~s1{~y 7→ ~r} for ~s1 = ~xσ. Quite obviously,
{→ Pσ(~xσ)} `∗ Pσ(~s1).

For the other direction assume that {→ Pσ(~xσ)} `∗ Pσ(~s1) and M `∗ P (~r). Then
clearly {P (~y)→ Pσ(~xσ)} ∪M `∗ Pσ(~s1){~y 7→ ~r}.

• In the case of a concatenation σ̄τ̄ with VRan(σ̄) = dom(τ̄) = ~z (cf. Lemma 6.38),
I make excessive use of the induction hypotheses (i.h.):

∃~s1, ~r. var(~r) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~r}
and Nσ̄τ̄ `∗ Pσ̄(~s1) and M `∗ P (~r)

⇐⇒ ∃~s1, ~r. var(~r) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~r}
and N0

σ̄ [Pτ̄ (~z)/Pglue] ∪Nτ̄ `∗ Pσ̄(~s1) and M `∗ P (~r)

i.h.⇐⇒ ∃~s1, ~r, ~s2,~t. var(~r) ∩ var(~s1) ⊆ ~y and var(~t) ∩ var(~s2) ⊆ ~z
and ~s = ~s1{~y 7→ ~r} and ~s1 = ~s2{~z 7→ ~t}
and Nσ̄ `∗ Pσ̄(~s2) and Nτ̄ `∗ Pτ̄ (~t) and M `∗ P (~r)

i.h.⇐⇒ ∃~s1, ~r, ~s2,~t. var(~r) ∩ var(~s1) ⊆ ~y and var(~t) ∩ var(~s2) ⊆ ~z
and ~s = ~s1{~y 7→ ~r} and ~s1 = ~s2{~z 7→ ~t}
and Nσ̄ `∗ Pσ̄(~s2) and Nτ̄ [P (~y)/Pglue] ∪M `∗ Pτ̄ (~t{~y 7→ ~r})

i.h.⇐⇒ N0
σ̄ [Pτ̄ (~z)/Pglue] ∪Nτ̄ [P (~y)/Pglue] ∪M `∗ Pσ̄(~s)

⇐⇒ N0
σ̄τ̄ [P (~y)/Pglue] ∪M `∗ Pσ̄(~s)

• In the case of a loop σ̄∗, let I(~t1) be the minimal number of times the clause
Pσ̄(~x) → Pσ̄∗(~x) ∈ Nσ̄∗ is needed in a derivation Nσ̄∗ `∗ Pσ̄∗(~t1), and let J(~t1) be

144



6.4 Generalized Substitutions as Clause Sets

the minimal number of times this clause is needed in a derivation N0
σ̄∗ [P (~y)/Pglue]∪

M `∗ Pσ̄∗(~t1), provided that such a derivation exists. If there is no such derivation,
then I(~t1) or J(~t1) is undefined.

Proceed by induction over I(~t1), showing that for all n, the following are equiva-
lent:

(i) N0
σ̄∗ [P (~y)/Pglue] ∪M `∗ Pσ̄∗(~t) and J(~t) = n

(ii) there are terms ~t1 and ~r such that ~t = ~t1{~x 7→ ~r} and Nσ̄∗ `∗ Pσ̄∗(~t1) and
M `∗ P (~r) and I(~t1) = n.

For I(~t1) = 0, the following equivalences hold:

∃~t1, ~r. var(~r) ∩ var(~t1) ⊆ ~y and ~t = ~t1{~y 7→ ~r}
and Nσ̄∗ `∗ Pσ̄∗(~t1) and M `∗ P (~r) and I(~t1) = 0

⇐⇒ ∃~t1, ~r. var(~r) ∩ var(~t1) ⊆ ~y and ~t = ~t1{~y 7→ ~r}
and N0

σ̄ [Pσ̄∗(~y)/Pglue] ∪ {Pσ̄∗(~y)} `∗ Pσ̄∗(~t1) and M `∗ P (~r)

⇐⇒ ∃~t1, ~r. var(~r) ∩ var(~t1) ⊆ ~y and ~t = ~t1{~y 7→ ~r}
and {Pσ̄∗(~y)} `∗ Pσ̄∗(~t1) and M `∗ P (~r)

i.h.⇐⇒ {P (~y)→ Pσ̄∗(~y)} ∪M `∗ Pσ̄∗(~t)
⇐⇒ N0

σ̄∗ [P (~y)/Pglue] ∪M `∗ Pσ̄∗(~t) and J(~t) = 0

For I(~t1) = n+1, let σ̄′ be a copy of σ̄, such that Nσ̄ and Nσ̄′ do not share any pred-
icate symbols. From Proposition 6.43, it follows that [[σ̄∗]]\ [[σ̄]] = [[σ̄∗σ′]]. In partic-
ular it follows that Nσ̄∗ `∗ Pσ̄∗(~t1) with I(~t1) > 0 if, and only if, Nσ̄∗σ̄′ `∗ Pσ̄∗(~t1),
and that Nσ̄∗σ̄′ [P (~y)/Pglue]∪M `∗ Pσ̄∗(~t) if, and only if, Nσ̄∗σ̄′ [P (~y)/Pglue]∪M `∗
Pσ̄∗(~t). The use of Proposition 6.43 for σ̄∗ is sound, since the proof of that propo-
sition uses the current lemma only for strict subexpressions (in this case: σ̄).

∃~t1, ~r. var(~r) ∩ var(~t1) ⊆ ~y and ~t = ~t1{~y 7→ ~r} and I(~t1) = n+ 1

and Nσ̄∗ `∗ Pσ̄∗(~t1) and M `∗ P (~r)

⇐⇒ ∃~t1, ~r. var(~r) ∩ var(~t1) ⊆ ~y and ~t = ~t1{~y 7→ ~r} and I(~t1) = n+ 1

and Nσ̄∗σ̄′ `∗ Pσ̄∗(~t1) and M `∗ P (~r)

⇐⇒ ∃~t1, ~r. var(~r) ∩ var(~t1) ⊆ ~y and ~t = ~t1{~y 7→ ~r} and I(~t1) = n+ 1

N0
σ̄∗ [Pσ̄′(~y)/Pglue] ∪Nσ̄′ `∗ Pσ̄∗(~t1) and M `∗ P (~r)

i.h.⇐⇒ ∃~t1, ~r, ~s1,~t2. var(~r) ∩ var(~t1) ⊆ ~y and var(~s1) ∩ var(~t2) ⊆ ~y
and ~t = ~t1{~y 7→ ~r} and ~t1 = ~t2{~y 7→ ~s1} and I(~t2) = n

and Nσ̄∗ `∗ Pσ̄∗(~t2) and Nσ̄′ `∗ Pσ̄′(~s1) and M `∗ P (~r)

145



6 Generic Superposition-based Decidability of Minimal Model Validity

i.h.⇐⇒ ∃~t1, ~r, ~s1,~t2. var(~r) ∩ var(~t1) ⊆ ~y and var(~s1) ∩ var(~t2) ⊆ ~y
and ~t = ~t1{~y 7→ ~r} and ~t1 = ~t2{~y 7→ ~s1} and I(~t2) = n

and Nσ̄∗ `∗ Pσ̄∗(~t2) and N0
σ̄′ [P (~y)/Pglue] ∪M `∗ Pσ̄′(~s1{~y 7→ ~r})

i.h.⇐⇒ ∃~t1, ~r, ~s1,~t2. var(~r) ∩ var(~t1) ⊆ ~y and var(~s1) ∩ var(~t2) ⊆ ~y
and ~t = ~t1{~y 7→ ~r} and ~t1 = ~t2{~y 7→ ~s1} and J(~t2) = n

and N0
σ̄∗ [Pσ̄′(~y)/Pglue] ∪N0

σ̄′ [P (~y)/Pglue] ∪M
`∗ Pσ̄∗(~t2{~y 7→ ~s1{~y 7→ ~r}})

i.h.⇐⇒ ∃~t1, ~r, ~s1,~t2. var(~r) ∩ var(~t1) ⊆ ~y and var(~s1) ∩ var(~t2) ⊆ ~y
and ~t = ~t1{~y 7→ ~r} and ~t1 = ~t2{~y 7→ ~s1} and J(~t2) = n

and N0
σ̄∗σ̄′ [P (~y)/Pglue] ∪M `∗ Pσ̄∗(~t2{~y 7→ ~s1{~y 7→ ~r}})

⇐⇒ J(~t) = n+ 1 and N0
σ̄∗ [P (~y)/Pglue] ∪M `∗ Pσ̄∗(~t)

• In the case of a disjunction σ̄1|σ̄2 with dom(σ̄1) = dom(σ̄2) = ~x, the two clause
sets Nσ̄1 and Nσ̄2 do not share any predicate symbols. The proof if the lemma in
this case proceeds as follows:

∃~s1, ~r. var(~r) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~r}
and M `∗ P (~r) and Nσ̄1|σ̄2

`∗ Pσ̄1|σ̄2
(~s1)

⇐⇒ ∃~s1, ~r. var(~r) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~r}
and M `∗ P (~r) and ∃i. Nσ̄i ∪ {Pσ̄i(~x)→ Pσ̄1|σ̄2

(~x)} `∗ Pσ̄1|σ̄2
(~s1)

i.h.⇐⇒ ∃~s1, ~r. var(~r) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~r}
and M `∗ P (~r) and ∃i. Nσ̄i `∗ Pσ̄i(~s1)

⇐⇒ ∃i. ∃~s1, ~r. var(~r) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~r}
and M `∗ P (~r) and Nσ̄i `∗ Pσ̄i(~s1)

i.h.⇐⇒ ∃i. N0
σ̄i [P (~y)/Pglue] ∪M `∗ Pσ̄i(~s)

i.h.⇐⇒ ∃i. N0
σ̄i [P (~y)/Pglue] ∪M ∪ {Pσ̄i(~x)→ Pσ̄1|σ̄2

(~x)} `∗ Pσ̄1|σ̄2
(~s)

⇐⇒ N0
σ̄1

[P (~y)/Pglue] ∪ {Pσ̄1(~x)→ Pσ̄1|σ̄2
(~x)}

∪N0
σ̄2

[P (~y)/Pglue] ∪ {Pσ̄2(~x)→ Pσ̄1|σ̄2
(~x)}) ∪M `∗ Pσ̄1|σ̄2

(~s)

⇐⇒ Nσ̄1|σ̄2
[P (~y)/Pglue] ∪M `∗ Pσ̄1|σ̄2

(~s)

This completes the proof. ♦

Proof of Proposition 6.43. I again proceed by structural induction on the substitution
expression. Whenever the symbols π and ρ occur in the proof, they denote variable
renamings.

146



6.4 Generalized Substitutions as Clause Sets

• The validity of the proposition is obvious for substitutions.

• In the case of a concatenation σ̄τ̄ with dom(σ̄) = ~x and dom(τ̄) = ~y, the following
equality holds:

{~s |Nσ̄τ̄ `∗ Pσ̄(~s)}
=
{
~s
∣∣N0

σ̄ [Pτ̄ (~y)/Pglue] ∪Nτ̄ `∗ Pσ̄(~s)
}

6.42
= {~s | ∃~t, ~s1. var(~t) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~t}

and Nτ̄ `∗ Pτ̄ (~t) and Nσ̄ `∗ Pσ̄(~s1)}
i.h.
= {~s | ∃~t, ~s1, π, ρ. var(~t) ∩ var(~s1) ⊆ ~y and ~s = ~s1{~y 7→ ~t}

and ~tπ ∈ ~y[[τ̄ ]] and ~s1ρ ∈ ~x[[σ̄]]}
= {~s | ∃π. ~sπ ∈ ~x[[σ̄τ̄ ]]}

• In the case of a loop σ̄∗ with dom(σ̄) = ~x, I show inductively that ~x[[σ̄n]] is the
subset of {~s |Nσ̄∗ `∗ Pσ̄∗(~s)} of those term tuples ~s for which n is the minimal
number of times the iteration clause Pσ̄(~x) → Pσ̄∗(~x) is needed in a derivation
Nσ̄∗ `∗ Pσ̄∗(~s), denoted I(~s) = n. For I(~s) = 0, the following equality holds:

{~s |Nσ̄∗ `∗ Pσ̄∗(~s) and I(~s) = 0}
=
{
~s
∣∣N0

σ̄ [Pσ̄∗(~x)/Pglue] ∪ {→ Pσ̄∗(~x)} `∗ Pσ̄∗(~s)
}

= {~s | {→ Pσ̄∗(~x)} `∗ Pσ̄∗(~s)}
=
{
~s
∣∣ ∃π. ~sπ ∈ ~x[[σ̄0]]

}
For I(~s) = n + 1, split a derivation Nσ̄∗ `∗ Pσ̄∗(~s) at the point where the clause
Pσ̄(~x)→ Pσ̄∗(~x) is used for the last time:

{~s |Nσ̄∗ `∗ Pσ̄∗(~s) and I(~s) = n+ 1}
= {~s | ∃~t. Nσ̄∗ `∗ Pσ̄∗(~t) and I(~t) = n

and N0
σ̄ [Pσ̄∗(~x)/Pglue] ∪ {→ Pσ̄∗(~t)} `∗ Pσ̄(~s)}

i.h.
= {~s | ∃~t, π. ~tπ ∈ ~x[[σ̄n]]

and N0
σ̄ [Pσ̄∗(~x)/Pglue] ∪ {→ Pσ̄∗(~t)} `∗ Pσ̄(~s)}

6.42
= {~s | ∃~t, ~s1, π. var(~t) ∩ var(~s1) ⊆ ~x and ~s = ~s1{~x 7→ ~t}

and ~tπ ∈ ~x[[σ̄n]] and Nσ̄ `∗ Pσ̄(~s1)}
i.h.
= {~s | ∃~t, ~s1, π, ρ. var(~t) ∩ var(~s1) ⊆ ~x and ~s = ~s1{~x 7→ ~t}

and ~tπ ∈ ~x[[σ̄n]] and ~s1ρ ∈ ~x[[σ̄]]}
= {~s | ∃π. ~sπ ∈ ~x[[σ̄n+1]]}

• Finally, in the case of a disjunction σ̄1|σ̄2 with domains dom(σ̄1) = dom(σ̄2) = ~x
(cf. Lemma 6.39), the following equality holds, where I use that Nσ̄1 and Nσ̄2 do

147



6 Generic Superposition-based Decidability of Minimal Model Validity

not share any predicate symbols:{
~s
∣∣Nσ̄1|σ̄2

`∗ Pσ̄(~s)
}

= {~s | Nσ̄1 ∪ {Pσ̄1(~x)→ Pσ̄(~x)} `∗ Pσ̄(~s)

or Nσ̄2 ∪ {Pσ̄2(~x)→ Pσ̄(~x)} `∗ Pσ̄(~s)}
6.42
= {~s | Nσ̄1 `∗ Pσ̄1(~s) or Nσ̄2 `∗ Pσ̄2(~s)}
i.h.
= {~s | ∃π. ~sπ ∈ ~x[[σ̄1]] or ~sπ ∈ ~x[[σ̄2]]}
= {~s | ∃π. ~sπ ∈ ~x[[σ̄1]] ∪ ~x[[σ̄2]]}
= {~s | ∃π. ~sπ ∈ ~x[[σ̄1|σ̄2]]}

This completes the proof. ♦

Since Resolution is complete for first-order reasoning over Horn clauses, the term
tuples ~t for which Pσ̄(~t) is entailed by Nσ̄ are exactly those covered by σ̄:

Corollary 6.44 (Equivalence of σ̄ and Nσ̄)
Let σ̄ be a derivation substitution. Then Nσ̄ |= Pσ̄(~t) if, and only if, σ̄ is covering for
{~t}, i.e. the set

{
~t
∣∣Nσ̄ |= Pσ̄(~t)

}
is the maximal set for which σ̄ is covering.

6.4.2 Predicate Completion for Substitution Expressions

Now that it is clear how to transform σ̄ into an equivalent set Nσ̄ of Horn clauses, I
will concentrate on how to decide whether Pσ̄ is the total relation in the minimal model
of Nσ̄. To do so, I will transform I will this problem into an emptiness problem. This
transformation will again employ predicate completion.

Since I have shown that Nσ̄ is universally reductive if σ̄ is a derivation substitution
(Proposition 6.41), predicate completion is applicable to Nσ̄. However, as already men-
tioned, the resulting clause set usually does not inherit desirable properties like being
Horn.

Example 6.45
The clause set {P (x) → Q(x), R(x) → Q(x)} is completed by the non-Horn clause
Q(x) → P (x), R(x). The clause set {→ S(x, x)} is completed by S(x, y) → x'y, a
clause that is not even predicative; if the sort of the variable x contains infinitely many
ground terms, then the clause can also not be represented by finitely many predicative
clauses.

For derivation substitutions, there is a simple trick to alleviate this complication,
namely to express, intuitively, the completion as a set of clauses over negated atoms:

Definition 6.46 (Negating Prediacte Completion and Ň)
Let Σ = (P,F) be a signature and let N be a finite set of Horn clauses over Σ. Let
P̌ = {P̌ : S1, . . . , Sn | (P : S1, . . . , Sn) ∈ P} be a set of fresh predicate symbols.

The Negating Predicate Completion Algorithm NPC works as follows, where the decisive
difference to PC lies in the additional step (iii):

148



6.4 Generalized Substitutions as Clause Sets

(i) For P ∈ P, let NP ⊆ N be the set of clauses in N of the form Γ→ P (~t). Combine
all these clauses into the single formula ∀~x.(φP → P (~x)) where

φP = ∃~y.
∨

Γ→P (~t)∈NP

(x1't1 ∧ . . . ∧ xn'tn ∧
∧
A∈Γ

A) ,

the yi are the variables appearing in NP , and the xj are fresh variables.

(ii) In the interpretation IN , the formula ∀~x.(φP → P (~x)) is equivalent to the formula
∀~x.(¬φP → ¬P (~x)). Transform ¬φP using the algorithm PDU into an equivalent
formula φ′P that does not contain any universal quantifiers.

(iii) Replace every literal ¬Q(~s) in φ′P by Q̌(~s), resulting in a formula φ̌P .

(iv) Write the formula ∀~x.(φ̌P → P̌ (~x)) as a set finite ŇP of clauses over (P̌,F).

(v) Let Ň be the union of all sets ŇP , P ∈ P.

In general, the result of the adapted completion procedure is a set of clauses of the
form Γ→ ∆, P̌ (~t), where ∆ is a multiset of (non-predicative) equations.

When all appearing substitutions have a one-element domain and are linear, however,
the clauses in Ň do not contain any equations, and they fall into a class for which the
emptiness of Ň is decidable by (unconstrained) Ordered Resolution (Theorem 6.49).

Proposition 6.47 (Clauses in the Completion)
Let σ̄ be a derivation substitution such that all substitutions appearing in σ̄ are linear.
For the predicates in Nσ̄, the predicate completion algorithm NPC computes clauses of
the following types:

(i) → P̌ (~t)

(ii) P̌1(~x)→ P̌ (~t)

(iii) P̌1(~x), P̌2(~x)→ P̌ (~x)

The positive literal of each computed clause is linear.

Proof. A substitution predicate Pσ is defined by a single clause that is either of the
shape → Pσ(~t) or Pτ̄ (~x)→ Pσ(~t). Its completion consists of a finite set of linear clauses
of the form→ P̌σ(~s) describing the term tuples not covered by ~t and, in the second case,
additionally the clause P̌τ̄ (~x)→ P̌σ(~t).

A loop predicate Pσ̄∗ is defined by the clause Pσ̄(~x)→ Pσ̄∗(~x) and either → Pσ̄∗(~x) or
Pτ̄ (~x)→ Pσ̄∗(~x). The completion is the empty set in the first case (as Pσ̄∗ is total) and
{P̌σ̄(~x), P̌τ̄ (~x)→ P̌σ̄∗(~x)} in the second case.

The two clauses defining a disjunction predicate Pσ̄1|σ̄2
are completed by the single

clause P̌σ̄1(~x), P̌σ̄2(~x)→ P̌σ̄1|σ̄2
(~x). ♦

The fact that all negative literals contain only variables is inherited from Nσ̄. That
no equations appear is due to the linearity of the positive literals in Nσ̄.

149



6 Generic Superposition-based Decidability of Minimal Model Validity

Example 6.48
In Example 6.36, the following clause set Nσ∗τ was derived:

→ Pτ (0)

Pσ∗τ (x)→ Pσ(s(x))

Pτ (x)→ Pσ∗τ (x)

Pσ(x)→ Pσ∗τ (x)

Hence Ňσ∗τ consists of the following clauses:

→ P̌τ (s(x))

→ P̌σ(0)

P̌σ∗τ (x)→ P̌σ(s(x))

P̌τ (x), P̌σ(x)→ P̌σ∗τ (x)

In this example, all appearing predicates are monadic. When there is more than one
existential variable in the initial existential query problem or when the signature contains
function symbols of arity at least two, predicates of higher arity appear also in Nσ and
Ňσ.

Theorem 6.49 (Decidability of Coverage)
Let σ̄ be a derivation substitution over a signature Σ such that all substitutions in σ̄
have a unary domain and are linear. It is decidable whether σ̄ is covering.

Proof. Translate σ̄ into a clause set Nσ̄. All predicates in Nσ̄ are unary. By Proposi-
tion 6.47, the resulting clause set Ňσ̄ defining the completion of all appearing predicates
again contains only clauses of the form P̌1(x), . . . , P̌n(x) → P̌ (t). Weidenbach (1999)
showed that such a clause set is equivalent to a so-called sort theory , a clause set in
which additionally all clauses are shallow. For sort theories, emptiness is decidable by
ordered resolution (Weidenbach, 1999; Seidl and Verma, 2004). Emptiness of P̌σ̄ in IŇσ̄
in turn is equivalent to totality of Pσ̄ in INσ̄ (Theorem 3.34), which is equivalent to the
coverage of the substitution expression σ̄ (Corollary 6.44). ♦

Example 6.50
I shortly illustrate the final step of the proof using the running example (Examples 6.21,
6.34 and 6.48). Here, all clauses in Ňσ∗τ are already shallow. The predicate Pσ∗τ is
interpreted as the empty relation in IŇσ∗τ if, and only if, Ňσ∗τ 6|=Ind ∃x.P̌σ∗(x).

Choose an ordering � on atoms such that Pσ∗τ (x) � Pτ (x), Pσ(x) and Pσ(s(x)) �
Pσ∗τ (x) and saturate Ňσ∗τ ∪ {P̌σ∗τ (x) →} using Ordered Resolution. The derivation

150



6.5 Decidability of Minimal Model Validity

runs as follows:

clauses in Ňσ∗τ : 1 : → P̌τ (s(x))

2 : → P̌σ(0)

3 : P̌σ∗τ (x)→ P̌σ(s(x))

4 : P̌τ (x), P̌σ(x)→ P̌σ∗τ (x)

negated query: 5 : P̌σ∗τ (x)→
resolve(4,5) = 6 : P̌τ (x), P̌σ(x)→
resolve(1,6) = 7 : P̌σ(s(x))→
resolve(2,6) = 8 : P̌τ (0)→

At this point, the clause set is saturated. It is consistent, so Ňσ∗τ 6|= ∃x.P̌σ∗(x). Since
first-order and minimal model validity coincide for Horn clause sets and positive exis-
tential queries, this implies that P̌ is empty in the minimal model of Ňσ∗τ . So σ∗τ is
covering and N |=Ind C.

6.5 Decidability of Minimal Model Validity

As a combination of the complete and terminating calculus ORM for constrained clauses
and the completion-based treatment of the substitution expressions that can appear
during saturation, the following decidability result emerges:

Theorem 6.51 (Decidability of Minimal Model Validity)
Let N be a set of predicative Horn clauses and let Aij be predicative atoms over a
signature Σ, where

(i) all function symbols in Σ are at most unary,

(ii) all positive literals in N are linear, and

(iii) N ∪ {A11, . . . , A1m1 →, . . . , An1, . . . , Anmn →} belongs to a class that can be
finitely saturated by ordered resolution, where deletion steps are restricted to the
deletion of variants and tautologies.

Let {x, y1, . . . , ym} be the set of variables that appear in the Aij . It is decidable whether
N |=Ind ∀x.∃y1, . . . , ym.

∨
i

∧
j Aij .

Proof. Corollary 6.26 and Theorem 6.32 imply that the constrained clause set N ∪
{~v'~x ‖A11, . . . , A1m1 →, . . . , ~v'~x ‖An1, . . . , Anmn →} can be finitely saturated by ORM,
such that the finitely many deduced regular constraint clauses v'xσ̄1 ‖�, . . . , v'xσ̄k ‖�
with empty clausal part in the saturated set correspond to a substitution expression
σ̄ = σ̄1| . . . |σ̄k that is covering if, and only if, N |=Ind ∀x.∃y1, . . . , ym.

∨
i

∧
j Aij .

Since the domain dom(σ̄) = {x} of the derivation substitution σ̄ contains only one
element and Σ contains only unary function symbols, the domain of all substitutions
appearing in σ̄ has cardinality 1. These substitutions are also linear because all positive
literals in N are linear and hence the most general unifiers appearing in each resolution
step are linear.

Hence coverage of σ̄ is decidable by Theorem 6.49. ♦

151



6 Generic Superposition-based Decidability of Minimal Model Validity

Example 6.52
Reconsider the partial definition of the usual ordering on the naturals given by the clause
set NGT = {→ GT(s(0), 0), GT(x, y)→ GT(s(x), s(y))} over the signature ΣGT =
({GT}, {s, 0}), as shown in the introduction. In Example 4.27, I presented a first at-
tempt at proving with SFD that NGT |=ΣGT

∀x.GT(s(x), x). This attempt failed due to
the non-termination of saturation.

I will now use the method described in this chapter to prove fully automatically that
the proposition ∀x.GT(s(x), x) holds in the minimal model of NGT. Proposition 4.26
then implies that it also holds in every Herbrand model of NGT over ΣGT.

A possible saturation of NGT ∪ {v'x ‖GT(s(x), x)} with ORM runs as follows, where
τ = {x 7→ 0} and σ = {x 7→ s(x)}:

clauses in N : 1 : ‖ → GT(s(0), 0)
2 : ‖ GT(x, y) → GT(s(x), s(y))

negated conjecture: 3 : v'x ‖ GT(s(x), x) →
Resolution(1,3) = 4 : v'xτ ‖ �
Resolution(2,3) = 5 : v'xσ ‖ GT(s(x), x) →

Melting(3,5) = 6 : v'xσ∗ ‖ GT(s(x), x) →
Resolution(1,6) = 7 : v'xσ∗τ ‖ �

This set of regular constraint clauses is saturated, so it remains to show that the regular
constraint σ∗τ is covering. (The regular constraint τ need not be considered because
clause 4 has been replaced by 7, and so [[τ ]] is contained in [[σ∗τ ]].) This proof has been
the subject of Examples 6.34, 6.48 and 6.50.

6.6 Conclusion

I have shown that the validity of a closed positive formula ∀∃∗.
∨
i

∧
j Aij in the minimal

model of a predicative Horn clause set N is decidable whenever

(i) all function symbols in Σ are at most unary,

(ii) N is a finite set of predicative Horn clauses and all positive literals in N are linear,
and

(iii) N ∪ {A11, . . . , A1m1 →, . . . , An1, . . . , Anmn →} belongs to a class that can be
finitely saturated by Ordered Resolution, where deletion steps are restricted to the
deletion of variants and tautologies.

Note that such problems can in general not be represented by a class of (unconstrained
or constrained) tree automata for which emptiness is decidable (Doner, 1970; Thatcher
and Wright, 1968; Bogaert and Tison, 1992; Jacquemard et al., 2006), so this result
cannot be mimicked using tree automata.

My proof is constructive and based on the Ordered Resolution Calculus with Melting
ORM and a variant of predicate completion. Its first key ingredient are an extended
notion of constraints, which can represent an infinite set of basic constraints, and the
Melting rule that prevents the non-termination of Ordered Resolution (or in general of

152



6.6 Conclusion

the algorithms SFD or ORFD) on the relevant fragment of constrained clauses, and allows
me to reduce the problem to a simpler problem of minimal model validity (in particular:
an emptiness problem of the form N |=Ind ∀x.¬P (x)), where the clause set N is further
restricted to clauses with only monadic predicates and antecedents in which every atom
is of the form P (x) for a variable x.

Extensions of the approach might include a relaxation of its side conditions. Although
both the superposition calculus SFD and the completion procedure PC are also applicable
to clauses containing equality literals, it is not obvious how to extend this treatment of
equality also to clauses containing generalized substitutions. The main problem here is
that term rewriting, which is used in PC, cannot easily be extended to the rewriting of
substitution expressions.

However, since both ORM and the PC work equally well on ∀∗∃∗ queries, on clauses over
an arbitrary signature, and on clauses containing non-linear positive atoms, the reduction
to an emptiness problem is also possible in these extended settings. The resulting set
Ň may contain both non-monadic predicates and equational atoms. It is a natural next
step to explore under which conditions these extensions lead to predicates P̌ that are
nevertheless defined in such a way that emptiness remains decidable.

153





7 Conclusion

7.1 Resumé

In this thesis, I extended the state of the art concerning the applicability of disunifi-
cation and predicate completion procedures, and developed saturation-based decision
procedures for fixed domain and minimal model validity. In detail, my contributions are
as follows:

• I extended disunification, i.e. the quantifier elimination-based computation of so-
lutions of equational formulas, to so-called ultimately periodic interpretations, in
which equations of the form sl(0)'sk(0) hold. I showed that the validity of arbi-
trary equational formulas can be decided in such interpretations.

• I gave the first formal proof that disunification provides a means to complete
predicates with respect to Herbrand interpretations with free constructors. I also
extended predicate completion to ultimately periodic interpretations given by sets
of universally reductive predicative clauses and equations of the form sl(x)'sk(x),
and I proved a unique Herbrand model property for completions of saturated sets
of universally reductive predicative clauses.

• I introduced the concept of constrained clauses that allow for a treatment of ex-
istential variables without Skolemization and employed them for use in the refu-
tationally complete superposition-based calculi SFD and SFD+ for reasoning with
respect to fixed domains. Those calculi are applicable to clause sets that do not
fulfill any syntactic restrictions, and they are the first superposition calculi to han-
dle an ∃∗∀∗ quantifier alternation. Extended by a generic induction rule, which
results in the calculus IS, the calculi can also be used for reasoning with respect
to minimal models.

• I presented a translation of DIG (and ARM) representations of interpretations into
the language of constrained clauses. Based on the calculi SFD and SFD+, I developed
the resolution calculus ORFD that spawns a variety of decision procedures for these
representations. In particular, I showed that the following problems are decidable
for DIG-represented interpretations I:

– Equivalence of different DIG representations.

– Validity of ground atoms in I.

– Validity in I of a range of classes of formulas of the form ∀~x.∃~y.φ or ∃~x.∀~y.φ
with quantifier-free φ.

155



7 Conclusion

– For ARMs, validity in I of all formulas of the form ∀~x.∃~y.φ or ∃~x.∀~y.φ with
quantifier-free φ.

• I proved a generic result reducing minimal model validity to (superposition-based)
first-order validity: I have shown that the validity of a closed formula ∀∃∗.

∨
i

∧
j Aij

in the minimal model of a predicative Horn clause set N is decidable whenever

(i) all function symbols in Σ are at most unary,

(ii) N is a finite set of predicative Horn clauses and all positive literals in N are
linear, and

(iii) N ∪{A11, . . . , A1m1 →, . . . , An1, . . . , Anmn →} belongs to a class that can be
finitely saturated by Ordered Resolution, where clause deletion is restricted
to the deletion of variants and tautologies.

The basis of this result is an extended notion of constraints that do not only contain
equations between terms but also feature regular expressions of substitutions, e.g.
in the form v'x{x 7→ s(x)}∗, which enables the termination of saturation. The
termination comes at a cost: In the setting of an extended constraint language, it
is not obvious when a saturated set is satisfiable. To resolve this issue, I provide a
reduction of this problem to a problem of minimal model validity that I prove to
be decidable.

• One of the features of the presented decision procedures is that they can be im-
plemented using general purpose first-order theorem provers and, apart from dis-
unification, do not require specialized tools.

The algorithms DU/PDU, PC and ORFD have been implemented on top of the auto-
mated first-order theorem prover Spass. The implementation is available from the
Spass homepage (www.spass-prover.org/prototypes/). To my knowledge, this
implementation constitutes the first publicly available implementation of disunifi-
cation and predicate completion.

7.2 Outlook

There are several starting points for further research. In the area of disunification and
predicate completion, the most obvious question is if there are more general classes
of interpretations for which a correct and terminating disunification procedure can be
defined. There are other attempts at finding such classes (Comon, 1988; Fernández,
1992), but decision procedures are only known for very restricted classes of equations
like associativity and commutativity. There is also a more recent ansatz by Pichler
(2003) who presented a disunification algorithm that is optimal in terms of worst case
complexity. It would be interesting to see if the results of this thesis carry over to this
algorithm.

The most severe restriction to predicate completion, the universal reductiveness con-
dition on the input clauses, can probably not be lifted. The reason is that a clause
like P (x) → Q(y) would have to be completed by a formula like Q(y) → ∃x.P (x), but

156

www.spass-prover.org/prototypes/


7.2 Outlook

for infinite sorts it does not seem possible to transform such a completion into a set of
clauses. Even the constrained clauses developed in this work do not help because of the
order of the quantifier alternation.

There are multiple prospects of further increasing the impact of the calculi SFD, IS,
ORFD and ORM to derive more decidability results. For example, the ultimately periodic
interpretations that arise as minimal models of predicative linear time temporal logic
are very close to interpretations that are represented by DIGs. An extension of ORFD to
such interpretations is easy (and in fact included in my implementation) and can semi-
decide the satisfiability of queries similar to the ones that I have shown to be decidable
for DIGs. Along the same lines, a combination of predicate completion and ORFD might
provide a decision procedure for larger classes of interpretations.

The results in Chapter 6 are not yet completely satisfactory because of the restriction
to signatures with at most unary function symbols. In particular, the calculus ORM

operates on and is terminating for clauses over a signature that does not bear this
restriction, and the reduction of the coverage of substitution expressions to an emptiness
problem is also independent of the signature. Despite considerable work invested in
solving this emptiness problem, it is yet unknown whether this problem is actually
decidable.

Finally, it would be interesting to see in how far the calculus SFD and its derivatives
are applicable to verification problems. In the analysis of security protocols, for example,
the intended semantics is usually not the first-order semantics but a fixed domain seman-
tics: Attacks that use non-signature symbols can be eliminated on a syntactical basis
and are unable to undermine security. While there are attempts at protocol verification
using interactive provers (e.g. Paulson, 1998) or terminating but incomplete automatic
methods (Monniaux, 2003; Goubault-Larrecq, 2000), a fully automated verification pro-
cedure that is both terminating and complete would have obvious advantages and the
presented calculi could play a role in this context.

157





Bibliography

Franz Baader and Wayne Snyder. Unification theory. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 8, pages
445–532. Elsevier and MIT Press, 2001.

Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with
simplification. In Mark E. Stickel, editor, Proceedings of the 10th International Con-
ference on Automated Deduction, CADE-10, volume 449 of Lecture Notes in Computer
Science, pages 427–441. Springer, 1990.

Leo Bachmair and Harald Ganzinger. Completion of first-order clauses with equality by
strict superposition. In Stéphane Kaplan and Mitsuhiro Okada, editors, Proceedings of
the 2nd International Workshop on Conditional and Typed Rewriting, volume 516 of
Lecture Notes in Computer Science, pages 162–180, Montreal, Canada, 1991. Springer.

Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.
Revised version of Technical Report MPI-I-91-208, 1991.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1, chap-
ter 2, pages 19–99. Elsevier and MIT Press, 2001.

Leo Bachmair and David A. Plaisted. Associative path orderings. In Jean-Pierre Jouan-
naud, editor, Proceedings of the First International Conference on Rewriting Tech-
niques and Applications, RTA-85, volume 202 of Lecture Notes in Computer Science,
pages 241–254. Springer, 1985.

Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without failure.
In Hassan Aı̈t-Kaci and Maurice Nivat, editors, Rewriting Techniques, volume 2 of
Resolution of Equations in Algebraic Structures, chapter 1, pages 1–30. Academic
Press, New York, 1989.

Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simplifica-
tion as a decision procedure for the monadic class with equality. In Georg Gottlob,
Alexander Leitsch, and Daniele Mundici, editors, Proceedings of the Third Kurt Gödel
Colloquium on Computational Logic and Proof Theory, KGC ’93, volume 713 of Lec-
ture Notes in Computer Science, pages 83–96, London, UK, August 1993. Springer.

159



Bibliography

Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In Franz
Baader, editor, Proceedings of the 19th International Conference on Automated Deduc-
tion, CADE-19, volume 2741 of Lecture Notes in Computer Science, pages 350–364.
Springer, 2003.

Bruno Bogaert and Sophie Tison. Equality and disequality constraints on direct sub-
terms in tree automata. In Alain Finkel and Matthias Jantzen, editors, 9th Annual
Symposium on Theoretical Aspects of Computer Science, STACS’92, volume 577 of
Lecture Notes in Computer Science, pages 161–171. Springer, 1992.

Adel Bouhoula and Florent Jacquemard. Automated induction with constrained tree au-
tomata. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Pro-
ceedings of the 4th International Joint Conference on Automated Reasoning, IJCAR
2008, volume 5195 of Lecture Notes in Computer Science, pages 539–554. Springer,
2008.

Adel Bouhoula and Jean-Pierre Jouannaud. Automata-driven automated induction. In
Twelfth Annual IEEE Symposium on Logic in Computer Science, LICS’97, pages 14–
25. IEEE Computer Society Press, 1997.

Adel Bouhoula and Michaël Rusinowitch. Implicit induction in conditional theories.
Journal of Automated Reasoning, 14(2):189–235, 1995.

Adel Bouhoula, Emmanuel Kounalis, and Michaël Rusinowitch. SPIKE, an automatic
theorem prover. In Andrei Voronkov, editor, Proceedings of the 3rd International
Conference on Logic Programming and Automated Reasoning, LPAR’92, volume 624
of Lecture Notes in Computer Science, pages 460–462. Springer, 1992.

Adel Bouhoula, Emmanuel Kounalis, and Michaël Rusinowitch. Automated mathemat-
ical induction. Journal of Logic and Computation, 5(5):631–668, 1995.

Daniel Brand. Proving theorems with the modification method. SIAM Journal on
Computing, 4(4):412–430, 1975.

Ricardo Caferra and Nicolas Zabel. A method for simultaneous search for refutations
and models by equational constraint solving. Journal of Symbolic Computation, 13
(6):613–642, 1992.

Ricardo Caferra, Alexander Leitsch, and Nicholas Peltier. Automated Model Building,
volume 31 of Applied Logic Series. Kluwer, 2004.

Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors, Logic
and Data Bases, pages 293–322, New York, 1977. Plenum Press.

Alain Colmerauer. Equations and inequations on finite and infinite trees. In Proceedings
of the International Conference on Fifth Generation Computer Systems, FGCS, pages
85–99, 1984.

160



Bibliography

Hubert Comon. Unification et Disunification: Théorie et applications. PhD thesis,
Institut National Polytechnique de Grenoble, July 1988.

Hubert Comon. Disunification: A survey. In Jean-Louis Lassez and Gordon D. Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson, pages 322–359. MIT
Press, Cambridge, MA, 1991.

Hubert Comon. Inductionless induction. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, volume 1, chapter 14, pages 913–962.
Elsevier and MIT Press, 2001.

Hubert Comon and Catherine Delor. Equational formulae with membership constraints.
Information and Computation, 112(2):167–216, 1994.

Hubert Comon and Florent Jacquemard. Ground reducability is exptime-complete. In
Twelfth Annual IEEE Symposium on Logic in Computer Science, LICS’97, pages 26–
34. IEEE Computer Society Press, 1997.

Hubert Comon and Pierre Lescanne. Equational problems and disunification. Journal
of Symbolic Computation, 7(3-4):371–425, 1989.

Hubert Comon and Robert Nieuwenhuis. Induction = I-axiomatization + first-order
consistency. Information and Computation, 159(1/2):151–186, May 2000.

Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Sci-
ence, 17:279–301, 1982.

John Doner. Tree acceptors and some of their applications. Journal of Computer and
System Sciences, 4(5):406–451, 1970.

Stephan Falke and Deepak Kapur. Inductive decidability using implicit induction.
In Miki Hermann and Andrei Voronkov, editors, Proceedings of the 13th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR ’06), Phnom Penh, Cambodia, volume 4246 of Lecture Notes in Artificial
Intelligence, pages 45–59. Springer, 2006.

Christian G. Fermüller and Alexander Leitsch. Hyperresolution and automated model
building. Journal of Logic and Computation, 6(2):173–203, 1996.

Christian G. Fermüller and Reinhard Pichler. Model representation via contexts and
implicit generalizations. In Robert Nieuwenhuis, editor, Proceedings of the 20th In-
ternational Conference on Automated Deduction, CADE-20, volume 3632 of Lecture
Notes in Computer Science, pages 409–423. Springer, 2005.

Christian G. Fermüller and Reinhard Pichler. Model representation over finite and
infinite signatures. Journal of Logic and Computation, 17(3):453–477, 2007.

Maribel Fernández. Narrowing based procedures for equational disunification. Applicable
Algebra in Engineering, Communication and Computing, 3:1–26, 1992.

161



Bibliography

Harald Ganzinger and Hans De Nivelle. A superposition decision procedure for the
guarded fragment with equality. In Proceedings of the 14th Annual IEEE Symposium
on Logic in Computer Science, pages 295–305. IEEE Computer Society Press, 1999.

Harald Ganzinger and Jürgen Stuber. Inductive theorem proving by consistency for first-
order clauses. In Johannes Buchmann, Harald Ganzinger, and Wolfgang Paul, editors,
Informatik - Festschrift zum 60. Geburtstag von Günter Hotz, pages 441–462. Teubner,
1992. Also in Proceedings of the Third International Workshop on Conditional Term
Rewriting Systems, CTRS’92, LNCS 656, pages 226–241.

Jürgen Giesl and Deepak Kapur. Deciding inductive validity of equations. In Franz
Baader, editor, Proceedings of the 19th International Conference on Automated De-
duction, CADE-19, volume 2741 of Lecture Notes in Computer Science, pages 17–31.
Springer, 2003.

Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme. Monatshefte für Mathematik und Physik, 38(1):173–198, December
1931.

Joseph A. Goguen. How to prove algebraic inductive hypotheses without induction.
In Wolfgang Bibel and Robert A. Kowalski, editors, Proceedings of the 5th Interna-
tional Conference on Automated Deduction, CADE-5, volume 87 of Lecture Notes in
Computer Science, pages 356–373. Springer, 1980.

Warren D. Goldfarb. Jacques Herbrand: Logical Writings. Harward University Press,
Cambridge, 1971.

Georg Gottlob and Reinhard Pichler. Working with ARMs: Complexity results on
atomic representations of herbrand models. Information and Computation, 165(2):
183–207, 2001.

Jean Goubault-Larrecq. A method for automatic cryptographic protocol verification.
In José D. P. Rolim, editor, IPDPS Workshops, volume 1800 of Lecture Notes in
Computer Science, pages 977–984. Springer, 2000.

Jacques Herbrand. Recherches sur la théorie de la démonstration. Travaux de la
Société des Sciences et des Lettres de Varsovie, Classe III Sciences Mathematiques
et Physiques, 33, 1930. Translated in Goldfarb (1971).

Thomas Hillenbrand and Christoph Weidenbach. Superposition for finite domains. Re-
search Report MPI–I–2007–RG1–002, Max-Planck Institute for Informatics, Saar-
brücken, Germany, April 2007.

Matthias Horbach. Disunification for ultimately periodic interpretations. In Proceedings
of the 16th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR-16, Lecture Notes in Computer Science. Springer, April 2010.
to appear.

162



Bibliography

Matthias Horbach and Christoph Weidenbach. Superposition for fixed domains. In
Michael Kaminski and Simone Martini, editors, Proceedings of the 17th Annual Con-
ference of the European Association for Computer Science Logic, CSL 08, volume 5213
of Lecture Notes in Computer Science, pages 293–307, Berlin / Heidelberg, September
2008. Springer.

Matthias Horbach and Christoph Weidenbach. Decidability results for saturation-based
model building. In Renate Schmidt, editor, Proceedings of the 22nd International
Conference on Automated Deduction, CADE-22, volume 5663 of Lecture Notes in
Artificial Intelligence, pages 404–420. Springer, August 2009a.

Matthias Horbach and Christoph Weidenbach. Deciding the inductive validity of ∀∃∗
queries. In Erich Grädel and Reinhard Kahle, editors, Proceedings of the 18th Annual
Conference of the European Association for Computer Science Logic, CSL 2009, vol-
ume 5771 of Lecture Notes in Computer Science, pages 332–347, Berlin / Heidelberg,
September 2009b. Springer.

Matthias Horbach and Christoph Weidenbach. Deciding the inductive validity of ∀∃∗
queries. Research Report MPI–I–2009–RG1–001, Max-Planck Institute for Informat-
ics, Saarbrücken, Germany, May 2009c.

Matthias Horbach and Christoph Weidenbach. Decidability results for saturation-based
model building. Research Report MPI–I–2009–RG1–004, Max-Planck Institute for
Informatics, Saarbrücken, Germany, December 2009d.

Matthias Horbach and Christoph Weidenbach. Superposition for fixed domains. Research
Report MPI–I–2009–RG1–005, Max-Planck Institute for Informatics, Saarbrücken,
Germany, October 2009e.

Matthias Horbach and Christoph Weidenbach. Superposition for fixed domains. ACM
Transactions on Computational Logic, 2010. to appear.

Jieh Hsiang and Michaël Rusinowitch. On word problems in equational theories. In
Thomas Ottmann, editor, Proceedings of the 14th International Colloquium on Au-
tomata, Languages and Programming, ICALP’87, volume 267 of Lecture Notes in
Computer Science, pages 54–71, Karlsruhe, Germany, July 1987.

Gérard P. Huet and Jean-Marie Hullot. Proofs by induction in equational theories
with constructors. In Proceedings of the 21st Annual Symposium on Foundations of
Computer Science, FOCS, pages 96–107. IEEE Computer Society Press, 1980.

Florent Jacquemard, Christoph Meyer, and Christoph Weidenbach. Unification in exten-
sions of shallow equational theories. In Tobias Nipkow, editor, Rewriting Techniques
and Applications, 9th International Conference, RTA-98, volume 1379 of Lecture Notes
in Computer Science, pages 76–90. Springer, 1998.

163



Bibliography

Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Tree automata with
equality constraints modulo equational theories. In Proceedings of the 3rd Interna-
tional Joint Conference on Automated Reasoning, IJCAR 2006, volume 4130 of Lec-
ture Notes in Computer Science, pages 557–571. Springer, 2006.

Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: A
rule-based survey of unification. In Jean-Louis Lassez and Gordon Plotkin, editors,
Computational Logic - Essays in Honor of Alan Robinson, pages 257–321. MIT Press,
1991.

Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set
of equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.

Deepak Kapur and Mahadevan Subramaniam. Extending decision procedures with in-
duction schemes. In Proceedings of the 17th International Conference on Automated
Deduction, CADE-17, volume 1831 of Lecture Notes in Computer Science, pages 324–
345. Springer, 2000.

Deepak Kapur and Hantao Zhang. RRL: A rewrite rule laboratory. In Ewing L. Lusk
and Ross A. Overbeek, editors, Proceedings of the 9th International Conference on
Automated Deduction, CADE-9, volume 310 of Lecture Notes in Computer Science,
pages 768–769. Springer, 1988.

Deepak Kapur, Paliath Narendran, and Hantao Zhang. Automating inductionless in-
duction using test sets. Journal of Symbolic Computation, 11(1/2):81–111, 1991.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In John Leech, editor, Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

Emmanuel Kounalis. Testing for the ground (co-)reducibility property in term-rewriting
systems. Theoretical Computer Science, 106(1):87–117, 1992.

D. S. Lankford. A simple explanation of inductionless induction. Memo mtp-14,
Louisiana Technical University, Dep. of Math., Ruston, 1981.

Jean-Louis Lassez and Kim Marriott. Explicit representation of terms defined by counter
examples. Journal of Automated Reasoning, 3(3):301–317, 1987.

Jean-Louis Lassez, Michael J. Maher, and Kim Marriott. Unification revisited. In
Foundations of Logic and Functional Programming, volume 306 of Lecture Notes in
Computer Science, pages 67–113. Springer, 1986.

Michel Ludwig and Ullrich Hustadt. Resolution-based model construction for PLTL.
In Carsten Lutz and Jean-François Raskin, editors, TIME 2009, 16th International
Symposium on Temporal Representation and Reasoning, pages 73–80. IEEE Computer
Society, 2009.

164



Bibliography

Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In LICS, pages 348–357. IEEE Computer Society, 1988.

Anatoly Ivanovich Mal’cev. Axiomatizable classes of locally free algebra of various type.
In Benjamin Franklin Wells, editor, The Metamathematics of Algebraic Systems: Col-
lected Papers 1936–1967, chapter 23, pages 262–281. North Holland, 1971.

David Monniaux. Abstracting cryptographic protocols with tree automata. Science of
Computer Programming, 47(2–3):177–202, 2003.

David R. Musser. On proving inductive properties of abstract data types. In POPL
’80: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, pages 154–162, New York, NY, USA, 1980. ACM Press.

Robert Nieuwenhuis. Basic paramodulation and decidable theories (extended abstract).
In Proceedings 11th IEEE Symposium on Logic in Computer Science, LICS’96, pages
473–482. IEEE Computer Society Press, 1996.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reason-
ing, volume 1, chapter 7, pages 371–443. Elsevier and MIT Press, 2001.

Lauwrence C. Paulson. The inductive approach to verifying cryptographic protocols. In
Journal of Computer Security, volume 6, pages 85–128. IOS Press, 1998.

Nicolas Peltier. Model building with ordered resolution: extracting models from satu-
rated clause sets. Journal of Symbolic Computation, 36(1-2):5–48, 2003.

Reinhard Pichler. On the complexity of equational problems in CNF. Journal of Symbolic
Computation, 36(1-2):235–269, 2003.

David A. Plaisted. Semantic confluence tests and completion methods. Information and
Control, 65(2/3):182–215, 1985.

Gordon Plotkin. Building in equational theories. In Bernard Meltzer and Donald Michie,
editors, Machine Intelligence 7, pages 73–90. Edinburgh University Press, 1972.

Uday S. Reddy. Term rewriting induction. In Mark E. Stickel, editor, Proceedings of
the 10th International Conference on Automated Deduction, CADE-10, volume 449 of
Lecture Notes in Computer Science, pages 162–177. Springer, 1990.

George A. Robinson and Larry Wos. Paramodulation and theorem-proving in first-
order theories with equality. In Bernard Meltzer and Donald Michie, editors, Machine
Intelligence 4, pages 135–150. Edinburgh University Press, 1969.

John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

165



Bibliography

Helmut Seidl and Kumar Neeraj Verma. Flat and one-variable clauses: Complexity
of verifying cryptographic protocols with single blind copying. In Proceedings of the
11th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR-11, volume 3452 of Lecture Notes in Computer Science, pages 79–
94. Springer, 2004.

Jürgen Stuber. Inductive theorem proving for Horn clauses. Master’s thesis, Universität
Dortmund, April 1991.

Geoff Sutcliffe. The TPTP problem library and associated infrastructure. Journal of
Automomated Reasoning, 43(4):337–362, 2009.

James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems Theory,
2(1):57–81, 1968.

Christoph Weidenbach. Towards an automatic analysis of security protocols in first-order
logic. In Harald Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction, CADE-16, volume 1632 of Lecture Notes in Artificial Intel-
ligence, pages 378–382. Springer, 1999.

Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 2, chap-
ter 27, pages 1965–2012. Elsevier, 2001.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda,
and Patrick Wischnewski. SPASS version 3.5. In Renate Schmidt, editor, Proceedings
of the 22nd International Conference on Automated Deduction, CADE-22, volume
5663 of Lecture Notes in Computer Science, pages 140–145. Springer, 2009.

Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mechanizable induc-
tion principle for equational specifications. In Proceedings of the 9th International
Conference on Automated Deduction, pages 162–181, London, UK, 1988. Springer.

166



Index

A

AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
αN . . . . . . . . . . . . . . . . . . . . . . . . . 74, 85, 103
ancestor . . . . . . . . . . . . . . . . . . . . . . . 131, 132
antecedent . . . . . . . . . . . . . . . . . . . . . . . . . . 24
antisymmetric . . . . . . . . . . . . . . . . . . . . . . . 19
arity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ARM. . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 106
assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 30

satisfying . . . . . . . . . . . . . . . . . . . . . . . 30
associative path ordering . . . . . . . . . . . . 29
asymmetric. . . . . . . . . . . . . . . . . . . . . . . . . .19
atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

predicative . . . . . . . . . . . . . . . . . . . . . . 29
atomic representation of a term model

13, 106

B

base clause . . . . . . . . . . . . . . . . . . . . . . . . . 131
binary function symbol . . . . . . . . . . . . . . 21

C

calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
terminating . . . . . . . . . . . . . . . . . . . . . 37

clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
meltable . . . . . . . . . . . . . . . . . . . . . . . 131
predicative . . . . . . . . . . . . . . . . . . . . . . 29

clause normal form . . . . . . . . . . . . . . . . . . . 1
closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
compatible with AC . . . . . . . . . . . . . . . . . 28
completely defined equality . . . . . . . . . . . 7
composition of substitution expressions

124

conclusion . . . . . . . . . . . . . . . . . . . . . . . . 1, 35

confluent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

congruence relation . . . . . . . . . . . . . . . . . . 28

conjunction . . . . . . . . . . . . . . . . . . . . . . . . . 22

conjunctive normal form. . . . . . . . . . . . .31

constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

constrained clause . . . . . . . . . . . . . . . . . . . 24

ground . . . . . . . . . . . . . . . . . . . . . . . . . . 25

unconstrained . . . . . . . . . . . . . . . . . . . 25

constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ground . . . . . . . . . . . . . . . . . . . . . . . . . . 24

positive . . . . . . . . . . . . . . . . . . . . . . . . . 24

contain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

substitution expression . . . . . . . . . 126

covering constraint . . . . . . . . . . . . . . . . . . 33

D

denotation . . . . . . . . . . . . . . . . . . . . . . . . . 125

derivation . . . . . . . . . . . . . . . . . . . . . . 36, 127

derivation step . . . . . . . . . . . . . . . . . . . . . . 36

derivation strategy . . . . . . . . . . . . . . . . . . 37

derivation substitution . . . . . . . . . . . . . 142

DIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 106

over P . . . . . . . . . . . . . . . . . . . . . . . . . 106

disequation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

disjunction . . . . . . . . . . . . . . . . . . . . . . . . . . 22

disjunction of implicit generalizations13,
106

disjunction of substitution expressions
124

disjunctive normal form . . . . . . . . . . . . . 31

disunification . . . . . . . . . . . . . . . . . . . . . . . . 15

Disunification Calculus DU . . . . . . . . . . . 41

167



Index

dom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
domain

of a substitution . . . . . . . . . . . . . . . . 25
of a substitution expression . . . . 124
of an interpretation . . . . . . . . . . . . . 29

DU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

E

element-of relation for multisets . . . . . 19
elementary update . . . . . . . . . . . . . . . . . 136
empty clause . . . . . . . . . . . . . . . . . . . . . . . . 24
empty multiset . . . . . . . . . . . . . . . . . . . . . . 19
entailment

of a clause . . . . . . . . . . . . . . . . . . . . . . 32
of a clause set . . . . . . . . . . . . . . . . . . . 32
of a constrained clause set . . . . . . . 33
of a formula . . . . . . . . . . . . . . . . . . . . . 31
of a set of regular constraint clauses

127
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
equational . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
equivalence class . . . . . . . . . . . . . . . . . . . . 21
equivalence relation . . . . . . . . . . . . . . . . . 21
equivalent formulas . . . . . . . . . . . . . . . . . . 31

wrt. an interpretation . . . . . . . . . . . 31
existential closure . . . . . . . . . . . . . . . . . . . 23
existential query derivation . . . . . . . . . 132
existential query problem. . . . . . . . . . .129
explosion level . . . . . . . . . . . . . . . . . . . . . . .49
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Extended Superposition Calculus for

Fixed Domains SFD+ . . . . . . . . 84

F

Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 2
fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
first-order interpretation. . . . . . . . . . . . .29
fixed domain semantics . . . . . . . . . . . . . . . 5
formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ground . . . . . . . . . . . . . . . . . . . . . . . . . . 23
positive . . . . . . . . . . . . . . . . . . . . . . . . . 22
predicative . . . . . . . . . . . . . . . . . . . . . . 29
satisfiable . . . . . . . . . . . . . . . . . . . . . . . 31

satisfiable in an interpretation . . . 31
free sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
function symbols . . . . . . . . . . . . . . . . . . . . 21

H

Herbrand interpretation . . . . . . . . . . . . . 30
Herbrand model . . . . . . . . . . . . . . . . . . . . . . 5
Herbrand-satisfiable . . . . . . . . . . . . . . . . . 34
Herbrand-unsatisfiable. . . . . . . . . . . . . . .34
Horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

I

IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 75
IαN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
I�N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
image of a substitution . . . . . . . . . . . . . . 25
implementation . . . . . . . . . . . . . . . . . 61, 116
implicit generalization . . . . . . . . . . 13, 106

over P . . . . . . . . . . . . . . . . . . . . . . . . . 106
implicit induction . . . . . . . . . . . . . . . . . . . . 8
inductive semantics . . . . . . . . . . . . . . . . . . . 5
Inductive Superposition Calculus IS(H)

94
inference . . . . . . . . . . . . . . . . . . . . . . . 35, 127
inference calculus . . . . . . . . . . . . . . . 35, 127
inference rule . . . . . . . . . . . . . . . . . . . 35, 127
interpretation . . . . . . . . . . . . . . . . . . . . . . . 29
inverse renaming . . . . . . . . . . . . . . . . . . . . 25
irreducible. . . . . . . . . . . . . . . . . . . . . . . . . . .28
IS(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

L

linear substitution . . . . . . . . . . . . . . . . . . . 25
literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

negative . . . . . . . . . . . . . . . . . . . . . . . . .22
positive . . . . . . . . . . . . . . . . . . . . . . . . . 22

loop of substitution expressions. . . . .124

M

many sorted signature . . . . . . . . . . . . . . . 21
maximal element . . . . . . . . . . . . . . . . . . . . 20
meltable clause . . . . . . . . . . . . . . . . . . . . . 131

168



Index

melted clause . . . . . . . . . . . . . . . . . . . . . . 131
minimal element. . . . . . . . . . . . . . . . . . . . .20
minimal model semantics . . . . . . . . . . . . . 5
minimal model wrt. αN . . . . . . . . . . . . . 76
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

of a clause set . . . . . . . . . . . . . . . . . . . 32
of a constrained clause set . . . . . . . 34
of a formula . . . . . . . . . . . . . . . . . . . . . 31

monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . .28
most general unifier . . . . . . . . . . . . . . . . . 26
multiset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

N

N0(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
N(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Negating Predicate Completion Algo-

rithm NPC . . . . . . . . . . . . . . . . . . 148
negation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
negation normal form . . . . . . . . . . . . . . . 31
nested quantifiers. . . . . . . . . . . . . . . . . . . .52
normal form. . . . . . . . . . . . . . . . . . . . . . . . . 28
NPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

O

occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
occurs freely. . . . . . . . . . . . . . . . . . . . . . . . .23
Ordered Resolution Calculus for Fixed

Domains ORFD . . . . . . . . . . . . . 103
Ordered Resolution Calculus with Melt-

ing ORM . . . . . . . . . . . . . . . . . . . . 131
ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ORFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
ORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

P

Paramodulation . . . . . . . . . . . . . . . . . . . . . . 2
partial ordering . . . . . . . . . . . . . . . . . . . . . 19

total . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
PDU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Periodic Disunification Calculus PDU . 42

positive part . . . . . . . . . . . . . . . . . . . . . . . . 24

positively constrained clause . . . . . . . . . 25

Post correspondence problem. . . . . . . 121

predicate completion. . . . . . . . . . . . .15, 50

Predicate Completion Algorithm PC . 50

premise . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 35

produce

clause produces rule . . . . . . . . . . 9, 32

constrained clause produces rule .75

productive

clause . . . . . . . . . . . . . . . . . . . . . . . . 9, 32

constrained clause . . . . . . . . . . . . . . . 75

proof by consistency . . . . . . . . . . . . . . . . . . 7

Q

quantifier-free . . . . . . . . . . . . . . . . . . . . . . . 23

quotient set . . . . . . . . . . . . . . . . . . . . . . . . . 21

R

recursive path ordering . . . . . . . . . . . . . . 28

redex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

reducible . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

reductio ad absurdum . . . . . . . . . . . . . . . . 1

reduction ordering . . . . . . . . . . . . . . . . . . . 28

redundant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

constrained clause . . . . . . . . . . . . . . . 35

inference . . . . . . . . . . . . . . . . . . . 35, 128

regular constraint clause . . . . . . . 128

reflexive . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21

reflexive closure . . . . . . . . . . . . . . . . . . . . . 20

refutational theorem proving. . . . . . . . . .1

refutationally complete . . . . . . . . . . . 2, 36

regular constraint . . . . . . . . . . . . . . . . . . 124

regular constraint clause. . . . . . . . . . . .125

regular equation. . . . . . . . . . . . . . . . . . . .124

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 1, 2

restriction of a substitution . . . . . . . . . . 25

rewrite relation . . . . . . . . . . . . . . . . . . . . . . 28

rewrite rule . . . . . . . . . . . . . . . . . . . . . . . . . 28

rewrite system. . . . . . . . . . . . . . . . . . . . . . .28

ground . . . . . . . . . . . . . . . . . . . . . . . . . . 28

RLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

169



Index

S

satisfiable
constraint . . . . . . . . . . . . . . . . . . . . . . . 33

saturated set . . . . . . . . . . . . . . . . . 1, 35, 128
selection function. . . . . . . . . . . . . . . . . . . .68
set of ultimate periodicity equations . 41
SF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
SFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
SFD+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
simultaneous unifier . . . . . . . . . . . . . . . . . 26
size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Skolemization . . . . . . . . . . . . . . . . . . . . . . . 14
solution of a formula . . . . . . . . . . . . . . . . 31
solved form. . . . . . . . . . . . . . . . . . . . . . . . . .54
Solved Form Transformation Algorithm

SF . . . . . . . . . . . . . . . . . . . . . . . . . . 55
solved variable . . . . . . . . . . . . . . . . . . . . . . 56
sort

free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ultimately periodic . . . . . . . . . . . . . . 41

sort assignment . . . . . . . . . . . . . . . . . . . . . 21
sort symbols. . . . . . . . . . . . . . . . . . . . . . . . .21
sort theory . . . . . . . . . . . . . . . . . . . . 117, 150
sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Spass . . . . . . . . . . . . . . . . . . . . . . .16, 61, 116
SPIKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
stable under substitutions . . . . . . . . . . . 28
strict ordering . . . . . . . . . . . . . . . . . . . . . . . 20
strict partial ordering . . . . . . . . . . . . . . . 19

total . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
strict subexpression . . . . . . . . . . . . . . . . . 23
strictly maximal element . . . . . . . . . . . . 20
strictly minimal element . . . . . . . . . . . . . 20
subexpression . . . . . . . . . . . . . . . . . . . . . . . 23
subformula . . . . . . . . . . . . . . . . . . . . . . . . . . 23
substitution . . . . . . . . . . . . . . . . . . . . . . . . . 25

grounding . . . . . . . . . . . . . . . . . . . . . . . 25
linear . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

substitution expression. . . . .25, 122, 124
covering. . . . . . . . . . . . . . . . . . . . . . . .126

subterm . . . . . . . . . . . . . . . . . . . . . . . . . 23, 24

subterm property. . . . . . . . . . . . . . . . . . . .28
succedent . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Superposition . . . . . . . . . . . . . . . . . . . . . . . . 3
Superposition Calculus for Fixed Do-

mains SFD . . . . . . . . . . . . . . . . . . .69
symmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
symmetric closure . . . . . . . . . . . . . . . . . . . 20
syntactical tautology . . . . . . . . . . . . . . . . 24
syntactically valid constraint . . . . . . . . 33

T

tautology. . . . . . . . . . . . . . . . . . . . . . . . . . . .24
term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ground . . . . . . . . . . . . . . . . . . . . . . . . . . 23
in normal form . . . . . . . . . . . . . . . . . . 28
irreducible . . . . . . . . . . . . . . . . . . . . . . 28
of sort S . . . . . . . . . . . . . . . . . . . . . . . . 22
reducible . . . . . . . . . . . . . . . . . . . . . . . . 28

terminating . . . . . . . . . . . . . . . . . . . . . . . . . 28
theorem proving derivation . . . . . . . . . . 80
transitive . . . . . . . . . . . . . . . . . . . . . . . . 19–21

U

ultimate periodicity equation . . . . . . . . 41
ultimately periodic interpretation 15, 41
ultimately periodic sort. . . . . . . . . . . . . .41
unary function symbol. . . . . . . . . . . . . . .21
unfailing completion . . . . . . . . . . . . . . . . . . 3
unifiable. . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
unifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
union of multisets . . . . . . . . . . . . . . . . . . . 19
universal closure. . . . . . . . . . . . . . . . . . . . .23
universally reductive . . . . . . . . . . . . . 10, 27
universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
unsolved variable . . . . . . . . . . . . . . . . . . . . 56
update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

elementary . . . . . . . . . . . . . . . . . . . . . 136

V

valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
variable

existential . . . . . . . . . . . . . . . . . . . . . . . 24

170



Index

solved . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
universal . . . . . . . . . . . . . . . . . . . . . . . . 24
unsolved . . . . . . . . . . . . . . . . . . . . . . . . 56

variable range . . . . . . . . . . . . . . . . . . . . . . 124
variable renaming . . . . . . . . . . . . . . . . . . . 25
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

occurring. . . . . . . . . . . . . . . . . . . . . . . .24
of a constraint . . . . . . . . . . . . . . . . . . 24
of a term. . . . . . . . . . . . . . . . . . . . . . . . 23

variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
VRan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

W

well-founded. . . . . . . . . . . . . . . . . . . . . . . . .28

171


	Introduction
	Saturation-based First-Order Theorem Proving
	First-order, Fixed Domain and Minimal Model Semantics
	Automated Theorem Proving in Minimal Models
	Proof by Consistency
	Implicit Induction
	The Saturation Approach
	The Completion Approach
	The Description-specific Approach

	Contributions of This Thesis
	Superposition for Fixed Domain and Minimal Model Reasoning
	Disunification and Predicate Completion
	A Superposition-based Decision Procedure for DIG Interpretations
	Reducing the Decidability of Minimal Model Validity to Superposition-based First-order Decidability


	Preliminaries
	Mathematical Foundations
	Syntax
	Terms and Formulas
	Constrained Clauses
	Substitutions
	Term and Clause Orderings
	Predicates

	Semantics
	Interpretations and Entailment
	Semantics of Formulas and Constrained Clauses

	Calculi
	Inferences, Redundancy and Derivations
	Soundness, Completeness and Termination


	Disunification and Predicate Completion
	Introduction
	Disunification
	The Disunification Algorithm PDU
	Correctness and Termination of PDU

	Predicate Completion
	The Predicate Completion Algorithm PC
	Disunification-based Quantifier Elimination
	Solved Form Computation
	Predicate Completion and Unique Herbrand Models

	Decidability of the Satisfiability of Equational Formulas
	Implementation
	Conclusion

	A Superposition Calculus for Fixed Domains
	Introduction
	First-Order Reasoning in Fixed Domains
	The Superposition Calculus for Fixed Domains SFD
	Model Construction and Refutational Completeness
	Other Herbrand Models of Constrained Clause Sets

	Minimal Model Reasoning
	Relations between First-order, Fixed Domain and Minimal Model Validity
	The Inductive Superposition Calculus IS(H)

	Conclusion

	A Superposition-Based Decision Procedure for Minimal Model Validity
	Introduction
	The Constrained Ordered Resolution Calculus ORFD
	Clausal Representations of Disjunctions of Implicit Generalizations
	Disjunctions of Implicit Generalizations
	Clausal Representations
	Completed Clausal Representations

	Decidability Results
	Decidability of Ground Queries
	Decidability of DIG Equivalence
	Decidability of Formula Entailment

	Implementation
	Conclusion

	Generic Superposition-based Decidability of Minimal Model Validity
	Introduction
	Preliminaries
	Substitution Expressions and Regular Constraint Clauses
	Semantics of Regular Constraint Clauses
	Inferences and Redundancy

	A Resolution Calculus for Regular Constraint Clauses
	Melting and the Calculus ORM
	Soundness and Completeness of ORM
	Termination of ORM

	Generalized Substitutions as Clause Sets
	Equivalence of Substitution Expressions and Clause Sets
	Predicate Completion for Substitution Expressions

	Decidability of Minimal Model Validity
	Conclusion

	Conclusion
	Resumé
	Outlook
	Bibliography
	Index


