
Making Broadband Access Networks
Transparent to Researchers,

Developers, and Users

Marcel Dischinger

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Eingereicht Saarbrücken, 10. Juni 2010

Dekan: Prof. Dr. Holger Hermanns

Vorsitzender des Promotionsausschusses: Prof. Dr. Holger Hermanns

Erstgutachter: Prof. Dr. Peter Druschel

Zweitgutachter: Krishna P. Gummadi, PhD

Drittgutachter: Stefan Saroiu, PhD

Tag des Kolloquiums: 27. Oktober 2010

ii

Abstract

Broadband networks are used by hundreds of millions of users to connect to the Internet
today. However, most ISPs are hesitant to reveal details about their network deployments,
and as a result the characteristics of broadband networks are often not known to users,
developers, and researchers. In this thesis, we make progress towards mitigating this lack
of transparency in broadband access networks in two ways.

First, using novel measurement tools we performed the first large-scale study of the
characteristics of broadband networks. We found that broadband networks have very
different characteristics than academic networks. We also developed Glasnost, a system
that enables users to test their Internet access links for traffic differentiation. Glasnost
has been used by more than 350,000 users worldwide and allowed us to study ISPs’ traffic
management practices. We found that ISPs increasingly throttle or even block traffic from
popular applications such as BitTorrent.

Second, we developed two new approaches to enable realistic evaluation of networked
systems in broadband networks. We developed Monarch, a tool that enables researchers to
study and compare the performance of new and existing transport protocols at large scale
in broadband environments. Furthermore, we designed SatelliteLab, a novel testbed that
can easily add arbitrary end nodes, including broadband nodes and even smartphones, to
existing testbeds like PlanetLab.

iii

Kurzdarstellung

Breitbandanschlüsse werden heute von hunderten Millionen Nutzern als Internetzugang
verwendet. Jedoch geben die meisten ISPs nur ungern über Details ihrer Netze Auskunft
und infolgedessen sind Nutzern, Anwendungsentwicklern und Forschern oft deren Eigen-
heiten nicht bekannt. Ziel dieser Dissertation ist es daher Breitbandnetze transparenter
zu machen.

Mit Hilfe neuartiger Messwerkzeuge konnte ich die erste groß angelegte Studie über
die Besonderheiten von Breitbandnetzen durchführen. Dabei stellte sich heraus, dass
Breitbandnetze und Forschungsnetze sehr unterschiedlich sind. Mit Glasnost habe ich
ein System entwickelt, das mehr als 350.000 Nutzern weltweit ermöglichte ihren Internet-
anschluss auf den Einsatz von Verkehrsmanagement zu testen. Ich konnte dabei zeigen,
dass ISPs zunehmend BitTorrent Verkehr drosseln oder gar blockieren.

Meine Studien zeigten darüberhinaus, dass existierende Verfahren zum Testen von Inter-
netsystemen nicht die typischen Eigenschaften von Breitbandnetzen berücksichtigen. Ich
ging dieses Problem auf zwei Arten an: Zum einen entwickelte ich Monarch, ein Werkzeug
mit dem das Verhalten von Transport-Protokollen über eine große Anzahl von Breitban-
danschlüssen untersucht und verglichen werden kann. Zum anderen habe ich SatelliteLab
entworfen, eine neuartige Testumgebung, die, anders als zuvor, beliebige Internetknoten,
einschließlich Breitbandknoten und sogar Handys, in bestehende Testumgebungen wie
PlanetLab einbinden kann.

v

Acknowledgements & Danksagungen

First and foremost, I am grateful to my advisor Krishna P. Gummadi for his help, advice,
and mentoring. I am deeply indebted to him for showing me how to pick interesting
and challenging research topics, how to do successful research, and how to communicate
research results effectively.

I would like to thank Michael Backes, Peter Druschel, Rodrigo Rodrigues, and Stefan
Saroiu for their service on my thesis committee. I would also like to thank Rose Hoberman
for her valuable feedback on this thesis and her patience to explain the English language
to me.

I am grateful for the close collaboration with Andreas Haeberlen. I will always remember
the countless nights we worked together to get experiments done or to polish a paper for
submission. The work I am presenting in this thesis would not have been possible without
my other collaborators: Ivan Beschastnikh, Saikat Guha, Ratul Mahajan, Massimiliano
Marcon, Alan Mislove, and Stefan Saroiu.

Last but not least thanks to all my friends and colleagues at MPI-SWS, who created
a challenging and inspiring working environment and who made my time at MPI-SWS a
great experience.

Dank auch meinem besten Freund Tobias für seine Unterstützung und speziell für seine
hilfreichen Kommentare zu Teilen dieser Dissertation.

Ich danke Ute für ihre Unterstützung, Geduld und Liebe, und ganz besonders für ihr
Verständnis, dass meine Forschungen manchmal wichtiger waren als unsere gemeinsame
Zeit. Danke, dass du für mich da bist.

Ganz besonders möchte ich meiner Familie danken, neben meinem Bruder Felix beson-
ders meinen Eltern, die mich unablässig unterstützt, mir über so manches Tief hinwegge-
holfen und immer an mich geglaubt haben.

vii

Contents

1 Introduction 1

1.1 Broadband Internet Access . 2
1.1.1 Cable . 3
1.1.2 DSL . 3
1.1.3 Other Broadband Access Technologies 4

1.2 Network Transparency . 5
1.3 Contributions . 6
1.4 Structure of this Thesis . 7

I Characterizing Broadband Access Networks 9

2 Background and Related Work 11

2.1 Measurement Methodologies and Tools . 11
2.1.1 Active and Passive Measurement Techniques 12
2.1.2 Measurement Tools for End Users 14

2.2 Measurement Platforms and Studies . 16
2.2.1 Broadband Network Studies . 16

3 Characterizing Residential Broadband Networks 19

3.1 Measuring Network Characteristics with Minimal Cooperation 20
3.1.1 Probe Trains to Measure Broadband Links 20
3.1.2 Measured Broadband Link Properties 21
3.1.3 Validating our Assumptions . 22

3.2 The Characteristics of Big DSL and Cable ISPs 27
3.2.1 Selecting Residential Broadband Hosts 27
3.2.2 Allocated Link Bandwidth . 28
3.2.3 Packet Latencies . 33
3.2.4 Packet Loss . 38
3.2.5 Summary . 40

3.3 Implications . 41

4 Glasnost: Detecting Traffic Differentiation 43

4.1 Background . 44
4.1.1 Network Neutrality . 44
4.1.2 Traffic Differentiation . 45

4.2 Design Challenges and Requirements . 47
4.2.1 Challenge #1: Low Barrier of Use 47
4.2.2 Challenge #2: Measurement Accountability 47
4.2.3 Challenge #3: Easy to Evolve . 48

ix

Contents

4.3 The Glasnost System . 49
4.3.1 System Architecture . 49

4.4 Emulating Application Traffic . 50
4.5 Detecting Traffic Differentiation . 51

4.5.1 Blocking of Application Traffic . 52
4.5.2 Throttling of Application Traffic . 53
4.5.3 User Impatience with Long Tests . 57
4.5.4 Limitations . 58

4.6 Facilitating New Test Construction . 59
4.6.1 Validating Tests Generated by trace-emulate 60
4.6.2 Allowing Users to Contribute Glasnost Test 61

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks . 62
4.7.1 Deployment of Glasnost . 62
4.7.2 Aggregate data analysis . 65
4.7.3 Blocking in Broadband Networks . 66
4.7.4 Throttling in Broadband Networks 72

4.8 Summary . 74

II Evaluating Systems in Broadband Access Networks at Large Scale 75

5 Background and Related Work 77

5.1 Evaluation Using Measurements of Deployed Systems 77
5.2 Evaluation Using Simulations and Emulations 78
5.3 Evaluation Using Testbeds . 79

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large 81

6.1 The Design of Monarch . 82
6.1.1 How Monarch Works . 82
6.1.2 What Types of Probes Can Monarch Use? 83
6.1.3 How Many Internet Hosts Respond to Monarch Probes? 84
6.1.4 What Transport Protocols Can Monarch Emulate? 85
6.1.5 What Factors Affect Monarch’s Accuracy? 85

6.2 Implementation . 86
6.2.1 Emulating a TCP Flow . 86
6.2.2 Testing Unmodified Transport Protocol Implementations 87
6.2.3 PMTU Discovery . 88
6.2.4 Self-diagnosis . 88
6.2.5 Usage Concerns and Best Practices 92

6.3 Evaluation . 92
6.3.1 Methodology . 93
6.3.2 Accuracy over PlanetLab . 94
6.3.3 Reliability of Self-diagnosis . 99
6.3.4 Accuracy over the Internet at Large 99
6.3.5 Summary . 100

6.4 Applications . 100
6.4.1 Evaluating Different Transport Protocols 101

x

Contents

6.4.2 Testing Complex Protocol Implementations 102
6.5 Summary . 103

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds 105

7.1 Challenges and Requirements . 106
7.1.1 Challenges . 107
7.1.2 Requirements . 107

7.2 The SatelliteLab Design . 108
7.2.1 Overview . 108
7.2.2 Delegating Code Execution to the Planets 108
7.2.3 Detouring Traffic via the Planets . 109
7.2.4 How SatelliteLab Works . 110
7.2.5 Incentive Mechanisms . 110

7.3 Implementation . 112
7.3.1 Overview . 112
7.3.2 The Planet Proxy . 112
7.3.3 The Satellite Helper . 114
7.3.4 Running an Experiment . 115
7.3.5 Resource Sharing . 115

7.4 Evaluation . 117
7.4.1 SatelliteLab is Successful in Making Testbeds Heterogeneous 117
7.4.2 SatelliteLab Makes it Easy to Recruit Edge Nodes 118
7.4.3 The Availability of Satellites is Adequate for Many Testbed Exper-

iments . 119
7.4.4 Satellites Can Find Planets in their Close Proximity 120
7.4.5 Detour and Direct Paths are Bottlenecked at the Same Access Links 121
7.4.6 Summary . 125

7.5 Applications . 125
7.5.1 Evaluation of Networked Systems . 125
7.5.2 Internet Measurement Studies . 128
7.5.3 Summary . 129

8 Conclusion and Future Work 131

8.1 Summary . 131
8.2 Future Work . 132

xi

List of Figures

1.1 A typical setup of a cable access network. 3
1.2 A typical setup of a DSL access network. 4

3.1 The broadband link is the bottleneck. 25
3.2 Measurement setup. 27
3.3 Allocated downstream and upstream link bandwidths. 29
3.4 The ratio of downstream to upstream link bandwidths. 29
3.5 Stable and unstable link bandwidths. 30
3.6 Fraction of hosts with “stable” downstream link bandwidths. 31
3.7 Long-term link bandwidth stability. 32
3.8 Traffic shaping in broadband networks. 32
3.9 Minimum RTT packets of different size for a representative DSL host and

its last hop router. 34
3.10 Last-hop delay and jitter in cable and DSL networks. 34
3.11 Difference in transmission delays between large and small packets. 35
3.12 Cable links show high RTT variation. 36
3.13 Downstream and upstream queue length in milliseconds. 37
3.14 Observed round-trip loss rate for residential broadband paths. 38
3.15 Packet loss over time. 39
3.16 Tail-drop and active queue management. 40

4.1 Overview of the Glasnost system. 49
4.2 The Glasnost web interface. 50
4.3 A flow pair used in Glasnost tests. 51
4.4 The four classes of noise we distinguish in our analysis. 55
4.5 Noise in our 3,705 sample dataset. 55
4.6 Evaluating the throughput difference threshold. 56
4.7 Duration users run the Glasnost test. 57
4.8 Location of Glasnost users. 64
4.9 Number of users that uses Glasnost per week during our year-long deployment. 65
4.10 Result sets grouped by the hour of the day for Comcast and Cox. 69
4.11 Result sets grouped by the day of the week for Comcast and Cox. 70
4.12 ISPs change their BitTorrent blocking policies over time. 71
4.13 Percentage of users that are deemed to suffer differentiation since March

2008. 72
4.14 For most ISPs we detected traffic differentiation for only a fraction of users. 74

6.1 The Monarch packet exchange. 82
6.2 Sequence of packet exchanges in Monarch implementation. 87
6.3 IPID analysis example. 90

xiii

List of Figures

6.4 Self-diagnosis in Monarch for TCP Reno. 92
6.5 Comparison between typical Monarch and TCP flows. 94
6.6 Traffic generated by Monarch and TCP. 95
6.7 Progress of TCP and Monarch flows. 96
6.8 Throughput comparison between Monarch and TCP flows. 96
6.9 Relative throughput error between pairs of TCP and Monarch flows, and

between pairs of TCP flows. 97
6.10 Relative RTT difference between successive TCP and Monarch flows. 98
6.11 Retransmissions per flow for Monarch and TCP. 98
6.12 Self-diagnosis is accurate. 99
6.13 Comparing the performance of different TCP protocols over an Internet

path between a host in Germany and a host in the BT Broadband DSL
network. 101

6.14 Incorrect rate halving in Linux TCP. 103

7.1 Delegating code execution to planets. 109
7.2 Detouring traffic via the planets. 109
7.3 SatelliteLab paths. 110
7.4 Inter-AS links covered by PlanetLab vs. SatelliteLab. 117
7.5 Heterogeneity in SatelliteLab. 118
7.6 Satellite availability. 120
7.7 Run-time of experiments on PlanetLab . 120
7.8 Minimum distance between a satellite and its closest PlanetLab node. . . . 121
7.9 Paths used for evaluation . 122
7.10 Path capacities. 123
7.11 A comparison of jitter and queueing delay between access pathways and

planetary highways. 123
7.12 A comparison of jitter and queueing delay between access pathways and

direct paths. 124
7.13 Measured jitter in a network coordinate scheme 126
7.14 Queue sizes of access routers for satellites. 127
7.15 SplitStream experiment . 127
7.16 Cumulative distribution function of TCP throughput over UMTS. 128

xiv

List of Tables

3.1 Fraction of Internet hosts responding to our probes. 24
3.2 Measured hosts in our 2007 study. 28

4.1 Using new Glasnost tests on a host connected via Kabel Deutschland. . . . 61
4.2 The names of the 20 ISPs from which most of our users connected to the

Internet with. 64
4.3 The number of hosts with BitTorrent blocking grouped by country and ISP. 67
4.4 We detected BitTorrent throttling for users of 30 ISPs during January and

February 2009. 73

6.1 Fraction of Internet hosts responding to our probes. 84
6.2 Supported protocols. 85
6.3 Traces used for our Monarch evaluation. 93
6.4 Monarch is accurate over real Internet paths. 100

7.1 Overview of the satellite nodes. 119
7.2 Packet loss rates along different paths. 124

xv

1 Introduction

The degree of heterogeneity of today’s Internet is much higher than before. While it
started in the 1960s as a network of academic and military computers with a few hundred
users in the USA, it has since grown to a global network interconnecting nodes from
academic institutions, governmental agencies, corporations, content providers, and private
individuals. Today, the Internet is an important part of the daily life of hundreds of millions
of people worldwide and is composed of a mix of different networks. These networks have
highly heterogeneous bandwidth speeds ranging from high-bandwidth research networks to
lower-bandwidth cellular networks. Their levels of oversubscription are also very different.
While corporate networks often have low levels of oversubscription or even dedicated
network connections for business offices, residential networks often sign up hundreds of
customers over a single link connected to the residential ISP.

The network applications running on the Internet today also have very different char-
acteristics. The number of different workloads the Internet supports is indeed impressive.
Besides the traditional content served via webpages in the World Wide Web (WWW),
the Internet is also used to distribute software, to share files among users, to play online
multiplayer games, to download music and videos, to stream audio or video live or on-
demand (e.g., web radio or Internet TV), it is used for video chats, and to place phone
calls (e.g., voice-over-IP). Increasingly even TV and landline phone calls are transmitted
over the Internet. These workloads can impose rather distinct requirements on the net-
work they run on. While some applications, such as online multiplayer games or Internet
telephony, are latency-sensitive, others, such as large media or software downloads, are less
latency-sensitive, but instead have a high bandwidth demand and thus require networks
that provide high bandwidth links.

The network types that comprise the Internet can have very different characteristics.
The differences may lie in low-level flow characteristics, such as bandwidth, latencies, and
loss rates. However, networks’ characteristics could also vary due to higher-level policies
for traffic management, such as traffic shaping.

Network characterization is very important to application and system designers because
network properties often influence the performance of Internet systems. Network studies
often guide designers to help them make their systems more suitable to the characteris-
tics of the underlying network. For example, the asymmetric nature of network speeds in
residential broadband networks have made P2P system designers adopt “file swarming”,
a file transfer technique in which one peer downloads from multiple other peers simulta-
neously. Developers can make incorrect assumptions about the networks’ characteristics
that can lead to systems that function well when run in a testbed environment, but fail to
work properly when deployed on the Internet. For example, a recent scheme for providing
network coordinates was found to have much higher error rates when deployed on the
Internet than when run on PlanetLab [LGS07]. As our studies show, these rates likely
stemmed from an incorrect assumption about how latencies vary on residential access net-
works. Consequently, system evaluations should be performed over the network a system

1

1 Introduction

is supposed to run on. Simulations must use an accurate model of the network — which in
return requires to study the network’s characteristics in depth. And testbeds should offer
a similar networking environment than what is expected in a real deployment scenario.

There is a large body of literature that studied the characteristics of different network
types in the Internet. However, most of these studies focused on academic network or the
Internet backbone [Bol93, Pax97, Pax99, GP02, ICM+02], despite the widespread deploy-
ment of residential broadband networks and their importance to emerging applications.
Broadband networks remain relatively unexplored by the academic community with only a
few small-scale studies [LP03, CKL+04], and evaluation of applications in broadband net-
works relies mostly on simplistic models in simulations [SKMM05, ns2]. But at the same
time, broadband networks are known to have very different characteristics from academic
networks [BGP04, PHM06].

The main reason for this situation is that most academic institutions and research lab-
oratories do not access the Internet over broadband. This lack of access makes it hard
to study broadband networks in depth and at scale. And even state-of-the-art Internet
testbeds, such as PlanetLab [Pla] and RON [ABKM03], which are often used for measure-
ment studies and for running realistic evaluation experiments, are comprised of mostly
academic nodes and have only a handful of broadband nodes. For example, as of May
2010 PlanetLab has only 5 nodes that connect to the Internet over broadband out of a
total of 1088 testbed nodes.

1.1 Broadband Internet Access

Residential broadband networks such as Digital Subscriber Line (DSL) and cable are
increasingly becoming popular. In 2009, more than 271 million people used these networks
worldwide [OEC09], and this number is expected to rise to 636 million by 2014 [Win09]. In
Germany alone, more than 66% of all Internet users connect to the Internet via residential
broadband networks [Ini09]. The percentage are similar in other western countries like the
USA [Nie04]. Many governments are adopting policies to promote ubiquitous broadband
access [Fed09, Uni01, Fed06]. In these policies broadband access is often defined as an
Internet connection for home users that offers at least 1 Mbps bandwidth (compared to
dial-up connections with only a few tens of Kbps bandwidth). These policies may result
in even more people using broadband networks to access the Internet in the future.

Residential broadband networks provide the critical “last mile” access to the Internet
infrastructure. It is widely thought that the bottlenecks in the performance of the Internet
lie in its access networks [ASS03]. Thus, the reliability and the performance of Internet
applications — including voice-over-IP (VoIP), video on demand (VoD), online games, and
peer-to-peer (P2P) content delivery systems — depend crucially on the characteristics of
broadband access networks.

Today, there are mostly two broadband access network technologies that dominate the
way people access the Internet: cable and DSL. In the remainder of this section, we
present a brief description of their architectures and point out differences from other access
networks, such as corporate and academic networks. Finally, we discuss other existing and
emerging broadband technologies.

2

1.1 Broadband Internet Access

1.1.1 Cable

Cable networks use the cable television infrastructure to connect home users to the In-
ternet. In these networks, a master headend connects to several regional headends using
fiber-optic cables. Each regional headend serves a set of customers (up to 2,000 homes).
A single coaxial cable, carrying both television and data signals, links these customers to
their headend.

DOCSIS [Cab06] is the most common specification defining the interface requirements of
cable modems. In DOCSIS, each cable modem (CM) exchanges data with a cable modem
termination system (CMTS) located in a regional headend. In the downstream direction,
the CMTS broadcasts data to all cable modems that are connected to it. The cable
modems filter all received data and forward only the bytes destined for their customer’s
host. In the upstream direction, the access channel is time-slotted — a cable modem must
first reserve a time slot and wait until the CMTS grants the reservation. When the time
slot has been granted, the cable modem can transmit data upstream. Figure 1.1 illustrates
a typical setup of a cable access network.

Internet CMTS

CM CM

Internet

Figure 1.1: A typical setup of a cable access network. On the user side, a cable
modem (CM) connects the user to the cable modem termination system (CMTS).

There are several important differences between cable and other access networks. First,
cable links typically have asymmetric bandwidths: their downstream bandwidth is much
higher than their upstream bandwidth. Second, customers cannot use the full raw ca-
pacity of their cable links. Instead, cable operators shape users’ traffic preventing them
from consuming more bandwidth than their contract stipulates. Although cable networks
currently allow raw data rates of up to 40 Mbps, the contracts of individual customers
specify much lower rates, typically between 128 Kbps and 20 Mbps. Further, some ISPs
over-subscribe their cable access networks. In this case, the level of service experienced
by customers can vary depending on the amount of competing network traffic.

Finally, cable modems can concatenate multiple upstream packets into a single trans-
mission, which results in short bursts at high data rates. Thus, the upstream latencies
can fluctuate heavily, depending on the allocation policy, and the amount of signaling and
packet concatenation used by the CMTS.

1.1.2 DSL

DSL access networks use existing telephone wiring to connect home users to the Inter-
net [Cis03]. Unlike cable customers, DSL customers do not share their access link. Each
customer’s DSL modem uses a dedicated point-to-point connection to exchange data with

3

1 Introduction

a Digital Subscriber Line Access Multiplexer (DSLAM). The connection carries both data
and telephone signals, which are encoded in different frequencies. On the customer side,
a splitter separates the two signals and forwards the data signal to the DSL modem.
Figure 1.2 illustrates a typical setup of a DSL access network.

Internet

DSLAM Splitter

Modem

Phone

network

Figure 1.2: A typical setup of a DSL access network. Telephone and data signals
are multiplexed on the same line by the DSLAM. The signal is demultiplexed again by
the splitter in a user’s home and the data signal is forwarded to the DSL modem.

Today, typical DSL deployments offer bandwidth rates between 128 Kbps and 16 Mbps.
With VDSL (Very high bitrate DSL), customers can get speeds of up to 100 Mbps.

There are two important differences between DSL networks and other access networks.
First, like cable networks, DSL networks often have asymmetric bandwidths; their down-
stream bandwidth is higher than their upstream bandwidth. Second, the maximum data
transmission rate falls with increasing distance from the DSLAM. To boost the data rates,
DSL relies on advanced signal processing and error correction algorithms, which can lead
to high packet propagation delays. Consequently, the properties of DSL access links vary
depending on the length of the wiring or the quality of the wiring between a modem and
its DSLAM — the longer the distance between the modem and the DSLAM, the lower
the signal quality. Decreased signal quality requires more extensive signal error correc-
tion, ultimately leading to higher latencies and also lower available bandwidth. Hence,
the bandwidths, packet latencies, and loss rates can vary from link to link.

1.1.3 Other Broadband Access Technologies

DSL and cable technologies are the dominant broadband technologies used today by the
majority of home users. And while our focus is on DSL and cable access networks, there are
other existing and emerging broadband technologies to connect people with the Internet at
high speeds that make the Internet even more heterogeneous. We now list other important
broadband technologies for the sake of completeness.

Fiber-To-The-Home (FTTH) replaces the traditional copper wires of the last mile in
DSL with optical fiber cables. This allows for much higher speeds, typically ranging from
several tens of Mbps to 1 Gbps. Deployments of this technology are often limited to
densely-populated areas as they require laying new cables out which is rather expensive.

WiMax (Worldwide Interoperability for Microwave Access) [The09c] is a wireless alter-
native to DSL and cable on the last mile. It provides similar speeds to DSL and is deployed
mostly in regions (such as rural areas) with no access to broadband access networks like
DSL and cable.

4

1.2 Network Transparency

Satellite is also often used in areas where no other broadband access networks are
available. It allows high speed Internet connections with typically a few Mbps downstream
and less than one Mbps upstream speeds per user. Furthermore, satellite connections
usually suffer from high signal latencies as the network packets have to be sent to orbiting
satellites and back.

Mobile broadband technologies, such as EDGE, EVDO, or UMTS, play an increasing role
in the way people connect to the Internet. These technologies are also often referred to
as third generation (3G) wireless communications technologies [ITU]. Mobile broadband
technologies are cell-based, with users in one cell sharing the bandwidth of the underlying
medium with each other.

Mobile technologies can suffer from radio interference, a property specific to wireless
networks. The level of radio interference can become very high when many users share
the wireless medium. For example, mobile networks often suffer from low per-user band-
widths in densely populated areas such as urban cities. As a result, many Internet Service
Providers (ISPs) heavily manage user traffic, e.g., by introducing performance enhancing
proxies that can significantly lower the bandwidth needs of web applications, or by intro-
ducing traffic shaping and blocking of bandwidth-intensive applications such as filesharing
applications. While EDGE is rather low-speed with theoretical speeds up to 1.3 Mbps
in the downlink and 0.653 Mbps in the uplink, 3G-networks, such as EVDO [CDM] and
UMTS [3GP08a], support up to 7 Mbps per user. Future mobile broadband technologies
like Long Term Evolution (LTE) [3GP08b] promise speeds of up to 50 Mbps per user.

1.2 Network Transparency

Network operators are usually hesitant to reveal details about their network deployments
because they consider these details as business secrets. This has made most networks
lack the transparency needed by Internet system designers. While it might make sense
for ISPs to conceal certain details about their deployments that usually have no impact
on application performance (e.g., the exact network topology), it is desirable to publish
information about network details that might affect their customers (e.g., latencies or
traffic management policies).

ISPs often establish service level agreements (SLAs) with their business customers.
SLAs specify the quality of service an ISP has to deliver to a business customer, such
as guarantees about their levels of bandwidth, latency, and network reliability. However,
there are no such precise SLAs for residential customers. Instead, contracts between users
and ISPs tend to be imprecise and cover only a very limited set of properties. For example,
most broadband contracts only specify an upper bound on the available bandwidth, e.g.,
“up to 6 Mbps”, while the actual bandwidth can be much lower. Further, these contracts
usually do not mention other performance details, such as latencies, loss rates, or connec-
tion reliability. Also, traffic management policies are not described, although typically the
ISP grants itself the right to deploy any policy they choose without further notice.

As a result, residential broadband networks remain remarkably opaque, despite the fact
that millions of users access the Internet using broadband and many popular Internet ap-
plications run in this environment. While the protocols and network technologies are well-
known, the network configuration and the traffic characteristics in broadband networks are
not well studied. But knowing about these networks’ characteristics is crucial to under-

5

1 Introduction

stand and predict the behavior of networked systems in this environment, as broadband
networks are known to be different from other, well-studied networks [PHM06, BGP04].

Transparent networks have many advantages over opaque networks. Transparency al-
lows users to make an informed choice about their ISP. For example, in recent years
broadband networks have been subject to traffic management practices that can signif-
icantly affect the performance of distributed applications popular with users, such as
BitTorrent [Top07, Can08b]. However, as ISPs are hesitant to reveal their practices pub-
licly, they leave their customers in the dark about the potential impact of these practices
on their Internet experience. But broadband users appear to be very interested in their
Internet access links, especially if applications do not perform as expected. For example,
there are popular Internet forums [Bee99] where users post their experience with their
ISPs and discuss problems they have with their Internet connections. With transparency,
users can avoid signing up with ISPs that throttle their favorite applications, and they
can diagnose what is causing unexpected application behavior.

Details about broadband deployments are also important for designing new systems or
optimizing and adapting systems to make them perform well over these networks. A recent
example of how transparency can influence system design beneficially is P4P [XYK+08], a
project run jointly by an ISP, a BitTorrent software vendor, and researchers. The project
seeks to keep BitTorrent traffic local in order to increase users’ download speeds while
reducing bandwidth costs for the ISP.

Finally, telecommunication regulators need transparency to monitor ISPs and hold them
accountable. In today’s opaque network deployments, regulators rely on information pro-
vided by ISPs themselves for their investigations [Com08b, Can08b]. Obviously, this
does not allow regulators to monitor ISPs independently and enables ISPs to hide de-
tails about their network deployments from regulators. For example, it only came to the
attention of the US telecommunication regulator (FCC) that Comcast blocked BitTor-
rent traffic after network measurements performed by a civil rights group revealed this
practice [Top07, The08].

To improve the current situation with rather opaque network deployments, researchers
have sought to make networks more transparent without the direct support of network
operators. Using network measurements, network characteristics can be studied inde-
pendently and simulation models can be derived for more realistic system evaluations.
However, to date, there are only a few, small-scale studies that characterized residential
broadband networks [LP03, CKL+04]. Evaluation experiments rely on either simulations,
which use simplistic and thus often not accurate models, or testbeds that only include a
handful of broadband nodes.

The goal of this thesis is to make broadband access networks more transparent to users,
researchers, and developers. We achieved this by building novel tools that allow the study
of broadband networks at scale for the first time. Furthermore, we developed tools and
systems that allow researchers and developers to evaluate their new system designs in
broadband networks at large scale.

1.3 Contributions

We make the following contributions towards increasing transparency in broadband access
networks.

6

1.4 Structure of this Thesis

1. The first large-scale study of the characteristics of broadband access net-
works of major ISPs in Europe and North America. To perform this study,
we developed a novel measurement methodology that requires only minimal coop-
eration from remote hosts to study important characteristics (such as bandwidth,
latency, and loss rates) of a large number of access links. Our study reveals impor-
tant differences between broadband and academic networks regarding bandwidth,
latency, and loss rates. For example, we are the first to point out that many broad-
band hosts have surprisingly long queues deployed that can significantly impact the
performance of latency-sensitive applications such as VoIP and VoD.

2. The first large-scale study of the prevalence of traffic differentiation in
broadband access networks. Our Glasnost system is an easy-to-use tool that
enables even lay users to test their broadband access links for traffic differentiation,
such as blocking or throttling of application traffic. Using data collected by Glasnost,
our study reveals that blocking of BitTorrent transfers was widely used until the end
of 2008, and that ISPs today increasingly deploy throttling-based traffic management
practices instead. Our findings were covered in the public media and even attracted
the attention of telecommunication regulators.

3. A novel methodology to study transport protocols at large scale over
the Internet. Building on our measurement methodology for studying network
characteristics, we present Monarch, a tool that emulates transport protocol flows
to a large number of hosts on the Internet without requiring direct access to them.
Monarch enables researchers to study the behavior of transport protocols in the wild
in heterogeneous settings.

4. A novel testbed design that allows adding end user nodes easily to existing
Internet testbeds. While today’s testbeds mostly consist of well-connected aca-
demic nodes, SatelliteLab allows creating heterogeneous testbeds, including broad-
band and mobile nodes that cannot be added to today’s testbeds such as PlanetLab.

Some of the material in this thesis was previously published in a series of conference
papers [HDGS06, DHGS07, DHB+08, DMHG08, DMG+10].

1.4 Structure of this Thesis

The rest of this thesis is divided into two parts. In Part I, we introduce novel method-
ologies for studying various aspects of residential broadband networks. Based on these
methodologies, we performed large-scale studies of residential broadband networks.

In Chapter 2, we outline the challenges in studying broadband networks and discuss
related work. In Chapter 3, we describe a novel methodology for studying broadband
networks with only minimal cooperation from the measured broadband hosts. We used
this methodology to perform the first large-scale study of the characteristics of residential
broadband networks. Next, Chapter 4 presents Glasnost,which allowed hundreds of thou-
sands of users to test their broadband links for traffic differentiation. The chapter outlines
the design of Glasnost and uses the collected data to investigate the prevalence of traffic
shaping in the Internet.

7

1 Introduction

In Part II, we focus on tools that allow researchers and developers to evaluate their
applications and systems in broadband networks.

In Chapter 5, we discuss the need for the evaluation of emerging systems and ap-
plications over the Internet. Discussing related work we point out that state-of-the-art
network simulators and testbeds do not represent the heterogeneity of the Internet as
they are mostly represent academic and high-bandwidth networks and do not consider
nodes from broadband access networks. Chapter 6 presents Monarch, a tool to emulate
transport protocol flows over the Internet at large. And Chapter 7 presents SatelliteLab,
a new testbed design that allows constructing heterogeneous testbeds easily, particularly
including broadband nodes.

Finally, in Chapter 8 we conclude and discuss possible directions for future work.

8

Part I

Characterizing Broadband Access

Networks

9

2 Background and Related Work

More than 271 million people worldwide use broadband access networks to connect to the
Internet. But despite these networks’ widespread usage, they remain relatively unexplored
by the academic community. Understanding the characteristics of broadband networks is
important for three reasons. First, studying broadband access networks allows researchers
to model the underlying network and thus create realistic simulation environments, which
can be used to test new applications and systems before deploying them in the wild.
Second, measurements allow researchers and users to detect network anomalies, which
might affect the operation of the network or of the applications running over it. Previously,
such measurements revealed flaws in widely used protocols [AEO03]. Third, measurements
make network deployments more transparent. For instance, measurements have revealed
recently that many major ISPs deploy equipment that restricts the bandwidth for popular
Internet applications [DMHG08].

While there are a large number of measurement tools available, they are often not
suitable to measure residential broadband networks as most of these tools require access
to the broadband nodes. But researchers often have only limited access to broadband
environments and, as a result, previous studies were restricted to a few tens of broadband
nodes.

In this thesis, we present two approaches to study the characteristics of broadband net-
works at large scale. First, we developed a novel measurement tool that allows researchers
to study properties of broadband networks, such as bandwidth, queue lengths, and loss
rates, without the requirement to have access to many end hosts. Second, we present
Glasnost, a system that allowed hundreds of thousands of end users to check their access
links for traffic differentiation. Glasnost enabled us to study the prevalence of BitTorrent
blocking and throttling in broadband networks.

In the next sections, we give an overview of existing measurement methodologies and
discuss why most of these techniques are not suitable to study broadband access networks
at large scale. We also present previous network measurement studies including small-scale
studies of broadband access networks.

2.1 Measurement Methodologies and Tools

Measuring the Internet has been a long tradition in networking research. Since the early
days of the Internet, researchers have been interested in the characteristics of the Internet.
Traditionally, measurement studies have examined the bandwidths, latencies, and loss
rates of Internet paths. Additionally, recent studies have investigated the presence and
configurations of network policies found on Internet paths, such as traffic shaping and
traffic prioritization policies.

Researchers have devised measurement tools that use either active probes or passive
observation of ongoing network traffic to measure the Internet. To infer the network char-
acteristics from the measurements, the collected measurement data has to be analyzed

11

2 Background and Related Work

carefully as confounding factors (such as noise, the used TCP congestion control algo-
rithm, and the local configuration of protocol parameters) might have affected the data,
potentially resulting in misleading interpretations of the data [Pax04]. While most of to-
day’s Internet measurement tools are used by researchers, there are easy-to-use tools that
are built for end users to measure characteristics they are interested in. We will present
some popular examples later in this section.

2.1.1 Active and Passive Measurement Techniques

Many measurement methodologies have been developed to study the characteristics of
networks. They are typically divided into two classes: active measurement techniques and
passive measurement techniques. In the following, we introduce each of these classes of
techniques and present several examples.

Active measurement techniques

Active measurement techniques send probes among Internet hosts. These probes are used
to infer the characteristics of network paths. They often require control over the Internet
hosts used to send and receive probe traffic.

Pathload [JD03] estimates the bandwidth available to TCP flows by sending periodic
streams of measurement traffic. Its inference is based on the insight that one-way delays of
measurement probes increase if they are sent at a rate higher than the available bandwidth.
Claypool et al. [CKL+04] presented a methodology for estimating queue sizes in broadband
networks. ICMP ping probes are used to measure the latency to a nearby host. Then a
large download is started that is supposed to fill up the queue at the bottleneck link, which
is usually the broadband link. Once the queue is filled up, the latency to the nearby host
is measured again. The increase in latency compared to the first measurement is used to
estimate the queue size at the bottleneck link.

Some active measurement tools use packet-pair or packet-train techniques to estimate
the network path capacity with only a small number of probes. Pathrate [DRM04] sends
many packet pairs back-to-back and measures the packet dispersion at the destination
host. This technique estimates the capacity of the traversed network path and works even
in the presence of cross traffic. Probegap [LPP04] is able to measure a link’s capacity
even in the presence of links with multiple distinct rates, as, e.g., caused by traffic shaping
equipment such as token buckets. Sending packet trains, it measures the one-way delay of
the probes and detects gaps that correspond to idle periods, which corresponds to periods
of full link capacity. The one-way delays measured during these idle periods are then used
to estimate the path’s capacity.

NetPolice [ZMZ09] (previously named NVLens [ZMZ08]) compares the aggregate loss
rates of different flows to infer the presence of “network neutrality violations”. Their focus
is on inferring backbone ISPs’ traffic differentiation policies. Probes that carry contents
of application messages are sent between pairs of measurement points; to control which
path segment is measured the TTL field of the IP header is adjusted.

Finally, the DIMES project [SS05] uses volunteer-contributed hosts to run “traceroute”
measurements that map the connectivity of edge networks. DIMES requires end user hosts
to run arbitrary code (similar to the popular SETI@home software [ACK+02]). It was
deployed more than four years ago and has about 8,000 users.

12

2.1 Measurement Methodologies and Tools

Most of the active measurement tools presented so far require access to both end points
to measure the path characteristics between them. Such a methodology restricts the scale
of a measurement study and cannot be used for networks researchers typically lack access
to, such as broadband networks. To overcome this limitation, researchers have come
up with new methodologies that leverage existing protocols in unanticipated ways while
requiring access to only one end point to perform measurements that were previously
intractable.

Sting [Sav99] manipulates the TCP protocol to measure packet loss. In principle, Sting
uses TCP’s loss detection to derive the underlying loss rate. To get a significant statistical
sample of probes, Sting manipulates TCP to send packets that overlap in payload, thus
sending many more packets than a usual TCP implementation would send while still
conforming to the TCP standard. Sting only requires the remote host to run a TCP-based
service (e.g., a webserver) it can connect to. Using similar techniques, SProbe [SGG02]
sends packet pairs of TCP SYN packets to measure bottleneck bandwidth to uncooperative
Internet hosts. This approach is problematic today as the TCP SYN probes look like a
port scan and might trigger intrusion detection alarms.

T-BIT [PF01, MAF05] exploits the TCP protocol to characterize Web servers’ TCP
behavior, such as which congestion control algorithm is used and whether the remote
server supports selective acknowledgments. Its packet probes are indistinguishable from
normal webpage requests and work with any web server.

King [GSG02] estimates the path latencies between two arbitrary end points on the
Internet without having access to any of them. The measurement methodology is based
on the observation that most end hosts are located close to their DNS server. King uses
recursive DNS queries to measure latencies between two arbitrary DNS servers which
can then be used to estimate the path latencies of two end points located close to these
DNS servers. King assumes that the path characteristics between two (typically well-
connected) DNS servers are similar to those between two arbitrary end hosts. However,
this assumption does not hold for broadband nodes as we will show in Chapter 3.

TCP Sidecar [SS06] is a technique to map the topology of a network. It tries to overcome
the shortcomings of the popular traceroute tool that is often blocked by firewalls and
that is unable to map nodes behind Network Address Translation equipment (NAT). TCP
Sidecar injects duplicates of TCP packet into passing TCP streams. The injected packets
are TTL-limited and use the IP record route option to map the network. To measure
a node, TCP Sidecar must be placed in its communication path. However, this is very
challenging and requires the support of ISPs or content providers to measure a large
number of nodes.

All of these tools are successful in measuring a large number of nodes on the Internet,
but they also raise usage concerns — probes are sent to remote hosts which did not
consent to the measurements. Such measurements can interfere with normal user traffic
and might even impose costs on the measured users if a per-byte payment model is in
place. For all these tools, precautions have to be adopted that mitigate these concerns,
e.g., by minimizing the interference and other side-effects for users.

Passive measurement techniques

Instead of sending probes to measure a network, passive measurement techniques moni-
tor and analyze the ongoing network traffic to infer characteristics and properties of the

13

2 Background and Related Work

network or the applications running on top of it. Passive measurement methodologies are
less intrusive than active measurements: they use only real, pre-existing traffic for infer-
ence and do not generate any artificial traffic that might influence the network’s behavior
or raise security concerns. At the same time, they allow measuring hosts even without
access to them as long as their traffic passes the passive measurement monitor. Although
passive measurement techniques have many strengths, in practice they have three major
limitations.

First, passive measurement techniques rely on pre-existing network traffic to infer net-
work characteristics. Thus, the tools have to be placed in network locations that allow
monitoring sufficient traffic that crossed the link of interest. This can be very challeng-
ing as it requires support from ISPs or content providers, which often restricts passive
measurement studies to a small number of network links researchers have access to.

Second, the performance of an Internet flow can be affected by many confounding fac-
tors. One such factor is the used software platform, such as the operating system (and
especially its TCP/IP networking stack) and its configuration. Another factor is the char-
acteristics of the observed flows, as they can have significant differences in packet sizes and
burstiness. And finally, transient noise caused by background traffic has to be considered.
In most cases when using passive measurement tools it is not possible to avoid these fac-
tors. Thus, in order to draw accurate inferences, passive measurement tools must account
for many confounding factors, which is a complicated task that can lead to inaccurate
results. Active measurement tools on the other hand can avoid most confounding factors
as the measured traffic is under the control of the researcher and thus, also repeatable.

Third, privacy is a concern with passive measurements [OSG07]. Since real traffic is
monitored and recorded, it may contain private data, including passwords and data that
identifies the sender (e.g., the sender and receiver IP addresses). Hence, techniques to
anonymize such data must be carefully applied [PAPL06, FXAM04].

In practice, these limitations make it hard to design passive measurement methodolo-
gies to study network characteristics accurately and at large scale. Nevertheless, passive
measurement techniques have been used in a large number of measurement work in recent
years. Here, we list some popular examples. Sen et al. [SW02] monitored peer-to-peer traf-
fic from a single ISP to learn about the dynamics of this traffic type, such as traffic patterns
and traffic volume. Cleary et al. [CM01] presented a methodology to estimate bandwidth
from passive measurement traces using sampling techniques. Eriksson et al. [EBN08]
developed an algorithm that extracts a network’s topology from network traces without
actively probing the network. The algorithm works by analyzing the TTL hop count of
IP packets.

2.1.2 Measurement Tools for End Users

The measurement tools presented so far were developed and used by researchers to study
network characteristics. To use these tools and understand their results, users are required
to have networking experience. Thus, these tools are not meant to be run by ordinary
users. Nevertheless, also end users are interested in particular characteristics (such as
available bandwidth or end-to-end latencies) of the networks they use. Consequently,
there are a number of network measurement tools that are used by end users or that
were built for end users to measure characteristics they are interested in. Designing and
deploying measurement tools for end users has one major benefit: it allows researchers to

14

2.1 Measurement Methodologies and Tools

collect measurement data from end user networks, which are typically not accessible to
researchers at large scale.

The currently existing measurement tools for end users can be grouped in three major
categories. A first class of network measurement tools measures a particular network
property. For example, the ping tool, which comes with most operating systems, is
widely used to check the availability of a remote host or to measure the path latency to
a remote host. Internet speed tests (e.g., [Ook06]) are probably among the most popular
measurement tools used by end users. These tests measure the end-to-end throughput of
a network path by running large TCP downloads and uploads.

A second class of network measurement tools for end users is formed by network diagno-
sis tools. Netalyzr [Int09] is a web-based tool that focuses on the detection of networking
problems. It detects, for instance, manipulation of web content by a HTTP proxy in
the path or blocking of traffic on some prominent ports. NPAD [MHR08] allows end
users to diagnoses performance problems with TCP downloads from remote sites. NPAD
can identify problems that are caused by failures in the last-mile network, or common
misconfigurations on a client’s host.

Finally, a third class of network measurement tools detects traffic shaping. Our own
Glasnost tool (cf. Chapter 4) falls into this category. The Electronic Frontier Foundation’s
“Test Your ISP” project [Ele08] offers instructions for tracing a BitTorrent transfer and
checking for forged packets. However, this method requires access to two hosts in differ-
ent ISPs and involves the use of tools like Wireshark, which is beyond the capabilities of
most end users. DiffProbe [KD10] is a probing method that checks for traffic differentia-
tion based on active queue management. In particular, this methodology detects whether
RED or weighted fair queueing is used to manipulate flow performance. For its measure-
ments DiffProbe uses pairs of flows that share similar characteristics, but differ in their
application payloads or the port they are sent on. Difference in these flows’ performance
is attributed to differentiation. Using statistical methods DiffProbe can distinguish dif-
ferent active queue management techniques. NANO [TMFA09] uses causal inference to
detect the presence of traffic “performance degradation”. NANO relies on a vast amount
of passively collected traces from many users to infer if traversing a particular ISP leads to
poor performance for certain kinds of traffic. NANO does not provide immediate per-user
results, but aggregates results across users after enough data was collected. At this point,
NANO is only available for the Linux operating system, which limits its adoption by end
users.

While all of the tools presented in this section measure network characteristics that are
relevant to end users, not all of these tools are equally popular. In fact, the popularity of
a tool seems to be related to how simple it is to run measurements. The most popular
tools typically make it very easy to set up measurements (e.g., they run measurements
from the user’s host to an already set-up measurement server), and they mostly do not
require users to install software (e.g., by running measurements from a user’s web browser).
Additionally, the results these tools output are easy to understand, even for novice users.
We used these insights while designing our Glasnost system, which is now a very popular
tool with hundreds of thousands of users.

15

2 Background and Related Work

2.2 Measurement Platforms and Studies

Many researchers use Internet testbeds, such as PlanetLab [Pla], RON [ABKM03], and
NIMI [PAM02] to conduct measurement studies. These testbeds are designed explicitly for
use by researchers and usually do not allow end users to measure their own links. Recently,
Measurement Lab [Mea] was started as a platform for Internet measurement tools for end
users. As of May 2010, Measurement Lab provides a number of generic measurement tools
that characterize certain features of the Internet path they measure (e.g., latencies and
bandwidth) and tools that detect traffic shaping in the Internet.

Most measurement studies focus on the characteristics of academic and corporate net-
works or the core of the Internet. For example, Paxson [Pax97] studied network packet
dynamics among a fixed set of Internet hosts located primarily in academic institutions.
In later work, Paxson [Pax99] measured end-to-end packet dynamics by transferring 100
KBytes among 35 Internet sites. These probe streams were used to investigate the preva-
lence of packet reordering in the Internet, and also to measure bottleneck bandwidth and
path latencies. Bellardo et al. [BS02] quantified the amount of packet reordering in the
Internet by probing a number of popular hosts on the Internet. Ianneccone et al. [ICM+02]
analyzed the prevalence and impact of link failures in an ISP backbone.

Several other studies have measured the network paths connecting the PlanetLab
testbed, examining characteristics such as bandwidth [LSB+05] and node connectiv-
ity [BGP04]. However, Pucha et al. [PHM06] found that the network paths of today’s
testbeds are not representative for the Internet, as they are mostly comprised of academic
nodes and lack nodes in corporate and broadband environments, which can have vastly
different characteristics. In fact, our study in Chapter 3 supports this finding as we show
that broadband networks have inherently different characteristics than academic networks.

2.2.1 Broadband Network Studies

Only few studies have investigated broadband access networks, and rigorous measurement
data that characterize these networks at scale are lacking. Claypool et al. [CKL+04] per-
formed a measurement study of access networks’ queue sizes using 47 volunteering broad-
band hosts. They found that the median queue size was 350 ms in DSL networks and
150 ms in cable networks, and they showed in simulation that large queue sizes are detri-
mental to network traffic from interactive applications. Similarly, Jehaes et al. [JVC+03]
observed a large increase in round-trip delays over saturated broadband links. Their
experiments were limited to one DSL and one cable link. Lakshminarayanan and Pad-
manabhan [LP03] performed measurements from 25 broadband hosts to examine several
application-level metrics such as TCP throughput and latency to different Internet hosts.
In later work, Lakshminarayanan et al. [LPP04] outlined pitfalls in measuring link ca-
pacities of cable and DSL networks by using existing bandwidth estimation tools. In
particular, the accuracy of these tools is greatly influenced by the rate regulation schemes
used in cable and DSL networks. Three passive measurement studies have examined
the traffic generated by residential customers in Japan [CFEK06], France [SCUB07], and
Germany [MFPA09]. Each of the studies was limited to one ISP per country.

Beverly et al. [BBB07] use participants of filesharing applications to test for port block-
ing in edge networks. Their tool pretends to share popular files and waits for clients to

16

2.2 Measurement Platforms and Studies

connect to them on a particular port. If there is port blocking, clients’ connection attempts
will fail. They found port blocking to be relatively common in the Internet.

While these studies are a first step towards a rigorous characterization of residential
broadband networks, all of them (but Beverly’s study on port blocking) remain small in
scale.

In the next two chapters, we present the first large-scale studies of broadband access
networks using two different approaches.

In Chapter 3, we present a novel active measurement methodology that can measure
broadband networks remotely and without cooperation from end hosts connected to the
broadband links. It allowed us to perform a large-scale measurement study of 11 ma-
jor broadband ISPs in North America and Europe, focusing on characteristics such as
bandwidth, latency, and loss rates.

In Chapter 4, we study the properties of broadband networks using a different approach.
We built Glasnost, a system that allows end users to detect traffic differentiation, such as
blocking or throttling of application traffic, in their broadband links. Glasnost has been
used by hundreds of thousands of users worldwide. Using the data collected by Glasnost
we were able to study the prevalence of traffic differentiation in broadband networks at
large scale.

17

3 Characterizing Residential Broadband

Networks

In the absence of systematic studies, knowledge about residential broadband networks
is based on anecdotal evidence, hearsay, and marketing buzzwords. Although broadband
networks are known to have very different characteristics from academic networks [PHM06,
BGP04], there have been no large-scale studies quantifying these differences. As a result,
researchers today are left to second-guess how well protocols or systems evaluated in
academic networks would work in the commercial Internet, and in particular in broadband
networks with their hundreds of millions of home users.

As discussed in the previous chapter, most existing measurement tools are not suitable
for studying broadband access networks at scale. One major reason for this is that these
tools typically require the user to run a program on both endpoints of a path. This require-
ment makes these tools be precise because they can separate upstream and downstream
effects; however, to achieve large scale, we needed to work with hosts that were not under
our control.

Hence, we developed a novel measurement methodology that allowed us to study broad-
band access networks with minimal end host cooperation. We use TCP acknowledgment
and ICMP echo request probes to measure broadband end hosts. We leverage that Inter-
net hosts are mandated by the corresponding protocols to respond to these probes. As we
will show in this chapter, our methodology allows easy and accurate characterization of
broadband link properties.

In this chapter, we present the first large-scale measurement study examining 1,894
broadband hosts from 11 major commercial cable and DSL providers in North America
and Europe. The goal of our study was to perform a rigorous characterization of an exten-
sive set of properties of broadband links. For this, we measured link bandwidths, latencies,
and loss rates. We also characterized the properties of broadband queues, including queue
sizes and packet drop policies. Finally, we examined a physical property specific to the
cable transmission medium: the time-slotted access policy of the upstream channel. We
measured the effects of this access policy on latency and jitter. Because broadband ac-
cess links are asymmetric, we measured the properties of the upstream and downstream
directions separately. Our analysis was driven by three questions:

1. What are the typical bandwidth, latency, and loss characteristics of residential broad-
band links?

2. How do the characteristics of broadband networks differ from those of academic or
corporate networks?

3. What are the implications of broadband-network properties for future protocol and
system designers?

19

3 Characterizing Residential Broadband Networks

Our study reveals important ways in which cable and DSL networks differ from the
conventional wisdom about the Internet, accumulated from prior studies of academic net-
works. For example, many cable links show high variation in link bandwidths over short
timescales. Packet transmissions over cable suffer high jitter as a result of cable’s time-
slotted access policy. DSL links show large last-hop delays and considerable deployment
of active queue management policies such as random early detection (RED). Both cable
and DSL ISPs use traffic shaping and deploy massive queues that can delay packets for
several hundred milliseconds.

Our findings have important implications for emerging protocols and systems. For
instance, the high packet jitter in cable links can affect transport protocols that rely on
round-trip time (RTT) measurements to detect congestion, such as TCP Vegas [BP95]
and PCP [ACKZ06]. Further, the large queue sizes found in cable and DSL ISPs can be
detrimental to latency-sensitive applications such as VoIP when they are used concurrently
with bandwidth-intensive applications, such as BitTorrent.

3.1 Measuring Network Characteristics with Minimal

Cooperation

For our measurements to be generally applicable, the study needed to be performed at large
scale. Previous studies of broadband networks [LP03, CKL+04, LPP04] used measure-
ment tools that required cooperation from the remote broadband hosts. Such a method-
ology restricts the scale of the measurement study. Instead, we developed a different
methodology for conducting large-scale detailed broadband measurements. Our approach
requires minimal cooperation from the remote hosts, allowing our measurements to scale
to thousands of broadband links.

Remote hosts need to cooperate only in two simple ways. First, they must respond
to ICMP echo request packets with ICMP echo responses. Second, they must send TCP
reset (RST) packets when they receive TCP acknowledgments (ACK) that do not be-
long to an open TCP connection. Both responses are mandated by the corresponding
protocols [Pos81, Uni81].

Our technique is simple: we probe the broadband link with packet trains at different
rates, using packets of various types and sizes. We use the responses received to infer a
broad range of characteristics, both downstream and upstream. This approach requires
support from only one endpoint of an Internet path, but obtaining accurate measurements
is more challenging than with tools that require support from both endpoints or with
tools that have been explicitly designed to measure one specific property [LPP04, JD03,
DRM04].

3.1.1 Probe Trains to Measure Broadband Links

We used five types of probe packet trains to measure a broadband link. These trains differ
with respect to three properties: the protocol packets used, the size of the probes, and the
rate at which the trains were sent.

We refer to our high-rate probe trains as floods, and we refer to our low-rate probe trains
as trickles. All floods were sent at 10 Mbps to saturate the broadband links. Consequently,
packet floods measure the network under congestion. By contrast, all packet trickles were

20

3.1 Measuring Network Characteristics with Minimal Cooperation

sent at a rate of a few tens of Kbps, so they characterize the broadband network under
normal operational conditions.

We limited the packet floods to at most 10 seconds, whereas we allowed trickles to last
from several hours to several days. To capture diurnal variations in network properties,
we repeated the floods every half hour for one week.

• Asymmetric large-TCP flood. We sent large (1,488-byte1) TCP ACK packets,
and the remote host responded with small (∼40-byte) TCP RST packets. The ACK
packets saturated the downstream links and router queues, but the responses, being
smaller and fewer, did not saturate the upstream links or queues.

• Symmetric large-ICMP flood. We sent large (1,488-byte) ICMP echo request
packets, and the remote host responded with ICMP echo response packets of the same
size. This packet train saturated the links and router queues in both downstream
and upstream directions.

• Symmetric small-TCP flood. We sent small (40-byte to 100-byte) TCP ACK
packets, and the remote host responded with small (∼40-byte) TCP RST packets.
Like the symmetric large-probe flood, this packet train saturated the network in
both downstream and upstream directions but with much smaller packets.

• Symmetric large-ICMP trickle. We sent large (1,488-byte) ICMP echo request
packets spaced at large intervals randomly chosen between 10 ms and 30 ms, and the
remote host responded with ICMP echo response packets of the same size. Unlike the
above probe trains, this packet train did not saturate the downstream or upstream
links.

• Symmetric small-TCP trickle. We sent small (40-byte) TCP ACK packets
spaced at large random intervals between 10 ms and 30 ms, and the remote host
responded with small (∼40-byte) TCP RST packets. This packet train did not
saturate the downstream or upstream links.

3.1.2 Measured Broadband Link Properties

Our measurements rely on one assumption: the broadband access link is the only bottle-
neck along the Internet path between our measurement hosts and the remote broadband
hosts. We validate this assumption in the next section. This section describes how we
measure the properties of the broadband links based on this assumption.

Link bandwidth

To estimate the allocated downstream bandwidth, we calculate the fraction of answered
probes in the large-TCP flood, which saturates the downstream link only. For example,
we estimate the downstream bandwidth of a link to be 6 Mbps when 60% of packets in our
10 Mbps large-TCP flood are answered. We use the same technique to estimate upstream
bandwidths from the symmetric large-ICMP flood. The behavior of the large-ICMP flood

1We used 1488-byte probes because some DSL links running PPPoE or PPPoA have an maximum trans-
mission unit of fewer than 1,500 bytes.

21

3 Characterizing Residential Broadband Networks

is driven by the bandwidth of the slower link, which for cable and DSL is the upstream
link.

Our techniques yield incorrect estimates in the presence of cross-traffic. To identify and
eliminate all measurement probes affected by cross-traffic, we use the IP identifier (IPID)
field in the IP headers of the response packets. Many Internet hosts increment the IPID
field by a fixed number (typically one) for every new packet they create. We can use
this fact to detect when the broadband host sent additional packets at the time of our
measurements, thus excluding measurements that were affected by cross-traffic.

Packet latencies and jitter

We characterize three types of packet delays and their variation (jitter) for each link:
queueing delay, propagation delay, and transmission delay. Intuitively, queueing delay is
the time a packet spends queued behind other packets in the router, transmission delay
is the time taken by the router to send the first packet in the queue over the wire (thus
it depends on the rate of the link), and propagation delay is the time taken by the packet
to be received on the other end of the wire (thus it depends on the link length and the
propagation speed of the used medium).

We estimate the maximum possible queueing delays (or queue lengths) by calculating
the variation in RTTs of packets in our floods. To determine downstream queue lengths,
we calculate the difference between the 95th percentile highest RTTs2 and the minimum
RTTs of packets in the large-TCP flood. Remember that the large-TCP flood overflows
only the downstream router queues. A similar calculation for the large-ICMP flood, which
overflows queues in both directions, estimates the sum of downstream and upstream queue
lengths. We subtract the downstream queue length from this estimate to obtain the length
of the upstream queue.

To study broadband link propagation delays, we estimate their last-hop delays. We
computed last-hop delay as the difference between the latencies of small-TCP trickle probes
to the broadband host and to its last-hop router. By comparing the last-hop delays for
different packet sizes, we are able to infer the transmission delays in broadband links.

Packet loss

We estimate typical packet loss rates in broadband networks by calculating the fraction
of lost packets in the small-TCP trickle. To detect packet loss due to queue management
policies, such as random early detection (RED), we examine how the loss rate varies with
the latencies of the packets.

3.1.3 Validating our Assumptions

Next, we discuss seven important concerns about our methodology:

1. While protocol standards require a response to each of our probes, NATs and firewalls
can block incoming probe packets. How many Internet hosts respond to our probes?

2This filters out spikes and jitter to obtain a more reliable estimate of the maximum RTT.

22

3.1 Measuring Network Characteristics with Minimal Cooperation

2. To be accurate, our probes must traverse the entire Internet path reaching the broad-
band host and not be answered by an intermediate router. Do our measurements
accurately reflect the properties of broadband access links?

3. We assumed that the broadband links are the bottlenecks in the measured Internet
paths. How often are broadband links the bottlenecks along the measured Internet
paths?

4. We assumed broadband hosts respond to all probes without any delay. In practice,
end hosts could drop or rate limit their responses. How often do broadband hosts
delay or drop response packets?

5. Our probes can be interpreted as port scans or attacks. What are the best practices
we adopted?

6. Our methodology requires us to flood end hosts with different probe packets at
10 Mbps. Why is it necessary to flood end hosts with probes to characterize broadband
links?

7. Measuring network characteristics with minimal cooperation from an end host is
more challenging than with tools that require full cooperation. What are the limi-
tations of our methodology?

How many Internet hosts respond to our probes?

In theory, our methodology should enable us to measure all end hosts on the Internet since
the protocols require a response to each of our probes. In practice, however, many hosts
are either offline or behind NATs and firewalls that block or rate-limit incoming probe
packets.

We conducted a simple experiment to estimate the fraction of Internet hosts that can
be measured with our methodology. We sent probes to three types of hosts: end hosts in
commercial broadband ISPs; end hosts in academic and research networks; and Internet
routers. We selected end hosts in broadband and academic networks from a 2001 trace
of peers participating in the Gnutella file-sharing system [SGG02]. We used DNS names
to select hosts belonging to major DSL and cable ISPs and university domains in North
America and Europe. For example, we classified a host as a BellSouth DSL host if its DNS
name is of the form adsl-*.bellsouth.net. We discovered Internet routers by running
traceroute to the end hosts in broadband and academic networks.

Table 3.1 presents our results. We probed 1,000 hosts in each of the three host categories.
Overall, more than 6% of the broadband hosts, 5% of the academic hosts, and 69% of the
routers responded to both probe types (ICMP echos and TCP ACKs). While this may
seem like a small percentage, there are millions of hosts in the Internet, and it should be
easy to find thousands of suitable hosts for a measurement study.

We believe that the primary reason for the large difference in the response rates between
routers and other end hosts is the low availability of the end hosts. Unlike routers, many
end hosts are often offline and disconnected from the Internet. To estimate the effect of
host unavailability, we probed the set of end hosts that responded to our probes for a
second time after a few weeks. Only 67% of the hosts responded again, suggesting the
high impact of end host unavailability. Moreover, our end hosts were selected from a trace

23

3 Characterizing Residential Broadband Networks

Broadband Academic Router

TCP ACK 7.2% 13.4% 69.6%
ICMP Echo 25.0% 8.9% 89.3%

Both 6.6% 5.3% 69.4%

Table 3.1: Fraction of Internet hosts responding to our probes. We selected
a sample set of 1000 hosts from each of three different categories of hosts: hosts in
commercial broadband ISPs, hosts in academic and research environments, and Internet
routers.

collected five years earlier. In contrast, the router list was generated from traceroutes
conducted only a few weeks before this experiment.

Our results suggest that our methodology can be used to perform a large-scale study
on the characteristics of residential broadband networks.

Do our measurements reflect accurately the properties of broadband access links?

We ran controlled experiments using five broadband hosts (two cable and three DSL) under
our control located in North America and Europe. These experiments were performed on
a small scale because they required end host cooperation. Although we hoped to recruit
more volunteers, the effort required to set up our experiments made it difficult to convince
users to perform them: our experiments require root access and manual changes to the
users’ firewalls.

First, we checked whether the probe packets were being sent over the broadband link
or whether they were being answered by a router in the middle of the network. We found
that in all cases the probes were being responded to by the NAT-enabled modems in the
customers’ premises. By configuring the modems to forward any arriving probe packets
to end hosts, we were able to receive the probes at our end hosts. Note that the probes
must cross the broadband link to reach the modems.

Second, we checked whether the NAT-enabled modems affected the measurements by
delaying or rate-limiting their responses. We gathered two traces for each link: one when
the modem responded to the probes, and another when the modem forwarded all probes
to the broadband hosts. We configured the broadband hosts to respond to the probes
without any delay (less than 100 µs) or rate-limiting. We compared the two traces with
respect to latencies and losses of probes and responses. The two traces matched closely in
all cases, suggesting that the modems do not adversely affect our measurements.

Finally, we verified the accuracy of our bandwidth and queue length measurements. We
compared the measured bandwidths of the access links with the rate speeds advertised by
their ISPs. We found that these bandwidths matched very closely – the average difference
in downstream bandwidths was less than 3%. To validate our queue length estimates, we
used our access to the end hosts to measure the upstream and downstream queue lengths
separately and accurately. The measurements matched the estimated queue lengths very
well. The close match suggests that both our bandwidth and queue length measurements
are accurate.

24

3.1 Measuring Network Characteristics with Minimal Cooperation

How often are broadband links the bottlenecks along the measured Internet paths?

Our methodology assumes that the broadband link is the bottleneck on the Internet path
measured. When the probes are sent from well-connected hosts, the broadband links
are likely to be the bottlenecks in these paths. To validate this assumption, we sent a
large-TCP flood probe train from a well-connected host in an academic network to the
broadband host and another train to its last-hop router. We used traceroute to discover
these routers. Comparing these two probe trains revealed that the broadband links are in
fact the bottlenecks.

Figure 3.1 compares the available bandwidth, the RTT increases, and the packet loss
rate of the two traces for 1,173 randomly selected broadband hosts. Most paths to the
last-hop routers achieved the full 10 Mbps throughput, experiencing almost no losses or
RTT fluctuations. By contrast, the paths including the broadband link had much lower
throughput, considerable RTT increases, and high packet loss. This suggests that these
variations are caused by the last hop, i.e., the broadband link.

0%

20%

40%

60%

80%

100%

 0 2000 4000 6000 8000 10000

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Available bandwidth (Kbps)

Broadband
hosts

Last-hop
routers

(a) Bandwidth

 0 100 200 300 400 500

Increase in RTT (milliseconds)

Broadband
hostsLast-

hop
routers

(b) Latency

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Packet loss rate

Broadband
hosts

Last-hop
routers

(c) Loss

Figure 3.1: The broadband link is the bottleneck. Comparison of the paths to
the residential broadband hosts and their corresponding last-hop routers. The former
include the broadband link, while the latter do not. The two sets of paths have very
different characteristics, which validates our assumption that broadband links are the
bottlenecks along the Internet paths to broadband hosts.

How often do broadband hosts delay or drop response packets?

Our methodology assumes broadband hosts respond to probes without any delay. However,
several factors could delay or even prevent hosts from responding to some or all of our
probes. For example, a firewall may block certain types of probes, such as ICMP echo
requests. Some routers add a delay between the arrival of a probe and the departure of the
response [GP02]. Also, a host with limited processing power might delay or drop packets
arriving at high rates.

In our analysis, we removed all hosts that did not respond to our probes. We also
removed the broadband hosts that rate-limited their probe responses. We identified such
hosts by checking for large loss episodes occurring periodically.

We performed the following experiment to check whether our probe trains were too
aggressive for the processing power of some hosts. We sent probe trains at 10 Mbps but

25

3 Characterizing Residential Broadband Networks

with varying packet sizes. Although all trains consumed the same bandwidth, their packet
sending rates were different. We checked whether hosts experienced higher losses at faster
sending rates. A higher loss rate suggests that an end host cannot process packets at fast
rates. We checked how losses varied with packet sending rates for all broadband hosts
in our study. The loss rates remained constant for over 99% of the hosts in our study,
suggesting that the end hosts have sufficient processing power to handle our probing rates.

What are the best practices we adopted?

Performing active measurements on the Internet raises important usage concerns. Al-
though it is difficult to address and eliminate all such concerns, we adopted a set of
precautions to mitigate these concerns. We restricted our high rate probe trains to no
more than 10 seconds each. We also embedded a custom message in each of our probe
packets which described the experiment and included a contact email address. To date,
we have not received any complaints.

Another cause for concern was that users with a per-byte payment model end up paying
for our unsolicited traffic. To mitigate this concern, we only measured hosts in ISPs that
offer flat-rate payment plans, and we limited the total amount of data sent to any single
broadband host over our entire study.

Why is it necessary to flood end hosts with probes to characterize broadband links?

Our methodology allows us to measure three different major characteristics of broadband
links: link bandwidth, packet latency, and packet loss. While we use only low-bandwidth
probe trains to measure packet loss, we use high-bandwidth probe floods at 10 Mbps to
measure link bandwidth and packet latency.

We admit that there are more efficient ways to measure link bandwidths. For example,
Croce et al. [CEUB08, CEUB09] refined our methodology to measure ADSL link band-
widths with two orders of magnitude less measurement traffic. However, to date we are
not aware of a methodology that allows us to study packet latencies, including the router
queue sizes deployed in broadband networks, without flooding the end host. To limit
the absolute amount of traffic we generate for our measurements, we re-use the latency
measurements to also infer link bandwidths.

What are the limitations of our methodology?

Our approach requires support from only one endpoint of an Internet path to study broad-
band networks at large scale. Compared to tools that require support from both endpoints,
this makes it more challenging to obtain accurate measurements. The reason is that our
approach does not allow measuring the characteristics of the upstream and downstream
link independently. Instead, we infer characteristics for both directions by exploiting the
fact that broadband networks have asymmetric links. In practice, having access to only
one endpoint can cause our measurements to be less accurate. However, as pointed out be-
fore, we found that our results on link bandwidth, latencies, and loss rates closely matched
the results obtained from measurements of each direction individually.

While our technique builds on the fact that broadband networks have asymmetric links,
it works even if links are symmetric, i.e., when upstream and downstream capacities are
the same. It is inaccurate only when the upstream bandwidth exceeds the downstream

26

3.2 The Characteristics of Big DSL and Cable ISPs

bandwidth. The residential ISPs we measured in this paper do not offer such configura-
tions.

3.2 The Characteristics of Big DSL and Cable ISPs

In this section, we analyze the data gathered from sending probe packet trains to a large
number of residential broadband hosts in 11 major ISPs (see Table 3.2). We examine
three important characteristics of broadband networks, namely link bandwidths, packet
latencies, and packet loss. Analyzing these properties is important because they affect the
performance of protocols and systems running over broadband.

We conducted our measurement study in April and May 2007. Each probe train was
sent from well-connected hosts located in four academic networks (Figure 3.2). The aca-
demic networks used are dispersed geographically – three in North America (in the south,
northwest, and northeast) and one in Europe.

Residential

network

Broadband link

Modem

Broadband

host

Measurement

servers

Figure 3.2: Measurement setup.

Two important limitations affect our measurement study. First, we studied only major
cable and DSL ISPs in North America and Europe. Our conclusions are unlikely to
generalize to high-speed fiber-based broadband ISPs, such as those in Japan or South
Korea [CFEK06], or to mobile broadband technologies, such as UMTS or EVDO. Second,
we removed all hosts that did not respond to our probes or that were rate-limited, which
could introduce some unknown bias.

3.2.1 Selecting Residential Broadband Hosts

We measured the link characteristics of 1,894 broadband hosts from 11 major cable and
DSL providers in North America and Europe. We selected these hosts by probing hosts
measured in a previous study of Napster and Gnutella [SGG02]. We identified IP address
ranges of popular residential ISPs from IP-to-DNS mappings (e.g., BellSouth’s DNS names
are adsl-*.bellsouth.net), and we scanned for IP addresses responding to our probes.

27

3 Characterizing Residential Broadband Networks

Table 3.2 summarizes high-level information about the ISPs we measured. Our study in-
cludes five out of the top ten largest broadband ISPs in the U.S.3 [Gol08a], the largest cable
provider in Canada [Gol08b], the second-largest cable provider in the Netherlands [Alb08],
and the largest DSL provider in the U.K. [Tel07]. From each ISP, we chose approximately
100 hosts randomly and measured them.

Table 3.2 also shows the bandwidths advertised by ISPs on their webpages in May 2007.
Although a range of speeds is available, all advertised bandwidths are lower than 10 Mbps.
We took advantage of this property by using 10 Mbps probe streams for measuring these
broadband links and their routers.

CableDSL

128K, 1M,
5M, 6M5M, 8M6M, 8M

384K,
1.5M, 3M,

6M, 8M

3M, 5M,
10M

768K,
1.5M, 3M,

6M

256K,
1.5M,

7M

768K,
1.5M, 3M,

6M
2-8M768K, 1.5M,

3M, 6M
768K, 1.5M,

3M, 6M
Offered BWs

(bps)

14830111812011439797158173155113Hosts
measured

CanadaUSAUSANetherlandsUSAS+SW
USAW USAS+SW USAUKSE USAS+SW USARegion

RogersTimeWarnerComcastUPCCharter
Comm.AT&TQwestAT&TBT GroupAT&TAT&TCompany

RogersRoad RunnerComcastChelloCharterSWBellQwestPacBellBT
BroadbandBellSouthAmeritech

Table 3.2: Measured hosts in our 2007 study. We measured 1,894 broadband hosts
from 11 major commercial cable and DSL providers in Europe and North America.

3.2.2 Allocated Link Bandwidth

Allocated link bandwidth refers to the bandwidth reserved by a provider for a single
broadband user. In cable networks, allocated link bandwidth is the portion of the shared
link’s capacity assigned to an individual user, whereas in DSL networks it is the ISP’s cap
on a user’s traffic rate. Characterizing allocated link bandwidths in broadband networks
helps to predict the maximum throughput any transport protocol (such as TCP Reno or
TCP Vegas) or application (such as BitTorrent) can achieve. As described in Section 3.1.2,
our probe streams measured allocated bandwidths by saturating the broadband links.

What are the allocated link bandwidths?

Figures 3.3a and 3.3b show the cumulative distributions of downstream link bandwidths
for the different DSL and cable ISPs. For many ISPs, the distributions jump sharply at
distinct bandwidth levels, such as 256 Kbps, 384 Kbps, 512 Kbps, and 1 Mbps. Only two
cable ISPs (Rogers in Canada and Comcast in the United States) allocate bandwidths
distributed along a continuous spectrum.

By comparing these measured allocated bandwidths to the advertised link speeds from
Table 3.2, we can confirm some commonly held opinions. We find that most DSL ISPs
have bandwidth rates corresponding to those advertised. By contrast, major cable ISPs,

3During the recent consolidation of the U.S. telecom industry, many large ISPs merged with each other.
Four of the eleven ISPs we measured are owned today by AT&T, a single company. However, our
measurements show that their networks have very different characteristics. For the purposes of this
study, we treat them as independent ISPs.

28

3.2 The Characteristics of Big DSL and Cable ISPs

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

Allocated link bandwidth (Kbps)

Ameritech

BellSouth

BT BroadbandPacBell

Qwest SWBell

(a) DSL (downstream)

0%

20%

40%

60%

80%

100%

 0 2000 4000 6000 8000 10000

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

Allocated link bandwidth (Kbps)

Charter

Chello

Comcast

Rogers

Road Runner

(b) Cable (downstream)

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

Allocated link bandwidth (Kbps)

Ameri-
tech

BT Broadband

Bell-
South

PacBell Qwest

SWBell

(c) DSL (upstream)

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000 2500 3000
P

e
rc

e
n

ta
g

e
 o

f
h

o
s
ts

Allocated link bandwidth (Kbps)

Charter

Chello

Comcast

Rogers

Road
Runner

(d) Cable (upstream)

Figure 3.3: Allocated downstream and upstream link bandwidths. Most ISPs
offer upstream bandwidths of 500 Kbps or less, even when the downstream bandwidths
exceed 5 Mbps.

such as Comcast and Rogers, show rates different from those advertised (both higher and
lower). We assume that this discrepancy is due to the nature of the two technologies:
cable is a shared medium, whereas DSL is not. Our data also shows that many cable ISPs
have significantly higher downstream bandwidths than DSL.

Figures 3.3c and 3.3d show the cumulative distributions of upstream link bandwidths.
Upstream bandwidths are strikingly different from downstream bandwidths — with the
exception of a few ISPs, most upstream bandwidths are lower than 500 Kbps, even when
their downstream bandwidths exceed 5 Mbps. To examine this difference, we plotted
the ratio of downstream to upstream link bandwidths in Figure 3.4. Most DSL hosts
have much smaller ratios than cable hosts, because compared to cable, DSL hosts have

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Ratio (downstream bandwidth / upstream bandwidth)

DSL

Cable

Figure 3.4: The ratio of downstream to upstream link bandwidths. The gap
between downstream and upstream bandwidths is much wider for cable networks than
for DSL networks.

29

3 Characterizing Residential Broadband Networks

lower downstream but similar upstream bandwidths. For over half of the cable hosts, the
downstream bandwidths exceed upstream bandwidths by a factor of more than 10.

The highly asymmetric nature of bandwidths does not align well with the require-
ments of emerging peer-to-peer systems [Coh01, CGN+04], whose workloads tend to be
symmetric. Despite all the excitement surrounding user-driven content generation and
distribution, residential networks continue to be predominantly optimized for client-server
workloads.

How stable are the allocated link bandwidths in the short term?

Next, we study the short-term and long-term stability of link bandwidths. Understanding
the stability of link properties is useful for designing network protocols that can quickly
adapt to changing link conditions.

We examined the stability of the allocated link bandwidths over the 10 second duration
of our packet floods. For this, we divided the 10 seconds into 100 ms intervals (the RTT
of a typical Internet path), we estimated the bandwidth within each interval, and we
compared the different estimates across intervals. Figure 3.5 shows how bandwidths for
a PacBell link (DSL) and a Rogers link (cable) vary over time. While the PacBell link
shows stable bandwidth, the Rogers link weaves above and below its average bandwidth
of 3 Mbps.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1 2 3 4 5 6 7 8 9 10

A
llo

c
a
te

d
 l
in

k
 b

a
n
d
w

id
th

 (
K

b
p
s
)

Time (seconds)

Unstable (Rogers cable host)

Stable (PacBell DSL host)

Figure 3.5: Stable and unstable link bandwidths. The allocated link bandwidth is
stable for the PacBell DSL host. For the Rogers cable host, the access link bandwidth
varies greatly over time.

Figure 3.6a shows the fraction of DSL and cable links that exhibit stable bandwidths
in the downstream direction. We classify a link as stable if at least 90% of the 100 ms
intervals show a bandwidth estimate within 10% of the average bandwidth. Although most
DSL ISPs show stable link bandwidths, we found that most cable ISPs have bandwidths
that vary significantly even within the short 10 s duration of our probes. We also found
that upstream bandwidths have unstable short-term characteristics (see Figure 3.6b). The
instability is even more striking for cable ISPs.

While we do not know the exact reason for these short-term bandwidth instabilities,
there are a number of possible explanations for them. Variations in bandwidth can be due
to cross-traffic that competes with our probe floods. This cross-traffic can occur on the
last mile, within an ISP’s network, or somewhere else on the Internet path between our

30

3.2 The Characteristics of Big DSL and Cable ISPs

0%

20%

40%

60%

80%

100%

Am
eritech

BellSouth

BT Broadband

PacBell

Q
uest

SW
Bell

C
harter

C
hello

C
om

cast

R
ogers

R
oad R

unner

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

0%

20%

40%

60%

80%

100%

Am
eritech

BellSouth

BT Broadband

PacBell

Q
uest

SW
Bell

C
harter

C
hello

C
om

cast

R
ogers

R
oad R

unner

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

0%

20%

40%

60%

80%

100%

Am
eritech

BellSouth

BT Broadband

PacBell

Q
uest

SW
Bell

C
harter

C
hello

C
om

cast

R
ogers

R
oad R

unner

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

(a) Downstream

0%

20%

40%

60%

80%

100%

Am
eritech

BellSouth

BT Broadband

PacBell

Q
uest

SW
Bell

C
harter

C
hello

C
om

cast

R
ogers

R
oad R

unner

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

0%

20%

40%

60%

80%

100%

Am
eritech

BellSouth

BT Broadband

PacBell

Q
uest

SW
Bell

C
harter

C
hello

C
om

cast

R
ogers

R
oad R

unner

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

0%

20%

40%

60%

80%

100%

Am
eritech

BellSouth

BT Broadband

PacBell

Q
uest

SW
Bell

C
harter

C
hello

C
om

cast

R
ogers

R
oad R

unner

P
e

rc
e

n
ta

g
e

 o
f
h

o
s
ts

(b) Upstream

Figure 3.6: Fraction of hosts with “stable” downstream link bandwidths. Most
DSL links show stable bandwidths, whereas most cable links do not. Cable downstream
bandwidths tend to be more stable than upstream bandwidths, likely an artifact of
TDMA in the upstream.

measurement servers and the broadband host measured. While cross-traffic can explain
some of the variations we observed, it cannot explain the significant difference between
cable and DSL ISPs, as we expect the effect of cross-traffic to be evenly distributed across
all the nodes of our measurements. Instead, we believe that this difference is rooted in the
nature of the technologies used. Cable links are shared amongst users and links are likely
to be oversubscribed; thus the achieved bandwidth can vary with the current network load.
This is especially true for the upstream direction where Time Division Multiple Access
(TDMA) is used to share the bandwidth amongst users.

This large short-term variation in cable bandwidths poses new challenges to transport
protocol designers. Traditionally, transport protocols have been developed to achieve
stable throughput and to avoid reacting to short-term events (on timescales less than one
RTT) [FHPW00]. However, when running in a cable network environment, protocols need
to adjust quickly to rapidly changing link conditions. Slow reacting protocols might not
achieve good throughput in cable networks.

How stable are the allocated link bandwidths in the long term?

We now turn our focus to the long-term diurnal stability of link bandwidths. We took
measurements of the upstream and downstream bandwidths every half an hour for one
week, selecting 70 random hosts from each ISP4. Figure 3.7 shows the diurnal variation
in bandwidths for one DSL ISP (BT Broadband) and one cable ISP (Rogers). Each curve
shows the bandwidth variation averaged across all measured links within one ISP. To
account for links with different bandwidths, we normalize each link’s bandwidth by using
the maximum measured bandwidth of that link during the entire measurement period.

We found that most ISPs have high long-term stability. As the curve for BT Broad-
band illustrates (Figure 3.7), bandwidths usually do not vary with the time of the day.
By contrast, a small number of ISPs, such as Rogers, show a clear diurnal trend in link

4To minimize DHCP effects, we discarded any host that went offline (i.e., did not respond to probes)
during this period. We also excluded measurements taken when we detected cross-traffic.

31

3 Characterizing Residential Broadband Networks

0%

20%

40%

60%

80%

100%

Fri
0:00

Sat
0:00

Sun
0:00

Mon
0:00

Tue
0:00

Wed
0:00

Thu
0:00

A
c
h

ie
v
e

d
 b

a
n

d
w

id
th

/
m

a
x
 b

a
n

d
w

id
th

Local time

Rogers

BT Broadband

Figure 3.7: Long-term link bandwidth stability. Whereas BT Broadband has stable
bandwidths over time, Rogers’s allocated link bandwidths show diurnal patterns.

bandwidths. Rogers’s end hosts see significantly lower bandwidths (almost a 25% reduc-
tion) in the evening (typically between 4pm and 7pm) than in the early morning (typically
between 1am and 5am). In the upstream direction, we find stable bandwidths (not shown)
for all ISPs, including Rogers. These findings seem to contradict the popular belief that
competing traffic affects the bandwidths of broadband hosts. For most ISPs, we found
little evidence that competing traffic affects link bandwidths during the day.

Is there evidence of traffic shaping?

Traffic shaping is likely to be one of the factors leading to the bandwidth instability
encountered in broadband networks. Some ISPs allow an initial burst of bandwidth that
is often many times greater than the advertised bandwidth. For example, Comcast’s
PowerBoost feature [Com07] increases the customer’s allocated bandwidth for a short
time — typically for transfers up to 5 or 10 MBytes —, reducing the download times of
relatively small files, such as MP3s. Other ISPs throttle the bandwidth allocated to long
running transfers to discourage heavy hitters from consuming a disproportionate share of
the bandwidth.

Because our probe floods were limited to 10 seconds, we could only detect the traffic
shaping associated with short-duration flows. To do this, we performed the following
experiment. We used our packet streams to compute the allocated link bandwidth of each
100 ms interval. To detect the presence of traffic shaping, we checked for a consistent and
significant drop in bandwidth after some initial period. Figure 3.8 shows an example link
from Ameritech DSL, whose bandwidth drops from 2.5 Mbps to 1.5 Mbps (its long-term
rate) after the first second.

We found similar downstream traffic shaping techniques used by three ISPs: Ameritech,
Comcast, and Chello. 11% of the Ameritech links, 26% of the Comcast links, and 67% of
the Chello links provide an initial burst of bandwidth to speed up short transfers. The
burst rates are typically more than 1 Mbps above the long-term bandwidth. However, in
many cases, we were unable to quantify precisely the burst rates because they exceeded
the rate of our probe train. In the upstream direction, we found no evidence of traffic
shaping or bandwidth throttling of our probe stream. The short duration of our probe
trains (10 seconds) could have prevented us from detecting upstream traffic shaping.

Recently, there have been numerous reports of ISPs throttling or even blocking traffic of
certain applications, such as BitTorrent, to mitigate network congestion [Can08a, Top07].

32

3.2 The Characteristics of Big DSL and Cable ISPs

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10

A
llo

c
a
te

d
 l
in

k
 b

a
n
d
w

id
th

 (
K

b
p
s
)

Time (seconds)

Figure 3.8: Traffic shaping in broadband networks. The downstream bandwidth of
this link is initially 2.5 Mbps, but it drops to 1.5 Mbps after one second.

The measurement methodology we presented here cannot identify such instances. Instead,
we discuss this matter in detail in Chapter 4.

Since history-based bandwidth prediction is a popular technique used in several trans-
port protocols [BP95, FHPW00, ACKZ06] and content distribution systems [CRSZ01],
the presence of traffic shaping in broadband networks has implications for applications
and transport protocols. Although our traffic shaping analysis is preliminary, it suggests
that using past bandwidth estimates to predict future bandwidth conditions might not
work well over broadband links.

3.2.3 Packet Latencies

We analyzed each of the three components of packet latencies: propagation delays, trans-
mission delays, and queueing delays.

Do broadband links have large propagation delays?

A link’s propagation delay is the time elapsed between sending a bit at one end and
receiving it at the other end. On one hand, broadband propagation delays could be short
because the links themselves are short. On the other hand, sophisticated signal processing
and error correction algorithms could increase broadband propagation delays.

Our methodology does not allow us to directly measure the propagation delay of a broad-
band access link. Instead, we estimated the round-trip delay of the last-hop of the path
between our measurement hosts and the broadband hosts. This last-hop delay roughly
approximates the sum of downstream and upstream broadband propagation delays.

To estimate this delay, we sent small-TCP trickle probes to both the broadband host
and its last-hop router. The trickle consisted of several hundred widely spaced small
probes and their responses. We calculated the last-hop RTT by subtracting the minimum
RTT to the last-hop router from the minimum RTT to the broadband host. We used the
minimum RTT estimates to avoid transient jitter as a result of queueing at intermediate
routers.

Figure 3.9 shows the RTTs for a representative DSL host and its last hop router. While
the RTT to the router stays constant at 53 ms for all probe sizes, the minimum RTT to
the DSL host varies from 102 ms for 100-byte probes to 152 ms for 1,488-byte probes. This
RTT increase is likely due the low bandwidth of this DSL link. Sending larger packets takes

33

3 Characterizing Residential Broadband Networks

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 200 400 600 800 1000 1200 1400

M
in

im
u
m

 R
T

T
 (

m
ill

is
e
c
o
n
d
s
)

Probe size (bytes)

Broadband host

Last-hop router

Figure 3.9: Minimum RTT packets of different size for a representative DSL
host and its last hop router. Subtracting the minimum RTTs for both targets
results in the last-hop RTT.

more time than sending smaller packets. The difference in RTT of router and broadband
host is the last-hop RTT.

Figure 3.10a shows our results for last-hop RTTs for cable and DSL networks. DSL
hosts exhibit considerably higher propagation delays than cable hosts. 75% of all DSL
hosts have last-hop delays larger than 10 ms, while 15% have propagation delays larger
than 20 ms. In comparison, typical US coast-to-coast RTTs between academic hosts are
around 50 ms. The large propagation delays for DSL hosts are surprising because many
last-hop routers are located in the same city as their end hosts5.

Figure 3.10b shows the jitter in our latency measurements. We used the RTTs of the
small-TCP trickle to estimate the jitter of the broadband link. We calculated jitter by
subtracting the 10th percentile RTT from the 90th percentile highest RTT. Compared
to cable, DSL links have higher last-hop delays but lower jitter. We believe that the
characteristics of the upstream cable links are responsible for these differences. We examine
this hypothesis next.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Latency (milliseconds)

DSL

Cable

(a) Last-hop delay

0%

20%

40%

60%

80%

100%

 0 5 10 15 20

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Latency (milliseconds)

DSL

Cable

(b) Last-hop jitter

Figure 3.10: Last-hop delay and jitter in cable and DSL networks. DSL shows
higher last-hop RTTs than cable, while cable exhibits higher jitter than DSL.

5We inferred the locations of hosts and routers from their DNS names as suggested in [SMWA04].

34

3.2 The Characteristics of Big DSL and Cable ISPs

How do cable’s time-slotted policies affect transmission delays?

Transmission delay refers to the time elapsed between a router starting to transmit a
packet and ending its transmission. It is usually calculated by dividing the packet length
by the link bandwidth. However, cable links use a reservation policy to transmit packets
in the upstream direction. To send a packet upstream, a cable modem first requests a
time-slot from the cable headend. This policy can cause additional delays to a packet’s
transmission. After receiving a request grant, the modem sends the accumulated packets
in a bursty transmission at high-speed. We examined the effects of such transmission
policies under both low and high network loads.

First, we studied transmission delays under low network loads. We used the large-
ICMP trickle to calculate the last-hop delays, similar to the experiment conducted in the
previous section. We compared these last-hop large-packet delays to the last-hop small-
packet delays measured in the earlier experiment. The differences in the last-hop delays
between large (1,488-byte) and small (100-byte) packets are mostly due to the additional
transmission delays incurred by sending larger packets.

Figure 3.11 shows the difference in transmission delays between large and small packets
for cable and DSL hosts. We found that the transmission delays for DSL are large, on the
same order of magnitude as their propagation delays, shown in Figure 3.10a. By contrast,
the transmission delays for cable are surprisingly low: 99% of hosts show an increase of
less than 1 ms to send an extra 1,388 bytes.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Minimum RTT distance from the host to the router (ms)

DSL

Cable

Figure 3.11: Difference in transmission delays between large and small packets.
DSL shows longer transmission delays than cable.

We believe that the time-slotted nature of cable links is responsible for these short
transmission delays. All our probes, both large and small, experience similar waiting
times for a time slot. Once a slot has been granted, packets are transmitted at the full
link speed (10.24 Mbps according to the DOCSIS 1.0 specification [Cab06]). This matches
our data very well; our measured transmission delays correspond to an upstream link
speed of about 11 Mbps.

Next, we examined transmission delays under high network load. In this case, packets
have to wait longer to reserve a time slot. When the reservation is granted, multiple
waiting packets can be concatenated and sent in a single burst. Although concatenation
reduces the overhead of scheduling many small packets, such as TCP ACKs, it introduces
a systematic jitter, which we refer to as the concatenation jitter.

35

3 Characterizing Residential Broadband Networks

We used the small-TCP flood to examine the effects of concatenation because it satu-
rates the upstream link with a large number of small packets, which are well suited for
concatenation. We clustered probe responses received in very close succession (separated
by less than 100 µs) into a single bursty transmission, and we calculated the number of
packets in the largest cluster. Because there is no known concatenation feature for DSL,
we expected these links to show only minimal burst sizes.

Figure 3.12a shows the extent of packet concatenation in DSL and cable ISPs. As
expected, DSL links show only very short bursts, whereas 50% of cable links concatenate
19 packets or more in a single burst. We used the link’s speed and the number of packets
in a burst to estimate a lower bound on the amount of concatenation jitter when the
link is saturated. Figure 3.12b shows the results. Whereas the mean concatenation jitter
for cable networks is about 5 ms, many links experience 10 ms or more of jitter due to
concatenation.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
h

o
s
ts

Number of packets

Cable

DSL

(a) Maximum number of packets per burst

0%

20%

40%

60%

80%

100%

 0 5 10 15 20

P
e
rc

e
n
ta

g
e
 o

f
h

o
s
ts

Jitter (milliseconds)

DSL Cable

(b) Lower bound estimate of concatenation
jitter

Figure 3.12: Cable links show high RTT variation. In addition to a high level
of basic jitter, cable modems can send small packets in a single burst and thus cause
additional jitter.

In cable networks, the concatenation jitter under high network load can be higher than
the end-to-end jitter over the entire path under normal load (shown in Figure 3.10a). The
presence of high jitter in cable networks has important consequences for protocols such
as TCP Vegas [BP95] and PCP [ACKZ06] which interpret changes in RTT as a sign of
incipient congestion. High jitter could cause these protocols to enter congestion avoidance
too early, leading to poor performance.

How large are broadband queueing delays?

Sizing router queues is a popular area of research (e.g., [AKM04, BGG+08]). A common
rule of thumb (attributed to [VS94]) suggests that router queues’ lengths should be equal
to the RTT of an average flow through the link. Larger queues lead to needlessly high
queueing delays in the network. We investigated how well this conventional wisdom holds
in broadband environments.

We measured queue lengths in milliseconds by calculating the RTT variation of our
probe streams’ packets. To estimate downstream queue lengths, we used large-TCP flood
probe trains, which saturate the downstream but not the upstream link. We calculated the

36

3.2 The Characteristics of Big DSL and Cable ISPs

difference between the minimum RTT and the 95th percentile highest RTT. To estimate
upstream queue lengths, we first measured the difference between the minimum RTT
and the 95th percentile highest RTTs of large-ICMP flood probe trains. This difference
corresponds to the sum of downstream and upstream queue lengths. We then subtracted
the estimate of the downstream queue length to obtain the length of the upstream queue.

Figures 3.13a and 3.13b show the cumulative distributions of downstream queue lengths
for different cable and DSL providers. Across most cable ISPs and two DSL ISPs (PacBell
and SWBell), the curves show a sharp rise at 130 ms. This value is consistent with that
recommended by the ITU G.114 standard for maximum end-to-end latency in a network
running interactive traffic: 150 ms. Nevertheless, these queue lengths are significantly
higher than a typical flow’s average delay, which ranges between 50 ms and 75 ms within
North America or Europe. By contrast, we observed queueing delays of up to 2 seconds for
a significant number of Comcast and Qwest hosts and up to 6 seconds for some BT Broad-
band hosts (not shown). Our findings show diverse queue configurations for broadband
links, with most hosts exhibiting queue lengths significantly higher than 130 ms.

Figures 3.13c and 3.13d show the cumulative distributions of upstream queue lengths for
the different cable and DSL providers. Compared with downstream queues, the lengths of
upstream queues are very large. Most DSL links exhibit queues of 600 ms or higher, and
many cable links allow their upstream queues to grow to several seconds. Although some
of the upstream queues’ build-up results from the low upstream link bandwidths, the ex-
cessive lengths will negatively affect interactive traffic like VoIP when users simultaneously
upload content, such as when using BitTorrent.

0%

20%

40%

60%

80%

100%

 0 100 200 300 400 500

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Queue length (milliseconds)

Ameritech

BellSouth

BT Broadband

PacBell

QwestSWBell

(a) DSL (downstream)

0%

20%

40%

60%

80%

100%

 0 100 200 300 400 500

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Queue length (milliseconds)

Charter

Chello

Comcast

Road Runner

Rogers

(b) Cable (downstream)

0%

20%

40%

60%

80%

100%

 0 500 1000 1500 2000 2500

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Queue length (milliseconds)

Ameritech

BT Broadband BellSouth

PacBell

Qwest

SWBell

(c) DSL (upstream)

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Queue length (milliseconds)

Charter

Chello

Comcast

Rogers

Road Runner

(d) Cable (upstream)

Figure 3.13: Downstream and upstream queue length in milliseconds. Some
downstream queue lengths follow the recommendation for voice calls (150 ms), but
most are significantly longer. The upstream queue length can be massive, especially
for cable links.

37

3 Characterizing Residential Broadband Networks

3.2.4 Packet Loss

In this section, we characterize packet loss in residential broadband networks. We compare
our results with the loss rates typically found in academic networks. Our tools cannot
measure the access links’ loss rates. Instead, we examined the packet loss rates of the
Internet paths between our well-connected measurement hosts and the broadband hosts.
Because the broadband access links are part of these Internet paths, our measured loss
rates provide an upper bound on the broadband links’ loss rates.

Do broadband links see high packet loss?

We used the small-TCP trickle probe trains to calculate the loss rates along the round-trip
paths to remote broadband hosts. We sent widely spaced trickle probes at a very low rate
for a week, and we measured the fraction of probes for which the broadband hosts did not
respond. This experiment measures the loss rate under normal operating conditions of the
network. The measured loss rate includes losses on both the upstream and the downstream
paths. Note that the loss rate we measured might differ from the loss rate that would be
experienced by application traffic (e.g., TCP flows) that saturates broadband links.

Figure 3.14 presents our results. We found that both cable and DSL have remarkably
low packet loss rates. The loss rate is below 1% for more than 95% of all DSL and cable
paths. Overall, we found that the packet loss rates for broadband access networks are
similar to those observed in academic network environments [DCGN03, Pax97].

0%

20%

40%

60%

80%

100%

0% 0.2% 0.4% 0.6% 0.8% 1%

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Round-trip loss rate

DSL

Cable

Figure 3.14: Observed round-trip loss rate for residential broadband paths.
DSL and cable paths show similar loss rates. 95% of all DSL and cable hosts have loss
rates of less than 1%.

We also examined how loss rates varied over the course of the week. Figure 3.15 shows
our measurements for two typical providers: a DSL ISP (Ameritech) and a cable ISP
(Chello). The horizontal axis shows the local time for the ISPs. The loss rates shown
along the vertical axis are averaged over intervals of 120 minutes. We found that loss rates
exhibit diurnal patterns with occasional spikes. Both ISPs follow similar diurnal patterns,
showing lower loss rates in the early morning than in the evening.

38

3.2 The Characteristics of Big DSL and Cable ISPs

0%

1%

2%

3%

Sun
0:00

Mon
0:00

Tue
0:00

Wed
0:00

Thu
0:00

Fri
0:00

Sat
0:00

Sun
0:00

L
o

s
s
 r

a
te

Local time

Ameritech

Chello

Figure 3.15: Packet loss over time. The loss rate is generally low and shows heavy di-
urnal variations with intermittent spikes. Note that this graph includes both upstream
and downstream losses; the time axis shows local time (EDT for Ameritech and CEST
for Chello).

Do ISPs use active queue management?

When packets are sent very quickly, they begin to fill up queues, and the routers must
eventually drop some of the packets. The most common queue management policy is
tail-drop, i.e., all packets arriving after the queue is full are discarded. More active queue
management policies, such as RED [FJ93], proactively drop packets using probabilistic
schemes when the queue starts to fill up but before the queue is full. Active queue
management has been extensively studied, but relatively little is known about the extent
to which it is deployed in practice.

We performed the following experiment to infer whether the broadband ISPs are using
active queue management policies. We used the small-TCP flood to overflow both down-
stream and upstream links, and we used IPIDs to distinguish between losses occurring
upstream and those occurring downstream [MSWA03]. For each successfully received re-
sponse, we recorded the RTT, and we calculated the average loss rate over a sliding window
of 40 packets. We examined the correlation between the loss rates and the corresponding
RTTs. On the basis of this correlation, we can infer whether routers use tail-drop or more
active queue management policies. A tail-drop policy will result in a steep increase in loss
rate when the queue is full (i.e., for a large RTT value); if an active queue management
policy such as RED is used, then the loss rate will increase proportionally to the RTT
after a certain threshold.

Figure 3.16 shows how the loss rates increase with the RTT for two broadband hosts,
one in PacBell and one in SWBell. For the PacBell host, the loss rate increases steeply
around an RTT of 850 ms, which suggests that a tail-drop queue is used. The loss rate
for the SWBell host shows a different trend; after 500 ms, it increases almost linearly with
the RTT before stabilizing at around 85%. This behavior matches the description of the
RED active queue management policy.

To quantify the extent of RED deployment in broadband networks, we tested whether
the increases in RTT and loss rates are strongly correlated. If the correlation coefficient
is high (≥ 0.9) beyond a threshold loss rate of 5%, we conclude that the link may be
using RED as its drop policy. We did not calculate the correlation coefficient for low loss
rates (below 5%) because these losses might be sporadic and not representative of the
broadband router’s queue policy.

39

3 Characterizing Residential Broadband Networks

0%

20%

40%

60%

80%

100%

 0 100 200 300 400 500 600 700 800 900

U
p

s
tr

e
a

m
 l
o

s
s
 r

a
te

Round-trip time (milliseconds)

Active queue management
(probably RED; SWBell)

Tail-drop
(PacBell)

Figure 3.16: Tail-drop and active queue management. When a tail-drop queue
overflows, the loss rate increases sharply. If the loss rate increases proportionally to
the queue length after a threshold, then this suggests that active queue management
(probably RED) is being used.

We found that 26.2% of the DSL hosts show a RED-style drop policy on their upstream
queues. The three providers owned by AT&T (Ameritech, BellSouth, and PacBell) exhibit
deployment rates between 50.3% and 60.5%, whereas all other DSL providers’ deployment
rates are below 23.0%. The partial deployment of RED-style policies within ISPs could
be due to heterogeneity in the ISPs’ equipment. We did not detect RED in any of the
cable ISPs measured.

3.2.5 Summary

We have presented an in-depth characterization of the properties of residential broad-
band networks. Our analysis reveals important ways in which these networks differ from
academic networks, and it quantifies these differences. We summarize our key findings
below.

Allocated link bandwidths. Our results show that downstream bandwidths exceed up-
stream bandwidths by more than a factor of 10 for some ISPs. In contrast to popular
belief, for most ISPs, the measured bandwidths matched well with the advertised rates
at all times of day, and we found little evidence of competing traffic affecting their links.
Although link bandwidths remain stable over the long term, they show high variation in
the short term, especially for cable hosts. For some ISPs, link bandwidths change abruptly
as a result of traffic shaping.

Packet latencies. Many DSL hosts show large (≥ 10 ms) last-hop propagation delays.
Cable hosts suffer higher jitter than DSL hosts as a result of time-slotted packet trans-
mission policies on their upstream links. Packet concatenation on the upstream links can
add another 5−10 ms of jitter in cable links.

All ISPs deploy queues that are several times larger than their bandwidth-delay prod-
ucts. Whereas downstream queues can delay packets by more than 100 ms, the upstream
queueing delays can exceed several hundreds of milliseconds and, at times, a few sec-
onds. Internet paths with such large queueing delays are very uncommon in academic or
corporate networks.

40

3.3 Implications

Packet loss. Both DSL and cable ISPs exhibit surprisingly low packet loss. In fact, their
loss rates are comparable to those in academic network environments. We also found
that many DSL hosts use active queue management policies (e.g., RED) when dropping
packets.

3.3 Implications

We believe that our observations about broadband networks’ characteristics can help re-
searchers to understand how well existing protocols and systems work in the commercial
Internet. Our findings offer useful insights for the designers of future applications. To
illustrate this, we briefly discuss the potential implications of our measurements for three
popular Internet-scale systems.

Transport Control Protocols. Our bandwidth and latency findings have several implica-
tions for transport protocol designs. For example, protocols such as TCP Vegas [BP95] and
PCP [ACKZ06] use RTT measurements to detect incipient congestion. In the presence
of the high jitter found in our measurements, this mechanism might trigger congestion
avoidance too early. Bandwidth-probing techniques, such as packet-pair [Kes91], could
return incorrect results in the presence of traffic shaping or packet concatenation. This
could be detrimental to transport protocols that rely on probing to adjust their transfer
rates, such as PCP.

Network coordinate and location systems. Many IP-to-geolocation mapping
tools [WSS07, GZCF06] use latency measurements to determine a host’s location. The
large propagation delays and high jitter found in broadband networks are likely to seriously
interfere with the accuracy of these systems.

Similarly, network coordinate systems [DCKM04, NZ02] use latency estimates to as-
sign a set of coordinates to their participating hosts. A recent study [LGS07] found that
network coordinate systems do not perform well when deployed in BitTorrent networks,
because RTTs between nodes can vary by up to four orders of magnitude. Our mea-
surements explain and provide insights into these findings: BitTorrent networks typically
include many residential links, which have very large RTT variations as a result of their
long queues. BitTorrent traffic compounds these variations because it tends to fill up the
queues.

Interactive and latency-sensitive applications. Recently, the popularity of VoIP and
online games has grown considerably. Our data shows that latency-sensitive applications
will be negatively affected by the broadband links’ large queueing delays. Because queueing
delays increase in the presence of competing traffic, these time-sensitive applications are
likely to experience degraded service when they are used concurrently with bandwidth-
intense applications, such as BitTorrent.

Differences to academic networks Our results also show that academic networks and
broadband networks have different characteristics. Academic networks are often modeled
using links with a constant bitrate and a simple tail-drop queue. Our findings suggest that
this simple model may not be appropriate for broadband networks, which appear to have

41

3 Characterizing Residential Broadband Networks

advanced features such as traffic shapers, RED queues, or packet concatenation. Moreover,
even if the single-queue model is used as a first approximation, it must be parametrized
differently. For example, a well-known rule of thumb states that queue capacities should
be set to one bandwidth-delay product. This rule does not hold in broadband networks
where queue sizes appear to be much higher.

This difference also suggests that the widespread practice of evaluating new applica-
tions and distributed systems only in academic and corporate networks may be flawed.
Such an evaluation strategy may not be able to predict how they will perform in broad-
band networks. But as many Internet applications are targeted at normal end users who
increasingly use broadband networks to connect to the Internet, it becomes increasingly
important to evaluate these systems also in broadband environments.

However, evaluating new systems in broadband environments raises similar problems
as studying the characteristics of broadband networks: researchers and developers lack
access to these networks for the evaluation of their systems at large scale. In Chapter 6
and Chapter 7 we present two approaches to tackle this problem.

In the next chapter, we will focus on a particular characteristic of residential broadband
networks that has received a lot of attention recently: ISPs traffic management practices
in broadband networks.

42

4 Glasnost: Detecting Traffic Differentiation

A confluence of technical, business, and political interests has made “network neutrality”
a hot button issue [Mar06, Sto07]. The debate revolves around whether and to what
extent ISPs, who own and operate data networks, should be allowed to differentiate one
class of traffic from another. Many ISPs want to restrict bandwidth-hungry applications
that can hurt other applications in the network. Some also want to control applications
such as VoIP that reduce ISPs’ ability to profit from competing services of their own.
In contrast, many content providers are against traffic differentiation because it gives
the ISPs arbitrary control over the quality of service experienced by users. In parallel,
regulatory bodies and politicians are trying to devise policies that balance these competing
concerns [The07, The08, Fed05].

As this debate rages, ordinary Internet users are often in the dark, even though they are
the ones most directly affected. The information sources available to users today, such as
media reports, blogs, and statements made by ISPs, are imprecise and sometimes incorrect.
As a result, traffic differentiation frequently occurs without users’ knowledge. However,
when ISPs traffic management practices come to light, user outrage forces regulatory
bodies to conduct public hearings on prevalent practices [The07, The08].

This situation led us to build and deploy a system, called Glasnost, that enables users to
detect if they are subject to traffic differentiation. We make no judgment about whether
traffic differentiation should be permitted by regulatory policy. Rather, our motivation is
to make any differentiation along their paths transparent to users.

While other recent research efforts also aim to detect traffic differentiation [TMFA09,
ZMZ08, KD10], Glasnost is unique in its focus on users. Instead of a broad characterization
of differentiation in the Internet, our goal is to let individual users determine if they
experience differentiation and quantify its impact at the time they use our system.

Our focus is on enabling individuals who are not technically savvy. This creates design
constraints that are typically not present in other measurement systems. First, the bar to
using the system must be low. For instance, it is undesirable to require the installation
of special software on client machines, especially if such software needs privileged access.
This constraint hinders our ability to collect high-fidelity data (e.g., packet traces) or
to finely control packet transmissions. We must limit ourselves to coarse-grained data
obtained through unprivileged client operations. Second, the results for an individual user
must be accurate and simple to interpret. For example, we cannot return results that rely
on inferences derived from data aggregated across users. Third, the system must evolve
with ISP practices. Users would stop trusting the system if they strongly suspect the
presence of differentiation but Glasnost is unable to detect it.

We designed Glasnost to satisfy these constraints. The result is a system that is effective
and easy to use. A user can detect differentiation by simply pointing her browser to a Web
page. The browser downloads and runs a Java applet which exchanges traffic with our
measurement server. The client-server nature of our architecture helps to avoid many of
the operational issues with network measurements, such as traversing NATs and firewalls,

43

4 Glasnost: Detecting Traffic Differentiation

or raising alarms in network intrusion detection systems. The traffic exchange is designed
to accurately and quickly detect any differentiation. We also build a simple flow emulation
tool that simplifies the incorporation of tests to detect new differentiation techniques that
emerge in the Internet.

The diversity of ISP practices makes it challenging to detect traffic differentiation reli-
ably. For instance, an ISP might employ differentiation only at specific times (e.g., in the
evenings), or only under high loads, or only for flows that send too much traffic. These
factors led us to design an on-demand system. Each time a user uses Glasnost, she per-
forms an individual test that detects the presence of traffic differentiation for her Internet
connection at the time of the test. This approach provides a user with a more reliable
answer than what could be obtained by extrapolating the results from other testing times
or other users.

Glasnost has been operational for over a year, enabling users to detect BitTorrent dif-
ferentiation. During this time, more than 350,000 users from over 5,800 ISPs worldwide
have used the system. Several individuals and corporations volunteered to host Glasnost
measurement servers on their own infrastructure in order to allow operations on an even
larger scale. We believe that our design principles have directly contributed to the success
of Glasnost. To our knowledge, Glasnost is the first tool to offer highly specific and reliable
traffic differentiation detection to a large number of end users.

In addition to the design and evaluation of Glasnost, in this chapter we also present
a detailed analysis of BitTorrent differentiation in the Internet. Our study showed that
traffic differentiation is already in widespread use in broadband access networks. We
found that about 10% of our users experience differentiation of BitTorrent traffic. Also,
we studied ISPs’ BitTorrent differentiation policies in detail over a period of two months
using data from the Glasnost tests. We found, for instance, that it is more common for
ISPs to differentiate against file uploads than downloads and to differentiate throughout
the day rather than only during peak hours.

4.1 Background

In this section, we provide background on the network neutrality debate and discuss
different types of traffic differentiation.

4.1.1 Network Neutrality

The term “network neutrality” means that ISPs, i.e., network operators, should handle
all Internet traffic in the same, neutral way. This forbids ISPs from degrading network
performance for particular applications and services, or from allowing service providers to
pay a fee to receive preferential service and thus better performance than their competitors.
While the recent network neutrality debate seems to suggest that traffic management is
something new that needs regulation, Crowcroft [Cro07] points out that the Internet has
always had mechanisms intended to differentiate network traffic. For instance, policies used
in inter-domain routing typically differentiate traffic based on the source and destination
IP address. Also, firewalls to block unwanted traffic and proxies to load-balance traffic
are widely used. Such mechanisms are beneficial in many scenarios, and have thus been
in use since the early days of the Internet.

44

4.1 Background

Today, traffic management policies are often driven by business interests. However, ISPs
tend to not reveal their exact policies or their motivation for implementing them in the
first place. As a result ISPs’ policies and their incentives to deploy traffic management
are often not known to the public. Nevertheless, there are three commonly mentioned
motivations for deploying traffic management policies in ISPs’ networks.

One motivation is network congestion. In broadband networks, there is anecdotal ev-
idence that ISPs tend to over-subscribe the network links connecting their customers to
the rest of the Internet, thus cutting costs. This usually works well and provides all users
with good bandwidth performance, since only a few users use their Internet connection
extensively. However, with an increasing number of users consuming large amounts of con-
tent over the Internet, including large software downloads, video-on-demand services, and
file-sharing applications, networks can become congested [Can08a]. Thus, traffic manage-
ment can help to distribute the available bandwidth fairly amongst consumers, avoiding
an overload which would result in decreased performance for everyone.

Another motivation for deploying traffic management is that bandwidth costs contin-
uously increase with the increase in end user bandwidth usage. For example, BitTor-
rent [Coh08] is a popular P2P file-sharing protocol that accounts for a large fraction of
the data bytes sent over the Internet [SM09]. The resulting increase in Internet traffic is
raising the cost of transit for ISPs, many of which are selling flat-rate plans with unlimited
Internet access to their customers. Hence, it is not surprising that an ISP would implement
strategies to reduce the amount of BitTorrent traffic generated by its customers.

Finally, differentiating traffic can help to improve service quality. For example, VoIP
services are very sensitive to latency variations. ISPs can configure their network equip-
ment to handle VoIP traffic preferentially to ensure it is not affected by other traffic, thus
guaranteeing good voice quality.

Recent reports of ISPs blocking or shaping traffic of particular popular applica-
tions [Top07] have sparked an intense and wide-ranging policy debate on acceptable ISP
traffic management practices and network neutrality between ISPs, consumer advocacy
groups, website operators, and government agencies. As a result, network neutrality has
recently moved into the focus of legislative and regulatory bodies.

In 2005 the FCC, the telecommunication regulator of the USA, published a policy
statement on network neutrality [Fed05]. This policy lists four principles for an open
Internet consumers should be entitled to: (1) access to all legal Internet content, (2) the
ability to use any service and run any applications they want, (3) the ability to connect
any devices to the network, and (4) fair competition among ISPs, application providers,
service providers, and content providers. Similarly, the European Commission issued a
statement that they will monitor the implementation of national policies as well as the
market and technological developments regarding network neutrality in Europe. Based
on the observed situation, the European Commission will decide whether the situation
requires regulatory interventions to ensure network neutrality [The09b]. And in 2009, the
US Congress passed the Recovery and Reinvestment Act [The09a], which announces that
the US government will make substantial investments in ISPs’ broadband infrastructures,
with the stipulation that ISPs receiving funds must follow the FCC’s network neutrality
policy.

45

4 Glasnost: Detecting Traffic Differentiation

4.1.2 Traffic Differentiation

Traffic differentiation refers to an ISP treating the packets of one flow differently than
those of another flow. Note that our definition of differentiation does not include traffic
shaping that affects all flows of a user, e.g., restrictions that affect users after they exceed
their network usage quota. Based on information published by ISPs, researchers, and
equipment vendors [ipo09, DMHG08, Can08b], we characterize traffic differentiation along
two dimensions.

1. Identifying specific flows. To treat flows differently, ISPs must distinguish the packets
of one flow from those of other flows. Flows can be distinguished using two techniques:

(a) Source or destination identification. The address information carried in the
IP header is used to determine how an ISP treats a flow. For example, universities
routinely rate-limit traffic to and from their student dorms.

(b) Deep packet inspection (DPI). DPI is used to identify the application that
generated a flow. For example, P2P applications such as BitTorrent are identified by
scanning the packet payload for specific P2P protocol messages. Also, the transport
protocol header can be inspected to identify application flows based on typical port
numbers or other transport protocol identifiers.

2. Manipulating flows. There are a number of standard techniques to shape flows listed
below. Thereby, flow manipulation can target different properties of a flow, such as
throughput or packet latencies. Remember that not all flows are shaped — only the
flows identified previously as belonging to a particular application or host.

(a) Blocking. A flow is terminated either by blocking its packets or by injecting a
connection termination message (e.g., sending a TCP FIN or TCP RST packet).

(b) Deprioritizing. Routers can use multiple priority queues when forwarding packets.
ISPs can use this mechanism to assign differentiated flows to lower priority queues, to
increase packet latencies of particular application flows, and to limit the throughput
of certain classes.

(c) Packet dropping. Another possibility is to drop a flow’s packets using a drop rate
that is either fixed or variable.

(d) Modifying TCP advertised window size. ISPs can lower the advertised window
size of a TCP flow, prompting a sender to slow down.

(e) Application-level mechanisms. ISPs can control an application’s behavior by
modifying its protocol messages. For example, transparent proxies [Vel08] can redi-
rect HTTP or P2P flows to alternate content servers.

What kinds of traffic differentiation does Glasnost detect?

Our current implementation of Glasnost detects traffic differentiation that is based on
deep packet inspection. For residential access ISPs, which are our primary focus, this is
much more common than differentiation based on IP addresses [Can08b, Com08b].

46

4.2 Design Challenges and Requirements

Instead of inferring differentiation by finding evidence of particular manipulation mech-
anisms, Glasnost detects the presence of differentiation based on its impact on application
performance. The reason for this is that detecting particular differentiation mechanisms
reliably is hard as not all of them are directly observable. Also, there often can be multiple
explanations for observed performance degradation. For example, a high loss rate might
be due to an ISP dropping packets, or due to network congestion. An exception to this
is blocking, which is directly observable from endpoints since packets (e.g., TCP FIN or
TCP RST packets) are injected into flows. The presence of these injected packets allows
for rather accurate detection. In Section 4.5 we describe in detail how we detect traffic
differentiation in general, and blocking in particular.

4.2 Design Challenges and Requirements

Building a system that lets ordinary Internet users determine if they are affected by of
traffic differentiation poses several challenges.

The focus on end users and the nature of our measurement places certain requirements
on our design that are typically not present in other measurement systems. We distill
these requirements into three design challenges. These challenges dictate that the system
must be simple enough for any Internet user to use, its inferences must be robust and
simple to interpret, and it must keep pace with network policies as they evolve. While our
focus is traffic differentiation, the design challenges we identified for Glasnost are more
general and apply to many measurement systems that want to attract a large number of
users.

4.2.1 Challenge #1: Low Barrier of Use

A measurement system that wants to attract a large number of users must have a low
barrier of use. Although this principle appears obvious at first glance, adherence to it
from the start is the key to a system’s success.

To keep the barrier of use low, we identified four design requirements: First, because
most users are not technically savvy, we must make the interface simple and intuitive.
Second, we cannot require users to install new software or perform OS administrative
tasks. Many network measurement techniques require installing drivers (e.g., the WinPcap
library for Windows) or running privileged code (e.g., raw sockets) on users’ machines.
Such code can provide detailed, low-level data (e.g., packet traces) that simplifies the
measurement task. But, in our experience, users are often unwilling to use systems with
such requirements. For example, one of our earlier attempts required users to run code
with administrator privileges on their machines and to leave a port open in their firewalls
and NATs. These obstacles greatly limited adoption; we attracted fewer than fifty users.
Third, because many users have little patience, the system must complete its measurements
quickly. Fourth, to incentivize users to use the system in the first place, the system should
display per-user results immediately after completing the measurements.

4.2.2 Challenge #2: Measurement Accountability

As researchers, we are used to interpreting complicated measurement results, through the
prism of the experiments’ methodology. Our training and experience prepares us for this

47

4 Glasnost: Detecting Traffic Differentiation

task. For instance, consider the results of an experiment that infers path capacities in the
Internet. As the measurement method can be affected by transient noise, the researchers
will know that the answer computed along an individual path cannot be trusted, while
the answers can be aggregated to provide an overall view. An ordinary user interested in
the capacity of her own path might not be in a position to make that distinction.

In the case of detecting traffic differentiation accurate and clear test results are even
more critical due to the controversial nature of traffic management in the Internet: people
are still debating whether it is legal for an ISP to employ traffic management. If people
were to falsely interpret results as their ISP performing traffic differentiation when in
fact it is not, the system would quickly lose credibility. In fact, in the past there have
been instances when some widely publicized studies have mistakenly accused ISPs of using
policies they never deployed [BMGS08, Sny08].

Thus, keeping measurements accountable must have high priority. To achieve this, we
identified three design requirements: First, the test to detect differentiation should be
direct and any factors that add uncertainty should be removed if possible while designing
the test. The performance of an Internet flow can be affected by many confounding
factors. This includes which operating system is used, especially its TCP/IP networking
stack, and, of course, its configuration. Additionally, directly using application clients
against the same endpoint is problematic. The short-term throughput of such “natural”
flows can differ because of differences in packet sizes and burstiness. Finally, we have to
consider transient noise, e.g., as caused by background traffic.

When using passive measurement tools it is not possible to avoid these factors most of
the time. Thus, these tools are required to account for a large number of confounding
factors in their inference that is a complicated task, often leading to inaccurate results.

Active measurement tools on the other hand can avoid most confounding factors. Run-
ning all measurements from the same host removes factors like OS and networking stack
and having full control over the traffic that is sent to measure the performance of a link
eases the analysis. In this case, the only remaining confounding factor is transient noise
that can be dealt with using simple techniques like repeating measurements multiple times.

Second, because not all uncertainty can be removed from the inference, the result pre-
sented to the user must be conservative, with a near-zero false positive rate. In the context
of traffic differentiation, a false positive means that the system falsely claims that the user
is experiencing traffic differentiation when in fact it is not. Minimizing false positives is
challenging because it comes with a price — an increase in the false negatives rate. This
trade-off is inherent. Third, we must be prepared to provide the data and the evidence
behind our inferences when requested.

4.2.3 Challenge #3: Easy to Evolve

To be useful over time, a system that wants to detect traffic differentiation must be able
to evolve along with policies in the network since ISPs continuously adjust their traffic
management policies. For example, in 2008, Comcast blocked BitTorrent uploads for some
of its customers [Com08b]. Several months later, they started replacing this practice with
less severe forms of differentiation [Com08a]. In fact, our recent measurements indicate
that BitTorrent traffic blocking is very rare today while it was widespread in 2008. In
consequence, in an evolving environment a system with a fixed set of capabilities will have

48

4.3 The Glasnost System

a limited shelf life and will become less relevant with time. This makes the case for a
system that provides a way to evolve with the network.

ISPs might target new applications in the future or change their traffic shaping mech-
anisms, which might manipulate flows in new ways. A detection system should be exten-
sible, i.e., it should be easy to add new tests to detect traffic differentiation of popular
new applications or to use new techniques in order to detect differentiation based on new
shaping techniques. Also, ISPs could start to whitelist traffic from measurement servers
if they do not like the transparency the system provides to their users, thus trying to
evade detection. A successful system must be aware of this problem and must find ways
to minimize whitelisting.

4.3 The Glasnost System

We now present the design of Glasnost based on the requirements outlined above.

4.3.1 System Architecture

Glasnost is based on a client-server architecture. Clients connect to a Glasnost server
to download and run various tests. Each test measures the path between the client and
the server by generating flows that carry application-level data. This data is carefully
constructed to detect traffic differentiation along the path.

Figure 4.1 presents a step-by-step description of how clients measure their Internet
paths. A client first contacts a central webpage at http://broadband.mpi-sws.org/

transparency/glasnost.php that redirects to a Glasnost measurement server. This dy-

Web server Measurement servers

Client

1

2

3

4

Figure 4.1: Overview of the Glasnost system. (1) The client contacts the Glasnost
webpage. (2) The webpage returns the address of a measurement server. (3) The client
connects to the measurement server and loads a Java applet. The applet then starts to
emulate a sequence of flows. (4) After the test is done, the collected data is analyzed
and a results page is displayed to the client.

49

http://broadband.mpi-sws.org/transparency/glasnost.php
http://broadband.mpi-sws.org/transparency/glasnost.php

4 Glasnost: Detecting Traffic Differentiation

Figure 4.2: The Glasnost web interface.

namic redirection enables load balancing across measurement servers and makes it easy
to incorporate new servers by adding them to the redirection list.

After the client is redirected, the measurement server presents a simple interface to the
user. As shown in Figure 4.2, the user first chooses from a list of Glasnost tests and then
clicks the “Start testing” button. The client’s browser downloads a Java applet that starts
exchanging packets with the server. Glasnost tests typically complete within 8 minutes,
ensuring a timely response to end users.

Glasnost tests have a low barrier of use; any end user with a standard web browser and
a (often pre-installed) Java plugin can test their Internet connection in a few minutes time
without installing any additional software. Also, the tests require no user interaction as
all tests run fully automatically.

We elaborate on the Glasnost measurement tests next.

4.4 Emulating Application Traffic

Glasnost tests are designed to detect whether ISPs along the path between a client and
a server are treating flows belonging to two different applications differently. The key
primitive behind the Glasnost measurement tests is the emulation of a pair of flows that
are identical except in one respect that we suspect triggers differentiation along the path.
Comparing the performance of these flows helps determine if differentiation is indeed
present.

Figure 4.3 shows two flows designed to detect whether differentiation based on BitTor-
rent protocol content is present along a path. The exchange on the left is the first flow.
The client opens a TCP connection to the measurement server and starts exchanging
packets that implement the BitTorrent protocol: the packet payloads carry BitTorrent
protocol headers and content. The exchange on the right is the second flow (i.e., the
reference flow). The client opens another TCP connection and performs the same packet
exchange, but the packets contain random bytes instead of BitTorrent headers or data. An

50

4.4 Emulating Application Traffic

Handshake [68B]

Client Server

Handshake
[68B]

Bitfield [166B]

Bitfield [166B]

Interested [5B]

Unchoke [5B]

Request [17B]

Piece [256
KB]

(a) BitTorrent flow

Random [68B]

Client Server

Random [68
B]

Random [166B]

Random [16
6B]

Random [5B]

Random [5B
]

Random [17B]

Random [25
6KB]

(b) Reference flow

Figure 4.3: A flow pair used in Glasnost tests. The flows are identical except for
packet payloads, which enables us to detects differentiation that targets flows with
BitTorrent content.

ISP that differentiates against BitTorrent based on protocol messages would rate-limit or
block only the first flow. Thus, significant differences in the flows’ performance is likely to
be caused by the differences in their payloads and lets us detect whether differentiation is
present along the path. Transient noise can also lead to differences in flows’ performance;
we describe in the next section how we handle noise.

During the test, the measurement server records a packet-level trace of all emulated
flows and the client applet records ancillary information including exceptions caused by
network errors. Once the test ends, the client uploads the recorded information to the
server. The server analyzes this information together with the packet-level traces collected
on the server-side and shows the findings to the client. The collected packet-level trace
and the uploaded data enable us to reproduce our inference at any time.

Glasnost’s emulation methodology leads to measurement robustness. As Figure 4.3
shows, application-level data is the only difference between the two emulated flows. The
two flows traverse the same network path and have the same network-level characteristics,
such as port numbers, packet sizes, etc. In contrast, other techniques such as passive
measurement have many factors that differ across measured flows. Correctly accounting
for all such differences is more challenging.

Another benefit of active measurement is the ability to carefully control the measurement
test. For example, we can repeat flows with different payloads or port numbers. This
ability allows Glasnost to precisely identify the specific factors that trigger differentiation.

In the next section, we describe our measurement test in more detail and how we make
it robust to transient noise. In Section 4.6 we describe how we use a trace replay based tool
for constructing measurement tests in order to ensure that the system is easy to evolve.

51

4 Glasnost: Detecting Traffic Differentiation

4.5 Detecting Traffic Differentiation

Glasnost currently detects two types of traffic differentiation: blocking and throttling.
Blocking means that a flow is terminated by injecting special protocol messages, such as
TCP RST packets. Throttling on the other hand means that a flow received less through-
put than a reference flow. As throughput measurements can be affected by transient noise,
this inference is more involved and requires careful analysis of the measurement data to
avoid false positives.

As described earlier, Glasnost emulates a pair of flows and determines the presence
of traffic differentiation by comparing their performance. Our hypothesis was that the
identification can be based on three flow characteristics: the TCP port number of the
flow, the specific application protocol messages in the flow, and the direction of the flow.
Thus, Glasnost tests vary the following three parameters:

• TCP port: Half of the flows use the default port of the tested application. The
others use a port not associated with a specific application or protocol. We call this
a neutral port.

• Direction: Half of the flows transfer content downstream (from the server to the
user’s host), while the others transfer content upstream (from the user’s host to the
server).

• Protocol: Half of the flows contain real application messages. The others contain
messages of the same size and in the same order, but filled with random bytes.

This results in eight possible combinations.
Glasnost examines the results for each direction separately. If all tests using one port

(e.g., the default application port) measure significantly lower performance than tests on
another port regardless of whether application data or random data was sent, Glasnost
reports port-based traffic differentiation in the tested direction. Similarly, if all the tests in
one direction that use application messages (regardless of the port on which the test runs)
get significantly lower performance than the tests with random data, Glasnost reports
application-based traffic differentiation in that direction.

We describe how we infer of blocking and throttling in the following section.

4.5.1 Blocking of Application Traffic

Glasnost can detect whether middleboxes in the network are inserting forged RST packets
to interrupt application flows. Therefore, Glasnost analyzes the server trace along with
any Java exceptions seen by the user-side applet for each flow. A flow is considered to have
been torn down by a forged RST packet only when all of the following three conditions
hold:

1. An IOException with a specific set of messages is seen by our applet.
This indicates that an error was observed with the TCP connection on the user side.
Glasnost looks for the messages “Connection reset by peer” or “An existing connec-
tion was forcibly closed by the remote host” in the IOException, which indicate that
the host has received a RST packet1.

1Unfortunately, parsing the exception message is the only way to distinguish the reset of a TCP connection
from other causes in Java.

52

4.5 Detecting Traffic Differentiation

2. The server’s packet trace contains at least one incoming RST packet. This
RST packet caused the connection to be torn down at the server.

3. The server’s packet trace contains no outgoing RST packets before a FIN
or RST packet is received. Once the server receives a FIN or RST packet,
the connection is torn down. Thus, any subsequent data packets received on the
connection will be naturally responded to with RSTs.

The presence of all three conditions strongly indicates that a forged RST caused the
flow to be torn down. The first two conditions indicate that a RST was received at
both the server and the user’s host. While we cannot say for sure that the user’s host
received a RST packet (as we do not have a packet-level trace from the host), we look for
IOExceptions with messages that are caused by the receipt of a RST packet. The third
condition indicates that the server did not initiate the connection tear-down (in other
words, it received either a FIN or a RST before it sent any RSTs). Thus, Glasnost detects
forged RSTs by looking for flows (1) which were torn down by a RST received at the user’s
host and/or server and (2) which contain no RSTs sent by the user’s host or the server
before the connection was torn down.

Other application traffic blocking detection tools

There have been other approaches to detect BitTorrent blocking in the Internet. To
detect blocking of BitTorrent transfers, the network monitor plugin for the popular Vuze
BitTorrent client [Sny08] reports the number of aborted connections. Since the plugin
does not correlate observations from both endpoints of an aborted flow, it cannot reliably
determine whether the transfer termination is due to blocking or another reason. In
contrast, our methodology is more reliable as it employs active measurements to detect
BitTorrent blocking.

The Electronic Frontier Foundation’s “Test Your ISP” project [Ele08] offers instructions
for tracing a BitTorrent transfer and checking for forged packets. This method requires
access to two hosts in different ISPs and involves the use of tools like Wireshark, which is
beyond the capabilities of most end users. Glasnost, on the other hand, was designed to
allow even lay users to test their access links for blocking of application traffic.

4.5.2 Throttling of Application Traffic

When comparing the performance of a pair of flows, we must ensure that their difference
is indeed due to the differences in their content and not due to some changes in the test
environment. Our measurement tests are constructed in a way that eliminates all major
confounding factors except one – transient noise due to interference from cross-traffic
(background traffic) along the measurement path. Here we discuss techniques to robustly
detect traffic throttling in the face of transient noise.

The primary challenge in this task stems from the fact that the noise can vary at
small time-scales. Thus, two flows can be affected differently even if run back-to-back.
For example, in one egregious case, we found that the throughput of two back-to-back
flows differed by a factor of three even though the flows were identical. A simplistic
detection method will mistakenly detect differentiation in this case. It might appear that
the differential impact of noise could be reduced by running the flows simultaneously. But

53

4 Glasnost: Detecting Traffic Differentiation

we find that such a setup is even worse than running measurements back-to-back because
the test traffic itself can overload the path.

Our basic strategy for robust detection is to run each flow type multiple times. We
use the variance in the performance of the flows of the same type to identify paths that
are too noisy to enable reliable detection. For the remaining paths, we can confidently
detect differentiation by comparing the flows of different types. We first describe how we
apply this strategy when tests are run long enough that we do not have to worry about
having too little data. As we found that many users are too impatient to run long tests,
we adapted our strategy to tests that run for a shorter duration. Shorter tests decrease
the robustness of our detection technique to transient noise; we account for this during
the data analysis.

We describe our method using throughput as the measure of flow performance, since
it is of primary interest to many applications and is the target of many ISPs looking to
reduce their network load. Because of TCP dynamics, throughput is directly affected
by any differentiation that impacts flow latency or loss. Note that our method can be
extended to other measures of performance such as jitter.

Filtering tests affected by noise

To detect the level of transient noise, we repeat the runs of the two flow types multiple
times back-to-back. Unlike active ISP differentiation, transient noise does not discriminate
based on flow content; it would not affect multiple runs of the same flow type and can be
detected by comparing the performance of the repeated flows.

To understand transient noise patterns and the extent to which they affect flow through-
put, we configured our Glasnost deployment to run a BitTorrent flow and a reference flow
with random bytes, five times each. The runs of the two flow types were interspersed and
each flow lasted for 60 seconds to allow sufficient time for TCP to achieve stable through-
put. Over a period of a month, we collected measurements of 3,705 residential broadband
hosts, 2,871 in the upstream and 834 in the downstream direction.

We compared the throughput obtained by the five runs of each flow type with each
other. Our analysis of the maximum, median, and minimum throughput reveals the four
distinct patterns shown in Figure 4.4, corresponding to four different cross-traffic levels.

1. Consistently low cross-traffic: all throughput measurements belonging to the
same flow type fall within a narrow range (i.e., the minimum is close to maximum).

2. Mostly low but occasionally high cross-traffic: a majority of throughput mea-
surements are clustered around the maximum but a few points are farther away (i.e.,
the maximum and the minimum are far but the median is close to the maximum).

3. Highly variable cross-traffic: the throughput measurements are scattered over
a wide range (i.e., the maximum and the minimum are far apart and the median is
far from both).

4. Mostly high but occasionally low cross-traffic: a majority of throughput mea-
surements are clustered around the minimum but a few measurements are farther
away (i.e., the maximum and the minimum are far apart but the median is close to
the minimum).

54

4.5 Detecting Traffic Differentiation

 0

 200

 400

 600

 800

 1000

low noise occasional
high noise

variable
high noise

consistent
high noise

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Figure 4.4: The four classes of noise we distinguish in our analysis. The graph
shows minimum, median, and maximum throughput for each class.

Our categorization of the level of cross-traffic in each case is based on two key ob-
servations about the nature and impact of cross-traffic. First, cross-traffic only lowers
throughput and never improves it. Thus, when a majority of throughput measurements
are close to the minimum but far apart from the maximum (as in category 4 above), it
is more likely that the noise-free minimum throughput is closer to the maximum than to
the minimum.

Second, cross-traffic is unlikely to be consistently high over a long period of time. In
theory, measurements in category 1 above could be explained by consistently high cross-
traffic. But, this would require the cross-traffic to remain high and consistent (without
changing) over the duration of the entire experiment, which is ten minutes. We believe
that this is unlikely.

Based on this study, for robust detection of differentiation, we discard all tests where
a majority of flows are affected by high noise (i.e., categories 3 and 4). For these tests,
we cannot determine whether the difference in throughput is caused by differentiation
or transient noise. We analyze only the remaining tests, for which a majority of runs
experience low noise (i.e., categories 1 and 2).

To help determine which tests belong to the predominantly low noise category, we plot
the difference between maximum and median throughput as a percentage of maximum
throughput in Figure 4.5. We found that for a large majority of tests (85.2% of upstream
tests and 75.7% of downstream tests) the median throughput is within 20% of the max-
imum. The difference between median and maximum throughput is considerably larger

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80% 100%

C
D

F

Noise

Upstream
Downstream

Figure 4.5: Noise in our 3,705 sample dataset. 85.2% of upstream flows and 75.7%
of downstream flows have less than 20% false positives.

55

4 Glasnost: Detecting Traffic Differentiation

for the remaining flows. We thus use the 20% difference between median and maximum
throughputs as a threshold to discard tests that are significantly affected by noise. Next,
we describe how we detect traffic differentiation within the remaining tests.

Detecting differentiation in low-noise tests

To detect traffic differentiation among tests that are identified as low noise, we compare
the maximum throughput of each flow type. Our decision to use the maximum is based on
the observations that (a) in low-noise cases, most measurements lie close to the maximum
throughput and (b) because noise tends to lower throughput, the maximum throughput
is a good approximation for what the flows would achieve without cross-traffic.

We infer that the two flow types are being treated differently if the maximum throughput
of one differs from that of the other by more than a threshold δ. Selecting a good δ involves
a tricky trade-off. With high values, we cannot detect differentiation unless the impact
on throughput is high. For instance, with δ=50%, we would only detection differentiation
that halves the flow throughput. Thus, high values raises the false negative rate. On the
other hand, with low values of δ (say 5%), we risk false positives, i.e., declaring that ISPs
are employing traffic differentiation while they actually do not.

To understand how the false positive rate varies with δ, we selected 302 test runs from
users using ISPs that we know do not differentiate. Figure 4.6 plots the percentage of
tests that are falsely marked as being differentiated for different threshold values. The
plot shows an interesting trend: the false positive rate drops steeply until δ reaches 20%.
Beyond this threshold, there are still a handful of hosts (0.58%) that pass our noise tests
but are falsely marked as differentiated. To avoid any false positives, we would need to
raise the threshold to 40%, which increases the false negative rate.

0%

2%

4%

6%

8%

10%

0% 10% 20% 30% 40% 50% 60%

P
e
rc

e
n
ta

g
e
 o

f
fl
o
w

s
d
e
te

c
te

d
 a

s
 d

if
fe

re
n
ti
a
te

d

Flow difference threshold

Figure 4.6: Evaluating the throughput difference threshold. Thresholds smaller
than 20% tend to produce a significant number of false positives.

We thus set δ to 20%. With this value we maintain a low false positive rate (under
0.6%), but we fail to detect differentiation that reduces a flow’s throughput by less than
20%. We consider this an acceptable trade-off.

Other application traffic throttling detection tools

The recent public interest in network neutrality and traffic management policies of ISPs
has inspired other work in detecting traffic differentiation in the Internet.

56

4.5 Detecting Traffic Differentiation

NANO [TMFA09] uses causal inference to infer the presence of traffic performance
degradation. NANO relies on a vast amount of passively collected traces from many users
to infer if traversing a particular ISP leads to poor performance for certain kinds of traffic.
In contrast, Glasnost uses active measurement and a simple head-to-head comparison of
two flows to be able to quickly tell a user if they face traffic differentiation, without relying
on other users.

NetPolice [ZMZ09] (previously named NVLens [ZMZ08]) compares the aggregate loss
rates of different flows to infer the presence of “network neutrality violations” in backbone
ISPs. Their methodology allows them to reason about which ISP along the network path
is responsible for differentiation. To perform measurements, they require control over only
a single end-point and employ TTL tricks to probe backbone networks at large scale.
For detection, they compare the loss rates of two different application flows with each
other. Compared to Glasnost, this methodology appears to be less robust as differences
in loss rates could also be caused by diverse characteristics of the measurement flows or
by side-effects of the single-sided measurement technique, such as rate-limiting of probe
responses.

Finally, DiffProbe [KD10] is a probing method to detect whether traffic differentiation
based on active queue management (AQM) (i.e., RED or weighted fair queueing) is de-
ployed in the network path. Like Glasnost, this technique detects traffic differentiation by
comparing pairs of flows. DiffProbe complements Glasnost as it allows the detection of
latency-based differentiation as well as the identification of which AQM technique is being
used. Note that Glasnost is also able to detect differentiation based on AQM if it affects
application throughput.

4.5.3 User Impatience with Long Tests

As described above, we configured Glasnost to run a pair of one-minute-long flows five
times, resulting in a total test time of 10 minutes. The tests we originally deployed was
20 minutes long as it also detected whether the differentiation was based on port number
or payload. While this test configuration enabled us to detect differentiation with high
confidence, we noticed a practical problem: a considerable fraction of users were aborting
the tests before completion.

Figure 4.7 shows how long users keep their Glasnost test running. The plot for 20 minute
long tests shows an alarming decline in the percentage of users as the test progresses. Only

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
C

D
F

Test run time per user (seconds)

 6 min Glasnost test
20 min Glasnost test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
C

D
F

Test run time per user (seconds)

Minimum run-
time 6 min test

Minimum run-
time 20 min test

Figure 4.7: Duration users run the Glasnost test. The longer the test runs the
more users abort it before the test has finished.

57

4 Glasnost: Detecting Traffic Differentiation

40% of the users stay till the end and nearly 50% aborted their tests within the first 10
minutes. The sudden drop near the 20 minute point corresponds to successfully completed
tests.

Our results show that users are impatient. Most are not willing to use tests that take
more than a few minutes. To confirm this, we reconfigured Glasnost to use shorter-duration
tests. We reduced the number of times we repeat each flow type to two (from five), and
we decreased the duration of each flow to 20 seconds (from 60 seconds), which is still
sufficient for TCP to exit slow-start and achieve stable throughput. We bundled the tests
for both upstream and downstream directions, and the resulting test takes 5.33 or roughly
6 minutes.

Figure 4.7 also shows how long users keep the 6 minute Glasnost test running. More
than 80% of the users stay till the end, confirming that shorter tests on the order of a few
minutes are more effective at retaining users.

Detecting differentiation with short tests

Short duration tests gather fewer measurements than longer ones, which poses an ad-
ditional problem for detecting differentiation robustly. To estimate the impact of this
reduction in data on detection accuracy, we considered data from the longer tests for
which we had a result, i.e., for which we knew whether or not the ISP was differentiating.
We pruned the data to include only what would be gathered by the short test and ran our
analysis on the pruned data. We compared the results from this shorter test data with
those obtained before.

We found that nearly 25% of the long tests were discarded as too noisy after pruning,
although we were able to successfully analyze them before. We estimated the false positive
rate (i.e., when the long test found no traffic differentiation but the short test did) to be
2.8% and the false negative rate (i.e., when the long test found traffic differentiation but
the short test did not) to be 0.9%.

We also found that we can achieve a four-fold reduction in the false positive rate, to 0.7%
(which is comparable to the false positive rate of long tests), by raising the δ threshold
from 20% to 50%. While this increases the false negative rate to 1.7%, we consider it an
acceptable trade-off.

4.5.4 Limitations

We now discuss two limitations of Glasnost and how we address them in our system design.
Glasnost cannot determine at which point along the path traffic differentiation is applied,

thus which ISP is responsible for shaping traffic. This can be a problem since a typical
Internet path between a host and our measurement servers is likely to cross multiple ISPs.
It is the subject of ongoing work to develop techniques to pinpoint the location of the
traffic management equipment using network tomography.

Glasnost’s centralized architecture makes it possible for ISPs to avoid detection by
whitelisting the Glasnost servers. This is unlikely to have affected the data we present
in this chapter, but it may become a problem now that Glasnost is more widely known.
To minimize the impact of ISPs whitelisting Glasnost servers, we made our server code
publicly available. Anyone can setup Glasnost on a well-provisioned server that can then
be used by users. Making our code publicly available allowed other Glasnost servers to

58

4.6 Facilitating New Test Construction

appear on the Internet, making it hard for ISPs to evade detection. We also deployed Glas-
nost on a diverse set of servers distributed across many locations. For hosting Glasnost,
we use Measurement Lab (M-Lab), an open platform for researchers to deploy Internet
measurement tools. As of this writing, M-Lab provides 46 servers at 12 sites in the USA
and Europe and is still growing.

However, deploying Glasnost on an increasing number of servers is not foolproof; a
determined ISP may choose to stay up-to-date with the list of Glasnost servers. However,
we believe that not many ISPs would be willing to invest significant effort in evading
detection. As much as an ISP would like to conceal its traffic management practices from
the public, denying those practices or blatantly attempting to hide them is risky. For
example, Comcast blocked BitTorrent transfers [Com08b] while proclaiming innocence to
the public and the FCC. When its practices were eventually revealed, it was fined by the
FCC and the highly critical media coverage damaged its reputation.

4.6 Facilitating New Test Construction

Manually implementing Glasnost tests for a new application is a laborious and error prone
task. It requires detailed knowledge of the application’s protocols and their popular im-
plementations. This creates a high barrier for new test construction, making it difficult to
evolve Glasnost tests to keep pace with the evolution of ISPs’ network policies.

To make it easy to construct new traffic differentiation tests, we built a tool called
trace-emulate that automates most of the test construction process. In this section,
we describe how trace-emulate works and how Glasnost users can use it to create new
tests for their chosen applications. We also present a validation of the accuracy of tests
constructed by trace-emulate using the open source DPI engine of a commercial traffic
shaper [ipo09].

The trace-emulate tool is an adaptation of existing trace replay methods. Exist-
ing TCP replay tools were already capable of generating new flows from packet-level
traces, either maintaining similar network-level properties, such as latency and band-
width [CHC+04], or even using the same (and not necessarily known) application-level
protocol [CPC+08]. For Glasnost, however, we are interested in simply replaying traces
of flows and not to automatically generate new flows. Thus, a simpler approach suffices.

Our trace-emulate tool automatically generates a new Glasnost test from the packet-
level trace of an application. It extracts the essential characteristics of the application
flows. These include packet sizes and packet payloads, the order of packets with protocol
messages, and the inter-packet timing.

The test configuration that trace-emulate outputs is then used by the Glasnost Java
applet to run the test. When run against the server, the applet exchanges two flows. The
first flow has the same characteristics as the original trace. For example, assume that in
the original trace the client performed the following operations: (1) sent packet A, (2)
received packet B, (3) sent packet C after t seconds. These operations occur in the same
order and relative times in the generate flow. In some cases, simultaneously preserving
packet ordering and inter-packet spacing is impossible. Such cases arise when an endpoint
is waiting to receive a packet that gets delayed in the network. We make the endpoint
(client or the server) wait until the packet is received before continuing the emulation,
even though it increases the inter-packet spacing. Our decision to preserve ordering at the

59

4 Glasnost: Detecting Traffic Differentiation

expense of spacing is motivated by the observation that ISPs often use the sequence of
protocol messages to identify applications, rather than their relative timing. The second
flow exchanged by the applet is a reference flow with the same characteristics as the first
flow but that uses different payloads and/or ports. By default, packet payloads and port
numbers in the reference flows are set randomly. However, the user uploading the trace
can set the ports to specific values, e.g., the application’s default port.

Our tests validated that the emulated flows generated by trace-emulate have the same
packet sizes, payloads, and ordering as the original trace. We omit detailed results. In the
next section, we validate that the tests generated by trace-emulate accurately capture
the essential flow properties that are used by traffic management equipment to identify
application traffic.

4.6.1 Validating Tests Generated by trace-emulate

Next we validate that our trace-emulate tool indeed captures the essential character-
istics of a given application flow that an ISP might use to identify that application in
practice. It is important to note that while ISPs might, in theory, use arbitrarily complex
mechanisms, in practice they are limited to using mechanisms that can scale to at least
multiple Gbps. We are therefore interested in validating trace-emulate against practical
detection mechanisms used by ISPs.

As one might imagine, ISPs use traffic-differentiation solutions from third-party vendors
(e.g. Sandvine, BlueCoat, and Arbor Networks) since not every ISP is in a position to
build such a system from scratch. Fortunately, pressure from privacy watchdogs compelled
one of these vendors – Ipoque – to release the code it uses to inspect user traffic [ipo09];
Ipoque did not release code that operates on traffic encrypted by the user. Thus, for the
first time, the research community was given access to actual production code used by
ISPs to detect the application that a user is running.

Having access to a commercial DPI engine does not only allow us to validate our
trace-emulate tool with tremendous accuracy, it makes it extremely easy to do so. By
inspecting the code we can determine what applications the Ipoque DPI engine can detect.
We run the application and check whether the Ipoque DPI engine detects the application
from the packet flow. We then use our trace-emulate tool to generate a Glasnost test for
that application. We run the test and check whether the result is the same. If the Ipoque
DPI engine detects our emulated trace as the target application that we are attempting
to emulate, then trace-emulate has successfully captured all the essential characteristics
for that application necessary for it to be detected by a commercial traffic differentiation
solution.

Ipoque’s detector can identify traffic from more than 90 widely-used applications broadly
classified as P2P, video streaming, instant messaging, online gaming, and other applica-
tions (email, web, etc.). It took us less than 2 hours to generate Glasnost tests for 10
representative applications in all 5 of the above categories. We generated tests for eMule,
Gnutella, and BitTorrent (all P2P); YouTube (streaming video); World of Warcraft (online
game); IRC (instant messaging); and HTTP, FTP, and IMAP. For eMule and Gnutella,
Ipoque’s detector separately identifies their control and data connections; consequently,
we used trace-emulate to generate the corresponding two tests. That we were able to
generate all tests in a matter of hours is a testament to the simplicity of trace-emulate.

60

4.6 Facilitating New Test Construction

In every single case, Ipoque’s DPI engine identified the test generated by trace-emulate
as the target application. To the extent that the Ipoque DPI engine is representative
of the engines of other similar vendors, we can confidently claim that trace-emulate

captures the essential flow characteristics for applications that do not encrypt their traffic.
However, we readily admit that without knowledge of how Ipoque detects applications
from encrypted traffic, we cannot make any claims in that regard.

To convince ourselves that the Ipoque result holds in the real-world, we further vali-
date trace-emulate against Kabel Deutschland, the biggest cable ISP in Germany. Kabel
Deutschland targets P2P filesharing applications between 6pm and midnight [Röt08]; their
choice of vendor for traffic shaping equipment is unknown, although it is rumored to be
Sandvine. In any event, since we know their policy, validating trace-emulate is straight-
forward. We ran tests we generated for BitTorrent, eMule, Gnutella, HTTP, IMAP, and
SSH from a Kabel Deutschland user, and saw whether Glasnost detected traffic differen-
tiation.

Glasnost detected traffic differentiation for each of the P2P applications, and none of
the non-P2P applications. In fact, by running the tests in both directions (downstream
and upstream) and using different ports (default application port, random port), we were
able to refine the policy published by Kabel Deutschland. Table 4.1 shows that P2P traffic
is differentiated regardless of the port number used (i.e., based on the packet content).
Next, we ran the HTTP, IMAP, and SSH tests on the ports typically used by the three
P2P applications and found the flows achieved substantially lower throughput. Running
the same tests on random ports resulted in normal throughput. This is precisely what one
might expect if Kabel Deutschland additionally uses port-based detection, which naturally
has false-positives. Regardless of whether Kabel Deutschland sought to omit mention of
side effects of their differentiation policy or we have identified a misconfiguration, our
finding demonstrates the value of network transparency tools such as Glasnost.

Application Port-based Content-based

BitTorrent 6881, down down
eMule data 4662, down down

Gnutella control 6346, down+up down+up
Gnutella data 6346, down+up down

HTTP no no
IMAP no no
SSH no no

Table 4.1: Using new Glasnost tests on a host connected via Kabel Deutsch-
land. We identified instances of port-based and content-based traffic differentiation in
the downstream (down) and upstream (up) direction.

4.6.2 Allowing Users to Contribute Glasnost Test

It is not feasible for us to create Glasnost tests for each of the large number of applications
and possible traffic differentiation policies that are of interest to users. Hence, we decided
to allow users to use our trace-emulate tool to create their own Glasnost tests. To create

61

4 Glasnost: Detecting Traffic Differentiation

a new test, users need to capture a packet trace of their target application using tcpdump

and then use trace-emulate to create a new Glasnost test from the trace. These new tests
can be uploaded to our measurement servers using the Glasnost webpage. Our interface
for creating new tests is targeted not at lay users, but at advanced users who have some
familiarity with capturing network traces.

We have deployed this interface only recently, and we do not yet have a lot of experience
with it. However, we asked a handful of our colleagues, who are doctoral students not
associated with our project, to use the interface to create new Glasnost tests: they were
able to create new tests quite easily.

Allowing users to upload and run their own traffic differentiation tests using the Glasnost
infrastructure raises a number of security concerns.

1. Can uploaded user tests overload the measurement servers, maybe even
affecting other tests running in parallel? The Glasnost measurement servers
only allow a limited number of users to run tests in parallel from the same mea-
surement server. We conservatively limit the number of concurrent tests to ten per
server which ensures that there are enough resources available to support all tests.
We chose this low number of parallel tests to make sure that the Internet connection
of the server does not become a bottleneck2.

2. Can the Glasnost service be abused to attack other Internet servers?
Glasnost is written to ensure that it only runs transfers between a measurement
server and the host that runs the Java applet. It is not possible to configure a
measurement server so that it sends traffic to arbitrary Internet hosts.

3. Can users upload tests that claim to test for certain application differ-
entiation, but in fact do not, thus producing wrong test results? While
we allow users to upload and share new tests, we cannot guarantee that these tests
emulate realistic and meaningful application traffic. However, on the Glasnost front-
page we provide a number of tests that were reviewed and verified by us to ensure
they test for differentiation of the application they claim to test for.

4.7 Large-scale Study of Traffic Differentiation in Broadband

Access Networks

We now present the first large-scale study of traffic differentiation in broadband access
networks using Glasnost.

4.7.1 Deployment of Glasnost

We deployed Glasnost publicly on the Internet on March 18th, 2008 and it has been oper-
ational ever since. Initially, Glasnost was deployed on eight local servers at our institute.
Over the last year, the number of servers has grown to eighteen as other users and cor-
porations have volunteered to host Glasnost measurement servers. Eleven servers are in
Europe, and the rest are in the USA (three on the west coast and four on the east coast).
We anticipate that the number of measurements servers will grow in the future.

2The Glasnost measurement servers are currently connected with at least a 1 Gbps link to the Internet.

62

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks

In the beginning, we developed our system and refined its techniques as we chose to
focus on single application. We picked BitTorrent because it is a very popular P2P file-
sharing protocol that is widely suspected of being manipulated by ISPs [Azu09]. However,
our differentiation detection techniques are not specific to BitTorrent and can be applied
to other applications as well. While we recently deployed tests for other applications, an
overwhelming majority of the data we have gathered is from BitTorrent tests. Thus, most
of the discussion here is limited to results about BitTorrent differentiation.

Measurement Lab

In fall 2008, Google, PlanetLab, the New America Foundation, and academic re-
searchers started M-Lab, an open platform for researchers to deploy Internet measurement
tools [Mea]. M-Lab went public in January 2009. As of March 2010, M-Lab provides more
than 45 servers in 15 sites in the USA, Europe, and Australia. The servers are currently
provided and maintained by Google and PlanetLab.

M-Lab’s founding was motivated by the ongoing network neutrality debate and also
because of the success and findings of Glasnost. Consequently, Glasnost was one of the first
tools to be deployed on M-Lab. M-Lab enables us to distribute the Glasnost deployment
over a large set of locations and servers making it easier to serve a large number of users
worldwide. Furthermore, M-Lab archives all collected measurement data and makes them
available to researchers and other interested entities.

Details of deployed tests

We present results for four BitTorrent tests deployed on Glasnost. These tests detect port-
and content-based differentiation in the upstream as well as the downstream direction.
Each test involves emulating BitTorrent flows followed by reference flows. For detecting
content-based differentiation, we replace BitTorrent packet payloads with random bytes
in corresponding reference flow, while keeping other aspects identical. For detecting port-
based differentiation, only the port of the reference flow is switched from a well-known
BitTorrent port (e.g., 6881) to a neutral port that is not associated with any particular
application (e.g., 10009). We emulate flows in both upstream and downstream directions
to check for manipulation of both BitTorrent uploads and downloads. As described in
Section 4.5, we configured Glasnost to offer a 6 minute long test to users, with each flow
running for 20 seconds. Also, each flow is repeated once.

Usage

Between March 18th, 2008 and September 21st, 2009, a total of 368,815 users from 5,846
ISPs used Glasnost to test for traffic differentiation. We believe that our large user base
is a direct result of our focus on lowering the barrier of use such that even lay users can
use our system.

Figure 4.8 shows that the users came from across the world: North America (38%),
Europe (36%), South America (11%), Asia (12%), Oceania (3%), and Africa (<1%). Ta-
ble 4.2 lists the top 20 access ISPs to which our users belonged. A large fraction of our
end users came from some of the largest residential ISPs in their respective countries, such
as Comcast in the US, Bell Canada in Canada, or BT in the UK.

63

4 Glasnost: Detecting Traffic Differentiation

Figure 4.8: Location of Glasnost users.

ISP Loc. Tests

Comcast US 29,464
RoadRunner US 16,257
AT&T US 10,884
UPC NL 8,871
Verizon US 7,611
Cox US 4,194
Net Virtua BR 7,207
Telecom Italia IT 6,955
Charter US 3,634
Bell Canada CA 5,233

ISP Loc. Tests

BT UK 5,192
Chunghwa Telec. TW 5,084
Shaw CA 4,933
Brasil Telec. BR 4,862
Rogers CA 4,499
Telefonica BR 4,408
Telefonica ES 4,229
NTL UK 3,852
Vivo BR 3,723
GVT BR 3,723

Table 4.2: The names of the 20 ISPs from which most of our users connected
to the Internet with.

Figure 4.9 shows the distribution of the users per week who ran Glasnost tests during
each of the last 18 months. There are two notable jumps in the number of users. The first
was in May 2008, when the system was covered in several prominent blogs and popular
news media, which led to more users becoming aware of it. The second was in January
2009, when Google adopted Glasnost for its M-Lab platform. In the period between the
two jumps there were about 2,500 users per week. The number of users jumped to 40,000
in the week immediately following the M-Lab deployment and has come down to 3,000
since. The overall impact of Google’s adoption is that we had almost as many users in the
first two months of 2009 as the entire 10 months before that.

64

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks

 0

 10000

 20000

 30000

 40000

 50000

M
ar’08

Apr
M

ay
Jun

Jul
Aug

Sep
O
ct

N
ov

D
ec

Jan’09

Feb
M

ar
Apr

M
ay

Jun
Jul

Aug
Sep

M
e

a
s
u

re
m

e
n

ts
 p

e
r

w
e

e
k

Figure 4.9: Number of users that uses Glasnost per week during our year-long
deployment. The jump in January 2009 corresponds to Google’s adoption of Glasnost
as part of its Measurement Lab effort.

User feedback

Since our system became operational, we have received more than one hundred emails
from users scattered across four continents. The feedback was overwhelmingly positive
and reveals two pieces of information. First, we find evidence of false negatives in our
results. Around 6% of our emailers were skeptical when Glasnost did not discover traffic
differentiation. They were convinced that their ISP differentiates, sometimes based on
information their ISP publishes. If these users are right, their cases confirm that our
decision to minimize the false positive rate comes at the cost of false negatives. While we
continue to investigate ways to reduce the false negative rate, we are pleased to report
that no user has complained about the presence of a false positive.

Second, a number of emails requested that Glasnost test for other P2P applications
such as eMule as well as non-P2P applications such as FTP, SSH, and HTTP. The con-
stant stream of such requests was what motivated us to open the Glasnost platform and
allow users to contribute new Glasnost tests. We also added tests for the most-requested
applications to our Glasnost deployment.

4.7.2 Aggregate data analysis

We now turn our attention to understanding the policies of individual access ISPs. For this
analysis, we map users to their access ISPs3 and assume that the access ISP is responsible
for any observed differentiation. While it is possible that a transit ISP along the path is
responsible, differentiation is a much more common practice among access ISPs [Can08b,
Com08b, Röt08].

Our Glasnost deployment was so popular that we had hundreds of users from some of
the largest ISPs worldwide. Aggregating results from all the users belonging to an ISP
can provide an understanding of the extent to which the ISP differentiates traffic. Such
ISP-wide perspectives are especially useful for policy makers and government regulators
responsible for monitoring ISP behavior. Further, end users can compare the state of
differentiation across different ISPs to make a more informed choice when selecting their
ISP.

Note that in this section we use the terms “tests”, “IP addresses”, and “users” inter-
changeably. There were very few IP addresses from which we saw repeat tests and a vast

3We map IPs to ISPs using whois information from the Regional Internet Registries.

65

4 Glasnost: Detecting Traffic Differentiation

majority of tests corresponded to unique IP addresses. The same end user might be asso-
ciated with different IP addresses during the course of our study. By overlooking this, we
may be over-counting the number of unique end users.

Sanitizing traces

In total, Glasnost runs a sequence of 16 flows (all 8 possible combinations of TCP port,
direction, and protocol, repeating each flow once) between the user’s host and the server.
However, some hosts abort the test early or experience problems when running the applet.
Therefore, we only considers a test result in our analysis when the following two conditions
hold:

• All 16 flows were tested and produced a result. Test runs which do not
contain results for all 16 flows are not considered in the results below. This can be
caused by the user closing her web browser or browsing to another site, or by a crash
of the applet.

• All 4 flows sending random data on a neutral port were able to send some
data. Flows where at least one of the sanity check flows had no data packet ACKed
(in the case of a download) or received (in the case of an upload) are discarded.
This indicates that the applet was unable to contact our measurement server, which
could be caused by misconfigured NATs, firewalls, or Java applet security policies.

When either of these conditions is not met, we discard the test result from our dataset.

In the following, we present results from our analysis of the measurement data collected
by Glasnost for two popular types of traffic differentiation: blocking and traffic shaping of
BitTorrent traffic.

4.7.3 Blocking in Broadband Networks

We used the data collected during our deployment to characterize BitTorrent blocking
in the Internet. Unless otherwise stated, we limit most of our analysis in this section
to tests conducted in the period from March 18th to July 25th, 2008. We found that
ISPs changed their differentiation behavior as a result of the publication of our results on
BitTorrent blocking and the public interest in this matter from users but also regulators.
In fact, as we will show later in this section, we found most ISPs have stopped blocking
BitTorrent starting in late 2008. Hence, we decided to base our analysis on the properties
of BitTorrent blocking on the time period we found a large number of users being affected
by it.

From March 18th to July 25th, 2008, our Glasnost servers collected a total of 47,318
result sets from end users connected to 1,987 ISPs worldwide. 146 result sets did not
contain results for all 16 flows, and a further 17 failed to send data during at least one of
the sanity-check flows.

Some users ran our test multiple times. To avoid biasing our results, for each IP address
we considered only the first result set that passes the two conditions above, and we ignored
all other result sets for that IP address. After removing the duplicate tests, we were left
with 41,109 result sets.

66

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks

We found evidence of BitTorrent blocking in 3,353 (8.2%) of the 41,109 result sets. We
now take a closer look at the hosts that observed blocking.

Where are the blocked hosts located?

First, we examined the countries in which hosts observed BitTorrent blocking.
Table 4.3 lists all countries where we found BitTorrent blocking for at least one host.

Our results indicate widespread BitTorrent blocking only for the USA and for Singapore.
Interestingly, even within these countries, we observed blocking only for hosts belonging
to a few ISPs.

Next, we looked at the ISPs whose hosts were affected by BitTorrent blocking. Overall,
we found that hosts of 47 ISPs experienced blocking; the ISPs are listed in Table 4.3,
along with the number of hosts we tested from each ISP and the number of hosts whose
BitTorrent flows were blocked. The results show that not all hosts of these ISPs are
affected by blocking.

We do not have enough data to determine why only some (but not all) hosts of an
ISP are subjected to blocking, but there are several possible explanations. For example,
the middleboxes that block BitTorrent transfers might not be deployed on all of an ISP’s
network paths, or blocking might depend on the current load of the network. Also, some
ISPs might allow BitTorrent traffic up to a certain threshold and apply the blocking to
the “heavy hitters” only.

Country ISP Meas. Block. Country ISP Meas. Block.

Australia AARNet 2 1 UK Tiscali 354 2
Belgium MAC Telecom 5 1 USA Comcast 4397 2574
Brasil Brasil Telecom 54 1 Cox 1004 508

PaeTec Comm. 9 1 RoadRunner 2086 50
Canada RISQ 7 1 Cablevision 646 1

Westman Comm. 4 3 Suddenlink 123 4
China China Telecom 49 2 Mediacom 120 17
Finland Joensuun Elli 1 1 Clearwire 34 9
Germany Uni Göttingen 1 1 Midcontinent 21 13
Greece OTEnet 122 8 General Comm. 13 5
Hungary DataNet 17 1 Pavlov Media 11 2
India SonicWall 1 1 PaeTec 9 1
Ireland IBIS 9 1 PrairieWave 4 2
Jamaica Terrenap 1 1 UC Riverside 4 1
Kuwait Wataniya Tel. 5 4 Journey Comm. 3 1
Malaysia Tel. Malaysia 336 12 NHCTC 2 1

Maxis Comm. 9 2 Bergen.org 1 1
New Zealand TelstraClear 22 1 DHL Systems 1 1
Saudi Arabia SaudiNet 8 1 Moric.org 1 1
Singapore StarHub 156 101 PSC 1 1
South Korea Korea Telecom 12 5 Shaw Group 1 1
Spain Telefonica 602 1 WSIPC 1 1
Taiwan TANet 214 2

Cheng Kung U. 11 2
APOL 10 1

Table 4.3: The number of hosts with BitTorrent blocking grouped by country
and ISP.

67

4 Glasnost: Detecting Traffic Differentiation

How do ISPs identify BitTorrent flows?

Next, we wanted to understand what flow properties ISPs were using to detect and block
BitTorrent flows. We calculated how many of the 3,353 result sets contained evidence of
blocking based each of the three flow characteristics Glasnost varies.

• TCP port: We found that only 530 (15.8%) of the result sets showed evidence of
blocking based on BitTorrent ports, regardless of whether or not the flows actually
contained BitTorrent messages. Thus, blocking of TCP connections based only on
well-known BitTorrent ports seems to exist, but does not appear to be widespread.

• Direction: We found that 3,335 (99.5%) of the result sets contained evidence of
blocking in the upstream direction, but only 71 (2.1%) of them contained evidence
of blocking in the downstream direction. Thus, ISPs seem to be blocking primarily
BitTorrent uploads and are rarely interfering with BitTorrent downloads.

• Protocol: Finally, we found that 3,293 (98.2%) of the result sets contained evidence
of blocking based on BitTorrent messages. Thus, ISPs appear to be using DPI to
block BitTorrent flows regardless of the port they are using.

In summary, the BitTorrent blocking we observed seems to be focused primarily on
BitTorrent uploads, and it appears to affect flows using the BitTorrent protocol regardless
of whether or not they are using a well-known BitTorrent port.

Case study: Comcast. Our analysis found that most ISPs identify BitTorrent flows
based on protocol messages. Presumably, the ISPs are using DPI to monitor the protocol
messages exchanged and to decide whether a flow should be blocked. To understand the
precise protocol messages that trigger blocking, we ran a controlled experiment using a
Comcast host in Seattle, WA, to which we had access. In this experiment, we emulated
BitTorrent transfers just as Glasnost does, but we varied more aspects of the flows. For
example, we obfuscated BitTorrent protocol messages by flipping bits, we left out some of
the messages, and we changed the number of advertised pieces in the bitfield message
to emulate different sharing scenarios, e.g., both peers having some but not all pieces of
the file.

We found that, on this particular access link, BitTorrent uploads were blocked if and
only if all of the following conditions hold:

• the server sent a valid BitTorrent handshake message,

• the Comcast host sent a valid bitfield message, and

• the Comcast host’s bitfield message indicated that it had all pieces.

In other words, uploads of a file were blocked only when the Comcast host had finished
downloading the file and was uploading it altruistically. However, the uploads were not
blocked when the Comcast host was still missing some of the pieces of the file and thus
appeared to be interested in downloading. From this experiment, we conclude that the
middleboxes which tear down BitTorrent connections maintain some per-flow state and
inspect the packet payload for specific protocol messages.

68

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks

Note that this case study only applies to Comcast. Unfortunately, we did not have
access to hosts connected to other ISPs and were therefore unable run the same controlled
experiment for them.

When do ISPs block BitTorrent flows?

ISPs that have admitted to blocking BitTorrent flows claim that they do so only during
the hours of peak load, i.e., when their networks are congested. The data we collected
with Glasnost enables us to check whether blocking occurs continuously throughout the
day or is limited to just a few hours of the day. For each hour of the day, we calculated
the percentage of result sets that contained evidence of blocking. For each result set, we
inferred the location of the tester and then computed the local time4 when the test had
been performed. We then grouped together measurements from the same hour. Here we
present data for Comcast and Cox because these are the two ISPs for which we had the
most data points.

Figure 4.10 shows our results. While the number of measurements per hour shows a
diurnal pattern with more measurements in the evening than in the early morning, the
fraction of blocked tests shows no clear trend. We observed blocking for a significant
fraction of the tests throughout the day. Figure 4.11 groups the result sets by day of the
week instead. Again, there is no clear trend; we observed a significant fraction of blocked
hosts on all days of the week. Finally, we used a Comcast host under our control in Seattle,
WA, to run Glasnost at 30-minute intervals for an entire week. We found that BitTorrent
flows were constantly blocked during the entire week.

In conclusion, our data suggests that BitTorrent flows are being blocked independent of
the time of the day or the day of the week.

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20

 0

 100

 200

 300

 400

 500

 600

 700

B
lo

c
k
e
d
 t

e
s
ts

N
u
m

b
e
r

o
f

te
s
ts

Hour of the day (local time)

Number of tests
% blocked

(a) Comcast (USA)

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20

 0

 20

 40

 60

 80

 100

 120

 140

 160

B
lo

c
k
e
d
 t

e
s
ts

N
u
m

b
e
r

o
f

te
s
ts

Hour of the day (local time)

Number of tests
% blocked

(b) Cox (USA)

Figure 4.10: Result sets grouped by the hour of the day for Comcast and Cox.
BitTorrent flows were blocked at all times of the day.

4We used an IP-to-geolocation tool to infer the timezone of each tester.

69

4 Glasnost: Detecting Traffic Differentiation

0%

20%

40%

60%

80%

100%

Sun Tue Thu Sat

 0

 250

 500

 750

 1000

 1250

 1500

 1750
B

lo
c
k
e

d
 t
e

s
ts

N
u

m
b

e
r

o
f
te

s
ts

Day of the week (local time)

Number of tests
% blocked

(a) Comcast (USA)

0%

20%

40%

60%

80%

100%

Sun Tue Thu Sat

 0

 100

 200

 300

 400

 500

%
 o

f
b

lo
c
k
e

d
 t
e

s
ts

N
u

m
b

e
r

o
f
te

s
ts

Day of the week (local time)

Number of tests
% blocked

(b) Cox (USA)

Figure 4.11: Result sets grouped by the day of the week for Comcast and Cox.
Blocking occurred on every day of the week.

At what stage are flows blocked?

Finally, we took a closer look at the Glasnost packet traces to see at which stage of the
BitTorrent protocol the blocking occurred. The RST packets can be injected at differ-
ent points in a transfer, that is, at different stages of the BitTorrent protocol shown in
Figure 4.3a. To perform this analysis, we used the data reported by our user-side applet
about the last message it sent before the connection was torn down.

In total, we identified four different places in the protocol at which connections were
blocked. We found a very strong correlation in behavior across ISPs, and we observed
mostly consistent behavior for hosts of the same ISP.

• After the handshake message: For Telekom Malaysia and Brasil Telecom we
observed that the connection with BitTorrent messages was torn down immediately
after the handshake message was sent by the leecher (i.e., the host that wants to
download).

• After the bitfield message: For StarHub, RoadRunner OTEnet, and most other
ISPs we observed connection tear-down for connections with BitTorrent messages
after the leecher sent the bitfield message.

• After the interested message: For most Comcast and Cox hosts, we observed
that the connections with BitTorrent messages were torn down after the interested
message was sent by the leecher.

• Later in the transfer: Finally, for Comcast, Cox, and Mediacom, we observed that
connections with random data on BitTorrent ports were occasionally torn down later
in the transfer. However, we were unable to determine a common pattern for the
exact point where the connection was torn down.

While the types of blocking can sometimes vary even between hosts of the same ISP, we
found that the basic characteristics of blocking were mostly consistent across hosts and
even across some of the ISPs. Because of this, we suspect that many ISPs are using similar
equipment for traffic identification and reset injection, e.g., the specialized hardware sold
by Sandvine. However, it is possible that these boxes are configured differently in different
locations or at different times of the day.

70

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks

Do ISPs change their traffic management policies?

ISPs’ traffic management policies are not static. For instance, ISPs can decide to target
new applications or change their technique for shaping flows. Glasnost allows us to study
whether ISPs have changed their policies over the time of our deployment. Here, we focus
on three ISPs, Comcast, Cox, and StarHub, as we found that a large fraction of their
customers suffer from BitTorrent blocking.

Figure 4.12 shows the number of tests performed per week between March 2008 and
September 2009. The number of tests varies a lot with occasional usage spikes, as for
example in January 2009 when M-Lab went public and the resulting wide media coverage
attracted a large number of users. Figure 4.12 also shows the percentage of Glasnost tests
that detected BitTorrent blocking. In contrast to the number of tests, the percentage of
blocked tests shows a clear trend: since we first deployed Glasnost in March 2008, Comcast,
Cox, and StarHub have stopped blocking BitTorrent flows. This is likely a result of the
wide and critical media coverage about these ISPs’ traffic management practices after we
released results from our Glasnost deployment in May 2008. More, after we published
our results, telecommunication regulators started investigating ISPs traffic management
practices (some of these regulators actually used Glasnost data in their investigations),
which increased the public pressure on blocking ISPs even more. Also, for Comcast our
findings coincided with an announcement that it will replace its blocking policy with other
traffic management policies by the end of 2008 [Com08a]. In this case, Glasnost can help
to verify whether an ISP actually follows through on its announcement that it will stop
traffic shaping holds.

0%

20%

40%

60%

80%

100%

Apr’08 Sep Jan’09 May Aug

 0

 200

 400

 600

 800

 1000

B
lo

c
k
e
d
 t

e
s
ts

N
u
m

b
e
r

o
f

te
s
tsBlocked tests

Glasnost release
Number of

tests

(a) Comcast

0%

20%

40%

60%

80%

100%

Apr’08 Sep Jan’09 May Aug

 0

 100

 200

 300

 400

 500

B
lo

c
k
e
d
 t
e
s
ts

N
u
m

b
e
r

o
f

te
s
ts

Blocked tests

Glasnost release
Number of

tests

(b) Cox

0%

20%

40%

60%

80%

100%

Apr’08 Sep Jan’09 May Aug

 0

 20

 40

 60

 80

 100

B
lo

c
k
e
d
 t
e
s
ts

N
u
m

b
e
r

o
f

te
s
ts

Blocked tests

Glasnost release
Number of

tests

(c) StarHub

Figure 4.12: ISPs change their BitTorrent blocking policies over time. Since we
published Glasnost test results in May 2008, Comcast, Cox, and StarHub have mostly
stopped blocking BitTorrent transfers.

71

4 Glasnost: Detecting Traffic Differentiation

4.7.4 Throttling in Broadband Networks

In the previous section, we discussed Glasnost’s findings on the prevalence of BitTorrent
blocking in the Internet. Here, we use the data collected during our Glasnost deployment
to characterize BitTorrent throttling in the Internet. To our knowledge, such a detailed
characterization was not available prior to our study. We limit the analysis in this section
to the tests conducted in the two-month period from January and February 2009. We used
a short period to avoid effects caused by ISPs that might have changed their differentiation
behavior over the time of our measurements, e.g., when an ISP decides to change its traffic
management policies and starts or stops differentiation of particular Internet traffic (cf.
Section 4.7.3). We selected the two-month period that contains the most datapoints.
Further, we considered only ISPs for which we have at least 100 tests in this time period.
There are 140 such ISPs.

Figure 4.13 shows the percentage of users for whom we detected throttling in at least
one of the four tests that we deployed on Glasnost. The number of Glasnost users per week
varied substantially (see Figure 4.9). But aside from a few weeks in the beginning when we
did not have enough users, the percentage of throttled users has stayed roughly constant
around 10%. Thus, a non-negligible fraction of our testers are subject to differentiation.

0%

20%

40%

60%

80%

100%

Apr’08

M
ay

Jun
Jul

Aug
Sep

O
ct

N
ov

D
ec

Jan’09

Feb
M

ar
Apr

M
ay

Jun
Jul

Aug

U
s
e
rs

 w
it
h
 d

if
fe

re
n
ti
a
ti
o
n

Figure 4.13: Percentage of users that are deemed to suffer differentiation since
March 2008.

Note, however, that we cannot use our data to claim that 10% of all Internet users
suffer from throttling. Because the users of Glasnost are a self-selecting set, our data may
be dominated by those that suspect that their ISP is differentiating against BitTorrent
traffic.

Basis for differentiation

Table 4.4 shows the list of the top-30 ISPs ranked based on the fraction of hosts that
detected throttling. It also shows how traffic is differentiated. More than half the ISPs
throttle only in the upstream direction and 23% of ISPs only in the downstream direction.
20% of ISPs (e.g., Clearwire, TVCABO) throttle traffic in both directions. We also find
that most throttling ISPs use both content- and port-based differentiation. For only
four ISPs (Free, GVT, Pipex, and Tiscali UK) do we observe an exclusive use of port-

72

4.7 Large-scale Study of Traffic Differentiation in Broadband Access Networks

ISP Loc.
Upstream Downstream
app port app port

Bell Canada (DSL) CA × ×

Brasil Telecom (DSL) BR × ×

BT (DSL) UK × ×

Cablecom (Cable) CH × ×

Canaca (DSL) CA × ×

City Telecom (FTTH) HK × × × ×

Clearwire (WiMax) US × × × ×

Cogeco (Cable) CA × ×

EastLink (Cable) CA × ×

Free (DSL) FR ×

GVT (DSL,FTTH) BR ×

Kabel Deutschland (Cable) DE × × × ×

Magix (DSL) SG × ×

Oi (DSL) BR ×

ONO (Cable) ES × ×

PCCW (DSL) HK × × × ×

Pipex (DSL) UK ×

Rogers (Cable) CA × ×

Shaw (Cable) CA × ×

TekSavvy (DSL) CA × ×

Tele2 (DSL) IT × ×

Telenet (DSL) BE × ×

TFN (DSL) TW × ×

Tiscali Italia (DSL) IT × ×

Tiscali UK (DSL) UK ×

TM Net (DSL) MY × ×

TVCABO (Cable) PT × × × ×

UPC NL (Cable) NL × ×

UPC Poland (Cable) PL × ×

UPC Romania (Cable) RO × ×

Table 4.4: We detected BitTorrent throttling for users of 30 ISPs during Jan-
uary and February 2009. The table shows which of them were differentiated based
on application messages (app) or based on TCP port.

based differentiation (which is easier to evade). And only one ISP, Oi, uses content-based
differentiation exclusively.

Fraction of users impacted

ISPs that throttle BitTorrent traffic do not do so for every user. For each ISP in Table 4.4,
Figure 4.14 shows the fraction of users that tested positive for differentiation. We see that
in the median case only 21% of users are affected. Given our tests’ low false positive and
negative rates, this inconsistent differentiation behavior within an ISP cannot be explained
by inference errors alone.

Our data does not allow us to infer why only a fraction of users of an ISP experience
traffic differentiation. There are many possible reasons. An ISP might choose to target
only customers who generate a lot of P2P traffic, the traffic shapers might be deployed in
only a portion of the ISP network, or an ISP might differentiate only during peak hours
or periods of high load.

73

4 Glasnost: Detecting Traffic Differentiation

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80% 100%

F
ra

c
ti
o

n
 o

f
th

ro
tt
lin

g
 I
S

P
s

Percentage of users affected by throttling per ISP

Figure 4.14: For most ISPs we detected traffic differentiation for only a fraction
of users.

Dependence on time of day

One potential explanation for why only some users experience differentiation is that ISPs
may differentiate only during peak hours, when the network is experiencing the greatest
load. To test for the dependence on time of day we divided our dataset into two time
periods based on the local time of the user5. The peak period is the time between 8pm
and midnight, and the off-peak period is the time between 5am and 9am. These periods
are strict subsets of the peak and off-peak durations for access ISPs [LR08, Can08b].

For each period we infer if an ISP differentiated traffic. Our analysis excludes ISPs that
have fewer than 100 measurements for either of the two time periods. This leaves us with
30 ISPs. We find that slightly more than half of these ISPs differentiate during both peak
and off-peak hours. The other ISPs, e.g., BT, Bell Canada, Kabel Deutschland, ONO,
and Tiscali UK, restrict traffic differentiation to the peak period.

Our results in the last two sections show the importance of enabling end users to detect
differentiation for themselves and at particular points in time. Other existing tools attempt
to discover whether or not an ISP differentiates traffic [TMFA09, ZMZ08]. Since not all
users of an ISP are affected by differentiation all the time, ISP-wide information alone is
not sufficient for a user to determine if she experiences differentiation.

4.8 Summary

In summary, Glasnost enabled hundreds of thousands of users to test their links for traffic
differentiation. The results we published on the prevalence of BitTorrent blocking in the
Internet have been widely publicized, e.g., by Reuters and Associated Press, and have been
used by regulators in the USA, Canada, Singapore, and Greece to monitor their national
ISPs. Interestingly, we found that many ISPs whom we had found to block BitTorrent
stopped doing so after we released our results.

Glasnost continues to be very popular. Glasnost currently attracts 1,000 users a day
who test their links for traffic differentiation. The ability to create new tests should keep
Glasnost attractive for users in the future.

5We used an IP-to-geolocation tool to infer the timezone of each tester.

74

Part II

Evaluating Systems in Broadband

Access Networks at Large Scale

75

5 Background and Related Work

Evaluating new system designs under realistic conditions is important for verifying that
these systems work as expected once they are deployed. New system designs are usually
based on certain design assumptions about the network environment they are supposed
to run in. To verify that these assumptions in fact hold under real-world conditions,
evaluation experiments are used. Furthermore, the complex nature of the interaction
between a distributed system and the network it runs in is often hard to model. Evaluation
experiments help to quantify the performance of distributed systems in the wild, result
in optimizations that increase a system’s performance, and identify implementation bugs
and behavioral anomalies that do not surface during standard, small-scale testing.

Most of today’s evaluation techniques focus on academic networks and the Internet
backbone and thus only cover a small part of the Internet. We have shown in the previous
chapters that residential broadband networks can have very different characteristics than
academic or corporate networks. Thus, today’s evaluation techniques are not suitable to
evaluate systems that will be deployed on broadband hosts.

To enable researchers to evaluate their systems over broadband networks, we present
two solutions as part of this thesis. First, we developed Monarch, a tool that enables
researchers to study and compare the performance of new and existing transport protocols
at large scale in broadband environments. And second, we designed SatelliteLab, a novel
testbed design that makes it easy to add arbitrary end nodes, including broadband nodes
and even smartphones, to existing testbeds like PlanetLab.

In the remainder of this chapter we present background and related work. We discuss
in detail three techniques that are typically used to evaluate networked systems: network
measurements, simulation or emulation experiments, and testbed experiments.

5.1 Evaluation Using Measurements of Deployed Systems

Network measurements are often used to study already deployed systems and their per-
formance in the wild. For example, the wide deployment of TCP in the Internet allowed
researchers to extensively study the performance of TCP using network measurements.
We list some popular examples next. Bolot [Bol93] and Paxson [Pax97] performed some
of the initial studies on TCP packet dynamics along a fixed set of Internet paths. Padhye
and Floyd [PF01] characterized the TCP behavior of a large set of popular Web servers.
Medina et al. [MAF05] investigated the behavior of TCP implementations and extensions.
In a different project, Medina et al. [MAF04] characterized the effect of network middle-
boxes on transport protocols. Based on the traces of TCP flows to a busy Web server,
Balakrishnan et al. [BPS+98] presented a detailed analysis of the performance of individ-
ual TCP flows carrying Web traffic. Jaiswal et al. [JID+04] used traffic traces of a Tier-1
ISP to investigate the evolution of TCP connection variables over the lifetime of a TCP
connection. More recently, Arlitt et al. [AKM05] have used Web traces to investigate the
impact of latency on the duration of short transfers.

77

5 Background and Related Work

5.2 Evaluation Using Simulations and Emulations

A key advantage of simulations and emulations is that they offer full control over the ex-
perimental parameters, which allows researchers to produce repeatable results. However,
this control comes at a cost: the underlying models of the network topologies and the
network traffic are synthetic. Consequently, the experiments are of only limited realism.
Simulators and emulators simulate arbitrary network topologies using analytical or simpli-
fying models. Also, background traffic is either synthesized using analytical traffic models
or replayed from previously captured real-world traces.

The key difference between simulators and emulators is that simulators often model the
networking stack down to the physical layer (i.e., also the networking hardware is simulated
in software), while emulators build on top of networking hardware and the networking stack
of an operating system for experiments. Thereby, emulators typically manage the network
traffic to configure an experimental scenario (e.g., by adjusting the bandwidths and delays
of flows to resemble a wide-area network connection). Many simulators do not allow the
original implementation of a protocol or system to be used. Instead, they provide their own
programming environment, which often requires a full reimplementation [ns2]. Emulators
like EmuLab [WLS+02], on the other hand, usually extend existing operating systems
with a special networking stack that allows emulating arbitrary network topologies, thus
creating a virtual, large-scale testbed on a local cluster of nodes. Thus, researchers can
often use their existing implementations without changes.

There is a large and impressive number of existing network simulators and emulators;
here we list some of the more important ones.

The network simulator ns-2 [ns2] is probably the most-frequently used in academic re-
search. It simulates the network stack down to the MAC layer and includes extensions
to simulate wireless networks. Other network simulators include NetPath [ASB05], OM-
NeT++ [Sim92], and GloMoSim [BTA+99].

For cable links, detailed DOCSIS simulators are available, including the Common
Simulation Framework (CSF) from CableLabs and a ns-2 implementation from Shah et
al. [SKMM05]. These simulators are useful for exploring the parameter space of DOCSIS.
However, it has been unclear how to set the parameters in a way that accurately emu-
lates commercially deployed networks. With the results from our measurement study in
Chapter 3, there is now a way to configure these simulators for realistic experiments.

Two of the most popular emulators today are EmuLab [WLS+02] and Model-
Net [VYW+02]. They create a virtual experimental environment that allows Internet-scale
experiments to be run on a local cluster. Both are based on Dummynet [Riz97], a tool
to simulate queue and bandwidth limitations, delays, packet losses, and multipath effects
according to a given network model. FlexLab [RDS+07] extends EmuLab to use real-time
measurements to dynamically and more realistically configure the emulated Internet links.
More recently, Eide et al. [ESL07] presented an enhanced version of EmuLab called Work-
bench, which adds a facility to replay previous experiments allowing for richer analysis
and experimentation.

Other recent emulators include a tool by Sanaga et al. [SDRL09] to emulate the
end-to-end behavior of network paths instead of individual network links. Finally,
DieCast [GVV08] emulates distributed systems at large scale using virtual machine tech-
nology to run many instances of the system on a small number of physical machines.

78

5.3 Evaluation Using Testbeds

None of the popular simulators and emulators, such as ns2, EmuLab, and ModelNet,
provide built-in models for broadband networks. Thus, at this point they do not allow
researchers to evaluate systems for broadband nodes. However, using the results from our
broadband studies in this thesis, models for broadband networks can be developed in the
future.

5.3 Evaluation Using Testbeds

Internet testbeds have become indispensable for evaluation in networking and distributed
systems research. Unlike simulators and emulators, testbeds can accurately capture path
properties and thus provide a realistic network environment for evaluating high-level pro-
tocols and applications. Testbeds typically consist of tens to hundreds of server-class
nodes distributed across the Internet. Thus network traffic is transferred across the Inter-
net under realistic conditions, making experiments running on top of them more realistic
than simulations. However, while offering a more realistic environment than simulations,
testbeds do not offer the full control of the environment to experimenters. Hence, results
are usually not reproducible as the environment is constantly changing.

There are a number of popular testbeds used in academic research. NIMI [PAM02] is
an infrastructure for Internet measurements. Researchers can use NIMI to deploy new
measurement tools and study the Internet path characteristics between the testbed nodes.
RON [ABKM03] is a testbed of about 20 nodes that allows researchers to build and
evaluate overlay routing topologies. VINI [BFH+06] is a virtual network infrastructure
researchers can build arbitrary network topologies with to evaluate new routing protocols.
VINI does not provide its own testbed nodes, but can be run on top of existing testbeds.
The state-of-the-art Internet testbed today is PlanetLab [Pla], which is composed of nodes
from more than 500 sites worldwide and has been used by more than 1,000 researchers
for evaluation experiments. Recently, the success of PlanetLab has inspired numerous
efforts to build next-generation testbed environments, such as GENI [GEN] in the USA
and FIRE [FIR] in Europe.

Testbeds are supposed to offer a highly realistic evaluation environment that allows
systems to be evaluated over real Internet paths. However, today’s testbeds are very
homogeneous. Most nodes in existing testbeds are located in well-connected academic
and corporate networks, and the network paths between them are often restricted to
well-provisioned research backbones [BGP04]. As a consequence, these testbeds lack the
heterogeneity that characterizes the commercial Internet [SPBP05]. For example, even
PlanetLab contains only a handful of broadband nodes and it is already widely accepted
that PlanetLab does not capture the characteristics specific to network paths in wireless
and mobile environments [BPSK97]. Thus, results from evaluation experiments performed
over these testbeds cannot be used to predict how an application will perform in, e.g.,
broadband networks.

The lack of heterogeneity in today’s Internet testbeds is widely known and has been
identified as an important concern by the designers of PlanetLab [SPBP05]. Also, many
research projects have shown the consequences of the homogeneity of testbeds either di-
rectly or indirectly [BGP04, PHM06]. These projects pointed out surprising differences
between the results of evaluations performed in testbeds and those performed in highly
heterogeneous networks. For example, the paths between PlanetLab nodes and the paths

79

5 Background and Related Work

in access networks have different reliability and packet loss characteristics [GMG+04].
Evaluation of the Vivaldi network coordinate system showed that the accuracy of the sys-
tem differs vastly when run in a testbed or in the Internet at large [LGS07]. Our own
study of residential broadband networks, as presented in Chapter 3, found that transport
protocols, such as TCP, can behave differently in broadband access networks than in aca-
demic networks. Today’s homogeneity of testbeds creates several challenges for networking
researchers: networked system designs cannot be rigorously evaluated in an environment
that lacks the diversity present in the Internet, protocols are shielded from complications
caused by middle boxes (such as proxies and NATs), and network measurement results
are not always representative and are difficult to generalize. The obvious solution to this
— adding more broadband nodes to existing testbeds — is hard, as testbeds typically
have high requirements for new testbed nodes. For example, PlanetLab requires nodes
to have server-class hardware and a high-speed Internet connection with a static, public
IP address [Pla02]. Such requirements are often too high for ordinary broadband nodes,
hence only a small number of broadband nodes are part of today’s testbeds.

In the following, we present two approaches that allow evaluations at large scale in het-
erogeneous environments over the Internet.

In Chapter 6, we present Monarch, a tool that emulates transport protocol flows over
live Internet paths. Monarch enables transport protocols to be evaluated in realistic
environments and thus complements the controlled environments provided by the state-of-
the-art network simulators and emulators, and testbeds. Monarch uses generic TCP, UDP,
or ICMP probes to emulate transport protocol flows to any remote host that responds to
such probes. By relying on minimal support from the remote host, Monarch enables
protocols to be evaluated on an unprecedented scale over millions of Internet paths.

In Chapter 7, we present a new testbed design called SatelliteLab, a system that aug-
ments heterogeneity of existing planetary-scale network testbeds by recruiting nodes from
Internet edge networks. While state-of-the-art testbeds have high requirements for testbed
nodes, SatelliteLab makes it possible to add a diverse set of nodes to the testbed, including
broadband nodes and even smartphones, which are rarely present in existing testbeds.

80

6 Monarch: Emulating Transport Protocol

Flows over the Internet at Large

There is a large body of work on designing new transport protocols, such as TCP Ve-
gas [BP95], TCP Nice [VKD02], TFRC [FHPW00], or PCP [ACKZ06]. However, eval-
uating these protocols on the Internet at large has proved difficult. Current approaches
require the protocols to be deployed at both endpoints of an Internet path. In prac-
tice, this restricts the evaluation of transport protocols to studies conducted over research
testbeds, such as PlanetLab [Pla], RON [ABKM03], or NIMI [PAM02]. Unfortunately,
these testbeds are limited in their scale and, as we pointed out in the previous chapter,
they are often not representative of the many heterogeneous network environments that
constitute the Internet [BGP04, PHM06].

In this chapter, we propose Monarch, a tool that emulates transport protocol flows
from a user-controlled end host to any other Internet host. Similar to our methodology
in Chapter 3, Monarch leverages the fact that many of these Internet hosts and routers
respond to TCP, UDP, or ICMP packet probes. By requiring control of just one of the
two end hosts of a path, researchers can use Monarch to evaluate transport protocols in
large-scale experiments over a diverse set of Internet paths.

Monarch is based on a key observation about how transport protocols typically work:
a sender transfers data to a receiver at a rate determined by the latency and loss char-
acteristics of the Internet path between the two endpoints. Instead of using a real TCP
transfer, Monarch uses generic TCP, UDP, or ICMP probes and responses to emulate this
packet exchange between a local sender and a remote receiver.

Monarch is accurate because it relies on direct online measurements. For every packet
transmission in its emulated flow, Monarch sends an actual probe packet of the same
size to the receiver and interprets the response packet as an incoming acknowledgment.
Thus, the emulated flows are subjected to a wide range of conditions affecting real network
paths, including congestion, delays, failures, or router bugs. However, as Monarch controls
only one end host, it can estimate the conditions of the round-trip path but not the one-
way paths. Despite this limitation, our evaluation shows that packet-level traces of flows
emulated with Monarch closely match those of actual network transfers.

While several previous studies have examined the relative performance of different con-
gestion control algorithms [ADLY95, MLAW99], most of them had access to just a small
number of “real” links and therefore had to complement their measurements with simula-
tion results. Moreover, links such as cable and DSL connections have been uncommon in
the lab and therefore do not usually appear in measurement studies.

Monarch enhances the state of the art in transport protocol evaluation. Today, re-
searchers can use controlled environments like network emulators [WLS+02, VYW+02] or
testbeds [Pla, ABKM03, PAM02] for a systematic analysis of protocol behavior. Monarch
complements these tools by providing live access to a real network path. This allows
experiments to be conducted with emerging network infrastructures, such as broadband

81

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

networks, for which emulators and testbeds are not yet widely available. Using Monarch,
researchers can easily obtain results for thousands of “real” links with a wide range of
characteristics. Further, Monarch naturally captures the complex protocol interactions
with the different configurations of networks and traffic workloads that exist in deployed
systems. These tests allow software developers to test or debug the performance and relia-
bility of protocol implementations, which helps to uncover bugs, performance bottlenecks,
or poor design decisions in the transport protocol.

6.1 The Design of Monarch

This section focuses on the design of Monarch. We start with an overview of how Monarch
emulates transport protocols. Later, we discuss a variety of probing mechanisms Monarch
can use, the number of Internet paths it can measure, the types of transport protocols it
can emulate, and the factors that affect its accuracy.

6.1.1 How Monarch Works

In a typical transport protocol, such as TCP, a sender on one host sends large data
packets to a receiver on another host, and the receiver responds with small acknowledgment
packets (Figure 6.1a). Monarch emulates this packet exchange by sending the remote host
large probe packets that elicit small responses (Figure 6.1b). To emulate a TCP flow,
Monarch creates both a TCP sender and a TCP receiver on the same local host, but
interposes between them (see Figure 6.1d). Whenever the sender transmits a packet,
Monarch captures it and, instead of forwarding this original packet, sends a probe packet
of the same size to the remote host. As soon as it receives a response from the remote host,
Monarch forwards the captured packet to the receiver. Packets in the reverse direction —
from the TCP receiver to the TCP sender — are forwarded directly.

Local host Remote host

Data (1500)

Data (1500)

Data (1500)

Data (1500)

ACK (40)

ACK (40)

ACK (40)

ACK (40)

Local host Remote host

Probe (1500)

Probe (1500)

Probe (1500)

Probe (1500)

Response (40)

Response (40)

Response (40)

Response (40)

TCP
Sender

TCP
Receiver

Local host

Remote host

D
a
ta

 (
1
5
0

0
) A

C
K

 (4
0
)

1 2

TCP
Sender

TCP
Receiver

Local host

Remote host

R
e
s
p
o
n
s
e
 (4

0
)P

ro
b
e
 (

1
5

0
0
)

1

2 3

4

6 5

(a) (b) (c) (d)

Monarch

Figure 6.1: The Monarch packet exchange. In a normal TCP flow, large data packets
flow in one direction and small acknowledgment packets in the other (a). Monarch
emulates this by using large probe packets that elicit small responses (b). While in
a normal flow sender and receiver are on different hosts (c), Monarch co-locates them
on the same host and interposes between them (d). The numbers in parentheses are
packet lengths in bytes.

82

6.1 The Design of Monarch

The sizes of Monarch’s probe and response packets match those of TCP’s data and
acknowledgment packets, and they are transmitted over the same Internet paths. As a
result, the sender observes similar RTTs, queuing delays, and loss rates for its packet
transmissions as for a TCP real flow. Because Monarch uses online measurements as
opposed to analytical models of the network, the characteristics of flows emulated by
Monarch closely match those of real TCP flows.

In our simplified description above, we made several assumptions. For example, we
assumed that probe packets can be matched uniquely to their response packets, that
arbitrary Internet hosts would respond to probe packets, and that an accurate emulation
of round-trip (rather than one-way) packet latencies and losses is sufficient for an accurate
emulation of transport protocols. Later in this section, we discuss the extent to which
these assumptions hold in the Internet at large.

Monarch’s output is a packet trace similar to the output of tcpdump. Based on this
trace, we can infer network path properties, such as packet RTTs, and transport protocol
characteristics, such as throughput. We show a particularly interesting use of the collected
packet trace in Section 6.2.4: Monarch can analyze its output to detect errors in its own
emulated flows.

6.1.2 What Types of Probes Can Monarch Use?

Monarch can use several types of probe packets to emulate transport flows. It is useful
to have multiple probe types to choose from because not all hosts respond to all probes.
To be accurate, Monarch needs (1) the remote host to respond to every probe packet it
receives, (2) a way to match responses with their corresponding probes, and (3) the sizes
of the probe and response packets to be similar to those of the data and acknowledgment
packets of a regular flow. Monarch currently supports the following four types of probes:

• TCP: Monarch’s probe packet is a variable-sized TCP acknowledgment (ACK) sent
to a closed port on the remote host. The remote host responds with a small, fixed
size TCP reset (RST) packet. According to the TCP standard [Uni81], the sequence
number of the RST packet is set to the acknowledgment number of the probe packet
header, which enables Monarch to match probes with responses.

• UDP: Monarch sends a variable sized UDP packet to a closed port on the remote
host, which responds with a small, fixed-size ICMP “port unreachable” message.
The response packet contains the first eight bytes of the probe packet, including the
IPID field of the probe packet headers [Pos81]. By setting unique IPIDs in its probe
packets, Monarch can match probes with responses.

• ICMP echo request: Monarch sends a variable-sized ICMP echo request packet
to the remote host, which answers with a similarly sized ICMP echo reply
packet [Pos81]. The response packet has the same sequence number field in its
header as the probe packet, enabling Monarch to match probes with responses.

• ICMP timestamp request: Monarch sends an ICMP timestamp request message
to the remote host, which answers1 with a small, fixed size ICMP timestamp reply

1Govindan and Paxson [GP02] observed that some routers use a ‘slow path’ for generating ICMP times-
tamp responses, which introduces additional delays. Hence, these probes should be used with caution.
We use TCP probes whenever possible.

83

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

packet [Pos81]. The response packet has the same sequence number field in its
headers as the probe packet, enabling Monarch to match probes with responses.

These probes and responses differ in their suitability for evaluating transport protocols.
For example, TCP and UDP probes allow the probe packet sizes to be varied, even as
the response packet sizes are held fixed between 40 and 60 bytes. They are well suited
for matching the sizes of data and acknowledgment packets for many variants of the
popular TCP protocol, such as Reno, Vegas, and NICE. The ICMP echo responses on the
other hand are of the same size as their probes. Consequently, they are better suited for
evaluating transport flows where data flows in both directions.

6.1.3 How Many Internet Hosts Respond to Monarch Probes?

In theory, Monarch could emulate a transport flow to any remote host running a TCP/IP
implementation, since the protocol standards require a response to each of the probes
presented above. In practice, however, many hosts are either offline or behind NATs and
firewalls that block or rate-limit incoming probe packets.

Note that in Chapter 3 we used a methodology similar to Monarch’s to study broadband
networks using TCP ACK and ICMP echo request probes. Thus, we extended the exper-
iment from Section 3.1.3 to also include UDP and ICMP timestamp request probes. As
before, we sent probes to end hosts in commercial broadband ISPs, end hosts in academic
and research networks, and Internet routers. We selected end hosts in broadband and
academic networks from a 2001 trace of peers participating in the Gnutella file-sharing
system [SGG02]. We selected hosts belonging to major DSL/cable ISPs and university
domains in North America and Europe using their DNS names. We discovered Internet
routers by running traceroute to the end hosts in broadband and academic networks.

Table 6.1 presents our results. We probed 1,000 hosts in each of the three host categories.
Overall, more than 18% of the academic hosts, 28% of the broadband hosts, and over 90%
of the routers responded to at least one of the four types of probes. While this may seem
like a small percentage, there are millions of hosts in the Internet, and it should be easy
to find thousands of suitable hosts for an experiment.

Using very conservative estimates, our results suggest that Monarch can evaluate trans-
port protocols to at least 18% of Internet hosts, and to at least 7% of hosts when restricted
to TCP probes only. This shows that Monarch can evaluate transport protocols over a

Broadband Academic Router

TCP ACK 7.2% 13.4% 69.6%
ICMP TsReq 18.0% 4.9% 63.0%

ICMP EchoReq 25.0% 8.9% 89.3%
UDP packet 7.4% 4.1% 7.3%

Any probe 28.4% 18.1% 90.3%

Table 6.1: Fraction of Internet hosts responding to our probes. We selected
a sample set of 1000 hosts from each of three different categories of hosts: hosts in
commercial broadband ISPs, hosts in academic and research environments, and Internet
routers.

84

6.1 The Design of Monarch

diverse set of Internet paths, a set which is several orders of magnitude larger than cur-
rent research testbeds can provide. Note that we measured more than 1,800 hosts from
11 major ISPs in North America and Europe in our characterization of broadband hosts
in Chapter 3 using the same TCP ACK and ICMP echo request probes as Monarch. This
shows that, while research testbeds like PlanetLab have a very small number of broadband
hosts, it is possible to use Monarch’s methodology to emulate TCP flows to thousands of
hosts in commercial cable and DSL ISPs worldwide.

6.1.4 What Transport Protocols Can Monarch Emulate?

Monarch emulates transport protocols based on real-time, online measurements of packet
latencies and losses. Hence, any transport protocol where the receiver feedback is limited
to path latencies and losses can be emulated. As shown in Table 6.2, this includes many
variants of the widely used TCP protocol, a number of protocol extensions, and several
streaming protocols.

Protocol Usable?

TCP (New)Reno [FHG04], TCP Nice [VKD02], TCP Vegas [BP95],

Yes
TCP BIC [XHR04], Highspeed TCP [Flo03], Fast TCP [JWL04]
Scalable TCP [Kel03], PCP [ACKZ06], TCP Westwood [MCG+01]
SACK [MMFR96], FACK [MM96], Window scaling [JBB92]
RAP [RHE99], TFRC [FHPW00]

ECN [RFB01], XCP [KHR02] No

Table 6.2: Supported protocols. Monarch can be used to evaluate many, but not all,
transport protocols.

However, Monarch cannot emulate transport protocols that require the receiver to relay
more complex information about the network to the sender. For example, Monarch cannot
emulate TCP with explicit congestion notification (ECN) [RFB01] because it would require
the remote host to echo back the congestion experienced (CE) bit to the Monarch host.
We are not aware of any type of probe that could be used for this purpose. Similarly,
Monarch cannot be used to evaluate protocols like XCP [KHR02] that require changes to
existing network infrastructure.

Monarch currently emulates transport flows in the downstream direction, i.e., connec-
tions in which data flows from the Monarch host to the remote host. This mimics the
typical usage pattern in which an end host downloads content from an Internet server.
Emulating data flows in the upstream direction from the remote host to the Monarch host
requires a small probe packet that elicits a large response packet. We have not yet found
a probe packet that has this property.

6.1.5 What Factors Affect Monarch’s Accuracy?

Monarch is based on round-trip (rather than one-way) estimates of packet latencies and
losses. When packets are lost or reordered, Monarch cannot distinguish whether these

85

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

events occurred on the downstream path, i.e., from the sender to the remote host, or
on the upstream path, i.e., from the remote host to the sender. While this could cause
Monarch flows to behave differently than regular TCP flows, our evaluation in Section 6.3
shows that both these events occur rarely in practice and even when they do occur, they
tend to have a limited effect on Monarch’s accuracy. For example, upstream packet loss
and reordering affect less than 15% of all flows. Further, Monarch has a built-in self-
diagnosis mechanism that can detect most of these inaccuracies using an offline analysis.
Nevertheless, Monarch is not suitable for environments where upstream loss and reordering
events occur frequently.

Another source of differences between Monarch and TCP flows is the delayed ACK
feature. With delayed ACKs, TCP data packets received in close succession are acknowl-
edged with a single ACK packet. In contrast, in a Monarch flow, the receiver responds to
every probe packet, which typically doubles the number of packets flowing on the reverse
path. However, because the response packets are small, this difference is likely to affect
only flows experiencing severe congestion on the upstream path.

When Monarch is used on a path that contains middleboxes such as NATs or firewalls,
the probes may be answered by the middleboxes rather than the end host. However, the
middleboxes are often deployed close to the end host, and so the resulting loss of fidelity
tends to be small. For example, Monarch probes to many commercial cable/DSL hosts are
answered by the modems that are one hop away from the end host; however, the network
paths to the modems still include the ‘last mile’ cable or DSL links.

6.2 Implementation

In this section, we first present the details of our implementation of Monarch, which runs
as a user-level application on unmodified Linux 2.4 and 2.6 kernels. We then describe how
our implementation allows us to test complete, unmodified implementations of transport
protocols in the Linux kernel as well as the ns-2 simulator [ns2]. Next, we show how we
avoid unwanted losses that can be caused by network paths with unusual small maximum
transfer units (MTU). Finally, we discuss the self-diagnosis feature of our implementation.
In particular, we show how Monarch can detect potential inaccuracies in its emulated flows
by an offline analysis of its output.

6.2.1 Emulating a TCP Flow

Our Monarch implementation uses three threads: A sender and a receiver, which perform
a simple TCP transfer, as well as a proxy, which is responsible for intercepting packets
and handling probes and responses. The proxy also records all packets sent or received by
Monarch and writes them to a trace file for further analysis.

To emulate a flow to remoteIP, Monarch uses the Netfilter [Net03] framework in the
Linux kernel. First, the proxy sets up a Netfilter rule that captures all packets to and from
that remote IP address. Next, it creates a raw socket for sending packets to the remote
host. Finally, the sender thread attempts to establish a TCP connection to the remote
host (remoteIP), and the packet exchange shown in Figure 6.2 takes place.

As usual, the sender begins by sending a SYN packet to remoteIP (step 1). The proxy
intercepts this packet, stores it in a local buffer, and sends a similarly-sized probe packet to
the remote host (step 2). The remote host responds with a packet that is also intercepted

86

6.2 Implementation

ACK

ACK

Data

Response

Probe

Data

Packet

localIPremoteIPRemote responds3

localIPremoteIP
Proxy forwards saved packet
to the receiver

4

remoteIPlocalIPReceiver sends ACK5

localIPremoteIP
Proxy forwards ACK directly
to the sender

6

remoteIPlocalIP
Proxy intercepts packet,
saves it, and transmits a probe

2

remoteIPlocalIPSender transmits packet1

DestinationSourceAction#

Local
host

Sender
thread

Proxy
thread

Receiver
thread

Monarch

Linux
Kernel

Netfilter

TCP/IP

Raw socket

1

23

4

Network driver

56

Figure 6.2: Sequence of packet exchanges in Monarch implementation. Monarch
consists of a TCP sender, a TCP receiver, and a proxy. The proxy uses Netfilter to
interpose between the sender and the receiver. It applies network address translation
to create the illusion that the remote host is the other endpoint of the flow.

by the proxy (step 3). The proxy then looks up the corresponding packet in its buffer,
modifies its destination IP address, and forwards it to the receiver (step 4). The receiver
responds with a SYN/ACK packet that is captured by the proxy (step 5). The proxy
then modifies its source IP address and forwards the packet back to the sender (step 6).
Figure 6.2 also shows the details of Monarch’s packet address modifications among the
sender, the receiver, and the proxy.

All further packet exchanges are handled in a similar manner. If a packet transmitted
to remoteIP is lost, its response is never received by the proxy, and the corresponding
buffered packet is never forwarded to the local receiver. Similarly, reordering of packets
sent to the remote host results in the buffered packets being forwarded in a different order.
During long transfers, Monarch reclaims buffer space by expiring the oldest packets.

The output from Monarch includes a packet trace similar to the output of tcpdump. In
addition, it also logs how state variables of the protocol vary over time. For example, using
a standard interface of the Linux kernel, our current implementation records TCP state
variables, such as the congestion window, the slowstart threshold, and the retransmission
timeout. The source code of our Monarch implementation is available from the Monarch
webpage at http://monarch.mpi-sws.org.

6.2.2 Testing Unmodified Transport Protocol Implementations

Our proxy implementation is completely transparent to our TCP sender and TCP receiver.
This is critical to Monarch’s ability to test unmodified, complex protocol implementations
in the Linux kernel. Further, since both the sender and the receiver run locally, we can
easily evaluate the effect of different parameter choices on the sender and receiver for
a given transport protocol. For example, Monarch can be used to test how sensitive
TCP Vegas [BP95] is to different settings of its α and β parameters when transferring
data over different Internet paths. We can also run implementations of different TCP
protocols simultaneously to understand how the protocols compete with each other. As
we show in Section 6.4, this ability to test protocol implementations under a wide range of
experimental conditions can be used by protocol developers to discover errors that affect
the performance of their implementations.

87

http://monarch.mpi-sws.org

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

Since it is common practice for researchers to test new transport protocols using the
ns-2 simulator [ns2], we added a special interface to Monarch that allows it to connect
directly to ns-2. Thus, researchers can conveniently use a single ns-2 code base for both
their controlled simulation and live emulation experiments. More details about this feature
are available at the Monarch webpage.

6.2.3 PMTU Discovery

TCP uses a technique called path MTU (PMTU) discovery [MD90] to detect the maximum
segment size it can use on a given path. Initially, packets are sent using the MTU of
the first hop and with the don’t fragment (DF) bit set. If the path contains a link
with a smaller MTU, the corresponding router drops these packets and returns an ICMP
destination unreachable message. The sender then reduces its MTU to the value specified
in that message and retries. Since Monarch intercepts and translates ICMP messages, this
process works for Monarch flows as expected.

However, PMTU discovery can lead to unwanted losses, especially on paths that have an
unusually small MTU. For example, some broadband networks use additional headers and
therefore have an MTU of 1,492 or 1,488 bytes, instead of the usual 1,500 bytes. Therefore,
some hosts use an alternate method — a special option in the SYN/ACK packet — to
reduce the sender’s MTU. This method does not work with Monarch because it never
sends a SYN packet to the remote host and therefore cannot observe the special option.
The consequence is that Monarch flows to such hosts must use the slower, ICMP-based
method and therefore can have a lower throughput.

We solved this problem by adding a small tool that performs PMTU discovery and then
passes the result to Monarch using a command-line option. Monarch can then insert the
special option into the SYN/ACK packet. The tool works by sending some large ACKs
(first-hop MTU) and some small ACKs (200 bytes) to the remote host, both with the DF
bit set. The response is interpreted as follows: If the tool observes a TCP RST for the
large ACKs, it returns the first-hop MTU, as it has been shown to work for the entire
path. If the tool sees an ICMP destination unreachable message, it returns the first-hop
MTU specified in that message2. If it sees no response at all, the remote host does not
respond to our probes. Otherwise, i.e., if only RSTs for the small ACKs are observed, the
ICMP message may have been dropped somewhere along the path. In this case, the tool
performs a binary search for the correct PMTU.

6.2.4 Self-diagnosis

Monarch is capable of diagnosing inaccuracies in its own emulated flows based on an anal-
ysis of its output. As we discussed earlier, the two primary factors that affect Monarch’s
accuracy are its inability to distinguish loss and reordering of packets on the upstream and
the downstream paths, i.e., the paths from the receiver to the sender and vice-versa. These
events are difficult to detect online, but their presence can be inferred after the emulation
is finished. Monarch runs a self-diagnosis test after each emulation, which either confirms
the results or lists any events that may have affected the accuracy.

2This step may have to be repeated for paths on which the MTU decreases more than once; however, we
have never observed this in practice

88

6.2 Implementation

Monarch’s self-diagnosis uses the IPID field in the IP headers of the response pack-
ets to distinguish between upstream and downstream events. Similar to prior tech-
niques [BS02, MSWA03], including our technique in Chapter 3 to detect cross traffic
in our measurements, Monarch’s self-diagnosis relies on the fact that many Internet hosts
increment the IPID field by a fixed number (typically one) for every new packet they
create. However, Monarch’s analysis is more involved, as it cannot send any active probes
of its own and so must extract the information from a given trace. We describe Monarch’s
IPID analysis technique next.

IPID analysis to detect upstream loss and reordering

When analyzing a trace of n packets, Monarch extracts two kinds of information: The
sequence R = (r1, r2, . . . , rk), k ≤ n, in which the response packets have arrived, and the
sequence S = (s1, s2, . . . , sk) of IPIDs in these packets. For example, if Monarch sent four
probe packets and the trace yields R = (1, 2, 4) and S = (1, 2, 3), Monarch concludes that
the third probe must have been lost on the downstream path because probe #4 was the
third to arrive at the remote host. If S=(1,2,4), Monarch concludes that the third response
was lost on the upstream path because the third probe has evidently reached the remote
host and consumed an IPID.

In the following description, we will initially assume that there is no cross-traffic, i.e.,
that the remote host does not send packets to any other host while the Monarch measure-
ment is in progress. We will relax this assumption later.

Upstream packet loss. To make the problem tractable for long sequences, Monarch
first identifies all in-order packets, i.e. packets for which neither losses nor reordering have
occurred. In-order packets are important because they separate different loss or reordering
episodes, which can then be treated independently. Intuitively, response i is in-order if all
responses lower than i were received before i, and all responses higher than i were received
after i. Formally, i is in-order iff

∀j < i ((rj < ri) ∧ (sj < si)) ∧ ∀j > i ((rj > ri) ∧ (sj > si))

A special case occurs if the last packet is not in-order. In this case, we append a virtual
probe with rk+1 = 1 +max ri and sk+1 = 1 +max si, which is guaranteed to be in-order.

Now Monarch considers all pairs p, q of responses, where q is the first in-order response
after p. For each pair, it computes the number of probes sent between p and q, n =
q − (p + 1), the number of losses, l = rq − (rp + 1), and the number of gaps in the IPID
sequence, g = sq − (sp + 1). We can distinguish five possible cases:

• n = 0: Neither losses nor reordering occurred.

• n > 0, l = g = 0: Reordering, but no loss.

• n > 0, l = n, g = 0: Downstream losses.

• n > 0, l = n, g = n: Upstream losses.

• Otherwise: A combination of g upstream losses and l − g downstream losses has
occurred.

89

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

In the last case, we cannot distinguish between upstream and downstream losses on a
per-packet basis. When this happens, Monarch displays an error message to indicate that
self-diagnosis cannot be performed. In practice, this affects only 1–2% of all flows.

Upstream packet reordering. The IPID analysis can also be used to distinguish between
upstream and downstream reordering. Consider again a pair p, q of successive in-order
responses, and assume for now that no losses have occurred. Then we know that the
corresponding probes were sent in order (rp, rp + 1, rp + 2, . . . , rq), reached the remote
host in order (rp, rp+1, rp+2, . . . , rq), and that the responses were seen by Monarch in
order (p, p + 1, p + 2, . . . , q). Therefore, we can reorder the corresponding TCP packets
accordingly.

Figure 6.3 shows an example. By sorting the packets in the white area by their IPIDs
(si), we can conclude that probe packets (3,4,5) arrived at the remote host in the order
(5,4,3), so packets 3 and 5 must have been swapped on the downstream path. As shown by
the arrival sequence (ri), the responses arrived at the Monarch host in the order (4,5,3),
so responses 4 and 5 must have been swapped on the upstream path.

1 2 6 8 9 11

37 38 42 43 44 46

R

S

i 1 2 3 4 5 6 7 8 9

loss
downstream

loss
upstream

54 3

3940 41

10 11

12 13

47 49

crosstrafficreordering

Figure 6.3: IPID analysis example. The probe packets are sent with increasing
sequence numbers. Ri is the sequence number of the ith response packet that was
received and Si is the IPID of the packet. Monarch uses Si to infer the order in which
probes have arrived at the remote host.

Not all upstream reordering changes TCP’s behavior in a significant way. For example,
if the packet exchange in Figure 6.3 had taken place in a real TCP transfer, packets 3–5
would have triggered two duplicate ACKs, since packet 3 was the last to arrive at the
remote host. Therefore, TCP would have triggered a retransmission, whether or not the
two duplicate ACKs were additionally reordered on the upstream. Monarch takes this
into account by labeling upstream reordering episodes as either significant or insignificant.
An episode is labeled insignificant if it would have caused the same number of duplicate
ACKs in both the Monarch flow and an actual TCP flow.

Cross-traffic. So far, we have assumed that there was no cross-traffic, i.e., that the remote
host has not sent any packets to other hosts during the measurement. When cross-traffic
does occur, the remote host uses some IPIDs for that traffic, which causes gaps in the IPID
sequence and thus increases g in the above analysis. In most cases, this can be detected
from the fact that g > n. However, if cross-traffic and losses occur simultaneously, some

90

6.2 Implementation

downstream losses may be classified as upstream losses. Fortunately, the reverse error
cannot occur, so Monarch’s self-diagnosis is conservative as it can only overestimate the
number of inaccuracies in a trace.

Impact of upstream loss and reordering

Upstream packet loss and reordering events affect different transport protocols in different
ways. For example, TCP Reno is more strongly influenced by packet loss than packet
reordering. Even a single upstream packet loss confused as a downstream packet loss
causes TCP Reno to retransmit the packet and halve its future sending rate. On the other
hand, only packet reordering on a large scale can trigger retransmissions that affect future
packet transmissions in a significant way.

Self-diagnosis tries to estimate the impact of upstream loss and reordering on Monarch
flows. This impact analysis depends on the specific transport protocol being emulated.
Here, we focus on the analysis we developed for TCP Reno; but similar analysis techniques
can be developed for other protocols. Our impact analysis for TCP Reno labels a flow
as inaccurate if it sees an upstream packet loss or significant upstream packet reordering
that causes packet retransmission; and it confirms the accuracy of all Monarch traces that
see no upstream packet loss and no significant upstream packet reordering.

We note that confirmation of a Monarch trace by our analysis does not imply that the
trace is accurate for all usage scenarios. It merely suggests that the trace is likely to be
accurate for many uses. For example, a Monarch trace that suffers only minor reordering
would be confirmed. Such a trace would be accurate with respect to its throughput,
latency, or packet loss characteristics, but not with respect to its reordering characteristics.

Output

After detecting upstream events and analyzing their impact, Monarch broadly classifies
the result of an emulation as either confirmed, inaccurate, or indeterminate. We illustrate
the decision process in Figure 6.4 and discuss it below.

• Indeterminate: Results in this category do not contain enough information for
Monarch to distinguish upstream events (loss or reordering) from downstream events
in all cases. This can happen when downstream losses and upstream losses occur
very close together, or when the IPIDs in the response packets are unusable because
the remote host randomizes them, or sets the field to zero.

• Inaccurate: Monarch warns that its results could be inaccurate when it detects
any upstream packet losses, or when the observed upstream packet reordering is
significant.

• Confirmed: In all other cases, Monarch has not detected any upstream losses or
significant reordering events. Therefore, it confirms its output.

91

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

InaccurateIndeterminate

IPIDs
usable?

All upstream
events

identified?

Significant
upstream

reordering?

Upstream
losses?

C
o
n
fi
rm

e
d

Yes Yes No No

NoNo Yes Yes

Figure 6.4: Self-diagnosis in Monarch for TCP Reno. The result is confirmed only
if no known sources of inaccuracy are present.

Rate-limited responses

In addition to the loss and reordering analysis, Monarch also scans the entire trace for long
sequences of packet losses to identify hosts that rate-limit their responses. For example,
in our measurements, we observed that some hosts stop sending responses after a certain
number of probes, e.g., after 200 TCP ACKs, which could be due to a firewall somewhere
on the path. This pattern is easy to distinguish from packet drops due to queue overflows
because in the latter case, packet losses alternate with successful transmissions. However,
it is hard to distinguish losses due to path failures from end host rate-limiting.

6.2.5 Usage Concerns and Best Practices

Monarch has similar usage concerns as many other active measurement tools, including
our measurement methodology from Chapter 3.

Large-scale experiments using Monarch can raise potential security concerns. Internet
hosts and ISPs could perceive Monarch’s traffic as hostile and intrusive. To address this
concern, Monarch includes a custom message in the payload of every probe packet. We
use the message to explain the goals of our experiment, and to provide a contact email
address. We have conducted Monarch measurements to several thousand end hosts and
routers in the Internet in hundreds of commercial ISPs over a period of seven months
without receiving any emails about security alarms triggered by our experiments.

Another cause of concern is that Monarch can be used to send large amounts of traffic to
a remote host. This can be a great inconvenience to remote hosts on broadband networks
that use a per-byte payment model, where any unsolicited traffic costs the host’s owner
real money. To mitigate this concern, we only measure hosts in broadband ISPs that offer
flat rate payment plans. In addition, we never transfer more than a few dozen megabytes
of data to any single Internet host.

Finally, we would like to point out that Monarch flows compete fairly with ongoing
Internet traffic as long as the emulated transport protocols are TCP-friendly.

6.3 Evaluation

In this section, we present three experiments that evaluate Monarch’s ability to emulate
transport protocol flows. First, we evaluate the accuracy of its emulated flows, i.e., we
verify how closely the characteristics of Monarch flows match those of actual TCP flows.
Second, we identify the major factors and network conditions that contribute to inaccu-
racies in Monarch’s emulations, and show that Monarch’s self-diagnosis can accurately

92

6.3 Evaluation

quantify these factors. Third, we characterize the prevalence of these factors over the
Internet at large.

6.3.1 Methodology

Evaluating Monarch’s accuracy over the Internet at scale is difficult. To evaluate Monarch,
we need to compare its emulated flows to real transport flows over the same Internet paths.
Unfortunately, generating real transport flows requires control over both end hosts of an
Internet path. In practice, this would limit our evaluation to Internet testbeds, such as
PlanetLab. We deal with this limitation using the following three-step evaluation:

1. In Section 6.3.2, we evaluate Monarch over the PlanetLab testbed. We generate both
Monarch flows and real TCP flows, identify potential sources of error, and study how
they affect accuracy.

2. In Section 6.3.3, we show that Monarch’s offline self-diagnosis can accurately detect
these errors from its own traces.

3. In Section 6.3.4, we use this self-diagnosis capability to estimate the likelihood of
error in Monarch measurements over a wide variety of Internet paths.

Data collection

We used Monarch to emulate transport flows over three types of Internet paths: (a) paths
to PlanetLab nodes, (b) paths to Internet hosts located in commercial broadband ISPs,
and (c) paths to Internet routers. Table 6.3 shows statistics about the three datasets we
gathered. All measurements involved 500 KBytes data transfers. The TCP senders were
located in four geographically distributed locations, three (Seattle, Houston and Cam-
bridge) in the U.S. and one (Saarbrücken) in Germany. The receivers included PlanetLab
nodes, broadband hosts, and Internet routers. While gathering the PlanetLab dataset, we
controlled both endpoints of the Internet paths measured, so we generated both Monarch
and normal TCP flows. In the other two datasets we only controlled one endpoint, so we
generated only Monarch flows.

Our PlanetLab measurements used 356 PlanetLab nodes worldwide as receivers. To
each PlanetLab node, we conducted five data transfers using Monarch interspersed with

PlanetLab Broadband Router

Sender nodes 4 4 4
Receiver nodes 356 4,805 697

Successful measurements 12,166 15,642 2,776

Table 6.3: Traces used for our Monarch evaluation. For each trace, we used geo-
graphically dispersed sender nodes in Seattle (WA), Houston (TX), Cambridge (MA),
and Saarbrücken (Germany).

93

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

five normal TCP transfers in close succession3, for a total of ten data transfers from each
of the senders in Seattle, Houston, Cambridge, and Saarbrücken. We ran tcpdump on both
the sending and the receiving node to record packet transmissions in either direction.

Our Broadband measurements used 4,805 cable and DSL end hosts in 11 major com-
mercial broadband providers in North America and Europe. We used the same ISPs as
for our broadband characterization study in Chapter 3 and selected the hosts by probing
hosts measured in a previous study of Napster an Gnutella [SGG02] and used their DNS
names to identify the ISPs.

Our Router measurements used 1,000 Internet routers we discovered by running
traceroute to hosts in the broadband data set. Only 697 of these routers responded
to Monarch’s probe packets.

6.3.2 Accuracy over PlanetLab

In this section, we compare the behavior of Monarch flows to TCP flows on Internet paths
to PlanetLab nodes. We focus on two different aspects. First, we investigate whether
the packet-level characteristics of the emulated flows closely match those of TCP flows.
For this, we analyze the sizes and transmission times of individual packets. Second, we
compare their higher-level flow characteristics, such as throughput and overall loss rate.

Packet-level characteristics

Monarch emulates transport protocol flows at the granularity of individual packet trans-
missions. In this section, we compare the packet-level characteristics of Monarch and TCP
flows to show that they closely match in terms of number of packets, sizes of packets, packet
transmission times, and evolution of important protocol state variables.

We begin by comparing two flows on a single Internet path: one emulated with Monarch
and one actual TCP flow. Figure 6.5a shows the times when individual data segments
were transmitted. The graph shows that the transmission times of packets in the Monarch
flow are almost indistinguishable from those in the TCP flow.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 0.5 1 1.5 2 2.5 3

S
e
g
m

e
n
t

n
u
m

b
e
r

Time (seconds)

TCP
Monarch

(a) Data segments

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3

C
W

N
D

 (
p
a
c
k
e
ts

)

Time (seconds)

TCP

Monarch

(b) Congestion window

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

R
T

O
 (

m
ill

is
e
c
o
n
d
s
)

Time (seconds)

Monarch TCP

(c) Retransmission timeout

Figure 6.5: Comparison between typical Monarch and TCP flows. The figures
show (a) when each segments was sent and (b) how the congestion window and (c) the
retransmission timeout evolved over time. The plots for Monarch and TCP are so close
that they are almost indistinguishable.

3We also ran the Monarch and TCP flows concurrently, and compared them. The results were similar
to those we obtained when we ran Monarch and TCP alternately in close succession. Hence, we show
only results from the latter.

94

6.3 Evaluation

Next, we examine how TCP protocol state variables change during the flows. Figure 6.5b
and Figure 6.5c show a plot of the congestion window (CWND) and the retransmission
timeout (RTO) for both flows. This information is recorded in Monarch’s output trace
using the TCP INFO socket option. Figure 6.5b shows the typical phases of a TCP flow, such
as slowstart and congestion avoidance. Both flows went through these phases in exactly
the same way, including the RTO changes shown in Figure 6.5c. The TCP variables of the
Monarch flow closely match those of the actual TCP flow, suggesting a highly accurate
Monarch emulation.

Next, we compare the properties of aggregate data from all our PlanetLab traces. We
begin by comparing the number of packets sent and received in the Monarch flows and
their corresponding TCP flows. Figure 6.6 shows the relative difference for each direction,
using the number of packets in the TCP flow as a basis. 65% of all flow pairs sent the same
number of packets; for 93% of all flow pairs the number of packets differs by less than 5%.
This is expected because (a) both Monarch and TCP use packets of the same size, and
(b) both flows transfer the same 500 KBytes of data. Moreover, when we compare only
flows with no packet losses, the difference disappears entirely (not shown). This suggests
that packet losses account for most of the inaccuracies in the number of packets sent.

0%

20%

40%

60%

80%

100%

0% 25% 50% 75% 100%

P
e
rc

e
n
ta

g
e
 o

f
fl
o
w

s

Relative error

Packets sent

Packets received

Figure 6.6: Traffic generated by Monarch and TCP. Relative difference between
the number of packets sent and received, shown as cumulative distributions. Values
greater than 0 indicate that Monarch sent/received more packets than TCP.

Figure 6.6 shows a substantial difference in the number of packets received in the up-
stream direction. This is due to delayed ACKs: TCP flows acknowledge several down-
stream packets with a single upstream packet, while Monarch flows contain one response
packet for every probe. However, acknowledgment packets are small (typically 40 bytes),
and we will show later that this additional traffic has little impact on high-level flow
characteristics, such as throughput.

Finally, we repeat our analysis of packet transmission times on a larger scale, across all
PlanetLab traces. Our goal is to check whether the rates and times at which packets are
transmitted are similar for TCP and Monarch flows.

We compare the times taken to transfer 10%, 30%, 50%, 70%, and 90% of all bytes in
the 500 KBytes transfer. Figure 6.7 shows the difference between times taken to complete
Monarch and TCP traces relative to the TCP traces. The error stays small for every
part of the transfer, suggesting that packets are sent out at similar rates during the flows’
lifetimes.

95

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

0%

20%

40%

60%

80%

100%

-75% -50% -25% 0% 25% 50% 75%

P
e

rc
e

n
ta

g
e

 o
f
fl
o

w
s

Relative error

10%
30%
50%

70%

90%

Figure 6.7: Progress of TCP and Monarch flows. Relative error of the time it took
to complete a certain fraction of the transfer between pairs of TCP and Monarch flows,
shown as a cumulative distribution.

Interestingly, transmission times match more closely at the beginning of the transfer
than towards the end. For example, Monarch flows tend to take slightly more time to
transfer 90% of their payload than the TCP flows. As we explain in detail later, this is
because Monarch flows experience slightly higher loss rates than TCP flows.

To summarize, we find that Monarch and TCP flows match with respect to several
packet-level characteristics, including the number and sizes of packets sent, the evolution
of important protocol state variables, and the transmission times of individual segments.

Flow-level characteristics

In this section, we investigate whether Monarch and TCP traces are similar with respect
to several high-level flow characteristics, such as throughput, RTTs, queueing delay, and
packet loss.

Throughput. Figure 6.8 shows the cumulative distributions of the throughput for
Monarch and TCP flows using our PlanetLab experiment. While the lines for Monarch
and TCP match well, Monarch flows tend to have a slightly lower throughput than TCP
flows. The figure also shows a second pair of lines, representing only flows without packet
losses and retransmissions. Interestingly, these lines show almost no difference between
Monarch and TCP. This suggests that the small errors in Monarch’s throughput estimates
might be due to packet losses.

0%

20%

40%

60%

80%

100%

 0 2000 4000 6000 8000 10000

P
e
rc

e
n
ta

g
e
 o

f
fl
o
w

s

Throughput (Kbps)

Monarch (all)

TCP (all)

Monarch (no retransmissions)

TCP (no retransmissions)

Figure 6.8: Throughput comparison between Monarch and TCP flows. The
cumulative distributions are very close; if only flows without packet retransmissions
are considered, the distributions are indistinguishable.

96

6.3 Evaluation

To quantify this error, Figure 6.9 shows the relative throughput difference in pairs
of consecutive Monarch and TCP flows, using TCP’s throughput as a base (recall that
we took ten measurements on each path, alternating between Monarch and real TCP
flows). In over 50% of the flow pairs, the throughput of the Monarch flow differs from the
throughput of the TCP flow by less than 5%, which is a good match. However, not all
these differences are due to inaccuracies in Monarch. Figure 6.9 also shows the throughput
differences between two consecutive TCP flows along the same paths. The two plots are
similar, suggesting that the dominant cause of these differences is unstationarity in the
network, e.g., fluctuations in the amount of competing traffic.

Thus, while packet losses can cause Monarch to underestimate the throughput in general,
their impact is fairly small, often smaller than the impact of the unstationarity in network
path properties during the course of the flow.

0%

20%

40%

60%

80%

100%

-100% -75% -50% -25% 0% 25% 50% 75% 100%

P
e
rc

e
n
ta

g
e

 o
f
fl
o

w
s

Relative error

Monarch vs TCP TCP vs TCP

Figure 6.9: Relative throughput error between pairs of TCP and Monarch
flows, and between pairs of TCP flows. The error is similar, which suggests that
its primary cause is unstationarity in the network, and not a problem with the Monarch
emulation.

Latency. Next, we focus on the latencies and delays experienced by packets during
Monarch and TCP flows. We compute three types of packet latencies or RTTs: minimum
RTT, maximum RTT, and queueing delay. To remove outliers, we take the maximum
RTT to be the 95th percentile of all packet RTTs, and compute the queueing delay as the
difference between maximum and minimum RTTs. Figure 6.10 shows the difference in the
estimates of RTTs between Monarch and TCP traces, as a percentage of TCP estimates.
We also show how estimates from successive measurements of TCP flows differ from each
other.

There are two take-away points from Figure 6.10. First, Monarch’s estimates of mini-
mum and maximum RTT closely match the TCP estimates. In fact, Monarch’s errors are
indistinguishable from the variation observed in the estimates between successive TCP
measurements along the same paths. This points to the efficiency of our Monarch im-
plementation: despite the additional packet processing overhead in our interposing proxy,
we add negligible overhead to the packet latencies. Second, queueing delays show much
larger variation or unstationarity over time compared to minimum and maximum RTTs.
The reason for these large relative differences is that the absolute values are very low.

97

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

0%

20%

40%

60%

80%

100%

-100% -75% -50% -25% 0% 25% 50% 75% 100%

P
e

rc
e

n
ta

g
e

 o
f
fl
o

w
s

Relative error

minRTT (Monarch vs TCP)

minRTT (TCP vs TCP)

Queueing delay
(Monarch vs TCP)

Queueing delay
(TCP vs TCP) maxRTT (Monarch vs TCP)

maxRTT (TCP vs TCP)

Figure 6.10: Relative RTT difference between successive TCP and Monarch
flows. The error in extremely small, except for the queueing delay. Queueing delay
was generally low in the PlanetLab trace, which is why even small variations lead to
big relative errors.

Over 76% of queueing delay estimates are below 10 milliseconds. Hence, even a small
1-millisecond variation corresponds to a 10% difference.

Packet loss. Finally, we investigate the loss rates in the flows. We note that both
Monarch and TCP senders retransmit packets that they perceive to be lost, which might
be different from the packets that were actually lost. For example, TCP might mistake
massive packet reordering for a loss and trigger a retransmission. Our interest here is in
the perceived loss rates of these flows, so we use the packet retransmission rate for loss
rate.

Figure 6.11 shows cumulative distributions of retransmission rates for both Monarch
and TCP flows. 75% of all Monarch flows and 88% of all TCP flows do not contain any
retransmissions and therefore do not perceive packet loss. Thus, packet retransmissions
do not affect a majority of both Monarch and TCP flows. Of the flows that do contain
retransmissions, Monarch clearly shows a higher retransmission rate than TCP. This is
expected because Monarch flows must retransmit packets for losses in both upstream and
downstream directions, while TCP needs to retransmit only packets lost on the down-
stream, due to cumulative acknowledgments.

0%

20%

40%

60%

80%

100%

0% 1% 2% 3% 4% 5%

P
e
rc

e
n
ta

g
e
 o

f
fl
o
w

s

Packet retransmissions

TCP Monarch

Figure 6.11: Retransmissions per flow for Monarch and TCP. Monarch shows
more retransmissions because it must retransmit packets for losses in both upstream
and downstream directions, while TCP needs to retransmit only packets lost on the
downstream.

98

6.3 Evaluation

Summary. Our analysis shows that Monarch can accurately emulate TCP flows with
respect to flow-level properties such as throughput, latency, and queueing delay. However,
Monarch’s inability to distinguish between upstream and downstream packet loss causes it
to over-estimate packet loss. The impact of this inaccuracy is limited to the small fraction
of flows that experience upstream packet loss.

6.3.3 Reliability of Self-diagnosis

In the previous section, we showed that the primary source of inaccuracy in a Monarch
emulation is upstream packet loss. In this section, our goal is to show that Monarch’s
self-diagnosis feature (Section 6.2.4) can reliably detect upstream packet loss, and thus,
warn the user of potential inaccuracies.

We tested this feature on the Monarch flows in our PlanetLab trace. For each flow, we
compared the tcpdump traces from the sender and the receiver to determine how many
packets had actually been lost on the downstream path and the upstream path. Then we
compared the results to the output of Monarch’s self-diagnosis for that flow; recall that
this uses only the sender-side trace.

Figure 6.12 shows the results: only for a very small number of flows (less than 2%)
self-diagnosis could not distinguish between all upstream and downstream losses. In these
cases, Monarch printed a warning. For the majority of flows for which self-diagnosis could
infer the loss rates, the measured and the inferred loss rates match extremely well in both
the upstream and downstream directions. As expected, the measured and inferred total
loss rate plots are identical.

We conclude that Monarch’s self-diagnosis can reliably detect upstream loss, the major
source of inaccuracy in an emulated flow.

80%

84%

88%

92%

96%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

P
e
rc

e
n
ta

g
e
 o

f
fl
o
w

s

Loss rate

Unknown (inferred)

Upstream (inferred, measured)

Downstream (inferred, measured)

Total (inferred, measured)

Figure 6.12: Self-diagnosis is accurate. The number of downstream and upstream
losses inferred by Monarch’s self-diagnosis matches the actual measurements. Only a
small number of losses cannot be classified as either downstream or upstream.

6.3.4 Accuracy over the Internet at Large

In the previous two sections, we showed that upstream loss is the most important source of
inaccuracies in Monarch emulations, and that Monarch’s self-diagnosis can reliably detect
the presence of upstream loss. Our goal in this section is to show that upstream losses are
rare even when Monarch is used over real Internet paths.

99

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

We ran Monarch’s self-diagnosis over our two Internet traces. The first trace consists
of 15,642 flows to 4,805 broadband hosts and the second trace contains 2,776 flows to 697
Internet routers. Table 6.4 summarizes our results. About 10% of the traces could not
be analyzed by Monarch. In the broadband dataset, 7.1% of the traces did not contain
usable IPIDs (8.3% in the router dataset), and 1.5% (2.3%) contained a loss that could
not be classified as either upstream or downstream. In either of these cases, self-diagnosis
was aborted immediately.

Result Broadband Router

Accurate 13,168 84.2% 2,317 83.5%
Inaccurate 1,130 7.2% 164 5.9%

Indeterminate 1,344 8.6% 295 10.6%

Traces total 15,642 100.0% 2,776 100.0%

Table 6.4: Monarch is accurate over real Internet paths. In the majority of the
flows, self-diagnosis did not detect any inaccuracies. Note that even when an inaccuracy
is reported, its impact on flow-level metrics such as throughput may be quite small.

Overall, 84.2% of the broadband traces and 83.5% of the router traces were marked as
accurate by self-diagnosis because neither upstream losses nor significant reordering were
detected. This accurate traces include the 15.8% (24.9% in the router dataset) of the traces
that contained only minor reordering that would not have changed the number of duplicate
ACKs, and therefore would not have affected any packet transmissions. Only 7.2% of the
broadband traces were reported as inaccurate; for the router traces, the fraction was only
5.9%.

We conclude that a majority of our flows to Internet hosts did not suffer from upstream
packet loss or significant reordering misinterpreted as packet loss by TCP congestion con-
trol. This suggests that Monarch can be used to accurately emulate TCP flows to a large
number of Internet hosts. Moreover, our results show that the IPID-based self-diagnosis
is applicable in most cases.

6.3.5 Summary

In this section, we showed that Monarch is accurate: its emulated TCP flows behave sim-
ilarly to real TCP flows with respect to both packet-level and flow-level metrics. We also
showed that the most important source of error in Monarch’s flows is upstream packet loss,
and that this can be reliably detected by Monarch’s built-in self-diagnosis. Further, our
examination of large sets of Monarch flows to various Internet hosts, including hundreds
of routers and thousands of broadband hosts, revealed that less than 10% of these flows
suffer from upstream packet loss.

6.4 Applications

Monarch’s ability to evaluate transport protocol designs over large portions of the Internet
enables new measurement studies and applications. We used Monarch to conduct two

100

6.4 Applications

different types of measurement experiments. In this section, we describe these experiments
and present some preliminary results from them to illustrate their potential benefits.

6.4.1 Evaluating Different Transport Protocols

New transport protocol designs continue to be proposed as the Internet and its workloads
change over time [VKD02, XHR04, ACKZ06, Flo03]. However, even extensive simulation-
based evaluations face skepticism about whether their results would translate to the real
world. The resulting uncertainty how well these protocols would compete with existing de-
ployed protocols hinders their actual deployment. With Monarch, researchers can evaluate
their new protocol designs over actual Internet paths.

We used Monarch to compare three different TCP congestion control algorithms im-
plemented4 in the Linux 2.6.16.11 kernel: NewReno [FHG04], BIC [XHR04], and Ve-
gas [BP95]. In our experiment, we emulated 500 KByte data transfers from a local machine
to several hosts in broadband (cable and DSL) ISPs, using each of the three congestion
control algorithms in turn5. We examined the traces generated by Monarch for differences
in protocol behavior.

Figure 6.13 shows the difference between the algorithms over a single, but typical DSL
path. The graphs show how the CWND and the RTT evolve over the duration of the
transfer. All flows begin in the slow-start phase, where the CWND increases rapidly until
the flow loses a packet and enters the congestion avoidance phase. The TCP NewReno
graph shows that the RTT increases from 44 ms at the beginning to well over 300 ms
before it loses a packet. This suggests the presence of a long router queue at the congested
link on this broadband Internet path. TCP BIC, which has been adopted as the default
TCP protocol by Linux since kernel version 2.6.7, shows a similar pattern but ramps up
the congestion window much faster after each loss, which results in even higher queueing

 0

 100

 200

 300

 400

 500

 0 1 2 3 4

R
T

T
 (

m
ill

is
e
c
o
n
d
s
)

Time (seconds)

RTT

CWND

(a) TCP NewReno

 0 1 2 3 4

Time (seconds)

RTT

CWND

(b) TCP BIC

 0 1 2 3 4

 0

 20

 40

 60

 80

 100
C

W
N

D
 (

p
a
c
k
e
ts

)

Time (seconds)

RTT CWND

(c) TCP Vegas

Figure 6.13: Comparing the performance of different TCP protocols over an
Internet path between a host in Germany and a host in the BT Broadband
DSL network. Variation in packet RTTs and the congestion window (CWND) over
the duration of a flow using three different TCP protocol variants. The steep drops
in RTT and CWND values are due to packet losses. Compared to Reno, BIC shows
higher RTTs and losses, while Vegas shows lower RTTs and losses.

4Note that the Linux implementation of TCP protocols may differ significantly from their reference
implementation or their standard specification.

5In Linux 2.6 kernels, it is possible to switch between different TCP congestion control algorithms at
runtime.

101

6 Monarch: Emulating Transport Protocol Flows over the Internet at Large

delays and packet losses. In contrast to NewReno and BIC, Vegas enters a stable state
with a RTT of about 100 ms without suffering a single loss.

Our experiment shows that TCP BIC, the default congestion control algorithm in Linux,
exhibits the worst performance both in terms of packet delay and packet loss. This is
not particularly surprising because BIC is designed for Internet paths that have a high
bandwidth-delay product, but our measurement path includes a broadband link with rel-
atively low bandwidth. However, since many hosts today use broadband Internet connec-
tions, it is important to improve BIC’s performance over broadband networks or choose a
different, better performing TCP variant for broadband networks.

Our Monarch results, while preliminary, show the importance of understanding the
behavior of new protocols over a variety of real network paths before deploying them
widely.

6.4.2 Testing Complex Protocol Implementations

Modern transport protocols (e.g., TCP NewReno with fast retransmit and recovery) are
so complex that it is often difficult to implement them correctly. While program analysis
techniques [ME04] could help debug functionally incorrect implementations, it is impor-
tant to test the performance of these protocols in the real world to find performance
problems. Monarch is particularly useful for testing protocols because it can run complete
and unmodified protocol implementations.

We used Monarch to emulate TCP flows to several different types of hosts, including
broadband hosts and academic hosts. In this process, we discovered bugs in the Linux
TCP stack that tend to manifest themselves frequently over certain types of Internet paths.
For example, we found that the Linux 2.6.11 implementation of Fast Recovery [FHG04]
can cause the congestion window to collapse almost entirely, instead of merely halving it.
This problem can severely reduce throughput, and it occurs repeatedly over paths to DSL
or cable hosts.

The purpose of Fast Recovery is to allow the TCP sender to continue transmitting while
it waits for a retransmitted segment to be acknowledged. Linux uses a variant known as
rate halving [SK02], which transmits one new segment for every other ACK received.
Thus, one new packet is sent for every two packets that leave the network. Under normal
conditions, this has the effect of gradually decreasing the number of packets in flight by
half. Linux 2.6.11 implements rate halving by estimating the number of packets in flight,
and capping the congestion window at that number. Normally, this has the desired effect
because after two ACKs, one new packet is sent and two old packets are known to have
left the network; hence, the number of packets in flight, and thus the congestion window,
is decreased by one.

However, we found that this approach fails when the congestion window approaches the
send buffer size. Figure 6.14 shows an example of a flow that saw its first loss after 0.6
seconds, when the congestion window was 36 packets wide. Initially, Linux was able to send
8 additional segments for every other ACK as expected. But, once it reached the default
send buffer size of 64 KBytes (44 packets), it could not transmit more new segments. After
this point, with no new segments being transmitted, the number of packets in flight, and
consequently the congestion window, decreased rapidly. Every incoming ACK reduced
the congestion window by one packet, causing it to fall far below the slowstart threshold
of 18 packets. Thus, after leaving Fast Recovery, Linux fell back into slowstart for over

102

6.5 Summary

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
a

c
k
e

ts

Time (seconds)

CWND

Packets out

Figure 6.14: Incorrect rate halving in Linux TCP. After the first loss at about
0.7 seconds, the CWND falls below half its original value.

half a second. Note that a second loss at 2.0 seconds was handled correctly because the
congestion window was still fairly small.

Monarch helped us discover this problem because it allowed us to test the complete and
unmodified protocol implementation (in this case, the NewReno code in the Linux kernel)
over a wide range of real links with different characteristics.

6.5 Summary

Monarch emulates transport protocol flows over live Internet paths enabling the evalua-
tion of transport protocols in realistic environments, which complements the controlled
environments provided by the state of the art network simulators, emulators or testbeds.
Monarch is highly accurate: its emulated flows closely resemble TCP flows in terms of
throughput, loss rate, queueing delay, and several other characteristics. By relying on
minimal support from the remote host, Monarch enables researchers to evaluate protocols
on an unprecedented scale, over millions of Internet paths.

Our preliminary study on the performance of different congestion control algorithms
(TCP Reno, TCP Vegas, and TCP BIC) shows that much remains to be understood
about the behavior of even widely adopted protocols over the Internet at large. Based
on our experience, we believe that Monarch can help the research community conduct
large-scale experiments leading to new insights and findings in the design and evolution
of Internet transport protocols.

Monarch inspired BlueMonarch [SSW09], a tool that enables realistic evaluation of ap-
plications in bluetooth networks at scale. BlueMonarch uses Bluetooth Service Discovery
requests as probes to emulate transfers to remote devices without the need to deploy new
software on them or to have actual physical access to them.

Monarch allows the evaluation of transport protocols to hosts on the Internet without
their cooperation. While this uncooperative approach enables large-scale evaluation ex-
periments, Monarch’s methodology is limited to emulating TCP flows and only down-
loading to the remote hosts. In the next chapter we present SatelliteLab that removes
these limitations as it provides a heterogeneous testing environment for protocol and sys-
tems evaluation under realistic conditions. However, as SatelliteLab uses a cooperative
approach, its scale is limited by the ability to attract nodes to become part of the testbed.

103

7 SatelliteLab: Adding Heterogeneity to

Planetary-scale Testbeds

Internet testbeds, such as PlanetLab [Pla] and RON [ABKM03], have become indispens-
able for evaluating networking and distributed systems research. Researchers deploy pro-
totypes of new systems over these testbeds and study their performance to estimate how
well these systems would work over the real Internet. PlanetLab, the state-of-the-art Inter-
net testbed, has been used by over a thousand researchers for evaluating several hundred
Internet-scale distributed systems, including P2P systems [RD01], routing, multicast, and
overlays [CDK+03, ABKM03, SSBK03], content distribution networks [WPP02], as well
as for network measurements [SWA03].

Here, we focus on a widely recognized problem with existing network testbeds: they
lack the heterogeneity that characterizes the commercial Internet [SPBP05]. Most nodes
in existing testbeds are located in well-connected academic and corporate networks, and
the network paths between them are often restricted to well-provisioned research back-
bones [BGP04]. This is in sharp contrast to the Internet, where most end nodes connect
via a diverse set of edge networks, such as residential broadband, wireless, and cellular
networks. Prior studies have shown that the paths in PlanetLab have very different char-
acteristics from the paths in the commercial Internet [BGP04, PHM06]. More alarmingly,
researchers have found that the behavior of some systems can vary considerably between
Internet and testbed deployments [LGS07].

Our basic idea is to improve the heterogeneity of current testbeds by recruiting nodes
from the Internet edges. These nodes can be desktops, laptops, or handhelds, and they
can be connected to the Internet via residential broadband, wireless, or cellular networks.
However, adding edge nodes with diverse resource constraints to existing testbeds cre-
ates new challenges. Current testbeds are designed to be hosted by large institutions
in academia and industry, and testbed administrators expect dedicated, well-provisioned
nodes that are connected to the Internet via high-speed networks. For example, Planet-
Lab nodes are required to be server-class machines, they must run the PlanetLab OS, and
they must be configured with static, public IP addresses [Pla02]. While these requirements
make the testbed easy to manage and easy to use, they also present a high barrier to entry
for nodes in Internet edge networks, many of which are hosted and managed by individual
end users. For instance, most edge nodes are not server-class machines, and many cannot
get a public, static IP address from their ISPs.

The need to support nodes with a wide range of hardware, software, networking, and
management resources requires us to fundamentally rethink existing testbed designs.
While current architectures treat all nodes equally, we propose a hierarchical testbed
architecture that assigns different roles to nodes based on their available resources.

We present the design, implementation, and evaluation of SatelliteLab, a highly hetero-
geneous testbed that includes nodes from a diverse set of edge networks. SatelliteLab has
a two-tier architecture. The nodes in the top tier are called planets; they play the role of

105

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

classical well-provisioned testbed nodes. The nodes in the bottom tier belong to a new
class of light-weight testbed nodes called satellites. In existing testbeds, each node per-
forms two tasks: it executes application code, and it forwards traffic over its access links.
The key insight behind SatelliteLab’s design is to separate these two tasks. Satellites do
not run any application code; they delegate this task to well-provisioned planets. Instead,
satellites collaborate with the planets to detour traffic along the Internet links to which the
satellites are connected. SatelliteLab’s routing design thus subjects traffic to the network
conditions that it would experience if the application was run on the satellites. In this
way, satellites improve the heterogeneity of a testbed by contributing access to edge links
without having to contribute any resources for code execution.

SatelliteLab’s architecture allows us to leverage existing testbed infrastructures like
PlanetLab by augmenting them with satellite nodes from the Internet edges. It also
significantly lowers a testbed’s barrier to entry while preserving its ease of use and ease of
management. We show that an end host can support the limited routing functionality of
a satellite by running just a few hundred lines of Java code. Researchers who have been
using the existing testbed do not need to modify their application code to use SatelliteLab;
they only need to specify which satellites should forward their application traffic. Finally,
because satellites do not execute application code, they do not need to be managed or
monitored by testbed administrators.

To understand the extent to which our design facilitates recruiting of end hosts in edge
networks, we implemented SatelliteLab as an extension to the popular PlanetLab testbed.
Within a period of two weeks, we were able to recruit 32 satellite nodes from our friends and
colleagues, who were willing to donate their spare network resources to our experiments.
These nodes included desktops, laptops, and handhelds that were being actively used by
our contributors, and they were connected to the Internet through a variety of residential
cable, DSL, ISDN, Wi-Fi, Bluetooth, and cellular links. For comparison, only five out
of more than 800 PlanetLab nodes are located in such edge networks. Our experience
suggests that SatelliteLab can potentially scale to thousands of nodes if the several hundred
researchers using PlanetLab collaborate to grow the testbed.

We used our preliminary deployment to evaluate SatelliteLab’s design. Our results
show that, despite the limited functionality supported by the satellites, SatelliteLab can
forward traffic from testbed experiments over heterogeneous edge networks. Further, we
demonstrate that SatelliteLab can be used to conduct realistic experiments in the radi-
cally heterogeneous network environments that comprise today’s Internet. We illustrate
our testbed’s benefits by presenting a brief evaluation of network coordinate and over-
lay multicast systems in residential broadband environments, as well as a preliminary
measurement study of UMTS cellular networks.

7.1 Challenges and Requirements

In this section, we discuss the challenges in enabling arbitrary end hosts, including
resource-constrained nodes in Internet edge networks, to be used for testbed experiments.
From this discussion, we derive two primary requirements that our SatelliteLab design
must satisfy.

Our basic design goal is to preserve the numerous benefits of existing testbeds. For
example, PlanetLab provides experimenters with a stable software environment, supports

106

7.1 Challenges and Requirements

complete management of private virtual slices, and offers an extensive API on top of which
useful distributed services can be built. We share all of these goals, and additionally want
to support heterogeneous edge nodes. In the remainder of this section, we will outline the
important challenges and requirements particular to this last goal.

7.1.1 Challenges

Recruiting volunteer nodes from the edge of the Internet imposes challenges to Satellite-
Lab’s design that are fundamentally different from the challenges faced by existing testbeds
such as PlanetLab. We describe three challenges unique to SatelliteLab below.

1. Edge nodes provided by volunteers are not dedicated testbed nodes. Most of the
edge nodes we recruited for our testbed (see Table 7.1) were personal computers owned by
friends and colleagues, who were willing to forward experiment traffic in the background
using their spare resources. Based on our experience, we believe that volunteers will
resist giving up administrative control over their systems and will not agree to install a
particular OS. This is in contrast to node management in PlanetLab and RON, where
sites are required to share (or even relinquish) control over their root account. We also
realized that, due to security and accountability concerns, contributors do not want to run
arbitrary experiment code on their machines. For example, a BitTorrent experiment could
cause others to suspect copyright violations, and a network measurement could generate
complaints about unwanted traffic. These concerns must be addressed because they will
discourage many volunteers from participating. The challenge is to do so while imposing
as few management requirements on edge nodes as possible.

2. Edge nodes often have limited storage and processing resources. We cannot make
strong assumptions about the capabilities of participating edge nodes. They may be
laptops, handhelds, or cell phones with limited storage and processing resources. Thus,
the testbed nodes’ software stack must be flexible and light-weight, which contrasts with
inflexible policies of existing testbeds. For example, PlanetLab requires nodes to be x86-
based server-class machines with fast CPUs and large amounts of memory and storage.
The challenge is to allow all sorts of nodes – even restricted ones – to contribute to the
testbed.

3. Edge nodes are often located behind middle boxes. It is well known that many
Internet users are connected to broadband access networks that almost always use dynamic
IP addresses, NATs, and/or firewalls. Existing testbeds like PlanetLab or RON require
nodes to have publicly reachable, static IP addresses and DNS names that can be resolved
with both forward and reverse lookups. To elicit broad participation and adoption, these
requirements must be relaxed. The challenge here is to design a testbed using nodes that
may not be able to communicate directly with each other.

7.1.2 Requirements

From our discussion above, we identify two crucial design requirements and describe a
testbed design that meets these requirements in the next section.

107

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

1. The testbed design should accommodate nodes that cannot run arbitrary
application code. Even resource-constrained nodes should be able to participate,
and node owners should retain administrative control.

2. The testbed design should accommodate nodes that cannot communicate
directly with each other. For example, nodes behind NATs or firewalls should
be able to join the testbed.

7.2 The SatelliteLab Design

In this section, we present the design of SatelliteLab, a testbed that can accommodate
nodes from a diverse set of edge networks. We start with a high-level overview of our
testbed architecture. Next, we describe two key mechanisms to overcome the design chal-
lenges we identified in the previous section. Finally, we show how SatelliteLab leverages
these mechanisms to create a highly heterogeneous network testbed.

7.2.1 Overview

At a high level, SatelliteLab has a two-tier architecture. The nodes in the upper tier — the
planets — are well-provisioned and professionally managed nodes located in high-capacity
research networks. The nodes in the lower tier — the satellites — belong to a new class
of light-weight testbed nodes that is introduced by SatelliteLab. Unlike planets, satellites
can be any type of end host with Internet connectivity, such as desktops, laptops, or
handhelds, including hosts behind NATs and firewalls. Satellites are owned and managed
by individual users.

Separating testbed nodes into powerful planets and light-weight satellites enables us
to assign different responsibilities to the two node types. This distinction is crucial to
meeting the two design challenges imposed by inclusion of satellites: their inability to
execute arbitrary experiment code or to communicate directly with each other. We first
describe two mechanisms that address these challenges and then explain how SatelliteLab
works.

7.2.2 Delegating Code Execution to the Planets

Since satellites cannot run application code, we associate each satellite with a nearby
planet and run the application code on that planet. However, this changes the network
path that connects the application instances. In particular, if the traffic were sent directly
from one well-connected planet to another, we would miss the access links of the satellites,
which are often the bottlenecks on Internet paths and have a significant impact on the
path characteristics (cf. Chapter 3).

To subject the application traffic to the network conditions that exist along the direct
paths between the satellites, SatelliteLab must re-route packets via the satellites. Fig-
ure 7.1 illustrates this through an example in which two satellites, SA and SB, delegate
the execution of their application instances to two nearby planets PA and PB .

There are two problems with this approach: First, the traffic along the path segment
between the satellites is often blocked by NATs and firewalls, making the path unusable.
Second, compared to the direct path between satellites, the data packets traverse the access

108

7.2 The SatelliteLab Design

PA
PB

SA SBDirect After delegation

1 2 3

Figure 7.1: Delegating code execution to planets. satellites choose a nearby planet
to run application code on their behalf

links of the satellites twice, once each in the upstream and the downstream directions. We
propose a detour routing-based mechanism in Section 7.2.3 to solve the first problem. We
resolve the second problem in Section 7.2.4, where satellites do not receive and forward
actual data packets, but instead they use small ’control’ packets in one direction, and
’dummy’ packets that are of the same size as the data packets in the other direction.

7.2.3 Detouring Traffic via the Planets

To avoid the path segment between two satellites, we can detour all traffic between satel-
lites via their closest planets. Figure 7.2 shows an example. When satellite SA needs to
send a packet to another satellite SB , the packet is first sent to the nearest planet PA,
then forwarded to the planet PB nearest to the target satellite SB, and finally delivered
to satellite SB.

We expect the detour path latency, loss, and throughput characteristics to be similar to
the direct path between the satellites for the following two reasons. First, the detour path
and the direct path typically share the same bottleneck links, namely the access links of
the satellites. Second, because each satellite is associated with the planet closest to it (in
the network topology), the base latency between the planets will approximate the latency
between the satellites. Our evaluation results in Section 7.4 show that these expectations
typically hold in practice.

Note that when detouring is used, each satellite only needs to communicate with a single
node: the nearest planet. In the final protocol, satellites are required to register with this
planet a priori, and are not allowed to communicate with any other node. This ensures
that satellites will not send traffic to arbitrary nodes, even if a malicious non-testbed node

PA
PB

SA SB

NAT

Direct With detour

1

2

3

Figure 7.2: Detouring traffic via the planets. traffic is detoured through the planets
because satellites cannot communicate directly.

109

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

sends them forged packets. This constraint shields contributors from complaints about
unwanted traffic, and provides accountability for all traffic generated by the satellites.

7.2.4 How SatelliteLab Works

Our design of SatelliteLab is based on a combination of the two insights discussed in the
previous two sections. First, satellites delegate the execution of application code to nearby
planets. The planets in turn forward the application traffic via the satellites to subject it
to the network conditions that exist on the path between the satellites. Finally, satellites
communicate by forwarding their traffic through their nearby planets, overcoming their
inability to communicate with each other directly.

Figure 7.3 illustrates in detail how SatelliteLab works. The figure shows two satellites
SA and SB, as well as their closest planets PA and PB . Each planet is running an instance
of the application that is being evaluated. When the instance on planet PA needs to send a
data packet to the instance on planet PB , PA sends a small control message to its satellite
SA (1) and instructs it to forward a “dummy” packet along the detour path. The dummy
packet is the same size as the data packet and is initially empty. When the dummy packet
reaches PA (2), it is filled with the actual data and forwarded to PB (3). At PB , the data is
removed, and a dummy packet is forwarded to SB (4). When the packet arrives at SB, SB

responds with a small control message to PB acknowledging its receipt (5). Finally, when
PB receives this receipt, it delivers the original packet to its local application instance.

PA
PB

SA SB

1 2
3

Direct With SatelliteLab

4 5

Direction Packet Type Size

1 PA → SA Control 40 bytes
2 SA → PA Dummy (same as data)
3 PA → PB Data (variable)
4 PB → SB Dummy (same as data)
5 SB → PB Control 38 bytes

Figure 7.3: SatelliteLab paths. The application instances run on the planets, but the
traffic between them is detoured through the satellites.

The detour path chosen by SatelliteLab includes two path segments, SA to PA and PB

to SB , in addition to the direct path between the planets. While these two segments
introduce additional delays and losses, SatelliteLab minimizes their effects by (a) selecting
the planets closest to the satellites to minimize the extra latency, and (b) keeping the
sizes of the control packets traversing the segments to just a few bytes to minimize the
additional network load. Section 7.4 demonstrates that the additional delays and losses
introduced by the detour path are minimal in practice.

7.2.5 Incentive Mechanisms

An important aspect of designing cooperative networking testbeds is providing the right
set of incentives for people to contribute resources. In the case of SatelliteLab we need to
build the incentives for recruiting end users to participate in the SatelliteLab testbed.

110

7.2 The SatelliteLab Design

SatelliteLab shares the problem of finding the right incentives with other systems that
build on user contributions. For example, volunteer grid computing projects — often
build on top of BOINC [LLM88, ACK+02, And04] — motivate users to contribute spare
processing power of their computers to help solve problems of great impact, e.g., find-
ing extra terrestrial intelligence (SETI@home) or fighting diseases like HIV and Malaria
(Rosetta@home). Additionally, contributors are often ranked on the project’s webpage
according to the amount of processing time they have contributed. Further, systems that
allow users to contribute networking resources, like DIMES [SS05], NETI@home [SR04],
and SamKnows [Sam03] often give the user access to the collected data, e.g., by dis-
playing statistics of a user’s Internet connection. Finally, P2P content distribution net-
works [Coh01, CGN+04, MPHD06] (e.g., for streaming videos or for downloading software)
often require their users to contribute resources — in this case network bandwidth — in
order to receive content. Typically, they use a tit-for-tat scheme that bounds the download
speed to be proportional to the amount of upload bandwidth contributed. All of these
systems are successful in building the right incentives to attract a large number of users.

Based on our experience, we believe that a suitable set of incentives must have three
properties to succeed in practice. First, the incentives must outweigh any concerns a con-
tributor may have about participating. This includes technical concerns, such as whether
the experiment is going to consume too much bandwidth. Second, joining a testbed must
be easy. A cumbersome software configuration process will detract from a volunteer’s will-
ingness to participate. Third, once they join, people must have an incentive to continue
contributing. Retaining volunteers is an important challenge for SatelliteLab.

We believe that SatelliteLab should support a collection of incentive schemes, each of
which is suitable for experiments of a particular scale. For small-scale experiments, such as
the ones described at the end of this chapter, researchers may simply convince their friends
and colleagues to deploy satellites on their personal machines. In this scenario, SatelliteLab
acts as a “private testbed” for the researchers involved. However, if an experiment requires
hundreds or thousands of nodes, a different incentive scheme must be used to attract
participants beyond the immediate social circle of the researcher.

We describe two examples of incentive schemes that we believe provide adequate volun-
teer resources for an experiment of this scale.

1. Tit-for-tat: SatelliteLab can reward contributors by granting them priority when
they utilize the testbed. We envision a scheme in which SatelliteLab records the
number of node hours contributed to the testbed by each researcher, and treats the
highest contributors preferentially. Because testbeds such as PlanetLab experience
excessive load surges close to conference deadlines, such a scheme would motivate
many people to contribute more resources to the testbed. We implemented this
scheme for SatelliteLab and discuss it in Section 7.3.5.

2. Providing financial compensation: Researchers using SatelliteLab can offer to
pay contributors per node hour. Amazon.com’s MechanicalTurk [Ama05], a system
for paying anybody on the Internet for performing various manual tasks, shows that
it is possible to recruit people even by offering small financial rewards. For example,
SatelliteLab might offer E50 a year to anyone running the SatelliteLab’s applet (aE50 reward pays for the cost of a residential broadband connection for one month).
Researchers can then pay E100 to rent 100 SatelliteLab nodes for an entire week’s

111

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

worth of experiments. We believe that such a pricing scheme will appeal to many
contributors.

7.3 Implementation

Although our design can leverage any existing testbed infrastructure, we implemented
SatelliteLab as an extension to the PlanetLab testbed. In this section, we describe the
technical details of our implementation. The code of our SatelliteLab implementation is
available from http://satellitelab.mpi-sws.org.

7.3.1 Overview

Our implementation of SatelliteLab has two components: a planet proxy and a satellite
helper. Each PlanetLab node runs a planet proxy and each satellite runs a satellite helper.

The role of the planet proxy is threefold: it intercepts network traffic sent by applica-
tions, it forwards network traffic along the appropriate detour path, and it communicates
with the helpers running on satellites that are assigned to its local node. The satellite
helper is assigned to a nearby planet proxy and exclusively communicates with it, respond-
ing to its probes.

7.3.2 The Planet Proxy

Our planet proxy runs in user space on the PlanetLab nodes. Restricting our implemen-
tation to user space eases deployment, but also prevents us from using fast kernel-level
hooks to intercept network traffic [VYW+02]. Thus, our planet proxy is subject to delays
associated with the kernel’s scheduling policy of user-level tasks.

We implemented the planet proxy as a Linux daemon process in approximately 2,400
lines of C++ code.

Intercepting application traffic

When the proxy is started, it creates a virtual Ethernet device (a TAP device [KY99])
configured with a private subnet, such as 10.0.0.0/8. This private subnet is shared by all
planet proxies and all application instances running on the planets. To run an application
on SatelliteLab, the experimenter only needs to configure it to bind to the TAP device’s
IP address. Thus, all traffic sent by the application is intercepted by its local planet proxy.

When two application instances on the same planet exchange traffic, this traffic would
normally be delivered directly by the kernel without being routed through the TAP de-
vice. To avoid this, we use a simple technique borrowed from ModelNet [VYW+02]: each
application modifies certain bits in all destination addresses to ensure that they appear
as remote addresses; once the planet proxy intercepts a packet, these bits are set back to
their original value. This technique uses a dynamic library (libipaddr) and works with
unmodified application binaries.

Communicating with the satellites

The proxy interacts with its satellites using a very simple UDP-based probe/response
protocol. The proxy can send a d-byte UDP message PROBE(i,d,u), where i is an identifier

112

http://satellitelab.mpi-sws.org

7.3 Implementation

and u is the size of the requested response packet. In response, the satellite sends a u-
byte UDP message RESPONSE(i,u). To mask the occasional loss of packets, each probe
(response) message includes information about the two probe (response) packets most
recently exchanged between the proxy and the satellite. After intercepting a packet of
application traffic, the proxy forwards the packet along the detour path using the above
protocol on the edges and one extra message between the planets.

Let A and B be application instances running on planets PA and PB , respectively; let
SA and SB be the corresponding satellites, and let σ be the size of the data packet in
bytes. The complete packet forwarding process is as follows:

1. PA chooses an identifier i and stores the packet in an internal buffer indexed by i.

2. PA sends PROBE(i,12,σ) to SA, which responds with RESPONSE(i,σ).

3. PA retrieves the packet and forwards it to PB .

4. PB sends PROBE(i,σ,10) to SB , which responds with RESPONSE(i,10).

5. PB retrieves the packet and delivers it to B.

This forwarding process subjects application traffic to network conditions on the access
links of the satellites. Since the access links are often the bottlenecks of the direct network
path between the satellite nodes, the detour paths have similar access link delays, losses,
and bandwidths as the direct paths.

If the probe packets are reordered or delayed, their corresponding data packets are also
reordered or delayed. Similarly, if probe packets are lost, their corresponding data packets
are not forwarded, and they are eventually dropped from the buffer by the proxy. Finally,
the packet sizes of probes (and probe responses) match those of the data packets.

Compensating for packet loss

With the described protocol, SatelliteLab increases the packet loss rate on the access link
compared to the direct communication between satellites. The reason is that two control
packets – a probe and a response – are needed to emulate the transmission of a single data
packet; the data packet is considered lost if either of the two control packets is lost.

In our experiments this problem occurred rarely, even on access links such as broadband
as these control packets are small. Nevertheless, we developed an additional mechanism
to mitigate the effects of this problem. SatelliteLab incorporates information about the
control packets already sent in the padded data of subsequent packets. This enables quick
detection and recovery of control packet loss. Thus, if a packet is lost in either direction,
the recipient can obtain the missing information from one of the subsequent packets1.
Since this does not help if the last control packet in a sequence is lost, we send this packet
twice, but only if the link is otherwise idle.

However, the planet only uses the information about the control packets already sent to
compensate for losses that happen on the additional pathways introduced by SatelliteLab.
When it emulates an upstream transmission, it compensates for lost probe packets; when
it emulates a downstream transmission, it compensates for lost responses. Otherwise

1Note that if the access link reorders packets, this can cause additional reordering. If this is an issue, the
feature can be disabled.

113

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

SatelliteLab would overcompensate and push the loss rate below the access link’s actual
loss rate.

Adjusting the MTU

When a packet is sent from an application instance on one planet to an instance on another,
the proxies encapsulate the packet in a UDP datagram, which adds a 28-byte UDP/IP
header and a four-byte SatelliteLab header. If the original packet was already MTU-sized,
the resulting UDP datagram must be sent in two packets, which is undesirable because it
increases the effective loss rate. Usually, it is possible to avoid this problem by reducing
the MTU of the TAP device. However, in some testbeds (e.g., PlanetLab), the MTU
cannot be changed. Therefore, we implemented a mechanism in the planet proxies that
adds a MSS option to TCP SYN packets, which transparently reduces the packet size for
TCP flows. Other transport protocols will still work, but their packets may be split on
the planet-to-planet path and thus experience a higher loss rate.

7.3.3 The Satellite Helper

We implemented the satellite helper in Java to ensure its portability across different soft-
ware and hardware configurations. Our Java implementation has 118 lines of code, as
counted by the number of semicolons. The very small size of the satellite code simplifies
code reviews. This ensures that the satellite helper does not create a vulnerability on the
satellite machines.

Additionally, we developed OS-specific packages – one for Windows, one for Mac OS X,
and one for Linux. These packages have installers and are integrated with the respective
OSes; for example, the Windows version can be minimized to the system tray and is
configured to automatically start at boot time.

To keep the set of potential volunteers as large as possible, the helper must be easy to
install and configure, and it must disturb the user as little as possible. During installation,
the helper prompts the user once to enter an identifier for the local machine. No other
configuration is required. After this, the helper is started automatically on boot and then
runs in the background until the machine is shut down; it never actively interacts with
the user.

During startup, it first locates the closest testbed node. Each helper is statically config-
ured with a list of DNS names that map to some of the testbed nodes. The helper contacts
one of these nodes and obtains from them a list of nearby testbed nodes. It then pings
each of these nodes and chooses the one closest to it in terms of network latency. Then it
waits for, and responds to, any incoming UDP probes from that planet. To minimize the
possibility of complaints or abuses directed at the satellite’s owner, the helper does not
communicate with any other node.

Handling NATs and DHCP

In our experience, many satellites are behind a NAT. This creates two challenges for the
satellite helper: First, it knows its local IP address, but not its publicly visible IP address,
and second, control packets from the planet cannot reach it unless it first initiates a
connection. We use a heartbeat mechanism to solve both problems. The satellite helper
periodically sends a small status message to its planet, which allows the proxy to determine

114

7.3 Implementation

the satellite’s publicly visible IP. These packets also prevent the address translation rule
in the NAT from expiring and thus ensure that the satellite remains reachable from the
planet. While this mechanism helped us to traverse all the NATs in our testbed, it can
be further extended with more elaborate NAT traversal mechanism [FSK05].

Some satellites acquire their IP address using the Dynamic Host Configuration Protocol
(DHCP). This can create problems if DHCP reassigns a satellite’s IP address. In this
case, the planet proxy must no longer send probes to the old address. We also use the
heartbeat mechanism to handle this problem: when the proxy no longer receives status
messages from a satellite, it stops sending probes to that satellite.

Allocating satellites to experiments

Like the PlanetLab testbed, SatelliteLab can be used by researchers to run different exper-
iments. In our implementation, we allow satellites to participate in only one experiment
at a time, which prevents interference between experiments and avoids overloading the
satellite’s access link. However, researchers can serially allocate satellites to different
experiments over time. Our implementation enables a satellite to seamlessly leave one
experiment and join another. When switching to another experiment, the planet proxy
can either bind the satellite to a different application running on its local planet, or the
satellite can re-register with a different planet.

We believe that allocation of satellites to different experiments should be subject to a
testbed-wide policy. This policy would depend on SatelliteLab’s incentive mechanism for
attracting satellites (cf. Section 7.2.5).

7.3.4 Running an Experiment

Running an experiment on SatelliteLab requires four steps. First, the experimenter re-
cruits a sufficient number of satellites. Second, she creates a configuration file that specifies
which application instances should run on which planets. Third, she installs and runs the
proxy on each planet. Finally, she starts the application instances on the planets. If mul-
tiple instances of the application should run on the same planet, the application has to
preload libipaddr with the appropriate parameters in each case.

SatelliteLab has no particular requirements for applications — if the application runs
natively on the planets, it is likely to run in SatelliteLab. If a planet is to run more than
one application instance, the only additional requirement is that it needs to work with
libipaddr. This is also the case for applications that run on ModelNet.

7.3.5 Resource Sharing

Rather than recruiting volunteers for each experiment individually, it seems natural to
recruit them for the testbed in general and to share the resources they provide across dif-
ferent experiments. In this section, we describe an extension of our SatelliteLab prototype
that enables this type of sharing.

Resource allocation and incentives

Sharing is easy as long as there are no conflicts in resource usage. However, it is only to
be expected that experimenters would prefer large-scale experiments and thus would each

115

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

request a large number of satellites. If not all requests can be satisfied, it is not clear how
the available resources should be allocated.

The straightforward solution is to allocate satellites on a first-come-first-served basis,
and to rely on some external mechanism to resolve conflicts. However, this method fails to
provide sufficient incentives for experimenters to contribute resources. Such an incentive
could be added by assigning satellites proportional to the number of satellites each experi-
menter has currently recruited. Still, the resulting incentive is for short-term contributions
and does not reward volunteers who have provided resources for a long time.

Instead, we chose a time-based system in which volunteers earn credit during the time
they contribute and can then use this credit to “buy” time on other satellites. This provides
an incentive for recruiting many long-term volunteers with highly available machines, to
the benefit of the testbed as a whole. When signing up, each user can specify which group
or institution she wants to donate her credit to.

Planet controller and the sun

In order to manage and enforce allocations, we introduce two additional components. The
first is the planet controller, which runs on each testbed node and arbitrates between planet
proxies belonging to different experiments. The second component is a single controller
node, which we call the sun. Its purpose is to manage and enforce resource allocations, as
well as to keep credit accounts.

In a single-experiment deployment, the responses from the satellites are received by
the planet proxies. In a shared deployment, these messages go to the planet controllers
instead. The controllers maintain a list of all satellites that have recently sent responses,
using the user names to distinguish between satellites. Periodically, the sun queries all
controllers and updates its credit accounts.

Experimenters can use their credits to reserve time on the satellites. The reservations
are kept in a database on the sun, which periodically distributes them to the controllers
and also associates each reservation with a specific port number on the planet nodes.
When a reservation changes, the controller sends a message to its satellites and asks them
to switch to the new planet port number. This ensures that different experiments do not
interfere with each other.

The sun’s user interface

The sun implements a web-based interface that can be used by volunteers, experimenters,
and testbed administrators. Volunteers use the web interface to create a user account
which allows them to specify the institution to which they want to donate their credits.
Also, the interface suggests a nearby planet to which the new satellite can be connected,
and provides additional information about configuring the satellite. Experimenters use
the interface to make reservations, and the testbed administrators use it to manage planet
nodes and to check the system status.

7.4 Evaluation

At a high level, our evaluation focuses on three aspects about SatelliteLab’s design. First,
we illustrate one of its key advantages: a lower barrier to entry. Second, we show that

116

7.4 Evaluation

although satellites have lower availability than planets, their session durations are ade-
quate for running most experiments. Lastly, we demonstrate that the characteristics of
SatelliteLab’s detour paths closely match those of the direct paths between the satellites.

7.4.1 SatelliteLab is Successful in Making Testbeds Heterogeneous

To evaluate whether SatelliteLab is successful in adding heterogeneity to existing testbeds
like PlanetLab, we compare the diversity of network paths in the PlanetLab testbed with
paths in SatelliteLab. Since all of our 32 SatelliteLab nodes are in Europe and North
America, here we only consider PlanetLab nodes in these regions, in order to ensure
comparability.

Although PlanetLab continues to attract new participants, additional nodes do not
necessarily improve a testbed’s path heterogeneity. We illustrate this by using the number
of distinct inter-AS links that are covered by paths in a testbed as a proxy for path
heterogeneity. Figure 7.4 shows that adding a new node to PlanetLab increases the AS-
path heterogeneity by only a small amount. On average, each additional node increases
coverage by only 2.7 inter-AS links. We believe this is because most PlanetLab nodes
are located in closely coupled academic networks and thus the AS paths between them
are similar. However, Figure 7.4 also shows that, if we increase PlanetLab’s size by just
10% using nodes from the commercial Internet, we can more than triple its coverage of
inter-AS links.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f

u
n
iq

u
e

in
te

r-
A

S
 l
in

k
s

Node index (ordered by join date)

PlanetLab nodes

SatelliteLab
nodes

Figure 7.4: Inter-AS links covered by PlanetLab vs. SatelliteLab. By adding
a small number of edge nodes to PlanetLab, we can increase the number of inter-AS
links covered by the testbed paths by more than a factor of three.

Figure 7.5 further illustrates the diversity of our SatelliteLab testbed. In contrast to
PlanetLab, most nodes in SatelliteLab are located behind a diverse set of access links,
including cable and DSL. A few are even connected using Bluetooth and cellular links.
Two-thirds of the nodes are behind NATs, and half of the nodes are mobile devices, such
as laptops and handhelds, that use Wi-Fi.

In summary, SatelliteLab is successful in considerably improving the heterogeneity of
Internet testbeds in multiple dimensions by adding nodes from Internet edge networks.

117

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

0%

20%

40%

60%

80%

100%

Access Link Middle Box Device Type

P
e
rc

e
n
ta

g
e
 o

f
S

a
te

lli
te

s

46.9%

Cable

37.5%

DSL

Uni

9.4%

EVDO

 3.1%

ISDN

 3.1%

65.6%

NAT

34.4%

No
NAT

50.0%

Laptop

46.9%

Desktop

 3.1%

PDA

Figure 7.5: Heterogeneity in SatelliteLab. Our 32 testbed nodes were connected to
various access networks, such as DSL, cable, and EVDO. Less than 10% of nodes are
located in University (Uni) networks. Many of the nodes were located behind NATs,
and some of them were mobile.

7.4.2 SatelliteLab Makes it Easy to Recruit Edge Nodes

To support satellite nodes with a variety of software profiles, we implemented the satellite
helper in Java. We created easy-to-install packages for Windows, Mac OS X, and Linux,
and we set up a webpage with instructions for installing our software. To the SatelliteLab
software package we added a test harness that enabled us to send packets directly between
the satellites where possible. This test harness allowed us to compare SatelliteLab’s detour
paths to direct paths. Since this test harness makes the nodes vulnerable to abuse, we
disabled it once we had completed our evaluation experiments.

In a period of only two weeks, we recruited 32 satellite nodes by asking our friends,
family members, and colleagues to install SatelliteLab on their private machines. Table 7.1
gives an overview of our testbed nodes. Our testbed includes sixteen satellite nodes from
the U.S., eight nodes from Germany, five nodes from Canada, and one node each from
Hungary, Portugal, and the United Kingdom. These nodes connect via DSL, cable, ISDN,
and cellular links; many of them have an extra wireless hop (802.11 or Bluetooth), and
several of them are behind NATs.

As demonstrated in Section 7.4.1, SatelliteLab’s lower barrier to entry does not just
improve access link diversity, it increases the heterogeneity of other testbed characteristics
as well. For example, our deployment included mobile nodes (a PDA and several laptops),
which were connected to different access networks at different times (e.g., to the university
network at work and to a cable network at home). Also, as shown in Figure 7.6, satellite
uptimes varied between close to 0% and close to 100% because some of the nodes were
switched off overnight and/or were occasionally suspended (e.g., for travel). We believe
that this additional heterogeneity could be valuable to experimenters.

Based on our initial experience, we believe that if the several hundred researchers us-
ing PlanetLab collaborated and each recruited a handful of satellites, future SatelliteLab
deployments could grow to include thousands of nodes in Internet edge networks.

118

7.4 Evaluation

Location Access link NAT Type Mobile

1 Canada Cable no Desktop no
2 Canada DSL no Desktop no
3 Canada Uni+Wi-Fi no Laptop yes
4 Canada Uni+Wi-Fi no Smartphone yes
5 Canada Cable+Wi-Fi yes Laptop no
6 Germany DSL+Wi-Fi yes Desktop no
7 Germany Cable no Desktop no
8 Germany DSL yes Desktop no
9 Germany DSL+Wi-Fi yes Laptop yes

10 Germany Cable+Wi-Fi yes Laptop yes
11 Germany DSL yes Desktop no
12 Germany DSL+Wi-Fi yes Desktop no
13 Germany ISDN+BT no Laptop no
14 Hungary DSL yes Laptop yes
15 Portugal Cable no Laptop no
16 United Kingdom DSL no Laptop yes
17 CA, USA DSL+Wi-Fi yes Laptop no
18 CA, USA EVDO no Laptop no
19 CO, USA Cable+Wi-Fi yes Laptop no
20 IL, USA Cable yes Desktop no
21 LA, USA DSL yes Desktop no
22 MA, USA Cable+Wi-Fi no Laptop yes
23 MD, USA Uni no Desktop no
24 MD, USA Cable+Wi-Fi yes Laptop yes
25 NJ, USA DSL+Wi-Fi yes Laptop no
26 NJ, USA Cable+Wi-Fi yes Laptop no
27 TX, USA Cable+Wi-Fi yes Desktop no
28 WA, USA Cable yes Desktop no
29 WA, USA Cable yes Desktop no
30 WA, USA Cable+Wi-Fi yes Desktop no
31 WA, USA Cable+Wi-Fi yes Laptop yes
32 WI, USA DSL yes Desktop no

Table 7.1: Overview of the satellite nodes. Our nodes use a variety of access links
such as cable, DSL, wireless (Wi-Fi), Bluetooth (BT), or high-capacity access links
located in Universities (Uni). Some of the nodes’ access links combine two types of
networks; for example, a DSL+Wi-Fi means that the host is connected to a DSL
modem via a wireless link. The last column indicates whether or not the host was
mobile.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

P
e
rc

e
n
ta

g
e
 o

f
h
o
s
ts

Availability

Figure 7.6: Satellite availability. Availability varied widely among the different satel-
lite node types.

119

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

7.4.3 The Availability of Satellites is Adequate for Many Testbed

Experiments

To test whether the availability of SatelliteLab nodes is sufficient for potential experiments,
we compared the median session times of our satellites to run-times of experiments on
PlanetLab. We used the CoTop monitor data [PP04] for the month of November 2007 to
compute for each slice on PlanetLab the longest continuous session during which a node
sent or received data over the network. A session ended when a node sent and received no
traffic for 15 minutes. Figure 7.7 compares this to the median node availabilities in our
testbed; it shows that 40% of satellites have enough availability to support the workloads
of about 60% of the PlanetLab slices. The figure also shows that a significant proportion
of slices are active for days or weeks. Most of these slices are services, such as CoMon
and OpenDHT, or long-lived measurement experiments. SatelliteLab was not designed to
support such workloads (see Section 7.5 for further discussion).

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90

P
e
rc

e
n
ta

g
e
 o

f
s
lic

e
s
 /
 s

a
te

lli
te

s

Time (hours)

PlanetLab

SatelliteLab

60%

40%

Figure 7.7: Run-time of experiments on PlanetLab. 40% of our satellites had
median session times longer than 10 hours, while 60% of PlanetLab slices did not run
any experiment that lasted more than 10 hours.

7.4.4 Satellites Can Find Planets in their Close Proximity

Compared to sending data via the direct path, detouring application traffic through satel-
lites increases latency. However, we expect this increase to be small with respect to the
overall latency as long as satellites can find a planet in their close proximity. Figure 7.8
shows that 80% of the satellites had a RTT of less than 35 ms to the nearest PlanetLab

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

Round-trip distance between Satellite and Planet (ms)

Figure 7.8: Minimum distance between a satellite and its closest PlanetLab
node. 80% of the satellites in our testbed had an RTT of 35 ms or less.

120

7.4 Evaluation

host, and all but one had an RTT of less than 62 ms. The satellite using EVDO had an
RTT of 109 ms because of the high transmission delays in cellular networks.

7.4.5 Detour and Direct Paths are Bottlenecked at the Same Access Links

The characteristics of Internet paths are driven by their bottlenecks. In edge networks,
path bottlenecks often occur on the “last mile” — that is, at or close to the access link
(cf. Chapter 3). Because both the direct path and the detour path between two satellites
share this “last mile”, they are likely to share the same bottleneck. This observation is the
key to understanding why the characteristics of SatelliteLab’s detour paths closely match
those of the direct paths.

We conducted a series of experiments to determine whether the capacity, jitter, and loss
rates of detour paths are similar to those of direct paths. We measured five different paths
for each pair of satellites (Figure 7.9): the direct path between the satellites, the satellite
detour path used between the two satellites by SatelliteLab, and the three components of
the satellite detour, namely the planetary highway and two access pathways. The planetary
highway is the segment of the satellite detour between the PlanetLab nodes, while an access
pathway is the segment between a PlanetLab node and a satellite. We used two probe
types to measure each of the five paths2.

• Small UDP ping/pong probes: We sent a long sequence of small (100-byte) UDP
ping/pong packets along the paths. We paced the ping packets using a Poisson
distribution with a mean sending rate of one packet per second; the pongs were
returned immediately after the receipt of a ping. Since the average data rate was
just 1 Kbps, the probe packets reflect the RTTs experienced by packets under normal
operating conditions.

• Large UDP flood probes: We sent large (1,000-byte) UDP probes at the rate of
3 Mbps along the paths. Each flood lasted for three seconds and typically saturated
the bottleneck links, which were below 3 Mbps in most cases. These probes reflect
the conditions of the paths under load.

PA
PB

SA SB

Direct path

Planetary highway

Access pathways

Figure 7.9: Paths used for evaluation. We separated the detour path into two seg-
ments, the planetary highway and the access pathways.

2The number of paths measured with these probes can be different because not all testbed nodes were
available at the same times. For the small ping/pong probes we used only paths for which at least
three hours of measurements were available.

121

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

Path capacity

We studied path capacities by measuring the bandwidth of their bottleneck links. Note
that measuring bottleneck bandwidth is different from measuring available bandwidth or
TCP throughput, both of which are lower than path capacity and can vary over time.
When designing SatelliteLab, we expected the detour and the direct path to have the
same path capacity because they share the same access links, which often tend to be the
bottlenecks. To verify this, we estimated the capacities of paths from the packet delivery
rate of the large UDP3 flood probes. For each path, we took the maximum across all the
measurements to remove noise from potential cross-traffic at the bottleneck link.

Our results are as follows:

1. Access pathways are the bottleneck of the satellite detour paths. To un-
derstand where the capacity bottlenecks in the satellite detours are located, we
compared the capacities of their constituent planetary and access pathways. Fig-
ure 7.10a shows capacities of 3 Mbps for most planetary highways, which suggests
that their bottleneck links were not saturated by our 3 Mbps floods. In contrast,
most access pathways show capacities of less than 2 Mbps.

2. Access links shared by the direct and the detour paths are often the ca-
pacity bottlenecks. Figure 7.10b compares the bottleneck capacities of the access
pathways to those of the direct paths between the satellites. The path capacities
closely match, suggesting that direct and detour paths share their bottlenecks on
the access links.

3. SatelliteLab’s detour routing preserves the direct path capacities. Finally,
we plot the capacities of direct and detour paths in Figure 7.10c. As before, the
capacities closely match; the differences are within 10% in almost all cases.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

P
a
th

 c
a
p
a
c
it
y
 (

K
b
p
s
)

Path index

Access pathways

Planetary highway

(a) Planetary highway vs. Ac-
cess pathways

 0 50 100 150 200

Path index

Access pathways

Direct path

(b) Direct path vs. Ac-
cess pathways

 0 50 100 150 200

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500
P

a
th

 c
a
p
a
c
it
y
 (

K
b
p
s
)

Path index

Direct path

Satellite detour

(c) Direct path vs. Satellite
detour

Figure 7.10: Path capacities. The capacity bottlenecks are typically on the access
links, so they are shared by both the access pathway and the direct path. As a
result, the capacity of the satellite detour matches well with that of the direct path.

3We found that most NATs allow UDP-based hole punching, while many have trouble allowing TCP-based
hole punching.

122

7.4 Evaluation

Path latency

In this section, we study two path characteristics related to packet latencies: path jitter
and queueing delay. We define path jitter as the variation in packet RTTs due to queueing
at bottleneck routers along the path. We estimate it as the difference between the 95th
percentile path RTT and the minimum path RTT, measured with the small ping/pong
probes. We define queueing delay as the maximum increase in one-way delay for a path
under load, and we measure it using the large UDP floods that saturate the path bottleneck
router by filling its queue. We estimate queueing delay as the difference between the
minimum and the 95th percentile one-way path delay. Our results are as follows:

1. Queueing occurs primarily along the access links. Since path bottlenecks
are likely at the access links, we expect the delays over the access pathways to
dominate jitter and queueing delay. Figure 7.11a compares the jitter along planetary
highways and access pathways for different satellite detours (note that the vertical
axis is a log scale). The results show that the jitter along the access pathways is
significantly higher than the jitter along the planetary highways. This indicates that
queueing primarily occurs along the access links. Figure 7.11b confirms this result:
most planetary highways have low queuing delay, whereas access paths experience
significant queuing delays, often exceeding one second. We also found that some
planetary highway paths originating in two PlanetLab hosts saw more significant
queueing delays, which we suspect to come from their heavy load at the time of our
measurements.

10
0

10
1

10
2

10
3

10
4

10
5

 0 50 100 150 200

R
o
u
n
d
-t

ri
p
 j
it
te

r
(m

s
)

Path index

Access pathways
Planetary highways

(a) Jitter (95th- min)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 50 100 150 200

Q
u
e
u
e
in

g
 d

e
la

y
 (

m
s
)

Path index

Access pathways
Planetary highways

(b) One-way queueing delay

Figure 7.11: A comparison of jitter and queueing delay between access path-
ways and planetary highways.

2. Access pathways and direct paths have matching jitter and queueing de-
lays. As detour and direct paths share the access link, we expect them to experience
similar jitter and queueing delay. Figure 7.12a demonstrates that the degree of jitter
along both paths matches closely. As before, Figure 7.12b confirms the similarity
of queueing delays between access pathways and direct paths. These results suggest
that queueing is due to properties shared by access pathways and direct paths.

123

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

10
0

10
1

10
2

10
3

10
4

10
5

 0 50 100 150 200

R
o

u
n

d
-t

ri
p

 j
it
te

r
(m

s
)

Path index

Access pathways
Direct paths

(a) Jitter (95th-min)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 50 100 150 200

Q
u

e
u

e
in

g
 d

e
la

y
 (

m
s
)

Path index

Access pathways
Direct paths

(b) One-way queueing delay

Figure 7.12: A comparison of jitter and queueing delay between access path-
ways and direct paths.

Path loss rates

To compare loss rates for detour and direct paths, we used the small UDP ping/pong probe
experiment data. We recorded a path failure event whenever three or more consecutive
packets were lost (most of these loss episodes lasted for three seconds at least). A vast
majority of the measured paths (over 90%) did not show any path failure events at all.
The remaining paths typically experienced one or two path failures during a single six-
hour experiment. Ignoring losses during path failure events, we next computed the paths’
average loss rates.

Table 7.2 shows the observed loss rates for different paths. Overall, the loss rates were
low across all the paths. The table shows that no measured planetary highways experienced
loss rate above 0.5%, while 20.2% of the access pathways, 28.7% of the satellite detours,
and 15.3% of the direct paths saw loss rates above 0.5%. Note that all of these three types
of paths share the access pathways. This suggests that most of the packet loss occurs at
the satellite node access links.

Loss rate < 0.1% 0.1− 0.5% 0.5− 1.0% ≥ 1.0%
Planetary highway 95.4% 4.6% 0.0% 0.0%

Access pathway 38.1% 41.7% 7.8% 12.4%
Satellite detour 25.4% 46.0% 10.3% 18.4%

Direct path 66.4% 18.4% 5.3% 9.9%

Table 7.2: Packet loss rates along different paths.

7.4.6 Summary

Our evaluation demonstrates that it is possible to use SatelliteLab to enlist a highly
heterogeneous set of nodes as satellites. We showed that the availability of edge nodes
is adequate for running many testbed experiments, and our measurements of a 32 node
SatelliteLab testbed indicate that important path characteristics, such as capacity, jitter,
and loss rates of direct paths between satellites are typically preserved in SatelliteLab’s
detour paths.

124

7.5 Applications

7.5 Applications

Testbeds like PlanetLab have been generally used for three broad classes of experiments.

Evaluations of Networked Systems. A large class of testbed experiments evaluate and
test network systems and applications. Researchers deploy prototypes on testbeds like
PlanetLab to examine their behavior when run over the Internet at large. With Satel-
liteLab, network researchers can perform evaluations in an heterogeneous environment.
Such evaluations often lead to additional insights into their systems’ behavior. Later in
this section, we describe how we used SatelliteLab to evaluate two distributed systems:
a network coordinate system and an overlay multicast system. For both, we found that
the results produced by the SatelliteLab evaluation differ substantially from a PlanetLab-
based evaluation. We traced these differences to the heterogeneity of the network paths
offered by SatelliteLab.

Internet measurement studies. Another class of experiments often deployed on testbeds
like PlanetLab measure the characteristics of network paths between testbed nodes. From
these studies, researchers derive much needed insight into the properties of the Internet. By
extending the network paths to the edge of the Internet, SatelliteLab increases the diversity
of the measured Internet paths. With SatelliteLab, researchers can perform measurement
studies on types of networks that are not found in today’s testbeds, such as broadband
and wireless. Later in this section, we show how SatelliteLab can be used to measure
the throughput of TCP downloads in mobile broadband networks, i.e., GPRS/EDGE and
UMTS.

Running public Internet services. Planetlab also supports running services continuously,
such as Coral [FFM04] and CoDeeN [WPP+04]. Because satellites do not run application
code, these services do not benefit from SatelliteLab.

7.5.1 Evaluation of Networked Systems

We used SatelliteLab to evaluate two popular networked systems: a network coordinate
system and an overlay multicast system. Although previous evaluation results of both sys-
tems over PlanetLab suggested that both perform well over the Internet, our evaluation
over SatelliteLab led us to substantially different conclusions. We show that these differ-
ences are due to the characteristics of the satellites’ network links, which differ drastically
from the characteristics of links between PlanetLab nodes.

Network coordinate system

Internet systems use network coordinate systems to cheaply and rapidly obtain estimates
of network latency. The basic idea is to assign participating nodes a set of coordinates,
which can then be used to obtain rough estimates of network latencies. For example, the
Vuze BitTorrent client employs Vivaldi to select nearby peers to download from. Regular
BitTorrent packets are used to estimate the RTT between two nodes and to calculate a
node’s network coordinate. Thus, no extra measurement packets have to be sent, resulting
in no additional bandwidth overhead. To account for outliers in the RTT measurements,

125

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

Vivaldi uses a simple “moving percentile filter” that estimates the current RTT as the
average of the past four RTT measurements.

Although PlanetLab experiments have shown network coordinate systems to be accu-
rate, a recent study found that their accuracy is significantly lower when they are used by
BitTorrent participants [LGS07]. In this study, the latency variations between the BitTor-
rent hosts were so high that the network coordinate system failed to converge on a single
coordinate set. However, the authors could not explain the cause of these variations.

We used SatelliteLab to investigate this phenomenon. We began by repeating the exper-
iment described in [LGS07] on a smaller scale. We used eight broadband hosts as satellites,
and we installed the Vuze BitTorrent client on their corresponding planets. The seeder
host served a large file, and seven leechers downloaded it. The experiment re-started when
all hosts finished downloading the file.

We duplicated the findings of [LGS07] with little effort. Figure 7.13 plots the distribution
of the jitter in the latencies measured across the paths among the eight SatelliteLab nodes.
More than half of the paths experienced jitter of more than two seconds!

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60

D
e
la

y
 (

m
ill

is
e
c
o
n
d
s
)

Path index

Path jitter
(95

th
 RTT - min RTT)

Figure 7.13: Measured jitter in a network coordinate scheme. Many paths be-
tween satellites running BitTorrent experience very high jitter.

SatelliteLab allowed us to not only reproduce the results, but also to explain them.
We sent probe floods in the upstream and downstream direction that would saturate the
link to measure the queue sizes of the access routers for the eight broadband hosts (cf.
Chapter 3). The queue size is the difference between the 95th percentile RTT and the
minimum RTT measured. We found that all access routers had long downstream and
upstream queues. As Figure 7.14 shows, almost all routers had a queue length of at least
one second worth of traffic. This explains the findings in [LGS07]: as BitTorrent hosts
exchange large amounts of data, bottleneck queues fill up and cause the hosts’ latency and
jitter to vary by several orders of magnitude.

126

7.5 Applications

 0

 2000

 4000

 6000

 8000

 1 2 3 4 5 6 7 8

Q
u

e
u

e
 l
e

n
g

th
 (

m
s
)

Node index

Downstream
Upstream

Figure 7.14: Queue sizes of access routers for satellites. Our broadband satellites
have very large queue sizes both upstream and downstream.

SplitStream overlay multicast

In another experiment, we used SatelliteLab to evaluate SplitStream, a tree-based overlay
multicast system that streams content from a source to a set of client nodes. This improves
data redundancy and load balancing by forwarding the content along k different trees
that are rooted at the source [CDK+03]. SplitStream was evaluated on PlanetLab, but it
has been shown that the performance of such systems depends strongly on the available
bandwidth [SGMZ04]. Therefore we expected its performance on SatelliteLab to be very
different from its performance on PlanetLab.

In our experiments, we used the FreePastry 2.0 02 [Fre07] implementation of Split-
Stream configured with k = 16 trees. We ran three trials with five nodes each in three
different environments: a local cluster, PlanetLab, and SatelliteLab. We used two met-
rics of SplitStream’s performance: the chunk delivery ratio (CDR), which measures the
fraction of chunks successfully delivered, and the latency of the chunk delivery.

Figure 7.15 shows our results. We first ran our application on our local cluster, which
consists of dedicated machines that are connected via Gigabit Ethernet (Figure 7.15a).
As expected on the cluster, performance was almost ideal; each node in the cluster re-
ceived all content with minimal delay. When we ran the same experiment on PlanetLab

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

L
a
te

n
c
y
 (

s
)

Time (seconds)

0%
25%
50%
75%

100%

 0 200 400 600 800 1000

C
D

R

Time (seconds)

(a) Local cluster

 0 200 400 600 800 1000

Time (seconds)

 0 200 400 600 800 1000

Time (seconds)

(b) PlanetLab

 0 200 400 600 800 1000
 0

 10

 20

 30

 40

 50

 60

L
a
te

n
c
y
 (

s
)

Time (seconds)

 0 200 400 600 800 1000
0%
25%
50%
75%
100%

C
D

R

Time (seconds)

(c) SatelliteLab

Figure 7.15: SplitStream experiment. Latency between transmission and reception
of each delivered chunk, and fraction of chunks delivered. The five point types represent
the five nodes in the experiment.

127

7 SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds

(Figure 7.15b), performance was only slightly lower. Even though the nodes experienced
occasional losses, the delays and the throughput were consistently high with few CDR
drops and delay spikes. Finally, when we ran the experiment over SatelliteLab with five
broadband satellites (Figure 7.15c), we observed peak delays three times above those of
PlanetLab nodes. Also, these nodes suffered from significant throughput variations, with
the CDR dropping below 75%. In fact, the drop in CDR after 400 seconds (Figure 7.15c)
occurred because one of the satellite nodes initiated a BitTorrent download, thus compet-
ing for the available bandwidth with SplitStream.

7.5.2 Internet Measurement Studies

To illustrate the benefits of SatelliteLab as a platform for Internet measurement, we present
a small-scale study of TCP throughput over cellular links. TCP flows are likely to experi-
ence highly fluctuating throughput because cellular links suffer from interference, spotty
coverage, and poor signal strength. Today, little is known about the characteristics of such
links and how they affect the behavior of TCP flows.

Using SatelliteLab, we ran a series of TCP transfers between a mobile laptop and a well-
provisioned server. The laptop was equipped with a UMTS modem and communication
software that always chose the available network with the highest data rate (GPRS/EDGE
or UMTS). Each transfer ran for 30 seconds and was spaced 4 minutes after the previous
one. For each transfer we recorded the average throughput.

Figure 7.16 shows the cumulative distribution function of our TCP throughput measure-
ments over UMTS/GPRS for both the upstream and the downstream direction. We find
that downstream flows can have a throughput of anywhere between 10 Kbps to 320 Kbps
(an order of magnitude difference!). In contrast, upstream flows have a bi-modal distribu-
tion. Half of them have very low throughput of up to 10 Kbps, whereas the other half have
high throughput of over 250 Kbps. In cellular networks, the available throughput depends
on whether UMTS is available or whether GPRS/EDGE is used as a fall-back. Also,
the signal quality can greatly affect throughput. This simple experiment illustrates how
SatelliteLab can be used to conduct measurement studies of new network environments.

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300 350

P
e
rc

e
n
ta

g
e
 o

f
fl
o
w

s

Throughput (Kbps)

Upstream

Downstream

Figure 7.16: Cumulative distribution function of TCP throughput over UMTS.
TCP over cellular links can experience very different throughput based on whether
UMTS is available or whether it has to fall-back to GPRS/EDGE.

128

7.5 Applications

7.5.3 Summary

We have used SatelliteLab to evaluate two networked systems and to perform a measure-
ment study. Our experiments illustrate three key benefits of the SatelliteLab testbed:

1. Evaluations on SatelliteLab and PlanetLab can yield substantially different results.
The differences stem from the additional heterogeneity added by satellites. These
results shed new insight into the observed performance of the evaluated systems.
Even at small scale, SatelliteLab allows networking researchers to evaluate their
prototypes over highly heterogeneous networks.

2. SatelliteLab can be used to debug the performance and behavior of deployed Internet
systems. When a system behaves in a surprising manner on the Internet, researchers
can use SatelliteLab to recreate the network conditions required to reproduce and
understand performance issues of deployed systems.

3. SatelliteLab can be used as a measurement testbed for observing characteristics of
different network environments, including wireless and broadband networks.

129

8 Conclusion and Future Work

In this section, we describe the high-level contributions of this thesis and discuss potential
future research directions.

8.1 Summary

In the course of this thesis we developed a number of systems and tools designed to provide
more transparency in broadband access networks for users, developers, and researchers.

We started by developing a novel measurement methodology that allows the study of
broadband networks with minimal end host cooperation. In contrast to previous mea-
surement tools, which have often required control over the measured host thus limiting
the number of hosts that can be measured, our technique enabled us to study broadband
access networks at scale for the first time. While we used this methodology to study
broadband networks, the methodology can be used to study other types of networks as
well.

We used this methodology to perform the first large-scale study of the characteristics of
residential broadband access networks of major ISPs in Europe and North America. We
characterized bandwidth, latencies, and loss rates of broadband networks and were able
to show important differences between broadband and academic networks. For instance,
we were the first to point out that many broadband hosts have deployed surprisingly
long router queues, which can significantly affect the performance of latency-sensitive
applications, such as VoIP and VoD.

Next, we developed the Glasnost system that allows users to test their access links
for traffic differentiation. One of our design principles for Glasnost was to make it easy-
to-use. We believe that this is one of the reasons that Glasnost was able to attract
hundreds of thousands of users to date. The success of Glasnost inspired M-Lab, a platform
to deploy measurement tools to enhance network transparency, which is supported by
Google, PlanetLab, and other researchers. While our original version of Glasnost focused
on the detection of blocking and throttling of BitTorrent traffic, we designed Glasnost
to be extensible, allowing users to create and run their own Glasnost tests for arbitrary
application traffic.

Using the data collected by Glasnost, we conducted the first large-scale study of the
prevalence of traffic differentiation in broadband access networks. We were able to identify
a number of major ISPs, including Comcast and Cox in the USA and StarHub in Singapore,
that blocked BitTorrent traffic by injecting TCP RST packets into the transfer. Our data
indicates that most ISPs stopped blocking BitTorrent traffic shortly after our results were
widely covered in the media and caught the attention of telecommunication regulators.
Since then, we found that ISPs rather than blocking increasingly throttle BitTorrent traffic.

We then turned our attention to realistic evaluation of protocols and systems in broad-
band networks. To evaluate and study transport protocol behavior at large scale over

131

8 Conclusion and Future Work

diverse Internet paths, we developed Monarch. Monarch allows researchers to emulate
transport protocol flows to a large number of hosts on the Internet without requiring di-
rect access to them. This enables researchers to study the behavior of transport protocols
in the wild, and in particular in broadband networks. For instance, using Monarch we
were able to show that the large router queues that are common in broadband networks
can lead to high loss rates and high packet latencies. This can be problematic for widely
deployed TCP congestion control algorithms that interpret loss events as an indication of
congestion.

Finally, we presented SatelliteLab, a new testbed design that makes it easy to add
broadband nodes to existing Internet testbeds such as PlanetLab. SatelliteLab solves the
problem that today’s testbeds mostly consist of well-connected academic nodes, and thus
do not cover the heterogeneity of the Internet. In fact, given the high requirements for
testbed nodes, it is often not possible for broadband nodes to join a testbed. SatelliteLab
makes it possible to supplement testbeds with arbitrary nodes, including broadband nodes
and even smartphones, thus vastly increasing their heterogeneity. Using SatelliteLab,
we were able to identify several issues with an overlay multicast system and a network
coordinate system in broadband environments that did not occur when evaluating these
systems in state-of-the-art testbeds.

8.2 Future Work

While the work presented in this thesis significantly enhances network transparency in
broadband networks, there are a number of future directions we are considering.

Although Glasnost is accurate in the detection of traffic differentiation, it cannot infer
where on the path network management equipment is deployed. We currently compensate
for this problem by presenting aggregate results that point on a specific ISP given that
a large fraction of its users are affected by traffic differentiation. To determine which
ISP along an Internet path employs traffic differentiation techniques, we want to enhance
Glasnost with network tomography techniques.

While today most home users use DSL, cable, or dial-up to access the Internet, other
emerging technologies might soon play an important role. ISPs increasingly deploy fiber-
to-the-home, which boosts network speeds to 100 Mbps and more. At the same time, the
recent popularity of smartphones like the iPhone or Google’s Android platform made ISPs
offer affordable flat-rate plans for cellular networks. Thus, we expect to see a many people
connecting to the Internet using mobile connectivity technologies in the near future.

Similar to DSL and cable before, these networks are not widely studied by the research
community and it is not clear how well current popular applications work in these envi-
ronments. Cellular networks in particular have very different characteristics than other
types of networks. They likely suffer from high latencies and loss rates, and it is unclear
how these characteristics affect existing transport protocols and how popular applications
like VoIP or VoD will work in this environment. As a result, studying these networks at
scale with existing or novel measurement tools is an important research direction.

Furthermore, cellular ISPs are known to employ traffic management. But as ISPs are
hesitant to reveal details about their practices, cellular networks (similar to other broad-
band networks) remain opaque to their users, and there is only anecdotal evidence about
the traffic management techniques used by cellular ISPs. For instance, many cellular ISPs

132

8.2 Future Work

use so-called performance-enhancing proxies (PEPs). PEPs improve users’ web experience
and speed up downloads by compressing webpages and re-encoding images, thus requiring
less bandwidth. In addition, some ISPs have announced that they will filter VoIP traffic
in their networks [O’B10]. Often, cellular networks are also heavily firewalled or use NATs
to prohibit connections from a remote host to a cellular node.

While we already showed how to add cellular nodes to existing testbeds using Satellite-
Lab, studying these networks at scale is a subject for future work. Also, a mobile version
of Glasnost could make these networks more transparent, detecting the presence and effect
of PEPs, firewalls, and NATs.

133

Bibliography

[3GP08a] 3GPP: 3rd Generation Partnership Project. 3gpp specification series: 25 series,
2008. http://www.3gpp.org/article/umts.

[3GP08b] 3GPP: 3rd Generation Partnership Project. 3gpp specification series: 36 series,
2008. http://www.3gpp.org/ftp/Specs/html-info/36-series.htm.

[ABKM03] David G. Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Mor-
ris. Experience with an Evolving Overlay Network Testbed. ACM SIGCOMM
Computer Communication Review, 33(3), 2003.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: An Experiment in Public-resource Computing. Com-
munications of the ACM, 45(11):56–61, 2002.

[ACKZ06] Thomas Anderson, Andrew Collins, Arvind Krishnamurthy, and John Za-
horjan. PCP: Efficient Endpoint Congestion Control. In Proceedings of
the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), May 2006.

[ADLY95] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and Limin Yan. Evaluation of TCP
Vegas: Emulation and Experiment. In Proceedings of the ACM SIGCOMM
Conference, Aug 1995.

[AEO03] Mark Allman, Wesley M. Eddy, and Shawn Ostermann. Estimating Loss Rates
With TCP. ACM SIGMETRICS Performance Evaluation Review, 31(3):12–24,
2003.

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing Router Buffers.
In Proceedings of the ACM SIGCOMM Conference, Aug 2004.

[AKM05] Martin Arlitt, Balachander Krishnamurthy, and Jeffrey C. Mogul. Predict-
ing Short-Transfer Latency from TCP Arcana: A Trace-based Validation. In
Proceedings of the Internet Measurement Conference (IMC), Oct 2005.

[Alb08] Kamiel Albrecht. Dutch Broadband Q1 2008, 2008. http://www.

telecompaper.com/news/article.aspx?cid=621504.

[Ama05] Amazon.com, Inc. Amazon Mechanical Turk, 2005. http://www.mturk.com.

[And04] David P. Anderson. BOINC: A System for Public-Resource Computing and
Storage. In Proceedings of the International Workshop on Grid Computing,
Nov 2004.

135

http://www.3gpp.org/article/umts
http://www.3gpp.org/ftp/Specs/html-info/36-series.htm
http://www.telecompaper.com/news/article.aspx?cid=621504
http://www.telecompaper.com/news/article.aspx?cid=621504
http://www.mturk.com

Bibliography

[ASB05] Shilpi Agarwal, Joel Sommers, and Paul Barford. Scalable Network Path Em-
ulation. In Proceedings of the IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS), Sep 2005.

[ASS03] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. An Empirical Evaluation
of Wide-area Internet Bottlenecks. In Proceedings of the Internet Measurement
Conference (IMC), Oct 2003.

[Azu09] Azureus Wiki. List of ISPs suspected to traffic shape BitTorrent, 2009. http://
www.azureuswiki.com/index.php/Bad_ISPs.

[BBB07] Robert Beverly, Steven Bauer, and Arthur Berger. The Internet’s Not a Big
Truck: Toward Quantifying Network Neutrality. In Proceedings of the Passive
and Active Measurement Workshop (PAM), Apr 2007.

[Bee99] Justin Beech. DSLreports.com, 1999. http://www.dslreports.com.

[BFH+06] Andy C. Bavier, Nick Feamster, Mark Huang, Larry L. Peterson, and Jennifer
Rexford. In VINI Veritas: Realistic and Controlled Network Experimentation.
In Proceedings of the ACM SIGCOMM Conference, Sep 2006.

[BGG+08] Neda Beheshti, Yashar Ganjali, Monia Ghobadi, Nick McKeown, and Geoff
Salmon. Experimental Study of Router Buffer Sizing. In Proceedings of the
Internet Measurement Conference (IMC), Oct 2008.

[BGP04] S. Banerjee, T. G. Griffin, and M. Pias. The Interdomain Connectivity of Plan-
etLab Nodes. In Proceedings of the Passive and Active Measurement Workshop
(PAM), Apr 2004.

[BMGS08] Kevin Bauer, Damon McCoy, Dirk Grunwald, and Douglas Sicker. Broad-
band network management, Apr 2008. http://systems.cs.colorado.edu/

mediawiki/index.php/Broadband_Network_Management.

[Bol93] Jean-Chrysostome Bolot. Characterizing End-to-End Packet Delay and Loss in
the Internet. In Proceedings of the ACM SIGCOMM Conference, Sep 1993.

[BP95] Lawrence S. Brakmo and Larry Peterson. TCP Vegas: End to End Congestion
Avoidance on a Global Internet. IEEE Journal on Selected Areas in Commu-
nication, 13(8):1465–1480, 1995.

[BPS+98] Hari Balakrishnan, Venkata N. Padmanbhan, Srinivasan Seshan, Mark Stemm,
and Randy H. Katz. TCP Behavior of a Busy Internet Server: Analysis and
Improvements. In Proceedings of the IEEE INFOCOM Conference, Mar 1998.

[BPSK97] Hari Balakrishnan, Venkat Padmanabhan, Srinivasan Seshan, and Randy H.
Katz. A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links. IEEE/ACM Transactions on Networking, 5(6):756–769, 1997.

[BS02] John Bellardo and Stefan Savage. Measuring Packet Reordering. In Proceedings
of the Internet Measurement Workshop (IMW), Nov 2002.

136

http://www.azureuswiki.com/index.php/Bad_ISPs
http://www.azureuswiki.com/index.php/Bad_ISPs
http://www.dslreports.com
http://systems.cs.colorado.edu/mediawiki/index.php/Broadband_Network_Management
http://systems.cs.colorado.edu/mediawiki/index.php/Broadband_Network_Management

Bibliography

[BTA+99] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and
Mario Gerla. GloMoSim: A Scalable Network Simulation Environment. Tech-
nical Report 990027, UCLA Computer Science Department, 1999.

[Cab06] CableLabs. DOCSIS 1.1 interface specification, 2006. http://www.

cablemodem.com/specifications/specifications11.html.

[Can08a] Canadian Radio-television and Telecommunications Commission. Application
requesting certain orders directing Bell Canada to cease and desist from throt-
tling its wholesale ADSL Access Services, 2008. http://www.crtc.gc.ca/

PartVII/eng/2008/8622/c51_200805153.htm.

[Can08b] Canadian Radio-television and Telecommunications Commission. Review of
the Internet traffic management practices of Internet service providers, 2008.
http://crtc.gc.ca/PartVII/eng/2008/8646/c12_200815400.htm.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. SplitStream: High-Bandwidth Multicast
in Cooperative Environments. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), Oct 2003.

[CDM] CDMA Development Group. CDMA2000 1xEV-DO Release 0. http://www.

cdg.org/technology/3g_1xEV-DO.asp.

[CEUB08] Daniele Croce, Taoufik En-Najjary, Guillaume Urvoy-Keller, and Ernst Bier-
sack. Capacity Estimation of ADSL links. In Proceedings of the CoNEXT
Conference, Dec 2008.

[CEUB09] Daniele Croce, Taoufik En-Najjary, Guillaume Urvoy-Keller, and Ernst Bier-
sack. Fast Available Bandwidth sampling for ADSL links: Rethinking the
estimation for larger-scale measurements. In Proceedings of the Passive Active
Measurement Workshop (PAM), Apr 2009.

[CFEK06] Kenjiro Cho, Kensuke Fukuda, Hiroshi Esaki, and Akira Kato. The Impact and
Implications of the Growth in Residential User-to-User Traffic. In Proceedings
of the ACM SIGCOMM Conference, Sep 2006.

[CGN+04] Yang-hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao, Kunwadee
Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early Experience with an Internet
Broadcast System Based on Overlay Multicast. In Proceedings of the USENIX
Annual Technical Conference, Jun 2004.

[CHC+04] Yu-Chung Cheng, Urs Hoelzle, Neal Cardwell, Stefan Savage, and Geoffrey M.
Voelker. Monkey See, Monkey Do: A Tool for TCP Tracing and Replaying. In
Proceedings of the USENIX Annual Technical Conference, Jun 2004.

[Cis03] Cisco Systems Inc. Internetworking Technology Handbook. Cisco Press, 4th
edition, 2003.

[CKL+04] Mark Claypool, Robert Kinicki, Mingzhe Li, James Nichols, and Huahui Wu.
Inferring Queue Sizes in Access Networks by Active Measurement. In Proceed-
ings of the Passive and Active Measurement Workshop (PAM), Apr 2004.

137

http://www.cablemodem.com/specifications/specifications11.html
http://www.cablemodem.com/specifications/specifications11.html
http://www.crtc.gc.ca/PartVII/eng/2008/8622/c51_200805153.htm
http://www.crtc.gc.ca/PartVII/eng/2008/8622/c51_200805153.htm
http://crtc.gc.ca/PartVII/eng/2008/8646/c12_200815400.htm
http://www.cdg.org/technology/3g_1xEV-DO.asp
http://www.cdg.org/technology/3g_1xEV-DO.asp

Bibliography

[CM01] John G. Cleary and H. Stele Martin. Estimating Bandwidth from Passive
Measurement Traces. In Proceedings of the Passive and Active Measurement
Workshop (PAM), Apr 2001.

[Coh01] Bram Cohen. Bittorrent, 2001. http://bittorrent.org.

[Coh08] Bram Cohen. The BitTorrent Protocol Specification, Version 11031, 2008.
http://bittorrent.org/beps/bep_0003.html.

[Com07] Comcast Corp. Comcast unleashes its innovative PowerBoost Technology
on upstream speed, Aug 2007. http://comcastcalifornia.mediaroom.com/

index.php?s=43&item=170.

[Com08a] Comcast Corp. Description of planned network management practices to be
deployed following the termination of concurrent practices, 2008. http://

downloads.comcast.net/docs/Attachment_B_Future_Practices.pdf.

[Com08b] Comcast Corp. In the Matter of Broadband Industry Practices: Com-
ments of Comcast Corporation, Feb 2008. http://fjallfoss.fcc.gov/ecfs/
document/view?id=6519840991.

[CPC+08] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz.
Tupni: Automatic Reverse Engineering of Input Formats. In Proceedings of the
Conference on Computer and Communications Security (CCS), Oct 2008.

[Cro07] Jon Crowcroft. Net Neutrality: The Technical Side of the Debate: A Qhite
Paper. ACM SIGCOMM Computer Communication Review, 37(1), Jan 2007.

[CRSZ01] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling
Conferencing Applications on the Internet using an Overlay Multicast Archi-
tecture. In Proceedings of the ACM SIGCOMM Conference, Aug 2001.

[DCGN03] Michael Dahlin, Bharat Baddepudi V. Chandra, Lei Gao, and Amol Nayate.
End-to-end wan service availability. IEEE/ACM Transactions on Networking,
11(2):300–313, 2003.

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A
Decentralized Network Coordinate System. In Proceedings of the SIGCOMM
Conference, Aug 2004.

[DHB+08] Marcel Dischinger, Andreas Haeberlen, Ivan Beschastnikh, Krishna P. Gum-
madi, and Stefan Saroiu. SatelliteLab: Adding Heterogeneity to Planetary-
Scale Network Testbeds. In Proceedings of the ACM SIGCOMM Conference,
Aug 2008.

[DHGS07] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan
Saroiu. Characterizing Residential Broadband Networks. In Proceedings of
the Internet Measurement Conference (IMC), Oct 2007.

[DMG+10] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P. Gummadi,
Ratul Mahajan, and Stefan Saroiu. Glasnost: Enabling End Users to Detect

138

http://bittorrent.org
http://bittorrent.org/beps/bep_0003.html
http://comcastcalifornia.mediaroom.com/index.php?s=43&item=170
http://comcastcalifornia.mediaroom.com/index.php?s=43&item=170
http://downloads.comcast.net/docs/Attachment_B_Future_Practices.pdf
http://downloads.comcast.net/docs/Attachment_B_Future_Practices.pdf
http://fjallfoss.fcc.gov/ecfs/document/view?id=6519840991
http://fjallfoss.fcc.gov/ecfs/document/view?id=6519840991

Bibliography

Traffic Differentiation. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

[DMHG08] Marcel Dischinger, Alan Mislove, Andreas Haeberlen, and Krishna P. Gum-
madi. Detecting BitTorrent Blocking. In Proceedings of the Internet Measure-
ment Conference (IMC), Oct 2008.

[DRM04] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet
dispersion techniques and a capacity estimation methodology. IEEE/ACM
Transactions on Networking, Dec 2004.

[EBN08] Brian Eriksson, Paul Barford, and Robert Nowak. Network discovery from
passive measurements. ACM SIGCOMM Computer Communications Review,
38(4):291–302, 2008.

[Ele08] Electronic Frontier Foundation. “Test Your ISP” Project, 2008. http://www.
eff.org/testyourisp.

[ESL07] Eric Eide, Leigh Stoller, and Jay Lepreau. An Experimentation Workbench for
Replayable Networking Research. In Proceeedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Apr 2007.

[Fed05] Federal Communications Commission (FCC). Policy Statement 05-151
on Network Neutrality, 2005. http://hraunfoss.fcc.gov/edocs_public/

attachmatch/FCC-05-151A1.pdf.

[Fed06] Federal Department of Environment, Transport, Energy and Com-
munications, Switzerland. Broadband in the universal service, Sep
2006. http://www.uvek.admin.ch/dokumentation/00474/00492/index.

html?lang=en&msg-id=7308.

[Fed09] Federal Ministry of Economics and Technology, Germany. The Federal Govern-
ment’s Broadband Strategy, 2009. http://www.bmwi.de/English/Redaktion/
Pdf/broadband-strategy,property=pdf,bereich=bmwi,sprache=en,

rwb=true.pdf.

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing
Content Publication with Coral. In Proceeedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Mar 2004.

[FHG04] Sally Floyd, Tom Henderson, and Andrei Gurtov. RFC 3782 – The NewReno
Modification to TCP’s Fast Recovery Algorithm, Apr 2004. http://www.

rfc-editor.org/rfc/rfc3782.txt.

[FHPW00] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-
Based Congestion Control for Unicast Applications. In Proceedings of the ACM
SIGCOMM Conference, Aug 2000.

[FIR] FIRE: Future Internet Research & Experimentation. http://cordis.europa.
eu/fp7/ict/fire/.

139

http://www.eff.org/testyourisp
http://www.eff.org/testyourisp
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-05-151A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-05-151A1.pdf
http://www.uvek.admin.ch/dokumentation/00474/00492/index.html?lang=en&msg-id=7308
http://www.uvek.admin.ch/dokumentation/00474/00492/index.html?lang=en&msg-id=7308
http://www.bmwi.de/English/Redaktion/Pdf/broadband-strategy,property=pdf,bereich=bmwi,sprache=en,rwb=true.pdf
http://www.bmwi.de/English/Redaktion/Pdf/broadband-strategy,property=pdf,bereich=bmwi,sprache=en,rwb=true.pdf
http://www.bmwi.de/English/Redaktion/Pdf/broadband-strategy,property=pdf,bereich=bmwi,sprache=en,rwb=true.pdf
http://www.rfc-editor.org/rfc/rfc3782.txt
http://www.rfc-editor.org/rfc/rfc3782.txt
http://cordis.europa.eu/fp7/ict/fire/
http://cordis.europa.eu/fp7/ict/fire/

Bibliography

[FJ93] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Conges-
tion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[Flo03] Sally Floyd. RFC 3649 – HighSpeed TCP for Large Congestion Windows, Dec
2003. http://www.rfc-editor.org/rfc/rfc3649.txt.

[Fre07] The FreePastry Web Site, 2007. http://www.freepastry.org.

[FSK05] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer Communication
Across Network Address Translators. In Proceedings of the USENIX Annual
Technical Conference, Apr 2005.

[FXAM04] Jinliang Fan, Jun Xu, Mostafa H. Ammar, and Sue B. Moon. Prefix-Preserving
IP Address Anonymization. Computer Networks, 46(2):253–272, 2004.

[GEN] GENI: Global Environment for Network Innovations. http://www.geni.net.

[GMG+04] Krishna P. Gummadi, Harsha Madhyastha, Steven D. Gribble, Henry M. Levy,
and David J. Wetherall. Improving the Reliability of Internet Paths with One-
hop Source Routing. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec 2004.

[Gol08a] Alex Goldman. Top 23 U.S. ISPs by Subscriber: Q3 2008. ISP-Planet, 2008.
http://www.isp-planet.com/research/rankings/usa.html.

[Gol08b] Alex Goldman. Top Seven ISPs in Canada by Subscriber: Q2 2008 .
ISP-Planet, 2008. http://www.isp-planet.com/research/rankings/2008/

canada+q2+2008.html.

[GP02] Ramesh Govindan and Vern Paxson. Estimating Router ICMP Generation De-
lays. In Proceedings of the Passive and Active Measurement Workshop (PAM),
Mar 2002.

[GSG02] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating
Latency between Arbitrary Internet End Hosts. In Proceedings of the Internet
Measurement Workshop (IMW), Nov 2002.

[GVV08] Diwaker Gupta, Kashi Vishwanath, and Amin Vahdat. DieCast: Testing Dis-
tributed Systems with an Accurate Scale Model. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Apr
2008.

[GZCF06] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. Constraint-
based Geolocation of Internet Hosts. IEEE/ACM Transactions on Networking,
14(6):1219–1232, 2006.

[HDGS06] Andreas Haeberlen, Marcel Dischinger, Krishna P. Gummadi, and Stefan
Saroiu. Monarch: A Tool to Emulate Transport Protocol Flows over the Inter-
net at Large. In Proceedings of the Internet Measurement Conference (IMC),
Oct 2006.

140

http://www.rfc-editor.org/rfc/rfc3649.txt
http://www.freepastry.org
http://www.geni.net
http://www.isp-planet.com/research/rankings/usa.html
http://www.isp-planet.com/research/rankings/2008/canada+q2+2008.html
http://www.isp-planet.com/research/rankings/2008/canada+q2+2008.html

Bibliography

[ICM+02] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier, Supratik Bhat-
tacharyya, and Christophe Diot. Analysis of Link Failures in an IP Backbone.
In Proceedings of the Internet Measurement Workshop (IMW), 2002.

[Ini09] Initiative D21. (N)ONLINER Atlas, 2009. http://www.initiatived21.de/

category/nonliner-atlas.

[Int09] International Computer Science Institute. The ICSI Netalyzr, 2009. http://

netalyzr.icsi.berkeley.edu.

[ipo09] ipoque GmbH. OpenDPI, 2009. http://www.opendpi.org.

[ITU] ITU: International Telecommunication Union. IMT-2000. http://www.itu.

int/home/imt.html.

[JBB92] Van Jacobson, Robert Braden, and David Borman. RFC 1323 - TCP Exten-
sions for High Performance, May 1992. http://www.rfc-editor.org/rfc/

rfc1323.txt.

[JD03] Manish Jain and Constantinos Dovrolis. End-to-End Available Bandwidth:
Measurement Methodology, Dynamics, and Relation with TCP Throughput.
IEEE/ACM Transactions on Networking, Aug 2003.

[JID+04] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don
Towsley. Inferring TCP Connection Characteristics Through Passive Measure-
ments. In Proceedings of the IEEE INFOCOM Conference, Mar 2004.

[JVC+03] T. Jehaes, D. De Vleeschauwer, T. Coppens, B. Van Doorselaer, E. Deckers,
W. Naudts, K. Spruyt, and R. Smets. Access Network Delay in Networked
Games. In Proceedings of the Workshop on Network and System Support for
Games (NetGames), May 2003.

[JWL04] Cheng Jin, David X. Wei, and Steven H. Low. FAST TCP: Motivation, Ar-
chitecture, Algorithms, Performance. In Proceedings of the IEEE INFOCOM
Conference, Mar 2004.

[KD10] Partha Kanuparthy and Constantine Dovrolis. DiffProbe: Detecting ISP Ser-
vice Discrimination. In Proceedings of the IEEE INFOCOM Conference, 2010.

[Kel03] Tom Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area
Networks. ACM SIGCOMM Computer Communication Review, 33(2):83–91,
2003.

[Kes91] Srinivasan Keshav. A Control-Theoretic Approach to Flow Control. In Pro-
ceedings of the ACM SIGCOMM Conference, Sep 1991.

[KHR02] Dina Katabi, Mark Handley, and Charles Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In Proceedings of the ACM SIGCOMM
Conference, Aug 2002.

[KY99] Maxim Krasnyansky and Maksim Yevmenkin. Universal TUN/TAP Driver
for Linux, Solaris, and FreeBSD, 1999. http://vtun.sourceforge.net/tun/

index.html.

141

http://www.initiatived21.de/category/nonliner-atlas
http://www.initiatived21.de/category/nonliner-atlas
http://netalyzr.icsi.berkeley.edu
http://netalyzr.icsi.berkeley.edu
http://www.opendpi.org
http://www.itu.int/home/imt.html
http://www.itu.int/home/imt.html
http://www.rfc-editor.org/rfc/rfc1323.txt
http://www.rfc-editor.org/rfc/rfc1323.txt
http://vtun.sourceforge.net/tun/index.html
http://vtun.sourceforge.net/tun/index.html

Bibliography

[LGS07] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network Coordinates in
the Wild. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Apr 2007.

[LLM88] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor – A Hunter of Idle
Workstations. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), Jun 1988.

[LP03] Karthik Lakshminarayanan and Venkata N. Padmanabhan. Some Findings on
the Network Performance of Broadband Hosts. In Proceedings of the Internet
Measurement Conference (IMC), Oct 2003.

[LPP04] Karthik Lakshminarayanan, Venkata N. Padmanabhan, and Jitendra Padhye.
Bandwidth Estimation in Broadband Access Networks. In Proceedings of the
Internet Measurement Conference (IMC), Oct 2004.

[LR08] Nikolaos Laoutaris and Pablo Rodriguez. Good Things Come to Those Who
(Can) Wait – or How to Handle Delay Tolerant Traffic and Make Peace on the
Internet. In Proceedings of the ACM HotNets Workshop, Oct 2008.

[LSB+05] Sung-Ju Lee, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Rodrigo Fon-
seca. Measuring Bandwidth between PlanetLab Nodes. In Proceedings of the
Passive and Active Measurement Workshop (PAM), Mar 2005.

[MAF04] Alberto Medina, Mark Allman, and Sally Floyd. Measuring Interactions be-
tween Transport Protocols and Middleboxes. In Proceedings of the Internet
Measurement Conference (IMC), Aug 2004.

[MAF05] Alberto Medina, Mark Allman, and Sally Floyd. Measuring the Evolution of
Transport Protocols in the Internet. ACM SIGCOMM Computer Communica-
tion Review, 35(2), 2005.

[Mar06] John Markoff. ’Neutrality’ Is New Challenge for Internet Pioneer. New York
Times, Sep 27th, 2006. http://www.nytimes.com/2006/09/27/technology/

circuits/27neut.html.

[MCG+01] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang. TCP Westwood: Bandwidth Estimation for Enhanced Transport over
Wireless Links. In Proceedings of the ACM Conference on Mobile Computing
and Networking (MobiCom), Jul 2001.

[MD90] Jeffrey Mogul and Steve Deering. RFC 1191 – Path MTU Discovery, 1990.
http://www.rfc-editor.org/rfc/rfc1191.txt.

[ME04] Madanlal Musuvathi and Dawson R. Engler. Model-checking Large Network
Protocol Implementations. In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), Mar 2004.

[Mea] Measurement Lab. http://www.measurement-lab.net.

142

http://www.nytimes.com/2006/09/27/technology/circuits/27neut.html
http://www.nytimes.com/2006/09/27/technology/circuits/27neut.html
http://www.rfc-editor.org/rfc/rfc1191.txt
http://www.measurement-lab.net

Bibliography

[MFPA09] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. On Dominant
Characteristics of Residential Broadband Internet Traffic. In Proceedings of the
Internet Measurement Conference (IMC), Nov 2009.

[MHR08] Matt Mathis, John Heffner, and Raghu Reddy. NPAD: Network Path and
Application Diagnosis, 2008. http://www.psc.edu/networking/projects/

pathdiag.

[MLAW99] Jeonghoon Mo, Richard J. La, Venkat Anatharam, and Jean Walrand. Anal-
ysis and Comparison of TCP Reno and Vegas. In Proceedings of the IEEE
INFOCOM Conference, Mar 1999.

[MM96] Matthew Mathis and Jamshid Mahdavi. Forward Acknowledgment: Refining
TCP Congestion Control. In Proceedings of the ACM SIGCOMM Conference,
Aug 1996.

[MMFR96] Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. RFC
2018 - TCP Selective Acknowledgment Options, Oct 1996. http://www.

rfc-editor.org/rfc/rfc2018.txt.

[MPHD06] Alan Mislove, Ansley Post, Andreas Haeberlen, and Peter Druschel. Experi-
ences in Building and Operating ePOST, a Reliable Peer-to-Peer Application.
In Proceedings of the EuroSys Conference, Apr 2006.

[MSWA03] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas Anderson. User-
level Internet Path Diagnosis. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), Oct 2003.

[Net03] Netfilter Project. Netfilter: Firewalling, NAT, and packet mangling for Linux,
2003. http://www.netfilter.org.

[Nie04] Nielsen/NetRatings. U.S. Broadband Connections Reach Critical Mass, 2004.
http://www.nielsen-netratings.com/pr/pr_040818.pdf.

[ns2] The network simulator – ns2. http://www.isi.edu/nsnam/ns/.

[NZ02] T. S. Eugene Ng and Hui Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proceedings of the IEEE INFOCOM Con-
ference, Jun 2002.

[O’B10] Kevin J. O’Brien. Skype in a Struggle to Be Heard on Mobile Phones. The
New York Times, Feb 18th, 2010. http://www.nytimes.com/2010/02/18/

technology/18voip.html.

[OEC09] OECD Broadband Portal, 2009. http://www.oecd.org/sti/ict/broadband.

[Ook06] Ookla Net Metrics. The Global Broadband Speed Test, 2006. http://www.

speedtest.net.

[OSG07] Paul Ohm, Douglas Sicker, and Dirk Grunwald. Legal Issues Surrounding Mon-
itoring During Network Research. In Proceedings of the Internet Measurement
Conference (IMC), Oct 2007. Invited Paper.

143

http://www.psc.edu/networking/projects/pathdiag
http://www.psc.edu/networking/projects/pathdiag
http://www.rfc-editor.org/rfc/rfc2018.txt
http://www.rfc-editor.org/rfc/rfc2018.txt
http://www.netfilter.org
http://www.nielsen-netratings.com/pr/pr_040818.pdf
http://www.isi.edu/nsnam/ns/
http://www.nytimes.com/2010/02/18/technology/18voip.html
http://www.nytimes.com/2010/02/18/technology/18voip.html
http://www.oecd.org/sti/ict/broadband
http://www.speedtest.net
http://www.speedtest.net

Bibliography

[PAM02] Vern Paxson, Andrew K. Adams, and Matt Mathis. Experiences with NIMI. In
Proceedings of the Symposium on Applications and the Internet (SAINT), Feb
2002.

[PAPL06] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The Devil and
Packet Trace Anonymization. ACM SIGCOMM Computer Communication Re-
view, 36(1), 2006.

[Pax97] Vern Paxson. End-to-end Routing Behavior in the Internet. IEEE/ACM Trans-
actions on Networking, 5(5):601–615, 1997.

[Pax99] Vern Paxson. End-to-End Internet Packet Dynamics. IEEE/ACM Transactions
on Networking, 7(3):277–292, 1999.

[Pax04] Vern Paxson. Strategies for Sound Internet Measurement. In Proceedings of the
Internet Measurement Conference (IMC), Oct 2004.

[PF01] Jitendra Padhye and Sally Floyd. Identifying the TCP Behavior of Web Servers.
In Proceedings of the ACM SIGCOMM Conference, Jun 2001.

[PHM06] Himabindu Pucha, Y. Charlie Hu, and Z. Morley Mao. On the Impact of
Research Network Based Testbeds on Wide-area Experiments. In Proceedings
of the Internet Measurement Conference (IMC), Oct 2006.

[Pla] PlanetLab. http://www.planet-lab.org.

[Pla02] PlanetLab. Hosting Requirements, 2002. http://www.planet-lab.org/

hosting/.

[Pos81] Jon Postel. RFC 792 – Internet Control Message Protocol, 1981. http://www.
rfc-editor.org/rfc/rfc792.txt.

[PP04] KyoungSoo Park and Vivek Pai. CoTop Monitoring Tool, 2004. http://

codeen.cs.princeton.edu/cotop/.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of
the Middleware Conference, Nov 2001.

[RDS+07] Robert Ricci, Jonathon Duerig, Pramod Sanaga, Daniel Gebhardt, Mike Hibler,
Kevin Atkinson, Junxing Zhang, Sneha Kasera, and Jay Lepreau. The Flexlab
Approach to Realistic Evaluation of Networked Systems. In Proceeedings of
the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Apr 2007.

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David L. Black. RFC 3168 - The Addi-
tion of Explicit Congestion Notification (ECN) to IP, Sep 2001. http://www.

rfc-editor.org/rfc/rfc3168.txt.

[RHE99] Reza Rejaie, Mark Handley, and Deborah Estrin. RAP: An End-to-end Rate-
based Congestion Control Mechanism for Realtime Streams in the Internet. In
Proceedings of the IEEE INFOCOM Conference, Mar 1999.

144

http://www.planet-lab.org
http://www.planet-lab.org/hosting/
http://www.planet-lab.org/hosting/
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://codeen.cs.princeton.edu/cotop/
http://codeen.cs.princeton.edu/cotop/
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt

Bibliography

[Riz97] Luigi Rizzo. Dummynet: A Simple Approach to the Evaluation of Network
Protocols. ACM SIGCOMM Computer Communications Review, 1997.

[Röt08] Janko Röttgers. Internetanbieter bremst Tauschbörsen aus. Focus Online, Mar
6th, 2008. http://www.focus.de/digital/internet/kabel-deutschland_

aid_264070.html.

[Sam03] SamKnows Ltd. Samknows.com, 2003. http://www.samknows.com.

[Sav99] Stefan Savage. Sting: a TCP-based Network Measurement Tool. In Proceedings
of the USENIX Symposium on Internet Technologies and Systems (USITS), Oct
1999.

[SCUB07] Matti Siekkinen, D. Collange, Guillaume Urvoy-Keller, and Ernst Biersack.
Performance Limitations of ADSL Users: A Case Study. In Proceedings of the
Passive and Active Measurement Conference (PAM), Apr 2007.

[SDRL09] Pramod Sanaga, Jonathon Duerig, Robert Ricci, and Jay Lepreau. Modeling
and Emulation of Internet Paths. In Proceeedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Apr 2009.

[SGG02] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Proceedings of the Multimedia
Computing and Networking (MMCN), Jan 2002.

[SGMZ04] Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui Zhang.
The Feasibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points. In Proceedings of the ACM SIGCOMM Con-
ference, Aug 2004.

[Sim92] Simulcraft Inc. OMNeT++, 1992. http://www.omnetpp.org.

[SK02] Pasi Sarolahti and Alexey Kuznetsov. Congestion Control in Linux TCP. In
Proceedings of the USENIX Annual Technical Conference, Jun 2002.

[SKMM05] Neel Shah, Demetres Kouvatsos, Jim Martin, and Scott Moser. A Tutorial
on DOCSIS: Protocol and Performance Models. In Proceedings of the Interna-
tional Working Conference on Performance Modelling and Evaluation of Het-
erogeneous Networks (HET-NETs), Jul 2005.

[SM09] Hendrik Schulze and Klaus Mochalski. ipoque: Internet Study 2008/2009, 2009.
http://www.ipoque.com/resources/internet-studies.

[SMWA04] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measur-
ing ISP Topologies with Rocketfuel. IEEE/ACM Transactions on Networking,
12(1):2–16, 2004.

[Sny08] Alan Snyder. Vuze Plugin: Network Status Monitor, 2008. http://azureus.

sourceforge.net/plugin_details.php?plugin=aznetmon.

[SPBP05] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for
Network Research: Myths, Realities, and Best Practices. In Proceedings of the
Workshop on Real, Large Distributed Systems (WORLDS), Dec 2005.

145

http://www.focus.de/digital/internet/kabel-deutschland_aid_264070.html
http://www.focus.de/digital/internet/kabel-deutschland_aid_264070.html
http://www.samknows.com
http://www.omnetpp.org
http://www.ipoque.com/resources/internet-studies
http://azureus.sourceforge.net/plugin_details.php?plugin=aznetmon
http://azureus.sourceforge.net/plugin_details.php?plugin=aznetmon

Bibliography

[SR04] Charles Robert Simpson, Jr. and George F. Riley. NETI@home: A Distributed
Approach to Collecting End-to-End Network Performance Measurements. In
Proceedings of the Passive and Active Measurement Workshop (PAM), Apr
2004.

[SS05] Yuval Shavitt and Eran Shir. DIMES: Let the Internet Measure Itself. ACM
SIGCOMM Computer Communication Review, 35(5):71–74, 2005.

[SS06] Rob Sherwood and Neil Spring. Touring the Internet in a TCP Sidecar. In
Proceedings of the Internet Measurement Conference (IMC), Oct 2006.

[SSBK03] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H.
Katz. OverQoS: Offering Internet QoS using Overlays. ACM SIGCOMM Com-
puter Communications Review, 33(1):11–16, 2003.

[SSW09] Timothy J. Smith, Stefan Saroiu, and Alec Wolman. BlueMonarch: A System
for Evaluating Bluetooth Applications in the Wild. In Proceedings of the Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys),
Jun 2009.

[Sto07] Brad Stone. Comcast: We’re Delaying, Not Blocking, BitTorrent Traffic. New
York Times Online, Oct 22th, 2007. http://bits.blogs.nytimes.com/2007/
10/22/comcast-were-delaying-not- blocking-bittorrent-traffic.

[SW02] Subharata Sen and Jia Wang. Analyzing peer-to-peer traffic across large net-
works. In Proceedings of the Internet Measurement Workshop (IMW), Nov
2002.

[SWA03] Neil Spring, David Wetherall, and Tom Anderson. Scriptroute: A Public In-
ternet Measurement Facility. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems (USITS), Mar 2003.

[Tel07] Telco 2.0. Market Dynamics - UK Broadband, Q3 07, 2007. http://www.

telco2.net/blog/2007/11/market_dynamics_uk_broadband_1.html.

[The07] The Associated Press. F.T.C. Urges Caution on Net Neutrality. New York
Times, Jun 28th, 2007. http://www.nytimes.com/2007/06/28/technology/

28net.html.

[The08] The Associated Press. F.C.C. Chairman Favors Penalty on Comcast. New York
Times, Jul 11th, 2008. http://www.nytimes.com/2008/07/11/technology/

11fcc.html.

[The09a] The 111th Congress of the USA. American Recovery and Reinvestment Act of
2009, 2009. Public Law 111-5.

[The09b] The European Commission. Commission declaration on net neutral-
ity. Official Journal of the European Union, 52(C 308):2, Dec
2009. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:

2009:308:0002:0002:EN:PDF.

146

http://bits.blogs.nytimes.com/2007/10/22/comcast-were-delaying-not-
http://bits.blogs.nytimes.com/2007/10/22/comcast-were-delaying-not-
blocking-bittorrent-traffic
http://www.telco2.net/blog/2007/11/market_dynamics_uk_broadband_1.html
http://www.telco2.net/blog/2007/11/market_dynamics_uk_broadband_1.html
http://www.nytimes.com/2007/06/28/technology/28net.html
http://www.nytimes.com/2007/06/28/technology/28net.html
http://www.nytimes.com/2008/07/11/technology/11fcc.html
http://www.nytimes.com/2008/07/11/technology/11fcc.html
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2009:308:0002:0002:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2009:308:0002:0002:EN:PDF

Bibliography

[The09c] The IEEE 802.16 Working Group. IEEE Standard for Local and metropolitan
area networks Part 16: Air Interface for Broadband Wireless Access Systems.
IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004), 2009.

[TMFA09] Mukarram Bin Tariq, Murtaza Motiwala, Nick Feamster, and Mostafa Ammar.
Detecting Network Neutrality Violations with Causal Inference. In Proceedings
of the CoNEXT Conference, Dec 2009.

[Top07] Robb Topolski. Comcast is using Sandvine to manage P2P
connections, May 2007. http://www.dslreports.com/forum/

r18323368-Comcast-is-using-Sandvine-to-manage-P2P-Connections.

[Uni81] University of Southern California, Information Sciences Institute. RFC 793
– Transmission Control Protocol, 1981. http://www.rfc-editor.org/rfc/

rfc793.txt.

[Uni01] United Kingdom e-Minister and e-Envoy. UK online: The broad-
band future, 2001. http://archive.cabinetoffice.gov.uk/e-envoy/

reports-broadband/$file/ukonline.pdf.

[Vel08] Velocix. Velocix Metro: New Generation Content Delivery Network, 2008.
http://www.velocix.com.

[VKD02] Arun Venkataramani, Ravi Kokku, and Mike Dahlin. TCP Nice: A Mecha-
nism for Background Transfers. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Dec 2002.

[VS94] Curtis Villamizar and Cheng Song. High Performance TCP in ANSNET. ACM
SIGCOMM Computer Communication Review, 24(5):45–60, 1994.

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Pryia Mahadevan, Dejan Kostic, and
David Becker. Scalability and Accuracy in a Large-Scale Network Emulator.
In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[Win09] Windsor Oaks Group, LLC. Market Outlook Report: Global Fixed Broadband
Subscriber Forecast, Apr 2009. http://www.broadbandtrends.com/Report_

Summary/BBT_GlobalBBOutlook_091140_Summary.htm.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Dec 2002.

[WPP02] Limin Wang, Vivek Pai, and Larry Peterson. The Effectiveness of Request
Redirection on CDN Robustness. ACM SIGOPS Operating Systems Review,
36(SI):345–360, 2002.

[WPP+04] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S. Pai, and Larry Pe-
terson. Reliability and Security in the CoDeeN Content Distribution Network.
In Proceedings of the USENIX Annual Technical Conference, Jun 2004.

147

http://www.dslreports.com/forum/r18323368-Comcast-is-using-Sandvine-to-manage-P2P-Connections
http://www.dslreports.com/forum/r18323368-Comcast-is-using-Sandvine-to-manage-P2P-Connections
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://archive.cabinetoffice.gov.uk/e-envoy/reports-broadband/$file/ukonline.pdf
http://archive.cabinetoffice.gov.uk/e-envoy/reports-broadband/$file/ukonline.pdf
http://www.velocix.com
http://www.broadbandtrends.com/Report_Summary/BBT_GlobalBBOutlook_091140_Summary.htm
http://www.broadbandtrends.com/Report_Summary/BBT_GlobalBBOutlook_091140_Summary.htm

Bibliography

[WSS07] Bernard Wong, Ivan Stoyanov, and Emin Gün Sirer. Octant: A Comprehen-
sive Framework for the Geolocalization of Internet Hosts. In Proceeedings of
the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Apr 2007.

[XHR04] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary Increase Congestion
Control for Fast Long-Distance Networks. In Proceedings of the IEEE INFO-
COM Conference, Mar 2004.

[XYK+08] Haiyong Xie, Y. Richard Yang, Arvind Krishnamurthy, Yanbin Grace Liu, and
Abraham Silberschatz. P4P: Provider Portal for Applications. In Proceedings
of the ACM SIGCOMM Conference, Aug 2008.

[ZMZ08] Ying Zhang, Zhuoqing Morley Mao, and Ming Zhang. Ascertaining the Reality
of Network Neutrality Violation in Backbone ISPs. In Proceedings of the ACM
HotNets Workshop, Oct 2008.

[ZMZ09] Ying Zhang, Zhuoqing Morley Mao, and Ming Zhang. Detecting Traffic Dif-
ferentiation in Backbone ISPs with NetPolice. In Proceedings of the Internet
Measurement Conference (IMC), Nov 2009.

148

	Introduction
	Broadband Internet Access
	Cable
	DSL
	Other Broadband Access Technologies

	Network Transparency
	Contributions
	Structure of this Thesis

	Characterizing Broadband Access Networks
	Background and Related Work
	Measurement Methodologies and Tools
	Active and Passive Measurement Techniques
	Measurement Tools for End Users

	Measurement Platforms and Studies
	Broadband Network Studies

	Characterizing Residential Broadband Networks
	Measuring Network Characteristics with Minimal Cooperation
	Probe Trains to Measure Broadband Links
	Measured Broadband Link Properties
	Validating our Assumptions

	The Characteristics of Big DSL and Cable ISPs
	Selecting Residential Broadband Hosts
	Allocated Link Bandwidth
	Packet Latencies
	Packet Loss
	Summary

	Implications

	Glasnost: Detecting Traffic Differentiation
	Background
	Network Neutrality
	Traffic Differentiation

	Design Challenges and Requirements
	Challenge #1: Low Barrier of Use
	Challenge #2: Measurement Accountability
	Challenge #3: Easy to Evolve

	The Glasnost System
	System Architecture

	Emulating Application Traffic
	Detecting Traffic Differentiation
	Blocking of Application Traffic
	Throttling of Application Traffic
	User Impatience with Long Tests
	Limitations

	Facilitating New Test Construction
	Validating Tests Generated by trace-emulate
	Allowing Users to Contribute Glasnost Test

	Large-scale Study of Traffic Differentiation in Broadband Access Networks
	Deployment of Glasnost
	Aggregate data analysis
	Blocking in Broadband Networks
	Throttling in Broadband Networks

	Summary

	Evaluating Systems in Broadband Access Networks at Large Scale
	Background and Related Work
	Evaluation Using Measurements of Deployed Systems
	Evaluation Using Simulations and Emulations
	Evaluation Using Testbeds

	Monarch: Emulating Transport Protocol Flows over the Internet at Large
	The Design of Monarch
	How Monarch Works
	What Types of Probes Can Monarch Use?
	How Many Internet Hosts Respond to Monarch Probes?
	What Transport Protocols Can Monarch Emulate?
	What Factors Affect Monarch's Accuracy?

	Implementation
	Emulating a TCP Flow
	Testing Unmodified Transport Protocol Implementations
	PMTU Discovery
	Self-diagnosis
	Usage Concerns and Best Practices

	Evaluation
	Methodology
	Accuracy over PlanetLab
	Reliability of Self-diagnosis
	Accuracy over the Internet at Large
	Summary

	Applications
	Evaluating Different Transport Protocols
	Testing Complex Protocol Implementations

	Summary

	SatelliteLab: Adding Heterogeneity to Planetary-scale Testbeds
	Challenges and Requirements
	Challenges
	Requirements

	The SatelliteLab Design
	Overview
	Delegating Code Execution to the Planets
	Detouring Traffic via the Planets
	How SatelliteLab Works
	Incentive Mechanisms

	Implementation
	Overview
	The Planet Proxy
	The Satellite Helper
	Running an Experiment
	Resource Sharing

	Evaluation
	SatelliteLab is Successful in Making Testbeds Heterogeneous
	SatelliteLab Makes it Easy to Recruit Edge Nodes
	The Availability of Satellites is Adequate for Many Testbed Experiments
	Satellites Can Find Planets in their Close Proximity
	Detour and Direct Paths are Bottlenecked at the Same Access Links
	Summary

	Applications
	Evaluation of Networked Systems
	Internet Measurement Studies
	Summary

	Conclusion and Future Work
	Summary
	Future Work

