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Abstract

A variant of Domar’s theorem [17] on the existence of a largest subharmonic

minorant of a given function is introduced. This theorem is used to obtain criteria

for decomposability properties of operators with “thin” spectra satisfying certain

growth conditions for the resolvent.

Main aim of the thesis is to provide sufficient conditions under which Banach

function algebras of Dales-Davie type admit partitions of unity or are even regular.

Let K ⊂ C be a perfect, compact set and (Mp)p∈N◦ be a sequence of positive

reals such that

M◦ = 1 and
Mp

MqMp−q
≥

(
p

q

)

, (q = 0, · · · , p).

The normed algebras Dq(K, {Mp}), q ∈ {1,∞} of all infinitely complex dif-

ferentiable functions f on K satisfying ‖f‖{Mp},1 =
∑∞

p=0
‖f(p)‖K

Mp
< ∞ and

‖f‖{Mp},∞ = supp∈N◦

‖f(p)‖K

Mp
< ∞ are not complete and their completions are

not semisimple in general. By assuming the closability of d/dz in C(K), it is

shown that the completions denoted by D̃q(K, {Mp}) are again Banach function

algebras and that D̃1(K, {Mp}) is natural on K under mild conditions on the

sequence (Mp)p∈N◦ . Further, by means of the variant of Domar’s theorem nor-

mality criteria for D̃q(K, {Mp}) are given. In the case q = 1, natural regularity

conditions are also obtained.

Let K be a perfect, compact set such that d/dz is closable with closure d̃ and

(Mp)p∈N◦ be a sequence of bounded, positive functions on K satisfying

M◦(z) = 1 and
Mp(z)

Mq(z)Mp−q(z)
≥

(
p

q

)

(z ∈ K, 0 ≤ q ≤ p).

The above results (of completion, naturality, normality and regularity) are car-

ried over to the localised algebras D1(K, {Mp}) and D∞(K, {Mp}) with norms

‖f‖{Mp},1 :=
∑∞

p=0

∥
∥
∥

f(p)

Mp

∥
∥
∥

K
< ∞ and |||f |||{Mp},∞ := supp∈N◦

∥
∥
∥

d̃pf
Mp

∥
∥
∥

K
< ∞,

respectively. Furthermore, sufficient conditions are given, which ensure the reg-

ularity of Banach function algebras D̃1(K, {Mp}) and D∞(K, {Mp}) on certain

K having positive Lebesgue measure.
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Abstrakt

Eine Variante von Domars Satz [17] über die Existenz einer größten subhar-

monischen Minorante einer gegebenen Funktion wird bewiesen. Mit Hilfe dieses

Satzes erhält man Kriterien für Zerlegbarkeitseigenschaften für Operatoren mit

“dünnen” Spektren, deren Resolventen gewisse Wachstumsbedingungen erfüllen.

Hauptziel der Arbeit ist, die Angabe von Kriterien für die Existenz von Par-

titionen der Eins oder sogar für die Regularität bei Banachfunktionenalgebren

vom Dales-Davie Typ.

Sei K ⊂ C eine perfekte, kompakte Menge und (Mp)p∈N◦ eine positive reelle

Folge, so dass

M◦ = 1 und
Mp

MqMp−q
≥

(
p

q

)

, (q = 0, · · · , p).

Im Allgemeinen sind die normierten Algebren Dq(K, {Mp}), q ∈ {1,∞}, aller

unendlich oft komplex differenzierbaren Funktionen f auf K mit der Norm

‖f‖{Mp},1 =
∞∑

p=0

‖f (p)‖K

Mp
< ∞ bzw. ‖f‖{Mp},∞ = sup

p∈N◦

‖f (p)‖K

Mp
< ∞

nicht vollständig und ihre Vervollständigungen nicht halbeinfach. Unter der Vo-

raussetzung der Abschließbarkeit von d/dz in C(K), wird gezeigt, dass die Ver-

vollständigungen D̃q(K, {Mp}) wieder Banachfunktionenalgebren sind und dass

D̃1(K, {Mp}) unter milden Bedingungen an die Folge (Mp)p∈N◦ natürlich ist.

Ferner, werden Kriterien für die Normalität von D̃q(K, {Mp}) mit Hilfe der Vari-

ante des Satzes von Domar gezeigt. Im Fall q = 1, werden auch Kriterien für die

Regularität gezeigt.

Sei nun K eine perfekte, kompakte Menge und sei d/dz abschliessbar mit der

Abschließung d̃ sowie (Mp)p∈N◦ eine Folge positiver, beschränkter Funktionen auf

K mit den Eigenschaften,

M◦(z) = 1 und
Mp(z)

Mq(z)Mp−q(z)
≥

(
p

q

)

(z ∈ K, 0 ≤ q ≤ p).

Die genannten Resultate (bzgl. Vervollständigung, Natürlichkeit, Normalität und

Regularität) werden auf die lokalen Algebren D1(K, {Mp}) und D∞(K, {Mp})
mit Normen

‖f‖{Mp},1 :=
∞∑

p=0

∥
∥
∥

f (p)

Mp

∥
∥
∥

K
< ∞ bzw. |||f |||{Mp},∞ := sup

p∈N◦

∥
∥
∥

d̃pf

Mp

∥
∥
∥

K
< ∞

übertragen. Ferner, werden hinreichende Bedingungen für die Regularität der Ba-

nachfunktionenalgebren D̃1(K, {Mp}) und D∞(K, {Mp}) für gewisse Kompakta

K mit positiven Lebesgue-Maß angegeben.
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Introduction

An important class of bounded linear operators is the class of decomposable

operators in the sense of C. Foiaş [26]. These operators have a rich local spectral

theory and a rich invariant subspace lattice (see e.g. in [13], [38], [32]) and

play a significant role in obtaining regular Banach algebras (see [32]). Many

authors have obtained decomposability results for operators satisfying a suitable

growth condition of the resolvent provided that T has thin spectrum (e.g. H. G.

Tillmann [36], L. Waelbroeck, [39] E. M. Dyn’kin ([19] , [20]), Kellay-Zarrabi

[30]) · · · . Localised versions of such statements have also been considered by

various authors (e.g. Ljubic-Macaev [33] , H. J. Sussmann [35] , Albrecht-Ricker

[4]).

In [4], E. Albrecht and W. J. Ricker have shown that an operator T is residu-

ally decomposable and has non-trivial hyperinvariant subspaces, when the resol-

vent satisfies the growth condition;

(a)‖R(ξ, T )‖ ≤ exp
(

exp
( C

dist(ξ, σ(T ))α

))

,

for positive constants C and 0 < α < 1 and σ(T ) is thin in Ω, i.e. λ(Ω∩σ(T )) = 0,

for an open set Ω ⊂ C and assuming that for each z ∈ Ω, there exists some open

neighbourhood U(z) of z in Ω and some ε > 0 such that:

(1) I :=

∫∫

U(z)

(

log+ log+ ‖R(ξ, T )‖
)1+ε

dλ(ξ) < ∞.

For a subharmonic function µ and a given non-negative, upper semi-continuous

function F on an open, connected set E ⊂ R
n, such that

(2) µ(x) ≤ F (x), for every x ∈ E

Y. Domar in [17] provided the local boundedness of the function M(x) :=

sup
µ∈{F+}

µ(x), by considering the conditions on E and on F , where {F+} repre-

sents the class of all non-negative subharmonic functions µ on E satisfying (2).

Therefore, condition (1) was needed in [4] in order to be able to apply the result

of Y. Domar [17] on uniform boundedness of families of subharmonic functions

majorized by Lebesgue measurable functions satisfying growth conditions of the

above mentioned type. However, the examples of (fractal) spectra considered in

[4] have many exposed straight lines and upper box dimension < 2. Therefore, of

particular interest would be to find conditions under which operators with thin

spectra, satisfying appropriate growth conditions for the resolvent are decompos-

able. Criteria of this kind may be helpful in other areas of operator theory. One

1



2 INTRODUCTION

interesting application can be seen in Banach function algebras of Dales-Davie

type.

Let K ⊂ C be a perfect, compact set and (Mp)
∞
p=0 be a sequence of positive

reals such that

M◦ = 1 and
Mp

MqMp−q
≥

(
p

q

)

, (q = 0, · · · , p).

For q = {1, ∞}, define the normed spaces of complex ultra-differentiable func-

tions as;

Dq(K, {Mp}) :=
{
f ∈ D∞(K); ‖f‖{Mp},q < ∞

}
,

where

‖f‖{Mp},1 :=

∞∑

p=0

1

Mp
‖f (p)‖K and ‖f‖{Mp},∞ := sup

p∈N◦

1

Mp
‖f (p)‖K .

Here, D∞(K) is the space of infinitely complex differentiable functions on K and

‖·‖K denotes the supremum norm on K. D1(K, {Mp}) is a normed function alge-

bra and has been first studied by Dales and Davie in [15]. In this paper, the au-

thors assumed for a set K to be a finite union of uniformly regular sets which gives

Banach function algebras Dk(K) and D1(K, {Mp}), where Dk(K) is the space of

k-times complex differentiable functions on K such that dkf/dzk is continuous.

D∞(K, {Mp}) normed algebras on a closed unit interval I has only been consid-

ered in [15] as a special example, where it has been shown that for a particular

sequence (Mp)
∞
p=0 satisfying mild conditions, D∞(K, {Mp}) is a Banach function

algebra. Other than this point, not much has been said about D∞(K, {Mp})
spaces. For a uniformly regular set K ⊂ C, [15] provided a condition on the

sequence (Mp)p∈N◦ under which the Banach function algebra DR(K, {Mp}) is

natural, where DR(K, {Mp}) is the closed subalgebra in D1(K, {Mp}), generated

by the rational functions with poles off K. Moreover, for the same set K, a

condition on (Mp)p∈N◦ without proof has been mentioned to assure the natural-

ity of D1(K, {Mp}) algebras. Further, a special example of (Mp)
∞
p=0 yielded a

natural quasianalytic Banach function algebra on such sets K. However, in [25]

it has been pointed out that the normed algebra D1(K, {Mp}) is in general not

complete, even for nicer sets K.

For a perfect, compact set K ⊂ C having infinitely many components, [10]

showed that the spaces Dk(K) and D1(K, {Mp}) are incomplete and provided

an example of a set K which is the image of a rectifiable Jordan arc resulting

incomplete space D1(K) and hence D1(K, {Mp}). The authors also mentioned

that due to a result of [29], the completeness of D1(K) in [15] is equally valid

if, K is a finite union of pointwise regular sets. Further, the completions of the

normed algebras have also been investigated by weakening the differentiability

requirement on the functions (in terms of F derivatives and rectifiable paths in

K). In a later paper of Abtahi and Honary [1] following the assumptions on the

set K from [15], a sufficient condition on the sequence (Mp)p∈N◦ to assure the

naturality of D1(K, {Mp}) has been provided. In [16], the concept of F-derivative

has been replaced by a weaker condition and semirectifiability of the set K has

been assumed to guarantee the completion of D1(K) to be a Banach function



INTRODUCTION 3

algebra. Moreover, they showed that whenever K is F-regular, the completion

and the normed algebra D1(K) are equal. Furthermore, sufficient conditions on

K for the incompleteness of D1(K) have also been identified. These conditions

and some other results will be used in Chapter 3 to study completions of function

algebras Dq(K, {Mp}), q = {1,∞}.
Chapter 1 deals with a variant of Domar’s theorem (Theorem 1.6), which

provides a wide range of applications in obtaining the decomposability of an

operator T on a complex Banach space X. One direct consequence is Corollary

1.11, which can be considered as a variant of Theorem 3.3 [4]. Furthermore, when

the resolvent satisfies a finite order growth condition, a condition on the Lebesgue

measure of the level sets

An(z) :=
{

w ∈ U(z); e−en+1 ≤ dist(w, σ(T )) < e−en
}

is identified, which assures the existence of the condition (1) and thus residual

decomposability of T and non-trivial hyperinvariant subspaces for T .

In chapter 2, we have shown that how growth conditions of a non-negative,

continuous function G defined on the complement of a given thin, compact set

K ⊂ C imply integrability results even in situations where the set K has Lebesgue

measure zero and upper box dimension = d, 1 < d ≤ 2. An example of the Sier-

pinski carpet having Lebesgue measure zero and box dimension log 8
log 3 is provided

for the case considered in [4], i.e. when the function G satisfies growth condition

of type (a). Other growth estimates taken into consideration for the function G

are;

(b) |G(z)| ≤ exp
( C

dist(z,K)α

)

, α > 0, (z ∈ C \ K);

and (c) |G(z)| ≤ C

dist(z,K)α
, α ≥ 1, (z ∈ C \ K).

for positive constant C. In addition, integrability criteria for the function G using

Domar’s variant are shown and examples of sets K (having Lebesgue measure zero

and upper box dimension d ≤ 2) are provided for each of the growth estimate of

type (a)− (c), where the upper box dimension is calculated either using the grid

method or is given by a grid dimension function.

As completeness of Dales-Davie algebras is not always possible so, in Chapter

3, one focus point is the completion of such algebras. The chapter starts with

the basic facts about Banach function algebras, in relevance with the decompos-

ability of the operator of multiplication followed by few standard examples of the

sequence (Mp)p∈N◦ satisfying nice properties. It turned out that the completions

denoted by D̃q(K, {Mp}), q ∈ {1,∞} are again Banach function algebras on K,

provided that the operator d/dz is closable in C(K). Further, by using the method

of Abtahi and Honary in [1], it is shown in Theorem 3.22 that D̃1(K, {Mp}) is

natural on K under a mild condition on the sequence (Mp)p∈N◦ which is satisfied

in the standard examples.

The second focus point of the chapter is to derive conditions under which the

Banach function algebras D̃q(K, {Mp}), q ∈ {1,∞} are regular on K. For this

purpose, by using Domar’s variant (from Chapter 1), first the decomposability
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of M̃z-the operator of multiplication by the coordinate function z-is shown on

Banach function algebras D̃q(K, {Mp}), under an integral condition for the asso-

ciated entire function
∑∞

p=0
p!

Mp
zp. Results from introductory facts yield that, in

this case D̃q(K, {Mp}) are normal Banach function algebras on K. Thus, from

the normality and the naturality, the regularity of the Banach function algebra

D̃1(K, {Mp}) on K is obtained.

Chapter 4 deals with the localisations of such Banach function algebras. We

introduce a sequence (Mp)
∞
p=0 of bounded, positive functions on a perfect, com-

pact set K with

M◦(z) = 1 and
Mp(z)

Mq(z)Mp−q(z)
≥

(
p

q

)

for all z ∈ K, p ∈ N◦, 0 ≤ q ≤ p. For q = {1,∞}, the corresponding normed

function algebras are given by:

Dq(K, {Mp}) :=
{
f ∈ D∞(K); ‖f‖{Mp},q < ∞

}
,

where ‖f‖{Mp},1 :=
∑∞

p=0

∥
∥
∥

f(p)

Mp

∥
∥
∥

K
and ‖f‖{Mp},∞ := supp∈N◦

∥
∥
∥

f(p)

Mp

∥
∥
∥

K
.

Some properties of these normed algebras are observed and natural examples

of (Mp)
∞
p=0 are given.

It is observed that, similar to the constant situation, assuming the closability

of d/dz the completions of Dq(K, {Mp}) are Banach function algebras, denoted

by D̃q(K, {Mp}).
As in the constant situation, the naturality of the Banach function algebra

D̃1(K, {Mp}), along with the examples of the sequences (Mp)
∞
p=0 satisfying the

condition for naturality, are also shown. Let d̃ be the closure of the differential

operator d/dz in C(K) with domain D. For q = ∞, we define the normed spaces

as

D∞(K, {Mp}) :=
{

f ∈ ∩p∈N◦D(d̃p); |||f |||{Mp},∞ := sup
p∈N◦

∥
∥
∥

d̃pf

Mp

∥
∥
∥

K
< ∞

}

Using similar methods as in the constant case for the completion and local inverse-

closedness, it is observed that D∞(K, {Mp}) is a natural Banach function algebra

on K. Following the methods of the constant case, we have first shown the

decomposability of the operator of multiplication M̃z in Theorem 4.15 and hence,

the regularity of Banach function algebras D̃1(K, {Mp}) and D∞(K, {Mp}) on

K.

More interesting results would be to show the regularity of such algebras

on a thin set K having positive Lebesgue measure. For this purpose, we have

considered the set K as the union of two compact sets such that one subset S

of K has positive area and K \ S has zero Lebesgue measure. Following [31], a

sketch of such sets is given in Section 4.5. Further, it is shown that, when the set

K is the spectrum of an operator T ∈ L(X) satisfying the local grid dimension

conditions (from Chapter 2) at a point z ∈ σ(T ) \ S, the operator T is residually

decomposable. Moreover, if the set S is totally disconnected, T is decomposable.

This helped in proving the decomposability of M̃z and hence, the regularity

of D̃1(K, {Mp}) and D∞(K, {Mp}) on such sets K.
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We conclude the work with an interesting example where

Mp(z) = p!
(

p
∏

k=1

log(e + k)
)γ(z)

, p ∈ N◦,

γ(z) := 1+dist(z, S), S is a compact, totally disconnected subset of the compact

set K and K satisfies some grid dimension condition.
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CHAPTER 1

Domar’s Variant

In 1957 and later in 1988, Domar [17], [18] gave sufficient conditions on

the existence of a largest subharmonic minorant of a given function. To get a

familiarity of Domar’s result and the construction, it would be appropriate to

define the basic terms first.

1.1. Preliminaries

In section 1 and 2, we will be dealing with higher dimensional space R
k, for

k > 1, except at few places mentioned below. Let E be an open, connected subset

of R
k.

Definition 1.1. A real-valued function u(x) : E → [−∞,∞) is subharmonic,

if it satisfies the following conditions:

a) u(x) is upper semi-continuous (u.s.c.) on E, i.e. for each x◦ ∈ E,

limx→x◦ supu(x) ≤ u(x◦).
b) For every y = (y1, · · · , yk) ∈ E and r > 0, satisfying B(y, r) ⊂ E and for

every real-valued function h(x), harmonic on B(y, r) and continuous on

B(y, r) and satisfies u(x) ≤ h(x) on ∂B(y, r), it holds that u(x) ≤ h(x)

on B(y, r).

The semicontinuity guarantees that u is (Borel) measurable and bounded

above on every compact subset of E. Every harmonic function (by the maxi-

mum principle) is subharmonic. Also, finite sums of subharmonic functions, and

maximum of finite collections of subharmonic functions are subharmonic.

Remark 1.2. The function z 7→ u(z) = log ‖f(z)‖, is subharmonic, where f

is an analytic function on an open set Ω ⊂ C with values in a Banach space. For

the proof, see e.g. (Lemma 3.4.6, [6]). Also, log+ ‖f(z)‖ := max(log ‖f(z)‖, 0)
and ‖f(z)‖p = exp(p log ‖f(z)‖) are subharmonic functions on Ω for p > 0.

For a harmonic function h on Ω, |h|p is subharmonic for p ≥ 1, see e.g.

(Chapter 1, Section 6, [28]).

We recall few notions about subharmonic minorants and follow the notations

of Domar [17]. Let E ⊆ R
k be an open, connected set and F : E → [0,∞]

be an upper semi continuous function. Define the class {F} of all subharmonic

functions u(x) on E such that

(1.1) u(x) ≤ F (x), ∀ x ∈ E.

Denote {F+} the class of all non-negative subharmonic functions on E satis-

fying (1.1) and define M(x) := sup
u∈{F+}

u(x).

7



8 1. DOMAR’S VARIANT

We give a brief introduction of Domar’s Theorem (Theorem 2) [17]. It is

clear from the property of subharmonic functions that for a finite collection of

subharmonic functions in the class {F}, also have their maximum in the same

class. The question arose that under what conditions, the supremum M(x) of any

collection of subharmonic minorants for the function F , also belong to the class

{F}. The problem was trivial for one dimensional case, i.e. k = 1. For higher

dimensions, Sjöberg and Brelot independently, gave a necessary and sufficient

condition for the function M(x) to be subharmonic.

Theorem 1.3. M(x) is subharmonic if and only if it is bounded on every

compact subset of E.

Having the above information in hand, Domar provided the following result,

restricting his direction in finding the conditions on the set E and on the function

F , under which M(x) is bounded. The following Theorem was known to Beurling

in the case k = 2, but no proof is available.

Theorem 1.4 (Theorem 2, [17]). M(x) is bounded on every compact subset

of E, if for some ε > 0,
∫

E

[
log+ F (x)

]k−1+ε
dx < ∞.

The above theorem is still true if for every compact subset C of E, there

exists an ε > 0 such that,
∫

C

[log+ F (x)]k−1+ε dx < ∞. However, Domar’s results

are more general and remains true, if the subharmonic function is assumed to be

measurable instead of upper semi continuous.

1.2. New version of Domar’s result

In order to prove the improvement of Domar’s result (Theorem 2, [17]), we

need the Lemma 1 [17]. For the convenience, the statement of Lemma 1 [17] has

been mentioned here. Throughout the discussion, the measure considered will be

the Lebesgue measure. As in [17], we define the set;

Eν :=
{
x ∈ E : eν ≤ u(x) < eν+1

}
and lν := λ(Eν),

where u ∈ {F+} and λ is the measure of the set Eν .

Lemma 1.5. (Lemma 1 [17]) Let D be a positive constant and γ a positive

integer, both so large that
e

DkS1
+

1

eγ
≤ 1, where S1 is the volume of the k-

dimensional unit ball. Then the following is true:

If for some integer ν and some point xν ∈ E, u(xν) ≥ eν and SR(xν) ⊂ E, where

R > D(lν−γ+· · ·+lν)
1
k , then SR(xν) contains a point xν+1, where u(xν+1) ≥ eν+1.

Now, we give a variant of Theorem 2 in [17], which will be used throughout

the work. Later, we give few examples of the function f , defined in the following

theorem.
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Theorem 1.6. Let f : [0,∞) → [0,∞) be a monotone increasing function

such that for some a > 0, the integral
∫ ∞
a 1/f(t) dt exists. If

∫

E
f
(
log+ F (x)

)k−1
dx < ∞,

where E is an open, connected set in R
k. Then, M(x) is bounded on every

compact subset of E.

Proof. Let xn ∈ E and u ∈ {F+} such that for all n ∈ N, u(xn) ≥ en. We

will use D and γ same as in Lemma 1.5, satisfying n > γ and follow the proof of

Theorem 2 [17].

By Lemma 1.5 we see that, every ball SR(xn) centred at xn with radius

R > D
∑m

ν=n(lν−γ + · · · + lν)
1
k contains either a boundary point of E or some

point xm ∈ E, such that u(xm) ≥ em.

Since u(x) is bounded on every compact subset of E, it follows that:

dist(xn, ∂E) ≤ D

∞∑

ν=n

(lν−γ + · · · + lν)
1
k

≤ D

∞∑

ν=n

(l
1
k
ν−γ + · · · + l

1
k
ν )

≤ D(γ + 1)

∞∑

ν=n−γ

l
1
k
ν

= D(γ + 1)
∞∑

ν=n−γ

1

f(ν)
k−1

k

· f(ν)
k−1

k l
1
k
ν .

Using the Hölder’s inequality, we get:

dist(xn, ∂E) ≤ D(γ + 1)
( ∞∑

ν=n−γ

1

f(ν)

)k−1
k ·

( ∞∑

ν=n−γ

f(ν)k−1lν

) 1
k

Note that the left term of the above product

δn := D(γ + 1)
( ∞∑

ν=n−γ

1

f(ν)

)k−1
k

is independent of u, and hence, by the monotonicity of the function f and defi-

nition of the set Eν , we have:

dist(xn, ∂E) ≤ δn

( ∫

E
f(log+ u(x))k−1 dx

) 1
k

≤ δn

( ∫

E
f(log+ F (x))k−1 dx

) 1
k

where δn → 0, when n → ∞. Therefore, if for some point x ∈ E, we have

M(x) > en, we conclude that:

dist(x, ∂E) ≤ δn

(∫

E
f(log+ F (x))k−1 dx

) 1
k

which shows that M(x) is bounded on subsets of E having a positive distance to

∂E. �



10 1. DOMAR’S VARIANT

Examples 1.7. Let ε > 0 and for some a > 0,

1) consider f(t) = t1+ε. Then, we get the statement of Theorem 2 [17] and

thus, the integral exists.

2) if f(t) = t(log+ t)1+ε then,
∫ ∞
a f(t) dt exists.

3) let f(t) = t(log+ t)(log+ log+ t)1+ε. Then,
∫ ∞
a f(t) dt exists.

Using the iterative process, we may find many examples like that of (2) and

(3), such that the integral exists.

1.3. Applications to local spectral theory

From here onwards, the complex plane C will be under discussion. Let Ω

be an open, connected subset in C, L(X) denotes the set of all bounded linear

operators on a Banach space X and λ represents the planar Lebesgue measure.

Further, we denote by σ(T ) and ρ(T ) = C\σ(T ), the spectrum and the resolvent

of an operator T ∈ L(X).

Recall from [8] that a bounded linear operator T on a Banach space X is

said to have Bishop’s property (β) on an open set Ω ⊆ C, if for every open set

U ⊂ Ω and every sequence of analytic functions fn : U → X with the property

that (T − z)fn(z) → 0, as n → ∞, uniformly on all compact subsets of U , it

follows that fn(z) → 0, as n → ∞, locally uniformly on U .

Let O(U,X) denote the space of all analytic functions from U into X. Define

the operator TU : O(U,X) → O(U,X) by (TUf)(z) := (T − z)f(z), for all f ∈
O(U,X) and z ∈ U . In terms of the operator TU , property (β) is characterised as;

An operator T ∈ L(X) has property (β) on Ω, if and only if, for every open set

U ∈ Ω, the operator TU on O(U,X) is injective and has closed range (for proof

see e.g. Proposition 1.2.6, [32]). In the next lemma, we state some important

results of property (β) which will be used later (for proof see Lemma 1.2 [4]) .

Lemma 1.8. Let T ∈ L(X) and Ω ⊂ C be open. Then the following hold:

a) Let K be a compact, totally disconnected set in C. If T has property (β)

on Ω \ K, then T has property (β) on Ω.

b) If λ(Ω∩σ(T )) = 0, then T has property (β) on Ω if and only if for each

sequence (fn)∞n=1 in O(Ω,X) with (T − z)fn(z) → 0 uniformly on all

compact subsets of Ω, the sequence (fn)∞n=1 is locally uniformly bounded

on Ω.

c) If, for each z ∈ Ω the operator T has property (β) on some open neigh-

bourhood U(z) ⊂ Ω of z, then T has property (β) on Ω.

In fact, property (β) is closely related to the decomposability of an operator.

Decomposable operators were first introduced by C. Foiaş in 1963 [26]. To see

the things more clear, let us define few terms and basic results concerning them.

Definition 1.9. A bounded linear operator T on a Banach space X is called

decomposable, if for every open cover {U, V } of C, there exist T -invariant closed

linear subspaces Y and Z of X such that σ(T |Y ) ⊂ U , σ(T |Z) ⊂ V and X =

Y + Z.
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It is known that every decomposable operator has property (β) [32]. How-

ever, the converse is not true in general. We further define that, an operator

T ∈ L(X) is called residually (or S-)decomposable with residuum S, if for each

open cover of C = U ∪ V , and a closed set S ⊂ σ(T ) such that S ⊂ U and

S ∩ V = ∅, there exist T -invariant closed subspaces Y and Z of X, such that

X = Y + Z, σ(T |Y ) ⊂ U and σ(T |Z) ⊂ V (see [37]). It is easy to note that

for an open set Ω ⊂ C with residuum ∅ = S := σ(T ) \ Ω, S-decomposability

implies decomposability in the sense of C. Foiaş [26]. From the duality results

of an operator T in (Section 3) [3] it follows that, if T and it’s transpose T ∗

both have property (β) on an open set Ω, then T and T ∗ are residually decom-

posable with residuum σ(T ) \ Ω. Recall that a linear subspace Y of X is called

T -hyperinvariant if RY ⊂ Y , for every R ∈ L(X) commuting with T .

For further properties of decomposable operators, we refer to the books of

[13] and [32].

1.3.1. Relation between subharmonic minorants and property (β).

Domar’s results and it’s variant assures us that a non-negative upper semi-

continuous function has a subharmonic minorant. In [4], these subharmonic mi-

norants have been used to show the existence of property (β) and hence, (residual)

decomposability of an operator T ∈ L(X).

In fact, from Lemma 1.8(b) to show that an operator T has Bishop’s property

(β) on Ω with λ(Ω ∩ σ(T )) = 0, it suffices to show that the sequence (fn)∞n=1

is locally uniformly bounded on Ω. Recall that (e.g. from [6], Lemma 3.4.6)

for f ∈ O(Ω,X) and z ∈ Ω, log ‖f(z)‖ is subharmonic. Let for any compact

subset K of Ω, for each open neighbourhood U ⊂ Ω of K and for all n ∈ N,

consider the subharmonic function un(z) := log ‖fn(z)‖, with the convention

that log 0 := −∞. Then to show the uniform boundedness of (fn)∞n=1 on K, it

would be sufficient to find a subharmonic majorant for the sequence (un)∞n=1.

Before presenting an immediate consequence of Domar’s variant, we fix the

condition of the function f introduced in Theorem 1.6 in the following definition.

Definition 1.10. A function f : [0,∞) → [0,∞) is said to satisfy condition

(η) if, f is monotone increasing and for some a > 0, the integral

I(f) =

∫ ∞

a

1

f(t)
dt < ∞.

Now, we give a corollary of Theorem 1.6.

Corollary 1.11. Let T be a bounded linear operator on a Banach space X

and Ω ⊆ C be open. Assume that for each z ∈ Ω, and a neighbourhood U(z) ⊂ Ω

of z, there exists a function fz satisfying condition (η) such that the following

integral exists;

(1.2) I :=

∫∫

U(z)

fz(log
+ log+ ‖R(ζ, T )‖) dλ(ζ) < ∞

Then, T is residually decomposable with residuum S := σ(T ) \ Ω.
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Proof. Let (gn)∞n=1 be a sequence in O(U(z),X) such that

(ζ − T )gn(ζ) → 0, for n → ∞,

uniformly on all compact subsets of U(z) and let K be a compact subset of U(z).

For n ≥ n◦, we have ‖(ζ − T )gn(ζ)‖ ≤ 1 on some open neighbourhood V of K

with V ⊂ U(z).

Note that ζ 7→ log ‖gn(ζ)‖ is subharmonic on U(z) and, for n ≥ n◦,

log ‖gn(ζ)‖ ≤ log+ ‖R(ζ, T )‖ on V.

As,
∫∫

U(z)

fz(log
+ log+ ‖R(ζ, T )‖) dλ(ζ) is bounded, we conclude from Theorem

1.6 with E = V that
(
log ‖gn‖

)∞
n=1

is uniformly bounded on V . Hence also
(
‖gn‖

)∞
n=1

is uniformly bounded on V . By Lemma 1.8(b) and (c), T has property

(β) on Ω. As in the proof of Theorem 3.3 in [4], we see using similar arguments

for T ∗ that T ∗ has also property (β) on Ω. Thus, from Theorem 20 [3] , T is

residually decomposable with residuum S = σ(T ) \ Ω. �

From the above Corollary, it is interesting to note that if Ω ∩ σ(T ) contains

at least two points or if σ(T ) \ Ω and Ω ∩ σ(T ) are non-empty, then T has a

non-trivial hyperinvariant subspace.

The above Corollary is a local version and by considering Examples 1.7(i) for

the function fz, i.e. fz(t) = t1+ε, for some ε > 0 and for all t ≥ 0 we obtain the

statement of Theorem 3.3 in [4].

Remark 1.12. A global version of Corollary 1.11 can be formulated as:

Let T and Ω be as in Corollary 1.11 and f satisfies the condition (η). Then,

T is residually decomposable with residuum σ(T ) \ Ω, if the following holds:

(1.3) IΩ :=

∫∫

Ω

f(log+ log+ ‖R(ζ, T )‖) dλ(ζ) < ∞.

Remark 1.13. Let T and Ω be as in Corollary 1.11 with residuum S =

σ(T ) \ Ω. If S is totally disconnected, then T is decomposable.

Proof. Following the arguments as in the proof of Corollary 1.11, we obtain

that T has property (β) on Ω. Hence, also on C as S is totally disconnected by

Lemma 1.8(a). From the proof of Theorem 3.3 [4], T ∗ has also property (β) on

Ω and by Lemma 1.8(a) and the totally disconnectedness of S, also on C. Thus

T is decomposable. �

We combine Corollary 1.11 and Remark 1.13 in the following result which will

be useful in obtaining decomposability in localised situation.

Corollary 1.14. Let T ∈ L(X) and S be a compact, totally disconnected

subset of σ(T ). Assume that for each z ∈ σ(T ) \ S, there exists a closed square

Qz ⊂ σ(T ) \ S with centre z and a function fz satisfying condition (η), such that

the following integral exists;

IQz =

∫∫

Qz

fz(log
+ log+ ‖R(ζ, T )‖) dλ(ζ) < ∞.
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Then, T is decomposable.

1.3.2. Application to decomposability. Let Ω ⊂ C be an open set. An

operator T is said to have thin spectrum in Ω, if λ(Ω ∩ σ(T )) = 0. Next theorem

gives us an improvement of Theorem 3.3 [4], using the Domar’s variant.

Theorem 1.15. Let T ∈ L(X) and Ω ⊆ C be open, such that λ(Ω∩σ(T )) = 0.

Suppose that for each z ∈ Ω and a neighbourhood V (z) ⊂ Ω of z, there exists some

constant C(z) > 0 and a function fz satisfying:

i) condition (η);

ii) for all C > 0, we have K(C) := limt→∞ sup fz(C+t)
fz(t) < ∞,

such that for all n ∈ N, λ(An(z)) ≤ C(z)
fz(n)2

, where,

An(z) :=
{

w ∈ V (z)|e−en+1 ≤ dist(w, σ(T )) < e−en
}

.

Assume that the resolvent satisfies the condition of the form;

‖R(ζ, T )‖ ≤ C◦ dist(ζ, σ(T ))−k, ∀ ζ ∈ ρ(T ),

for positive constants C◦ and k ≥ 1. Then, T is residually decomposable with

residuum S := σ(T ) \ Ω.

In particular, if Ω ∩ σ(T ) contains at least two points or if σ(T ) \ Ω and

Ω ∩ σ(T ) are non-empty, then T has a non-trivial hyperinvariant subspace.

Proof. Fix an arbitrary z ∈ Ω. If dist(z, σ(T )) ≥ e−e, then we have with

ε := 1
2e−e a neighbourhood Vε(z) ⊂ Ω of z so that:

∫∫

Vε(z)

fz

(
log+ log+ ‖(ζ − T )−1‖

)
dλ(ζ) < ∞

which shows from Corollary 1.11 that T is residually decomposable.

Suppose now that dist(z, σ(T )) < e−e. Let V (z) be as in the theorem. Then,

U(z) := V (z) ∩
{
w ∈ Ω|dist(w, σ(T )) < e−e

}

is a neighbourhood of z and U(z) ⊂ ∪∞
n=1An(z).

For ζ ∈ An(z), we have by the growth condition of R(ζ, T ), that dist(ζ, σ(T )) ≥
e−en+1

, which implies ‖(ζ − T )−1‖ ≤ C◦eken+1
. Then,

log+ log+ ‖(ζ − T )−1‖ ≤ log+ log+(C◦e
ken+1

)

≤ log(log C◦ + ken+1) ≤ log(C1(k)en+1)

≤ log C1(k) + n + 1 ≤ C2(k) + n

where C1(k), C2(k) > 0 are constants independent of n. Let

(1.4) I =

∫∫

U(z)

fz

(
log+ log+ ‖(ζ − T )−1‖

)
dλ(ζ)
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Then, by the disjointness of An(z), n ∈ N, one obtains:

I ≤
∞∑

n=1

∫∫

An(z)

fz

(
log+ log+ ‖(ζ − T )−1‖

)
dλ(ζ)

≤
∞∑

n=1

∫∫

An(z)

fz(C2(k) + n) dλ(ζ)

=
∞∑

n=1

fz(C2(k) + n)λ(An(z))

≤
∞∑

n=1

C(z)fz(C2(k) + n)

fz(n)2

≤ C(z)K(C2(k))
∞∑

n=1

1

fz(n)
(1.5)

Since, by assumption i) in the theorem, the sum on the right hand side of

(1.5) converges, which implies that the integral I in (1.4) exists.

Now, to show that T is residually decomposable with residuum S = σ(T ) \Ω

and the fact that T has a non-trivial hyperinvariant subspace follows directly

from the proof of Corollary 1.11 and the remarks after it. �

Remark 1.16. 1) This Theorem also applies to the functions given in

Examples 1.7.

2) The above theorem also gives the improvement of Theorem 3.3 in [4],

when the original result of Domar (Theorem 2, [17]) is used. In that

case, we assume that for some δ(z) > 0, some constant C(z) > 0 and

for all n ∈ N,

λ(An(z)) ≤ C(z)

n2+δ(z)

where An(z) is same as in the Theorem 1.15.

3) This Theorem applies to hyponormal operators T on a Hilbert space H,

i.e. when T ∗T ≥ TT ∗. Since the resolvent of a hyponormal operator

satisfies linear order growth condition, it is clear that for k,C◦ = 1, the

resolvent estimate in Theorem 1.15 will be ‖R(ζ, T )‖ ≤ dist(ζ, σ(T ))−1.

1.3.3. Application to normality. An application of Domar’s variant (The-

orem 1.6) to obtain normal (function) algebras will be provided here. We mention

here that, more normality results on some interesting Banach function algebras

will be presented in Chapters 3 and 4. Recall that a function algebra A is said

to be normal on a locally compact set K, if given a compact set K1 and a closed

set K2 such that K1 ∩ K2 = ∅, there exists f ∈ A with f |K2 = 0 and f |K1 = 1.

One observes that, the normality of certain algebras of functions as obtained

in Theorem 3.10 [4] can be improved by using the variant of Domar’s Theorem

from Section 1.2. For this reason, we first define the algebra of functions as

discussed in [4].

Let h : [0,∞) → [0,∞) be a monotone increasing function such that h(t) ≥ t,

for all t ≥ 0. Let K be a compact set having Lebesgue measure zero and define
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DK(h) be the algebra of all complex-valued bounded C1-functions such that:

‖φ‖h := sup
z∈C

|f(z)| + sup
z∈C\K

∣
∣
∣

1

h(dist(z,K))
· ∂f

∂z
(z)

∣
∣
∣ < ∞.

Then, DK(h) is a commutative Banach algebra. Denote, D◦,K(h) be the

closure in DK(h) of the subalgebra of all those functions φ in DK(h), which

are analytic in some (individual) neighbourhood Uφ of K. We further define

an ideal J (K) in D◦,K(h) as the collection of all φ ∈ DK(h) vanishing in some

neighbourhood Vφ of K and I(K) := J (K). We consider the quotient algebra

QK(h) := D◦,K(h)/I(K) and [φ]K represents the equivalence class of φ ∈ D◦,K(h)

in the quotient algebra QK(h). In particular, using Remark 1.12, we get the

following result:

Theorem 1.17. Let f be a function satisfying condition (η), K be a compact

set with λ(K) = 0 and h be a function as defined above.

If, there exists an open neighbourhood U of K such that for some t ∈ (0, 1), we

have:

I :=

∫∫

U

f
(
log+ log+ g(dist(z,K))

)
dλ(z) < ∞

where g(dist(z,K)) := h(dist(z,K) − th(dist(z,K))). Then, the algebra RK(h)

of all restrictions of functions from D◦,K(h) to K is normal.

Proof. The proof follows the proof of Theorem 3.10 [4]. �





CHAPTER 2

Integrability criteria of functions near ”thin” sets

In this chapter we investigate in detail the integrability criteria of a non-

negative, continuous function G defined on the complement of a given thin, com-

pact set K ⊂ C, when it satisfies some growth estimates near a given compact

set K. We obtain the integrability criteria under two situations, in one using

Domar’s theorem (Theorem 2, [17]) and in other using Domar’s variant (Theo-

rem 1.6). In both situations, we will discuss three types of growth conditions of a

function G, namely, (i) finite order growth, (ii) exponential growth and (iii) dou-

ble exponential growth . Since, these growth conditions will be used frequently

throughout the chapter, we mention them separately.

Growth Conditions (GC)

Let K ⊂ C be a thin compact set and G be a non-negative, continuous

function on C\K. We will consider the following growth estimates for the function

G;

(GC1 ) |G(z)| ≤ C

dist(z,K)α
, α ≥ 1, (z ∈ C \ K);

(GC2 ) |G(z)| ≤ exp
( C

dist(z,K)α

)

, α > 0, (z ∈ C \ K);

(GC3 ) |G(z)| ≤ exp
(

exp
( C

dist(z,K)α

))

, α > 0, (z ∈ C \ K),

where C is a positive constant. Each particular growth condition (GC1)− (GC3)

will be provided with individual examples.

2.1. Introductory facts and dimensions

A set having a fine, irregular structure and which contains copies of itself

at arbitrarily small scales is usually defined as fractal . Most of the fractals are

self-similar, for example Cantor set , von Koch curve. Much of the details of the

fractals are not essential here, so we refer to the books of K. Falconer [23, 24]

for more examples and detailed structure of such sets.

Fractals are studied and measured using dimension, usually known as Frac-

tal dimension, which is greater than the topological dimension of a structure.

Roughly speaking, by fractal dimension of a set we mean, the ratio of m copies of

the set scaled by a factor r. There are different ways to measure this dimension,

but we will only discuss two types, i.e. Hausdorff dimension and Box dimension

and will use only the variant of the later one. For other types of dimensions we

suggest to Chapter 3, [23].

17
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We mention here that the following discussion (about the fundamental facts

of the above two dimensions) will deal with arbitrary sets in R
n.

2.1.1. Hausdorff dimension. Hausdorff dimensions are based on the con-

cept of measures. Let F ⊂ R
n be a non-empty set and {Fi} be an ε-cover of F

for some ε > 0, i.e. {Fi} is a countable covering of F , where each Fi, i ∈ N has

diameter at most ε.

Let |Fi|, i ∈ N denotes the diameter of a set and s > 0. Then, for any ε > 0

we define the set Hs
ε(F ) by

Hs
ε(F ) := inf

{ ∞∑

i=1

|Fi|s : {Fi} is an ε − cover of F
}

.

As ε decreases, the infimum Hs
ε(F ) increases and thus, we define the s-

dimensional Hausdorff measure as:

Hs(F ) := lim
ε→0

Hs
ε(F ).

It is easy to check that Hs(F ) satisfies the definition of a measure. Hence, we

denote and define the Hausdorff dimension ; dimH F to be the infimum of s for

which the Hausdorff measure is zero, i.e.

dimH F = inf{s : Hs(F ) = 0}.
In other words,

(2.1) Hs(F ) =

{

∞, if s < dimH F

0, if s > dimH F

Hausdorff dimension has different variants but in most of the examples it is

not simple to calculate the Hausdorff measure of a set.

2.1.2. Box-counting dimension. Box-counting dimension or usually known

as Box dimension is commonly used when dealing with self-similar sets. The basic

idea is to cover a (bounded) set F ⊂ R
n by the minimum number of sets Nε(F )

of diameter at most ε. As ε becomes small, the number Nε(F ) becomes large. If

there exists some d > 0 such that

Nε(F ) ∼ 1/εd, as ε → 0

then, d is the box dimension of F . But this d only exists if there is some positive

constant k such that

lim
ε→0

Nε(F )

1/εd
= k.

Since, both sides of the above equation are positive, taking logarithm of both

sides we get:

lim
ε→0

[
log Nε(F ) − d log(1/ε)

]
= log k

d = lim
ε→0

log k − log Nε(F )

log ε
= − lim

ε→0

log Nε(F )

log ε
.

We denote the box dimension of a set F by dimB F and formally define it as

follows:
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Definition 2.1. Let F ⊂ R
n be a non-empty, bounded set and ε > 0. Denote

by Nε(F ) the minimum number of sets of diameter at most ε which cover F .

Then, the lower box dimension and upper box dimension of F are defined

as:

dimBF = limε→0
log Nε(F )

− log ε

and dimBF = limε→0
log Nε(F )

− log ε

respectively. If the above limits exist and are equal, then the common value is

defined as the Box dimension , i.e.

dimB F = lim
ε→0

log Nε(F )

− log ε
.

When computing the box dimension, structure of a set F ⊂ R
n plays an

important role and helps in deciding to find an appropriate covering of it. Other

than boxes, a set F can be covered in various ways, e.g. by discs or stars of

diameter ε. Few commonly used coverings are:

(i) closed balls of radius ε;

(ii) cubes of side length ε;

(iii) ε-mesh cubes intersecting with the set F ;

(iv) sets of diameter at most ε;

(v) disjoint balls of radius ε with centres in the set F .

It has been shown in Section 3.1 [23] that, all the coverings (i)−(v) mentioned

above are in fact, equivalent definitions of the box dimension of a set F . However,

in type (i)−(iv), Nε(F ) is the smallest number covering F and in type (v), Nε(F )

is the largest number of such disjoint balls.

Note that when computing dimBF and dimBF , not every ε need to be con-

sidered for ε → 0. In fact, by choosing a decreasing sequence (εi)i∈N◦ with εi → 0

for i → ∞ such that εi+1 > c εi, for some constant 0 < c < 1, then

dimBF = lim
i→∞

log Nεi

− log εi

(see [23], p. 41).

It is clear that the lower box dimension is (slightly) less than the upper box

dimension. Also, from the arguments before Example 3.3 [23], we observe that:

(2.2) dimH(F ) ≤ dimB(F ) ≤ dimB(F ).

Remark 2.2. Let F ⊂ R
n be any bounded set having upper box dimension

< n. Then, F has zero volume.

Proof. It is clear from (2.2) that F has Hausdorff dimension dimH F < n.

Hence, F has zero volume by (2.1). �

Moreover, we see from Proposition 2.5 [23] that a set F ⊂ R
n having dimH F <

1 is totally disconnected, e.g. Cantor Set having dimH = dimB = log 2/ log 3 (see

Example 3.3, [23]).
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We will use grid method which is similar to type (iii) to calculate the (upper)

box dimension and give a sketch of it in R
2.

Let F ⊂ R
2 be a non-empty, bounded set and k ∈ N◦. In grid method, we

cover the complex plane C by squares of side length εk parallel to the axes, i.e.

squares of the form [n1εk, (n1 +1)εk]× [n2εk, (n2 +1)εk], where n1, n2 ∈ Z. Then,

Nεk
(F ) denotes the number of squares of side length εk intersecting with F . We

divide the grids of side length εk into grids of side length εk+1 and consider the

subsquares having non-empty intersection with F . Continuing in this way and

letting k → ∞, we obtain a finer cover of a set F . We will consider upper box

dimension when dealing with sets.

2.2. Integrability and dimension conditions

In this section we will use the concept of upper box dimension for a com-

pact set K ⊂ C. Further, we obtain the integrability results of a non-negative,

continuous function G using Domar’s result when a function G satisfies a certain

growth near a given thin compact set K having some upper box dimension d.

First, we give some elementary results of monotone increasing functions which

will be used frequently in the following discussion and later deal with the growth

estimates of a function G and upper box dimension of a compact set K.

Lemma 2.3. Let x1, x2, · · · , xm ∈ R and g be a real-valued monotone increas-

ing function. Then, for the function g and for the logarithm function, we have

the following estimates:

g
(

max
1≤j≤m

xj

)
= max

1≤j≤m
g(xj) ≤

m∑

j=1

g(xj),

and log

m∑

j=1

xj ≤ log 2m−1 +

m∑

j=1

log xj

= log
(

2m−1
m∏

j=1

xj

)

.

Proof. The estimates can be easily proved by using the monotonicity of the

functions and induction with respect to m. �

Figure 2.1. Square Qa
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Lemma 2.4. Let h : (0,∞) → (0,∞) be a monotone increasing function such

that for some δ > 0,

(2.3) I(h) :=

∫ 1

0
h
( 2

t1+1/δ

)

dt < ∞.

Let Qa be a square of side length a ≤ 1. Then, the following estimate holds;

Ja(h) :=

∫∫

Qa

h
( 1

dist(z, ∂Qa)

)

dλ(z) ≤ 2a2

[

I(h) + h
( 2

a1+δ

)]

.

Proof. We decompose Qa into 8 congruent triangles △1, · · · ,△8, as shown

in Figure 2.1, which gives:

Ja(h) =
8∑

j=1

∫∫

△j

h
( 1

dist(z, ∂Qa)

)

dλ(z).

Define, Jj(h) :=
∫∫

△j

h( 1
dist(z,∂Qa)) dλ(z), for j = 1, · · · , 8.

With an appropriate choice of the coordinates for △j′s, j = 1, · · · , 8, we have:

Jj(h) =

∫ a
2

0

∫ x

0
h(

1

y
) dydx.

Integrating by parts and changing the variable by x = a
2 t, we get:

Jj(h) =

∫ a
2

0

(a

2
− x

)
h(

1

x
) dx ≤ a2

4

∫ 1

0
h(

2

at
) dt.

For some δ > 0, the above integral can be written as:

Jj(h) =
a2

4

[ ∫ aδ

0
h(

2

at
) dt +

∫ 1

aδ

h(
2

at
) dt

]

≤a2

4

[ ∫ aδ

0
h(

2

t1+1/δ
) dt +

∫ 1

aδ

h(
2

a1+δ
) dt

]

≤a2

4

[

h(
2

a1+δ
) + I(h)

]

Thus, by symmetry, we get that:

Ja(h) ≤ 2a2

[

I(h) + h
( 2

a1+δ

)
]

.

�

To acquire the integrability results of a function G for each growth estimate

(GC1) − (GC3), respective grid dimension conditions of a set K will be defined.

Before discussing the types of the growth estimates and the respective dimension

conditions, we give some details of a general scheme of covering a set K using the

grid method.

Covering of a set K
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Let Q ⊂ C be a closed square of side length a and K ⊂ C be a compact subset

of Q with λ(K) = 0 and upper box dimension d ≤ 2. Then, for each k ∈ N, using

the notion of grid dimension from [23], we consider the coverings Qk of Q by

squares of side length ak parallel to the axes and intR1 ∩ int R2 6= ∅, if and only

if, R1 = R2 for all R1, R2 ∈ Qk.

Let Nak
denote the minimal number of squares R ∈ Qk of side length ak

having non-empty intersection with K. Thus, the area Fk of the minimal union

Ak of squares from Qk having non-empty intersection with K will be:

(2.4) Fk := Nak
a2

k.

Let k◦ ∈ N and NQ denote the minimal number of squares from Qk◦ covering

Q. Then, for AQ the minimal union of squares from Qk◦ covering Q, we have for

all k ≥ k◦, that:

(2.5) Q = AQ ⊇ Ak◦ ⊇ Ak◦+1 ⊇ · · · ⊇ Ak ⊇ Ak+1.

Since, the gridlinesk+1 of side length ak+1 contains the gridlinesk of side length

ak, which gives ak → 0, for k → ∞. Thus, λ
(
∩∞

k=k◦
Ak

)
= limk→∞ Fk = 0.

We need to show that for some ε > 0, the integral

(2.6) IQ :=

∫∫

Q

(

log+ log+ |G(z)|
)1+ε

dλ(z) < ∞.

Using (2.5), we see that IQ can be further written as:

IQ ≤
∫∫

AQ\Ak◦

(

log+ log+ |G(z)|
)1+ε

dλ(z)+

+
∞∑

k=k◦

∫∫

Ak\Ak+1

(

log+ log+ |G(z)|
)1+ε

dλ(z).(2.7)

In particular, we will use (2.7), when the growth conditions of a function G

near K and the upper box dimension of K are known and that K has Lebesgue

measure zero.

We fix the notations for the proceeding results in the following situation:

Situation S1







Q ⊂ C is a closed square of side length a;

K ⊂ Q is compact having upper box dimension d;

Qk, k ∈ N is the covering of Q having grids of side length

ak such that ak → 0, as k → ∞;

Nk := Nak
is the number of subsquares from Qk

having non-empty intersection with K;

G is a non-negative, continuous function on Q \ K.

2.2.1. Double exponential growth. Now, we consider the case (GC3),

i.e. when a function G satisfies the double exponential growth condition and the

compact set K has upper box dimension d < 2.
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Theorem 2.5. Consider the situation S1 such that K has upper box dimen-

sion d < 2. Assume that G satisfies the following condition;

|G(z)| ≤ exp
(

exp
( C

dist(z,K)α

))

(z ∈ Q \ K)

where C and α are positive constants and α < min {1, 2 − d}. Then, for some

ε > 0, (2.6) holds, i.e.

IQ =

∫∫

Q

(

log+ log+ |G(z)|
)1+ε

dλ(z) < ∞.

Proof. Let ak := 2−ka be the side length of the squares Qk. As, K has

upper box dimension d < 2, we have from Remark 2.2 that λ(K) = 0. Thus, by

the definition of upper box dimension, we have that:

lim
k→∞

log Nk

log 1
ak

= lim
k→∞

log Nk

log(2k

a )
≤ d < 2 − α.

In particular, there is some k◦ ∈ N such that,

∀ k ≥ k◦ :
log Nk

log(2k

a )
≤ d + δ,

where δ > 0 is chosen such that d + δ < 2 − α. Hence, from (2.4) and the above

inequality, we get that:

(2.8) Fk = Nka
22−2k ≤ a2−(d+δ)2−k(2−(d+δ)), k ≥ k◦.

For k ≥ k◦ and a square R from Qk with int R∩K = ∅, we have; dist(z,K) ≥
dist(z, ∂R). Thus, for ε > 0 with d + δ + α(1 + ε) < 2 and α + ε < 1, and from

the growth condition we get:

IR :=

∫∫

R

(

log+ log+ |G(z)|
)1+ε

dλ(z)

≤
∫∫

R

( C

dist(z, ∂R)α

)1+ε
dλ(z) = C1

∫∫

R

1

dist(z, ∂R)α(1+ε)
dλ(z)

where C1 = C1+ε. Using Lemma 3.7 [4], we get that:

IR ≤C1
21+α(1+ε)2−k(2−α(1+ε))a2−α(1+ε)

(2 − α(1 + ε))(1 − α(1 + ε))

≤C2a
2−α(1+ε)2−k(2−α(1+ε))

where C2 is a positive constant independent of k. Thus, from (2.7) we obtain for

IQ that:

IQ ≤C2a
2−α(1+ε)

(

(NQ − Nk◦)2
−k◦(2−α(1+ε)) +

∞∑

k=k◦

(4Nk − Nk+1)2
−(k+1)(2−α(1+ε))

)

≤C2a
−α(1+ε)2k◦α(1+ε)(λ(AQ) − Fk◦) + C2a

−α(1+ε)
∞∑

k=k◦

(Fk − Fk+1)2
(k+1)α(1+ε)
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Note that, for K > k◦, we have:

SK := − Fk◦2
k◦α(1+ε) +

K∑

k=k◦

(Fk − Fk+1)2
(k+1)α(1+ε)

=
K∑

k=k◦

Fk(2
(k+1)α(1+ε) − 2kα(1+ε)) − FK+12

(K+1)α(1+ε)

=
K∑

k=k◦

Fk2
kα(1+ε)(2α(1+ε) − 1) − FK+12

(K+1)α(1+ε)

By (2.8), we have for k ≥ k◦,

Fk2
kα(1+ε) ≤ a2−(d+δ)2−k(2−(d+δ)) · 2kα(1+ε)

= c(a, d, δ)2−k[2−(d+δ)−α(1+ε)]

where c is a positive constant depending on a, d and δ only. Note that d + δ +

α(1 + ε) < 2. Hence, limK→∞ SK exists and

IQ ≤ C2a
−α(1+ε)

(

λ(AQ)2k◦α(1+ε) + lim
K→∞

SK

)

< ∞.

�

Figure 2.2. Sierpinski carpet Qs at 4th step

Example 2.6. Let Q be a unit square and at some p-th step, p ∈ N;

εp =
1

3p
= side length of the squares ;

Np =8p = number of the remaining squares .

Then, the resulting compact set Qs known as Sierpinski carpet, is a frac-

tal set of Lebesgue measure zero and box dimension ≈ 1.89.
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Proof. Subdivide Q into 32 equal subsquares and delete 1 square of side

length 1
3 (here we delete the central square). Subdivide the remaining N1 = 8

subsquares into equal subsquares of side length 1
32 . Delete from each of them, the

central subsquare, resulting N2 = 82 remaining subsquares of side length 1
32 .

Continuing iteratively in the same way with the remaining subsquares, we get

a decreasing sequence εp = 1
3p , which converges to zero as p tends to ∞. Hence,

lim
p→∞

log Np

log 1/εp
= lim

p→∞
log 8p

log 3p
=

log 8

log 3
.

It is clear from (2.2) that dimH(Qs) ≤ log 8
log 3 < 2 and thus from (2.1), Qs has

Lebesgue measure zero. �

In the following subsections, we will consider that a compact set K satisfies

some grid dimension condition. Since, these conditions will be used frequently

throughout the discussion, we first set the relevant notations and define the con-

ditions.

We will use the notations from the situation S1 and in addition, denote and

define the grid dimension function of a set K as:

D(ak) :=
log Nk

log 1
ak

, k ∈ N.

Using the above notation along with the notations in situation S1, we define

the types of grid dimension condition as follows:

Grid dimension Condition of type (2, δ)

Let ak := 2−k(k+1)/2a, k ∈ N. Then, the grid dimension condition will be of type

(2, δ) if, there exists δ > 0 such that:

(2.9) ∀k ≥ k1, D(ak) =
log Nk

log 1
ak

≤ 2 − (1 + δ)
log log 1

ak

log 1
ak

.

Grid dimension Condition of type (3, δ)

Consider the side length ak := 2−2k
a, k ∈ N. Then, we call the grid dimension

condition of type (3, δ) if, there exists δ > 0 such that:

(2.10) ∀k ≥ k1, D(ak) =
log Nk

log 1
ak

≤ 2 − (1 + δ)
log(log log 1

ak
)

log 1
ak

.

Grid dimension Condition of type (1, α)

For the side length ak := 2−ka, k ∈ N, the grid dimension condition will be called

of type (1, α) if, there exists C > 0 and α ≥ 0 such that:

(2.11) ∀k ≥ k1, D(ak) =
log Nk

log 1
ak

≤ 1 +
log(Ckα)

log 1
ak

.

2.2.2. Exponential growth. This section deals with the case, when a func-

tion G satisfies the exponential growth condition (GC2) and the compact set K

has upper box dimension 2.
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Theorem 2.7. Consider the situation S1. Assume that there exists δ > 0

such that K satisfies grid dimension condition of type (2, δ) and that G satisfies

the condition of the form:

|G(z)| ≤ exp
( C

dist(z,K)α

)

, (z ∈ Q \ K)

where C and α are positive constants. Then, for some ε > 0, (2.6) holds, i.e.

IQ =

∫∫

Q

(

log+ log+ |G(z)|
)1+ε

dλ(z) < ∞.

Proof. Since for each k ∈ N, the subsquares have side length ak = 2−
k(k+1)

2 a,

we have from (2.4) that; Fk = Nk2
−k(k+1)a2.

By (2.9), there exists k◦ ∈ N, such that:

(2.12) ∀ k ≥ k◦ : Fk ≤ ˜̃C · 1

k2(1+δ)
and ak = 2−

k(k+1)
2 a ≤ 1.

Same as in the proof of Theorem 2.5, we observe that for k ≥ k◦ we have,

dist(z,K) ≥ dist(z, ∂R), where R is a square from Qk such that int R ∩ K = ∅.
Then, for some ε > 0, such that ε < δ and from the growth condition of the

function G, we have:

IR =

∫∫

R

(

log+ log+ |G(z)|
)1+ε

dλ(z)

≤
∫∫

R

(

log(e + C) + log
1

dist(z, ∂R)α

)1+ε
dλ(z)

≤C1

∫∫

R

(

log
1

dist(z, ∂R)α

)1+ε
dλ(z)

where C1 is a positive constant depending on ε only. Applying Lemma 2.4 with

h(x) :=
(
log xα

)1+ε
and for some δ◦ > 0, we get that:

(2.13) IR ≤ C1

[

2a2
k

{
I(h) + h

( 2

a1+δ◦
k

)}]

where I(h) =
∫ 1
0 h

(
2

t1+1/δ◦

)

dt =
∫ 1
0

(

log
(

2
t1+1/δ◦

)α
)1+ε

dt = M < ∞ by (2.3)

and

h
( 2

a1+δ◦
k

)
=

(

log
2α

a
α(1+δ◦)
k

)1+ε
=

(

log
2α2α(1+δ◦)(k2+k)/2)

aα(1+δ◦)

)1+ε

=
[

α log 2 + α(1 + δ◦)
{
(
k2 + k

2
) log 2 + log

1

a

}]1+ε

=
[
c + c◦(k

2 + k)
]1+ε ≤ C̃(k(k + 1))1+ε

where C̃, c and c◦ are positive constants independent of k. Putting the above

values in (2.13), we get:

IR ≤C1

[
2 · 2−k(k+1)a2{M + C̃(k(k + 1))1+ε}

]

≤C2a
22−k(k+1)(k(k + 1))1+ε
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where C2 is a positive constant independent of k. Thus, from (2.7), we obtain for

IQ that:

IQ ≤(NQ − Nk◦)C2a
22−k◦(k◦+1)(k◦(k◦ + 1))1+ε+

+
∞∑

k=k◦

(22(k+1)Nk − Nk+1)C2a
22−(k+1)(k+2)((k + 1)(k + 2))1+ε

≤C2λ(AΩ)(k◦(k◦ + 1))1+ε − C2Fk◦(k◦(k◦ + 1))1+ε+

+
∞∑

k=k◦

C2(Fk − Fk+1)((k + 1)(k + 2))1+ε

Note that, for K > k◦, we have:

SK := − Fk◦(k◦(k◦ + 1))1+ε +
K∑

k=k◦

(Fk − Fk+1)((k + 1)(k + 2))1+ε

=
K∑

k=k◦

Fk((k + 1)(k + 2))1+ε − Fk(k(k + 1))1+ε − FK+1((K + 1)(K + 2))1+ε

=
K∑

k=k◦

Fk(k + 1)1+ε((k + 2)1+ε − k1+ε) − FK+1((K + 1)(K + 2))1+ε

Applying Mean Value Theorem to above, we have that for some ξ ∈ (k, k+2),

(k + 2)1+ε − k1+ε =2(1 + ε)ξε ≤ 2(1 + ε)(k + 2)ε

≤C◦(1 + ε)(k + 1)ε = C̃◦(k + 1)ε

Thus,

SK ≤
K∑

k=k◦

C̃◦Fk(k + 1)1+2ε − FK+1((K + 1)(K + 2))1+ε

≤
K∑

k=k◦

C
′
Fkk

1+2ε − FK+1((K + 1)(K + 2))1+ε

From (2.12), we have that for k ≥ k◦ and δ◦ := δ − ε that:

C
′
Fkk1+2ε ≤ C

′′ k1+2ε

k2+2δ
= C

′′ 1

k1+2δ−2ε
≤ C

′′

k1+δ◦
.

Hence, limK→∞ SK exists and

IQ ≤ λ(AQ)C2(k◦(k◦ + 1))1+ε) + C2 lim
K→∞

SK < ∞.

�

Remark 2.8. It is clear from the grid dimension condition of type (2, δ) that

λ(K) = 0.
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Proof. In deed, from (2.9), we see that:

log Nk ≤ log
1

a2
k(log

1
ak

)1+δ

Nka
2
k ≤ 1

(log 1
ak

)1+δ
.

The right hand side of the above inequality tends to 0 as k → ∞ and thus,

λ(K) ≤ Nka
2
k → 0, for k → ∞

implying that λ(K) = 0 under condition (2.9). �

Now, we provide an example of a compact set K where the above result can

be applied.

Figure 2.3. Fractal set Q(m) at 3rd step for m = 8

Example 2.9. Let Q be a closed unit square and the side lengths of grids at

some p-th step are given by;

εp =
1

m
Pp

j=1 j
=

1

m
p(p+1)

2

, p ∈ N, m ∈ Z
+;

Np =mp2
np = number of squares left of side length εp in Q, n < m.

Then, the resulting compact set Q(m) is a fractal set of box dimension 2 and

Lebesgue measure 0.

Proof. For m = 8, subdivide Q into 82 equal sub-squares of side length

ε1 = 1
8 . Delete a square of side length = 1

2 (of Q). Divide each of the remaining

subsquares N1 = 6 · 8 of side length ε1, into equal subsquares of side length

ε2 = 1
82 · ε1 = 1

83 . Delete from each of the remaining subsquares N1, a square of

side length 1
2 · ε1 = 1

2 · 1
8 . Now, from the remaining subsquares N2 = 822

62 of side

length ε2, divide each of them into equal subsquares of side length ε3 = 1
83 ·ε2 = 1

86 .

Delete from each of them a square of side length 1
2 · ε2 = 1

2 · 1
83 .
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Proceeding inductively, in the same way with the remaining subsquares, we

get that for p ∈ N at some p − th step, a decreasing sequence εp converging to

zero, for p tending to ∞. Hence,

lim
p→∞

log Np

log 1
εp

= lim
p→∞

log 8p2
6p

log 8
p(p+1)

2

= lim
p→∞

p2 log 8 + p log 6
p(p+1)

2 log 8

= lim
p→∞

[ 2p2

p2 + p
+

2 log 6

(p + 1) log 8

]

= 2.

To show that Q(m) has Lebesgue measure zero, we first denote;

np = total number of squares removed of side length ap.

From the construction above, we notice that for Q(m),

np = 8(p−1)26p−1 and ap =
1

2
· εp−1 =

1

2
· 1

8
p(p−1)

2

.

Hence, the total area removed

=
∞∑

p=1

npa
2
p =

∞∑

p=1

8(p−1)26p−1 ×
(1

2
· εp−1

)2

=
(1

2
· 1

8
p(p−1)

2

)2
= 1

which shows that Q(m) has Lebesgue measure zero.

�

2.2.3. Finite order growth. This section deals with the case when a func-

tion G satisfies the finite order growth condition (GC1) and the compact set K

has upper box dimension 2.

Theorem 2.10. Consider the situation S1 and assume that there exists δ > 0,

such that the set K satisfies the grid dimension condition of type (3, δ).

Moreover, suppose that G satisfies the growth condition of the form:

|G(z)| ≤ C

dist(z,K)α
(z ∈ Q \ K)

where C and α are positive constants with α ≥ 1. Then, for some ε > 0, (2.6)

holds, i.e.

IQ =

∫∫

Q

(

log+ log+ |G(z)|
)1+ε

dλ(z) < ∞.

Proof. Since for each k ∈ N, the subsquares have side length ak = 2−2k
a,

which gives from (2.4) that: Fk = Nk2
−2k+1

a2.

By (2.10), there exists k◦ ∈ N, such that:

(2.14) ∀ k ≥ k◦ : Fk ≤ ˜̃C · 1

k1+δ
and ak = 2−2k

a ≤ 1.
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Notice that for k ≥ k◦ and a square R from Qk with int R ∩ K = ∅;
dist(z,K) ≥ dist(z, ∂R). Then, from the growth condition and for some ε > 0,

such that ε < δ, we have:

IR =

∫∫

R

(

log+ log+ |G(z)|
)1+ε

dλ(z)

≤
∫∫

R

(

C̃1 + log log
1

dist(z, ∂R)α

)1+ε
dλ(z)

where C̃1 := log(2 log(e + C)). Thus,

IR ≤C1

∫∫

R

(

log log
1

dist(z, ∂R)α

)1+ε
dλ(z)

where C1 is a positive constant depending on ε only. Applying Lemma 2.4 with

h(x) :=
(
log log xα

)1+ε
, we get for some δ◦ > 0 that:

(2.15) IR ≤ C1

[

2a2
k

{
I(h) + h

( 2

a1+δ◦
k

)}]

where I(h) =
∫ 1
0 h

(
2

t1+1/δ◦

)
dt =

∫ 1
0

(
log log 2α

t(1+1/δ◦)α

)1+ε
dt = M < ∞ by (2.3)

and

h
( 2

a1+δ◦
k

)

=
(

log log
2α

a
α(1+δ◦)
k

)1+ε
=

(

log log
(2α2α(1+δ◦)2k)

aα(1+δ◦)

))1+ε

=
(
log

(
α log 2 + α(1 + δ◦)

{
2k log 2 + log(1/a)

}))1+ε

≤(log(c + c◦2
k))1+ε ≤

(
k log 2 + C̃2

)1+ε ≤ C2k
1+ε

Putting the above values in (2.15), we get:

IR ≤C1

(
2 · 2−2k+1

a2
[
M + C2k

1+ε
])

≤c̃12
−2k+1

a2 + C̃22
−2k+1

a2k1+ε

≤C3a
22−2k+1k1+ε

where C3 is a positive constant independent of k. Thus, from (2.7), we obtain for

IQ that:

IQ ≤(NQ − Nk◦)2
−2k◦+1

C3a
2k1+ε

◦ +

+

∞∑

k=k◦

(22k+1
Nk − Nk+1)2

−2k+2
C3a

2(k + 1)1+ε

≤C3λ(AΩ)k1+ε
◦ − C3Fk◦k

1+ε
◦ +

+

∞∑

k=k◦

C3Fk(k + 1)1+ε − C3Fk+1(k + 1)1+ε
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Note that, for K > k◦, we have:

SK := − Fk◦k
1+ε
◦ +

K∑

k=k◦

(Fk − Fk+1)(k + 1)1+ε

=

K∑

k=k◦

Fk((k + 1)1+ε − k1+ε) − FK+1(K + 1)1+ε

Applying Mean Value Theorem to above, we have that for some ξ ∈ (k, k+1):

(k + 1)1+ε − k1+ε =(1 + ε)ξε ≤ C◦(k + 1)ε ≤ C̃kε

Thus,

SK ≤
K∑

k=k◦

FkC̃kε − FK+1(K + 1)1+ε

From (2.14), we have that for k ≥ k◦, δ > 0,

FkC̃kε ≤ C4

k1+δ−ε
≤ C4

k1+δ◦

Hence, limK→∞ SK exists and

IQ ≤ λ(AQ)C3k
1+ε
◦ + C3 lim

K→∞
SK < ∞.

�

Remark 2.11. Same as in Remark 2.8, we observe that grid dimension con-

dition of type (3, δ) implies λ(K) = 0.

Proof. In fact, from (2.10), we see that:

log Nk ≤ log
( 1

a2
k(log log 1

ak
)1+δ

)

Nka
2
k ≤ 1

(log log 1
ak

)1+δ
.

Clearly, right hand side of the above inequality tends to 0, as k → ∞ and

hence,

λ(K) ≤ Nka
2
k → 0, for k → ∞.

�

Example 2.12. Consider a unit square Q. Let m ∈ Z
+ and εp and Np, p ∈ N

are given by;

εp =
1

m2p−1 = side length of the squares ;

Np =(
3

4
)p · m2p

= number of subsquares left in Q of side length εp.

Then, we obtain a compact fractal set Q∞ of Lebesgue measure zero and box

dimension 2.



32 2. INTEGRABILITY CRITERIA

Proof. Let m = 8. Subdivide Q into 82 equal subsquares and delete a

square of side length a1 = 1
2 (of Q). Divide each of the remaining subsquares

N1 = 6 · 8 = 3
482 into equal subsquares of side length 1

82 . Remove from each of

them, a square of side length a2 = 1
2ε1 = 1

2
1
8 . Thus, at the second step, we are

left with N2 = (3
4 )2822

subsquares of side length ε2 = 1
82 . Divide each of the

remaining N2 subsquares into equal subsquares of side length ε3 = 1

822
. Delete

from each of them a subsquare of side length a3 = 1
2 · ε2 = 1

2 · 1
82 .

Continuing in this manner, at some p − th step, for p ∈ N, we obtain a

decreasing sequence of side lengths εp converging to zero. Hence,

lim
p→∞

log Np

log 1
εp

= lim
p→∞

log(3
4 )p · 82p

log 82p−1

= lim
p→∞

p log 3
4 + 2p log 8

2p−1 log 8
= 2.

Observe that at some p-th step, p ∈ N; the number of squares removed =

np = (
3

4
)p−1 · 82p−1

, of side length ap =
1

2
· εp−1 =

1

2
· 1

82p−2 .

Therefore, the total area removed will be
∑∞

p=1 npa
2
p = 1. Thus, showing that

Q∞ has Lebesgue measure zero.

�

2.2.4. Box dimension near to 1. Here we deal with the sets having upper

box dimension d ≥ 1 and the function satisfies a special growth condition which

is weaker than the double exponential one.

Theorem 2.13. Let the situation S1 hold and assume that there exists C > 0

and α ≥ 0 such that the set K satisfies the grid dimension condition of type (1, α).

Let ε > 0 and define f(t) := t(log+ t)1+ε, for t ≥ 0 satisfying condition (η).

Moreover, suppose that for C1 > 0 and some β > 3 + α, a function G satisfies

the following growth condition;

|G(z)| ≤ exp
(

exp
( C1

dist(z,K)
(
log 1

dist(z,K)

)β

))

(z ∈ Q \ K).

Then,

IQ =

∫∫

Q

f
(
log+ log+ |G(z)|

)
dλ(z) < ∞.

Proof. It is evident from the grid dimension condition of type (1, α) that

dimB(K) < 2 and thus from Remark 2.2, we get that λ(K) = 0. By the growth

condition of the function G and the monotonicity of the function f , we have that:

f
(
log+ log+ |G(z)|

)
≤ f

( C1

dist(z,K)
(
log 1

dist(z,K)

)β

)

.



2.2. INTEGRABILITY AND DIMENSION CONDITIONS 33

Observe that for k ≥ k◦ we have dist(z,K) ≥ dist(z, ∂R), where R is a square

from Qk with int R∩K = ∅. Thus, for some ε > 0 with β > 3 + α + ε we obtain:

IR =

∫∫

R

f
(
log+ log+ |G(z)|

)
dλ(z)

≤
∫∫

R

( C1

dist(z, ∂R)
(
log 1

dist(z,∂R)

)β

)

·

·
(

log+
( C1

dist(z, ∂R)
(
log 1

dist(z,∂R)

)β

))1+ε
dλ(z)

By an appropriate choice of coordinates from the proof of Lemma 2.4, we

have:

IR ≤8

∫ ak/2

0
(
ak

2
− x)

C1

x
(
log 1

x

)β

(

log
C1

x
(
log 1

x

)β

)1+ε
dx

≤2a2
k

∫ 1

0
(

2C1

akt(log(2/akt))β
)
(

log(
2C1

akt(log(2/akt))β
)
)1+ε

dt

=4akC1

∫ 1

0
(

1

t(log(2/akt))β
)
(

log
2

akt
+ log C1 + log

1

(log 2/akt)β

)1+ε
dt

=4akC1

∫ ∞

log 2/ak

1

uβ

(

u + log C1 + log
1

uβ

)1+ε
du

Since, ak < a◦ : log C1 < log(2/ak), which gives:

IR ≤8ak2
1+εC1β

1+ε

∫ ∞

log 2/ak

u1+ε

uβ
du

≤C2ak(log
2

ak
)2+ε−β

=C22
−ka(log(21+k/a))2+ε−β ≤ C32

−kak2+ε−β

where C2 and C3 are independent of k. Thus, from (2.7), we obtain for IQ that:

IQ ≤(NQ − Nk◦)C32
−k◦ak2+ε−β

◦ +

∞∑

k=k◦

(4Nk − Nk+1)C32
−(k+1)a(k + 1)2+ε−β

Note that, for K > k◦, we have:

SK := − Nk◦2
−k◦ak2+ε−β

◦ +

K∑

k=k◦

(4Nk − Nk+1)2
−(k+1)a(k + 1)2+ε−β

= − Nk◦2
−k◦ak2+ε−β

◦ +

K∑

k=k◦

(2 · 2−kNk − Nk+12
−(k+1))a(k + 1)2+ε−β

=

K∑

k=k◦

Nk2
−ka[2(k + 1)2+ε−β − k2+ε−β] − NK+12

−(K+1)a(K + 1)2+ε−β

=

K∑

k=k◦

Nk2
−kak2+ε−β

[

2
(k + 1

k

)2+ε−β − 1
]

− NK+12
−(K+1)a(K + 1)2+ε−β
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For k ≥ k◦,
(
2
(

k+1
k

)2+ε−β − 1
)

< 1
2 , we have from (2.11) that:

Nk2
−kak2+ε−β ≤ Ck2+α+ε−β.

Note that β > 3 + α + ε, which gives that limK→∞ SK exists and

IQ ≤ NQC32
−k◦ak2+ε−β

◦ + C3 lim
K→∞

SK < ∞.

�

Observe that, if K is a rectifiable arc of length l, then it satisfies grid dimension

condition of type (1, α) for α = 0.

Indeed, for α = 0, (2.11) becomes:

log Nk ≤ log
1

ak
+ log C

⇒Nkak ≤ C

where C can be the treated as the length of K by [30] (see (5.1) and proof of

Proposition 5.4).

2.3. Further criteria of integrability

In this section, we consider the situation when a function G satisfies some

growth condition near a given thin, compact set K and obtain the integrability

criteria of a function G using variant of Domar’s Theorem (Theorem 1.6). In

particular, we consider a closed square Q ⊂ C of side length a and a compact

subset K of Q such that λ(K) = 0. We give a general construction of the covering

of K by following a method as given in [4] (after Lemma 3.7).

Let Q ⊂ C be a closed square of side length a and K ⊂ Q be a compact

set. Let {mi : i,∈ N} be a sequence of positive integers. Subdivide the square

Q into a family Q1 of m2
1 closed congruent subsquares q. Let Q∗

1 be the set of

all closed subsquares q ∈ Q1 having non-empty intersection with K, i.e. Q∗
1 =

{q ∈ Q1|q ∩ K 6= ∅}. Define,

K1 := ∪q∈Q∗
1
q

be the compact subset obtained by the union of all q ∈ Q∗
1. Denote by n1, the

number of removed subsquares q ∈ Q1.

Divide each of the remaining m2
1 − n1 subsquares of side length a

m1
into a

family Q2 of m2
2 closed congruent subsquares. Similar as in the first step, we

define Q∗
2 the set of all closed subsquares q ∈ Q2 of side length a

m1m2
having

non-empty intersection with K, and obtain the compact set K2 as:

K2 := ∪q∈Q∗
2
q.

Let n2 denote the number of removed subsquares of side length a
m1m2

. Con-

tinuing iteratively, we obtain a compact set K∞ := ∩∞
j=1Kj = K. In fact,

for some z /∈ K, ∃ j such that aj := a
Qj

k=1 mk
< 1

2 dist(z,K). Let Q̃j :=
{

q of side length a
Qj

k=1 mk

}

such that ∃ q∗ ∈ Q̃j with z ∈ q∗. Thus, q∗ ∩ K = ∅,
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as diam q∗ =
√

2a
Qj

k=1 mk
. Also, 1

mj
→ 0, as j → ∞. Thus, the total area removed is

∑∞
j=1 nja

2
j =

∑∞
j=1 nj

a2
Qj

k=1 m2
k

= a2.

Throughout the section, we fix the following notations from the above con-

struction:

Notations

Q =closed square of side length a, ;

K =compact subset of Q having λ(K) = 0;

nl =number of subsquares removed from Q at some l − th step , l ∈ N;

al =
a

∏l
k=1 mk

= side length of subsquares, where

1

mk
, 1 ≤ k ≤ l is the side length at some k − th step, respectively .

Next, we use this construction and Domar’s variant to obtain a general scheme

under which the integral (2.6) holds. For this, we recall some conditions in the

following situation.

Situation S2







Q, K, nl and al as in Notations ;

G is a non-negative, continuous function on Q \ K;

f is a function satisfying condition (η);

g : (0,∞) → (0,∞) is a monotone increasing function ;

h is a non-negative, monotone, increasing function defined by,

h(x) := f(g(x)) such that for some δ > 0, the following integral exists;

I(h) =
∫ 1
0 h

(
2

t1+1/δ

)

dt =
∫ 1
0 f

(

g
(

2
t1+1/δ

))

dt < ∞.

Theorem 2.14. Consider the situation S2 and assume that:

(2.16)
∞∑

l=1

nla
2
l h

( 2

a1+δ
l

)

< ∞.

Then,

(2.17)

∫∫

Q

f
(
log+ log+ |G(z)|

)
dλ(z) < ∞.

Proof. For a deleted subsquare Qal
of side length al, we have from Lemma

2.4 that:

Jal
(h) =

∫∫

Qal

h
( 1

dist(z, ∂Qal
)

)

dλ(z) ≤ 2a2
l

[

I(h) + h
( 2

a1+δ
l

)
]

where, I(h) = M < ∞ from the situation S2 and h( 2
a1+δ

l

) = f(g( 2
a1+δ

l

)). Thus,

summing over all deleted subsquares we get from (2.16) that:

(2.18) S :=
∞∑

l=1

nlJal
(h) ≤ 2

∞∑

l=1

nla
2
l

[

M + h
( 2

a1+δ
l

)
]

< ∞.
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This further gives that:
∫∫

Q

f
(
log+ log+ |G(z)|

)
dλ(z) ≤

∫∫

Q\K

h
( 1

dist(z,K)

)

dλ(z)

=

∫∫

Q\K

f(g(dist(z,K)−1)) dλ(z)

≤ S < ∞.

by (2.18). This completes the proof. �

Next, we consider few cases of the monotone increasing function g, in order

to get a better picture of Theorem 2.14. It is important to know that all the

functions f given in Examples 1.7, can be easily used for Theorem 2.14 and for

the particular cases discussed below.

Corollary 2.15. Let the situation S2 holds and assume that for constants

C, δ and α > 0 such that α(1 + 1/δ) < 1, the function G satisfies the growth

condition;

|G(z)| ≤ exp
(
exp C dist(z,K)−α

)
, ∀z ∈ Q \ K.

Further, assume that

(2.19)

∞∑

l=1

nla
2
l f

( C2α

a
α(1+δ)
l

)

< ∞.

Then, (2.17) holds, i.e.
∫∫

Q

f
(
log+ log+ |G(z)|

)
dλ(z) < ∞.

Proof. Define a monotone increasing function g as g(x) := Cxα. By our as-

sumption on α, we observe from the situation S2 that I(h) =
∫ 1
0 f

(
C

tα(1+1/δ)

)
dt =

M < ∞. Therefore, applying Lemma 2.4 to a deleted subsquare Qal
of side

length al and summing over all the deleted subsquares, we get from (2.18), from

the definition of the function g, the monotonicity of the functions f and g and

from the assumption (2.19) that:

S =

∞∑

l=1

nlJal
(h) ≤ 2

∞∑

l=1

nla
2
l

(

M + h
( 2

a1+δ
l

))

=2

∞∑

l=1

nla
2
l

(

M + f
(

g
( 2

a1+δ
l

)))

< ∞

Hence, using similar arguments as in the proof of Theorem 2.14, we obtain

that (2.17) holds. �

Remark 2.16. Note that considering the function f from the Examples 1.7,

it is clear that I(h) =
∫ 1
0 h

(
2

t1+1/δ

)
dt < ∞.

Example 2.17. Let K be the Sierpinski carpet as in Example 2.6. If α <

( 1
1+δ )

(
2 − log 8

log 3

)
then, (2.17) holds.
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Proof. We see from Example 2.6 that, nl = 8l−1 and al = 1/3l, l ∈ N.

Putting the above values in (2.19) and considering Examples 1.7(i) for the sake

of simplicity, i.e. f(t) = t1+ε, t ≥ 0 and for some ε > 0 such that α + ε < 1, we

get:

S ≤
∞∑

l=1

(8

9

)l
M̃(C,α, ε)3αl(1+ε)(1+δ) < ∞

when α < ( 1
1+δ )

(
2 − log 8

log 3

)
. �

Corollary 2.18. Consider the situation S2 and assume that the following

condition holds;

|G(z)| ≤ exp
(
C dist(z,K)−k

)
, ∀z ∈ Q \ K.

for positive constants C and k ≥ 1. Further, assume that for some δ > 0,

(2.20)

∞∑

l=1

nla
2
l f

(

log
C2k

a
k(1+δ)
l

)

< ∞.

Then, (2.17) holds, i.e.

∫∫

Q

f
(
log+ log+ |G(z)|

)
dλ(z) < ∞.

Proof. Define a monotone increasing function g as, g(x) := log(Cxk). For

a deleted subsquare Qal
of side length al, we see from the monotonicity of the

functions f and g that:

h
( 2

a1+δ
l

)
= f

(

log
C2k

a
k(1+δ)
l

)

.

In particular, I(h) =
∫ 1
0 f

(
g
(

2
t1+1/δ

))
dt < ∞. Therefore, by (2.20) and using

same arguments as in the previous Corollary 2.15, we get that (2.18) and hence,

(2.17) holds. �

Example 2.19. Let K be a fractal set Q(m), as explained in Example 2.9.

If, the following sum

∞∑

l=1

nl2
−2C̃l2f(log C2k 2(1+δ)kC̃l2) < ∞,

where C, C̃ are positive constants, then (2.20) holds.

Proof. In deed, at some l− th step, recall from Example 2.9 for m = 8 that:

nl = 6l−18(l−1)2 , al =
1

2
· 1

8
l(l−1)

2

=
1

21+3l(l−1)/2
=

1

2C̃l2
.
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For the sake of simplicity and for some ε > 0, consider f(t) = t1+ε, t ≥ 0,

from the Examples 1.7, we get that:

S ≤
∞∑

l=1

(
6

8
)l

[

(log C2k2C̃l2(1+δ)k)1+ε
]

≤21+ε
∞∑

l=1

(
6

8
)l

[

(log C2k)1+ε + (k(1 + δ)C̃ log 2)1+εl2(1+ε)
]

≤C◦

∞∑

l=1

(
6

8
)l

[
C1(k, ε) + C2(k, δ, ε)l2(1+ε)

]

≤C3(k, δ, ε)

∞∑

l=1

(
6

8
)ll2(1+ε) < ∞,

where C◦, C1, C2, C3 are positive constants. �

Corollary 2.20. Let situation S2 hold and assume that for k ≥ 1,

|G(z)| ≤ C dist(z,K)−k, ∀z ∈ Q \ K.

Further, assume that for some δ > 0 and positive constant C ≥ e

(2.21)

∞∑

l=1

nla
2
l f

(

log log
C2k

a
k(1+δ)
l

)

< ∞.

Then, (2.17) holds, i.e.
∫∫

Q

f
(
log+ log+ |G(z)|

)
dλ(z) < ∞.

Proof. Define a function g as, g(x) := log log(Cxk). Similar as in the proof

of Corollary 2.18, one observes that I(h) < ∞ for h = f ◦ g. Applying Lemma

2.4 to a deleted subsquare Qal
and summing over all the deleted subsquares nl of

side length al, we get from (2.18) that:

S =
∞∑

l=1

nlJal
(h) ≤ 2

∞∑

l=1

nla
2
l

[

M + h
( 2

a1+δ
l

)]

<2

∞∑

l=1

nla
2
l

[

M + f(log log
C2k

a
k(1+δ)
l

)
]

< ∞

which is clear from the choice of the function g. Thus, from the proof of the

Theorem 2.14, (2.17) holds. �

Example 2.21. Consider the compact set K = Q∞, as explained in Example

2.12. If
∞∑

l=2

nl2
−2l+1

f(log log C2k 2kC̃(δ)2l
) < ∞,

for constants C > 0, C̃(δ) > 0, then, (2.17) holds.
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Proof. In fact, for some ε > 0 and f(t) = t1+ε, t ≥ 0 from the Examples

1.7 and nl = (3
4 )l−1 · 82l−1

and al = 1
2 · 1

82l−2 = 1

21+3·2l−2 = 1

2C12l , the sum S in

(2.18) for M(δ, k, ε) > 0 becomes:

S ≤
∞∑

l=2

(
3

4
)l(log log C2k2C̃(δ)k2l

)1+ε

≤
∞∑

l=2

(
3

4
)lM(δ, k, ε)l1+ε < ∞

and hence, (2.17) holds. �





CHAPTER 3

Banach function algebras of complex

ultra-differentiable functions

3.1. Preliminary results

Let K be a compact Hausdorff space. The space C(K) of all complex-valued

continuous functions on K is a commutative Banach algebra with pointwise op-

erations and the supremum norm ‖ · ‖K on K.

Definition 3.1. A subalgebra A of the algebra C(K) of all complex-valued

continuous functions on K is called a Banach function algebra (see e.g. in

[15, 14]) if,

(i) it separates the points of K,

(ii) contains the constant functions and

(iii) is endowed with an algebra norm ‖ · ‖A such that (A, ‖ · ‖A) is a Banach

algebra.

In the following lemma, we collect some obvious facts concerning Banach

function algebras.

Lemma 3.2. Let (A, ‖ · ‖A) be a Banach function algebra on a compact Haus-

dorff space K. Then, the following hold:

a) For all f ∈ A we have f(K) ⊂ σA(f), where σA(f) denotes the spectrum

of f in A.

b) For all f ∈ A we have

‖f‖K = sup
z∈K

|f(z)| ≤ r(f) ≤ ‖f‖A

where r(f) is the spectral radius of f in A. In particular, the inclusion

map J : A → C(K) is continuous.

c) A is semisimple.

d) The set ∆(A) of all multiplicative linear functionals contains the set

{δt ; t ∈ K} of all point evaluations δt : f 7→ f(t), f ∈ A, t ∈ K.

An element f of a Banach function algebra A on a compact Hausdorff space

K is said to have natural spectrum if, f(K) = σA(f).

We say that f ∈ A has locally natural spectrum if, for all g ∈ A and all

λ ∈ C \ f(supp g) the function

z 7→
( g

λ − f

)

(z) :=

{
g(z)

λ−f(z) z ∈ supp g

0 z ∈ K \ supp g

41
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is in A. In particular, every function f ∈ A having locally natural spectrum have

natural spectrum.

Recall from [15] that a Banach function algebra A on a compact Hausdorff

space K satisfying the property that ∆(A) = {δt ; t ∈ K} will be called natural.

Notice that, in a natural Banach function algebra, every element has natural

spectrum.

A subalgebra A of C(K) is said to be inverse closed , if it is a full subalgebra

of C(K), i.e. if 1/f ∈ A for all f ∈ A with f(z) 6= 0 for all z ∈ K. This is the

case if and only if, all f ∈ A have natural spectrum.

An algebra A of continuous functions on a compact Hausdorff space K is said

to be normal on K if for all closed F1, F2 ⊂ K with F1 ∩ F2 = ∅, there exists a

function f ∈ A such that f ≡ 1 on F1 and f ≡ 0 on F2.

A is said to be regular on K, if for every compact subset H of K and every

z◦ ∈ K \ H there exists some f ∈ A satisfying f |H ≡ 0 and f(z◦) = 1.

A commutative unital Banach algebra A is by definition normal (resp. reg-

ular), if the set Â of its Gelfand transforms is normal (resp. regular) on the

structure space ∆(A).

If K is a compact subset of C, we denote by Rat(K) the algebra of all rational

functions on K with poles off K and by R(K) the uniform closure of Rat(K) in

C(K)

Proposition 3.3. Let A be a Banach function algebra on a compact set

K ⊂ C with Rat(K) ⊂ A. Then, A will be natural, if one of the following hold:

a) Rat(K) is dense in A.

b) R(K) = C(K) and A is inverse closed.

Proof. a) As the set {δz ; z ∈ K} of all point evaluations is contained

in the space ∆(A) of all multiplicative linear functionals on A, we have to

prove only that ∆(A) ⊆ {δz; z ∈ K}. Since, Rat(K) ⊂ A, the spectrum

σA(idK) of idK : z 7→ z coincides with K and we obtain φ(idK) ∈ K for

all φ ∈ ∆(A). Therefore, φ(f) = f(φ(idK)) for all f ∈ Rat(K). Hence,

(by the continuity of φ and δφ(idK )) also for all f in the closure of Rat(K)

in A.

b) Assume that there exists some φ ∈ ∆(A) \ {δz; z ∈ K}. Thus, for each

z ∈ K, there exists some fz ∈ ker φ such that fz(z) 6= 0 and hence

fz(w) 6= 0 for all w ∈ K ∩Uz, for some neighbourhood Uz of z. As, K is

compact we find finitely many open sets U1, · · · , Un with K ⊂ ∪n
j=1Uj

and functions f1, · · · , fn ∈ A such that fj(z) 6= 0 for all z ∈ Uj ∩ K,

j = 1, · · · , n.

Thus,

γ := min
z∈K

n∑

j=1

|fj|2 > 0.

Because of R(K) = C(K), there exist functions g1, · · · , gn ∈ Rat(K)

such that, for j = 1, · · · , n,

‖fj − gj‖K <
γ

∑n
j=1 ‖fj‖K
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It follows that
∥
∥
∥

n∑

j=1

|fj|2 −
n∑

j=1

fjgj

∥
∥
∥

K
< γ

In particular the function h :=
∑n

j=1 fjgj is in ker φ and has no

zero in K. As A is inverse closed, we have the contradiction that 1 =
∑n

j=1 fjgjh
−1 ∈ ker φ.

�

If R is a commutative Banach algebra with a unit element, then we write

Dec(R) for the set of all a ∈ R such that the operator Ma of multiplication by

a is decomposable on R. This is a closed subalgebra of R by a result of Apostol

[5] (see also [32], Proposition 4.4.9).

Moreover, R contains a unique maximal closed subalgebra which is regular

(see [2], Theorem 2.4 in the semisimple case and [32], Theorem 4.3.6 for the

general case). Further, if R is semisimple, then R is regular if and only if R =

Dec(R) by a result of Frunză [27].

Proposition 3.4. If A is a Banach function algebra on a compact Hausdorff

space K which is normal on K then Dec(A) coincides with the set of all f ∈ A
having locally natural spectrum.

Proof. “=⇒” Suppose that f ∈ A is given such that Mf is decomposable

on A. As the inclusion mapping J : A → C(K) intertwines the operators of

multiplication on A and C(K) by f , we obtain from Theorem 1.2.23 [32] for all

closed F ⊂ C,

EA(F ) ⊆ EC(K)(F ) =
{
h ∈ C(K) ; supph ⊂ f−1(F )

}

where EA(F ) respectively EC(K)(F ) represent the spectral capacities for Mf on

A respectively on C(K). Thus,

EA(F ) ⊆
{
h ∈ A ; supph ⊂ f−1(F )

}
=: E◦(F ).

Notice that E◦(F ) is a closed Mf invariant subspace of A. Fix h ∈ E◦(F ). By

the decomposability of Mf , for each n ∈ N, there exist ϕ1, ϕ2 ∈ A with

ϕ1 ∈ EA(Vn) where Vn =

{

λ ∈ C ; dist(λ, F ) =
1

n

}

ϕ2 ∈ EA(Wn) where Wn =

{

λ ∈ C ; dist(λ, F ) ≥ 1

2n

}

and ϕ1 + ϕ2 ≡ 1.

In particular,

suppϕ2 ⊂
{

z ∈ K ; dist(f(z), F ) ≥ 1

2n

}

It follows that ϕ2h ≡ 0 and hence h = ϕ1h = Mhϕ1 ∈ EA(Vn) as Mh

commutes with Mf . Hence, h ∈ ∩∞
n=1EA(Vn) = EA(F ) and we conclude that

EA(F ) = E◦(F ).

Fix now h ∈ A and let λ be in C \ f(supph). Thus, h ∈ EA(f(supph)) and

λ /∈ σ(Mf |EA(f(supph))).
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Hence, T := (λ − Mf |EA(f(supph)))−1 exists in L(EA(f(supph))). Because

of (λ−f)Th ≡ h, we see that Th ≡ h
λ−f ∈ A. Thus, has locally natural spectrum.

“⇐=” Suppose now that f ∈ A has locally natural spectrum. In particular,

σ(Mf ,A) = σA(f) = f(K).

Let now U1, U2 ⊆ C be open with σ(Mf ,A) = f(K) ⊂ U1∪U2. Then f−1(Uj)

is open in K, (j = 1, 2) and f−1(U1) ∪ f−1(U2) = K.

Moreover, Kj := K \ f−1(Uj) are disjoint compact subsets of K. As K is

normal, there exist disjoint closed subsets F1, F2 of K such that Kj ⊂ int Fj (j =

1, 2). Now, A is normal on K. Hence, there exists ϕ ∈ A with ϕ ≡ 1 on F1 and

ϕ ≡ 0 on F2.

For all g ∈ A we then have g = g1 + g2 with g1, g2 ∈ A given by

g1 = ϕg, g2 = (1 − ϕ)g.

Hence,

supp g1 ⊆ K \ int F2 ⊂ f−1(U1)

and

supp g2 ⊆ K \ int F1 ⊂ f−1(U2)

and A = X1 + X2, where

X1 = {h ∈ A ; supph ⊆ K \ int F2}

X2 = {h ∈ A ; supph ⊆ K \ int F1}
are closed Mf−invariant subspaces of A.

Fix now j ∈ {1, 2} and let λ ∈ C \ f(K \ int F3−j). Then Mf |Xj is injective

as λ − f has no zeros on K \ int F3−j . If h ∈ Xj , then h
λ−f ∈ A as f has locally

natural spectrum and (λ−Mf ) h
λ−f = h. Thus, σ(Mf |Xj) ⊆ f(K \ int F3−j) ⊂ Uj

for j = 1, 2 and Mf is decomposable. �

Notice that for the direction “⇒”, we did not need the fact that A is normal

on K. In the case K ⊂ C and f(z) ≡ z, this proof actually shows:

Corollary 3.5. Let A be a Banach function algebra on a compact set K ⊆ C.

If the operator Mz of multiplication by the coordinate function is decomposable

on A, then A is normal on K.

Corollary 3.6. Let A be a Banach function algebra on K such that Rat(K)

is dense in A. If Mz is decomposable on A, then A is a regular Banach function

algebra and ∆(A) = {δw ;w ∈ K}.

Proof. By [13] Theorem 1.10, Chapter 2, we have Rat(K) ⊂ Dec(A).

Hence, Dec(A) = A (as Dec(A) is closed) and by the theorem of Frunză [27], A
is a regular Banach function algebra. The fact that ∆(A) = {δw;w ∈ K} holds

has already been shown in Proposition 3.3(a).

�
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3.2. Algebras of differentiable functions

From here onwards, throughout the thesis, K is a non-empty perfect, compact

subset of C, unless stated otherwise. For k ∈ N, let Dk(K) be the space of

all k − times complex differentiable functions on K such that f (k) := dkf
dzk is

continuous. For f ∈ Dk(K), the norm on Dk(K) will be defined as:

(3.1) ‖f‖k :=

k∑

j=0

1

j!
‖f (j)‖K , f ∈ Dk(K).

It is clear that ‖ · ‖k is submultiplicative and Dk(K) is a normed (function)

algebra. We further define D∞(K), the algebra of all infinitely complex differen-

tiable functions on K, i.e.

D∞(K) =
⋂

k∈N

Dk(K)

endowed with the supremum norm on K.

Following [15], we define certain normed algebras of infinitely complex differ-

entiable functions on K. Let (Mp)p∈N◦ be a sequence of positive reals satisfying:

(3.2) i) M◦ = 1, ii)
Mp

MqMp−q
≥

(
p

q

)

, (q = 0, · · · , p).

Define a subalgebra D1(K, {Mp}) of D∞(K) as:

D1(K, {Mp}) :=
{

f ∈ D∞(K); ‖f‖{Mp},1 :=

∞∑

p=0

1

Mp
‖f (p)‖K < ∞

}

where ‖ · ‖K is the supremum norm on K. We can relate the algebras Dk(K) and

D1(K, {Mp}) by setting Mp = p!, (p = 0, · · · , k) and 1
Mp

= 0, (p = k+1, · · · ).
As in [34] and in [15], given a sequence (Mp)p∈N◦ as above, let

mp :=
(Mp

p!

)1/p
, p ∈ N be a sequence of positive reals with m◦ = 1. Then,

D1(K, {Mp}) can be rewritten as:

D1(K, {Mp}) =
{

f ∈ D∞(K); ‖f‖{Mp},1 =
∞∑

p=0

1

p!mp
p
‖f (p)‖K < ∞

}

The submultiplicativity of the norm can be seen by using (3.2)(ii). In terms

of (mp)
∞
p=0, (3.2)(ii) will be:

(3.3) mq
qm

p−q
p−q ≤ mp

p, for 0 ≤ q ≤ p, p, q ∈ N◦

Similarly, we define:

D∞(K, {Mp}) :=

{

f ∈ D∞(K); ‖f‖{Mp},∞ := sup
p∈N◦

1

Mp
‖f (p)‖K < ∞

}

where the multiplication is continuous w.r.t. the above norm provided:

(3.4) sup
p∈N◦

p
∑

q=0

mq
qm

p−q
p−q

mp
p

< ∞.
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Equivalently saying that:

sup
p∈N◦

p−1
∑

q=1

mq
qm

p−q
p−q

mp
p

< ∞.

Indeed, let f, g ∈ D∞(K, {Mp}) and h := fg. Then,

‖h‖{Mp},∞ = sup
p∈N◦

1

Mp
‖h(p)‖K = sup

p∈N◦

1

Mp
‖(fg)(p)‖K

Using the Leibniz rule and Mp = p!mp
p, p ∈ N◦, we get:

‖h‖{Mp},∞ ≤ sup
p∈N◦

1

p!mp
p

p
∑

q=0

(
p

q

)

‖f (q)‖K‖g(p−q)‖K

= sup
p∈N◦

p
∑

q=0

1

q!(p − q)!mq
qm

p−q
p−q

‖f (q)‖K‖g(p−q)‖K ·
mq

qm
p−q
p−q

mp
p

= sup
p∈N◦

p
∑

q=0

‖f (q)‖K

q!mq
q

‖g(p−q)‖K

(p − q)!mp−q
p−q

·
mq

qm
p−q
p−q

mp
p

≤‖f‖{Mp},∞‖g‖{Mp},∞ · sup
p∈N◦

p
∑

q=0

mq
qm

p−q
p−q

mp
p

< ∞

by (3.4). Thus, the multiplication is continuous and ‖ · ‖{Mp},∞ is equivalent

to some submultiplicative norm. Throughout this chapter we shall assume that

condition (3.4) is fulfilled whenever we consider situations with q = ∞.

It has been mentioned in [25] that the algebra D1(K, {Mp}) is in general

not complete. However, in [15] and in later papers of Honary [29] following

Dales [15], the completeness of the algebras Dk(K) and D1(K, {Mp}) has been

shown by assuming some conditions on the perfect, compact set K. We point out

that not much attention has been given to D∞(K, {Mp}) algebras except in [15],

where they appear as a special example on a closed unit interval.

Observe that for a perfect, compact set K ⊂ C, the normed function algebras

Dq(K, {Mp}), q ∈ {1,∞} contains the rational functions on K with poles off K

under some conditions on the sequence (Mp)p∈N◦ . For D1(K, {Mp}), a condition

has been given in [15] .

Remark 3.7. Let K be a perfect, compact set in C. Then, Rat(K) ⊂
Dq(K, {Mp}), q ∈ {1,∞}, if and only if mp → ∞, for p → ∞.

Proof. ⇒ Define the rational function h(z) = 1
ξ−z for some ξ ∈ C\K. Then,

(3.5) ‖h‖{Mp},q ≤
∥
∥
∥

1

mp
pd(ξ)p+1

∥
∥
∥
{Mp},q

will be finite for all ξ only if limp→∞ mp = ∞, where d(ξ) := dist(ξ,K). Thus,

showing that Rat(K) ⊂ Dq(K, {Mp}), q ∈ {1,∞}.
⇐ Conversely, we know from the norm that

‖h‖{Mp},∞ ≤ 1

d(ξ)
sup
p∈N◦

1

mp
pd(ξ)p
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Assume that limp→∞ mp 6= ∞. Then there exists a subsequence (pk)
∞
k=0 and

some c > 0 such that

mpk
→ c, for k → ∞.

Then, for some k◦ > 0, we have

c

2
≤ mpk

≤ 2c and d(ξ) <
1

4c
.

Thus, for k ≥ k◦
1

(mpk
d(ξ))pk

≥ 1

(2cd(ξ))pk
≥ 2pk → ∞, for k → ∞

which shows that h /∈ D∞(K, {Mp}) and hence not in D1(K, {Mp}).
�

Examples 3.8. Few standard examples of the sequence (mp)
∞
p=0 are:

i) mp = p!s/p, ii) mp = ps, for s > 0.

iii) mp = (log(e + p))s, iv) mp = (
∏p

k=1 log(e + k))s/p, for s ≥ 1,

where m◦ = 1 in each case.

The fact that these sequences satisfy condition (3.4) is a consequence of the

following lemma.

Lemma 3.9. Let (mp)p∈N be any of the sequences of positive reals as given in

the above Example with m◦ = 1. Define

Sn,k(s) :=
mk

km
n−k
n−k

mn
n

.

Then,

(a) Sn(s, k) is symmetric in k and n − k and monotone decreasing in k for

1 ≤ k ≤ n/2.

(b) Sn(s) :=
∑n−1

k=1 Sn(s, k) → 0, as n → ∞.

Proof. For example (iv), we observe that by using similar arguments as in

the proof of Lemma 3.3 [15], both (a) and (b) hold.

(a) It is obvious that Sn(s, k) is symmetric in k and n − k for the above

examples. For examples (i) and (ii), there is nothing to be shown for n = 2, 3.

Let now n ≥ 4 and 2 ≤ k ≤ n/2. In the first case we have:

k!s(n − k)!s =(k − 1)!s(n − k + 1)!s · ks

(n − k + 1)s

≤(k − 1)!s(n − k + 1)!s

because k ≤ n/2 ≤ n − k + 1.

In the second case observe that:

kks(n − k)(n−k)s =(k − 1)(k−1)s(n − k + 1)(n−k+1)s · ks

(n − k + 1)s
·

·
(
1 + 1

k−1

)(k−1)s

(
1 + 1

n−k

)(n−k)s

≤(k − 1)(k−1)s(n − k + 1)(n−k+1)s
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as k < n − k + 1 and k − 1 < n − k.

For third example, notice that for x ∈ R
+, the function f(x) =

(
log(e+x)

log(e+x−1)

)x−1

is monotone increasing. Hence, we obtain that:

( log(e + k)

log(e + k − 1)

)s(k−1)
(log(e+k))s ≤

( log(e + n − k + 1)

log(e + n − k)

)s(n−k)
(log(e+n−k+1))s

as k < n − k + 1, for 1 ≤ k ≤ n/2. Thus, from above we get that:

(log(e+k))sk (log(e+n−k))s(n−k) ≤ (log(e+k−1))s(k−1) (log(e+n−k+1))s(n−k+1)

which shows that Sn,k(s) is monotone decreasing in k for 1 ≤ k ≤ n/2.

(b) We first show it for example (ii). Let ε > 0.

(ii) For the second example we have:

Sn(s) =
n−1∑

k=1

kks(n − k)(n−k)s

nns

≤2
∑

1≤k≤n/2

kks(n − k)(n−k)s

nns

Fix k◦ so that 1 < k◦ < n/2, we have:

Sn(s) ≤2
∑

1≤k<k◦

(k

n

)sk
+ 2

∑

k◦≤k≤n/2

(k

n

)sk

<2
∑

1≤k<k◦

(k

n

)sk
+ 2

∞∑

k=k◦

1

2sk

<2k◦
(k◦

n

)s
+ 2

2−sk◦

1 − 2−s

Thus, if k◦ is chosen such that 21−sk◦

1−2−s < ε/2 and if then n◦ is such that

n◦ > 2k◦ and 2k1+s
◦
ns
◦

< ε/2 then, for all n ≥ n◦ we have, Sn(s) < ε.

Hence, Sn(s) → 0 for n → ∞.

(i) For example (i), we have that:

Sn,k(s) =
mk

km
n−k
n−k

mn
n

=
k!s(n − k)!s

n!s
.

Using Stirling’s formula for x ∈ R
+, i.e.

x! =
√

2πxx+1/2 exp−x+µ(x),

where 0 < µ(x) < 1/12x, we obtain:

Sn,k(s) ≤(2π)s/2 kks(n − k)(n−k)s

nns
·
(k(n − k)

n

)s/2
· (e1/ke1/(n−k))s/12

≤(2π)s/2 kks(n − k)(n−k)s

nns
·
(k(n − k)

n

)s/2
es/6
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Thus, for 1 ≤ k ≤ n/2 and for some positive constant C only depending on

s, we get:

Sn,k(s) ≤Cs
kks(n − k)(n−k)s

nns
·
(k(n − k)

n

)s/2

≤Cs

(k

n

)ks(k

n

)s/2

Now,

Sn(s) =

n−1∑

k=1

Sn,k(s) ≤2Cs

∑

1≤k≤n/2

(k

n

)ks
max

1≤k≤n/2

(k

n

)s/2

≤2Cs

∑

1≤k≤n/2

(k

n

)ks(1

2

)s/2

≤2C̃s

∑

1≤k≤n/2

(k

n

)ks

where C̃s is a positive constant independent of k and n. Using the above result

from example (ii), we obtain for ε > 0, for fixed k◦ so that 1 < k◦ < n/2 and

n◦ > 2k◦ that:

Sn(s) ≤ C̃sε,

which shows that limn→∞ Sn(s) = 0.

(iii) For example (iii), we proceed similar as in the proof of Lemma 3.3 in

[15].

Let 0 < ε < 1 be given and choose N ∈ N such that N > 2/ε and

∀n ≥ N :
log(e + 1 + log n)

log(e + n)
< min

{ε

5
, e−2

}
.

Fix an arbitrary n ≥ N and let k be the smallest integer greater than log n.

For j = 1, · · · , n we have

Sn,j(s) =
(log(e + j))js(log(e + n − j))(n−j)s

(log(e + n))ns

=Sn,n−j(s)

Hence, because of s ≥ 1,

Sn(s) =

n−1∑

j=1

Sn,j(s) ≤ 2
∑

1≤j≤n/2

Sn,j(s)

Hence, by (a) for (iii),

Sn(s) =2
∑

1≤j≤k

( log(e + j)

log(e + n)

)sj
+ 2

∑

k<j≤n/2

Sn,k(s)

≤2
∑

1≤j≤k

( log(e + k)

log(e + n)

)j
+ n · e−2k

where we used the fact that s ≥ 1 and

Sn,k(s) ≤
( log(e + k)

log(e + n)

)ks
≤ e−2ks ≤ e−2k.
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We obtain

Sn(s) ≤2

∞∑

j=1

(
ε/5

)j
+ n · e−2 log n

≤2 · ε

5 − ε
+

1

n
< ε.

Hence, (b) holds.

�

3.3. Completions of normed function algebras of differentiable

functions

Let C(K)k+1 be the space of (k + 1)− tuples of all continuous complex func-

tions on K. An element f ∈ C(K)k+1 will be of the form f = (fj)
k
j=0. C(K)k+1

endowed with the norm given by

‖f‖˜
k :=

k∑

j=0

1

j!
‖fj‖K , (fj)

k
j=0 ∈ C(K)k+1

is a Banach algebra, where ‖ · ‖K denotes the supremum norm on K. Submulti-

plicativity of norm can be seen by defining the multiplication as follows:

For f = (fj)
k
j=0 and g = (gj)

k
j=0 in C(K)k+1, define fg =: h = (hj)

k
j=0, where,

hj =

j
∑

ν=0

(
j

ν

)

fνgj−ν , j = 0, · · · , k.

Moreover, (C(K)k+1, ‖ · ‖˜
k) is a unital Banach algebra with the unit element

e := (ej)
k
j=0, where,

ej :=

{

1, j=0

0, j=1, · · · , k.

Defining a unital isometric homomorphism J : Dk(K) → C(K)k+1 by J(f) :=

(f (j))kj=0, for all f ∈ Dk(K), we observe that J(Dk(K)) is a subalgebra of

C(K)k+1 and its closure J(Dk(K)) may be identified with D̃k(K), the completion

of Dk(K). We give the details for k = 1 only and generalises for k > 1.

Proposition 3.10. For a perfect, compact set K ⊂ C the following are equiv-

alent:

(a) The completion D̃1(K) of D1(K) is a Banach function algebra on K.

(b) D̃1(K) is semisimple.

(c) The operator d/dz is closable in C(K).

Proof. (a) =⇒ (b) is obvious.

(b) =⇒ (c) Notice that J : D1(K) → C(K)2 as defined above by J(f) = (f, f
′
)

is an isometric monomorphism and ‖ · ‖˜
1 is just the graph norm on the domain

D1(K) of d/dz and J(D1(K)) coincides with the graph of d/dz. If J(D1(K)) is

not a graph then there exists some (0, g) ∈ J(D1(K)), with g 6= 0. Because of

(0, g)2 = (0, 0), g ∈ rad(J(D1(K))). As J(D1(K)) may be identified with D̃1(K),

this proves the implication (b) =⇒ (c).
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(c) =⇒ (a) Suppose now that d/dz is closable and let d̃ be the closure of d/dz.

Then D̃1(K) coincides with the domain D(d̃) of d̃ (endowed with the graph norm

‖ · ‖d̃ w.r.t. d̃).

In particular, we have:

‖f‖K ≤ ‖f‖d̃ = ‖f‖K + ‖d̃f‖K , for all f ∈ D̃1(K).

Thus, D̃1(K) is a Banach function algebra on K. �

Recall that a compact set K ⊂ C is semirectifiable, if the union of all rectifiable

Jordan arcs in K is dense in K.

Remark 3.11. If K is a compact, semirectifiable set in C, then d/dz is clos-

able in C(K).

Indeed, by Theorem 6.3 in [16] the algebra D̃1(K) is semisimple and d/dz hence

closable by Proposition 3.10(b).

More general, the completion D̃k(K) will be a Banach function algebra if d/dz

is closable in C(K) endowed with the norm ‖ · ‖˜
k inherited from C(K)k+1.

As seen from the above proposition that in general, J(Dk(K)) is not closed

in C(K)k+1. An easy example for this situation is the following mentioned by

Bishop in [7].

Example 3.12. Let K be a perfect, compact, totally disconnected set in C.

For every n ∈ N, there exists a finite open covering of K by pairwise disjoint sets

Uα,n, α ∈ An, such that diam Uα,n < 1
n for all α ∈ An. Fix tα,n ∈ K ∩ Uα,n. Let

(fn)∞n=1 be the sequence of functions given by

fn(z) := z − tα,n, for all z ∈ Uα,n, n ∈ N.

Thus, f
(j)
n exists for all j ∈ N◦ and

f (1)
n ≡ 1, f (j)

n ≡ 0, for all j > 1.

It follows that, for j 6= 1,

f (j)
n → 0, uniformly on K for n → ∞

and

f (1)
n → 1, uniformly on K for n → ∞.

Thus,

J(Dk(K)) 6= J(Dk(K)).

and d/dz is not even closable in C(K).

Bishop provided an example in [7], where K is a compact, Jordan arc in C,

having no rectifiable subarcs. In particular, it has been shown for this example

that given a tuple (fn)kn=0 of continuous functions on K, there exists a sequence

(pn)∞n=0 of polynomials such that each fi, 0 ≤ i ≤ k, is approximated uniformly

on K by p
(i)
n .
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3.3.1. Completions of normed function algebras of complex ultra-

differentiable functions. Define l1(N◦, C(K), {Mp}) to be the sequence space

of functions on K with a weight sequence (Mp)p∈N◦ by:

l1(N◦, C(K), {Mp}) :=

{

f = (fp)
∞
p=0 ∈ C(K)N◦ ; |f |{Mp},1 :=

∞∑

p=0

1

Mp
‖fp‖K < ∞

}

where ‖ · ‖K is the supremum norm on the set K. We endow l1(N◦, C(K), {Mp})
with the norm | · |{Mp},1.

Let f = (fp)
∞
p=0 and g = (gp)

∞
p=0 ∈ l1(N◦, C(K), {Mp}). Then the multiplica-

tion fg =: h = (hp)
∞
p=0 is defined as:

hp :=

p
∑

ν=0

(
p

ν

)

fνgp−ν .

It is easy to check that the above multiplication is continuous w.r.t. the norm

| · |{Mp},1 , and hence l1(N◦, C(K), {Mp}) is a Banach algebra.

In a similar way, the space l∞(N◦, C(K), {Mp}) is defined as:

l∞(N◦, C(K), {Mp}) :=

{

f = (fp)
∞
p=0 ∈ C(K)N◦ ; sup

p∈N◦

1

Mp
‖fp‖K < ∞

}

We endow l∞(N◦, C(K), {Mp}) with the norm | · |{Mp},∞. The multiplication

in l∞(N◦, C(K), {Mp}) is defined as in l1(N◦, C(K), {Mp}). We observe that with

the additional condition (3.4), the multiplication is continuous w.r.t. the norm

| · |{Mp},∞. Thus, l∞(N◦, C(K), {Mp}) is a Banach algebra and may be endowed

with an equivalent submultiplicative norm.

For q = {1,∞}, we denote by Dq(K, {Mp}) any of the algebras D1(K, {Mp})
or D∞(K, {Mp}) and by lq(N◦, C(K), {Mp}) any of the algebras l1(N◦, C(K), {Mp})
or l∞(N◦, C(K), {Mp}), respectively.

The mapping

J : Dq(K, {Mp}) → lq(N◦, C(K), {Mp}),

defined by, J(f) := (f (p))∞p=0, for all f ∈ Dq(K, {Mp})
is an isometric algebra monomorphism from Dq(K, {Mp}) into lq(N◦, C(K), {Mp}).

The completion D̃q(K, {Mp}) of the normed algebra Dq(K, {Mp}) may then

be identified with the closure of J(Dq(K, {Mp})) in lq(N◦, C(K), {Mp}), denoted

by Jq(K, {Mp})
Next, we give a criterion for the completion D̃q(K, {Mp}) of the normed al-

gebra Dq(K, {Mp}) to be a Banach function algebra.

Proposition 3.13. Let K ⊆ C be a perfect, compact set such that d/dz is

closable in C(K). Let J be the isometric embedding of Dq(K, {Mp}), q = {1,∞}
in lq(N◦, C(K), {Mp}) as defined above with closure Jq(K, {Mp}), where as usual

(Mp)p∈N◦ satisfying (3.2) and in addition, (mp)
∞
p=0 satisfying (3.4) for q = ∞.

Let P◦ be the projection from lq(N◦, C(K), {Mp}) to C(K) defined as:

P◦f := f◦, f ∈ lq(N◦, C(K), {Mp}),
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then P◦|Jq(K, {Mp}) is an algebra monomorphism. Hence, if we endow its range

D̃q(K, {Mp}) := P◦(Jq(K, {Mp})) with the norm given by

‖h‖˜
{Mp},q := |g|{Mp},q

for all h ∈ D̃q(K, {Mp}), where g = (gk)∞k=0 ∈ Jq(K, {Mp}) with g◦ = h,

then, D̃q(K, {Mp}) may be considered as the completion of Dq(K, {Mp}) and

D̃q(K, {Mp}) is a Banach function algebra on K.

Proof. To show that P◦|Jq(K,{Mp}) is an isometry, it suffices to prove the

injectivity of P◦|Jq(K,{Mp}).
Assume that this is not the case. Then, there exists some 0 6= g = (gp)p∈N◦ ∈

Jq(K, {Mp}) with g◦ ≡ 0 and gp 6≡ 0 for some p ∈ N. Let p◦ ∈ N be minimal with

that property, so that gp◦−1 ≡ 0 and gp◦ 6≡ 0.

By the definition of Jq(K, {Mp}), there exists a sequence (fn)∞n=1 in Dq(K, {Mp})
such that

(f (p)
n )p∈N◦ → g for n → ∞.

In particular,

f (p◦−1)
n → gp◦−1 ≡ 0 and

df
(p◦−1)
n

dz
= f (p◦)

n → gp◦ 6≡ 0

uniformly on K, for n → ∞ in contradiction to the fact that d/dz is closable in

(C(K), ‖ · ‖K). Hence, P◦|Jq(K,{Mp}) is an isometric algebra isomorphism from

Jq(K, {Mp}) to D̃q(K, {Mp}) and D̃q(K, {Mp}) is a Banach function algebra on

K.

�

3.3.2. Some regularity results on a set K. Some criteria for complete-

ness of D1(K) algebras have been presented in [16], by assuming different con-

ditions on the compact set K. Next, we recall some definitions concerning the

regularity of a set K.

Definition 3.14. Let K be a compact subset of the complex plane C. K

is said to be regular at a point z ∈ K, if there exists a positive constant kz

and for each w ∈ K there is a rectifiable path γ from z to w in K, such that

|γ| ≤ kz|z − w|, where | · | denotes the length of a rectifiable path.

A set K is point-wise regular, if it is regular at every point z of K.

Further, K is called uniformly regular, if there exists a positive constant k,

such that for all z and w in K and for a rectifiable path γ from z to w in K,

|γ| ≤ k|z − w|.

From Theorem 1.6 [15], a sufficient condition for function algebras Dk(K)

and D1(K, {Mp}) to be complete is that K should be a finite union of uniformly

regular sets. However, if K ⊂ C is a perfect, compact set with infinitely many

components then D1(K, {Mp}) is never complete (by Theorem 2.3 in [10]).

Definition 3.15. Let K ⊂ C be a perfect, compact set. A point a ∈ K will

be called a UC-point, if there exists a sequence (zn)∞n=1 of points zn ∈ K \ {a}
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converging to a for n → ∞ with the property that the family (∆n)∞n=1 of linear

functionals ∆n : D1(K) → C with

∆n(f) :=
f(zn) − f(a)

zn − a
, (f ∈ D1(K), n ∈ N)

is uniformly continuous on (D1(K), ‖ · ‖1).

Note that for all f ∈ D1(K), we have in this situation ∆n(f) → f
′
(a) for

n → ∞. The set of all UC − points in K will be denoted by UC(K).

Example 3.16. Let b be a point in a perfect, compact set K such that there

exists a sequence (zn)∞n=1 of points in K \ {b} converging to b and a sequence of

rectifiable paths (γn)∞n=1 with (γn)(0) = zn and (γn)(1) = b such that the length

|γn| of γn satisfies

|γn| ≤ Cb|zn − b|
for all n ∈ N, with a constant Cb independent of n. Then, b ∈ UC(K).

Proof. By the Fundamental Theorem of Calculus for rectifiable paths (in

the form of Theorem 3.3 of [10], see [9] for the proof), we have

∣
∣
∣
f(zn) − f(b)

zn − b

∣
∣
∣ =

∣
∣
∣

1

zn − b

∫

γn

f
′
dz

∣
∣
∣

≤‖f ′‖K · |γn|
|zn − b| ≤ Cb‖f

′‖K .

�

This example shows in particular that if, K ⊂ C is a locally pointwise regular,

compact set in the sense of [10], then UC(K) = K.

Example 3.17. Let K := {it ;−1 ≤ t ≤ 1} ∪
{
x + i sin 1

x ;x ∈ (0, 1]
}
. Then,

UC(K) = K but K is not locally pointwise regular, as K is not path connected.

Remark 3.18. If K is a perfect, compact set and I is a (not necessarily

closed) interval in R. If γ : I → C is a non-constant piecewise smooth path with

γ(I) ⊆ K, then γ(I) ⊂ UC(K).

Remark 3.19. If K is a swiss cheese or one of the fractal sets considered in

the previous Chapter, then UC(K) is dense in K.

Proposition 3.20. Let K ⊆ C be a perfect, compact set with UC(K) = K.

Then d/dz is closable and the completion D̃1(K) of D1(K) is a Banach function

algebra.

Proof. We may identify D̃1(K) with the closure J1 of J := {(f, f
′
)|f ∈

D1(K)} in C(K)2.

Fix an arbitrary a ∈ UC(K). Thus, there exists a sequence (zn)∞n=1 in K \{a}
and a constant C > 0 such that

∣
∣
∣
f(zn) − f(a)

zn − a

∣
∣
∣ ≤ C

(
‖f‖K + ‖f ′‖K

)
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for all n ∈ N and all f ∈ D1(K). As J is dense in J1, we conclude that:
∣
∣
∣
f(zn) − f(a)

zn − a

∣
∣
∣ ≤ C

(
‖f‖K + ‖g‖K

)

holds for all n ∈ N and all (f, g) ∈ J1. In particular,
∣
∣
∣
f(zn) − f(a)

zn − a
− g(a)

∣
∣
∣ ≤ (C + 1)

(
‖f‖K + ‖g‖K

)

for all n ∈ N and all (f, g) ∈ J1. As,
∣
∣
∣
f(zn) − f(a)

zn − a
− f

′
(a)

∣
∣
∣ → 0, for n → ∞

and all (f, f
′
) in the dense subset J of J1, we conclude that:

lim
n→∞

f(zn) − f(a)

zn − a
= g(a)

for all (f, g) ∈ J1. Therefore, if (fk) is a sequence in D1(K) such that

fk → 0 and f
′

k → g ∈ C(K) for k → ∞,

uniformly on K, then in particular (0, g) ∈ J1 and hence, we must have g(a) = 0

for all a ∈ UC(K). As, UC(K) is dense in K, we conclude that g ≡ 0 on K.

Thus showing that, d/dz is a closable linear operator in C(K). �

3.4. Naturality

Proposition 3.21. Let K be a perfect, compact set in C with d/dz closable in

C(K). Assume that Rat(K) ⊂ Dq(K, {Mp}), q = {1,∞} and let Rq(K, {Mp}) :=

Rat(K)
‖·‖˜

{Mp},q be its closure in D̃q(K, {Mp}). Then, Rq(K, {Mp}) will be a

natural Banach function algebra on K.

Proof. The proof follows directly from Proposition 3.13 and Proposition

3.3(a). �

It is still unknown that whether Rat(K) is (always) dense in Dq(K, {Mp}), q =

{1,∞} or not. This open question has also been mentioned in [16] for D1(K)

algebras and in [25] for D1(K, {Mp}) algebras on a perfect, compact set K.

Recall from Theorem 1.6 [15] that, for a compact set K ⊂ C, which is a finite

union of uniformly regular sets, the algebras Dk(K) and D1(K, {Mp}) are Banach

function algebras. In [15], for such sets K a condition on the sequence (mp)
∞
p=0,

i.e.
p−1
∑

q=1

mq
qm

p−q
p−q

mp
p

→ 0, as p → ∞

has been given, which leads to a natural Banach function algebra D1(K, {Mp}),
where as usual mp =

(
Mp

p!

)1/p
, p ∈ N◦.

For a Banach function algebra D1(K, {Mp}), [1] provided general conditions

on (Mp)
∞
p=0 to obtain their naturality, when K ⊂ C is a uniformly regular compact

set. They showed that whenever Pp :=
Mp

p! , p ∈ N◦ (where, in our situation Pp =

mp
p and where (Mp)p∈N◦ satisfying (3.2)) satisfies any of the following condition,

the resulting Banach function algebra D1(K, {Mp}) will be natural:
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(i) sup

{
mk

kmn−k
n−k

mn−1
n−1

: k, n ∈ N

}

< ∞,

(ii) m2n
n ≤ mn−1

n−1m
n+1
n+1, ∀ n ∈ N,

(iii) max1≤k≤n−1
mk

kmn−k
n−k

mn
n

→ 0, as n → ∞

Following [1], we define d(M) = limn→∞
(

n!
Mn

)1/n
and the sequence (At)

∞
t=1

by:

At := sup

{

1

mn
n

n∏

k=1

(mk
k)

ak : n ≥ t, (a1, · · · , an) ∈ S(t, n)

}

,

where mn
n = Pn = Mn

n! and S(t, n) is a set of all a = (a1, · · · , an) ∈ Z
+n such that

∑n
k=1 ak = t and

∑n
k=1 kak = n, for t, n ∈ N with n ≥ t.

From Theorem 2.7 [1], a necessary condition for a complete function algebra

D1(K, {Mp}) to be natural is that d(M) = 0, where as mentioned before that, in

general D1(K, {Mp}) and hence, D∞(K, {Mp}) are not always complete. In [1]

Corollary 3.5, Corollary 3.6 and Corollary 3.8, the authors showed that whenever

K is a uniformly regular compact set in C and mn
n = Pn = Mn

n! , (n ∈ N◦)
satisfies any one condition (i) − (iii) of above, it gives (At)

1/t → 0, for t → ∞,

which further implies that d(M) = 0 and thus yielding a natural Banach function

algebra D1(K, {Mp}).

Theorem 3.22. Let K be a perfect, compact set in C and that d/dz is clos-

able in C(K). Let (Mp)
∞
p=0 be a sequence of positive reals satisfying (3.2). Define

the sequences (mp)
∞
p=0 and (At)

∞
t=1 as above such that limt→∞(At)

1/t = 0. Then,

D̃1(K, {Mp}), the completion of D1(K, {Mp}) is a natural Banach function alge-

bra on K.

Proof. From Proposition 3.13, it is clear that D̃1(K, {Mp}) is a Banach

function algebra. To show that D̃1(K, {Mp}) is natural, we see from the proof of

Theorem 3.3 [1] that:

‖fp‖{Mp},1 ≤
n∑

t=1

(
n

t

)

‖f‖n−t
K

[

(At)
1/t(‖f‖{Mp},1 − ‖f‖K)

︸ ︷︷ ︸

=:εt

]t
,

for all f ∈ D1(K, {Mp}) and hence by the continuity of the norm ‖ · ‖˜
{Mp},1 of

D̃1(K, {Mp}), also for all f ∈ D̃1(K, {Mp}).
As, εt = A

1/t
t (‖f‖{Mp},1 − ‖f‖K) → 0, as t → ∞, we obtain by using Lemma

3.1 [1] that,

(3.6) lim sup
p→∞

(‖fp‖˜
{Mp},1)

1/p ≤ ‖f‖K , ∀f ∈ D̃1(K, {Mp}).

Using Theorem 1.3 [1], we obtain that D̃1(K, {Mp}) is a natural Banach

function algebra on K.

�

In particular, by Remark 3.11, this Theorem also applies to compact, semirec-

tifiable sets in C.
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Remark 3.23. From the proof of Corollary 3.5, Corollary 3.6 and Corol-

lary 3.8 in [1], we observe that anyone of the condition (i) − (iii) above implies

limm→∞ A
1/m
m = 0, even for the normed algebras Dq(K, {Mp}), q = {1,∞}.

Examples 3.24. Consider the sequences (mp)
∞
p=0 given in Examples 3.8.

Then, they satisfy condition (iii), i.e.

(3.7) max
1≤k≤n−1

mk
km

n−k
n−k

mn
n

→ 0, as n → ∞,

and limm→∞ A
1/m
m = 0.

Proof. By Lemma 3.9, it is clear that (3.7) holds for the Examples 3.8.

Further, from the proof of Corollary 3.8 [1], A
1/m
m → 0, as m → ∞, thus yielding

a natural Banach function algebra D̃1(K, {Mp}) under the assumptions of the

above Theorem 3.22.

�

3.5. Locally inverse closed algebras

Recall from the introductory section that an algebra A of functions on a

compact Hausdorff set K is inverse-closed if, 1
f ∈ A for all f ∈ A with f(z) 6= 0,

for all z in K. Equivalently saying that, each f ∈ A has natural spectrum. In

[34], Rudin has considered the inverse-closedness of the algebras C {Mn} of all

complex functions f on the real line, for which there exist constants βf and Bf

such that:

‖D(n)f‖K ≤ βfBn
f Mn, n ∈ N◦.

Remark 3.25. Let K be a perfect, compact set and H 6= 0 be a compact subset

of K. Let f ∈ Dk(K) for 0 ≤ k ≤ ∞, such that f(z) 6= 0 for all z ∈ H. Then 1
f

is k − times continuously differentiable in all points of H.

Next two results will deal with the local inverse-closedness of D1(K, {Mp})
algebra. For the proof, we follow the ideas of [34].

Lemma 3.26. Let (mp)
∞
p=0 and (m̃p)

∞
p=0 be monotone increasing sequences

such that

(3.8) lim
p→∞

m̃p

mp
= 0, for all p ∈ N◦.

Let D1(K, {Mp}) be the algebra defined before, where K is a perfect, compact set

in C and D1(K, {M̃p}) be the corresponding algebra for M̃p := p!m̃p
p, p ∈ N◦.

a) Let H be a non-empty compact subset of K and f ∈ D1(K, {M̃p}) with

the property that f has no zero in H. Then, 1/f is infinitely often

continuously complex differentiable in all points of H and

‖1/f‖{Mp},1,H :=

∞∑

p=0

‖Dp(1/f)‖H

Mp
< ∞.

b) Let g ∈ D1(K, {Mp}) and f ∈ D1(K, {M̃p}) such that |f(z)| > 0 for all

z ∈ supp g, then h = g/f ∈ D1(K, {Mp}) with the norm ‖ · ‖{Mp},1.
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Proof. a) Choose a positive constant σ on a neighbourhood of H and define:

rn :=
σ

2‖f‖{M̃n},1m̃n
, n ∈ N◦,

where,

‖f‖{M̃n},1 =
∞∑

n=0

1

M̃n

‖f (n)‖K =
∞∑

n=0

1

n!m̃n
n ‖f (n)‖K .

Now, fix n and x◦ ∈ H, and define:

Q(z) = f(x◦) + Df(x◦)z + · · · +
(
Dnf

)
(x◦)

zn

n!

Then, for |z| ≤ rn, we have:

|Q(z)| ≥|f(x◦)| −
∣
∣
∣

n∑

j=1

f (j)(x◦)zj

j!

∣
∣
∣

≥σ −
n∑

j=1

|f (j)(x◦)|
j!

σj

2j‖f‖{M̃n},1m̃
j
n

≥σ − σ

2‖f‖{M̃n},1

n∑

j=1

|f (j)(x◦)|
j!m̃j

n

( σ

2‖f‖{M̃n},1

)j−1

≥σ − σ

2‖f‖{M̃n},1
‖f‖{M̃n},1 =

σ

2
.

Now, the first n−derivatives of Q at z = 0 are equal to the first n−derivatives

of f at x = x◦, i.e.
(
Dn 1

f

)
(x◦) =

(
Dn 1

Q

)
(0).

Using the Cauchy formula, we get:

(
Dn 1

f

)
(x◦) =

n!

2πi

∫

|z|=rn

dz

zn+1Q(z)
.

Then,
∣
∣
∣

(
Dn 1

f

)
(x◦)

∣
∣
∣ ≤ n!

rn
n

2

σ
=

n!2

σ

(2‖f‖{M̃n},1m̃n

σ

)n

and

(3.9) ‖Dn
( 1

f

)
‖H ≤ n!2

σ

(2‖f‖{M̃n},1m̃n

σ

)n

Further,

∥
∥
∥

1

f

∥
∥
∥
{Mp},1,H

=

∞∑

p=0

‖Dp( 1
f )‖H

p!mp
p

≤ 2

σ

∞∑

p=0

(2‖f‖{M̃n},1m̃p

σmp

)p

≤ 2

σ

∞∑

p=0

(m̃p

mp

)p(2‖f‖{M̃n},1
σ

)p
< ∞(3.10)

from (3.9), the assumption (3.8) and that f ∈ D1(K, {M̃p}).



3.5. LOCALLY INVERSE CLOSED ALGEBRAS 59

b) We need to show that g/f ∈ D1(K, {Mp}), where

( g

f

)
(z) :=

{

0 , z /∈ supp g

( g
f )(z) , z ∈ supp g

Then, by the Leibniz rule, Dn( g
f ) ≡ 0 outside supp g and for x◦ ∈ supp g, we

have:
∣
∣
∣

(
Dn(

g

f
)
)
(x◦)

∣
∣
∣ ≤

n∑

j=0

(
n

j

)∣
∣
∣

(
Dj 1

f

)
(x◦)

∣
∣
∣

∣
∣
∣

(
Dn−jg

)
(x◦

)
∣
∣
∣

and by using (3.9) with H := supp g, we get:

‖Dn(
g

f
)‖supp g ≤

n∑

j=0

(
n

j

)(2‖f‖{M̃n},1m̃j

σ

)j
‖g(n−j)‖K

j!2

σ

=

n∑

j=0

n!

(n − j)!

2

σ

(2‖f‖{M̃n},1m̃j

σ

)j
‖g(n−j)‖K

Further,

∞∑

p=0

‖Dp( g
f )‖supp g

p!mp
p

≤
∞∑

p=0

p
∑

j=0

1

(p − j)!

2

σ

(2‖f‖{M̃n},1m̃j

σ

)j ‖g(p−j)‖K

mp
p

By using (3.3) for (mp)p∈N◦ and (3.8), we get that:
∥
∥
∥

g

f

∥
∥
∥
{Mp},1

≤ ‖g‖{Mp},1

∥
∥
∥

1

f

∥
∥
∥
{Mp},1,H

< ∞.

�

In the next two results, for the proof we follow the ideas in the proof of Lemma

3.4 in [15].

Lemma 3.27. Let K be a perfect, compact subset of C and let (mn)∞n=0 be a

monotone increasing sequence with m◦ = 1 as defined before, such that

(3.11)
∞∑

n=2

max
1≤k≤n−1

mk
km

n−k
n−k

mn
n

< ∞.

Then, D1(K, {Mp}) is locally inverse closed in the following sense:

a) For all compact subsets ∅ 6= H of K and all f ∈ D1(K, {Mp}) with

f(z) 6= 0 for all z ∈ H, the function 1/f is infinitely often continuously

complex differentiable in a neighbourhood of H and

‖1/f‖{Mp},1,H =

∞∑

p=0

‖Dp(1/f)‖H

Mp
< ∞.

b) Let g ∈ D1(K, {Mp}) such that f(z) 6= 0 for all z ∈ supp g, then g/f ∈
D1(K, {Mp}).

Proof. a) If f ∈ D1(K, {Mp}) has no zero in H, then there exists some

δ > 0 and an open neighbourhood U of H such that:

inf
z∈U∩K

|f(z)| > δ.
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Without loss of generality we may assume that δ = 1. In particular, 1/f is

infinitely often continuously complex differentiable on U ∩K. As in [15], proof of

Lemma 3.4, we now use the fact that f · 1
f ≡ 1 on U ∩K and obtain for all n ≥ 1

βn ≤
n∑

k=1

αkβn−k

mk
km

n−k
n−k

mn
n

where

αp :=
‖f (p)‖H

Mp
≤ ‖f‖{Mp},1 and βp :=

‖Dp(1/f)‖H

Mp
for all p ∈ N◦.

In particular, β◦ = ‖1/f‖H < 1. Hence, for n ≥ 1,

βn ≤
n−1∑

k=1

αkβn−k

mk
km

n−k
n−k

mn
n

+ αn

≤‖f‖{Mp},1 max
1≤k≤n−1

mk
km

n−k
n−k

mn
n

·
n−1∑

j=1

βj + αn

≤‖f‖{Mp},1CnSn−1 + αn

where S◦ = 0 and

Sn−1 :=
n−1∑

j=1

βj and Cn := max
1≤k≤n−1

mk
km

n−k
n−k

mn
n

Thus, for all n ≥ 1, we have

Sn ≤ Sn−1

(
1 + ‖f‖{Mp},1Cn

)
+ αn.

Inductively, we obtain, S1 ≤ α1 and for n > 1:

Sn ≤
n∑

j=1

αj

n∏

k=j+1

(
1 + ‖f‖{Mp},1Ck

)

≤
n∑

j=1

αj

∞∏

k=1

(
1 + ‖f‖{Mp},1Ck

)

≤‖f‖{Mp},1 · C(f)

where C(f) :=
∏∞

k=1

(
1 + ‖f‖{Mp},1Ck

)
exists, as

∑∞
k=1 ‖f‖{Mp},1Ck < ∞ by

(3.11) and product over empty index set is defined to be 1. Hence,

‖1/f‖{Mp},1,H =‖1/f‖H + lim
n→∞

Sn

≤‖1/f‖H + ‖f‖{Mp},1C(f) < ∞.

b) Consider a non-empty compact subset H of K such that H := supp g.

Since, f(z) 6= 0, for all z ∈ supp g, we define a function:

h(z) :=
( g

f

)
(z) =

{

0 , z /∈ supp g

( g
f )(z) , z ∈ supp g
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Since we know from a) that ‖1/f‖{Mp},1,H < ∞, therefore, for z ∈ supp g,

using the Leibniz rule, the fact that Mp = p!mp
p and (3.3), for 0 ≤ q ≤ p ≤ ∞,

we have:

‖Dp(g/f)‖H

Mp
≤

p
∑

q=0

1

q!(p − q)!mq
qm

p−q
p−q

‖Dq(1/f)‖H‖D(p−q)(g)‖K

Thus,

‖g/f‖{Mp},1,H ≤
∞∑

p=0

p
∑

q=0

‖Dq(1/f)‖H

q!mq
q

‖D(p−q)(g)‖K

(p − q)!mp−q
p−q

≤‖1/f‖{Mp},1,H‖g‖{Mp},1 < ∞.

�

Examples 3.28. For s > 1 the condition (3.11) is satisfied for the sequences

given by

mp = p!s/p and mp = ps, p ∈ N,

where m◦ = 1 in both cases.

Proof. We have seen in Lemma 3.9 that Sn,k(s) is monotone decreasing in

k for 1 ≤ k ≤ n/2 and symmetric in k and n− k, its maximum must be attained

for some k ∈ N with k ≤ n/2.

In the first case:

max
1≤k≤n−1

mk
km

n−k
n−k

mn
n

≤ m1
1m

n−1
n−1

mn
n

=
1

ns

and in the second case:

max
1≤k≤n−1

mk
km

n−k
n−k

mn
n

≤ m1
1m

n−1
n−1

mn
n

=
(n − 1)(n−1)s

nsn
≤ 1

ns

Thus, condition (3.11) is satisfied in both cases for s > 1. �

Next, we give a lemma which will be useful later in showing the regularity of

a Banach function algebra.

Lemma 3.29. Let K be a perfect, compact subset of C and (mn)∞n=0 be a

monotone increasing sequence of positive reals with m◦ = 1 and

(3.12)

n−1∑

k=1

mk
km

n−k
n−k

mn
n

→ 0, as n → ∞.

Then, D∞(K, {Mp}) is locally inverse closed as follows:

a) For all compact subsets ∅ 6= H of K and all f ∈ D∞(K, {Mp}) with

f(z) 6= 0 for all z ∈ H, the function 1/f is infinitely often continuously

complex differentiable in a neighbourhood of H and

‖1/f‖{Mp},∞,H := sup
p∈N◦

‖Dp(1/f)‖H

Mp
< ∞.

b) Let g ∈ D∞(K, {Mp}) such that f(z) 6= 0 for all z ∈ supp g, then g/f ∈
D∞(K, {Mp}).
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Proof. a) We follow the proof of Lemma 3.4 [15]. As, f ∈ D∞(K, {Mp})
has no zero in H, there exists some δ > 0 and an open neighbourhood U of H

such that:

inf
z∈U∩K

|f(z)| > δ.

Without loss of generality we may assume that δ = 1. Then, 1/f is infinitely

often continuously complex differentiable on U ∩ K.

Choose some constant C > 0 such that ‖f‖{Mp},∞ < C < ∞ and define

αp :=
‖f (p)‖H

Mp
, βp :=

‖Dp(1/f)‖H

Mp
for all p ∈ N◦.

Since f · 1
f ≡ 1 on U ∩ K, we have for all n ≥ 1

βn ≤
n∑

k=1

αkβn−k

mk
km

n−k
n−k

mn
n

.

In particular, β◦ = ‖1/f‖H < 1. Hence, for n ≥ 1, we get:

βn ≤
n−1∑

k=1

αkβn−k

mk
km

n−k
n−k

mn
n

+ αn.

Choose a positive constant N = N(C) such that

n−1∑

k=1

mk
km

n−k
n−k

mn
n

<
1

2C
, for n ≥ N.

Then, for n ≤ N , we have, βn ≤ C◦, where C◦ = C◦(C) ≥ 2C. For n ≥ N ,

we have

βn+1 ≤ 1

2
max {βk ; k ≤ n} + C

which gives βn+1 ≤ C◦.
Thus, by induction on n, we obtain that:

βn ≤ C◦, for all n ∈ N◦.

Hence,

‖1/f‖{Mp},∞,H = sup
p∈N◦

‖Dp(1/f)‖H

Mp
= sup

p∈N◦

βp ≤ C◦ < ∞.

b) If f, g ∈ D∞(K, {Mp}) such that f has no zero on H := supp g, then from

a), ‖1/f‖{Mp},∞,H < ∞. Moreover, by Leibniz rule, using Mp = p!mp
p, for all

p ∈ N◦ and (3.12), we obtain:

‖g/f‖{Mp},∞ = sup
p∈N◦

‖Dp(g/f)‖H

Mp
≤ sup

p∈N◦

p
∑

q=0

‖Dq(1/f)‖H‖D(p−q)(g)‖K

p!mp
p

≤ ‖1/f‖{Mp},∞,H‖g‖{Mp},∞ · sup
p∈N◦

p
∑

q=0

mq
qm

p−q
p−q

mp
p

< ∞.

�

Examples 3.30. Examples for this situation have already been given and

proved in Lemma 3.9.
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3.6. Order of growth and coefficients of an entire function

This section shows the relation between order of growth and coefficients of

entire functions and applications will be given from (mp)p∈N◦ sequences.

Proposition 3.31. Let F (z) =
∑∞

n=0 anzn be an entire function and for

positive constants c, d, α with 0 < α ≤ 1, h(r) = c exp(drα). Then, the following

hold:

a) If M(r) := max|z|=r |F (z)| ≤ exp(h(r)), then

|an| ≤
(2d exp

log n
cα

)n
α
.

b) If |an| ≤ A(n) :=
(

C
log n

c1

)n
α
, with positive constants C, c1 and α ∈ (0, 1]

then

M(r) = max
|z|=r

|F (z)| ≤ exp(c2 exp(d2r
α))

for some positive constants c2 and d2.

Proof. (a) Define a function u(r) := rh′(r) = cdαrα exp(drα). For r ≥
d−1/α, define monotone increasing functions g1(r) and g2(r) such that

(3.13) g1(r) := cα exp(drα) ≤ u(r) ≤ cα exp(2dra) =: g2(r)

Since, the inverse functions of g1(r), g2(r) and u(r) exist, we get:

g−1
1 (t) =

(1

d
log

t

cα

)1/α

and

g−1
2 (t) =

( 1

2d
log

t

cα

)1/α

From (3.13) we obtain, for t ≥ g2((
1
d )1/α) that

(3.14) g−1
2 (t) ≤ u−1(t) ≤ g−1

1 (t)

From [22] Section 2.2, Theorem 2, we have that:

|an| ≤
exp(h(u−1(n)))

(u−1(n))n
≤ exp(h(g−1

1 (n)))

(g−1
2 (n))n

=
(2d exp

log n
cα

)n/α

(b) From the assumption

|an| ≤ A(n) =
( C

log n
c1

)n/α

we obtain:

|an|rn = exp
(n

α
log rα + log an

)

≤ exp
(n

α
log

Crα

log n
c1

)

= exp
(n

α

{

log rα + log C − log log
n

c1

})
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Let r ≥ exp(1/α) =: r◦ and ε > 0. Then,

log
Crα

log n
c1

< −ε

if and only if n ≥c1 exp(Crα exp(ε)) =: t2 = t2(ε)

Thus, for r ≥ r◦ and n ≥ t2(ε), we have |an|rn ≤ exp(−εn/α). Also,

log
C

log n
c1

≥ 0, if and only if n ≤ c1 exp(C) =: t1

Because of t2 = t2(ε) > t1, we have:

∞∑

n=0

anrn =S1 + S2 + S3

=
∑

n≤t1

anrn +
∑

t1<n≤t2

anrn +
∑

n>t2

anrn

Now, S1 :=
∑

n≤t1
anrn is a polynomial of order ≤ t1.

S2 ≤
∑

t1<n≤t2

|an|rn ≤
∑

t1<n≤t2

exp
(n

α
log crα

)

≤ t2 exp(
t2
α

log crα)

=c1 exp(Crα exp(ε)) exp(c̃1 exp(Crα exp(ε)) log r)

where log r < exp(εrα). Hence, for r ≥ r1(ε), we get:

S2 ≤c1 exp(Crα exp(ε)) exp(c̃1 exp(C exp(ε) + ε)rα)

≤ exp(2c̃1 exp(C exp(ε) + ε)rα)

S3 ≤
∑

n>t2

|an|rn ≤
∑

n>t2

exp(−nε/α)

≤ exp(−t2ε/α)

1 − 1/ exp(ε/α)
= C(ε)

Thus, there exists c̃1 > 0 such that

M(r) ≤
∞∑

n=0

|an|rn ≤ exp(2c̃1 exp(C exp(ε) + ε)rα)

for all r ≥ r1(ε) ≥ r◦. Hence,

M(r) ≤ exp(c2 exp(d1r
α))

for some constant d1 ≥ C and c2 > c̃1.

�

Corollary 3.32. Let 0 < α ≤ 1, m◦ = 1 and mn
n =

(
∏n

k=1 log(k + e)
)1/α

for all n ∈ N. If (an)∞n=0 is a sequence satisfying |an| ≤ m−n
n , then for all

ε ∈ (0, 1 − α) the entire function z 7→ F (z) =
∑∞

n=0 anzn satisfies

M(r) = max
|z|=r

|F (z)| ≤ exp(c exp(drα+ε))
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with some positive constants c = c(ε) and d = d(ε).

Proof. Fix δ ∈ (0, 1) such that α
1−δ < α + ε. By the choice of δ, we can

write mn
n as:

mn
n =

( ∏

1≤k≤δ̃n

log(k + e)
)1/α

·
( ∏

δ̃n≤k≤n

log(k + e)
)1/α

,

where δ̃n is the smallest integer ≥ δn. Since the left term of the product is always

≥ 1, we have:

mn
n ≥

∏

δ̃n≤k≤n

(
log(k + e)

)1/α

≥
(
log(δn + e)

)n(1−δ)
α

≥
(
log(δn + e)

) n
α+ε

=
(
log(n(δ + e/n)

) n
α+ε ≥

(
log(δn)

) n
α+ε

for n larger than some n1. Hence, |an| ≤ m−n
n ≤

(
1

log(δn)

) n
α+ε

. From Proposition

3.31(b), we obtain that:

M(r) ≤ exp(c exp(drα+ε)).

�

Proposition 3.33. Let (mn)∞n=0 be a monotone increasing sequence with

m◦ = 1 and mn → ∞, for n → ∞. Let (an)∞n=0 be a sequence such that

|an| ≤
1

mn
n

, for all n ∈ N◦.

Consider the entire function F (z) =
∑∞

n=0 anzn and put M(r) := sup|z|=r |F (z)| ≤
∑∞

n=0

(
r

mn

)n
. Define

n◦(r) := min {n ∈ N : r + 1 ≤ mn}
then, for r ≥ 1,

M(r) ≤ n◦(r) exp(n◦(r) · log r) + (r + 1).

Proof. For r ≥ 1, M(r) can be estimated as:

M(r) ≤
n◦(r)−1

∑

n=0

( r

mn

)n
+

∞∑

n=n◦(r)

( r

mn

)n

≤ n◦(r) · max
0≤n≤n◦(r)

( r

mn

)n
+

∞∑

n=n◦(r)

( r

r + 1

)n

≤ n◦(r)r
n◦(r) +

( r

r + 1

)n◦(r) 1

1 − r
r+1

Thus, M(r) ≤ n◦(r) exp(n◦(r) · log r) + (r + 1) �

Examples 3.34.
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(1) Let m◦ = 1 and mn = ns, for s > 0, n ∈ N. Then, by the definition of n◦(r)
and mn,

r + 1 ≤ ns ⇔ n ≥ (r + 1)1/s.

Thus, n◦(r) ≤ (r + 1)1/s + 1 and

M(r) ≤ ((r + 1)1/s + 1) exp
(
((r + 1)1/s + 1) log r

)
+ r + 1

≤ c exp(dr1/s log r)

for positive constants c, d only depending on s and not on r.

(2) Let m◦ = 1 and mn = (log(e + n))1/α, for α ∈ (0, 1].

Then, by definition of n◦(r), we have:

r + 1 ≤ (log(e + n))1/α

⇔ exp(r + 1)α − e ≤ n

Hence, n◦(r) ≤ exp(r + 1)α, and we obtain:

M(r) ≤ exp(r + 1)α exp
(
exp(r + 1)α log r

)
+ r + 1

≤ exp(c exp(drα) log r)

for some positive constants c and d only depending on α.

3.7. Regular Banach function algebras

We need a criterion to show that the operator of multiplication by the coor-

dinate function is decomposable on D̃q(K, {Mp}), for q = {1,∞}.

Theorem 3.35. Let K ⊂ C be a perfect, compact set with λ(K) = 0. Let M̃z

be the operator of multiplication on lq(N◦, C(K), {Mp}), q = {1,∞} defined by:

M̃z(g) := J(idK) · g =
(
zgp + pg(p−1)

)∞
p=0

, g = (gp)
∞
p=0 ∈ lq(N◦, C(K), {Mp}),

where same as in Section 3.3.1, J is the isometric algebra monomorphism from

Dq(K, {Mp}) to lq(N◦, C(K), {Mp}).
Assume that mp → ∞, for p → ∞ and define an entire function ω : C → C by,

ω(ξ) :=

∞∑

p=0

ξp+1

mp
p

, ξ ∈ C.

Moreover, suppose that V (K) be an open, bounded neighbourhood of K and f

satisfy the condition (η). If, the integral

IV :=

∫∫

V (K)

f
(

log+ log+ ω
( 1

dist(ξ,K)

))

dλ(ξ) < ∞,

then, M̃z is decomposable.

Proof. For ξ ∈ C \ K, define the function h ∈ Rat(K) by;

h(z) =
1

ξ − z
, for all z ∈ K.

Then,
h(p)

Mp
=

p!

(ξ − z)p+1Mp
and

‖h(p)‖K

Mp
≤ d(ξ)p+1

mp
p
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where d(ξ) := 1
dist(ξ,K) . Hence,

‖h‖{Mp},1 =
∞∑

p=0

(d(ξ))p+1

mp
p

= ω(d(ξ))

and

‖h‖{Mp},∞ = sup
p∈N◦

(d(ξ))p+1

mp
p

≤ ω(d(ξ)).

Note that, (ξ − M̃z)
−1 is the operator of multiplication by J(h). Therefore,

for some positive constant C and q = {1,∞}, we obtain:

‖(ξ − M̃z)
−1‖ ≤ C‖h‖{Mp},q ≤ C · ω(d(ξ)).

The decomposability of M̃z is now immediate from Remark 1.12 for T = M̃z,

Ω = V (K) and K = σ(M̃z) and from Remark 1.13 with K \ Ω = ∅. �

Remark

From the above Theorem, it is interesting to note that M̃z is decomposable on

lq(N◦, C(K), {Mp}), q ∈ {1,∞} and on all closed subalgebras of lq(N◦, C(K), {Mp})
such that Jq(K, {Mp}) ⊂ lq(N◦, C(K), {Mp}), (q = {1,∞}) or which contain

fid := (id, 1, 0, · · · ) and J(h) for all h ∈ Rat(K), where Jq(K, {Mp}) is the clo-

sure of J(Dq(K, {Mp})) in lq(N◦, C(K), {Mp}) as defined in Section 3.3.1.

Corollary 3.36. Assume that all conditions of Theorem 3.35 hold and d/dz

is closable in C(K). Then, D̃q(K, {Mp}), for q = {1,∞} will be normal on K.

Proof. Since all conditions of Theorem 3.35 hold, we get that M̃z is decom-

posable and thus by Corollary 3.5 D̃q(K, {Mp}), for q = {1,∞} is normal on

K. �

Combining Theorem 3.22 and Corollary 3.36, we obtain a sufficient condition

for D̃1(K, {Mp}) to be a natural, normal Banach function algebra on K (and

hence a regular Banach function algebra).

Corollary 3.37. Let d/dz be closable and assume that all conditions of

Theorem 3.35 hold. Let (Am)∞m=0 be a sequence as defined in Section 3.4 such

that limm→∞(Am)1/m = 0. Then, D̃1(K, {Mp}) is a regular Banach function

algebra on K.

Proof. From Theorem 3.22 we obtain that D̃1(K, {Mp}) is natural on K.

Further, Corollary 3.36 gives that D̃1(K, {Mp}) is normal on K and hence (by

the definitions of normality and naturality) regular Banach function algebra on

K. �

Proposition 3.38. Let K be a perfect, compact set in C with upper box

dimension d < 2. Assume that d/dz is closable and in addition that for some

positive constants C, c1 and 0 < α < min{1, 2 − d},

(3.15)
1

mp
≤

( C

log p
c1

)1/α
.

Then, M̃z will be decomposable and D̃q(K, {Mp}) for q = {1,∞} will be normal

on K.
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In particular, if limt→∞(At)
1/t = 0, where (At)

∞
t=0 is a sequence as defined in

Section 3.4, then D̃1(K, {Mp}) is a regular Banach function algebra.

Proof. It is clear from (3.15) that mp → ∞, for p → ∞. Since, dimB(K) <

2, which clearly shows from Remark 2.2 that, λ(K) = 0. Thus, following the proof

of Theorem 3.35, we observe that the norm of the rational function h ∈ Rat(K)

defined by;

h(z) =
1

ξ − z
, ξ ∈ C \ K, for all z ∈ K

will be:

‖h‖{Mp},q ≤ω
( 1

d(ξ)

)

=

∞∑

p=0

1

mp
p(d(ξ))p+1

≤
∞∑

p=0

( C

log p
c1

)p/α 1

(d(ξ))p+1

where d(ξ) := dist(ξ,K).

From Proposition 3.31(b), we get for positive constants c2 and d2 that:

‖h‖{Mp},q ≤ exp(c2 exp(d2(d(ξ))α)).

This shows from Theorem 2.5 that, for a closed square Q containing K with

|G(ξ)| = ‖(ξ − z)−1‖ and for some ε > 0, the integral

IQ =

∫∫

Q

(

log+ log+ ‖(ξ − z)−1‖
)1+ε

dλ(ξ)

is finite. Thus, by Theorem 3.35 for V (K) = ∂Q and f(t) = t1+ε, t ≥ 0,

M̃z is decomposable. Further, from Corollary 3.5, we obtain the normality of

D̃q(K, {Mp}), for q = {1,∞} on K.

It is clear from Theorem 3.22 that D̃1(K, {Mp}) is natural on K and hence,

a regular Banach function algebra. �

The following Propositions hold for (mp)
∞
p=0, p ∈ N◦, as in Examples 3.8.

Proposition 3.39. Let K ⊂ C be a perfect, compact set. Assume that d/dz

is closable in C(K) and that there exists δ > 0 such that K satisfies the grid

dimension condition of type (2, δ).

Moreover, assume that for some α > 0:

(3.16) lim sup
p→∞

log p

log mp
=: α < ∞.

Then, M̃z is decomposable and D̃q(K, {Mp}), q ∈ {1,∞} are normal on K.

In particular, if limt→∞(At)
1/t = 0, where (At)

∞
t=0 is a sequence as defined in

Section 3.4, then D̃1(K, {Mp}) is a regular Banach function algebra.

Proof. As in the proof of the previous Proposition, we see that for the

function z 7→ 1
ξ−z , ξ ∈ C \ K, for all z ∈ K, the norm can be estimated as:

∥
∥
∥

1

ξ − z

∥
∥
∥
{Mp},q

≤
∞∑

p=0

1

mp
p(d(ξ))p+1

= ω
( 1

d(ξ)

)
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where as usual, d(ξ) = dist(ξ,K).

We see from Theorem 2.2.2 [11] that, (3.16) denotes the order of the entire

function ω, which is finite and thus, from formula 2.1.5 [11] we obtain that, for

some ε > 0,
∥
∥
∥

1

ξ − z

∥
∥
∥
{Mp},q

≤ c1 exp
( 1

(d(ξ))α+ε

)

,

where c1 is a positive constant. Therefore, from Theorem 2.7, we see for a closed

square Q ⊃ K and |G(ξ)| = ‖(ξ − z)−1‖ that for some ε > 0, the integral

IQ (mentioned in the proof of the previous Proposition) is finite. Hence, from

Theorem 3.35, for f(t) = t1+ε, t ≥ 0 and V (K) = ∂Q, the operator M̃z is

decomposable and from Corollary 3.5, D̃q(K, {Mp}), for q = {1,∞} are normal

on K.

It is clear from Theorem 3.22 that D̃1(K, {Mp}) is natural on K and hence,

a regular Banach function algebra. �

Proposition 3.40. Let K be a perfect, compact set in C. Assume that d/dz

is closable and that there exists δ > 0 such that K satisfies the grid dimension

condition of type (3, δ). Then, M̃z is decomposable and D̃k(K), k ∈ N, is normal

on K.

Proof. Clearly, from the proof of previous Propositions we see that, the

norm of the function z 7→ 1
ξ−z , ξ ∈ C \ K, for all z ∈ K can be estimated as:

∥
∥
∥

1

ξ − z

∥
∥
∥

k
=

k∑

j=0

1

j!

∥
∥
∥

1

(ξ − z)(j+1)

∥
∥
∥

K
≤ C

(d(ξ))k+1
,

for some constant C > 0 and d(ξ) = dist(ξ,K). Further, from Theorem 2.10 for a

closed square Q ⊃ K and |G(ξ)| = ‖(ξ−z)−1‖ and for some ε > 0, we obtain that

the integral I (as mentioned in the proof of previous Propositions) is finite which

gives the decomposability of M̃z and from Corollary 3.5 we obtain the normality

of D̃k(K) on K.

�





CHAPTER 4

Localisations of complex ultra-differentiable Banach

function algebras

4.1. Introductory localised algebras

Let K be a perfect, compact set in C. A sequence (Mp)
∞
p=0 of bounded,

positive functions on K will be called a l1-algebra sequence if it satisfies the

following conditions:

(4.1) M◦(z) = 1 and
Mp(z)

Mq(z)Mp−q(z)
≥

(
p

q

)

for all z ∈ K, p ∈ N◦, 0 ≤ q ≤ p.

As in the constant situation, we associate to a sequence (Mp)
∞
p=0 of bounded,

positive functions the sequence (mp)
∞
p=0 given by:

mp(z) :=
(Mp(z)

p!

)1/p
, z ∈ K, p ∈ N◦.

Then, (4.1) is equivalent to

(4.2) m◦(z) = 1 and m
q
q(z)mp−q

p−q(z) ≤ m
p
p(z),

for all z ∈ K, p ∈ N◦, 0 ≤ q ≤ p.

Examples 4.1. Let α be a bounded, positive real function on K. Examples

of non-constant mp(z) will be:

(i) pα(z), (ii) p!α(z)/p, where α(z) > 0, ∀z ∈ K, p ∈ N◦.

If α(z) ≥ 1 on K, then

(iii) (

p
∏

k=1

log(e + k))α(z)/p, (iv) (log(e + p))α(z), z ∈ K, p ∈ N◦,

where (i) − (iv) also satisfy (4.2).

As in the constant situation, the space of functions given by

D1(K, {Mp}) :=
{

f ∈ D∞(K); ‖f‖{Mp},1 :=

∞∑

p=0

∥
∥
∥
f (p)

Mp

∥
∥
∥

K
< ∞

}

and endowed with the norm ‖·‖{Mp},1 will then be a normed algebra with respect

to the pointwise defined operations of addition, multiplication and multiplication

by scalars.

71
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Indeed, we have by the Leibniz rule and (4.2) for all f, g ∈ D∞(K), p ∈ N◦,
that:

∥
∥
∥
(fg)(p)

Mp

∥
∥
∥

K
=

∥
∥
∥

(fg)(p)

p!mp
p

∥
∥
∥

K
=

∥
∥
∥

p
∑

q=0

f (q)g(p−q)

q!(p − q)!mp
p

∥
∥
∥

K

≤
p

∑

q=0

∥
∥
∥

f (q)

q!mq
q

∥
∥
∥

K

∥
∥
∥

g(p−q)

(p − q)!mp−q
p−q

∥
∥
∥

K
.

Hence, for all f, g ∈ D1(K, {Mp}), we obtain fg ∈ D1(K, {Mp}) and

‖fg‖{Mp},1 ≤ ‖f‖{Mp},1‖g‖{Mp},1.

If a sequence (Mp)
∞
p=0 of bounded, positive functions on K with associated

sequence (mp)
∞
p=0 satisfies (4.1) (equivalently (4.2)) and

(4.3) sup
p∈N◦

∥
∥
∥

p
∑

q=0

m
q
qm

p−q
p−q

m
p
p

∥
∥
∥

K
< ∞,

or equivalently:

sup
p∈N

∥
∥
∥

p−1
∑

q=1

m
q
qm

p−q
p−q

m
p
p

∥
∥
∥

K
< ∞,

then, it will be called a l∞-algebra sequence. In this case the normed space given

by

D∞(K, {Mp}) :=
{

f ∈ D∞(K); ‖f‖{Mp},∞ := sup
p∈N◦

∥
∥
∥
f (p)

Mp

∥
∥
∥

K
< ∞

}

with the norm ‖·‖{Mp},∞ will be an algebra. As in the case of constant sequences,

the continuity of the multiplication is seen as follows:

∥
∥
∥
(fg)(p)

Mp

∥
∥
∥

K
=

∥
∥
∥

p
∑

q=0

f (q)g(p−q)

q!mq
q(p − q)!mp−q

p−q

·
m

q
qm

p−q
p−q

m
p
p

∥
∥
∥

K

≤‖f‖{Mp},∞‖g‖{Mp},∞ ·
∥
∥
∥

p
∑

q=0

m
q
qm

p−q
p−q

m
p
p

∥
∥
∥

K

for all f, g ∈ D∞(K, {Mp}) and D∞(K, {Mp}) may be endowed with an equiv-

alent submultiplicative norm. Obviously, D1(K, {Mp}) ⊂ D∞(K, {Mp}) with

continuous inclusion mapping.

Lemma 4.2. Let α : K → (0,∞) be continuous and consider the sequences

(mp)p∈N◦ given in Examples 4.1 (i) and (ii). If α ≥ 1 on K, then we also consider

the Examples 4.1 (iii) and (iv). In all these examples we have

∥
∥
∥

n−1∑

k=1

m
k
km

n−k
n−k

mn
n

∥
∥
∥

K
→ 0, for n → ∞.

In particular these sequences satisfy (4.3) and hence are l∞−algebra sequences.

Proof. The proof can be given by direct computations adopting the proof

of Lemma 3.9 and the proof of Lemma 3.3 in [15]. �
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D1(K, {Mp}) contains the set of all (restrictions to K of holomorphic) poly-

nomials in z.

To ensure that Rat(K) ⊂ D1(K, {Mp}) we introduce an additional condition

in the following lemma.

Lemma 4.3. Let K be a perfect, compact set in C and (Mp)
∞
p=0 be a l1-algebra

sequence of continuous, positive functions on K. Then, the following hold:

(a) If the associated sequence (mp)
∞
p=0 satisfies the condition;

(4.4) ‖m−1
p ‖K → 0, for p → ∞.

Then, Rat(K) ⊂ D1(K, {Mp}) ⊂ D∞(K, {Mp}).
(b) If K has an empty interior and Rat(K) ⊂ D∞(K, {Mp}) then (4.4) is

satisfied.

Proof. (a) As D1(K, {Mp}) is an algebra containing all polynomials in z,

using partial fraction decomposition for rational functions, it suffices to show that

all functions

hξ : z 7→ 1

ξ − z
, z ∈ K, ξ ∈ C \ K,

are in D1(K, {Mp}). Indeed, for ξ ∈ C \ K, we have for all p ∈ N◦

∥
∥
∥

h
(p)
ξ

Mp

∥
∥
∥

K
≤ 1

dist(ξ,K)p+1
· ‖m−p

p ‖K

=
‖m−1

p ‖p
K

dist(ξ,K)p+1
.

Hence, by (4.4) the sequence

∞∑

p=0

∥
∥
∥

h
(p)
ξ

Mp

∥
∥
∥

K
≤ 1

dist(ξ,K)

∞∑

p=0

‖m−1
p ‖p

K

dist(ξ,K)p

converges and we have hξ ∈ D1(K, {Mp}).
(b) Assume that (4.4) is not fulfilled. We show that there exists some ξ ∈ C\K

such that hξ /∈ D∞(K, {Mp}).
If (4.4) is not satisfied then, there exists some C > 0 with

lim sup
p→∞

‖m−1
p ‖K > C

and there exists a subsequence (pk)
∞
k=1 of (p)∞p=0 such that

‖m−1
pk

‖K > C for all k ∈ N.

As K is compact and mk is continuous, there exists zk ∈ K with

1

mpk
(zk)

= ‖m−1
pk

‖K .

Using Bolzano-Weierstrass and passing to some subsequence, we may assume

that the sequence (zk)
∞
k=1 converges to some z◦ ∈ K for k → ∞.

Then there exists some k◦ such that, for all k ≥ k◦, we have

1

mpk
(zk)

= ‖m−1
pk

‖K > C and |zk − z◦| < C/3.
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As K has empty interior, there exists some ξ◦ ∈ C \ K with |ξ◦ − z◦| < C/3.

Hence, |ξ◦ − zk| < 2C/3 for k ≥ k◦. We obtain for all k > k◦ that:

‖hξ◦‖{Mp},∞ ≥
∥
∥
∥

h
(pk)
ξ◦

Mpk

∥
∥
∥

K
≥ |h(pk)

ξ◦
(zk)| · M−1

pk
(zk)

=
‖m−1

pk
‖pk

K

|ξ◦ − zk|pk+1
≥ 3

2C
·
(3

2

)pk → ∞,

for k → ∞. Hence, hξ◦ /∈ D∞(K, {Mp}). �

Examples 4.4. The examples in Lemma 4.2 satisfy (4.4).

Proof. It can be easily seen that for examples (i) − (iii) in Lemma 4.2,

there is nothing to prove. For (iv), let k◦ ∈ (0, 1) and k̃p be the smallest integer

≥ k◦p, p ∈ N◦. Then, using similar arguments from the proof of Corollary 3.32,

we get:

mp(z) ≥
p

∏

k=k̃p

(log(e + k))α(z)/p

≥(log(e + k◦p))p(1−k◦)α(z)/p

=(log(e + k◦p))(1−k◦)α(z) ≥ (log(e + k◦p))1−k◦

1

mp(z)
≤ 1

(log(e + k◦p))1−k◦

Hence, sup
z∈K

1

mp(z)
≤ sup

z∈K

1

(log(e + k◦p))1−k◦
→ 0, as p → ∞.

�

4.2. Completions of complex-ultra differentiable functions in localised

case

Define l1(N◦, C(K), {Mp}) to be the sequence space of functions on K with

a weight sequence (Mp)
∞
p=0 by:

l1(N◦, C(K), {Mp}) :=
{

f = (fp)
∞
p=0 ∈ C(K)N◦ ; |f |{Mp},1 :=

∞∑

p=0

∥
∥
∥

fp

Mp

∥
∥
∥

K
< ∞

}

l1(N◦, C(K), {Mp}) endowed with the norm | · |{Mp},1 and the multiplication

as defined in Section 3.3.1 is a Banach algebra.

In a similar way, the space l∞(N◦, C(K), {Mp}) is defined as:

l∞(N◦, C(K), {Mp}) :=
{

f = (fp)
∞
p=0 ∈ C(K)N◦ ; sup

p∈N◦

∥
∥
∥

fp

Mp

∥
∥
∥

K
< ∞

}

We endow l∞(N◦, C(K), {Mp}) with the norm | · |{Mp},∞ and define the mul-

tiplication same as in l1(N◦, C(K), {Mp}). One observes that by using the condi-

tion (4.3), the multiplication in l∞(N◦, C(K), {Mp}) is continuous with respect

to the norm | · |{Mp},∞. Thus, l∞(N◦, C(K), {Mp}) is a Banach algebra.
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For q = {1,∞}, let Dq(K, {Mp}) denote any of the algebras D1(K, {Mp}) or

D∞(K, {Mp}), respectively and lq(N◦, C(K), {Mp}) denote any of the algebras

l1(N◦, C(K), {Mp}) or l∞(N◦, C(K), {Mp}), respectively.

The mapping

J : Dq(K, {Mp}) → lq(N◦, C(K), {Mp}),

defined by J(f) := (f (p))∞p=0, for all f ∈ Dq(K, {Mp})
is an isometric algebra monomorphism from Dq(K, {Mp}) into lq(N◦, C(K), {Mp}).

The completion of Dq(K, {Mp}) denoted by D̃q(K, {Mp}) may then be identi-

fied with Jq(K, {Mp}) := the closure of J(Dq(K, {Mp})) in lq(N◦, C(K), {Mp}).
Throughout the discussion, by lq-algebra sequence (q = {1,∞}), we mean a

sequence (Mp)p∈N◦ (or the associated sequence (mp)p∈N◦) of bounded, positive

functions on a set K.

Next result gives us a criterion for the completion D̃q(K, {Mp}) of the normed

algebra Dq(K, {Mp}) to be a Banach function algebra on the set K.

Proposition 4.5. Let K ⊆ C be a perfect, compact set and (Mp)
∞
p=0 be a lq-

algebra sequence. Let J and Jq(K, {Mp}) for q = {1,∞} be as defined above such

that d/dz is closable in C(K). If P◦ is the projection from lq(N◦, C(K), {Mp}) to

C(K) by (gp)
∞
p=0 7→ g◦ onto the zero-component then P◦|Jq(K, {Mp}) is an alge-

bra monomorphism. Hence, if we endow its range D̃q(K, {Mp}) := P◦(Jq(K, {Mp}))
with the norm given by:

‖h‖˜
{Mp},q := |g|{Mp},q

for all h ∈ D̃q(K, {Mp}), where g = (gk)
∞
k=0 ∈ Jq(K, {Mp}) with g◦ = h

then, D̃q(K, {Mp}) may be considered as the completion of Dq(K, {Mp}) and

D̃q(K, {Mp}) is a Banach function algebra.

Proof. As in the constant situation, to show that P◦|Jq(K,{Mp}) is an isom-

etry, it is sufficient to show the injectivity of P◦|Jq(K,{Mp}). We follow the proof

as in the constant case in Proposition 3.13.

If P◦|Jq(K,{Mp}) is not injective then, there exists some 0 6= g = (gp)p∈N◦ ∈
Jq(K, {Mp}) with g◦ ≡ 0 and gp 6≡ 0 for some p ∈ N. Thus, for some minimal

p◦ ∈ N with this property,

gp◦−1 ≡ 0 and gp◦ 6≡ 0.

By the definition of Jq(K, {Mp}), there exists a sequence (fn)∞n=1 in Dq(K, {Mp})
such that for all p ∈ N◦,

(4.5)
∥
∥
∥

f
(p)
n − gp

Mp

∥
∥
∥

K
→ 0, for n → ∞

Thus, for all p ∈ N◦, we obtain from the boundedness of Mp and from (4.5)

that:

‖f (p)
n − gp‖K ≤ ‖Mp‖K ·

∥
∥
∥

f
(p)
n − gp

Mp

∥
∥
∥

K
→ 0, for n → ∞.

In particular,

f (p◦−1)
n → gp◦−1 ≡ 0 and f (p◦)

n → gp◦ 6≡ 0,
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uniformly on K, for n → ∞ contradicting the closability of d/dz in C(K). Hence,

P◦|Jq(K,{Mp}) is injective and the result follows from the constant case.

�

4.3. Naturality in localised case

We define d(M) as introduced in [1] for lq-algebra sequences, q = {1,∞} as:

d(M) := lim
n→∞

( n!

‖Mn‖K

)1/n
= lim

n→∞
1

‖mn‖K
, n ∈ N.

We notice that Proposition 3.21 holds for lq-algebra sequences q = {1,∞} as well.

For convenience, we give the statement as follows:

Proposition 4.6. Let K be a perfect, compact set in C with d/dz clos-

able in C(K) and (Mp)
∞
p=0 be a lq-algebra sequence. Assume that Rat(K) ⊂

Dq(K, {Mp}), q = {1,∞}. Define Rq(K, {Mp}) := Rat(K)
‖·‖˜

{Mp},q , i.e. the clo-

sure of Rat(K) in D̃q(K, {Mp}). Then, Rq(K, {Mp}) will be a natural Banach

function algebra on K.

Proof. The proof follows directly from Proposition 4.5 and Proposition

3.3(a). �

Following [1], we use some notations and definitions from combinatorial anal-

ysis in this setting.

Let t, n ∈ N such that n ≥ t and define S(t, n) be the set of all a =

(a1, · · · , an) ∈ Z
+ such that

∑n
k=1 ak = t and

∑n
k=1 kak = n. Since (4.2) holds

for all p, q ∈ N◦, 0 ≤ q ≤ p, z ∈ K, we have that (mk
k(z))ak ≤ m

k
kak

(z), for all

z ∈ K, k ∈ N and thus:

n∏

k=1

(mk
k(z))ak ≤ m

Pn
k=1 kak

Pn
k=1 kak

(z) = m
n
n, ∀z ∈ K.

Definition 4.7. For m
k
k(z) = Mk(z)

k! , and for all k ∈ N◦, z ∈ K, we define

the sequence (At)
∞
t=1 by:

At(z) := sup

{

1

mn
n(z)

n∏

k=1

(mk
k(z))ak : n ≥ t, (a1, · · · , an) ∈ S(t, n), z ∈ K

}

,

where S(t, n) is defined above.

Next result shows that under some assumption on the sequence (At)
∞
t=1, the

completion of D1(K, {Mp}) is a natural Banach function algebra on a perfect,

compact set K.

Theorem 4.8. Let K be a perfect, compact set in C and that d/dz is closable

in C(K). Let (Mp)
∞
p=0 be a l1-algebra sequence and limt→∞ ‖At‖1/t

K = 0. Then,

D̃1(K, {Mp}) is a natural Banach function algebra on K.

Proof. From Proposition 4.5 we see that D̃1(K, {Mp}) is a Banach function

algebra. To obtain the naturality, we follow the proof of Theorem 3.3 [1].
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For every f ∈ D1(K, {Mp}) and F (y) := yp, p ∈ N, we obtain using the Faà

di Bruno’s formula that:

∣
∣
∣
(F ◦ f)(n)(z)

Mn(z)

∣
∣
∣ ≤

n∑

t=0

|F (t)(f(z))|
Mn(z)

∑ n!
∏

ak!

n∏

k=1

( |f (k)(z)|
k!

)ak

≤
min{p,n}

∑

t=0

t!

(
p

t

) |f(z)|p−t

Mn(z)

∑ n!
∏

ak!

n∏

k=1

( |f (k)(z)|
k!

)ak

where the inner summation is taken over a = (a1, · · · , an) ∈ S(t, n). Interchang-

ing, the order of summation, we get:

∞∑

n=0

∣
∣
∣
(F ◦ f)(n)(z)

Mn(z)

∣
∣
∣ ≤

p
∑

t=0

(
p

t

)

|f(z)|p−tt!

∞∑

n=t

∑ n!
∏

ak!

1

Mn(z)

n∏

k=1

( |f (k)(z)|
k!

)ak

=

p
∑

t=0

(
p

t

)

|f(z)|p−tt!
∞∑

n=t

∑
∏n

k=1 m
k
k(z)ak

∏
ak!mn

n(z)

n∏

k=1

( |f (k)(z)|
Mk(z)

)ak

≤
p

∑

t=0

(
p

t

)

|f(z)|p−t
At(z)t!

∞∑

n=t

∑ 1
∏

ak!

n∏

k=1

( |f (k)(z)|
Mk(z)

)ak

Taking the supremum norm on K and using formula (2) [1], we obtain:

‖fp‖{Mp},1 ≤
p

∑

t=1

(
p

t

)

‖f‖p−t
K

[

‖At‖1/t
K (‖f‖˜

{Mp},1 − ‖f‖K)
︸ ︷︷ ︸

=:εt

]t
,

for all f ∈ D1(K, {Mp}). Hence, from the proof of Theorem 3.22, using [1]

Lemma 3.1 and Theorem 1.3 and the fact that limt→∞ ‖At‖1/t
K = 0, we obtain

that D̃1(K, {Mp}) is a natural Banach function algebra on K.

�

Remark 4.9. As in Remark 3.23, we observe in view of the proof of Corollary

3.8 [1] that, if

(4.6) max
1≤k≤n−1

∥
∥
∥

m
k
km

n−k
n−k

mn
n

∥
∥
∥

K
→ 0, as n → ∞

then, limt→∞ ‖At‖1/t
K = 0, even for the normed algebras Dq(K, {Mp}), q =

{1,∞}.

Examples 4.10. It follows from the Lemma 4.2 that the examples given there

satisfy condition (4.6). By the proof of Corollary 3.8 [1], we obtain that (4.6)

implies limt→∞ ‖At‖1/t
K = 0.

4.3.1. D∞(K, {Mp}) natural algebras. Throughout the section, K ⊂ C

is a perfect, compact set and d̃ is the closure of the differential operator d/dz in

C(K) with domain D.

Lemma 4.11. Let K, d̃, D be as above and f, g ∈ D. Then, f+g, αf, fg, 1/f ∈
D, for all α ∈ C.
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Proof. It is easy to show that f + g, αf and fg are in D, for all α ∈ C.

Since the proofs are elementary, so we will only show that 1/f ∈ D.

To show that 1/f ∈ D, let there exists (fn)n∈N◦ ∈ dom(d/dz) such that

fn → f, uniformly on K, f ∈ D.

and

f
′

n → d̃(f),
1

fn
→ 1

f
uniformly on K.

Then,
( 1

fn

)′

=
−f

′

n

f2
n

→ −d̃(f)

f2
= d̃(1/f).

Thus, showing that 1/f ∈ D and d̃( 1
f ) = −f̃

f2 . �

Let (Mp)p∈N◦ be a l∞-algebra sequence and define a corresponding normed

space D∞(K, {Mp}) by

D∞(K, {Mp}) :=
{

f ∈ ∩p∈N◦D(d̃p); |||f |||{Mp},∞ := sup
p∈N◦

∥
∥
∥

d̃pf

Mp

∥
∥
∥

K
< ∞

}

We observe from Lemma 4.11 and in the arguments before Lemma 4.2 that,

|||·|||{Mp},∞ is equivalent to some submultiplicative norm and hence, D∞(K, {Mp})
is a normed algebra.

Theorem 4.12. Let K, d̃ and D be as mentioned before and (Mp)p∈N◦ be a

l∞- algebra sequence. Define a mapping

J̃ : D∞(K, {Mp}) → l∞(N◦, C(K), {Mp}) by

J̃(f) := (d̃pf)p∈N◦ , for all f ∈ D∞(K, {Mp})
Then, J̃ is an isometric algebra monomorphism from D∞(K, {Mp}) to the se-

quence algebra l∞(N◦, C(K), {Mp}).
Let P◦ be the projection from l∞(N◦, C(K), {Mp}) to C(K) by (gp)

∞
p=0 7→ g◦, then

P◦|J̃(D∞(K, {Mp})) is an algebra monomorphism. Hence, D∞(K, {Mp}) :=

P◦(J̃(D∞(K, {Mp})) is a Banach function algebra on K.

Proof. We only need to show that the range of J̃ is closed and the rest follows

by the isometry of the projection P◦. Let g = (gn)n∈N◦ be a Cauchy sequence

in J̃(D∞(K, {Mp})), then there exists f = (fp)
∞
p=0 in l∞(N◦, C(K), {Mp}) such

that

gn → f, in l∞(N◦, C(K), {Mp}).
Thus,

gn,p → fp, uniformly on K, ∀ p ∈ N◦

and d̃gn,p = gn,p+1 → fp+1, uniformly on K.

Since, d̃ is closed, we get d̃fp = fp+1, which shows that f = (d̃pf◦)∞p=0 is in

J̃(D∞(K, {Mp})).
Hence, J̃(D∞(K, {Mp})) is closed in l∞(N◦, C(K), {Mp}) and thus complete.

The result follows from the proof of Proposition 4.5, by showing the injectivity

of the projection P◦ with respect to the closed operator d̃. �
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Theorem 4.13. Let K, d̃ and D be as before and (Mp)
∞
p=0 be a l∞-algebra

sequence such that

∥
∥
∥

n−1∑

k=1

m
k
km

n−k
n−k

mn
n

∥
∥
∥

K
→ 0, as n → ∞.

Then, D∞(K, {Mp}) is inverse-closed, i.e. for all f ∈ D∞(K, {Mp}) with f(z) 6=
0, for all z ∈ K, the function 1/f ∈ D∞(K, {Mp}) and

(4.7) |||1/f |||{Mp},∞ = sup
p∈N◦

∥
∥
∥

d̃p(1/f)

Mp

∥
∥
∥

K
< ∞.

Proof. Using similar arguments as in the proof of Lemma 4.11 we see that

1/f ∈ D(d̃p), for all p ∈ N◦. To show that 1/f ∈ D∞(K, {Mp}) we proceed

similar as in the proof of [15] Lemma 3.4.

Without loss of generality we may assume that infz∈K |f(z)| ≥ 1. Put C :=

|||f |||{Mp},∞.

We define for all p ∈ N◦, z ∈ K

αp(z) :=
|(d̃pf)(z)|
Mp(z)

, βp(z) :=
|d̃p(1/f)(z)|

Mp(z)

Using f · (1/f) ≡ 1 on K and the Leibniz rule for d̃ we obtain for n ≥ 1,

βn(z) ≤
n∑

k=1

αk(z)βn−k(z)
m

k
k(z)mn−k

n−k(z)

mn
n(z)

.

Choose N > 0 so that

∥
∥
∥

n−1∑

k=1

m
k
km

n−k
n−k

mn
n

∥
∥
∥

K
<

1

2C
, for n ≥ N.

Then, max0≤n≤N ‖βn‖K ≤ M , where we may assume M ≥ 2C. Hence, for n > N ,

we have

βn+1(z) ≤
n∑

k=1

αk(z)βn+1−k(z)
m

k
k(z)mn+1−k

n+1−k(z)

m
n+1
n+1(z)

+
αn(z)

|f(z)|

As 1/|f(z)| ≤ 1, we get

βn+1(z) ≤C
(

max
1≤k≤n

βk(z)
)

n∑

k=1

m
k
k(z)mn+1−k

n+1−k(z)

m
n+1
n+1(z)

+ C

≤1

2
max

1≤k≤n
βk(z) + C

By induction we obtain ‖βn‖K ≤ M , for all n ∈ N◦. Hence

|||1/f |||{Mp},∞ = sup
n∈N◦

‖βn‖K ≤ M < ∞

which shows that 1/f ∈ D∞(K, {Mp}).
�
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Remark 4.14. Recall from the introductory section in Chapter 3 that a Ba-

nach algebra A is inverse-closed if and only if every element f ∈ A has a natural

spectrum. Thus, if a Banach function algebra A is inverse-closed, then it is nat-

ural. In other words, Theorem 4.12 and Theorem 4.13 show that D∞(K, {Mp})
is a natural Banach function algebra on K.

4.4. Regularity in localised algebras

As in the constant case, we require a (set of) condition(s), which yields de-

composability of the operator of multiplication by the coordinate function on the

Banach function algebras D̃1(K, {Mp}) and D∞(K, {Mp}). Considering similar

assumptions as in Theorem 3.35 for the localised case, we obtain the following:

Theorem 4.15. Let K be a perfect, compact set with λ(K) = 0 and M̃z be

the operator of multiplication on lq(N◦, C(K), {Mp}), q = {1,∞}, as defined in

Theorem 3.35. Assume that (4.4) holds and define an entire function ω : C → C

by,

ω(ξ) :=

∞∑

p=0

ξp+1‖m−1
p ‖p

K , ξ ∈ C.

Moreover, suppose that V (K) be an open, bounded neighbourhood of K and f

satisfies condition (η). If the integral

IV =

∫∫

V (K)

f
(

log+ log+ ω
( 1

dist(ξ,K)

))

dλ(ξ) < ∞,

then, M̃z is decomposable.

Proof. Following the proof of Theorem 3.35, we observe that for ξ ∈ C \ K

and the rational function h in Rat(K) given by; h(z) = 1
ξ−z , ∀z ∈ K, we have:

h(p)

Mp(z)
=

p!

(ξ − z)p+1Mp(z)
≤ d(ξ)p+1

m
−p
p (z)

where d(ξ) := 1
dist(ξ,K) . Thus,

∥
∥
∥

h(p)

Mp

∥
∥
∥

K
≤ d(ξ)p+1‖m−1

p ‖p
K

and for q = {1,∞},
‖h‖{Mp},q ≤ ω(d(ξ)).

Let J and J̃ be the isometric algebra monomorphisms from D1(K, {Mp}) and

D∞(K, {Mp}) to l1(N◦, C(K), {Mp}) and l∞(N◦, C(K), {Mp}), respectively. Then,

following the proof of Theorem 3.35, we obtain that (ξ − M̃z)
−1 is the operator

of multiplication by J(h) and also by J̃(h).

Thus, for some C > 0 and q = {1,∞}, we have:

‖(ξ − M̃z)
−1‖ ≤ C‖h‖{Mp},q ≤ Cω(d(ξ)).

The decomposability of M̃z follows directly, from Remark 1.12 and Remark

1.13 for T = M̃z, Ω = V (K), σ(M̃z) = K and with σ(M̃z) \ V (K) = ∅. �
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Similar as in the remarks after Theorem 3.35, we notice that M̃z is decom-

posable on all closed subalgebras of lq(N◦, C(K), {Mp}), q = {1,∞} such that

J1(K, {Mp}) ⊂ l1(N◦, C(K), {Mp}) and J̃(D∞(K, {Mp})) ⊂ l∞(N◦, C(K), {Mp})
or which contain gid := (id, 1, 0, · · · ) and J̃(h) and J(h) for all h ∈ Rat(K), where

J1(K, {Mp}) is the closure of J(D1(K, {Mp})) in l1(N◦, C(K), {Mp}).

Corollary 4.16. Let d/dz, d̃ be as in Section 4.3.1 such that d/dz is closable

and (Mp)
∞
p=0 be a lq-algebra sequence for q = {1,∞}. Assume that all conditions

of Theorem 4.15 hold. Then, D̃1(K, {Mp}) and D∞(K, {Mp}) will be normal on

K.

Proof. From Theorem 4.15 we obtain the decomposability of M̃z and thus

by Corollary 3.5, the proof follows immediately. �

Next results deals with the regularity of Banach function algebras D̃1(K, {Mp})
and D∞(K, {Mp}), respectively.

Corollary 4.17. Let d/dz, d̃ be as in Corollary 4.16 and (Mp)
∞
p=0 be a

l1-algebra sequence such that limt→∞ ‖At‖1/t
K = 0. Assume that all conditions of

Theorem 4.15 hold. Then, D̃1(K, {Mp}) is a regular Banach function algebra.

Proof. From the assumptions and Theorem 4.8 we obtain that D̃1(K, {Mp})
is natural on K. Further, Corollary 4.16 gives that D̃1(K, {Mp}) is normal on

K and hence, (by the definitions of normality and naturality) regular Banach

function algebra on K. �

Corollary 4.18. Let d/dz and d̃ be as in Corollary 4.16 and assume that

all conditions of Theorem 4.15 hold. Let (Mp)p∈N◦ be a l∞-algebra sequence such

that
∥
∥
∥

n−1∑

k=1

m
k
km

n−k
n−k

mn
n

∥
∥
∥

K
→ 0, as n → ∞.

Then, D∞(K, {Mp}) is a regular Banach function algebra on K.

Proof. The naturality of D∞(K, {Mp}) is clear from Theorem 4.13 and the

normality from Corollary 4.16. Hence, the result follows. �

4.5. Sets of positive Lebesgue measure and (residual)decomposability

This section deals with the (residual)decomposability results of an operator

T on a Banach space X, when its resolvent satisfies some growth conditions near

the spectrum σ(T ) having positive area. We consider σ(T ) a perfect set which

is the union of two compact sets K1 and K2 such that K1 is a connected set of

Lebesgue measure zero and K2 is a set having positive Lebesgue measure. For

K1, we use the same construction of covering as in Section 2.2, where now from

the covering of K1, Q is a closed square of side length a having empty intersection

with K2.

Example 4.19. For K2, sets like (Cantor)dust or arcs having positive area

as explained in [31] can be considered.
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Figure 4.1. Set of positive area

An easy example of a set K can be the union of the Sierpinski carpet with

Cantor dust or the union of one of the fractal sets discussed in Example 2.9 or

in Example 2.12 with an arc having positive area.

We give a rough sketch of sets having positive area here. Using the method

as explained in [31], we construct a compact set K2 ⊂ K as follows:

Construction

We start with a square F◦ of side length a and for 0 < ε < a2 with a sequence

of positive numbers (εj)
∞
j=1 such that

∑∞
j=1 εj = ε. We take out a ’plus shaped’

region of area ε1 > 0 centred in the square F◦. Call the remaining set F1. From

each of the remaining four congruent squares, we take out a ’plus shaped’ region

of total area ε2 > 0.

Proceeding in this way, taking out from the set Fk−1 in step k, ’plus shaped’

regions of total area εk > 0, we obtain a sequence (Fj)
∞
j=0 of compact sets such

that

Fj+1 ⊂ Fj for all j.

The totally disconnected compact set F := ∩∞
j=0Fj has area a2 − ∑∞

j=1 εj =

a2 − ε > 0.

We set the situation as follows and use the definition of upper box dimension

at a point in this situation.

Situation S3

{

T is a bounded linear operator on a Banach space X;

S is a compact subset of σ(T ).
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Definition 4.20. Let F ⊂ R
2 be a bounded set. Then, F has upper box

dimension ≤ d at z, if there exists a closed neighbourhood F1 of z, such that

the upper box dimension of F1 ∩ F ≤ d.

Equivalently saying that,

dF (z) := inf
F1

{δ | dimB(F1 ∩ F ) ≤ δ}.

We discuss the (residual)decomposability of an operator T by finding a rela-

tion between the growth conditions of the resolvent and upper box dimension at

a point of the spectrum of T .

Theorem 4.21. Consider the Situation S3. Assume that for each z ∈ σ(T )\S
we have dσ(T )(z) < 2 and there exists some closed square Qz with centre z having

empty intersection with S and dimB(Qz ∩ σ(T )) < 2 such that the resolvent

satisfies the condition;

‖R(ξ, T )‖ ≤ exp
(

exp
( C(z)

dist(ξ, ∂Qz ∪ (Qz ∩ σ(T )))α(z)

))

,

for some constants C(z) > 0 and 0 < α(z) < min{1, 2 − dσ(T )(z)} and for all

ξ ∈ Qz \∂Qz ∪ (Qz ∩σ(T )). Then, T is residually decomposable with residuum S.

If S is totally disconnected then, T is decomposable.

Proof. Fix an arbitrary point z ∈ σ(T ) \ S and a closed square Qz as in

the statement of the theorem. We observe from Theorem 2.5 that by setting the

function |G(ξ)| = ‖R(ξ, T )‖, Qz = Q and K = ∂Qz ∪ (Qz ∩ σ(T )) and for some

ε(z) > 0, the integral

IQz =

∫∫

Qz

(

log+ log+ ‖R(ξ, T )‖
)1+ε(z)

dλ(ξ)

is finite. Thus, from the proof of Corollary 1.11 with fz(t) = t1+ε(z), t ≥ 0, T is

residually decomposable.

If S is totally disconnected, then T is decomposable from Corollary 1.14. �

Theorem 4.22. Consider the situation S3 and assume that for each z ∈
σ(T )\S, there exists a closed square Q(z) with centre z having empty intersection

with S such that for some constant δ(z) > 0, Q(z) ∩ σ(T ) satisfies the grid

dimension condition of type (2, δ(z)) and that the resolvent satisfies the condition;

‖R(ξ, T )‖ ≤ exp
( C(z)

dist(ξ, ∂Q(z) ∪ (Q(z) ∩ σ(T )))α(z)

)

,

for positive constants C(z) and α(z) and for all ξ ∈ Q(z)\∂Q(z)∪ (Q(z)∩σ(T )).

Then, T is residually decomposable with residuum S. If S is totally disconnected

then, T is decomposable.

Proof. Using Theorem 2.7 along the lines of the proof of Theorem 4.21, the

results hold. �

Theorem 4.23. Consider the situation S3 and assume that for each z ∈
σ(T )\S, there exists a closed square Q(z) with centre z having empty intersection
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with S such that for some constant δ(z) > 0, Q(z) ∩ σ(T ) satisfies the grid

dimension condition of type (3, δ(z)) and that the resolvent satisfies the condition;

‖R(ξ, T )‖ ≤ C(z)

dist(ξ, ∂Q(z) ∪ (Q(z) ∩ σ(T )))α(z)
,

for positive constants C(z) and α(z) ≥ 1 and for all ξ ∈ Q(z) \ ∂Q(z) ∪ (Q(z) ∩
σ(T )). Then, T is residually decomposable with residuum S. If S is totally dis-

connected then, T is decomposable.

Proof. Using Theorem 2.10 along the lines of the proof of Theorem 4.21,

the results hold. �

This theorem gives an immediate application to hyponormal operators on a

Hilbert space H, which we state in the following remark.

Remark 4.24. Let T be a hyponormal operator on a Hilbert space H such that

σ(T,H) = S∪(σ(T,H)\S) satisfies the grid dimension condition of type (3, δ(z)),

where S is totally disconnected and ̟ := σ(T,H) \ S has Lebesgue measure zero.

Then, T is decomposable. Moreover, R(σ(T,H)) = C(σ(T,H)) by [12].

Theorem 4.25. Consider the situation S3 and assume that for each z ∈
σ(T )\S, there exists a closed square Q(z) with centre z having empty intersection

with S such that for positive constants C(z) and α(z), Q(z) ∩ σ(T ) satisfies the

grid dimension condition of type (1, α(z)) and that for some ε(z) > 0, C1(z) >

0, β(z) > 3+α(z) and a monotone increasing function fz(t) = t(log+ t)1+ε(z), t ≥
0 satisfying condition (η), the resolvent satisfies the growth;

‖R(ξ, T )‖ ≤ exp
(

exp
( C1(z)

dist(ξ,K◦(z))
(
log 1

dist(ξ,K◦(z))

)β(z)

))

,

for all ξ ∈ Q(z) \ K◦(z), where K◦(z) := ∂Q(z) ∪ (Q(z) ∩ σ(T )) Then, T is

residually decomposable with residuum S. If S is totally disconnected then, T is

decomposable.

Proof. Following the arguments as in the proof of Theorem 4.21 and using

Theorem 2.13, the results hold. �

4.6. Regular Banach function algebras on sets of positive area

In this section, we deal with the regularity of Banach function algebras

D̃1(K, {Mp}) and D∞(K, {Mp}) on a given perfect, compact set K having pos-

itive area and satisfying some local grid dimension conditions.

Theorem 4.26. Let K ⊂ C be a perfect, compact set and S be a compact

subset of K. Assume that for each ζ ∈ K \ S, there exists a closed square Q
′

ζ

centred at ζ having empty intersection with S such that λ(Q
′

ζ ∩ K) = 0. Let M̃z

be the operator of multiplication on lq(N◦, C(K), {Mp}), q = {1,∞} as defined in

Theorem 3.35. Assume that (4.4) holds and define an entire function ω : C → C

by,

(4.8) ω(ξ) :=

∞∑

p=0

ξp+1‖m−1
p ‖p

Q
′
ζ∩K

, ξ ∈ C.
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Moreover, suppose that for all ζ ∈ K \ S a function fζ is given that satisfies

condition (η). If for all ζ ∈ K \ S, the integral

I =

∫∫

Q
′
ζ

fζ

(

log+ log+ ω
( 1

dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K))

))

dλ(ξ)

is finite, then M̃z is residually decomposable with residuum S. If S is totally

disconnected then, M̃z is decomposable.

Proof. Define the function h ∈ Rat(K) by;

h(u) =
1

ξ − u
, ξ ∈ C \ K, for all u ∈ K.

Then,
h(p)

Mp(u)
=

1

(ξ − u)p+1m
p
p(u)

and

∥
∥
∥

h(p)

Mp

∥
∥
∥

K
= sup

u∈K

1

|ξ − u|p+1m
p
p(u)

Fix an arbitrary point ζ ∈ K \S and a closed square Qζ centred at ζ. Let Q
′

ζ be

a closed square with centre ζ contained in int Qζ . Then, if now ξ is in Q
′

ζ \ K,

(4.9)
∥
∥
∥

h(p)

Mp

∥
∥
∥

K
≤ sup

u∈(Q
′
ζ∩K)

m
−p
p (u)

|ξ − u|p+1
+ sup

u∈K\Qζ

m
−p
p (u)

|ξ − u|p+1

Since |ξ − u| ≥ dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K)) and also notice that |ξ − u| is bounded

below on K \ Qζ , i.e. there exists some δ > 0, such that δ < |ξ − u|. Then, (4.9)

becomes,

∥
∥
∥

h(p)

Mp

∥
∥
∥

K
≤ sup

u∈(Q
′
ζ∩K)

m
−p
p (u)

dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K))p+1
+ sup

u∈K\Qζ

m
−p
p (u)

δp+1

Hence,

‖h‖{Mp},1 ≤
∞∑

p=0

sup
u∈(Q

′
ζ∩K)

m
−p
p (u)

dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K))p+1
+

∞∑

p=0

sup
u∈K\Qζ

m
−p
p (u)

δp+1

= ω
( 1

dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K))

)

+ C(δ),

where C(δ) is a positive constant. Similarly,

‖h‖{Mp},∞ ≤ ω
( 1

dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K))

)

+ C(δ).

Thus, from the proof of Theorem 4.15 we see that, (ξ −M̃z)
−1 is the operator of

multiplication by J(h) and J̃(h), as in the proof of Theorem 4.15. Hence,

‖(ξ − M̃z)
−1‖ ≤ C̃‖h‖{Mp},q ≤ C◦ ω(

1

d(ξ)
)



86 4. LOCALISATIONS OF BANACH FUNCTION ALGEBRAS

for some constants C̃, C◦ > 0, where d(ξ) := dist(ξ, ∂Q
′

ζ ∪ (Q
′

ζ ∩ K)). Therefore,
∫∫

Q
′
ζ

fζ

(

log+ log+ ‖(ξ − M̃z)
−1‖

)

dλ(ξ) < ∞.

Hence, from Corollary 1.11 and its proof for T = M̃z and K = σ(M̃z), we obtain

that M̃z is residually decomposable. Further, if S is totally disconnected, then

the result follows from Corollary 1.14. �

Corollary 4.27. Assume that all conditions of Theorem 4.26 hold and let

d/dz, d̃ be as in Section 4.3.1 such that d/dz is closable in C(K) and (Mp)p∈N◦ be

a lq-algebra sequence, q = {1,∞}. Then, the Banach function algebras D̃1(K, {Mp})
and D∞(K, {Mp}) will be normal on K.

Proof. From Theorem 4.26 we obtain the decomposability of M̃z and thus,

the proof follows immediately from Corollary 3.5. �

Next result deals with the regularity of Banach function algebras D̃1(K, {Mp})
and D∞(K, {Mp}) on K.

Corollary 4.28. Let d/dz and d̃ be as in Corollary 4.27 and assume that

all conditions of Theorem 4.26 hold. Let (Mp)
∞
p=0 be a lq-algebra sequence (q =

{1,∞}) such that:

(a) limt→∞ ‖At‖1/t
K = 0;

(b)
∥
∥
∥

∑n−1
k=1

m
k
km

n−k
n−k

m
n
n

∥
∥
∥

K
→ 0, as n → ∞.

Then, D̃1(K, {Mp}) and D∞(K, {Mp}) are regular Banach function algebras on

K.

Proof. Considering (Mp)
∞
p=0 be a l1-algebra sequence and from the assump-

tion (a), we obtain from Theorem 4.8 that D̃1(K, {Mp}) is natural on K.

Similarly, for (Mp)
∞
p=0 be a l∞-algebra sequence and from the assumption

(b), we obtain from Theorem 4.13 that D∞(K, {Mp}) is natural on K.

Further, Corollary 4.27 gives that D̃1(K, {Mp}) and D∞(K, {Mp}) are nor-

mal on K and hence, (by the definitions of normality and naturality) regular

Banach function algebras on K. �

Situation S4







K ⊂ C is a perfect, compact set ;

S is a compact, totally disconnected subset of K;

d̃ is the closure of d/dz, such that d/dz is closable in C(K);

(Mp)p∈N◦ is a lq − algebra sequence .

Proposition 4.29. Consider the situation S4. Assume that for each ζ ∈
K \ S, there exists a closed square Qζ with centre ζ having empty intersection

with S such that Qζ ∩ K has upper box dimension ≤ d(ζ) < 2 and that for some

positive constants C(ζ), c1(ζ) and α(ζ) < min{1, 2 − d(ζ)},

(4.10) ‖m−1
p ‖Qζ∩K ≤

( C(ζ)

log p
c1(ζ)

)1/α(ζ)
.



4.6. REGULAR BANACH FUNCTION ALGEBRAS ON SETS OF POSITIVE AREA 87

Then, M̃z will be decomposable and D̃1(K, {Mp}) and D∞(K, {Mp}) will be

normal on K.

Proof. It is evident from (4.10) that ‖m−1
p ‖Qζ∩K → 0, as p → ∞. For

ξ ∈ C \ K, define the rational function

h(u) =
1

ξ − u
, ∀ u ∈ K.

Thus, following the proof of Theorem 4.26, we fix an arbitrary point ζ ∈ K \S

and a closed square Rζ centred at ζ. Let Qζ be a closed square centred at ζ with

Qζ ⊂ int Rζ . Then, for ξ ∈ Qζ \K and for some δ(ζ) > 0, we have for q = {1,∞}
that:

‖h‖{Mp},q ≤ ω
( 1

d(ξ)

)

+ C(δ).

where ω is an entire function as in (4.8), d(ξ) := dist(ξ, ∂Qζ ∪ (Qζ ∩K) and C(δ)

is a positive constant. Hence, from (4.10), we obtain:

‖h‖{Mp},q ≤ C̃(δ)

∞∑

p=0

1

d(ξ)p+1

( C(ζ)

log p
c1(ζ)

)p/α(ζ)
.

From Proposition 3.31(b), we get that:

‖h‖{Mp},q ≤ exp(c2(ζ) exp(d2(ζ)d(ξ)α(ζ))),

for some positive constants c2(ζ) and d2(ζ). From the proof of Theorem 4.26, we

observe that for some positive constant C◦;

‖(ξ − M̃z)
−1‖ ≤ C◦‖h‖{Mp},q.

Thus from Theorem 4.21 with T = M̃z and K = σ(M̃z), one observes that

M̃z is decomposable. Further, from Corollary 4.27, the Banach function algebras

D̃1(K, {Mp}) and D∞(K, {Mp}) are normal on K. �

Proposition 4.30. Consider the situation S4. Assume that for each z ∈
K \ S, there exists a closed square Q(z) with centre z having empty intersection

with S such that for some constant δ(z) > 0, Q(z)∩K satisfies the grid dimension

condition of type (2, δ(z)) and that for some α(z) > 0 :

(4.11) lim sup
p→∞

log p

log ‖mp‖Q(z)∩K
=: ‖α‖Q(z)∩K < ∞.

Then, M̃ζ will be decomposable and D̃1(K, {Mp}) and D∞(K, {Mp}) will be

normal on K.

Proof. Following the proof of the previous Proposition, we fix an arbitrary

point z ∈ K \ S and a closed square R(z) centred at z. Let Q(z) be a closed

square centred at z with Q(z) ⊂ int R(z). Further, for ξ ∈ C \ K, define the

function h ∈ Rat(K) by;

h(u) =
1

ξ − u
, ∀ u ∈ K

If, now ξ ∈ Q(z) \ K and for q = {1,∞} we have

‖h‖{Mp},q ≤ ω
( 1

d(ξ)

)

+ C(δ)
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where as above, ω is an entire function as in (4.8), d(ξ) := dist(ξ, ∂Q(z)∪ (Q(z)∩
K) and C(δ) is a positive constant. Further, we observe from Theorem 2.2.2.

[11] that, (4.11) denotes the order of the entire function ω, which is finite and

thus from formula 2.1.5 [11], one obtains that, for some ε(z) > 0,

‖h‖{Mp},q ≤ c1(z) exp
( 1

d(ξ)α(z)+ε(z)

)

,

where c1(z) is a positive constant. Thus, from the proof of Theorem 4.26, we

have,

‖(ξ − M̃ζ)
−1‖ ≤ C◦‖h‖{Mp},q

for some positive constant C◦ and the operator M̃ζ is decomposable from The-

orem 4.22 with T = M̃ζ and K = σ(M̃ζ). Further, from Corollary 4.27, the

Banach function algebras D̃1(K, {Mp}) and D∞(K, {Mp}) are normal on K. �

Combining the above Propositions 4.29 and 4.30 with Corollary 4.28, we ob-

serve that D̃1(K, {Mp}) and D∞(K, {Mp}) are regular Banach function algebras

on K.

Proposition 4.31. Consider the situation S4. Assume that for each z ∈
K \ S, there exists a closed square Q(z) with centre z having empty intersection

with S such that for some constant δ(z) > 0, Q(z)∩K satisfies the grid dimension

condition of type (3, δ(z)) . Then, M̃ζ will be decomposable and D̃k(K) will be

normal on K.

Proof. Following the proof of Proposition 4.29, we fix a point z ∈ K \S and

a closed square R(z) centred at z. Let Q(z) be a closed square centred at z with

Q(z) ⊂ intR(z). Define the function h ∈ Rat(K) by;

h(u) =
1

ξ − u
, ξ ∈ C \ K, ∀u ∈ K,

It is clear from the proof of the Proposition 4.29 that if, now for ξ ∈ Q(z) \K

we have:

‖h‖k =

k∑

p=0

1

p!

∥
∥
∥

1

(ξ − u)p+1

∥
∥
∥

Q(z)∩K
≤ C(z)

d(ξ)p+1
,

for some positive constant C(z) and d(ξ) := dist(ξ, ∂Q(z)∪(Q(z)∩K). Moreover,

again from the proof of Theorem 4.26

‖(ξ − M̃ζ)
−1‖ ≤ C◦‖h‖k

for some positive constant C◦. Hence, M̃ζ is decomposable from Theorem 4.23

with T = M̃ζ and σ(M̃ζ) = K. The normality of D̃k(K) on K is clear from

Corollary 3.5. �

Recall that the local upper box dimension of a compact set K at a point

z ∈ K is given by

dK(z) = inf
Q
{δ ; dimB(Q ∩ K) ≤ δ}

where the infimum is taken over all closed neighbourhoods of z.
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Proposition 4.32. Let K be a perfect, compact set and let S ⊂ K be totally

disconnected and closed. Consider the sequence (Mp)p∈N◦ of functions on K

given by

(i) Mp(z) = p!
∏p

k=1(log(e + k))1+dist(z,S),

(ii) Mp(z) = p!(log(e + p))p(1+dist(z,S))

for all z ∈ K, p ∈ N◦. If

(4.12) dK(z) +
1

1 + dist(z, S)
< 2

for all z ∈ K \ S then the operator M̃ξ is decomposable on lq(N◦, C(K), {Mp})
and on the completions D̃q(K, {Mp}) of Dq(K, {Mp}), q = {1,∞}.

Proof. Of course, the sequence (Mp)p∈N◦ is an lq-algebra sequence satisfying

condition (4.4). Let z be an arbitrary point in K \ S. By the definition of dK(z)

and by the continuity of z 7→ dK(z) there exists a closed square Q with centre z

such that

dimB(Q ∩ K) + sup
ξ∈Q∩K

1

1 + dist(ξ, S)
︸ ︷︷ ︸

=:α

< 2.

Fix a smaller closed square Q
′ ⊂ int Q and let w be an arbitrary point in

int Q
′ \ K. For the function

ξ 7→ h(ξ) :=
1

w − ξ

we have by the proof of Theorem 4.26

‖h‖{Mp},q ≤ ω
( 1

dist(w, ∂Q′ ∪ (Q′ ∩ K))

)

+ C

where

C :=

∞∑

p=0

sup
ξ∈K\Q

m
−p
p (ξ) · δ−(p+1)

with δ := dist(Q
′
, ∂Q) and

ω(η) :=

∞∑

p=0

sup
ξ∈Q′∩K

m
−p
p (ξ)ηp+1, η ∈ C.

Because

γ := sup
ξ∈K

m
−1
p (ξ) ≤ (log(e + k◦p)−(1−k◦) → 0, as p → ∞

in both cases, where k◦ ∈ (0, 1) (see proof of Example 4.4), we see that the

constant C is finite and that ω is an entire function. More precisely, choosing

ε > 0 such that

dimB(Q ∩ K) + sup
ξ∈Q∩K

1

1 + dist(ξ, S)
+ ε < 2

and ε + sup
ξ∈Q∩K

1

1 + dist(ξ, S)
< 1
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we see from Corollary 3.32 and Examples 3.34(2) that there are constants c, d > 0

such that

ω
( 1

dist(w, ∂Q′ ∪ (Q′ ∩ K))

)

≤ exp
(

c exp
( d

dist(w, ∂Q′ ∪ (Q′ ∩ K))α+ε

))

Hence, we have

‖h‖{Mp},q ≤ exp
(

c1 exp
( d

dist(w, ∂Q′ ∪ (Q′ ∩ K))α+ε

))

with c1, d > 0 not depending on w.

As in both cases the sequences (Mp)p∈N◦ are lq−algebra sequences and h ∈
Dq(K, {Mp}), the inverse of w − M̃ξ is given by the multiplication by h and we

obtain for its operator norm

‖(w − M̃ξ)
−1‖ ≤ exp

(

exp
( d1

dist(w, ∂Q′ ∪ (Q′ ∩ K))α+ε

))

for positive constant d1. By Theorem 4.21, M̃ξ is decomposable.

�

Corollary 4.33. Let K be a perfect, compact set in C such that d/dz is

closable with closure d̃ and let S be a totally disconnected, closed subset of K.

If (Mp)p∈N◦ is one of the sequences considered in the previous Proposition, then

D̃1(K, {Mp}) and D∞(K, {Mp}) are regular, natural Banach function algebras.

Proof. By Theorem 4.8 in connection with Examples 4.10, the algebra

D̃1(K, {Mp}) is a natural Banach function algebra. For D∞(K, {Mp}) this fol-

lows from Theorem 4.13 and Lemma 4.2.

As the operator of the multiplication with the variable is decomposable on

D̃q(K, {Mp}), q = {1,∞} by Proposition 4.32 and as D̃∞(K, {Mp}) ⊆ D∞(K, {Mp})
both algebras are normal. From the definition of naturality and regularity we see

that they are regular Banach algebras. �
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