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Prüfungsausschuss: Vorsitzender

Prof. Dr. Jörg Eschmeier

Berichterstatter

Prof. Dr. Michael Kohler

Prof. Dr. Alfred K. Louis

Akademischer Mitarbeiter

Dr. Christoph Barbian



To

my parents





Abstract

The estimation of a multivariate regression function from independent

and identically distributed random variables is considered. First we

propose and analyse estimates which are defined by minimisation of

the empirical L2 risk over a class of functions consisting of maxima of

minima of linear functions. It is shown that the estimates are strongly

universally consistent. Moreover results concerning the rate of con-

vergence of the estimates with data-dependent parameter choice using

‘splitting the sample’ are derived in the case of an unbounded response

variable. In particular it is shown that, for smooth regression functions

satisfying the assumptions of single index models, the estimate is able

to achieve (up to some logarithmic factor) the corresponding optimal

one–dimesional rate of convergence. In this context it is remarkable

that this newly proposed estimate can be computed in applications

(see the appendix).

Furthermore an L2 boosting algorithm for estimation of a regression

function is presented. This method repeatedly fits a function from a

fixed function space to the residuals of the data and the number of

iteration steps is chosen data–dependently by ‘splitting the sample’.

A general result concerning the rate of convergence of the algorithm

is derived in the case of an unbounded response variable. Finally this

method is used to fit a sum of maxima of minima of linear functions to a

given set of data. The derived rate of convergence of the corresponding

estimate does not depend on the dimension of the observation variable.





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Schätzung multivariater

Regressionsfunktionen anhand von unabhängig und identisch verteilten

Zufallsvariablen. Zunächst wird ein neues Schätzverfahren vorgestellt,

welches auf der Minimierung des empirischen L2–Risikos bezüglich einer

Funktionenklasse, die aus Maxima von Minima von linearen Funtio-

nen besteht, basiert. Für dieses Schätzverfahren wird zunächst die

starke universelle Konsistenz nachgewiesen. Weiterhin werden sowohl

für diesen Schätzer als auch für das entsprechende Schätzverfahren mit

datenabhängiger Parameterwahl (mittels ,,Splitting the Sample“) die

entsprechenden Konvergenzraten hergeleitet. Diese Konvergenzraten

gelten insbesondere auch dann, wenn die abhängige Variable unbe-

schränkt ist. Insbesondere wird gezeigt, dass unter den Vorausset-

zungen des ,,Single Index Models“ die (bis auf einen logarithmischen

Faktor) zugehörige optimale eindimensionale Konvergenzrate erreicht

wird.

Weiterhin wird in dieser Arbeit ein L2–Boosting–Algorithmus zur Schät-

zung multivariater Regressionsfunktionen vorgestellt. Bei diesem Ver-

fahren werden schrittweise Funktionen eines festgewählten Funktionen-

raumes an die Residuen der Daten angepasst. Auch hierbei erfolgt die

Wahl der Anzahl der Iterationsschritte wieder datenabhängig. Es wird

für diesen L2–Boosting–Algorithmus zunächst ein allgemeines Resul-

tat bezüglich der Konvergenzrate hergeleitet, welches auch in dem Fall

einer unbeschränkten abhängigen Variablen gilt. Abschließend wird

dieses Verfahren verwendet, um einen Schätzer zu konstruieren, der als

Summe von Maxima von Minima von linearen Funktionen dargestellt

werden kann. Die für diesen Schätzer hergeleitete Konvergenzrate hängt

nicht mehr von der Dimension der unabhängigen Variablen ab.
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Introduction

The regression estimation problem is one of the most important subjects in statis-

tics. Regression estimation is a technique for the modeling and analysis of observed

data consisting of values of a dependent variable (response variable) Y and one or

more independent variables (observation variables) X. In its earliest form this field

of activity goes back to A.M. Legendre and C.F. Gauß at the beginning of the 19th

century. The problem of regression estimation is of increasing importance today,

not least because of the enormous growth of information technology. Whereas in

the early days the underlying questions came from industrial experiments or agri-

cultural issues, and therefore the statistical problems were relatively simple, the

appearance of computers has entailed a massive growth in both the number and

complexity of statistical problems.

This dissertation considers the problem of estimating a multivariate regression

function given a sample of the underlying distribution. That is, we try to estimate

a regression function which describes the relationship between the dependent real–

valued random variable Y and the R
d–valued random vector X. The most famous

method for this purpose is the principle of least squares. It was first used in linear

regression, where, roughly speaking, the aim is to fit a line through a cloud of

points. Since a linear relationsship between X and Y is a very simple model, this

method has been applied to other parametric as well as nonparametric settings.

In applications no a priori information about the regression function is usually

known and it is therefore necessary to apply nonparametric methods to this estima-

tion problem. There are several established methods for nonparametric regression,

including regression trees such as CART, which were proposed by Breiman et al.

(1984), adaptive spline fitting such as MARS, as introduced by Friedman (1991),

or least squares neural network estimates (cf. Chapter 11 in Hastie, Tibshirani and

Friedmann (2001)). All these methods also minimize a kind of least squares risk of

the regression estimate. For neural networks this is done heuristically over a fixed

and very complex function space, whereas regression trees and spline fitting use

this principle over a stepwise defined data dependent space of piecewise constant

functions or piecewise polynomials, respectively.
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6 INTRODUCTION

In this dissertation we consider a rather complex function space consisting of max-

ima of minima of linear functions, and we also minimize a least squares risk over

this class of functions in order to define our estimate. To be more precise, we deal

with functions f : R
d → R of the form

f(x) = max
k=1,...,Kn

min
l=1,...,Lk,n

(ak,l · x + bk,l) (x ∈ R
d),

for some ak,l ∈ R
d and bk,l ∈ R. Kn and L1,n, ..., LKn,n are parameters of the

class of functions or, in other words, parameters of the corresponding regression

estimate. Since each maximum of minima of linear functions is in fact continuous

and piecewise linear function (cf. Example 2.1), we actually fit a linear spline

function with free knots to the data. However, in contrast to MARS, we do not

need heuristics to choose these free knots, but use instead advanced methods from

optimization theory of nonlinear and nonconvex functions to compute our estimate

approximately in applications.

In general, there is a gap between theory and practice in multivariate nonparametric

regression function estimation. The established estimates as CART, MARS or least

squares neural networks need a some heuristics for their computation, and this

makes it practically impossible to analyse their rate of convergence theoretically.

On the other hand, a definition of these estimates without any heuristics allows

a theoretical analysis of their rates of convergence, but in this form the estimates

cannot be computed in an application. Results of this kind concerning the rate

of convergence can be found in Barron (1993, 1994) for neural networks, and for

CART in Kohler (1999).

A similar phenomenon also occurs for our estimate, since we need heuristics to

compute it approximately in an application. However, in contrast to the above-

mentioned estimates, we use heuristics from advanced optimization theory. In

particular we use methods from nonlinear and nonconvex optimization theory (see

Bagirov (1999, 2002) and Bagirov and Ugon (2006)) instead of complicated heuris-

tics from statistics for stepwise computation as for CART or MARS, or a simple

gradient descent as for least squares neural networks.

We now give an outline of the dissertation and summarise our results. The first

chapter provides an introduction to regression function estimation and briefly de-

scribes the central ideas in the analysis of nonparametric regression estimates.

Furthermore, it deals with all results necessary for the analysis of our estimate,

particularly results from the Vapnik-Chervonenkis theory.

In Chapter 2 we introduce a class of functions consisting of maxima of minima of

linear functions and discuss some of its properties. In particular, we discuss how it
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is related to the class of linear spline functions. Based on this function space, we

define a regression function estimate by minimising a corresponding least squares

risk. A subsequent truncation of this estimate yields the maxmin estimate in which

we are interested. Moreover, Chapter 2 discusses bounds on the covering numbers

of classes of maxima of minima of linear functions, in order to obtain bounds on

the estimation error of the estimate.

These bounds are used in Chapter 3, to prove results concerning consistency and

rate of convergence. Firstly, we see there that the maxmin estimate presented in

Chapter 2 is strongly universally consistent (cf. Definition 1.3) for all distributions

of (X,Y ) with X ∈ [0, 1]d. Secondly, Section 3.2 provides a bound on the expecta-

tion of the estimation error of the maxmin estimate and therefore on its L2 error

as well. For this purpose we use a theorem of Lee, Bartlett and Williamson (1996).

The approach of Lee, Bartlett and Williamson is described in detail in Section

11.3 in Györfi at al. (2002). We extend this approach to unbounded data which

satisfy a modified Sub-Gaussian condition (cf. Inequality 1.12) by introducing new

truncation arguments. In this way we are able to derive a rate of convergence under

similar general assumptions on the distribution of Y as in alternative methods from

empirical process theory (see van de Geer (2000), or Kohler (2000, 2006)). From the

bound on the L2 error and an approximation result from Schumaker (cf. Lemma

1.16) we infer that our estimate has the rate of convergence

C2d/(2p+d) ·
(

log(n)3

n

)2p/(2p+d)

if the underlying regression function is (p,C)–smooth (cf. Definition 1.4). This rate

also holds for unbounded Y which satisfies the Sub-Gaussian condition. Moreover,

it follows from Stone (1982) that this rate of convergence is optimal (in some

minimax sense) up to a logarithmic factor.

Since these results hold only for a certain choice of parameters (depending on the

smoothness of the regression function) we complete Chapter 3 with the definition

of an estimate with data-dependent parameter choice using ‘splitting the sample’.

Such an adaptive parameter choice is very important because in applications we

have usually no information about the smoothness of the underlying regression

function. We obtain the same rate of convergence for the so–defined estimate

under similar assumptions.

The above rate of convergence is obviously not completely satisfactory in the high-

dimensional case, that is, for large dimension d of the observation variable X.
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Therefore, Chapter 4 describes two methods of dimension reduction in which ad-

ditional assumptions are made in order to derive better rates of convergence. The

idea of imposing additional restrictions on the structure of the regression function

(such as additivity or the assumption in the single index model) and so to derive

better rates of convergence is due to Stone (1985, 1994). We shall prove that,

even for large dimension of X, the L2 error of our estimate quickly converges to

zero if the regression function satisfies the assumption of single index models (see

Theorem 3.6). Similar results are shown in Section 22.2 of Györfi et al. (2002),

but in contrast to the estimate defined there our newly proposed estimate can be

computed in applications.

In Section 4.2 we consider so–called projection pursuit, which is a generalisation of

additive models. We derive the one-dimensional rate of convergence in this setting

as well (cf. Theorem 4.2). However, the estimate used in projection pursuit is dif-

ferent from the maxmin estimate presented in Chapter 2. Namely, we consider an

estimate which is defined by minimizing the least squares risk over a class of func-

tions consisting of sums of maxima of minima of linear functions. Therefore, this

estimate unfortunately exhibits the same computability problems as the estimates

in Section 22.2 of Györfi et al. (2002).

In order to overcome these difficulties, Chapter 5 provides an L2 boosting estimate,

which can be computed in applications, and in addition is a sum of maxima of

minima of linear functions. Boosting is a very well-known method proposed by

Freund and Schapire (1996). It is based on the idea of repeatedly fitting a function

from a fixed function space to the residuals of the data. In Section 5.1 we present

a general L2 boosting result by using ideas from Barron et al. (2006), and extend

them to unbounded data and parameter choice via splitting the sample in place of

complexity regularisation. In Section 5.2 this result is applied to a class of maxima

of minima of linear functions. From this and an approximation result for neural

networks (cf. Lemma 16.8 in Györfi et al. (2002)), we can infer a parametric rate

of convergence for the L2 boosting estimate based on maxmin functions.

The appendix completes this dissertation by examining the behaviour of the maxmin

estimate from Chapter 2 in a small simulation study. Since the development of the

algorithm used for the computation of the maxmin estimate was mainly made by

Bagirov, and is therefore not part of this thesis, we refer for detailed information

to Bagirov, Clausen and Kohler (2007). Here we only give a brief description of

the algorithm in Appendix A.1. In part A.2 of the appendix we provide an applica-

tion of our estimate to simulated data for different regression functions of varying

dimension.
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In the case d = 1 we compare the maxmin estimate to kernel estimates (with

Gaussian kernel), local linear kernel estimates, smoothing splines, neural networks

and regression trees, whereas for d > 1, our estimate is only compared to the last

two estimates used in the one–dimensional simulations. In summary, we can state

that our estimate certainly performs well in comparison with the established esti-

mates. Even in the univariate case the maxmin estimate can actually outperfrom

the other estimates for large sample sizes. In the multivariate case our estimate

is generally better than regression trees and moreover it often outperforms neural

networks even for small sample sizes.
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CHAPTER 1

Preliminaries

This first chapter represents a general introduction in nonparametric regression

estimation and analysis. The first two sections describe the problem of estimating

a multivariate regression function given a sample of the underlying distribution,

and point out the advantages of the nonparametric regression estimation and par-

ticularly the convenience of least squares estimates. In Sections 1.3 and 1.4, we

overview the main ideas in the analysis of regression estimates, and summarise

some results from Vapnik-Chervonenkis Theory which permit the analysis of non-

parametric estimates.

1.1. Regression Analysis

In regression analysis one considers an R
d × R-valued random vector (X,Y ) with

E(Y 2) < ∞, and one is interested in the dependency of the response variable Y

on the value of the observation variable X. Roughly speaking this means that we

have a set of points in the (d+ 1)–dimensional space, where the x–coordinate is d–

dimensional and the y–coordinate is one-dimensional and it is our aim to describe

the path in average of the y–coordinate dependent on the x–coordinates.

Thus we want to find a function f : R
d → R, such that f(X) is close to Y in some

sense or in other words f(X) should be ‘a good approximation of Y ’. This problem

can be resolved by the introduction of the so-called L2 risk or mean squared error

of f ,

E
(

|f(X) − Y |2
)

, (1.1)

and the requirement that it is as small as possible. It is not immediately obvious

why the minimisation of the L2 risk is reasonable. However, if one restates ‘f(X)

is close to Y ’ into ‘|f(X)−Y | is small’ and reminds that (X,Y ) is a random vector

and therefore |f(X) − Y | is random as well, the use of the expectation in (1.1) is

reasonable instantly.

It is well-known that the so-called regression function

m : R
d → R, m(x) = E (Y |X = x) (1.2)

11
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minimizes the L2 risk under all measurable functions. This fact results directly

from the following equation for arbitrary measurable functions f : R
d → R. We

have

E
(

|f(X) − Y |2
)

= E
(

(

(f(X) − m(X)) + (m(X) − Y )
)2
)

= E
(

|f(X) − m(X)|2
)

+ E
(

|m(X) − Y |2
)

= E
(

|m(X) − Y |2
)

+

∫

|f(x) − m(x)|2µ(dx), (1.3)

where µ denotes the distribution of X, and the second equation follows from

E
(

(f(X) − m(X)) (m(X) − Y )
)

= E
(

(f(X) − m(X)) ·E ((m(X) − Y ) |X)
)

= E ((f(X) − m(X)) · (m(X) − m(X)))

= 0.

Due to the fact that the so-called L2 error
∫

|f(x) − m(x)|2µ(dx) (1.4)

is always nonnegative, it is clear that

E
(

|m(X) − Y |2
)

= min
f :Rd→R,f measurable

E
(

|f(X) − Y |2
)

holds for the regression function m. Hence the optimal approximation of Y with

respect to the L2 risk by a function of X is given by the regression function.

So far we did not take into account that in applications the distribution of (X,Y ) is

usually unknown. Hence the regression function is unknown as well and therefore

cannot be used as predictor of Y . However, in many applications it is possible

to observe a sample of the underlying distribution and to estimate the regression

function from this known sample.

Let us suppose that (X,Y ), (X1, Y1), (X2, Y2), . . . are independent and identically

distributed random variables with E(Y 2) < ∞, and that we have given a set of

data

Dn = {(X1, Y1), . . . , (Xn, Yn)}.

Our main aim is to construct an estimate of the regression function, which clearly

should depend on this sample. To be more precise, we want to construct an estimate

mn(·) = mn(·,Dn) : R
d → R, (1.5)

such that the L2 error
∫

|mn(x) − m(x)|2µ(dx)
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is small. Since equation (1.3) shows that the L2 risk E(|mn(X) − Y |2|Dn) of a

measurable estimate mn is close to the optimal value if and only if the L2 error

∫

Rd

|mn(x) − m(x)|2µ(dx)

is small the L2 error is a plausible error criterion in the context of regression

analysis. Therefore we are using the L2 error in order to measure the quality of an

estimate. Here it should be mentioned that one can find different error criteria for

regression analysis in the literature such as the pointwise error or the supremum

norm error for example, and of course every criterion has its assets and drawbacks.

However, we are using the L2 error as measure of the performance of regression

function estimates.

The traditional approach to estimate regression functions assumes that the regres-

sion function is included in a known class of functions, which can be described by

finitely many parameters. This approach corresponds to the so-called parametric

regression estimation. In the parametric case one uses the given data to estimate

the unknown values of the parameters. The most popular parametric regression

estimate is the linear regression estimate where one assumes that the regression

function is linear, that is,

m(x(1), . . . , x(d)) = a0 +

d
∑

i=1

aix
(i) ((x(1), . . . , x(d))T ∈ R

d),

for unknown real numbers ao, a1, . . . , ad. Thus one just has to estimate d + 1

parameters and this estimation is usually quite easy and moreover suitable even if

the sample size is small.

In spite of these advantages the parametric regression estimation has one serious

drawback. It is very unflexible in terms of the shape of the regression function, that

is, the method is only promising if the underlying regression function is contained

in the assumed class of functions. Otherwise the resulting estimate cannot ap-

proximate the regression function better than the best function with the assumed

structure, and hence the resulting estimate produces a large error even for large

sample sizes.

To avoid this disadvantage we consider nonparametric regression estimates. Non-

parametric methods do not make the assumption that the regression function has

a certain shape, which can be described by several parameters, and hence allow

statements for more general distributions of (X,Y ). Therefore we do not need

informations about the shape of the regression function to calculate nonparametric

estimates. Especially in the multivariate case this can be a huge advantage, because
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in most high–dimensional cases it is just impossible to make assumptions concern-

ing the constitution of the distribution, since for example graphic tools cannot be

considered for d > 2.

1.2. Least Squares Method

A very famous principle to construct regression estimates (both in parametric and

nonparametric regression analysis) is the principle of least squares. This classical

method was independently proposed by A. Legendre in 1805 and C.F. Gauß in

1809, and results from the following equality

E
(

|m(X) − Y |2
)

= min
f :Rd→R,f measurable

E
(

|f(X) − Y |2
)

,

which we have already seen earlier. The central idea is to estimate the L2 risk,

E
(

|f(X) − Y |2
)

, of a function f by the so-called empirical L2 risk

1

n

n
∑

i=1

|f(Xi) − Yi|2, (1.6)

for a given set of data. Afterwards one chooses a function which minimizes the

empirical L2 risk over some given class of functions as estimate for the regression

function. In the parametric case this class of functions again is determined by

finitely many parameters but in the nonparametric case there are no such restric-

tions. However it is self-evident that not every class of functions is reasonable even

in the nonparametric approach. Thus, one has to choose a suitable class of func-

tions Fn, which may (and in many cases actually does) depend on the sample size

n, and the resulting estimate mn is defined by

mn(·) = arg min
f∈Fn

1

n

n
∑

1=1

|f(Xi) − Yi|2, (1.7)

which on the other hand is definded by

mn ∈ Fn and
1

n

n
∑

1=1

|mn(Xi) − Yi|2 = min
f∈Fn

1

n

n
∑

1=1

|f(Xi) − Yi|2.

Here we assume that the minimum exists, but we do not require its uniqueness.

Usually the set of functions Fn grows as the sample size grows. This idea goes

back to Grenander (1981) and is known as ‘method of thieves’. Moreover, some

approaches even use function spaces Fn, which does depend not only on the sample

size but also depend on the sample.

However as already mentioned, the choice of Fn is very important but it is not very

easy. On the one hand a large underlying class of functions has the advantage that
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it is more likely that it will contain functions, which can approximate the unknown

regression function very well. Basically this is owing to the requirement that the

estimate is contained in Fn and hence cannot approximate the regression function

better than the best function in Fn.

On the other hand, if for example X1, ...,Xn are all distinct, which, in the case

that X has a density, is almost sure, and Fn is too massive then this method

leads to an estimate that just interpolates the data points (X1, Y1), . . . , (Xn, Yn).

Obviously such an estimate is not a reasonable estimate for m(x) = E(Y |X = x).

Therefore it is really important to choose a sufficiently large (but not too large)

class of functions Fn. The following lemma restates this difficulty exactly.

Lemma 1.1. Let Fn be a class of measurable functions f : R
d → R, that maybe

depends on the data Dn. Then for every estimate mn : R
d → R satisfying (1.7) the

inequality

∫

|mn(x) − m(x)|2µ(dx) ≤ 2 sup
f∈Fn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − Yi|2 − E
(

|f(X) − Y |2
)

∣

∣

∣

∣

∣

+ inf
f∈Fn

∫

|f(x) − m(x)|µ(dx)

holds.

Proof. This lemma is well known and a proof can be found in Lugosi and

Zeger (1995). �

In fact, this lemma provides a decomposition of the L2 error of the estimate into

(up to a factor two) the so-called estimation error,

sup
f∈Fn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − Yi|2 − E
(

|f(X) − Y |2
)

∣

∣

∣

∣

∣

, (1.8)

and the so-called approximation error,

inf
f∈Fn

∫

|f(x) − m(x)|µ(dx). (1.9)

The estimation error (1.8) can be seen as the maximal difference between the L2

risk of the estimate and the L2 risk of the functions contained in Fn, whereas

the approximation error (1.9) measures how well the regression function can be

approximated by functions of Fn.

In this dissertation we will use the principle of least squares in order to construct

suitable nonparametric regression estimates. However, before we start with the
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introduction of the underlying function space and the exact definition of our regres-

sion function estimates, firstly we consider properties concerning the performance

of regression estimates and particularly least squares estimates.

1.3. Consistency and Rate of Convergence

In Section 1.1 we have already motivated the use of the L2 error
∫

|mn(x) − m(x)|2µ(dx)

to measure the error of regression estimates. As a matter of course, the L2 error of

a good regression estimate should be very small and therefore, the weakest property

a regression estimate should have, is the convergence of its L2 error to zero, for a

sample size tending to infinity. This attribute is called consistency and is defined

next.

Definition 1.2. A sequence of regression function estimates (mn)n∈N is called

weakly consistent for a certain distribution of (X,Y ), if

lim
n→∞

E

(∫

|mn(x) − m(x)|2µ(dx)

)

= 0,

and it is called strongly consistent for a certain distribution of (X,Y ), if

lim
n→∞

∫

|mn(x) − m(x)|2µ(dx) = 0 a.s.

However, consistency for a certain distribution is just the weakest requirement a

reasonable estimate should fulfil. Even if it is consistent for a certain class of dis-

tributions of (X,Y ) we do not know its performance for anything but these. Since

in most applications the distribution of (X,Y ) is exactly what is unknown it would

be of high interest to exhibit an estimate which is consistent for all distributions or

at least for a large class of distributions of (X,Y ). This desirable distribution-free

consistency goes back to Stone (1977), and is defined as follows:

Definition 1.3. A sequence of regression function estimates (mn)n∈N is called

weakly universally consistent, if it is weakly consistent for all distributions of

(X,Y ) with E(Y 2) < ∞. Analogously the sequence (mn)n∈N is called strongly

universally consistent, if it is strongly consistent for all distributions of (X,Y )

with E(Y 2) < ∞.

For the first time, the existence of weakly universally consistent estimates was

proved in Stone (1977). More precisely Stone has shown that nearest-neighbour-

estimates have this attribute. About twenty years later it was shown in Devroye,
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Györfi, Krzyżak and Lugosi (1994) that nearest-neighbour-estimates are actually

strongly universally consistent. In the meantime universal consistency (both weak

and strong) was shown for a number of estimates. Detailed descriptions and proofs,

in particular for partitioning estimates, kernel estimates, smoothing spline esti-

mates, and least squares estimates, can be found in Györfi et al. (2002).

In order to prove universal consistency for least squares esimates it is common to

study the approximation error (1.9) and the estimation error (1.8) seperately. In

this manner, an upper bound on the L2 error is obtained for all distributions of

(X,Y ) with E(Y 2) < ∞, and its convergence ensures that the regression estimate

is universally consistent.

The analysis of the approximation error mostly is the simpler one. Since C0(R
d) is

dense in L2(µ) for every distribution µ of X (cf. Lemma 1.15) we can require that

m ∈ C0(R
d). Due to the inequality

inf
f∈Fn

∫

|f(x) − m(x)|2µ(dx) ≤ inf
f∈Fn

||f − m||2∞

the class of functions Fn just has to be chosen such that functions in C0(R
d) can

be approximated arbitrarily close with respect to the || · ||∞ by functions of Fn.

From this we can infer directly that the approximation error tends to zero.

On the other hand, bounding the estimation error often is more difficult. Here it

is necessary to require the uniform boundedness of |f(X)− Y | over Fn in order to

apply the so-called Vapnik-Chervonenkis theory and it is usually a quite difficult

task to prove this boundedness over a class of functions Fn. However, as one can

see in Section 10.2 of Györfi et al. (2002), it is sufficient to prove the convergence of

the estimation error to zero only for bounded Y . Moreover, in the case of bounded

Y it suffices to choose the class Fn such that its functions are uniformly bounded

by some constant depending on the sample size n, in order to obtain the uniform

boundedness of |f(X) − Y | (cf. Lugosi and Zeger (1995) and Haussler (1992)).

Even though universal consistency is a quite strong property, it is not the only

thing we need to know in practical applications. The consistency guarantees the

convergence of the L2 error to zero for a growing sample size n, but especially

in applications the sample size often is prescribed, and hence it is desirable that

the L2 error of an estimate tends to zero as fast as possible. Thus together with

the consistency, the rate of convergence is of high interest during the analyis of

regression estimates. To provide a rate of convergence of an estimate mn we will

analyse

E

(∫

|mn(x) − m(x)|2µ(dx)

)

, (1.10)
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for fixed n ∈ N.

Unfortunately there exists no estimate which converges to zero at some fixed non-

trivial rate for all distributions of (X,Y ) with E(Y 2) < ∞, as Devroye has proved

in 1982. Thus one has to make some restrictions on the distribution of (X,Y ) to

get nontrivial rates of convergence of (1.10), which for example can be found in

Györfi et al. (2002) and Devroye and Wagner (1980).

A widely accepted restriction is to impose smoothness assumptions on the regres-

sion function. To be more precise it was shown in Stone (1982), that for distribu-

tions of (X,Y ), which satisfy that X ∈ [0, 1]d a.s., Y = m(X) + N , where N is

standard normal distributed and independent of X with an (p,C)–smooth regres-

sion function m, the lower minimax rate of convergence is n−2p/(2p+d), that is in

particular,

lim inf
n→∞

inf
mn

sup
(X,Y )

C−2d/(2p+d) · n2p/(2p+d) E

∫

|mn(x) − m(x)|2µ(dx) ≥ C1, (1.11)

where the minimum is taken with respect to all possible regression estimates, and

C1 is some positive constant independent of C. Roughly speaking, the required

(p,C)–smoothness means that all derivates of order p exist, but a detailed definition

is given next.

Definition 1.4. Let p = k + β for some k ∈ N0 and 0 < β ≤ 1 and let C > 0. A

function f : [a, b]d → R is called (p,C)–smooth if for every α = (α1, ..., αd), αi ∈
N0,

∑d
j=1 αj = k the partial derivative

∂kf

∂xα1
1 ...∂xαd

d

exists and satisfies

∣

∣

∣

∣

∂kf

∂xα1
1 ...∂xαd

d

(x) − ∂kf

∂xα1
1 ...∂xαd

d

(z)

∣

∣

∣

∣

≤ C · ||x − z||β ,

for all x, z ∈ [a, b]d.

For further results on the general minimax theory of statistical estimates we refer

to Ibragimov and Khasminskii (1980, 1981, 1982) and Birgé (1983).

In order to obtain our rate of convergence results under these assumptions we will

use a theorem of Lee, Bartlett and Williamson (1996) (cf. Theorem 1.17). However

in order to use this theorem, one has to suppose the boundedness of Y which for

example does not hold in the common case that PY |X=x is the normal distribution

N(m(x),σ). Therefore we will extend the approach of Lee, Bartlett and Williamson
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(cf. Section 11.3 of Györfi et al. (2002)) to unbounded data by introducing some

new truncation arguments.

This extension enables us to prove rate of convergence results without assuming

the boundedness of Y , but suppose instead that the distribution of (X,Y ) satisfies

a modified Sub-Gaussian condition or, to be more precise, that

E
(

ec·|Y |2
)

< ∞ (1.12)

holds for some constant c > 0.

Since the analysis of nonparametric regression function estimates, with regard to

both consistency and rate of convergence, requires a basic knowledge of the Vapnik-

Chervonenkis theory, the next section overviews the accordant results which are

necessary for the analysis of our estimates.

1.4. Vapnik-Chervonenkis Theory

The idea of minimizing the empirical risk in the context of decision rules was

developed to a great extent by Vapnik and Chervonenkis (1971). They started

publishing a series of papers which revolutionised the field of pattern recognition,

and therefore affected nonparametric regression estimation strongly, too.

As already mentioned, the theory based on these papers enables us to bound the

estimation error or to be more precise to show, for n → ∞,

sup
f∈Fn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − Yi|2 − E
(

|f(X) − Y |2
)

∣

∣

∣

∣

∣

→ 0 a.s. (1.13)

We can rephrase our goal in a different notation to make this section easier to han-

dle. Let Z,Z1, Z2, . . . be independent and identically distributed random variables

with values in R
d+1, and let G denote a class of functions g : R

d+1 → R
+.

Thus we want to derive conditions for

sup
g∈G

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Zi) − E (g(Z))

∣

∣

∣

∣

∣

→ 0 (n → ∞) a.s.

Hoeffdings inequality, which is specified in the next lemma, will be an important

device in this context.

Lemma 1.5 (Hoeffding (1963)). Let X1, . . . ,Xn be independent real-valued random

variables, let a1, b1, . . . , an, bn ∈ R, and assume that Xi ∈ [ai, bi] almost surely for
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all i = 1, ..., n. Then, for all ε > 0,

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − E(Xi))

∣

∣

∣

∣

∣

> ε

}

≤ 2 · exp

(

− 2nε2

1
n

∑n
i=1 |bi − ai|2

)

.

Proof. The proof can found in Hoeffding (1963) and moreover, it is given in

Devroye, Györfi and Lugosi (1996), Theorem 8.1. �

Obviuosly this inequality from Hoeffding implies for a fixed function g ∈ G which

is bounded by B ∈ R
+, that

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

(g(Zi) −E(g(Z))

∣

∣

∣

∣

∣

> ε

}

≤ 2 · exp

(

−2nε2

B2

)

. (1.14)

Furthermore, this conclusion can be extended to

P

{

sup
g∈Gn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(g(Zi) − E(g(Z))

∣

∣

∣

∣

∣

> ε

}

if one introduces a measure of the complexity of the function space Gn. The mas-

siveness of a class of functions F can be measured in many ways, but in our context

it is reasonable to take so–called Lp–covering numbers, which were suggested in the

paper of Kolmogorov and Tikhomirov (1961).

Definition 1.6. Let z1, ..., zn ∈ R
d and set zn

1 = (z1, ..., zn). Let G be a set of

functions g : R
d → R. An Lp-ε-cover of G on zn

1 is a finite set of functions

g1, ..., gk : R
d → R with the property

min
1≤j≤k

(

1

n

n
∑

i=1

|g(zi) − gj(zi)|p
)1/p

< ε for all g ∈ G. (1.15)

The Lp-ε-covering number Np(ε,G, zn
1 ) of G on zn

1 is the minimal size of a Lp-ε-

cover of G on zn
1 . In case that there exists no finite Lp-ε-cover of G the Lp-ε-covering

number of G on zn
1 is defined by Np(ε,G, zn

1 ) = ∞.

The desirable extension from (1.14) is now given by a general version of Pollards

Lemma.

Lemma 1.7 (Pollards Lemma (1984)). Let G be a set of functions g : R
d → [0, B].

For any n, and any ε > 0,

P

{

sup
g∈G

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(g(Zi) − E(g(Z))

∣

∣

∣

∣

∣

> ε

}

≤ 8 ·E (N1(ε/8,G, Zn
1 )) · exp

(

− nε2

128B2

)

.

For the sake of completness it should be mentioned that in this lemma Z,Z1, . . . Zn

are random variables and hence N1(ε,G, Zn
1 ) is a random variable as well.
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Proof. The proof can be found in Devroye, Györfi and Lugosi (1996), Theo-

rem 29.1. �

Consequently the problem of bounding the estimation error for least squares regres-

sion estimates is reduced to find bounds on the covering number of the underlying

class of functions, (at least if, for the moment, we overlook that Z is random in the

above lemma). For this purpose the concept of Lp packing numbers is very helpful.

Definition 1.8. Let z1, ..., zn ∈ R
d and set zn

1 = (z1, ..., zn). Let G be a set of

functions g : R
d → R. An Lp-ε-packing of G on zn

1 is a finite set of functions

g1, ..., gN : R
d → R, with the property

(

1

n

n
∑

i=1

|gk(zi) − gj(zi)|p
)1/p

≥ ε, for all 1 ≤ j < k ≤ N. (1.16)

The Lp-ε-packing number Mp(ε,G, zn
1 ) of G on zn

1 is the maximal N ∈ N such

that there exist functions g1, ..., gN ∈ G with
(

1

n

n
∑

i=1

|gk(zi) − gj(zi)|p
)1/p

≥ ε

for all 1 ≤ j < k ≤ N . Take Mp(ε,G, zn
1 ) = ∞, if there exists a Lp-ε-packing of G

on zn
1 of size N for every N ∈ N.

Lp–covering numbers and Lp–packing numbers are closely related to each other, as

the next Lemma shows.

Lemma 1.9. Let z1, ..., zn ∈ R
d and set zn

1 = (z1, ..., zn). Let G be a set of functions

g : R
d → R, p ≥ 1 and let ε > 0. Then

Mp(2ε,G, zn
1 ) ≤ Np(ε,G, zn

1 ) ≤ Mp(ε,G, zn
1 ).

Proof. Even though the proof is quite simple, we want to refer to the proof

of Lemma 9.2. in Györfi et al. (2002). �

Hence, with this result it makes no difference if one has bounds on packing or

covering numbers for a class of functions, owing to the close relationship of both.

However, it is usually easier to bound the packing numbers and therefore, the

following definition is needed.

Definition 1.10. Let G be a class of subsets of R
d with G 6= ∅, and let n ∈ N.

For a set A ⊂ R
d with |A| = n, one says G shatters A if each subset of A can

be represented in the form G ∩ A, for some G ∈ G. The Vapnik-Chervonenkis

dimension (VC dimension) VG of G is the largest interger n such that there exists

a set of n points in R
d which can be shattered by G.
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The next theorem will give an upper bound on the packing number of relatively

general classes of functions. But before we can state this result we need one more

notation. For a class of functions G with elements g : R
d → R, we define

G+ :=
{

{(z, t) ∈ R
d × R; t ≤ g(z)}; g ∈ G

}

the set of all subgraphs of functions of G.

Theorem 1.11. Let G be a class of functions g : R
d → [0, B] with VG+ ≥ 2, let

p ≥ 1 and 0 < ε < B/4. Then

Mp(ε,G, zn
1 ) ≤ 3

(

2eBp

εp
log

(

3eBp

εp

))V
G+

,

for all zn
1 = (z1, ..., zn) with z1, ..., zn ∈ R

d.

Proof. This theorem goes back to Haussler (1992), who proved this inequality

for p = 1. A general proof can be found again in Györfi et al. (2002), Theorem

9.4. �

Now in order to get a bound on the covering number of a certain class of bounded

functions, it suffices to find an upper bound on the VC dimension VG+ . The follow-

ing theorem, which goes back to Steele (1975) and Dudley (1978), will give exactly

such a bound in the case that G is a linear vector space with finite dimension.

Theorem 1.12. Let G be an r-dimensional vector space of functions g : R
d → R

and set

A =
{

{z : g(z) ≥ 0} : g ∈ G
}

.

Then VA ≤ r.

Proof. Amongst others a proof can be found in Devroye, Györfi and Lugosi

(1996), Theorem 13.9. �

In Chapters 4 and 5 we shall consider estimates, which are defined as a sum of

certain functions, and hence we also need bounds on the covering numbers of such

function spaces. For this purpose, we define the class of functions,

F ⊕ G =
{

h : R
d → R, h(x) = f(x) + g(x), for some f ∈ F and g ∈ G

}

,

for classes F and G of functions f : R
d → R.

As presumably expected there exists a connection between the covering number of

F ⊕ G and the covering numbers of F and G, and this connection is given in the

following lemma. Similar results can be found in Nobel (1992), Nolan and Pollard

(1987) and Pollard (1990).
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Lemma 1.13. Let F and G be two families of functions f : R
d → R. Then, for

ε, δ > 0, we have

N1(ε + δ,F ⊕ G, zn
1 ) ≤ N1(ε,F , zn

1 ) · N1(δ,G, zn
1 ).

Proof. For the proof we refer to the proof of Theorem 29.6 in Devroye, Györfi

and Lugosi (1996). �

Now, we have collected all tools from VC-theory needed in this dissertation. Since

we try to make this work self-contained the next section provides a couple of dif-

ferent results we will need during the analyse of our estimates and which are not

linked up closely.

1.5. Auxiliary Results

Firstly we want to refer to the inequation from Bernstein, which is closely related

to Hoeffding’s inequality and typically can outperform it if the underlying random

variables have a small variance.

Lemma 1.14 (Bernstein (1946)). Let X1, ...,Xn be independent real–valued random

variables, let a, b ∈ R with a < b, and assume that Xi ∈ [a, b] a.s. (i = 1, ..., n). Let

σ2 =
1

n

n
∑

i=1

Var(Xi) > 0.

Then, for all ε > 0,

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − E(Xi))

∣

∣

∣

∣

∣

> ε

}

≤ 2 · exp

(

− nε2

2σ2 + 2ε(b − a)/3

)

Therefore, Bernstein’s inequality kicks in when ε is larger than about

max
{

σ/
√

n, (b − a)/
√

n
}

,

and it is typically stronger than Hoeffding’s inequality if σ ≪ b − a.

In order to prove universal consistency of nonparametric regression estimates, one

usually proves consistency for continuous regression functions (or for infinitely often

continuously differentiable regression functions) first, and then extends this result

to arbitrary functions. For this purpose one needs the following general denseness

result.
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Lemma 1.15. For any p ≥ 1 and any probability measure µ, the set of continuous

functions of bounded support is dense in Lp(µ), that is, for any f ∈ Lp(µ) and

ε > 0 there exists a continuous function g with compact support such that

∫

|f(x) − g(x)|pµ(dx) ≤ ε.

Proof. A proof can be found in Elstrodt (1996) (cf. Theorem 2.31). �

Note that Lemma 1.15 involves directly the denseness of C∞
0 (Rd) (set of all infinitely

often continuously differentiable functions with bounded support) in L2(µ), due to

the well-known fact that C∞
0 (Rd) is dense in C0(R

d) (the set of continuous functions

with bounded support). Therefore it is completely sufficient to prove consistency

only for regression functions which are contained in C∞
0 (Rd) (or supersets) in order

to obtain universal consistency.

Since the class of functions we consider in this dissertation is closely related to the

class of linear spline functions (cf. Lemma 2.2), we can use an approximation result

from Schumaker (1981) in order to get bounds on the approximation error of our

estimate and therefore to derive the desired rate of convergence.

Lemma 1.16. Let a, b ∈ R, a < b and h : [a, b]d → R be a (p,C)–smooth function,

for some 0 < p ≤ 2, C > 1. Furthermore, let Gd denote the set of all continuous

piecewise linear functions g : [a, b]d → R, with respect to a partition of [a, b]d in n

equivolume cubes. Then,

inf
g∈Gd

(

max
x∈[a,b]d

|g(x) − h(x)|2
)

≤ c1 · C2 · n−2p/d,

holds, for a sufficiently large constant c1 > 0.

Proof. This result is a consequence of Theorem 12.8, Example 13.27 and

inequality (13.62) in Schumaker (1981). �

Furthermore we have already pointed out the impact of the approach of Lee,

Bartlett and Williamson. Hence, a very important instrument, in order to derive

our rate of convergence results, is the corresponding theorem from Lee, Bartlett

and Williamson.
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Theorem 1.17. Assume |Y | ≤ B a.s. and B ≥ 1. Let F be a class of functions

f : R
d → R and let |f(x)| ≤ B. Then for each n ≥ 1,

P

{

∃f ∈ F : E
(

|f(X) − Y |2
)

− E
(

|m(X) − Y |2
)

− 1

n

n
∑

i=1

(

|f(Xi) − Yi|2 − |m(Xi) − Yi|2
)

≥ ε ·
(

α + β + E
(

|f(X) − Y |2
)

− E
(

|m(X) − Y |2
))

}

≤ 14 sup
xn
1

N1

(

βε

20B
,F , xn

1

)

exp

(

− ε2(1 − ε)αn

214(1 + ε)B4

)

,

where α, β > 0 and 0 < ε ≤ 1/2.

Proof. This theorem was proved in Lee, Bartlett and Williamson (1996) and

another proof can be found in Györfi et al. (2002). �

We want to complete this section by stating the well-known Borel-Cantelli lemma.

Lemma 1.18 (Borel-Cantelli lemma). Let (An)n∈N be a sequence of events in some

probability space (Ω,A,P). If the sum of the probabilities of the An is finite, that is

∞
∑

i=1

P(An) < ∞,

then

P(lim sup
n→∞

An) = 0.

Proof. A proof can be found for example in Billingsley (1995), Theorem 4.3.

�

In this chapter we have motivated the use of least squares estimates in regression

estimation problems. Furthermore, we gave some basic ideas how one can analyse

such estimates in terms of universal consistency and their corrsponding rate of

convergence, and we provided all important tools we shall need during this analyse.





CHAPTER 2

Maxima of Minima of Linear Functions

In this chapter we will introduce the class of functions standing in the centre of our

attention troughout this thesis. This class consists of maxima of minima of linear

functions, where linear means actually affine linear. The first section contains the

definition of this class of functions as well as the definition of the estimate we

will analyse in Chapter 3. In Section 2.2, we examine how these functions are

generated and discuss some of their properties. Furthermore we formulate some

helpful relations to linear spline functions, but also point out some inconveniences

in this context. After that, Section 2.3 discusses bounds on the covering numbers

of a truncated version of the function space consisting of maxima of minima of

linear functions and therefore provides implicit bounds on the estimation error of

least squares estimates over these functions.

2.1. Definition of the Estimate

In the sequel we will use the principle of least squares to fit maxima of minima of

linear functions to the data. More precisely, let Kn ∈ N and L1,n, . . . , LKn,n ∈ N

be parameters of the estimate and set

Fn =

{

f : R
d → R : f(x) = max

k=1,...,Kn

min
l=1,...,Lk,n

(ak,l · x + bk,l) (x ∈ R
d),

for some ak,l ∈ R
d, bk,l ∈ R

}

, (2.1)

where

ak,l · x = a
(1)
k,l · x(1) + · · · + a

(d)
k,l · x(d)

denotes the scalar product between the vectors ak,l = (a
(1)
k,l , . . . , a

(d)
k,l )

T and x =

(x(1), . . . , x(d))T . From now on Fn denotes the class of functions defined by (2.1),

where Kn, L1,1, ..., LKn,n are parameters depending on n. Note that the class Fn

therefore depends on n as well and that we have inclusions of the form

Fm ⊂ Fn, if Km ≤ Kn and Li,m ≤ Li,n for all 1 ≤ i ≤ Km.

27
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Furthermore, for fixed K,L ∈ N, we define

FK,L =

{

f : R
d → R : f(x) = max

k=1,...,K
min

l=1,...,L
(ak,l · x + bk,l) (x ∈ R

d),

for some ak,l ∈ R
d, bk,l ∈ R

}

,

corresponding to Fn, but for L1,n = ... = LK,n.

Now for a given set of data Dn = {(X1, Y1), ..., (Xn, Yn)} we define an estimate m̃n

by

m̃n(·) = arg min
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2. (2.2)

Here we assume again that the minimum exists, however we do not require that it

is unique. Since the elements of Fn (which are referred to as maxmin functions in

the following) are unbounded in general, also the estimate m̃n may happen to be

unbounded. Hence we consider the truncated version of this least squares estimate,

that is,

mn = Tβn
◦ m̃n, where Tβn

(z) =











βn z > βn,

z −βn ≤ z ≤ βn,

−βn z < −βn

(2.3)

for some βn ∈ R+. This truncation provides a bounded estimate and therefore

allows us to use results from VC theory in order to obtain bounds on the estima-

tion error, although we actually use the principle of least squares with respect to

unbounded functions. As can be seen in (2.2), we choose Fn dependent on the

sample size or, in other words, we have to choose the parameters somehow. Later

we shall see, how one can do this choice data-dependent. For now we just mention,

that the size of the parameters will grow with growing sample size.

Before we take a more detailed look at the underlying class of functions Fn, we

want to give an overview of earlier appearances of the function class Fn in the

literature.

To our knowledge, the use of maxima of minima of linear functions in order to

represent continuous piecewise linear functions goes back to Bartels, Kuntz and

Sholtes (1995). In 2003 Bagirov, Rubinov, Soukhoroukova and Yearwood have

used maxima of minima of linear functions in connection with pattern recognition.

In this context the class Fn stands out as a rather complex and highly flexible

class of functions. Furthermore maxima of minima of linear functions have been

used in regression estimation already by Beliakov and Kohler (2005). There, least

squares estimates are derived by minimizing the empirical L2 risk over classes of
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functions consisting of Lipschitz smooth functions where a bound on the Lipschitz

constant is given. It is shown that the resulting estimate in fact is a maxmin

function, where the number of minima occurring in the maxima is equal to the

sample size. Additional restrictions (for example on the linear functions in the

minima) ensure that no overfitting can happen. In contrast, the number of linear

functions we consider in this dissertation is much smaller, and restrictions on these

linear functions are therefore not necessary. This seems to be promising, because

we do not fit too many parameters to the data.

2.2. Characterisation of Fn

Maxima of minima of linear functions are in fact continuous piecewise linear func-

tions with respect to partitions of finite size, and this size only depends on the

number of linear functions, which induce the maxmin function. Hence using the

principle of least squares with respect to the class of functions consisting of maxmin

functions corresponds with fitting linear spline functions with free knots to the data.

As seen in the above definition Fn depends on the parameters

Kn, L1,n, . . . , LKn,n ∈ N.

Li,n declares the number of linear functions under the i-th minimum, and Kn

declares the number of minima functions under the maximum. To make this a bit

more perspicuous, we want to give an example in the univariate case d = 1.

Example 2.1. As parameters we choose K = 3 and L1, L2, L3 = 2 and thus

consider the class F3,2. Figure 1 shows two linear functions with their minimum

function (bold).

y

x

Figure 1. Two linear functions with their minimum function.
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Due to the choice K = 3 we need two more minimum functions under the maximum

to get a function that fulfils the definition, and under each of them we need two

linear functions. Figure 2 shows four linear functions more together with their two

minimum functions.

x

y

Figure 2. Three minima functions with their generating linear functions.

In Figure 3 we can see the resulting maxmin function (which belongs to F3,2) with

its three generating minimum functions, but without the six underlying linear func-

tions. Apparently the same linear functions could induce a different maxmin func-

x

y

Figure 3. The resulting maximum function (black).

tion, because the generated function obviously depends on how one chooses the pairs

of linear functions, which belong to the same minimum function.
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At least for the univariate case this short example should have suggested that

maxmin functions (functions that can be constructed as maxima of minima of

linear functions) are continuous piecewise linear. In the multivariate case the con-

tinuity also results directly from the fact that both the maximum and the minimum

function are continuous, which shows that maxmin functions are just compositions

of continuous functions. The piecewise linearity is self-evident, because maxmin

functions are induced by linear functions.

The next lemma shows a connection in the opposite direction. It demonstrates how

linear spline functions can be interpolated by maxmin functions with parameters

depending on the size of the partition belonging to the spline and on the dimension

of X.

Lemma 2.2. Let Kn ∈ N and let Π be a partition of [a, b]d consisting of Kn rect-

angulars. Assume that f lin : [a, b]d → R is a piecewise linear function with respect

to Π and assume that f lin is continuous. Furthermore let x1, ..., xn ∈ R
d be n fixed

points in [a, b]d. Then there exist linear functions

f1,0, ..., f1,2d, ..., fKn,0, ..., fKn,2d : R
d → R,

such that

f lin(z) = max
i=1,...,Kn

min
k=0,..,2d

fi,k(z), for all z ∈ {x1, ..., xn}.

Proof. Since f lin is a continuous piecewise linear function, it is of the shape

f lin(z) =
Kn
∑

i=1

f lin
i (z) · 1Ai

=
Kn
∑

i=1





d
∑

j=1

αi,j · z(j) + αi,0



 · 1Ai
,

for suitable constants αi,j ∈ R (i = 1, ...,Kn, j = 0, ..., d), and moreover Π =

{A1, ..., AKn} is a partition of [a, b]d with

Ai = I
(1)
i × · · · × I

(d)
i ,

for some univariate intervals I
(j)
i (i = 1, . . . ,Kn). We denote the left and the right

endpoint of I
(j)
i by ai,j and bi,j, respectively, that is,

I
(j)
i = [ai,j, bi,j) or I

(j)
i = [ai,j , bi,j].

This choice is without restriction of any kind because f lin is continuous by assump-

tion. Now we choose, for every i ∈ {1, ...,Kn},

fi,0(x) = f lin
i (x) =

d
∑

j=1

αi,j · x(j) + αi,0.
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This implies that fi,0 and the given piecewise polynomial f lin coincide on Ai for

every i = 1, ...,Kn. Furthermore, for i = 1, ...,Kn and j = 1, ..., d, we define

fi,2j−1(x) = f lin
i (x) + (x(j) − ai,j) · βi,j ,

where βi,j ≥ 0 is such that

fi,2j−1(z) ≤ f lin(z),

for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) < ai,j and

fi,2j−1(z) ≥ f lin(z),

for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) > ai,j.

The above conditions are satisfied in particular, if

βi,j ≥ max
k=1,...,n;x

(j)
k

6=ai,j

f lin(xk) − f lin
i (xk)

x
(j)
k − ai,j

,

and obviously, for z(j) = ai,j, we havefi,2j−1(z) = f lin
i (z).

Analogously we choose

fi,2j(x) = f lin
i (x) − (x(j) − bi,j) · γi,j,

where γi,j ≥ 0 is such that

fi,2j(z) ≥ f lin(z),

for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) < bi,j and

fi,2j(z) ≤ f lin(z),

for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) > bi,j.

In this case the conditions from above are satisfied, if

γi,j ≥ max
k=1,...,n;x

(j)
k

6=ai,j

f lin
i (xk) − f lin(xk)

x
(j)
k − bi,j

.

From this choice of the functions fi,j (i = 1, ...,Kn), (j = 0, ..., 2d) results directly,

that

min
k=0,..,2d

fi,k(z)

{

= f lin
i (z) = f lin(z) for z ∈ Ai ∩ {x1, ..., xn}

≤ f lin(z) for z ∈ {x1, ..., xn}
holds for all i = 1, ...,Kn, which implies the assertion. �

In the course of this dissertation we shall see that this connection between maxmin

functions and continuous piecewise linear functions ease the bounding of the ap-

proximation error of our estimate, because we can use well-known approximation

results from spline theory.
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Although the above lemma is the only result concerning the connection of maxmin

functions and linear spline functions needed in this thesis, we want to make a view

remarks on the correlation of these two function spaces, and we hope these remarks

will support the comprehension and figuring of maxmin functions.

First, it should be mentioned that in general maxmin functions are not necessarily

piecewise linear with respect to a partition that consists of rectangulars. Usually,

the underlying partitions are not of this form, because the intersection of two graphs

of linear functions f, g : R
d → R is a hyperplane of at most dimension d that lies

arbitrarily in the d + 1–dimensional space. Since exactly such intersections induce

the partition (owing to the continuity of maxmin functions), it is clear that maxmin

functions are piecewise linear with respect to arbitrary partitions of the underlying

space and not necessarily to partitions consisting of rectangulars.

Secondly, it is remarkable that there exists no simple connection between the num-

ber of knots of a linear spline and the number of parameters needed to express

splines with this certain number of knots. Although it is clear that there exists a

class of functions Fn which contains all linear spline functions with a certain num-

ber of knots, the number of the parameters needed will be comparatively large.

Actually it will be so large that it also contains spline functions with a mutiple of

the number of given knots. The next example is supposed to sample this challenge

in view of Lemma 2.2 and in the case d = 1.

Example 2.3. Firstly we consider the function

f(x) =























3/4 − 2x =: f1(x); x ∈
[

0, 1/4
)

1/2 − x =: f2(x); x ∈
[

1/4, 1/2
)

−1/2 + x =: f3(x); x ∈
[

1/2, 3/4
)

−5/4 + 2x =: f4(x); x ∈
[

3/4, 1
]

,

which is obviously a piecewise linear function with respect to the partition

Π =

{[

0 ,
1

4

)

,

[

1

4
,

1

2

)

,

[

1

2
,

3

4

)

,

[

3

4
, 1

]}

(2.4)

of the interval [0, 1]. It is easy to see that f is also continuous, since we have that

fi(i/4) = fi+1(i/4) (i = 1, 2, 3).

Moreover we can deduce from Figure 4 that f is a convex function and we shall see

that usually a large number of minimum functions under the maximum is necessary

to induce a convex spline function by maxmin functions. This property is caused

by the concave structure of minimum functions.
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1

1

x

f(x)

Figure 4. The convex spline f

Apparently we can rewrite f as a maxmin function, namely

f(x) = max
{

min{f1(x)},min{f2(x)},min{f3(x)},min{f4(x)}
}

,

and therefore f is obviously contained in F4,1. This representation shows that f is

actually not a maxmin function but a maximum function (cf. Figure 5). Hence, in

1

1

f(x)

f1

f2

f4

f3

x

Figure 5. f as maxmin function

view of Lemma 2.2, the class of functions F4,1 instead of F4,3 would be sufficient
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in order to generate the convex spline function f . Note that we can induce an

arbitrary convex spline with respect to a partition of [0, 1] into 4 intervals in a

similar way. However, on the other hand we actually need 4 minimum functions

under the maximum to represent f as a maxmin function. Indeed, this results

from the fact that the points i/4 (i = 1, 2, 3) need to be intersection points of the

functions under the maximum, since otherwise we would not be able to generate

the convex shape in the neighbourhood of these points.

Therefore, we can infer that a class of maxmin functions that contains all contin-

uous piecewise linear functions with respect to a partition of [0, 1] into at least 4

subintervals need to be at least F4,1.

Let us now consider the concave function

g(x) =























1/4 + 2x =: g1(x) x ∈
[

0, 1/4
)

1/2 + x =: g2(x) x ∈
[

1/4, 1/2
)

3/2 − x =: g3(x) x ∈
[

1/2, 3/4
)

9/4 − 2x =: g4(x) x ∈
[

3/4, 1
]

,

which is sketched in Figure 6. Obviously g is piecewise linear with respect to the

1

1

x

g(x)

Figure 6. The concave spline g

partition Π defined in (2.4) and its continuity can be deduced again by verifying

gi(i/4) = gi+1(i/4) (i = 1, 2, 3).

Moreover it is easy to see that we can rewrite g as maxmin function, that is

g(x) = max
{

min{g1(x), g2(x), g5(x)},min{g3(x), g4(x), g6(x)}
}

,
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with g5 : [0, 1] → R, x 7→ 2 − 2x, and g6 : [0, 1] → R, x 7→ 2x (cf. Figure 7). Note

that we could also choose different functions for g5 and g6 in order to induce the

same spline function g. But we have to choose g5 such that it goes through the

point (1/2, 1) and such that its slope is smaller than or equal to the slopes of g3 and

g4. Because otherwise either we would obtain an additional knot in the intersection

point of g5 and g4, or the resulting maxmin function would just be exactly the first

minimum function, that is min{g1(x), g2(x), g5(x)}. Moreover g6 must be chosen

1

1

x

g(x)

g2

g1

g6
g5

g3

g4

Figure 7. g as maxmin function

such that it also goes through the point (1/2, 1) but in such a way that its slope is

greater than or equal to the slopes of g1 and g2, because otherwise we would also

obtain a different spline function (which would not necessarily be concave anymore).

Now, we have seen that g is contained in F2,3 and moreover, one can actually

justify that it is necessary to have at least 3 linear functions under the minimum.

If one tries to induce g by using only functions of the form min{ax+b, cx+d}, that

is functions from Fn,2 for some n ∈ N, one will see directly that it is impossible,

because the functions under the minimum need to have at least two knots in order

to induce a concave spline function.

In summary, we need on the one hand a superset of F4,1 to be able to represent

convex linear spline functions with respect to the partition Π, and on the other hand

we need a superset of F2,3 in order to provide all concave linear spline functions

with respect to Π. From this we can infer that the class of maxmin functions F4,3 is
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the ‘smallest’ class of the form Fm,n which could contain all continuous piecewise

linear functions with respect to an arbitrary partition of [0, 1] into 4 subintervals.

Furthermore in the case d = 1, one can show that F4,3 actually contains all such

linear spline functions. This can be deduced from the construction in the proof of

Lemma 2.2. It is possible to choose the real numbers βi,j and γi,j in that proof

in such a way that the corresponding construction provides the desired maxmin

function. Since moreover the above arguments concerning the concave and convex

splines can be easily extended to partitions of [0, 1] into N subintervals, we can infer

that FN,3 is the smallest class of maxmin functions which contains all continuous

piecewise linear functions with respect to a partition of [0, 1] into N subintervals.

Let us complete this example by demonstrating that the class F4,3 also contains

spline functions with more than three knots. Figure 8 sketches a maxmin function

��

��

��

��

�� ��

��

�� ��

��

��

��

��

Figure 8. A member of F4,3 with 13 knots

which has 13 knots and which is contained in F4,3. We have marked those linear

functions with the same colour, which belong to the same minimum function. Hence

we have four different colours, each with three belonging linear functions. The

resulting minimum functions are shown in the same colour but bold.

From Sections 1.3 and 1.4 we can appraise the importance of covering numbers of

Fn in conjunction with consistency and the rate of convergence of least squares

estimates over Fn. The next section will provide results referring to this.
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2.3. Covering Numbers of Fn

To obtain bounds on the covering numbers of sets of maxima of minima of lin-

ear functions we first show a connection from the Lp-ε-covering numbers of sets

G1,G2, ... and the Lp-ε-covering number of their maximum

max{G1, ...,Gm} =
{

f : R
d → R; f(x) = max{g1(x), ..., gm(x)} (x ∈ R

d),

for some g1 ∈ G1, ..., gm ∈ Gm

}

and minimum (defined analogously), respectively.

Lemma 2.4. Let G1,G2, ...,Gm be classes of functions g : R
d → R and suppose we

have given n points xn
1 = (x1, ..., xn) ∈ R

d × · · · × R
d in R

d. Then

Np (ε,max {G1, ...,Gm} , xn
1 ) ≤

m
∏

i=1

Np

( ε

m1/p
,Gi, x

n
1

)

(2.5)

and

Np (ε,min {G1, ...,Gm} , xn
1 ) ≤

m
∏

i=1

Np

( ε

m1/p
,Gi, x

n
1

)

(2.6)

hold for all ε > 0.

Proof. Let xn
1 = (x1, ..., xn) and ε > 0 be fixed. Without loss of generality we

assume that Np(ε/(m
1/p),Gi, x

n
i ) is finite for all 1 ≤ i ≤ m. That is, for every set

Gi, one can choose a finite set of functions g1
i , ..., g

ni

i , such that for all gi ∈ Gi there

exists ji = j(gi) ∈ {1, ..., ni} with

(

1

n

n
∑

k=1

∣

∣

∣gi(xk) − gji

i (xk)
∣

∣

∣

p
)1/p

<
ε

m1/p
.

Let g(x) = maxi=1,...,m gi(x) (x ∈ R
d) for some gi ∈ Gi (i = 1, ..., n). Choose for

every gi the corresponding function gji

i with

(

1

n

n
∑

k=1

∣

∣

∣gi(xk) − gji

i (xk)
∣

∣

∣

p
)1/p

<
ε

m1/p

and define the function h : R
d → R by h(x) := maxm

i=1 gji

i (x).

From the triangle inequality for the supremum norm on the real vector space R
n

it can be easily deduced that
∣

∣

∣ ||x||∞ − ||y||∞
∣

∣

∣ ≤ ||x − y||∞

holds, for all vectors x, y ∈ R
n. Therefore, we can also infer that

|max{a1, ..., an} − max{b1, ..., bn}| ≤ max
i=1,...,n

|ai − bi| (2.7)
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holds, for positive real numbers a1, ..., an, b1, ..., bn ∈ R
+. In fact for arbitrary real

numbers a1, ..., an, b1, ..., bn ∈ R we can choose c = min{a1, ..., an, b1, ..., bn} so that

inequality (2.7) holds for a1 + |c|, ..., an + |c|, b1 + |c|, ..., bn + |c| ∈ R
+. Hence the

equations

max{a1, ..., an} + |c| = max{a1 + |c|, ..., an + |c|}

and

max{b1, ..., bn} + |c| = max{b1 + |c|, ..., bn + |c|}

imply that inequality (2.7) holds for all real numbers a1, ..., an, b1, ..., bn ∈ R. Hence

we obtain that

(

1

n

n
∑

k=1

|g(xk) − h(xk)|p
)1/p

=

(

1

n

n
∑

k=1

∣

∣

∣

∣

max
i=1,...,m

gi(xk) − max
i=1,...,m

gji

i (xk)

∣

∣

∣

∣

p
)1/p

≤
(

1

n

n
∑

k=1

max
i=1,...,m

∣

∣

∣
gi(xk) − gji

i (xk)
∣

∣

∣

p
)1/p

≤
(

1

n

n
∑

k=1

m
∑

i=1

∣

∣

∣gi(xk) − gji

i (xk)
∣

∣

∣

p
)1/p

=

(

m
∑

k=1

1

n

n
∑

i=1

∣

∣

∣
gi(xk) − gji

i (xk)
∣

∣

∣

p
)1/p

<

(

m
∑

k=1

εpm−p/p

)1/p

=
(

mεpm−1
)1/p

= ε

holds, and thus we have shown assertion (2.5) for the Lp-ε-covering number of the

maximum function. Moreover, the proof of inequality (2.6) follows directly from

(2.5), together with the two simple insights that

min {G1, ...,Gm} = max {−G1, ...,−Gm}

holds, for arbitrary function spaces G1, ...,Gm, and that

N (ε,Gi, x
n
1 ) = N (ε,−Gi, x

n
1 ), (i = 1, ..., n),

for all ε > 0, and for all xn
1 ∈ R

d × ... × R
d. �

In the following this lemma will enable us to bound the Lp-ε-covering number of

the truncated version of the class of functions Fn. Remind that results from the VC

theory in Section 1.4 partially assume the boundedness of the underlying functions,

and that the truncation guarantees this sufficient bound.
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Lemma 2.5. Let ε > 0 and zn
1 ∈ R

d × ... × R
d. Set Ln := max{L1,n, ..., LKn,n}.

Then,

N1 (ε, TβFn, zn
1 ) ≤ 3

(

6eβ

ε
· KnLn

)2(d+2)(
PKn

k=1 Lk,n)
.

holds for Fn defined by (2.1).

Proof. In the first step we show that we can involve the truncation operator

into the class of functions, that is the equality

TβFn =

{

max
1≤k≤Kn

min
1≤l≤Lk,n

Tβ (ak,l · x + bk,l) , for some ak,l ∈ R
d, bk,l ∈ R

}

(2.8)

holds. To attain this, we have to verify the equality

Tβ max
1≤i≤n

zi = max
1≤i≤n

Tβzi, (2.9)

for real numbers zi ∈ R (i = 1, ..., n). For this purpose, we may assume without

loss of generality that z1 = max{z1, ..., zn}. For −β < z1 < β, we get

Tβ max
1≤i≤n

zi = Tβz1 = z1 = max{z1, ..., zn} = max
1≤i≤n

Tβzi,

since max1≤i≤n Tβzi = max1≤i≤n max{zi,−β}. For z1 ≥ β, we have

Tβ max
1≤i≤n

zi = Tβ(z1) = β = max
1≤i≤n

Tβ(zi),

since Tβ(zi) ≤ β (i = 1, ..., n) and Tβ(z1) = β. Furthermore (2.9) holds obviously

in the case z1 ≤ −β and hence, we have verified (2.9). Because of

min
1≤i≤n

zi = − max
1≤i≤n

zi and Tβ(−z) = −Tβ(z)

it is obvious that we obtain the analogue equation for the minimum, that is

Tβ min
1≤i≤n

zi = min
1≤i≤n

Tβzi.

Thus in addition (2.8) holds and hence, Lemma 2.4 implies that it is sufficient to

find covering numbers for TβG where G is defined by

G =
{

g : R
d → R; g(x) = a · x + b, (x ∈ R

d), for some a ∈ R
d, b ∈ R

}

,

in order to get covering numbers of TβFn. Obviously G is a d+1 dimensional linear

vector space, which by Theorem 1.12 yields

VG+ ≤ (d + 1) + 1.

Before we are able to apply Theorem 1.11 we have to find a bound on the VC

dimension of TβG+. In order to do so, let (x, y) ∈ R
d ×R. If y ≤ −β, then (x, y) is

contained in every set of TβG+, if y > β, then (x, y) is contained in none of them.

Thus, if TβG+ shatters a set of points, then the y-coordinates of these points are
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all bounded in absolute value by β, and G+ also shatters this set of points. Hence

we get

VTβG+ ≤ VG+ ,

(cf. equality (10.23) in Györfi et al. (2002)). Thus Lemma 1.9 and Theorem 1.11

imply

N1 (ε, TβG, zn
1 ) ≤ 3

(

4eβ

ε
· log 6eβ

ε

)(d+2)

.

Although the functions of TβG have the range [−β, β] and therefore are not bounded

below by zero, we are permitted to apply Theorem 1.11, because one can just lift

the functions, such that their range is [0, 2β]. Obviously this class of lifted functions

and the original class TβG have the same covering number.

In addition, Lemma 2.4 implies for Ln := max{L1,n, ..., LKn,n} that

N1 (ε, TβFn, zn
1 ) = N1

(

ε, max
1≤k≤Kn

min
1≤l≤Lk,n

TβG, zn
1

)

≤
Kn
∏

k=1

N1

(

ε

Kn
, min
1≤l≤Lk,n

TβG, zn
1

)

≤
Kn
∏

k=1

Lk,n
∏

l=1

N1

(

ε

Kn · Ln
, TβG, zn

1

)

≤ 3

(

4eβ

ε
· KnLn · log

(

6eβ

ε
· KnLn

))(d+2)
PKn

k=1 Lk,n

≤ 3

(

6eβ

ε
· KnLn

)2(d+2)(
PKn

k=1 Lk,n)

holds for arbitrary ε > 0. �

In view of Chapter 5 we would like to remark that the bound in Lemma 2.5 is a

uniform bound, which does not depend on the certain choice of the points zn
1 ∈

R
d × · · · × R

d.

Thus we have bounds on the covering numbers of Fn depending on the underlying

parameters Kn, L1,n, . . . LKn,n ∈ N. In the following we will analyse the asymp-

totics of our maxmin estimate mn = Tβm̃n defined by (2.2) and (2.3), using these

appraisements for the complexity of the underlying class of functions.





CHAPTER 3

Analysis of Asymptotic Behaviour

In Section 3.1 we shall prove that the estimate introduced in Chapter 2 is strongly

universally consistent for all distributions of (X,Y ) with X ∈ [0, 1]d a.s. For this

purpose we use the results concerning the covering numbers of Fn, we proved in the

last chapter. In Section 3.2 we shall derive a rate of convergence of our estimate

which is optimal up to a logarithmic factor. The derived rate of convergence holds

for all distributions of (X,Y ) with X ∈ [a, b]d a.s. and a (p,C)–smooth regression

function m. We do not assume that Y is bounded, because it suffices to suppose a

modified Sub-Gaussian condition, that is,

E
(

ec·|Y |2
)

< ∞,

for some constant c > 0. The last section describes how one can choose the pa-

rameters in dependency of the given set of data and furthermore, provides a rate

of convergence for estimates with this data-dependent choice of parameters.

3.1. Universal Consistency

The aim of this section is to prove strong univeral consistency of the maxmin

estimate mn defined by (2.2) and (2.3) or, more precisely, to show that

lim
n→∞

∫

|mn(x) − m(x)|2µ(dx) = 0 a.s.

for a certain class of distributions of (X,Y ) (cf. Definition 1.2). To obtain the

desired consistency we will use the following result from Györfi et al. (2002).

Theorem 3.1. Let Gn = Gn(Dn) be a class of functions f : R
d → R, and assume

that the estimator mn satisfies

m̃n(·) = arg min
f∈Gn

1

n

n
∑

i=1

|f(Xi) − Yi|2.

and

mn(x) = Tβn
m̃n(x),

for all x ∈ R
d.

43
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If

lim
n→∞

βn = ∞,

lim
n→∞

inf
f∈Gn,||f ||∞≤βn

∫

|f(x) − m(x)|2µ(dx) = 0 a.s., (3.1)

lim
n→∞

sup
f∈TβnGn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − TLYi|2 − E
(

(f(X) − TLY )2
)

∣

∣

∣

∣

∣

= 0 (3.2)

a.s., for all L > 0, then

lim
n→∞

∫

|mn(x) − m(x)|2µ(dx) = 0 a.s.

Proof. The proof can be found in Györfi et al. (2002), Theorem 10.2. �

Since our maxmin estimate is a truncated version of a least squares estimate, we

just have to show conditions (3.1) and (3.2), in order to gain the consistency.

Theorem 3.2. Let mn be the esimate defined by (2.2) and (2.3) and set furthermore

Ln = max{L1,n, ..., LKn,n}. If the parameters satisfy

βn → ∞, Kn → ∞, Lk,n → ∞ for k = 1, ...,Kn, (3.3)

and in addition

β4
n ·∑Kn

k=1 Lk,n · log(βn · Kn · Ln)

n
→ 0, (3.4)

for n → ∞ and if, for some δ > 0,

β4
n

n1−δ
→ 0 (3.5)

holds, then

lim
n→∞

∫

|mn(x) − m(x)|2µ(dx) = 0 a.s. ,

for all distributions of (X,Y ) with X ∈ [0, 1]d a.s. and E(Y 2) < ∞.

From Theorem 3.1 we know that it suffices to verify conditions (3.1) and (3.2) to

get the desired result in this setting. For the proof of condition (3.1), we start

with the case that the regression function m is Lipschitz continuous with Lipschitz

constant C > 0, that is

|m(x) − m(y)| ≤ C · ||x − y||

holds, for all x, y ∈ R
d. Later we will extend this to more general regression

functions m by using the denseness of Lipschitz continuous functions in L2(µ).

In order to show that Lipschitz continuous functions can be approximated ar-

bitrarily well by maxmin functions we decompose [0, 1]d into nd subcubes and
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choose certain linear functions such that their maxmin function interpolates the

given Lipschitz continuous function in the vertices of the subcubes 1/n · i, where

i = (i(1), . . . i(d)) ∈ {0, ..., n}d. More detailed, we consider functions of the form

x 7→ m

(

1

n
· i
)

+ C · Cd ·
d
∑

k=1

δd(k) ·
(

x(k) − i(k)

n

)

, (3.6)

where δd : {1, ..., d} → {−1, 1}. Here, for d ∈ N, Cd is the constant resulting from

the equivalence of the || · ||1–norm and the Euclidean–norm, which we will denote

by || · ||2 in this section, in order to avoid misunderstandings. That is, Cd satisfies

1

Cd
||x||1 ≤ ||x||2 ≤ Cd||x||1,

for all x ∈ R
d. Due to the number of possibilities to map {1, ..., d} onto {−1, 1}

there exist 2d different functions of the form (3.6). It is easy to show that these

functions are Lipschitz continuous as well, but with Lipschitz constant C · C2
d .

In fact, let δd : {1, ..., d} → {−1, 1} be fixed. Then we have, for arbitrary x =

(x(1), ..., x(d)), y = (y(1), ..., y(d)) ∈ R
d and all i = (i(1), ..., i(d)) ∈ {1, ..., n}d,

∣

∣

∣

∣

∣

m

(

1

n
· i
)

+ C · Cd ·
d
∑

k=1

δd(k) ·
(

x(k) − i(k)

n

)

−
(

m

(

1

n
· i
)

+ C · Cd ·
d
∑

k=1

δd(k) ·
(

y(k) − i(k)

n

))∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

C · Cd ·
d
∑

k=1

δd(k) ·
(

x(k) − i(k)

n

)

− C · Cd ·
d
∑

k=1

δd(k) ·
(

y(k) − i(k)

n

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

C · Cd ·
d
∑

k=1

(

δd(k) ·
((

x(k) − i(k)

n

)

−
(

y(k) − i(k)

n

)))∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

C · Cd ·
d
∑

k=1

(

δd(k) ·
(

x(k) − y(k)
))

∣

∣

∣

∣

∣

≤ c · Cd ·
d
∑

k=1

|δd(k)| ·
∣

∣

∣
x(k) − y(k)

∣

∣

∣

= C · Cd ·
d
∑

k=1

∣

∣

∣x(k) − y(k)
∣

∣

∣ = C · Cd · ||x − y||1

≤ C · C2
d · ||x − y||2.

The next lemma shows that functions of the shape

fd
n(x) = max

i∈{1,...,n}d
min
δd

m

(

1

n
· i
)

+ c · Cd ·
d
∑

k=1

δd(k) ·
(

x(k) − i(k)

n

)

(3.7)
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(x ∈ [0, 1]d), with δd : {1, ..., d} → {−1, 1}, approximate the underlying function m

arbitrarily close in both the L2–norm and the || · ||∞–norm.

Lemma 3.3. Let m : R
d → R be Lipschitz continuous with Lipschitz constant C

and with compact support [0, 1]d. Then, for fd
n defined by (3.7),

∫

∣

∣

∣fd
n(x) − m(x)

∣

∣

∣

2
µ(dx) ≤ ||fd

n(x) − m(x)||[0,1]d,∞ ≤ 4C2 · C6
d · d2

n2

holds for all n ∈ N.

Proof. In the first step we show that fd
n is Lipschitz continuous with Lipschitz

constant C ·C2
d , too. Firstly note that, for Lipschitz continuous functions g1, ..., gn :

R
d → R their minimum function

g(x) = min
1≤i≤n

gi(x)

is also Lipschitz continuous with the same Lipschitz constant, owing to

|g(x) − g(y)| =

∣

∣

∣

∣

min
1≤i≤n

gi(x) − min
1≤i≤n

gi(y)

∣

∣

∣

∣

≤ max
1≤i≤n

|gi(x) − gi(y)|

≤ C · ||x − y||2.

Analogously we get for the maximum function h(x) = max1≤i≤n gi(x) that

|h(x) − h(y)| =

∣

∣

∣

∣

max
1≤i≤n

gi(x) − max
1≤i≤n

gi(y)

∣

∣

∣

∣

≤ max
1≤i≤n

|gi(x) − gi(y)|

≤ C · ||x − y||2.

As we have already seen earlier, functions of the form

x 7→ m

(

1

n
· i
)

+ c · Cd ·
d
∑

k=1

δd(k) ·
(

x(k) − i(k)

n

)

are Lipschitz continuous with constant C ·C2
d , which yields the Lipschitz continuity

for fd
n defined by (3.7), with Lipschitz constant C · C2

d .

Furthermore fd
n interpolates the function m in the points 1/n · i for i ∈ {0, ..., n}d,

because the Lipschitz continuity of m implies, for arbitrary i ∈ {0, ..., n}d,
∣

∣

∣

∣

m

(

1

n
· i
)

− m(x)

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

∣

∣

∣

1

n
· i − x

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ C · Cd

∣

∣

∣

∣

∣

∣

∣

∣

1

n
· i − x

∣

∣

∣

∣

∣

∣

∣

∣

1

,

and hence

m

(

1

n
· i
)

− m(x) ≤ C · Cd

∣

∣

∣

∣

∣

∣

∣

∣

1

n
· i − x

∣

∣

∣

∣

∣

∣

∣

∣

1

,

which leads to

m

(

1

n
· i
)

− C · Cd

∣

∣

∣

∣

∣

∣

∣

∣

1

n
· i − x

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ m(x).
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Moreover, from

−C · Cd

∣

∣

∣

∣

∣

∣

∣

∣

1

n
· i − x

∣

∣

∣

∣

∣

∣

∣

∣

1

= −C · Cd

d
∑

k=1

∣

∣

∣

∣

ik
n

− xk

∣

∣

∣

∣

= C · Cd · min
δd:{1,...,d}→{−1,1}

{

d
∑

k=1

δd(k) ·
(

x(k) − i(k)

n

)}

we deduce that fd
n(x) ≤ m(x) holds for all x ∈ [0, 1]d. On the other hand, the

definition implies

fnd

(

1

n
· i
)

≥ m

(

1

n
· i
)

,

for all i ∈ {0, ..., n}d. Hence we obtain equality of the function values in the points

1/n · i, for i ∈ {0, ..., n}d.

Without loss of generality, we can choose for x = (x(1), ..., x(d)) ∈ (0, 1)d some

k(1), ..., k(d) ∈ {0, ..., (n − 1)/n} such that k(j) ≤ x(j) < k(j) + 1/n holds. Thus the

Lipschitz continuity of fd
n and m yields

|fd
n(x) − m(x)| ≤

∣

∣

∣fd
n(x) − fd

n(k(1), ..., k(d))
∣

∣

∣

+
∣

∣

∣fd
n(k(1), ..., k(d)) − m(k(1), ..., k(d))

∣

∣

∣

+
∣

∣

∣m(k(1), ..., k(d)) − m(x)
∣

∣

∣

≤ C · C2
d · ||x − (k(1), ..., k(d))||2 + 0 + C · ||x − (k(1), ..., k(d))||2

≤ C · C3
d

d
∑

j=1

|x(j) − k(j)| + C · Cd

d
∑

j=i

|x(j) − k(j)|

≤ C · C3
d

d
∑

j=1

1

n
+ C · Cd

d
∑

j=i

1

n

≤ 2C · C3
d

d

n
.

Consequently we get
∫

∣

∣

∣
fd

n(x) − m(x)
∣

∣

∣

2
µ(dx) ≤ ||fd

n − m||2[0,1]d,∞

= max
x∈[0,1]d

|fd
n(x) − m(x)|2 ≤

(

2C · C3
d · d

n

)2

=
4C2 · C6

d · d2

n2
.

�

Proof of Theorem 3.2. As already mentioned, by Theorem 3.1 it suffices

to show conditions (3.1) and (3.2) in order to prove the desired consistency. As for

condition (3.1) we start by the observation that C∞
0 (Rd) (the set of all infinitely



48 3. ANALYSIS OF ASYMPTOTIC BEHAVIOUR

often continuously differentiable functions on R
d with compact support) is dense

in L2(µ). This follows from the denseness of C∞
0 (Rd) in C0(R

d) and Lemma 1.15.

Since all continuously differentiable functions are Lipschitz continuous, the set of

all Lipschitz continuous functions is also dense in L2(µ). Thus, for a given function

m : R
d → R and every ε > 0, there exists a Lipschitz continuous function g : R

d →
R such that

∫

|g(x) − m(x)|2µ(dx) < ε. (3.8)

Furthermore, Lemma 3.3 implies for Kn → ∞ and Ln → ∞ (n → ∞), and all

Lipschitz continuous functions g : R
d → R with compact support [0, 1]d, that

lim
n→∞

inf
f∈Fn

∫

|f(x) − g(x)|2µ(dx) ≤ lim
n→∞

inf
f∈Fn

||f − g||2∞ = 0,

since fd
n ∈ Fn for sufficiently large n ∈ N (or, in other words, for sufficiently large

parameters Kn and Ln).

Moreover, fd
n obviously is bounded in absolute value, because all Lipschitz contin-

uous functions g with compact support are bounded, and by Lemma 3.3 ||fd
n −g||∞

converges to zero for n tending to infinity. Thus we get

lim
n→∞

inf
f∈Fn,||f ||∞≤βn

∫

|f(x) − g(x)|2µ(dx) ≤ lim
n→∞

inf
f∈Fn,||f ||∞≤βn

||f − g||2∞ = 0

almost surely and due to inequality (3.8), this implies condition (3.1).

In order to show (3.2), let L > 0 be arbitrary. Without loss of generality we can

assume L < βn, since βn → ∞ (n → ∞). Write

Z = (X,Y ), Z1 = (X1, Y1), ..., Zn = (Xn, Yn)

and

Hn :=
{

h : R
d × R → R,∃f ∈ Tβn

Fn mit h(x, y) = |f(x) − TL(y)|2
}

.

Obviously, for all h ∈ Hn and for all x ∈ R
d, y ∈ R, we have

0 ≤ h(x, y) = |f (h)(x) − TL(y)|2 ≤ 2|f (h)(x)|2 + 2|TL(y)|2 ≤ 2β2
n + 2L2,

≤ 4β2
n
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where f (h) ∈ Tβn
Fn is chosen such that h(x, y) = |f (h)(x)− TL(y)|2, for all x ∈ R

d

and y ∈ R. Hence with Lemma 1.7 we obtain

P

{

sup
f∈TβnFn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − TLYi|2 − E
(

|f(X) − TLY |2
)

∣

∣

∣

∣

∣

> ε

}

= P

{

sup
h∈Hn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

h(Zi) − E(h(Z))

∣

∣

∣

∣

∣

> ε

}

≤ 8 · E
(

N1

(ε

8
,Hn, Zn

1

))

· e−
nε2

128(4β2
n)2 (3.9)

for arbitrary ε > 0. In the following we will bound the covering number of Hn

by bounding its packing number and using Lemma 1.9. For this purpose, let

hi(x, y) = |fi(x) − TLy|2, ((x, y) ∈ R
d × R) for some fi ∈ Tβn

Fn. Then

1

n

n
∑

i=1

|h1(Zi) − h2(Zi)|

=
1

n

n
∑

i=1

∣

∣

∣|f1(Xi) − TLYi|2 − |f2(Xi) − TLYi|2
∣

∣

∣

=
1

n

n
∑

i=1

∣

∣

∣

(

(f1(Xi) − TLYi) − (f2(Xi) − TLYi)
)

·
(

(f1(Xi) − TLYi) + (f2(Xi) − TLYi)
)∣

∣

∣

=
1

n

n
∑

i=1

∣

∣

∣

(

(f1(Xi) − f2(Xi)
)

·
(

(f1(Xi) − 2TLYi + f2(Xi)
)∣

∣

∣

≤ 4βn
1

n

n
∑

i=1

|(f1(Xi) − f2(Xi)|,

because f1, f2 and TLYi are bounded by βn. Thus, if {h1, ..., hl} is an ε/8-packing

of Hn on Zn
1 , then {f1, ..., fl} has to be an ε/(8 · 4βn)-packing of Tβn

Fn on Xn
1 . In

terms of packing numbers this means that

M1

(ε

8
,Hn, Zn

1

)

≤ M1

(

ε

32βn
, Tβn

Fn,Xn
1

)

holds. Hence Lemma 2.5 yields

M1

(ε

8
,Hn, Zn

1

)

≤ M1

(

ε

32βn
, Tβn

Fn,Xn
1

)

≤ N1

(

ε

64βn
, Tβn

Fn,Xn
1

)

≤ 3

(

6 · 64eβ2
n

ε
· Kn · Ln

)2(d+2)
PKn

k=1 Lk,n

= 3

(

384eβ2
n

ε
· Kn · Ln

)2(d+2)
PKn

k=1 Lk,n

,
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and therefore inequality (3.9) implies

P

{

sup
f∈TβnFn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − TLYi|2 − E
(

|f(X) − TLY |2
)

∣

∣

∣

∣

∣

> ε

}

≤ 24

(

384eβ2
n

ε
· Kn · Ln

)2(d+2)
PKn

k=1 Lk,n

· exp

(

− nε2

2048β4
n

)

.

In addition this leads to

∞
∑

i=1

P

{

sup
f∈TβnFn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(Xi) − TLYi|2 − E
(

|f(X) − TLY |2
)

∣

∣

∣

∣

∣

> ε

}

≤
∞
∑

i=1

24

(

384eβ2
n

ε
· Kn · Ln

)2(d+2)
PKn

k=1 Lk,n

· exp

(

− nε2

2048β4
n

)

≤
∞
∑

1=1

24 · exp

(

2(d + 2)

Kn
∑

k=1

Lk,n · log
(

384eβ2
n

ε
· Kn · Ln

)

− nε2

2048β4
n

)

=

∞
∑

i=1

24 · exp

[

− nδ n1−δ

β4
n

·
(

ε2

2048
− 2(d + 2) · β4

n

n
·

Kn
∑

k=1

Lk,n · log
(

384eβ2
n

ε
· Kn · Ln

)

)]

≤
∞
∑

i=1

24 · e−nδ < ∞.

Here the fourth inequality follows from the assumptions (3.3), (3.4) and (3.5) on

the parameters. The convergence of the sum results with the comparison test from

|e−δ| < 1. Now the desired convergence in (3.2) is the direct consequence of the

Borel-Cantelli lemma (cf. Lemma 1.18). �

So far we have proved that our estimate is universally strongly consistent, which

of course is a desirable property, but not completely satisfactory with regard to

applications. Therefore the next section will give us an idea how fast the L2 error

of our estimate is tending to zero.

3.2. Rate of Convergence

In this section we will derive a rate of convergence of our estimate in the case

of a (p,C)–smooth regression function. Here we do not have to assume that Y

is bounded in absolute value, since the assumption of a modified Sub-Gaussian
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condition is sufficient for us. The derived rate of convergence

C2d/(2p+d)

(

log(n)3

n

)2p/(2p+d)

is optimal (in the minimax sense) up to the logarithmic factor (cf. (1.11)). How-

ever it depends on the dimension d of X and hence it is comparitively slow for a

large dimension d. We will see in the Chapter 4 how one can circumvent this so-

called ‘curse of dimensionality’ by some structural assumptions on the underlying

regression function.

We start with a theorem that gives an upper bound on the expected L2 error of

our estimate.

Theorem 3.4. Let Kn, L1,n, ..., LKn,n ∈ N, with Kn · max{L1,n, ..., LKn,n} ≤ n2,

and set βn = c1 · log(n) for some constant c1 > 0. Assume that the distribution of

(X,Y ) satifies

E
(

ec2·|Y |2
)

< ∞ (3.10)

for some constant c2 > 0 and that the regression function m is bounded in absolute

value. Then, for the estimate mn defined by (2.2) and (2.3),

E

∫

|mn(x) − m(x)|2µ(dx)

≤ c3 · log(n)3 ·∑Kn

k=1 Lk,n

n

+E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

, (3.11)

for some constant c3 > 0, and therefore

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 · log(n)3 ·∑Kn

k=1 Lk,n

n

+2 · inf
f∈Fn

∫

|f(x) − m(x)|2µ(dx),

where c3 does not depend on n, βn or the parameters of the estimate.

The Condition (3.10) is a modified Sub-Gaussian condition. In view of the applica-

tions to simulated data in part A.2 of the appendix, we want to remark that (3.10)

is satisfied in particular, whenever PY |X=x is the normal distribution N(m(x),σ2)

for a bounded regression function m. Moreover, all bounded conditional distribu-

tions of Y obviously satisfy Condition (3.10), as well. Therefore this assumption

allows us to consider unbounded conditional distributions of Y , such as the normal

distribution.
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Proof. In the proof we use the following error decomposition:
∫

|mn(x) − m(x)|2µ(dx)

=
[

E
(

|mn(X) − Y |2|Dn

)

− E
(

|m(X) − Y |2
)

− E
(

|mn(X) − Tβn
Y |2|Dn

)

− E
(

|mβn
(X) − Tβn

Y |2
)]

+

[

E
(

|mn(X) − Tβn
Y |2|Dn

)

− E
(

|mβn
(X) − Tβn

Y |2
)

− 2 · 1

n

n
∑

i=1

(

|mn(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

]

+

[

2 · 1

n

n
∑

i=1

|mn(Xi) − Tβn
Yi|2 − 2 · 1

n

n
∑

i=1

|mβn
(Xi) − Tβn

Yi|2

−
(

2 · 1

n

n
∑

i=1

|mn(Xi) − Yi|2 − 2 · 1

n

n
∑

i=1

|m(Xi) − Yi|2
)]

+

[

2

(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)]

=
4
∑

i=1

Ti,n,

where Tβn
Y is the truncated version of Y , and mβn

is the regression function of

Tβn
Y , that is,

mβn
(x) = E

(

Tβn
Y |X = x

)

.

We start with bounding T1,n. By using a2 − b2 = (a − b)(a + b) we get

T1,n = E
(

|mn(X) − Y |2 − |mn(X) − Tβn
Y |2
∣

∣

∣Dn

)

− E
(

|m(X) − Y |2 − |mβn
(X) − Tβn

Y |2
)

= E
(

(Tβn
Y − Y )(2mn(X) − Y − Tβn

Y )
∣

∣

∣Dn

)

+
(

− E
((

m(X) − mβn
(X) + Tβn

Y − Y
)

·
(

m(X) + mβn
(X) − Y − Tβn

Y
)))

= T5,n + T6,n.

The Cauchy-Schwarz inequality and the inequality

1{|Y |>βn} ≤
exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)
(3.12)

lead to

|T5,n| ≤
√

E
(

|Tβn
Y − Y |2

)

·
√

E
(

|2mn(X) − Y − Tβn
Y |2
∣

∣Dn

)
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≤
√

E
(

|Y |2 · I{|Y |>βn}

)

·
√

E
(

2 · |2mn(X) − Tβn
Y |2 + 2 · |Y |2

∣

∣Dn

)

≤

√

√

√

√E

(

|Y |2 · exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)

)

·
√

E
(

2 · |2mn(X) − Tβn
Y |2
∣

∣Dn

)

+ 2E
(

|Y |2
)

≤
√

E
(

|Y |2 exp(c2/2 · |Y |2)
)

exp

(

−c2 · β2
n

4

)

√

2(3βn)2 + 2E
(

|Y |2
)

.

With x ≤ exp(x) , for x ∈ R , we get

|Y |2 ≤ 2

c2
· exp

(c2

2
|Y |2

)

.

Hence

√

E
(

|Y |2 · exp (c2/2 · |Y |2)
)

is bounded by the square root of

E

(

2

c2
· exp

(

c2/2 · |Y |2
)

· exp(c2/2 · |Y |2)
)

≤ E

(

2

c2
· exp

(

c2 · |Y |2
)

)

≤ c4,

which is finite by Condition (3.10). Because of

E(|Y |2) ≤ E

(

1

c2
· exp

(

c2 · |Y |2
)

)

≤ c5 < ∞,

which results again from (3.10), we obtain for the third term that

√

2(3βn)2 + 2E
(

|Y |2
)

≤
√

18β2
n + c5

holds, for some constant c5. With the setting βn = c1 · log(n) we have that

|T5,n| ≤ √
c4 exp

(−c2 · c2
1

4
· log(n)2

)

·
√

18 · c2
1 · log(n)2 + c5

=
√

c4

(

exp
(

− log(n)2
) )c2·c21/4 · c6 · c1 · log(n)

≤ √
c4 · c6 · c1 exp(− log(n)2) · log(n) ≤

√
c4 · c6 · c1

n2
· log(n)

≤ c7 ·
log(n)

n

for sufficiently large constants c6, c7 > 0. Next we consider T6,n. The Cauchy-

Schwarz inequality yields

|T6,n| ≤
√

2 E
(

|m(X) − mβn
(X)|2

)

+ 2 E
(

|(Tβn
Y − Y )|2

)

·

√

√

√

√E

(

∣

∣

∣
m(X) + mβn

(X) − Y − Tβn
Y
∣

∣

∣

2
)

,

where we can bound the second factor on the right hand-side in the same way we

have bounded the second factor from T5,n, since ||m||∞ is bounded by assumption,
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and since mβn
obviously is bounded by βn. Thus we get, for some constant c8 > 0,

√

√

√

√E

(

∣

∣

∣
m(X) + mβn

(X) − Y − Tβn
Y
∣

∣

∣

2
)

≤ c8 · log(n).

The first term can be bounded with Jensen’s inequality, because it implies

E
(

|m(X) − mβn
(X)|2

)

≤ E
(

E
(

|Y − Tβn
Y |2
∣

∣

∣
X
))

= E
(

|Y − Tβn
Y |2
)

,

which yields

|T6,n| ≤
√

4E (|Y − Tβn
Y |2) · c8 · log(n).

The calculations concerning T5,n furthermore lead to |T6,n| ≤ c9 · log(n)/n, for some

constant c9 > 0. Summing up, we have

T1,n ≤ c10 ·
log(n)

n
,

for some constant c10 > 0.

Now, let us consider T2,n, and let t > 1/n be arbitrary. Then

P{T2,n > t}

= P

{

1

2

(

E(|mn(X) − Tβn
Y |2|Dn) − E(|mβn

(X) − Tβn
Y |2)

)

− 1

n

n
∑

i=1

(

|mn(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

>
t

2

}

= P

{

E(|mn(X) − Tβn
Y |2|Dn) − E(|mβn

(X) − Tβn
Y |2)

− 1

n

n
∑

i=1

(

|mn(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

>
1

2

(

t + E(|mn(X) − Tβn
Y |2|Dn) − E(|mβn

(X) − Tβn
Y |2)

)

}

≤ P

{

∃f ∈ Tβn
Fn : E

(

∣

∣

∣

∣

f(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

− E

(

∣

∣

∣

∣

mβn
(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

− 1

n

n
∑

i=1

(

∣

∣

∣

∣

f(Xi)

βn
− Tβn

Yi

βn

∣

∣

∣

∣

2

−
∣

∣

∣

∣

mβn
(Xi)

βn
− Tβn

Yi

βn

∣

∣

∣

∣

2
)

>
1

2

(

t

β2
n

+ E

(

∣

∣

∣

∣

f(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2 ∣
∣

∣Dn

)

−E

(

∣

∣

∣

∣

mβn
(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
))}

.

Thus we can deduce from Theorem 1.17 that

P{T2,n > t} ≤ 14 sup
xn
1

N1

(

t

80β2
n

,

{

1

βn
f : f ∈ Tβn

Fn

}

, xn
1

)

· exp

(

− n

5136 · β2
n

t

)

.
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holds. Note that the required bound in Theorem 1.17 is equal to 1 in this setting,

because obviously we have
∣

∣

∣

∣

f(x)

βn

∣

∣

∣

∣

≤ 1 for all x ∈ R
d, and

∣

∣

∣

∣

Tβn
Y

βn

∣

∣

∣

∣

≤ 1 a.s.

Since moreover the inequality

N1

(

δ,

{

1

βn
f : f ∈ F

}

, xn
1

)

≤ N1 (δ · βn,F , xn
1 ) ,

holds for all xn
1 = (x1, ..., xn) ∈ R

d × ... × R
d we obtain that

P{T2,n > t} ≤ 14 sup
xn
1

N1

(

t

80βn
, Tβn

Fn, xn
1

)

· exp

(

− n

5136 · β2
n

t

)

.

Furthermore we know from Lemma 2.5 that, with Ln := max{L1,n, ..., LKn,n}, for

1/n < t < 40βn,

N1

(

t

80βn
, Tβn

Fn, xn
1

)

≤ 3

(

6eβn · 80βn · KnLn

t

)2(d+2)(
PKn

k=1 Lk,n)

≤ nc11·
PKn

k=1 Lk,n

holds for some sufficient large c11 > 0. (This inequality holds also for t ≥ 40βn,

since the right-hand side above does not depend on t and the covering number is

decreasing in t.) Using this we get for arbitrary ε ≥ 1/n

E(T2,n) ≤ ε +

∫ ∞

ε
P{T2,n > t}dt

= ε + 14 · nc11(
PKn

k=1 Lk,n) 5136β2
n

n
· exp

(

− n

5136β2
n

ε

)

.

This expression is minimized for

ε =
5136 · β2

n

n
log
(

14 · nc11(
PKn

k=1 Lk,n)
)

.

Thus we see

E(T2,n) ≤ 5136 · β2
n

n
log
(

14 · nc11·(
PKn

k=1 Lk,n)
)

+14 · nc11·(
PKn

k=1 Lk,n) · 5136β2
n

n
exp

(

− log
(

14 · nc11(
PKn

k=1 Lk,n)
))

=
5136 · β2

n

n

(

log(14) + c11 ·
(

Kn
∑

k=1

Lk,n

)

· log(n)

)

+
5136 · β2

n

n

=
c12 · log(n)3 ·∑Kn

k=1 Lk,n

n
,

for some sufficiently large constant c12 > 0, which does not depend on n, βn or the

parameters of the estimate.
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By bounding T3,n similarly to T1,n we also deduce

E(T3,n) ≤ c13 ·
log(n)

n

for some constant c13 > 0, which implies

E

(

3
∑

i=1

Ti,n

)

≤ c14 · log(n)3 ·∑Kn

k=1 Lk,n

n
,

for a suitable constant c14 > 0.

We finish the proof by bounding T4,n. For this purpose, let An be the event, that

there exists i ∈ {1, ..., n} such that |Yi| > βn, and let 1An be the indicator function

of An. Then

E(T4,n) ≤ 2 E

(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 · 1An

)

+ 2 E

(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 · 1AC
n
− 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

= 2 E
(

|mn(X1) − Y1|2 · 1An

)

+ 2 E

(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 · 1AC
n
− 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

= T7,n + T8,n.

The Cauchy-Schwarz inequality now shows that

E
(

|mn(X1) − Y1|2 · IAn

)

≤
√

E
(

(|mn(X1) − Y1|2)2
)

·
√

P(An)

≤
√

E
(

(2|mn(X1)|2 + 2|Y1|2)2
)

·
√

n ·P{|Y1| > βn}

≤
√

E (8|mn(X1)|4 + 8|Y1|4) ·
√

n · E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
,

where the last inequality follows from inequality (3.12). Since x ≤ exp(x) holds for

all x ∈ R we infer

E
(

|Y |4
)

= E
(

|Y |2 · |Y |2
)

≤ E

(

2

c2
· exp

(c2

2
· |Y |2

)

· 2

c2
· exp

(c2

2
· |Y |2

)

)

=
4

c2
2

·E
(

exp
(

c2 · |Y |2
))

,

which is finite by condition (3.10). Furthermore ||mn||∞ is bounded by βn. There-

fore the first factor is bounded by

c15 · β2
n = c16 · log(n)2,
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for a suitable constant c16 > 0. The second factor is bounded by 1/n, since by

(3.10), E
(

exp
(

c2 · |Y1|2
))

is bounded by some constant c17 < ∞. Hence
√

n · E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
≤ √

n ·
√

c17
√

exp(c2 · β2
n)

≤
√

n · √c17

exp((c2 · c2
1 · log(n)2)/2)

.

Since exp(−c · log(n)2) = O(n−2) for c > 0, this yields

T7,n ≤ c18 ·
log(n)2

√
n

n2
≤ c19 ·

log(n)2

n
.

Furthermore the definition of AC
n together with m̃n defined as in (2.2) implies

T8,n ≤ 2 E

(

1

n

n
∑

i=1

|m̃n(Xi) − Yi|2 · 1AC
n
− 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

≤ 2 E

(

1

n

n
∑

i=1

|m̃n(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)

≤ 2 E

(

inf
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)

,

because |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Hence

E(T4,n) ≤ c19 ·
log(n)2

n

+2 E

(

inf
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)

,

which completes the proof. �

Together with the approximation result in Lemma 2.2, Theorem 3.4 implies the next

corollary, which considers the desired rate of convergence of the maxmin estimate.

Corollary 3.5. Assume that the distribution of (X,Y ) has the properties that

X ∈ [a, b]d a.s. for some a, b ∈ R, that the modified Sub-Gaussian condition

E(exp(c2 · |Y |2)) < ∞

is fulfilled for some constant c2 > 0, and that the regression function m is (p,C)–

smooth for some 0 < p ≤ 2 and C > 1.

Then the estimate mn defined by (2.2) and (2.3) with βn = c1 · log(n), for some

c1 > 0,

Kn =

⌈

C
2d

2p+d ·
(

n

log(n)3

)d/(2p+d)
⌉

and Lk,n = Lk = 2d + 1, (k = 1, ...,Kn),

satisfies

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c2 · C
2d

2p+d ·
(

log(n)3

n

)

2p

2p+d

(n ≥ 2)
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for some constant c2 > 0, that does not depend on n, βn, p or C.

Proof. In Lemma 2.2 we have seen that it is possible to interpolate a given

linear spline function at a fixed given set of data points by maxima of minima of

linear functions. Hence we obtain that

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

≤ E

(

2 inf
f∈G

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

≤ 2 · inf
f∈G

∫

|f(x) − m(x)|2µ(dx),

where G is the set of functions which contains all continuous piecewise polynomials

of degree 1 with respect to an arbitrary partition Π consisting of Kn rectangulars.

Next we increase the right-hand side above by choosing Π such that it consists of

equivolume cubes. Now we can apply the approximation result from Lemma 1.16,

which together with the (p,C)–smoothness of m and Theorem 3.4 yields

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 ·
Kn · (2d + 1) · log(n)3

n
+ c4 · C2 · K− 2p

d
n

≤ c5 · C
2d

2p+d ·
(

log(n)3

n

)

2p

2p+d

,

for some sufficient large constant c5 > 0, where the last inequaltity results from

the choice of Kn. Note that the assumption in Theorem 3.4 concerning the bound-

edness of the regression function m is obviously satisfied. Since we supposed in

this corollary that m is (p,C)–smooth we can deduce from X ∈ [a, b]d that m is a

continuous function with bounded support. �

We have achieved our aim to compute the rate of convergence of our estimate.

Moreover, we can deduce that it is the optimal rate of convergence up to the loga-

rithmic factor. However the parameters of the estimate depend on the smoothness

of the regression function, and in most applications there are no a-priori informa-

tions concerning the smoothness of the underlying regression function. Hence the

next section deals with a data–dependent choice of the parameters.

3.3. Splitting the Sample

In most applications the smoothness of the regression function (measured by (p,C))

is not known in advance and therefore, the parameters of the estimate have to be

chosen data–dependent. This can be done for example by cross–validation, which
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in regression estimation goes back to Clark (1975) and Wahba and Wold (1975)

or complexity regularization, which was used in regression estimation for the first

time in Barron (1991). Another well-known technique to choose the parameters

data–dependent is splitting the sample, where the estimate is computed for various

values of the parameters on a learning sample (consisting, for example, of the first

half of the data points) and the parameters are chosen such that the empirical L2

risk on a testing sample (consisting, for example, of the second half of the data

points) is minimized. This idea was already used in 1988 by Devroye, who analysed

this method in the context of pattern recognition.

In the following we will use this last method to define an estimate, which is adaptive

to the given data. This estimate will have the optimal rate of convergence (up to

some logarithmic factor), as well. Here again we do not have to assume that Y is

bounded, but it is necessary to require the Sub-Gaussian condition.

We have seen in Chapter 2 that the class of functions, and hence also the estimate,

depends on the parameters

Kn, L1,n, ..., LKn,n ∈ N,

where Kn declares the number of minimum functions under the maximum and Li,n

declares the number of linear functions under the i-th minimum. Obviously for

Ln = max{L1,n, ..., LKn,n} the class of functions

{

f : R
d → R : f(x) = max

k=1,...,Kn

min
l=1,...,Ln

(ak,l · x + bk,l) , (x ∈ R
d), (3.13)

for some ak,l ∈ R
d, bk,l ∈ R

}

is a superset of Fn, since for example a minimum function of three linear functions

can always be written as a minimum function of four, five or six linear functions

by choosing the same linear functions twice, three times or four times, respectively.

Hence choosing the class of functions defined by (3.13) instead of Fn in the previous

sections changes nothing about the approximation error (actually even decreases

it) and give just slightly different results for the covering numbers and therefore

negligible modifications with regard to the estimation error.

In consideration of this fact we choose Qn = N
2 as the set of parameters and

assume in this section that

L1,n = · · · = LKn,n = Ln.
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For h = (h1, h2) ∈ Qn, we write

Fh =

{

f : R
d → R : f(x) = max

k=1,...,h1

min
l=1,...,h2

(ak,l · x + bk,l) , (x ∈ R
d),

for some ak,l ∈ R
d, bk,l ∈ R

}

throughout this section. Furthermore let n ∈ N be the sample size, nl ∈ N the

size of the learning data Dnl
= {(X1, Y1), ..., (Xnl

, Ynl
)}, and nt ∈ N the size of the

testing data Dnt = {(Xnl+1, Ynl+1), ..., (Xn, Yn)}. Then we define for every h ∈ Qn

m(h)
nl

(·) = Tβn
arg min

f∈Fh

1

nl

nl
∑

i=1

|f(Xi) − Yi|2. (3.14)

That means for every parameter h we compute a regression estimate by using the

principle of least squares over the class of functions Fh and a subsequent truncation.

Afterwards we choose H ∈ Qn such that

1

nt

n
∑

i=nl+1

|m(H)
nl

(Xi) − Yi|2 = min
h∈Qn

1

nt

n
∑

i=nl+1

|m(h)
nl

(Xi) − Yi|2. (3.15)

More precisely, we choose an estimate that minimizes the empirical L2 risk on the

testing data over all estimates that we have computed with respect to the learning

sample, that is

mn(x) = m(H)
nl

(x), for all x ∈ R
d. (3.16)

In order to get a result concerning the rate of convergence of the above defined

estimate, we prove the following general theorem:

Theorem 3.6. Let βn = c1 · log(n) for some constant c1 > 0. Assume that the

distribution of (X,Y ) satisfies the modified Sub-Gaussian condition

E
(

ec2·|Y |2
)

< ∞,

for some constant c2 > 0, and that the regression function fulfils

||m||∞ ≤ L, for some L ∈ R
+, with L ≤ βn.

Then, for every estimate defined by (3.15) and (3.16) with repect to a family of

regression estimates
(

m(h)
n

)

h∈Qn

, with ||m(h)
n ||∞ ≤ βn for all h ∈ Qn,

where Qn is the underlying set of parameters, we get for all δ > 0 that

E

∫

|mn(x) − m(x)|2µ(dx)

≤ (1 + δ) min
h∈Qn

E

∫

|m(h)
nl

(x) − m(x)|2µ(dx) + c3 ·
1 + log |Qn|

nt
+ c4

log(n)

n

holds, with c3 ≥ β2
n(32/δ + 70 + 39δ) and a sufficiently large constant c4 > 0.
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Proof. We use the following error decomposition

E

(
∫

|mn(x) − m(x)|2µ(dx)

∣

∣

∣

∣

Dnl

)

= E

(
∫

|m(H)
nl

(x) − m(x)|2µ(dx)

∣

∣

∣

∣

Dnl

)

=

[

E
(

|m(H)
nl

(X) − Y |2
∣

∣

∣
Dnl

)

−E
(

|m(X) − Y |2
)

−E
(

|m(H)
nl

(X) − Y |2
∣

∣

∣
Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

]

+

[

E
(

|m(H)
nl

(X) − Tβn
Y |2
∣

∣

∣
Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

−(1 + δ) · 1

nt

n
∑

i=nl+1

(

|m(H)
nl

(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

]

+

[

(1 + δ) · 1

nt

n
∑

i=nl+1

(

|m(H)
nl

(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

−
(

(1 + δ) · 1

nt

n
∑

i=nl+1

(

|m(H)
nl

(Xi) − Yi|2 − |m(Xi) − Yi|2
)

)

]

+



(1 + δ) · 1

nt

n
∑

i=nl+1

(

|m(H)
nl

(Xi) − Yi|2 − |m(Xi) − Yi|2
)



 =

4
∑

i=1

Ti,n,

where again Tβn
Y is the truncated version of Y , and mβn

is the regression function

of Tβn
Y , that is

mβn
(x) = E

{

Tβn
Y
∣

∣X = x
}

.

Due to equality (3.15) we can bound the last term T4,n by

(1 + δ) min
h∈Qn





1

nt

n
∑

i=nl+1

(

|m(h)
nl

(Xi) − Yi|2 − |m(Xi) − Yi|2
)



 ,

and this entails for its conditional expectation

E(T4,n|Dnl
) ≤ (1 + δ) min

h∈Qn

(

E
(

|m(h)
nl

(X) − Y |2
∣

∣

∣
Dnl

)

− E
(

|m(X) − Y |2
)

)

= (1 + δ) min
h∈Qn

∫

|m(h)
nl

(x) − m(x)|2µ(dx).

T1,n and T3,n can be bounded analogously to the corresponding terms in the proof

of Theorem 3.4, since all relations and assumptions we have used in that proof

(such as the Sub-Gaussian condition, βn = O(log(n)) and the boundedness of m

and mβn
) are satisfied in the current settings as well. Thus we have

T1,n ≤ c5 ·
log(n)

n
und E(T3,n|Dnl

) ≤ c6 ·
log(n)

n
,
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for sufficiently large constants c5, c6. Hence it suffices to show

E(T2,n|Dnl
) ≤ c3 ·

1 + log(|Qn|)
nt

to complete this proof. Thus, let s > 0 be an arbitrary constant. Then

P
{

T2,n ≥ s | Dnl

}

= P

{

(1 + δ)

(

E
(

|m(H)
nl

(X) − Tβn
Y |2 | Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

− 1

nt

n
∑

i=nl+1

(

m(H)
nl

(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

)

≥ s + δ
(

E
(

|m(H)
nl

− Tβn
Y |2|Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

)∣

∣

∣Dnl

}

≤ P

{

∃h ∈ Qn : E
(

|m(h)
nl

(X) − Tβn
Y |2 | Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

− 1

nt

n
∑

i=nl+1

(

m(h)
nl

(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

≥ 1

1 + δ

(

s + δ ·E
(

|m(h)
nl

− Tβn
Y |2 − |mβn

(X) − Tβn
Y |2|Dnl

))

∣

∣

∣

∣

Dnl

}

≤ |Qn| · max
h∈Qn

P

{

(

E
(

|m(h)
nl

(X) − Tβn
Y |2

∣

∣ Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

− 1

nt

n
∑

i=nl+1

(

m(h)
nl

(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

)

≥ 1

1 + δ

(

s + δ ·E
(

|m(h)
nl

− Tβn
Y |2 − |mβn

(X) − Tβn
Y |2|Dnl

))

∣

∣

∣

∣

Dn,l

}

.

In order to get bounds on this probability we consider, for a fixed h ∈ Qn the

random variables Z,Z1, ..., Znt , which are defined by

Z = |m(h)
nl

(X) − Tβn
Y |2 − |mβn

(X) − Tβn
Y |2,

and

Zi = |m(h)
nl

(Xnl+i) − Tβn
Ynl+i|2 − |mβn

(Xnl+i) − Tβn
Ynl+i|2, (i = 1, ..., nt).

For these random variables we obtain

σ2 = Var(Z|Dnl
)

≤ E(Z2|Dnl
)

= E

(

∣

∣

∣

(

m(h)
nl

(X) − Tβn
Y
)

− (mβn
(X) − Tβn

Y )
∣

∣

∣

2

×
∣

∣

∣

(

m(h)
nl

(X) − Tβn
Y
)

+ (mβn
(X) − Tβn

Y )
∣

∣

∣

2 ∣
∣

∣Dnl

)

,
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where the last equality is an application of the binomial theorem. Futhermore

every single term in the second factor of the right-hand side of the above inequality

is bounded by βn by assumption. This implies

σ2 = Var(Z|Dnl
)

≤ 16β2
n

∫

|m(h)
nl

(x) − mβn
(x)|2µ(dx)

= 16β2
n E(Z|Dnl

).

Now we can rewrite the probability above and get

P

{

(

E
(

|m(h)
nl

(X) − Tβn
Y |2 | Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

− 1

nt

n
∑

i=nl+1

(

m(h)
nl

(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

))

≥
(

1

1 + δ

)

(

s + δ ·E
(

|m(h)
nl

− Tβn
Y |2 − |mβn

(X) − Tβn
Y |2|Dnl

))

∣

∣

∣

∣

Dnl

}

= P







E (Z|Qn) − 1

nt

n
∑

i=nl+1

Zi ≥
1

1 + δ

(

s + δ · E (Z|Dn,l)
)

∣

∣

∣

∣

Dnl







≤ P







E (Z|Qn) − 1

nt

n
∑

i=nl+1

Zi ≥
1

1 + δ

(

s + δ · σ2

16βn

)

∣

∣

∣

∣

Dnl







≤ exp






−nt

(

1
1+δ

(

s + δ σ2

16βn

))2

2σ2 + 2
3

8β2
n

1+δ

(

s + δ σ2

16βn

)






.

The last inequality is a direct consequence of Bernstein’s inequality. Note that

we do not need the factor 2 in the exponential term owing to the absence of the

absolute value inside the probability. The following calculation permits the desired

bounding of the above probability. Due to δ > 0 we obtain

1

(1 + δ)2

(

s + δ σ2

16βn

)2

2σ2 + 2
3

8β2
n

1+δ

(

s + δ σ2

16βn

)

≥ 1

(1 + δ)2

(

s + δ σ2

16βn

)2

216βn

δ

(

δ
16βn

σ2 + s
)

+ 2
3

8β2
n

1+δ

(

s + δ σ2

16βn

)

=
1

(1 + δ)2

s + δ σ2

16βn

32βn

δ + 16β2
n

3(1+δ)

≥ 1

(1 + δ)2
s

32βn

δ + 6β2
n

1+δ

=
s

32βn

δ + 64βn + 32βnδ + 6β2
n + 6β2

nδ
≥ s

β2
n (32/δ + 70 + 39δ)

≥ s

c3
,
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where c3 ≥ β2
n(32/δ + 70 + 39δ). Combining the previous inequalities yields

P
{

T2,n ≥ s
∣

∣

∣
Dnl

}

≤ |Qn| · exp

(

−nt
s

c3

)

.

For u > 0 this leads to

E
(

T2,n

∣

∣

∣Dnl

)

≤ u +

∫ ∞

u
P
{

T2,n > s
∣

∣

∣Dnl

}

ds

≤ u +
|Qn| · c3

nt
· exp

(

−ntu

c3

)

,

and hence, with u = c3 · log(|Qn|)/nt to

E
(

T2,n

∣

∣

∣Dnl

)

≤ c3
1 + log |Qn|

nt
,

which implies the assertion and completes this proof. �

In view of Theorem 3.6 it is now easy to obtain the rate of convergence of the

estimate defined by (3.14) – (3.16). However we still have to make some restrictions

concerning the smoothness of the regression function, similarly as we did in the

Corollary 3.5, where we considered the rate of convergence of the maxmin estimate

with a certain choice of parameters.

Corollary 3.7. Suppose that the distribution of (X,Y ) has the properties that

X ∈ [a, b]d a.s. for some a, b ∈ R, that the modified Sub-Gaussian condition

E
(

ec2·|Y |2
)

< ∞,

is fulfilled for some constant c2 > 0 and that the regression function m is (p,C)–

smooth, for some 0 < p ≤ 2 and C > 1. Furthermore choose the set of parameters

Qn in such a way that for n ≥ 2

log |Qn| ≤ c3 · log(n).

Then the estimate mn defined by (3.14) – (3.16) with βn = c1 · log(n), for some

constant c1 > 0 and with nl =
⌈

n
2

⌉

and nt = n − nl, satisfies

E

∫

|mn(x) − m(x)|2µ(dx)

≤ c4 · C(2d)/(2p+d)

(

log(n)3

n

)(2p)/(2p+d)

+ c5
log(n)3

n
(n ≥ 2),

for constants c4, c5 chosen sufficiently large.

Proof. Obviously the assumptions from Theorem 3.6 are satisfied. Particu-

larly the boundedness of m can be deduced again from its (p,C)–smoothness. Thus
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we obtain with Theorem 3.6 that for δ = 1

E

∫

|mn(x) − m(x)|2µ(dx)

≤ 2 min
h∈Qn

E

∫

|m(h)
nl

(x) − m(x)|2µ(dx) + c7 ·
1 + log |Qn|

nt
+ c8

log(n)

n

≤ 2 min
h∈Qn

E

∫

|m(h)
nl

(x) − m(x)|2µ(dx) + c9 ·
log(n) · β2

n

nt
+ c8

log(n)

n

≤ 2 min
h∈Qn

E

∫

|m(h)
nl

(x) − m(x)|2µ(dx) + c10 ·
log(n)3

nt
+ c8

log(n)

n
,

holds for sufficiently large constants c7, ..., c10. Here the second inequality follows

from the lower bound on c7 in Theorem 3.6, that is c7 ≥ β2
n(32/δ + 70 + 39δ), and

the requirement log |Qn| ≤ c3 · log(n). Corollary 3.5 implies with Knl
chosen as in

that corollary

min
h∈Qn

E

∫

|m(h)
nl

(x) − m(x)|2µ(dx) ≤ E

∫

|m(Knl
,2d+1)

nl
(x) − m(x)|2µ(dx)

≤ c5 · C(2d)/(2p+d)

(

log(nl)
3

nl

)(2p)/(2p+d)

,

for sufficiently large c5 > 0, which in turn implies the assertion, since we have

chosen nl =
⌈

n
2

⌉

and nt = n − nl. �

With regard to (1.11) is easy to see that Corollary 3.7 implies that the correspond-

ing estimate with data–dependent parameter choice also has the optimal rate of

convergence (up to some logarithmic factor).

In this chapter we have analysed the asymptotic behaviour of the maxmin estimate.

Firstly we have shown that this estimate is strongly universally consistent for all

distributions of (X,Y ) which satisfy with X ∈ [0, 1]d a.s. After that we have derived

an upper bound for the expected L2 error of our estimate under the assumption

of the modified Sub-Gaussian condition and, accordingly, we obtained a rate of

convergence result for distributions of (X,Y ) which satisfy that X ∈ [a, b]d and

that the belonging regression function m is (p,C)–smooth. Thirdly we have shown

that for the estimate with data-dependent choice of parameters, a similar rate of

convergence holds under the same assumptions on the distribution of (X,Y ).

However the above rates of convergence are not completely satisfactory in the case

of large dimension d of the predictor variable X. In the next chapter we will see

that it is possible to circumvent this ‘curse of dimensionality’ by assuming that

the regression function has a particular structur. More precisely, we shall see that

under the assumptions of single index models, our estimate will attain the one-

dimensional rate of convergence, even in the case of a large dimension d.





CHAPTER 4

Dimension Reduction

As already discussed in Section 1.3, the lower minimax rate of convergence for

the estimation of a (p,C)–smooth regression function is n−2p/(2p+d). Therefore,

even regression estimates with an optimal rate of convergence converge to zero

quite slowly if the dimension d of the predictor variable X is large. The only way

to achieve a rate of convergence which is independent of the dimension d, or in

other words, to achieve the one–dimensional rate of convergence in the case of

d–dimensional X, is to impose restrictions on the regression function.

In this chapter we shall present results in terms of single index models and projection

pursuit, which are based on structural assumptions on the regression function.

Section 4.1 considers the maxmin estimate from Chapter 2 and provides its rate of

convergence in single index models. In Section 4.2 we use an estimate different from

the estimate defined by (2.2) and (2.3), in order to discuss the rate of convergence

in the setting of projection pursuit.

4.1. Single Index Models

For so–called single index models, one assumes that the regression function m can

be written as

m(x) = m̄(α · x), (x ∈ R
d) (4.1)

where m̄ : R → R and α ∈ R
d. Furthermore, we actually will consider regression

functions of the form (4.1), with (p,C)–smooth m̄. These structural assumption

certainly are quite restrictive. In particular functions defined by (4.1) cannot ap-

proximate all measurable functions arbitrarily closely and therefore of course not

even all (p,C)–smooth functions.

On the other hand a function of the form (4.1) changes only in one direction αi,

1 ≤ i ≤ d and moreover, the behaviour in this direction can be described by an

(p,C)–smooth function, which makes the estimate relatively easy to interpret. The

next corollary asserts the rate of convergence of the estimate from Chapter 2 in

single index models.

67
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Corollary 4.1. Assume that the distribution of (X,Y ) has the properties that

X ∈ [a, b]d a.s. for some a, b ∈ R and that the modified Sub-Gaussian condition

E(exp(c2 · |Y |2)) < ∞

is fulfilled for some constant c2 > 0. Furthermore assume that the regression func-

tion m satisfies

m(x) = m̄(α · x) (x ∈ R
d),

where m̄ : R → R is (p,C)–smooth with 0 < p ≤ 2, C > 1 and α ∈ R
d with ||α|| = 1.

Then, for the estimate mn defined by (2.2) and (2.3) with βn = c1 · log(n), for some

c1 > 0,

Kn =

⌈

C
2

2p+1 ·
(

n

log(n)3

)1/(2p+1)
⌉

and Lk,n = Lk = 3 (k = 1, ...,Kn),

we have

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 · C
2

2p+1 ·
(

log(n)3

n

)

2p

2p+1

, (n ≥ 2)

for a sufficiently large constant c3.

Proof. In the current settings, Theorem 3.4 holds obviously and therefore, we

have for c4 > 0 sufficiently large,

E

∫

|mn(x) − m(x)|2µ(dx)

≤ c4 · log(n)3 ·∑Kn

k=1 Lk,n

n

+E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

.

By the assumptions on the regression function, the second term on the right-hand

side is equal to

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m̄(α · Xi) − Yi|2
))

,

and with the notation

F1
n :=

{

max
k=1,...,Kn

min
l=1,...,Lk

ak,l · x + bk,l, for some ak,l, bk,l ∈ R

}

(4.2)

this expected value is less than or equal to

E

(

2 inf
h∈F1

n

(

1

n

n
∑

i=1

|h(α · Xi) − Yi|2 −
1

n

n
∑

i=1

|m̄(α · Xi) − Yi|2
))

,

because

f(x) = h(α · x), (x ∈ R
d)
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is contained in Fn for every function h ∈ F1
n and every vector α ∈ R

d. Moreover

suppose that G is the set of all continuous piecewise linear functions g : R → R

with respect to a partition of [â, b̂] consisting of Kn intervals. Then together with

Lemma 2.2 this yields

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

≤ E

(

2 inf
h∈G

(

1

n

n
∑

i=1

|h(α · Xi) − Yi|2 −
1

n

n
∑

i=1

|m̄(α · Xi) − Yi|2
))

≤ 2 · inf
h∈G

∫

|h(α · x) − m̄(α · x)|2µ(dx)

≤ 2 · inf
h∈G

(

max
x∈[a,b]d

|h(α · x) − m̄(α · x)|2
)

≤ 2 · inf
h∈G

(

max
x∈[â,b̂]

|h(x) − m̄(x)|2
)

.

Here [â, b̂] is chosen such that α·x ∈ [â, b̂] for x ∈ [a, b]d. Apparently the choice of an

equidistant partition increases this upper bound and therefore, the approximation

result from Lemma 1.16 implies, for some sufficiently large constant c5

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

≤ c5 · C2 · K−2p
n .

Summarising the above arguments leads to

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c4 · log(n)3 ·∑Kn

k=1 Lk,n

n
+ c5 · C2 · K−2p

n

≤ c6

n
log(n)3 · 3C2/(2p+1)

(

n

log(n)3

)1/(2p+1)

+c5 · C2 ·
(

C2/(2p+1)

(

n

log(n)3

)1/(2p+1)
)−2p

≤ c3 · C2/(2p+1) ·
(

log(n)3

n

)

2p

2p+1

,

for n ≥ 2. Here the second inequality follows from the choice of the parameters Kn

and L1,n, ..., LKn,n for a suitable constant c6 > 0. �

Thus, our maxmin estimate indeed achieves the one–dimensional rate of conver-

gence in single index models and therefore it circumvent the curse of dimensionality

in this setting. Note that an adaptive parameter choice via splitting the sample

is also possible in the setting of single index models. In an analogous manner as

in Section 3.3 one can prove that the maxmin estimate with data-dependent pa-

rameter choice also achieves the one–dimensional rate of convergence under the
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assumptions of the single index model. However, we have already discussed the

relatively strong restrictions of single index models and hence we consider a more

general setting in the next section.

4.2. Projection Pursuit

The idea of projection pursuit, which was proposed by Friedman and Tukey (1974)

and by Friedman and Stuetzle (1981), is to assume that the regression function is

of the form

m(x) =

K
∑

j=1

mj(αj · x), (x ∈ R
d) (4.3)

where αj ∈ R
d and mj : R → R. That is, the regression function is a sum of

univariate functions, which are applied to the projection of x onto αj ∈ R
d.

Obviously projection pursuit is more general than single index models. Actually we

will see in Lemma 5.4, that every square integrable function can be approximated

arbitrarily closely (with respect to the L2 norm) by functions defined by (4.3) .

However, it is much more difficult to fit functions of the form (4.3) to a set of

data than fitting a function of the form (4.1) to the data. Nevertheless, from

the theoretical point of view it is of course reasonable to analyse estimates in the

context of projection pursuit, although we cannot use the maxmin estimate from

Chapter 2.

In the case of projection pursuit we will analyse the estimate, defined by

mn : R
d → R, mn(x) =

K
∑

k=1

fk(x), with f1 ∈ Tβn
Fn, ..., fK ∈ Tβn

Fn, (4.4)

such that

1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

fk(Xi) − Yi

∣

∣

∣

∣

∣

2

= min
g∈

LK
i=1 TβnFn

1

n

n
∑

i=1

|g(Xi) − Yi|2. (4.5)

Here
⊕K

k=1 Tβn
Fn denotes the class of functions given by

K
⊕

k=1

Tβn
Fn =

{

g : R
d → R, g(x) =

K
∑

k=1

gk(x), (x ∈ R
d), (4.6)

for some gk ∈ Tβn
Fn, 1 ≤ k ≤ K

}

.

Thus, the so–defined estimate fits a sum of truncated maxmin functions to the data

by using the principle of least squares. Next we will see an result concerning the

rate of convergence of this estimate under standard smoothness conditions.



4.2. PROJECTION PURSUIT 71

Theorem 4.2. Let βn = c1 log(n) for some c1 > 0. Suppose that the distribution

of (X,Y ) satifies X ∈ [a, b]d a.s. for some a, b ∈ R and that the modified Sub-

Gaussian condition

E(exp(c2 · |Y |2)) < ∞,

is fulfilled, for some constant c2 > 0. Furthermore assume that the regression

function m satisfies

m(x) =

K
∑

j=1

mj(αj · x), (x ∈ R
d)

for some (p,C)–smooth functions mj : R → R and some αj ∈ R
d. Then the

estimate mn defined by (4.4) and (4.5) with

Kn =

⌈

C
2

2p+1 ·
(

n

log(n)3

)1/(2p+1)
⌉

and Lk,n = 2d + 1, (k = 1, ...,Kn),

satisfies

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 · C
2

2p+1 ·
(

log(n)3

n

)

2p
2p+1

,

for a sufficiently large constant c3.

Proof. We use the error decomposition
∫

|mn(x) − m(x)|2µ(dx)

=

[

E{|mn(X) − Y |2|Dn} − E{|m(X) − Y |2}

−E{|mn(X) − TβY |2|Dn} − E{|mβ(X) − TβY |2}
]

+

[

E{|mn(X) − TβY |2|Dn} − E{|mβ(X) − TβY |2}

−2 · 1

n

n
∑

i=1

(

|mn(Xi) − TβYi|2 − |mβ(Xi) − TβYi|2
)

]

+

[

2 · 1

n

n
∑

i=1

|mn(Xi) − TβYi|2 − 2 · 1

n

n
∑

i=1

|mβ(Xi) − TβYi|2

−
(

2 · 1

n

n
∑

i=1

|mn(Xi) − Yi|2 − 2 · 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

]

+

[

2

(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)]

=
4
∑

i=1

Ti,n,
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where again Tβn
Y is the truncated version of Y , and mβn

is the corresponding

regression function. The definition of the estimate implies immediately its bound-

edness, that is ||mn||∞ ≤ K · βn. Analogously to the proof of Theorem 3.4, we

obtain

T1,n ≤ c4 ·
log(n)

n
, E(T3,n) ≤ c5 ·

log(n)

n

and

E(T4,n) ≤ 2 ·E
(

inf
f∈

LK
k=1 TβnFn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

+c6 ·
log(n)

n
.

The definition (4.6) of the function space
⊕K

k=1 Tβn
Fn in connection with the as-

sumptions on the regression function adds up to

E

(

inf
f∈

LK
k=1 TβnFn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

= E

(

inf
g1,...,gK∈TβnFn

(

1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

gk(Xi) − Yi

∣

∣

∣

∣

∣

2

− 1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

mk(αk · Xi) − Yi

∣

∣

∣

∣

∣

2))

.

We have already seen in the previous section that every function of the form

f(x) = h(α · x) (x ∈ R
d),

with α ∈ R
d and h ∈ F1

n (as defined in 4.2) is contained in Fn. Furthermore, the

choice of Kn and L1,n, ..., Lk,n permits the use of Lemma 2.2. Hence the above

term can be bounded by

E(T4,n) ≤ 2 ·E



 inf
h1,...,hK∈TβnF1

n





1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

hk(αk · Xi) − Yi

∣

∣

∣

∣

∣

2

− 1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

mk(αk · Xi) − Yi

∣

∣

∣

∣

∣

2








≤ 2 ·E



 inf
h1,...,hK∈TβnG





1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

hk(αk · Xi) − Yi

∣

∣

∣

∣

∣

2

− 1

n

n
∑

i=1

∣

∣

∣

∣

∣

K
∑

k=1

mk(αk · Xi) − Yi

∣

∣

∣

∣

∣

2








≤ 2 · inf
h1,...,hK∈TβnG

∫

∣

∣

∣

∣

∣

K
∑

k=1

hk(αk · x) −
K
∑

k=1

mk(αk · x)

∣

∣

∣

∣

∣

2

µ(dx),
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where G is the class of all continuous, piecewise linear functions with respect to a

partition of [â, b̂] in Kn intervals, and [â, b̂] is chosen in such a way that αk ·x ∈ [â, b̂],

for all x ∈ [a, b]d and k = 1, ...,K. Obviously this implies

E(T4,n) ≤ 2 · inf
h1,...,hK∈TβnG

∫

∣

∣

∣

∣

∣

K
∑

k=1

(hk(αk · x) − mk(αk · x))

∣

∣

∣

∣

∣

2

µ(dx)

≤ 2 · inf
h1,...,hK∈TβnG

K ·
∫ K
∑

k=1

|hk(αk · x) − mk(αk · x)|2 µ(dx)

≤ 2 · inf
h1,...,hK∈TβnG

K

∫

K max
k=1,...,K

(

|hk(αk · x) − mk(αk · x)|2
)

µ(dx)

≤ 2 · inf
h1,...,hK∈TβnG

K2 · max
x∈[a,b]d

max
k=1,...,K

|hk(αk · x) − mk(αk · x)|2

≤ 2 · inf
h1,...,hK∈TβnG

K2 · max
x∈[â,b̂]

max
k=1,...,K

|hk(x) − mk(x)|2 .

Now note that |min{a, k} − b| ≤ |a − b| for a ∈ R
+ and b ∈ [0, k] and that

the functions mk are bounded due to their (p,C)–smoothness and their compact

support. Therefore choosing L > 0 such that ||mk||∞ < L, for all k = 1, ...,K,

leads to

inf
h1∈TβnG,...,hK∈TβnG

K2 · max
x∈[â,b̂]

max
k=1,...,K

|hk(x) − mk(x)|2

≤ inf
h1,...,hK∈G

K2 · max
x∈[â,b̂]

max
k=1,...,K

|hk(x) − mk(x)|2 ,

for βn > L, owing to the definition of Tβn
. Together with the approximation result

from Lemma 1.16 this implies

E(T4,n) ≤ 2 · K2 · c5 · C2 · K−2p
n ,

for sufficiently large c5 > 0.

To finish this proof we consider T2,n. Similarly to the proof of Theorem 3.4 we get

P{T2,n > t} ≤ 14 · sup
xn
1

N1

(

t

80Kβn
,

K
⊕

k=1

Tβn
Fn, xn

1

)

· exp

(

− n · t
5136K2β2

n

)

. (4.7)

Here we have taken into account that functions in
⊕K

k=1 Tβn
Fn are bounded by

K · βn instead of βn as in Theorem 3.4. Furthermore, from Lemma 1.13 we infer

N1

(

ε,
K
⊕

k=1

Tβn
Fn, zn

1

)

≤ N1

( ε

K
, Tβn

Fn, zn
1

)K
,

which together with Lemma 2.5 leads to

N1

(

ε,

K
⊕

k=1

Tβn
Fn, zn

1

)

≤ 3K

(

6e · βn · K
ε

· Kn · Ln

)K·2(d+2)
PKn

k=1 Lk.n

,
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for 0 < ε < βn/2. In order to find an upper bound for (4.7), we consider 1/n < t,

and obtain accordingly

N1

(

t

80K · βn
,

K
⊕

k=1

Tβn
Fn, xn

1

)

≤ 3K

(

6e · βn · K · 80K · βn

t
· Kn · Ln

)K·2(d+2)
PKn

k=1 Lk.n

≤ 3K
(

480β2
n · K2 · Kn · Ln · n

)2K·(d+2)
PKn

k=1 Lk,n

≤ nc6·K·
PKn

k=1 Lk,n ,

for sufficiently a large constant c6 > 0. Hence, in view of (4.7), for ε > 1/n, this

yields

E(T2,n) ≤ ε +

∫ ∞

ε
P{T2,n > t}dt

= ε +

∫ ∞

ε
14 · nc6·K·

PKn
k=1 Lk,n · exp

(

− n

5136K2 · β2
n

· t
)

dt

= ε + 14 · nc6·K·
PKn

k=1 Lk,n · 5136K2 · β2
n

n
· exp

(

− n

5136K2 · β2
n

· ε
)

,

which is minimized for

ε =
5136K2 · β2

n

n
· log

(

14 · nc6·K·
PKn

k=1 Lk,n

)

.

More precisely, this choice implies, together with the settings Li,n = 2d + 1 for

(i = 1, ...,Kn) and βn = c1 · log(n) from the theorem, that

E(T2,n) ≤ 5136K2 · β2
n

n
· log

(

14 · nc6·K·Kn(2d+1)
)

+14 · nc6·K·Kn(2d+1) · 5136K2 · β2
n

n
exp

(

− log
(

14 · nc6·K·Kn(2d+1)
))

≤ c7 · K2 · log(n)2

n
· c8 · K · Kn(2d + 1) · log(n) +

5136K2 · log(n)2

n

≤ c9 · K3 · Kn · log(n)3

n
,

where c9 > 0 is chosen sufficiently large. Thus, we have

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c9 · K3 · Kn · log(n)3

n
+ 2 · K2 · c5 · C2 · K−2p

n ,

which together with the choice of Kn reduces to

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c9 · K3 · C2/(2p+1)

(

log(n)3

n

)2p/(2p+1)

+c10 · K · C2 · C−4p/(2p+1) ·
(

log(n)3

n

)2p/(2p+1)
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≤ c3 · K3 · C
2

2p+1 ·
(

log(n)3

n

)

2p

2p+1

for c3 large enough. �

Summarising the above, it can be stated that the estimate defined in Chapter 2

can achieve the one–dimensional rate of convergence under the assumptions of a

single index model. Actually we can moreover deduce the same rate of convergence

for the corresponding estimate with data–dependent parameter choice in a similar

manner as in Section 3.3.

Furthermore, we have defined an estimate which, in context of projection pursuit,

also achieves the one–dimensional rate of convergence. This estimate is obviously

closely related to the estimate from Chapter 2, even though it is not obvious, how

to compute this estimate in applications, since it is defined with respect to a class

of functions consisting of sums of maxima of minima of linear functions.

In the appendix we shall describe briefly how the estimate defined by (2.2) and (2.3)

can be calculated for given sets of data. Note that an algorithm that can solve

the minimisation problem in (2.2) (at least approximately) is not automatically

able to solve the optimisation problem in (4.5). Just to the contrary, solving

the minimisation problem in (4.5), and therefore the computation of the estimate

considered in Theorem 4.2 is not possible in practice. Instead one can try to

construct a similar estimate by using a stepwise approach. This will be done in

the next chapter, where we provide an estimate which, on the one hand is a sum

of functions from Fn and, on the other hand can be calculated by the use of a

so–called greedy algorithm combined with the algorithm we will use for solving

problem (2.2).





CHAPTER 5

L2 Boosting

In this chapter we present an L2 boosting estimate for a regression function. The

used method fits repeatedly a function from a fixed function space to the residuals

of the data and the estimate is a weighted sum of the fitted functions. In this

context, the number of iteration steps which relates to the parameter is chosen by

splitting the sample. In Section 5.1 we obtain a general bound on the L2 error of

the so–defined estimates with respect to arbitrary classes of functions f : R
d → R.

The provided bound depends on a uniform bound on the covering number of the

underlying class of function, and it holds again without assuming the boundedness

of Y .

Section 5.2 provides a rate of convergence for an L2 boosting estimate, which has

Tβn
F2,2 as underlying class of functions. The achieved rate of convergence does

not depend on the dimension of X, and it holds for all regression functions, having

certain smoothness properties referring to their Fourier transform.

5.1. A general L2 Boosting Result

In pattern recognition one of the main achievements in the last decade was fitting

linear combinations of (weak) classifiers to the data. Particularly the AdaBoost

algorithm for classifiers, which was introduced by Freund and Schapire in 1996,

attracted a great deal of attention, both in machine learning and in statistics. Its

success can be traced back to the good performance of the algorithm in many

different settings. The awareness that AdaBoost can be considered as a gradient

descent optimisation technique (cf. Breiman (1998)) brought up the idea of using

boosting methods in other connections than classification as well.

In particular, the idea of L2 boosting in regression estimation goes back to Friedman

(2001). He developed boosting methods in the context of regression estimation via

optimisation using the squared error loss function. In 2006, Bühlmann proved the

consistency of L2 boosting for high-dimensional linear models. In the same year

Barron, Cohen, Dahmen and De Vore (2006) developed a universally consistent

estimate by applying Greedy algorithms to certain function spaces F . Furthermore

77
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for bounded data, they derived the rate of convergence
(

log(n)

n

)1/2

for this estimate, by performing a data dependent choice of the number iteration

steps by complexity regularization. This rate holds for all regression functions

m which admit an expansion m =
∑

f∈F cff where F is the underlying class of

functions, and the sequence (cf ) of coefficients is absolutely summable.

In this dissertation we consider an algorithm similar to the relaxed greedy algorithm

in Barron et al. (2006). More precisely, for a given class of functions F and a set of

data Dn = Dnl
∪ Dnt = {(X1, Y1), ..., (Xn, Yn)}, we define a sequence of estimates

by

mnl,1 = m̃nl,1 = 0, and mnl,k+1 = Tβn
◦ m̃nl,k+1, (5.1)

where, for k > 1,

m̃nl,k+1 =

(

1 − 2

k + 1

)

· m̃nl,k + fnl,k, (5.2)

and fnl,k is chosen in such a way that

fnl,k(·) = arg min
f∈F

1

nl

nl
∑

i=1

∣

∣

∣

∣

Yi −
(

1 − 2

k + 1

)

· m̃n1,k(Xi) − f(Xi)

∣

∣

∣

∣

2

. (5.3)

Here one has to pay attention to the part (5.3) of the definition. In order to obtain

mnl,k+1, we minimize with respect to m̃nl,k rather than mnl,k. Thus, during the

computation only the sequence (m̃nl,k) is relevant, and the truncation is carried out

afterwards to obtain a bounded estimate in every iteration step. Moreover, (5.3)

exhibits that this method fits repeatedly a function from the class F to the residuals

of the data. However, (5.2) shows that mnl,k is a weighted sum of functions from

F , and that the used weights only depend on k.

The parameter k of the estimate is chosen by minimizing the empirical L2 risk on

the testing sample Dnt = {(Xnl+1, Ynl+1), ..., (Xn, Yn)}, that is,

mn(·) = mnl,k∗(·), (5.4)

where k∗ satisfies

k∗ = arg min
k∈{1,...,n}

1

nt

n
∑

i=nl+1

|mnl,k(Xi) − Yi|2, (5.5)

or in other words, k is chosen by splitting the sample (cf. Section 3.3).

Now, in order to establish our first theorem for L2 boosting estimates, we introduce

a certain class of functions, which is implicitly generated by the definition of the

estimate.



5.1. A GENERAL L2 BOOSTING RESULT 79

For a given class F of functions f : R
d → R, and for fixed N ∈ N, we denote by

HN = HF
N the class of functions of the form

h : R
d → R; h(x) = αh

1g1(x) + ... + αh
NgN (x),

with αh
i ≥ 0 and gi ∈ F , i ∈ {1, ...,N}, satisfying

(

2

l

N
∑

i=1

αh
i

)

· gj ∈ F , (5.6)

for all j ∈ {1, . . . , N} and l ∈ {1, . . . , k}, and

||gj ||∞ ≤ 1, (5.7)

for all j ∈ {1, . . . , N}.

The following result is an extension of Theorem 3.1 in Barron et al. (2006) to

unbounded Y . Moreover, it uses splitting the sample instead of complexity regu-

larisation in order to determine the number of iterartion steps. In order to state

this extension we need a further notation, since we use an upper bound on the

covering numbers of the underlying class of function F , that is

N1 (ε,F , zn
1 ) ≤ N1 (ε,F) , (5.8)

for all ε > 0 and zn
1 ∈ R

d×· · ·×R
d. To be more precise, the upper bound N1 (ε,F)

is independent of the certain choice of the points zn
1 and we will refer to it as

uniform bound on the covering number of F .

Theorem 5.1. Let F be an arbitrary class of functions f : R
d → R. Suppose that

the distribution of (X,Y ) satisfies

E
(

exp
(

c2 · |Y |2
))

< ∞, (5.9)

for some constant c2 > 0, and that the regression function m is bounded in absolute

value by some constant. Then, the estimate mn defined by (5.1) - (5.5) with βn =

c1 · log(n), satisfies

E

∫

|mn(x) − m(x)|2µ(dx)

≤ min
k∈{1,...,n}

[

c3

(

k · log(n)2

nl
· log

(

N1

(

1

80βn · k · nl
,F
)))

+ inf
N∈N

inf
h∈HN

(

16
(αh

1 + · · · + αh
N )2

k
+ 4

∫

|h(x) − m(x)|2µ(dx)

)

]

+c4
log(n)3

nt
,

for sufficiently large constants c3, c4, which do not depend on n, βn or k.
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Please note that Chapter 2 provides precisely such a uniform bound on the cov-

ering numbers of the class Fn. The obtained bound in Lemma 2.5 is obviously

independent of the points xn
1 , and hence we may apply this theorem to maxmin

functions in the next section.

For the proof of the above theorem we need a deterministic lemma, which is closely

related to Theorem 2.4 in Barron et al. (2006). For this purpose, let (x1, y1), . . . ,

(xn, yn) ∈ R
d × R and define mn,k recursively as

mn,1 = 0, and mn,k+1 =

(

1 − 2

k + 1

)

· mn,k + fn,k, (5.10)

where

fn,k(·) = arg min
f∈F

1

n

n
∑

i=1

∣

∣

∣

∣

yi −
(

1 − 2

k + 1

)

· mn1,k(xi) − f(xi)

∣

∣

∣

∣

2

. (5.11)

Thus, obviously the definition of the sequence mn,k resembles the definition of the

sequence of estimates defined by (5.1) - (5.5), but without truncation or splitting

the sample.

Lemma 5.2. Let mn,k be defined by (5.10) and (5.11). Then, for any N ∈ N,

g1, . . . , gN ∈ F and α1, . . . , αN > 0, satisfying

(

2

l

N
∑

i=1

αi

)

· gj ∈ F , for all j ∈ {1, . . . ,N}, l ∈ {1, . . . , k}, (5.12)

and ||gj ||∞ ≤ 1, for all j ∈ {1, . . . ,N}, (5.13)

we have

1

n

n
∑

i=1

|yi − mn,k(xi)|2 ≤ 1

n

n
∑

i=1

|yi − (α1g1 + · · · + αNgN )(xi)|2

+4 ·

(

∑N
i=1 αi

)2

k
.

The proof is a straightforward modification of the proof of the corresponding theo-

rem from Barron et al. (2006), but for the sake of completeness it is given anyway.

Proof. Let j ∈ {1, . . . , N}, and write

βk =
2

k
·

N
∑

i=1

αi.
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Since βk · gj ∈ F , we infer from the definition of the estimate that

1

n

n
∑

i=1

|yi − mn,k(xi)|2

≤ 1

n

n
∑

i=1

∣

∣

∣

∣

yi −
(

1 − 2

k

)

· mn,k−1(xi) − βk · gj(xi)

∣

∣

∣

∣

2

=
1

n

n
∑

i=1

∣

∣

∣

∣

(

1 − 2

k

)

· (yi − mn,k−1(xi)) +
2

k
· yi − βk · gj(xi)

∣

∣

∣

∣

2

=

(

1 − 2

k

)2

· 1

n

n
∑

i=1

|yi − mn,k−1(xi)|2

+2

(

1 − 2

k

)

· 1

n

n
∑

i=1

(yi − mn,k−1(xi)) ·
(

2

k
· yi − βk · gj(xi)

)

+
1

n

n
∑

i=1

(

2

k

(

yi −
N
∑

l=1

αlgl(xi)

)

+
2

k
·

N
∑

l=1

αlgl(xi) − βk · gj(xi)

)2

≤
(

1 − 2

k

)2

· 1

n

n
∑

i=1

|yi − mn,k−1(xi)|2

+2

(

1 − 2

k

)

· 1

n

n
∑

i=1

(yi − mn,k−1(xi)) ·
(

2

k
· yi − βk · gj(xi)

)

+

(

2

k

)2 1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2

+
4

k

1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)

·
(

2

k
·

N
∑

l=1

αlgl(xi) − βk · gj(xi)

)

+

(

2

k

)2 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)2

−2βk · 2

k
· 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)

· gj(xi) + β2
k

=: Lj

Furthermore, from αj ≥ 0 and
∑N

j=1(2/k) · αj = βk we can conclude that

1

n

n
∑

i=1

|yi − mn,k(xi)|2 ≤
N
∑

j=1

2 · αj

k · βk
· Lj

=

(

1 − 2

k

)2

· 1

n

n
∑

i=1

|yi − mn,k−1(xi)|2

+2

(

1 − 2

k

)

· 1

n

n
∑

i=1

(yi − mn,k−1(xi)) ·





2

k
· yi −

2

k

N
∑

j=1

αjgj(xi)
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+

(

2

k

)2 1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2

−
(

2

k

)2 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)2

+ β2
k

≤
(

1 − 2

k

)2 1

n

n
∑

i=1

(yi − mn,k−1(xi))
2 +

(

2

k

)2 1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2

+

(

1 − 2

k

)

· 2

k
· 1

n

n
∑

i=1

2 · (yi − mn,k−1(xi))

(

yi −
N
∑

l=1

αlgl(xi)

)

−
(

2

k

)2 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)2

+ β2
k .

Using 2 · a · b ≤ a2 + b2, we obtain

1

n

n
∑

i=1

|yi − mn,k(xi)|2

≤
(

1 − 2

k

)

· 1

n

n
∑

i=1

(yi − mn,k−1(xi))
2 +

2

k
· 1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2

+β2
k −

(

2

k

)2 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)2

,

which is equivalent to

1

n

n
∑

i=1

|yi − mn,k(xi)|2 −
1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2

≤
(

1 − 2

k

)

·





1

n

n
∑

i=1

(yi − mn,k−1(xi))
2 − 1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2




+
4

k2
·









N
∑

j=1

αj





2

− 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)2


 .

We use this representation, in order to show that, for k ≥ 2,

ak =
1

n

n
∑

i=1

|yi − mn,k(xi)|2 −
1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2

≤ 4

(

∑N
j=1 αj

)2

k
= 4

M

k

holds, with M :=
(

∑N
j=1 αj

)2
. For k = 2, the above inequality amounts to

1

n

n
∑

i=1

|yi − mn,2(xi)|2 −
1

n

n
∑

i=1

(

yi −
N
∑

l=1

αlgl(xi)

)2
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≤





N
∑

j=1

αj





2

− 1

n

n
∑

i=1

(

N
∑

l=1

αlgl(xi)

)2

,

which obviously implies

a2 ≤





N
∑

j=1

αj





2

< 2





N
∑

j=1

αj





2

= 4
M

2
.

Furthermore, from

a2 ≤ 2M, and ak ≤
(

1 − 2

k

)

ak−1 +
4

k2
M,

for k > 2, we can infer inductively that

an ≤ 4M

n
(5.14)

holds for all n ∈ N. More precisely, this can be deduced from

(n − 1)2 − n(n − 2)

n2
=

1

n2
> 0 ⇐⇒ n − 2

n
≤ (n − 1)2

n2

⇐⇒
(

1 − 2

n

)

4M

n − 1
≤ n − 1

n2
· 4M.

Since this transformation, together with the assumption that an−1 satisfies (5.14),

leads obviously to
(

1 − 2

n

)

an−1 ≤ n − 1

n2
· 4M

which, on the other hand, is equivalent to
(

1 − 2

n

)

an−1 +
4M

n2
≤ 4M

n
,

we obtain that (5.14) holds, for all n ≥ 2. �

Proof of Theorem 5.1. As already mentioned in the definition, the esti-

mate is defined by splitting the sample. Since by hypothesis, the modified Sub-

Gaussian condition is fulfilled and since the regression function is bounded, that

is, ||m||∞ ≤ L, for some constant L > 0, we are in the position to apply Theorem

3.6. We choose the set of parameters as Qn = {1, ..., n}. Since our sequence of

estimates is obviously bounded by βn we obtain, for any δ > 0, that

E

∫

|mn(x) − m(x)|2µ(dx)

≤ (1 + δ) min
k∈{1,...,n}

E

∫

|mnl,k(x) − m(x)|2µ(dx)

+c5 ·
1 + log |Qn|

nt
+ c6

log(n)

n



84 5. L2 BOOSTING

holds, for c5 ≥ β2
n(32/δ + 70 + 39δ), and for a suitable constant c6 > 0. Thus, for

δ = 1, the expectation of the L2 error is bounded by

2 min
k∈{1,...,n}

E

∫

|mnl,k(x) − m(x)|2µ(dx) + 141β2
n

1 + log(n)

nt
+ c6

log(n)

n
,

since apparently |Qn| is bounded by n. Now, for k ∈ {1, ..., n}, we use the error

decomposition

∫

|mnl,k(x) − m(x)|2µ(dx)

=
[

E
(

|mnl,k(X) − Y |2|Dnl

)

− E
(

|m(X) − Y |2
)

−E
(

|mnl,k(X) − Tβn
Y |2|Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)]

+

[

E
(

|mnl,k(X) − Tβn
Y |2|Dnl

)

− E
(

|mβn
(X) − Tβn

Y |2
)

−2 · 1

nl

nl
∑

i=1

(

|mnl,k(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2

)

]

+

[

2 · 1

nl

nl
∑

i=1

|mnl,k(Xi) − Tβn
Yi|2 − 2 · 1

nl

nl
∑

i=1

|mβn
(Xi) − Tβn

Yi|2

−
(

2 · 1

nl

nl
∑

i=1

|mnl,k(Xi) − Yi|2 − 2 · 1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)]

+

[

2

(

1

nl

nl
∑

i=1

|mnl,k(Xi) − Yi|2 −
1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)]

=
4
∑

i=1

Ti,n,

where again Tβn
Y is the truncated version of Y , and mβn

is the regression function

of Tβn
Y .

Both terms, T1,n and T3,n, can be bounded in the same way as their corresponding

terms in the proof of Thereom 3.4. Hence we have

T1,n ≤ c7 ·
log n

n
and E(T3,n) ≤ c7 ·

log n

n
,

for a sufficiently large constant c7 > 0.
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Next we consider T4,n. Let Anl
be the event, that there exists i ∈ {1, ..., nl} such

that |Yi| > βn. Then, we have

E(T4,n) ≤ 2 E

(

1

nl

nl
∑

i=1

|mnl,k(Xi) − Yi|2 · 1Anl

)

+ 2 E

(

1

nl

nl
∑

i=1

|mnl,k(Xi) − Yi|2 · 1AC
nl

− 1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)

= 2 E
(

|mnl,k(X1) − Y1|2 · 1Anl

)

+ 2 E

(

1

nl

nl
∑

i=1

|mnl,k(Xi) − Yi|2 · 1AC
nl

− 1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)

= T7,n + T8,n.

With the Cauchy-Schwarz inequality, we see that T7,n satisfies the inequality

1

2
T7,n ≤

√

E
(

(|mnl,k(X1) − Y1|2)2
)

·
√

P(Anl
)

≤
√

E
(

(2|mnl,k(X1)|2 + 2|Y1|2)2
)

·
√

nl · P{|Y1| > βn}

≤
√

E (8|mnl,k(X1)|4 + 8|Y1|4) ·
√

nl ·
E (exp(c2 · |Y1|2))

exp(c2 · β2
n)

,

where the last inequality results directly from

1{|Y |>βn} ≤
exp(c2 · |Y |2)
exp(c2 · β2

n)
.

Since x ≤ exp(x) holds for all x ∈ R, we get

E
(

|Y |4
)

= E
(

|Y |2 · |Y |2
)

≤ E

(

2

c2
· exp

(c2

2
· |Y |2

)

· 2

c2
· exp

(c2

2
· |Y |2

)

)

=
4

c2
2

·E
(

exp
(

c2 · |Y |2
))

,

which is finite by the assumption (5.9). Furthermore, ||mnl,k||∞ is bounded by βn,

which implies that the first factor is bounded by

c8 · β2
n = c9 · log(n)2,

for some constant c9 > 0. On the other hand, the second factor is bounded by

c10 ·
√

nl/n
2 for a suitable constant c10 > 0. Since condition (5.9) implies that

√

nl ·
E (exp(c2 · |Y1|2))

exp(c2 · β2
n)

≤ √
nl ·

√
c11

√

exp(c2 · β2
n)

≤ √
nl
√

c11 · exp

(

−c12 · log(n)2

2

)
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holds, verifying the correctness of exp(−c12 · log(n)2) = O(n−2) establishes this

bound. From the above, we deduce that

T7,n ≤ c13 ·
log(n)2

√
nl

n2
≤ c14 ·

log(n)

n
. (5.15)

With the definition of Anl
, and m̃nl,k defined by (5.2), it follows that

T8,n ≤ 2 E

(

1

nl

nl
∑

i=1

|m̃nl,k(Xi) − Yi|2 · IAC
nl

− 1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)

≤ 2 E

(

1

nl

nl
∑

i=1

|m̃nl,k(Xi) − Yi|2 −
1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)

.

Obviously, the functions contained in HN satisfy the assumptions of Lemma 5.2,

and moreover the sequence of estimates m̃nl,k is exactly of the form (5.10) and

(5.11). Consequently, for arbitrary N ∈ N and h ∈ HN , Lemma 5.2 yields

T8,n ≤ 2 E

(

4
(αh

1 + · · · + αh
N )2

k
+

1

nl

nl
∑

i=1

|h(Xi) − Yi|2 −
1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)

= 8
(αh

1 + · · · + αh
N )2

k
+ 2 E

(

1

nl

nl
∑

i=1

|h(Xi) − Yi|2 −
1

nl

nl
∑

i=1

|m(Xi) − Yi|2
)

= 8
(αh

1 + · · · + αh
N )2

k
+ 2

(

E(|h(X) − Y |2) − E(|m(X) − Y )
)

= 8
(αh

1 + · · · + αh
N )2

k
+ 2

∫

|h(x) − m(x)|2µ(dx),

which, together with (5.15), leads to

E(T4,n) ≤ c14 ·
log(n)

n

+ inf
N∈N

inf
h∈HN

(

8
(αh

1 + · · · + αh
N )2

k
+ 2

∫

|h(x) − m(x)|2µ(dx)

)

.

Now, the last part of the proof considers T2,n. In order to obtain bounds on the

expectation of T2,n we need conclusions for the covering numbers of F . With the

similar notation as in (4.6), that is,
⊕K

k=1 F is defined by

{

g : R
d → R, g(x) =

K
∑

k=1

gk(x), (x ∈ R
d), for some gk ∈ F , 1 ≤ k ≤ K

}

,

obviously mnl,k ∈ Tβ(
⊕k

i=1 F) holds. Furthermore, it is easy to see that

N (ε, TβG, zn
1 ) ≤ N (ε,G, zn

1 ) (5.16)

holds, for an arbitrary class of functions G of real functions on R
d. Since, whenever

g1, ..., gN is an Lp-ε-cover of G on zn
1 , then Tβg1, ..., TβgN is an Lp-ε-cover of TβG
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on zn
1 . Hence, in particular,

N
(

ε, Tβ

k
⊕

i=1

F , zn
1

)

≤ N
(

ε,

k
⊕

i=1

F , zn
1

)

holds for all ε > 0. From this and Lemma 1.13, we can deduce that

N
(

ε, Tβ

k
⊕

i=1

F , zn
1

)

≤ N
( ε

k
,F , zn

1

)k
.

holds for all ε > 0, too. Thus we have, for arbitrary t > 1/n,

P{T2,n > t}

≤ P

{

∃f ∈ Tβn

k
⊕

i=1

F : E

(

∣

∣

∣

∣

f(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

− E

(

∣

∣

∣

∣

mβn
(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

− 1

nl

nl
∑

i=1

(

∣

∣

∣

∣

f(Xi)

βn
− Tβn

Yi

βn

∣

∣

∣

∣

2

−
∣

∣

∣

∣

mβn
(Xi)

βn
− Tβn

Yi

βn

∣

∣

∣

∣

2
)

>
1

2

(

t

β2
n

+ E

(

∣

∣

∣

∣

f(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

−E

(

∣

∣

∣

∣

mβn
(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
))}

.

Thus, we can infer from Theorem 1.17, and from the inequality

N1

(

δ,

{

1

βn
f : f ∈ F

}

, zn
1

)

≤ N1 (δ · βn,F , zn
1 )

that, for zn
1 = (z1, ..., zn) ∈ R

d × ... × R
d,

P{T2,n > t} ≤ 14 sup
zn
1

N1

(

t

80βn
, Tβn

k
⊕

i=1

F , zn
1

)

· exp

(

− nl

5136 · β2
n

t

)

≤ 14 sup
zn
1

N1

(

t

80βn · k ,F , zn
1

)k

· exp

(

− nl

5136 · β2
n

t

)

.

Now, with the uniform bound on the covering number of F , that is,

N1 (ε,F , zn
1 ) ≤ N1 (ε,F) ,

for all zn
1 ∈ (Rd)n, and ε > 0, we obtain that

P{T2,n > t} ≤ 14 · N1

(

1

80βn · k · nl
,F
)k

· exp

(

− nl

5136 · β2
n

t

)

holds for 1/nl < t. Thus, we have for arbitrary ε ≥ 1/n,

E(T2,n) ≤ ε +

∫ ∞

ε
P{T2,n > t}dt

= ε + 14 · N1

(

1

80βn · k · nl
,F
)k

· 5136β2
n

nl
· exp

(

− nl

5136β2
n

ε

)

,

which is minimal for

ε =
5136 · β2

n

nl
log

(

14 · N1

(

1

80βn · k · nl
,F
)k
)

.
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To be more precise, we obtain

E(T2,n) ≤ 5136 · β2
n

nl
log

(

14 · N1

(

1

80βn · k · nl
,F
)k
)

+14 · N1

(

1

80βn · k · nl
,F
)k

·5136β
2
n

nl

(

14 · N1

(

1

80βn · k · nl
,F
)k
)−1

=
5136 · β2

n

nl

(

log(14) + k · log
(

N1

(

1

80βn · k · nl
,F
))

+ 1

)

≤
c16 · log(n)2 · k · log

(

N1

(

1
80βn·k·nl

,F
))

nl
,

for some sufficiently large constant c16 > 0, which does not depend on n, βn or k.

Thus, we can deduce that

E

∫

|mn(x) − m(x)|2µ(dx)

≤ 2 min
k∈{1,...,n}

(

c3

(

k · log(n)2

nl
· log

(

N1

(

1

80βn · k · nl
,F
)))

+ inf
N∈N

inf
h∈HN

(

8
(αh

1 + · · · + αh
N )2

k
+ 2

∫

|h(x) − m(x)|2µ(dx)

)

)

+141β2 1 + log(n)

nt
+ c4

log n

n

holds, for sufficiently large constants c3, c4 > 0, and therefore we have proved the

desired result. �

We want to remark that Theorem 1.11 immediately leads to the conclusion that,

for a class F of bounded functions f : R
d → R, the first term in the minimum can

be replaced by

c3 ·
k · log(n)3 · VF+

nl
.

Sometimes it is much easier to obtain bounds on the VC–dimension of a certain

function space rather than obtain a uniform bound on the covering numbers. There-

fore, in some cases this might be a helpful bound, too.

In the following, we shall apply the result from this section to a class of maxmin

functions, in order to derive the rate of convergence of the corresponding L2 boost-

ing estimate.
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5.2. L2 Boosting with Maxmin Functions

In the previous section, we have seen a bound on the L2 error of a boosting estimate

that only depends on the covering number of the underlying class of functions.

However, it is evident that, especially in the context of boosting estimates, not

every class of functions is senseful and that the corresponding estimates might not

even be computable.

In this section we consider Tβn
F2,2 as underlying class of functions and therefore,

the estimate of interest is defined by (5.1) - (5.5), with F replaced by Tβn
F2,2.

For the so–defined estimate we will derive a rate of convergence, which does not

depend on the dimension d of the observation variable X, and hence circumvents the

curse of dimensionality without the restrictions on the structure of the regression

function m made in Chapter 4. Moreover, the computability of this L2 boosting

estimate secured, since we can use similar methods as used for the computation of

the maxmin estimate from Chapter 2.

However, to derive a reasonable rate of convergence, of course we still have to make

certain smoothness assumptions. In these settings this means that we consider

functions f ∈ L1(R
d), which satisfy

f(x) = f(0) +

∫

(

ei(ω·x) − 1
)

F̂ (ω) dω, (5.17)

almost surely, where F̂ is the Fourier transform of f , that is,

F̂ (ω) =
1

(2π)d/2

∫

e−i(ω·x)f(x) dx (ω ∈ R
d).

Furthermore we assume
∫

||ω|| · |F̂ (ω)| dω ≤ C, 0 < C < ∞. (5.18)

In the sequel, the class of functions f : R
d → R satisfying (5.17) and (5.18), will

be denoted by FC .

As already mentioned, the corresponding smoothness assumptions in Barron et al.

(2006), is that the regression function m has an expansion m =
∑

f∈F cff ,with an

absolutely summable sequence (cf ). They discussed their smoothness conditions in

the case that the resulting estimate is a neural network, and in this special situation

their conditions turn out to be very similar to our smoothness assumptions on m.

Furthermore note that, with Condition (5.18), the assumption m ∈ FC implies

directly that m must have a Fourier transform with finite first moment (cf. Györfi

et al. (2002), p. 317). Therefore under this assumption m has to be continuously

differentiable and consequently bounded, if its support is bounded.
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Corollary 5.3. Suppose that the distribution of (X,Y ) satisfies

E
(

exp
(

c2 · |Y |2
))

< ∞,

for some constant c2 > 0, that X ∈ [−a, a]d a.s. for some a ∈ R
+, and that the

regression function is bounded in absolute value by some constant less than or equal

to βn and that it satisfies m ∈ FC , for some 0 < C < ∞.

Let βn = c1 · log(n), with c1 > 0 is chosen in such a way that βn ≥ 6
√

d · C · a for

n ≥ 2. Then, the estimate mn defined by (5.1) - (5.5), with F = Tβn
F2,2, and with

nl = ⌈n
2 , ⌉ satisfies that

E

∫

|mn(x) − m(x)|µ(dx) = c3 · C2

(

log(n)3

n

)1/2

(n ≥ 2)

for some sufficiently large constant c3 > 0, that does not depend on n, k or C.

In order to prove this corollary, we need the following Lemma 16.8 from Györfi et

al. (2002) provides an approximation result for neural networks.

Lemma 5.4. Let σ be a squashing function. Then, for every probability measure µ

on R
d, every measurable f ∈ FC and k ≥ 1, there exists a neural network fk in

{

k
∑

i=1

ciσ(ai · x + bi) + c0; k ∈ N, ai ∈ R
d, bi, ci ∈ R

}

(5.19)

such that
∫

Sr

(f(x) − fk(x))2µ(dx) ≤ (2rC)2

k
.

The coefficients of the linear combination in (5.19) may be chosen so that

k
∑

i=0

|ci| ≤ 3rC + f(0).

Proof. For a proof we refer to the corresponding proof in Györfi et al. (2002).

�

Here, Sr = {x ∈ R
d : ||x|| ≤ r} denotes the closed Euclidean ball in R

d, centered

at 0 with radius r. Furthermore, a squashing function simply is a nondecreasing

function σ : R → [0, 1] which satisfies limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1.

In the proof of Corollary 5.3 we shall see a close connection between the class of

functions defined in (5.19), and the class HTβnF2,2

k+1 . This relationship enables us to

use the above lemma, in order to get the desired rate of convergence.
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Proof of Corollary 5.3. Obviously the assumptions of Theorem 5.1 are

satisfied. Hence we can deduce from the setting nl = ⌈n/2⌉ that

E

∫

|mn(x) − m(x)|2µ(dx)

≤ min
k∈{1,...,n}

(

c4

(

k · log(n)2

n
· log

(

N1

(

1

80βn · k · n, Tβn
F2,2

)))

+ inf
N∈N

inf
h∈HN

(

16
(αh

1 + · · · + αh
N )2

k
+ 4

∫

|h(x) − m(x)|2µ(dx)

)

)

+c5
log(n)3

n
,

holds, for suitable constants c4 and c5. Since Lemma 2.5 implies that

N1

(

1

80βn · k · n, Tβn
F2,2

)

≤ 3 (6eβn · 80βn · k · n · 2 · 2)2(d+2)·2·2

= 3(1920 · e · β2
n · k · n)8(d+2),

we obtain

log

(

N1

(

1

80βn · k · n, Tβn
F2,2

))

≤ c6 · log(log(n)2 · k · n)

≤ c7 · log(n),

for sufficiently large constants c6, c7, and this in turn leads to

E

∫

|mn(x) − m(x)|2µ(dx)

≤ min
k∈{1,...,n}

(

c8

(

k · log(n)3

n

)

+ inf
N∈N

inf
h∈HN

(

16
(αh

1 + · · · + αh
N )2

k
+ 4

∫

|h(x) − m(x)|2µ(dx)

)

)

for a suitable constant c8. Since the above inequality involves the minimum over

k ∈ {1, ..., n}, we get an upper bound if we choose

k =

(

n

log(n)3

)1/2

.

Then we obtain that

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c8

(

log(n)3

n

)1/2

+ inf
N∈N

inf
h∈HN

(

16(αh
1 + · · · + αh

N )2
(

log(n)3

n

)1/2

+4

∫

|h(x) − m(x)|2µ(dx)

)

holds, for a sufficiently large constant c8 > 0, that does not depend on n, βn or k.
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Hence, in order to complete the proof, it suffices to find a bound on the infimum

over h ∈ HN in the above inequality. As already mentioned, we will use Lemma

5.4 to derive such a bound. However, in order to apply this lemma we need a

connection between the class of functions
{

k
∑

i=1

ciσ(ai · x + bi) + c0; k ∈ N, ai ∈ R
d, bi, ci ∈ R

}

,

for an arbitrary squashing function σ, and the class of functions HN , we are con-

sidering here.

First, it is quite easy to see that the so–called ramp squasher σ∗, defined by

σ∗(x) =











0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1,

(5.20)

is a squashing function. Secondly functions of the form

k
∑

i=1

ciσ
∗(ai · x + bi)

are elements of Hk. Indeed, for arbitrary ai ∈ R
d, and bi ∈ R we have that

σ∗(ai · x + bi) =











0, ai · x < −bi,

ai · x + bi, −bi ≤ ai · x ≤ 1 − bi,

1, ai · x > 1 − bi,

= max

{

0 , min
{

ai · x + bi , 1
}

}

:= f+
i ∈ F2,2,

with ||f+
i ||∞ ≤ 1, and that

−σ∗(ai · x + bi) =











0, ai · x < −bi,

−(ai · x + bi), −bi ≤ ai · x ≤ 1 − bi,

−1, ai · x > 1 − bi,

= max

{

− 1 , min
{

− (ai · x + bi) , 0
}

}

:= f−
i ∈ F2,2,

with ||f−
i ||∞ ≤ 1, as well. Therefore condition (5.7) is obviously satisfied, and we

can rewrite
k
∑

i=1

ciσ
∗(ai · x + bi),

by using the algebraic sign of the ci to choose whether f+
i or f−

i , as

|c1| · f sign(c1)
1 + |c2| · f sign(c2)

2 + · · · + |ck| · f sign(ck)
k .

Now it is easy to show that
∑k

i=1 ciσ
∗(ai ·x+bi) ∈ Hk. Note that the correctness of

condition (5.6) can be deduced from the fact that multiplication of a function from
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F2,2 with a positive factor still yields a function from F2,2. If βn is large enough

this is still true for Tβn
F2,2 since the boundedness of the regression function and

the boundedness of the weights in Lemma 5.4 imply that the truncation does not

affect these functions at all.

We have moreover assumed that X ∈ [−a, a]d a.s. and therefore we obtain with

r =
√

d · a that X ∈ Sr = {x ∈ R
d, ||x|| ≤ r} a.s. Thus from Lemma 5.4, and from

the assumptions N = k + 1 and βn > 3rC + m(0), we infer

inf
h∈HN

(

16(αh
1 + · · · + αh

N )2 ·
(

log(n)3

n

)1/2

+ 4

∫

|h(x) − m(x)|2µ(dx)

))

≤ 16 · (3rC + m(0))2 ·
(

log(n)3

n

)1/2

+ 4 · (2rC)2 ·
(

log(n)3

n

)1/2

≤ c6 · C2 ·
(

log(n)3

n

)1/2

,

for a suitable chosen constant c6, that does not depend an C,n or k. �

We want to remark that the rate of convergence in Corollary 5.3 holds generally

for F = Tβn
Fm,n, with m,n ≥ 2. This can be deduced from the inclusion

Fm1,n1 ⊂ Fm2,n2, for m1 ≤ m2 and n1 ≤ n2,

since this containment ensures that Lemma 5.4 is still applicable. Furthermore it

is easy to see that the necessary uniform bound on the covering number of TβFm,n

is of the size O(n) too, and that we can therefore infer the rate of convergence for

all estimates defined by (5.1) - (5.5) with F chosen as Tβn
Fm,n for some m,n ≥ 2.

In this Chapter we extended the result of Barron et al. (2006) to unbounded Y .

Furthermore, we considered an explicit L2 boosting estimate and proved that its

rate of convergence does not depend on the dimension d of the observation variable

X.

Even though we are able to compute the estimate defined by (5.1) - (5.5), with

F = Tβn
F2,2 we are unable to present any applications yet. The implementation of

this estimate is still in progress. However, the next chapter provides applications

of the estimate presented in Chapter 2 to simulated data, and briefly describes

the algorithm belonging to that estimate. The computation of the L2 boosting

estimate will be done in a similar way by using additionally its stepwise definition.
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A.1. The Algorithm

We have seen that both the maxmin estimate presented in Chapter 2 and the L2

boosting estimate from the preceding chapter have promising theoretical properties.

However, even a theoretical brilliant estimate makes no sense if its computation

is too hard, or even worse if it cannot be computed at all. Hence as a matter

of course, it is very important to provide algorithms for the computation of new

estimates, and to observe the behaviour of estimates in practical applications, or

at least in simulation studies.

This appendix deals with the computation of the maxmin estimate, and with its

performance in a simulation study. Above all, we would like to emphasize that the

development of the algorithm used for the computation of the maxmin estimate,

was predominantly made by Adil Bagirov, and that it was not the aim of this

dissertation. However, for the sake of completeness, we want to provide a brief

insight into this optimisation part, and refer to Bagirov, Clausen and Kohler (2007)

for a detailed discussion of the implementation.

Since we consider least squares estimates in this thesis, it is evident that the compu-

tation of the estimate defined by (2.2) and (2.3) in fact is an optimisation problem

or, to be more precise, a minimisation problem, which can be formulated as follows

minimise F (a, b) =
1

n

n
∑

i=1

∣

∣

∣

∣

(

max
k=1,...,K

min
l=1,...,Lk

(ak,l · xi + bk,l)

)

− yi

∣

∣

∣

∣

2

(5.1)

for given (fixed) x1, . . . , xn ∈ R
d, y1, . . . , yn ∈ R, with respect to

a = (a1,1, . . . , a1,L1 , . . . , aK,1, . . . , aK,LK
) ∈ R

d×p,

and

b = (b1,1, . . . , b1,L1 , . . . , bK,1, . . . , bK,LK
) ∈ R

p,

where p =
∑K

k=1 Lk. Unfortunately we cannot solve this problem exactly, since con-

tinuous piecewise linear functions typically are nonsmooth and nonconvex. There-

fore also the function F in (5.1) usually is nonsmooth and nonconvex. In general,

such functions have many local minima. Especially, the number of local minima of

95
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F increases drastically as the number of maxima and minima functions increases.

Unfortunately, most of this local minimisers do not provide a good approximation

of the regression function, or even of the data points. Hence one is interested in

global solutions of (5.1), or at least in finding a minimiser which is close to the global

one. Classical methods of global optimisation are not effective for minimising such

functions, since they are very time consuming and cannot solve this problem in a

reasonable time. Since the function to be minimised is moreover a quite compli-

cated nonsmooth function, the calculation even of only one subgradient of such a

function is a difficult task.

The discrete gradient method from Bagirov (2002) allows an approximation of

subgradients of the function F , and therefore an approximative computation of

the estimate. This method requires a couple of properties of F . It can be seen

in Bagirov, Clausen and Kohler (2007) that F is a semismooth quasidifferentiable

function, whose subdifferential and superdifferential are polytopes. Therefore it

is possible to approximate its subgradients. For the definition of semismoothness

we refer to Mifflin (1977), and the definition of quasidifferentiable functions goes

back to Demyanov and Rubinov (1995). Moreover, it can be shown that F is

also piecewise partially separable (for the definition we refer to Bagirov and Ugon

(2006)), and thus we can apply the improved discrete gradient method described

in Bagirov and Ugon (2006), and Bagirov, Ghosh and Webb (2006).

Now, for each number of minima functions we start with a small number of maxima

functions, and we increase their number stepwise until a further increase does not

improve the approximation of the data anymore (with respect to some tolerance).

Following these ideas, we get a set of piecewise functions. Using these functions

on a testing set and choosing the best of them, we obtain a global solution, or at

least a solution close to a global one. Furthermore, it should be mentioned that

the data dependent choice of the parameters (via splitting the sample) is included

in the implementation and that the implementation of the estimate was realized in

both Fortran and R.

A.2. Application to Simulated Data

In order to compare the estimates proposed in this dissertation with other nonpara-

metric regression estimates, we made a small simulation study. Here, we define the

underlying random vector (X,Y ) by

Y = m(X) + σ · ε,
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where ε is standard normally distributed and independent of X and σ ≥ 0, and

where X is uniformly distributed on [−2, 2]d. For the noise level σ we use three

different values: 0, 0.5 and 1, and we generate data sets of two different sample

sizes, namely n = 500 and n = 5000.

For the univariate case, that is d = 1, we compare our estimate with kernel esti-

mates (with Gaussian kernel) (cf. Chapter 5 in Györfi et al. (2002)), local linear

kernel estimates (cf. Section 5.4 in Györfi et al. (2002)), smoothing splines (cf.

Chapter 20 in Györfi et al. (2002)), neural networks and regression trees (as imple-

mented in the freely available statistics software R), by applying every one of these

six estimates to samples of the above distributions. Since for d > 1, not all of these

estimates are easily applicable in R, we compare our estimate only with neural

networks and regression trees (again by applying each of these three estimates to

samples of the above distributions), for d > 1. In all cases we choose the smoothing

parameter of the estimates by splitting the sample, where for each simulation, the

size of the training sample and the testing sample is n/2.

In order to compute the L2 errors of the estimates, we use Monte Carlo integration,

that is, we approximate

∫

|ml(x) − m(x)|2µ(dx) = E
(

|ml(X) − m(X)|2|Dl

)

by

1

N

N
∑

j=1

|ml(X̃j) − m(X̃j)|2,

where the random variables X̃1, X̃2, . . . are independent and identically distributed,

with distribution µ, and moreover independent of Dl. In the sequel we use N =

3000. Since this error is a random variable itself, we repeat the experiment 25

times with independent realizations of the sample, and report the mean and the

standard deviation of the Monte Carlo estimates of the L2 error.

Firstly we consider the case d = 1, and we examine the following four different

regression functions:

• m1(x) = 2 · max
{

1,min{3 + 2 · x, 3 − 8 · x}
}

,

• m2(x) =

{

1 , x ≤ 0,

3 , else,

• m3(x) =

{

10 · √−x · sin(8 · π · x), −0.25 ≤ x < 0,

0, else,

• m4(x) = 3 · sin(π · x/2).
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Since there exists no ‘typical’ regression function, in terms of a type of functions

that appears in most regression estimation problems, we tried to choose as differing

functions as possible in this simulations, in order to analyse the behaviour of the

maxmin estimate.

The choice of the underlying regression functions obviously is not an easy task,

since different focuses lead to very different choices. However, if one wants to make

such a comparison to established estimates, one has to make a selection. Figure 9

sketches the four considered univariate regression functions.
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Figure 9. The four univariate regression functions.

Figure 10 shows these function, together with our maxmin estimate applied to a

sample with variance σ = 0.2 and sample size n = 500.

In Tables 1 to 4, we report the error values for the maxmin estimate and the other

five univariate regression estimates, which are applied to the simulated data as

described above. In the tables we use the following abbreviations:

• kernel estimates with the Gaussian kernel (ker–est.)

• local linear kernel estimates (llk–est.)

• smoothing splines (s–splines)

• neural networks (nn–est.)

• regression trees (reg–trees)
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Figure 10. The four regression functions (solid lines) and the

maxmin estimate (dash lines). ( σ = 0.2, n = 500).

n σ ker–est. llk–est. s–splines nn–est. reg–trees maxmin est.

500 0 0.0022 0.0005 0.0001 0.0020 0.0347 0.0000

(0.0017) (0.0004) (0.0001) (0.0004) (0.0062) (0.0000)

0.5 0.0288 0.0278 0.0242 0.0161 0.0798 0.0093

(0.0075) (0.0078) (0.0065) (0.0039) (0.0123) (0.0048)

1 0.0741 0.0816 0.0760 0.0438 0.2204 0.0408

(0.0268) (0.0389) (0.0327) (0.0206) (0.0445) (0.0254)

5000 0 0.0003 0.0003 0.0000 0.0006 0.0009 0.0000

(0.0000) (0.0000) (0.0000) (0.0002) (0.0001) (0.0000)

0.5 0.0044 0.0043 0.0038 0.0030 0.0105 0.0007

(0.0011) (0.0009) (0.0007) (0.0008) (0.0017) (0.0005)

1 0.0131 0.0121 0.0118 0.0091 0.1358 0.0028

(0.0032) (0.0036) (0.0030) (0.0020) (0.0232) (0.0015)

Table 1. Mean (standard deviation) of the L2 error for the associated estimates.

Regression function: m1.



100 APPENDIX

n σ ker–est. llk–est. s–splines nn–est. reg–trees maxmin est.

500 0 0.0078 0.0096 0.0072 0.0110 0.0087 0.0045

(0.0486) (0.0047) (0.0051) (0.0047) (0.0108) (0.0046)

0.5 0.0365 0.0396 0.0375 0.0165 0.0608 0.0156

(0.0100) (0.0087) (0.0083) (0.0052) (0.0153) (0.0110)

1 0.0684 0.0806 0.0746 0.0288 0.2260 0.0431

(0.0160) (0.0171) (0.0170) (0.0184) (0.0489) (0.0240)

5000 0 0.0058 0.0074 0.0026 0.0040 0.0009 0.0007

(0.0011) (0.0013) (0.0007) (0.0009) (0.0018) (0.0011)

0.5 0.0106 0.0119 0.0110 0.0051 0.0033 0.0013

(0.0013) (0.0013) (0.0011) (0.0009) (0.0032) (0.0008)

1 0.0219 0.0241 0.0226 0.0076 0.1539 0.0041

(0.0039) (0.0039) (0.0039) (0.0021) (0.0203) (0.0022)

Table 2. Mean (standard deviation) of the L2 error for the associated estimates.

Regression function: m2.

n σ ker–est. llk–est. s–splines nn–est. reg–trees maxmin est.

500 0 0.0539 0.0450 0.0052 0.0081 0.1241 0.0234

(0.0502) (0.0402) (0.0041) (0.0064) (0.0610) (0.0585)

0.5 0.0879 0.0922 0.0748 0.0214 0.1761 0.0255

(0.0238) (0.0383) (0.0183) (0.0101) (0.0477) (0.0178)

1 0.2450 0.2749 0.2426 0.0814 0.3506 0.1201

(0.0644) (0.0735) (0.0645) (0.0490) (0.0657) (0.0556)

5000 0 0.0151 0.0175 0.0002 0.0010 0.0066 0.0006

(0.0025) (0.0054) (0.0002) (0.0003) (0.0019) (0.0001)

0.5 0.0202 0.0220 0.0095 0.0030 0.0344 0.0022

(0.0036) (0.0060) (0.0014) (0.0008) (0.0070) (0.0006)

1 0.0351 0.0357 0.0286 0.0080 0.1875 0.0068

(0.0044) (0.0047) (0.0040) (0.0041) (0.0173) (0.0021)

Table 3. Mean (standard deviation) of the L2 error for the associated estimates.

Regression function: m3.
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n σ ker–est. llk–est. s–splines nn–est. reg–trees maxmin est.

500 0 0.0010 0.0000 0.0000 0.0000 0.0000 0.0041

(0.0003) (0.0000) (0.0000) (0.0000) (0.0492) (0.0125)

0.5 0.0188 0.0084 0.0072 0.0129 0.0813 0.0207

(0.0058) (0.0027) (0.0034) (0.0060) (0.0113) (0.0069)

1 0.0622 0.0316 0.0318 0.0564 0.2157 0.0634

(0.0260) (0.0157) (0.0161) (0.0321) (0.0404) (0.0192)

5000 0 0.0001 0.0000 0.0000 0.0000 0.0005 0.0037

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0017)

0.5 0.0031 0.0014 0.0010 0.0014 0.0190 0.0061

(0.0006) (0.0004) (0.0004) (0.0005) (0.0017) (0.0014)

1 0.0085 0.0040 0.0034 0.0049 0.0533 0.0113

(0.0022) (0.0018) (0.0014) (0.0023) (0.0082) (0.0035)

Table 4. Mean (standard deviation) of the L2 error for the associated estimates.

Regression function: m4.

From these tables we can infer that, in the case of the distributions considered

above, the maxmin estimate outperforms the other estimates if the sample size

is large and the regression function is not globally smooth, such as the fourth

regression function.

Next, we consider the case d = 2 and the following three regression functions:

• m5(u1, u2) = u1 · sin(u2
1) − u2 · sin(u2

2),

• m6(u1, u2) = 4
1+4·u2

1+4·u2
2
,

• m7(u1, u2) = 6 − 2 · min
{

3, 4 · u2
1 + 4 · |u2|

}

.

Figures 11, 12 and 13 show the three bivariate regression functions, together with

the maxmin estimate, which is applied to a sample with variance σ = 0.2 and

sample size n = 5000.

In Table 5 we compare our maxmin estimate with regression trees and neural

networks. In the same way as above, we report the error values for the maxmin

estimate, and the other two bivariate regression estimates, which are applied to

the simulated data as described above. Here, our estimate most of the time is

better than regression trees, and sometimes better and sometimes worse than neural

networks.
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Figure 11. The regression function m5 (left hand) and the maxmin

estimate (right hand). (σ = 0.2, n = 5000).

n 500 5000

σ 0 0.5 1 0 0.5 1

nn-est. 0.0001 0.0657 0.2897 0.0000 0.0049 0.02284

(0.0000) (0.0206) (0.1105) (0.0000) (0.0021) (0.0103)

m5 reg–trees 0.3718 0.4128 0.5610 0.0613 0.1002 0.1872

(0.0551) (0.0458) (0.0922) (0.0070) (0.0088) (0.0169)

maxmin 0.0796 0.1449 0.2280 0.0593 0.0700 0.0889

est. (0.0170) (0.0310) (0.0490) (0.0090) (0.0064) (0.0104)

nn-est. 0.0015 0.0822 0.2026 0.0001 0.0110 0.0339

(0.0006) (0.0211) (0.0438) (0.0000) (0.0034) (0.0076)

m6 reg–trees 0.0817 0.0123 0.2062 0.0083 0.0312 0.0607

(0.0202) (0.0261) (0.0621) (0.0006) (0.0041) (0.0073)

maxmin 0.0134 0.0540 0.1543 0.0066 0.0137 0.0293

est. (0.0040) (0.0135) (0.0629) (0.0018) (0.0015) (0.0048)

nn–est. 0.0298 0.1874 0.4884 0.0078 0.0253 0.0699

(0.0108) (0.0617) (0.1198) (0.0011) (0.0033) (0.0112)

m7 reg–trees 0.3034 0.3175 0.3757 0.0484 0.0610 0.0902

(0.1547) (0.1967) (0.1820) (0.0071) (0.0081) (0.0166)

maxmin 0.0325 0.0868 0.1734 0.0136 0.0176 0.0260

est. (0.0087) (0.0321) (0.0660) (0.0036) (0.0046) (0.0055)

Table 5. Mean (standard deviation) of the L2 error.
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Figure 12. The regression function m6 (left hand) and the maxmin

estimate (right hand). (σ = 0.2, n = 5000).

Figure 13. The regression function m7 (left hand) and the maxmin

estimate (right hand). (σ = 0.2, n = 5000).

Finally, we consider the case d = 10, where we used the following four regression

functions for our simulations:

• m8(u1, ..., u10) =
∑10

j=1(−1)j−1 · uj · sin(u2
j ),

• m9(u1, ..., u10) = m7(u1, u2),

• m10(u1, ..., u10) = m6(u1 + ... + u5, u6 + ... + u10),

• m11(u1, ..., u10) = m2(u1 + ... + u10).

We compare our maxmin estimate again with regression trees and neural networks.

In Table 6 we report the error values for the maxmin estimate and the other two

multivariate regression estimates.
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n 500 5000

σ 0 0.5 1 0 0.5 1

nn–est. 5.5527 5.4825 5.6506 4.7018 4.6583 4.7093

(0.1840) (0.2261) (0.2479) (0.1304) (0.1361) (0.1071)

reg–trees 5.6535 5.6297 5.7852 5.0029 4.9726 5.0189

m8 (0.1817) (0.2013) (0.2513) (0.1515) (0.1431) (0.1139)

maxmin 4.4715 4.4842 4.5392 3.7220 3.7106 3.7852

est. (0.1884) (0.1593) (0.1532) (0.1526) (0.1403) (0.1250)

nn–est. 0.0265 0.1790 0.4805 0.0079 0.0247 0.0680

(0.0081) (0.0531) (0.0917) (0.0014) (0.0023) (0.0097)

m9 reg–trees 0.3011 0.2980 0.3756 0.0477 0.0587 0.0901

(0.1826) (0.1073) (0.2008) (0.0071) (0.0078) (0.0131)

maxmin 0.6216 0.8003 0.9121 0.0279 0.0521 0.1471

est. (0.1049) (0.1255) (0.0928) (0.0133) (0.0085) (0.0358)

nn–est. 0.2064 0.2122 0.2284 0.2018 0.1982 0.2061

(0.0231) (0.0147) (0.0284) (0.0116) (0.0185) (0.0190)

m10 reg–trees 0.2033 0.2024 0.2053 0.2028 0.1987 0.2039

(0.0226) (0.0134) (0.0263) (0.0116) (0.0186) (0.0190)

maxmin 0.1893 0.2577 0.2944 0.0236 0.0502 0.1135

est. (0.0215) (0.0697) (0.0757) (0.0035) (0.0066) (0.0232)

nn–est. 0.8902 0.9057 0.9270 0.8711 0.8766 0.8738

(0.0180) (0.0286) (0.0381) (0.0126) (0.0126) (0.0139)

m11 reg–trees 0.9659 0.9745 1.0037 0.9006 0.9064 0.9107

(0.0244) (0.0281) (0.0231) (0.0132) (0.0122) (0.0144)

maxmin 0.0732 0.2037 0.4585 0.0152 0.0258 0.0552

est. (0.0338) (0.1014) (0.1099) (0.0028) (0.0057) (0.0181)

Table 6. Mean (standard deviation) of the L2 error for the associated

estimates. The regression function is m8,m9,m10 or m11, respectively.

Here none of the estimates is able to estimate m8 well. The two other methods

outperform our estimate, for m9, which is a very simple function depending in

fact only of two of the components of the predictor variable, but our estimate
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clearly outperforms the other estimates, in case of n = 5000 and m10 and for

n ∈ {500, 5000} in case of m11.

In summary, we can state that our estimate certainly performs well in comparison

with the established estimates. Especially in view of the variety of the underlying

problems and the fact that one usually has no a priori infomation about the shape of

the underlying regression function, it is always helpful to have a variety of suitable

estimates.

Moreover, this application to simulted data should have suggested that regression

function estimation with maxmin functions is at least a good alternative to the

established methods, and might sometimes be the better choice in applications.
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