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Abstract
An understanding of electrostatic interactions in biomolecular systems is crucial for many appli-
cations in molecular biology. This thesis focuses on the theoretical modeling of two effects: first,
the change in the dielectric properties of water due to hydrogen bond formation and second, the
reentrant condensation of proteins induced by protein-metal ion complexation.

A nonlocal response theory is necessary to describe the dielectric effects of hydrogen bond for-
mation. Correctly formulating this theory for a solvated biomolecule is challenging, because the
biomolecule’s cavity poses an obstacle for the water network. We develop a theory explicitly in-
corporating boundary conditions to describe the water network on the molecular surface. We
implement an accurate and efficient finite difference solver, which offers the possibility to easily
investigate different physically motivated boundary effects.

A detailed analysis of different nonlocal models reveals that, for the macroscopic behavior, the
boundary conditions are of minor importance, while for a detailed understanding of the electro-
statics near the molecular surface the correct modeling of the hydrogen bond formation is crucial.

Recent experimental findings describe a reentrant condensation of proteins in solutions of varying
metal ion concentration. We present a heuristic model to account for the metal ion binding on
the molecular surface which qualitatively and quantitatively explains the phase diagram of this
condensation effect.

Kurze Zusammenfassung
In der vorliegenden Arbeit konzentrieren wir uns auf die Beschreibung elektrostatischer Phänomene
in biomolekularen Systemen.

Zuerst untersuchen wir den Einfluss von Wasserstoffbrückenbindungen auf die dielektrischen
Eigenschaften von Wasser. Dafür ist die Einführung eines nichtlokalen dielektrischen Operators
notwendig. Die nichtlokale Reaktion des Wassers wird durch das gelöste Protein und der damit ent-
standenen Kavität maßgeblich beeinflusst. Wir entwickeln ein Differentialgleichungssystem, welches
Veränderungen der dielektrischen Eigenschaften an der Moleküloberfläche explizit berücksichtigt.
Um diese Randeffekte genauer zu analysieren und um unsere Modellgleichungen auf ionische Lö-
sungen zu erweitern, implementieren wir ein modifiziertes Finite Differenzen Verfahren, welches
sich, neben Effizienz, durch hohe Genauigkeit auszeichnet. Mit diesem Lösungsverfahren unter-
suchen wir erstmals verschiedene Wassermodelle. Die Analyse zeigt, dass die Veränderungen der
Randbedingung an der Moleküloberfläche auf makroskopische Größen von untergeordneter Bedeu-
tung sind, jedoch einen signifikanten Einfluss auf das elektrostatische Potential in der Nähe des
Moleküls hat.

Des Weiteren betrachten wir einen kürzlich entdeckten Effekt in Proteinlösungen: die Bindungs-
affinität von gelösten Metallionen induziert die Bildung von Protein-Metallionen-Komplexen. Die-
se können in Abhängigkeit der gelösten Ionenkonzentration kondensieren und wieder in Lösung
gehen. In Analogie zu Protonierungsmodellen entwickeln wir eine Theorie zur Beschreibung der
Komplexbildung. Erste Vergleiche mit Experimenten zeigen, dass das vorgeschlagene Modell den
Kondensationseffekt qualitativ und quantitativ erklären kann.
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Zusammenfasung

Die Funktionalität von Proteinen ist grundlegend für viele Reaktionen in lebenden Organismen,
denn sie können andere Moleküle an sich binden und damit eine Wechselwirkung auslösen. Dieses
sogenannte Schlüssel-Schloss-Prinzip wird in der medizinischen Forschung zur Wirkstoffentwicklung
genutzt: hier sucht man unter anderem nach kleinen Molekülen, sogenannten Liganden, die sich
an ein Protein anlagern um dessen fehlerhafte oder unerwünschte Reaktion im Organismus zu
unterbinden.

Um Wirkstoffe zu finden oder zu kreieren, bedarf es eines hohen zeitlichen und finanziellen Auf-
wands. Mit Hilfe von theoretischen Modellen versucht man deshalb möglichst viele Erkenntnisse
über potentielle Liganden zu erwerben. Hierbei ist es wichtig, die für die Wechselwirkung relevan-
ten physikalischen Größen zu spezifizieren und sie so gut wie möglich in einem Modell abzubilden.
Wegen ihrer Langreichweitigkeit und Stärke ist die Modellierung elektrostatischer Wechselwirkun-
gen hierbei von größter Wichtigkeit. Dazu gehört nicht nur die Elektrostatik des Moleküls, sondern
insbesondere auch der elektrostatische Einfluss seines Lösungsmittels. Diesen Einfluss bezeichnen
wir im Folgenden als dielektrische Antwort. Da Wasser das natürliche Lösungsmittel von Molekülen
in lebenden Organismen ist, ist dessen genaue Modellierung besonders wichtig.

Der erste Forschungsschwerpunkt der vorliegenden Arbeit ist die Modellierung der dielektrischen
Eigenschaften von Wasser in biomolekularen Systemen. Wasser ist ein vielseitiges Lösungsmittel,
denn neben seinen permanenten Dipolmomenten besitzen Wassermoleküle die Eigenschaft, Was-
serstoffbrücken zu bilden, wodurch sie ein dreidimensionales Netzwerk ausbilden. Wegen dieses
Netzwerks hängt die Bewegung eines einzelnen Moleküls von den Bewegungen der benachbarten
Wassermoleküle ab. Anschaulich ist die Reaktion der Wassermoleküle also nicht nur bestimmt durch
das elektrostatische Feld an dem Ort des Moleküls, sondern auch durch das in der näheren Umge-
bung herrschende Feld. Wir sprechen von einer nichtlokalen dielektrischen Antwort und damit von
der nichtlokalen Elektrostatik. Sie steht im Gegensatz zu der klassischen, lokalen Elektrostatik, bei
der die dielektrische Antwort allein von dem betrachteten Ort abhängt und wie folgt formuliert
wird:

Evac(r) = ε(r)Ewasser(r) ,

wobei Evac das elektrostatische Feld im Vakuum, ε die dielektrische Funktion, und Ewasser das
reale, durch die lokale dielektrische Antwort resultierende Feld bezeichnet.

In den 70er Jahren erweiterten russische Physiker obige Gleichung, um die dielektrischen Effekte
des Wasserstoffbrückennetzwerks zu beschreiben. Die Erweiterung bestand in der Einführung eines
dielektrischen Operators ε(r− r′), der die Reaktion an einer Position r in Wasser in Abhängigkeit
der Position r′ beschreibt:

Evac(r) =
∫
V

dr′ε(r − r′)Ewasser(r′) ,

dabei bezeichnet V den Raum, den das Wasser einnimmt. Wegen des Zusammenspiels dieses In-
tegrals und der differentiellen Materialgleichungen der Elektrostatik konnte man die nichtlokalen
Gleichungen nur für ausgewählte Modellsysteme lösen. A. Hildebrandt et al. ermöglichten 2007 mit
der Einführung einer rein differentiellen Schreibweise die nichtlokale elektrostatische Theorie auf
kompliziertere Modellsysteme, wie zum Beispiel in Wasser gelöste Proteine, anzuwenden.

Basierend auf dieser Umformulierung des integro-differentiellen Systems wurden zwei unterschied-
liche Wassermodelle entwickelt. Dies ist der Ausgangspunkt unserer Untersuchungen.

Obwohl beide Wassermodelle auf dem gleichen nichtlokalen Operator basieren, sind die resultie-
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renden Differentialgleichungen verschieden. Erstes Ziel der vorliegenden Arbeit ist es, ein besseres
Verständnis der unterschiedlichen Gleichungssysteme zu erlangen. Ausgehend von der mathema-
tischen Idee die integrale Gleichung als Lösung eines Differentialgleichungssystems zu verstehen,
untersuchen wir erstmals die physikalische Bedeutung dieser Umformulierung: wir führen ein neu-
es physikalisch interpretierbares Feld, das sogenannte Korrelationsfeld, ein. Dieses Feld trägt der
durch die Wasserstoffbrückenbindungen hervorgerufenen Nichtlokalität Rechnung. Stellen wir uns
das Wassernetzwerk in der Nähe des gelösten Moleküls vor, dann wird unmittelbar klar, dass die
Oberfläche des Moleküls ein Hindernis für das Wassernetzwerk darstellt. Eine Umorientierung der
Wasserstoffbrücken an der Moleküloberfläche verändert das Korrelationsfeld. Mit der expliziten
Einführung dieses Feldes können wir nun die Unterschiede der beiden Wassermodelle physikalisch
interpretieren: das eine Modell legt eine kontinuierliche Fortsetzung des Korrelationsfeldes zugrun-
de, wohingegen das andere ein verschwindendes Korrelationsfeld an der Moleküloberfläche fordert.

Diese Überlegungen führen zu der Frage, ob es eine Möglichkeit gibt, explizit das Verhalten des
Korrelationsfeldes an der Oberfläche des Moleküls vorzugeben. Solche Randwerte können zum Bei-
spiel theoretisch motiviert oder aus einem Experiment abgeschätzt worden sein. In der vorliegenden
Arbeit präsentieren wir eine neue differentielle Formulierung der nichtlokalen Theorie, in der die
Vorgabe von sogenannten Randbedingungen das Verhalten des Korrelationsfeldes an der Oberfläche
fixieren.

Um die Effekte verschiedener Randbedingungen des Korrelationsfeldes effizient zu untersuchen,
ist ein numerisches Verfahren notwendig, das schnell umzusetzen und einfach erweiterbar ist.
Ergänzend zu den theoretischen Überlegungen entwickeln wir in Kooperation mit V. Rutka ei-
ne modifizierte Finite Differenzen Methode (FDM). Unsere FDM nutzt die sogenannte Explizit
Jump Immersed Interface Methode (EJIIM), die sich neben Effizienz durch hohe Genauigkeit der
Lösungen auszeichnet. Bei diesem Verfahren werden Sprungbedingungen in den Gleichungen durch
Korrekturterme direkt modelliert. Durch die Veränderung der dielektrischen Antwort an der Mo-
leküloberfläche treten definierte Sprünge in den elektrostatischen Gleichungen auf, was EJIIM zu
einer geeigneten, leistungsfähigen numerischen Methode macht.

Für die Anwendung der EJIIM sind zwei Vorarbeiten notwendig. Zum einen, bedarf es einer
exakten Beschreibung der Moleküloberfläche in einem dreidimensionalen, kartesischen Gitter. In
dieser Arbeit stellen wir einen neu entwickelten Algorithmus vor, der eine Gitter-basierte Mo-
leküloberfläche berechnet. Zum anderen erfordert das FDM eine Abschätzung der gesuchten Felder
an den Rändern des benutzten Gitters. Wir leiten eine exzellente Näherung her. Eine Analyse die-
ser Randwertnäherung zeigt, dass sie in dem für uns interessanten Parameterbereich nicht nur am
Rand, sondern im gesamten Lösungsmittelgebiet gilt. Dies eröffnet neue Anwendungsmöglichkeiten
der nichtlokalen Elektrostatik, wie zum Beispiel die zeitabhängige Simulation der Bewegung eines
Liganden in der Nähe der Proteinbindetasche.

Mit der EJIIM studieren wir unterschiedliche Wassermodelle. Die Untersuchung ergibt, dass die
nichtlokale Elektrostatik im Vergleich zu der lokalen Modellierung ein größeres, elektrostatisches
Potential im Außenraum und ein kleineres Reaktionsfeldpotential im Molekülinneren aufweist. Die
Größenordnung ist bei allen nichtlokalen Modellen gleich. Unterschiede ergeben sich lokal bei den
Potentialen in direkter Nähe zur Proteinoberfläche.

Der zweite Forschungsschwerpunkt dieser Arbeit ist ein spezieller Kondensationseffekt, der kürz-
lich bei Protein-Metallionen-Lösungen gefunden wurde: die sogenannte reentrante Kondensation.
Reentrante Kondensation bezeichnet den Effekt, dass sich Proteine negativer Gesamtladung bei
Zugabe einer kritischen Konzentration c∗ hochgeladener Metallionen zusammenlagern. Bei Präsenz
einer zweiten, kritischen Metallionenkonzentration c∗∗ > c∗ geht das Kondensat wieder in Lösung.
Eine genauere Analyse von Metallionen-Protein Wechselwirkungen legt den Schluss nahe, dass es
sich hierbei um eine spezifische Metallionen-Protein-Komplexierung handelt. Diese versuchen wir
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durch ein einfaches Modell darzustellen: wir behandeln die Metallionen als Liganden, die sich an
vordefinierten Bindungsstellen auf der Proteinoberfläche anlagern. In Anlehnung an das Vorgehen
bei Protonierungsimulationen führen wir Affinitätskonstanten ein, die das Anlagern in Abhängigkeit
der Ionenkonzentration energetisch begünstigen. Mit der Postulation, dass, erst wenn die effektive
Gesamtladung der Protein-Metallionen-Komplexe verschwindet, die Kondensation durch attrak-
tive Wechselwirkungen einsetzt, kann diese Modellvorstellung den Kondensationseffekt konsistent
erklären.

Die theoretischen Überlegungen setzen wir numerisch um: wir implementieren ein modifiziertes
Titrationsverfahren, welches mit Hilfe einer Monte Carlo Simulation den Zustandsraum abtastet
und den energetisch günstigsten Besetzungszustand der Metallionen auf der Proteinoberfläche fin-
det. Mit Hilfe dieses Modells berechnen wir die effektive Gesamtladung eines Protein-Metallionen-
Komplexes. Der qualitative und quantitative Vergleich der ersten Phasengrenze und der effek-
tiven Ladungskurve, sowie der qualitative Vergleich mit Zeta-Potential-Kurven, zeigt sehr gute
Übereinstimmung.

Insgesamt trägt diese Arbeit zu einem größeren Verständnis von Korrelationseffekten elektrosta-
tischer Phänomene, die in biomolekularen Systemen auftreten, bei. Die vorgeschlagenen Modelle
und theoretischen Betrachtungen eröffnen interessante Fragestellungen für zukünftige, innovative
Forschungsarbeiten. Des Weiteren bilden die von uns entwickelten numerischen Methoden die Basis,
theoretische Überlegungen effizient umzusetzen und zu untersuchen.
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aussprechen, denn durch ihre Unterstützung konnte ich mein letztes Jahr über ein Stipendium der
Universität des Saarlandes finanzieren.

Eine nicht zu unterschätzende Hilfe in der gesamten Zeit der Promotion waren meine Kollegen
von den Arbeitsgruppen Lenhof und Hildebrandt, die mich in den kleinen Kreis der Bioinformatik
aufgenommen haben und mir immer geduldig bei meinen Programmierversuchen geholfen haben.
Besonderer Dank gilt dabei meinem “Mitbewohner” René Hussong. Unsere gemeinsame Zeit und
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Chapter 1

Introduction

Proteins are the main actors in living organisms and their interactions are fundamental to many
processes in molecular biology. A characteristic of proteins that allows a diverse set of functions is
their ability to bind molecules, such as other proteins, DNA, or ligands.

In particular, protein-ligand docking is of great interest in pharmaceutical studies and drug
development: the idea is to search for small ligands that - bound to the disease-related protein -
suppress the functionality of the latter. Searching for new, medical therapies, enabled by suitable
ligands, is an important, but, very expensive, field of research of our time. Fig. 1.1 depicts the
various steps in drug development with respect to temporal and financial effort.

Fig. 1.1: Steps in drug development with their temporal and financial effort [89].

In order to reduce the costs as well as the time needed for testing novel drug candidates in the
clinical phase, it is of great importance to carefully study the required features of a potential drug.
In the preclinical phase, research is focused on the rational computer-aided drug design with the
aim to find the most promising candidates for a further study. A crucial step towards an effective
drug is to accurately predict biochemical interactions and therefore, effort is made to understand
the basics of molecular interactions from the theoretical side.

Electrostatic interactions play a particularly important role in searching for suitable docking
partners, i.e., drug candidates, because of their long-range character and the strong attraction,
which is present between two contrary charged regions. For correctly understanding the electrostatic
interactions of biomolecules it is, however, essential to take into account its native solvent, namely
water. The permanent dipole moment of the water molecules crucially changes the electrostatics
of the immersed molecules. Further, the ability of water to form a hydrogen bond network causes
this solvent to be rather dynamic and active than inert in the presence of a protein. Water is, for
instance, known to electrostatically stabilize the native structure of biomolecules and to contribute
significantly to protein folding [36,152]. It also plays a crucial role in the functionality of proteins,
see [20] and citations given therein.

Understanding the complex interplay between water and proteins as well as the functionality
of the latter implies a deeper knowledge on the electrostatic interactions apparent in the solvent.
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Chapter 1. Introduction

The standard theory, which has been found to describe the electrostatic fields caused by all the
partial charges present in a system, is given by the Maxwell equations. As illustrated in Fig. 1.2, the

Fig. 1.2: In the native state, the protein is immersed in water.

protein is naturally surrounded by a multitude of water molecules. The protein as well as the mobile
water molecules carry partial charges, which cause them to interact with each other in a highly
dynamic and flexible way to reach an equilibrium state. A prediction of these interactions, with
simultaneously considering all particles in the system, would mean to apply the time dependent
Maxwell equations on a many-particle problem of the order ∼1023 particles/liter. Such an explicit
representation of each water molecule is often not feasible and further, is often not necessary:
because of their high density the water molecules can be assumed as a continuous medium on the
macroscopic length scale, in particular when considering a time average.

Fig. 1.3: A water dipole rotates to minimize its potential energy in the electrostatic field.

The ability to form hydrogen bonds is often not explicitly incorporated in a theoretical model,
but the water molecules are treated as small, rotatable dipoles in the electrostatic field, which
originates from the protein’s charges in vacuum. The reorientation of a single water molecule in
the electrostatic field Evac is depicted in Fig. 1.3.

The macroscopic effect of all the polar solvent molecules, also known as dielectric response,
results in a weakening of the electrostatic field compared to its magnitude in vacuum [61]. In fact,
most biomolecular studies assume a simple continuum model of water, where a constant factor of
εwat/εvac = 78.5 is used to describe the dielectric effect. This means that the electrostatic field
Ewat of the protein in water is weakened by a factor of 78.5 compared to the electrostatic field Evac

of the protein in vacuum,
Evac =

εwat

εvac
Ewat .

Whether this assumption is adequate, highly depends on the aim of the biomolecular study.
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As we have discussed before, the dipolar character of water and the hydrogen bonds between the
water molecules are not negligible when the functionality of proteins in their native state is the
focus of research. Fig. 1.4 shows that a water molecule tries to correlate with four neighboring
water molecules mediated by hydrogen bonds. This correlation influences the undisturbed rotation
of each water molecule in the electrostatic field.

Fig. 1.4: The water molecule correlates via hydrogen bonds with its next neighbors.

First attempts to describe the structural effects of the hydrogen bond network within the electro-
static continuum theory go back at least forty years, when the simple continuum theory of constant
dielectric response was extended to an integral form:

Evac(r) =
∫

dr′ε(r − r′)Ewat(r′)

The integral representation of the dielectric response captures the spatial dependencies of the sol-
vent’s reaction to an external field [35]. These spatial dependencies originate from the coordinative
hydrogen bonds of every water molecule with the neighboring molecules and therefore it is a nonlocal
response.

Although the concepts to describe water in the nonlocal response theory has been established
since then, the theory could only be applied to simple, symmetric systems because of the interplay
of integral and differential equations. After A. Hildebrandt and coworkers achieved a reformulation
of the integro-differential system to a system of complicated, however purely differential, equations,
it is now possible to solve for the nonlocal electrostatics of non-trivial systems [52].

The first part of this work is based on the ideas given in [52, 53] and [39, 40] to describe the
water correlations within the Lorentzian water model which is the simplest nonlocal model for
ε(r−r′). The purely differential formulation of the electrostatic equations with a Lorentzian water
response offers the possibility (a) to thoroughly investigate and interpret the physical meaning of
the underlying nonlocal formulation, (b) to debate approximations for an efficient numerical solver
and further (c) to discuss modifications and extensions in order to describe proteins in their native
state:

In the following, we address these points in more detail, since all of them are tackled within this
thesis.

(a) The original Lorentzian model of nonlocal response is actually a theory of the water in the
bulk, i.e., there is no disturbing boundary and the whole space is filled with water. Thus, to
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Chapter 1. Introduction

apply the nonlocal response theory to biomolecules immersed in water, we have to provide
the tools for defining the behavior of water on the molecular surface. Here, the solid-liquid
interface confines the water network: the spatial cavity caused by the immersed biomolecule as
well as the change in the dielectric response when crossing the biomolecular surface naturally
result in a reformation of the hydrogen bonds near the surface as it is shown in Fig. 1.5.

Fig. 1.5: The water network is disturbed when approaching the molecular surface.

In this work, we derive a novel formulation of the nonlocal water response, where in addition
to the volume integral, which has been presented above, boundary integrals determine the
dielectric response in the solvent and in particular on the surface. This gives us - at least
theoretically - the possibility to impose a specific, variable behavior of the water correlations
on the molecular surface. It offers, for instance, a consideration of “first shell” effects [51] or
the differentiation of local variations of the hydrogen bond network due to polar and nonpolar
regions.

With this general integral formulation we gain a deeper understanding of two former nonlocal
approaches: the vectorial model that has been derived and numerically solved by C. Fasel [40],
is based on the original Lorentzian water model, i.e., it ignores an explicit change in the water
network when approaching the molecular surface. In contrast, the second model proposed
by A. Hildebrandt, incorporates - in its vectorial formulation - a stiff water network on the
molecular surface. Apart from the interpretation of the vectorial models, we find the physical
meaning of the approximations made by A. Hildebrandt in [53] to obtain a purely potential
formulation of the nonlocal electrostatic equations.

(b) Both, the vectorial and the scalar, models are numerically solved using the Boundary Element
method. Although this method yields highly accurate results, it is difficult and sometimes
impossible to adapt the method to modifications. For instance, considering Boltzmann-
distributed salt ions in the solvent results in an extension from linear to nonlinear partial
differential equations, which can be solved with the Boundary Element method only with
a considerable additional effort. A further bottleneck of the Boundary Element method is
the requirement of a smooth, but coarse, surface triangulation because of limiting memory
capacities. Coping with these requirements is not a simple task, when considering the complex
shape, which is built up by hundreds of atoms the biomolecule is composed of. This can
already be seen from the fact that up to now a fully automatic Boundary Element solver with
integrated mesh generator for biomolecular computations is not available [83]. However, such
an automatic solver is necessary for an integration of the nonlocal electrostatic models into a
biomolecular framework and thus to offer a broad applicability of the nonlocal theory.

In order to avoid the inflexibility and the sensitive input requirements of the Boundary El-
ement method, the second focus of this work is to develop an alternative, numerical tool,
which solves the nonlocal differential equations efficiently and stably, and most importantly,
which is easily extensible.
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Using finite difference methods, we can draw upon many years of experience for computing
biomolecular electrostatics [8, 11, 58, 85]. This, in principle, supports the idea to develop
a finite different scheme for nonlocal electrostatics. However, several essential features of
the electrostatic field on the interface of the molecule and the solvent are left untreated in
traditional finite difference solvers [83]. Therefore, we decided to develop a modified finite
difference scheme, the Explicit Jump Immersed Interface method, which explicitly accounts
for the electrostatics on the molecular surface [143, 144]. On the one hand, we can take ad-
vantage of the stability and the effortless extensibility as well as of well-established numerical
tools for solving the algebraic equations. On the other hand, the Explicit Jump Immersed
Interface method provides highly accurate results even on the molecular surface.

With the successful implementation of this robust finite difference solver and the stable,
automatic generation of required input information, we provide a new tool to study the
nonlocal electrostatic equations and pave the way for a broader application. As elaborated in
(a), we aim at a deeper understanding of the Lorentzian water theory giving rise to modified
models, which can now be easily solved and compared.

(c) As illustrated in Fig. 1.6, the physiological conditions of native proteins are not only given
by water, but also by additionally solvated ions, which determine the natural salinity. The
Poisson-Boltzmann theory correctly describes the electrostatic field of biomolecules in ionic
solutions for mono- and divalent ions of low concentration, i.e., in the case of negligible ion
correlations [56]. Intuitively, it is clear that the ions distribute in a way to minimize their
potential energy and this in turn results in an effect similar to the rotation of the dipoles
which we discussed above: the electrostatic field is weakened in comparison to its magnitude
in vacuum. The effect that solvated ions decrease the magnitude of the electrostatic field is
known as ionic screening.

Fig. 1.6: In the native state, the protein is immersed in ionic water.

In order to further approach a realistic description of native proteins, we consider the effects
of dilute, ionic solutions in addition to the nonlocal water response. This is accomplished by
an incorporation of the linearized Poisson-Boltzmann theory into the nonlocal electrostatic
equations. With the use of the finite difference method, such an extension is easily possible
in the nonlocal framework.

The incorporation of salt ions into the theory of correlated water shows an interesting effect:
the screening of the ions is a counterpart to the water network. Depending on the strength
of both, the ionic screening and the water correlations, one of the two effects dominates and
determines the overall behavior of the biomolecular system.
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Chapter 1. Introduction

The description of the nonlocal water-water correlations as discussed before constitutes the main
part of this work. But of course, not only water-water correlations can cause an extraordinary
behavior in protein solutions. We complete this work with an investigation of specific protein-
metal ion correlations treating the solvent as an unstructured medium, i.e., water is characterized
by a constant dielectric response. Specific protein-metal ion interactions are important in protein
solutions as they stabilize the protein’s globular structure [10,49,100,131] and as they play a crucial
role in the protein folding process. Specific protein-metal ion correlations can even cause protein
aggregation and re-dissolution [150]. The latter phenomenon is called reentrant condensation
and describes the effect that solvated protein precipitates due to adding a critical concentration
c∗ of trivalent metal ions. The solution once again re-dissolves, when adding a second critical
concentration c∗∗>c∗ of trivalent metal ions. This can be seen on the change in the turbidity of
the solution in Fig. 1.7. Such a controllable and reversible aggregation could be important for the
drug development of human diseases, where the agglomeration of protein plays a crucial role, i.e.,
Alzheimer disease.

Fig. 1.7: Increasing the metal ion concentration (Y 3+) causes the protein solution (Bovine Serum albumin)
to aggregate and to re-dissolve.

Specific protein-metal ion correlations are not treated in the Poisson-Boltzmann equation as
within this theory the reaction of solvated ions is only captured by a mean-field approximation.
We propose and develop a model, which accounts for these specific protein-metal ion correlations.
The model is based on the introduction of binding affinities of the metal ions to surface exposed
amino acids in analogy to titration simulations of the protonation state of proteins [111].
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The outline of this work is as follows: in Chapter 2 we give a detailed introduction to the
electrostatic Maxwell equations, as these are the basis not only for the conventional description
of electrostatic phenomena in dielectrics, but they are also the basis for the nonlocal formulation
which is deduced in Chapter 3. Within Chapter 3, we define the description of the biomolecule
used in this work, i.e., its charge distribution, the molecular surface, and its dielectric response.
Further, we introduce the details of water as the native solvent of biomolecules. We introduce
the Lorentzian model to account for nonlocal water correlations and discuss analytically solvable
systems.

Taking into account the idea to reduce the integro-differential system of nonlocal electrostatics
to a system of purely differential equations, we develop a novel, general formulation of nonlocal
electrostatics in Chapter 4. This formulation is the starting point for a detailed discussion on two
different vectorial models. Chapter 5 is devoted to suitable approximations allowing for purely
potential formulations of nonlocal electrostatics. For an extensive study of the nonlocal electro-
statics of non-trivial geometries, we introduce two numerical tools in Chapter 6, the Boundary
Element method and the Explicit Jump Immersed Interface method. As the latter has been de-
veloped for nonlocal electrostatics during this work, we discuss the basic idea and the numerical
implementation in detail. This chapter further introduces the numerical tools to generate all the
input requirements of the Explicit Jump Immersed Interface method: an estimation of the solution
values on the boundary of the box used for the finite difference calculation as well as the discrete
representation of the molecular surface in a 3-dimensional Cartesian grid. After a detailed dis-
cussion on the performance of the two numerical methods, we apply and compare the previously
derived nonlocal models on a set of small molecules and two proteins in Chapter 7.

In Chapter 8 we analyze the mean-field effect of salt additionally immersed in correlated water.
In order to demonstrate specific effects which are caused by correlations different from water-water
correlation we finally focus on a recently discovered condensation effect in protein solutions. We
demonstrate that this non-trivial effect is well described by a modified titration program, which we
develop and apply in this chapter.
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Chapter 2

Physical background

In this section, we present the so called Maxwell equations, which describe all dynamic and static
phenomena that involve charges. Since the focus of this work is the electrostatic nature of molecules
in solution, we concentrate on the time-independent formulation.

Section 2.1 introduces the Maxwell equations in vacuum, within which all charges of the system
are treated explicitly. When considering a continuous, dense medium composed of a high number
of molecules, an explicit treatment of all the involved charges is nearly impossible. In particular,
in the context of solvated biomolecules we have to cope with this problem. Section 2.2 focuses on
the so called material equations, where the effect of the charges is separated into two parts, an
explicit and a mean-field part. A discussion on the electrostatic (field) energy in Section 2.3 closes
the chapter on the physical background.

2.1 The Maxwell equations in vacuum

Let us consider an arbitrary, static charge density ρ in vacuum. Then, the electrostatic field E
satisfies the following differential equations [61,97]

∇ ·E(r) =
1
ε0
ρ(r), r ∈ R3 (2.1)

∇×E(r) = 0, r ∈ R3 , (2.2)

where the dielectric permittivity of vacuum ε0 defines the proportionality constant required to
express the electrostatic field in SI units, ε0 = 8.85418e−12 C

Vm .
Let V be an arbitrary volume in R3 and ∂V its surface. Further, let F denote an arbitrary, open

surface in R3 and ∂F its boundary as shown in Fig. 2.1. With these notations, the application of
Gauss’ and Stokes law casts Eqs. (2.1) and (2.2) into the following integral form [61,76]

∀V ⊂ R3, dimV = 3 :
∫
∂V

df ·E =
1
ε0

∫
V

ρ(r)dr (2.3)

∀F ⊂ R3, dimF = 2 :
∫
∂F

dl ·E = 0 . (2.4)

Eq. (2.3) is the so called physical Gauss law. It tells us that every charge distribution ρ in space
creates an electrostatic field E. This means that charges are the sources of the electrostatic field or
- in other words - they react to a given electrostatic field. The physical meaning of Eq. (2.2) can be
seen in integral form, Eq. (2.4): if we add up on a closed path ∂F ⊂R3 the electric field component
parallel to this path, the result is zero. This means that the electrostatic field is free of vortices
everywhere.

9



Chapter 2. Physical background

Fig. 2.1: The integral representation of the Maxwell equations.

A vector field fulfilling Eq. (2.2) can be expressed by the gradient of a scalar function, a so called
potential [29, 61]. Thus, we can introduce the electrostatic potential φ of the electrostatic field E:

E(r) = −∇φ(r), r ∈ R3 (2.5)

The electrostatic potential φ is uniquely defined up to a gauge constant, which does not bear any
physical meaning. The constant is commonly chosen in a way that

lim
r→∞

φ(r) = 0 .

Furthermore, we want to find physical solutions E of Eq. (2.1), i.e., solutions for which the field
energy Wfield of the system is finite. Mathematically, this is the case when all the fields appearing
in the electrostatic theory (such as the electrostatic field E as well as the dielectric field D, which
we will define in Section 2.2) are square integrable, i.e., elements of L2(R3). Loosely speaking, this
guarantees that the fields in the electrostatic theory vanish “fast enough” for r ∈ R3 with |r| → ∞:

lim
|r|→∞

E = 0

In the following, we call this condition the radiation condition.
Inserting Eq. (2.5) into Eq. (2.2) and solving the differential equation

4φ(r) = − 1
ε0
ρ(r), r ∈ R3 (2.6)

is then the basic problem of electrostatics [61, 97]. Eq. (2.6) is called Poisson equation and the
differential operator therein, 4 := (∂xx+∂yy+∂zz) with ∂ii := ∂2

i for i ∈ {x, y, z} , is known as the
Laplace operator. The potential ansatz reduces the system of first order differential equations (2.1-
2) with the vectorial unknown E, to a second order differential equation for the unknown, scalar
field φ. It is often simpler to calculate the potential first and derive E from Eq. (2.5) than to solve
for E directly. Thus, we focus on the potential formulation in the following.

The validity of Eqs. (2.1) and (2.2) enforces the electrostatic field E to fulfill continuity conditions
at every point r in space. These continuity conditions are now deduced: in order to analyze the
behavior of the electrostatic field E on an arbitrary surface Γ ⊂ R3, we consider the integral forms
of the Maxwell equations, Eqs. (2.3) and (2.4).

∀V ⊂ R3, dimV = 3 :
∫
∂V

df ·E =
1
ε0

∫
V

ρ(r)dr

∀F ⊂ R3, dimF = 2 :
∫
∂F

dl ·E = 0 .
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2.1. The Maxwell equations in vacuum

Fig. 2.2: Normal transmission conditions of the electrostatic field (in vacuum).

First, we focus on an infinitesimal small volume V , which comprises a part of Γ as shown in
Fig. 2.2. To find the behavior of the electrostatic field E on Γ we perform the limiting process
(δx → 0) in Eq. (2.3), in a way that δV contracts to the small, black point drawn in Fig. 2.2: the
left hand side yields

lim
δx→0

∫
∂V

δf ·E = n · (Eout −Ein) δF , (2.7)

where n δF = δf . In Eq. (2.7) we used the fact that δF is infinitesimal small and this allows to
assume that the electrostatic fields Ein and Eout are constant. On the right hand side we find a
non-vanishing result for the limiting process only if the surface Γ has a singular surface charge σ,
i.e., if the charge is distributed solely on Γ:

lim
δx→0

∫
V

dr
ρ(r)
ε0

=
σ

ε0
δF . (2.8)

Combining Eqs. (2.7) and (2.8), the limiting process results in

n · (Eout −Ein) =
σ

ε0
. (2.9)

This means that the normal component of the electrostatic field, (n · E), is discontinuous on a
surface that carries a charge density σ. For σ = 0, the normal component is continuous.

The behavior of the tangential components of E becomes clear by considering Eq. (2.4) in the
limiting process (δx→ 0) and infinitesimal small δl = |δl| 6= 0 (see Fig. 2.3 for notations)

0 = lim
δx→0

∫
∂F

δl ·E

⇔ 0 = δl · (Eout −Ein) = δl (t× n)︸ ︷︷ ︸
δl

·(Eout −Ein)

⇔ 0 = (t× n) · (Eout −Ein) .

We introduced n and t, which, together with l, complete the orthogonal trihedral on Γ. The vector
t points out of the drawing plane and is tangential to the surface Γ.

Eq. (2.1) is valid for an arbitrary setup enclosing Γ, i.e., for every vector t tangential to the
surface. Thus, we can generalize

n× (Eout −Ein) = 0 . (2.10)

The continuity of the tangential component of the electrostatic field, Eq. (2.10), transfers to the
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Chapter 2. Physical background

Fig. 2.3: Tangential transmission conditions of the electrostatic field.

continuity of the electrostatic field φ at every arbitrary point r ∈ R3 [29], see Appendix 10.2 where
we recall the proof given in [52]:

φout − φin = 0

Our findings on the transmission conditions of the electrostatic field E are subsumed in Theo-
rem 2.1.1.

Theorem 2.1.1 Maxwell equations in vacuum and transmission conditions: Let us assume a
static, and therefore fixed charge density, ρ in R3. Additionally, let us assume a static surface
charge distribution σ spread over an arbitrary surface ∂V ⊂R3.
The Maxwell equations in differential form read

∇ ·E =
1
ε0
ρ, in R3

∇×E = 0, in R3 .

Due to the surface charge density σ, the electrostatic field E fulfills the following transmission
conditions on ∂V

n× (Eout −Ein) = 0, on ∂V

n · (Eout −Ein) = σ(r), on ∂V .

We close this paragraph with an important remark on the Maxwell equations, which is used several
times in this work.:

Important remark 2.1 The Maxwell equations are linear equations. Therefore, the principle of superpo-
sition is valid [61]. This means that the net electrostatic field at a given place caused by two or more charges
is the sum of the electrostatic fields which would have been caused by each charge individually.

2.1.1 The Laplace operator

In the above discussion, we assumed that Eq. (2.6) is valid in R3 and further that the radiation
condition has to be fulfilled by any physical solution. In this case, the solution of Eq. (2.6) can be
analytically written in the form of an integral. In order to show this, we introduce the so called
fundamental solution of the Laplace operator.
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2.1. The Maxwell equations in vacuum

Theorem 2.1.2 The fundamental solution of the Laplace operator: A solution to the following
differential equation1 defined in R3

4G4(r) = −δ(r) , r ∈ R3 (2.11)

is given by

G4 : R3\{0} 7→ R (2.12)

r 7→ 1
4π |r|

G4 is called the fundamental solution of the Laplace operator 4. G4 is the unique, physical solution
to Eq. (2.11), i.e., when the radiation condition has to be fulfilled.
Proof: see [97, 121].

With the knowledge of the fundamental solution of the Laplace operator, it is easy to find the
solution to problem (2.6). The electrostatic potential φ is proportional to the following convolution:

f(r) := (G4 ∗ ρ)(r) :=
∫
R3

dr′G4(r − r′)ρ(r′), r ∈ R3 , (2.13)

as
4f(r) = 4[(G4 ∗ ρ)(r)] =

∫
R3

dr′ 4G4(r − r′)︸ ︷︷ ︸
−δ(r−r′)

ρ(r′) = −ρ(r), r ∈ R3 . (2.14)

The function f defined in Eq. (2.13) is called the Newton potential of the Laplace operator with
source term ρ [27, 52,121].

Often, the validity of Eq.(2.6) is not given in the whole of R3, but is confined to a finite volume
V ⊂R3, where we are given fixed values of the potential φ (Dirichlet data) or its normal derivative
at the volume’s boundary ∂V (Neumann data).

For these so called boundary value or transmission problems, Eq. (2.13) is obviously no longer
valid. It has to be modified in order to fulfill the boundary values. The idea behind this is to
add a correction term to the Newton potential, which does not impact the differential equation.
Mathematically spoken, the correction term lies in the kernel of the respective operator and it
modifies the Newton potential so that the boundary values are correct 2.

For instance, assume to have the following Dirichlet boundary value problem

4φ(r) = δ(r), r ∈ V
φ(r) = b(r), r ∈ ∂V .

}
(2.15)

Let f0 ∈ Kern(4), i.e. 4f0 = 0. The solution of system (2.15) is then given by

φ(r) = (G4 ∗ ρ)(r) + f0(r), r ∈ V,

where f0 is chosen in a way that the boundary condition is fulfilled.

1Eq. (2.11) has to be understood in the distributional sense, because the right hand side is a δ-distribution.
2Compare (a) low-level mathematics where we search for general homogeneous and special solutions to solve differ-

ential equations (b) the “weak” formulation for the inhomogeneous solution of the Yukawa operator in Section 4.3
(Single and Double layer potentials) and (c) the Helmholtz decomposition derived in [29].
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Chapter 2. Physical background

It is, for instance, easy to show that the kernel of the Laplace operator for spherically symmetric
problems, i.e., the solution of the differential equation

4f0(r) = 0, r = |r|, r ∈ R3 ,

is given by

f0(r) =

{
A+ B

r , r 6= 0
A, r = 0

where A,B ∈ R are constants.

2.2 The Maxwell equations in dense media

Dense media consist of so many atoms that an explicit treatment in terms of their electrostatics
is difficult. The macroscopic material equations offer a possibility to account for their reaction, as
they try to capture the electrostatic effect of all bound charges of the medium’s molecules within
a mean-field approach. In order to motivate this and to set up the basis for the macroscopic
theory, we discuss the multipole series of an arbitrary charge distribution in Section 2.2.1. Then,
in Section 2.2.2 we introduce the material equations which are derived from the Maxwell equations
in vacuum. Section 2.2.3 finally deals with the linear response theory which is required to specify
the medium’s reaction to an external electrostatic field.

2.2.1 Monopole and dipole moment of a charge distribution

In Section 2.1.1 we learned that the solution to Eq. (2.6) can be written as

φ(r) =
1
ε0

(G4 ∗ ρ)(r) =
1

4πε0

∫
R3

dr′
ρ(r′)
|r − r′|

, r ∈ R3 . (2.16)

The calculation of the volume integral is often complicated. However, if one is interested in the
potential φ(r) “far” from the charge distribution as illustrated in Fig. 2.4, it often suffices to develop

1
|r−r′| into a Taylor series around the origin, i.e., r′=0 [61]. The Taylor series of Eq. (2.16) is given
by

4πε0φ(r) =
Q

r
− (∇1

r
) · p+ · · · = Q

r
+
r · p
r3

+O(
1
r5

) , r = |r|, r ∈ R3 , (2.17)

where we used the following definitions:

Definition 2.1 Monopole and dipole:

Q :=
∫

R3

dr′ρ(r′)

p :=
∫

R3

dr′r′ρ(r′)

Q denotes the monopole or total charge and p is known as dipole moment.

We truncate the Taylor series after the dipole moment, as the higher moments decrease on
the order ≥O( 1

r5 ) and therefore, they are often negligible compared to the monopole and dipole
moment. The approximation then reads

φ(r) =
Q

4πε0 r
+

r · p
4πε0 r3

, r = |r|, r ∈ R3 . (2.18)
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2.2. The Maxwell equations in dense media

Fig. 2.4: A Taylor series around r′ = 0 is used to approximate the potential at position r far from the
charge distribution ρ.

When the total charge is zero, i.e., Q= 0, the dipole moment dominates. It is a measure for the
symmetry of the charge distribution. From this point of view the multipole series does not only
describe the asymptotic behavior of the electrostatic potential, but gives an idea of the spatial
distribution and the complexity of ρ. Generally, the more moments are taken into account the
better the “resolution” of the charge distribution.

Since the monopole moment does not provide any hint on the spatial distribution but only on
the overall magnitude of ρ, we will have a closer look at the dipole moment. The arrangement
of two opposite point charges with magnitude q and a distance vector a from the negative to the
positive charge is called a dipole. The Taylor series of this charge distribution yields an expression
for the dipole moment, namely

p = qa .

Fig. 2.5 illustrates a dipole within an external electrostatic field E. Due to the orientation of the
dipole, a torque N acts on the dipole

N = p×E .

Because of this torque, the dipole tries to align parallel to the electrostatic field E to minimize its
potential energy.

If we assume a high number of dipoles between the two plates of the capacitor in Fig. 2.5, all
dipoles try to align parallel to the external electric field and the total electrostatic field decreases in
its magnitude due to the sum of opposing dipole fields [61]. Such a weakening of the electrostatic
field is called screening effect in the following.

Fig. 2.5: An electric dipole orients parallel to the external field.

In the following section we introduce the polarization field P as a measure of the effective dipole
moment density of a dense medium. As the occurrence of a dipole moment p in a dense medium
can have very different sources, we distinguish between different kinds of polarization [61]: the
deformations of the protons and electrons in the atoms create a weak electronic or deformation
polarization. A permanent dipole moment of the medium’s molecules can cause a huge polarization
in presence of an external electrostatic field because of their orientation, see the discussion above
and Section 3.2.1. A polarization due to the orientation of permanent dipoles is called Debye or
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Fig. 2.6: A Taylor series around r′ ∈ δV ′ is used to describe the influence of the medium in δV ′ at position r.

orientation polarization [19]. Polarization effects which occur in a dielectric medium are often
subsumed under the term dielectric response of the medium.

2.2.2 The macroscopic material equations

In principle, the Maxwell equations given in Section 2.1,

∇ ·E(r) =
1
ε0
ρ(r), r ∈ R3

∇×E(r) = 0, r ∈ R3 ,

suffice to describe the electrostatic effect of an arbitrary static charge distribution. It requires to
define every charge in the system as a fixed charge: not only the excess partial charges of the
biomolecule, but also all bound charges in every atom of the system.

However, there are two crucial problems, which cannot be directly solved: the huge number of
solvent molecules (∼ 1023) makes an explicit modeling impossible – at least in the framework of
the Maxwell equations. The other problem is that neither the solvent molecules nor their bound
charges are fixed because of the thermal energy of the molecules and the quantum mechanical
nature of their electrons.

Even though this seems a problem we cannot cope with, it turns out that many experiments
measure macroscopic, thermodynamic quantities of the medium and thus, it is often sufficient to
search for an appropriate macroscopic theory, within which the microscopic behavior is locally
averaged in space and time. In order to deduce a macroscopic theory of electrostatics for a dense
medium, let us assume that the sum over all bound charges of an atom is zero, otherwise they
would have been assigned to the fixed charge distribution ρ. Then, the dominant contribution
of the bound charge distribution is the dipole moment. We define the macroscopic electrostatic
polarization P at r′ ∈ R3 by the average over all dipoles in a small volume δV ′ around r′

P (r′) =
∑
i∈ δV ′

Ni〈pi〉 ,

where the average dipole 〈pi〉 of atom type i is weighted by the number Ni of atoms of type i found
in δV ′.

A Taylor series around r′ ∈ δV ′ yields the potential at position r that is induced by the fixed
excess charges and the microscopic dipoles in this volume. Due to Eq. (2.18) on p. 14 we can write

δφ(r, r′) =
1

4πε0

[
ρ(r′)
|r − r′|

+ P (r′) ·
(
∇r′

1
|r − r′|

)]
δV ′ .
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2.2. The Maxwell equations in dense media

The volume δV ′ is macroscopically so small that we replace it by dr′ as well as δφ(r, r′) by dφ(r, r′).
An integration by parts yields

φ(r) =
1

4πε0

∫
R3

dr′
[
ρ(r′)
|r − r′|

+ P (r′) ·
(
∇r′

1
|r − r′|

)]

=
1

4πε0

∫
R3

dr′
[
ρ(r′)
|r − r′|

− 1
|r − r′|

(
∇r′ · P (r′)

)]

=
1
ε0

[G4 ∗ (ρ−∇ · P )(r)] .

The application of the Laplace operator and further using Eq. (2.14)3 finally give the important
result

∇ · (ε0E(r) + P (r)) = ρ(r), r ∈ R3 . (2.19)

In Eq. (2.19) the expression (−∇ ·P ) can be interpreted as an effective charge distribution ρind.
The additional source ρind vanishes, if the divergence of the polarization is zero. This is reasonable,
because, when representing the medium in a small volume δV ′ as a superposition of the dipoles
contained in δV ′, we have a net source only if the dipoles sum up to a local excess charge4.

Further, if we interpret the reaction of the medium as a process to minimize the potential energy
of the system, it is reasonable to assume that the polarization weakens the resulting electrostatic
field E.

Eq. (2.19) motivates the definition of the so called dielectric (displacement) field or dielectric
permittivity

D := (ε0E + P ) .

The dielectric permittivity D is only affected by the fixed charges,

∇ ·D = ρ , (2.20)

which means that in dielectric media the boundary condition for the normal component of the elec-
trostatic field, n ·E, in vacuum is valid for D in dense media, as Eq. (2.20) formally corresponds to
Eq. (2.1). This implies that for vanishing surface charge distribution, σ = 0, the normal component
of the dielectric permittivity, n ·D is continuous. However, the normal component of the electric
field, n ·E is not:

σ(r) = 0, r ∈ Γ
⇔ n · (Dout −Din) = 0, r ∈ Γ
⇔ n · (Eout −Ein) = −n · (P out − P in), r ∈ Γ

This means that a change of the polarization P on a common boundary Γ⊂R3 causes a jump in
the normal component and can therefore be interpreted as an induced surface charge σind5.

In contrast to Eq. (2.1), which has to be corrected by the polarization field P in order to account
for a dielectric medium, Eq. (2.2),

∇×E = 0 ,

3Using Eq. (2.14) implies that the electrostatic field fulfills the radiation condition.
4This is, for instance, the case on boundaries where the composition of the material is changed and motivates σind

to denote induced surface charge.
5Compare footnote 4.
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does not change for dense media. This implies that the tangential component of the electrostatic
field is continuous. We state the electrostatic material equations.

Theorem 2.2.1 The Maxwell equations in dielectric media: We consider the dielectric medium
to be spread out in R3. We define its polarization field P . A charge density ρ is embedded in the
medium.

The material equations determining the total electrostatic field E in R3 read

D(r) = ε0E(r) + P (r) (2.21)
∇ ·D(r) = ρ(r) (2.22)
∇×E(r) = 0 , (2.23)

for r ∈ R3.
Consider an arbitrary surface ∂V ⊂R3 as it is shown in Figs. 2.2 and 2.3 for the vacuum case.

∂V has a surface charge density σ. Then, the dielectric and the electric field fulfill the following
transmission conditions on ∂V

n× (Eout(r)−Ein(r)) = 0
n · (Dout(r)−Din(r)) = σ(r) ,

with r ∈ ∂V .

2.2.3 The dielectric operator

In the preceding section, we discussed that the medium is an additional charge carrier, which reacts
to the presence of fixed excess charges ρ. We speak of a dielectric response of the medium. The
response has been taken to originate from the dipole moment of the bound charges of the medium
and is measured by the macroscopic polarization field P .

This section concerns the question how E, P , and D depend on each other. We introduce a
general concept for describing the dielectric response within a linear response theory [74].

Having in mind the picture of small dipoles rotating in the external field D to minimize their
potential energy, it is reasonable to assume that the magnitude of the polarization P depends on
the field that is caused by the fixed charges

P = P (D) .

Using Eq. (2.21) in turn gives rise to the following functional dependencies

D = D(E) and P = P (E) .

A linear response theory predicts an increase in the response (in our case the polarization field P ),
when the external driving field (in our case the dielectric field D) gets stronger.

However, thinking of the dielectric response, which is caused by the dipole reorientation, there is
a point where a further increase in magnitude of the dielectric field will not change the polarization
anymore, since all dipoles are already aligned. Such a saturation can only be captured by a nonlinear
theory. Since the saturation of dipole alignment does not occur until there are high electrostatic
fields, they can be taken as an effect of higher order [19, 124]. This justifies a linear response - at
least in order to study the overall influence of the polarization effects we are primarily interested
in.
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The simplest model of a linear dielectric response is given by

P (r) = χ(r)D(r), r ∈ R3 (2.24a)

P (r) = (ε(r)− ε0)E(r), r ∈ R3 (2.24b)

D(r) = ε(r)E(r), r ∈ R3 . (2.24c)

Here, the macroscopic state of the system is described by the so called dielectric function ε(r)
measured in units of ε0 and the dielectric response function (or dielectric susceptibility) χ(r) =
(1− ε−1)(r) 6.

Whether such an approximation is justified or not depends on the medium under consideration.
In Eqs. (2.24)(a-c) the reaction is assumed to have neither spatial nor temporal dependencies: it is
a local reaction. This means that at an arbitrary position r ∈ R3 where the fixed charges create
the field D(r), the bound charges of the molecules in a small volume around r align with this field
without any influence of the neighboring molecules.

The alignment leads to a further contribution to the electrostatic fieldE(r) in a way that it locally
weakens the electrostatic field. Assuming Eqs. (2.24)(a-c) to be valid, this macroscopic screening is
given by the factor ε. Since the dielectric function ε ranges between 1ε0 and 100ε0 for commonly
used solvents, the effect of the medium on the electrostatic field is very important [93,133]. Based
on models for the polarization (Langevin dipole, Onsager and Debye model) one can calculate the
local dielectric constant for polar and non-polar continua [19].

The mean field approach with constants, ε and χ, lacks in modeling the correlations or interac-
tions of the medium’s molecules. Such interactions, however, can lead to a measurable change of
the dielectric response. To account for spatial deviations from the bulk dielectric response and in
order to account for the dependency on all previous time steps, t′ < t, Eqs. (2.24)(a-c) have to be
extended to a more general form, see [33,74,124]:

Pi(t, r) =

t∫
−∞

∫
R3

(
εij(t− τ ; r, r′)− ε0δij

)
Ej(τ, r′)dr′dτ, in R3 (2.25a)

Pi(t, r) =

t∫
−∞

∫
R3

χij(t− τ ; r, r′)Dj(τ, r′)dr′dτ, in R3 (2.25b)

Di(t, r) =

t∫
−∞

∫
R3

εij(t− τ ; r, r′)Ej(τ, r′)dr′dτ, in R3 , (2.25c)

where we used the Einstein notation 7.
The constants, χ and ε, in Eqs. (2.24)(a-c) are replaced by tensors of second order. Eqs. (2.25)(a-

c) account for spatial dispersion meaning that the response at position r depends on every surround-
ing position r′. In contrast to the local response captured by the Eqs. (2.24)(a-c), this behavior is
of a nonlocal nature. Such a dependency originates from correlations of nearby molecules and the
local variations of the electrostatic field E.

In a common dielectric, the spatial dispersion is not an issue since the integral kernel decays
on distances |r − r′| smaller than an atomic dimension [74]. In this case, we can assume that the

6For more general ε, ε−1 turns out to be the inverse operator; χ should not be confused with the electric susceptibility
χe(r) := ε(r)− 1.

7When an index variable appears twice in a single term, it implies that we are summing over all of its possible values
{1,2,3}.
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macroscopic averaged field E has small variations, namely

E(r′) ∼ E(r) .

Then, E can be extracted from the integral and we return to Eqs. (2.24)(a-c). However, when the
length scale of the correlations exceeds the atomic scale, the dispersion yields new physical effects
which have to be considered. For example, this is the case for conductors and electrolytes [74],
but also for the water molecules with their hydrogen bonds and permanent dipoles [33]. Thus, in
Section 3.2 we develop a nonlocal, linear dielectric operator for water.

2.3 Coulomb interaction energy and field energy

In the following, we recapitulate the expressions for the electrostatic (Coulomb) interaction energy
Wcoul and the electrostatic field energy Wfield in a dielectric medium. It is the basis for the
considerations in Section 3.1.4, where we describe the change in free energy 4Gsolv when the
molecule is transferred from vacuum (or the gas phase) to the solvent. From the experimental
point of view, 4Gsolv is directly measurable and therefore serves as a quantity to assess and
optimize a theoretical model.

The electrostatic energy Wcoul of a test charge q at position rq in an external, electrostatic field
E = −∇φ, is given by

Wcoul = q φ(rq) . (2.26)

It equals the work that has to be done to move the test charge from infinity to its position rq in the
electrostatic field [61]. This energy is called Coulomb interaction energy. The Coulomb interaction
energy of an arbitrary charge distribution

ρ(r) =
∑
i

qiδ(r − ri) (2.27)

is given by

Wcoul =
∫
R3

drρ(r)φ(r) =
∑
i

qi φ(ri) . (2.28)

Please note that we made no further assumption on the origin of the potential φ in Eq. (2.28)
meaning that the dielectric surrounding and the fixed sources are not specified, but reflected in
φ(r). Thus, Eq. (2.28) is valid for an arbitrary electrostatic setting.

However, the interaction energy given in Eq. (2.28) does not tell us anything about the energy
needed to create the field itself. The so called field energy Wfield is defined by the successive
build-up of the charge distribution. In particular, in a dielectric medium the polarization P causes
an additional energy contribution. To find an expression for the field energy, we start with the
infinitesimal work which has to be done to increase the charge distribution from ρ dr to (ρ+ δρ) dr
in the potential φ created by the already present charge distribution ρ 8

δWfield =
∫
R3

dr δρ φ .

8Another more general access to the field energy is to express it as a functional of the independent fields D and
P , see [86, 102]. In addition, this approach is easily extensible to account for energy terms resulting from ionic
solvents, see [7].
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With Eq. (2.22) we substitute δρ by δ(∇ ·D):

δWfield =
∫
R3

dr δ(∇ ·D)φ =
∫
R3

dr∇ · (δD)φ

=
∫
R3

dr(δD) · (∇φ) =
∫
R3

dr(δD) ·E .

In this derivation we applied the Gauss law and used the fact that the electrostatic field fulfills the
radiation condition. An integration over D finally yields

Wfield =
∫
R3

dr

(∫ D
0

δD ·E

)
(r) . (2.29)

A further evaluation is only possible if we specify the dielectric reaction of the medium. As-
suming, for instance, a constant macroscopic dependence of the dielectric permittivity D and the
electrostatic field E,

D = εE ,

as introduced in Section 2.2.2, we can integrate Eq. (2.29) by parts. This yields the following field
energy:

Wfield =
∫
R3

dr

(∫ D
0

δD ·E

)
(r) =

∫
R3

drε

(∫ E
0

δE ·E

)
(r)

=
∫
R3

drε

(∫ E
0

(E1dE1 + E2dE2 + E3dE3)

)
(r) =

∫
R3

drε

(
1
2

(E2
1 + E2

2 + E2
3)
)

(r)

=
∫
R3

dr

(
1
2

(εE ·E)
)

(r) =
1
2

∫
R3

drD(r) ·E(r) . (2.30)

The term
(

1
2 D ·E

)
in Eq. (2.30) is usually interpreted as the field energy density of the system.

Another interpretation of the field energy is revealed when D is once again substituted by the
corresponding Maxwell equation:

Wfield =
1
2

∫
R3

drD(r) ·E(r) =
1
2

∫
R3

dr(∇ ·D(r))φ(r)

=
1
2

∫
R3

drρ(r)φ(r) . (2.31)

In this formulation, it is emphasized that the field energy Wfield is caused by a particular charge
distribution ρ.

Comparing Eq. (2.26) and Eq. (2.31), we note that the field energy is half the interaction energy.
The difference originates from the fact that the field energy accounts for the “hypothetical charging
process”, where the electrostatic field E and therefore the potential φ is built by the added charges.
In contrast, the interaction energy of a charge q with an external electrostatic field E assumes the
field to be already built. The charge q does not contribute to this external field E.

A problem, which we have not commented on yet, is the so called Coulomb self energy term
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that appears in Eq. (2.31), when assuming the charge distribution to be a set of point charges as
in Eq. (2.27). With Theorem 2.1.2, the integration turns into a double summation, which yields
contributions of the form

∼ qi qi
|ri − ri|

.

These terms take into account the (infinite) energy needed to assemble the point charge qi itself. In
physical applications, however, this infinite contribution cancels out as we will see in Section 3.1.4.
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Chapter 3

The biomolecular system

Modeling biomolecules in their natural surrounding, namely in living organisms, is of great im-
portance for a detailed understanding of the diversity of biochemical processes exhibited by the
biomolecules. In particular, the electrostatics of biomolecules contribute to their broad functional-
ity. Developing a theoretical model to properly describe the electrostatics of proteins in water is
the aim of the following sections.

In the last chapter, we introduced a linear response theory to account for the polarization effects of
different media. The totally different composition of water-like and protein-like medium motivates
to separate their dielectric behavior. Thus, this chapter is broken up into three sections:

Section 3.1 focuses on the description of the biomolecules we focus on in this work. This includes
the definition of the molecule’s surface, its charge distribution, and finally its dielectric response.

In Section 3.2 we discuss the solvent of biomolecules, namely water. Because of its special
features, we go beyond the common treatment of macroscopic, constant dielectric response. Starting
with the simplest situation, i.e., an infinite volume filled with pure water, we develop a nonlocal
response theory, which incorporates the network character of the hydrogen bonds in the macroscopic
response theory.

Merging the model for the biomolecule (Section 3.1) and the water model (Section 3.2) yields
our description of the biomolecular system, which means a single biomolecule immersed in water.
This is done in Section 3.3.

3.1 Model for biomolecules

A biomolecule is a molecule that is produced by a living organism. A special class of biomolecules
are the so called proteins. Proteins are composed of amino acids [69], which are the building blocks
of long polymer chains, see Fig. 3.1 for an illustration. With 2-10 amino acids such chains are called
peptides, with 10-100 they are often called polypeptides, and longer chains are known as proteins.
Proteins have many structural and enzymatic roles in organisms: they bind and recognize other
biomolecules and this in turn causes new reactions. Proteins take part in building and repairing
cell tissues, in water balancing or in nutrient transport, and induce muscle contractions, to mention
just a few of their responsibilities.

Analyzing the functionality of proteins is an interesting field of research, since a deeper under-
standing can help to control and modify their functionality. Especially the highly specific binding or
docking process of small biomolecules (ligands), which is a key point for drug development, is based
on the electrostatic potential on the surface of the proteins and the electrostatic field emanated in
the protein’s surrounding [64].

In this section, we introduce the abstract description, i.e., the theoretical model, which is used
in the remainder of this work to describe the electrostatics of a biomolecule. We start with the
definition of the molecular charge distribution (Section 3.1.1), the description of the molecular
surface (Section 3.1.2) and finally, we introduce the molecule’s dielectric response (Section 3.1.3).
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Chapter 3. The biomolecular system

Fig. 3.1: Proteins are chains of amino acids.

3.1.1 Charge distribution of biomolecules

Atoms are complex objects, consisting of a number of protons, neutrons, and electrons. All of
these subunits are quantum mechanical objects, which are defined rather by their probability
distribution than by a fixed location in space. Molecules, which are composed of an arbitrary
number of atoms, can be imagined to be even more complicated. This makes a description of
proteins on the micromolecular scale as basis for a numerical model difficult.

Therefore, the atomic description is often reduced to merely two quantities, a radius r and a
partial charge q: the value of the charge q is deduced from quantum mechanical calculations. It
describes the excess charge of the atom in the molecular surrounding. The radius r describes a
sphere, within which the probability to find the complete charge distribution of the atom equals
a fixed percentage, e.g., 90% . In practice however, the radius is often chosen according to a force
field to fit best to experimental solvation energies [78].

For a monoatomic molecule, this approximation yields a spherical shape. In the literature, we
find different ways of distributing the charge q on or in the sphere [124]:

� The Born sphere defines the charge distribution to be a so called point charge in the center
of the sphere. A point charge is physically expressed by an infinite charge density ρ at the
point where the charge is located and zero everywhere else. The so called δ-distribution1,

δ(r − r′) =

{
∞ r = r′

0 r 6= r′∫
R3

dr′ δ(r − r′) = 1 ,

allows for a mathematical description of a point charge,

ρ(r) = qδ(r − r′) , in R3

which is located at r′.

1We refer to [27,28,121] for an introduction to the theory of distributions.
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3.1. Model for biomolecules

� Another model for monoatomic ions is the so called spherical shell. Here, the charge q is
homogeneously spread over the surface of the sphere of radius a. This results in the following
constant surface charge density

σ(r) =
q

4πa2
δ(r − a), r = |r|, r ∈ R3.

Remark 3.1 These two models serve as analytically treatable test cases for the electrostatic models in
Section 3.3.3. When describing realistic molecules, the Born spheres are taken to define its atoms, i.e., every
atom i of the molecule is a sphere of radius ai, where a fixed point charge qi is localized at the center ri of
the sphere.

3.1.2 Surface description of biomolecules

The surface of the protein is an important quantity. The size and the shape of the surface influence
a number of interactions contributing to energies such as the Van der Waals energy, entropic and
excluded volume effects, the surface tension and also the electrostatic energy. In the introduction
of this chapter, we motivated that the dielectric response of the protein in general differs from
the dielectric response of the solvent. In an electrostatic context, this is why it is reasonable to
define the surface of the molecule as the interface where the dielectric response changes, i.e., as the
dielectric boundary.

Fig. 3.2: Different domains of the molecular system.

We now introduce the different domains of the molecular system, which are crucial to describe
the electrostatics of the system. The notations are illustrated in Fig. 3.2 and are used in this work
to describe a molecule immersed in water: Ω denotes the inside of the molecule, where the dielectric
response is given by the molecule. It is characterized and defined in Section 3.1.3. The molecule’s
surface is denoted by Γ. By definition, Γ separates Ω from the outer domain, which is characterized
by the dielectric response of the solvent. Σ denotes the outer domain and the dielectric response
in Σ is specified in Section 3.2.2.

The molecule’s surface is not uniquely definable: starting with the question of the correct atom
radius, which was introduced before, and ending with the question whether the surface is defined
by the absence of the solvent or the presence of the molecular atoms.

There are three common surface definitions illustrated in Fig. 3.3 – all of them with different
meaning and application. Consider a molecule consisting of a set of atoms. Each is represented as
a Born sphere with given location and radius.

(a) The Van der Waals Surface (VdWS) is the hull of the union of all Born spheres the molecule
consists of. The name of this surface is derived from the Van der Waals radii of the atoms.
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Chapter 3. The biomolecular system

Fig. 3.3: Different surface descriptions of a molecule: the Van der Waals surface (VdWS), the solvent
accessible surface (SAS) and the solvent excluded surface (SES).

(b) When a spherical solvent molecule is rolled over the VdWS, the Solvent Accessible Surface
(SAS) is the surface traced out by the center of the solvent molecule during the rolling process.

(c) When a spherical solvent molecule is rolled over the VdWS, the Solvent Excluded Surface
(SES) is the contact surface of the VdWS and the solvent molecule during the rolling process.

The SES of molecules in solution is often taken to define Γ as it separates the solvent molecules
from the biomolecule. Additionally, for a numerical treatment this surface is appropriate because
it is smooth almost everywhere. In the biomolecular studies presented in this work we use the SES,
too. For all of the discussed surface representations the charge distribution lies completely in Ω
and in the case of a monoatomic molecule the surface definitions, VdWS and SES, are equal.

3.1.3 Dielectric response of proteins

As discussed in Section 2.2.2, the electrostatic behavior in the interior of a medium is determined
by its dielectric reaction and the fixed charges.

The inhomogeneous distribution of the atoms and the polar flexible groups at the protein’s
surface give rise to variations of the averaged polarization field P and therefore to variations of the
biomolecule’s dielectric response. In experimental and numerical studies, a stronger response has
been observed at the surface of the protein: these variations are not specific interactions between
the atoms, but are due to local changes in the composition of the protein [117]. In a polar solvent,
polar side chains have the tendency to lie at the surface whereas nonpolar chains are buried deep
inside the molecule. Such a local variance can be well described by the local, linear ansatz (2.24)
proposed in Section 2.2.3 on p. 19, i.e., with the following, linear relation between the dielectric
displacement field D and the electrostatic field E:

D(r) = ε(r)E(r) , in Ω

The dielectric function ε is measured in units of ε0 and its spatial dependence accounts for local
variation of the dielectric response. In the literature, one finds ε(r)/ε0 to range between 2-10 for
biomolecules [92]. Since we are primarily interested in the effects of water, we restrict ourselves to
a constant macroscopic response of the biomolecule,

ε(r) =: εmacros,mol = 2 ε0 .
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3.1.4 Solvation energy

Based on the energy expressions derived in Section 2.3, we now focus on the energetic description
of the biomolecular system. In thermodynamics, the energy of a system defines its macroscopic
equilibrium state: this means that the energy determines whether the molecule is stable or if a
reaction takes place. For instance the free energy difference of solvation measures the energy gain
or energy loss in the case of changing the solvent environment of a molecule (e.g., from vacuum to
water).

In Section 3.1.4.1 we derive the electrostatic part of the solvation energy. This quantity is of use
in Section 3.3.3 for a comparison of theoretically predicted and experimental data. To define the
complete free energy of the solvated molecule we have to consider energetic contributions which
result from the molecule’s shape and volume, i.e., nonpolar contributions. In Section 3.1.4.2 we
characterize these nonpolar contributions and give an appropriate theoretical model to account for
them.

3.1.4.1 Reaction field potential and electrostatic part of the solvation energy

The different dielectric responses of the molecule and its solvent are indicated by the different colors
in Fig. 3.4. Furthermore, the figure illustrates the crucial idea of decomposing the electrostatic
potential in two terms,

φ(r) = φreac(r) + φmol(r) ,

the so called molecular field φmol and the reaction field φreac.
The molecular field is created by the fixed charge distribution ρ embedded in the medium of

molecular response εΩ. It fulfills the Laplace equation with source term ρ in R3

4φmol(r) = −ρ(r)
εΩ

, r ∈ R3 .

The solution of this equation has already been deduced in Section 2.1.1. It is proportional to the
Newton potential of the Laplace operator 4,

φmol(r) =
1
εΩ

(G4 ∗ ρ)(r) =
∫
R3

dr′
ρ(r′)
εΩ

G4(r − r′), r ∈ R3 . (3.1)

The molecular field φmol is independent of the dielectric boundary and therefore yields the same
contribution to φ in every setting of the same charge distribution.

The second part of φ, the reaction field φreac, measures the contribution due to the creation of

Fig. 3.4: The electrostatic potential is composed of the molecular potential and the reaction field poten-
tial. The pink region indicates the molecule with its dielectric response, whereas the white-lined
surrounding represents the solvent.
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the dielectric boundary2. Having this in mind, the reaction field energy can be interpreted as the
energy gain when the molecule is transferred from its molecular surrounding (φmol) to the solvent
(φmol + φreac).

With these notations, we deduce a general formula for the electrostatic contribution to the
solvation free energy of molecules, 4Gelec. This energy is released or spent when transferring the
molecule from one solvent, solvent I, into another solvent, solvent II. Thus, the solvation energy is
given by the difference3 between the field energies

4Gelec = Efield,II − Efield,I .

In both solvents, the field energies, Wfield,I and Wfield,II are given by Eq. (2.29)

Wfield =
∫

R3

dr

∫ D
0

δD(r) ·E(r) ,

where E and D are the solutions of the material equations for a given dielectric operator ε. These
field energies originate from the same charge distribution. The only fact that differs is the dielectric
boundary, which contributes to the energy by φreac. When assuming the charge distribution to
completely lie in Ω and further assuming a local dielectric function, the electrostatic contribution
to the solvation energy is given by

4Gelec =
1
2

∫
Ω

ρ(φII − φI) (3.2)

=
1
2

∫
Ω

ρ ((φmol + φreac, II)− (φmol + φreac, I))

=
1
2

∫
Ω

ρ (φreac, II − φreac, I) .

This is an important result, since it tells us that only the reaction field energies contribute to
the solvation energy. The molecular field energy comprises the infinite self energy terms, which
we discussed in Section 2.3. These terms cancel out in Eq. (3.2) and therefore we end up with
physically interpretable energies.

Important remark 3.1 We learned in Section 2.2.2 that a change in the dielectric response of the biomolec-
ular system, results in a jump in the polarization, which in turn can be interpreted as induced surface charge.
Having this in mind, the reaction field is the electrostatic field, which is created by these surface charges.
In the literature, many sophisticated and elegant methods are discussed to calculate the reaction field po-
tential and the reaction field energies or appropriate approximations directly from a given charge setting,
see [43,71,101] and the overview on binding energy calculations in Appendix 10.4.

3.1.4.2 Nonpolar energy contributions

The previous discussion has been about the electrostatic contribution to the solvation free energy.
This is an important, but not the only contribution to the energy of a thermodynamic system. In
order to complete the discussion on the solvation free energy, we now give a brief overview of the
missing contributions and refer to supplementary literature.

2Mathematical view: in Section 2.1.2 we introduced a correction term for boundary value problems to guarantee
the correct boundary values, φreac is this correction term (single/double layer).

3Here, 4 implies a difference.
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Fig. 3.5: Creation of the biomolecule’s cavity destroys hydrogen bonds and leads to a loss in entropy.

In addition to the electrostatic free energy, the solvation free energy is influenced by nonpolar
effects. These entropic as well as enthalpic contributions are relevant in the first shells around the
solvated molecules. The following decomposition is for instance proposed in [13]:

∆Gsolv = ∆Gelec + ∆GvdW + ∆GH-bond + ∆Gcav (3.3)

These are the electrostatic energy, which we discussed before, the van-der-Waals energy between
the solvated molecule and the neighboring solvent molecules, and the H-bond contributions of
electronegative atoms on the surface. In contrast to these enthalpic contributions, the cavity term
∆Gcav is of entropic nature. It describes the mechanical work needed for creating a cavity in the
solvent that contains the solvated molecule. One can imagine that the cavity term is high for water,
whose network is partially destroyed or reoriented during and after the solvation process. An exact
estimation of this effect is difficult, because the magnitude highly depends on the local composition
of the molecule, which is solvated. Fig. 3.5 depicts the reorganization of the hydrogen bonds when
approaching an interface which is not capable of building hydrogen bonds. This is for example
the case when considering an overall uncharged molecule with mainly nonpolar side chains. Then,
the hydrophobic effect. i.e., the energy needed for the reorganization of the water molecules, can
dominate over the electrostatic contribution [119].

In the literature, various approaches are proposed for an incorporation of the nonpolar contribu-
tions to the solvation energy of biomolecules, see for example [67, 135] and citations given therein.
From its magnitude, the cavity term is the most important nonpolar contribution in Eq. (3.3) at
least for proteins. In order to avoid complicated but insufficiently reliable microscopic calculations
involving new adjustable parameters, one often uses a quasi-macroscopic approach, such as the so
called empirical Uhlig formula, where the solubility of nonpolar solutes is related to the molec-
ular surface area of the solute and the interfacial tension [37, 132]. Another approach is given
in [130], where the change in solvent pressure is calculated when building up the cavity. These so
called scaled particle theories indicate that cavity creation work should depend on both, the solvent
accessible volume and the solvent accessible surface of the molecule [62,135].

As explained above, the reorganization and the breaking of the hydrogen bond network in the
first solvation shell of the molecule plays an important role in the entropic contributions to the
solvation energies of biomolecules. In the present work, we develop a novel formulation of the
dielectric response of water, which takes into account the correlations of water molecules due to their
hydrogen bond network. This model, in principle, allows for a specification of the correlation effect
at the interface and therefore can in parts incorporate the cavity energy terms, see Remark 4.4 on
p. 63. The calculation and the detailed investigation of these energy contributions in the framework
of nonlocal electrostatics has still to be studied and constitutes a focus of future work.
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Fig. 3.6: left: tetrahedral structure of the water molecule, the two lone electron pairs are drawn in yellow;
right: 3D water network.

3.2 Water - the main solvent of biomolecules

All the major components in cells, such as proteins, DNA or polysaccharides, are solvated in water.
This is the reason why water is of immense interest in biological problems. It is important to
understand the characteristics of water to map biochemical systems correctly into a theoretical
framework. In Section 3.2.1 we summarize the main features of this multi-faceted solvent and in
Section 3.2.2 we derive a theoretical model to describe its dielectric response.

3.2.1 Characteristics of water

A single molecule of water has two hydrogen atoms, which are covalently bound to a single oxygen
atom. The latter possesses two lone electron pairs. Because of the quantum mechanical distribution
of the electron pairs in the chemical bonds, the H-O-H bond angle is a distorted tetrahedral angle
of about 104.45◦ causing a three-dimensional molecular structure. This is illustrated in Fig. 3.6
on the left. The total charge of water is zero. However, as the water molecule is non-linear and
as the oxygen atom has a higher electronegativity than the hydrogen atoms, the former carries a
slightly negative excess charge whereas the latter are slightly positive. As a result, water is a polar
molecule with a permanent electrical dipole moment.

In addition to the dipolar nature, which causes the water molecule to be a proton donor on
the two hydrogen ends, the water molecule happens to be a proton acceptor, as well. This also
originates from two lone electron pairs present in the outer shell of the oxygen. Between these two
functional groups, the proton donor and acceptor, the water forms so called hydrogen bonds. As
it is shown on the right of Fig. 3.6, a water molecule can form up to four hydrogen bonds with
surrounding water molecules.

Without an external electrostatic field the water molecules try to maximize their hydrogen bonds
to neighboring molecules. Because of thermal motion and local deviations it is reasonable to
introduce a correlation length λ, which defines the greatest distance at which two water molecules
still influence each other by the hydrogen network, see Fig. 3.7.

If we consider the water molecules to be exposed to an external electrostatic field, there are two
competing effects: on the one hand, the water molecules try to keep the hydrogen bonds with the
surrounding molecules. On the other hand, the water molecules individually try to align with the
external field to minimize the potential energy of the molecular dipoles.
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Fig. 3.7: Correlation length of the water network.

In numerical simulations there are two different tools to represent water. The first is to model the
water molecules explicitly in order to capture the discussed effects directly. Popular water models
used in molecular dynamic simulations are, for instance, the TIPNP models and the SPC\E,
see [20, 47, 137] for a review and [77] for a general overview. They differ in handling the structure
as rigid or flexible, in the number of possible interactions, and in whether the model includes
polarization effects. The computational costs are high and increase with the number of water
molecules taken into account. An alternative to the explicit water models is to use an implicit
solvation model, also known as a continuum model, within which water is treated as a dielectric
medium. Its reaction to the presence of an external electrostatic field E causes a macroscopic,
effective polarization P .

3.2.2 The dielectric response of water

In this section we focus on an implicit solvation model to describe the peculiar dielectric response
which originates from the permanent dipoles and the hydrogen bond network of water. First, we
assume the water to capture the whole space. In this case, the dielectric response has to be invariant
under translation or rotation and this simplifies the modeling process. Later, these assumptions
turn out to be approximations for the molecular system, where the immersed molecule apparently
is a symmetry-breaking boundary.

3.2.2.1 The nonlocal dielectric operator

For a first approximation of the dielectric response of water, Eqs. (2.24)(a-c),

P (r) = χ(r)D(r), r ∈ R3

P (r) = (ε(r)− ε0)E(r), r ∈ R3

D(r) = ε(r)E(r), r ∈ R3

with χ(r) = (1− ε−1)(r), r ∈ R3 .
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are often used. The constant, macroscopic response of water at room temperature is εmacros,wat =
78.5 ε0. Indeed, in the majority of cases, numerical solvers applied in biomolecular studies use this
simple ansatz [8, 45,129].

However, as we already anticipated in Section 2.2.3, the hydrogen bond network causes non-trivial
correlations of water molecules and their length scale exceeds the atomic scale. To account for these
correlations, we have to start with the linear, nonlocal response theory given by Eqs. (2.25)(a-c) [74],

Pi(t, r) =

t∫
−∞

∫
R3

(
εij(t− τ ; r, r′)− ε0δij

)
Ej(τ, r′)dr′dτ, r ∈ R3

Pi(t, r) =

t∫
−∞

∫
R3

χij(t− τ ; r, r′)Dj(τ, r′)dr′dτ, r ∈ R3

Di(t, r) =

t∫
−∞

∫
R3

εij(t− τ ; r, r′)Ej(τ, r′)dr′dτ, r ∈ R3 .

In general, the tensor functions, εij and χij can be very complicated. However, assuming the
water to fill the whole space, there is no reason to assume that a translation or a rotation macro-
scopically changes the basic features of a hydrogen bond. We can simplify Eqs. (2.25)(a-c) in the
following way:

� We do not assume a time dependency of the dielectric reaction, since we focus on equilibrated,
thermodynamically stable systems. This is why we will neglect the variations on t and τ :

Di(r) =
∫
R3

εij(r, r′)Ej(r′)dr′, r ∈ R3

� We assume that the correlations of the water molecules do not depend on the position in
space, i.e., the dielectric function is invariant under an arbitrary translation and therefore
homogeneous:

Di(r) =
∫
R3

εij(r − r′)Ej(r′)dr′, r ∈ R3

� We assume that the nonlocal correlations of the water molecules at position r do not depend
on the direction which is specified by (r − r′), but that εij is invariant under an arbitrary
rotation and therefore isotropic. This means that only the distance |r − r′| is crucial for the
dielectric response 4:

Di(r) =
∫
R3

εij(|r − r′|)Ej(r′)dr′, r ∈ R3 (3.4)

All in all, we assume with Eq. (3.4) an isotropic, linear, nonlocal dielectric function for water
capturing the whole space.

4Except for dependencies of the form δ(r − r′). In this case the integral description is reduced to a constant, local
response function, which is, by definition, homogeneous and isotropic.
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3.2. Water - the main solvent of biomolecules

3.2.2.2 Constraints on the nonlocal dielectric function

A closer look at Eq. (3.4) reveals that the action of the dielectric operator is a convolution:

Di(r) = (εij ∗Ej)(r) =
∫
R3

εij(r − r′)Ej(r′)dr′, r ∈ R3

This suggests that the discussion about the features of the dielectric operator is done best in Fourier
space, as in Fourier space the convolution turns into a multiplication. With the notation Q̂ for the
Fourier transformation F(Q) of a quantity Q(r), the dielectric field D in Fourier space reads:

D̂i(k) = ε̂ij(k) Êj(k), k ∈ R3 (3.5)

The dispersion relation is reduced to a local dependency on the wave vector k. Here, the wave
length 2π

k determines the critical distance where the field still has essential variations. Having this
in mind, the dispersion relation expresses the dependency of the macroscopic material property on
the field variations in space.

Before we state an appropriate model for the dielectric function ε̂ of water, we discuss some
features that ε̂ has to fulfill:

Reduction to the longitudinal component: In presence of a k-dependency as given in Eq. (3.5),
the dielectric function, ε̂ij is a tensor of second order and does not reduce to a scalar. For an
isotropic medium, one can split the tensor functions into their longitudinal (ε̂‖) and transversal
components (ε̂⊥), which only depend on the absolute value of the wave vector, k = |k| [74]:

ε̂ij(k) = ε̂‖(k)
ki kj
k2

+ ε̂⊥(k) (δij −
ki kj
k2

) (3.6)

Assuming a fixed charge density ρ in a homogeneous, isotropic, nonlocal medium, the material
equations given by Theorem 2.2.1 read

− ∂
∂ri

(∫
dr′ εij(r − r′) ∂

∂r′j
φ(r′)

)
= ρ(r)

⇒ ki

(
ε̂ij(k)kjφ̂(k)

)
= ρ̂(k)

with (3.6)
∑
i,j

(
ε̂‖(k)

k2
i k

2
j

k2 + ε̂⊥(k)(kikjδij −
k2
i k

2
j

k2 )
)
φ̂(k) = ρ̂(k)(

ε̂‖(k)k
2k2

k2 + ε̂⊥(k)(k2 − k2k2

k2 )
)
φ̂(k) = ρ̂(k)

⇔ φ̂(k) = ρ̂(k)/
[
ε̂‖(k) k2

]
.

Thus, for a linear, but nonlocal, response theory it suffices to find an appropriate model for
the longitudinal component ε̂‖ of the dielectric tensor, which depends on k. In the following,
we skip the subscript ‖ and refer to it as ε̂.

In summary, we find that for electrostatic problems the tensor in Eq. (3.5) is a scalar function

D̂(k) = ε̂(k) Ê(k), k = |k|,k ∈ R3 . (3.7)

Thermodynamic limits: Further insight into the behavior of ε̂ is obtained from thermodynamic
requirements: in general, both, χ̂(k, ω) and ε̂(k, ω), are complex-valued functions. As D and
P are the independent thermodynamic variables of the system, χ is a general susceptibility
which has to fulfill Kramers-Kronig relation [6, 75, 86]. The imaginary part of χ̂ describes
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Chapter 3. The biomolecular system

the loss in field energy by excitations of inner degrees of freedom, whereas the real part of χ̂
describes the effective polarization of the medium as a function of the external field D. In the
stationary case, i.e., setting ω = 0, we can assume χ̂ and ε̂ to be real quantities, as the loss in
energy is mainly caused by the frequency dependent excitation of internal degrees of freedom.
For the static dielectric function ε̂(k) = <(ε̂(k, ω = 0)), the Kramers-Kronig relation then
reads

χ̂(k) = <(χ̂(k)) = 1− 1
√

2π
3
ε̂(k)

=
2
π

∫ ∞
0

dω

ω

=(ε̂(k, ω)
|ε̂(k, ω)|2

.

The energy balance in equilibrium systems requires =(ε̂(k, ω)) > 0, meaning that the medium
cannot create energy and dissipate it into the system. Therefore, the dielectric function is
subject to the restriction:

χ̂(k) > 0 ⇒ ε(k) >
1
√

2π
3 or ε(k) < 0

As a general susceptibility, χ is subject to the fluctuation-dissipation theorem and therefore is
connected to the polarization fluctuation, 〈Pi(r, t)Pk(0, 0)〉, which causes the medium to react
to the external field [75]. A quantity that captures the effects of the polarization fluctuation
as a function of wave number and frequency is the so called form factor of the polarization
fluctuation

S(k, ω) =
1

2π3

ki kj
k2

∫
V

e−i(kr−ωt)〈Pi(r, t)Pk(0, 0)〉 ,

χ̂(k) = 1− 1√
2π3ε̂(k)

= 4/~
∞∫

0

dω

ω
[1− e−β~ω]S(k, ω) .

The latter equation is a very important relation, as it turns out to be a tool for the deter-
mination of ε̂(k) on the basis of S(k). Data for S(k) is available from isotopic substitution
method for the analysis of diffraction experiments [118] and from computer simulations [124].

Local limit constraints: For any dielectric medium it holds that

lim
k→0

ε̂(k) = const =
1
√

2π
3 εmacros , (3.8)

where εmacros is the macroscopic, constant response of the medium. This means that in the
case of vanishing field variations, i.e., when applying a constant electrostatic field, the solvent
molecules would homogeneously shield the field. The magnitude of the shielding corresponds
to the macroscopic value of the orientational polarization: the water network is arranged in a
way that the permanent dipoles of the water molecule effectively rotate in the external field to
minimize their energy. The macroscopic response of water at room temperature is commonly
described by

εmacros,wat = 78.5 ε0 .

In contrast, for high, spatial variations of the electric field, the permanent dipoles can no
longer align with the field, as the spatial variations are smaller than the finite size of the
permanent dipole. Then, the dielectric function reaches the limit

lim
k→∞

ε̂(k) = const =
1
√

2π
3 ε∞ , (3.9)
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3.2. Water - the main solvent of biomolecules

where ε∞ characterizes the polarization field P in terms of electronic internal degrees of
freedom such as variations in the overlap of orbitals and of the electron probability. In the
case of water, the high-k limit is taken to be equal to the square of the refractive index. It
can then be calculated from the Clausius-Mossotti equation [19] and reveals [50,124,137]:

ε∞ = 1.8 ε0

Fig. 3.8: Two possible shapes of ε̂(k).

A model for the dielectric response of water has to fulfill all these restrictions in Fourier space.
Two possible functional forms of ε̂ are shown in Fig. 3.8. The dotted curve has two divergence
points and a region of negative dielectric response. Negative values for the dielectric function
were reported first for molten salt systems, where the ions form a highly correlated system, which
overscreens the fixed charge. The ions form alternating shells with negative and positive ions
around a central ion. This results in local electrostatic fields opposite to the external driver. For
dielectric, polar media a few theoretical studies and numerical simulations also predict a k-region
of negative response, see [86,102,124] and references therein.

Although the approaches that admit a negative dielectric function are in good agreement when
comparing the static form factor of the polarization fluctuations, they fail in correctly describing
experimentally measurable, macroscopic quantities such as the hydration energy or the solvation
energies of small ions [102, 124]. This can be due to the different scales on which the physical
effects are compared: polarization fluctuations and the resulting form factor live on the nano-scale,
whereas energies belong to the macroscopic quantities of a system. In contrast to molten salt or
ideal dipolar fluids, real polar media have an internal molecular structure, which reacts sensitively
to developed hydration shells. Moreover, the electrostatic field of a static charge distribution is not
completely screened by water molecules as can be seen by considering the macroscopic dielectric
constant of water, which coincides with a strong, but never complete, screening.

Therefore, we restrict ourselves to

ε(k) >
1
√

2π
3 ,

i.e., the polarization effect is always weaker than the effect of the fixed charges such as the dashed
ε̂ function in Fig. 3.8. This model is now discussed in detail.
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Chapter 3. The biomolecular system

3.2.3 The Lorentzian model of water

A dielectric function ε̂, which fulfills all the deduced constraints, is proposed in [33,35] and is given
by Eq. (3.10).

1
ε̂(k)

=
√

2π
3
(

1
ε∞
− (

1
ε∞
− 1
εmacros

)
1

1 + λ2 k2

)
, k ∈ R (3.10)

⇔ ε̂(k) =
1
√

2π
3

(
ε∞ + (εmacros − ε∞)

1
1 + εmacros

ε∞
λ2 k2

)
, k ∈ R (3.11)

The dashed line in Fig. 3.8 sketches the principal shape of ε̂(k): it is the sigmoidal connection
between the two frequency limits: a gradual decrease in screening of the electric field from the high
macroscopic response (large distance scales, small k) to the low dielectric constant (small distance
scales, large k), when orientational degrees of freedom in the solvent do not respond to the electric
field anymore. This model for the dielectric operator is called the Lorentzian model, where the
name is coined from the shape of Eq. (3.11) in real space.

In Eq. (3.10) the correlation length λ arises. This quantity has already been motivated in Sec-
tion 3.2.1: λ determines the length scale on which the local hydrogen-bonded water correlations
decrease. The basis of this model is to assume an exponential decay of the spatial polarization
fluctuation due to the low-frequency part of the Debye spectrum [33]. The exponential decay is
characterized by λ. Introducing such a correlation length goes qualitatively beyond the macro-
scopic effects and it is a first step to incorporate non-trivial polarization correlations based on the
collective network character of water.

Since the polarization fluctuations lead to a deviation from the macroscopic response, we expect
for λ→ 0 to regain the local response given in Eq. (3.8). Then, the water molecules effectively align
with the external electrostatic field as it is the case for k → 0. Indeed, assuming the Lorentzian
model, the limiting process yields

lim
λ→0

ε̂(k) =
1
√

2π
3 εmacros . (3.12)

In contrast, the limiting process, λ→∞, implying a very large correlation length compared to the
variations of the electrostatic field, reveals the same electronic response as given in Eq. (3.9) for the
high-k limit: the water molecules build up a stable water network and their reaction due to the
external field is exclusively characterized by their electronic polarization,

lim
λ→∞

ε̂(k) =
1
√

2π
3 ε∞ .

From Eq. (3.11) we see that it is reasonable to introduce a new quantity, namely the scaled
reciprocal of the correlation length

κ :=
1
λ

√
ε∞

εmacros
. (3.13)

To analyze the dielectric operator ε(r − r′) in real space, we transform ε̂(k) back. As a detailed
derivation of the transformation is given in [52], we only state the result here:

ε̂(k) =
1
√

2π
3

(
ε∞ + (εmacros − ε∞)

1
1 + k2/κ2

)
, k = |k|,k ∈ R3

ε(R) = ε∞δ(R) + (εmacros − ε∞)
κ2

4π
e−Rκ

R
, R = |R|,R ∈ R3
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3.2. Water - the main solvent of biomolecules

Identifying R with the difference of arbitrary points in the dielectric medium,

R = r − r′ ,

we end up with the nonlocal dielectric operator and the integral description of the dielectric per-
mittivity, respectively:

ε(r − r′) = ε∞δ(r − r′) + (εmacros − ε∞)
κ2

4π
e−κ|r−r

′|

|r − r′|
, r, r′ ∈ R3 (3.14a)

D(r) =
∫
R3

dr′ε(r − r′)E(r)

= ε∞E(r) + (εmacros − ε∞)
∫
R3

dr′
κ2

4π
e−κ |r−r

′|

|r − r′|
E(r′), r ∈ R3 . (3.14b)

Since ε̂ fulfills the physical constraints given in Eqs. (3.8), (3.9), and (3.12) the corresponding ε
fulfills them as well. For instance, we regain the local limit for κ→∞ in R3, because

lim
κ→∞

κ2

4π

(
e−κ |r−r

′|

|r − r′|

)
=

{
0 for r 6= r′

∞ for r = r′
for all κ>0 and r′∈R3 (3.15a)∫

R3

dr′
κ2

4π
e−κ |r−r

′|

|r − r′|
= 1, for all κ>0 , (3.15b)

where the last identity can be proven using mathematical software tool such as Maple or Mathe-
matica. As Eqs. (3.15)(a,b) define a δ-distribution in R3, we find

lim
κ→∞

ε(r − r′) = ε∞ δ(r − r′) + (εmacros − ε∞) lim
κ→∞

κ2

4π
e−κ|r−r

′|

|r − r′|
= ε∞ δ(r − r′) + (εmacros − ε∞)δ(r − r′)
= εmacros δ(r − r′) , r, r′ ∈ R3 .

The Lorentzian dielectric operator is the simplest approach which fulfills the thermodynamic lim-
its of a nonlocal response theory, i.e., a sigmoidal connection between the limits of low and high wave
number. Despite of its simplicity, which cannot withstand certain criticism [6], first applications
on simple and non-trivial geometries demonstrate the success of this ansatz (see Section 3.3.3).

After a brief recapitulation of previous work, we focus on a new, precise definition of the dielectric
response in biomolecular systems and a deeper understanding of the Lorentzian model of nonlocal
electrostatics.

Historical review

� In 1970, the pioneer work on nonlocal electrostatics was done by Kornyshev et al. [72] and
Vorotyntsev [134], who transferred the dielectric response theory of semiconductor research
to a model for the nonlocal effect of water. This work was inspired by Inkson’s simple model
for the semiconductor dielectric response [59].

� Kornyshev et al. solved the integro-differential equations for the planar surface and for spher-
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ical symmetry. This could be achieved, as in these cases the three-dimensional problem can
be reduced to one degree of freedom and therefore is analytically solvable, see Section 3.3.3.

� In 2005, A. Hildebrandt found a more elegant and simpler method to solve the integro-
differential system: he identified the integral kernel as the fundamental solution of a special,
well-known differential operator [52]. This leads to the possibility to transform the integro-
differential system to a purely differential system.

The present work focuses on the differential approach proposed by A. Hildebrandt. We embed the
ideas given in [52] into a mathematical framework, which allows for the first time to modify and
thoroughly interpret the established nonlocal equations: the general formulation, which we will
derive, gives the possibility to handle the biomolecule as a “disruptive” element within the water
network. This is relevant, as on the one hand the water network could be weakened or destroyed
because of the physical boundary of the molecule. On the other hand, strong interactions might
appear between individual water molecules and surface exposed amino acids in the form of localized
hydrogen bonds, which locally strengthen the water network. Both aspects have an impact on
the polarization of water on the biomolecular surface. Furthermore, the theoretical framework
gives a deeper understanding of the assumptions and approximations made in former Lorentzian
model [40,52,72]. In fact, we can interpret them in terms of the system’s behavior on the protein-
water interface.

3.3 The Lorentzian model for biomolecules in water

In Section 3.1 we introduced an appropriate representation of the biomolecule, where the polariza-
tion effects are captured by a constant dielectric function:

DΩ(r) =
∫
Ω

dr′ εlocal(r − r′)EΩ(r′), r ∈ Ω (3.16)

with εlocal(r − r′) = εmacros δ(r − r′) , r, r′ ∈ Ω , (3.17)

where Ω is defined as the inside of the molecule, i.e. the region of molecular dielectric response.
We agreed on the macroscopic response of the biomolecule, εmacros to equal εΩ = 2ε0. This finally
yields

DΩ(r) = εΩEΩ(r), r ∈ Ω .

In Section 3.2 we characterized the dielectric response of water by the Lorentzian model. Here, we
assumed the water to capture the whole of R3. In the biomolecular system, the nonlocal response
given in Eqs. (3.14) is confined to Σ ⊂ R3. With εmacros = εΣ = 78.5 ε0, the macroscopic dielectric
response of water, and ε∞ = 1.8 ε0, its electronic response, we define the nonlocal response in Σ

DΣ(r) =
∫
Σ

dr′ εnonlocal(r − r′)EΣ(r′), r ∈ Σ (3.18)

with εnonlocal(r − r′) = ε∞δ(r − r′) + (εmacros − ε∞)
κ2

4π
e−κ |r−r

′|

|r − r′|
, r, r′ ∈ Σ . (3.19)

Now, we merge both models in order to define the electrostatic setting of the biomolecular system.
To this end, we state a new formulation of the dielectric response in Section 3.3.1, which combines
the separate definitions of ε in Ω and Σ to a global dielectric operator. Based on this formulation,
we discuss the effect of the molecule-water interface.
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3.3. The Lorentzian model for biomolecules in water

In Section 3.3.2 we state the system of equations and calculate the field energy of the biomolecular
system, so that when we start with first applications in Section 3.3.3, we have a physical quantity
to compare with experimental data.

3.3.1 The dielectric function in the biomolecular system

As the material equations are differential equations for E and D, which are globally defined in R3,
we also need a globally valid dielectric operator ε(r, r′)R3 . With the explicitly noted dependence
r and r′, we already anticipate that the global dielectric operator of the biomolecular system
is not homogeneous and isotropic anymore. However, restricted to the two regions Ω and Σ,
ε(r, r′)R3 should result in the two separate, homogeneous and isotropic, definitions (3.17) and
(3.19), respectively.

We define the projection on a domain V ∈ R3 by the characteristic function

χV (r) :=

{
1 r ∈ V
0 r /∈ V .

(3.20)

With the help of Eq. (3.20), we define the dielectric permittivity D of the molecular system in R3

D(r) =
∫
R3

dr′ ε(r, r′)R3E(r′), r ∈ R3 , (3.21)

considering the following response

ε(r, r′)R3 = χΩ(r)χΩ(r′)εlocal(r − r′) + χΣ(r)χΣ(r′)εnonlocal(r − r′)

= χΩ(r)χΩ(r′)δ(r − r′)εΩ

+χΣ(r)χΣ(r′)

(
ε∞δ(r − r′) + (εΣ − ε∞)

κ2

4π
e−κ |r−r

′|

|r − r′|

)
(3.22)

= ε(r′, r)R3 .

This newly developed global approach is restricted to a homogeneous and isotropic, dielectric
response for the cases (r, r′) ∈ Ω or (r, r′) ∈ Σ: in Ω, we directly agree with the homogeneous
nature, as the dielectric response is a local quantity and therefore the next surrounding of r ∈ Ω
has no influence on the response at position r. In Σ, where the reaction is nonlocal, however, the
next surrounding modifies the dielectric response. The restriction to homogeneity and isotropy
is actually only valid when water captures the whole space, i.e., Σ = R3 (see Section 3.2.2.1 for
further explanations). Thus, in the context of solvated molecules, this is an assumption which
implies that the solvent is not perturbed by the biomolecule’s cavity, and the dielectric operator
reproduces the ideal solvent polarization contribution everywhere in Σ. A direct influence of the
dielectric boundary Γ on the equilibrium polarization is then neglected for εnonlocal. However, the
nonlocal polarization PΣ may dominate the solvent pattern only if the biomolecule “fits well” into
the spatial and chemical structure of the water network, i.e., when the hydrogen bonds are not
broken or completely rearranged but when they are still smoothly built around the cavity of the
molecule (see Section 3.1.4.2, where for the solvation process we introduce entropic energy terms
accounting for the symmetry breaking cavity).

This aspect is further explained in Fig. 3.9, where we illustrate three different positions of a
water molecule (small black point) near the dielectric boundary Γ. The considered water molecule
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Fig. 3.9: Nonlocal response of the water molecule in its correlation sphere (CS) near the dielectric boundary
Γ.

is surrounded by its correlation sphere (CS) which is defined by the correlation length λ. The
correlation sphere has a radius of about 2-10Å [33, 124] and therefore “sees” the curvature of the
molecule’s surface. In Fig. 3.9

(a) the CS of the water molecule under consideration completely lies in Σ. The water molecule is
surrounded by other water molecules, where the nonlocal isotropic response causes hydrogen
bonds as a function of the local electrostatic field.

(b) the CS penetrates the dielectric boundary in a way that the water network is disturbed. The
direct (dashed) connection of the water molecule to another one that lies inside its CS goes
through Ω and thus, the water network in this direction is considerably weakened. However,
the figure additionally shows another (dotted) connection between the two water molecules.
This should indicate that, when (i) the surface is slightly convex and (ii) correlations of
the water and the protein’s surface exposed amino acids are negligible, the network can be
mediated by a rearrangement of other water molecules.

(c) the water molecule lies inside a pocket and its CS is mainly covered by Ω. In surface normal
direction (arrow), i.e., the direction of “free” water molecules, the network can be built
whereas all the other directions are blocked by the dielectric boundary.

Fig. 3.9 motivates that the nonlocal part of the polarization changes when approaching the dielectric
boundary, i.e., when the CS partly lies in Ω: then, the arbitrarily shaped surface weakens the direct
water correlations and, in addition, the polarization on Γ might be changed due to local, water-
amino acid correlations.

The global, nonlocal dielectric function proposed in Eq. (3.22) in fact “ignores” the dielectric
boundary, assuming ε(r, r′) = ε(|r − r′|) to be the undisturbed nonlocal response when both r
and r′ lie in Σ – whatever lies between r and r′. Further, it does not incorporate a possible change
to anisotropy for CSs which overlap with Ω. This could be important when incorporating, for
instance, local hydrogen bonds with amino acid side chains.

However, the dielectric boundary is not ignored in the calculation of the electrostatic fields E
and D. On the boundary Γ, E has to fulfill transmission conditions which take into account the
change in the dielectric response. Moreover, the integration regime in Eq. (3.18),

DΣ(r) =
∫
Σ

dr′ εnonlocal(r − r′)EΣ(r′) , r ∈ Σ ,
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explicitly delimits the nonlocal response to Σ. This implies an indirect incorporation of the dielectric
boundary and its shape when calculating the dielectric permittivity D.

As a first approach, we assume that any direct variations in Eq. (3.22) due to the dielectric
boundary are negligible compared to the indirect influence the dielectric boundary has on D. In
Section 4.3.2, we once again refer to the question how to incorporate boundary effects and find a
way to easily incorporate a predefined behavior of the nonlocal response on Γ.

3.3.2 The Maxwell equations of the biomolecular system

Our aim is to analyze how the nonlocal Lorentzian solvent impacts the electrostatics and finally the
characteristics of solvated biomolecules. We therefore write the globally valid material equations
for a molecule in water analogous to Theorem 2.2.1,

∇ ·D = −ρ, in R3

∇×E = 0, in R3 ,

and, based on the following definitions, cast these global equations into a transmission problem
using Eqs. (3.21) and (3.22).

Definition 3.1

FΣ =
κ2

4π

∫
Σ

dr′
e−κ |r−r

′|

|r − r′|
EΣ(r′), in Σ (3.23)

EΩ = −∇φΩ, in Ω
EΣ = −∇φΣ, in Σ
DΩ = −εΩ∇φΩ, in Ω
DΣ = − (ε∞∇φΣ − (εΣ − ε∞)FΣ) , in Σ

Theorem 3.3.1 The Lorentzian model for a molecule in water in integro-differential form: With
Definition 3.1, the integro-differential system of nonlocal electrostatics in the Lorentzian model reads

εΩ4φΩ = −ρ, in Ω
ε∞4φΣ − (εΣ − ε∞)∇ · FΣ = 0, in Σ

εΩ∂nφΩ − (ε∞∂nφΣ − (εΣ − ε∞) (n · FΣ)) = σ, on Γ
φΩ − φΣ = 0, on Γ

Remark 3.2 The system in Theorem 3.3.1 is not restricted to a charge distribution in Ω but allows for a
surface charge distribution σ on Γ. This is to capture the analytically treatable examples in Section 3.3.3.
For the study of biomolecules, we always set σ to 0, see Section 3.1.2 for the surface definition.

3.3.2.1 The correlation field

In Theorem 3.3.1 we have introduced the vector field

FΣ(r) =
κ2

4π

∫
Σ

dr′
e−κ |r−r

′|

|r − r′|
EΣ(r′), r ∈ Σ .
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It serves to decompose the dielectric permittivity into a local and a nonlocal part in Σ:

DΣ(r) = ε0EΣ(r) + PΣ(r)
= ε∞EΣ(r)︸ ︷︷ ︸

local dependence

+ (εΣ − ε∞)FΣ(r)︸ ︷︷ ︸
nonlocal dependence

, r ∈ Σ

In general, the field FΣ comprises the nonlocal part of the polarization PΣ, which originates from
the orientational degrees of freedom of the water molecules and its correlations. The difference of
the field FΣ and the polarization field PΣ originates from the internal, electronic degrees of freedom
of every individual water molecule characterized by the constant response ε∞. If we assume the
effect of this electronic polarization to be small, i.e., ε∞ ≈ ε0, the field FΣ equals the polarization
field PΣ. In the following, we denote FΣ as the correlation field, having in mind that it takes into
account only the nonlocal part of PΣ.

From the definition of the polarization field FΣ we can already extract two limiting values for
low λ (high κ) and high λ (low κ),

lim
κ→0

FΣ = 0 ⇒ D = ε∞E, inΣ (3.24)

lim
κ→∞

FΣ = EΣ ⇒ D = εΣE, inΣ . (3.25)

From Eq. (3.24) we read that the correlation field vanishes when the strength of the hydrogen
bonds between the water molecules becomes maximal. This freezes the dielectric response to a pure
electronic response, because the water molecules cannot align their permanent dipoles anymore.
The nonlocal model is then described by a local model with electronic response ε∞ in Σ.

Eq. (3.25) tells us that when the correlation length vanishes, the water molecules are free to align
their permanent dipole with the dielectric field D and we regain the macroscopic dielectric response
εwater. This means that we end up in the expected local model with dielectric response εΣ in Σ.

Assuming an intermediate value of the correlation length, the correlation field describes a response
lying between these two limiting values, which are both represented by local models.

In Section 3.3.1, we discussed the problem of a possible change of the nonlocal response near
the dielectric boundary Γ. We have motivated that for a first model development of nonlocal
electrostatics, it is reasonable to neglect a direct, local change of ε(r, r′)R3 at Γ and to assume an
isotropic, homogeneous dielectric operator as given by Eq. (3.22). Since this problem only affects
the part of the polarization that accounts for the nonlocal correlation, the decision to keep a
homogeneous, isotropic dielectric function is expressed by the features of FΣ.

A closer look at Eq. (3.23) tells us that the correlation field is defined in the whole of R3:

F (r) =
κ2

4π

∫
Σ

dr′
e−κ |r−r

′|

|r − r′|
EΣ(r′), r ∈ R3 . (3.26)

This, in turn, determines the boundary values of the correlation field and therefore the behavior
of the nonlocal correlations on Γ. A homogeneous, isotropic dielectric operator in Σ implies that
the extension of FΣ in R3 is continuous with continuous normal derivatives. Indeed, one can prove
that the correlation field F in Eq. (3.26) is continuous and every component of F has a continuous
normal derivative (it is a Newton potential of the Yukawa operator [121]).

The correlation field F has been first defined in [39, 40]. However, its physical interpretation
as given above and a discussion of reasonable modifications has not yet been the focus in former
studies. In Section 4.3, this is once again addressed.
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3.3. The Lorentzian model for biomolecules in water

3.3.2.2 The field energy of the biomolecular system

In Section 2.3 we found that in order to obtain an explicit expression for the field energy Wfield

in dielectric media, we have to specify the dielectric operator. We proved that the field energy of
systems with piecewise linear, local response is given by

Wfield =
1
2

∫
R3

dr φ(r) ρ(r) =
1
2

∫
R3

drD(r) ·E(r) .

In this section, we calculate the field energy Wfield for the Lorentzian model of a solvated molecule.
With the global, nonlocal ansatz (Eqs. (3.22) and (3.21))

D(r) =
∫
R3

dr′ ε(r, r′)R3E(r′) ,

the infinitesimal work δWfield caused by adding an increment of charge density δρ to each volume
element dr is given by

δWfield =
∫
R3

dr φ(r)δρ(r) =
∫
R3

drE(r) · δD(r) =
∫
R3

drE(r) ·

∫
R3

dr′ ε(r, r′)R3 δE(r′)


The integrals commute, because

ε(r, r′)R3 = ε(r′, r)R3 ,

and thus we can shift the variation upon E:

δWfield =
∫
R3

dr δD(r) ·E(r) =
∫
R3

dr′D(r′) · δE(r′)

=
1
2
δ

∫
R3

drD(r) ·E(r) =
1
2
δ〈D(r),E(r)〉

Wfield =
1
2

〈D,E〉∫
0

δ〈D(r),E(r)〉 =
1
2
〈D,E〉

=
1
2

∫
R3

drD(r) ·E(r) =
1
2

∫
R3

dr φ(r) ρ(r)

This means that even for a piecewise (non)local response, the common formula for the electrostatic
field energy is valid. For its derivation, the requirements on linearity of the dielectric response and
the commutability of r and r′ in the dielectric operator are necessary and sufficient. We end up
with Theorem 3.3.2.

Theorem 3.3.2 The electrostatic field energy for linear, piecewise, (non)local dielectric media in
R3: If the dielectric response of the medium in R3 is given by the following equations,

D(r) =
∫
R3

dr′ ε(r, r′)R3E(r′)
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Chapter 3. The biomolecular system

Fig. 3.10: Different setups with spherical symmetry, where the piecewise (non)local dielectric function is
defined in (Eq. (3.19)) Eq. (3.17).

ε(r, r′)R3 = χΩ(r)χΩ(r′)δ(r − r′)εΩ + χΣ(r)χΣ(r′)

(
ε∞δ(r − r′) + (εΣ − ε∞)

κ2

4π
e−κ |r−r

′|

|r − r′|

)
,

the electrostatic field energy, Wfield of the system with charge distribution ρ is given by

Wfield =
1
2

∫
R3

drD(r) ·E(r) =
1
2

∫
R3

dr φ(r) ρ(r) .

Important remark 3.2 In Section 4.3 the definition of the correlation field, Eq. (3.23),

FΣ(r) =
κ2

4π

∫
Σ

dr′
e−κ |r−r

′|

|r − r′|
EΣ(r′), r ∈ Σ ,

is extended to two further boundary integrals. As we will address in detail in Remark 4.4, an incorporation
of these boundary integrals into the calculation of the field energy as described above is difficult. For the
present work, we always calculate the energy formula as given in Theorem 3.3.2, having in mind that this is
an approximation for general Lorentzian models of nonlocal response.

3.3.3 Application to spherically symmetric systems

In Fig. 3.10 we illustrate three different settings, which we want to solve in a nonlocal framework.
Since all the setups possess spherical symmetry, the solutions will be spherically symmetric and
this makes an analytical treatment of the integro-differential system (Theorem 3.3.1) possible.

Before we go into detail, we recapitulate two properties of radially symmetric fields. First, a
spherically symmetric, differentiable vector field F can be identified by F(r) = erf(r), where er
defines the unity vector in direction r with r = |r| and f is a differentiable scalar function. Second,
for a radially symmetric field one finds a representation 5,

F = erf(r) = −∇F(r) , where f(r) = −∂rF(r) .

Thus, in addition to the gradient representation of the electrostatic field, E = −∇φ, we find a
potential representation of the dielectric permittivity D as well as of the correlation field F in the
spherically symmetric setting. We introduce the dielectric potential ψ and the potential F and
define

E = −∇φ , D = −∇ψ , F = −∇F .

5The rotation of a radially symmetric fields vanishes and this directly implies a gradient representation.
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3.3. The Lorentzian model for biomolecules in water

3.3.3.1 The point charge

The simplest application of nonlocal electrostatics is shown in Fig. 3.10(a), where a point charge
is immersed in the nonlocal solvent. In this case, the dielectric function, ε(r, r′)R3 defined in
Eq. (3.22), is reduced to the globally defined, nonlocal dielectric operator

ε(r, r′)R3 = εnonlocal(r − r′) = ε∞δ(r − r′) + (εΣ − ε∞)
κ2

4π
e−κ |r−r

′|

|r − r′|
, r, r′ ∈ R3 .

The differential system of electrostatics for the point charge in water then reads

4ψ(r) = −q δ(r), r ∈ R3

∇ψ(r) = (εnonlocal ∗∇φ)(r), r ∈ R3 .

Plugging the second into the first equation gives an unique equation for φ, which is, in a second
step, transformed into Fourier space:

−∇ ((εnonlocal ∗∇φ)(r)) = q δ(r) , r ∈ R3

⇒ k
(
ε̂nonlocal(k)kφ̂(k)

)
=

q
√

2π
3 , k = |k|,k ∈ R3

with Eq. (3.10) φ̂(k) =
q
√

2π
3

1
εΣk2

1 + k2/κ2

1 + λ2k2
, k = |k|,k ∈ R3

Finally, we transform back φ̂ into real space:

φ(r) =
q

4πr

(
1
εΣ

+ (
1
εΣ
− 1
ε∞

)e−r/λ
)
, r = |r|, r ∈ R3 (3.27)

This nonlocal influence can be directly seen in Eq. (3.27): besides the well known local term(
q

4π εΣ r

)
, there is an additional, exponentially decreasing contribution,

q

4πr

(
(

1
εΣ
− 1
ε∞

)e−r/λ
)
> 0 ,

which causes the potential to reach farther in space (see Fig. 3.11 on p. 49). This is reasonable,
since the water network hinders the individual water molecules to align with the field and therefore
weakens the macroscopic response that is given by εΣ. The nonlocal effect has its maximum next
to the point charge and decreases on the scale of the correlation length λ.

As the nonlocal part of φ decreases faster than the local one, the electrostatic potential results
in the known expression for the local potential far from the point charge. A detailed comparison
between the local and the nonlocal behavior of the potential φ is given in Section 3.3.3.4.

In Theorem 2.1.2 we already used the linearity of the differential equations to generalize the
solution of the Laplace equation with source term q δ(r − r′) to an arbitrary charge distribution.
The same can be done here and we end up with Theorem 3.3.3.

Theorem 3.3.3 Point charges immersed in water: An arbitrary distribution of N point charges

ρ(r) =
N∑
i=1

qiδ(r − ri)
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Chapter 3. The biomolecular system

is immersed in a solvent of Lorentzian response. The electrostatic potential φ,

φ(r) =
1

4π

N∑
i=1

qi
|r − ri|

(
1
εΣ

+ (
1
εΣ
− 1
ε∞

)e−
1
λ
|r−ri|

)
,

solves the global, electrostatic material equation of Lorentzian response,

∇(εnonlocal ∗∇φ)(r) = −ρ(r) , r ∈ R3 .

Remark 3.3 The potential φ can be expressed by the fundamental solution GD,

GD : R3\{0} 7→ R2

r 7→

(
1

4π|r|
1

4π|r|

(
1
εΣ

+ ( 1
εΣ
− 1

ε∞
)e−

1
λ |r|

) )

of the differential system with operator D (see Theorem 2.1.2 and Section 4 for further explanations):

D =

(
4 0
1
λ2

ε∞
εΣ

ε∞ (4− 1
λ2 )

)
.

3.3.3.2 The Born sphere

The Born model has been introduced in Section 3.1.1. It is the simplest model for monoatomic
ions. Studying the Born model is an important benchmark for nonlocal electrostatics, because in
our analysis, molecules are treated as an accumulation of Born spheres. Now, we want to solve the
nonlocal electrostatics of the Born sphere.

Fig. 3.10(b) sketches the situation: Ω equals a sphere of arbitrary radius a, the surface charge is
set to zero and the charge distribution is the one of a point charge ρ = qδ(r). In order to represent
a monoatomic ion, Ω is filled with vacuum and therefore the response inside the sphere is εΩ = ε0.
Since our derivation is valid for arbitrary constant dielectric response, we do not specify εΩ further.

As the global definition of the dielectric function,

ε(r, r′)R3 = χΩ(r)χΩ(r′) εΩδ(r − r′) + χΣ(r)χΣ(r)

(
ε∞δ(r − r′) + (εΣ − ε∞)

κ2

4π
e−κ |r−r

′|

|r − r′|

)
,

cannot be reduced to a function of ε(r, r′)R3 = ε(r − r′)R3 as it was possible for the point charge,
we cannot use the convolution theorem to solve the nonlocal Maxwell equations 6. This is why we
solve the system for the Born sphere in real space:

FΣ = −∇FΣ(r) = −κ2

4π

∫
Σ

dr′ e
−κ |r−r′|

|r−r′| ∇r′φΣ(r′), r > a

εΩ4φΩ = −qδ(r), r < a

4 (ε∞φΣ + (εΣ − ε∞)FΣ)︸ ︷︷ ︸
ψΣ

= 0, r > a

φΩ − φΣ = 0, r = a

εΩ∂nφΩ − ∂n (ε∞φΣ + (εΣ − ε∞)FΣ)︸ ︷︷ ︸
ψΣ

= 0, r = a


(3.28)

6Such an approach is taken in [52] and therefore the solutions given therein are slightly wrong.
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3.3. The Lorentzian model for biomolecules in water

In order to solve the system (3.28) we need an ansatz for the potentials (φΣ, φΩ, ψΣ). In Section 2.1.1
we discussed the general solution of the Laplace operator for spherically symmetric systems. In
addition, we suggest that the principal behavior of φΣ corresponds to the one of the point charge,
Eq. (3.27) 7. From this, we make the following approach:

φΣ =
1

4πr

(
1
εΣ

+B e−s(r−a)

)
(3.29)

φΩ =
1

4π

(
1
εΩr

+A

)
ψΣ =

1
4π r

Because of the spherical symmetry, we switch to spherical coordinates (r, ϕ, ϑ). Without loss of
generality we assume the considered point r to lie on the z-axis, i.e., r = (0, 0, r), r > a.

FΣ(r) = −κ
2

4π

∫ ∞
a

dr′r′2∂r′φΣ(r′)
∫ π

0
dϑ sinϑ

e−κ |r−r
′|

|r − r′|

∫ 2π

0
dϕ (cosϕ sinϑ, sinϕ cosϑ, cosϑ)T

= −κ
2

2

∫ ∞
a

dr′r′2∂r′φΣ(r′)
∫ −1

1
d cosϑ

e−κ
√
r2+r′2−2 r r′ cosϑ

√
r2 + r′2 − 2 r r′ cosϑ

(0, 0, cosϑ)T

= − 1
2κ r2

∫ ∞
a

dr′∂r′φΣ(r′)
(

(κ2r r′ + κ(r + r′) + 1)e−κ(r+r′)+

(κ2r r′ − κ|r − r′| − 1)e−κ(|r−r′|)
)

(0, 0, 1)T , r>a (3.30)

For a further evaluation, we replace in Eq. (3.30) φΣ by the ansatz given in Eq. (3.29). The
integration can then be carried out and yields

FΣ(r) =
1

4πεΣ r
+B

e−s(r−a)

r

κ2

κ2 − s2

+
e−κr

κar

(
sinh(κa) +B

cosh(κa)κs2a+ sinh(κa)(κ2sa+ κ2 − s2)
κ2 − s2

)
, r>a , (3.31)

where, for the sake of clarity, we wrote the scalar potential FΣ. FΣ is regained by applying the
gradient operator, i.e., FΣ = −∇FΣ .

In the last step, the transmission conditions of system (3.28) have to be fulfilled and the relation

1
4π r

= ψΣ := ε∞φΣ + (εΣ − ε∞)FΣ, ∀r ∈ Σ , (3.32)

has to be valid. This determines the three constants (A,B, s):

s =
1
λ

=
√
εΣ

ε∞
κ

A =
(

1
εΣ
− 1
εΩ

+B

)
1
a

B = − sinh(κa)(κ2 − s2)
cosh(κa)κs2a+ sinh(κa)(κ2sa+ κ2 − s2)

=
(

1
ε∞
− 1
εΣ

)
1

1 + s a+ εΣ
ε∞

(
cosh(κ a)κ a

sinh(κ a) − 1
)

7A posteriori this is justified, as we find a solution. In Section 4.3.1.1 we state a purely differential system equivalent
to (3.28) with the same, unique solution.
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For the limit a → 0 the Born potential φΣ turns into the potential of a point charge as it was
derived in the last section. The limit κ → ∞ is realized by B → 0 and corresponds to the well
known result for a local macroscopic response characterized by εΣ.

3.3.3.3 The spherical shell

An illustration of the spherical shell is given in Fig. 3.10(c). Ω equals a sphere of radius a, the
surface has a constant charge distribution σ, and the charge density inside the sphere equals zero.
For the spherical shell the system given in Theorem 3.3.1 simplifies to

FΣ = −∇FΣ = −κ2

4π

∫
Σ

dr′ e
−κ |r−r′|
|r−r′| ∇r′φΣ(r′), r > a

εΩ4φΩ = 0, r < a

4 (ε∞φΣ + (εΣ − ε∞)FΣ)︸ ︷︷ ︸
ψΣ

= 0, r > a

φΩ − φΣ = 0, r = a

εΩ∂nφΩ − ∂n (ε∞φΣ + (εΣ − ε∞)FΣ)︸ ︷︷ ︸
ψΣ

= σ, r = a


(3.33)

As the potential φΩ lies in the kernel of the Laplace operator, we make the following ansatz:

φΣ = 1
4π r ( 1

εΣ
+B e−s(r−a))

φΩ = 1
4πA

ψΣ = 1
4π r

It remains to determine the constants (A,B, s) with Eq. (3.32) and the transmission conditions of
the system (3.33):

s = 1
λ =

√
εΣ
ε∞
κ

A = ( 1
εΣ
− 1

εΩ
+B) 1

a

B = − sinh(κa)(κ2−s2)
cosh(κa)κs2a+sinh(κa)(κ2sa+κ2−s2)

= ( 1
ε∞
− 1

εΣ
) 1

1+s a+
εΣ
ε∞

(
cosh(κ a)κ a

sinh(κ a)
−1)

3.3.3.4 Discussion and comparison

When comparing the Born with the spherical shell model, we see that the potentials outside the
sphere are equivalent. This is valid separately for both, the local and the nonlocal dielectric
response. It is a consequence of the physical Gauss law, Eq. (2.3), which tells us that the dielectric
potential outside a sphere is equivalent for all spherically symmetric charge distributions enclosed
in the sphere with the same total charge.

Fig. 3.11 shows the electrostatic potential φ of the Born model (lined), of the shell model (dashed),
and of the point charge (dotted). The difference to the point charge can be seen inside the sphere,
but it is not resolved anymore outside the sphere.

Compared to the local theory, the nonlocal models have a higher electrostatic potential every-
where. This is in accordance with the fact that the water network hinders the individual water
molecules to freely rotate and, in this way, the network shields the electrostatic field. All models
end up in the same local limit for r → ∞ (not shown). This corresponds to the constraint on the
nonlocal theory to turn into the local macroscopic behavior when the field variations get small.

The discontinuity of the normal derivative of the potential can also be seen in Fig. 3.11. For the
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3.3. The Lorentzian model for biomolecules in water

Fig. 3.11: The shape of electrostatic potential for different spherically symmetric cases, κ = 1/23 Å−1,
εΩ = 1 ε0, εΣ = 78.0 ε0, ε∞ = 1.8 ε0, a = 1Å, thus the distance r = 1Å corresponds to Γ.

Born sphere, it is exclusively caused by a change in the dielectric function, whereas for the shell
model there is a further contribution due to the non-vanishing surface charge σ. The jump at Γ
for the nonlocal Born model can hardly be seen. Only in comparison with the continuous function
of the nonlocal point charge (dotted), we recognize that there is a change in the slope at Γ. In
contrast, the local model (lined functions) causes a change in the slope of ∼εΣ/εΩ, as can be easily
seen in the figure. This is an interesting result, because the “smooth” transition of the potential
predicted by nonlocal model implies that the macroscopic response characterized by εΣ is indirectly
weakened on the surface. This was already supposed in Section 3.3.1 when we discussed a possible
change of the dielectric operator because of the dielectric boundary.

In the last decade, much attention has been given to the experimental determination and theoret-
ical calculation of the free solvation energies or free enthalpies to describe the transfer of individual
ions between two solvents. The interest in this quantity is due to its crucial importance in bioen-
ergetics and charge transfer processes in electrolyte solutions.

With the background derived in Section 3.1.4, we can apply the nonlocal theory to calculate
the electrostatic contribution to the solvation free energies. In Section 3.1.1, we introduced the
Born and the shell model as useful representations of monoatomic ions. Using these models, the
complexity of their quantum mechanical nature is not captured and therefore, in order to approx-
imate experimentally measurable quantities, one usually takes the atom radius as a fit parameter.
However, to assess the performance of a new theory we want to avoid a fitting process. In [52]
A. Hildebrandt explains in detail how physically motivated radii can be extracted from radial dis-
tribution functions based on the ideas of Åqvist. In the following application of the nonlocal model
to calculate solvation energies, we represent monoatomic metal ions by Born spheres with radii
taken from [1].

In [33, 124] and references given therein, the correlation length λ has been assumed to range
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Fig. 3.12: The free energy of solvation of monoatomic ions. The experimental values are taken from [87];
κ = 1/23 Å−1, εΩ = 1 ε0, εΣ = 78.0 ε0, ε∞ = 1.8 ε0.

between 3-7Å. In [52], A. Hildebrandt optimized the correlation length on small amino acid side
chains, where he took a range of 2-4Å. In the following we assume λ to be 3.028Å (κ = 1/20Å−1)
unless otherwise mentioned.

As already addressed in Section 3.1.4, the electrostatic energy is only one contribution to the total
free enthalpy which describes the solvation process. However, for monoatomic ions with a radius
<2Å the nonpolar contributions are negligible [33] in comparison to the electrostatic contributions,
because the nonpolar contributions are found to increase with the molecular surface area. Thus,
we directly compare the change in electrostatic energy with experimentally measured solvation
energies.

Fig. 3.12 illustrates the solvation energies of monoatomic ions for the nonlocal and the local model
in comparison with experimental solvation data. The evaluations have been done via Eq. (3.2) 8

with the appropriate potentials.
In Fig. 3.12 we see that the local electrostatic theory cannot sufficiently reproduce the experi-

mental data. The Lorentzian water model highly improves the energy estimation, and thus clearly
demonstrates the essential role of spatial dispersion.

Besides the solvation energies, which served as an example here, Kornyshev et al. investigated a
number of physical quantities further demonstrating the success of the Lorentzian water model: the
hydration energy of ions, the screening effect of ionic fields, the interaction energy of solvated ions,
and the solvation energies of the transfer of ions between different solvents, see for example [33–35]
and references (25-28) and (36-28) in [124]. However, all these previous studies focus on simple,
spherical systems. These systems are highly affected by the nonlocal reaction of the solvent and
suggest an important influence for biomolecules, which are naturally solvated in water, as well.

8In Section 3.2.2.1 (Theorem 3.3.2), we have shown that this formula is valid for the Lorentzian response.
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Chapter 4

Reformulation of the integro-differential
equation

In this chapter, we aim at finding a way to apply and solve the nonlocal equations for molecules
of arbitrary shape. The approaches discussed in Section 3.3.3, the Fourier transformation for an
accumulation of point charges and the integration of the correlation field F in the case of spherical
symmetry, are not applicable for arbitrary geometries. The reason is the complexity of the nonlocal
electrostatic equations stated in Theorem 3.3.11:

FΣ = −κ
2

4π

∫
Σ

dr′
e−κ |r−r

′|

|r − r′|
∇r′φΣ(r′) , in Σ (4.1a)

εΩ4φΩ = −ρ , in Ω (4.1b)
ε∞4φΣ − (εΣ − ε∞)∇ · FΣ = 0 , in Σ (4.1c)

εΩ∂nφΩ − (ε∞∂nφΣ − (εΣ − ε∞) (n · FΣ)) = 0 , on Γ (4.1d)
φΩ − φΣ = 0 , on Γ (4.1e)

We have to solve for a transmission problem defined by an integral, Eq. (4.1a) and by a differential
system (4.1)(b-e). To make an application of nonlocal electrostatics to biomolecules feasible, we
need an approach which copes with arbitrarily shaped transmission regions Γ. And even more
important, we have to overcome the interplay of differential and integral expressions, i.e., we have
to cast the system into a purely partial differential equation system (PDES).

Thus, the aim of this chapter is to substitute Eq. (4.1a) by a differential system characterized by
a linear operator L:

FΣ =
κ2

4π

∫
Σ

dr′
e−κ |r−r

′|

|r − r′|
EΣ(r′), in Σ ⇒ LFΣ = ? , in Σ

+ boundary values on Γ

In order to find an appropriate differential system which substitutes Eq. (4.1a), we proceed as
follows: first, a motivation is given in Section 4.1, where we introduce the differential operator,
Lκ = (4− κ2), the so called Yukawa operator. A first analysis of its fundamental solution shows
promise for finding a differential formulation. It clarifies further that the differential formulation is
unique only when the boundary values are specified.

In Section 4.2 we therefore introduce the basic ideas to uniquely represent an integral formulation
as a system of differential equations. To this end, we concentrate on general transmission and

1As we assume the molecules not to have a surface charge, we set σ = 0.

51



Chapter 4. Reformulation of the integro-differential equation

boundary value problems of the Yukawa operator Lκ. For both, the transmission as well as the
boundary value problem, we deduce unique integral representation formulas.

With these considerations, we start in Section 4.3 with the purely differential formulation of the
nonlocal equations of biomolecules immersed in water. In Section 4.3.1, we reinterpret the Lorentz
model given in Theorem 3.3.1 as a Newton potential approach. Further in Section 4.3.2, we propose
a second model, the so called Dirichlet model, to account for the molecular surface as a disturbing
factor of the nonlocal water correlations.

4.1 The Yukawa operator

Our aim is to transform the integral equation of the correlation field F into a system of differential
equations. The idea of such a transformation is to search for a linear operator L whose solution is
the integral in Eq. (4.1a). An example for such an equivalence is the so called Yukawa operator,

Lκ := (4− κ2), κ∈R+

together with its Newton potential 2. In order to show this, we state the fundamental solution of
the Yukawa operator:

Theorem 4.1.1 The fundamental solution of the Yukawa operator: A solution to the following
differential equation defined in R3

LκGLκ(r) = −δ(r) , r ∈ R3 (4.2)

is given by

GLκ : R3\{0} 7→ R (4.3)

r 7→ 1
4π

e−κ |r|

|r|
.

GLκ is called the fundamental solution of the Yukawa operator Lκ. GLκ is the unique, physical
solution to Eq. (4.2) when the radiation condition has to be fulfilled.
Proof: see [121].

With GLκ , the Newton potential f of the Yukawa operator with source term ρ is defined by

f(r) := (GLκ ∗ ρ)(r) :=
∫
R3

dr′GLκ(r − r′)ρ(r′), r ∈ R3 , (4.4)

as
Lκf(r) = Lκ((GLκ ∗ ρ)(r)) =

∫
R3

dr′ LκGLκ(r − r′)︸ ︷︷ ︸
−δ(r−r′)

ρ(r′) = −ρ(r), r ∈ R3 . (4.5)

This means that the Newton potential, Eq. (4.4) is the unique solution of the globally valid inho-
mogeneous Yukawa equation (4.2), which in addition fulfills the radiation condition.

If we recall once again Eq. (4.1a)

FΣ(r) =
∫
Σ

dr′
e−κ |r−r

′|

4π |r − r′|
(−κ2∇r′φ(r′)) =

∫
Σ

dr′GLκ(r − r′) (−κ2∇r′φ(r′)︸ ︷︷ ︸
=:ρ

) , r ∈ Σ ,

2The nomenclature has been introduced in Section 2.1.1 for the Laplace operator.
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we observe a similarity to Eq. (4.4), which lets us hope that we already found a way to reformu-
late the integral equation: an application of the Yukawa operator Lκ on FΣ reveals the partial
differential equation

LκFΣ = κ2∇φΣ, r ∈ Σ . (4.6)

In other words, a solution to Eq. (4.6) is

FΣ(r) = −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′), r ∈ Σ .

Remark 4.1 Assume f0 ∈Kern(Lκ), which means Lκf0 = 0 in Σ. Then, (FΣ + f0) is also a solution to
Eq. (4.6). If Σ = R3, the radiation condition allows only for f0 ≡ 0 in R3 and we end up in the vectorial
analog of Eq. (4.4).

With Remark 4.1, we know that in order to obtain the unique solution, we have to specify the
behavior of FΣ on Γ, i.e., we have to specify the boundary values. The focus of the following
section is the representation of the behavior on Γ for general differential problems of the Yukawa
operator.

FΣ = −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′), in Σ ⇒ Lκ FΣ = κ2∇φΣ , in Σ
+ boundary values on Γ

4.2 Boundary and transmission problem of the Yukawa operator

The study to find boundary integral representations is closely connected with the task to find
solutions of an elliptic PDES within a variational formulation. Since the mathematical theory goes
beyond the focus of this work, we only motivate and state the important results. For a more general
and detailed analysis we refer to Steinbach’s textbook [121] and the excellent book series written
by R. Dautray and J. L. Lions [28](vol. 1-6).

The basis of an integral representation is Green’s second identity [76, 121]: assume two scalar
functions u and v, both twice continuously differentiable in Ω ⊂ R3, then, it holds∫

Ω

dr(u4v − v4u) =
∫
Γ

dΓr n · (u∇v − v∇u) =
∫
Γ

dΓr (u (n ·∇)v − v (n ·∇)u)

=
∫
Γ

dΓr (γΩ
0u γ

Ω
1v − γΩ

0v γ
Ω
1u) , (4.7)

where we introduce the trace operators γ0 and γ1 in Definition 4.1 on the next page. It is easy to
show that an equation analogous to Eq. (4.7) exists for the Yukawa operator Lκ:

∫
Ω

dr(uLκv − vLκu) =
∫
Γ

dΓr (γΩ
0u γ

Ω
1v − γΩ

0v γ
Ω
1u) , (4.8)
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Chapter 4. Reformulation of the integro-differential equation

Definition 4.1 The trace operators:

Internal Dirichlet trace on Γ: γΩ
0 f := lim

Ω3r→Γ
f(r)

Internal Neumann trace on Γ: γΩ
1 f := lim

Ω3r→Γ
(n ·∇)f(r)

As illustrated on the right, the normal vector on Γ points into Σ,
i.e., it is the outer normal of Ω.

Now, we consider the following differential equation in the confined region Ω

Lκf = −ρΩ, in Ω . (4.9)

Green’s second identity applied on the solution f of Eq. (4.9) and the fundamental solution of the
Yukawa operator Lκ, i.e., replacing u with f and v with GLκ in Eq. (4.8), reads∫

Ω

dr′GLκ(r−r′) (Lκf(r′))

=
∫
Ω

dr′ (LκGY(r−r′)) f(r′) +
∫
Γ

dΓr′
[
γ0,r′GLκ(r−r′) γΩ

1f(r′)− γ1,r′GLκ(r−r′) γΩ
0f(r′)

]
= −

∫
Ω

dr′ δ(r−r′) f(r′) +
∫
Γ

dΓr′
[
γ0,r′GLκ(r−r′) γΩ

1f(r′)− γ1,r′GLκ(r−r′) γΩ
0f(r′)

]
,

This reveals the so called representation formula of the solution of Eq. (4.9)

f(r) =
∫
Ω

dr′GLκ(r−r′)ρΩ(r′) +
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) γΩ
1f(r′)

−
∫
Γ

dΓr′ γ1,r′GLκ(r−r′) γΩ
0f(r′), in Ω . (4.10)

Important remark 4.1 In order to calculate the solution f at position r∈Ω, the integral formula Eq. (4.10)
requires both traces, γΩ

0f and γΩ
1f . From the physical point of view, it is clear that either the Dirichlet or

the Neumann trace is necessary to uniquely define the physical problem [61, 97]. The remaining trace is
determined by the physical setting.

In consideration of Remark 4.1, we now formulate the solution of the Dirichlet and the Neumann
boundary value problem, respectively.

Theorem 4.2.1 Boundary value problems of the Yukawa operator:
The function

f(r) =
∫
Ω

dr′GLκ(r − r′)ρΩ(r′) +
∫
Γ

dΓr′ γ0,r′GLκ(r − r′) γΩ
1f(r′)

−
∫
Γ

dΓr′ γ1,r′GLκ(r − r′) γΩ
0f(r′), in Ω , (4.11)
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4.2. Boundary and transmission problem of the Yukawa operator

is the solution to the following boundary value problems:

1. Eq. (4.11) is the solution to the Dirichlet boundary value problem

Lκf = −ρΩ, in Ω
γΩ

0 f = gΩ
0 , on Γ

}
(4.12)

where the Neumann data γΩ
1f in Eq. (4.11) is implicitly given by system (4.12).

2. Eq. (4.11) is the solution to the Neumann boundary value problem

Lκf = −ρΩ, in Ω
γΩ

1 f = gΩ
1 , on Γ

}
(4.13)

where the Dirichlet data γΩ
0f in Eq. (4.11) is implicitly given by system (4.13).

An analogous representation to Eq. (4.10) holds in Σ. With the convention that the surface
normal points into Σ as illustrated in Definition 4.1, we obtain

f(r) =
∫
Σ

dr′GLκ(r − r′)ρΣ(r′)−
∫
Γ

dΓr′ γ0,r′GLκ(r − r′) γΣ
1f(r′)

+
∫
Γ

dΓr′ γ1,r′GLκ(r − r′) γΣ
0f(r′), in Σ . (4.14)

We conclude that a general representation formula for the solution f of the following transmission
problem

Lκf = −ρΩ, in Ω
Lκf = −ρΣ, in Σ
[γ0f ] = γΩ

0 f − γΣ
0f on Γ

[γ1f ] = γΩ
1 f − γΣ

1f on Γ

 (4.15)

can be derived from the representation formulas in Ω (Eq. (4.10)), and Σ (Eq. (4.14)):

f(r) =
∫
R3

dr′GLκ(r−r′)ρ(r′)

︸ ︷︷ ︸
Newton potential

+
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) [γ1f ]

︸ ︷︷ ︸
Single layer potential

−
∫
Γ

dΓr′ γ1,r′GLκ(r−r′) [γ0f ]

︸ ︷︷ ︸
Double layer potential

, r ∈ Ω ∪ Σ (4.16)

with

ρ =

{
ρΩ, in Ω
ρΣ, in Σ .

(4.17)

Important remark 4.2
� The representation formulas (4.10), (4.14) and (4.16) tell us that we can express the solution of the

boundary and transmission value problems of the Yukawa operator Lκ, (4.12), (4.13) and (4.15), by two
boundary integrals and one volume integral. The boundary integrals must appear in the representation
formulas in order to incorporate the boundary conditions.
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Chapter 4. Reformulation of the integro-differential equation

� The derivation is valid for the Yukawa operator with κ ≥ 0 and therefore it holds for the Laplace
operator4 as well. This is consistent with the fundamental solutionG4(r−r′) defined in Section 2.1.1.

� The volume and boundary integrals that appear in the general representation formulas, have different
mathematical features and different physical meanings [28,29]. Exemplarily, we denoted the different
integrals in Eq. (4.16) and give here their mathematical definitions [28, 121]. A definition and a short
motivation of the used function spaces is given in Appendix 10.1:

Definition 4.2 Newton potential: Let ρ ∈ H−1(R3) be a given density function. Then,

Ñ0 : H−1(R3) 7→ H1(R3)
(Ñ0ρ)(r) :=

∫
R3

dr′GLκ(r − r′)ρ(r′) = (GLκ ∗ ρ)(r), r ∈ R3 ,

is the Newton potential of the Yukawa operator Lκ.

Definition 4.3 Single layer potentials: Let w ∈ H−1/2(Γ) be a given density function. Then,

Ṽ Y : H−1/2(Γ) 7→ H1(Ω∪Σ)
(Ṽ Yw)(r) :=

∫
Γ

dΓr′ γ0,r′GLκ(r − r′)w(r′), in Ω∪Σ

is the Single layer potential of the Yukawa operator Lκ and

Ṽ L : H−1/2(Γ) 7→ H1(Ω∪Σ)
(Ṽ Lw)(r) :=

∫
Γ

dΓr′ γ0,r′G4(r − r′)w(r′), in Ω∪Σ

is the Single layer potential of the Laplace operator 4.

Definition 4.4 Double layer potentials: Let v ∈ H1/2(Γ) be a given density function. Then,

WY : H1/2(Γ) 7→ H1(Ω∪Σ)
(WYv)(r) :=

∫
Γ

dΓr′ γ1,r′GLκ(r − r′)v(r′), in Ω∪Σ

defines the Double layer potential of the Yukawa operator Lκ and

WL : H1/2(Γ) 7→ H1(Ω∪Σ)
(WLv)(r) :=

∫
Γ

dΓr′ γ1,r′G4(r − r′)v(r′), in Ω∪Σ

is the Double layer potential of the Laplace operator 4.

4.3 Generalization of the correlation field in biomolecular applications

The outcome of the previous considerations is the following: we found a general integral represen-
tation of the boundary value problem of the Yukawa operator in Σ:

fΣ(r) =
∫
Σ

dr′GLκ(r − r′)ρΣ(r′)

−
∫
Γ

dΓr′ γ0,r′GLκ(r − r′) γΣ
1f(r′)

+
∫
Γ

dΓr′ γ1,r′GLκ(r − r′) γΣ
0f(r′), in Σ

⇔

LκfΣ = −ρΣ, in Σ

γΣ
0 fΣ = gΣ

0︸ ︷︷ ︸
Dirichlet problem

, on Γ

γΣ
1 fΣ = gΣ

1︸ ︷︷ ︸
Neumann problem

, on Γ

(∗)
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4.3. Generalization of the correlation field

Using Eq. (4.17), we found a general integral representation of the transmission problem of the
Yukawa operator in R3:

f(r) =
∫
R3

dr′GLκ(r−r′)ρ(r′)

+
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) [γ1f ]

−
∫
Γ

dΓr′ γ1,r′GLκ(r−r′) [γ0f ], in Ω∪Σ

⇔

LκfΩ = −ρΩ, in Ω
LκfΣ = −ρΣ, in Σ

[γ0f ] = [γ0g], on Γ
[γ1f ] = [γ1g], on Γ

(∗∗)

With this knowledge, we now try to find an appropriate system of differential equations to replace
the integral representation of the correlation field F ,

FΣ(r) = −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′), r ∈ Σ (4.18)

in Theorem 3.3.1, i.e., in the electrostatic material equations of the biomolecular system.
Here, we emphasize that Eq. (4.18) is restricted to Σ – without any boundary integrals over

Γ that further determine the correlation field FΣ on Γ. In contrast, both, the boundary value
problem given in (∗) as well as the transmission problem given in (∗∗), are only well defined for
given boundary and jump conditions, respectively.

In Section 4.3.1 we find that the correlation field FΣ as given in Eq. (4.18) can be identified from
a transmission problem with vanishing jumps on Γ, i.e., it is a Newton potential:

FN(r) = −κ2

∫
Σ

dr′GLκ(r−r′)∇r′φΣ(r′), r ∈ R3

Further, in Section 4.3.1 we state the purely differential system equivalent to Theorem 3.3.1 and
solve the differential system for the Born sphere in Section 4.3.1.1. The whole working procedure
is shown on the left side of the diagram 4.1.

Fig. 4.1: Overview of the two different approaches for the Lorentzian water model in the biomolecular
system.
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Chapter 4. Reformulation of the integro-differential equation

However, the potential of this novel, general representation formula lies in the boundary value
approach given in (∗). It bears freedom to define a specific behavior on the surface Γ, which
for example can be physically motivated or given by experimental measurements. Specifying the
correlation field F on the surface Γ goes beyond the established representation of the correlation
field as a pure volume integral.

In Section 4.3.2 we will argue for a Dirichlet approach as shown on the right of the diagram 4.1.
In fact, we restrict to a vanishing Dirichlet trace

γΣ
0FD,Σ = 0, on Γ ,

which leads to a modification of the “original” definition of F :

FD,Σ(r) = −κ2

∫
Σ

dr′GLκ(r−r′)∇r′φΣ(r′)

︸ ︷︷ ︸
original definition of F

−
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) γΣ
1FD,Σ(r′), r ∈ Σ

4.3.1 Newton potential approach

In order to find an appropriate PDES for the correlation field FΣ,

FΣ(r) = −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′), in Σ , (4.19)

we start with the representation formula of a transmission problem (∗∗):

F (r) =
∫
R3

dr′GLκ(r−r′)ρ(r′)

+
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) [γ1F ]−
∫
Γ

dΓr′ γ1,r′GLκ(r−r′) [γ0F ], in R3 (4.20)

Determining the jump conditions [γ0F ], [γ1F ] and the source term ρ in a way that

FΣ(r) ≡ F (r)
∣∣
Σ
,

gives the representation formula and the corresponding PDES that – restricted to Σ – equals the
correlation field FΣ given in Eq. (4.19). A comparison of Eq. (4.19) and Eq. (4.20) reveals the
following conditions

[γ0F ] = 0 , on Γ
[γ1F ] = 0 , on Γ

ρ(r) = −κ2χΣ∇φΣ(r) =

{
0 , in Ω
−κ2∇φΣ(r) , in Σ ,

(4.21)

where we used the definition in Eq. (3.20) made on p. 39 of the characteristic function χV .
As the jumps of the Dirichlet and the Neumann traces vanish in the representation formula (4.20),

the correlation field FΣ can be interpreted as a Newton potential. This is denoted by the index N
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in the remainder of this work:

FN(r) = −κ2

∫
R3

dr′GLκ(r − r′)χΣ∇r′φΣ(r′) (4.22)

= −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′) , r ∈ R3

We finally obtain Theorem 4.3.1.

Theorem 4.3.1 Reformulation of the correlation field F in the Newton potential approach: Let
R3 be decomposed into Ω∪Γ∪Σ. The integral equation

FN(r) = −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′), r ∈ R3

is the unique solution of the transmission problem:

LκFN,Ω = 0, in Ω
LκFN,Σ = κ2∇φΣ, in Σ
FN,Ω = FN,Σ, on Γ

(n ·∇)FN,Ω = (n ·∇)FN,Σ, on Γ

Now, we can replace the integral representation of the correlation field in the Lorentzian model
of the biomolecular system (Theorem 3.3.1, p. 41) and end up with its differential analog, i.e., the
Lorentzian model of the biomolecular system in the Newton approach:

Theorem 4.3.2 The Lorentzian model of the biomolecular system in differential form in the New-
ton approach:

εΩ4φΩ = −ρ, in Ω
ε∞4φΣ − (εΣ − ε∞) (∇ · FN,Σ) = 0, in Σ

εΩ∂nφΩ = ε∞∂nφΣ − (εΣ − ε∞) (n · FN,Σ), on Γ
φΩ = φΣ, on Γ

LκFN,Ω = 0, in Ω
LκFN,Σ = κ2∇φΣ, in Σ

FN,Ω − FN,Σ = 0, on Γ
(n ·∇)FN,Ω − (n ·∇)FN,Σ = 0, on Γ

In the remainder of this work, this vector model for nonlocal electrostatics of the biomolecular
system is called the Newton Vector Model (NVM).

The second block in Theorem 4.3.1 describes the nonlocal correlation field in Σ and, although the
nonlocal response theory has been applied in Σ, there is a connection to Ω. From the mathematical
point of view, this influence originates from the requirement on global validity of FN.

From a physical point of view, the equation in Ω is a priori unclear, because the nonlocal
response, which is defined by FN,Σ takes place in Σ only. However, the influence of FN,Ω on FN,Σ

can be interpreted in terms of the nonlocal correlation, which are in this model rather mediated
than disturbed by Ω. Having this in mind, the solution FN,Ω itself has no physical meaning,
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Chapter 4. Reformulation of the integro-differential equation

but it implies a smooth decrease of the nonlocal correlations towards Ω. This co-determines the
transmission condition and therefore influences the nonlocal polarization in Σ.

The mathematical meaning of the original correlation field F as Newton potential FN was
first observed by C. Fasel and S. Rjasanow [39, 40]. Their analysis, however, aimed at solving
the corresponding differential equations. The physical meaning of the correlation field F was not
investigated. The novel formulation reveals a physical insight: we interpret the Newton potential
approach as the conceptually simplest treatment of biomolecules immersed in water, because the
nonlocal dielectric response does not experience any variations due to the dielectric boundary.

4.3.1.1 The Born model revisited

In Section 3.3.3, the integro-differential system for the Born model was solved by an explicit in-
tegration. Now, we want to use the purely differential formalism to find the solution of the Born
model. Because of the spherical symmetry, all fields can be expressed by gradients of potentials.
We make the ansatz

FN := −∇FN , in R3 ,

and solve the partial differential system given in Theorem 4.3.2 for a point charge, ρ = q δ(r) in
the center of a sphere with radius a located at the origin of the coordinate system. The system
given in Theorem 4.3.2 turns into:

εΩ4φΩ = −q δ(r), r < a

4[ε∞φΣ + (εΣ − ε∞)FN,Σ] = 0, r > a

φΩ = φΣ, r = a

εΩ∂nφΩ = ε∞∂nφΣ + (εΣ − ε∞) ∂nFN,Σ, r = a

LκFN,Ω = 0, r < a

LκFN,Σ = −κ2φΣ, r > a

∂nFN,Ω = ∂nFN,Σ, r = a

∂2
nFN,Ω = ∂2

nFN,Σ, r = a


(4.23)

The analytical solution of system (4.23) is

φΩ =
1

4π

[
1
εΩ r

+A

]
φΣ =

1
4πr

[
1
εΣ

+B e−s (r−a)

]
FN,Ω =

1
4πr

B2(B) sinh(κ r)

FN,Σ =
1

4πr

[
1
εΣ
−B e−s (r−a) ε∞

εΣ − ε∞

]
,

where s, B and B2(B) are defined by

s = 1
λ =

√
εΣ
ε∞
κ

A =
(

1
εΣ
− 1

εΩ
+B

)
1
a

B =
(

1
ε∞
− 1

εΣ

)
1

1+s a+
εΣ
ε∞

“
cosh(κ a)κ a

sinh(κ a)
−1
”

B2(B) = B 1
sinh(κa)

εΣ
ε∞−εΣ .
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As expected, the solution of the system (4.23) is the same as the one derived in Section 3.3.3.2.
Solving the purely differential system is elegant and simple compared to the non-trivial integrations.

Important remark 4.3 When comparing the general solution of FΣ, Eq. (3.31) on p. 47, with the one
derived here, we see that Eq. (3.31) contains a term, which lies in the kernel of the Yukawa operator Lκ.
This term vanishes only if we demand that FΣ is subject to the electrostatic material equations. In the
case of solving the differential system, this contribution directly vanishes, because the material equations are
simultaneously fulfilled:{

4[ε∞φΣ + (εΣ − ε∞)FN,Σ] = 0, r > a

LκFN,Σ + κ2φΣ = 0, r > a

}
⇔

{
4
[
(4− 1

λ2
)FN,Σ

]
= 0, r > a

}
The above equivalence proves that FΣ does not has a contribution, which lies in Kern(Lκ), but rather two
contributions, one lies in Kern(4), the other lies in Kern(L1/λ). This means that - at least for the spherically
symmetric case - a response on the length scale ∼ 1/κ is not driven by the system.

Remark 4.2 A reduction of the six transmission conditions to two scalar equations for the correlation field
FN as done in system (4.23) is possible without further restrictions only in the case of spherical symmetry.
Here, the normal direction on the surface Γ coincides with the spatial dependence of all electrostatic fields.

4.3.2 Dirichlet problem

The Lorentzian model of water characterizes a homogeneous situation, i.e., it does not model a
disruptive element like a biomolecule. To consider the effect of the biomolecule in the Maxwell
equations requires a physical intuition of the way the nonlocal correlations “behave” close to the
biomolecule and therefore determine the boundary values of FΣ.

Let us recall Fig. 3.9 shown once again above: we sketch three different positions of the correlation
sphere (CS) of a single water molecule: in the figures (b-c) the CS penetrates Ω. The nonlocal
network, which is mediated in Σ, is disturbed because of the dielectric boundary. When the CS
approaches Ω, the water network “feels” the change in the dielectric response. The local formation
of the network highly depends on the nature of the amino acids exposed to the surface: for instance,
in nonpolar molecular regions we expect the hydrogen bonds to turn away from the surface, whereas
in polar regions specific hydrogen bonds of water and amino acids of the protein can often be built.
Thus, it is difficult to predict the behavior of the correlation field on Γ without taking into account
the local protein composition.

One estimate of the dielectric response on the molecular surface is given by the assumption that
the water molecules on the surface respond only with their internal, electronic response ε∞ [52].
It corresponds to the fact that the molecule binds a first layer of water molecules very tightly in a
small region around the surface. This is due to the fact, that the electrostatic field variations are
strongest on the surface and thus the orientational polarizability is weakened. Furthermore, the
loss in hydrogen bonds in direction Ω, i.e., a loss in entropic energy, can increase the strength of the
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hydrogen bonds in normal direction away from the surface, as the molecules keep their remaining
hydrogen bonds [112]. This motivates to discuss a model where the correlation field FΣ vanishes
on Γ, and thus we introduce the Dirichlet approach with vanishing Dirichlet trace:

γΣ
0 FD,Σ = lim

Σ3r→Γ
FD,Σ(r) = 0 , on Γ

From a physical point of view, this means that the dielectric response mediated by ε starts with
the internal, electronic dielectric function. Moving away from Γ, the network is gradually built up
- mainly in surface normal direction, because in this direction the water molecules are less affected
by the dielectric boundary Γ.

In Section 3.3.2.1, we learned that a pure electronic response coincides with a frozen water
network and that this states the contrary case to the local model of macroscopic response. Having
this in mind, a vanishing Dirichlet boundary condition is one possible limiting case for the behavior
of the water network on the molecular surface.

Inserting the vanishing Dirichlet trace γΣ
0 FD,Σ into the general representation formula for the

unbounded domain Σ, Eq. (4.14), yields

FD,Σ(r) = −κ2

∫
Σ

dr′GLκ(r−r′)∇r′φΣ(r′) +
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) γΣ
1FD,Σ(r′), in Σ ,

and we finally obtain the reformulation of the correlation field F with Dirichlet boundary condition:

Theorem 4.3.3 Reformulation of the correlation field F with Dirichlet boundary condition: The
integral equation

FD,Σ(r) = −κ2

∫
Σ

dr′GLκ(r−r′)∇r′φΣ(r′) +
∫
Γ

dΓr′ γ0,r′ γ
Σ
1FD,Σ(r′), in Σ

is the unique solution of the Dirichlet problem:

LκFD,Σ = κ2∇φΣ, in Σ
FD,Σ = 0, on Γ

Replacing the integral representation of the correlation field in the Lorentzian model, Theo-
rem 3.3.1, by the Dirichlet system given in Theorem 4.3.3, we end up with Theorem 4.3.4.

Theorem 4.3.4 The Lorentzian model of the biomolecular system in differential form with van-
ishing Dirichlet boundary condition:

εΩ4φΩ = −ρ, in Ω
ε∞4φΣ − (εΣ − ε∞) (∇ · FD,Σ) = 0, in Σ

φΩ = φΣ on Γ
εΩ∂nφΩ = ε∞∂nφΣ − (εΣ − ε∞) (n · FD,Σ)︸ ︷︷ ︸

=0

, on Γ

LκFD,Σ = κ2∇φΣ, in Σ
FD,Σ = 0, on Γ

In the remainder of this work, this vector model for electrostatics in the biomolecular system is
called the Dirichlet Vector Model (DVM).
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Important remark 4.4 The incorporation of the boundary values into the definition of the correlation
field F opens the possibility for a specific modulation of the dielectric effects on the boundary Γ. This
extension, however, complicates the energy calculation. In the case of the Dirichlet approach we have to
consider, for instance, the following variation:

δWfield =
∫
R3

dr φ(r)δρ(r) =
∫
R3

drE(r) · δD(r)

=
∫
R3

drE(r) ·

∫
R3

dr′ ε(r, r′)R3 δE(r′) +
∫
Γ

dΓr′ γ0,r′GLκ(r−r′) δ(γΣ
1FD,Σ(r′))


=

1
2

∫
R3

drδ(DN(r) ·E(r))

︸ ︷︷ ︸
(i)

+
∫
R3

drE(r) ·

∫
Γ

dΓr′ γ0,r′GLκ(r−r′) δ(γΣ
1FD,Σ(r′))


︸ ︷︷ ︸

(ii)

As we can see, the variation of the dielectric field δD cannot simply be shifted to the electric field E as it
was done in Section 3.3.2.2, because we do not know a priori the variation of the boundary values γΣ

1FD,Σ,
when increasing the charge δρ. A final integration of the part (i) formally reveals the same contribution to
the field energy as the Newton potential approach, see Theorem 3.3.2. The existence of the part (ii) is due
to the incorporation of boundary effects - the maximization of the water correlations - into the Dirichlet
approach. In general, the second contribution could account for specific polar and nonpolar regions that
locally modify the water correlations. Having this in mind, the second term (ii) can be interpreted in parts
as a cavity energy term that is commonly treated separately [8] (see Section 3.1.4.2).

In all the following calculations of the solvation free energy, we use the part (i) as the electrostatic
contribution to the solvation free energy. The resulting energy Wfield is obtained by a final integration as
explained in Theorem 3.3.2. Calculating the field energy contribution of (ii) is one of the main aspects of
future work.

4.3.2.1 The Born model in the Dirichlet approach

The spherical symmetry allows the gradient ansatz for all appearing fields, in particular

FD,Σ := −∇FD,Σ , in Σ .

We solve the partial differential system given in Theorem 4.3.2 for a point charge, ρ = q δ(r) in the
center of a sphere with radius a located at the origin.

εΩ4φΩ = −q δ(r) r < a

4[ε∞φΣ + (εΣ − ε∞)FD,Σ] = 0 r > a

φΩ = φΣ r = a

εΩ∂nφΩ = ε∞∂nφΣ r = a

LκFD,Σ = −κ2φΣ r > a

∂nFD,Σ = 0 r = a


(4.24)

The analytical solution of system (4.24) is

φΩ =
1

4π
[

1
εΩ r

+A]

φΣ =
1

4πr
[

1
εΣ

+B e−s (r−a)]

FΣ =
1

4πr
[

1
εΣ
−B e−s (r−a) ε∞

εΣ − ε∞
]
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Chapter 4. Reformulation of the integro-differential equation

where s, B and B2(B) are defined by

s = 1
λ =

√
εΣ
ε∞
κ

A = ( 1
εΣ
− 1

εΩ
+B) 1

a

B = ( 1
ε∞
− 1

εΣ
) 1

1+s a

4.4 The correlation field in differential form

As the reformulation of the integral representation of F is the key for all steps going further in
application and theory, we now discuss some properties which are deduced from the differential
form of F :

Independent of the boundary values of FΣ, i.e., valid for FN,Σ as well as for FD,Σ, the partial
differential system to determine FΣ and φΣ is given by:

LκFΣ = κ2∇φΣ, in Σ (4.25a)
ε∞4φΣ − (εΣ − ε∞) (∇ · FΣ) = 0, in Σ (4.25b)

Based on these equations we can extract general features of the nonlocal model in differential form:

Screening: the system (4.25) is characterized by a screening of the correlation field FΣ on length
scales ∼ 1/κ = λ

√
εΣ
ε∞

. Further, it is driven by the electrostatic field −∇φΣ, which plays

the role of a source term. The appearance of 1/κ as characteristic length scale is surprising,
since the Lorentzian model describes correlations on the scale λ. Only if the second equation
is incorporated by the source term resulting in

∇ ·
[(
4− 1

λ2

)
FΣ

]
= 0 , (4.26)

we obtain the physical length scale.

As we have seen, the screening in the case of spherical symmetry is only defined by λ.
Although in general, both λ and 1/κ are length scales of the variations of the correlation
field, this gives reason to believe that the contribution on length scales 1/κ is smaller in
comparison to the one of the water network.

Limiting process: in Section 3.3.2, we have verified that the nonlocal Lorentzian model turns into
a local response for (κ→∞) and (κ→ 0), respectively. This behavior is also reproduced in
the differential formulation, i.e., after the application of the Yukawa operator:

lim
κ→∞

(LκFΣ = κ2∇φΣ

)
⇒ FΣ = −∇φΣ in Σ

lim
κ→0

(LκFΣ = κ2∇φΣ

)
⇒ FΣ = 0 in Σ

The local equations are revealed in Σ for both limiting processes as proved by the insertion
of the limits in Eq. (4.25b).

In the case of a vanishing Dirichlet trace as proposed in Theorem 4.3.4, the transmission
condition, however, remains unchanged

εΩ∂nφΩ = ε∞∂nφΣ 6= εΣ∂nφΣ , on Γ .
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Although this conflicts with the local transmission condition, it is not a problem for our
applications, since we always assume a finite correlation length.

4.5 Conclusion

In this chapter we deduced a general formulation of the nonlocal effect in the biomolecular system,
which (a) is capable to incorporate a change of the water correlations in terms of boundary values of
the correlation field F near the molecular surface Γ and (b) can be cast into a system of differential
equations. This is necessary to easily solve the nonlocal equations for an arbitrary molecular
geometry, because the electrostatic equations are also given in differential form.

The novel formulation holds new insight in the interpretation and the physical reasoning of the
models given in [52] and [40], where the correlation field F is implicitly fixed on Γ: this is the
Dirichlet Vector model with a correlation field F of vanishing Dirichlet trace on the molecular
boundary Γ and the Newton Vector model, which is based on a globally continuous correlation
field.

The proposed formulation goes qualitatively beyond these former models, because it offers the
possibility to incorporate the specific nature of water on the molecular surface. In this way, the
Dirichlet and the Newton Vector models are examples for a specially imposed boundary behavior.

The generality of the novel formulation has also been discussed in the light of energy contri-
butions: a specification of the correlation field F on Γ gives rise to a cavity energy term, which
originates from the reorganization of the water network when building the molecule’s cavity. Al-
though the additional energy contribution has not been further studied in this work, it clearly
shows the capability of the presented formulation for nonlocal water models.
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Chapter 5

Scalar approximations of the Lorentzian
model

Although we eliminated the integral definition of the correlation field F , the systems given in
Theorem 4.3.2 and in Theorem 4.3.4 are still very complicated, because the unknowns are vectorial
quantities. For a broad application of nonlocal electrostatics on biomolecules, the vectorial systems
are impractical: the requirements on memory and computing time strongly limit the dimension of
the biomolecules under consideration. Thus, the question is whether we can find simpler models,
which capture the main features of nonlocal electrostatics.

A crucial simplification in the solving process is gained when the vectorial correlation field F
can be expressed by the gradient of a potential field. In general, this is not the case, because the
correlation field F as well as the dielectric permittivity D are not free of vortices

∇×D 6= 0 and ∇×F 6= 0 , in R3 .

In general, F and D are therefore composed of a gradient and a rotational part, for instance, in
the case of F

F =∇F +∇×ξ .

Fig. 5.1: Overview of two different scalar approaches for the Lorentzian water model in the biomolecular
system deduced from the vector models.
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Chapter 5. Scalar approximations of the Lorentzian model

Fig. 5.2: Decomposition of a vector field F ∈ L2(R3) into a rotational and a gradient part.

In the following sections, we pursue two different approaches to characterize the physical value
of the rotational part ∇×ξ of the correlation field F .

The first approach starts with the Dirichlet Vector Model (DVM). We discuss the so called
Helmholtz decomposition of the correlation field [29] (Section 5.1) and deduce a scalar model from
the DVM, the so called Dirichlet Scalar Model (DSM).

The second ansatz approximates the Newton Vector Model (NVM) by gradient fields. Here, the
potential ansatz,

FN,Σ =∇FN,Σ ,

in fact, reduces to a permutation of the nonlocal dielectric function and the differential operator,
which is a priori not given by first principles (Section 5.2). With the potential approach we argue
for a second scalar model, the Newton Scalar Model (NSM).

An overview of the scalar models derived from the vector models is given in the diagram 5.1. A
comparison on the Born sphere is given in Section 5.3. The models we take into account for this
comparison are shown in the last row of Fig. 5.1.

5.1 Decomposition of the Dirichlet Vector Model

As part of the electrostatic material equations, it holds that the correlation field F ∈ L2(R3)3. This
allows to consider F in a Helmholtz decomposition (see [29] p. 314). The Helmholtz decomposition
describes the mathematical concept of decomposing a vector field F ∈ L2(V )3 in a domain V in
two orthogonal contributions:

F =∇F ⊕∇×ξ , in V

∇×(∇F ) = 0 → gradient part is curl-free
∇ · (∇×ξ) = 0 → rotational part is divergence-free

Fig. 5.2 exemplifies a curl-free and a divergence-free vector field. The dashed lines correspond to
the streamlines of the curl-free and the circles to the streamlines of the divergence-free vector field.
The Helmholtz decomposition is a good starting point for the analysis of the rotational and the
gradient part of the correlation field F .

Formally, the Helmholtz decomposition of L2(V )3 in an arbitrary bounded 1, simply connected

1An analogous decomposition holds for unbounded regions with bounded complements, e.g., for Σ in the biomolecular
system. The Sobolev space H1 then has to be substituted by the so called Beppo-Levi space W1 [29].
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domain V ∈ R3 can be written as follows

L2(V )3 =

gradient part︷ ︸︸ ︷
H0(curl 0, V )⊕

rotational part︷ ︸︸ ︷
∇× H1(V )3 (5.1a)︷ ︸︸ ︷

L2(V )3 = H0(curl 0, V )⊕ L2
rg(V )3 ⊕H0(div 0, V ) (5.1b)

︸ ︷︷ ︸
L2(V )3 = ∇H1(V )︸ ︷︷ ︸

gradient part

⊕H0(div 0, V )︸ ︷︷ ︸
rotational part

, (5.1c)

where the definition of the different spaces is given in Appendix 10.1.3. The operator ⊕ implies
the orthogonality of the decomposition [29]. The attribute “orthogonality” here means that a
function of one space can never be represented by a linear combination of functions in the remaining
orthogonal spaces or in other words, two functions belonging to different orthogonal spaces cannot
cancel each other.

The three decompositions split the space L2(V )3 into slightly different ways: the most detailed,
orthogonal decomposition is given in Eq. (5.1b), where the decision to represent the contribution of
L2
rg(V )3 as gradient of a scalar potential like in Eq. (5.1a) or as the curl of a vectorial potential like

in Eq. (5.1c) is not made. This is shown by the two central braces which clarify the connectivity of
L2
rg(V )3 to be part of ∇H1(V ) or ∇× H1(V )3.

Our aim is to find a pure gradient approach, and therefore we want to justify models with
negligible rotational part. This, of course, implies the reduction of the solution space. Thus,
it is reasonable to analyze an orthogonal decomposition, where the rotational part captures the
smallest possible part of L2(V )3. This means that we have to start with decomposition (5.1c) for
the following discussion.

In the decomposition
L2(V )3 = ∇H1(V )︸ ︷︷ ︸

gradient part

⊕H0(div 0, V )︸ ︷︷ ︸
rotational part

,

the rotational part has a fixed behavior at the boundary ∂V of V , because H0(div 0, V ) is defined
as follows

H0(div 0, V ) = {v ∈ L2(V )3,∇ · v = 0 in V, n · v = 0 on ∂V } .

This means that the normal component vanishes like it is the case for the rotational vector field in
Fig. 5.2. In contrast, the boundary values of the gradient field remain undetermined.

We define the orthogonal decomposition 2 of the correlation field FD,Σ of the Dirichlet Vector
Model in Theorem 4.3.4:

L2(Σ)3 3 FD,Σ = −∇FD,Σ +∇×ξΣ, in Σ (5.2)

with −∇FD,Σ ∈ ∇H1(Σ)
∇×ξΣ ∈ H0(div 0,Σ) ,

where ∇FD,Σ and ∇×ξΣ decrease fast enough in the limit |r| → ∞ so that the outer boundary
integrals vanish [29], i.e., the vector fields fulfill the radiation condition. Replacing FD,Σ with the

2
R
Σ

dV (∇FD,Σ) · (∇×ξΣ) = −
R
Σ

dV (∇ · (∇×ξΣ)| {z }
=0

FD,Σ +
R
Γ

dΓ [n · (∇×ξΣ)]| {z }
=0

FD,Σ = 0 ,
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ansatz (5.2) in Theorem 4.3.4 yields

εΩ4φΩ = −ρ, in Ω (5.3a)
4[ε∞φΣ + (εΣ − ε∞)FD,Σ] = 0, in Σ (5.3b)

εΩ∂nφΩ = ε∞∂nφΣ, on Γ (5.3c)
φΩ = φΣ, on Γ (5.3d)

Lκ(−∇FD,Σ +∇×ξΣ) = κ2∇φΣ, in Σ (5.3e)
∂nFD,Σ = 0, on Γ (5.3f)

n×(−∇FD,Σ +∇×ξΣ) = 0, on Γ , (5.3g)

where we explicitly used that ∇×ξΣ ∈ H0(div 0,Σ) and thus

n · (∇×ξΣ) = 0 , on Γ . (5.4)

A closer look at system (5.3) shows that the choice of the decomposition allowed us to separate the
rotational from the gradient part in the Neumann boundary condition of the field FD,Σ, Eq. (5.3f),
and in the Neumann transmission condition of the electric field, Eq. (5.3c). Further, we see that
the material equations are determined by the gradient part of the correlation field only. However,
the rotational part still appears in Eq. (5.3e) and Eq. (5.3g). Eq. (5.3e) might be further simplified,
if we can prove the orthogonality of the fields

(
∇(LκFD,Σ + κ2φΣ)

)
and (∇×(LκξΣ)):∫

Σ

dV
(
∇(LκFD,Σ + κ2φΣ)

)
· (∇×(LκξΣ))

Eq. (5.3e)
=

∫
Σ

dV (∇×(LκξΣ)) · (∇×(LκξΣ)) =
∫
Σ

dV |∇×(LκξΣ)|2

!= 0 ⇔ ∇×(LκξΣ) = 0 (5.5)

Eq. (5.5) tells us that in case of orthogonality, Eq. (5.3e) separates into the following equations,

∇(LκFD,Σ + κ2φΣ) = 0
∇×(LκξΣ) = 0 .

Unfortunately, the orthogonality is not guaranteed in general as shown by the following calculation:∫
Σ

dV
(
∇(LκFD,Σ + κ2φΣ)

)
· (∇×(LκξΣ))

= −
∫
Σ

dV [∇ · (∇×(LκξΣ))r]︸ ︷︷ ︸
=0

(LκFD,Σ + κ2φΣ)

+
∫
Γ

dΓ [n · (∇×(LκξΣ))] (LκFD,Σ + κ2φΣ)

=
1
ε∞

∫
Γ

dΓ [n · (∇×(4ξΣ))]︸ ︷︷ ︸
i.g. 6=0

(LκFD,Σ + κ2φΣ) , (5.6)

In the next two paragraphs we motivate to search for solutions where the orthogonality is con-
served.
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5.1.1 Screening length of orthogonal solutions

First, we have a look at the differential equations of system (5.3) in Σ.

4[ε∞φΣ + (εΣ − ε∞)FD,Σ] = 0, in Σ
∇
(
LκFD,Σ + κ2φΣ

)
= ∇×(LκξΣ), in Σ

If we, for the moment, assume the rotational part Lκ(∇×ξΣ) to vanish separately, we can apply
the divergence operator (∇·) on the latter equation without the loss of any degree of freedom and
obtain {

4[ε∞φΣ + (εΣ − ε∞)FD,Σ] = 0, in Σ
LκFD,Σ + κ2φΣ = 0, in Σ

}
(5.7)

⇔
{
4
[
(4− 1

λ2
)FD,Σ

]
= 0, in Σ

}
. (5.8)

We see from system (5.7) that φΣ is driven by FD,Σ. This source term is characterized by the
length scale λ as apparent in Eq. (5.8). It is due to an incorporation of nonlocal correlations that,
by definition, decrease on the scale λ.

In contrast, if we assume Lκ(∇×ξΣ) not to be orthogonal to ∇
(
LκFD,Σ + κ2φΣ

)
, the physically

reasonable assumption of the screening length λ is no more guaranteed; a screening on the length
scale 1/κ is allowed as well. This means that the rotational part induces variations of the electro-
static potential on a length scale which we assume is of minor importance in comparison with the
one of the water network. In the case of spherical symmetry, this contribution actually vanishes,
see Remark 4.3.

5.1.2 Existence of orthogonal solutions

From Eq. (5.6) we know that the orthogonality of ∇(LκFD,Σ + κ2φΣ) and (∇×LκξΣ) is given for

n · (Lκ∇×ξΣ) = 0 , on Γ .

In the following, we analyze this requirement in the special case of a surface, which can locally be
assumed to be part of a sphere as it is the case for a biomolecule almost everywhere. Exploiting
this fact, we describe the vector field ξ in a small region around r∈Γ in the spherical coordinate
system that is located in the origin of the sphere whose surface locally coincides with the surface of
the molecule. Then, the surface normal direction is given by the radial unit vector of the spherical
coordinate system and the complementing orthogonal unit vectors correspond to the tangents on
the molecule’s surface. This is illustrated in Fig. 5.3 for two different situations.

With these assumptions, the vector field ξ can be locally written as

ξ(r) = ξr(r, θ, φ) er + ξθ(r, θ, φ) eθ + ξφ(r, θ, φ) eφ , in Σ ,

where we know from the chosen Helmholtz decomposition that

n · [(∇× ξ)] = er · [(∇× ξ)] =
1

r sinθ
(∂θ(sinθ ξφ(r, θ, φ))− ∂φξθ(r, θ, φ)) = 0 , on Γ. (5.9)

The application of the operator (4 (∇×)) and the projection on n reveals

n · [4 (∇× ξ)] = er · [4 (∇× ξ)] = er · [4 ( (∇× ξ)rer︸ ︷︷ ︸
(∗)

+(∇× ξ)θeθ + (∇× ξ)φeφ)] , on Γ . (5.10)
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Fig. 5.3: The biomolecular surface is locally well described by spherical coordinates.

It is physically reasonable to assume that (∗) is zero not only for the limiting process, but also in
a small domain around Γ, as we argued that the correlation field

FD,Σ =∇FD,Σ +∇× ξ ,

vanishes on Γ and smoothly increases in magnitude (favorably in normal direction). In particular,
this holds for the rotational part with its vanishing normal component on Γ. Thus, we set the
expression (∗) to zero before the limiting process, Σ 3 r → Γ, and further simplify Eq. (5.10):

n · [4(∇× ξ)] = er · [4(∇× ξ)] =
2

r3 sinθ
(r∂r [∂θ(sinθ ξφ(r, θ, φ))− ∂φξθ(r, θ, φ)]), on Γ , (5.11)

where we used the following identities

(∇× ξ)θ =
1

r sinθ
(∂φξr(r, θ, φ)− ∂r(r sinθ ξφ(r, θ, φ)))

(∇× ξ)φ =
1
r

(∂r(rξθ(r, θ, φ))− ∂θξr(r, θ, φ))) .

Now, we can estimate the approximations required for preserving the orthogonality of the two
fields, ∇(LκFD,Σ + κ2φΣ) and (∇×LκξΣ): this is the case, when the expression (5.11) vanishes.

Together with Eq. (5.9) we see that this is fulfilled for the separation ansatz

ξθ(r, θ, φ) = b(r) ξθ(θ, φ)
ξφ(r, θ, φ) = b(r) ξφ(θ, φ) .

This ansatz implies that the dependence on r is equal for ξθ and ξφ and further that it is locally
independent from variations in θ and φ. In a first approximation, such an assumption is reason-
able as both tangential parts have to decrease with increasing distance to the molecular surface
independent from the particular choice of θ and φ. In fact, this is the approximation we accept in
order to obtain a gradient formulation.
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5.1.3 Dirichlet Scalar Model

The discussion of the last sections reveals that we can find solutions where the orthogonality of the
vector fields is conserved after the application of the Yukawa operator. These orthogonal solutions
preserve the screening length λ as the only length scale of nonlocal correlations. Therefore, we now
consider solutions of Eq. (5.3e) in Theorem 4.3.4, which split into two parts:

∇(LκFD,Σ + κ2φΣ) = 0, in Σ ⇒ LκFD,Σ + κ2φΣ = 0, in Σ
∇×LκξΣ = 0, in Σ

Incorporating this restriction in system (5.3) results in

εΩ4φΩ = −ρ, in Ω
4[ε∞φΣ + (εΣ − ε∞)FD,Σ] = 0, in Σ

φΩ = φΣ, on Γ
εΩ∂nφΩ = ε∞∂nφΣ, on Γ

LκFD,Σ = −κ2φΣ, in Σ
∂nFD,Σ = 0, on Γ

[−n×(∇FD,Σ) = jump, on Γ ] .

Although we justified the orthogonality of the following fields

∇(LκFD,Σ + κ2φΣ)⊕ (∇×LκξΣ) , in Σ ,

the rotational part still influences the tangential transmission condition on Γ. However, the scalar
system is uniquely defined by the vanishing Neumann boundary condition. The jump in the tangen-
tial derivatives of FD,Σ as indicated in the last equation is implicitly determined by the differential
system. We end up in the Dirichlet Scalar Model.

Theorem 5.1.1 Dirichlet Scalar Model (DSM)

εΩ∆φΩ = −ρ, in Ω
4(ε∞ φΣ + (εΣ − ε∞)FD,Σ) = 0, in Σ

φΩ = φΣ, in Γ
εΩ∂nφΩ = ε∞∂nφΣ, in Γ

LκFD,Σ = −κ2φΣ, in Σ
∂nFD,Σ = 0, in Γ

A comparison to the Dirichlet Vector Model (DVM) in the spherically symmetric case shows that
it coincides with the Dirichlet Scalar Model (DSM). However, the derivation and argumentation for
the DSM, which we gave in the previous sections, was more general and supports that this model
yields physically reasonable results for non-trivial geometries as well.
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5.2 Decomposition of the Newton Vector Model

In this section, we focus on the Newton Vector Model and try to reduce the vectorial equations to
a set of scalar quantities. To this end, we compare the definition of FN in Eq. (4.22),

−FN(r) = κ2

∫
Σ

dr′GLκ(r − r′) ∇r′φ(r′) , in R3

with ∇fN(r) := ∇κ2

∫
Σ

dr′GLκ(r − r′) φ(r′) , in R3 . (5.12)

The similarity motivates to analyse the difference in the corresponding differential equations, i.e.,
when applying the Yukawa operator Lκ. In Σ, the application reveals, for instance:

∇LκfN,Σ = −κ2∇φΣ(r), in Σ
LκFN,Σ = −κ2∇φΣ(r), in Σ

Comparing these equations, we find that

Lκ(FN,Σ −∇fN,Σ) = 0, in Σ .

With the same argumentation, we can further prove that an analogous equation holds in Ω. This
observation leads to the following result: the vector field FN can be decomposed into a gradient
field, −∇fN, and a function which lies in the kernel of the Yukawa operator Lκ,

⇒ FN = −∇fN + F hom
N with LκF hom

N = 0 , in Ω ∪ Σ . (5.13)

Remark 5.1 The gradient field ∇fN,Σ should not be confused with the gradient field ∇FD,Σ. The latter
is an element of the space ∇H1(Σ) and with its rotational counterpart ∇ × ξ ∈ H0(div 0,Σ) it completes
the Helmholtz decomposition of a vectorial function in L2(Σ)3. A Helmholtz decomposition is not carried
out for FN meaning that we did not decide whether the part of the solution in L2

rg(Σ) contributes to the
field ∇fN,Σ or F homN .

5.2.1 Characterization of Fhom
N

In order to characterize the physical meaning of F hom
N and therefore to estimate its impact on the

nonlocal theory, we now try to find the reason for its appearance. To this end, we start with the
(global) definition of the correlation field FN (Eq. (4.22)) and try to permute the differential and
the integral operator:

FN(r) = −κ2

∫
R3

dr′GLκ(r − r′)χΣ∇r′φΣ(r′) = −κ2

∫
Σ

dr′GLκ(r − r′)∇r′φΣ(r′)

= κ2

∫
Σ

dr′
(
∇r′GLκ(r − r′)

)
φΣ(r′)− κ2

∫
Σ

dr′∇r′
(
GLκ(r − r′)φΣ(r′)

)
= −κ2∇

∫
Σ

dr′GLκ(r − r′)φΣ(r′)

︸ ︷︷ ︸
∇fN

+κ2

∫
Γ

dΓr′ n
(
GLκ(r − r′)φΣ(r′)

)
︸ ︷︷ ︸

F hom
N

, in R3 , (5.14)
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where the outer boundary integral has been directly set to zero because of the radiation condition.
In Eq. (5.14) we identify F hom

N with a surface integral, which indeed has no contribution to the
differential equations, because r ∈ Ω ∪ Σ and r′ ∈ Γ. Thus, the δ-distribution yields zero in the
integral expression:

LκFN(r) = −∇LκfN(r)− κ2

∫
Γ

dΓr′ Lκ
(
GLκ(r − r′)

)
φΣ(r′)

= −∇LκfN(r) + κ2

∫
Γ

dΓr′δ(r − r′)φΣ(r′)

︸ ︷︷ ︸
=0

, r ∈ Ω ∪ Σ

In Section 4.3, we learned that surface integrals in the representation formula incorporate dis-
continuities of the corresponding field on the surface. Having this in mind, the difference of FN

and ∇fN originates from a different behavior on Γ. The vectorial Newton potential FN is defined
by

ρ(r) = −κ2χΣ∇φΣ(r) =

{
0 , in Ω
−κ2∇φΣ(r) , in Σ ,

(5.15)

whereas the scalar Newton potential fN has the following discontinuous integrand

ρ(r) = −κ2χΣφΣ(r) =

{
0 , in Ω
−κ2φΣ(r) , in Σ .

Since the gradient operator ∇ does not commute with the characteristic function χΣ, the permu-
tation of them yields a surface integral. The existence of the characteristic function in Eq. (5.15)
has been interpreted as the incorporation of the sudden jump into the nonlocal dielectric function
when crossing Γ. However, when we think of the flexibility of the polar side chains lying on the
surface of the molecule, and when we think of a possible decrease in the hydrogen bonds due to
the surface, the sudden jump from the local to the nonlocal dielectric function is a simplification
and it is legitimate to consider whether a smooth extension of −κ2∇φΣ to R3 would be a better
choice. In the following section, we introduce the convolution as a means to smooth discontinuous
functions. This concept is then applied in Section 5.2.3 on the Newton Vector Model for nonlocal
electrostatics.

5.2.2 Convolutions as “smoothing” operations

Due to general features of convolutions [28], convoluting a discontinuous function with a so-called
mollifier function is a mean to smooth the original discontinuous function [28, 55]. In order to
illustrate this, we now convolute the discontinuous, truncated 1

r -potential,

∀ r ∈ R3 : φΣ,Born(r) =

{
0 |r| = r < 1

1
1−r |r| = r > 1

with the mollifier function se(r):

∀ r ∈ R3 : se(r) =

{
ce e
−1/(1−( r

e
)2) |r| = r < e

0 |r| = r ≥ e

where ce is a normalization constant. The convolution (se ∗ φ) can be described as a weighted
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Chapter 5. Scalar approximations of the Lorentzian model

Fig. 5.4: (left) different mollifiers se (e = 1 = red; e = 1/2 = green; e = 1/4 = blue); (right) a discontinuous
function φΣ,Born with compact support, which should be smoothed in the jump region.

average of the function φ with characteristic weighting given by the mollifier se. The parameter e
coordinates the extent of the smoothing region as shown in Fig. 5.4. In the limit e → 0, we end
up in the δ-distribution, which - convoluted with the discontinuous function φΣ,Born - returns the
original function φΣ,Born. Fig. 5.5 shows the results of the following convolutions

(se ∗ φ)(r) =
∫
R3

dr′se(r − r′)φ(r′) , r ∈ R3 ; with e ∈ {1, 1
2
, 1

4
} .

Compared to the discontinuous function φΣ,Born, the convolutions exhibit a smooth transition in
the jump region – of course at the expense of accuracy, assuming that a discontinuous jump was
indeed physical. However, the smaller e becomes the better the agreement.

Fig. 5.5: Convolution of the mollifier se with φΣ,Born (black); (e = 1 = red; e = 1/2 = green; e = 1/4 =
blue).
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5.2. Decomposition of the Newton Vector Model

5.2.3 Newton Scalar Model

The study of the previous section motivates a modification of the discontinuous kernel of the
correlation field FN,

FN(r) = −κ2

∫
R3

dr′GLκ(r − r′)ρ(r′), in R3

to a purely smooth potential approach. This means that we want to consider a smoothing operation
on the truncated potential φ: instead of Eq. (4.21),

ρ(r) = −κ2χΣ∇φΣ(r), in R3 ,

we consider
ρ̃(r) = −κ2∇(se,Γ ∗ (χΣ φΣ))(r), in R3 ,

with a “suitable” mollifier, i.e., a mollifier which averages the discontinuity on Γ of the considered
molecule and lets the remaining parts on Σ and Ω untouched.

The source terms, ρ and ρ̃, differ only around Γ, where ρ̃ is smooth and its derivatives exist.
Thus, the gradient ∇ can be extracted from the volume integral without the appearance of the
boundary integral.

F̃ (r) = −κ2

∫
R3

dr′GLκ(r − r′)∇r′
(
(se,Γ ∗ (χΣ φΣ))(r′)

)

⇔ F̃ (r) = −κ2

∫
R3

dr′∇r′
[
GLκ(r − r′)

(
(se,Γ ∗ (χΣ φΣ))(r′)

)]
︸ ︷︷ ︸

=0

+κ2

∫
R3

dr′
(
∇r′GLκ(r − r′)

) (
(se,Γ ∗ (χΣ φΣ))(r′)

)

= −κ2∇

∫
R3

dr′GLκ(r − r′)
(
(se,Γ ∗ (χΣ φΣ))(r′)

)
︸ ︷︷ ︸

f̃N(r)

, r ∈ R3

An application of the Yukawa operator Lκ yields

LκfN = −κ2 (se,Γ ∗ (χΣ φΣ)) , in R3 .

Up to now, we did not make any restriction on the parameter e. With the choice of a very small
e, the situation resembles the one we started with closely. The limit e → 0 yields the following
Newton Scalar Model, which is abbreviated by NSM in the remainder of this work.

Theorem 5.2.1 Newton Scalar Model (NSM): We define the following Newton potential

F = −∇fN = −κ2∇
∫
R3

dr′GLκ χΣφ(r′), r ∈ R3 (5.16)

Inserting F into the nonlocal material equations, system (4.1) on p. 51, and using the differential
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Chapter 5. Scalar approximations of the Lorentzian model

analog to Eq. (5.16) given in Section 4.2, the Newton Scalar Model reads:

εΩ4φΩ = −ρ, in Ω
4(ε∞φΣ + (εΣ − ε∞)fN,Σ) = 0, in Σ

φΩ = φΣ, in Γ
εΩ∂nφΩ = ε∞∂nφΣ + (εΣ − ε∞) ∂nfN,Σ, in Γ

LκfN,Ω = 0, in Ω
LκfN,Σ = −κ2φΣ, in Σ
fN,Ω = fN,Σ, on Γ

∂nfN,Ω = ∂nfN,Σ, on Γ

In fact, in the NSM, the nonlocal dielectric function acts on the electrostatic potential instead
on the electrostatic field. From the physical point of view, this means that the water molecules’
reaction primarily depends on their potential energy in the electrostatic field and not – as it is the
fundamental assumption of a mean field approach to account for the average polarization of the
medium – on the electrostatic force acting on the medium’s molecules:

D = −
∫
Σ

dr′ε(r − r′)∇r′φ(r′) 6= −∇
∫
Σ

dr′ε(r − r′)φ(r′) ,

where the electrostatic field E = −∇φ.

However, we have seen that a smoothing process which is a reasonable approximation – in
particular, when considering that the boundaries of molecules is most probably smooth – yields
this gradient model. Further, a comparison of the NVM and the NSM in Chapter 7 reveals that
the differences are small.

5.3 Discussion and comparison

Before we apply the nonlocal scalar models on non-trivial geometries, we discuss their qualitative
differences and the differences to the NVM and the local model (LM) in the case of spherical
symmetry. For the sake of completeness, we therefore introduce the local model, which is based on
the constant macroscopic dielectric functions εΩ and εΣ in Ω and Σ, respectively.

Theorem 5.3.1 Local Model (LM)

εΩ4φΩ = −ρ, in Ω
εΣ4φΣ = 0, in Σ
εΩ∂nφΩ = εΣ∂nφΣ, on Γ

φΩ = φΣ, on Γ

The general shape of the solution for the Born sphere of all the electrostatic models can be
expressed by the electrostatic potential φ and the correlation field potential f , which is one of
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{FN, fN, FD,Σ}:

φΩ =
1

4π
[

1
εΩ r

+ (
1
εΣ
− 1
εΩ

)
1
a

+
B

a
]

fΩ =
1

4πr
B2 sinh(κ r)

φΣ =
1

4πr
[

1
εΣ

+B e−
1
λ

(r−a)]

fΣ =
1

4πr
[

1
εΣ
−B e−

1
λ

(r−a) ε∞
εΣ − ε∞

]

Here, we assumed the Born sphere of a point charge with q= 1 and radius a located in the origin
of the coordinate system. The electrostatic potential φΣ is characterized by a 1

r -part (Laplace-like)
and a e−r/λ

r -part (Yukawa-like). This corresponds to the fact that the differential equations in all
models coincide in representing, on the one hand, the reaction of the point charge and, on the
other hand, the reaction of the water network. Only the transmission and boundary conditions on
Γ differ from each other, and this results in model dependent constants, B and B2, which are listed
in Tab. 5.1. We additionally listed the nonlocal point charge solution, which of course only exists
for Σ = R3.

Tab. 5.1: Constants in the solution for the Born model of the different scalar models with κ = 1
λ

√
ε∞
εΣ

.

B B2

NVM ( 1
ε∞
− 1

εΣ
) 1

1+a/λ+
εΣ
ε∞

(
cosh(κ a)κ a

sinh(κ a)
−1)

B 1
sinh(κa)

εΣ
ε∞−εΣ

DVM/DSM ( 1
ε∞
− 1

εΣ
) 1

1+a/λ 0

NSM ( 1
ε∞
− 1

εΣ
) 1

1+
sinh(κa)
cosh(κa)

q
εΣ
ε∞

B 1
cosh(κa)

ε∞
εΣ−ε∞

√
εΣ
ε∞

point charge ( 1
ε∞
− 1

εΣ
) 0

LM 0 0

With Tab. 5.1, we see that the complexity of the models - measured in terms of involved parame-
ters (εΣ, ε∞, λ, a) - decreases from the NVM to the LM. The constant B in all the nonlocal models
has a linear dependency on ( 1

ε∞
− 1

εΣ
), which is due to the high frequency constraint.

Fig. 5.6 shows the dependence of the parameter B on the ion radius a and the correlation length
λ. In addition to the DSM (green) and the NSM (red), we plotted the point charge (blue), the Born
solution of the NVM (yellow) and the Born solution for the local setting (black). From Fig. 5.6
we see that the point charge model and the local model correspond to the maximal and minimal
nonlocal correlation effect, respectively. The DSM, the NSM, and the NVM are between these two
extrema and therefore reveal an intermediate dielectric reaction. Only on the boundaries of the
parameter regime, e.g., for λ → 0 and a� 1, they differ significantly from each other, whereas in
the intermediate region, they exhibit the same dependence on a and λ, namely a linear dependence
on 1

1+a/λ . When a
λ � 1, the water network does not “see” the dielectric boundary and therefore

it does not “see” a disruptive factor of the correlations. The length scale on which the network is
mediated is so large that the correlations are in fact not disturbed. In contrast, a

λ�1 implies that
the water network is built on a fractional amount of the extension of the spherical molecule. The
water molecules “feel” the surface of the molecule, which is too extended for the correlations to
still be sustained.
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Chapter 5. Scalar approximations of the Lorentzian model

Fig. 5.6: Characteristic constant B of the Born model as a function of the sphere radius a and the correlation
length λ; Point charge - blue; NSM - red; NVM - yellow; DSM/DVM - green; LM - black.

For the various models, we calculate the solvation free energy as a measure to assess the approx-
imations we made in the scalar models. In order to evaluate the solvation energies, we process as
described for the vector model in Section 3.3.3.4. The results are listed in Tab. 5.2.

Tab. 5.2: Solvation free energy for monoatomic ions (Born model); κ = 1/23 Å−1, εΩ = 1 ε0, εΣ = 78.0 ε0,
ε∞ = 1.8 ε0.

Solvation energy [KJ/mol]
monoatomic ion exp. local model nonlocal models local model

R [Å] data NVM DSM/DVM NSM εΣ = ε∞

Li+ 0.65 -511 -1055.03 -570.68 -565.97 -565.95 -474.99
Na+ 1.01 -411 -678.98 -395.52 -389.39 -389.35 -305.68
K+ 1.37 -337 -500.56 -309.89 -302.87 -302.81 -225.36
Rb+ 1.51 -316 -454.15 -287.07 -279.81 -279.73 -204.46
Cs+ 1.72 -284 -398.70 -259.35 -251.81 -251.72 -179.50

Mg2+ 0.62 -1906 -4424.33 -2376.74 -2358.48 -2358.41 -1991.90
Ca2+ 1.02 -1593 -2689.29 -1569.48 -1544.86 -1544.69 -1210.76
Sr2+ 1.2 -1447 -2285.90 -1377.03 -1350.43 -1350.22 -1029.15
Ba2+ 1.39 -1318 -1973.44 -1225.48 -1197.26 -1196.99 -888.47

The comparison confirms what we learned from the discussion before, namely that all the nonlocal
models do a good job: the electrostatic part of the solvation free energy differs only slightly in the
nonlocal models and has an excellent agreement with the experimental data. In contrast, the local
model, which does not consider the water network, predicts solvation energies up to an order too
large. This is reasonable, for the energy gain, when moving from a constant low dielectric to a
constant high dielectric - as in the local model - is larger compared to the nonlocal model. In the
nonlocal case the dielectric function varies, in fact weakens the response due to the water network.
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In particular, the analysis performed in the last sections revealed that on Γ, the dielectric response
of the nonlocal models (DSM, NSM, DVM, NVM) is dominated by the electronic polarization
characterized by ε∞ < εΣ. This is also shown in the last column of Tab. 5.2, where we listed
the electrostatic contribution to the solvation free energy for a local model which has a solvent
with macroscopic dielectric function ε∞. The difference between the solvation energies of this
local model and the nonlocal models can be interpreted as the amount of energy to regain the
macroscopic response εΣ in the bulk.

In summary, we can say that although the two proposed scalar models have different approxima-
tions, they exhibit a very similar, physically reasonable behavior on spherical systems in comparison
to the NVM which is historically the very first nonlocal model. Whether the potential description
suffices to describe the electrostatics of non-trivial geometries is the focus of the following sections.
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Chapter 6

Numerical solvers for nonlocal electrostatic
models

In the preceding chapter we have developed two scalar models for nonlocal electrostatics. The
application on spherically symmetric systems revealed that the approximations made in these scalar
models do not change the main features of the Lorentzian water model. Now, we want to apply the
scalar models to non-trivial geometries in order to further compare the different approximations
and finally to propose a nonlocal model which we can optimize for a broad application. Once we
allow for complex transmission regions Γ, we have to develop appropriate numerical schemes to
solve for the linear, elliptic partial differential equations, which separately defined in Ω and Σ.

There are classical methods for solving linear, elliptic PDES such as

1. the Boundary Element Method (BEM):
This method exploits that, if a fundamental solution of the differential operator exists, linear,
differential equations can be rewritten into a set of boundary integral equations. These
boundary integral equations describe the behavior of the fields on the transmission region
Γ, which is the molecular surface in the biomolecular setting. The BEM uses a polygonal
representation of the molecular surface, usually a triangular mesh, and solves for the complete
jump conditions of the unknown fields at the surface (Dirichlet and Neumann trace). From
these boundary data the solution in Ω and Σ can be retrieved via the representation formulas.

2. the Finite Element Method (FEM) and the Finite Difference Method (FDM):
Both methods rely on a discretization of the 3D space to project the continuous solution
on a finite set of basis functions [83, 114]. A discretized version of the differential equations
is derived at each vertex, where the differential operators are transformed into differences
involving the vertex and its neighbors on the grid. The FDM uses a structured, often Cartesian
grid and this can limit its accuracy in critical regions, such as the surface of the molecule. In
contrast, the FE grids are unstructured, which opens the possibility for local refinements.

All three approaches reduce the partial differential equation system (PDES) into a set of discrete
algebraic equations, which need to be solved numerically. Most solvers use iterative schemes, such
as – for linear systems – the stationary (Jacobi, Gauss-Seidel, Successive Over-Relaxation) and the
non-stationary (Conjugate Gradient, Generalized Minimal Residual) methods or they use a direct
solver, such as an LU or a Cholesky decomposition. As the concepts of the solving procedure
are different for the BEM, FEM, and FDM, they have different advantages and disadvantages.
These have to be taken into account for the final choice of the numerical scheme (see for an
overview [52,83,114]).

Since our model equations are linear and elliptic, it is possible to solve them by the BEM. In
fact, there exists a BEM solver for the local model (LM, Theorem 5.3.1), for the Dirichlet Scalar
Model (DSM, Theorem 5.1.1) as well as for the Newton Vector Model (NVM, Theorem 4.3.2),
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Fig. 6.1: Overview on the different models and developed/existing numerical solvers.

see [52] and [39], respectively. However, the use of the BEM imposes a serious restriction: the need
for a fundamental solution of the differential operator. Due to this requirement, an extension or
modification of the nonlocal PDES, such as the exchange of the dielectric operator or the inclusion
of (non)linear counter-ion terms to account for ionic effects, becomes a challenging task.

FDMs for solving (nonlinear) PDES are widely used, as they are robust to implement and easily
extensible. Their convergence behavior and accuracy is sufficient for most problems. This explains
the high number of finite difference solvers freely available for electrostatic problems [9,11,85,101,
129,146] and the use of FDMs in various biomolecular software packages, such as BALL, H++, and
PyMol. The accuracy of FDMs depends in part on an accurate surface description [31]. Especially
if there are jump conditions – as it is the case for the Maxwell equations in the presence of dielectric
discontinuities – algorithms that allow for a correct surface description are essential.

A possibility which combines the methodology of the simple finite difference discretization with a
correct surface description and therefore acquires highly accurate results, is offered by the Explicit
Jump Immersed Interface Method (EJIIM) together with suitable conditions along the artificial
exterior boundary [79,104,143]. In this work, we develop an EJIIM for the scalar (non)local models
(Theorems 5.1.1, 5.2.1 and 5.3.1). By using its flexibility, we will further extend this framework in
Section 8.2 to account for the linearized effect of monovalent ions additionally solved in water.

The diagram in Fig. 6.1 gives an overview of all the models of the previous chapters. The last
row identifies the existing BEM and the EJIIM solvers we develop. As for the DSM, a BEM
implementation already exists, the first step towards an efficient finite difference solver was an
analogous EJIIM implementation.

For the numerical solution process the differential system as it is given in Theorem 5.1.1 for the
DSM is slightly rewritten: we consider a molecule M to be a set of N spheres at fixed positions
ri with radii Ri, and fixed charges qi, i = 1, . . . , N at its centers. The sum over all point charges
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forms the charge density

ρ(r) =
N∑
i=1

qi δ(r − ri) , r ∈ R3 . (6.1)

Both, the BEM and the EJIIM, explicitly handle arbitrary transmission conditions on a smooth
surface Γ in R3 and that is why we can use the decomposition of the electrostatic potential φΩ

proposed in Section 3.1.4.1,
φΩ = φreacΩ + φmol .

The field φmol originates from all fixed charges qi, treating them as if they were solvated in a
medium of constant response εΩ. As φmol captures the singularities of the electric potential φΩ

at the charge positions ri, such a decomposition is desirable in numerical applications to avoid
numerical instabilities 1. With Eq. (6.1) and the radiation condition, lim

|r|→∞
φmol = 0, we have

4φmol(r) = − 1
εΩ
ρ(r) ⇒ φmol(r) =

1
4πεΩ

N∑
i

qi
|r − ri|

, r ∈ R3 .

Therefore, the unknown part of φΩ reduces to φreacΩ . As a second modification we do not consider
the correlation field itself but the linear combination

ψΣ := (ε∞ φΣ + (εΣ − ε∞) fΣ) .

The dielectric potential ψΣ fulfills the homogeneous Laplace equation and this allows, in the case
of the EJIIM, to use a Fast Fourier Transformation (FFT) in the solution process.

The model presented in Theorem 5.1.1 expressed by the unknowns φreacΩ , φΣ, and ψΣ then reads:

∆φreacΩ = 0, in Ω (6.2a)
∆ψΣ = 0, in Σ (6.2b)

φΣ − φreacΩ = φmol, on Γ (6.2c)
∂nψΣ − εΩ∂nφ

reac
Ω = εΩ∂nφmol, on Γ (6.2d)

(∆− 1/λ2)φΣ +
1

εΣλ2
ψΣ = 0, in Σ (6.2e)

ε∞∂nφΣ − ∂nψΣ = 0, on Γ (6.2f)

Using the DSM (system (6.2)), we give a short introduction to the BEM and the EJIIM in Sections
6.1 and 6.2, respectively. In Section 6.3 we explain the input data generation for the EJIIM, i.e.,
the accurate calculation of the intersections of the biomolecule’s surface with a 3D Cartesian grid.

6.1 Boundary Element Method for the Dirichlet Scalar Model

The crucial idea of the BEM is (a) to derive an integral representation of the PDES and (b) based
on the integral representation to deduce boundary integral equations whose solution is the full
set of boundary values, i.e., the Dirichlet and the Neumann trace, see Definition 4.1. This set of
boundary data is known as Cauchy data [121].

1In classical finite difference methods, the surface Γ only implicitly enters the differential equations and thus they
are not designed for such a decomposition.
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In Sections 6.1.1 and 6.1.2, we recall the representation formulas derived in [52] and the corre-
sponding boundary integral equations for the DSM, respectively. Section 6.1.3 finally focuses on
the input requirements for the BEM.

6.1.1 Representation formulas

In order to cast the DSM into a system of boundary integral equations, we first convert the PDES
to its weak formulation by multiplying the differential equations with the fundamental solution of
the respective differential operators [52, 121]. This has already been discussed in Section 4.3 for
the Yukawa operator: shifting the differential operators from the unknown functions to the known
fundamental solutions and applying Green’s theorem introduces two boundary integrals and an
additional domain integral over the inhomogeneity of the respective differential equation. The
representation of the unknown field with these two boundary integrals and the volume integral is
called representation formula.

For the system (6.2), the described procedure yields

φreac(r) = +
(
Ṽ L(γint1 φreac)

)
(r)−

(
WL(γint0 φreac)

)
(r), r ∈ Ω (6.3)

ψΣ(r) =−
(
Ṽ L(γext1 ψΣ)

)
(r) +

(
WL(γext0 ψΣ)

)
(r), r ∈ Σ (6.4)

φΣ(r) =−
(
Ṽ Y(γext1 φΣ)

)
(r) +

(
WY(γext0 φΣ)

)
(r)

+
(
ÑY

0 (− κ
2

ε∞
ψΣ)

)
(r), r ∈ Σ , (6.5)

where we used the boundary integral operators defined in Definitions 4.2, 4.3, and 4.4 on p. 55.
Eqs. (6.3) and (6.4) are similar to the well known representation formulas of the local model [52].
However, in Eq. (6.5) a Newton potential appears which has to be eliminated to take advantage of a
pure boundary value representation. In the case of system (6.2), this domain integral can fortunately
be reduced to boundary integrals using a dual reciprocity scheme, where the fundamental solution of
the Yukawa equation is represented as the Laplacian of a function that can be easily determined [52].
This procedure yields

φΣ(r) = −
(
Ṽ Y(γext1 φΣ)

)
(r) +

(
WY(γext0 φΣ)

)
(r)

+
1
εΣ

{(
(Ṽ Y − Ṽ L)(γext1 ψΣ)

)
(r)−

(
(WY −WL)(γext0 ψΣ)

)
(r)
}
. (6.6)

6.1.2 Boundary integral equations

In order to apply formulas (6.3), (6.4), and (6.6) for actual computations, we first need to determine
the values of the relevant unknown potentials and their normal derivatives at the boundary, i.e.,
the Cauchy data of this problem. Using the transmission and boundary conditions in system (6.2),
the set of unknown Cauchy data is given by γint

0 φreac, γint
1 φreac, and γint

0 ψ. They are calculated by
carefully computing a limiting process for the evaluation of the representation formulas and their
normal derivatives at the molecular surface. The computation of these limits is quite involved [52],
and we only want to state the result here. To this end, we define the following boundary integral
operators: the Dirichlet trace operators of the Single and Double layer potentials of the Laplace
operator, V Lw and KLw, respectively, and the Dirichlet trace operators of the Single and Double
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layer potentials of the Yukawa operator, V Yw and KYw:(
V Lw

)
(r) := −γint

0,r (Ṽ Lw) = −γint
0,r

∫
Γ

(
γ0,r′G4(r − r′)

)
w(r′) dΓr′

(
KLv

)
(r) := −γint

0,r (WLv) = −γint
0,r

∫
Γ

(
γ1,r′G4(r − r′)(r, r′)

)
w(r′) dΓr′

(
V Yw

)
(r) := −γext

0,r (Ṽ Yw) = −γext
0,r

∫
Γ

(
γ0,r′GLκ(r − r′)

)
v(r′) dΓr′

(
KYv

)
(r) := −γext

0,r (WYv) = −γext
0,r

∫
Γ

(
γ1,r′GLκ(r − r′)

)
v(r′) dΓr′ ,

where r ∈ Γ, G4 denotes the fundamental solution of the Laplacian and GLκ the fundamental
solution of the Yukawa operator. Furthermore, we introduce the geometrical quantity

σ(r) := lim
ε→0

1
4π

1
ε2

∫
r′∈Ω:|r−r′|=ε

dΓr′ ,

and

β := −
(

1− σ −KY +
εΩ

εΣ

(
KY −KL

)) (
γint

0 φmol

)
−
(
εΩ

ε∞
V Y − εΩ

εΣ

(
V Y − V L

)) (
γint

1 φmol

)
.

With
η :=

1
ε∞
{ψΣ − εΩφmol} ,

the system of integral equations then reads(1− σ)I −KY εΩ
ε∞
V Y − εΩ

εΣ

(
V Y − V L

)
ε∞
εΣ

(
KY −KL

)
σI +KL −V L 0

0 εΩ
ε∞
V L (1− σ)I −KL


γint

0 φreac

γint
1 φreac

γext
0 η

 =

β0
0

 .

The potentials appearing in this system are approximated as low-rank polynomials defined on
the triangles of an appropriate triangulation of the molecular surface. Denoting the resulting
approximations of γint

0 φreac, γint
1 φreac, and γint

0 η by û, q̂, and ŵ, respectively, the system reduces
to the discrete algebraic form(1− σ)I−KY εΩ

ε∞
VY − εΩ

εΣ

(
VY −VL

)
ε∞
εΣ

(
KY −KL

)
σI + KL −VL 0

0 εΩ
ε∞

VL (1− σ)I−KL


ûq̂
ŵ

 =

β0
0

 ,

where KY,VY,KL, I, and VL denote the n× n-matrices resulting in the application of the corre-
sponding operators to the polynomial basis of the approximation and 0 the n×n zero matrix. The
integer n is assumed to be the number of triangles in the surface discretization. This result can be
compared to the BEM system for local electrostatics [52]{(

1 + (
εΩ

εΣ
− 1)σ

)
I +

(
εΩ

εΣ
− 1
)

KL

}
û =

(
KL + (σ − 1)I

)
ûmol −

εΩ

εΣ
VLq̂mol

VLq̂ = (σI + KL)û .
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The current implementation of the BEM solver for the DSM in C uses the ATLAS library [139]
for an efficient solution of the linear system of equations. With the complete set of Cauchy data,
the electrostatic potential at the points of interest can be evaluated in a postprocessing step using
the representation formulas, Eqs. (6.3), (6.4), and (6.6).

6.1.3 Surface triangulation

The required geometric input data for the BEM is a numerical approximation of the molecular
surface Γ – typically, a triangulation of the surface. The generation of such triangulations has
received considerable attention in the literature, and most surface definitions can today be triangu-
lated with good quality (see, [21, 114, 148]). However, molecular surfaces tend to be very complex
– much more complex than, e.g., typical machine parts in CAD applications – and a triangulation
with guaranteed quality will often require tens or hundreds of millions of triangles. Thus, input
meshes for the BEM are often subjected to mesh coarsening algorithms.

The triangulations of the small molecules used in Section 6.4.2 are generated with the freely avail-
able mesh generator of Cheng and Edelsbrunner [22]. Surface representations of the biomolecules
used in Section 7.2 are derived from exact intersection points of the molecule in a 3-dimensional
Cartesian grid as described in Section 6.3.

6.2 Explicit Jump Immersed Interface Method for the Dirichlet Scalar
Model

The Explicit Jump Immersed Interface Method (EJIIM) is a finite difference method that works
on an equidistant Cartesian grid. The method can handle non-grid aligned discontinuities in the
PDES, because in the EJIIM, close to discontinuities the standard finite difference approximations
are modified by correction terms which involve the jumps in the function and its derivatives.

In this section, we recapitulate the main idea of the method and develop the algebraic system
of the DSM (system (6.2)). A more detailed introduction to EJIIM can be found in the literature
[104, 105, 107, 113, 140, 144] as well as on the website [106] where V. Rutka provides a descriptive
documentation of the EJIIM for the inner 2D Poisson boundary value problem.

After a few definitions we set up the algebraic equations for system (6.2) in Section 6.2.1 and
complete the EJIIM system with the algebraic equations for the unknown jumps in Section 6.2.2.
The solution process is discussed in Section 6.2.3. Section 6.2.4 finally describes an estimation for
the boundary values of the electrostatic and the dielectric potential. Such an estimation is always
required in FDMs.

The EJIIM implementation of the DSM has been developed by V. Rutka. This implementation
has been used for all the calculations presented in this work. Further, it was the starting point
for modifications which we incorporated to adapt the original code to describe the NSM and to
account for ionic solvents.

6.2.1 EJIIM discretization

The system (6.2) is a transmission problem for the electrostatic potential φ and a boundary value
problem for the dielectric potential ψ. To make a global differential description possible and thereby
to take advantage of global solvers such as the FFT, the system (6.2) is extended by an additional
equation,

∆ψΩ = 0 in Ω , ψΩ = 0 on Γ ,

forcing ψΩ to be zero. Along the exterior boundary ∂Σ := ∂(Σ∪Γ∪Ω), Dirichlet boundary values
are given as we will discuss in Section 6.2.4.
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Fig. 6.2: The (red) grid points next to the intersections of the surface Γ with the regular grid are irregular
grid points, the remaining grid points (green) are called regular.

Remark 6.1 Requiring ψΩ to be zero is different from the local electrostatic condition ψΩ = εΩφΩ. However,
forcing ψΩ =0 does not have any influence on the system (6.2) and the “physical” ψΩ can be easily obtained
in a postprocessing step.

Up to now, Σ filled the whole R3, however, using finite difference methods we have to confine Σ
to a finite volume, which is described by a discrete grid. In the following, we define the grid and
further quantities required to formulate the differential equation system in the EJIIM:

Definition 6.1 Regular grid and intersections:
A regular grid with spacing h is imposed over a finite volume, i.e., over Ω∪Γ∪Σ, leading to a total number
of grid points {nx, ny, nz} in the three Cartesian directions. We will use the standard notation ui,j,k :=
u(xi, yj , zk) for the quantity u at the grid point (xi, yj , zk), i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny}, k ∈ {1, . . . , nz}.
Points where the interface Γ intersects the grid lines are called intersections.

The 2-dimensional regular Cartesian grid is illustrated in Fig. 6.2. The intersections of the surface Γ with
this grid are indicated by small cross lines.

Definition 6.2 Standard central finite difference operator:
In the finite difference method the differential operators have to be discretized. The Laplace operator is
the only differential operator appearing in system (6.2). Assuming a grid spacing h, we define the standard
central finite difference operator

∂hxxu(xi, yj , zk) :=
u(xi−1, yj , zk)− 2u(xi, yj , zk) + u(xi+1, yj , zk)

h2
.

∂hxxu(xi, yj , zk) is the O(h2)-approximation of the second partial derivative of u at point (xi, yj , zk) in x-
direction,

∂xxu(xi, yj , zk) = ∂hxxu(xi, yj , zk) +O(h2) .

With an analogous finite difference formulation in y- and z-direction, we can finally express the discrete
Laplace operator.

Definition 6.3 Regular and irregular points:
A grid point is classified as regular, if the standard central finite difference approximation of system (6.2) is
not influenced by the interface Γ. All other grid points are called irregular.

In Fig. 6.2 the regular grid points are marked as green filled circles, whereas the red ones denote irregular
grid points.

Definition 6.4 One sided values and jump variables:
For a piecewise continuous function u : R3 ⊃ Ω∪Γ∪Σ→ R with a possible discontinuity across the interface
Γ and α ∈ Γ, we define the one-sided values of u as

uΩ(α) := lim
Ω3r→α

u(r) , uΣ(α) := lim
Σ3r→α

u(r)
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Fig. 6.3: Two dimensional illustration of a discretization at an irregular grid point (xi, yj) with two inter-
section points α1 and α2.

and the jump as
[u]α := uΣ(α)− uΩ(α) .

Mostly, the index and the argument α will be omitted for the jump condition, meaning that the relation
holds everywhere along Γ.

In order to discretize the equations, standard finite differences are used at all regular points. At all
irregular points we introduce jump dependent correction terms to achieve an O(h) approximation.
In a planar situation as shown in Fig. 6.3, we have

∂xxu(xi, yj) ≈ ∂hxxu(xi, yj)−
1
h2

(
[u]α2 + τ2[∂xu]α2 +

τ2
2

2
[∂xxu]α2

)
(6.7a)

∂yyu(xi, yj) ≈ ∂hyyu(xi, yj)︸ ︷︷ ︸
standard Laplace

− 1
h2

(
[u]α1 + τ1[∂yu]α1 +

τ2
1

2
[∂yyu]α1

)
︸ ︷︷ ︸

correction terms

. (6.7b)

The jumps in the Cartesian derivatives appearing in the correction terms in Eq. (6.7) are not
explicitly known and therefore we introduce them as new additional variables. These so called
jump variables Jφ and Jψ account for the jumps in the potentials φ, ψ, and their derivatives.
System (6.2) requires the following jump variables:

Jφ = ([φ]α1 , [∂xφ]α1 , [∂yφ]α1 , [∂zφ]α1 , [∂xxφ]α1 , [∂yyφ]α1 , [∂zzφ]α1 , [φ]α2 , ..., [∂zzφ]αN )T

Jψ = ([ψ]α1 , [∂xψ]α1 , [∂yψ]α1 , [∂zψ]α1 , [∂xxψ]α1 , [∂yyψ]α1 , [∂zzψ]α1 , [ψ]α2 , ..., [∂zzψ]αN )T

In order to write the corrected approximations in a matrix-vector form, we introduce the discrete
solution vectors Φ and Ψ containing values of φ, with φ|Ω := φreac and φ|Σ = φΣ, and ψ at the grid
points as well as vectors F1 and F2 storing the right hand side of (6.2)(a,b,e). The discrete finite
difference form of system (6.2) is then written as follows(

∆h − 1/λ2 I
Σ

κ2/ε∞ I
Σ

0 ∆h

)
︸ ︷︷ ︸

=:A

(
Φ
Ψ

)
︸ ︷︷ ︸
=:W

+

(
C11 0

0 C22

)
︸ ︷︷ ︸

=:C

(
Jφ

Jψ

)
︸ ︷︷ ︸

=:J

=

(
F1

F2

)
,︸ ︷︷ ︸

=:F

(6.8)

where ∆h is the sparse discrete Laplace matrix (defined in Ω∪ Γ∪Σ) and I
Σ

is a diagonal matrix
with ones on the rows corresponding to the grid points in Σ and zeros otherwise. The term C J
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codes the correction terms at the irregular grid points as they are noted in Eqs. (6.7).

6.2.2 Approximating the jump variables

It remains to determine the unknown jumps Jφ and Jψ. The equations for the jump variables
are gained from the interface conditions in system (6.2), which are given in the local coordinates
tangential and normal to the surface. In order to apply the method in Eq. (6.8), we need the jumps
in Cartesian derivatives of the unknown functions φ and ψ:

� the 0th order jump for φ is given by (6.2c), [φ] = φΣ− φreac = φmol, and this also defines the
jump in the tangential derivatives [29].
For ψ, we set the trivial jump condition [ψ] = ψΣ − ψΩ = ψΣ as we need ψΩ = 0.

� the 1st order jumps: let t and s be two tangents of Γ such that (n, t, s) forms an orthonormal,
positively oriented trihedral. Further, let m ∈ R3×3 be the transformation matrix with
columns given by vectors n, t, and s. Then, considering system (6.2), we obtain∂xφ∂yφ

∂zφ

 = m

∂nφ∂tφ
∂sφ

 = m


εΩ−ε∞
ε∞

∂nφ
reac + εΩ

ε∞
∂nφmol

∂tφmol
∂sφmol

 .

For ψ, we have ψΩ = 0 and, combined with the boundary condition in system (6.2), we obtain∂xψ∂yψ

∂zψ

 =

∂xψΣ

∂yψΣ

∂zψΣ

 = m

∂nψΣ

∂tψΣ

∂sψΣ

 = m

1
2εΩ∂nφ

reac + 1
2εΩ∂nφmol+ 1

2ε∞∂nφΣ

∂tψΣ

∂sψΣ

 .

� all necessary second order jumps are obtained by extrapolation:[
∂2φ

]
= ∂2φΣ − ∂2φreac ,

[
∂2ψ

]
= ∂2ψΣ − ∂2ψΩ = ∂2ψΣ

We marked the known parts in the jump conditions in blue, whereas the unknown parts are marked
in red. In fact, these are the one sided values of the solutions φ and ψ and their derivatives
on Γ 2. We denote them the one sided extrapolations. Since the finite difference method yields
only a discretized version of the solutions, namely the grid solution vector W in Eq. (6.8), we
have to extrapolate the grid values to the one sided extrapolations. With the restriction that the
extrapolation is done via a linear combination of the grid point solutions [113], the transmission
conditions basically form the conditional equations for the jumps

DW + IJ = F̃ . (6.9)

Here, F̃ contains all known information about the jumps at the intersection points, i.e., the blue
parts in the jump equations, such as φmol and ∇φmol. In contrast, DW comprises the part of the
jump conditions which depend on the solution vector W itself, i.e., the one sided extrapolations of
the solutions and their derivatives, for example all terms depending on ψΣ in the above equations.

We still need a method to express the one sided extrapolations as a linear function of the discrete
grid solutions. This means that we have to determine the matrix D. To this end, we introduce
for every intersection point two quadratic polynomials defined on each side of Γ [104]. These

2These unknowns are comparable with the Cauchy data in the BEM, see [142].
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Fig. 6.4: Approximating the jump condition at the intersection point (x0, y0, z0) by a least square fit of
quadratic polynomials defined in the stencil SΩ and SΣ, respectively. The figure shows the xy-
plane, i.e., a cross section through z = z0.

polynomials transfer the transmission conditions, which have to be fulfilled on Γ, to the grid point
solutions.

Fig. 6.4 illustrates the xy-plane of a 3D-stencil S around a considered intersection point (x0, y0, z0)
which determines the coefficients in the polynomial approach of, for example, φ:

φreacΩ (x, y, z) ≈ pΩ(x, y, z) := p1 + p2(x0 − x) + p3(y0 − y) + p4(z0 − z) +
p5(x0 − x)2 + p6(y0 − y)2 + p7(z0 − z)2, ∀(x, y, z) ∈ S ⊂ Ω

φΣ(x, y, z) ≈ pΣ(x, y, z) := g1 + g2(x0 − x) + g3(y0 − y) + g4(z0 − z) +
g5(x0 − x)2 + g6(y0 − y)2 + g7(z0 − z)2, ∀(x, y, z) ∈ S ⊂ Σ

Now, D is determined by finding optimal sets (pi, i = {1, .., 7}) and (gi, i = {1, .., 7}) of coefficients
fulfilling the following three conditions:

1. For every grid point (xi, yj , zk) in the stencil SΩ (black filled circles in Fig. 6.4) and every
point (xl, ym, zn) in the stencil SΣ (white filled circles in Fig. 6.4), respectively, it holds

φreacΩ (xi, yj , zk) ≈ pΩ(xi, yj , zk) := p1 + p2hi + p3kj + p4tk + p5h
2
i + p6s

2
j + p7t

2
k

φΣ(xl, ym, zn) ≈ pΣ(xl, ym, zn) := g1 + g2ul + g3vm + g4wn + g5u
2
l + g6v

2
m + g7w

2
n ,

where hi := (x0 − xi), sj := (y0 − yj), tk := (z0 − zk), ul := (x0 − xl), vm := (y0 − ym), and
wn := (z0 − zn). This is guaranteed by a weighted least square fit of the polynomial on the
discrete grid solution in the respective region, for example in Ω∑

(xi,yj ,zk)∈SΩ

w2
ijk

(
pΩ(xi, yj , zk)− φreacΩ (xi, yj , zk)

)2 → min

with wijk = (1 + d(xi, yj , zk)/h)−1 , d(xi, yj , zk) =
√
h2
i + s2

j + t2k .

We used the least square fit described in [104,113].
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2. The difference between the polynomials pΩ and pΣ at every intersection point has to fulfill
the jump conditions. For instance,

Jφ =



[φ]
[∂xφ]

...
[∂xxφ]

...


≈



g1 − p1

g2 − p2

...
g5 − p5

...


3. The polynomial fit has to fulfill the differential equation. For instance in Ω, pΩ has to fulfill

4pΩ = 0 ⇔ p5 + p6 + p7 ≈ 0

The first and the second conditions determine the matrix D, i.e., the optimal linear combination of
the grid solution in the corresponding stencils to represent the one sided extrapolations. The third
condition is not necessary but increases the accuracy of the method and reduces the iteration counts
considerably [105]. This condition is guaranteed by adding a weighted penalty term in system (6.9)
which corresponds to the side condition (similar to the Lagrange multiplier).

Remark 6.2 In the 3D case the stencils SΩ and SΣ contain too many points to take all of them into account
for the minimization problem. In [104], V. Rutka proposed a random stencil selection in order to reduce the
numerical costs. This random selection is also used in all presented calculations.

6.2.3 Solving the discrete system

With systems (6.8) and (6.9) we obtain the full EJIIM discretization (for clarity we now skip the
subscript ∗ ): (

A C

D I

)(
W

J

)
=

(
F

F̃

)
(6.10)

System (6.10) is solved iteratively using a stabilized Bi-Conjugate Gradient method for non-symmetric
matrices (BiCGSTAB) [66] using a Schur complement for the variable J :

(I −DA−1C)J = F̃ −DA−1F . (6.11)

Once the jump vector J has been found, W is obtained from W = A−1(F − CJ).
In each iteration, when solving (6.11), we need to apply the operator A−1. To this end, the

following discrete problem has to be solved(
∆h − 1

λ2 I κ2/ε∞ I

0 ∆h

)(
Φ
Ψ

)
=

(
P1

P2

)
,

where Φ and Ψ are discrete solution vectors at the grid points and P1, P2 are some right hand side
vectors, changing in each iteration. Solving is done in two steps:

1. Ψ = (∆h)−1P2

2. Φ = (∆h − 1
λ2 I)−1(P1 − κ2

ε∞
IΨ)

The second equation is solved by an additional (inner) BiCGSTAB iteration. Iteration counts in
this formulation are high (around 50-60 to reach 10−10 tolerance) and are reduced to typically 5-6
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iterations by using a discrete Laplace as preconditioner:

(∆h)−1(∆h − 1
λ2
I)Φ = (∆h)−1(P1 −

κ2

ε∞
IΨ) .

The operator (∆h)−1 is always applied by an FFT-based solver [141].

6.2.4 Approximations of the exterior boundary condition

In contrast to the BEM, where the outer region does not have to be limited to a finite volume,
this is necessary when solving the differential equations using a finite difference method. Thus, in
addition to setting up the algebraic equations, we have to estimate the solution of the nonlocal
electrostatic fields, for instance, φΣ and ψΣ in the DSM, on the exterior border of Σ, i.e., on ∂Σ.
In the following, we propose different boundary conditions:

� homogeneous boundary condition:
the simplest ansatz is to set all boundary values to zero

φΣ(r) = 0 and ψΣ(r) = 0, r ∈ ∂Σ .

This is justifiable as the physical fields are restricted to the radiation condition introduced in
Section 2.1.

� boundary condition without inner medium:
we assume that the charge distribution is directly immersed in water. The resulting boundary
value calculation is derived in Section 6.2.4.1 and is specified in Definition 6.6 on p. 98.

� boundary condition of an approximated charge distribution without inner medium:
in addition to the assumption that the charge distribution is immersed in water we approxi-
mate the charge distribution by an effective dipole, see Definition 6.7 on p. 98.

All these proposed boundary value approximations can be combined with a focusing method, mean-
ing to compute the solutions on a larger but coarse grid with one of the previously defined boundary
conditions and to take its result for initializing the boundary values of the original (fine) grid.

6.2.4.1 Boundary condition without inner medium and simplified charge distribution

Although we have to cope with a complex dielectric response of the biomolecular system, which is
reflected by the transmission problem of the electrostatic models, we assume that the behavior far
away from the surface is mainly determined by the charge distribution and the dielectric response
outside the molecule. Such a reduction of the real setting is shown in Fig. 6.5.

Fig. 6.5: Approximation of the potential values on ∂Σ by neglect of the dielectric boundary.

94



6.2. EJIIM

Fig. 6.6: The surface of the molecule is expanded to a sphere.

In order to justify this assumption, we analyze the solutions of an arbitrary charge distribution
immersed in a sphere. We therefore reduce the complex shape of the molecule to a sphere and
keep the charge distribution as illustrated in Fig. 6.6, i.e., completely contained by the sphere. The
restriction to a spherical shape should not be a serious one for common globular proteins, because,
even if the latter deviate somewhat from the spherical shape, electrostatic interactions depend
primarily on the distance between the charges and how far within the molecule these charges are
placed. The spherical symmetry allows to easily express the equations in spherical coordinates
and to develop the solution of the differential system in a product ansatz of the form U(r)Y (θ, φ).
Further, as the principle of superposition holds, we only have to calculate the solution for a single,
arbitrarily located point charge inside the sphere. From this, we can derive the solution for any
point charge distribution.

In the spherical case, we can easily analyze the potential values for an arbitrary, fixed charge
distribution and we will finally see, that the modifications of the potential values outside the
molecule due to the different dielectric response inside the molecule are small.

We choose the coordinate system in a way that the center of the sphere lies in the origin. We
further assume the point charge q to be placed at rq. Before we state the electrostatic potential of
the point charge immersed inside the sphere, we have to introduce some notation:

Definition 6.5 Bessel functions:
We define in, the modified spherical Bessel function of the first kind

in(z) :=
√

π

2z
In+ 1

2
(z), z ∈ C ,

which is related to the modified Bessel function of the first kind

In(z) =
1

2πı

∮
e( z2 )(t+ 1

t )t−n−1dt, z ∈ C .

Analogously, the modified spherical Bessel function of the second kind

kn(z) :=
√

π

2z
Kn+ 1

2
(z), z ∈ C ,

which is related to the modified Bessel function of the second kind

Kn(z) =
1

2π
I−n(z)− In(z)

sin(nπ)
, z ∈ C .

The modified spherical Bessel functions, in(z) and kn(z), build up the basis of the solutions f of the differ-
ential equation

[r2∂2
r + 2r∂r − (r2 + n(n+ 1))]f(r) = 0 , r ∈ R ,
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which is related to the radial part of the Laplace operator in spherical coordinates [4, 19,27,76].

With Definition 6.5 we can set up the solutions for the two scalar nonlocal models applied to a
spherical system:

4πφΩ(r) =
∑
n≥0

(
1
εΩ

rq
n

rn+1
+Anr

n)Pn(cosα), r ∈ Ω (6.12)

4πψΣ(r) =
∑
n≥0

Bn
1

rn+1
Pn(cosα), r ∈ Σ (6.13)

4πφΣ(r) =
1
εΣ
ψΣ(r) +

∑
n≥0

Fn kn(r/λ)Pn(cosα), r ∈ Σ , (6.14)

where
cosα =

r rq
r rq

, r = |r|, rq = |rq| (6.15)

and Pn(x) is the nth Legendre polynomial [76]. All nonlocal models have the same functional
structure, but differ in the amplitudes. In particular, we have for the DSM

z := a/λ

B0 = 1

Bn 6=0 =
rq
n

εΩ
(2n+ 1)/

(
−(

1
ε∞
− 1
εΣ

)
(
n(n+ 1) kn(z)
nkn(z)− zkn+1

)
+

1
εΩ

(n+ 1) +
1
εΣ
n

)
A0 =

1
a

(
(

1
εΣ
− 1
εΩ

) + (
1
ε∞
− 1
εΣ

)
1

1 + z

)
An 6=0 =

1
εΩ

n+ 1
n

(rqn −Bn)/a2n+1

F0 =
2
λπ

(
1
ε∞
− 1
εΣ

)
ez

1 + z

Fn 6=0 = −Bn(
1
ε∞
− 1
εΣ

)
(n+ 1)a−(n+1)

nkn(z)− zkn+1(z)
,

where a defines the radius of the sphere. For the derivation we used the identity

∂xkn(κx) =
n

x
kn(κx)− κkn+1(κx), n ≥ 0 .

In Section 3.2.1 we introduced the correlation length λ, which defines the region of measurable
hydrogen correlations. In general, the correlation length is comparable with the molecule’s extension
and this is why we consider z = a

λ to be small. Then, the Bessel functions can be approximated [4]

kn(z) ≈ π

2
(2n− 1)!!
zn+1

, n > 0, z <

√
n+

3
2
.

Using this approximation yields for the coefficients Bn and Fn,

B0 = 1.

Bn 6=0 =
2n+ 1

( εΩ
ε∞

+ 1)︸ ︷︷ ︸
≈2

n+ 1
rq
n ≈ rqn (6.16)
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and

F0 =
2
λπ

(
1
ε∞
− 1
εΣ

)
ez

1 + z
≈ 2
λπ

(
1
ε∞
− 1
εΣ

)

Fn 6=0 =
2
λπ

(
1
ε∞
− 1
εΣ

)(2n+ 1)
{
rq
n

λn
1

(2n+ 1)!!

}
︸ ︷︷ ︸

in(rq/λ)

.

In Eq. (6.16) we claim that εΩ
ε∞
≈ 1, i.e., that εΩ and ε∞ are of the same order of magnitude. This

is a realistic assumption, as the macroscopic dielectric constant commonly used for proteins, εΩ

ranges between 2ε0 and 10ε0 and ε∞ = 1.8ε0. The previous equations can then be combined to

Bn = rq
n n ≥ 0

Fn =
2
λπ

(
1
ε∞
− 1
εΣ

)(2n+ 1) in(rq/λ) n ≥ 0 .

Inserting these identities into Eqs. (6.13) and (6.14) yields the following approximation of the non-
local potentials in Σ

4πψΣ(r) ≈
∑
n≥0

rq
n

rn+1
Pn(cosα) , r ∈ Σ

4πφΣ(r) ≈ 1
εΣ
ψΣ + (

1
ε∞
− 1
εΣ

)
∑
n≥0

2
λπ

(2n+ 1) in(rq/λ) kn(r/λ)Pn(cosα) , r ∈ Σ .

This result can be further simplified when comparing it to the expansion of the fundamental
solutions of the Laplace 4, and the Yukawa operator L 1

λ
, in spherical harmonics [19,52]:

1
4π

1
|r − rq|

=
∑
n≥0

rq
n

rn+1
Pn(cosα)

1
4π

e−
1
λ
|r−rq |

|r − rq|
=

∑
n≥0

2
λπ

(2n+ 1) in(rq/λ) kn(r/λ)Pn(cosα)

Hence, we have

4πψΣ(r) ≈ 1
|r − rq|

, r ∈ Σ (6.17a)

4πφΣ(r) ≈ 1
εΣ

1
|r − rq|

+ (
1
ε∞
− 1
εΣ

)
e−

1
λ
|r−rq |

|r − rq|
, r ∈ Σ . (6.17b)

Eqs. (6.17) are already known from the point charge solution given in Theorem 3.3.3. This proves
the assumption made at the beginning of this section: the charge distribution directly immersed
in water as illustrated in Fig. 6.5 yields a reasonable approximation for the boundary values of the
electrostatic potentials. We summarize a few notes in the following remark.

Important remark 6.1

� In the presented derivation we considered a spherical surface. Whether this approximation is fulfilled
or not depends on the molecule’s composition and on the solvent. At least when assuming (polar)
water and a mixture of nonpolar and polar side chains the molecules tend to cluster in order to
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minimize the contact of the nonpolar side chains with the polar solvent, so that a spherical surface is
macroscopically reasonable.

� The presented approximation does not exploit the limit r�a, which would be an additional constraint,
when we calculate the boundary values for the finite difference box. We used that the correlation length
is comparable or even larger than the extension of the molecule and that εΩ has the same order of
magnitude as ε∞. With these assumptions, we derived an analytical expression for the potentials
everywhere outside the sphere. When approaching the surface of the molecule, our assumption to have
a spherical molecule will certainly break down. However, as the approximated fields, Eqs. (6.17a-b)
are the fundamental solutions of the nonlocal system without any dielectric boundary (see Remark 3.3
on p. 46), we suggest that the surface is in fact of minor importance in Σ.

� The presented field approximations given in Eqs. (6.17a-b) were derived explicitly for the DSM. How-
ever, a similar derivation can be made for the NSM as well as for the vector models. This can already
be seen for the analytical expressions in the case of the Born sphere, where each of the nonlocal models
results in Eqs. (6.17) for small aλ (Section 5.3). Thus, we expect all the nonlocal Lorentzian models to
be similar in Σ, whereas in Ω they will differ from each other.

� An analogous derivation for the local model yields [19,30]:

4πφΩ(r) =
∑
n≥0

(
1
εΩ

rq
n

rn+1
+Anr

n)Pn(cosα)

4πφΣ(r) =
∑
n≥0

Bn
1

rn+1
Pn(cosα)

An =
rq
n

εΩ

(εΩ − εΣ)(n+ 1)
(εΩn+ εΣ(n+ 1))a2n+1

Bn =
rq
n

εΣ

2n+ 1
( εΩεΣ + 1)︸ ︷︷ ︸
≈1

n+ 1
≈ rq

n

εΣ

2n+ 1
n+ 1︸ ︷︷ ︸
f(n)

(6.18)

In order to result in the boundary approximations given in Eq. (6.17) we used a
λ�1. The other limit,

a
λ � 1, i.e., λ→ 0, yields the amplitudes Bn given in Eq. (6.18), which means that the local model
is regained. As can be seen in Eq. (6.18), the amplitudes Bn of the local model still depend on n,
because εΩ and εΣ are not of the same order of magnitude.

The derivation and the concluding remarks strongly support the choice of the following approxi-
mation for the boundary values of a finite difference calculation for the nonlocal Lorentzian models.

Definition 6.6 The approximated boundary condition:
The approximated boundary condition assumes the charge distribution (6.1) to be directly immersed in water,
Σ = R3 and Ω = ∅, i.e., skipping the boundaries and therefore neglecting the coupling of the two different
dielectric media. The nonlocal electrostatic potentials of this setting read as follows

ψΣ(r) =
1

4π

∫
R3

ρ(r′)
|r − r′|

dr′ (6.19a)

φΣ(r) =
1
εΣ

ψΣ(r) +
1

4π

(
1
ε∞
− 1
εΣ

)∫
R3
ρ(r′)

e−
1
λ |r−r

′|

|r − r′|
dr′ (6.19b)

fΣ(r) =
1

εΣ − ε∞
(ψΣ(r)− ε∞φΣ(r)) . (6.19c)

In order to efficiently generate boundary values, we simplify the charge distribution ρ by calculating
an effective dipole:
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Definition 6.7 The effective dipole boundary condition:
Assuming the arbitrary charge distribution ρ given in Eq. (6.1) on p. 85. For index sets I+ := {i | 1 ≤ i ≤
N , qi > 0} and I− := {i | 1 ≤ i ≤ N , qi ≤ 0} we define

Q± :=
∑
i∈I±

qi , r± :=
1
Q±

∑
i∈I±

ri qi ,

and the effective (dipole) charge distribution

ρeff := Q+ δ(r − r+) +Q− δ(r − r−) .

Replacing the molecule’s charge density by ρeff in Eqs. (6.19a-c), we gain a fast boundary value approximation
denoted effective dipole boundary condition. If one of the effective charges is zero, only the other is taken
into account and we obtain an effective monopole.

6.3 Surface generation

In Section 6.2 we developed an EJIIM solver and an appropriate boundary value approximation. In
order to start an EJIIM calculation, it remains to provide the surface information of the molecule in
the 3D grid. Besides the inside/outside information of every grid point, this includes the knowledge
of the intersection points between the Cartesian grid and the molecular surface Γ together with the
normal and the tangential vectors at these intersection points on Γ. In the literature, very accurate
and efficient methods to calculate the inside/outside information are discussed [101]. However, these
algorithms provide neither the exact intersection points nor information on the surface normal
direction. In this section we derive an algorithm to generate a discrete surface description of a
biomolecule in an equidistant 3D Cartesian grid.

After starting with basic notations in Section 6.3.1, we set up the algorithm to calculate the
VdWS and the SAS. The algorithm is described in Section 6.3.2. Based on these results, we
calculate the molecular surface, i.e., the SES of the molecule, in Section 6.3.3.

In the first instance, the algorithm was developed to generate the input information for the
EJIIM. In addition, we can easily use the discrete surface description to calculate a triangulation
for the BEM. This extension is presented in Section 6.3.5.

6.3.1 Definitions

In Sections 3.1.2 we introduced the basic notations to describe the surface of a molecule.

The three different types of surfaces used in biomolecular research, the VdWS, the SAS, and the
SES have been illustrated in Fig. 3.3, which is once again shown above. They were described on
p. 26. Now, we specify these definitions in a theoretical way. This is the basis for efficiently defining
the intersections of the molecule with a 3D grid.
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Definition 6.8 Surface definition
Assume a molecule M to consist of a set of N atoms. Each is represented as a Born sphere S with given
center ri and radius Ri, i = 1, . . . , N . We define the domain M as

M =
N⋃
i=1

S(ri, Ri) . (6.20)

We introduce ∂V as the boundary of a domain V ⊂ R3 and we further denote the radius of a solvent molecule
as rprobe. With these notations, we define

(a) the Van der Waals Surface (VdWS):

VdWS(M) = ∂

(
N⋃
i=1

S(ri, Ri)

)
= ∂M (6.21)

(b) the Solvent Accessible Surface (SAS):

SAS(M) = ∂

(
N⋃
i=1

S(ri, Ri + rprobe)

)
(6.22)

(c) the Solvent Excluded Surface (SES):

SES(M) = ∂

(
N⋃
i=1

S(ri, Ri + rprobe)
∖ ⋃(

S(r, rprobe) , r ∈ SAS(M)
))

(6.23)

When analyzing these three different surface definitions, it is remarkable that each of them is
based on a merging or an exclusion of spheres. This is in fact the basis of the algorithm: we will
implement a merging procedure to consecutively build the surface of the molecule out of spheres.

Before we give the details on the algorithm, we have to agree on the following definitions.
Along the lines of Definition 6.1 on p. 89 we introduce a regular grid g with spacing h and size

(nx×ny×nz). We further keep the standard notation gijk :=g(xi, yj , zk) for a grid point (xi, yj , zk),
i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny}, k ∈ {1, . . . , nz}.

Points on the edges of the grid which belong to the surface ∂V of a volume V are called intersec-
tions of V . To avoid pathological cases and to allow for certain precalculations, intersection points
are restricted to lie on discrete, equidistant distances on the edges of the grid, i.e., we discretize
the set of intersection points. This is shown in Fig. 6.7 on the left, where the small black points
on the grid lines indicate all possible positions of intersection points. Typically, we allow for ten
possible intersection positions along the distance h. Additionally, only a single intersection point
is considered on the edge between two adjacent grid points, in a way that one of these grid points
lies in V , whereas the other lies in the complement V . If the exact intersection does not fulfill this

Fig. 6.7: Restrictions: (left) discretization of the intersection point position; (right) local deformation of the
surface to guarantee a single intersection point on the edges of the grid.
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restriction, we deform the surface as shown on the right of Fig. 6.7. Such a surface correction is on
a length scale below the grid resolution and thus, does not spoil the numerical results.

In order to efficiently describe the grid-based surface we now introduce special sets of grid points:

Definition 6.9 Point sets:
We consider a volume V ⊂ R3 with surface ∂V and complement V . V completely lies in a regular grid g
with grid spacing h. Then, all grid points gijk of the regular grid are assigned to one of the following grid
point sets

γV,I := {gijk | 0 < |gijk − ∂V | < h and gijk ∈ V }

γV ,I :=
{
gijk | 0 < |gijk − ∂V | < h and gijk ∈ V

}
VI := {gijk | gijk ∈ V and gijk /∈ γV,I}

V I :=
{
gijk | gijk ∈ V and gijk /∈ γV ,I

}
,

where |gijk − ∂V | denotes the distance of the grid point gijk to the next point lying on an edge of the grid
and being part of ∂V .

Tab. 6.1 introduces predefined notations for the volume V in the case of the molecule and in the case of a
sphere. The molecule is described by the point sets {ΩI , γΩ,I , ΣI , γΣ,I}, whereas the sphere is defined by
{SI , γS,I , SI , γS,I}.

Tab. 6.1: Notations.

V V ∂V

molecule Ω Σ Γ
sphere S S ∂S

By means of a cross section through a single atom sphere S, Fig. 6.8 illustrates the meaning of
the different grid point sets of Definition 6.9. Grid points which lie outside the sphere are drawn
as white circles. They can either contribute to γS,I or to SI . In contrast, the inner grid points are
colored in gray. All inner points either belong to γS,I or to SI . For the grid points shown in the
inset, we listed the membership in detail in the caption of Fig. 6.8.

Edges connecting a grid point of γV,I with a grid point of γV ,I are additionally drawn as solid lines
in the inset of Fig. 6.8. Since all intersection points lie on these edges, they are denoted non-trivial
in contrast to the trivial edges, which connect grid points lying both either in V or in V .

In order to uniquely characterize the intersections lying on the non-trivial edges, we assign to
each grid point in γV,I and in γV ,I the so called edge label, which is specified in Definition 6.10.

Definition 6.10 Edge label:
The edge label ed,ijk refers to an edge originating at grid point gijk and connecting the next grid point in
direction ed∈{±ex, ±ey, ±ez}.

For non-trivial edges, the edge label is comprised of the relative distance d where the intersection point is
found and a set Sspheres of all sphere indices of spheres that contribute to the respective intersection point.

We further define

N(enon-trivial
ijk ) := number of non-trivial edges the grid point gijk participates in .

101



Chapter 6. Numerics

Fig. 6.8: Grid based representation of an atom sphere: dark-gray grid points lie in S, white ones in S. Inset:
grid points divide into the following sets: SI = {(1, 1)} , γS,I = {(1, 2), (1, 3), (2, 1)} , γS,I =
{(2, 2), (2, 3), (3, 1)} , SI ={(3, 2), (3, 3)}.

Tab. 6.2: Complete edge label of grid point (2, 2) in Fig. 6.8.

edge (2,2)-(3,2) (2,2)-(1,2) (2,2)-(1,3) (2,2)-(2,1)

ed ex −ex ey −ey
d / 0.1 / 0.2

Sspheres / {i} / {i}

type trivial non-trivial trivial non-trivial

In order to give an example for the complete edge label of a grid point, we consider in Tab. 6.2 all
edges of the grid point (2, 2) of Fig. 6.8. For instance, the edge, which connects (2, 2) with (2, 1), is
non-trivial, because (2, 2)∈γV ,I and (2, 1)∈γV,I . With the edge label given in Tab. 6.2 we identify
the position (x, y) of the intermediate intersection point in Cartesian coordinates as

(x, y) = (x2, y2) + 0.2 (0, -1)︸ ︷︷ ︸
ded

h .

Furthermore, we see in Fig. 6.8 that the grid point (2, 2) participates in two non-trivial edges
whereas, for example, the grid point (1, 2) belongs to only one non-trivial edge. Thus, we have
N(enon-trivial

12 )=1 for (1, 2) and N(enon-trivial
22 )=2 for (2, 2).

Since Fig. 6.8 illustrates a single atom sphere, whose atom information (e.g., radius and center)
can be retrieved from its atom index i, the set Sspheres of all non-trivial edges consist of i, only.
In contrast, in Fig. 6.9 the intersection point on the lined, non-trivial edge belongs to two different
atoms, namely i and j and this yields the set Sspheres = {i, j} for the lined edge.

The trivial edges do not retain intersection or atom connectivity information and thus we do
not store them explicitly. With the knowledge of all non-trivial edges, the trivial ones are easily
detectable, because both sets exclude each other. In the inset of Fig. 6.8, all trivial edges are dashed
such as the edge that connects the grid points (2,2) and (3,2).

Based on the above definitions and constraints, the complete intersection information is contained
in both γV,I and γV ,I . This allows for a fast access to intersection information and atom connectivity.
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Fig. 6.9: The set Sspheres of the lined non-trivial edge consists of the atoms with indices i and j.

We specify the set of intersection points, ΓI in Definition 6.11.

Definition 6.11 Discrete set of intersection points

ΓI :=
{

(x, y, z) = (gijk + d ed) ∈ R3 | gijk ∈ γV,I and ed;ijk is non-trivial
}

:=
{

(x, y, z) = (gijk + d ed) ∈ R3 | gijk ∈ γV ,I and ed;ijk is non-trivial
}

By construction, the grid-based representation of an arbitrarily shaped volume V can be uniquely
described by {VI , γV,I} or {V I , γV ,I}, where γV,I or γV ,I refers to the non-trivial edges with respect
to V or V . For the grid-based SAS generation, we decided to describe the surfaces of the atom
spheres and of the molecule with the inside information, i.e., with {VI , γV,I}3.

As a special case, we introduce {SkI , γkS,I} for the grid-based representation of a sphere with index
k and {Ω(k:j)

I , γ
(k:j)
Ω,I } as the grid based representation of an union of the kth to the jth sphere of

the molecule.
Finally, we define the atom sphere, which has already been implicitly used in the last illustrations:

Definition 6.12 Atom sphere:
The atom sphere is defined by the point sets {SI , γS,I} or {SI , γS,I}. Additionally, it holds, that the in-
side information of the sphere equals the inside information of the molecule, also denoted molecule inside
information. Thus, an accumulation of atom spheres belongs to Ω.

In all previous and also in the coming illustrations, dark-gray (white) points indicate grid points,
which lie inside (outside) the molecule or inside (outside) an atom sphere. At the moment, the
definition of the atom sphere seems self-evident and therefore superfluous, however, when we con-
struct the SES in Section 6.3.3 we require the probe sphere, which has an inside/outside information
contrary to the molecule and to the atom sphere, i.e., the inner of a probe sphere bears the outside
information of the molecule, also denoted molecule outside information (see Definition 6.13).

6.3.2 Construction of the grid-based SAS

In this section, we explain the algorithm to generate the grid-based SAS information of a molecule.
As already motivated above, the construction of the grid-based SAS is done by the consecutive
merging of atom spheres as defined in Eq. (6.22). We assume the lth step of the merging procedure,
where the sphere information of the lth atom sphere is merged with the (l−1) already merged atom

3Choosing the outside information, {V I , γV ,I} would change the ⊕A-operator (Tab. 6.3(b)) in a way that the
operator minimizes the outer domain, i.e., to the ⊕P-operator (Tab. 6.4).
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spheres of the molecule,

(
S(rl, Rl + rprobe)

)
︸ ︷︷ ︸

lth atom sphere to be merged

∪

(
l−1⋃
i=1

S(ri, Ri + rprobe)

)
︸ ︷︷ ︸

(l−1) already merged atom spheres

. (6.24)

With the definitions made in Section 6.3.1, the merging procedure computes the new set {Ω(1:l)
I , γ

(1:l)
Ω,I }

from given sets {SlI , γlS,I} and {Ω(1:l−1)
I , γ

(1:l−1)
Ω,I }. This is described in pseudo-code in Algorithm 6.1.

Algorithm 6.1 Merging atom spheres

Require: {S1
I , γ

1
S,I} or

(
{Ω(1:l−1)

I , γ
(1:l−1)
Ω,I } and {SlI , γlS,I}

)
.

Ensure: {Ω(1:l)
I , γ

(1:l)
Ω,I }.

1: if l = 1 then

2: initialize: {Ω(1:l)
I , γ

(1:l)
Ω,I } = {S1

I , γ
1
S,I}

3: else

4: initialize: {Ω(1:l)
I , γ

(1:l)
Ω,I } = {Ω(1:l−1)

I , γ
(1:l−1)
Ω,I }

5: for all gijk ∈ SlI do

6: insert gijk in Ω(1:l)
I

7: if gijk ∈ γ
(1:l)
Ω,I then

8: remove gijk from γ
(1:l)
Ω,I

9: for all gijk ∈ γlS,I do

10: for all ed∈{±ex, ±ey, ±ez} do

11: eld;ijk ⊕A e(1:l)
d;ijk=


1 : insert eld;ijk

1max : update e(1:l)
d;ijk

0 : remove e(1:l)
d;ijk

 in γ
(1:l)
Ω,I

12: if
((
N(enon-trivial

ijk )==0
)

for gijk ∈ γ
(1:l)
Ω,I

)
then

13: remove gijk from γ
(1:l)
Ω,I

14: insert gijk in Ω(1:l)
I

15: return {Ω(1:l)
I , γ

(1:l)
Ω,I }

Description of Algorithm 6.1

l = 1
When merging the first sphere, the molecule set is empty and the set {S1

I , γ
1
S,I} contains all

the information about the current (molecular) surface {Ω(1:1)
I , γ

(1:1)
Ω,I }. Thus, we are done with
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the initialization given in line 2 of Algorithm 6.1.

l > 1
In order to generate the new set {Ω(1:l)

I , γ
(1:l)
Ω,I } we proceed in three steps:

� we initialize the current molecule set {Ω(1:l)
I , γ

(1:l)
Ω,I } with the old set {Ω(1:l−1)

I , γ
(1:l−1)
Ω,I }.

� we unify the inside information of the sphere, SlI with the one of the current molecule,
Ω(1:l)
I as done in line 6 of Algorithm 6.1.

– the union of Ω(1:l)
I and SlI implies the deletion of grid points gijk ∈ γ

(1:l)
Ω,I that now

belong to Ω(1:l)
I , as the sets have to exclude each other. This is done in lines 7-8 of

Algorithm 6.1.

� we merge γlS,I and γ
(1:l)
Ω,I . In principle, we have to find all new non-trivial edges of the

molecule’s surface and we have to update old, non-trivial edges, which are covered by
the surface of the lth sphere. To this end, we iterate over all edges of grid points in γlS,I
and proceed as follows:

– we check whether the edge contributes to the molecular surface. If this is the case,
we update the edge label in agreement with the constraints made in Section 6.3.1.
This can mean that we insert the grid point gijk in γ

(1:l)
Ω,I , or that we update its

edge label in γ
(1:l)
Ω,I , or even that we remove gijk from γ

(1:l)
Ω,I . These steps are done

in line 11 of Algorithm 6.1, where the ⊕A-operator is defined by Tab. 6.3(b) and
separately described in Section 6.3.2.1.

– we remove the point gijk ∈ γ
(1:l)
Ω,I , when gijk does not possess any non-trivial edges

after the merging procedure. As in this case, gijk lies in Ω, the grid point is added
to Ω(1:l)

I . This is realized in lines 13-14 of Algorithm 6.1.

Fig. 6.10 illustrates the molecule surface (lined) before and after the merging of three different
atom spheres (dashed).

After the N th atom sphere of the molecule has been processed and merged, the complete SAS
information is stored in the sets {Ω(1:N)

I , γ
(1:N)
Ω,I }, where γ(1:N)

Ω,I contains the non-trivial edge label,
i.e., the intersection and the atom connectivity information. The latter is required to calculate
the normal vector on the surface at the intersection point: assume to have a set of L atoms that
contribute to the intersection point γ ∈ Γ(1:N)

I , then we define the outer normal vector n by

n =
1
L

L∑
i=1

ri − γ
|ri − γ|

, (6.25)

where ri is the center of the ith atom and γ is the position of the intersection point. The grid-based
SAS is illustrated for a cross section through trypsin in Fig. 6.11(b).

Note that the construction of the grid-based VdWS is analogous to the SAS generation when
rprobe is set to zero in Eq. (6.24).

6.3.2.1 Addition table: ⊕A-operator

In order to describe the resulting edge configuration within the merging process of a sphere and
a molecule edge, we assign the so called edge type to every edge. The edge type specifies the
inside/outside information of the grid points of an edge. All possible inside/outside configurations
are shown in Tab. 6.3(a):
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(a) Molecule edge types (b) Addition operator ⊕A

Tab. 6.3: (a) Edge types: a molecule edge type is allocated to every edge starting at the grid point which is
denoted by the black arrow. It characterizes the inside/outside information of the edge: dark-gray
grid points have molecule inside information, i.e., they lie in Ω (or in S), white ones have molecule
outside information, i.e., they lie in Σ (or in S); (b) Addition operator ⊕A: merging atom spheres
with the ⊕A-operator; el denotes an edge of the atom sphere (rows) and e(1:l) the corresponding
edge of the molecule under construction (columns).

The edge type 0 denotes an edge with molecule inside information at both ends, whereas an edge
with edge type 0 has molecule outside information at both ends. Edges with type 0 and 0 lie in Ω
and Σ, or in the case of an atom sphere in S and S, respectively.

In contrast to these trivial edges with the same inside/outside information at both ends, one of
the grid points of a non-trivial edge has inside the other has outside information. For the non-trivial
edges, we introduce the edge type 1, when the reference grid point has inside information indicated
by the black arrow in Tab. 6.3(a). In the mirrored case, the edge has type 1. Thus, by definition,
edges with type 1 lie in γΩ,I or in the case of an atom sphere in γS,I , whereas edges with type 1 lie
in γΣ,I or, in the case of an atom sphere, in γS,I .

Based on these edge types, we define the addition operator ⊕A in Tab. 6.3(b), which is used in
the Algorithm 6.1 in line 11 to abbreviate the merging of an edge of an atom sphere, el with the
corresponding edge of the molecule, e1:l.

As we see in line 9 of Algorithm 6.1, the addition operation acts only on edges of grid points
gijk ∈ γlS,I and this is why we consider only the edge types 0 and 1 in the rows of Tab. 6.3(b). In
order to account for all edge types a sphere edge can face when merging with the corresponding
molecule edge, we consider all four possible edge types in the columns.

In principle, the addition table is based on maximizing the surface with respect to the added
sphere. Thus, the edge type 0, which is an edge with inside information, has the highest priority
and every merging procedure where the edge type 0 is involved results in an edge with type 0 (e.g.,
e+y;64 and e+x;86 in Fig. 6.10). In contrast, the edge type 0, which denotes an edge with outside
information, has the lowest priority and is always replaced in favor of the edge type of the added
atom sphere (e.g., e−y;33 in Fig. 6.10).

When an atom sphere edge of type 1 faces a molecule edge of type 1, the edge with the greater
distance d to the intersection point defines the new surface, i.e., if necessary the old edge label is
overwritten (cf. e−x;63 and e+y;77 in Fig. 6.10). This is implied by 1max in Tab. 6.3(b). Otherwise,
if the distances are equal, the molecule edge remains unchanged, but the sphere index l has to be
added to the atom set Sspheres of this edge (e.g., e+x;85 in Fig. 6.10).

Furthermore, the addition scheme always fulfills the restrictions that are made in Section 6.3.1.
For instance, when an atom sphere edge of type 1 faces a molecule edge of type 1, the corresponding
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Fig. 6.10: Merging scenarios for the dashed atom spheres (1-3): A 1 lies inside the molecule, A 2 overlaps
with the molecule’s surface and A 3 lies within one grid spacing next to the molecule.

grid point gijk ∈ γ
(1:l)
Ω,I is skipped in either case (e.g., e−x;44 in Fig. 6.10). After this procedure, the

edge lies completely in Ω.

6.3.2.2 Acceleration of the algorithm

In order to accelerate the algorithm, the merging procedure is done for atoms lying on the surface,
only. For the identification of all the atoms, which contribute to the VdWS or the SAS, we use the
reduced surface implementation in the molecular software package BALL. The reduced surface is
an analytical description of the molecular surface, and among other things it provides a list of the
atoms of the molecule with a non-vanishing surface contribution [109]. Processing only the atoms
of this list reduces the number of merging procedures considerably. For instance, from the total
number of 3223 atoms the protein trypsin is composed of, only 1403 atoms are surface exposed.
Fig. 6.11(a) exemplifies the result of the merging procedure for a cross section through trypsin.

(a) (b)

Fig. 6.11: (a) merging the surface exposed atoms; (b) grid-based representation of the SAS of trypsin after
applying the flood-fill algorithm, red arrows denote the normal information.
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Since the inner atoms have not been processed yet, there is a wrong inner band of points in γ1:N
Ω,I .

In order to delete these points and to assign all inner points to the set ΩI , we apply a standard,
recursive inner flood-fill algorithm that starts at every buried atom position, i.e., at all atoms that
do not contribute to the surface [54]. The inner flood-fill algorithm terminates, when reaching grid
points that belong to the set γ1:N

Ω,I
4.

6.3.3 Construction of the grid-based SES

First of all, we transfer the definition of the SES given in Eq. (6.23),

SES(M) = ∂

(
N⋃
i=1

S(ri, Ri + rprobe)
∖ ⋃(

S(r, rprobe) , r ∈ SAS(M)
))

,

into a discretized context

SES = ∂
(

ΩI,SAS

∖ ⋃ (
S(ΓI,SAS, r

probe)
))

, (6.26)

where
⋃ (

S(ΓI,SAS, r
probe)

)
:=
⋃ (

S(r, rprobe) , r ∈ ΓI,SAS

)
describes the union of all probe spheres

positioned at the discrete intersection points of the SAS. From this definition, it is directly clear
that the SES generation consists of two algorithms. The first computes the inside information of
the grid-based SAS of the molecule ΩI,SAS and the set of discrete SAS intersection points ΓI,SAS.
The second algorithm imitates the rolling process in a discrete way by a consecutive merging of
probe spheres which are located on the intersection points ri ∈ ΓI,SAS. The basic computation
is depicted in Fig. 6.12, where we start with the set ΣI,SAS and consecutively merge ΣI,SAS with
probe spheres centered at the points ∈ ΓI,SAS.

Fig. 6.12: left: VdW(dark gray), ΩSAS(light gray), ΣSAS (white), ΓI,SAS (black points on SAS); middle:
constructing SES by merging of probe sphere with ΣI,SAS: SAS intersection points that were
already processed are additionally drawn as small black points; right: ΣSES (white) and ΩSES

(the rest) after the complete merging procedure.

In order to adopt the complete merging procedure described in Section 6.3.2, we transform the
\-operator in Eq. (6.26) for the inner domain ΩI,SAS into the ∪-operator for the outer domain
ΣI,SAS:

SES = ∂inner
(

ΣI,SAS ∪
(⋃

S(ΓI,SAS, r
probe)

))
. (6.27)

To demonstrate this equality we use the algebra of sets, in particular De Morgan’s law, which is

4In order to assign “holes” inside the molecule to Ω, we have to start an outer flood-fill algorithm instead, meaning
that we start at the border of the 3D grid. The outer flood-fill algorithm terminates, when grid points are reached,
which belong to γ1:N

Ω,I . In fact, this algorithm is used for electrostatic problems, because the solvent does not act
as a dielectric continuum inside inner holes and does not contribute to the water network.
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illustrated in Fig. 6.13 for two set A and B, where in our case it holds

A = ΩI,SAS, A = ΣI,SAS, B =
⋃
S(ΓI,SAS, r

probe) .

Fig. 6.13: Set algebra to reformulate the SES generation into a pure merging procedure.

In Definition 6.13 we formally introduce the probe sphere in analogy to the atom sphere. An
illustration of the probe sphere is given in Fig. 6.14.

Definition 6.13 Probe sphere:
The probe sphere is defined by the point sets {SI , γS,I} or {γS,I , SI} of a sphere with radius rprobe. Addi-
tionally, it holds that the inside information of the sphere equals the outside information of the molecule,
also denoted molecule outside information. Thus, an accumulation of probe spheres belongs to Σ.

Fig. 6.14: left: the interior (exterior) of a probe sphere is marked by white (dark-gray) points meaning that
it bears the outside (inside) information of the molecule; right: an atom sphere as defined in
Definition 6.12.

Let the SAS be defined by {Ω1:N
I,SAS, γ

1:N
Ω,I,SAS}. From these sets we retrieve {ΣI,SAS, ΓI,SAS}. With

the definition of the probe sphere, the grid-based SES can then be calculated by Eq. (6.27).
The Algorithm 6.2 describes the merging of the lth probe sphere with the already merged (l−1)
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probe spheres, i.e.,

(
S(rl, rprobe)

)
︸ ︷︷ ︸

lth probe sphere to be merged

∪

(
l−1⋃
i=1

S(ri, rprobe)

)
︸ ︷︷ ︸

(l−1) already merged probe spheres

∪ ΣI,SAS .

Algorithm 6.2 Merging probe spheres

Require:
(
ΣI,SAS and {S1

I , γ
1
S,I}
)

or
(
{Σ(1:l−1)

I , γ
(1:l−1)
Σ,I } and {SlI , γlS,I}

)
.

Ensure: {Σ(1:l)
I , γ

(1:l)
Σ,I }.

1: if l = 1 then

2: initialize: Σ(1:l)
I = ΣI,SAS ∪ S1

I

3: γ
(1:l)
Σ,I = γ1

S,I

4: else

5: initialize: {Σ(1:l)
I , γ

(1:l)
Σ,I } = {Σ(1:l−1)

I , γ
(1:l−1)
Σ,I }

6: for all gijk ∈ SlI do

7: insert gijk in Σ(1:l)
I

8: if gijk ∈ γ
(1:l)
Σ,I then

9: remove gijk from γ
(1:l)
Σ,I

10: for all gijk ∈ γlS,I do

11: for all ed∈{±ex, ±ey, ±ez} do

12: eld;ijk ⊕P e(1:l)
d;ijk=


1 : insert eld;ijk

1max : update e(1:l)
d;ijk

0 : remove e(1:l)
d;ijk

 in γ
(1:l)
Σ,I

13: if
((
N(enon-trivial

ijk )==0
)

for gijk ∈ γ
(1:l)
Σ,I

)
then

14: remove gijk from γ
(1:l)
Σ,I

15: return {Σ(1:l)
I , γ

(1:l)
Σ,I }

In principle, it is the analogous computation as for the SAS generation (Algorithm 6.1) with the
only difference that the probe spheres bear the outside information of the molecule. To generate
the SES, we try to maximize Σ of the molecular system starting with the outer domain ΣI,SAS.
This results in the addition table 6.4 for the merging of probe spheres.

The difference in the action of the ⊕A- and the ⊕P -operator can be seen when comparing Fig. 6.10
and Fig. 6.15: in the former we merged atom spheres to form a molecule whereas in the latter these
three spheres play the role of probe spheres. In this case, the sphere P 3 does not have any effect on
the configuration as it lies completely outside. In contrast, P 1 and P 2 “dig holes” in the molecule.
In this way the outer domain is maximized.
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Tab. 6.4: Merging probe spheres with the ⊕P-operator; el denotes an edge of the probe sphere (rows) and
e(1:l) the corresponding edge of the molecule under construction (column).

Fig. 6.15: Merging scenarios for the dashed probe spheres (1-3): P 1 lies inside the molecule, P 2 overlaps
with the molecular surface and P 3 lies within one grid spacing next to the molecule.

The calculation of the SES of trypsin in a grid with 0.5Å spacing and dimension (64Å×64Å×64Å)
takes 193.22 seconds on a machine with four Intel(R) Xeon(R) CPU W3540 @ 2.93GHz processors
and 12GB RAM. Fig. 6.16 shows the SES of trypsin generated by this procedure. It is the same
cross section of trypsin as the one depicted in Fig. 6.11. The normal vectors drawn as red lines
start at the position of SES intersection points. From this, we can see that the surface does not
coincide with the VdWS. Further, on the right side of the cross section we see two pockets which
are too small for the probe spheres to enter. The SES smoothly closes these pockets.

6.3.4 Final remarks

Comparing the addition tables in Tab. 6.3(b) and Tab. 6.4 it is apparent that under the transfor-
mation,

(0, 1, 0, 1)→ (0, 1, 0, 1) ,

the ⊕P -operator equals the ⊕A-operator. This corresponds to the fact that the inside information
of the spheres, which have to be merged, has always the highest priority regardless of the assigned
molecule inside/outside information. This means that the merging procedures for atom and probe
spheres are equal, which makes the implementation of the grid-based SAS reusable for the grid-
based SES generation.

The complexity of the SES algorithm is mainly determined by the merging procedures of the
probe spheres. This is about O(M×n3), where M denotes the number of SAS intersection points
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Fig. 6.16: SES constructed by probe spheres hung up at the intersection points of the grid-based SAS,
Fig. 6.11(b).

and n3 the probe grid dimension (rough measure for inside points). Since the number of intersection
points M approximately quadruples when the spacing is halved,

Mi+1 ≈ 4Mi for hi+1 =
hi
2
, (6.28)

the original algorithm becomes very slow for high grid resolutions, h < 0.125Å. This is however the
upper bound of a grid-based resolutions of biomolecules used in finite difference methods.

A first reduction of runtime is possible when taking advantage of the discretization of the potential
positions of intersection points: this allows for the precalculation of all possible probe spheres in
small reference grids. Further, the SES generation is accelerated by the application of the inner
flood-fill algorithm after the complete merging process instead of merging of all inside points of
every probe sphere as described in line 2 and lines 6-9 in Algorithm 6.2.

Finally we modified the original algorithm to allow for different resolutions of the SAS and the
SES generation. We introduced an user-defined coarse grid resolution hSAS for the SAS and a
finer resolution hSES for the reference grids of the probe spheres. The latter is responsible for the
SES resolution. If, for instance, hSES equals hSAS

2 , the number M of SAS intersection points is
reduced by approximately a factor 4 (see Eq. (6.28)) and therefore the time required for merging
the probe spheres is reduced as well. This procedure lowers the accuracy of the grid-based SES
only slightly, because for a grid spacing hSAS ≤ 0.5 the number of discrete SAS intersection points
is still adequate for the merging procedure.

Besides modifications of the generation of the grid-based surface information, which have been
discussed before, a great potential to gain efficiency lies in a parallelization of the code. The flood-
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Fig. 6.17: 15 unique cube configurations.

fill algorithms as well as parts of the merging procedures can be parallelized. This will certainly
improve the performance.

In summary, the focus of the current implementation was mainly on designing a stable and -
most important - accurate generation of the grid-based surface. A detailed study of its possible
extensions further improving the efficiency has not been made yet. The extensions which have been
proposed and incorporated demonstrate that the implementation can be easily modified to increase
its performance.

6.3.5 The marching cubes algorithm

Besides its original purpose to generate the input for the EJIIM solver, we also used the grid-
based surface description to calculate a surface triangulation which can be used for the BEM solver
after a postprocessing smoothing step. This application relies on the ideas of the marching cubes
algorithm.

Marching cubes is an algorithm used in computational geometry for extracting a polygonal mesh
of an isosurface from a 3D scalar field f [82]. This means that one searches for the surface where
the scalar field takes the iso-value C ∈ R:

(x, y, z) ∈ R3 with f(x, y, z) = C

The marching cubes algorithm proceeds through the scalar field defined in a 3D grid, taking eight
neighbor locations at a time and extracting the field values on these eight nodes on this cube. In
Fig. 6.17 orange nodes are assigned, for example, a field value f(x, y, z) < C. All remaining nodes
of the cube have a field value f(x, y, z) > C.

In the case of cubes possessing nodes with smaller and greater field values, the contour surface
has to lie in this cube. Then, we can determine the polygons needed to represent the part of the
isosurface that passes through this cube like it is shown in Fig. 6.17 for some possible polygon
configurations.

The determination of the correct polygon configuration is done by creating an index to a precal-
culated array of the 256 possible polygon configurations within the cube, by treating each of the 8
scalar values as a bit in an 8-bit integer. If the value of the scalar field is higher than the iso-value
(i.e., it is inside the surface) then the appropriate bit is set to one, while if it is lower (outside), it
is set to zero. The resulting value, after all 8 scalars are checked, is the actual index to the polygon
configuration entry.

Each vertex of the generated polygons is finally placed on the appropriate position along the
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cube’s edge by linearly interpolating the two scalar field values that are connected by this edge.

Fig. 6.18: Left: triangulation of a small molecule generated from the EJIIM input data by the marching
cubes algorithm; right: Laplace smoothing of the original data.

In order to fit to the original algorithm, we assign a scalar field f composed of zero in {ΩI , γΩ,I}
and ones in {ΣI , γΣ,I}. If we now search for the contour surface f(x, y, z) = 0.5, all the cubes
participating in the molecular surface are considered for a non-trivial polygon configuration.

In contrast to the interpolating scheme, which has to be used when determining the contour
surface of an arbitrary scalar field, we exactly know the position of the surface on the edges of the
grid. Thus, the last step of the original algorithm is modified: we replace the interpolation scheme
by directly assigning the coordinates of the intersection point to the position of the polygon.

The left side of Fig. 6.18 illustrates the SES triangulation of a small molecule (5 atoms) generated
by the previously described marching cubes algorithm. The intersection points of the molecule with
a 3D grid of 0.25 Å spacing are the nodes of the triangulation. As can be seen in Fig. 6.18, the
surface triangulation is oriented parallel to the Cartesian grid, for the intersection points lie on

Fig. 6.19: Surface triangulation of a biomolecule generated from the EJIIM input data by the marching
cubes algorithm and coarsed by the QECD algorithm.
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the Cartesian grid lines. The quality of the triangles is very diverse and the triangle distribution
has to be improved before they can serve as an input triangulation for the BEM. The surface
visualization program Meshlab [24] offers different tools for remeshing the original triangulation
while preserving the surface shape and normal information. The right side of Fig. 6.18 shows the
result after applying the Laplacian smoother of Meshlab.

In order to demonstrate that the input generation algorithm handles complex biomolecules as
well, Fig. 6.19 illustrates the SES of a CA variant of HIV (GH123) which consists of 2347 atoms. The
intersection points have been calculated on a 0.5 Å grid and this results in a grid of roughly 90000
faces and 45000 nodes. Since the number of triangles is too high to serve as input triangulation
for the current implementation of the BEM, we coarsened the triangulation with the Quadric Edge
Collapse Decimation algorithm (QECD) [44] implemented in Meshlab [24]. The coarsening process
removes the “worst” triangles and preserves the surface orientation. With a resulting number of
20000 faces and 10000 nodes this triangulation can be used as input for the BEM.

6.4 Numerical comparison of EJIIM and BEM

Section 6.2 provides the details on the EJIIM implementation of the DSM together with an ap-
propriate boundary value approximation. Further, in Section 6.3 we developed an algorithm to
generate accurate surface information for the EJIIM and this completes the requirements to apply
the numerical solver.

This section provides the first results of the EJIIM solver for system (6.2) and gives a thorough
comparison to electrostatic potentials generated with the existing BEM code. We make several
studies for the DSM:

� we check the convergence order of both methods for spherical symmetry (Section 6.4.1)

� we provide a set of small non-trivial molecules (Section 6.4.2). For this test set

– we analyze the numerical convergence, i.e., how much does the EJIIM solution differ
from the BEM (Section 6.4.2.3)

– we investigate the approximations of the different boundary conditions in the EJIIM
(Section 6.4.2.4)

� we compare the runtime of both methods (Section 6.4.2.5)

All calculations presented in this section are based on the standard parameter set (ε∞=1.8ε0, εΩ =
2ε0, εΣ =78.5ε0, λ=3.028Å)

6.4.1 Convergence towards analytical solution

The convergence studies are done with spherical geometry, as in this case the analytical solution
for system (6.2) is available. Additionally, the spherical geometry offers the possibility to generate
“exact” input data for both methods.

Ω is a sphere with radius 1Å. We center the sphere at (0.2, 0.3, 0.01) to avoid symmetry effects
and locate an unit electron charge q = e at the sphere’s center.
For EJIIM, the computational domain is given by Σ∪Γ∪Ω = [−5, 5]× [−5, 5]× [−5, 5] in all cases.
The necessary Dirichlet condition along the exterior boundary is given by the analytical solution.

We inspect the convergence with respect to the parameter h, which, in the case of EJIIM, is the
usual mesh width. For a triangulation T with triangles T ∈ T, hbem is defined as follows (see [121],
p. 213):

hbem = max
T∈T

hT , hT =
√

area(T ) (6.29)
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Fig. 6.20: Convergence of the absolute error for the DSM (BEM, EJIIM). Please note remarks in Sec-
tion 6.4.1.1.

The absolute numerical error has been computed at randomly selected points (50 in Ω, 100 in
Σ) for several resolutions (EJIIM) and triangulations (BEM), respectively. Fig. 6.20 confirms that
the expected second order convergence for both methods has been achieved.

An important observation can be made from Fig. 6.21, where we plotted the error versus the
number of intersection points (EJIIM) and nodes (BEM). For both methods, this is a quantity that
is related to the surface resolution and can be directly compared. We see that for the potential φ,
the EJIIM and the BEM need a similar number of surface nodes to achieve the same quality.

Fig. 6.21: Convergence of EJIIM and BEM with respect to the surface nodes for the DSM (absolute error).
Please note remarks in Section 6.4.1.1.

The EJIIM code has also been tested with more general right hand sides and arbitrary given
functions in the transmission conditions. In all cases, the second order convergence was confirmed.
The BEM implementation of system (6.2) has been tested for a general point charge location inside
a Born sphere [52].
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6.4.1.1 EJIIM reformulation

Although Figs. 6.20 and 6.21 confirm the theoretically expected second order convergence of the
EJIIM and the BEM, the quantitative values for the dielectric potential ψ are worse than for the
electrostatic potential φ when we solve with the EJIIM. The reason lies in the coupling of the fields
φΣ and ψΣ in Eq. (6.2e),(

∆− 1
λ2

)
φΣ +

κ2

ε∞
ψΣ = 0 with

1
λ

= κ

√
εΣ

ε∞
, (6.30)

together with our first choice to handle the set {φreacΩ , φΣ} as the transition problem and ψΣ as
the boundary value problem.

This makes sense from the physical point of view, for we separate the electrostatic from the
dielectric potential. However, in practice, this yields the same absolute error eφ for {φreacΩ , φΣ} and
approximately eψ = εΣ eφ for the dielectric field ψ. The reason can be directly seen in Eq. (6.30),
which becomes

ψΣ ≈ εΣφΣ ,

when the differences in the electric potential are small, i.e., 4φΣ ≈ 0. This is the case a few
Ångstrom away from the biomolecule. Thus, we expect a factor εΣ between the error eφ of the
electric potential and the error eψ of the dielectric potential. Indeed, a closer look at Fig. 6.20
confirms this assumption. In contrast, such a difference in the order of the error cannot be seen for
the BEM solution in Fig. 6.20, because every field has its own representation formula independent
from the other fields.

As we have located the problem in the finite difference formulation, we can try to restate the
problem in order to overcome this deficiency. Actually, the following system, which also solves the
DSM, can reproduce the outer electric and the dielectric potential, φΣ and ψΣ, in the same order
of accuracy:

φΣ =
1
ε∞

(ψΣ − (εΣ − ε∞)FΣ) (6.31)

4φreacΩ = 0 in Ω
4ψΣ = 0 in Σ

1
ε∞

(ψΣ − (εΣ − ε∞)FΣ)− φΩ = φmol on Γ

∂nψΣ − εΩ∂nφΩ = εΩ∂nφmol on Γ

(
4− 1

λ2

)
FΣ = − κ

2

ε∞
ψΣ in Σ

∂nFΣ = 0 on Γ

In fact, we used the possibility given in Eq. (6.31) to switch between the fields φΣ, ψΣ and FΣ.
We solve for the transmission problem in {φreacΩ , ψΣ} and for the boundary value problem in FΣ.
Assuming an error e for the transmission problem, we directly see that the error in FΣ scales with
1
εΣ

, which finally results in the same accuracy in φΣ and ψΣ. Fig. 6.22 confirms this. The error of
the physical relevant potentials, {φreacΩ , φΣ} is the same as in the former implementation.
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Fig. 6.22: Convergence of the absolute error for the reformulated DSM.

6.4.2 Comparison on molecular geometries

In the following, we analyze the BEM and the EJIIM for non-trivial molecular surfaces. We
introduce information about the test set, which is used to study the numerical convergence and
the boundary value approximation for the EJIIM. The section closes with a short discussion on the
computational cost.

6.4.2.1 Test set

As test set we have selected 6 molecules of the validation suite of MMFF94 [91], three of them with
non-vanishing total charge (charged) and three with vanishing total charge (uncharged). Radius
and charge assignments have been performed with the MMFF94 implementation in BALL [70]. In
Tab. 6.5, we give the numerically relevant parameters for the molecules. The smallest molecule of
this set, namely AN05A, is shown in Fig. 6.18 on p. 114.

Tab. 6.5: Overview on the numerical data of the test set, the grid dimension of the EJIIM is the same in
all three directions.

Grid dimension Intersections BEM Elements

Molecule h
=

0.
5

h
=

0.
25

h
=

0.
12

5

h
=

0.
5

h
=

0.
25

h
=

0.
12

5

Q
E

C
D

O
ri

gi
na

l

B
F

charged
AN05A 31 61 121 482 1904 7556 702 1404 5616
BRMW1 33 65 129 648 2586 10252 642 1286 5144
GUANCH01 39 77 153 1034 4046 16192 1646 3292 13168

uncharged
FUCMUL 35 69 137 906 3600 14440 1060 2122 8488
FUDPOJ 31 61 121 656 2636 10598 978 1956 7824
ZZZIZA01 39 77 153 1242 4874 19568 1436 2872 11488
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6.4. Numerical comparison of EJIIM and BEM

All EJIIM computations are performed with three different grids with mesh widths h∈{0.5, 0.25,
0.125}. For the BEM, three resolutions are used: the “original” one, generated by [22], roughened
by a Quadric Edge Collapse Decimation algorithm (QECD) and refined by a Butterfly Subdivision
algorithm (BF) [24,44].

6.4.2.2 Error measures

Equipped with two different methods to solve the DSM, the question arises how to measure their
performance in real world problems, where no analytical solution is available. We decided to
stochastically generate point sets, XΩ and XΣ, of 100 points inside and outside the molecule,
respectively, where both XΣ and XΩ lie in the computational box of the EJIIM calculations. The
deviation is measured in the following seminorms

|u|Ω := max |u(XΩ)| , |u|Σ := max |u(XΣ)| .

Further, for the quantity u we will use the notations uh: the EJIIM solution with mesh width
h ∈ {0.5, 0.25, 0.125}, ubem: the BEM solution with the original surface triangulation, uqecd: the
BEM solution with QECD-coarsened and ubf : the BEM solution with BF-refined surface.

To compare quantities v and w we will use the error function

e(v, w) :=
|v − w|I
|w|I

, I ∈ {Ω,Σ} . (6.32)

Tab. 6.6: Numerical convergence towards the fine grid solution.
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e(φ0.5
Ω , φ0.125

Ω ) 2.22e-2 1.58e-2 3.61e-2 5.47e-1 5.66e-1 2.10e-1
e(φ0.25

Ω , φ0.125
Ω ) 2.65e-3 4.14e-3 5.70e-3 6.18e-2 5.31e-2 5.30e-2

factor 8.39 3.82 6.33 8.87 10.66 3.95
e(φqecdΩ , φbfΩ ) 6.28e-3 1.33e-2 9.62e-3 1.94e-1 2.50e-1 1.20e-1
e(φbemΩ , φbfΩ ) 4.82e-3 4.97e-3 2.59e-3 6.02e-2 5.82e-2 5.90e-2
factor 1.30 2.67 3.72 3.21 4.29 2.03

e(φ0.5
Σ , φ0.125

Σ ) 9.23e-3 5.43e-3 1.69e-2 2.29e-2 9.43e-2 6.02e-2
e(φ0.25

Σ , φ0.125
Σ ) 1.70e-3 1.10e-3 1.53e-3 1.67e-3 7.67e-3 2.61e-3

factor 5.43 4.92 11.0 13.7 12.3 23.0
e(φqecdΣ , φbfΣ ) 3.70e-3 1.18e-2 7.72e-3 4.80e-3 1.04e-2 9.58e-3
e(φbemΣ , φbfΣ ) 2.97e-3 3.38e-3 1.01e-3 1.23e-3 9.75e-3 4.26e-3
factor 1.25 3.50 7.62 3.92 1.06 2.25
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Chapter 6. Numerics

6.4.2.3 Discussion of the numerical convergence

Here, we are interested in numerical convergence only, thus we use the (φbfΣ , ψ
bf
Σ ) values as the

exterior boundary condition for the EJIIM computation. Results generated with this boundary
condition can be found in Tab. 6.6 and Tab. 6.7 for the physically relevant electric potential φ.

From the EJIIM as well as from the BEM results listed in Tab. 6.6, we cannot directly deduce
a specific convergence rate. This is due to the non-trivial input data. Additionally, the randomly
chosen point sets, on which the error function is evaluated, only allow a rough interpretation: the
outer electric potential of uncharged molecules, φΣ, has higher absolute errors and faster EJIIM
convergence rates than those of charged molecules on average. The reason lies in the fast decrease
of the potential outside, which is better mapped for higher grid resolutions.

With Tab. 6.6 we demonstrate that both methods really converge to the fine grid solutions, as
the factor is always greater than 1.

In Tab. 6.7, we study the EJIIM solution versus the BEM solution. The difference between the
finest grid solutions, φ0.125

Ω,Σ for EJIIM and φbfΩ,Σ for BEM, rounded upwards to one significant digit, is
used as a rough estimate for the numerical error later when approximating the boundary condition.
It is important to mention that in Tab. 6.7 we do not consider the numerical error, that is, the
difference between the exact and numerical solutions. Instead, we are looking for the difference
between two solutions, where φbfΩ,Σ has been used as the reference. Thus, stagnating difference, like
for BRMW1, is legitimate.

Tab. 6.7: Convergence towards BEM results.
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e(φ0.5
Ω , φbfΩ ) 2.05e-2 1.35e-2 3.56e-2 5.75e-1 5.24e-1 2.05e-1

e(φ0.25
Ω , φbfΩ ) 2.70e-3 3.75e-3 5.38e-3 8.71e-2 6.79e-2 4.77e-2

e(φ0.125
Ω , φbfΩ ) 2.36e-3 4.26e-3 1.54e-3 3.91e-2 3.08e-2 1.87e-2

error estimate 3e-3 5e-3 2e-3 4e-2 4e-2 2e-2

e(φ0.5
Σ , φbfΣ ) 8.69e-3 7.68e-3 1.65e-2 2.29e-2 9.39e-2 6.02e-2

e(φ0.25
Σ , φbfΣ ) 1.62e-3 3.63e-3 9.98e-4 1.67e-3 7.15e-3 2.64e-3

e(φ0.125
Σ , φbfΣ ) 1.27e-3 2.67e-3 1.04e-3 1.30e-3 2.72e-3 1.06e-3

error estimate 2e-3 3e-3 2e-3 2e-3 3e-3 2e-3

6.4.2.4 Discussion of the boundary approximations

In Section 6.2.4.1 on p. 94 ff. we proposed boundary conditions. To check the quality of these
boundary conditions, we use again our test set. All calculations in this section are done on the
finest mesh with h=0.125. In addition, all calculations have been carried out on two different box
dimensions with equal resolution in order to investigate the influence of the approximations: 4[Å]
and 6[Å] away from the molecular surface, respectively, see Fig. 6.23 for an illustration.
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6.4. Numerical comparison of EJIIM and BEM

For the reference solution uref , where u ∈ {φΩ, φΣ, ψΣ}, the exterior boundary condition is
provided by the BEM calculation on the refined mesh. In Tab. 6.8 the values are computed as
ẽ(u) := ‖u− uref‖∞/‖uref‖∞, u∈{φΩ, φΣ} with different boundary conditions for (φΣ, ψΣ).

Tab. 6.8: Approximation of the exterior boundary condition; hom: homogeneous, edp: effective dipole,
approx: approximated, e: estimate of the numerical error.

ẽ(φΩ)
4[A] Box 6[A] Box

Molecule hom edp approx hom edp approx e
AN05A 1.69e-1 2.59e-2 2.51e-2 4.95e-2 5.54e-3 5.43e-3 3e-3
BRMW1 2.25e-1 6.73e-2 4.04e-2 5.76e-2 1.19e-2 7.92e-3 5e-3
GUANCH01 1.01e-1 5.86e-2 1.29e-2 3.19e-2 9.79e-3 2.63e-3 2e-3
FUCMUL 7.74e-1 7.74e-1 6.38e-2 1.10e-1 1.10e-1 1.09e-2 4e-2
FUDPOJ 3.98e-1 2.97e-1 4.36e-2 6.16e-2 3.63e-2 8.35e-3 4e-2
ZZZIZA01 9.27e-1 9.27e-1 8.28e-2 1.35e-1 1.35e-1 1.15e-2 2e-2

ẽ(φΣ)
4[A] Box 6[A] Box

Molecule hom edp approx hom edp approx e
AN05A 1.90e-1 3.17e-2 2.95e-2 7.54e-2 1.16e-2 1.09e-2 2e-3
BRMW1 3.04e-1 1.13e-1 5.74e-2 1.16e-1 3.63e-2 2.07e-2 3e-3
GUANCH01 1.38e-1 1.06e-1 1.96e-2 5.77e-2 3.56e-2 7.51e-3 2e-3
FUCMUL 9.50e-2 9.50e-2 6.35e-3 2.86e-2 2.86e-2 2.06e-3 2e-3
FUDPOJ 7.84e-2 8.07e-2 5.91e-3 2.46e-2 2.16e-2 2.02e-3 3e-3
ZZZIZA01 2.25e-1 2.25e-1 2.10e-2 7.05e-2 7.05e-2 6.41e-3 2e-3

Homogeneous, approximated, and effective dipole conditions A closer look at Tab. 6.8
suggests that the approximated boundary condition provides the best approximation: here, ẽ, which
accounts for the error made by the boundary value approximation, is always of the same order as
the numerical error, which was extracted from Tab. 6.7.

The effective dipole and even the homogeneous ansatz can reasonably reproduce the BEM re-
sults. Note that for all molecules of our test set with vanishing total charge, the effective dipole
approximation does not lead to better results than the homogeneous boundary condition. This
originates from the spatial charge distribution: for vanishing effective monopole and dipole (mirror
symmetry of the charge distribution for example) the effective dipole approximation is in fact a
homogeneous boundary condition and therefore leads to the same accuracy. In contrast, for the
charged molecules of our test set, the effective approximation is comparable with the approximated
boundary condition when the 6[Å] computational box is taken.

In Fig. 6.23, we illustrate the behavior of the approximated boundary conditions for an (un)char-
ged molecule, (FUDPOJ) GUANCH01. The difference between the numerical solution of sys-
tem (6.2) and Eq. (6.19), evaluated on Σ, is additionally plotted in Fig. 6.23 and supports our
assumption that the influence of the dielectric boundary is negligible for the outer field solutions a
few Ångstrom from the molecule when ε∞

εΩ
≈ 1.

Focusing condition The focusing boundary condition is often used for high-quality calcu-
lations, where the boundary values of the coarse grid calculations are usually fast generated ap-
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Chapter 6. Numerics

Fig. 6.23: Reference solution φΣ, approximated and effective dipole potentials. Cuts along the plane z = z∗,
where (x∗, y∗, z∗) is the center of the computational box. The black border shows the 4[Å] box.
Contour lines of the difference are selected logarithmically to visualize also the small values.

proximations. In our calculations, the effective boundary condition turns out to be a good choice.
Overall, the focusing method has roughly the same accuracy as the dipole boundary condition when
the 4[Å] computational box is taken.

We conclude that the derived boundary value approximations do not reduce the quality of the
solution strongly. The special choice of the boundary condition depends on the demand on accuracy
and efficiency.

6.4.2.5 Runtime analysis

The EJIIM approach was implemented using Matlab version R2007b, the BEM was implemented
in C and uses the ATLAS library [139].

To give a rough impression on the computational costs, we compared both methods on a machine
with eight Intel(R) Xeon(R) CPU X5355 @ 2.66GHz processors and 8GB RAM. In Tab. 6.9, we
list the runtime necessary for the EJIIM calculation of AN05A (small box) with homogeneous
boundary condition and those of the BEM calculation to generate the Cauchy data.

The runtime and iteration counts for other molecules are similar. In order to relate the results to
the numerical quality and to the surface information, we refer to Tab. 6.8 and Tab. 6.5, respectively.

Of course, the values listed in Tab. 6.9 does not allow us to answer the question if one or an-
other method is faster or requires less memory. These factors highly depend on the programming
language, particular implementation, and the computational system. In addition, the output of
EJIIM (full grid solution) differs from the BEM result (certain data along the surface). However,
we see that the runtime of both methods are of approximately the same order.
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6.5. Conclusion

Tab. 6.9: Computational costs for AN05A.
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6.5 Conclusion

In this chapter we developed new numerical tools to investigate nonlocal electrostatic models. We
found that the EJIIM is a competitive alternative to the BEM to solve the elliptic differential
equations [138]. It is comparable with the BEM in terms of accuracy and runtime. What sets
EJIIM apart and what finally makes it the preferable numerical method are the following aspects:

� A partial differential equation system (PDES) can be fast and efficiently implemented using
the EJIIM. Further, the method is fully automatable. This makes it applicable in biomolecular
software and opens the research on nonlocal electrostatics to a broad community.

� An extension to nonlinear PDES is possible in the EJIIM. This is necessary to incorporate
the nonlinear Poisson-Boltzmann equation into the PDES of nonlocal electrostatics. In the
BEM, solving a nonlinear equation is much harder to realize.

� The required amount of memory allocated when solving the PDES depends on the size of the
biomolecule in consideration. In contrast to the BEM, the system matrices in the EJIIM are
sparse, so that the memory issue does not pose a serious problem.

� The algebraic equations can be solved by multigrid methods which are among the fastest
solution techniques known today.

In the following two chapters we focus on an investigation of various nonlocal models and its
application to biomolecules. Within these chapters, we successfully demonstrate that the EJIIM
solver satisfies the listed features.
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Chapter 7

Model comparison and applications

In Chapter 4 we have derived two vectorial models to describe the nonlocal effects of the water
network, the Newton Vector Model (NVM) and the Dirichlet Vector Model (DVM), where for the
NVM a BEM implementation already exists. Based on these vectorial models, we derived two scalar
models in Chapter 5, the Dirichlet Scalar Model (DSM) and the Newton Scalar Model (NSM).

In the previous chapter, we discussed in detail two numerical methods, BEM and EJIIM, for
solving (linear) differential equation systems. On the basis of the DSM, we gave evidence that
these methods are appropriate to solve (non)local electrostatic problems. This statement holds not
only for the DSM, but also for the other nonlocal models, NVM and NSM, as well as for the local
model (LM) as Fig. 7.1 clearly demonstrates by means of the analytically solvable Born model. The
NVM solver, which is used for all the following studies, has been implemented and kindly provided
by C. Fasel [39].

Fig. 7.1: Second order convergence of the NSM, the NVM and the LM in the new EJIIM and in the available
BEM implementations.

The second order convergence can be seen for both numerical methods in all models. The
unexpected “jump” of the error e(φreacΩ ) in φreacΩ that appears in the EJIIM calculations in Fig. 7.1
originates from a “bad” choice of sample points, meaning that a large number of the randomly
chosen points lie near Γ, which becomes better resolved when the resolution gets finer. This is in
line with the behavior of e(φreacΩ ) that turns into the second order dependence for h ≤ 0.25.

Having provided different nonlocal models, we are now interested in analyzing the differences
of the electrostatic potential φ of various molecules. First, this study aims at clarifying whether
the approximations assumed in the scalar models preserve the nonlocal features, which we found
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for the analytically solvable systems, in non-trivial applications, as well. Second, for an advanced
model development and modification, a comparison of the various nonlocal models is necessary in
order to estimate the effects of predefined boundary conditions of the correlation field F . Thus, the
study of the derived models is a good starting point, as all of them force a different behavior of F
on the molecular surface. Third, another focus of our research is to find an appropriate formulation
of the nonlocal dielectric response of water, which can be solved efficiently and fast. This is the
basis to successfully incorporate a solver for nonlocal electrostatics into a biomolecular software
package such as BALL and in this way to offer a broad research community the possibility to apply
nonlocal as well as local electrostatic models. A comparison of the various models is required to
find an answer to this question.

In Section 7.1, a comparison of the scalar models and the NVM on the test set clarifies the effects
of the approximations and assumptions we made for the scalar formulations. Further, a comparison
of the local and the nonlocal electrostatic potential on realistic biomolecules is given in Section 7.2.
On the basis of these investigations, in Section 7.3, we conclude that all the nonlocal models, which
we carefully derived in the last sections, are adequate for modeling nonlocal electrostatics.

7.1 Comparison on the test set

For the first study of the nonlocal models we use the test set which we introduced in Section 6.4.2.
Since the molecules are small and carry only a few partial charges that sum up to 0e, 1e or -1e, we
expect fundamental differences between the models to be directly obvious.

The analysis is done using the standard parameter set (εΩ = 2ε0, εΩ = 78.5ε0, ε∞ = 1.8ε0, λ=
3.028Å).

7.1.1 Solvation energy

The solvation energy is an important quantity in biomolecular studies, because it is experimentally
accessible. For the spherically symmetric case, we have seen in Section 3.3.3.4 on p. 48 that the
nonlocal models predict very similar solvation energies and that the nonlocal estimation is up to
an order of magnitude lower than the energy approximation of the local model.

There are various aspects which complicate a straight forward interpretation of the electrostatic
contribution to the solvation energy of realistic molecules: we already mentioned the use of the
atomic radii as fit parameters for solvation models in biomolecular research. An independent esti-
mation of the radii as it is possible for monoatomic ions is difficult already for molecules consisting
of a few atoms. Parameter sets including radius information, which have been optimized for a
local macroscopic dielectric response, of course bias the solvation energy estimation in the nonlocal
framework.

For all models, the atomic radii and charge information are taken from the MMFF94 parameter
set. As these radii are optimized for local electrostatics, an interpretation of the electrostatic
contribution to the solvation energies predicted in the various electrostatic models is possible only
in a qualitative way. The electrostatic solvation energies given in Tab. 7.1 describe the difference in
the electrostatic field energy when moving the molecule from vacuum to water. The energies are
calculated with the formula (3.2) given in Section 3.1.4

For the LM and the DSM, a BEM and an EJIIM implementation are available. These two
different numerical solvers reveal electrostatic solvation energies in excellent agreement as it is
shown in Tab. 7.1.

The local model predicts higher solvation energies for both, the charged (AN05A, BRMW1,
GUANCH01) and the uncharged molecules (FUCMUL, FUDPOJ, ZZZIZA01). This is due to the
great difference between the dielectric response in vacuum and in water assumed in the local model.
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7.1. Comparison on the test set

Tab. 7.1: Solvation energy in units of [KJ/mol] for the molecules in the test set (EJIIM: 0.25 spacing, BEM:
original triangulation.

LM LM DSM DSM NSM NVM
(BEM) (EJIIM) (BEM) (EJIIM) (EJIIM) (BEM)

AN05A -292.94 -292.26 -199.08 -199.62 -199.09 -203.58
BRMW1 -250.08 -249.28 -175.19 -175.81 -175.57 -183.03
GUANCH01 -253.95 -252.98 -166.59 -166.82 -165.84 -157.42
FUCMUL -20.27 -20.11 -6.58 -6.59 -6.32 -6.93
FUDPOJ -30.44 -30.00 -9.38 -9.41 -9.07 -9.72
ZZZIZA01 -16.96 -16.86 -6.93 -6.95 -6.72 -7.39

The strong macroscopic polarization of 78.5ε0 in water lowers the field energy, because the dipolar
medium effectively screens the electric field of the fixed charges of the biomolecule.

In contrast, the nonlocal models capture the change in the dielectric response due to the water
network. The water molecules with their dipolar character do not react individually to the external
field, but try to keep their hydrogen bonds by reorienting the molecules in a favorable position.
In summary, this causes a decrease in the macroscopic response. Thus, the change in field energy,
when moving the molecule from vacuum to the water network, is smaller compared to the local
prediction.

The differences in the solvation energy between the scalar nonlocal models and the vector model
are very small. This is, at first glance, surprising because the DSM specifies a different behavior
on the molecular surface than the NVM or the NSM. However, we learned in Remark 4.4 on p. 63
that the field energy variation generally consists of boundary and volume integrals. In order to
obtain a closed formula for the field energy, we approximated the latter by the volume integral. The
additional contributions, i.e., those of the boundary integrals, have been interpreted as first shell
effects such as, for instance, the reformation of the hydrogen bond network when building the cavity
of the solute. The contribution which we take into account at the moment is due to electrostatic
effects, only. The very good agreement between the energy predictions therefore demonstrates that
the electrostatic contribution of the different nonlocal models is similar. With respect to the scalar
models, this also means that the approximations which we accepted in Chapter 5 are adequate to
find physically reasonable electrostatic energy terms.

7.1.2 Electrostatic potential

In this section, we study the (non)local models by an investigation of the electrostatic potential φ.
For the discussion, we take two representatives out of the test set: the charged and the uncharged
molecule, BRMW1 and FUDPOJ, respectively. The results for the remaining (un)charged molecules
have been analyzed in the same way and reveal a similar spatial behavior.

We study the differences of the various models on the basis of contour plots, where a cross section
through the molecule is considered. Of course, the results, which can be seen for the chosen cross
section, highly depend on the charge pattern next to this plane. This charge pattern can simply
be visualized by the molecular field φmol defined in Section 3.1.4, because it accounts for the point
charges by their corresponding 1

r potential in space. In Fig. 7.2, the molecular field φmol is plotted
for the cross sections that we will focus on in detail in Sections 7.1.2.1 and 7.1.2.2.
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(a) BRMW1 (b) FUDPOJ

Fig. 7.2: The molecular potentials of the molecules under study through a z-cross section.

7.1.2.1 BRMW1

As we can see from the almost homogeneous red colored region in Fig. 7.2(a), the charge pattern of
BRMW1 is globally dominated by the total charge Q=−e of the molecule. However, the molecule
possesses a positive partial charge at position (−2.29, 1.78, 3.86), which, in addition, causes a high
positive peak of the molecular potential.

Fig. 7.3 shows the electrostatic potential inside the molecule for all analyzed models. Here, the
first row depicts the φ, it is clearly dominated by the molecular potential given in Fig. 7.3. The
second row shows the reaction field inside the molecule. In the nonlocal models, the reaction field is
approximately 1[V ] almost everywhere with slight variations on the longitudinal axis. This reminds
of the constant reaction field in the case of the Born model (Section 3.3.3) and indeed, if we assume
the molecule to have roughly a radius r = 3Å and a total charge Q=−e, we find

φreacΩ ≈ c

r

(
1
εΣ
− 1
εΩ

+
(

1
ε∞
− 1
εΣ

)
1

1 + r/λ

)
≈ 1[V ] , (7.1)

Fig. 7.3: Contour lines of the inner electrostatic potential in [V] of BRMW1. The first row and the second
row shows the complete inner potential φΩ and the reaction field potential φreacΩ , respectively.
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Fig. 7.4: Contour lines of φΣ in [V] of BRMW1.

where c= −e
4π 10−10 [C]. This means that the reaction field can be characterized by an effective Born

sphere.
In contrast, the reaction field of the local model shown in the second row on the right of Fig. 7.3

has visible variations on the longitudinal axis meaning that the partial charges locally have an
impact on the overall behavior. On average, the Born approximation analogous to Eq. (7.1) for the
local reaction field reveals the correct order of magnitude, as well:

φreacΩ ≈ c

r

(
1
εΣ
− 1
εΩ

)
≈ 2.27[V ]

In Fig. 7.4 we plotted the outer electric potential. All models develop the same qualitative
behavior, which can be seen on the contour lines. The contour lines become more and more
spherical, which is in accordance with the increasing influence of the total charge immersed in an
almost spherical molecule.

The potentials in all the nonlocal models exhibit almost the same behavior. Comparing the
extent of the red region which starts at the dielectric boundary Γ, we recognize that this region is
smaller in the NVM, meaning that the electrostatic potential decreases slightly faster compared to
the nonlocal scalar models. From Section 4.3.1, we know that the NVM treats the water network
as unperturbed by the solute. Thus, the water network communicates near the molecular surface
in the same way as in regions farther away. This results in a higher shielding as, for instance, in
the case of the DSM, where the boundary condition on the surface forces the correlation field to
be zero.

In contrast to the nonlocal models, which predict the electric potential to reach a few Ångstrom
away from the molecule, the local potential decays very fast so that it seems to be already zero on
the chosen color scale.

The shape of the outer electrostatic potential and the inner reaction field have to be interpreted
together: let us first assume the charges of the molecules to be directly immersed in the solvent,
i.e., without any variations in the dielectric response. Then, the system is characterized by the
fundamental solutions given in Theorem 3.3 for the nonlocal case and in Theorem 2.1.2 for the
local case. Further, this implies that the reaction field is zero. “Inserting” the dielectric boundary
corresponds to a non-vanishing reaction field. The magnitude and the variations of the reaction
field directly depend on the magnitude of the change in the dielectric response: the stronger the
change of the latter, the stronger are the variations of the reaction field. In the local setting, the
dielectric response on Γ changes from εΩ = 2ε0 to εΣ = 78.5ε0, resulting in noticeable variations
of the reaction field and a highly screened outer electrostatic field. In contrast, in the nonlocal
models, such a strong difference is not realized on Γ, because the hydrogen bond network hinders
the orientational polarization. The dielectric transition is almost smooth. Thus, the reaction field
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has small variations, whereas the outer electrostatic potential resembles a smooth extension of the
inner electrostatic potential, implying that on Γ it is very similar to the fundamental solution of
the local model with dielectric response εΩ.

7.1.2.2 FUDPOJ

FUDPOJ is an overall uncharged molecule. Its charge distribution can be imagined as an electro-
static quadrupole consisting of two positive and two negative charges, arranged on the corners of a
square. In Fig. 7.2 on p. 128 we can identify this charge pattern, where one of the dipole pairs lies
closer to the considered xy-plane.

In Fig. 7.5(b), we plotted the reaction field inside and the electrostatic potential outside of the
molecule for all (non)local models. As already discussed in the last paragraph, we clearly see the
tendency of the reaction field to be almost constant in the nonlocal model. Because of the vanishing
total charge of FUDPOJ, the reaction field therefore varies slightly around zero. In contrast, the
local reaction field is higher in value and mimics the charge distribution.

On the lower side of the molecule, the NVM exhibits contrary variations compared to the LM,
i.e., the reaction field has a slight positive value in the region of positive charge and a negative

Fig. 7.5: Contour lines of the electrostatic potential (in [V]) of FUDPOJ. The first row and the second row
shows the complete inner potential and the reaction field potential, respectively. The third row
shows the outer potential.

130



7.2. Nonlocal electrostatic application to biomolecules

value where the negative charge is located. This can be explained by noting that the charges which
are responsible for the electrostatics within this region lie next to the dielectric boundary, Γ as can
be seen in Fig. 7.2(b) by the broadening of the blue (positive charge) and yellow (negative charge)
regions towards Γ. Recalling the reaction field for a charge qloc located in the center of the sphere,
we see that for a<λ, φreacΩ can change the sign

φreacΩ ≈ lim
a<λ


c

a


1
εΣ
− 1
εΩ︸ ︷︷ ︸

<0

+
[(

1
ε∞
− 1
εΣ

)
1

1 + a/λ

]
︸ ︷︷ ︸

for lim
a<λ
⇒ ( 1

ε∞
− 1
εΣ

)




=
c

a

 1
ε∞
− 1
εΩ︸ ︷︷ ︸

>0

 , (7.2)

with c= qloc

4π 10−10 [C]. We can understand this change in the reaction field when remembering its
physical meaning: in Section 2.2.2 as well as in Remark 3.1 on p. 28, we stated that the reaction
field can be interpreted as a field of induced surfaces charges created by the dielectric boundary,
i.e., induced by the change in the polarization P .

σind
on Γ= −n · (PΣ − PΩ)

Comparing the LM and the NVM, we therefore interpret the change in the sign of φreacΩ to origi-
nate from a change in the induced surface charges: in the local model, the solvent has a predefined,
stronger dielectric response than the biomolecule, always resulting in induced surface charges op-
posite in sign compared to the neighboring fixed partial charges of the molecule. In contrast, in
the NVM, the solvent varies in its response. In particular, as discussed before, it has a smaller
response compared to εΩ and therefore induced surface charges of the same sign as the molecular
charges when the latter are very close to the dielectric boundary. For the two scalar models, this
is in principle also possible, as Eq. (7.2) holds for all nonlocal models. However, the DSM and the
NSM seem to be dominated by the vanishing total charge inside Ω.

The star-like shape of the outer electrostatic potential can directly be understood in terms of the
charge distribution described above. The nonlocal potential once again reaches far into space in
contrast to the local prediction. Comparing the contour lines in the nonlocal models, we see that
they differ slightly in their spatial extension. The NVM predicts a higher potential on the lower
side, which is a consequence of the near-charge-effect discussed before. The differences in the two
nonlocal scalar models, the DSM and the NSM, are marginal.

With the comparison on the small molecules, we could demonstrate that all the proposed and
implemented nonlocal models exhibit qualitatively the same behavior in space. This behavior
is in agreement with what has been expected: in contrast to the local macroscopic model, the
nonlocal models predict a potential, which is higher in magnitude outside, and, in return, smaller
in magnitude inside the molecule.

Since both scalar models, the DSM and the NSM reveal almost the same potentials and energies,
we conclude that both are adequate to describe the nonlocal effects. This is the reason why we
reduce all further comparisons to the NVM and the DSM. We decided to use the DSM, because
this model is implemented in both numerical methods, the EJIIM and the BEM.

7.2 Nonlocal electrostatic application to biomolecules

In this section, we apply the nonlocal theory on various biomolecules, namely the enzyme trypsin
(PDB-entry 2PTC [88]), two CA variants of the HIV virus (homology models based on the N-
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terminal domain of HIV-1 CA, PDB-entry 1GWP [73,128]), and the protein ovalbumin (PDB-entry
1OVA [120]). The molecular surfaces of trypsin and ovalbumin is exemplarily shown in Fig. 7.6.

(a) (b)

Fig. 7.6: Protein surfaces for (a) trypsin and (b) ovalbumin.

7.2.1 Trypsin

With its 3223 atoms, trypsin is a small protein. Trypsin is known for its functionality as a digestion
enzyme and for its electrostatics to play a crucial role in the binding process of the inhibitor
BPTI [77]. In Fig. 7.6(a) the binding pocket of trypsin can be located in the upper left.

7.2.1.1 EJIIM and BEM comparison

First, we solve the nonlocal electrostatic equations of the DSM with BEM and EJIIM to compare
the influence of the boundary conditions and the overall accuracy of the solution. For the EJIIM
calculation we took a mesh width of 0.5 Å and box dimensions [88Å× 88Å×88Å]. The boundary val-
ues have been calculated with the approximate boundary condition given in Definition 6.6 on p. 98.
The BEM calculation is based on a surface triangulation with about 20000 elements, for which all
the available memory was used.

The accuracy of both numerical methods is analyzed by means of the relative deviations of the
BEM and EJIIM solutions for a randomly chosen point set as it was proposed in Section 6.4.2.2. In
order to have representative point sets in Eq. (6.32) we stochastically choose 1000 points in Ω and
Σ, respectively. Here, Σ is considered synonymous with the finite difference box [88Å×88Å×88Å].
For the point sets chosen inside the molecule, the relative difference e(φejiimΩ , φbemΩ ) equals 1.23e-2,
whereas in Σ the difference has been e(φejiimΣ , φbemΣ ) = 2.5e-3. Therefore, we observe the same order
of magnitude of the numerical error as for the molecules discussed in Section 6.4. From this, we can
conclude that the EJIIM method can handle complex and non-trivial molecular geometries just as
well as the BEM.

From the results in Section 6.4.2.4 we found that Eq. (6.19) is not only suitable for an approxi-
mation of the boundary values, but gives furthermore an impression of the electrostatic potential
in the whole exterior region. In Fig. 7.7 we compare the numerical solution φΣ of the DSM and
the NVM with the approximated potential φapprox, i.e., evaluating Eq. (6.19) in Σ. As can be seen,
the approximated boundary condition can reproduce φΣ of the DSM not only for simply shaped,
small molecules, but, interestingly, it gives an adequate estimation of the potentials for complex
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Fig. 7.7: The approximated boundary condition, Eq. (6.19) evaluated in Σ in comparison with φΣ of the
DSM and φΣ of the NVM for an arbitrary cross section through the molecule.

geometries as well. This implies that we can reduce the box dimensions needed in the EJIIM
calculations and therefore make the method more efficient. Moreover, it is a fast and very precise
mean for a first estimation of the solution in the DSM, at least several Ångstrom apart from the
molecule. As long as the outer potential is the focus of the study, as it is the case for the analysis
of the ligand’s trajectory around the biomolecule, this estimation of the electrostatic potential is
an attractive alternative to the costly numerical calculations. As the underlying formulas are ana-
lytical expressions, this approximation can further be directly applied to biomolecules of arbitrary
size without any requirements on numerical tools.

Although the boundary estimation was primarily designed for the DSM, we suggested in Re-
mark 6.1 on p. 97 that Eq. (6.19) is a good approximation for all the other nonlocal models as well.
However for trypsin, we see that although the correct order of magnitude for φΣ is achieved, the
NVM results in higher potentials. This is a surprising result, because such a difference has not
been observed for the small molecules, meaning that the reason must lie in non-trivial effects due
to the complex shape of the molecule and its charge distribution.

7.2.1.2 Model comparison by contour surfaces

In contrast to the small molecules discussed in Section 7.1, proteins are composed of a high number
of atoms that possess partial charges. This can cause a diverse electrostatic behavior: in Fig. 7.8,
we depict φmol in a xy-plane through trypsin. In this plane, the binding pocket is found in the
upper right. Although the molecular potential indicates the overall positive charge of trypsin, the
binding pocket is locally characterized as a negatively charged region.

For this cross section, we now analyze φreac inside and φΣ outside of the protein calculated by
the LM, the DSM, and the NVM. The calculations have been performed with the BEM, as this
guarantees exactly the same input for all calculations. From the discussion before we suggest the
NSM to yield roughly the same potentials as the DSM.

In Fig. 7.9 the reaction field potential φreac is plotted first. Although the charge pattern is
much more complex for trypsin than for the test set molecules, the DSM once again predicts a
homogeneous negative potential. Slight variations can be seen near the binding pocket and on the
left side. These variations are stressed in the NVM demonstrating that the different boundary
conditions of the two models clearly favor a different electrostatic behavior in Ω as expected in
Remark 6.1. A behavior contrary to the NVM is given in the LM for the reaction field φreac: the
negative potential, which is developed in the binding pocket turns into a decrease of the reaction
field in the LM. Interestingly, this different behavior takes place near the binding pocket and
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Fig. 7.8: φmol of a cross section through trypsin.

therefore we assume that the near-charge-effect together with the specially curved shape of the
pocket are responsible for the difference.

Having in mind that the reaction field “takes care” of the transition condition between the
electrostatic potential inside and outside the molecule, the reasons for the different behavior of
φreac have to be likewise revealed in the outer potential shown in the lower part of Fig. 7.9: The
binding pocket is shown in a way that the entrance area can be seen. For the DSM and in particular
for the NVM a high, negative, electrostatic potential originates inside the binding pocket and

Fig. 7.9: Contour lines of a cross section through trypsin.
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reaches further into Σ than in the LM. This fits to the reaction field φreac discussed before and
moreover it gives us an interpretation: the binding pocket is a longish cylinder which points more
than 10 Å inside the protein. Because of its curved shape, we can imagine that (a) the orientational
degrees of freedom of the water molecules are broken or decreased as it is described by the vanishing
Dirichlet boundary condition in the DSM and (b) the hydrogen bonds are primarily developed in
normal direction out of the pocket, i.e., in the direction without disturbing dielectric boundaries.

7.2.1.3 Model comparison by isosurfaces

In Fig. 7.10 we plotted selected isosurfaces: for the NVM in (a) ±0.1V and (b) ±0.2V, for the DSM
in (c) ±0.05V and (d) ±0.1V, for the LM in (e) ±0.05V and (f) ±0.1V.

The view of the protein is the one shown in Fig. 7.6(a). The binding pocket for BPTI can be
easily identified in (e) as the region with negative potential in the upper part.

First, we focus on Fig. 7.10(a,d,f), i.e., where we took the same isosurfaces for the three different
models in order to compare the influence of the water network. The significant difference in the
strength of the electric potential can once again be observed: for the LM (Fig. 7.10f), the potential
reaches a value of −0.1V only deep inside the binding pocket. In the local theory, the water screens
the electrostatic potential with a factor ∼78, but this is overestimated because the water molecules
try to align with their next neighbors and this reduces its dielectric response. In both models, the
NVM and the DSM, the negative potential is primarily developed inside the binding pocket and
finds its way on a drawn-out path, which is flanked by regions of positive potential. Overall, both
models exhibit the same long-range character.

However, as we have already found in the previous discussion, the NVM predicts an even stronger
negative potential than the DSM. The isosurface −0.1V is more extended in space compared to
the one in the DSM. In order to quantify the difference, we plotted in Fig. 7.10(b) the isosurface
±0.2V calculated by the NVM. Comparing these surfaces with those in Fig. 7.10(d) for the DSM,
we see that the NVM predicts a potential roughly double in magnitude compared to that of the
DSM (also confirmed by the comparison of Fig. 7.10(c) and (a)). Interestingly, this mainly holds
for the positive isosurface, which originates from trypsin’s total charge Q= 6e. Such an apparent
difference has not been observed for the small molecules, and thus we assume that when the charge
distribution and the shape of the molecule in consideration get more complex, the nonlocal models
become more sensitive.

Further, we plotted the isosurfaces±0.05V for the LM and the DSM. The reason is to demonstrate
that for small electrostatic fields and small variations of the electrostatic potential, the local and
the nonlocal models more and more agree with each other. This was one of the constraints for a
suitable model of the dielectric nonlocal operator. Indeed, when comparing Fig. 7.10(c) and (e), we
see that this is the case for the DSM.

In summary, the long-range potential and the characteristics established near the entrance area
of the binding pocket, which are predicted by the nonlocal models, can have an important influence
on the binding process of ligands: on the one hand, the ligand “feels” the force farther away. On
the other hand, ligands can be bound more tightly to the binding pocket, since near the surface
the nonlocal potential takes values up to one order of magnitude higher than the local potential.
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(a) NVM φΣ=0.1/-0.1 V (blue/red) (b) NVM φΣ=0.2/-0.2 V (blue/red)

(c) DSM φΣ=0.05/-0.05 V (blue/red) (d) DSM φΣ=0.1/-0.1 V (blue/red)

(e) LM φΣ=0.05/-0.05 V (blue/red) (f) LM φΣ=0.1/-0.1 V (blue/red)

Fig. 7.10: Isosurfaces of trypsin.

7.2.2 SIV/HIV capsid - primate TRIM5α interaction

The human immunodeficiency virus (HIV) is a virus that causes acquired immunodeficiency syn-
drome (AIDS), a condition in humans in which the immune system begins to fail, leading to
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life-threatening opportunistic infections. One promising line of research is given by the recognition
of intrinsic immunity. This means the anti-viral activity of proteins which are always present in
species-specific living cells [17]. These intrinsic immune proteins or restriction factors constitute
defense mechanisms of the host blocking the virus from replication and thus being potential agents
against viral attack. As an example TRIM5α (Tripartite interaction motif five, splice variant α)
is one of the most studied intrinsic immune proteins with respect to HIV and simian immunodefi-
ciency virus (SIV), the analog of HIV for monkeys. TRIM5α recognizes the capsid proteins (CA) of
entering viruses and prevents viral uncoating and reverse transcription by an up to now only rudi-
mentarily understood mechanism [122]. The rhesus monkey TRIM5α variant is able to recognize
and prevent HIV infection, whereas the human TRIM5α protein can prevent SIV infection [123].
This variation helps to explain why HIV and SIV infect humans and monkeys, respectively. The
study of the differences in TRIM5α as well as HIV (CA) variants is a promising way to find more
information on the detailed, specific interaction which causes a potential restriction or - vice versa
- which improves the replicability of the virus [73]. For instance, according to experimental data,
the SIVmac239 variant was not restricted, whereas the GH123 variant was strongly restricted by
the primate TRIM5α. The research group of T. Shioda (Department of Viral Infection, Osaka
University) found that mutations on the three loop regions of the CA variants are responsible for
this different interaction behavior [73]. Besides a desired structural complement of the HIV binding
site for the protein TRIM5α, an important factor for their interaction might be an electrostatic
attraction of the protein to the specific binding site. This motivated to investigate the structural
as well as the physical properties of the loop structures of SIVmac239 and GH123.

In a second application, we calculate nonlocal electrostatic potentials of two HIV-1 capsid vari-
ants, namely GH123 and SIVmac239. Besides the electrostatic calculations, we provided trian-
gulations of the SAS, and also of the “SAS” with a probe radius of 3Å. The calculations were
performed for K. Bozek (Max-Planck-Institute for Informatics, Computational Biology and Ap-
plied Algorithmics, Saarbruecken), who analysed the structural and the physical characteristics of
SIV/HIV capsid - primate TRIM5α interactions in collaboration with the group of T. Shioda.

In Fig. 7.11 we illustrate both CA variants, GH123 (yellow) and SIVmac239 (red), where we

Fig. 7.11: Superposition of the GH123 CA (yellow) and the SIVmac239 CA (red) structures. The three
loops interacting with TRIM5α are numbered. The SAS of both structures is transparently
shown.
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labeled the three loop structures in the upper part. The SIVmac239 has a more contracted shape
compared to the expanded GH123 loop structure. A qualitative interpretation of the electrostatic
differences can be given from inspection of Fig. 7.12, where the nonlocal electrostatic potentials on
the SAS are shown for both variants. The loop regions are found in the lower part as it is noted
in Fig. 7.11. Comparing the two variants, we see that in the loop regions 2 and 3 of GH123 a
positive potential is predominant, whereas in SIVmac239 these regions exhibit a diffuse pattern.
Qualitatively, this also holds for the local approach as well (not shown). However, in the nonlocal
approach the potentials have a higher strength and the positive potential regions are much more
separated from the negative potential regions. This can explain the highly specific interaction
between the CA binding site and TRIM5α which sensitively hinges on point mutations of the
building blocks of the loops.

7.2.3 Ovalbumin

As a third application of nonlocal electrostatics, we chose the protein ovalbumin, which is used in
different areas of research such as immunization and biochemical studies. With its 6000 atoms, oval-
bumin forms a complex surface shape, see Fig. 7.6(b). As a qualitative surface triangulation would
have up to 50000 elements, such a calculation would exceed the memory requirements needed in our
BEM implementations preventing its solution. However, with EJIIM we can solve system (6.2): for
this, we use a grid resolution of 0.5 Å and box dimensions [93Å×93Å×93Å]. The boundary values
have been calculated with the approximate boundary condition, see Section 6.2.4.1.

In Fig. 7.13 we show the isosurfaces of the electrostatic potential of the DSM for ±0.1V. Because
of the large amount of partial charges near the surface, the potential exhibits a complex, diversified
behavior. Altogether, the positive isosurface is closer to the surface. The molecule has a total
charge Q = −6e, and this is why the negative contribution dominates the potential.

Fig. 7.12: The SAS of the CA variants GH123 (left) and SIVmac239 (right) colored by nonlocal electrostatic
potential (DSM) in units of KbT/e, the chosen color scale is shown below. Physical parameters:
(ε∞=1.8ε0, εΩ =10ε0, εΣ =80ε0, λ=3.028Å).
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Fig. 7.13: Isosurfaces of ovalbumin for φΣ=0.1 V (white) and φΣ=-0.1 V (black).

The results underline that an application to biomolecules of arbitrary size and shape is possible
with EJIIM. The input generator together with the EJIIM solver can be used to automatically
generate the physical potentials. This is an essential step for further studies, especially for the
comparison with experimental data.

7.3 Summary

In this chapter, we analyzed the nonlocal models which we derived before. The outcome of this study
is that all the nonlocal models predict qualitatively and quantitatively the same, strong electrostatic
potential around the considered molecules. Compared to the local model, the electrostatic potential
is up to one order of magnitude higher, which is explained by the decrease in screening because of
the water network in Σ.

First, we focused on the molecules of the test set. These have only a few partial charges and
a simply shaped surface. The electrostatics predicted by the nonlocal models are comparable in
terms of magnitude and shape. Slight variations in the reaction field φreacΩ of the NVM have been
explained by surface charges induced by molecular charges next to the dielectric boundary. This
so called near-charge effect is caused by the boundary condition of the correlation field F on Γ
in the NVM, i.e., the continuous extension of FΣ into Ω. This condition admits variations of
the water correlations that locally lower the outer dielectric response. In contrast, the reaction
fields predicted by the two scalar models show an almost homogeneous behavior, which is caused
by the fixed boundary condition of, for instance, a vanishing correlation field. When the charge
pattern gets more complex as it is the case for FUDPOJ or trypsin, these aspects obviously play a
non-trivial role.

Nevertheless, the analysis of the electrostatic contribution to the solvation free energy, which
directly depends on the reaction field, reveals the same order of magnitude in all nonlocal models
for all molecules of the test set. This clearly demonstrates that the variations due to the boundary
conditions and thus their influence on physical quantities - at least on the electrostatic contribution
to the solvation free energies - are small.

Second, we considered the small protein trypsin, where we focused on the electrostatics near
the binding pocket. Once again, the nonlocal models predict an interesting long-range potential.
Despite its overall positive total charge, several Ångstroms away from trypsin’s binding pocket, this
potential is negative and therefore favors the binding process of the positively charged BPTI. The
strengthening of the negative potential in the entrance area is explained by the special characteris-
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tics of the binding pocket: the strong negative charge distribution next to the dielectric boundary
Γ and its cylindrical shape.

We additionally applied the boundary condition “without inner medium”, which we deduced for
the EJIIM in Section 6.2.4. This boundary condition yields approximations of the electrostatic
potential in excellent agreement with the calculations of the DSM in Σ. We theoretically find this
result for the case that the inner dielectric response εΩ is of the same order as the electronic response
ε∞ (see Remark 6.1). For εΩ ≈ ε∞, we thus conclude that the proposed boundary condition is a
fast tool to estimate the outer nonlocal potential. It offers, for instance, the possibility to efficiently
analyze the dynamics of a ligand which docks into the binding pocket of a protein. In this way,
the approximated boundary condition takes the role of a generalized Born model for nonlocal
electrostatics. Since it further does not require a numerical solver at all, it is possible to directly
incorporate the analytical formulas as a first estimation of the nonlocal electrostatic potential into
a biomolecular software package.

Furthermore, a cooperation with K. Bozek (MPI, Saarbruecken) gave us the possibility to perform
electrostatic calculations to gain insight into the electrostatic differences of two HIV variants. We
applied the EJIIM as well as the BEM, where for the latter we used surface triangulations generated
by the algorithm discussed in Section 6.3.

As last application we chose the protein ovalbumin. This protein is still small, however, it
has twice the volume of trypsin. Our BEM implementations of the DSM as well as of the NVM
cannot cope with ovalbumin anymore, for they would require a triangulation which exceeds the
memory capacity of our work station. The electrostatic nonlocal potential we showed is successfully
calculated with the EJIIM.

From these applications, it is difficult to answer the question for an “optimal” nonlocal model: all
the nonlocal models result in higher potentials near Γ and they reveal the local response when the
potentials become small in Σ. The variations among the nonlocal models are small in contrast to
the difference in one order of magnitude comparing the nonlocal to the local models. That is why we
conclude that all of the nonlocal approaches are appropriate to incorporate the correlation effects of
the hydrogen bond network. The method of choice therefore depends on the demand on efficiency
and runtime. However, compared to the numerical complexity required to solve the vectorial
model [39], these findings clearly support the use of a scalar model of nonlocal electrostatics.

The localized differences in magnitude of the potentials predicted in the various models originate
from a different handling of the boundary effects. In fact, the NVM as well as the scalar nonlocal
models have boundary conditions on Γ, which we motivated theoretically. For a further detailed
modeling process of these boundary conditions, we need a detailed, experimental analysis of the
boundary effects, which then can be incorporated in the numerical solver. In the NVM and the
DVM two limits of the nonlocal behavior on the boundary are realized: the first neglects the
disturbances on the surface and thus admits for variations of the nonlocal correlations, whereas in
the second approach the network is frozen on Γ. The correct behavior lies between these approaches
and depends on the locally differing polarity of the amino acids contributing to the surface.

The last two applications finally demonstrate that the newly developed numerical method as
well as the algorithm proposed to generate the EJIIM input and the surface triangulations are
efficient and easily applicable. Therefore, these algorithms are the basis for successful future work
on nonlocal solvent studies of biomolecules.
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Chapter 8

Electrostatics of biomolecules in ionic solution

Up to now, we considered the biomolecule to be immersed in pure water. However, in realistic
conditions, i.e., in living organisms, there are also mobile salt ions present in the solvent. This
chapter focuses on the question what happens electrostatically when a biomolecule is immersed in
an aqueous solution containing ions.

In Section 8.1, we introduce the Poisson-Boltzmann equation to describe electrostatic effects of
ionic solutions. We briefly recall the major approximations, which are required for the derivation
of this mean-field theory.

The incorporation of the linearized Poisson-Boltzmann equation into the framework of (non)local
electrostatics is done in Section 8.2: we extend the local model (Theorem 5.3.1) as well as the
Dirichlet Scalar model of nonlocal electrostatics (Theorem 5.1.1) to account for ionic effects.

Despite water-water correlations, there might be ion-ion as well as ion-water correlations present
in the biomolecular system. Section 8.3 addresses a single, very interesting effect, the so called
reentrant condensation of proteins, which is one example for such non-trivial interactions causing a
highly complex and sensitive behavior of proteins in ionic solutions. Based on experimental findings,
we develop and apply a heuristic model that qualitatively describes the reentrant condensation of
proteins. In this approach, though, we neglect the water-water correlations, and instead treat water
as a high, constant dielectric. The rationale behind this neglect is that, in the situation described,
the ion-protein correlation is expected to clearly dominate the overall behavior in the biomolecular
system and thus has to be apparent for the commonly used water model as well.

8.1 Mean field theory of ionic solutions

Let us assume to have N point-like ions or particles with charge Ze present in the biomolecular
system. In contrast to the biomolecule, which is described by a fixed charge density ρ, the positions
of these mobile ions depend on the interactions among themselves as well as on the interactions
with the biomolecule. This means that we have to solve a many-particle problem.

To account for the N -particle interactions, and, in this regard, to determine their probability
distribution in the system, time consuming simulations are required. However, the reality is often
well approximated by replacing the N -particle distribution function by a product of N identical
one-particle distribution functions. The purpose of this mean-field approximation is to remove
the correlations between the N particles and finally to find the ion density distribution n(r) from
minimizing the free energy functional [14,56]. The minimization procedure yields

n(r) = n0e
−Zeφ(r)/(kBT ) , (8.1)

where n0 denotes the bulk density of ions, φ the electrostatic potential of the biomolecular system,
and kBT the thermal energy. In Eq. (8.1) we consider the ions to be distributed in dependence of
their potential relative to their thermal energy. Intuitively, this means that counter-ions, i.e., ions
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Fig. 8.1: In the native state, the protein is immersed in ionic water.

with a contrary charge with respect to the biomolecule, build up a layer near the surface of the
biomolecule in order to minimize their potential energy. Due to the thermal energy of the ions and
the resulting thermal motion, this layer is diffuse.

As Eq. (8.1) is an additional source of charge, the source term in Theorem 2.2.1 consisting of the
molecular charge distribution ρ has to be extended: assuming different kinds of ions to be present
in the solution results in the following material equation,

∇ ·D(r) = ρ(r) +
∑
i

Zie ni(r) r ∈ R3 (8.2)

with ni(r) =n0,ie
−Zieφ(r)/(kBT ) r ∈ Σ , (8.3)

where n0,i denotes the bulk density of ions of type i with valence Zi.
Debye and Hückel discussed the diffuse double layer for spherical objects in contact with an

electrolyte bath of monovalent co- and counter-ions [32]. They linearized the Poisson-Boltzmann
equation assuming that the potential φ is not too strong anywhere in the system, i.e., the charges
involved are small. The linearization of the ion density in Eq. (8.2) yields

∇ ·D(r) = ρ(r)︸ ︷︷ ︸
molecular charge density

+ (−χΣ κ
2
scεΣφ(r)︸ ︷︷ ︸

ion charge density

) , r ∈ R3 (8.4)

with κsc :=

√
e2

εΣkBT

∑
i

n0,i Z2
i (8.5)

χΣ :=

{
0 in Ω
1 in Σ .

(8.6)

In Eq. (8.6) we introduced the characteristic function χΣ to restrict the ion distribution to Σ.
Further, with the definition of κsc in Eq. (8.5), a new length scale, the so called Debye screening
length,

λsc = 1/κsc ,

is introduced into the system. Its physical meaning is revealed in Section 8.2.1 and Section 8.2.2,
where we state the analytical formula of the potential φ of the Born model in ionic solvents.

A typical concentration n0 = 0.15moll of monovalent salt immersed in bulk water, which is
characterized by its macroscopic dielectric constant, εΣ = 78.5ε0, yields a Debye screening length
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of λsc = 7.8Å. This corresponds to κsc = 0.12 1
Å

.

In summary, the Poisson-Boltzmann model is based on the following assumptions [56]:

� The solvent degrees of freedom are represented by the continuum dielectric response and a
specific ion-water molecule correlation is assumed to be negligible.

� Ions are effectively modeled as point charges.

� Ion-ion interactions in the solvent are assumed to be negligible.

In spite of the limitations in application and interpretation which result from the simplicity of the
mean field approach, Poisson-Boltzmann models are widely and successfully used for numerical
calculations of the screened, electrostatic potential of molecules in ionic solutions [2, 9, 70]. They
provide an deeper understanding of the electrostatic ionic screening in biomolecular systems. For
low charged, dilute systems the Poisson-Boltzmann theory yields correct results [56] and even the
condensation of ions on a charged surface is partly captured in these theories [99].

8.2 Extension of the electrostatic models to ionic solutions

In the previous section, we learned that, under certain conditions, the ionic solvents are well
described by an additional charge density,

ρion(r) = −κ2
scφ(r) , r ∈ Σ , (8.7)

where we used the definition of κsc given in Eq. (8.5). This means that the incorporation of ionic
effects into the local as well as into the nonlocal models of electrostatics consists of the following
change

ρ(r) =

{
ρmol(r) r ∈ Ω
0 r ∈ Σ

}
→ ρ(r) =

{
ρmol(r) r ∈ Ω
ρion(r) r ∈ Σ

}
. (8.8)

Since the basic material equations given in Theorem 2.2.1 on p. 18 do not change by the extension
of the charge distribution proposed in Eq. (8.8), we can directly state the following theorem for local
electrostatics with ionic screening.

Theorem 8.2.1 Model for local electrostatics with ionic screening: Extending the charge density
as proposed in Eq. (8.8) in the local model (LM) of electrostatics (Theorem 5.3.1) yields

εΩ∆φΩ = −ρmol in Ω
∆φΣ = κ2

scφΣ in Σ

εΩ∂nφΩ = εΣ∂nφΣ on Γ
φΩ = φΣ on Γ .


(8.9)

In the following, the local model with linear Poisson-Boltzmann theory is abbreviated as LM LPB.

In the second equation of system (8.9), the following Yukawa operator appears

Lκsc := (4− κ2
sc) .
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Here, the Yukawa operator Lκsc describes the weakening of the electrostatic potential by ions. This
can be clearly seen on the electrostatic potential of the Born sphere with charge q and radius a:

φΩ =
q

4π
[

1
εΩ r

+ (
1

εΣ(κsca+ 1)
− 1
εΩ

)
1
a

] r < a (8.10a)

φΣ =
q

4πr
[

1
(κsc a+ 1) εΣ

e−κsc(r−a)] r > a . (8.10b)

The 1
r -potential of the local model transforms into a Yukawa-like potential, which means that the

ion density screens the Laplace-like potential. The screening is characterized by an exponential
decay on the length scale of the Debye screening length λsc defined in Eq. (8.5).

The appearance of the Yukawa operator in the theory of ionic solvents is interesting, as in the
nonlocal theory of water, a Yukawa operator appears as well. This reveals another physical meaning
of the Yukawa operator in the screening theory of ions: it emphasizes that the distribution of the
counter- and co-ions effects the electrostatic potential in a nonlocal way.

8.2.1 Dirichlet Scalar Model with ionic screening

In the last section, we introduced the LM LPB, which is the commonly used electrostatic model to
account for constant dielectric response and an additional ionic screening effect. A coupling between
the nonlocal water correlations and the ionic screening might result in an interesting competition
of these two effects. In order to study the interplay, we now extend the Dirichlet Scalar model to
consider the additional source term given in Eq. (8.8).

Theorem 8.2.2 Dirichlet Scalar Model with ionic screening: Extending the charge density as pro-
posed in Eq. (8.8) in the Dirichlet Scalar Model (DSM, Theorem 5.1.1) of nonlocal electrostatics
reveals

εΩ4φΩ = −ρmol in Ω
4(ε∞ φΣ + (εΣ − ε∞)FΣ) = εΣ κ

2
scφΣ in Σ

φΩ = φΣ on Γ
εΩ∂nφΩ = ε∞∂nφΣ on Γ

LκFΣ = −κ2φΣ in Σ
∂nFΣ = 0 on Γ


(8.11)

In the following, this model is called the Dirichlet Scalar model with linear Poisson-Boltzmann
theory. It is abbreviated as DSM LPB.

In this section, we discuss in detail the DSM LPB for the Born sphere (Section 8.2.1.1). There-
after in Section 8.2.1.2, we develop an EJIIM solver for the numerical solution process and present
first applications of the DSM LPB to BRMW1 and FUDPOJ of the test set.

8.2.1.1 Born sphere

The solution of system (8.11) for the Born sphere of radius a with charge q is given by

φΩ =
q

4π
[

1
εΩ r

+
1
a

((C1 + C2)− 1
εΩ

)] , r < a (8.12a)

φΣ =
q

4π
1
r

[C1 e
−p− (r−a)︸ ︷︷ ︸

first branch

+C2 e
−p+ (r−a)︸ ︷︷ ︸

second branch

] , r > a , (8.12b)
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where we used the following notations:

s :=
εΣ

ε∞
(κ2 + κ2

sc) (8.13a)

p2
± =

1
2

(
s±

√
s2 − 4

εΣ

ε∞
κ2κ2

sc

)
(8.13b)

C1 =
εΣκ

2
sc − ε∞p2

+

(p2
− − p2

+)(p− a+ 1)
p2
−

κ2
scεΣε∞

(8.13c)

C2 = −
εΣκ

2
sc − ε∞p2

−
(p2
− − p2

+)(p+ a+ 1)
p2

+

κ2
scεΣε∞

(8.13d)

From the analytical solution of the spherically symmetric case, we see how the two effects, the
ionic screening and the water-water correlations, are competing in weakening/strengthening the
electrostatic potential: the electrostatic potential consists of two branches, which are specified
by {C1, p−} and {C2, p+} in Eq. (8.12). Both parts have the shape of Yukawa potentials, ∼ e−p r

r .
Recalling the outer nonlocal electrostatic potential of the Born solution in the DSM (see Section 5.3),

4π φΣ =
1
εΣr

+ (
1
ε∞
− 1
εΣ

)
e−(r−a)/λ

r

1
a/λ+ 1

, r > a ,

we can directly interpret the change of the Laplace-like part to a Yukawa-like part, as a consequence
of the additional ionic screening.

Fig. 8.2 shows the prefactors given in Eqs.(8.13)(b-d) for a Born sphere of radius a = 1Å with the
standard parameters for the nonlocal response (εΣ = 78.5ε0, ε∞ = 1.8ε0). We reduced the κ-κsc
plane to the region of realistic values, i.e., κ ∼ 0.05 1

Å
and κsc ∼ 0.1 1

Å
.

The functional shape of the prefactors is mainly directed by the limiting values, which we gain
from the functional expressions (Eqs. (8.13)(b-d)):

lim
κ→∞

C1 e
−p2
− (r−a) = 1

a κsc+1
1
εΣ
e−(r−a)κsc

lim
κ→∞

C2 e
−p2

+ (r−a) = 0

 ⇔ LM LPB(εΣ) (8.14a)

lim
κsc→0

C1 e
−p2
− (r−a) = 1

εΣ

lim
κsc→0

C2 e
−p2

+ (r−a) = 1

aκ
q

εΣ
ε∞

+1
( 1
ε∞
− 1

εΣ
) e−(r−a)κ

q
εΣ
ε∞

 ⇔ DSM(εΣ) (8.14b)

lim
κ→0

C1 e
−p2
− (r−a) = 0

lim
κ→0

C2 e
−p2

+ (r−a) = 1

aκsc
q

εΣ
ε∞

+1

1
ε∞

e−(r−a)κsc
√
εΣ/ε∞

 ⇔ LM LPB(ε∞) (8.14c)

As we noted in Eqs. (8.14), the limits correctly merge with either the DSM for κsc→ 0 and the
LM with macroscopic response εΣ for κ → ∞, respectively. The limit κ → 0 coincides with a
maximization of the correlation length and this in turn freezes the system to the local, electronic
response ε∞.

At a glance, the complex behavior of the DSM LPB for the Born sphere is governed by these
limiting values. In the whole region, the nonlocal model is strongly dominated by the ionic screen-
ing: in both quantities, C1 and C2, we see the 1

κsc
-decrease and the linear increase of the exponents
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(a) (b)

(c) (d)

Fig. 8.2: Prefactors of the nonlocal/screening branches for the Born solution of the DSM LPB. κ and κsc
are plotted in units of 1

Å
.

p± for increasing κsc as it is implied by Eqs. (8.14). The prevalence of the ionic screening can be
explained by the fact that on average the water correlations cause higher field values in Σ. This in
turn increases the ion distribution around the molecule and therefore the ionic screening.

The linear increase of the exponent p− in dependence of the ionic strength is blocked above a
critical κ, which can be clearly seen on the exhibited nose in Fig. 8.2(b). A further increase of κsc
lets p− remain unchanged. This demonstrates the interplay of both effects in a non-linear way.
From the DSM, we know that the first branch characterized by {C1, p−} corresponds to a local,
macroscopic contribution, which is regained for increasing λ (decreasing κ).

In the DSM, the exponent p+ shown in Fig. 8.2(d) determines the nonlocal correlations and
therefore it is clear that for increasing κ (decreasing λ), this contribution vanishes. The same is
true for an increase in the ionic strength, as then there are more ions immersed in the solvent,
effectively weakening the electrostatic potential. Both effects can be read off the linear dependence
of p+ on κ and κsc.

There is a remarkably strong decrease of C1 for increasing ionic strength and small κ values. In
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order to analyze its origin we consider a further limiting process in Eq. (8.14b) and Eq. (8.14c):

(8.14b) : lim
κ→0

(
1
εΣr

+ 1
a/λ+1 ( 1

ε∞
− 1

εΣ
)e−(r−a)/λ

)
= 1

r ( 1
εΣ

+ [ 1
ε∞
− 1

εΣ
]) = 1

ε∞r

(8.14c) : lim
κsc→0

(
( 1

aκsc
q

εΣ
ε∞

+1
)e−(r−a)κsc

q
εΣ
ε∞

)
= 1

r (0 + 1
ε∞

) = 1
ε∞r

As we can see in the preceding equations, both limiting processes result in the same model, the local
model with a pure electronic response ε∞. However, the path to reach this limit is totally different
and this in turn causes a discontinuity of C1 and C2. The DSM always consists of a Laplace-like
and a Yukawa-like part, where the former corresponds to the LM and the latter to the nonlocal
corrections. In contrast, the electrostatic potential of the LM LPB consists of a single Yukawa-
like part, which smoothly turns into the Laplace-like potential for vanishing ionic screening. The
discontinuity of the prefactors C1 and C2 emphasizes that the interplay of the water correlations
and the ionic screening is sensitive for small κ and κsc. When κsc gets larger, the overall behavior
of the system is dominated by the ionic screening.

8.2.1.2 EJIIM model extension

In the last section, we deduced the DSM LPB, i.e., the Dirichlet Scalar model with linear ionic
screening effect (see Theorem 8.2.2) and analyzed its solution for the Born model. It reveals a
strong screening effect and therefore a weakened electrostatic potential. In order to apply this
model to arbitrarily shaped molecules, we have to set up a numerical solver.

In contrast to the BEM, where a modification or an extension of the nonlocal equations always
requires a fundamental solution of the differential system, such a restriction is not given for the
EJIIM. Moreover, the modifications we have to make in the DSM implementation to account for
the linear ionic screening effect are marginal, because only the following field equation of the DSM
given in Theorem 5.1.1 on p. 73 is affected:

4(ε∞ φΣ + (εΣ − ε∞)FΣ) = 0 in Σ

with ionic screening: 4(ε∞ φΣ + (εΣ − ε∞)FΣ) = εΣ κ
2
scφΣ in Σ (8.15)

The equations in Ω as well as the transition conditions remain as given in Theorem 5.1.1. This means
that the involved part of the EJIIM implementation, i.e., the incorporation of the discontinuities
on the dielectric boundary Γ, is already correct for the DSM LPB. Only the discretization of the
field equations has to be changed in Σ in agreement with Eq. (8.15).

Fig. 8.3 shows the outer electrostatic potential of the DSM LPB applied to the small, charged
molecule BRMW1 (upper row) and to the small, uncharged molecule FUDPOJ (lower row). We
compare the DSM LPB results with the corresponding results of the DSM, the LM, and the
LM LPB. As for both molecules the results are qualitatively the same, but more distinct for the
charged molecule, we concentrate on BRMW1. Comparing the DSM with the DSM LPB, we see
that when introducing the ionic screening additionally to the water correlations, the electrostatic
potential is considerably weakened by one order of magnitude a few Ångstrom away from the
molecule. Compared to the local potentials seen on the right, the ionic screening is stronger as
it was already anticipated when discussing the spherically symmetric system. The reason lies in
the higher nonlocal potentials and the resulting high contribution of screening counter-ions on the
molecular surface.
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Fig. 8.3: Application of the DSM LPB on BRMW1 (upper row) and FUDPOJ (lower row). Physical pa-
rameters (εΣ = 78.5ε0, ε∞ = 1.8ε0, κ = 0.05 1

Å
, κsc = 0.12 1

Å
)

8.2.2 Conclusion

Within the last sections, we demonstrated the easy extensibility of the electrostatic model equations
using the EJIIM: we focused on the more realistic molecular system which additionally contains
solvated ions. The study of the analytically solvable, spherically symmetric system gave an es-
timation of the interplay of ionic screening and water correlation effects. Further, it served for
testing the changes made in the EJIIM implementation in order to account for the ionic screening.
In summary, we found that the ions have a considerable influence on the nonlocal electrostatic
potential of small molecules. This qualitative study has to be seen as a starting point of further
investigations, which among others have to consider the following two important aspects:

1. The correlation length λ of water and the ionic screening length 1
κ are taken to be independent

of each other in the previous studies. A more realistic assumption, however, is that the mobile
ions non-trivially influence the correlation length of the water molecules. When approaching
the molecular surface, the counter-ion density can increase in a way that, on average, several
ions are present within the correlation sphere of the water molecules 1 and thus the free
correlation length of water can decrease.

2. At sufficiently high ionic densities, steric effects prevent ions from accumulating at charged
interfaces to the extent predicted by the standard PB theory which we introduced before
[14, 60]. Steric constraints lead to saturation of the ion density near the interface and, thus,
increase their concentration in the rest of the interfacial region. A first approach to account
for the steric effect is to introduced the so called Stern or ion exclusion layer, which is the
layer in the solvent where the ions cannot further approach the molecular surface because
of their finite size. In common Poisson-Boltzmann finite difference solvers, such finite size
effects are accounted for by redefining the grid which stores the ionic screening factor κsc to
have non-vanishing values only outside the Stern layer. As the EJIIM is a finite difference
solver, it is possible to incorporate the ion exclusion effect into the existing EJIIM solvers.

1See, for example, the estimations of the ion density on a planar charged surface in [60], Section 12.4, p. 218.
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8.3 Beyond mean field theory: multivalent ions in protein solutions

In this section, we further concentrate on ionic solutions, but as the focus will lie on the ions,
we now treat the dielectric effects of water as in the LM LPB (see Theorem 8.2.1), which means
that we model the solvent as a homogeneous, constant dielectric medium. In the last section, we
discussed the effects of counter- and co-ions in the framework of the linearized Poisson-Boltzmann
equation and we learned that statistically distributed ions have an important impact on the range
of the electrostatic field.

In Section 8.2.2 the introduction of a Stern layer was suggested as a possibility to account for
finite size effects, which lead to a modified ion distribution near dielectric and charged interfaces.
However, this is only a small concession to the complexity of the counter- and co-ions: ion-ion,
ion-water, and specific ion-molecule correlations are still missing in the mean field theory and this
neglect leads to the fact that many interesting effects of ionic as well as of acidic and basic solutions
cannot be explained. For instance, the variance in pH can cause proteins to change their charge
state, or influence the stability of their secondary structure [111]. Another prominent example is the
functionality of metal ions in solution: they are responsible for nucleophilic catalysis in enzymes, for
the electron transfer in proteins, for the stabilization of protein structure, and for the stimulation
and blocking of excitable cells [5, 57,95].

In this section, we focus on the highly interesting phenomenon of reentrant condensation of
protein solutions, which is caused by the non-trivial interactions of multivalent ions and therefore
requires beyond-mean-field theories for its explanation. Reentrant condensation generally describes
the phenomenon that biomolecules in solution undergo a condensation upon adding a critical con-
centration of a so called condensation agent - typically counter-ions of the biomolecules. The
condensed phase redissolves for a second, higher critical concentration of the condensation agent.
Fig. 8.4 depicts such a phase transition as a function of the counter-ion and the molecule concen-
tration. The critical counter-ion concentrations separating the different regions are defined as c∗

and c∗∗.

Fig. 8.4: The phase diagram: I) solved phase, II) condensed phase, III) dissolved phase.

Reentrant condensation has already been observed in systems like DNA or polyelectrolytes with
multivalent ions such as the naturally occurring polyamines spermidine3+ and spermine4+ and the
inorganic cation Co(NH3)3+

6 [18]. Here, the phenomenon of the condensation and a re-dissolution
of the biomolecules originates from ion-ion correlations, i.e., correlated fluctuations in the ion
atmosphere around the macroion [46,56,103].

Recently, reentrant condensation has also been found in protein solutions [150], where the chem-
ical agents which cause the condensation effect, are trivalent rare earth metal ions, such as La3+

and Y 3+. A deeper understanding of the attractive protein-protein interaction going along with
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reentrant condensation of proteins could be pathbreaking for some human diseases where the ag-
glomeration of protein plays a crucial role, for instance, Alzheimer disease. This makes the reentrant
condensation of proteins a new and important field of research.

At first view, the high valence of the counter-ions supports that reentrant condensation is driven
by ion-ion correlations as it is the case for DNA and polyelectrolytes. However, the interaction
between DNA and La3+ has been measured [126] and it turns out that for very small amounts of
La3+, a specific discrete binding of the trivalent metal ions to the PO−2 groups on the backbone of
the DNA exists. The binding causes the DNA to condense but not to redissolve in solution. This
observation indicates that (a) the metal ions interact in a different - more specific - way than typical
condensation agents of DNA and (b) the theories for reentrant condensation, which are established
for DNA, are not directly transferable to protein solutions.

A reason could lie in fact that DNA and protein strongly differ in their shape and in their charge
distribution: the first is well described as a rod with a constant negative surface charge whereas
the latter is characterized by a complex protein-specific shape and a diverse charge distribution.
The structural difference can be clearly seen in the sketch of the E1-DBD dimer bound to a DNA
double helix (PDB-entry 1KSY) in Fig. 8.5.

Fig. 8.5: The structural difference of protein (upper) and DNA (lower).

The difference of DNA and protein reentrant condensation and further the novelty of the latter
motivates first to carefully study experimental findings of protein solutions with multivalent metal
ions and thereafter to develop a model which is based on this knowledge. Thus, before we derive
a simple, heuristic model in Section 8.3.2 to describe the transition of a protein solution into
the condensed phase, we start in Section 8.3.1 with a summary on experimental results, which
give rise to the assumption that multivalent Y 3+ ions have a high, specific affinity to negatively
charged amino acid side chains. Based on this assumption, we implement a modified titration
simulation, which calculates the probability of the multivalent ions to be bound to the surface of
the molecule. In Section 8.3.3, we apply this titration model to the protein bovine serum albumin
(BSA) and further discuss the results for a set of four distinct proteins in reference to experimental
measurements in Section 8.3.4. The comparison confirms that a specific binding of counter-ions on
the protein’s surface reveals the main features of reentrant condensation.

8.3.1 Experimental findings

The affinity of metal ions to the functional groups of molecules can be found in many biochemical
processes and therefore its study is a widely spread and important field of research. Examples are
the complexation of metal ions with a set of surrounding molecules or anions [26, 41, 115] or the
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adsorption of metal ions on surface exposed amino acid side chains, which is used for example to
purify protein solutions by the Immobilized Metal Ion Affinity Chromatography [131,136].

8.3.1.1 High binding affinity of multivalent metal ions

In particular, the specific binding of the rare earth metal ions such as Y 3+ and La3+ to carboxyl
residues has been investigated in pharmaceutical and biochemical studies. The following observa-
tions have been made:

� The presence of a small amount of multivalent Yttrium ions Y 3+ inhibits the calcium channel
in excitable cells. The blocking stems from the high affinity of Yttrium to the calcium binding
site, which is modeled in literature as a site composed of two negatively charged ions at a
distance of 2Å or specified as an arrangement of two Glutamic acids [65, 95]. In [65], the
authors state that
“the Yttrium cation has a similar ionic radius to calcium, and thus exhibits a good geometric
match to the selectivity filter, but is trivalent and has a higher binding coefficient for carboxyl
residues than calcium, likely leading to its very high potency as a channel inhibitor”.

� The specific binding of Y 3+ to proteins has been studied in titration experiments [23,81,145]:
in these studies a strong affinity of the Yttrium ions to surface exposed, negatively charged
side chains has been observed. The stability constant of Y 3+ to Tyrosine, for instance, ranges
between pKm = 5.09 (I = 0M, 35◦C) and pKm = 4.43 (I = 0.1M, 25◦C) [108].

8.3.1.2 Reentrant condensation of proteins

The previously mentioned experimental studies give reason to believe that individual multivalent
metal ions exhibit a specific correlation with surface exposed, negatively charged amino acids of
proteins. In the following, we recapitulate the experimental findings of the recently described
reentrant condensation of proteins [150,151] and give an interpretation with respect to an existing
ion-amino acid correlation effect:

1. Experiment: For a set of four proteins - all with a negative total charge - the reentrant
behavior is found when the multivalent counter-ion concentration is consecutively increased.

Fig. 8.6: The phase diagram for BSA and Yttrium ions.
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In order to describe the counter-ion concentration where the protein enters and leaves the
condensed phase, respectively, we introduced the functions c∗ and c∗∗ and refer to them in
the following as phase transition curves. In the experiments, both phase transitions, c∗ and
c∗∗, conform well with a linear relation to the protein concentration cP 2. Therefore, we make
the ansatz

c∗(cP ) = c1 +m∗ cP (8.16)
c∗∗(cP ) = c2 +m∗∗ cP , (8.17)

where c1, c2, m
∗ and m∗∗ are constants. In Fig. 8.6, such a phase transition is shown for

BSA. The reentrant condensation is induced by the counter-ions Y 3+ of the salt Y Cl3. The
presented data is retrieved from experiment [151], and listed in Tab. 8.1 for a set of four
analyzed proteins.

Tab. 8.1: Experimental results of the phase transitions for the protein set [151].

experimental results
Protein m∗ m∗∗ c1 [mM] c2 [mM]
BSA 4.30±0.5 15±1 -0.2 ±0.2 12 ±1
HSA 3.40±0.5 58±2 0.1 ±0.2 3 ±1
OVA 1.80±0.2 4±1 0.1 ±0.2 24 ±5
BLG 0.50±0.2 3±1 0.05±0.02 0.08±0.02

Interpretation: It is worth to note that up to c∗, the concentrations of protein and salt
differ at most by the factor m∗, i.e., the number of Yttrium ions and protein molecules in
solution is almost equal. This supports the assumption to treat the counter-ions as ligands
for the localized binding sites. Further, the linearity of the first phase transition curve can
be interpreted as a near-quantitative binding of the Yttrium ions to the available protein
binding sites in solution.

2. Experiment: By electrophoretic mobility experiments, the zeta potentials for the set of
proteins in Tab. 8.1 have been determined as a function of salt concentration. For all analyzed
proteins, the zeta potentials exhibit a zero-crossing close to the Y 3+ concentration where the
protein enters the condensed phase (see Fig. 8.11 and [151]).

Interpretation: For colloids, one often uses the zeta potential as a measure of the effective
surface charge in ionic systems. It indicates the movement of the ion-macromolecule complex
in an external electric field. In this way, the zero-crossing of the zeta potential near the first
phase transition curve can be interpreted as an effective charge inversion of the protein-ion
agglomerates.

3. Experiment: A first structure determination of the protein crystal of β-Lactoglobin (BLG)
with Y 3+ reveals that in the condensed phase (a) the globular structure of the protein remains
stable and (b) a small number of Yttrium ions are localized in the neighborhood of three
negatively charged amino acid side chains [149].

Interpretation: The study on the crystal structure gives explicit evidence that a specific
interaction of the multivalent counter-ions and the negatively charged residues on the protein

2Note that for c∗∗, this does not hold when the salt changes the pH of the solution as it is the case for AlCl3 [151].
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surface is involved in the reentrant condensation of proteins.

The experimental results of reentrant condensation discussed above and the treatment of multi-
valent ions as selective binding partners of negatively charged side chains in former studies support
that, at least up to the first phase transition, the reentrant condensation phenomenon is driven by
the specific binding of multivalent counter-ions on the protein’s surface: the binding of the positively
charged counter-ions changes the charge distribution of the protein - counter-ion agglomerate. In
particular, the protein experiences a charge inversion for a critical metal ion concentration. Within
the picture of counter-ion binding, the transition to the condensed phase is induced by attractive
forces, which do not become relevant until the repulsive electrostatic forces become small. An
increase of the counter-ion concentration above the first phase transition causes the electrostatic
repulsions once again to increase and this in turn causes the condensed phase to finally dissolve.

This simple explanation motivates a theoretical model for the counter-ion binding. The model,
which we developed, is explained in detail in the following. It is based on the introduction of an
additional energy contribution, the energy upon binding of metal ions to negatively charged, surface
exposed side chains. This energy contribution is described by a stability constant Km similar to
the dissociation constants Ka of amino acids in protonation studies.

8.3.2 Theoretical model

Analogous to the titration used in the experiments to determine the stability constant of Y 3+ to
an isolated amino acid side chain [108], we propose a generalized titration model simulating the
specific binding of counter-ions to amino acid side chains in the protein environment.

The theoretical background of specific interactions at surface exposed amino acids is well estab-
lished for the protonation of proteins in basic or acidic environment, where the protonation state
is calculated in titration simulations [3, 12, 111]. The aim of a titration simulation is to find the
optimal proton binding configuration for varying pH, i.e., to calculate the proton binding state of
minimal free energy. The dissociation constant of a titratable amino acid side chain i in the pro-
tein is denoted Ka,i. The determination of Ka,i is the key to find the optimal binding state. The
details on the titration formalism can be found in the original articles on Ka evaluation [11, 111].
Additionally, we give an introduction of titration theory in Appendix 10.3.

In our study, we want to determine the optimal metal ion binding configuration as a function
of metal ion concentration. This binding takes place at unprotonated (and therefore negatively
charged) aspartic and glutamic acids lying on the surface of the protein. Their specific dissociation
constant is denoted Km,i for the ith possible binding site. We therefore define in Tab. 8.2 the
nomenclature for the theoretical description of multivalent metal ion binding in analogy to the
nomenclature used in titration simulations. Substituting the quantities given in the left column in
Tab. 8.2 by the quantities in the right column corresponds to switching from protonation to metal-

Tab. 8.2: Nomenclature transferred from the titration community; pKx is defined as the negative logarithm
of the dissciation constant of acid X.

protonation ion binding
proton (H+) metal ion (Y 3+)
amino acid (e.g., given in [111]) amino acid (Asp, Glu)
Ka Km

pH pM
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ion binding. In this way, the formalism we now briefly derive for the metal-ion binding results in
the same formulas for the free energy difference.

8.3.2.1 Electrostatic free energy of the binding state

The Hamiltonian commonly used to account for the free energy in titration studies is given by
the electrostatic contributions only. The electrostatic potentials are typically obtained via a finite
difference Poisson-Boltzmann scheme (FDPB) [3, 12, 111], where additionally immersed salt ions
are treated in a mean-field approximation neglecting ion-ion correlation effects.

Compared to titration studies, the situation of binding multivalent ions to the protein’s surface
exposed amino acids is energetically more complicated, since besides the protein-ion correlations,
ion-ion interactions between the strongly charged ions are also present in the system. These inter-
actions contribute to the total free energy and influence the overall behavior of the solutes [103].
However, as stated in Section 8.3.1, we have reason to believe that for the low salt concentrations
realized in the experiments, the ion-protein affinity is much greater than the ion-ion correlations.
Thus, we model the free energy of the system in the way it is done in protonation simulations.
Of course, the simulation protocol which we will develop is also applicable when additional energy
contributions are taken into account.

We combine the linear Poisson-Boltzmann theory with specific interactions between the strongly
positive ions and negatively charged sites of the protein to incorporate the correlation effect of
multivalent ions and amino acid side chains. Taking this approach, the metal ions play two different
roles: on the one hand, they can bind to surface exposed amino acids. This is realized by the
introduction of an energy contribution which favors the ion-binding to special side chains. On the
other hand, the counter-ions as well as the co-ions of the added salt slightly screen the electrostatic
field of the protein when solving the linear Poisson-Boltzmann equation.

As introduced previously, the residue i releases the metal ion with a specific dissociation constant,
Km,i, which results from the interplay between various forces such as entropic, hydrophobic, van
der Waals, and electrostatic forces. Since these forces sensitively depend on the ion distribution
and the chemical environment of the protein and further on the strength of the protein-metal ion
complex, it is hardly possible to determine Km,i in experiment. Analogous to protonation theory,
we calculate Km,i as a function of the “electrostatic protein environment” in which the side chain
i is embedded [3, 12, 111]. To this end, we follow the titration protocol described in detail in [111]
and in Appendix 10.3. Before the protocol is now adapted to the binding of metal ions, we have
to introduce a few definitions:

Definition 8.1 Active residue or active site:
An active residue denotes a side chain of the protein that can bind a metal ion. A priori, we assume that
an active residue is negatively charged and therefore unprotonated. To account for the binding process of a
metal ion with charge +me and radius r, the active residue i can occupy one of two possible states:

si =



0: the unbound form, which is the residue in the unprotonated
state. Additionally, we add a sphere with radius r and charge
0 to the active residue.

1: the bound form, which is the residue in the unprotonated state.
Additionally, we add a sphere with radius r and charge +m to
the active residue.

(8.18)

As defined in Eq. (8.18), we keep the model as simple as possible and do not consider volumetric
or structural changes after the binding of the ion, but let the binding process only affect the charge
state. In the unbound state, the charge of the active site is −e, whereas in the bound state it is
(m− 1) e.
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To account for the free energy of solvation, we introduce the so called reference state, on which
the change in energy is based. This reference state is given by the protein in its protonation state
of initial pH and vanishing metal ion concentration, i.e., the state of all active sites being in their
unbound state.

Definition 8.2 The standard dissociation constant pKstnd
m :

Analogous to the definition of pKstnd
a , which describes the release of a proton from a certain standard

peptide, we denote by pKstnd
m the negative logarithm of the experimentally measured dissociation constant

of a metal ion with respect to the standard peptide. The dissociation constant Kstnd
m can be expressed by

the difference of the free energies of the bound (1) to the unbound state (0):

Kstnd
m = e−∆Edissstnd(1→0)/kB T

or expressed by the binding energy gained when changing from the unbound to the bound state:

Kstnd
m = e+∆Ebindstnd(0→1)/kB T (8.19)

The standard peptide represents the amino acid in a neutral environment without the protein
background. For an amino acid X, this is, for instance, the N-acetyl N-methylamide derivative,
ACE-X-NME, where ACE and NME denote the neutral acetyl and methyl end caps, respectively
[12, 147]. In our analysis we used the value of pKstnd

m = 5.09 for all active sides. This value has
been extrapolated from experimental data for the binding of Y 3+ to Tyrosine [108].

Definition 8.3 The intrinsic dissociation constant pKintr
m :

The pKintr
m,i is defined as the negative logarithm of a hypothetical dissociation constant for the protein,

assuming all active sites are kept in their reference state except for site i. Substituting Kstnd
m,i by Kintr

m,i in
Eq. (8.19) yields the binding energy in the “intrinsic state” of the protein.

With these definitions, we energetically formulate the binding process: assume a protein with N
active sites and let s be a vector that assigns to every active side chain i the state si (the reference
state is given by s = 0). Then, the pM -dependent free energy difference, ∆Gsolv(0 → s, pM)
between the protein in charge state s and the reference state is given by

∆Gsolv(0→s, pM) = (ln 10) kB T
N∑
i=0

si (pM − pKintr
m,i )

+
N∑
i=0

N∑
j>i

si sjWij ,

(8.20)

with
Wij := Eij(1, 1)− Eij(1, 0)− Eij(0, 1) + Eij(0, 0) .

Here, Eij(si, sj) denotes the interaction energy of the side chain i with side chain j

Eij(si, sj) =
∑
l

q(l,sj)φ(i,si)(rl) ,

where rl is the position of atom l in the active site j. The electrostatic potential φ(i,si) originates
from the charge distribution of the active residue i in charge state si, where all the other charges
of the protein are set to zero.

As (pM − pKintr
m,i ) measures the energy of binding a metal ion at site i when all other active

sites are in their reference state, the first part of Eq. (8.20) has to be corrected by the second
part, adding those interaction energies that correspond to the current state vector s. Since pKintr

m,i
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Fig. 8.7: Thermodynamic cycle to calculate pKintr
m,i from pKstnd

m,i .

depends on the chemical environment of the protein, it differs from the experimentally measurable
pKstnd

m,i of site i. By considering the thermodynamic cycle illustrated in Fig. 8.7, pKintr
m,i can be

calculated from pKstnd
m,i : the idea is to “move” the active residue i from the standard peptide into

the protein environment (P), which comprises other active sites j and the background amino acids
(B). Further, the model compoundM represents the standard peptide of the active amino acid i. In
our study, the isolated amino acid i defines the model compound as it is usually done in protonation
simulations [111]. The transfer energies to bring the active residue into the protein environment
depend on whether a metal ion (Me) is bound or not. This is expressed by ∆Etrans1 and ∆Etrans0 ,
respectively. We thus have

− (ln 10)kB T (pKintr
m,i − pKstnd

m,i ) = ∆Etrans1 −∆Etrans0 . (8.21)

With Eq. (8.20) and Eq. (8.21), we describe the change in free energy when changing the state
vector s, where we describe the free energy only by the electrostatic contributions. It is mainly
governed by two characteristic quantities: the vector pKintr

m , comprising the pKintr
m,i of every active

residue i, and the interaction matrix Wij .

8.3.2.2 Monte Carlo simulation of the specific metal ion binding

The aim of the numerical simulation is the calculation of quantities like the average effective charge
of the protein-ion complex, 〈Qeff(pM)〉 or the probability of finding the site i in the binding state si,
〈si(pM)〉 for a given ion concentration. In statistical mechanics, the partition function encompasses
all this information of the system [111]

Z(pM) =
∑
s

exp
(
− 1
kB T

G(s, pM)
)
. (8.22)
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From Eq. (8.22), we can compute the relevant ensemble averages, for instance, the probability
distribution of active site i to be occupied

〈si(pM)〉 =
1

Z(pM)

∑
s

si exp
(
− 1
kB T

G(s,pM)
)
, (8.23)

where a substitution G(s, pM) to ∆Gsolv(0→ s,pM) in Eq. (8.22) and Eq. (8.23) does not change
〈si(pM)〉.

If we assume N active sites, the partition function consists of 2N contributions. When N exceeds
about 30 sites, it becomes impractical to exactly calculate the partition function. Since N already
exceeds this threshold for small proteins, we sample the state space with a standard Monte Carlo
simulation [16, 111]. Different from what is proposed in [16], we neglect the effect of strongly
interacting residues, since the size of the metal ions prevents a simultaneous switching.

In order to formulate the Monte Carlo procedure, we define the MC step as the result of randomly
changing Ndof times one degree of freedom in the state vector, where Ndof is the number of all
degrees of freedom of the system - in our case, the number of active sites. This procedure allows to
assume that the results of two consecutive MC steps are independent from each other. The Monte
Carlo algorithm proceeds for every discrete pM as follows:

initialization: the simulation starts with an arbitrary state vector s.

equilibration: we execute Nequi MC steps, where, due to the Metropolis criterion, the new state
vector is rejected or accepted [16]. The acceptance/rejection of an attempt to change the
binding state of a residue is based on the free energy difference given in Eq. (8.20); in case of
rejection, the old state vector serves as input for the next run, else the new one.

data collection: we take the result of the equilibration as initial input and execute Ncoll MC steps.
Based on the Metropolis criterion, we reject or accept the result of the current MC step as
before. Additionally, every accepted step is part of the data we store for postprocessing – the
calculation of the probability distribution of binding.

8.3.3 Implementation

In this section, we focus on the general preprocessing of the proteins and the numerical methods
we use for the calculations. Our numerical investigation is adapted to experimental studies, where
the effect of increasing Y Cl3 concentration and therefore the effect of Yttrium ions on a set of
four protein solutions is analyzed [150,151]. Here, the BSA-Y 3+ interaction serves as the reference
example.

8.3.3.1 Initial protonation state

The structure of the protein in question is retrieved from the Protein Data Bank (PDB, [15]) and
checked for completeness. Further, we remove crystallographic water molecules and alternate side
chain locations.

As for BSA, no crystal structure is available, we constructed a homology model of BSA based
on the known structure of human serum albumin (HSA). This approach is justified by the large
sequence identity of the two proteins (57%) that implies a shared fold. Homology modeling was
performed using the software suite PRIME (Schrödinger Inc., New York, release 1.6.307).

In order to simulate the binding process, we have to know the initial charge state of the protein.
In the beginning of the experiments, no salt is immersed in the neutral solution. Thus, the initial
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charge state of the protein equals the protonation state at pH=7 and an ionic strength of zero. We
predict the protonation state of all exposed acidic and basic side chains via the H++ webserver
[2,45]. Charge distributions for the protein are taken from the AMBER force field and the positions
of the hydrogens are optimized by H++.

Here, we use the inner dielectric response, εin, in a range from 2ε0 to 6ε0 in order to find a good
agreement between the experimentally measured total charge of the protein and the predicted total
charge of the H++ run. In the literature, we find a total charge of −10 e for BSA at neutral
pH [110,127]. With an inner dielectric response εin=2ε0, the theoretically predicted charge state
has a total charge of −11 e, which is in good agreement.

8.3.3.2 Electrostatic calculations and Monte Carlo simulation

In order to efficiently calculate the electrostatic potentials, we decided to take the optimized software
package APBS in the automatically-configured sequential focusing mode [9]. The energy of the
protein is calculated in a box with 6 Å additional space to the bounding box of the protein. As
boundary condition of the coarse calculations we use “Single Debye-Hückel”.

The Monte Carlo method is written in C++ and uses the BALL library for an easy handling and
processing of the proteins [70]. The equilibration has been done with Nequi = 40000, and the data
collection with Ncoll = 50000. To give a rough impression on the computational costs, executing
Nequi and Ncoll MC steps for a molecule with 32 degrees of freedom, the calculation takes 0.94
seconds on a machine with four Intel(R) Xeon(R) CPU W3540 @ 2.93GHz processors and 12GB
RAM.

8.3.3.3 Determination of active residues for metal ion binding

As we stated in Section 8.3.2, the set of active sites in our numerical simulation is composed of all
surface exposed unprotonated Asp and Glu residues. The basis for this assumption has been given in
Section 8.3.1. In both, the bound and the unbound state3, we place the Yttrium ion symmetrically
between the oxygens with a distance of 2.43 Å in accordance with the literature [80,94], such that
it is located in the plane spanned by the oxygens and the connected carbon. The Yttrium radius
is taken to be 2 Å.

As we insert the metal ions into the protein without any structural optimization, we have to take
care of strong overlap:

� we check that the overlap of the metal ion with all the atoms of the protein is less than a
predefined threshold.

� we check that all possible active sites have a minimal contribution to the solvent accessible
surface, where the probe sphere radius equals the metal ion radius. This surface approximately
corresponds to the positions where the metal ion is placed in case of an active binding site.

With an overlap threshold of 50% and an SAS threshold of 45 Å2, we find 70 out of 98 potential
active sites for BSA.

8.3.3.4 Protein data set

The simulation protocol which has been presented in the last sections has been applied to a set of
four negatively charged proteins in a solution of increasing Y Cl3 concentration by M. Ziller.

3Please note that, similar to protonation computations, we always attach the Y 3+, but de-charge it in the neutral
state, see Eq. (8.18).
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Tab. 8.3: Protein data set and input quantities for the electrostatic calculations (H++/APBS).

Protein PDB-entry Qexpini / e QH++
ini / e εin/εout

BSA — -10 -11 2/78.5
HSA 1N5U -12 - 9 2/78.5
OVA 1OVA -12 - 8 6/78.5
BLG 1BEB -10 -10 6/78.5

Tab. 8.3 gives an overview on the PDB files used. Further, it gives information on the total charge,
Qexpini of the proteins at neutral pH, which has been used to guide for the choice of the inner dielectric
response. The total charge estimations are taken from the following literature [25,38,42,96,110,127].
The total charge that is predicted by H++ for the given dielectric responses εin and εout is shown
in the last column of Tab. 8.3. Here, we have to note that, even with a variation of the inner
dielectric response εin/ε0 in a range of 2 - 6, the best agreement for ovalbumin (OVA) differs from
the experimental observation by 3 e. This clearly shows that in view of further applications, more
information on the experimentally realized initial protonation state of the proteins is required.

8.3.4 Results

In this section, we present the simulation results for BSA with Y Cl3. In order to correctly interpret
the results, we have to consider that the binding site occupancies are determined as a function of
the Yttrium concentration. However, the input parameter for the simulations, pKintr

m and Wij ,
also depend on the Yttrium concentration due to the ionic screening considered in the linearized
Poisson-Boltzmann equation. These parameters, though, can only be calculated for a constant salt
concentration. This means that the results of one particular simulation are valid only in a small
region, where the Yttrium concentration used for the computation of the binding site occupancies
corresponds to the given ionic strength. The influence of the ionic screening on the simulation
results is discussed in Section 8.3.4.1.

In Fig. 8.8, the binding curves of all active sites of BSA are illustrated: a successive adding of
salt forces the counter-ions to adsorb to the previously defined specific sites. For the binding curves
shown in Fig. 8.8, the electrostatic calculations have been performed with a constant ionic strength
based on Y Cl3 = 10−4 mM. This implies that the curves can be interpreted in this concentration
regime, only.

8.3.4.1 Effective charge and influence of the ionic screening

Besides their role of specific binding, the metal ions together with the negative co-ions also screen the
effective charge cloud of the protein-metal complex. To account for both effects in pM -dependent
simulations, we calculate the charge curves for several constant ion concentrations (thin lines in
Fig. 8.9).

Each charge curve is based on a constant ion concentration and therefore is valid in a small
region around this concentration (see legend and points in Fig. 8.9). A global binding curve for the
metal ion-protein binding is retrieved by interpolation of the stepwise correct charge curves. This
so called effective total charge of the protein as a function of salt concentration is shown in Fig. 8.9
by the thick line.

We are primarily interested in the region where the effective charge vanishes, as in this regime, the
electrostatic monopole forces between individual proteins get small and attractive forces determine
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the behavior allowing the aggregation. We define the critical metal ion concentration, cMe,crit, as
the concentration, which is needed to neutralize a single protein-ion complex. cMe,crit is determined
from the effective charge curves:

cMe,crit : Qeff(cMe,crit) = 0 (8.24)

For BSA, the critical metal ion concentration cMe,crit is 0.003 mM. This corresponds to the binding
of ∼4 metal ions, since the initial total charge is −11 e, see Tab. 8.3. It follows from Fig. 8.9 that
in this concentration regime the screening does not affect the result.

8.3.4.2 Saturation effect

In protonation simulations, a saturation of the charge state usually takes place above a certain
proton concentration. In our simulation, such a saturation occurs at high salt concentration,
resulting in unreasonably high effective total charges. This can be already seen in Fig. 8.9, where
the effective charge of the protein-metal ion complex reaches values of +40 e for pM=-2. The
reason is the choice of the binding sites and our neglect of steric effects: we decided to take
“almost all” surface exposed Asp and Glu side chains as possible binding sites to offer the largest
possible number of degrees of freedom for the metal ions to bind, see Section 8.3.3.3. For high salt
concentration, Eq. (8.20) will finally favor the bound state of all sites, even though there are high
electrostatic repulsion effects. Since we are interested in the early stage of the charging process,
i.e., in the concentration region where the protein exceeds an effective zero charge, this does not
pose a problem in our interpretation.

8.3.5 Discussion

From the numerical simulations, we obtain information about the charge distribution of a single
protein, whereas in the experiments we always measure the effect of a protein solution. To overcome
this problem, we now propose a simple approach to transfer the previously discussed simulation
results to a protein solution.

Fig. 8.8: Binding curves of BSA with Y Cl3 calculated for constant ionic strength given by Y Cl3 = 10−4

mM.
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Fig. 8.9: Effective charge of BSA for increasing Y Cl3 concentration.

By means of this simple theory, we can start a qualitative comparison of the experimental and
the numerical results: we discuss the principal phase behavior and the course of the effective charge
of the proteins to shed light on whether the theoretical approach is reasonable or not.

8.3.5.1 From a single protein to protein solution

To quantify the effect of counter-ion binding in protein solution and to give a first validation of
the theoretical model, we need an estimation of the critical protein concentration, cP,crit, for which
the simulation results are still valid. To this end, we assume that the proteins are uncorrelated
and therefore behave as independent entities as long as the protein-protein interaction energy is
less than or equal to their thermal energy. In the beginning of the simulations, the proteins have a
strong, negative total charge and therefore, we suggest the interaction energy to be dominated by
the electrostatic part:

kBT = WQini

elec (Pi, Pj) (8.25)

WQini

elec (Pi, Pj) defines the electrostatic interaction energy of two proteins i and j both with negative,
total charge Qini. Accurately estimating the detailed electrostatic interaction energy in the presence
of solvent, ions, and other copies of the protein is a very complex task that depends on a variety
of parameters, some of which are not easily available. We thus approximate Eq. (8.25) by

αkBT
.=

Q2
ini

4πεoutdeq
. (8.26)

Qini denotes the initial charge of the proteins, εout the dielectric response of water, and deq defines
the equilibrium distance of two arbitrary proteins in the solution. Eq. (8.26) can be interpreted as
the first term in a Taylor series of WQini

elec (Pi, Pj) and the parameter α is used to compensate the
simplicity of the interaction model, where finite size effects and the complex shape as well as the
inhomogeneous charge distribution of the proteins are not taken into account. With Eq. (8.26) we
define

cP,crit :=
1

4/3π(deq/2)3

1

Å3 , (8.27)
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as the critical protein concentration corresponding to an average protein separation of 1
4/3π(deq/2)3

1

Å
3 .

This implies that the effective charge curves, which originally have simulated a single protein, are
valid for a solution with protein concentration cP,crit. Up to this concentration, we assume protein-
protein interactions to be negligible.

8.3.5.2 Comparison of experimental and numerical results for the first phase transition

The basic idea of the theoretical model is that the first phase transition occurs close to the curve
c∗Me(cP ) in the phase diagram, where the protein-ion agglomerates have an effective charge of zero.
Then, the overall electrostatic repulsive forces are small and a condensation can be induced by
attractive forces. The simplest approach for c∗Me(cP ) is a linear dependence of cP . The linear
function accounts for the quantitative binding of the counter-ions to the protein’s surface:

0 = Qeff(cP , c∗Me := cP
cMe,crit

cP,crit
) , (8.28)

where
m∗sim :=

cMe,crit

cP,crit
(8.29)

is a characteristic measure for the number of ions condensed on the surface to reveal the zero
effective charge state. The curve of zero effective charge in the phase diagram is then given by

c∗Me(cP ) = m∗simcP . (8.30)

This equation qualitatively differs from Eq. (8.16) by a y-intercept of zero. However, with the
experimental data given in Tab. 8.4, we see that this agrees well with c1 for every protein in the
data set.

From the experimental point of view, c1 =0 can be interpreted in the following way: in the first
phase, where the proteins are still in solution, all metal ions directly bind equally to the proteins
and will not act as free ions in solution.

Fig. 8.10: Determination of fit parameter α.

In order to transfer the simulation results to a protein solution, we introduced a fit parameter
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α, in Section 8.3.5.1. This parameter is now optimized so that m∗sim fits to the experimentally
observed m∗exp. Fig. 8.10 shows a minimum for α = 1/2 for the complete data set. This value is
taken to define cP,crit.

Tab. 8.4: Experimental and numerical results of the first phase transition.

experimental results numerical results
Protein m∗ c1 [mM] cP,crit [mg/ml] cY 3+,crit [mM] m∗sim
BSA 4.30±0.5 -0.2 ±0.2 0.043 0.00290 4.83
HSA 3.40±0.5 0.1 ±0.2 0.138 0.00770 3.79
OVA 1.80±0.2 0.1 ±0.2 0.179 0.00760 1.82
BLG 0.50±0.2 0.05±0.02 0.040 0.00046 0.42

The experimentally measured as well as theoretically predicted data for m∗ are listed in Tab. 8.4.
With only one optimized parameter, our simulations predict m∗ with good accuracy for all pro-
teins. Even though the simplicity of the model (neglect of protein-protein interaction and simple
estimation of the critical protein concentration) confines the margin of interpretation, this excellent
agreement strongly supports that the determining factor of the first phase transition is a specific,
quantitative binding, which results in a charge inversion of the solvated proteins. Moreover, it
clarifies that the attractive force, which is finally responsible for the condensation, does not become
relevant until the overall electrostatic forces are essentially neutralized.

8.3.5.3 Zeta potential comparison

By electrophoretic mobility experiments, the zeta potential of the proteins in the test set have
been determined for constant protein concentration as a function of salt concentration [151]. In
the following, we compare qualitatively and quantitatively the effective charge of the BSA-Y 3+

complex with corresponding zeta potential measurements. Such a comparison is interesting as -
at least in colloidal systems - the zeta potential indicates the movement of the ion-macromolecule
complex. In this way, it is used as a measure of the effective surface charge in ionic systems. Of
course, the charge distribution of proteins is more complex than for colloids. However, as a first
analogy of the surface charge of colloids, the effective total charge of the protein is certainly a
reasonable quantity.

Fig. 8.11 shows zeta potential measurements for varying Y Cl3 concentration for two different
BSA concentrations (2mg/ml, 5mg/ml). Assuming a near-quantitative binding of the counter-ions
on the surface of every single protein, we can adjust the salt concentration of the original charge
curve to correspond to the protein concentrations used in the experimental setup. This means that
we assume a linear relationship between the salt and the protein concentration for every constant
effective charge state,

Qeff(cP , cP
cMe

cP,crit
) = Qeff(cP,crit, cMe) , (8.31)

where in particular, for the couple (cP = cP,crit, cMe = cMe,crit) we reach the zero effective charge
state. In Fig. 8.11, we illustrate the scaled charge curves for the two concentrations of BSA, which
are used in the zeta potential measurements. Both, the measured zeta potential and the simulated
effective protein charge, become zero at nearly the same counter-ion concentration. The zero point
depends on the protein concentration: an increase in protein concentration is accompanied by the
need of a higher counter-ion concentration and this results in the shift observed in Fig. 8.11. In
the presented theory, such a shift is directly implied by the scaling of the effective charge curve
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Fig. 8.11: Comparison of zeta potential (exp) and effective charge (sim) of BSA. The vertical, dashed lines
indicate the border of the condensed phase for 5mg/ml BSA concentration, which ranges from
∼0.1 to ∼25 mM salt concentration.

given in Eq. (8.31) and is thus reproduced by our simulations as well. Close to the transition into
the condensed phase, both, the zeta potential and the effective charge of the proteins, cross zero.
In Section 8.3.1, this experimental result has already been discussed as a supporting factor for the
assumption that the charge inversion determines the first phase transition.

The zeta potentials and the effective protein charge curves exhibit similar shapes. Here, we
note that for the zeta potential one clearly sees a saturation effect when the counter-ion concen-
tration is increased. As explained in Section 8.3.4.2, the saturation in the numerical studies takes
place at higher salt concentrations due to deficiencies of the theoretical model for high metal ion
concentrations and therefore cannot be seen.

8.3.6 Conclusion

In the last sections, we proposed and applied a modified titration model, which explicitly incor-
porates the binding of metal ions to localized amino acid side chains (c.f. Section 8.3) in order to
account for the highly interesting effect of reentrant condensation in protein solution. With this
model, we predicted the bound ion distribution on the surface of an isolated protein. The low
metal ion concentration together with the high binding affinity justifies the assumption of a near-
quantitative binding of the metal ions to the surface exposed acidic side chains of every protein and
this implicitly explains the linear shape of the first phase transition curve. With only one optimized
parameter, the numerically determined curves of charge inversion lie next to the experimentally
observed first phase transition for a set of four analyzed proteins. Experimentally measured zeta
potentials agree well with the effective charge curves and therefore support the theoretical concept
of specific metal ion binding.

Moreover, our model qualitatively explains the second phase transition, i.e., the dissolving of
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the protein from the condensed phase: the increase of the counter-ion concentration above c∗

causes the counter-ions to further bind to free active sites. The aggregates finally re-dissolve, when
m∗∗ counter-ions are bound and the overall interaction becomes electrostatically repulsive again.
A quantitative prediction of m∗∗ and c2 remains a challenge, since ion-ion correlations as well
as protein-protein interactions are not included in the current theoretical model. To take those
interactions into account, we have to know more about the balance of attractive and repulsive
forces in the condensed phase.

To simulate the protein-metal ion binding process and to transfer the numerical results to the
experimental data, we made a number of approximations and assumptions, which certainly limit the
range of interpretation. Despite its simplicity, the proposed theory can consistently explain all the
experimental observations going along with the first phase transition of reentrant condensation.
Therefore, it is the first theoretical model, which can reasonably elucidate this highly complex
phenomenon.
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Chapter 9

Summary and outlook

This thesis focuses on the theoretical modeling and the deeper understanding of two types of
electrostatic interactions in biomolecular systems: the main part of this work aims at describing the
water-water correlations due to the hydrogen bond network, whereas the second part is concerned
with the electrostatic effect of additionally solvated ions.

By recalling the electrostatic material equations and its adaption to biomolecular systems in the
Chapters 2-3, we provided a self-sufficient background for all following considerations.

In Chapter 3, we further re-investigated and partly corrected the derivations of nonlocal elec-
trostatics done in [52]. Additionally, we included the ideas given in [39] by the introduction of
an additional, physical field, the so called correlation field, which captures the contribution to the
polarization field due to the nonlocal water correlations (c.f. Section 3.3.2). Although this field
has already been defined in previous work, its physical meaning, which of course is important to
correctly model its influence, has not been investigated yet. In Chapter 3, we gave for the first time
an interpretation of the correlation field. Within this study, we realized that the already established
Lorentzian water models [33, 39, 52] lack in explicitly incorporating the physical influence of the
biomolecular surface as a disturbing factor for the water network. The crucial impact of dielectric
boundaries or solid-liquid interfaces on the water correlations, however, is experimentally proven
and among others becomes evident as surface tension or first-shell effects [20,51].

In Chapter 4, we proposed an extended integral representation of the dielectric operator. The
extension consists of additional boundary value integrals, whose physical meaning is apparent in the
corresponding differential formulation: they determine the boundary conditions of the correlation
field on the molecular surface (c.f. Section 4.3). With this theoretical formulation, we go beyond
the previous models [39,52] and further shed light on their physical approximations: the so called
Newton Vector model (NVM) is the model presented in [39]. Therein, the correlation field is directly
deduced from the original Lorentzian model [33], which describes water without any disturbances
due to dielectric boundaries. Thus, the NVM ignores a possible change of the correlation field
on the molecular surface (c.f. Section 4.3.1). The so called Dirichlet Vector model (DVM) is the
vectorial analog of the scalar model discussed in [52]. It constitutes another extreme: because of
the spatial constraints and the high electrostatic potential, the correlation field is set to zero on
the molecular surface (c.f. Section 4.3.2), which corresponds to a maximization of the hydrogen
correlations.

Besides the deeper understanding of these already established nonlocal models, this novel for-
mulation opens a new dimension for a successful modeling of water correlations in biomolecular
applications, accounting for the biomolecular surface as a disturbing or supporting factor of the
hydrogen bond formation.

The general integral formulation reveals another interesting aspect concerning the field energy
of the biomolecular system: the additional boundary integrals cause an additional energy con-
tribution. Since the boundary integrals determine the behavior of the water correlations on the
molecular surface, we interpret these energy contribution as a measure for the energy comprised
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in the reorientation and breaking of hydrogen bonds (c.f. Section 4.3). In continuum theories,
where the water’s structural effects are not further considered, such entropic cavity terms have to
be explicitly added (c.f. Section 3.1.4.2).

In prospect of a broader application of nonlocal electrostatics, models based on a gradient for-
mulation are, if not necessary, at least preferable, as they reduce the high demand on memory and
runtime of the solution procedure for the vectorial equations [39]. Thus, based on the two vecto-
rial models, the NVM and the DVM introduced above, we physically motivated two approximated
models, the Dirichlet Scalar model (DSM) and the Newton Scalar model (NSM) in Chapter 5.
Both deal with a gradient ansatz of the vectorial nonlocal fields. The similarity of the potentials
of the vectorial and the scalar nonlocal models in the spherically symmetric case encouraged us to
consider these scalar models in further studies (c.f. Section 5.3).

Having provided a novel nonlocal formulation and having derived a set of different, nonlocal
models, Chapter 6 is dedicated to developing a numerical tool to easily implement and solve the
proposed as well as future models of nonlocal electrostatics. The method of choice was the Explicit
Jump Immersed Interface method (EJIIM). On the one hand, this method offers all advantages of
finite difference schemes such as an easy extensibility and the possibility to use efficient numerical
schemes to solve the algebraic equations. On the other hand, it yields highly accurate results (c.f.
Section 6.2). Indeed, the EJIIM lives up to its promise as could be demonstrated by a detailed,
numerical comparison with the DSM potentials generated by the Boundary Element method (BEM)
(c.f. Section 6.4).

The exterior boundary condition, which is a necessary input for the EJIIM, is provided by
the potentials of the charge distribution directly immersed in the solvent (c.f. Section 6.2.4).
The theoretical considerations as well as the numerical results impressively demonstrated that
these boundary conditions do not spoil the accuracy of the solution. Indeed, for the physically
reasonable choice of a constant inner dielectric response εΩ = 2ε0, the study of the analytical
boundary approximations for the DSM reveals that its evaluation in the whole outer region yields
an excellent estimation of the numerical solution (c.f. Section 6.4.2 and Section 7.2.1.1). This
means that we found a fast analytical approximation of the electrostatic potential φΣ in the DSM.

The accuracy of the EJIIM relies further on an adequate description of the molecular surface in
a 3-dimensional Cartesian grid. We developed and implemented a numerical tool to generate the
grid-based SES, SAS, and VdW surface information of an arbitrary molecule. The algorithm is
based on the fact that all of these surface models can be constructed by an union of spheres (c.f.
Section 6.3). Moreover, we combined this algorithm with a marching cubes algorithm in order to
generate surface triangulations, which - after an automated coarsening step - are suitable as input
for the BEM (c.f. Section 6.3.5). Thus, our algorithm for the grid-based surface generation opens
not only the possibility for a fully automated finite difference solver but eventually paves the way
for an automated BEM to compute nonlocal electrostatic potentials of biomolecules.

Besides extensive studies of the BEM and the EJIIM in terms of accuracy and convergence,
we solved the nonlocal electrostatic equations for various proteins in Chapter 7. A comparison of
the different nonlocal and local electrostatic potentials reveals that the shielding effect of the water
network causing a higher outer electrostatic potential is predicted in all nonlocal models. Moreover,
all these models predict similar electrostatic field energies. We conclude that in order to capture
the nonlocal features in electrostatic theories, i.e., in order to go beyond the local electrostatics, all
the proposed models are appropriate as starting point.

A closer look on the differences of the nonlocal models, however, reveals that on average the
NVM yields a higher potential near the molecular surface than the other nonlocal models. While
for small molecules with only a few buried charges, the variations in magnitude are marginal (c.f.
Section 7.1), they are most obvious for molecules with a charge distribution next to the dielectric
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boundary. In particular, at the entrance area of the binding pocket of trypsin, the electrostatics
sensitively hinges on the chosen nonlocal model (c.f. Section 7.2). We interpreted this finding in
terms of the different behavior of the correlation field on the molecular surface (c.f. Section 7.2.1.3).
vanishing correlation field in the DSM.

Concerning these water correlation studies we now draw a conclusion, which comprises theoretical
ideas and application projects for future progress.

First, we conclude that in comparison to local electrostatics all the nonlocal models reveal the
same order of magnitude in the electrostatic potential. This means that the overall nonlocal features
are well represented and stable against slight variations of the boundary condition. In this respect,
it is reasonable to pursue the nonlocal scalar approaches which are feasible for a numerical solving
procedure.

If the aim of a study is the detailed and accurate modeling of the potential on the molecular
surface, we found that boundary effects become important. This holds, in particular, when the
charge distribution becomes complex as well as when the molecule’s extension exceeds the cor-
relation length of water. A decision on the question which theoretical model is most suitable in
representing realistic potentials, however, cannot be given on the basis of the presented comparison.
All the implemented models do not yet fully exploit the new formulation as they enforce a globally
uniform nonlocal behavior on the molecular surface: the Newton models enforce an undisturbed,
whereas the Dirichlet models enforce a vanishing correlation field. With the new formulation, we
gain the possibility to account for variations of the correlation field on the molecular surface in
a nonetheless continuum description. Local variations of the dielectric response can, for instance,
be caused by regions of high polarity or by surface exposed amino acids which are able to bind
water molecules due to hydrogen bonds. Thus, future work lies in the careful study of experimental
data that reveal the structural features of water within the first and second solvation shell. The
hydrogen bonds are, for example, studied in [51], where THz spectroscopy provides new insight
“in the collective dynamics of water molecules on a spatial scale spanning several solvation shells”.
Besides experimental data, ab initio molecular dynamic simulations allow for a detailed time and
space resolution of the molecular system, which makes them attractive guides for a conception of
boundary conditions in our framework.

Second, with the new theoretical and numerical framework, we are now in the position to develop
a fully automatic, robust solver for various, (non)local electrostatic models freely available in a
biomolecular framework. This is necessary to make the nonlocal model available for the scientific
community. In order to achieve this aim, the current Matlab implementation of the EJIIM has to
be transferred to C++ and combined with its - up to now separate - input generator. Simultaneous
to this task, a range of technical details can easily be incorporated to speed up the method, for
instance, a parallelization of the merging procedures for the grid-based surface generation as well
as the implementation of multigrid techniques for an iterative, fast and efficient solving procedure.
Further, with the accurate grid-based surface information, we offer the possibility for an automatic
BEM for (non)local electrostatics of biomolecules, as well. The only requirement is the integration
of a mesh coarsening procedure, which can be applied on the triangulation originally generated
by the grid-based surface generator. A suitable algorithm could be the Quadric Edge Collapse
Decimation algorithm by M. Garland and P. Heckbert [44].

Besides the aim to directly solve the nonlocal electrostatic model equations, it is often desirable
to have a fast and efficient estimation of the electrostatics within a molecular system. As discussed
above, we proposed an analytical approximation of the electrostatic potential φΣ in the DSM for
the parameter regime εΩ ≈ ε∞. This means that instead of solving the complex system of differ-
ential equations, we found an extremely efficient approximation of the outer potential predicted
by the DSM. It captures the physics of nonlocal electrostatics, while improving the speed of the
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calculations. In this way, it is comparable with the role of the Generalized Born model as fast ap-
proximation of the electrostatic potential within the Poisson-Boltzmann theory. Incorporating this
fast prediction within a biomolecular software package offers attractive applications. For instance,
for the first time it enables to study the dynamics of ligands searching for the protein’s binding
pocket within the nonlocal theory of electrostatics.

A task which is essential for further application of nonlocal electrostatics to biomolecular research,
such as solvation studies of biomolecules in their natural surrounding, is the design of a parameter
set of the atom type radii optimized for the nonlocal response. Commonly used force fields [48,84,
98, 116, 125] are based on parameter sets, which work well using a local electrostatic contribution.
With a “nonlocal parameter set” at hand, physically meaningful quantities, such as the solvation
energy of molecules, but also the binding affinities of small ligands to the protein’s binding pocket,
can be studied and compared to available experimental data. We mentioned above that the general
nonlocal theory provides contributions to the electrostatic field energy which originate from the
mechanical work needed for the cavity formation, i.e., water molecules are urged to make room for
the biomolecule, implying a reorientation of the hydrogen bonds. The study of these energy terms
has to accompany the parameter optimization as it promises a fruitful unification of entropic and
electrostatic energy terms.

In Chapter 8 we extend our discussion to ionic solutions.
First, we succeeded in describing the proteins in ionic solutions of correlated water molecules,

i.e., we combined the linearized Poisson-Boltzmann theory with a nonlocal water model (c.f. Sec-
tion 8.2). In the differential formalism, the ionic screening is mediated by a Yukawa operator. This
is an interesting result, as the nonlocal shielding of the correlated water molecules is characterized
by a Yukawa operator as well. The detailed discussion of the nonlocal correlation and the ionic
screening effects on the spherically symmetric case revealed that the ion screening dominates the
overall electrostatics and suppresses the shielding effect of correlated water. In order to demonstrate
the possibilities of the EJIIM we extended the DSM to account for the screening effect of small
ions. First applications of the extended nonlocal model on small molecules support that the ionic
screening strongly weakens the electrostatic potential in the regime of realistic Debye screening and
water correlation lengths. Questions such as finite size effects of the ions as well as the dependence
of the water correlations on the salt concentration have only been touched, so that further studies
must follow in order to clarify the impact of these approximations. However, this study clearly
demonstrates that, by means of the newly developed finite difference method, we can address such
interesting and relevant problems in the future.

Furthermore, in Chapter 8, we focused on another type of correlations, namely the coordinative
binding of metal ions to the protein surface. This specific interaction is responsible for a range of
interesting and important effects in protein solutions, such as the reentrant condensation of proteins
(c.f. Section 8.3.1). In order to qualitatively explain this recently discovered effect, we proposed
a simple, heuristic model that considers the specific metal ion binding by attributing a binding
affinity constant for metal ions to negatively charged, surface exposed amino acid side chains (c.f.
Section 8.3.2). This idea reminds of the theoretical treatment of titration experiments, where the
binding and the release of hydrogens are considered by dissociation constants which depend on
the type of amino acid as well as on the protein environment [111]. Because of this analogy, we
implemented a modified titration program that predicts the ion distribution on the surface of an
isolated protein as a function of metal ion concentration.

With the assumption of a near-quantitative binding of the metal ions to the protein’s surface,
the linear shape of the first transition curve is implicitly explained. As the simulation predicts
the distribution of metal ions on the surface of a single protein, we proposed a simple estimation
of the protein concentration for which the simulation results are valid. With only one optimized
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parameter, the numerically determined curves of charge inversion lie next to the experimentally
observed first phase transitions for a set of four proteins. A further support for the proposed theory
of specific binding is given by a qualitative agreement of the shape of the binding curves and the
experimentally measured zeta potentials.

With the beginning of the condensed phase, attractive protein-protein interactions cause the
protein to aggregate. In order to incorporate such interactions and to finally make predictions for
the condensed phase as well as for the second phase transition curve, the simulations have to be
extended to protein solutions. An appropriate Monte Carlo model, which is capable to account
for both, the specific correlations between protein and metal ions and protein-protein interactions,
is described by Kesvatera and coworkers [68] with respect to protonation theory. The effects of
multivalent ions in biomolecular systems are highly complex and can also originate from ion-ion
correlations [46]. Although our simple theory qualitatively explains the characteristics of reentrant
condensation in protein solutions, a focus of future work must also be the inclusion of such ion-ion
correlations in the theoretical framework in order to assess their effect.

In summary, we pursued different directions, namely theoretical studies, the development of new
numerical tools as well as model extensions, to progress in the understanding of correlation induced
electrostatic phenomena and their treatment in biomolecular systems.

In our opinion, the theoretical results of this thesis have shown that the theory of nonlocal
electrostatics unifies important aspects relevant in biomolecular systems. This is, on the one hand,
the overall electrostatics of the solute and the solvent and, on the other hand, first shell effects of
the water network around the molecule. In this way, the transition from the currently established
“homogeneous continuum” approximation to what can be called a “structured continuum” - a
continuum that is not blind to correlations among its “constituents” - might imply a progress
which might drastically change our current understanding of many electrostatically dominated
processes on a molecular scale.

The numerical tools and the analytical approximations we developed for the water correlations
and for the specific ion-binding complete the theoretical ideas of this thesis. They are innova-
tive tools and necessary prerequisites for further studies of correlation phenomena in biomolecular
systems.

We hope that the work presented in this thesis - the incorporation of specific boundary effects
into the equations of nonlocal electrostatics, the development of an efficient and accurate finite
difference solver, and the numerical description of an ion-binding process - serves as a contribution
to a deeper understanding of correlation induced electrostatical effects.
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Chapter 10

Appendix

10.1 Notations relating to spaces of integrable functions

For a modern theory of partial differential equations, the classical concepts of continuity and dif-
ferentiability turn out to be insufficient, since they usually demand too much regularity of the
functions we want to study. This can, for instance, be seen on the transmission conditions in
electrostatic problems of different dielectrics derived in Section 2.2.2: we found that the normal
component of the electrostatic field E has a discontinuous jump on the interface Γ of the two
different dielectrics and thus, the electrostatic field is not differentiable on Γ. The Sobolev spaces
are the modern replacement for classical spaces, such as the space of continuously differentiable
functions C1, in which to look for solutions of partial differential equations.

In the following, we want to give a brief definition of the Sobolev spaces we introduced in
Section 4.2 to define solutions of boundary and transmission problems of the Yukawa operator.
As the mathematical theory is beyond the scope of this work, we refer to [27, 52, 90, 121] for an
extended introduction and a complete definition of weak differentiability and Sobolev spaces.

10.1.1 Sobolev spaces for open subsets Ω of Rd

Definition 10.1 A function f on Ω is stated to be locally integrable in Ω, if f is integrable over any compact
subset τ ⊂ Ω. The space of integrable functions on Ω is denoted by L1

loc(Ω).

Definition 10.2 A locally integrable function f ∈ L1
loc(Ω) is said to possess a generalized or weak derivative

with respect to x if there exists a locally integrable function v ∈ L1
loc(Ω), with∫

Ω

v(x)φ(x)dx = −
∫
Ω

f(x)∂xφ(x)dx ,

for all infinitely-differentiable function φ with compact support in Ω, i.e., φ ∈ C∞(Ω). In that case, we say
that

∂xf(x) := v(x)

is the generalized derivative of f(x). Iterating this definition, we can define partial derivatives ∂α of arbitrary
positive order α. This definition is motivated by the integration technique of “Integration by parts”.

Definition 10.3 Let Ω be an open subset of Rd. For k ∈ N0, the Sobolev space W k
2 (Ω) is defined by

W k
2 (Ω) := {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) for |α| ≤ k} ,

where α = (α1, . . . , αd) ∈ Nd0. |α| = α1 + · · ·+αd, and ∂αu(x) = ∂α1 . . . ∂
α
d u(x) are to be understood as weak

partial derivatives.
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The Sobolev space W k
2 (Ω) is equipped with the norm

||u||Wk
2 (Ω) :=

∑
|α|≤k

∫
Ω

|∂αu(x)|2dx

 1
2

and it is a Hilbert space equipped with inner product

(u, v)Wk
2 (Ω) :=

∑
|α|≤k

∫
Ω

∂αu(x)(∂αv(x))∗dx .

The definition of Sobolev spaces W l
2(Ω) can be extended for any arbitrary l > 0:

Definition 10.4 Let Ω be an open subset of Rd. For s = k + µ with k ∈ N0 and µ ∈ (0, 1), the Sobolev
space W s

2 (Ω) is defined as

W s
2 (Ω) = {u ∈W k

2 (Ω) : |∂αu|µ,Ω <∞ for |α| = k} ,

where the Sobolev-Slobodeckii semi-norm | · |µ,Ω is given as

|u|µ,Ω :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2µ
dx dy

 1
2

.

Again, W s
2 (Ω) is a Hilbert space with respect to the inner product

(u, v)W s
2 (Ω) := (u, v)Wk

2 (Ω) +
∑
|α|=k

∫
Ω

∫
Ω

[∂αu(x)− ∂αu(y)][∂αv(x)− ∂αv(y)]
|x− y|d+2µ

dx dy

A second family of Sobolev spaces Hs(Rd) can be introduced by using the Fourier transform

ũ(ξ) =
∫
Rd

e−i2πx·ξu(x)dx

for u ∈ L1(Ω). The Sobolev space Hs(Rd) for s ∈ R is defined by

Hs(Rd) := {u ∈ S ′(Rd) : J su ∈ L2(Rd)} ,

where S ′ is the space of the continuous linear functionals on the Schwartz space S(Rd) of rapidly
decreasing functions in C∞(Rd),

S(Rd) := {φ ∈ C∞(Rd) : sup
x∈Rd

|xα∂βφ(x)| <∞ for all multi-indices α and β} ,

and where J s is the Bessel potential of order s,

J su(x) =
∫
Rd

(1 + |ξ|2)
s
2 ei2πx·ξdξ for x ∈ Rd .

The Sobolev spaces Hs(Rd) and W s
2 (Rd) coincide for each s ≥ 0.
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For general domains Ω ⊂ Rd, the following Sobolev spaces Hs(Ω) are defined:

Hs(Ω) := {u = ũ
∣∣
Ω

: ũ ∈ Hs(Rd)} ,

with the norm
||u||Hs(Ω) := inf

ũ∈Hs(Rd),ũ
∣∣
Ω

=u

||ũ||Hs(Rd) .

Further, we define H̃s(Ω) as the closure of C∞0 (Ω) under the full Hs(Rd)-norm and H̃s
0(Ω) as the

closure of C∞0 (Ω) under the Hs(Ω)-norm, i.e.,

H̃s(Ω) := C∞0 (Ω)
||·||

Hs(Rd) ,

Hs
0(Ω) := C∞0 (Ω)

||·||Hs(Ω)
.

This finally allows us to give the definitions of the Sobolev spaces for 0 < s ∈ R:

Definition 10.5 Let s ∈ R. For 0 < s, the Sobolev spaces Hs(Ω) and H̃s(Ω) are defined as the closures of
C1(Ω) and C1

0 (Ω) under the corresponding Sobolev-Slobodeckii norm. For s < 0, the Sobolev space Hs(Ω)
is defined as the dual space of H−s(Ω) with associated norm

||u||Hs(Ω) :=
∑

06=v∈H̃−s(Ω)

∫
Ω

u(x)v(x)dx

||w||H̃−s(Ω)

Similarly, H̃s(Ω) is defined as the dual space of H−s(Ω) for s < 0.

10.1.2 Sobolev spaces on boundaries Γ

We assume that Ω ⊂ Rd is a Lipschitz domain. The L2-norm on the boundary Γ = ∂Ω is defined
as

||u||L2(Γ) :=

∫
Γ

|u(x)|2dxs

 1
2

.

For s ∈ (1, 0), the Sobolev-Slobodeckii-norm is defined by

||u||Hs(Γ) :=

||u||2L2(Γ) +
∫
Γ

∫
Γ

|u(x)− u(y)|2

|x− y|d−1+2µ
dxs dys

 1
2

Definition 10.6 Let Ω ⊂ Rd be a Lipschitz domain with boundary Γ = ∂Ω. The spaces L2(Γ) and Hs(Γ)
are defined as closures,

L2(Γ) := C0(Γ)
||·||L2(Γ) ,

Hs(Γ) := C0(Γ)
||·||Hs(Γ) for s ∈ (0, 1) .
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The spaces L2(Γ) and Hs(Γ) for s ∈ (0, 1) are Hilbert spaces equipped with the inner products

(u, v)L2(Γ) :=
∫
Γ

u(x)(v(x))∗dxs ,

(u, v)Hs(Γ) := (u, v)L2(Γ) +
∫
Γ

∫
Γ

[u(x)− u(y)][v(x)− v(y)]∗

|x− y|d−1+2µ
dxs dys for s ∈ (0, 1)

For negative indices s, the Sobolev spaces Hs(Γ) are defined by duality with respect to the L2(Γ)-
inner product.

10.1.3 Spaces of the Helmholtz decomposition

In Section 5.1 we introduced the so called Helmholtz decomposition, which describes the orthogonal
decomposition of the vectorial space of integrable functions defined in a domain Ω, L2(Ω)3. To this
end, we introduced various function spaces which we define in the following. For an detailed
discussion, the interested reader is referred to [29], in particular, Chapter IX. on p. 200.

L1(Ω) L1(Ω) is the space of measurable functions on Ω such that (|f(x)|, x ∈ Ω)
is integrable on the open, bounded set Ω ∈ R3, i.e.,∫

Ω
|f(x)| dx <∞ .

This is a Banach space equipped with the norm

f →
∫

Ω
|f(x)| dx .

L2(Ω) L2(Ω) is the space of measurable functions on Ω such that (|f(x)|2, x ∈ Ω)
is integrable on the open, bounded set Ω ∈ R3, i.e.,[∫

Ω
|f(x)|2 dx

] 1
2

<∞ .

This is a Banach space equipped with the norm

f →
[∫

Ω
|f(x)|2 dx

] 1
2

.

Based on the previous definitions of L2(Ω) and the Sobolev space H1(Ω), we can define the three
spaces in which the vector space of integrable functions can be orthogonally decomposed. In this
case, Ω has to be a regular and bounded set in R3:

H0(curl 0,Ω) H0(curl 0,Ω) := {u ∈ L2(Ω)3,∇×u = 0,u×n
∣∣
∂Ω

= 0}

H0(div 0,Ω) H0(div 0,Ω) := {w ∈ L2(Ω)3,∇ ·w = 0, w · n
∣∣
∂Ω

= 0}

L2
rg(Ω) L2

rg(Ω) :=
(
curlH1(Ω)3

)
∩
(
gradH1(Ω)

)
176



10.2. Continuity condition of the electrostatic field and its potential

Fig. 10.1: Continuity of the tangential derivatives of the electrostatic potential on an arbitrary surface Γ
implies the continuity of the potential itself on Γ. The red point on the surface represents the
position r for which the derivative is calculated.

10.2 Continuity condition of the electrostatic field and its potential

The Maxwell equations tell us that the electrostatic field can be expressed - up to a gauge constant
- by the gradient of a scalar potential which we denoted the electrostatic potential φ. In the
following, we prove that the continuity of the tangential components of the electrostatic field E
on an arbitrary surface Γ ⊂ R3 corresponds to the continuity of the electrostatic potential on this
surface:

n× (Eout(r)−Ein(r)) = 0, r on Γ
⇔ t · (Eout(r)−Ein(r)) = 0 and l · (Eout(r)−Ein(r)) = 0, r on Γ
⇒ φout(r)− φin(r) = 0, r on Γ ,

where n is the normal and {t, l} are the tangential vectors on the surface Γ at position r ∈ R3.

We know that the continuity of the tangential components t and l of the electrostatic field E
implies the continuity of the tangential derivatives of the electrostatic potential. Considering an
arbitrary tangential direction t at position r (red point in Fig. 10.1), we thus write

t · (Eout(r)−Ein(r)) = 0, r on Γ (10.1)
⇔ t · (∇φout(r)−∇φin(r) = 0, r on Γ (10.2)
⇔ ∂tφout(r)− ∂tφin(r) = 0, r on Γ . (10.3)

To progress further, we represent the partial derivatives as differential quotients with notations
given in Fig. 10.1:

∂tφout(r)− ∂tφin(r) = 0 (10.4)

⇔ lim
ε→0

(
φ(r+ + tε)− φ(r+)

ε
− φ(r− + tε)− φ(r−)

ε

)
= 0 (10.5)

⇔ lim
ε→0

(
φ(r+)− φ(r−)

)
= lim

ε→0

(
φ(r+ + tε)− φ(r− + tε)

)
(10.6)

Eq. (10.6) is valid not only for the tangential direction t, but for the whole tangential plane. Further,
it is valid for every point on Γ, especially for (r± + tε). Therefore, we conclude that the difference
of the potential itself is constant on Γ.

φ(x+)− φ(x−) = const , for all x on Γ . (10.7)

Setting this gauge constant to zero finally yields the continuity of the electrostatic potential on Γ.
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Fig. 10.2: Proteins consist of many amino acids which are connected by the so called peptide bond. The
amino acids differ by their side chain R.

10.3 Titration of amino acids

As discussed in Section 3, proteins consist of an arbitrary sequence of natural amino acids. The
situation is sketched in Fig. 10.2, where R represents the side chain which specifies the considered
amino acid. Some of these side chains are of acidic or basic nature, i.e., they possess functional
groups such as a hydroxyl or an amid group, which protonate or deprotonate depending on the
solution’s pH.

In the present work, we learned that it is of great importance to correctly model the biomolecular
system, in particular when we try to predict electrostatic quantities. For instance, a change in the
solution’s pH can change the charge state of the protein from a negative to a positive total charge.
The pH at which a molecule carries no net electrical charge is denoted its isoelectric point (pI).
The overall behavior of a protein solution highly depends on its characteristic pI value, for it affects
the solubility of a molecule at a given pH and finally causes precipitation.

This means that the protonation state as well as the pI value of a protein are important quan-
tities which should be calculated before a further postprocessing. A tool to predict the energetic
preferable protonation state is therefore desirable in a biochemical software package such as BALL.

Besides the solvation energy, the protonation state constitutes an indirect measure of the elec-
trostatics present in a biomolecular system. Having this in mind, the study of protonation states
is further a means to assess new electrostatic theories, such as the nonlocal electrostatics which is
analyzed in the first part of the present work.

Thus, we implemented a titration simulation program which numerically estimates the energeti-
cally optimal protonation state of all protonable side chains and predicts the protonation state of
the protein. The program is integrated in the BALL library as an additional postprocessing tool.

The dissociation constant Ka is a means to estimate the protonation state of acids. In the
following sections, we give a brief introduction to the concepts behind biomolecular pKa values and
titration states. First, in Section 10.3.1 we introduce the (measurable) pKa of an isolated amino
acid. In the subsequent section, we transfer this concept to an accumulation of amino acids, i.e.,
we discuss the corrections made in the case of a protein.

More background information and details on the implementation can be obtained from most
biochemistry or biophysical textbooks and from the original articles on pKa evaluation [11, 111,
150,151].

10.3.1 Dissociation constant and the pKa value of an amino acid

Let us consider the equilibrium reactions of a small acid

HA 
 H+ +A− , (10.8)
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Fig. 10.3: Isolated amino acids are capped with electrostatically neutral ends on both sides. The char-
acteristic side chain of arginine has a protonable amid group. The figure shows the equilibrium
reaction of the capped arginine. In dependence of the solvent’s pH the equilibrium state is shifted
towards the educts (unprotonated) or products (protonated).

or
H2A

+ 
 H+ +HA . (10.9)

The latter reaction is shown in Fig. 10.3 for the isolated amino acid arginine with its amid group
and neutral endcaps. The dissociation constant Ka of the acid characterized in the following by
index a is defined as the equilibrium constant of the reaction given in Eq. (10.9)

Ka = e−4dissG/(kBT ) ,

where 4Gdiss = GH+ + GA− − GHA is the corresponding free energy difference. Here, Ka is the
product of the activities of the reactants

Ka =
a+
H a
−
A

aHA
. (10.10)

Under ideal conditions, activities can be replaced with concentrations to give

Ka ≈
c+
H c
−
A

cHA
. (10.11)

The dissociation constant can be related to the free energies of the starting materials and the
products by

− kB T lnKa = 4dissG = GH+ +GA− −GHA . (10.12)

Using base-10 instead of the natural logarithm for measuring pH, the pKa is finally defined as

pKa = − logKa = − lnKa

ln 10
=
4dissG

kB T ln 10
. (10.13)

Often, it is of interest to know the energy difference 4protG of the protonated and the unproto-
nated acid in dependence of the H+ concentration, i.e., as a function of the solvent’s pH, because
this reaction takes place when the system equilibrates. Assuming that the activities are replaceable
by the concentrations, 4protG equals the logarithm of the ratio between the unprotontated and the
protonated acid. By re-arranging Eqs. (10.12) and (10.13) we obtain:

4protG := GHA −GA− ≈ −kB T ln
cHA
cA−

= ln 10 kB T (pH − pKa) . (10.14)
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Tab. 10.1: Standard pKa values of common titratable amino acids.

Amino acid standard pKa

Arginine 13.0
Aspartic acid 4.0
Cysteine 8.7
C-terminus 3.8
Glutamic acid 4.4
Histidine 6.3
Lysine 10.4
N-terminus 8.0
Tyrosine 9.6

Eq. (10.14) describes the fact that, when increasing the pH of a solution, the acid will turn from the
protonated into the unprotonated state (Henderson-Hasselbalch equation). For 4protG = 0, i.e.,
when the concentrations of unprotonated and protonated acids are equal in the thermodynamic
equilibrium, we see with Eq. (10.14) that in this case the pH of the solution equals the pKa value
of the acid.

The pKa value of the isolated amino acid as, for example, shown for arginine in Fig. 10.3 is
measurable in so called titration experiments. Tab. 10.1 lists some experimental pKa values of
natural amino acids [111]. As we will see in the next section, these standard pKa values provide
the basis for calculating pKa values of the corresponding amino acid in a protein environment.

10.3.2 pKa values in proteins

From the experimental view, it is difficult to determine the pKa values of the amino acids within
a protein, because this value highly depends on the chemical surrounding of the protonable amino
acids. Further, this means that, even if it had been possible to measure individual dissociation
constants of the protonable side chains within a protein environment, these values would not be
universal, but only valid for the protein in consideration.

Thus, the idea is to start with the pKa values of the isolated amino acid and mimic a thermo-
dynamic cycle where the isolated amino acid is transferred into the protein environment. This,
then, determines the pKa value of the considered amino acid in the protein, whereby we assume
that all the chemical complexity of protonation, such as bond making and breaking, is correctly
represented by the standard pKa values of the isolated amino acid. The corrections, which we
account for by the thermodynamic cycle, are due to the transfer and binding energies required to
move the isolated amino acid from water into the protein environment. The thermodynamic cycle
is exemplarily depicted for arginine in Fig. 10.4.

1 H+(aq) +A−(aq)→ HA(aq)
The corresponding free energy difference, i.e., the energy required or released when changing
the protonation state of the amino acid from its unprotonated (0) to its protonated state
(1) is determined by Eq. (10.14) with pKa set to the known standard pKa, denoted in the
following pKstnd

a :
4protG(HA(aq):0→1) = ln 10 kB T (pH − pKstnd

a )
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Fig. 10.4: Free energy cycle for the calculation of solvation energies drawn for arginine. The upper row
presents the isolated amino acid in its protonated (left) and unprotonated (right) state. The
lower row illustrates the same amino acid as a side chain of the protein sequence as implied by
brackets on both ends.

2 A−(aq)→ A−(protein)
The corresponding (electrostatic) transfer energy 4xferG(A−) describes the transfer of the
isolated unprotonated amino acid into the protein. This energy is approximated by its elec-
trostatic contributions, which can be calculated by solving the Poisson-Boltzmann equation:

4xferG(A−) = G(A−(protein)) −G(A−(aq))

3 HA(aq)→ HA(protein)
The corresponding (electrostatic) transfer energy4xferG(HA) describes the transfer of the iso-
lated protonated amino acid into the protein. This energy is approximated by its electrostatic
contributions, which can be calculated by solving the Poisson-Boltzmann equation:

4xferG(HA) = G(HA(protein)) −G(HA(aq))

4 HA(protein)→ H+(aq) +A−(protein)
Using the thermodynamic cycle illustrated in Fig. 10.4 we can derive a formula for the corre-
sponding free energy difference when changing the protonation state of the amino acid within
the protein from its unprotonated (0) to its protonated state (1):

4protG(HA(protein):0→1) = 4protG(HA(aq)) −4xferG(A−) +4xferG(HA)

The process we discussed here has not explicitly allowed for changes in the titration state of other
groups in the protein during protonation/deprotonation of the acid group of interest. Additionally,
it has not explicitly provided for conformational changes in the protein coupled to protonation
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and deprotonation. As such, we cannot claim to be computing true pKa values with this method.
Instead, we are calculating so-called intrinsic pKa values. The pKintr

a,i value of amino acid i results
from the previously explained thermodynamic cycle:

ln 10 kB T (pKstnd
a − pKintr

a ) = 4xferG(HA) −4xferG(A−)

In contrast to pKstnd
a , the dissociation constants pKintr

a incorporate the effect of the chemical and
electrostatic surrounding of the considered amino acid. However, to make such a definition unique
we have to define the surrounding, i.e., the titration state of all the other groups in the protein as
a certain fixed reference state. For the titration of proteins it is common to assume all titratable
amino acid groups to be in their uncharged state as reference.

10.3.3 Free energy difference for given protonation state

With the knowledge of the previous sections, we can calculate the free energy difference, ∆G(s0 →
s, pH) of an arbitrary state, defined by the state vector s, to the reference state s0 at given pH

∆G(s0 → s,pH) = (ln 10) kB T

N∑
i=0

si (pH − pKintr
a,i )

+
N∑
i=0

N∑
j>i

[qi(si) qj(sj)− qi(0) qj(0)]Wij ,

with Wij := Eij(1, 1)− Eij(1, 0)− Eij(0, 1) + Eij(0, 0) .

Eij(si, sj) denotes the interaction energy of the side chain i with side chain j

Eij(si, sj) =
∑
l

q(l,sj)φ(i,si)(rl) ,

where rl is the position of atom l in the active site j and φ(i,si) is the electrostatic potential of
the charge distribution of active residue i in charge state si with the dielectric boundary of the
protein. The addition/subtraction of the value Wij to/from the free energy ensures that for a
given charge state s of the system the electrostatic interaction terms between all atom groups (the
titratable and the background groups) are counted only once. The reason for the four terms and
their signs is that the product qi(si) qj(sj)Wij contributes only if both sites are charged, i.e., they
differ from the reference state. Thus, the expression for Wij includes the interaction energy Eij
with the correct (positive) sign for all combinations of anionic and cationic sites i and j in the
considered protonation states {si, sj}(qi qj = ±1 if both sites are charged) [111].

10.3.4 Monte Carlo simulation of protein titration

After providing the interaction matrix Wij and the intrinsic pKintr
a values, we have to sample the

state space and find the most probable protonation state. Because of the exponential dependence
of the number of protonation states on the number of titrating sites, we implemented a Monte
Carlo sampling in the way it is proposed in [16,111] and also explained in Section 8.3.2.2.

The final program consists of two steps: first, electrostatic calculations are executed. This yields
the interaction matrix Wij and the pKintr

a vector. Based on these quantities we find the titration
curves of all titratable sites by the Monte Carlo simulation. From these curves, the most probable
protonation state can be extracted for a given pH. The whole protocol is incorporated in BALL in
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order to offer the user to process and work with the correctly protonated biomolecule. Furthermore,
this titration program forms the basis for the ion binding experiments discussed in Section 8.3.

As a benchmark and testing example during the implementation, we used the triclinic crystal
structure of lysozyme, which is supplied in the examples of the MEAD library [11]. In the following,
we compare our results with those generated by MEAD: we prepared exactly the same input
information for the electrostatic calculations: first, we adopted the atom configuration, as well
as the radius and charge information from MEAD. Second, we adjusted the box dimensions and
the molecular surface definitions in the internal FDPB solvers of BALL and MEAD, respectively.
Our implementation offers the possibility to read the electrostatic data, which are required for
the calculation of the interaction matrix Wij and the pKintr vector from an external electrostatic
solver, such as APBS. This gives us the possibility to check the electrostatic calculations separately
from the final Monte Carlo procedure and to take advantage of the functionality which is given by
APBS.

Fig. 10.5: Titration curves of triclinic lysozyme. Upper: data generated by Monte Carlo simulation (lined)
and exact sampling of the state space (dotted) with the same interaction matrix and pKintr vector
(taken from MEAD). Lower: data generated by the external program MEAD (dotted) and by our
Monte Carlo implementation with input generated by (a) BALL finite difference solver (lined) and
(b) APBS finite difference solver (dashed). Physical parameters for the electrostatic calculations
are εin = 4, εout = 78.5, I = 0, parameters for the Monte Carlo simulation are Nfull = 50000,
Nequi=50000.
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10.3.4.1 Example: Lysozyme

With the following set of titratable residues {N-Terminus, C-Terminus, LYS, ASP, HIS, TYR,
GLU} we obtain a total number N = 21 of titratable residues for lysozyme.

Taking the same input in MEAD and in our implementation, we can compare the performance of
the Monte Carlo simulation. Fig. 10.5(upper) demonstrates that the Monte Carlo sampling results
in the same titration curves as an exact sampling of the state space1. Fig. 10.5(lower) shows the
results generated by three different finite difference solvers, the BALL internal solver, the MEAD
internal solver, and the APBS solver. As the finite difference method sensitively depends on the
grid resolution and the molecular surface definition, we started the electrostatic calculations as far
as possible with the same options. In summary, the results of all three finite difference solvers are
comparable except for one exception appearing in the results of MEAD (black dotted curve with
half pKa = 7.5 and black lined and dashed curve with half pKa = 12.5). For both, the APBS and
the BALL solver, we used two calculations to estimate the reaction field energies of the protein and
the isolated amino acids. As we used MEAD as a black box, such a modification was not possible
in MEAD, which explains the differences between the results generated by MEAD and the other
two solvers.

10.4 Three possibilities to calculate binding energies

Fig. 10.6: Binding energy by ”pure” solvation transitions.

In this section we give an overview on different methods to calculate the energy upon binding of
a molecule A and molecule B as sketched in Fig. 10.6. In Section 3.1.4.1, we have introduce the so
called solvation energy, here defined as the energy gain or loss when the dielectric medium in which
the charges are immersed is changed. Two scenarios are illustrated in Fig. 10.7, where the region
of the molecule’s dielectric response is increased or decreased, respectively.

In Section 3.1.4.1, we learned that the solvation energies can be expressed by the so called reaction
field energies, which are based on the reaction field potential. The reason is that in these transitions
the charges do not change their position and magnitude. Therefore, their self energy contributions
cancel out: assume the potential φ(r) to be the solution of the electrostatic Maxwell’s equation
and

φmol(r) =
1

4πε0εΩ

∑
i

qi
|r − ri|

the potential that originates from the external charges within the molecule environment, then, the
reaction field potential is defined by

φreac(r) = φ(r)− φmol(r) .

1An exact sampling is no more possible for more than approximately 30 titratable sites.
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Fig. 10.7: Two different solvation scenarios where the dielectric medium in which the charges are immersed
is changed.

When we speak of (4GAsolv) in the following, we mean the transfer energy of molecule A from
the molecule’s environment to the solvent environment, i.e., (4GAsolv) =

∑
i qiφreac(ri). When the

molecule A is transferred from a dielectric medium to another, where none of them is the molecular
surrounding, the solvation energy can be expressed by the difference of the reaction field energies of
the two different settings. The problem upon energy calculation is then reduced to the calculation
of reaction field energies.

With these definitions, we can express the energy upon binding a molecule B to a molecule A. In
the literature several ways are discussed to do this:

� Binding energy can be gained by subtracting the total free energies of the isolated molecules
from the one of the complex. This is often used in finite difference calculations, as the grid
self energy part cancels because of the subtraction. To completely avoid the grid self energy
contribution, one tries to express the thermodynamic cycle in solvation energy cycles as it is
done next.

Fig. 10.8: Binding energy by the total free energies.

� An inclusion of solvation energies is given by the following protocol [63]: the change in electro-
static binding energy is separated into three components which are described schematically in
Fig. 10.9: (1) the change in solvation energy of the molecule A on binding (44GAsolv), (2) the
change in solvation energy of the molecule B on binding (44GBsolv) and (3) the interaction
energy between molecules A and B (4GABint ) in the presence of solvent. The binding energy
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Fig. 10.9: Binding energy calculated by solvation energies and the Coulomb interaction energy of the
molecules in the molecule’s dielectric environment.

is then given by
4Gbind = 44GAsolv +44GBsolv +4GABint .

In this formalism, the change in solvation energy corresponds to partial desolvation of the
charged molecule A and B on binding by removing the high dielectric solvent from the
region occupied by the other molecule on binding and replacing it with the low dielectric
medium of the molecules, εΩ. This process corresponds to the loss of charge-solvent interaction
energy of the molecule on binding. The contributions of A and B can be considered as being
independent of one another. In the second step, charges are then transferred to the low
dielectric cavity created and the solvent screened interaction energy between molecules is
given by

GABint =
∑
i∈B

qiφi(A) =
∑
i∈A

qiφi(B) ,

where φi is the potential generated by the charged molecule at the location of a charge
qi in the low dielectric cavity. The interaction energy, GABint can be calculated either by
considering the solvent screened potential generated by the charges on the molecule A at
the molecule B, φi(A), or alternatively by that of the charged molecule B at the molecule
A, φi(B). Either route should yield an identical value for the interaction energy, subject to
very small numerical errors in the finite difference calculation. This overall description of the
electrostatic contribution to molecular association gives energies that are easily interpreted
as the gain in solvent screened interaction energy at the expense of the loss of solute-solvent
interaction energy. This processing is proposed in [63] and is basically used in [111].

� Another way to calculate the binding energy first determines the solvation energy contribution
to the binding. This is given by

Gsolvbind = 4GABsolv −4GBsolv −4GBsolv .

Gsolvbind comprises all the effects of the change in boundary. As already said before, the solvation
energies can be expressed by the reaction field energies, which only capture the change in the
molecule’s surface. This means that Gsolvbind lacks in considering the intermolecular Coulomb
interaction energies between molecule A and B in the complex AB immersed in the uniform
molecular dielectric response defined by εΩ. This interaction energy can be analytically
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Fig. 10.10: Binding energy by an explicit calculation of the transfer energies.

calculated
GABint,mol =

∑
i∈B

qiφi,mol(A) =
∑
i∈A

qiφi,mol(B) .

To complete the binding free energy cycle, we need to add these contributions to Gsolvbind to
obtain the total electrostatic contribution to the binding free energy

Gbind = Gsolvbind +GABint,mol .

This processing is proposed in the tutorial of APBS [8].
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[34] Revaz R. Dogonadze, Erika Kálmán, Alexei A. Kornyshev, and Jens Ulstrup. The Chemical
Physics of Solvation, Part C. Elsevier Science Ltd., 1985.

[35] R.R. Dogonadze, A.A. Kornyshev, and A.M. Kuznetsov. Phenomenological description of
polar media on the basis of an effective hamiltonian. Teor. Mat. Fiz., 15:127, 1973.

[36] Y. Duan and P.A. Kollman. Pathways to a Protein Folding Intermediate Observed in a
1-Microsecond Simulation in Aqueous Solution. Science, 282(5389):740–744, 1998.

[37] D. Eisenberg and A.D. McLachlan. Solvation energy in protein folding and binding. Nature,
319(6050):199–203, 1986.

[38] U.M. Elofsson, M.A. Paulsson, and T. Arnebrant. Adsorption of β-Lactoglobulin A and B
in Relation to Self-Association: Effect of Concentration and pH. Langmuir, 13(6):1695–1700,
1997.

[39] C. Fasel. A boundary integral formulation for nonlocal electrostatics. Ph.D. thesis, University
of Saarland, 2009.

[40] C. Fasel, S. Rjasanow, and O. Steinbach. A boundary integral formulation for nonlocal elec-
trostatics. In Numerical Mathematics and Advanced Applications - Proceedings of ENUMATH
2007, pages 117–124. Springer, 2008.

[41] W. Ferenc and A. Walków-Dziewulska. Complexes of Heavy Lanthanides and Yttrium with
3,4-dimethoxybenzoic Acid. Journal of Thermal Analysis and Calorimetry, 61(3):923–933,
2000.

[42] N. Fogh-Andersen, P.J. Bjerrum, and O. Siggaard-Andersen. Ionic Binding, Net Charge, and
Donnan Effect of Human Serum Albumin as a Function of pH. Clinical chemistry, 39(1):48–
52, 1993.

[43] E. Gallicchio, L.Y. Zhang, and R.M. Levy. The SGB/NP hydration free energy model based
on the surface generalized born solvent reaction field and novel nonpolar hydration free energy
estimators. Journal of Computational Chemistry, 23(5):517–529, 2002.

[44] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In
Proceedings of the 24th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’97, pages 209–216. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1997.

[45] John C. Gordon, Jonathan B. Myers, Timothy Folta, Valia Shoja, Lenwood S. Heath, and
Alexey Onufriev. H++: a server for estimating pKas and adding missing hydrogens to
macromolecules. Nucleic acids research, 33(Web Server issue):368–371, 2005.

[46] A. Yu. Grosberg, T. T. Nguyen, and B. I. Shklovskii. Colloquium: The physics of charge
inversion in chemical and biological systems. Review of Modern Physics, 74(2):329–345, 2002.

[47] Bertrand Guillot. A reappraisal of what we have learnt during three decades of computer
simulations on water. Journal of Molecular Liquids, 101(1-3):219–260, 2002.

191



Bibliography

[48] T.A. Halgren. Merck Molecular Force Field I-V. Journal of Computational Chemistry, 17:490–
640, 1996.

[49] T.M. Handel, S.A. Williams, and W.F. DeGrado. Metal ion-dependent modulation of the
dynamics of a designed protein. Science, 261(5123):879–885, 1993.

[50] J.B. Hasted. Aqueous Dielectrics. Chapman and Hall, London, 1973.

[51] M. Heyden, J. Sun, G. Mathias, H. Forbert, M. Havenith, and D. Marx. Dissecting the THz
spectrum of liquid water from first principles via correlations in time and space. Proceedings
of the National Academy of Sciences, 107(27):12068–12073, 2010.

[52] A. Hildebrandt. Biomolecules in a structured solvent. Rhombos-Verlag, 2005.

[53] A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, and H.-P. Lenhof. Novel Formula-
tion of Nonlocal Electrostatics. Phys. Rev. Lett., 93(10):108104, 2004.

[54] Francis Hill. Computer Graphics. Macmillan USA, 1th edition, 1990.

[55] Lars Hoermander. The analysis of linear partial differential operators I. Springer-Verlag, 2nd
edition, 1990.
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