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Einleitung

Sei A eine unitale C∗-Algebra und 1 ∈ A ihre Eins. Dann ist der reelle Unterraum Ah
der selbstadjungierten (oder hermitischen) Elemente versehen mit dem Kegel der posi-
tiven Elemente von A ein geordneter Vektorraum. Ferner gilt −‖a‖1 ≤ a ≤ ‖a‖1 für
alle a ∈ Ah. Dies zeigt, daß (die algebraische) 1 eine sogenannte Ordnungseins ist, und
daß die durch die Ordnungseins definierte Norm ‖a‖e = inf { r ≥ 0 | −r1 ≤ a ≤ r1 } mit
der Norm von A übereinstimmt. Mithin ist Ah ein vollständiger Ordnungseinsraum, also
insbesondere ein geordneter Banachraum. Sei B eine weitere unitale C∗-Algebra. Kadison
bemerkte, daß ein linearer Isomorphismus ϕ : Ah → Bh genau dann ein unitaler Ord-
nungsisomorphismus ist, wenn ϕ(a2) = ϕ(a)2 für alle a ∈ Ah. Das heißt, es gibt eine
Beziehung zwischen der Ordnungstruktur auf Ah und der Multiplikation auf A, genauer
dem von der assoziativen Multiplikation abgeleiteten Jordan Produkt a ◦ b = 1

2 (ab+ ba)
auf Ah. Dies legt es nahe, zum besseren Verständnis von C∗-Algebren zunächst die Struk-
tur der Ordnungseinsräume Ah zu untersuchen. Der erste Schritt bestünde dann darin,
diejenigen Ordnungseinsräume zu beschreiben, die als selbstadjungierte Teile von C∗-Al-
gebren auftauchen können. Wegen der Korrespondenz zwischen Ordnungseinsräumen und
deren Zustandsräumen ist dies äquivalent damit zu charakterisieren, welche kompakten
und konvexen Mengen Zustandsräume von C∗-Algebren sind. Für kommutative (unitale)
C∗-Algebren, die bekanntermaßen isomorph zum Raum C(X) der stetigen Funktionen auf
einem kompakten Hausdorffraum sind, sind dies genau die Bauer Simplexe, das heißt, die
Choquet Simplexe, deren Extremalpunktmenge abgeschlossen ist. Für beliebige C∗-Alge-
bren ist die Situation weitaus komplizierter. Bei obigem Ordnungsansatz ist sofort klar,
daß die Ordnungsstruktur der C∗-Algebra lediglich mit ihrer Jordanstruktur korrespon-
diert. Entsprechend wurden in [8] zunächst Zustandräume von JB-Algebren (Jordan-
Banach-Algebren) untersucht und abstrakt charakterisiert. Darauf aufbauend mußte in
[7] ein neues Konzept, die sogenannte Orientierung, die nicht mit der Ordnungsstruktur
zusammenhängt, eingeführt werden, um beschreiben zu können, welche Zustandsräume
von JB-Algebren Zustandsräume von C∗-Algebren sind. Insgesamt wurde damit also be-
antwortet, welche kompakten und konvexen Mengen Zustandsräume von C∗-Algebren
sind, nämlich diejenigen Zustandsräume von JB-Algebren, die orientierbar sind. Dieses
an sich schöne Ergebnis hat bisher, obschon es bis in die Gegenwart hinein Interesse aus
der Quantenphysik an den Arbeiten von Alfsen und Shultz gibt (vgl. z. b. [41, 42] und [43])
leider keine allzugroße mathematische Beachtung gefunden. Ein Grund dafür mag sein,
daß die Orginalarbeiten recht schwer lesbar sind. So erschienen inzwischen zwei Bücher
[5, 6], in denen Alfsen und Shultz das Konzept der Orientierung und die darauf beru-
hende Charakterisierung von Zustandsräumen von C∗-Algebren und auch von normalen
Zustandräumen von W ∗-Algebren ausführlich vorstellen. Andere Gründe für die geringe
Beachtung könnten aber auch schlicht im Umfang der Arbeit liegen und darin, daß eine
Charakterisierung mit Hilfe der Orientierung schlecht handhabbar scheint. Welche kom-
pakten und konvexen Mengen sind denn orientierbar? Um diese Frage zu beantworten,
müßte man zunächst wissen, daß jede von zwei Extremalpunkten erzeugte Seite (abge-
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Einleitung

sehen von den trivialen Fällen einpunktig oder die Verbindungsstrecke beider Punkte zu
sein) affin-isomorph zur abgeschlossenen Einheitskugel des R3 ist. Zu diesen Seiten läßt
sich dann eine von zwei möglichen Orientierungen wählen, abhängig von der Basiswahl
des R3. Alsdann müßte man zeigen, daß es eine Auswahl von Orientierungen zu all diesen
Seiten gibt, die über eine gewisse Stetigkeitseigenschaft verfügt. Ein weiterer Nachteil ist,
daß Orientierung in Abhängigkeit von der Existenz von Extremalpunkten definiert ist.
Daher ließ sich dieser Ansatz nicht ohne weiteres dazu benutzen, normale Zustandsräume
von W ∗-Algebren zu charakterisieren, siehe hierzu [34].

Meine These ist es, ausschließlich die Ordnungstruktur, genauer die Matrixordnung, von
C∗- und W ∗-Algebren zu untersuchen. Hintergrund sind dabei folgende seit langem be-
kannte Festellungen: WennA und B zwei C∗-Algebren sind, so sind auchMn(A) = A⊗Mn

und Mn(B) C∗-Algebren für alle n ∈ N, und zwar auf genau eine Weise, da Mn nuklear
ist. Insbesondere sind Mn(A) und Mn(B) geordnete Vektorräume. Eine lineare Abbil-
dung f : A → B heißt n-positiv, wenn ihre n-te Amplifikation f (n)([aij ]) = [f(aij)] eine
positive Abbildung ist. Nun gilt, daß ein linearer Isomorphismus ϕ : A → B genau dann
ein ∗-Isomorphismus ist, wenn er ein 2-bipositiver unitaler Ordnungsisomorphismus ist,
vgl. [60, 24]. Dies bedeutet, daß die Multiplikation von C∗-Algebren – ohne Umweg über
das Jordanprodukt – durch ihre Matrixordnung bestimmt ist. Ich werde beschreiben,
welche Operatorsysteme C∗- bzw. W ∗-Algebren sind, siehe Theorem 3.83 und Theorem
2.19. Wegen der Korrespondenz zwischen Operatorsystemen und deren matrix-konvexen
Zustandsräumen ist dies äquivalent dazu, diejenigen kompakten und matrix-konvexen
Mengen zu charakterisieren, die matrix-konvexe Zustandsräume von C∗-Algebren sind
bzw. diejenigen matrix-konvexen Mengen, die normale matrix-konvexe Zustandsräume
von W ∗-Algebren sind. Das Voraussetzen einer Matrixordnung ist zwar eine stärkere
Forderung als Ordnung plus Orientierung. Andererseits erklärt die Matrixordnung die
Orientierung, und es ergibt sich ein einfacherer und durchsichtigerer Zugang. Am Ende
liefern die hier vorgestellten Methoden sogar eine abstrakte Beschreibung der reinen Ma-
trixzustände von C∗-Algebren, siehe Theorem 3.87. Ein solches Ergebnis wurde bisher
nicht erreicht und folgt auch nicht aus [5, 6]. Es ist wohl möglich, eine Charakterisie-
rung des reinen Zustandsraumes unter Verzicht von Matrixordnung zu erhalten (ähnlich
der Arbeiten von Alfsen und Shultz über den ganzen Zustandsraum). Landsman schlägt
hierzu in [43] (inspiriert von [56]) sogenannte ”uniform Poisson spaces with transition
probability“ vor, ohne aber ein volles Resultat zu liefern, siehe die auf Theorem 3.87 fol-
genden Bemerkungen.

Der Inhalt der Arbeit gliedert sich wie folgt: Im ersten Kapitel werden die matrix-geord-
neten Versionen von (approximativen) Ordnungseinsräumen und basis-normierten Räu-
men eingeführt. Dies sind die (approximativen) Operatorsysteme und die matrix-basis-
normierten Räume. Es wird eine kurze Einführung in die Theorie matrix-konvexer Mengen
aus [30] gegeben. Diese umfaßt die sogenannte matrix-affinen Abbildungen und die Kor-
respondenz zwischen Operatorsystemen und matrix-konvexen Mengen aus [62]. Während
die Theorie der Operatorsysteme seit langem bekannt ist, vgl. [18], tauchen matrix-basis-
normierte Räume als matrixgeordnete Operatorräume meines Wissens in der Literatur
bisher nicht auf. Überhaupt hat die Theorie der Operatorräume, also die normierte Theo-
rie, weit mehr Aufmerksamkeit erlangt, als die geordnete Theorie. Für die Anwendung
auf C∗-Algebren ist jedoch die geordnete Theorie entscheidend. Daher wird die Duali-
tätstheorie von Ordnungseinsräumen und basis-normierten Räumen auf Operatorsyste-
me und matrix-basis-normierte Räume übertragen. Es folgt die Bemerkung, daß Präduale
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von W ∗-Algebren eine bis auf Isomorphie eindeutige Matrixbasisnormstruktur besitzen.
Wird der Prädual einer W ∗-Algebra in diesem Sinne als matrix-geordneter Operatorraum
verstanden, so ist die duale Matrixordnung die Matrixordnung der W ∗-Algebra, die die
komplette W ∗-Struktur der Algebra bestimmt. (Wird der Prädual lediglich als Banach-
raum gesehen, so liefert er nur die Banachraumstruktur der W ∗-Algebra.) Das Kapitel
schließt mit der Einführung matrix-konvexer Seiten, die zur abstrakten Beschreibung von
Zustandsräumen von C∗-Algebren im dritten Kapitel benötigt wird.

Im zweiten Kapitel werden diejenigen matrix-basis-normierten Räume charakterisiert,
die Präduale von W ∗-Algebren sind. Damit erhalten wir eine bijektive Korrespondenz
zwischen W ∗-Algebren und bestimmten matrix-basis-normierten Räumen, so daß sich
die Theorie der W ∗-Algebren mathematisch äquivalent als Theorie bestimmter matrix-
basis-normierten Räume formulieren läßt. Dazu wird für ein vorgegebenes Operatorsy-
stem dessen sogenannte Multiplieralgebra direkt aus der Matrixordnung konstruiert. Die-
se Konstruktion wurde aus [54] übernommen und stellt im Vergleich zu den Arbeiten
[6, 5] und auch zu [63, 64], wo eine Algebra über sogenannte P -Projektoren erzeugt wird,
eine erhebliche Vereinfachung dar. Es wird sodann gezeigt, daß es zu einem dualen Paar,
bestehend aus einem matrix-basis-normierten Raum und einem Operatorsystem, einen
Hilbertraum H und eine gemeinsame Darstellung von dem Operatorsystem und dessen
Multiplieralgebra in B(H) gibt. In B(H) besteht die Multiplieralgebra aus denjenigen
Operatoren, die das Operatorsystem invariant lassen. Da das Operatorsystem die Eins
von B(H) enthält, liegt die Multiplieralgebra in dem Operatorsystem. Es wird inspiriert
von [10] eine Seitenbedingung formuliert, die sicherstellt, daß die Multiplieralgebra mit
dem Operatorsystem übereinstimmt und folglich eine C∗-Algebra mit Prädual, also eine
W ∗-Algebra ist. Das Kapitel schließt mit einer ersten Beschreibung von matrix-konvexen
Zustandsräumen von C∗-Algebren, die der Charakterisierung in [7, Cor. 8.6] in gewisser
Weise ähnlich ist.

Das dritte Kapitel stellt den Hauptteil meiner Doktorarbeit dar. Es wird dort ei-
ne nicht-kommutative Version der Aussage, daß die Zustandsräume von kommutativen
C∗-Algebren genau die Bauer Simplexe sind, bewiesen. Ferner werden (unitale) C∗-Alge-
bren in Analogie zum kommutativen Fall als gleichmäßig stetige und equivariante Funk-
tionen CE

u (X) auf der Matrixmenge ihrer reinen Matrixzustände dargestellt. Dabei wird
der Raum der Matrixzustände abstrakt als eine Art nicht-kommutativer topologischer
Raum beschrieben, so daß sich im kommutativen Spezialfall gerade die kompakten Haus-
dorffräume ergeben. Um diese Ergebnisse zu erhalten, werden zunächst equivariante Ma-
trixmengen eingeführt und deren Eigenschaften (aufbauend auf den Eigenschaften der
reinen Matrixzustände einer C∗-Algebra) untersucht. Es werden dann equivariante Ab-
bildungen auf equivarianten Matrixmengen eingeführt, das heißt solche Abbildungen die
mit der (nicht-kommutativen) Matrixstruktur kompatibel sind. Für solche Abbildungen
wird ein nicht-kommutatives Produkt erklärt, daß sich im kommutativen Spezialfall zum
punktweisen Produkt von Funktionen vereinfacht. Es wird weiter gezeigt, daß der Raum
FE

b (X) der beschränkten equivarianten Funktionen auf einer Matrixmenge eine atomare
W ∗-Algebra ist, wobei sich die Matrixmenge X genau mit den normalen und reinen Ma-
trixzuständen identifizieren läßt. (Die kommutative Version hiervon, daß die beschränk-
ten Funktionen auf einer beliebigen Menge eine kommutative W ∗-Algebra sind, so daß
die Menge via Punktauswertung genau die normalen reinen Zustände sind, ist bekannt.)
Alsdann werden die normalen Matrixzustände von atomaren W ∗-Algebren abstrakt cha-
rakterisiert. Zwar haben atomare W ∗-Algebren als Summe von Typ I Faktoren eine sehr
einfache Struktur, so daß die Beschreibung ihrer normalen Matrixzustände nicht sehr
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Einleitung

spannend erscheint. Es wird sich jedoch zeigen, daß mit diesem Zwischenergebnis die
Charakterisierung von Matrixzustandsräumen von C∗-Algebren als sogenannte matrix-
konvexe (Bauer) Simplexe gelingt. Die Anlehnung an Bauer Simplexe rechtfertigt sich
dadurch, daß Zustandsräume von C∗-Algebren tatsächlich eine leicht modifizierte Bauer
Simplexeigenschaft besitzen. Zwar können nicht mehr alle gleichmäßig stetige Abbildun-
gen auf den Extremalpunkten stetig zu affinen Abbildungen auf dem Zustandsraum fort-
gesetzt werden, wohl aber eine Teilmenge dieser, nämlich die equivarianten Abbildungen,
das heißt, genau diejenigen, die mit der Matrixstruktur der C∗-Algebra kompatibel sind.
Man bemerke dabei, daß die Matrixstruktur kommutativer C∗-Algebren trivial ist, so daß
alle (gleichmäßig) stetigen Abbildungen auf den reinen Zuständen mit dieser kompatibel
sind. Diese Simplexeigenschaft von Zustandsräumen von C∗-Algebren ist zwar schon in
anderer Formulierung bekannt, vgl. [3, 13, 31], reicht aber zur abstrakten Beschreibung
der Matrixzustandsräume nicht aus. Die in meiner Doktorarbeit vorgestellten Metho-
den jedoch liefern neben einer Charakterisierung der Matrixzustandsräume in Theorem
3.83 auch eine Darstellung von (unitalen) C∗-Algebren als Raum CE

u (X) von gleichmä-
ßig und equivarianten Abbildungen auf dem reinen Matrixzustandsraum X versehen mit
der w∗-Uniformität. Diese Darstellung ist zusammen mit einer Formel für das nicht-kom-
mutative Produkt von Funktionen neu. Sie führte zur Frage, ob man auch direkt reine
Matrixzustandsräume von C∗-Algebren abstrakt als gewisse nicht-kommutative topologi-
sche Räume beschreiben kann. Eine solche Beschreibung gelingt in Theorem 3.87, womit
die Dissertation schließt.

Mein besonderer Dank gilt Herrn Prof. Gerd Wittstock. Ohne seine (schon seit meiner
Diplomarbeit andauernde) geduldige Betreuung, die zahlreichen Diskussionen mit ihm
und seine wertvollen Hinweise wäre diese Arbeit sicherlich nicht entstanden. So profitierte
ich zum Beispiel – neben vielem anderem – im zweiten Kapitel von seiner gemeinsamen
Arbeit mit L. Schmidt [54] und von einem unveröffentlichtem Preprint einer vereinfachten
Version der Dissertation von K.-H. Werner [64].

Danken für die gemeinsame mathematische Zeit möchte ich auch den Teilnehmern der
AG Operatorräume und allen Teilnehmern des Oberseminars Funktionalanalysis.
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Preface

The title of my thesis resembles the title of [7]. In that paper Alfsen, Hanche-Olsen and
Shultz describe state spaces of C∗-algebras—based upon their characterization of state
spaces of Jordan algebras, cf. [8]—as compact convex sets that fulfill certain conditions.
An essential feature of state spaces of C∗-algebras (and also W ∗-algebras) that distin-
guishes them from state spaces of Jordan algebras is that they are orientable. More
recently Alfsen and Shultz published the two books [5, 6], where they explain their work
in detail, including the later characterization of normal state spaces of W ∗-algebras that
first appeared in [34].

In my dissertation I present a characterization of W ∗- and C∗-algebras using purely
the concept of orderings. The background of this idea already pursued in [63, 64] is
the observation that C∗-algebras are completely determined by their matrix orderings.
That is, if A is a C∗-algebra, then Mn(A) = A ⊗ Mn is a C∗-algebra in a unique
way for all n ∈ N. In particular the matrix algebras Mn(A) are ordered vector spaces,
and these orderings determine the C∗-algebra. This follows from the long known fact
that a unital complete order isomorphism between unital C∗-algebras must be a unital
∗-isomorphism, cf. [60, 24]. Since each chapter of the dissertation contains an introduction
and explanations of what will be done and why, I restrict myself here to give only a short
description of the contents of each chapter:

In the first chapter I explain the basics about matrix ordered spaces, operator systems
and their matrix state spaces, which are matrix convex sets. Compact matrix convex
sets correspond to operator systems (that are the non-commutative versions of order unit
spaces) in the same way as compact and convex sets correspond to order unit spaces.
Then a matrix version of base norm spaces (that are the dual spaces of order unit spaces)
is defined. After establishing a duality theory between (approximate) operator systems
and matrix base norm spaces, the chapter ends with the introduction of matrix versions
of faces, in particular of split faces, that will be useful in the third chapter. The second
chapter is about characterizing the normal matrix state spaces of W ∗-algebras. The
main tool to achieve this goal is the so-called multiplier algebra of an operator system
constructed directly using matrix orderings. The construction is borrowed from [54].
Another source of inspiration was [10] that, with the help of projective faces, led to
a condition that ensures the presence of sufficiently many projections in the multiplier
algebra. Finally, the main part of the dissertation is contained in the third chapter. I prove
that matrix state spaces of C∗-algebras can be described abstractly as non-commutative
(Bauer) simplexes. Moreover, I obtain characterization theorems for the normal matrix
state spaces and the normal pure matrix state spaces of atomic W ∗-algebras. The latter
can be interpreted as non-commutative sets. Based on this observation the chapter ends
with an abstract characterization of the pure matrix state spaces of C∗-algebras. Recall
that commutative (unital) C∗-algebras correspond with compact Hausdorff space, which
are their pure state spaces. In this sense the pure matrix state spaces of C∗-algebras can
be interpreted as non-commutative topological spaces.
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1. Matrix Orderings

In classical analysis a partially ordered vector space is a real vector space with a distin-
guished cone. We do not like to give an account of the theory of ordered vector spaces.
Instead, we are aiming at characterizing C∗-algebras by their order structure. Here the
classical ordered vector spaces of interest are the real order unit spaces (or Kadison’s
function systems) and their duals, the base norm spaces. These ordered spaces don’t
carry only an order structure, but have also a norm that is related to their order. How-
ever, order unit spaces are applicable only to the self-adjoint parts of C∗-algebras. This
is it what makes things difficult. A C∗-algebra A is a complex vector space with an in-
volution and all matrix algebras Mn(A) are ordered, too. So, what we need are complex
vector spaces with an involution and a matrix order structure. These spaces should also
be normed and the norm should be related to the ordering. The reader should keep in
mind that forgetting matrices and taking only the self-adjoint part of the spaces, that we
will introduce soon, these spaces are nothing but the classical order unit and base norm
spaces. The additional matrix structure is required, though, to make them applicable
to C∗-algebras and their duals. Matrix ordered spaces and operator systems were intro-
duced in [18]. In this chapter we will recall their basic definitions. First we need some
matrix conventions. Let V be a vector space. Our vector spaces and linear maps will
be complex vector spaces and complex linear maps, unless stated otherwise. For n ∈ N
we let Mn,m(V ) denote the vector space of n by m matrices v = [vij ] with vij ∈ V . We
write vtr for the transpose matrix [vji] ∈ Mm,n(V ). Notice the following abbreviations:
Mn(V ) = Mn,n(V ), Mn,m = Mn,m(C) and Mn = Mn,n. We denote the unit of Mn as 1n
and for l < n we let 1n,l =

(
1l
0

)
∈Mn,l.

Given v ∈Mn(V ), w ∈Mk(V ), α ∈Mm,n and β ∈Mn,m we have the matrix product

αvβ =
( n∑
l,k=1

αilvlkβkj

)
∈Mm(V ) (1.1)

and the direct sum

v ⊕ w =
(
v 0
0 w

)
∈Mn+k(V ). (1.2)

For v1, . . . , vn ∈ V we let

diag(v1, . . . , vn) =


v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 . . . 0 vn

 .

Since Mn(V ) = V ⊗Mn we will write also v ⊗ 1n for diag(v, . . . , v) ∈Mn(V ).
Let V be a vector space with an involution, i.e., a conjugate linear map ∗ : V → V such

that v = v∗∗. We call such a V a ∗-vector space. An element v ∈ V is called self-adjoint

1



1. Matrix Orderings

or hermitian if v = v∗. We write Vh for the set of all hermitian elements of V . This is
a real vector space and we have v = Re v + i Im v, where Re v = v+v∗

2 and Im v = v−v∗
2i .

Thus V = Vh + iVh and, since Vh ∩ iVh = {0}, we get x = Re v and y = Im v, whenever
v = x+iy for x, y ∈ Vh. Notice that for all n ∈ N an involution on V induces an involution
on Mn(V ) in the usual way, that is, by letting v∗ = [v∗ji] for v = [vij ] ∈ Mn(V ). For a
∗-vector space V we always give Mn(V ) this induced involution.

We say that a vector space V is (partially) ordered if V is a ∗-vector space having a
distinguished cone V+ ⊂ Vh (i.e., V+ + V+ ⊂ V+ and R+V+ ⊂ V+). The cone V+ is called
generating, if Vh = V+ − V+. In this case Vh is called directed. For w − v ∈ V+ we write
v ≤ w or w ≥ v. The cone V+ is called proper if V+ ∩ −V+ = {0}. Now we can already
state the definition of a matrix ordered vector space.

Definition 1.1. A complex vector space V is a matrix ordered vector space if V is a
∗-vector space and Mn(V ) is partially ordered for all n ∈ N such that the distinguished
cone V+ is proper and generating, and such that α∗Ml(V )+α ⊂Mn(V )+ for all α ∈Ml,n

and l, n ∈ N.

Apart from the matrix ordering, the spaces that we are going to study are also operator
spaces. For the general theory of operator spaces we refer to [26]. Notice that we do not
require operator spaces to be complete in the norm, i.e., to be Banach spaces, in general.
If the norm of an operator space must be complete, we will write ‘complete operator
space’ to stress it. For the notion of matrix ordered operator spaces we refer to [55],
where we find the following definition:

Definition 1.2. A matrix ordered operator space V is an operator space that is a matrix
ordered vector space in such a way that the involution on Mn(V ) is an isometry and the
cone Mn(V )+ is closed in the norm topology for all n ∈ N.

Let ϕ : V → W be a linear map between vector spaces. We let L(V,W ) be the vector
space of all linear maps from V to W . For n ∈ N we denote the n-th amplification
of ϕ as ϕ(n) : Mn(V ) → Mn(W ), where ϕ(n)(v) = [ϕ(vij)] for v = [vij ] ∈ Mn(V ). If
V and W are ∗-vector spaces, we define an involution on the vector space L(V,W ) by
ϕ∗(v) = ϕ(v∗)∗. If V and W are ordered vector spaces, then the linear map ϕ : V → W
is positive if ϕ = ϕ∗ and ϕ(V+) ⊂ W+. If V and W are matrix ordered and n ∈ N,
then ϕ is called n-positive, if ϕ(n) is positive. If ϕ(n) is positive for all n ∈ N, then ϕ is
called completely positive. We write CP(V,W ) for the set of all completely positive maps
from V to W . Notice that we can define a matrix order on L(V,W ) by the identification
Mn(L(V,W ))+ = CP(V,Mn(W )). We use the symbol ψ ≤cp φ or φ ≥cp ψ to indicate
that φ−ψ is completely positive. For operator spaces V and W we let CB(V,W ) denote
the operator space of all completely bounded linear maps from V toW . We will denote the
completely bounded norm of f ∈ CB(V,W ) by ‖f‖cb, i.e., ‖f‖cb = sup

{ ∥∥f (n)
∥∥ ∣∣ n ∈ N

}
.

If V and W are matrix ordered operator spaces, then CB(V,W ) is also a matrix ordered
operator space, where we define Mn(CB(V,W ))+ = CP(V,Mn(W )) ∩ CB(V,Mn(W )),
cf. [55, Theorem 3.1]. In particular, setting W = C we define:

Definition 1.3. Let V be a matrix ordered operator space. Then the matrix ordered
operator space V ∗ = CB(V,C) is called the (operator) dual of V .

Remark 1.4. To distinguish between operator duals and the dual of a normed space
where necessary, we denote the dual of a normed space E as E′. Of course, seeing an
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operator space V as normed space, we have V ∗ =1 V
′ on the first level. But, recalling

the duality between Mn(V ) and Mn(V ′) (see [26, p. 6ff]), we may distinguish between
Mn(V ∗) = CB(V,Mn) and Mn(V )′, where the latter is only dual space of the normed
space Mn(V ). Moreover, V ∗ carries the w∗-topology induced from V , and we endow
Mn(V ∗) with the product topology that we call the w∗-topology on Mn(V ∗). That is, a
net (fν)ν = ([fνij ])ν in Mn(V ∗) converges to f = [fij ] ∈ Mn(V ∗) if and only if fνij → fij
for all 1 ≤ i, j ≤ n in the w∗-topology, cf. [26, p. 43]. See also Lemma A.5.

The relation between the ordering and the operator space structure required in the
definition of a matrix ordered operator space is rather weak. A somewhat stronger relation
is the notion of regularity. From [55] we have the following definition:

Definition 1.5. A matrix ordered operator space V is called matrix regular if for all
v ∈Mn(V ) the following is equivalent:

(i) ‖v‖ < 1.

(ii) There are v1, v2 ∈Mn(V )+ such that
( v1 v
v∗ v2

)
≥ 0 and ‖v1‖, ‖v2‖ < 1.

Remark 1.6. Let V be a matrix ordered operator space. Then V is matrix regular if and
only if for each n ∈ N and for all v ∈Mn(V )h the following holds:

(i) w ∈Mn(V )h and −w ≤ v ≤ w implies that ‖v‖ ≤ ‖w‖, and

(ii) ‖v‖ < 1 implies that there is w ∈Mn(V )h such that ‖w‖ < 1 and −w ≤ v ≤ w.

These two conditions mean that the real spaces Mn(V )h are regularly normed (in the
classical sense) for all n ∈ N.

Sometimes we will need results from the literature that are stated only for real vector
spaces. Being concerned with complex spaces the following remarks are useful in such
cases.

Remark 1.7. Let X be an ordered vector space that is also a Banach space in such a way
that the involution is an isometry. Then (X ′)h = (Xh)′ isometrically.

Proof. Obviously ‖f‖ ≥ sup { |f(x)| | ‖x‖ = 1, x = x∗ }. If f = f∗, then we have

‖f‖ = sup {Re f(x) | ‖x‖ = 1 } = sup { f(x) | ‖x‖ = 1, x = x∗ } ,

because the involution is an isometry.

Remark 1.8. Let V be a ∗-vector space. Then any real linear map f : Vh → R extends
uniquely to a linear map f̃ : V → C given by f̃(v) = f(Re v) + if(Im v). Moreover, f̃ is
self-adjoint.

Operator systems and m-convex sets

Since our matrix ordered spaces shall carry a norm structure that is related to the or-
dering, we need some additional properties of the order. Let V be an ordered vector
space with distinguished cone V+. Recall that V is called archimedian ordered if rv ≤ w
for all r ≥ 0 implies v ≤ 0, where v, w ∈ Vh. In this case we also say the cone V+ is
archimedian. Furthermore, a net (eλ)λ∈Λ in V+ is called an approximate order unit if

3
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(eλ)λ∈Λ is monotone increasing and for any v ∈ Vh there is λ = λ(v) ∈ Λ and a number
r = r(v) > 0 such that −reλ ≤ v ≤ reλ, cf. [47]. A constant approximate order unit, i.e.,
eλ = e for some e ∈ V+, is called an order unit.

In [18, Theorem 4.4] an operator system is defined to be a matrix ordered space X
such that X+ is a proper cone with a distinguished order unit e, and the cones Mn(X)+
are archimedian for all n ∈ N. It is shown that there exist a Hilbert space H and a unital
complete order isomorphism π : X → B(H) into B(H). Hence the operator systems are
nothing but the self-adjoint subspaces of unital C∗-algebras containing the unit. If (X, e)
is an operator system, we let en = e⊗1n and define the so-called matrix order unit norm
by

‖x‖e = inf
{
r ≥ 0

∣∣∣∣ (ren x
x∗ ren

)
≥ 0

}
for all x ∈Mn(X) and n ∈ N. If ‖x‖e = 0, the archimedian property ensures that x = 0.
Moreover, X together with the matrix order unit norm is obviously a matrix ordered
operator space that is matrix regular. Usually in the literature, for instance [48] or
[26], only operator systems are considered. However, we would like to handle non-unital
C∗-algebras, too, without adjoining a unit. For this reason we gave the definition of an
approximate order unit, and we want to discuss shortly how to extend the concept of
operator systems to the non-unital case.

Remark 1.9. Recall from the proof of [18, Theorem 4.4] that if V is a matrix ordered
vector space and the cone V+ is proper, then Mn(V )+ is proper for all n ∈ N. It is shown
there also that if e ∈ V+ is an order unit, then e ⊗ 1n ∈ Mn(V )+ is an order unit for
all n ∈ N. This proof translates verbatim to the case of an approximate order unit (eλ)
(noting that an approximate order unit is directed and monotone increasing), i.e., if (eλ)
is an approximate order unit in V+ then (eλ ⊗ 1n) will be an approximate order unit in
Mn(V )+ for all n ∈ N.

Remark 1.10. Let X be a matrix ordered space. Then the cones CP(X,Mn) are archi-
median for all n ∈ N.

Proof. Let n ∈ N. Given ϕ, ψ ∈ CP(X,Mn) such that rϕ ≤cp ψ for all r ≥ 0 we have to
show that ϕ ≤cp 0. But for x ∈Mn(X)+ it follows from rϕ(n)(x) ≤ ψ(n)(x) for all r ≥ 0
that ϕ(n)(x) ≤ 0, because Mn(Mn) = Mn2 is archimedian ordered. Hence ϕ ≤cp 0.

Definition 1.11. Let X be a matrix ordered space with an approximate order unit
(eλ)λ∈Λ. Let enλ = eλ ⊗ 1n. Then (X, eλ) is an approximate operator system, if X+ is
proper, the seminorms defined by

‖x‖e = inf
{
r ≥ 0

∣∣∣∣ ∃λ ∈ Λ
(
renλ x
x∗ renλ

)
≥ 0

}
for all x ∈Mn(X) are norms, and Mn(X)+ is a closed set in this norm for all n ∈ N.

It is enough that ‖x‖ = inf { r ≥ 0 | ∃λ − reλ ≤ x ≤ reλ } is a norm to ensure that the
(operator) seminorms on Mn(X) above are norms.

Proposition 1.12. Let (X, eλ) be an approximate operator system. Then the bi-dual
X∗∗ is an operator system with order unit e = w∗-limλ êλ, where êλ denotes the canonical
image of eλ in X∗∗. Furthermore, there is a complete isometric order isomorphism from
(X, eλ) into (X∗∗, e).
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Proof. From Remark 1.10 we know that the cones Mn(X∗∗)+ are archimedian for all
n ∈ N. We need to show that e = w∗-limλ êλ exists and is an order unit for X∗∗. Let
f ∈ X∗ be positive. Then from êλ(f) = f(eλ) we see that (êλ(f)) is a monotone increasing
net of positive numbers that is bounded by ‖f‖, since ‖êλ‖ ≤ 1. Hence the net converges
and we set e(f) = limλ êλ(f). In this way we get a map e : X∗

+ → R+ that is obviously
additive, positive homogeneous and bounded. Notice that X∗ is directed. To see this
let g ∈ X∗ be self-adjoint. Then the restriction g′ = g|Xh

is a bounded real linear map.
Since (Xh, eλ) is a (real) approximate order unit space, it is 1-normal and we can apply
the Grosberg-Krein theorem (e.g., [47, Thm. 1]) to find a decomposition g′ = g1−g2 such
that ‖g1‖ + ‖g2‖ = ‖g′‖ and gi : Xh → R real linear, bounded and positive for i = 1, 2.
By Remark 1.8 we can uniquely extend g1 and g2 to linear maps g̃1 and g̃2 on X, that
are bounded and stay positive. So, we obviously obtain g = g̃1 − g̃2 for g̃1, g̃2 ∈ X∗

+.
Hence X∗ is linearly generated by X∗

+, and since the limit process is linear, we see that
e = w∗-limλ êλ exists on all of X∗. It is obvious that e ∈ X∗∗

+ . Also ‖e‖ ≤ 1, because
‖f‖ ≥ |f(eλ)| = |êλ(f)|, so that |e(f)| ≤ ‖f‖ for all f ∈ X∗. We have to show that e is an
order unit. Let ϕ ∈ X∗∗

h . We can assume that ‖ϕ‖ = 1. The image of the unit ball of X
is w∗-dense in the unit ball of X∗∗. Hence there is a net (x̂ν) such that x̂ν(f)→ ϕ(f) for
all f ∈ X∗. Passing to the real part we can assume that x̂ν is self-adjoint. For positive f
we find for all ν some λ(ν) such that

−e(f) ≤ −êλ(ν)(f) ≤ x̂ν(f) ≤ êλ(ν)(f) ≤ e(f).

Thus −e(f) ≤ ϕ(f) ≤ e(f) for all positive f .
It is known that the canonical embedding of the operator space X into X∗∗ is a com-

plete isometry. Since the cones Mn(X)+ are norm closed by assumption, the canonical
embedding is also a complete order isomorphism. We have still to show that the matrix
order unit norm defined by e coincides with the cb-norm of X∗∗. Let ϕ ∈ Mn(X∗∗).
Letting r = ‖ϕ‖cb we see that the map

Ψ: X∗ →M2n defined by f 7→
(
ren(f) ϕ(f)
ϕ(f)∗ ren(f)

)
,

where en = e⊗ 1n, is completely positive. Indeed there is a unitary u ∈Mln such that

Ψ(l)(f) =
(
ren(fij) ϕ(fij)
ϕ(fij)∗ ren(fij)

)
= u∗

(
re

(l)
n (f) ϕ(l)(f)

ϕ(l)(f)∗ re
(l)
n (f)

)
u ≥ 0

for all positive f ∈ Ml(X∗), because
∥∥ϕ(l)

∥∥ ≤ r. This shows that ‖ϕ‖e ≤ r = ‖ϕ‖cb,
where ‖ϕ‖e = inf

{
t ≥ 0

∣∣∣ ( ten ϕ
ϕ∗ ten

)
≥cp 0

}
. On the other hand, given ϕ ∈ Mn(X∗∗)

such that ‖ϕ‖e < s < 1, we have
( se ϕ
ϕ∗ se

)
≥cp 0. From [55] we know that the dual of

a matrix regular space is again matrix regular. Since the approximate operator system
(X, eλ) is matrix regular, its dual is matrix regular and hence the bidual X∗∗ is matrix
regular, too. Obviously se ≥cp 0 and ‖se‖cb = s < 1, so that by matrix regularity we get
‖ϕ‖cb < 1 and the proof is complete.

Remark 1.13. Let (X, e) be a dual operator system. Then we see from Proposition 2.10
that there is a Hilbert space H and a unital completely order isomorphism into B(H)
that is w∗-w∗-continuous. Hence the approximate operator systems are nothing but the
self-adjoint subspaces of some B(H) that have an approximate order unit (eλ) which
converges to the identity of B(H).
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Definition 1.14 (Matrix States). For an operator system (X, e) and an approxi-
mate operator system (Y, eλ) we define CSn(X) = { f ∈ CP(X,Mn) | f(e) = 1n } and
CQn(Y ) = { g ∈ CP(Y,Mn) | ‖g‖cb ≤ 1 } for all n ∈ N. For n ≥ 2 the elements of
CSn(X) are called matrix states (m-states) of X and the elements of CQn(Y ) are called
quasi matrix states (quasi m-states) of Y . The collections CS (X) = (CSn(X))n and
CQ(Y ) = (CQn(Y ))n are called the matrix convex state space of X and the matrix convex
quasi state space of Y , respectively. Moreover, we define the m-states of the approximate
operator system Y to be the subset CSn(Y ) = { f ∈ CP(X,Mn) | limλ f(eλ) = 1n } of
CQn(Y ). Maps from (Y, eλ) to Mn such that limλ f(eλ) = 1n are called approximately
unital maps.

The sets introduced in the preceding definition are the replacements for the (usual)
state and quasi state spaces. All these sets are convex, but much more is true. We need
to give a short introduction into the theory of matrix convex sets now.

Definition 1.15 (Matrix Convex Set). A matrix convex (or m-convex ) set in a vector
space V is a sequence of subsets K = (Kl)l such that Kl ⊂Ml(V ) for all l ∈ N and

m∑
i=1

α∗i viαi ∈ Kn (1.3)

for all ni, n, m ∈ N, vi ∈ Kni and αi ∈ Mni,n such that
∑m
i=1 α

∗
iαi = 1n. Occasionally,

given a fixed l ∈ N, we will consider also subsets C ⊂Ml(V ) such that
∑m
i=1 α

∗
i viαi ∈ C

for all m ∈ N, vi ∈ C and αi ∈ Ml for which
∑m
i=1 α

∗
iαi = 1l. We call such sets

Ml-convex. So given an m-convex set K = (Kl)l, the sets Kl are in particular Ml-convex
for all l ∈ N. Furthermore, in case V has a locally convex topology, we call a matrix
convex set K compact if Kn is compact with respect to the product topology on Mn(V )
for all n ∈ N.

Naturally because of the topic of this thesis we will be regularly concerned with ma-
trix versions of classical concepts like, for instance, state and convexity in the preceding
definitions. Matrix regularity is another example, but there are some more to come like
matrix affine and matrix base. In addition there will be some new concepts like ‘matricial
relation’ or ‘matrix related’. Since we don’t like to write constantly ‘matrix’ or ‘matri-
cial’, the reader should be aware that we simply use the abbreviation ‘m-’ for ‘matrix’
(or sometimes also ‘matricial’), that is, we write m-convex, m-affine, m-relation and so
on, possibly even without further notice. Moreover, we pronounce the ‘m-’ like ‘em’, so
we write for instance ‘an m-convex set’.

The following observation is easy to prove:

Remark 1.16. Let V be a vector space. A sequence of subsets K = (Kl)l such that
Kl ⊂Ml(V ) for all l ∈ N is m-convex if and only if

(i) Kn ⊕Km ⊂ Kn+m, and

(ii) α∗Knα ⊂ Km,

for all n, m ∈ N and α ∈Mn,m such that α∗α = 1m.

We will say that v =
∑m
i=1 α

∗
i viαi as in (1.3) is a matrix convex combination of

v1, . . . , vm. An m-convex combination is called proper if αi 6= 0 for i = 1, . . . ,m. The
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intersection of m-convex sets is again m-convex. Hence, given a sequence Y = (Yn)n∈N
of subsets Yn ⊂ Mn(V ), the m-convex hull of Y is the smallest m-convex subset of V
containing Y . We denote the m-convex hull of Y as mco(Y ) = (mcon(Y ))n∈N. No-
tice that calculations with m-convex combinations is close to calculations with convex
combinations. Indeed, from [30] we have

m∑
i=1

α∗i viαi = α∗1v1α1 + β∗wβ, (1.4)

where w ∈ mco
(
{v2, . . . , vm}

)
and β∗β =

∑m
i=2 α

∗
iαi.

Definition 1.17 (Structural Elements). Let K = (Kn)n∈N be an m-convex set in
V . Then v ∈ Kn is a structural element of Kn if whenever v =

∑m
i=1 α

∗
i viαi is a proper

m-convex combination of v1, . . . , vm ∈ Kn then there are unitary ui ∈ Mn and numbers
λi ∈ C such that v = u∗i viui and αi = λiui for i = 1, . . . ,m. We write str(Kn) for the set
of the structural elements of Kn and we let str(K) = (str(Kn))n. Obviously, structural
elements are in particular extreme points, and str(K1) = ex(K1), where ex(K1) denotes
the set of the extreme points of K1.

Notice that if x ∈ str(Kn) then u∗xu ∈ str(Kn) for all unitaries u ∈ Mn. We call
x, y ∈ Mn(V ) unitarily equivalent if there is a unitary u ∈ Mn such that y = u∗xu.
We write U(x) for the unitary equivalence class of x, i.e., for the set {u∗xu | u ∈Mn }.
Notice also from [30] that in the definition of structural elements it is actually enough to
require that there exists ui ∈ Mn such that v = u∗i viui for i = 1, . . . ,m. This implies
that αi = λiui for λi ∈ C. Notice that the definition is equivalent with the definition
of matrix extreme points in [62, Def. 2.1]. However, we have reserved the word matrix
extreme points for special structural elements.

Remark 1.18. From [30] structural elements are m-irreducible. Recall that a matrix
v = [vij ] ∈ Mn(V ), where n ∈ N and V is a vector space, is m-reducible, if there are
1 ≤ l < n and a unitary u ∈ Mn such that v = u∗(w1 ⊕ w2)u for w1 ∈ Ml(V ) and
w2 ∈Mn−l(V ). Of course, v is called m-irreducible, if v is not m-reducible.

It is known that the extreme points of the convex quasi state space are the pure maps
with norm one and the zero map. A special case of the next proposition has appeared in
[29, Thm.B (1)] (Part (2) of that theorem is contained in more general form with simple
proof in [30].) Recall that a completely positive map ϕ is called pure, if whenever ψ is a
completely positive map such that ψ ≤cp ϕ then ψ = rϕ for some 0 ≤ r ≤ 1.

Proposition 1.19. Let (X, eλ) be an approximate operator system. Let n > 1. The
structural elements of CQn(X) are exactly the pure maps of CSn(X), that is, those maps
of CQn(X) that are pure and approximately unital.

Proof. Let Km = { f ∈ CQm(X) | lim f(eλ) = 1m } for all m ∈ N. Let φ ∈ Kn be a pure
map and let φ =

∑l
i=1 α

∗
i φiαi be a proper m-convex combination of φi ∈ CQn(X). Then

φ − α∗i φiαi is completely positive for all i = 1, . . . , l. Since φ is pure, there is t2i ∈ (0, 1)
such that α∗i φiαi = t2iφ. This implies α∗i β

∗
i βiαi = t2i1n, where β∗i βi = limφi(eλ) ≤ 1n.

Hence αi and βi must have full rank for i = 1, . . . , l. From

1n =
l∑
i=1

α∗i β
∗
i βiαi (1.5)

7
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we obtain β∗i βi = 1n for i = 1, . . . , l. Indeed, assume without loss of generality that
γ = β∗1β1 6= 1n. Since γ is positive, we can assume that this matrix is diagonal (if not
there is a unitary u ∈Mn such that u∗γu is diagonal). By assumption we have an index j
such that γjj < 1, where we can take j = 1. Now, evaluating the (1, 1)-entry of equation
(1.5) we obtain

1 = [α∗1γα1]11 +
[ l∑
i=2

α∗i β
∗
i βiαi

]
11
≤ γ11|α11|2 +

n∑
j=2

γjj |αj1|2 +
[ l∑
i=2

α∗iαi

]
11

≤ γ11|α11|2 +
n∑
j=2

|αj1|2 +
[ l∑
i=2

α∗iαi

]
11

< [α∗1α1]11 +
[ l∑
i=2

α∗iαi

]
11
≤ 1,

which is a contradiction. So, it is proved that β∗i βi = 1n for i = 1, . . . , l. This means
φi ∈ Kn and we obtain α∗iαi = t2i1n for all i = 1, . . . , l, so that ui = αi/ti is a unitary
matrix and φ = u∗iφiui for each i. It follows that φ ∈ str(CQn(X)).

For the converse, let φ ∈ str(CQn(X)) and let ψ be a completely positive map from
X to Mn such that φ− ψ completely positive. By Corollary 1.45 X∗ is an m-base norm
space with m-base K = (Km)m. So by definition of an m-base there exist f , g ∈ Kn such
that ψ = α∗fα and (φ − ψ) = β∗gβ, where α, β 6= 0 (since we can assume ψ 6= 0 and
ψ 6= φ). Hence we can write φ = ψ + (φ − ψ) = α∗fα + β∗gβ, which applying Lemma
1.37 yields

0 ≤ α∗α+ β∗β ≤ ‖α∗α+ β∗β‖1n = ‖φ‖cb1n ≤ 1n.

So we see that φ = α∗fα+ β∗gβ is an m-convex combination (otherwise there would be
a proper m-convex combination φ = α∗fα + β∗gβ + γ0γ, where γ2 = 1n − α∗α − β∗β,
which is impossible because structural elements are m-irreducible). Therefore there are
λ ∈ C and a unitary u ∈ Mn such that α = λu and f = uφu∗, so in particular φ ∈ Kn.
Moreover, ψ = α∗fα = |λ|2φ, which shows that φ is pure, and the proof is complete.

Corollary 1.20. Let (X, e) be an operator system. The structural elements of CSn(X)
are exactly the pure maps of CSn(X) for all n ∈ N.

The following definition is from [30] inspired by [44].

Definition 1.21. Let K be an m-convex set. For n ∈ N we let

mext(Kn) =
{
x ∈ str(Kn)

∣∣∣ x /∈ ⋃
l>n

1
∗
l,n str(Kl)1l,n

}
.

The sequence mext(K) = (mext(Kn))n is called the set of matrix extreme points of K.

The next proposition characterizes the matrix extreme points among the structural
elements in the special case where we consider the quasi state space of C∗-algebras.
Notice that we regard a C∗-algebra as an approximate operator system by choosing the
positive part of the open unit ball as approximate order unit, see Remark A.8. If the
C∗-algebra should be unital, the unit is an upper bound for the open unit ball, cf. Remark
1.43.
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Proposition 1.22. Let n ∈ N and let A be a C∗-algebra. Then ϕ : A → Mn is an ap-
proximately unital irreducible representation if and only if ϕ is a non-zero matrix extreme
point of CQ(A).

Proof. Let ϕ : A →Mn be a non-zero matrix extreme point. In particular ϕ is a structural
element of CQn(A), so by Proposition 1.19 ϕ is pure and approximately unital. Let
ϕ = V∗πV be the essentially unique minimal Stinespring representation of ϕ, where
π : A → B(Hπ) is an approximately unital ∗-representation and V : Cn → Hπ is an
isometry, cf. Theorem A.9. Since ϕ is pure, π is an irreducible representation, cf. Theorem
A.11. Assume that the dimension of Hπ would be greater than n. Then V(Cn) is a
subspace of Hπ of dimension n, so there exists η ∈ V(Cn)⊥ ⊂ Hπ such that ‖η‖ = 1.
Define W : Cn+1 → Hπ by W(ξ1, . . . , ξn+1) = V(ξ1, . . . , ξn) + ξn+1η. Notice that W

is an isometry. Therefore the completely positive map ψ = W∗πW is in CQn+1(A)
and, since π is irreducible, ψ is pure, so that ψ ∈ str(CQn+1(A)) by Proposition 1.19.
This leads immediately to a contradiction, since ϕ is a matrix extreme point, i.e., a
structural element that is not a compression of another structural element. However we
have ϕ = (1n 0)ψ

(
1n
0

)
. Consequently, the dimension of Hπ must be n, so that we can

identify Hπ with Cn. Then V is a unitary matrix and ϕ is unitarily equivalent to the
irreducible representation π from A onto Mn, so ϕ is itself an irreducible representation
onto Mn.

Conversely, let ϕ : A →Mn be an approximately unital and irreducible representation.
Then ϕ is obviously completely positive and also pure by Theorem A.11. Hence ϕ is a
structural element of CQn(A). Suppose for contradiction that there would be l > n and
ψ ∈ str(CQ l(A)) such that ϕ = 1

∗
l,nψ1l,n. Let ψ = V∗πV be the minimal Stinespring

representation of ψ, where π : A → B(Hπ) is irreducible, because ψ is pure, and V : Cl →
Hπ is an isometry, so dim(Hπ) ≥ l. Notice that W = V1l,n is an isometry and that
ϕ = W∗πW. Since π is irreducible, we get span(π(A)WCn) = Hπ. This means that
ϕ = W∗πW is the essentially unique minimal Stinespring representation of ϕ. Since
ϕ, being an irreducible (and approximately unital) representation, is already its own
minimal Stinespring representation, ϕ and π must be unitarily equivalent. This leads to
the contradiction dim(Hπ) ≥ l > n = dim(Hπ).

The previous proposition shows directly that there are compact m-convex sets K such
that the set of matrix extreme points of K is empty—just take for K the (quasi) state
space of a C∗-algebra that has no irreducible finite dimensional representations.

Matrix affine mappings
So far we have seen that (approximate) operator systems give rise to m-convex sets. The
m-convex (quasi) state spaces of (approximate) operator systems are compact m-convex
sets and we characterized their structural elements. From the scalar theory it is known
that compact and convex sets are a dual object for order unit spaces. Let C be a compact
convex set. Then the space A(C) of all continuous affine functions is a complete order unit
space. Its state space is affinely homeomorphic to C. Moreover, any order unit space that
is complete in the order unit norm is unitally order isomorphic to the order unit space of
the continuous affine functions on its state space. It is shown in [62, Prop. 3.5] that this
can be generalized to operator systems. Since this observation is basic for what follows,
we repeat it here. It starts with defining so-called matrix affine maps.

Definition 1.23. Let K = (Kn)n be a matrix convex set and W a complex vector space.
A matrix affine map φ : K → W is a sequence φ = (φn)n of maps φn : Kn → Mn(W )

9



1. Matrix Orderings

such that

φn

( m∑
i=1

α∗i xiαi

)
=

m∑
i=1

α∗i φni
(xi)αi

for all ni, n, m ∈ N, xi ∈ Kni
and αi ∈Mni,n such that

∑m
i=1 α

∗
iαi = 1n.

Let A(K,W ) denote the complex vector space of all matrix affine maps from K to
W with point-wise operations induced by Mn(W ), n ∈ N. If W is a ∗-vector space
then θ∗ = (θ∗n) where θ∗n(x) = θn(x)∗ defines an involution on A(K,W ). If W is a
matrix ordered space, A(K,W ) is ordered by point-wise evaluation, i.e., ψ = (ψn) ≥ 0
if ψn(x) ≥ 0 for all n ∈ N and x ∈ Kn. Especially for W = C there is a matrix order
structure on A(K) = A(K,C) by identifying Mn(A(K)) with A(K,Mn) and letting
Mn(A(K))+ = A(K,Mn)+. We let Ab(K,Ml) ⊂ A(K,Ml) denote the subspace of all
bounded matrix affine maps from K to Ml, i.e., all matrix affine maps f = (fn) such that
f1 is bounded. This means that there is r ≥ 0 such that ‖f1(x)‖ ≤ r for all x ∈ K1. If f
is self-adjoint and bounded by r, we see from (1.7) that

‖fn(x)‖ = sup { |〈fn(x)ξ | ξ〉| | ‖ξ‖ = 1 } ≤ r (1.6)

for all x ∈ Kn. For an arbitrary f ∈ Ab(K,Ml) we get ‖fn(x)‖ ≤ 2r for all x ∈ Kn and
n ∈ N, where r is a bound of f1. So for f = (fn) ∈ Ab(K,Ml) we define the norm

‖f‖ = sup { ‖fn(x)‖ | x ∈ Kn, n ∈ N } .

We let again Ab(K) = Ab(K,C).

Remark 1.24. Notice that there is an order isomorphism between A(K) (Ab(K)) and
the space A(K1) (Ab(K1)) of (bounded) affine complex-valued functions on K1, given by
f = (fn) 7→ f1 for f ∈ Ab(K). This follows easily from the identity

〈fn(x)ξ|ξ〉 = ξ∗fn(x)ξ = f1(ξ∗xξ) (1.7)

for all unit vectors ξ ∈ Cn. Indeed, let K be a matrix convex set and f1 : K1 → C an
affine map. If we can define maps fn : Kn → Mn by the rule 〈fn(x)ξ|ξ〉 = f(ξ∗xξ) for
all n > 1, x ∈ Kn and ξ ∈ Cn such that ξ∗ξ = 1, then f = (fn)n∈N will be a m-affine
map. To show that fn is a well-defined map for all n ∈ N we need to prove that the map
h(ξ) = ‖ξ‖2f1(ξ∗1xξ1) is a quadratic form on Cn, where ξ1 = ξ/‖ξ‖. So, let ξ, η ∈ Cn.
By the parallelogram identity, we have ‖ξ + η‖2 + ‖ξ − η‖2 = 2(‖ξ‖2 + ‖η‖2). With
d = 2(‖ξ‖2 + ‖η‖2) we obtain

h(ξ + η) + h(ξ − η) = ‖ξ + η‖2f1
(
(ξ + η)∗1x(ξ + η)1

)
+ ‖ξ − η‖2f1

(
(ξ − η)∗1x(ξ − η)1

)
= df1

(
1
d

(
(ξ + η)∗x(ξ + η) + (ξ − η)∗x(ξ − η)

))
= df1

(
1
d (2ξ

∗xξ + 2η∗xη)
)

= 2
(
‖ξ‖2f1(ξ∗1xξ1) + ‖η‖2f1(η∗1xη1)

)
= 2
(
h(ξ) + h(η)

)
,

which shows that h is a quadratic form. Then there is a unique matrix fn(x) ∈Mn such
that 〈fn(x)ξ|ξ〉 = h(ξ). Obviously, if f1 is bounded, then (fn)n is bounded, cf. (1.6).

10



Duals of operator systems

Looking at the preceding remark the reader should keep in mind that the rather techni-
cal definition of matrix affine maps comes down to nothing but to supply the space of the
affine functions with a matrix order structure in such a way that it becomes an operator
system with m-convex state space m-affinely homeomorphic to the given m-convex set.

Lemma 1.25. Let K be a matrix convex set. Then Ab(K) together with the induced
matrix order structure as subspace of A(K) and with the distinguished unit e, where
en(x) = 1n for all n ∈ N and x ∈ Kn, is an operator system. The matrix order unit
norm is identical with the supremum norm, i.e., ‖f‖ = ‖f‖e for all f ∈ Mn(Ab(K)) =
Ab(K,Mn) and n ∈ N.

Proof. We need to show first that the cones Mn(Ab(K)) are archimedian for all n ∈ N
and that e is an order unit. The archimedian property of the cones follows immediately
from the fact that the cones Mn(Mr)+ = M+

nr are archimedian for all r, n ∈ N. Let
f = (fn) ∈ Ab(K)h. Then

−‖f‖en(x) ≤ −‖fn(x)‖en(x) ≤ fn(x) ≤ ‖fn(x)‖en(x) ≤ ‖f‖en(x)

for all x ∈ Kn and n ∈ N shows directly that e is an order unit. To show the norm
equality, let f ∈ Ab(K,Ml). Since ‖fn(x)‖ ≤ ‖f‖ for all x ∈ Kn and n ∈ N, we get( ‖f‖e f
f∗ ‖f‖e

)
≥ 0. Hence by definition of the matrix order unit norm ‖f‖e ≤ ‖f‖. On the

other hand, if there would be r > 0 such that ‖f‖e < r < ‖f‖ then the matrix
( re f
f∗ re

)
would be positive, which means point-wise positive. Thus ‖fn(x)‖ ≤ r for all x ∈ Kn and
n ∈ N, so that ‖f‖ ≤ r. This is a contradiction. So ‖f‖e = ‖f‖.

WhenK is a matrix convex subset of a topological vector space, A(K) ⊂ Ab(K) denotes
the operator system of all continuous matrix affine maps. The basis for our further studies
is the following proposition from [62, Prop. 3.5]:

Proposition 1.26. Let X be an operator system. Then X is unitally completely order
isomorphic to A(CS (X)). Furthermore, if K is a compact m-convex subset of a locally
convex vector space V , then K is matrix affinely homeomorphic to CS (A(K)).

Duals of operator systems

In this section we will define the matrix ordered version of base norm spaces that will be
the dual of approximate operator systems in the operator space sense. Hence our matrix
base norm spaces will be matrix ordered operator spaces, such that there is a matrix
convex base of the matrix cones. Furthermore we establish the duality theory between
approximate operator systems and matrix base norm spaces. First we need some useful
lemmas:

Lemma 1.27. Let V be a matrix ordered vector space and K a matrix convex subset. If
K1 ⊂ Vh then Kn ⊂Mn(V )h for all n ∈ N.

Proof. Let

x =
(
a b
c d

)
∈ K2.

11



1. Matrix Orderings

We have to show that b = c∗. Because K is matrix convex, it follows that

1
2
(1 1)

(
a b
c d

)(
1
1

)
=

1
2
(a+ b+ c+ d) ∈ K1 ⊂ Vh.

This implies that b + c is self-adjoint. It follows b − b∗ = −(c − c∗), i.e., Im b = − Im c.
On the other hand

1
2
(1 i)

(
a b
c d

)(
1
−i

)
=

1
2
(a− ib+ ic+ d) ∈ K1 ⊂ Vh,

which implies Re b = Re c. Thus b = Re b+ i Im b = Re c− i Im c = c∗. It is obvious how
to show xij = x∗ji for x = (xij) ∈ Kn.

Let V be an ordered vector space. Recall that a convex subset C ⊂ V+ is called a base
of V+ if every non-zero v ∈ V+ has a unique representation v = rx, where x ∈ C and
r > 0.

Lemma 1.28. Let V be an ordered vector space with generating cone V+, and let C be a
base of V+. Then for each affine map from C to some complex vector space W there is a
unique extension to a complex linear map from V to W .

Proof. Let ψ : C → W be an affine map. For each x ∈ V+ there are r ∈ R+ and z ∈ C
such that x = rz uniquely, since C is a base of V+. So we can define a map φ : V+ → W
by φ(x) = rψ(z). This is obviously a positive homogeneous map. We show that φ is
additive. Let u, v ∈ V+. Then u = rx and v = sy where r, s ∈ R+ and x, y ∈ C. It
follows

φ(u+ v) = (r + s)ψ
( r

r + s
x+

s

r + s
y
)

= rψ(x) + sψ(y) = φ(u) + φ(v).

Since Vh = V+− V+ it is now clear that φ can be extended to Vh. Moreover, given x ∈ V
we have x = Rex + i Imx uniquely, so that it is straightforward that φ can be uniquely
extended to a complex linear map V →W .

Lemma 1.29. Let V be an ordered vector space with generating cone V+, and let K be a
matrix convex subset such that K1 is a base of V+. Let ψ = (ψn) be a matrix affine map
from K to an involutive complex vector space W . Let φ : W → V be the unique extension
of the affine map ψ1 that exists by Lemma 1.28. Then ψn = φ(n)|Kn

for all n ∈ N.

Proof. For ψ ∈ A(K,W )h let φ be the linear extension of ψ1 which is self-adjoint because
ψ1 is self-adjoint. By Lemma 1.27 K ⊂ Vh. For x =

(
a b
b∗ d

)
∈ K2 let

(
a′ w
w∗ d′

)
= ψ2(x) ∈

M2(W )h. By matrix affinity we have ψ1(a) = a′ and ψ1(d) = d′. Moreover

1
2
(1 − i)ψ2

((
a b
b∗ d

))(
1
i

)
= ψ1

(1
2
(a+ ib− ib∗ + d)

)
implies

a′ + iw − iw∗ + d′ = ψ1(a) + iφ(b)− iφ(b∗) + ψ1(d).

This means that Imw = Imφ(b) since φ(b∗) = φ(b)∗. Similarly one gets Rew = Reφ(b).
Thus w = φ(b) and accordingly ψ2(x) = φ(2)(x) for x ∈ K2 and self-adjoint ψ.

It is obvious that this holds also for any x = [xij ] ∈ Kn because xij = x∗ji. If ψ is not
self-adjoint, it can be uniquely decomposed into its real and imaginary parts. Since the
process of extension of an affine map to a linear map is complex linear the claim follows
immediately.
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Duals of operator systems

Let E be a real ordered vector space with positive cone E+. Recall that a non-empty
convex subset B of E+ is called a base for E+, if every non-zero x ∈ E+ has a unique
representation x = rb, where b ∈ B and r > 0. This is equivalent to the existence
of a strictly positive real linear functional on E. The right approach to translate this
concept to matrix ordered vector spaces is by replacing convex sets with matrix convex
sets. Hence we define:

Definition 1.30 (Matrix Convex Base). Let K be a matrix convex subset of a matrix
ordered vector space V . Then K is a matrix convex base (or simply, an m-base) of V , if

(i) Mn(V )+ = { α∗Kmα | m ≤ n, α ∈Mm,n } for all n ∈ N, and

(ii) α∗xα = β∗yβ implies α∗α = β∗β for all x ∈ Kl, y ∈ Km, α ∈ Ml,n, β ∈ Mm,n and
l, m, n ∈ N.

Notice that the definition implies that 0 /∈ K1.

Proposition 1.31. Let K be a matrix convex subset of a matrix ordered vector space V .
Then K is a matrix convex base of V if and only if there is a strictly positive linear map
φ : V → C such that Kn =

{
x ∈Mn(V )+

∣∣ φ(n)(x) = 1n

}
for all n ∈ N.

Proof. Suppose that there is a strictly positive map φ : V → C with the stated property.
Then the second condition of the definition of an m-base obviously holds. So all we
have to show is that Mn(V )+ ⊂ {α∗Kmα | m ≤ n, α ∈Mm,n } for all n ∈ N. To this
end let v = [vij ] ∈ Mn(V )+ and assume v 6= 0. Then vii 6= 0 for some 0 ≤ i ≤ n. If
β = φ(n)(v) ∈ M+

n would be invertible, then φ(n)(β−
1
2 vβ−

1
2 ) = 1n and we would be

through. Now, if β ≥ 0 does not have full rank, there is a unitary matrix u ∈ Mn such
that 0 ≤ u∗βu =

(
? ?
0 0

)
. Thus there are 0 < m < n and an invertible γ ∈ Mm such that

u∗βu =
(
γ 0
0 0

)
. A short calculation shows

φ(m)

(
1
∗
n,m

(
γ−

1
2 0

0 0

)
u∗vu

(
γ−

1
2 0

0 0

)
1n,m︸ ︷︷ ︸

= x

)
= 1m.

Therefore x ∈ Km and φ(n)(w) =
(
γ 0
0 0

)
, where w = u∗vu. We conclude that φ(wii) = 0

for m < i ≤ n, which implies wii = 0, because φ is strictly positive. Thus u∗vu =
(
v′ 0
0 0

)
.

With α = γ
1
2 (1m 0)u∗ ∈Mm,n we obtain v = α∗xα, which proves the claim.

Suppose now that K is an m-base of V . Let v ∈ V be positive and non-zero. By
definition of an m-base there are r > 0 and x ∈ K1 such that v = rx, and if there is
another pair s ≥ 0 and y ∈ K1 such that v = sy then

√
rx
√
r =
√
sy
√
s implies r = s, so

that x = y. This means that each non-zero v ∈ V+ has a unique representation v = rx
such that r > 0 and x ∈ K1. Consequently, K1 is a convex base (in the usual sense) of
the cone V+ ⊂ Vh, so there is a strictly positive real linear map φ : Vh → R such that
K1 = {x ∈ V+ | φ(x) = 1 }. We can extend φ to a complex linear map on V that we still
denote φ. Obviously the map stays strictly positive. Letting

Cn =
{
x ∈Mn(V )+

∣∣∣ φ(n)(x) = 1n

}
,

we have to show Kn = Cn for all n ∈ N. We have
〈
φ(n)(x)ξ

∣∣ξ〉 = φ(ξ∗xξ) = 1 for n ∈ N,
x ∈ Kn and for all unit vectors ξ ∈ Cn. It follows that φ(n)(x) = 1n and hence Kn ⊂ Cn

13



1. Matrix Orderings

for all n ∈ N. Conversely, let v ∈ Cn. Then v is positive and since by assumption K is
an m-base, there are m ≤ n, α ∈ Mm,n and x ∈ Km ⊂ Cm such that v = α∗xα. Then
1n = φ(n)(v) = α∗φ(m)(x)α = α∗α implies v ∈ Kn, because K is an m-convex set. This
shows that Kn = Cn for all n ∈ N, and the proof is complete.

Recall that for a real base norm space E with base C, the unit ball of E is given by
conv(C ∪ −C). Since E is a real vector space this means that the unit ball of E is the
absolute convex hull of the base. It is well-known that there is a correspondence between
norms and absolute convex sets, i.e., the unit balls of normed spaces are absolute convex
sets. Conversely, one can use an absolute convex set to define a (semi-)norm, such that
the given absolute convex set will be the unit ball in this norm. The analogous concept
of an absolute convex set for operator spaces is a so-called absolutely matrix convex set.
Recall the following definition from [28] or [26]:

Definition 1.32. Let V be a vector space. Let K = (Kn) be a sequence of sets such
that Kn ⊂Mn(V ) for all n ∈ N. Then K is an absolutely matrix convex set if∑

i

αixiβi ∈ Kn

whenever xi ∈ Kni and αi ∈ Mn,ni , βi ∈ Mni,n such that
∑
i αiα

∗
i ,
∑
i β

∗
i βi ≤ 1n.

Moreover, the intersection of absolutely m-convex sets is again absolutely m-convex, so
given a sequence Y = (Yn)n∈N of subsets Yn ⊂Mn(V ), the absolutely m-convex hull of Y
is the smallest absolutely m-convex subset of V containing Y . We denote the absolutely
m-convex hull of Y as amco(Y ) = (amcon(Y ))n∈N.

Since we can rewrite an absolutely m-convex combination as
∑
i αixiβi = αxβ, where

x = ⊕ixi and α = (α1, α2, . . . ) and β = (β1, β2, . . . )tr are contractions, we conclude:

Remark 1.33. K is absolutely matrix convex if and only if for all n, m ∈ N

(i) Kn ⊕Km ⊂ Kn+m, and

(ii) αKnβ ⊂ Km for contractions α ∈Mm,n and β ∈Mn,m.

Lemma 1.34. Let V be a ∗-vector space and let K = (Kn) be a sequence of subsets
Kn ⊂Mn(V )h for all n ∈ N. Then amco(K)h = mco(K ∪ −K). If K is m-convex, then
amcon(K)h = mcon(Kn ∪ −Kn).

Proof. Let v ∈ amcon(K)h. There are l ∈ N and x ∈ Kl and contractions α, β ∈ Ml,n

such that v = α∗xβ. Since v = v∗ = β∗xα, we find

v =
1
4
(
(α+ β)∗x(α+ β)− (α− β)∗x(α− β)

)
. (1.8)

In addition

1
4
(
(α+ β)∗(α+ β) + (α− β)∗(α− β)

)
=

1
2
(α∗α+ β∗β) ≤ 1n,

since α and β are contractions. So we see that v ∈ mcon(K∪−K), because 0 is contained
in mcon(K ∪ −K). If K is assumed to be m-convex, and hence −K is also m-convex,
then we can rewrite the m-convex combination of equation (1.8) (possibly adding 0) into
an Mn-convex combination such that v ∈ mcon(Kn ∪ −Kn), cf. [30].
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Duals of operator systems

Let V be an operator space. For the following definition, recall that there is a corre-
spondence between absolute matrix convex sets and operator space (semi)norms, cf. [28,
p. 171ff]. This correspondence is given by the Minkowsky functionals on each matrix level,
i.e., by

‖v‖n = inf { λ ≥ 0 | v ∈ λBn } ,

where v ∈ Mn(V ) and (‖·‖n)n is the family of operator space norms and B = (Bn)n,
where Bn = Ball(Mn(V )) for all n ∈ N, is the absolutely matrix convex set of the unit
balls of Mn(V ).

Definition 1.35. Let V be a matrix ordered vector space such that Vh = V+−V+. Then
V is a matrix base norm space (or m-base norm space), if V has an m-base K such that
its absolute matrix convex hull B = amco(K) determines an operator space norm by
‖v‖n = inf {λ ≥ 0 | v ∈ λBn } for all n ∈ N. Note that it is sufficient, if ‖·‖1 is a norm.
This will be the case if, for instance, B1 is linearly bounded.

Remark 1.36. We should mention that the term ‘matrix base norm space’ appears in
[38]. However, the spaces considered there are neither operator spaces nor do they have
an m-base. What Karn and Vasudevan use is actually the old Choi-Effros dual of an
operator space. This means given an operator space V the dual norms are defined by
identifying Mn(V ∗) = Mn(V )′. Hence their matrix base norm spaces are no operator
spaces, but are L1-normed, i.e., they satisfy ‖v⊕w‖ = ‖v‖+ ‖w‖. Moreover, let W be a
matrix base norm space in the sense of [38], then Mn(W )h is a real base norm space for
all n ∈ N in the usual sense. This means given a dual pair X and W , where W is such a
matrix base norm space and X is an approximate operator system, Mn(W )h is just the
Banach space dual of the real approximate order unit space Mn(X)h. In addition, while
Mn(W )h has a convex base Cn for all n ∈ N, the collection (Cn)n of these bases does not
define an m-convex set. So, these matrix base norm spaces are quite different from ours.

Lemma 1.37. Let (V,K) be an m-base norm space. Suppose that v = α∗xα, where
x ∈ Km, α ∈Mm,n and m, n ∈ N. Then ‖v‖ = ‖α∗α‖.

Proof. Obviously ‖v‖ ≤ ‖α‖2, since we have an operator space norm and ‖x‖ ≤ 1. Given
an arbitrary ε > 0 we have by definition of the norm v ∈ (‖v‖ + ε)Bn. So we find some
m ∈ N, y ∈ Km, β ∈Mn,m and γ ∈Mm,n such that ‖β‖, ‖γ‖ ≤ 1 and

α∗xα = v = (‖v‖+ ε)βyγ.

From Proposition 1.31 there is a strictly positive functional φ determined by the m-base.
Applying φ to the above equation yields α∗α = (‖v‖+ε)βγ. Hence we find ‖α‖2 ≤ ‖v‖+ε.
Since this holds for all ε > 0 the claim follows.

Proposition 1.38. Let (V,K) and (W,C) be m-base norm spaces. Let ψ = (ψn)n be
an m-affine isomorphism between K and C, then ψ1 extends to a complete order isomor-
phism that is also a complete isometry. Conversely, if f : V → W is a complete order
isomorphism and a complete isometry, then the restrictions (f (n)|Kn)n form an m-affine
isomorphism between K and C. For this reason we call an m-affine isomorphism between
the m-bases an isomorphism of m-base norm spaces.

Proof. Let x ∈ Kn. Given a complete isometry f : V → W that is a complete order
isomorphism and setting g = f−1, we have 0 ≤ f (n)(x) = α∗yα for some α ∈ Ml,n,
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1. Matrix Orderings

y ∈ Cl and l ≤ n. Moreover, 1 =
∥∥f (n)(x)

∥∥ = ‖α‖2 and thus α∗α ≤ 1n. Similarly
0 ≤ g(l)(y) = β∗x̃β for some β ∈ Mm,l with β∗β ≤ 1l, x̃ ∈ Km and m ≤ l. Since K is
an m-base, the identity x = α∗β∗x̃βα implies α∗β∗βα = 1n. Hence we see l = n = m
and β∗β = 1n and α∗α = 1n. This means that f (n)(x) ∈ Cn for all x ∈ Kn. So we have
shown that f (n)(Kn) ⊂ Cn and g(n)(Cn) ⊂ Kn for all n ∈ N. It is clear that the maps
are m-affine.

Conversely, suppose that we have an m-affine isomorphism ψ = (ψn) between K and
C. Let f and g be the unique linear extensions of ψ1 and ψ−1

1 , respectively, that exist by
Lemma 1.28. Then f and g are inverse to each other so that f is a linear isomorphism
between V and W . Furthermore from Lemma 1.29 we have f (n)|Kn = ψn and g(n)|Cn =
ψ−1
n . Let v ∈ Mn(V )+. Then v = α∗xα for a suitable matrix α and x in K and

so f (n)(v) = α∗ψn(x)α ≥ 0. Conversely suppose f (n)(v) ≥ 0 for v ∈ Mn(V ). Then
f (n)(v) = β∗yβ for a suitable matrix β and y in C. Applying the inverse map yields
v = β∗g(n)(y)β = β∗ψ−1

n (y)β ≥ 0. This shows that f is a complete order isomorphism.
To show that f is an isometry let v ∈ Mn(V ) and ε > 0. Obviously v ∈ (‖v‖ + ε)Bn.
Thus we may write v = (‖v‖ + ε)αxβ for x in K. Then f (n)(v) = (‖v‖ + ε)αψl(x)β,
which implies

∥∥f (n)(v)
∥∥ ≤ ‖v‖ + ε for all ε > 0 by definition of the base norm. Thus∥∥f (n)(v)

∥∥ ≤ ‖v‖. On the other hand f (n)(v) =
(∥∥f (n)(v)

∥∥ + ε
)
αyβ and hence applying

the inverse map v =
(∥∥f (n)(v)

∥∥+ ε
)
αψ−1

l (y)β which yields ‖v‖ ≤
∥∥f (n)(v)

∥∥. This proves
that f is a complete isometry as claimed.

It is known that approximate operator systems are in particular matrix regular spaces
as defined in Definition 1.5. We will show next that our matrix base norm spaces are
also matrix regular. This will be of help when proving the duality relations between
approximate operator systems and matrix base norm spaces.

Remark 1.39. Let (V,K) be an m-base norm space. Let n ∈ N. Given v ∈ Mn(V ) such
that v ≥ 0 and ‖v‖ ≤ 1 there is x ∈ Kn such that x ≥ v.

Proof. Let φ be the strictly positive functional determined by K, see Proposition 1.31.
Since v ≥ 0 there is α ∈ Mn and y ∈ Kn such that v = α∗yα. Hence φ(n)(v) = α∗α
and from Lemma 1.37 α∗α ≤ ‖α∗α‖1n = ‖v‖1n ≤ 1n. Thus we find β ∈ Mn such that
β∗β = 1n − α∗α. We let x = v + β∗yβ ∈ Kn.

Lemma 1.40. Let K be an m-base of a matrix ordered vector space V . Let n ∈ N. Then
v ∈ amcon(K) if and only if there are x1, x2 ∈ Kn such that

( x1 v
v∗ x2

)
≥ 0.

Proof. If v ∈ amcon(K) there are l ∈ N, y ∈ Kl and contractions α, β ∈ Ml,n such that
v = α∗yβ. Then we see

0 ≤
(
α∗ 0
0 β∗

)(
y y
y y

)(
α 0
0 β

)
=
(
α∗yα α∗yβ
β∗yα β∗yβ

)
.

For y1 = α∗yα and y2 = β∗yβ there are x1, x2 ∈ Kn such that yi ≤ xi for i = 1, 2,
cf. Remark 1.39. Thus the claim follows at once. For the converse let v ∈ Mn(V ) such
that w =

( x1 v
v∗ x2

)
≥ 0 for some x1, x2 ∈ Kn. Since the m-base K generates the matrix

cones, there is y ∈ K2n and α ∈ M2n such that w = α∗yα. Then v = (1 0)α∗yα
(

0
1

)
.

Let φ be the strictly positive functional determined by K, cf. Proposition 1.31. Letting
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β∗ = (1 0)α∗ and γ = α
(

0
1

)
we find

β∗β = β∗φ(2n)(y)β =
(
1 0

)
α∗φ(2n)(y)α

(
1
0

)
=
(
1 0

)(φ(n)(x1) φ(n)(v)
φ(n)(v∗) φ(n)(x1)

)(
1
0

)
= φ(n)(x1) = 1n,

and similarly γ∗γ = 1n. This shows that v ∈ amcon(K2n).

Proposition 1.41. Let (V,K) be an m-base norm space. Then V is matrix regular.

Proof. Let n ∈ N and v ∈ Mn(V ) such that ‖v‖ < r < 1. Then there is b ∈ amcon(K)
such that v = rb. We know that

(
x1 b
b∗ x2

)
≥ 0 for some x1, x2 ∈ Kn. Then r

(
x1 b
b∗ x2

)
≥ 0,

rx1, rx2 ≥ 0 and ‖rx1‖ = ‖rx2‖ = r < 1. On the other hand, if v ∈ Mn(V ) such that( v1 v
v∗ v2

)
≥ 0 for some positive v1, v2 ∈Mn(V ) with ‖v1‖, ‖v2‖ < 1, there are x1, x2 ∈ Kn

such that x1 ≥ v1 and x2 ≥ v2, cf. Remark 1.39. Hence
( x1 v
v∗ x2

)
≥ 0, which implies

v ∈ amcon(K) by Lemma 1.40.

For a real ordered vector space E it is known that E is an approximate order unit space
if and only if the dual E′ is a base norm space. Furthermore, E is a base norm space if
and only if E′ is an approximate order unit space. We start now with establishing these
duality relations between approximate operator systems and matrix base norm spaces.

Proposition 1.42. Let (V,K) be a matrix base norm space with base K. Then there is
a complete isometrically order isomorphism from the dual space (V,K)∗ onto the space
Ab(K) of all bounded matrix affine maps on the m-base K.

Proof. Let ψ = (ψn) be a matrix affine map from K → C. By Lemma 1.28 there is a
unique linear extension f of ψ1 to V . Notice from Lemma 1.29 that ψn = f (n)|Kn

for all
n ∈ N. Hence the linear map Φ: V ∗ → Ab(K) defined by f 7→ Φ(f) =

(
f (n)|Kn

)
will be

bijective, if we can show that the linear extension of a bounded affine map from K1 → C
is still bounded. But this is clear from the definition of an m-base norm space. Indeed
for v ∈ Bn, the unit ball of Mn(V ), we have v = αxβ for some m ∈ N and x ∈ Km and
α ∈Mn,m, β ∈Mm,n such that ‖α‖, ‖β‖ ≤ 1. Thus∥∥f (n)(v)

∥∥ =
∥∥αf (m)(x)β

∥∥ ≤ ‖ψm(x)‖ ≤ 2‖ψ1‖

for all v ∈ Bn and n ∈ N. This means that f is completely bounded. So we only need to
prove that Φ is completely bi-positive. Let f = [fij ] ∈Mr(V ∗)+. This means that f read
as map from V →Mr is completely positive. Then Φ(r)(f) =

[
f

(n)
ij |Kn

]
is positive because

[fij(xlk)] ≥ 0 for all x = [xlk] ∈Mm(V )+ and all m ∈ N, especially so for all x in K. On
the other hand, if [fij(xlk)] ≥ 0 for all x = [xlk] ∈ Km and all m ∈ N, i.e., Φ(r)(f) ≥ 0,
then since the m-base K generates the matrix order of V , it follows immediately that f is
completely positive. Hence Φ is a complete order isomorphism between V ∗ and Ab(K). It
is left to show that Φ is a complete isometry. Let f ∈Mn(V ∗) = CB(V,Mn). Let n ∈ N
and v ∈Mn(V ) such that ‖v‖ < 1. Then there are m ∈ N and α ∈Mn,m, β ∈Mm,n and
x ∈ Km such that v = αxβ and ‖α‖, ‖β‖ ≤ 1. Hence for all n ∈ N and ‖v‖ < 1 we find
some m ∈ N such that

∥∥f (n)(v)
∥∥ ≤ ∥∥f (m)(x)

∥∥ ≤ ‖Φ(f)‖. This implies ‖f‖cb ≤ ‖Φ(f)‖.
Obviously ‖Φ(f)‖ ≤ ‖f‖cb, because the m-base K lies in the unit all of V . Recall from
Lemma 1.25 that ‖Φ(f)‖ = ‖Φ(f)‖e.

17



1. Matrix Orderings

Remark 1.43. Let (X, eλ) be an approximate operator system. If there is an element
e ∈ X+ such that ‖e‖ ≤ 1 and eλ ≤ e for all λ, then (X, e) is an operator system under
the same matrix ordering and the approximate order unit and the order unit norms
coincide.

Proof. We have enλ = eλ ⊗ 1n ≤ e ⊗ 1n = en for all n ∈ N. Hence (Mn(X)h, enλ) and
(Mn(X)h, en) coincide as (real) approximate order unit and order unit spaces for all
n ∈ N by [47, Lemma 4]. By the proof of Lemma 1.46 the assertion follows easily.

Theorem 1.44. Let V be a matrix ordered complete operator space. If its dual space V ∗

is an approximate operator system, then it is an operator system and V is a matrix base
norm space.

Proof. Since the unit ball of V ∗ is w∗-compact, we see from the prove of [47, Lemma
4] that there is a least upper bound e ∈ V ∗+ for the net (eλ)λ, where ‖e‖ ≤ 1. Thus
(V ∗, e) is an operator system by Remark 1.43. We will show that e : V → C is strictly
positive. It is clear that e is positive. Let v ∈ V+ such that v 6= 0. By the Hahn-Banach
theorem there is a bounded linear x : Vh → R such that x(v) 6= 0. By Remark 1.7 we
can consider x as element of (V ∗)h = (V ′)h = (Vh)′. Since e is an order unit, there is
r ≥ 0 such that −re ≤ x ≤ re and in particular −re(v) ≤ x(v) ≤ re(v). Hence e(v)
cannot vanish. Since e is a strictly positive functional, we see that K = (Kn)n, where
Kn =

{
v ∈Mn(V )+

∣∣ e(n)(v) = 1n

}
for all n ∈ N, is an m-base of V .

Let B = (Bn)n, where Bn = Ball(Mn(V )) for all n ∈ N, be the absolutely matrix
convex set of the unit balls of Mn(V ). It is clear that amco(K) ⊂ B. It follows that
the sequence of semi-norms generated by amco(K) is an operator space norm, which we
denote by ‖·‖K . In order to see that the m-base K generates the given norm of V , we
have to show that the Minkowsky functionals of Bn and amcon(K) coincide for all n ∈ N.
This will be the case if Bn is contained in the ‖·‖K-norm closure of amcon(K). So, let
n ∈ N and v ∈ Bn. We can interpret v as map from X = V ∗ to Mn by v(x) = x(n)(v) for
all x ∈ X. Since the operator system X has a complete predual, there is a Hilbert space
H and a unital complete order isomorphism π : X → B(H) that is a homeomorphism
with respect to the σ(X,V ) and σ(B(H),B(H)∗) topologies, cf. Proposition A.4. Hence
we can assume that X is a w∗-closed, self-adjoint subspace of B(H). By [26, 4.1.5] there
is an extension φ : B(H) → Mn of v such that ‖φ‖cb ≤ 1. Then from Proposition A.3
the map φ : B(H) → Mn can be approximated pointwise by a net (φλ) of normal maps
such that ‖φλ‖cb ≤ 1. By [26, Thm. 5.3.2] for each λ we find two completely positive and
unital maps ψλ and ρλ from B(H) to Mn such that the maps

M2(B(H))→M2(Mn);
(
a b
c d

)
7→
(
ψλ(a) φλ(b)
φ∗λ(c) ρλ(d)

)
are completely positive. Then the maps

ϑλ : B(H)→M2(Mn); ϑλ(a) =
(
ψλ(a) φλ(a)
φ∗λ(a) ρλ(a)

)
are completely positive, cf. [26, Prop. 5.4.2]. Recall that we have unique decompositions
ψλ = ψσλ +ψsλ of ψλ into its normal and singular parts. Moreover, since ψλ is completely
positive, ψσλ and ψsλ are completely positive, too, cf. [53, Lemma 3.4]. We also decompose
ρλ into its normal and singular parts. Since all these decompositions are unique, we
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find that the normal part of ϑλ is given by ϑσλ =
( ψσ

λ φλ

φ∗λ ρσ
λ

)
. Since ϑλ is completely

positive, ϑσλ is completely positive. Hence its restriction to X is completely positive and
belongs to M2n(V ) since ψσλ |X , ρσλ|X ∈ Mn(V )+ (recall that π is a homeomorphism).
By Remark 1.39 there are w1

λ, w
2
λ ∈ Kn such that w1

λ ≥ ψσλ |X and w2
λ ≥ ρσλ|X . Letting

vλ = φλ|X ∈ Mn(V ), it follows that
(w1

λ vλ

v∗λ w2
λ

)
≥ 0, which implies vλ ∈ amcon(K2n)

by Lemma 1.40. Since (φλ) converges pointwise to φ, the restrictions (vλ) converges
pointwise to v on X. Hence v is in the weak closure (that is, the σ(V,X)-closure) of
amcon(K). Since the latter is a convex set, the weak closure and the norm closure of
amcon(K) are equal (e.g., [50, 2.4.8]). Thus v is in the norm closure of amcon(K). Now,
it follows from [12, Cor. 3.9] that the norm of V and ‖·‖K coincide on Vh. Since ‖·‖K is
an operator space norm, ‖·‖K is (topologically) equivalent to the operator space norm of
V on all matrix levels. Therefore v is in the ‖·‖K-closure of amcon(K), too. It follows
immediately that ‖·‖K is equal to the given norm on V . Indeed, suppose for contradiction
that there is v ∈ Mn(V ) such that ‖v‖K > r > ‖v‖. Then there is r > λ > ‖v‖ and
b ∈ Bn such that v = λb. Since b is in the ‖·‖K-closure of amcon(K) there is a sequence
(dl)l in amcon(K) such that ‖dl − b‖K → 0. Therefore ‖v‖K = λ, which contradicts
λ < r < ‖v‖K , and the proof is complete.

Corollary 1.45. Let (X, eλ) be an approximate operator system. Then X∗ is a matrix
base norm space with m-base K = (Kn)n, where

Kn =
{
f ∈ CP(X,Mn)

∣∣∣ lim
λ
f(eλ) = 1n

}
,

for all n ∈ N, i.e., Kn consists of the m-states of X. Furthermore,

‖x‖ = sup
{ ∥∥f (n)(x)

∥∥ ∣∣∣ f ∈ K2n

}
holds for all x ∈Mn(X) and n ∈ N.

Proof. If (X, eλ) is an approximate operator system then from Proposition 1.12 the bidual
(X∗∗, e), where e = w∗-limλ êλ, is an operator system. Hence by Theorem 1.44 the predual
X∗ is a matrix base norm space. Furthermore its m-base is given by the collection
Kn =

{
f ∈Mn(X∗)+

∣∣ e(n)(f) = 1n

}
. Obviously, limλ f(eλ) = limλ e

(n)
λ (f) = e(n)(f)

for all f ∈Mn(X∗). This shows that Kn = { f ∈Mn(X∗)+ | limλ f(eλ) = 1n }.
It is only left to verify the norm equation. Let n ∈ N and x ∈Mn(X). Then canonically

embedding X into its operator bidual X∗∗ = V ∗ yields

‖x‖ = ‖x‖cb =
∥∥x(n)

∥∥ = sup
{ ∥∥φ(n)(x)

∥∥ ∣∣∣ φ ∈ Bn },
because φ(n)(x) = x(n)(φ). But then it is obvious that ‖x‖ ≥ sup

{ ∥∥f (n)(x)
∥∥ ∣∣ f ∈ K2n

}
.

To see equality, let φ = [φµν ] ∈ Bn. Then from the proofs of Theorem 1.44 and Lemma
1.40 we have φ = αfβ for some f ∈ K2n, α ∈Mn,2n and β ∈M2n,n, where ‖α‖, ‖β‖ ≤ 1.
This yields ∥∥φ(n)(x)

∥∥ =
∥∥[φ(xµν)]

∥∥ =
∥∥[αf(xµν)β]

∥∥
=
∥∥(α⊗ 1n)f (n)(x)(β ⊗ 1n)

∥∥
≤ ‖α‖

∥∥f (n)(x)
∥∥‖β‖

≤
∥∥f (n)(x)

∥∥,
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and so ‖x‖ = sup
{ ∥∥f (n)(x)

∥∥ ∣∣ f ∈ K2n

}
.

Lemma 1.46. Let X be a matrix ordered operator space such that Mn(X)h is a real
approximate order unit space for all n ∈ N. Then X is an approximate operator system
under the given norm and order structure.

Proof. By assumption there is for all n ∈ N an approximate order unit (unλ)λ∈Λ inMn(X)+
such that

‖x‖ = inf { r ≥ 0 | ∃λ ∈ Λ − runλ ≤ x ≤ runλ } ,

for all x ∈Mn(X)h. Letting eλ = u1
λ, we have to show that enλ = eλ⊗1n is an approximate

order unit for Mn(X)h that generates the given norm on Mn(X)h. It is obvious that (enλ)λ
is an increasing net in Mn(X)+. Let G denote the finite and commutative group of n by
n matrices [±δij ] with unit 1n, where δii = 1 and δij = 0 for i 6= j. Notice that g = g−1

for all g ∈ G. Given x = [xij ] ∈ Mn(X)h, where we may assume ‖x‖ ≤ 1, we see that∥∥g−1xg
∥∥ ≤ ‖x‖ ≤ 1 for all g ∈ G, since X is an operator space. Since (unλ)λ generates

the norm and Λ is directed, there is µ ∈ Λ such that −unµ ≤ g−1xg ≤ unµ for all g ∈ G.
This is of course equivalent with −g−1unµg ≤ x ≤ g−1unµg for all g ∈ G. Hence letting

u =
1
|G|

∑
g∈G

g−1unµg,

we see that −u ≤ x ≤ u. Moreover, u must be a diagonal matrix, because u is invariant
under G. Indeed for any h ∈ G we obtain

h−1uh =
1
|G|

∑
g∈G

h−1g−1unµgh = u,

since the multiplication with a group element is a group isomorphism. But then it fol-
lows easily that u is diagonal. This means that u = ⊕i[unµ]ii, because simultaneously
multiplying from left and right with g ∈ G does not change the entries on the diagonal.
Furthermore, 1 ≥ ‖u‖ = max

{
[unµ]ii

∣∣ 1 ≤ i ≤ n }, where the [unµ]ii are the diagonal en-
tries of unµ. Consequently, there is ν ∈ Λ such that −eνn ≤ [unµ]ii ≤ eνn for 1 ≤ i ≤ n, so
we obtain −eνn ≤ −u ≤ x ≤ u ≤ eνn. It follows that (eλn)λ is an approximate order unit
and ‖x‖e ≤ 1 for the seminorm it generates. On the other hand we have ‖enλ‖ = ‖eλ‖ ≤ 1
for all λ ∈ Λ, since (eλ)λ is an approximate order unit of Xh. Given x ∈ Mn(X)h such
that ‖x‖e ≤ 1, there exists by definition of ‖·‖e a µ ∈ Λ such that −eµn ≤ x ≤ eµn. Since
‖eµn‖ ≤ 1 there is by assumption a ν ∈ Λ such that −uνn ≤ eµn ≤ uνn. Thus −uνn ≤ x ≤ uνn
which implies ‖x‖ ≤ 1. So, we have proved that (enλ)λ is an approximate order unit for
Mn(X)h and generates the given norm on Mn(X)h for all n ∈ N. But then it follows
easily from

‖x‖ =
∥∥∥∥( 0 x
x∗ 0

)∥∥∥∥ =
∥∥∥∥( 0 x
x∗ 0

)∥∥∥∥
e

= ‖x‖e,

where ‖x‖e = inf
{
r ≥ 0

∣∣ ∃λ ( ren
λ x

x∗ ren
λ

)
≥ 0

}
for x ∈ Mn(X) is the approximate order

unit operator space norm, that (X, eλ) is an approximate operator system under the given
norm and order.

Theorem 1.47. Let X be a matrix ordered complete operator space. If its dual space
V = X∗ is a matrix base norm space, then X is an approximate operator system.
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Proof. If V is a matrix base norm space then V ∗ = X∗∗ is an operator system. Notice
that Mn(X)′′ = Mn(X∗∗) for all n ∈ N. Since Mn(X∗∗)h is a real order unit space it
follows that (Mn(X)h)′ is a real base norm space for all n ∈ N. Then, because Mn(X)h
is an ordered Banach space whose dual is a base norm space, Mn(X)h is an approximate
order unit space for all n ∈ N. Now we see from Lemma 1.46 that X is an approximate
operator system.

To summarize, Corollary 1.45 and Theorem 1.47 show that a matrix ordered complete
operator space X is an approximate operator system if and only if its dual X∗ is a matrix
base norm space (cp. [12, Thm. 2.3]). Furthermore, Proposition 1.42 and Theorem 1.44
show that a matrix ordered complete operator space V is a matrix base norm space if
and only if V ∗ is an approximate operator system (cp. [12, Cor. 3.9]).

The step from real order unit spaces and base norm spaces to the matrix ordered
versions of these spaces, i.e., the operator systems and the matrix base norm spaces, was
done for applying these spaces more easily to C∗-algebras. As a first example of this we
are going to verify now that preduals of W ∗-algebras are not only Banach spaces. They
are m-base norm spaces, where the m-base is the m-convex normal state space of the
W ∗-algebra.

Proposition 1.48. LetM be a W ∗-algebra. Then there is an m-base norm space (V,K)
such that (V,K)∗ =cb M. Moreover, V is complete in the m-base norm and uniquely
determined up to isomorphism. The m-base K is m-affinely isomorph to the normal
m-convex state space CSσ(M) and hence is norm-closed.

Proof. Let V be the predual of M. We can embed V isometrically into the dual M∗ of
M in the usual way. SinceM is a unital C∗-algebra, it is especially an operator system,
i.e., M carries a matrix order and an operator space structure. Hence M∗ is a matrix
ordered operator space, actually an m-base norm space, since it is the dual of an operator
system. We can identify V with the normal or σ(M, V )-continuous functionals on M.
Now we will give V the m-base structure inherited from M∗. This means, identifying
Mn(V ) = { f ∈Mn(M∗) | f w∗-continuous } for all n ∈ N, we set

Mn(V )+ =
{
f :M→Mn

∣∣ f completely positive and σ-continuous
}

and
Kn =

{
f ∈Mn(V )+

∣∣ f(e) = 1n

}
,

where e denotes the unit of M. Notice from [52] that V+ 6= ∅ and that Vh = V+ − V+.
Hence we have a matrix ordered space and we will show next that K = (Kn)n is an
m-base of V . Defining ê : V → C by ê(f) = f(e), it is obvious that ê is a positive
linear map. Assume f ∈ V+ such that ê(f) = f(e) = 0. Then, since e is an order
unit, we find −‖x‖f(e) ≤ f(x) ≤ ‖x‖f(e) for all x ∈ Mh. This implies f = 0 on
Mh and hence on M. Thus ê is strictly positive and by definition of Kn we have
Kn =

{
f ∈Mn(V )+

∣∣ ê(n)(f) = f(e) = 1n

}
for all n ∈ N. So, K is an m-base of V

by Proposition 1.31. Notice that it is also shown that ê is an order unit for V ∗. To
see that (V,K) is an m-base norm space it is left to show that amco(K) = B, where
B = (Bn)n∈N is the absolutely m-convex set of the unit balls of Mn(V ), i.e., Bn =
{ f ∈Mn(V ) | ‖f‖cb ≤ 1 }. Notice that f ∈ Kn is completely positive and unital. Hence
‖f‖cb = ‖f(e)‖ = 1. Since we have an operator space norm (induced from M∗), it is
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obvious that amco(K) ⊂ B. On the other hand, given f ∈ Bn there are two unital and
completely positive maps ψ1, ψ2 :M→Mn such that the map

φ :M→M2n; φ(x) =
(
ψ1(x) f(x)
f∗(x) ψ2(x)

)
is completely positive, cf. [26, Thm. 5.3.2, Prop. 5.4.2]. Recall that we have for j = 1, 2 a
unique decomposition ψj = ψσj + ψsj of ψj into its normal and singular parts. Moreover,
since ψj is completely positive, ψσj and ψsj are completely positive, too, cf. [53, Lemma
3.4]. Since these decompositions are unique, we find that the normal part of φ is given by
φσ =

( ψσ
1 f

f∗ ψσ
2

)
. Since φ is completely positive, φσ is completely positive. It follows from

Lemma 1.40 in combination with Remark 1.39 that f ∈ amco(K), becauseK is an m-base.
Thus we have shown so far that (V,K) is an m-base norm space. Next we will show that
the dual matrix order defined by V corresponds with the given matrix order of M. The
W ∗-algebra M carries the w∗-topology (i.e., σ(M, V )-topology) and the w∗-topology of
the W ∗-algebra Mn(M) coincides with the product topology, cf. Lemma A.5. Recall that
Mn(M)+ is w∗-closed, cf. [52, Lem. 1.7.1]. With the identification Mn(V ∗) = L(V,Mn)
let the dual order be

Mn(M)+ =
{
x ∈Mn(V ∗)

∣∣∣ x(n)(f) ≥ 0 for all f ∈Mn(V )+
}
.

Obviously, if x ∈ Mn(M)+ then x(n)(f) = f (n)(x) ≥ 0 for all f ∈ Mn(V )+ so that
Mn(M)+ ⊂Mn(M)+. For the converse let x /∈Mn(M)+. Since Mn(M)+ is w∗-closed,
there is a w∗-continuous map ϕ ∈ CP(M,Mn) such that ϕ(n)(x) 6≥ 0 by Remark A.2.
Therefore, x /∈Mn(M)+. So, the dual matrix order induced from (V,K) is the given ma-
trix order ofM. SinceM is a unital C∗-algebra, its norm is the matrix order unit norm.
From Proposition 1.42 we have Ab(K) =cp (V,K)∗ =cp M. This implies Ab(K) =cb M
and again by Proposition 1.42 the matrix order unit norm is the cb-norm of V ∗. Hence
we see that Mn(M) = CB(V,Mn) for all n ∈ N.

To see uniqueness, assume there is another complete m-base norm space (W,C) such
that (W,C)∗ =M. Then V =1 W isometrically, since V and W are usual Banach predu-
als ofM, [52, Corollary 1.13.3]. But then a net inM will converge in the σ(M, V )-topol-
ogy exactly if it converges in the σ(M,W )-topology. Thus both topologies are equal. As
shown there are complete isometric order isomorphism of (V,K) and (W,C) into M∗,
which is the operator bidual of both V and W . Under these embeddings the m-bases will
map to the same m-convex set, namely those completely positive and unital maps from
M to the matrices, that are w∗-continuous. Hence K and C are m-affinely isomorphic.
Therefore, V and W are isomorph as m-base norm spaces by Remark 1.38.

Notice that it makes sense to consider preduals of W ∗-algebras as m-base norm spaces.
While the predual of a W ∗-algebra is uniquely determined, the predual seen as Banach
space does not determine theW ∗-algebra in general. The algebraic structure of theW ∗-al-
gebra cannot be stored in the Banach space structure of its predual, since the predual is
already determined by the order structure of the W ∗-algebra. Given some W ∗-algebra
M the opposite algebra Mop has the same order structure as M, so that M and Mop

have the same predual M∗. Therefore, if the algebraic structure of M and Mop would
be determined by their common predual, M and Mop had to be isomorphic W ∗-alge-
bras, which is wrong in general, cf. [20]. However, considering the predual as m-base
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norm space, which is a matrix ordered operator space, the predual generates the matrix
ordering of its operator dual, that is, the matrix order structure of the W ∗-algebra, and
thus determines the multiplication of the algebra. Hence the preceding proposition estab-
lishes a bijective correspondence between W ∗-algebras and their m-base norm preduals.
The main result of the next chapter will characterize those m-base norm spaces that
are (m-base norm) preduals of W ∗-algebras among all m-base norm spaces, see Theorem
2.19. Consequently, the theory of W ∗-algebras is equivalent to the theory of a certain
class of m-base norm spaces. Moreover, interpreting the results of [19] in this context,
there seems to be already an equivalent formulation of the type theory of W ∗-algebras in
terms of m-base norm spaces.

Matrix convex faces

In chapter 3 we will be confronted with the need for a matrix version of split faces. A split
face F of a convex set C is a face such that there is another face F ′ of C such that every
point of x ∈ C can be written in a unique way as convex combination x = ty + (1− t)y′,
where y ∈ F and y′ ∈ F ′. Now it is not obvious what a matrix convex face should be. In
addition, there are always distinct matrix convex combinations expressing the same point,
since α∗yα = α∗u∗uyu∗uα, where u is a unitary matrix. However, recalling the preceding
section about the duality of operator systems and m-base norm spaces, it becomes clear
that there should be something like ‘matrix convex split faces’. To have a more concrete
example, consider a W ∗-algebra L. It is known, for instance, that L splits uniquely into
an atomic and a purely non-atomic part, say L =M⊕∞N . W ∗-algebras have essentially
unique preduals that are m-base norm spaces by Proposition 1.48. So we can identify
L∗ =M∗⊕1N∗. Now, the m-bases ofM∗ and N∗ should generate the m-base of L∗ and
should be—in a sense that we will make precise in the current section—a pair of m-convex
split faces in the m-base of L∗. It should be clear from the preceding sections that we
cannot rely only on bases in the usual sense, since they determine only the order on the
first level, but not the orderings on the higher matrix levels. We begin with defining
matrix convex faces.

Definition 1.49. Let K = (Kn)n be an m-convex set in a vector space V . An m-convex
face of K is an m-convex subset1 S ⊂ K such that Sn is a convex face of Kn in the usual
sense for all n ∈ N.

The next proposition is essentially taken from [57, Section 3].

Proposition 1.50. Let K be an m-convex set in V . Let n ∈ N and let F ⊂ Kn be a
non-empty face of Kn that is Mn-convex. Then there is a unique m-convex face S of K
such that Sn = F .

Proof. We show the existence first. Let F1 = 1
∗
n,1F1n,1. Obviously F1 is a convex subset

of K1. Let y1, z1 ∈ K1 such that x1 = ry1 + (1 − r)z1 ∈ F1. By definition of F1 there
is x ∈ F such that x1 = 1

∗
n,1x1n,1. Let (eij)ni,j=1 be the standard basis of Mn. Then

x1 ⊗ 1n = diag(x1, . . . , x1) =
∑n
j=1 e

∗
1jxe1j ∈ F , because F is Mn-convex. It follows

immediately that F1 is a face of K1, because F is a face of Kn.
For each m ∈ N let Sm be the set of matrices [xij ] ∈ Km such that xii ∈ F1 for

i = 1, . . . ,m. Obviously Sm is a convex face of Km. Letting Spm x = m−1
∑m
i=1 xii for

1The notation S ⊂ K for matrix sets is an abbreviation for Sn ⊂ Kn for all n ∈ N.
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x = [xij ] ∈ Km we see that Sm = { x ∈ Km | Spm x ∈ F1 } for all m ∈ N, because F1

is a face. We easily verify that Spm(u∗xu) = Spm x and Spm(αxα) = Spm(xα2) hold
for unitary u and positive α in Mm. Thus in order to prove that Sm is Mm-convex, it
is sufficient to show that

∑2
i=1 αixiαi ∈ Sm, where xi ∈ Sm and αi ∈ M+

m for which∑2
i=1 α

2
i = 1m, recall also (1.4). By assumption we have

F1 3
1
2

2∑
i=1

Spm xi =
1
2

2∑
i=1

Spm
(
xi

2∑
j=1

α2
j

)

=
1
2

(
Spm

( 2∑
i=1

αixiαi

)
+Spm

(
α1x2α1 + α2x1α2

))
.

Since the summands lie in K1 and F1 is a face of K1, it follows
∑2
i=1 αixiαi ∈ Sm. So

Sm is Mm-convex for each m ∈ N. Then S = (Sm)m∈N is an m-convex set, since S is by
definition closed under compressions and direct sums.

It is left to show Sn = F and that the construction is unique. Fixm ∈ N. Let Bm ⊂ Km

be a non-empty face of Km that is Mm-convex. Assume that 1
∗
m,1Bm1m,1 = F1. We

will proof that in this case we must have Bm = Sm. By definition of Sm it is obvious
that Bm ⊂ Sm. We will show Sm ⊂ Bm by induction. Let diag(x1, . . . , xm) ∈ Sm. Then
x1, . . . , xm ∈ F1 = 1

∗
m,1Bm1m,1, and since Bm is Mm-convex, it follows xi ⊗ 1m ∈ Bm

for i = 1, . . . ,m. Hence we obtain

diag(x1, . . . , xm) =
m∑
i=1

eii(xi ⊗ 1m)eii ∈ Bm.

Now, let x ∈ Sm be a matrix that has at most µ non-zero entries off its diagonal. We
choose one of these entries, so let xij 6= 0. Let α = diag(r1, . . . , rm) such that rj = −1
and rν = 1 for ν 6= j. Then y = αxα ∈ Sm and we obtain xνν = yνν for ν = 1, . . . ,m,
yij = −xij and yνµ = 0 if xνµ = 0. By inductive hypothesis z = 1

2 (x+ y) ∈ Bm, since z
has at most µ − 1 non-zero entries off its diagonal. Consequently x ∈ Bm, because Bm
is a face. Now, applying the last result in particular to the face F , which is Mn-convex,
it follows that Sn = F , since we have F1 = 1

∗
n,1F1n,1 by definition. Moreover, if D is

another m-convex face of K such that Dn = F , then F1 = 1
∗
m,1Dm1m,1 for all m ∈ N,

and consequently Sm = Dm for all m ∈ N, completing the proof.

Definition 1.51 (Matrix convex split face). Let K = (Kn)n be an m-convex set in a
vector space V . An m-convex face F of K is called an m-convex split face of K, if there
is an m-convex face F ′ of K such that F1 and F ′1 are complementary split faces of K1

and K = mco(F ∪F ′). Obviously then F ′ is also an m-convex split face of K, and F and
F ′ are called complementary m-convex split faces of K.

Proposition 1.52. Given two m-base norm spaces (W,F ) and (W ′, F ′), we define a
matrix ordering on the algebraic direct sum2 V = W ⊕W ′ by setting

Mn(V )+ = Mn(W )+ ⊕Mn(W ′)+,

for all n ∈ N. Then V is an m-base norm space with m-base K = mco(F ∪ F ′) (reading
F , F ′ as subsets of V ), and F and F ′ are complementary m-convex split faces of K.
2Note that V is a ∗-vector space under the involution v∗ = w∗ ⊕ w′∗, where v = w ⊕ w′.
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Proof. Let φ : W → C and φ′ : W ′ → C be the m-base functionals for F and F ′, re-
spectively, cf. Proposition 1.31. We define a function ψ : V → C by setting ψ(v) =
φ(w) + φ′(w′) for v = w ⊕ w′, where w ∈ W and w′ ∈ W ′. Obviously, ψ is well-
defined, and it is a simple exercise to check that ψ is linear. Moreover, by definition
of the ordering on V , it is easily seen that ψ is strictly positive. Our claim is that
Kn = { v ∈Mn(V )+ | ψ(n)(v) = 1n } for all n ∈ N. Now, if x ∈ Kn for some n ∈ N,
then there is an m-convex combination x = α∗yα + β∗y′β, where y ∈ Fn, y′ ∈ F ′n and
α∗α + β∗β = 1n. Hence x ∈ Mn(V )+, and ψ(n)(x) = α∗φ(n)(y)α + β∗φ′(n)(y′)β = 1n.
Conversely, if v ∈ Mn(V )+ and ψ(n)(v) = 1n, then by definition of the ordering on V
there are w ∈ Mn(W )+ and w′ ∈ Mn(W ′) such that v = w ⊕ w′. Since W and W ′ are
m-base norm spaces, w = α∗yα and w′ = β∗y′β for some y ∈ Fn, y′ ∈ F ′n, and matrices
α, β ∈Mn. It follows that

1n = ψ(n)(v) = α∗φ(n)(y)α+ β∗φ′(n)(y′)β = α∗α+ β∗β.

Thus v = α∗yα + β∗y′β ∈ mcon(F ∪ F ′) = Kn. This shows that K is an m-base of the
matrix ordered vector space V . To see that (V,K) is an m-base norm space, cf. Definition
1.35, we have still to show that Vh = V+ − V+, (but this is trivial by definition of the
involution of the direct sum), and that the seminorms

‖v‖n = inf { λ ≥ 0 | v ∈ λ amcon(K) }

on Mn(V ) are norms for all n ∈ N. If ‖v‖n = 0, then there is a monotone decreasing
sequence (λν)ν∈N of positive numbers converging to 0, such that v = λνbν , where bν ∈
amcon(K). We find bν = ανxνβν , where xν ∈ K. Then xν = γ∗1,νyνγ1,ν +γ∗2,νy

′
νγ2,ν with

yν ∈ F and y′ν ∈ F ′. It follows that v = λνανγ
∗
1,νyνγ1,νβν + λνανγ

∗
2,νy

′
νγ2,νβν . Since

v = w ⊕ w′ uniquely, we find that w = λνανγ
∗
1,νyνγ1,νβν and w′ = λνανγ

∗
2,νy

′
νγ2,νβν for

all n ∈ N. Hence ‖w‖n, ‖w′‖n ≤ λν for all ν ∈ N, so that ‖w‖n = ‖w′‖n = 0. Then w = 0
and w′ = 0 and consequently v = 0, which shows that ‖·‖n is a norm.

So far, we have shown that (V,K) is an m-base norm space. Next we will show that F
and F ′ are complementary m-convex split faces of K. Let n ∈ N. If z = rx1 +(1−r)x2 ∈
Fn for r ∈ (0, 1) and x1, x2 ∈ Kn ⊂ Mn(V )+, then, since F and F ′ are m-bases of
W and W ′, respectively, there are αi, βi ∈ Mn, and yi ∈ Fn and y′i ∈ F ′n, such that
xi = α∗i yiαi + β∗i y

′
iβi for i = 1, 2. We find

1n = ψ(n)(xi) = α∗i φ
(n)(yi)αi + β∗i φ

′(n)(y′i)βi = α∗iαi + β∗i βi

for i = 1, 2. Moreover, because z ∈ Fn ⊂Mn(W )+, it follows from

z = rx1 + (1− r)x2 = rα∗1y1α1 + (1− r)α∗2y2α2 ⊕ rβ∗1y′1β1 + (1− r)β∗2y′2β2

that rβ∗1y
′
1β1+(1−r)β∗2y′2β2 = 0. Since y′1, y

′
2 ∈ F ′n, it follows that rβ∗1β1+(1−r)β∗2β2 = 0,

and hence β∗1β1, β
∗
2β2 = 0. Consequently, α∗1α1, α

∗
2α2 = 1n, which shows xi = α∗i yiαi ∈

Fn for i = 1, 2. This proves that Fn and, by symmetry, F ′n are faces of Kn for all n ∈ N.
Since F1 and F ′1 are bases, it is immediate that each x ∈ K1 can be expressed as a unique
convex combination x = ry + (1 − r)y′, where y ∈ F1, y′ ∈ F ′1 and r ∈ [0, 1]. So, we
have shown that F and F ′ are complementary m-convex split faces of K and the proof is
complete.
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Proposition 1.53. Let (V,K) be an m-base norm space. Given an m-convex split face
F of K with complementary split face F ′, we let W = linF1 and W ′ = linF ′1. Then
(W,F ) and (W ′, F ′) are m-base norm spaces under the induced matrix ordering, and
(V,K) =cp (W,F )⊕1 (W ′, F ′).

Proof. It is easy to verify that Wh = linR F1 and that W = Wh + iWh. Since K1 =
F1 ⊕c F ′1, we know from [4, Prop. II.6.1] that linR F1 ∩ linR F

′
1 = {0}, which means that

Wh ∩ W ′
h = {0}. If x ∈ W ∩ W ′, then obviously Rex, Imx ∈ Wh ∩ W ′

h, so that
W ∩W ′ = {0}. Since K1 = F1⊕c F ′1, it is also obvious that V ⊂W +W ′. Thus we have
shown so far, that V = W ⊕W ′ (which immediately implies Mn(V ) = Mn(W )⊕Mn(W ′)
for all n ∈ N). Next we will verify that (W,F ) (and hence by symmetry also (W ′, F ′)) is an
m-base norm space under the matrix ordering induced by V . We have to show that Fn is a
subset of Mn(W ) for all n ∈ N, i.e., given x = [xij ] ∈ Fn we have to show xij ∈W . Notice
that xii ∈ F1 for i = 1, . . . , n, xij = x∗ji and that it is sufficient to consider the case of 2×2
matrices only. So, let x ∈ F2. Then it follows easily that Rex, Imx ∈W , and thus x ∈W .
Hence we have verified Fn ⊂ Mn(W ) for all n ∈ N. It is obvious that W+ = W ∩ V+ is
a proper and generating cone, and evidently Mn(W )+ = Mn(W ) ∩Mn(V )+ determines
a matrix ordering on W . Moreover, the restriction of the m-base functional φ of (V,K),
cf. Proposition 1.31, to W is easily seen to be an m-base functional for (W,F ), so that
F is an m-base. Indeed, let y ∈ Mn(W )+ such that φ(n)(y) = 1n. Then y ∈ Mn(V )+,
which shows directly y ∈ Kn. Since F and F ′ are complementary split faces of K, there
exists an m-convex combination y = α∗zα + β∗z′β, where z ∈ Fn and z′ ∈ F ′n. Since
Mn(V ) = Mn(W ) ⊕Mn(W ′), we obtain β∗z′β = 0. Thus β∗β = 0, so that α∗α = 1n

and y = α∗zα ∈ Fn. We have verified that (W,F ) and (W ′, F ′) are m-base norm spaces.
To complete the proof we have to show that Mn(V )+ = Mn(W )+ ⊕ Mn(W ′)+. One
direction is clear, for the other direction let v ∈Mn(V )+. Then v = w + w′ for uniquely
determined elements w ∈ Mn(W ) and w′ ∈ Mn(W ′). Since (V,K) is an m-base norm
space, v = γ∗xγ for x ∈ Kn and γ ∈Mn. Since F and F ′ are complementary split faces,
there is an m-convex combination x = α∗yα + β∗y′β, where y ∈ Fn and y′ ∈ F ′n. Hence
v = γ∗α∗yαγ+γ∗β∗y′βγ, which by uniqueness implies w = γ∗α∗yαγ and w′ = γ∗β∗y′βγ.
But now it is clear that w and w′ are positive and the proof is complete.

Corollary 1.54. Let (W,F ) and (W ′, F ′) be m-base norm spaces. Then(
(W,F )⊕1 (W ′, F ′)

)∗=cp Ab(F )⊕∞ Ab(F ′).

Proof. We know that (V,K) = (W,F ) ⊕1 (W ′, F ′) is an m-base norm space, and that
(V,K)∗ =cp Ab(K). Since F and F ′ are complementary split faces of K, it is easy to
verify that Ab(K) =cp Ab(F )⊕∞ Ab(F ′). Hence the claim follows.

It is obvious that an extreme point of a face of a convex set is also an extreme point
of the convex set. We end this chapter noting that a similar result, though less obvious,
holds for structural elements of m-convex split faces.

Proposition 1.55. Let F be an m-convex split face of an m-convex set K. If n ∈ N and
x ∈ str(Fn), then x ∈ str(Kn).

Proof. Suppose that x ∈ str(Fn) and x = α∗1x1α1+α∗2x2α2 is an Mn-convex combination,
where x1, x2 ∈ Kn. Let F ′ be the m-convex split face that is complementary to F . Then
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there are Mn-convex combinations x1 = β∗yβ + β′∗y′β′ and x2 = γ∗zγ + γ′∗z′γ′ such
that y, z ∈ Fn and y′, z′ ∈ F ′n. Then we conclude from

x = α∗1β
∗yβα1 + α∗2γ

∗zγα2 + α∗1β
′∗y′β′α1 + α∗2γ

′∗z′γ′α2

that the last two summands vanish, because x ∈ Fn. Since F ′ is an m-base, it follows
that α∗1β

′∗β′α1, α
∗
2γ
′∗γ′α2 = 0, so we can assume that x = α∗1β

∗yβα1 + α∗2γ
∗zγα2 is a

proper m-convex combination. Therefore there are unitaries u, v ∈ Mn and r, s ∈ (0, 1)
such that βα1 = ru, γα2 = sv, y = uxu∗ and z = vxv∗. Thus in particular α1 and
α2 are invertible, which yields that β′, γ′ = 0. Consequently β and γ are unitaries and
x1 = β∗yβ and x2 = γ∗zγ. Now, obviously x1 and x2 are unitarily equivalent to x, which
proves x ∈ str(Kn).
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2. Multiplier Algebra of Operator Systems

Following up Proposition 1.48, the aim of the current chapter is to characterize normal
matrix convex state spaces of W ∗-algebras among matrix convex sets. Instead of starting
with an m-convex set K contained in some vector space, we assume for convenience
that we have an m-base norm space (V,K) such that K is its m-base. (There is no
essential loss of generality doing so.) If K should be the normal m-convex state space of
a W ∗-algebra, or in other words if (V,K) should be a predual of a W ∗-algebra, then this
W ∗-algebra must be (V,K)∗ = Ab(K) up to isomorphism. So an intermediate step to
achieve our aim is to provide an associative multiplication on the operator system Ab(K).
The essential observation is that given an operator system we can define a (multiplier)
algebra by using purely the matrix order of the operator system. Then, having an order
unit, we can embed the algebra into the operator system. However, the embedding does
not need to be surjective in general, that means the constructed algebra can be small.
To prove that the embedding is surjective, in which case Ab(K) will be turned into a
C∗-algebra with predual, and thus into a W ∗-algebra, we will need to pose only a single
additional condition on K that ensures the existence of sufficiently many projections in
the multiplier algebra. The difference of our approach compared with [9, 10, 8, 7] or [6] is
that we can define an associative algebra directly using matrix orderings. In the papers of
Alfsen and Shultz so-called P -projections were introduced for a given dual pair consisting
of a (real) base norm space V and an order unit space A. These P -projections serve as
a kind of generalization of projections, i.e., in the special case that A is the self-adjoint
part of a W ∗-algebra the P -projections on A are the maps a 7→ pap with p a projection
in A. Using P -projections, Alfsen and Shultz built a spectral theory that could be used
to define a Jordan product. So they first defined projections and afterwards constructed
a Jordan algebra from these. In [64] Werner defined P -projections for matrix ordered
spaces and used them to construct a self-adjoint algebra. Later on in a simplification of
his thesis Werner replaced P -projections by the notion of so-called nh-projections (neutral
and hereditary projections), but he still built an algebra using these projections.

We will construct the multiplier algebra of an operator system directly by using its
matrix order structure without the use of projections. The construction is borrowed from
[54], where the multiplier algebra is constructed for matrix ordered Hilbert spaces. We
repeat the construction here for convenience of the reader. For the parts that we need,
the assumption of Hilbert spaces is not required.

So, let (X, e) be an operator system supplied with the matrix order norm. Let L(X)
denote the linear mappings from X to X. For x ∈ X and T ∈ L(X) we define a right
multiplication by xT ? = (Tx∗)∗. Let n ∈ N. For x = [xij ] ∈ Mn(X) and T = [Tij ] ∈
Mn(L(X)) we define left and right multiplication with the matrix T by standard matrix
multiplication, i.e., Tx =

[∑
j Tijxjk

]
and

xT ? = (Tx∗)∗ =
[∑
j

Tijx
∗
kj

]∗
=
[∑
j

xijT
?
kj

]
,
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that means [Tij ]? = [T ?ji]. We then define a Jordan product by setting

JTxS?K =
1
2

(
(Tx)S? + T (xS?)

)
for T , S ∈Mn(L(X)) and x ∈Mn(X). Let 1 denote the identity mapping on X. For the
following calculation notice that for example

q
diag(1, T,1)[xij ] diag(1, T ?,1)

y
=

 x11 x12T
? x13

Tx21 JTx22S
?K Tx23

x31 x32T
? x33

 . (2.1)

Definition 2.1. Let (X, e) be an operator system. We define the matrix multiplier
algebra M(X) = M of X to be the set

M =
{
T ∈ L(X)

∣∣ q diag(T,1, . . . ,1)xdiag(T ?,1, . . . ,1)
y
≥ 0, ∀x ∈Mn(X)+, n ∈ N

}
.

Lemma 2.2. Let (X, e) be an operator system and M its multiplier algebra. Then
(Sx)T ? = JSxT ?K = S(xT ?) for all S, T ∈M and x ∈ X.

Proof. Notice that
q

diag(1, . . . ,1, T,1, . . . ,1)xdiag(1, . . . ,1, T,1, . . . ,1)?
y
≥ 0

for all T ∈M and positive x ∈Mn(X), since α∗Mn(X)+α ⊂Mn(X)+ for α ∈Mn.
Letting S, T ∈ M and x ∈ X+, we define the diagonal matrices d1 = diag(T,1,1),

d2 = diag(1,1, S), d3 = diag(1, T,1). Let α = (1,−1, 1), β = ( 1
λ ,

1
λ , λε) for λ > 0 and

ε = ±1, ±i. Then, recalling (2.1), we obtain

0 ≤ βJd3Jd2Jd1(α∗xα)d?1Kd
?
2Kd

?
3Kβ

∗

= βJd3Jd2

JTxT ?K −Tx Tx
−xT ? x −x
xT ? −x x

 d?2Kd
?
3Kβ

∗

= β

 JTxT ?K −(Tx)T ? (Tx)S?

−T (xT ?) JTxT ?K −T (xS?)
S(xT ?) −(Sx)T ? JSxS?K

β∗

= λ2|ε|2JSxS?K + ε
(
S(xT ?)− (Sx)T ?

)
+ ε̄
(
(Tx)S? − T (xS?)

)
.

Since the positive cone in an operator system is closed, this implies for λ → 0 that
εy + ε̄y∗ ≥ 0, where y = S(xT ?) − (Sx)T ?. The positive cone is also proper, thus
Re y = Im y = 0. We obtain S(xT ?) = (Sx)T ? for positive x and it is immediate that
this holds for all x ∈ X, then.

Proposition 2.3. Let (X, e) be an operator system and M ⊂ L(X) its multiplier algebra.
Then M is an algebra.

Proof. Let S, T ∈M. It is obvious from Lemma 2.2 and equation (2.1) that ST ∈M. It
is also clear that λT ∈M for all λ ∈ C. To show that M is closed under addition, we let
d1 = diag(T,1, . . . ,1) and d2 = diag(1, S,1, . . . ,1) in Mn+1(M). With α =

(
1 1 0
0 0 1n−1

)
we find

diag(T + S, 1, . . . ,1)xdiag(T + S, 1, . . . ,1)? = αd2d1α
∗xαd?1d

?
2α

∗ ≥ 0

for x ∈Mn(X)+. Hence S + T ∈M.
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Proposition 2.4. Let (X, e) be an operator system and M its multiplier algebra. Then
TMm(X)+T ? ⊂Mn(X)+ for all T ∈Mn,m(M) and n, m ∈ N.

Proof. The assertion obviously holds for n = m and T = diag(T1, . . . , Tn). So, we will
reduce the general case to this special case in the following way: For T = [Tij ] ∈Mn,m(M)
and x ∈Mm(X)+ we define the block diagonal matrix

α =



1 . . . 1 0 . . . 0 0 . . . 0 . . . . . . 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0 . . . . . . 0 . . . 0

0 . . . 0 0 . . . 0
. . . . . . . . .

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . 0 . . . 0
0 . . . 0 0 . . . 0 . . . . . . 0 . . . 0 1 . . . 1


∈Mm,nm

and we let γ = (1n, . . . ,1n) ∈Mn,nm and

d = diag(T11, T21, . . . , Tn1, T12, T22, . . . , Tn2, . . . , T1m, . . . , Tnm).

Then we obtain T = γdα∗ and thus TxT ? = γdα∗xαd?γ∗ ≥ 0 and the proof is complete.

After the definition of the multiplier algebra of an operator system the next step is to
show that there is an embedding of the multiplier algebra into the operator system.

Remark 2.5. So far we interpreted mappings T = [Tij ] ∈ Mn(L(X)) as mappings from
Mn(X) to Mn(X) by matrix multiplication, i.e., Tx = [

∑
j Tijxjk]. But one can also

identify Mn(L(X)) with L(X,Mn(X)) by setting Tx = [Tijx] for x ∈ X, which is actually
done when supplying CB(X) with the cb-norms to get the dual operator space of the
operator space X. This means that the operator space structure of the dual is defined by
Mn(CB(X)) = CB(X,Mn(X)) for all n ∈ N. Note that for T = [Tij ] ∈ Mn(L(X)) and
x ∈ X we have T (x⊗ 1n) = [Tijx] = Tx.

Proposition 2.6. Let (X, e) be an operator system. Then the linear map Ω: M(X)→ X
defined by Ω(T ) = Te is a complete isometry from M(X) supplied with the cb-norms into
X. This means the equations∥∥Ω(k)(T )

∥∥ = ‖Tek‖ =
∥∥[Tije]∥∥ = ‖T‖ = ‖T‖cb

hold for all T = [Tij ] ∈Mk(M(X)) and k ∈ N. In particular we have M(X) ⊂ CB(X).

Proof. Fix k ∈ N and let T = [Tij ] ∈Mk(M). Notice that by definition of the norms the
inequalities

‖Tek‖ =
∥∥[Tije]∥∥ ≤ ‖T‖ ≤ ∥∥T (n)

∥∥ ≤ ‖T‖cb
hold for all n ∈ N. So it suffices to prove that ‖T‖cb ≤ ‖Tek‖ is true. For this let n ∈ N
and x = [xij ] ∈ Mn(Mk(X)) such that xij ∈ Mk(X) and ‖x‖ ≤ 1. Then the matrix( enk x
x∗ enk

)
∈M2nk(X), where enk = e⊗ 1nk is positive. Hence

0 ≤ diag(T, . . . , T︸ ︷︷ ︸
n-times

,1k, . . . ,1k︸ ︷︷ ︸
n-times

)
(
enk x
x∗ enk

)
diag(T ?, . . . , T ?,1k, . . . ,1k).
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Carrying out the matrix multiplication and using TekT ? ≤ ‖TekT ?‖ek, it follows that

0 ≤
(
‖TekT ?‖enk [Txij ]

[x∗ijT
?] enk

)
.

This implies∥∥T (n)x
∥∥2 =

∥∥[Txij ]∥∥2 ≤ ‖(Tek)T ?‖ = ‖T (Tek)∗‖ ≤ ‖T‖k‖Tek‖ ≤ ‖T‖cb‖Tek‖. (2.2)

Since these inequalities hold for all x ∈Mn(Mk(X)) with ‖x‖ ≤ 1 and n ∈ N, we obtain
‖T‖cb ≤ ‖Tek‖ and the proof is complete.

Corollary 2.7. Let X be an operator system. Then M(X) is an operator subalgebra of
CB(X).

Remark 2.8. Notice that if the operator system (X, e) is a C∗-algebra, then Ω(M(X)) = X
and Ω is multiplicative, so defining an involution on M(X) by T ∗e = (Te)∗ for T ∈M(X)
the map Ω is a unital ∗-isomorphism from M(X) onto X. In fact, for each t ∈ X the
map T : X → X defined by Tx = tx is in M(X) simply by definition of the multiplier
algebra. Obviously, Ω(T ) = Te = te = t, so Ω is surjective. Moreover, for S, T ∈ M(X)
we let s = Se, t = Te ∈ X and see that Ω(ST ) = S(Te) = st = Ω(S)Ω(T ), because Ω is
injective by Proposition 2.6. It follows that Ω is a ∗-isomorphism. Notice in particular
that in case (X, e) is a W ∗-algebra, all elements of M(X) are w∗-w∗-continuous, because
they come from right multiplications of elements of X.

In the sequel we will assume always the special case that our operator system (X, e) is
the dual of a matrix base norm space (V,K) that is complete in the matrix base norm.
It is known that if an operator space, say W , is the dual of a complete operator space,
then there is a Hilbert space H and a completely isometric injection ϕ : W → B(H) that
is a w∗-w∗-homeomorphism onto its image, cf. [26, Proposition 3.2.4].

In order to have Hilbert space theory at hand, we would like to represent X (together
with its multiplier algebra) concretely as subspace of some B(H). To obtain w∗-continuity
of the representation (since X is a dual space), we consider the subalgebra of weakly
continuous multipliers, i.e.,

Mσ(X) = { T ∈M(X) | T : X → X w∗-w∗-continuous } ,

that we call the weak multiplier algebra of X. Again we will write simply Mσ for the
weak multiplier algebra of X.

Our aim is to find a Hilbert space H and representations π̃ : Mσ → B(H) and π : X →
B(H) such that π(TxS?) = π̃(T )π(x)π̃(S)∗ for all T , S ∈ Mσ and x ∈ X and such that
π is a w∗-w∗-homeomorphism onto its image. For this let n ∈ N, ϕ ∈ Kn and x ∈ X. We
define the sesquilinear forms

[ , ]xϕ : M?
σ ⊗ Cn ×M?

σ ⊗ Cn → C

by [∑
i

T ?i ⊗ ξi,
∑
j

S?j ⊗ ηj
]x
ϕ

=
∑
i,j

〈
ϕ
(
SjxT

?
i

)
ξi
∣∣ ηj〉 . (2.3)

For x ≥ 0 it is obvious that [ , ]xϕ is an inner product on M?
σ ⊗ Cn, since ϕ : X → Mn is

completely positive.
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Lemma 2.9. For the sesquilinear forms defined above we obtain the following Cauchy-
Schwarz like inequality: ∣∣[a, b]xϕ∣∣ ≤ ‖x‖2[a, a]eϕ[b, b]eϕ (2.4)

for all x ∈ X, ϕ ∈ Kn, n ∈ N and a, b ∈M?
σ ⊗ Cn.

Proof. Let n ∈ N, ϕ ∈ Kn and x ∈ X. Without loss of generality we may assume ‖x‖ ≤ 1
so that

(
e x
x∗ e

)
≥ 0. So for a =

∑l
i=1 T

?
i ⊗ ξi and b =

∑k
j=1 S

?
j ⊗ ηj , where Ti, Sj ∈ M,

we let

γ? =
(
S?1 . . . S?k 0 . . . 0
0 . . . 0 T ?1 . . . T ?l

)
.

Then we see from Proposition 2.4 that γ
(
e x
x∗ e

)
γ? ≥ 0. Applying ϕ(lk) on this positive

matrix and evaluating the scalar product on Mlk(Mn) with the vector

ζ = (η1, . . . , ηk, λξ1, . . . , λξl)tr ∈ (Cn)lk,

where λ ∈ C can be arbitrarily chosen, we obtain

0 ≤ ζ∗ϕ(lk)
(
γ
(
e x
x∗ e

)
γ?
)
ζ = |λ|2[a, a]eϕ + λ[a, b]xϕ + λ̄[b, a]x

∗

ϕ + [b, b]eϕ.

Notice that [b, a]x
∗

ϕ = [a, b]xϕ. Hence choosing λ = t[a, b]xϕ for some real t, we get

t2|[a, b]xϕ|2[a, a]eϕ + 2t|[a, b]xϕ|2 + [b, b]eϕ ≥ 0.

This implies |[a, b]xϕ|2 ≤ [a, a]eϕ[b, b]eϕ in the known way, and the claim is proved.

Proposition 2.10. Let (X, e) = (V,K)∗, where (V,K) is a norm complete matrix base
norm space. Then there are a Hilbert space H, a representation π̃ : Mσ → B(H) and a
unital completely positive order isomorphism onto its image π : X → B(H) such that

π(TxS?) = π̃(T )π(x)π̃(S)∗

for all x ∈ X and S, T ∈Mσ.

Proof. Let n ∈ N and ϕ ∈ Kn. Notice that [ , ]eϕ is a semidefinite inner product on the
space M?

σ ⊗ Cn. Hence we see from the Cauchy-Schwarz inequality∣∣[a, b]eϕ∣∣2 ≤ [a, a]eϕ[b, b]eϕ

that the null space

Nϕ =
{
a ∈M?

σ ⊗ Cn
∣∣ [a, a]eϕ = 0

}
=
{
a ∈M?

σ ⊗ Cn
∣∣ [a, b]eϕ = 0 for all b ∈M?

σ ⊗ Cn
}

is a subspace of M?
σ ⊗ Cn. It follows that the induced sesquilinear form on the quotient

space (M?
σ⊗Cn)/N defined by [a+N, b+N ]eϕ = [a, b]eϕ is a definite inner product. Let Hϕ

be the completion of the pre-Hilbert space (M?
σ ⊗Cn)/N . We denote the scalar product

of Hϕ as 〈 | 〉ϕ. Given R ∈Mσ we define an antilinear and antimultiplicative mapping

Λϕ(R) : M?
σ ⊗ Cn →M?

σ ⊗ Cn by Λϕ(R)
( l∑
i=1

T ?i ⊗ ξi
)

=
l∑
i=1

(R?T ?i )⊗ ξi.
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2. Multiplier Algebra of Operator Systems

Notice that ‖ReR?‖e−ReR? ≥ 0. Hence from Proposition 2.4 we see that

0 ≤ diag(T1, . . . , Tl)
(

1
1

)(
‖ReR?‖e−ReR?

)(
1 1
)
diag(T1, . . . , Tl)?

= ‖ReR?‖(TieT ?j )− (TiReR
?T ?j ).

Consequently, letting a =
∑l
i=1 T

?
i ⊗ ξi, we find

[Λϕ(R)a,Λϕ(R)a]eϕ =
∑
i,j

〈ϕ(TjReR?T ?i )ξi | ξj〉

≤ ‖ReR?‖ 〈ϕ(TjeT ?i )ξi | ξj〉
= ‖ReR?‖[a, a]eϕ

This shows that Λϕ(R) leaves Nϕ invariant and thus defines an antilinear transformation
on (M?

σ ⊗Cn)/Nϕ that we still denote as Λϕ(R). We also see that ‖Λϕ(R)‖2 ≤ ‖ReR?‖.
So Λϕ(R) extends to a bounded antilinear mapping on the completion Hϕ, which we
again denote as Λϕ(R). Then we define π̃ϕ(R) = Λϕ(R)∗ and get a bounded linear
representation π̃ϕ : Mσ → B(Hϕ).

We still need to find a completely bipositive mapping πϕ fromX into B(Hϕ). Let x ∈ X.
From equation (2.4) we see that [ , ]xϕ extends to a bounded sesquilinear form onHϕ. Hence
there is an operator in B(Hϕ), that we call πϕ(x), such that 〈πϕ(x)a|b〉ϕ = [a, b]xϕ for all
a, b ∈ Hϕ. Now we define the Hilbert space H =

⊕
Hϕ and the mappings π =

⊕
πϕ

and π̃ =
⊕
π̃ϕ, where the sum runs over all ϕ ∈ Kn and all n ∈ N.

We have to show that πϕ(Rx) = π̃ϕ(R)πϕ(x) and πϕ(xS?) = πϕ(x)π̃ϕ(S)∗ for all R,
S ∈ Mσ, x ∈ X, ϕ ∈ Kn and n ∈ N. Let a =

∑
i T

?
i ⊗ ξi and b =

∑
j S

?
j ⊗ ηj , where Ti,

Sj ∈Mσ and ξi, ηj ∈ Cn. Then

〈πϕ(Rx)a | b〉 =
[∑
i

T ?i ⊗ ξi,
∑
j

S?j ⊗ ηj
]Rx
ϕ

=
∑
i,j

〈ϕ(SjRxT ?i )ξi | ηj〉

and

〈π̃ϕ(R)πϕ(x)a | b〉 =
〈
πϕ(x)

∑
i

T ?i ⊗ ξi
∣∣∣Λϕ(R)

∑
j

S?j ⊗ ηj
〉

=
〈
πϕ(x)

∑
i

T ?i ⊗ ξi
∣∣∣∑
j

R?S?j ⊗ ηj
〉

=
[∑
i

T ?i ⊗ ξi,
∑
j

R?S?j ⊗ ηj
]x
ϕ

=
∑
i,j

〈ϕ(SjRxT ?i )ξi | ηj〉 .

Similarly we obtain

〈πϕ(xS?)a | b〉 =
∑
i,j

〈ϕ(SjxS?T ?i )ξi | ηj〉 = 〈πϕ(x)π̃ϕ(S)∗a | b〉 .
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This holds for all ϕ ∈ Kn, a, b ∈M?
σ ⊗ Cn and n ∈ N, so that the claim follows.

It is left to show that π is a complete order isomorphism. Let x = [xνµ] ∈Mm(X) such
that π(m)(x) ≥ 0. We have to prove that x is positive. Let ϕ ∈ Kn. Then π

(m)
ϕ (x) ≥ 0,

hence 〈π(m)
ϕ (x)ξ|ξ〉 ≥ 0 for all ξ ∈ Hm

ϕ . A small calculation shows

0 ≤
〈(∑

µ

πϕ(xνµ)ξµ
)∣∣∣ξ〉 =

∑
µ,ν

〈πϕ(xνµ)ξµ | ξν〉 =
∑
µ,ν

〈ϕ(xνµ)ηµ | ην〉 =
〈
ϕ(m)(x)η

∣∣η〉,
where we chose ξν = 1

? ⊗ ην ∈ M?
σ ⊗ Cn and set η = (ην) ∈ (Cn)m with arbitrary

ην ∈ Cn. Thus ϕ(m)(x) is positive, which implies x ≥ 0, since ϕ ∈ Kn was arbitrary.
Since π is obviously completely positive by construction, we see that π is a complete order
isomorphism onto its image.

Proposition 2.11. Let (X, e) = (V,K)∗, where (V,K) is a norm complete matrix base
norm space. For the Hilbert space H and the maps π̃ : Mσ → B(H) and π : X → B(H)
constructed in Proposition 2.10 the following holds: π is a w∗-w∗-homeomorphism and

π̃(Mσ) = { z ∈ B(H) | zπ(X) ⊂ π(X) } . (2.5)

In particular, π̃(Mσ) is w∗-closed in B(H).

Proof. In order to show, that π is a w∗-w∗-homeomorphism, we will show first, that πϕ
is continuous with respect to the w∗-topology on X and the weak operator topology on
B(Hπϕ) for all ϕ ∈ Kn and n ∈ N. For this notice that given S, T ∈ Mσ and x ∈ X we
obtain the equation

〈ψ|SxT ?〉 = ψ(SxT ?) = (SxT ?)(ψ)

= (xT ?)(Sδψ) = (Tx∗)∗(Sδψ)

= (Tx∗)((Sδψ)∗)

= x∗(T δ(Sδψ)∗)

= x((T δ(Sδψ)∗)∗) = x(SδψT δ
?

)

=
〈
SδψT δ

? ∣∣x〉
(2.6)

for any ψ ∈ V . Observe that we have two different dualities. The first one between V and
V ∗ = X and the second one between V ∗ and V ∗∗, where it is well-known, that the second
duality can be interpreted as an extension of the first one. Now, let n ∈ N, ϕ ∈ Kn and
a, b ∈M?

σ ⊗ Cn. For x ∈ X we define

f(x) = 〈πϕ(x)a|b〉ϕ = [a, b]xϕ =
∑
i,j

〈ϕ(SjxT ?i )ξi|ηj〉 , (2.7)

where a =
∑
i T

?
i ⊗ ξi and b =

∑
j S

?
j ⊗ ηj . We will show that f ∈ V holds, which

will imply, that πϕ is continuous with respect to the w∗-topology on X and the weak
operator topology on B(Hϕ). Notice that Kn ⊂Mn(V ) so that ϕ = [ϕνµ], where ϕνµ ∈ V .
Applying (2.6) to (2.7) (with ψ = ϕνµ), we obtain immediately that

f(x) =
∑
i,j

〈ϕ(SjxT ?i )ξi|ηj〉 =
∑
i,j

η∗j
[
ϕνµ(SjxT ?i )

]
ξi =

∑
i,j

η∗j
[〈
SδjϕνµT

δ?

i

∣∣x〉]ξi.
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2. Multiplier Algebra of Operator Systems

It follows that f ∈ V , where f(x) = 〈πϕ(x)a|b〉ϕ for a, b ∈ M?
σ ⊗ Cn. But since by

construction M?
σ⊗Cn is dense in Hϕ, we can prove that g ∈ V , where g(x) = 〈πϕ(x)a|v〉ϕ

for arbitrary a, b ∈ Hϕ. Fix a, b ∈ Hϕ and let (an) and (bn) be sequences that converge
in norm against a and b respectively. Then∣∣〈πϕ(x)a|b〉ϕ − 〈πϕ(x)an|bn〉ϕ

∣∣ ≤ ‖x‖(‖an‖‖b− bn‖+ ‖b‖‖a− an‖
)
.

This shows that fn = 〈πϕ(·)an|bn〉ϕ is norm convergent against g and thus g ∈ V , be-
cause V is norm complete. It is obvious that g ∈ V implies that πϕ is continuous when
X is given the w∗-topology and B(Hϕ) is given the weak operator topology. Then the
direct product π = ⊕πϕ : X → B(H) is continuous with respect to the same topologies,
cf. [52, page 42]. Recall from Proposition 2.10 that π is a complete order isomorphism
onto its image, so π also is a complete isometry onto its image. Therefore the restriction
π : Ball(X) → B(H) is in particular a continuous, injective map from the w∗-compact
Ball(X) to B(H) with the weak operator topology that is a weaker Hausdorff topology
than the w∗-topology (the latter coincides with the σ-weak topology on B(H)). It follows
that π is a w∗-w∗-homeomorphism between Ball(X) and π

(
Ball(X)

)
. Therefore, using

that π
(
Ball(X)

)
= π(X) ∩ Ball

(
B(H)

)
, it follows from applying the Krein-Smulian the-

orem that π(X) is w∗-closed and that π : X → π(X) is a w∗-w∗-homeomorphism onto
its image. It is left to verify π̃(Mσ) = { z ∈ B(H) | zπ(X) ⊂ π(X) }. Let y ∈ π̃(Mσ).
Then y = π̃(T ) for some T ∈ Mσ and obviously yπ(x) = π̃(T )π(x) = π(Tx) ⊂ π(X)
for all x ∈ X. For the other direction let y ∈ B(H) such that yπ(X) ⊂ π(X). Then
we can define a linear mapping T : X → X by Tx = π−1(yπ(x)). We only have to ver-
ify, that T is in Mσ. A short calculation shows that xT ? = π−1(π(x)y∗) and therefore
TxT ? = π−1(yπ(x)y∗). It follows that T ∈ Mσ. So, we have proved that equation (2.5)
holds, and since π(X) is w∗-closed, it is obvious that π̃(Mσ) is w∗-closed, too.

Projective faces

Our starting point in this chapter was the duality between a given m-base norm space
(V,K) and its dual (V,K)∗ = Ab(K). The question is under what conditions on K will
Ab(K) be a W ∗-algebra? After constructing the multiplier algebra of an operator system
and concretely representing both spaces as bounded operators on the same Hilbert space in
Proposition 2.10 and 2.11, we still need a condition on K that ensures that the embedding
of Proposition 2.6 is surjective, so that we can identify Ab(K) with its multiplier algebra,
which will turn Ab(K) into a W ∗-algebra. The work of Alfsen and Shultz, cf. [6], contains
a projection axiom that ensures essentially that the constructed algebra contains enough
projections. We will need such an axiom for the multiplier algebra, too. This is the topic
of the current section.

So let us first define what we will call projections in the multiplier algebra. As usual
(X, e) is an operator system that is the dual of a complete m-base norm space (V,K) and
Mσ is its multiplier algebra.

Definition 2.12. An element p ∈ Mσ of the multiplier algebra is a (multiplier) projec-
tion, if p2 = p and pe is self-adjoint in X.

Notice from Remark 2.8 that if (X, e) is a W ∗-algebra, then the multiplier projections
correspond with the projections in X. Moreover, it is known that there is a relation
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Projective faces

between projections in X and certain faces of the normal state space of X. This is the
origin of the projection axiom that will be introduced soon.

Remark 2.13. To get somewhat closer to [6, 9], where P -projections (called compressions
in [6]) are defined without mentioning an algebra, we could easily avoid to talk about the
multiplier algebra in the preceding definition; we could equivalently define a multiplier
projection to be a w∗-continuous map p ∈ L(X) such that p2 = p and pe is self-adjoint
and such that our Jordan product

q
diag(p,1, . . . ,1)xdiag(p?,1, . . . ,1)

y
is positive for all

x ∈Mn(X)+ and n ∈ N.

A multiplier projection is a mapping from X to X. Let p ∈ Mσ be a projection and
consider another mapping P : X → X defined by Px = pxp? for x ∈ X. Then P is weakly
continuous, because p is weakly continuous as element of Mσ, positive and idempotent.
We will next have a short look at mappings with these properties. The following is taken
from [9]:

Let 〈X|Y 〉 be a dual pair of real ordered vector spaces. We consider in the following
only linear mappings from X to X or from Y to Y that are σ(X,Y )-continuous or
σ(Y,X)-continuous, respectively. We call such mappings also weakly continuous. These
linear mappings have dual mappings, that are given by 〈f(x)|y〉 = 〈x|fδ(y)〉 for x ∈ X
and y ∈ Y , and these dual mappings are continuous as well. A (weakly continuous)
mapping P : X → X is called a positive projection, if P 2 = P and if P is positive, i.e.,
P (X+) ⊂ X+. We present some simple mainly algebraic observations about positive
projections, that we will need later on for the discussion of multiplier projections.

We define the annihilator of a set D ⊂ X as

D⊥ = { y ∈ Y | 〈x|y〉 = 0 for all x ∈ D } .

For C ⊂ X+ we denote C� = (C⊥∩Y+)⊥. For a projection P : X → X the dual mapping
P δ : Y → Y is also an projection. We have the formulas

(kernP )⊥ = imP δ and (imP )⊥ = kernP δ.

If X is directed or positively generated, i.e., X = X+ −X+, then imP = im+ P − im+ P
and so (imP )⊥ = (im+ P )⊥. This implies immediately

(kern+ P δ)⊥ = (kernP δ ∩ Y+)⊥ = ((im+ P )⊥ ∩ Y+)⊥ = (im+ P )�.

Remark 2.14. Let Q : X → X be some positive projection. Then we have the formula

(kern+Q)� ∩X+ = kern+Q.

Proof. If x ∈ kern+Q then of course 〈x|y〉 = 0 for all y ∈ (kern+Q)⊥, which implies
directly x ∈ (kern+Q)�. So what we must show is that (kern+Q)� is contained in
kernQ. To this end, let x ∈ (kern+Q)�, i.e., 〈x|z〉 = 0 for all z ∈ (kern+Q)⊥ ∩ Y+.
Let y ∈ Y . Since Y is directed, there are y1, y2 ∈ Y+ such that y = y1 − y2. Of course
Qδyi ∈ (kern+Q)⊥ and Qδyi ≥ 0 because Qδ is positive. So we have

〈Qx|y〉 =
〈
x
∣∣Qδy1〉− 〈x∣∣Qδy2〉 = 0,

which means Qx = 0.
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2. Multiplier Algebra of Operator Systems

Remark 2.15. Let P : X → X be a positive projection that admits a positive projection
Q : X → X such that im+ P = kern+Q. Then we have

(kern+ P δ)⊥ ∩X+ = (kernP δ)⊥ ∩X+

Proof. We have
(kern+ P δ)⊥ = (kernP δ ∩X+)⊥ = (im+ P )�,

by definition and noting that imP is directed when X is. On the other hand

(kernP δ)⊥ = (imP )⊥⊥ = imP,

where the last equality holds, because imP is σ-closed and convex. Together this implies

(kernP δ)⊥ ∩X+ = im+ P = kern+Q

= (kern+Q)� ∩X+

= (im+ P )� ∩X+ = (kern+ P δ)⊥ ∩X+.

After these simple observations, we will discuss projective faces, projections of the
multiplier algebra and a condition, which ensures that the multiplier algebra will be big
enough, i.e., will be all of the operator system.

Let (V,K) be a complete matrix base norm space. Let its dual be the operator system
(X, e). We construct its multiplier algebra Mσ.

Definition 2.16. A face F of K1 is called norm-exposed, if there is a ∈ X+ such that
F = {ϕ ∈ K1 | 〈ϕ|a〉 = 0 }. A face F of K1 is called projective, if there is a multiplier
projection p ∈Mσ such that F = {ϕ ∈ K1 | 〈ϕ|pe〉 = 0 }.

At this point, notice that to any multiplier projection p ∈ Mσ we have a positive
projection Px = pxp? as discussed at the beginning of this section. Notice also, that
Pe = pep? = p((pe)∗) = pe, because pe is self-adjoint. This also shows directly, that pe
is positive.

Lemma 2.17. Let p ∈Mσ be a multiplier projection and Px = pxp?. Then the positive
projection P admits a positive projection Q : X → X such that im+ P = kern+Q.

Proof. Let q = 1 − p ∈ Mσ and Qx = qxq?. Then Q is a positive projection, since q is
a multiplier projection. We claim im+ P = kern+Q, so let x ∈ im+ P , i.e., x is positive
and Px = x. This leads to

Qx = Q(Px) = Q(pxp?) = (1− p)(pxp?)(1− p)?.

Thus a short calculation shows that Qx = 0.
Let x ∈ kern+Q. Since x is positive and q is a multiplier, we have

0 ≤
(
q 0
0 1

)(
x x
x x

)(
q? 0
0 1

)
=
(
qxq? qx
xq? x

)
.

Since 0 = Qx = qxq?, this implies 0 = qx = (1 − p)x, i.e., px = x. So Px = pxp? =
xp? = (px)∗ = x, which means x ∈ imP , what was to be shown.
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Proposition 2.18. Let P denote the set of the multiplier projections of Mσ. If every
norm-exposed face of K1 is projective, then the w∗-closure of conv(Pe), abbreviated by
conv(Pe)−, equals the interval [0, e] = {x ∈ X | 0 ≤ x ≤ e }. (Cf. [10, Prop. 1.7])

Proof. Let p ∈ P. Since Mσ is an algebra containing the unit, it is obvious that q =
1− p ∈Mσ and q is also a multiplier projection, because q2 = q and qe is self-adjoint in
X, because pe is self-adjoint. But then qe is even positive and thus we get Pe ⊂ [0, e].
Also [0, e] is a w∗-compact and convex subset of X, so conv(Pe)− ⊂ [0, e].

Notice that since the mapping x 7→ e − 2x is an affine homeomorphism from [0, e] to
[−e, e], the claim is equivalent to conv(Se)− = [−e, e], where Se = { e− 2pe | p ∈ P }.

Let x ∈ [−e, e]. It suffices to show that x ∈ conv(Se)−. Assume for contradiction
that x is not contained in the w∗-closure of conv(Se). Then there is a self-adjoint ψ ∈
X ′
h = Vh such that ψ(conv(Se)−) ≤ 1 and ψ(x) > 1. Therefore, 1 < ψ(x) ≤ ‖ψ‖ and

sup { |ψ(s)| | s ∈ Se } ≤ 1. We are going to find s ∈ Se such that ‖ψ‖ = ψ(s), which
gives a contradiction. Since (Vh,K1) is a base-norm space, there are %, ϕ ∈ V+ such that
ψ = % − ϕ and ‖ψ‖ = ‖%‖ + ‖ϕ‖. Since [−e, e] is w∗-compact, there is y ∈ [−e, e] such
that ψ(y) = ‖ψ‖. Define a = 1

2 (e + y) and b = e − a. Notice that 0 ≤ a, b ≤ e and
y = a− b. We find

‖ψ‖ = ψ(y) = %(a) + ϕ(b)− %(b)− ϕ(a) ≤ ‖%‖+ ‖ϕ‖ − %(b)− ϕ(a), (2.8)

which implies %(b), ϕ(a) = 0, %(a) = %(e) and ϕ(b) = ϕ(e). Let F = { f ∈ K1 | f(a) = 0 }.
Then F is a norm-exposed face of K1. So, by assumption there is a multiplier projection
p ∈Mσ such that F = { f ∈ K1 | f(pe) = 0 }. Let q = 1−p ∈Mσ and define the positive
projections Px = pxp? and Qx = qxq? for all x ∈ X. We claim that a ∈ (kern+ P δ)⊥.
If g ∈ kern+ P δ, then g(e)−1g ∈ K1 and 〈g|Pe〉 = 〈g|pe〉 = 0. Consequently, g ∈ F ,
which gives g(a) = 0, showing the claim. Now, recall from Lemma 2.17 that P and Q
are positive projections with the property im+ P = kern+Q. So it follows from Remark
2.15 that (kern+ P δ)⊥ ∩ X+ = (kernP δ)⊥ ∩ X+. Therefore, we obtain a ∈ (kernP δ)⊥.
Let φ ∈ V . Since P δ, being a positive projection, is in particular idempotent, there are
h ∈ kernP δ and f ∈ imP δ such that φ = h+ f . Thus

φ(Pa− a) = 〈P δh|a〉 − h(a) + 〈P δf |a〉 − f(a) = 0,

which implies a = Pa ≤ Pe = pe. We have ϕ(pe) = 0, because ϕ(a) = 0. This implies
ϕ(qe) = ϕ(e − pe) = ϕ(e). Moreover, it follows that %(e) = %(a) ≤ %(pe) ≤ %(e), which
shows %(pe) = %(e). We also find ψ(pe) = %(pe) and

ψ(qe) = ψ(e)− ψ(pe) = %(e)− ϕ(e)− %(pe) = −ϕ(qe).

Hence we see from equation (2.8) that

‖ψ‖ = %(a) + ϕ(b) = %(e) + ϕ(e) = %(pe) + ϕ(qe) = ψ(pe)− ψ(qe) = ψ(e− 2qe),

which yields the desired contradiction 1 < ‖ψ‖ = ψ(e − 2qe) ≤ 1, and the proof is
complete.

State spaces of W*-algebras

After the thorough preparations in the preceding sections we are now able to state and
proof our first main result. We characterize abstractly the normal m-convex state spaces
of W ∗-algebras. (Compare with [34, Theorem 2.10] or [6, Theorem 10.25].)
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2. Multiplier Algebra of Operator Systems

Theorem 2.19. Let (V,K) be a matrix base norm space. Then K is the normal state
space of a W ∗-algebra if and only if

(i) V is complete in the matrix base norm,

(ii) K is norm-closed, and

(iii) every norm-exposed face of K1 is projective.

Proof. If (X, e) is a W ∗-algebra and (V,K) is its (matrix) predual such that the normal
m-convex state space K is the m-base of V , then V is complete and K is closed in the
m-base norm, cf. Proposition 1.48. Moreover, M(X) = Mσ(X) can be identified with X,
see Remark 2.8. Therefore the multiplier projections correspond with the projections of
X. It is well-known that every norm-exposed face of the normal state space K1 of the
W ∗-algebra X is projective, cf. [5].

Conversely, let (V,K) be an m-base norm space fulfilling the conditions (i) to (iii).
Then (V,K)∗ = (X, e) is an operator system, which is isomorphic to Ab(K), see Propo-
sition 1.42. We construct its multiplier algebra Mσ and claim first that the complete
isometry Ω: Mσ → X, given by Ω(T ) = Te, see Proposition 2.6, is surjective. There ex-
ist a Hilbert space H and representations π : X → B(H) and π̃ : Mσ → B(H), where
π is a w∗-w∗-homeomorphism into B(H), see Proposition 2.11. By construction of
the mappings, we have π(Ω(T )) = π(Te) = π̃(T ) for T ∈ Mσ. This shows, that
Ω(Mσ) = π−1(π̃(Mσ)). So Ω(Mσ) is a w∗-closed subset of X, because π̃(Mσ) is w∗-closed
in B(H). Since we postulate that every norm-exposed face of K1 is projective, we see
from Proposition 2.18, that

[0, e] ⊂ conv(Ω(P))− ⊂ Ω(Mσ).

Since X is an operator system, we have X = Xh + iXh, Xh = X+ −X+ and x ≤ ‖x‖e
for x ∈ Xh. So, we see immediately that Ω is surjective. Now we can carry over the
multiplication of Mσ to X by setting st = S(Te), where s, t ∈ X and S, T are the
unique elements of Mσ such that Se = s and Te = t. It is obvious that st = St. We
have to verify next, that X is a ∗-algebra under this multiplication. Let s, t ∈ X and S,
T ∈ Mσ such that Se = s and Te = t. Then eT ? = (Te)∗ = t∗, and hence we obtain
st∗ = St∗ = S(eT ?) = (Se)T ? = (T (Se)∗)∗, which shows (st∗)∗ = T (Se)∗ = Ts∗ = ts∗.
Since this holds for arbitrarily chosen s, t ∈ X, we get (st)∗ = t∗s∗, so X is a ∗-algebra.
Then Mn(X) is a ∗-algebra under matrix multiplication for all n ∈ N. It follows from
equation (2.2) in the proof of Proposition 2.6 that the order unit norm on Mn(X) is a
C∗-norm, i.e., satisfies ‖t‖2 ≤ ‖tt∗‖ for all t ∈Mn(X) and n ∈ N. HenceX is a C∗-algebra
under the above product with the same matrix ordering structure. (It is obvious that
tt∗ is in Mn(X)+ for all t ∈ Mn(X). Conversely, given x ∈ Mn(X)+ with ‖x‖ ≤ 1 we
see that ‖en − x‖ ≤ 1, so that the spectrum of x is positive, i.e., x is positive in the
C∗-sense.) Obviously, (V,K) is the complete predual of (X, e) and the claim follows from
Proposition 1.48.

Remark 2.20. So far we have worked only in the multiplier algebra of an operator system
itself, and defined projections in the multiplier algebra, cf. Definition 2.12. However
we can also consider matrices over the multiplier algebra. Let (X, e) be an operator
system and M its multiplier algebra. For each n ∈ N we define p = [pij ] ∈ Mn(M) to
be a multiplier projections if [pij(e)] = pen is self-adjoint in Mn(X) and p2 = p, where
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State spaces of W*-algebras

we let the multiplication on Mn(M) be the canonical matrix multiplication. Obviously,
Ω(n) : Mn(M)→Mn(X) is given by Ω(n)T = [Tije] = Ten.

With the preceding remark we can use Theorem 2.19 to obtain a first characterization
of the matrix convex state spaces of C∗-algebras. Let K = (Kn)n∈N be a compact matrix
convex set. We embedK as matrix base in the dual (V,K) of the operator system A(K) of
all continuous matrix affine mappings on K, cf. Corollary 1.45. Let the dual of (V,K) be
the operator system (X, e), which can be identified with the space Ab(K) of all bounded
matrix affine mappings on K, cf. Proposition 1.42. We construct the matrix multiplier
algebra Mσ of X.

Theorem 2.21. Let K = (Kn)n∈N be a compact matrix convex set. Then K is matrix
affinely homeomorph to the m-convex state space of a unital C∗-algebra if and only if the
following two conditions hold:

(i) Every norm-exposed face of K1 projective.

(ii) For a ∈ M2(A(K))h there are x, y ∈ M2(A(K))+ and a multiplier projection P ∈
M2(Mσ) such that a = x− y, x ≤ Pe2 and y ≤ e2 − Pe2.

Proof. Since the dual (V,K) = A(K)∗ is naturally a complete m-base norm space and
the m-base K (identified with a subset of V ) is norm-closed, by Theorem 2.19 the first
condition is equivalent to Ab(K) being a W ∗-algebra.

If K is m-affinely homeomorph to the m-convex state space of a unital C∗-algebra
A, then it follows from Proposition 1.26 that there is a complete order isomorphism
between A and A(K). Then M2(A(K)) is a C∗-algebra, and noting that the multiplier
projections are just the projections, see Remark 2.8, condition (ii) is fulfilled, since any
a ∈M2(A(K))h has a unique decomposition into positive and negative parts a = a+−a−
such that a+, a− ∈M2(A(K))+ and a+a− = 0.

Conversely, assume the compact m-convex set K fulfills condition (i) and (ii). Then
Ab(K) is a W ∗-algebra, as noted already. We claim that the self-adjoint subspace
A(K) ⊂ Ab(K) is closed under the multiplication of Ab(K). Since Ab(K) is a C∗-al-
gebra, M2(Ab(K)) is a C∗-algebra, too. So, to any self-adjoint a ∈ M2(A(K)), there is
the unique decomposition into positive and negative parts a = a+ − a− such that a+,
a− ∈M2(Ab(K))+ and a+a− = a−a+ = 0. Let a = x− y be the decomposition that ex-
ists by condition (ii). Since p = Pe2 is a projection in M2(Ab(K)), we have x = xp = px
and also y = yp′ = p′y, where p′ = e2 − p. So, xy = xpp′y = 0 which implies x = a+

and y = a−. Especially, we have a+ ∈ M2(A(K))h, so it follows from Lemma A.7 that
M2(A(K))h is closed under squares. Since(

∗ yx
∗ ∗

)
=
(
y x
x∗ 0

)2

∈M2(A(K))h,

for x ∈ A(K) and y ∈ A(K)h shows that yx ∈ A(K) (and analogously xy ∈ A(K)), it
follows that A(K) is closed under the multiplication inherited from Ab(K). Then A(K) is
a C∗-algebra and K is m-affinely homeomorph with the m-convex state space CS (A(K)),
cf. Proposition 1.26, which shows the claim.

Conclusions
Theorem 2.21 looks quite similar to [6, Thm. 11.59] or [7, Cor. 8.6]. In addition to defining
the projections in a different way, cf. Remark 2.13, where we can make use of matrix
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2. Multiplier Algebra of Operator Systems

orderings, we lifted the second axiom of Alfsen’s and Shultz’ theorem to the second matrix
level. However this second axiom, that is, ‘Every a ∈ A(K) admits a decomposition
a = b− c with b, c ∈ A(K)+ and b ⊥ c.’1, does not seem to be too enlightening what the
structure on the state space of C∗-algebras is concerned. Lifting it to the second matrix
level only makes it worse.

In my opinion what we have seen so far is just a W ∗-result. Theorem 2.19 characterizes
the m-convex normal state spaces of W ∗-algebras in a simple and satisfying way. By using
matrix orderings it is possible to avoid the complications and additional requirements of
[6, Theorem 10.25]. Notice that all our requirements, except for the matrix ordering,
are contained in the word ‘spectral’ in Iochum’s and Shultz’ theorem. The interested
reader may have noticed that curiously [34, Theorem 2.10] was found some years after [7,
Corollary 8.6]. Normally, one would expect to find the W ∗-result first, since W ∗-algebras
have a richer structure than C∗-algebras. However, for the concept of orientation, as
defined in [7], extreme points, or pure states, are required. But the normal state spaces
of W ∗-algebras do not contain extreme points in general.

Notice that we did not mention extreme points in Theorem 2.21. Actually, we need a
different approach to find out more about the structure of the state spaces of C∗-algebras.
We need to consider the pure matrix states. This is what the next chapter is all about.

1Where K is a compact convex set and b ⊥ c is defined via the orthogonality of P-projections.
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Everybody knows from his early days in analysis that a commutative unital C∗-algebra
can be represented as the space C(X) of continuous complex valued functions on some
compact Hausdorff space X (or in the non-unital case as the space C0(X) of continuous
functions vanishing at infinity on some locally compact Hausdorff space). Of course,
if there is a homeomorphism between compact Hausdorff spaces X and Y then there
is a unital ∗-isomorphism between the C∗-algebras C(X) and C(Y ). In the converse
direction, a unital ∗-isomorphism between C(X) and C(Y ) implies that X and Y are
homeomorphic. It was this observation that has inspired mathematicians in C∗-theory
ever since then, because it means that all algebraic properties of the C∗-algebra C(X)
are topologically stored in X. However, the general situation for C∗-algebras is as elusive
as the meaning of the term ‘non-commutative topology’. The reason for this is that a
commutative C∗-algebra is completely determined by its order structure, whereas in the
general case we need the matrix order structure to determine a C∗-algebra, as we have
seen already in the previous sections.

It is well-known that the state space of C(X) is affinely homeomorphic to the set of
probability measures on the compact Hausdorff space X and that X is homeomorphic to
the Dirac measures, which are the extreme points in the set of probability measures on
X. This shows that the state space of C(X) is a so-called Bauer simplex, i.e., a Choquet
simplex such that the set of its extreme points is closed. Conversely, every Bauer simplex
is affinely homeomorphic to the probability measures on its set of extreme points, which
is a compact Hausdorff space, cf. [4, Cor. II 4.2]. Hence the state spaces of commutative
C∗-algebras are exactly the Bauer simplexes.

In this chapter we will define matrix convex (Bauer) simplexes in such a way that the
m-convex hull of a Bauer simplex is a (trivial) matrix convex simplex. Then we will
prove that the matrix convex state spaces of C∗-algebras are exactly the matrix convex
simplexes, including the commutative situation as an easy special case. So we will find
another way to characterize which compact matrix convex sets are the state spaces of
C∗-algebras. This can be seen as an improved version of Theorem 2.21 obtained by
considering the (matrix) affine maps only on the extreme points of the state space.

We start with the following abstract definitions, that we will motivate soon.

Definition 3.1 (Equivariant Matrix Sets). Let W be a complex vector space and
let X = (Xn)n be a sequence of subsets such that Xn ⊂ Mn(W ) for all n ∈ N. Then X
is called a matrix subset of W , or simply a matrix set. If moreover u∗Xnu ⊂ Xm for
all isometries u ∈ Mn,m

1 and n, m ∈ N, where n ≥ m, then X is called an equivariant
matrix subset of W , or simply an equivariant matrix set. In particular, m-convex sets
are equivariant matrix sets. We will consider also the case, where W is a locally convex
space. Then we endow Mn(W ) with the product topology for all n ∈ N. A matrix set X
of W is called compact, if Xn ⊂Mn(W ) is compact for all n ∈ N.

1That is, for all u ∈ Mn,m such that u∗u = 1m.
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3. Matrix Convex Simplexes

Definition 3.2 (Matricial Relation). Let X be an equivariant matrix subset of a
vector space W . Let n, m ∈ N, x ∈ Xn and y ∈ Xm. Then x is matrix related to y,
in symbols x a y, if there exist l ≥ n, m, isometries u ∈ Ml,n, v ∈ Ml,m, and z ∈ Xl

such that u∗zu = x and v∗zv = y. We will also write x 4 z or z < x, if u∗zu = x for
some isometry u ∈ Ml,n. Moreover, we use the negations x 6a y and x 6< y, if x a y
and x < y do not hold, respectively. Obviously, the matricial relation on X is reflexive
and symmetric. In case the matrix relation should also be transitive, and hence is an
equivalence relation, we will also say x is matrix equivalent to y, if x a y.

Definition 3.3 (Matrix Orthogonal). Let X be an equivariant matrix subset of some
vector space. Then for arbitrary n, m ∈ N two elements x ∈ Xn and y ∈ Xm are called
matrix orthogonal, in symbols x ⊥ y, if x and y are not matrix related or there exists an
element z ∈ Xn+m such that z =

( x z12
z21 y

)
(which means in particular that x and y are

m-related). For a subset Y of X the m-orthogonal complement Y ⊥ = (Y ⊥n ) is defined by

Y ⊥n = {x ∈ Xn | x ⊥ y ∀ y ∈ Ym, m ∈ N } .

The next propositions indicates where the above definitions come from.

Proposition 3.4. Let A be a C∗-algebra. Then X = str(CQ(A)) is equivariant and the
m-relation on X coincides with the equivalence of pure states, and hence is transitive.

Proof. We will first show that X is invariant under isometries. Let x ∈ Xn and let
u ∈ Mn,m be an isometry. Given a minimal Stinespring representation x = V∗πV, we
know that π must be irreducible, since x is pure. Then u∗V∗πVu = y is a minimal
Stinespring representation of y, because π is irreducible. It follows, that y is pure and
approximately unital (u∗u = 1m ), so that y ∈ Xm.

Next we will show that the m-relation is equivalent to the equivalence of pure states.
Let xi ∈ Xni for some ni ∈ N, i = 1, 2. Define x1 ' x2, if πx1 and πx2 are unitarily
equivalent, in symbols πx1 ' πx2 , where πx1 and πx2 are representations of a minimal
Stinespring representation of x1 and x2, respectively. We have to show that x1 a x2 if
and only if x1 ' x2. Let x1 a x2. By definition, there are l ≥ n, m and z ∈ Xl and
isometries ui ∈ Ml,ni

, such that xi = u∗i zui for i = 1, 2. But then, replacing x1, x2 and
z with minimal Stinespring representations, it is obvious that πx1 ' πz and πz ' πx2 ,
because πz is irreducible (and hence u∗iV

∗πzVui are minimal Stinespring representation
of xi for i = 1, 2, where z = V∗πzV is the minimal Stinespring representation for z).
Since ' is an equivalence relation, we obtain πx1 ' πx2 .

For the converse, we assume that x1 ' x2. Let x1 = V∗1πV1 be a minimal Stinespring
representation of x1. Since x1 ' x2, we find a minimal Stinespring representation of x2,
such that x2 = V∗2πV2. Let L = lin { Vi(Cni) | i = 1, 2 } and l = dim(L). We can identify
L with Cl. So let W : Cl → L ⊂ Hπ be an isometry. Then z = W∗πW ∈ Xl. Notice that
WW∗ = pL, the projection onto L and that Vi(Cni) ⊂ L. Thus we can define isometries
ui = W∗|LVi for i = 1, 2. Notice, that Wui = Vi, because WW∗ = pL and Vi(Cni) ⊂ L.
Thus u∗iW

∗ = V∗i . Then we see immediately that

u∗i zui = u∗iW
∗πWui = V∗i πVi = xi,

for i = 1, 2, which shows the claim.

Corollary 3.5. LetM be an atomic W ∗-algebra. Then str(CSσ(M)) is equivariant and
transitive.
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Proof. We can assume thatM = ⊕B(Hκ). Let A = ⊕C(Hκ). Then A∗ = ⊕1T (Hκ) and
A∗∗ =M. From Corollary 1.45 it follows that A∗ is an m-base norm space with m-base
K = CS (A). So, A∗∗ =cp Ab(K) by Proposition 1.42. Then it follows from Proposition
1.48 that there is an m-affine isomorphism between K and CSσ(M), so that the claim
follows immediately from Proposition 3.4.

Definition 3.6. Let V be a vector space. Let X be an equivariant matrix subset of V .
Then we will call X transitive, if the m-relation on X is transitive. Furthermore, for x in
some Xl, we define the matrix set [x] = ([x]n)n∈N, where

[x]n = { y ∈ Xn | y a x }

for all n ∈ N. If X is transitive, and so the m-relation on X is an equivalence relation,
then [x] is called the equivalence class of x.

Proposition 3.7. Let A be a C∗-algebra and X = str(CS (A)). Then two pure states x,
y ∈ X1 of A are orthogonal if and only if x and y are m-orthogonal.

Proof. Let πa : A → B(Ha), where πa = ⊕π for a maximal family of pairwise non-equiv-
alent irreducible representations π : A → Hπ and Ha = ⊕Hπ, be the reduced atomic
representation of A. Then to any pure state x ∈ X1 there is a unique πx of the fam-
ily and a unit vector ξx ∈ Hπx

⊂ Ha that is unique up to a factor of modulus 1 such
that x(a) = 〈πa(a)ξx, ξx〉. Two pure states x, y ∈ X1 are orthogonal if and only if the
corresponding unit vectors ξx and ξy are orthogonal. This is always the case if Hπx

and
Hπy are distinct, i.e., if πx and πy are not unitarily equivalent. In this case x and y are
not unitarily equivalent and hence they are not m-related by Proposition 3.4, so they are
m-orthogonal by definition. If on the other hand ξx and ξy are in Hπx

= Hπ (for short)
and they are orthogonal, then Vε1 = ξx and Vε2 = ξy, where {ε1, ε2} is the standard
basis of C2, defines an isometry V : C2 → Hπ. Since π is irreducible, it is obvious that
z = V∗πV is a pure matrix state and therefore in X2. Moreover, z11 = ε∗1zε1 = x and
z22 = y, so x and y are m-orthogonal. Conversely, if x and y are m-related and m-orthog-
onal, there is z ∈ X2 such that z11 = x and z22 = y by definition. Since z is pure and
the minimal Stinespring representation is essentially unique, there is a π in the family
(of the reduced atomic representation) such that z = V∗πV for an isometry V : C2 → Hπ.
Then we see immediately that ξx = Vε1 and ξy = Vε2 are orthogonal, so that x and y
are orthogonal pure states, and the proof is complete.

Apart from the fact that the set of structural elements of the state space of C∗-algebras
is equivariant and the m-relation is equivalent to the unitary equivalence of representations
(and hence an equivalence relation itself in this case), equivariant matrix sets have some
further interesting properties, as the following results will show.

Proposition 3.8. Let X = (Xn)n∈N be an equivariant matrix subset of a ∗-vector space V
such that Xn ⊂Mn(V )h for all n ∈ N and such that X1 consists entirely of extreme points
and X2 consists entirely of m-irreducible points. Let n ∈ N and y ∈ Xn. If u∗yu = v∗yv
for isometries u, v ∈Mn,m, then there is λ ∈ C such that u = λv.

Proof. We first assume n = 2 and m = 1. So let y = [yij ] ∈ X2, x ∈ X1 and let ξ and η
be unit vectors in C2, such that x = η∗yη = ξ∗yξ. Suppose for contradiction that η and
ξ would be linearly independent. Observe that eir ⊗ 12, where r ∈ R, is a unitary matrix
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in M2 such that y = (e−ir ⊗ 12)y(eir ⊗ 12). Therefore we may assume without loss of
generality that x = y11, η = (1, 0)tr and ξ = (ξ1, ξ2)tr such that ξ2 ∈ R \ {0}. Then we
obtain x = |ξ1|2x+ 2 Re

(
ξ1ξ2y12

)
+|ξ2|2y22. With the unit vectors

ζ± =
η ± ξ
‖η ± ξ‖

=
1√

2(1± Re ξ1)
(1± ξ1,±ξ2)tr

we let

z± = ζ∗±yζ± =
|1± ξ1|2x± 2 Re((1± ξ1)ξ2y12) + |ξ2|2y22

2(1± Re ξ1)

=
(1± 2 Re ξ1)x+ x± 2 Re(ξ2y12)

2(1± Re ξ1)

= x± Re(ξ2y12)
1± Re ξ1

∈ K1.

Now we see that
x =

1 + Re ξ1
2

z+ +
1− Re ξ1

2
z− ,

is a convex combination of z+, z− ∈ X1. Since x is an extreme point, it follows that
x = z+ or x = z−. Thus Re(ξ2y12) = 0. Since ξ2 6= 0 this implies Re y12 = 0. Performing
the preceding calculation with iξ2 in place of ξ2 yields − Im(ξ2y12) = Re(iξ2y12) = 0 and
thus Im y12 = 0, so that y12 = 0. It follows y = x ⊕ y22, because y is assumed to be
self-adjoint. This is a contradiction to the assumption that y ∈ X2 is m-irreducible. So,
we have proved that η and ξ are linearly dependent. It is left to reduce the general case to
this special case. To do so, let n ∈ N arbitrary. Given y ∈ Xn, suppose for contradiction
that there are linearly independent unit vectors ξ1, ξ2 ∈ Cn such that ξ∗1yξ1 = ξ∗2yξ2.
Then letting L = lin{ξ1, ξ2} we have dimL = 2. Hence there is a isometry γ : C2 → Cn
such that γ∗γ = 12 and γγ∗ = pL, where pL denotes the orthogonal projection onto the
2-dimensional subspace L. It follows that

ξ∗1γγ
∗yγγ∗ξ1 = ξ∗1yξ1 = ξ∗2yξ2 = ξ∗2γγ

∗yγγ∗ξ2,

which is a contradiction, because γ∗yγ ∈ X2 and γ∗ξ1 and γ∗ξ2 are linearly independent.
Thus we have shown that there is λ ∈ C such that ξ1 = λξ2 and |λ| = 1, because ξ1
and ξ2 are unit vectors. Now, let n, m ∈ N. Given y ∈ Xn and isometries u, v ∈ Mn,m

such that u∗yu = v∗yv. Letting ui be the i-th column vector of u for i = 1, . . . ,m, i.e.,
ui = (u1i, . . . , uni), and vi the i-th column vector of v, we have ui and vi are unit vectors,
such that u∗i yui = v∗i yvi for i = 1, . . . ,m. By the above there are λi ∈ C such that
ui = λivi for i = 1, . . . ,m. Since x = [xµν ] = u∗yu is in Xm, the matrices [xµν ]i+1

µ,ν=i are
in X2 for i = 1, . . . ,m − 1. Hence xi,i+1 6= 0 for i = 1, . . . ,m − 1, because X2 consists
entirely of m-irreducible elements by assumption. Evaluating the (i, i+1) entries, we get

xi,i+1 = u∗i yui+1 = v∗i yvi+1 = λiλi+1u
∗
i yui+1.

This implies λiλi+1 = 1 and since |λi| = 1 we get λi = λi+1 for all i = 1, . . . ,m − 1. So
we have shown that there is λ ∈ C such that u = λv and the proof is complete.

Motivated by Proposition 3.8 we define what we will call the uniqueness property.
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Definition 3.9 (Uniqueness Property). Let X = (Xn)n∈N be an equivariant matrix
subset of a vector spaceW . We will say thatX fulfills the uniqueness property, if whenever
u∗xu = v∗xv for x ∈ Xn, isometries u, v ∈Mn,m and n, m ∈ N, there is λ ∈ C such that
u = λv.

Remark 3.10. If K is a compact and m-convex subset of a locally convex vector space
V , then we can embed K as m-base into the dual of A(K), i.e., we have a matrix affine
homeomorphism between K and CS (A(K)). Thus, if str(K) is equivariant, Proposition
3.8 applies to the equivariant matrix subset X = str(K) of V = A(K)∗, since structural
elements are in particular m-irreducible. In addition it is obvious that the matrix sets of
the pure m-states of C∗-algebras and of the normal pure m-states of atomic W ∗-algebras
fulfill the uniqueness property.

Remark 3.11. IfX = (Xn)n is an equivariant matrix set fulfilling the uniqueness property,
then an isometry u ∈Mm,n such that x = u∗yu, where x ∈ Xn and y ∈ Xm, is uniquely
determined up to a complex factor of modulus one. Since in the calculations that we will
perform all isometries will be accompanied by their adjoint matrices, a factor of modulus
one will not matter. We indicate this situation with the notation x = u∗xyyuxy, as if there
would be a unique isometry uxy that transforms y into x.

Equivariant mappings

Equivariant matrix sets have an additional structure, namely the equivariance, and in
mathematics it is usual to consider not all, but only those functions, that are compatible
with the additional structure on the set. We haven’t defined yet what these functions are
in the case of equivariant matrix sets. So here is the definition of equivariant mappings.

Definition 3.12. Let V and W be vector spaces. Let X be an equivariant matrix subset
of V and let f = (fn)n be a sequence of maps fn : Xn → Mn(W ) for all n ∈ N. If
fn(u∗xu) = u∗fm(x)u for all x ∈ Xn, isometries u ∈ Mn,m and all n, m ∈ N, where n ≥
m, then f is called an equivariant map from X to W . The vector space of all equivariant
maps from X to W with pointwise operations will be denoted by FE(X,W ). In case
W = C we let FE(X) = FE(X,C). We call an equivariant map f ∈ FE(X) bounded, if f1
is bounded. We let FE

b (X) denote the vector space of all bounded equivariant maps from
X to C. If in addition V is a locally convex topological vector space, we let CE(X) be the
set of f ∈ FE(X) such that fn : Xn → Mn is continuous for all n ∈ N, where we endow
Mn(V ) with the product topology. Notice that it suffices by equivariance to require that
f1 is continuous. Moreover, we will consider also the situation where the closure X−

n is
compact for all n ∈ N. Then we write CE

u (X) for the set of all f ∈ FE(X) such that fn is
uniformly continuous on Xn for all n ∈ N. Notice that CE

u (X) ⊂ FE

b (X) and that we can
identify CE

u (X) with CE(X−), where X− is the equivariant matrix set (X−
n )n.

Let V be a vector space. Given an equivariant subset X = (Xn)n of V we have
defined in particular the vector spaces FE(X,Ml) for all l ∈ N. Using the ∗-operation
and the order on Mn(Ml), we conclude that FE(X,Ml) is an ordered vector space. This
means that for f = (fn)n ∈ FE(X,Ml) we define f∗ by f∗n(x) = fn(x)

∗ and we set
f ≥ 0 if fn(x) ≥ 0 for all x ∈ Xn and n ∈ N. We define a matrix ordering by setting
Ml(FE(X))+ = FE(X,Ml)+. We let 1n(x) = 1n for all x ∈ Xn and n ∈ N and 1 =
(1n) ∈ FE(X).
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Lemma 3.13. Let l ∈ N and f ∈Ml(FE(X)) = FE(X,Ml). If fl(y) ≥ 0 for all y ∈ Xl,
then fn(x) ≥ 0 for all x ∈ Xn and n ∈ N with n ≥ l.

Proof. Let n ≥ l. We have to show that fn(x) ≥ 0 for all x ∈ Xn. Notice that we
identify Mn(Ml) = Mnl. So we have to show that ξ∗fn(x)ξ must be positive for all
ξ = (ξi) ∈ Cnl. We define ην = (ξν+µl)n−1

µ=0 ∈ Cn for ν = 1, . . . , l. The linear hull
lin{η1, . . . , ηl} is contained in a subspace L ⊂ Cn of dimension l. Let v : Cr → L be an
isometry. Since ην ∈ L, there are %ν ∈ Cr such that v%ν = ην for ν = 1, . . . , l. Let
%ν = (ζν+µl)l−1

µ=0 for ν = 1, . . . , l. Then with ζ = (ζi)l
2

i=1 we obtain

ξ∗fn(x)ξ =
(
[vij ⊗ 1l]ζ

)∗
fn(x)

(
[vij ⊗ 1l]ζ

)
= ζ∗(v∗fn(x)v)ζ = ζ∗fl(v∗xv)ζ ≥ 0.

Notice that the matrix product fn(x)v, where fn(x) ∈Mn(Ml) and v ∈Mn,l, cf. equation
(1.1), is equal to fn(x)[vij ⊗ 1l], where fn(x) ∈Mnl and [vij ⊗ 1l] ∈Mnl,l2 .

Lemma 3.14. Let X = (Xn)n∈N be an equivariant matrix set in a vector space V . Let
fi : Xi → Mi, where i = 1, 2, be an equivariant pair of maps, i.e., fi(u∗yu) = u∗fj(y)u
for all y ∈ Xj and isometries u ∈ Mj,i, where 1 ≤ i ≤ j ≤ 2. Then the map hx defined
by hx(0) = 0 and hx(ξ) = ‖ξ‖2f1(ξ∗1xξ1), where ξ1 = ξ/‖ξ‖ and ξ ∈ Cn, ξ 6= 0, is a
quadratic form on Cn for all x ∈ Xn and n ∈ N. Moreover, if f1 is bounded then there is
r > 0 such that ‖hx‖ ≤ r for all x ∈ Xn and n ∈ N.

Proof. Let x ∈ Xn. Obviously, hx is a well-defined map, and if f1 is bounded by r > 0
then ‖hx‖ = sup { |f1(ξ∗xξ)| | ξ ∈ Cn, ‖ξ‖ = 1 } ≤ r. Hence we have to prove only that
hx is a quadratic form. Let ξ and η be vectors of Cn. They are contained in a two
dimensional subspace L ⊂ Cn. Let {e1, e2} ⊂ L be an orthonormal basis and define an
isometry u : C2 → Cn by µε1 + νε2 7→ µe1 + νe2, where {ε1, ε2} denotes the standard
basis of C2. Then for arbitrary ζ = µe1 + νe2 ∈ L such that ζ 6= 0 we obtain

hx(ζ) = ‖ζ‖2f1(ζ∗1xζ1) = ‖ζ‖2f1(v∗0u∗xuv0) = v∗f2(u∗xu)v = u∗(ζ)∗f2(u∗xu)u∗(ζ),

where v = u∗(ζ), v0 = v/‖ζ‖ and ζ1 = ζ/‖ζ‖. Since hx(0) = 0 by definition, the preceding
equation holds for all ζ ∈ Cn. Therefore the calculation

hx(ξ + η) + hx(ξ − η) = u∗(ξ + η)∗f2(u∗xu)u∗(ξ + η) + u∗(ξ − η)∗f2(u∗xu)u∗(ξ − η)
= 2u∗(ξ)∗f2(u∗xu)u∗(ξ) + 2u∗(η)∗f2(u∗xu)u∗(η)

= 2
(
hx(ξ) + hx(η)

)
,

shows that hx is a quadratic form on Cn for all x ∈ Xn and n ∈ N.

Proposition 3.15. Let X = (Xn)n∈N be an equivariant matrix subset in some vector
space V . Let Y = (Yn)n∈N be the equivariant matrix set defined by Y1 = X1, Y2 = X2

and Yn = ∅ for n > 2. Then there is a 2-bipositive order isomorphism between FE(X)
and FE(Y ). Moreover, if Z is an equivariant matrix subset of a vector space W such that
there is an equivariant isomorphism φ = (φi)ni=1, where φi : Zi → Xi for i = 1, . . . , n,
and n ≥ 2, then there is an n-positive order isomorphism between FE(X) and FE(Z).

Proof. We consider the map ψ : FE(X)→ FE(Y ) given by ψ((fl)l) = (f1, f2). Let n > 2
and x ∈ Xn. Given (f1, f2) ∈ FE(Y ) there is a matrix fn(x) ∈Mn such that

〈fn(x)ξ|ξ〉 = ‖ξ‖2f1(ξ∗1xξ1) (3.1)
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for all ξ ∈ Cn, where . For the sequence f = (fl)l we obtain

〈u∗fn(x)uξ|ξ〉 = 〈fn(x)uξ|uξ〉 = ‖uξ‖2f1(ξ∗1u∗xuξ1) = 〈fm(u∗xu)ξ|ξ〉 ,

for all isometries u ∈ Mn,m, and x ∈ Xn, ξ ∈ Cm and n, m ∈ N, so that f ∈ FE(X).
Obviously, ψ(f) = (f1, f2), so ψ is surjective. From equation (3.1) we see directly that
ψ is injective and positive and that the inverse of ψ is also positive. Thus ψ is an order
isomorphism. Let f = [f ij ] ∈M2(FE(X))+ = FE(X,M2)+, so that fn(x) = [f ijn (x)] ≥ 0
for all x ∈ Xn and n ∈ N. Then in particular f1(x), f2(x′) ≥ 0 for all x ∈ X1 and x′ ∈ X2.
Therefore the amplification ψ(2) is positive. Conversely, if f1(x), f2(x′) ≥ 0 for all x ∈ X1

and x′ ∈ X2, i.e., if (f1, f2) ∈ FE(Y,M2)+ = M2(FE(Y ))+, we conclude from Lemma
3.13 that fn(x) ≥ 0 for all x ∈ Xn and n ∈ N. Thus ψ−1 is also 2-positive.

If Z is another matrix set such that there is an equivariant isomorphism φ = (φi)ni=1,
where φi : Zi → Xi for i = 1, . . . , n, then we define an isomorphism ψ : FE

b (X)→ FE

b (Z)
by ψ(f)i(z) = fi(φi(z)) for all z ∈ Zi and i = 1, 2. Notice from the preceding paragraph
that an equivariant map (gl)l∈N is determined by the pair g1 and g2. So in particular we
have ψ(f)i(z) = fi(φi(z)) for all z ∈ Zi and all i = 1, . . . , n, because

〈ψ(f)j(z)ξ|ξ〉 = ξ∗ψ(f)j(z)ξ = ψ(f)1(ξ∗zξ) = f1(φ1(ξ∗zξ)) = ξ∗fj(φj(z))ξ,

for all unit vectors ξ ∈ Cj and 2 ≤ j ≤ n. Since we can identify Xi with Zi for
i = 1, . . . , n, it is clear from the argumentation in the preceding paragraph (which was
just for the special case n = 2), using Lemma 3.13 again, that ψ is an n-positive order
isomorphism.

Proposition 3.16. Let V be a vector space and let X = (Xn)n∈N be an equivariant
subset of V . Then under the above pointwise structures (FE

b (X),1) is an operator sys-
tem. Furthermore, the (matrix) order unit norm on FE

b (X) coincides with the pointwise
supremum norm, so that FE

b (X) is a complete operator system.

Proof. It is obvious that the cone FE

b (X)+ is proper. We have to show that the the
matrix orderings are archimedian, that 1 ∈ FE

b (X) is an order unit and that FE

b (X) is
complete under the order unit norm.

Let f = [f ij ] ∈ Ml(FE

b (X))h and suppose there is g ∈ Ml(FE

b (X))h = FE

b (X,Ml)h,
such that rf ≤ g for all r ≥ 0. We have to show that f ≤ 0 holds. But this is clear, since
rfn(x) ≤ gn(x) for all x ∈ Xn, n ∈ N and r > 0 implies by the archimedian property of
Ml(Mn) ≈Mn(Ml) that fn(x) ≤ 0 for all x ∈ Xn and n ∈ N.

In order to see that 1 ∈ FE

b (X) is an order unit, let f ∈ FE

b (X) be a self-adjoint
element. Notice, that

‖fn(x)‖ = sup{ |〈fn(x)ξ|ξ〉| | ‖ξ‖ = 1 },

because fn(x) is self-adjoint in Mn. We have 1 = ‖ξ‖ = 〈ξ|ξ〉 = ξ∗ξ. This implies by the
property of f that

〈fn(x)ξ|ξ〉 = ξ∗fn(x)ξ = f1(ξ∗xξ).

Thus
‖fn(x)‖ = sup { |f1(ξ∗xξ)| | ‖ξ‖ = 1 } ≤ ‖f1‖ (3.2)

for all x ∈ Xn and hence ‖fn‖ ≤ ‖f1‖, where ‖fm‖ = sup { ‖fm(x)‖ | x ∈ Xm } for all
m ∈ N. This implies immediately

−‖f1‖1n ≤ −‖fn‖1n ≤ fn(x) ≤ ‖fn‖1n ≤ ‖f1‖1n (3.3)
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for all x ∈ Xn and n ∈ N. This shows that 1 = (1n) is an order unit of FE

b (X).
So far we have an order unit and Archimedian cones. Thus we can define the matrix

order unit norm on FE

b (X) by

‖f‖e = inf
{
r ∈ R

∣∣∣∣ (r1 f
f∗ r1

)
≥ 0

}
,

for all f ∈ FE

b (X). Notice that the positivity of the matrix above means pointwise
positive, i.e.,

( r1n(x) fn(x)
fn(x)∗ r1n(x)

)
≥ 0 for all x ∈ Xn and n ∈ N. We have to show now, that

FE

b (X) is complete in this norm. To this end we will show that ‖f‖e = ‖f‖ for all
f ∈ FE

b (X), where ‖f‖ = sup { ‖fn(x)‖ | x ∈ Xn, n ∈ N }. Notice, that ‖f‖ <∞, since

‖fn(x)‖ ≤ ‖Re fn‖+ ‖Im fn‖ ≤ ‖Re f1‖+ ‖Im f1‖,

for all x ∈ Xn and n ∈ N.
Obviously, we have (

‖f‖1n fn(x)
fn(x)∗ ‖f‖1n

)
≥ 0,

because ‖fn(x)‖ ≤ ‖f‖ and hence ‖f‖e ≤ ‖f‖. On the other hand, if we suppose that
‖f‖e < ‖f‖, then there is r > 0, such that ‖f‖e < r < ‖f‖ and

( r1 f
f∗ r1

)
≥ 0. But this

implies ‖fn(x)‖ ≤ r for all x ∈ Xn and n ∈ N, which leads to a contradiction. Hence
we have shown that ‖f‖e = ‖f‖ and we will simply write ‖f‖ for the matrix order unit
norm. It is now obvious, that FE

b (X) is complete in the order unit norm.

Non-commutative product of functions

So far we have defined what an equivariant matrix set is and we have seen that the space
FE

b (X) of bounded equivariant maps on an equivariant set X is an operator system under
pointwise structures. If the m-relation (Definition 3.2) is transitive and the matrix set
fulfills the uniqueness property (Definition 3.9), then much more will be true. Indeed, in
this case the operator system FE

b (X) is an atomic W ∗-algebra. In order to prove this
claim, we need to define a product on FE

b (X) that is compatible with the matrix order
structure of FE

b (X). But before thinking of the matrix order structure of FE

b (X), we
need a non-commutative product of two functions f , g ∈ FE

b (X). We cannot simply set
(fg)n(x) = fn(x)gn(x). While the ordering on FE

b (X) was pointwise defined, a pointwise
product does not make sense – one reason is that (fg)1(x) should not be (gf)1(x) in
general, unless FE

b (X) is a commutative W ∗-algebra, i.e., the bounded functions on some
set; another reason is that the function fg = ((fg)n) defined by a pointwise product
would not be equivariant in general.

Instead of defining (fg)1(x) = f1(x)g1(x), the simple idea is to multiply the larger
matrices fn(y) and gn(y) for all n ∈ N and y ∈ Xn such that y < x, and then to cut down
these products with the isometry uxy that transforms y into x, for the notation recall
Remark 3.11. Of course, we need to show now that our idea makes sense mathematically.
Remark 3.17. Notice that given an equivariant map f = (fn)n ∈ FE

b (X,Ml) we will often
omit indices and simply write f(x), where x ∈ Xn for some n ∈ N, as abbreviation for
fn(x). This will cause no confusion, because you can read f as mapping defined on the
disjoint union of the sets Xn, n ∈ N.
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Remark 3.18. Suppose that X = (Xl)l∈N is an equivariant and transitive matrix set
fulfilling the uniqueness property. Let f , g ∈ FE

b (X), n ∈ N and x ∈ Xn. Then the
map y 7→ u∗xyf(y)g(y)uxy defined on the preordered set S = { y ∈ ∪lXl | y < x } with the
preorder 4 is a net in Mn. By Remark 3.11 the map is well-defined, so we need to verify
only that (S,4) is directed. For y1, y2 ∈ S we have y1 < x and y2 < x and we conclude
that y1 a y2 by transitivity of the m-relation. Hence by definition of the m-relation there
is l ∈ N and z ∈ Xl such that z < y1 and z < y2. Obviously then z ∈ S.

Proposition 3.19. Let V be a vector space. Suppose that X is an equivariant and
transitive matrix subset of V such that X fulfills the uniqueness property. Then the limit

(fg)n(x) = lim
y<x

u∗xyf(y)g(y)uxy, (3.4)

where f , g ∈ FE

b (X,Ml) and l ∈ N, exists for all x ∈ Xn and n ∈ N. Moreover, the
function fg = ((fg)n)n is an element of FE

b (X,Ml).

Proof. Let l ∈ N. We have to show first that the limit in equation (3.4) exists. Let
f ∈ FE

b (X,Ml). We start by showing that the net (u∗xyf(y)f(y)∗uxy)y<x, cf. Remark
3.18, is monotone increasing. Let y2 < y1 < x. There is an isometry uy1y2 (unique up to
a factor of modulus 1) such that y1 = u∗y1y2y2uy1y2 . We find that

u∗xy1f(y1)f(y1)
∗uxy1 = u∗xy2f(y2)uy1y2u

∗
y1y2f(y2)

∗uxy2 .

Since uy1y2u
∗
y1y2 is a projection, we get

h(y2)− h(y1) = u∗xy2f(y2)(1− uy1y2u
∗
y1y2)f(y2)

∗uxy2 ≥ 0,

where h(yi) = u∗xyi
f(yi)f(yi)

∗uxyi
for i = 1, 2. So, we have a monotone increasing net

of positive matrices, which is bounded above by ‖f‖2 and hence is convergent. We have
still to show that the map defined by equation (3.4) is equivariant. For y < x we find
immediately

(ff∗)n(x) = lim
z<x

u∗xzf(z)f(z)∗uxz

= lim
z<y

u∗xzf(z)f(z)∗uxz

= u∗xy lim
z<y

u∗yzf(z)f(z)∗uyzuxy

= u∗xyff
∗(y)uxy.

This shows that ff∗ is equivariant and thus ff∗ ∈ FE

b (X,Ml). Now a simple calculation
gives

u∗xyf(y)g(y)∗uxy = u∗xy
1
4

3∑
ν=0

iν(f + iνg)(y)(f + iνg)∗(y)uxy,

which implies immediately that the limit

fg∗(x) = lim
y<x

u∗xyf(y)g(y)∗uxy

= lim
y<x

u∗xy
1
4

3∑
ν=0

iν(f + iνg)(y)(f + iνg)∗(y)uxy

=
1
4

3∑
ν=0

iν(f + iνg)(f + iνg)∗(x)

(3.5)
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exists. Moreover, since (f + iνg)(f + iνg)∗ ∈ FE

b (X,Ml), it is obvious that fg∗ ∈
FE

b (X,Ml) and the proof is complete.

Remark 3.20. If x ∈ Xn and y ∈ Xm such that y < x, then it is obvious that

u∗xyfm(y)gm(y)uxy = u∗xzfm(z)gm(z)uxz

for all z ∈ Xm that are unitarily equivalent to y. Consequently, if there is x ∈ Xn

such that there is z ∈ Xm with z < x and y 6< x for all y ∈ Xl and all l > m, then
limy<x u

∗
xyf(y)g(y)uxy = u∗xzfm(z)gm(z)uxz. In particular, if n = m, that is, if y 6< x

for all y ∈ Xl and all l > n, then limy<x u
∗
xyf(y)g(y)uxy = fn(x)gn(x). In the special

situation, where X = (Xn)n is a matrix set such that Xn = ∅ for all n ≥ 2, for instance
if X are the pure m-states of a commutative C∗-algebra, then the limit in equation (3.4)
reduces to the pointwise product of functions.

Does the limit in equation (3.4) define a C∗-product, and, if so, is the matrix order
structure determined by the product, i.e., the squares, the same as the pointwise ordering?
The answer is yes. The hard parts of the proof will be first to see that the product is as-
sociative and second that the matrix orderings do indeed coincide. To show associativity,
it will be good to have the following technical lemma at hand.

Lemma 3.21. Let X be a matrix set such that X is equivariant, transitive and fulfills
the uniqueness property. If l, n ∈ N, h ∈ FE

b (X,Ml), x ∈ Xn and ξ ∈ Cn×l, then for any
ε > 0 there is y < x such that for all z < y we have

‖h(z)uyzuxyξ − uyzh(y)uxyξ‖2 < ε,

where uxy and uyz are isometries such that x = u∗xyyuxy and y = u∗yzzuyz.

Proof. Given ε > 0 there is y < x such that |c− ‖h(y)uxyξ‖2| < ε/2, where we have set
c = limy<x‖h(y)uxyξ‖2 = 〈(h∗h)(x)ξ|ξ〉. Then for any z < y we have c− ‖h(z)uxzξ‖2 <
ε/2, because the net is monotone increasing to its limit c, i.e.,

0 ≤ 〈u∗xyh(y)∗h(y)uxyξ|ξ〉 ≤ 〈u∗xzh(z)∗h(z)uxzξ|ξ〉 ≤ c.

Hence we see that

‖h(z)uyzuxyξ − uyzh(y)uxyξ‖2 = ‖h(z)uyzuxyξ‖2 + ‖uyzh(y)uxyξ‖2

− 2 Re 〈uyzh(y)uxyξ|h(z)uyzuxyξ〉
≤ ‖h(z)uyzuxyξ‖2 + ‖h(y)uxyξ‖2

− 2 Re 〈h(y)uxyξ|h(y)uxyξ〉
= ‖h(z)uyzuxyξ‖2 − ‖h(y)uxyξ‖2

≤ ε

for all z < y.

Proposition 3.22. Let V be a vector space. Suppose that X is a matrix subset of V such
that X is an equivariant, transitive and fulfills the uniqueness property. Then FE

b (X,Ml)
is a C∗-algebra for all l ∈ N under the product

(fg)n(x) = lim
y<x

u∗xyf(y)g(y)uxy. (3.6)

The order structure coming from the multiplication coincides with the pointwise order
structure of FE

b (X,Ml).
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Proof. By Proposition 3.19 the limit in equation (3.6) exists and the product fg =
((fg)n)n is an element of FE

b (X,Ml). Moreover, given f , g and h ∈ FE

b (X,Ml) it is
obvious from equation (3.5) that the product is distributive and that (fg)∗ = g∗f∗. We
claim that the product is associative. The claim will be proved if we can show that the
limit limy<x u

∗
xyf(y)g(y)h(y)uxy exists and

(fg)h(x) != lim
y<x

u∗xyf(y)g(y)h(y)uxy
!= f(gh)(x)

holds for all x ∈ Xn and n ∈ N. In order to show the left hand side of the previous
equation, let ε > 0 and c > ‖f‖, ‖g‖, ‖h‖ and fix a unit vector ξ ∈ Cn×l. From Lemma
3.21 there is y′ < x such that for all z < y′ we have

‖uy′zh(y′)uxy′ξ − h(z)uy′zuxy′ξ‖ ≤
ε

3c2
. (3.7)

Now by definition of the product there is y1 < x such that

‖(fg)h(x)− u∗xyfg(y)h(y)uxy‖ ≤
ε

3
(3.8)

for all y < y1. Fix a y such that y < y′, y1. Then again by definition of the multiplication
there is z1 < y such that ‖fg(y)− u∗yzf(z)g(z)uyz‖ ≤ ε

3c for all z < z1. This implies

‖u∗xy(fg(y)− u∗yzf(z)g(z)uyz)h(y)uxy‖ ≤
ε

3c
‖h(y)‖ ≤ ε

3
. (3.9)

for all z < z1. So, adding the inequalities (3.8) and (3.9) gives

‖(fg)h(x)− u∗xyu∗yzf(z)g(z)uyzh(y)uxy‖ ≤
2ε
3

(3.10)

for all z < z1. From inequality (3.7) we see that

‖u∗xyu∗yzf(z)g(z)(uyzh(y)uxy − h(z)uyzuxy)ξ‖ ≤ ‖f(z)‖‖g(z)‖ ε

3c2
≤ ε

3
(3.11)

for all z < y. Adding the inequalities (3.10) and (3.11) we see that for ε > 0 we have
found y < x, such that ‖(fg)h(x)ξ − u∗xzf(z)g(z)h(z)uxzξ‖ ≤ ε for all z < y. Since
ξ ∈ Cn×l and ε > 0 were arbitrarily chosen, the claim follows. Similarly we can prove
that f(gh)(x) = limy<x u

∗
xyf(y)g(y)h(y)uxy, which shows that the product is associative.

Moreover, since the order unit norm coincides with the pointwise supremum norm by
Proposition 3.16, the inequality

‖u∗xyfl(y)gl(y)uxy‖ ≤ ‖fl(y)‖ ‖gl(y)‖ ≤ ‖f‖ ‖g‖,

holding for all y ∈ Xl and l ∈ N, implies

‖(fg)n(x)‖ = ‖lim
y<x

u∗xyf(y)g(y)uxy‖ = lim
y<x
‖u∗xyf(y)g(y)uxy‖ ≤ ‖f‖ ‖g‖,

for all x ∈ Xn and n ∈ N. So, we have shown that ‖fg‖ ≤ ‖f‖‖g‖, and it is obvious that
‖f‖ = ‖f∗‖. To get the C∗-norm equality, we need only to verify that ‖ff∗‖ ≥ ‖f‖2.
But since

‖(ff∗)n(x)‖ = ‖sup
y<x

u∗xyf(y)f(y)∗uxy‖

= sup
y<x
‖u∗xyf(y)f(y)∗uxy‖

≥ ‖fn(x)fn(x)∗‖ = ‖fn(x)‖2,
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holds for all x ∈ Xn and n ∈ N, it follows directly that that ‖ff∗‖ ≥ ‖f‖2. At this point
we have shown that FE

b (X,Ml) with the order unit is a unital C∗-algebra under the above
product. It is also obvious by definition of the product that ff∗ is a (pointwise) positive
element. However the cone of positive elements generated by the multiplication, i.e., the
squares, could be smaller as the given pointwise positive cone.

So, we still have to show that a pointwise positive element f ∈ FE

b (X,Ml)+ has a
square root. As in [50, Lemma 3.2.10] let (qn)n∈N be the inductively defined sequence of
polynomials such that q0 = 0 and qn(t) = 1

2 (t+qn−1(t)2) for all n ∈ N. Then the monotone
increasing sequence (qn) converges uniformly on the interval [0, 1] to q(t) = 1− (1− t) 1

2 .
Notice that 0 ≤ hn ≤ 1 for any h ∈ FE

b (X,Ml) such that 0 ≤ h ≤ 1. Hence with
the polynomials pn = qn − qn−1 we can repeat the proof of [50, Proposition 3.2.11] for
f ∈ FE

b (X,Ml) such that 0 ≤ f ≤ 1, i.e., 0 ≤ fk(x) ≤ 1k×l for all x ∈ Xk and k ∈ N.
This means for g = 1− f we define the maps

pn(g)(x) = lim
y<x

u∗xypn(g(y))uxy ∈ F
E

b (X,Ml)+

and see that
∑
pn(g) converges in the supremum norm to h ∈ FE

b (X,Ml) with 0 ≤ h ≤ 1

(pointwise order). Exactly the same calculation as in the proof of [50, Proposition 3.2.11]
shows that (1− h)2 = f . Therefore the pointwise positive f is also positive with respect
to the multiplication. We have shown that the ordering defined by the multiplication
coincides with the given pointwise ordering on FE

b (X,Ml), and the proof is complete.

Corollary 3.23. Let X be an equivariant matrix subset of some vector space V , such
that X fulfills the assumptions of Proposition 3.22. Then the operator system FE

b (X) is
a C∗-algebra under the given (pointwise) matrix order structure.

Proof. Based on the natural identification of Mn(Ml) and Ml(Mn) for all l, n ∈ N,
which is a unital ∗-isomorphism, there is a unital ∗-isomorphism between Ml(FE

b (X))
and FE

b (X,Ml) for all l ∈ N. Thereby we have given FE

b (X,Ml) the product con-
structed in Proposition 3.22, and Ml(FE

b (X)) carries the product of the tensor prod-
uct of the C∗-algebras Ml ⊗ FE

b (X), i.e., the canonical matrix multiplication. Now
the assertion becomes obvious, because the pointwise ordering of the operator system
FE

b (X) on the l-th matrix level is by definition the pointwise ordering of FE

b (X,Ml),
that is, Ml(FE

b (X))+ = FE

b (X,Ml)+. From Proposition 3.22 the pointwise order cone
FE

b (X,Ml)+ coincides with the ordering of the C∗-algebra FE

b (X,Ml) for all l ∈ N.
This means that the pointwise cone Ml(FE

b (X))+ coincides with the positive cone of the
C∗-algebra Ml(FE

b (X)) for all l ∈ N, and the proof is complete.

Proposition 3.24. Let X be an equivariant and transitive matrix subset of some vector
space V , such that X fulfills the uniqueness property. Then FE

b (X) is a W ∗-algebra, and
for each x ∈ X1 there is a uniquely determined minimal projection p ∈ FE

b (X) such that
p1(x) = 1.

Proof. By the preceding corollary FE

b (X) is a C∗-algebra. We will verify that FE

b (X) is
monotone complete with a separating family of normal states, so that FE

b (X) is a W ∗-al-
gebra, see for instance [49, Thm. 3.9.3]. Let (fν)ν be a bounded monotone increasing net
in FE

b (X)h. Then for all n ∈ N and x ∈ Xn the limit fn(x) = limν f
ν
n(x) exists. It is ob-

vious that f = (fl)l ∈ FE

b (X). Moreover, fn(x) is the lowest upper bound of the bounded
monotone increasing net (fνn(x))ν in (Mn)h. Thus in particular for all x ∈ X1 the state
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x̂ defined by x̂(g) = g1(x) for g ∈ FE

b (X) is normal. Furthermore the set { x̂ | x ∈ X1 } is
separating for FE

b (X). We conclude that FE

b (X) is a W ∗-algebra.
We are going to show next that FE

b (X) contains minimal projections. Let x1 ∈ X1. For
any x ∈ Xn with x < x1, so that x is in the equivalence class [x1]n of x1 (see Definition
3.6), there is a unitary u ∈Mn such that uxu∗ =

(
x1 ∗
∗ ∗
)
. Notice that for another unitary

v ∈ Mn such that vxv∗ =
(
x1 ∗
∗ ∗
)

we find 1
∗
n,1vxv

∗
1n,1 = x1 = 1

∗
n,1uxu

∗
1n,1. Since X

fulfills the uniqueness property, there is a real number r such that v∗1n,1 = eiru∗1n,1. It
follows that u∗

(
1 0
0 0

)
u = v∗

(
1 0
0 0

)
v. Hence we can define a map p(x) = u∗

(
1 0
0 0

)
u for all

x < x1. The map p is equivariant on its domain. Indeed, given z < y < x1, where z ∈ Xn

and y ∈ Xl. There is an isometry uyz ∈ Mn,l that is determined up to a complex factor
with absolute value 1 such that y = u∗yzzuyz and there is a unitary v ∈ Ml such that
vyv∗ =

(
x1 ∗
∗ ∗
)
. Since uyz is an isometry there is a unitary u ∈Mn such that uyz = u1n,l.

Hence, noting that 1n,lv∗ =
(
v∗ 0
0 1n−l

)
1n,l, we find(

x1 ∗
∗ ∗

)
= vyv∗ = vu∗yzzuyzv

∗

= v1∗n,lu
∗zu1n,lv

∗

= 1
∗
n,l

(
v 0
0 1n−l

)
u∗zu

(
v∗ 0
0 1n−l

)
1n,l.

We conclude by the definition of p(z) that

p(z) = u

(
v∗ 0
0 1n−l

)(
1 0
0 0

)(
v 0
0 1n−l

)
u∗.

This implies immediately

u∗yzp(z)uyz = 1
∗
n,lu

∗p(z)u1n,l = v∗
(

1 0
0 0

)
v = p(y),

which shows that p is equivariant on its domain. Now we can extend p on all of [x1].
Given x ∈ [x1]n such that x 6< x1, there is l ∈ N and y ∈ Xl such that y < x and y < x1.
We define p(x) = u∗xyp(y)uxy. We have to show that p is well defined on [x1]. Given
another element y′ ∈ Xl′ such that y′ < x and y′ < x1, we see that y′ a x1 a y. So there
is m ∈ N and z ∈ Xm such that z < y, y′. We have shown already that p(y) = u∗yzp(z)uyz
and p(y′) = u∗y′zp(z)uy′z. Therefore

u∗xy′p(y
′)uxy′ = u∗xy′u

∗
y′zp(z)uy′zuxy′ = u∗xzp(z)uxz = u∗xyu

∗
yzp(z)uyzuxy = u∗xyp(y)uxy,

which shows that p is well defined on [x1]. We set p(y) = 0 for all y ∈ X \ [x1]. Obviously,
p is a bounded map. Moreover, let x ∈ Xl and y ∈ Xn such that y < x. If x is not
equivalent to x1 then y, which is equivalent to x, is also not equivalent to x1. Hence
p(x) = 0 = p(y). If x < x1 then we have already proved that p(x) = u∗xyp(y)uxy. So we
assume that x 6< x1 and x ∈ [x1]. Then there is m ∈ N and z ∈ Xm such that z < y, x,
x1. Hence by definition of p, we have p(y) = u∗yzp(z)uyz. Then

u∗xyp(y)uxy = u∗xyu
∗
yzp(z)uyzuxy = u∗xzp(z)uxz = p(x),
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which shows that p is equivariant and so p ∈ FE

b (X). Obviously, p is a positive map and
especially self-adjoint. Let x ∈ Xn. If x 6a x1 then p(y) = 0 for all y < x and hence

pp(x) = lim
y<x

u∗xyp(y)p(y)uxy = sup
y<x

u∗xyp(y)p(y)uxy = 0.

If x a x1 there is y < x, x1 and to calculate the above supremum we can restrict to
elements y satisfying y < x1. Hence we get

pp(x) = sup
y<x

u∗xyp(y)p(y)uxy

= sup
y<x,x1

u∗xyv
∗
(

1 0
0 0

)
vv∗

(
1 0
0 0

)
vuxy

= sup
y<x,x1

u∗xyv
∗
(

1 0
0 0

)
vuxy

= sup
y<x,x1

u∗xyp(y)uxy

= p(x),

where v is a unitary such that vyv∗ =
(
x1 ∗
∗ ∗
)

and hence by definition p(y) = v∗
(

1 0
0 0

)
v.

This shows that p is a projection in FE

b (X).
We will prove that p is a minimal projection. To this end let x ∈ X1 such that p(x) = 1.

Then x ∈ [x1]1 by definition of p. So, there is n ∈ N and y ∈ [x1]n such that y < x, x1.
This means we can find a unitary u = [uij ] ∈ Mn such that uyu∗ =

(
x1 ∗
∗ ∗
)
. Hence by

definition p(y) = u∗
(

1 0
0 0

)
u, and we obtain

1 = p(x) = u∗xyp(y)uxy = ξ∗u∗
(

1 0
0 0

)
uξ =

∑
j

ξ∗j u
∗
1j

∑
i

u1iξi,

where uxy = ξ = (ξ1, . . . , ξn)tr. Consequently
∑
i u1iξi = eir for some real number r.

Since u is unitary and ‖ξ‖ = 1, it follows that uξ = (eiϕ, 0, . . . , 0)tr. This leads to

x = u∗xyyuxy = ξ∗u∗
(
x1 0
0 0

)
uξ = (e−1ϕ 0)

(
x1 0
0 0

)(
eiϕ

0

)
= x1.

So, we have shown that p(x) = 1 if and only if x = x1.
Let q ∈ FE

b (X) be a projector such that q ≤ p. Notice that for any y = [yij ] ∈ Xn

such that y11 = x1 it follows from 0 ≤ q(y) ≤ p(y) =
(

1 0
0 0

)
and the equivariance of q that

q(y) =
(
q(x1) 0

0 0

)
. Hence we obtain

q(x1) = qq(x1) = sup
y<x1

u∗x1yq(y)
2ux1y

= sup
y<x1

u∗x1yu
∗
(
q(x1) 0

0 0

)2

uux1y

= sup
y<x1

(1 0)
(
q(x1)2 0

0 0

)(
1
0

)
= q(x1)

2,

where u is a unitary, such that y = u∗
(
x1 ∗
∗ ∗
)
u. This implies q(x1) ∈ {0, 1}. In case

q(x1) = 1 we find q
(
x1 ∗
∗ ∗
)

=
(

1 0
0 0

)
. Then it follows from the equivariance of q that

q(y) = p(y) for all y < x1 and hence q = p. In case q(x1) = 0 we find q = 0. So, we have
shown that p is a minimal projection.
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Proposition 3.25. Let X be a matrix set such that X is equivariant, transitive and
fulfills the uniqueness property, so FE

b (X) is a W ∗-algebra, cf. Proposition 3.24. Let the
center of FE

b (X) be Z(FE

b (X)). If f ∈ Z(FE

b (X)) then given x1 ∈ X1 there is λ ∈ C such
that f |[x1] = λ1|[x1].

Proof. Let f ∈ Z(FE

b (X)) and x = [xij ] ∈ Xn. For i ∈ {1, . . . , n} we construct the
minimal projection pii on xii such that pii(xii) = 1. We let εij ∈ Mn denote the matrix
with entry 1 on the i-th row and j-th column and 0 elsewhere. By assumption we have
especially that piif(x) = fpii(x) for i ∈ {1, . . . , n}. We calculate

piif(x) = lim
y<x

u∗xypii(y)f(y)uxy

= lim
y<x

u∗xyu
∗p

(
x ∗
∗ ∗

)
f

(
x ∗
∗ ∗

)
uuxy

= lim
y<x

(1 0)
(
εii 0
0 0

)(
f(x) ∗
∗ ∗

)(
1

0

)
= εiif(x),

where u is a unitary such that y = u∗
(
x ∗
∗ ∗
)
u. Similarly we find fpii(x) = f(x)εii. Hence

εiif(x) = f(x)εii for all i ∈ {1, . . . , n}, from which we see that f(x)ij = 0 for i 6= j. This
holds for arbitrary x ∈ Xn and n ∈ N. Suppose there would be x ∈ X2 such that f(x11) 6=
f(x22). Then we can find a unitary u ∈M2 such that u∗f(x)u = u∗

( f(x11) 0
0 f(x22)

)
u is not

a diagonal matrix. Hence f(u∗xu) would not be diagonal, which is not possible. Thus
we obtain f(x11) = f(x22). This shows that f = λ1 on each equivalence class [x1].

Lemma 3.26. Let X be a matrix set such that X is equivariant, transitive and fulfills
the uniqueness property, so FE

b (X) is a W ∗-algebra, cf. Proposition 3.24. Let m ∈ N and
z ∈ Xm. The function c[z] = (c[z]n )n ∈ F

E

b (X) defined by

c[z]n (x) =

{
1n if x ∈ [z]n,
0 if y ∈ Xn \ [z]n.

for all x ∈ Xn and n ∈ N is a minimal central projection. Hence Z(FE

b (X)) is a atomic
commutative W ∗-algebra and c[z]FE

b (X) is a factor.

Proof. Obviously, c[z] ∈ FE

b (X). Let n ∈ N, f ∈ FE

b (X) and x ∈ Xn. If x a z we obtain

(c[z]f)n(x) = lim
y<x

u∗xyc
[z](y)f(y)uxy = lim

y<x
u∗xyf(y)uxy = fn(x) = (fc[z])n(x),

since y a z for all y < x (which especially means y a x). If x 6a z then y 6a z for all y < x
and hence (c[z]f)n(x) = 0 = (fc[z])n(x). This shows that c[z] ∈ Z(FE

b (X)). It is obvious
that c[z] is bounded, positive and idempotent. Thus c[z] is a projection in the center of
FE

b (X). Given a non-zero projection q ∈ Z(FE

b (X)) such that 0 ≤ q ≤ c[z]. Obviously,
q vanishes on X \ [z]. By Proposition 3.25 there is λ ∈ C such that q = λ1 on [z]. It
follows λ ∈ (0, 1 ] and since q is a projection, we must have λ = 1. Hence q = c[z], which
shows that c[z] is a minimal projection. Since c[z] is a minimal projection, c[z]FE

b (X) is a
factor.
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Corollary 3.27. Let X be a matrix set such that X is equivariant, transitive and fulfills
the uniqueness property, so FE

b (X) is a W ∗-algebra, cf. Proposition 3.24. Then for each
equivalence class [x] of X there is a Hilbert space H[x] such that c[x]FE

b (X) can be identified
with B(H[x]). So FE

b (X) is an atomic W ∗-algebra.

Proof. It is obvious that for distinct equivalence classes [x] 6= [y], where x, y ∈ ∪lXl,
we have c[x]c[y] = c[y]c[x] = 0 by definition of the minimal central projections c[x] and
c[y], cf. Lemma 3.26. Since in addition X = ∪[x] it follows

∑
c[x] = 1, where the union

and the sum run over all equivalence classes. Consequently, FE

b (X) = ⊕c[x]FE

b (X).
Moreover, each factor c[x]FE

b (X) contains minimal projections, cf. Proposition 3.24, so
there is a Hilbert space H[x] such that c[x]FE

b (X) = B(H[x]). It is now obvious that
FE

b (X) = ⊕B(H[x]) is an atomic W ∗-algebra.

Finite matrix convex simplexes

In order to have a simple example of m-convex state spaces, the current section is devoted
to the study of the m-convex state spaces of finite dimensional C∗-algebras. In addition,
the results in the special case of finite dimensions will help us to prove our main results
later on.

Definition 3.28. Let W be some vector space. For v ∈ Mn(W ) we define the sets
dvel = {w ∈Ml(W ) | v < w } for l ≤ n, and we set dvem = ∅ for m > n. We call the
equivariant matrix set dve = (dvel)l∈N the compressions of v.

Proposition 3.29. Let m ∈ N and let A = ⊕mi=1Mni
be a finite dimensional C∗-algebra.

Let K = CS (A) and X = str(K). Let xi : A → Mni
be the irreducible representations

onto the i-th summand, so that xi ∈ Xni for 1 ≤ i ≤ m. Then X is the disjoint union
∪mi=1dxie. Moreover, the restriction map from A(K) → FE

b (X) is surjective, so that we
have a complete order isomorphism between A(K) and FE

b (X).

Proof. Notice that A(K) = Ab(K), because A is finite dimensional. It follows from
Lemma 1.22 that mext(K) = ∪mi=1U(xi). Observing that the irreducible representations
xi are pairwise not unitarily equivalent, we conclude X = ∪mi=1dxie, where dxie ∩ dxje is
empty for i 6= j. By the Krein-Milman theorem any ϕ ∈ K1 can be written as convex
combination of extreme points, i.e., elements of X1, so it follows from Remark 1.24 that
the restriction map A(K) → FE

b (X) is injective. (Alternatively we could apply the
matrix version of the Krein-Milman theorem, cf. [30].) So, to show that the restriction
is a complete order isomorphism it is sufficient to prove that it is a surjection. Given
f = (fn)n ∈ FE

b (X) we define maps gn : Kn → Mn by gn(ϕ) = ϕ(⊕mi=1fni
(xi)), for all

ϕ ∈ Kn and n ∈ N. Obviously g = (gn)n is well-defined, and we claim that the restriction
of g to X is f and that g ∈ A(K). If y ∈ Xn then there is 1 ≤ j ≤ m such that y ∈ dxje.
Hence there is an isometry u ∈Mnj ,n such that y = u∗xju. Then we obtain

gn(y) = y
( m
⊕
i=1

fni(xi)
)

= u∗xj

( m
⊕
i=1

fni(xi)
)
u = u∗fnj (xj)u = fn(u∗xju) = fn(y),

showing that g|X = f . Moreover, for any matrix convex combination ϕ =
∑
j α

∗
jϕjαj we

have

gn

(∑
j

α∗jϕjαj

)
= ϕ

( m
⊕
i=1

fni
(xi)

)
=
∑
j

α∗jϕj

( m
⊕
i=1

fni
(xi)

)
αj =

∑
j

α∗jglj (ϕj)αj ,
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where ϕ ∈ Kn, ϕj ∈ Klj , αj ∈ Mlj ,n such that
∑
j α

∗
jαj = 1n and n, lj ∈ N. Therefore

g ∈ A(K) and the proof is complete.

Remark 3.30. We know already that the operator system Ab(K) (A(K)) of all bounded
(continuous) matrix affine maps on the (compact) matrix convex set K is unitally order
isomorphic to the order unit space of all bounded (continuous) affine functions on the
(compact) convex set K1, cf. Remark 1.24. Notice from the preceding proposition that
a similar result for equivariant mappings, namely that FE

b (X) would be unitally order
isomorphic to all bounded maps on X1, cannot hold. Otherwise we could conclude from
the preceding proposition that every continuous function on the pure states of Ml could
be extended to a continuous affine function on the whole state space of Ml, which is
impossible.

We would like to give an abstract description of the state spaces of finite dimensional
C∗-algebras. Recall that a finite simplex is the convex hull of finitely many affinely
independent points y1, . . . , yn. The extreme points of such a simplex are y1, . . . , yn and
every point of the simplex has a unique representation by a convex combination of these
extreme points. We define a matrix version of such simplexes, where we have to modify
the uniqueness condition a bit.

Definition 3.31. Let K = (Kn)n be an m-convex subset of some vector space V . Then
K is called a finite m-convex simplex if there are n ∈ N, nν ∈ N and xν ∈ Knν

for
1 ≤ ν ≤ n such that

(i) K = mco(x1, . . . , xn) and

(ii) whenever
∑n
ν=1

∑lν
i=1 α

∗
ν,ixναν,i =

∑n
ν=1

∑mν

j=1 β
∗
ν,jxνβν,j are two equal m-convex

combinations, then
∑lν
i=1 α

∗
ν,i · αν,i =

∑mν

j=1 β
∗
ν,j · βν,j for all 1 ≤ ν ≤ n read as

completely positive maps from Mnν
to Mnν

.

We claim that the finite m-convex simplexes are exactly the m-convex state spaces of
finite dimensional C∗-algebras. In order to prove this we need the following preparing
results that will be useful also later on to obtain results in the infinite dimensional case.

Proposition 3.32. Let X be an equivariant and transitive matrix subset of some vector
space V such that X fulfills the uniqueness property. Let S = CSσ(FE

b (X)) be the normal
m-convex state space of the atomic W ∗-algebra FE

b (X). Then the map ∆ = (∆n)n, where
∆n : Xn → Sn is defined by ∆n(x)(f) = x̂(f) = fn(x) for all f = (fl)l ∈ FE

b (X), x ∈ Xn

and n ∈ N, is an equivariant isomorphism onto its image X̂ = (X̂n)n = (∆n(Xn))n.

Proof. First let x, y ∈ X1, such that x̂ = ŷ. Then f1(x) = f1(y) for all FE

b (X). Recall
that to any z ∈ X1 there is a minimal projection pz ∈ FE

b (X), such that pz1(z
′) = 1 if

and only if z = z′, where z′ ∈ X1. (Such minimal projections of FE

b (X) were explicitly
constructed in the proof of Proposition 3.24.) Thus py1(x) = py1(y) = 1 implies x = y. This
proves that the map ∆1 is injective. Now let n ∈ N, such that n ≥ 2, and assume x̂ = ŷ for
x, y ∈ Xn. Given a unit vector ξ ∈ Cn, we see immediately that f1(ξ∗xξ) = ξ∗fn(x)ξ =
ξ∗fn(y)ξ = f1(ξ∗yξ) for all f ∈ FE

b (X). Using especially the minimal projection on
the element ξ∗yξ ∈ X1, we obtain ξ∗xξ = ξ∗yξ for all unit vectors ξ ∈ Cn. Notice
that 〈ξ, η〉z = η∗zξ is a sesquilinear (i.e., linear in the first and anti-linear in the second
variable) mapping from Cn ×Cn to V for all z ∈Mn(V ). Thus the polarization identity
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4 〈η, ξ〉z =
∑3
k=0 i

k 〈ξ + ikη, ξ + ikη〉z holds for all ξ, η ∈ Cn and z ∈ Mn(V ). Setting
ck = ‖ξ + ikη‖ and applying the polarization identity to x and y gives

η∗xξ = 〈ξ, η〉x =
1
4

3∑
k=0

ikc2k

〈ξ + ikη

ck
,
ξ + ikη

ck

〉
x

=
1
4

3∑
k=0

ikc2k

〈ξ + ikη

ck
,
ξ + ikη

ck

〉
y

= 〈ξ, η〉y = η∗yξ,

for all ξ, η ∈ Cn. Thus x = y, which shows that ∆n is injective for n ≥ 2. So far we have
shown that ∆ is injective. We have still to verify that X̂n ⊂ Sn for all n ∈ N and that
∆ is an equivariant map. Given x ∈ Xn it is obvious that x̂(1) = 1n(x) = 1n, so that
x̂ is unital. Moreover, x̂(l)([f ij ]) = [f ijl (x)] is positive whenever [f ij ] ∈ Ml(FE

b (X))+ =
FE

b (X,Mn)+, which shows that x̂ is completely positive. To see that x̂ is normal, recall
that we have shown already in the proof of Proposition 3.24 that ẑ is normal for all
z ∈ X1. So for n > 1 let (fν)ν be a net in FE

b (X) that converges to f ∈ FE

b (X)
in the w∗-topology. We have to verify that the net (x̂(fν))ν converges to x̂(f) ∈ Mn.
But this is clear, because for all unit vectors ξ ∈ Cn the net 〈x̂(fν)ξ|ξ〉 = ξ∗x̂(fν)ξ
converges to ξ∗x̂(f)ξ by the normality of the state ξ∗x̂ξ ∈ X̂1. So altogether it follows
that X̂n ⊂ Sn. Moreover, it is obvious that v̂∗xv(f) = fn(v∗xv) = v∗fl(x)v = v∗x̂(f)v
and ∆ 1

n (v∗x̂v) = ∆ 1
l (v̂∗xv) = v∗xv = v∗∆ 1

l (x̂)v, which shows that ∆ is an equivariant
isomorphism onto its image.

Remark 3.33. The preceding result shows that the given vector space V that contains X
as matrix subset does not matter. We can identify X with X̂, which is a matrix subset
of FE

b (X)∗, and FE

b (X) depends only on X. This is similar to the situation where you
consider a compact convex set C in a locally convex vector space. Then you build the
order unit space A(C) of real valued continuous functions on C, which depends only on
C, and you embed C into the dual A(C)∗ canonically, that is, you identify C = S(A(C))
affinely and homeomorphicly, where the state space S(A(C)) carries the w∗-topology.

Lemma 3.34. Let W be a vector space and let x ∈ Mn(W ). Notice that dxe is trivially
transitive because all its elements are m-related. Now, if dxe fulfills the uniqueness prop-
erty, then FE

b (dxe) is an atomic W ∗-algebra by Corollary 3.27 and we have FE

b (dxe) = Mn.
Moreover, dx̂e = str

(
CSσ(FE

b (dxe))
)
.

Proof. We show that the map ψ : FE

b (dxe) → Mn defined by ψ(f) = fn(x) for all f =
(fl) ∈ FE

b (dxe) is a ∗-isomorphism. First, ψ is obviously a linear map, and ψ(f∗) =
f∗n(x) = fn(x)∗ = ψ(f)∗. If ψ(f) = fn(x) = 0, then fl(y) = 0 for all y 4 x, which
shows that ψ is injective. For γ ∈ Mn we define maps fl(y) = u∗yxγuyx for all y 4 x.
ψ(fg) = (fg)n(x) = limy<x u

∗
xyfm(y)gm(y)uxy = fn(x)gn(x) = ψ(f)ψ(g).

Since ψ : FE

b (dxe) → Mn is a ∗-isomorphism, the sequence of the amplifications (ψ(l)
∗ )

of (the restriction of) the dual map ψ∗ of ψ is an m-affine isomorphism between CS (Mn)
and CSσ(FE

b (dxe)). Let γ = [γij ] ∈Mn(M∗
n). Then

ψ
(n)
∗ (γ)(f) = [ψ∗(γij)(f)] = [γij(ψ(f))] = [γij ](ψ(f)) = γ(fn(x)) = γ(x̂(f)),

for all f ∈ FE

b (dxe). Thus for γ = id: Mn → Mn we obtain ψ
(n)
∗ (id) = x̂. Since the

identity is a matrix extreme point in CS (Mn) and all structural elements are compressions
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Finite matrix convex simplexes

of the identity, it follows that x̂ is a matrix extreme point of CSσ(FE

b (dxe)) and dx̂e =
str
(
CSσ(FE

b (dxe))
)
.

Theorem 3.35. The matrix convex state spaces of finite dimensional C∗-algebras are
exactly the finite matrix convex simplexes.

Proof. If A = ⊕nν=1Mnν
and K = CS (A) we know already from the proof of Proposition

3.29 that mext(K) = ∪nν=1U(xν), where xν is the irreducible representation from A onto
the summand Mnν for ν = 1, . . . , n. Then by the matrix version of the Krein-Milman
theorem in finite dimensions we have K = mco(mext(K)), so that K = mco(x1, . . . , xn),
cf. [30] (note that in this special case we could also use the representation results for
completely positive maps on matrices contained in [16]). Given two equal m-convex com-
binations

∑n
ν=1

∑lν
i=1 α

∗
ν,ixναν,i =

∑n
ν=1

∑mν

j=1 β
∗
ν,jxνβν,j we evaluate them on elements

⊕nµ=1aµ ∈ A such that aµ = 0 for all µ 6= ν, where ν ∈ {1, . . . , n} is fixed, and obtain
directly that

∑lν
i=1 α

∗
ν,i · αν,i =

∑mν

j=1 β
∗
ν,j · βν,j , so K is a finite m-convex simplex.

In the converse direction, let K = {x1, . . . , xn} be a finite m-convex simplex. If y ∈
dxie ∩ dxje then there are isometries α and β such that y = α∗xiα = β∗xjβ. It follows
directly from applying condition (ii) of Definition 3.31 that i = j. Thus dxie ∩ dxje = ∅
if i 6= j, and applying condition (ii) again we have α∗ · α = β∗ · β as completely positive
maps on Mni . Then there must be λ ∈ C such that α = λβ, cf. [16]. Consequently, the
equivariant and transitive matrix set X = ∪ni=1dxie fulfills the uniqueness property. So,
FE

b (X) is an atomic W ∗-algebra. Moreover, since dxie ∩ dxje = ∅ for i 6= j, it is obvious
that FE

b (X) = ⊕iFE

b (dxie). We have FE

b (dxie) = Mni
for all 1 ≤ i ≤ n by Lemma 3.34,

so FE

b (X) = ⊕iMni
. Now it can be seen easily from condition (ii) of Definition 3.31

that we can extend all bounded equivariant maps on X to bounded m-affine maps on K.
Therefore the restriction map from Ab(K) to FE

b (X) is surjective and hence a complete
order isomorphism. We conclude that Ab(K) =cp FE

b (X) =cp ⊕iMni
, which implies

K = CSσ(FE

b (X)) = CS (⊕iMni
) completing the proof.

Proposition 3.36. Let K be a finite m-convex simplex, so that K = mco(x1, . . . , xn),
where xi ∈ Kni

for 1 ≤ i ≤ n fulfill condition (ii) of Definition 3.31. Then str(K) is
equal to the disjoint union ∪ni=1dxie, and mext(K) is equal to the matrix set ∪ni=1U(xi).

Proof. From the proof of Theorem 3.35 we know that the disjoint union X = ∪idxie fulfills
the uniqueness property and FE

b (X) = ⊕FE

b (dxie) = ⊕Mni . Moreover, we identified
K = CSσ(FE

b (X)). Let Ci = CSσ(FE

b (dxie)) = CS (Mni) for all 1 ≤ i ≤ n. Notice that
the predual of Mni

can be identified with the m-base norm space (Mni
, Ci), so that Ci

is an m-convex split face of K by Proposition 1.52. Using the identification X = X̂ of
Proposition 3.32 it follows from Lemma 3.34 that dxie = str(Ci), so that ∪idxie ⊂ str(K)
by Proposition 1.55. Obviously, str(K) ⊂ ∪idxie, because K = mco(x1, . . . , xn). Thus
str(K) = ∪idxie, which yields immediately mext(K) = ∪iU(xi) by the definition of matrix
extreme points.

Remark 3.37. While the preceding results stress the similarity between convex and m-con-
vex sets, there is an obvious difference: The convex hull of a single point consists trivially
of this single point, while the m-convex hull of a single point can be rather large. For
instance, the m-convex hull of the identity mapping from Mn to Mn, where n ∈ N, is
CS (Mn), cf. [16]. If V is some vector space and x ∈ Mn(V ) is m-irreducible, then the
matrix extreme points of mco(x) are U(x), cf. [30]. However, notice that mco(x) need
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3. Matrix Convex Simplexes

not be a finite m-convex simplex, so the requirement (ii) of Definition 3.31 cannot be
omitted even in the simplest case. Consider for example the irreducible operator sys-
tem L = lin{12, α, α

∗} ⊂ M2, where α =
(

0 1
0 0

)
. Suppose the identity on L would be

m-reducible, that is, suppose idL = u∗
(
x1 0
0 x2

)
u for a unitary u ∈ M2 and states x1,

x2 : L → C. Then it is a consequence of Arveson’s boundary theorem, cf. [62, Prop. 1.5],
that the identity on M2 would be m-reducible, which is obviously wrong. Therefore idL is
m-irreducible, so U(idL) are the matrix extreme points of mco(idL) = CS (L), but CS (L)
cannot be a finite m-convex simplex.

Let V be a vector space. Recall that the elements of a subset Y ⊂ V are called extreme
points if no element of Y can be written as non-trivial convex combination of elements of
Y , so Y = ex(conv(Y )). We end the current algebraic section with describing a matrix
set X such that X = str(mco(X)).

Remark 3.38. Let X be an equivariant matrix set that fulfills the uniqueness property.
Then X consists entirely of m-irreducible elements.

Proof. Notice first that for x = [xij ] ∈ Xn the uniqueness property ensures that the
diagonal elements xii ∈ X1, where 1 ≤ i ≤ n, are pairwise distinct. Assume without loss
of generality that there would be x ∈ X2 such that x11 = x22. Then

(
1 0

)(x11 x12

x21 x22

)(
1
0

)
= x11 = x22 =

(
0 1

)(x11 x12

x21 x22

)(
0
1

)
contradicting the uniqueness property. Now assume there would be x ∈ X2 such that x
is m-reducible. Without loss of generality x =

(
y 0
0 z

)
, where y, z ∈ X1, such that y 6= z.

It is obvious that(
1/
√

2 1/
√

2
)(y 0

0 z

)(
1/
√

2
1/
√

2

)
=
(
e iπ

2 /
√

2 1/
√

2
)(y 0

0 z

)(
ei

π
2 /
√

2
1/
√

2

)
contradicting the uniqueness property. Thus all x ∈ X2 must be m-irreducible. If there
would be an m-reducible x =

(
y 0
0 z

)
∈ Xn+m, where y ∈ Xn and z ∈ Xm, then by

equivariance
(
y11 0
0 z11

)
∈ X2 is obviously an m-reducible element, such that y11 6= z11.

But this is impossible, hence the claim follows.

Definition 3.39. Let X be an equivariant matrix set. Then X is called m-convex inde-
pendent if whenever x =

∑l
i=1 α

∗
i xiαi is a proper2 m-convex combination, where x ∈ Xn,

xi ∈ Xni , αi ∈ Mni,n and n, ni ∈ N, it follows that ni ≥ n and there are isometries
vi ∈Mni,n, such that x is unitarily equivalent to v∗i xivi for all 1 ≤ i ≤ l.

Proposition 3.40. Let X be an equivariant and m-convex independent matrix set. Then
X = str(mco(X)).

Proof. Notice first that X consists entirely of m-irreducible elements, since if there would
be
(
x 0
0 y

)
∈ Xn+m, where x ∈ Xn and y ∈ Xm for some n, m ∈ N, then(

1
0

)
x
(
1 0

)
+
(

0
1

)
y
(
0 1

)
=
(
x 0
0 y

)
2That is, αi 6= 0 for all 1 ≤ i ≤ l.
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Pure states and non-commutative sets

is an m-convex combination such that n + m > n, m, which contradicts the m-convex
independence ofX. Let C = mco(X). Given y ∈ str(Cn) ⊂ Cn there is a proper m-convex
combination y =

∑l
i=1 α

∗
i xiαi, where xi ∈ Xni

for ni ∈ N. If ni < n we could replace
α∗i xiαi with (α∗i 0)

( xi 0
0 ci

)( αi
0

)
for some ci ∈ Cn−ni . Since y is structural it would follow

that x is unitarily equivalent to
( xi 0

0 ci

)
and hence is m-irreducible, which is impossible.

So, ni ≥ n for all i = 1, . . . , l. If ni > n we can rewrite α∗i xiαi as |αi|v∗i xivi|αi|, where
v∗i vi = 1n, so that v∗i xivi ∈ Xn, because X is equivariant. Hence y must be unitarily
equivalent to an element of Xn and again by equivariance of X we see that y ∈ Xn. This
shows that str(Cn) ⊂ Xn.

For the converse direction let x ∈ Xn and assume that x =
∑2
i=1 α

∗
i yiαi is an m-convex

combination, where y1, y2 ∈ Cn and α2 ∈ Mn is invertible. Again for i = 1, 2 there are
proper m-convex combinations yi =

∑
j β

∗
ij x̃ijβij , where x̃ij ∈ Xnij

. Using the polar
decomposition βij = vij |βij |, where |βij | = (β∗ijβij)

1/2 ∈Mn, we obtain

x =
∑
i,j

α∗i β
∗
ij x̃ijβijαi =

∑
i,j

α∗i |βij |xij |βij |αi,

where xij = v∗ij x̃ijvij ∈ Xn. Omitting those indices i and j from the sum for which
|βij |αi = 0, noting that at least |β2j |α2 6= 0 for all j, there are by assumption unitary
uij ∈ Mn such that xij = u∗ijxuij . Hence x =

∑
i,j α

∗
i |βij |u∗ijxuij |βij |αi. Since x is

m-irreducible it follows from [30] that uij |βij |αi = λij1n for all i, j such that |βij |αi 6= 0.
Because the latter is the case for all j if i = 2, we can write

y2 =
∑
j

β∗2j x̃2jβ2j =
∑
j

|β2j |x2j |β2j | =
∑
j

|β2j |u∗2jxu2j |β2j | =
(∑

j

|λ2j |2
)
(α 1

2 )∗xα 1
2 .

Moreover from
∑
j |λ2j |21n =

∑
j |β2j |u∗2ju2j |β2j | = α∗2

∑
j β

∗
2jβ2jα2 = α∗2α2 we see that

α2/a2 ∈ Mn is unitary, where a2
2 =

∑
j |λ2j |2. Thus we have shown that x is unitarily

equivalent to y2. Since x is m-irreducible, this implies x ∈ str(Cn). Indeed, given a
proper m-convex combination x =

∑2
i=1 α

∗
i yiαi, where y1, y2 ∈ Cn and α1, α2 ∈ Mn,

we can assume that α1, α2 ≥ 0 by applying the polar decomposition. Notice that the
matrices α1 and α2 commute, because

∑2
i=1 α

2
i = 1n. Therefore there is a unitary

u ∈ Mn such that u∗α1u and u∗α2u are diagonal matrices. Suppose that α1 and α2

would be both not invertible. Then obviously now x would be unitarily equivalent to a
block matrix and hence m-reducible. So, we can assume that α2 is invertible. Then we
obtain x = α1y1α1 + a2

2x by the previous part of the proof, where a2
21n = α∗2α2. If α1 is

not invertible, then we can assume α1 =
(
d 0
0 0

)
, where d is a diagonal matrix. We obtain

x =
(
ỹ 0
0 0

)
+ a2

2x. Since x is m-irreducible, it follows a2
2 = 1 and hence α∗2α2 = 1n and

α1 = 0. But we started with a proper m-convex combination. So α1 can be assumed to
be invertible, too. Then by the previous part of the proof x is unitarily equivalent to y1,
and we conclude x ∈ str(Cn).

Pure states and non-commutative sets

In the previous sections we learned about the importance of the conditions ‘equivariant,
transitive and fulfills the uniqueness property’ on a matrix set X. We have proved that
these conditions ensure that FE

b (X) is an atomic W ∗-algebra. A natural question now is
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3. Matrix Convex Simplexes

whether the set X can be identified with the normal pure matrix states of FE

b (X). In the
current section we will indeed abstractly characterize the set of the normal pure matrix
states of atomic W ∗-algebras as those matrix sets that are equivariant, transitive, fulfill
the uniqueness property and have one additional property that will be introduced later.
We conclude that the normal pure matrix states of atomic W ∗-algebras can be seen as
non-commutative sets, since any set S can be identified (via point-evaluation) with the
normal pure states of the commutative W ∗-algebra of the bounded functions on S.

Recall that atomic W ∗-algebras are just direct sums of type I factors. So in concrete
terms we only consider the normal (pure) matrix states of B(H), where H is some Hilbert
space. We start with stating the known identification between normal states and trace
class operators, which will help us to prove the abstract characterization results later on.

LetH be a Hilbert space. We let T (H) = { r ∈ B(H) | trace(|r|) <∞} denote the trace
class operators of H. For ξi, ξj ∈ H we define the ξi � ξj by (ξi � ξj)η = 〈η|ξi〉 ξj . Recall
that we can identify Mn(B(H)) with B(Hn) for all n ∈ N so that Mn(B(H))+ = B(Hn)+.
We define a matrix ordering on T (H) by setting

Mn(T (H))+ = { r ∈Mn(T (H)) | rtr ∈Mn(B(H))+ } .

Recall that there is an isometric order isomorphism between T (H) and the predual B(H)∗
given by

Ξ: T (H)→ B(H)∗; r 7→ Ξ(r) = trace(r·) = trace(·r). (3.12)

To show that Ξ is an complete (isometric) order isomorphism, we need the following
lemma.

Lemma 3.41. Let H be a Hilbert space and let n ∈ N. For all d = [dij ] ∈ Mn(T (H))
such that d ∈Mn(B(H))+ the matrix [trace(dij)] is positive in Mn.

Proof. Let n ∈ N and { εl | l ∈ L } be an orthonormal basis ofH. Given λ = (λ1, . . . , λn)tr,
where λi ∈ C, we define ξi = λiεl for some fixed l ∈ L and i = 1, . . . , n. By assumption
we obtain

0 ≤ 〈dξ|ξ〉 =
∑
i,j

〈dijλjεl|λiεl〉 =
∑
i,j

λ̄i 〈dijεl|εl〉λj = 〈[〈dijεl|εl〉]λ, λ〉 ,

and consequently

0 ≤
∑
l∈L

〈
[〈dijεl | εl〉]λ

∣∣λ〉 =
〈[∑

l∈L

〈dijεl | εl〉
]
λ
∣∣∣λ〉 =

〈
[trace(dij)]λ

∣∣λ〉.
This shows that the matrix [trace(dij)] is positive.

Proposition 3.42. Let H be a Hilbert space. The order isomorphism Ξ: T (H)→ B(H)∗
between the trace class operators and the predual of B(H) is a complete order isomorphism.

Proof. Let { εl | l ∈ L } be an orthonormal basis of H. We show first that Ξ−1 is com-
pletely positive. Given n ∈ N and r = [rµν ] ∈Mn(T (H)) such that Ξ(n)(r) ≥cp 0 we have
to show that r ∈ Mn(T (H))+, i.e., that the transpose rtr is a positive operator matrix.
By assumption

0 ≤cp Ξ(n)([rµν ]) = [Ξ(rµν)] = [trace(rµν ·)]

64



Pure states and non-commutative sets

so that the n2×n2 matrix [trace(rµνaij)] is positive for any a = [aij ] ∈Mn(B(H))+. Let
ξ = (ξ1, . . . , ξn)tr ∈ Hn. We claim that the matrix [ξj � ξi] is positive in B(Hn). Indeed
for η = (η1, . . . , ηn)tr ∈ Hn we find〈

[ξj � ξi]η
∣∣η〉 =

∑
ij

〈(ξj � ξi)ηj |ηi〉

=
∑
ij

〈ηj | ξj〉 〈ξi | ηi〉

=
∑
i

〈ηi | ξi〉
∑
i

〈ξi | ηi〉 = |c|2 ≥ 0,

where c =
∑
i 〈ξi|ηi〉. Hence setting aij = ξj�ξi the matrix [trace(rµν(ξj�ξi))] is positive

by assumption. We evaluate the entries of this matrix as

trace(rµν(ξj � ξi)) =
∑
l∈L

〈rµν(ξj � ξi)εl | εl〉

=
∑
l∈L

〈εl | ξj〉 〈rµνξi | εl〉

=
〈
rµνξi

∣∣∣∑
l∈L

〈ξj |εl〉 εl
〉

= 〈rµνξi | ξj〉 .

Thus [〈rµνξi|ξj〉] is positive. Let α = (1,

n-times︷ ︸︸ ︷
0, . . . , 0, 1,

n-times︷ ︸︸ ︷
0, . . . , 0, . . .︸ ︷︷ ︸

(n−1)-times

, 1)tr ∈ Cn2
. Then

0 ≤
〈
[〈rµνξi|ξj〉]α

∣∣α〉 =
n∑

µ,ν=1

〈rνµξν
∣∣ξµ〉 = 〈rtrξ

∣∣ξ〉 ,
which implies that rtr ∈Mn(B(H))+ so that r ∈Mn(T (H))+.

Now we will prove that Ξ is completely positive. This means given n ∈ N and r ∈
Mn(T (H))+, i.e., rtr ∈Mn(B(H))+, we have to show that Ξ(n)(r) is completely positive.
So given a = [aij ] ∈ Mn(B(H))+ we must prove that [trace(rµνaij)] ≥ 0. Since a is
positive there are n elements bk = (bk1,, . . . , bkn) ∈M1,n(B(H)) such that a =

∑n
k=1 b

∗
kbk.

Hence we obtain aij =
∑n
k=1 b

∗
kibkj for all i, j ∈ {1, . . . , n}. Now we calculate

[trace(rµνaij)] =
[
trace

(
rµν

n∑
k=1

b∗kibkj

)]
=

n∑
k=1

[trace(rµνb
∗
kibkj)]

=
n∑
k=1

[trace(bkjrµνb
∗
ki)].

(3.13)

We consider the matrix [bkjrµνb
∗
ki] ∈Mn2(B(H)). For its transpose we find that

[bkirνµb∗kj ] = diag(bk1, . . . , bkn)[rνµ] diag(bk1, . . . , bkn)∗) ≥ 0,

65
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since [rνµ] = rtr is positive. By Lemma 3.41 we obtain [trace(bkirνµb
∗
kj)] ≥ 0. Since the

transposition is positive on Mn2 , it follows that [trace(bkjrµνb
∗
ki)] ≥ 0. This holds for all

k ∈ {1, . . . , n} so that we obtain from equation (3.13) that

[trace(rµνaij)] =
n∑
k=1

[trace(bkjrµνb
∗
ki)] ≥ 0,

which proves that Ξ is completely positive.

We can now identify the normal pure matrix states of B(H) with certain trace class
operators.

Proposition 3.43. Let H be a Hilbert space. Let r ∈Mn(T (H)) for some n ∈ N. Then
Ξ(n)(r) : B(H)→Mn is a normal pure matrix state if and only if there is an orthonormal
system {ξ1, . . . , ξn} ⊂ H such that r = [ξi � ξj ].

Proof. If {ξ1, . . . , ξn} ⊂ H is an orthonormal system, we claim that ϕ : B(H)→Mn given
by ϕ(a) = [Ξ(ξi� ξj)(a)] = [trace(a(ξi� ξj))], is a normal pure matrix state. There is an
orthonormal basis of H extending {ξ1, . . . , ξn}. We simply write this base as { ξl | l ∈ L },
where L is an index set containing {1, . . . , n}. Then we obtain

ϕij(a) = trace(a(ξi � ξj)) =
∑
l∈L

〈
a(ξi � ξj)ξl

∣∣ξl〉 = 〈aξj
∣∣ξi〉 (3.14)

for all a ∈ B(H). Defining an isometry V : Cn → H by Vεi = ξi, where (εi)ni=1 denotes the
standard basis of Cn, we see from equation (3.14) that ϕ(a) = V∗ id(a)V, where id means
the identity on B(H). This shows immediately that ϕ is a normal pure matrix state of
B(H), because id is clearly an irreducible representation. For the converse direction we
need only to notice that any normal pure matrix state ψ : B(H) → Mn can be written
in the form ψ = W idW, where W : Cn → H is an isometry. Setting ξi = Wεi for
i = 1, . . . , n gives an orthonormal system, and calculating equation (3.14) backward
shows ψ = [ξi � ξj ].

After these concrete results we come back to the abstract situation, where we have a
matrix subset X of some given vector space V such that X is equivariant, the m-relation
is transitive and X fulfills the uniqueness property. As mentioned in the introduction to
the current section these properties of X do not suffice to recover X, or more precisely
X̂, cf. Proposition 3.32, as normal pure matrix states of FE

b (X). Up to now all we can
show is that X̂ is contained in the normal pure matrix state space of FE

b (X).

Proposition 3.44. Let X be an equivariant and transitive matrix subset of some vector
space V such that X fulfills the uniqueness property. Then the matrix set of the normal
pure matrix states of the W ∗-algebra FE

b (X) contains X̂.

Proof. We identify X with X̂ in K = CSσ(FE

b (X)) via the map x 7→ ∆(x) = x̂, where
x̂(f) = fn(x) for f = (fn) ∈ FE

b (X), cf. Proposition 3.32. Given x ∈ X1 let x̂ =
λϕ + (1 − λ)ψ be a proper convex combination, where ϕ, ψ : FE

b (X) → C are normal
states. We identify the atomic W ∗-algebra FE

b (X) with ⊕κ∈KB(Hκ), where the sum
runs over the set K of equivalence classes in X with respect to the m-relation. Notice
first that x̂(c[x]) = c[x](x) = 1, where c[x] is the minimal projection of the class [x].
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It follows that ϕ(c[x]) = ψ(c[x]) = 1 and so x̂, ϕ and ψ vanish on 1 − c[x]. Thus we
can read these states as states of c[x]FE

b (X) = B(H[x]). From Proposition 3.24 there
is the minimal projection p ∈ FE

b (X) such that p1(x) = 1. So by definition we have
x̂(p) = p1(x) = 1, and consequently ϕ(p) = ψ(p) = 1. Reading p as minimal projection
in B(H[x]), there is a unit vector ξ ∈ B(H[x]), such that p(H[x]) = Cξ. Let p′ = 1 − p.
Then T = pTp+ p′Tp+ pTp′ + p′Tp′ uniquely for T ∈ B(H[x]). Since x̂, ϕ and ψ vanish
on p′, applying the Cauchy-Schwarz inequality we obtain x̂(T ) = x̂(pTp), ϕ(T ) = ϕ(pTp)
and ψ(T ) = ψ(pTp) for T ∈ B(H[x]), where we read x̂, ϕ and ψ as mappings on B(H[x]).
Since pB(H[x])p = C and x̂(p) = ϕ(p) = ψ(p), it follows by linearity that x̂ = ϕ = ψ.
Hence we have proved that X̂1 ⊂ ex(K1).

Let x ∈ Xn. Let (x̂)ij denote the entry on the i-th row and j-th column of the matrix
x̂ ∈ X̂n. Let { εi | i = 1, . . . , n } be the standard basis of Cn. For the diagonal entries of
x̂ we obtain

x̂ii(f) = f1(xii) = f1(ε
∗
i xεi) = ε∗i fn(x)εi = ε∗i x̂(f)εi = (ε∗i x̂εi)(f) = (x̂)ii(f),

which shows (x̂)ii = x̂ii, where x̂ii is the normal pure state of c[x]FE

b ([x]) = B(H[x])
corresponding to the minimal projection pxii = pii. Hence there are unit vectors ξi ∈ H[x]

such that x̂ii(a) = trace
(
a(ξi � ξi)

)
= 〈aξi|ξi〉 for all a ∈ B(H[x]). Notice from the

definition of the minimal projections pii that pii(x) is the n × n matrix with entry 1 on
the i-th row and i-th column and zero elsewhere (pii(x) = Eii). Hence pii(xjj) = δij , so
that δij = x̂ii(pjj) = 〈pjjξi|ξi〉. This implies pjjξi = 0 for i 6= j and pjjξj = ξj . Thus
from 〈ξi|ξj〉 = 〈piiξi|ξj〉 we see that the set {ξ1, . . . , ξn} is orthonormal, so that we can
identify L = lin{ξ1, . . . , ξn} with Cn. Let p ∈ B(H[x]) be the orthogonal projector onto
the closed subspace L. Then

ε∗i p(x)εi = x̂ii(p) = trace
(
p(ξi � ξi)

)
= 〈pξi|ξi〉 = 1

for 1 ≤ i ≤ n. Since 0 ≤ x̂(p) ≤ 1n, it follows that x̂(p) = 1n. Thus x̂(p′) = 0, where
p′ = 1−p. Let y ∈ Xl for some l ∈ N, such that y a x and y ⊥ x. We claim that ŷ(p) = 0.
By definition of ⊥ there is z ∈ Xl+n such that z =

(
x ∗
∗ y
)
. Since the diagonal entries of ẑ

are pure states, we know already from the previous part of the proof that (ẑ)ii = ẑii, and
that there is a orthonormal system (ζi)l+ni=1 such that ẑii(a) = trace(a(ζi � ζi)) = 〈aζi|ζi〉
for all a ∈ B(H[x]). Since ẑii = x̂ii for 1 ≤ i ≤ n, there are λi ∈ C such that ζi = λiξi.
Therefore we have ζj ⊥ L = p(H[x]) for all n < j ≤ l + n. Since ẑn+i,n+i = ŷii for
1 ≤ i ≤ l, we obtain ŷii(p) = trace(p(ζn+i � ζn+i)) = 〈pζn+i, ζn+i〉 = 0. Consequently
ŷ(p) = 0, and the claim is shown.

We want to show that x̂ is a pure map, which is equivalent to x̂ being a structural
element, see Proposition 1.19. So, let φ : FE

b (X)→Mn be completely positive, such that
φ ≤cp x̂. Then obviously φ(p′) = 0. Given a ∈ B(H[x]) such that 0 ≤ a ≤ 1, it is
obvious that 0 ≤ p′ap′ ≤ p′ so that we obtain 0 ≤ φ(p′ap′) ≤ φ(p′) = 0. Moreover, the
matrix

(
a a
a a

)
is positive, and it follows that

( pap pap′

p′ap p′ap′

)
is also positive. Using that φ is

completely positive we conclude that
( φ(pap) φ(pap′)

φ(p′ap) 0

)
is a positive matrix. Therefore we

must have φ(pap′) = φ(p′ap) = 0. Since this holds for all positive operators 0 ≤ a ≤ 1,
it is clear that φ(p′ap′), φ(pap′) and φ(p′ap) vanish for all a ∈ B(H[x]). Of course, the
same argumentation applies also to x̂. Hence φ and x̂ can be interpreted as maps on
pB(H[x])p = pc[x]FE

b (X)p. We claim that the map ψ : pfp 7→ f |dxe is a ∗-isomorphism
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from pFE

b (X)p onto FE

b (dxe). Notice that

(pfp)n(x) = lim
y<x

u∗xyp(y)f(y)p(y)uxy

= lim
y<x

1
∗
lyn

(
1n 0
0 0

)(
fn(x) ∗
∗ ∗

)(
1n 0
0 0

)
1lyn = fn(x),

since we can restrict to those elements y < x such that y =
(
x ∗
∗ ∗
)
. Thus if pfp = pgp

then in particular fn(x) = gn(x), so that f |dxe = g|dxe and we conclude that the map ψ
is well-defined. We have to show that ψ is injective, surjective and multiplicative. Let f ,
g ∈ FE

b (X) such that f |dxe = g|dxe, i.e., fn(x) = gn(x). We claim that pfp = pgp. Notice
that p(1 − c[x]) = 0 by definition of p, so that we can restrict our attention to [x]. For
y ∈ X1 such that y 4 x we have obviously f1(y) = g1(y). If y 64 x and y a x there is
l ∈ N and z ∈ Xl such that z < y, x. Then

(pfp)l(z) = lim
z′<z

u∗zz′p(z
′)f(z′)p(z′)uzz′ .

Since z′ < z < x we can assume that z′ is unitarily equivalent to a matrix with left
upper corner equal to x. We have proved already that p vanishes on elements orthog-
onal to x. Therefore it follows (pfp)l(z) =

(
fn(x) 0

0 0

)
, and since we can apply the same

argumentation to pgp we obtain (pgp)l(z) =
(
gn(x) 0

0 0

)
=
(
fn(x) 0

0 0

)
= (pfp)l(z). It follows

that (pfp)1(y) = (pgp)1(y) for all y ∈ X1 such that y a x, and consequently pfp = pgp.
Thus ψ is injective. The fact that (pfp)l(z) =

(
fn(x) 0

0 0

)
for all z =

(
x ∗
∗ ∗
)
∈ Xl and

l > n indicates also that ψ is surjective. Indeed, let g ∈ FE

b (dxe). We claim that there
is f ∈ FE

b ([x]) such that pfp|dxe = g. Assume we have l > n and y, z ∈ Xl such
that 1

∗
l,ny1l,n = x = 1

∗
l,nz1l,n and y = u∗zu for a unitary u ∈ Ml. Then obviously

1
∗
l,nu

∗zu1l,n = 1
∗
l,nz1l,n, so it follows from the uniqueness property that there is λ ∈ C

with |λ| = 1 such that λu1l,n = 1l,n. Since u is unitary, we see that u =
(
λ1n 0
0 u22

)
.

Therefore in particular u∗
(
gn(x) 0

0 0

)
u =

(
gn(x) 0

0 0

)
, so we can define fl(y) =

(
gn(x) 0

0 0

)
for

all y =
(
x ∗
∗ ∗
)
∈ Xl and all l > n. Of course, for y ∈ dxe we set f(y) = g(y). Now, given

y ∈ [x] \ dxe there is by definition of the m-relation l ∈ N and z ∈ Xl such that z < y, x.
Since z < x, it is obvious that z is unitarily equivalent to a matrix with upper left corner
equal to x, so that f is defined on z by the preceding considerations. Therefore we can de-
fine f(y) = u∗yzfl(z)uyz. It is clear from the definition that f ∈ FE

b ([x]) and pfp|dxe = g.
(Notice that we can extend f easily to an element of FE

b (X) by setting f(y) = 0 for
all y ∈ X \ [x].) Thus ψ is surjective. It is still left to show that ψ is multiplicative.
Since ψ(pfppgp) = ψ(pfpgp) = fpg|dxe and ψ(pfp)ψ(pgp) = f |dxeg|dxe we need to verify
that (fpg)n(x) = fn(x)gn(x) to prove that ψ is multiplicative. By definition we have
(fpg)n(x) = limy<x u

∗
yxf(y)p(y)g(y)uyx. Assuming that y is unitarily equivalent to an el-

ement with upper left corner equal to x we obtain immediately (fpg)n(x) = fn(x)gn(x).
So, we have shown that pFE

b (X)p is unitally ∗-isomorph to FE

b (dxe) via the mapping
pfp 7→ f |dxe. Notice that restricting x̂ to FE

b (dxe) is the same as reading x as element of
FE

b (dxe)∗ by pointwise evaluation, because x̂(pfp) = fn(x) = x̂(f |dxe), where we denoted
both maps simply by x̂. Furthermore, x̂ is a pure map in CS (FE

b (dxe)) by Lemma 3.34,
and we still have φ ≤cp x̂ read as maps on FE

b (dxe). Thus there is 0 < r ≤ 1 such that
φ(f |dxe) = rx̂(f |dxe). Then φ(pfp) = rx̂(pfp) and so φ(f) = rx̂(f) for all f ∈ FE

b (X).
This shows that x̂ is a pure state, and the proof is complete.
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In order to show the converse of the preceding proposition, namely that X̂ consists
of all the normal pure matrix states of FE

b (X), we still need an additional structure on
X. We will show that we can define an (inner) metric of X, if X is an equivariant and
transitive matrix set that fulfills the uniqueness property. Then the condition that X
is a complete metric space will ensure that X̂ contains all normal pure matrix states of
FE

b (X). To define the metric we will need the following simple observations.

Lemma 3.45. Let ξ, η ∈ H be unit vectors of a Hilbert space H. Then

‖ξ � ξ − η � η‖1 = 2
√

1− |〈ξ|η〉|2.

Proof. We need to calculate the trace norm ‖ξ � ξ − η � η‖1 = trace(|ξ � ξ − η � η|). To
do this, we read the trace class operator ξ � ξ − η � η as linear map on L = lin{ξ, η}.
Let ζ = η− 〈η|ξ〉 ξ and ζ1 = ζ/‖ζ‖. Then ξ � ξ has the matrix representation

(
1 0
0 0

)
with

respect to the orthonormal basis {ξ, ζ1}. By evaluating (η�η)ξ and (η�η)ζ1 we find the
respective matrix representation of η � η to be

η � η =
(
|〈ξ|η〉|2 ‖ζ‖ 〈η|ξ〉
‖ζ‖ 〈ξ|η〉 ‖ζ‖2

)
.

A simple calculation gives ‖ζ‖ =
√

1− |〈ξ|η〉|2. Consequently,

(ξ � ξ − η � η)2 =
(

1− |〈ξ|η〉|2 −‖ζ‖ 〈η|ξ〉
−‖ζ‖ 〈ξ|η〉 −‖ζ‖2

)2

=
(

‖ζ‖2 −‖ζ‖ 〈η|ξ〉
−‖ζ‖ 〈ξ|η〉 −‖ζ‖2

)2

=
(
‖ζ‖2 0

0 ‖ζ‖2
)
,

so that trace(|ξ � ξ − η � η|) = 2‖ζ‖ = 2
√

1− |〈ξ|η〉|2, which was the claim.

Corollary 3.46. Let ϕ, ψ pure normal states of B(H), so that ϕ, ψ ∈ T (H). Then
‖ϕ − ψ‖ = 2

√
1− |〈ξϕ|ξψ〉|2, where ξϕ, ξψ ∈ H are the essentially unique unit vectors

such that ϕ and ψ are the vector states determined by ξϕ and ξψ, respectively.

Proof. Obviously we have ϕ = ξϕ � ξϕ and ψ = ξψ � ξψ, so that

‖ϕ− ψ‖ = ‖ξϕ � ξϕ − ξψ � ξψ‖1 = 2
√

1− |〈ξϕ|ξψ〉|2

by the preceding lemma.

Lemma 3.47. Let X be some equivariant matrix subset of a vector space W . If x, y ∈ X1

are two distinct m-related points, then there is z ∈ X2 such that z < x, y.

Proof. For two distinct points x, y ∈ X1 that are m-related there are n ∈ N, z̃ ∈ Xn and
ξ, η ∈ Cn such that x = ξ∗z̃ξ, y = η∗z̃η and n ≥ 2. Let L = lin{ξ, η} ⊂ Cn. Since x 6= y
we see that dim(L) = 2. Let v : C2 → L be an isometry. Then, since X is equivariant,
z = v∗z̃v ∈ X2. Obviously, z < x1, x2 and the proof is complete.
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Proposition 3.48. Let X be an equivariant and transitive matrix subset of some vector
space W such that X fulfills the uniqueness property. We set d(x, x) = 0 for x ∈ X1,
and for distinct x, y ∈ X1 we let d(x, y) = 2 if x and y are matrix non-equivalent, and
otherwise we let d(x, y) = trace(|ξ � ξ − η � η|), where ξ, η ∈ C2 are unit vectors such
that x = ξ∗zξ and y = η∗zη for some z ∈ X2. Then d : X1 ×X1 → R+ is a well-defined
metric on X1.

Proof. We show first that d is well-defined. If x, y ∈ X1 are m-equivalent, there are
z ∈ X2 and unit vectors ξ1, ξ2 ∈ C2 such that x = ξ∗1zξ1 and y = ξ∗2zξ2 by Lemma 3.47.
If l ≥ 2 and z′ ∈ Xl such that x = ζ∗1z

′ζ1 and y = ζ∗2z
′ζ2 for unit vectors ζ1, ζ2 ∈ Cl,

then by transitivity of the m-relation z a z′. Thus there is some n ∈ N and ψ ∈ Xn such
that z = u∗zψψuzψ and z′ = u∗z′ψψuz′ψ. Hence we obtain

x = ξ∗1u
∗
zψψuzψξ1 = ζ∗1u

∗
z′ψψuz′ψζ1

y = ξ∗2u
∗
zψψuzψξ2 = ζ∗2u

∗
z′ψψuz′ψζ2.

Applying the uniqueness property to the preceding equations, we find λ1, λ2 ∈ C such
that |λ1| = |λ2| = 1, uzψξ1 = λ1uz′ψζ1 and uzψξ2 = λ2uz′ψζ2. Therefore∣∣〈ξ1|ξ2〉∣∣ = ∣∣〈uzψξ1|uzψξ2〉∣∣ = ∣∣〈uz′ψζ1|uz′ψζ2〉∣∣ = ∣∣〈ζ1|ζ2〉∣∣,
which shows that 2

√
1− |〈ξ1|ξ2〉|2 = 2

√
1− |〈ζ1|ζ2〉|2. Thus it follows from Lemma 3.45

that d is well-defined. By definition of d it is obvious that d(x, x) = 0 and d(x, y) = d(y, x)
for all x, y ∈ X1. So to see that d is a metric on X1, we only need to verify the triangle
inequality. Let x, y, z ∈ X1. We want to show that d(x, z) ≤ d(x, y) + d(y, z). Notice
that there is nothing to prove if x 6a y or y 6a z. Hence we assume x a y and y a z.
Then it follows x a z by transitivity. By definition of the m-relation there is n ∈ N and
φ ∈ Xn such that x = ξ∗φξ, y = η∗φη and z = ζ∗φζ for unit vectors ξ, η, ζ ∈ Cn. For
these unit vectors it is obvious that

‖ξ � ξ − ζ � ζ‖1 ≤ ‖ξ � ξ − η � η‖1 + ‖η � η − ζ � ζ‖1,

so that by definition of d we obtain directly d(x, z) ≤ d(x, y) + d(y, z). Thus (X1, d) is a
metric space, and the proof is complete.

Definition 3.49 (Inner Metric). Let X be an equivariant and transitive matrix subset
of some vector space W such that X fulfills the uniqueness property. Then the metric d
on X1 defined by d(x, x) = 0 and

d(x, y) =

{
trace(|ξ � ξ − η � η|) if x a y and x 6= y

2 if x 6a y,

where ξ, η ∈ C2 are some unit vectors such that x = ξ∗zξ and y = η∗zη for some z ∈ X2

(that exists in the case x a y ), is called the inner metric of X.

Lemma 3.50. Let M be an atomic W ∗-algebra. Let X = str(S), where S = CSσ(M)
and let d be the inner metric of X. Then d(x, y) = ‖x− y‖ for all normal pure states x,
y ∈ X1.
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Proof. Given x, y ∈ X1 we know that x a y if and only if x and y are equivalent as states.
In case x and y are not equivalent, we know that ‖x−y‖ = 2, and by definition of the inner
metric we also have d(x, y) = 2 in this case. So, assume that x and y are equivalent. Then
we can represent x and y using the same normal irreducible representation, i.e., there is
a normal and irreducible representation π :M→ Hπ such that x = ξ∗xπξx and y = η∗yπηy
for unit vectors ξx, ηy ∈ Hπ. Since x and y are m-equivalent there is also z ∈ X2, such
that x = ξ∗zξ and y = η∗zη for unit vectors ξ, η ∈ C2. It follows that z is equivalent to x
and y, so that the minimal Stinespring representation of z can be written as z = V∗πV,
where V : C2 → Hπ is an isometry. Then, since the vector in the GNS representation is
unique up to a factor, from x = ξ∗V∗πVξ and y = η∗V∗πVη we obtain Vξ = λξx and
Vη = µηy, where λ, µ ∈ C2 with |λ| = |µ| = 1. Thus 〈ξ|η〉 = 〈Vξ|Vη〉 = λµ̄ 〈ξx|ηy〉,
such that |〈ξ|η〉| = |〈ξx|ηy〉|. Hence reading x and y as normal pure states on B(Hπ) and
applying Corollary 3.46 yields

d(x, y) = 2
√

1− |〈ξ|η〉|2 = 2
√

1− |〈ξx|ηy〉|2 = ‖x− y‖,

which shows the claim.

The next two lemmas will help us to prove the announced abstract characterization of
the normal pure matrix states of atomic W ∗-algebras.

Lemma 3.51. Let X be a matrix set such that X is equivariant, transitive and fulfills
the uniqueness property, so that FE

b (X) is an atomic W ∗-algebra. If p ∈ FE

b (X) is a
projection then sup { p1(x) | x ∈ X1 } = 1.

Proof. Suppose that 0 ≤ s = sup { p1(x) | x ∈ X1 } < 1. Then it follows easily by equiv-
ariance that pn(y) ≤ s1n for all y ∈ Xn and n ≥ 2. Thus

p1(x) = (pp)1(x) = lim
y<x

u∗xyp(y)p(y)uxy ≤ s2 < s

for all x ∈ X1 gives immediately a contradiction, and the claim is shown.

Lemma 3.52. Let X be a matrix subset of some vector space V such that X is equivari-
ant, transitive and fulfills the uniqueness property, so that FE

b (X) is an atomic W ∗-alge-
bra, cf. Corollary 3.27. For n, m ∈ N let x = [xij ] ∈ Xn and y = [yrs] ∈ Xm such that
y < xii for i = 1, . . . , n. Then m ≥ n and y < x.

Proof. Since especially x a x11 a y and the m-relation is assumed to be transitive, it fol-
lows that x a y, i.e., [x] = [y]. By Proposition 3.44 we have X = X̂ ⊂ str

(
CSσ(FE

b (X))
)
.

We identify c[y]FE

b (X) = B(H[y]). So by Proposition 3.43 there are orthonormal systems
{ξ1, . . . , ξn} and {η1, . . . , ηm} inH[y] such that x̂ = [Ξ(ξi�ξj)] and ŷ = [Ξ(ηi�ηj)]. Define
the isometries V : Cn → H[y] and W : Cm → H[y] by Vεni = ξi and Wεmj = ηj for 1 ≤ i ≤ n
and 1 ≤ j ≤ m, where (εni )i and (εmj )j are the standard basis of Cn and Cm, respectively.
Then we obtain x̂(a) = [〈aξj |ξi〉] = V∗ id(a)V and ŷ(a) = [〈aηj |ηi〉] = W∗ id(a)W where
id denotes the identity of B(H[y]). From y < xii we get that ξi ∈W(Cm) for i = 1, . . . , n
and consequently V(Cn) ⊂W(Cm) ⊂ H[y]. Hence the linear map u = W∗V : Cn → Cm is
is well-defined. Then u∗u = V∗WW∗V = V∗V = 1n, since WW∗ = idH[y] . So u ∈ Mm,n

is an isometry and u∗ŷu = u∗W∗ idWu = V∗ idV = x̂ shows that y < x, completing the
proof.
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We can now state and prove another main result of the thesis.

Theorem 3.53 (Non-commutative Sets). Let X be a matrix subset of some vector
space W . Then X is equivariantly isomorph to the normal pure matrix states of an atomic
W ∗-algebra if and only if

(i) X equivariant, transitive and fulfills the uniqueness property, and

(ii) (X1, d) is a complete metric space, where d is the inner metric of X.

Proof. LetM be an atomic W ∗-algebra. Then str
(
CSσ(M)

)
is equivariant and transitive

by Corollary 3.5, and fulfills the uniqueness property by Proposition 3.8 and Remark 3.10.
Moreover, d(ϕ,ψ) = ‖ϕ−ψ‖ for all pure states ϕ, ψ ∈ str1

(
CSσ(M)

)
. Since the set of the

pure states is norm-closed, it follows from Lemma 3.50 that str1
(
CSσ(M)

)
is complete

in its inner metric.
In the converse direction, let X be an equivariant and transitive matrix subset of

some vector space W such that X fulfills the uniqueness property. Then FE

b (X) is an
atomic W ∗-algebra. Letting S = CSσ(FE

b (X)) we know from Proposition 3.44 that
X = X̂ ⊂ str(S). Given a pure state ψ ∈ str(S1), there is a corresponding minimal
projection p ∈ FE

b (X). More precisely, identifying FE

b (X) = ⊕κB(Hκ), where the sum
runs over all equivalence classes of normal pure states of FE

b (X), there is a unit vector
ξ ∈ H[ψ] such that ψ(a) = 〈aξ|ξ〉 for all a ∈ B(H[ψ]), and the minimal projector p
corresponding to ψ is given by p = ξ � ξ. Now by Lemma 3.51 there exists a sequence
(xn)n in X1 such that p(xn)→ 1. Then x̂n is a pure normal state of FE

b (X) so there is a
unit vector ξn ∈ ⊕κHκ such that x̂n(a) = 〈aξn|ξn〉 for all n ∈ N and a ∈ ⊕κB(Hκ). Then
we obtain

p(xn) = x̂n(p) = 〈pξn|ξn〉 = 〈(ξ � ξ)ξn|ξn〉 = |〈ξn|ξ〉|2 → 1.

It follows from Corollary 3.46 that ‖x̂n − ψ‖ → 0. Therefore (xn)n is a Cauchy sequence
with respect to the inner metric d of X by Lemma 3.50. Now, assuming that (X1, d)
is a complete metric space, there is x ∈ X1 such that d(xn, x) → 0. Thus we obtain
immediately that ‖x̂n− x̂‖ → 0, which yields ψ = x̂. So far we have shown that str(S1) ⊂
X̂1, and together with Proposition 3.44 we have str(S1) = X̂1. Let n ≥ 2 and ψ ∈
str(Sn). Then by Proposition 3.43 there is an orthonormal system {ζ1, . . . , ζn} such that
ψ = [ζi � ζj ]. Now ψii ∈ str(S1) for 1 ≤ i ≤ n, so that there are xii ∈ X1 such that
x̂ii = ψii. Notice that the xii are pairwise m-equivalent, because the pure states ψii are
pairwise unitarily equivalent. Thus there is some l ∈ N and y ∈ Xl such that y < xii for
all 1 ≤ i ≤ n. Then ŷ < x̂ii = ψii, again by the identification X = X̂. It follows now
from Lemma 3.52 applied in str(S) that ŷ < ψ, so there is an isometry v ∈ Ml,n such
that ψ = v∗ŷv ∈ X̂n, and the proof is complete.

Normal state space of atomic W*-algebras

It will turn out that characterizing the normal m-convex state space of atomic W ∗-alge-
bras is the first step toward characterizing state spaces of C∗-algebras. We prove next
some properties of the normal state space of atomic W ∗-algebras, before we give an
abstract characterization.
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Proposition 3.54. Let K = CSσ(M) for an atomic W ∗-algebra M, and X = str(K).
If xν ∈ Xnν

for ν = 1, . . . , l are finitely many pairwise matrix non-equivalent points,
then C = mco(x1, . . . , xl) is m-affinely isomorphic to the m-convex state space of the
C∗-algebra ⊕lν=1Mnν . Consequently, C is a finite m-convex simplex. Moreover, C1 is a
projective face of K1.

Proof. An atomic W ∗-algebra is a sum of type I factors, hence we can assume M =
⊕j∈JB(Hj) for some index set J . Then given pairwise matrix non-equivalent xν ∈ Xnν

,
there are indices jν ∈ J , jν 6= jµ for ν 6= µ and ν, µ ∈ {1, . . . , l}, and isometries
Vν : Cnν → Hjν , such that xν(T ) = V∗νπjν (T )Vν , where πjν : ⊕j B(Hj) → B(Hjν ) is
the irreducible representation that maps t = ⊕tj ∈ ⊕B(Hj) to πjν (t) = tjν ∈ B(Hjν ).
Since the indices jν are pairwise distinct, the map x = ⊕lν=1xν : ⊕j B(Hj)→ ⊕lν=1Mnν

is surjective. Hence the adjoint mapping x∗ : (⊕νMnν
)∗ → M∗ is injective. We have

to verify that x(n)
∗ (CSn(⊕νMnν )) = mcon(x1, . . . , xl) for all n ∈ N. Let n ∈ N and

ψ ∈ CSn(⊕νMnν )), i.e., ψ : ⊕ν Mnν → Mn is completely positive and unital. Then
ψ = (ψν)lν=1, where ψν : Mnν

→ Mn is completely positive and
∑
ν ψν(1nν

) = 1n. We
obtain

x
(n)
∗ (ψ)(T ) = ψ(x(T )) = (ψν)

l
ν=1(⊕νxν(T )) =

l∑
ν=1

ψν(xν(T )),

for all T ∈ ⊕jB(Hj). Since ψν(γ) =
∑mν

i=1 α
∗
ν,iγαν,i for all γ ∈ Mnν

and ν = 1, . . . , l
(cf. [16]), we find

x
(n)
∗ (ψ) =

l∑
ν=1

mν∑
i=1

α∗ν,ixναν,i ∈ mco(x1, . . . , xl).

This proves that x(n)
∗ (CSn(⊕νMnν

)) ⊂ mcon(x1, . . . , xl). For the converse direction, we
note that xν = x

(nν)
∗ (0 ⊕ · · · ⊕ 0 ⊕ idMnν

⊕ 0 ⊕ · · · ⊕ 0), such that xν ∈ x(nν)
∗ (⊕νMnν

)
for ν = 1, . . . , l. Since the image of the m-affine map (x(n)

∗ ) is m-convex, we have shown
that mco(x1, . . . , xl) is m-affinely isomorphic to the m-convex state space of ⊕lν=1Mnν

.
Recall that the finite m-convex simplexes are exactly the m-convex state spaces of finite
dimensional C∗-algebras.

To show that C1 is a projective face of K1, we define an orthogonal projection p =
⊕pj ∈ ⊕B(Hj), where pjν = VνV

∗
ν , and pj = 0 for j 6= jν , ν = 1, . . . , l. We claim that

C1 = x∗(CS1(⊕Mnν
)) consist exactly of those ϕ ∈ K1, such that ϕ(p) = 1. Let ψ ∈

CS1(⊕Mnν
), then obviously x∗(ψ)(t) = ψ(x(t)) ≥ 0, whenever t ∈ ⊕B(Hj) is positive.

Furthermore, let id = ⊕ idj be the unit of ⊕B(Hj), then ψ(x(id)) = ψ(⊕1nν
) = 1, so

that x∗(ψ) ∈ K1. Evaluating

x(p) = ⊕xν(p) = ⊕V∗νpjν Vν = ⊕V∗νVνV
∗
νVν = ⊕1nν

shows that ψ(x(p)) = 1. In the converse direction, let ϕ ∈ K1, such that ϕ(p) = 1. Then
obviously ϕ(id−p) = 0, and since ϕ is a state, by application of the Cauchy-Schwarz
inequality (|ϕ(ba)|2 ≤ ϕ(a)ϕ(bab∗) for all a ≥ 0 and b arbitrary) we obtain ϕ(t) = ϕ(ptp)
for all t ∈ ⊕B(Hj) (recall that t = ptp+(id−p)tp+pt(id−p)+(id−p)t(id−p) uniquely).
Now there is a natural embedding ϑ : ⊕Mnν

↪→ p ⊕ B(Hj)p given by ϑ(⊕γν) = ⊕sj ,
where sjν = VνγνV

∗
ν and sj = 0 for j 6= jν , ν = 1, . . . , l. We let ψ = ϕ ◦ ϑ, then ψ is

positive and ψ(⊕1nν ) = ϕ(p) = 1. Moreover,

x∗(ψ)(t) = ψ(x(t)) = ϕ(ϑ(x(t))) = ϕ(ϑ(⊕V∗νπjν (t)Vν)) = ϕ(ptp) = ϕ(t),
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3. Matrix Convex Simplexes

for all t ∈ ⊕B(Hj), which shows that ϕ ∈ x∗(CS1(⊕Mnν
)).

Definition 3.55. Let V be an operator space and let Y = (Yn)n be a matrix subset
of the unit ball of V (we will consider only this special situations). Then

∑∞
i=1 α

∗
i yiαi,

where yi ∈ Yni
and αi ∈ Mni,n for all i ∈ N such that

∑∞
i=1 α

∗
iαi = 1n, converges in

norm, and we write σ-mco(Y ) for the set of all such σ-matrix convex combinations. The
σ-matrix convex hull of Y is the matrix set σ-mco(Y ) = (σ-mcon(Y ))n∈N.

Proposition 3.56. Let K = CSσ(M) for an atomic W ∗-algebra M, and X = str(K).
Then K = σ-mco(X).

Proof. It is well-known that the normal state space of the bounded operators on some
Hilbert space is the σ-convex hull of the vector states. However, we have to show that
K = σ-mco(X). Since Kn is norm-closed for all n ∈ N, it suffices to show that Kn is
contained in σ-mcon(X). So, let ψ ∈ Kn. We identify M = ⊕B(H%) and consider the
C∗-algebra A = ⊕C(H%). Then obviously

A∗∗ = (⊕∞ C(H%))∗∗ = (⊕1T (H%))∗ = ⊕∞B(H%) =M

Thus the m-convex state space of A is m-affine isomorphic to K. Notice that A is a
scattered C∗-algebra by [35, Thm. 2.2]. Thus given the minimal Stinespring represen-
tation ψ = W∗τW, where W : Cn → H is a isometry and τ : A → B(H) is a (non-de-
generated) representation of A on the bounded operators on some Hilbert space H, τ
is unitarily equivalent to a subrepresentation of a sum of countably many irreducible
representations of A. Without loss of generality we can assume that τ(a) = U∗π(a)U
for all a ∈ A, where U : H → H ⊂ ⊕H%l

is a unitary operator and H is an invariant
subspace for π = ⊕π%l

, where π%l
is the irreducible representation of A that is the re-

striction of the normal representation of M = ⊕B(H%) onto the summand B(H%l
). We

obtain ψ = W∗τW = W∗U∗(⊕π%l
)UW. Setting V = UW, we write V = (V%l

)∞l=1, where
V%l

: Cn → H%l
. Then

ψ = V∗(⊕π%l
)V =

∞∑
l=1

V∗%l
π%l

V%l
.

If dl = dim(V%l
(Cn)) should be less then n, i.e., if V%l

should not be injective, we can factor
out the kernel and replace V%l

with an isometry V′%l
: Cdl → H%l

. Now φ′l = V′∗%l
π%l

V′%l

can be read as completely positive map from M to Mdl
and the positive matrix α2

l =
φl(1) = V′∗%l

V′%l
∈ Mdl

is invertible. Then there is a unital and completely positive map
φl :M→Mdl

such that φ′l = αlφlαl, cf. [18], and φl = α−1
l V′∗%l

π%l
V′%l

α−1
l is pure, since π%l

is irreducible. Thus φl ∈ Xdl
, and we obtain ψ =

∑∞
l=1 αlφlαl, so that ψ ∈ σ-mcon(X)

and the proof is complete.

We recall some definitions of real convexity theory. Let E be a real base norm space
with base C. Then two convex subsets B, D ⊂ C are affinely independent, if every point
x ∈ conv(B ∪D) is written as unique convex combination, i.e., whenever λb+ (1− λ)d =
νb′ + (1− ν)d′ for λ, ν ∈ [0, 1], b, b′ ∈ B and d, d′ ∈ D, then λ = ν, b = b′ and d = d′.

Definition 3.57. Let E be a (real) vector space, and let C ⊂ K be two convex subsets of
E. An affine retraction of K onto C is an affine surjection ψ : K → C, such that ψ(c) = c
for all c ∈ C.
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We define a finite non-commutative simplex property for matrix convex sets that con-
tain structural elements.

Definition 3.58. Let K be an m-convex set such that X = str(K) is a non-empty, equiv-
ariant and transitive matrix set. Then K has the finite m-simplex property, if whenever
xν ∈ Xnν

for ν = 1, . . . , l are finitely many pairwise matrix non-equivalent points, all of
the following holds:

(i) C = mco(x1, . . . , xl) is m-affinely isomorphic to a finite m-convex simplex, and C1

is a face of K1.

(ii) There is a non-empty convex subset C ′1 ⊂ K1 such that C1 and C ′1 are affinely
independent, and there is an affine retraction ψ : K1 → conv(C1 ∪ C ′1).

We are now in a position to characterize abstractly the m-convex normal state space
of atomic W ∗-algebras, compare with [6, Theorem 10.2].

Theorem 3.59. Let K be the m-base of a matrix base norm space. Then K is m-affinely
isomorphic to the (m-convex) normal state space of an atomic W ∗-algebra if and only if
all of the following holds:

(i) The σ-matrix convex hull of str(K) equals K,

(ii) str(K) is equivariant and transitive, and

(iii) K has the finite m-simplex property.

If in addition all elements of str(K) are m-equivalent, then K is m-affinely homeomorphic
to the normal state space of B(H) for some Hilbert space H.

Proof. If (V,K)∗ = M is an atomic W ∗-algebra, so that K is its normal state space,
then K = σ-mco(str(K)) and str(K) is equivariant and transitive by Proposition 3.56
and by Corollary 3.5, respectively. If xν ∈ str(Knν ) for ν = 1, . . . , κ are finitely many
pairwise matrix non-equivalent points, then it follows from Proposition 3.54 that C =
mco(x1, . . . , xκ) is a finite m-convex simplex and that C1 is a projective face of K1. Let
p ∈ M be the projection corresponding to C1 and let C ′1 ⊂ K1 be the projective face
corresponding to p′ = e−p, where e is the unit ofM, so that C ′1 is the quasicomplementary
face of C1. Then by definition C1 and C ′1 are affinely independent, and there is a unique
affine retraction ψ from K1 onto conv(C1 ∪ C ′1) given by 〈a|ψ(x)〉 = 〈pap+ p′ap′|x〉 for
a ∈M, cf. [9, Thm. 11.5]. Thus K has the finite m-simplex property.

For the converse direction let (V,K) be an m-base norm space such that K fulfills
the requirements (i) to (iii) of the theorem. Let X = str(K). Since K1 = σ-conv(X1)
is a σ-convex base of the real base norm space Vh, the base norm is complete on Vh,
cf. [40, Thm. 5.1]. Thus (V,K) is a complete m-base norm space. Moreover, X is a
non-empty matrix set and the restriction map from Ab(K) to FE

b (X), i.e., restricting
bounded m-affine maps on K to X, is injective. We have to prove that the finite simplex
property of K implies that this restriction map is also surjective. Once this is proved,
the restriction map is a complete order isomorphism between Ab(K) and FE

b (X). Since
X is equivariant and transitive by condition (ii) and since structural elements fulfills
the uniqueness property, cf. Remark 3.10, we know from Corollary 3.27 that FE

b (X) is
an atomic W ∗-algebra. By Proposition 1.42 we have (V,K)∗ = Ab(K), hence K is the
normal state space of FE

b (X) by Proposition 1.48, and the proof would be complete.
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3. Matrix Convex Simplexes

In order to verify the surjectivity of the restriction map, let f ∈ FE

b (X). The first
step will be to extend f to a map in Ab(mco(X)). Let C = mco(X). For v ∈ Cn and
any m-convex combination v =

∑m
i=1 α

∗
i yiαi by elements yi ∈ Xni

, we define f̃n(v) =∑m
i=1 α

∗
i fni

(yi)αi. We have to verify that f̃ is well-defined. Let v =
∑m′

j=1 β
∗
j y
′
jβj be

another m-convex combination, where y′j ∈ Xn′j
. Since finitely many equivalent elements

have a common majorant, considering the set of equivalence classes

{ [yi] | 1 ≤ i ≤ m } ∪ { [y′j ] | 1 ≤ j ≤ m′ } ,

we find l ≤ m+m′ pairwise matrix non-equivalent x1, . . . , xl in X such that

{y1, . . . , ym, y′1, . . . , y′m′} ⊂
l⋃
i=1

dxie ⊂ mco(x1, . . . , xl) = D

Notice that str(D) = ∪li=1dxie, since X is equivariant. By the finite simplex property D
is a finite m-convex simplex, so that Ab(D) is completely order isomorphic to FE

b (str(D))
by Theorem 3.35 and Proposition 3.29. Thus f |str(D) has a unique extension to a map in
Ab(D), i.e., there is g ∈ Ab(D), such that g|str(D) = f |str(D). Therefore

m∑
i=1

α∗i fni
(yi)αi = gn(v) =

m′∑
j=1

β∗j fn′j (y
′
j)βj ,

which shows that f̃ is well-defined. Then by definition of f̃ it is easy to see that f̃ ∈ Ab(C),
and that f̃ |X = f . Thus we have shown so far that FE

b (X) =cp Ab(C) (recalling that
C = mco(X)). Let W = linC1. Then C is an m-convex subset of W , and C1 is a
base of the (generating) cone W+ = R+C1, because K1 is a base of V+. Hence given
f = (fn) ∈ Ab(C) we can apply Lemma 1.29 to find a unique linear extension g : W → C,
such that fn = g(n)|Cn for all n ∈ N. It is essential now to prove that g is bounded
with respect to the matrix base norm on V . Although (W,C) is an m-base norm space,
the norm defined by amco(C) may not be equivalent to the norm on V defined by the
larger unit ball amco(K). So let w ∈ Wh ∩ conv(K1 ∪ −K1). Then w ∈ linR C1 and
C1 = conv(X1). Thus there is a finite subset F ⊂ X1 such that w ∈ linR F . Since F
is finite, it is contained in some finite simplex D = mco(x1, . . . , xl), i.e., F ⊂ D1, where
x1, . . . , xl are pairwise matrix non-equivalent elements of X. By (the second part of)
the finite simplex property, there is a convex subset D′

1 ⊂ K1, such that D1 and D′
1

are affinely independent, and there is an affine retraction ψ : K1 → conv(D1 ∪D′
1). By

[9, Prop.3.3] there is a positive projection P : Vh → E = linR conv(D1 ∪ D′
1) such that

P (K1) ⊂ K1 and ψ = P |K1 . Furthermore, since D1 and D′
1 are affinely independent, E

splits into a direct ordered sum of E1 = linR D1 and E′1 = linR D
′
1. This means there are

positive projections π : E → E1 and π′ : E → E′1. Notice that E1 ⊂ W , because D ⊂ C.
Now, w ∈ linR F ⊂ linR D = E1, and w ∈ conv(K1 ∪ −K1), i.e., there are x, y ∈ K1 and
λ ∈ [0, 1], such that w = λx− (1− λ)y. Hence we obtain

w = Pw = λPx− (1− λ)Py
= λπPx− (1− λ)πPy + π′Px− (1− λ)π′Py
= λπPx− (1− λ)πPy.

(3.15)
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From Px, Py ∈ K1 ∩ E it follows that a = πPx(e), b = πPy(e) ∈ [0, 1]. Hence a 1πPx,
b 1πPy ∈ K1 ∩ E1, where we suppose a, b 6= 0. Since by assumption D1 is a face of K1,
we know that K1 ∩ E1 ⊂ D1. Hence equation (3.15) yields

|g(w)| = |λaf(a 1πPx)− (1− λ)bf(b 1πPy)|
≤
(
λa+ (1− λ)b

)
‖f‖ ≤ ‖f‖,

for all w ∈Wh with ‖w‖V ≤ 1. So we proved that g : W → C is a bounded linear map with
respect to the base norm of V . Then there is a unique bounded linear map g̃ : W= → C
(recall that V is complete) such that g = g̃|W . Since K1 = σ-conv(X1) ⊂ conv(X1)=,
it follows that V = linK1 ⊂ lin conv(X1)= = W= ⊂ V . Thus we have extended g on
V and the restriction g̃|K1 is a bounded affine map that extends f . This shows that
the restriction map Ab(K) → FE

b (X) is surjective. Moreover, since by construction
g̃(n)(

∑∞
i=1 α

∗
i xiαi) =

∑∞
i=1 α

∗
i fni(xi)αi, it is not hard to prove that Ab(K) =cp FE

b (X).
As stated already this shows that K is m-affine isomorph to the normal state space of
the atomic W ∗-algebra FE

b (X).
For the last statement of the theorem, recall from (the proof of) Corollary 3.5 that the

m-relation coincides with the equivalence of pure states. So, obviously all elements of
str(K) (i.e., the pure m-states, cf. Corollary 1.20) are m-equivalent if and only if the pure
m-states are unitarily equivalent, i.e., if and only if there is only one unitary equivalence
class of irreducible representations for the atomic W ∗-algebra, in which case it must be
a single B(H).

Projections and certain sets of pure states
In order to characterize m-state spaces of C∗-algebras abstractly as certain compact
matrix convex sets, we should pose conditions, or axioms, only on the structures that
we start with. That means we can pose conditions on the m-relation or the inner metric
of the structural elements. (Later we will also consider a uniformity on the structural
elements.) However, starting with X we should not talk about say the projections of
FE

b (X), even though we have proved that FE

b (X) is a W ∗-algebra. So we show next that,
given an equivariant and transitive matrix set X fulfilling the uniqueness property, we
can identify projections of the atomic W ∗-algebra FE

b (X) abstractly with certain matrix
subsets of X that we define now.

Definition 3.60. Let X be an equivariant and transitive matrix subset of some vector
space V , such that X fulfills the uniqueness property. Then an equivariant subset Y of
X is equivariantly directed, if Y satisfies the following conditions:

(i) Y1 is a closed set with respect to the inner metric d on X1, and

(ii) for any finite subset {y1, . . . , ym} of pairwise matrix equivalent elements of Y1 there
is n ∈ N and y ∈ Yn such that y < yi for i = 1, . . . ,m.

Proposition 3.61. Let X be a matrix subset of some vector space V such that X is
equivariant, transitive and fulfills the uniqueness property. If a subset Y ⊂ X is equivari-
antly directed then there is a projection p ∈ FE

b (X) such that Yn = {x ∈ Xn | pn(x) = 0 }
for all n ∈ N. Conversely, if in addition (X1, d) is complete, where d is the inner metric
of X, then the matrix set Y = (Yn)n, where Yn = {x ∈ Xn | pn(x) = 0 }, is non-empty
for all projections p ∈ FE

b (X) with p 6= 1, and Y is equivariantly directed. Moreover,
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in this case the correspondence between equivariantly directed sets and projections is a
bijection, that maps p′ to Y ⊥ (where p corresponds with Y ).

Proof. We identify FE

b (X) = ⊕%∈KB(H%) for K = { [x] | x ∈ X1 }, cf. Corollary 3.27. Let
Y ⊂ X be equivariantly directed. For all % ∈ K we define

H% = lin
{
ξ ∈ H%

∣∣∣ ‖ξ‖ = 1 and ξ∗π%ξ ∈ Ŷ1

}
. (3.16)

Let H=
% be the norm closure of H%. Let p% ∈ B(H%) be the unique projector such that

kern(p%) = H=
% and define p = ⊕p%. Recall the identificationX = X̂ ⊂ str(CSσ(FE

b (X))),
cf. Proposition 3.44. Given y = [yij ] ∈ Yn there is an isometry V : Cn → Hκ such
that ŷ = V∗πκV, where κ = [y] = [y11] ∈ K and πκ : FE

b (X) → B(Hκ) is the normal
irreducible representation onto the summand B(Hκ). Then ε∗iV

∗πκVεi = ŷii ∈ Ŷ1 implies
ξi = Vεi ∈ Hκ ⊂ H=

κ for all i = 1, . . . , n, where { εi | 1 ≤ i ≤ n } is the standard basis of
Cn. Hence, reading p as element (pl)l∈N of FE

b (X), we obtain

pn(y) = ŷ(p) = V∗πκ(p)V = [〈pκξj |ξi〉] = 0,

which proves that Yn ⊂ {x ∈ Xn | pn(x) = 0 } for all n ∈ N. On the other hand, let
x ∈ Xn such that pn(x) = 0. Again, there is an index κ ∈ K and an isometry V : Cn → Hκ

such that x̂ = V∗πκV. We let ξi = Vεi for i = 1, . . . , n and obtain

0 = pn(x) = x̂(p) = V∗πκ(p)V = [〈pκξj |ξi〉],

which implies pκξi = 0. Thus ξi ∈ kern(pκ) = H=
κ for all i = 1, . . . , n. Consequently, for

each i ∈ {1, . . . , n}, there are sequences of unit vectors (ξi,ν)ν∈N inHκ, such that ξi,ν → ξi.
Let ŷνi = ξ∗i,νπκξi,ν ∈ Ŷ1 for i = 1, . . . , n. From ξi,ν → ξi it follows that ŷνi → x̂ii in the
norm of FE

b (X)∗. Since X and X̂ are equivariantly isomorph, it is obvious from the
definition of the inner metric that the inner metric of X equals the inner metric of X̂.
Therefore using Lemma 3.50 we have d(yνi , xii) = d(ŷνi , x̂ii) = ‖ŷνi − x̂ii‖ → 0. Since Y1

is closed with respect to the inner metric, we get xii ∈ Y1 for i = 1, . . . , n. Then, using
that Y is equivariantly directed, there is some m ∈ N and y ∈ Ym such that y < xii for
i = 1, . . . , n. Hence by Lemma 3.52 we see that y < x, which shows directly that x ∈ Yn.
Thus we have shown so far that Yn = {x ∈ Xn | pn(x) = 0 } for all n ∈ N, which proves
the first claim.

Now, for the converse direction, suppose additionally that X1 is complete in the
inner metric, so that by (the proof of) Theorem 3.53 we have X̂ = CSσ(FE

b (X)).
Then given a projection p = (pl) ∈ FE

b (X) the matrix set Y = (Yn)n∈N, where Yn =
{x ∈ Xn | pn(x) = 0 } obviously equivariant. Moreover, if p 6= 1 then Y1 is non-empty.
Indeed, FE

b (X) is an atomic W ∗-algebra, so there is a minimal projection (i.e., an atom)
q ∈ FE

b (X) such that 0 6= q ≤ 1 − p. There is a unique pure state, i.e., an element
x ∈ X1, such that q1(x1) = 1, which shows x ∈ Y1. We claim that Y1 is closed in the
inner metric d. Let z ∈ X1 and let (zn)n∈N be a sequence in Y1 such that d(zn, z) → 0.
Then from Lemma 3.50 we have ‖ẑn − ẑ‖ = d(ẑn, ẑ) = d(zn, z) → 0, so especially
0 = p1(zn) = ẑn(p) → ẑ(p) = p1(z), which yields p1(z) = 0. Thus z ∈ Y1, which shows
that Y1 is closed in the inner metric. To show that Y is directed, let y1, . . . , ym ∈ Y1 be
pairwise equivalent. Then with κ = [y1] = · · · = [ym] ∈ K there are unit vectors ξi ∈ Hκ

such that ŷi(T ) = ξ∗i πκ(T )ξi for T ∈ ⊕B(H%) and i = 1, . . . ,m. From

0 = p1(yi) = ŷi(p) = ξ∗i πκ(p)ξi = 〈pκξi|ξi〉
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we see that the linear hull H = lin{ξ1, . . . , ξm} is contained in kern(pκ). Let {η1, . . . , ηn}
be some orthonormal basis of H. We can define an isometry V : Cn → H by V εi = ηi for
i = 1, . . . , n, where { εi | i = 1, . . . , n } denotes the standard basis of Cn. Then ψ = V∗πκV
is a normal pure matrix state of M, so that by assumption there is y ∈ Xn such that
ψ = ŷ. Moreover

pn(y) = ŷ(p) = V∗πκ(p)V = [〈pκηj |ηi〉] = 0,

so that y ∈ Yn. Obviously, ξi ∈ H = V(Cn), so there is αi ∈ Cn = Mn,1, such that
ξi = Vαi and α∗iαi = 1 for i = 1, . . . , n. We obtain

α∗i ŷαi(T ) = α∗i ŷ(T )αi = α∗iV
∗πκ(T )Vαi = ξ∗i πκ(T )ξi = ŷi(T ),

for all T ∈ ⊕B(H%). This shows that y < yi for i = 1, . . . , n, so that Y is equivariantly
directed.

Finally, if x ∈ Y ⊥ and y ∈ Y , then by definition of ⊥ there is z ∈ X such that z =
(
x ∗
∗ y
)

or we have x 6a y. In case [x] ∩ Y ⊥ = ∅, we see that H[x] in equation (3.16) is empty, so
p is the identity projection on [x]. Then p′(x) = 0. Therefore, we can assume that given
x ∈ Y ⊥l there is y ∈ Yn such that x a y, so that there is z =

(
x ∗
∗ y
)
∈ Xn+l. Then there is

a finite orthonormal system (ξi) in H[z] such that ẑ = [ξi � ξj ] by Proposition 3.43. This
implies x̂ = [ξi � ξj ]li,j=1 and ŷ = [ξi � ξj ]n+l

i,j=l+1. Now it follows from p(y) = 0 and the
orthogonality of (ξi) that p′(x) = 0. Conversely, let x ∈ X such that p′(x) = 0. Given
y ∈ Y we can assume x a y, otherwise there is nothing to prove. Then [x] = [y] and there
are orthonormal systems (ξi) and (ηi) in H[x] such that x̂ = [ξi � ξj ] and ŷ = [ηi � ηj ].
Then it follows from p(x) = 1 and p(y) = 0 that ξi ⊥ ηj for all i and j. Hence, there is
z ∈ X such that z =

(
x ∗
∗ y
)

(where ẑ corresponds to the properly ordered orthonormal
system that is the union of (ξi) and (ηj)). This shows Y ⊥ = {x ∈ X | p′(x) = 0 }, and
the proof is complete.

Facial 3-balls
For the proof of our abstract characterization of matrix convex state spaces of C∗-algebras
we need the main concept of [6, 5, 7], namely the so-called global orientation. Since we
cannot repeat the theory of Alfsen and Shultz, the reader is advised to read at least
[6, p. 403ff] for the exact definitions of facial 3-balls, parametrizations, global orientation
and related concepts. (The reader has to do so in particular to understand the proofs
of Theorem 3.83 and Theorem 3.87, where we use those concepts without defining them
here.) To help the reader we adopt the notation of [6]. In case [6] is not at hand, the
required definitions also appeared in [7]. The purpose of the next propositions is to link
parametrizations and orientations with our matrix theory. We begin with the following
observation.

Remark 3.62. By [5, Thm. 4.4] the state space of M2 is affine isomorph to the closed
unit ball of R3, which we denote by B3. This affine isomorphism is given by the order
isomorphism (3.12), namely to each ρ ∈ CS 1(M2) there corresponds a positive trace class
operator r ∈M2 with trace(r) = 1. So, r is given by

r =
1
2

(
1 + r1 r2 + ir3
r2 − ir3 1− r1

)
,

where det(r) ≥ 0, and the affine isomorphism is given by (r1, r2, r3) 7→ ρ. Notice that we
silently identify B3 with the state space CS1(M2) of M2 in the sequel.
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Remark 3.63. Seeing M2 as operator system, the operator dual (M2)∗ is an m-base norm
space wit m-base CS (M2). Especially, CS1(M2) is a base of the positive cone of (M2)∗,
so by Lemma 1.28 each affine map on CS1(M2) has a unique extension to a linear map
on (M2)∗.

Proposition 3.64. Let K be the m-convex state space of an atomic W ∗-algebra M and
let X = str(K). If y < x1, x2 and z < x1, x2 for y, z ∈ X2 and distinct x1, x2 ∈ X1, then
z is unitarily equivalent to y. Moreover, mco1(y) is the smallest face of K1 containing x1

and x2.

Proof. We identify M = ⊕B(H%). Since y is a normal pure matrix state of M, the
minimal Stinespring representation of y is y = V∗πV, where π : ⊕B(H%)→ B(Hκ) is the
normal and irreducible representation onto a summand and V : C2 → Hκ is an isometry.
By Corollary 3.5 the m-relation coincides with the (unitarily) equivalence of pure states.
So from y < x1, x2 and z < x1, x2 it follows that the pure m-states y and z are equivalent.
Hence we can write the minimal Stinespring representation for z as z = W∗πW for some
isometry W : C2 → Hκ and moreover, since x1 6= x2, we obtain W(C2) = V(C2) = L. Let
ξ1, ξ2 ∈ L be orthonormal. Then there are orthonormal η1, η2 ∈ C2 and orthonormal ζ1,
ζ2 ∈ C2, such that ξj = Vηj = Wζj for j = 1, 2. There is a unique unitary u : C2 → C2

defined by uηj = ζj for j = 1, 2. Obviously, y = u∗zu. Moreover, by Proposition 3.54
mco(y) is affine isomorph with the m-convex state space of M2, and mco1(y) is a face
of K1. Let face(x1, x2) denote the smallest face of K1 containing x1 and x2. It follows
face(x1, x2) ⊂ mco1(y). It follows from Remark 3.62 that x1 and x2 can be identified with
two distinct extreme points in B3. The smallest face in B3 containing two distinct extreme
points is all of B3. It follows that face(x1, x2) = mco1(y) completing the proof.

Remark 3.65. Let M = ⊕j∈JB(Hj) be an atomic W ∗-algebra with m-convex normal
state space K and X = str(K). Notice that if x, y ∈ X1 are matrix non-equivalent (and
hence non-equivalent by Corollary 3.5) pure states of M, then face(x, y), the smallest
face of K1 containing x and y, is the (one dimensional) line segment [x, y]. This follows
from [5, Prop. 1.30] observing that the normal state space of B(Hj) can be identified with
a split face Fj ⊂ K1 for all j ∈ J , and if x, y are non-equivalent then there is j ∈ J
such that x ∈ Fj and y /∈ Fj . Consequently, if we have x, y ∈ X1 such that face(x, y)
is affinely isomorph to B3, then face(x, y) 6= [x, y], which implies that x and y must be
(matrix) equivalent.

Proposition 3.66. Let S be the normal m-convex state space of an atomic W ∗-algebra
M and let X = str(S). Then for an affine isomorphism ψ from B3 to a face F ⊂ S1

there are exactly two possibilities: Either there is y ∈ X2 such that ψ = y∗, or there is
z ∈ Xtr

2 such that ψ = z∗.

Proof. To show this claim, let F be a face of S1, and let ψ : B3 → F be an affine
isomorphism. Then choose two distinct elements b1, b2 ∈ ex(B3), the set of extreme
points of B3. By assumption F is a face, hence x1 = ψ(b1) and x2 = ψ(b2) are two
distinct elements of X1, which are the extreme points of S1. Notice that F = face(x1, x2),
since face(b1, b2) = B3. From Remark 3.65 we have x1 a x2, so by Lemma 3.47 there
is x ∈ X2 such that x < x1, x2 and Proposition 3.64 yields mco1(x) = F . By abuse of
notation we let x∗ denote the restriction of the dual of x to the state space CS1(M2) of
M2. Then x∗ is an affine isomorphism from CS 1(M2) onto F , and (x∗) 1 ◦ ψ is an affine
isomorphism from the state space CS1(M2) onto itself. Hence it must be the dual of a
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unital order automorphism φ : M2 → M2. From [5, Thm. 4.35] we know that there are
exactly two possibilities for φ. Either φ is a ∗-isomorphism, in which case the dual map
φ∗ = (x∗)−1 ◦ ψ is an orientation preserving affine automorphism of CS 1(M2), or φ is a
∗-anti-isomorphism, in which case φ∗ is an orientation reversing affine automorphism of
CS 1(M2). From [5, Thm. 4.34] we obtain a concrete representation of φ for both cases.
In case φ is a ∗-isomorphism there is a unitary u ∈ M2 such that φ(γ) = u∗γu for all
γ ∈ M2, and in case φ is a ∗-anti-isomorphism there is a unitary v ∈ M2 such that
φ(γ) = v∗γtrv for all γ ∈ M2, where γtr is the transpose of γ. Consequently we obtain
ψ = x∗ ◦ φ∗ = (φ ◦ x)∗ = y∗, where

y = φ ◦ x =

{
u∗xu ∈ X2 in case φ is a ∗-isomorphism
v∗xtrv ∈ Xtr

2 in case φ is a ∗-anti-isomorphism,

which shows the claim.

Remark 3.67. An affine isomorphism from B3 to a face of a convex set C is called a
parametrization in [6, 7]. A face affine isomorph to B3 is a facial 3-ball. The set of all
parametrizations of a facial 3-ball is divided into two equivalence classes (depending on
the choice of base for R3) called orientation. A global orientation of C is a choice of
orientation for each facial 3-ball of C. The content of Proposition 3.66 is that if S is
the normal (matrix) state space of an atomic W ∗-algebra, then there is a correspondence
between the two classes of orientation of facial 3-balls and elements of X2 and Xtr

2 . In
the sequel we give each facial 3-ball of S1 the orientation corresponding to elements of
X2. This choice is called the canonical global orientation of S1.

State spaces of C*-algebras

We aim at characterizing those compact and m-convex sets that are the state spaces of
C∗-algebras. As mentioned in the introduction to the chapter, the state spaces of unital
and commutative C∗-algebras are exactly the Bauer simplexes. Let A be a unital and
commutative C∗-algebra with m-convex state space K = CS (A) and X = str(K). Notice
that Xn = ∅ for n ≥ 2. The fact that the state space K1 of A is a Bauer simplex means
that the restriction map from A = A(K1) to C(X1) is surjective. (Notice that restricting
continuous affine maps on a compact convex set to the extreme points is always injective,
which follows from the Krein-Milman Theorem.) As a matter of fact one can define a
Bauer simplex as a compact convex set such that every (uniformly) continuous map on
the extreme points has a continuous affine extension to all of the convex set. This implies
that the set of extreme points is closed and hence compact, cf. [4, Theorem II 4.3].

Now assume that A is a non-commutative C∗-algebra. Then A has a (non-trivial)
matrix ordering and we can identify A =cp A(K), where A(K1) = A(K) order isomor-
phically, cf. Remark 1.24. We know already from the previous sections, that the matrix
set of the pure states of a C∗-algebra is equivariant (and transitive). So when restricting
matrix affine maps on K to the structural elements X they naturally stay equivariant.
Moreover, they stay continuous not only on X but also on the closure of X, which is
compact. Hence these restrictions are uniformly continuous on X. So, we have a re-
striction map from A(K) to CE

u (X), which by the Krein-Milman Theorem (or the matrix
convex version of it) is injective. The question is: Is the restriction surjective just like
in the commutative case? Or in other words, do the state spaces of C∗-algebras fulfill
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3. Matrix Convex Simplexes

a non-commutative simplex property, and is such a property already characterizing the
m-convex state spaces of C∗-algebras among compact m-convex sets? The results for
finite dimensional C∗-algebras look promising, cf. Proposition 3.29 and Theorem 3.35.

We prove first that the restriction map above is surjective for arbitrary (unital) C∗-al-
gebras. The following preparing results are formulated also for non-unital C∗-algebras.

Remark 3.68. Let A be a C∗-algebra. Then the positive part of the open unit ball,
which we denote by (eλ), is an approximative order unit, cf. Remark A.8. We will
call (eλ) the canonical approximative order unit of A. From Proposition 1.19 we know
that str(CQn(A)) consists for n > 1 exactly of the pure maps of CQn(A) that are
approximately unital. For n = 1 the set str(CQ1(A)) is the set of the extreme points
of the quasi states of A. These are the pure quasi states that are approximately unital
together with the zero map. If A has a unit, we see easily that positive and approximately
unital maps with norm less or equal 1 are unital maps. Hence, if A has a unit, then
str(CQ(A)) \ {0} = str(CS (A)).

Lemma 3.69. Let X = str(CQ(A)) \ {0} for a C∗-algebra A. Let π : A → B(Hπ) be
an irreducible and approximately unital (cf. Remark A.10) representation of A, and let
f ∈ FE

b (X). Then the map h : Hπ → C defined by h(0) = 0 and h(ξ) = ‖ξ‖2f1(ξ∗1πξ1),
where ξ1 = ξ/‖ξ‖ and ξ ∈ Hπ, ξ 6= 0, is a bounded quadratic form on Hπ.

Proof. Obviously, h is a well-defined and bounded map, since f1 is bounded. We have
to prove that h is a quadratic form. Let ξ and η be vectors of Hπ. They are contained
in a subspace L ⊂ Hπ of dimension 2. Let {e1, e2} ⊂ L be an orthonormal basis and
define a unitary operator u : C2 → L by µε1 + νε2 7→ µe1 + νe2, where {ε1, ε2} denotes
the standard basis of C2. Then for arbitrary ρ = µe1 + νe2 ∈ L, ρ 6= 0

h(ρ) = ‖ρ‖2f1(ρ∗1πρ1) = ‖ρ‖2f1(v∗0u∗πuv0) = v∗f2(u∗πu)v = u∗(ρ)∗f2(u∗πu)u∗(ρ),

where v = u∗(ρ), v0 = v/‖ρ‖ and ρ1 = ρ/‖ρ‖. Since h(0) = 0 by definition, the equation
holds for all ρ ∈ Hπ. The calculation

h(ξ + η) + h(ξ − η) = u∗(ξ + η)∗f2(u∗πu)u∗(ξ + η) + u∗(ξ − η)∗f2(u∗πu)u∗(ξ − η)
= 2u∗(ξ)∗f2(u∗πu)u∗(ξ) + 2u∗(η)∗f2(u∗πu)u∗(η)

= 2
(
h(ξ) + h(η)

)
shows that h is a quadratic form.

Let A be a C∗-algebra and let X = str(CQ(A)) \ {0}. For each pure m-state x ∈ X,
we let π[x] : A → H[x] be a representative of the unitary equivalence class of irreducible
representations of A corresponding to the m-equivalence class [x], cf. Proposition 3.4. It
is known, that ⊕%∈KB(H%), where the sum runs over K = { [x] | x ∈ Xn, n ∈ N }, is the
atomic part of the bidual A∗∗ of A. Moreover, we have:

Proposition 3.70. Let A be a C∗-algebra and let X = str(CQ(A)) \ {0}. Then

FE

b (X) =cp

⊕
%∈K

B(H%). (3.17)
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Proof. For n ∈ N we consider x ∈ Xn. The map x : A → Mn is completely positive
and bounded, so by Theorem A.9 there exist a Hilbert space Hπ, an approximately
unital representation π : A → B(Hπ) and a bounded operator Vx : Cn → Hπ, such that
x = V∗xπVx is the minimal (non-unital) Stinespring representation of x. Since x is pure,
π is irreducible by Theorem A.11. Since x is approximately unital, Vx is an isometry.
The minimal Stinespring representation is unique up to unitary isomorphisms. If for
each element of the equivalence class [x] ∈ K we choose and fix the single irreducible
representation π[x] : A → H[x] for the Stinespring representation, then the respective
isometry Vx is unique up to a complex factor of modulus 1. Therefore, we can define a
map

Γ:
⊕
%∈K

B(H%)→ FE

b (X) by T = ⊕T% 7→ Γ(T ) = (fTn )n,

where fTn (x) = V∗xT[x]Vx for all T = ⊕T% ∈ ⊕B(H%), x ∈ Xn and n ∈ N. Notice that
‖fTn (x)‖ ≤ ‖T[x]‖ ≤ ‖T‖ for all x ∈ Xn and n ∈ N, so fT is bounded. Moreover, if
x = u∗xyyuxy for x ∈ Xn and y ∈ Xm, where uxy ∈ Mm,n is the essentially unique
isometry that transforms y into x (see Remark 3.11), then V∗xπ[x]Vx = u∗xyV

∗
yπ[x]Vyuxy,

which implies Vx = eiϕVyuxy. Hence

fTn (x) = V∗xT[x]Vx = u∗xyV
∗
yT[x]Vyuxy = u∗xyf

T
m(y)uxy,

which proves that fT is equivariant, so that altogether we have Γ(T ) ∈ FE

b (X) for all
T ∈ ⊕B(H[x]). It is easy to verify that Γ is linear, positive and injective.

Now let f ∈ FE

b (X). By Lemma 3.69 there is a bounded quadratic form h such that
h(ξ) = f1(ξ∗π[x]ξ) for all unit vectors ξ ∈ H[x] and x ∈ X. Consequently there is a unique
T f[x] ∈ B(H[x]) such that 〈T f[x]ξ|ξ〉 = f1(ξ

∗π[x]ξ) for all x ∈ X. Since ‖T f[x]‖ ≤ ‖f‖ for all
x ∈ X, we can build T f = ⊕T[x] ∈ ⊕B(H[x]). Therefore, we obtain a mapping

Ω: FE

b (X)→ ⊕B(H[x]) defined by Ω(f) = T f for all f ∈ FE

b (X). (3.18)

It is easy to see that Ω is linear, positive and the inverse map of Γ. So far we have shown
that there is a bipositive linear isomorphism between the spaces FE

b (X) and ⊕B(H[x]).
It is left to show that the correspondence is completely bipositive. Let f = [fij ] ∈
Mn(FE

b (X)) for some n ∈ N. Then the matrix

Ω(n)(f) = [Ω(fij)] =
[
T fij

]
=
[
⊕ T fij

[x]

]
= ⊕

[
T
fij

[x]

]
is positive if and only if the matrices

[
T
fij

[x]

]
are positive for all x ∈ X. It follows that

both maps are completely positive, so that we have a complete order isomorphism.

We will restrict to unital C∗-algebras now for convenience. Then we can identify A
with A(CS (A)) in the usual way, so that A(K) is a C∗-subalgebra of FE

b (X) by the
identification (3.17). More precisely we have:

Lemma 3.71. Let A be a unital C∗-algebra. Let K = CS (A) and X = str(K). Identi-
fying A with A(K) by the map a 7→ ã, where ãn(ψ) = ψ(a) for ψ ∈ Kn and n ∈ N, we
obtain Ω(ã|X) = ⊕π[x](a) for all a ∈ A, where Ω is the complete order isomorphism given
by equation (3.18).
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Proof. From the construction of the complete order isomorphism in the proof of Proposi-
tion 3.70, we have 〈T f[x]ξ|ξ〉 = f1(ξ∗π[x]ξ) for all f ∈ FE

b (X), all the irreducible represen-
tations π[x] : A → B(H[x]) and unit vectors ξ ∈ H[x]. So, if especially f = ã|X for a ∈ A,
we find

〈T ã[x]ξ|ξ〉 = ã1(ξ
∗π[x]ξ) = 〈π[x](a)ξ|ξ〉

by definition of ã. Since this holds for all unit vectors ξ ∈ H[x], it follows that T ã[x] = π[x](a)
and hence

Ω(ã) = T ã = ⊕T ã[x] = ⊕π[x](a),

which was to be shown.

Corollary 3.72. Under the assumptions of the preceding lemma, the image of A(K)
under restriction is a C∗-subalgebra of FE

b (X).

Proof. It will be sufficient to prove that the image of A(K) is closed under multiplication.
Since the complete order isomorphism between the C∗-algebras FE

b (X) and ⊕B(H[x]) is
a ∗-isomorphism, we find immediately

Ω(ãb̃) = Ω(ã)Ω(b̃) = ⊕π[x](a)⊕ π[x](b) = ⊕π[x](a)π[x](b) = ⊕π[x](ab) = Ω(ãb),

which shows that ãb̃ = ãb ∈ A(K).

In addition we need the following theorem of Brown:
Theorem 5(c) in [15]. Let A be a C∗-algebra, B a C∗-subalgebra and x ∈ A. If any
two elements of P (A)− ∪ {0} that agree on B agree also on x, then x ∈ B.

Now we can state and prove our first goal, namely that the restriction of the m-affine
maps on the m-state space of a C∗-algebra to the structural elements is a surjection.

Theorem 3.73. Let A be a unital C∗-algebra. Let K = CS (A) and X = str(K). Then
the restriction map A(K)→ CE

u (X) is surjective, and consequently A =cp A(K).

Proof. We identify A =cp A(K) via the map a 7→ ã defined by ãn(ϕ) = ϕ(a) for all
ϕ ∈ Kn and n ∈ N, cf. Proposition 1.26. Notice that the restriction map from A(K) to
CE

u (X) is injective by the Krein-Milman theorem. So we have A(K) ↪→ CE

u (X) ⊂ FE

b (X),
where by the preceding Corollary (the image of) A(K) is a C∗-subalgebra of FE

b (X)
containing the unit. Basically, we are repeating the proof of [15, Thm. 6]. Recall first the
identification X ' X̂ = str(CSσ(FE

b (X))), cf. Theorem 3.53, so that X̂1 are the normal
pure states of the atomic W ∗-algebra FE

b (X). Obviously, X̂1 determines the order of the
C∗-algebra FE

b (X), thus the closure of the pure states3 P (FE

b (X))− is contained in the
closure of (X̂)−. Now let f ∈ CE

u (X). Given ψ1, ψ2 ∈ P (FE

b (X))− ∪ {0} such that the
restrictions of ψ1 and ψ2 to (the image of) A(K) are equal, i.e., ψ1|A(K) = ψ2|A(K) = ψ.
We claim that ψ1(f) = ψ2(f). There are nets (x̂λ) and (ŷµ) in X̂1 such that xλ → ψ1

and yµ → ψ2 in the w∗-topology of FE

b (X)∗. Hence we find for a ∈ A

xλ(a) = ã(xλ) = x̂λ(ã)→ ψ1(ã) = ψ2(ã)← ŷµ(ã) = yµ(a).

This means that (xλ) and (yµ) converge in the w∗-topology of the dual A∗ and have the
same limit ψ. Hence ψ is in the closure of the pure states of A. Now f1 is uniformly
3All pure states of FE

b (X), not only the normal ones.
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continuous on the pure states, so it has a unique continuous extension on the (compact)
closure of the pure states. This implies that limλ f1(xλ) = f1(ψ) = limµ f1(yµ) and hence

ψ1(f) = lim
λ
x̂λ(f) = lim

λ
f1(xλ) = lim

µ
f1(yµ) = lim

µ
ŷµ(f) = ψ2(f).

This proves the claim, so that we can apply the preceding theorem of Brown to conclude
that f lies in (the image of) A(K).

Notice that the content of the preceding result is contained in different form in [3,
31, 56]. However, describing A as operator-valued functions on the set of irreducible
representations of A seems to be cumbersome, since the irreducible representations are
not on a fixed Hilbert space in a natural way. Moreover, an abstract description of the
set of irreducible representations of A seems to be difficult at least.

We obtain an immediate consequence of the preceding result, cp. [56, Thm. 18].

Theorem 3.74. For unital C∗-algebras A and B let K = CS (A), C = CS (B), X =
str(K) and Y = str(C). Then A and B are unitally ∗-isomorphic if and only if (X1, X2)
and (Y1, Y2) are equivariantly w∗-uniform equivalent, i.e., if there is a pair of maps
φi : Xi → Yi, such that φi is bijective, φi and φ−1

i are uniformly continuous maps with re-
spect to the w∗-uniformities on Xi and Yi respectively (where M2(A∗) and M2(B∗) carry
the product topology) and φj(u∗xu) = u∗φi(x)u for isometries u ∈ Mij, j ≤ i and i,
j ∈ {1, 2}.

Proof. If A and B are ∗-isomorphic then there is a matrix affine homeomorphism (φ(n))n
between the m-convex state spaces K and C, where φ(n) is the n-th amplification of
dual of the ∗-isomorphism between A and B. The restriction of (φ(n))n to the structural
elements is an equivariantly uniform equivalence between X and Y , in particular (X1, X2)
and (Y1, Y2) are equivariantly uniform equivalent.

For the other direction, let φi : Yi → Xi be an equivariantly uniform equivalence, where
i = 1, 2. Notice that X− = (X−

n )n is an equivariant matrix set such that the w∗-closure
X−
n of Xn in Mn(A∗) is compact for all n ∈ N, because Kn is w∗-compact. Furthermore

notice that we can identify CE

u (X) =cp CE(X−) and CE

u (Y ) =cp CE(Y−). We extend φi
uniquely to a homeomorphism φ̃i : Y−i → X−

i for i = 1, 2. Observe that the pair (φ̃1, φ̃2)
is still equivariant. Now from Proposition 3.15 we have a 2-positive order isomorphism
ψ : FE(X−) → FE(Y−) given by ψ(f)i(y) = fi(φ̃i(y)) for all y ∈ Y−i and i = 1, 2.
Since f = (fl)l ∈ FE

b (X−) lies in CE(X−) if and only if f1 is continuous and since φ̃1

and φ̃2 are homeomorphism, it follows that the restriction of ψ to the continuous maps
defines an 2-positive order isomorphism ψ : CE(X−) → CE(Y−) that is obviously unital
by definition. Consequently there is a unital and 2-positive order isomorphism between
the C∗-algebras A =cp A(K) =cp CE

u (X) and B =cp A(C) =cp CE

u (Y ), which must be a
unital ∗-isomorphism.

Returning to our final goal of characterizing the m-convex state spaces of C∗-algebras,
it would be tempting to define a non-commutative analogue of a Bauer simplex, based on
Theorem 3.73, as a compact m-convex set K such that that X = str(K) is equivariant and
transitive and such that the restriction map from A(K) to CE

u (X) is surjective. Although
with the help of Proposition 3.24 we find that FE

b (X) is an atomic W ∗-algebra, the
surjectivity of the restriction map implies only that the m-convex state space of the
operator system CE

u (X) ⊂ FE

b (X) is m-affine homeomorph to K. First, it is not clear
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why the normal state space CSσ(FE

b (X)) should be contained in K, not to mention that
it must in fact be an m-convex split face of K. Second, what we need to show is actually
that CE

u (X) is a C∗-algebra under the product it inherits from FE

b (X). For this it is
essential, as we will see, that the uniformity of X (X− is compact) fits to the algebraic
structure4 of X.

To get a grip on the uniformity of X we need further properties of X. These will
be given in the following definitions, whereby we profit from the detailed study of the
pure normal m-states of atomic W ∗-algebras, especially from the identification between
projections in FE

b (X) and equivariantly directed subsets of X, see Definition 3.60.

Definition 3.75 (Splitting Subsets). LetX be a matrix subset of a vector space V such
that X is equivariant, transitive and fulfills the uniqueness property. Let f ∈ FE

b (X)h.
Then a subset Y of X is called splitting for f , if all of the following holds:

(i) Y is equivariantly directed,

(ii) f1(y) ≥ 0 and f1(z) ≤ 0 for all y ∈ Y1 and z ∈ Y ⊥1 , and

(iii) f2(x) =
( f(x11) 0

0 f(x22)

)
for all x = [xij ] ∈ X2 with x11 ∈ Y1 and x22 ∈ Y ⊥1 .

Definition 3.76 (Jordan Property). Let V be a locally convex vector space and endow
Mn(V ) with the product topology for all n ∈ N. Let X = (Xn)n be a matrix subset of V
such that X is equivariant, transitive and fulfills the uniqueness property and such that
the closure of Xn is compact in Mn(V ) for all n ∈ N. Define the set E of abelian points
of X by E = { x ∈ X1 | If x a y then x = y } . Then the induced uniformity on X has
the Jordan property, if for f ∈ CE

u (X)h and Y a subset of X that is splitting for f the
following holds: For ε > 0 there is a member Nε of the uniformity of X1, such that

(i) (e, β∗zβ) ∈ Nε implies
∣∣max(f1(e), 0) − |β1|2f1(z11)

∣∣ ≤ ε, where e ∈ E, β =
(β1, β2)tr ∈ M2,1 and z = [zij ] ∈ X2, such that ‖β‖ = 1, z11 ∈ Y1 and z22 ∈ Y ⊥1 ,
and

(ii) (α∗xα, β∗zβ) ∈ Nε implies
∣∣|α1|2f(x11) − |β1|2f(z11)

∣∣ ≤ ε, where α = (α1, α2)tr,
β = (β1, β2)tr ∈ M2,1 and x = [xij ], z = [zij ] ∈ X2, such that ‖α‖ = ‖β‖ = 1, x11,
z11 ∈ Y1, x22, z22 ∈ Y ⊥1 .

To show that the intricate definition of the Jordan property makes sense, we prove first
that state spaces of C∗-algebras satisfy this property. We will need the following lemma
to do so.

Lemma 3.77. Let X be a matrix set such that X is equivariant, transitive and fulfills
the uniqueness property and such that (X1, d) is complete, where d is the inner metric of
X. So, FE

b (X) is a W ∗-algebra, cf. Corollary 3.27. Let x ∈ X1 and x̂ = ξ∗πξ be the GNS
representation of the pure state x̂, cf. Proposition 3.32, where π : FE

b (X) → B(Hπ) and
ξ ∈ Hπ with ‖ξ‖ = 1. Let Y be an equivariantly directed subset of X and p ∈ FE

b (X) the
projection corresponding to Y such that Y = { z ∈ X | p(z) = 1 }, cf. Proposition 3.61. If
x = α∗yα, where α = (α1, α2)tr ∈ M2,1 and y = [yij ] ∈ X2 such that ‖α‖ = 1, y11 ∈ Y1

and y22 ∈ Y ⊥1 , then |α1| = ‖π(p)ξ‖ and ŷ11 = (π(p)ξ/‖π(p)ξ‖)∗π(π(p)ξ/‖π(p)ξ‖).
4With ‘algebraic structure’ we only refer to properties like equivariant, transitive,. . .
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Proof. Since x̂ = α∗ŷα and by the essential uniqueness of the GNS representation, there
is W : C2 → Hπ such that ŷ = W∗πW. Since

ξ∗πξ = x̂ = α∗ŷα = α∗W∗πWα

it follows again from the essential uniqueness that there is λ ∈ C such that Wα = λξ.
Since W is an isometry and ‖α‖ = ‖ξ‖ = 1, we see that |λ| = 1. Letting ηi = Wεi for
i = 1, 2, where {ε1, ε2} is the standard basis of C2, we obtain

Wα = α1η1 + α2η2 = λξ = λπ(p)ξ + λπ(p′)ξ.

Since kern(p) and kern(p′) are complementary subspaces of Hπ and since 0 = p(y22) =
ŷ22(p) = η∗2π(p)η2 = ‖π(p)η2‖2, so that η2 ∈ kern(p) and similarly η1 ∈ kern(p′), we
see that α1η1 = λπ(p)ξ and α2η2 = λπ(p′)ξ. Thus |α1| = ‖π(p)ξ‖ and |α2| = ‖π(p′)ξ‖.
Furthermore, η1 = (λ/α1)π(p)ξ, hence

ŷ11 = η∗1πη1 = |λ|2 (π(p)ξ)∗

‖π(p)ξ‖
π
π(p)ξ
‖π(p)ξ‖

,

and the proof is complete.

Proposition 3.78. Let K = CS (A) be the state space of a unital C∗-algebra A. Then
the w∗-uniformity on X = str(K) fulfills the Jordan property.

Proof. We can identify A = A(K) = CE

u (X), and FE

b (X) is the atomic part of A∗∗. Let
f ∈ CE

u (X)h and let Y be a subset of X that is splitting for f . Let f+ ∈ CE

u (X)+ be the
positive part of f . Given δ > 0 there is a member Nδ of the w∗-uniformity of X1, such
that |f+

1 (v) − f+
1 (v′)| ≤ δ for all v, v′ ∈ X1 with (v, v′) ∈ Nδ. Let α = (α1, α2)tr, β =

(β1, β2)tr ∈M2,1 and z = [zij ], z̃ = [z̃ij ] ∈ X2, such that ‖α‖ = ‖β‖ = 1, z11, z̃11 ∈ Y1, z22,
z̃22 ∈ Y ⊥1 and (α∗zα, β∗z̃β) ∈ Nδ. Then we must show that

∣∣|α1|2f(z11)−|β1|2f(z̃11)
∣∣ ≤ δ.

Let x = α∗zα. Since Y is equivariantly directed, there is a projection p ∈ FE

b (X) such
that Y = { v ∈ X | p(v) = 1 } and Y ⊥ = { v ∈ X | p(v) = 0 }, cf. Proposition 3.61. Since
Y is splitting for f , we see that pfp′ = 0. Indeed, let φ ∈ X1, so that φ is a pure state of
A and let φ = ξ∗πξ be its GNS representation. We define an isometry V : C2 → Hπ by
Vε1 = π(p)ξ/‖π(p)ξ‖ and Vε2 = π(p′)ξ/‖π(p′)ξ‖. Then ψ = V∗πV ∈ X2 and φ = γ∗ψγ,
where γ = (‖π(p)ξ‖, ‖π(p′)ξ‖)tr. Since ψ11 ∈ Y1 and ψ22 ∈ Y ⊥1 , the fact that Y is splitting
for f implies that f2(ψ) =

( f1(ψ11) 0
0 f1(ψ22)

)
. Thus, we obtain

pfp′(φ) = 〈π(fp′)ξ|π(p)ξ〉

= γ1γ2

〈
π(f)

π(p′)ξ
‖π(p′)ξ‖

∣∣∣∣ π(p)ξ
‖π(p)ξ‖

〉
= γ1γ2(ε∗2V

∗π(f)Vε1)
= γ1γ2f2(ψ)21 = 0.

Since the preceding argumentations holds for arbitrary φ ∈ X1, it follows that pfp′ =
p′fp = 0. Moreover,

pfp(φ) = 〈π(f)π(p)ξ|π(p)ξ〉 = γ2
1f(ψ11) ≥ 0,
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which shows pfp ≥ 0, and similarly we obtain p′fp′ ≤ 0. Hence

f = pfp+ pfp′ + p′fp+ p′fp′ = pfp− (−p′fp′),

from which we conclude that pfp = f+ and −p′fp′ = f−. Using the GNS representation
x = ζ∗σζ an application of Lemma 3.77 yields

f+
1 (x) = (pfp)1(x) = 〈σ(pfp)ζ|ζ〉

= 〈σ(f)σ(p)ζ|σ(p)ζ〉

= ‖σ(p)ζ‖2
〈
σ(f)

σ(p)ζ
‖σ(p)ζ‖

∣∣∣∣ σ(p)ζ
‖σ(p)ζ‖

〉
= |α1|2f1(z11).

Similarly we obtain f+
1 (x̃) = |β1|2f1(z̃11) for x̃ = β∗z̃β. Thus

δ ≥ |f+
1 (x)− f+

1 (x̃)| =
∣∣|α1|2f1(z11)− |β1|2f1(z̃11)

∣∣,
which shows the second part of the Jordan property. In order to show the other part
of the Jordan property, let (e, β∗zβ) ∈ Nδ, where e ∈ E and β = (β1, β2)tr ∈ M2,1

and z = [zij ] ∈ X2, such that ‖β‖ = 1, z11 ∈ Y1 and z22 ∈ Y ⊥1 . We have shown
already that f+

1 (x) = |β1|2f1(z11) for x = β∗zβ. Moreover, since e ∈ E it is obvious that
max(f1(e), 0) = f+

1 (e). Thus

δ ≥ |f+
1 (e)− f+

1 (x)| =
∣∣max(f1(e), 0)− |β1|2f1(z11)

∣∣,
which shows the first part of the Jordan property and the proof is complete.

The purpose of the Jordan property is to have a condition on the uniformity on X
that ensures that the self-adjoint and uniformly continuous equivariant maps on X are
a Jordan subalgebra of the W ∗-algebra of bounded equivariant maps on X. This is the
content of the next proposition, for which we need the following lemma.

Lemma 3.79. Let X be a matrix set such that X is equivariant, transitive and fulfills
the uniqueness property and such that (X1, d) is complete, where d is the inner metric
of X. If Y is an equivariantly directed subset of X, then for each x ∈ X1 \ E there is
z = [zij ] ∈ X2 such that z < x and z11 ∈ Y1 and z22 ∈ Y ⊥1 .

Proof. Recalling the identification X = X̂ = str
(
CSσ(FE

b (X))
)

let x̂ = ξ∗πξ be the GNS
representation of the pure normal state x̂, where π : FE

b (X) → B(Hπ) is a normal and
irreducible representation and ξ ∈ Hπ is a unit vector. Since Y is equivariantly directed,
there is p ∈ FE

b (X) such that Y = { v ∈ X | p(v) = 1 } and Y ⊥ = { v ∈ X | p(v) = 0 },
cf. Proposition 3.61. Since x /∈ E, dim(Hπ) > 1, so there are unique non-zero vectors
η, η⊥ ∈ Hπ such that π(p)η = η, π(p′)η⊥ = η⊥ and ξ = η + η⊥. Define an isometry
V : C2 → Hπ by Vε1 = η/‖η‖ and Vε2 = η⊥/‖η⊥‖, where {ε1, ε2} is the standard basis
of C2. We see that ẑ = V∗πV is a normal and pure m-state, so that z ∈ X2. Moreover,
letting α = (‖η‖, ‖η⊥‖)tr ∈ M2,1, we obtain α∗α = ‖η‖2 + ‖η⊥‖2 = ‖ξ‖2 = 1 and
Vα = ‖η‖Vε1 + ‖η⊥‖Vε2 = η + η⊥ = ξ. Thus x = α∗zα, and the proof is complete.

Proposition 3.80. Let X be a matrix subset of a locally convex vector space V such
that X is equivariant, transitive, fulfills the uniqueness property and (X1, d) is a complete
metric space, where d is the inner metric of X (so that FE

b (X) is an atomic W ∗-algebra
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and X can be identified with the pure normal m-states of FE

b (X), cf. Theorem 3.53). Give
Mn(V ) the product topology and assume that X−

n ⊂Mn(V ) is compact for all n ∈ N. Let
f ∈ FE

b (X)h and f+ ∈ FE

b (X)+ its positive part. If X satisfies the Jordan property, then
f+ ∈ CE

u (X) whenever f ∈ CE

u (X).

Proof. If f = f+−f− is the unique decomposition of f into its positive and negative parts,
let p ∈ FE

b (X) be an orthogonal projection such that pf = pf+ = f+ and p′f = −p′f−.
By Proposition 3.61 there exists an equivariantly directed subset Y ⊂ X of the pure
m-states such that Y = {x ∈ X | p(x) = 1 } and Y ⊥ = {x ∈ X | p(x) = 0 }. We claim
that Y is splitting for f . Let x ∈ X2 such that x11 ∈ Y1 and x22 ∈ Y ⊥1 . Let x̂ = V∗πV be
the minimal Stinespring representation of x̂, and define ξi = Vεi ∈ Hπ for i = 1, 2. Since
x11 ∈ Y1 and x22 ∈ Y ⊥1 , it follows that π(p)ξ1 = ξ1 and π(p)ξ2 = 0. Hence,

f2(x)1,2 = x̂(f)1,2 = 〈π(f)ξ2|ξ1〉
= 〈π(f+)ξ2|ξ1〉 − 〈π(f−)ξ2|ξ1〉
= 〈π(pf+p)ξ2|ξ1〉 − 〈π(p′f−p′)ξ2|ξ1〉
= 〈π(f+)π(p)ξ2|π(p)ξ1〉 − 〈π(f−)π(p′)ξ2|π(p′)ξ1〉 = 0.

Moreover,

f1(x11) = x̂(f)11 = 〈π(f)ξ1|ξ1〉
= 〈π(f)π(p)ξ1|π(p)ξ1〉
= 〈π(pfp)ξ1|ξ1〉 = 〈π(f+)ξ1|ξ1〉 ≥ 0,

and similarly f1(x22) ≤ 0. Notice that we used only x11 ∈ Y1 and x22 ∈ Y ⊥1 for the last
two results, so that f1(y) ≥ 0 and f1(y⊥) ≤ 0 for all y ∈ Y1 and y⊥ ∈ Y ⊥1 . Altogether
this shows that Y is splitting for f . So, by the Jordan property, given ε > 0 there
is a member Nε of the w∗-uniformity of X1 fulfilling the condition of Definition 3.76.
In addition, since f is uniformly continuous, we may choose Nε such that (x, x̃) ∈ Nε
implies |f1(x)− f1(x̃)| ≤ ε. We would like to prove that f+ is uniformly continuous. Let
(x, x̃) ∈ Nε, and assume first that neither x nor x̃ are in E. Then by Lemma 3.79 we have
x = α∗zα and x̃ = β∗z̃β, where z, z̃ ∈ X2 such that z11, z̃11 ∈ Y1 and z22, z̃22 ∈ Y ⊥1 ,
and α, β ∈ M2,1 such that ‖α‖ = ‖β‖ = 1. Since (α∗zα, β∗z̃β) ∈ Nε, it follows that∣∣|α1|2f1(z11) − |β1|2f1(z̃11)

∣∣ ≤ ε. Let x̂ = ξ∗πξ be the GNS representation of the pure
normal state x̂. Then by construction of α and z we obtain

f+
1 (x) = (pfp)1(x) = x̂(pfp) = 〈π(pfp)ξ|ξ〉

= ‖π(p)ξ‖2
〈
π(f)

π(p)ξ
‖π(p)ξ‖

∣∣∣∣ π(p)ξ
‖π(p)ξ‖

〉
= |α1|2f1(z11),

where we applied Lemma 3.77. Similarly, by construction of β and z̃ we also see that
f+
1 (x̃) = |β1|2f1(z̃11). Hence

|f+(x)− f+(x̃)| =
∣∣|α1|2f1(z11)− |β1|2f1(z̃11)

∣∣ ≤ ε.
This holds for all (x, x̃) ∈ Nε, such that neither x nor x̃ are in E. Notice that for e ∈ E
we have f1(e) = f+

1 (e) if f1(e) ≥ 0 or f1(e) = −f−1 (e) if f1(e) ≤ 0, so that especially
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f+
1 (e) = max(f1(e), 0). Thus if both x, x̃ ∈ E and f1(x), f1(x̃) ≥ 0 then by choice of
Nε we see that |f+

1 (x) − f+
1 (x̃)| = |f1(x) − f1(x̃)| ≤ ε. If both f1(x), f1(x̃) ≤ 0 there is

nothing to show. So assume f1(x) ≥ 0 and f1(x̃) ≤ 0. Then |f+
1 (x) − f+

1 (x̃)| = f1(x) ≤
f1(x) − f1(x̃) ≤ ε. Finally consider the situation x ∈ E and x̃ /∈ E. Then x̃ = β∗z̃β as
before, and f+

1 (x̃) = |β1|2f1(z̃11). Thus we obtain from the Jordan property

|f+
1 (x)− f+

1 (x̃)| =
∣∣max(f1(x), 0)− |β1|f1(z̃11)

∣∣ ≤ ε.
So we have shown that (x, x̃) ∈ Nε implies |f+

1 (x) − f+
1 (x̃)| ≤ ε for all x, x̃ ∈ X1. This

shows f+ ∈ CE

u (X) and the proof is complete.

Definition 3.81 (Matrix Convex Simplex). Let V be a locally convex vector space
and K a compact and matrix convex subset of V . We assume that K is embedded as
m-base in A(K)∗, cf. Proposition 1.26. Then K is a matrix convex simplex, if

(i) str(K) is equivariant and transitive,

(ii) S = σ-mco(str(K)) is an m-convex split face of K,

(iii) S has the finite m-simplex property,

(iv) the induced uniformity on str(K) has the Jordan property, and

(v) the restriction map from A(K) to CE

u (str(K)) is a surjection.

Remark 3.82. Let C be a Bauer simplex and consider its matrix convex hull K = mco(C).
Then C = K1, ex(C) = str(K1) and str(Kn) = ∅ for all n > 1. Thus CE

u (str(K)) are
nothing but all uniformly continuous maps on the extreme points ex(C). Since C is a
Bauer simplex, all these maps can be extended to continuous affine maps on C. So, it
is obvious that a Bauer Simplex fulfills the above definition, because A(C) = A(K1) is
unitally order isomorphic to A(K). So, a matrix convex simplex is a generalization of a
Bauer simplex.

Theorem 3.83 (Characterization of State Spaces).
The state spaces of unital C∗-algebras are exactly the m-convex simplexes.

Proof. Let A be a unital C∗-algebra. Let K = CS (A) and X = str(K). By Proposition
3.4 the matrix set X is equivariant and transitive. Moreover S = σ-mco(X) is the normal
state space of the atomic part of A∗∗, which can be identified with FE

b (X) by Proposition
3.70. Hence S is an m-convex split face of K. As normal state space of an atomic
W ∗-algebra, S has the finite m-simplex property, cf. Theorem 3.59. By Proposition 3.78
the w∗-uniformity on X fulfills the Jordan property. Finally we have the identification
A =cp A(K), cf. Proposition 1.26, and A(K) =cp CE

u (X) by Theorem 3.73.
In the converse direction, let K be an m-convex simplex. Since X = str(K) is equivari-

ant, transitive and by Remark 3.10 fulfills the uniqueness property, FE

b (X) is an atomic
W ∗-algebra by Corollary 3.27. In order to prove that CE

u (X) ⊂ FE

b (X) is in fact a C∗-sub-
algebra of FE

b (X), it suffices to show that CE

u (X) is closed under the multiplication of
FE

b (X). As first step toward this end, we will show that CE

u (X)h is a Jordan subalgebra
of FE

b (X)h. By assumption S = σ-mco(X) is an m-convex split face of K and S has
the finite m-simplex property. Hence we can identify FE

b (X) = Ab(S), cf. the proof of
Theorem 3.59, and so S is the normal m-convex state space of the atomic W ∗-algebra
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FE

b (X). Since it follows from the proof of (1.4) that str(S) ⊂ X (the converse is obvious),
X = str(S) are the pure normal m-states of FE

b (X), so that we conclude from Propo-
sition 3.80 that, whenever f ∈ CE

u (X)h ⊂ FE

b (X)h, its positive part f+ lies in CE

u (X),
too. Then it follows from Lemma A.7 that CE

u (X)h is closed under squares, which implies
that CE

u (X)h is a Jordan subalgebra of FE

b (X)h. Since by assumption we can identify
A(K) = CE

u (X), the state space of the Jordan algebra CE

u (X)h is K1. We would like to
prove next that CE

u (X)h is the self-adjoint part of a C∗-algebra. Recall that S1, being
the normal state space of a W ∗-algebra, has the 3-ball property, cf. [6, Thm. 10.2]. Now,
the smallest face of K1 containing x, y ∈ X1, denoted as face(x, y), must be contained
in the (split) face S1. Then face(x, y) is also the smallest face in S1 containing x and y,
and as such face(x, y) is either a point, a line segment or affinely isomorphic to a 3-ball.
Consequently, K1 has the 3-ball property, too. So by [6, Thm. 11.58] there will be a
C∗-product compatible with the Jordan product, if K1 is orientable.

To see that K1 is orientable, recall that we endow any facial 3-ball in K1 with the
orientation that it has as 3-ball of S1, where S1 has the canonical global orientation, see
Remark 3.67. Let X and Y be the sets of orientation preserving and orientation reversing
maps in Param(K1), see [6, Def. 11.47]5 or [7, §. 7]. Then Param(K1) is the disjoint union
of X and Y. We will show that both X and Y are closed (and therefore also open).
Let (φν)ν∈Λ be a net in X converging to φ ∈ Param(K1). This means φν(b) → φ(b)
in the topology of K1 for all b ∈ B3. Notice again that φν(B3), φ(B3) ⊂ S1. Indeed,
given distinct a, b ∈ ex(B3) we see that φ(a), φ(b) ∈ X1, because φ(B3) is a face of K1.
Moreover, face(φ(a), φ(b)) ⊂ S1 and φ(B3) = face(φ(a), φ(b)), since B3 = face(a, b). Thus
we can apply Proposition 3.66 to conclude that since φν is orientation preserving, there
is yν ∈ X2 such that φν = y∗ν for all ν ∈ Λ. There exists also a y such that φ = y∗, where
we have either y ∈ X2 or y ∈ Xtr

2 . Our claim is of course that y must be in X2, since
this implies φ ∈ X . So assume for contradiction that y ∈ Xtr

2 . A short calculations gives
〈yν(a), γ〉 = 〈a, y∗ν(γ)〉 = 〈a, φν(γ)〉 → 〈a, φ(γ)〉 = 〈y(a), γ〉, for all γ ∈ B3 = CS1(M2),
cf. Remark 3.62, and a ∈ A(K). It follows that 〈yν(a), γ〉 → 〈y(a), γ〉 for all γ ∈ M∗

2 .
This shows that the net (yν) converges to y in the topology of K2. Then y ∈ K2, since
K2 is compact. Thus, recalling K = CS (A(K)) (see Proposition 1.26), y is completely
positive on A(K), and consequently y is completely positive on the bidual Ab(K). By
assumption S is an m-convex split face of K. Therefore, Ab(K) =cp Ab(S) ⊕∞ Ab(S′),
where S′ denotes the complementary m-convex split face of S, cf. Corollary 1.54. Hence
y is completely positive on Ab(S) =cp FE

b (X). We have assumed y ∈ Xtr
2 , which means

that there is a normal pure matrix state z of the W ∗-algebra FE

b (X) such that y = ztr.
But the transpose of z cannot be completely positive by Lemma A.6. This contradiction
shows that y ∈ X2. Thus X is closed. Let t2 denote the transpose map on M2. Since
the dual of the transpose map reverses orientation [5, Lem. 4.33], the map φ 7→ φ ◦ t∗2
exchanges X and Y. The map φ 7→ φ◦ t∗2 is its own inverse and is continuous. Thus it is a
homeomorphism, and we conclude that Y is also closed. By definition, X and Y are both
saturated under the action of SO(3), and thus their images in OB6 provide disjoint closed
cross-sections of the bundle OB → B. Thus this bundle is trivial. If φ ∈ X , then there
is y ∈ X2 such that φ = y∗, and [y∗] is the (canonical) orientation on the facial 3-ball
φ(B3) ⊂ S1 induced by FE

b (X). Thus the orientation of each facial 3-ball of K1 gives a
continuous cross-section of the bundle OB → B, i.e., a global orientation of K1. Hence
5Param(K1) is the set of all affine isomorphisms from B3 to faces of K1 with the topology of pointwise

convergence (cf. facial 3-balls).
6OB = Param(K1)/SO(3) and B = Param(K1)/O(3).
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by [6, Thm. 11.58] there exists a C∗-product ? on CE

u (X) such that f ? g+ g ? f = fg+ gf
for all f , g ∈ CE

u (X)h.
Now we have a C∗-algebra (CE

u (X), ?), but we need to prove that the multiplication
coincides with the one inherited from FE

b (X). This claim will be true, because the
orientation that yields ? is the orientation of the normal state space of FE

b (X), which
is in correspondence with the product on FE

b (X). To show the claim, let the m-convex
state space of (CE

u (X), ?) be C, and let Y = str(C). We know that the order (on the
first level) of (CE

u (X), ?) coincides with the (pointwise) order of CE

u (X), because ? is
compatible with the Jordan product on CE

u (X)h. Consequently, C1 = K1, i.e., both
state spaces are the same sets. Thus we know also Y1 = X1. Given y = [yij ] ∈ Y2,
we obtain from (the proof of) Proposition 3.64 applied to C as the m-convex normal
state space of the atomic part of the bidual (CE

u (X), ?)∗∗ that face(y11, y22) = mco1(y)
is affine isomorph to B3. Thus by Remark 3.65 applied to S = σ-mco(X), y11 and y22
are m-equivalent with respect to X, so that by Lemma 3.47 there is x ∈ X2 such that
x < y11, y22. Recall from the proof of Proposition 3.66 that we denote by x∗ and y∗
the restritions of the dual maps of x and y to CS 1(M2), so that x∗ and y∗ are affine
isomorphism from CS1(M2) onto mco1(y) = face(y11, y22) = mco1(x). Now, consider the
affine automorphism φ∗ = (x∗)−1 ◦ y∗ : CS1(M2)→ CS1(M2). Notice from Remark 3.63
that φ∗ has a unique extension to a linear map on M∗

2 that we still denote by φ∗. Then
a short calculation yields

〈φ(x(g)), γ〉 = 〈x(g), φ∗(γ)〉 =
〈
x(g), (x∗)−1(y∗(γ))

〉
= 〈g, y∗(γ)〉 = 〈y(g), γ〉 ,

for all g ∈ CE

u (X) and γ ∈ M∗
2 . Thus y = φ(x). Now the orientation of face(y11, y22) is

given by the parametrization y∗ as well as by x∗. Then by definition of orientation (see
[6, Def. 11.45]) the determinant of φ∗ = (x∗)−1 ◦ y∗ is 1, whereby we identify B3 with
CS1(M2) canonically, cf. Remark 3.62, so that x∗ and y∗ can be read as orthogonal trans-
formation on R3, (see also the proof of Proposition 3.66). Since the determinant of φ∗ is 1,
φ is unitarily implemented, cf. [5, Thm. 4.34], so that there is a unitary u ∈M2 such that
y(g) = φ(x(g)) = u∗x(g)u for all g ∈ CE

u (X). Thus y = u∗xu ∈ X2, which shows Y2 ⊂ X2.
Starting with x ∈ X2, the last argumentation shows also X2 ⊂ Y2. Since X1 = Y1 and
X2 = Y2, we conclude from Proposition 3.15 that M2(CE

u (X))+ = M2((CE

u (X), ?))+. In
fact, we have CE

u (X) =cp CE(X−) and CE

u (Y ) =cp CE(Y−). Moreover, the 2-bipositive
order isomorphism from Proposition 3.15 between FE(X−) and FE(Y−) restricts to a
2-bipositive order isomorphism between CE(X−) and CE(Y−), because X1 = Y1 and
X2 = Y2. Consequently, we obtain a 2-bipositive order isomorphism between CE

u (X) and
CE

u (Y ), and since (CE

u (X), ?) is a unital C∗-algebra we can identify CE

u (Y ) =cp (CE

u (X), ?)
by Theorem 3.73. So, M2(CE

u (X))+ = M2((CE

u (X), ?))+. Therefore the identity mapping
id on CE

u (X) is 2-positive from (CE

u (X), ?) to CE

u (X) ⊂ FE

b (X), and it is obviously a
Jordan homomorphism (sometimes also called C∗-homomorphism) from the C∗-algebra
(CE

u (X), ?) into the bounded operators, so that by [58, Theorem 3.3] there are two or-
thogonal central projections p, q ∈ C∗(CE

u (X))−, such that p + q = 1, π1(g) = gp is a
∗-homomorphism, π2(g) = gq is a ∗-anti-homomorphism and id = π1 +π2 as linear maps.
Since id is 2-positive it follows that π2 is 2-positive. But by [17, Cor. 3.2] this implies
that π2 must also be a ∗-homomorphism. Hence id is a ∗-homomorphism. Thus for f ,
g ∈ CE

u (X) we conclude that fg = id(f) id(g) = id(f ? g) ∈ CE

u (X). This means CE

u (X) is
closed under the product it inherits from FE

b (X), so that we have shown that CE

u (X) is a
C∗-subalgebra of FE

b (X) and the proof is complete.
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Non-commutative topological spaces

The original aim of my thesis was to characterize which compact and m-convex sets are
the matrix state spaces of C∗-algebras. This aim was achieved in the preceding section in
Theorem 3.83. However, looking at the axioms characterizing the matrix state space of
C∗-algebras it is obvious that an essential part of the requirements is concerned only with
the structural elements of compact and m-convex set, that is, with the pure matrix states
of the C∗-algebra. Moreover, in Theorem 3.53 we have provided already a characterization
of the matrix sets that are the normal pure matrix state spaces of atomic W ∗-algebras,
and so in a certain sense are non-commutative sets. We will now abstractly characterize
which matrix sets are the pure matrix state spaces of C∗-algebras. Thus in a certain
sense we will provide an abstract definition of non-commutative topological spaces. We
start with a canonical embedding similar to Proposition 3.32.

Proposition 3.84. Let X be an equivariant matrix subset of some locally convex vector
space V such that X−

n ⊂Mn(V ) is a compact subset for all n ∈ N, where Mn(V ) carries
the product topology. Let K = CS (CE

u (X)) be the matrix convex state space of the op-
erator system CE

u (X). Then the map Θ = (Θn)n∈N, where Θn : Xn → Kn is defined by
Θn(x)(f) = x̃(f) = fn(x) for all f = (fl) ∈ CE

u (X), x ∈ Xn and n ∈ N, is an equivariant
uniform equivalence onto its image X̃ = (X̃n)n = (Θn(Xn))n. Furthermore, we have

Proof. Obviously, if X is equivariant, then X− is also equivariant. Recall that uniformly
continuous maps onXn have unique continuous extensions onX−

n , becauseX−
n is compact

for all n ∈ N, cf. [39, 51]. Therefore we can identify CE

u (X) with CE(X−). Then we define
an extension of Θ on X−, that we still call Θ, by setting Θn(y)(f) = fn(y) for all
f = (fl)l ∈ CE(X−) and y ∈ X−

n . We will first show that Θ is injective. Assume that
we have x, y ∈ X−

n such that x̃ = ỹ. Then fn(x) = fn(y) for all f ∈ CE(X−). We
conclude that g(xij) = g(yij) for all i, j ∈ {1, . . . , n} and all g ∈ V ′, where V ′ are the
continuous linear maps from V to C. This follows, since obviously (g(n)|Xn) ∈ CE(X−) for
g ∈ V ′. Thus we have shown that x = [xij ] = [yij ] = y, so that Θn is injective. Since the
argument applies for all n ∈ N, the map Θ is injective. From Θm(u∗xu)(f) = fm(u∗xu) =
u∗fn(x)u = u∗x̃(f)u for all f ∈ CE(X−) we obtain immediately that Θ is an equivariant
map, and since Θ is injective its inverse map is obviously equivariant, too. If x ∈ X−

n ,
then there is a net (xν) in Xn converging to x. Obviously x̃ν(f) = fn(xν)→ fn(x) = x̃(f)
for all f ∈ CE(X−), which shows that Θn is a continuous map from X−

n to Kn for all
n ∈ N. Since X−

n is compact, Θn is injective and the w∗-topology is Hausdorff, Θn is a
homeomorphism onto its image for all n ∈ N.

We claim now that Θn(X−
n ) = (X̃n)−. Given ϕ ∈ Θn(X−

n ) there is x ∈ X−
n such that

ϕ = Θn(x). If (xν)ν is a net in Xn such that xν → x, we see that Θn(xν) = x̃ν ∈ X̃ν , and
obviously x̃ν(f) = fn(xν) → fn(x) for all f ∈ CE(X). Therefore, ϕ ∈ X̃−

n . Conversely,
given ϕ ∈ (X̃n)− there is a net (xν) inXn such that x̃ν → ϕ, that is x̃ν(f) = fn(x)→ ϕ(f)
for all f ∈ CE(X−). Since X−

n is compact there is x ∈ X−
n and a subnet (xh(ν)) of (xν)

such that xh(ν) → x. It follows immediately that fn(xh(ν)) → fn(x) for all f ∈ CE(X−)
and, since (xh(ν)) is a subnet of (xν) we also have fn(xh(ν))→ ϕ(f) for all f ∈ CE(X−).
Hence ϕ(f) = fn(x) = x̃(f) for all f ∈ CE(X−), so that we have found x ∈ X−

n such that
ϕ = x̃. Thus the claim (X̃n)− = Θn(X−

n ) is proved.
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Remark 3.85. Given an equivariant matrix set X as in Proposition 3.84, we observe that
we also can embed Xtr into the dual of CE

u (X) = CE(X−), namely via the map z 7→ z̃
defined by z̃(f) = (fn(ztr))tr for all z ∈ Xtr

n and n ∈ N. Notice further that given n ∈ N,
x ∈ X−

n and z ∈ Xtr
n such that x̃ = z̃ we conclude that x = z. In fact, as in the proof of

Proposition 3.84, it follows from fn(x) = x̃(f) = z̃(f) = (fn(ztr))tr for all f ∈ CE

u (X−)
that especially g(n)(x) = (g(n)(ztr))tr = g(n)(z) for all g ∈ V ′, which shows directly x = z.

To characterize the pure m-state space we will need the next essentially known lemma.

Lemma 3.86. Let M be an atomic W ∗-algebra and identify M = FE

b (X), where
X = str(CSσ(M)). If ψ ∈ M∗ such that ψ = ψ∗ then there is a set {xn | n ∈ N }
of pairwise orthogonal elements of X1 and a sequence of numbers (rn)n∈N such that
ψ(f) =

∑
n rnf1(xn) for all f ∈ FE

b (X).

Proof. Since we can identify M = ⊕B(Hκ), it suffices to consider the special case where
M = B(H) and M∗ = T (H). If ψ ∈ M∗ and ψ = ψ∗, then there is T ∈ T (H)
such that ψ(f) = trace(fT ) for all f ∈ FE

b (X) = B(H). Obviously, T is a compact
and self-adjoint operator. Therefore by the spectral theorem there are sequences of or-
thonormal vectors (ξn)n in H and real numbers (rn)n such that T =

∑
n rnξn � ξn.

Then ψ(f) =
∑
n rn 〈fξn|ξn〉 =

∑
n rnf1(xn), where xn = 〈· ξn|ξn〉 ∈ X1 is a pairwise

m-orthogonal sequence of normal pure states, cf. Proposition 3.7.

For x ∈ X1 we define I(x) = { f ∈ CE

u (X)+ | f1(x) = 0 }. Notice that I(x) is a
norm-closed hereditary cone in CE

u (X)+ that does not contain the unit.

Theorem 3.87 (Characterization of pure m-state spaces). Let X = (Xn)n be a
matrix subset of some locally convex vector space V and give Mn(V ) the product topology
for all n ∈ N. Then X is equivariantly and uniformly isomorphic to the pure m-states of
a unital C∗-algebra if and only if all of the following axioms hold:

(i) X−
n ⊂Mn(V ) is a compact subset for all n ∈ N,

(ii) X is equivariant, transitive and fulfills the uniqueness property,

(iii) (X1, d) is a complete metric space, where d is the inner metric of X,

(iv) if {xn | n ∈ N } is a set of pairwise orthogonal elements of X1 and (rn)n∈N is a
sequence of real number such that

∑
n|rn| <∞, then there is f ∈ CE

u (X)h such that∑
n rnf1(xn) 6= 0 ,

(v) the uniformity on X fulfills the Jordan property,

(vi) I(x) is maximal in the set of all norm-closed hereditary cones of CE

u (X)+ for all x ∈
X1 and the sets {x ∈ X1 | f1(x) = 0 for all f ∈ I } are non-empty for all maximal
norm-closed hereditary cones I ⊂ CE

u (X)+ not containing the unit, and

(vii) X−
2 ∩Xtr

2 = ∅.

Proof. Let A be a unital C∗-algebra and X = str(CS (A)) its pure matrix state space.
Since CS (A) is w∗-compact in the dualA∗, obviouslyX−

n ⊂ CSn(A) ⊂Mn(A) is compact
for all n ∈ N. We proved that X is equivariant and transitive in Proposition 3.4. It is
immediate from Proposition 3.8 that X fulfills the uniqueness property. Moreover, we
can identify A with CE

u (X) by Theorem 3.73 and the atomic part of A∗∗ with FE

b (X)
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by Proposition 3.70, so that X are the normal pure m-states of FE

b (X), cf Theorem
3.53, which in particular shows that axiom (iii) holds. Moreover, it is known that A
lies w∗-dense in the atomic part of its bidual, so CE

u (X) is a w∗-dense C∗-subalgebra of
FE

b (X). Then Lemma 3.86 implies axiom (iv). Axiom (v) is shown by Proposition 3.78.
Since CE

u (X) is a unital C∗-algebra, axiom (vi) is nothing but a translation of the well-
known order preserving correspondence between closed hereditary cones of CE

u (X)+ and
closed left ideals of CE

u (X), recalling that the pure states of CE

u (X) (i.e., X1) correspond
with the (regular) maximal left ideals of CE

u (X). Finally, to show axiom (vii), notice
that the transpose of an element of X2, which are the pure 2 × 2 matrix states of A,
cannot be 2-positive according to Lemma A.6. So, especially, it cannot be an element of
X−

2 ⊂ CS2(A).
Conversely, let X be a matrix set such that the axioms (i) to (vii) hold. From (ii) and

(iii) we know that FE

b (X) is an atomic W ∗-algebra and that X̂ = str
(
CSσ(FE

b (X))
)
,

cf. Corollary 3.27 and Theorem 3.53. Let K = CS (CE

u (X)) and let S = σ-mco(X̂) be the
normal m-state space of FE

b (X). Using axiom (i) and Proposition 3.84 we can identify
X = X̃ ⊂ K. Notice that there is an m-affine surjection from S onto F = σ-mco(X̃). In
fact, let ρ : FE

b (X)∗ → CE

u (X)∗ be the surjection ρ(ψ) = ψ|CE
u (X) for ψ ∈ FE

b (X)∗. Then
the restrictions of the amplifications θn = ρ(n)|Sn define an m-affine map θ = (θn)n∈N
from S to K. We have to show θn(Sn) = Fn for all n ∈ N. Obviously, for x ∈ Xn we
have θn(x̂) = x̂|CE

u (X) and x̂(f) = fn(x) = x̃(f) for all f ∈ CE

u (X). So θn(X̂n) = X̃n

for all n ∈ N. Now for a σ-matrix convex combination ψ =
∑∞
i=1 α

∗
i x̃iαi ∈ Fn such that

x̃i ∈ X̃ni with ni ≤ n for all i ∈ N we see that ϕ =
∑∞
i=1 α

∗
i x̂iαi ∈ Sn and θn(ϕ) = ψ.

Thus θn(Sn) = Fn for all n ∈ N, which shows that θ is a surjection from S onto F . By
axiom (iv) CE

u (X) is w∗-dense in FE

b (X). In fact, suppose for contradiction that there
would be f ∈ FE

b (X)h such that f is not in the w∗-closure of CE

u (X)h. Then there is
a self-adjoint ψ in the predual FE

b (X)∗ such that ψ(f) > 0 and ψ(CE

u (X)h) = {0}. By
Lemma 3.86 there is a sequence (xn)n of pairwise orthogonal pure states and a sequence
(rn)n of real numbers with

∑
n rn <∞ such that ψ(g) =

∑
n rng1(xn) for all g ∈ FE

b (X).
Now, by axiom (iv) there is h ∈ CE

u (X)h such that ψ(h) =
∑
n rnh1(xn) 6= 0, which

is an obvious contradiction. Therefore, CE

u (X)h is w∗-dense in FE

b (X)h, and so CE

u (X)
is w∗-dense in FE

b (X). Then the restriction θ is an injective map and consequently θ
is an m-affine isomorphism between S and F . Now axiom (v) ensures by Proposition
3.80 and Lemma A.7 that CE

u (X)h ⊂ FE

b (X)h is a Jordan subalgebra. We will show
next that X̃1 are exactly the pure states of the Jordan algebra CE

u (X)h. For this let
x ∈ X1. Then axiom (vi) says that I(x) is a maximal norm-closed hereditary cone in
CE

u (X)+. Thus by [59, Thm. 7.1] in combination with [23, Thm. 2.3] the inner7 ideal
J = { f ∈ CE

u (X)h | f2 ∈ I(x) } of the Jordan algebra CE

u (X)h is maximal, so there is a
pure state ϕ : CE

u (X)h → R such that the kernel of ϕ is J . Moreover, the null space Nϕ of
the pure state ϕ is given by Nϕ = J ◦CE

u (X)h+J . By the Cauchy-Schwarz inequality of
[46, Prop. 4.4 and Cor. 4.5] x̃ vanishes on J . Therefore x̃ vanishes also on J ◦CE

u (X)h+J ,
so that Nϕ ⊂ Nx̃. Since the null spaces have codimension 1, they must coincide. Using
that x̃ and ϕ are unital it follows that x̃ = ϕ. This shows that X̃1 is a subset of the
pure states of CE

u (X)h. Conversely, given a pure state ϕ of CE

u (X)h the kernel J of ϕ
is a maximal norm-closed inner ideal, cf. [59, Thm. 7.1]. Then the positive part J+ is a
maximal norm-closed hereditary cone of CE

u (X)+. Again by axiom (vi) there is x ∈ X1

7Inner ideals are sometimes also called quadratic ideals.
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such that f1(x) = 0 for all f ∈ J+. Therefore I(x) ⊃ J+, and by the maximality of
J we obtain I(x) = J+, which implies x̃ = ϕ. So we have shown that X̃1 are exactly
the pure states of the Jordan algebra CE

u (X)h. Now the σ-convex hull of the pure states
σ-conv(X̃1) = F1 is a (split) face of K1, cf. [6, Cor. 5.63].

Thus given pure states x̃1 and x̃2 in K1 the smallest face of K1 containing x̃1 and x̃2

must be contained in the face F1, that is, we have face(x̃1, x̃2) ⊂ F1. Then, in view of the
m-affine isomorphism between S and F , face(x̃1, x̃2) can be identified with face(x̂1, x̂2)
in S1. Since S1 is the normal state space of an atomic W ∗-algebra, S1 has the 3-ball
property. So either face(x̂1, x̂2) is a point (if and only if x̂1 = x̂2), a line segment (if and
only if x̂1 and x̂2 are non-equivalent pure states) or affine isomorph to a Euclidean 3-ball
(if and only if x̂1 and x̂2 are distinct equivalent pure states). Hence evidently the affine
isomorphism between S1 and the face F1 ⊂ K1 shows directly that the state space K1 of
the Jordan algebra CE

u (X)h has the 3-ball property, too. We will prove that K1 is globally
orientable. For this we need to choose first an orientation for each facial 3-ball of K1. We
identify a facial 3-ball of K1 with face(x̃1, x̃2), and give it the orientation of the affinely
isomorphic face(x̂1, x̂2) ⊂ S1. We obtain this orientation in the following way: There
is x ∈ X2 such that x < x1, x2. Then the orientation is given by the parametrization
x̂∗(CS1(M2)) = face(x̂1, x̂2), cf. Remark 3.67.

Let X and Y be the sets of orientation preserving and orientation reversing maps in
Param(K1). Then Param(K1) is the disjoint union of X and Y. We will show that both
X and Y are closed (and therefore also open). Let (φν)ν∈Λ be a net in X converging to
φ ∈ Param(K1). This means φν(b) → φ(b) in the topology of K1 for all b ∈ B3. We
can apply Proposition 3.66 to conclude that, since φν is orientation preserving, there is
xν ∈ X2 such that φν = x̂∗ν for all ν ∈ Λ. There exists also a x such that φ = x̂∗, where
we have either x ∈ X2 or x ∈ Xtr

2 . Our claim is of course that x must be in X2, since
this implies φ ∈ X . A short calculations gives

〈x̃ν(f), γ〉 = 〈x̂ν(f), γ〉 = 〈f, x̂∗ν(γ)〉 = 〈f, φν(γ)〉 → 〈f, φ(γ)〉 = 〈x̂(f), γ〉 = 〈x̃(f), γ〉 ,

for all γ ∈ CS1(M2) and f ∈ CE

u (X). This shows that the net (x̃γ) converges to x̃ in the
w∗-topology of the dual CE

u (X)∗. Thus x̃ ∈ (X̃2)−, so we conclude by axiom (vii) and
Remark 3.85 that x̃ /∈ (X̃2)tr. Consequently we must have x̃ ∈ X̃2 which shows φ ∈ X . As
in the proof of Theorem 3.83, K1 is globally orientable, so that by [6, Thm. 11.58] there
exists a C∗-product ? on CE

u (X) such that f ? g + g ? f = fg + gf for all f , g ∈ CE

u (X)h.
Now, we have a C∗-algebra (CE

u (X), ?), but we need to prove that the multiplication
coincides with the one inherited from FE

b (X). Notice that unlike in Theorem 3.83 we
do not know that X̃n = str(Kn) for n > 2. However, it suffices that X̂ is the normal
pure m-state space of the atomic W ∗-algebra FE

b (X). So, to show the claim, let the
m-convex state space of (CE

u (X), ?) be C and let Y = str(C). We know that the order
(on the first level) of (CE

u (X), ?) coincides with the (pointwise) order of CE

u (X), because
? is compatible with the Jordan product on CE

u (X)h. Consequently, C1 = K1, i.e., both
state spaces are the same sets. Thus we know also Y1 = X̃1. Given y = [yij ] ∈ Y2,
there are x1, x2 ∈ X1 such that x̃i = yii for i = 1, 2. We obtain from (the proof of)
Proposition 3.64 applied to C as the m-convex normal state space of the atomic part
of the bidual (CE

u (X), ?)∗∗ that mco1(y) = face(y11, y22) = face(x̃1, x̃2) ' face(x̂1, x̂2) is
affinely isomorph to B3. Thus by Remark 3.65 applied to S = σ-mco(X̂), x̂1 and x̂2

are m-equivalent with respect to X̂, so that by Lemma 3.47 there is x ∈ X2 such that
x̂ < x̂1, x̂2. Recall from the proof of Proposition 3.66 that we denote by x̂∗ and y∗
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the restritions of the dual maps of x̂ and y to CS1(M2), so that x̂∗ and y∗ are affine
isomorphism from CS1(M2) onto mco1(y) = face(y11, y22) = mco1(x̂). Now, consider the
affine automorphism φ∗ = (x̂∗)−1 ◦ y∗ : CS1(M2)→ CS 1(M2). Notice from Remark 3.63
that φ∗ has a unique extension to a linear map on M∗

2 that we still denote by φ∗. Then
a short calculation yields

〈φ(x̃(g)), γ〉 = 〈φ(x̂(g)), γ〉 = 〈x̂(g), φ∗(γ)〉 =
〈
x̂(g), (x̂∗)−1(y∗(γ))

〉
= 〈y(g), γ〉 ,

for all g ∈ CE

u (X) and γ ∈ M∗
2 . Thus y = φ(x̃). Now the orientation of face(y11, y22)

is given by the parametrization y∗ as well as by x̂∗. Then by definition of orientation
(see [6, Def. 11.45]) the determinant of φ∗ = (x̂∗)−1 ◦ y∗ is 1, whereby we identify B3

with CS1(M2) canonically, cf. Remark 3.62, so that x̂∗ and y∗ can be read as orthogonal
transformation on R3, (see also the proof of Proposition 3.66). Since the determinant of
φ∗ is 1, φ is unitarily implemented, cf. [5, Thm. 4.34], so that there is a unitary u ∈ M2

such that y(g) = φ(x̃(g)) = u∗x̃(g)u for all g ∈ CE

u (X). Thus y = u∗x̃u ∈ X̃2, which
shows Y2 ⊂ X̃2. Starting with x ∈ X2, the last argumentation shows also X̃2 ⊂ Y2. Since
X̃1 = Y1 and X̃2 = Y2, we conclude that M2(CE

u (X))+ = M2((CE

u (X), ?))+, see the proof
of Theorem 3.83. Thus the identity mapping id on CE

u (X) is 2-positive from (CE

u (X), ?)
to CE

u (X) ⊂ FE

b (X), and it follows exactly as in the proof of Theorem 3.83 that CE

u (X)
is closed under the product it inherits from FE

b (X). Now, CE

u (X) is a C∗-subalgebra of
FE

b (X) and the pointwise orderingsMn(CE

u (X))+ coincide with the C∗-algebra ordering of
Mn(CE

u (X)) for all n ∈ N. In fact, by Proposition 3.22 the pointwise matrix orderings and
the C∗-algebra orderings coincide for FE

b (X), and in the proof of that proposition we have
constructed for a given f ∈Mn(FE

b (X))+ a sequence of polynomials in f that converges in
norm to the square root of f . Since CE

u (X) is closed under multiplication and norm-closed,
starting with f ∈Mn(CE

u (X))+ shows that the square root of f is in Mn(CE

u (X)), so that
the matrix ordering of the C∗-algebra CE

u (X) coincides with the given pointwise ordering.
Thus C = K. Moreover, we know that X̃n = Yn for n = 1, 2. We still have to verify
that X̃n = Yn for n > 2, i.e., that we can identify X̃ with the pure m-states of CE

u (X).
Let n > 2 and x ∈ Xn. Then x̂ is a pure normal m-state of FE

b (X). Hence there is a
Hilbert spaceH, an irreducible normal representation π : FE

b (X)→ B(H) and an isometry
V : Cn → H such that x̂ = V∗πV. Then π(CE

u (X))− = B(H), so the restriction of π to the
C∗-subalgebra CE

u (X) is still an irreducible representation. Therefore x̃ = V∗π|CE
u (X)V is

pure. In the converse direction, let y = [yij ] ∈ Yn be a pure m-state of CE

u (X). Notice that
v∗yv ∈ Y2 = X̃2 for all isometries v ∈Mn,2. We conclude that yij is a normal map from
CE

u (X) to C for all i, j = 1, . . . , n. Thus y is normal, so that y has a unique extension to
a normal and unital map ψ : FE

b (X)→Mn. Notice that ψ is n-positive, so that ψ ∈ Sn.
In fact, since CE

u (X) is w∗-dense in FE

b (X), Mn(CE

u (X)) is w∗-dense in Mn(FE

b (X)),
cf. Lemma A.5. Then by the Kaplansky density theorem the positive part of the unit ball
of Mn(CE

u (X)) is w∗-dense in the positive part of the unit ball of Mn(FE

b (X)), cf. [52,
(proof of) Thm. 1.9.1] (or [49]), from which it follows immediately that ψ ∈ Sn. We claim
that ψ is pure. If ψ =

∑
i α

∗
i φiαi is a proper m-convex combination such that φi ∈ Sn

and αi ∈ Mn, then especially y(f) =
∑
i α

∗
i φi(f)αi for all f ∈ CE

u (X). Since y is pure,
i.e., a structural element of Kn, there are unitaries ui ∈ Mn such that y(f) = u∗iφi(f)ui
for all f ∈ CE

u (X). Since CE

u (X) is w∗-dense in FE

b (X) we obtain ψ = u∗iφiui. Thus
ψ ∈ str(Sn) = X̂n, so that there is x ∈ Xn such that ψ = x̂. Consequently y = x̃.

Remark 3.88. For the commutative case notice that Xn = ∅ for all n ≥ 2. Then the
conditions of the theorem imply that X1 is a compact Hausdorff space. In fact, axiom
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3. Matrix Convex Simplexes

(vi) ensures that X1 are exactly the extreme points in the state space of the commutative
C∗-algebra CE

u (X) = Cu(X1). Moreover, we can always identify CE

u (X) = A(K), where
K = CS (CE

u (X)), and A(K) and A(K1) are order isomorphic. So, in the commutative
case we obtain Cu(X) = A(K1), where X1 = ex(K1). Then it follows from [4, Thm. II.4.3]
that K1 is a Bauer Simplex, so that X1 is closed and hence compact.

Concluding Remarks
The characterization results are open for improvements. Are there better axioms describ-
ing the matrix state spaces and the pure matrix state spaces? Can the results be proved
without using the general theorem [6, Thm. 11.58] of Alfsen and Shultz, considering that
we are already in the rather special situation CE

u (X) ⊂ FE

b (X), where FE

b (X) is an atomic
W ∗-algebra?

The abstract description of the pure m-states of C∗-algebras as certain non-commu-
tative topological spaces (containing the commutative situation as special case) gives
mathematical content to the old fantasy that a C∗-algebra should be a non-commutative
C(X). (Curiously, in [25, p. 102] Effros used the notation CQ(X) for non-commutative
C∗-algebras, where he called X a “virtual topological space”.)

There is a different approach to characterize the pure states abstractly as certain Pois-
son spaces with transition probability, see [43]. However, Landsman’s axioms 4 and 5
are clearly statements that should be derived from real axioms on the structures of the
set he starts with (supposed to become the set of the pure states of a C∗-algebra). On
the other hand, Landsman’s approach has a stronger appeal toward possible applications
in quantum physics than the matrix order approach. Notice, though, that given a pure
matrix state x = [xij ] ∈ Xn and an isometry v ∈ Mn,1, the pure state v∗xv is what
physicists call a superposition of the orthogonal pure states xii, 1 ≤ i ≤ n, which are the
diagonal entries of the pure matrix state x. Moreover, notice that the conditions on a
matrix set X to be equivariant, transitive and fulfilling the uniqueness property turn X1

into a transition probability space, because FE

b (X) is an atomic W ∗-algebra. Then the
transition probability between pure states x, y ∈ X1 is given by px(y) = py(x), where px

and py are the minimal projections constructed in Proposition 3.24.
Finally, I hope that my dissertation might serve as starting point for a more systematic

study of C∗-algebras. What additional, perhaps characterizing, properties do the pure
matrix states have for certain special classes of C∗-algebras? As first example one could
study the pure matrix state spaces of approximately finite dimensional algebras. Another
question to investigate in connection with AF-algebras might be: Are there any relations
between the matrix order approach and K-theory?

98



A. Miscellaneous

This is a collection of essentially known results (mathematical ‘folklore’), where we did
not find a references to the literature appropriate to our needs.

The next remark is contained in a somewhat more special version in [48, Thm. 5.1].

Remark A.1. Let V be a vector space. There is linear isomorphism between L(V,Mn)
and L(Mn(V ),C) given by

fφ(v) =
1
n
α∗φ(n)(v)α, (A.1)

where φ ∈ L(V,Mn) is given, α = e1 ⊕ · · · ⊕ en, v ∈ Mn(V ) and (ei)ni=1 denotes the
standard basis of Cn. The inverse mapping is

φf (v) = n[f(v ⊗ eij)]. (A.2)

This isomorphism maps CP(V,Mn) bijectively onto L(Mn(V ),C)+. Let V be a topolog-
ical vector space. We give Mn(V ) the product topology. From this identification we see
immediately that a net (fλ) in L(Mn(V ),C) converges pointwise to f ∈ L(Mn(V ),C) if
and only if (φfλ

) converges pointwise to φf ∈ L(V,Mn).

Remark A.2. Let V be a locally convex vector space and endow Mn(V ) with the prod-
uct topology for all n ∈ N. Suppose V is a matrix ordered vector space such that the
cones Mn(V )+ are closed for all n ∈ N. If v /∈ Mn(V )+ then there is a continuous
ϕ ∈ CP(V,Mn) such that ϕ(n)(v) 6≥ 0.

Proof. If v /∈Mn(V )+, there is a continuous f ∈ L(Mn(V ),C) such that f(Mn(V )+) ≥ 0
and f(v) < 0. Hence φf is continuous and completely positive by Remark A.1. Moreover,
it follows from equation (A.1) that φ(n)

f (v) 6≥ 0.

We need the following operator versions of well-known results in classical analysis.

Proposition A.3. Let V be an operator space and give V ∗ the w∗-topology. We endow
Mn(V ∗) with the product topology, which we call the w∗-product topology, for all n ∈ N.
Then Ball

(
Mn(V ∗)

)
is compact with respect to the w∗-product topology for all n ∈ N.

Furthermore, the canonical image of Ball
(
Mn(V )

)
is dense in Ball

(
Mn(V ∗∗)

)
with respect

to the w∗-product topology for all n ∈ N.

Proof. Let (fλ) be a universal net in Ball
(
Mn(V ∗)

)
. Let v ∈ V . Then ‖fλ(v)‖ ≤ ‖v‖,

so that the induced universal net (fλ(v)) lies in a compact subspace of Mn and hence is
convergent. Let limλ fλ(v) = f(v) for all v ∈ V . We see that f : V → Mn is a linear
mapping. Moreover, given w = [wij ] ∈Mn(V ), we obtain

f (n)(w) = [f(wij)] = [lim
λ
fλ(wij)] = lim

λ
[fλ(wij)] = lim

λ
f

(n)
λ (w).

It follows that
∥∥f (n)(v)

∥∥ = limλ

∥∥f (n)
λ (v)

∥∥ ≤ ‖v‖ for all v ∈ Mn(V ). By [26, Proposition
2.2.2] ‖f‖cb =

∥∥fn∥∥ ≤ 1, so that f ∈ Ball
(
Mn(V ∗)

)
.
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A. Miscellaneous

For the second claim let Cn be the w∗-closure of the canonical image of Ball
(
Mn(V )

)
in Mn(V ∗∗) for all n ∈ N. Notice that Ball

(
Mn(V ∗∗)

)
is w∗-compact for all n ∈ N by

the first assertion that we have shown already. Hence the w∗-closed absolute matrix
convex set C = (Cn)n is contained in

(
Ball

(
Mn(V ∗∗)

))
n
. Assume for contradiction that

there is ψ ∈ Ball
(
Mn(V ∗∗)

)
such that ψ /∈ Cn. Then there exists f ∈ Mn(V ∗) such

that ‖fm(v)‖ ≤ 1 for all v ∈ Ball
(
Mm(V )

)
and m ∈ N and ‖ψn(f)‖ > 1. By the first

inequality ‖f‖cb ≤ 1 and since ‖ψ‖cb ≤ 1 it follows ‖ψn(f)‖ ≤ 1 which is an obvious
contradiction to the second inequality. Hence Cn = Ball

(
Mn(V ∗∗)

)
for all n ∈ N.

Proposition A.4. Let (X, e) be an operator system that is the dual of a matrix ordered
complete operator space V . Then there is a Hilbert space H and a unital complete order
isomorphism π : X → B(H) that also is a w∗-w∗-homeomorphism onto its image.

Proof. From the proof of Theorem e is strictly positive and thus

Kn =
{
v ∈Mn(V )+

∣∣∣ e(n)(v) = 1n

}
for all n ∈ N defines an m-base of V . We interpret elements v ∈Mn(V ) as maps from X
to Mn by v(x) = x(n)(v) for x ∈ X = V ∗. As in the proof of we set Mnϕ

= Mn for all
ϕ ∈ Kn and n ∈ N. Then ⊕Mnϕ

, where the sum runs over all ϕ ∈ Kn and all n ∈ N, is
a unital C∗-algebra contained in B(H), where H = ⊕Cnϕ , and we define

π : X →
⊕
ϕ∈Kn
n∈N

Mnϕ
⊂ B(H) by π(x) =

⊕
ϕ∈Kn
n∈N

ϕ(x).

Obviously π is a unital and completely positive. Assume π(n)(x) ≥ 0 for x ∈ Mn(X).
Then in particular ϕ(n)(x) ≥ 0 for all ϕ ∈ Kn. Since K as m-base generates the ma-
trix ordering of V it follows that v(n)(x) ≥ 0 for all v ∈ Mn(V )+. Thus by Lemma
A.2 we obtain x ≥ 0. We have shown so far that π is a unital complete order isomor-
phism onto its image. Consequently, π is a complete isometry. Since all ϕ ∈ Kn are
obviously w∗-w∗-continuous for all n ∈ N, it follows from the construction of π that π
is continuous with respect to the w∗-topology on X and the weak operator topology on
B(H), cf. [52, page 42]. Since π is injective and Ball(X) is w∗-compact, the restriction
π : Ball(X) → π

(
Ball(X)

)
is a w∗-w∗-homeomorphism onto its image. Therefore, using

that π
(
Ball(X)

)
= π(X) ∩ Ball

(
B(H)

)
, it follows from applying the Krein-Smulian the-

orem (e.g., [50, Thm. 2.5.9]) that π(X) is w∗-closed and that π : X → π(X) is open and
thus a w∗-w∗-homeomorphism.

Lemma A.5. Let M be a W ∗-algebra and M∗ its predual. M carries the w∗-topology
(i.e., the σ(M,M∗)-topology). Then the w∗-topology of the W ∗-algebra Mn(M) coincides
with the product topology on Mn(M) for all n ∈ N. That is, a net (xν)ν = (xνij)ν in
Mn(M) converges to x = [xij ] ∈ Mn(M) with respect to the w∗-topology if and only if
ψ(xνij)→ ψ(xij) for all ψ ∈M∗ and i, j = 1, . . . , n.

Proof. There is a Hilbert space H and a representation π : M→ B(H) that is a homeo-
morphism onto its image with respect to the σ(M,M∗) and σ(B(H), T (H)) topologies,
where we identify the predual B(H)∗ with the trace class operators T (H). ThereforeM
is a w∗-closed C∗-subalgebra of B(H), and converseley all w∗-closed C∗-subalgebras of
B(H) are W ∗-algebras. Recall that on B(H) the w∗-topology coincides with the σ-weak
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(or ultraweak) toplogy. We identifyMn(B(H)) = B(Hn). The σ-weak topology on B(Hn)
is given by the functionals a 7→

∑
l 〈aξl|ηl〉, where (ξl)l and (ηl)l are sequences in Hn such

that
∑
l‖ξl‖2 < ∞ and

∑
l‖ηl‖2 < ∞. Reading a ∈ B(Hn) as matrix [aij ] ∈ Mn(B(H))

and letting ξl = (ξl,1, . . . , ξl,n)tr and ηl = (ηl,1, . . . , ηl,n)tr we obtain∑
l

〈aξl|ηl〉 =
∑
l

n∑
i=1

〈 n∑
j=1

aijξl,j

∣∣∣ηl,i〉 =
n∑

i,j=1

∑
l

〈aijξl,j | ηl,i〉 , (A.3)

where (ξl,j)l and (ηl,i)l are sequences in H such that
∑
l‖ξl,j‖2 <∞ and

∑
l‖ηl,i‖2 <∞

for i, j = 1, . . . , n. Equation (A.3) shows that a net (aν)ν = ([aνij ])ν in Mn(B(H))
converges in the product topology to a = [aij ] ∈ Mn(B(H)), i.e., aνij → aij with respect
to the σ(B(H), T (H))-topology, if and only if it converges on B(Hn) = Mn(B(H)) with
respect to the σ(B(Hn), T (Hn))-topology. Since M is a w∗-closed C∗-subalgebra of
B(H), it follows that Mn(M) ⊂Mn(B(H)) is a C∗-subalgebra that is closed with respect
to the product topology, which coincides with the w∗-topology by the preceding argument.
Therefore Mn(M) is w∗-closed and hence itself a W ∗-algebra in such a way that the
w∗-topology of the W ∗-algebra Mn(M) coincides with the σ-weak (or w∗-) topology of
Mn(B(H)) = B(Hn).

Lemma A.6. Let A be a unital C∗-algebra. If y : A → M2 is a pure matrix state, then
the transpose of y is not 2-positive.

Proof. Let y = V∗πV be the minimal Stinespring representation of y, where π : A → B(H)
is a representation of A on some Hilbert space H, and V : C2 → H is an isometry.
Since y is pure, π is irreducible. So, π(A) is weakly dense in B(H). Consequently,
D = π(2)(M2(A)) is weakly dense in M2(B(H)). Since π is a complete isometry and a
complete order isomorphism onto its image, we obtain(

π(2)
(
Ball(M2(A)+)

))−
=
(
Ball(D)+

)− ⊃ Ball(D−)+ = Ball
(
M2(B(H))+

)
(A.4)

by applying the Kaplansky density theorem. Notice that given α ∈ M2(M2)+ and some
isometry W : C4 → H, there exists T ∈M2(B(H))+ such that W∗TW = α. Since

y(2)(a) = [y(aij)] = [V∗π(aij)V] =
(

V∗ 0
0 V∗

)
π(2)(a)

(
V 0
0 V

)
for all a = [aij ] ∈M2(A), it follows from equation (A.4) that y(2)(Ball(M2(A)+)) is dense
in, and thus coincides with, Ball(M2(M2)+). Consequently there is a ∈ M2(A)+, such
that

y(2)(a) =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

But then for the transpose of y we obviously obtain

y
(2)
tr (a) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
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which is not a positive matrix. Hence the transpose ytr cannot be 2-positive and the proof
is complete.

Lemma A.7. Let A be a unital C∗-algebra and let B ⊂ Ah be a norm-closed subspace
containing the unit of A. Then the following are equivalent:

(i) B is closed under the map b 7→ b+.

(ii) B is closed under the map b 7→ ϕ(b) for ϕ ∈ C(sp(b))h.

(iii) B is closed under the map b 7→ b2.

Proof. Let b ∈ B. Let sp(b) denote the spectrum of b and define the set

Zb = { ϕ ∈ C(sp(b))h | ϕ(b) ∈ B } .

The map ϕ 7→ ϕ(b) is a unital isometric ∗-isomorphism from C(sp(b)) onto C∗(b). So
Zb is a norm-closed self-adjoint subspace of C(sp(b))h that contains especially all linear
functions ξ 7→ rξ + s, where r, s ∈ R and ξ ∈ sp(b). Thus Zb separates sp(b).

Assume (i) and let ϕ = ϕ+ − ϕ− be the unique decomposition of ϕ ∈ C(sp(b))h such
that ϕ+, ϕ− ≥ 0 and ϕ+ϕ− = 0 in the C∗-algebra C(sp(b)). Then ϕ(a) = ϕ+(a)−ϕ−(a)
is the unique decomposition of ϕ(a) into positive and negative parts in the C∗-algebra
C∗(a). Therefore if ϕ ∈ Zb, then the positive and negative parts ϕ+ and ϕ− are in Zb.
It follows that Zb is a sublattice of C(sp(b))h, because for real-valued functions f , g the
relations |f | = f+ + f−, f ∨ g = 1

2 (f + g + |f − g|) and f ∧ g = 1
2 (f + g − |f − g|) hold.

The lattice version of the Stone-Weierstrass theorem implies Zb = C(sp(b))h. So we have
proved that (i) implies (ii). It is obvious that (ii) implies (iii), so we assume that (iii)
holds and we will show that (i) follows. Since for ϕ, ψ ∈ C(sp(b))h

(ϕ(b) + ψ(b))2 − ϕ(b)2 − ψ(b)2 = ϕ(b)ψ(b) + ψ(b)ϕ(b),

we see that Zb is a subalgebra of C(sp(b))h. Hence by the Stone-Weierstrass theorem
Zb = C(sp(b))h. Then obviously ξ 7→ max(ξ, 0) is in Zb, so that b+ ∈ B, and the proof is
complete.

About the non-unital case

Unfortunately in the literature Stinespring’s theorem is proved only for unital C∗-algebras
(even in new books like [26]). However, not all C∗-algebras have a unit and from discussing
the m-convex state space of the compact operators C(H) on a Hilbert space H (to have
a simple example) we experienced that it is sometimes awkward to adjoin a unit. Hence
we take the occasion to give proofs of some results usually only stated for the unital case
in the literature, but certainly true for the non-unital case, too.
Remark A.8. Let A be a C∗-algebra and A1 = { a ∈ A | ‖a‖ < 1 }. Let Λ denote the
positive part of the open unit ball of A, i.e., Λ = A1 ∩ A+. We define eλ = λ for
λ ∈ Λ. Then (eλ)λ∈Λ is an approximate order unit of Ah and the C∗-norm of Ah is the
approximate order unit norm, i.e.,

‖a‖ = inf { r ≥ 0 | ∃λ − reλ ≤ a ≤ reλ }

for any a ∈ Ah. Moreover, (eλ) is an approximate identity, i.e., for all a ∈ A we have
‖aeλ − a‖ → 0.
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About the non-unital case

Proof. It is known from C∗-theory that the positive part A1∩A+ of the open unit ball is
directed. This implies that the self-adjoint part of the open unit ball is directed. Indeed,
let a, b ∈ A1 ∩ Ah. Then there are unique decompositions a = a+ − a− and b = b+ − b−
such that a+a− = 0 = b+b− and a+, a−, b+, b− ∈ A1 ∩ A+. Then |a| = a+ + a− and
|b| = b+ + b− are in A1 ∩ A+ and there is c ∈ A1 ∩ A+ such that c ≥ |a| ≥ a and
c ≥ |b| ≥ b. Thus A1 ∩ Ah is directed. Moreover, C∗-algebras are 1-normal. To see this
let a ≤ b ≤ c. Considering A as subalgebra of some B(H), we obtain

〈aξ|ξ〉 ≤ 〈bξ|ξ〉 ≤ 〈cξ|ξ〉

for all ξ ∈ H. Thus |〈bξ|ξ〉| ≤ max{|〈aξ|ξ〉|, |〈cξ|ξ〉|}, which implies ‖b‖ ≤ max{‖a‖, ‖c‖}.
Hence from [47, Proposition 1] Ah is an approximate order unit space with approximate
order unit the positive part of the open unit ball, which by definition is the monotone
increasing net (eλ).

The last statement, that (eλ) is an approximate identity of A, is well-known.

Theorem A.9 (Non-unital Stinespring). Let A be a C∗-algebra and let H be a Hilbert
space. Then every completely positive and bounded mapping of ϕ : A → B(H) has the
form ϕ(x) = V∗π(x)V, where π is a representation of A on some Hilbert space Hπ,
such that (π(eλ)) converges strongly to the identity of B(Hπ), where (eλ) is the canonical
approximate unit of A (i.e., the positive part of the open unit ball) and V is a bounded
operator from H to Hπ. (Cf. [11, Theorem 1.1.1].)

Proof. We consider the vector space tensor product A⊗H and define a bilinear form [ , ]
on A⊗H by

[u, v] =
∑
i,j

〈ϕ(y∗i xj)ξj | ηi〉 ,

where ϕ is the given mapping and u =
∑
j xj ⊗ ξj and v =

∑
i yi ⊗ ηi in A ⊗H. Since

ϕ is completely positive, [ , ] is positive semi-definite. For each x ∈ A we define a linear
transformation π0(x) on A⊗H by

∑
j xj ⊗ ξj 7→ π0(x) =

∑
j xxj ⊗ ξj . π0 is an algebra

homomorphism for which [u, π0(x)v] = [π0(x∗)u, v] for all u, v ∈ A ⊗H. It follows that,
for fixed u, ρ(x) = [π0(x)u, u] defines a positive linear functional on A. Let (eλ)λ∈Λ be
the canonical approximate unit of A. We will prove that limλ ρ(eλ) = [u, u] (and hence
ρ(eλ) ≤ [u, u] for all λ, because the net of positive numbers is monotone increasing). Let
u =

∑n
j=1 xj ⊗ ξj . Then

ρ(eλ)− [u, u] = [π0(eλ)u, u]− [u, u]
= [π0(eλ)u− u, u]

=
[∑
j

(eλxj − xj)⊗ ξj ,
∑
i

xi ⊗ ξi
]

=
n∑

i,j=1

〈ϕ(x∗i (eλxj − xj))ξj |ξi〉 .

Since ϕ is bounded and since ‖x∗i (eλxj − xj)‖ ≤ ‖x∗i ‖‖eλxj − xj‖ converges against zero
for the finitely many i, j ∈ {1, . . . , n}, we see that the sum above converges against zero.
Hence ρ(eλ) → [u, u]. Now from Remark A.8 (eλ) is also an approximate order unit,
hence we find µ ∈ Λ such that

[π0(x)u, π0(x)u] = [π0(x∗x)u, u] = ρ(x∗x) ≤ ‖x∗x‖ρ(eλ)
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for all λ ≥ µ. This implies [π0(x)u, π0(x)u] ≤ ‖x‖2[u, u].
Let N = { u ∈ A⊗H | [u, u] = 0 }. N is linear subspace of A ⊗ H, invariant under

π0(x) for all x ∈ A. Moreover, [ , ] determines an inner product on the quotient space
A ⊗H/N by [u +N, v +N ] = [u, v]. We let Hπ be the Hilbert space completion of the
quotient. The preceding paragraph implies that there is a unique bounded representation
π : A → B(Hπ) that extends π0. Finally let ξ ∈ H. We will prove that the net (eλ ⊗ ξ)
converges to an element of Hπ that we denote by V ξ. Letting λ, µ ∈ Λ such that λ ≥ µ
we find

‖eλ ⊗ ξ − eµ ⊗ ξ‖2 = [(eλ − eµ)⊗ ξ, (eλ − eµ)⊗ ξ]
= 〈ϕ((eλ − eµ)2)ξ|ξ〉
≤ 2 〈ϕ(eλ − eµ)ξ|ξ〉 .

Since 〈ϕ(eλ)ξ|ξ〉 converges as monotone increasing and bounded (by ‖ϕ‖‖ξ‖2) net, it
follows that (eλ ⊗ ξ) is a Cauchy net and hence is convergent in Hπ. The convergence
process is linear in ξ. Moreover,

‖eλ ⊗ ξ‖2 = 〈ϕ(e2λ)ξ|ξ〉 ≤ 〈ϕ(eλ)ξ|ξ〉 ≤ ‖ϕ‖‖ξ‖2,

which shows that V ξ = limλ(eλ ⊗ ξ) is a bounded operator. Moreover, for any ξ, η ∈ H
we have

[π(x)eλ ⊗ ξ, eµ ⊗ η] = [xeλ ⊗ ξ, eµ ⊗ η]
= 〈ϕ(eµxeλ)ξ|η〉 → 〈ϕ(x)ξ|η〉 ,

because
‖eµxeλ − x‖ ≤ ‖eµ‖‖xeλ − x‖+ ‖eµx− x‖.

On the other hand from another application of the triangle inequality together with the
Cauchy-Schwarz inequality we get

|[π(x)eλ⊗ξ, eµ⊗η]− [π(x)V ξ, V η]| ≤ ‖π(x)‖‖eλ⊗ξ−V ξ‖‖eµ⊗η‖+‖π(x)V ξ‖‖V η−eµη‖

Consequently

[π(x)eλ ⊗ ξ, eµ ⊗ η]→ [π(x)V ξ, V η] = 〈V ∗π(x)V ξ|η〉 ,

This shows ϕ(x) = V ∗π(x)V for all x ∈ A.

Remark A.10. Let π : A → B(Hπ) be a representation of the C∗-algebra A. If (π(eλ))
converges strongly to the identity of B(Hπ), where (eλ) is the canonical approximate
order unit of A, then we call π an approximately unital representation of A.

Of course, the Stinespring representation is not unique. However by passing to the
so-called minimal Stinespring representation, we get a uniqueness result up to unitary
transformation. This is completely unrelated to the algebra having a unit or not. The
theorem that we are after is a correspondence between pure maps and irreducible repre-
sentations.
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About the general Weierstrass conjecture

Theorem A.11. Let A be a C∗-algebra and H a Hilbert space. If ϕ : A → B(H) is
a completely positive and bounded mapping and ϕ = V ∗πV is the minimal Stinespring
representation of ϕ, then ϕ is pure if and only if π is irreducible. (Cf. [11, Corollary
1.4.3])

Proof. We can use the minimal Stinespring representation from Theorem A.9. Then
an inspection of the proofs of [11, Lemma 1.4.1 and Theorem 1.4.2] shows that there
is only a single argument where the presence of a unit required there is used. This is
in Lemma 1.4.1, where for minimal Stinespring representations ϕi = V ∗i πiVi, i = 1,
2 such that ϕ1 ≤cp ϕ2, it is shown that a contraction T exists such that TV2 = V1

and Tπ2(x) = π1(x)T for all x ∈ A. The contraction T that is constructed in the
proof fulfills Tπ2(x)V2ξ = π1(x)V1ξ for all x ∈ A. If A has a unit, it is easily seen
that TV2 = V1 since π1 and π2 are unital. But we can easily replace the unit here:
We have Tπ2(eλ)V2ξ = π1(eλ)V1ξ for all λ, where (eλ) denotes the positive part of
the open unit Ball of A. It follows from Theorem A.9 that πi(eλ) converges strongly
to the unit of B(Hπi) for i = 1, 2. All the other parts of the proofs of [11, Lemma
1.4.1 and Theorem 1.4.2] apply verbatim without unit (using the non-unital Stinespring
representation above).

About the general Weierstrass conjecture

We will state here shortly the result of [32] that the general Weierstrass conjecture is not
related to the matrix order structure of a C∗-algebra. Rather it seems that the conjecture
is only related to the order structure, that is the Jordan structure, of the self-adjoint part
of the C∗-algebra.

Let A be a unital C∗-algebra. For a Hilbert space H we let PA(H) denote the set
of all completely positive maps from A to B(H) that are unital and pure. The general
Weierstrass conjecture is that a C∗-subalgebra B of A containing the unit and separating
the pure states must be A.

Now the main theorem of [32] is that if B separates the pure states, then B separates
also PA(H) for all Hilbert spaces H. We will give a short proof of this observation.

Proposition A.12. Let A be a unital C∗-algebra. If B ⊂ A is a C∗-subalgebra containing
the unit and separating the pure states of A, then B separates also PA(H) for all Hilbert
spaces H.

Proof. Let φ, ψ ∈ PA(H) and assume that φ(b) = ψ(b) for all b ∈ B. Obviously, 〈φ(·)ξ, ξ〉
and 〈ψ(·)ξ, ξ〉 are pure states ofA for all unit vectors ξ ∈ H. In fact, only notice that φ and
ψ correspond to irreducible representations via the minimal Stinespring representation,
since they are pure. Now, by assumption 〈φ(b)ξ, ξ〉 = 〈ψ(b)ξ, ξ〉 for all b ∈ B. Since B
separates the pure states, we obtain 〈φ(a)ξ, ξ〉 = 〈ψ(a)ξ, ξ〉 for all a ∈ A. Since ξ ∈ H is
an arbitrary unit vector it follows immediately from the polarization identity that φ = ψ,
which is the claim.

The matrix ordering of A can be described by the pure matrix states str(CS (A)).
Hence applying the last result in the special cases H = Cn for all n ∈ N indicates that
the Weierstrass conjecture isn’t related to the matrix ordering of A, since separating the
pure states implies already separating the pure matrix states (on all matrix levels).
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A. Miscellaneous

The longer proof of the last result contained in [32] also proved at the same time
that a rich C∗-subalgebra separates the pure states. However, this can also be obtained
independently in the usual way. We will provide a detailed proof after recalling the
definition of the term rich C∗-subalgebra.

Definition A.13. Let A be a C∗-algebra. A C∗-subalgebra B ⊂ A is called rich if the
following holds:

(i) If π is an irreducible ∗-homomorphism of A then π|B is an irreducible ∗-homomor-
phism of B.

(ii) If π and π′ are inequivalent and irreducible ∗-homomorphisms of A then π|B and
π′|B are inequivalent and irreducible ∗-homomorphisms of B.

Proposition A.14. Let 1 ∈ B ⊂ A. Then B separates P (A) if and only if B is a rich
C∗-subalgebra of A.

Proof. If B separates P (A) then B is a rich C∗-subalgebra of A, cf. [21, 11.1.7]. Con-
verseley, let B be a rich C∗-subalgebra of A and ψ1, ψ2 ∈ P (A) such that ψ1(b) = ψ2(b)
for all b ∈ B. By Stinespring theorem there are Hilbert spaces Hi, ∗-homomorphisms
πi : A → B(Hi) and isometries Vi : C → Hi, such that ψi(a) = V∗i πi(a)Vi for all a ∈ A
and i = 1, 2. Since ψi is pure, πi is irreducible and by assumption πi|B is irreducible.
Thus V∗i πi|BVi is a minimal Stinespring representation and because

V∗1π1(b)V1 = ψ1(b) = ψ2(b) = V∗2π2(b)V2

for all b ∈ B, the representations π1 and π2 of B are unitarily equivalent by the uniqueness
of the minimal Stinespring representation. By assumption this implies that π1 and π2 are
unitarily equivalent as representations of A. Together this means that there are unitary
operators U , Ũ : H1 → H2 such that V1 = U∗V2,

U∗π2(b)U = π1(b), b ∈ B
Ũ∗π2(a)Ũ = π1(a), a ∈ A.

We let W = UŨ∗ and see from the equations above that π2(b)W = Wπ2(b) for all b ∈ B.
Thus W ∈ π2(B)′ = C1 such that there is λ ∈ C with W = UŨ∗ = λ1. Since W is unitary
we have |λ|2 = 1. We obtain

ϕ1(a) = V∗1π1(a)V1 = V∗1U
∗Uπ1(a)U

∗UV1

= V∗2Wπ2(a)W
∗V2

= |λ|2V∗2π2(a)V2 = ϕ2(a).

This shows the claim.

106



List of Symbols

A(K) m-affine maps on K 10

Ab(K) bounded m-affine maps on K 10

A(K) continuous m-affine maps on K 11

amco(Y ) absolutely m-convex hull of Y 14

B3 closed unit ball of R3 79

B (together with OB) facial 3-balls, see [6, Def. 11.48] 91

Ball(V ) (closed) unit ball of V 15

B(H) bounded operators on Hilbert space H 4

C complex numbers 1

Cn vector space C× · · · × C 9

CSσ(M) normal m-state space of dual operator systemM 21

CE

u (X) uniformly continuous equivariant maps on X 47

CE(X) continuous equivariant maps on X 47

conv(Y ) convex hull of Y 14

CP(V,W ) completely positive maps 2

CQ(Y ) quasi matrix states of Y 6

CS (X) matrix states of X 6

E abelian points 86

{ε1, . . . , εn} standard basis of Cn 45

ex(C) extreme points of convex set C 7

FE

b (X) bounded equivariant maps on X 47

FE(X) equivariant maps on X 47

face(x1, x2) smallest face containing x1 and x2 80

ξ � η one dimensional trace class operator 64

K set of the m-equivalence classes { [x] | x ∈ X } 66
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List of Symbols

linF linear hull of the set F 26

mext(K) matrix extreme points of K 8

Mn(V ) Mn,n(V ) 1

mco(Y ) m-convex hull of Y 7

N natural numbers 1

OB oriented facial 3-balls, see [6, Def. 11.48] 91

p′ projection p′ = 1− p 67

Param(K1) see [6, Def. 11.47] or [7, §. 7] 91

R, R+ real, and positive real, numbers 2

rtr transpose matrix of r 1

σ-mco(X) σ-matrix convex hull of X 74

spanF norm closure of the linear hull of F 9

str(K) structural elements of K 7

T (H) trace class operators on Hilbert space H 64

U(x) unitary equivalence class of x 7

uxy isometry transforming y into x 47

W= norm closure of W 77

[x] matricial equivalence class of x 45

dxe compressions of x 58

X− (weak) closure of X 47

x a y matricial relation 44

x ⊥ y x and y are matrix orthogonal 44

y < x if x = u∗xyyuxy 44

Y ⊥ m-orthogonal complement of the matrix set Y 44
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[52] Sakai, Shôichirô, C∗-algebras and W ∗-algebras, Ergebnisse der Mathematik 60,
Springer-Verlag, New York (1971).
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