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Abstract

By Beurling’s theorem, the orthogonal projection onto a multiplier invariant

subspace M of the Hardy space H2(D) over the complex unit disk can be

represented as PM = MφM
∗
φ , where φ is a suitable inner function. This re-

sult essentially remains true for arbitrary Nevanlinna-Pick spaces but fails in

more general settings such as the Bergman space. We therefore introduce the

notion of Beurling decomposability of subspaces: An invariant subspace M

of a reproducing kernel space H is called Beurling decomposable if there ex-

ist (operator-valued) multipliers φ1, φ2 such that PM = Mφ1M
∗
φ1 −Mφ2M

∗
φ2

and M = ranMφ1 . Our aim is to characterize Beurling-decomposable sub-

spaces by means of the core function and the core operator. More precisely,

an invariant subspace M of H is Beurling decomposable precisely if its core

function induces a completely bounded Schur multiplication on B(H), de-

fined in an appropriate way. These Schur multiplications turn out to be

(M(H),M(H)
op

)-module homomorphisms on B(H) (where M(H) denotes

the multiplier algebra of H). This allows us, in formal analogy to the case of

classical Schur multipliers and to the study of multipliers of the Fourier alge-

bra A(G), to make use of the representation theory for completely bounded

module homomorphisms. As an application, we show that, for the standard

reproducing kernel Hilbert spaces over bounded symmetric domains, every

finite-codimensional submodule M is Beurling decomposable and, in many

concrete situations, can be represented as M =
Pr

i=1 piH with suitable poly-

nomials pi. We thus extend well-known results of Ahern and Clark, Axler and

Bourdon and Guo. Furthermore, we prove that, in vector-valued Hardy spaces

over bounded symmetric domains, defect functions of Beurling decomposable

subspaces have boundary values almost everywhere on the Shilov boundary of

D and, moreover, that these boundary values are projections of constant rank.

This is a complete generalization of results of Guo and of Greene, Richter and

Sundberg. Finally, we characterize the Beurling decomposable subspaces of

the Bergman space L2
a(D). As a byproduct of the techiques developed in this

paper, we obtain a new proof of the ’Wandering Subspace Theorem’ for the

Bergman space.





Abstract

Eine mögliche Formulierung des Satzes von Beurling für den Hardyraum

H2(D) besagt, dass die Orthogonalprojektion PM auf jeden invarianten Teil-

raumM vonH2(D) vermöge eines geeigneten MultiplikationsoperatorsMφ als

PM = MφM
∗
φ faktorisiert werden kann. Läßt man an dieser Stelle vektorwer-

tige Multiplier φ zu, so charakterisiert diese Faktorisierungseigenschaft genau

die Klasse der Nevanlinna-Pick-Räume. In der vorliegenden Arbeit werden

allgemeiner invariante TeilräumeM funktionaler Hilberträume untersucht, für

die mit geeigneten operatorwertigen Multipliern PM = Mφ1M
∗
φ1 −Mφ2M

∗
φ2

und zusätzlich M = ranMφ1 gilt (die sogenannten Beurling-zerlegbaren Teil-

räume). Es stellt sich heraus, dass im allgemeinen zwar nicht alle invarianten

Teilräume Beurling-zerlegbar sind, aber in den meisten praktischen Fällen alle

endlich kodimensionalen Teilräume Beurling-zerlegbar sind. Dieses Ergebnis

führt in sehr allgemeinen Situationen zu einer Lösung des Gleason-Problems

und zu Verallgemeinerungen von bekannten Resultaten von Guo, von Ahern

und Clark und von Axler und Bourdon. Ein weiteres Hauptresultat dieser

Arbeit besagt, dass über die von Guo betrachtete ’core function’ ein enger

Zusammenhang zwischen Beurling-zerlegbaren Teilräumen und einer verall-

gemeinerten Form von Schur-Multipliern besteht. Das Konzept der Beurling-

Zerlegbarkeit ermöglicht es uns außerdem, Resultate von Guo und von Greene,

Richter und Sundberg über das Randwertverhalten von ’defect functions’

in Hardyräumen zu verallgemeinern. Abschließend wird das Phänomen der

Beurling-Zerlegbarkeit in der Situation des Bergmanraumes L2
a(D) diskutiert.

Die im Verlauf der Arbeit entwickelten Techniken führen zu einem neuen

und elementaren Beweis des von Aleman, Richter und Sundberg bewiesenen

’Wandering Subspace’-Theorems für den Bergmanraum.





Zusammenfassung

Der Satz von Beurling in seiner klassischen Form besagt, dass für jeden inva-

rianten Teilraum M des Hardyraumes H2(D) eine innere Funktion φ existiert,

so dass die Orthogonalprojektion PM auf M als PM = MφM
∗
φ faktorisiert

werden kann. Ähnliche Ergebnisse gelten für den Arvesonraum H(Bd) über

der komplexen Kugel bzw. für beliebige Nevanlinna-Pick-Räume. Über all-

gemeineren Räumen wie dem Bergmanraum zeigen einfachste Beispiele, dass

der Satz von Beurling in dieser Form nicht gelten kann. Da also im allge-

meinen die Darstellbarkeit von PM als PM = MφM
∗
φ (mit einem operatorwer-

tigen Multiplier φ) eine zu starke Forderung zu sein scheint, betrachten wir in

der vorliegenden Arbeit Teilräume M von funktionalen Hilberträumen H, die

einer schwächeren Darstellungsbedingung genügen, die sogenannten Beurling-

zerlegbaren Teilräume. Ein Teilraum M eines funktionalen Hilbertraumes H
heißt hierbei Beurling-zerlegbar, wenn operatorwertige Multiplier φ1, φ2 exi-

stieren, so dass PM = Mφ1M
∗
φ1 −Mφ2M

∗
φ2 und M = ranMφ1 gilt. Solche

Teilräume sind offenbar Multiplier-invariant, aber, wie sich herausstellt, sind

im allgemeinen nicht alle invarianten Teilräume Beurling-zerlegbar. Nichts-

destotrotz ist die Klasse der Beurling-zerlegbaren Teilräume in den prakti-

schen Beispielen viel größer als die Klasse der Teilräume, deren Orthogonal-

projektion eine Darstellung der Form PM = MφM
∗
φ besitzt.

Das Hauptziel dieser Arbeit ist es nun, Charakterisierungen Beurling-zerleg-

barer Teilräume zu entwickeln. Das erste Ergebnis in dieser Richtung be-

sagt, dass unter gewissen Voraussetzungen an den zugrundeliegenden Raum

H ein invarianter Teilraum genau dann Beurling-zerlegbar ist, wenn seine ’core

function’ GM eine Darstellung GM (z, w) = φ1(z)φ1(w)∗ − φ2(z)φ2(w)∗ mit

Multipliern φ1, φ2 besitzt, oder, äquivalent dazu, als GM (z, w) = φ(z)ψ(w)∗

mit Multipliern φ, ψ faktorisiert werden kann. Das motiviert die allgemeinere

Frage, welche beliebigen Kerne G auf diese Art faktorisiert werden können. Es

stellt sich nun heraus, dass diese Kerne G genau als vollständig beschränkte

punktweise Multiplier einer kanonisch mit B(H) assoziierten C∗-Algebra von

Kernen auftreten. Als Spezialfall beinhaltet dieses Ergebnis große Teile der

Theorie der klassischen Schurmultiplikationen über endlichen und unendlichen

Matrizen.

Neben dieser allgemeinen Beschreibung Beurling-zerlegbarer Teilräume ist es

möglich, für spezielle Klassen von invarianten Teilräumen, wie etwa endlich-

kodimensionale Teilräume und Teilräume endlichen Ranges, sehr viel konkre-

tere Charakterisierungen zu geben. Ein weiteres Hauptresultat der vorliegen-

den Arbeit besagt, dass für viele analytische Hilbertmoduln alle endlichkodi-

mensionalen Untermoduln Beurling-zerlegbar sind. Insbesondere gilt dies für

die natürlichen funktionalen Hilberträume über beschränkten symmetrischen

Gebieten. Dies erlaubt es uns, in vielen Situationen das wesentliche rechte

Spektrum des Multiplikationstupels Mz zu berechnen, was dann einerseits

sofort die Lösbarkeit des Gleason-Problems impliziert und andererseits zeigt,



dass die endlichkodimensionalen Untermoduln der betreffenden Räume genau

die Teilräume von der Form M =
Pr

i=1 piH (mit geeigneten Polynomen pi)

sind. Resultate dieser Art wurden in Spezialfällen von Ahern und Clark, von

Axler und Bourdon sowie von Guo bewiesen.

Als weitere Anwendung zeigen wir, dass in den Hardyräumen über beschränk-

ten symmetrischen Gebieten die Defektfunktion DM eines Beurling-zerlegba-

ren TeilraumesM fast überall auf dem Shilovrand Randwerte besitzt und dass

diese Randwerte fast überall Orthogonalprojektionen von konstantem Rang

sind. Dieses Ergebnis verallgemeinert gleichzeitig Resultate von Guo und von

Greene, Richter und Sundberg.

Schlussendlich charakterisieren wir die Beurling-zerlegbaren Teilräume M des

Bergmanraumes L2
a(D) anhand ihrer ’extremal function’ gM . Es stellt sich

heraus, dass ein Teilraum M von L2
a(D) genau dann Beurling-zerlegbar ist,

wenn gM beschränkt ist. Diese Erkenntnis erlaubt es uns insbesondere, Bei-

spiele Beurling-zerlegbarer Teilräume von unendlicher Kodimension anzuge-

ben. Die im Verlauf der Arbeit und insbesondere bei der Behandlung des

Bergmanraumes entwickelten Techniken liefern außerdem einen neuen und ele-

mentaren Beweis des ’Wandering Subspace’- Theorems, welches ursprünglich

von Aleman, Richter und Sundberg bewiesen wurde.
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Introduction

One of the central problems of modern functional analysis is to explore the invariant

subspace lattice of single operators or of classes of operators on Hilbert spaces. The

discovery of the Jordan canonical form of matrices exhaustively solved this problem

for operators on finite-dimensional Hilbert spaces, and the theory of spectral mea-

sures, exhibited in the middle of the last century, opened the road to understanding

the invariant subspace lattice of normal operators. Until today, the probably best-

understood operator which does not belong to the classes mentioned above is the

Hardy shift, that is the operator of multiplication with the coordinate function

Mz : H2(D) → H2(D) , Mzf = z · f

defined on the Hardy space H2(D) over the complex unit disk. The invariant sub-

space lattice of the Hardy shift is completely described by Beurling’s famous theorem

[20], which can be stated in the following three equivalent formulations:

Theorem (Beurling). Suppose that M is an invariant subspace of H2(D) (this

means by definition that M is closed and invariant for the Hardy shift Mz).

(a) There exists an inner function η on D such that M = η ·H2(D) holds.

(b) There exists a bounded holomorphic function η such that the orthogonal pro-

jection PM of H2(D) onto M admits a factorization PM = MηM
∗
η (where

Mη : H2(D) → H2(D) , f 7→ η · f , denotes the multiplication operator with

symbol η).

(c) [M 	 z ·M ] = M (where [Y ] denotes the smallest invariant subspace of H2(D)

containing a given subset Y of H2(D)).

After Beurling’s result appeared in the late 1940’s, the question arose which of the

versions presented above remain true if the operator Mz is considered on different

spaces of holomorphic functions such as the Bergman space L2
a(D). It soon turned

out that the corresponding statements (a) and (b) must fail in the Bergman space.

For if M is an invariant (that is, Mz-invariant) subspace of L2
a(D), then both (a)

and (b) would imply that M contains bounded holomorphic functions and, as a
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consequence, that the common zero set of M is a Blaschke sequence. However,

there are known examples of Bergman space zero sets which are not Blaschke. A

detailed discussion of these topics can be found in Chapter 5 of this paper. A

remarkable and surprising result was exhibited in 1996 by Aleman, Richter and

Sundberg [3], who recognized that version (c) of Beurling’s theorem, known as the

wandering subspace theorem, remains valid in the Bergman space setting. More

general results were proved by Shimorin [67] and McCullough and Richter [52]. In

Corollary 5.2.5 of this paper we present a new and elementary proof of the Bergman

space version of the wandering subspace theorem.

The search for multivariable analogues of Beurling’s theorem turns out to be even

more delicate. The first problem one encounters is that there are different canonical

multivariable generalizations of the Hardy space H2(D) such as the Hardy space

H2(Bd) over the complex unit ball, the Hardy space H2(Dd) over the unit polydisk

or the symmetric Fock space H(Bd), also known as the Arveson space. As observed

by Drury [31], Müller and Vasilescu [54] and more recently by Arveson [13], the

symmetric Fock space is the ’correct’ multivariable replacement of the Hardy space

H2(D) in the dilation theory for spherical contractions. Moreover, a Beurling-type

theorem, analogous to parts (a) and (b) of the classical theorem, can be proved for

the Arveson space:

Theorem (Greene, Richter, Sundberg). Suppose that M is an invariant sub-

space of the Arveson space H(Bd) (that is, M is closed and invariant under the

multiplications Mzi by the coordinate functions). Then there exists a (possibly fi-

nite) sequence (φn)n of multipliers of H(Bd) such that PM =
∑
nMφnM

∗
φn

holds

(the series converging in the strong operator topology). Moreover, every sequence

(φn)n with this property is an inner sequence, which means by definition that the

function
∑
n |φn|2 has non-tangential limit 1 almost everywhere on the boundary of

Bd.

This result was proved by Arveson [14] in special cases and by Green, Richter and

Sundberg [39] in the general case. An example given by Rudin (see [62], p. 71)

shows that a result of this type must fail when passing to the Hardy space H2(Dd).
Therefore, the question arises which differences between the Hardy spaces and the

Arveson space are responsible for this unexpected failure of Beurling’s theorem in

H2(Bd) andH2(Dd). One answer is possibly given through the fact that the Arveson

space belongs to the class of Nevanlinna-Pick spaces. A Nevanlinna-Pick space (NP

space) over an arbitrary set X is by definition a reproducing kernel Hilbert space H
of complex-valued functions such that the reproducing kernel K of H has no zeroes

and such that 1 − 1
K is a positive definite function. It is not hard to see that, for

d ≥ 2, the Hardy spaces discussed above (and also the Bergman space over the disk)

are not of this type.

Without much effort, it is now possible to prove similar results for arbitrary NP
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spaces. The first results of this general Beurling type are due to McCullough and

Trent [53]:

Theorem. Suppose that H is an NP space and that M is an invariant subspace of

H. Then there exist a Hilbert space D and a multiplier φ : X → B(D,C) of H such

that PM = MφM
∗
φ and, in particular, M = ranMφ.

Note that in general, a closed subspace M of a reproducing kernel Hilbert space H
is called invariant if α ·M ⊂ M holds for all multipliers α of H. For the Arveson

space and also for the Hardy and Bergman spaces, this definition clearly coincides

with the previous definition of invariant subspaces.

In the sequel it was observed by Guo et al. (cf. [40] and [41]) that in an arbitrary

reproducing kernel Hilbert space H with zero-free reproducing kernel K the orthog-

onal projection PM onto an invariant subspace M can be factorized in the form

PM = MφM
∗
φ (as in the NP situation) precisely if the so-called core function

GM : X ×X → C , GM (z, w) =
KM (z, w)
K(z, w)

is positive definite. Here KM denotes the reproducing kernel of M . Therefore, the

NP space version of Beurling’s theorem could be rephrased as follows:

Theorem. Suppose that H is an NP space. Then every invariant subspace M of

GM has a positive definite core function.

It can easily be seen (cf. Proposition 3.3.9) that NP spaces are essentially the only

reproducing kernel Hilbert spaces in which all invariant subspaces possess a positive

definite core function. In fact, if D is a bounded symmetric domain in Cd (d ≥ 2),

then the prototypical invariant subspace M = {f ∈ H2(D) ; f(0) = 0} of the Hardy

space H2(D) has a non-positive definite core function. The situation is even worse

in the Bergman space L2
a(D), where no non-trivial invariant subspace has a positive

definite core function (cf. Example 3.3.10).

Now consider a reproducing kernel Hilbert spaceH with zero-free reproducing kernel

K. The core function GM of an invariant subspace M of H is positive definite

precisely if it can be written in the form GM (z, w) = φ(z)φ(w)∗ with a suitable

multiplier φ : X → B(D,C) (cf. Proposition 3.3.7). On the other hand, in non-NP

spaces, there are in general only few invariant subspaces of this type. In many

specific spaces however, there is a rich supply of invariant subspaces M whose core

function admits a decomposition

GM (z, w) = φ1(z)φ1(w)∗ − φ2(z)φ2(w)∗ (z, w ∈ X) (1)

with multipliers φi : X → B(Di,C). The last property is equivalent to the condition

that the orthogonal projection PM onto M can be written as

PM = Mφ1M
∗
φ1
−Mφ2M

∗
φ2
,
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which implies that M ⊂ ranMφ1 . If additionally ranMφ1 = M holds for some

choice of φ1 and φ2, then the space M is said to be Beurling decomposable, and

the pair (φ1, φ2) is called a Beurling decomposition of M (cf. Definition 3.3.1).

It is one of our central results (cf. Theorem 3.3.5) that invariant subspaces of

Beurling spaces whose core function can be decomposed as in (1) are automatically

Beurling decomposable. In this context, a reproducing kernel Hilbert space H of

complex-valued functions on a set X is called a Beurling space (Definition 3.1.1) if

the following conditions are fulfilled:

(i) The reproducing kernel K of H has no zeroes.

(ii) The inverse kernel 1
K admits a representation of the form

1
K(z, w)

= β(z)β(w)∗ − γ(z)γ(w)∗ (z, w ∈ X)

with suitable multipliers β : X → B(B,C) and γ : X → B(C,C).

(iii) The functions K(·, w) (w ∈ X) are multipliers of H.

We shall see in Section 3.1 that NP spaces as well as the standard reproducing

kernel Hilbert spaces over bounded symmetric domains (which of course include

the Arveson space and the Hardy or Bergman spaces discussed above) are Beurling

spaces.

Clearly it is now a mandatory task to determine which subspaces of Beurling spaces

are Beurling decomposable. First of all, it follows immediately from the definition

that every Beurling decomposable subspace contains non-trivial multipliers. Hence

the same counter-examples we used earlier to point out that there are invariant

subspaces with non-positive definite core function, now reveal that not all invariant

subspaces are Beurling decomposable. However, as a positive result, we are able to

prove that in the standard reproducing kernel Hilbert spaces over bounded symmet-

ric domains every finite-codimensional invariant subspace is automatically Beurling

decomposable (cf. Theorem 4.2.5). As a preparation of this result we exhibit the

following characterization of finite-codimensional Beurling decomposable subspaces

of arbitrary Beurling spaces (cf. Proposition 3.3.11):

Theorem. Suppose that H is a Beurling space and that M is a finite-codimensional

invariant subspace of H. Then M is Beurling decomposable if and only if M⊥

consists entirely of multipliers.

Let H be a Beurling space with reproducing kernel K. One can show that condition

(ii) from the definition of Beurling spaces ensures that, given a closed subspace M

of H, there exists a (necessarily unique) operator ∆M ∈ B(H) satisfying

GM (z, w) = 〈∆MK(·, w),K(·, z)〉 (z, w ∈ X).

6



Following common terminology, we call this operator the core operator associated

with M (see [40], [41] and also [76]). The rank of an invariant subspace M of H is

then defined as the rank of its core operator. With these definitions it is possible

to prove the following result (cf. Proposition 3.3.13):

Theorem. Suppose that H is a Beurling space and that M is a finite-rank invariant

subspace of H. Then M is Beurling decomposable if and only if ran∆M consists

entirely of multipliers.

In order to find a characterization of arbitrary Beurling decomposable subspaces,

we turn towards the more general question which kernels G : X ×X → C can be

decomposed in the form

G(z, w) = φ1(z)φ1(w)∗ − φ2(z)φ2(w)∗ (z, w ∈ X) (2)

with multipliers φi : X → B(Di,C) of H or, equivalently, can be factorized as

G(z, w) = φ(z)ψ(w)∗ (z, w ∈ X) (3)

with multpliers φ, ψ : X → B(D,C).

To answer this question, let us consider a reproducing kernel Hilbert space H with

reproducing kernel K. A kernel L : X ×X → C is called subordinate to K if there

exists a (necessarily unique) operator T ∈ B(H) such that L = ΛT , where

ΛT : X ×X → C , ΛT (z, w) = 〈TK(·, w),K(·, z)〉.

The set of all such kernels will be denoted by B(K). Then the correspondence

T ↔ ΛT between B(H) and B(K) can be used to turn B(K) into a C∗-algebra.

The concept of subordinate kernels originally appeared in [17] and is systematically

developed in Section 1.6 of this paper. A kernel G : X × X → C is called a

Schur kernel or Schur multiplier (with respect to K) if it maps B(K) into itself

by pointwise multiplication. It is not difficult to verify that the corresponding

multiplication operator

SG : B(K) → B(K) , L 7→ G · L

is automatically continuous. Note that the name ’Schur kernel’ is motivated by the

following observation: If X = {1, . . . , n} is a finite set and if K is the diagonal kernel

given by K : X ×X → C , K(i, j) = δij , then B(K) can be identified canonically

with the space of n × n-matrices. Under this identification, the pointwise product

of kernels becomes the usual Schur (or Hadamard) product of matrices, and every

kernel G : X ×X → C is a Schur kernel.

Returning to the question raised above, one observes that every kernelG that admits

a factorization of the form (3) is a Schur kernel and moreover, that the multiplication

operator SG is completely bounded. It is the main result of the second chapter that

7



the converse of this statement is true for a large class of reproducing kernel Hilbert

spaces (cf. Theorem 2.3.9):

Theorem. Let H be a reproducing kernel Hilbert space with reproducing kernel K

and suppose that the multipliers form a dense subset of H or that H is regular.

Then a kernel G : X ×X → C can be factorized as

G(z, w) = φ(z)ψ(w)∗ (z, w ∈ X)

with suitable multipliers φ, ψ : X → B(D,C) precisely if it is a Schur kernel and the

operator SG is completely bounded. Moreover, the multipliers φ, ψ can be chosen in

such a way that ‖SG‖cb = ‖Mφ‖‖Mψ‖ holds.

Note that the case of regular reproducing kernel Hilbert spaces (see Section 1.3 for an

exact definition) is not essential for the results of this paper, since the holomorphic

function spaces in which we are mainly interested always contain their multipliers as

a dense subset. However, the concept of regular reproducing kernel Hilbert spaces

allows us to cover the known representation results for classical Schur multipliers

of infinite matrices (cf. Paulsen, Corollary 8.8): An infinite matrix G defines a

contractive Schur multiplier on B(l2), realized as space of infinite matrices with

respect to the standard orthonormal basis of l2, if and only if there exist a Hilbert

space D and sequences (xn)n and (yn)n in the unit ball of D such that Gij = 〈xj , yi〉
holds for all i, j ∈ N. Clearly, this result becomes a special case of the above

theorem if one realizes the following facts: The space l2 is the reproducing kernel

Hilbert space associated with the diagonal kernel K : N × N → C , K(i, j) = δij .

Furthermore, l2 is regular in the sense of Definition 1.3.5. At this point, we note

that the multiplier algebra of l2 is l∞, which is clearly not contained (and therefore

not dense) in l2. Finally, it is well known that every Schur multiplication SG on

B(l2) is automatically completely bounded with ‖SG‖cb = ‖SG‖.

The fact that the norm and the cb-norm of classical Schur multiplications coincide,

motivates the question whether the same is true for our general Schur multipliers.

Although we conjecture that, at least for the holomorphic function spaces we are

interested in, the answer is affirmative, we are unfortunately not able to present

a proof. The problem is that in the classical case H = l2 the algebra M(H),

consisting of all multiplication operators on H, coincides with the space of diagonal

matrices and is hence a C∗-subalgebra of B(H). It is very elementary to see that

this cannot hold true for the holomorphic function spaces considered in this paper.

However, the known proofs (see for example [29], [68], [57] and [55], Chapter 8) of

the equality of norm and cb-norm of classical Schur multiplications rely heavily on

this natural C∗-structure of the multplier algebra. We note that there is another,

formally similar situation, in which the automatic complete boundedness of Schur-

type multiplication operators is known. Namely, it is proved in [22] that every

Herz-Schur multiplier S over a locally compact group is automatically completely

8



bounded with ‖S‖cb = ‖S‖. However, the proofs given there depend to a large

extent on the underlying group structure and can probably not be transferred to

our situation.

We conclude this introduction with a brief outline of this paper.

The first chapter is preliminary and provides the necessary basics from the theory

of reproducing kernel Hilbert spaces and their multipliers. Of particular interest

are Sections 1.4 and 1.5. They establish (partially known) facts about hermitian

kernels and, moreover, the connection between hermitian kernels and reproducing

kernel Krĕın spaces. Section 1.6 contains the above mentioned introduction to the

theory of subordinate kernels which was developed in [17] in the scalar case. Section

1.7 supplies the necessary material about multipliers of reproducing kernel Hilbert

spaces. We mention in particular Proposition 1.7.9, which provides a seemingly new

and purely algebraic characterization of multiplication operators.

The second chapter deals with the class of Schur kernels discussed above. Section

2.1 contains the necessary definitions and basic properties of Schur kernels. In

Section 2.3 we concentrate on completely bounded Schur multiplications. The key

tool in the proof of the main result (Theorem 2.3.9) is a representation theorem for

completely bounded normal module maps (cf. Theorem 2.3.5), which appears in

[48] in a slightly different form.

Chapter 3 can be regarded as the central part of this paper. It contains the defini-

tions of Beurling spaces and of Beurling decomposable subspaces. The main results

of this chapter are Theorem 3.3.5 and Propositions 3.3.11 and 3.3.13. It should be

remarked that, unlike the presentation in this introduction, the results of the third

chapter are formulated in a fully vector-valued context.

The fourth chapter is dedicated to the study of Beurling decomposability in the

setting of analytic Beurling modules. Analytic Beurling modules arise as a special

type of analytic Hilbert modules satisfying some very natural additional conditions.

For the definition and basic properties of analytic Hilbert modules, the reader is

referred to the book of Guo [25]. The main result of this chapter is Theorem 4.2.5,

which states that finite-codimensional submodules of analytic Beurling modules are

Beurling decomposable. It should be noted that the theory developed in this chapter

applies to the standard reproducing kernel Hilbert spaces over bounded symmetric

domains. As an application of Theorem 4.2.5, we are able to prove the following

result (cf. Proposition 4.2.6):

Theorem. Suppose that H is an analytic Beurling module over some bounded open

set D ⊂ Cd such that the inverse kernel 1
K is a polynomial in z and w. Then the

right essential spectrum σre(Mz) of the tuple Mz = (Mz1 , . . . ,Mzd) is ∂D.

This leads immediately to a supplement (Corollary 4.2.7) of the famous result of

9



Ahern and Clark (Theorem 2.2.3 in [25]):

Theorem. Suppose that H is an analytic Beurling module over D such that the

inverse kernel 1
K is a polynomial in z and w. Then the finite-codimensional sub-

modules of H are precisely the closed subspaces M of the form M =
∑r
i=1 pi · H,

where r ∈ N and p = (p1, . . . , pr) is a tuple of polynomials with Z(p) ⊂ D.

As a consequence, we deduce that Gleason’s problem can be solved for these spaces.

The fifth and final chapter explores the phenomenon of Beurling decomposability

in Hardy and Bergman spaces. Section 5.1 is devoted to the Hardy spaces H2(D)

over bounded symmetric domains. The main result (Theorem 5.1.1) of this section

describes (also in the vector-valued case) the boundary values of the defect function

and can hence be regarded as a generalization of results of Guo [40],[41] and of

Greene, Richter and Sundberg [39]. As an application we prove that every invariant

subspace of H2(D) with positive definite core function automatically has rank one

(cf. Proposition 5.1.3). This result clearly is a complete generalization of Beurling’s

classical theorem on H2(D). The main aim of Section 5.2 is to characterize the

Beurling decomposable subspaces of the Bergman space L2
a(D). It turns out (cf.

Proposition 5.2.7) that an invariant subspace M of L2
a(D) is Beurling decomposable

precisely if its extremal function gM is bounded. This allows us to present examples

of Beurling decomposable subspaces which are infinite codimensional (cf. Example

5.2.10). As mentioned above, this section contains a new and elementary proof

(Corollary 5.2.5) of the wandering subspace theorem for the Bergman space.
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1 Preliminaries and basic

constructions

The aim of this first chapter is to recall the basic concepts of the theory of reproduc-

ing kernel Hilbert spaces, which can be found in many places in the literature. In

fact, many of the stated results go back to the groundbreaking papers of Aronszajn

[11] and Schwartz [66]. We will therefore sometimes only give sketches of the proofs

or even omit the proofs entirely. Some of the presented results, including proofs,

can also be found in [16].

Unless otherwise specified, let X denote an arbitrary non-empty set.

1.1 Reproducing kernel Hilbert spaces

Definition 1.1.1. Let E be a Hilbert space. A Hilbert space H ⊂ EX is called a

reproducing kernel (Hilbert) space if the point evaluations

δz : H → E , f 7→ f(z) (z ∈ X)

are continuous.

The name ’reproducing kernel Hilbert space’ is justified by the following fundamen-

tal fact.

Proposition 1.1.2. Suppose that E and H ⊂ EX are Hilbert spaces. Then the

following are equivalent:

(i) H is a reproducing kernel Hilbert space.

(ii) There exists a function K : X ×X → B(E) such that

• the function X → E , z 7→ K(z, w)y belongs to H for all w ∈ X and

y ∈ E

• the equality

〈f(w), y〉 = 〈f,K(·, w)y〉

holds for all f ∈ H, w ∈ X and y ∈ E.

11



1 Preliminaries and basic constructions

In this case, the identity K(z, w) = δzδ
∗
w holds for all z, w ∈ X. In particular, the

function K is uniquely determined. Whenever (ei)i is an orthonormal basis of H,

then K can be written as

K(z, w) =
∑
i

ei(z)⊗ ei(w) (z, w ∈ X),

where the series converges in the weak operator topology. Furthermore, the set

{K(·, w)y ; w ∈ X, y ∈ E}

spans H topologically.

The function K associated with a reproducing kernel Hilbert space H as described

in the preceding proposition will be called the reproducing kernel of H.

Although in this preliminary chapter, we formulate all results in a fully vector-valued

context, we shall focus in the sequel mainly on scalar reproducing kernel Hilbert

spaces, that is, reproducing kernel Hilbert spaces of complex-valued functions. In

this case, the reproducing kernel is regarded as a function with values in C ' B(C).

Example 1.1.3.

(a) For a given non-empty set I, define as usual

l2(I) = {f : I → C ; ‖f‖2 =
∑
i∈I

|f(i)|2 <∞}.

The point evaluations on l2(I) are obviously continuous, and the reproducing

kernel is given by

K : I × I → C , K(i, j) = δij .

This space has the very particular property that the family (K(·, i))i∈I is an

orthonormal set in l2(I), which has far-reaching consequences as we shall see

later. In a general reproducing kernel Hilbert space H ⊂ CX with reproducing

kernel K, the set {K(·, z) ; z ∈ X} is always total in H, but almost never

orthonormal. In fact, the family (K(·, z))z∈X is orthonormal if and only if

H = l2(X).

(b) Let D be an open subset of Cd and let E be a Hilbert space. Suppose that H ⊂ ED

is a reproducing kernel space with reproducing kernel K and point evaluations

δz (z ∈ D). Then the following assertions are equivalent:

(i) H ⊂ O(D, E).

(ii) The mapping D → B(H, E) , z 7→ δz, is analytic.

(iii) The kernel K is sesquianalytic which means by definition analytic in the

first d variables and antianalytic in the last d variables (where a function

F : D → B(E) is called antianalytic if the conjugate function

F̃ : D → B(E) , F̃ (z) = F (z)∗

12



1.1 Reproducing kernel Hilbert spaces

is analytic).

In this case, H is separable whenever E is.

There is a fundamental relation between reproducing kernel Hilbert spaces and

positive definite functions. Before we recapitulate this connection, let us recall the

definition of positive definiteness.

Definition 1.1.4. Suppose that E is Hilbert space. A function K : X ×X → B(E)

is called positive definite if ∑
i,j

〈K(zi, zj)xj , xi〉 ≥ 0

for all finite sequences (zi)ni=1 in X and (xi)ni=1 in E.

A fundamental result due to Moore and Aronszajn ([11], Section I.2) shows that

there is a bijective correspondence between reproducing kernel Hilbert spaces and

positive definite functions.

Theorem 1.1.5. Suppose that E is a Hilbert space.

(a) If H ⊂ EX is a reproducing kernel Hilbert space, then the reproducing kernel K

of H is a positive definite function.

(b) If K : X ×X → B(E) is a positive definite function, then there exists a unique

reproducing kernel Hilbert space with reproducing kernel K (the reproducing

kernel Hilbert space associated with K).

A proof of this result (for the vector-valued case) can be found in [16].

Remark 1.1.6. In particular, this result includes Kolmogorov’s factorization the-

orem for positive definite functions:

If K : X ×X → B(E) is a positive definite function, then there exist a

Hilbert space H and a function φ : X → B(H, E) such that

K(z, w) = φ(z)φ(w)∗ (1.1.1)

holds for all z, w ∈ X and such that

H =
∨
{φ(z)∗x ; z ∈ X,x ∈ E}. (1.1.2)

In fact, by Proposition 1.1.2, one can simply choose H as the reproducing kernel

Hilbert space associated with K and φ(z) = δz (the point evaluation at z ∈ X).

A tuple (H, φ) consisting of a Hilbert space H and a function φ : X → B(H, E)

satisfying ( 1.1.1) will be called a (Kolmogorov) factorization of K. If in addition,

13



1 Preliminaries and basic constructions

( 1.1.2) is fulfilled, then we call (H, φ) a minimal (Kolmogorov) factorization of

K. It is easy to see that all minimal Kolmogorov factorizations of K are unitarily

equivalent in the sense that, for any two minimal Kolmogorov factorizations (H1, φ1)

and (H2, φ2), there exists a unitary U : H1 → H2 such that

Uφ1(z)∗ = φ2(z)∗

holds for all z ∈ X. Hence it makes sense to define the rank of K by setting

rankK = dimH, where (H, φ) is any minimal Kolmogorov factorization of K.

Clearly rankK equals the dimension of the reproducing kernel Hilbert space associ-

ated with K.

As a first consequence of this factorization result, we see that every positive definite

function K : X × X → B(E) satisfies the following inequality of Cauchy-Schwarz

type:

|〈K(z, w)y, x〉|2 ≤ 〈K(z, z)x, x〉〈K(w,w)y, y〉 (z, w ∈ X,x, y ∈ E).

Besides the Moore-Aronszajn result, probably the most important milestone in the

investigation of positive definite functions is a famous result of I. Schur which,

in its classical formulation, says that the entrywise product (also called Schur or

Hadamard product) of two positive semi-definite matrices is positive semi-definite

again. Actually, Schur’s result can be deduced from Kolmogorov’s factorization

theorem. Before we do so, we introduce some notations that will used throughout

the paper.

Definition 1.1.7. Suppose that E1, E2,F1,F2 are Hilbert spaces and that X,Y1, Y2

are non-empty sets.

(a) Let fi : Yi → Ei, φi : Yi → B(Ei,Fi) and Ki : Yi × Yi → B(Ei,Fi) be arbitrary

functions (i = 1, 2). We set Y = Y1 × Y2 and define the outer products

f1 ~ f2 : Y → E1 ⊗ E2 , (z1, z2) 7→ f1(z1)⊗ f2(z2),

φ1 ~ φ2 : Y → B(E1 ⊗ E2,F1 ⊗F2) , (z1, z2) 7→ φ1(z1)⊗ φ2(z2)

and

K1 ~K2 : Y × Y → B(E1 ⊗ E2,F1 ⊗F2) ,

((z1, z2), (w1, w2)) 7→ K1(z1, w1)⊗K2(z2, w2).

(b) Let fi : X → Ei, φi : X → B(Ei,Fi) and Ki : X ×X → B(Ei,Fi) be arbitrary

functions (i = 1, 2). Then the inner products are defined as

f1 ∗ f2 : X → E1 ⊗ E2 , z 7→ f1(z)⊗ f2(z)

φ1 ∗ φ2 : X → B(E1 ⊗ E2,F1 ⊗F2) , z 7→ φ1(z)⊗ φ2(z)
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1.1 Reproducing kernel Hilbert spaces

and

K1 ∗K2 : X ×X → B(E1 ⊗ E2,F1 ⊗F2) , (z, w) 7→ K1(z, w)⊗K2(z, w).

Remark 1.1.8. Suppose that E1, E2 are Hilbert spaces and that fi : X → Ei and

Ki : X × X → B(Ei) are arbitrary functions, i = 1, 2. Let D = {(z, z) ; z ∈ X}
denote the diagonal in X ×X. Then, via the bijection

X → D , z 7→ (z, z),

f1 ∗f2 is the restriction of f1 ~f2 to D, and K1 ∗K2 is the restriction of K1 ~K2 to

D ×D. It is furthermore clear that the inner products defined above coincide with

the usual pointwise product whenever E1 = C or E2 = C.

Now Schur’s result can be stated as follows.

Proposition 1.1.9. Let X,Y1, Y2 be non-empty sets and let E1, E2 be Hilbert spaces.

(a) Let K1 : Y1 × Y1 → B(E1) and K2 : Y2 × Y2 → B(E2) be positive definite

functions. Then the outer product K1 ~K2 is positive definite.

(b) Let K1 : X×X → B(E1) and K2 : X×X → B(E2) be positive definite functions.

Then is inner product K1 ∗K2 is positive definite.

Proof. In order to prove (a), let (H1, φ1) and (H2, φ2) be Kolmogorov factorizations

of K1,K2. Then the mapping

φ = φ1 ~ φ2 : Y1 × Y2 → B(H1 ⊗H2, E1 ⊗ E2)

defines a Kolmogorov factorization of K1~K2. This implies that K1~K2 is positive

definite. Part (b) follows, since K1 ∗ K2 is the restriction of the positive definite

function K1 ~K2 to the diagonal of X ×X.

We shall frequently use this result tacitly or with the comment ’Products of positive

definite functions are positive definite’.

Of particular interest among the spaces introduced in Example 1.1.3(b) are the

standard reproducing kernel spaces over irreducible bounded symmetric domains in

Cd.

Example 1.1.10. A bounded domain D ⊂ Cd is called symmetric if every two

points in D can be interchanged by a self-inverse biholomorphic automorphism of

D. A bounded symmetric domain is by definition irreducible if it is not biholomor-

phically equivalent to a product of two non-trivial bounded symmetric domains. For

15



1 Preliminaries and basic constructions

more details on bounded symmetric domains, the reader is referred to [50], [37] and

to the surveys [7] and [9].

Every irreducible bounded symmetric domain D is biholomorphically equivalent to

a so-called Cartan domain (the Harish-Chandra realization of D). Cartan domains

are always circular (which means closed under the action of the circle group) and

convex and contain the origin. In particular, every Cartan domain is the open

unit ball with respect to a suitable norm on Cd. In the sequel, when we consider

irreducible bounded symmetric domains, we shall always use their realization as a

Cartan domain.

For any Cartan domain D, let Aut(D) denote the group of biholomorphic self-maps

of D and let G denote the connected component of Aut(D) containing the identity.

Furthermore, let K ⊂ G denote the stabilizer of the origin. By Cartan’s linearity

theorem, K = G ∩GL(Cd).

Using Jordan theoretic methods, one can assign to every Cartan domain several

non-negative integer-valued invariants, namely the rank r, the characteristic multi-

plicities a and b and the genus, usually denoted by g. For the precise definitions of

these quantities, we refer to [50] or [7].

Let µ denote the Lebesgue measure on Cd, normalized such that µ(D) = 1. The

Bergman space

L2
a(D) = L2(D,µ) ∩ O(D),

endowed with the relative inner product of L2(D,µ), is a reproducing kernel Hilbert

space. This is true for every bounded open set D ⊂ Cd.

If D is a Cartan domain, then Jordan theory yields the existence of a K-invariant

polynomial h in z and w (the so-called Jordan triple determinant) such that h has

no zeroes on D and such that the reproducing kernel K of the Bergman space L2
a(D)

is of the form

K(z, w) = h(z, w)−g (z, w ∈ D).

In particular, h(z, z) > 0 for all z ∈ D and, by the symmetry of D, h(0, 0) = 1.

This implies that, for ν ∈ C, there exist a neighbourhood U of 0 and a sesquianalytic

power Kν = h−ν : U × U → C of h satisfying Kν(0, 0) = 1. Central for the theory

of function spaces on Cartan domains is a famous result of Faraut and Koranyi [37]

stating that the functions Kν possess a representation as a series

Kν : D ×D → C , Kν(z, w) =
∑
m

(ν)mKm(z, w), (1.1.3)

that is locally uniformly convergent on D × D and thus extends the power h−ν to

a sesquianalytic function on D ×D. The formula ( 1.1.3) requires of course some

more explanation: The sum ranges over all signatures m of length r, that is, all

finite sequences m = (m1, . . . ,mr) of integers satisfying m1 ≥ . . . ≥ mr ≥ 0. The
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1.1 Reproducing kernel Hilbert spaces

numbers (ν)m are the so-called generalized Pochhammer symbols, defined by

(λ)m =
r∏
j=1

mj−1∏
l=0

(
λ+ l − (j − 1)

a

2

)
, (1.1.4)

for λ ∈ C and all signatures m. From the above considerations, it is clear that the

functions Kν satisfy the functional equations

Kν ·Kµ = Kν+µ and Kρ
ν = Kρν (ν, µ ∈ C, ρ ∈ Z).

Since Kν ·K−ν = K0 = 1, the functions Kν obviously have no zeroes.

Now let P denote the space of polynomials, restricted to D. Then the stabilizer K

of the origin acts in a natural way on P by the assignment p 7→ p ◦ k (k ∈ K). With

respect to this action, the Peter-Weyl theorem yields a decomposition of P into a

multiplicity-free direct sum of irreducible linear subspaces P = ⊕mPm, where the

sum ranges over all signatures of length r (see [65] or [72] for details). The spaces

Pm consist of homogeneous polynomials of degree |m| =
∑r
i=1mi and hence are

finite dimensional. Endowing P with the so-called Fock inner product

〈p, q〉F =
1
πd

∫
Cd
p(z)q(z)e−|z|

2
dm(z)

(where the norm | · | on Cd and the measure m on Cd are canonically assigned to

D by its Jordan triple structure, see [7], p. 24), one obtains a natural reproducing

kernel Hilbert space structure on each of the spaces Pm. The reproducing kernels

with respect to this structure are denoted by Km. It follows from the details of the

construction that Km(kz, kw) = Km(z, w) holds for all signatures m, z, w ∈ D

and all k ∈ K. It is clear by ( 1.1.3) that then Kν(kz, kw) = Kν(z, w) holds for all

ν ∈ C, z, w ∈ D and k ∈ K.

It is proved in [37] that Kν is a positive definite function precisely if the coefficients

(ν)m are non-negative for all m. By the defining equality ( 1.1.4) of the Pochhammer

symbols, one deduces that this is the case if and only if ν is contained in the so-called

Wallach set

W = {j − 1
2

a ; j = 1, . . . , r} ∪ (
r − 1

2
a,∞).

The first set in this disjoint union is called the discrete Wallach set Wd and the

second part is called the continuous Wallach set Wc. Consequently, for ν ∈ W
there exists a unique reproducing kernel Hilbert space Hν with reproducing kernel

Kν . In the sequel, we refer to these spaces Hν as the standard reproducing kernel

Hilbert spaces on the irreducible bounded symmetric domain D. It is clear from the

Faraut-Koranyi expansion ( 1.1.3) that Hν contains the constant functions (note that

Kν(·, 0) ≡ 1). It follows from the definition of the Pochhammer symbols ( 1.1.4) that

(ν)m > 0 for all m precisely if ν ∈ Wc. Using this fact, it can be proved that Hν

contains the polynomials if and only if ν ∈ Wc and that, in this case, the polynomials

are dense in Hν . One can furthermore show that the (finite-dimensional) spaces Pm
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1 Preliminaries and basic constructions

then form an orthogonal decomposition of the Hilbert space Hν . Therefore, every

function f ∈ Hν has a unique orthogonal representation f =
∑

m fm with fm ∈ Pm

for all m, where the series converges in Hν and uniformly on compact subsets of

D. For f and g in Hν , one has

〈f, g〉ν =
∑
m

1
(ν)m

〈fm, gm〉F , (1.1.5)

where 〈·, ·〉F denotes the Fock inner product as defined above.

Among the spaces Hν , there are two classes of particular interest: For ν > g − 1,

one can show that Hν is the Bergman space with respect to the weighted measure

dµν(z) = cνh(z, z)ν−gdµ(z),

where cν is a normalizing constant. In fact, for ν = g we obtain the unweighted

Bergman space discussed above, that is, Hg = L2
a(D). The second class consists of

the Hardy-type spaces Hν , where d
r ≤ ν ≤ g−1 (note that always d

r >
r−1
2 a). These

spaces can be realized as the closure of the analytic polynomials in L2(Sν , σν), where

Sν is a subset of the topological boundary ∂D and σν is an appropriate probability

measure on Sν . In particular, S d
r

is is the full Shilov boundary of D, defined as the

smallest closed subset S of ∂D such that every function φ ∈ C(D) which is holo-

morphic on D assumes its maximum on S. One can prove that the Shilov boundary

S consists precisely of those points in ∂D having maximal Euclidean distance to

the origin (cf. [50], Theorem 6.5). Furthermore, σ = σ d
r

is the unique K-invariant

probability measure on the Shilov boundary (see [9], p. 223 for details). In the

sequel, we refer to the space H d
r

as the Hardy space H2(D) over D. It is known

(cf. [9], p.223) that the functions f ∈ H2(D) possess radial limits f∗ σ-almost

everywhere on S and that the mapping

H2(D) 7→ L2(S,σ) , f 7→ f∗

defines an isometry.

It should be stressed that for r−1
2 a < ν < d

r , the spaces Hν cannot be realized as

holomorphic subspaces of any L2, which means that there is no positive measure µ

on Cd such that

‖p‖2 =
∫

Cd
|p(z)|2 dµ(z)

holds for all polynomials p.

Finally, we focus on the special case of the unit ball Bd ⊂ Cd, which is probably the

best understood Cartan domain. It is the only Cartan domain with rank r = 1 and

has characteristic multiplicities a = 0, b = d− 1 and genus g = d+ 1. The Jordan

triple determinant of the ball is given by

h : Bd × Bd → C , h(z, w) = 1− (z, w),
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1.1 Reproducing kernel Hilbert spaces

where (·, ·) denotes the standard Euclidean inner product on Cd. Since the rank of

Bd is one, signatures have length one and the spaces Pm consist of all homogeneous

polynomials of degree m. The kernels Km are given by

Km : Bd × Bd → C , Km(z, w) =
(z, w)
m!

.

The expression for the Pochhammer symbols reduces to

(λ)m =
m−1∏
j=0

(λ+ j). (1.1.6)

Since Reh(z, w) > 0 for all z, w ∈ Bd, the powers h−ν can be defined for all ν ∈ C
by

h−ν : Bd × Bd → C , h−ν(z, w) = e−ν log h(z,w),

where log denotes the standard branch of the complex logarithm. The Faraut-

Koranyi expansion ( 1.1.3) can now be verified by a straightforward computation.

Although it is not needed in this place, we point out that the function − log h itself

is positive definite. To prove this, recall the integral representation of the standard

branch of the complex logarithm

log(z) =
∫ ∞

1

z − 1
t(t+ z − 1)

dt (Re z > 0).

Since the functions

− h(z, w)− 1
t(t+ h(z, w)− 1)

=
(z, w)

t(t− (z, w))

=
(z, w)

t2(1− (z,w)
t )

=
(z, w)
t2

∞∑
j=0

(z, w)j

tj

are positive definite for all t ≥ 1, the same is true for the integral∫ ∞

1

− h(z, w)− 1
t(t+ h(z, w)− 1)

dt = − log h(z, w).

These considerations show directly that Wd = {0} and Wc = (0,∞). Of course, the

spaces Hν on the unit ball (0 < ν <∞) contain the classical ones: For ν = d
r = d,

we regain the Hardy space H2(Bd) and, for ν = g = d + 1, Hν is the Bergman

space L2
a(Bd). The space H1 over Bd, also known as the Arveson space H(Bd), has

attracted some attention in recent years, since it triggered a remarkable progress in

the model theory for spherical contractions (cf. [13] and [54]).

The Moore-Aronszajn result establishes a link between the purely algebraic property

of positive definiteness and the topological property of a linear function space to be

a reproducing kernel Hilbert space. With this in mind, it is not surprising that those

functions f : X → E which belong to a given reproducing kernel space H ⊂ EX can

be characterized by the following positivity condition (cf. [23] or [16]).
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1 Preliminaries and basic constructions

Proposition 1.1.11. Suppose that E is a Hilbert space, that H ⊂ EX is a repro-

ducing kernel Hilbert space with reproducing kernel K and that f : X → E is an

arbitrary function. Then the following are equivalent:

(i) f belongs to H.

(ii) There exists a constant c ≥ 0 such that the mapping

X ×X → B(E) , (z, w) 7→ c2K(z, w)− f(z)⊗ f(w)

is positive definite.

In this case, ‖f‖ is the infimum of all such constants c ≥ 0. Moreover, the infimum

is achieved.

This leads to an approximation result which will be frequently used in the sequel.

Corollary 1.1.12. Suppose that E is a Hilbert space, that H ⊂ EX is a reproducing

kernel Hilbert space and that f : X → E is a function. Then the following are

equivalent:

(i) f belongs to H.

(ii) There exists a bounded sequence (fn)n in H such that (fn(z))n converges

weakly to f(z) for all z ∈ X.

(iii) There exists a bounded net (fα)α in H such that (fα(z))α converges weakly to

f(z) for all z ∈ X.

In this case,

‖f‖ ≤ lim inf
n

‖fn‖ and ‖f‖ ≤ lim inf
α

‖fα‖

holds for all sequences and nets as in (ii) and (iii), respectively.

Proof. Recall that, the limes inferior of a net (xi)i of real numbers is defined as

lim inf
i

xi = lim
j

inf{xi ; i ∈ I and i ≥ j}

and exists in R whenever the net is bounded below.

To prove the non-trivial parts of the corollary, let (fα)α∈A be a bounded net in H
coverging pointwise weakly to f . One checks that the set Ad = {α ∈ A ; ‖fα‖ < d}
is cofinal in A for every d > lim infα ‖fα‖. Thus the set (fα)α∈Ad is a subnet of

(fα)α∈Ad satisfying ‖fα‖ < d for all α ∈ Ad. It is easily verified that the function

X ×X → B(E) ; (z, w) 7→ d2K(z, w)− f(z)⊗ f(w)

is positive definite as pointwise WOT limit of the positive definite functions

X ×X → B(E) ; (z, w) 7→ d2K(z, w)− fα(z)⊗ fα(w),

which implies by Proposition 1.1.11 that f ∈ H and ‖f‖ ≤ d.
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1.2 Standard constructions with reproducing kernel Hilbert spaces

Although Corollary 1.1.12 follows immediately from Proposition 1.1.11, it could also

be deduced from the weak compactness of the unit ball in Hilbert spaces by using

the following obvious characterization of weak convergence in reproducing kernel

spaces.

Proposition 1.1.13. Suppose that E is a Hilbert space and that H ⊂ EX is a

reproducing kernel Hilbert space.

(a) A bounded net (fα)α in H converges weakly to f ∈ H if and only if (fα(z))α
converges weakly to f(z) for all z ∈ X.

(b) A sequence (fn)n in H converges weakly to f ∈ H if and only if it is bounded

and (fn(z))n converges weakly to f(z) for all z ∈ X.

1.2 Standard constructions with reproducing kernel

Hilbert spaces

1.2.1 Inflations of reproducing kernel Hilbert spaces

In Example 1.1.3(b), we introduced the class of reproducing kernel Hilbert spaces

consisting of analytic functions on some open subset D ⊂ Cd. Maybe the simplest

of these spaces is the Hardy space H2(D) on the unit disk D in C. It is commonly

known that

H2(D) = {f =
∑
n

anz
n ∈ O(D) ; ‖f‖2 =

∑
n

|an|2 <∞}

and that

K : D× D → C , K(z, w) =
1

1− zw

is the reproducing kernel of H2(D). If F is some Hilbert space, then we can consider

the F-valued Hardy space

H2
F (D) = {f =

∑
n

anz
2 ∈ O(D,F) ; ‖f‖2 =

∑
n

‖an‖2 <∞}

on D. Then H2
F (D) is in fact a reproducing kernel Hilbert space contained in

O(D,F). Its reproducing kernel has the very simple form KF = K · 1F . This

motivates the following general definition.

Definition 1.2.1. Suppose that E is a Hilbert space and that H ⊂ EX is a repro-

ducing kernel Hilbert space with reproducing kernel K. Then for any Hilbert space

F , the reproducing kernel Hilbert space HF ⊂ (E ⊗ F)X which is associated with

the positive definite function

KF : X ×X → B(E ⊗ F) , (z, w) 7→ K(z, w)⊗ 1F ,
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1 Preliminaries and basic constructions

is called the inflation of H along F . For simplicity, we shall use the abbreviations

K(n) : X ×X → B(En) and H(n) ⊂ (En)X for KCn and HCn , respectively.

Note that, using the notations introduced in Definition 1.1.7, the kernel KF is of

course the inner product of K and the constant B(F)-valued kernel with value 1F .

The following result (cf. [39], p. 314) provides an intrinsic description of inflations.

Proposition 1.2.2. Suppose that E is a Hilbert space, that H ⊂ EX is a reproducing

kernel Hilbert space with reproducing kernel K and that F is an arbitrary Hilbert

space.

(a) For x ∈ F , let px denote the projection defined by

px : E ⊗ F → E , (e⊗ f) 7→ e〈f, x〉.

For a function f : X → E ⊗F and x ∈ F , we define the slice function

fx : X → E , fx(z) = pxf(z).

Then

HF = {f : X → E ⊗F ; fx ∈ H for all x ∈ F and∑
i

‖fxi‖2 <∞ for some orthonormal basis (xi)i of F}.

Moreover,

‖f‖2 =
∑
i

‖fxi‖2

for all f ∈ HF and every orthonormal basis (xi)i of F .

(b) There is a unique isometric isomorphism j : H⊗F → HF with

j(f ⊗ x)(z) = f(z)⊗ x (z ∈ X).

(c) If F ′ is another Hilbert space, then by the associativity and symmetry of the

Hilbert space tensor product, there exist natural isometric isomorphisms

(HF )F ′ ' HF⊗F ′ ' HF ′⊗F ' (HF ′)F .

The identifications stated in parts (b) and (c) of the preceding proposition will be

used throughout this paper without further mentioning.

1.2.2 Restrictions of reproducing kernel Hilbert spaces

Let E be a Hilbert space and let H ⊂ EX be a reproducing kernel space with

reproducing kernel K. Then, for every subset Y of X, the restriction

K|Y : Y × Y → B(E) , K|Y (z, w) = K(z, w)
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1.2 Standard constructions with reproducing kernel Hilbert spaces

is positive definite again and hence the reproducing kernel of a reproducing kernel

space H|Y ⊂ EY .

The following proposition shows that the notation H|Y is in fact justified.

Proposition 1.2.3. Let E be a Hilbert space and let H ⊂ EX be a reproducing

kernel Hilbert space with reproducing kernel K. Then, for Y ⊂ X, the reproducing

kernel space H|Y associated with the restriction K|Y is given by

H|Y = {f|Y ; f ∈ H},

and the norms on H and H|Y are related by

‖g‖H|Y = inf{‖f‖H ; f|Y = g} (g ∈ H|Y ).

The restriction mapping

ρY : H → H|Y , f 7→ f|Y

is a coisometry satisfying

ρ∗YK|Y (·, z)x = K(·, z)x

for all z ∈ Y and x ∈ E.

This result is proved in [16], Theorem 1.12. It is self-evident that restrictions and

inflations of reproducing kernel Hilbert spaces interact in the expected way. That

is, if we are given a reproducing kernel Hilbert space H ⊂ EX and another Hilbert

space F , then the identity

(HF )|Y = (H|Y )F

holds.

1.2.3 Sums of reproducing kernel Hilbert spaces

Consider a Hilbert space E and reproducing kernel Hilbert spacesH1,H2 ⊂ EX with

reproducing kernels K1,K2. Then the sum K1 +K2 is a positive definite function

again and therefore the reproducing kernel of a reproducing kernel Hilbert space,

which is described by the following proposition.

Proposition 1.2.4. Let E be a Hilbert space and let H1,H2 ⊂ EX be reproducing

kernel Hilbert spaces with kernels K1,K2. Then

H = H1 +H2 = {f1 + f2 ; f1 ∈ H1 and f2 ∈ H2},

endowed with the norm

‖f‖2 = inf{‖f1‖2H1
+ ‖f2‖2H2

; f1 ∈ H1, f2 ∈ H2 and f = f1 + f2},

is the reproducing kernel Hilbert space with reproducing kernel K = K1 + K2. In

particular, both H1 and H2 are contractively embedded into H1 +H2.
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1 Preliminaries and basic constructions

A proof of this result (in the scalar case) can be found in [11], Section I.6. The

general case is verified analogously.

1.2.4 Products of reproducing kernel Hilbert spaces

In the following, we shall describe the reproducing kernel Hilbert spaces associated

with the inner and outer products of positive definite kernels introduced in Defini-

tion 1.1.7. The scalar versions of the following results appear in [11], Section I.8.

The proofs given there apply to the vector-valued situation without major changes.

Proposition 1.2.5. Suppose that Y1, Y2 are non-empty sets, that E1, E2 are Hilbert

spaces and that Hi ⊂ EYii , i = 1, 2, are reproducing kernel Hilbert spaces with

reproducing kernels K1,K2. Write Y = Y1 × Y2. The reproducing kernel Hilbert

space associated with the positive definite kernel K1 ~K2 is called the outer product

of H1 and H2 and is denoted by H1 ~H2. There exists a unitary mapping

U : H1 ⊗H2 → H1 ~H2 with U(f1 ⊗ f2) = f1 ~ f2.

In particular, the functions of the form f1 ~ f2, where f1 ∈ H1 and f2 ∈ H2, are

total in H1 ~H2.

The prototypical example for such a product is the Hardy space H2(Dd) over the

unit polydisk in Cd. It is the d-fold outer product of the Hardy space H2(D) over

the unit disk in C. We turn now to the second type of product.

Proposition 1.2.6. Suppose that E1, E2 are Hilbert spaces and that H1 ⊂ EX1 and

H2 ⊂ EX2 are reproducing kernel Hilbert spaces with reproducing kernels K1,K2.

Then the reproducing kernel Hilbert space associated with the positive definite kernel

K1 ∗K2 is called the inner product of H1 and H2 and is denoted by H1 ∗H2. There

exists a coisometry

V : H1 ⊗H2 → H1 ∗ H2 with V (f1 ⊗ f2) = f1 ∗ f2.

In particular, the functions of the form f1 ∗ f2, where f1 ∈ H1 and f2 ∈ H2, form

a total subset of H1 ∗ H2.

In fact, these assertions all become clear, if one realizes thatH1∗H2 is the restriction

of H1 ~H2 to the diagonal {(z, z) ; z ∈ X} ⊂ X ×X.

Maybe the simplest example of an inner product is the Bergman space L2
a(D) over

the complex unit disk. It is well known that the reproducing kernel of the Bergman

space is given by

K : D× D → C , (z, w) 7→
(

1
1− zw

)2

,

which means that L2
a(D) = H2(D) ∗H2(D) is the inner product of the Hardy space

with itself.
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1.3 Non-degenerate and regular reproducing kernel Hilbert spaces

1.3 Non-degenerate and regular reproducing kernel

Hilbert spaces

In practice, one sometimes has to deal with scalar-valued reproducing kernel Hilbert

spaces having a common zero point. This usually leads to (at least technical)

difficulties. In order to avoid these problems, results are often formulated supposing

the absence of common zero points. It is easily seen that, in the scalar case, a

reproducing kernel Hilbert space does not have common zeroes if and only if its

reproducing kernel does not vanish anywhere on the diagonal. We now introduce

the concept of non-degenerate reproducing kernel Hilbert spaces, which generalizes

this condition to the setting of vector-valued reproducing kernel Hilbert spaces.

Definition 1.3.1. Suppose that E is a Hilbert space. A reproducing kernel Hilbert

space H ⊂ EX is called non-degenerate if the point evaluations δz are onto for all

z ∈ X.

Proposition 1.3.2. Suppose that E is a Hilbert space and that H ⊂ EX is a re-

producing kernel Hilbert space with reproducing kernel K and point evaluations δz
(z ∈ X). Then the following are equivalent:

(i) H is non-degenerate.

(ii) For all z ∈ X, the point evaluation δz has a right inverse iz ∈ B(E ,H).

(iii) K(z, z) is invertible for all z ∈ X.

In particular, if H contains the constant functions, then H is non-degenerate. Fur-

thermore, inflations and restrictions of non-degenerate reproducing kernel Hilbert

spaces are non-degenerate again.

Proof. The equivalence of (i) and (ii) is clear by the definition. If K(z, z) is invert-

ible, then obviously

iz : E → H , iz = δ∗zK(z, z)−1

is a right inverse for δz. Finally, suppose that (i) holds. If δz is onto, then δ∗z is one-

to-one and has closed range ran δ∗z = (ker δz)⊥. Hence K(z, z) = δzδ
∗
z is invertible.

The remaining assertions are obvious.

Remark 1.3.3. Suppose that E is a Hilbert space and that H ⊂ EX is a reproducing

kernel Hilbert space with reproducing kernel K.

(a) If H contains the constant functions, then

i : E → H , x 7→ x,
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1 Preliminaries and basic constructions

mapping x ∈ E to the constant function x, is easily seen to be bounded by

the closed graph theorem. It is a natural common right inverse for all point

evaluations δz (z ∈ X).

(b) It is not hard to prove (using the Cauchy-Schwarz inequality for K) that H
has no common zeroes if and only if K(z, z) 6= 0 for all z ∈ X. Hence, if H is

non-degenerate, then it has no common zeroes. The converse is false in general,

although it is true if H is the inflation of some scalar reproducing kernel space.

Example 1.3.4. Recall that a positive definite function K : X ×X → C is called

a Nevanlinna-Pick kernel (shortly NP kernel) if it has no zeroes and if the function

1− 1
K is positive definite as well. The reproducing kernel Hilbert space H associated

with K is then called a Nevanlinna-Pick space (NP space, for short). The denotation

’Nevanlinnna-Pick space’ originates in the fact that these spaces allow a solution of

a generalized Nevanlinna-Pick interpolation problem (cf. [59], and [16] for a detailed

treatment of NP spaces). Prototypical Nevanlinna-Pick spaces are the Hardy space

H2(D) over the unit disk in C and, more generally, the Arveson space H(Bd) over

the unit ball in Cd. Since for any NP kernel K, the function

X ×X → C , (z, w) 7→ K(z, w)− 1 = K(z, w)(1− 1
K(z, w)

)

is positive definite by Schur’s lemma (Proposition 1.1.9), the constant function 1

belongs to the associated kernel space H by Proposition 1.1.11. Therefore every NP

space is non-degenerate.

The defining property of non-degenerate reproducing kernel Hilbert spaces actually

is a kind of interpolation condition: For every pair (z, x) consisting of a point

z ∈ X and a vector x ∈ E , there exists a function f ∈ H with f(z) = x. A natural

strengthening of this property is the concept of regular reproducing kernel Hilbert

spaces.

Definition 1.3.5. Suppose that E is a Hilbert space. A reproducing kernel Hilbert

space H ⊂ EX is called regular if, for every finite family of pairwise distinct points

z1, . . . , zn ∈ X and any choice of vectors x1, . . . , xn ∈ E, there exists a function

f ∈ H such that f(zi) = xi holds for all i = 1, . . . , n.

Proposition 1.3.6. Suppose that E is a Hilbert space and that H ⊂ EX is a re-

producing kernel Hilbert space with reproducing kernel K. Then the following are

equivalent:

(i) H is regular.

(ii) For all finite subsets Y of X, the equality H|Y = EY holds.

(iii) For every finite family of pairwise distinct points z1, . . . , zn ∈ X, the operator

matrix [K(zi, zj)] ∈ B(En) is invertible.

26



1.4 The cone of positive definite kernels

Inflations and restrictions of regular spaces are again regular.

Proof. The equivalence of (i) and (ii) follows by Proposition 1.2.3, since elements

of H|Y are exactly the restrictions of functions in H. To see the equivalence of (i)

and (iii), note that for any finite subset Y = {z1, . . . , zn} of X, the operator matrix

κY = [K(zi, zj)] ∈ B(En) is invertible if and only if the operator

δY : H → En , f 7→ (f(zi))i

is onto since κY = δY δ
∗
Y .

Example 1.3.7. If D is an open subset of Cd and H ⊂ O(D) is a reproducing

kernel Hilbert space containing the polynomials, then H is obviously regular.

The remainder of this section is devoted to the study of regularity of scalar repro-

ducing kernel Hilbert spaces.

Proposition 1.3.8. Suppose that H ⊂ CX is a reproducing kernel Hilbert space with

reproducing kernel K. Then H is regular if and only if the family {K(·, z) ; z ∈ X}
is linearly independent in H.

Proof. Suppose that H is regular and choose some subset Y = {z1, . . . , zn} of X.

Then H|Y = CY is an n-dimensional linear space. Since it is spanned by the

elements K|Y (·, z1), . . . ,K|Y (·, zn), they are linearly independent in H|Y . Letting

ρY : H → H|Y the restriction mapping, it follows that K(·, z1), . . . ,K(·, zn) are

linearly independent in H, since ρYK(·, zi) = K|Y (·, zi) holds for all i = 1, . . . , n.

Conversely, suppose that the family {K(·, z) ; z ∈ X} is linearly independent in H
and fix some subset Y = {z1, . . . , zn} of X. Since ρ∗YK|Y (·, zi) = K(·, zi) holds for

all i = 1, . . . , n, it follows at once that the functions K|Y (·, z1), . . . ,K|Y (·, zn) are

linearly independent in H|Y and hence that H|Y = CY by equality of dimensions.

1.4 The cone of positive definite kernels

Again, let X denote some non-empty set. Adapting common terminology, every

function K : X ×X → B(E) (where E is a Hilbert space) is called a kernel on X.

Definition 1.4.1. Suppose that E is a Hilbert space.

(a) A kernel K : X×X → B(E) is called a positive kernel if it is a positive definite

function.
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1 Preliminaries and basic constructions

(b) The adjoint of a kernel K : X ×X → B(E) is defined as

K∗ : X ×X → B(E) , K∗(z, w) = K(w, z)∗.

We refer to the operation K 7→ K∗ as the natural involution of kernels. K is

called hermitian (or self-adjoint) if K = K∗. The real and imaginary parts of

K are defined as

ReK =
1
2
(K +K∗) and ImK =

1
2i

(K −K∗).

(c) If S is a subspace of B(E)X×X , then S+ denotes the set of all positive kernels

in S , and Sh denotes the set of all hermitian kernels in S .

Remark 1.4.2. Suppose that E is a Hilbert space.

(a) Obviously, every positive kernel K : X ×X → B(E) is hermitian. To see this,

choose a Kolmogorov factorization (H, φ) of K, that is, a pair of a Hilbert space

H and a function φ : X → B(H, E) with

K(z, w) = φ(z)φ(w)∗ (z, w ∈ X).

Then

K(w, z)∗ = (φ(w)φ(z)∗)∗ = φ(z)φ(w)∗ = K(z, w) (z, w ∈ X),

which proves the self-adjointness of K.

(b) Obviously, the real and imaginary parts of a kernel K : X × X → B(E) are

hermitian with K = ReK+ i ImK. If S ⊂ B(E)X×X is a self-adjoint subspace

(that is, closed under involution), then S is closed under the forming of real

and imaginary parts and S = Sh + iSh.

(c) The set of all positive kernels clearly is a pointed salient convex cone in the

linear space B(E)X×X , that is,

(B(E)X×X)+ ∩ −(B(E)X×X)+ = {0}.

The set of all hermitian kernels is a real linear subspace of B(E)X×X .

(d) Both the cone of positive kernels and the real linear space of hermitian kernels

are closed in B(E)X×X with respect to the topology of pointwise WOT conver-

gence, that is, the locally convex topology induced by the seminorms

B(E)X×X → [0,∞) , K 7→ |〈K(z, w)y, x〉| (z, w ∈ X,x, y ∈ E).

The fact that the positive kernels form a pointed salient convex cone yields a natural

partial ordering on B(E)X×X .
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1.4 The cone of positive definite kernels

Definition 1.4.3. Suppose that E is a Hilbert space. Given K1,K2 : X×X → B(E),

we write K1 ≤ K2 (K2 ≥ K1, resepectively) to indicate that K2 −K1 is a positive

kernel.

The restriction of this ordering to the set of positive kernels corresponds to the

inclusion ordering of the associated reproducing kernel Hilbert spaces.

Lemma 1.4.4. Suppose that E is a Hilbert space and that H1,H2 ⊂ EX are repro-

ducing kernel Hilbert spaces with reproducing kernels K1,K2. Then the following

are equivalent:

(i) K1 ≤ K2.

(ii) H1 ⊂ H2 and the inclusion mapping i : H1 ↪→ H2 is contractive.

Proof. Suppose that (i) holds and choose f ∈ H1 with ‖f‖H1 = 1. By Proposition

1.1.11, the kernel

F1 : X ×X → B(E) , (z, w) 7→ K1(z, w)− f(z)⊗ f(w)

is positive. But then also the kernel

F2 : X ×X → B(E) , (z, w) 7→ K2(z, w)− f(z)⊗ f(w)

is positive since F2 = F1 + (K2 −K1). Another application of Proposition 1.1.11

yields that f ∈ H2 with ‖f‖H2 ≤ 1.

Conversely, if H1 is continuously included in H2 and if i denotes the inclusion

mapping, then one observes that

i∗K2(·, z)x = K1(·, z)x (z ∈ X,x ∈ E).

If in addition, i is contractive, then 1H2 − ii∗ ∈ B(H2) is positive and the identity

〈(K2 −K1)(z, w)y, x〉 = 〈(1H2 − ii∗)K2(·, w)y,K2(·, z)x〉 (z, w ∈ X,x, y ∈ E)

shows that K2 −K1 is positive.

Obviously the difference of two positive kernels is hermitian. However, the converse

of this statement is known to be false. That is, there are hermitian kernels which

cannot be written as a difference of two positive kernels. We shall see an example

at the end of this section. But there are natural examples of subspaces S of

B(E)X×X satisfying Sh = S+ − S+, and a frequent problem in applications is

to decide whether a given subspace S of B(E)X×X has this property. One of the

main objectives of this paper is to study certain kernel classes S arising in the

context of invariant subspaces of reproducing kernel Hilbert spaces with respect to

this question.
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Example 1.4.5. Let U ⊂ Cd be an open set and consider the class S ⊂ CU×U

consisting of all polynomials in z and w, restricted to U × U . We claim that every

hermitian kernel G ∈ S can be written as the difference of two positive kernels in

S . Indeed, write

G(z, w) =
∑
α,β

cα,βz
αwβ (z, w ∈ U),

where only finitely many of the coefficients cα,β are non-zero. Since G was supposed

to be hermitian and since U is open, we infer that cα,β = cβ,α holds for all α, β.

Then C = [cα,β ] is a hermitian matrix, and we obtain

G(z, w) = (C(wα)α, (zα)α) (z, w ∈ U),

where (·, ·) denotes the Euclidean inner product. Clearly, there are finite positive

matrices C1, C2, indexed by α, β such that C = C1 − C2. Setting

Gi(z, w) = (Ci(wα)α, (zα)α) (z, w ∈ U, i = 1, 2)

obviously defines positive kernels in S such that G = G1 −G2. Furthermore, since

S is closed under the natural involution of kernels, the linear span of S+ is all of

S .

If a hermitian kernel K can be written as the difference of two positive kernels

K1,K2, then K1,K2 can be chosen minimal in a certain sense.

Definition 1.4.6.

(a) Two positive kernels K1,K2 : X ×X → B(E) are called disjoint if 0 is the only

positive kernel K with K ≤ K1 and K ≤ K2.

(b) A decomposition K = K1 −K2 of a hermitian kernel K : X ×X → B(E) into

positive kernels K1,K2 is called disjoint if K1,K2 are disjoint kernels.

Every decomposition of a hermitian kernel can be replaced by a disjoint decompo-

sition.

Proposition 1.4.7. Suppose that E is a Hilbert space and that we are given two

positive kernels K1,K2 : X ×X → B(E). Then there exist disjoint positive kernels

K̃1, K̃2 : X ×X → B(E) such that

K1 −K2 = K̃1 − K̃2

and K̃1 ≤ K1, K̃2 ≤ K2.

This result is due to Schwartz [66] and was rediscovered later in the study of re-

producing Krĕın spaces (see Section 1.5 of this paper, [4], and [21] for a general

treatment of Krĕın spaces). Since we were not able to find an appropriate citation

for the case of operator-valued kernels, we include a proof.
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1.4 The cone of positive definite kernels

Proof (of Proposition 1.4.7). It suffices to show that the set

Σ(K1,K2) = {L ≥ 0 ; L ≤ K1 and L ≤ K2}

contains maximal elements. Indeed, if L0 is such a maximal element, then the

kernels K̃1 = K1 − L0 and K̃2 = K2 − L0 are clearly positive with K̃1 ≤ K1,

K̃2 ≤ K2 and

K̃1 − K̃2 = (K1 − L0)− (K2 − L0) = K1 −K2.

Furthermore, if K is a positive kernel with K ≤ K̃1 and K ≤ K̃2, then K + L0

obviously belongs to Σ(K1,K2). Since K + L0 ≥ L0, the maximality of L0 implies

K = 0. This shows the disjointness of K̃1 and K̃2.

Now the existence of maximal elements in Σ(K1,K2) follows by Zorn’s lemma if we

can prove that every chain in Σ(K1,K2) possesses an upper bound in Σ(K1,K2).

So let C be a chain in Σ(K1,K2). By Remark 1.4.2(d), it suffices to show that for

all z, w ∈ X, the net (L(z, w))L∈C has a WOT limit L1(z, w) ∈ B(E). Fix z, w ∈ X.

We claim that it is enough to show that the limit

(x, y) = lim
L∈C

〈L(z, w)x, y〉

exists for all x, y ∈ E . In fact, if this is the case, then the estimate

|〈L(z, w)x, y〉|2 ≤ 〈L(z, z)y, y〉〈L(w,w)x, x〉 (by Remark 1.1.6)

≤ 〈K1(z, z)y, y〉〈K1(w,w)x, x〉

≤ ‖K1(z, z)‖‖K1(w,w)‖‖x‖2‖y‖2 (L ∈ C, x, y ∈ E)

proves that (·, ·) is a bounded sesquilinear form on E . The existence of the WOT

limit L1(z, w) then follows by the Lax-Milgram theorem. We fix x, y ∈ E . Let L,L′

be kernels in C. Without restriction, we may assume that L ≥ L′. Then

|〈L(z, w)x, y〉 − 〈L′(z, w)x, y〉|2

= |〈(L− L′)(z, w)x, y〉|2

≤ 〈(L− L′)(z, z)y, y〉〈(L− L′)(w,w)x, x〉 (by Remark 1.1.6)

= (〈L(z, z)y, y〉 − 〈L′(z, z)y, y〉) (〈L(w,w)x, x〉 − 〈L′(w,w)x, x〉) .

Now observe, that for fixed ζ ∈ X and ξ ∈ E , the net (〈L(ζ, ζ)ξ, ξ〉)L∈C is increasing

and bounded above and thus convergent. Together with the above estimate, this

implies that the net (〈L(z, w)x, y〉)L∈C is a Cauchy net in R and hence convergent.

Example 1.4.8.

(a) It should be stressed that a hermitian kernel may have different disjoint decom-

positions. For example, consider the kernel

K : C× C → C , K(z, w) = 1− zw.
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1 Preliminaries and basic constructions

Then each of the decompositions L = L1 − L2 and L = L′1 − L′2 with

L1(z, w) = 1 and L2(z, w) = zw

and

L′1(z, w) = (
√

2− z)(
√

2− w) and L′2(z, w) = (1−
√

2z)(1−
√

2w)

is disjoint.

However, we shall see later (cf. Proposition 1.5.7) that

rankL1 = rankL′1 and rankL2 = rankL′2

holds for all disjoint decompositions L = L1 − L2 and L = L′1 − L′2 of a given

hermitian kernel L.

(b) As in Example 1.4.5, let U be some open subset of Cd and let S denote the

subclass of CU×U consisting of restrictions of polynomials in z and w to U ×U .

Let us first observe that a positive kernel G : U × U → C belongs to S if

and only if the associated reproducing kernel space G is finite-dimensional and

consists of restrictions of polynomials to U . In fact, similar considerations as in

Example 1.4.5 show that, for every kernel G ∈ S+, there exists a finite positive

semi-definite matrix C such that

G(z, w) = (C(w)α, (z)α) = (C
1
2 (w)α, C

1
2 (z)α).

This clearly induces a finite-rank Kolmogorov factorization

G(z, w) =
r∑
i=1

gi(z)gi(w) (z, w ∈ U)

with suitable polynomials g1, . . . , gr. Hence the reproducing kernel space G as-

sociated with G is finite-dimensional and, being the linear span of the functions

G(·, w) (w ∈ U), consists of polynomials. Conversely, suppose that G has finite

dimension and consists of polynomials. Let (ei)ri=1 be an orthonormal basis of

G. Since, according to Proposition 1.1.2, G can be written as

G(z, w) =
r∑
i=1

ei(z)ei(w) (z, w ∈ X),

it follows that G belongs to S .

The class S+ has the following ’completeness’ property: Whenever G0 belongs

to S+ and G : U × U → C is an arbitrary positive kernel with G ≤ G0, then

G ∈ S+. In fact, let G and G0 denote the associated reproducing kernel spaces.

By Lemma 1.4.4, G is contained in G0 which is, as seen above, finite dimensional

and consists of polynomials. The same is then true for G, being a subspace of

G0. By the preceding discussion, G ∈ S+.
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1.4 The cone of positive definite kernels

Therefore, Proposition 1.4.7 and Example 1.4.5 yield that every hermitian ker-

nel G ∈ S can be written as G = G1 − G2, where G1, G2 are positive disjoint

kernels in S .

The fact that two positive kernels are disjoint can also be expressed in terms of the

associated reproducing kernel spaces.

Proposition 1.4.9. Suppose that E is a Hilbert space, that H1,H2 ⊂ EX are repro-

ducing kernel Hilbert spaces with reproducing kernels K1,K2. Then the following

are equivalent:

(i) K1 and K2 are disjoint.

(ii) H1 and H2 have trivial intersection, that is, H1 ∩H2 = {0}.

Proof. Suppose that (i) holds. We endow the intersection H1 ∩H2 with the norm

‖f‖2 = ‖f‖2H1
+ ‖f‖2H2

(f ∈ H1 ∩H2).

It is easily verified that this turns H1 ∩H2 into a reproducing kernel Hilbert space,

which is contractively contained in both H1 and H2. By Lemma 1.4.4, the repro-

ducing kernel K of H1 ∩ H2 satisfies K ≤ K1 and K ≤ K2. Since K1 and K2 are

disjoint, we must have K = 0 and hence H1 ∩H2 = {0}.

To prove the opposite direction, suppose that L is a positive kernel with L ≤ K1

and L ≤ K2. By Lemma 1.4.4, the reproducing kernel Hilbert space L associated

with L is contractively included in H1 and H2. Hence by hypothesis, L = 0 and

therefore also L = 0.

We conclude this section with the announced example of a hermitian kernel which

cannot be decomposed as difference of two positive kernels. The example is essen-

tially due to L. Schwartz [66].

Example 1.4.10. We first recall some definitions from the theory of indefinite

inner products. We refer the reader to [21] for a detailed introduction to this topic.

A sesquilinear form [·, ·] on a linear space X is called an (indefinite) inner product

if [x, y] = [y, x] holds for all x, y ∈ X. An inner product is said to be non-degenerate

if the only element y ∈ X with [x, y] = 0 for all x ∈ X is y = 0. A locally convex

topology τ on X is called a majorant for [·, ·] if the sesquilinear form [·, ·] is jointly

continuous with respect to τ . This implies in particular that the linear forms [·, y]
are τ -continuous for all y ∈ X. Furthermore, τ is called an admissible majorant, if

all τ -continuous linear functionals are of this type.

We suppose now that X is a Banach space with a non-degenerate inner product [·, ·]
such that the norm topology is an admissible majorant for [·, ·] and such that the
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1 Preliminaries and basic constructions

norm of X is not equivalent to a Hilbert space norm. We show later that such a

space does exist.

In this situation, it is clear that

L : X ×X → C , L(x, y) = [x, y]

defines a hermitian kernel on X. Assume that L can be written as the difference

of two positive kernels K1,K2. By Proposition 1.4.7, we may assume that K1,K2

are disjoint. The positive kernel K = K1 + K2 is the reproducing kernel of some

reproducing kernel Hilbert space H ⊂ CX .

We claim first that the (antilinear) mapping

j : X → H , x 7→ L(·, x)

is continuous. Note that j well defined since K1(·, x) and K2(·, x) obviously belong

to H by Lemma 1.4.4. The continuity of j is then an easy consequence of the closed

graph theorem: If (xn)n converges to x in X and (L(·, xn))n converges to a function

f ∈ H, then

〈f,K(·, y)〉H = lim
n
〈L(·, xn),K(·, y)〉H

= lim
n
L(y, xn)

= lim
n

[y, xn]

= [y, x] (by the continuity of [·, ·])

= 〈L(·, x),K(·, y)〉H

holds for all y ∈ X. Hence f = L(·, x), which shows that the graph of j is closed.

Secondly, we prove that H ⊂ X∗ and that the inclusion i : H ↪→ X∗ is continuous.

If we can show that the linear subspace H0 = {L(·, y) ; y ∈ X} is dense in H,

then an application of the uniform boundedness principle shows that H consists

of continuous linear functionals on X, and the asserted coninuity of i follows by

the closed graph theorem. So suppose that 〈f, L(·, y)〉H = 0 for all y ∈ X and let

H1,H2 denote the reproducing kernel space associated with the kernels K1,K2. By

Proposition 1.4.9 and Proposition 1.2.4, H is the orthogonal sum of H1 and H2.

Write f as f = f1 + f2 with f1 ∈ H1 and f2 ∈ H2. We obtain that

f1(y)− f2(y) = 〈f1 + f2,K1(·, y)−K2(·, y)〉H = 〈f, L(·, y)〉H = 0

for all y ∈ X and hence that f1 = f2. Since H1 ∩ H2 = {0}, it follows that f = 0.

Hence H0 is in fact dense in H.

Now the hypothesis that the norm topology is an admissible majorant for [·, ·] implies

that the (antilinear) mapping

α : X → X∗ , x 7→ [·, x]
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1.5 Hermitian kernels and Krĕın spaces

is bijective and continuous and hence a homeomorphism with respect to the norm

topologies. Considering the commutative diagram

X X∗

H

-α

?

j

�
�

���

i

reveals that i and j are bijective and hence that X is isomorphic to the Hilbert space

H, in contradiction to the assumptions.

It remains to check that there exist Banach spaces X having the desired properties.

To this end, we start with a reflexive Banach space E which is not isomorphic to

a Hilbert space, such as lp(N) for 1 < p < ∞ and p 6= 2. Letting E denote the

conjugate linear version of E, we define X = E × E
∗
, endowed with the norm

‖(x, λ)‖ =
(
‖x‖2 + ‖λ‖2

) 1
2 ((x, λ) ∈ X).

Standard calculations reveal that

[·, ·] : X ×X → C , [(x, λ), (y, µ)] = λ(y) + µ(x).

defines a non-degenerate inner product on X and that the norm defined above is a

majorant for [·, ·]. Furthermore, this majorant is admissible by the reflexivity of E.

Finally, the norm on X cannot be equivalent to a Hilbert space norm, since then

the same would be true for the norm of E, which is clearly a closed subspace of X.

1.5 Hermitian kernels and Krĕın spaces

As remarked earlier, Krĕın spaces play an important role in the study of hermitian

kernels. Instead of giving a detailed introduction to the theory of Krĕın spaces,

we refer the reader to the book of Bognár [21], which contains an excellent and

self-contained survey of this topic.

Throughout this section, indefinite inner products are denoted by the symbol [·, ·],
while positive inner products are represented by 〈·, ·〉. The adjoint of an operator

T between Krĕın spaces will be denoted by T#. The positive and negative index of

a Krĕın space K will be denoted by dim+K and dim−K, respectively.

Definition 1.5.1. Let E be a Hilbert space. A Krĕın space K ⊂ EX of E-valued

functions is called a reproducing kernel Krĕın space if the point evalutions

δz : K → E , f 7→ f(z) (z ∈ X)

are continuous.
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1 Preliminaries and basic constructions

In analogy to the case of reproducing kernel Hilbert spaces, one can show the

following result.

Proposition 1.5.2. Suppose that E is a Hilbert space and that K ⊂ EX is a Krĕın

space. Then the following are equivalent:

(i) K is a reproducing kernel Krĕın space.

(ii) There exists a function L : X ×X → B(E) such that

• the function L(·, w)y belongs to K for all w ∈ X and y ∈ E

• the equality

〈f(w), y〉 = [f, L(·, w)y]

holds for all f ∈ K, w ∈ X and y ∈ E.

In this case, the identity L(z, w) = δzδ
#
w holds for all z, w ∈X. In particular, the

function L is uniquely determined and is called the reproducing kernel of K. More-

over, L is hermitian and can be written as the difference of two disjoint positive

kernels L1, L2 satisfying rankL1 = dim+K and rankL2 = dim−K.

Proof. The implication (i) to (ii) follows by setting

L : X ×X → B(E) , L(z, w) = δzδ
#
w .

Clearly, L is then a hermitian kernel with the properties required in (ii). Since [·, ·]
is non-degenerate, there can be no other function with the same properties.

Conversely, suppose that K ⊂ EX is a Krĕın space such that there exists a function

L as described in (ii). Since the Krĕın space topology of K is a Hilbert space

topology such that the inner product [·, ·] is continuous, an easy application of the

closed graph theorem shows that the point evaluations

δz : K → E , f 7→ f(z) (z ∈ X)

are continuous. Hence K is a reproducing kernel Krĕın space. Let K = L1 uL2 be a

fundamental decomposition of the Krĕın space K. Then L1 and L2 are reproducing

kernel Hilbert spaces with scalar products given by the restrictions of [·, ·] onto L1

and −[·, ·] onto L2, respectively. Let L1 and L2 denote the reproducing kernels of

L1 and L2. Because of the identity

[f, L1(·, w)y − L2(·, w)y] = [f1, L1(·, w)y]− [f2, L2(·, w)y]

= 〈f1(w), y〉+ 〈f2(w), y〉

= 〈f(w), y〉

= [f, L(·, w)y],
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1.5 Hermitian kernels and Krĕın spaces

valid for f = f1 + f2 ∈ K, w ∈ X and y ∈ E , we obtain that L = L1 − L2 is the

difference of two positive kernels. By Proposition 1.4.9, the kernels L1 and L2 are

disjoint.

Motivated by the Hilbert space setting, the question arises which hermitian kernels

are the reproducing kernel of some reproducing kernel Krĕın space. The answer is

given by the following proposition.

Proposition 1.5.3. Suppose that E is a Hilbert space and that L : X ×X → B(E)

is a hermitian kernel. Then the following are equivalent:

(i) L can be written as difference of two positive kernels.

(ii) L is the reproducing kernel of a reproducing kernel Krĕın space.

In this case, if L = L1 − L2 is a disjoint decomposition of L in positive kernels

L1, L2, and if L1,L2 ⊂ EX denote the associated reproducing kernel Hilbert spaces,

then the space K = L1 u L2, endowed with the indefinite inner product

[f1 + f2, g1 + g2] = 〈f1, g1〉 − 〈f2, g2〉 (f1, g1 ∈ L1 and f2, g2 ∈ L2),

is a reproducing kernel Krĕın space with reproducing kernel L. Furthermore, the

space K satisfies dim+K = rankL1 and dim−K = rankL2.

Proof. The implication (ii) to (i) is already proved. Conversely, Proposition 1.4.7

yields two disjoint positive kernels L1, L2 : X ×X → B(E) such that L = L1 − L2.

Letting L1,L2 denote the associated reproducing kernel Hilbert spaces, one easily

constructs a Krĕın space K = L1 u L2 with the inner product

[f1 + f2, g1 + g2] = 〈f1, g1〉 − 〈f2, g2〉 (f1, g1 ∈ L1 and f2, g2 ∈ L2).

Proposition 1.4.9 then immediately shows that this is well defined and that K is in

fact a Krĕın space. An obvious calculation reveals that L is the reproducing kernel

of K.

In contrast to the case of reproducing kernel Hilbert spaces, where every positive

kernel is the reproducing kernel of a uniquely determined reproducing kernel Hilbert

space, not every hermitian kernel is the reproducing kernel of a reproducing kernel

Krĕın space (by Example 1.4.10 and Proposition 1.5.3). Furthermore, there can

be different reproducing kernel Krĕın spaces with the same reproducing kernel as

an example given by Alpay [4] shows. But if the hermitian kernel L admits a

decomposition into positive kernels at least one of which has finite rank (cf. Remark

1.1.6), then the uniqueness of the associated reproducing kernel Krĕın space is

guaranteed. Before we prove this assertion, we introduce the following definition.
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1 Preliminaries and basic constructions

Definition 1.5.4. Let E be a Hilbert space and let L : X × X → B(E) be a

hermitian kernel. Then we define the positive (negative) rank of L, denoted by

rank+ L (rank− L), as the smallest number r ∈ N0 ∪{∞} such that every matrix of

the form

[〈L(zi, zj)xj , xi〉]ni,j=1

with n ∈ N, z1, . . . , zn ∈ X and x1, . . . , xn ∈ E has at most r positive (negative)

eigenvalues (counting multiplicity).

It is elementary to see that a hermitian kernel L is positive precisely if rank− L = 0

and that, in this case, rankL = rank+ L holds. The aim of this section is to prove

that, more generally,

rankL1 = rank+ L and rankL2 = rank− L

holds for every disjoint decomposition L = L1 − L2 of a hermitian kernel L into

positive kernels L1, L2. A first step in this direction is the following result.

Lemma 1.5.5. Let E be a Hilbert space.

(a) Suppose that L : X ×X → B(E) is a hermitian kernel and that L = L1 −L2 is

a decomposition of L into positive kernels L1, L2. Then the inequalities

rank+ L ≤ rankL1 and rank− L ≤ rankL2

hold.

(b) Suppose that K ⊂ EX is a reproducing kernel Krĕın space. If L : X×X → B(E)

denotes the reproducing kernel of K, then the inequalities

rank+ L ≤ dim+K and rank− L ≤ dim−K

hold.

Proof. We start by proving the second inequality of (a). The first one then follows

by passing from L to −L. Clearly, we may assume that r = rankL2 < ∞ and,

according to Theorem 1.4.7 and Lemma 1.4.4, that L1 and L2 are disjoint kernels.

Let K ⊂ EX denote the reproducing kernel Krĕın space formed with respect to

the decomposition L = L1 − L2 according to Proposition 1.5.3. We infer that

dim−K = rankL2 = r <∞, which means that K is a reproducing kernel Pontryagin

space in the sense of [5]. Now fix n ∈ N and choose points z1, . . . , zn ∈ X and vectors

x1, . . . , xn ∈ E . By [5], Lemma 1.1.1, the matrix

[〈L(zi, zj)xj , xi〉E ]
n
i,j=1 = [[L(·, zj)xj , L(·, zi)xi]K]ni,j=1

can have no more than r negative eigenvalues. By definition, this means that

rank− L ≤ r.

Part (b) is a direct consequence of Proposition 1.5.2 and (a).
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The following uniqueness result appears in [69] in the scalar case and in [5] in the

vector-valued setting; see also [66], Proposition 40.

Lemma 1.5.6. Suppose that E is a Hilbert space and that L : X ×X → B(E) is a

hermitian kernel. Then the following are equivalent:

(i) rank+ L <∞ (rank− L <∞).

(ii) There exists a decomposition L = L1 − L2 of L with disjoint positive kernels

L1, L2 such that rankL1 <∞ (rankL2 <∞).

In this case, there exists a uniquely determined reproducing kernel Krĕın space K
of E-valued functions admitting L as its reproducing kernel. Moreover, in this case,

the identities dim+K = rank+ L (dim−K = rank− L) hold.

In the literature, one usually treats only the case rank− L < ∞. The resulting

reproducing kernel Krĕın spaces are also known as reproducing kernel Pontryagin

spaces. But as usual, the case rank+ L < ∞ follows immediately by passing from

L to −L.

Proof (of Lemma 1.5.6). Suppose that rank− L < ∞. Then, by Theorem 1.1.3 in

[5], there exists a unique reproducing kernel Pontryagin space K with reproducing

kernel L. An inspection of the proof given in [5] reveals that dim−K = rank− L.

Condition (ii) now follows immediately by Proposition 1.5.2.

That (ii) implies (i) is clear by Lemma 1.5.5.

In order to complete the proof, we have to show that every reproducing kernel Krĕın

space K′ with reproducing kernel L automatically is a Pontryagin space. To this

end, let L = L1−L2 and L = L′1−L′2 be disjoint decompositions of L such that the

corresponding reproducing kernel Hilbert spaces L1,L2,L′1,L′2 define fundamental

decompositions for K,K′, that is,

K = L1 u L2 and K′ = L′1 u L′2.

Define r = rank− L < ∞. Then dimL2 = dim−K = rank− L = r < ∞. Note

that K = L1 + L′2 = L′1 + L2 is a positive kernel. Let H ⊂ EX denote the

associated reproducing kernel Hilbert space. By Proposition 1.2.4, we conclude

that H = L1 + L′2 = L′1 + L2. Therefore, the codimension of L′1 in H is at most

r. Since L′1 and L′2 have trivial intersection and are both included in H, we infer

that dimL′2 ≤ r. Then K′ is a Pontryagin space and, by the cited uniqueness result

from [5], K = K′.

We are now able to prove the announced main result of this section.
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Proposition 1.5.7. Suppose that E is a Hilbert space and that L : X ×X → B(E)

is a hermitian kernel. Suppose that L = L1 − L2 is a decomposition of L with

disjoint positive kernels L1, L2 and that K is a reproducing kernel Krĕın space with

reproducing kernel L. Then the identities

rank+ L = dim+K = rankL1 and rank− L = dim−K = rankL2

hold.

Proof. We show first that rank− L = rankL2. By Lemma 1.5.5, it suffices to

prove that rankL2 ≤ rank− L. Clearly, we may assume that rank− L < ∞. By

Lemma 1.5.6, there exists a uniquely determined reproducing kernel Krĕın space

L ⊂ EX with reproducing kernel L, and this space satisfies dim− L = rank− L.

Then, by Proposition 1.5.3, we conclude that dim− L = rankL2 and consequently,

that rank− L = rankL2. The assertion rank+ L = rankL1 is proved analogously or

by passing from L to −L.

Finally, letK ⊂ EX be an arbitrary reproducing kernel Krĕın space with reproducing

kernel L. By Proposition 1.5.2, there exists a disjoint decomposition L = L′1 − L′2

satisfying rankL′1 = dim+K and rankL′2 = dim−K. By the first part of the proof,

we obtain

dim+K = rankL′1 = rank+ L and dim−K = rankL′2 = rank− L.

1.6 Subordinate kernels

The intention of this section is to examine the structure of the space B(H), where

H ⊂ EX is a reproducing kernel Hilbert space. It will turn out that B(H) can

be canonically identified with a C∗-algebra consisting of B(E)-valued kernels. This

observation yields an additional structure on B(H), which is very useful in the study

of many problems concerning the underlying space H. We note that many results

of this section already appeared in [17] in the scalar case.

Definition 1.6.1. Suppose that E is Hilbert space and that K : X ×X → B(E) is

a positive kernel.

(a) A kernel L : X×X → B(E) is called subordinate to K if there exists a constant

c ≥ 0 such that the inequality

|
∑
i,j

〈L(zi, zj)yj , xi〉|2 ≤ c2
∑
i,j

〈K(zi, zj)xj , xi〉
∑
i,j

〈K(zi, zj)yj , yi〉 (1.6.1)

holds for all finite sequences (zi)ni=1 in X and (xi)ni=1, (yi)
n
i=1 in E. In this case,

we write L ≺ K. The infimum of all such c is denoted by ‖L‖K .
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(b) We write B(K) for the class of all kernels L : X ×X → B(E) with L ≺ K.

We collect some immediate consequences of this definition.

Remark 1.6.2. Suppose that E is a Hilbert space and that K : X ×X → B(E) is

a positive kernel.

(a) Let L be a kernel in B(K). Then c = ‖L‖K satisfies inequality ( 1.6.1), that is,

the infimum in the definition of ‖L‖K actually is a minimum.

(b) The set B(K) obviously is a complex linear space. Moreover, it is not hard to

check that ‖ · ‖K defines a norm on B(K).

(c) Suppose that L : X × X → B(E) is a kernel and that c ≥ 0. Then inequality

( 1.6.1) is satisfied for all finite sequences (zi)ni=1 in X and (xi)ni=1, (yi)
n
i=1 in E

if and only if

|
∑
i,j

〈L(zi, wj)yj , xi〉|2 ≤ c2
∑
i,j

〈K(zi, zj)xj , xi〉
∑
i,j

〈K(wi, wj)yj , yi〉 (1.6.2)

is satisfied for all finite sequences (zi)mi=1, (wi)
n
i=1 in X and (xi)mi=1, (yi)

n
i=1 in

E. In order to prove the non-trivial part of this claim, just consider the finite

sequences

(z̃i) = (z1, . . . , zm, w1, . . . , wn)

(x̃i) = (x1, . . . , xm, 0, . . . , 0)

(ỹi) = (0, . . . , 0, y1, . . . , yn).

This means that we could replace ( 1.6.1) by ( 1.6.2) in the above definition. In

particular, we obtain that the point evalutions

δz,w : B(K) → B(E) , L 7→ L(z, w)

are continuous. Indeed, by ( 1.6.2), we have

|〈L(z, w)y, x〉|2 ≤ ‖L‖2K〈K(z, z)x, x〉〈K(w,w)y, y〉

for all x, y ∈ E, and hence

‖L(z, w)‖ ≤ ‖L‖K‖K(z, z)‖ 1
2 ‖K(w,w‖ 1

2 .

(d) Suppose that L : X×X → B(E) is an arbitrary kernel. Then we have L ∈ B(K)

if and only if L∗ ∈ B(K). In this case, ‖L‖K = ‖L∗‖K .

(e) Suppose that L : X × X → B(E) is a hermitian kernel and that c ≥ 0.

Then inequality ( 1.6.1) is fulfilled for all finite sequences (zi)ni=1 in X and

(xi)ni=1, (yi)
n
i=1 in E if and only if

|
∑
i,j

〈L(zi, zj)xi, xj〉| ≤ c
∑
i,j

〈K(zi, zj)xj , xi〉 (1.6.3)
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holds for all finite sequences (zi)ni=1 in X and (xi)ni=1 in E. Hence, in the case

of a hermitian kernel L, we could replace ( 1.6.1) by ( 1.6.3) in the definition of

subordinate kernels.

To prove the assertion, we fix n ∈ N and a sequence (zi)ni=1 in X and write

A = (K(zi, zj))i,j and B = (L(zi, zj))i,j .

Then A ∈ B(En) is a positive and B ∈ B(En) is a self-adjoint operator. By

hypothesis, we know that

|〈Bx, x〉| ≤ c〈Ax, x〉 (1.6.4)

holds for all x ∈ En. It suffices to show that

Re 〈Bx, y〉 ≤ c 〈Ax, x〉
1
2 〈Ay, y〉

1
2 (1.6.5)

is fulfilled for all x, y ∈ En. Without restriction, we may assume that A 6= 0

(otherwise, we have B = 0 by ( 1.6.4) and the assertion is trivial). Furthermore,

it suffices to show ( 1.6.5) for x, y ∈ En with

〈Ax, x〉 6= 0 6= 〈Ay, y〉.

Indeed, since A 6= 0, it is always possible to find sequences (x(k))k and (y(k))k
in En approximating x and y such that

〈Ax(k), x(k)〉 6= 0 and 〈Ay(k), y(k)〉 6= 0

for all k ∈ N. By an obvious scaling of x, y, we may assume

〈Ax, x〉 = 1 = 〈Ay, y〉.

Then the parallelogram equality and the self-adjointness of B yield

4 Re 〈Bx, y〉 = 2〈Bx, y〉+ 2〈By, x〉

= 〈B(x+ y), (x+ y)〉 − 〈B(x− y), (x− y)〉

≤ c〈A(x+ y), (x+ y)〉+ c〈A(x− y), (x− y)〉

= 2c(〈Ax, x〉+ 〈Ay, y〉)

= 4c

= 4c〈Ax, x〉
1
2 〈Ay, y〉

1
2 ,

as desired.

(f) Suppose that L : X × X → B(E) is a positive kernel and that c ≥ 0. Then

L ∈ B(K) and ‖L‖K ≤ c if and only if L ≤ cK. This is an immediate

consequence of part ( e).

We are now in a position to state the main result of this section.
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Theorem 1.6.3. Suppose that E is a Hilbert space, that K : X × X → B(E) is

a positive kernel and that H ⊂ EX denotes the reproducing kernel Hilbert space

associated with K. For an operator T ∈ B(H), we define

ΛT : X ×X → B(E) , ΛT (z, w)x = (T (K(·, w)x)) (z),

or equivalently,

ΛT : X ×X → B(E) , ΛT (z, w) = δzTδ
∗
w.

Then the linear mapping

B(H) → B(K) , T 7→ ΛT

is an isometric isomorphism preserving involution and positivity.

If L ∈ B(K) is a kernel, then the unique operator T ∈ B(H) with ΛT = L is called

the representing operator of L.

Proof. It follows by the definition that, given an operator T ∈ B(H), the kernel ΛT
belongs to B(K) with ‖ΛT ‖K ≤ ‖T‖. This shows that the mapping

j : B(H) → B(K) , T 7→ ΛT

is well defined and contractive. Since the elements of the form K(·, w)x span the

space H topologically, the map j is injective. It is furthermore clear that

j(T )∗ = (ΛT )∗ = ΛT∗

holds for all T ∈ B(H) and that ΛT is a positive kernel if and only if T is a positive

operator.

So it remains to check that j is isometric and onto. To this end, fix some kernel

L ∈ B(K). We claim that there exists a sesquilinear form (·, ·) on H, bounded by

‖L‖K , such that

(K(·, w)y,K(·, z)x) = 〈L(z, w)y, x〉 (z, w ∈ X,x, y ∈ E).

In fact, by Remark 1.6.2(c), it follows that the sesquilinear form

(
∑
i

K(·, wi)yi,
∑
i

K(·, zi)xi) =
∑
i,j

〈L(zi, wj)yj , xi〉,

defined on the dense subspace H0 = span{K(·, z)x ; z ∈ X,x ∈ E}, is well defined

and bounded by ‖L‖K (and hence extends to the whole of H × H). By the Lax-

Milgram theorem, there exists an operator T ∈ B(H) with ‖T‖ ≤ ‖L‖K such that

〈Tf, g〉 = (f, g)

for all f, g ∈ H. In particular, ΛT = L which completes the proof.
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Corollary 1.6.4. Suppose that E is a Hilbert space, that K : X ×X → B(E) is a

positive kernel and that H ⊂ EX is the reproducing kernel Hilbert space associated

with K.

(a) For given L ∈ B(K), z ∈ X and x ∈ E, the slice function L(·, z)x belongs to H
with ‖L(·, z)x‖ ≤ ‖L‖K‖K(·, z)x‖.

(b) For L,L′ ∈ B(K), there exists a unique kernel L ◦ L′ ∈ B(K) with

〈(L ◦ L′)(z, w)y, x〉 = 〈L′(·, w)y, L∗(·, z)x〉 (z, w ∈ X,x, y ∈ E).

Endowed with the product ◦, the space B(K) (with the natural involution of

kernels) becomes a C∗-algebra and the isomorphism

B(H) → B(K) , T 7→ ΛT

is a C∗-isomorphism.

Proof. Choose T ∈ B(H) with L = ΛT . Then we have L(·, z)x = T (K(·, z)x) ∈ H.

This proves (a). To prove (b), just note that the defined product ◦ is nothing but

the product of B(H) via the identification B(H) → B(K) , T 7→ ΛT .

Remark 1.6.5. Suppose that E is a Hilbert space, that K : X × X → B(E) is a

positive kernel and that H ⊂ EX is the reproducing kernel Hilbert space associated

with K. For functions f, g : X → E, we write

f � g : X ×X → B(E) , (z, w) 7→ f(z)⊗ g(w).

(a) If f, g are elements of H, then Λf⊗g = f�g. In particular, ‖f�g‖K = ‖f‖‖g‖.

(b) In view of Proposition 1.1.11 and Remark 1.6.2( f) , it becomes clear that a

function f : X → E belongs to H if and only if the positive kernel f � f belongs

to B(K). In this case, ‖f‖2 = ‖f � f‖K , and f � f is represented by the

rank-one operator f ⊗ f .

Example 1.6.6. As in Example 1.1.3( a), we consider an index set I and the

positive kernel

K : I × I → C , K(i, j) = δij .

Obviously, B(K) is then the set of all kernels L : I × I → C such that the ma-

trix [L(i, j)] represents a bounded operator on l2(I) with respect to the standard

orthonormal basis. In particular, if I = {1, . . . , n} is a finite set, then B(K) can be

canonically identified with Mn(C), endowed with the spectral norm.

Before we draw further consequences of Theorem 1.6.3, we discuss the relation

between the cone of positive kernels in B(K) and the class of all reproducing kernel

Hilbert spaces included in H. The following proposition can be regarded as a

supplement to Lemma 1.4.4.
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Proposition 1.6.7. Let E be a Hilbert space and let K,L : X×X → B(E) be posi-

tive kernels with associated reproducing kernel Hilbert spaces H and L, respectively.

Then the following are equivalent:

(i) L ⊂ H.

(ii) L ∈ B(K).

In this case, the inclusion mapping i : L ↪→ H is continuous and ‖i‖2 = ‖L‖K .

Moreover, if T ∈ B(H) is the unique (positive) operator with L = ΛT , then we have

T = ii∗ and L = ranT
1
2 . Furthermore,

〈T 1
2 f, T

1
2 g〉L = 〈PranT f, g〉H

for all f, g ∈ H, that is, the operator

ranT → L , f 7→ T
1
2 f

is unitary.

Proof. Suppose that L ⊂ H. By the closed graph theorem, the inclusion i : L → H
is bounded. A short calculation shows that

i∗K(·, z)x = L(·, z)x (z ∈ X,x ∈ E).

Now we define T = ii∗ ∈ B(H) and obtain

〈ΛT (z, w)y, x〉 = 〈TK(·, w)y,K(·, z)x〉H = 〈L(·, w)y, L(·, z)x〉L = 〈L(z, w)y, x〉

for all z, w ∈ X and x, y ∈ E . Thus L = ΛT ∈ B(K) and ‖L‖K = ‖T‖ = ‖i‖2. If

conversely L ∈ B(K), then we have that 1
cL ≤ K for some c > 0. By Lemma 1.4.4,

the reproducing kernel Hilbert space associated with 1
cL (which coincides with L

as a set by Proposition 1.1.11) is included in H.

To prove the remaining assertions, one checks that

(T
1
2 f, T

1
2 g) = 〈PranT f, g〉 (f, g ∈ H)

is a well-defined scalar product on L′ = ranT
1
2 and that L′ actually is complete

with the induced norm and hence a Hilbert space. Fix f ∈ H, z ∈ X and x ∈ E .

The fact that L(·, z)x = TK(·, z)x belongs to L′ and the calculation

(T
1
2 f, L(·, z)x) = (T

1
2 f, TK(·, z)x)

= 〈f, T 1
2K(·, z)x〉

= 〈T 1
2 f,K(·, z)x〉

= 〈(T 1
2 f)(z), x〉

show that L′ is the reproducing kernel Hilbert space with kernel L. By uniqueness,

L = L′.
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In Example 1.4.10, we discussed the problem that, in general, not all hermitian

kernels can be written as the difference of two positive kernels. Theorem 1.6.3 now

allows us to apply spectral theory in order to prove that the class B(K) satisfies

B(K)h = B(K)+−B(K)+ and that there exists a decomposition which is canonical

in a certain sense.

Proposition 1.6.8. Suppose that E is a Hilbert space, that K : X ×X → B(E) is

a positive kernel and that H ⊂ EX is the reproducing kernel Hilbert space associated

with K.

Let L be a hermitian kernel L ∈ B(K) with representing operator T ∈ B(H). If

T = T+−T− denotes the spectral decomposition of T in positive operators, then the

positive kernels L+ = ΛT+ and L− = ΛT− are unique in B(K)+ with the property

that L = L+ − L− and L+ ◦ L− = 0 = L− ◦ L+.

The associated reproducing kernel Hilbert spaces L+,L− are orthogonal in H and,

in particular, L+ and L− are disjoint. Moreover, the equalities

rank± L = rankL± = dimL± = rankT± and rank+ L+ rank− L = rankT

hold.

Proof. The existence and uniqueness of the decomposition L = L+ − L− follows

by Theorem 1.6.3 and the existence and uniqueness of the spectral decomposition

T = T+ − T− into two positive operators with T+T− = 0 = T−T+.

The spectral decomposition of T satisfies ranT+⊕ranT− = ranT , as an orthogonal

sum. Recall that L± = ranT
1
2
± by Proposition 1.6.7. Thus the spaces L+,L−

must be orthogonal in H. In particular, they have trivial intersection which, by an

application of Proposition 1.4.9, shows that L+ and L− are disjoint. An application

of Proposition 1.5.7 proves the equality rank± L = rankL±. All remaining equalities

are trivial.

In the sequel, the decomposition L = L+ − L− of a hermitian kernel L ∈ B(K)

will be referred to as the spectral decomposition of L (with respect to K). The

preceding result yields, besides Proposition 1.5.3, another characterization of those

hermitian kernels that can be written as as difference of two positive kernels. It

turns out that every disjoint decomposition of a hermitian kernel is the spectral

decomposition with respect to a suitable positive kernel.

Corollary 1.6.9. Suppose that E is a Hilbert space and that L : X ×X → B(E) is

a hermitian kernel. Then the following are equivalent:

(i) L can be represented as a difference of two positive kernels.

(ii) There exists a positive kernel K : X ×X → B(E) such that L ∈ B(K).
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In particular, if L = L1 − L2 is a disjoint decomposition of L and if K = L1 + L2,

then L ∈ B(K) and L = L1 − L2 is the spectral decomposition of L with respect to

K.

Proof. That (ii) implies (i) follows by Proposition 1.6.8. Conversely, let L = L1−L2

be such a decomposition of L in positive kernels L1, L2. Then K = L1 + L2 is

positive and obviously satisfies L1, L2 ∈ B(K) and hence L = L1 − L2 ∈ B(K). If

in addition, L1 and L2 are disjoint, then the reproducing kernel Hilbert space H
associated with K is the orthogonal sum of the reproducing kernel Hilbert spaces

L1 and L2 associated with L1 and L2, respectively (cf. Proposition 1.2.4). This

clearly implies that the decomposition L = L1 − L2 coincides with the spectral

decomposition of L with respect to K.

Remark 1.6.10. In [17] (proof of Theorem 3.3), it is shown that all hermitian

sesquianalytic kernels L : D × D → C on domains D ⊂ Cd can be written as a

difference of disjoint positive sesquianalytic kernels. The main idea in the proof of

this surprising result is to construct a weighted Bergman space over D such that L

is subordinate to the reproducing kernel K of that Bergman space.

If f : D → C is a non-zero holomorphic function, then the hermitian kernel

L′ : D ×D → C , L′(z, w) = α(z)L(z, w)α(w)

satisfies rank± L′ = rank± L. In particular, if L is positive definite, then so is L′

and rankL′ = rankL. In fact, by the result cited above, we can choose disjoint

positive sesquianalytic kernels L1, L2 such that L = L1 − L2. Now define

L′i : D ×D → C , L′i(z, w) = α(z)Li(z, w)α(w) (i = 1, 2),

and let L1,L2 and L′1,L′2 denote the reproducing kernel Hilbert spaces associated

with the positive kernels L1, L2 and L′1, L
′
2, respectively. We claim that the mappings

Ui : Li → L′i , f 7→ α · f

are unitary. This follows immediately by a double application of Proposition 1.1.11

if α has no zeroes. For the general case, let D0 denote the complement of the zero

set of α in D and note that restriction mappings

Li → (Li)|D0 and L′i → (L′i)|D0

are unitary by the identity theorem. This shows that L1, L2 form a disjoint decom-

position of L′ and that rankLi = rankL′i for i = 1, 2. Now the assertion follows by

Proposition 1.5.7.

Suppose that K : X × X → B(E) is a positive kernel and that H ⊂ EX is the

associated reproducing kernel Hilbert space. Via the identification from Theorem
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1.6.3, we can equip B(K) with the weak operator and weak-∗ topologies of B(H).

Since we shall frequently make use of these topologies on B(K), we discuss them

now in some detail.

Proposition 1.6.11. Suppose that E is a Hilbert space and that K : X×X → B(E)

is a positive kernel.

(a) Let (Lα)α be a bounded net in B(K) and let L ∈ B(K) be a kernel. Then the

following are equivalent:

(i) (Lα)α converges WOT to L.

(ii) (Lα)α converges weak-∗ to L.

(iii) (Lα(z, w))α converges WOT to L(z, w) for all z, w ∈ X.

(iv) (Lα(z, w))α converges weak-∗ to L(z, w) for all z, w ∈ X.

(b) Let (Ln)n be a sequence in B(K) and let L ∈ B(K) be a kernel. Then the

following are equivalent:

(i) (Ln)n converges WOT to L.

(ii) (Ln)n converges weak-∗ to L.

(iii) (Ln)n is bounded and the sequence (Ln(z, w))n converges WOT to L(z, w)

for all z, w ∈ X.

(iv) (Ln)n is bounded and the sequence (Ln(z, w))n converges weak-∗ to L(z, w)

for all z, w ∈ X.

Proof. Let H ⊂ EX the reproducing kernel Hilbert space associated with K. To

prove (a), one uses that the weak operator and the weak-∗ topologies coincide on

bounded sets. This shows the equivalence of (i) and (ii) and of (iii) and (iv). Let

Tα, T denote the representing operators of Lα, L. Now by definition

〈Lα(z, w)y, x〉 = 〈TαK(·, w)y,K(·, z)x〉 α−→ 〈TK(·, w)y,K(·, z)x〉 = 〈L(z, w)y, x〉

holds for all z, w ∈ X and x, y ∈ E . Hence we obtain the implication (i) to (iii).

Since the set {K(·, z)x ; z ∈ X,x ∈ E} is total in H and the net (Lα)α was supposed

to be bounded, the remaining implication also follows. The missing statements of

part (b) are clear by the uniform boundedness principle.

The following approximation result is similar to Corollary 1.1.12.

Lemma 1.6.12. Suppose that E is a Hilbert space and that K : X ×X → B(E) is

a positive kernel. Let L : X×X → B(E) be an arbitrary kernel. Then the following

are equivalent:

(i) L belongs to B(K).
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(ii) There exists a bounded sequence (Ln)n in B(K) such that (Ln(z, w))n con-

verges WOT (equivalently, weak-∗) to L(z, w) for all z, w ∈ X.

(iii) There exists a bounded net (Lα)α in B(K) such that (Lα(z, w))α converges

WOT (equivalently, weak-∗) to L(z, w) for all z, w ∈ X.

In this case,

‖L‖K ≤ lim inf
n

‖Ln‖K and ‖L‖K ≤ lim inf
α

‖Lα‖K

holds for all sequences and nets as in (ii) and (iii), respectively.

Proof. The only non-trivial implication is (iii) to (i). To prove it, let (Lα)α∈A be a

net satisfying (iii). One verifies that, for every d > lim infα∈A ‖Lα‖K , there exists

a subnet (Lα)α∈Ad satisfying ‖Lα‖K < d for all α ∈ Ad. Now the assertion follows

directly from the definition of subordinate kernels.

Alternatively, one could also use the WOT compactness of the unit ball of B(K)

and Proposition 1.6.11 in order to prove the lemma.

We conclude this section by a short discussion of the operator space structure of

B(K). As before, E is an arbitrary Hilbert space and K : X × X → B(E) is a

positive kernel with associated reproducing kernel Hilbert space H ⊂ EX .

Clearly B(K) carries the natural operator space structure inherited from B(H) via

the canonical isomorphism of Theorem (1.6.3). That is, the n-th matrix norm of a

matrix [Lij ] ∈Mn(B(K)) is given by

‖[Lij ]‖ = ‖[Tij ]‖,

where Tij ∈ B(H) are the representing operators of the kernels Lij and the matrix

[Tij ] is understood as an operator on Hn.

On the other hand, we could identify the matrix [Lij ] with a B(En)-valued kernel

L : X ×X → B(En) , L(z, w) = [Lij(z, w)] ∈ B(En),

which is subordinate to the inflation K(n) defined in Section 1.2. In fact, the repro-

ducing kernel Hilbert space H(n) ⊂ (En)X associated with K(n) is unitarily equiva-

lent to Hn by Proposition 1.2.2, and L is, under this identification, represented by

the operator matrix [Tij ] ∈ B(Hn). In particular, the matrix norms

‖[Lij ]‖ = ‖L‖K(n)

are the same as the induced matrix norms considered above.
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1.7 Multipliers of reproducing kernel Hilbert spaces

Definition 1.7.1. Suppose that E , E1, E2 are Hilbert spaces and that H ⊂ EX ,

H1 ⊂ EX1 and H2 ⊂ EX2 are reproducing kernel Hilbert spaces.

(a) A function φ : X → B(E1, E2) is called a multiplier between H1 and H2 if the

pointwise product φ · f belongs to H2 for all f ∈ H1.

(b) The collection of all multipliers between H1,H2 is denoted by M(H1,H2). We

further use the abbreviation M(H) = M(H,H).

(c) For φ ∈M(H1,H2), the linear mapping

Mφ : H1 → H2 , f 7→ φ · f

is called the multiplication operator with symbol φ.

(d) We write

M(H1,H2) = {Mφ ; φ ∈M(H1,H2)}

for the set of all multiplication operators (and M(H) = M(H,H)).

The class M(H1,H2) actually is a linear space and enjoys the following obvious

multiplication property: if H3 ⊂ EX3 is another reproducing kernel Hilbert space,

then ψ · φ belongs to M(H1,H3) for all φ ∈ M(H1,H2) and ψ ∈ M(H2,H3). In

particular, the space M(H) is an algebra.

It is folklore that multiplication operators are automatically continuous (by the

closed graph theorem). Hence M(H1,H2) is a linear subspace of B(H1,H2).

We shall use this fact to equip M(H1,H2) via the mapping

M(H1,H2) →M(H1,H2) , φ 7→Mφ,

with the topological and operator space structures of B(H1,H2). At this point,

we should stress the fact that the above assignment may fail to be one-to-one: For

example, consider some reproducing kernel Hilbert space H ⊂ CX having a common

zero at some point z0 ∈ X. Then the function being 1 at z0 and 0 elsewhere

obviously is a multiplier of H with Mφ = 0 (but φ 6= 0).

To ensure the injectivity of the mapping

M(H1,H2) →M(H1,H2) , φ 7→Mφ,

it obviously suffices to require that the space H1 is non-degenerate.

Definition 1.7.2. Suppose that E1, E2 are Hilbert spaces and H1 ⊂ EX1 , H2 ⊂ EX2
are reproducing kernel Hilbert spaces.

50



1.7 Multipliers of reproducing kernel Hilbert spaces

(a) We define a semi-norm ‖ · ‖M on the multiplier space M(H1,H2) by setting

‖φ‖M = ‖Mφ‖

for φ ∈M(H1,H2).

(b) The weak operator and weak-∗ topologies on M(H1,H2) are the initial topologies

of the corresponding topologies on B(H1,H2) induced by the mapping

M(H1,H2) → B(H1,H2) , φ 7→Mφ.

Note that ‖ · ‖M is a norm and the weak operator and weak-∗ topologies on

M(H1,H2) are Hausdorff whenever H1 is non-degenerate.

Example 1.7.3.

(a) Let H = l2(I) be the reproducing kernel space considered in Example 1.1.3

( a) and let E1, E2 be Hilbert spaces. Then M(HE1 ,HE2) = l∞(I,B(E1, E2))

isometrically, where

l∞(I,B(E1, E2)) = {φ : I → B(E1, E2) ; ‖φ‖∞,I = sup
i∈I

‖φ(i)‖ <∞}.

Furthermore, it is easy to see that for φ ∈ M(HE1 ,HE2), the adjoint of Mφ is

the multiplication operator with symbol

φ : I → B(E2, E1) , i 7→ φ(i)∗.

In particular, M(H) is a C∗-subalgebra of B(H), which is a very special situa-

tion.

Indeed, let H ⊂ CX be a reproducing kernel Hilbert space with kernel K such

that K has no zeroes. Note that the typical analytic function spaces presented

in Example 1.1.10 are of this type. Assume that T = Mφ is an operator in

M(H)∩M(H)∗ (where M(H)∗ is the space of adjoints of multiplication opera-

tors). Then there exists some ψ ∈M(H) such that M∗
φ = Mψ. This implies

φ(w)K(z, w) = 〈M∗
φK(·, w),K(·, z)〉 = 〈MψK(·, w),K(·, z)〉 = ψ(z)K(z, w)

for all z, w ∈ X. Hence φ is constant. Therefore M(H) ∩M(H)∗ = C · 1H,

and M(H) is is a C∗-subalgebra of B(H) precisely if M(H) consists solely of

constant functions. Clearly, this happens only in pathological examples.

(b) Suppose that D is an open subset of Cd and that H ⊂ O(D) is a reproducing

kernel space consisting of analytic functions such that the coordinate functions

zi (1 ≤ i ≤ d) are multipliers of H.

If the Taylor spectrum σ(Mz) of the commuting tuple Mz = (Mz1 , . . . ,Mzd) is

contained in D, then every function φ ∈ O(D,B(E1, E2)) (E1, E2 Hilbert spaces)

51
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defines a multiplier between HE1 and HE2 and moreover, Mφ = φ(Mz), where

the operator on the right is formed by means of a suitable operator-valued ana-

lytic functional calculus. Details can be found in [36].

Note that a partial converse of this statement holds. Namely, suppose that D

is a Stein compact set. Then O(D) ⊂ M(H) implies that σ(Mz) ⊂ D. In

fact, fix some λ /∈ D. By the definition of Stein compactness, there exists a

domain of holomorphy U ⊃ D such that λ /∈ U . But then there exist functions

φ1, . . . , φd ∈ O(U) such that

1 =
d∑
i=1

(λi − zi) · φi

holds. By hypothesis, the functions φi are multipliers and hence

1H =
d∑
i=1

(λi −Mzi)Mφi .

Then by [35], Lemma 2.2.4, λ does not belong to the Taylor spectrum of the

commuting tuple Mz.

Finally, we point out that the inclusion D ⊂ σ(Mz) always holds if one requires

in addition that there is no component C of D such that all functions in H
vanish on C. Indeed, if K denotes the reproducing kernel of H, then

M∗
ziK(·, w) = wiK(·, w)

holds for w ∈ D and 1 ≤ i ≤ d. Letting Z(H) denote the common zero set of

H, this shows that the set

D ∩ Z(H)c = {w ∈ D ;K(·, w) 6= 0}

is included in the Taylor spectrum of the tuple Mz. Our assumption and the

identity theorem imply

D = D ∩ Z(H)c ⊂ σ(Mz).

(c) Let D be a Cartan domain in Cd and fix ν in the continuous Wallach set of

D. Let H = Hν be the corresponding space of analytic functions as defined

in Example 1.1.10 and write K = Kν . Then by [10], the coordinate functions

belong to M(H) and hence, every polynomial is a multiplier. Moreover, in [10]

it is shown that the Taylor spectrum of the multiplication tuple σ(Mz) equals

D. Hence, by part (b), every function holomorphic on a neighbourhood of D

defines a multiplier of H. In particular, the functions K(·, w) (w ∈ D) belong to

M(H) since they can be analytically extended on a neighbourhood of D. Indeed,

the Faraut-Koranyi expansion ( 1.1.3), in connection with the homogeneity of

the kernels Km, shows that

K(rz,
1
r
w) =

∑
m

(ν)mKm(rz,
1
r
w) =

∑
m

(ν)mKm(z, w) = K(z, w)
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1.7 Multipliers of reproducing kernel Hilbert spaces

holds for all z ∈ D and all 0 < r < 1 for which 1
rw belongs to D. Since D is

the open unit ball with respect to an appropriate norm on Cd, the set 1
rD is an

open neighbourhood of D, and the analytic function

1
r
D → C , z 7→ K(rz,

1
r
w)

is an extension of K(·, w).

(d) Let D be a Cartan domain in Cd of rank r and fix ν ≥ d
r . By the discussion in

Example 1.1.10, this means that H = Hν is either of Hardy or Bergman type.

It is elementary to check that, in these cases,

M(HE1 ,HE2) = H∞(D,B(E1, E2))

(with equality of norms) holds for all Hilbert spaces E1, E2.

(e) For the Arveson space H = H(Bd), it is shown in [36] that

M(HE1 ,HE2) = {φ ∈ O(Bd, B(E1, E2)) ; sup
r,T,H

‖φ(rT )‖ <∞},

where the supremum ranges over all 0 < r < 1 and all d-contractions T on

Hilbert spaces H. Moreover, for such φ, this supremum actually equals ‖φ‖M.

Recall that a commuting tuple T = (T1, . . . , Td) ∈ L(H)d on some Hilbert space

H is called a d-contraction if
∑
i TiT

∗
i ≤ 1H holds. Note further that the oper-

ators φ(rT ) in the above expression are formed by means of an operator-valued

extension of Taylor’s analytic functional calculus, also described in [36].

In practice, one often faces the following two problems: First, to decide whether or

not a function φ : X → B(E1, E2) defines a multiplier between reproducing kernel

Hilbert spaces H1, H2, and secondly, to characterize M(H1,H2) as a subspace of

B(H1,H2). The following results (Lemma 1.7.4, Proposition 1.7.6 and Proposition

1.7.9) provide tools to deal with these questions.

Lemma 1.7.4. Let E1, E2 be Hilbert spaces and let H1 ⊂ EX1 and H2 ⊂ EX2 be

reproducing kernel Hilbert spaces. Suppose that φ : X → B(E1, E2) is an operator-

valued function. If there exist an operator T ∈ B(H1,H2) and a dense subset M

of H1 such that φ · f = Tf holds for all f ∈M , then φ belongs to M(H1,H2) and

T = Mφ.

Proof. It suffices to show that φ · f ∈ H2 for all f ∈ H1. For f ∈ H1, we can

choose a sequence (fn)n in M such that limn fn = f . Since Tf = limn φ · fn in

H2, and since the sequence (φ · fn)n converges pointwise to φ · f , it follows that

φ · f = Tf ∈ H2.

Corollary 1.7.5. Suppose that H ⊂ CX is a reproducing kernel Hilbert space with

the property that M(H) is a dense subset of H. Let E1, E2 be Hilbert spaces. If
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T ∈ B(HE1 ,HE2) is an operator which satisfies

T (Mα ⊗ 1E1) = (Mα ⊗ 1E2)T

for all α ∈M(H), then T ∈M(HE1 ,HE2).

Proof. By hypothesis, H contains the constant functions. We define

φ : X → B(E1, E2) , φ(z)x = T (1⊗ x)(z).

Now consider functions f ∈ HE1 of the form f = α ⊗ x, where α ∈ M(H) and

x ∈ E1. Such functions satisfy

φ(z)f(z) = α(z)φ(z)x = (Mα ⊗ 1E2)T (1⊗ x)(z) = T (α⊗ x)(z) = Tf(z)

for all z ∈ X. Clearly, the identity φ · f = Tf holds then for linear combinations

of such functions, which form a dense subset of HE1 . By Lemma 1.7.4, we have

φ ∈M(HE1 ,HE2) and T = Mφ.

In particular, we observe that for reproducing kernel Hilbert spaces H ⊂ CX as

in Corollary 1.7.5, the space M(H) coincides with its commutant in B(H) and is

therefore WOT closed. Later in this section, we shall prove that the second fact

remains true in more general settings.

The question if an operator-valued function is a multiplier between given reproduc-

ing kernel spaces can be answered by checking the positivity of an assigned kernel.

The next result can therefore be regarded as a structural analogue of Proposition

1.1.11.

Proposition 1.7.6. Suppose that E1, E2 are Hilbert spaces and that H1 ⊂ EX1 and

H2 ⊂ EX2 are reproducing kernel Hilbert spaces. Let K1 : X × X → B(E1) and

K2 : X × X → B(E2) denote the corresponding reproducing kernels. Then, for a

function φ : X → B(E1, E2), the following are equivalent:

(i) φ belongs to M(H1,H2).

(ii) There exists a constant c ≥ 0 such that the mapping

X ×X → B(E2) , (z, w) 7→ c2K2(z, w)− φ(z)K1(z, w)φ(w)∗

is positive definite. In this case, ‖φ‖M is the infimum of all such constants

c ≥ 0. Moreover, the infimum is achieved.

For the proof of this well-known result, the reader is referred to [16]. As a conse-

quence, we see that, in the case of scalar inflations, the multiplier norm dominates

the sup norm.
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Corollary 1.7.7. Suppose that H ⊂ CX is a reproducing kernel Hilbert space with

reproducing kernel K : X ×X → C. Suppose further that E1, E2 are Hilbert spaces.

Then every multiplier φ ∈ M(HE1 ,HE2) is pointwise bounded by ‖φ‖M outside the

set {z ∈ X ; K(z, z) = 0}. In particular, if H is non-degenerate, then

‖φ‖∞ ≤ ‖φ‖M

holds for all φ ∈M(HE1 ,HE2).

Remark 1.7.8. The statement of Proposition 1.7.6 can also be rephrased in terms

of subordinate kernels. That is, the following are equivalent in the situation of

Proposition 1.7.6:

(i) φ belongs to M(H1,H2).

(ii) The kernel

Gφ : X ×X → B(E2) , Gφ(z, w) = φ(z)K1(z, w)φ(w)∗

belongs to B(K2).

In this case, we have ‖φ‖2M = ‖Gφ‖K2 .

Next, we want to study the topological properties of M(H1,H2) as a subspace

of B(H1,H2). It is easily seen (and well known) that M(H1,H2) ⊂ B(H1,H2)

is norm-closed if H1 is non-degenerate. We shall prove the stronger result that

M(H1,H2) is WOT closed. To do so, we establish the following purely algebraic

characterization of multiplication operators, which seems to be new so far.

Proposition 1.7.9. Suppose that E1, E2 are Hilbert spaces and that H1 ⊂ EX1 and

H2 ⊂ EX2 are reprocing kernel Hilbert spaces, H1 non-degenerate. Let δ1,z : H1 → E1

and δ2,z : H2 → E2 denote the point evaluations at z ∈ X. Then for an operator

T ∈ B(H1,H2), the following are equivalent:

(i) Whenever f ∈ H1, z ∈ X and f(z) = 0, then Tf(z) = 0.

(ii) T ∗ ran δ∗2,z ⊂ ran δ∗1,z for all z ∈ X.

(iii) T ∈M(H1,H2).

In particular, M(H1,H2) is WOT closed in B(H1,H2), and M(H1,H2) is a dual

space.

Proof. Condition (i) clearly says T ker δ1,z ⊂ ker δ2,z for all z ∈ X. Equivalently,

T ∗ ran δ∗2,z ⊂ ran δ∗1,z for all z ∈ X. Note that δ1,z is onto for all z ∈ X since H1

was supposed to be non-degenerate. In particular, the operators δ1,z have closed
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range and, by standard duality arguments, the same is true for their adjoints. This

proves the implication (i) to (ii). Now suppose (ii). Since H1 was supposed to be

non-degenerate, there exist right inverses i1,z ∈ B(E1,H1) for the point evaluations

δ1,z. We define

φ : X → B(E1, E2) , φ(z) = δ2,zTi1,z.

Now fix f ∈ H1, z ∈ X and y ∈ E2. By (ii), we can choose some x ∈ E1 with

T ∗δ∗2,zy = δ∗1,zx. We obtain that

〈φ(z)f(z), y〉 = 〈i1,zf(z), T ∗δ∗2,zy〉

= 〈i1,zf(z), δ∗1,zx〉

= 〈δ1,zi1,zf(z), x〉

= 〈f(z), x〉

= 〈f, δ∗1,zx〉

= 〈f, T ∗δ∗2,zy〉

= 〈Tf(z), y〉.

Thus φ · f = Tf for all f ∈ H1 which shows that φ belongs to M(H1,H2) and that

T = Mφ. The implication (iii) to (i) is obvious.

Although we will not need it, we provide the following result which seems to be

unknown in this general form.

Corollary 1.7.10. Suppose that E is a Hilbert space and that H ⊂ EX is a non-

degenerate reproducing kernel Hilbert space. Then M(H) is a reflexive subalgebra

of B(H).

Proof. Suppose that T ∈ B(H) leaves invariant all closed linear subspaces of H that

are invariant under the algebra M(H). Fix f ∈ H and z ∈ X with f(z) = 0. Since

the subspace

Mz = {g ∈ H ; g(z) = 0}

obviously is invariant for M(H), we have TMz ⊂Mz. In particular, Tf(z) = 0.

The following proposition provides a characterization of convergence with respect

to the weak operator and weak-∗ topologies on M(H1,H2).

Proposition 1.7.11. Suppose that E1, E2 are Hilbert spaces and that H1 ⊂ EX1 and

H2 ⊂ EX2 are reproducing kernel spaces such that H1 is non-degenerate.

(a) Let (φα)α be a bounded net in M(H1,H2). Then, for φ ∈ M(H1,H2), the

following are equivalent:
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(i) (φα)α converges WOT to φ.

(ii) (φα)α converges weak-∗ to φ.

(iii) (φα(z))α converges WOT to φ(z) for all z ∈ X.

(iv) (φα(z))α converges weak-∗ to φ(z) for all z ∈ X.

(b) Let (φn)n be a sequence in M(H1,H2). Then, for φ ∈M(H1,H2), the following

are equivalent:

(i) (φn)n converges WOT to φ.

(ii) (φn)n converges weak-∗ to φ.

(iii) (φn)n is bounded and (φn(z))n converges WOT to φ(z) for all z ∈ X.

(iv) (φn)n is bounded and (φn(z))n converges weak-∗ to φ(z) for all z ∈ X.

The proof is similar to the one of Proposition 1.6.11 and therefore omitted.

Similarly to Corollary 1.1.12 in the context of reproducing kernel Hilbert spaces and

to Lemma 1.6.12 in the setting of subordinate kernels, the following approximation

result holds for multipliers.

Lemma 1.7.12. Suppose that E1, E2 are Hilbert spaces and that H1 ⊂ EX1 and

H2 ⊂ EX2 are reproducing kernel Hilbert spaces. Let φ : X → B(E1, E2) be an

arbitrary function. Then the following are equivalent:

(i) φ ∈M(H1,H2).

(ii) There exists a bounded sequence (φn)n in M(H1,H2) such that (φn(z))n con-

verges WOT (equivalently, weak-∗) to φ(z) for all z ∈ X.

(iii) There exists a bounded net (φα)α in M(H1,H2) such that (φα(z))α converges

WOT (equivalently, weak-∗) to φ(z) for all z ∈ X.

In this case,

‖φ‖M ≤ lim inf
n

‖φn‖M and ‖φ‖M ≤ lim inf
α

‖φα‖M

holds for all sequences and nets as in (ii) and (iii), respectively.

Proof. The only non-trivial implication is (iii) to (i). Let K1,K2 denote the repro-

ducing kernels of H1,H2 and let d > lim infα∈A ‖φα‖M be arbitrary. After passing

to a suitable subnet, we may assume that ‖φα‖M < d holds for all α. Clearly, the

net (Mφα)α has a WOT cluster point T ∈ B(H1,H2) with ‖T‖ ≤ d. Then, for an

appropriate subnet, we obtain

〈Tf(z), x〉 = lim
i
〈Mφαi

f,K2(·, z)x〉

= lim
i
〈φαi(z)f(z), x〉

= 〈φ(z)f(z), x〉
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for all f ∈ H, z ∈ X and x ∈ E . Hence φ ∈ M(H) and T = Mφ and moreover,

‖φ‖M = ‖T‖ ≤ d.

It is a well-known fact that the space H∞(Bd, B(F1,F2)) can be expressed as the

normal spatial tensor product H∞(Bd)⊗B(F1,F2), where H∞(Bd) is realized as a

subspace of B(H2(Bd)). We now want to generalize this result to arbitrary multi-

plier algebras. To do so, we need the following lemma.

Lemma 1.7.13. Suppose that E is a Hilbert space and that H ⊂ EX is a reproducing

kernel Hilbert space. Suppose further that F1,F2 are Hilbert spaces. Then for every

operator A ∈ B(F1,F2), the constant function

α : X → B(E ⊗ F1, E ⊗ F2) , z 7→ (1E ⊗A)

belongs to M(H⊗F1,H⊗F2) with ‖α‖M ≤ ‖A‖ and moreover, Mα = 1H ⊗A.

Proof. We clearly may assume that ‖A‖ = 1. Let K : X ×X → B(E) denote the

reproducing kernel of H. Then the kernel

KF2(z, w)− α(z)KF1(z, w)α(w)∗

= (K(z, w)⊗ 1F2)− (1E ⊗A)(K(z, w)⊗ 1F1)(1E ⊗A∗)

= K(z, w)⊗ (1F2 −AA∗)

obviously is positive definite. Hence, by Proposition 1.7.6, α is a contractive multi-

plier between HF1 and HF2 .

Proposition 1.7.14. Let E1, E2 be Hilbert spaces and let H1 ⊂ EX1 , H2 ⊂ EX2 be

reproducing kernel Hilbert spaces such that H1 is non-degenerate. For Hilbert spaces

F1,F2, the mapping

M(H1,H2)⊗B(F1,F2) →M(H1 ⊗F1,H2 ⊗F2) , φ⊗ T 7→ (z 7→ φ(z)⊗ T )

extends to a completely isometric isomorphism between the normal spatial tensor

product M(H1,H2)⊗B(F1,F2) and M(H1 ⊗F1,H2 ⊗F2).

Proof. By definition, the normal spatial tensor product of M(H1,H2) ⊂ B(H1,H2)

and B(F1,F2) is realized as the weak-∗ closure of the algebraic tensor product

M(H1,H2)⊗B(F1,F2) as a subspace of B(H1 ⊗F1,H2 ⊗F2).

Fix some elementary tensor φ⊗T in M(H1,H2)⊗B(F1,F2). Using Lemma 1.7.13,

the assigned function

X → B(E1 ⊗F1, E2 ⊗F2) , z 7→ φ(z)⊗ T

belongs to M(H1 ⊗F1,H2 ⊗F2) as the composition of multipliers

X → B(E1 ⊗F2, E2 ⊗F2) , z 7→ φ(z)⊗ 1F2
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and

X → B(E1 ⊗F1, E2 ⊗F2) , z 7→ 1E1 ⊗ T.

Since the subspace M(H1 ⊗ F1,H2 ⊗ F2) is weak-∗ closed in B(H1 ⊗ E1,H2 ⊗ E2)

by Propositions 1.3.2 and 1.7.9, we have the inclusion

M(H1,H2)⊗B(F1,F2) ⊂M(H1 ⊗F1,H2 ⊗F2).

Conversely fix some ψ ∈M(H1⊗F1,H2⊗F2). For arbitrary finite rank projections

P1 ∈ B(F1) and P2 ∈ B(F2), we consider the function

ψP1,P2 : X → B(E1 ⊗F1, E2 ⊗F2) , z 7→ (1E2 ⊗ P2)ψ(z)(1E1 ⊗ P1).

Again by Lemma 1.7.13, it follows that ψP1,P2 belongs to M(H1 ⊗ F1,H2 ⊗ F2)

and that MψP1,P2
= (1H2 ⊗ P2)Mψ(1H1 ⊗ P1). Clearly, the net (MψP1,P2

)P1,P2

approximates Mψ in the weak-∗ sense since it is bounded and converges WOT to

Mψ.

In order to show that the operators MψP1,P2
belong to the algebraic tensor product

M(H1,H2) ⊗ B(F1,F2), we may assume that P1 = v ⊗ v and P2 = u ⊗ u are

rank-one projections. Define ψ0 : X → B(E1, E2) by

〈ψ0(z)y, x〉 = 〈ψ(z)y ⊗ v, x⊗ u〉.

Equivalently, writing

A : C → F1 , ζ 7→ ζv and B : F2 → C , u′ 7→ 〈u′, u〉,

we could realize ψ0 as

ψ0(z) = (1E2 ⊗B)ψ(z)(1E1 ⊗A).

By Lemma 1.7.13, we see that ψ0 belongs to M(H1,H2) with ‖ψ0‖M ≤ ‖ψ‖M.

Letting T = u⊗ v ∈ B(F1,F2), we obtain that

〈(ψ0(z)⊗ T )(f(z)⊗ v′), x⊗ u′〉 = 〈ψ0(z)f(z), x〉〈Tv′, u′〉

= 〈ψ(z)(f(z)⊗ v), x⊗ u〉〈v′, v〉〈u, u′〉

= 〈ψ(z)(f(z)⊗ P1v
′), x⊗ P2u

′〉

= 〈(1E2 ⊗ P2)ψ(z)(1E1 ⊗ P1)(f(z)⊗ v′), x⊗ u′〉

for all f ∈ H1, z ∈ X and all x ∈ E2, v
′ ∈ F1, u

′ ∈ F2. Since H1 was supposed to be

non-degenerate, it follows that

ψ0(z)⊗ T = ψP1,P2(z)

holds for all z ∈ X, as desired.
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Finally, we take a closer look at the natural operator space structure of M(H1,H2).

Let E1, E2 be Hilbert spaces and let H1 ⊂ EX1 , H2 ⊂ EX2 be reproducing kernel

Hilbert spaces. The natural n-th matrix norm of M(H1,H2) is given by identifying

an n × n-matrix [Mφij ] with an operator in B(Hn
1 ,Hn

2 ). It is not hard to see that

[Mφij ] is unitarily equivalent to the multiplication operator Mφ ∈ B(H(n)
1 ,H(n)

2 ),

where H(n)
1 and H(n)

2 are the inflations of H1,H2 as defined in Section 1.2 and

φ : X → B(En1 , En2 ) , φ(z) = [φij(z)].

Using the canonical identification between M(H1,H2) and M(H1,H2), we obtain

matrix (semi-)norms

‖[φij ]‖M = ‖φ‖M

on M(H1,H2) which are, of course, matrix norms whenever H1 is non-degenerate.

Of particular interest is the case that this natural operator space structure of the

multiplier space coincides with the minimal operator space structure.

Example 1.7.15. Consider a Cartan domain D ⊂ Cd of rank r. Then, for ν ≥ d
r

and H = Hν , we saw in Example 1.7.3 (d) that M(H) = H∞(D) completely

isometrically (where the operator space structure on H∞(D) comes from the com-

mutative C∗-algebra L∞(D)). By [32], Theorem 3.3.1, this means that M(H) is a

minimal operator space.
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2.1 Definition and basic properties

We turn towards one of the central notions of this paper, namely, the concept of

Schur kernels. Roughly speaking, Schur kernels are the pointwise multipliers of the

kernel class B(K) (where K denotes a positive scalar kernel).

Definition 2.1.1. Suppose that K : X ×X → C is a positive kernel and that E is

a Hilbert space.

(a) We say that a kernel G : X ×X → B(E) is a Schur kernel (with respect to K)

if the pointwise product

G · L : X ×X → B(E) , (z, w) 7→ G(z, w)L(z, w)

belongs to B(KE) for all L ∈ B(K). In this case, SG denotes the linear mapping

SG : B(K) → B(KE) , L 7→ G · L.

(b) The class of all B(E)-valued Schur kernels (with respect to K) will be denoted

by SE(K). Instead of SC(K), we shall use the abbreviation S (K).

(c) We write

SE(K) = {SG ; G ∈ SE(K)}

for the set of all multiplication operators induced by Schur kernels. For sim-

plicity, we write S(K) instead of SC(K).

Remark 2.1.2. Suppose that K : X ×X → C is a positive kernel with associated

reproducing kernel Hilbert space H ⊂ CX and that E is Hilbert space.

(a) For G ∈ SE(K), the linear mapping

SG : B(K) → B(KE) , L 7→ G · L

is continuous. This follows by the closed graph theorem and the fact that the

point evaluations are continuous on B(K) and B(KE) (cf. Remark 1.6.2 ( c)).
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(b) The mapping

SE(K) → SE(K) ⊂ B(B(K), B(KE)) , G 7→ SG

may certainly fail to be injective. When we suppose in addition that H is

non-degenerate, then the above mapping is one-to-one. Indeed, if H is non-

degenerate, then for all z ∈ X, we can find functions fz ∈ H such that fz(z) = 1.

Evaluating SG on the kernels fz � fw ∈ B(K) shows that G = 0 whenever

SG = 0.

(c) It is clear that SE(K) is a complex linear space. Moreover, the obvious identity

G∗ · L = (G · L∗)∗ shows that SE(K) is closed under the natural involution of

kernels. Hence, every kernel G ∈ SE(K) can be written as G = ReG+ i ImG,

where ReG and ImG belong to SE(K).

It was a successful procedure in the previous sections to equip function or kernel

spaces, such as the multiplier algebra M(H) or the space of subordinate kernels

B(K), with the weak-∗ or weak operator topologies of B(H). We want to repeat

this step for the set of Schur kernels SE(K). We shall see soon that SE(K) is

canonically contained in B(B(H), B(HE)). This allows us to transport the natural

weak-∗ topology of B(B(H), B(HE)), the so-called BW topology, to SE(K).

For the reader’s convenience, we now recapitulate the definition of the BW topology

(see also [55], Chapter 7). Let X,Y be Banach spaces. Clearly, there exists a linear

mapping j : X⊗Y → B(X,Y ∗)∗, defined on the algebraic tensor product of X and

Y , such that

j(x⊗ y)(T ) = (Tx)(y) (x ∈ X, y ∈ Y, T ∈ B(X,Y ∗)).

It turns out that j is one-to-one and satisfies ‖j(x ⊗ y)‖ = ‖x‖‖y‖ for all x ∈ X

and y ∈ Y . One defines

X⊗̃Y = j(X ⊗ Y ) ⊂ B(X,Y ∗)∗

and proves that the mapping

ρ : B(X,Y ∗) → (X⊗̃Y )∗ , ρ(T )u = u(T )

is an isometric isomorphism. The weak-∗ topology on B(X,Y ∗) with respect to

this duality is called the BW topology. We are mainly interested in the case that

X = B(H1) and Y = T (H2) (the space of trace class operators), where H1,H2 are

Hilbert spaces. Then the BW topology on B(B(H1), B(H2)) has the property that

a bounded net (Φi)i in B(B(H1), B(H2)) converges to some Φ in B(B(H1), B(H2))

if and only if for every T ∈ B(H1), the net (Φi(T ))i converges to Φ(T ) in the weak

operator topology of B(H2) (cf. [55], Proposition 7.3). This behaviour explains the

name ’BW topology’, standing for ’bounded weak’.
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Definition 2.1.3. Let K : X ×X → C be a positive kernel with associated repro-

ducing kernel Hilbert space H ⊂ CX and let E be a Hilbert space.

(a) For G ∈ SE(K), we define ‖G‖S = ‖SG‖.

(b) Let G be a kernel in SE(K). Then ΣG ∈ B(B(H), B(HE)) denotes the unique

mapping that makes the diagram

B(K) '−−−−→ B(H)

SG

y yΣG

B(KE)
'−−−−→ B(HE)

commutative (where ' is the canonical identification explained in Theorem

1.6.3). Furthermore, we define

ΣE(K) = {ΣG ; G ∈ SE(K)} ⊂ B(B(H), B(HE))

and, as usual, we use the abbreviation Σ(K) = ΣC(K).

(c) The BW topology on SE(K) is defined as the initial topology of the BW topology

on B(B(H), B(HE)) with respect to the mapping

SE(K) → B(B(H), B(HE)) , G 7→ ΣG.

Clearly we encounter the usual difficulties if the underlying space H is degenerate.

In this case, ‖ · ‖S might only be a semi-norm, and the BW topology on SE(K)

need not be Hausdorff. Since the spaces we are interested in are non-degenerate,

and in order to keep the proofs simple, we require non-degenerateness whenever it

is convenient.

Proposition 2.1.4. Suppose that H ⊂ CX is a non-degenerate reproducing kernel

space with reproducing kernel K and that E is a Hilbert space. Then ΣE(K) is a

BW closed subspace of B(B(H), B(HE)). In particular, SE(K) is a dual space.

Proof. Recall that the BW topology is a weak-∗ topology. By the Krĕın -Smulian

theorem, it is sufficient to show that ball ΣE(K) is BW closed in B(B(H), B(HE)).
Let (Gα)α be a net in ballSE(K) such that the net (ΣGα)α converges BW to some

Y ∈ ballB(B(H), B(HE)). By the preceding discussion of the BW topology, this

means that

lim
α

ΣGα(T ) = Y (T )

in the WOT sense for all T ∈ B(H). For all z ∈ X, we fix functions fz ∈ H such

that fz(z) = 1. For z, w ∈ X, we then define G(z, w) as the unique operator in

B(E) satisfying

〈G(z, w)y, x〉 = 〈Y (fz ⊗ fw)K(·, w)y,K(·, z)x〉
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for all x, y ∈ E . We obtain that

〈G(z, w)y, x〉 = lim
α
〈ΣGα(fz ⊗ fw)K(·, w)y,K(·, z)x〉 = lim

α
〈Gα(z, w)y, x〉

for all z, w ∈ X and x, y ∈ E . For L = ΛT ∈ B(K), we have

〈G(z, w)L(z, w)y, x〉 = lim
α
〈Gα(z, w)L(z, w)y, x〉

= lim
α
〈ΣGα(T )K(·, w)y,K(·, z)x〉

= 〈Y (T )K(·, w)y,K(·, z)x〉

= 〈ΛY (T )(z, w)y, x〉 (z, w ∈ X,x, y ∈ E).

Hence G · L = ΛY (T ) ∈ B(KE). This means that G ∈ SE(K) and hence that

Y = ΣG.

For bounded nets, convergence with respect to the BW topology can be described

as follows.

Proposition 2.1.5. Suppose that H ⊂ CX is a non-degenerate reproducing kernel

space with reproducing kernel K and that E is a Hilbert space. Then for a bounded

net (Gα)α in SE(K) and G ∈ SE(K), the following are equivalent:

(i) (Gα)α converges BW to G.

(ii) (Gα(z, w))α converges WOT (equivalently, weak-∗) to G(z, w) for all z, w ∈ X.

Proof. According to our initial discussion of the BW topology, (i) is fulfilled if and

only if for all L ∈ B(K), the bounded net (Gα · L)α converges WOT in B(KE) to

G ·L. By Proposition 1.6.11, this is the case if and only if for all L ∈ B(K), the net

(Gα(z, w)L(z, w))α converges WOT (equvalently, weak-∗) in B(E) toG(z, w)L(z, w)

for all z, w ∈ X. Since H is non-degenerate, this is clearly equivalent to (ii).

Related to the preceding characterization of BW convergence is the following ap-

proximation result.

Proposition 2.1.6. Suppose that H ⊂ CX is a reproducing kernel space with kernel

K and that E is a Hilbert space. Then, for a kernel G : X×X → B(E), the following

are equivalent:

(i) G belongs to SE(K).

(ii) There exists a bounded sequence (Gn)n in SE(K) such that (Gn(z, w))n con-

verges WOT to G(z, w) for all z, w ∈ X.

(iii) There exists a bounded net (Gα)α in SE(K) such that (Gα(z, w))α converges

WOT to G(z, w) for all z, w ∈ X.
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In this case,

‖G‖S ≤ lim inf
n

‖Gn‖S and ‖G‖S ≤ lim inf
α

‖Gα‖S

holds for all sequences and nets as in (ii) and (iii), respectively.

Proof. We have to prove (iii) to (i). Let d > lim infα ‖G‖S be arbitrary. By

passing to a suitable subnet, we may assume that ‖Gα‖S < d holds for all α. Let

Φ ∈ B(B(H), B(HE)) be a BW cluster point of the net (ΣGα)α. Clearly, ‖Φ‖ ≤ d.

By choosing an appropriate subnet, we deduce that

〈Φ(T )K(·, w)y,K(·, z)x〉 = lim
i
〈ΣGαi (T )K(·, w)y,K(·, z)x〉

= lim
i
〈Gαi(z, w)y, x〉ΛT (z, w)

= 〈G(z, w)y, x〉ΛT (z, w)

= 〈G(z, w)ΛT (z, w)y, x〉

holds for all T ∈ B(H), z, w ∈ X and x, y ∈ E . This shows that G ∈ SE(K) and

ΣG = Φ, and hence that ‖G‖S = ‖Φ‖ ≤ d.

We now introduce a class of prototypical Schur kernels which will turn out to be

central in the following examinations of the class SE(K).

Lemma 2.1.7. Let K : X×X → C be a positive kernel with associated reproducing

kernel space H ⊂ CX and let E ,G be Hilbert spaces. Then, for any pair of multipliers

φ, ψ ∈M(HG ,HE), the kernel

G : X ×X → B(E) , G(z, w) = φ(z)ψ(w)∗

belongs to SE(K). Moreover,

ΣG(T ) = Mφ(T ⊗ 1G)M∗
ψ

holds for all T ∈ B(H). In particular, ΣG is completely bounded and

‖G‖S = ‖ΣG‖ ≤ ‖ΣG‖cb ≤ ‖φ‖M‖ψ‖M

holds.

Proof. Let L = ΛT be a kernel in B(K). The calculation

〈ΛMφ(T⊗1G)M∗
ψ
(z, w)y, x〉 = 〈Mφ(T ⊗ 1G)M∗

ψK(·, w)y,K(·, z)x〉

= 〈(T ⊗ 1G)K(·, w)⊗ ψ(w)∗y,K(·, z)⊗ φ(z)∗x〉

= 〈TK(·, w),K(·, z)〉〈φ(z)ψ(w)∗y, x〉

= 〈G(z, w)L(z, w)y, x〉 (z, w ∈ X,x, y ∈ E)

shows that the kernel G · L belongs to B(KE) and, in fact, is represented by the

operator Mφ(T ⊗ 1G)M∗
ψ.
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2 Schur kernels

Example 2.1.8. We consider the set I = {1, . . . , n} and the positive kernel

K : I × I → C , K(i, j) = δi,j .

Then clearly l2(I) = l2n is the reproducing kernel Hilbert space associated with K (cf.

Example 1.1.3). For the moment, let us identify kernels on I×I with n×n-matrices,

that is, we identify an kernel L : I × I → C with the matrix [L(i, j)]. Under this

completely isometric identification, the pointwise product G ·L of two kernels G and

L is nothing but the entrywise (Schur, Hadamard) matrix product G•L. Obviously,

every kernel G belongs to S (K), and the mapping ΣG : B(l2) → B(l2) coincides

completely isometrically with the Schur product mapping

SG : Mn →Mn , L 7→ G • L.

The study of Schur products goes back to Schur and Hadamard, and the use of

operator space methods in the past twenty years led to a remarkable progress in this

area (cf. [55], [68], [57]).

The key step in the understanding of Schur product mappings is the following ob-

servation:

For a linear mapping Φ : Mn →Mn, the following are equivalent:

(i) Φ is a Schur product mapping, that is, there exists some matrix

G ∈Mn such that Φ = SG.

(ii) Φ is a Dn-bimodule homomorphism, that is, for all diagonal ma-

trices D,E and all matrices L, the identity

Φ(DLE) = DΦ(L)E

holds. Since Dn = M(l2n) via obvious identification, we could also

say that Φ is an M(l2n)-bimodule homomorphism.

This has at least the following two consequences:

(1) Every Schur product mapping SG satisfies ‖SG‖ = ‖SG‖cb. In fact, this is

shown in greater generality in [55], Chapter 8, and in [68] or [58]. The original

proof of this non-trivial fact is probably due to Haagerup and can be found in

[57].

(2) Every Schur product mapping is an elementary operator of the form

SG(L) =
k∑
i=1

DiLE
∗
i
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with suitable diagonal matrices Di, Ei (1 ≤ i ≤ k). The use of E∗i instead of

Ei has structural reasons that will become clear in the sequel. Moreover, the

matrices Di, Ei can be chosen in such a way that

‖SG‖2cb = ‖
k∑
i=1

DiD
∗
i ‖‖

k∑
i=1

EiE
∗
i ‖

holds (note that every choice of Di, Ei satisfies of course ≤). This follows

by suitable versions of the Stinespring representation theorem or Wittstock’s

decomposition theorem (see for example [55], Exercise 8.6).

This example suggests the following program to study the class Σ(K).

(1) Characterize operators of the form ΣG ∈ B(B(H)) by suitable module prop-

erties. We shall see that, under some mild assumptions, Σ(K) coincides with

the class of all normal (that is, weak-∗ continuous) (M(H),M(H)∗)-module

homomorphisms in B(B(H)). Thus we generalize classical results on Schur

multipliers to the setting of arbitrary Schur kernels.

(2) Try to decide whether Schur kernels satisfy the equality ‖ΣG‖ = ‖ΣG‖cb. Un-

fortunately, this problem seems to be rather deep. The techniques which are

used in the case of classical Schur multipliers heavily rely on the fact that M(H)

is a C∗-subalgebra of B(H). In Example 1.7.3 (a), we indicated that, in our

more general setting, this will almost never happen.

(3) Find representations of completely bounded Schur multiplications.

Before we approach the first of the above points, we need a precise definition of

module homomorphisms.

Definition 2.1.9. Suppose that H, E1, E2 are Hilbert spaces and that A,B ⊂ B(H)

are operator algebras. An operator Φ ∈ B(B(H ⊗ E1), B(H ⊗ E2)) is called an

(A,B)-module homomorphism if

Φ((A⊗ 1E1)T (B ⊗ 1E1)) = (A⊗ 1E2)Φ(T )(B ⊗ 1E2)

holds for all T ∈ B(H ⊗ E1) and A ∈ A, B ∈ B.

Proposition 2.1.10. Let K : X ×X → C be a positive kernel with associated re-

producing kernel space H ⊂ CX and let E be a Hilbert space. For all G ∈ ΣE(K), the

mapping ΣG is is a normal (M(H),M(H)∗)-module homomorphism. If, in addition,

M(H) is dense in H, then every normal (M(H),M(H)∗)-module homomorphism

belongs to ΣE(K).

In this context, M(H)∗ denotes the subspace of B(H) consisting of all adjoints of

multiplication operators, that is,

M(H)∗ = {M∗
φ ; φ ∈M(H)}.

67



2 Schur kernels

Proof. For G ∈ SE(K), the calculation

〈ΣG(MαTM
∗
β)K(·, w)y,K(·, z)x〉

= 〈MαTM
∗
βK(·, w),K(·, z)〉〈G(z, w)y, x〉

= α(z)β(w)〈TK(·, w),K(·, z)〉〈G(z, w)y, x〉

= α(z)β(w)〈ΣG(T )K(·, w)y,K(·, z)x〉

= 〈(Mα ⊗ 1E)ΣG(T )(M∗
β ⊗ 1E)K(·, w)y,K(·, z)x〉,

valid for all T ∈ B(H), α, β ∈ M(H), z, w ∈ X and x, y ∈ E , shows that ΣG an

(M(H),M(H)∗)-module homomorphism. Next we prove that ΣG is normal. To

this end, let (Tα)α be a net in the unit ball of B(H) which is weak-∗ convergent to

some T in the unit ball of B(H). An application of Proposition 1.6.11 shows that

the net (SG(ΛTα))α is weak-∗ convergent towards SG(ΛT ), or equivalently, that the

net (ΣG(Tα))α is weak-∗-convergent towards ΣG(T ). Thus, the restriction of ΣG
to the unit ball of B(H) is weak-∗ continuous. Now a well-known corollary of the

Krĕın -Smulian theorem implies that ΣG is weak-∗ continuous.

For second assertion, let Q0 = 1⊗ 1 ∈ B(H) denote the unique operator satisfying

Q0K(·, w) = 1 for all w ∈ X (note that H contains the constant functions by the

hypothesis that M(H) ⊂ H).

We define G = ΛΦ(Q0) ∈ B(KE) and claim that

G · ΛT = ΛΦ(T )

holds for all finite-rank operators T ∈ B(H). Clearly, since M(H) was assumed to

be dense in H, it suffices to show this for rank-one operators of the form T = α⊗β
with α, β ∈M(H). The trivial identity

MαQ0M
∗
β = α⊗ β

leads to

〈ΛΦ(T )(z, w)y, x〉 = 〈Φ(MαQ0M
∗
β)K(·, w)y,K(·, z)x〉

= 〈(Mα ⊗ 1E)Φ(Q0)(M∗
β ⊗ 1E)K(·, w)y,K(·, z)x〉

= α(z)β(w)〈Φ(Q0)K(·, w)y,K(·, z)x〉

= ΛT (z, w)〈G(z, w)y, x〉 (z, w ∈ X,x, y ∈ E),

which proves this first assertion. Next, we want to show that G belongs to SE(K).

To this end, fix some kernel L = ΛT ∈ B(K). Clearly, we can approximate T in

the WOT sense by a net of finite-rank operators (Ti)i such that ‖Ti‖ ≤ ‖T‖ holds

for all i. Writing Li = ΛTi for all i, we observe that G · Li = ΛΦ(Ti) ∈ B(KE)

and that ‖G · Li‖KE ≤ ‖Φ‖‖T‖. Hence (G · Li)i is a bounded net in SE(K) which

converges pointwise WOT to G·L by Proposition 1.6.11. By Lemma 1.6.12, we have

G ·L ∈ B(KE). This means that G ∈ SE(K). Finally, since the normal mappings Φ
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and ΣG coincide on the weak-∗ dense subspace of finite-rank operators, they must

be equal.

The following example shows we cannot drop the hypothesis that M(H) is dense

in H.

Example 2.1.11. Consider the Segal-Bargmann-Fock space H = L2
a(C, µ), which

is by definition the Bergman space on C with respect to the normalized Gaussian

measure dµ = 1
π e
−|z|2dλ, λ denoting the ordinary Lebesgue measure on C (see also

Example 1.1.10). This is a non-degenerate reproducing kernel space with kernel

K : C× C → C , K(z, w) = ezw.

By Liouville’s theorem, it has no non-constant multipliers (since multipliers are

bounded entire functions). Thus every Φ ∈ B(B(H)) has the (M(H),M(H)∗)-

module property. The following proposition however, implies that for the Segal-

Bargmann kernel, the space Σ(K) consists only of multiples of the identity operator.

The space S (K) enjoys a kind of slice property, which establishes a first connection

between Schur kernels and multipliers.

Proposition 2.1.12. Suppose that H ⊂ CX is a non-degenerate reproducing kernel

space with reproducing kernel K. Then for all kernels G ∈ S (K), the slice functions

Gw : X → C , Gw(z) = G(z, w) (w ∈ X)

belong to M(H) with ‖Gw‖M ≤ ‖G‖S .

Proof. Fix some w ∈ X and consider the mappings

i : H → B(K) , f 7→ f �K(·, w)

and

π : B(K) → H , L 7→ L(·, w).

Then both i and π have norm at most K(w,w)
1
2 by Remark 1.6.5 and Corollary

1.6.4, respectively. Under the composition

H i−→ B(K) SG−→ B(K) π−→ H,

an element f of H is mapped to K(w,w) Gw · f . Since H is supposed to be non-

degenerate, we have K(w,w) > 0 and hence

Gw · f =
1

K(w,w)
πSGif ∈ H

for all f ∈ H. Therefore Gw ∈M(H) and ‖Gw‖M ≤ ‖G‖S .
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Corollary 2.1.13. Suppose that H ⊂ CX is a non-degenerate reproducing kernel

space with reproducing kernel K. Then every kernel G ∈ S (K) is bounded with

‖G‖∞ ≤ ‖G‖S .

Proof. By Corollary 1.7.7, we have

‖Gw‖∞ ≤ ‖Gw‖M (w ∈ X).

Consequently,

‖G‖∞ = sup
w∈X

‖Gw‖∞ ≤ sup
w∈X

‖Gw‖M ≤ ‖G‖S .

Example 2.1.14. We continue the discussion of the Segal-Bargman-Fock space

started in Example 2.1.11. Suppose that G is a hermitian kernel in S (K). By

Proposition 2.1.12, the functions G(·, w) are multipliers of H and therefore constant.

For w ∈ C, let g(w) denote the constant value of the function G(·, w). We obtain

g(w) = G(z, w) = G∗(z, w) = G(w, z) = g(z)

for all z, w ∈ C. This shows that g and therefore G is constant. Since S (K) is the

span of its hermitian kernels, every kernel in S (K) must be constant.

It may appear annoying that we did not formulate Proposition 2.1.12 in the expected

full generality for B(E)-valued Schur kernels. We will partially fill this gap later by

restricting our attention to completely bounded Schur multiplications.

2.2 Positive Schur kernels

This section is devoted to the study of the positive Schur kernels.

Proposition 2.2.1. Suppose that K : X ×X → C is a positive kernel with associ-

ated reproducing kernel space H ⊂ CX and that E is a Hilbert space. For a positive

kernel G : X ×X → B(E), the following are equivalent:

(i) G ∈ SE(K).

(ii) G ·K ∈ B(KE).

(iii) There exist a Hilbert space G and a multiplier φ ∈ M(HG ,HE) such that

G(z, w) = φ(z)φ(w)∗ holds for all z, w ∈ X.

In this case, every Kolmogorov factorization (G, φ) of G defines a multiplier φ in

M(HG ,HE) such that

ΣG(T ) = Mφ(T ⊗ 1G)M∗
φ
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for all T ∈ B(H). In particular, ΣG is completely positive and

‖G ·K‖KE = ‖G‖S = ‖ΣG‖ = ‖ΣG‖cb = ‖φ‖2M

holds for all such φ.

Proof. The implication (i) to (ii) is clear by the definition of SE(K). Suppose

that (ii) holds and choose a Kolmogorov factorization (not necessarily minimal)

of (G, φ) of G. Then, by Proposition 1.7.6 and Remark 1.6.2(f), it follows that

φ ∈M(HG ,HE) and that

‖φ‖2M ≤ ‖G ·K‖KE ≤ ‖G‖S (2.2.1)

holds. Finally, Lemma 2.1.7 shows that (iii) implies (i) and that

‖G‖S = ‖ΣG‖ ≤ ‖ΣG‖cb ≤ ‖φ‖2M. (2.2.2)

Combining (2.2.1) and (2.2.2) finishes the proof.

Note that the equality ‖ΣG‖ = ‖ΣG‖cb reflects the fact that

‖Φ‖cb = ‖Φ‖ = ‖Φ(1H1)‖

holds for every completely positive map Φ : B(H1) → B(H2) (where H1 and H2

are Hilbert spaces).

2.3 Completely bounded Schur multiplications

The aim of this section is to find representation theorems for Schur kernels. We

shall use operator space theoretic methods to describe explicitly the structure of

completely bounded normal module homomorphisms (see also [55], [48] for earlier

results of this type). Proposition 2.1.10 allows us to use these results to study

completely bounded Schur multiplications. Since we are not able to show that

the operators in ΣE(K) are automatically completely bounded (as in the case of

classical Schur multipliers), we shall restrict ourselves to the class of completely

bounded Schur multiplications, in the following denoted by the symbol S
(0)
E (K).

Definition 2.3.1. Suppose that K : X×X → C is a positive kernel with associated

reproducing kernel space H ⊂ CX and that E is a Hilbert space. We define

S
(0)
E (K) = {G ∈ SE(K) ; ΣG is completely bounded }

and set ‖G‖S (0) = ‖ΣG‖cb for G ∈ S
(0)
E (K). Furthermore, we write

Σ(0)
E (K) = {ΣG ; G ∈ S

(0)
E (K)},

which is clearly a subspace of CB(B(H), B(HE)). As usual, the abbreviations

S (0)(K) = S
(0)
C (K) and Σ(0)(K) = Σ(0)

C (K) will be used.
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Unless otherwise stated, the space S
(0)
E (K) will be equipped with the relative op-

erator space structure of CB(B(H), B(HE)). We shall see later that under addi-

tional hypotheses on the underlying space H, S
(0)
E (K) is complete and even a dual

space. However, it is not clear if the space S
(0)
E (K) is closed or even BW closed

in SE(K). In fact, if it were, then in many concrete cases we could prove that

S
(0)
E (K) = SE(K). In the positive direction, we can at least show the following

approximation result (cf. Proposition 2.1.6).

Proposition 2.3.2. Suppose that H ⊂ CX is a reproducing kernel space with re-

producing kernel K : X ×X → C and that E is a Hilbert space. Then for a given

kernel G : X ×X → B(E), the following are equivalent:

(i) G ∈ S
(0)
E (K).

(ii) There exists a bounded sequence (Gn)n in S
(0)
E (K) such that (Gn(z, w))n

converges WOT to G(z, w) for all z, x ∈ X.

(iii) There exists a bounded net (Gα)α in S
(0)
E (K) such that (Gα(z, w))α converges

WOT to G(z, w) for all z, w ∈ X.

In this case,

‖G‖S (0) ≤ lim inf
n

‖Gn‖S (0) and ‖G‖S (0) ≤ lim inf
α

‖Gα‖S (0)

holds for all sequences and nets as in (ii) and (iii), respectively.

Proof. We have to prove the implication (iii) to (i). Let d > lim infα ‖Gα‖S (0)

be arbitrary. By passing to a suitable subnet, we may assume that ‖ΣGα‖cb < d

holds for all α. By [55], Theorem 7.4, there exists a completely bounded operator

Φ : B(H) → B(HE) with ‖Φ‖cb ≤ d such that an appropriate subnet (ΣGαi )i
converges to Φ in the BW topology of B(B(H), B(HE)). Routine arguments now

show that G · ΛT = ΛΦ(T ) holds for all T ∈ B(H) and hence, that G belongs to

S
(0)
E (K) with Φ = ΣG. In particular, ‖G‖S (0) = ‖ΣG‖cb = ‖Φ‖cb ≤ d.

The following result provides a characterization of the class S
(0)
E (K) avoiding the

notion of complete boundedness.

Proposition 2.3.3. Suppose that H ⊂ CX is a reproducing kernel space with re-

producing kernel K : X ×X → C and that E is a Hilbert space. For a given kernel

G : X ×X → E, the following are equivalent:

(i) G ∈ S
(0)
E (K).

(ii) There exists an infinite dimensional Hilbert space F such that

G ∗ L ∈ B(KE⊗F ) for all L ∈ B(KF ).
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2.3 Completely bounded Schur multiplications

(iii) For every Hilbert space F , we have

G ∗ L ∈ B(KE⊗F ) for all L ∈ B(KF ).

In this case,

‖G‖S (0) = sup ‖G ∗ L‖KE⊗F ,

where the supremum ranges over all Hilbert spaces F and all kernels L ∈ B(KF )

with ‖L‖KF ≤ 1.

Proof. Suppose that (i) holds and let F be an arbitrary Hilbert space. For sim-

plicity, let us assume that ‖G‖S (0) = 1. Since ΣG : B(H) → B(HE) is normal (cf.

Proposition 2.1.10) and completely contractive, the mapping

ΣG ⊗ 1B(F) : B(H)⊗B(F) → B(HE)⊗B(F)

extends to a normal complete contraction

Φ : B(H)⊗B(F) → B(HE)⊗B(F)

(by [30], Lemma 1.5). Clearly there are natural completely isometric identifications

B(H)⊗B(F) ' B(HF ) and B(HE)⊗B(F) ' B(HE⊗F )

by the definition of the normal spatial tensor product and Proposition 1.2.2. Using

these identifications, one checks that G ∗ ΛT⊗X = ΛΦ(T⊗X) holds for all T ∈ B(H)

and X ∈ B(F). A standard continuity argument now proves that G∗L ∈ B(KE⊗F )

and that ‖G ∗L‖KE⊗F ≤ ‖L‖KF holds for all L ∈ B(KF ). This proves the implica-

tion (i) to (iii). That (iii) implies (ii) is trivial. Finally, suppose that (ii) holds for

some infinite dimensional Hilbert space F0. Then the mapping

TG : B(KF0) → B(KE⊗F0) , L 7→ G ∗ L

is continuous by Remark 1.6.2 (c) and the closed graph theorem. Using the canonical

embeddings of B(K(n)) into B(KF0) and of B(K(n)
E ) into B(KE⊗F0), one easily

deduces that G ∈ S
(0)
E (K) and ‖G‖S (0) ≤ ‖TG‖. The asserted equality

‖G‖S (0) = sup
F,L

‖G ∗ L‖KE⊗F

is now obvious.

Before we continue, we stress the fact that the positive cones of SE(K) and S
(0)
E (K)

are the same, isometrically. In fact, we saw in Proposition 2.2.1 that for every

G ∈ SE(K)+, the corresponding operator ΣG is automatically completely positive

with ‖ΣG‖cb = ‖ΣG‖. In particular, linear combinations of kernels in SE(K)+
belong to S

(0)
E (K). This observation leads to the following example.
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2 Schur kernels

Example 2.3.4. Suppose that D is an open set in Cd and that K is a sesquianalytic

kernel over D. Let H ⊂ CD denote the associated reproducing kernel Hilbert space

consisting of analytic functions and assume that the coordinate functions zi with

1 ≤ i ≤ d are multipliers of H.

(a) By Lemma 2.1.7, the kernels

D ×D → C , (z, w) 7→ zi and D ×D → C , (z, w) 7→ wi

belong to S (0)(K) for all 1 ≤ i ≤ d. Since S (0)(K) is obviously stable under the

forming of pointwise products, every polynomial in z and w belongs to S (0)(K).

We already know by Example 1.4.5 that every polynomial kernel G can be written

as a linear combination of positive definite polynomial kernels. In particular,

G is a linear combination of elements of S (K)+. Later we shall see that, in

general, the linear hull of S (K)+ is all of S (0)(K).

(b) If we assume in addition that D is a domain and that the Taylor spectrum of the

tuple Mz is contained in D, then every kernel G that extends sesquianalytically

to a neighbourhood of D ×D belongs to S (0)(K). To prove this, we choose an

open set U ⊃ D such that G is sesquianalytic on U × U . Let us first consider

the case that G is positive. Fix a minimal Kolmorogov factorization (G, φ) of G.

Then the function φ : U → B(G,C) obviously is an analytic function on an open

neighbourhood of D and therefore belongs to M(H⊗G,H) by Example 1.7.3 (b).

Proposition 2.2.1 now shows that G ∈ S (K)+. If G is not necessarily positive,

then by Remark 1.6.10, it is possible to represent G as a linear combination

of positive kernels which are sesquianalytic on U × U . Consequently, G itself

belongs to S (0)(K).

We already pointed out that the space S
(0)
E carries a natural operator space struc-

ture, which is induced via the assignment

S
(0)
E (K) → CB(B(H), B(HE)) , G 7→ ΣG.

Clearly, to be precise, the induced matrix norms may happen to be only semi-

norms. When the underlying Hilbert space H is supposed to be non-degenerate,

then they are norms. The matrix norms on S
(0)
E (K) can be expressed as follows: Let

[Gij ] ∈Mn(S
(0)
E (K)) be an n× n-matrix of kernels in S

(0)
E (K). By the definition

of the operator space structure of CB(B(H), B(HE)), the n-th norm of [Gij ] is the

cb-norm of the operator

B(H) →Mn(B(HE)) , T 7→ [ΣGij(T )],

which is, under the obvious identification Mn(B(HE)) = B(HEn) the same as

‖G‖S (0) , where G denotes the Schur kernel

G : X ×X → B(En) , G(z, w) = [Gij(z, w)].
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In Proposition 2.1.10, we found a characterization of Schur multiplications as nor-

mal (M(H),M(H)∗)-module homomorphisms in B(B(H), B(HE)). The following

representation theorem for completely bounded module homomorphisms will be our

main tool in the description of S
(0)
E (K).

Theorem 2.3.5. Suppose that H, E1, E2 are Hilbert spaces and that A,B are unital

subalgebras of B(H). Let Φ ∈ CB(B(H⊗E1), B(H⊗E2)) be a normal (A,B)-module

homomorphism. Then there exist a Hilbert space G, operators

V ∈ B(H ⊗ E1 ⊗ G,H ⊗ E2) and W ∈ B(H ⊗ E2,H ⊗ E1 ⊗ G)

such that

Φ(T ) = V (T ⊗ 1G)W (T ∈ B(H ⊗ E1))

with ‖Φ‖cb = ‖V ‖‖W‖ and such that

(A⊗ 1E2)V = V (A⊗ 1E1 ⊗ 1G) and (B ⊗ 1E1 ⊗ 1G)W = W (B ⊗ 1E2)

holds for all A ∈ A and B ∈ B.

The particular case E1 = E2 = C of this result can already be found in [48]. Since

this reference is not widely available and since we need a slightly more general

version, we provide a detailed proof. For better readability, we will split the proof

into several parts.

Definition 2.3.6. Let H1,H2 be Hilbert spaces and let Φ : B(H1) → B(H2) be a

linear mapping. A representation of Φ is a tuple (K,π, V,W ) consisting of a Hilbert

space K, a ∗-homomorphism π : B(H1) → B(K) and operators V ∈ B(K,H2),

W ∈ B(H2,K) such that

φ(T ) = V π(T )W

holds for all T ∈ B(H1). A representation will be called minimal if

[π(B(H1))V ∗H2] = K = [π(B(H1))WH2]

holds.

A key step in the proof of Theorem 2.3.5 is the observationt that representations

can always be minimized.

Lemma 2.3.7. Let H1,H2 be Hilbert spaces and suppose that the linear mapping

Φ : B(H1) → B(H2) admits a representation (K,π, V,W ). Then there exists a

minimal representation (K0, π0, V0,W0) of Φ such that K0 ⊂ K, ‖V0‖ ≤ ‖V ‖ and

‖W0‖ ≤ ‖W‖.

Proof. Set L = [π(B(H1))WH2]. Then L is an π(B(H1))-invariant subspace of

K. Hence the orthogonal projection P from K onto L commutes with π(B(H1)).
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Now define K0 = [Pπ(B(H1))V ∗H2]. Then also K0 ⊂ L is a π(B(H1))-invariant

subspace of K, and the orthogonal projection Q from K onto K0 commutes with

π(B(H1)). We define

π0 : B(H1) → B(K0) , π0(T ) = Qπ(T )|K0

and

V0 = V|K0 and W0 = QW.

First we observe that π0 is a ∗-homomorphism. Since K⊥
0 =

⋂
T∈B(H1)

kerV π(T )P ,

we obtain that

〈V0π0(T )W0x, y〉 = 〈V π(T )QWx, y〉

= 〈V π(T )PWx, y〉

= 〈V π(T )Wx, y〉

= 〈Φ(T )x, y〉 (T ∈ B(H1), x, y ∈ H2).

Hence (K0, π0, V0,W0) is still a representation of Φ. It remains to show that the

constructed representation is minimal. To this end, note that

[π0(B(H1))V ∗0 H2] = [π(B(H1))QV ∗H2] = [QPπ(B(H1))V ∗H2] = K0.

Similarly, one obtains that

[π0(B(H1))W0H2] = [π(B(H1))QWH2] = [Qπ(B(H1))WH2] = QK = K0.

Before we prove Theorem 2.3.5, we recapitulate some facts from the theory of von

Neumann algebras. Let M be a von Neumann algebra. Then the norm closed

subspace

M∗ = {λ : M→ C ; λ weak-∗ continuous }

of M∗ is the unique predual of M. Elements of M∗ are called normal functionals.

A positive functional λ ∈M∗ is called singular if the only normal functional λ′ with

0 ≤ λ′ ≤ λ is λ′ = 0. The linear span of the positive singular functionals is denoted

by M⊥
∗ . Elements of M⊥

∗ are called singular functionals. One can show that M⊥
∗

is a norm closed subspace of M∗ and that M∗ = M∗⊕1M⊥
∗ ([71], Theorem 2.14).

Now suppose that Φ : M→ N is a bounded operator between two von Neumann

algebras M and N . Then Φ is called normal if Φ∗N∗ ⊂ M∗, and it is called

singular if Φ∗N∗ ⊂ M⊥
∗ . Clearly, Φ is normal precisely if it is weak-∗ continuous.

By a famous result of Tomiyama-Takesaki ([71], Definition 2.15), every operator

Φ ∈ B(M,N ) can be uniquely decomposed as Φ = Φσ + Φs, where Φσ is normal

and Φs is singular.
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In the case that M = B(H) for some Hilbert space H, normal and singular func-

tionals can be described in a more concrete way: a functional λ ∈ B(H)∗ is normal

if and only if there exist sequences (xn)n and (yn)n in H such that∑
n

‖xn‖2 <∞ ,
∑
n

‖yn‖2 <∞

and such that

λ(T ) =
∑
n

〈Txn, yn〉

holds for all T ∈ B(H) (cf. [64], Corollary 1.15.5). Furthermore it is well known

that a functional λ ∈ B(H)∗ is singular if and only if it vanishes on the ideal of

compact operators K(H). In order to prove this, one could use [71], Theorem 3.8.

In particular, it follows that an operator Φ ∈ B(B(H1), B(H2)) (H1,H2 Hilbert

spaces) is singular if and only if it vanishes on K(H1).

Lemma 2.3.8. Suppose that H, E1, E2 are Hilbert spaces and that A,B are unital

subalgebras of B(H). Let Φ ∈ CB(B(H ⊗ E1), B(H ⊗ E2)) be an (A,B)-module

homomorphism. Then there exists a minimal representation (K,π, V,W ) of Φ sat-

isfying ‖Φ‖cb = ‖V ‖‖W‖ such that

(A⊗ 1E2)V = V π(A⊗ 1E1) and π(B ⊗ 1E1)W = W (B ⊗ 1E2)

holds for all A ∈ A, B ∈ B. If Φ is supposed to be normal, then π as well can be

chosen as a normal ∗-homomorphism.

Proof. We start by choosing a Stinespring representation (K1, π1, V1,W1) of the

completely bounded map Φ, that is, a representation satisfying ‖Φ‖cb = ‖V1‖‖W1‖
(see [55], Theorem 8.4 for the existence of such a representation). By Lemma 2.3.7,

we find a minimal representation (K,π, V,W ) of Φ such that ‖V ‖ ≤ ‖V1‖ and

‖W‖ ≤ ‖W1‖. Hence ‖V ‖‖W‖ ≤ ‖V1‖‖W1‖ = ‖Φ‖cb. On the other hand, we

always have

‖Φ‖cb ≤ ‖V ‖‖π‖cb‖W‖ ≤ ‖V ‖‖W‖,

and thus equality, ‖Φ‖cb = ‖V ‖‖W‖.

Now for A ∈ A, we observe

V π(A⊗ 1E1)π(T )Wx = Φ((A⊗ 1E1)T )x

= (A⊗ 1E2)Φ(T )x

= (A⊗ 1E2)V π(T )Wx (T ∈ B(H ⊗ E1), x ∈ H2).

By the minimality of the representation, we obtain that

V π(A⊗ 1E1) = (A⊗ 1E2)V.
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In the same way, it follows that, for B ∈ B,

W ∗π(B ⊗ 1E1)
∗π(T )V ∗x = Φ(T ∗(B ⊗ 1E1))

∗x

= (B ⊗ 1E2)
∗Φ(T ∗)∗x

= (B ⊗ 1E2)
∗W ∗π(T )V ∗x (T ∈ B(H ⊗ E1), x ∈ H2),

and hence, by the minimality of the representation, we find that

W ∗π(B ⊗ 1E1)
∗ = (B ⊗ 1E2)

∗W ∗.

To complete the proof, we suppose in addition that Φ is normal. Let π = πσ + πs

denote the Tomiyama decomposition of the representation π. For a moment, we fix

operators R,S ∈ B(H ⊗ E1) and define

ψσ : B(H ⊗ E1) → B(H ⊗ E2) , ψσ(T ) = V π(R∗)πσ(T )π(S)W

and

ψs : B(H ⊗ E1) → B(H ⊗ E2) , ψs(T ) = V π(R∗)πs(T )π(S)W.

By the remarks preceding this lemma, it is not hard to see that ψσ is normal. The

operator ψs is singular, since it vanishes on the compact operators. As a composition

of normal operators, the mapping

ψ : B(H ⊗ E1) → B(H ⊗ E2) , ψ(T ) = Φ(R∗TS)

certainly is normal as well, and ψ = ψσ + ψs is easily recognized as the unique

Tomiyama decomposition of ψ. We see that ψs = 0 and hence that

〈πs(T )π(S)Wy, π(R)V ∗x〉 = 〈ψs(T )y, x〉 = 0

holds for all T ∈ B(H ⊗E1) and x, y ∈ H ⊗E2. Since R,S were arbitrary and since

[π(B(H ⊗ E1))WH ⊗ E2] = K = [π(B(H ⊗ E1))V ∗H ⊗ E2],

we conclude that πs = 0 or, equivalently, that π = πσ is normal.

We are now in the position to accomplish the proof of the representation theorem.

Proof (of Theorem 2.3.5). By Lemma 2.3.8, there exists a minimal normal repre-

sentation (K0, π0, V0,W0) of Φ. We claim that π0 is unitarily equivalent to an

amplification of the identical representation, that is, there exist a Hilbert space G
and a unitary operator U ∈ B(K0,H ⊗ E1 ⊗ G) such that

U∗(T ⊗ 1G)U = π0(T )

holds for all T ∈ B(H ⊗ E1). In fact, by [12], Corollary 1 of Theorem 1.4.4, there

exists a Hilbert space G and a unitary U ∈ B(K0,H⊗ E1 ⊗ G) such that

π0(T ) = U∗(T ⊗ 1G)U (2.3.1)
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holds for all T ∈ K(H ⊗ E1) (the algebra of compact operators on H ⊗ E1). Since

K(H ⊗E1) is weak-∗ dense in B(H ⊗E1) and since both sides of (2.3.1) are weak-∗
continuous, the claim is proved.

Next we want to show that the operators

V = V0U
∗ : H ⊗ E1 ⊗ G → H ⊗ E2

and

W = UW0 : H ⊗ E2 → H ⊗ E1 ⊗ G

have the desired properties. First of all,

Φ(T ) = V0π0(T )W0 = V0U
∗(T ⊗ 1G)UW0 = V (T ⊗ 1G)W

for all T ∈ B(H ⊗ E1), and also

‖Φ‖cb ≤ ‖V ‖‖W‖ = ‖V0‖‖W0‖ = ‖Φ‖cb,

and thus ‖Φ‖cb = ‖V ‖‖W‖. Finally,

(A⊗ 1E2)V = (A⊗ 1E2)V0U
∗

= V0π0(A⊗ 1E1)U
∗

= V0U
∗(A⊗ 1E1 ⊗ 1G)

= V (A⊗ 1E1 ⊗ 1G)

and

W (B ⊗ 1E2) = UW0(B ⊗ 1E2)

= Uπ0(B ⊗ 1E1)W0

= (B ⊗ 1E1 ⊗ 1G)UW0

= (B ⊗ 1E1 ⊗ 1G)W

holds for all A ∈ A and B ∈ B, which finishes the proof.

We are now able to prove the main result of this chapter, namely, a factorization

theorem for S
(0)
E (K).

Theorem 2.3.9. Suppose that H ⊂ CX is a reproducing kernel Hilbert space with

reproducing kernel K : X ×X → C such that M(H) is dense in H or such that H
is regular. Let E be a Hilbert space. Then, for a given kernel G : X ×X → B(E),

the following are equivalent:

(i) G ∈ S
(0)
E (K) and ‖G‖S (0) ≤ 1.
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(ii) There exist kernels H1,H2 ∈ SE(K)+ with ‖H1‖S ≤ 1, ‖H2‖S ≤ 1 such that

the kernel

H : X ×X → B(E2) , H(z, w) 7→

(
H1(z, w) G(z, w)

G∗(z, w) H2(z, w)

)

belongs to SE2(K)+ and satisfies ‖H‖S ≤ 2.

(iii) There exist a Hilbert space G and contractive multipliers φ, ψ ∈ M(HG ,HE)
such that

G(z, w) = φ(z)ψ(w)∗

holds for all z, w ∈ X.

Proof. We first prove the equivalence of (ii) and (iii). Suppose that (ii) holds. By

Proposition 2.2.1, there exist a Hilbert space G and a multiplier γ ∈ M(HG ,HE2)

such that

H(z, w) = γ(z)γ(w)∗

holds for all z, w ∈ X. Define functions φ, ψ : X → B(G, E) by

γ(z)x =

(
φ(z)x

ψ(z)x

)
.

This yields(
H1(z, w) G(z, w)

G∗(z, w) H2(z, w)

)
=

(
φ(z)φ(w)∗ φ(z)ψ(w)∗

ψ(z)φ(w)∗ ψ(z)ψ(w)∗

)
(2.3.2)

for all z, w ∈ X. Hence, on the one hand

H1(z, w) = φ(z)φ(w)∗ and H2(z, w) = ψ(z)ψ(w)∗

for all z, w ∈ X which shows, again by Proposition 2.2.1, that φ and ψ define

contractive multipliers in M(HG ,HE). On the other hand, (2.3.2) shows of course

that G(z, w) = φ(z)ψ(w)∗ holds for z, w ∈ X.

Conversely suppose that G can be factorized as in (iii) with contractive multipliers

φ and ψ. Then Proposition 2.2.1 implies that the functions H1,H2 : X×X → B(E),

defined by

H1(z, w) = φ(z)φ(w)∗ and H2(z, w) = ψ(z)ψ(w)∗ (z, w ∈ X),

are positive Schur kernels with ‖H1‖S ≤ 1 and ‖H2‖S ≤ 1. Then

γ : X ×X → B(G, E2) , γ(z)x =

(
φ(z)x

ψ(z)x

)

defines a multiplier γ ∈M(HG ,HE2). Indeed, consider the operators

j1 : E → E2 , x 7→

(
x

0

)
and j2 : E → E2 , x 7→

(
0

x

)
.
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According to Lemma 1.7.13, these operators define constant multipliers between

HE and HE2 . Writing γ as

γ(z) = j1φ(z) + j2ψ(z) (z ∈ X),

we see that γ is a multiplier. Moreover, since Mj1 and Mj2 are isometries with

orthogonal ranges, we infer that

M∗
γMγ = M∗

φMφ +M∗
ψMψ.

This shows of course that ‖γ‖M ≤
√

2. Then Proposition 2.2.1 implies that the

kernel H : X ×X → B(E2),

H(z, w) =

(
H1(z, w) G(z, w)

G∗(z, w) H2(z, w)

)
= γ(z)γ(w)∗

belongs to SE2(K)+ with ‖H‖S ≤ 2.

The implication (iii) to (i) is precisely the statement of Lemma 2.1.7.

For the remaining implication (i) to (iii), let us first consider the case thatM(H) is a

dense subset of H. By Proposition 2.1.10, the mapping ΣG is a completely bounded

normal (M(H),M(H)∗)-module homomorphism. Theorem 2.3.5 now furnishes a

Hilbert space G and operators

V ∈ B(H⊗ G,H⊗ E) and W ∈ B(H⊗ E ,H⊗ G)

with

ΣG(T ) = V (T ⊗ 1G)W (T ∈ B(H)

such that ‖ΣG‖cb = ‖V ‖‖W‖ and such that

(Mα ⊗ 1E)V = V (Mα ⊗ 1G) and W ∗(Mβ ⊗ 1G) = (Mβ ⊗ 1E)W ∗

holds for all α, β ∈M(H). By Corollary 1.7.5, there exist φ, ψ ∈M(H⊗G,H⊗E)

such that V = Mφ and W = M∗
ψ. An evaluation of ΣG on the rank-one operator

Q0 = 1⊗ 1 yields that

〈G(z, w)y, x〉 = 〈ΣG(Q0)K(·, w)y,K(·, z)x〉

= 〈(Q0 ⊗ 1G)M∗
ψK(·, w)y,M∗

φK(·, z)x〉

= 〈ψ(w)∗y, φ(z)∗x〉

for all z, w ∈ X and x, y ∈ E . Thus G(z, w) = φ(z)ψ(w)∗ for all z, w ∈ X and

‖G‖S (0) = ‖ΣG‖cb = ‖V ‖‖W‖ = ‖φ‖M‖ψ‖M, which proves all assertions.

We now consider the case that H is regular. Then the implication (i) to (ii) can

be proved by an approximation argument: Let Y denote the collection of all finite

subsets of X. If Y ∈ Y, then H|Y denotes as usual the space associated with the
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restriction K|Y of K onto Y ×Y . By Proposition 1.2.3, the space H|Y consists pre-

cisely of all restrictions of functions in H. Similarly, (HE)|Y is the space associated

with the restriction (KE)|Y of KE onto Y × Y . Clearly, (HE)|Y = (H|Y )E . Again

by Proposition 1.2.3, the restriction maps

ρY : H → H|Y and ρY,E : HE → (H|Y )E

are coisometries. It is then very easy to see that the maps

iY : B(H|Y ) → B(H) , T 7→ ρ∗Y TρY

and

iY,E : B((H|Y )E) → B(HE) , T 7→ ρ∗Y,ETρY,E

are faithful ∗-homomorphisms. Analogously, the maps

πY : B(H) → B(H|Y ) , T 7→ ρY Tρ
∗
Y

and

πY,E : B(HE) → B((H|Y )E) , T 7→ ρY,ETρ
∗
Y,E

define completely positive unital mappings such that

πY iY = 1B(H|Y ) and πY,E iY,E = 1B((H|Y )E).

One verifies that, for Y ∈ Y, the kernel G|Y = G|Y×Y belongs to SE(KY ) and,

moreover, satisfies the relation ΣG|Y = πY,EΣGiY . Hence it follows that actually

G|Y ∈ S
(0)
E (KY ) and ‖G|Y ‖S (0) ≤ ‖G‖S (0) . Since H|Y = CY by Proposition 1.3.6,

it follows that M(H|Y ) = CY = H|Y .

By the previous part of the proof, for every set Y ∈ Y, there exist Schur kernels

HY
1 ,H

Y
2 ∈ SE(K|Y )+ with ‖HY

1 ‖S ≤ 1 and ‖HY
2 ‖S ≤ 1 such that

HY : Y × Y → B(E2) , HY (z, w) =

(
HY

1 (z, w) G|Y (z, w)

G∗|Y (z, w) HY
2 (z, w)

)

belongs to SE2(K|Y )+ and ‖HY ‖S ≤ 2. Defining

ΦYi : B(H) → B(HE) , ΦYi = iY,EΣHYi πY (i = 1, 2)

yields nets (ΦY1 )Y ∈Y and (ΦY2 )Y ∈Y of completely positive operators in the unit ball

of CB(B(H), B(HE)). Since the latter unit ball is BW compact (by [55], Theorem

7.4), there are subnets (ΦYji )j of (ΦYi )Y such that the BW limits

Φi = lim
j

ΦYji (i = 1, 2) (2.3.3)

exist. As expected, the operators Φ1,Φ2 allow us to define kernels H1,H2 satisfying

condition (ii). Since H was supposed to be non-degenerate, for every z ∈ X, we can

choose a function fz ∈ H with fz(z) = 1. Let us define

Hi : X ×X → B(E) , Hi(z, w) = ΛΦi(fz⊗fw)(z, w) (i = 1, 2).
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2.3 Completely bounded Schur multiplications

For every F ∈ Y, let us furthermore fix some jF ∈ J with the property that

YjF ⊃ F . The set {j ∈ J ; j ≥ jF } is then cofinal in J for all F ∈ Y. Now, by

Proposition 7.3 in [55], equation (2.3.3) means that

lim
j

ΦYji (T ) = Φi(T )

holds in the WOT sense for i = 1, 2 and for all T ∈ B(H). Hence

lim
j≥jF

〈HYj
i (z, w)ΛT (z, w)y, x〉 = lim

j≥jF
〈ΦYji (T )K(·, w)y,K(·, z)x〉

= 〈Φi(T )K(·, w)y,K(·, z)x〉

= 〈ΛΦi(T )(z, w)y, x〉

holds for i = 1, 2 and all T ∈ B(H), z, w ∈ F and x, y ∈ E . In particular, if

z, w ∈ X, then setting F = {z, w} yields

Hi(z, w) = lim
j≥jF

H
Yj
i (z, w) (i = 1, 2)

in the WOT sense (since Λfz⊗fw(z, w) = 1) which shows that the kernels Hi are

independent of the special choice of the functions fz. It follows that

Hi(z, w)ΛT (z, w) = lim
j≥jF

H
Yj
i (z, w)ΛT (z, w) = ΛΦi(T )(z, w)

(all limits in the weak operator sense) holds for all T ∈ B(H). Since z, w are

arbitrary, this shows that Hi ∈ SE(K) with ΣHi = Φi and ‖Hi‖S ≤ 1 for i = 1, 2.

It remains to show that the kernelsHi and the associated kernelH : X×X → B(E2)

are positive and that ‖H‖S ≤ 2. First let us prove the positivity of the kernels

H1,H2. Clearly, it suffices to show the positivity on each finite subset F of X. But

for every finite set F ⊂ X, we have

lim
j≥jF

H
Yj
i (z, w) = Hi(z, w) (z, w ∈ F ),

where the limit is meant in the weak operator sense. Since the cone of B(E)-valued

positive functions on F ×F is closed in the topology of pointwise WOT convergence

as mentioned in Remark 1.4.2(d), and since the restrictions of the kernels HYj
i on

F × F are clearly positive, the assertion follows.

The proof of the positivity of H is completely analogous, after one has checked that

lim
j≥jF

HYj (z, w) = H(z, w)

holds in the WOT sense for all finite sets F ⊂ X and all z, w ∈ F .

Finally, by Proposition 2.2.1, the kernels 2 (K|Y )E2 −HY ·K|Y are positive for all

Y ∈ Y. The same argument as above yields that 2 KE2−H ·K is positive. Another

application of Proposition 2.2.1 shows that H ∈ SE(K) with ‖H‖S ≤ 2.
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2 Schur kernels

The equivalence of (i) and (iii) in the preceding theorem can be regarded as a Schur

kernel version of Wittstock’s decomposition theorem. The statement in (ii) is an

adapted realization of Paulsen’s off-diagonal technique (cf. [55], Chapter 8).

Corollary 2.3.10. Suppose that H ⊂ CX is a reproducing kernel space with repro-

ducing kernel K : X × X → C such that M(H) is dense in H or such that H is

regular. Let E be a Hilbert space. Then, for a given kernel G : X ×X → B(E), the

following are equivalent:

(i) G ∈ S
(0)
E (K).

(ii) There exist a Hilbert space G and multipliers φ, ψ ∈M(HG ,HE) such that

G(z, w) = φ(z)ψ(w)∗

holds for all z, w ∈ X.

In this case,

‖G‖S (0) = inf{‖φ‖M‖ψ‖M ; φ, ψ as in (ii) }.

Moreover, the infimum is attained.

Example 2.3.11. We return to the case of classical Schur multiplications as dis-

cussed in Example 2.1.8. That is, we consider the reproducing kernel Hilbert space

H = l2(I) on the set I = {1, . . . , n} and its reproducing kernel

K : I × I → C , K(i, j) = δi,j .

As before, we identify kernels on I × I with n× n-matrices.

So suppose that G ∈Mn is a matrix with ‖SG‖ = ‖SG‖cb ≤ 1. Then Theorem 2.3.9

yields contractive multipliers φ, ψ ∈ M(HG ,H) (G a suitable Hilbert space) such

that

G(i, j) = φ(i)ψ(j)∗(1)

holds for all i, j ∈ I. In Example 1.7.3 ( a) we pointed out that M(HG ,H) can be

canonically identified with l∞(I,B(G,C)) and therefore with l∞(I,G). Using these

identifications, it follows immediately that there exist finite sequences (xi)ni=1 and

(yj)nj=1 in the unit ball of G such that

Gi,j = 〈yj , xi〉

holds for all i, j = 1, . . . , n. So we regain the well-knonw representation result for

classical Schur multipliers as proved by Haagerup [43], Pisier [57] and Paulsen (cf.

[55], Corollary 8.8).

We also deduce that in the situation of Theorem 2.3.9, the space S
(0)
E (K) is the

linear span of its positive kernels.
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2.3 Completely bounded Schur multiplications

Proposition 2.3.12. Suppose that H ⊂ CX is a reproducing kernel space with

reproducing kernel K : X × X → C and that E is a Hilbert space. Then, for an

arbitrary kernel G : X ×X → B(E), the following are equivalent:

(i) G ∈ SE(K) and there exists a kernel Ĝ ∈ SE(K)+ such that the kernels

Ĝ± ReG and Ĝ± ImG

are positive.

(ii) There exists a kernel Ĝ ∈ SE(K)+ such that the kernels

Ĝ± ReG and Ĝ± ImG

belong to SE(K)+.

(iii) There exist kernels G1, . . . , G4 ∈ SE(K)+ such that

G = G1 −G2 + iG3 − iG4.

In this case, G ∈ S
(0)
E (K). If in addition, M(H) is dense in H or if H is regular,

then each of the above conditions is equivalent to:

(iv) G ∈ S
(0)
E (K).

Proof. Obviously, condition (i) implies condition (ii). If (ii) holds, then

G1 =
1
2
(Ĝ+ ReG), G2 =

1
2
(Ĝ− ReG), G3 =

1
2
(Ĝ+ ImG), G4 =

1
2
(Ĝ− ImG)

are positive Schur kernels as required in (iii). If G1, . . . , G4 satisfy condition (iii),

then

Ĝ = G1 +G2 +G3 +G4

has the properties demanded in condition (i). Since S
(0)
E (K) is a linear space and

since by Proposition 2.2.1, SE(K)+ ⊂ S
(0)
E (K), condition (iii) obviously implies

(iv). Finally, if M(H) is dense in H or if H is regular, then by Theorem 2.3.9, every

kernel G ∈ S
(0)
E (K) can be factorized by multipliers φ, ψ ∈ M(HG ,HE), where G

is an appropriate Hilbert space. Then the kernel

Ĝ : X ×X → B(E) , Ĝ(z, w) =
1
2

(φ(z)φ(w)∗ + ψ(z)ψ(w)∗)

satisfies (i).

The question whether SE(K) is the linear span of its positive kernels (equivalently,

whether every hermitian kernel in SE(K) can be written as the difference of two

positive kernels in SE(K)) is therefore equivalent to the question whether the map-

pings ΣG are automatically completely bounded for all G ∈ SE(K).
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2.4 Positive Schur kernels - revisited

We make the following definitions: If H is a Hilbert space and h is an element of

H, then we denote by hc and hr the operators

hc : C → H , ζ 7→ ζh and hr : H → C , h′ 7→ 〈h, h′〉H .

It is then clear from the definitions that

jc : H → B(C,H) , h 7→ hc and jr : H → B(H,C) , h 7→ hr

are linear isometric isomorphisms. Here, as usual in the literature, H denotes the

conjugate linear version of H.

With these notations, the column Hilbert space structure on H is by definition the

operator space structure of B(C,H) induced by jc. Analogously, the row Hilbert

space structure on H is the operator space structure of B(H,C) under the identi-

fication jr. It is then clear that the identity mapping Hr → (Hc)op is a complete

isometry, where V op denotes the transposed operator space structure of a given

operator space V .

Proposition 2.4.1. Suppose that H ⊂ CX is a non-degenerate reproducing kernel

space with reproducing kernel K : X × X → C and that E is a Hilbert space. Let

G : X × X → B(E) be a positive kernel with associated reproducing kernel space

G ⊂ EX . Then the following assertions are equivalent:

(i) G ∈ SE(K)+ and ‖G‖S ≤ 1.

(ii) The embedding

i : Gc →M(H,HE) , (ig)(z) = g(z)c

between the column Hilbert space Gc and M(H,HE) is well defined and com-

pletely contractive.

(iii) The inclusion mapping j : B(G) ↪→ S
(0)
E (K) is completely contractive.

Proof. We prove (i) to (ii). Fix n ∈ N and suppose that (i) holds. Let [gij ] ∈Mn(Gc)
be an n× n-matrix of functions in G such that ‖[gij ]‖ = 1 and write

γ : X → B(Cn, En) , γ(z) = [gij(z)c].

Recalling Proposition 1.7.6 and the discussion of the operator space structure of

multiplier spaces at the end of Section 1.7, it suffices to show that the kernel

Γ : X ×X → B(En) , Γ(z, w) = K
(n)
E (z, w)−K(z, w)γ(z)γ(w)∗

is positive. By Proposition 2.2.1, the kernel

K
(n)
E −G(n) ·K = (KE −G ·K)(n)
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2.4 Positive Schur kernels - revisited

is positive. Rewriting Γ as

Γ(z, w) =
(
K

(n)
E (z, w)−G(n)(z, w)K(z, w)

)
+K(z, w)

(
G(n)(z, w)− γ(z)γ(w)∗

)
reveals that it suffices to show the positivity of the kernel

Γ′ : X ×X → B(En) , (z, w) 7→ G(n)(z, w)− γ(z)γ(w)∗.

Under canonical identifications, the kernel Γ′ is represented by the operator

1Gn − [
∑
k

gik ⊗ gjk] ∈ B(Gn).

Now the assumption ‖[gij ]‖ = 1 means, by the definition of the column Hilbert

space, that the operator

g : Cn → Gn , (ζi) 7→ (
∑
j

gijζj)

has norm 1. An easy calculation then shows that [
∑
k gik ⊗ gjk] = gg∗ is a positive

contraction. Consequently, the operator 1Gn − [
∑
k gik ⊗ gjk] is positive, which

clearly implies that Γ′ is a positive kernel.

Now suppose that (ii) holds. We introduce some new notations: For g ∈ G, write

g̃ : X → B(C, E) , g̃(z) = g(z)c.

Then (ii) precisely means that the mapping

Gc →M(H,HE) , g 7→ g̃

is well defined and completely contractive. We claim now that then also the mapping

Gr →M(H,HE)
op
, g 7→ g̃

is well defined and completely contractive. In fact, by our preliminary remarks, the

identity from Gr to (Gc)op is a complete isometry. By [32], Proposition 3.4.3, the

idenity from (Gc)op to Gc
op

is completely isometric too. Putting this together, we

have indeed a complete contraction

Gr
g 7→g−→ (Gc)op

g 7→g−→ Gc
op g 7→g̃−→ M(H,HE)

op
.

Now for φ, ψ ∈M(H,HE), let us write

Gφ,ψ : X ×X → B(E) , (z, w) 7→ φ(z)ψ(w)∗.

Since the Haagerup tensor product is functorial ([32], Proposition 9.2.5), the map-

ping

Gc ⊗ Gr →M(H,HE)⊗hM(H,HE)
op
, g ⊗ h 7→ g̃ ⊗ h̃
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2 Schur kernels

extends completely contractively to Gc ⊗h Gr. As an immediate consequence of

Lemma 2.1.7 and the definition of the Haagerup tensor product, the mapping

M(H,HE)⊗M(H,HE)
op
→ S

(0)
E (K) , φ⊗ ψ 7→ Gφ,ψ

extends completely contractively to M(H,HE)⊗hM(H,HE)
op

. On the other hand,

it is well known ([32], Proposition 9.3.4) that there exists a complete isometric

isomorphism

Gc ⊗h Gr → K(G) with g ⊗ h 7→ g ⊗ h.

Letting K(G) denote the closed subspace of B(G) consisting of compactly repre-

sented kernels, the diagram

K(G) S
(0)
E (K)

g�h7→g⊗h
y xφ⊗ψ 7→Gφ,ψ

K(G)
g⊗h7→g⊗h−−−−−−−→ Gc ⊗h Gr

g⊗h7→g̃⊗h̃−−−−−−−→ M(H,HE)⊗hM(H,HE)
op

together with a short calculation shows that there is a (unique) complete contraction

j0 : K(G) → S
(0)
E (K) , G 7→ G.

Now fix a kernel L ∈ B(G). Clearly, there exists a net of kernels (Lα)α in K(G)

satisfying ‖Lα‖G ≤ ‖L‖G and converging pointwise WOT to L. By the contractivity

of j0 and Proposition 2.3.2, we deduce that L ∈ S
(0)
E (K) with ‖L‖

S
(0)
E

≤ ‖L‖G.

This shows that the inclusion mapping j : B(G) ↪→ S
(0)
E (K) is well defined and

contractive. That j is actually completely contractive follows analogously: By the

discussion of the operator space structures of B(G) (p. 49) and S
(0)
E (K) (p. 74),

we have to show that for every n ∈ N, the inclusion B(G(n)) ↪→ S
(0)
En (K) is well

defined and contractive. In order to repeat the arguments given above, it suffices

to show that the mapping

in : (G(n))c →M(H,HEn) , g 7→ (z 7→ g(z)c)

is completely contractive. And in fact, this is clear since in is under the completely

isometric identifications (G(n))c 'Mn×1(Gc) and M(H,HEn) 'Mn×1(M(H,HE))
the same as the inflation

i(n,1) : Mn,1(Gc) →Mn,1(M(H,HE)) , [gk] 7→ [i(gk)]

of i, which is clearly completely contractive.

Example 2.4.2. Suppose that H ⊂ CX is a non-degenerate reproducing kernel

space with reproducing kernel K such that the minimal and the natural operator

space structure on M(H) coincide. In this situation, the preceding result can be

remarkably strengthened: Suppose that G : X×X → C is a positive kernel such that

the associated reproducing kernel space H is included in M(H). Then, at first, the
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inclusion mapping i : G ↪→ M(H) is automatically continuous by the closed graph

theorem. To prove this, note that the point evaluations on M(H) are bounded since

H was supposed to be non-degenerate. Second, since M(H) is a minimal operator

space, it follows by [32], (3.3.7) that i is completely bounded with ‖i‖cb = ‖i‖. Hence

the kernel G belongs to S(K)+.

It might be interesting that this could also be proved in some cases without the use

of operator space theory. In fact, suppose that H is a Bergman or Hardy space

over some Cartan domain D ⊂ Cd. (In theses cases, we know of course that

M(H) = H∞(D) holds completely isometrically, which means that M(H) is a

minimal operator space). Let γz : G → C (z ∈ X) denote the point evaluations of

G. We want to prove that G ∈ S (K)+. By Proposition 2.2.1, it suffices to show

that the mapping

γ : X → B(G,C) , z 7→ γz

belongs to M(HG ,H) or, equivalently, that

‖γ‖∞ = sup
z∈D

‖γ(z)‖ = sup
z∈D

‖γz‖ <∞.

According to the uniform boundedness principle, it suffices to show that

‖g‖∞ = sup
z∈D

|g(z)| = sup
z∈D

‖γz(g)‖ <∞

holds for all g ∈ G. But this is obviously true since G ⊂M(H) and since multipliers

are of course bounded functions.
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3 Beurling decomposable subspaces

3.1 Beurling spaces

For the rest of this paper, we will mainly be concerned with reproducing kernel

spaces having certain additional properties, formulated in the following definition.

We shall apply the theory developed in Chapter 2 to study invariant subspaces of

these spaces. As before, X denotes an arbitrary non-empty set.

Definition 3.1.1.

(a) Let H ⊂ CX be a reproducing kernel Hilbert space with reproducing kernel K.

We call H a Beurling space if the following conditions are satisfied:

(i) The reproducing kernel K has no zeroes.

(ii) The inverse kernel 1
K belongs to S (0)(K).

(iii) For all w ∈ X, the function K(·, w) belongs to M(H).

(b) A positive definite kernel K : X × X → C is called a Beurling kernel if its

associated reproducing kernel Hilbert space is a Beurling space.

We begin by listing some first consequences of this definition.

Remark 3.1.2.

(a) Suppose that H ⊂ CX is a Beurling space with reproducing kernel K. Since

the constant kernel 1 = 1
K ·K belongs to B(K), Corollary 1.6.4 implies that H

contains the constant functions. In particular, H is non-degenerate. Further-

more, M(H) is included in H and moreover, a dense subset of H by condition

(iii) of the definition. Observe that 1
K is a hermitian kernel. By Propositions

2.3.12 and 2.2.1, condition (ii) is equivalent to the existence of Hilbert spaces

B, C and multipliers β ∈M(HB,H), γ ∈M(HC ,H) such that

1
K(z, w)

= β(z)β(w)∗(1)− γ(z)γ(w)∗(1) (3.1.1)

holds for all z, w ∈ X. Finally, by Proposition 2.1.12, also the functions 1
K(·,w)

belong to M(H) for all w ∈ X.
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(b) The class of Beurling spaces is closed under restrictions. That is, if H ⊂ CX is

a Beurling space and Y is a non-empty subset of X, then the reproducing kernel

Hilbert space H|Y is a Beurling space as well. This follows from the fact that,

given Hilbert spaces E1, E2, restrictions φ|Y of multipliers φ ∈ M(HE1 ,HE2)
belong to M((H|Y )E1 , (H|Y )E2) by Proposition 1.7.6.

(c) The class of Beurling kernels is stable with respect to the forming of outer

products (cf. Section 1.2). In order to prove this, suppose that Y1, Y2 are non-

empty sets and that K1 : Y1×Y1 → C and K2 : Y2×Y2 → C are Beurling kernels

with associated reproducing kernel spaces H1,H2. We write Y = Y1×Y2. Then

the kernel K1 ~K2, as defined in Definition 1.1.7, has no zeroes. Next we claim

that, for Gi ∈ S (0)(Ki) (i = 1, 2), the kernel G1~G2 belongs to S (0)(K1~K2).

By Proposition 2.3.12, we may assume that G1, G2 are positive kernels and that

‖Gi‖S = 1 for i = 1, 2. Then the kernels G1 ~G2 and

(K1 ~K2)− (G1 ~G2) · (K1 ~K2)

= (K1 ~K2)− (G1 ·K1) ~ (G2 ·K2)

= K1 ~ (K2 −G2 ·K2) + (K1 −G1 ·K1) ~ (G2 ·K2)

are positive by Proposition 1.1.9 and Remark 1.6.2( f). An application of Propo-

sition 2.2.1 reveals that G1 ~ G2 ∈ S (0)(K). Therefore 1
K1~K2

= 1
K1

~ 1
K2

belongs to S (0)(K1 ~K2). In order to verify condition (iii), it suffices to show

that, given multipliers φ1 ∈ M(H1) and φ2 ∈ M(H2), the function φ1 ~ φ2

belongs to M(H1 ~ H2). And in fact, this is easily checked by Proposition

1.7.6.

(d) The class of Beurling kernels is also closed under pointwise (inner) products.

This follows immediately by Remark 1.1.8 and (b) and ( c).

We now provide some examples to illustrate the general character of the notion of

Beurling spaces.

Example 3.1.3.

(a) Suppose that H ⊂ CX is an NP space. By definition, the kernel 1− 1
K is positive

and hence admits a Kolmogorov factorization (C, γ), that is,

1− 1
K(z, w)

= γ(z)γ(w)∗(1)

or, equivalently,

1
K(z, w)

= 1− γ(z)γ(w)∗(1) (z, w ∈ X). (3.1.2)

Multiplication with K shows that

X ×X → C , (z, w) 7→ K(z, w)(1− γ(z)γ(w)∗(1)) = 1
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is a positive kernel. By Proposition 1.7.6, γ belongs to M(HC ,H) and defines

a contractive multiplier. Thus equation ( 3.1.2) proves that 1
K ∈ S (0)(K).

It remains to show that the functions K(·, w) (w ∈ X) are multpliers on H. To

this end, we first note that

‖γ(z)‖2 = ‖γ(z)γ(z)∗‖ = 1− 1
K(z, z)

< 1

for all z ∈ X. For fixed w ∈ X, the function

γw : X → C , z 7→ γ(z)γ(w)∗(1)

is then a multplier with ‖γw‖M < 1 by Lemma 1.7.13. In particular, the series∑∞
k=0 γ

k
w converges absolutely in M(H) and, since M(H) is a Banach space,

defines a multiplier, which obviously coincides pointwise with K(·, w). Summing

up, we have proved that H is a Beurling space.

(b) Suppose that D ⊂ Cd is a domain and that K : D ×D → C is a non-vanishing

sesquianalytic positive kernel over D with the property that 1
K can be sesquian-

alytically extended to an open neighbourhood of D×D. This is trivially fulfilled

whenever 1
K is a polynomial in z and w. Let H ⊂ CD denote the reproduc-

ing kernel space associated with K and suppose that the coordinate functions zi
(1 ≤ i ≤ d) define multipliers of H and that σ(Mz) ⊂ D. Then by Example

2.3.4 (b), 1
K belongs to S (0)(K). Note that in this situation, condition (iii) of

Definition 3.1.1 is not automatically fulfilled. Example 1.7.3 ( c) suggests that

this condition depends in an intimate way on symmetry properties of D and K.

(c) Let D be a Cartan domain in Cd and let r, a, b, g denote the rank, the charac-

teristic multiplicities and the genus of D. Fix ν in the continuous Wallach set

of D and write K = Kν and H = Hν . By Example 1.1.10, we know that K has

no zeroes on D. In Example 1.7.3 ( c), we observed that the functions K(·, w)

belong to M(H) for all w ∈ D. Therefore conditions (i) and (iii) of Definition

3.1.1 are fulfilled. It remains to verify that 1
K belongs to S (0)(K). If 1

K is

a polynomial in z and w, then this is trivially true by Example 2.3.4. But 1
K

is a polynomial in z and w exactly if ν is an integer. In fact, considering the

Faraut-Koranyi expansion ( 1.1.3) reveals that

1
K(z, w)

=
∑
m

(−ν)mKm(z, w)

holds for all z, w ∈ D. Since the kernels Km are homogeneous polynomials of

degree 2|m| in z and w, we conclude that 1
K is a polynomial in z and w precisely

if the coefficients (−ν)m vanish for almost all m. A closer look at the definition

of the Pochhammer symbols ( 1.1.4) shows that, given λ ∈ C, the following are

equivalent:

(i) (λ)m = 0 for almost all m.
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(ii) λ ∈ −N0.

Hence (−ν)m = 0 for almost all signatures m if and only if ν is an integer.

If ν is not an integer, then the situation is more complicated. It is shown

in [33], Theorem 6 that for ν ≥ r−1
2 a + 1, the inverse kernel 1

K possesses a

representation as in ( 3.1.1) and therefore belongs to S (0)(K). Unfortunately

it is far from clear what happens for ν ∈ ( r−1
2 a, r−1

2 a + 1). Nevertheless, for

ν ≥ r−1
2 a+ 1, we have shown that H = Hν is a Beurling space.

(d) It should be noted that the Segal-Bargmann space H, considered in Example

2.1.11, is not a Beurling space. In fact, its reproducing kernel is given by

K : C× C → C , K(z, w) = ezw,

and we saw that in this case, M(H) as well as S (K) are trivial (that is, consist

only of constant functions). Hence neither condition (ii) nor condition (iii) of

Definition 3.1.1 can be fulfilled. However, the Segal-Bargmann space is not

an interesting example for the study of invariant subspaces since every closed

subspace is invariant under every multiplier.

3.2 Invariant subspaces

Before we proceed in our studies, we want to provide a precise definition of the

expression ’invariant subspace’.

Definition 3.2.1. Let H ⊂ CX be a reproducing kernel space, let E be a Hilbert

space and let Y be a subset of M(H).

(a) We say that a closed subspace M of HE is Y -invariant if

(Mα ⊗ 1E)M ⊂M

holds for every multiplier α ∈ Y . We simply call M invariant if it is M(H)-

invariant in the above sense.

(b) Let N be a subset of HE . We define [N ]Y as the smallest Y -invariant subspace

containing N . We write [N ] for the smallest invariant subspace which contains

N .

Remark 3.2.2. Let H ⊂ CX be a reproducing kernel space, let E be a Hilbert

space and let Y be a subset of M(H). If A ⊂ M(H) denotes the unital subalgebra

generated by Y and if N ⊂ HE is an arbitrary subset, then of course

[N ]Y =
∨
{α · f ; α ∈ A , f ∈ N}

and, in particular,

[N ] =
∨
{α · f ; α ∈M(H), f ∈ N}.
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3.2 Invariant subspaces

Suppose that D ⊂ Cd is an open set and that H ⊂ O(D) is a non-degenerate

reproducing kernel Hilbert space with the property that the coordinate functions zi
(1 ≤ i ≤ d) (and hence all polynomials) are multipliers of H. Suppose furthermore

that E is a Hilbert space. Then the inflation HE is a C[z]-module via the polynomial

functional calculus of the multiplication tuple (Mz1 ⊗ 1E , . . . ,Mzd ⊗ 1E). In this

case, the closed C[z]-submodules of HE are precisely the closed linear subspaces of

HE that are C[z]-invariant in the sense of Definition 3.2.1. In general, such a C[z]-

submodule is not necessarily invariant (that is, invariant under all multipliers).

However, if the polynomials are weak-∗ dense in M(H), then every C[z]-invariant

closed linear subspcae of HE is even invariant. This is obvious in the scalar-valued

case E = C. In the vector-valued case, it suffices to observe that the linear map

B(H) → B(HE) , A 7→ A ⊗ 1E is weak-∗ continuous, since its restriction to the

closed unit ball of B(H) is obviously continuous with respect to the relative weak-∗
topology.

We now exhibit some cases in which the polynomials are in fact weak-∗ dense in

the multiplier algebra.

Example 3.2.3. Let D ⊂ Cd a circular and convex domain containing the ori-

gin. Suppose further that H ⊂ O(D) is a reproducing kernel Hilbert space with the

following properties:

• The coordinate functions (and hence all polynomials) are multipliers of H.

• H contains the constant functions.

• The reproducing kernel K of H respects the circular symmetry of D, that is,

K(eitz, eitw) = K(z, w)

holds for all t ∈ R and z, w ∈ D.

For a given function u : D → C and t ∈ R, let us define

ut : D → C , ut(z) = u(eitz).

Then Propositions 1.1.11 and 1.7.6 imply that for f ∈ H and φ ∈ M(H), the

functions ft and φt belong to H and M(H), respectively, and moreover, that

‖ft‖ = ‖f‖ and ‖φt‖M = ‖φ‖M.

Consequently, the mappings

Ut : H → H , f 7→ ft and Vt : M(H) →M(H) , φ 7→ φt

are isometric isomorphisms. Furthermore, the unitary one-parameter group

U : R → B(H) , U(t) = Ut
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3 Beurling decomposable subspaces

is obviously weakly continuous. By [56], Chapter 2, Theorem 1.4, we conclude that

U is strongly continuous, that is, limt→0 Utf = f holds for all f ∈ H. Now let us

denote by

FN : [−π, π] → [0,∞) , FN (t) =
1
N

N−1∑
n=0

Dn(t) =
1
N

(
sin Nt

2

)2(
sin t

2

)2 (N ≥ 1)

the Fejér kernel, where

Dn : [−π, π] → C , Dn(t) =
n∑

ν=−n
eiνt (n ≥ 0)

is the Dirichlet kernel. We claim that for every function u ∈ O(D) and N ≥ 1, the

function

uN : D → C , uN (z) =
1
2π

∫ π

−π
u(eitz)FN (t) dt

is a polynomial of degree at most N − 1 and that the sequence (uN )N converges

pointwise on D to u. In fact, every uN is a holomorphic function on D by standard

arguments, and

u
(α)
N (z) =

1
2π

∫ π

−π
u(α)(eitz)ei|α|tFN (t) dt

=
1

2πN

N−1∑
n=0

n∑
ν=−n

∫ π

−π
u(α)(eitz)ei(|α|+ν)t dt

holds for all z ∈ D and all multiindices α ∈ Nd0. By Cauchy’s theorem, the integrals

are all zero if |α| ≥ N , which means that u(α)
N ≡ 0 if |α| ≥ N . By the identity

theorem, uN is a polynomial. To prove that (uN )N converges pointwise to u, we fix

z ∈ D and ε > 0. Then, by the continuity of the mapping [−π, π] → C , t 7→ u(eitz),

there exists δ > 0 such that |u(eitz)− u(z)| < ε
2 holds for all |t| < δ. Furthermore,

we define M = sup{|u(eitz) − u(z)| ; t ∈ [−π, π]}. Then, using the well-known

properties ∫ π

−π
FN (t) dt = 2π (N ≥ 1)

and ∫
t0≤|t|≤π

FN (t) dt ≤ 2π

N
(
sin t0

2

)2 (N ≥ 1, t0 > 0)

of the Fejér kernel (cf. [47], pp. 16-17), we obtain that

|uN (z)− u(z)| ≤ 1
2π

∫ π

−π
|u(eitz)− u(z)|FN (t) dt

=
1
2π

∫
|t|≤δ

|u(eitz)− u(z)|FN (t) dt

+
1
2π

∫
δ≤|t|≤π

|u(eitz)− u(z)|FN (t) dt

≤ ε

2
+
M

2π

∫
δ≤|t|≤π

FN (t) dt

≤ ε

2
+

M

N
(
sin δ

2

)2
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3.2 Invariant subspaces

for all N ≥ 1. Certainly, the second term is less than ε
2 for large N , which proves

the claim.

Now let us fix φ ∈ M(H). Then the functions φN are polynomials (in particular

multipliers). We claim that ‖φN‖M ≤ ‖φ‖M holds for all N ≥ 1. In fact, for

f ∈ H, we may define

g =
1
2π

∫ π

−π
(φt · f)FN (t) dt ∈ H.

Note that this makes sense because the function

R → H , t 7→ φt · f

is continuous. This is the case since

φt · f = UtMφU−tf

holds for all t ∈ R and since multiplication on B(H) is SOT continuous on bounded

sets. The continuity of the point evaluations implies

g(z) =
1
2π

∫ π

−π
φt(z)f(z)FN (t) dt = φN (z)f(z)

for all z ∈ D, and therefore

‖φN · f‖ = ‖g‖ ≤ 1
2π

∫ π

−π
‖φt · f‖FN (t) dt

≤ 1
2π

∫ π

−π
‖φt‖M‖f‖ FN (t) dt

= ‖φ‖M‖f‖,

proving that ‖φN‖M ≤ ‖φ‖M. By Proposition 1.7.11, the sequence (φN )N converges

to φ in the weak-∗ topology of M(H), as desired.

This example shows in particular that for the standard reproducing kernel spaces

over Cartan domains, there is no need to distinguish between C[z]-submodules and

invariant subspaces.

We conclude this section with a technical lemma which demonstrates how invariant

subspaces interact with inflations.

Lemma 3.2.4. Suppose that H ⊂ CX is a reproducing kernel space and that

E ,F1,F2 are Hilbert spaces. Suppose further that M ⊂ HE is an invariant sub-

space and that φ ∈M(HF1 ,HF2) is a multiplier. Then the multiplier

φ̃ : X → B(E ⊗ F1, E ⊗ F2) , φ̃(z) = 1E ⊗ φ(z)

satisfies Mφ̃MF1 ⊂MF2 .
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3 Beurling decomposable subspaces

Proof. First, it follows by Proposition 1.7.6 that φ̃ belongs to M(HE⊗F1 ,HE⊗F2).

Next, we fix f ∈M and x ∈ F1. We claim that

φx,y · f =
(
φ̃ · (f ⊗ x)

)
y

holds for all y ∈ F2, where for a function g : X → E ⊗F , gy is the slice function as

defined in Proposition 1.2.2, and φx,y denotes the scalar multiplier

φx,y : X → C , φx,y(z) = 〈φ(z)x, y〉.

In fact, for u ∈ E and z ∈ X, we have

〈
(
φ̃ · (f ⊗ x)

)
y
(z), u〉 = 〈φ̃(z)(f(z)⊗ x), u⊗ y〉

= 〈f(z)⊗ φ(z)x, u⊗ y〉

= 〈f(z), u〉〈φ(z)x, y〉

= 〈〈φ(z)x, y〉f(z), u〉

= 〈φx,y(z)f(z), u〉,

which proves the claim. Since M is invariant, we obtain that(
φ̃ · (f ⊗ x)

)
y

= φx,y · f

belongs to M for all y ∈ F2. Proposition 1.2.2 now shows that φ̃ · (f ⊗ x) belongs

to MF2 . Since the functions f ⊗ x (f ∈M,x ∈ F1) form a total subset of MF1 , the

proof is complete.

Remark 3.2.5. We have actually proved a stronger result. Namely, it suffices to

require that M is invariant under the multiplication with the scalar multipliers

φx,y : X → C , φx,y(z) = 〈φ(z)x, y〉,

where y ∈ F2 is arbitrary and x varies over a total subset of F1.

3.3 Beurling decomposable subspaces

The main aim of this section will be to obtain natural generalizations of Beurling’s

invariant subspace theorem.

Definition 3.3.1. Suppose that H ⊂ CX is a reproducing kernel Hilbert space

and that E is a Hilbert space. Then a closed subspace M of HE is called Beurling

decomposable if there exist Hilbert spaces D1,D2 and multipliers φ1 ∈M(HD1 ,HE),
φ2 ∈M(HD2 ,HE) such that M = ranMφ1 and

PM = Mφ1M
∗
φ1
−Mφ2M

∗
φ2
. (3.3.1)

In this case, the tuple (φ1, φ2) is called a Beurling decomposition of M .
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3.3 Beurling decomposable subspaces

Every Beurling decomposable subspace M of HE is obviously invariant. In fact, if

(φ1, φ2) is a Beurling decomposition of M , then we have

(Mα ⊗ 1E)M = (Mα ⊗ 1E)Mφ1(H⊗D1)

= Mφ1(Mα ⊗ 1D1)(H⊗D1) ⊂Mφ1(H⊗D1) = M

for all α ∈M(H).

The aim of this section is to relate the Beurling decomposability of a subspace

M ⊂ HE to the so-called core function and the core operator of M . For related

results on these objects, see [40],[41],[76].

Definition 3.3.2. Suppose that H ⊂ CX is a Beurling space with reproducing

kernel K. Let E be a Hilbert space.

(a) For every closed subspace M of HE , we define

KM = ΛPM ∈ B(KE).

(b) Let M be a closed subspace of HE . Then the hermitian kernel

GM =
KM

K
: X ×X → B(E)

is called the core function of M . The unique self-adjoint operator ∆M ∈ B(HE)
with Λ∆M

= GM is called the core operator of M . The rank of M is defined as

the rank of ∆M . The positive (negative) rank of M is defined as

rank±M = rank(∆M )±.

The function

DM : X → B(E) , DM (z) = GM (z, z)

is called the defect function of M .

The definition requires perhaps some explanation. First, the kernel KM is simply

the reproducing kernel of M , as the calculation

〈f,KM (·, z)x〉M = 〈f, PMK(·, z)x〉HE

= 〈f,K(·, z)x〉HE
= 〈f(z), x〉E (f ∈M, z ∈ X,x ∈ E)

shows.

Secondly, the core function is well defined since K was in particular supposed to

have no zeroes. By Proposition 2.3.3, it follows that GM in fact belongs to B(KE),

which ensures the existence of the core operator. Furthermore, we mention that

GM (or DM ) is also known as the Berezin transform of PM in the literature.
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3 Beurling decomposable subspaces

Recalling Proposition 1.6.8, we observe that the definition of the (positive, negative)

rank of M relates well to the definition of the (positive, negative) rank of GM we

gave in Definition 1.5.4, that is,

rank±M = rank(∆M )± = rank(GM )± = rank±GM

and

rankM = rank+M + rank−M.

In some situations, the core operator admits a very concrete realization in terms of

the inverse kernel.

Example 3.3.3.

(a) Suppose that D ⊂ Cd is an open set and that H ⊂ O(D) is a Beurling space

with reproducing kernel K. In addition, we suppose that 1
K is a polynomial in

z and w, say
1

K(z, w)
=
∑
α,β

cα,βz
αwβ ,

and that the coordinate functions zi (1 ≤ i ≤ d) are multipliers of H. Let E be

a Hilbert space and let M be a closed subspace of HE . Then it is easy to check

that the core operator of M is given by the formula

∆M =
∑
α,β

cα,β(Mz ⊗ 1E)αPM (M∗
z ⊗ 1E)β . (3.3.2)

By the definition of the core function, it is furthermore obvious that the identity

GM +GM⊥ = 1 holds. Equivalently, if Q0 denotes the orthogonal projection of

H onto the one-dimensional subspace consisting of all constant functions in H,

then

∆M + ∆M⊥ = ‖1‖2H(Q0 ⊗ 1E).

This observation and ( 3.3.2) show that, if E and at least one of the spaces

M,M⊥ are finite-dimensional, then both ∆M and ∆M⊥ have finite rank. In

particular, when dim E < ∞, then every finite-codimensional subspace of HE
has automatically finite rank.

Formula ( 3.3.2) reveals two further properties of the core operator in the case

that M ⊂ HE is invariant under multiplication with the coordinate functions.

First, ∆M vanishes on M⊥ or, equivalently, ran∆M ⊂M . Secondly, if we sup-

pose in addition that D contains the origin and that K(·, 0) ≡ 1, then the space

M 	
∑d
i=1 zi ·M consists of eigenvectors of ∆M with respect to the eigenvalue

1. In fact, choose f ∈M 	
∑d
i=1 zi ·M . Since

M 	
d∑
i=1

zi ·M = M ∩
d⋂
i=1

(zi ·M)⊥,
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3.3 Beurling decomposable subspaces

it follows that (M∗
z ⊗ 1E)βf ∈ M⊥ for all β 6= 0. Now the assumption that

K(·, 0) ≡ 1 implies that

1
K(z, w)

= 1 +
∑
α,β 6=0

cα,βz
αwβ

holds for all z, w ∈ D. Hence

∆M = PM +
∑
α,β 6=0

cα,β(Mz ⊗ 1E)αPM (M∗
z ⊗ 1E)β

which implies ∆Mf = f . Furthermore, the space M 	
∑d
i=1 zi ·M is never

trivial (if M 6= {0}, of course). In fact, if we define for N ⊂ HE ,

ord(N) = min{ord0(f) ; f ∈ N}

(where ord0(f) = inf{|α| ; Dαf(0) 6= 0}), then

ord

 d∑
i=1

zi ·M

 = 1 + ord(M)

because convergence in HE implies uniform convergence on compact subsets of

D. This implies that
∑d
i=1 zi ·M 6= M . Summing up, we have shown that in

this situation, 1 is an eigenvalue of ∆M and that, in particular, ‖∆M‖ ≥ 1.

(b) Suppose now that D is a Cartan domain with rank r, characteristic multiplicities

a, b and genus g. Fix some ν ≥ r−1
2 a+1 and let E be a Hilbert space. To simplify

the notation, we write H = Hν and K = Kν . We claim that, for every closed

subspace M of HE , the identity

∆M =
∑
m

(−ν)mCm(LMz⊗1E , RM∗
z⊗1E )(PM ), (3.3.3)

holds, where (cf. Example 1.1.10)

Cm : D ×D → C , Cm(z, w) = Km(z, w)

and LMz⊗1E and RM∗
z⊗1E denote the tuples of left and right multiplications with

the operators Mzi ⊗ 1E and M∗
zi ⊗ 1E . To see that the series in ( 3.3.3) is well

defined, note first that the functions Cm are polynomials. Since the kernels Km

are positive definite, we infer that (cf. Example 1.4.8)

0 ≤ Cm(LMz⊗1E , RM∗
z⊗1E )(PM ) ≤ Cm(LMz⊗1E , RM∗

z⊗1E )(1HE ).

It follows from [33], Theorem 1, that the series∑
m

|(−ν)m|‖Cm(LMz⊗1E , RM∗
z⊗1E )(1HE )‖

converges, which implies the (absolute) convergence of the series in ( 3.3.3).

This also shows that ∆M is compact whenever M is finite-dimensional. Simi-

larly to (a), the identity

∆M + ∆M⊥ = ‖1‖2H(Q0 ⊗ 1E)
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3 Beurling decomposable subspaces

proves that both ∆M and ∆M⊥ are compact if E has finite dimension and M is

finite codimensional.

Now suppose that {0} 6= M ⊂ HE is a closed subspace which is invariant under

multiplication by the coordinate functions. Then, analogously to ( a), one shows

that the space M 	
∑d
i=1 zi ·M is non-zero and consists of eigenvectors of ∆M

with respect to the eigenvalue 1.

(c) Consider again a Cartan domain D ⊂ Cd of rank r and characteristic multi-

plicities a, b. Fix some ν ≥ r−1
2 a+1 and write H = Hν and K = Kν . Consider

the invariant subspace

M = {f ∈ H ; f(0) = 0} = {1}⊥.

Then it is easily verified that

GM = 1− 1
K

=
∑
m 6=0

−(−ν)mKm,

using the Faraut-Koranyi expansion ( 1.1.3). Consequently, if K denotes the

stablizer of the origin in the identity component of Aut(G), then it follows

that GM is K-invariant (this means that GM (kz, kw) = GM (z, w) holds for all

z, w ∈ D and k ∈ K). Equivalently, the core operator ∆M is invariant under

the action of K on H, that is,

∆M (f ◦ k) = (∆Mf) ◦ k

holds for all f ∈ H and k ∈ K. As an immediate consequence of Schur’s Lemma,

∆M is diagonal with respect to the Peter-Weyl decomposition H =
⊕

m Pm of

H, which means that there exist real numbers λm such that ∆M |Pm
= λm ·1Pm .

Using formula 1.1.5, one obtains that

−(−ν)m
(ν)m

Km(z, w) = 〈 − (−ν)mKm(·, w),Km(·, z)〉

= 〈GM (·, w),Km(·, z)〉

= 〈∆MK(·, w),Km(·, z)〉

= λmKm(z, w)

for all z, w ∈ D and m 6= 0. Moreover a short calculation reveals that λ0 = 0,

and therefore

λm =

{
− (−ν)m

(ν)m
; m 6= 0

0 ; m = 0
.

Clearly, ∆M has finite rank if and only if almost all λm are 0. As seen in

Example 3.1.3 ( c), this is the case if and only if ν is an integer. If ν is not an

integer, then ∆M is still compact by (b), since M is finite codimensional. In

this situation, the compactness of ∆M could also be proved directly. In fact, for
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3.3 Beurling decomposable subspaces

x, y ∈ R, it is known that

(x)m
(y)m

≈
r∏
j=1

(mj + 1)x−y

asymptotically as |m| → ∞. This can be proved by use of the Gindikin Gamma

function and Stirling’s formula (see [9], p. 229 for details). Hence

lim
|m|→∞

λm = 0,

proving that ∆M is compact. Furthermore, the above calculations reveal that

σ(∆M ) = {λm ; m is a signature of length r}.

This shows that for non-integer ν, there are of course finite-codimensional in-

variant subspaces of H having infinite rank.

Before we deduce a first characterization of Beurling decomposable subspaces, we

need one further definition.

Definition 3.3.4. Suppose that H ⊂ CX is a Beurling space with reproducing kernel

K and that E is a Hilbert space. A closed subspace M of HE is called K-invariant

if it is {K(·, w) ; w ∈ X}-invariant and { 1
K(·,w) ; w ∈ X}-invariant.

Note that this definition makes sense, since in Beurling spaces the functions K(·, w)

as well as the functions 1
K(·,w) (w ∈ X) are multipliers.

The above notion of K-invariant subspaces originates in the problem discussed after

Remark 3.2.2. Namely, if D is open in Cd and if H ⊂ O(D) is a reproducing kernel

Hilbert space which is a C[z]-module at the same time, then it is not clear that

every C[z]-submodule is automatically invariant (although the considerations in

Example 3.2.3 ensure that the spaces standing in the centre of our attention behave

well in this sense). However, in many situations it is true that O(D) ⊂ M(H)

and that every C[z]-submodule automatically is O(D)-invariant (using results like

the Oka-Weil theorem) or that at least (as we shall see in Chapter 4) every finite-

codimensional submodule is O(D)-invariant. Since in the main cases of interest,

the functions K(·, w) and 1
K(·,w) belong to O(D), the considered C[z]-submodules

are K-invariant in the above sense. Therefore, formulating the following result for

K-invariant (and not only for invariant) subspaces will turn out to be essential for

some applications in Chapter 4.

Theorem 3.3.5. Suppose that H ⊂ CX is a Beurling space with reproducing kernel

K and that E is a Hilbert space. Then, for a given K-invariant subspace M of HE ,
the following assertions are equivalent:

(i) M is Beurling decomposable.
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3 Beurling decomposable subspaces

(ii) GM ∈ S
(0)
E (K).

Moreover, if G1 and G2 are disjoint kernels in SE(K)+ with GM = G1 −G2, and

if (D1, φ1) and (D2, φ2) are Kolmogorov factorizations of G1 and G2, then (φ1, φ2)

is a Beurling decomposition of M .

Proof. Suppose that M is Beurling decomposable and that (φ1, φ2) is a Beurling

decomposition of M . Then (3.3.1) implies that

KM (z, w) = (φ1(z)φ1(w)∗ − φ2(z)φ2(w)∗)K(z, w)

holds for all z, w ∈ X. Hence

GM (z, w) = φ1(z)φ1(w)∗ − φ2(z)φ2(w)∗ (z, w ∈ X),

and therefore GM ∈ S
(0)
E (K) by Proposition 2.2.1.

Suppose conversely that GM ∈ S
(0)
E (K). We first claim that there exist disjoint

positive kernels G1, G2 ∈ SE(K)+ such that GM = G1 − G2. By Proposition

2.3.12, there exist positive kernels G′1, G
′
2 ∈ SE(K)+ such that GM = G′1 − G′2.

Then Proposition 1.4.7 yields the existence of disjoint positive kernels G1 ≤ G′1

and G2 ≤ G′2 satisfying GM = G1 − G2. Clearly Gi ∈ B(G′i) for i = 1, 2 and, by

Proposition 2.4.1, we have B(G′i) ⊂ S
(0)
E (K). Hence the kernels G1, G2 belong to

S
(0)
E (K). A slightly different argument which does not use Proposition 1.4.7 is as

follows: Obviously, the kernel G′ = G′1 +G′2 belongs to SE(K)+ and GM belongs to

B(G′) which is contained in S
(0)
E (K) by Proposition 2.4.1. Then, using Proposition

1.6.8, we could also choose (G1, G2) as the spectral decomposition ((GM )+, (GM )−)

of the self-adjoint kernel GM , formed in B(G′).

So let us choose disjoint kernels G1, G2 in SE(K)+ satisfying GM = G1 −G2, and

fix Kolmogorov factorizations (Di, φi) of Gi, i = 1, 2. By Proposition 2.2.1, the

functions φ1, φ2 belong to M(HDi ,HE), i = 1, 2. An obvious calculation reveals

that

PM = Mφ1M
∗
φ1
−Mφ2M

∗
φ2
.

So it remains to show that ranMφ1 = M . It is rather easy to see thatM is contained

in ranMφ1 . Since

Mφ1M
∗
φ1
−Mφ2M

∗
φ2

= PM

is a positive operator, there exists a contraction C ∈ B(HD1 ,HD2) such that

Mφ1M
∗
φ1
−Mφ2M

∗
φ2

= Mφ1(1HD1
− C∗C)M∗

φ1
.

Hence we find that

M = ranPM = ran(Mφ1M
∗
φ1
−Mφ2M

∗
φ2

)

= ranMφ1(1HD1
− C∗C)M∗

φ1
⊂ ranMφ1 .
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3.3 Beurling decomposable subspaces

Conversely, we note first that the kernelsG1, G2 belong to B(KE), since the constant

kernel 1 belongs to B(K). Let ∆1,∆2 ∈ B(HE) denote the representing operators of

G1, G2 and let G1,G2 ⊂ EX be the reproducing kernel Hilbert spaces associated with

G1, G2. By Proposition 1.6.7, we obtain that Gi = ran∆
1
2
i (i = 1, 2). According to

Proposition 1.4.9, we have

ran∆1 ∩ ran∆2 ⊂ ran∆
1
2
1 ∩ ran∆

1
2
2 = G1 ∩ G2 = {0}.

Now it is an elementary exercise to verify that the ranges of ∆1,∆2 must be con-

tained in the closure of the range of ∆M = ∆1 −∆2. Because of

∆M (K(·, w)y) = GM (·, w)y =
1

K(·, w)
·KM (·, w)y ∈M (w ∈ X, y ∈ E),

the range of ∆M is contained in M . Hence also ran∆1 ∪ ran∆2 ⊂ M . Therefore,

for every w ∈ X and y ∈ E ,

G1(·, w)y = ∆1(K(·, w)y) ∈M,

which leads to

Mφ1M
∗
φ1

(K(·, w)y) = K(·, w) · φ1(·)φ1(w)∗y

= K(·, w) ·G1(·, w)y ∈M (w ∈ X, y ∈ E),

since M was supposed to be K-invariant. The observation

ranMφ1 = ranMφ1M
∗
φ1

=
∨
{Mφ1M

∗
φ1

(K(·, w)y) ; w ∈ X, y ∈ E} ⊂M

completes the proof.

Corollary 3.3.6. Suppose that H ⊂ CX is a Beurling space with reproducing kernel

K and let E be a Hilbert space.

(a) If M ⊂ HE is an invariant subspace, then M = [ran∆M ].

(b) Let M ⊂ HE be a Beurling decomposable subspace and let GM = G1 − G2

be a disjoint decomposition of GM with G1, G2 ∈ SE(K)+. Furthermore, let

G1,G2 ⊂ HE denote the associated reproducing kernel Hilbert spaces and let

∆1,∆2 ∈ B(HE) be the representing operators of G1, G2. Then

M = [ran∆1] = [G1].

Moreover, via the canonical identification of E with B(C, E), the spaces G1,G2

are contained in M(H,HE). Hence ran∆i ⊂ M(H,HE) for i = 1, 2 and

ran∆M ⊂M(H,HE). In particular, M ∩M(H,HE) is dense in M .

Proof. Obviously,

KM (·, w)y = K(·, w) ·∆M (K(·, w)y)
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3 Beurling decomposable subspaces

holds for all w ∈ X and y ∈ E . Since the functions K(·, w) and 1
K(·,w) belong to

M(H), this shows that [ran∆M ] = M .

We are going to prove part (b). Let (Di, φi) be Kolmogorov factorizations of Gi
(i = 1, 2). As seen in the proof of the previous theorem, the equality M = ranMφ1

implies

M =
∨
{Mφ1M

∗
φ1

(K(·, w)y) ; w ∈ X, y ∈ E}

=
∨
{K(·, w) ·G1(·, w)y ; w ∈ X, y ∈ E} ⊂ [G1].

On the other hand, we observed that

ran∆1 ⊂ ran∆M ⊂M.

Using Proposition 1.6.7, we find that

G1 = ran∆
1
2
1 ⊂M.

This proves [ran ∆
1
2
1 ] = [G1] = M . Clearly, since ran∆1 = ran∆

1
2
1 , it follows

that also [ran∆1] = M . By Proposition 2.4.1, the spaces Gi are, up to canonical

identifaction, contained in M(H,HE) for i = 1, 2. To see that M ∩M(H,HE) is

dense in M , it suffices to observe that the functions

K(·, w) ·GM (·, w)y (w ∈ X, y ∈ E)

form a total subset of M and obviously belong to M(H,HE).

In particular, Corollary 3.3.6 implies that, given a Beurling space H and a Beurling

decomposable subspace M of H, the intersection M ∩M(H) is dense in H. An

example given by Rudin ([62], Theorem 4.1.1) shows that there exists an invariant

subspace of the Hardy space H2(D2) over the bidisk which does not contain any

non-zero multiplier φ ∈M(H2(D2)) = H∞(D2). As we shall see in Chapter 5, there

exist similar examples in the Bergman space L2
a(D). Therefore, we can in general

not expect all invariant subspaces to be Beurling decomposable.

Before we proceed, we explain how Theorem 3.3.5 is related to known Beurling-type

results. The starting point is the following observation.

Proposition 3.3.7. Suppose that H ⊂ CX is a Beurling space with reproducing

kernel K and that E is a Hilbert space. Suppose further that M ⊂ HE is a closed

subspace with positive definite core function GM . Then every Kolomogorov factor-

ization (D, φ) of GM defines a multiplier φ ∈M(HD,HE) such that PM = MφM
∗
φ.

In particular, Mφ is a partial isometry and ranMφ = M . This means that M is

Beurling decomposable and (φ, 0) is a Beurling decomposition of M . In particular,

M is automatically invariant.
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3.3 Beurling decomposable subspaces

Proof. Clearly, the identity GM (z, w) = φ(z)φ(w)∗, valid for all z, w ∈ X, shows

that the kernel

X ×X → E , (z, w) 7→ KM (z, w)−K(z, w)φ(z)φ(w)∗

vanishes and is therefore positive. According to Proposition 1.7.6, φ belongs to

M(HD,M) ⊂ M(HD,HE). The identity PM = MφM
∗
φ is checked by a straight-

forward computation. Consequently, Mφ is partially isometric which shows that

M = ranMφ.

This leads to the generic Beurling-type result for NP spaces as proved in [39] and

[53].

Theorem 3.3.8. Suppose that H ⊂ CX is an NP space with reproducing kernel K.

Let E be a Hilbert space and let M ⊂ HE be a K-invariant subspace. Then GM is

positive. Moreover, there exist a Hilbert space D and a multiplier φ ∈ M(HD,HE)
such that PM = MφM

∗
φ.

Proof. It clearly suffices to show that GM is positive. To this end, choose a minimal

Kolomogorov factorization (C, γ) of the positive kernel 1 − 1
K . Reordering shows

that the kernel

X ×X → C , (z, w) 7→ K(z, w)(1− γ(z)γ(w)∗(1)) = 1

is positive. By Proposition 1.7.6, γ ∈ M(HC ,H) with ‖γ‖M ≤ 1. Now let us

consider the function

γ̃ : X → B(E ⊗ C, E) , γ̃(z) = 1E ⊗ γ(z).

Then, again by Proposition 1.7.6, γ̃ belongs to M(HE⊗C ,HE) and ‖γ̃‖M ≤ 1.

The K-invariance of M implies that M is invariant under multiplication with the

functions

γ(·)γ(w)∗(1) = 1− 1
K(·, w)

(w ∈ X).

Furthermore, the family {γ(w)∗(1) ; w ∈ X} is total in C by the minimality of the

Kolmogorov factorization (C, γ). Lemma 3.2.4 and the subsequent Remark 3.2.5

show that

PM −Mγ̃(PM ⊗ 1C)M∗
γ̃ = PM (1HE −Mγ̃(PM ⊗ 1C)M∗

γ̃ )PM

is positive or, equivalently, that

GM (z, w) = KM (z, w)(1− γ(z)γ(w)∗(1))

is positive.
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3 Beurling decomposable subspaces

The simplest NP space probably is the Hardy space H2(D) over the complex unit

disk. The classical theorem of Beurling states that, for every invariant subspace

M of H2(D), the orthogonal projection PM can be factorized as PM = MηM
∗
η ,

where η : D → C is an inner function, that is, a bounded holomorphic function

with boundary values of modulus 1 almost everywhere. A short reflection shows

that this is equivalent to the statement of Theorem 3.3.8 plus the assertion that one

can choose D = C. Hence Beurling’s theorem seems to be stronger than our result.

However, we shall demonstrate later how the classical result and also similar results

for the Arveson space can be recovered from Theorem 3.3.8.

We have just seen that in NP spaces, all invariant subspaces have a positive core

function. This property essentially characterizes the class of NP spaces.

Proposition 3.3.9. Suppose that H ⊂ CX is a Beurling space with reproducing

kernel K, which is normalized at a point z0 ∈ X, that is, K(·, z0) ≡ 1. Suppose

that every invariant subspace has a positive core function. Then H is an NP space.

Proof. This follows by considering the invariant subspace

M = {f ∈ H ; f(z0) = 0} = {1}⊥.

One easily checks that GM = 1− 1
K . Hence, if GM is positive, then K must be an

NP kernel.

We mention that the requirement that K is normalized at some point is not really

necessary. It can be eliminated by a slightly more general definition of NP kernels.

Namely, we could say that a kernel K : X × X → C is an NP kernel if it has no

zeroes and if there exists a function a : X → C such that the kernel

X ×X → C , (z, w) 7→ a(z)a(w)− 1
K(z, w)

is positive definite. With this definition, the theory of NP kernels can be developed

without major changes, but we decided to use the more special definition in order

to keep the notations and proofs simple.

Proposition 3.3.9 shows that in non-Nevanlinna Pick spaces, one cannot expect the

classical Beurling theorem to hold. All known results of Beurling type rely on the

positivity of the core function. While this approach is perfect in the setting of NP

spaces, there are simple examples of reproducing kernel spaces with few or without

any invariant subspaces admitting a positive core function.

Example 3.3.10.

(a) Let us consider the Hardy space H2(Bd) over the unit ball in Cd, d ≥ 2. Then

H2(Bd) is not an NP space. If η : Bd → C is an inner function, then Mη

obviously is an isometry and M = ranMη defines an invariant subspace such
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3.3 Beurling decomposable subspaces

that PM = MηM
∗
η . Hence, GM (z, w) = η(z)η(w) is a positive definite function.

Aleksandrov’s [1] famous solution of the inner function problem on the unit ball

guarantees the existence of inner functions on Bd. Hence there is a rich supply

of invariant subspaces of H2(Bd) having a positive core function. In the opposite

direction, we shall show later that all invariant subspaces with a positive core

function are of the form M = ranMη for some inner function η. However, note

that by Proposition 3.3.9 and its proof, the zero-based invariant subspace

M = {f ∈ H2(Bd) ; f(0) = 0}

cannot be represented this way.

(b) The situation is even worse when passing from the Hardy to the Bergman space

L2
a(D), over some bounded symmetric domain D ⊂ Cd. It turns out that no

non-trivial invariant subspace of the Bergman space has a positive definite core

function. In fact, suppose that {0} 6= M is an invariant subspace of L2
a(D).

Then, by Example 3.3.3 (b), the space M	
∑d
i=1 zi ·M is not zero and consists

of eigenvectors of ∆M for the eigenvalue 1. Therefore, we can choose a unit

vector f ∈M 	
∑d
i=1 zi ·M . Since by assumption ∆M ≥ 0, it follows that also

∆M − f ⊗ f ≥ 0. Since the defect function DM is obviously pointwise bounded

by 1, we obtain that

1 = ‖f‖2 =
∫
D

|f(z)|2 dµ(z)

=
∫
D

〈(f ⊗ f)K(·, z),K(·, z)〉 dµ(z)

≤
∫
D

〈∆MK(·, z),K(·, z)〉 dµ(z)

=
∫
D

DM (z) dµ(z) ≤ 1.

Hence DM (z) = 1 for all z ∈ D. The fact that

DM (z) =
‖PMK(·, z)‖2

‖K(·, z)‖2

holds for all z ∈ D shows that necessarily M = L2
a(D).

We conclude this section by discussing the phenomenon of Beurling decomposability

in two special classes of K-invariant subspaces. The first consists of all finite-

codimensional and the second of all finite-rank K-invariant subspaces.

Proposition 3.3.11. Suppose that H ⊂ CX is a Beurling space with reproducing

kernel K, that E is a Hilbert space and that M ⊂ HE is a finite-codimensional

K-invariant subspace. Then the following are equivalent:

(i) M is Beurling decomposable.
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3 Beurling decomposable subspaces

(ii) M⊥ ⊂M(H,HE) via the canonical identification E ' B(C, E).

Proof. Suppose that (i) holds. Then for w ∈ X and y ∈ E ,

KM⊥(·, w)y = K(·, w)y −KM (·, w)y = K(·, w) · (y −GM (·, w)y)

belongs toM(H,HE) by Corollary 3.3.6 and the fact that K(·, w) belongs toM(H).

Since M⊥ is finite dimensional, it is the linear span of the functions KM⊥(·, w)y,

and the assertion follows. Conversely, suppose that M⊥ ⊂ M(H,HE). Then, for

g ∈M⊥, the function

g̃ : X → B(C, E) , g̃(z) = g(z)c

(with the notation introduced in the beginning of Section 2.4) satisfies

g(z)⊗ g(w) = g̃(z)g̃(w)∗ (z, w ∈ X).

By Proposition 2.2.1, this means that the positive kernel

X ×X → B(E) , (z, w) 7→ g(z)⊗ g(w)

belongs to SE(K)+. Now, choosing an orthonormal basis (ei)ri=1 of the finite-

dimensional space M⊥, it follows that (cf. Proposition 1.1.2)

KM⊥(z, w) =
r∑
i=1

ei(z)⊗ ei(w)

belongs to SE(K)+. By the hypothesis that 1
K ∈ S (0)(K) and by Proposition

2.3.3, we conclude that

GM = 1E −
1
K
·KM⊥ ∈ S

(0)
E (K).

An application of Theorem 3.3.5 completes the proof.

As an application, we show that finite zero-based subspaces of Beurling spaces are

Beurling decomposable.

Corollary 3.3.12. Suppose that H ⊂ CX is a Beurling space with reproducing

kernel K and let z1, . . . , zr be distinct points in X. Then the invariant subspace

M = {f ∈ H ; f(zi) = 0 for i = 1, . . . , r}

is Beurling decomposable.

Proof. Clearly,

M⊥ = span{K(·, zi) ; i = 1, . . . , r}

is contained in M(H), since the functions K(·, w) (w ∈ X) are supposed to be

multipliers. Now the assertion follows by Proposition 3.3.11.
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3.3 Beurling decomposable subspaces

We shall prove later that, in the setting of analytic Hilbert modules, even all finite-

codimensional submodules are Beurling decomposable. But first, we turn our at-

tention to the class of finite-rank Beurling decomposable subspaces.

Proposition 3.3.13. Suppose that H ⊂ CX is a Beurling space with reproducing

kernel K and that E is a Hilbert space. Suppose further that M ⊂ HE is a K-

invariant subspace with finite positive (negative) rank r. Then the following asser-

tions are equivalent:

(i) M is Beurling decomposable.

(ii) ran(∆M )+ ⊂ M(H,HE) (ran(∆M )− ⊂ M(H,HE)) via canonical identifica-

tion.

(iii) ran∆M ⊂M(H,HE) via canonical identification.

In this case, the positive and negative parts (GM )+ and (GM )− of the spectral

decomposition of GM , formed in B(KE), belong to SE(K)+. In particular, if

rank+M = r <∞, then there exist multipliers φ1, . . . , φr ∈ ran(∆M )+ such that

M =
r∑
i=1

φi · H.

Proof. The implication (i) to (iii) is Corollary 3.3.6 and that (iii) implies (ii) is triv-

ial. So suppose that (ii) holds. For simplicity, we assume ran(∆M )+ ⊂ M(H,HE)
(the other case is analogous). Then we can find functions g1, . . . , gr ⊂ ran(∆M )+
such that

(∆M )+ =
r∑
i=1

gi ⊗ gi.

Then the functions

φi : X → B(C, E) , φi(z) = gi(z)c (1 ≤ i ≤ r)

(with the notations introduced at the beginning of Section 2.4) are multipliers sat-

isfying

(GM )+(z, w) =
r∑
i=1

φi(z)φi(w)∗ (z, w ∈ X).

By Proposition 2.2.1, (GM )+ ∈ SE(K)+. Since

(GM )− ·K = (GM )+ ·K −GM ·K = (GM )+ ·K −KM

obviously belongs to B(KE) and since (GM )− is positive, another application of

Proposition 2.2.1 shows that also (GM )− belongs to SE(K)+. Consequently, GM
belongs to S

(0)
E (K). By Theorem 3.3.5, M is indeed Beurling decomposable and

M =
∑r
i=1 φi · H.
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4 Applications to analytic Hilbert

modules

4.1 Analytic Hilbert modules

To begin with, we recall the definition of analytic Hilbert modules, following the

monograph of Chen and Guo [25].

Throughout this section, unless otherwise stated, we shall denote by D a fixed

non-empty bounded open subset of Cd.

Definition 4.1.1. A reproducing kernel Hilbert space H ⊂ O(D) is called an ana-

lytic Hilbert module if the following conditions are satisfied:

(A) H contains the constant functions.

(B) The coordinate functions zi (1 ≤ i ≤ d) are multipliers of H. Equivalently, H
is a C[z]-module with respect to pointwise multiplication.

(C) The polynomials are dense in H.

(D) There are no points z ∈ Cd\D for which the mapping

C[z] → C , p 7→ p(z) (4.1.1)

extends to a continuous linear form on all of H.

In the language of [25], condition (D) means that the set of virtual points of H coin-

cides with D. We are now going to show that the class of analytic Hilbert modules

is closed under the usual product operations (see Section 1.2 for the definitions and

compare Remark 3.1.2 for the corresponding statements in the setting of Beurling

spaces).

Remark 4.1.2.

(a) The class of analytic Hilbert modules is closed with respect to the forming of

outer products. In fact, suppose that D1 ⊂ Cd1 and D2 ⊂ Cd2 are bounded open
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4 Applications to analytic Hilbert modules

sets and that H1,H2 are analytic Hilbert modules over D1 and D2, respectively.

Define D = D1 ×D2. By Proposition 1.2.5, there exists a unitary operator

U : H1 ⊗H2 → H1 ~H2 with U(f1 ⊗ f2) = f1 ~ f2.

It is clear that U maps the algebraic tensor product C[z1]⊗C[z2] onto C[z1, z2].

This proves (A) and (C). Condition (B) is also fulfilled since more generally, for

multipliers φ1 ∈ M(H1) and φ2 ∈ M(H2), the outer product φ1 ~ φ2 : D → C
belongs to M(H1 ~ H2). Assume finally that z = (z1, z2) /∈ D is a virtual

point of H1 ~ H2. This means that there exists a constant c > 0 such that

|p(z)| ≤ c‖p‖H1~H2 holds for all p ∈ C[z1, z2]. Hence, for q ∈ C[z1], we see

|q(z1)| = |(q ~ 1)(z)| ≤ c‖(q ~ 1)‖H1~H2 = c‖1‖H2‖q‖H1 .

This shows that z1 is a virtual point of H1 and hence that z1 ∈ D1. Analogously,

we obtain z2 ∈ D2, and thus z ∈ D.

(b) The class of analytic Hilbert modules is also stable with respect to the forming of

inner products. Indeed, we shall prove a stronger result. Namely, suppose that

H1 is an analytic Hilbert module over D and that H2 ⊂ O(D) is a reproducing

kernel Hilbert space satisfying condition (C). Then the inner product H1 ∗ H2

is an analytic Hilbert module. By Proposition 1.2.6, there exists a coisometry

H1 ⊗H2 → H1 ∗ H2 with f1 ⊗ f2 7→ f1 ∗ f2 = f1 · f2,

mapping the algebraic tensor product C[z] ⊗ C[z] onto C[z]. This shows that

H1 ∗H2 contains the polynomials and also that they are dense in it. Condition

(B) is satisfied since M(H1) is contained in M(H1∗H2) by standard arguments.

To prove that (D) is fulfilled, choose some virtual point z of H1 ∗ H2. Hence

there exists some c > 0 such that |p(z)| ≤ c‖p‖H1∗H2 holds for all polynomials

p. We obtain

|p(z)| ≤ c‖p‖H1∗H2 ≤ c‖1‖H2‖p‖H1

for all polynomials p, proving that z is a virtual point of H1 and hence, that

z ∈ D.

Of special interest for us are of course the standard reproducing kernel spaces

over bounded symmetric domains. The following example demonstrates that these

spaces are analytic Hilbert modules.

Example 4.1.3. Suppose that D ⊂ Cd is a Cartain domain of rank r and that ν

belongs to the continuous Wallach set Wc of D. As before, we write H = Hν and

K = Kν . Clearly, conditions (A),(B) and (C) are fulfilled as previously observed in

Examples 1.1.10 and 1.7.3 ( c). Condition (D) was verified in [42] for the Bergman

space over D. However, the proof given there contains some inconsistencies. There-

fore, we prefer to give an independent proof.
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As before, let us write K to denote the stabilizer of the origin in the identitiy com-

ponent of Aut(D). Furthermore, let vp(H) denote the set of all virtual points of H,

that is, the set of all points z ∈ Cd such that the linear form ( 4.1.1) has a continu-

ous extension on H. We first claim that r · vp(H) ⊂ vp(H) holds for all 0 < r < 1.

To prove this, one checks that the mapping

H → H , f 7→ fr

(where, as usual, fr(z) = f(rz)) is well-defined and contractive. In fact, this follows

by Proposition 1.1.11, since the kernel

D ×D → C , (z, w) 7→ K(z, w)−K(rz, rw)

is positive definite, which in turn can be easily verified by the Faraut-Koranyi expan-

sion ( 1.1.3). So if z ∈ vp(H), then there exists some c > 0 such that |p(z)| ≤ c‖p‖
holds for all polynomials p. Hence

|p(rz)| = |pr(z)| ≤ c‖pr‖ ≤ c‖p‖

for all polynomials p or, equivalently, rz ∈ vp(H), which proves the claim.

So, in order to prove vp(H) ⊂ D (the other inclusion is trivial), it suffices to show

that vp(H) ∩ ∂D = ∅ (recall that D is the unit ball with respect to a suitable norm

on Cd). Let us pick some virtual point z0 ∈ ∂D. Then there exists a constant

c > 0 such that |p(z0)| ≤ c‖p‖ holds for all polynomials p. Since D is polynomially

convex, the Oka-Weil theorem shows that then |f(z0)| ≤ c‖f‖ for all f ∈ O(D).

Now let us fix some Jordan frame e1, . . . , er of D (see [7], pp. 14-20 for details).

Then there exist a unitary k ∈ K and unique numbers 1 = t1 ≥ . . . ≥ tr ≥ 0 such

that z0 = k(t1e1 + . . . + trer). Let us define f (r) = K(·, rz0) for 0 < r < 1. Then

f (r) ∈ O(D) for all 0 < r < 1. By the K-invariance of the Jordan triple determinant

h, we obtain

f (r)(z0) = K(z0, rz0) = K(
√
rz0,

√
rz0)

= h(
√
rz0,

√
rz0)−ν =

 r∏
j=1

(1− rt2j )

−ν ,
using formula 3.12 of [7]. Analogously,

‖f (r)‖2 = K(rz0, rz0) = h(rz0, rz0) =

 r∏
j=1

(1− r2t2j )

−ν .
Hence

| |f
(r)(z0)|2

‖f (r)‖2
=

 r∏
j=1

1− r2t2j
(1− rt2j )2

ν

≥
(

1− r2t21
(1− rt21)2

)ν
=
(

1 + r

1− r

)ν
r→1−→∞,
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since, for all 0 ≤ t ≤ 1 and all 0 < r < 1, the inequality

(1− rt2)2 ≤ (1− r2t2)

is satisfied. On the other hand, we must have |f (r)(z0)| ≤ c‖f (r)‖ for all 0 < r < 1,

a contradiction.

The aim of this chapter is to prove that, under some mild additional hyptotheses,

every finite-codimensional submodule of an analytic Hilbert module is Beurling

decomposable. Recall that, given an analytic Hilbert moduleH overD, a submodule

of H is a closed invariant subspace of the tuple Mz = (Mz1 , . . . ,Mzd) (equivalently,

is a norm-closed submodule with respect to the C[z]-module structure of H). We

again stress the fact that, in general, submodules do not need to be invariant in our

sense (see the discussion in Section 3.2).

We recapitulate some definitions taken from [25].

Suppose that H is an analytic Hilbert module with reproducing kernel K. Then,

for every multiindex α ∈ Nd0 and every w ∈ D, the functional

H → C , f 7→ Dαf(w)

is continuous (since the embedding H ↪→ O(D) is continuous). Hence there exists

a unique element K(α)
w ∈ H such that

Dαf(w) = 〈f,K(α)
w 〉

holds for all f ∈ H. Furthermore, if (w1, α1), . . . , (wm, αm) are pairwise different,

then the functions K(α1)
w1 , . . . ,K

(αm)
wm are linearly independent in H. To see this,

choose polynomials p1, . . . , pm such that

Dαipj(wi) =

{
1 if i = j

0 else
(1 ≤ i, j ≤ m).

The observation that

cj =
m∑
i=1

ciD
αipj(wi) = 〈pj ,

m∑
i=1

ciK
(αi)
wi 〉 (1 ≤ j ≤ m)

holds for any choice of complex numbers c1, . . . , cm proves the claimed linear inde-

pendence.

Let w ∈ D be arbitrary. For a polynomial p =
∑
α cαz

α ∈ C[z], we define

K(p)
w =

∑
α

cαK
(α)
w .

Then

〈f,K(p)
w 〉 =

∑
α

cαD
αf(w)
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4.1 Analytic Hilbert modules

holds for all f ∈ H, and the mapping

γw : C[z] → H , p 7→ K(p)
w

is antilinear and one-to-one because the family {K(α)
w ; α ∈ Nd0} is linearly inde-

pendent. Now, for a given submodule M of H and w ∈ D, the set

Mw = γ−1
w (M⊥)

is a linear subspace of C[z], and the enveloping space of M , defined by

Me
w = (γw(Mw))⊥ ⊂ H,

is a submodule containing M (cf. [25], p. 25). For an arbitrary subset N of H, we

denote by Z(N) the zero variety of N , that is,

Z(N) = {z ∈ D ; f(z) = 0 for all f ∈ N}.

Now if M is a finite-codimensional submodule of H, then the enveloping spaces Me
w

have a very simple structure. More precisely, we claim that

Z(Me
w) =

{
{w} ; if w ∈ Z(M)

∅ ; otherwise

holds for all w ∈ D. In fact, if we suppose that z ∈ Z(Me
w), then the function K(·, z)

is contained in γw(Mw) = γw(Mw) since Mw has finite dimension by hypothesis.

Therefore K(·, z) is a linear combination of the elements K(α)
w (α ∈ Nd0), and hence

z = w. This proves the inclusion Z(Me
w) ⊂ {w}. For obvious reasons, we have

Z(Me
w) ⊂ Z(M). So it remains to show that w ∈ Z(Me

w) whenever w ∈ Z(M).

But w ∈ Z(M) is equivalent to 1 ∈Mw, which implies K(·, w) ∈ γw(Mw), and thus

w ∈ Z(Me
w).

The following result appears in [25] as Corollary 2.2.6 and completely describes the

structure of finite-codimensional submodules of analytic Hilbert modules in terms

of the enveloping spaces.

Lemma 4.1.4. Suppose that H is an analytic Hilbert module over D and that M

is a finite-codimensional submodule of H. Then

(a) Z(M) is a finite subset of D.

(b) M =
⋂
w∈Z(M)M

e
w.

(c) dimM⊥ =
∑
w∈Z(M) dimMw.

Actually, we shall only use the following elementary consequence of Lemma 4.1.4.

Corollary 4.1.5. Suppose that H is an analytic Hilbert module over D and that

M is a finite-codimensional submodule of H. Then

M⊥ ⊂ span{K(α)
w ; w ∈ D , α ∈ Nd0}.

In particular, M is invariant.
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4 Applications to analytic Hilbert modules

Proof. Suppose first that Z(M) = {w} holds for some w ∈ D. From Lemma 4.1.4,

we know that M = Me
w = (γw(Mw))⊥ and hence that M⊥ = γw(Mw) (since Mw is

finite dimensional). But this implies immediately that

M⊥ ⊂ ran γw = {K(p)
w ; p ∈ C[z]} = span{K(α)

w ; α ∈ Nd0}

by the definition of γw. Let us choose a basis g1, . . . , gn of M⊥, say gi = K
(pi)
w

for suitable polynomials pi, 1 ≤ i ≤ n. Fix φ ∈ M(H) and f ∈ M . Then φ can

be approximated uniformly by polynomials on a neighbourhood U of w, that is,

there exists a sequence (qk)k of polynomials converging uniformly on U to φ. Since

qk · f ∈M for all k, we obtain

〈φ · f,K(pi)
w 〉 = lim

k
〈qk · f,K(pi)

w 〉 = 0

for all 1 ≤ i ≤ n, and hence φ · f ∈M . This shows that M is invariant.

If Z(M) is arbitrary, then for every w ∈ Z(M), the subspace Me
w is a finite-

codimensional submodule with Z(Me
w) = {w}. By what we just proved, Me

w is

an invariant subspace and

(Me
w)⊥ ⊂ span{K(α)

w ; α ∈ Nd0}.

Lemma 4.1.4 yields that Z(M) is a finite set and that

M =
⋂

w∈Z(M)

Me
w.

Hence M is invariant as an intersection of invariant subspaces and

M⊥ =
∑

w∈Z(M)

(Me
w)⊥ ⊂ span{K(α)

w ; w ∈ D,α ∈ Nd0}.

This observation completes the proof.

4.2 Analytic Beurling modules

In this section, we shall extend the definition of analytic Hilbert modules by some

very natural conditions in order to obtain what we call analytic Beurling modules.

This will allow us to prove that every finite-codimensional submodule of an analytic

Beurling module is Beurling decomposable.

As before, D denotes some bounded open subset of Cd.

Definition 4.2.1. An analytic Hilbert module H over D is called an analytic Beurl-

ing module if it satisfies the following conditions:

(E) The reproducing kernel K of H has no zeroes and the inverse kernel 1
K belongs

to S (0)(K).
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4.2 Analytic Beurling modules

(F) The Taylor spectrum σ(Mz) of the commuting tuple Mz = (Mz1 , . . . ,Mzd) is

contained in D.

(G) For all z ∈ D, there exist open neighbourhoods U ⊂ D of z and V of D such

that K|U×D admits a zero-free sesquianalytic extension to U × V .

As observed in Example 1.7.3 (b), condition (F) of the preceding definition im-

plies that every function φ ∈ O(D,B(E1, E2)) (E1, E2 Hilbert spaces) belongs to

M(HE1 ,HE2). By condition (G), the functions K(·, w) as well as the functions
1

K(·,w) belong to O(D) and hence are multipliers of H. In particular, every analytic

Beurling module is a Beurling space.

As earlier in the setting of Beurling spaces and analytic Hilbert modules, we observe

that the class of analytic Beurling modules is (essentially) closed under inner and

outer products.

Remark 4.2.2.

(a) Let D1 ⊂ Cd1 and D2 ⊂ Cd2 be non-empty bounded open sets and suppose that

H1 ⊂ O(D1) and H2 ⊂ O(D2) are analytic Beurling modules with reproducing

kernels K1,K2. We define D = D1 ×D2 and claim that also H1 ~H2 ⊂ O(D)

is an analytic Beurling module. We have already observed in Remark 4.1.2 that

H1 ~H2 is an analytic Hilbert module. As in Remark 3.1.2( c), one checks that
1

K1~K2
= 1

K1
~ 1
K2

belongs to S (0)(K1 ~K2). This shows that H1 ~H2 satisfies

condition (E), and condition (G) is elementary to verify. Turning towards

condition (F), we have to prove that the Taylor spectrum of the commuting

d1 + d2-tuple (Mz11 , . . . ,Mz1d1
,Mz21 , . . . ,Mz2d2

) is contained in D = D1 ×D2.

Under the unitary identification H1⊗H2 ' H1 ~H2, this tuple is equivalent to

the commuting tuple

(Mz11 ⊗ 1H2 , . . . ,Mz1d1
⊗ 1H2 , 1H1 ⊗Mz21 , . . . , 1H1 ⊗Mz2d2

),

and the assertion follows by [34], Theorem 3.2.

(b) The case of inner products is more difficult to treat. In fact, suppose that

H1,H2 are analytic Beurling modules over D. Then, by the usual arguments,

conditions (E) and (G) are satisfied. In order to show that the Taylor spectrum

of Mz, acting on H1 ∗ H2 is included in D, we have to require that D is Stein

compact. By Example 1.7.3 (b), it suffices to show in this case, that O(D) is

contained in M(H1 ∗ H2). But this is trivially satisfied since on the one hand,

O(D) ⊂M(H1) and, on the other hand, M(H1) ⊂M(H1 ∗ H2).

Next we check that the standard reproducing kernel Hilbert spaces over bounded

symmetric domains are in fact analytic Beurling modules whenever they are Beur-

ling spaces.
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4 Applications to analytic Hilbert modules

Example 4.2.3. Suppose that D ⊂ Cd is a Cartan domain of rank r and char-

acteristic multiplicities a, b. Suppose further that ν ≥ r−1
2 a + 1. For simplicity,

we write H = Hν and K = Kν . We saw in Example 4.1.3 that H is an analytic

Hilbert module (this is even true for all ν in the continuous Wallach set). We al-

ready mentioned several times that σ(Mz) = D, as shown in [10]. Furthermore, we

saw in Example 3.1.3( c) that H is a Beurling space. In particular, condition (E) is

fulfilled. Turning towards condition (G), we fix some z ∈ D and a positive number

0 < ρ < 1 such that z
ρ ∈ D. Similarly to Example 1.7.3 ( c), we see that the function

ρD × 1
ρ
D → C , (ζ, ω) 7→ K(

ζ

ρ
, ρw)

is a sesquianalytic non-vanishing extension of K|ρD×D. In fact, this follows imme-

diately by the Faraut-Koranyi expansion ( 1.1.3) and the homogeneity of the kernels

Km.

The additional conditions that characterize analytic Beurling modules now allow us

to prove the following auxiliary result.

Lemma 4.2.4. Suppose that H is an analytic Beurling module over D. Then the

higher order kernels K(α)
w defined in Section 4.1 belong to O(D) for all w ∈ D and

α ∈ Nd0.

Proof. Fix w ∈ D and α ∈ Nd0. We observe that

K(α)
w (z) = 〈K(α)

w ,K(·, z)〉 = 〈K(·, z),K(α)
w 〉 = (DαK(·, z)) (w)

holds for all z ∈ D. By condition (G) of Definition 4.2.1, there exist open neigh-

bourhoods V of D and U ⊂ D of w such that K|U×D extends to a sesquianalytic

function H : U × V → C. But then

h : Ṽ → O(U) , z 7→ H(·, z),

defined on the open set Ṽ = {z ; z ∈ V }, is analytic as a function with values in

the Fréchet space O(U). Since continuous linear maps preserve analycity, it follows

that the function

V → C , z 7→ (DαH(·, z)) (w)

is analytic again and, as seen above, extends the function K(α)
w .

The main result of this section can now be stated and proved.

Theorem 4.2.5. Suppose that H is an analytic Beurling module over D with re-

producing kernel K and that M ⊂ H is a finite-codimensional submodule.

(a) M is Beurling decomposable. Moreover, M⊥ ⊂ O(D). The core function GM

can be sesquianalytically extended to a neighbourhood of D × D whenever 1
K

can. In all cases, GM (·, w) ∈ O(D) for all w ∈ D.
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4.2 Analytic Beurling modules

(b) Let us suppose in addition that M has finite rank and let us write s = rank+M

and t = rank−M . Then GM can be sesquianalytically extended on a neighbour-

hood of D×D. Furthermore, there exist multipliers φ1, . . . , φs and ψ1, . . . ψt in

O(D) such that

PM =
s∑
i=1

MφiM
∗
φi −

t∑
i=1

MψiM
∗
ψi

and

M =
s∑
i=1

φi · H

holds.

Proof. For the proof of (a), first note that M⊥ ⊂ O(D). Indeed, this follows directly

from Corollary 4.1.5 and Lemma 4.2.4. Since M is invariant (and in particular K-

invariant) by Corollary 4.1.5, the Beurling decomposability of M is guaranteed by

Proposition 3.3.11. Furthermore, by Proposition 1.1.2,

KM⊥(z, w) =
n∑
i=1

gi(z)gi(w) (z, w ∈ D)

holds, whenever g1, . . . , gn is an orthonormal basis of M⊥. Therefore, KM⊥ can be

sesquianalytically extended to a neighbourhood of D×D. Clearly, if also 1
K admits

such an extension, then so does GM = 1 − K
M⊥
K . Since in any case the functions

1
K(·,w) (w ∈ D) can be extended analytically to a neighbourhood of D by condition

(G) of Definition 4.2.1, also the functions

GM (·, w) = 1− 1
K(·, w)

·KM⊥(·, w) (w ∈ D)

belong to O(D). If in addition, M has finite rank, then the (finite-dimensional)

range of ∆M is given by

ran∆M = span{GM (·, w) ; w ∈ D},

and hence included in O(D). Choosing functions φ1, . . . , φs and ψ1, . . . , ψt in

ran∆M such that

(∆M )+ =
s∑
i=1

φi ⊗ φi and (∆M )− =
t∑
i=1

ψi ⊗ ψi

shows that GM admits a sesquianalytic extension on a neighbourhood of D × D.

The remaining assertions follow immediately by Theorem 3.3.5.

Of particular interest are of course those analytic Hilbert modules H over D having

the property that every finite-codimensional submodule automatically has finite

rank. In Example 3.3.3 (a) we saw that this is the case if the inverse kernel 1
K is a

polynomial in z and w. And in fact, most of the occurring examples such as

121



4 Applications to analytic Hilbert modules

• the (unweighted) Bergman spaces over arbitrary Cartan domains

• the Hardy spaces over Cartan domains of type In,m, IIn with n even, IIIn with

n odd, IVn with n even and V and VI (cf. [7], p. 17)

• the Arveson space over the unit ball

enjoy this property.

For such spaces, Theorem 4.2.5 allows us to compute the right essential spectrum

of the tuple Mz. Recall that the right essential spectrum σre(T ) of a commuting

tuple T ∈ B(H)d is the set of all λ ∈ Cd for which the last cohomology group in

the Koszul complex of the tuple λ−T has infinite dimension. Equivalently, λ ∈ Cd

does not belong to the right essential spectrum of T exactly if the row operator

(λ1 − T1, . . . , λd − Td) ∈ B(Hd,H) has finite-codimensional range.

Proposition 4.2.6. Suppose that H is an analytic Beurling module over D such

that the inverse kernel 1
K is a polynomial in z and w. Then σre(Mz) = ∂D.

Proof. First of all, observe that σre(Mz) ⊂ σ(Mz) ⊂ D. We are now going to

prove that σre(Mz) ∩ D = ∅. To this end, fix λ ∈ D and let Mλ denote the

finite-codimensional submodule

Mλ = {f ∈ H ; f(λ) = 0} = {K(·, λ)}⊥.

Theorem 4.2.5 shows that there exist multipliers φ1, . . . , φs ∈ O(D), such that

Mλ =
s∑
i=1

φi · H.

The row operator (Mφ1 , . . . ,Mφs) ∈ B(Hs,H) consequently has finite-codimensio-

nal range. This means that 0 is not in the right essential spectrum of the commuting

tuple

Mφ = (Mφ1 , . . . ,Mφs) ∈ B(H)s.

By the spectral mapping theorem for the right essential spectrum (Corollary 2.6.9

in [35]), we have

σre(Mφ) = φ(σre(Mz)).

Since φ(λ) = 0, it follows that λ /∈ σre(Mz). This proves that σre(Mz) ⊂ ∂D.

Suppose conversely that λ is in the boundary of D. Then λ is not a virtual point

of H. As observed in [25], Remark 2.2.2, this is equivalent to the fact that the

maximal ideal of C[z] at λ is dense in H or, in other words, that

d∑
i=1

(λi −Mzi)H =
d∑
i=1

(λi −Mzi)C[z] = H.
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4.2 Analytic Beurling modules

Assume now that λ /∈ σre(Mz). Then the space
d∑
i=1

(λi −Mzi)H ⊂ H

is closed and therefore equals H. Since the surjectivity spectrum is closed, there

exists some r > 0 such that
d∑
i=1

(µi −Mzi)H = H

holds for all µ ∈ Cd with |µ− λ| < r. Hence there would have to be a point µ ∈ D
with 1 ∈

∑d
i=1(µi −Mzi)H. This contradiction completes the proof.

We are now able to give the following supplement to the Ahern-Clark type result

stated in [25] as Theorem 2.2.3.

Corollary 4.2.7. Suppose H is an analytic Beurling module over D such that

the inverse kernel 1
K is a polynomial in z and w. Then the finite-codimensional

submodules of H are exactly the closed subspaces M of the form M =
∑r
i=1 pi · H,

where r ∈ N and p = (p1, . . . , pr) is a tuple of polynomials with Z(p) ⊂ D.

Proof. Suppose that M is a finite-codimensional submodule of H. By Theorem

2.2.3 in [25], the intersection I = M ∩ C[z] is a finite-codimensional ideal in C[z]

with Z(I) ⊂ D and M = I. Now we choose a generating set p = (p1, . . . , pr) of I

and claim that M =
∑r
i=1 pi · H. Since

M = I =
r∑
i=1

pi · C[z] =
r∑
i=1

pi · H,

it suffices to show that the row operator (Mp1 , . . . ,Mpr ) ∈ B(Hr,H) has closed

range. But this is obvious, because Z(p) = Z(I) ⊂ D and σre(Mz) = ∂D, and

hence

0 /∈ p(σre(Mz)) = σre(Mp1 , . . . ,Mpr ).

Remark 4.2.8. The proof shows that the polynomials p1, . . . , pr can be chosen as

any generating set of the ideal M ∩C[z]. If in particular d = 1, then we can achieve

that r = 1.

We also point out the connection of the preceding corollary with results proved in

[15], in the setting of Bergman spaces.

Note also that, in this situation, Gleason’s problem can be solved in H. Recall that

Gleason’s problem is the question whether, for a every f ∈ H and λ ∈ D, there

exist functions g1, . . . , gd ∈ H satisfying

f(z)− f(λ) =
d∑
i=1

(zi − λi)gi(z) (z ∈ D).
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4 Applications to analytic Hilbert modules

Corollary 4.2.9. Suppose that H is an analytic Beurling module over D such that

the inverse kernel 1
K is a polynomial in z and w. Then Gleason’s problem is solvable

in H.

Proof. Apply Corollary 4.2.7 to the submodule Mλ = {h ∈ H ; h(λ) = 0}.

An examination of the proofs of Proposition 4.2.6 and Corollary 4.2.7 reveals the

following result.

Corollary 4.2.10. For an analytic Beurling module H over D, the following are

equivalent:

(i) σre(Mz) = ∂D.

(ii) Gleason’s problem can be solved in H.

The motivates the conjecture that Proposition 4.2.6 and Corollaries 4.2.7 and 4.2.9

remain valid without the assumption that the inverse kernel is a polynomial in z

and w.
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5 Beurling decomposability in Hardy

and Bergman spaces

5.1 Hardy spaces

5.1.1 Preliminaries

The aim of this section is to discuss the phenomenon of Beurling decomposability

in the setting of the Hardy space over some bounded symmetric domain.

So throughout this section, let D ⊂ Cd be a Cartan domain of rank r, and let

H2(D) = H d
r

denote the Hardy space over D as explained in Example 1.1.10.

Furthermore, K = K d
r

denotes the reproducing kernel of H2(D). As usual, S is

the Shilov boundary of D and can be defined as the smallest closed subset of the

topological boundary ∂D such that every function φ ∈ C(D) that is holomorphic on

D assumes its maximum on S. As in Example 1.1.10, we denote by σ the canonical

probability measure on S.

A function f : D → V having values in some topological vector space V is said to

have radial limit v ∈ V at ζ ∈ S if limr↗1 f(rζ) = v holds in the topology of V .

We define

f∗ : S → V , f∗(ζ) =

{
limr↗1 f(rζ) , if the limit exists

0 , else
.

The Poisson kernel P on D is defined by

P : S ×D → C , P (ζ, z) =
|K(ζ, z)|2

K(z, z)
.

Note that the right-hand side is well defined, since the functions K(·, z) (z ∈ D)

can be analytically extended onto an open neighbourhood of D as seen in Example

1.7.3 (c). We shall sometimes write

Pz : S → C , Pz(ζ) = P (ζ, z) (z ∈ D).

Since Pz is continuous on S, it makes sense to define

P [h] : D → C , P [h](z) =
∫
S

h(ζ)Pz(ζ) dσ(ζ)
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5 Beurling decomposability in Hardy and Bergman spaces

for every function h ∈ L1(S, σ). The function P [h] is called the Poisson transform

of h. One then proves that P [h] has radial limits almost everywhere on S and that

P [h]∗ = h almost everywhere. Analogous to the classical theory on the unit disk,

one defines H2(S) as the closure of the analytic polynomials in L2(S, σ) and proves

that the restricted Poisson transform

H2(S) → H2(D) , h 7→ P [h]

is well defined and unitary. Equivalently, every function f ∈ H2(D) has radial

limits almost everywhere on S, and the mapping

H2(D) → H2(S) , f 7→ f∗ (5.1.1)

is unitary.

In analogy to [61], Chapter 4, the following Fatou-type theorem can be proved:

Suppose that D, E are separable Hilbert spaces and that either f ∈ H2(D)E or

f ∈ H∞(D,B(D, E)). Then f has radial limits in almost all points ζ ∈ S (with

respect to the norm topology of E in the first case and with respect to the strong

operator topology of B(D, E) in the second case). Furthermore, if f∗ vanishes on a

subset of positive measure, then f = 0. Note that the required separability of the

underlying Hilbert spaces D and E is essential for this theorem. In analogy to the

scalar case, the mapping

H2(D)E → L2(S, σ, E) , f 7→ f∗

is an isometry.

We finish this preliminary paragraph with an observation which will turn out to be

useful for the rest of this section:

For w ∈ D, let us write

kw : D → C , kw(z) =
K(z, w)
K(w,w)

1
2
.

Then kw is a multiplier of H2(D), has unit norm in H2(D) and can be analytically

extended onto a neighbourhood ofD. Moreover, Pz(ζ) = |kz(ζ)|2 holds for all z ∈ D
and ζ ∈ S. Suppose that f is a function in H2(D)E . Then

lim
r↗1

‖krζ · f‖ = ‖f∗(ζ)‖ (5.1.2)

holds for almost all ζ ∈ S. In fact,

‖kz · f‖2 =
∫
S

‖kz(ζ)f∗(ζ)‖2 dσ(ζ)

=
∫
S

‖f∗(ζ)‖2Pz(ζ) dσ(ζ)

= P [‖f∗‖2](z)

holds for all z ∈ D, and the last expression has radial limit ‖f∗(ζ)‖2 at almost every

ζ ∈ S.

126



5.1 Hardy spaces

5.1.2 Boundary values of the defect function

In recent time, it was observed independenty by several authors that, given some

invariant subspace M of the Hardy space over the unit ball or the polydisk in Cd,
the core function GM has much better boundary behaviour than the reproducing

kernel KM of M . We mention in particular the work of Guo et al. ([40] and [41]),

which can be regarded as a starting point for this paper. An analogous observation

for the Arveson space can be found in [39].

We next show how to extend the known results using the framework of Beurling

decomposability.

Theorem 5.1.1. Suppose that E is a separable Hilbert space and that M is a non-

zero invariant subspace of H2(D)E . Define Mz = {f(z) ; f ∈ M} for z ∈ D and

m = supz∈D dimMz.

(a) We have limr↗1 ‖DM (rζ)‖ = 1 for almost all ζ ∈ S.

(b) If in addition, M is Beurling decomposable, then DM has radial limits at almost

every point ζ ∈ S (with respect to the strong operator topology). Moreover,

D∗M (ζ) is an orthogonal projection of rank m for almost all ζ ∈ S.

Proof. As before, we write

kw : D → C , kw(z) =
K(z, w)
K(w,w)

1
2

(w ∈ D)

for the normalized kernel functions. Then clearly, kw ∈ M(H2(D)) for all w ∈ D.

Our first observation is the following: For all 0 6= f ∈M , we have

DM (z) ≥ 1
‖kz · f‖2

f(z)⊗ f(z) (5.1.3)

for all z ∈ D. In fact, since the invariant subspace

[f ] = {φ · f ; φ ∈M(H2(D))}

is contained in M , it follows from the definition of DM that

〈DM (z)x, x〉 =
‖PMK(·, z)x‖2

K(z, z)

≥
‖P[f ]K(·, z)x‖2

K(z, z)

= sup{ |〈K(·, z)x, φ · f〉|2

K(z, z)‖φ · f‖2
; φ ∈M(H2(D)), φ · f 6= 0}

≥ |〈K(·, z)x, kz · f〉|2

K(z, z)‖kz · f‖2

=
kz(z)2|〈x, f(z)〉|2

K(z, z)‖kz · f‖2

=
〈f(z)⊗ f(z)x, x〉

‖kz · f‖2
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5 Beurling decomposability in Hardy and Bergman spaces

holds for all z ∈ D and x ∈ E which proves the claim.

From the definition of DM (cf. Section 3.3) and from equation (5.1.3) it is clear

that, for every function 0 6= f ∈M , the estimates

1 ≥ ‖DM (z)‖ ≥ ‖f(z)‖2

‖kz · f‖2
(5.1.4)

hold for all z ∈ D. By (5.1.2), limr↗1 ‖krζ ·f‖ = ‖f∗(ζ)‖ holds for almost all ζ ∈ S.

Furthermore, f∗(ζ) 6= 0 for almost all ζ ∈ S by our preliminary remarks. This

implies that the right-hand side of (5.1.4) has radial limit 1 at almost all points

ζ ∈ S. Hence limr↗1 ‖DM (rζ)‖ = 1 exists almost everywhere, and part (a) is

proved.

Turning towards (b), we fix a Beurling decomposition (φ1, φ2) of M with multipliers

φi ∈M(H2(D)Di ,H
2(D)E) = H∞(D,B(Di, E)), i = 1, 2. Since E was supposed to

be separable, we can achieve that D1,D2 are separable as well. In fact, by Theorem

3.3.5, one could choose D1,D2 as the reproducing kernel Hilbert spaces assoicated

with suitable positive kernels G1, G2, where G1, G2 are a disjoint decomposition of

GM in S
(0)
E (K). Since the kernels G1, G2 are necessarily sesquianalytic, the chosen

spaces D1,D2 are indeed separable by Example 1.1.3 (b).

As noted above, it is proved in [61], Chapter 4, that the bounded holomorphic

functions φ1, φ2 have radial limits (SOT) almost everywhere on S. By similar

techniques, it is possible to show that also the functions

D → B(Di, E) , z 7→ φi(z)∗ (i = 1, 2),

have radial limits (SOT) almost everywhere on S (note that this does not follow

trivially, since the involution is not SOT continuous). We fix some measurable

subset S0 of S such that S\S0 is a σ-zero set and such that the radial limits

lim
r↗1

φi(rζ) and lim
r↗1

φi(rζ)∗ (i = 1, 2)

exist in the SOT sense for all ζ ∈ S0. Since ‖φi(z)‖ ≤ ‖φi‖∞,D for all z ∈ D and

i = 1, 2 and since multiplication is SOT continuous on bounded sets, it follows that

D∗M (ζ) = lim
r↗1

DM (rζ) = φ∗1(ζ)φ
∗
1(ζ)

∗ − φ∗2(ζ)φ
∗
2(ζ)

∗ (5.1.5)

exists in the SOT sense for all ζ ∈ S0. We claim now that D∗M (ζ) ≤ Pζ for all

ζ ∈ S0, where Pζ ∈ B(E) denotes the orthogonal projection onto ranφ∗1(ζ). In fact,

the positivity of D∗M (ζ) and (5.1.5) imply the existence of some positive contraction

X ∈ B(D1) such that

D∗M (ζ) = φ∗1(ζ)(1D1 −X)φ∗1(ζ)
∗,

proving that ranD∗M (ζ) ⊂ ranφ∗1(ζ). Furthermore, since D∗M (ζ) is contractive as

SOT limit of contractions for all ζ ∈ S0, it follows that D∗M (ζ) ≤ Pζ .
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5.1 Hardy spaces

In order to prove equality, we fix a dense subset {xn ; n ∈ N} of D1. Note that this

is possible, since D1,D2 were chosen as separable Hilbert spaces. Using (5.1.2), we

can find some measurable set S1 ⊂ S0 such that S\S1 is a σ-zero set and such that

lim
r↗1

‖krζ · φ1(·)xn‖ = ‖φ∗1(ζ)xn‖

holds for all ζ ∈ S1 and all n ∈ N. For arbitrary ζ ∈ S1 and for n ∈ N with

φ∗1(ζ)xn 6= 0, an application of inequality (5.1.3) with f = φ1(·)xn ∈ M\{0} yields

that

〈D∗M (ζ)φ∗1(ζ)xn, φ
∗
1(ζ)xn〉 = lim

r↗1
〈DM (rζ)φ∗1(ζ)xn, φ

∗
1(ζ)xn〉

≥ lim
r↗1

|〈φ∗1(ζ)xn, φ1(rζ)xn〉|2

‖krζ · φ1(·)xn‖2

= ‖φ∗1(ζ)xn‖2.

By continuity, we see that

〈D∗M (ζ)y, y〉 ≥ ‖y‖2

holds for all ζ ∈ S1 and all y ∈ ranφ∗1(ζ). Since we already know that

D∗M (ζ) = PζD
∗
M (ζ)Pζ ,

holds for all ζ ∈ S0, it follows that D∗M (ζ) ≥ Pζ for all ζ ∈ S1.

Thus we have proved that D∗M (ζ) = Pζ holds almost everywhere. To prove that the

rank of Pζ equals m almost everywhere, it clearly suffices to show that, for every

multiplier φ ∈M(H2(D)D,H2(D)E),

rankφ∗(ζ) = sup
z∈D

rankφ(z)

for almost all ζ ∈ S. In the case of the unit ball, this is exactly Lemma 3.1 in [39],

and the general case follows analogously.

Remark 5.1.2.

(a) If E = C, then part (a) of Theorem 5.1.1 means that, for every non-zero invari-

ant subspace M of H2(D), limr↗1DM (rζ) = 1 holds at almost every ζ ∈ S.

Therefore (b) is fulfilled for all invariant subspaces and not only for Beurling

decomposable ones. Therefore we strongly conjecture that the required Beurling

decomposability in part (b) of the theorem can be dropped in the general case.

(b) A careful examination of the proof of Theorem 5.1.1 shows that the assertion

remains valid if H2(D) is replaced by some Beurling space H ⊂ O(D) which is

contained in H2(D) and satisfies condition ( 5.1.2), that is, for every separable

Hilbert space E and every f ∈ HE ,

lim
r↗1

‖ K(·, rζ)
K(rζ, rζ)

1
2
· f‖ = ‖f∗(ζ)‖
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5 Beurling decomposability in Hardy and Bergman spaces

holds for almost all ζ ∈ S (where K denotes the reproducing kernel of H).

It is shown in [39], Proposition 2.4, that the Arveson space H(Bd) satisfies

these conditions, and it is not hard to check that Theorem 5.1.1 then reduces

to the main result of [39], since all invariant subspaces of H(Bd)E are Beurling

decomposable by Theorem 3.3.8.

(c) By the same reasonings it is clear that Theorem 5.1.1 is also true if H2(D)

is replaced by the Hardy space over some reducible bounded symmetric domain

such as the polydisk in Cd.

As mentioned already in Example 3.3.10 (a), positive definite core functions of

invariant subspaces of H2(D) can be factorized by a single inner function. Recall

that a function η ∈ H∞(D) is called inner if |f∗| = 1 almost everywhere on S. The

following result contains, in view of Theorem 3.3.8, the classical Beurling theorem

on the unit disk and also results of Guo [40],[41].

Proposition 5.1.3. Suppose that M ⊂ H2(D) is a non-zero closed subspace of

H2(D). Then the following are equivalent:

(i) GM is positive definite.

(ii) There exists an inner function η ∈ H∞(D) such that GM (z, w) = η(z)η(w)

holds for all z, w ∈ D.

In this case, M = η ·H2(D) and M is invariant.

Proof. It is clear that GM is a positive kernel if condition (ii) is fulfilled. By

Proposition 3.3.7, it is also clear that, in this case, PM = MηM
∗
η holds and hence

that M = ranMη. Suppose conversely that GM is positive definite. Then it clearly

suffices to show that rankGM = 1. In fact, if GM has rank one, then M is invariant

by Proposition 3.3.7, and there exists a multiplier η ∈ M(H2(D)) = H∞(D) such

that GM (z, w) = η(z)η(w) holds for all z, w ∈ D. By Theorem 5.1.1, we obtain

lim
r↗1

|η(rζ)|2 = lim
r↗1

DM (rζ) = 1

for almost all ζ ∈ S, proving that η is inner.

To see that rankGM = 1 (or, equivalently, that the positive operator ∆M has rank

one), it suffices to prove that trace ∆M = ‖∆M‖. Since

KM −GM = GM (K − 1)

is positive definite (since H2(D) contains the constant functions with ‖1‖ = 1), we

see that ‖GM‖K ≤ 1 and hence that ‖∆M‖ ≤ 1. Example 3.3.3 (b) shows that 1

is an eigenvalue of ∆M , which implies that ‖∆M‖ = 1. So we want to prove that
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5.1 Hardy spaces

trace ∆M = 1. To this end, choose a Kolmogorov factorization (D, φ) of GM such

that D has a countable orthonormal basis (en)n (cf. Example 1.1.3(b)). Then φ

and also the functions φn defined by

φn : D → C , φn(z) = φ(z)en (n ∈ N),

are multipliers by Lemma 1.7.13. It is easily checked that

∆M =
∑
n

φn ⊗ φn (SOT ).

Furthermore, the proof of Theorem 5.1.1 shows that

D∗M (ζ) = φ∗(ζ)φ∗(ζ)∗(1) =
∑
n

|φ∗n(ζ)|2

holds for almost all ζ ∈ S. We obtain

trace ∆M =
∞∑
n=0

‖φn‖2

=
∞∑
n=0

∫
S

|φ∗n(ζ)|2 dσ(ζ)

=
∫
S

∞∑
n=0

|φ∗n(ζ)|2 dσ(ζ) (by Beppo-Levi)

=
∫
S

D∗M (ζ) dσ(ζ)

=
∫
S

1 dσ(ζ) (by Theorem 5.1.1)

= 1,

which finishes the proof.

Remark 5.1.4. In view of the preceding proposition, it would be natural to conjec-

ture that, given a Beurling decomposable subspace M of H2(D), the positive rank

of M is 1. However, it follows by Example 3.3.3 ( c) that the core operator ∆M of

the Beurling decomposable subspace

M = {f ∈ H2(B2) ; f(0) = 0}

of H2(B2) has spectrum σ{0, 1, −1
3 }, and the eigenspace for the eigenvalue 1 consists

of all homogeneous polynomials of degree 1 and has is therefore two-dimensional.

Furthermore, the core operator of the Beurling decomposable subspace

M = {f ∈ H2(B3) ; f(0) = 0}

of H2(B3) has spectrum σ(∆M ) = {0, 1,− 1
2 ,

1
10}, which shows that there can even

be different positive eigenvalues.
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5 Beurling decomposability in Hardy and Bergman spaces

5.2 The Bergman space

In this section we shall discuss the phenomenon of Beurling decomposable subspaces

in the context of the Bergman space L2
a(D). In strong contrast to the Hardy space

H2(D), the lattice of invariant subspaces of the Bergman space is very complicated.

By Theorem 3.3.8 and Proposition 5.1.3, Beurling’s Theorem is equivalent to the

statement that the core function of every invariant subspace of H2(D) is positive.

As seen in Example 3.3.10 (b), a similar statement must fail in the Bergman space.

Motivated by this defect, it seems to be a good strategy to identify the Beurling

decomposable subspaces of the Bergman space.

A second aim of this section is to establish a connection between our results and the

’Wandering Subspace Theorem’ [3] which is often regarded as a weak replacement

for Beurling’s Theorem in the setting of the Bergman space. In particular, we

present a simplified proof which involves reproducing kernel techniques in a more

effective way than the known proofs do.

5.2.1 Preliminaries

The aim of this section is to provide some introductory results on the Bergman

space L2
a(D) over the unit disk. The norm of L2

a(D) is defined as

‖f‖ =
(∫

D
|f(z)|2 dµ(z)

) 1
2

(f ∈ L2
a(D)),

where µ = λ
π is the normalized planar Lebesgue measure on D. The reproducing

kernel K of L2
a(D) is given by

K : D× D → C , K(z, w) =
(

1
1− zw

)2

.

The multiplier algebra of L2
a(D) is H∞(D) completely isometrically, that is,

H∞(D, B(E1, E2)) = M(L2
a(D)E1 , L

2
a(D)E2)

holds with equality of norms for all Hilbert spaces E1, E2. It follows by Example

3.2.3 that we do not have to distinguish between invariant subspaces and subspaces

being invariant under the multiplication with z.

Recall that Beurling’s Theorem for the Hardy space H2(D) can equivalently be

formulated as follows:

WheneverM is an invariant subspace ofH2(D), then the space M	z ·M
has dimension 1 and is spanned by an inner function. In particular,

M = ranMφ and M = [M 	 z ·M ].
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5.2 The Bergman space

In particular, M is completely determined by the space M 	 z ·M . It is therefore

natural to ask how much information the space M 	z ·M contains in the case of an

invariant subspace M of the Bergman space L2
a(D). A first and highly non-trivial

observation is that, contrary to the Hardy space situation, the index of M , defined

as

indM = dimM 	 z ·M,

can attain every value in N0 ∪ {∞}. We refer the reader to [46], Chapter 6 for

details. However, there are important classes of invariant subspaces having index

one. First, subspaces Mf = [f ] generated by a single function f ∈ L2
a(D) and

secondly, the so-called zero-based subspaces

MA = {f ∈ L2
a(D) ; f has a zero of order at least nk at zk for all k},

where A = (z1, . . . , z1, z2, . . . , z2, . . .) is a (possibly finite) sequence of points in D
such that the multiplicity of zk in A is nk. Those sequences A for which MA is

non-trivial are called L2
a(D)-zero sequences (or zero sets).

Let us for the moment consider an invariant subspace M of the Hardy space H2(D)

and write n = ord(M) for the minimal order of 0 as a zero of functions in M . It is

not hard to see that the inner function φ ∈M 	 z ·M satisfying φ(n)(0) > 0 is the

unique solution of the extremal problem

sup{Re f (n)(0) ; f ∈M, ‖f‖ ≤ 1}. (5.2.1)

An important breakthrough in the study of the Bergman space was the observation

that it makes sense to pose the extremal problem (5.2.1) for invariant subspaces

M of L2
a(D). More precisely, it can be shown (see [46], Theorem 3.5) that the

above extremal problem always has a unique solution, which is called the extremal

function gM of M . Moreover, the extremal function gM belongs to M 	 z ·M . If M

has index one, then M 	z ·M is clearly spanned by gM . If M = MA is a zero-based

invariant subspace of L2
a(D), then the extremal function of M is often denoted by

gA instead of gMA
.

5.2.2 Decomposition of the core function

Let M be an invariant subspace of L2
a(D). We observed in Example 3.3.3 (a) that

the non-zero space M 	 z ·M consists of eigenvectors of ∆M for the eigenvalue 1.

Buth then, an elementary calculation shows that KM	z·M ≤ (GM )+. The following

result, which strenghtens Theorem 0.6 in [52], shows that much more is true in the

Bergman space.

Proposition 5.2.1. Suppose that M is an invariant subspace of L2
a(D). Then there

exists a positive definite kernel v ∈ B(KM ) such that

(GM )+(z, w) = KM	z·M (z, w) and (GM )−(z, w) = 2zw v(z, w)
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5 Beurling decomposability in Hardy and Bergman spaces

holds for all z, w ∈ D. In particular, the identities

rank+M = indM and rank−M = rank v

hold.

Proof. By Theorem 0.6 in [52], there exists a positive kernel v such that

GM (z, w) = KM	z·M (z, w)− 2zw v(z, w)

holds for all z, w ∈ D. Furthermore, a closer look at the proof of Lemma 1.4 in [52]

reveals that in fact v ∈ B(KM ).

We already observed that KM	z·M ≤ (GM )+. Writing

L(z, w) = 2zw v(z, w) (z, w ∈ D),

we obtain that

(GM )+ − (GM )− = GM = KM	z·M − L ≤ (GM )+ − L,

and hence that L ≤ (GM )−. The disjointness of the kernels (GM )+ and (GM )−
shows that (GM )+ = KM	z·M and (GM )− = L.

Remark 5.2.2. Proposition 5.2.1 characterizes the Bergman space L2
a(D) in the

following sense:

Let Hν ⊂ O(D) denote the reproducing kernel Hilbert spaces with reproducing kernels

Kν : D× D → C , Kν(z, w) =
(

1
1− zw

)ν
(ν ≥ 1).

Then the following are equivalent:

(i) ν ≤ 2.

(ii) The statement of Proposition 5.2.1 holds for Hν .

(iii) For every invariant subspace M of Hν , we have σ(∆M ) ∩ (0,∞) = {1}.

If 1 ≤ ν ≤ 2, then Kν is a B-kernel in the sense of [52], and we can repeat the

proof of Proposition 5.2.1. This shows the implication (i) to (ii). The implication

(ii) to (iii) is trivial. To prove the remaining implication (iii) to (i), consider the

invariant subspace M = {f ∈ Hν ; f(0) = 0}. In Example 3.3.3 ( c), we determined

the spectrum of ∆M and obtained

σ(∆M ) =
{
− (−ν)m

(ν)m
; m ≥ 1

}
∪ {0}.

A closer look at the definition of the Pochhammer symbols ( 1.1.4) reveals that the

eigenvalue corresponding to m = 3 is

λ3 =
(1− ν)(2− ν)
(1 + ν)(2 + ν)

,
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5.2 The Bergman space

which is clearly positive and different from 1 if ν > 2.

Therefore, the Bergman space is maximal among all spaces Hν , ν ≥ 1, admitting

the special decomposition of the core function as described in Proposition 5.2.1.

Without doubt, one of the great achievements in the study of the Hardy space

H2(D) is, besides Beurling’s Theorem, the factorization theorem for H2(D), which

asserts that the zero sets of H2(D) are exactly the Blaschke sequences and that

Blaschke products are contractive zero divisors of H2(D). More precisely, for a

function f ∈ H2(D), the Blaschke product BA corresponding to the zero sequence

A of f (counting multiplicities) divides f in H2(D) without increasing the norm,

that is, the function f
BA

, extended analytically across the singularities, belongs to

H2(D) with ‖ f
BA
‖ ≤ ‖f‖. It was recognized first by Hedenmalm (see [44] and [46])

that, in the Bergman space, the role of Blaschke products is played by the extremal

functions of zero-based invariant subspaces: If A is an L2
a(D)-zero set, then the

extremal function gA of the zero-based subspace MA has the ’contractive divisor

property’ for MA, which means that the function f
gA

, extended analytically across

the singularitites, belongs to L2
a(D) with ‖ f

gA
‖ ≤ ‖f‖ for all f ∈MA.

We now want to demonstrate how the ’contractive divisor property’ of the extremal

function (even for arbitrary index-one invariant subspaces) can be deduced directly

from Proposition 5.2.1.

Corollary 5.2.3. Suppose that M is an invariant subspace of L2
a(D) of index one.

(a) We have

KM	z·M (z, w) = gM (z)gM (w) (z, w ∈ D).

Moreover, the decomposition

GM (z, w) = gM (z)gM (w)− 2zw v(z, w) (z, w ∈ D)

(with v as in Proposition 5.2.1) is the spectral decomposition of the core func-

tion.

(b) For every f ∈ M , the function f
gM

extends analytically across the singularities

and belongs to L2
a(D) with ‖ f

gM
‖ ≤ ‖f‖.

(c) For every φ ∈ M ∩ H∞(D), the function φ
gM

extends analytically across the

singularities and belongs to H∞(D) with ‖ φ
gM
‖∞,D ≤ ‖φ‖∞,D.

Proof. The first equality of (a) is clear since gM is a unit vector in the one-

dimensional space M 	 z ·M . The second assertion follows by Proposition 5.2.1.

In order to prove (b), we set D0 = {z ∈ D ; gM (z) 6= 0} and define H0 = L2
a(D)|D0

and M0 = M|D0 . Since the restriction map L2
a(D) → H0 , f 7→ f|D0 is an isometric

135



5 Beurling decomposability in Hardy and Bergman spaces

isomorphism, M0 is a closed subspace of H0 and KM0 = (KM )|D0 . By (a), the

kernel

D0 ×D0 → C , (z, w) 7→ K(z, w)−KM (z, w)
1

gM (z)
1

gM (w)
=

2zw v(z, w)
gM (z)gM (w)

is positive, which means by Proposition 1.7.6 that 1
gM

defines a contractive multi-

plier in M(M0,H0). Hence for f ∈M , the function f
gM

(defined on D0) belongs to

H0 with ‖ f
gM
‖ ≤ ‖f‖. But then there exists a unique function in L2

a(D) extending
f
gM

without increasing the norm. Turning to part (c), we let ψ denote the analytic

extension of φ
gM

. Then for every polynomial p, the function φ ·p belongs to M since

M is invariant. By (b), we observe

‖ψ · p‖ = ‖φ · p
gM

‖ ≤ ‖φ · p‖ ≤ ‖φ‖∞,D‖p‖.

This clearly shows that ψ is a multiplier with

‖ψ‖∞,D = ‖ψ‖M ≤ ‖φ‖∞,D.

As a consequence, we obtain an expression of the extremal function of index-one

subspaces in terms of the core function.

Corollary 5.2.4. Suppose that M is an invariant subspace of the Bergman space

L2
a(D) of index one. Let n = ord(M) denote the minimal order of 0 as a zero of

functions in M . Then

gM (z) =
∂n

∂wnGM (z, 0)(
∂n

∂zn
∂n

∂wnGM (0, 0)
) 1

2

holds for all z ∈ D.

Proof. By the Leibniz generalized product rule, we obtain that

∂n

∂wn
GM (z, w) = gM (z)g(n)

M (w)− 2nz
∂n−1

∂wn−1 v(z, w)− 2zw
∂n

∂wn
v(z, w) (5.2.2)

for all z, w ∈ D. Since, by the positive definiteness of v,

∂k

∂wk
v(z, w) =

(
v(·, z)(k)

)
(w)

holds for all k ≥ 0 and z, w ∈ D and since the function v(·, z) belongs to M for fixed

z ∈ D (by Proposition 5.2.1 and Corollary 1.6.4), we see that

∂n−1

∂wn−1 v(z, 0) = 0

holds for all z ∈ D. Now (5.2.2) shows that

∂n

∂wn
GM (z, 0) = gM (z)g(n)

M (0) (z ∈ D). (5.2.3)
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Similarly, we see

∂n

∂zn
∂n

∂wn
GM (z, w) = g

(n)
M (z)g(n)

M (w)

−2nz
∂n

∂zn
∂n−1

∂wn−1 v(z, w)− 2n2 ∂
n−1

∂zn−1

∂n−1

∂wn−1 v(z, w)

−2zw
∂n

∂zn
∂n

∂wn
v(z, w)− 2nw

∂n−1

∂zn−1

∂n

∂wn
v(z, w).

for all z, w ∈ D. Since for all w ∈ D and k ≥ 0, the function

D → C , z 7→ ∂k

∂wk
v(z, w)

belongs to M (in fact, this follows since the mapping D → M , w 7→ v(·, w), is

antiholomorphic and since M is closed), we have

∂n−1

∂zn−1

∂n−1

∂wn−1 v(0, 0) = 0

and hence
∂n

∂zn
∂n

∂wn
GM (0, 0) = |g(n)

M (0)|2 =
(
g
(n)
M (0)

)2

.

Now recall that gM is normalized in the sense that g(n)(0) > 0. By combining the

last observation with (5.2.3), we obtain the desired result.

Also the ’Wandering Subspace Theorem’ is an immediate consequence of Proposi-

tion 5.2.1

Corollary 5.2.5. Suppose that M is an invariant subspace of L2
a(D). Then the

space M 	 z ·M generates M as an invariant subspace, that is, M = [M 	 z ·M ].

Proof. In the following, we write

S : D× D → C , S(z, w) =
1

1− zw

for the reproducing kernel of the Hardy space H2(D) (the Szegö kernel). Then

clearly K = S2. Furthermore, we define

F : D× D → C , F (z, w) =
KM (z, w)
S(z, w)

= KM (z, w)(1− zw).

The right-hand side of this equation reveals that F is a positive kernel (by Propo-

sition 1.7.6), since M is invariant. Obviously, F is represented by the operator

T = PM −MzPMM
∗
z ∈ B(L2

a(D)), that is, ΛT = F . A routine calculation shows

that M	z ·M consists of eigenvectors of T to the eigenvalue 1. Hence PM	z·M ≤ T

or, equivalently, KM	z·M ≤ F .

In particular, since KM	z·M · S ≤ F · S = KM , the kernel KM	z·M · S belongs to

B(K). By Proposition 5.2.1, we can choose a positive kernel L : D×D → C such that
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GM = KM	z·M −L. Since GM ·S = F ∈ B(K), we conclude that also L ·S belongs

to B(K). Choosing Kolmogorov factorizations (D, φ) of KM	z·M and (E , ψ) of L,

Proposition 1.7.6 shows that φ ∈M(H2(D)D, L2
a(D)) and ψ ∈M(H2(D)E , L2

a(D)).

A simple calculation reveals that T = MφM
∗
φ −MψM

∗
ψ and, since T is positive, we

obtain that ranT ⊂ ranMφ. Now we see on the one hand that

KM (·, w) = S(·, w) · F (·, w) = S(·, w) · (TK(·, w)) ∈ [ranT ] (w ∈ D),

which implies M ⊂ [ranT ]. On the other hand, it follows that

MφM
∗
φK(·, w) = S(·, w) ·KM	z·M (·, w) ∈ [M 	 z ·M ] (w ∈ D),

and therefore ranMφ ⊂ [M	z ·M ]. All in all, we have proved that M ⊂ [M	z ·M ].

Since the reverse inclusion is obvious, the proof is complete.

We mention that our proof of the ’Wandering Subspace Theorem’ also works in the

more general setting of Bergman-type kernels, as defined in [52]. Furthermore, we

raise the question whether, in spite of the failure of the statement of Proposition

5.2.1, the ’Wandering Subspace Theorem’ remains valid in the spaces Hν over D for

ν > 2. We conjecture that the answer is yes.

5.2.3 Classification of invariant subspaces

Our first aim in this paragraph is to characterize the Beurling decomposable sub-

spaces of L2
a(D) by means of their extremal function. In order to do so, we need the

following lemma which is actually a special case of a more general result in [38].

Lemma 5.2.6. Suppose that M is an invariant subspace of the Bergman space

L2
a(D) and that M ∩H∞(D) 6= {0}. Then M has index one.

Proof. Choose some function φ ∈M ∩H∞(D) such that φ 6= 0. By Theorem 1.1 in

[38], it follows that dimM 	 (z − λ) ·M = 1 for every λ ∈ D with φ(λ) 6= 0.

It is well known (and follows, for example, from Proposition 4.2.6) that the approx-

imate point spectrum of Mz ∈ B(L2
a(D)) is precisely the unit circle ∂D. Hence D

is contained in the semi-Fredholm domain of (Mz)|M . Since the Fredholm Index,

denoted by ’Ind’, is constant on every connected component of the semi-Fredholm

domain, we find that

dimM 	 (z − λ) ·M = − Ind(Mz − λ)|M = 1

for all λ ∈ D. In particular, we deduce that indM = dimM 	 z ·M = 1.

Proposition 5.2.7. Suppose that M is an invariant subspace of L2
a(D). Then the

following are equivalent:
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(i) M is Beurling decomposable.

(ii) gM is bounded, that is, gM ∈ H∞(D).

In this case, M = ranMgM .

Proof. Without loss of generality, we may assume that M 6= {0}. If M is Beurling

decomposable, then M ∩H∞(D) is dense in M by Corollary 3.3.6 (b). In particular,

M contains non-zero bounded holomorphic functions. By Lemma 5.2.6, M has

index one. Now Proposition 5.2.1 yields (∆M )+ = gM ⊗gM , and Proposition 3.3.13

shows that gM ∈ H∞(D).

Conversely, if gM is bounded, then the index of M is one by Lemma 5.2.6. By

Corollary 5.2.3, (∆M )+ = gM ⊗ gM , and therefore ran(∆M )+ ⊂ H∞(D). By

Proposition 3.3.13, M is Beurling decomposable. The assertion that M = ranMgM

follows by Proposition 3.3.13 (and the fact that (∆M )+ has rank one).

Next we want to describe the finite-codimensional invariant subspaces of L2
a(D).

Before we do, we formulate the following lemma which is of its own interest.

Lemma 5.2.8. Let g ∈ O(D) be a function holomorphic on a neighbourhood of D
and assume g 6= 0. Let A = Z(g) be the (finite) sequence of zeroes of g belonging to

D (counting multiplicities). Then ranMg = MA. Moreover, when g has no zeroes

on ∂D, then ranMg = MA.

Proof. Let U ⊃ D be an open set such that g ∈ O(U). Without restriction we may

assume that Z(g) ⊂ D (otherwise, we replace U by a smaller open set Ũ ⊃ D with

Z(g) ∩ Ũ = Z(g) ∩ D).

First we consider the case Z(g) ⊂ D. The inclusion ranMg ⊂ MA is trivial. Con-

versely, let f be a function in MA and let λ1, . . . , λr denote the distinct zeroes of g

and nλ1 , . . . , nλr the corresponding multiplicities. Define

b(z) = (z − λ1)nλ1 · · · (z − λr)nλr (z ∈ C).

It is a well-known fact that the quotient f0 = f
b , extended analytically across the

singularities, belongs to L2
a(D) (in fact, this follows since the operator Mz − λ is

bounded below for every λ ∈ D). On the other hand, the function g0 = g
b belongs to

O(U) and has no zeroes. Therefore, the inverse function 1
g0

defines a multiplier of

L2
a(D), which implies that the function f̃0 = f

g0·b = 1
g0
· f0 belongs to L2

a(D). Since

g · f̃0 = f , we conclude f ∈ ranMg.

For the general case, let µ1, . . . , µs denote the (finitely many) distinct zeroes of g

on ∂D, and let nµ1 , . . . , nµs be the corresponding multiplicities. We define

c(z) = (z − µ1)nµ1 · · · (z − µs)nµs (z ∈ C).
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We recall that, since the Bergman space has no virtual points outside D, the maximal

ideal

Iµ = {(z − µ) · q ; q ∈ C[z]}

of C[z] at µ is dense in L2
a(D) for all µ ∈ C\D by Remark 2.2.2 in [25]. We observe

that the function h = g
z−µ1

belongs to O(U) and satisfies

ranMh = MhIµ1 = MgC[z] = ranMg.

Iterating this argument yields the identity

ranMg1 = ranMg,

where g1 = g
c ∈ O(U). We have Z(g1) = Z(g)∩D = A and, in particular, Z(g1) ⊂ D.

We have already proved that ranMg1 = MA, and therefore MA = ranMg.

Proposition 5.2.9. Suppose that M is a non-zero invariant subspace of L2
a(D).

Then the following are equivalent:

(i) codimM <∞.

(ii) M⊥ consists of rational functions with poles off D.

(iii) GM is a rational function in z and w with poles off D× D.

(iv) GM admits a sesquianalytic extension on a neighbourhood of D× D.

(v) gM is a rational function with poles off D.

(vi) gM ∈ O(D).

In this case, there is a finite sequence A in D such that M = MA.

Proof. The equivalence of (i) and (ii) is Corollary 2.5.4 in [25]. If conditions (i) and

(ii) are fulfilled, then by Proposition 1.1.2, the kernel KM⊥ is certainly a rational

function in z and w with poles off D × D. Since 1
K is a polynomial in z and w,

it follows that GM = 1 − K
M⊥
K is rational with poles off D × D. Furthermore, the

implications (iii) to (v) to (vi) and (iii) to (iv) to (vi) are clear by Corollary 5.2.4.

So suppose that gM ∈ O(D). By Proposition 5.2.7, M is Beurling decomposable

and M = ranMgM . Lemma 5.2.8 shows that M = MA, where A is the finite set

Z(gM )∩D (counting multiplicities). But obviously, zero-based subspaces which are

determined by a finite sequence are finite codimensional.

Propositions 5.2.7 and 5.2.9 provide characterizations of Beurling decomposable and

finite-codimensional submodules in terms of their extremal functions. These char-

acterizations allow us to present an example of a Beurling decomposable submodule

of L2
a(D) that has infinite codimension.
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Example 5.2.10. It is proved in [2], Corollary 2.4 that, if A = (an)n is a Blaschke

sequence in D, then the extremal function gA of the zero-based invariant subspace

MA satisfies

|gA(z)| ≤ exp

( ∞∑
n=1

1− |an|2

|1− anz|

)
for all z ∈ D. So whenever A = (an)n is an infinite Blaschke sequence such that

sup
z∈D

( ∞∑
n=1

1− |an|2

|1− anz|

)
<∞, (5.2.4)

then the zero-based subspace MA is Beurling decomposable by Proposition 5.2.7 and

has infinite codimension by Proposition 5.2.9. In order to find such sequences, one

should first note that

sup
z∈D

( ∞∑
n=1

1− |an|2

|1− anz|

)
= sup
ζ∈∂D

( ∞∑
n=1

1− |an|2

|1− anζ|

)
(5.2.5)

holds for every sequence (an)n in D. Indeed, this follows easily by the subharmonicity

of the functions

fn : D → R , fn(z) =
1− |an|2

|1− anz|
(n ∈ N).

The condition

sup
ζ∈∂D

( ∞∑
n=1

1− |an|2

|1− anζ|

)
<∞

characterizes exactly the so-called Frostman sequences. These sequences were first

studied in [49] and determine the inner multipliers of the space of Cauchy type

integrals on the torus. Examples of infinite Frostman sequences can be constructed

as follows: suppose that, for all n ∈ N, we are given numbers tn ∈ [−π, π] and εn > 0

such that the intervals In = [tn − εn, tn + εn] are pairwise disjoint. Suppose further

that (rn)n is a sequence in (0, 1) such that the series
∑
n

1−rn
εn

is convergent. Then,

by Lemma 5.1 in [49], the sequence (an)n, defined by an = rne
itn , is a Frostman

sequence. To be even more concrete, one could choose

1− rn =
1

n3(n+ 1)
, tn =

1
n

and εn =
1

3n(n+ 1)
.

Now that we have successfully characterized the finite-codimensional and the Beur-

ling decomposable submodules of the Bergman space, we turn our attention to

another, larger class of submodules. We mention that parts of the following result

are well known and appeared in [45].

Proposition 5.2.11. Suppose that M is a non-zero invariant subspace of L2
a(D).

Then the following are equivalent:

(i) [M ∩H∞(D)] = M .
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(ii) [M ∩H2(D)] = M .

(iii) [M ∩N(D)] = M (where N(D) denotes the Nevanlinna class).

(iv) M is generated by an inner function.

(v) M is generated by a bounded holomorphic function.

(vi) M is generated by a Hardy space function.

(vii) M is generated by a Nevanlinna class function.

(viii) M contains an inner function.

(ix) M contains a non-zero bounded holomorphic function.

(x) M contains a non-zero Hardy space function.

(xi) M contains a non-zero Nevanlinna class function.

(xii) gM belongs to the Nevanlinna class.

Proof. The proof will be organized as follows:

(i) - (ii) - (iv) - (v) - (vi) - (vii)

?

�
��	 ?

(x)

@
@@R

(iii)

?

(viii)

?
(xi) - (ix) - (xii)

6

?

Most of the implications are obvious. The first non-trivial implication is (ii) to

(iv). In order to prove it, let us suppose that the space M ′ = M ∩H2(D) is dense

in M . Clearly M ′ is a closed invariant subspace of H2(D), since the inclusion

mapping H2(D) ↪→ L2
a(D) is continuous. By Beurling’s Theorem, there exists an

inner function φ such that M ′ = φ ·H2(D). Then

M = [M ′] = [φ ·H2(D)] = [φ],

which shows that (iv) is fulfilled. The implication (vii) to (i) is Theorem 5.1 in

[45]. Next, we verify the implication (xi) to (ix). Whenever u is a Nevanlinna

class function in M , then u can be written as quotient of two bounded holomorphic

functions φ and ψ. Since M is invariant, we infer that φ = ψ ·u ∈M . The remaining

implications (ix) to (vii) and (xii) to (vii) are proved as follows: If φ is a non-zero

bounded holomorphic function in M , then, by Lemma 5.2.6, the index of M is one.

By Corollary 5.2.3, the function ψ = φ
gM

is bounded. Hence gM = φ
ψ is the quotient

of two bounded holomorphic functions and therefore belongs to N(D). Finally, if
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gM ∈ N(D), then by the already proven implication (xi) to (ix) and Lemma 5.2.6, it

follows that M has index one. Then the ’Wandering Subspace Theorem’ (Corollary

5.2.5) implies that M is generated by the Nevanlinna class function gM .

Clearly, every Beurling decomposable subspace satisfies the equivalent conditions

of the preceding proposition. It is therefore a natural to ask whether the submod-

ules described in Proposition 5.2.11 are necessarily Beurling decomposable. The

following example reveals that this is not the case.

Example 5.2.12. Consider the submodule M of L2
a(D) generated by the singular

inner function

S : D → C , S(z) = exp
(
−1 + z

1− z

)
.

Then M belongs to the submodules characterized in Proposition 5.2.11. By Lemma

5.2.6, the index of M is one. It is shown in [77] that the reproducing kernel of M

is given by

KM : D× D → C , KM (z, w) = K(z, w)S(z)S(w)
(

1 +
1 + z

1− z
+

1 + w

1− w

)
.

Since M has no common zero at 0, Corollary 5.2.4 yields

gM (z) =
GM (z, 0)√
GM (0, 0)

=
1√
3
S(z)
1− z

(3− z).

In order to prove that M is not Beurling decomposable, it therefore suffices to show

that the function h(z) = S(z)
1−z is not bounded on D. And in fact, this follows by

evaluating h at the points zn = in
1+in (n ∈ N).

As observed in [76], the submodule M considered in the previous example is in-

teresting for another reason. Namely, it is an example of a finite-rank invariant

subspace that is not zero-based. In fact, it is clear that M has no common zeroes

at all (since the generating function S does not). This implies that M is not zero

based because in that case, we would have M = L2
a(D). Since the core function of

M can be written as

GM (z, w) = S(z)S(w)
((

1 +
1 + z

1− z

)(
1 +

1 + w

1− w

)
− 1 + z

1− z

1 + w

1− w

)
(z, w ∈ D),

it is clear that M has rank 2 (cf. Remark 1.6.10).

Now consider a non-zero invariant subspace M of L2
a(D). The following diagram

summarizes the results we found in this section. The conditions in each of the boxes

are equivalent, and the arrows are implications.
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• codimM <∞
• gM ∈ O(D)

• gM is rational with poles off D
... (see Proposition 5.2.9)

?
(1)

• M Beurling decomposable

• gM ∈ H∞(D)

?

(2)

?
(3)

M = ranMφ for some φ ∈ H∞(D)

?
(4)

M = ranMφ for some φ ∈ H∞(D, B(E ,C))

?
(5)

• M = [M ∩H∞(D)]

• M = [φ] for some inner function φ

• M ∩H∞(D) 6= {0}
• gM ∈ N(D)

... (see Proposition 5.2.11)

?
(6)

M has index one

?
(7)

• indM <∞
• ∆M is compact

• ∆M is trace class

rankM <∞

?

(8)

�

(9)

It should be mentioned that the equivalence of the conditions in the bottom box is

the main result of the recent paper [76] (Theorem 9).

Finally, we want to examine which of the implications in the above diagram are

proper. Clearly, the implications (1) and (2) are by Examples 5.2.10 and 5.2.12, re-

spectively. Therefore, at least one of the implications (3) to (5) is proper. Although

we do not know which, we conjecture that they are all. To see that the implication
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(6) is proper, consider an L2
a(D)-zero set A that is not a Blaschke sequence (see

Chapter 4 in [46] for the existence of such a zero set). Then gA /∈ N(D), but MA

clearly has index one. Furthermore, implication (7) is proper since there exist in-

variant subspaces of every arbitrary index (see [46], Chapter 6). That implication

(8) is proper follows again by Example 5.2.12. In order to show that (9) is proper,

it suffices to find a zero-based invariant subspace of infinite rank. And in fact, a

recent result ([24], Theorem 3.4) shows that, for every L2
a(D)-zero set A, the rank

of the kernel

l : D× D , l(z, w) =
(GMA

)−(z, w)
zg(z)wg(w)

,

extended sesquianalytically across the singularities, and the cardinality of A (not

counting multiplicities) coincide. We infer that rank l = rank(GM )− by Remark

1.6.10. Hence, for every infinite L2
a(D)-zero set A, we deduce that

rankMA ≥ rank−MA = rank(GMA
)− = ∞.
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[6] , Reproducing kernel Pontryagin spaces, Math. Sci. Res. Inst. Publ. 33

(1998), 425–444.

[7] J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded

symmetric domains, A joint summer research conference on multivariable op-

erator theory, Multivariable operator theory, vol. 185, American Mathematical

Society, 1993, pp. 7–65.

[8] J. Arazy and M. Englis, Analytic models for commuting operator tuples on

bounded symmetric domains, Trans. Amer. Math. Soc. 355 (2003), no. 2, 837–

864.

[9] J. Arazy and H. Upmeier, Invariant inner product in spaces of holomorphic

functions on bounded symmetric domains, Doc. Math. 2 (1997), 213–261.

[10] J. Arazy and G. Zhang, Homogeneous multiplication operators on bounded sym-

metric domains, J.Funct. Anal. 202 (2003), no. 1, 44–66.

[11] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68

(1950), 337–404.

151



[12] W. Arveson, An invitation to C∗-algebras, Graduate Texts in Mathematics,

vol. 39, Springer Verlag, New York, 1976.

[13] , Subalgebras of C∗-algebras. III. Multivariable operator theory, Acta.

Math. 181 (1998), no. 2, 159–228.

[14] , The curvature invariant of a Hilbert module over C[z1, . . . , zd], J. Reine

Angew. Math. 522 (2000), 173–236.

[15] S. Axler and P. Bourdon, Finite-codimensional invariant subspaces of Bergman

spaces, Trans. Amer. Math. Soc. 306 2 (1988), 805–817.
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