On a theorem of McGowan concerning the
most recant property of programs

P. Kandzia, H. Langmasack

A 74/07, May 1974

Introduction

In this paper we discues the most recent property of ALGOL-like
programs ([1],[5),[6]). & program has this property if at run time
the static chain poilnter of a procedure q-always points to the most
recent, not yet completed, activatioen of that procedure w which
lexicograpnically encloses @. Hot all programs of a programming
language with procedures have the most recent property; examples
arm glven for BL in (5] and for ALGOL 60 in [2] . So the implemen-
tation of block-structured languages cannot be based only on the
most recent strategy. In [5] McGowan gives sufficient complle time
declidable conditions for the fact that & program w has the most
recent property. In the following the theorem of McGowan is estab-
lighed on a new basis by investigating the execution tree Ty of a

program T .

Scme definitions

We deal with the language ALGOL 60-P (Pwpure) [4] .

ALGOL 60-F has the following main restrictions and modi-

ficationa compared to ALGOL 60:

a) Only proper procedures, no function procedures are
allowed.

b} Specification and value parts in procedure headings are
BmpLY.

c} Only identifiers are allowed as actual parameters of pro-
cadurée statements.

d) Baside begin and end we have an additional pair of statement
breces [E - They act as block-begin and block-end. We
require that all procedure bodies are included in these
braces and we call them body braces in this context. In

other contexts they are called call bracas.

@) The only data types are real and bool.

f) wWa axclude arrays, subscripted variables, switchas, switch
designators, and unsigned integers as labels.

A more complete definition of ALGOL 60-P may be found in [4J.

ALGOL BO-P is practically the same languages as BL in McGowan
[83.

We need some definitions referring to ALGOL 60-P programs. A
formal ALGOL -60-P program w is a string of basic symbols which
can ke reduced to the axiom <program> by the formal rules of the
context free grammar gp for ALGOL 60-P and which has the following
Property: For every occurence (i,z) of an identifier z in w there
is exactly ome defining occurence (3,%) =J(i,2) in T with

T =z, i and j represent the occurence positions of the identi-
fiers z and T in T . Two formal programs are called identical

if they differ only by an admissible renaming of identifiers.

In the further taxt we shall make no differance betwaan idanti-
cal formal programs.

A formal program is called distingulshed 1f different defining
occurences of identifiers (i,z) #+ (j,Z) are denoted by different

fdentifiers z & Z. formal program is called partially
compilable 1f after replacement of all procedure bodies by
empty ones the resulting program P has the property that,
for short, any applied occurence (i,z) of an identifier,

kound by the dafining occurence #(i,z) = (3j,2), is applied
approprlately according to the definition (it is assumed :o
be clear what "appropriate application” of identifiers moans).

Definition: Let § be partially compilable. A formal program w
is called to result from ¥ by application of the copy rule
(T¥—w') 1f the following condition holds:

Let :{ul,...,an} be a procedure statement in the main program

of W . Let proc £(x,,...,x }:fg] be the assccizated procedure
declaration. Partial compilability guarantees egual numbaer n of
actual and formal parametars.

There ig a modification of the body {ei Lntc a body [¢l such that
the replacement of f{ai,.-..anl in w by {¢'f leads to w'.

Modification of {¢] means that all formal parameters x; occuring
in ¢ are replacad by the corresponding actual parameter a, and
that, eventually, identiflers locally defined in ¢ are renamed
in admissible manner.

¢’} is called genmerated bloek; {} in ¢} are called call braces
in contrast to the body braces in {s}.

Tz -..proc ftxl*...,xn]:iﬁli.;:; ftal,.*.,au];...
T ™ S
T'E . ..proc £i(x % ;! E;ﬂm {H‘j‘

- lr-l-rn' E‘ -Il-",-,. E j---
If w is distinguished, w' must not be also distinguished. But
we can easily construct an ldentical and distinguished program Té
if we rename all idemtifiers local to ¢' by identifiers which do
not yet occur in ¥'. In the further text we shall steadily assuma
that all programs are distinguished and that %' with w—7' has
been made distinguished like r&. Furtheron, we shall often
identify a daclaration and the identifier which denotas the

declaraticn.

If wr— ' then all declarations and procedure statements up
to f{aiﬂ...;ani are identically copled. Declaratlions and

procedure statsments 1n{gih@ua additional coples in f¢'f ,
which we call modified copies.The notion {identlcal or modified)
copy can be easily transferred to T ', TeE ', where V- | B
are the transitive and transitive raflexive resp. closure of +—
in the set of all formal programs.

Definition: A formal program T is called original if {} are used

only as body braces.

Definition: Let T be original; the execution tree Ty 15 the set

T = {T|viE7', v' has at most one innermost generated
block |

The innermost generated block of ¥' is abbreviated as IGB(T").

Let "¢ Ty 7° # 7T, T'—w". In 7' cthe calling statement
fﬁal,...,an} which is responsible for IGB{(s") is unigquely
determined; notation: f'[al,...,an] = stat(g"). The procesdure f‘
called in ¥ is a copy of exactly one procadure f in 7 . We call
£ the associated procedure ass(r"} inTw.

An original program T is called to have formally correct
parameter itransmissions if all 1"eTy are partially compilable.

A procedure f in an original program T is called formally
reachable Lif thare is a node T'¢ T, with £ = aaa(vy'). If £

and g are procedures in an original program % then f{ formally
calis g if there are ¥',v" ¢ Ty with 7' — ¢" and ass(r') = f,
assi{7") = g, f iz called formally recursive if £ formally

calls £. It is generally undecidable whether a procedure £ in
is formally reachable, whether £ in W is formally recursive and
whether £ in ¥ formally calls another procedure g in 7 (4]

A non-formal identifier a is formallv inserted in a formal
identifiar x 1 &

(37" Ter ind J(stat{zg™) = f’(....ai,...}, f = pas{ ") has a
declaration proc f{...,xi,...];{...i in 71 and
X = 3Ky a] denotes a copy of a in T .

Algorithm

We should like to glve decidable sufficient conditions when a
procedure is formally reachable, when a procedure formally

calls another one, when a non=-formal

inserted in a

identifier.

identifier is formally
Let ¥ be an original

program. Let p;,...,p, be the procedure identifiers in T,

lef 11....,x?

be the formal identifiers in v, let Poypvs Py

be the further non=formzi identiflers in . We considar T to

be the body of a fictitleusprocedure named by P; = Py tha
maln program of w is the main part of the body of Py (the main

pars mp{pk} of the body of a procedure Py

iz that part out-

gside all procedure declarationsdeclared within the bodyl.
For the original program 7 wa nave

T, Py = ass(w).

The above mentioned sufficient conditionsam gliven througn an
algorithm & applied to w.
matrix I,a Boolean call matrix C and a Boolean reach vektor R
initialized in the following way:

I i xl.;..,x
pli: D ¥ ﬂ
B o IR+
pm+1r G - s W ﬂ
AR
pr| 0 ...0

c

Fl‘ I'Fm

PI::.I:} -+-D

Py

ﬂlllu

ﬂ I-!--Iﬂ

It works with a Boolean inserticon

L
|
Pa! .
py| O
Pe o

We furcher need a Boolean incorrectness variable YV initlalized

by O.

Every step 5 of Algorithm 01 has the following partial steps

S1,...,58:

51: Choose a procadure = with ﬂ{pk} = 1 and look at mp{ph}-

2: Let ¥ye--=e¥, be the (local and global) formal parameters

of p, . Choose non-formal identifiers S ST S with
I[':t'ijr}rj.] - 1'

|

Imagine ¥yeessely GO be replaced by ﬁil""*xis in mPEPhJ.

§4: I after this replacement there is an Lnappropriate
identifier application, then let ¥ become | and go back
to 51; otherwise go on.

in
i

: Choose a procedure statement § (¢,,...,7) in mp (P,) .
If there is none than go back to S51; otherwise go on.

rul'l
[

: Look at the procedure statement 7 El"“'fn} of 55.
According to 53 we get a¢{a1,+..,nn} with

{ar = if §, is non-formal
a = & if = ¥y, formal)
v i4 br ?:I. (E’j
Appropriate means especially that a, is a procedure iden-

tifier and that n is the number of the formal parametars

- S
17 ”In of nﬂ_

57: Rla_] , Efbk,uul and IE&lrzfi,...,Ifan,zn] become 1.

B: Return o 51.

Claim: A iz nondeterministic and never ands.

To sae this we must be sure that every partial step is well
executable. This is obvious for every step but the 2nd one,
wheres we nsed non-formal identifiers Biyenen By with Iﬁilj,yj]
= 1. That such identifiers are always available is a conseguence
of the following considerations.

Definition: Let g ba an identifier in a program T. $lg) is
defined as the smallast procedure p + 4 which contains the
declaration of g. If q is a procedure identifier then <(q) is
called the immediate static predecessor of gq.

Lemma l: Immediately before the execution of the first
partial step Sl of a step S tha following five properties
Al = A hold:

Al: Rlp) = 15 Riglp)] =2
32y TLag ey 209 7 B [glag)] =1

-

3: If v i8 a tlncnlﬁglnhalj formal parameter of Py with
R[Pk] = 1 then there is a non-formal identifier o
with I[pr.i,y] - 1,

s
s

'chkrF‘kt:! =1 > R[ij - EFF;.‘] = 1

kY
L

Rrpk] = | < there is a seguence Py = Pka'Pkl"*+Pkr = Py
V- # 0, with Clp, /Py,] = 1 for i = O,cu., v-l

Proof: Al - A5 are trivial before (0 1s started, Let Al = AS
hold immediately before step S M L.

Clear: Al = A5 hold immediately before step %ﬁ+l 1f we return
from 5S4 or 55. Mow let us return form S58:

Al: We must show thg{aﬂ}] = 1 wharae a, is taken from the new
parctial step 56. Lat A= fﬂ, i.e. let En be non-formal. Then
we hawve

qwtnﬂj - Fk {whera Py is the procedure just regarded in the
new step) or

ﬂ"[nn} " Pg (whera PR is one of the (immediate or non-immediate)
gtatiec predecessors of Fk"

By induction hypothesisz Al we have R[?{na}l = 1.
Let £ be formal with I[aﬂ. §ol = 1. Then by lnduction hypothesis
A2 we have R.Lgianjl = 1.

A2: We must show Et[.?[ai}] = 1, 1>0. We argue as above.

A3: We must show: For every (local or global) formal para-
meter y of procedure a, there is a non-formal id&ntifliriui
with IEhi,yJ = 1. Let y be local and y = Z 5 Then by 57
T[lj-y] = Ifhjrtjj =], Let ¥ be global. Then y is a (local
or global) formal paramster of ?l:lu:l . Because of Al above
R E?iag}] = 1 holds. By induction hypothesis A3 we have a
non-£formal identifier oy with I[mi,yl = 1.

A4 and A5 are easy to show. Q.E.D.

Every not anding sequence ¥ of steps 51,52,53,,“ of Algo-
rithm & has a first step S, such that Et,5t+l, S pgrens

do not change the values of I.C,R or V. We call these finally
constant matrices IE'; EI'. vector RY , and variable v{ the
result of f with respect to sequence y o= 31,52,53,... .
Jlfferent step seguences E',E* may yield different results,
but thare is always another segquence ¥ with IIUIIE Ir:
cfuc¥ec’, v BFe &, vfu v¥s v¥", The unions 1, :=u1f,
Cyq = lf"' ch, Ry = .'i; RY ¢ Vi :=l.l._.-|"'n|'r are called the refgll_; of CL.
The result can effectively be determined if we go systemati-
cally through all cheoices which are cffered in the partial
steps 51, 52 and 55.

Some properties of programs basing on Algorithm (L

By means of Algorithm (& we define some (compile time
decidable) properties of a program mW:

We say that r has potentially correct paramater transmissions

£ Vy = 0. We call a procedure Py potentially reachable 1f

R [ij = 1. We say a procedure Py potentially calls procedura
P if C:,'Epk..pkd = |1, Whare c* is the transitive closure of C .
A procedure Py is called potentially recursive if Py potentially
calls Pp- A non=formal identifier pt i3 called to be potantially
inserted in the formal identifier “j if I'[pl,xj] - 1,

We may prove

Thecorem 1: 1. If T has potentially correct parameter
transmissions then v has formally correct parameter trans-
missions, too.

2. If a procedure g in v 4is formally reachable then g 1is
potentially reachable.

3. If a procadure g in T £formally calls a proceduze f in T
then g potentially calls f.

4. If a procedure g in w is formally recursive then g is
potentially recursive.

5. If a non-formal ldentifier p is formally inserted in the
formal identifier x then p 18 potentially inserted in x.

Proof: Let ¥' be a program in Ty and g= ass{w').
The theorem i1s a conseguance of the following claims:

Claim 1: g is potentially reachable,

Claim 2: If 7' is not partially compilable then ¥ has not
potentially correct parameter ctransmissions.

B
Let T‘fﬁirtinlly compilable and let £'(aj,...,a)) be & proce-
dure statement of IGE{v') in the main program of ¥'. Let £'
denote a copy of £ with the declaration

E].'L'.‘IE: ftxlllllj’:n} H '.I.EI

in w and let ai denote copies of identifiers a, in ™
Claim 3: g potentially calls £

Claim 4: a, 1s potentially inserted in x

i

The claimz are proved by induction. They are obvious for

T =W, Now let T T in Ty and let Claim 1,...,.4 be ful-
filled for ¥" and its (eventual) predecessors.

Claim 1 fer ¥': Because of eclaim 3 for 7" we have Cpl...,q9] = 1
and due to property A4 R [g)] = 1.

- 10 =

Claim 2 for m': Because of claim 1| for w', claim 4 for 7 and

its predecesscrs, and because 7' 18 not partially compilable
Algorithm d yields Vg = 1.

Claim 3 and 4 for w': Because of claim 2 for v, claim 4 for w°
and its predecessors, and because T' is partially compilacle
Algorithm @ yields <C.[g,f] = 1 and Irfai,xi] = 1. Q.E.D.

A new approach to the theorem of MeGowan

We want to represent systematically the modification of
bodies {¢}, such that in a program 1"& Ty it L8 recognizable
in which program v' with T 7'+ n'the renaming of a cercain
identifiar has happened. The programs w"¢ T, Will be charac-
terized by strings & m¥ . For this purpose we look at the

statiecal procedure geructure of a body which has che form

! . - -pIoc Fltxll""':l;nll:i"'i 2= n,
(er begin)
prog Pmt“ml**"'”m,nm};i"'i | 0% o m¥F 0
i
31dH11""*31*r1} O & £y
& =
aqﬂiﬂqli...jﬂq:rq} L j ﬂ -— rq.fq G
{or end)

1f we neglect all declarationsand statements which are not
procedure declarations and procedure statements resp. Bleck
nasting within bodies is neglectad too.

We define:

The relative position of the declaration of a procedure pi=P{pi}=-L=
the relative position of a statemant Em alni..-}=5{ﬂ1°{...l}=-i;
the relative position of a2 formal parameter x-:jk:x{xjk};-k.

-lld-

P,5,X are extended to all programs r' ¢ Ty which is demonstrated
only for S:

5(F')i=5(5) where statement X' in 7' is a copy of statement £
in .

The above mentioned characterization of programs T € Ty can be
stated in the following way:

£ lempty string) if 7" =1
(") =
tir') &(stat(x")) 1f ' —"

T is a l=l-mapping so0 that all programs w's T, could be identi-
fied with their strings t(w'). =<T(T,) is an (eventually infinite)
tree T with the following characterizing properties:

1.) TEN® , T+ @

2.) T is eclosed under initial segmont relation

i.a. 1f s & T then g& T, tod.
3.) If tv withv?1l is in T then T(v=1) is s8 , too.

4.) Any node t in T has at most finitely many immediate
succeggors v in T with ve N,

The syvstematic renaming of identifiers in applying the copy

rule can now be astablished: Identifiers in a program ¥ e T
will be pairs (id,t)., written 1d(t] , where id is an identifier

of old kind in T and t is an element of T(T;)& WY All identifiers
in ¥ are indexed by E= T(m): 1d(£] . Let r'+— 7" in Ty . All
identifiers local to IGB(r") get the index T(1"), while the
remaining identifiers get the same index as in ©¥'.

Example 1:
T,: begin proc rled(yl2));: fyledi:
proc £(ed(x[e]);{proc ql€]:{proc nlel(z(ed); {£lellxlef ;
ECES (h (el =[ellaqlel}} ;

- 2 =

Ele] (xlz])
e 0

and e

.

l:hegln eeodproc g1l ;iproe hi1d (zl1)y ;i fEET{:EIJ}fm

£02] (h[11)kselel (ql1dyf ... end
/

&
1| end

."{r—grnc hhul{z[ul]‘.l:{sz]{rnn_. [inhﬁn]?

o otw —t
FE
=
o

F

LR Eﬂd

With the new systematic renaming of identifiers in programs
n"e T, wa can define some terms important for the definition
angd investigation of the most recent prapérty.

Definition: Let w" & Tpoidd ;

the cynamic predecessor of " is dyn () := v with v™—%";

the dynamic chain of v* is the set S(z") :=Eﬂynr{w*}:f=ﬂrlr---r

Vpiw™if §
{ dyn" ils the identical mapping).

The statlc predecessor of 7" is defined st(f") = rvlttn]

where stat(tT") = fftD]{alftlj....,anEtn]i

The set € (r*) :={st"{v") v = 0,..., M{ass(7")} 4is called the
® is the identical mapping). Alass(w¥"))
iz the static level of ass(w"™) which is introduced in the
following definition.

static chailn of w". (5t

Definition: The static level of an original program T (which is
regarded as body of a procedure Py) 1s A(B;) := O;
static level of a procedure p # PFp: Ap) :=Mglp)) + 1.

We want to deduce theorams about the most recent property. This
property has to do with the most recent, not yet completed,
activations of those procedures which lexicographically enclosa

= 13 -

ass ("), 7" € T, . We need suitable definitions.

Definition: Let w"e¢ T \{rl and Ddus X{ass(mr")). The u=-th

most recent predecessor of T is defined as mr , (v") := dyn¥(s"},
whare v is the smallest number such that ass(dyn”(x")) =

ass (se™(x")). me is the identical mapping.

dyn, st and mr, are functions from T,~{v§ to Ty.

== =3 [L] = -
If py#e-.#p = Alf), r 2 0, then WEp,* #m‘"r {(¥*) =%
As an example we may treat the last program -:I. In fig. 1 we
have a part of the diagram of Ty with some arrows representing
the functions st, lt.:, mry, mMrz. Beside this we have listed the
elements stat(w1) and ass(rd), rie fr.r o oy,
(atat({y) = P ass(r) = F).

Pig. 1

Tx
: stat (7)) ass (13)
|
:u-zu“: L rv n{111l (ql2111]) h
(!
se(e¥) = mr (7)) — T £0£] (h(111)) £
|
i':li.'t‘"'] — ™ q.ll q
4
stir™} = mr, (") —— r? r[£1(q(1)) r
ll' E{el{x(el) £
—| i
st{r') = mrltr‘I-- I 3 Py P,

Definition: Let w" ¢ 'I"-'-hi. T" is called to fulfill the weak

(strong) most recent property if st{y") = mrllt'.'l
(resp. st{y™) = nrrl.'t"l for all je with O o om & p(ass(x™))).

The original program v 18 called to fulfill the weak (strong)
moat recent property, if all " é& Ty~{ri fulfill the respective
property.

We are interested in a necessary condition when 7 does not
fulfill the strong most recent property. Then there is a

F— T Ry — gt — st P R e e

program ¥ * o7 in T and a number »* 0 such that
T e

a) st*{r") ¢ mre.(e")
and b) stT{y') = mr_ (7'} for all ¥'# g7, w'ér,
and all numbers m, O£ m % xlass{n")).

Before investigating the consequences of a) and b) we need some
minor comnsiderations on non—-formal identifiers in a program
T e Tev{vi. We must distinguish exactly betwesen non-formal
identifiers on "non-formal position" and non-formal identifiers
on "formal position". An occurence of a[+] inr"is on "non=-
formal position”,if it corresponds to (is on the same place as)
the occurence of the non-formal identifier alél inw. a[t]
is on "formal position®, if it 1s on the place of the formal
identifier x(t] in w .
How does a [t)] come to the position of the formal idencifier
x[£] ? Let the declaring occurence of x = % [t] be in

PEOC Flewe Xpenadzfausls
alt] comes to the position of % by the calling statement

g[tn] Lompalt] o)
in % with §%+= ¢". The corresponding call in T i3

e} GUEY e us eALET uns) or
B) glgil...,ylel,...), where y(i] is formal.

In case &) alt] is already in an enclosing block on formal
positien (this time of y(f]). The consideration continues
in that way untll we have case «).

For case «) and case k1. we show two lemmata:

Lemma 2 (casew): Let 7'¢ Ty and altl an occurence of a non-
formal identifier in IGB{¥"); let al[t] stand on the place of
aff)] in the body of p = ass(y") in T.

= 15 =

Then _
e} = st (r") with 4 = Mp) - N g (a))

‘{d if dz0
4=
| o if d<0

asp&cinllyw'ﬁit_l(t}} € §iq").

Proof: Trivial for s" =7 .

Let ¥'+— v by the statement pEt51[+..} and the lemma hold

for y' and its dynamic predecessors. If a_is local to the

body of p then 4 £ O and t’l{th = 1" = 3:d{r'} by construction
of indexing.

If a is global then d> 0 and alt] occurs in the body of the
procedure pEtﬂl called. alt] occurs in IGB{T-litQJ] ; d=120
and by induction hvpothesis

d-1 a-1

i) = st e e) = stF Vst rv)) = sefa
Lemma 3{ casa {1 }: Let 1" ¢ Ty and a[t] an occurence of a
non-formal identifier in IGEB(mw"): let ait]l stand on the place of
the formal identifier x{¢] in the body of p = ass(F") in. 7.
Then d = xip) - }tﬂix]};-u and a [£] is the y=-th actual

parameter of

stae (st (17)) = Bregl (F (61 oo B e D), v = X000

Proof by inductlion:

Trivial for g" =T.

Let 7' +— " and the lemma hold for w' and itz dynamiec pre-
decessors. x 18 not local to the body of p. Therzafore

MP) £ MMp) and D€ 4 & Ap) - AP} € Alp)

L. cage: x is the v -th formal parametsr = of p itself.
Then p =p, d = 0, std{r"} =51, afel = &[] .

2. case: x 18 the y=-th formal parameter Xy of procedure
B o= .i.d{p_:l, d> 0., aft] occars in IGB(stc(m")) with

st{s")} = 7' — 7"

By induction hypothesis a[t] is the v-th actual
parameter of

ﬂ-tat[std-liat. (T"1) = Etat{stu['.l'l'"il).

We now return to the guestion when a program ¥ does not
fulfill the strong most recent property. Above we have seen

that "v¥ does not fulfill the strong most recent property”® is
ecuivalent to

(35" & Ty ful, A with 0 ¢ we Mass(r")))

{a) st ™ (x") # mE 4, x").

B) (¥n'e S0 Peei¥fm with 0 £m £)0(ass ("))
(st™ (') = mr_(7')))

we have ML20) otherwise u= O and

utfu (g") = 7" = mrft-r“} {contradicks a))
in aﬂdll:inn:’t;:.“_.} FE mr ™).
j"‘
Let be h := ass(st{y")) = ass{mrr_ (v"))

£ := ass(«"); stae(n®) = £[t]1(...) in v
g := ass{v'}, W, := f-l{tnl

(1) h is formally recursive.
(2) f is declareé in the body of h (because h = Tﬂif],f#ﬂ}
@f[tﬂ] stands on the place of a formal identifier x[f] in the

main part of the body of g.

Proof: Assumption: f[tu]‘ stands on the place of the non-
formal identifier £{¢] in the main part of the body of g; then
we have 15"{1":} ¢ §(t') (Lemma 1} and therefore T, ¢ £(%') and
(Bm) (st (7") = st™ (F')),

- 17 =

Because of a) and x>0 we have
(37} (h=ass (¥}, stM (") = T £ ¢')—¢") and therefore
stMig') & mrm{w'm. This contradicts b).

\ P ale | /7
SR
- mr,, ("))[
\i
\ h 228, T B hr_,i/

L oom |

—JL--— 56 (71,620

f

LY

L g
YT st (R,) S R0
Ly

)

these programs fulfill the strong most

recent property

Fig. 2

The body of h contains a procedure statement Gl...,f,...).

Proof: f[tnl is actual parameter of a procedure statement in :#LT‘
and stands on the place of the non-formal identifier f[£] in the
main part of the body of ass(7).

-Etfﬁ}i ¢{¥) (Lemma l); because of T =st{T"] we have ﬁtFtE“i&ﬁTﬂbJ

and therefore st (7"} & ﬁ-ﬁ] (2 +

i.e. h = ass{st™(r")) contains or is egual to ass(¥).

() If q is non-formal then q formally calls h.

&) If q is formal then a non-formal procedure § is formally
inserted in g and § formally calls h.

- 18 -

Proof: Look at (&) f£rom the proof of ""-_""“,3".1,:
(dm20)({ st (x") = mrm{?j; because of b) no program T with

sty - T LT fulfills ass(}) = h; so with (&) we have
=

=i o

st {r") r-"'-;-mr#h"‘}.

Collecting these results and bearing in mind Theorem | we get

1

the following theorem which goes back to McGowan's theorem:

Theorem 2: If 7 does not fulfill the strong most recent pro-

perty than

1} there exists a potentlially recursive procadure h;

2} the body of ‘h contains the declaration of a procedure f;

3} the body of h contains a procedure statement ql...,f,...)
having £ as one of 1ts actual parameters;

4) Lf g is non-formal then g potentially calls h;

5) Lf g is formal then a non-formal procedure g is potentially
inserted in g and § potentially calls h.

The negation of 1),...,%) i3 a sufficient compile time decidable
condition for the fact that T £fulfills the strong most recent
property and; a fortiori, for the fact that ¥ fulfills the

waak most recent property.

Examples: The programs T, :

besin real a; proc hix);frsal b; proc fly);foutreal bi;
a:=a+l; bi=a; :{!}f; a:=1;h(h)} end

and Tz:

begin proc f{x};fgrac gtyﬂ;iy{xii;
proc hitz)ijzih)}s higifs

£(f)
end

have not the strong most recent property. 11 fulfills 1),2),3) .3}
while TE fulfills 1),2),3).,4).

Concluding remarks

Mac Gowan's Theorem 2 could bhe formulated sharper; but we
restralned because in [3] it has been proved that the
strong and the weak most recent property both are compile
time decldable.

References

[if Dijkstra,; E., "recursive programming", in Programming
systems and languages, 5. Rosen, McGraw-Hill, New York, 1967

{8 Grauw, A.A., Hill, U., Langmaack,H., Translation of ALGOL 60,
Handbook fiir Automatic Computation, Vol. Ib, Berlin-Heidel=-
berg-HNew York, 1967

(3 ®andzia, P., "On the most recent property of ALGOL=like
programs®, im Proceedings of the Second Colloguium on
Automata, Languages and Programming, Saarbrilcken, July i29=-
hugust 2, 1974, Lectura Hotes in Computer Sclence, Springar
Berlin,Heidelberqg,lew York

[4] Langmaack, H., "On correct procedure parameter transmission
in higher programming languages"”, Acta Informatica 2,
110-142, 1973

ﬁ] McGowan, C.L., "the "most recant" arror =z its causes and
correcclon”, in Proceadings of an ACM conference on proving
asgsertions about programs, SIGPLAN Notices, Vol. 7, Number 1,
1972

&) wWagner, P.., "Threa computer cultures - computar technology.
computar mathematiecs and computer science®, Advances in
Computers 10, 7=78, 1970

i

(7] wegner, P., Programming languages, information structures,
and machine organization, McGraw-Hill, New York, St. Louls,
San Franciseo, Teoronteo, London, Sydney, 1968

	img-Z09162817-0001-01
	img-Z09162817-0001-02
	img-Z09162817-0001-03
	img-Z09162817-0001-04
	img-Z09162817-0001-05
	img-Z09162817-0001-06
	img-Z09162817-0001-07
	img-Z09162817-0001-08
	img-Z09162817-0001-09
	img-Z09162817-0001-10
	img-Z09162817-0001-11
	img-Z09162817-0001-12
	img-Z09162817-0001-13
	img-Z09162817-0001-14
	img-Z09162817-0001-15
	img-Z09162817-0001-16
	img-Z09162817-0001-17
	img-Z09162817-0001-18
	img-Z09162817-0001-19
	img-Z09162817-0001-20

