
TOP DOWN PARSING OF 

MACRO GRAMMARS 

(Preliminary Report) 

by 

Manfred Heydthausen und Kurt Mehlhorn 

Fachbereich 10 -

Angewandte Mathematik 

und Informatik der 

Universitat des Saarlandes 

0-6600 SaarbrUcken 

Marz 1976 

A 76/3 



- 1 -

Recursive descent is for its ease of description and for 

its transparency one of the popular parsing methods [Gries, 

Knuth]. The class of languages, for which recursive descent 

works as a parsing method, is known as the LL-languages; 

their properties were studied by Lewis & Stearns, Rosen

kranz & Stearns and many others (see [Aho & Ullman] for 

complete references). 

In the late 60's several extensions of context-free languages 

were proposed in order to cope with the non context-free 

features of programming languages (e.g. applied and defining 

occurences of identifiers). Two remarkable examples are the 

macro languages of Fischer [Fischer] and the indexed languages 

of Aho [Aho 68]. Because of the lack of efficient parsing 

methods for these classes of grammars, they were never used in 

actual programming language design. 

WeiB [WeiB] proposed a top down parsing scheme for indexed 

languages. He int~oduced the notion of indexed LL grammars 

and showed that £-free indexed LL grammars can be parsed 

efficiently (time 0(n2». His work was the starting point for 

this paper. 

In section I we introduce macro grammars and formulate the 

LL property for macro grammars. In section II we give first 

evidence for the power of MLL languages: every deterministic 

context-free language is generated by an MLL grammar. In 

section III we show that transformation to standard form can 

be done whilst preserving the LL property. In section IV we 

show that it is decidable whether an arbitrary macro-grammar 

is MLL(k) for a fixed k. Our decision procedure has time com-
(1+£)n2 Jl+£)n plexi ty 0 (2 ) and space complexity 0 (L:' ) for some 

£ > 0 where n is the size of the grammar. We also show that 

n 2-£ 
c (n ) for some constant c > 1 is a lower bound for the 

time (space) complexity of MLL(l) testing. In section V we 



- 2 -

review WeiS's definition of indexed LL grammars, show that 

it is far too restrictive and then give a new (more general) 

definition for ILL grammars. Then we show the equivalence 

of MLL and ILL languages. In section VI we give an automata

theoretic characterization of the class of MLL languages 

and show that MLL languages can be parsed in time O(n2 ) and 

space O(n) where n is the length of the input. Finally we 

give some examples of MLL grammars. 



- 3 -

I. Macro grammars, LL property 
============================== 

A macro grammar [Fischer 1 is a 6-tuple (I:, 'F, V, !}, S, P) 

where: 

I: is a finite set of terminal symbols; 

~ is a finite set of non-terminal or function symbols; 

1Iis a finite set of argument or variable symbols, 

~ is a function from'F into nonnegative integers 

(g(F) is the number of arguments which F takes); 

S E F is the start symbol, f(S) = 0; 

P is a finite set of productions of the form 

F(xl ,·.· ,xS'(F» + T where F E '7, xl'.·. ,Xg(F) are 

distinct members of -U, and T is a term over 

I: , (xl'··· 'XS'(F)} ,':Jf, J . 

The set of terms over I:, 1}, 1 'f is defined inductively, 

a) E is a term, 

a is a term for every a E I:-

X is a term for every x E V. 

b) if Tl and T2 are terms then T
l

·T
2 is a term 

c) if F E1 and Tl,···,TS'(F) are terms, then F (°1 , ••• ,OJ (F» 

is a term. 

We consider macro grammars with the outside-in (01) mode of 

derivation [Fischer, Nivatl, i.e. only top-level occurrences 

of function symbols can be rewritten at every step. Instead of 

giving a formal definition of this mode of derivation, we 

give an example. 

S + F(E,d 
F(x,y) + A F (xB,yC) 
F(x,y) + xy 
A + II. 
B + b 
C + c 



- 4 -

F is a function symbol of arity 2 and S,A,B,C are function 

symbols of arity O. A sample derivation is 

S + P(E,E) + A F(B,C) + A A 
J, 

a F(B,C) AA 

L 

F(BB,CC) 

Bi cc 
,l, 

Note that we had the choice of rewriting either A or F 

in the sentential form A F(B,C) . We could not have rewritten 

B or C since they do occur at the top-level but rather within 

a parameter list. Rewriting A in A F(B,C) corresponds to a 

left-most derivation. 

The macro grammar given above suggests a top-down parsing 

algorithm (recursive descent) for the language {anbncn ; ~O} 

procedure S; call F(E,E) end; 

procedure F(x,y); 

begin ~ next-symbol in 

a: call A; call F (xB,yC); 

b, eof: write xy as T1 'T 2 ••• Tk 

where Ti is a term starting with a function 

symbol; 

for i from 1 to k do call Ti ; 

c: Error 

procedure A; 

• • 

begin case next-symbol in 

end· --' 

a: advance reading head by one and read the 

next symbol; 

b,c: Error 



- 5 -

The parse is performed in a single left to right scan 

of the input string. Next-symbol always contains the 

symbol of the input string which is presently scanned. 

(end-of-file (eof) designates the end of the input string). 

Within each procedure we branch on the symbol under the 

reading head and call the appropiate production. 

This strategy is possible whenever the decision between the 

different alternatives for a function symbol can be made on 

the bases of knowing the next (the next k for some fixed k) 

input symbol. This leads to the following definition. 

Definition: 

a) Let r = F(xl, .•• ,xg(F)) + T be a rule of a macro-grammar 

and let k be an integer. Then 

Firstk (r) = {u; s 

T T 
W T [ I I 3 (F) I 1 T' 

xl'···' x~(F) 

* iiti w u v ; w, u , VEL * , T' , T I ' ••• , T f (F) are 

terms, I u I = k or I u I < k and v = E } 

TI Tg (F) 
T[ Ix , ... , I 1 is the term obtained by replacing 

I x f (F) 

xi by T i' lSi S S'(F) , in T. 

b) A macro-grammar has the LL(k) property if for every pair 

r l ,r2 of distinct rules having the same left hand side: 

In this case we will say that the grammar is MLL(k) 

(is a MLL(k) grammar). 

Our example grammar is MLL(I). 



- 6 -

II. The power of MLL grammars 
============================= 

In this section we show that MLL-grammars generate a 

proper superset of the deterministic context-free 

languages. 

Thm. 1: Given any deterministic pushdown automaton A, 

we can find an equivalent MLL grammar G, i.e. L(A)~ = L(G), 

where ~ is the end marker. 

Proof: Let A = (S, 1: ,-p,qo,Zo,F) be a deterministic push

down automaton (accepting by final state). S = {qo'··· ,qn) 

is the set of states, 1: the input alphabet, T' the stack 

alphabet, qo the start state, Zo the symbol initially placed 

at the bottom of the pushdown store and F is the set of final 

states. We may assume w.l.o.g. that A writes at most two 

symbols onto the stack in a single move. 

The macro grammar G has function symbols Sl( l' V {START] ; 

START has arity 0, all other function symbols have arity lsI. 
The rules are: 

(1 ) START ... [qo' Zol ( E , £ I • •• I '-l \ • 
lSI-times 

(2 ) for a E 1: U fd and <5 (q,a,A) = (qi' £ ) 

[q ,AI (xo'···'xn ) ... aXi 

(3 ) for a E 1: U t£j and <5 (q,a,A) = (qi ,B) 

[ q,Al (xo ' •.• , xn ) ... a[qi,Bl (x , .• • ,x ) 
o n 

(4 ) for a E 1: U t £! and <5 (q,a,A) = (qi,BC) 

[q,AI (xo' ••• 'xn ) ... 



- 7 -

(5) for all q E F and A E ~ 

[q,A](XO""'Xn ) ... -i 

The correctness of the construction follows from the 

following claim which is proved by induction on the 

length of the computation (derivation). 

Claim: Let x I' ••• ,xn E L, Z 0' Z I ' ... ,Z j E -r and q E S. 

Then 

(qo,xl •.• xn'Zo) f----!. (q, E, Zj ••• Zl) 

iff 
* START'" xl'" xn[q,Zj] (expansion of Zj_l ••. Zl) 

where 

expansion of E=(E,E, ••• ,e:) 
I • 

lSi-times 
and 

expansion of Za =[qo'Z] (expansion of a, .•• ,[qn,z]exp. of a ) 

The macro grammar G is MLL (I) since A is deterministic. 

Corollary: The class of MLL(l) languages properly contains 

the deterministic context-free languages. 



- 8 -

III. Transformation to Standard Form 
==================================== 

A macro grammar is in standard form if every one of its 

rules is in one of the following four forms 

with n,m~ 0 

(2 ) F(xl,···,xn ) ... xl X , n ~ 0, n 

( 3) F(xl,···,xn ) ... xi n ~ 0, I :S i :S n, , 

(4 ) F(xl ,· · · ,xn ) ... a for a E r u {d, n ~ 0 

Fischer showed that every macro grammar has an equivalent 

standard form grammar. We observe that this transformation 

preserves the MLL(k) property for every k. 

In the sequel we will frequently talk about the size of a 

grammar. Since a listing of the productions of a grammar is 

sufficient to infer all information needed to define a grammar, 

we define the total number of symbols in the productions of G 

to be the size of G (notation: size(G)). The maximal rank of a 

any function symbol in G is denoted by max-rank(G). f(G) de

notes the number of function symbols of G and p(G) the number 

of productions of G. 

Thm.: Given any MLL(k) grammar G, we can find an equivalent 

standard form MLL(k) grammar G' with f(G') :S size(G), p( G'):S 
size(G). size(G') :S o (max-rank (G) ·size(G)) and 

max-rank(G') :S max-rank(G). 

Proof: (sketch) 

The transformation is done in two steps. In step I we add a 

new O-ary function symbol A for every a E r U {g} , add the 

rules A ... a and replace all occurences of terminal symbols 

in the RHS of productions by their respective nonterminal. 



- 9 -

This leaves us with rules 

, n :2: 0 

and 
F (x 1 ' •.. , Xn) + a 

where T is a term over ~, xl"",xn 
and a E E U {£}. In step 2 we break up the terms on 

the right hand sides by the following process. 

Let F(Xl, .•• ,xn ) + T be a production being not in standard 

form. Then T = Tl •.• Tk for some k > 0, where Ti = F i ( 

or Ti = Xj for some j. 

Case 1: k = 1: Then T = G(Ti, ••• ,T'm) for some m. We delete 

F( ) + T from the set of productions and add F(Xl,···,xn )+ 

G(H I (xl"" ,xn ),··· ,Hm (xl"" ,xn » and Hi (xl"" ,xn ) + T:i. 

where the Hi's are new function symbols. 

Case 2: k > 1: Then T= Tl • • • Tk • We remove F(xl, ••• ,xn ) + T 

from the set of productions and add F(X1 , ••• ,xn ) + 

G(Hl(xl,···,xn),··· , Hk(xl,···,xn» and G(xl,···,xn ) + xl xn 

and Hi (x1 , ••• , xn ) + Ti where G and Hi are new function 

symbols (1 sis k). 

We iterate the process described above until all rules are 

in standard form. Single rules of G correspond to packages 

of rules of G'. The derivations according to G and G' are in 

a 1-1 correspondence. Hence the MLL(k) property is preserved. 

Example: We transform our example grammar from section 1 into 

standard form. The rules S + F(£,£) and F(x,y) + AF(xB,yC) 

are not in standard form. The first rule is transformed into 

S + F(E,E) and E + £ in step (1) and the second rule is 

transformed in step (2) into 



- 10 -

(1) F (X,y) + Cone (HI (x,y) ,H2 (x,y» 

(2) HI (x,y) + A 

(3) H2 (X,y) + F(XB,yC) 

(4) Cone(x,y) + xy 

Rules (1), (2) and (4) are in standard form, rule (3) is 

transformed into 

(S) H2 (x,y) + F (H4 (x,y), HS (x,y» 

(6) H4 (x,y) + xB 

(7) HS (x,y) + yC 

Then (6) is transformed into 

(S) H4 (x,y) + Cone (H6 (x,y) ,H7 (x,y» 

(9) H6 (x,y) + x 

(10) H7 (x,y) + B 

and (7) is transformed analogously. We end up with the 

following standard form grammar: 
S + F(E,E) 
E + E 

F(x,y) + Cone (HI (x,y), H2 (x,y» I xy 

HI (x,y) + A 

H2 (X,y) + F(H4 (x,y) ,HS (x,y» 

H4 (x,y) + Cone(H6(x,y), 

H6 (X,y) + x 

H7 (x,y) + B 

HS(x,y) + Cone(HS(x,y) , 

HS (x,y) + Y 

H9 (x,y) + C 

Cone(x,y) + x·y 

A + a 

B + b 

C + e 

H7 (x,y» 

Hg (x,y» 



- 11 -

IV. Testing for the LL,k) property 
================================== 

In this section we will show that it is decidable if 

an arbitrary macro grammar is MLL(k). We assume w.l.o.g. 

that all macro grammars are in standard form. 

Given a macro grammar G (in standard form) and a rule 

r = F(X1 , ••• ,xn ) + T of this grammar we want to compute 

Firstk(r). We proceed in two steps : 

(1) Let E be the terminal alphabet of G. Then the 

language Lr over E U {a; a E E} is a macro language where 

(2) For any x E E* ; 

if Ixl < k then x E Firstk(r) iff (Lr n E* R) • ~ 

if Ixl = k then x E Firstk(r) iff (LrnE* x f*) • ~ 

Since the class of macro languages is closed under inter

section with a regular set and their emptiness problem is 

decidable [Fischer) this implies the decidability of the 

MLL(k) property. ~ischer showed the decidability of the 

emptiness problem by reducing it to the emptiness problem 

for indexed languages and appealing to a result of Aho. 

We give a direct proof here; this will provide us with 

a tighter time/bound. 



- 12 -

Lemma 1: Given a macro grammar G and a production r, 

we can find a macro grammar Gr generating Lr with 

max-rank (Gr ) ~ 3·max-rank(G) , size(Gr ) ~ (3+max-rank(G)) 

size(G), f(Gr ) ~ 3·f(G) and p(Gr ) ~ (3+max-rank(G)) • p(G). 

Proof: For every function symbol F in G there are function 

symbols FL , FL and pffiixed in Gr having arity S(F), ~(F) 

and 3·~(F) respectively. For every rule in G the following 

rules are in Gr : 

(1) if the rule is of the form F(X l ,··· ,xn ) ~ 

H(Hl(xl,···,xn ) , •.. ,Hk(xl, ••• ,xn )) then 

FL( HL(HL( L 
) ) ~ ) , ••• ,Hk ( 1 

FI: ( HI: (Hf( 1: 
) ) ~ ), ..• ,H

k
( 

1 

Fmixed( L f mixed 1: f xmixed) 
Xl' Xl' xl' ... , xn , x n ' n 

(2) if the rule is of the form F(xl, ..• ,xn ) ~ Xl ••• xn then 

1: 
F (x 1 ' ••• ,xn ) ~ Xl xn 

f 
F (Xl'··· ,Xn ) ~ Xl xn 

-mixed L I: mixed L 
t' (xI,xl,xl , ..• ) ~ Xl 

for every i with 1 ~ i ~ n 

(3) if the rule is of the form F(xl, •.• ,xn ) ~ Xi then 

FL (xl' ..• ,xn ) ~ Xi 

Ff(xl,···,Xn ) ~ Xi 

mixed 
) ~ Xi 



- 13 -

(4) if the rule is of the form F(X1 , .•• ,xn ) + a for 

a€ I: U{ El then 

FI: (x 1 ' •.• , x n ) .. a 

(5) and finally if F(X1 , •.• ,xn ) + T is the rule r 

mixed I: r mixed ) + T F (xI,XI,xI , ••• 

we add 

-
where T is obtained from T by adding the superscript I: to all 

mixed 
symbols. The start symbol of G' is S • 

Note that only function symbols of the form FI: and FI have 

terminal rules and that rule (5) is the only rule with a function 

symbol Fmixed on the left hand side and no '"mixed'" symbol on 

the right hand side. Therefore rule (5) has to be used to get 

rid off the mixed function symbols. Keeping this in mind the 

reader should have no difficulties in verifying the assertions 

made in the theorem. 

Lemma 2: Given any macro grammar G 

and a deterministic finite automaton A with s states, 

we can find a macro grammar G' with L(G') = L(G) n L(A) and 

max-rank(G') = s2 max-rank (G) , 

size(G') S smax-rank(G) .size(G) ,f(G') s s2f(G) and 

p(G) S smax-rank(G).p(G) 

Proof: Similar to the proof ot theorem 1. 

Lemma 3: Given any macro grammar G, we can 

decide L(G) + ~ in time 
2 

O(f(G)·p(G)·size(G)·2(max-rank(G) » and space O(f(G) .2max-rank(G» 

Proof: We proceed in three steps 

(1) Replace all rules of the form F(xl, ••• ,x
n

) .. a 

for a € I: by F(xI, ••• ,xn ) .. E. Then L(G) + ~ 
iff the new grammar generates the empty string. 

Step (1) does neither increase the maximal rank 

nor the size. 

(2) Eliminiate E-rules by the following process: 

while there is a rule of the form F(x I , ..• ,xn ) + E 

with F not being the start symbol 

do apply the rule F(xl, .•. ,Xn)+E to the right-hand 

sides of all productions in G (even if the occurrence 



- 14 -

of F is not at the top-level) and delete 

all rules having F( ) as their left-hand side. 

We are now left with a grammar G' all of whose rules 

are of the form: 

S -+ e , where S is the start symbol; 

F(xl,···,xn ) -+ H(Tl' ••• ,Tk ) with Ti = e or Ti = Hi(xl, ••• ,xn ) 

F(xl,· .. ,xn ) -+xl .•• xn 

F(xl ,· .. ,xn ) -+ xi 

Apparently e E L(G') iff e E L(G). Step (2) does neither 

increase maximal rank nor size . If S -+ e is a rule of G' 

then L(G') + ¢ . Otherwise we go to step (3). 

(3) At this point an example might be useful. We apply step (1) 

and (Z) to the standard form grammar of section 3. In 

step (1) we replace the rules A -+ a, B -+ band C -+ c 

by A -+ e, B -+ e, C -+ e, and in step (Z) we get the rules 

S -+ F(e,E) 

F(x,y) -+ Conc(e,Hz(x,y» 

F(x,y) -+ xy 

HZ (x,y) -+ F (H4 (x,y) ,HS (x,y» 

H4 (X,y) -+ Conc(H6 (x,y) ,c) 

H6 (x,y) -+ x 

HS(X'y) -+ Conc(Ha(x,y) ,c) 

Ha(X,y) -+ y 

Conc(x,y) -+ x·y 

• A sample derivation S -+ e is: 

In order to detect derivations of this form we have 

to determine for every function symbol F(x l , ••• ,xn ) 

• subsets J £ { 1, ••• ,n} with F (xl"" ,xn ) -+ XiI 

and J = U { 1z} . To do so we consider the pairs 

all 



- 15 -

(F.J) for F E:;F and J c: {1 •••.• g(F)}. We mark 

these pairs in an iterative process.: The pair (F.J) 

* will be marked if and only if F(x1 •••.• x f (F)) ~ 

xi xi with J = U { 1z.} ; then £ E: L (G) iff (5.111) 
1 m 

is marked upon termination of the algorithm. 

for all rules of the form F( ) + T where T does not 

contain any function symbol 

do mark (F .J) where J = U { i}; 

XiE:T 

while there is a production F(x1 .···.xn ) + Ho (T 1 ••• • .T k ) with 

(1) (Ho.Jo ) is marked. 

(2) J = U J i where 
ie:Jo 

either Ti = Hi (x1 ••••• x n ) and (Hi.J i ) is marked 

or and J i = III 

(3) (F.J) is unmarked 

do mark (F.J). 

Claim: (F.J) is marked during this process iff 

Proof: the proof is similar to the proof of the corresponding 

claim in [Aho 68] and therefore left to the reader. 

There are ~ 2max-rank(G).f(G) pairs (F.J). Since every 

execution of the body of the while-loop marks one additional 

pair the body is executed at most 2max-rank(G) 'f(G) times. 

Each execution of the body requires us to look at every rule; 

for every rule we have to look at the 

~(2max-rank(G)) (2max-rank(G))max-rank(G) possibilities of 



- 16 -

combining the Ji'S, 1 SiS f (F). Each possibility may 

be examined in time O(size(G». Hence the running time 

of the algorithm is bounded by 

o (2max-rank (G) .f(G).2max-rank(G) (max-rank(G)+1)'p(G) .size(c» 
2 

= O(f(G) 'p(G) size(G) .2 (max-rank (G)+1) ) 

In order to execute the algorithm in the form given above 

we need a bit vector of size 2max-rank(G) ·f(G) in order to 

store the mark bits. Hence the space requirement is 

O(f(G)'2max-rank(G». 

We execute the algorithm on our example grammar. 

In the initialisation phase the pairs (F,{ 1,2}l, (H6 ,{ 1}) 

(HS{2}) and (Conc,{ 1,2}) are marked. During execution of 

the while-loop the following pairs are labelled in some 

order: (5,11'), (H4 ,{ 1}), (H
S

'{ 2}), (H 2 ,{ 1,2}). 

Thm.: Given any macro grammar G and an integer k, we can 

test if G is MLL(k) in time O(I~lk'2(1+e)k4,siZe2(G1 and 

space O(2(1+€)k
2

'siZe(G» for some c > O. 

Proof: We compute Firstk(r) for every rule r of G using the 

strategy described at the beginning of the section. 

for every rule r of G do 

beg construct a grammar for Lr; 

end 

for every x E ~. with Ix I S k do 

if Ixl < k then construct a macro grammar 

and determine if this 

language is empty; 

if Ixl = k then construct a macro-grammar for 

Lr n ~. x ~. 
is empty; 

and determine if this language 



- 17 -

A finite automaton for the language r * x (r* x r*) has 

Ixl states. Hence we infer the following time and space 

bounds from our preceding lemmas. 

4 2 
time: o (k2+6max-rank (G) .lrl k .2k ·max-rank (G).f(G).p(G)2. 

size(G) • max-rank (G) 2) 

or easier to remember 

for some E > O. 

Corollary: Given an 

test if G is MLL(l) 

arbitrary macro grammar G , we 
in time 0(2(1+E) size2 (G)) for 

can 

some E >0. 

The running time of our decision procedure is exponential. 

We will show next that this inefficiency is inherent to our 

problem. 

Thm.: Every algorithm which tests if an arbitrary macro grammar 

is MLL(l) takes time csize(G) for some constant c and space 
2-E 

size(G) for every E > 0 infinitely often. 

Proof: We use the following fact from [Hunt & Rosenkrantz]. 

Fact: Every algorithm which decides L(G) = ~ for arbitrary macro

grammars G takes time csize(G) for some constant c and space 
2-E size(G) for every E > 0 infinitely often. 

We reduce the emptiness problem to MLL(l) testing. The 

following trivial macro grammar generates r* 

S->ElaslbSI··· o 0 0 



- 18 -

Let G = (I:,~, V, ~ , 5, P) be a macro grammar with 

50' 5' f Y . Consider 

G' = ( I:, ~ ' , 1f, g', 5', P') with :t' = 'f u t 50' 5'} 

fS' (Fo) 
~ ' (El ) = L 

if FE r 

if F = 50 or F = 5' 

Then G' is MLL(I) if and only if L(G) = ¢. 
Furthermore size (G') = size(G) + O(II:I ) = O(size(G». 

5ince L(G) = ¢ may be tested by constructing G' and 

testing it for the MLL(I) property, MLL(I) testing takes 

time csize(G) and space size(G)2-£ for some c and every 

£ > 0 infinitely often . 



- 19 -

V. Macro Grammars and Indexed Grammars 
====================================== 

WeiB [WeiB) introduced the notion of indexed LL(k) 

grammars. We give his definition for k = 1. 

An indexed grammar [Aho 68) G = (V,F,E,S,P) is ILL(l) 

if for every pair of distinct rules r 1 ,r2 having the 

same left hand side the sets First(r) are disjoint, 

where 

1) if A + a E f is an index production 

First (A + a) = {u; u E E*, l u l :s; 1: 

3 0 , y' E (VUFUE)*: 

(a) l (u) < 1 1 y' = €o 

(b) Afo -a o * -Uy' } 

and 

2) if A + a E P then 

First (A .. a) = { u;u E E*, lu i :s; 1 : 

3 0 , y' E (VUFUE)* 

(a) l (u) < 1 t y' = €o 

* (b) Ao - a o - Uy l } 

The following context-free grammar is LL(I), 

cf.[ Aho & Ullman), Thm 5 .2 • 

S + AB 

B + b 

A + €Ola 

However, if viewed as an indexed grammar, this grammar is not 

ILL(I). Taking 0= A we get AA + €OA + a and hence a E First(A+ €O ) . 

Obviously a E First(A ~ a) and therefore First(A + €O) n 

First(A ~ a) + ~. 



- 20 -

Observation: WeiS's definition of ILL(k) grammars is not 

a generalization of context-free LL(k) grammars. 

The £-rule A + £ was essential for our example; 

indeed, LL(k) grammars without £-rules are ILL(k)-

grammars in the sense of WeiS. A more serious flaw of the 

definition is exposed by the following £-free indexed 

grammars which is apparently top down parsable with 

look-ahead 1. G = ({ A,S} ,r f,g}. r a}, S, P) where P contains 

the following rules 

S + AflA 

A + a E f 

A + a E g 

This grammar allows exactly one derivation: 

s ~ Af .. a, 

the production S + A is useless. However, taking 0 = g we 

obtain Sg 4 Ag ~ a and therefore a E; First (S ~ A) . Thus 

a f First(S~A) n First(S ~ Af) and our grammar is not 

ILL(l) in the sense of WeiS. 

Conclusion: WeiS's definition of indexed LL(k) grammars 

does not capture the essence of top-down parsing (without 

back-up) • 

Comparing his definition with the definition given in 

(AhO & Ullman] for the context-free case we see what went 

wrong. The sentential form Sg should be derivable 

from the start symbol. This leads to the following definition 

which is a proper generalization of the context-free case. 

Definition : Let G = (V,F,r,S,p) be an indexed grammar. 

Let r be any rule in P. 



- 21 -

a) if r = [A + Cl] E f is an index rule then 

Firstk(r) = {x E[*; 3u E [*,0 E (VUF)*, w E[* with 

* * ( 1 ) S + uAfo + UClO + u xw 

(2 ) Ixl < k .. w = c 

(3 ) Ixl s k 

if r = A + Cl E P then 

Firstk (r) = {x E[*; 3U E [*, 0 E (VUF )"', w E [* with 

(1) * UAO +UClO * S + + uxw 

(2 ) I xl < k~ W = E 

(3 ) Ix l s k } 

b) An indexed grammar is ILL(k) if for every pair r,r' of 

distinct rules having the same left hand side: 

In [Fischer] the (effective) equivalence of macro and 

indexed grammars was stated. We describe transformations 

which preserve the LL(k) property. 

Thm.: Given any MLL(k) grammar G, we can effectively find 

an equivalent ILL(k) grammar G' and vice versa. 

Proof: 

.. : We may assume w.l.o.g. that G = ([,~,V, J ,S,P) is in 

Standard Form. The indexed grammar G' has nonterminals 

~ and indices F = (< X 1 ' ••• ,X k >; Xi E '3' 

and k S max-rank(G')} 

and rules 



- 22 -

(2 ) F <Xl'··· ,Xn> - Xl ... Xn for all XiE ~, 1 S i s n, 

and F(x l ,··· ,xn ) - xl ... xn E P 

(3) F <Xl' ••• ,Xn> - Xi for all XjE 3", 1 S j S n, and 

F(xl,···,xn ) - Xi E p 

(4) F < Xl ' ••• , Xn> - a for all Xi E'3" and 

F(xl ,··· ,xn ) - a E P where a E l: U {d 

The proof of equivalence is straightforward. Because of 

the 1-1 correspondence of the derivations according to G 

and G', the LL(k) property carries over. 

~: We may assume w.l.o.g. that G' = (l:,V,F,S,P) is in 

reduced form, i.e. productions are of the form A ~ BC, 

A ~ a for a E l: U {d , A ~ Bf and Af ~ B. Let V =( Al ' ••• ,An}. 

The macro grammar G has function symbols V x (F U {dummy}) U 

{START} with g (START) = 0 and S'(F) = Ivi for all other 

function symbols. The rules are 

(1) START ~ [S,dummy] (£,£, ••• ,e:) 
J , 

lVI-times 

(2) [A, f] (xl' ••• ~ [B, f] (xl' ••• ) [C,f](xl ,··· 

for A ~ BC E P and every f E F U { dummy} 

(3 ) [A, f] (xl' ••. ~ a for A ~ a E P with a 

and every f E F U { dummy}. 

(4) [A,g] (xl' ••• 

for every g E F U {dummy} and A ~ Bf E P. 

(5) [A,f] (xl' •.• ) ~ Xi 

for every Af ~ B E P with B = Ai 

E l: U [lj 

Note the similarity of this construction and the construction in 

section 2. The correctness proof goes along the same lines. Because 

of the 1-1 correspondence between derivations according to G 

and G' the LL(k) property carries over. 



- 23 -

VI. MLL languages and restricted nested stack automata 
======================================================= 

In this section we give an "automata-theoretic" definition 

of ILL (and hence MLL) languages. In [Aho 69) Aho introduced 

one-way deterministic nested stack automata. The storage 

structure of such an automata is a nested stack. It operates 

in one of four modes: 

pushdowon mode: read and write at the top of one of the 

nested stacks 

stack reading mode: read and move up and down within a stack 

stack creating mode: create a new stack 

stack destruction mode: destroy an empty stack 

A downward reading nested stack automaton is a nesa 

with the following restriction placed on the behaviour 

in the stack reading mode. In the stack reading mode . a 

downward reading nesa can only move down. If it hits the 

bottom of the outermost stack in this mode then the machine 

is put in a special state and the storage tape head is 

placed at the top of the right-most stack. 

Thm.: A language L is ILL (and hence MLL) if and only if 

there is a I-way deterministic downward reading nesa 

accepting L. 

Proof: Inspect the equivalence proof of nesa and indexed 

grammars in [Aho 69) closely. 

We are now able to describe a parsing algorithm for MLL 

languages. WeiS showed that (his version of) E-free ILL 

grammars can be parsed in time O(n2 ). He constructs an 

equivalent nesa and computes its running time. This con

struction also works for our version of ILL grammars (not 

necessarily E-free). We obtain 



- 24 -

Thm.: Let L be a MLL language. Then there is a recognizer 

for L working in time O(n2 ) and space C(n). 

In section 2 we constructed an MLL grammar for every 

deterministic context-free language. The nesa corresponding 

to these grammars is essentially a deterministic pushdown 

automata and works in linear time. 

Open Problem: Find a class of MLL languages which properly 

includes the deterministic context-free languages but can 

still be parsed in linear time. 



- 25 -

VII. An Example 
=============== 

The following rules are part of the ALGOL 60 syntax 

for assignment statements. 

<assignment> - <Var> - <Expression> 

<Expression> - <Var> (<Var> + <Expression» 

<Var> AIBlcl ••• 

Some of the strings which can be derived from this grammar 

are not legal ALGOL 68 assignment statements: if the variable 

on the left hand side is of type integer then the expression 
on the right hand side should better yield a value of type 
integer. This restriction is part of the semantics of the 
assignment statement. 

In ALGOL W this restriction is made part of the syntax 

<assignment> - <integer assignment> 

<real assignment> 

<integer assignment> - <integer var> - <integer expr> 

<integer var> 

<real var> 

-
-

AlBic 

XIYIZ 

by explicitely listing a set of the ALGOL 60 rules 

for every type. In the presence of infinitely many modes the 

explicite listing does not suffice. In ALGOL 68 an implicite 

listing is achieved by means of two level grammars. The goal 
can also be reached using macro grammars. 

Suppose that we have the modes int, long int , long long int, ••• ; 

int means single precision, long int means double precision , ••• 

We also want to include a simple form of coercion: widening. 
A value of type long i int is also a value of type longi+kint 

for all k ~ O. The following macro grammar generates the set 
of legal assignment statements. 



- 26 -

<assignment> - F( int <var> , int ) 

F(x,y) - F( long x, Ay) 

Expression(y) - y<Var> 

A - long I £ 

x - Expression(y) 

(y(Var) + Expression(y» 

This granunar is not MLL(k) for any k due to the "left recursion" 

in the rules for F( ). However a trick similar to the one used 

in the context-free case will remove left recursion: 

<assignment> - G (£l 

G (y) - long G (Ay) int < var> - Exression (y) 

Expression (y) - y int < Var> I (y int < Var> + Expression (y» 

A - long I e: 



- 27 -

Bibliography 
============ 

Aho, A.V.[1968]. Indexed grammars - an extension of context

free grammars. J. ACM 15:4, 647-671. 

Aho, A.V.[1969]. Nested Stack Automata, JACM, 16:3, 

383 - 406 

Aho, A.V. & Ullman, J.D.£1972]. The Theory of Parsing, Trans

lation and Compiling, Prentice Hall, Series in Automatic 

Computation. 

Fischer, M., Grammars with Macro-Like Instructions, 9th SWAT 

conference, 1968. 

Gries, D., Compiler Construction for Digital Computers, 

Addison Wesley 

Knuth, D.E. [1967]. Top-down syntax analysis. Lecture Notes. 

International Summer School on Computer Programming 

Copenhagen, Denmark. 

Lewis, P.M.II, & Stearns, R.E. [1968]. Syntax directed 

transduction. J. ACM 15:3, 464-488. 

Nivat, M., On the Interpretation of Recursive Program Schemes, 

IRIA Rapport Laboria 84, 1974 

Rosenkrantz, D.J. & Stearns, R.E. [1970]. Properties of deter

ministic top-down grammars. Information and Control 17:3, 

226-256. 

WeiS, K., Deterrninistische indizierte Grammatiken, 2te 

Kolloquiurn tiber Automatentheorie und forrnale Sprachen, 

Kaiserslautern, 1975 


	A_1976_03_02-03_1heitscover
	A_1976_03_04
	A_1976_03_05
	A_1976_03_06
	A_1976_03_07
	A_1976_03_08
	A_1976_03_09
	A_1976_03_10
	A_1976_03_11
	A_1976_03_12
	A_1976_03_13
	A_1976_03_14
	A_1976_03_15
	A_1976_03_16
	A_1976_03_17
	A_1976_03_18
	A_1976_03_19
	A_1976_03_20
	A_1976_03_21
	A_1976_03_23
	A_1976_03_24
	A_1976_03_25
	A_1976_03_26
	A_1976_03_27
	A_1976_03_28
	A_1976_03_29
	A_1976_03_30
	A_1976_03_31



