
*

Binary Search Trees:

Average and worst Case Behavior*

Rainer Glittler, Kurt Mehlhorn, Wolfgang Schneider

Fachbereich 10 - Angewandte Mathematik und

Informatik der Universitat des Saarlandes

D-6600 Saarbrlicken

Abstract: We discuss several simple strategies

for constructing binary search trees. Upper and

lower bounds for the average and worst case

search time in trees constructed according to

these strategies are derived. Furthermore,

different implementations are discussed and

the results are applied to digital searching.

Key words: binary search, average behavior,

worst case behavior, digital searching

A preliminary version was presented at the

GI-6. Jahrestagung, Stuttgart, Sept. 1976

- 1 -

I. Introduction and Survey of Known Results
==

"One of the popular methods for retrieving information

by its 'name' is to store the names in a binary tree. We

are given n names B
1

,B
2

, ... ,B
n

and 2n+1 frequencies

S1 •.••• S • a •••.• a with ~ S . + ~a. = 1. Here S . is the non ~ J ~

frequency of encountering name B .• and a . is the frequency
~ J

of encountering a name which lies between Bj and Bj + 1 • a o and

a n have o bvio us interpretations" [Knuth 71]

We may always assume w.l.o.g. that Si + a i + Si+1 ~ 0

for all i. Otherwise. the i-th (or the (i+1)-th) key might

as well be removed.

A binary search tree T is a tree with n interior nodes (nodes

having two sons). which we denote by circles. and n+1 leaves.

which we denote by squares. The interior nodes are labelled

by the Bi in increasing order from left to right and the

leaves are labelled by the intervals (B j • Bj + 1) in increasing

order from left to right. Let b. be the distance of interior
~

node B. from the root and let a. be the distance of leaf
~ J

(B j .B j +1) from the root. To retrieve a name X. b i +1 comparisons

are needed if X = Bi and a j comparisons are required if Bj <X<Bj +1 .

Therefore we define the weighted path length of tree T as:

n n
p = ~ S. (b.+1) + ~

i=1 ~ ~ j=o

D.E. Knuth [Knuth 71] gives an algorithm for constructing an

optimum binary search tree. i.e. a tree with minimal weighted

path l,mgth. His algorithm has O(n2) time complexity and O(n 2)

space complexity . Hu and Tucker [Hu & Tucker] consider the

case that all names have frequency zero. i.e.

1 < i ~ n. They give an algorithm with O(nlogn)

for this case.

S. = 0 for
~

time complexity

- 2 -

Approximation algorithms were considered early in the

game [Bruno & Coffman, Walke r & Gotliebl .

Walker and Gotlieb consider the following rule of thumb:

RULE I (Weight Balancing): Choose the root so as to

equalize the weight of the left and right subtree as much

as possible, then proceed similarly on the subtrees.

The weight of a subtree is the sum o f the frequencies of all

nodes and leaves in this subtree. They describe an impleme ntation

of this rule with time complexity O(nlogn) and space complexity

O(n) and r eport that the rule tends to produce trees which are

within a few p e rcent of the o ptimum . (5 %).

In order to define rule I more formally we need some more

notation. For 1 2 i 2 j < n

w(i+1,i) = a i and

w(i,j) a. 1 + 8. + a . + ... + a. 1 + S · + a . .
1- 1 1 J- J J

w(i,j) is the weight of the tree with nodes B., ... ,B. and
1 J

l e a ves (B . 1,B.), . . . , (B.,B ' +1). Rule I chooses as the root
1- 1 J J

of the subtree with nod e s Bi, ... ,B j a node BK, i < k < j,

which minimizes

/w(i,k-1) - w(k+1,j)

Tie s are broken arbitrarily.

Recently several other rules of thumb were suggested.

RULE II (Min-Max) [Bayer , Schnorrl: Choose the root so as to

minimize the maximum of the weights of the left and right

subtree, then proceed similarly on the subtrees.

More formally, rule II chooses as the root of the subtree

with nodes Bi, ... ,B j a node Bk , i < k < j, which minimize s

max (w(i,k-1), w(k+1,j»

- 3 -

Again, ties are broken arbitrarily.

Example: Let n;4, ((Xo ' B1 , .. ·, B4 '(X4) ;

(1/6, 1/24, 0, 1/8, 0, 1/8, 1/8, 0, 5/12). The

Min-Max tree is

P
MM

; 2 ; 48/24

The weight balanced tree is

PWB 49/24

/24

Both rules always choose nodes as the root which are close

to the center of the distribution.

I
o ,;. 1

In our case the center of the distribution goes through the

leaf with weight (X3 ; 1/8. The weight of the left subtree

of the Min-Max tree is 1/6 + 1/24 + 1/8 ; 1/3. The center

of the sub-distribution (1 /6 , 1/2 4, 0 1/8 , 0) ~trictlY
speaking this is not a distribution, since frequencies are

not normalized] runs between the leaf with weight (xo ; 1 /6

and the node with weight B1 ; 1/24. Therefore the node with

- 4 -

weight 1/ 24 is chosen as the root of the left subtree of

the Min-Max tree.

We could instead look for a node, which is close to 1/4 of the

entire distribution as root of the left subtree (close to

3/ 4 for the right subtre e), close to 1/ 8, 3/ 8 (5 / 8, 7/ 8) in

the subtre es of the next level and so on. In our example

this strategy would choose the node with weight e 2 = 1/ 8

as the root of the left subtree.

1 8 5 12
PBI = 50/24

1 6 o

This strategy may be formalized as

RULE III (BI-section) [Mehlhorn 77a); we refer the reader to

[Mehlhorn 77a) for an exact definition.

The first theoretical results about the behavior of binary

search trees were obtained by Gilbert and Moore [Gilbert &

Moore). They consider the case that the weight is concentrated

in the leaves, i.e. e i = 0 for all i, and showed that in this

case H < Popt ~ H+2 where H = rei· log 1/ei +ru j log 1/u j

is the entropy of the frequency distribution.

Later Rissanen [Rissanen) showed PMM ~ H+2 and Horibe [Horibe)

showed PMM < H+2-(n+3).u . , where
- ID1n

min Cl ••

O,,-j~n J

The general case was first considered by Mehlhorn [Mehlhorn 75)

who proved 1/ 10g3 • H 2 P
opt

2 PWB < 1.44 H+2 . Bayer [Bayer)

improved upon this. The best bounds presently known are:

1/1og3 • H < P t - op

max {(H-dr e .)/log(2+2-d);d EIR} < P
1 opt

[Mehlhorn 75)

[Bayer)

[Bayer)

- 5 -

P
MM

< H + 1 + La j
[Bayer J

PBI < LS.
1

log
L

1 I S. +
~

La .
J cog 1 / a jj

+ 1 + La j

< H + + La. [Mehlhorn 77a J
J

All bounds are achievable for a wide range of frequency

distributions.

These results answer two important questions:

1) They give an a-priori test for the performance

of binary search trees, i.e. they enclose the average

path length in a narrow interval.

2) They prove that the approximation rules described above

always produce nearly optimal search trees.

The importance of the approximation rules was increased

by a recent result of Fredman [Fredman, Mehlhorn 77b J.

He describes an implementation of the Min-Max, Weight-Ba

lancing and Bisection Rule which runs in time O(n) .

In sections II and III we study the Worst Case Behavior of

search trees. We try to relate frequency and search time

for every single node and leaf. In section II we derive

upper bounds and in section III we derive lower bounds.

In section IV we propose another construction rule: the

e ntropy rule. Its average and worst case behaviour are

studied. Finally, in section V we apply our results to

digital searching.

- 6 -

II. Worst Case Behavior: Upper Bounds

In the preceding section we surveyed results about the

average case behavior of optimal and nearly optimal

binary search trees. We pose the following question:

What can we say about the time needed for a single

search (worst case behavior) ?

We give a simple example of a tree performing well on

the average, but exhibiting extremely bad worst case

behavior.

Consider k
n = 2 -1, Si = 0 for all i,

-k u 1 = ... = a n = £ , a n+ 1 = ... =a 2n = 2 - E where E is

a small positive number. Then H(a , ... , a) ~ log(n+1). o n

The following tree

/
/

I
/

I

a
n

_
1

a
n

_
2

complete binary
tree with n+1
leaves of depth k

has weighted path l ength

k+n
k + E £ . i + 2-k . (k+n)

i=k+1

- 7 -

% log(n+ 1) + 1 . The results of Gilbert and Moore tell us

that Popt ~ H, i.e. the tree is nearly optimal. However, a

search ending in the left-most leaf takes n+logn steps, i. e .

there is an exponential discrepancy between average and worst

case behaviour: log n vs. n+log n.

This phenomenon does not occur in the trees constructed

according to the r u l es decribed above.

Theorem 1 (Upper Bounds for the worst Case Behaviour of Binary

Search Trees)

Let (a , S1' ... ' S , a) be a frequency distribution and let o n n

WB MM Bl b. (b. ,b.) be the depth of node B. in the tree constructed
~ 1 1 1

from that distribution according

bisection) rule. Let furthermore

to the weight balancing (min-max,

bOPT be the depth of node
1.

B. in an optimal tree (~ smallest weighted path length).
1.

WB MM Bl OPT . a. , a. ,a. and a . are defl.ned analogously. Let
J J J J

o = (1 + 15)/2 and ~ = 2/(V17 -3). Then (log 0) -1 ~ 1.44

and (log ~)-1 % 1.20

Case 1: Ea
j

= 0, i.e. all a. are 0.
J

(1. 1) b ~B < (log ~) -1 log 1/ S i + 0.41 2

(1 • 2) bMM < log 1/S i 1.

b
Bl

< log 1/Si 1.
(1 • 3)

bOPT < open, but
1.

compare the remark following the proof. (1 • 4)

Case 2: LSi = 0, i. e. all Si are °
(2 . 1) WB (log 0) -1 log 1/a. 2 a. < +

J J

2. 2) MM < (log 0) -1 log 1/a j
+ 2 a.

J

- 8 -

(2.3) BI < log 1/a j
+ 2 a .

J

(2 . 4) OPT < (log 6) -1 log 1/a j
+ 2 a.

J

Case 3: :!:a.
J
~ 0, LS . > 0

1. -

(3 . 1) b
WB

< (log 6)-1 log 1/Si
+0.157

1.

WB < (log 6) - 1 log 1/a
j

+ 2 a.
J

(3.2) bMM < (log 6) - 1 log 1/ai 1.

MM < (log 6) - 1 log 1/a j
+ 2

a .
J

(3. 3) bBI < log 1/S i 1.

BI log 1/a j
+ 2 a . <

J

(3.4) bOPT < (log 6) - 1 log 1/S i 1.

OPT
< (log 6)-1 log 1/a j + 2 a .

J

All bounds are achievable.

Proof : The bisection rule (cases (1.3) ,(2 . 3) , (3.3)) was

considered elsewhere [Mehlhorn 77al.

For this proof it is convenient to work with unnormalized

frequencies. Let Pi ' 1 2 i 2 n, and qj ' O 2 j 2 n, be non-

negative real numbers . We refer to Pi as the weight of node

Bi and to qj as the weight of leaf (B j ,B j + 1). By normalizing

we obtain a frequency distribution

and

where W =

- 9 -

Case 1.1 : We want to compute the minimal weight of a tree

which is constructed according to the weight balancing

rule and features a node v of weight 1 at depth k. Let

T~B be such a tree of minimal weight and let Wk be its

weight. c
k

•
• •

Consider the path form from node v with weight 1 to the root .

Let c i be the weight of the i - th node on this path (1 2 i < k)

and let y. be the weight of that subtree of the node with
1

weight c i which does not contain v . Let a (b) be the weight

of the left (right) subtree of node v and let Yo = a+b, Co = 1.

Lemma A: For i > 1

i - 1
(A) 2Yi + c. > 2 L (c j +Yj) - max (c.,y .)

1 j=O 02j2i - 1 J J

Proof : Consider the subtree with root ~

- 10 -

We may assume w.l . o.g. that v lies in the right subtree.

Let a b e the weight of the l e ft-most node of p o sitive we ight

in the right subtree and let S b e the we ight of the remainder

of this subtree .

Then

(c. + y.)
J J

Since the node with weight a was not chosen as the root

and hence

Since

c. -
1.

leads to the contradiction a < - c . < 0
1.

we have

or

2y l.' + C . > 2(a + S) - a
1. -

The node a is either one of the c . 's or it is an element
J

of some Yj. Hence

2Yi + c i > (c
i

+ Y
i

) - max (c.,y.)
0~j2.i-1 J J

We want to solve the set A of recurre nce relations.Let

(B)
° 0

= 1

° 1 = ° 0 - 1/2 ° 0 = 1/ 2

° 2 = ° 0 + ° 1 - 1/ 2 ° 0

i-1
0. = L 0 . - ° i_1 / 2 for i > 3 l.

j=O J

c

- 11 -

Lenuna C: For i > 0

Proof: (by induction on i). The claim is obvious for i = O.

(Remember c O= 1). For i > 0:

where

Hence

Yi + c i > y. + c./2 . . - ~ ~

(A)

>

c£ + y£ = max
0~j~i-1

(c. +y .)
J J

> max
-0~j~i-1

i-1
L

j=O

O.
J

(0

i=l

= 00 i=2

O. 1 i>3
1-

Consider the following distribution of weights, n =

(D) P1 = 01 1/2

P3 = 00 = 1

P2i+l = O. for 2 < i < k
1 -

P2i = 0 for 1 < i < k

o

2k+1

then the following tree can be constructed by the weight

balancing rule.

1/2 1

1 = ° 2

~nOde v

- 12 -

Proof: (by induction on k). The claim is obvious for k=O,

k=l and k=2. Assume k > 2. The weight difference between

the left and right subtree of the tree drawn is

° -k

k-1
L

i=O
If one chooses the node with weight

k-1
Ok as the root then the difference is L 0i ~ ok ~ 0k_1/2.

i=O

If one chooses the node with weight 0k_1 as the root then the
k-2

difference is ok - L 0i = 0k_1/2. Hence the tree drawn can
i=O

be constructed by the weight-balancing rule.

W =
K

k
L (c i + Yi) is the weight of T~B. From Lemma C we

i=O
k

infer W
k

> L
-i=O

Hence

W =
k

0. and from Lemma D we infer
1

k
L

i=O
0.

1

It remains to compute the Wk's.

o

Lemma E: The Wk's satisfy the following recurrence equation:

- 13 -

Wo :

W1
: 3/2

W2
: 5/2

Wk
: 3/2 W

k
_

1
+ 1/ 2 W

k
_

2 for k > 3.

Proof: simple calculation o

Let W(z): L wk·zk be the ge nerating function of the
k >O

sequence {Wk }k >O . The n

2 W(z). (1-3z / 2-z / 2) 2 1-z / 4

and hence

1 - z2 / 4 W (z) : _-'---'::.....L"":"" __

1-3z/ 2-z 2/ 2

The roots of the denominator a re

Z : (v'f7- 3) / 2
1 z2 : (-v'f7-3) / 2

the partial fraction e xpansion of W (z) is

W (z)
5'1 f2

: +--
z1- z z2- z

with

f1
:

-5+3v'f7

4v'f7

f2
:

5+3v'f7

4v'f7

Then using 1
1/z1 L (2..) i we get :

z -z z1 1 i>O

w
k

3 1 g2
:

k+1 + k+1
z1 z2

-(k+1) (f 1
k+1

: z1 +f2(z1 / z 2))

- 14 -

Node v of weight 1 has depth k in tree T~. The weight

of T~B is Wk and this is minimal. Node v has relative weight

l/Wk . Consider now any node Bi of depth b i and frequency Si

in a tree constructed according to the weight balancing rule.

Then

and hence

Thus

log l/S i > log Wb .
1.

-1
~ (log~) log l/S i + db.

1.

where

~ l/zl ~ 2/(V17-3)

and

The sequence dk converges to

-1 ~
-(log~) . log 5'1 - 1 ~ 0.396 ,

it reaches its maximal value for k ~ 2

d 2 % 0.412

Case 1.2: This case is simple. The Min-Max rule chooses as the

root of the subtree with nodes Bi, ... ,B j a node Bk , i < k < j,

which minimizes max(w(i,k-l) ,w(k+l,j». Apparently, it is

always possible to choose Bk such that

max(w(i,k-l),w(k+l,j» ~ w(i,j)/2

Consider any node Bi of depth b i and frequency Si in a tree

constructed according to the min-max rule.

Then by the above

B. < 2-bi
1.

and hence

b. < log 1/Bi 1

The example n = 2k -1

C-k+1

for i even

Bi =
for i odd

shows that the bound is achievable.

- 15 -

Case 2.1: The proof is very similar to the proof of case (1.1).

WB
Let Tk be a tree of minimal weight featuring a leaf of weight

1 at depth k. Let W
k

be the weight of T~B

"
"-

"-
"

\

~YO=1
leaf v

- 16 -

We only state the main equations in the proof and leave

the details to the reader.

Lemma A: For i > 1 -
i -l

(A) Yi
> L Yj

- max Yj -
j=O O.::.j.::.i-l

Proof: As in case (1.1), but take ~ to be the weight of the

left-most leaf of positive weight in the left subtree.

Let

° 0 =

(B)
° 1 = 0

° 2 = 0

° 3 = 1
i-2

0. = L 0. for i > 4
~ j=O J

Lemma C: For i > 0

(C) Yi > 0. - ~

Proof: The claim is obvious for i = 0,1,2. For i ~ 4 the

proof is a simple induction. It remains to consider the

case i = 3. Up to symmetry there are four possible trees.

Note that Y1 ' Y2 > 0 by our basic assumption that Si+~ i+Si+lto

for all i.

y

Since it was possible to con
struct this tree we must have

1 1+Yl -Y2-Y31~1+Y l+Y 2-Y3

and hence

Y2+Y3- 1- Yl > 1+Yl+Y2-Y3

Thus

Y3 ~ 1 + Y1 > 1

D

(b)

(c)

(d)

- 17 -

As in (a) one shows

Y3 ~ , + Y, ~ ,

Since the left subtree
was constructed according

the weight-balancing rule

we have

'+Y'-Y2 ~ ly 2+y, - , I
and hence

'+Y'-Y 2 < Y2 +Y, - ,
Thus

Y
2

> ,

and by (A)

Y3 ~

As in (a) one shows

Y3 ~ , + Y2 ~ ,

Lemma D: Consider the following distribution of weights,

qo = £

q, = ,
q2 = £

q3 = , + £

i-2
qi = L qj

j=O
for i > 4

where £ is an arbitrary positive real. Then the following

tree can be constructed by the weight-balancing rule.

c

- 18 -

q

l+ E

Proof: As in case (1.1).

k
T

WB
W

k = L Yi is the weight of From Lemma C we infer
k i=O

k k
Wk .:. L o. and from Lemma D we infer Wk < L O.

i=O 1 -
i=O 1

any positive real E . It remains to compute the sums
k

" k = L 0i·
i=O

+

From now on one proceeds as in case (1. 1) and obtains

"k = -(k+l)
zl (f 1 + ~2

k+l
(zl / z 2))

where
zl (-l+VS) /2 z = (-1-'1'5) /2

2

'51
= (s-VS) /10 If 2= (s+VS) /10

Hence

a . < (log 0)-1 log l /a. + d
J J a j

where

o = 1/ z 1 = 2/ (VS - 1) and

E for

c

The sequence {dk}k >O converges to
-1

- (log 0) log ~ 1 - 1 :t 1.67.

It assumes it maximal value 2 for k = 2.

- 19 -

Case 2.2: The Min-Max rule and the weight-balancing rule

are identical in the case that

of case 2.1 applies.

LS. = O. Hence the analysis
~

Case 2.4: Let T~PT be an optimal (with respect to average

search time) tree featuring a leaf v of weight 1 at depth k.

Let W
k

be the weight of T~PT • Otherwise, we use the notation
k of case 2.1. Then Wk L y . .

i=O ~

Lemma A: For i > 3: y. > W. 2.
1 - 1-

Proof: Consider the subtree with root c
i

. We may assume w.l.o.g.

that c
i

_ 1 is the right son of c i . c
i

_ 2 is either right or left

son of c. 1.
~-

a) c
i

_
2

is right son of c
i

_
1

This tree must have no larger weighted path length than the

following

Hence W. 2 < y . (Note that the c
J
' are 0)

1- - 1.

b) c. 2 is the left son of c. 1
1- 1-

- 20 -

This tree must not have larger weighted path-length than

the following

Hence W. 2 < y ..
1.- - 1.

It is also easy to show that Y2 > Y1 (by case analysis) and

that Y1 > 0 (by definition) .

From now on the proof proceeds exactly as in case 2.1 except

for the proof of Lemma D. There one shows by a very simple

inductive argument that the tr~:, ~

qi 6bqi+1 qk

is optimal for the weights Qi,Qi+1, ... ,qk.

Case 3.1: We first derive the bound for b~B . We use the
l.

notation of case 1.1

Lemma A: For i > 1

i-1
2 L (c. +y .)

j=O J J
- max (c.+2y.)
0~j2.i-1 J J

Proof: Consider the subtree with root

- 21 -

We may assume w.l.o.g. that v lies in the right subtree.

Consider the left-most node in the right subtree such that

either the node itself or a leaf to its left which still

belongs to the right subtree has positive weight. Let a '

be the weight of that node, let aU be the total weight of

the leaves to the left of that node and let S be the weight

of the remainder of the right subtree. Let a = a ' + a U > O.

Since the node with weight a ' was not choosen as the root

and hence

a + S - y. c y. + C. + a U - S
1 - 1 1

2Yi + c i > 2(a+S) - a ' - 2' a u

aU is by definition the weight of a single leaf. This leaf

belongs to one of the Yj's. Hence a ' either also belongs to Yj

or is c j . In either case

a ' + 2a " c max (c . +2y.) -
° 2 j 2 i - 1 J J

Let (B) °0 1

° 1 = 1/2

°2 = 1

0 . = i-2 0.
~ j~O J

for i > 3

Lemma C: For i > 0

Proof: Obvious for i = 0, by case analysis for i = 1 and

D

i = 2 and by induction for i > 3. D

Lemma D: Consider the following distribution of we ights,

n = k+1

go = 1/ 2 = ° 1' gl = g2

P1 = 0, P 1 = 1, Pi = 0

= O. 1 for B < i
~-

for 2 c i c k+1

c k+1

- 22 -

Then the following tree may be constructed according to

the weight-balancing rule.

c(~

Proof: Obvious c

k
Wk = ~ (c. + Yi)

i=O 1
is the weight of T:B. As above, we

k
infer W = k i=O

0i" From now on one proceeds as in case 1.1

and obtains!

where (-1 + VS)/2 (-1 - VS) /2

~1 = (3VS + 5)/20 S:>2 (-3VS + 5) /20

Hence -1
b i ~ (log 8) log 1/Si + db.

1

-1 k+1
where d k = (log 8) [-lOg(S'1 + ~2(Z1/Z2))]-1

The sequence {dk}k>O converges to -(log 8)-1 . log 5'1 - 1 %0.1125.

It assumes its maximal value 0.157 for k = 1.

Next we derive a bound on a~B We use the notation of
J

case 2.1

Lemma A: For i > 2

(A) 2y. +
1

c. >
1 -

i-1
2 . ~

j=O
max (c . +2y.)

0~j~i'1 J J

Proof: As above where the bound on b WB was derived.
1

however, that the argument cannot be applied to the

Note

subtree

with root c 1 since the subtree which contains Yo does not

contain a node.

From now o n the proof proceeds exactly as in case 2.1 .

Case 3.2: We only show how to derive the bound on

MM MM
b i ' the bound on a j being similar. We use the

notation of case 1.1 .

Lemma A: For i > 1

(A) c. >
l.

i-l
L

j=O

- 23 -

Proof: Define at and a " as in case 3.1 . Then a ' + a i' = a > o.

a + B < max (Y i + c i + a",B)

and hence

a + S - a" < y. + c .
- l. l.

a " is by definition the weight of a single leaf. This leaf

belongs to one of the Yj 's.

Hence a" < max Yj - O~j.s.i -l

Let (B) 00 = 1

01 = 1

O2 = 2

k-2
O. = L O. for i > 2 .

l. l. -i=O

From now on one proceeds exactly as in case 3.1 . One obtains

where

Hence

where dk

zl

5'1

b .
l.

-(k+l) ;:: Z,
= (-1 + -15) / 2

2/'15

< - (log 0) -1 log

-1
[-log(fl = (log 0)

z2 = (-1--15)/2

5'2 = -2/-15

1/ 8i + db.
l.

k+l
+'?2(zl / z2))]-1

The sequence d
k

converges to

-1
-(log 6) log fl - 1 ~ -0.768.

It assumes its maximal value for k ; 0, do ; o.

Case 3.4:

We only derive a bound on b OPT , the bound on
~

a~PT is derived similarly.Let T~PT be an optimal

- 24 -

tree featuring a node of weight 1 at depth k. Let Wk be the

weight of T
OPT 0 h . k . t erWlse, we use the notation of case 1.1.

k
~ (c. +y.).

i;O ~ ~

Lemma A: For i > 2: c. + y. > W. 2
1. .1. - 1-

Proof: Analogous to the proof of Lemma a in case 2.4. We

refer to that proof. In case a) of that proof

W. 2 + c. 1 < y, + c, , 1- 1- -..L ..L.

in case b) of that proof

W. 2 + c. 2 < y. + c,.
1- 1- - 1. ...

Note that the inequality is valid for i > 2 since ~ exists. c

It is also easy to show (by case analysis) that

From now one proceeds exactly as in case 3.2 •

Theorem 1 gives precise information about the worst case

behavior of weight-balanced, Min-Max, Bisection and optimal

trees. With respect to optimal trees the case ~a.; 0
J

was left open. We can give only a partial answer in that

case. Of course, case 3.4 applies and hence

b?PT < (log 6)-1 log liS.
~ ~

c

- 25 -

However, we do not know if this bound is achievable.

We are only able to show that the multiplicative constant

is at least 1.29. Thus the worst case behaviour of optimal

trees is worse than that of nearly optimal trees. Consider

the following zig-zag tree

c o

c 1 = 1/2, c 2 = 1 and

k
+ 2· L

i=l

2cl.' = c. 2 + W. 2 for i > 3. 1- 1-

= 1,

Then the tree above is optimal . (The proof is a tedious case

analysis) •

Since 2c. = W. -W. 1 for i > 1
1 1 1- -

W. - W. 1 = 1/2(W. 2-W' 3) + w. 2 1 1- 1- 1- 1-

for i ~ 3. With w(z) = 2: W. zi
DO l.

W (z) =
Wo+(W 1-Wo) z+(W2-W

l
- 3 /2W

o
) z2

l-z-3/2z 2 + 1/2z3

2 + 2z + z2

where zl = -1, z2 = 2+Vi, z3 = 2-V2. Hence

Wk :::> c· (11 z 3) k ~ c· 1 ,7k

for some constant c and large k. This shows that whenever

bOPT
< c 1 'log liB. +

1. - l. c 2

holds for all optimal trees then c 1 > (log 1/1.7)-1 ~ 1.29

- 26 -

III. Lower Bounds

In this section we derive lower bounds on the search time in

binary trees. We prove a lower bound on the time required for

a single search and give an alternate proof for Bayer's bound

on the average search time. Our proofs are based on a well

known proof for the noise-less coding theorem [Karneda & Weih

rauchl •

For this section (aO,B1,a1, .•• ,an_1,Bn,an) is a fixed proba

bility distribution and T is a search tree for this distri

bution. As before, b i is the depth of node Bi and a
j

is the

depth of leaf (B
j

,B
j

+ 1).

Lemma: Let c E R, 0 < c < 1 , and -

Si
b·

= ((1 c) /2) l..c 1 < i < n - -
a·

a. = ((1 - c) /2) J 0 < j < n
J - -

Then Si' a j .:: 0 and I:S i + I:a j = 1, Le. (ao ' S1 ,a 1 ,···, Sn,an)

is a probability distribution.

Proof: A simple induction on n.

Theorem II (Bayer) (A lower bound for the average search time):

Let B = I: Bi , P = I:Bi (b i +1) + I:a. a. and
J J

H = I:Bi" log 1/B. + I:a.
l. J

log 1/a
j

. Then

-d max{(H-dB)/log(2+2); d E IR } < P

Proof: Let Si and a
j

be defined as in the lemma above. Then

b i + 1 = 1 + (log S. -l.
log c)/log c

a j
log a/ log c

where
c (1 - c)/2

c

Then P = L8. (b.+l) +
l l

- 27 -

B(l-log c/log e) - l/log e[-L8l. logS.-La. log a.]
l J J

> (l/log(l/e)) [-B(log e - log c) + H]

because of -LX. log x. < -LX. log x. for LX. = LX l. = 1,
11- 1 1 1

X. > 0, Xl' > 0. [cf. Kameda & Weihrauch]. Taking d = log(e/c)
l -

and observing that c/e = 2c/(1-c) ranges over all non-negative

numbers as c ranges over [0,1] yields the claim. c

Unfortunately there is no closed form expression for dmax
which maximizes the left hand side of the inequality in

theorem II. Taking d = 0 gives H/log 3 < P [Mehlhorn 75]

and taking d = log(P/2B) gives H < P + B log e - 1 + log (P/B)

[Bayer] .

We now turn to the behavior of single searches. In its full

form the inequality of theorem II is:

<L8.[b.+1l
- l l

+La.[a.]
J J

We want to show that the inequality holds "almost" componentwise

for the expressions in square brackets. More precisely, let hER,

h > 0 and

and

Then

Nh = {i;(-log 8. - d - h)/log(2+2-d) > b. + 1}
l l

-d
{j; (-log a

j
- h)/log(2+2) > a

j
}

<
-h

2

i.e. for nodes and leaves with total probability ~ 1 _ 2-h

the inequality of theorem II is "almost valid" componentwise.

"Almost valid" means: Up to the additive factor -h/log(2+2-d) .

In order to prove the claim we set d=log(c/c) with c = (1-c)/2

and 0 < c-l. Then d = log e - log c and log(2+2-d) = log (l/e).

_ 28 _

Simple calculation shows that the definitions of Nh and Lh

are equivalent to

and
-h Lh = {j; a. < 2 u . }

J J

where 8
i

and U
j

are defined as in the lemma above. Then

1

>

a · 1 J

Theorem III: (Lower Bound on the search time for single

searches). Let c,h E R with 0 < c < 1 and h > O. Define 8i
and a . as in the lemma above. Let

J

Then L
iENh

Nh

Lh

{i; Si

{ j ; a j

< 2
-h 8i } and

< 2
-h U

j
}.

-h
< 2 •

It is worthwile to contrast this theorem with the upper

bounds of theorem 1. For simplicity suppose LS. = O. Then
1.

the bisection rule yields a tree with the property that the

search time for leaf (B j ,B
j

+ 1) is bounded above by log 1/U j + 2.

Conversely, consider any tree for this distribution. Then for

a set of leaves having weight ~ 1/2 (3/4), i.e. for 50 (75) %

of the searches, the search time is larger than log 1/a. - 1
J

(log 1/a
j

- 2). Thus the bisection rule produces trees whose

worst case behavior is close to optimal and so do the other

rules.

"

- 29 -

IV. The Entropy Rule: Average and worst Case Behavior,
==

Experimental Results
====================

In this section we propose yet another construction rule.

It is based on information theoretic considerations. A

comparison with a name is a decision with three possible

outcomes: <,=,>. The probabilities of the three outcomes

are the weight of the left subtree W
L

' the weight of the

root WROOT and the weight of the right subtree W
R

respectively,

the information gained by this comparison is equal to the

entropy H(WL,Wroot,WR)'

Rule IV (Entropy): Choose the root so as to maximize the

local information gain (H(WL,WROOT,WR)' then proceed

similarly on the subtrees.

This rule was also proposed by Horibe 1J!0ribe 77~. The pure

entropy rule behaves quite well; compare the table of experi

mental results below. However, already a superficial analysis

shows that the pure entropy rule has some undesirable properties.

Consider the following example: S1 = S2 = €, S3 = 1 - 2€,

a o = a 1 = a 2 = a 3 = O. The entropy rule chooses B2 as the root.

The entropy tree has weighted path length 2 - €, the optimal

tree has weighted path length 1 + 3£. Since similar situations

happen quite frequently for small n we rather study a modi

fied entropy rule. The modification is based on the following

lemma.

Lemma: Let (a
o

,S1, ... ,Sn,an) be a probability distribution.

1) If Si ~ max (ao + S1+···+Si_1 + a i _ 1 ,ai + Si+1+···+Sn + an)

then there is an optimal tree with root B ..
:I.

then there is an optimal tree with leaf (B j ,Bj+1) at depth 2 or

less.

Proof: We only

that the depth

prove 2); the proof of

of leaf (B.,B.+ 1) is >
J J -

case 1) is similar. Suppose

3. Let u,v,w be father,

- 30 -

grandfather and grand-grandfather of leaf (B j ,B j +1). Con

sider the subtree with root w. We may assume w. l.o.g. that

v is the right son of w.

Case 2.1: u is the left son of v.

A~
& && b

Then (B j ,B j +1) is either the subtree ~ or ~ . It is

easy to see that the transformed tree is at least as good

as the original one.

Case 2.2: u is the right son of v.

WUI."-
v

Again it is easy to see that the transformed tree is as least

as good as the original one .

Hence in either case it is possible to move up leaf (B
j

,B j +1)

one level without distroying optimality.

The Lemma suggests the following modification of the entropy

rule.

RULE V (Modified Entropy): If a node B. exists which satisfies
l.

clause '1 of the lemma then choose it as the root. If a leaf

(B j ,B j +1) exists which satisfies clause 2 of the lemma then

choose the root among B. and B'+1 . B. is choosen if
J J J

a o + Sj + .. ·+Sj > Sj+1+···+Sn + a n and Bj +1 otherwise .

In all other cases choose the root so as to maximize the local

information gain H (WL ' Wroot ' l\'R). Then proceed similarly on

t he subtrees.

- 31 -

Next we present the results of some experiments with

rules I to V.[Table IJ. We applied rules I to V to the

200 distributions described by Gotlieb and Walker. We

refer the reader to [Gotlieb & ~lalkerJ for a detailled

description of the test data.

Note that PME < PENT::' PI1M ::. PWB ::. PBI in all but a few

cases. The first (second, third, fourth) inequality does

hold except in O(9, 4, 0) cases. Only in 6 cases

PME ~ PMM is not true.

Setting POPT to 100, the average and maximal values of

PME,PENT,PMM,PWB and PBI are:

I I I
POPT PME PENT PMM PWB PBI

average

value of 100 101 .4 102.2 104.5 107.7 119.7

P/POPT ·100

maximal

value of 100 104.2 105.6 109.0 128.6 154.7

P·100

POPT

- 32 -

Optimal Rule V Rule IV Rule II Rule I Rule III
path Modified Entropy Min-Max Weight Bisection

length Entropy Balancing

Set 1

Case 1 4.29 4. 32 4.45 4.55 4.93 6.09

2 6.61 6.63 6.63 7.02 7.09 7.65

3 5.87 5.94 6.01 6. 11 6.12 7.19

4 6.07 6.17 6.17 6.32 6.42 7.17

5 6.64 6.69 6.71 6.79 6.82 7.40

6 5.96 6.01 6.02 6 . 31 6.59 7.21

7 5.83 5.91 5.92 6.14 6.33 7.21

8 6.26 6.41 6.52 6.72 6.85 7.65

9 7.09 7.34 7.47 7.45 7.44 8.30

10 7.34 7.39 7.39 7.51 7.52 7.65

Set 2

Case 1 4.63 4. 65 4.77 5.00 5.66 6.60

2 7.26 7.30 7.30 7.64 7.80 8.06

3 6.25 6.32 6.33 6.68 6.84 7.52

4 6.40 6.51 6.51 6.87 6.88 7.49

5 7.02 7.07 7.09 7.21 7.24 8.03

6 6.54 6.61 6.61 6.88 7.03 7.67

7 6 . 45 6.48 6.50 6.80 6.99 7.68

8 6.58 6.86 6.95 6.84 6.87 7.82

9 7.12 7.42 7.50 7.35 7.32 8.03

10 7.70 7.79 7.79 7.87 7.89 8.05

Set 3

Case 1 4.00 4.04 4.08 4.23 4.54 6.14

2 6.42 6.46 6.49 6.56 6.99 7.37

3 5.56 5.61 5.69 5.83 5.85 6.63

4 5.76 5.84 5.85 5.98 6.21 6.58

5 6.22 6.33 6.40 6.28 6.37 6.86

6 5.65 5.68 5.75 6.02 6.25 7.10

7 5 . 59 5.62 5.65 5.91 6.02 7.08

8 6 . 09 6.23 6.38 6 . 39 6.62 7.65

9 7.01 7.31 7.38 7.22 7.26 8.39

10 6.97 7.04 7.05 7 . 10 7.09 7.32

- 33 -

Optimal Rule V Rule IV Rule II Rule I Rule III
path Modified Entropy Min-Max Weight Bisection

length Entropy Balancing

Set 4

Case 1 5.04 5.04 5.08 5.38 5.88 6.67

2 7.42 7.50 7.50 7.69 7.85 8.05

3 6.55 6.61 6.61 6.81 6.98 7.56

4 6.65 6.74 6.74 7.03 7.18 7.57

5 7.27 7.32 7.35 7.45 7.46 8.02

6 6.55 6.56 6.59 6.87 7.08 7.67

7 6.75 6.81 6.82 7.05 7.18 7.78

8 6.73 6.92 7.05 6.91 6.96 8.02

9 7. 11 7. 39 7.50 7.29 7.31 8.15

10 7.87 7.91 7.91 8.02 8.03 8.16

Set 5

Case 1 4.14 4.18 4.28 4.32 5.32 6.40

2 5.97 6.02 6.05 6.19 6 .75 7.32

3 5.75 5.84 5.93 5.95 6.28 7.26

4 6 .00 6.10 6. 11 6.44 6.51 6.93

5 6.66 6.72 6.79 6.87 6.96 7.65

6 5.33 5.41 5.46 5.61 5.97 7.01

7 5.41 5.48 5.53 5.90 6.37 7.29

8 5.81 5.92 5.97 6.05 6.36 7.14

9 6.99 7.17 7.31 7.22 7.24 8.09

10 7.27 7.32 7.32 7.42 7.41 7.63

Table 1: Weighted path length Popt ' PWB ' PMM , PBI , PENT and PMENT •

Remark: For comparison with the results of Gotlieb & Walker in this

table we used their definition of the weighted path length:

n
P = L ~. (b.+1) +

i=1 l. l.

n
L a. (a.+1) (instead of our definition of page 1).

j=O J J

- 34 -

We now turn to the analysis of the modified entropy rule .

Theo rem III (Average case behavior of the entropy rule).

Case , : La j
= 0 PME < H + -

Case 2 : LSi 0 PME < H + 2 -

Case 3 : La . > 0, LSi > 0
~

PME < c, H + c 2

where c, = , /H (' /3, 2/ 3) % , , 08 and c 2 = 2.

Proof : It is easy

rule and modified

to see that in the case LS. = 0 the entropy
~

e ntropy rule is identic al with the min-max

rule. Hence PME ~ H + 2 in that case.

We treat cases' and 3 together. We want to prove PME < c,·H + c 2

for suitable constants c, and c 2 by induction on n.

n = 0 or n = , : Then P < , and hence c 2 ~ , suffices.

n > , . Suppose Bi is the root of the tree constructe d according

to the modified entropy rule. Let WL

WR = a i + Si+,+···+Sn + a n'

(o. ', B', ••• , S ~ " a. ~ ,) o 0 l- 1-

_ 35 _

P
L

the weighted path length of the left subtree and PR
the weighted path length of the right subtree. Then

Hence

It remains to show

a) Bi was chosen as the root because Bi ~ max (WL,WR) •

Then WL ' WR ~ 1/2. If Bi < 1/2 then H(WL,Bi,WR) ~ H(1/2,1/2,O)

and hence c 1 ~ 1 suffices. If Bi > 1/2 then c 2 ~ 1 does it.

b) Bi was chosen because a i ~ WL + Bi ~ WR - a i (The symmetric

case that a
i

_ 1 > Si + WR ~ WL - a i _ 1 is treated similar). Then

either i<n and the following tree was constructed

or i ; n and the following tree was constructed:

(B ,Bn +1)

- 3 6 -

In the first case let P . be the weighted path l e ngth of
~

tree T. , i = ',2 Then
~

I.H.

+ (W -
R

< c,[H(" o, S""" Sn' ''n) - H(WL, Si' ''i, Si+'' wR-" i- Si+') 1

<

= 2 (' + (WR - " i) - " i)' He r e we used H (x , '-x).::.2x if x::.' /2 . He nc e

< 0 if c, ~ , and c 2 > 2 .

In the second case let P, be the weighted path length of

tree T,. Then

P < , + W
L

. P,

I.H.
<

<

- 37 -

Hence c 2 ~ 2 suffices.

c) Bi was chosen because it maximizes H(WL , 8i ,WR). We

distinguish two subcases.

c1) There exists a j,1 ~ j ~ n, such that

a j + 8 j + 1+·· · +8n + a n < 1/ 2.

8 j < 1/ 2. Hence

and

Since case a) does not apply

H(WL , 8l.' ,WR) > H(a + 81+ .•• +a, 1, 8 " a ,+ 8 '+1+ ... +8 +a) o)-))) n n

> H(1/2, 1 / 2) = 1

Hence c 1 ~ 1 suffices .

c2) There exists no such j. Hence there exists a j such that

a o + 8 1 + .•. +a j _ 1 + 8 j ~ 1/2 and

8 j + 1 + a j +1+···+8n + a n < 1/ 2

Assume w.l.o . g. that

Since case b) does not apply we have

and hence

So we have

H(WL , 8i ,WR) > U(a + 81+ ... +a, 1, 8, , a, + 8' +1+ . · ·+8 + a) o)-))) n n

- 38 -

> H(Cl + Sl+·· .+Cl. l+S, , Cl· + S · 1+·· .+S +Cl) o J- J J J+ n n

~ H(l/3, 2/ 3)

Hence c 1 > 1/H (l / 3, 2/3) suffices.

In the case that LCl j
; 0 only subcases a) and cn arise.

Hence c 1
; c 2

; 1 do the job. In the general caSe we have

to choose c 2
; 2 and c 1

; 1/ H(l/3,2/3) .
The problem whether PHE < H + 2 is true in the general case

is open. In view of the empirical evidence a positive answer

seems like ly.

Next we investigate the worst case behavior of the entropy rule.

Here we can only present results which are probably far from

being final.

Theorem IV (Worst Case Behavior of Entropy Trees) :

Let b~ (a~) be the depth of node Bi (leaf(B j ,B j +1))

in a tree constructed according to the modified entropy rule

Then

b~E < (l/log(l / 1-0) · log l/ Si + 1

a~E < (1/ log (1 / 1-0) ·log 1/ Cl j + 2

where ~ is defined by H(~ ,l-~) + ~ ; H(l/3,2/ 3).

Then ~~ 0.195 and l / log(l / l- ~)) ~ 3.19 .

Proof: The proof is similar to the one given in HehlhornD~.

We need the following Lemmas.

Lemma 1: Let T be a binary tree which is constructed to the

modified entropy rule . Let B be an interior node with distance

2 from the root. Let wo be the weight of T, w1 be the weight

of the direct subtree of T which contains B, and let w2 be

the total we ight of the tree with root B. Then either

c

- 39 -

Proof: We distinguish three cases according to which clause

of the definition of the modified entropy rule was used

in the construction of T.

Case 1 : There is a 6
i

with 6. > max 1m +6 1+ •• . +6. 1+m. l' 0 1- 1-

Then Bi is taken as the root. Hence 6
i
~ w1 and w1 ~ 1/2.

Case 2: There is a mj with m. > maxim +6 1+ .. • +6. , 6. 1+ ••. +6 +6).
J - 0 J J+ n n

Then the leaf IB j ,B j +
1

) is at depth 1 or 2. If B is in the

same direct subtree of T as IB
j

,B j +1) is in then w
2

< 1/3,

otherwise w1 ~ 1/2.

Case 3: The root was chosen because it maximizes the entropy.

Assume w.l.o.g. that B is in the right subtree of T. Then

by the argument used in the proof of theorem III.

Since

by the grouping theorem we have

o

Lemma 2 : Let T be a binary tree which is constructed according

to the modified entropy rule and let B be an interior node

with "distance b from the root. Let w be the weight of the

subtree with root B. Then

w < 11 - 1;) Ib-1)

Proof: The claim is obvious for b .s. 1. Otherwise, let

Bk ' Bk , ••• , Bk = B be the nodes on the path from the root
o 1 b

to B and let W. be the weight of the subtree with root Bk .•
~

~

_ 40 _

We show: for all i either

or

For i = 2 this follows from Lemma 1. If i > 2 then either

w
i

-
2
~ (1_ ~)i-2 or w

i
_

1
~ (1_~)i-1 by induction hypothesis.

In the second case we are done. In the first case we apply

Lemma 1 and obtain:

either

or

Hence

w
i

_
1

< (1-0 w. 2 < 1-

< 1/3 • w. 2 < (1- s)i
1-

Together with the observation that the weight of node Bi

(of leaf (B j ,B
j

+1)) is certainly not larger than the weight

of the subtree with root Bi (with leaf (B j ,B j +1) at depth 1)

Lemma 2 yields the theorem.

c

c

- 41 -

v. Implementations
==================

In this section we do a comparative study of different

implementations of the construction rules.

Rules I, II, III : Suppose, node Bi is taken as the root.

i-1 i-1
Then the weight of the left subtree is I: "j + I: Bj ,

the weight of

The weight of

(decreasing)
i-1

that I: "J'
j=O

j=O j=1
n n

the right subtree is I: "j + I: B. .
j=i j=i+1 J

the left (right) subtree is an increasing

function of i. Let io be the largest i such
i-1

+ I: 8. is < 1/2, let iO be 0 if no such
j=1 J

i exists. Then rules I and II choose either B. or B. +1 as
10 10

the root. For rule III we have to replace 1/2 by some number

which is determined dynamically by the algorithm. Hence the

problem of determining the root essentially reduces to the

following problem :

Problem: Let F : {1, ••. ,n} ? ~ be monotonically increasing

with 0 < F(1) ~ F(n) < 1. Find the largest i such that

F(i) < 1/2, say i O.

Three strategies were proposed to solve this problem.

Binary Search: We try i = n/2 first.

If Fln/2) > 1/2 then do a binary search on the left subinterval

[1, n/2l, otherwise on the right subinterval.

Binary search determines iO in O(log n) units of time.

Linear Search: Search for io simultaneously from both ends,

i.e. try i =

search finds

1,n,2,n-1,3,n-3, ... in that order. Linear

iO in 0(min(io ,n-io +1)) units of time.

- 42 -

Binary search leads to the following recurrence relation

for the worst case running time

T(n) < max [T(i-1) + T(n-i) + O(log n)]
l <i <n

which has the solution

T(n) ; O(n log n)

The worst case behavior occurs if nodes with small (i % 1)

or large (i ~ n) index are chosen repeatedly as the roots.

Linear search leads to the followi ng recurrence relation

for the worst case running time

T(n) < max [T(i-1) + T(n-i) + 0(min(i,n-i+1))]
l <i <n

which has the solution [Mehlhorn 75]

T(n) ; O(n log n)

The worst case behavior occurs if nodes Bi with i % n/2 are

chosen repeatedly as the roots.

Exponential Search + Binary Search [Fredman] :

Search for io with exponentially increasing steps from both

ends, i . e . try 1, n, 1+1, n-1, 1+2, n-2, 1+4, n-4, 1+8, n-8, .. •

in that order. This search determines an interval

[1+2P , 1+2P+1] ([n_2P+ 1 , n-2P]) for iO in O(p) steps.

Then do a binary search on this interv al. (O(p) steps)).

This search method determines iO in O(min(log io,log(n-io)))

units of time.

It leads to the following recurrence relation for the worst

case running time

T(n) < max [T(i-1) + T(n-i) + O(log min(i,n-i))]
l <i <n

- 43 -

which has a linear solution [Fredmanl.

T(n) = O(n)

RULE IV: Rule IV determines the root so as to maximize

H(weight of the left subtree, weight of the root, weight

of the right subtree). This function is not a monotone

function of the index of the root. Therefore, one has to

try every i, 1 ~ i ~ n, in order to determine i O. This leads

to the following recurrence relation for the worst case

running time.

T(n) < max [T(i-1) + T(n-i) + nl
1<i<n

which has the solution

So far we surveyed known results about the worst case behavior

of different implementations. We turn now to average case

behavior. We analyse the average case running time under the

(conservative) assumption that the root index is uniformly distri

buted in the interval {1, ... ,n } . The same results hold under

the assumption that all frequency distributions are equally

likely, though calculations are more tedious.

Under the above assumption the following recurrence relations

describe the average case behavior of the implementations.

Rules I, II and III:

Binary Search:

Linear Search:

n
T(n) = 1/n L (T(i-1)+T(n-i)+10g n)

i=1

solution: T(n) = O(n)

n
T(n) = 1/n L (T(i-1)+T(n-i)+0(min(i,n-i+1»)

i=1

solution: T(n) = O(n log n)

- 44 -

n
Exponential Search: T(n) = 1/n L (T(i-1)+T(n-i)+

i=1

solution: T(n) = O(n)

n
Rule IV: T(n) = 1/n L (T(i-1)+T(n-i)+n)

i=1

solution: T(n) = O(n log n)

We summarize the running times in table 2.

Worst Case

Rules I, II, III

Binary Search O(n log n)

Linear Search O(n log n)

Expon. Search o (n)

Rule IV O(n2)

O(10g(min(i,n-i+1)))

Average Case

o (n)

O(n log n)

o (n)

O(n log n)

Table 2: Running times of different implementations.

- 45 -

VI. Application to digital search trees
=======================================

Quite frequently the "names" B. will be strings. Instead
1

of basing the search method on comparisons between names,

we can make use of the representations as a sequence of

characters. A classic example of such a search method is

the trie [cf. Knuth 73, Sec 6.31 . Suppose that the names

B
1

, ••• ,Bn are strings over a k character alphabet r . A

trie is then a k-ary tree. For each prefix of a name Bi

there is a node in the tree, the branching is done on the

next character.

Different representations of the nodes of a trie were pro

posed: vectors of length k, linked lists or binary trees.

The first alternative minimizes processing time, the two

others save memory space.

From now on we restrict ourself to the case that the weight

is concentrated in the keys. (ra. = 0). This restriction
J

simplifies the notation; the general case may be treated

analogously. Consider a node of the trie. It corresponds

to a string w E r! . Let pw be the sum of the pro-

babilities of all words Bi having w as a prefix. Then in

node w the branch corresponding to character a E r is

taken with probability p /p. wa w

Hotz wot~ proposed to represent each node by an optimal

(or nearly so) binary search tree; he showed that this stra

tegy works well in the case of "uniform distributions". We

show that it performs well for all distributions.

Assume that we represent each node of a trie by a binary

search tree whose weighted path length is bounded above

by c
1

H + c 2 where H is the entropy of the associated fre

quency distribution.

Consider a search for B. = a 1a 2 ···a with a
J
. E r, ~i = length

1 ~i

of string Bi . We search first for the character a
1

in the top

- 46 -

level tree, then for a 2 in the tree T , •... The average search a,
time is given by the expression (a comparison between two

characters is assumed to take one unit of time) :

n
I: Bi (# of comparisons needed to find B i)

i='

<

<

<

B.
1.

I: *Pv I:
vEI: aEI:

I:
vEI:*

pv(c 2

c 2
. I:

vEr

c .
2

~ of comparisons needed to find
()

a
J
. in T . a, , ... ,a

j
_,

('# of comparisons needed to find) . Pva

a in Tv

(#of comparisons needed to find). Pva

a in Tv Pv

P Pvb Pvc
+ c, . H(va , -- , , ...))

Pv Pv Pv

P Pvb
+ I: H(~ I •••) Pv c, .

vEI:* Pv 'p Pv v

(grouping theorem cf. Ash)

where I is the weighted average length of the strings Bi .

Thm.V:Suppose that we represent each node of a trie by a

binary search tree whose weighted path length is bounded

above by c,H + c 2 , then the average search time is bounded

by

where

the names B .•
1.

B . . length (B.) is the average length of
1. 1.

- 47 -

Consider the case that all names have length m. It is

reasonable to assume that the time needed to compare

two names of length m takes O(m) units of time. Using

binary search trees based on comparison of entire names

then results in an average search time of 0(m.(c,H+C2)).

This contrasts sharply to the average search time of

O(c,H + c 2 ·m) achieved by the search method based on

comparisons of characters.

We turn now to worst case behavior. Assume that we re

present each node of a trie by a binary search tree whose

worst case behavior is bounded by c,·log '/probability + c 2 ;

i.e. a search for a name with probability p takes at most

c,·log '/p + c 2 units of time. Then

of comparisons needed to find B.
1

R. i
= L (# of comparisons needed to find a. in T)

j='
) a, ... a j _,

R. i p
a, ... a._,

< L (c,·log P) + c 2)
j=' a, ... a j

h
< c, . L (log P - log P) + c 2 R. i j=l a, ..• a j _, a, ... a j

< c, . (log PE - log P) + c 2 R.i a, •.. a R. i

< (0+ log '/e.) +c 2 R..
1 1

ThmN~Assume that we r e present each node of a trie by a binary

search tree whose worst case behavior is bounded above by

c, . log '/probability + c 2 ' then a search for name Bi of

length R. i and frequency ai takes at most

comparisons between characters.

- 48 -

The remark following the preceding theorem applies here

as well.

For the special case that all names have equal probability

' / n and equal length m theorem VI yields the bound c,log n+c 2m.

This special case was considered previously by Fredman and

v. Leeuwen.

- 49 -

Bibliography
:::;;:=::;=:::;;::;;:==:::;;:===

[Ash 1 "Information Theory", Interscience Publishers,N.Y.1965

[Bayer,p.] "Improved Bounds on the Costs of Optimal and

Balanced Binary Search Trees", to appear in ACTA

INFORMATICA

[Bruno, J. & Coffman, E.G.) "Nearly Optimal Binary Search Trees"

Proc. IFIP Congress 1971

[Fredman, M. L. , 75) "Two Applications of a Probabilistic

Search Technique: Sorting X+Y and Building Balanced

Search Trees", Proc. 7th Annual ACM Syrnp. on Theory

of Computing, 1975

[Fredman, M.L., 76 1 "How Good is the Information Theory Bound

in Sorting , Theoretical Computer Science (4),

355-362, 1976

[Gilbert, E . N. & Moore, E .F.) "Variable Length Encodings"

Bell System Technical Journal, 1971

[Gotlieb, C. C . & Walker, W.A .) "A Top-Down Algori thrn for

Constructing Nearly Optimal Lexicographical Trees"

Graph Theory and Computing, Academic Press, 1972

[Horibe, Y.) "An improved bound for weight balanced trees",

Information and Control, 34, 1977.

[Hotz , G. 1 "Schranken fur Balanced Trees bei ausgewogenen

Verteilungen", Theoretical Computer Science 3, 1977

[Hu, "T. C. & Tucker, A. C.) "Optimal Computer Search Trees and

Variable Length Alphabetic Codes", Siam J. Applied

Math. 21, 1971

[Kameda, Weihrauch) "Codierungstheorie", Bibliographisches

Institut

_ 50 _

[Knuth, D.E., 71] "Optimum Binary Search Trees", Acta

Informatica I, 1971

[Knuth, D.E., 73] "The Art of Computer Programming", Vol. II,

Addison Wesley, 1973

[Mehlhorn, K.,75a] "Nearly Optimal Binary Search Trees",

Acta Informatica 5, 1975

[Mehlhorn, K., 77a]"Best Possible Bounds on the Weighted

Path Length of Optimum Binary Search Trees " SIAM

Journal of Computing, Vol . 6, No .2, 1977

[Mehlhorn, K., 77b] "Effizie nte Algorithrnen", Teubner Studien

blicher Informatik, 1977

[Meschkowski] "Differenz e ng l e ichunge n", Vandenhoeck u.

Rupre cht, G6ttingen, 1959

[v. Leeuwen] "The complexity of data organization",

Math. Center Tracts, Vol. 81, 1976

[Rissanen , J.]' "Bounds for Weight Balanced Trees",

IBM Journal of Rese arch and Development, 197 3

	A_1976_05 00_01_1heitscover
	A_1976_05 0001
	A_1976_05 0002
	A_1976_05 0003
	A_1976_05 0004
	A_1976_05 0005
	A_1976_05 0006
	A_1976_05 0007
	A_1976_05 0008
	A_1976_05 0009
	A_1976_05 0010
	A_1976_05 0011
	A_1976_05 0012
	A_1976_05 0013
	A_1976_05 0014
	A_1976_05 0015
	A_1976_05 0016
	A_1976_05 0017
	A_1976_05 0018
	A_1976_05 0019
	A_1976_05 0020
	A_1976_05 0021
	A_1976_05 0022
	A_1976_05 0023
	A_1976_05 0024
	A_1976_05 0025
	A_1976_05 0026
	A_1976_05 0027
	A_1976_05 0028
	A_1976_05 0029
	A_1976_05 0030_nachher
	A_1976_05 0031
	A_1976_05 0032
	A_1976_05 0033
	A_1976_05 0034
	A_1976_05 0035
	A_1976_05 0036
	A_1976_05 0037
	A_1976_05 0038
	A_1976_05 0039
	A_1976_05 0040
	A_1976_05 0041
	A_1976_05 0042
	A_1976_05 0043
	A_1976_05 0044
	A_1976_05 0045
	A_1976_05 0046
	A_1976_05 0047
	A_1976_05 0048
	A_1976_05 0049
	A_1976_05 0050
	A_1976_05 0051

