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I. Introduction and Survey of Known Results 
============================================ 

"One of the popular methods for retrieving information 

by its 'name' is to store the names in a binary tree. We 

are given n names B
1

,B
2

, ... ,B
n 

and 2n+1 frequencies 

S1 •.••• S • a •••.• a with ~ S . + ~a. = 1. Here S . is the non ~ J ~ 

frequency of encountering name B .• and a . is the frequency 
~ J 

of encountering a name which lies between Bj and Bj + 1 • a o and 

a n have o bvio us interpretations" [Knuth 71 ] 

We may always assume w.l.o.g. that Si + a i + Si+1 ~ 0 

for all i. Otherwise. the i-th (or the (i+1)-th) key might 

as well be removed. 

A binary search tree T is a tree with n interior nodes (nodes 

having two sons). which we denote by circles. and n+1 leaves. 

which we denote by squares. The interior nodes are labelled 

by the Bi in increasing order from left to right and the 

leaves are labelled by the intervals (B j • Bj + 1 ) in increasing 

order from left to right. Let b. be the distance of interior 
~ 

node B. from the root and let a. be the distance of leaf 
~ J 

(B j .B j +1 ) from the root. To retrieve a name X. b i +1 comparisons 

are needed if X = Bi and a j comparisons are required if Bj <X<Bj +1 . 

Therefore we define the weighted path length of tree T as: 

n n 
p = ~ S. (b.+1) + ~ 

i=1 ~ ~ j=o 

D.E. Knuth [Knuth 71 ] gives an algorithm for constructing an 

optimum binary search tree. i.e. a tree with minimal weighted 

path l,mgth. His algorithm has O(n2 ) time complexity and O(n 2 ) 

space complexity . Hu and Tucker [Hu & Tucker] consider the 

case that all names have frequency zero. i.e. 

1 < i ~ n. They give an algorithm with O(nlogn) 

for this case. 

S. = 0 for 
~ 

time complexity 
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Approximation algorithms were considered early in the 

game [Bruno & Coffman, Walke r & Gotliebl . 

Walker and Gotlieb consider the following rule of thumb: 

RULE I (Weight Balancing): Choose the root so as to 

equalize the weight of the left and right subtree as much 

as possible, then proceed similarly on the subtrees. 

The weight of a subtree is the sum o f the frequencies of all 

nodes and leaves in this subtree. They describe an impleme ntation 

of this rule with time complexity O(nlogn) and space complexity 

O(n) and r eport that the rule tends to produce trees which are 

within a few p e rcent of the o ptimum . (5 %). 

In order to define rule I more formally we need some more 

notation. For 1 2 i 2 j < n 

w(i+1,i) = a i and 

w(i,j) a. 1 + 8. + a . + ... + a. 1 + S · + a . . 
1- 1 1 J- J J 

w(i,j) is the weight of the tree with nodes B., ... ,B. and 
1 J 

l e a ves (B . 1,B.), . . . , (B.,B ' +1). Rule I chooses as the root 
1- 1 J J 

of the subtree with nod e s Bi, ... ,B j a node BK, i < k < j, 

which minimizes 

/w(i,k-1) - w(k+1,j) 

Tie s are broken arbitrarily. 

Recently several other rules of thumb were suggested. 

RULE II (Min-Max) [Bayer , Schnorrl: Choose the root so as to 

minimize the maximum of the weights of the left and right 

subtree, then proceed similarly on the subtrees. 

More formally, rule II chooses as the root of the subtree 

with nodes Bi, ... ,B j a node Bk , i < k < j, which minimize s 

max (w(i,k-1), w(k+1,j» 
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Again, ties are broken arbitrarily. 

Example: Let n;4, ( (Xo ' B1 , .. ·, B4 '(X4) ; 

(1/6, 1/24, 0, 1/8, 0, 1/8, 1/8, 0, 5/12). The 

Min-Max tree is 

P
MM 

; 2 ; 48/24 

The weight balanced tree is 

PWB 49/24 

/24 

Both rules always choose nodes as the root which are close 

to the center of the distribution. 

I 
o ,;. 1 

In our case the center of the distribution goes through the 

leaf with weight (X3 ; 1/8. The weight of the left subtree 

of the Min-Max tree is 1/6 + 1/24 + 1/8 ; 1/3. The center 

of the sub-distribution (1 /6 , 1/2 4, 0 1/8 , 0) ~trictlY 
speaking this is not a distribution, since frequencies are 

not normalized] runs between the leaf with weight (xo ; 1 /6 

and the node with weight B1 ; 1/24. Therefore the node with 
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weight 1/ 24 is chosen as the root of the left subtree of 

the Min-Max tree. 

We could instead look for a node, which is close to 1/4 of the 

entire distribution as root of the left subtree (close to 

3/ 4 for the right subtre e), close to 1/ 8, 3/ 8 (5 / 8, 7/ 8) in 

the subtre es of the next level and so on. In our example 

this strategy would choose the node with weight e 2 = 1/ 8 

as the root of the left subtree. 

1 8 5 12 
PBI = 50/24 

1 6 o 

This strategy may be formalized as 

RULE III (BI-section) [Mehlhorn 77a); we refer the reader to 

[Mehlhorn 77a) for an exact definition. 

The first theoretical results about the behavior of binary 

search trees were obtained by Gilbert and Moore [Gilbert & 

Moore). They consider the case that the weight is concentrated 

in the leaves, i.e. e i = 0 for all i, and showed that in this 

case H < Popt ~ H+2 where H = rei· log 1/ei +ru j log 1/u j 

is the entropy of the frequency distribution. 

Later Rissanen [Rissanen) showed PMM ~ H+2 and Horibe [Horibe) 

showed PMM < H+2-(n+3).u . , where 
- ID1n 

min Cl •• 

O,,-j~n J 

The general case was first considered by Mehlhorn [Mehlhorn 75) 

who proved 1/ 10g3 • H 2 P
opt 

2 PWB < 1.44 H+2 . Bayer [Bayer) 

improved upon this. The best bounds presently known are: 

1/1og3 • H < P t - op 

max {(H-dr e .)/log(2+2-d );d EIR} < P 
1 opt 

[Mehlhorn 75) 

[Bayer) 

[Bayer) 
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P
MM 

< H + 1 + La j 
[Bayer J 

PBI < LS. 
1 

log 
L 

1 I S. + 
~ 

La . 
J cog 1 / a jj 

+ 1 + La j 

< H + + La. [Mehlhorn 77a J 
J 

All bounds are achievable for a wide range of frequency 

distributions. 

These results answer two important questions: 

1) They give an a-priori test for the performance 

of binary search trees, i.e. they enclose the average 

path length in a narrow interval. 

2) They prove that the approximation rules described above 

always produce nearly optimal search trees. 

The importance of the approximation rules was increased 

by a recent result of Fredman [Fredman, Mehlhorn 77b J. 

He describes an implementation of the Min-Max, Weight-Ba

lancing and Bisection Rule which runs in time O(n) . 

In sections II and III we study the Worst Case Behavior of 

search trees. We try to relate frequency and search time 

for every single node and leaf. In section II we derive 

upper bounds and in section III we derive lower bounds. 

In section IV we propose another construction rule: the 

e ntropy rule. Its average and worst case behaviour are 

studied. Finally, in section V we apply our results to 

digital searching. 
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II. Worst Case Behavior: Upper Bounds 

In the preceding section we surveyed results about the 

average case behavior of optimal and nearly optimal 

binary search trees. We pose the following question: 

What can we say about the time needed for a single 

search (worst case behavior) ? 

We give a simple example of a tree performing well on 

the average, but exhibiting extremely bad worst case 

behavior. 

Consider k 
n = 2 -1, Si = 0 for all i, 

-k u 1 = ... = a n = £ , a n+ 1 = ... =a 2n = 2 - E where E is 

a small positive number. Then H( a , ... , a ) ~ log(n+1). o n 

The following tree 

/ 
/ 

I 
/ 

I 

a
n

_
1 

a
n

_
2 

complete binary 
tree with n+1 
leaves of depth k 



has weighted path l ength 

k+n 
k + E £ . i + 2-k . (k+n) 

i=k+1 
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% log(n+ 1) + 1 . The results of Gilbert and Moore tell us 

that Popt ~ H, i.e. the tree is nearly optimal. However, a 

search ending in the left-most leaf takes n+logn steps, i. e . 

there is an exponential discrepancy between average and worst 

case behaviour: log n vs. n+log n. 

This phenomenon does not occur in the trees constructed 

according to the r u l es decribed above. 

Theorem 1 (Upper Bounds for the worst Case Behaviour of Binary 

Search Trees ) 

Let (a , S1' ... ' S , a ) be a frequency distribution and let o n n 

WB MM Bl b. (b. ,b. ) be the depth of node B. in the tree constructed 
~ 1 1 1 

from that distribution according 

bisection) rule. Let furthermore 

to the weight balancing (min-max, 

bOPT be the depth of node 
1. 

B. in an optimal tree ( ~ smallest weighted path length). 
1. 

WB MM Bl OPT . a. , a. ,a. and a . are defl.ned analogously. Let 
J J J J 

o = (1 + 15)/2 and ~ = 2/(V17 -3). Then (log 0) -1 ~ 1.44 

and (log ~)-1 % 1.20 

Case 1: Ea
j 

= 0, i.e. all a. are 0. 
J 

( 1. 1 ) b ~B < (log ~) -1 log 1/ S i + 0.41 2 

(1 • 2 ) bMM < log 1/S i 1. 

b
Bl 

< log 1/Si 1. 
( 1 • 3 ) 

bOPT < open, but 
1. 

compare the remark following the proof. (1 • 4 ) 

Case 2: LSi = 0, i. e. all Si are ° 
( 2 . 1 ) WB (log 0 ) -1 log 1/a. 2 a. < + 

J J 

2. 2) MM < (log 0) -1 log 1/a j 
+ 2 a. 

J 
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(2.3) BI < log 1/a j 
+ 2 a . 

J 

(2 . 4) OPT < (log 6 ) -1 log 1/a j 
+ 2 a. 

J 

Case 3: :!:a. 
J 
~ 0, LS . > 0 

1. -

( 3 . 1 ) b
WB 

< (log 6)-1 log 1/Si 
+0.157 

1. 

WB < (log 6) - 1 log 1/a
j 

+ 2 a. 
J 

(3.2) bMM < (log 6) - 1 log 1/ai 1. 

MM < (log 6) - 1 log 1/a j 
+ 2 

a . 
J 

(3. 3) bBI < log 1/S i 1. 

BI log 1/a j 
+ 2 a . < 

J 

(3.4) bOPT < (log 6 ) - 1 log 1/S i 1. 

OPT 
< (log 6)-1 log 1/a j + 2 a . 

J 

All bounds are achievable. 

Proof : The bisection rule (cases (1.3) ,(2 . 3) , (3.3)) was 

considered elsewhere [Mehlhorn 77al. 

For this proof it is convenient to work with unnormalized 

frequencies. Let Pi ' 1 2 i 2 n, and qj ' O 2 j 2 n, be non-

negative real numbers . We refer to Pi as the weight of node 

Bi and to qj as the weight of leaf (B j ,B j + 1 ). By normalizing 

we obtain a frequency distribution 

and 

where W = 



- 9 -

Case 1.1 : We want to compute the minimal weight of a tree 

which is constructed according to the weight balancing 

rule and features a node v of weight 1 at depth k. Let 

T~B be such a tree of minimal weight and let Wk be its 

weight. c
k 

• 
• • 

Consider the path form from node v with weight 1 to the root . 

Let c i be the weight of the i - th node on this path (1 2 i < k) 

and let y. be the weight of that subtree of the node with 
1 

weight c i which does not contain v . Let a (b) be the weight 

of the left (right) subtree of node v and let Yo = a+b, Co = 1. 

Lemma A: For i > 1 

i - 1 
(A) 2Yi + c. > 2 L (c j +Yj ) - max (c.,y . ) 

1 j=O 02j2i - 1 J J 

Proof : Consider the subtree with root ~ 



- 10 -

We may assume w.l . o.g. that v lies in the right subtree. 

Let a b e the weight of the l e ft-most node of p o sitive we ight 

in the right subtree and let S b e the we ight of the remainder 

of this subtree . 

Then 

(c. + y. ) 
J J 

Since the node with weight a was not chosen as the root 

and hence 

Since 

c. -
1. 

leads to the contradiction a < - c . < 0 
1. 

we have 

or 

2y l.' + C . > 2( a + S) - a 
1. -

The node a is either one of the c . 's or it is an element 
J 

of some Yj. Hence 

2Yi + c i > (c
i 

+ Y
i

) - max (c.,y.) 
0~j2.i-1 J J 

We want to solve the set A of recurre nce relations.Let 

(B) 
° 0 

= 1 

° 1 = ° 0 - 1/2 ° 0 = 1/ 2 

° 2 = ° 0 + ° 1 - 1/ 2 ° 0 

i-1 
0. = L 0 . - ° i_1 / 2 for i > 3 l. 

j=O J 

c 
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Lenuna C: For i > 0 

Proof: (by induction on i). The claim is obvious for i = O. 

(Remember c O= 1). For i > 0: 

where 

Hence 

Yi + c i > y. + c./2 . . - ~ ~ 

(A) 

> 

c£ + y£ = max 
0~j~i-1 

(c. +y . ) 
J J 

> max 
-0~j~i-1 

i-1 
L 

j=O 

O. 
J 

(0 

i=l 

= 00 i=2 

O. 1 i>3 
1-

Consider the following distribution of weights, n = 

(D) P1 = 01 1/2 

P3 = 00 = 1 

P2i+l = O. for 2 < i < k 
1 -

P2i = 0 for 1 < i < k 

o 

2k+1 

then the following tree can be constructed by the weight

balancing rule. 



1/2 1 

1 = ° 2 

~nOde v 
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Proof: (by induction on k). The claim is obvious for k=O, 

k=l and k=2. Assume k > 2. The weight difference between 

the left and right subtree of the tree drawn is 

° -k 

k-1 
L 

i=O 
If one chooses the node with weight 

k-1 
Ok as the root then the difference is L 0i ~ ok ~ 0k_1/2. 

i=O 

If one chooses the node with weight 0k_1 as the root then the 
k-2 

difference is ok - L 0i = 0k_1/2. Hence the tree drawn can 
i=O 

be constructed by the weight-balancing rule. 

W = 
K 

k 
L (c i + Yi ) is the weight of T~B. From Lemma C we 

i=O 
k 

infer W
k 

> L 
-i=O 

Hence 

W = 
k 

0. and from Lemma D we infer 
1 

k 
L 

i=O 
0. 

1 

It remains to compute the Wk's. 

o 

Lemma E: The Wk's satisfy the following recurrence equation: 
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Wo : 

W1 
: 3/2 

W2 
: 5/2 

Wk 
: 3/2 W

k
_

1 
+ 1/ 2 W

k
_

2 for k > 3. 

Proof: simple calculation o 

Let W(z): L wk·zk be the ge nerating function of the 
k >O 

sequence {Wk }k >O . The n 

2 W(z). (1-3z / 2-z / 2) 2 1-z / 4 

and hence 

1 - z2 / 4 W ( z) : _-'---'::.....L"":"" __ 

1-3z/ 2-z 2/ 2 

The roots of the denominator a re 

Z : (v'f7- 3 ) / 2 
1 z2 : (-v'f7-3) / 2 

the partial fraction e xpansion of W (z) is 

W (z) 
5'1 f2 

: +--
z1- z z2- z 

with 

f1 
: 

-5+3v'f7 

4v'f7 

f2 
: 

5+3v'f7 

4v'f7 

Then using 1 
1/z1 L (2..) i we get : 

z -z z1 1 i>O 

w
k 

3 1 g2 
: 

k+1 + k+1 
z1 z2 

-(k+1) (f 1 
k+1 

: z1 +f2(z1 / z 2) ) 
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Node v of weight 1 has depth k in tree T~. The weight 

of T~B is Wk and this is minimal. Node v has relative weight 

l/Wk . Consider now any node Bi of depth b i and frequency Si 

in a tree constructed according to the weight balancing rule. 

Then 

and hence 

Thus 

log l/S i > log Wb . 
1. 

-1 
~ (log~) log l/S i + db. 

1. 

where 

~ l/zl ~ 2/(V17-3) 

and 

The sequence dk converges to 

-1 ~ 
-(log~) . log 5'1 - 1 ~ 0.396 , 

it reaches its maximal value for k ~ 2 

d 2 % 0.412 

Case 1.2: This case is simple. The Min-Max rule chooses as the 

root of the subtree with nodes Bi, ... ,B j a node Bk , i < k < j, 

which minimizes max(w(i,k-l) ,w(k+l,j». Apparently, it is 

always possible to choose Bk such that 

max(w(i,k-l),w(k+l,j» ~ w(i,j)/2 

Consider any node Bi of depth b i and frequency Si in a tree 



constructed according to the min-max rule. 

Then by the above 

B. < 2-bi 
1. 

and hence 

b. < log 1/Bi 1 

The example n = 2k -1 

C-k+1 

for i even 

Bi = 
for i odd 

shows that the bound is achievable. 
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Case 2.1: The proof is very similar to the proof of case (1.1). 

WB 
Let Tk be a tree of minimal weight featuring a leaf of weight 

1 at depth k. Let W
k 

be the weight of T~B 

"
"-

"-
"

\ 

~YO=1 
leaf v 
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We only state the main equations in the proof and leave 

the details to the reader. 

Lemma A: For i > 1 -
i -l 

(A) Yi 
> L Yj 

- max Yj -
j=O O.::.j.::.i-l 

Proof: As in case (1.1), but take ~ to be the weight of the 

left-most leaf of positive weight in the left subtree. 

Let 

° 0 = 

(B) 
° 1 = 0 

° 2 = 0 

° 3 = 1 
i-2 

0. = L 0. for i > 4 
~ j=O J 

Lemma C: For i > 0 

(C) Yi > 0. - ~ 

Proof: The claim is obvious for i = 0,1,2. For i ~ 4 the 

proof is a simple induction. It remains to consider the 

case i = 3. Up to symmetry there are four possible trees. 

Note that Y1 ' Y2 > 0 by our basic assumption that Si+~ i+Si+lto 

for all i. 

y 

Since it was possible to con
struct this tree we must have 

1 1+Yl -Y2-Y31~1+Y l+Y 2-Y3 

and hence 

Y2+Y3- 1- Yl > 1+Yl+Y2-Y3 

Thus 

Y3 ~ 1 + Y1 > 1 

D 



(b) 

(c) 

(d) 
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As in (a) one shows 

Y3 ~ , + Y, ~ , 

Since the left subtree 
was constructed according 

the weight-balancing rule 

we have 

'+Y'-Y2 ~ ly 2+y, - , I 
and hence 

'+Y'-Y 2 < Y2 +Y, - , 
Thus 

Y
2 

> , 

and by (A) 

Y3 ~ 

As in (a) one shows 

Y3 ~ , + Y2 ~ , 

Lemma D: Consider the following distribution of weights, 

qo = £ 

q, = , 
q2 = £ 

q3 = , + £ 

i-2 
qi = L qj 

j=O 
for i > 4 

where £ is an arbitrary positive real. Then the following 

tree can be constructed by the weight-balancing rule. 

c 
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q 

l+ E 

Proof: As in case (1.1). 

k 
T

WB 
W

k = L Yi is the weight of From Lemma C we infer 
k i=O 

k k 
Wk .:. L o. and from Lemma D we infer Wk < L O. 

i=O 1 -
i=O 1 

any positive real E . It remains to compute the sums 
k 

" k = L 0i· 
i=O 

+ 

From now on one proceeds as in case (1. 1 ) and obtains 

"k = -(k+l ) 
zl (f 1 + ~2 

k+l 
(zl / z 2) ) 

where 
zl (-l+VS) /2 z = (-1-'1'5) /2 

2 

'51 
= (s-VS) /10 If 2= (s+VS) /10 

Hence 

a . < (log 0)-1 log l /a. + d 
J J a j 

where 

o = 1/ z 1 = 2/ (VS - 1) and 

E for 

c 

The sequence {dk}k >O converges to 
-1 

- (log 0 ) log ~ 1 - 1 :t 1.67. 

It assumes it maximal value 2 for k = 2. 
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Case 2.2: The Min-Max rule and the weight-balancing rule 

are identical in the case that 

of case 2.1 applies. 

LS. = O. Hence the analysis 
~ 

Case 2.4: Let T~PT be an optimal (with respect to average 

search time) tree featuring a leaf v of weight 1 at depth k. 

Let W
k 

be the weight of T~PT • Otherwise, we use the notation 
k of case 2.1. Then Wk L y . . 

i=O ~ 

Lemma A: For i > 3: y. > W. 2. 
1 - 1-

Proof: Consider the subtree with root c
i

. We may assume w.l.o.g. 

that c
i

_ 1 is the right son of c i . c
i

_ 2 is either right or left 

son of c. 1. 
~-

a) c
i

_
2 

is right son of c
i

_
1 

This tree must have no larger weighted path length than the 

following 



Hence W. 2 < y . (Note that the c
J
' are 0) 

1- - 1. 

b) c. 2 is the left son of c. 1 
1- 1-
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This tree must not have larger weighted path-length than 

the following 

Hence W. 2 < y .. 
1.- - 1. 

It is also easy to show that Y2 > Y1 (by case analysis) and 

that Y1 > 0 (by definition) . 

From now on the proof proceeds exactly as in case 2.1 except 

for the proof of Lemma D. There one shows by a very simple 

inductive argument that the tr~:, ~ 

qi 6bqi+1 qk 

is optimal for the weights Qi,Qi+1, ... ,qk. 

Case 3.1: We first derive the bound for b~B . We use the 
l. 

notation of case 1.1 

Lemma A: For i > 1 

i-1 
2 L (c. +y .) 

j=O J J 
- max (c.+2y.) 
0~j2.i-1 J J 

Proof: Consider the subtree with root 
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We may assume w.l.o.g. that v lies in the right subtree. 

Consider the left-most node in the right subtree such that 

either the node itself or a leaf to its left which still 

belongs to the right subtree has positive weight. Let a ' 

be the weight of that node, let aU be the total weight of 

the leaves to the left of that node and let S be the weight 

of the remainder of the right subtree. Let a = a ' + a U > O. 

Since the node with weight a ' was not choosen as the root 

and hence 

a + S - y. c y. + C. + a U - S 
1 - 1 1 

2Yi + c i > 2(a+S) - a ' - 2' a u 

aU is by definition the weight of a single leaf. This leaf 

belongs to one of the Yj's. Hence a ' either also belongs to Yj 

or is c j . In either case 

a ' + 2a " c max (c . +2y.) -
° 2 j 2 i - 1 J J 

Let (B) °0 1 

° 1 = 1/2 

°2 = 1 

0 . = i-2 0. 
~ j~O J 

for i > 3 

Lemma C: For i > 0 

Proof: Obvious for i = 0, by case analysis for i = 1 and 

D 

i = 2 and by induction for i > 3. D 

Lemma D: Consider the following distribution of we ights, 

n = k+1 

go = 1/ 2 = ° 1' gl = g2 

P1 = 0, P 1 = 1, Pi = 0 

= O. 1 for B < i 
~-

for 2 c i c k+1 

c k+1 
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Then the following tree may be constructed according to 

the weight-balancing rule. 

c(~ 

Proof: Obvious c 

k 
Wk = ~ (c. + Yi) 

i=O 1 
is the weight of T:B. As above, we 

k 
infer W = k i=O 

0i" From now on one proceeds as in case 1.1 

and obtains! 

where (-1 + VS)/2 (-1 - VS) /2 

~1 = (3VS + 5)/20 S:>2 (-3VS + 5) /20 

Hence -1 
b i ~ (log 8 ) log 1/Si + db. 

1 

-1 k+1 
where d k = (log 8 ) [-lOg(S'1 + ~2(Z1/Z2) )]-1 

The sequence {dk}k>O converges to -(log 8 )-1 . log 5'1 - 1 %0.1125. 

It assumes its maximal value 0.157 for k = 1. 

Next we derive a bound on a~B We use the notation of 
J 

case 2.1 

Lemma A: For i > 2 

(A) 2y. + 
1 

c. > 
1 -

i-1 
2 . ~ 

j=O 
max (c . +2y.) 

0~j~i'1 J J 

Proof: As above where the bound on b WB was derived. 
1 

however, that the argument cannot be applied to the 

Note 

subtree 

with root c 1 since the subtree which contains Yo does not 

contain a node. 

From now o n the proof proceeds exactly as in case 2.1 . 



Case 3.2: We only show how to derive the bound on 

MM MM 
b i ' the bound on a j being similar. We use the 

notation of case 1.1 . 

Lemma A: For i > 1 

(A) c. > 
l. 

i-l 
L 

j=O 
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Proof: Define at and a " as in case 3.1 . Then a ' + a i' = a > o. 

a + B < max (Y i + c i + a",B) 

and hence 

a + S - a" < y. + c . 
- l. l. 

a " is by definition the weight of a single leaf. This leaf 

belongs to one of the Yj 's. 

Hence a" < max Yj - O~j.s.i -l 

Let (B) 00 = 1 

01 = 1 

O2 = 2 

k-2 
O. = L O. for i > 2 . 

l. l. -i=O 

From now on one proceeds exactly as in case 3.1 . One obtains 

where 

Hence 

where dk 

zl 

5'1 

b . 
l. 

-(k+l) ;:: Z, 
= (-1 + -15) / 2 

2/'15 

< - (log 0 ) -1 log 

-1 
[-log(fl = (log 0 ) 

z2 = (-1--15)/2 

5'2 = -2/-15 

1/ 8i + db. 
l. 

k+l 
+'?2(zl / z2) )]-1 



The sequence d
k 

converges to 

-1 
-(log 6) log fl - 1 ~ -0.768. 

It assumes its maximal value for k ; 0, do ; o. 

Case 3.4: 

We only derive a bound on b OPT , the bound on 
~ 

a~PT is derived similarly.Let T~PT be an optimal 
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tree featuring a node of weight 1 at depth k. Let Wk be the 

weight of T
OPT 0 h . k . t erWlse, we use the notation of case 1.1. 

k 
~ (c. +y.). 

i;O ~ ~ 

Lemma A: For i > 2: c. + y. > W. 2 
1. .1. - 1-

Proof: Analogous to the proof of Lemma a in case 2.4. We 

refer to that proof. In case a) of that proof 

W. 2 + c. 1 < y, + c, , 1- 1- -..L ..L. 

in case b) of that proof 

W. 2 + c. 2 < y. + c,. 
1- 1- - 1. ... 

Note that the inequality is valid for i > 2 since ~ exists. c 

It is also easy to show (by case analysis) that 

From now one proceeds exactly as in case 3.2 • 

Theorem 1 gives precise information about the worst case 

behavior of weight-balanced, Min-Max, Bisection and optimal 

trees. With respect to optimal trees the case ~a.; 0 
J 

was left open. We can give only a partial answer in that 

case. Of course, case 3.4 applies and hence 

b?PT < (log 6)-1 log liS. 
~ ~ 

c 
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However, we do not know if this bound is achievable. 

We are only able to show that the multiplicative constant 

is at least 1.29. Thus the worst case behaviour of optimal 

trees is worse than that of nearly optimal trees. Consider 

the following zig-zag tree 

c o 

c 1 = 1/2, c 2 = 1 and 

k 
+ 2· L 

i=l 

2cl.' = c. 2 + W. 2 for i > 3. 1- 1-

= 1, 

Then the tree above is optimal . (The proof is a tedious case 

analysis) • 

Since 2c. = W. -W. 1 for i > 1 
1 1 1- -

W. - W. 1 = 1/2(W. 2-W' 3) + w. 2 1 1- 1- 1- 1-

for i ~ 3. With w(z) = 2: W. zi 
DO l. 

W (z) = 
Wo+(W 1-Wo ) z+(W2-W

l
- 3 /2W

o
) z2 

l-z-3/2z 2 + 1/2z3 

2 + 2z + z2 

where zl = -1, z2 = 2+Vi, z3 = 2-V2. Hence 

Wk :::> c· (11 z 3) k ~ c· 1 ,7k 

for some constant c and large k. This shows that whenever 

bOPT 
< c 1 'log liB. + 

1. - l. c 2 

holds for all optimal trees then c 1 > (log 1/1.7)-1 ~ 1.29 
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III. Lower Bounds 

In this section we derive lower bounds on the search time in 

binary trees. We prove a lower bound on the time required for 

a single search and give an alternate proof for Bayer's bound 

on the average search time. Our proofs are based on a well

known proof for the noise-less coding theorem [Karneda & Weih

rauchl • 

For this section (aO,B1,a1, .•• ,an_1,Bn,an) is a fixed proba

bility distribution and T is a search tree for this distri

bution. As before, b i is the depth of node Bi and a
j 

is the 

depth of leaf (B
j

,B
j

+ 1). 

Lemma: Let c E R, 0 < c < 1 , and -

Si 
b· 

= ( (1 c) /2) l..c 1 < i < n - -
a· 

a. = ( (1 - c) /2) J 0 < j < n 
J - -

Then Si' a j .:: 0 and I:S i + I:a j = 1, Le. (ao ' S1 ,a 1 ,···, Sn,an ) 

is a probability distribution. 

Proof: A simple induction on n. 

Theorem II (Bayer) (A lower bound for the average search time): 

Let B = I: Bi , P = I:Bi (b i +1) + I:a. a. and 
J J 

H = I:Bi" log 1/B. + I:a. 
l. J 

log 1/a
j

. Then 

-d max{(H-dB)/log(2+2 ); d E IR } < P 

Proof: Let Si and a
j 

be defined as in the lemma above. Then 

b i + 1 = 1 + (log S. -l. 
log c)/log c 

a j 
log a/ log c 

where 
c ( 1 - c)/2 

c 



Then P = L8. (b.+l) + 
l l 
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B(l-log c/log e) - l/log e[-L8l. logS.-La. log a.] 
l J J 

> (l/log(l/e)) [-B(log e - log c) + H] 

because of -LX. log x. < -LX. log x. for LX. = LX l. = 1, 
11- 1 1 1 

X. > 0, Xl' > 0. [cf. Kameda & Weihrauch]. Taking d = log(e/c) 
l -

and observing that c/e = 2c/(1-c) ranges over all non-negative 

numbers as c ranges over [0,1] yields the claim. c 

Unfortunately there is no closed form expression for dmax 
which maximizes the left hand side of the inequality in 

theorem II. Taking d = 0 gives H/log 3 < P [Mehlhorn 75] 

and taking d = log(P/2B) gives H < P + B log e - 1 + log (P/B) 

[Bayer] . 

We now turn to the behavior of single searches. In its full 

form the inequality of theorem II is: 

<L8.[b.+1l 
- l l 

+La.[a.] 
J J 

We want to show that the inequality holds "almost" componentwise 

for the expressions in square brackets. More precisely, let hER, 

h > 0 and 

and 

Then 

Nh = {i;(-log 8. - d - h)/log(2+2-d ) > b. + 1} 
l l 

-d 
{j; (-log a

j 
- h)/log(2+2 ) > a

j
} 

< 
-h 

2 

i.e. for nodes and leaves with total probability ~ 1 _ 2-h 

the inequality of theorem II is "almost valid" componentwise. 

"Almost valid" means: Up to the additive factor -h/log(2+2-d ) . 

In order to prove the claim we set d=log(c/c) with c = (1-c)/2 

and 0 < c-l. Then d = log e - log c and log(2+2-d ) = log (l/e). 
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Simple calculation shows that the definitions of Nh and Lh 

are equivalent to 

and 
-h Lh = {j; a. < 2 u . } 

J J 

where 8
i 

and U
j 

are defined as in the lemma above. Then 

1 

> 

a · 1 J 

Theorem III: (Lower Bound on the search time for single 

searches). Let c,h E R with 0 < c < 1 and h > O. Define 8i 
and a . as in the lemma above. Let 

J 

Then L 
iENh 

Nh 

Lh 

{i; Si 

{ j ; a j 

< 2 
-h 8i } and 

< 2 
-h U

j 
}. 

-h 
< 2 • 

It is worthwile to contrast this theorem with the upper 

bounds of theorem 1. For simplicity suppose LS. = O. Then 
1. 

the bisection rule yields a tree with the property that the 

search time for leaf (B j ,B
j

+ 1 ) is bounded above by log 1/U j + 2. 

Conversely, consider any tree for this distribution. Then for 

a set of leaves having weight ~ 1/2 (3/4), i.e. for 50 (75) % 

of the searches, the search time is larger than log 1/a. - 1 
J 

(log 1/a
j 

- 2). Thus the bisection rule produces trees whose 

worst case behavior is close to optimal and so do the other 

rules. 

" 
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IV. The Entropy Rule: Average and worst Case Behavior, 
====================================================== 

Experimental Results 
==================== 

In this section we propose yet another construction rule. 

It is based on information theoretic considerations. A 

comparison with a name is a decision with three possible 

outcomes: <,=,>. The probabilities of the three outcomes 

are the weight of the left subtree W
L

' the weight of the 

root WROOT and the weight of the right subtree W
R 

respectively, 

the information gained by this comparison is equal to the 

entropy H(WL,Wroot,WR)' 

Rule IV (Entropy): Choose the root so as to maximize the 

local information gain (H(WL,WROOT,WR)' then proceed 

similarly on the subtrees. 

This rule was also proposed by Horibe 1J!0ribe 77~. The pure 

entropy rule behaves quite well; compare the table of experi

mental results below. However, already a superficial analysis 

shows that the pure entropy rule has some undesirable properties. 

Consider the following example: S1 = S2 = €, S3 = 1 - 2€, 

a o = a 1 = a 2 = a 3 = O. The entropy rule chooses B2 as the root. 

The entropy tree has weighted path length 2 - €, the optimal 

tree has weighted path length 1 + 3£. Since similar situations 

happen quite frequently for small n we rather study a modi

fied entropy rule. The modification is based on the following 

lemma. 

Lemma: Let (a
o

,S1, ... ,Sn,an ) be a probability distribution. 

1) If Si ~ max (ao + S1+···+Si_1 + a i _ 1 ,ai + Si+1+···+Sn + an) 

then there is an optimal tree with root B .. 
:I. 

then there is an optimal tree with leaf (B j ,Bj+1) at depth 2 or 

less. 

Proof: We only 

that the depth 

prove 2); the proof of 

of leaf (B.,B.+ 1 ) is > 
J J -

case 1) is similar. Suppose 

3. Let u,v,w be father, 
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grandfather and grand-grandfather of leaf (B j ,B j +1 ). Con

sider the subtree with root w. We may assume w. l.o.g. that 

v is the right son of w. 

Case 2.1: u is the left son of v. 

A~ 
& && b 

Then (B j ,B j +1 ) is either the subtree ~ or ~ . It is 

easy to see that the transformed tree is at least as good 

as the original one. 

Case 2.2: u is the right son of v. 

WUI."-
v 

Again it is easy to see that the transformed tree is as least 

as good as the original one . 

Hence in either case it is possible to move up leaf (B
j

,B j +1 ) 

one level without distroying optimality. 

The Lemma suggests the following modification of the entropy 

rule. 

RULE V (Modified Entropy): If a node B. exists which satisfies 
l. 

clause '1 of the lemma then choose it as the root. If a leaf 

(B j ,B j +1 ) exists which satisfies clause 2 of the lemma then 

choose the root among B. and B'+1 . B. is choosen if 
J J J 

a o + Sj + .. ·+Sj > Sj+1+···+Sn + a n and Bj +1 otherwise . 

In all other cases choose the root so as to maximize the local 

information gain H (WL ' Wroot ' l\'R). Then proceed similarly on 

t he subtrees. 
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Next we present the results of some experiments with 

rules I to V.[Table IJ. We applied rules I to V to the 

200 distributions described by Gotlieb and Walker. We 

refer the reader to [Gotlieb & ~lalkerJ for a detailled 

description of the test data. 

Note that PME < PENT::' PI1M ::. PWB ::. PBI in all but a few 

cases. The first (second, third, fourth) inequality does 

hold except in O( 9, 4, 0) cases. Only in 6 cases 

PME ~ PMM is not true. 

Setting POPT to 100, the average and maximal values of 

PME,PENT,PMM,PWB and PBI are: 

I I I 
POPT PME PENT PMM PWB PBI 

average 

value of 100 101 .4 102.2 104.5 107.7 119.7 

P/POPT ·100 

maximal 

value of 100 104.2 105.6 109.0 128.6 154.7 

P·100 

POPT 
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Optimal Rule V Rule IV Rule II Rule I Rule III 
path Modified Entropy Min-Max Weight Bisection 

length Entropy Balancing 

Set 1 

Case 1 4.29 4. 32 4.45 4.55 4.93 6.09 

2 6.61 6.63 6.63 7.02 7.09 7.65 

3 5.87 5.94 6.01 6. 11 6.12 7.19 

4 6.07 6.17 6.17 6.32 6.42 7.17 

5 6.64 6.69 6.71 6.79 6.82 7.40 

6 5.96 6.01 6.02 6 . 31 6.59 7.21 

7 5.83 5.91 5.92 6.14 6.33 7.21 

8 6.26 6.41 6.52 6.72 6.85 7.65 

9 7.09 7.34 7.47 7.45 7.44 8.30 

10 7.34 7.39 7.39 7.51 7.52 7.65 

Set 2 

Case 1 4.63 4. 65 4.77 5.00 5.66 6.60 

2 7.26 7.30 7.30 7.64 7.80 8.06 

3 6.25 6.32 6.33 6.68 6.84 7.52 

4 6.40 6.51 6.51 6.87 6.88 7.49 

5 7.02 7.07 7.09 7.21 7.24 8.03 

6 6.54 6.61 6.61 6.88 7.03 7.67 

7 6 . 45 6.48 6.50 6.80 6.99 7.68 

8 6.58 6.86 6.95 6.84 6.87 7.82 

9 7.12 7.42 7.50 7.35 7.32 8.03 

10 7.70 7.79 7.79 7.87 7.89 8.05 

Set 3 

Case 1 4.00 4.04 4.08 4.23 4.54 6.14 

2 6.42 6.46 6.49 6.56 6.99 7.37 

3 5.56 5.61 5.69 5.83 5.85 6.63 

4 5.76 5.84 5.85 5.98 6.21 6.58 

5 6.22 6.33 6.40 6.28 6.37 6.86 

6 5.65 5.68 5.75 6.02 6.25 7.10 

7 5 . 59 5.62 5.65 5.91 6.02 7.08 

8 6 . 09 6.23 6.38 6 . 39 6.62 7.65 

9 7.01 7.31 7.38 7.22 7.26 8.39 

10 6.97 7.04 7.05 7 . 10 7.09 7.32 
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Optimal Rule V Rule IV Rule II Rule I Rule III 
path Modified Entropy Min-Max Weight Bisection 

length Entropy Balancing 

Set 4 

Case 1 5.04 5.04 5.08 5.38 5.88 6.67 

2 7.42 7.50 7.50 7.69 7.85 8.05 

3 6.55 6.61 6.61 6.81 6.98 7.56 

4 6.65 6.74 6.74 7.03 7.18 7.57 

5 7.27 7.32 7.35 7.45 7.46 8.02 

6 6.55 6.56 6.59 6.87 7.08 7.67 

7 6.75 6.81 6.82 7.05 7.18 7.78 

8 6.73 6.92 7.05 6.91 6.96 8.02 

9 7. 11 7. 39 7.50 7.29 7.31 8.15 

10 7.87 7.91 7.91 8.02 8.03 8.16 

Set 5 

Case 1 4.14 4.18 4.28 4.32 5.32 6.40 

2 5.97 6.02 6.05 6.19 6 .75 7.32 

3 5.75 5.84 5.93 5.95 6.28 7.26 

4 6 .00 6.10 6. 11 6.44 6.51 6.93 

5 6.66 6.72 6.79 6.87 6.96 7.65 

6 5.33 5.41 5.46 5.61 5.97 7.01 

7 5.41 5.48 5.53 5.90 6.37 7.29 

8 5.81 5.92 5.97 6.05 6.36 7.14 

9 6.99 7.17 7.31 7.22 7.24 8.09 

10 7.27 7.32 7.32 7.42 7.41 7.63 

Table 1: Weighted path length Popt ' PWB ' PMM , PBI , PENT and PMENT • 

Remark: For comparison with the results of Gotlieb & Walker in this 

table we used their definition of the weighted path length: 

n 
P = L ~. (b.+1) + 

i=1 l. l. 

n 
L a. (a.+1) (instead of our definition of page 1). 

j=O J J 
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We now turn to the analysis of the modified entropy rule . 

Theo rem III (Average case behavior of the entropy rule). 

Case , : La j 
= 0 PME < H + -

Case 2 : LSi 0 PME < H + 2 -

Case 3 : La . > 0, LSi > 0 
~ 

PME < c, H + c 2 

where c, = , /H (' /3, 2/ 3) % , , 08 and c 2 = 2. 

Proof : It is easy 

rule and modified 

to see that in the case LS. = 0 the entropy 
~ 

e ntropy rule is identic al with the min-max 

rule. Hence PME ~ H + 2 in that case. 

We treat cases' and 3 together. We want to prove PME < c,·H + c 2 

for suitable constants c, and c 2 by induction on n. 

n = 0 or n = , : Then P < , and hence c 2 ~ , suffices. 

n > , . Suppose Bi is the root of the tree constructe d according 

to the modified entropy rule. Let WL 

WR = a i + Si+,+···+Sn + a n' 

(o. ', B', ••• , S ~ " a. ~ ,) o 0 l- 1-
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P
L 

the weighted path length of the left subtree and PR 
the weighted path length of the right subtree. Then 

Hence 

It remains to show 

a) Bi was chosen as the root because Bi ~ max (WL,WR) • 

Then WL ' WR ~ 1/2. If Bi < 1/2 then H(WL,Bi,WR) ~ H(1/2,1/2,O) 

and hence c 1 ~ 1 suffices. If Bi > 1/2 then c 2 ~ 1 does it. 

b) Bi was chosen because a i ~ WL + Bi ~ WR - a i (The symmetric 

case that a
i

_ 1 > Si + WR ~ WL - a i _ 1 is treated similar). Then 

either i<n and the following tree was constructed 

or i ; n and the following tree was constructed: 

(B ,Bn +1 ) 



- 3 6 -

In the first case let P . be the weighted path l e ngth of 
~ 

tree T. , i = ',2 Then 
~ 

I.H. 

+ (W -
R 

< c,[H(" o, S""" Sn' ''n) - H(WL, Si' ''i, Si+'' wR-" i- Si+') 1 

< 

= 2 (' + (WR - " i) - " i)' He r e we used H (x , '-x).::.2x if x::.' /2 . He nc e 

< 0 if c, ~ , and c 2 > 2 . 

In the second case let P, be the weighted path length of 

tree T,. Then 

P < , + W
L 

. P, 

I.H. 
< 

< 
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Hence c 2 ~ 2 suffices. 

c) Bi was chosen because it maximizes H(WL , 8i ,WR). We 

distinguish two subcases. 

c1) There exists a j,1 ~ j ~ n, such that 

a j + 8 j + 1+·· · +8n + a n < 1/ 2. 

8 j < 1/ 2. Hence 

and 

Since case a) does not apply 

H(WL , 8l.' ,WR) > H( a + 81+ .•• +a, 1, 8 " a ,+ 8 '+1+ ... +8 +a ) o )-) )) n n 

> H(1/2, 1 / 2) = 1 

Hence c 1 ~ 1 suffices . 

c2) There exists no such j. Hence there exists a j such that 

a o + 8 1 + .•. +a j _ 1 + 8 j ~ 1/2 and 

8 j + 1 + a j +1+···+8n + a n < 1/ 2 

Assume w.l.o . g. that 

Since case b) does not apply we have 

and hence 

So we have 

H(WL , 8i ,WR) > U(a + 81+ ... +a, 1, 8, , a, + 8' +1+ . · ·+8 + a ) o )-) )) n n 
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> H( Cl + Sl+·· .+Cl. l+S, , Cl· + S · 1+·· .+S +Cl ) o J- J J J+ n n 

~ H(l/3, 2/ 3) 

Hence c 1 > 1/H (l / 3, 2/3) suffices. 

In the case that LCl j 
; 0 only subcases a) and cn arise. 

Hence c 1 
; c 2 

; 1 do the job. In the general caSe we have 

to choose c 2 
; 2 and c 1 

; 1/ H(l/3,2/3) . 
The problem whether PHE < H + 2 is true in the general case 

is open. In view of the empirical evidence a positive answer 

seems like ly. 

Next we investigate the worst case behavior of the entropy rule. 

Here we can only present results which are probably far from 

being final. 

Theorem IV (Worst Case Behavior of Entropy Trees) : 

Let b~ (a~) be the depth of node Bi (leaf(B j ,B j +1 )) 

in a tree constructed according to the modified entropy rule 

Then 

b~E < (l/log(l / 1-0) · log l/ Si + 1 

a~E < (1/ log (1 / 1-0 ) ·log 1/ Cl j + 2 

where ~ is defined by H( ~ ,l-~ ) + ~ ; H(l/3,2/ 3). 

Then ~~ 0.195 and l / log(l / l- ~ )) ~ 3.19 . 

Proof: The proof is similar to the one given in HehlhornD~. 

We need the following Lemmas. 

Lemma 1: Let T be a binary tree which is constructed to the 

modified entropy rule . Let B be an interior node with distance 

2 from the root. Let wo be the weight of T, w1 be the weight 

of the direct subtree of T which contains B, and let w2 be 

the total we ight of the tree with root B. Then either 

c 
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Proof: We distinguish three cases according to which clause 

of the definition of the modified entropy rule was used 

in the construction of T. 

Case 1 : There is a 6
i 

with 6. > max 1m +6 1+ •• . +6. 1+m. l' .... 0 1- 1-

Then Bi is taken as the root. Hence 6
i 
~ w1 and w1 ~ 1/2. 

Case 2: There is a mj with m. > maxim +6 1+ .. • +6. , 6. 1+ ••. +6 +6 ). 
J - 0 J J+ n n 

Then the leaf IB j ,B j +
1

) is at depth 1 or 2. If B is in the 

same direct subtree of T as IB
j

,B j +1 ) is in then w
2 

< 1/3, 

otherwise w1 ~ 1/2. 

Case 3: The root was chosen because it maximizes the entropy. 

Assume w.l.o.g. that B is in the right subtree of T. Then 

by the argument used in the proof of theorem III. 

Since 

by the grouping theorem we have 

o 

Lemma 2 : Let T be a binary tree which is constructed according 

to the modified entropy rule and let B be an interior node 

with "distance b from the root. Let w be the weight of the 

subtree with root B. Then 

w < 11 - 1;) Ib-1) 

Proof: The claim is obvious for b .s. 1. Otherwise, let 

Bk ' Bk , ••• , Bk = B be the nodes on the path from the root 
o 1 b 

to B and let W. be the weight of the subtree with root Bk .• 
~ 

~ 
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We show: for all i either 

or 

For i = 2 this follows from Lemma 1. If i > 2 then either 

w
i

-
2 
~ (1_ ~ )i-2 or w

i
_

1 
~ (1_~)i-1 by induction hypothesis. 

In the second case we are done. In the first case we apply 

Lemma 1 and obtain: 

either 

or 

Hence 

w
i

_
1 

< (1-0 w. 2 < 1-

< 1/3 • w. 2 < (1- s )i 
1-

Together with the observation that the weight of node Bi 

(of leaf (B j ,B
j

+1)) is certainly not larger than the weight 

of the subtree with root Bi ( with leaf (B j ,B j +1 ) at depth 1) 

Lemma 2 yields the theorem. 

c 

c 
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v. Implementations 
================== 

In this section we do a comparative study of different 

implementations of the construction rules. 

Rules I, II, III : Suppose, node Bi is taken as the root. 

i-1 i-1 
Then the weight of the left subtree is I: "j + I: Bj , 

the weight of 

The weight of 

(decreasing) 
i-1 

that I: "J' 
j=O 

j=O j=1 
n n 

the right subtree is I: "j + I: B. . 
j=i j=i+1 J 

the left (right) subtree is an increasing 

function of i. Let io be the largest i such 
i-1 

+ I: 8. is < 1/2, let iO be 0 if no such 
j=1 J 

i exists. Then rules I and II choose either B. or B. +1 as 
10 10 

the root. For rule III we have to replace 1/2 by some number 

which is determined dynamically by the algorithm. Hence the 

problem of determining the root essentially reduces to the 

following problem : 

Problem: Let F : {1, ••. ,n} ? ~ be monotonically increasing 

with 0 < F(1) ~ F(n) < 1. Find the largest i such that 

F(i) < 1/2, say i O. 

Three strategies were proposed to solve this problem. 

Binary Search: We try i = n/2 first. 

If Fln/2) > 1/2 then do a binary search on the left subinterval 

[1, n/2l, otherwise on the right subinterval. 

Binary search determines iO in O(log n) units of time. 

Linear Search: Search for io simultaneously from both ends, 

i.e. try i = 

search finds 

1,n,2,n-1,3,n-3, ... in that order. Linear 

iO in 0(min(io ,n-io +1)) units of time. 
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Binary search leads to the following recurrence relation 

for the worst case running time 

T(n) < max [T(i-1) + T(n-i) + O(log n) ] 
l <i <n 

which has the solution 

T(n) ; O(n log n) 

The worst case behavior occurs if nodes with small (i % 1) 

or large (i ~ n) index are chosen repeatedly as the roots. 

Linear search leads to the followi ng recurrence relation 

for the worst case running time 

T(n) < max [T(i-1) + T(n-i) + 0(min(i,n-i+1)) ] 
l <i <n 

which has the solution [Mehlhorn 75] 

T(n) ; O(n log n) 

The worst case behavior occurs if nodes Bi with i % n/2 are 

chosen repeatedly as the roots. 

Exponential Search + Binary Search [Fredman] : 

Search for io with exponentially increasing steps from both 

ends, i . e . try 1, n, 1+1, n-1, 1+2, n-2, 1+4, n-4, 1+8, n-8, .. • 

in that order. This search determines an interval 

[1+2P , 1+2P+1 ] ([n_2P+ 1 , n-2P]) for iO in O(p) steps. 

Then do a binary search on this interv al. (O(p) steps)). 

This search method determines iO in O(min(log io,log(n-io ))) 

units of time. 

It leads to the following recurrence relation for the worst 

case running time 

T(n) < max [T(i-1) + T(n-i) + O(log min(i,n-i)) ] 
l <i <n 
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which has a linear solution [Fredmanl. 

T(n) = O(n) 

RULE IV: Rule IV determines the root so as to maximize 

H(weight of the left subtree, weight of the root, weight 

of the right subtree). This function is not a monotone 

function of the index of the root. Therefore, one has to 

try every i, 1 ~ i ~ n, in order to determine i O. This leads 

to the following recurrence relation for the worst case 

running time. 

T(n) < max [T(i-1) + T(n-i) + nl 
1<i<n 

which has the solution 

So far we surveyed known results about the worst case behavior 

of different implementations. We turn now to average case 

behavior. We analyse the average case running time under the 

(conservative) assumption that the root index is uniformly distri

buted in the interval {1, ... ,n } . The same results hold under 

the assumption that all frequency distributions are equally 

likely, though calculations are more tedious. 

Under the above assumption the following recurrence relations 

describe the average case behavior of the implementations. 

Rules I, II and III: 

Binary Search: 

Linear Search: 

n 
T(n) = 1/n L (T(i-1)+T(n-i)+10g n) 

i=1 

solution: T(n) = O(n) 

n 
T(n) = 1/n L (T(i-1)+T(n-i)+0(min(i,n-i+1») 

i=1 

solution: T(n) = O(n log n) 
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n 
Exponential Search: T(n) = 1/n L (T(i-1)+T(n-i)+ 

i=1 

solution: T(n) = O(n) 

n 
Rule IV: T(n) = 1/n L (T(i-1)+T(n-i)+n) 

i=1 

solution: T(n) = O(n log n) 

We summarize the running times in table 2. 

Worst Case 

Rules I, II, III 

Binary Search O(n log n) 

Linear Search O(n log n) 

Expon. Search o (n) 

Rule IV O(n2 ) 

O(10g(min(i,n-i+1))) 

Average Case 

o (n) 

O(n log n) 

o (n) 

O(n log n) 

Table 2: Running times of different implementations. 



- 45 -

VI. Application to digital search trees 
======================================= 

Quite frequently the "names" B. will be strings. Instead 
1 

of basing the search method on comparisons between names, 

we can make use of the representations as a sequence of 

characters. A classic example of such a search method is 

the trie [cf. Knuth 73, Sec 6.31 . Suppose that the names 

B
1

, ••• ,Bn are strings over a k character alphabet r . A 

trie is then a k-ary tree. For each prefix of a name Bi 

there is a node in the tree, the branching is done on the 

next character. 

Different representations of the nodes of a trie were pro

posed: vectors of length k, linked lists or binary trees. 

The first alternative minimizes processing time, the two 

others save memory space. 

From now on we restrict ourself to the case that the weight 

is concentrated in the keys. (ra. = 0). This restriction 
J 

simplifies the notation; the general case may be treated 

analogously. Consider a node of the trie. It corresponds 

to a string w E r! . Let pw be the sum of the pro-

babilities of all words Bi having w as a prefix. Then in 

node w the branch corresponding to character a E r is 

taken with probability p /p. wa w 

Hotz wot~ proposed to represent each node by an optimal 

(or nearly so) binary search tree; he showed that this stra

tegy works well in the case of "uniform distributions". We 

show that it performs well for all distributions. 

Assume that we represent each node of a trie by a binary 

search tree whose weighted path length is bounded above 

by c
1 

H + c 2 where H is the entropy of the associated fre

quency distribution. 

Consider a search for B. = a 1a 2 ···a with a
J
. E r, ~i = length 

1 ~i 

of string Bi . We search first for the character a
1 

in the top 



- 46 -

level tree, then for a 2 in the tree T , •... The average search a, 
time is given by the expression (a comparison between two 

characters is assumed to take one unit of time) : 

n 
I: Bi (# of comparisons needed to find B i ) 

i=' 

< 

< 

< 

B. 
1. 

I: *Pv I: 
vEI: aEI: 

I: 
vEI:* 

pv(c 2 

c 2 
. I: 

vEr 

c . 
2 

~ of comparisons needed to find 
( ) 

a
J
. in T . a, , ... ,a

j
_, 

( '# of comparisons needed to find) . Pva 

a in Tv 

(#of comparisons needed to find). Pva 

a in Tv Pv 

P Pvb Pvc 
+ c, . H( va , -- , , ... ) ) 

Pv Pv Pv 

P Pvb 
+ I: H(~ I ••• ) Pv c, . 

vEI:* Pv 'p Pv v 

(grouping theorem cf. Ash) 

where I is the weighted average length of the strings Bi . 

Thm.V:Suppose that we represent each node of a trie by a 

binary search tree whose weighted path length is bounded 

above by c,H + c 2 , then the average search time is bounded 

by 

where 

the names B .• 
1. 

B . . length (B.) is the average length of 
1. 1. 
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Consider the case that all names have length m. It is 

reasonable to assume that the time needed to compare 

two names of length m takes O(m) units of time. Using 

binary search trees based on comparison of entire names 

then results in an average search time of 0(m.(c,H+C2)). 

This contrasts sharply to the average search time of 

O(c,H + c 2 ·m) achieved by the search method based on 

comparisons of characters. 

We turn now to worst case behavior. Assume that we re

present each node of a trie by a binary search tree whose 

worst case behavior is bounded by c,·log '/probability + c 2 ; 

i.e. a search for a name with probability p takes at most 

c,·log '/p + c 2 units of time. Then 

# of comparisons needed to find B. 
1 

R. i 
= L (# of comparisons needed to find a. in T ) 

j=' 
) a, ... a j _, 

R. i p 
a, ... a._, 

< L (c,·log P ) + c 2 ) 
j=' a, ... a j 

h 
< c, . L (log P - log P ) + c 2 R. i j=l a, ..• a j _, a, ... a j 

< c, . (log PE - log P ) + c 2 R.i a, •.. a R. i 

< (0+ log '/e.) +c 2 R.. 
1 1 

ThmN~Assume that we r e present each node of a trie by a binary 

search tree whose worst case behavior is bounded above by 

c, . log '/probability + c 2 ' then a search for name Bi of 

length R. i and frequency ai takes at most 

comparisons between characters. 
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The remark following the preceding theorem applies here 

as well. 

For the special case that all names have equal probability 

' / n and equal length m theorem VI yields the bound c,log n+c 2m. 

This special case was considered previously by Fredman and 

v. Leeuwen. 
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