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We prove an O(n log n) lower bound for the synchronous 

circuit size of integer multiplication. A circuit is 

synchronous. if no races occur in this circuit. or more 

formally. if for all gates g the following holds: all 

paths from inputs to gate g have identical length. Here 

we assume that each gate introduces one time unit of 
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delay. A circuit can always be made synchronous by intro

ducing additional gates (delay elements). However, it is 

conceivable that this squares the size of the circuit. Never

theless, from the point of view of physics. requiring a 

circuit to be synchronous is a very reasonable restriction. 

Let f: (0,1 t+ (o,nmbe a boolean function with n inputs 

and m outputs. We denote by CS(f) the size (number of gates) 

of the smallest synchronous circuit over the basis of all 

two-input gates which realizes f. 

Integer multiplication is the following boolean function 

Multn : { 0 .1} 2n + (o.n 2n. It takes two n bit binary numbers as 

inputs --- x 2n ••• xn+1 and xn ••• x 1 (least significant bit to 

the right) --- and produces the binary representation of the pro
duct of these two numbers. 

Theorem: CS (Multn ) ~ O(n log n) 

We prove this lower bound by appealing to results of Harper 

and Harper , Savage. 

Definition: The class of functions pn.m (E), 0 S E < 1, is 
P.q 

defined as 

P~:~ (e) = If: (O,1}n + {O,1}m for all but a fraction t of 

the subsets I ~ (l •... ,n), III = P. the set of 

of n-p variables obtained by fixing the variables in I in all 

possible 2P ways contains at least q different functions • 



Fact (Harper & Savage) 

Then 

for every L with 0 S L S 

Let f € p(n,m) (E). 
p,q 

max 

4 (n-p) (2L-1) ] 
p - 2L 

(1; 21 < p and 
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log q 

(1 - E)· I, - 2 (n-p) 21 J log q ~ m} 
~ p_2l 2 

This result is not directly applicable to integer multiplication. 

Certainly, q S 2P and hence log q S P S n. In our case n = m 

and hence L so. We conclude that the result of Harper 

and Savage is applicable only in the case that n > m. Therefore 

we consider instead of Multn the following boolean function 

MUltn {O,1}2n + (O,1}n defined as: Multn(x2n ••• xn+1 xn ••• x1) 

are the n least significant bits of the binary representation of 

the product of the two binary numbers represented by x2n ••• xn+1 
and xn ••• x,. Certainly 

CS(MUltn ) ~ CS(MUlt
n

) 

We show that Mult € p{2n,n) (0.1) where p = 2n - log n 
n p,q 

log q - 3n/2 - log nand n sufficiently large. 

Application of Harper's and Savage's result yields: 

max{l; 0.9. [1 - 2 log n 21 ] log q ~ n } 
2n-log n -21 

45 
max{l; 40 [1 _ 2 log n 

2n-log n 

since 3n/2 - log n ~ 5/4 n for n sufficiently large 

= max{l; 2 log n 21 
1 2n - log n - 2 

= max{l; (18 log n + 1) 

S 5 = 
45 

1/9 } 

21 S 2n - log n} 
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:til max [1; 1 S log (2n - log n) - log ( 18 log n + 1)) 

2: 1/2 log n for n sufficiently large 

and hence 

cS (Multn ) 2: 0.9 . [1/2 log n _ 4 log n(fn-1) ](3n/2-log 
2n-log n - 'fn 

n) 

2: 0.9 • 1/4 log n • n 

2: 1/5 n • log n 

for sufficiently large n. It remains to show that Multn E p(2n,n) p,q 

(0.1) for p = 2n - log 
n sufficiently large. 

n, log q ~ 3/2 n - log nand 

Lemma 1: The fraction of the subsets I ~ (1, ••• ,2n), 

III = p with (1, ••• ,n/4) c I or (n+1, ••• ,5n/4} s I is 
less than 0.1 for sufficiently large n. 

Proof: IC, the complement of I, is a subset of {1, ••• ,2n} of 
size log n. The condition above is equivalent to I C n {1, ••• ,n/4} 

= !21 or I C n {n + 1, ••• ,5n/4}= !21 . The number of I's with 

I C n {1, ••• ,n/4} = !21 is equal to (7n/4 ) 
log n and hence the number 

of I's with I C n {1, ••• ,n/4} - !21 or I C n (n+1, ••• ,5n/4) - !21 

is less than 2. (7n/4 ). Comparing this with the tohal number log n 

(2n ) of I' i ld log n s yes 

for n ... -. 

7n/4 ••• (7n/4 - log n+1 

2n ••••• (2n - log n+1) 
) S 2. (7/8)log n • 0 
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From now on we consider only l's with I C n t" ... ,n/~ + ¢ 
and I C n In+,, ••• ,5n/~ + ~ . Consider any such I . 

Then there is some xi with , ~ iE n/4 and some Xj 

with n+' ~ j ~ 5n/4 such that i,j f I. A valuation of the 

variables in I does not fix the values of xi and Xj' i.e . 

we are still free to choose the value of some low order 

bit in both factors of the multiplication. Consider two 

valuations val, and va12 of the variables in I. 

We extend val, and va1 2 to valuations of all variables 

except xi and Xj by assigning 0 to all variables in IC-{Xi,X j }. 

Under the extended valuation val, Multn computes the product 

(B, + Xj • 2 j -(n+'» (A, + xi 2 i -') where A, is the integer 

represented by val, (xn) ••• val, (xi+')O val,{xi_,) ••• val(x,) 

and similarly for va1 2 • Assume now that both valuations val, 

and va1 2 produce the same function of the remaining variables. 

Then in particular, 

(B, + Xj 2 j -(n+'» (A, + x, 2 i -') = 

(B
2 

+ Xj • 2 j -(n+'» (A
2 

+ Xi 2i -') mod 2n 

and hence 

A,B, + A, Xj 2 j -(n+') + B, Xi 2i -' = 

A2B2 + A2 Xj 2 j -(n+') + B2 Xi 2 i -' mod 2n. 

Setting Xi - 0 and Xj = 0 yields 

n 
A,B, - A2B2 mod 2 

and hence 

A x 2 j -(n+') + B, x 2i -' = , j i 

2 j -(n+')+B i-' 
A2 Xj 2 Xi 2 



Setting now xi = 0, Xj = 1 (xi = 1, Xj = 0) 

yields 

and 

and hence 

Al = A2 mod 23n/ 4 + 1 

and 

Bl - B2 mod 23n/ 4 + 1 since i - 1 < n/4 
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and j - (n+l) < n/4. This shows that the two valuations vall 

and va12 agree in the values assigned to xi for 1 SiS 3n/4 

or n + 1 SiS 7n/4 and i E I. Hence at least 23n/2 - log n 

valuations of the variables in I yield different functions of 
the remaining variables. 

These considerations show that MUltn E p(2n,n) (0.1) for 
p,~ 

sufficiently large n and prove the theorem. 
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