
An efficient algorithm for 
constructing nearly optimal 

prefix codes 

by 

Kurt Mehlhorn 

Fachbereich 10 -
Angewandte Mathematik 
und Informatik 
Universitat des Saarlandes 
6600 Saarbrucken 
West Germany 

September 1978 

A 78/13 

Abstract: A new algorithm for constructing nearly optimal prefix 
codes in the case of unequal letter costs and unequal probabilities 
is presented. A bound on the maximal deviation from the optimum 
is derived and numerical examples are given. The algorithm has 
running time O(t·n) where t is the number of letters and n is 
the number of probabilities. 



I. Int r odu c tion 

We s tudy the construction of prefi x codes. Given i s a set 
n 

P1. P2.· · · .Pn of pr obabilities. Pi > 0 and ~ p. = 1, 
i = 1 1 

and a set a 1 •...• a t of letters; letter a i 
c · > O. A prefix code T over the alphabet 

1 

- 1 -

is a set U1 •...• Un of words in ~. such that no Ui is a prefix 

of any Uj for i f j. Let 

U. 
1 

be the i-th code word . Its cost C(U i ) is defined as the sum of the 

letter cos t s. i . e. 

C(U i ) = c . + c. + . . . + c . 
J1 J 2 J t . 

1 

Finall y . the average cost of code T i s defined as 

C( T) 
n 
~ 

i = 1 
p. 

1 

At pre s ent. there is no efficient algorithm for con s tru cting an 

optimal ( = minimum average co s t) code given Pl.· · · .Pn and 
c 1 •. . . • c t . Karp formulated the problem as an integer programming 

proble m and hen ce his algori t hm ma y have e xponential t i me com
ple xity . Vario us approximation algorithms are described i n the 
literature [Krause [l]. Cs i szar [2] . A1tenkamp and Mehlho rn [3] • Cot [4 ] . They 

construct codes T such that 

H(P1'·· ·.p ) < c · C < c·C(T) < H(P1···· .Pn) + n - opt 

where H( Pl.··· .Pn) = - ~ Pi 

bility di s t r ibution. c i s 

log Pi i s the entro~y 

defined such that ~ 
i = 1 

of the proba
-e e i 

2 = 1 

(root of chara cteristi c equation of l etter co s ts). Copt i s the 



- 2 -

cost of an optimal code, f( c1 , ... ,C t ) is some function of the 
letter cos ts and y i s a small constant. In most cases (!(rause [1 ], 

Csiszar [2] , Altenkamp and Mehlhorn [3Df(c 1 , ... ,c t ) = ma x{ci I12. i 2. t } 

while for Cot [4] f(c 1 , .. . ,c t ) is a morecomp le x function. 

Here we de sc ribe another appro xi mation algorithm and prove a 
similar bound for the cost of the code constructed by it (section 
II) . In sec tion III we indi ca te that our algorithm has linear 
running time O(t.n) and report s ome experimental result s . They 
suggest that the new algorithm constructs better codes than the 
previou s algorithms . 



- 3 -

II. The Algorithm and its Analysis 

Consider the binary case first. There are two letters of cost 

c1 and c2 respectively. In the fir s t node of the code tree we 
split the set of given probabilities into two parts of proba

bility p and 1-p respectively. (Fig. 1) 

P 1-p 

Figure 1 : Splitting a set into two parts. 

The local information gain per unit cost is then 

G(p) = H(p,l-p) 
c 1 p+c 2 (1-p) 

where H(p,q) -p log p - q log q. This is equivalent to 

-p log P - (l-p) log (l-p) 
G ( p) 

-cc 1 -cc 2 1 
(-p.log 2 -(l-p) log 2 ). -c 

forallcf O 

It is easy (elementary calculus) to see that G(p) is maximal 

for p 
-cc 

2 1 1-p 
-cc 

2 2 where c is chosen such that 

-cc -cc -cc 
2 1 + 2 2 = 1. Hence G(p) ~ c for all p and G(2 1) = c. 

The argument above suggests the following approximation algorithm: 

try to split the given set of probabilities into two parts of pro
-cq 

bability p and 1-p respectively so as to make p-2 as small as 

possible. Such a split maximizes the local information gain per 

unit cost and should (hopefully) produce a good prefix code. For 

the sake of efficiency our algorithm only considers splits of 



- 4 -

the form ( Pl'···'P i } , {Pi+l, ... ,Pn } . 

Next we illu s trate the approach by an example. Given are pro

babilities (Pl'PZ' ... ,P6) = (.3,.I,.05,.Z5, .Z,.l) and the code 

alphabet a1 ,a 2 'i i th cost s ( c 1 ,c 2 ) = (1,2). We choose c s uch that 

-cc - cc -cc 
2 1 + 2 2 = 1. Then 2 1 = 0.618. 

~e draw the probabilities Pl •... ,P6 as a partition of the unit 

interval and s plit the unit interval into pieces of length 

-cc - cc 
2 1 and 2 2 respecti ve l y. (Fig. 2) 

P5 PI PZ P3 P4 .L l._. _____ ' _ _ ._l L-_ __ ---, _ _ _ .......J 

~-----~---------~ ~ 
- cq 

2 

Fig_._~ :_ Splitting the unit interval. 

-cc 2 
2 

The split goes throug l1 the right half of P4. So Vi e assig n 

lette" al t o PI,P Z,P 3 a nd P4 and letter a 2 to P5 and P6 (Fig. 3). 

F i g~}" The code tree a fter the fi rs t split. 

Next Vie app l y the sao'e st rategy to the se t PI'··· ,P4 ' i.e. 

we con side r the interva l PI,P2,P3,P4 and sp lit i t in the ratio 
- cC I - cc2. 

2 to 2 (F lg. l.) . 



- 5 -

Caution: At this point our approach differs from the one taken 

by Krause. Csizar and Altenkamp & Mehlhorn. After having split 
the unit interval into two parts in the first step. they 

-ccl -ccl -cc2 the interval of length 2 in the ratio 2 to 2 
spl it 
in the 

second step. Thus their approach can be viewed as a digital ex
pansion process. We continue this remark after the precise de
finition of our new algorithm below. 

Fig. 4: Splitting the interval Pl' •..• P4 

We proceed with our example. In Figure 4 the split goes 
through the right half of P3. So we assign letter a l to 
Pl'P2. P3 and letter a2 to P4 (Fig. 5) 

fig. 5: The code tree after the second split 



Proceeding in t his fa s hion the following code will be con

s tructed ( Fig. 6 ). 

2 a 

a2 

P2 P3 

- 6 -

Fig. 6: The code con s tru cted by the new algorithm de sc ribed 

i n this paper. 

This code has cos t 

0.3 -3 + 0.1·5 + 0.05·6 + 0.2503 

+ 0.2· 3 + 0.1·4 = 3.45 

So mu ch for the intuitive description of the algor i thm. For 
the pr ec ise definition by a pseudo-ALGOL program we need 
some notation 

t 
Let c E ~ be such that I 

j=l 
2- CCj = 1. Then 2- c is ';raditionally 

called the root of the characteri s tic equation of the letter 

costs. 

A cal l CODE (l.n. E) con s tructs a prefi x code for the probability 

distribution Pl •...• Pn. Here f denote s the empty word over the 

alphabet [ a l •··· .a t }. 



- 7 -

procedure CODE(t,r,U); 

comment: £ and r are integers, 1 < £ < r ~ n, and U is a word 

over {a 1 , ... ,a t }. We will construct code words for P£,P t +l, ... ,Pr' 

The word U is a common prefix of code words U£ , U£+I" .. ,U r . 

begin 

if £ r 

then we take U as the code word U£ 

else begin L ... Pt - 1 ; R ... Pr ; 

for m, 1 < m < t do 

begin Lm ... L + 
m-l 

(R-L)· L 
j=1 

-cc. 
2 J 

-cc m + (R-L)·2 

1m ... { i; Lm < s· < R } -, m 

Comment: 1m' 1 ~ m ~ t, is a (not necessarily non-trivial) 
partition of the set {t, ... ,r } . Since we certainly do not want 

to assign the same letter to all probabilities, Pt,·· "P r ' we need 

to make sure that the partition is non-trivial. The easiest way 

to ensure non-trivialty is to force the use of letters a 1 and at, 

i.e. to make II and It non-empty; 

.!.i II = 0 

then begin let m be minimal with 1m t 0; 

II ... { £}; 1m ... 1m - {£}; 

end; 

if I - 0 t -

then begin let m be maximal with 1m + ~; 
It ... {r}; 1m'" 1m - [r}; 

end, 
-- ' 



- 8 -

comment whenever we refer to partition 1m, 1 ~ m ~ t, outside 
the definition of CODE, then the partition is meant, as it exists 
at this pOint of the program; 

for m, 1 ~ m ~ t do 

if 1m t I! then CODE (min I , max I , Ua ) 
m m m 

end 

end. 

Remark: Procedure CODE is a generalization of Shannon's binary 
splitting algorithm [5]for constructing nearly optimal codes over 
a binary alphabet. It has been generalized in a different direction 
in the past by Krause, Csizar, Altenkamp & Mehlhorn, who view the 
binary splitting algorithm as a fractional expansion process 

Consider the binary fraction .x1 x2 ... xm with Xi E {O,l}. We 
can define the real number represented by that binary fraction 
recursively as 

Num(xm) = if xm = 0 then 0 else 1/2 

.ii Xi = 0 then 0 + 1/2 Num(x i +1·· .xm) 

else 1/2 + 1/2 Num(x. 2 •.• x ) 
1+ m 

So, binary fraction expansion corresponds to repeated splitting 
of the interval in the relation 1/2 1/2. Suppose now that we 
split instead in the relation 2- CC1 : (1_2- cc1 ). Then we should 
define Num as follows. 

2- cq Strangenum(xm) = .ii xm = 0 then 0 else 

-cc1 .ii Xi = 0 then 0 + 2 Strangenum(x i +1 · .. xm) 

-cc1 -cq else 2 + (1-2 ) ·Strangenum 

(x i +1 ·· .xm) 



We are now ready to take up the remark (labelled caution) 

and to outline the f ractional expansion approach of our 
example. Consider the fractional expansions of reals 
51 ,5 2 , ... ,5 6 in our "strange number system" . The first 

digit is 0 for 51 ,5 2 ,5 3 ,5 4 and 1 for 55 and 56. Figure 7 

in addition shows the second digits in the expansion of 

51 ,5 2 , 53 ,5 4 . 

52 54 

PI pd P3 , P41 P5 P6 

~ ) I, 'I 
-l 

, v 

2- cQ ·2-cq -cq -cc2 2 ·2 
'- v J 

- 9 -

Figure 7: The first two steps of the fractional 
expansion method 

Note that 0 is the second digit in the expansions of 51 and 

52 and 1 is the second digit in the expansions of 53 and 54· 

Proceeding in this fashion until a prefix code is obtained 

we will construct the code shown in Figure 8 of cost 3.75 

Figu "e 8: The code constructed by the fractional expansion 

method. 



- 10 -

So much for the fractio nal expansion approach. The approach 

taken in this paper follows Shannon's ideas more closely. 
After having split the original set of probabilitie s into 

sets {Pl,P2,P3,P4 } and {P5,P6 } in Fig. 1 we treat each 

s ubprob lem in the same way as the original problem. Thi s 
approach was studied before by Bayer [6] in the binary equal 

letter cost case, t = 2, c 1 = c 2 = 1. It generally yields 
much better codes (cf. the e xperimental results at the end 
of t he paper). 

In the rema inder of this sect ion we will prove the fo llowing 

theorem. 

Theorem: Given probabilities PI'·· .Pn and letters a 1 ,·· .,a t 
t - cc 

of cost c 1 , ... ,c t and a real c such that >: 2 m = 1 
m=1 

procedu re COD E constructs a code tree T of average cost C(T) 

.1 i th 

where c = max {c ., 1 < m < t } . max m - -

Proof: The proof proceed s in two steps. We first derive a 

managable e xpre ss ion for the differen ce c.C( T) - H(Pl'·· .,Pn) 
and then derive a bound on that differen ce. 

Procedure CODE constru cts a code tree T for probabilities 

PI' ... ,Pn· Let v be any node of the complete infinite tree 
over letter s a 1 , ... ,a t and let U be the word corresponding 

to node v , i.e. U is s pelled along the path fro m the root 

to node v. Define 

w( v) : = >: { Pi; U i s a prefi x of code .Iord Ui for Pm} 



and 

where vm corresponds to Ua m. Then 

If v is an element of code tree T then let t and r be the 
other two parameters in the call CODE( t ,r,U). Apparently, 

Wry) = Pt + PHI + ... + Pro 

Let NT be the set of interior nodes of code tree T. 

Lemma 1: 

1) The co s t CIT) of code tree T is equal to 

CIT) = L 
VENT 

2) The entropy H(Pl'" .,Pn) is equal to 

w1 (V) 
Wry) 'H( w(v) 

Wt(V) 
, . . . , 

Wry ) 

- 11 -

Proof: The proofs are simple inductions of the depth of tree T. 
Note that 2) is just repeated application of the grouping axiom 
and 1 ) is essentiall y reordering of summation. In 

CIT) 
n 
L 

i=1 
p.·Cost(U.) 

1 1 



- 12 -

we sum over the leaves of the code tree. If for every interior 
node v and letter a

j 
we consider those code words Ui which go 

through v and use letter a j in node v then we obtain the summation 
formula given in the lemma. 0 

Lemma 1 allows us to write 

( 1 ) c·C(T) - H(PI, · ··,Pn) = 

[m~I wm ( v ) 
wI(v) wt(v) J = L cc - Wry) 'H( , . . . , 

VENT 
m w( v) w ( v ) 

L Wry) G~I wm(v) cc Wm(V)] = (log 2 m + log w(v) ) 
VENT w{ v ) 

We now arrived at our expression for c.C(T) - H(PI"" ,P n). 
In order to derive an upper bound on that difference we will 
try to bound 

cc 
( 2) E(v,m) .- (log 2 m + log 

Lemma 2 gives us the necessary information about wm(v)/w(v). 

Lemma 2: Consider any call Code (t,r,U), let node v correspond 

to word U and let t < r. Let sets II'" .,1
01 

be defined as in pro

cedure CODE. Then for 1 < m < t 

c) l'f I I I > 2 and e = min 1m' f m max 1m' then for 2 < m < t 



- 13 -

Wm ( v ) - cc Pe+Pf -cc m < 2 + < 2 · 2 m -w(v) 2·w(v) -

" 1(v) -cc Pf -cc 
< 2 1 + < 2. 2 1 

w(v) - 2w(v) -

wt(v) - cc Pe - cc 
< 2 t + < 2 ' 2 t 

w(v) - 2 · w(v) -

Proof: a) and b) are obviou s. Cons id er c) now. Suppose first 
that 2 < m < t . Figure 9 shows toe meaning of e and f. 

se _1 se sf 

i! 1 
Pe~ll )' p~ ~ 

~---------- -----------~ - -y-
- cc 

2 m.w(v) 

Fi gure 9: A typical element of the partition. 

Then wm(v) = Pe+P e+1 + ... + Pf-1+ Pf and 
- cc 

P / Z+p + + P +P /2 < 2 m·w(v) by definition of w(v ) , e e+l ... f-l f 

- cc 
wm(v) - 2 mw(v) ~ (P e+Pf)/2 

- cc 
< 2 m·w(v) 

If m = 1 then we even have 

and hence 

An analogou s s tatement holds for m = t. o 



We a r e now ready to deri ve an upper bound on E(v .m) 
defined in equation (2 ) abo ve. 

Ca s e a: 1m ~ . Then wm( v ) • 0 and hen ce E(v . m). O. 

- 14 -

Ca se b: 1m' ( e j . Then wm(v) • Pe and wm(v l /w(vl < 1. Henc e 

E(v . m) < 

Ca s e c : (1 m j > -
- cc 

Let y: . 2 m 

cc 
. log 2 m 

2 . Let e . mi n I m ' 

a nd x ' -.- wm (v l / w(v) 

- cc 

f • ma x 1m ' 
- cc 

- 2 m 

The n x < < 2 m by Le mma 2. We may rewrite E(v .m) as 

E(v .m ) • (x+y) [ l og l/y + 10g( x+y)J 

• ( x+y ) 10g ( 1 + x/y ) 

L emm a 3 : Le t 0 ~ x ~ y and 0 < y . The n 

(y +x) . log ( l +x/y) < 2x 

Pro of: Con s ider 

fIx ) • 2x - (y+x) l og (l +x / y l 

Th en 
f ' (x) 2-10g ( 1+x/y) - (x +y)/y 

l n 2 · (I+x/y ) 

( 2- 1/ 1n 2) - 10g ( l+x/y ) 



- 15 -

Thus f' is monotonica 7 7y decreasing and hence 

min{f(x); 0 2 x 2 y} = min{f(O), fly)} = 0 

From Lemma 3 we conclude 

for 

for 

E(v,m) < 2x = (Pe + Pf)/w(v) 

m = 1 we can even conclude E(v,m) 2 
m = t we conclude E(v,m) < p /w(v). - e 

In either case we have now derived an upper bound on E(v,m). 

It remains to consider the problem how often a certain 

probability Pi can be used in the bounds of the different 

kind. First note that each probability is used exactly 

once in a bound corresponding to case b) of Lemma 3. Next 

suppose that Pi is used in a bound of kind c); say i = min 1m' 

Then this will lead to a recursive call CODE(i,max 1m' ). 

{i) then this is a terminal call 

at most be used in a bound of kind b). If 

of CODE and i will 

IIm l ~ 2 then in 

the body of CODE (i ,max 1m' a partion of 1m will be defined. 

Call this partion J k , 1 < k < t. We will certainly have i E: J 1 . 

Now note, that Lemma 2 states that for J 1 we don't have to use 
min J 1 in order to bound E(v,m). Since i \'Iill always be in the first 

set of the partition for all further recursive calls of CODE, 

c 

we conclude that i must only be used once in a bound of kind c). 



In summary. we use each probability Pi at most once in a 
bound of kind b) and at most once in a bound of kind c). 
Furthermore the argument above shows that PI and Pn are 
never used in a bound of kind c). 

- 16 -

We will now substitute the bounds on E{v.m) into equation (I). 
our expression for the difference c·C{T) - H{P1 • ••• • Pn). 

The bounds of kind b) contribute at most 
n 

c·Cmax·.L Pi = c·c max where cmax = max{c m; 1 < m < t} and 
1 = 1 

n-1 
the bounds of kind c) contribute at most L Pi = 1 - PI - Pn ' 

i=2 
Hence 

o 



Note that among others, Krause has shown that 

c·C(T) > H(P1' ... ,p ) for every pref i x code T and - n 

- 17 -

hen ce procedure CODE constructs very good codes indeed. 

III. Implementation and Experimenta l Data 

Altenkamp and Mehlhorn describe an i mplementat i on of their 
algorithm which has running time O(t·n). The same methods 

can be used to implement procedure CODE such that its running 

time is O( t · n). We refer the reader to Altenkamp & Mehlhorn 
for detai l s. 

In Gettler et a1. [7] the algorithm' describ ed in Altenkamp & 

Mehlhorn (which is very sim i lar to the one des cribed by 
Krause and Cs i s zar ) a nd the algorithm de sc ribed here 

were compared i n the binary equal l etter cost case, t = 2 

c1 = c 2 = 1. 200 examp l es were run; for each of them the optimal 

code was constructed. Fig. 10 shows the average and maximal 

values of C1/Copt·l00 and C2/C opt ·l00 where Copt i s the cost 

of the optimal code, C1 and C2 are t he cos ts of the code con

structed by the algorithm described here and the algorithm 

de scr ibed by Altenkamp and Mehlhorn re s pectively. 

C1(procedure CODE above) C2(Altenkamp & Mehlhorn) 

average value of 

C/C opt ·100 104.5 119.7 

maximal value of 

C/C opt ·100 109.0 154.7 

Fi g. 10 Experimental compariso n of two algorithms 



- 18 -

Cot describes yet another procedure for constructing nearly 
optimal prefix codes. He proves that the average cost C of 
his code satisfies 

where 

6 = 
t 
1. 

i=2 

i 
L 

j=1 
1, and 

c· = min{c.} ml n 1 

for 1 ~ i ~ t. He does not describe a detailled implementation 
of his algorithm nor does he estimate the running time of his 

algorithm. In our example c1 = c 2 = 1, and hence Al = 1, A2 = 2, 
c = 1, and 6 = 1. The average value of the entropy H is about 
5.5 for the examples in Guttler et al. and hence the average 
deviation from Copt is in this example at least 18% for the 
code constructed by Cot. 

IV. Conclusion 

A new algorithm for constructing nearly optimal prefix codes in 
the case of unequal probabilities and unequal letter costs has 
been described. A theoretical estimate of the cost of the con
structed code has been given. Numerical examples suggest that 
the algorithm is superior to previously suggested approximation 
algorithms. The algorithm is very efficient in its time and 
space requirements. 



Bibl iography 

[1] Krause, R.M. "Channels which transmit letters of unequal duration", 

Inf. and Control 5, pp. l3-24, 1962 

[2] Csiszar "Simple proofs of some theorems on noiseless channels", 

I nf . and Control 14, pp. 285-298, 1969 

[3] Altenkamp & Mehlhorn: "Codes: Unequal Probabilities, Unequal Letter 

Cos ts", to appea r JACM 

[4] Cot "Characterization and Design of Optimal Prefix Codes", 

Ph.D. Thesis, Stanford University, June 1977 

[5] Shannon, C.E. : "A mathematical theory of communication", 

Bell Systems Techn. J . , 27, pp. 379-423, 623-656, 1948 

[6] Bayer "Improved Bounds on the Cost of Optimal and Balanced Binary 

Search Trees, MIT, Project MAC, Technical Report 

[7] Guttler, Mehlhorn, Schneider, Wernet: "Binary Search trees: Average 

and worst case behaviour", (GI-Jahrestagung 1976), Infomatik

Fachberichte 5, Springer-Verlag, 301-313. 


	A_1978_12 0000_1heitscover
	A_1978_12 0019
	A_1978_12 0020
	A_1978_12 0021
	A_1978_12 0022
	A_1978_12 0023
	A_1978_12 0024
	A_1978_12 0025
	A_1978_12 0026
	A_1978_12 0027
	A_1978_12 0028
	A_1978_12 0029
	A_1978_12 0030
	A_1978_12 0031
	A_1978_12 0032
	A_1978_12 0033
	A_1978_12 0034
	A_1978_12 0035
	A_1978_12 0036
	A_1978_12 0037
	A_1978_12 0038
	A_1978_12 0039



