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Abstract. The paper is concerned with the reconstruction of a 

picture density f from a finite number of its strip integrals. 

It is shown that the Bayes estimate for f is in the Sobolev space 

H3/ 2 if the isotropic exponential model for f is used. As picture 

densities are far from being in H3/ 2 (the isotropic exponential 

model e.g. implies, roughly speaking, only fEH1/2), the Bayes 

approach can be expected to smooth out peaks and high contrasts. 

This drawback of the Bayes approach was in fact observed in a 

comparative numerical test carried out by Herman and Lent [ 6]. 
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§ 1 The Bayes Approach to Picture Reconstruction 

The picture reconstruction problem we are dealing with arises 

e.g . in computerized tomography and nondestructive testing. It 

requires the computation of a picture density f from a finite 

number of its line integrals. See [1] for a discussion of this 

problem and [2] for applications. 

We always assume the picture to be of finite extent, i.e. f=O 

outside the unit disk Q. In order to avoid certain purely 

mathematical difficulties we consider strip integrals along 

strips Lk , k=1, .•. ,n, rather than line integrals. Putting 

R f = 
k 

f dx , R = 

we thus want to solve the underdetermined system Rf=g where the 

vector g is made up of the projection data. 

Numerous suggestions have been made for the solution of Rf=g, 

see [3] for a survey. In the present paper we will study a statistical 

approach to its solution which has been suggested in [4] and [5]. 

In order to describe this approach we start out from to families 

f,g of random variables which are jOintly normally distributed 

with mean values f,g and covariance 

where F and G are the covariances of f,g, respectively, and P is 

the covariance of f and g. The Bayes estimate fB for f if g is 

known is then given by 

fB = E(f g) = f+P 
-1 -

G (g-g) 

see [7] , p.28. If g is a linear function of f, g=Rf , say, then 

(f,g) is jOintly normal if f is, and the covariance of (f,g) is 
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see [7], p.19. Thus we see that the Bayes estimate fB for the 

solution of Rf=g, g known, is given by 

In order to apply Bayesian estimation to our picture reconstruction 

problem we think of the density function f as a family of random 

variables (f(x»X EQ which are normally distributed with mean value 

f(x). The interrelation between two pixels x,x' is modelled by 

a covaricance operator with kernel 

F(x,x') = E (f(x)-f (x» (f (x') -f (x'» • 

R:L2-->~n is the operator defined by the strip integrals and 
+ n R : ill -->L2 is its adjoint which is easily seen to be 

n 
L 

k=l 

with Xk the characteristic function of Lk . With 

nk(x) = J F (x, x ' ) dx' , 
Lk 

+ 
Sk, ,Q, = (RFR )k, ,Q, 

= J J F(x,x' )dx dx', 
Lk L ,Q, 

the Baye s estimate assumes the form 

(1. 1 ) f = f + 
B 

n 
L 

k=l 
q = s-l (g-Rf) 

An iterative method for the computation of fB has been implemented 

in [ 6]. If the strip geometry is invariant with respect to rotation 

then a noniterative implementation along the lines of [ 8] is possible, 

too. 
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§ 2 The Bayes estimate and reproducing kernel Hilbert spaces 

It is well known (see[9)) that the Bayes approach is equivalent 

to a completely deterministic model: Let H be that Hilbert space 

~ L2 which has the reproducing kernel F, i.e. 

(u,F(x,'))H = u(x). 

Assume the functionals Rk to be continuous on H and fER. Define 

fH to be that solution of Rf=g for which Ilf -:f IIH is as small as 

possible. We show that fH=fB . 

We have Rkf = (nk,f)H vlith some nkEH which can be determined by 

putting f = F(t,'): 

= = f F (x, x • ) dx' • 
Lk 

Using Lagrangian multipliers qk we have to look for the stationary 

points of 

Ilf-:f II~ 

It follows that 

n 
(2 . 1 ) fH = f + E qknk 

k=1 

where q is determined by RfH = g or 

n 
(2.2) E qk Rn k = g-Rf. 

k=1 

But 

which shows that (2.1), (2.2) are identical to (1.1), hence fH=fB . 
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§ 3 The Smoothing Property of the Bayes approach 

We have seen in § 2 that the Bayes estimate fB for the solution 

of Rf=g is that element of H which among all solutions to this 

equations is closest to l in the sense of H. We conclude that 

IlfB-l IIH < 00 if the equations Rf=g are consistent. In fact IlfB-lIIH 

is likely to be comparatively small since it is obtained by a 

minimization process. Thus we can get some qualitative information 

on fB-l simply by looking at the norm in the Hilbert space H 

which depends only on the function F. 

It is easy to compute the norm in H if F is given by the isotropic 

exponential model (see [13], p.21), i.e. 

(3.1) 
__ e - A I x-x' I F(x,x') = F(x-x') , A>O, 

where I· I is the euclidean distance. We show that H is basically 

the Sobolev space H3/2; see [10] for the Sobolev spaces HCl. vie use 

the inner product 

A 

where u is the Fourier transform of u. 

The Fourier transform of F is 

A 1 -ixl; -A Ixl F (I;) = 21T f e e dx 

1 
00 21T -irpcos(p-ljJ)-Ar d = 21T f f r e r d(j) 
0 0 

where r, (j) and p , ljJ are polar coordinates in the x and ~ plane, 

respectively. Using the formula 

1 
21T 

21T . 
-~rp f e 

o 
cos(j) d<n 

0/ = J o (rp) 

with J o the Bessel function of order 0 (see[11], formula 9.1.21 

on p. 360) we obtain 
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00 

- Ar = J r e Jo(rp) dr 
o 

where formula 4.432 of [ 12], p.236 has been used. Thus 

= 211 A u(x) 

1 by the Fourier inversion formula. Thus we see that 2 A F is a 

reproducing kernel for H3/ 2 , hence basicall H=H3/2. 11 

We come to the conclusion that the Bayes estimate for f is in 

H3/ 2 if the model (3 . 1) for f is used . But this model requires 

much less smoothness of f than fEH3/2: Using the Aronszajn norm 

in Ha for O<a<l , see [10], p . 214, 

2 (f(x)-f(x')) 
I ,\2+2a , x-x 

dx dx' 

we obtain for a family of random variables with covariance (3.1) 

= J dx + J 
rI rI 

J (l_eA!x-x'!) !x_x,!-2-2a dx dx ' 
rI 

where rI is the support of f, and this is finite if and only if 

a <;. Thus the smoothness which is built in the model (3 . 1) 

corresponds roughly to the Sobolev space H 1/2, \~hereas the Bayes 

estimate ends up with a function in H3/2! 

The last statement contains the basic result of the present paper. 
-

It reveals a smoothing power of the Bayes approach which is, in 

the author's opinion, by far too strong . Whereas fEH1/2 is reasonable 

for picture densities, f EH3/ 2 is not , see [14] for a discussion of 

that point . Here it suffices to mention two examples: The density 
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function of a peak of height 1 and diameter E has the norm O(E 1- a ) 

in Ha, and the Ha-norm of a density function jumping by 1 across 

a smooth curve is O(E 1/ 2- a ) for a>1/2. Thus the norm in H3/ 2 of 

these density functions tends to 00 as E->O. Therefore a reconstruction 
3/2 procedure which minimizes the H -norm of the density function 

necessarily smoothes out peaks and high contrasts. This is 

precisely what happend in the numerical experiments carried out in 

(6]: The graphs in figure 4 of that paper show that the Bayes 

method failed to detect peaks which have been clearly recovered by 

other methods and performed generally poorly in high contrast areas. 

It is hoped that the present paper not only gives an explanation 

for the failure of the Bayes approach to picture r econstruction 

reported in (6] , but also helps to overcome the difficulties of 

this approach which has been applied successfully to many problems 

in science. 
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