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In order to reduce scanning time modern x-ray scanners 

provide projections only in a restricted range [ o, ~ l 

with ~ < TI. We consider the reconstruction of pictures 

from p+1 complete projections in [o , ~l. An extrapolation 

procedure is given to achieve approximations g of the 
p 

data in the whole range. We show that the L2-error of the 

corresponding picture is of order p-a if the original 

belongs to the SOBOLEV space H~ . The validity of our 

error estimate is investigeted by numerical experiments . 
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1 Introduction 

Scanning with x-rays the density f of a tissue lying in a 

domain n c m2 we get the integrals of f along the paths 

of the rays, see figure 1, 
00 

( 1 .1) g(s,W) = Rf(s, w) = f f(s w + tw~) dt 
- 00 

with w = (cos ~ , sin ~), w~ = (-sin ~ , cos ~). The function 

g = Rf is called the RADON transform of f. 

\) detector 

0c::-
~ 

x-ray tube 

Figure 1. 

The reconstruction of the density f from its integrals along 

all lines, i.e. the analytical inversion of the RADON trans 

form (1.1) require s the values of g for all s E m and all 

~ E [0, <1>] for some <I> E ]O, 11 [, but the fast reconstruction 

algorithms need projections in the whole range [0,11[. In 

order to apply such a discrete inversion formula proj e ctions 

have to be provided for angles equally distributed over the 

whole interval [0, 11 [ . Conventional scanners need several 

minutes for x-raying, errors occur by motions of the patient, 

and scanning of the heart for example is impossible. Modern 

scanners with modified sCan ge ometry need only a few seconds 

but in general they cannot cover the whole interval [ 0,11[ . 
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The discretization of the integral equation (1.1) and appli -

cation of ART methods, see GORDON-HERMAN, [2], takes the 

restricted range into consideration, but the computing time 

is to large. In order to apply the fast algorithms we have 

to provide approximations of the data in the missing range. 

The interpolation of g, as proposed by WAGNER, [12] , has 

useful results only if the missing range is sufficiently 

small. 

In §3 we give an extrapolation algorithm which is applicable 

without this strong restriction and which achieves better 

results. The number of arithmetic operations is of the same 

order as that of the fast reconstruction algorithms and so 

the procedure is practicable. 

In §4 we show that the approximated data g lead to a 
p - a 

reconstruction fp with L2-error of the order p if the 

original picture belongs to the SOBOLEV space Ha . This 
o 

coincides with the error in using filtered backprojection 

with p angles distributed over the whole range as shown in 

NATTERER , [ 7]. 

The numerical examples in §5 verify the error bounds of §4 

and show that the procedure gives useful results even if 

the range is only [O,~] with ~ = ~TI. 
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2 The RADON Transform in SOBOLEV Spaces 

In this chapter we first introduce the SOBOLEV spaces used 

in the following. Let k be an integer and G C IRk be an 
00 

open and bounded domain. C (G) is the set of all real-valued o 
infinitely differentiable functions with compact support in G. 

a k For real a we denote by H (IR ) the SOBOLEV space of order a , 

i.e. the set of all tempered distributions with 

(2.1) 

where f is the FOURIER transform of f : 

( 2. 2) f( ~ ) = f f(x) e- 2ITi x' ~ dx. 

For domains G with sufficiently regular boundary we put 

(2.3) 

( 2 • 4) 11 f 11 a 
H (G) 

o 

supp(f) c G }, 

= 11 f 11 a k 
H (IR ) 

These spaces are the H~(G) spaces of TRIEBEL, [1 1 ] , chapt. 

4.3.2 and for a ! k + 1/2, 
00 a 

closure of Co(G) in the H 

o ~ e ~ 1 they fu lfill the 

(2.5) 

k integer, they coincide 

- norm. For all a, B E IR 

interpolation property 

with the 

and 

where [X'Y] e denotes the interpolation space of definition 2 .1 

in LIONS-MAGENES, [4] . 

For a real interval I and a we ight function p we define the 

SOBOLEV space with weight 

s W2 (I,p,1), s <!: 0, 

as the set of all L2 functions with 

If s is an integer this norm is defined as 

( 2 • 6) Ilfll s = [ f ( p(x) If(s) (x) 12 + If(x) 12 ) dx]1/2 
W

2
(I,P,1) I 

and for s = k + 0, k E IN one sets o 
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( 2. 7) 11 f 11 s 
W2 (I,p,1) 

= 
f flp1/2(X)f(k) (x)_p1/2(y)f(k) (y) 12dXdy]1 / 

I I Ix_yl1+2 o 

+ 11 f 11 k ' 
W

2
(r,p,1) 

see TRIEBEL, [ 10], chapt. 3.2.6. 

Finally let S be the boundary of the unit circle in IR2 and 
3 

Z = IR x S C IR • On the manifold Z we use the SOBOLEV space 

Ha(Z) with the norm 

(2.8) Ilgll a 
H (Z) 

2 11 
= [ f 

o 
2 

1\g(', w)11 a 
H (IR) 

d <p ]1/2 

for a ;;: O. 

Next we consider the RADON transform in the SOBOLEV space 

H~( ~ ) where ~ C IR2 is bounded. The line integrals in (1.1) 

are defined for f E Ha (~) for a > 1/2. For f E Coo W) the norms o 0 

Ilfll -1/2 and IIRfl1 are equivalent, see NATTERER, [7], 
Ho ( ~ ) L2 (Z) 

theorem 3.1. So we can extend the RADON transform to all of 
-1/2 00 a 

Ho ( ~ ) by continuity because Co(~) is dense in Ho( ~ ); the 

extension is again denoted by R. 

THEOREM 2.1 

For real a ;;: ~ the RADON transform is a bounded operator 

from Ha (~) into Ha+ 1/ 2 (Z). 
o 

PROOF 

For a > 1/2 this is theorem 3.2 

in [7] states that 11 Rf 11 ~ 
L2 (Z) 

in NATTERER, [7]. Theorem 3.1 

cllfll -1/2 for f E Coo ( ~ ). 
Ho ( ~ ) 0 

This is also true for the extension of n on H-1/2( ~ ). Now the 
o 

result follows from the interpolation theorem 5.1, chapt. 1 of 

LIONS-MAGENES, [ 4 ] . 
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3 The Extrapolation Procedure 

The extrapolation procedure given here is based upon the 

PALEY-WIENER theorem for the RADON transform. It characterizes 

the small range of that ill-posed problem. 

THEOREM 3 .1 

A function g E H 1/2 (Z) with compact support is the RADON trans 

form of a function f E L2 (IR2) with compact support if and 

only if 

(:3.1) 

( 3 . 2) 

i) g(-s,-w) = g(s,w) on Z, 

ii) for all m E IN o 

f srn g(s, w) ds 
IR 

is a homogeneous polynomial of degree ~ m in w. 

For a proof see LAX-PHILLIPS, [3]. This result suggests a series 

expansion of g in terms of polynomials, and especially the 

LEGENDRE polynomials are well suited. 

Let us assume that the tissue to be scanned is lying in a 

circle n around 0 with radius 1/2. That means that the support 

of the density f is lying in n and the support of the functions 

g(·, w) is in [-1/2 ,1 /2] for all ~ . Further we assume that we 

have p+1 complete projections in the interval [O,~] with ~ < ~ , 

i.e. the functions 

g(·,w.), j = O, . .. ,p 
J 

wi th w. = (cos ~ ., s in ~J')' ~. E [0, ~ L ~ . " ~k for j " k 
J J J J 

are known. In practice this me ans that at sufficiently many 

positions s for each w. the tissue is scanned. 
J 

Let us denote with Qm the normalized LEGENDRE polynomials of 

degree m. From theorem 3.1 we know that the coefficients of 

the expansion in terms of LEGENDRE polynomials 

1 
(3.3) f 

-1 

are polynomials of degree less or equal m in w. Because of 
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the pe riodici ty of g the qm have the represe ntation 

[ m/2 l 
() \' (m m bm, m) qm ~ = L a k cos ck~ + k s~n ck~ , 

k=O 
( 3 • 4) 

where [ x l d e notes the integral part of x and the a~, b~ are 

coefficients and 

(3.5) 
( 

2k 
c~ = 

2k+1 

for m eve n 

for m odd. 

The qm defined in (3.3) can b e calculated for the angles 

~ j' j = O, ..• ,p and the n (3.4) is a system of linear equations 

for the coe ffici e nts a~, b~. This system is overdetermined for ' 

m ~ p and can be solved for example by singular value decom -

position. Now for those m the coefficients qm of the series 

expansion are detemined and we have the following approxi -

mation of the function g 

(3.6) 

p 

I 
m=O 

o 

for I s I < 1 

for i s! <: 1 

With this function, approximations for the data in the missing 

range can b e calculated . If the angles in [ O, ~l are not equally 

distributed it is possible to compute the data for equally 

distributed angles in the whole range. With e we denote 

e = [Tf / ~ l. 

This leads to the following algorithm 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

compute qm( ~j) according to (3.3) for j = O, ... ,p, 

m=O, ... ,p. 

Solve the syste m of e quations (3.4) with ~ = ~ , 
J 

for j,m = O, ... ,p. 

Compute q ( ~, ) according to (3.4) for m = O, ... ,p 
m J 

and j = p+1, ... , ep-1, 

or q ( . ,) for m = O, ... ,p and j = o, ... , ep-1 
m J 

with . ' equally distributed over [O, Tf[ . 
J 

Compute gp(si' ~ j} j = p+ 1 , .•. , ep-1 or 

gp(si, Wj} j = 0, ... , e p-1 , 

'" Wj = ( cos .j' sin . j) 

for i = -q, ... , q-1 • 
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The count of operations shows that we have a procedure wfth 

O(pSqt) arithmetic operations where s+t = 3. This is the same 

order as for the fast reconstruction algorithms . If we 

calculate the integrals in step 1 with the trapezoidal rule 

at the points S., i = - q, ... ,q-1, we need 2q(p+1)2 operations . 
1 

The singular value decomposition in step 2 takes more effort, 

but for each 

the matrices 

scanner the directions Wj are known a priori, 

in (3.4) can be calculated and be decomposed 

so 

independently of the data once and for all. In the actual 

computation we then have to compute only products of matrices 

and vectors, which requires cp3 operations. In step 3 there 
122 

are at most Z8p(p+1) operations and finally 28p q operations 

in step 4 . 
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4 Error Estimates 

In this chapter we prove error estimates in SOBOLEV norms for 

the picture reconstructed from the data g instead of g. First 
p 

we show that g lies in the range of the RADON transform. 
p 

LEMMA 4.1 

Let g be defined as 
p 

Then there exists f 
p 

in (3.6). 

E L2(]R2) with compact support and 

(4 • 1 ) 

PROOF 

The function gp is in 

So we can us e theorem 

the symmetry of g 

00 

C 

3.1 

( [ -1,1] x S) and has compact support. 

to prove this lemma. First we show 

p 

(4 • 2) g (-s - w) = g (s,w) on Z. 
p' p 

Because of - w = (-cos ~ , -sin ~ ) = ( cos( ~+TI), sin( ~+ TI ) ) we 

get with the addition formula for sin and cos that 

cos c~( ~+TI) = (_1)m cos c~~ and sin c~( ~+TI ) = (_1)m sin c~~ 
and so 

m q ( ~+TI ) = (-1) q ( ~ ) . 
m m 

Now (4.2) follows from the symmetry of the LEGENDRE polynomials, 

i. e. Q
m 

(- s) = (-1) m Q
m 

( s) . 

The second condition in theore m 3.1 for g is a consequence 
p 

of the orthogonality of the LEGENDRE polynomials. Each monomial 

srn can be represented in the form 

m 
srn = I 

j=O 
d~ Q. (s) with d~ = 0 for j+m odd. 

J J J 

So we get 

[ m 
gp(s, w) ds f qk( ~ ) [ m 

Qk(s) ds s = s 
k=O 

f m 
= qk( ~ ) I d~ [ Qj (s) 

k=O j=O J 

t 
= I qk( ~ ) dm 

k=O k 

where t = min(p,k) . 

Qk (s) ds 
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The q defined in (3.3) can be represented by a homogeneous 
m 

polynomial of degree ~ m because of (3.4), (3.5), which 

completes the proof. 

Next we give an error estimate for the partial sum of an 

expansion of a function in terms of LEGENDRE polynomials. 

Let I be the interval ] -1,1 [ and p be the weight function 

p(x) = 1_x 2 . With KS we denote 

KS 
= 

s s for i-
1 k, ,.here W

2
(I,p ,1) s - + 

2 

and for s = ~ + k, k E INo' the space KS 
2 

in the norm 
00 _ 

of C (I) 

(4.3) I lu ll = [ll uI 1 2 
s s s K W

2
(I , p ,1) 

1 
+ f 

-1 

LEMMA 4.2 

k E 1'1-
0 

is the completion 

pS-1 (x) 

Let u E Kt and u be the partial sum of the expans ion of u 
p 

in terms of LEGENDRE polynomials 

u (x) = I Ck Qk(X) 
p k=O 

with 

(4 .4) 
1 

c k = f u(x) Qk(x) d x . 
-1 

Then there is a constant c > 0 independe nt of u and p such that 

(4 • 5) Ilu-u 11 
p KS 

for 0 :; s ~ t. 

COROLLARY 4.3 

:; c p - (t-s) 11 u 11 t 
K 

Let yE) 0,1 [ and u E Ht ( ) - y ,y [ ) , 
o 

then 

( 4 .6) ::; c
1 

p-(t-s) Ilull t _ 
H ()-y, y [ ) 

Ilu-u 11 
p HS()_y,y[) 

for 0 :> s ~ t. 



PROOF 

Let A be the LEGENDRE differential operator 

and A be the closure of A. The n it is shown 

chapt. 7.7.1 that 

D(As ) = K2s if 5 ~ o. 
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d 2 d 
- dx ( (1-x ) dx ) 

in TRIEBEL, [11 ] , 

AS is a selfadjoint operator with the eigenfunctions Q
k 

and the 

eigenvalues A~ with 

Ak = k (k+ 1) . 

Following LIONS-MAGENES, [4], chapt. 1, formula (16.12) we 

define the norm 

( 4 .7) 
00 

) 1/2 = [ I 
L2 k=O 

,5 2 .] 1/2 
Ak ck 

with c
k 

as d e fine d in (4.4). This norm is equivalent with 

the KS norm defined above. Then we have 

2 Ilu-u 11 
p KS 

~ c' 11 u-u 11 ,2 
p KS 

00 

= c' I [k(k+1) ] sc~ 
k=p+1 

00 

= c' I [k(k+1) ]s-t [k(k+1)]t c~ 
k=p+1 

00 

~ c' [(p+1) (p+2) ]s-t I [k(k+1) ]t 
k=p+1 

~ c' , [ (p+ 1) (p+ 2 ) ] 5 - t 11 u 11 2 
Kt 

2 
c

k 

which completes the proof of lemma 4.2. Now the result of the 

corollary follows from the fact that the weight function p is 

bounded away from zero on the interval [-y,y] for 0 < y < 1. 

So the norms 11· 11 and 11' 11 are equivalent for 
KS HS(]_y,y[) 

functions with support in [-y,y ] . 
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Now we are able to give an error estimate for the function f 
p 

defined in (4.1). 

THEOREM 4.4 

Let f E Ha W ), a > 0, and f be defined as in (4.1). 
o p 

Then we have 

(4.10) 11 f-f 11 B 
p H ( Q) 

o 
1 

for -"2 '" B < a . 

PROOF 

The proof is based upon the continuity of R- 1 from a subspace 

of Ha+1/ 2 (Z) into H~ W ), see SMITH- SOLMON-WAGNER, [ 10 ] , 

theorem 12.6. 
1 

For B ~ - "2 we have 

Il f- f 11 2
6 p H ( Q) 
o 

2 1T 
= c J 

o 
2 11 (g- gp) (. ,w) 11 HB+1/ 2 (I) d (j) 

-2 ( a - B) 21T 2 
'" c p J Ilg(' , w ) 11 a +1/2 

o H (I) 

= c 

= 
'" c 

-2 ( a - B) 
p 

-2( a - B) 
p 

where we have used corollary 4.3 with I = ] - ~,~ [ and 

the regularity theorem 2.1. 
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REMARKS 

1. In the important case f E H~/2( n ) we have a L2 error of 
-1/2 order p . 

2. If one uses the filtered backprojection algorithm as 

described in RAMACHANDRAN-LAKSHMINARAYANAN, [9) , with 

P1 = ep, e ~ TI/~, directions with the ideal low pass 

filter and cut off frequency ao = cp and the approximated 

data g , then the total error in L2 is also of the 
P- a 

order p ,see NATTERER, [7). 
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5 Numerical Experiments 

In order to investigate the error estimate of theorem 4.4 we 

consider first a rather simple example . 

Figure 2. First test object 

The funct ion f E HS 
( Q), s < 1/2 , as shown in figure 2 is o 

defined as 1 in { x E ]R2 Ixl < 0.3 A IX-(0.15,0) I > 0 .15 } 

and 0 otherwise. To simulate the fact of complete projections 

we have analytically computed the function g(s, w. ) with a 
J 

stepsize 1/256 in the s - dire ction and for p+l angles in the 

range [O ,2 /3nl , i. e. within a range of 1200. To reconstruct f, 

we have used the filtered backprojection with 3p/2 angles 

equally distributed over [O,n [. The results are given in 
-1 /2 table 1 and 2 and show the order p for the L2-error. 

The function fl is reconstructed using g (s,w.) for all 
3 p P J 

j = 0' ... '2P-1, see table 1, in the second case 

approximated only in the interval l~n ,n [ and in 

the data are 
2 

[O , }nl the 

given exact data are used, see table 2. Finally table 3 shows 

the result when only exact data are used. 



Table 1 

Projections 

20 

30 

40 

60 

Ilf- f1 1l L P 2 

1.8026 0 10- 1 

1.5635 0 10- 1 

1.3255 0 10- 1 

1.0842 0 10- 1 

L2-error 

by g • 

of the reproduction f1 
p 

P 

Table 2 

Projections 

20 

30 

40 

60 

II f_f
2 11 L 
p 2 

1.1378 0 10- 1 

1.0031 0 10- 1 

8.4308 0 10- 2 

6.8286 0 10- 2 

0.81 

0.86 

0.84 

0.84 

- 14 -

if all the data are approximated 

0.51 

0.55 

0.53 

0.53 

L
2
-error of the reproduction f~ if the data are approximated by 

g only in the missing range. 
p 

Table 3 

Projections II f_f
3 11 L 
p 2 

20 8.9923 0 10- 2 

30 7.0715 0 10- 2 

40 5.9519 0 10- 2 

60 4.7400 0 10- 2 

L2-error of the reproduction f~ 

0.40 

0.39 

0.38 

0.37 

if the data are exact. 
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Next we investigated our procedure in a more realistic case . 

We considered a second test object simulating the case of a 

tumor in the brain . 

Figure 3 . Second t est object 

The function f is again in HS (0 ), s < 1/2, and defined as 1 in o 
{ x E ]R2 Ixl < 0.3 A Ix-(0.05,0) I > 0.225 } , as 0 . 3 in 

{x E IR2 Ix-(0.15,0)1 < 0.05} and ° otherwise. 

Here the integrals in (3.3) h a ve to be computed numerically . 

We used the trapezoidal rule ~lith stepsize 2~6 . The range 

where the data are given is again [o,jrr] . Here we us e d 

p = 30 , 40, 60 and equidistributed angles. The picture is 
3 reconstructed with the filter e d backprojection and 2P 

equidistributed angles. These results are compared with that 

obtained from p+1 projections in [O , rr[ . The L2-errors are 

given in table 4 and 3- D pictures over a 64x64 grid in the 

figures 4-8. Figure 4 shows the original function f , figures 

5, 6 the r econstructed functi on from 40 projections and 

figure 7, 8 from 60 projections in [o,jrr ] r esp . [O , rr[ . 
Finally figure 9 shows a cut of these five functions 

at y = 0. 



Table 4 

Projections 

30 

40 

60 

L2-errors of the 

p projections in 

Il f - f1 1l L P 2 

1.2651.10- 1 

1.0433.10- 1 

9 . 3725 .1 0 - 2 

- 16 -

11 f_f
2 11 L 
p 2 

9 . 3582 . 10- 2 

7.8882.10- 2 

6 .9419. 10- 2 

reproduction of test-object 
2 [O,}nl and [O , n[ r esp . 

2 from 
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