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Abstr act 

Le t w , .. . , w 1 E S 1 be p distinct directions and l et R 
o p -

de note the RADON transform. The functions f with s upport 

in the unit disc and with Rf(s, w.) = 0 for sE [ -1,1] and 
J 

j = 0, ... , p -1 are g i ven. "Ghosts" are constructed , i. e . 

functions in the null space that p r etend not exis tent 

turnors. Methods to avoid such ghosts are indicated. 
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1 Introduction 

Let n : = {XE lR2 Ixl ~ 1} be the unit circle and s1 its 

boundary. The RADON transform of a function with support 

in n is defined as 

Rf(s, w) = g(s,w) 
If=S"T 

=-.k 
... 

f(sw+tw ) dt (1. 1 ) 

where s ElR 
... 1 

and w,w E S with w = (cos (j) , sin (j) ) , 

w = (-sin (j) , cos (j) ). 

The function f is uniquely determined if g is known for all 

s and for all (j) El: <1>1' <1>21 with some 0 :> <1>1 < <1>2 :> 1T. In the 

applications as for example in medical x-ray diagnosis only 

fini tely many projections are known, say fo .':" 0 = (j)o < (j) 1 < ••• 

< (j) 1 < 1T . In this case the function f cannot be achieved 
p-

exactly, see LUDWIG, [91 , SMITH-SOLMON-WAGNER, [141. This 

means that there exist functions f $ 0 such that Rf(s,w j ) = 0 

for all s and for j = 0, .•. , p-1. 

In this paper the null space is determined depending on the 

directions wj . As a consequence in the case of equidistributed 

angles special functions in the null space are constructed 

that are looking like turnors, so-called ghosts. Some 

typical properties of the ghosts make it possible to 

recogniz e them and so to avoid them. 

In § 2 we give an inversion formula which enables us to con

struct the null space, see § 3. Finally § 4 contains p~acti

cal considerations. 
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2 An Inversion Formula 

With Ha( n ) we denote the ~a(n) spaces of TRIEBEL, [15] 4.3.2. 
o a 

Let f E Ho( n ) with a l: - 1/2, then the RADON transform g = Rf 

is defined for almost all s and is an element of Ha +1/ 2 (Z) 

with Z = R x S1, see NATTERER,[11], theorem 3.2 for 

a> 1/2 and LOUIS, [8], theorem 2.1 for a O:: -1 /2. The 

support of g( ', w) lies in [ -1,1] for all ~ and g satisfies 

the conditions of HELGASON, [3], and LUDWIG, [9] : 

i) g(-s, - w) = g(s,w) on Z (2.1) 

E) for all m ElNo 

f srn g(s,w) ds (2.2) 

is a homogeneous polynomial of degree ~ m in w. 

Let P be any real polynomial of degree m, then it follows from 

condition (2.2) that 
m 

fp(s) g(s,w) ds = I 
g,=-m 

m eH~ cg, (2.3) 

. th m '" d m -c~ where th b d t th 1 W1 c g, E .. an c_g, = " e ar eno es e comp ex con-

jugation. 

In the following we use the CHEBYSHEV polynomials of the second 

kind, Urn' which are orthogonal 

respect to the weight function 

1 f (1_ s2) 1/2 u (s)U (s) ds = 
-1 m n 

on the interval 
(1_s2) 1/2: 

[-1,1] with 

(2.4) 

where 0 denotes the KRONECKER symbol, see [1], page 774. mn 

The expansion of g in terms of the CHEBYSHEV polynomials is 

g(s , w) = (1 _s2) 1/ 2 

with expansion coefficients 

2 1 
qm( ~ ) = rr f Um(s) g(s,w) ds 

-1 

m 
" m eig,~ = L c g, 

g,=-m 

( 2 .5) 

(2 .6) 
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because of (2.3). For a ~ -1/2 this expansion is convergent 

because of g E L2 (Z). From the symmetry (2.1) of g and the 

fact that the U are even (odd) for m even (odd) we conclude 
m 

m 
c ~ = 0 for ~+ m odd. (2.7) 

This leads to the following representation of g: 

g(s,w) = (1_s2) 1/2 
00 m 

I 
~=-m 

m i ~(j) 
c~ e . (2.8) 

In order to get an expansion of f with the coefficients c~ 
defined above we consider the ZERNIKE polynomials: 

(2.9) 

where ~ ,k ElNo ' x = r (cos (j), sin (j) and Q~,k is a polynomial 

of degree k in t with 

and 

1 
f Q~,k(t) t~+m dt = 0 for m = o,1, ..• ,k-1 
o 

The V ~ ,k fulfill 

b V~,k V~, ,k' dx = n(I~I+2k+1)-~ o~~,okk' 

see MARR, [ 7 ] , lemma 1. 

LEMMA 1 

The RADON transform of the ZERNIKE polynomials is 

RV ~ ,k(s,w) = 2 (m+1) -1 (1_s2) 1/2 Um(s) eH ,,, 

for ~EZ, k ElNo and with m = 2k+I ~ I. 

PROOF 

(2.10) 

(2.11) 

This result follows from theorem 1 in MARR, [10]. In § 2 in 

[10] it is shown that the V~,k form an orthogonal 
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system of polynomials with total degree 2k+I~I. Furthermore 

the boundary fuction of V~,k is ei~~ because of (2.10), 

see also [6], [7]. 

Using (2.8) and (2.11) we finally have the following 

expansion of g 

g (s, w) 
1 00 

="2 I (m+ 1) 
m=O 

m 

I 
~=-m 

(2.12) 

Conclusion (2.7) guarantees that in (2.12) only V ~ , (m-I~I)/2 

appear where (m-I~I)/2 is integer. Now because of the 

linearity of the RADON transform we have the following 

inversion formula. 

THEOREM 2 

Let f E L2 (Q) 

by (2.6). 

m and let the coefficients c~ be defined 

Then 

f (x) 
1 00 

="2 I 
m=O 

(m+1 ) 
m 

I 
~=-m 

PROOF : 

In order to show the convergence of the series on the 

right of (2.13) we calculate the expansion coefficients 

of f in terms of the ZERNIKE polynomials 

dm = m+1 ) 
~ -11- (f,V ~ ,(m-I ~ I)/2 . 

(2.13) 

Because of V ~ ,k(x) = R*KRV ~ ,k(x) where R* is the adjoint 

operator of Rand 

Ku (s , w ) = 4 ~ i .!( i ~ s u (s , w) 

whe r e .il is the HILBERT transform, see [9], we come to 

m+1 
= --

11 

With (2.11) and 

d. ( (1-s2) 1/ 2 Um(s) ) = Tm+1 (s) 

where Tm is the CHEBYSHEV polynomial of the first kind, 
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see ABRAMOWITZ-STEGUN, [1], formula 22.13.4, we get 

KRV () 1 U ( s ) eH lP 
.t,(m-!.t!)/2 s,w ; 211 m 

where we have used T~+1 (s) 

d~ can be calculated as 

; (m+1) U (s). Finally the 
m 

m+1 
211 00 

d m 
; f f Rf(s,w) KRV.t,(m_!.t!)/2(s,w) ds dlP .t 11 

0 - 00 

m+1 
;!1T 00 

-H lP 
; -2 f f g(s,w) Urn (s) ds e d lP 

211 0 -00 

m 

L 
k;-m 

211 
f m i(k-.t)lP d c k e lP 
o 

m+1 
= 47T 

m+1 m 
; -2- c .t 

where we have used (2.6). This completes the proof. 

The direct application of this inversion formula leads to 

an algorithm with O(p2(N 2+q)) arithmetic operations, where 

q is the number of positions s where g(s,w . ) is known 

and N2 is the number of points x where theJdensity is 

evaluated. Therefore this method cannot compete with the 

backprojection method for example, which needs only 

O(pN 2 ) operations, see RAMACHANDRAN-LAKSHMINARAYANAN, [13]. 

The advantage of this formula cons its in the characterization 

of the RADON transform. 
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3 The Null Space of the RADON Transform 

1 Let Wj ES , j = 0, ... ,p-1 be p distinct directions. For f E L2 ( n ), 

supp (f) en, the functions Rf ( . , w
j

) are in L
2

, so we can 

define the null space of the RADON transform for the pro

jections in the directions w. as 
J 

J' = {f E L
2

( n ): Rf(s,w j ) = ° for almost all sand j=O, ... ,p-1 \ 

Using the representation (2.5) for a function g we can 

characterize the functions f Ef('. If f EX' t h e n g = Ef fulfills 

2 1/ 2 g(s, w. ) = (1-s ) 
J 

00 

I 
m=O 

q ( <p .) U (s) = ° m J m 

for almost all sand j = 0, ... , p-1. 

(3.1) 

Because of the linear independence of the CHEBYSHEV polynomials 

this is equivalent with 

( 3 .2) 

The qm are trigonometric polynomials with m+1 coefficients: 

[m/2] 
I (3.3) 

R.=O 

with a~ = (
n 
2H1 

if m is eve n 

if m is odd 

Now (3.2) is a system of p linear homogeneous equations with 

m+1 unknowns and the rank of the matrix is min(p,m+1). There

fore the qm vanish identically for m < p. This l e ads to the 

following result. 
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THEOREM 3 

Letf EuV. Then 

00 m 
f (x) I: I: m 

V 9." (m- ! 9., ! ) /2 (x) = c9., 
m=p 9.,= -m 

00 m 
H cp ! 9., ! I: I: m 2 = c9., e r Q! 9.,! ,(m-! 9., !)/2(r) 

m=p 9.,= -m ( 3 • 4) 

with x = r (cos cp , sin cp ) 

where 

m i 9.,cp· 
qm( cp j) I: m 0 for j 0, ... ,p-1. = c 9., e J = = 

9., =-m 

From theorem 3 it follows that the expansion of a function 

f E,j"in terms of ZERNIKE polynomials starts with a polynomial 

of total degree p. 

In the special case of equidistributed angles cp. = jrr/p, j=0, ... ,p-1 , 
J 

this result bears more information. For m ~ p the homogeneous 

system of linear equations (3.2) has the m-p+1 linearly inde pendent 

solutions 
m-p m-p 9.,cp+b~-P qm ( cp ) = sin pcp L (a 9., cos . sin 9, ,p ) 
9.,=0 

( 3 • 5) 

with bm- p = 0 and m-p = m-p = 0 for 9., +m-p odd 
0 a 9., b 9., 

( 3 .6) 

and a~-P, b~-P E lR arbitrary otherwise. 

m-p . m-p With c 9., = a 9., -1 b9., and c_9., = c 9., these polynomials can 

be represente d as 
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For x = r (cos <1' , sin <1') this leads with (2.8) and theorem 2 to 

f (x) ~ ~ fit 1 m-"p {( i (pH) <1'_ -i(pH) <1') oH. Q ( 2) 
4i ~ 2 Jo c R, e c _ f! r" 'pH, (m-p-R,) /2 r 

+cos P<l' I 
m=p+1 

with 

m-p 
I 

R,=1 

with degree p1,~ = m. Here we have multiplied the coefficients 

which can be ~hosen arbitrarily by m!1 and again denote d 
m-p m-p by a R, ,b R, . The second sum in (3.6) starts with p+1 because 

m-p m-p for m=p the inner sum is b o cos o-ao sin 0 = 0, see (3.6) 

In the first sum in (3.7) we get for R,=O 

m-p p 1 (r) 
ao m,c 

m-p p 2 
= 2 ao r Qp,(m_p)/2(r) 

and with m=p+2k 

Finally we come to the following result. 

THEOREM 4 

Let the <1' . j 
J , 

= O, ... ,p-l be equidistributed angles and let 

f Evf. With x = r(cos <I' , sin <1' ) the function f has the re-

presentation 

( 3 .7) 

(3.8) 
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00 

f(x) = sin p~ .{rP I d ~ 
~=o 

00 m-p 
I + L 

m=p+1 ~= 1 

00 

+cos p ~ L 
m=p+1 

1 2 
~~).p ,(r)} 

m, " 
(3.9) 

1 2 m-p m-p with P' from (3.8), a, = b, = 0 for ~+m-p odd 
m, ~ "" 

m-p bm- p E and d ~ , a ~ , ~ ffi. 

Now the following result is easily deduced from the theorems above. 

It has first been shown by HAMAKER-SOLMON (2) in order to compute 

the angles between the null spaces of the X-rays. 

COROLLARY 5 

Jr is a closed linear subspace of L
2

(n ). 

PROOF 

The projection Pj : L2 (n )+ ~ with Pjf = 

continous for all j and m: 
2 1 

Iqm( ~j ) I = ~I f Um(s)g(s,w.) dsl 
-1 J 

:;; c'lIfIlL · 
m 2 

q ( ~ .) a nd q ( ~. ) from (2.6) i , 
m J m J 

Now l e t {f ~ } ~ EJN b e a sequence in jf wi th f ~ + f f L2 (n). Because 

of the continuity of P~ we have P~f = 0 and so f Efl'. 
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4 Practical Aspects 

The most important application of the RADON transform lies 

in the medical X-ray diagnosis. The computed tomography 

was originally used in the evaluation of disorders in the 

brain and has become a well established radiological tech

nique for the whole body. Thereby the total attenuation of 

the X-ray beam between the source and the detector provides 

us with an estimate of the line integrals of the linear 

attenuation coefficient and so with the density of the 

scanned tissue. It is evident that only finitely many pro

jections can be realized and that therefore the density is 

not uniquely determined. The question arises whether or 

not there are pictures whose projections coincide with that 

of the original density and which pretend not existent tumors, 

so-called "ghosts". At the first glance this seems to be im

possible because the null space conasts in the radial direc

tion of polynomials of high order and in the angular direc

tion by oscillating terms. But the figures 1-2 show the 

contrary: the projection of the characteristic function of 

the circle around 0 with small radius R on the null space 

looks like a ghost after normalizing such that the maximal 

value is equal to one. Figure 1 shows 3-D pictures of these 

functions with R = 2.5- 10-3 and for p = 10,30,90 in the circle 

with radius 0.16; figure 2 shows a cut of these functions 

along the positive x-axis. 
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( c) 

Figure 1. "Ghosts" for p=10(a), p=30(b), p=90(c) 
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6 H 0 5 1 5 

or" 10 
I' .. ) 0 
r .. ,f) 

Figure 2. Cut of the functions from figure 1 along 

the p o sitive x-axis. 

Typical for the functions in the null space are the following 

facts. The HS norm grows exponentially with s, see figure 3. 

This is caused by the oscillatory nature of these funct i ons. 

b 

'0 

'01 

1 
"Oi 

\ 
'0' 

i , 
"c~ 
...... 

1 , =...-----
c , 

! 
M ~ 
'0; 
~ . 

~ 5 
~.-
~, 

0, , , 2 , , , 3 . . ~ S . • 

Figure 3 . HS norm of the ghost of figure 1c) (1) and of a 

phantom of a turnor in the brain (2) 
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For this reason the regularization method of TYCHONOV and PHILLIPS 

provides a remedy against ghosts because usual densities do not show 

this behaviour for small s, see figure 3, where the second graph is 

the HS norm of the reconstruction of object 2 in [8] with filtered 

backprojection ( p=30 , q=128 ). The origina l is d e fined as 1 for 

Ixl < 0.3 and Ix-(o.oS,O) I > 0.22S, as 0 . 3 for Ix-(0.1S,O) I < O.OS 

and ° otherwise . The regularization method consits in minimizing 

the functional 

1 
J (z) = -

et p 

p- 1 
L 

j=O 

with suitable s and et , where g is measured. The regularization 

term takes care that the influence of the null space is absorbed. 

A further property that is shared by the ghosts is that the 

width of the peak is about 1/p. This agrees with the first root 

of the first polynomial in the expansion (3.9) which is of order 

1/2p, see figure 4. Consequently the resolution in the reconstruc

tion must not be to high. The distance of two points whe re the 

density is evaluated should be at least 1/p . This coincides with 

the result of KOWALSKI-WAGNER, [S], see formula (18). In addit~on 

to that filtering helps to overcome this problem, see [S] . 

Finally another consequence of the uncertainty in the recon -

struction should be discussed. The null space is r espons ible 

for two well known artefacts in the reconstruction : the arte -

facts in radial direction and the ring-like artefacts. This can 

be seen by the simplest functions in (3.9). Disturbations caused 

by corPosin p ~ go radially from a point of the picture. Setting 

a P = c/2 in (3.9) and all the other coefficients equal to zero 

w~ obtain the function c oQ 2 (r 2 ). Graphs for coQ 2 (r2) for 
0, p 0 , p 

p = 10, 30, 90 are given in figure 4, c is chosen such that 

coQ 2 (0) = 1. The relative extrema of these functions show 
0, p 

the same behaviour as the ring-like artefacts. For pictures of 

artefacts see KOWALSKI-WAGNER, [S]. 



ro 
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" r -, 10 
... P ':: )0 

~ p -. :10 

Figure 4. ZERNIKE-polynomials Q 2 (r 2 )/Q 2 (0) in 
0, p 0, p 

[0,0.3] for p=10,30,90 
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