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1. Introduction

Algorithmic specifications of abstract data types have been
introduced in [Lo 80bl. While being strongly related to the alge-
braic specification method used by e.g. [GH 78a, GHM 78b, Mu 80],
the algorithmic specification method is more general and treats
undefined and error values in a '"natural" way; moreover it is
felt to be easier to use for the specification of non-trivial

data types.

The purpose of the present report is to introduce the notion of
implementation of a data type in the framework of algorithmic
specifications and to present 'correctness conditions" for such
implementations. These conditions are "symmetric" in that they
indistinctly allow the use of a "representation function" (as in
[swL 77], [GHM 78b] or [EKP 80]) or of an "implementation function"
(as in [ADJ 78], [Ga 79] or [Su 79]). It should be noted that the
ideas proposed are also applicable to the implementation of data

types with undefined or error values.

The present report does not contain formal developments nor extended
proof examples. For a formal justification of the correctness con-
ditions the reader is referred to [Lo 80c]; for a detailed description
of some proofs - which, by the way, were performed mechanically with

the AFFIRM-system [Mu 80)] - the reader is referred to [Lo 80a].

Section 2 presents an overview of the algorithmic specification method.
Section 3 introduces the notion of an implementation and presents the
correctness conditions. Section 4 contains an example treated first

by a representation function and then by an implementation function.



2. The algorithmic specification method

According to [Lo 80b] an algorithmic specification of an abstract

data type, say T, consists of :

(i) a list of constructors of type T, such as (for T = Stack):
emptystack: =+ Stack
push : Stack x Integer - Stack
these constructors define a term language similar to the carrier
set of the word algebra of [ADJ 78]; note that a constructor
is a purely syntactical object which is not to be interpreted as a
functiong

(ii) a predicate noted Is.T which defines a subset of the term
language; this predicate may be viewed as the "invariant" of the
the type;

(iii) a predicate noted Eq.T which defines an equivalence relation in
the term language; this predicate may be viewed as defining the
equality for the type;

(iv) a list of external (or: user) functions such as Push or Pop;

(v) a possibly empty list of auxilZary (or:hidden) functionswhich are
intended to be inaccessible to the user.

Examples are in Figure 1, 2, 4 and 5.

The different functions introduced in a specification are essentially
defined as recursive programs [Ma 74]; but in order to dispose of a
clear theoretical basis the formalism used is that of (pure) LCF [Mi 72].
Essentially this formalism makes use of the A-notation; moreover, if
t is an expression and M a function variable, [aM.t] denotes

the minimal fixpoint of [AM.t]. In order to be applicable on term
languages each term language is viewed as a flat lattice with a mini-
mal element representing the undefined value (viz. ®W) and a maximal

element representing the error value (viz. Q).

In the definition of these functions use may be made of the following

"basic" functions defined over the term language:

- for each constructor, say cons , a function Is.cons defined as follows:
Is.cons(t) =[true if the leftmost constructor in the term t is cons;

false otherwise;



(1) Constructors
emptystack : > Stack
push: Stack x Integer + Stack
(1i1) Acceptor function
Is.Stack has the constant value true
(iii) Equivalence relation
Eq.Stack is the syntactical equality (in the term
language of type Stack)
(iv) External functions
Emptystack = emptystack
Push = [As€Stack, i€Integer. push(s,i)]
Pop = [As€Stack.
if Is.push(s) then s[1]
else emptystack]
Top = [As€Stack.
if Is.push(s) then s[2]
else 0]
Isnew = [As€Stack
if Is.push(s) then false
else true ]

(v) There are no auxiliary functions.

FIGURE 1: The specification of the data type Stack. The data type
Integer with the O-ary external function O is assumed to have been
specified previously. Note that Emptystack 1is a O-ary external
function (i.e. a constant) and emptystack a O-ary constructor (i.e.
a term). Note also that, according to the specification, "popping"
or "topping'" an empty stack does not lead to an error but to an

empty stack and the number 0O respectively.




(i) Constructors
emptyset : =+ Set
insert: Set X Integer > Set
(ii) Acceptor function
Is.Set = [aM.[As€Set. if Is.emptyset(s) &
then true
else if Memberof (s[1], s[2])
then w
else M(s[1]) 1]

(iii) Equivalence relation
Eq.Set = [Asl,s2€ESet.
if Subset(sl,s2)

then Subset(s2,sl) else false]

iv) External functions
Emptyset = emptyset
Insert = [As€Set,i€Integer.

if Memberof(s,i) then s else insert(s,i)]

Delete = [aM.[As€Set,i€Integer.

if Is.emptyset(s)
then emptyset
else if s[2] = 1
then s[1]
else insert(M(s[1],i)s[2])]]
Memberof = [aM.[As€Set,i€Integer.

if Is.emptyset(s)
then false
else if s(2] = i
then true
else M(s[1],1)]]
Subset = [aM.[Xsl,s2€Set.

if Is.emptyset(sl)

then true

else if Memberof(s2,s1[2])
then M(s1[1],s2)
else false 1]

FIGURE 2: The specification of the data type Set; the data type Integer

is assumed to have been specified previously. Note that Is.Set avoids
the occurrence of duplicates in the term language and that Eq.Set

identifies sets which differ only by the order of occurrence of their

elements.




- a "projector function" which extracts an "argument'" of a con-
structor; the value of this function is denoted by the array
notation; for instance, if t is a term of the form cons(u,v)

then

tl1]
tl2]

]
<

For more precision and more details the reader is referred to [Lo 80b].

The data type T defined by an algorithmic specification consists of

a carrier set and a set of operations.

The carrier set is the set containing the following elements:

- the equivalence classes induced by Eq.T on the subset of the
term language defined by Is.tT;

- an element ERROR;

- an element UNDEFINED.

To each external function F is associated an operation FOp in the

following way. Suppose F maps terms of type TyseessT into terms of

type T o412 O > 0; let w(t) denote

- the equivalence class of t, if t is a term
- ERROR, if t =0
- UNDEFINED, if t = w;

then the corresponding operation Fop maps the carrier set of

T ces T into the carrier set of Ty and its value is defined by:

17" +1

Fop(“’(tl)"""p(tn)) = w(F(t],---,tn))

Note that the definition of Fop is consistent only if the external
function F satisfies certain verification conditions, e.g. that
equivalent arguments lead to equivalent values. More details and a
study of these conditions - which, by the way, are similar to those

in [GHM 78b] - may be found in [Lo 80b].

Note that a data type together with the data types it makes use of
(i.e. the data types which are at a "hierarchically lower level")

constitutes a heterogeneous algebra.



Consider the algebra defined by a set of specifications. An element
of a carrier set is called accessible if it may be obtained as the

value of an expression built with operations.

The algebra is called surjective if all elements of the carrier sets -
except possibly ERROR and UNDEFINED - are accessible; it is called
error-free (total) if ERROR (UNDEFINED) is not accessible.

In the sequel only sets of specifications defining surjective algebras

will be considered.

3. Implementations

3.1 Definition

Let Ao be the algebra defined by a set of specifications containing

a specification of the data type 0. Let AT be defined by the same set of speci-
fications except that the specification of the data type 0 is re-

placed by a specification of the data type 7. The data types O and

T are called equivalent if the algebras AU and AT are isomorphic.

When the data type T is felt to be more "elementary" thano (e.g.

because it 1s easy to write efficient programs for its external

functions) one also says that T is an <mplementation of o.

In spite of its symmetric character this definition corresponds to
the intuitive notion of an implementation; the main point is that
the isomorphism is on the level of the algebras, not on the level

of the external functions. By the way, this notion of implementation
and the correctness conditions which will be deduced from it in

Section 4 are very similar to those of [GHM 78b].

When the algebras AG and AT are both error—-free and total it 1is
sufficient to consider a weaker notion. Let Aé and A% be the
subalgebras of Ac and AT obtained by deleting the elements ERROR
and UNDEFINED. Then ¢ and T are called weakly equivalent if Aé and



Ay are isomorphic. A weak implementation is defined similarly.

For reasons of simplicity we will limit ourselves to this special
case. The general case is treated in [Lo 80c]; it merely differs
by the fact that for each correctness condition the cases "ERROR"

and "UNDEFINED" have to be treated separately.

4. The correctness conditions

Let the algebras AU and AT be defined as in Section 3.2
Let moreover

RP: T *0

be a function mapping the terms of type T into terms of type 0;

RP is called a representation function.

The data type T is a weak implementation of the data type o if the

following three conditions are satisfied:

(1) for all terms d of type T:

if Is.1(d) = true

then Is.0o(RP(d)) = true
(11) for all terms dl’dZ of type T:

if Is.T(dl) = Is.T(dZ) = true
then Eq.T(d,,d,) = Eq.0(RP(d ),RP(d,))

(iii) there exists a one-to-one correspondence between the extermnal

functions of 0 and T; more precisely, to each external function

F: pyX...Xp > p

-n —n+1 s U

of 0 corresponds the external function
: "'X...xp' > p'
Tk 2 E-1 . Ln £n+l

of T with for each i, 1 < i < n+l :

! = 1 =

pi otherwise



moreover, for all terms di of type Pss 1 < i <n:

if Is.pi(di) = true for all i, 1 < i

< n
then Eq.U(F(d',...,d;), RP(Im.F(dI,...,dn))) = true

if p =g (a)

n+l
1 ' 0 =
Eq.pn+1(F(d ""’dn)’ Im.r(d],...,dn)) true
i T o
where for each i, 1 < i < n:

! = . 1 =
di RP(di) if Py o]

d. else
1

That these conditions imply T to be a weak implementation of o is
formally proved in [Lo 80c]. Intuitively, (i) expresses that RP maps
"allowed" terms into "allowed" terms; (ii) expresses that two terms
of T are equivalent iff the corresponding terms of 0 are equivalent
or, more loosely, that RP corresponds to an injective mapping of the
equivalence classes of T into those of 0. In order to interpret
(1i1i) consider the special case n = 1, Py = Py = O3 in that case
the condition (a) of (iii) becomes

Eq.0(F(RP(d)), RP(Im.F(d))) = true (b)
and is illustrated by Figure 3 (A); now as F is supposed to satisfy
the verification conditions, equivalent arguments lead to equivalent

values (see Sectionm 2.2), i.e.

if Eq.0(c,RP(d)) = true

then Eq.0(F(c),F(RP(d))) = true ;
hence (b) 1is equivalent with

if Eq.0(c,RP(d)) = true

then Eq.0(F(c),RP(Im.F(d))) = true;
this condition is illustrated by Figure 3 (B) and expresses that the
external functions Im.F of T "simulate" the corresponding functions F

of o up to equivalence.

_ RP d

\x'( E

FIGURE 3: Illustration of the correctness condition (iii); points in

" . n -
the same circle are equivalent.




The use of an implementation function

IM: ¢ + T
rather than a representation function

RP: T + 0
puts no problem: due to the symmetry of the definitions it 1is

sufficient to permute 0 and T in the conditions of Section 4.1

5. An example

The implementation to be proved correct is that of a stack by a

vector and a pointer.

More precisely, the data type to be implemented is that of Figure |I.
The data type which constitutes the implementation consists of a
vector and an integer which are "melted" into a single data type
by a constructor called paZr - as indicated in Figure 5. The speci-

fications of the data type Veector are in Figure 4.

It is assumed that for all specifications the verification conditions

mentioned in Section 2.2 have been checked.

5.2 The correctness conditions

Consider the representation function (*)

RP = [aM.[Am€Imstack
if m[2] = 0
then emptystack

else push(RP(pair(ml[!l], m[2]-1),
Read(m[1],m[2])) 11

(*) As in the figures use is made of the decimal notation and the
infix notation for usual (external) functions of the type Integer;

moreover Eq.Integer is replaced by the infix predicate "=".



(i) Constructors
emptyvector : * Vector
write: Vector x Integer x Integer » Vector
(ii) Acceptor function
Is.Vector has the constant value true
(iii) Equivalence relation
Eq.Vector = [Av1,v2€Vector.
if Subvector (v1,v2)
then Subvector (v2,vl) else false ]
(iv) External function
Emptyvector = emptyvector
Write = [AvEVector, i,j€Integer.
write (v,i,3) ]
Read = [aM.[AvEvector, i€Integer.

if Is.emptyvector (v)

then 0 else if i = v[2]

then v[3] else M(v[1],i) 1]
Defined = [oM.[AvEVector, i€Integer.
if Is.emptyvector (v)

then false else if i = v[2]

then true else M(v[1],1i) 1]

(v) Auxiliary function

Subvector = [aM.[Avl,v EVector.

2
if Is.emptyvector (vl)
then true else if Defined (vz,v][Z])

then if Read (VZ,VI[Z]) = V][3]

then M(vl[l], Vz)

else false

else false 11

FIGURE 4: The data type Vector. Note that "overwritten" values
are not erased; note also that reading a not yet initialized error

component leads to a read result "0" (rather than "error").




(1) Constructor

pair : Vector x Integer + Imstack
(ii) Acceptor function

Is.Imstack = [AmEImstack.

if m[2] > 0 then true else w]

(iii) Equivalence relation
Eq.Imstack = [aM.[Am],mZEImstack.
if mI[Z] = m,[2]
then if m1[2] =0
then true
else if Read (ml[l],m][Z]) = Read (mz[l],mz[z])
then M(pair (m [1],m [2]-1),
pair (mz[l],mz[Z]-l))
else false
else false 1]
(iv) External functions
Imemptystack = pair(emptyvector, 0)
Impush = [AmEImstack, i€Integer.
pair (Write (m[1],m[2]+1,1i),m[2]+1)]

Impop = [Am€Imstack.
if m[2] = 0 then m else pair (m[1],m[2]-1)]

Imtop = [Am€Imstack.
if m[2] = 0 then 0 else Read (m[1],m[2])]
Imisnew = [Am€Imstack. if m[2]= O then true else false ]

FIGURE 5: The data type Imstack which is intended to be an implementation
of the data type Staek. Intuitively the data type consists of a
vector and a "pointer". According to (iii) pair (v],il) and
pair (v2,12) are equivalent of either i, =1, = 0 or (1l = 12)

and (i],i "point" to the same value in v],vz) and (pair (v],il—l)

2
and pair (v2,12-2) are equivalent).




Intuitively the wvalue of RP is the empty stack when the pointer is zero;
otherwise the value is the stack consisting of the elements

vli1],...,v[k] where v is the vector and k the value of the pointer.

Let us consider the correctness conditions (i) to (iii) of Section 4.2

with 0 = Stack and T = Imstack.

The condition (i) trivially holds because Is.Stack has the constant

value true.

The condition (ii) is :
if Is.Imstack(ml) = Is.Imstack(mZ) = true
then Eq.Imstack(m],mz) = Eq.Stack(RP(m]),RP(mz))

The condition (1i11i) comnsists of
(a) Eq.Stack (Emptystack,RP(Imemptystack)) = true

(b) if Is.Imstack(m) = Is.Integer(i) = true
then Eq.Stack (Push(RP(m),i),
RP (Impush(m,1))) = true

(c) if Is.Imstack(m) = true

then Eq.Stack (Pop(RP(m)), RP(Impop(m))) = true

(d) if Is.Imstack(m) = true (*)
then Top(RP(m)) = Imtop(m)

(e) if Is.Imstack(m) = true (*¥)

then Isnew(RP(m)) = Imisnew(m)

These conditions have been proved mechanically with the help of
the AFFIRM-system; the proofs are in [Lo 80a]. Essentially a proof
consists in replacing functions such as Is.Imstack, Impush or Push
by their definition and, if necessary, to apply structural induction
on the term language. As a trivial example consider the proof of (d);
by the definition of Is.Imstack one has to prove:

if i >0

then Top(RP(pair(v,i)) = Imtop(pair(v,i)).

(*) wusing the infix operator "=" for Eq.Integer

(**) using the infix operator "=" for Eq.Boolean



The case 1 = 0 leads to :

Top(emptystack) = 0O
which holds by the definition of Top; the case i > O leads to
Top(push(RP(...), Read(v,i))) = Read(v,i)

which again holds by the definition of Top.

The same correctness proof can be performed with the help of
an implementation function such as
IM = [As€Stack.
pair (Construct(s), Depth(s))]
in which Construct and Depth are (auxiliary) functions :
Depth = [oaM.[As€Stack.
if Is.emptystack(s) then O
else M(s[1]) + 1]]
Construct = [aM.[As€Stack.
if Is.emtystack(s) then emptyvector
else write (Construct(s[1]),
Depth(s), s[2]) ]I

Informally, Depth determines the pumber of elements of the stack

and Construct constructs a vector for a given stack.

Let us consider the correctness conditions (i) to (1ii) of Section

4.1 with 7 = Imstack, T = Stack and IM instead of RP.

The condition (i) 1is :
Is.Imstack(IM(s)) = true (a)
for all terms s of type Stack

Due to the definition of Is.Stack and Eq.Stack the condition (1i1i)
may be written
Eq.Imstack(IM(s), IM(s)) = true ;

this condition holds because Eq.Imstack is an equivalence relation (*).

(*¥*) Remember the assumption that the verification conditions of the
specification of Imstack have been checked; these conditions imply

that Eq.Imstack is effectively an equivalence relation.



The condition (iii) consists of : for all terms s and i of type

Stack and Integer respectively:

Eq.Imstack(Imemptystack, IM(Emptystack)) = true (b)
Eq.Imstack(Impush(IM(s),1i),IM(Push(s,1i))) = true (c)
Eq.Imstack (Impop(IM(s)), IM(Pop(s))) = true (d)
Imtop(IM(s)) = Top(s) (e)
Imisnew(IM(s)) = Isnew(s) (£)

The conditions (a) to (f) may be proved as in Section 5.2.
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