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1. Intr o duction 

Algorithmic speci fication s of abstrac t data types have been 

introdu ce d in [Lo 80b] . While being strongly related to the alge 

braic specifica tion method u sed by e.g. [ Gil 78a, GHM 78b, Mu 80 ], 

th e algorithm ic specification method is more ge n era l and treats 

undefined and error value s in a "natural" way; moreover it is 

felt t o be eas ier to use for the specification of non - trivial 

data types . 

The purpose of the present report is to introduce the notion of 

im plementat i on of a data type in the framework of algo rithm ic 

s pec ifications and to pre sent IIcorrectness conditions" for such 

implem e ntations . These conditions are "symm et ric" in that they 

indistin c tl y allow the us e of a "repres e ntation function" (as 1n 

[ SIll 77 ], [GHM 78b ] or [E KP 80]) or of an " implementation function" 

(os in [ADJ 78], [G a 79] or [ Su 79]). It s h oul d be noted that the 

id eas proposed are also applicable to the implementation of data 

types with undefined or error values. 

Th e present report does n ot conta in formal developments nor extended 

pro of exa mples. For a formal ju s tificati o n of the correctness con 

diti o ns the r eade r is ref erred to [Lo 80c]; for a detailed description 

o f some proofs - which, by the way, were p e rform ed mechanically with 

the AFFIRfl - sys tem [Mu 80] - the reader is referred to [L o 80a] . 

Section 2 presents an overview of the algorithmic specification method. 

Sectio n 3 introduces the notioll of an implement ation and presents th e 

co rre ct ness conditions. Section 4 contains an example treated first 

by a r e presentation functi on a nd th e n by an impl ementat i on function. 
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2 . The algorithmic specification method 

Acco rdin g to [Lo 80b] an algorithmic specification of an abstract 

data type, say T, consists of 

(i) a list of c.?nstructors of type T, such as (for T 

emptystack: + Stack 

push : Stack x Integer + Stack 

Stack ): 

these constructors define a term language similar to th e ca rrier 

se t of the word algebra of [ADJ 78]; note that a cons tr ucto r 

is a purely syntactical object which is n o t to b e interpreted as a 

function; 

(ii) a predicate noted Is.T which defines a subset of the t e rm 

lan g ua ge ; this predicate may be vi e wed as th e " inva ri a nt" of the 

the type; 

(iii) a predicate noted Eq.T which defin es an e quival e nce r e lation in 

the term language; this predicate may be viewed as defining the 

e qu ali ty for the type; 

(iv) a li st of exte rnaZ (or: user ) functions such as Push or Pop; 

(v) a possibly empty list of auxiZiary (or:hidden ) functions which a r e 

intended to be inacces sible to the user. 

Exampl es a r e in Figure I, 2, 4 and 5. 

The different functions introduced in a specification a r e essen ti al l y 

defined as recursive programs [Ma 74]; but 1n order to dispose of a 

c l ea r th eo retical basis th e formalism used is that of (pur e) LCF [Mi 72]. 

Esse nti a ll y this formalism makes use of the A-notation; moreover, if 

t is an e xpression and M a f unction v a ri a b le, [ a M.t] denotes 

the minima l f ixpoint of [lM.t]. In order t o be applicable on term 

l a ng uages each term langua ge is viewed as a flat l attice with a mini -

mal e l emen t representing the undefined value (viz. w) and a maxima l 

e l ement represe nting the error value (viz. n ). 

In tile d efini tion of these functions us e may be made of th e fo ll owing 

II basic " funct ions defined over the term language: 

- fo r eac h co nstructor, say co ns, a functi on Is.cons d ef in ed as follows: 

Is . cons( t) =l- true 

fa lse 

if the leftmost 

otherwise; 

constructor in the term t is cons ; 



(i) Constructors 

emp tystack : + Stack 

push: Stack x Integer + Stack 

(ii) Acceptor function 

Is.Stack has the constant valu e tru e 

(iii) Eq uivalence relation 

Eq . Stack is the syntactical eq uality (in the t er m 

language of type Stack ) 

(iv) Exte rn a l functions 

Emptystack = emptystack 

Push = [As€St ack, i€Integer. push(s,i)] 

Pop = [As€Stack. 

if Is.push(s) then s [ 1 ] 

else emptystack] 

Top = [As€St ack. 

if Is.push(s) th e n s [ 2 ] 

else 01 
Isnew = [ As€Stack 

if Is.push(s) then fa lse 

else true 

(v) There are no auxiliary functions. 
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FIGURE I: The specification of the data type Stack . The data typ e 

Integer with the O-ary external function 0 is assumed to hav e been 

specified previously. Note that Emptysta ck i s a O-ary ex t e rnal 

f un ction (i.e. a constan~ and emptystack a O-ary constructor (i.e. 

a term). Note also that, according to the specification, IIpoppin g " 

or "t op pin g " an empty stack does not lead to an e rror but to an 

empty stac k and the number 0 respectively . 



(i) Constructors 

emptyset : ~ Set 

insert: Set x Integer + Set 

(ii) Acceptor function 

Is.Set = [aM.[AsESet. if Is.emptys e t(s) 

then true 

else if Memberof (s[I], s[2]) 

then w 

else M(s[l]) ]] 

(iii) Equivalence relation 

Eq.Set [AsI,s2ESet. 

if Subset(sl,s2) 

then Subset(s2,sl) else false] 

iv) External functions 

Emptyset = emptyset 

Insert = [AsESet,iEInteger. 
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if Memberof(s,i) then s else insert(s,i)] 

Delete = [aM.[AsESet,iEInteger. 

if Is.emptyset(s) 

then emptyset 

else if s[ 2] i 

then s[l] 

else insert(M(s[I],i).[2])]] 

Memberof = [aM.[AsESet,iElnteger. 

if Is.emptyset(s) 

then false 

else if 5[2] i 

then true 

else M(s[l],i)]] 

Subset = [aM.[ASI,s2ESet. 

if Is.emptyset(sl) 

then true 

else if Memberof(s2,sl[2]) 

then M(sl[l],s2) 

else false ]] 

FIGURE 2: The specification of the data type Set ; the data type Int ege~ 

is assumed to have been specified previously. Note that Is.S e t avo ids 

the occurrence of duplicates in the term language and that Eq.Set 

identifies sets which differ only by the order of occurrence of their 

elements . 
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- a "projector function" which extracts an "argurnent ll of a con-

structor; the value of this function is denoted by the array 

notation; for instance, if t is a term of the form cons(u,v) 

then 
d I] = u 

d 2] = v 

For more precision and more details the reader is referred to [La BOb]. 

The data type T defined by an algorithmic specification consists of 

a carrier set and a set of operations. 

The carr ier set is the set containing the following elements: 

- the e quivalence classes induced by Eq.T on the subset of the 

term language defined by IS.T; 

- an eleme nt ERROR; 

- an elemen t UNDEFINED. 

To each ex ternal function F is associated an operation F in th e 
op 

follow in g way. Suppose F maps terms of type T
1

, ... ,T
n 

into terms of 

type Tn+ I' n > 0; let <p(t) denote 

- the equivalence class of t, if t is a term 

- ERROR, if t = n 
- UNDEFINED, if t = w; 

then the corresponding operation F maps the carrier set of 
op 

the carrier set of T 1 n+ 
and its value is defined by: 

FOp(<P(tl),···,<p(t n )) = <P(F(tl,·· · ,t n )) 

Note that the definition of F is consistent only if the external 
op 

f un c ti on F satisfies certain verification conditions , e.g. that 

e quivalent arguments lead to equivalent values. More details and a 

study of these conditions - which, by the way, are similar to thos e 

in [GHM 7Bb] - may be found in [Lo BOb]. 

Note that a data type together with the data types it mak es use of 

(i.e. the data types which are at a "hierarchically lower level") 

constitutes a heterogeneous a l geb ra. 
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Consider the algebra defined by a set of specifications. An element 

of a carrier set is called aooessible if it may be obtained as the 

valu e of an expression built with operations. 

Thealgebra is called surjeotive if all elements of the carrier sets -

except possibly ERROR and UNDEFINED - are accessible; it is called 

error- free (total) if ERROR (UNDEFINED) is not accessible . 

In the sequel only sets of specifications de fin in g surjective algebras 

will be co nsidered. 

3. Implementations 

3.1 Defini tion --------------

Let Ao be the algebra defined by a set of specifications containing 

a specifica tion of the data type o. Let A be defined by the same set of speci-
T 

fications except that the specification of the data type a is re-

placed by a specification of the data type T. The data types 0 and 

T are cal l ed equiva lent if the algebras Ao and AT are isomorphic. 

Hhen the data type T is felt to be more "elementary" than 0 (e. g. 

because it is easy to write efficient programs for its external 

functions) one also says that T is an implementation of o. 

In spite of its symmetric character this definition corresponds to 

tIle intuitive notion of an implementation; the main point is that 

the isomorphism is on the level of the algebras, not on the level 

of the exte rnal functions. By the way, this notion of implementation 

an d the correctness condition s which will be deduced from it in 

Section 4 are very similar to those of [GHM 78b). 

Hhen the algebras A and A are both error-free and total it is 
a T 

sufficient to consider a weaker notion. Let At and A ' be the 
a T 

subalgebras of A 
a 

and A 
T 

obtained by deletin g the elements ERROR 

and UNDEFINED . Then a and T are called weakly equivaZent if A' 
a and 
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A' are isomorphic. A weak implementation is defined similarly. 
T 

For reasons of simplicity we will limit ourselves to this special 

case . The gene ral case is treated in [La SOcl; it merely differs 

by the fact that for each correctness condition the cases "ERROR" 

and "UNDEFINED" have to be treated separately. 

4. The correctness conditions 

Let the algeb ras Ao and AT be defined as in Section 3.Z 

Let moreover 

RP: T ... 0 

be a function mapping the terms of type T into terms of type a; 

RP is called a representation function . 

The data type T is a weak implementation of the data type 0 if the 

following three conditions are satisfied: 

( i) for all terms d of type T: 

if IS.T(d) = true 

then Is.O(RP(d» = true 

( i i) for all terms d I ' d Z of type T: 

if IS.T(d
l

) = IS.T(d Z) = true 

then Eq.T(dl,d Z) = Eq.O(RP(dl),RP(d Z» 

(iii) there ex ists a one-to-one correspondence between the external 

functions of a and T; more precisely, to each external function 

F: PIx ••• xp ... P I - -n -n+ 
n > a 

of 0 corresponds the external function 

Im.F : piX .•• xp ' -+ p' 
-I -n -n+ I 

of T with for each i, I < i < n+1 

P~ a~T if p. =0 1 1 

Pi oth erwise 
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moreove r, for all terms d. of type p. , , , < i < n 

if Is.p.(d.) = tru e , , i , I < i < n for a ll 

then Eq.a(F(dj, ... ,d~) , 

if p I = 0 n+ 
Eq.Pn+I(F(dj, ... ,d~), Im .F (d l ,· . . ,d n » 

if p I f a n+ 
where for each it 1 < i < n: 

d ! RP ( d . ) i f p. = 0 , , , 
d. else , 

= t ru e 

(a) 

true 

That th ese co nditions imply T to be a weak impl ementa ti on of 0 is 

formal l y proved in [Lo 80c J. Intuitively, (i) expresses that RP maps 

"allowed " terms i nto "allow ed " t e rms; (ii) expresses that two t e rms 

of T a r e equ iv a l e nt iff th e corresponding te rm s of 0 a r e equ ival ent 

or , more loosely, that RP corres pon ds to an injective mapping of the 

equ i vale nce classe s of T int o those of o . In orde r to int e rpr et 

(ii i) co n s ider the special case n = I, P I = P2 = 0 ; in that case 

the c ondition (a) of (iii) becomes 

Eq.a(F(RP(d», RP(Im.F(d») = t ru e (b) 

and is illust r ate d by Figur e 3 (A); now as F is s up pose d to sat isfy 

th e verification conditions, eq uiva lent arguments l ea d to e quiv alen t 

v alu e s (s ee Sect ion 2.2), i. e . 

if Eq.o( c ,RP(d» = tru e 

then Eq. O(F(c) ,F(RP(d») 

h e nce (b) ,s e quivalent with 

if Eq.a(c,RP(d» = true 

true 

then Eq . O(F(c),RP(Im.F(d») = true; 

thi s condition is illustr a t ed by Figure 3 (E) and expresses that the 

exte rn al f unctions Im.F of T "s imul a te" t h e corresponding f un ct i ons F 

of a up to e quivalence. 
- - ----------------------- --- - ----

'Xl<: 
RP ~d ~J( 

RP '--1 d 

F \ 

i~ . 

~ 
/ 

\ Im.F Im.F 

c]'1 ~J9 RP 
0« 

RP iYj 
( A ) ( B ) 

FIGURE 3 : Illust r a tion of the co rr ec tness condition (iii); point s in 

h " . 1" . 1 t e same C1rc e a re equlv a en t. 



The use of an implementation function 

1M: a .... T 

rather than a representation function 

RP: T .... a 
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puts no problem: due to the symmetry of the definitions it 15 

sufficient to permute a and T in the conditions of Section 4. I 

5. An exa mple 

The implementation to be proved correct is that of a stack by a 

vector and a pointer. 

More precisely, the data type to be implemented i s that of figure I. 

The data type which constitutes the implementat ion consists of a 

vector and an integer which are "melted" into a single data type 

by a constr uctor called pair - as indicated in Figure 5. The speci

fications of th e data type Vector are in Figure 4. 

It is assumed that for all specifications the verification condit i o ns 

mentioned in Section 2.2 have been checked. 

5 . 2 The co rrectness condition s ------------------------------

Consider the representation function (*) 

RP = [aM.[AmEImstack 

ifm[2)=O 

then emptystack 

else push(RP(pair(m[I), m[2)-I), 
Read(m[1],m[2)) )) 

(*) As in the figures use is made of th e decimal notation and the 

inf i x notation for usual (external) functions of the type Int eger; 

moreover Eq.lnteger is replaced by the infix predicate "=" 



(i) Constructors 

em p tyvec tor : ... Vec tor 

write: Vector x Intege r x In teger -> Vector 

(ii) Acce ptor function 

Is.Vector has the constant value true 

(iii) Equivalence relation 

Eq.Vector = [ Av l,v2EVecto r. 

if Subvector (vl,v2) 

then Subve ctor (v2,vl) 

(iv) Ex t e rnal function 

Emptyvector = emptyvec tor 

else fals e 

Write = [AvE Vecto r, i,jElnt ege r. 

wr i t e (v, i, j ) 

Read = [ ~M.[ AVEVp.cto r, iElnteger. 

if Is.empt yvecto r (v) 

then 0 else if i = v[2] 

then v[3] e ls e M(v[I],i) ]] 

Defined = [~M. [ AvEVecto r, iElnteger. 

if Is.emptyvecto r (v) 

then false else if i v[2] 

th e n true e l se M( v [ I],i) ]] 

(v) Auxiliary function 

Subvector = [ ~ M.[ AV I,v 2EVector . 

if Is.emptyv e ctor (vI) 

then tru e else if Defined (v 2 ,v l [2)) 
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th e n if Read (v 2 ,v l [2]) = v l [ 3 ] 

then H(v l [I], v 2 ) 

else false 

else false ]] 

FIGURE 4 : The data type Vector. Note that "overwritt en " values 

a r e not e r ase d; note also that reading a not ye t initialized e rror 

co mpon en t lea ds to a read r es ult "0" (rath e r than "e rr o r"). 



(i) Constructor 

pair Vector x Integer + Ims tack 

(ii) Acceptor function 

Is.Imstack C [AmElmstack. 

if m[Z] > 0 then true else w] 

(iii) Equivalence relation 

Eq.lmstack = [aM.[ Am1,mZEImstack. 

if mI[Z] = m2 [Z] 

then if m
I
[2] = 0 

then true 

- I I -

else if Read (m
I
[I],m 1[2]) = Read (m 2 [ 1],m 2 [2]) 

then M(pair (m 1[I],m 1[2]-I), 

pair (m
2

[1],m
2
[2]-I)) 

else false 

else false ]] 

(iv) External functions 

Imemptystack = pair(emptyvector, 0) 

Impush = [AmElmstack, iEInteger. 

pair (Write (m[I],m[2]+I,i),m[2]+I)] 

Impop [AmEImstack. 

if m[ 2] = 0 then m else pair (m[ I ],m[ 2]-1)] 

Imtop = [AmEImstack. 

if m[2] = 0 then 0 else Read (m[l],m[2])] 

Imisnew = [AmEImstack . if m[ 2]= 0 then true else false 

FIGURE 5: The data type Imstack which is intended to be an implementation 

of the data type Stack. Intuitively the data type consists of a 

v e ctor and a "pointer lt
• According to (iii) pair (vl,i l ) and 

pair (v 2 ,i 2 ) a r e equivalent of either i l = i2 = 0 or (i l 
and (i I' i2 "point" to the same value in vI ,v 2 ) and (pair 

and pair (v 2 ,i 2-2) are equival en t). 

= i ) 
2 
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In t ui tive ly th e value of RP i s the empty stack wh en the pointer is ze ro; 

o the r,oJ i set h e value is the stack consistin g of the e l e ments 

v [ll, .. ,v[ k l where v is the vector and k the value of th e p oi nt er . 

Le t u s co n si der the correctness condition s (i) to (iii) of Section 4 . 2 

wit h a = Stack and T = Imstack . 

The condi tion (i) trivially holds becaus e Is.Stack has the co nstant 

va lue true . 

Th e con dition (ii) is 

if Is.Imstack(m
l

) = Is.Imstack(m
2

) = tru e 

then Eq.Imstack(m
l

,m 2) = Eq.Stack(RP(m l ),RP(m 2 » 

Th e co nditi o n (iii) consists of 

(a) Eq.Stack (Emptystack,RP(Im e mptystack» 

(b) if Is.Imstack(m) = Is.Integ e r(i) 

th e n Eq.Stack (Push(RP(m),i), 

RP ( Imp u s h ( m, i ) » 

(c ) if Is.Imstack(m) = true 

tru e 

tru e 

t h en Eq .Stack (Pop(RP(m», RP(Impop(m») 

(d) if Is .Imstack(m) = true 

thc nTop(RP(m» = Imtop(m) 

( e ) if Is.Imstack(m) = true 

then Isnew(RP(m» = Imisn ew (m) 

true 

true 

These con ditions have been proved mechani ca lly with the h e lp of 

(* ) 

(**) 

th e AFFIRM-system; the proofs are in [Lo 80al. Essentially a proof 

co nsists in replacing functions such as Is. Imstack , Impush or Push 

by their definition and, if necessary, t o apply st ructur a l ind uctio n 

on ti,e term lan g uage . As a trivial example cons id e r the pro of of (d); 

by t h e d ef inition of Is.Imstack one has t o prov e : 

if i > 0 

then Top(RP(pair(v,i» = Imtop(pair(v ,i». 

(*) u s in g th e infix operator "=" for Eq.lnteger 

(**) u si n g th e infix operator "=11 for Eq.Boole a n 



The case i o leads to : 

Top(emptystack) = 0 

which holds by the definition of Top; the case i > 0 leads to 

Top(push(RP( ... ), Read(v,i») = Read (v,i) 

which again holds by the definition of Top. 

The same cor r ec tness proof can be performed with the help of 

an implem en tation function such as 

1M = [AsEStack. 

pair (Construct(s), De pth(s»] 

in which Construct and Depth are (auxiliary) functions 

Depth [aM. [AsEStack. 

if Is.emptystack(s) th e n 0 

else M(s[ I]) + I]] 

Construct = [aM.[AsEStack. 

if Is.emtystack(s) then emptyvector 
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else write (Construct(s[ I]), 

Depth(s), s[2]) ]] 

Inforlnally, Depth determines the number of elements of tIle stack 

a nd Construct constructs a v ec tor for a given stack. 

Let us consi der the correctness conditions (i) to (iii) of Section 

4.1 with ., = Imstack, T = Stack and 1M instead of RP. 

The co ndition (i) is 

Is.Imstack(IM(s» = true (a) 

for all terms s of type Stack 

Due to the definition of Is.Stack and Eq.Sta c k the condition (ii) 

may be written 

Eq.Imstack(IM(s), IM(s» = true 

this co ndition holds because Eq.Imstack is an e quiv a lenc e r e lation (*). 

(*) Remember the assumption that the verifi cation co nditions of the 

s p ec ifi catio n of Imstack have been checked; these conditions imply 

that Eq.Imstack is effectively an equivalence relation. 
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The condition (iii) consists of 

Stack and Integer respectively: 

for all terms sand i of type 

Eq.lmstack(Imemptystack, IM(Emptystack» = true 

Eq.lmstack(Impush(IM(s),i),IM(Push(s,i») = true 

Eq.lmstack(Impop(IM(s», IM(Pop(s») = true 

Imtop(IM(s)) = Top(s) 

Imisnew(IM(s» = Isnew(s) 

The co nditions (a) to (f) may be proved as ,n Section 5.2. 
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