
Implement ations of abstract data

types and their co rre ctness proofs*

by

J ac qu es Loeckx

A 80/ 13

*submitt ed for publication

Nov e mb er 1980

Fachberei c h 10 - Inforrnatik

Universitat d e s Saarlandes

6600 Saarbru cken

West Germany

1. Intr o duction

Algorithmic speci fication s of abstrac t data types have been

introdu ce d in [Lo 80b] . While being strongly related to the alge

braic specifica tion method u sed by e.g. [Gil 78a, GHM 78b, Mu 80],

th e algorithm ic specification method is more ge n era l and treats

undefined and error value s in a "natural" way; moreover it is

felt t o be eas ier to use for the specification of non - trivial

data types .

The purpose of the present report is to introduce the notion of

im plementat i on of a data type in the framework of algo rithm ic

s pec ifications and to pre sent IIcorrectness conditions" for such

implem e ntations . These conditions are "symm et ric" in that they

indistin c tl y allow the us e of a "repres e ntation function" (as 1n

[SIll 77], [GHM 78b] or [E KP 80]) or of an " implementation function"

(os in [ADJ 78], [G a 79] or [Su 79]). It s h oul d be noted that the

id eas proposed are also applicable to the implementation of data

types with undefined or error values.

Th e present report does n ot conta in formal developments nor extended

pro of exa mples. For a formal ju s tificati o n of the correctness con

diti o ns the r eade r is ref erred to [Lo 80c]; for a detailed description

o f some proofs - which, by the way, were p e rform ed mechanically with

the AFFIRfl - sys tem [Mu 80] - the reader is referred to [L o 80a] .

Section 2 presents an overview of the algorithmic specification method.

Sectio n 3 introduces the notioll of an implement ation and presents th e

co rre ct ness conditions. Section 4 contains an example treated first

by a r e presentation functi on a nd th e n by an impl ementat i on function.

- 2 -

2 . The algorithmic specification method

Acco rdin g to [Lo 80b] an algorithmic specification of an abstract

data type, say T, consists of

(i) a list of c.?nstructors of type T, such as (for T

emptystack: + Stack

push : Stack x Integer + Stack

Stack):

these constructors define a term language similar to th e ca rrier

se t of the word algebra of [ADJ 78]; note that a cons tr ucto r

is a purely syntactical object which is n o t to b e interpreted as a

function;

(ii) a predicate noted Is.T which defines a subset of the t e rm

lan g ua ge ; this predicate may be vi e wed as th e " inva ri a nt" of the

the type;

(iii) a predicate noted Eq.T which defin es an e quival e nce r e lation in

the term language; this predicate may be viewed as defining the

e qu ali ty for the type;

(iv) a li st of exte rnaZ (or: user) functions such as Push or Pop;

(v) a possibly empty list of auxiZiary (or:hidden) functions which a r e

intended to be inacces sible to the user.

Exampl es a r e in Figure I, 2, 4 and 5.

The different functions introduced in a specification a r e essen ti al l y

defined as recursive programs [Ma 74]; but 1n order to dispose of a

c l ea r th eo retical basis th e formalism used is that of (pur e) LCF [Mi 72].

Esse nti a ll y this formalism makes use of the A-notation; moreover, if

t is an e xpression and M a f unction v a ri a b le, [a M.t] denotes

the minima l f ixpoint of [lM.t]. In order t o be applicable on term

l a ng uages each term langua ge is viewed as a flat l attice with a mini -

mal e l emen t representing the undefined value (viz. w) and a maxima l

e l ement represe nting the error value (viz. n).

In tile d efini tion of these functions us e may be made of th e fo ll owing

II basic " funct ions defined over the term language:

- fo r eac h co nstructor, say co ns, a functi on Is.cons d ef in ed as follows:

Is . cons(t) =l- true

fa lse

if the leftmost

otherwise;

constructor in the term t is cons ;

(i) Constructors

emp tystack : + Stack

push: Stack x Integer + Stack

(ii) Acceptor function

Is.Stack has the constant valu e tru e

(iii) Eq uivalence relation

Eq . Stack is the syntactical eq uality (in the t er m

language of type Stack)

(iv) Exte rn a l functions

Emptystack = emptystack

Push = [As€St ack, i€Integer. push(s,i)]

Pop = [As€Stack.

if Is.push(s) then s [1]

else emptystack]

Top = [As€St ack.

if Is.push(s) th e n s [2]

else 01
Isnew = [As€Stack

if Is.push(s) then fa lse

else true

(v) There are no auxiliary functions.

- 3 -

FIGURE I: The specification of the data type Stack . The data typ e

Integer with the O-ary external function 0 is assumed to hav e been

specified previously. Note that Emptysta ck i s a O-ary ex t e rnal

f un ction (i.e. a constan~ and emptystack a O-ary constructor (i.e.

a term). Note also that, according to the specification, IIpoppin g "

or "t op pin g " an empty stack does not lead to an e rror but to an

empty stac k and the number 0 respectively .

(i) Constructors

emptyset : ~ Set

insert: Set x Integer + Set

(ii) Acceptor function

Is.Set = [aM.[AsESet. if Is.emptys e t(s)

then true

else if Memberof (s[I], s[2])

then w

else M(s[l])]]

(iii) Equivalence relation

Eq.Set [AsI,s2ESet.

if Subset(sl,s2)

then Subset(s2,sl) else false]

iv) External functions

Emptyset = emptyset

Insert = [AsESet,iEInteger.

- 4 -

if Memberof(s,i) then s else insert(s,i)]

Delete = [aM.[AsESet,iEInteger.

if Is.emptyset(s)

then emptyset

else if s[2] i

then s[l]

else insert(M(s[I],i).[2])]]

Memberof = [aM.[AsESet,iElnteger.

if Is.emptyset(s)

then false

else if 5[2] i

then true

else M(s[l],i)]]

Subset = [aM.[ASI,s2ESet.

if Is.emptyset(sl)

then true

else if Memberof(s2,sl[2])

then M(sl[l],s2)

else false]]

FIGURE 2: The specification of the data type Set ; the data type Int ege~

is assumed to have been specified previously. Note that Is.S e t avo ids

the occurrence of duplicates in the term language and that Eq.Set

identifies sets which differ only by the order of occurrence of their

elements .

- 5 -

- a "projector function" which extracts an "argurnent ll of a con-

structor; the value of this function is denoted by the array

notation; for instance, if t is a term of the form cons(u,v)

then
d I] = u

d 2] = v

For more precision and more details the reader is referred to [La BOb].

The data type T defined by an algorithmic specification consists of

a carrier set and a set of operations.

The carr ier set is the set containing the following elements:

- the e quivalence classes induced by Eq.T on the subset of the

term language defined by IS.T;

- an eleme nt ERROR;

- an elemen t UNDEFINED.

To each ex ternal function F is associated an operation F in th e
op

follow in g way. Suppose F maps terms of type T
1

, ... ,T
n

into terms of

type Tn+ I' n > 0; let <p(t) denote

- the equivalence class of t, if t is a term

- ERROR, if t = n
- UNDEFINED, if t = w;

then the corresponding operation F maps the carrier set of
op

the carrier set of T 1 n+
and its value is defined by:

FOp(<P(tl),···,<p(t n)) = <P(F(tl,·· · ,t n))

Note that the definition of F is consistent only if the external
op

f un c ti on F satisfies certain verification conditions , e.g. that

e quivalent arguments lead to equivalent values. More details and a

study of these conditions - which, by the way, are similar to thos e

in [GHM 7Bb] - may be found in [Lo BOb].

Note that a data type together with the data types it mak es use of

(i.e. the data types which are at a "hierarchically lower level")

constitutes a heterogeneous a l geb ra.

- 6 -

Consider the algebra defined by a set of specifications. An element

of a carrier set is called aooessible if it may be obtained as the

valu e of an expression built with operations.

Thealgebra is called surjeotive if all elements of the carrier sets -

except possibly ERROR and UNDEFINED - are accessible; it is called

error- free (total) if ERROR (UNDEFINED) is not accessible .

In the sequel only sets of specifications de fin in g surjective algebras

will be co nsidered.

3. Implementations

3.1 Defini tion --------------

Let Ao be the algebra defined by a set of specifications containing

a specifica tion of the data type o. Let A be defined by the same set of speci-
T

fications except that the specification of the data type a is re-

placed by a specification of the data type T. The data types 0 and

T are cal l ed equiva lent if the algebras Ao and AT are isomorphic.

Hhen the data type T is felt to be more "elementary" than 0 (e. g.

because it is easy to write efficient programs for its external

functions) one also says that T is an implementation of o.

In spite of its symmetric character this definition corresponds to

tIle intuitive notion of an implementation; the main point is that

the isomorphism is on the level of the algebras, not on the level

of the exte rnal functions. By the way, this notion of implementation

an d the correctness condition s which will be deduced from it in

Section 4 are very similar to those of [GHM 78b).

Hhen the algebras A and A are both error-free and total it is
a T

sufficient to consider a weaker notion. Let At and A ' be the
a T

subalgebras of A
a

and A
T

obtained by deletin g the elements ERROR

and UNDEFINED . Then a and T are called weakly equivaZent if A'
a and

- 7 -

A' are isomorphic. A weak implementation is defined similarly.
T

For reasons of simplicity we will limit ourselves to this special

case . The gene ral case is treated in [La SOcl; it merely differs

by the fact that for each correctness condition the cases "ERROR"

and "UNDEFINED" have to be treated separately.

4. The correctness conditions

Let the algeb ras Ao and AT be defined as in Section 3.Z

Let moreover

RP: T ... 0

be a function mapping the terms of type T into terms of type a;

RP is called a representation function .

The data type T is a weak implementation of the data type 0 if the

following three conditions are satisfied:

(i) for all terms d of type T:

if IS.T(d) = true

then Is.O(RP(d» = true

(i i) for all terms d I ' d Z of type T:

if IS.T(d
l

) = IS.T(d Z) = true

then Eq.T(dl,d Z) = Eq.O(RP(dl),RP(d Z»

(iii) there ex ists a one-to-one correspondence between the external

functions of a and T; more precisely, to each external function

F: PIx ••• xp ... P I - -n -n+
n > a

of 0 corresponds the external function

Im.F : piX .•• xp ' -+ p'
-I -n -n+ I

of T with for each i, I < i < n+1

P~ a~T if p. =0 1 1

Pi oth erwise

- 8 -

moreove r, for all terms d. of type p. , , , < i < n

if Is.p.(d.) = tru e , , i , I < i < n for a ll

then Eq.a(F(dj, ... ,d~) ,

if p I = 0 n+
Eq.Pn+I(F(dj, ... ,d~), Im .F (d l ,· . . ,d n »

if p I f a n+
where for each it 1 < i < n:

d ! RP (d .) i f p. = 0 , , ,
d. else ,

= t ru e

(a)

true

That th ese co nditions imply T to be a weak impl ementa ti on of 0 is

formal l y proved in [Lo 80c J. Intuitively, (i) expresses that RP maps

"allowed " terms i nto "allow ed " t e rms; (ii) expresses that two t e rms

of T a r e equ iv a l e nt iff th e corresponding te rm s of 0 a r e equ ival ent

or , more loosely, that RP corres pon ds to an injective mapping of the

equ i vale nce classe s of T int o those of o . In orde r to int e rpr et

(ii i) co n s ider the special case n = I, P I = P2 = 0 ; in that case

the c ondition (a) of (iii) becomes

Eq.a(F(RP(d», RP(Im.F(d») = t ru e (b)

and is illust r ate d by Figur e 3 (A); now as F is s up pose d to sat isfy

th e verification conditions, eq uiva lent arguments l ea d to e quiv alen t

v alu e s (s ee Sect ion 2.2), i. e .

if Eq.o(c ,RP(d» = tru e

then Eq. O(F(c) ,F(RP(d»)

h e nce (b) ,s e quivalent with

if Eq.a(c,RP(d» = true

true

then Eq . O(F(c),RP(Im.F(d») = true;

thi s condition is illustr a t ed by Figure 3 (E) and expresses that the

exte rn al f unctions Im.F of T "s imul a te" t h e corresponding f un ct i ons F

of a up to e quivalence.
- - ----------------------- --- - ----

'Xl<:
RP ~d ~J(

RP '--1 d

F \

i~ .

~
/

\ Im.F Im.F

c]'1 ~J9 RP
0«

RP iYj
(A) (B)

FIGURE 3 : Illust r a tion of the co rr ec tness condition (iii); point s in

h " . 1" . 1 t e same C1rc e a re equlv a en t.

The use of an implementation function

1M: a T

rather than a representation function

RP: T a

- 9 -

puts no problem: due to the symmetry of the definitions it 15

sufficient to permute a and T in the conditions of Section 4. I

5. An exa mple

The implementation to be proved correct is that of a stack by a

vector and a pointer.

More precisely, the data type to be implemented i s that of figure I.

The data type which constitutes the implementat ion consists of a

vector and an integer which are "melted" into a single data type

by a constr uctor called pair - as indicated in Figure 5. The speci

fications of th e data type Vector are in Figure 4.

It is assumed that for all specifications the verification condit i o ns

mentioned in Section 2.2 have been checked.

5 . 2 The co rrectness condition s ------------------------------

Consider the representation function (*)

RP = [aM.[AmEImstack

ifm[2)=O

then emptystack

else push(RP(pair(m[I), m[2)-I),
Read(m[1],m[2))))

(*) As in the figures use is made of th e decimal notation and the

inf i x notation for usual (external) functions of the type Int eger;

moreover Eq.lnteger is replaced by the infix predicate "="

(i) Constructors

em p tyvec tor : ... Vec tor

write: Vector x Intege r x In teger -> Vector

(ii) Acce ptor function

Is.Vector has the constant value true

(iii) Equivalence relation

Eq.Vector = [Av l,v2EVecto r.

if Subvector (vl,v2)

then Subve ctor (v2,vl)

(iv) Ex t e rnal function

Emptyvector = emptyvec tor

else fals e

Write = [AvE Vecto r, i,jElnt ege r.

wr i t e (v, i, j)

Read = [~M.[AVEVp.cto r, iElnteger.

if Is.empt yvecto r (v)

then 0 else if i = v[2]

then v[3] e ls e M(v[I],i)]]

Defined = [~M. [AvEVecto r, iElnteger.

if Is.emptyvecto r (v)

then false else if i v[2]

th e n true e l se M(v [I],i)]]

(v) Auxiliary function

Subvector = [~ M.[AV I,v 2EVector .

if Is.emptyv e ctor (vI)

then tru e else if Defined (v 2 ,v l [2))

- 10 -

th e n if Read (v 2 ,v l [2]) = v l [3]

then H(v l [I], v 2)

else false

else false]]

FIGURE 4 : The data type Vector. Note that "overwritt en " values

a r e not e r ase d; note also that reading a not ye t initialized e rror

co mpon en t lea ds to a read r es ult "0" (rath e r than "e rr o r").

(i) Constructor

pair Vector x Integer + Ims tack

(ii) Acceptor function

Is.Imstack C [AmElmstack.

if m[Z] > 0 then true else w]

(iii) Equivalence relation

Eq.lmstack = [aM.[Am1,mZEImstack.

if mI[Z] = m2 [Z]

then if m
I
[2] = 0

then true

- I I -

else if Read (m
I
[I],m 1[2]) = Read (m 2 [1],m 2 [2])

then M(pair (m 1[I],m 1[2]-I),

pair (m
2

[1],m
2
[2]-I))

else false

else false]]

(iv) External functions

Imemptystack = pair(emptyvector, 0)

Impush = [AmElmstack, iEInteger.

pair (Write (m[I],m[2]+I,i),m[2]+I)]

Impop [AmEImstack.

if m[2] = 0 then m else pair (m[I],m[2]-1)]

Imtop = [AmEImstack.

if m[2] = 0 then 0 else Read (m[l],m[2])]

Imisnew = [AmEImstack . if m[2]= 0 then true else false

FIGURE 5: The data type Imstack which is intended to be an implementation

of the data type Stack. Intuitively the data type consists of a

v e ctor and a "pointer lt
• According to (iii) pair (vl,i l) and

pair (v 2 ,i 2) a r e equivalent of either i l = i2 = 0 or (i l
and (i I' i2 "point" to the same value in vI ,v 2) and (pair

and pair (v 2 ,i 2-2) are equival en t).

= i)
2

12 -

In t ui tive ly th e value of RP i s the empty stack wh en the pointer is ze ro;

o the r,oJ i set h e value is the stack consistin g of the e l e ments

v [ll, .. ,v[k l where v is the vector and k the value of th e p oi nt er .

Le t u s co n si der the correctness condition s (i) to (iii) of Section 4 . 2

wit h a = Stack and T = Imstack .

The condi tion (i) trivially holds becaus e Is.Stack has the co nstant

va lue true .

Th e con dition (ii) is

if Is.Imstack(m
l

) = Is.Imstack(m
2

) = tru e

then Eq.Imstack(m
l

,m 2) = Eq.Stack(RP(m l),RP(m 2 »

Th e co nditi o n (iii) consists of

(a) Eq.Stack (Emptystack,RP(Im e mptystack»

(b) if Is.Imstack(m) = Is.Integ e r(i)

th e n Eq.Stack (Push(RP(m),i),

RP (Imp u s h (m, i) »

(c) if Is.Imstack(m) = true

tru e

tru e

t h en Eq .Stack (Pop(RP(m», RP(Impop(m»)

(d) if Is .Imstack(m) = true

thc nTop(RP(m» = Imtop(m)

(e) if Is.Imstack(m) = true

then Isnew(RP(m» = Imisn ew (m)

true

true

These con ditions have been proved mechani ca lly with the h e lp of

(*)

(**)

th e AFFIRM-system; the proofs are in [Lo 80al. Essentially a proof

co nsists in replacing functions such as Is. Imstack , Impush or Push

by their definition and, if necessary, t o apply st ructur a l ind uctio n

on ti,e term lan g uage . As a trivial example cons id e r the pro of of (d);

by t h e d ef inition of Is.Imstack one has t o prov e :

if i > 0

then Top(RP(pair(v,i» = Imtop(pair(v ,i».

(*) u s in g th e infix operator "=" for Eq.lnteger

(**) u si n g th e infix operator "=11 for Eq.Boole a n

The case i o leads to :

Top(emptystack) = 0

which holds by the definition of Top; the case i > 0 leads to

Top(push(RP(...), Read(v,i») = Read (v,i)

which again holds by the definition of Top.

The same cor r ec tness proof can be performed with the help of

an implem en tation function such as

1M = [AsEStack.

pair (Construct(s), De pth(s»]

in which Construct and Depth are (auxiliary) functions

Depth [aM. [AsEStack.

if Is.emptystack(s) th e n 0

else M(s[I]) + I]]

Construct = [aM.[AsEStack.

if Is.emtystack(s) then emptyvector

13 -

else write (Construct(s[I]),

Depth(s), s[2])]]

Inforlnally, Depth determines the number of elements of tIle stack

a nd Construct constructs a v ec tor for a given stack.

Let us consi der the correctness conditions (i) to (iii) of Section

4.1 with ., = Imstack, T = Stack and 1M instead of RP.

The co ndition (i) is

Is.Imstack(IM(s» = true (a)

for all terms s of type Stack

Due to the definition of Is.Stack and Eq.Sta c k the condition (ii)

may be written

Eq.Imstack(IM(s), IM(s» = true

this co ndition holds because Eq.Imstack is an e quiv a lenc e r e lation (*).

(*) Remember the assumption that the verifi cation co nditions of the

s p ec ifi catio n of Imstack have been checked; these conditions imply

that Eq.Imstack is effectively an equivalence relation.

- 14 -

The condition (iii) consists of

Stack and Integer respectively:

for all terms sand i of type

Eq.lmstack(Imemptystack, IM(Emptystack» = true

Eq.lmstack(Impush(IM(s),i),IM(Push(s,i») = true

Eq.lmstack(Impop(IM(s», IM(Pop(s») = true

Imtop(IM(s)) = Top(s)

Imisnew(IM(s» = Isnew(s)

The co nditions (a) to (f) may be proved as ,n Section 5.2.

References

(b)

(c)

(d)

(e)

(f)

[ADJ 78] J.A. Goguen, J.W. Thatcher, E.G. !vagner, "An initial algebra

approach to the specification, correctness and implem e ntation of

abstract data types" in "Current Trends in Programming Methodo

logy IV" (R. Yeh, ed.), pp. 80-149, Prentice-Hall, 1978

[EKP 80] H. Ehrig, H.J. Kreowski, P. Padawitz, "Al gebraic Implementation of

Abstract Data Types: Concept, Syntax, Semantics and Correctness",

Le ct ure Notes in Computer Science ~, Springer-Verlag, 1980,

pp. 142-156

[Ga 79] M.C. Gaudel, "Algebraic specification of abstract dat a types",

Internal Report 360, IRIA, Le Chesnay (August 1979)

[GH 78a] J.V. Guttag, J.J. Horning, "The algebraic specifications of

abstrac t data types", Acta Informatica -'-9., I, pp. 27-52 (1978).

[GHM 78b] J.V. Guttag, E. Horowitz, D.R. Musser, "Abstract data typ es

and software validation", Comm. ACM l,i., 12, pp. 1048-1064 (1978)

[Lo 80a] J. Loeckx, "Proving properties of algorithmic specifications

of abstract data types in AFFIRM", AFFIRM-Memo-29-JL,USC-ISI,

Marina del Rey, 1980

[L o 80b] J. Loeckx, "Algorithmic specifications of abstract data

typ es ", Internal Report A 80/12, Fachbereich 10,

Universitat des Saarlandes, Saarbrucken, 1980 (submitted for

publication)

- 15 -

[L o 80c] J. Loeckx, " So me pr o perties of implem e nta t ions of

abs tr ac t data types, Int e rnal Report A 80 /14, Fachbereich 10,

Univers it lH des Saarland es , Saarbrii cken , 19 80

[Ha 74] Z . Ha nna, " Ha th ematical theory of co mput a ti o n ",

Mc Graw-H ill,1974.

[Hi 7 2] R . Milne r, "Implementation an d appl i cations of Scott ' s l og i c

for co mput a ble function s ", Proc. ACM Conf. on Provin g Assertion s

about Programs, SIGPLAN No tices 2, I, pp. 1- 6 (1972)

[Hu 80] D.R . Musser, "Abstract data t y p e specifica tion in the AFFIRM

system", IEEE Trans. on Sof tw. En g ., SE-6, I, pp. 24 - 32 (1980)

[Su 7 9] P.A . Subrahmanyam, "On provin g the correctness of dat.a typ e

impl eme ntations", Interna l report . Dept. Comp o SCo, University

of Utah, Sept. 1979

[sIn 77] M. Sh aw , W.A. Wulf, R .L. Lond o n, " Abstraction and veri

fica tion in ALPHARD : Defining and specifying iteration and

ge ne r ators ", CACM 20, 8 (1977)

	fb1980-13_0001
	fb1980-13_0002
	fb1980-13_0003
	fb1980-13_0004
	fb1980-13_0005
	fb1980-13_0006
	fb1980-13_0007
	fb1980-13_0008
	fb1980-13_0009
	fb1980-13_0010
	fb1980-13_0011
	fb1980-13_0012
	fb1980-13_0013
	fb1980-13_0014
	fb1980-13_0015
	fb1980-13_0016

