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1. Introduction 

Algorithmic specifications of abstract data types have been intro­
duced in [Lo 80 bJ. In [Lo 80 cJ this specification method has 
been used for proving the correctness of an implementation of an 

abstract data type. The goal of the present paper is to formally 
prove the validity of the proof methodology used in [Lo 80 bJ. 
Moreover the paper shows that the correctness of an implementation 
implies the validity of certain verification conditions; this 
allows the designer of a specification to omit certain proofs. 

A large number of definitions and notations are borrowed from 
[Lo 80 bJ; the reading of this report is therefore a prerequisite 
for understanding the present one. 

2. The definition of implementation 

Let Ao be the algebra defined by an hierarchically structured 
set of algorithmic specifications containing a specification of 
the data type o. Suppose that the set of specifications obtained 

by replacing the specification of 0 by the specification of a 
data type T is also hierarchically structured and call A the 

T 
corresponding algebra. The data types 0 and T are called (strong-

ly) equivalent when the algebras A and A are isomorphic and o T 
when under this isomorphism the undefined and error values of 

type 0 correspond respectively to the undefined and error values 
of type T. Instead of saying that 0 and T are equivalent one may 
say that T is a (strong) implementation of 0 if T is felt to be 
more "elementary" than 0, for instance because it is easier to 
write efficient programs for the external functions of T. 

When the specification sets defining A and A are both total, o T 
error-free and surjective it is also possible to introduce a 
weaker notion. Consider the subalgebras A' and A' of the alge-o T 
bras Ao and AT obtained by deleting the undefined and error va-
lues from the carrier sets. The data types 0 and T are weakly 

equivalent if these A' and A' are isomorphic; weak implementa-o T 
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tions are defined similarly. Note that from a practical point 

of view weak implementations suffice to capture the intuitive 

notion of an implementation: if undefined and error values 
cannot occur as the result of a computation it is not necessary 

to specify how they are handled. 

Section 3 introduces and proves the correctness conditions for 
weak equivalence. Section 4 is concerned with (strong) equiva­
lence. The case of non-surjective specification sets is shortly 
discussed in Section 5. Section 6 indicates the verification 
conditions, the validity of which is implied by the validity of 
the correctness conditions. 

3. Proving weak equivalence 

3 .1 I~~_~Qrr~~!Q~~~_~QQ9i!iQQ~_iQ_!b~_~~~~_Qf_~_r~~r~~~Q!~!i2Q 
function 

Let Aa and AT be the algebras defined by two hierarchically struc­
tured sets of specifications which are total, error-free and sur­

jective as indicated above. Let moreover RP be a Tep Tesentation 

f unctioll, i. e. a func ti on 

RP : T -T a 

(cf . [SWL 77, GHM 78]). Consider now the following three COTTect ­

ness conditions: 

(i) for all d E T: 
if IS.T(d) = true 
then Is.a (RP (d)) = true 

(ii) for all d1 , d2 E T: 
if IS.T(d 1) = IS.T(d 2) = true 
then Eq.T(d 1, d2) = Eq.a(RP(d 1), RP(d2)) 

(iii) there exists a one-to-one correspondence between the 
external functions of a and T such that for each func­
tion 
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F : £ 1 x ••• x £n --> £ n + 1 (n ::: 0) 

of a the corresponding function of T is a function 

Im.F: £'1 x ••• x 
, , 

£ n --> £ n+1 

withp'.= 
1 

{

T if Pi = a 

Piifpi"a 

moreover, for all d1· E p. _1 

if IS'Pi(d i ) = true 

then Eq.a (F (d'l' 
= true 

if P n+ 1 = a 

1~i~n+1 

1~i~n+1 

Eq,P n+1 (F (d'l' ... , d'n)' Im.F (d 1 , ... , dn )) 

= true 

where RP (d i) if Pi = a 

if p. " a 1 

1 ~ ~ n 

Note that the condition (ii) is compatible with the fact that 
Eq.T has to be an equivalence relation: if Eq.a is an equiva­

lence relation then it results from (ii) that Eq.T is reflexive, 
symmetric and transitive. 

It will now be shown that a and T are weakly equivalent if the 
correctness conditions are satisfied. 

3.2. Theorem: Let A ,A and RP be defined as in Section 3.1. 
------- a T 

If the correctness conditions of Section 3.1. are verified 
then a and T are weakly equivalent. 

Proof 

(a) The algebras Aa and AT are defined by 

- a carrier set C for each data type -p p; note that C -p 
contains in particular the elements UNDEFINEDp and ERROR p 
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a certain number of operations Fop on these carrier 

set s ; 

Consider now the subalgebras A'a and A' T of Aa and AT defined 

by: 
- the carrier set 

C' = C - P -p 
{UNDEFINED, ERROR} 

p p 

for each data type p; 

- the restrictions F' to the sets C' of the opera-op - p 
tions Fop; note that each F'op is a total function 
because the bases Band B are error-free, total a T 
and surjective. 

According to the definition given in Section 2 the data types 
a and T are weakly equivalent if the algebras A' and A' are a T 

isomorphic. 

Note that for each operation 

Fop: 

the corresponding 

C I x ••• x -p 

operation 

C -pn 
.,. C 

-pn+ I 

F' : C' op - pI x ••• x C I -+ C I 
-pn -pn+l 

is univocally defined by its values 

, n 2! 0 

F' op ([t l ),···, [t n ]) = [F (tl,···,t n)] 

fo r all terms ti of type p wi th Is .. (t.) = true, I $ 
p' , 

(cf [Lo 80 b , Section 4 .3] ) ( * ) 

(b) As s ociate with RP a function 

defined by its values 

RP Op ([d]) = [RP (d)] 

$ n 

for all terms d of type T with Is.T(d) = true; note that 
this definition is consistent because: 

- the notation [RP (d)] makes sense (*) because of 
the correctness conditions (i); 

(*) Remember that for a term t of type p the notation ttl makes 
s ense only if Is.p(t) = true (cf. [Lo 80 b]) 
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- by the correctness condition (ii), [RP (d 1)1 = [RP (d 2 )1 
if [d 11 = [d2 1 and Is., (d 1) = Is., (d 2 ) = true. 

We will now show that RP op is a one-to-one function from f', 
onto C' . - a 

(c ) In order to show that Rop 
is injective and surjective. 

is one-to-one we show that it 

ROp is injective by the correctness condition (ii): if IS.1' (d 1) = 

IS.1' (d 2 ) = true and [RP (dI)l ~ [RP (d 2 )1 then [d 11 ~ [d21 . 

To show that Rop is surjective we show that for each term c of 
type a with Is.o (c) = true there exists a term d of type l' with 

- IS.1' (d) = true (A 1) 

- [RP (d)l = [cl 

or, equivalently (because of the correctness condi­
tion (i)): 
Eq.o (c, RP (d)) = true (A 2) 

Now, as Ao is surjective there exists an expression built with 
external functions only, the value of which is c' with 

Eq.o (c', c) = true ( B ) 

(and with Is.o(c') = true by the verification condition (iii) for 
the specification of a : see [Lo BO b, Section 5.21). The proof 
of (A 1) and (A 2) is by induction on the (maximal) nesting depth 
of this expression. 

If the nesting depth is zero, i. e. if there exists an external 
function F = c', there exists by the correctness condition (iii) 
an external function Im . F with 

Eq . o (F, RP (Im.F)) = true 

i. e. 

Eq.o (c', RP (Im.F)) = true 
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or, by (B): 

Eq.o (c, RP (Im.F)) = true 

In order to satisfy (AI) and (A2) it is sufficient to choose 
d = Im.F; note in particular that 

IS.T (Im.F) = true 

by the verification condition (iii) for the specification of T. 

If the nesting depth is n > 0 let 

c' = F (c1, ... , cm) 
whe re 

F : ~1 x ••• x ~m ~ a , m ~ 1 

and c1' ... , cm are values obtainable by expressions with nesting 
depth < n. Note that by the verification condition (iii) of the 
different types of the algebra A one has for all i, 1 $ i $ m: a 

Is.Ti (ci) = true (e) 

Suppose now that Cj1, ... , Cjk 1 $ jl < j2 <.·.<jk $ m, 

o $ k, are the values of type o. By the correctnes s condition 

(iii) there exists an external function Im.F of T such that for 

all di with Is.Ti(d i ) = true, 1 $ i $ m: 

with 
Eq. o (F(d'!, ... , d'm)' RP (Im.F(d l , ... , dm))) = true 

d'i = JRP(d i ) if iE 
l.d i otherwise 

( 0 ) 

But by inductive assumption there exists for each i, iE [jl' ... jkl, 

a term d~ of type T with 

IS.T (d~) = true 

and Eq.o (c i , RP (d;)) = true ( E) 

Putting in (0) 

( 0 1 ) 
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* RP(d i ) if i E {j1' ...• jkJ 
c i otherwi se 

On the other hand the verification condition (ii) for the specifi-

( 02 ) 

cation of type a implies that equivalent arguments lead to equiva­
lent values; hence. by (E). (02) and the correctness condition (i): 

Eq.a (F (d'l' ...• d'm)' F (c 1 ' ...• cm)) = true 

Together with (0) this leads to 

Eq.a (F (c 1 ' ...• cm). RP (Im.F (d 1 •...• dm))) = true 

or 

Eq. a (c'. RP (Im.F (d 1 •...• dm))) = true 
or 

Eq .a (c. RP (Im.F (d 1 • . .. • dm))) = true 

Hence. by taking 

d = Im.F ( d 1 • ... , dm) 

we sat i s fy ( AZ ) . We also satisfy (A 1 ) if we ca n prove 

I S.T (Im.F (d 1 • •• • • dm)) = true 

or . because of the verification condition (iii) of T, if for all 
i,l !S i !S m: 

Is.T i (d i ) = true 

thi s hal ds by (02). (E) for the case iE {j l' ... jkJ; the other 
case holds by (e). 

(d) We now show that RP op commutes with the (restrictions of the) 

ope rations of a and T . More precisely. let 

F : p. 
-1 

x ••• x , n ;?: 0 

be a n external function of a and Im.F the corresponding external 
function of T; let Fop and Im.F op be the corresponding operations 
and F'o p and Im.F'op their restrictions; we have to show: 

for all terms d,. of type ',' with Is.T .( d.) = true. " --

1 !S i !S n: 
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= [RPop~lm'F'op~[dl)' 
,f Pn+l - (J 

Im.F'oD ([d l ), ... , 

if Pn+l F (J 

where for all i, l:;; i:;; n: 

s : = , RP op ([d i )) 

{[d i ) if Pi 

This relation is illustrated by: 

(RP Op ) 

( s 1 ' ... , sn) ,,-

F'op 

'v.-

(RP op ) 

([d l ), . .. 

Im.F' op 
, 

, [d n ) ) 

in thi s figure (RP op ) denotes the application of th e function 
RPop to the arguments of type (J only. 

Co ns id e r first the case Pn+l = (J. 

RPop ( Im.F'op ([d l ), · ·· ,[d n ))) 

= RPop (Im.Fop ([d l ),···, [d n))) 

by the definition of Im.F'op 

= RP op ([lm.F (dl' ... ,dn)J) 

by the definition of Im.F op 
= [R P ( Im.F (d l ,· .. , dn ))) 

by the definition of RP op 

= [F (d'l"'" d'n)) 

with for each i, l:;; :;; n: 

d'i = { RP (d i ) i f 

d. , otherwise 

Pi = (J 
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by tt.e correctness condi ti on (i i i) 

([d'l], ... , [d'n l ) 

([d'l], ... [d'n l ) 

( s 1 ' ... , sn) 

with for each i , 1 :5 i :5 

i f si = { [RP (di)l 

[d·l otherwi se 
1 

n : 

This conc ludes the proof for the case Pn+l = a because 

[RP (di)l = RPo~ ([dil) 

by the definition of RPo~' 

i f p. = a, 1 :5 i :5 n 
1 

The case Pn+ l # a may be treated similarly. 

(e) The theorem directly results from the sections (c) and (d) 

Examples of application of this theorem are in [LoBOc, Lo BOa l. 

Due to the symmetry of the notion of weak equivalence the use of 

an impLementation function 

1M : T .... a 

(cf [ADJ 78, Ga 79, Su 791) instead of a representation function 
RP puts no problem: Section 3.1 and 3.2 remain valid, if RP is 

replaced by 1M and if a and T are permuted. 

4 . Equiva lence 

Let the a lgebras A and A be defined as in Section 2. Again 
(J T 

these algebras are assumed to be surjective but as a difference 
with Sect ion 3 the are not assumed to be total and error-free. 
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The study of equivalence of a and T may then be carried out 
in a way similar to the one of Section 3. 

More precisely the correctness conditions of Section 3 have 
to be modified as follows: 

- each expression of the form 

Is.p (d) = true 

has to be replaced by 

(Is.p (d) = true) or (d = w) or (d = Q ); 

- each expression of the form 

Eq.p (d 1 , d2 ) = true 

has to be replaced by 

The theorem corresponding to the one of Section 3.2 is now a 
theorem on equivalence rather than on weak equivalence. The proof 
i s similar to that of Section 3.2 but: 

- the algebras Aa and AT (rather than the suba1gebras A'a and 

A'T) have to 
consider the 

be shown isomorphic; hence 
sets C and the operations -p 

C' and F' ). - p op , 

RP Op C + C is defined by its values: -T -0 

it is necessary to 

Fop (rather than 

RP op ( [ d 1 ) = [RP ( d ) 1 fo r all te rms d of type 

T wi th IS.T(t) = true 

RP op (ERROR) = ERROR T a 

RP (UNDEFINED) = UNDEFINED op T a 
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5. The case of non-surjective specification sets 

The case of algebras which are not necessarily surjective may 
be treated in a similar way; essentially it suffices to treat 
separately the case of non-accessible elements of the carrier 
set. Details are omitted here because of the lack of practical 
interest of this case: generally one will be interested in 
surjective algebras only or, alternatively, it is in general 

easy to transform a specification in such a way that the re­
sulting algebra is surjective; moreover the proof that analge­

bra i s s urjective is in general relatively easy. 

G. Reducing the number of proofs 

The goal of the present Section is to show that the correct­
ness conditions of Section 3.1 partly imply the validity of the 

verification conditions (i) and (ii) of the data type T. 

6.1. Theorem: 
From the 

Let A ,A and RP be defined as in Section 3.1. o T 
validity of the verification conditions of 0 and 

from the correctness conditions of Section 3.1 one may 
deduce the validity 
(a) of the verification condition (i) of T (expressing 

that Eq.T is an equivalence relation); 
(b) of the verification condition (ii) ofT (expressing 

that for each external function of T equivalent argu­

ments lead to equivalent values). 

Pr oo f 

(a) One has to prove that for all terms t, t 1 , t 2 , t3 of 
type T: 
if Is., (t) = Is.T(t 1) = Is.T(t 2 ) = Is.,(t 3 ) = true 
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then 

(a) either Eq.,(t 1 , t 2 ) = true or Eq., (t 1 , t 2 ) = false; 

(b) Eq.,(t, t) = true; 

(c) Eq.,(t 1 , t 2 ) = Eq.,(t 2 , t 1 ) 

(d) if Eq.,(t 1 , t 2 ) = Eq.,(t 2 , t 3 ) = true 

then Eq .,( t 1 , t) = true 

These four properties directly result from the correctness 

condition (ii): 

for all terms t 1 , t2 of type ,: 

if Is.,(t 1 ) = Is.,(t 2 ) = true 

then Eq.,(t 1 , t 2 ) = Eq.o(RP(d 1), RP(d 2 )) 

and from the fact that the verification condition (i) of a 

hold (i. e. from the fact that Eq.o is an equivalence relation). 

(b) Une has to prove that for each external function of " say 

Im.F 1.1 x ••• x .In -.. .!n+l , n ~ 0 

one has: 

for all terms d i , e i of type 'i' 1" i" n: 

if IS"i (d i ) = IS"i(e i ) = true for all i, 1" " n (A) 

and if Eq"i(d i , e i ) = true for all i, 1" i " n (8) 

then Eq"n+1 (Im.F(d 1 ,···,d n ), Im.F(e 1 ,· .. e n )) = true (C) 

Let for all i, 1 S i" n, d i , e i be terms satisfying (A) and 

(8) and let us prove (C). 

Let us first consider the case 'n+1 = ,. The correctness 

condition (iii) then leads to 

Eq.o(F(d'l' ... d'n)' RP (Im.F(d 1 , ... ,d n ))) 

= Eq.o (F(e'l' ... ,e'n)' RP (Im.F(e 1 , .. ·,e n ))) 

= true ( 0 ) 
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where for each i, 1 $; $; n 

d I. 
1 = {RP(d.) if T· 1 1 

di otherwise 

= T 

and e'i defined similarly. Hence, for all i, 1 $; i $; n, 

with T i = T : 

Eq . 0" ( d Ii' e'i) 

= Eq.O"(RP(d i ), RP(e i )) 

= Eq.T(d i , e i ) 

by correctness condition (ii) 
= true 

As a result, 

Eq.0"(d '
1
·, e ' .) = true 

1 --

for all i, 1 $; i $; n. The verification condition (ii) 
of 0" then implies: 

Eq.O"(F(d ' 1'·· .,d ' n ), F(e ' I'·· .,e ' n )) = true 

Together with (D) this leads to 

= true 

Together with the correctness condition (ii) this in 
turn leads to 

The case Tn+1 * T may be treated similarly. G1 

Suppo se one has a specification of a data type 0" the verification 
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conditions of which have been checked, and a specification of 

a data type T. Suppose moreover that the algebras Ao and AT 

are as in Section 3.1. In order to check the verification con­
ditions of T and to prove that T is a weak implementation of 
a it is sufficient 

to prove the verification condition (iii) of T; 

to prove the three correctness conditions with the help of 
a representation function. 

In other words the user is dispensed from a proof of the veri­
fication conditions (i) and (ii) of T. 

A similar remark holds when using an implementation inst~ad of 
a representation function. From a practical point of view this 
may be less helpful: normally 0 is a "known" data type the veri­

fication conditions of which have been already checked. 

6.3. Ib~2r~~: as in Section 6.1 but with 0 and T permuted and 
with the correctness conditions of Section 3.3. 

The proof of this theorem is left to the reader. 

The theorem leads to a practical consequence similar to (i. e. 

symmetric with) the one of Section 6.2. 
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