A boolean function requiring $3 n$ network size by

Norbert B1um

A $82 / 13$
June 82

Fachbereich 10
Universität des Saarlandes
D - 6600 Saarbrücken

Abstract: Paul [P] first proved a $2.5 n-1$ ower bound for the network complexity of an explicit boolean function. We modify the definition of Paul's function a little and prove a $3 n-1 o w e r$ bound for the network complexity of that function.

1. Introduction

One of the most difficult problems in complexity theory is proving a nonlinear lower bound for the network complexity of an explicit boolean function. Although it is well known by a counting argument, that relative to the full basis most boolean functions need exponentially many operations, only linear lower bounds with small constant factor are known, for explicit boolean functions. Schnorr [S1] first proved a $2 n-1 o w e r$ bound for a n-ary boolean function. Next Paul [P] proved a $2.5 n-1$ ower bound for another n-ary boolean function. Stockmeyer [St] proved, that the lower bound of Paul holds for a larger class of functions. In [S2] Schnorr gives a proof for a $3 n-l o w e r$ bound for the function defined by Paul. But Wegener [W] pointed out a gap in the proof of a lemma in Schnorr's proof. In [B] we use a weaker version of that lemma and prove a 2.75 n -1ower bound. Now we modify the definition of Paul's function a little and prove a 3 n-lower bound.

2. Preliminaries

Let $K=\{0,1\}$ and $F_{n}=\left\{f f: K^{n} \rightarrow K\right\} . F_{2}$ is the set of basic operations. $x_{i}: K^{n^{n}} \rightarrow K$ denotes the $i-t h$ variable. Let $V_{n}=\left\{x_{i} \mid 1 \leq i \leq n\right\}$.

A network β is a directed, acyclic graph with:
(1) Each node has indegree 0 or 2.
(2) The nodes v with indegree 0 are the input nodes of β and are labelled with a variable op(v) $\in V_{n}$.
(3) Each node u with indegree 2 is called a "gate" and is labelled with an op $(u) \in F_{2}$. The edges entering u are associated in a fixed ordered way with the arguments of op $(u) \in F_{2}$.

With each node v we associate a function $\operatorname{res}_{\beta}(v): K^{n} \rightarrow K$ with:
$\operatorname{res}_{\beta}(v)= \begin{cases}\operatorname{op}(v) & \text { if } v \text { is aninput node } \\ \operatorname{res}_{\beta}(u) \text { op }(v) & \text { res } \\ \beta & (w) \text { otherwise } \\ \text { where } u, w \text { are the predecessors of } v \text { in that order. }\end{cases}$

The network β computes all functions $f \in F_{n}$ such that there exists a node $v \in \beta$ with $\operatorname{res}_{\beta}(v)=f . \quad \operatorname{Res}_{\beta}(v)$ depends on input variable x_{i} if and only if there exists ($a_{1}, \ldots, a_{i}, \ldots, a_{n}$) such that

$$
\operatorname{res}_{\beta}(v)\left(a_{1}, \ldots a_{i}, \ldots, a_{n}\right) \neq \operatorname{res}_{\beta}(v)\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)
$$

$C(f)$ denotes the network complexity of the function f, i.e. C(f) is the minimal number of gates, which are necessary for computing f.

For $f \in F_{n}$ and $a \in K l e t$

$$
f^{a}=\left\{\begin{aligned}
f & \text { if } a=1 \\
\neg f & \text { if } a=0
\end{aligned}\right.
$$

We say: $f \in F_{2}$ is \wedge-type, if:

$$
\exists a, b, c \in K: f(x, y)=\left(x^{a} \wedge y^{b}\right)^{c}
$$

$f \in f_{2}$ is \oplus-type, if:

$$
\exists a \in K: f(x, y)=(x \oplus y)^{a}
$$

No \wedge-type function is \oplus-type and vice versa. A node $v \in \beta$ such that $\operatorname{res}_{\beta}(v)$ is Λ-type $(\oplus$-type) is called Λ-type gate $(\oplus$-type gate).

The functions $f \in F_{2}$ can be classified in the following way: There exist:
(i) 2 constant functions
(ii) 4 functions depending on one variable
(iii) 10 functions depending on two variables. 8 of this functions are \wedge-type and 2 are \oplus-type.

For a node v in β let $\operatorname{suc}(v)=\{u \mid v \rightarrow u$ is edge in $\beta\}$ and $\operatorname{pred}(v)=\{u \mid u \rightarrow v$ is edge in $\beta\}$ be the set of direct successors and direct predecessors of v.

The functions, associated with the nodes in pred(v) are called input functions of v.

Throughout this paper, we use the following fact:

Fact: Let β be a network computing $f \in F_{n}$. Let $v \in \beta$ be an \wedge-type gate or a \oplus-type gate. If one input function of v is constant, then we can eliminate the gate v and the reduced network still computes f.

Let $U \subset V_{n}$ and $\alpha: U \rightarrow K$ be a mapping. Frequently we consider the restriction f_{α} of $f \in F_{n}$ under the assignment α. More precisely, f_{α} is defined by:

$$
\begin{aligned}
& f_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \\
& \text { with } y_{i}= \begin{cases}\alpha\left(x_{i}\right) & \text { if } x_{i} \in U \\
x_{i} & \text { if } x_{i} \notin U\end{cases}
\end{aligned}
$$

In a natural way an assignment α associates with a network β a subnetwork β_{α}, which is got by fixing input variables according to α and eliminating the unnecessary gates.

In the following, we write res(v) for $\operatorname{res}_{\beta}(v)$ if β is kept fixed. \#S denotes the cardinality of the set S.
lor proving the lower bound, we consider paths in a network. $(v \Rightarrow u)$ denotes a path from the node v to the node u.
3. The lower bound

For $a=\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{r}} \in \mathrm{K}^{*}$ let (a) denote the binary number represented by $a+1$.

Let $a_{1}=a_{1} \cdots a_{10 g(n)}, a_{2}=a_{10 g(n)+1} \cdots a_{21 \log (n)}$ and $a_{3}=a_{210 g(n)+1} \cdots a_{3 \log (n)}\left(a_{i} \in K\right)$. Then we define:

$$
f: K^{n+3 \log (n)+3} \rightarrow K
$$

$$
f\left(a_{1}, \ldots, a_{310 g(n)}, p, q, r, x_{1}, \ldots x_{n}\right):=
$$

$$
\mathrm{q}\left(\left(\mathrm{x}_{\left(a_{1}\right)} \wedge \mathrm{x}_{\left(a_{2}\right)}\right) \vee \mathrm{p}\left(\mathrm{x}_{\left(a_{2}\right)} \wedge \mathrm{x}_{\left(\alpha_{3}\right)}^{\mathrm{r}}\right)\right) \vee \neg \mathrm{q}\left(\mathrm{x}_{\left(a_{1}\right)} \oplus \mathrm{x}_{\left(a_{2}\right)}\right)
$$

Remark:

If we set $p:=0$, then f is the function defined by Paul.

For $h:=f_{p}:=0$, Paul has proved a $2.5 n-1$ ower bound. First he makes h independent of some inputs x_{i}, which allows to eliminate 3 gates each. After this, he knows quite exactly, how the "top" of the network looks. For the remaining s inputs, he proves without an inductive argument, the existence of $5 / 2 \mathrm{~s}-2$ gates.

Theorem:

For f defined above holds:

$$
C(f) \geq 3 n-3
$$

First we make f independent of some inputs x_{i} which allows to eliminate 3 gates each. We use for this the entire proof of Paul and sketch this part only. For a more detailed analysis, see [P].

Define for $1 \leq s \leq n$ the statement E_{s}.
E_{S} : For any function $f: K^{n+3 \log (n)+\frac{S}{3}} \rightarrow K$ with the property:
$\left[\exists \mathrm{S} \subseteq\{1, \ldots, \mathrm{n}\} \# \mathrm{~S}=\mathrm{s}\right.$ such that for a_{1}, a_{2}, a_{3} with
$\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right) \in S: f\left(a_{1}, a_{2}, a_{3}, p, q, r, x_{1}, \ldots x_{n}\right)=$
$\left.\left.\mathrm{q}\left(\mathrm{x}_{\left(a_{1}\right)} \wedge \mathrm{x}_{\left(a_{2}\right)}\right) \vee \mathrm{p}\left(\mathrm{x}_{\left(a_{2}\right)} \wedge \mathrm{x}_{\left(a_{3}\right)}^{\mathrm{r}}\right)\right) \vee \vee \mathrm{q}\left(\mathrm{x}_{\left(a_{1}\right)}{ }^{\oplus} \mathrm{x}_{\left(a_{2}\right)}\right)\right]$
holds, $3 \mathrm{~s}-3 \leq \mathrm{C}(\mathrm{f})$.
E_{1} is trivially true. Let E_{S-1} be true. Now we prove that E_{S-1} implies E_{S}. Let β be any minimal size network for f. W.l.o.g. we assume that for each $i \in S$ there is a unique node $v \in \beta$ with $o p(v)=x_{i}$.

Case 1: \exists i $\in S: \# \operatorname{suc}\left(x_{i}\right) \geq 3$.

By fixing x_{i} at 0 we can eliminate at least 3 gates of β. The reduced network computes the restriction $f_{x_{i}}:=0$ of f. From the induction hypothesis follows $C(f) \geq 3 s-3$.

Case 2: $\exists \mathrm{i} \in \mathrm{S}: \# \operatorname{suc}\left(\mathrm{x}_{\mathrm{i}}\right)=2$ and $\exists \mathrm{v} \in \operatorname{suc}\left(\mathrm{x}_{\mathrm{i}}\right)$ such that v is an \wedge-type gate.

Choose $c \in K$ such that $\operatorname{res}(v)_{x_{i}}:=c$ is constant. Then, by fixing x_{i} at c, we can eliminate all nodes in $\operatorname{suc}\left(x_{i}\right)$ and all nodes in suc(v). Since β is of minimal size, there are at least three different such
nodes. The reduced network computes the restriction $f_{x_{i}}:=c$ of f. From the induction hypothesis follows $C(f) \geq 3 s-3$.

Case 3: $\exists \mathrm{i} \in \mathrm{S}: \forall \mathrm{v} \in \operatorname{suc}\left(\mathrm{x}_{\mathrm{i}}\right): \mathrm{v}$ is a \oplus-type gate. Then there exist nodes u_{1}, \ldots, u_{r} in β with
(1) $\mathrm{u}_{1} \in \operatorname{suc}\left(\mathrm{x}_{\mathrm{i}}\right)$
(2) u_{j} is a \oplus-type gate $\forall j \in\{1, \ldots, r\}$
(3) $u_{j+1} \in \operatorname{suc}\left(u_{j}\right)$ and $\# \operatorname{suc}\left(u_{j}\right)=1$ for $1 \leq j \leq r-1$.
(4) \#suc $\left(u_{r}\right)>1$ or for $w \in \operatorname{suc}\left(u_{r}\right)$ holds: w is an \wedge-type gate.

Let x_{i}, g_{1} be the input functions of u_{1} and $\operatorname{res}_{\beta}\left(u_{j}\right), g_{j+1}$ be the input functions of $\mathrm{u}_{\mathrm{j}+1}, 1 \leq \mathrm{j}<\mathrm{r}$. Paul (case III in [P]) proves, that u_{1}, \ldots, u_{r} can be chosen such that g_{1}, \ldots, g_{r} do not depend on x_{i}. Then $\operatorname{res}\left(u_{r}\right)=x_{i} \oplus g$ for some function g which does not depend on X_{i}.

Hence $\operatorname{res}\left(u_{r}\right)_{x_{i}}:=g$ and $\operatorname{res}\left(u_{r}\right)_{x_{i}}:=\neg g$ are constant. Therefore for each of the substitutions $x_{i}:=g$ and $x_{i}:=\neg g$, we can eliminate u_{r} and all nodes in $\operatorname{suc}\left(u_{r}\right)$. We distinguish two cases.
(i) \#suc $\left(u_{r}\right) \geq 2$. Then we eliminate at least 3 gates by fixing x_{i} at g or at $\neg g$.
(ii) \#suc $\left(u_{r}\right)=1$. Then $w \in \operatorname{suc}\left(u_{r}\right)$ is an \wedge-type gate. Choose $\ddot{g} \in\{g, \neg g\}$ such that $\operatorname{res}(w)_{x_{i}}:=\tilde{g}$ is constant. Then by fixing x_{i} at \tilde{g}, we can eliminate at least 3 gates, namely u_{r}, w and all nodes in suc(w).

The induction hypothesis implies now $C(f) \geq 3 s-3$.

If none of the cases $1-3$ apply, then $\forall i \in S$ holds:
(i) \#suc $\left(x_{i}\right)=1$. We denote the node in $\operatorname{suc}\left(x_{i}\right)$ by G_{i},
(ii) G_{i} is an \wedge-type gate.

Let be $G=\left\{G_{i} \mid i \in S\right\}$.

Paul proves the following lemma.

Lemma 1:
$\forall i, j \in S$ with $i \neq j: G_{i} \neq G_{j}$
Proof: Suppose $\exists i, j \in S, i \neq j$ with $G_{i}=G_{j}$. Then there exists $c \in K$ such that $\operatorname{res}\left(G_{j}\right)_{x_{i}}:=c$ is constant. Hence $f_{x_{i}}:=c$ does not depend on x_{j}. But $f\left(a_{1}, a_{2}, a_{3}, 0,0, r, x_{1}, \ldots, x_{n}\right)=c \oplus x_{j}$ for $\left(a_{1}\right)=i$, $\left(a_{2}\right)=j$ and $x_{i}=c$ depends on x_{j}, a contradiction.

Case 4: $\exists \mathrm{i} \in \mathrm{S}: \# \operatorname{suc}\left(\mathrm{G}_{\mathrm{i}}\right) \geq 2$.
Consider $c \in K$ with $\operatorname{res}\left(G_{i}\right)_{x_{i}}:=c$ is constant. Then fixing x_{i} at c
eliminates G_{i} and all nodes in $\operatorname{suc}\left(G_{i}\right)$. There are at least three different such gates. Hence from the induction hypothesis follows: $C(f) \geq 3 s-3$.

It remains to consider:

Case 5: $\forall i \in S: \# \operatorname{suc}\left(G_{i}\right)=1$
We denote the unique direct successor of G_{i} by Q_{i}.
Before analyzing case 5 , we give some definitions:

A path in β is called free, if no inner node is in G.

A node w in β is called a split, if the outdegree of w is ≥ 2.

A split w in β is called free split, if $\exists u_{1}, u_{2} \in \beta, u_{1} \neq u_{2}$ such that:
a) $u_{1}, u_{2} \in \operatorname{suc}(w)$.
b) \exists free paths $\left(u_{1} \Rightarrow t\right)$ and $\left(u_{2} \Rightarrow t\right)$ in β.

A node w is called collector of the free paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right), i \neq j$, if w lies on both paths and the paths enter w by different edges.

The next four lemmas are due to Paul, except the observation C is a \oplus-type gate in lemma 3, which is due to Schnorr.

Lemma 2:
$\forall i \in S: \exists$ free path $\left(G_{i} \Rightarrow t\right)$.

Proof: Suppose that no free path $\left(G_{i} \Rightarrow t\right)$ exists. Then each path $\left(G_{i} \Rightarrow t\right)$ passes some G_{j} with $j \neq i$. Construct the assignment α by fixing all variables except x_{i}, such that:
(i) $\operatorname{res}\left(\mathrm{G}_{\nu}\right)_{\alpha}$ is constant $\forall \nu \in S \backslash\{i\}$
(ii) $f_{\alpha}=x_{i}$.

Since each path $\left(G_{i} \Rightarrow t\right)$ goes through some G_{ν} with $\nu \neq i$, res $(t){ }_{\alpha}$ does not depend on x_{i}. But this is a contradiction to $f_{\alpha}=x_{i}$ and $\operatorname{res}(t)_{\alpha}=f_{\alpha}$.

Lemma 3:

Let $i, j \in S, i \neq j$. Let C be a collector of a free path ($\left.G_{i} \Rightarrow t\right)$ and a free path $\left(G_{j} \Rightarrow t\right)$. Then at least one of the following conditions is met:
(1) \exists free split $\neq C$ on path $\left(G_{i} \Rightarrow C\right)$ or
\exists free split $\neq C$ on path $\left(G_{j} \Rightarrow C\right)$.
(2) (i) C is a \oplus-type gate.
(ii) \exists free path $\left(G_{i} \Rightarrow G_{j}\right)$ or
\exists free path $\left(G_{j} \Rightarrow G_{i}\right)$
Proof: Suppose, that (1) and (2) are not met. We distinguish two cases.
a) C is an \oplus-type gate.

Construct assignment α by fixing all variables except x_{i}, x_{j} such that
(i) $\operatorname{res}\left(G_{\nu}\right)_{\alpha}$ is constant $\forall \nu \in S \backslash\{i, j\}$
(ii) $f_{\alpha}=x_{i} \wedge x_{j}$.

By assumption, all paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right)$ goes through C or a $G_{\nu}, \nu \in S \backslash\{i, j\}$. Since $\operatorname{res}(C)_{\alpha}=\left(x_{i} \oplus x_{j}\right)^{\text {a }}, a \in K$ or $\operatorname{res}(C)_{\alpha}$ depends on at most one variable, for res $(t)_{\alpha}$ the same holds.
Hence $f_{\alpha} \neq \operatorname{res}(t)_{\alpha}$ a contradiction.
b) C is an 1 -type gate.

Construct assignment α by fixing all variables except x_{i}, x_{j} such that
(i) $\operatorname{res}\left(G_{\nu}\right)_{\alpha}$ is constant $\forall \nu \in S \backslash\{i, j\}$
(ii) $f_{\alpha}=x_{i} \oplus x_{j}$.

If $\operatorname{res}\left(G_{j}\right)_{\alpha}$ depends on x_{i}, choose $c \in K$ such that $\operatorname{res}\left(G_{j}\right)_{\alpha, x_{i}}:=c$ is constant. Hence $\operatorname{res}(t){ }_{\alpha, x_{i}}:=c$ does not depend on x_{j}, but $f_{\alpha, x_{i}}:=c=c \oplus x_{j}$ depends on x_{j}, a contradiction. The case res $\left(G_{i}\right){ }_{\alpha}$ depends on x_{j} is symmetric.

Now by assumption, all paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right)$ goes through C or $a G_{\nu}, \nu \in S \backslash\{i, j\}$. Since $\operatorname{res}(C)_{\alpha}=\left(x_{i}{ }^{a} \wedge x_{j}^{b}\right)^{c}, a, b, c \in K$ or $\operatorname{res}(C)_{\alpha}$ depends on at most one variable, for $\operatorname{res}(t)_{\alpha}$ the same holds.

Hence $f_{\alpha} \neq \operatorname{res}(t)_{\alpha}$, a contradiction.

From lemma 3 it follows immediately

Lemma 4:
$\forall i, j \in S, i \neq j$ holds $: Q_{i} \neq Q_{j}$

Now we have isolate 2 s gates, namely the gates G_{i}, Q_{i} for $i \in S$. $\operatorname{Let} Q=\left\{Q_{i} \mid i \in S\right\}$.

Lemma 5:

There are s-1 mutually distinct splits in β.

Proof: From lemma 3 follows: There are $s-1$ input nodes x_{i}, $i \in S$ with: any path $\left(Q_{i} \Rightarrow t\right)$ splits. And again from lemma 3 we derive, that these are mutually distinct.

The rest of the proof is new.

Since we have at least $s-1$ splits, we have to connect at least $2(s-1)$ edges with the output node t. For edges, which correspond to a free path, no node in G can help to connect these with the output node t on the free paths by the definition of a free path.

Next we prove, that all but one of the $s-1$ splits have to be free.

Assume, not all the s-1 splits are free. Then by lemma 3 there exist $i, j, i \neq j$ with the following properties:
(i) \exists collector C of the free paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right)$ with: \neq free split $\neq C$ on the path $\left(G_{i} \Rightarrow C\right)$ and \neq free split $\neq C$ on the path $\left(G_{j} \Rightarrow C\right)$
(ii) \exists free path $\left(G_{i} \Rightarrow G_{j}\right)$ or \exists free path $\left(G_{j} \Rightarrow G_{i}\right)$ and C is a \oplus-type gate.
W.l.o.g. let \exists free path $\left(G_{i} \Rightarrow G_{j}\right)$. Then we have the following situation:

Lemma 6:
$\forall v \in S \backslash\{j\} \exists$ free path $\left(G_{v} \Rightarrow G_{i}\right)$ or \exists free path $\left(G_{\nu} \Rightarrow G_{j}\right)$.
Proof: For i we know by assumption that \exists free path $\left(G_{i} \Rightarrow G_{j}\right)$. Assume $\exists \ell \in S \backslash\{i, j\}$ with

申 free path $\left(G_{\ell} \Rightarrow G_{i}\right)$ and \ddagger free path $\left(G_{\ell} \Rightarrow G_{j}\right)$.
Consider the node G_{ℓ}

This node has input function x_{ℓ}^{a} with $a \in K$.

Now we construct assignment α by fixing all variables except $x_{i}, x_{j}, x_{\ell}, r$ such that:
a) $\operatorname{res}\left(G_{\nu}\right)_{\alpha}$ is constant $\forall \nu \in S \backslash\{i, j, \ell\}$
b) $f_{\alpha}=\left(x_{i} \wedge x_{j}\right) \vee\left(x_{j} \wedge x_{\ell}^{r}\right)$.

We distinguish two cases:

Case 1: $\operatorname{res}\left(G_{j}\right)_{\alpha}$ does not depend on x_{i}. Now fix x_{ℓ} at \neg. Then $\operatorname{res}\left(G_{\ell}\right)_{\alpha, x_{\ell}:=\neg a}$ is constant and $f_{\alpha, x_{\ell}:=\neg a}=x_{i} \wedge x_{j}$.

Now, as in the proof of lemma 3, we prove, that case 1 cannot happen.

Case 2: $\operatorname{res}\left(G_{j}\right)_{\alpha}$ depends on x_{i}. Hence there is $b \in K$ such that $\operatorname{res}\left(G_{j}\right)_{\alpha, r}:=b$ also depends on x_{i}.

Hence $\operatorname{res}\left(G_{j}\right)_{\alpha, r:=b}=\left(x_{i}^{c} \wedge x_{j}^{d}\right)^{\ell}, c, d, \ell \in K$. Fix x_{i} at $\neg c$. Then $\operatorname{res}\left(G_{j}\right)_{\alpha, r}:=b, x_{i}:=\neg c$ is constant and hence $\operatorname{res}(t)_{\alpha, r}:=b, x_{i}:=\neg c$ does not depend on x_{j}. But
$f_{\alpha, r}:=b, x_{i}:=\neg c=\left(\neg c \wedge x_{j}\right) \vee\left(x_{j} \wedge x_{\ell}^{b}\right)$
depends on x_{j}, a contradiction.
Lemma 7:
$\forall \ell, \nu \in S \backslash\{j\}, \nu \neq \ell$ holds: If D is a collector of a free path $\left(G_{\ell} \Rightarrow t\right)$ and a free path $\left(G_{\nu} \Rightarrow t\right)$, then:
\exists free split $\neq D$ on path $\left(G_{\ell} \Rightarrow D\right)$ or
\exists free split $\neq D$ on path $\left(G_{\nu} \Rightarrow D\right)$.
Proof: Assume: \ddagger free split on path $\left(G_{\ell} \Rightarrow D\right)$ and \ddagger free split on path $\left(G_{\nu} \Rightarrow D\right)$. Then, by lemma 6 , there exists a path $\left(G_{j} \Rightarrow G_{\ell}\right)$ or there exists a path $\left(G_{j} \Rightarrow G_{\nu}\right)$. But by construction, there exists paths $\left(G_{\ell} \Rightarrow G_{j}\right)$ and $\left(G_{\nu} \Rightarrow G_{j}\right)$ and hence, we have a cycle in the network. But this cannot happen by the definition of a network.

From lemma 7, we can derive directly:

Lemma 8:

There are at least s-2 mutually distinct free splits in β.

By lemma 8 and lemma 2 we have to connect at least $2(\mathrm{~s}-2)+2$ edges on free paths to the output node t. Since the nodes in G cannot help and for the nodes in Q only one input wire is free for connecting these edges, we need at least $2(s-2)+2-1-s$ nodes not in $G \cup Q$ on this paths.

Hence
$C(f) \geq \# G+\# Q+s-3$
$=3 s-3$

This finishes the proof of the theorem.

Acknowledgement:
I thank Kurt Meh1horn for valuable comments.

References:

[B] Blum, N.: A 2.75n-10wer bound on the network complexity of boolean functions, Tech. Report Universität des Saarlandes, A 81/o5 (1981)
[P] Paul, W.J.: A $2.5 n$-lower bound on the combinational complexity of boolean functions, SIAM J. Comput. 6, 427-443 (1977)
[S1] Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen, Computing 13, 155-171 (1974)
[S2] Schnorr, C.P.: A 3n-lower bound on the network complexity of boolean functions, TCS 10, 83-92 (1980)
[St] Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions, Math. Systems Theory 10, 323-336 (1977)
[W] Wegener, I.: Private communication (1981)

