A boolean function requiring 3n network size

by
Norbert Blum

A 82/13
June 82

Fachbereich 1o
Universitidt des Saarlandes

D - 6600 Saarbriicken

Abstract: Paul [P] first proved a Z2.5n-lower bound for the network
complexity of an explicit boolean function. We modify the definition
of Paul's function a little and prove a 3n-lower bound for the net-
work complexity of that function.

1. Introduction

One of the most difficult problems in complexity theory is proving
a nonlinear lower bound for the network complexity of an explicit
boolean function. Although it is well known by a counting argument,
that relative to the full basis most boolean functions need ex-
ponentially many operations, only linear lower bounds with small
constant factor are known, for explicit boolean functions. Schnorr
[S1] first proved a 2n-lower bound for a n-ary boolean function.
Next Paul [P] proved a 2.5n-lower bound for another n-ary boolean
function. Stockmeyer [St] proved, that the lower bound of Paul holds
for a larger class of functions. In [S2] Schnorr gives a proof for

a 3n-lower bound for the function defined by Paul. But Wegener [W]
pointed out a gap in the proof of a lemma in Schnorr's proof. In [B]
we use a weaker version of that lemma and prove a 2.75n-lower bound.
Now we modify the definition of Paul's function a little and prove

a 3n-lower bound.

2. Preliminaries

Let K = {0,1} and F_ = {f f : K" > K}. F, is the set of basic
operations. X; : K" - K denotes the i-th variable. Let
i

Vn = {xill <

< n}.
A network B is a directed, acyclic graph with:

(1) Each node has indegree O or 2.
(2) The nodes v with indegree O are the input nodes of B and are

labelled with a variable op(v) € Vn'

(3) Each node u with indegree 2 is called a 'gate' and is labelled
with an op(u) € F,. The edges entering u are associated in a
fixed ordered way with the arguments of op(u) € F,.

With cach node v we associate a function resB(V) : K > K with:
op (V) if v is aninput node
resB(v) = resB(u) op(v) resB(w) otherwise

where u,w are the predecessors of v in that order.

The network B computes all functions f € Fn such that there exists
a node v € B with ress(v) = f. ResB(v) depends on input variable X;

if and only if there exists (a1,...,ai,...,an) such that

resB(v)(a1,...a.

l,...,an) ¥ resB(v](a1,...,ﬂai,...,a)

n

C(f) denotes the network complexity of the function f, i.e. C(f) 1is
the minimal number of gates, which are necessary for computing f.

For f € Fn and a € K let

a f if a =1
fz{—.f

Il
O

if a
We say: f € FZ is A-type, if:
3 a,b,c € K : £(x,y) = (x* A y9)€
fef, is ® -type, if:
3 a € K : f(x,y) = (x @)y)a
No A-type function is @ -type and vice versa. A node v € B8 such

that resB(v) is A-type (®@ -type) is called A-type gate (@ -type
gate).

The functionsf € [, can be classified in the following way: There

cexist:
(i) 2 constant functions
(11) 4 functions depending on one variable

(iii) To functions depending on two variables. 8 of this functions
are A-type and 2 are & -type.

For a node v in B let suc(v) = {ulv - u is edge in R} and
pred(v) = {ulu » v is edge in B} be the set of direct successors

and direct predecessors of v.

The functions, associated with the nodes in pred(v) are called in-

put functions of v.
Throughout this paper, we use the following fact:

Fact: Let B be a network computing f € Fn. Let v € B be an A-type
gate or a ® -type gate. If one input function of v is constant, then
we can eliminate the gate v and the reduced network still computes f.

Let UV and o : U > K be a mapping. Frequently we consider the
restriction fu of f € . under the assignment o. More precisely, fa

is defined by:

fu(x1,...,x)

n £E(yqsee-syy)

a(xi) if x. € U
with 5 { =

X4 if X5 € U

In a natural way an assignment o associates with a network B a sub-
network B, which is got by fixing input variables according to o

and eliminating the unnecessary gates.

In the following, we write res(v) for resB(v) if B is kept fixed.
#S denotes the cardinality of the set S.

For proving the lower bound, we consider paths in a network.

(v = u) denotes a path from the node v to the node u.

5. The lower bound

For a = aq...a_ € K* let (¢) denote the binary number represented

by a + 1.

Let ag = ag0e08165 592 = Bigg(n)+1°°* P210g(n) *¢

a3 = 831050(n)+1 *°° aSlog(n) (ai € K). Then we define:

n+3logo(n)+3 5K

f &z K
f(a1""’331og(n)’ P, 4, T, x1,...xn) 1=

0K,) & K)) ¥ POy & Xy)Y ¥ 5 alxg, 3 Bxg)

Remark:
If we set p := 0, then f is the function defined by Paul.
For h := fp - 0’ Paul has proved a 2.5n-lower bound. First he makes

h independent of some inputs X5 which allows to eliminate 3 gates
each. After this, he knows quite exactly, how the ''top" of the net-
work looks. For the remaining s inputs, he proves without an in-

ductive argument, the existence of 5/2s-2 gates.

Theorem:
For f defined above holds:

C(f) =2 3n - 3

First we make f independent of some inputs Xy which allows to elim-
inate 3 gates each. We use for this the entire proof of Paul and
sketch this part only. For a more detailed analysis, see [P].

Define for 1 £ s < n the statement E .

T . T : . ph*31 +3 .
Ls : For any function f; ' ° og(n)+3 =» K with the property:

[3S <c{1,...,n} #S = s such that for ai,ap,az with
(a1)’ (az); (as) E S ¢ f(aI’GZ:GZ);p’q,rsx*],---xn) =
¥
q((x(a1) A x(az)) v p(x(az) A X(GS))) v oo q(x(a1) C)x(az))]
holds, 3s = 3 £ C(f)s

Ey is trivially true. Let E__, be true. Now we prove that E__,
implies ES. Let B be any minimal size network for f. W.l.o.g. we

assume that for each i € S there is a unique node v € B with

op(v) = X; .
Case 1: 31 € S : #suc(xi) > 3.

By fixing x; at O we can eliminate at least 3 gates of B. The re-
duced network computes the restriction fx-'=0 of f. From the in-
duction hypothesis follows C(f) 2 3s-3. E

Case 2: 31 € S : #suc(xi) = 2 and 3 v € suc(xi) such that v is an

A-type gate.

Choose ¢ € K such that res(v)X .
it
at ¢, we can eliminate all nodes in suc(xi) and all nodes in suc(v).

Since B8 is of minimal size, there are at least three different such

—c is constant. Then, by fixing X4

nodes. The reduced network computes the restriction fX - of ¥.

From the induction hypothesis follows C(f) = 3s-3. A"

Case 3: 3 i €8S :V VvEsuc(x;) : vis a@® -type gate. Then there

exist nodes UpyeeesUy in B with

(n u, € suc(xi)
(2) uy is a @ -type gate ¥ j€ {1,...,1}

(3) uj+1 € suc(uj) and #suc(uj) =1 for 1 € 3j < r-1.

(4) #suc(ur) > 1 or for w € suc(ur) holds: w is an A-type gate.

Let x;, g; be the input functions of u; and resB(uj), €541 be the

input functions of u, 1 £ j < r. Paul (case III in [P]) proves,

JE1?

that Ugse--,U,. Can be chosen such that 81358y do not depend on

T
X; . Then res(ur) = X; @ g for some function g which does not depend

on X..
1

Hence res(ur)x_:=g and res(ur)xi::_Ig are constant. Therefore for

each of the substitutions X; =g and X; = =g, we can eliminate u

and all nodes in suc(ur). We distinguish two cases.

(i) #suc(ur) > 2. Then we eliminate at least 3 gates by fixing X4
at g or at —g.

(ii) #Suc(ur) = 1. Then w € suc(ur) is an A-type gate. Choose
g € {g,ng} such that res(w)x_,=§ is constant. Then by fixing
x
x; at g, we can eliminate at least 3 gates, namely U, W and

all nodes in suc(w).

The induction hypothesis implies now C(f) = 3s-3.

If noneof the cases 1-3 apply, then Vv i € S holds:

(1) #Suc(xi) = 1. We denote the node in Suc(xi) by Gi,
(ii) Gi is an A-type gate.

Let be G = {Gi[i € S}.

Paul proves the following lemma.

Lemma 1:

Vi, j€swithisj: G +G

Proof: Suppose 3 i,j € S, 1 # j with Gi = Gj' Then there exists

¢ € K such that res(Gj)x . is constant. Hence fx i does not

=C C

i
depend on X3 But f(a1,a2,a3,0,0,r,x1,...,x& = C C)xj for (aq) = i,

(az) = j and X; =¢ depends on xj, a contradiction.

I

Case 4: 9 1 € 8§ ; #suc(Gi) 2 2,

Consider ¢ € K with res(Gi)x is constant. Then fixing x; at ¢

s e
i
eliminates Gi and all nodes in suc(Gi). There are at least three

different such gates. Hence from the induction hypothesis follows:

C(f) = 3s-3.
It remains to consider:

Case 5: Vi €S : #suc(Gi) = 1
We denote the unique direct successor of Gy by Q-

Before analyzing case 5, we give some definitions:
A path in B is called free, if no inner node is in G.

A node w in B is called a split, if the outdegree of w is 2> 2.

A split w in B is called free split, if 3 ug,u, € B, ug ¥ u,
such that:
a) Uqy, Uy € suc(w).

b) 3 free paths (u1 = t) and (u2 = t) in B.

A node w 1is called collector of the free paths (Gi = t) and
(Gj = t), i # j, if w lies on both paths and the paths enter w by
different edges.

The next four lemmas are due to Paul, except the observation C is a
@ -type gate in lemma 3, which is due to Schnorr.

Lemma 2:
v i€ S : 3 free path (Gi = t).

Proof: Suppose that no free path (Gi =» t) exists. Then each path
(Gi = t) passes some Gj with j # i. Construct the assignment o by
fixing all variables except X5 such that:

(1) res(Gv)a is constant v v € S~{i}
[11) £, = X; -
Since each path (Gi = t) goes through some G, with v + i, res(t)a
does not depend on X, . But this is a contradiction to fa =X and
res(t)u = fa.

Lemma 3:

Let i, j € S, 1 # j. Let C be a collector of a free path (Gi = t)
and a free path (Gj = t). Then at least one of the following con-

ditions is met:

(1) 3 free split # C on path (Gi = C) or
3 free split # C on path (Gj = C).

(2) (i) C is a @ -type gate.
(i1) 3 [ree path (Gi = Gj) or
3 free path (Gj = Gi)

Proof: Suppose, that (1) and (2) are not met. We distinguish two
cases.

a) C is an @ -type gate.
Construct assignment o by fixing all variables except X xj such
that

(1) res(Gv)a is constant Vv v € S~{i,j}

(ii) fa = X; A xj.

By assumption, all paths (Gi = t) and (G. = t) goes through C or a
Gv’ v € S~{i,j}. Since res(C)OL = (x14® xj)a, a € K or res(C)a depends
on at most one variable, for res(t)a the same holds.

Hence fu # res(t)a a contradiction.

b) C is an aA-type gate.
Construct assignment o by fixing all variables except X5, xj such
that

(i) res(Gv)OL is constant Vv v € S~{i,j}
(ii) £, = xi@xj.

If res(G.)_ depends on x., choose c¢ € K such that res(G.) .__ is
jla i Jla,x;=c

constant. Hence res(t) does not depend on xj, but

0,X.:=C
i
fa,xi:=c=C(3 xj depends on xj, a contradiction. The case res(Gi)a

depends on Xj is symmetric.
Now by assumption, all paths (Gi = t) and (G, = t) goes through C or
a Gv’ v € S~{i,j}. Since res(C)a = (xia A x?)c, a,b,c € K or res(C)a

depends on at most one variable , for res(t)a the same holds.

Hence fa # res(t)a, a contradiction. o

- 1o -
From lemma 3 it follows immediately
Lemma 4:

vi, j €S, i+ j holds : Qi # Qj

Now we have isolate 2s gates, namely the gates Gi’ Q; for i € S.
Let Q = {Q;!i € S}.

Lemma 5:
There are S-1 mutually distinct splits in B.

Proof: From lemma 3 follows: There are s-1 input nodes X5 i€s
with: any path (Qi = t) splits. And again from lemma 3 we derive,
that these are mutually distinct. o

The rest of the proof is new.

Since we have at least s-1 splits, we have to connect at least 2(s-1)
edges with the output node t. For edges, which correspond to a free
path , no node in G can help to connect these with the output node t
on the free paths by the definition of a free path

Next we prove, that all but one of the s-1 splits have to be free.

Assume, not all the s-1 splits are free. Then by lemma 3 there exist
i,j, 1 # j with the following properties:

(i) 3 collector C of the free paths (Gi = t) and (Gj = t) with:
3 free split # € on the path (G; = C) and 3 free split # C on the
path (Gj = C)

(ii) 3 free path (Gi = Gj) or 3 free path (Gj = Gi) and C is a
® -type gate.

- 11 -

W.l.0.g. let 3 free path (Gi = Gj). Then we have the following
situation:

X XKe

1 J
\i ~ Ta
’
free
Gi ! Gj

! rl
. ,
LY ’
. ’,
C ¢

Lemma 6:

YV v € S~{j} 3 free path (Gv = Gi) or 3 free path (Gv = Gj).

Proof: For i we know by assumption that 3 free path (Gi = Gj).
Assume 3 & € S~{i,j} with

3 free path (Gy=G;) and 3 free path (G, = Gj).
Consider the node GQ

This node has input function xi with a € K.

Now we construct assignment o by fixing all variables except

xi,xj,xﬁ,r such that:

a) res(Gv)a is constant Vv v € S~{i,j, 2}

_ T
b) fu = (xi A xj) v (xj A xg).

We distinguish two cases:

Case 1: res(Gj)a does not depend on X . Now fix X, at -a. Then

is constant and £ = X. A Xj'

res(GQ)&,X£:=ﬂa u,xgﬁﬂa 1

- 3 -

Now, as in the proof of lemma 3, we prove, that case 1 cannot
happen.

Case 2: res(Gj)a depends on X . Hence there is b € K such that

res(Gj)a,r:=b also depends on X; -
Hence res(G.) = (xC A xd)l c,d,? € K. Fix x. at =c. Then
j a, r:=b i J ’ 2 Lo . i =C.

res(Gj)a,r:=b,xi:=ﬂc is constant and hence Tes(t)a,r:=b,xi:= i

does not depend on xj. But

f = (mc A X.) VvV (x: A xb)

a,r:=b,xi:=ﬁc J J 2

depends on xj, a contradiction. o

Lemma 7:

vV 2,v € S~{j}, v # & holds: If D is a collector of a free path
(Gy = t) and a free path (Gv = t), then:

3 free split # D on path (Gg = D) or
3 free split *# D on path (Gv = D).

Proof: Assume: 3 free split on path (GR = D) and 3 free split on
path (Gv = D). Then, by lemma 6, there exists a path (Gj = Gg) or
there exists a path (G. = Gv)' But by construction, there exists
paths (Gg = Gj) and (Gv = G.) and hence, we have a cycle in the net-
work. But this cannot happen by the definition of a network. o
From lemma 7, we can derive directly:

Lemma 8:

There are at least s-2 mutually distinct free splits in B.

- 13 -

By lemma 8 and lemma Z we have to connect at least 2(s-2)+2

edges on free paths to the output node t. Since the nodes in G
cannot help and for the nodes in Q only one input wire is free
for connecting these edges, we need at least 2(s-2)+2-1-s nodes

not in G U Q on this paths.

Hence
C(f) =2 #G + #Q + s-3
= 35-3
This finishes the proof of the theorem.

Acknowledgement:

I thank Kurt Mehlhorn for valuable comments.

References:

[B]

[P]

[S1]

[S2]

[St]

(W]

Blum, N.: A 2.75n- lower bound on the network complexity of
boolean functions, Tech. Report Universitdt des Saarlandes,
A 81/05 (1981)

Paul, W.J.: A 2.5n-lower bound on the combinational complexity
of boolean functions, SIAM J. Comput. 6, 427-443 (1977)

Schnorr, C.P.: Zwei lineare untere Schranken fiir die Komplexi-
tdt Boolescher Funktionen, Computing 13, 155-171 (1974)

Schnorr, C.P.: A 3n-lower bound on the network complexity of
boolean functions, TCS 1o, 83-92 (1980)

Stockmeyer, L.J.: On the combinational complexity of certain
symmetric Boolean functions, Math. Systems Theory 1o, 323-336
(1977)

Wegener, I.: Private communication (1981)

	fb1982-13_0001_fertig
	fb1982-13_0002_fertig
	fb1982-13_0003_fertig
	fb1982-13_0004_fertig
	fb1982-13_0005_fertig
	fb1982-13_0006_fertig
	fb1982-13_0007_fertig
	fb1982-13_0008_fertig
	fb1982-13_0009_fertig
	fb1982-13_0010_fertig
	fb1982-13_0011_fertig
	fb1982-13_0012_fertig
	fb1982-13_0013_fertig
	fb1982-13_0014_fertig

