
A boolean function r eq uirin g 3n network size

by

No rbert Blum

A 82/ 13

June 82

Fachbereich 10

Unive r s itat des Saarlandes

D - 6600 Saa rbrUcken

Abstract : Paul [PJ first proved a 2.Sn- Iower bound for the network

complex ity of an explicit boole an function. We mo dify the defi n ition

of Pa ul's func tion a little and prove a 3n-I ower bound for the net­

work complexity of that function.

- 1 -

1. Introduction

One of the most difficult problems in complexity theory is proving

a nonlinear lower bound for the network complexity of an explicit

boo l ean function . Although it is well known by a counting a rgument,

that relative to the full basis most boolean functions need ex ­

ponentially many operations, only linear lower bounds with small

constant factor are known, for explicit boolean functions. Schnorr

[Sl] first proved a 2n-Iower bound for a n-ary boolean f unction.

Ne xt Pa ul [P] proved a 2.5n-lower bound for another n- ary boolean

f unction. Stockmeye r [St] proved, that the lower bound of Paul holds

for a la r ger class of functions. In [S2] Schnorr gives a proof for

a 3n- Iower bound for the function defined by Paul. But Wegener [W]

pointed out a gap in the proof of a lemma in Schnorr's proof . In [B]

we use a weaker version of th a t lemma and prove a 2 . 75n - lower bound .

Now we modify the definition of Paul's function a little and prove

a 3n - lower bound .

2 . Preliminaries

Let K = (O ,1) and F n = {f f : Kn
-+ KJ . Fz is th e set of hasic

operations . xi Kn - K denotes the i-th variable. Let

V = (x. I 1 ::; i ::; nJ •
n 1

A network 8 1S a directed, acyclic graph with:

(1) Each node has indegree 0 or 2 .

(2) The nodes v with indegree 0 are the input nodes of B and are

labelled with a variable op(v) E Vn .

(3) Eac h node u wi th indegree 2 is called a "gate" and is labelled

with an op(u) E F2. The edges entering u are associated in a

fixed ordered way with the arguments of op(u) E F2.

- 2 -

Wi th each noJe v we associate a [unct ion resS(v) Kn K wit h :

if v is aninput node

ress(w) otherwise
{

op (v)

resS(u) op(v)
where u,w are the predecessors of v in that order.

The network S computes all f unctions f E Fn such that there exists

a node v E S with resS(v) = f. ResS(v) depends on input variable xi

if and only if there exists (a" ... ,ai, ... ,an) such that

C(f) de notes the network complexity of the function f , i . e . C(f) is

the minimal number of gates , which are necessary for computing f.

For f E Fn and a E K let

if a = ,

ifa 0

We s ay: f E F2 is II-type, if:

3 a ,b, c E K

f E f2 is (£) -type , if:

3 a E K : f(x ,y) = (x 0 y)a

No II-type f unction is (£) -type and vice versa. A node v E S such

that res S(v) is II-type (@ -type) is called II-type gate (e -type

gate) .

- 3 -

The functionsf E FZ can be classified in the following way: There

exist:

(i) Z constant functions

(i i) 4 functions depending on one variable

(iii) , 0 functions depending on two variables . 8 of this functions

are II - type and Z are @ - type.

For a node v in S let suc (v) ~ (u I v -+ U IS edge in S) and

pred(v) ~ (ulu -+ v is edge in S} be the set of direct successors

and direct predecessors of v.

The functions , associated with the nodes In pred(v) are ca ll ed in­

put functions of v.

Throughout this paper, we use the following fact:

Fact: Let S be a network computing f E Fn' Let v E S be an II - type

gate or a 0 - type gate . If one input function of v is constant, then

we can eliminate the gate v and the reduced network still computes f .

Let U c V and a : U -+ K be a mappIng. Frequently we consider the
n

restriction fa of f E Fn under the assignment a. More precisely, fa

is defined by :

fa (x" ... ,xn) ~ f(Y"""Yn)

((Xi) if x . E U
with 1 y.

1 if (U xi x·
1

Tn a natural wayan assignment a associates with a network S a sub ­

ne twork Sa ' which is got by fixing input va r iables according to a

and eliminating the unnecessary ga te s .

In the following, we wr ite res (v) for resS(v) if S is kept fixed.

S denotes the cardinality of the set S.

- 4 -

1:,,1' I'fl)Ving rhe lower bound, we consi,kr paths in a network.

(v - ul denotes a path [rom the node v to the node u.

3 . The lower bound

For a = a 1 .. . a r E K* let (a) denote the binary number represented

by a + 1 .

Let a 1 = a 1·· . alog(n) ,a 2 = a log (n)+1. · . a 2log (n) and
a 3 = a 2lo g(n)+1 ... a 3log (n) (a i E K) . Then we define:

f : Kn+31 0g(n) +~ ... K

f(a 1, ·· ., a 3log (n)' p, q, r, x 1 , ... xn)

Rema rk:

If we set p 0, then f is the function defined by Paul .

Fo r h := fp := 0' Paul ha s proved a 2.5n- lower bound. First he makes

h independent of some inputs xi' which allows to eliminate 3 ga te s

each . After this, he knows quite exactly, how the "top" of the net­

work looks. For the remainin g s inputs, he proves without an in­

ductive argument, the existence of 5/25-2 gates.

The orem:

For f defined above holds:

C (f) ~ 3n - 3

- 5 -

First we make f independent of some inputs xi which allows to elim­

inate 3 ga tes each . We use for thi s the entire proof of Paul and

s ke t ch thi s part only . For a more detailed analysis, see [Pl .

Defi ne for 1 5 s 5 n the s tatement Es .
Es : For any function f: Kn+310g(n)+3 ~ - K with the property:

[3 S = [l, .. . , n} #S = s such that for a 1 ,a2,a 3 with

v --,

holds, 3s - 3 5 C(f).

E 1 i s trivially true. Let E s -l be true. Now we prove that E s -l
implies Es· Let S be any minimal size network for f. W. l.o. g .

assume that for each i E S th e re is a unique node v E S with

op(v) = xi .

Case 1: 3 i E S

we

By fixi ng xi a t 0 we can eliminate at least 3 gates of S. The r e ­

duce d network computes the restriction f x . : =0 of f. From the in­

duc t ion hypothesis follows C(f) ? 3s - 3. 1

Case 2: 3 i E S

A- type ga te.

#suc(X i) = 2 and 3 v E suc(x i) such that v i s an

Choose c E K such that re s(v)x. :=c i s constant . Then, by fixing xi
1

at c , we can e liminate all nodes in suc(x i) and all nodes in suc(v).

Since S is of minimal size, there are at least three different s uch

- 6 -

nodes. The reduced network computes the restriction fxi:=c of f.
From the induction hypothesis follows C(f) ~ 3s-3.

Case 3: 3 i E S : V v E suc(x i) : v is a ~ -type gate. Then there

exist nodes u1 •...• ur in S with

(2) u· is a
J

<±> -type gate V j E {1 •...• r}

r-1.

(4) #suc(ur) > 1 or for w E suc(ur) holds: w is an A-type gate.

Let xi' gl be the input functions of u1 and resS(u j). gj+l be the
input functions of uj +1• 1 ~ j < r. Paul (case III in [Pl) proves.
that u1 •.•.• ur can be chosen such that gl ••••• gr do not depend on

xi. Then res(ur) = xi @ g for some function g which does not depend
on x ..

1

Hence res(u) and res(u) are constant. Therefore for r xi:=g r xi:=,g
each of the substitutions xi := g and xi := ,g. we can eliminate ur
and all nodes in suc(ur). We distinguish two cases.

(i) #suc(ur) ~ 2. Then we eliminate at least 3 gates by fixing xi
at g or at ,g.

(ii) #suc(ur) = 1. Then w E suc(ur) is an A-type gate. Choose

g E {g.,g} such that res(w)x .. =-g is constant. Then by fixing
1·

Xi at g. we can eliminate at least 3 gates. namely ur ' wand
all nodes in suc(w).

The induction hypothesis implies now C(f) ~ 3s-3.

If noneof the cases 1-3 apply. then ViE S holds:

- 7 -

(j) = ,. We J e not c t l, C node ill suc(x .) hy G. ,
l. 1

(ii) Gi is an A-type gate.

Let be G = {G. liE S}.
l.

Paul proves the following lemma.

Lemma ,:

v i, j E S with i * j G. * G.
l. J

Proof: Suppose 3 i,j E S, i * j with Gi = Gj . Then there exists

c E K such that res(Gj)x. :=c is constant. Hence f x . := c does not
l. l.

depend

(a Z) =

on x ·. But
J

f(a , , aZ , a 3 ,O,O, r, x" ... ,xJ = C 0 Xj f or (a ,) = i,
j and xi = c depends on xj , a contradiction.

Cas e 4: 3 i E S : #suc(G i) ~ Z.

Consider c E K with res(Gi)x . :=c is constant. Then fixing xi at c
1

e liminates Gi and all nodes in suc(Gi). There are at least three

different such gates. Hence from the induction hypothesis follows:

C(f) ~ 3s-3.

It r emains to consider:

Cas e 5: viE S : #suc(G i) = 1

We denote the unique direct successor of G. by Q . •
l. 1

Be f ore analyzing case 5, we give some definitions:

A path in S is called free, if no inner node is in G.

A node w in S is called a split, if the outdegree of w is ~ Z.

- 8 -

A split w in 8 is called free split, if 3 ul'uZ E 8, u l * Uz
such that:
a) u l ' Uz E suc(w).

b) 3 free paths (u l • t) and (u Z • t) in 8.

A node W is called collector of the free paths (G. - t) and
l.

(G. _ t), i * j, if w lies on both paths and the paths enter w by
J

different edges.

The next four lemmas are due to Paul, except the observation C is a
® -type gate in lemma 3, which is due to Schnorr.

Lemma Z:

viE S : 3 free path (G i _ t).

Proof: Suppose that no free path (Gi ~ t) exists. Then each path

(G i ~ t) passes some Gj with j * i. Construct the assignment a by

fixing all variables except xi' such that:

(i) res(Gv)a is constant V v E S,{i}

(ii) fa = xi'

Since each path
does not depend

res(t)a = fa'

Lemma 3:

(G .• t) goes through some G with
l. v

on x .. But this is a contradiction
l.

v * i, res(t)a
to fa = xi and

Let i, j E S, i * J. Let C be a collector of a free path (G i ~ t)
and a free path (G. _ t). Then at least one of the following con­

J
ditions is met:

(1) 3 free split * C on path

3 free split * C on path

o

- 9 -
(2) (i) C is a (£) -type gate.

(i i) 3 Cree path (G. ~ G.) or
1 J

3 free path (G.
J

.. G.)
1

Proof: Suppose, that (1) and (2) are not met. We distinguish two
cases.

a) C is an (£) -type gate.

Construct assignment a by fixing all variables except xi' Xj such
that

(i) res(Gv)a is constant V v E S'{i,j}

(ii) fa = xi" xj .

By assumption, all paths (G ... t) and (G ... t) goes through C or a
1 J

Gv , v E S'{i,j}. Since res(C) = (x. @ x.)a, a E K or res(C) depends
a 1 J a

on at most one variable, for res(t)a the same holds.

Hence fa * res(t)a a contradiction.

b) C is an A-type gate.
Construct assignment a by fixing all variables except xi'
that

(i)

(ii)
res(Gv)a is constant V v E S'{i,j}
f = x. 0 x·.

a 1 J

x. such
J

If res(GJ')a depends on x., choose c E K such that res(G
J
.) ._ is

1 a,xi.-c
constant. Hence reset) ._ does not depend on x., but

a,xi·-c J

fa,x. :=c=c <±l Xj depends on xj ' a contradiction. The case res(Gi)a
1

depends on x· is symmetric.
J

Now by assumption,

a Gv ' v E S'{i,j}.
depends on at most

all paths (G ... t) and (G ... t) goes through C or
1 a bJc

Since res(C)a = (xi A Xj) , a,b,c E K or res(C)a
one variable, for res(t)a the same holds.

Hence fa * res(t)a' a contradiction. a

- 10 -

forom lemma 3 it follows immediately

Lemma 4 :

v i, j E S, i • j holds: Q . • Q.
1 J

Now we have isolate 2s gates, namely

Le t Q • [Qi liE S}.

Lemma 5:

the gates G., Q. for i E S.
1 1

Th e re are S-1 mutually distinct splits in e.

Proof: From lemma 3 follows: There are s-1 input nodes x., i E S

with: any pa th

that these are

(Q . • t)
1

mutually

splits. And

dis tinct.

The rest of the proof is new.

1

again from lemma 3 we derive,

o

Since we have at least s-1 splits, we have to connect at least 2(s-1)

edges with the output node t. For edges, which correspond to a free

pa th , no node in G can help to connect these with the output node t

on the free paths by the definition of a free path .

Next we prove, that all but one of the s-1 splits have to be free.

Assume, not all the s-1 splits are free. Then by lemma 3 there exist

i,j, i • j with the following properties:

(i) 3 collector C of the free paths (G i * t) and (G j - t) with:

$ free split • C on the path (G i - C) and $ free split • C on the

path (G ... C)
J

(ii) 3 free path (G i • G
j

) or 3 free path (G
j

.. Gi) and C is a

<3 -type gate.

- 11 -

W.I.o.g. let 3 free path (G i ~ Gj). Then we have the following
situation:

, . . .
C"¥

Lemma 6:

v v E S'(j} 3 free path (G • G.) or 3 free path (G ~ G.).
v 1 V J

Proof: For i we know by assumption that

Assume 3 ~ E S'(i,j} with

Consider the node G~

3 free path (G. ~ G.).
1 J

a This node has input function x ~ with a E K.

Now we construct

such
assignment a by fixing all variables except
tha t :

a) res(Gv)a is constant v v E S'(i,j,~}
r b) f = (x . A x.) v (x. A x ,).

a 1 J J '"

We distingllish two cases:

Case 1: r es(G.) does not depend on x .. Now fix x , at .a. Then
J a 1 '"

res(G ~) ._ is constant and f _ a = x· A x ..
a ,x ~ .-.a a,x~.-. 1 J

- 12 -

Now, as in the proof of lemma 3, we prove, that case 1 cannot
happen.

Case 2: res(Gj)a depends on xi. Hence there is b E K such that

res(Gj)a,r:=b also depends on xi.

cdR, Hence re s (G .) . -b = (x. 1\ x .) , Ja,r . - 1 J
c,d,R, E K. Fix xi at ...,c. Then

res(G.) '-b . _ is constant
J a,r·- ,xi·-...,c and hence res (t) r' -b ._ ex. , • - ,xi. - Ie

does not depend on x j . But

f a,r:=b,xi:=...,c
b = (...,c 1\ x.) v (x. 1\ xo)

J J '"

depends on x j ' a contradiction.

Lemma 7:

'I R"v E S'-{j} , v * R, holds: If D is a collector

(G R, .. t) and a free path (G .. t) , then:
v

3 free split * D on path (GR, .. D) or

3 free split * D on path (Gv
.. D).

of a free path

Proof: Assume: ~ free split on path (GR, .. D) and. free split on
path (G v " D). Then, by lemma 6, there exists a path (G j .. GR,) or
there exists a path (G ... G). But by construction, there exists

J v

o

paths (Go" G.) and (G .. G.) and hence, we have a cycle in the net-
'" J v J

work. But this cannot happen by the definition of a network. 0

From lemma 7, we can derive directly:

Lemma 8:

There are at least s-2 mutually distinct free splits in S.

- 13 -

By lemma 8 and lemma ~ we have to connect at least 2(s-2)+2
edges on free paths to the output node t. Since the nodes in G
cannot help and for the nodes in Q only one input wire is fr ee
f or connecting these edges, we need at least 2(s-2)+2-1-s nodes
not in G U Q on this paths.

Hence

C(f) ~ #G + #Q + s-3
= 3s-3

This finishes the proof of the theorem.

Acknowledgement:

I thank Kurt Mehlhorn for valuable comments.

References:

[B) Blum, N.: A 2.75n-loweT bound on the network complexity of
boolean functions, Tech. Report Universitat des Saarlandes,
A 81/05 (1981)

[p) Paul, W.J.: A 2.5n-lower bound on the combinational complexity
of boolean functions, SIAM J. Comput. 6, 427-443 (1977)

[Sl) Schnorr, C.P.: Zwei lineare untere Schranken filr die Komple xi­
tat Boolescher Funktionen, Computing 13, 155-171 (1974)

[S2) Schnorr, C.P.: A 3n-lower bound on the network complexity of
boolean functions, TCS 10, 83-92 (1980)

[St) Stockmeyer, L.J.: On the combinational complexity of certain
symmetric Boolean functions, Math. Systems Theory 10, 323-336
(1977)

[W) Wegener, 1.: Private communication (1981)

	fb1982-13_0001_fertig
	fb1982-13_0002_fertig
	fb1982-13_0003_fertig
	fb1982-13_0004_fertig
	fb1982-13_0005_fertig
	fb1982-13_0006_fertig
	fb1982-13_0007_fertig
	fb1982-13_0008_fertig
	fb1982-13_0009_fertig
	fb1982-13_0010_fertig
	fb1982-13_0011_fertig
	fb1982-13_0012_fertig
	fb1982-13_0013_fertig
	fb1982-13_0014_fertig

