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Abstract : Paul [ PJ first proved a 2.Sn- Iower bound for the network 

complex ity of an explicit boole an function. We mo dify the defi n ition 

of Pa ul's func tion a little and prove a 3n-I ower bound for the net­

work complexity of that function. 
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1. Introduction 

One of the most difficult problems in complexity theory is proving 

a nonlinear lower bound for the network complexity of an explicit 

boo l ean function . Although it is well known by a counting a rgument, 

that relative to the full basis most boolean functions need ex ­

ponentially many operations, only linear lower bounds with small 

constant factor are known, for explicit boolean functions. Schnorr 

[Sl] first proved a 2n-Iower bound for a n-ary boolean f unction. 

Ne xt Pa ul [ P] proved a 2.5n-lower bound for another n- ary boolean 

f unction. Stockmeye r [St] proved, that the lower bound of Paul holds 

for a la r ger class of functions. In [S2] Schnorr gives a proof for 

a 3n- Iower bound for the function defined by Paul. But Wegener [W] 

pointed out a gap in the proof of a lemma in Schnorr's proof . In [ B] 

we use a weaker version of th a t lemma and prove a 2 . 75n - lower bound . 

Now we modify the definition of Paul's function a little and prove 

a 3n - lower bound . 

2 . Preliminaries 

Let K = (O ,1) and F n = {f f : Kn 
-+ KJ . Fz is th e set of hasic 

operations . xi Kn - K denotes the i-th variable. Let 

V = (x. I 1 ::; i ::; nJ • 
n 1 

A network 8 1S a directed, acyclic graph with: 

( 1) Each node has indegree 0 or 2 . 

(2) The nodes v with indegree 0 are the input nodes of B and are 

labelled with a variable op(v) E Vn . 

(3) Eac h node u wi th indegree 2 is called a "gate" and is labelled 

with an op(u) E F2. The edges entering u are associated in a 

fixed ordered way with the arguments of op(u) E F2. 
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Wi th each noJe v we associate a [unct ion resS(v) Kn .... K wit h : 

if v is aninput node 

ress(w) otherwise 
{ 

op (v) 

resS(u) op(v) 
where u,w are the predecessors of v in that order. 

The network S computes all f unctions f E Fn such that there exists 

a node v E S with resS(v) = f. ResS(v) depends on input variable xi 

if and only if there exists (a" ... ,ai, ... ,an ) such that 

C(f) de notes the network complexity of the function f , i . e . C( f) is 

the minimal number of gates , which are necessary for computing f. 

For f E Fn and a E K let 

if a = , 

ifa 0 

We s ay: f E F2 is II-type, if: 

3 a ,b, c E K 

f E f2 is (£) -type , if: 

3 a E K : f(x ,y) = (x 0 y)a 

No II-type f unction is (£) -type and vice versa. A node v E S such 

that res S( v) is II-type (@ -type) is called II-type gate (e -type 

gate) . 
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The functionsf E FZ can be classified in the following way: There 

exist: 

(i) Z constant functions 

(i i) 4 functions depending on one variable 

(iii) , 0 functions depending on two variables . 8 of this functions 

are II - type and Z are @ - type. 

For a node v in S let suc (v) ~ (u I v -+ U IS edge in S) and 

pred(v) ~ (ulu -+ v is edge in S} be the set of direct successors 

and direct predecessors of v. 

The functions , associated with the nodes In pred(v) are ca ll ed in­

put functions of v. 

Throughout this paper, we use the following fact: 

Fact: Let S be a network computing f E Fn' Let v E S be an II - type 

gate or a 0 - type gate . If one input function of v is constant, then 

we can eliminate the gate v and the reduced network still computes f . 

Let U c V and a : U -+ K be a mappIng. Frequently we consider the 
n 

restriction fa of f E Fn under the assignment a. More precisely, fa 

is defined by : 

fa ( x" ... ,xn ) ~ f(Y"""Yn) 

((Xi) if x . E U 
with 1 y. 

1 if ( U xi x· 
1 

Tn a natural wayan assignment a associates with a network S a sub ­

ne twork Sa ' which is got by fixing input va r iables according to a 

and eliminating the unnecessary ga te s . 

In the following, we wr ite res (v) for resS(v) if S is kept fixed. 

# S denotes the cardinality of the set S. 
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1:,,1' I'fl)Ving rhe lower bound, we consi,kr paths in a network. 

(v - ul denotes a path [rom the node v to the node u. 

3 . The lower bound 

For a = a 1 .. . a r E K* let (a) denote the binary number represented 

by a + 1 . 

Let a 1 = a 1·· . alog(n) ,a 2 = a log (n)+1. · . a 2log (n) and 
a 3 = a 2lo g(n)+1 ... a 3log (n) (a i E K) . Then we define: 

f : Kn+31 0g( n) +~ ... K 

f(a 1, ·· ., a 3log (n)' p, q, r, x 1 , ... xn) 

Rema rk: 

If we set p 0, then f is the function defined by Paul . 

Fo r h := fp := 0' Paul ha s proved a 2.5n- lower bound. First he makes 

h independent of some inputs xi' which allows to eliminate 3 ga te s 

each . After this, he knows quite exactly, how the "top" of the net­

work looks. For the remainin g s inputs, he proves without an in­

ductive argument, the existence of 5/25-2 gates. 

The orem: 

For f defined above holds: 

C (f) ~ 3n - 3 
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First we make f independent of some inputs xi which allows to elim­

inate 3 ga tes each . We use for thi s the entire proof of Paul and 

s ke t ch thi s part only . For a more detailed analysis, see [Pl . 

Defi ne for 1 5 s 5 n the s tatement Es . 
Es : For any function f: Kn+310g(n)+3 ~ - K with the property: 

[ 3 S = [l, .. . , n} #S = s such that for a 1 ,a2,a 3 with 

v --, 

holds, 3s - 3 5 C(f). 

E 1 i s trivially true. Let E s -l be true. Now we prove that E s -l 
implies Es· Let S be any minimal size network for f. W. l.o. g . 

assume that for each i E S th e re is a unique node v E S with 

op(v) = xi . 

Case 1: 3 i E S 

we 

By fixi ng xi a t 0 we can eliminate at least 3 gates of S. The r e ­

duce d network computes the restriction f x . : =0 of f. From the in­

duc t ion hypothesis follows C(f) ? 3s - 3. 1 

Case 2: 3 i E S 

A- type ga te. 

#suc(X i ) = 2 and 3 v E suc(x i ) such that v i s an 

Choose c E K such that re s(v)x. :=c i s constant . Then, by fixing xi 
1 

at c , we can e liminate all nodes in suc(x i ) and all nodes in suc(v). 

Since S is of minimal size, there are at least three different s uch 
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nodes. The reduced network computes the restriction fxi:=c of f. 
From the induction hypothesis follows C(f) ~ 3s-3. 

Case 3: 3 i E S : V v E suc(x i ) : v is a ~ -type gate. Then there 

exist nodes u1 •...• ur in S with 

(2) u· is a 
J 

<±> -type gate V j E {1 •...• r} 

r-1. 

(4) #suc(ur ) > 1 or for w E suc(ur ) holds: w is an A-type gate. 

Let xi' gl be the input functions of u1 and resS(u j ). gj+l be the 
input functions of uj +1• 1 ~ j < r. Paul (case III in [Pl) proves. 
that u1 •.•.• ur can be chosen such that gl ••••• gr do not depend on 

xi. Then res(ur ) = xi @ g for some function g which does not depend 
on x .. 

1 

Hence res(u ) and res(u ) are constant. Therefore for r xi:=g r xi:=,g 
each of the substitutions xi := g and xi := ,g. we can eliminate ur 
and all nodes in suc(ur ). We distinguish two cases. 

(i) #suc(ur ) ~ 2. Then we eliminate at least 3 gates by fixing xi 
at g or at ,g. 

(ii) #suc(ur ) = 1. Then w E suc(ur ) is an A-type gate. Choose 

g E {g.,g} such that res(w)x .. =-g is constant. Then by fixing 
1· 

Xi at g. we can eliminate at least 3 gates. namely ur ' wand 
all nodes in suc(w). 

The induction hypothesis implies now C(f) ~ 3s-3. 

If noneof the cases 1-3 apply. then ViE S holds: 
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( j ) = ,. We J e not c t l, C node ill suc( x . ) hy G. , 
l. 1 

(ii) Gi is an A-type gate. 

Let be G = {G. liE S}. 
l. 

Paul proves the following lemma. 

Lemma ,: 

v i, j E S with i * j G. * G. 
l. J 

Proof: Suppose 3 i,j E S, i * j with Gi = Gj . Then there exists 

c E K such that res(Gj)x. :=c is constant. Hence f x . := c does not 
l. l. 

depend 

(a Z) = 

on x ·. But 
J 

f( a , , aZ , a 3 ,O,O, r, x" ... ,xJ = C 0 Xj f or (a ,) = i, 
j and xi = c depends on xj , a contradiction. 

Cas e 4: 3 i E S : #suc(G i ) ~ Z. 

Consider c E K with res(Gi)x . :=c is constant. Then fixing xi at c 
1 

e liminates Gi and all nodes in suc(Gi ). There are at least three 

different such gates. Hence from the induction hypothesis follows: 

C(f) ~ 3s-3. 

It r emains to consider: 

Cas e 5: viE S : #suc(G i ) = 1 

We denote the unique direct successor of G. by Q . • 
l. 1 

Be f ore analyzing case 5, we give some definitions: 

A path in S is called free, if no inner node is in G. 

A node w in S is called a split, if the outdegree of w is ~ Z. 
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A split w in 8 is called free split, if 3 ul'uZ E 8, u l * Uz 
such that: 
a) u l ' Uz E suc(w). 

b) 3 free paths (u l • t) and (u Z • t) in 8. 

A node W is called collector of the free paths (G. - t) and 
l. 

(G. _ t), i * j, if w lies on both paths and the paths enter w by 
J 

different edges. 

The next four lemmas are due to Paul, except the observation C is a 
® -type gate in lemma 3, which is due to Schnorr. 

Lemma Z: 

viE S : 3 free path (G i _ t). 

Proof: Suppose that no free path (Gi ~ t) exists. Then each path 

(G i ~ t) passes some Gj with j * i. Construct the assignment a by 

fixing all variables except xi' such that: 

(i) res(Gv)a is constant V v E S,{i} 

(ii) fa = xi' 

Since each path 
does not depend 

res(t)a = fa' 

Lemma 3: 

(G .• t) goes through some G with 
l. v 

on x .. But this is a contradiction 
l. 

v * i, res(t)a 
to fa = xi and 

Let i, j E S, i * J. Let C be a collector of a free path (G i ~ t) 
and a free path (G. _ t). Then at least one of the following con­

J 
ditions is met: 

(1) 3 free split * C on path 

3 free split * C on path 

o 
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(2) (i) C is a (£) -type gate. 

(i i) 3 Cree path (G. ~ G. ) or 
1 J 

3 free path (G. 
J 

.. G. ) 
1 

Proof: Suppose, that (1) and (2) are not met. We distinguish two 
cases. 

a) C is an (£) -type gate. 

Construct assignment a by fixing all variables except xi' Xj such 
that 

(i) res(Gv)a is constant V v E S'{i,j} 

(ii) fa = xi" xj . 

By assumption, all paths (G ... t) and (G ... t) goes through C or a 
1 J 

Gv , v E S'{i,j}. Since res(C) = (x. @ x.)a, a E K or res(C) depends 
a 1 J a 

on at most one variable, for res(t)a the same holds. 

Hence fa * res(t)a a contradiction. 

b) C is an A-type gate. 
Construct assignment a by fixing all variables except xi' 
that 

(i) 

(ii) 
res(Gv)a is constant V v E S'{i,j} 
f = x. 0 x·. 

a 1 J 

x. such 
J 

If res(GJ')a depends on x., choose c E K such that res(G
J
.) ._ is 

1 a,xi.-c 
constant. Hence reset) ._ does not depend on x., but 

a,xi·-c J 

fa,x. :=c=c <±l Xj depends on xj ' a contradiction. The case res(Gi)a 
1 

depends on x· is symmetric. 
J 

Now by assumption, 

a Gv ' v E S'{i,j}. 
depends on at most 

all paths (G ... t) and (G ... t) goes through C or 
1 a bJc 

Since res(C)a = (xi A Xj ) , a,b,c E K or res(C)a 
one variable, for res(t)a the same holds. 

Hence fa * res(t)a' a contradiction. a 
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forom lemma 3 it follows immediately 

Lemma 4 : 

v i, j E S, i • j holds: Q . • Q. 
1 J 

Now we have isolate 2s gates, namely 

Le t Q • [Qi liE S}. 

Lemma 5: 

the gates G., Q. for i E S. 
1 1 

Th e re are S-1 mutually distinct splits in e. 

Proof: From lemma 3 follows: There are s-1 input nodes x., i E S 

with: any pa th 

that these are 

(Q . • t) 
1 

mutually 

splits. And 

dis tinct. 

The rest of the proof is new. 

1 

again from lemma 3 we derive, 

o 

Since we have at least s-1 splits, we have to connect at least 2(s-1) 

edges with the output node t. For edges, which correspond to a free 

pa th , no node in G can help to connect these with the output node t 

on the free paths by the definition of a free path . 

Next we prove, that all but one of the s-1 splits have to be free. 

Assume, not all the s-1 splits are free. Then by lemma 3 there exist 

i,j, i • j with the following properties: 

(i) 3 collector C of the free paths (G i * t) and (G j - t) with: 

$ free split • C on the path (G i - C) and $ free split • C on the 

path (G ... C) 
J 

(ii) 3 free path (G i • G
j

) or 3 free path (G
j 

.. Gi ) and C is a 

<3 -type gate. 
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W.I.o.g. let 3 free path (G i ~ Gj ). Then we have the following 
situation: 

, . . . 
C"¥ 

Lemma 6: 

v v E S'(j} 3 free path (G • G.) or 3 free path (G ~ G.). 
v 1 V J 

Proof: For i we know by assumption that 

Assume 3 ~ E S'(i,j} with 

Consider the node G~ 

3 free path (G. ~ G.). 
1 J 

a This node has input function x ~ with a E K. 

Now we construct 

such 
assignment a by fixing all variables except 
tha t : 

a) res(Gv)a is constant v v E S'(i,j,~} 
r b) f = (x . A x.) v (x. A x , ). 

a 1 J J '" 

We distingllish two cases: 

Case 1: r es(G.) does not depend on x .. Now fix x , at .a. Then 
J a 1 '" 

res(G ~ ) ._ is constant and f _ a = x· A x .. 
a ,x ~ .-.a a,x~.-. 1 J 
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Now, as in the proof of lemma 3, we prove, that case 1 cannot 
happen. 

Case 2: res(Gj)a depends on xi. Hence there is b E K such that 

res(Gj)a,r:=b also depends on xi. 

cdR, Hence re s (G . ) . -b = (x. 1\ x . ) , Ja,r . - 1 J 
c,d,R, E K. Fix xi at ...,c. Then 

res(G.) '-b . _ is constant 
J a,r·- ,xi·-...,c and hence res (t) r' -b ._ ex. , • - ,xi. - Ie 

does not depend on x j . But 

f a,r:=b,xi:=...,c 
b = (...,c 1\ x.) v (x. 1\ xo) 

J J '" 

depends on x j ' a contradiction. 

Lemma 7: 

'I R"v E S'-{j} , v * R, holds: If D is a collector 

(G R, .. t) and a free path (G .. t) , then: 
v 

3 free split * D on path (GR, .. D) or 

3 free split * D on path (Gv 
.. D). 

of a free path 

Proof: Assume: ~ free split on path (GR, .. D) and. free split on 
path (G v " D). Then, by lemma 6, there exists a path (G j .. GR,) or 
there exists a path (G ... G ). But by construction, there exists 

J v 

o 

paths (Go" G. ) and (G .. G.) and hence, we have a cycle in the net-
'" J v J 

work. But this cannot happen by the definition of a network. 0 

From lemma 7, we can derive directly: 

Lemma 8: 

There are at least s-2 mutually distinct free splits in S. 
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By lemma 8 and lemma ~ we have to connect at least 2(s-2)+2 
edges on free paths to the output node t. Since the nodes in G 
cannot help and for the nodes in Q only one input wire is fr ee 
f or connecting these edges, we need at least 2(s-2)+2-1-s nodes 
not in G U Q on this paths. 

Hence 

C(f) ~ #G + #Q + s-3 
= 3s-3 

This finishes the proof of the theorem. 
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