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1. Introduc tion 

A planar routing problem is given by 

a) a planar undirected graph G = (V,E) with a fixed embedding 

into the plane 

b) a se t Ne of two - terminal nets where a net N E Ne is an 

unordered pair of vertices on the boundary of the infinite face. 

A solution to a planar routing problem (V,E,Ne) i s given by a 

set o f ~irwise edge-disjoint path s PN, N ENe, such that PN 

connects the two terminals of net N. 

For sets X, Y '=- V we define 

cap (X , Y) I {(x,y) E E; x E X, Y E Y} I 

c ap (X) cap(X,V- X) 

d (X, Y) I{(x,t) E Ne; sEX, t E YJ I 
d (X) d (X, V- X) 

fcap(X) cap ( X) - d(X) 

We call fcap(X) the free capac ity of c ut X. If x i s a vertex 

we write fcap(x), cap (x), d(x) instead of fcap( {x}), cap( {x)) 

and d({x}). Note that cap(x) is the degree of vertex x. The 

follow in g theorem was shown by OKamura/Segmour. 

Theorem (OKamura/Segmour): Let (V,E,Ne) be a planar routing 

problem. [ f fcap(X) is non- negative and even for every X C V 

then th e routing problem has a solution . C 

In th is paper we will present algorithms for solving routing 

problems in planar graph s . We use the following notation . 
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Definition: Let P = (V,E,Ne) be a planar routing problem, 

n = IV I . Let b be the number of vertices on the boundary of the 

infinite face. The problem P is solvable if it has a solution. 
It is even if fcap(x) is even for all x E V. It is half-even if 

fcap(x) = cap (x) is even for all nodes x which do not lie on 

the boundary of the infinite face. [] 

We prove in this paper the following 

Theorem: Let P = (V,E,Ne) be a half-even routing problem. 

a) It can be tested in time O(bn) whether P is solvable. 

b) A solution can be constructed in time O(nZ). 

c) If (V,E) is a grid graph, i.e. a subgraph of the planar in

teger grid, then a solution can be found in time O(bn). If P 

is even then time O(n3/ Z) suffices. 

A proof of parts a), b) and c) for even problems can be found 

in section 2. The extension to half-even problems is made in 

section 3. In section 4, a weak generalization of the theorems 
above to multi-terminal nets is made. If Zd(X) < cap(X) for all 

cuts X then a solution exists and can be found in time O(nZ). 

We close the introduction with a comparison to other work. 

Hassim and Matsumoto/Nishizeki/Saito consider the problem of 

multi-commodity flows in planar networks, i.e. edges have real 

capacities and nets have real demands. The goal is to con

struct f low functions which realize the demands and obey the 

capacity constraints. Our problem differs from the multi

commodity flow problem in two respects 
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a ) it i s simpler s i nce all capacities and demands are equal 

to one in o ur c ase. 

b) it is harder since we insist that a solution consists of 

edge-d is joint paths . Figure 1 shows a problem which has a solu

tio n as a f low problem (al l edges carry f l ow 1/2 f or both 

commodities) but not as a routing problem. 

Hassi m and Matsumoto/Nishizeki/Saito describe algorithms which 

solve multi-commodity flow problems in planar graphs in time 

0(n4 ) and time O(kn + n 2/log n) respectively where k = INel. 

If all capacities and demands are integral and the problem is 

even then the f low functions constructed by the ir algorithms 

are in t egral. I n particular, even routing problems can be solved 

in time 0(n 2/10g n) by their algorithms; note that k s lEI = O(n) 

i n p l anar routing problems. Matsumoto/Nishizeki/Saito also show 

how to t es t solvability in time 0(min(n 2 log*n, bn(log n) 1/2)). 

Our improvement to their results for even problems is trivial; 

we on ly show how to drop the various factors involving log n. 

However, our algorithm for e ven problems differs considerably 

from their s . It has the advantage that it can be made to run in 

time 0 (n 3/ 2) on grid graphs while their algorithm will always 

run in time 0(n 2) . The other major contribution of the present 

paper i s the extension of the theory to half-even problems. 

Gr i d graphs are part ic ularly relevant for VLSI routing problems. 

Spec i a l c as es of grid graph routing problems were considered 

previous l y by Rivest / Baratz/Miller, Preparata/Lipski, Frank, 

Mehlho rn /Preparata, Kaufmann/Mehlhorn. They show how to solve 

problems f or channels, rectangles and grid graphs without holes 

respec tively. 
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II. Even Routing Problems 

Throughout this section P = (V,E,Ne) is an even routing prob

lem. We will show how to construct a solution (if there is 
one) in time O(n 2). For grid graphs time O(n 3/ 2) suffices. 

Our algorithm is an almost direct implementation of Okamura/ 

Seymour's constructive proof of their theorem and hence 

correctness can be shown using their methods. 

Theorem 1: Let P = (V,E,Ne) be an even routing problem. Then 

it can be tested in time O(bn) whether P has a solution. If 

P has a solution then a solution can be constructed in time 

O(n 2). 

Proof: We will first show how to construct a solution in time 

O(n2). The test for solvability will be a corollary. 

We need one additional definition. A cut X is simple if there 
are at most two edges e 1 , e 2 on the boundary of the infinite 

face having exactly one endpoint in X. We are now ready for 

the algorithm. 

(1) while E + iii 
(2) do let e = (a,b) be an edge on the boundary of the in

fini te face; 

(3) let eo ,e 1, ... ,em_ 1 be the edges on the boundary of 

the infinite face in clockwise order with e = eo; 
(4) if there is a simple cut X with a ~ X, b E X with 

fcap(X) < 0 
then halt and declare the problem unsolvable 

fi; 
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(5) if there is a simple cut X with a t X, b E X and 

fcap(X) = 0 

(6) then let X be such a simple cut which contains as few 

od 

vertices of the boundary as possible; 

let N = (s,t) be a net with s t X, t E X and s 

as close to a as possible, i.e. there is no net 

(s' ,t') with s' t X, t' E X and s' lying on that 

piece of the boundary between s (exclusive) and 

a (inclusive) not containing b (cf. Figure 3); 

delete edge e, reserve edge e for net N and re

place net N by nets N1 = (s,a) and N
Z 

= (b,t). 
else delete edge e and add an additional net N = (a,b). 

fi 

The correctness of this algorithm is almost immediate from the 

work of Okamura/Seymour. We give a short correctness proof to 

make the paper self-contained. 

Let as assume that P IS solvable. Then clearly fcap(X) E Z ~o 
for every simple cut X initially. It suffices to show that 

fcap(X) E 2 INo for every simple cut X is an invariant of the 
algorithm because then line (4) is never executed and the 

algorithm will construct a solution. 

Consider an execution of the while-loop which removes edge e 

from the current graph Gc . Note first fcap(Y) is even for all 

cuts Y iff fcap(v) is even for every vertex v. This can be 

seen as follows. Let Y c V be arbitrary. Then 

fcap(Y) cap(Y) - dey) 

= L cap(v) - 2cap(Y,Y) -
vEY 

L d(v) + 2d(Y,Y) 
vEY 
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and hence fcap(Y) is even if fcap(v) is even for all v E V. 

It is now easy to see that all problems constructed by the 

algorithm are even. 

Let Y be a simple cut in Gc e. Then Y is also a simple cut 

in Gc and fcap(Y) ~ fcap(Y) - 2 where fcap is the free 

capaci ty in the modified problem. If fcap (Y) " 2 or fcap (Y) 

= fcap (Y) then clearly fcap (Y) E 2 INo ' Recall that we have 
already shown that the modified problem is even. The only 

case to consider is therefore that fcap(Y) = 0 and fcap(Y) 
= fcap(Y) - 2. We may assume w.l.o.g. that tty; consider 

V - Y otherwise. If fcap(Y) = fcap(Y) - 2 then either (case A) 

I Y n (a, b) I = 1 and sty or (case B) a, bEY and s 'I- Y. We 

can restrict case A further. If a t Y, bEY then Y contains 

fewer boundary nodes than X, a contradiction to the choice of 

X. We may therefore assume a E Y, b t Y in case A. The follow

ing lemma was shown in Okamura/Seymour. 

Lemma 1: For all cuts X and Y 

d(X ) + dey) = d(X U Y) + d(X n Y) + 2d(X - Y, Y - X) 

cap (X) + cap(Y) = cap(X U Y) + cap(X n Y) + 2cap(X - Y,Y -X). 
o 

We will apply l,emma 1 in both cases. The following observation 

is also used in both cases. The boundary nodes in Y - X lie 

between s (exclusive) and a (inclusive) and hence d(X - Y,Y - X) 
o by choice of net N = (s,t). We consider cuts XU Yand 

X n Y. We have 

d(X U Y) + d(X n Y) d(X) + dey) 

cap (X) + cap(Y) 

by lemma 1 and the 

observation above 

since X and Yare 

saturated 
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cap(X U Y) + cap(X n Y) + 2cap (X - Y,Y - X) 

, by lemma 1 

Cas e A: In case A we have a E Y - X, b E X - Y and hence 

cap (X - Y, Y - X) > 0 and thus d(X U Y) + d(X n Y) > cap(X U Y) 

+ cap(X n Y. Thus one of the simple cuts X U Y or X n Y is 

oversaturated, a contradiction. 

Case B: In case B we conclude d(X U Y) + d(X n Y) " cap(X U Y) 

+ cap (X n Y) . Thus fcap(X U Y) = 0 = fcap(X U Y). Next note 

that b E X n Y and that simple cut X n Y contains f ewer 

boundary nodes than X. This contradicts the choice of X. 

Thi s completes the correctness proo f . Note that the correct

ne ss proof al s o s how s that P is solvable if f fcap( X) " 0 for 

every s imple cut in the initial problem. This obs ervation will 

lead to the efficient te s t for solvability. 

We turn to the implementation ne xt. The main task i s to deter

mine the exi s tence o f a saturated cut through edge e = (a,b). 

As in Ha.sim and Matsumoto/Nishizeki/Saito we solve this task 

by means o f the multiple s ource dual graph (cf. Fi gur e 4) . In 

the dua l graph there i s a dual edge for every edge of the 

original graph. The dual edge connects vertices which are lo

cated in the f aces se parated by the edge. In every face 

(exept the in f inite face) we position one dual vertex but in 

the in f i nite face we have a dual vertex for every edge on the 

bounda ry of the infinite face. 

Let e , ... ,e 1 be the edges on the boundary of the infinite o m-
fa c e in clockwi se order and let e = eo. Let 
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cap(e,e i ) min(cap(X); X i s a simple cut which cuts 

boundary edges e and e i } 

d (e,e i ) (d(X) ; X is a simple cut which cuts 
houndary edge s e and e.} , and 

1 

fcap(e ,e .) = cap(e,e i ) 
1 

Let vi be the dual vertex in the infinite face corresponding 
to edge e . . Then cap(e,e.) is equal to the length o f a 

1 1 
shortest path from Vo to e i in the dual graph and hence 

cap(e,e i ), 1 :5 i :5 m - 1, can be computed in time O(n) by 

breadth f ir s t search . It is also easy to see that d(e,e i ), 
1 :5 i :5 m - 1, can be computed in time O(n) by a s imple walk 

around the bo undary of the infinite face . We summari ze in 

Lemma 2 : fc ap (e , e i ) , 1 :5 i :5 m' - 1, can be computed In time 

o (n) . 

The remainder of the loop body can c learly also be done in 

time O(n) . Thus a single execution of the loop body takes 

time O(n) and hence total running t i me i s 0(n 2) . 

For t he test o f s olvability we only have to compute 

fcap(e.,e . ) f o r all i and j. For every fixed i thi s take time 
1 J 

O(n). Thus total running time is O(bn) whe r e b is the number 

o f edges on the boundary of the infinite face in the initial 

c 

graph . c 

We will next show how to improve upon theorem 1 for planar 

graphs wi t h s mall C- conne c ted edge s eparators. 

De fini tion: a) Let G = (V ,E) be a planar graph. A set E' c E 
of edge s is a C- connected edge separater if 
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') removal of E' splits G into subgraphs (V"E,) and 

(V Z,E 2) with IV, I $ 2/3 IVI and IV 2 1 $ 2/3 IVI 

2) E' can be ordered, say E' = {e 1, ••• ,ek} such that edge 

e i is on the boundary of the infinite face of graph 

G - (e" ..• ,e i _,}. 

b) A family F of planar graphs has C-connected edge separa

tors of size feu) if every G = (V,E) E F has a C-connected 

edge separator E' of size IE'I $ f(IVI) and if the subgraphs 

(V"E,) and (VZ,E Z) obtained by removing E' again belong to F. 

C-connected edge separators are a very restrictive notion of 

separator which is particularly suitable for our application. 

However, not all planar graphs have small C-connected edge 

separators as Figure 5 shows. The graph shown in Figure 5 
consists of n nested triangles. All C-connected edge separa

tors have size ~(n). Fortunately, there is a family of graphs 

having small C-connected separators, namely grid graphs. 

" 

Definition: A grid graph is a subgraph of the two-dimensional 

integer grid. " 
Figure '0 shows a grid graph. 

Lemma 3: Let G be a grid graph with n vertices. Then G has a 

C-connected edge separator of size $ 4/n + 2. Moreover, the 

separator can be found in time D(n). 

Proof (adapted from Lengauer/Mehlhorn, theorem 1): Let integers 

a and b be minimal such that a rectangle of side lengths a and 

b encloses the grid graph. Assume w.l.o.g. that a $ band 
that the side of length a is horizontal. Let Li , - 1 $ i $ b, 



- ]] -

be the number of edge s in tersec ted by a hori zon tal line 

which runs in dista nce i + ]/2 fr om t he bo ttom side of the 

rectangle . Tnen L = Lb 0 and L L. s n . Let 1 be mini-
-] 

i 1 0 

mal sucn that at least n/2 nodes lie below line L. , 1 . e . 
' 0 

s n/2 nodes lie below line L. - ] 
and ~ n/2 nodes lie above 

' 0 

line L. Le t 1 ] < 1 and 
' z ;,. io be such that Cef . figure 

1 0 
0 

] ) '] 
;,. 1 - I - In and L. s In 

0 '] 

Z) ' 2 s io + In and L. s I n 
' z 

Note that i l e xists because 

fo r a s imilar reason . Let A 

L L. s n; i Z exists 
] - ]- / nsisi _] 1 

bg the set 8f vertices above 

line L. , B be the set of vertices below line L. and C be 
' 2 I] 

the set of vertices between the two l ines. Let L be a 

vertica l line with maybe one horizontal segment o f length 

one running between L. and L. and dividing C in to two 
I] 1 Z 

7) 

parts CI and Cz of size , ICI/2, and 'I CI/Z ' respectively. 

Then IA; :5 'n/ Z', lSI S 'n/2', IC]I s 'n/2' and ICZI S 'n/Z' 

and hen ce the s et of edges intersected by lines L. ,L. and 
I] l Z 

L formsa C-connected edge separator . This set has size 

s 4/n + 2 . 

Theorem 2 : Let P = (V,E,Ne) be an eve n r outing problem with 

(V,E) a grid graph. Then a s olution can be c onstructed (if 

h . ) . . 0(n 3/ 2) . t ere 1 5 one In tIme 

Proof: Let E' ~ E be a C-connected edge separator o f size 

IE'I = QC/n); E' exist s by Lemma 3 . Le t E' = {e ] , ... ,ekl 

where e i is on the boundary of the infinite face of graph 

G - {e1, ... ,ei_1l . We use the algori t hm described in the 

proof 0 [ theorem ] and Ie t e run through edges e], e 2' . .. ,ek 

c 
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in the fi rst k = O( n) iterations o f the loop. This takes 

time O(n3/Z) and spli t s the graph into subgraphs with n 1 and 

nZ verti ces re spective ly, where max(n 1,nZ) $ Zn/3 . We there 
fore have the f ollowing recurrence for the running time 

T(n) $ o(n3/ 2) + max{T(n 1) + T( nZ); n 1 + n Z • n 

max(n 1,nZ) $ 2n/3) 

Thus T(n) O(n 3/ Z) as c laimed (cf. Mehlhorn, Vol. Z, page 
121 wh ere a simila r recurrence is so lved). c 

III. Half- e ven Problems 

A rout ing prob lem P = (V ,E, Ne) is half-even if fc ap (v) 
cap (v) = deg (v) is even for all nodes not on the boundary 

of the infinite f ace. Figure 1 shows a half-even routing 

probl em . In this sec tion we ex tend our results to ha lf-even 

routing prob l ems . We proceed in three steps. In the first 

s tep ( Le~na 4a) we show that a solvable half-even problem 

P (V, E,Ne) always has a solvable even extension 

P = (V , L, Ne U Nc ' ) , in the s econd step (Lemma 4b), we develop 
one particular st rategy f or computing s uch an extension and 

in the third s t ep (Theorem 3) we show how to make the strate

gy run in time O(bn). 

Our reduction i s based on the concepts of U-mi nimal cut and 

canoni cal e xtension. Let U = (v; fcap(v) is od~ be the 

vertices with odd free capacity . Then U has even cardinality 

and all vertices in U lie on the boundary of th e infinite 

face (recall that we deal with half-even problems). Let X be 

a saturated cut . Then X n U has even cardinality ( this can 
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be seen as follows: 0 = cap (X ) - d(X) = ~ (cap(x) - d(x)) 
xEX 

- Zcap(X , X) + Zd(X,X) . Thus the number of vertices in X with 

odd f ree capacity is even). Let u 1 , ••• ,u Zk be the vertices 

in X n U in clockwise order on the boundary of the infinite 

f ace. Cut X is U-minimal if X n U * ~ and there is no simple 

saturated cut Y with Y n U = {u . , •• . ,u.} where 1 < 
1 J 

i < j < Zk. 
The canonica l extension of P % (V , E,Ne ) with respect to X is 

given by P' = (V , E, Ne U ((uZi - l,uZi) ; 1 S 1 S k}). Note that 
all vertices of X have even f ree capacity in P'. 

Lemma 4: Let P 

leill . 

(V,E,Ne) be a solvable half- even routing prob-

a) There is a s olvable even ex tension (V,E,Ne U Ne') where 

Ne ' is a pairing of U = (v; fcapev) is odd) 

b) If X is a U-minimal cut then the canonical extension o f P 

with respect to X is a hal f -even solvable routing problem . 

Froo f: a) Let PN, N E Ne, be a s olution f or P. Consider graph 

G'=(V,E') with E' = E - (PN; N E Ne) which i s obtained from 

G = (V,E) by removing all edges which are used in the solution 

paths. We have 

a ) if v is a vertex on the boundary of G then v has odd degree 

in G' i ff v E U 

b) if v is a vertex in the interior of G then v has even de

gree in G'. 

We conc l ude that G' decomposes into paths connecting vertices 

in U and cycles. The paths connecting ver tices in U induce 
the desired pairing Ne'. This proves a). 
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b) Let Po = (V ,E,Ne U Pal be a solvable even extension of 

the half-even problem P = (V , E,Ne) and let X be aU-minimal 

c ut. We have argued above that U n X is even. Let 

Pa ' = {(s,t) EPa; sf-X, t f- X} 

Let P' = (V,E ,~e U Pa'). Then P' is a half-even solvable prob

lem with U n X as its set o f vertices of odd free capacity. 

Let P" be the canonical extension of P' with respect to X. 

The n P" i s an eve n problem which extends the canonical exten

s ion of P with respect to X. It therefore suffices to show 

that P" i s s olvable. 

Le t Y b e a simp le cut. Then d"(y) ~ d' (Y) - 2 where d"CY) 

( d' (Y)) denote s the density of Y with respect to problem 

P" (P '). Also d' (Y) s cap' (Y) since P' is solvable. Assume 

f irst that d"(Y) ~ d' (Y) - 1. Then cap"(Y) - d"(Y) 

? c ap' (Y) - d' (Y) - 1 ? - 1. Since P" is even conclude 

c ap"(Y) - d" (Y) ? O. This leaves the case that d"(Y)- d' (Y) - 2 . 

Then Y n U = {u., ... ,u . } for some i,j with 1 < i < j < 2k where 
1 J 

u 1 , ... , u
2k 

is the clockwi se ordering o f the vertices in U n X. 

lbus Y i s not sa turated in P since X i s a U-minimal cut . Also 

the nets in Pa' pair only vertices outs ide Y. Thus Y is not sat

urate d in problem P' and therefore cap" (Y) - d" (Y) 

? c ap' (Y) - d' ( Y) - 2 ? 1 - 2 = - 1. Since P" is even this im

plie s cap"(Y) - d "(Y) ~ O. 

\,e conclude that there are no oversaturated simple cuts in P". 

Hence P" is s olvable. 

Lemma 4b leads to the following algorithm for turning half

eve n problems into even p roblems. 

c 
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( 1 ) U - {v; fcap (v) is odd} 

(Z) while U * !il 
(3 ) do if there is an oversaturated cut 
(4) then terminate and declare that the problem has no 

integer-valued solution 

(5) fi; 

(6 ) let X be a U-minimal cut (X ~ V is possible) ; 
(7 ) cons truc t the canonical extension; 
(8) U - U - X 

(9 ) od 

The correctness of this algorithm is immediate from lemma 4b. 

Note that U n X has always even dardinality and hence line (7) 

is always executable . Figure 8 illustrates the extension 

algorithm. 

It remains to discuss an efficient implementation. The most 

difficult design decision is how to handle U-minimum cuts. We 

start with the observation that if X and X' are cuts with 

U n X - U n X' and fcap(X) S fcap(X') then only cut X has to 

be considered because of the following two trivial facts.: 

1) if net (s,t) is added in line (7) then fcap(X) goes down 

by one iff fcap(X') does. 

2) if X' 15 U-minimal then X is U-minimal. 

The observation above suggests the following strategy for 

finding U-minimal cuts. Let the vertices On the boundary of 

the exterior face be labelled 0,1, ... ,9--1 in clockwise order 

and let U ~ {uo ,u 1, ... ,uZk - 1}. For ° S P,q S 2k - 1 let X(p,q) 

be a simple cut with 
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1) X(p,q) n U 

2) X(p,q) has the smallest free capacity among all cuts 

satisfying 1). Ties are broken arbitrarily. 

Note that we may assume w.l.o.g. that X(p,q) = X(q+1,p-1). 

We represent cut X(p,q) by the triple (p,q,d) where 

d = dens(X(p,q)). We store the cuts X(p,q) as follows. 

For every p we have the linked list of (representatives of) 

cuts X(p,q) In clockwise order of q. 

In addition, we have a pointer min(p) pOinting to the first 

q such that X(p,q) is saturated. Furthermore, we link the 

two occurrences of a cut (namely as X(p,q) and as X(q+1,p-1)). 

We have 

Lemma 5: a) The family X(p,q) of cuts can be constructed in 

time O(bn) 

b) A U-min i mum cut X can be found In time O(IUI) given the 

data structure described above 

c) The data structure can be updated In time O(IUI) after 

adding net (u. ,u . 1) for some i. 
1 1+ 

Proof: a) Immediate from the proof of Theorem 1. 

b) If there is no p such that min(p) is defined then X = V 

is the only saturated cut and hence the only U-minimum cut. 

Assume now tllat mi n(p) is defined for some p, say p = Po' 

Then the following algori thm find a U-minimal cut in time 

O(IUI). 
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p - Po + 1 -- indices are mod 2K 

while p lies between Po and min (po) 

do if min(p) 1S defined and min(p) lies between p and 

min(p) in the clockwise ordering 

od 

then p 
-- 0 

fi; 

P - P + 1 

min(p) 

c) Suppose that we add net (u i ,ui +1) for some i and hence 

delete vertices ui and u i +1 from U. Three actions are required. 

1) Reduce fcap (i+1,q) and fcap(q,i) by one for all q. Update 

the min-pointers min(q) for all q. This takes time 0CIUI). 

2) Among the cuts XCi,q), XCi+1,q) and X(i+1,q) select the 

one with smallest free capacity for all q. This defines the 

new linked list for vertex u i +2 and takes time O(IUI). 

3) For every q keep only one of the cuts X(q,i-1), XCq,i), and 

X(q,i+1). This reduces the length of the list for vertex uq by 

2 and takes time O(IUI). 

Theorem 3: Let P = (V,E,Ne) be a half-even routing problem. 

Then in time O(bn) one can 

a) decide whether P is solvable and 

b) extend P to a solvable even routing problem P' if P is 

solvable. 

Proof: By the algorithm and lemma 5 above. Note that lUI ~ b 

and that the while-loop is executed at most b times. c 
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IV . Mu lti- t erminal Nets 

Let G = (V,E) be a p l anar gr aph. A multi-term~nal net N is 

a s ub s et (o f size ~ Z) of the vertices o f t he boundary 

of the infinite face . A routing f or a multi-terminal net is 

a t r ee T(N) ~ E connec ting the points in N. A routing prob

l em fo r multi-terminal nets is iivon by a planar graph 

G = (V , E) and a set Ne = [N 1 , .... NMI of multi-terminal nets. 
A s o l ution is given by routings T(N 1), ... , T(NM) such that 

l ' (~l' ) i s a routing for N. and TeN.) and T(N.) are edge-
1 1 J 

di sj oint for i * J . 

The density of a cut X is defined in compl e t e ana l ogy to the 

cas e of two - terminal nets, i . e . d (X ) i s the numbe r of nets 

having one but not all termi nal s in X 

d (X) = I [N E Ne; !/J * X n N * N} I 

As before , we call a prob l em (V , E, Ne ) half-even i f cap (v) 

= I [w E V;, (v ,w) E E) I is e ven for all interior nodes v. 

We have : 

Theorem 4: Let P = (V,E , Ne) be a hal f -even routing problem 

with multi-terminal nets. If 

Z dens(X) < cap(X) 

[or e very cut X then P has a s olution. Moreover a s olution 

can be f ound in time O(n Z). For grid graphs time 0 (n 3/ Z) 

s uffices . 

Pro of: Let Ne = [N 1, ... , NM}. Consider a net Ni . Let 

v1,vZ' " . , vk be the terminals of Ni as the y appear in clock
wi se order on t he boundary o f the infinite face . Replace N. 

1 
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by the set o f k-1 two-termi nal nets N~ = (v. ,v. 1); 
1 J J+ 

1 $ j < k. Let Ne ' be the new set of nets and let dens' (X) 

be the density of a c ut X with re s pect to family Ne' of 

nets. Then dens' (X) $ 2 dens(X) < cap(X). The problem 

(V , E,Ne') i s half-e ven and has no saturated non-trivial cut. 

Therefore, X = V is the only U-minimal cut and hence 

(V ,c, Ne ' ) c a n b e turend into an even problem in time O(n) 

by the algori thm of section III. The algorithms of s ection 

II can then b e used to solve the even problem. c 

Figure 9 illus t rate s the proof of theorem 4. 

V. Conc lusion 

We presented e ffi cient algorithms for routing problems in 

plana r graph s . The algorithms are guaranteed to find a so

l ution i f t here is one. A weak generali zation to multi-ter

minal nets was made. Multi-terminal nets deserve further in

vestigation. 

Acknoledgement : We thank M. Kaufmann and F . Preparata for 

many inspiring discussions about routing problems . 
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s 1 """"""" ______ ~ s 2 

Figure 1: A problem which is solvable as a flow problem 

but not as a routing problem; the two nets are 
(sl,t 1) and (s2,t 2). 

e i e i + 1 

X 

e j 

Figure 2: A cut X through edges e i and e
j 

nets which have a terminal 
in this range does not go 
acro~~==::::~~~~~e~b ________ _ 

s 

X 

c 

Figure 3: fcap(e,e i ) fcap (X) = 0 

t 
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Fig ur e 4: A planar graph G and it s multiple-source dual. 

Dual edges are shown as wiggled lines . 

l' igure 5: A planar graph all of whose C- connectes edge 

s eparators have size OCn). 

Figure 6: A grid graph 
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A 

D1 L 

B 

Figure 7: Cut s L .• L. and L 
'1 '2 

2 1 

.. 
1 2 

U- minimal cut 

a) a solvable problem 

_--f_~2 

2 

U- minimal cut 

b) an unsolvable problem 

L. 
'2 

D2 

L. 
'1 

2 

~ __ ---,,2. 3 

2 1 • 3 

1 • 3 

2 . 3 

over-saturated 
cut 

Fig ure 8: The extensi on algorithm; odd nodes are s hown solid. 
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2 1 a, 1 b 2a 

2 1 a f----+---+---j2 a, 2b 

.. 
2 2b ~ __ -+ ____ +-__ --Ilb 

-If 
2 la,lb,3 2a 

.-------,- - - - - - - - - -i . 

1 - '-----...; 2 1 a f----+---+---j 2 a, 2b , 3 

.. 
2 ___ +-____ --',.. 2b ~ __ -+ ____ ~ __ ~lb 

Figure 9: A routing problem with multi-terminal nets, a re

lated problem with two-terminal nets, the even 

problem obtained from theorem 6, and the solution 

obtained by theorem 4 (the path for the artificial 

net 3 is shown dashed). 
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