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Abstract: A local routing problem is given by a routing
region (a subgraph of the planar grid) and a set of nets.
For cach net a global routing is also given. The problem
is to find a local routing which is consistent with the
global routing (if there is one). In this paper we show
that the local routing problems can be solved in time
o(n (log n)?%).



1. Introduction

Automatic design systems, e.g. CALCOS (Lauther) and PI
(Rivest), for integrated circuits divide the routing problem
into several stages.

1) Determine a global routing for every net. A net is a
set of points which have to be ceonnected and a global routing
fixes the global shape of the realization of the net, i.e. how
the net runs with respect to the subcircuits (cf. Figures 1
and 2).

2) Cut the routing region into regions of simple shape,
¢.g. channels.

3) Determine for every net the exact positions where it
crosses channel boundarices.

4) Route each channel.

In some systems, c.g. CALCOS, stages 3 and 4 are combined into

a single stage. Channels arc routed one by one and the routings
in the first i channels fix the positions of nets which leave
these channels. In all stages heuristic algorithms arc usually
used. In this paper we show that stages 2) to 4) can be combined
to a single stage (called the local routing problem (LRP)) which
can be solved efficiently. More precisely, we will show that
LRP's for two-terminal nets can be solved in time O(n(log n)z)
where n is the size of the routing region and that LRP's for
multi-terminal nets can be solved approximately in that time

bound. An exact statement is given in section 2.

Previous theoretical work on routing concentrated on routing
regions with "simple" shapes. Very good routers for channels
(Rivest/ Barratz/ Miller, Preparata/ Lipski, Baker/ Bhatt/
Leighton), switchboxes (Mehlhorn/ Preparata, Frank) and
generalized switchboxes (Kaufmann/ Mehlhorn) were found.
Routing in general planar graphs was considered by Okamura/



Seymour and Becker/ Mchlhorn. Note however that all papers
mentioned require the terminals of all nets to be on the
boundary of the same face of the routing rcgion. A notable
exception 1is the paper by Baker/ Pinter who considered river
routing within a ring of pads. We should finally mention
that the combination of stages 1) to 4) is NP-complete
(Kramer/ v. Leeuwen).

This paper is organized as follows. In section 2 we give a
precise definition of the LRP for two-terminal nets, the
multi-terminal net case can be found in section 6. Scction 3
gives the algorithm, in section 4 we prove it corrcct and in
section 5 we describe an implementation and analyse its

running time.

2. Precise Problem Definition

The planar rectangular grid consists of vertices
{(x,y) 3 x,y € 2} and edges {((x,y), (x',¥")) ;
IXx-x"1 + ly-y'l = 1} . A routing region R is a finite subgraph

of the planar rectangular grid. A routing region is a full
polygon if every finite face of R has exactly four vertices.

In the sequel R always denotes a routing region. Let M be the
set of finite faces of R which have five or more boundary
vertices and let M be M together with the infinite face. Let
B be the set of vertices of R with degree at most three. Note
that a vertex v € B lies on the boundary of a face F € M.

A local routing is a path in the routing region R. Two local

routings p and q are elementarily equivalent if there arc paths
-1 -1

PysPy,4;,Pg such that p = p,p,Pz, 4 = P4;yP3 and P,4; (q2

1s the reverse of path qz] is the boundary cyvcle of a face F ¢ M.

Two local routings p and q are equivalent if there is a scquence

or 4 = Py and P;

and Pisq are elementarily equivalent for 0 = i < k. Note that

if p and q are equivalent then p and q have the same endpoints

and the cycle pq-I does not enclose a face F € M (c¢f. Figure 1).

Pys+sPy s k 2 0, of paths such that p = p



We use [p] to denote the equivalence class of local routing p.
A global routing is an equivalence class [p] . A net N is a
triple (s,t,gr) where s and t are vertices in B and gr is a
global routing connecting s and t, i.e., gr = [p] where p is

a path from s to t. We call gr = gr(N) the global routing of

nct N and s and t its terminals.

We are now rcady to state the Local Routing Problem (LRP).

Input: A routing region R and a set Ne of nets.

OQutput: A local routing #r(N) for each net N € Ne such that
1) Exr(N) € gr(N) for all N
2) Er(Nl) and Rr(NZJ are edge-disjoint for NI,NZ € Ne,
Nl * N2
or an indicaticon that there is no such sct of local

routings.

Figure 2 gives an example. In this paper we will prove the

following theorcm.

Theorem 1: Let P = (R,Ne) be an even LRP where R has n vertices.

. ¥
In time O(n(log n)“) one can decide whether PP has a solution
and also construct a solution if it does.

It remains to define even LRP. The multiple scurce dual D(R)

is defined as follows. (cf. Figure 3).

For every edge ¢ of R there is a dual edge d(e) with its end-
points lying in those faces of R which are sepdrated by e. The
endpoints of cdges which lie in faces outside M are identified,
the endpoints in faces in M arc kept distinct and are called
sources of the dual graph. A cut of R is a simple path in the
dual graph connecting two sources. The capacity cap((l) of a
cut C is its lengths ( = number of edges of R intersected by
the cut) (cf. Figure 3). A cut can be viewed as a polygonal
line SpseeesSy where each Si is a straight-line segment and

S5 and v have a different direction (one horizontal, one
vertical). A cut is simple if k 5 2, i.e. if the cut has at
most one bend.



Let C be a cut and p be a local routing. Then cross(p,C) is
the number of edges ¢ of p with d(e) in C, i.e¢. the number of
times p goes across C. For a global routing gr we define

cross(gr,C) = min {cross(p,C) ; p € gri}.
Finally, the density dens(C) of cut C is defined by

dens(C) = £ {cross(gr(N), C) ; N € Ne)
and the free capacity fcap(C) is given by

fcap(C) = cap(C) - dens(C)
A cut C is saturated if fcap(C) = O and oversaturated if
fcap(C) < 0.

An LRP is even iff fcap(C) is even for every cut C.

We show (as part of the proof of theorem 1)

Theorem 2: If fcap(C) is nonnegative and even for every simple
cut C then the routing problem P has a solution. If P has a
solution then fcap(C) is nonnegative for every cut C.

For the scquel the following alternative definition of
cross(gr,C) is useful. Local routing p € gr is recduced with
respect to C if p cannot be written p = p,¢ p,e,p; where
d(e,), d(cZJ € C and there is a path Py such that ¢ P,¢; and
py are equivalent and cross(pq,C) = O,

Lemma 1: If local routing p is reduced with respect to C then
cross (p,C) = cross([p],C).

We infer from lemma 1 that we can use reduced local routings
to count crossings of cuts with global routings at lcast as
far as one cut is concerned. We will now cxtend this obser-

vation to several cuts.

Let C and D be cuts. C and D are interferencefree if they are
cither vertex-disjoint or if C = EC', D = ED' and C' and D'

are vertex-disjoint except for their common start vertex (cf.
Figure 4). A set S of cuts is interferencefree if the cuts in

S are pairwise interferencefree. A local routing p is reduced
with respect to S if it is reduced with respect to all cuts in S.




Lemma 2: Let S be an interferencefree set of cuts and let gr
be a global routing. Then there is a p € gr such that p is
reduced with respect to S.

3. The LRP Algorithm

In section 3.1 we give our LRP algorithm. In its
description we use two undefined concepts: minimal saturated
cut and lcftmost decomposition of a net.

The (very lengthy) definition of these concepts is given in
section 3.2. In section 3.2 we will also prove several facts
about these concepts.

5.1 The Algorithm

The algorithm processes the routing region row by row
from top to bottom. Within cach row we proceed from left to
right. A vertex a = (X,y) of the routing region R is called
the left upper corner of R if there is no vertex (x',y') of R

with y' > y or y' = y and x' < x. We use b to denote the
vertex b = (x,y-1) and e = (a,b) to denote the vertical edge

incident to a.

The algorithm constructs a solution iteratively. In each
iteration it first simplifies the routing region such that

all cuts have capacity two or more and then it considers edge e
and decides whether to route a net across ¢ or not, In either case
edge ¢ is deleted [rom the routing region. Thus O(n) iterations
suffice. The details are as follows. In the description of the
algorithm we assume that we start with a solvable LRP. If the
algorithm is applied to a nonsolvable LRP then it will find an
oversaturated cut at some point.



(1) Simplify;
(2) while E « ¢

(3) do = - fcap(Y) is cven and nonnegative for every simple

- = Cut Y’.

Every cut of routing rcgion R has

- =- capacity at least two,

(4) let a be the left upper corner of R and let e = (a,b)
be the vertical edge incident to a;

(5) if there is a saturated simple cut through edge e

(6) then 1let X be the minimal saturated simplec cut

through edge e;

(7) Among the nets which go across cut X let N be
the onc with the leftmcst decomposition [NI,NZ)
where N] = (s,a,gr]) and NZ - (b,t,grz);

(8) delete edge e and net N and add nets Nl and N2
- = the local routing of nct N consists of
- = the local routings for nets N] and N2
- = and cdge e.

else = - a is not terminal of any net
(9) delete all four edges of the finite face on whose
boundary a and b lie (cf. Figure 5)
{1 ;
(10) simplify
od

where procedure Simplify is given by

proc Simplify

while 3 cut X with cap(X) = 1

do let e be the edge cut by X and let N be the net with
cross(N,X) = 1. Let [NI’NZ) be a decomposition of N
with respect to X;

delete

edge and net N and add nets N, and N,

- - the local routing for N consists of the local
- - routings for NI and NZ and edge e

3.2 The Missing Concepts

In this section we define the concepts of minimal

saturated simple cut and leftmost decomposition of a net.



Throughout this section we assume that there are no cuts of capacity one.

We first define minimal saturated simple cut. A simple cut
through edge ¢ consists cf a horizontal segment s, and maybe

a vertical segment S5 Segment S, either bends upwards or
downwards. We postulate that all cuts with S, bending upwards
are smaller than the cut with no bend which in turn is smaller
than all cuts with S5 bending downwards.

We furthermore order the cuts with S5 bending upwards according
to increasing length of S i.e. the shorter S the smaller the
cut, and the cuts with s, bending downwards according to de-
creasing length of S1» i.e. the lenger S5 the smaller the cut
(cf. Figure 0).

We will next prove some important facts about saturated cuts.

Lemma 3: Let P be a local routing problem.

a) If there is an oversaturated cut then there is a simple over-
saturated cut.

b) If Y = S12Ss 005y, k 2 3, (the s; are straight-line segments)

is a saturated cut through edge ¢ then there cither exists an
oversaturated simple cut (not necessarily through e) or there

exists a saturated simple cut X through e which is smaller than
the cut 51,32' where 52' extends S, until it intersects a
boundary edge. (cf. Figurc 7).

We can now turn to the definition of leftmost decomposition.
We do so in a threce step process. We first define slicings of
the routing region. We then use slicings to define the order-
ing left-of on ncts with a common endpoint, and then to extend
this ordering to decompositions of nets. We will also prove
that the ordering is independent of the particular slicing

used in its definition.

A slicing S of R is a set C(F), F € M, of cuts and a function
parent: M -» M such that

1) C(F) has one endpoint in face F and the other endpoint
in face parent(F) € M

2) the function parent defines a tree on M with the
infinite face becing the root

3) cuts C(F) and C(G) do not interfere if F #+ G.



Figure 8 illustrates this definition. If S is a slicing then
removal of the edges e intersected by a cut in S turns R
into a full polygon which we denote P(S).

We will next define a cyclic ordering on the set B U C where
B is the set of vertices of R of degree three or less and

¢ = {c(B)*", c)™'; F e M}, Here, C(F)*! and C(F)™ ' are new
symbols which represent the two sides of cut C(F). The
ordering on B U C is defined by a counterclockwise traversal
of the full polygon P(8) where C(F)+I represents the sequence
of vertices used to reach face F € M from face parent(F) and
C(F)-] represents the path back to parent(g).

Remark: This ordering is well-defined since no node in B
can belong to the boundary of two faces in M. Otherwise,
there would be a cut of capacity one.

We can use slicings to decompose nets into elementary pieces.
Let N = (s,t,[p]) be a net where p is reduced with respect

to S. The net N crosses some cuts in S ; each cut C(F) is

crossed cither in the direction from C(F)+I to C(F)" or from
1

~ oy T e | g
C(F) to L(b)1 ; In this way we can associate with the net an
¢lement in B(C*) B.

s cED e eyt T cr e

where di € {+1, -1} and N crosses C[Fi) in the direction from
C[Fini to C[F)'di. The elementary pieces of net N are now

i . | AP | NPT |
given by (s, L(biJ 1), [L[PI) 1, L(sz LYy www

An elementary piece is an eclement of (B v C)~.

We are now ready to define the ordering lcft of on nets with a

common terminal. Let N, = (s,ti,[pi]) be nets and let ep;,,...,

€Pik be the decomposition of Ni into elementary pieces, 1 = 1,2.
1

Then N, is left of N, iff there is a j such that €Pyz * €Pyg
for .. < j , e:phj = (u,v), epz'j = (u,w) with

u,v,w € BUC, v + w and u, v, and w occuring in that order in
the cyclic ordering of B u C. (cf. Figure 9).
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The ordering left of is defined with respect to a particular
slicing S. It is however independent of the slicing (cf. Figure 10).

Lemma 4: The ordering left of does not depend on the slicing
usced in its definition.

We can now [inally define decompositions of nets and the
ordering lcft of on decompositions. Let X be a cut through

cdge e = (a,b). A pair NI = (s,a,(pl] ) " N2 = (h,t,[pzl )

of nets is a decomposition of net N = (s,t,[p]) (with respect
to cut X) if [p) = [pl ¢ p2] and cross (N »X) + cross (N -
cross (N,X) - 1. Decomposition [NI'N ) of nct N is left of o?
decomposition [M], ) of net M if N2 is left of M

4. Correcctness

In this section we prove the correctness of our algorithm.
Let P be an even solvable LRP. We establish the following in-
variant for our algorithm.

(Invariant): fcap(Y) is even and nonnegative for all simple
cuts Y.

The invariant is certainly true initially; fcap(Y) 1s cven because
P is even and fcap(Y) is nonnegative because P is solvable.
It remains to show that the invariant is maintained.

Lemma 5: An application of procedure Simplify maintains the
invariant.

Lemma 6: An exccution of the main-loop maintains the in-
variant.

Proof: The proof is very lengthy and requires a detailed case
analysis. We sketch onc case. Assume that there is a saturated
cut through edge e; lct X be the minimal saturated simple cut
through e. Let Y be any simple cut. We have to show that
fcap'(Y) is cven and nonncgative in the modified prcblem
(indicated by the prime). We discuss the case that X and Y



cross and have exactly one common vertex v (cf. Figure 11).
Assume that v is closer tc e than e¢'. Then fcap'(Y) =
fcap(Y) - 2. Thus the only case to discuss 1is fcap(Y) = O.
We consider cuts ZI and Z, as shown in Figure 12 and show
fcap(zl) + ICup[Zz) = fcap(X) + fcap(Y) = 0. Hence cither
fcap(zl) = 0, a contradiction to the minimality of cut X or
fcap(zzj < 0, a contradiction to the invariant (with a tacit
application of lemma 3). 1In either casc we have derived a
contradiction and hence fcap(Y) > O.

It remains to show fcap(Zl] + fcap(zz) = fcap(X) + fcap(Y).

Note first that cap(Zl) + cap(Z,) = cap(X) + cap(Y). We

consider the densities next. Let S be a slicing such that

S U {X} and S v {Y} are interferencefree. The cuts X and Y
divide B U C into four intervals, say G, H, 1, K, as indicated
in Figure 12. For subsets U,V of B U C let dens(U,V) = I{ep ;

ep = (u,v) is an clementary piece with u € U, v € V}|

We have dens(X) = dens (GuH, IUK), dens(Y) = dens(Guk, liul),
dens(Z,) = dens(K, GuHul), dens (Z,) = dens (H, 1uKuG) and
thercfore dcns(21) + dens(ZZJ = dens(X) + dens(Y) - 2 dens(l1,G).
Next note that dens(I,G) = O. This can be seen as follows.
Assume otherwise. Then there is an elementary piece ep'€ 1 x (.
Let N with decomposition (NI'NE) be the net chosen by the
algorithm to be routed across cdge c¢. Let ep be the clementary
piecec of N which "contains'" edgc ¢'. Then ep € 1 x H and

hence (N],Nz) is not a lcftmost decomposition. This contra-
diction shows that dens(I1,G) = O and hence dens (Z,) + dens(Z,) =
dens (X) + dens(Y). o

Theorem 2 now follows immediately from lemma 6.

5. Implementation and Running Time

There are two main ingredients to the implementation.
The first idea is to represent ncts as scquences of clementary
pieces, to represent pieces as pairs of intcgers, and to store
these pairs in a range trec (cf. Mchlhorn, section VI1I1.2.2).



These integers arc obtained as follows. We number B U C in
counterclockwise order where we use a single integer for an
element in B and use an interval of length cap(C(F)) for the
elements C(F}+], [.I(I:J_1
of the edges going across cut C(F); cf. Figure 1535.

Figure 13 also illustrates how pairs of integers are assigned to

in C. In a sensc we number the endpoints

elementary pileces.

Lemma 7: The pairs representing the elementary pieces can bhe
computed in time O(n(log n]zj

From now on we are on safe grounds and can essentially use the

methods dJeveloped in Kaufmann/Mehlhorn.

We will next show how the range tree can be used to find the
net to be routed across edge e in line (7) of the algorithm,
Let X be a cut through edge e. Cut X partitions B U C into
two sets L and R with b € L, a € R. In our numbering of

B U C the set L corresponds either to an interval [j,h] with
J <hor to a pair of intervals [j,r],[1,h] with j > h and r
the largest number used in the numbering. In the former case
(the latter case being similar) the net N to be routed across
cdge ¢ is characterized by the clemtary piece ep with
representation (f,g), f,g € N where f ¢ (j,n]l, g € [j,h] and
g minimal. This pair can be found in time O(n(log n]z) using

the range tree.

The second idea is to use an auxiliary data structure for the
top row of the routing region which contains the free capacities
of all cuts going thrcugh edge e. This data structure is a
priority queuc with updates as described in Galil/Naamad, see
also Mehlhorn, section IV.9.1 . If the top row has length L then
this data structure can be constructed in time O(L(log n)z)
using the range tree. It can be used to decide in time O(log n)
whether there is a saturated cut through edge e (line 5) and to
find the minimal such cut (line 6). Also it can be updated in
time O(log n) per iteration of the main loop.

Altogether we obtain an O(ntlogn)z] algorithm.



6. Multi-terminal Nets

A local routing for a multi-terminal net is a tree, a
global routing is an equivalence class of trees. Density and
free capacity are defined as in the two-terminal casc. We have:

Theorem 3: Let P be an LRP with multi-terminal nets.
If 2 dens(X) < cap(X) for every cut X then P has a solutxon
and this sclution can be constructed in time O(n(log n) )
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Figure 1: Subcircuits (Faces F in M) arc hatched.
P and p, are not cquivalent, P, and p, are

equivalent.

Figure 2a): A local routing problem. Nets and their global

routings are indicated as "rubber bands".

subcircuits are hatched.
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Figure 3

The multiple source dual

D(R) of the routing region

of Figure 2. A cut of capacity 8 is shown wiggled.



(a) (b) (c)

Figure 4: The cuts in a) and b) interfere, the cuts in ¢)
do net interfere.

Figure 5: The four dashed edges are deleted.

be

Figure 6: Xi is smaller than Xj for i = 3

—— — ———

Figure 7: The cut Y = S| 8, S ... and segment S5



Figurc 8: A slicing S of R. Wec have parent(FS) = FZ'
parcnt{F]] - parent[Fo) = Fo where Fo is the
infinite face. The cyclic ordering of B v C is
indicated by arrows.

t

2

Figure 9: Net Ni connccts s and t.. The elementary pieces
of Ng are (s,C(Fp*"), (c(F~', c(F* "y,
(C(Fl)'l,tsj and the clementary pieces of N4 are
(s,C(F" "), (crp™!, car™, crp™!, clrp) ),
[C(Fs)",td). Since C(F,)-1, C(FSJ-I, t. occur in
that order in the cyclic ordering of B U C (cf.
Figure 8), N, is left of NS' In general, Ni is
left of Nj for i < j.



Figure 10: A different slicing of the routing region of

Figure 8. The elementary pieces of nets NS and
Ny are now: Ng = (s, C(F)*"), (C(F)™", to) and
Ny = (s, CF)™ ), (7T, ). Thus N, is
left of Ng .

Figure 11: Simple cuts X and Y cross. Net N (to be routed

across e) crosses cut X in edge e'.

ta

Figure 12: Cuts Z, and Z, and the partition of B U C into
four intervals G,H,I,K.
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Figurc 13: The numbering of the elements in B v C.

For the nets going across cut C(F) we have chosen local
routings which reflect the ordering of the tails of the nets
N1,NZ,N3 and N4, i.e. tail (Ni) is left of tail [Nj) for

i < j. The tail of net Ni is the part of Ni beginning with
C(F]'l. We represent w by integer m+i in the elementary piece

(vi,wJ of net Ni ending in C(F)+I.
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