POCO — Compiler Generator

User Manual

Michael Eulenstein

Universitat des Saarlandes

Technischer Bericht Nr. A2 /85

Contents:

0. Overviewcevuvuuvunn SYSENS 3 B 5 SRAEIRIGNS B § LU § b e 1
1. Introduction to the POCO - Systemcviiviiniinnnnnnnnenns 2
1.1. Compiler and Compiler Generationcciiiennn 2
1.2. The POCO Compiler Generator System Concept 5

2. POCO Input Language Descriptionciievvevnennceernneses. 10

2.1. Input Language Vocabulary P RGeS 8 hemnnase 10
2.2. Input Language Desciption Vi B SRS & § 12
3. POCO Generation Optionscocciviiiiiinnnnnns N TR
4. POCO System Operating Proceduresc.ceieniiennennenanss . 26

4.1. Running POCO an a Siemens BS2000 installation 26
4.2, VAX 11/780 Operating Procedures RO . -

5. Example Input to the POCO System § SRR § § ST s gy 49

Appendices:
A) POCO - Input Language Syntax Diagramsceeve. sessss Il

B) List of POCO Generator Error Messages sisanmnnnsses 26

Literature ... iiiiiiiiiiiiiiiierentoncensnncnncsnnns feeraen oo 40

0. Overview.

This paper is to give a short overlook on the POCO - Compiler Genera-
ting System. It is not intended to be a full description or even
documentation of the system but merely a manual for a possible user of
the system. For more detailed information we refer to the 1literature

given at the end of this report.

We start out with a short description of the system’s overall struc-
ture and go into detail with some of the system’s components. We will
also describe the generation process and the general form of the

generated components.

In the second chapter we will give an annotated description of the
POCO compiler generator input language (GIL). A more easily readable
form of the GIL syntax will be given in Appendix A in the form of
syntax diagrams. We will also give a short example of a complete

compiler specification.

As a preliminary operating manual we will conclude with a short survey
of how to use POCO on a specific installation and describe the user
available options which can be exploited to direct the generation

process.

Appendix B will contain a summary of POCO generation time error mes-

sages; some messages will be exphined more detailed.

1. An Introduction to the POCO - Compiler Generating Systeam.

1.1. Compiler and Compiler Generation.

A Compiler is a system used to translate a source language specifica-
tion of a given task into an equivalent machine language program which

can be executed on a computer.

A compiler being itself a highly complex program - in the past it
usually took several man years to implement it, a time and money
consuming effort - the idea of automatic generation of compilers (or
at least parts of a compiler) came up soon after the developement of

the first compilers.

At this point it is interesting to note why compiler construction is
such an important area in computer science: As there many existing
programming languages (and becoming more and more every year) and many
different real computers (the number of which is also increasing all
the time) one does need a compiler for any of these languages and any

of the real machines. This can be demonstrated in to following figure:

Figure 1.1.: You need n * m (different) compilers for
n given programming languages and
m given real computers

This problem is further complicated, if you consider that the compiler
is a program itself and has to be installed on any of the real compu-
ters; sometimes the compiler program can be ”ported” as whole, most of

the time, however, this method is not possible.

Typically, a compiler can be divided into subtasks according to the
scheme given below. The specific task of a compiler as noted in a
square box is called a compiler phase (sometimes, without going deeper
into theory, a compiler pass). Note that the different phases are
logically independent and the input to every phase is the output of

the preceeding or the source language program itself.

source language
program

.

Lexical Analysis

'

Syntactic Analysis

'

Semantic Analysis

l 4
Code Generation ?
Synthesis

v I

machine language
program

Analysis

Figure 1.2.: General Structure of a Compiler.

During Lexical Analysis (the equivalent part of the compiler is called
the Scanner) the character stream of the source language input is
translated into a stream of symbols (tokens). This token stream is
used by the subsequent syntactic analysis phase (the parser) where the
input 1is checked against the formal definition of the syntax of a

given programming language.

In the semantic analysis phase, the meaning of the program - as far
this can be deduced from the source - is computed and additional
information gathered which is then exploited in the final synthesizing
phases of a compiler in which the actual translation of the input

program into the target machine language takes place.

A compiler generator now basicly operates on the following principles:

o For each compiler phase, it accepts a description of the
corresponding part of a compiler for a given programming
language

o Using this description, it will automacially generate
the respective part of a compiler, i.e. the implemen-
tation of a program part which allows performing the
respective compiler phase

This is shown in the following fiqure:

reguiar expressions —¥% , ,
Scanner —Generator | —» Lexical Analysis

: :

context free grammar & . .
Parser — Generator | _,, | Syntactic Analysis

: '

attributes, - Attribute Evaluati
semantic actions “Gueneeravtao:jatmn — | Semantic Analysis
machine l l

g > Code Generation
description i
ot S?Jpp. by POCO) Garierator > Code Generation

Picture 1.3.: Generalized Structure of a Compiler Generator.

1.2. The POCO - System Concept.

Let us now consider the basic concepts of the POCO - Compiler Genera-
ting System. The POCO system was developed at the University of Saar-
bruecken. It is conceptionnaly based on the MUGl system developed at
the Techical University Munich, one of the earliest and most success-

ful compiler generating systems.

Above that the POCO developement is characterized by the following

major design goals:

o POCO is intended to be a modern system in regard to
a) the underlying theoretical concepts
b) user orientedness
c) safety of usage according to state of the art standards
o The System is designed so that porting the system itself
as well as the generated compilers is feasible and not
to complicated a task

o The generated compilers must be efficient

Above that the POCO is not merely a parser generator or a scanner
generator but a complete system for generating all of the components
of a compiler front end, including highly efficient tools to make work
with the system easy and reliable. The system POCO is composed of the

following elements:

o The POCO Compiler Generator

o A compiler for the programming language Pascal-m, a Pascal exten-
sion which allows for modularity (Pascal-m is both implementation
language for the POCO system and the generated compilers)

o A machine independent linker to support the portability aspect of
the POCO concept

o A semantic module data base mechanism for storing the user suppl-
ied semantic procedures/functions; his data base interacts with
both the POCO compiler generator and the Pascal-m-Compiler/ Lin-
ker components

The POCO system is depictured in the following figure:

POCO

Pascal—m
Compiler

Semantic Module
Data Base

*.{ Machine— Independent

Linker

Figure 1.4.: POCO System Components

following

The POCO Compiler Generator is in itself divided into the
components:

o a Grammar-Reader to process user input (i.e. the specification
of a programming language for which a compiler is to be gene-
rated); this component is a small ’compiler’ itself: it com-
piles the user input into an internally kept data structure.

o an efficient Scanner - Generator

o an LALR(1) - Parser - Generator

o a Generator for Compile Time Attribute Evaluation

Each of the above mentioned generators will produce one of the speci-

fic parts of a real compiler;

modules.

these parts are generated as

Pascal-m

After complete generation these modules can be fed into the

Pascal-m compiler and be translated into machine-independent code. The

POCO generator components and the corroboration with Pascal-m compiler

are shown in Figure 1.5.:

~ Grammar |

internal Form

Attribute
Evaluation

Generator

Scanner — 4 Parser—
Generator : Generator

O o Attribute

w
©
@
=
=
@
=
-
Y
=
v
©
=

Evaluation

y

Pascal—m
Compiler

Figure 1.5.: POCO - Compiler Generator Components.

Internally, the generation process is subdivided in several tasks
which are performed sequentially in the order given by Figure 1.6.; we
call these different tasks ”phases” in analogy to the phases of a

generated compiler:

user written
compiler
specification

Phase 1a & 1b Grammar — Reader

.

Phase 2 Scanner — Generator

Y

Generator of Attribute
Evaluation

:

Phase 4 Parser — Generator

v

generated compiler

Phase 3

Figure 1.6.: Sequential Structure of the POCO Generation Process.

For complete specification of a compiler the user has to supply the
generator with information about the semantic meaning of the program-
ming language for which he wants a compiler to be generated. This is
done by specifying so called semantic modules in the generator input
in form of external Pascal-m modules. During generation of semantic
attribute evaluation these modules are duly considered. They can be
written in full offside the compiler specfication and entered into the
semantic module data base as source code or after being processed by

the Pascal-m compiler.

After complete generation of all compiler components and after supply-
ing all user written semantic modules and translating them by use of
the Pascal-m compiler all compiler components are linked together by
the machine independent linker. After this process generation of a
complete compiler is finished and the resulting compiler program can

be installed on a specific real computer.

.Géhe.rated.) ;-i:.zlifjﬁ
Compiler Modules -

Attr. Eval.

Comp. Skel.

Machine Independent
Linker

i Scanner :
::qu‘ﬁ?"'é* ____________ ™M '
connin] parser P
S e N RN M2
JEEI RSN T Attr. EVa)

L Comp. Skel. | Mn

Figure 1.7.: Linking the generated compiler modules.

2. POCO Input Lanqguage Description.

An input to the POCO compiler generating system which may be expressed
by means of the GIL contains all information which is needed in the
process of generating the standard compiler components as well as the
precise definition of the interface to user supplied semantic action
procedures. This allows for extensive adequate control of the compiler
description. Because of POCO’s design the GIL is very close to the

programming language PASCAL.

Notation:
The GIL syntax will be expressed in Backus Naur notation;
the following symbols are the usual metasymbols and do not
belong to the GIL:
e I { }

”|” denotes alternatives, curly brackets allow for
expressing repetition of elements in the following sense:

X ::= {Y} stands for X ::= | XY

nonterminals are inclosed in < ... >, terminal symbols are
underlined.

2.1. Input Lanquage Basic Vocabulary.

The basic vocabulary of the POCO input language consists of basic

symbols classified into letters, digits and special symbols with:

]

letter> ::= A | ... | Z2]a| ... | z]|_

<digit> 0] ...]9

10

Special symbols are all special symbols of the programming language

PASCAL, i.e.:

+ =1l 71 CIYITTIY=0<=1]>]<]|>]|
slafsla8l?]™]

if | do | to | in | or | end |

for | div | var | mod | set | and |

not | else | with | then | goto |

type | case | then | file | begin |

until | while | array | const | label |

repeat | record | downto | packed |

forward | program | function | procedure

as well as the additional special symbols of the PASCAL-m extension:

module | interface | implementation | use

and the following additional special symbols

language | terminals | axiom | productions

finis | error | call | allbut

and i

(which will be underlined in the syntax description to distinguish it

from the meta symbol |).

A comment is defined as
{ any sequence of characters not containing ”}” }
° (® any sequence of characters not containing ”*)” *)
It can appear between any two identifiers, numbers, reserved words or

special symbols; comments may be nested by using the alternate lead in

(closing) symbols.

11

2.2. POCO Input Lanugage Description.

1. Generator Input:

An input to the POCO compiler generating system is of the following

form:

<compiler_descr> ::= <language_identification>
<terminal_definition_part>
{constant_definition_part>
<type_definition_part>
<module_declaration_part>
<axiom_definition>
<{production_definition>

finis

2. Langquage Identification.

The identifier given in the language identification is interpreted as
a name for the subsequently given grammar. This name will also be used

as the program name of a generated compiler.

<language_identification> ::= language <identifier>
| <empty>

Note: If no language identifer is given the program name of the gene-

rated compiler will just be ’COMPILER’.

3. Terminal Definition Part:

In the terminal definition part of the POCO input all terminal symbols
of the subsequently given grammar are declared and their lexical
structure is defined.

The terminal declaration part is divided into the Character Class

12

Definition Part and the Symbol Class Definition Part:

<terminal_definition_part> ::= terminals
[<char_class_definition>}
<{symbol_class_definition>
{<symbol_class_definition>}

In the Character Class Definition Part all basic characters may be
grouped into character classes which can be used in the Symbol Class

Definition Part in kind of a short hand fashion.

<{character_class_definition> ::= <char_class_mode>
<{char_class_def>

<char_class_mode> ::= - | <empty>

<{char_class identifier> =

<{char_class_def> ::
<char_class> {, <char_class> }

<char_class> ::= <character_constant> |
<character_constant> - <{character_constant>

A character constant may be any character representable in a program.
For the hidden characters ’carriage return’ and ’line feed’ there
exist predefined special character classes which may be addressed by
the predeclared names ’CR’ and ’LF’ which can be used on the right
hand side of a character class definition. Note that the single quote

character must be given as ’’’’ in the usual Pascal way.

The Character Class Mode serves to express whether a character class
is to be interpreted as an ignorable class (marked with ’'-’). An igno-
rable character class can be seen as a set of characters that is used
by a generated scanner to separate one symbcl from another but which

will not be a part of of recognized symbol.

A terminal Symbol Class is defined by giving a (unique) symbol class

identification number which is called the symbol’s Class Code, the

13

symbol class Mode and a regular expression which describes the lexical
structure of the symbol. Each definition of a symbol class is terminated

by a semicolon.

<{symbol_class_definition> ::= <{kcode> <symb_class_mode>
<{symbol_class_name> =
<reqular_expr> {<regular_expr>} ; |
<kcode> <symbol_class_name>

Note that if no generation of a scanner is intended the specification

of class code (kcode) and symbol class name will suffice.

{symbol_class_name> ::= <identifier>
<kcode> ::= <unsigned_integer>

<symbol_class_mode> ::= - | + | * | <empty>

The Class Mode may be used to indicate in which way the generated
scanner is to treat members of a specific symbol class. There are the
following choices:
’ ? '+ The scanner will interpret this symbol class as a
constant class which is not altered during the

scanning process, i.e. it can not be altered during
the scanning process.

22 : These classes consist of ignorable symbols which
will not be passed on to the calling parser by the
scanner.

+’ : The scanner will keep track of all symbols of
these classes. Each of these symbols will receive
a unique natural number called its relative code.
The scanner passes this relative code (together
with the symbol’s class code) to the parser every
time it finds an occurrence of the symbol. Typi-
cally, identifiers in a programming language are
defined to form such a class.

14

Ya? The scanner keeps track of all members belonging
to such a class. It will not, however, look it up
among those already found. Instead it will assign
a new relative code for each occurrence of a
member of this class. One might give the class of
strings this class mode, since it may be rather
expensive to compare each string with all others
already found.

The reqular expression describes the lexical structure of all elements
of a symbol class; in this description Character Classes and already
defined Symbol Classes may be used. It is also possible to explicitly

give a string in this description.

<regular_expression> ::= <symbol_class_name> |
<character_class_name> |
<character_constant> [
<string> |
<alternative> |
<equivalence_expression> |
<iteration_option> |
<allbut_expression>

<alternative> ::= (<regular_expression> |
{<regular_expression> l}
<{regular_expression>)

<concatenation> ::= <{reqular_expression>
{ <regular_expression> }

<equivalence_expression> ::= (<regular_expression> ,
{<regularqexpression> 1
<{reqular_expression>)

<iteration_option> ::= [<regular_expression>] 5
% [<regular_expression> | |
* <range> [<regular_expression>]

<range> ::= <unsigned_integer> - <unsigned_integer> |

<unsigned_integer> - |
- <unsigned_integer>

<allbut_expression> ::= <{regular_expression>
allbut (<regular_expression>)

15

Notes:

(1)

(2)

(3)

(4)

(5)

A sequence of <{character_constants> will contain a space
character (”white space”) between each of the single cha-
racters. Thus, the input of ’<’’=" (instead of ’<’_’'=’,
with _ denoting a white space) will erroneously lead to
the definition of a string ’<’=’ (containing a single
quote) instead of the envisaged sequence of characters.

Sequences of characters or groups of characters as consti-
tuents of symbols can be defined by exploiting the <itera-
tion_option> alternative. In any case, the body describing
the ?lements of the sequence is enclosed in brackets (’[’
and ’]’).

An option, i.e. a sequence of O or 1 instances of the
body, is specified by given nothing else but the body
enclosed in brackets. To denote a sequence of 0 or more
instances of the body the bracketed body is preceded by an
asterisk symbol. Besides, upper and lower limits of the
number of instances may be expressed by a range specifica-
tion.

The form ’*n-m[...]’ specifies that at least n instances
of ’...’” are needed and at most m instances are allowed to
form a sentence. Any of the two limit specifications may
be omitted at a time thus giving ’#n-[...]’ to express a
lower 1limit n and *#-m[...] to express an upper limit m

only. In the latter case a lower limit n=0 is assumed; if
no limits are given at all, the number of instances may
vary between 0 and infinity.

Equivalence Classes are used to group different represen-
tations for the same symbol. All members of such a class
are regarded as semantically equivalent and for all of
them the same pair (class code, relative code) is passed
to the parser.

Allbut expression are used when it is easier to describe
the complement of something then the ”something” itself.
Typically, strings and comments are described using allbut
expressions.

Constraints:

(1)

(2)

Names of symbol classes must be pairwise different and not
be equal to names of character classes.

Characters which have been declared ignorable may not
cccur in symbol class definitien.

16

(3) Names used in a symbol class definition may only be names
of nonignorable character classes or of textually precee-
ding symbol classes. In the latter case these classes must
not be constant nor contain an allbut expression.

(4) (Strings)
a) Strings may occur in constant symbol classes only.

b) Strings may not be concatenated with other regular
expressions.

c) For every string there must be a defined symbol class
decribing the pattern of the string specified. The
generated scanner will accept the pattern symbol class;
in the subsequent screening part, only, the appropriate
symbol class number of the specified string will be
assigned.

(5) A reqular expression describing a constant symbol class
has the following form:

(a) a character or the name of a character class

(b) a concatenation of elements of (a)

(c) a string

(d) an equivalence class formed of elements of (a)-(c)
(e) alternatives of expressions as constructed by (a)-(d)

(6) Semantic Equality may only be used in constant symbol
classes.

(7) The regular expressions in allbut-expressions have the
following form:

(a) a character or the name of a character class
(b) concatenations of elements of (a)
(c) alternatives of (a) and (b)

(8) A regular expression of the form R1 allbut (R2) may not.be
part of any other reqular expression (e.g. as part of a
alternative specification).

(9) Ignorable Symbol Classes must not be used as terminal
symbols in the syntax definition part of the POCO input as
they are absorbed by the scanner and will not eventually
be returned to the calling parser.

4. Declaration of Named Constants

The declaration of named constants allows for easy attributation and
facilitating the specification of types; thisz part of the GIL is equal

toe the syntax of the programming language PASCAL except for the decla-

17

ration of real-constants which is not supported.

<{constant_definition_part> ::= <empty> |
const <constant_definition>
{ ; <constant_definition> } ;
<constant_definition> ::= <identifier> = <{constant>
<constant> ::= <unsigned_number> |
<sign> <unsigned_number> |
<constant_identifier > |
<sign> <constant_identifier> |
<{string>
<unsigned_number> ::= <{unsigned_integer>
<unsigned_integer> ::= <digit> { <digit> }
<sign> iz + | -
<string> ::= ? <{character> {<character>} ’

<constant_identifier> ::= <identifier>

S5.Definition of Attribute Types:

The definition of attribute types is performed in correspondance to
the declaration of types in the programming langugage PASCAL. Only few
restrictions exist such as the definition of file types (which is not

allowed) or the omission of the real standard type.

<type_definition_part> ::= type <type_definition>
{; <type_definition>}
| <empty>

<type_definition> ::= <identifier> = <{type>
<type> ::= <simple_type> |
<structured_type> |
<pointer_type>
<{simple_type> ::= <scalar_type> |
<subrange_type> |
<type_identifier>

<type_identifier> ::= <identifier>

18

<scalar_type> ::= (<identifier> {, <identifier> })
<{subrange_type> ::= <constant> .. <constant>

<structured_type> ::= <unpacked_structured_type> |
packed <unpacked_structured_type>

<unpacked_structured_type> ::= <array_type> |
<record_type> |
<set_type>

<array_type> ::= array [<index_type>
{, <index_type>} 1 of
<component_type>
<index_type> ::= <simple_type>
<{component_type> ::= <{type>
<record_type> ::= record <field_list> end
<field_list> ::= <fixed_part> |
<fixed_part> ; <variant_part> |
<variant_part>
<fixed_part> ::= <record_section> {; <record_section>}
<record_section> ::= <field_identifier>
{, <field_identifier>} : <type> |
<empty>

<variant_part> ::= case <tag_field> <type_identifier>
of <variant> {; <variant>}

<tag_field> ::= <field_identifier> : | <empty>

<variant> ::=z <case_label_list>

6. Declaration of Semantic Actions:

Semantic actions are declared as interface procedures of semantic

modules; the PASCAL-m module concept is used. Inherited attributes are

denoted as value parameters, derived attributes as var parameters in

the usual sense of the programming language PASCAL.

will present the full syntax of the PASCAL-m language extension as

19

a matter of completeness. Note, however, that in the GIL all modules

have to be declared as external, i.e. as is separately compiled mo-

dules.
<module declaration> ::= module <module identifier> j;
{interface part>
<{implementation part>
<{interface part> ::= interface

<constant definition part>
<type definition part>
<procedure/function heading>
{<procedure/function heading>}

<implementation part> ::= implementation <block>

In the interface part of a module the semantic action procedures of
the attributed grammar may be declared. Note that (normally) at least
one interface procedure must be specified, otherwise the module might
be useless as its internally declared data cannot be accessed from
outside. In this case these data can only be accessed during the
execution of the module body which will take place automatically on

entering a block to which the module is declared local.

For a more detailed description of the module concept cf. the descrip-

tion of PASCAL-m programming language.

A module may be declared in a PASCAL block according to the following

rule:

<block> ::= <label declaration part>
<constant definition part>
<type definition part>
{variable declaration part>
<{module declaration part>
<procedure and function declaration part>
<{statement part>

and

20

<module declaration part> ::= { <module declaration> ; }

Modules may be declared forward to allow for intermodule references.
The way to express this feature corresponds to the forward declaration

of PASCAL procedures:

<{module declaration> ::= module <module identifier> ;
<interface part>
forward

A module may be declared external according to the following rule:

<module declaration> ::= module <module identifier> ;
<interface part> use

This allows for separate compilation of modules. The corresponding

rule in PASCAL-m is:

<compilation unit> ::= <program> | <module>

<{module> ::= <{module declaration>
{; <module declaration>} .

7. Definition of the Grammar Axiom:

<axiom_definition> ::= axiom <nonterminal>

<nonterminal> ::= <identifier>

8. Specification of the Productions of the Attributed Grammar:

{production_definition> ::= productions <{production>
{ <production> }

Productions are written in van Wijngarden notation, i.e. each produc-

21

tion is terminated by ”.”, alternatives to a production are separated
by ”;”, the elements of an alternative are separated by ”,”. Between

the left hand side of a production and its right hand side stands an

”.”
. .

<production> ::= <left_side> : <right_side> .
<left_side> ::= <nonterminal> { <lhs_attributes>}
<lhs_attributes> ::=z (<attribute_group>
{; <attribute_group> })
<attribute_group> ::= <inh_attribute_group> |
<der_attribute_group>
<inh_attribute_group> ::= <attribute_list> | <empty>

<der_attribute_group> ::= var <attribute_list> | <empty>

Note that inherited (derived) attributes are denoted as value (var)
parameters in the sense of the programming language PASCAL; this is a

concession to more notational uniformity.

<attribute_list> ::= <attribute_identifier>
{ , <attribute_identifier> }
: <type identifier>

In correspondance to a PASCAL procedure call, an attribute type is
specified by giving the name of a declared type. An explicite type

specification is not possible.

<right_side> ::= <alternative> {; <alternative>}

<alternative> ::= <alt_element> { , <altelement> } |
<empty>

<alt_header> |
<alt_header> (<rhs_attribute>
{ , <rhs_attribute> })

<alt_element> ::

<alt_header> ::= <nonterminal> | <terminal> |
call <{sem_action>

22

Note: The use of the call symbol is redundant and is included

reasons of improved readability, only.

<{sem_action> ::= <procedure identifier> |
<procedure identifier> (<actual_parameter>
{ , <actual_parameter> })
<actual_parameter> ::= <attribute_identifier>
<attribute_identifier> ::= <identifier> |
<constant_identifier>

<rhs_attribute> ::= <attribute_identifier>

<empty> ::=

Notes:

(1)

(2)

(3)

The use of name constants on attribute positions or parameter
positions in semantic action calls is allowed only if they
are used on derived positions of the rule’s left hand side or
inherited positions on the rule’s right hand side.

No Inherited Attributes are allowed to be associated with the
underlying CFG’s axiom,

Each Derived Attribute associated with the left hand side
nonterminal must be assigned a value, i.e. must appear on
on derived position of the rule right hand side.

23

for

3. POCO Generator Options:

There exists a wide range of options which may be used to alter the
generation process or to influence the amount of generation lists and

diagnostics.

An option is specified as a pseudo-comment according to the following

format:

<option_spec> ::= (#$ <option_list> =)

<option_list> ::= <option> {, <option> } |
<empty>

<option> ::= <option_id> + | <option_id> - |
<option_id> <opt_number>

<opt_number> := ’0’ | *1’ | *2* | '3’ | *&’

where ’4’ stands for : option set, '-’ option is not set; option

numbers are evaluated only if given with the ’L’-option (cf. below!).

For <option_id> there exist the following choices; we denote in paren-
theses the preset initial value of the option upon start of the gene-

rator:

: List Input

: Generate Cross Reference List

: Generate Scanner

: Generate Parser

: Generate Compile Time Attribute Evaluation

: Optimize Generated Compiler Modules

: List Internal Tables

: List Additional Generation Values

: Generate Modules from Internal Data Structure
: Pretty Print Options (may lead to a lot of paper)
: Print AG-Transformed Grammar

: Generate Parser Tables, not Code

+

P

[I | [

DONOOHO > DUV X

e e R
]

e e N N N S s N N s N N
.

24

Ex le:

The option specification

(*$L+,P+,C-%)

will lead to
L + : Complete Input Protocol list
P + : Generation of an LALR(1l) - Parser

C - : without generating PASCAL-m source code
for the generated Parser module.

List Option Specials:

As the lists produced by the generator tend to be rather bulky the
user is free to specify more precise list options. This is achieved by
giving an ’L’-option with a subsequent option_number. The option

numbers habe the following meaning:

LO : No lists at all (same as L-)

L1 : List generator input only

L2 : List Scanner Generator Output only

L3 : List Attribute Evaluator Generator Output only

L4 : List Parser Generator Output only

Note that any number of these choices can be given, thus
$L1,L4 : will produce input and parser generator lists

$L1,L2,L3,L4 : means the same as L+

Note:

The wuser may use capital or lower case letters for any option identi-
fication; this applies to all available options.

25

4. POCO System Operating Procedures.

The

the BS2000 operating system as well as the VAX 11/780 under the Berke-

ley

Operating procedures are rather simple, but do differ somewhat as will

be explained in detail. We will consider the POCO compiler generator’s

POCO system can be used on the Siemens 7561 machine running under

UNIX operating system.

operating procedures only.

The

(1)

(2)

(3)

(4)

following general conventions hold:

The POCO generator operates on three different files, each of
them being of type TEXT in the normal Pascal sense.

File #1 (internally assigned to the file variable ’input’) is
used as input file and must contain the specification of a
programming language for which a compiler is to be generated.

File #2 (interally assigned to the file variable ’output’) is
used as a list file documenting the generation process and
including a readable version of the generated compiler compo-
nents. As most of the time this file will be rather bulky cf.
the generator options decription for selection of less output.

File #3 (internally assigned to the file variable ’prr’) is
used as an output file for the generated compiler. This file
can immediately be fed into the Pascal-m compiler for transla-
tion. Note that the ’C+’ option has to be set in order to
obtain code on this file.

4.1. Running POCO on a Siemens B52000 installation.

The

stallation by means of a /D0 - procedure.

POCO system can most easily be accessed on a Siemens BS2000 in-

dure is given below:

26

An example of such a proce-

/PROCEDURE C, (XGRAM,&LIB="BSP.GRAMMATIK’),SUBDTA=&
/SYSFILE SYSDTA=(SYSCMD)

JEXEC $FMS

OPEN &LIB

SEL GRAM.&GRAM

END

/FILE #PRR.&GRAM,FCBTYPE=SAM,LINK=PRR
JFILE #LIST.&GRAM,FCBTYPE=SAM,LINK=0UTPUT
/FILE GRAM.&GRAM,LINK=INPUT

/EXEC $KI.POCO

/RELEASE INPUT

/RELEASE OUTPUT

/RELEASE PRR

/STEP

/ER GRAM,&GRAM

/ENDP

A user may practically access the POCO system by giving the

following command:

/D0 KOM.GEN,name,LIB=bsp.eingabe

with:
name being the suffix in GRAM.name
a deck in a SIEMENS FMS-System file
bsp.eingabe being a SIEMENS FMS-System file

bearing GRAM.name as a deck
Using the /DO-procedure given above the following List- and Code-Files
will be created:
#LIST.name List - File
#PRR . name Code - File (name is the suffix in

GRAM.name)

These files are allocated on the temporary file system and have to be

further processed before a /LOGOFF - command is given.

27

Note:

On the Universitaet des Saarlandes installation a predefined user

procedure can be accessed via
/D0 $ki.kom.gen, ...

with the parameters being the same as given above; the LIB-parameter
may be omitted if it is the same as the predefined in the /DO-proce-

dure.

4.2. VAX 11/780 Operating Procedures.

On a VAX 11/780 installation running under Berkeley UNIX the POCO

system can be accessed by issuing the following command:

% POCO gram.name list.name code.name

with:

gram.name POCO input file

list.name protocol file

code.name output file; holds a generated compiler
Note:

(1) File access paths must (of course) be fully specified.

(2) The names of all files can be freely chosen.

28

S. Example Input to the POCD System:

The following example is a legal (however simple) input to the

POCO compiler generating system:

(#$L+, X+,5+,0+,C+,A+,P+,G+,7-%)

(# Options selected:

L+ : List Input and Generator Report
X+ : Cross Reference List of symbols
S+ : Generate Scanner
A+ : Generate Compile Time Attr. Comp.
P+ : Generate Parser
O+ : Optimize Parse Tables
C+ : Generate PASCAL-m Code
G+ : List Transformed Grammar
Z- : No Pretty Print

*)

LANGUAGE AREXS

TERMINALS
(* Character Class Definitions:)
BU = A’ - '7"; { letter character class }
1 = '0’ - ’9’; { digit character class }
AST = %7,
PLUS = '+’
MINUS = ’-"
RKA = {7 .
RKz ="') ;
EQU = ’="
DVD z M
(» Symbol Class Definitions:)
1+ ID = BU *-7[(BU|ZI)] ; { identifier: up to 8 characters,
2 ADDOP = (PLUS|MINUS) ; the first one being a letter}
3 MULOP = (’»’|DVD) ;
4 RKAUF = RKA;
5 RKZU = RKZ;
6 + INTCONST = ZIx[ZI] ; { integers: any number of digits }
7 EXPOP = AST AST ;
8 RELOP = EQU ;
99 - COMMENT = DVD AST ALLBUT (AST DVD); { /% ... %/ is ignor. }
(» some dummy const/type decl. x)
CONST EINS = 1;
ZEHN = 10; MZEHN = -ZEHN;

TYPE TYPEART = (INT,REEL);
BSPTYP = ARRAY[MZEHN:ZEHN] OF CHAR;
MODULE M1;
INTERFACE
PROCEDURE GETTYP(IDNO : INTEGER; YAR TYP : TYPEART);
PROCEDURE CHECKTYP(TYP1,TYPZ : TYPEART; VAR TYP : TYPEART);
USE;

29

AXIOM AREX
PRODUCTIONS

AREX (VAR TYP : TYPEART) : AREX (TYP1), ADDOP, TERM(TYP2),
CALL CHECKTYP (TYP1,TYP2,TYP);
TERM(TYP).

TERM (VAR TYP : TYPEART) : TERM (TYP1), MULOP, FACTOR(TYP2),
CALL CHECKTYP(TYP1,TYP2,TYP);
FACTOR(TYP).

FACTOR (VAR TYP : TYPEART): FACTOR(TYP), EXPOP, INTCONST;
FACTOR(TYP), EXPOP, RELOP, INTCONST;

PRIMEX(TYP).
PRIMEX(VAR TYP : TYPEART): ID(IDNO), CALL GETTYP(IDNO,TYP);
RKAUF ,AREX(TYP),RKZU.
FINIS
Note:

The user is not restricted to use capital letters, but can freely
choose between lower or upper case. Internally, however, each

symbol will be converted to upper case.

30

Appendix A:

POCO Input Language Syntax Charts

POCO input

—>< LANGUAGE)—b lanquage identifier

TERMINALS

character class symbol class

—® " definition definition _l

TYPE

identifier |

identifier —G—b constant

Mo

module definiti

AXIOM

;

nonterminal identifier _____._____'

—OGRODUCTIONQ—“ producticn _’O_

character class

definition
character class char constant
name
symbai class
definition

» identifier reguiar
expression

@

Sele

32

regular
expression

b identifier

regular

expression

reqular

O
expression @ .

d

+@__,

regular
expression

»(string }

regular
expression

regular
ALLBUT expression —@

production

| nonterminal » left hand side

alternative

identifier attributes

left hand side
attributes

(ol attribute type
identifier identifier

alternative
constant
identifier
terminal
¥ T ™ identifier x_’@“’
attribute |__|
identifier
nonterminal
—® identifier

O
O,

34

procedure
CALL identifier

module
declaration

file
identifier

module
identifier

INTERFACE B,
decl part

type
decl part

proc/func |
T heading

USE

-,

—@PLEMENTATID&—O block >

Note:

Any construct for which no syntax chart is given is identical to the

programming language Pascal.

35

Appendix B:

N OO BN RN

101
102
103

.
.

104
105 :
106 :

107
108
109
110
111
112

..

Summary of POCO Generator Error Messages

: Error In Simple Type
: IDENTIFIER Expected; DO NOT USE PASCAL RESERVED WORDS!'
: "PROGRAM’ Expected

’}! Expected

: ’:’ Expected

: Illegal Symbol

: Error In Parameter List
: '0F’ Expected

: ’(’ Expected

: Error In Type

: ’[’ Expected

: ']’ Expected

: END’ Expected

: 7;’ Expected

: INTEGER Expected

: ’=’ Expected

: ’BEGIN’ Expected

: Error In Declaration Part
: Error In Field List

: 7. Expected

’»? Expected
’,? Expected

: Module Must Be Declared Local To Program.

'USED’ Or ’IMPLEMENTATION’ Expected
> INTERFACE’ Expected

: Module Interface Part Must Not Be Empty

* IMPLEMENTATION’ Expected

: Error In Constant

: 7:=? Expected

: 'THEN’ Expected

: 'UNTIL’ Expected

: ’D0’ Expected

: 'T0’/’DOWNTO’ Expected
: *IF’ Expected

: "FILE’ Expected

: Error In Factor

: Error In Expression

IDENTIFIER Declared Twice

Low Bound Exceeds High Bound
IDENTIFIER Is Not Of Appropriate Class
IDENTIFIER Not Declared

Sign Not Allowed

Number Expected

Incompatible Subrange Types

File Not Allowed Here

Type Must Not Be Real

Tagfield Type Must Be Scalar Or Subrange
Incompatible with Tagfield Type

Index Type Must Not Be REAL

36

113

114 :
: Base Type Must Be Scalar Or Subrange

115
116
117
118
119
120
121
122
123
125
126
127
128
129
130

131 :
: Strict Inclusion Not Allowed

132
133

134
: Type Of Operand Must Be BOOLEAN
: Set Element Type Must Be Scalar Or Subrange
: Set Element Types Not Compatible

135
136
137
138

139 :
: Type Of Variable Is Not Record

140
141
142
143
144
145
146
147
148

149 :

150
151

152 :
153
154
155 :
: Multidefined CASE Label
157 :
158 :
: REAL or STRING Tagfields Not Allowed
160 :
: Again Forward Declared
162 :
: Missing Variant In Declaration

156

159
lé6l

163

164 :
165 :
166 :

167

168 :
: Error In Base Set
170 :

169

171
172

177 :

Index Type Must Be Scalar Or Subrange
Base Type Nust Not Be REAL

Error In Type Of Standard Procedure Parameter

Unsatisfied Forward Reference

Forward Reference Type Identifier In Variable Declaration
Forward Declared; Repetition Of Parameter List Not Allowed
FUNCTION Result Parameter Must Be Scalar, Subrange Or Pointer
FILE Value Parameter Not Allowed

Forward Declared Function; Repetition Of Result

Missing Result Type In FUNCTION Declaration

Error In Type Of STANDARD FUNCTION PARAMETER

Number Of Parameters Does Not Agree With Declaration

Illegal Parameter Substitution

Result Type Of Parameter FUNCTION Does Not Agree With Declaration
Type Conflict Of Operands

Expression Is Not Of SET Type

Tests On Equality Allowed Only

FILE Comparison Not Allowed
Illegal Type Of Operand(s)

Type Of Variable Is Not ARRAY
Index Type Is Not Compatible With Declaration

Type Of Variable Must Be File Or Pointer

Illegal Parameter Substitution

Illegal Type Of Loop Control Variable

Illegal Type Of Expression

Type Conflict

Assignment Of Files Not Allowed

Label Type Incompatible With Selecting Expression
Subrange Bounds Must Be Scalar

Index Type Must Not Be INTEGER

Assignment To Standard FUNCTION IS Not Allowed
Assignment To Formal FUNCTION IS Not Allowed

No Such Field In This Record

Type Error In READ

Actual Parameter Must Be a Variable

Control Variable Must Not Be Declared On Intermediate Level

Too Many Cases In CASE Statement
Missing Correspondent Variant Declaration

Previous Declaration Was Not Forward
Parameter Size Must be Constant

Substitution Of Standard PROC/FUNC Not Allowed
Multidefined LABEL

Multideclared LABEL

Undeclared LABEL

Undefined LABEL

VALUE Parameter Expected

Standard FILE Was Redeclared

Undeclared External FILE

Assignment To FUNCTION Identifier Not Allowed Here

37

178

179 :
180 :
181 :

201
202
203
205
206

250
251

Multidefined Record Variant

X-0PT OF ACTUAL PROC/FUNC DOES NOT MATCH FORMAL DECLARATION
Control Variable Must Not Be Formal

Constant Part Of Address Out Of Range

Error In REAL Constant : Digit Expected
STRING Constant Must Not Exceed Source Line
INTEGER Constant Exceeds Range

: Empty STRING Not Allowed

252 :

254

255 :

300
301
302
303
304

INTEGER Part Of REAL Constant Exceeds Range

Too Many Nested Scopes of Identifiers

Too Many Nested PROCEDURES and/or FUNCTIONS

Too Many FORWARD References of PROCEDURE entries
Too Many Long Constants in this PROCEDURE

Too Many Errors in this Source Line

: Division By Zero

390 :

398
399

450

451
452

453

454
455

457
458
460
461

462
463
464 :
465 :
466

467
468
469

No Case Provided For This Value
Index Expression Out Of Bounds
Value To Be Assigned Is Out Of Range
Element Expression Qut Of Range

String Exceeds Max. Possible Length
Implementation Restriction
Variable Dimension Arrays Not Implemented

Symbol Class Defined Twice

Character Constant Expected

Illegal Neglect Symbol

Character Sets Must Be Ordered

Character Defined In More Than One Symbol Class
Illegal Symbol Class Mode

Regular Expression Table Space Exhausted

Character Class or Symbol Class Name Expected
Ignorable Symbols Not Allowed

Ignorable Symbol Class Name Not Allowed

Lower Bound Exceeds Upper Bound

Strings Not Allowed in Non-Constant Symbol Classes
Concatenation of Strings Not Allowed

Only Single Element Character Classes Allowed in Constant Symbol Class
Non-Constant Symbol Class Name Not Allowed

’-' Expected

: Constant Class Name Not Allowed

470 :
: Symbol Class Name Not Allowed in ’ALLBUT’ Argument
: Only Single Element Character Classes Allowed in ’ALLBUT’ Expression

471
472
473

474
: Semantic Equality Not Allowed in *ALLBUT’ Expression

475
476
477
478
480
483
484
495
499

write(output,’Constant String Used Twice
First Part of ’ALLBUT’ Expression Malformed

Strings Not Allowed in 'ALLBUT’ Expressions
Option Not Allowed in ’ALLBUT’ Expression

Options Not Allowed in Constant Symbol Classes

: No Nested ’ALLBUT’ Expressions Allowed

*ALLBUT’ Not Allowed in Constant Symbol Classes

Semantic Equality Not Allowed in Non-Constant Symbol Classes
To Many Nested Alternatives/Semantic Equalities

Malformed Constant Symbol Class Definition

Scanner Generator: Internal Table Overflow; Processing Aborted.
Malformed Regular Expression

38

501 :
502 :
503 :

504
510
511
512
513
520
530
550
560
566

620
621
636
637

*e s er s ss s s

T

..

638 :

639 :
640

641
660

697
698 :

699
701
800
810
811

For

Illegal Option Or Option Format

GL: Illegal Terminal Symbol Class Code

GL: Terminal Symbol Class Code Used Twice
Ignorable Symbol Class Not Allowed in Syntax Definition
GL: AXIOM Definition Expected

Axiom Must Not Have Inherited Attributes.
GL: ’;’ Expected

GL: ’,’/’;’/’.’ Expected

GL: ’PRODUCTIONS’ Expected

GL: Nonterminal Defined Twice

GL: ’FINIS’ Expected

GL: Undeclared Semantic PROCEDURE/FUNCTION
GL: Terminal Symbol Expected

Nonterminal Identifier Expected

Illegal Symbol in Alternative

Inconsistent Number of Terminal Symbol Attributes

Number of Attributes Does Not Agree With Left Side Nonterminal
Declaration

Inconsistent Number of Attributes For This Nonterminal

In Preceeding Input

Inconsistent or erroneous Attribute Usage in Preceeding Input
Inherited Attribute Did Not Appear on a Defining Position

(Some) Left Hand Side Derived Attributes Are Not Assigned a Value
GL: Undeclared Terminal

The Following Nonterminal Does Not Derive a Terminal String:

The Following Nonterminal Cannot Be Reached From the Axiom:

The Following NONTERMINAL does not have an Associated Rule:

SG: Error in Symbol Class Definition:

AG: The Following Attribute is not found on the Attribute Stack:
The Following Constant is not of adequate Type:

Constant on Derived Position of Procedure Not Allowed:

any other error number not mentioned above the following error

message will be displayed:

i

These

: POCO - Generator Error: Unspecified.

error codes are used for system maintenance purposes and will

not normally appear in user listings.

39

Literature:

[Deg_85] : W. Degenhard,
”Ein Datenbanksystem fuer Pascal-m Moduln”
Diplom-Arbeit, Universitaet des Saarlandes, 1985.

[Eul_82] : M. Eulenstein,
”An Extension to Pascal for Modular Programming and a
Proposal of a Conceptionally Machine Independent
Linker”
in: Langmaack/Schlender/Schmidt (Hrsg.),
"Implementierung Pascal-artiger Programmiersprachen”
Teubner-Verlag, 1982.

[Eul_84] : M. Eulenstein,
”POCO - Ein portables System zur Generierung portabler
Compiler”
PhD Thesis, Universitaet des Saarlandes, 1984.

[Eul_85] : M. Eulenstein,
"Pascal-m User Manual”
Universitaet des Saarlandes, forthcoming, 1985.

[Gro_85] : N. Gross,
"Direkte Generierung von Parser-Tafeln in Form von
p-Code Moduln”
Diplom-Arbeit, Universitaet des Saarlandes, 1985.

[Kep_85] : W. Keper,
"BISAM - Ein maschinenunabhaengiger Binder fuer
Pascal-m Moduln”
Diplom-Arbeit, Universitaet des Saarlandes, 1985.

[Man_85] : R. Mansmann,
"Direkte Generierung der Compile-Zeit-Attributberechnung
in Form von p-Code Moduln”
Diplom-Arbeit, Universitaet des Saarlandes, 1985.

[WRC_76] : R. Wilhelm, K. Ripken, J. Ciesinger et al.,
"Design Evaluation of the Compiler Generating System MUGL”
Proc. 2nd Intl. Conf. on Software Engineering,
San Franciscao, 1976.

40

	fb1985-20001
	fb1985-20002
	fb1985-20003
	fb1985-20004
	fb1985-20005
	fb1985-20006
	fb1985-20007
	fb1985-20008
	fb1985-20009
	fb1985-20010
	fb1985-20011
	fb1985-20012
	fb1985-20013
	fb1985-20014
	fb1985-20015
	fb1985-20016
	fb1985-20017
	fb1985-20018
	fb1985-20019
	fb1985-20020
	fb1985-20021
	fb1985-20022
	fb1985-20023
	fb1985-20024
	fb1985-20025
	fb1985-20026
	fb1985-20027
	fb1985-20028
	fb1985-20029
	fb1985-20030
	fb1985-20031
	fb1985-20032
	fb1985-20033
	fb1985-20034
	fb1985-20035
	fb1985-20036
	fb1985-20037
	fb1985-20038
	fb1985-20039
	fb1985-20040
	fb1985-20041
	fb1985-20042

