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Abstract 

This paper presents a new approach towards solving the combination and 
communication problems between different compiler tasks. As optimizations 
may generate as well as destroy application conditions of other tasks a carefully 
chosen application order is important for the effectiveness of the compiler system. 
Each task is solved by exactly one implementation (engine) and is characterized 
by its input-output behaviour and an optional heuristics. The specification of 
all tasks in this manner allows the generation of distributed supervisors for the 
whole compilation system. The result is a clear semantics of the compiler be­
haviour during compilation and the separation of algorithm and communication. 
Software engineering advantages are the easy integration of independently devel­
oped parts and the reusability of code. The flexibility of such a compiler system 
results ill high portability even across hardware architectures and topologies. 

IFuoded by the ESPRIT Project #5399 (COMPARE) 
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1 Introduction 

The ESPRIT project #5399 COMPARE (Compiler Generation for Parallel Architec­
tures) aims at optimizing compilers for different source-target combinations with spe­
cial emphasis on instruction level parallel targets. The currently chosen source lan­
guages are C, Fortran, ML and a parallel version of Modula II, Modula-P. As targets 
are envisioned the MIPS 4000, the 68040, the SuperScalar SPARC (Viking) and the 
T9000 processor. A new compiler organization (CoSy) has been designed and im­
plemented. It is based on a modularization of compilers into engines(see [17]), which 
each solve a certain subtask of compilation. Engines have explicitly specified input and 
output data and no side effects. This organization allows to easily configure a compiler 
out of existing or newly written/generated engines and to integrate new engines into 
an existing compiler. In addition, it provides for portability across host topologies. We 
believe, that this approach to the reuse of software is not confined to compilers, but 
that it can be used in other software architectures. 

A collection of engines, in particular middle end engines in optimizing compilers, may 
have a quite complex or even cyclic dependence relation. This represents the experience 
of compiler writers, that some optimization enables another optimization, which in turn 
enables another or an earlier used optimization. 

Semantically, the optimizer loop is represented by cyclic dependences between engines. 
The computation of this loop needs a way of detecting termination, in our case im­
plied by convergence of the states of the compiler's data structures. Our approach is 
generative; a functional specification of the input-output behaviour on the compiler's 
data structures is given for all engines. Taken together, the engines' specification form 
a recursive system corresponding to the above loop. 

The implementation, however, is not functional but imperative; the compiler works on 
its data structures destructively. This necessitates a synchronization scheme between 
engines, which guarantees the correctness of the implementation with respect to the 
functional specification. In our case, the correct cooperation of the engines is implied 
by requiring the consistency of the data structures between engine activations. The 
space of possible engine cooperation schemes satisfying the consistency requirements 
is still very big. Consecutive activations of the same engine without effect on the data 
structures would be a correct, but undesirable case. In a next step, compilation speed is 
increased by chosing scheduling strategies minimizing engine activations and avoiding 
redundant computations. Specified heuristics are used for that purpose. 

The activation of engines and their cooperation on the compiler's data structures is 
controlled by what is called supervision. 

An engine description compiler (EDC) generates a supervisor envelope around each 
engine code from its specification, which guarantees the coordinated access to the data 
structures. This is called distributed supervision. 
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The supervisor may include tests for convergence and for termination in the case of 
cyclic dependences. 

Different supervisors can be generated for different host topologies. Currently, uniproces­
sor and shared memory multiprocessor hosts are supported. On the latter, only engine 
level, coarse grain parallelism is implemented. Data parallel and pipelined compiler 
organizations are subject of ongoing research. 

2 Dependences between Compiler Engines 

A CoSy compiler consists of a collection of engines together with a set of data struc­
tures. Engines may be activated in many different orders, sequentially or in parallel. 
Not all such orders make sense. Reasonable activation orders can be specified by a 
dependence relation on the set of engines and the set of data structures. This relation 
defines a bipartite graph. In general, an engine can have three different access methods 
011 a data structure: produce, use and modify. use dependences always go from data 
structures to engines and modify, produce edges from engines to data structures. 

iVlodify dependences are critical for the scheduling of compiler engine activations; when 
an activation of engine x has modified data structure y, other engines (transitively) 
depending on y may have to be rescheduled. Thus, modify dependences cause the well 
known phase ordering problem in compiler construction (also called optimizer loop). 
A clever rescheduling strategy reduces the necessary amount of recomputations to 
(nearly) a minimum. 

We now formally define the dependence graph. This graph is the starting point for the 
above mentioned analyses, the optimization of recomputations, and the generation of 
supervision code. 

Definition: 1 (engine dependence graph) 
An engine dependence gmph is a bipartite gmph EDG = (V,E). V consists of the set 
of engines and the set of data structures accessed by these engines. E consists of the 
following (typed) edges: 

modlf'¥ 

• e -+ d, if engine e modifies data structure d 

produee 

• e -+ d,- if data st"ucture d is produced by engine e 

• d :: e, if data structure d is used by engine e 

The engine dependence graph summarizes all information necessary for the generation 
of correct synchronization. Not all possible EDG's can be given a semantics, but there 
is a useful subset of such graphs. A well defined EDG is an EDG with the following 
properties: 

4 



1. any data structure has exactly one incoming produce edge; that means each data 
structure is produced by exactly one engine. Section 10 discusses a possible 
removal of this restriction. 

2. an engine e producing data structure d is not specified as using or modifying d. 

3. there exist no produce-use cycles. 

4. An engine e, modifying a data structure d, is also specified as using d. 

We will now give an example demonstrating a simple compiler (without code genera­
tion). We assume nine engines with the following input-output behaviour. 

Example: 1 The functionality of the compiler engines is as follows: 

• Scan: It implements the lexical analysis, i.e. the transformation of the Character 
Stream of a source program into a Token Stream using a finite state automaton. 
It is generated from a specification of regular expressions (see [IJ,[17]). 

• Parse: It implements the syntactical analysis of a source program and produces 
the Syntax Tree from the Token Stream. It is generated from a parser specifica­
tion (see [1 J, [17]). 

• ControlFlow: It constructs the (interprocedural) Control Flow Graph from the 
Syntax Tree. An introduction to the theory of control flow graphs can be found 
in [6J and [2J. 

• DefUse: It produces the Def-U se sets from the Syntax Tree. 

• Live: This engine implements dead variable elimination (see [6]). It modifies the 
Syntax Tree using the Control Flow Graph. 

• ModVars: computes the (upper approximative) set of variables that may be mod­
ified by a procedure call. It propagates the Def-Use sets over the call graph (local 
data structure of that engine). It uses the Syntax Tree, Def-Use Sets and produces 
the Mod-Var sets. 

• ConstProp: computes the sets of constant variables, Constant sets, by using 
the Control Flow Graph, the Def-Use sets and the Mod-Var sets (i.e. inter­
procedural) . It implements a slightly modified algorithm of [3J. 

• ConstFold: The engine modifies the Syntax Tree replacing expressions known to 
have constant values by their value, which is computed by an integrated inter­
preter of the language. It uses the Constant sets and the Control Flow Graph. 

• TreeSimpl modifies the Syntax Tree according to some specified (syntactical) 
transformation rules. 
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The engine dependence graph of that scenario with the formerly mentioned engines 
and data structures Character Stream, Token Stream. Syntax Tree, Control Flow 
Graph. Constant sets. Hod-Var sets and Def-Use sets is given in Figure 1. The 
solid boxes denote data structures. The engines are drawn using ellipses. 

After specifying the access methods for each engine, we can deduce a useful kind of 
dependence between engines. We say, an engine e2 is true dependent on another engine 
e" if there is a produce edge from e, to a data structure d and a use edge from d to 02. 

The engines an engine e is true dependent on are defined by: 
proo;ha_ UN 

PU(e) = { e' I 3 an edge e' -+ d and d -+ e} 

The true dependences define a useful partial order on the engines; the phase ordering 
problem for this special compiler consists in finding a sequence of engine activations 
that does not violate this partial order. This sequence is in close relationship with at 
least one possible compiler. 

The partial order limits the possible amount of (coarse grain) parallelism in a compiler. 
It is in sequential compilers artificially completed to a total one by the ordering of engine 
calls. 

3 The Abstract Framework 

We will now give the theoretical background for the phase ordering problem. For­
mally the optimal translation from a source to a target language can be defined as a 
minimization problem. 

Let e" ... , e. be the set of engines available in a compiler system. Let D" ... , D/ be 
the types of the used data structures (mainly the intermediate representations together 
with data flow sets). Two types are considered as special namely D .. the input and Do, 
the output type of the compiler system. Traditionally, D; is the source language (to 
be translated) and Do is the machine language of the target computer. Each engine ej 
of the compiler performs a function: 

!O;: D, x ... X D/ -+ D, x ... X D/ , with 

,v: E D.,i E {1,2} 

To determine the quality of the produced data structures, there must exist cost func­
tions gr : Dr -+ N. They allow to speak of better code, smaller control flow graphs, 
etc. 

The supervisor or control code should guarantee that the result r of the compilation 
process for input sis: 

r =g;;'(MIN"EDo {go(r') I (_, ... ,r', ... ,_) = (h, 0 ..• 0 h.) (_, ... ,s, ... ,_)}) 
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Def-Use seta 
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Constant sets 

produce --------> 
use • 
modify ...... .. ............. ,.. 

The symbol CF denotes the ConstFold engine and CP the ConstProp engine. 

Figure 1: Engine Dependence Graph of our Example 
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The h" ... , h. are a sequence of engine activations (reasonable activation orders). The 
sequence is not allowed to violate the true dependence relation. Furthermore the num­
ber k should be minimal for the compilers to be efficient, i.e. fast. There exist some 
heuristics that helps to decrease the length of the sequence (k). The following section 
presents a method to specify the heuristics as well as an application to our example. 

4 Heuristics 

The system part controlling the activation of engines is called the supervisor. In our 
approach, the supervisor is generated from specifications. In the given example, the su­
pervisor may select between several possible engines. The ordering between a constant 
folder (ConstFoltI) and the tree simplifier ( TreeSimpQ is not clear from the dependences. 
Both of them may modify the syntax tree. The compiler writer knows that a constant 
folder should work before the tree simplifier. For example, if one transformation rule 
of the tree simplifier describes the pruning of a constant conditional if true then s, else 
S2 fi into s" then the constant folder may produce such a conditional by evaluating a 
constant expression. The supervisor generator should allow the compiler integrator to 
specify such hints. These hints are normally called heuristics and are dependent on the 
incorporated engines. Vie introduce a priority relation between engines. The semantics 
of an element (e" e2) is as follows; when some engines are waiting at a data structure, 
the selection is according to the priority relation; a minimal element of that relation 
is chosen, if one exists. Otherwise an engine is chosen nondeterministically. For our 
example we give the priority relation': 
ConstFold P~' TreeSimpl, ConstFold P~' Live and Live P~' 
TreeSimpl. Any sequence of engine activations (h" ... , h.) describing the runtime 
behaviour of the compiler should also not violate the priority relation to guarantee the 
efficiency. 

The priority relation is used by the generator in the following way. In any static 
case where the generator has to make a choice between two engines it inspects the 
priorities to select one first, in any dynamic case the generator inserts code that does 
the desired choice. That means for our example, if there are choice points in the 
supervisor generator, it generates code such that the constants are folded first, then 
the dead variables are eliminated and afterwards the tree transformations are done. 

5 The Concept of Distributed Supervision 

First we want to define what are the two tasks of supervision. The more important 
task is to guarantee the correct cooperation of engines. We assume the correctness 

1 1 ( )fh .. I··d P".'''') an e ement et, e2 0 t e pnonty re atlon IS fawn el - e2 
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of the incorporated engines (correct algorithms). The second one is to increase the 
compilation speed. 

To achieve these two goals, we use the two relations defined in the previous section. 
The engine dependence graph expresses the correctness constraints and the priority 
relation contains the heuristics for the efficiency. 

In general, the code for the scheduling of such a pool of engines can be distributed 
among the engines or it can be kept and executed in a centralized way. The distri­
bution of the code results in more efficient compilers because the distribution of the 
control code over the engines results in less shared data structures and therefore in less 
synchronization code and overhead at runtime. 

In distributed supervisors, any engine (Le. the implementation of a compiler task) will 
be surrounded by an envelope doing the synchronization with other engines on the 
compiler data structures. That envelop has two major tasks. First, it checks whether 
an engine can be executed; it implements access to all needed structures. Secondly 
the supervisor guarantees the data consistency; we say a data structure is consistent, 
if the uata structures it is produced from have not changed after d was computed and 
if these are also consistent. This definition of consistency covers two different tasks; 

• Correctness 
Engines produce versions of data structures from versions of other data structures. 
If an engine e accesses two data structures d" d2 that are (transitively) dependent 
on a same structure d then the version number on which d. and d2 are based has 
to be the same. 

• Efficiency 
If an engine e want to access a data structure d and it is known to the system that 
d may change (because a modifier has announced the access to d or an engine 
works on a data structure d is dependent on) then the run of e should be delayed 
until the work has been finished on d. 

The correctness requires an accounting of data structure versions. An engine is only 
allowed to be activated if the data structures it is based on, are consistent. We define 
a consistency check in section 7, which solves both tasks. This definition has the nice 
property that it reduces the number of activations, Le. it increases the speed of the 
compiler. 

The code of an engine will remain unchanged by the synchronization generator. There· 
fore, the engine can be replaced by another engine doing the same job but using a 
different algorithm, if the functionality is specified with our method and the algorithm 
is capable to support additional informations (explained in the next section). 

The supervisor envelope of an engine consists of a declaration of control data structures 
and control code. The control data structures can only be accessed by the control code; 
they are invisible from the engine. 
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We summarize our intention of a distributed supervisor; 

A distributed supervisor consists of control code and data that is distributed among 
the compiler engines to control the compilation process. The control code and data 
structures are invisible from the engines. The supervisor generator is not allowed to 
change the code of the supervised engines. 

We now explain how distributed supervision works (Figure 2 shows the generation 
process). The tasks that have to be solved for the correctness of the compilation 
process can be split into the sub tasks: 

• access to the data structures 

• consistency check (correctness part) 

• scheduling 

In the supervisor code as described in this paper, we use the following abstractions: 
First we need a mechanism triggering the coming into existence of a data structure; e.g. 
the control /l01V graph constructor cannot begin to work until the parser has built the 
syntax tree. The macro WaiLon_Existence{d) stands for a code sequence that performs 
this delay of an engine; it implements the waiting' until (the first version of) the data 
structure d is available. In sequential compilers, this is normally guaranteed by the 
total ordering of engine calls but in the case that all engines are started concurrently 
we need such a mechanism. 

Secondly, we need macros doing the synchronization on the different data structures. 
They are called GeL {Read-Modify- Write)-Access in the abstract code and imple­
ment the necessary synchronization. To that end, access rights to data structures are 
passed between engines. An engine tries to obtain the access rights of the needed 
data structures in the order write, modify and use that is explained together with the 
rescheduling of engines at the end of this section. 

If an engine has obtained the access rights to some data structures it has to check the 
consistency of those structures as mentioned above. The macros consistency are doing 
that. 

Before and after a run of an engine, some administrative work has to be done, up­
dating local informations including the versioning of data structures. This is done by 
Store_ Versions before and by Update_ Versions after the activation of that engine. 

After the activation the access rights to the touched data structures have to be released 
by the engine. The macro Release_Access{ d) does the administrative work on the data 
structure d; that includes the scheduling of processes waiting on that structure. 

For the detection of the termination of the compilation (i.e. the convergence; see sec­
tion 6) we need additional mechanisms. The macro Terminate is used signaling local 

2the waiting concept (busy, suspend-resume, etc . ) is host architecture dependent, i.e. a parameter 
of the generator. 
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convergence for this engine, i.e. the last computation delivered the same results as the 
previous one. 

After a run of an engine it has to wait whether the activation of other engines requires 
an additional activation; WaiLon_Change(d) suspends the computation of that engine 
until a change occurs in used or modified data structures. 

New_Run signals to the termination detection, that a data structure it wants to use or 
modify has changed and that therefore the engine must be run again. 

For the efficiency of the resulting compiler the optimization of the general synchroniza­
tion mechanism as well as the use of the priority relation is important. It will influence 
the implementations of the Get-Access and the Release macros. Section 9 contains an 
improvement on the number of consistency checks. 

For every engine e the control data structures consist of: 

• one flag for any produced or modified structure d, indicating whether the current 
information has been changed since the last run of that engine: e_d_changed. 
These variables have to be set by the engine, i.e. the requirements on the engine. 

• a set of (integer valued) variables (for any used structure d) that stores the 
versions of the information used in the last activation: e_d_version. 

• a set of identifiers of shared memory segments containing the data structures that 
are accessed by that engine: e_d_shared. 

For any data structure d we have an additional shared variable d_version representing 
the current version number of that data structure and a shared segment d_shared 
that contains the data structure. We assume a mechanism }vI ap that links a segment 
identifier to a segment. It has to be supported by the host architecture. 

The generated supervisor guarantees that the scheduling of engine e does not violate the 
true relation. Engines contained in PU(e) are scheduled before e, and in competition 
for the access to data structures the set PUS( e) instead of PU (e) is used. The macros 
USE(e), MOD(e) and PRO(e) are denotations for the sets of used, modified and 
produced data structures of an engine e. 

The code of the distributed supervisor, produced from the engine dependence groph 
and the priority relation, for an engine e is given below in an abstract (imperative) 
language; it is the envelope for an engine e handling the synchronization with other 
engines. The distributed supervisor as entity consists of all such distributed parts 
together with one start sequence. This start sequence contains the code installing the 
engine activations and initializing the operating system interface. 

The used macros are explained later on in more detail. The case study in section 12 
gives details about a real application. 
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Gn~n~ ... 
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En~ne 1 
S ec 

: SUPERVISOR: 

[Q] 
Engine 1 

+ envelope 
En~ne n + envelope 

• 

En~ne n 
Spec 

D 
Control Data 

Host Description 

The supervisor generator takes the engines, the en~ne specifications and a description 
of the host architecture and produces the control code (engine envelope) together with 
the control data. The description of the host architecture contains the synchronization 
primitives. 

Figure 2: The Generation Process of Supervisor Code 

We need an additional (data structure) set for the abstract supervision code. The set 
USE'(e) is defined as the data structures that are only used; 

USE'(e) = USE(e) - MOD(e) 
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void synchr_engine_e; 
begin 
fo,each x E USE'(e) U MOD(e) U PRO(e) do 

Map(e_d_shared,d-shared}; 
end; 
fo,each x E USE'(e) U MOD(e) do 

WaiLon..Existence (x); 
end; 
while t,ue do 

fo,each x E PRO(e) U MOD (e) do 
e-x_changed = false; 

end; 
hadJ"un = false; 
fo,each x E P RO( e) do 

GeL Write_Access (x); 
end; 
fo,each x E MOD (e) do 

GeLModify_Access (x); 
end; 
fo,each x E USE'(e) do 

Get_ReatLAccess (x); 
end; 
fo,each x E USE'(e) U MOD(e) do 

if V (not consistent(x)) goto release; fi; 
end; 
had_Tun = t,ue; 
Store_ Versions(e}; 
let (db ... ,dn) = PRO(e) U MOD(e) in 

tel; 

(e_dt_changed, . .. , e_dn_changed) = activate..engine e; 
Update_ Versions( e_dt_changed, . .. , e..dn_changed); 

release: 

end; 

fo,eachx E USE'(e)UMOD(e)UPRO(e) do 
Release_Access(x ); 

end; 
if had_run then Terminate; fi; 
fo,each x E USE'(e) U MOD(e) 

WaiLon_Change(x}; 
end; 

if had_Tun then New_Run; fi; 

One task is still unsolved namely the rescheduling of processes. The problem arises 
if some engines have to wait on a data structure. The selection of these engines that 
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are allowed to continue works according to the following strategy. There exist three 
possible access methods: read, modify and write. We introduce the total ordering write 
< modify < read3• That has the following consequence. U there is one producer (or the 
producer) of that data structure in the waiting queue, let this one proceed. U there is 
no producer but at least one modifier then let one of these modifiers proceed. If there 
is no producer and modifier at all then let all the readers proceed. Note that there is 
no time criterion in it as in usual waiting queues, i.e. they are no queues but sets. The 
priority relation is used to select the right one in a set of possible choices, i.e. if there 
are more than one modifier a minimal element of the priority relation between engines 
is selected. The priority relation is also inspected, if there are concurrent calls to the 
GeL Write-Modify-Read.Access functions. 

6 Termination Detection 

We define the termination of the compilation process as the convergence of the engines 
on the data structures. In this sense the convergence is a sufficient condition for ter­
mination. The consequences of this termination concept are an additional constraint 
on the incorporated engines. In sequential compilers the convergence can be detected 
by a single boolean variable, but in the parallel scenario, the global termination de­
tection of parallel processes is more difficult. It can be based on the detections of 
local convergence of the involved engines. U no engine changes anything, then (global) 
convergence of the compilation process is reached. The requirement on the compiler en­
gines to compute the boolean flags, indicating whether there is a change in the touched 
data structure, allows the synchronization compiler to generate that code. However, 
this is a constraint on the implementation of the involved engines. 

For the detection of global convergence, the generator produces a shared variable #en­
gines that is initialized with the number of incorporated engines. On that shared 
variable we only have two (monitor) operations: Increment and Decrement (by one). 

The macro Terminate is implemented by the code sequence 

if not (V e_d._changed) 
then Decrement(#engines) 

fi 

The macro New_Run can be simply implemented by the Increment operation on the 
variable #engines. 

An engine using a data structure must be informed that there is a new version of that 
data structure. We need an additional control data structure storing the versions. 
This can be done with any data type having an equality operation and an operation 

3We call this ordering natural, because we have to produce data structures before we can access 
them. 
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producing a new element that has never been occurred before. We have chosen the data 
type integer wi th the usual equality. The other operation is chosen as the increment 
operation on the integers that has the necessary property. 

We now explain in detail how the versioning is done. Any data structure has, as 
mentioned above, a shared variable counting its current version of that structure 
(d_version). Any engine that uses or modifies that data structure has a variable stor­
ing the version of the data structures that has been used in the last activation. Before 
an engine activation, the macro Store_ Versions does the local update of the version 
numbers, i.e. 

Stor<-. Versions (e) = "IdE USE'(e) U MOD(e) 
eA_version = d_version; 

The access to any shared variable is protected either by a monitor function or a 
semaphore. 

After a successful run the local update is done as follows. The local information is set 
to the new version numbers, if there have been changes on the data structures. 

Update_ Versions(p_d1_changed, ... ,p_dn_changed) = 
Vi E l..n 

if e_d._changed then Increment(d._version) Ii; 

The variable had..run is used to distinguish in the part of the code after the label 
declaration whether there was an activation or only a consistency failure. In the latter 
case the termination detection has to be suspended until the next activation. 

7 Consistency 

The consistency check consists of a function call that may call consistency checks of 
other engines. A version of a data structure d is consistent (as mentioned before), ifthe 
data structures it has been produced or updated from have not clIanged since the last 
computation and if these data structures are consistent themselves. If dE PROD(e) 
then the consistency of d can be computed as follows 

consistency(d) = /\ (e...z_version = z_version /I consistency(z)) 
z E MOD(e) 

U USE'(e) 

The code first checks the considered data structure d and afterwards the consistency 
of the data structures that are used to produce the structures. 
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8 A Specification Language for Engines 

The input language of our engine description compiler was kept as simple as possible 
abstracting from the underlying host architecture. The specification of an engine in­
cludes the three kinds of possible access methods to data structures, namely produce, 
modify and use. The modify access specification implicitly also defines a use access. 
Furthermore it includes a specification method for the priority relation and some ad­
ministrative things like name of the file containing the engine and name of the function 
performing the algorithm (that is called in the supervision code). We omit the ad­
ministrative parts for simplicity reasons. As simple as the specification language is, 
it contains all necessary informations that is needed to generate correct and efficient 
supervision code for the compiler. The host architecture itself is abstracted by a library 
mechanism containing the machine dependent things like the implementation of syn­
chronization primitives and the data types for the control data. It cannot be specified 
in the current version. 

A source code optimizer can be specified by the following simple specification. This 
engine may change the syntax tree looking for some (syntactical) patterns and is more 
successful in finding such one, if a constant folder or a dead variable eliminator have 
produced subtrees that are matched by these patterns. 

Example: 2 (Specification of the tree...simplifier) 

ENGINE TreeSimpl IS 
MODIFIES 
PRIORITY LESS THAN 

END 

Syntax Tree 
ConstFold,Live 

The Appendix 1 contains the engine specifications of the example 1. 

9 Improvements 

Several improvements are possible because the generation of the distributed control 
code has knowledge about all engines and data structures at supervisor generation 
time. 

First we show that we can inspect the data dependence graph and reduce the amount 
of synchronization work at runtime. The presented consistency check may check a data 
structure more than once during the same check. The improvement of the consistency 
check only checks the necessary structures. 

The consistency check consists of a local check of the directly accessed data structures 
and a consistency check of other structures. These may include a check of structures 
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which are already checked. It can be computed from the engine dependence graph 
whether that is the case. The consistency check for a data structure d that is in 
PROD( e) can be reduced to 

consistency(d) = /\ e..z_vers.on - z_vers.on 1\ consistency(z) 
z E U'(e) 

where U(e)' is the set of used and modified structures on a slightly modified EDG. 
That EDG' = (V' ,E') is defined as follows: the vertices are not changed i.e. V' = V 
and the edge set E' is: 

E' = E \ {d ~ e EEl 3 If ~ e E E and 3 d ('M1m'd",I',dm)+ If and d f. If} 

We eliminate edges that results in useless synchronization by using the fact that they 
are already checked by other consistency checks. 

10 Conclusion and Future Work 

We have presented a new generative approach to the ordering of engines in compilers. 
For any engine the compiler integrator specifies the input-output behaviour and from 
these specifications distributed control code and control data are generated. It guar­
antees the data consistency of the data structures during the compilation process and 
the optimality of the result with respect to the incorporated engines. The compilation 
time however might be slightly suboptimal for some host architectures, because we rely 
on the implementation of the operating system primitives. 

The approach is also very interesting from the point of software engineering, because 
it allows the fast exchange of compiler engines without changing the other engines and 
the synchronization code manually. 

We have synchronized engines on the coarse grain level. The access methods access the 
data structures as one entity, which is not sufficient for massive parallel computers. We 
will investigate the granularity of synchronization. We are also working on a formal 
method for the specification of the data structures. 

Future work will concentrate on how to guarantee and detect termination of compilation 
as well as a more sophisticated deadlock prevention. 

The incorporation of incremental engines seems to play an important role for the effi­
ciency, i.e. the compilation time, and will be examined further, because they introduce 
additional constraints on the synchronization code as well as on the engines. 

We will also remove the restriction that a data structure can be produced only from 
one engine by introducing an additonal (priority) relation on engines producing that 
structure. 
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11 Related Work 

In general the attempts to parallelize compilers can be divided into two main direc­
tions. One tries to parallelize algorithms like scanning or parsing and is source language 
independent. One related work is [7]. The others parallelize existing sequential compil­
ers and are therefore source language and compiler dependent (as example [15]). The 
work of [11] goes that direction by handling different scopes in parallel and combining 
the results at the end. In [10], they use a similar appproach but construct a library 
of synchronizations primitives and modify the source code of the compiler engines by 
introduction of calls to those synchronization primitives. [16] define a meta language 
with synchronization primitives that allow to program the synchronization of engines 
by hand. In early works of [13] and [5], they define the concepts of a Module Intercon­
nection Language (MIL). The specification language consists of a similar input-output 
specification but is dependent on the implementation language of the modules, because 
it includes its type concept. 

Our approach is neither source language nor target language nor compiler dependent, 
but requires the availability of the compiler engines. Therefore we believe that it is 
also applicable in other areas than compiler construction. 

12 Case Study 

We have implemented the proposed generator (in ANSI C) and tested it on a shared 
memory architecture with eight processors running a UNIX operating system. The 
supervisor code can be generated either in ANSI C or plain C. We used data structures 
and operations for control code and data that are supported by the operating system 
(Sytem V primitives) . That decreases the efficiency, because we have an additional 
synchronization layer, however it results in a portable system. 

The engines are mapped to parallel processes and the scheduling of these is done by 
the operating system of the machine. 'vVe used counting semaphores as process com­
munication interface. The implementation of the additonal synchronization primitives 
is built on top of them. 

The synchronization primitives using semaphores only allow a simplified form of multi­
ple readers of data structures but exclusive modify and write access. The scheduling of 
the data structures is mapped on the normal scheduling of the operating system for the 
waiting processes; there we have an additonal time constraint due to operating system 
scheduling, which is in our case first in first out; the waiting processes are managed 
with queues and the control code is not able to respect (user defined) constraints in 
selecting one process. In this sense the ordering produce < modify < read is neglected 
as well as the priority relation. That does'nt results in wrong compilers but precludes 
further exploitation of parallelism. 
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The termination detection is done by an additional process checking the shared variable 
#engines. If that variable becomes zero the compiler processes are removed from the 
machine. 

All access function calls of an engine envelope are grouped in a critical section to 
prevent deadlocks (see [4]). 

We used our implementation to generate the supervisor for a superset (22 engines) of 
engines from our example. They optimize a toy language (subset of PASCAL) on the 
source level and transform it into a vector dialect of that language. 

Our prototype implementation is straightforward but gives strong reasons to believe 
that a sophisticated implementation will be quite a bit faster. 

As an indication for the ease of integration of new engines we may mention that the 
inclusion of the vectorizer cost only one man day. The time was mainly spent to adapt 
the (local) data structures of the vectorizer to the parallel machine. 

Summarizing the facts we believe that we gain two things using our method: 

• compiler become simpler to maintain and to port to other architectures; that is 
the software engineering aspect 

• compiler are faster; that is the efficiency aspect 

A Example Specification 

The following specification describes the structure of the compiler from example 1. 
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ENGINE Scan IS 
USES Character Stream 
PRODUCES Token Stream 
END 

ENGINE ControlFlow IS 
USES Syntax Tree 
PRODUCES Control Flow Graph 
END 

ENGINE CP IS 
USES Def-U se Sets, Control Flow Graph, 

Mod-Var Sets 
PRODUCES Constant Sets 
END 

ENGINE ModVars IS 
USE Syntax Tree, Def-U se Sets 
PRODUCES Mod-Var Sets 
END 

ENGINE TreeSimpl IS 
MODIFIES Syntax Tree 
PRIORITY LESS THAN Live,CF 
END 

B Time Measurements 

ENGINE Parse IS 
USES Token Stream 
PRODUCES Syntax Tree 
END 

ENGINE DefUse IS 
USES Syntax Tree 
PRODUCES Def-Use Sets 
END 

ENGINE CF IS 
USES Control Flow Graph, Constant Sets 
MODIFIES Syntax Tree 
END 

ENGINE Live IS 
USES Control Flow Graph 
MODIFIES Syntax Tree 
PRIORITY LESS THAN CF 
END 

In general, time measurements on parallel machines are more complicated than in the se­
quential case, because they are dependent on the task scheduling of the operating system. 
We have to measure the absolute time of the compilation process, but this is load dependent. 
The load of the system is not the same in the run of the parallel and the sequential compiler; 
we cannot compute the exact speedup. For these reasons we added the system load to the 
time table. It can be seen that the machine was heavily overloaded. The structure of the 
parallel compiler' we measured is shown in figure 3. We measured absolute time in seconds. 

I System-Load Parallel Sequential Speedup I 
13.46 1050 1720 1.64 
15.62 1574 2071 1.31 
21.62 1870 2969 1.58 

4extension of the example 
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Figure 3: The (simplified) engine dependence graph of the case study compiler; only 
the important engines are shown. 
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