
Generation of
Distributed Supervisors
for Parallel Compilers

Martin Altt
Georg Sandert

Reinhard Wilhelm

Technischer Bericht A01/93
Universitat des Saarlandes

FB 14 Informatik
6600 Saarbriicken

February 17, 1993

Abstract

This paper presents a new approach towards solving the combination and
communication problems between different compiler tasks. As optimizations
may generate as well as destroy application conditions of other tasks a carefully
chosen application order is important for the effectiveness of the compiler system.
Each task is solved by exactly one implementation (engine) and is characterized
by its input-output behaviour and an optional heuristics. The specification of
all tasks in this manner allows the generation of distributed supervisors for the
whole compilation system. The result is a clear semantics of the compiler be­
haviour during compilation and the separation of algorithm and communication.
Software engineering advantages are the easy integration of independently devel­
oped parts and the reusability of code. The flexibility of such a compiler system
results ill high portability even across hardware architectures and topologies.

IFuoded by the ESPRIT Project #5399 (COMPARE)

1

Contents

1 Introduction 3

2 Dependences between Compiler Engines 4

3 The Abstract Framework 6

4 Heuristics 8

5 The Concept of Distributed Supervision 8

6 Termination Detection 14

7 Consistency 15

8 A Specification Language for Engines 16

9 Improvements 16

10 Conclusion and Future Work 17

11 Related Work 18

12 Case Study 18

A Example Specification 19

B Time Measurements 20

1 Introduction

The ESPRIT project #5399 COMPARE (Compiler Generation for Parallel Architec­
tures) aims at optimizing compilers for different source-target combinations with spe­
cial emphasis on instruction level parallel targets. The currently chosen source lan­
guages are C, Fortran, ML and a parallel version of Modula II, Modula-P. As targets
are envisioned the MIPS 4000, the 68040, the SuperScalar SPARC (Viking) and the
T9000 processor. A new compiler organization (CoSy) has been designed and im­
plemented. It is based on a modularization of compilers into engines(see [17]), which
each solve a certain subtask of compilation. Engines have explicitly specified input and
output data and no side effects. This organization allows to easily configure a compiler
out of existing or newly written/generated engines and to integrate new engines into
an existing compiler. In addition, it provides for portability across host topologies. We
believe, that this approach to the reuse of software is not confined to compilers, but
that it can be used in other software architectures.

A collection of engines, in particular middle end engines in optimizing compilers, may
have a quite complex or even cyclic dependence relation. This represents the experience
of compiler writers, that some optimization enables another optimization, which in turn
enables another or an earlier used optimization.

Semantically, the optimizer loop is represented by cyclic dependences between engines.
The computation of this loop needs a way of detecting termination, in our case im­
plied by convergence of the states of the compiler's data structures. Our approach is
generative; a functional specification of the input-output behaviour on the compiler's
data structures is given for all engines. Taken together, the engines' specification form
a recursive system corresponding to the above loop.

The implementation, however, is not functional but imperative; the compiler works on
its data structures destructively. This necessitates a synchronization scheme between
engines, which guarantees the correctness of the implementation with respect to the
functional specification. In our case, the correct cooperation of the engines is implied
by requiring the consistency of the data structures between engine activations. The
space of possible engine cooperation schemes satisfying the consistency requirements
is still very big. Consecutive activations of the same engine without effect on the data
structures would be a correct, but undesirable case. In a next step, compilation speed is
increased by chosing scheduling strategies minimizing engine activations and avoiding
redundant computations. Specified heuristics are used for that purpose.

The activation of engines and their cooperation on the compiler's data structures is
controlled by what is called supervision.

An engine description compiler (EDC) generates a supervisor envelope around each
engine code from its specification, which guarantees the coordinated access to the data
structures. This is called distributed supervision.

3

The supervisor may include tests for convergence and for termination in the case of
cyclic dependences.

Different supervisors can be generated for different host topologies. Currently, uniproces­
sor and shared memory multiprocessor hosts are supported. On the latter, only engine
level, coarse grain parallelism is implemented. Data parallel and pipelined compiler
organizations are subject of ongoing research.

2 Dependences between Compiler Engines

A CoSy compiler consists of a collection of engines together with a set of data struc­
tures. Engines may be activated in many different orders, sequentially or in parallel.
Not all such orders make sense. Reasonable activation orders can be specified by a
dependence relation on the set of engines and the set of data structures. This relation
defines a bipartite graph. In general, an engine can have three different access methods
011 a data structure: produce, use and modify. use dependences always go from data
structures to engines and modify, produce edges from engines to data structures.

iVlodify dependences are critical for the scheduling of compiler engine activations; when
an activation of engine x has modified data structure y, other engines (transitively)
depending on y may have to be rescheduled. Thus, modify dependences cause the well
known phase ordering problem in compiler construction (also called optimizer loop).
A clever rescheduling strategy reduces the necessary amount of recomputations to
(nearly) a minimum.

We now formally define the dependence graph. This graph is the starting point for the
above mentioned analyses, the optimization of recomputations, and the generation of
supervision code.

Definition: 1 (engine dependence graph)
An engine dependence gmph is a bipartite gmph EDG = (V,E). V consists of the set
of engines and the set of data structures accessed by these engines. E consists of the
following (typed) edges:

modlf'¥

• e -+ d, if engine e modifies data structure d

produee

• e -+ d,- if data st"ucture d is produced by engine e

• d :: e, if data structure d is used by engine e

The engine dependence graph summarizes all information necessary for the generation
of correct synchronization. Not all possible EDG's can be given a semantics, but there
is a useful subset of such graphs. A well defined EDG is an EDG with the following
properties:

4

1. any data structure has exactly one incoming produce edge; that means each data
structure is produced by exactly one engine. Section 10 discusses a possible
removal of this restriction.

2. an engine e producing data structure d is not specified as using or modifying d.

3. there exist no produce-use cycles.

4. An engine e, modifying a data structure d, is also specified as using d.

We will now give an example demonstrating a simple compiler (without code genera­
tion). We assume nine engines with the following input-output behaviour.

Example: 1 The functionality of the compiler engines is as follows:

• Scan: It implements the lexical analysis, i.e. the transformation of the Character
Stream of a source program into a Token Stream using a finite state automaton.
It is generated from a specification of regular expressions (see [IJ,[17]).

• Parse: It implements the syntactical analysis of a source program and produces
the Syntax Tree from the Token Stream. It is generated from a parser specifica­
tion (see [1 J, [17]).

• ControlFlow: It constructs the (interprocedural) Control Flow Graph from the
Syntax Tree. An introduction to the theory of control flow graphs can be found
in [6J and [2J.

• DefUse: It produces the Def-U se sets from the Syntax Tree.

• Live: This engine implements dead variable elimination (see [6]). It modifies the
Syntax Tree using the Control Flow Graph.

• ModVars: computes the (upper approximative) set of variables that may be mod­
ified by a procedure call. It propagates the Def-Use sets over the call graph (local
data structure of that engine). It uses the Syntax Tree, Def-Use Sets and produces
the Mod-Var sets.

• ConstProp: computes the sets of constant variables, Constant sets, by using
the Control Flow Graph, the Def-Use sets and the Mod-Var sets (i.e. inter­
procedural) . It implements a slightly modified algorithm of [3J.

• ConstFold: The engine modifies the Syntax Tree replacing expressions known to
have constant values by their value, which is computed by an integrated inter­
preter of the language. It uses the Constant sets and the Control Flow Graph.

• TreeSimpl modifies the Syntax Tree according to some specified (syntactical)
transformation rules.

5

The engine dependence graph of that scenario with the formerly mentioned engines
and data structures Character Stream, Token Stream. Syntax Tree, Control Flow
Graph. Constant sets. Hod-Var sets and Def-Use sets is given in Figure 1. The
solid boxes denote data structures. The engines are drawn using ellipses.

After specifying the access methods for each engine, we can deduce a useful kind of
dependence between engines. We say, an engine e2 is true dependent on another engine
e" if there is a produce edge from e, to a data structure d and a use edge from d to 02.

The engines an engine e is true dependent on are defined by:
proo;ha_ UN

PU(e) = { e' I 3 an edge e' -+ d and d -+ e}

The true dependences define a useful partial order on the engines; the phase ordering
problem for this special compiler consists in finding a sequence of engine activations
that does not violate this partial order. This sequence is in close relationship with at
least one possible compiler.

The partial order limits the possible amount of (coarse grain) parallelism in a compiler.
It is in sequential compilers artificially completed to a total one by the ordering of engine
calls.

3 The Abstract Framework

We will now give the theoretical background for the phase ordering problem. For­
mally the optimal translation from a source to a target language can be defined as a
minimization problem.

Let e" ... , e. be the set of engines available in a compiler system. Let D" ... , D/ be
the types of the used data structures (mainly the intermediate representations together
with data flow sets). Two types are considered as special namely D .. the input and Do,
the output type of the compiler system. Traditionally, D; is the source language (to
be translated) and Do is the machine language of the target computer. Each engine ej
of the compiler performs a function:

!O;: D, x ... X D/ -+ D, x ... X D/ , with

,v: E D.,i E {1,2}

To determine the quality of the produced data structures, there must exist cost func­
tions gr : Dr -+ N. They allow to speak of better code, smaller control flow graphs,
etc.

The supervisor or control code should guarantee that the result r of the compilation
process for input sis:

r =g;;'(MIN"EDo {go(r') I (_, ... ,r', ... ,_) = (h, 0 ..• 0 h.) (_, ... ,s, ... ,_)})

6

I Character Stream I I Token Stream .. '

t ,'
CP~)/,'/cG-trOI-::;>
~v \

Edvara) 1-- '--=----r--~

1 \'\
Mod-Var sets I 0 eru0

--~--- --"",,-... -...
~

Def-Use seta

,
,./

~ , , , ,

Constant sets

produce -------->
use •
modify ,..

The symbol CF denotes the ConstFold engine and CP the ConstProp engine.

Figure 1: Engine Dependence Graph of our Example

7

The h" ... , h. are a sequence of engine activations (reasonable activation orders). The
sequence is not allowed to violate the true dependence relation. Furthermore the num­
ber k should be minimal for the compilers to be efficient, i.e. fast. There exist some
heuristics that helps to decrease the length of the sequence (k). The following section
presents a method to specify the heuristics as well as an application to our example.

4 Heuristics

The system part controlling the activation of engines is called the supervisor. In our
approach, the supervisor is generated from specifications. In the given example, the su­
pervisor may select between several possible engines. The ordering between a constant
folder (ConstFoltI) and the tree simplifier (TreeSimpQ is not clear from the dependences.
Both of them may modify the syntax tree. The compiler writer knows that a constant
folder should work before the tree simplifier. For example, if one transformation rule
of the tree simplifier describes the pruning of a constant conditional if true then s, else
S2 fi into s" then the constant folder may produce such a conditional by evaluating a
constant expression. The supervisor generator should allow the compiler integrator to
specify such hints. These hints are normally called heuristics and are dependent on the
incorporated engines. Vie introduce a priority relation between engines. The semantics
of an element (e" e2) is as follows; when some engines are waiting at a data structure,
the selection is according to the priority relation; a minimal element of that relation
is chosen, if one exists. Otherwise an engine is chosen nondeterministically. For our
example we give the priority relation':
ConstFold P~' TreeSimpl, ConstFold P~' Live and Live P~'
TreeSimpl. Any sequence of engine activations (h" ... , h.) describing the runtime
behaviour of the compiler should also not violate the priority relation to guarantee the
efficiency.

The priority relation is used by the generator in the following way. In any static
case where the generator has to make a choice between two engines it inspects the
priorities to select one first, in any dynamic case the generator inserts code that does
the desired choice. That means for our example, if there are choice points in the
supervisor generator, it generates code such that the constants are folded first, then
the dead variables are eliminated and afterwards the tree transformations are done.

5 The Concept of Distributed Supervision

First we want to define what are the two tasks of supervision. The more important
task is to guarantee the correct cooperation of engines. We assume the correctness

1 1 ()fh .. I··d P".'''') an e ement et, e2 0 t e pnonty re atlon IS fawn el - e2

8

of the incorporated engines (correct algorithms). The second one is to increase the
compilation speed.

To achieve these two goals, we use the two relations defined in the previous section.
The engine dependence graph expresses the correctness constraints and the priority
relation contains the heuristics for the efficiency.

In general, the code for the scheduling of such a pool of engines can be distributed
among the engines or it can be kept and executed in a centralized way. The distri­
bution of the code results in more efficient compilers because the distribution of the
control code over the engines results in less shared data structures and therefore in less
synchronization code and overhead at runtime.

In distributed supervisors, any engine (Le. the implementation of a compiler task) will
be surrounded by an envelope doing the synchronization with other engines on the
compiler data structures. That envelop has two major tasks. First, it checks whether
an engine can be executed; it implements access to all needed structures. Secondly
the supervisor guarantees the data consistency; we say a data structure is consistent,
if the uata structures it is produced from have not changed after d was computed and
if these are also consistent. This definition of consistency covers two different tasks;

• Correctness
Engines produce versions of data structures from versions of other data structures.
If an engine e accesses two data structures d" d2 that are (transitively) dependent
on a same structure d then the version number on which d. and d2 are based has
to be the same.

• Efficiency
If an engine e want to access a data structure d and it is known to the system that
d may change (because a modifier has announced the access to d or an engine
works on a data structure d is dependent on) then the run of e should be delayed
until the work has been finished on d.

The correctness requires an accounting of data structure versions. An engine is only
allowed to be activated if the data structures it is based on, are consistent. We define
a consistency check in section 7, which solves both tasks. This definition has the nice
property that it reduces the number of activations, Le. it increases the speed of the
compiler.

The code of an engine will remain unchanged by the synchronization generator. There·
fore, the engine can be replaced by another engine doing the same job but using a
different algorithm, if the functionality is specified with our method and the algorithm
is capable to support additional informations (explained in the next section).

The supervisor envelope of an engine consists of a declaration of control data structures
and control code. The control data structures can only be accessed by the control code;
they are invisible from the engine.

9

We summarize our intention of a distributed supervisor;

A distributed supervisor consists of control code and data that is distributed among
the compiler engines to control the compilation process. The control code and data
structures are invisible from the engines. The supervisor generator is not allowed to
change the code of the supervised engines.

We now explain how distributed supervision works (Figure 2 shows the generation
process). The tasks that have to be solved for the correctness of the compilation
process can be split into the sub tasks:

• access to the data structures

• consistency check (correctness part)

• scheduling

In the supervisor code as described in this paper, we use the following abstractions:
First we need a mechanism triggering the coming into existence of a data structure; e.g.
the control /l01V graph constructor cannot begin to work until the parser has built the
syntax tree. The macro WaiLon_Existence{d) stands for a code sequence that performs
this delay of an engine; it implements the waiting' until (the first version of) the data
structure d is available. In sequential compilers, this is normally guaranteed by the
total ordering of engine calls but in the case that all engines are started concurrently
we need such a mechanism.

Secondly, we need macros doing the synchronization on the different data structures.
They are called GeL {Read-Modify- Write)-Access in the abstract code and imple­
ment the necessary synchronization. To that end, access rights to data structures are
passed between engines. An engine tries to obtain the access rights of the needed
data structures in the order write, modify and use that is explained together with the
rescheduling of engines at the end of this section.

If an engine has obtained the access rights to some data structures it has to check the
consistency of those structures as mentioned above. The macros consistency are doing
that.

Before and after a run of an engine, some administrative work has to be done, up­
dating local informations including the versioning of data structures. This is done by
Store_ Versions before and by Update_ Versions after the activation of that engine.

After the activation the access rights to the touched data structures have to be released
by the engine. The macro Release_Access{ d) does the administrative work on the data
structure d; that includes the scheduling of processes waiting on that structure.

For the detection of the termination of the compilation (i.e. the convergence; see sec­
tion 6) we need additional mechanisms. The macro Terminate is used signaling local

2the waiting concept (busy, suspend-resume, etc .) is host architecture dependent, i.e. a parameter
of the generator.

10

convergence for this engine, i.e. the last computation delivered the same results as the
previous one.

After a run of an engine it has to wait whether the activation of other engines requires
an additional activation; WaiLon_Change(d) suspends the computation of that engine
until a change occurs in used or modified data structures.

New_Run signals to the termination detection, that a data structure it wants to use or
modify has changed and that therefore the engine must be run again.

For the efficiency of the resulting compiler the optimization of the general synchroniza­
tion mechanism as well as the use of the priority relation is important. It will influence
the implementations of the Get-Access and the Release macros. Section 9 contains an
improvement on the number of consistency checks.

For every engine e the control data structures consist of:

• one flag for any produced or modified structure d, indicating whether the current
information has been changed since the last run of that engine: e_d_changed.
These variables have to be set by the engine, i.e. the requirements on the engine.

• a set of (integer valued) variables (for any used structure d) that stores the
versions of the information used in the last activation: e_d_version.

• a set of identifiers of shared memory segments containing the data structures that
are accessed by that engine: e_d_shared.

For any data structure d we have an additional shared variable d_version representing
the current version number of that data structure and a shared segment d_shared
that contains the data structure. We assume a mechanism }vI ap that links a segment
identifier to a segment. It has to be supported by the host architecture.

The generated supervisor guarantees that the scheduling of engine e does not violate the
true relation. Engines contained in PU(e) are scheduled before e, and in competition
for the access to data structures the set PUS(e) instead of PU (e) is used. The macros
USE(e), MOD(e) and PRO(e) are denotations for the sets of used, modified and
produced data structures of an engine e.

The code of the distributed supervisor, produced from the engine dependence groph
and the priority relation, for an engine e is given below in an abstract (imperative)
language; it is the envelope for an engine e handling the synchronization with other
engines. The distributed supervisor as entity consists of all such distributed parts
together with one start sequence. This start sequence contains the code installing the
engine activations and initializing the operating system interface.

The used macros are explained later on in more detail. The case study in section 12
gives details about a real application.

11

Gn~n~ ...

......

En~ne 1
S ec

: SUPERVISOR:

[Q]
Engine 1

+ envelope
En~ne n + envelope

•

En~ne n
Spec

D
Control Data

Host Description

The supervisor generator takes the engines, the en~ne specifications and a description
of the host architecture and produces the control code (engine envelope) together with
the control data. The description of the host architecture contains the synchronization
primitives.

Figure 2: The Generation Process of Supervisor Code

We need an additional (data structure) set for the abstract supervision code. The set
USE'(e) is defined as the data structures that are only used;

USE'(e) = USE(e) - MOD(e)

12

void synchr_engine_e;
begin
fo,each x E USE'(e) U MOD(e) U PRO(e) do

Map(e_d_shared,d-shared};
end;
fo,each x E USE'(e) U MOD(e) do

WaiLon..Existence (x);
end;
while t,ue do

fo,each x E PRO(e) U MOD (e) do
e-x_changed = false;

end;
hadJ"un = false;
fo,each x E P RO(e) do

GeL Write_Access (x);
end;
fo,each x E MOD (e) do

GeLModify_Access (x);
end;
fo,each x E USE'(e) do

Get_ReatLAccess (x);
end;
fo,each x E USE'(e) U MOD(e) do

if V (not consistent(x)) goto release; fi;
end;
had_Tun = t,ue;
Store_ Versions(e};
let (db ... ,dn) = PRO(e) U MOD(e) in

tel;

(e_dt_changed, . .. , e_dn_changed) = activate..engine e;
Update_ Versions(e_dt_changed, . .. , e..dn_changed);

release:

end;

fo,eachx E USE'(e)UMOD(e)UPRO(e) do
Release_Access(x);

end;
if had_run then Terminate; fi;
fo,each x E USE'(e) U MOD(e)

WaiLon_Change(x};
end;

if had_Tun then New_Run; fi;

One task is still unsolved namely the rescheduling of processes. The problem arises
if some engines have to wait on a data structure. The selection of these engines that

13

are allowed to continue works according to the following strategy. There exist three
possible access methods: read, modify and write. We introduce the total ordering write
< modify < read3• That has the following consequence. U there is one producer (or the
producer) of that data structure in the waiting queue, let this one proceed. U there is
no producer but at least one modifier then let one of these modifiers proceed. If there
is no producer and modifier at all then let all the readers proceed. Note that there is
no time criterion in it as in usual waiting queues, i.e. they are no queues but sets. The
priority relation is used to select the right one in a set of possible choices, i.e. if there
are more than one modifier a minimal element of the priority relation between engines
is selected. The priority relation is also inspected, if there are concurrent calls to the
GeL Write-Modify-Read.Access functions.

6 Termination Detection

We define the termination of the compilation process as the convergence of the engines
on the data structures. In this sense the convergence is a sufficient condition for ter­
mination. The consequences of this termination concept are an additional constraint
on the incorporated engines. In sequential compilers the convergence can be detected
by a single boolean variable, but in the parallel scenario, the global termination de­
tection of parallel processes is more difficult. It can be based on the detections of
local convergence of the involved engines. U no engine changes anything, then (global)
convergence of the compilation process is reached. The requirement on the compiler en­
gines to compute the boolean flags, indicating whether there is a change in the touched
data structure, allows the synchronization compiler to generate that code. However,
this is a constraint on the implementation of the involved engines.

For the detection of global convergence, the generator produces a shared variable #en­
gines that is initialized with the number of incorporated engines. On that shared
variable we only have two (monitor) operations: Increment and Decrement (by one).

The macro Terminate is implemented by the code sequence

if not (V e_d._changed)
then Decrement(#engines)

fi

The macro New_Run can be simply implemented by the Increment operation on the
variable #engines.

An engine using a data structure must be informed that there is a new version of that
data structure. We need an additional control data structure storing the versions.
This can be done with any data type having an equality operation and an operation

3We call this ordering natural, because we have to produce data structures before we can access
them.

14

producing a new element that has never been occurred before. We have chosen the data
type integer wi th the usual equality. The other operation is chosen as the increment
operation on the integers that has the necessary property.

We now explain in detail how the versioning is done. Any data structure has, as
mentioned above, a shared variable counting its current version of that structure
(d_version). Any engine that uses or modifies that data structure has a variable stor­
ing the version of the data structures that has been used in the last activation. Before
an engine activation, the macro Store_ Versions does the local update of the version
numbers, i.e.

Stor<-. Versions (e) = "IdE USE'(e) U MOD(e)
eA_version = d_version;

The access to any shared variable is protected either by a monitor function or a
semaphore.

After a successful run the local update is done as follows. The local information is set
to the new version numbers, if there have been changes on the data structures.

Update_ Versions(p_d1_changed, ... ,p_dn_changed) =
Vi E l..n

if e_d._changed then Increment(d._version) Ii;

The variable had..run is used to distinguish in the part of the code after the label
declaration whether there was an activation or only a consistency failure. In the latter
case the termination detection has to be suspended until the next activation.

7 Consistency

The consistency check consists of a function call that may call consistency checks of
other engines. A version of a data structure d is consistent (as mentioned before), ifthe
data structures it has been produced or updated from have not clIanged since the last
computation and if these data structures are consistent themselves. If dE PROD(e)
then the consistency of d can be computed as follows

consistency(d) = /\ (e...z_version = z_version /I consistency(z))
z E MOD(e)

U USE'(e)

The code first checks the considered data structure d and afterwards the consistency
of the data structures that are used to produce the structures.

15

8 A Specification Language for Engines

The input language of our engine description compiler was kept as simple as possible
abstracting from the underlying host architecture. The specification of an engine in­
cludes the three kinds of possible access methods to data structures, namely produce,
modify and use. The modify access specification implicitly also defines a use access.
Furthermore it includes a specification method for the priority relation and some ad­
ministrative things like name of the file containing the engine and name of the function
performing the algorithm (that is called in the supervision code). We omit the ad­
ministrative parts for simplicity reasons. As simple as the specification language is,
it contains all necessary informations that is needed to generate correct and efficient
supervision code for the compiler. The host architecture itself is abstracted by a library
mechanism containing the machine dependent things like the implementation of syn­
chronization primitives and the data types for the control data. It cannot be specified
in the current version.

A source code optimizer can be specified by the following simple specification. This
engine may change the syntax tree looking for some (syntactical) patterns and is more
successful in finding such one, if a constant folder or a dead variable eliminator have
produced subtrees that are matched by these patterns.

Example: 2 (Specification of the tree...simplifier)

ENGINE TreeSimpl IS
MODIFIES
PRIORITY LESS THAN

END

Syntax Tree
ConstFold,Live

The Appendix 1 contains the engine specifications of the example 1.

9 Improvements

Several improvements are possible because the generation of the distributed control
code has knowledge about all engines and data structures at supervisor generation
time.

First we show that we can inspect the data dependence graph and reduce the amount
of synchronization work at runtime. The presented consistency check may check a data
structure more than once during the same check. The improvement of the consistency
check only checks the necessary structures.

The consistency check consists of a local check of the directly accessed data structures
and a consistency check of other structures. These may include a check of structures

16

which are already checked. It can be computed from the engine dependence graph
whether that is the case. The consistency check for a data structure d that is in
PROD(e) can be reduced to

consistency(d) = /\ e..z_vers.on - z_vers.on 1\ consistency(z)
z E U'(e)

where U(e)' is the set of used and modified structures on a slightly modified EDG.
That EDG' = (V' ,E') is defined as follows: the vertices are not changed i.e. V' = V
and the edge set E' is:

E' = E \ {d ~ e EEl 3 If ~ e E E and 3 d ('M1m'd",I',dm)+ If and d f. If}

We eliminate edges that results in useless synchronization by using the fact that they
are already checked by other consistency checks.

10 Conclusion and Future Work

We have presented a new generative approach to the ordering of engines in compilers.
For any engine the compiler integrator specifies the input-output behaviour and from
these specifications distributed control code and control data are generated. It guar­
antees the data consistency of the data structures during the compilation process and
the optimality of the result with respect to the incorporated engines. The compilation
time however might be slightly suboptimal for some host architectures, because we rely
on the implementation of the operating system primitives.

The approach is also very interesting from the point of software engineering, because
it allows the fast exchange of compiler engines without changing the other engines and
the synchronization code manually.

We have synchronized engines on the coarse grain level. The access methods access the
data structures as one entity, which is not sufficient for massive parallel computers. We
will investigate the granularity of synchronization. We are also working on a formal
method for the specification of the data structures.

Future work will concentrate on how to guarantee and detect termination of compilation
as well as a more sophisticated deadlock prevention.

The incorporation of incremental engines seems to play an important role for the effi­
ciency, i.e. the compilation time, and will be examined further, because they introduce
additional constraints on the synchronization code as well as on the engines.

We will also remove the restriction that a data structure can be produced only from
one engine by introducing an additonal (priority) relation on engines producing that
structure.

17

11 Related Work

In general the attempts to parallelize compilers can be divided into two main direc­
tions. One tries to parallelize algorithms like scanning or parsing and is source language
independent. One related work is [7]. The others parallelize existing sequential compil­
ers and are therefore source language and compiler dependent (as example [15]). The
work of [11] goes that direction by handling different scopes in parallel and combining
the results at the end. In [10], they use a similar appproach but construct a library
of synchronizations primitives and modify the source code of the compiler engines by
introduction of calls to those synchronization primitives. [16] define a meta language
with synchronization primitives that allow to program the synchronization of engines
by hand. In early works of [13] and [5], they define the concepts of a Module Intercon­
nection Language (MIL). The specification language consists of a similar input-output
specification but is dependent on the implementation language of the modules, because
it includes its type concept.

Our approach is neither source language nor target language nor compiler dependent,
but requires the availability of the compiler engines. Therefore we believe that it is
also applicable in other areas than compiler construction.

12 Case Study

We have implemented the proposed generator (in ANSI C) and tested it on a shared
memory architecture with eight processors running a UNIX operating system. The
supervisor code can be generated either in ANSI C or plain C. We used data structures
and operations for control code and data that are supported by the operating system
(Sytem V primitives) . That decreases the efficiency, because we have an additional
synchronization layer, however it results in a portable system.

The engines are mapped to parallel processes and the scheduling of these is done by
the operating system of the machine. 'vVe used counting semaphores as process com­
munication interface. The implementation of the additonal synchronization primitives
is built on top of them.

The synchronization primitives using semaphores only allow a simplified form of multi­
ple readers of data structures but exclusive modify and write access. The scheduling of
the data structures is mapped on the normal scheduling of the operating system for the
waiting processes; there we have an additonal time constraint due to operating system
scheduling, which is in our case first in first out; the waiting processes are managed
with queues and the control code is not able to respect (user defined) constraints in
selecting one process. In this sense the ordering produce < modify < read is neglected
as well as the priority relation. That does'nt results in wrong compilers but precludes
further exploitation of parallelism.

18

The termination detection is done by an additional process checking the shared variable
#engines. If that variable becomes zero the compiler processes are removed from the
machine.

All access function calls of an engine envelope are grouped in a critical section to
prevent deadlocks (see [4]).

We used our implementation to generate the supervisor for a superset (22 engines) of
engines from our example. They optimize a toy language (subset of PASCAL) on the
source level and transform it into a vector dialect of that language.

Our prototype implementation is straightforward but gives strong reasons to believe
that a sophisticated implementation will be quite a bit faster.

As an indication for the ease of integration of new engines we may mention that the
inclusion of the vectorizer cost only one man day. The time was mainly spent to adapt
the (local) data structures of the vectorizer to the parallel machine.

Summarizing the facts we believe that we gain two things using our method:

• compiler become simpler to maintain and to port to other architectures; that is
the software engineering aspect

• compiler are faster; that is the efficiency aspect

A Example Specification

The following specification describes the structure of the compiler from example 1.

19

ENGINE Scan IS
USES Character Stream
PRODUCES Token Stream
END

ENGINE ControlFlow IS
USES Syntax Tree
PRODUCES Control Flow Graph
END

ENGINE CP IS
USES Def-U se Sets, Control Flow Graph,

Mod-Var Sets
PRODUCES Constant Sets
END

ENGINE ModVars IS
USE Syntax Tree, Def-U se Sets
PRODUCES Mod-Var Sets
END

ENGINE TreeSimpl IS
MODIFIES Syntax Tree
PRIORITY LESS THAN Live,CF
END

B Time Measurements

ENGINE Parse IS
USES Token Stream
PRODUCES Syntax Tree
END

ENGINE DefUse IS
USES Syntax Tree
PRODUCES Def-Use Sets
END

ENGINE CF IS
USES Control Flow Graph, Constant Sets
MODIFIES Syntax Tree
END

ENGINE Live IS
USES Control Flow Graph
MODIFIES Syntax Tree
PRIORITY LESS THAN CF
END

In general, time measurements on parallel machines are more complicated than in the se­
quential case, because they are dependent on the task scheduling of the operating system.
We have to measure the absolute time of the compilation process, but this is load dependent.
The load of the system is not the same in the run of the parallel and the sequential compiler;
we cannot compute the exact speedup. For these reasons we added the system load to the
time table. It can be seen that the machine was heavily overloaded. The structure of the
parallel compiler' we measured is shown in figure 3. We measured absolute time in seconds.

I System-Load Parallel Sequential Speedup I
13.46 1050 1720 1.64
15.62 1574 2071 1.31
21.62 1870 2969 1.58

4extension of the example

20

s.~ , '. II' .1,. wi
,," ••• ••• I

C~::I:::: ~I""''''. --..

i'""'?~ ~~~.:::::-....... ~ ~ ="'."i ~ : -
..
I

~'old

..
I

. ' , ,

• 1,. • • • •

" , .
", ,"

The bold boxes denote engines, the solid one are for data structures.

II" ... "!-.
" ...

=~ i ,;': ... ,

.........

Figure 3: The (simplified) engine dependence graph of the case study compiler; only
the important engines are shown.

21

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and Tools.
Addison Wesley, 1986.

[2] F.E. Allen. Control Flow Analysis. In SIGPLAN, volume 7, pages 1-19, 1970. 5.

[3] D. Callahan, K.D. Cooper, K.W. Kennedy, and L.M. Torcon. Interprocedural Constant
Propagtion. In SIGPLAN 86 Symposium on Compiler Construction, pages 152-161,
1986. 21.

[4] H.M. Deitel. An Introduction to Operating Systems. Addison Wesley, 1984.

[5] Frank DeRemer and Hans Kron. Programming-in-the-large versus Programming-in-the­
small. IEEE, Nov 1976.

[6] M.S. Hecht. Flow Analysis of Computer Programs. North Holland, New York, 1977.

[7] Richard Marion Schell (Jr). Methods for constructing porallel compilers for use in a
multi1Jrocessor environment. PhD thesis, Urbana illinois, 1979.

[8] J.B. Kam and J.D. Ullman. Monotone Data Flow Analysis Frameworks. In Acta Infor­
matica, volume 7, pages 309-317, 1970.

[9] Monica S. Lam and Martin C. Rinard. Coarse-Grain Parallel Programming in Jade. In
9rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Williamsburg, Virginia, April 21-24, volume 26, 1991.

[10] D. Scales, M. Rinard, M. Lam, and J . Anderson. lIierachical Concurrency in Jade. In
Uptal Banerjee, David Gelernter, Alex Nicolau, and David Padua., editors, Languages
and Compilers for Parallel Computing. 4th International Workshop, Santa Clara, Cali­
fornia, USA, August 7-9, 1991. Springer-Verlag, LNCS 589, 1992.

[11] V. Seshadri, D.B. Wortman, M.D. Junkin, S.Weber, C.P. Yu, and 1. Small. Semantic
Analysis in a Concurrent Compiler. In Proceedings of the ACM Sigplan '88 Conference,
1988.

[12] David B. Skillicorn and David T. Barnard. Parallel Compilation: A Status Report.
Technical report, Queens's University, Kingston, Ontario, 1990.

[13] Walter F. Tichy. Software Development Control Based on Module Interconnection. In
Proc. of the 4th International Conference on Software Engineering, Sep 1979.

[14] Walter F. Tichy. Programming-in-the-Large: Past, Present and Future. Communica­
tions of the ACM, 1992.

[15] M.T. Vandevoorde. Parallel Compilation on a Tightly Coupled Multiprocessor. PhD
thesis, digital, Systems Research Center, 1988.

[16] Gio Wiederhold, Peter Wegner, and Stefano Ceri. Toward MEGA Programming. Com­
munications of the ACM, 35(11), Nov 1992.

[17] Reinhard Wilhelm and Dieter Maurer. Ubersetzerbau. Springer Verlag, 1992.

22

	A_1993_01 0001_1heitscover
	A_1993_01 0002
	A_1993_01 0003
	A_1993_01 0004
	A_1993_01 0005
	A_1993_01 0006
	A_1993_01 0007
	A_1993_01 0008
	A_1993_01 0009
	A_1993_01 0010
	A_1993_01 0011
	A_1993_01 0012
	A_1993_01 0013
	A_1993_01 0014
	A_1993_01 0015
	A_1993_01 0016
	A_1993_01 0017
	A_1993_01 0018
	A_1993_01 0019
	A_1993_01 0020
	A_1993_01 0021
	A_1993_01 0022
	A_1993_01 0023

