A Graph Based Parsing Algorithm for Context-free Languages

Günter Hotz
Technical Report A 01/99
June 1999

e-mail: hotz@cs.uni-sb.de
WWW: http://wwW-hotz.cs.uni-sb.de

Abstract

We present a simple algorithm deciding the word problem of c. f. languages in $O\left(n^{3}\right)$. It decides this problem in time $O\left(n^{2}\right)$ for unambiguous grammars and in time $O(n)$ in the case of $L R(k)$ grammars.

Fachbereich 14 Informatik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

1 Introduction

There are several algorithms known deciding the word problem of general context-free languages in time $O\left(n^{3}\right)$. The algorithm of Younger [You67] is very simple and it solves the problem in time $O\left(n^{3}\right)$, but it takes no advantage of special cases. Kasami in [KT69] describes an algorithm, which decides this problem for unambiguous context-free grammars in time $O\left(n^{2} \log n\right)$. Early [Ear70] developed an algorithm which decides the general word problem in time $O\left(n^{3}\right)$ but does it for unambiguous grammars in time $O\left(n^{2}\right)$ and for a wide class of grammars as $L R(k)$ grammars [Knu65] in time $O(n)$. His algorithm takes no advantage of grammars in a normal form. The proofs are hard to read. We present here a simple algorithm with the same runtime efficiency as Early's algorithm.

2 Notations and Definitions

Let V, T be finite alphabets, $V \cap T=\emptyset, S \in V$ and $P \subset\left(V \times V^{2}\right) \cup(V \times T)$ a c. f. production system in Chomsky normal form (Ch-NF). We assume that the grammar $G:=(V, T, P, S)$ does not contain superfluous variables. That means for each $x \in V$ we find $u_{1}, u_{2}, u \in T^{*}$ such that $x \longrightarrow u$ and $s \longrightarrow u_{1} x u_{2}$ holds.
We define linear forms with variables from V and coefficients from the boolean algebra \mathbb{B}. These are mappings

$$
\xi: V \longrightarrow \mathbb{B}
$$

and we write $\mathbb{B}\langle V\rangle:=\{\xi \mid \xi: V \longrightarrow \mathbb{B}\}$. We use the equivalent notation

$$
\xi:=\sum_{v \in V} \xi(v) \cdot v
$$

We define the sum and a product in $\mathbb{B}\langle V\rangle$: As usual we put

$$
(\xi+\eta)(v):=\xi(v)+\eta(v) \text { for } v \in V .
$$

The product $x * y$ for $x, y \in V$ gives all possible reductions of $x y$ relative to P. More formally we define

$$
x * y:=\sum_{z \in V} \zeta(z) \cdot z \Longleftrightarrow(\zeta(z)=1 \Longleftrightarrow(z, x y) \in P .
$$

Now we put

$$
\xi * \eta:=\sum_{x, y \in V} \xi(x) \cdot \eta(y) \cdot(x * y)
$$

we use in this definition for $\alpha \in \mathbb{B}$ and $\xi \in \mathbb{B}\langle V\rangle$ the operation $(\alpha \cdot \xi)(v)=\alpha$. $\xi(v)$ for $v \in V$. The product " $*$ " is not associative. $(\mathbb{B}\langle V\rangle,+, *)$ is distributive. We use furthermore the notation

$$
P^{-1}(t)=\sum_{z \in V} \alpha_{z}^{t} \cdot z, \alpha_{z}^{t}=1 \Longleftrightarrow(z, t) \in P
$$

If the operation " $*$ " is associative then for $u=t_{1} \cdot \ldots \cdot t_{n}$ and $\mu(u):=$ $P^{-1}\left(t_{1}\right) * \ldots * P^{-1}\left(t_{n}\right)$ we have

$$
u \in L(G) \Longleftrightarrow \mu(u)(s)=1
$$

In this case $(\mathbb{B}\langle V\rangle, *)$ is a finite monoid and $P^{-1}: T^{*} \longrightarrow(\mathbb{B}(V), *)$ is a homomorphism and therefore $L(G)$ is regular.

3 The Graph $\Gamma(G, u)$

We assign to the grammar G and $u \in T^{*}$ an oriented graph $\Gamma=(K, E) ; K$ is the set of vertices and E the set of edges and $n:=|u|$ the length of u.

$$
\begin{array}{rll}
K & \cup\{(v, i, 0) \mid v \in V, 1<i \leq n\} \\
& \cup\{(v, i, 1) \mid v \in V, 1 \leq i<n+1\} \\
E & \cup\left\{((v, i, 1),(v, j, 0)) \mid V \longrightarrow t_{i} \cdot \ldots \cdot t_{j-1}, 1 \leq i<j \leq n+1\right\}
\end{array}
$$

Obviously it holds

$$
u \in L(G) \Longleftrightarrow((s, 1,1),(s, n, 0)) \in E
$$

The graph Γ is closed under the following operation: Let be $i<j<m$

$$
\begin{aligned}
& (x, i, 1) \xrightarrow{s_{1}}(x, j, 0), \\
& (y, j, 1) \xrightarrow{s_{2}}(y, m, 0)
\end{aligned}
$$

edges of Γ and

$$
\zeta:=x * y .
$$

If $\zeta(z)=1$, then the edge

$$
(z, i, 1) \xrightarrow{s_{3}}(z, m, 0)
$$

is in Γ. We write in this case $s_{3}:=s_{1} * s_{2}$; in general there may be several edges s_{3}^{\prime} in the relation $s_{3}^{\prime}:=s_{1} * s_{2}$.
This closure property corresponds to

$$
\begin{aligned}
x & \longrightarrow t_{i} \cdot \ldots \cdot t_{j-1}, \\
y & t_{j} \cdot \ldots \cdot t_{m-1}
\end{aligned}
$$

and

$$
z \longrightarrow x y
$$

Therefore we have $z \longrightarrow t_{1} \cdot \ldots \cdot t_{m-1}$ and from this follows by definition of Γ, that s_{3} is in E.

Lemma 1. If there are two different operations producing the same edge s_{3}, then G is ambiguous.

Proof 1. Let s_{1}, s_{2} and $s_{1}^{\prime}, s_{2}^{\prime}$ two pairs of edges from Γ producing under the explained operation the edge s_{3}, then we have the two different derivations

$$
\begin{array}{llll}
z \longrightarrow x y, & x \longrightarrow u_{1}, & y \longrightarrow u_{2}, & u_{3}=u_{1} \cdot u_{2} \\
z \longrightarrow x^{\prime} y^{\prime}, & x^{\prime} \longrightarrow u_{1}^{\prime}, & y^{\prime} \longrightarrow u_{2}^{\prime}, & u_{3}=u_{1}^{\prime} \cdot u_{2}^{\prime} .
\end{array}
$$

Now we assume G not containing superfluous variables. Therefore exist the derivations

$$
s \longrightarrow \tilde{u} z \bar{u} \longrightarrow \tilde{u} u_{1} \cdot u_{2} \bar{u}=\tilde{u} u_{1}^{\prime} \cdot u_{2}^{\prime} \cdot \bar{u} \in T^{*} .
$$

So we have more than one derivation of $\tilde{u} u_{3} \bar{u}$ from S, i.e. G is ambiguous.

4 The algorithm

We now construct a sequence $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ of subgraphs of Γ such that Γ_{1} depends only on t_{1} and with $\Gamma_{n}=\Gamma$. We give an operation which constructs Γ_{i+1} from Γ_{i} and estimate the complexity of this operation.
Let $\Gamma_{i}:=\left(K_{i}, E_{i}\right)$ for $i=1, \ldots, n$ and

$$
\begin{aligned}
K_{i} & :=(v, l, \varepsilon) \in K \mid 1 \leq l \leq i, \varepsilon \in\{0,1\}\} \cup\{(x, i+1,0) \mid x \in V\}, \\
E_{i} & :=\left\{s \in E \mid \operatorname{source}(\mathrm{s}), \operatorname{sink}(\mathrm{s}) \in K_{i}\right\} .
\end{aligned}
$$

The construction of Γ_{1} can be done in time $O(1)$.

We assume $\Gamma_{i}, i<n$ has been constructed.
We add t_{i+1} and $\{(v, i+1,1)|v \in V \cup\{v, i+2,0)| v \in V\}$ to K_{i}. We in the first step add the following edges of E to E_{i} :

$$
(v, i+1,1) \longrightarrow(v, i+2,0) \text { for } v \longrightarrow t_{i+1} .
$$

Let Γ_{i}^{\prime} the result of this construction.
Now we apply the closure operations

$$
s_{1} * s_{2} \longrightarrow s_{3}
$$

to edges s_{1}, s_{2} from Γ_{i}^{\prime}. Γ_{i} being closed under these operations we have to begin with the new edges in Γ_{i}^{\prime}. We have the following situation

$$
(x, j, 1) \xrightarrow{s_{1}}(x, i+1,0) \quad(y, i+1,1) \xrightarrow{s_{2}}(y, i+2,0) .
$$

We built from $s_{1} * s_{2}$

$$
(z, j, 1) \xrightarrow{s_{3}}(z, i+2,0),
$$

if $(z, x y) \in P$.
Iterating this construction in the worst case we need $O\left(n^{2}\right)$ elementary operations to construct Γ_{i+1} from Γ_{i}, because each edge of Γ_{i}^{\prime} we have to consider only once.
To construct Γ_{n} by this procedure therefore needs in the worst case $O\left(n^{3}\right)$ *-operations.

If the grammar is unambiguous we construct each edge only one time. Operations $s_{1} * s_{2}$ which do not produce a new edge we are able to exclude by only once inspecting the pairs of vertices $(x, l, 0),(y, l, 1)$. If $x * y=0$, then none of the pairs

$$
\begin{array}{ll}
\xrightarrow{s_{1}} & (x, l, 0) \\
& (y, l, 1) \\
\end{array}
$$

has to be considered. Therefore in this case we need only $O\left(n^{2}\right)$ steps because this is the bound for the number of edges in Γ. So we proved the

Theorem 1. The algorithm defined here solves the word problem for c. f. languages in time $O\left(n^{3}\right)$. In the case of unambiguous grammars the running time of the algorithm is $O\left(n^{2}\right)$.

Corollar 1. The algorithm solves the word problem in the case of grammars with m-bound ambiguity in time $O\left(n^{2} \cdot m\right)$.
Proof 2. From the m-bound ambiguity it follows that the algorithm draws each new edge maximal m times.

Now we study the case G is a $L R(k)$ grammar.
$L R(k)$ grammars are characterized by the following property: For $u v u^{\prime} \in$ $L(G)$ and $|v|=k$ let $\bar{w}_{1}, \ldots, \bar{w}_{l}$ be the reduced words of $u \cdot v$ relative to G. Then the set of this words has a common prefix \bar{u}, where \bar{u} is a reduced word of u, such that we can write

$$
\bar{w}_{1}+\ldots+\bar{w}_{l}=\bar{u} \cdot\left(\bar{v}_{1}+\ldots+\bar{v}_{l}\right), \quad\left|v_{i}\right| \leq k \text { for } i=1, \ldots, l .
$$

This property enables us to compute an upper bound for the number $\left|\Gamma_{i}\right|$ of edges in Γ_{i}.
Obviously we have

$$
\left|\Gamma_{1}\right| \leq m \quad \text { for } m:=\# V .
$$

We assume Γ_{i} being constructed. We then get Γ_{i+1} by the following steps:

1. We compute $P^{-1}\left(t_{i+1}\right)$, which produces not more than m new edges.
2. We match the new edges with the existing edges. This leads to new edges connecting vertices belonging to

$$
\left.\left(\bar{v}_{1}+\ldots+\bar{v}_{l}\right) \cdot P^{-1}\left(t_{i+1}\right)\right\}
$$

and edges connecting vertices belonging to $v t_{i+1}$ with edges belonging to \bar{u}.

The number of edges belonging to the first class is bound by a constant c depending on $m=\# V$ and k. The number of the edges belonging to the second class is 0 if \bar{u}_{i} is prefix of \bar{u}_{i+1}. It is 1 if $\left|u_{i+1}\right|=\left|u_{i}\right|$ and it is $\left|u_{i}\right|-\left|u_{i+1}\right|$ if reductions of the reduced word u_{i} take place. So we have

$$
\left|\Gamma_{i+1}\right| \leq\left|\Gamma_{i}\right|+C+\left|\bar{u}_{i}\right|-\left|\bar{u}_{i+1}\right|+1 .
$$

From this we get

$$
\left|\Gamma_{n}\right|=O(n) .
$$

From this follows
Theorem 2. The given graph algorithm solves the word problem for $L R(k)$ grammars $G:=(V, T, P, S)$ and words $w \in T^{*}$ with $=O(n) *$-operations.
It is obvious that the $*$-operations can be performed on a computer in time only depending on G. This means that it can be done in constant time relative to $|w|$.

Literatur

[Ear70] J. Early. An efficient context-free parsing algorithm. Com. ACM, 13, 1970.
[Knu65] D. E. Knuth. On the translation of languages from left to right. Information and Control, 8, 1965.
[KT69] T. Kasami and K. Tori. A syntax-analysis procedure for unambiguous context-free grammars. $A C M, 16,1969$.
[You67] D. H. Younger. Recognition and parsing of context-free languages in time n^{3}. Information and Control, 10, 1967.

