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Abstract:

In the last three years many results were published

about graph layout in VLSI. One aspect of graph layout

is the minimization of the longest edge; for this problem
Bhatt and Leiserson (1982) recently demonstrated a new
technique to shorten the longest edge, and they thus
achieved an upper bound of O0(vVN/log N) for trees.
Unfortunately, no good universal lower bounds exist.

This paper presents a general technique for proving lower
bounds for trees. A second technique to embed trees is
presented, which provides really good upper bounds for
the maximal edge length in relation to the disposable
area.



1. Introduction

For VLOLL thewiy it iy inleresling to consider how to
lay out a graph in the plane. The reason is that a network in
VLSI can be interpreted (with some simplificatione) as a graph,
with transistors corresponding to nodes and wires to the edges
of the graph. Thus we can solve many problems in VLSI by solving
the related graph theoretic problems.

One important aspect here is the longest wire in a network lay-
out. This wire can determine the performance of the circuit, if
the time to propagate information through a wire grows with the
lenght of the wire. The capacitive model by Mead and Conway (1980
supports this view. In systolic systems thus, the period of the
system clock must be longer than the longest propagation delay.

For general graphs, there exist some results developed
by Bhatt and Leiserson and by Leighton (1981,1982). But if we re-
strict ourselves to the class of trees, these results are rather
weiak; therefore this problem is mentioned as an open problem in
all of these papers.

We divide this paper into 4 sections. Section 2 reviews
the standard model, as well as some definitions and lemmata. Then
we present a nearly trivial lower bound for the maximal edge length.
In section 3, we develop the main result. We prove lower and upper
bounds. We give a simple example which explains the technique of
which we make use subsequently to obtain the lower bound. The up-
per bound is an application of the method of Bhatt/Leiserson.
Thus we achieve nearly tight bounds for the considered classes of
trees. Then, using a method of Paterson/Ruzzo/Snyder, we choose
the edge length with respect to the disposable area and improve

the upper bounds.

2. Background

The first model for graph layout was suggested by
Thompson (1979). He considered the layout as an embedding in a
two-dimensional grid. This grid consists of horizontal and ver-
tical lines space apart at unit intervals.
A layout of a graph is an assignment of nodes to crossings of

horizontal and vertical lines. The edges follow the lines, they
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may cross each other but not overlap for any distance, and
they may not cross nodes which they are not connecting. The
arca ol the layout equals Lhe product of the numbers of ver-
tical and horizontal lines that contain a node or edge seg-
ment of the graph.

For this layout model, we restrict the graphs to those ha-
ving nodes with degree at most four, and we only consider
binary trees; extension to other classes of graphs is easy.
Most layout techniques base on the divide-and-conquer para-
digm and use graph separators to recursively partition a
given circuit. For trees, this techniqug yields a linear

upper obound on the area.

Definition 1:

A class of graphs closed under the subgraph relation has

an f(x)-separator theorem, if there are constants a,b with

O0<a<l/2 and b>0, such that by removing at most bxf(n) edges,
every N-node graph of the class can be partitioned into dis-

joint subgraphs having cxN and (l1-c)xN nodes, where ascsl-a.

Definition 2:

An f(x)-separator is said to be perfect if
cxN = [N/21 or |[N/2].

The lemmata 1 and 2 below can be proved by familiar tech-

niques.

Lemma 1:

Any tree has an 0(log N)-perfect separator.

A complete binary tree can be laid out as an H-tree
(Figure 1) in linear area as shown by the recurrence equation
for the side length s of the layout:

s(N) = 2s(N/4) + 1

. If we extend the H-tree edges to channels with width
(N/28)? for level i, 0sislog N, O<a<l/2, then the 'l' in the

recurrence equation is replaced by N® (Figure 2).



Lemma 2:

The linear upper bound for the area still holds for an
exlended H-tree (used by Bhatt/Leiserson) with channel width
(n/2")% for all levels i, 0Sislog N.

For different channelwidth, we get the following upper bounds
for the area:
channelwidth area

of level i

(N/2)% 0 <1/2 0(N)
N7zt 0¢Nx1og?N)
(N/29)% 0> 1/2 0(N2%)

The following trivial lower bound for the length of the
longest edge shows that the upper bound of Bhatt and Leiser-

son is optimal for complete binary trees.

Lemma 3:
Let L be the maximal edge length for a layout of a tree,
. 2
and let vy,...,vy be its nodes. Let MD = igj d(vi,vj)/N be
the average path length, where d(ui,u.) is the number of nodes

on the path from vy to Vj' Then L 2 Q(/N/MD).

Proof: Partition any layout into three stripes Ul’UZ’VB’
such that Vl and U3 each contain N/10 nodes. (Figure 3)
The paths between the nodes of Vl and U3 have at least length
/N (side length of linear layout area). Clearly, at least one
path from a node in Vl to a node in U3 contains at most O0(MD)
nodes. Thus we can conclude that the longest edge must have a

length of at least Q(/N/MD).

The average number of nodes on a path between two nodes
in a complete binary tree is 0(log N). This implies a lower
bound for the longest edge of a complete binary tree of size
Q(/N/log N).

On the other hand, for the tree that consists of just one path
we find a linear area layout with edge length 1.
Intuitively, we can conclude:

The denser the tree, the longer the longest edge.



3. New Bounds

3.1 Lower bounds

To explain the technique, we look at the following simple
example.
Consider a complete binary tree of depth r, extended by cha.:ses
of length m hanging down from the leaves. Figure 4)
It is clear that N = 2%xm + 2F - 1 s 2%%ixq.
Let m be /ﬁ: hence r = ©(log N).
i chaines = 2%xm 2 N/Z//W':/QVZ

In any layout of the tree, let d be the radius of the smallest

circle around the root which contains all nodes of the r upper

levels.

L 2 d/r
Case 1: d > VN/27 L 2 Q(/Nylog N)
Case 2: d < VN/2n

at least N/2 nodes lie outside the circle and
so more than half of the chaines of lehgéh m
lie outside the circle.
The circumference 2nd must be > 1/2°/N/2.
d > /N/Bn.

L 2 (/N/log N)

In contrast, note that lemma 3 yields only a lower bound of (1).

Now we sketch the general method for lower bounds:
lLet range (v,d) be the number of nodes which have distance d
from node v.
Let k = min {d| range(v,d) = ¢/N}. ¢ is a constant, and let Vg
be the node determined by the minimization.
We look only at trees with the following property:
If we consider less than c/2x/ﬁ-edges which have a greater dis-

tance from v, than k, then the number of the nodes in all sub-

trees hanging on these edges is less then c'xN. c' 1s a constant
¥ s

Now, we show again, that d 2 Q(/N); d is the radius of the
smallest circle around Vo where the cx/N nodes on the first k

levels must lie inside the circle.



We assume that d <C/ﬁ74ﬂ.

circumference < cv/N/2.

We see that the circle 'cuts' some edges which connect some
parts of the tree which lie in- and outside the circle. The
circumference of the circle is an upper bound of the size of

Lthe cut, and we conclude after assumption that there are at

least (1 - c')xN nodes inside the circle.
nd2 2 (l-c'xN
d 2 /(1-c")xN/7
L 2 Q(/N/k).

3.2 Upper bounds

We improve the embedding technique of Bhatt/Leiserson
using a new concept of Leighton (1982), but it remains nearly
the same.

Definition 3:

A graph G has an (Fl,Fz,...Fr)—decomposition tree, if G
can be partitioned in two disjoint subgraphs GU and G1 by re-

moving at most F, edges, each of these subgraphs can be parti-

1

tioned again in two subgraphs GGO and GOl resp. GlU and Gll by

removing at most F, edges. Repeat this until step r, where the

2
subgraphs are empty or they consist of only one node.

Definition 4:
o 20 548 5 o
An (F,F/27,F/2°7,...)-decomposition tree is called an 2" -

befurcator of size F or shorter (F,ZG)-bifurcator.

a will be chosen as 0<a$l/2. Leighton cnooses it as o = 1/2.
We know that each tree has an (N®,2%)-bifurcator, e>0, since
we can partition trees in equal parts by removing at most 0(logN)

edges.

Definition 5:

The decomposition tree for a graph with N nodes is called
fully balanced, if
a) each subgraph Em in the tree is the ancestor of two equalsized
*
0 , (woe {0,1}%)

b) the number of edges of G incident to precisely one node in

subgraphs Gm and Gm

GwO differs by at most an additive constant from the number

of edges of C incident to precisely one node in Gwl‘
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In the following, we repeat some theorems (1982), which
show us, how to fully balance decomposition trees without big
l—.xpun;iu.
lhe basic lemma is the following:

Lemma (Goldberg/West)

Given any ordering of n balls in a line, ny of which

are coiored i for 12isk, it is possible to break the line 1in
at most k places sn that the union of the balls contained 1in
every other segment contains precisely Lni/ZJ or l'ni/Z1 balls

which are colored i1 for 1£isk.

Leighton uses this lemma coloring the nodes of a sub-
graph on the i-th stage of the decomposition tree by color j,
if on stages 1 until i-1 j incident edges were cut.

By this technique he can prove the following theorem:

Theorem 1
Let G be any N-node graph with an (Fl,Fz,...,Fr)udecom-
position tree T. It is possible to construct a fully balan%ed

(Fl,F )-decomposition tree T' for G where Fi:éSE.FS.

é""’Fiog N =i

For trees, this means that we will be able to construct
fully balanced (NE,ZE)—biFurcators, where £€>0 is a constant as
small as we like. (for details see (1982))

Now, we will embed the tree in an extended H-tree.
Sketch of the layout procedure: (Figure 5)

Place the edges of the fully balanced decomposition at

the first stage and the corresponding nodes parallel

to each other with length L on the top channel and place

the edges incident to the embedded nodes in such way

that the distance between their nodes is L.

This step is repeated until some nodes are placed at the

end of the top channel.

Then place the next edges using Leighton's coloring tech-

nique such that about half of them goes to the right and

half of them to the left of the second channel. In the
middle of this channel place the edges of the second de-
composition stage, too.

Repeat this procedure until you reach the level in the

H-tree where you can trivially lay out the remaining sub-

trees of size L2 with maximal edge length L.
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We will show that to determine the length of the longest
edge, we only need consider the subtree at the top channel of
ILhe H-Lree.

More precisely we show now:

If we can embed the part of the tree with the highes.
density in the top channel of the H-tree with maximal
edge length L, hence we can embed the whole tree with
max. edge length cxL in the H-tree with linear area,

where ¢ is a rather small constant.

Proof:

We know that if we embed the most dense part of the tree
by our technique, there are f(/N/L) nodes at the end of the top
channel, where L is minimal so that f(/N/L) ¢ Na, a<l/2.

f is monotone and f(x) describes the maximal number of nodes
you can reach by paths of length x, starting from a node v.
At a channel on level i in the H-tree, the number of nodes

& € 1/2
£ I E—,xf(ggg%g*‘—

)/Zi—d' , if we use the length cxL and
j=0 2%J

where &/ﬁ?Zj/z is an upper bound for the distance in the H-tree
from level j to level i; 15£j$islog N. NE/ZQJ is an upper bound
for the size of the fully balanced decomposition tree on stage
J.

We have to show that there is a constant c, such that

e . 3 gk - .
é§?<iél 7 Ng.-r(a/n- ) /207 s N~
an e j=0 2 J cxLx29 ———

width of the channel

For simplicity, let the sum be 'A'.
We claim that
4/N

€ ; 4vN J
A <N x(1+l)xF(CxL)/2 .

This inequation follows from the following fact:

A is the number of nodes at the end of the i-th stage in the
H-tree as the sum over j where there are i parts of subtrees,
each begins at stage j and is partitioned (i-j)-times. If we
assume that all these subtrees start at the top level and are

partitioned i-times, it is clear, that from each of these sub-
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trees, there would be more nodes at level i than above.

Cir L) xNExT(aVN/exL) /20 5 N¥xlog NxfF(4/N/exL)/2t
< Nele(a/ﬁ7ch)/Zi, £'>¢
g NE'*espd c oz 4
with a+e' = B < 1/2 s NB/2Bl

We can conclude that we only need consider the top chan-
nel of the H-tree. The maximal edge length L,we get here, must
be increased only by a multiplicative constant factor to be
valid for the whole tree.

We only need consider even the biggest subtree T on the top
channel, since there are 0(logN) subtrees and for all a < 1/2

there is a B <1/2: NBxlog N g NB.

Let range(v,d) be the number of nodes, which have distance
d from node v. Let k = m%n {d range(v,d) = cx/N/d and
range(v,d) ¢ mx/N/dZ, m<d }

Then we can embed the first k levels of the subtree T on
the top channel of the tree. We neglect the other subtrees on
the topchannel, they can increase the area at most by a factor
log N.

The depth of T is k, and hence the length Ll
/N/k. There are at most V/N/k nodes at the end of the channel.
We know that the length L2 of the longest edge of T is not as

of the edges is

long as the number of nodes at the channel end (Figqure 6).

Thus

L=L; =L, s 0(/N/k).

The supposition for the vertical part L2 of the longest
edge is not very fine; it would be optimal, if we can say,
that this length is as big as width/number of steps; now we
could choose cx/N as the width of the channel. Hence k is de-
creased and we reach our lower bound asymptotically. Our goal
is to use edges of length 0(¥N/k), but to increase the number
of nodes which can be reached in k steps. For this, we use a

technique of Paterson/Ruzzo/Snyder, who have shown an area/

max. edge length tradeoff for complete binary trees whose lea-
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ves lie on the perimeteer of the smallest convex region en-

closing all points of the embedding.

If k 2 Q(Nl/a) then the number of nodes increases at
most by 1 from level i to the next level i+l in the tree for
all 15i. Hence we can embed the tree rith edge length 0(1),
since we can draw this tree having a horizontal and verti-
cal distance of 1 between two adjacent nodes using the tri-
vial embedding technique. In this case, we reach the lower

1/a)-

bound. Now, we assume that k < O(N

By the technique of Paterson/Ruzzo/Snyder, we embed
the tree T in the channel partitioned into L-shapes (Fig. 7).
At the end of the channel there are VN/f(k) nodes, where f(k)
1s an expression depending on k.
We collect the leaves into groupes of /Nyk, which lie at the
end of each 'L'. So we see that the number of L's is
AN/ N/ = 1/ F (KD .
Now we make the construction as shown in figure 8:
In k2 steps we reach k/f(k) nodes and each of these nodes
is the root of a subtree embedded in an L. To embed this
first part of the subtree T we use edge lengths of 0(k/f(k))
=i LD.
To reach the nodes at the end of the channel we need k2 steps
and so we need an edge length of /ﬁykz = Ll'
Furthermore we know that the length of the edge which lies
on the right channel and joins the smallest L and the root
of the corresponding subtree, must not be greater than 0(/N/k)
=i L2. So we have to embed the tree that the number of nodes
lying at the end of the horizontal legs of the L's is not
greater than /N/k.
Now we have three sizes for the length of the longest edge:

0(/N/k), 0(/N/k,) and 0(k/f(k)).

A fourth size is the length of the edges in the horizontal
part of the biggest L: /ﬁ/r(k)/(kl-kz).
So we have partitioned the tree in the following way and got

the following upper bound:

0(/N7k2 + /ﬁ?(f(k)x(kl~k2)) + k/fF(k))

(see figure 9).
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If f(k) > kzxk//ﬁ: we have D(/Hykz), for the linear case

k < Nl/&xvf(k). We Know: k = k, + k

1 k, > k

2? 71 2°

Now we ask what these bounds give us for some special
cases:
For all cases we assume that k,=cxk, 1/2<c<l constant and that

1

/N/k 2 k/f(k). Hence k, = (1-c)xk.

a) If f(k) = Ne, €>0, we have a linear area and the following

theorem:
1/2-¢

If we reach at most N nodes in k steps, we can

embed this tree with a maximal edge length of O(/N/k).

b) If f(k) = ¢, ¢ constant, we have an area of leogzN and
vertical length of the greatest L of /ﬁ;log N, and so
we yield an upper bound of /ﬁ}log N/k for the edge
length, if we reach /N nodes in k steps.

c) If we have an area A, A »-leogZN, at our disposal, f.e.
A = N*, @>1/2, we can choose f(k) as /Nxlog N//A, where
/A is the width of the top channel and /N/f(k) = /A/log N
is the width of the biggest subtree T at the end of the
channel. The length of the longest L is /A, and so
we have an upper bound of 0(/A/k) for the edge length,
if we reach YA/log N nodes in k steps.

This can be better than the lower bound for the edge length,
where we have a linear areaj; if we reach in k' steps at

most N nodes, we have a lower bound of 0(/N/k') for the

edge lenght and linear area.

Now it is possible that we have a class of trees where we
reach in k' steps at most /ﬁ-nodes, but in k steps /ﬁ?logN
nodes, and we can embed these trees with a maximal edge
length 0(/A/(log Nxk)), which is less than O(/N/k').

To see that this case is realistic, look at the following

example (Fiqure 10):
k' = N1 ik = N992° steps we reach N®7810g N.

If we have linear area, we have a lower bound of Q(ND’Q)

for the length of the longest edge, but if we have an area

of HlaZ 0,35

, we yield an upper bound of O(N ), if we use
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0(/A/(log Nxk)) as upper bound.
For this case f(k) = log N/NC2 L and k/f(k) = N
whiat is our upper bound for the edge length.

0,35, 10g N,

Conclusion

We have shown how to embed a tree with short edges, that
we can nearly reach the lower bound for linear area and that
there are some classes of trees, for that we can minimize the

length of the longest edge by increasing the embedding area.

For any tree, we derived the following lower and upper bounds:

»
max ¢ NST NST is the number of nodes in subtree ST and
ST k k is the number of steps reaching JNST nodes
~
r
. IN/2b/F (k) in k steps we reach VN/2'/f(k) nodes
min max . ;
Heeonp ST‘ —w of 5T, on level i in the H-tree lie
) its top edges, the used area determines
the factor f(k)

'd
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Figure 1

H-tree with 63 nodes

Figure 2

extended H-tree

Figure 3
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