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Abstract

We show how type inference for object oriented programming languages with state
can be performed without type declarations. Our type inference system is based on
the works of Rémy and Wand which can in turn be traced back directly to Milner’s
classical type inference algorithm.

O’small a simple object oriented language, is translated into £, a language of A-
calculus with records and imperative features. Type inference rules are given for £.
O’small-programs are type checked after being translated into £. We show that for
translations of O’small-programs one can have a type system with principal types.

keywords: object oriented programming, polymorphic type inference, class inheri-
tance, subtyping, imperative features

1 Introduction

The prominent object oriented languages with state are either statically typed with monomorphic
types like Simula [DN66] or dynamically typed like Smalltalk [GR83]. There have been several
approaches for type checking Smalltalk after the language definition had been completed. The
problem is that either the language that was checked was not the whole Smalltalk [Suz81,BI82]
or that some declarations still had to be introduced by the programmer [Gra89,GJ90].

The issue, whether object oriented programming languages need static type checking® or not,
has been subject to vehement discussion in the past. Instead of making yet another contribution
to this discussion we present a simple language with state where all types can be inferred.
Because the programmer declares no types at all, the type checker can be seen as an optional
device. A program that is refused by the type checker may be correct but one that is accepted
cannot “go wrong”. A type declaration possibility may still be useful for documentation but
this is not the point of our consideration.

Section 2 introduces the language O’small and the type inference algorithm by examples.
Methods that demand certain labels of their arguments can be applied to arguments with the
required labels. The arguments may also have additional labels that are not required. The

'the terms type checking and type inferencing are used synonymously throughout this paper
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consequence of this is something that resembles subtyping but there are differences. The way
assignments may and may not be typed and the peculiarity that object oriented languages need
types in the form of rational trees where other languages may not need them are the topic of
two further examples.

Section 3 defines records and inheritance and thus prepares for section 4 where O’small is
translated into A-calculus with records and imperative features (a language called £). Section 5
shows how we extend the type inference system of Wand by imperative constructs and some
limitations of this approach. Section 6 concludes with the type inference rules for £. O’small-
programs are not type checked directly but via their translations to L.

2 Example programs and their types

We introduce the object oriented programming language O’small by examples. For the definition
of the language refer to [Hen90b]. Some properties of O’small are important for type checking:
Parameters of methods are passed by reference but in the body of a method a formal parameter
must not occur on the left hand side of an assignment. This is like “Small” [Gor79], the ancestor
of O’small. A less common feature is that every variable has to be initialized with a value of the
right type. This contrasts to many other languages where uninitialized variables have the value
nil. There is no recursion in declarations. All recursion is achieved by fixed point construction,
i.e. via sending messages to self. Classes are not first class objects in the language. Input and
output have not been taken into consideration for the type checker. The treatment of output is
trivial and the treatment of input is beyond the scope of this paper.

The types of the examples in the following section are a product of this article’s type infe-
rencer.

2.1 Row variables

The O’small program in figure 1 is about points and circles with Cartesian coordinates in the
plane. Points and circles can be moved. There are two class definitions: Point inherits from
Base and Circle from Point. The class Base is a class “without contents”.

Objects of class Point have two instance variables representing the Cartesian coordinates of
the point. A point object created with new is in the origin because its instance variables are
initialized to zero. There are two methods for inspecting the instance variables because they are
not directly visible from the outside. The method move changes the position of the receiver.
In object oriented terminology the O’small expression p.m(a) stands for the sending of m with
argument a to the receiver p. There is a method for the distance from the origin and a method
that returns TRUE if the receiver is closer to the origin than the argument.

The class Circle, which inherits instance variables and methods from Point, has an additional
instance variable for the radius, methods for reading and changing the radius, and it redefines
distFromOrg. For the redefinition of distFromOrg the distFromOrgdefinition of the superclass
is referred to by super.distFromOrg.

The inherited function closerToOrg has not been redefined in the class Circle. In the body of
closerToOrg the message distFromOrg is sent to self. If the receiver of a closer ToOrg-messageis a
circle the redefined distFromOrg-method is chosen although closer ToOrg has not been redefined.



class Point inheritsFrom Base
def var xComp := 0; var yComp := 0
in meth x() xComp
meth y() yComp
meth move(X,Y) xComp := X+xComp; yComp := Y+yComp
meth distFromOrg() sqrt(xComp*xComp + yComp*yComp)
meth closerToOrg(point) self.distFromOrg < point.distFromOrg

ni

class Circle inheritsFrom Point
def var radius := 0
in meth r() radius
meth setR(r) radius := 1
meth distFromOrg() max(0, super.distFromOrg - radius)

ni

def var p := new Point;

var ¢ := new Circle

in p.move(2,2); c.move(3,3); c.setR(2);
output p.closerToOrg(c); {results in FALSE}
p.move(0,-2); c.move(0,-2);
output p.closerTolrg(c) {results still in FALSE}

ni

Figure 1: O’small program with points and circles

The output of example 1 results in: FALSE FALSE. This is what we intended. We are now
able to compare points and circles with respect to their closeness to the origin and always get
consistent behavior.

The types of the point object p and the circle object ¢ of figure 1 are:

p : [closerToOrg : [distFromOrg : num, R] — bool
distFromOrg: num

move : num — num — unit
X o num
y : num)|

¢ : [closerToOrg : [distFromOrg : num, R| — bool
distFromOrg: num

move : num — num — unit
T . num

setR : num — unit

X . num

y : num)|

Record types are denoted by their list of components with the component’s types and optionally
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an ellipsis. An ellipsis is labeled by calligraphic letters (row variables (section 5.1)) and stands
for the infinite set of labels that do not occur explicitly in the corresponding record type. The
absence of an ellipsis means, the record type is not extendible. The type unit corresponds to the
domain with one element. unit is the type of assignments. If a method ends with an assignment
it has a type ending with unit; a method like this is more like a procedure. The types of methods
appear in a curried version due to some technical detail of section 4.3.

2.2 Imperative features

Figure 2 shows how flexible the inferred types are with respect to variables and assignments.
Classes B and A define methods m that demand of their argument z to have a field with label

class A inheritsFrom Base meth m(x) x.h + x.i; x
class B inheritsFrom Base meth m(x) x.h + 1; x
class C inheritsFrom Base meth h() 0
class D inheritsFrom C meth i() O
class E inheritsFrom D meth j() O
def var a := new A var b := new B
var ¢ := new C var d := new D var @ := new E

in a.m(d); a.m(e);
b.m(c);
a := new B;
a.m(d)

ni

Figure 2: O’small program with assignments

h or fields with labels h and 7 respectively. The methods m return their argument. Classes C,
D, and E are in an inheritance relation. They define methods with labels h, i, and j and are
thus possible arguments of the m-messages of objects of classes A and B. But let us first look
at the inferred types:

a :[m:[h:num,i:num,R] — [h:num,i: num, R]]
b : [m: [h: num, §] — [h: num, §])

¢ : [h: num]

d :[h: num,i: num]

e :[h:num,i: num, j: num]

The types of the objects reflect what has just been said about the classes. In particular the
types of ¢, d, and e “unfold” inheritance.

On the one hand this example shows that a method that demands certain fields of its
argument can always be applied to an argument with additional fields: d and e can be arguments
of a.m. One could argue that arguments of a.m must be a subtype [CW85] of the type of d; but
the notion of subtype does not appear in our context and the flexibility we can get with row
variables does not always correspond to subtyping.



On the other hand the example shows that we have to be careful with assignments: b.m(c)
is type safe but a.m(c) is not. If there were an assignment b := a in the program b.m(c) would
not be type safe any more. The reader might argue that after the assignment a := new B the
argument ¢ becomes legal for a.m. In this particular program no type error would occur. But
in the general case we are not sure if an assignment has taken place: the assignment may be
part of an alternative of an if-expression. Also the distinction of textually before or after an
assignment does not exclude any possible values in the general case: an occurrence of a variable
can always be inside a method definition and the variable may be an instance variable.

When a variable and assignments to it are type checked, all possible values have to be taken
into account — at all occurrences of the variable. The way assignments are dealt with can be
seen in more detail in section 6. Had we assigned b to a instead of new B, the program would
not have passed the type checker. This is due to the fact that b on the right hand side of the
assignment is an occurrence of the variable b and consequently its type does not contain any
generic variables. For a detailed description refer to [Hen91]. Although the types of the objects
a and b are not in any subtype relation one can assign objects of class B to a variable containing
objects of class A.

2.3 Recursive types

Figure 3 is a natural example? and demonstrates the need for recursive types. The objects of
class Pair together with the relation leq define a preorder. The objects of class OrderedPair

class Pair inheritsFrom Base
def var xComp:=0 var yComp:=0
in meth set(a,b) xComp := a; yComp := b
meth x() xComp
meth y() yComp
meth leq(p)  (xComp+yComp) <= (p.x+p.y)
meth eq(p) xComp=p.x and yComp=p.y
ni

class OrderedPair inheritsFrom Pair
meth eq(e) self.laq(e) and e.leq(self)

def var p := new OrderedPair in p.set(7,3) ni

Figure 3: O’small program with recursive types

together with the relation leq and the equality eq define a partial order because the equality has
been redefined and now leq becomes antisymmetric. The type o of the object p is circular and
defined by the following equation:

2a modification of an example in [Hen90a]



o =|eq: [leq: ¢ — bool, x : num, y : num, R] — bool
leq: [leq : ¢ — bool, x : num, y : num, R] — bool
set: num — num — unit
X : num
y : num)]
The recursion in the type of o stems from the redefinition of the equality in the class Ordered Pair.
The argument e of self.leq must understand a message leqg where the same self is an argument.

The perspicacious reader may argue that self.leq demands an z— and a y-component of its
argument and not a leg-component. However this knowledge can only be gained if one looks
at the definition of the method leq in the class Pair. Method definitions are not (mutually)
recursive, whence type checking does not regard other methods in a class. The other methods
are therefore not known in advance (this corresponds to ’bound by X’). If methods were known
in advance this would correspond to 'bound by let’. In the A-case we have non generic variables
and in the let-case we have generic variables. Because e and self are bound by A, selfleq must
have the type of its argument on the left hand side of the arrow: self.leq: type(e) — bool.

The verification whether the type of self and the type of the actually provided record of
methods can be unified is done at object creation time. It is possible to send messages to self
that are not defined in the class. This results in an abstract class [GR83]. The type checker
accepts abstract classes but rejects the creation of their objects.

3 Basic definitions

This section consists of definitions for inheritance taken from [Coo89]. Here objects have no
state. Therefore it is not directly a description of O’small but these definitions are the basis for
the denotational semantics of O’small [Hen90b]. Furthermore some of the definitions are used
in section 4.3.

Definition 1 A record is a finite mapping from a set of labels into a set of values. A record is
T = v

denoted by : with labels z; and values v;. All labels that are not in the list are

T, U

mapped onto absent. The empty record, where all labels are mapped onto absent is denoted by

().

Definition 2 Let dom(m) = {z | m(z) # absent}. The left-preferential combination of records
is defined by:
m(s) if s € dom(m)
(m@én)(s) =4 n(s) if s € dom(n)— dom(m)
absent otherwise

An object is a record with functions (methods) as values. A generator is a function to which
a fixed point operator can be applied. Its first formal parameter represents self-reference. A
class is a generator that creates objects by fixed point operation. The domain of classes is
Class = Object — Object. Inheritance is the derivation of a new generator from an existing
one, where the formal parameters for self-reference of both generators are shared. A wrapper is
a function that modifies a generator in a self-referential way. A wrapper has a parameter for
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self-reference and a parameter for the generator it modifies. Definition 3 and definition 4 will
show how wrappers operate on classes:

Definition 3 Let * be a binary operator on values. The distributive version of x is denoted by
. It operates on generators and is defined by:

G1 E] G2 = AS.G]_(S) * G2(3)

Definition 4 The inheritance function [v]applies a wrapper W to a class C' and returns a
class. © is defined by: we ¢ = (w-¢)® ¢ = w(c) ® c and - is the application. Hence:

w]c=(W[]C)[e]C

From these definitions follows that the domain of wrappers is Wrapper = Object — Object

— Object. Wrappers are central to the semantics of inheritance. In every class declaration
a superclass is named. If nothing is inherited Base is named as superclass. Base is the class
whose objects are empty records. The semantics of a class definition is a wrapper being wrapped
around the superclass, and this results in a new class. As pointed out above we can get objects by
applying the fixed point operator to a class. Note that in this context classes have no additional
parameters and thus the objects of a class would be all equal, if they had no state.

4 ‘Translation into A-calculus with imperative features

We proceed by translating O’small into A-calculus with imperative features and call this language
L. The type inference works for a subset of £-programs. The type safeness of the translation of
an O’small-program implies type safeness of the original program.

4.1 Syntax of O’small

There are primitive syntactic domains,

Ide the domain of identifiers 1
Bas the domain of basic constants B
BinOp the domain of binary operators O

compound syntactic domains,

Pro the domain of programs i
Exp the domain of expressions E
CExp the domain of compound expressions C
Var the domain of variable declarations \%
Cla the domain of class declarations K

M

Meth the domain of method declarations

and syntactic clauses:



KC

class I; inheritsFrom I, def Vin M | K; K; | €

E |I:=E |if E then C; else C; | def Vin C | Cy;C,
B |I |EI(E,,...E,) |new E | E; O E,

var[:=E |V; V, |e¢

meth I(I;,...,I,) C | My M; |e€

< =B o "R T
Il

Il

M

Input and output are not considered. The syntax is abstract: closing parentheses like ni do not
figure here. The semantics of O’small is described formally in [Hen90b].

4.2 Syntax of £

The primitive syntactic domains of £ are the same as the primitive syntactic domains of O’small.
In £ a formula is also a program.

For the domain of formulas F
Rec the domain of records R

The syntactic clauses:

F @= I|B|R|F,OF, |[F,F, |ifF, then Fyelse F3 |ALF | Y F |
letI =F;in F, |defI=F1inF2 |I:=F
R = [] |[RwithI=F |R, @Ry |RI

The semantics of the language £ is A calculus with imperative features. Y is the fixed point
operator. let declares a value and def declares a variable. Variables may appear on the left
hand side of assignments.

4.3 The translation function

The translation function ({_)} : O’small — £ yields a subset of £.3 We have codomnain({(-))) C
L’ C L. The type inference of section 6 is valid for £’ and not for £. The syntax of £’ will be
given in [Hen91]. In £’ we can assume that for every record concatenation ry @7, the 7; (i € 1,2)
are “known”. Le. r; is either a constant record or a variable bound by let. It is above all never
a variable bound by A. With this restriction we are able to do a simpler type checking than
[Wan89b| and we have principal types (see also section 5.2).

The translation of primitives is not listed here:

®_is a place holder



(K. ..K, C) = let (K,)) in ...let (K,)) in (C))

{(class I; inheritsFrom I; def V in M)) = I; = (Aself.Asuper.{(def V in M}))) [c] ((I))
{(def Vq...V, in M)) = def (V1)) in ...def (V,)) in (M)
{(var1:= E) = (D) = (E)

(M;...M,.) =[] with {(My)) ...with {(M,))

(meth I(T1... 1) C) = (D) = A (D). A (L) (O)
{(Cy;.. ;Cn)) = let newVar = {(C;)) in {(Cy;...;C,))
(1= E) = (1) = (E)

((if E then C; else Cy)) = if ((E)) then ((C;)) else {(C3))

(def Vy...V, in C)) = def (V1)) in ...def {V,)) in {(C))
((new E) - Y (B)

(Ex O Ex) = (E1) (O) (Ea)

(EI(Ey. .. En)) = ((ED-(D) (E1)) ... (En))

The expression before the inheritance operator in the second clause is a wrapper. self and super
are A-abstracted; they have the same meaning as in Smalltalk. When methods are translated
they are curried. Correspondingly message sends (record selection) are translated into a curried
version. new Var is a distinct new variable for every C; that is translated; it is a dummy variable
that cannot be used.

The denotational semantics of O’small is contained in [Hen90b]. The translation into £ does
not just serve type checking but is another possibility of defining the semantics of O’small; all
that remains to be defined after the translation is a denotational semantics of L.

5 Development of the type inference algorithm

5.1 The inference system of Wand

(Wan89b] considers type inference for the A-calculus with records. Wand extends the approach
of [Rem89] by record concatenation and unbounded label sets. Thus a reduction of the type
checking of an object oriented language without state to the classical type checking of [Mil78]
is achieved. Correctness proofs of [Mil78] extend to this new approach. Objects, classes, and
inheritance are dealt with in about the same way as in section 4, i.e. by translating them into
A-terms. The difference is that here we have imperative features.

The type of a record is the record of the types of its components. Thus the type of a record
is a function L — (T'ype + absent) where L is the set of labels. The type constructors may look
like this in a first approach:

— : Type x Type = Type
[T : [L= (Type+ absent)] = Type

where = is a kind constructor. But this is no ordinary algebraic signature because L is infinite.
[Rem89] turned this into an ordinary algebraic signature and [Wan89b] made the extension to



infinite label sets, so that we get the type constructors:

— : Type x Type = Type
[l : Field® x Extension = Type
absent : Field

pres : Type = Field

empty : FEztension

n is the number of labels actually appearing in the program, so [] is finite. Unbounded label
sets are represented finitely by a finite number of explicit labels and and an extension. An
empty extension stands for infinitely many labels with absent fields and an extension variable
(row variable) stands for infinitely many labels with fields that can be either absent or present.
Labels are implicit in this notation (position in a tuple). Record constants have principal types:

2 H[g.bsent, ...,absent, empty]
n

s 5 Tl s poes(t)iamss B Bl — ¢
_witha= _ : [[lfis- s fay e v Jan R = t = [Ilf1,-..,pres(t),..., fu, R]

The f; are variables of kind field. Extension variables (row variables) are denoted by calligraphic
upper case letters. In _.a the underlining is a place holder for a record argument and the dot
stands for record selection. In _ with a = _ the first underlining is a place holder for the record
to be updated and the second underlining is a place holder for the new value. f, indicates that
if a record is updated at a label a the field may have been either present or absent before.

In practice when one incrementally checks a program one does not know the set of labels in
advance. For this case [Wan89b] presents a technique called padding of which we only describe
the main idea here (for details refer to [Wan89b,Wan89a]). Every record type contains only
the previously encountered labels explicitly. When two record types are to be unified they are
padded such that the union of their explicit labels is now explicit in both record types and that
new row variables now range over the remaining implicit labels. E.g.: ry : [a : o,b: 7,R] and
ry:[b:7',c: v, 8] are padded. Thisresultsinrj :[a:0,b:7,c: a,R'|and v} : [a: B,b:T',c:
v', 8] where the row variables R and S have to be substituted accordingly. The padded types
can be unified field by field.

5.2 Principal types

O’small does not have classes as first class values. The full generality of Wand’s type inference
system, where there are no principal types, is not necessary. The absense of principal types
can be made plausible by the formula Az.Ay.(z ® y).a. One ignores whether the label a must
occur in z or in y. The record concatenation operator _ @ _ has no principal type in general. In
the translation function (section 4.3) _ @ - appears in the second clause: it is hidden inside the
inheritance operator _[p] _.

M, the record appearing on the left hand side of [p] in the translation function, is translated
by a finite sequence of with’s. By a simple calculation we can see that @ can be eliminated and
an replaced by a finite sequence of with’s in the second clause. Now we are back to record
constants and they have principal types according to section 5.1.
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5.3 Imperative constructs

This section and section 5.4 assume detailed knowledge of the type checking algorithm of [Mil78].

Most literature about type inference is concerned with purely applicative versions of object
oriented languages. One essential feature of object oriented languages is state [Weg87]. Existing
solutions to the problem of references to the store are either restrictive (top-level references must
be monomorphic [GMW79]) or they lead to an intricate algorithm [Dam85,Tof88].

Before we continue with the idea of our solution let us consider the special case of an as-
signment of one variable to another like z := y, and the trap one may fall into when devising
type checking for the assignment statement. At first glance it may seem enough to unify the
types of the two variables. This may not lead to the most flexible of type systems but should
be safe. Simple unification goes wrong because of let-polymorphism [Mil78]: as z and y occur
in the assignment, only instances of their generic types are unified. Thus the generic type of =
is not influenced.

Example 1 Let z, y, and z be objects having the following types with generic row variables R
and S:4
z : [a:[a:num,b:num,R]— [a:num,b: num, R]]

y : [a:[b:num,S]— [b:num,S]]
z ¢ [b:num)

Consider the program fragment y.a(z); y:=2z; y.a(z). If the row variables R and S are generic,
the unification of their instances does not influence the generic types. The program would be
considered correct although the last expression produces a type error.

If we restrict references to nongeneric types we lose all our polymorphism. The idea to the
solution is the following. All assignments to a variable occur in its scope. If a variable is an
actual parameter in a selected method (in object oriented terminology a parameter in a message)
it cannot be assigned in the method because formal parameters must not appear on the left hand
side of assignments. An imperative variable is declared by def z := ey in s ni and in its scope
(inside s) there are assignments of the form z := e¢; (1 <4 < n). As we are not concerned with
flow analysis here we assume that at any occurrence of z its value may be an instance of any
of the generic types of ey or e; (the possible types). Thus for every occurrence of z we unify
instances of all possible types and thus get a type for this occurrence. Note that, algorithmically
speaking, for unifying all instances of possible types the unification has to be delayed until the
end of the scope of z. All type information has to be kept in a table (definition 7). With this
procedure we get generic reference types in many cases. In particular, it is possible to have full
flexibility and generic types for a variable with no assignments to it — without any distinction
between constants and variables.

5.4 Limitations

There are limitations to our type system. The program of figure 4 which is obviously correct
is refused by the type checker. The implicit subtyping mechanism that works for arguments of
methods (see figure 2) does not work for objects that are known “in advance” because these
objects have non-extendible record types and the different possible types are unified in our

‘here labels have names
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algorithm. It is not possible to give extendible record types to objects because then, every
record selection would be accepted by the type checker.

Again in the general case one is not sure if the assignment has taken place but if the only
message sent to a is m without arguments this cannot go wrong. In this example objects of
the subclass B are of a subtype of the types of objects of the superclass A — i.e. if we define
a subtype relation appropriately. The problem is that we do not know of any simple way of
integrating an explicit subtype notion into the current framework. [Sta88] may be valuable in
this direction of research.

One possible way out of this problem is a modification of the treatment of imperative tables.

class A inheritsFrom Base meth m() O

class B inheritsFrom A meth n() 0
def var a := new A var b := new B
in a := b; a.m ni

Figure 4: O’small program with inextendible types

If instead of unifying instances of all possible types we start a continuation of the type checking
for each possibility, the above example goes through but the number of possible types grows
exponentially with the length of the program in the worst case. That clearly makes this solution
an impasse. Note that in the framework of Milner’s algorithm and thus in our framework there
is no explicit notion of subtypes. A statement like T is a subtype of o is therefore impossible.

6 Type inference rules

For type inference rules we follow the notation used in [Rem89]. Let T’ denote the set of types (in
[Rem89] they are called sorts); types are first order kinded rational trees over the set of variables
V = VUV’ and the set of symbols § = C U B, where C = {—,[], absent, pres, empty},
B = {num, bool,unit} is the set of basic types, V* the set of type variables, and V/ the set of
field variables.

Type variables are denoted by letters a, 3, v; they have a subscript , if they are generic.
Types are denoted by letters o, 7; they have a subscript , if generic types are admitted. A type
is generic if it may contain generic variables. (A4) is the set of all type variables occurring in A.

Definition 5 A graft is a mapping from V' to T'. We only use finite grafts. A graft u is finite
if {a | ap # a} is finite. Grafts are denoted by letters pu, v.

Rational trees can be regarded as the application of a finite graft to a variable ¢, whence they
are finitely representable.

Definition 6 A generic type 7, is a generic instance of a generic type o, iff there exists a graft
p such that 7, = ogu.

What substitutions are for terms, grafts [Hue76] are for rational trees.
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(TAUI1)

(TAU2)

(VAR)

(INST)

(GEN)

(ABS)

(APP)

(1F)

(FIX)

(LET)

(DEF)

(ASS)

AT :0,4

AFT:o

(I:04 € A)

AbF B :num
(I:X€AX|o)

AFF o,

AV Fiogu,

A FAFP—:ig:[::/a] (a g (4))

Aju{l:o}FF:7
AFM.Fio—T

AFFi:o0->T AL Fy: 0
Ai‘(F]_ Fz):‘r

AF Fy:bool AR Fy:7T AR Fy:1
Al if Fy then Fy else F3: 1

AFF:r—r7
AFY F:r1

AFFi:0, AjU{l:o,}FFy:1
AFlet I=F, in Fy: 1

AFFi:0, AU{I:Z}FFp:7
Abdef I=F,inFy:1

(04 € X)

AFF o
AR T := F :unit

([:2€Ao,€eX)

Figure 5: Type inference rules
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Definition 7 An tmperative table ¥ is a finite set of generic types. A type o is a common
instance of an imperative table ¥ = {og1,...,04,} (in symbols: ¥ | o) iff

Vi€ {ly.coyn) gz o =o

The type inference rules of figure 5 are applied to triples (A, F,7,) denoted by A+ F:1,. Ais
the environment of assumptions of the form z : ;. A, denotes all assumptions in A except
those for variable #. F' is a formula of L’.

Type inference does not start with the empty environment of assumptions but with the
environment {Base : a; — []}. This is the type of the predefined Base-class: on the right hand
side the type of the empty record and on the left hand side any type for self reference.

The inference rules are in figure 5. Let us explain the “imperative” inference rules: When
an assignable variable is encountered (rule VAR) its type must be a common instance of the
possible types in ¥. When an assignable variable is declared (rule DEF) a new imperative table
¥ that contains oy is constructed. The other generic types in ¥ should be those that are inferred
on the right hand side of assignments to I. When a variable is assigned a value (rule ASS) we
check whether the type of the right hand side is inside the possible types of I.

The algorithm has an effective way of constructing the imperative tables and does not have
to guess. In the algorithm the checking of imperative tables is delayed until the end of the scope
of a variable because only then we know all possible types and all occurrences of the identifier.

7 Conclusion

We have extended Wand’s algorithm to languages with imperative features. References with
generic types are realized by delayed unification. This technique may be applicable to other
language classes as well.

A similar algorithm but without imperative features can be found in [BSW90].

Our approach is still relatively simple and elegant — mainly owing to the work that has been
done before — and shows unexpected flexibility in many respects. There are however some severe
restrictions (figure 4) which seem to be inherent to all type inferencers in this line of research.
A remedy may lie in an explicit subtype notion and least upper bounds in the lattice of types
[Sta88].

The type inference is easily extended to an object oriented language with explicit wrappers
[Hen90a]. This language is a slight modification of O’small and has multiple inheritance. For a
language with explicit wrappers the documentary effect of type inference is even more important.

The types of objects of subclasses are not in a subtype relation to the types of objects of
their superclasses [CHC90]. The test whether a class is abstract comes as a gift with this type
inferencer.

Formal proofs of several correctness issues and the type inference algorithm will be contained
in the author’s forthcoming Ph.D. thesis [Hen91]. The algorithm has been implemented in ML
[Mil85,HMMB86] and uses ML-Yacc [TA90].
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