
Assessing Test Quality
David Schuler

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes
Saarbrücken, 2011

Day of Defense
Dean Prof. Holger Hermanns
Head of the Examination Board Prof. Dr. Reinhard Wilhelm
Members of the Examination Board Prof. Dr. Andreas Zeller,

Prof. Dr. Sebastian Hack
Dr. Valentin Dallmeier

ii

Abstract

When developing tests, one is interested in creating tests of good quality that thor-
oughly test the program. This work shows how to assess test quality through mutation
testing with impact metrics, and through checked coverage.

Although there a different aspects that contribute to a test’s quality, the most impor-
tant factor is its ability to reveal defects, because software testing is usually carried out
with the aim to detect defects. For this purpose, a test has to provide inputs that execute
the defective code under such conditions that it causes an infection. This infection has
to propagate and result in a failure, which can be detected by a check of the test. In the
past, the aspect of test input quality has been extensively studied while the quality of
checks has received less attention.

The traditional way of assessing the quality of a test suite’s checks is mutation test-
ing. Mutation testing seeds artificial defects (mutations) into a program, and checks
whether the tests detect them. While this technique effectively assesses the quality
of checks, it also has two drawbacks. First, it places a huge demand on computing
resources. Second, equivalent mutants, which are mutants that are semantically equiv-
alent to the original program, dilute the quality of the results. In this work, we address
both of these issues. We present the JAVALANCHE framework that applies several op-
timizations to enable automated and efficient mutation testing for real-life programs.
Furthermore, we address the problem of equivalent mutants by introducing impact met-
rics to detect non-equivalent mutants. Impact metrics compare properties of tests suite
runs on the original program with runs on mutated versions, and are based on abstrac-
tions over program runs such as dynamic invariants, covered statements, and return
values. The intention of these metrics is that mutations that have a graver influence on
the program run are more likely to be non-equivalent.

Moreover, we introduce checked coverage, an alternative approach to measure the
quality of a test suite’s checks. Checked coverage determines the parts of the code that
were not only executed, but that actually contribute to the results checked by the test
suite, by computing dynamic backward slices from all explicit checks of the test suite.

iv

Zusammenfassung

Diese Arbeit stellt dar, wie die Qualität von Software Tests durch mutationsbasiertes
Testen in Verbindung mit Auswirkungsmaßen und durch Checked Coverage beurteilt
werden kann.

Obwohl unterschiedliche Faktoren die Qualität eines Tests beeinflussen, ist der
wichtigste Aspekt die Fähigkeit Fehler aufzudecken. Dazu muss ein Test Eingaben
bereitstellen, die den fehlerhaften Teil des Programms so ausführen, dass eine Infek-
tion entsteht, d.h. der Programmzustand fehlerhaft wird. Diese Infektion muss sich so
fortpflanzen, dass sie in einem fehlerhaften Ergebnis resultiert, welches dann von einer
Test-Prüfung erkannt werden muss.

Die herkömmliche Methode um die Qualität von Test-Prüfungen zu beurteilen ist
mutationsbasiertes Testen. Hierbei werden künstliche Fehler (Mutationen) in ein Pro-
gramm eingebaut und es wird überprüft, ob diese von den Tests erkannt werden. Ob-
wohl diese Technik die Qualität von Test-Prüfungen beurteilen kann, weist sie zwei
Nachteile auf. Erstens hat sie einen großen Bedarf an Rechenkapazitäten. Zweitens
verwässern äquivalente Mutationen, welche zwar die Syntax eines Programms ändern,
jedoch nicht seine Semantik, die Qualität der Ergebnisse. In dieser Arbeit werden
Lösungen für beide Probleme aufgezeigt. Wir präsentieren JAVALANCHE, ein Sys-
tem, das effizientes und automatisiertes mutationsbasiertes Testen für realistische Pro-
gramme ermöglicht. Des Weiteren wird das Problem von äquivalenten Mutationen mit-
tels Auswirkungsmaßen angegangen. Auswirkungsmaße vergleichen Eigenschaften
zwischen einem normalen Programmlauf und einem Lauf eines mutierten Programms.
Hierbei werden verschiedene Abstraktionen über den Programmlauf benutzt. Die zu-
grunde liegende Idee ist, dass eine Mutation, die eine große Auswirkung auf den Pro-
grammlauf hat, weniger wahrscheinlich äquivalent ist.

Darüber hinaus stellen wir Checked Coverage vor, ein neuartiges Abdeckungsmaß,
welches die Qualität von Test-Prüfungen misst. Checked Coverage bestimmt die Teile
im Programmcode, die nicht nur ausgeführt, sondern deren Resultate auch von den
Tests überprüft werden.

vi

Acknowledgements

First of all, I would like to thank my adviser Andreas Zeller for the guidance and
support while working on my PhD. Many thanks also go to Sebastian Hack for being
the second examiner of my thesis, and to

During my time at the Software Engineering chair, I have been fortunate to work
with great colleagues, of whom many helped me with proofreading parts of this thesis.
Thank you Valentin Dallmeier, Gordon Fraser, Florian Groß, Clemens Hammacher,
Kim Herzig, Yana Mileva, Jeremias Rößler, and Kevin Streit. While working at this
chair, I have been lucky to have great office mates. Thank you Christian Lindig, Rahul
Premraj and Thomas Zimmermann. The research that I carried out would not have
been possible without the work of our system administrators Kim Herzig, Sascha Just,
Sebastian Hafner and Christian Holler who did a great job at maintaining the infras-
tructure at our chair. For parts of this research, I collaborated with Bernhard Grün and
Jaechang Nam, whom I would like to thank. Furthermore, I would like to thank Arnika
Marx and Anna Theobald for proofreading.

I am deeply grateful to my friends and family. Especially, I would like to thank
Anna, Conny, Heiner, Bastian, Julia, Luzie, Peter and Timo for cooking together and
the good time we spent together. Finally, my biggest thanks go to my parents Sigrid
and Werner for always supporting me.

Contents

1 Introduction 1
1.1 Thesis Structure . 3
1.2 Publications . 4

2 Background 7
2.1 Software Testing . 7
2.2 Unit Tests . 9
2.3 Coverage Metrics . 11

2.3.1 Control Flow Criteria . 12
2.3.2 Data Flow Criteria . 14
2.3.3 Logic Coverage Criteria . 14
2.3.4 Summary Coverage Criteria 15

2.4 Program Analysis . 16
2.4.1 Static Program Analysis . 16
2.4.2 Dynamic Program Analysis 17
2.4.3 Execution Trace . 18
2.4.4 Program Analysis Techniques 19
2.4.5 Coverage Metrics . 19
2.4.6 Program Slicing . 19
2.4.7 Invariants . 22
2.4.8 Related Work . 24

2.5 Summary . 25

3 Mutation Testing 27
3.1 Underlying Hypotheses . 30

3.1.1 Competent Programmer Hypothesis 30
3.1.2 Coupling Effect . 31

ix

CONTENTS

3.2 Costs of Mutation Testing . 31
3.3 Optimizations . 32

3.3.1 Mutation Reduction Techniques 32
3.3.2 Mutant Sampling . 33
3.3.3 Selective Mutation . 33
3.3.4 Weak Mutation . 34
3.3.5 Mutation Schemata . 34
3.3.6 Coverage Data . 35
3.3.7 Parallelization . 35

3.4 Related Work . 35
3.5 Summary . 36

4 The Javalanche Framework 37
4.1 Applying Javalanche . 39
4.2 Subject Programs . 41
4.3 Mutation Testing Results . 43
4.4 Related Work . 44

4.4.1 Further Uses of Javalanche 45
4.5 Summary . 47

5 Equivalent Mutants 49
5.1 Types of Mutations . 50

5.1.1 A Regular Mutation . 50
5.1.2 An Equivalent Mutation . 50
5.1.3 A Not Executed Mutation 51

5.2 Manual Classification . 52
5.2.1 Percentage of Equivalent Mutants 52
5.2.2 Classification Time . 53
5.2.3 Mutation Operators . 53
5.2.4 Types of Equivalent Mutants 54
5.2.5 Discussion . 56

5.3 Related Work . 58
5.4 Summary . 59

6 Invariant Impact of Mutations 61
6.1 Learning Invariants . 62
6.2 Checking Invariants . 63
6.3 Classifying Mutations . 64
6.4 Evaluation . 65

x

CONTENTS

6.4.1 Evaluation Subjects . 65
6.4.2 Manual Classification of Impact Mutants 67
6.4.3 Invariant Impact and Tests 71
6.4.4 Ranking . 73
6.4.5 Invariant Impact of the Manually Classified Mutants 76
6.4.6 Discussion . 78

6.5 Threats to Validity . 79
6.6 Related Work . 80

6.6.1 Mutation Testing . 80
6.6.2 Equivalent Mutants . 80
6.6.3 Invariants and Contracts . 81

6.7 Summary . 82

7 Coverage and Data Impact of Mutations 83
7.1 Assessing Mutation Impact . 84

7.1.1 Impact on Coverage . 84
7.1.2 Impact on Return Values . 85
7.1.3 Impact Metrics . 86
7.1.4 Distance Metrics . 87
7.1.5 Equivalence Thresholds . 88

7.2 Evaluation . 89
7.2.1 Impact of the Manually Classified Mutations 89
7.2.2 Impact and Tests . 93
7.2.3 Mutations with High Impact 98

7.3 Threats to Validity . 100
7.4 Related Work . 100
7.5 Summary . 102

8 Calibrated Mutation Testing 105
8.1 Classifying Past Fixes . 105

8.1.1 Mining Fix Histories . 106
8.1.2 Subject Project . 107
8.1.3 Fix Categorization . 108

8.2 Calibrated Mutation Testing . 108
8.2.1 Mutation Operators . 110
8.2.2 Mutation Selection Schemes 110

8.3 Evaluation . 111
8.3.1 Evaluation Setting . 112
8.3.2 Evaluation Results . 112

xi

CONTENTS

8.4 Threats to Validity . 115
8.5 Related Work . 116

8.5.1 Mining Software Repositories 116
8.5.2 Mutation Testing . 117

8.6 Summary . 118

9 Comparison of Test Quality Metrics 119
9.1 Test Quality Metrics . 120
9.2 Experiment Setup . 121
9.3 Results . 122
9.4 Threats to Validity . 127
9.5 Related Work . 128
9.6 Summary . 130

10 Checked Coverage 133
10.1 Checked Coverage . 135

10.1.1 From Slices to Checked Coverage 136
10.1.2 Implementation . 138

10.2 Evaluation . 139
10.2.1 Evaluation Subjects . 139
10.2.2 Qualitative Analysis . 140
10.2.3 Disabling Oracles . 142
10.2.4 Explicit and Implicit Checks 145
10.2.5 Performance . 147

10.3 Limitations . 147
10.4 Threats to Validity . 149
10.5 Related Work . 150

10.5.1 Coverage Metrics . 150
10.5.2 Mutation Testing . 150
10.5.3 Program Slicing . 151
10.5.4 State Coverage . 151

10.6 Summary . 152

11 Conclusions and Future Work 155

Bibliography 159

xii

List of Figures

2.1 Static data and control dependencies for the max() method. 21
2.2 Dynamic data and control dependencies for the max() method. . . . 22
2.3 A method that computes the square of an integer. 23

5.1 A non-equivalent mutation from the XSTREAM project. 50
5.2 An equivalent mutation from the XSTREAM project. 51
5.3 A mutation of XSTREAM project that is not executed by tests. 51
5.4 An equivalent mutation in unneeded code. 55
5.5 An equivalent mutation that does not affect the program semantics. . . 55
5.6 An equivalent mutation that alters state. 56
5.7 An equivalent mutation that could not be triggered. 57
5.8 An equivalent mutation because of the context. 57

6.1 The process of ranking mutations by invariant impact. 62
6.2 An invariant checker for a method that computes the square root. . . . 64
6.3 A non-detected JAXEN mutation that violates most invariants. 69
6.4 A non-detected JAXEN mutation that violates the second most invariants. 70
6.5 The undetected mutation that violates most invariants. 71
6.6 Detection rates (y) for the top x% mutations with the highest impact. . 75

7.1 Precision and Recall of the impact metrics for different thresholds. . . 92
7.2 Percentage of mutations with impact and detection ratios of mutations

with and without impact for varying threshold. 97

8.1 The process of calibrated mutation testing. 106
8.2 Collected fixes for the JAXEN project. 107

xiii

LIST OF FIGURES

9.1 Correlation between coverage level and defect detection for test suite
sizes 1 to 15. 123

9.2 Correlation between coverage level and defect detection and corre-
sponding P-values for test suite sizes 1 to 100. 124

9.3 Correlation between coverage level and defect detection and corre-
sponding P-values for test suite sizes 1 to 100. 125

9.4 Correlation between coverage level and defect detection for test suite
sizes 1 to 500. 126

10.1 A test without outcome checks. 134
10.2 Dynamic data and control dependencies as used for checked coverage. 135
10.3 Another test with insufficient outcome checks. 141
10.4 A method where the return value is not checked. 141
10.5 Coverage values for test suites with removed assertions. 142
10.6 Decrease of the coverage values relative to the coverage values of the

original test suite. 144
10.7 A common JUNIT pattern to check for exceptions. 148
10.8 Statements that lead to not taking a branch. 149

xiv

List of Tables

4.1 JAVALANCHE mutation operators. 39
4.2 Description of subject programs. 41
4.3 Description of the subject programs’ test suites. 42
4.4 Mutation statistics for the subject programs. 42
4.5 JAVALANCHE runtime for the individual steps. 43

5.1 Classifying mutations manually. 53
5.2 Classification results per mutation operator. 54

6.1 Invariants used by JAVALANCHE. 63
6.2 Description of subject programs. 66
6.3 Runtime (in CPU time) for obtaining the dynamic invariants. 66
6.4 JAVALANCHE runtime (in CPU time) for the individual steps. 67
6.5 Results for H2. Invariant-violating mutants (VM) have higher detec-

tion rates than non-violating mutants (NVM). 73
6.6 Results for H3. Best results are obtained by ranking VMs by the num-

ber of invariants violated. 76
6.7 Results for H4. Precision and recall of the invariant impact for the

140 manually classified mutants. 77

7.1 Effectiveness of classifying mutants by impact: precision and recall. . 90
7.2 Effectiveness of classifying mutants by distance based impact. 90
7.3 Assessing whether mutants with impact on coverage are detected by

tests. 93
7.4 Results for ranking the mutations according to their impact on coverage. 94
7.5 Assessing whether mutants with impact on data are detected by tests. . 94
7.6 Results for ranking the mutations by their impact on data. 95

xv

LIST OF TABLES

7.7 Assessing whether mutants with combined coverage and data impact
are detected by tests. 95

7.8 Results for ranking the mutations by their impact on coverage and data. 96
7.9 Detection ratios for different operators 98
7.10 Focusing on mutations with the highest impact: precision of the classi-

fication . 99

8.1 Fix pattern properties and their values. 108
8.2 10 most frequent fix patterns for Jaxen. 109
8.3 Classification of the 10 most frequent fix patterns. 109
8.4 Defects detected for pattern and location based schemes (for revision

1229). 113
8.5 Defects detected for property based schemes (for revision 1229). . . . 114
8.6 Defects detected for pattern and location based schemes (for revision

931). 115
8.7 Defects detected for property based schemes (for revision 931). 116

9.1 Description of the Siemens suite. 121

10.1 Checked coverage, statement coverage, and mutation score. 140
10.2 Mutations detected by explicit checks of the test suite. 146
10.3 Runtime to compute the checked coverage and the mutation score. . . 147

xvi

Chapter 1

Introduction

Software fails, and as software is part of our everyday lives, almost everyone has ex-
perienced a software failure. Failures are caused by defects in programs, which are
accidentally introduced by developers because of the inherent complexity of modern
software. It is impossible for a human to account for all possible scenarios that can
arise during the execution of a program. Thus, defect free software is an illusion and
almost all programs contain defects that lead to more or less severe failures.

Infamous defects include the Ariane 5 explosion in 1996 [20]. A conversion error
from a 64-bit floating-point to 16-bit signed integer value caused the Ariane 5 launcher
to veer off the planned flight path, which put too much force on the engines so that they
were in danger to drop off, and eventually, the self-destruct mechanism was activated.
Another severe defect was in the in the control software of the Therac-25 radio therapy
machine [51]. Its electron beam has two operation modes, low and high power. A
defect in the control software caused the usage of high power beam when the low power
beam should have been used. In these cases the high power beam was used without the
indispensable safety mechanisms. This caused a massive overdose of radiation for
many patients.

A study by the National Institute of Standards and Technology [95] from 2002
quantifies the problem of software defects in terms of costs. It is estimated that software
failures cause costs of $59.5 billion annually in the U.S., and that over one third of these
costs could be avoided by using a better testing infrastructure.

1

2 CHAPTER 1. INTRODUCTION

Software testing techniques are concerned with detecting as many defects as early
as possible. To this end, software is tested at different architectural levels and at dif-
ferent stages during the development process. Thereby, one is interested to test the
program systematically. Unit test operate at the most basic level, and provide inputs
for the program under test and compare the results to expected values. Coverage met-
rics impose requirements on the test inputs so that the program is systematically tested.
However, they do not consider how well the results of the computations are checked.
Mutation testing, which inserts artificial defects (mutations) into a program and checks
whether tests detect them, assesses the quality of checks and test inputs. Besides these
benefits mutation testing also has two major drawbacks. First, it is expensive in terms
of computing resources. Second, equivalent mutants, which are mutants that do not
differ in the program semantics, dilute the quality of its results.

This work makes the following contributions to mutation testing, detecting equiva-
lent mutants, and assessing the quality of a test suite’s checks.

JAVALANCHE We introduce the JAVALANCHE mutation testing framework that en-
ables automated and efficient mutation testing for JAVA programs. It is the basis
for further research presented in this work and has been developed with the in-
tent to apply mutation testing to real-life programs. JAVALANCHE applies sev-
eral optimizations adapted from previous mutation testing tools, and it introduces
previously unimplemented optimizations.

Equivalent mutants We study and quantify the problem of equivalent mutants for
real-life JAVA programs. Equivalent mutants have a different syntax than the
original program but are semantically equivalent. As they cannot be detected by
a test, they are presented to the developer among regular undetected mutants, and
thereby, dilute the quality of mutation testing’s results. We study their frequency
among undetected mutants on real-life programs and test suites, and measure the
time needed to identify them.

Impact metrics To address the problem of equivalent mutants, we introduce several
impact metrics that measure the difference between a run of the test suite on
the original program and a run of the test suite on a mutated version. The idea
behind these approaches is that a mutant with a strong impact on the program run
is more likely to be non-equivalent. In this work, we investigate several metrics
based on different abstractions that characterize program runs. We show how to
compute the impact of a specific mutation by comparing the abstractions over a
run of the original program to a run of the mutated version.

1.1. THESIS STRUCTURE 3

Checked coverage We introduce checked coverage, a coverage metric that is designed
to assess the quality of the inputs and checks of a test suite. Using dynamic
slicing, checked coverage determines the statements actually contributing to the
results checked by the test suite, in contrast to statements that are only executed.
Thereby, checked coverage focuses on the explicit checks of the test suite, which
verify the results of one concrete run and can make detailed assumptions. Thus,
they have an important influence on the test quality.

1.1 Thesis Structure

The main contributions of this work are to apply mutation testing to real-life programs,
introduce methods that help to identify non-equivalent mutants, and to present a new
coverage metric that measures the quality of a test suite’s checks. The results of our
research are presented further on in the following order:

Chapter 2 gives a short introduction into software testing and program analysis. It
describes different testing levels, and focuses on testing at the unit level because
the techniques presented in this work operate at this level. The second part in-
troduces static and dynamic program analysis, and explains dynamic analysis
approaches relevant for this work in more detail.

Chapters 3 to 5 introduce and define mutation testing as a technique that assesses the
quality of a test suite by inserting artificial defects and checking whether the
test suite detects them. Chapter 4 presents the JAVALANCHE framework that
enables efficient mutation testing for JAVA. With the help of JAVALANCHE, the
extend of the equivalent mutant problem for real-life JAVA programs is studied
in Chapter 5.

Chapters 6 and 7 present methods to detect non-equivalent mutants via the impact of
a mutation. The impact of a mutation is the difference between a run of the test
suite on the original version of the program and a run on the mutated version.
Chapter 6 introduces invariant impact which is computed by inferring dynamic
invariants from the original run and checking for violations in the mutated run.
Chapter 7 presents impact measures based on the differences in code coverage
and return values between a run of the original program and the mutated version.

4 CHAPTER 1. INTRODUCTION

Chapter 8 introduces calibrated mutation testing. A method which adapts mutant
generation schemes to the defect history of a project. A mutant generation
scheme produces a set of mutations calibrated to past defects by mining past
fixes, extracting properties of them, and mapping these properties to mutations.

Chapter 9 investigates whether there is a correlation between the coverage level of
a test suite and its defect detection capability for mutation testing and several
coverage metrics, i.e. whether test suites with a higher coverage level are also
more likely to detect defects.

Chapter 10 presents checked coverage, an alternative to mutation testing, which as-
sesses the quality of a test suite’s checks. This is done by focusing on those
code features that actually contribute to the results checked by oracles. For this
purpose, the dynamic backward slice from the checks is computed, and only
statements that are on the slice are considered as covered.

Chapter 11 concludes with a summary of our results and ideas for future work.

1.2 Publications

This dissertation builds on the following papers (in chronological order):

• David Schuler, Valentin Dallmeier, Andreas Zeller. Efficient Mutation Testing
by Checking Invariant Violations. In ISSTA ’09: Proceedings of the 18th Inter-
national Symposium on Software Testing and Analysis, pages 69–80, New York,
NY, USA, 2009. ACM.

• Bernhard J. M. Grün, David Schuler, Andreas Zeller. The Impact of Equiva-
lent Mutants. In Mutation ’09: Proceedings of the 3rd International Workshop
on Mutation Analysis, pages 192-199, Los Alamitos, CA, USA, 2010. IEEE
Computer Society.

• David Schuler, Andreas Zeller. (Un-)Covering Equivalent Mutants. In ICST ’10:
Proceedings of the 3rd International Conference on Software Testing, Verifica-
tion and Validation, pages 45–54, Los Alamitos, CA, USA, 2010. IEEE Com-
puter Society.

1.2. PUBLICATIONS 5

• David Schuler, Andreas Zeller. Assessing Oracle Quality with Checked Cov-
erage. In ICST ’11: Proceedings of the 4th International Conference on Soft-
ware Testing, Verification and Validation, pages 90–99, Los Alamitos, CA, USA,
2011. IEEE Computer Society.

• Jaechang Nam, David Schuler, Andreas Zeller. Calibrated Mutation Testing.
In Mutation ’11: Proceedings of the 5th International Workshop on Mutation
Analysis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This work presents approaches that measure the quality of software unit tests, and
further extensions to these approaches that use dynamic program analysis techniques.
The following chapter gives a short introduction to software testing and more details
for testing on the unit level as most techniques presented later in this work operate at
this testing level. Further on, there will be a focus on program analysis techniques,
especially dynamic ones, which are exerted by various approaches that are presented
later.

2.1 Software Testing

The goal of the software development process is to produce a piece of software that
meets the requirements and contains no defects. In other words, the software should
perform as expected under all circumstances. However, meeting this goal is in most
cases impossible because not all requirements might be known beforehand and the re-
quirements might be imprecise so that they allow room for interpretation. Furthermore,
most software is so complex that one cannot make sure that it contains no defects. In
order to gain confidence that the software behaves as expected, it is tested at different
stages in the development process. Testing at different stages corresponds to testing at
different levels of the program structure.

7

8 CHAPTER 2. BACKGROUND

Acceptance testing addresses the question whether the complete software meets the
users’ requirements, i.e. if it really does what the users want. It is the last testing step
before shipping the product, and is usually carried out by domain experts, who are
often the customers themselves. Therefore, the software is tested in the environment of
its users which can be executed in the following ways: for software that was developed
for a specific customer, a test system is set up at the customer’s site that may be tested
with real production data. For software that has been developed for the mass market, a
beta phase is started in which the software is handed out to selected customers.

System testing is concerned with the question whether the assembled system meets
the specifications. The system is tested on the architectural level and the focus is put
on the functional part of the software. It is assumed that the subsystems work correctly,
and the complete system is tested with the aim of discovering problems that arise from
discrepancies between the specification and the implementation, i.e. the specification
is not implemented correctly. In contrast to acceptance testing which is carried out by
customers, system testing is carried out by the producer of the software, usually by a
separate testing team.

Integration testing assesses whether the modules communicate correctly via their
interfaces. The aim of this testing phase is to find interaction and compatibility prob-
lems. When integrating the modules, different integration techniques are used. First,
big-bang integration follows no real strategy because all components are integrated at
once. Second, structure-oriented integration combines the modules incrementally by
considering the structural dependencies between them. Third, function-oriented inte-
gration combines the modules according to specified functional criteria. Integration
testing is carried out by the development team, and in contrast to system testing, the
code structure is also considered.

Module testing (also called unit testing) checks the implementation of single pro-
gram modules in isolation. The part of a program that is considered as a module can
vary. For example, methods and functions can be considered as modules, or classes
and files can be considered. In practice, they often cannot be tested in isolation be-
cause of the dependencies between modules. Module testing is always concerned with
concrete implementations; therefore, it is carried out by the software developer. As the
techniques presented in this work are concerned with testing at the unit level, we will
present unit tests in more detail.

2.2. UNIT TESTS 9

2.2 Unit Tests

Unit tests are small programs that exercise the system under test (SUT) under specified
conditions. The execution of the SUT is observed. For example, exceptions that are
raised during execution are logged. After the SUT has been exercised the results are
checked with the help of test oracles and classified as passing or failing. When a test
meets the expectations imposed by the oracle, it is considered to be passing and failing
otherwise. A single unit test is referred to as a test case.

Definition 1 (Test Case) A test case executes the system under test under specified
conditions and with specified inputs, observes the execution, and checks the results via
test oracles.

Definition 2 (Test Oracle) A test oracle determines whether the test passes or fails.

The result of a test is determined by the test oracle and can be influenced by explicit
checks of the test suite, explicit checks of the program, or implicit checks of the pro-
gram. Explicit checks of the test suite usually come in the form of expectations about
the computed results. Values returned by the program and the state of the program are
compared against expected values. Explicit checks of the program are pre- and post-
conditions of the methods and the assertions inside the program, e.g. many methods
check their arguments and raise an exception if an illegal argument was passed. Im-
plicit checks are carried out by the runtime system and are not explicitly stated. For
example, the JAVA virtual machine implicitly checks whether an object is null before
calling a method on it and if this is the case a NullPointerException is thrown.
If all of the checks succeed, the test is considered as passing, otherwise, if one of the
checks indicates an unexpected behavior, the test is considered as failing.

Definition 3 (Test Result) A test result r for a test t is the result, as determined by the
test oracle, of running the test on a version P of the program . The result can either be
pass or fail.

t(P) = r, r ∈ {PASS,FAIL}

The aim of a unit test is to test atomic units, which are the smallest possible parts
that can be tested in isolation. The benefit of testing small parts comes into play when
a test fails. In this case, the location of a bug can easily be pinpointed because only a

10 CHAPTER 2. BACKGROUND

small part of the program was covered by the test. However, it is not always possible
to test every unit of the program in isolation because of the dependencies between
different units.

To test bigger parts of the system (than a single unit), test cases can be combined
into test suites. The purpose of those test suites is to group tests for a specific feature
or a part of the system. They can be organized in a hierarchical order, i.e. a master test
suite might consist of several sub test suites.

Definition 4 (Test Suite) A test suite is a set of several test cases.

During the development process, unit tests are executed very frequently. Therefore,
the execution of the tests should be, and in most cases is, automated. To this end,
several testing frameworks for different programming languages have been developed.
Most prominent is the JUNIT framework for JAVA.

These frameworks provide support to automatically run tests, group tests in several
test suites. They separate setup code from testing code so that the setup code can
be shared between several test cases, and introduce methods to check results, e.g. to
check for equality of values or arrays. Furthermore, the frameworks give the developer
an overview of the test results, and failing tests are reported together with associated
failures and error messages.

The test suite is usually maintained in the same repository as the tested system
and is written in the same programming language. It is run by the developer when
changes have been made to the system, in order to gain confidence that the changes
do not break existing tests. The practice of running tests after a modification to check
whether it caused any defects previously experienced and detected by the tests, is called
regression testing. Of course, tests cannot show the absence of defects. They can only
show that the system does not behave unexpected on a limited number of inputs.

Continuous integration tools build the system and run the test suites automatically
in regular intervals, and make the results accessible to all developers. Thereby, devel-
opers get immediate feedback about the current state of the system.

Using unit tests provides a number of benefits:

Find problems earlier Detecting a defect via unit testing saves costs because detect-
ing a defect at later stages is much more expensive.

2.3. COVERAGE METRICS 11

Facilitate change By changing the software, there is always the risk of introducing a
defect. Therefore, developers might refrain from changing specific parts of the
system or making design changes although such changes might be necessary.
Thorough unit tests can give the developer confidence that after a change, the
system still behaves as expected.

Documentation Tests can provide examples of how to use the program under test.
These tests can serve as documentation for developers who are not familiar with
the system. Furthermore, the tests are kept up-to-date because they are executed
regularly on recent versions of the program. This is often not the case for external
code examples.

In order to profit from these benefits, it is important to have a good test suite.
However, it is an open question what makes a good test suite. In the following sections,
we present methods to assess the quality of unit tests.

2.3 Coverage Metrics

When testing a program, one is interested in thoroughly testing all parts of the pro-
gram. However, testing with all possible inputs is practically impossible for nontrivial
programs. For example, for a method that takes a date encoded as a string, all possible
strings might be used as test inputs because tests can also use invalid inputs. In order
to direct the testing process, coverage criteria can be used. Different coverage criteria
impose different test requirements that the test should satisfy. 1

Definition 5 (Coverage Criterion) A coverage criterion is a rule that imposes re-
quirements on a test suite.

Definition 6 (Test Requirement) A test requirement is a specific element or property
of the system that the test must cover or satisfy.

By using coverage metrics that impose test requirements, rules can be stated on how
many tests should be created and when to stop testing. This might be the case when
all test requirements are satisfied or when a defined fraction of the test requirements is
satisfied, i.e. a specific level of coverage is reached.

1These definitions of coverage criteria in form of test requirements follow the style of Ammann and
Offutt [2].

12 CHAPTER 2. BACKGROUND

Definition 7 (Coverage Level) For a test set T and a set of test requirements TR, the
coverage level is the ratio of satisfied requirements relative to all requirements.

The coverage level can also be used to assess the quality of a test suite with respect
to a coverage metric. This also allows comparing different test suites regarding their
quality.

Sometimes, coverage criteria impose requirements that cannot be met. These in-
feasible requirements prevent test sets from satisfying all requirements. Detecting all
infeasible requirements can be impossible as this problem can be reduced to the halting
problem.

Some coverage criteria are related to each other via subsumption. A coverage cri-
terion is said to subsume another coverage criterion when every test set that satisfies
the coverage criterion also satisfies the coverage criterion it subsumes.

Definition 8 (Subsumption) A coverage criterion Ca subsumes another coverage cri-
terion Cb if and only if every test set that satisfies Ca also satisfies Cb.

Inspired by different types of defects, different coverage criteria have been intro-
duced. The criteria are designed in such a way that the tests satisfying one criterion
do also detect defects of a specific type. Different criteria vary in the effort needed to
compute the requirements, to write tests that satisfy them, and in their ability to require
tests that reveal defects.

2.3.1 Control Flow Criteria

Criteria that can be defined using the control flow graph (CFG) are also called control
flow criteria. The control flow graph is a directed graph that has a node for every
statement or every basic block, i.e. a piece of code that starts with a jump target and
ends with a jump and contains no jump or jump target in between. Edges between
nodes indicate that there is a direct control flow transition between the nodes. In the
following, we will present the most prominent control flow criteria. The intention of
these criteria is that defects are revealed by simply exercising the program structures
or exercising them in a specific order.

Statement coverage is the most basic coverage metric. It requires that all state-
ments in the program are executed, i.e. a single requirement is that a specific statement

2.3. COVERAGE METRICS 13

gets executed by at least one test, and the set of test requirements for statement cov-
erage consists of one such requirement for every executable statement in the program.
An alternative way of defining statement coverage is to require that every node in the
control flow graph is executed by at least one test. Therefore, statement coverage is
sometimes also referred to as node coverage. Statement coverage can be measured
with little overhead, and many tools exist for different programming languages that
compute statement coverage. Thus, it is the most widely used coverage metric.

Branch coverage requires that every branch in the program is taken, i.e. every con-
ditional statement is evaluated to true and false. A single test requirement demands
that a specific branch is exercised by at least one test. The set of test requirements is
made up of one requirement for every branch in the program. Alternatively, branch
coverage can also be defined via the control flow graph by requiring that every edge
in the control flow graph is exercised. Thus, branch coverage is sometimes also called
edge coverage. Branch coverage is a stronger criterion than statement coverage because
it implicitly requires that every statement is executed, and in contrast to statement cov-
erage it also requires that branches with no statement are executed, e.g. an empty else
block of an if statement. Consequently, branch coverage subsumes statement cover-
age, which means that every test suite that reaches full branch coverage also reaches
full statement coverage.

Path Coverage requires that every possible execution path in the program is exer-
cised. A single test requirement implies that a specific path through the program is
followed by at least one test, and the set of test requirements consists of one require-
ment for each possible path. For the control flow graph this means that every possible
path through the CFG has to be taken in order to fulfill path coverage. Path coverage
subsumes branch coverage and transitively statement coverage as well. However, the
number of paths can become unbounded in the presence of loops. Even if we do not
consider loops and restrict ourselves to acyclic paths, there are so many paths that it
becomes almost infeasible to exercise them all in non-trivial programs. For example,
Ball and Larus [5] reported approximately 109 to 1011 acyclic paths for the subject
programs in the SPEC95 benchmark suite out of which only about 104 were exercised
by the tests. Therefore, several variants of path coverage exist that limit the number of
paths that have to be taken in order to make it feasible to fulfill the criterion. Examples
include limiting the length of the paths, only considering loop-free paths, or limiting
the number of loop traversals.

14 CHAPTER 2. BACKGROUND

2.3.2 Data Flow Criteria

Data flow criteria are based on the idea that a defect is revealed when an erroneous
value is used later in the execution of a program. Thus, they impose requirements
between the definition and the use of variables. A definition (def) is a point in the
program where a value is assigned to a variable, i.e. the value is written to memory.
A use is a point in the program where a value of a variable is accessed, i.e. it is read
from memory. A definition and a use of the same variable form a definition-use pair
(also called def-use pair or du pair) if there exists a definition-clear path with respect
to the variable between them. A definition-clear path for a variable is a path with no
redefinition of the variable.

All definitions coverage requires that every definition of a variable is exercised and
also used at least once, i.e. there is at least one test that exercises a du pair that includes
the definition.

All du pairs coverage requires that every du pair is exercised by at least one test,
i.e. every use for a definition should be covered by a test. Therefore, it is sometimes
called all uses coverage. It subsumes all definitions coverage, due to the fact that the
execution of every du pair also implies that every definition is executed.

All du paths coverage requires that every simple path for every du pair is included
by the test suite. A simple path is a path that contains no loops, i.e. no node is con-
tained twice. It is considered to be included with respect to a du pair by another path
if it exercises every node of the simple path with no redefinition of the variable asso-
ciated with the du pair. This definition ensures that all paths between definitions and
corresponding uses are exercised, but it excludes all paths that arise from a different
execution frequency of loops. A du pair can be exercised by one or more simple paths.
Hence, du path coverage subsumes all du pairs coverage.

2.3.3 Logic Coverage Criteria

Logic coverage criteria are based on logical predicates of a program. A predicate is a
logical expression that evaluates to true or false. It is composed of subpredicates,
boolean variables and literals, function calls, and comparisons between non-boolean
variables and literals. The elements of a predicate are connected via logical operators.
A clause is an atomic expression that contains no logical operator. This group of cover-
age criteria follows the intuition that predicates partition the program’s state space. For

2.3. COVERAGE METRICS 15

this reason, inputs that test different assignments of logical predicates systematically
test the state space, which increases the chance to detect defects.

Predicate coverage requires each predicate to be evaluated to true and false.
It is important to note that this criterion is not the same as branch coverage, because
it includes boolean expressions used in conditional statements and expressions used in
variable assignments. Thus, it subsumes branch coverage.

Basic condition coverage requires each basic condition to be true and false.
That is, every clause is evaluated to true and false. Thus, this criterion is also
called clause coverage. It typically requires more tests than predicate coverage, but it
does not subsume it because a predicate might not be evaluated to both boolean values
although its clauses do so.

Compound condition coverage, which is also known as multiple condition cover-
age, addresses this problem by requiring that every possible assignment of a predicate
to be exercised. Therefore, it subsumes basic condition coverage and predicate cover-
age. This requirement, however, leads to an exponential growth of the required assign-
ments in the number of clauses. In order to avoid this multitude of assignments, some
restricted versions have been proposed.

The most prominent one is modified condition/decision coverage (MC/DC) which
is also called active clause coverage. For each clause, it requires an assignment which
independently affects the outcome of the whole predicate. In other words, the predi-
cate’s result should change whenever the result of the clause changes.

2.3.4 Summary Coverage Criteria

The different criteria were inspired by different types of defects, with the aim that
tests fulfilling a criterion do also detect a specific type of defects. However, writing
tests that fulfill the criteria requires significant effort. Therefore, the effort needed
to fulfill a criterion has to be weighted against the strength of the criterion. In areas
where failures have graver consequences, stronger coverage criteria are used, e.g. the
RTCA/DO-178B standard [82] for avionics requires modified condition decision/cov-
erage for safety critical applications.

The criteria may also impose infeasible requirements, e.g. when a program has
unreachable code it is impossible to cover these statements. These infeasible require-
ments can also influence the subsumption relations. The relation between infeasible

16 CHAPTER 2. BACKGROUND

requirements and subsumption is discussed in more detail by Ammann and Offutt [2],
and a more detailed discussion on software testing and coverage criteria can be found
in dedicated books on software testing [2, 81].

Satisfying coverage metrics, however, does not guarantee to detect defects, and in
general testing cannot show the absence of defects. For example, failures caused by
missing code might not be detected by a coverage criterion. Furthermore, the coverage
metrics only measure how well the inputs exercise the program. They do not assess
how well the results of the program are checked by the oracles. This might result in
test cases that trigger a defect but do not detect it, because the input causes a failure
which is not checked for.

2.4 Program Analysis

The approaches presented later in this work combine software testing and program
analysis. This section gives an introduction to program analysis and presents tech-
niques which are used by approaches presented later in this work in more detail.

Program analysis techniques are concerned with investigating and gaining insight
into different aspects of program behavior. Different techniques are used to help devel-
opers get a better understanding of complex programs, transform programs (compiler
optimizations), and to detect bugs. The different analysis techniques fall into two cate-
gories: static and dynamic techniques, which are presented in the following sections.

2.4.1 Static Program Analysis

Static program analysis techniques reason about a program by analyzing its source
code or other static representations, e.g. an intermediate representation used by a com-
piler. The results of a static analysis technique hold for all possible executions and no
specific inputs are needed. Static program analysis emerged from compiler construc-
tion where it is needed for optimizations, but it also has further application areas such
as model checking and bug detection.

An analysis technique should be safe and precise. Safe means that each possible
behavior of a program is detected by an analysis, i.e. no possible behavior is missed.
Precise means that no impossible behavior of a program is detected by an analysis, e.g.

2.4. PROGRAM ANALYSIS 17

an imprecise analysis might infer that a variable can take values that it never takes in
practice. While in most cases one is interested in a safe analysis, there is usually a
trade-off between precision and scalability.

For example, compiler optimizations transform a program so that the transformed
program meets a performance goal, which is mostly faster execution. For these trans-
formations, it is important that they do not change the behavior of the program, i.e. that
they are semantics preserving. Program analysis techniques are used to prove that spe-
cific transformations do not alter the behavior of the program. In this case, the analysis
must be safe because the transformation should preserve the semantics for all possible
executions. On the other hand, the analysis does not have to be fully precise because it
is tolerable that not all possible optimizations are detected.

Many problems can be solved efficiently by static analysis techniques. For some
problems, however, static analysis suffers from combinatorial explosion. This means
that the number of possible states which have to be considered becomes too large, so
that a solution cannot be computed efficiently.

2.4.2 Dynamic Program Analysis

Dynamic program analysis aims to overcome the problem of combinatorial explosion
by observing concrete program runs. Typical application areas are bug detection and
localization, profiling for speed and memory consumption, or the detection of memory
leaks.

In contrast to static analysis, the results of dynamic analysis are only guaranteed
to hold for the observed runs. Therefore, its results also depend on the quality of
the inputs, i.e. whether they thoroughly exercise the program and trigger a specific
behavior of the program. Furthermore, the results of dynamic program analysis are
always precise as they correspond to observed behavior. The results, however, are not
safe because for all non-trivial programs, it is impossible to exercise them exhaustively.
Therefore, a possible behavior can be missed. As a consequence the results are likely
to hold, or they are partial results. Likely results are results which have been obtained
from a set of runs and might also hold for all runs. Partial results reflect the parts of
the obtainable result that could be inferred from the given runs, while other aspects are
missed.

Technically, dynamic analysis can be applied in two ways: the program can be
instrumented, or it can be run in a special interpreter. The instrumentation approach

18 CHAPTER 2. BACKGROUND

inserts additional code into the program that allows observing it, and then the instru-
mented program is run in its original environment. The interpreter approach runs the
program in a different environment that simulates the original environment but also
allows observing different parts of the program. The advantages of the instrumentation
approach are that it is less intrusive and generally faster than the interpretive approach.
Furthermore, for the interpreter approach some effort is needed to make sure that the
original environment is simulated correctly. The advantages of the interpretive ap-
proach are that more aspects of the execution can be observed, and it provides more
control over the execution. For example, it can observe program internals that cannot
be accessed with the instrumentation approach.

For the analysis part there are two options as well: the data can be analyzed at
runtime, or offline after the execution. The runtime techniques analyze the data right
when it is observed and can present the result during or at the end of the execution. The
offline techniques are split into a tracing and processing part, i.e. first, the observed
data is streamed to disk and the analysis, then, takes place in a separate step after the
program run is finished.

2.4.3 Execution Trace

Most dynamic analyses capture the program behavior in the form of an execution trace.
This is a sequence of observed events during a program run where a single event rep-
resents a step of the execution.

Definition 9 (Execution Trace) An execution trace T is a series of execution events
T = 〈e1, . . . ,en〉, where an execution event e is a tuple of attributes.

Depending on the analysis technique, different events and attributes are of interest.
The attributes of an execution event may include the time at which an event took place
and information about the code and the data that was involved. The time attribute can
either be a timestamp of the absolute time or the time passed since the start of the
program. The attributes referring to the code might consist of the statements that were
executed, and the thread that executed them. This would allow to track the control flow
of an execution. The attributes referring to the data can be the results of intermediate
calculations, variables and values that are read or written, values and locations that
arise from interaction with the main memory or disk, or from communication with the
environment, e.g. input devices or network.

2.4. PROGRAM ANALYSIS 19

The tracing of all possible events and attributes is limited by the sheer amount of
data which can be traced, e.g. a few seconds of executions can produce several GB of
data. Therefore, several techniques can be used to reduce the traced data. For example,
only parts of the program or a subset of events and attributes are traced, a statistical
sampling method can be applied, e.g. only every 100th event is traced, or an abstraction
over the data is used, e.g. for every variable only the observed minimum and maximum
value is stored.

2.4.4 Program Analysis Techniques

In order to address different problems, several program analysis techniques have been
proposed. Depending on their application area, they are concerned with different as-
pects of the data and control flow of a program. In the following sections, we present
program analysis techniques. Mainly dynamic techniques are presented in more detail,
because they are used in later parts of this work. Further on, we conclude with a sample
of related program analysis techniques.

2.4.5 Coverage Metrics

Coverage metrics can also be seen as a form of dynamic analyses that measure the
thoroughness of execution by a test suite. To be able to determine whether a set of tests
fulfills a coverage criterion or to compute the coverage level, requires to run and trace
the program. Depending on the type of coverage metric, different events and attributes
have to be traced. For example, one way to determine the statement coverage is to
trace the first execution of each statement. For more complex metrics like all du pairs
coverage, every read and write of a variable has to be traced.

Static analysis techniques have been successfully used to generate test inputs that
satisfy coverage criteria [8, 99]. Recent approaches also combine static and dynamic
analysis for this purpose [91, 96].

2.4.6 Program Slicing

Program slicing was introduced by Weiser [102, 103] as a technique that determines
the set of statements that potentially influence the variables used in a given location.

20 CHAPTER 2. BACKGROUND

Weiser claims that this technique corresponds to the mental abstractions programmers
make when they debug a program.

A static backward slice is computed from a slicing criterion which consists of a
statement and a subset of the variables used in the program. A slice for a given slicing
criterion is computed by transitively following all data and control dependencies for
the variables from the statement, whereas data and control dependencies are defined as
follows:

Definition 10 (Data Dependency) A statement s is data dependent on a statement t if
there is a variable v that is defined (written) in t and referred to (read) in s, and there
is at least one execution path from t to s without a redefinition of v.

Definition 11 (Control Dependency) A statement s is control dependent on a state-
ment t if t is a conditional statement and the execution of s depends on t.

Definition 12 (Backward Slice) A backward slice for a slicing criterion (s,V) is the
transitive closure over all data and control dependencies for a set of variables V at
statement s.

Korel and Laski [47] refined this concept and introduced dynamic slicing. In con-
trast to the static slice as proposed by Weiser, the dynamic slice only consists of the
statements that actually influenced the variables used in a specific occurrence of a state-
ment in a specific program run. This means that only those data and control dependen-
cies are considered which actually emerged during a specific run of the program.

A dynamic slicing criterion specifies, in addition to the static slicing criterion, the
input to the program and distinguishes between different occurrences of a statement. A
dynamic backward slice is then computed by transitively following all dynamic depen-
dencies for a set of variables, which are used in a specific occurrence of a statement in
a program run that was obtained by using the specified input.

Definition 13 (Dynamic Data Dependency) A statement s is dynamically data de-
pendent on a statement t for a run r, if there is a variable v that is defined (written) in t
and referred to (read) in s during the program run without an intermediate redefinition
of v.

2.4. PROGRAM ANALYSIS 21

Definition 14 (Dynamic Control Dependency) A statement s is control dependent on
a statement t for a run r, if s is executed during the run and t is a conditional statement
that controls the execution of s.

Definition 15 (Dynamic Backward Slice) A dynamic backward slice for a dynamic
slicing criterion (so,V, I) is the transitive closure over all dynamic data and control
dependencies for the variables V , in a run with input I, at the o-th occurrence of state-
ment s.

 1. static int max(int a, int b) {
 2. int maxVal;
 3. countCalls++;
 4. if (a > b) {
 5. maxVal = a;
 6. } else {
 7. maxVal = b;
 8. }
 9. return maxVal;
10. }

11. int x = max(5, 4);

 1. static int max(int a, int b) {
 2. int maxVal;
 3. countCalls++;
 4. if (a > b) {
 5. maxVal = a;
 6. } else {
 7. maxVal = b;
 8. }
 9. return maxVal;
10. }

Data Dependency

Control Dependency

Figure 2.1: Static data and control dependencies for the max() method.

In contrast to dynamic slices, static slices take into account all possible dependen-
cies. Therefore, static slices tend to include more statements than dynamic slices.

The code shown in Figure 2.1, for example, displays a method that computes the
maximum for two integers, and a statement that calls this method and assigns the result
to a variable. Solid arrows show the data dependencies whereas dashed arrows display
the control dependencies. The static backward slice from the last statement consists
of statements {1,4,5,7,9,11}. The increment of countCalls (statement 3) , for
example, is not included in the trace, as there is neither a transitive static control nor

22 CHAPTER 2. BACKGROUND

data dependency from the variables used in the last statement to countCalls. Note
that there are different definitions of which statements should be included in a slice.
While we only consider those statements where an actual control or data dependency
exists, there are also definitions that require the slice to be executable. Thus, some
statements will never be included in a slice because there exist no dependencies. For
example, statement 2 in the example, which just declares a variable.

 1. static int max(int a, int b) {
 2. int maxVal;
 3. countCalls++;
 4. if (a > b) {
 5. maxVal = a;
 6. } else {
 7. maxVal = b;
 8. }
 9. return maxVal;
10. }

11. int x = max(5, 4);

 1. static int max(int a, int b) {
 2. int maxVal;
 3. countCalls++;
 4. if (a > b) {
 5. maxVal = a;
 6. } else {
 7. maxVal = b;
 8. }
 9. return maxVal;
10. }

Data Dependency

Control Dependency

Figure 2.2: Dynamic data and control dependencies for the max() method.

Figure 2.2 shows the dynamic data and control dependencies, e.g. the dependen-
cies that actually emerge during the program run. The dynamic slice consists of the
statements {1,4,5,9,11}. In contrast to the static slice, the statement in the else part
(statement 7) of the max() method is excluded since this code is not exercised by this
run, and consequently, these control and data dependencies are not present in the trace.

2.4.7 Invariants

Most program analysis techniques are concerned with the control flow or the data flow.
Techniques that are concerned with the actual values used in a program a rare. One
abstraction that considers actual values is the concept of program invariants. They

2.4. PROGRAM ANALYSIS 23

characterize a program by specifying properties, mostly about variables, that always
hold at specific program points.

Definition 16 (Invariants) Invariants are properties of the program that are true at
specific program points.

For example, an invariant for the square() method given in Figure 2.3 is that the
return value is always greater than or equal to zero.

public int square(int x) {
return x * x;

}

Figure 2.3: A method that computes the square of an integer.

Invariants help in understanding programs, because they give details that might not
be obvious from the source code itself, e.g. that a parameter only takes specific values.
Furthermore, invariants can help to avoid introducing bugs if they are explicitly stated.
For example, if a parameter is only allowed to take specific values, the use of wrong
values can be prevented by an explicitly stated invariant. Although programmers often
have invariants in mind when writing programs, they are rarely explicitly stated. Thus,
in most cases they have to be inferred from the program.

Static invariants that hold for all possible inputs can be inferred with static analy-
sis techniques. Although static analysis techniques can deduce useful invariants, they
are also limited by the state explosion problem. Thus, dynamic invariants have been
proposed that hold for a specific set of runs, and can be inferred via dynamic analysis
by observing one or more program runs. Thereby, the problem of state explosion is
avoided. The DAIKON tool by Ernst et al. [23] pioneered the idea of dynamic invariant
detection. The dynamic invariants inferred by DAIKON represent likely invariants, i.e.
some of them correspond to static invariants while others are artifacts of the input data.
For example, if the code in Figure 2.3 would only be executed with positive values, two
dynamic invariants might be inferred: (1) that the parameter is always positive, which
is an artifact of the input, and (2) that the returned value is always greater than or equal
to zero, which corresponds to the static invariant.

24 CHAPTER 2. BACKGROUND

2.4.8 Related Work

Several static and dynamic analysis techniques have been used in different application
areas. Among others, they have been successfully applied to assist in program un-
derstanding and debugging, to find and locate defects, to automatically generate test
inputs, and to detect memory management problems.

Reps et al. [84] presented path spectra, a dynamic technique that characterizes a
run of a program, which aims at helping in testing and debugging. A path spectrum
for a program run is the distribution of loop-free paths that were exercised. The Year
2000 problem is presented as an example application for path spectra. Differences in
spectra between execution with pre-2000 data and post-2000 data were used to identify
computations that are date dependent.

The Delta Debugging algorithm as proposed by Zeller et al. [106] is a dynamic
analysis technique that narrows down defect causes. It either creates a minimal test
case for a single failing test case (ddmin), or it narrows down the difference between a
passing and a failing test case (dd). In contrast to other dynamic analysis techniques,
Delta Debugging also generates new executions. To this end, the delta debugging al-
gorithm starts with a failing test case and systematically applies changes (deltas) to it,
either by removing parts or copying parts from a passing test case, until a minimal test
case is produced, i.e. removing or replacing a single entity from the test case would
make the failure disappear.

Another family of dynamic analysis techniques uses shadow values to observe the
program behavior. A shadow value for every memory location and every register is
introduced to keep track of additional information. This analysis is used to detect
boundary values, to detect memory leaks, and for taint analysis, which tracks the flow
of information from possibly untrusted sources through the program. For example, the
Valgrind tool presented by Nethercote and Seward [62] uses shadow values to detect
memory management problems for C and C++ programs. Valgrind is a framework for
dynamic binary instrumentation, and the Memcheck tool of Valgrind can detect illegal
access to memory, uses of uninitialized values, memory leaks, and bad frees of heap
blocks. For this purpose, it uses shadow values to keep track of pointers to the memory
and whether the memory is allocated and initialized.

Several approaches use static analysis or combined techniques to generate test in-
puts. The Korat framework for automated testing of JAVA programs introduced by
Boyapati et al. [8] automatically generates all test inputs within given bounds. To this

2.5. SUMMARY 25

end, Korat translates the preconditions of a method to a JAVA predicate that either re-
turns true or false. Further on, it systematically generates non-isomorphic inputs
that exhaustively explore the bounded input space. Visser et al. [99] presented an ap-
proach that uses JAVA Path Finder to generate test inputs to achieve structural coverage
by using symbolic execution and model checking. In order to generate test inputs that
reach full branch coverage, the program is executed symbolically. Symbolic execution
uses symbolic values instead of real data, and a path condition is used to keep track of
how to reach a program point. To this end, the program is run with symbolic inputs,
and during program execution, these symbolic inputs are used instead of concrete val-
ues. Thereby, symbolic formulas over the input are obtained. These formulas are used
in the path condition in order to get constraints on the input that need to be satisfied to
reach a specific program point. The constraints can then be fed to a constraint solver
to generate concrete test inputs. Sometimes the constraints to reach a program point
get too complex to be solved within reasonable time. Thus, several approaches extend
symbolic execution with dynamic analysis [30, 91, 96]. In these approaches, also called
concolic testing, the program is executed with real inputs, and constraints are collected
that need to be satisfied to take a different branch. Solving these constraints gives a
new input that is then used to repeat the process. By using this approach, less complex
constraints have to be solved. Thus, even more paths can be reached than through via
static analysis alone.

2.5 Summary

In this chapter, we described the different levels at which software can be tested, and
we focused on testing at the unit level. Unit tests are carried out via automated test
cases, which are small programs that exercise the program and check the result via
test oracles. A test can either pass or fail. A failing test indicates that the program
behaved in an unexpected way. When developing tests for a program, one is interested
in the quality of the tests. Coverage criteria are a method to assess and improve the
quality of test suites. They are inspired by different types of defects. The idea is
that tests satisfying a specific coverage criterion also detect defects of a specific type.
Thus, several coverage criteria have been introduced that impose different requirements
on the tests. Control flow criteria measure how well the tests exercise control flow
structures of the program. Data flow criteria are concerned with the relation between
definitions and uses of variables, and logic coverage criteria with the evaluation of
logical predicates. These coverage metrics, however, only measure how well the tests

26 CHAPTER 2. BACKGROUND

exercise the program. They do not measure how well the results of the execution are
checked.

In the second part of this chapter, program analysis techniques were presented.
Program analysis is concerned with investigating and gaining insight about different
aspects of the program behavior and comes in the form of static and dynamic tech-
niques. Static program analysis reasons about the program without executing it while
dynamic analysis observes concrete program runs. Some application areas of program
analysis techniques include defect detection, minimizing defect causes, memory leaks,
or generating test inputs. Two techniques, program slicing and dynamic invariants,
were presented in more detail because further techniques presented in this work rely
on them. Program slicing is a technique that determines the statements that influenced
the variables used at a specific point. Dynamic invariants are properties that hold at a
specific program point for a set of executions.

Chapter 3

Mutation Testing

Traditional coverage metrics that are used to assess the quality of tests at the unit level
only measure how well the test inputs exercise specific structures of the code. They do
not gauge the quality of the checks that are used to detect defects.

Mutation testing is a technique to assess and improve the quality of software tests
in terms of coverage and checks. A program gets mutated by seeding artificial defects
(mutations). Such a mutated program is called mutant. Then, it is checked whether
the test suite detects the mutations. A mutation is considered to be detected when at
least one test that passes on the original (not mutated) version of a program fails on
the mutant. In such cases it is also said that the mutant is killed, and an undetected
mutant is called a live mutant. The defects that are introduced are provided by mu-
tation operators. These are well-defined rules that describe how to change elements
of a program and aim at mimicking typical errors that programmers make. Usually, a
mutation operator can be applied to a program at multiple locations, each leading to a
new mutant.

More formally, mutation testing can be defined as modifications to a ground string,
i.e. the program that gets mutated.

Definition 17 (Ground String) A ground string S is a string that belongs to a lan-
guage L, which is specified by a grammar G.

27

28 CHAPTER 3. MUTATION TESTING

A mutation operator then becomes a function that modifies the ground string, and
a mutant is the result of applying a mutation operator. 1 A mutant is detected if a test
suite contains a test that has a different test result (as introduced in Definition 3) for the
mutant than it has for the original version.

Definition 18 (Mutation Operator) A mutation operator is a function MOP that takes
a ground string S from a language L and a location l inside the ground string as input
and produces a syntactic variation of the ground string.

S 6= MOP(S, l)

Definition 19 (Mutant) A mutant SM is the result of a mutation operator’s application
to a ground string at a specified location l.

SM = MOP(S, l)

Definition 20 (Mutant Detection) A mutant SM is detected by a test suite T if it con-
tains a test t that has a different result for the original than for the mutant:

∃t∈T t(SM) 6= t(S)

A mutation operator, however, cannot be applied to every location in the ground
string. Some mutation operators, for example, only modify specific syntactic elements,
and consequently, they can only be applied if this element is present. Thus, for each
mutation operator, there is a fixed set of locations in a program which it can be applied
for.

Definition 21 (Mutation Possibilities) For a mutation operator MOP, and a ground
string S that belongs to a language L, the set of mutation possibilities L is the set of
locations for which the mutation operator can be applied so that the result is a string
that belongs to the language.

L = {l |MOP(S, l) ∈ L}
1Although the term mutation refers to the actual change that is made to the program and the term mutant

refers to the mutated program, they are sometimes used interchangeably in this work.

29

The results of the mutation testing process can be summarized in the mutation
score, which provides a quantitative measure of a test suite’s quality. The mutation
score is defined as the number of detected mutants divided by the total number of
mutants. To measure the mutation score, a set of mutation operators has to be applied
exhaustively which is done by applying all mutation operators to all possible locations.

Definition 22 (Set of all Mutants) For a given ground string S and a set of mutation
operators O = M1

OP, . . .M2
OP, the set of all possible mutants are all valid applications

of the mutation operators to the ground string.

Mall(S,O) = {Mi
OP(S, l)|Mi

OP ∈ O, l ∈L i}

Most times only one single mutation is applied to a program at once. However, we
can also apply multiple mutations at once. Higher order mutants are a combination of
multiple mutants. Mutants that are a combination of n (n ∈ N+) regular mutants are
called n-order mutants.

Definition 23 (Higher Order Mutants) A n-order mutant SMn is the result of apply-
ing n different mutations to a ground string S.

SMn = Mn
OP(Mn−1

OP (. . .M1
OP(S, l1), . . . , ln−1)ln)

In terms of test requirements, as defined in Section 2.3, mutation coverage requires
each mutant to be detected.

Definition 24 (Mutation Coverage) For ground string S and a set of mutation oper-
ators O and the resulting set of all mutants Mall(S,O), mutation coverage requires
every mutant to be detected.

With this definition of mutation coverage, the coverage level as introduced in Defi-
nition 7 corresponds to the mutation score.

Furthermore, the undetected mutant can be given as a qualitative feedback to the
developer on how to improve a test suite, i.e. by adding tests or modifying existing tests
so that previously undetected mutants get detected. This scenario is often assumed by

30 CHAPTER 3. MUTATION TESTING

mutation testing tools. The process of mutation testing and writing tests can be repeated
until an adequacy criterion is reached, e.g. the mutation score is above a specific value.

It is important to note that mutation testing does not test the software directly; it
rather tests the tests of the software and helps to improve them. The assumption is that
tests that detect more mutations will also detect more potential defects. Thus, they help
to improve the quality of the software. This is expressed in the competent program-
mer hypothesis and the coupling effect, which are the two underlying hypotheses of
mutation testing and are explained in detail in the following sections.

3.1 Underlying Hypotheses

Mutation testing promises to assist in generating tests that detect real defects. The
number of possible defects, however, is unlimited. Mutation testing, on the other hand,
only focuses on a subset of errors: those that can be introduced via specific small
changes. Therefore, two fundamental assumptions were made when mutation testing
was introduced by DeMillo et al. [18]. The first assumption is called the competent
programmer hypothesis which states that programmers create programs that deviate
from the correct one only by small errors. The second assumption is called the coupling
effect which states that complex errors are coupled to simple errors.

3.1.1 Competent Programmer Hypothesis

The competent programmer hypothesis claims that programmers have a sufficient idea
of a correct program. They tend to develop programs that are close to the correct
one, which means that their programs only deviate from the correct version by small
changes. Mutations, which are in fact small changes, try to simulate those defects.
Although it is obvious that not all defects can be fixed via small changes, a huge fraction
of the defects can be. In a study on the bug fixes of seven JAVA open-source projects,
Pan et al. [78] showed that 45.7% to 63.3% of the fixes can be mapped to simple
patterns. The relation between defects that require more complex fixes and mutations
is expressed through the coupling effect.

3.2. COSTS OF MUTATION TESTING 31

3.1.2 Coupling Effect

The coupling effect puts simple defects in relation to complex ones and was originally
stated by DeMillo et al. [18] as follows:

Test data that distinguishes all programs differing from a correct one by
only simple errors is so sensitive that it also implicitly distinguishes more
complex errors.

As simple defects are simulated by mutations, the coupling effect implies that tests that
detect simple mutations do also detect more complex defects.

Offutt [66, 67] later provided evidence for the coupling effect with a study on higher
order mutants. He investigated whether tests that detect all simple mutants do also
detect higher order mutants. The results indicated that tests that detect simple mutants
also detect 99% of the second and third order mutants.

3.2 Costs of Mutation Testing

Two factors detained the practical application of mutation testing. The first factor is the
cost needed to produce the mutants and to execute the tests for them. Depending on the
number of mutants and the time needed to run the test suite, mutation testing can easily
take several hours, as the test suite has to be executed for every mutant. For example, to
execute 10,000 mutants for a program with a test suite that needs 10 seconds to execute,
more than one day of computing time is needed. Furthermore, the number of mutations
is influenced by the choice of the mutation operators. The more mutation operators are
used the more mutations are produced. This number grows linear in the number of
statements and linear in the number of mutation operators. For example, applying
108 mutation operators for the tcas program of the Siemens suite [19], which contains
137 lines of code, produces 4,937 mutations [107]. Therefore, several optimization
techniques have been developed to speed up mutation testing (see Section 3.3).

The second factor is the cost introduced by equivalent mutants. Equivalent mutants
differ in the syntax of a program but do not change its semantics—that is, the mutated
program produces the same output as the original. These equivalent mutants cannot be
detected by a test because there is no output that would allow a test to distinguish them.

32 CHAPTER 3. MUTATION TESTING

Definition 25 (Equivalent Mutant) An equivalent mutant SE
M of a ground string S is

a mutant that does not change the observable behavior of the program, so that all
possible tests produce the same result on the original and mutated version.

∀t t(S) = t(SE
M)

Equivalent mutants impose a burden on programmers who try to interpret the results
from mutation testing as they first have to decide on the equivalence of a mutant before
accomplishing their intended task, which is improving the test suite. Furthermore,
it was reported that programmers judge mutant equivalence correctly only in about
80% [71] of the cases. Therefore, equivalent mutations degrade the usefulness of the
results of mutation testing.

3.3 Optimizations

As explained earlier, it takes much time to execute all mutations. Thus, several tech-
niques have been proposed to speed up mutation testing. Offutt and Untch [73] divide
these techniques into three different categories: do fewer, do smarter, and do faster.
The do fewer approaches aim to reduce the number of mutants that have to be executed.
The do smarter approaches aim to reduce the computational effort by retaining state in-
formation between runs or by avoiding specific executions. The do faster approaches
aim to generate and execute the mutants as fast as possible. In the following sections,
we will present several optimizations from these categories. Mutation reduction tech-
niques such as mutant sampling and selective mutation are do fewer techniques. Weak
mutation is an example for a do smarter technique. Mutant schema generation, the use
of coverage data, and parallelization fall in the group of the do faster techniques

3.3.1 Mutation Reduction Techniques

As discussed above, one cost factor of mutation testing is the huge number of mutations
that can be applied. Thus, several techniques have been developed that try to reduce
the number of mutants that need to be executed. The goal of these approaches is to
approximate the results (e.g. the mutation score) of applying all possible mutations
as precise as possible while trying to use as few mutants as possible. There are two
major reduction techniques: mutant sampling that randomly selects a fraction of all
mutations, and selective mutation that uses a subset of the mutation operators.

3.3. OPTIMIZATIONS 33

3.3.2 Mutant Sampling

Mutant Sampling reduces the number of mutants by randomly choosing a subset out of
all mutants. The idea was first proposed by Acree and Budd [73, 44], and later Wong
and Mathur studied this technique by comparing random selections of different size.
Their results suggest that test suites that are created to detect a random selection of
10% of the mutants, also detect around 97% of all mutants.

Zhang et al. [107] proposed two round random selection, a technique that first ran-
domly selects the mutation operator and then a concrete mutant for this operator. With
this technique it is equally likely to choose mutants produced by an operator that has
only a few than to choose mutants produced by an operator that has many. Their re-
sults suggest that this selection technique is comparable to normal random selection,
but rarely brings any benefits.

3.3.3 Selective Mutation

Selective mutation tries to reduce the cost of mutation testing by reducing the number
of mutations applied to a subject. Thereby, the reduced set of mutants should lead to
results similar to applying all mutants. The number of mutations is usually reduced by
focusing on a few mutation operators.

Offutt et al. [69] showed in an empirical study on 10 Fortran programs that 5 out
of 22 mutation operators are sufficient—test suites that detect all selected mutants also
detect 99.5% of all mutations. Barbosa et al. [6] did a similar study for C programs.
They proposed 6 guidelines for selecting the mutation operators. In an experiment on
27 programs, they determined 10 out of 39 operators that produce a sufficient set with
a precision of 99.6%.

A slightly different approach was taken by Namin et al. [61]. They tried to produce
a smaller set of mutants that could be used to approximate the mutation score for all
mutants. Using statistical methods, they came up with a linear model that generates
less than 8% of all possible mutants, but accurately predicts the effectiveness of the
test suite for the full set of mutants.

In a recent study, Zhang et al. [107] compared these 3 different operator-based
selection techniques to random selection techniques. They showed that all techniques
performed comparably well, and that random selection can outperform the best more
sophisticated operator-based selection schemes.

34 CHAPTER 3. MUTATION TESTING

3.3.4 Weak Mutation

Weak mutation testing, as proposed by Howden [40], assesses the effect of a mutation
by examining the state after its execution. If the state is different, then the mutant is
considered to be detected. Weak mutation testing thus checks whether the tests could
possibly detect a mutation because a state change might result in a different result while
no change indicates that the result of the mutated run will be the same as for the original
run. In contrast to regular strong mutation testing, it does not matter whether the tests
actually pass or not.

Weak mutation can save execution costs because it is not necessary to continue
a run once a mutation is reached and a difference in the state was detected. If no
difference is detected, the execution has to be continued because the mutated statement
might be executed again. Additional costs, however, are introduced by capturing the
state right after the mutation is executed, which can happen many times during one
execution of the test suite.

It has to be noticed that weak mutation produces different results than mutation
testing, and it only assesses the quality of the test inputs, i.e. whether they are chosen
in such a way that the mutation is triggered and causes a state change. Furthermore,
the benefits of this technique are questionable. It has not been shown that by limiting
the execution the cost savings outweigh the cost for capturing the state changes.

3.3.5 Mutation Schemata

The traditional way of applying several mutations to a program is to mutate the source
code of the program and produce a new version for each mutation. Then, each mutated
version is compiled, and the tests are executed for each compiled version. In order
to speed up this process, Untch et al. [98] proposed to use mutant schema generation
(MSG). Out of the original program, the MSG approach generates a metamutant. For
every statement that can be mutated, the metamutant contains a metamutation which
can be instantiated at runtime so that it represents a specific mutation. This approach
reduces the costs for compiling the program as only one version needs to be compiled
instead of one version for each mutation. Furthermore, the setup cost for running the
tests can be reduced, as mutations can be switched on and off at runtime, and the setup
of the test environment only occurs once instead of once per mutant.

3.4. RELATED WORK 35

3.3.6 Coverage Data

In order to detect a mutation, a test has to exercise the mutated statement and cause the
statement to have a direct or indirect influence on the state of the program. This change
to the state must propagate to the end of the execution. If one of these conditions cannot
be fulfilled, the test cannot detect the mutation. Tests that do not exercise the mutation
cannot detect it. Thus, they do not need to be considered. By collecting information on
which tests execute which mutations, only a fraction of the whole test suite needs to be
executed, which results in a reduction of the execution costs. Although this optimiza-
tion can be very effective, it is rarely implemented or mentioned in the literature on the
topic. CERTITUDE [35] is the only other tool we are aware of that considers coverage.
It is a mutation testing tool for integrated circuit designs and checks whether a mutant
is activated, i.e. it is executed by at least one test. In the actual testing phase, only the
activated mutations are considered. However, the coverage data per test is not used by
CERTITUDE.

3.3.7 Parallelization

The execution of different mutants is independent of each other, and mutation testing
has little communication needs, as only the results for each run of the test suite on
the mutated version have to be reported. Thus, mutation testing lends very well to
parallelization approaches. It was shown that by using multiple processors a speed-up
that is almost linear in the number of cores can be reached [72].

3.4 Related Work

The idea of mutation testing was first mentioned in a term paper by Richard Lipton in
1971 [73]. However, it took until 1978 before the first major work on mutation testing
was published by DeMillo et al. [18]. Their paper also introduced the coupling effect
and the competent programmer hypothesis. Since then, many different mutation testing
frameworks for different programming languages have been introduced. For example,
PIMS [12] for FORTRAN code, MOTHRA [74] for FORTRAN 77, PROTEUM [16] for
C, and µJava [55] for JAVA.

The idea of mutation testing was also applied to different areas than source code.
Budd and Gopal [11] applied mutation testing to specifications in predicate calculus

36 CHAPTER 3. MUTATION TESTING

form. They checked whether tests given as pairs of an input and an output detect
mutated specification predicates. Spafford [94] introduced the idea of environment
mutation which uses mutations to simulate errors that can be caused by the environment
of a program. For example, errors caused by memory limitations or overflow errors
caused by numeric limitations.

Further information about mutation testing frameworks and uses of mutation testing
can be found in the survey papers of Offutt and Untch [73] and Jia and Harman [44].

3.5 Summary

In this chapter, we introduced and defined the concept of mutation testing as a method
to measure the quality of a test suite and to aid in improving its quality. During muta-
tion testing, artificial defects (mutations) are inserted into the program, and it is checked
whether the test suite detects them, i.e. whether a test that passes on the original pro-
gram fails on the mutated version. Based on the competent programmer hypothesis
and the coupling effect, it is claimed that mutations are similar to real defects and that
a test suite that detects mutations will also detect real defects. In contrast to traditional
coverage metrics, mutation testing also measures the quality of the checks which come
as explicit checks of the program and its test suite, and implicit checks of the runtime
system.

Two obstacles prevented the widespread use of mutation testing. First, the execu-
tion costs, which arise from the fact that the tests have to be executed for every mutant,
and that there is a huge number of mutants for a program. Thus, several optimization
techniques have been proposed. In the following Chapter 4, we will present a mutation
testing framework that implements many of these optimizations in order to make muta-
tion testing feasible for larger programs. The second factor that prevented a widespread
use of mutation testing is the occurrence of equivalent mutants. Equivalent mutants are
mutants that cannot be detected by tests because they do not change the observable
behavior of the program, although they change the program’s syntax. In the following
chapters, we will quantify the problem of equivalent mutants (Chapter 5) and introduce
techniques to distinguish equivalent from non-equivalent mutants (Chapters 6 and 7).

Chapter 4

The Javalanche Framework

For our research, we were interested in a mutation framework that can handle projects
of significant size. Therefore, we developed JAVALANCHE, a mutation testing frame-
work for JAVA with a special focus on automation and efficiency. To this end, we
applied several optimizations:

Selective mutation As described previously, the idea of selective mutation is to use a
small set of mutation operators that provides a sufficiently accurate approxima-
tion of the results obtained by using all possible operators [98]. JAVALANCHE,
therefore, uses a slightly modified set of operators as used by Andrews et al. [3],
which were also adapted from Offutt [69]. Table 4.1 lists the default operators
that JAVALANCHE uses.

Mutant schemata Traditional mutation testing tools produce a new mutated program
version for every mutation possibility. For large systems, this can result in sev-
eral thousand different mutated versions, which are too many to be handled ef-
fectively. Furthermore, executing each mutant in a separate process increases the
runtime because the environment (JAVA virtual machine, data base connections)
has to be set up for every mutant. To reduce the number of generated versions,
we use mutant schema generation [98]. Mutant schema generation produces a
metaprogram that is derived from the program under study and contains multiple
mutations. In contrast to the original approach that introduces metamutations,
we insert several simple mutations at once. Each mutation is guarded by a con-
ditional statement so that it can be switched on and off at runtime.

37

38 CHAPTER 4. THE JAVALANCHE FRAMEWORK

Coverage data Not all tests in the test suite execute every mutant. In order to avoid
executing those tests, we collect coverage information for each test before exe-
cuting the mutants. When executing mutants, JAVALANCHE only executes those
tests that are known to cover the mutated statement.

Manipulate bytecode Traditionally, a mutation is inserted into the source code. Then,
this mutated source code version gets compiled. JAVALANCHE avoids the costly
recompilation step by manipulating the JAVA bytecode directly (using the ASM
bytecode manipulation and analysis framework [9]). This is done via the agent
mechanism that is provided by the JAVA platform. This mechanism allows to
instrument all classes that are loaded by the JAVA virtual machine.

Parallel execution JAVALANCHE can execute several mutants in parallel, thus taking
advantage of parallel and distributed computing. To this end, the mutations are
split into several subtasks and these subtasks are distributed to several processors.

Automation JAVALANCHE is fully automated. In order to apply mutation testing to a
program, only the name of a test suite, the base package name of the project, and
the set of classes needed to run the test suite are required.

Handle endless loops In order to handle a huge number of mutations efficiently, a
mutation testing tool must be able to detect and abort runs where a mutation
causes an endless loop. To this end, JAVALANCHE executes the mutations in
separate threads and gives each test a predefined period (the default is 10 sec-
onds) to run. After the timeout is reached, the mutation is disabled, and it is
checked whether this causes the program to finish regularly. If the program is still
running, the Thread.interrupt() and optionally the Thread.stop()
method is called in order to abort the execution. When JAVALANCHE was not
able to stop the run of the tests on a mutation, it shuts down the virtual machine
and starts a new one for the next mutation. Although starting the virtual machine
again introduces a runtime overhead, this is done because a thread that is stuck in
an endless loop consumes computing resources and might influence other runs.
If a mutation causes an endless loop, it is considered to be detected because an
implicit assumption is that a run of a test case always terminates.

Stop after first fail If one is only interested in whether a mutation is detected or not,
there is no need to execute more tests once a mutation is detected by a test.
Therefore, JAVALANCHE stops the execution of tests for a mutation once the first
test fails. This behavior, however, is configurable because for some applications,
it is also beneficial to check the result for all tests that cover a mutation.

4.1. APPLYING JAVALANCHE 39

Table 4.1: JAVALANCHE mutation operators.

Replace numerical constant Replace a numerical constant X by X +1, X−1, or 0.

Negate jump condition Replace a conditional jump by its counterpart. This is
equivalent to negating a conditional statement or subexpression in the source
code. (Since composite conditions compile into multiple jump instructions,
this also negates individual subconditions.)

Replace arithmetic operator Replace an arithmetic operator by another one, e.g.
+ by −.

Omit method call Suppress a call to a method. If the method has a return value, a
default value is used instead, e.g. x = Math.random() is replaced by x = 0.0.

4.1 Applying Javalanche

When JAVALANCHE is applied to a project, the mutation testing process is conducted
in two steps. First, the project is scanned to extract information that JAVALANCHE later
needs to execute the mutations, and then, in a second step, the actual mutation testing
is carried out.

However, before applying JAVALANCHE to a project, it must be ensured that the
project’s test suite is suitable for mutation testing. This means that all tests in the suite
pass and that they are independent of each other, i.e. running the tests multiple times
in a different order gives consistent results. To this end, JAVALANCHE provides several
commands that run the test suite in different settings and check for these preconditions.

In the scanning step, JAVALANCHE executes the test suite in order to collect the
following information about the project:

Mutation possibilities The most important information are all mutation possibilities
for a project. A mutation possibility is a statement in the program where a muta-
tion operator can be applied. It is uniquely identified by its location that consists
of the containing class, the operator that produced the mutation, the line number
of the mutated statement, the number of the mutation in this line (if the operator
can be applied more than once in this line), and an optional additional parame-
ter for the mutation operator. For example, the operator that replaces constants
stores the numeric value that is inserted as an additional parameter. During the
scan step all mutation possibilities are stored in a database.

40 CHAPTER 4. THE JAVALANCHE FRAMEWORK

Coverage data For each mutation possibility, the coverage data is collected so that
JAVALANCHE knows which mutation is executed by which tests. To this end,
additional statements are inserted into the bytecode that log the execution for
each mutation possibility.

In JAVA, there is also code that is only executed when a class is loaded by the
JAVA Virtual Machine (JVM). The JVM loads a class exactly once when it is
first accessed by another class. Thus, the execution of this code depends on
which code was executed earlier. This, however, is not under the control of a
test. Therefore, JAVALANCHE does not consider these static initializations for
the coverage data. To this end, it is made sure that all classes are loaded by
executing all tests once before the coverage information is collected.

Including static initialization code would lead to more mutations to be covered
and more mutations might be detected. However, considering the initialization
code for coverage and mutant detection would involve setting up a new envi-
ronment for each test case that is executed, which would be too costly when
executing several thousand mutations. Furthermore, it is not regarded as good
practice to rely on the order of class loading for a test.

Detect test classes JAVALANCHE applies several heuristics to detect classes that be-
long to the test suite. By default, these classes are not mutated. The results,
however, are stored in text files and can be modified when JAVALANCHE erro-
neously classifies a class to be part of the tests which is actually a class of the
program that should be mutated.

Impact information JAVALANCHE supports computing the impact of a mutation. The
impact is computed by comparing properties between a run of the original ver-
sion and a run of the mutated version of the program (see Chapter 6 and Chap-
ter 7). To this end, information about an unmodified original run must be col-
lected, which is also done in the scanning step.

Optional information JAVALANCHE supports to collect additional information in this
step. Examples include information about inheritance relations between classes
that are used for specific analyses of the mutation test results, and information
about jump targets for experimental mutation operators.

In the second step, actual mutations are inserted for the previously collected mu-
tation possibilities. As the mutations are inserted via mutant schema generation, addi-
tional checks are introduced for every mutation. The goal of mutant schema generation
is to save the set-up time. The checks, though, also introduce some runtime overhead.

4.2. SUBJECT PROGRAMS 41

Table 4.2: Description of subject programs.

Project Program
name Description Version size (LOC)

ASPECTJ AOP extension to JAVA cvs: 2010-09-15 28,476
BARBECUE Bar code creator svn: 2007-11-26 4,837
COMMONS-LANG Helper utilities svn: 2010-08-30 18,452
JAXEN XPath engine svn: 2010-06-07 12,438
JODA-TIME Date and time library svn: 2010-08-25 26,582
JTOPAS Parser tools 1.0(SIR) 2,031
XSTREAM XML object serialization svn: 2010-04-17 15,266
Lines of Code (LOC) are non-comment, non-blank lines as reported by sloccount.

For ASPECTJ, we only considered the org.aspectj.ajdt package.

Therefore, a trade-off between the set-up time and the overhead for checking the mu-
tation flags has to be found. To this end, the set of all mutation possibilities is divided
into several subtasks (by default, JAVALANCHE creates tasks that contain 400 muta-
tions). These tasks can be processed sequentially, or they can be distributed to different
processors.

The results of executing the mutations are stored in a database. A result for a
mutation consists of all tests that were executed for this mutation and their outcome
and whether they passed or failed. Additionally, the output of the tests is stored. This
feature can be turned off in order to save disk space.

4.2 Subject Programs

The goal of JAVALANCHE is to carry out mutation testing on real-life programs. In
order to be suitable for mutation testing with JAVALANCHE, a program has to be written
in JAVA (or another language that can be compiled into JAVA bytecode), and it has to
come with a JUNIT test suite. To this end, we selected seven open-source projects
that fulfill these criteria. These projects are listed in Table 4.2. The subjects come
from different application areas (column 2), and for each project, we took a recent
version from the revision control system (column 3)—except for JTOPAS, which was
taken from the software-artifact infrastructure repository (SIR) [19]. The size of each
project (column 4) is measured in lines of code (LOC), which refers to non-comment,

42 CHAPTER 4. THE JAVALANCHE FRAMEWORK

Table 4.3: Description of the subject programs’ test suites.

Project Test code Number Test suite Statement
name size (LOC) of tests runtime (s) coverage (%)

ASPECTJ 6,830 339 11 38
BARBECUE 3,293 153 3 32
COMMONS-LANG 29,699 1,787 33 88
JAXEN 8,418 689 11 78
JODA-TIME 50,738 2,734 37 71
JTOPAS 3,185 128 2 83
XSTREAM 16,375 1113 7 77
For ASPECTJ, we only considered the tests of the org.aspectj.ajdt package.

Table 4.4: Mutation statistics for the subject programs.

Project Number of Covered Mutation Mutation
Name mutants mutants score score (covered)

(%) (%) (%)

ASPECTJ 19,236 48.25 33.11 68.62
BARBECUE 17,629 9.56 5.68 59.41
COMMONS-LANG 15,715 92.89 80.13 86.26
JAXEN 9,279 68.73 48.30 70.28
JODA-TIME 21,647 64.94 54.04 83.21
JTOPAS 1,678 83.43 66.98 80.29
XSTREAM 8,215 79.76 71.26 89.35

non-blank lines as reported by the sloccount tool [105], and does not include test
code. The size varies from 2,031 lines for JTOPAS up to 28,476 lines of code for
org.aspectj.ajdt package of ASPECTJ.

Table 4.3 summarizes the test suites of the projects. We removed all tests that failed
on the original version from the test suites, as well as tests whose outcome depended
on the order of test execution. The size of the test suites ranges from 3,185 lines of
code for JTOPAS to 50,738 for JODA-TIME, which in this case is more lines of code
than the program that is tested. The total number of test cases for each project is given
in column 3. For example, the test suite of JODA-TIME, which has the most lines of
code, consists of 2,734 test cases. Running the test suites of the projects (column 4)

4.3. MUTATION TESTING RESULTS 43

Table 4.5: JAVALANCHE runtime for the individual steps.

Project Scanning Mutation Time per
name step testing mutant

ASPECTJ 2m 01s 2h 29m 0.96s
BARBECUE 1m 04s 7m 0.25s
COMMONS-LANG 2m 02s 1h 18m 0.32s
JAXEN 1m 39s 1h 39m 0.93s
JODA-TIME 2m 09s 50m 0.21s
JTOPAS 3m 21s 1h 01m 2.61s
XSTREAM 2m 03s 1h 41m 0.92s

All 14m 19s 9h 05m 0.61s
Time reported is the time used to execute the steps (“user time”) measured using time;

takes between 2 and 37 seconds. The statement coverage is given in the last column,
which is the percentage of lines that is executed by the tests relative to all executable
lines, is lowest for BARBECUE with 32% and highest for COMMONS-LANG with 88%.

4.3 Mutation Testing Results

In order to check whether JAVALANCHE is capable of mutating real-life programs, we
applied it to the seven subject programs.

Table 4.4 gives the mutation testing results. The second column shows the total
number of mutations, ranging from 1,678 for JTOPAS to 21,647 for JODA-TIME. The
coverage rate of mutations, given in the third column, indicates how many of the mu-
tations were actually executed. For most projects, it varies between 60 to 80%. For
ASPECTJ, this rate is lower since we only executed the tests for the org.aspectj.ajdt
package. The low coverage rate for BARBECUE is due to the fact that most mutations
appear in classes that mainly consist of the static initializations of maps for bar code
values. As explained in Section 4.1, mutations only executed during class loading are
not considered to be covered.

As discussed earlier, the mutation score is the percentage of detected mutations
relative to all mutations, which is given in column 4. A low score for covered mutations
implies a low mutation score. A mutation that is not executed by the test suite, however,

44 CHAPTER 4. THE JAVALANCHE FRAMEWORK

cannot be detected by a test suite. Thus, we also present the mutation score for the
covered mutations (column 5). ASPECTJ, for example, has a mutation score of 33%.
However, when we only consider the covered mutations, it has a score of 69%.

The time needed for mutation testing the projects is given in Table 4.5. The times
were measured on a server with 16 Intel Xeon 2.93GHz cores and 24 GB main memory.
For the experiments, however, JAVALANCHE was limited to one processor and 2GB
memory in order to achieve comparable results and not interfere with other processes.

Furthermore, all optimizations of JAVALANCHE were enabled. The scanning step
(column 2) takes between 1 and 2 minutes for all projects. The actual mutation testing
step that checks all covered mutations takes between 7 minutes for BARBECUE and 2
hours and 29 minutes for ASPECTJ. As the number of mutations varies between the dif-
ferent projects, we also calculated the average time that is needed for one mutation (last
column). The time per mutation ranges from 0.21 seconds for JODA-TIME to 2.61 sec-
onds for JTOPAS. The high number for JTOPAS compared to the other projects is due
to several mutations that cause an infinite loop. With the default settings, JAVALANCHE
stops every test after 10 seconds. If a project, like JTOPAS, has many mutations that
cause an endless loop, this means that each of these mutations takes at least 10 seconds
to check, which is far above the average execution time of a mutant.

4.4 Related Work

Since mutation testing was first proposed in the late 1970’s [18], several tools for dif-
ferent programming languages have been built. The first tool was presented by Budd
et al. [12]. Their pilot mutation system (PIMS) can mutate FORTRAN code. It imple-
ments 25 different mutation operators and was built as an interactive tool that asks the
user to provide test data for not yet detected mutations.

Later the MOTHRA framework was introduced [74], which was the basis for a lot
of research in mutation testing [73, 44]. The MOTHRA framework consists of a set of
tools that perform the different tasks in mutation testing. It uses an interpreter approach
to apply mutation testing to FORTRAN 77 programs. The advantage of this approach is
that the mutations can be inserted by the interpreter. Thus, the overhead for maintaining
several mutated versions is avoided. Furthermore, this approach provides access to
program internals. This, for example, is used to detect endless loops by counting the
number of statements that are executed while executing a mutation and comparing it

4.4. RELATED WORK 45

to an expected number. However, executing a program in an interpreter usually takes
significantly more time than running a program in its native environment.

Another widely used mutation testing framework is PROTEUM [16, 6, 17]. It mu-
tates programs written in C, and in contrast to MOTHRA, it produces different mutated
versions and runs them in their native environment. PROTEUM supports 108 mutation
operators that also include interface mutation operators which aim to assess the quality
of integration tests by mutating code that is related to the communication between two
modules.

µJava, a mutation testing tool for JAVA, was presented by Ma et al. [55]. To opti-
mize the execution of mutations it implements mutant schema generation and manipu-
lates the bytecode directly. It supports a huge number of traditional mutation operators
and introduces object-oriented mutation operators, which mimic errors that arise due
to object-oriented features. For example, hiding variable deletion is an operator that
deletes each declaration of an overriding or hiding variable. However, in contrast to
JAVALANCHE, the µJava tool provides little support for automatization as it requires
user input to apply the mutations and run the tests.

4.4.1 Further Uses of Javalanche

Besides our uses of JAVALANCHE that will be presented later in this work, it has also
been used by other researchers.

Gligoric et al. [29] extended JAVALANCHE for efficient mutation testing of multi-
threaded code. Multithreaded code adds a cost factor to mutation testing because differ-
ent thread schedules have to be considered. Their MUTMUT tool (MUtation Testing
of MUltiThreaded code) allows to explore different thread schedules for a mutation.
By recording the first state on an execution path that reaches a mutation, MUTMUT
can prune schedules that do not reach a mutation. Hence, it saves execution time.
Compared to a basic technique that only prunes tests that can never reach a mutant,
MUTMUT achieves a performance improvement up to 77%.

Fraser and Zeller [28] used JAVALANCHE for their approach to automatically gen-
erate test cases with oracles. Their µTEST tool applies a genetic algorithm to create
tests that detect mutations. To this end, µTEST uses a fitness function that assesses
the input quality based on whether it reaches a mutation and whether it impacts the ex-
ecution of a mutation (see the following Chapters 6 and 7 for impact measures). When
an input was generated that executes the mutation and causes it to have an impact on

46 CHAPTER 4. THE JAVALANCHE FRAMEWORK

the execution, µTEST tries to generate assertions that detect the mutation. To this end,
the original and mutated versions are run with the generated inputs, and the runs are
analyzed for differences in primitive values and objects. If such a difference is found,
an assertion that checks for this property is introduced. In a last step, a heuristic is
used to find a minimal set of assertions that still detects all detectable mutations. The
evaluation on two open-source libraries showed that µTEST produces test suites that
detect significantly more mutations than manually written test suites.

Aaltonen et al. [1] used JAVALANCHE to assess the quality of test suites generated
by students. In the course of an introductory programming class, students had to create
a test suite for their own implementation. The students were rewarded when their test
suites reached a high statement coverage level. However, it was observed that many of
them fooled the system. They created weak test suites that only reached a high coverage
level, i.e. their test suites contained weak or nonsensical checks. Thus, there was an
interest in a technique that assesses the test quality more thoroughly. Experiments using
mutation testing showed that it is more appropriate than coverage metrics to assess the
quality of test suites generated by students. However, it is mentioned that mutation
testing can also be fooled by creating meaningless code that contains a lot of easily
detectable mutations.

Sharma et al. [92] used JAVALANCHE to compare the effectiveness of different
test generation strategies. In their work, they compared random test generation with a
test generation strategy based on shape abstraction which has been found to perform
best in terms of satisfying coverage metrics in a previous study. The random testing
technique generates a fixed number of tests that consist of randomly generated method
call sequences of a fixed length. The shape abstraction strategy explores all method
sequences up to a fixed length. However, during the generation of method sequences, a
list of abstract states is maintained which is used to prune sequences. The abstract state
of an object after the execution of a sequence is compared with the already encountered
abstract states. If the abstract state has not been encountered before, it is added to the
list, and its producing sequence is used as basis for further sequences. Otherwise,
if the abstract state has been encountered before, the producing sequence is pruned.
The output of the algorithm are all sequences that exercise a predicate combination
not yet exercised. In an experiment, the two strategies are compared on 13 container
classes, and the results showed that random testing achieves a better mutation score for
4 classes, shape abstraction for 5 classes, and that there is no significant difference for
the remaining 4 classes. According to these results, it is concluded that random testing
is comparable to shape abstraction while random testing is less expensive in terms of
computation resources.

4.5. SUMMARY 47

4.5 Summary

We presented JAVALANCHE, a mutation testing framework for JAVA. JAVALANCHE
was developed with a focus on efficiency and automation and applies several opti-
mization techniques in order to carry out mutation testing on real-world programs. As
optimization techniques, JAVALANCHE uses mutant selection to reduce the number of
mutants that have to be checked, mutant schemata to save set-up costs, coverage data
to reduce the number of tests that have to be executed, it manipulates bytecode to pre-
vent recompilation steps, and it allows for parallel execution of mutants. JAVALANCHE
carries out mutation testing in two steps. First, in a scan step information about the
project is collected, e.g. which mutations can be applied and which tests cover which
mutations. In a second step, the actual mutation testing is carried out, i.e. the mutations
are inserted into the program and it is checked whether the tests detect them.

The results from an experiment on seven open-source projects showed that muta-
tion testing can be applied to programs with up to 28,000 lines of source code. In total,
93,399 mutations were applied to the seven projects, out of which 58% were covered
by at least one test. Checking one mutation took 0.61 seconds on average. Among
all projects, the test suites detected about 46% of all mutants and 80% of the covered
mutants. Because of its efficiency in carrying out mutation testing, JAVALANCHE was
used by other researchers. For example, it was extended for mutation testing of multi-
threaded code [29], used in an approach that generates tests with oracles [28], used to
assess the quality of test suites generated by students [1], and to compare the effective-
ness of different test generation strategies [92].

48 CHAPTER 4. THE JAVALANCHE FRAMEWORK

Chapter 5

Equivalent Mutants

One usage scenario of mutation testing is to improve a test suite by providing tests for
undetected mutants. To this end, mutations are applied to a program, and it is checked
whether the test suite detects them or not. This step is carried out automatically and
results in a set of undetected mutants. A programmer then tries to add or modify
existing tests so that previously undetected mutants are detected. There are several
reasons why a test suite might fail to detect a mutation, which determine the usefulness
to the programmer:

1. The mutation may not change the program’s semantics and cannot be detected.
These equivalent mutants cannot help improving the test suite and place an ad-
ditional burden on the programmer because the equivalence of a mutation has to
be assessed manually.

2. The mutated statement may not be executed. In order to find non-executed state-
ments, standard coverage criteria can be used.

3. The mutation may not be detected because of an inadequate test suite. These
are the most valuable mutations since they provide indicators to improve the test
suite that other coverage metrics might not provide. If a mutation is covered but
not detected, this either means that the tests do not check the results well enough,
or that the input data is not chosen carefully enough to trigger the erroneous
behavior.

49

50 CHAPTER 5. EQUIVALENT MUTANTS

...
for (final Iterator iter = methods.iterator();

iter.hasNext();) {
final Method method = (Method)iter.next();
method.setAccessible(true);
if (Factory.class.isAssignableFrom(

method.getDeclaringClass())

|| ⇒ &&

(method.getModifiers() & (Modifier.FINAL |
Modifier.STATIC)) > 0) {

iter.remove();
continue;

...

Figure 5.1: A non-equivalent mutation from the XSTREAM project.

5.1 Types of Mutations

In the following sections, we will present examples for the different types of mutations.

5.1.1 A Regular Mutation

A mutation in the createCallbackIndexMap method of the CGLIBEnhancedConverter
class is shown in Figure 5.1. This mutation changes an || operator to an && operator
which can cause the expression to evaluate to false when it should evaluate to true,
and then the method is not removed from the underlying map. Eventually, this results
in spurious entries in the XML representation of an object. An existing test case of
the XSTREAM test suite triggers this behavior (testSupportProxiesUsingFactoryWith-
MultipleCallbacks in class CglibCompatibilityTest). However, this test fails to check
the results thoroughly. By modifying this test, the mutation can be detected.

5.1.2 An Equivalent Mutation

Another mutation of the XSTREAM project is shown in Figure 5.2. It is applied to
the com.thoughtworks.xstream.io.json.JsonWriter class. Here, the
mutation changes an & operator to an | operator which might cause the expression to
evaluate to true when it should not. The result of this expression gets connected to

5.1. TYPES OF MUTATIONS 51

void addValue(String value, Type type) {
if (newLineProposed && ((format.mode()

& ⇒ |

Format.COMPACT_EMPTY_ELEMENT) != 0)) {
writeNewLine();

}
if (type == Type.STRING) {

writer.write(’"’);
}
writeText(value);
if (type == Type.STRING) {

writer.write(’"’);
}

}

Figure 5.2: An equivalent mutation from the XSTREAM project.

the newLineProposed variable via a logical conjunction. As JAVA applies short-
circuit evaluation, the mutated code only gets executed when the variable evaluates to
true. Further investigation shows that the newLineProposed variable is only set
to true in one place of the program. This only happens if the same condition as in
the mutated statement is true. Thus, the mutated condition is always true when it
is evaluated, and the mutant is equivalent.

5.1.3 A Not Executed Mutation

public boolean aliasIsAttribute(String name) {
return

nameToType.containsKey(name) ⇒ false ;

}

Figure 5.3: A mutation of XSTREAM project that is not executed by tests.

The method aliasIsAttribute of ClassAliasingMapper shown in Figure 5.3 returns
true if the given name is an alias for another type. What happens if we mutate this
method so that it always returns false? The existing test suite does not detect this
mutation because the statement is not executed. Thus, a test should be added that
checks this functionality. However, to detect uncovered code, we do not need to apply

52 CHAPTER 5. EQUIVALENT MUTANTS

full-fledged mutation testing. Simple statement coverage does this much more effi-
ciently. For the remainder of this work, we thus assume that mutations are only applied
to statements that are executed by the test suite.

5.2 Manual Classification

We saw that determining the equivalence of a mutant requires manual investigation.
But how widespread is this problem in real programs? Offutt and Pan [71] reported
9.10% of equivalent mutants (relative to all mutants) for the 28-line triangle pro-
gram. As we were interested in the extent of the problem on modern and larger pro-
grams, we applied mutation testing (Section 4.2) to our seven subject programs and
investigated the results.

For each of the seven projects, we randomly took 20 mutations from different
classes that were not detected by the test suite for manual inspection. Then, we classi-
fied each mutation either

• as non-equivalent, as proven by writing a test case that detects the mutation; or

• as equivalent when manual inspection showed that the mutation does not affect
the result of the computation.

5.2.1 Percentage of Equivalent Mutants

The results for classifying the 140 mutations, which stem from 20 mutants for each
of the seven subject projects, are summarized in Table 5.1. Out of all classified mu-
tants, 77 (55%) were non-equivalent and 63 (45%) were equivalent. The project with
the highest ratio of non-equivalent mutants is ASPECTJ with 75%, while COMMONS-
LANG had the lowest percentage with 30%. Such differences might also indicate differ-
ences in the quality of the test suites, as better test suites have a higher rate of equivalent
mutations among their undetected mutations. Notice that the ratio of 45% of equiva-
lent mutants relates to the undetected ones. Relative to all mutants, we obtain a ratio of
7.39% of equivalent mutants.

On our sample of real-life programs, 45% of the undetected mutations were
equivalent.

5.2. MANUAL CLASSIFICATION 53

Table 5.1: Classifying mutations manually.

Average
Project Non-equivalent Equivalent classification
name mutants mutants time

ASPECTJ 15 (75%) 5 (25%) 29m
BARBECUE 14 (70%) 6 (30%) 10m
COMMONS-LANG 6 (30%) 14 (70%) 8m
JAXEN 10 (50%) 10 (50%) 15m
JODA-TIME 14 (70%) 6 (30%) 20m
JTOPAS 10 (50%) 10 (50%) 7m
XSTREAM 8 (40%) 12 (60%) 11m

All 77 (55%) 63 (45%) 14m28s

5.2.2 Classification Time

The time that was required to classify the mutations as equivalent or non-equivalent
varied heavily. While some mutations could be easily classified by just looking at the
mutated statement, others involved examining large parts of the program to determine a
potential effect of the mutated statement. This led to a maximum classification time of
130 minutes. The average classification time for each project is given in the last column
of Table 5.1 and ranges from 7 minutes for JTOPAS up to 29 minutes for ASPECTJ. The
average time for all projects is 14 minutes and 28 seconds.

On average, it took us 14 minutes and 28 seconds to classify one single mutation for
equivalence.

5.2.3 Mutation Operators

JAVALANCHE generates mutations by using different mutation operators as introduced
in Section 4. In order to check the relation between the equivalence of a mutant and
its underlying mutation operators, we grouped the 140 manually classified mutations
according to their operator. The results are summarized in Table 5.2. Some operators
produce far more mutants than others (column 2). For example, the operator replace

54 CHAPTER 5. EQUIVALENT MUTANTS

Table 5.2: Classification results per mutation operator.

Mutation Number of Non-equivalent Equivalent
operator mutants mutants mutants

Replace numerical constant 78 34 (44%) 44 (56%)
Negate jump condition 12 10 (83%) 2 (17%)
Replace arithmetic operator 7 3 (43%) 4 (57%)
Omit method call 43 30 (70%) 13 (30%)

numerical constant produces over half of the mutants in our sample. However, we can
also check the ratios of non-equivalent (column 3) and equivalent (column 4) mutants
for the operators. Here, we see that for the operators replace numerical constant and
replace arithmetic operator, which manipulate data, around 57% of all produced mu-
tants are equivalent, while for the operators negate jump condition and omit method
call, which manipulate the control flow, only around 30% are equivalent.

Mutation operators that change the control flow produce less equivalent mutants
than those that change the data.

5.2.4 Types of Equivalent Mutants

A mutation is defined to be equivalent when no test can be written that distinguishes the
mutated version from the original, e.g. the mutated version produces the same results as
the original. When classifying mutations, we found several reasons why this can be the
case. In the following, we list some of the reasons why a mutation can be equivalent.
However, this list does not include all possible reasons.

Mutations in unneeded code Some parts of the code just duplicate default behavior
or set a value that is later reset without using it in-between. When mutating these
parts, the program is not affected.

As an example for such a mutation, consider the code shown in Figure 5.4 from
the org.jaxen.pattern.PatternParser class, which calls the method
setXPathFactory() after creating a new JaxenHandler object. This
call is unnecessary as the standard constructor of JaxenHandler sets the ap-
propriate field to DefaultXPathFactory() anyway. Thus, the mutation
that suppresses this call has no effect on the program execution.

5.2. MANUAL CLASSIFICATION 55

JaxenHandler handler = new JaxenHandler();
handler.setXPathFactory(new DefaultXPathFactory());

⇒ call to setXPathFactory(...) gets omitted

Figure 5.4: An equivalent mutation in unneeded code.

Mutations that suppress speed improvements Some code is only considered with
speed improvements, e.g. a check that suppresses the sorting of a list if it has
less than two elements. Mutations to these checks can cancel the performance
improvement, but the results of the computation remain the same.

String myPrefix = n.getPrefix();
if (!nsMap.containsKey(myPrefix) ⇒ true)

{
NamespaceNode ns = new NamespaceNode((Node)contextNode,

myPrefix, myNamespace);
nsMap.put(myPrefix, ns);

}

Figure 5.5: An equivalent mutation that does not affect the program semantics.

For example, the code shown in Figure 5.5 checks whether a string myPrefix
is already contained in a map nsMap. If not, a new node is created and added to
nsMap together with a new NamespaceNode object. A possible mutation to
this code is to change the condition to a constant such as true. This updates the
map entries even if the prefix string already is in the map, and should result in
very different map contents. However, it is an equivalent mutant since the values
of the contextNode and myNamespace variables have the same values for
every myPrefix instance. Thus, the NamespaceNode objects are the same,
too. The map update as forced by the mutation does not alter the map contents—
it just replaces an existing node with a new, equivalent one.

Changes that do not propagate These mutations can alter the state of the program,
but the changes do not propagate to the end of the execution. This can either
happen locally, inside a method or via the private state of the class.

Let us consider a mutation to the code shown in Figure 5.6 taken from the class
org.jaxen.expr.NodeComparator. The value to start the depth compu-
tation from is initialized with 1 instead of 0, which causes different depth values
to be returned by the method. This method is private, and only used by a method
that compares different nodes. Since the depth for all nodes that are compared is

56 CHAPTER 5. EQUIVALENT MUTANTS

private int getDepth(Object o) throws
UnsupportedAxisException {

int depth = 0 ⇒ 1
Object parent = o;
while ((parent = navigator.getParentNode(parent)) != null){

depth++;
}

return depth;
}

Figure 5.6: An equivalent mutation that alters state.

increased by 1, the comparison of nodes remains correct.

Effects that cannot be triggered These are mutations that would cause the program
to fail under specific conditions. However, meeting these conditions causes other
failures upstream.

Figure 5.7 displays a mutation to the org.jaxen.dom.NamespaceNode
class. The mutation replaces the contents of the first if condition with false
so that the body is never executed. However, supplying an XML Document that
would evaluate the non-mutated condition to true causes an exception by the
XML parser.

Equivalence because of local context Some mutations change the syntax of the pro-
gram, but from the local source code context it is obvious that the mutation does
not change the semantics of the program.

Consider the code shown in Figure 5.8. The mutation changes the comparison
operator from < to ! =. This mutant is equivalent because the loop still runs
from 0 to 5 as the variable i is not manipulated in the body of the loop.

5.2.5 Discussion

The reported number of 45% of equivalent mutants is much higher than the 6.24% that
are reported by Offutt and Craft [68] or the 9.10% reported by Offutt and Pan [71].
Their numbers are relative to all mutations, including the ones that are detected by
the test suite. These mutations, however, are not of interest when improving the test
suite as they do not indicate a weakness of the test suite. If we also take the detected

5.2. MANUAL CLASSIFICATION 57

NamespaceNode (Node parent, Node attribute)
String attributeName = attribute.getNodeName();
if (attributeName.equals("xmlns") ⇒ false) {

this.name = "";
}
else if (attributeName.startsWith("xmlns:")) {

this.name = attributeName.substring(6);
// the part after "xmlns:"

}
else { // workaround for Crimson bug;

// Crimson incorrectly reports the
// prefix as the node name

this.name = attributeName;
}
this.parent = parent;
this.value = attribute.getNodeValue();

}

Figure 5.7: An equivalent mutation that could not be triggered.

for(int i=0; i <⇒ != 5; i++){
...// Code that does not manipulate i

}

Figure 5.8: An equivalent mutation because of the context.

mutations into account, we found 7.39% of all mutations to be equivalent, which is in
line with the other reported numbers.

In practice, though, it is the percentage of equivalent mutants across the undetected
mutations that matters—since these are the mutants that will be assessed by the devel-
oper. Here, 45% of equivalent mutants simply means 45% of wasted time. Even worse:
While the percentage of equivalent mutants across all mutants stays fixed, the percent-
age of equivalent mutants across the undetected mutants increases as the test suite im-
proves. This is due to the fact that an improved test suite detects more (non-equivalent)
mutants. A perfect test suite would detect all non-equivalent mutants; hence, 100% of
undetected mutants would be equivalent. In other words, as one improves the test suite,

58 CHAPTER 5. EQUIVALENT MUTANTS

one has more and more trouble finding non-equivalent mutants among the undetected
ones—with growing effort as the test suite approaches perfection.

The percentage of equivalent mutants among the undetected mutants increases as
the test suite improves.

5.3 Related Work

The problem of assessing mutation equivalence has been noted before. We are only
aware of the following quantitative measures of equivalent mutants. Offutt and Pan [71]
report 9.10% of equivalent mutants (relative to all mutants) for the 28-line triangle
program, and in another paper, Offutt and Craft [68] report 6.24% of equivalent mu-
tants for a set of small programs ranging from 5 to 52 lines of source code. Further-
more, it is also mentioned that programmers judge mutant equivalence correctly only
in about 80% [71]. Hu et al. [41] did a study on object-oriented mutation operators
which are mutation operators that simulate errors caused by object-oriented features
of a programming language, e.g. hiding variables. In their study on 38 JAVA classes,
they report 12.3% of equivalent mutants. In a comparative study between mutation
testing and the all-uses adequacy criterion, Frankl et al. [27] do not directly report on
the percentage of equivalent mutants, but from the numbers given in the paper we can
conclude that they classified 14.2% out of 18,125 mutants as equivalent. The reason
for the higher number of equivalent mutants might be traced back to the procedure they
used to classify mutants. They used a random test generator to produce test inputs and
considered a mutant as equivalent if no test input was generated that detected a mutant.
However, they also state that they possibly misclassified some mutants as equivalent
when using this procedure. Furthermore, they comment on the problem of equivalent
mutants as follows:

Although our experiments were designed to measure effectiveness, we also
observed that using these criteria, particularly mutation testing, was costly.
Even for these small subject programs, the human effort needed to check
a large number of mutants for equivalence was almost prohibitive.

The problem of equivalent mutations was also investigated in several other papers [10,
39, 22], but they do not comment on the quantitative aspect of the problem.

5.4. SUMMARY 59

5.4 Summary

A developer who uses mutation testing to improve a project’s test suite focuses on the
mutants that are not yet detected by the test suite. However, there are different reasons
why a mutant is undetected. The simplest reason is that the tests might not execute
the mutation. For these cases, however, we do not need to apply mutation testing
because statement coverage would also report unexecuted code. Among the covered
mutations, there are the ones that can be detected by a test, and the equivalent mutations
that cannot be detected by a test. A developer is only interested in detectable mutants
because only they can help in improving the test suite. Equivalent mutants put a burden
on the programmer because the equivalence of a mutant has to be determined, but this
does not help to improve the test suite.

In a manual study, we studied the extend of the problem of equivalent mutants for
seven JAVA projects. To this end, we classified 140 undetected mutants from these
projects and saw that equivalent mutants are a widespread problem. Classifying a
mutant as equivalent or non-equivalent took on average about 15 minutes. About 45%
of the undetected mutants in this sample are equivalent, and some mutation operators
produce 57% of equivalent mutants. Therefore, it would be helpful to detect equivalent
mutants automatically in order to make mutation testing applicable in practice. In
the next two chapters, we thus present approaches to separate non-equivalent from
equivalent mutants.

60 CHAPTER 5. EQUIVALENT MUTANTS

Chapter 6

Invariant Impact of Mutations

In the previous chapter, we have seen that equivalent mutants cause additional effort
when interpreting the results from mutation testing. In the past, a number of efforts
have been made to detect equivalent mutants. Approaches based on heuristics [68],
static program analysis (in particular path constraints) [70], and program slicing [39]
have been proposed. However, none of these techniques has shown to scale to large
programs.

Therefore, we suggest an alternate, novel way to eliminate equivalent mutants. Our
approach is based on the assumption that a non-equivalent mutant must impact not
only the program code but also the program behavior—just like a defect must impact
program execution to produce a failure. To characterize the “normal” behavior, we use
dynamic invariants—specific properties that hold under a given set of inputs. These dy-
namic invariants form the pre- and postconditions for every function as observed during
its executions. Our hypothesis is that a mutation which violates such invariants causes
different behavior—and therefore, is much more likely to also violate the program’s
semantics than a mutation which satisfies all learned invariants. We further propose
that testers focus on those mutants that violate most invariants (i.e. have the greatest
impact on program behavior) and are still not caught by the test suite. Our approach is
summarized in Figure 6.1. After learning dynamic invariants from test suite execution,
JAVALANCHE instruments the program with invariant checkers (Step 1), generates mu-
tations (Step 2), runs the test suite on each mutation (Step 3), and ranks mutations by
the number of violated invariants. Finally, the tester (Step 4) improves the test suite to
detect the top-ranked mutations.

61

62 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

Original Program Program with
Invariant Checkers

Ranking of
Surviving Mutations

Mutations

1 2 3 4 5

Tester

1

2 3

Figure 6.1: The process of ranking mutations by invariant impact.

6.1 Learning Invariants

To deduce invariants, JAVALANCHE relies on the tracer of ADABU [14] and the invari-
ant detection engine of DAIKON. Invariants are learned in three steps: First, we run
an instrumented version of the program and collect a trace of all parameter and field
accesses. Second, we analyze the trace and generate input files for DAIKON. Finally,
we feed those files into DAIKON to deduce invariants.

Tracing JAVALANCHE uses ADABU to instrument JAVA classes. ADABU injects code
that writes interesting events such as field accesses, beginning and end of meth-
ods into a compact trace file. On a set of sample programs, the current ADABU
implementation produces ∼30 MB/s of trace data on average.

DAIKON analyzes JAVA programs through CHICORY, a front-end for tracing
JAVA programs. CHICORY uses all variables in the scope of a method, regard-
less of whether they were accessed or not. Consequently, the invariant detection
engine has to deal with a lot more data which led to out-of-memory errors for
some of the larger subjects in our case study. In contrast, ADABU uses only
those variables that were actually accessed by a method, which greatly reduces
the amount of data to be analyzed and allows for learning invariants even from
very large programs.

Generating Daikon Files In the second phase, for every method that is invoked at
least once, ADABU generates program point declarations for the beginning (EN-
TER) and the end (EXIT) of the method. For every method invocation, ADABU
generates DAIKON trace entries for the corresponding ENTER and EXIT pro-
gram points.

Running Daikon The generated files are then fed into DAIKON which supports over
85 different types of invariants. For performance reasons, we decided to limit

6.2. CHECKING INVARIANTS 63

Table 6.1: Invariants used by JAVALANCHE.

Unary invariants. Compare a one-word integral variable (any JAVA type other than
long, float, or double) X against X 6= 0, X 6= null, X ≤ c, c≤ X , c1 ≤
X ≤ c2, where c, c1, c2 are constants.

Binary invariants. Compare two one-word integral variables X1 and X2 against X1 =
X2, X1 > X2, X1 < X2.

Strings and other objects are only checked for being null.

DAIKON to those types of invariants that occur most frequently in practice. In
a small experiment using a total of 94 different runs of our subject programs,
we detected those DAIKON invariants that occurred most frequently. Our cur-
rent configuration uses 28 different types of invariants, summarized in Table 6.1,
accounting for over 95% of all invariants found in our sample.

As a consequence, large programs like ASPECTJ are handled with reasonable effi-
ciency.

6.2 Checking Invariants

JAVALANCHE learns invariants from the unmutated program and checks for violations
in the mutated program. To check for invariant violations of the mutations, we use a
runtime checking approach that is similar to the approach pioneered by DIDUCE, a tool
to learn invariants and detect violations at runtime [36].

For each learned invariant, we insert statements into the bytecode that check for in-
variant violations before and after the execution of a method. If an invariant is violated,
this is reported and the run resumes. This allows for efficient and scalable checking of
invariants.

Figure 6.2 shows an invariant checker for a method that computes the square root
of a floating-point number. An invariant that might be discovered is that only numbers
greater than or equal to zero are passed as parameters. The code displayed in bold face
shows a check for this invariant. Note that the checkers are actually inserted into the
bytecode, but for sake of brevity, the corresponding code is shown in JAVA. At the

64 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

public double sqrt(double d){
if (d < 0) {

InvariantObserver.invariantViolated(513);
}

...
}

Figure 6.2: An invariant checker for a method that computes the square root.

beginning of the method the parameter is checked inline for the inferred invariant, and
in the case of a violation, it is reported to a central instance called InvariantObserver
with an id that identifies the invariant. The InvariantObserver also keeps track of the
currently activated mutation and can associate the violated invariants with a mutation
and keeps track about all invariants violated by a mutation.

6.3 Classifying Mutations

The results of applying JAVALANCHE with invariant impact detection contain the fol-
lowing information:

Detectability A flag indicates if the mutant was detected (“killed”) by the test suite.
A mutant is considered detected if at least one test fails, runs into a timeout, or
throws an exception.

Impact Each invariant represents a different property of “normal” program runs. The
more properties violated, the higher the impact of the mutation on the program
execution. We, therefore, use the number of invariants violated by a mutation to
measure impact; the greater the impact of a mutation, the higher the ranking.

Definition 26 (Invariant Impact) For a mutant SM of a program S and a set of tests
T , the invariant impact I is the number of distinct invariants violated by running the
tests T on SM , and learning the invariants from running the tests T on S.

I(SM,S,T) = # of violated invariants

6.4. EVALUATION 65

According to their impact, we can split the mutants into two sets: non-violating
mutants (NVM) and violating mutants (VM). Non-violating mutants (NVM) are mu-
tants that do not violate any invariant. They do not impact the program with respect to
its dynamic invariants. On the contrary, violating mutants are mutants that violate at
least one invariant.

Definition 27 (Non-Violating Mutants (NVM)) The set of non-violating mutants
MNV M for a test set T are those mutants that do not violate any invariant.

MNV M = {Si
M | I(Si

M,S,T) = 0}

Definition 28 (Violating Mutants (VM)) The set of violating mutants MV M for a test
set T are those mutants that violate at least one invariant.

MV M = {Si
M | I(Si

M,S,T)≥ 1}

The idea behind our approach is that violating mutants are less likely to be equiv-
alent since they violate the typical behavior of the program as captured by invariants.
This assumption will be investigated in the following section.

6.4 Evaluation

In order to evaluate our approach, we have conducted four different experiments. In
Section 6.4.2, we manually assess a sample result for equivalent mutants. In Sec-
tion 6.4.3, we compare the detection rates of mature test suites for invariant-violating
mutants (VM) as well as for non-violating mutants (NVM). Section 6.4.4 investigates
whether the mutants with the highest impact have the highest detection rate which im-
plies a low number of equivalent mutants. In Section 6.4.5, we check whether invariant
impact can be used as a predictor of equivalence or non-equivalence of undetected
mutants.

6.4.1 Evaluation Subjects

For the evaluation of the invariant impact, we used the seven open-source projects
presented in the previous chapter (see Table 4.2). However, in the evaluation of this

66 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

Table 6.2: Description of subject programs.

Project Program Test code Number
name Version size (LOC) size (LOC) of tests

ASPECTJ 1.6.1 25,913 6,828 321
BARBECUE 1.5b1 4,837 3,136 137
COMMONS-LANG 2.5-S 18,782 31,940 1,590
JAXEN 1.1.1 12,449 8,371 680
JODA-TIME 1.5.2 25,861 47,227 3,447
JTOPAS 1.0(SIR) 2,031 3,185 128
XSTREAM 1.3.1 14,480 13,505 838

Table 6.3: Runtime (in CPU time) for obtaining the dynamic invariants.

Trace Create Learn Total
Project test Daikon invariants time
name suite files (Daikon) invariants

ASPECTJ 3m 17s 1h 02m 22h 37m 23h 42m
BARBECUE 17s 1m 16m 17m
COMMONS-LANG 3m 03s 13m 3h 23m 3h 39m
JAXEN 4m 48s 2h 01m 5h 31m 7h 37m
JODA-TIME 4m 36s 13m 13h 38m 13h 56m
JTOPAS 2m 44s 52m 1h 41m 2h 36m
XSTREAM 2m 52s 26m 5h 03m 5h 32m

approach, we used different (older) program versions (column 2) that are given in Ta-
ble 6.2. The table also lists the size of the source code that is tested (column 3) and the
size of test suite (column 4). The number of tests we used for the experiments is given
in the last column. All times were measured on a 16-core 2.0GHz AMD Opteron 870
machine with 32 GB RAM; we used up to 7 cores and 2 GB RAM per core. It is
important to note that CPU time does not depend on the number of cores.

Table 6.3 and Table 6.4 show the time required to perform the steps discussed in
the previous sections. Columns 2 to 4 of Table 6.3 list the steps required to learn
invariants, and the last column gives the total time that is needed to learn the invariants.
The dominating step in terms of runtime is usually mining invariants with DAIKON, and
for ASPECTJ, this process takes the longest: 22 hours and 37 minutes to run DAIKON,

6.4. EVALUATION 67

Table 6.4: JAVALANCHE runtime (in CPU time) for the individual steps.

Create Prepare Check Total Total time
Project and test mutation mutated time invariants +
name checkers testing versions mutants mutants

ASPECTJ 9h 35m 5m 14h 22m 24 h 02 m 47h 44m
BARBECUE 1m 2m 42m 45 m 1h 02m
COMMONS-LANG 6m 3m 2h 26m 2 h 35 m 6h 14m
JAXEN 13m 50m 2h 05m 3 h 08 m 10h 45m
JODA-TIME 19m 46m 3h 03m 4 h 08 m 18h 04m
JTOPAS 1m 16m 44m 1 h 01 m 3h 37m
XSTREAM 24m 1h 47m 2h 44m 4 h 55 m 10h 27m

and 23 hours and 42 minutes in total to learn the invariants. Columns 2 to 4 of Table 6.4
list the steps required to instrument and check mutated versions of the program. The
rightmost column gives the total time needed to evaluate each subject, which is the sum
of the time required to learn the invariants and to carry out mutation testing. Our record
holder is again ASPECTJ, with a one-time effort of 24 CPU-hours to learn invariants
and create checkers, and another 24 CPU-hours to run the mutation test.

6.4.2 Manual Classification of Impact Mutants

In order to check whether the invariant impact helps detecting non-equivalent mutants,
we started our experiments with a manual assessment of invariant-violating mutants
and non-violating mutants.

Hypothesis

Our hypothesis was:

H1 Mutants that violate invariants are less likely to be equivalent than mutants that
do not violate invariants.

68 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

Experimental Setup

As discussed in Section 5.2.2, manually checking if a mutant is equivalent requires a
lot of effort. We, therefore, restricted our evaluation to one project (JAXEN) and twelve
samples for each group. The non-violating mutants were chosen randomly; the twelve
violating mutants were those that displayed the highest number of violations.

For each mutant, we first examined the source code around the mutant; we then
tried our best to come up with a test case to trigger the mutant. In those cases where it
was not possible to come up with such a test, we considered the mutant to be equivalent.
Assessing these 24 mutants took us 12 person-hours (i.e. 30 minutes per mutant on
average), plus the additional time that was needed to write test cases for non-equivalent
mutants.

The classification time of 30 minutes per mutant in this experiment is twice as
much as the average reported for JAXEN in the classification for the 140 mutants (see
Table 5.1). The reasons for this are the type of the mutants and the different setup. The
sample from Section 5.2 contains more easy to classify equivalent mutants, i.e. mutants
that can be classified as equivalent by looking at the surrounding code. Mutants that
violate invariants, which make one half of the sample used in this experiment, cannot
be classified by just looking at the surrounding code. Therefore, it takes more time
to classify them. Furthermore, we set up a better infrastructure for the experiment on
the 140 mutants, e.g. we set up all projects in an integrated development environment
(IDE) that made navigating the code and writing tests more efficient.

Results

The results of this manual inspection indicate that mutants which violate invariants are
more than twice as likely to be non-equivalent:

Violating mutants For 10 out of the 12 inspected mutants (10/12 = 83%), we could
write a test that detects the mutant. Most of these mutations impacted tracking
input line numbers, a feature that is not covered by the JAXEN test suite. We
failed to write tests for the remaining two mutants. Therefore, we considered
them to be equivalent.

6.4. EVALUATION 69

public Context(ContextSupport contextSupport)
{

this.contextSupport = contextSupport;
this.nodeSet = Collections.EMPTY_LIST;
this.size = 0 ⇒ -1 ;
this.position = 0;

}

Figure 6.3: A non-detected JAXEN mutation that violates most invariants.

Non-violating mutants We were able to write tests for only 4 out of the 12 mutants
(4/12 = 33%), but failed to do so for 7 of the remaining mutants. We did not
categorize one mutant since the behavior of the mutant depends on the system
locale.

A Fisher Exact Value test confirms the statistical significance of the difference at
p = 0.036. We, therefore, accept our hypothesis H1—taken with a grain of salt as the
size of our sample set was small.

In our sample, mutants that violate several invariants are less likely to be
equivalent.

Qualitative Analysis

In order to see whether invariant violating mutations help improving a project’s test
suite, we did a qualitative analysis for some of the mutations that violate most invari-
ants.

The mutation that impacts most invariants for JAXEN is shown in Figure 6.3. It
originates from line 102 of the org.jaxen.Context class. The mutation sets the
initial size of the context to −1 instead of 0. This violates several preconditions for
methods that use this information about the size during their computation, e.g. that the
size is greater than zero or in a certain range. However, while the test suite checks
the size of the underlying node set (whose size seems to be tracked by Context’s
size field) after the creation of a Context object, it does not check the size of the
Context itself (in Test ContextTest). Thus, this is either an insufficiency in the

70 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

private Token plus()
{

Token token = new Token(TokenTypes.PLUS,
getXPath(),
currentPosition(),
currentPosition() + 1 ⇒ 0);

consume();
return token;

}

Figure 6.4: A non-detected JAXEN mutation that violates the second most invariants.

test suite, or a code smell since the size may always be computed from the underlying
node set.

The mutation with the second largest invariant impact can be found in line 615 of
class XPathLexer (Figure 6.4). It sets the end index of a plus token to the same value
as the begin index, making it a token of size 0. This leads to several invariant violations
that involve the tokenEnd field of the Token class. The mutation, for example, has
an effect on the program whenever a string representation of this token is requested,
e.g. in error messages for wrong XPATH expressions. While the test suite checks for
the errors, it does not check the expressions enclosed in error messages. Such checks
take place for many other JAXEN messages, though. The mutation presented above
indicates another opportunity to improve the test suite.

Inspired by these examples, we also did a qualitative analysis for some of the
ASPECTJ mutations. In Figure 6.5, we see the method getLazyMethodGen()
of the class LazyClassGen in ASPECTJ. This method takes a method name and
signature and returns a LazyMethodGen object with the same name and signa-
ture or null. The mutation negates a condition and changes the behavior so that a
LazyMethodGen is only returned when the names match but the signatures do not.

This change impacts not only the behavior of the method itself but also violates
39 of the inferred pre- and postconditions of 18 other methods that are scattered all
throughout the program. Yet, this mutation is not detected by any test which implies
that the ASPECTJ test suite is not adequate with respect to such defects. Although a test
triggers this behavior, it fails to check for the error that was caused. As a consequence,
a test manager should extend the test suite so that this mutation could be detected, too.

6.4. EVALUATION 71

public LazyMethodGen getLazyMethodGen(String name,
String signature, boolean allowMissing) {

for (Iterator i = methodGens.iterator(); i.hasNext();){
LazyMethodGen gen = (LazyMethodGen) i.next();
if (gen.getName().equals(name) &&

⇒ ! (gen.getSignature().equals(signature)))
return gen;

}
if (!allowMissing)

throw new BCException("Class " + this.getName() +
" does not have a method " + name +
" with signature " + signature);

return null;
}

Figure 6.5: The undetected mutation that violates most invariants.

6.4.3 Invariant Impact and Tests

The manual effort that is required for assessing mutations is not only a problem in mu-
tation testing itself; it is also a problem when evaluating mutation testing approaches.
In particular, the precise rate of equivalent mutants can only be measured by assessing
all mutations manually, which is precisely the problem we want to overcome. There-
fore, for our second experiment, we wanted to have an objective classification that
could be more easily automated.

An Indirect Evaluation Scheme

How do we detect that a mutation is non-equivalent? In practice of mutation testing,
this is done all the time: By having the test suite detect the mutation. Any mutation
detected by the test suite, by definition, alters the program semantics. Thus, it is non-
equivalent. This fact that “detected” implies “non-equivalent” leads to our key idea:

A mutant generation scheme whose mutants are more frequently de-
tected by the test suite also produces fewer equivalent mutants.

For mutation testing, we are not interested in detected mutants, though; what we
want are non-detected mutants, as these help us to improve the test suite. But if a

72 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

scheme generally produces fewer equivalent mutants, this property should hold regard-
less of the detection by the test suite. Hence, the ratio of equivalent mutants can be
expected to be lower in the set of undetected mutants as well.

In our case, the mutant generation scheme favors those mutations with impact on
invariants. If we can show that impact on invariants correlates with detection by the
test suite, this means that impact on invariants also correlates with non-equivalence
as non-equivalence is implied by test suite detection. In formal terms, we have an
implication

detected by test =⇒ non-equivalent

and if we can show (statistically) that

violates invariants ?=⇒ detected by test

then we would conclude that

violates invariants =⇒ non-equivalent

This indirect evaluation approach relies on the assumption that test suites, as they stand,
are already good detectors of changed behavior. This assumption was also the base of
previous studies [3, 61]; there is no reason to believe that it would not hold for our
experiment subjects. (To actually apply JAVALANCHE, rather than evaluating it, such a
mature test suite is not required; instead, it is our aim to achieve this level of maturity.)

Hypothesis

Given our limited set of mutations, the constrained range of invariants checked and the
complexity and richness of the test suites involved, it is not obvious at all that invariant
violations would correlate with test outcome. The hypothesis to be checked in our ex-
periment was thus:

H2 Mutants that violate invariants are more likely to be detected by actual tests.

Experimental Setup

Our setup for H2 is straightforward: We execute the test suite on the original program
to learn dynamic invariants. Then, we identify mutations that have an invariant impact
and check whether they are detected by the test suite.

6.4. EVALUATION 73

Table 6.5: Results for H2. Invariant-violating mutants (VM) have higher detection
rates than non-violating mutants (NVM).

Number Number NVMs VMs p-value
Project of of detected detected χ2 test
name NVMs VMs (%) (%)

ASPECTJ 1159 13133 61.69 52.18 < 0.0001
BARBECUE 613 200 60.03 89.50 < 0.0001
COMMONS-LANG 10215 967 82.48 86.35 0.0021
JAXEN 2860 1250 44.48 97.84 < 0.0001
JODA-TIME 7523 2122 75.50 90.29 < 0.0001
JTOPAS 566 609 64.13 78.82 < 0.0001
XSTREAM 1835 1765 86.32 97.85 < 0.0001
VM = Invariant-Violating Mutant, NVM = Non-Violating Mutant.

Results

Our results are summarized in Table 6.5. Let us compare the detection rate of invariant-
violating mutants (VMs) versus non-violating mutants (NVM) (columns 4 and 5). With
the exception of ASPECTJ, all projects show a higher detection rate for VMs. The
difference is statistically significant according to the χ2 test.

The difference can be dramatic: In JAXEN, for instance, 98% of invariant-violating
mutants are detected versus 44% of the non-violating mutants. This also means that
in JAXEN, the rate of equivalent mutants across all generated invariant violators is not
higher than 2%.

Mutants that violate invariants are more likely to be detected by actual tests.

6.4.4 Ranking

For our third experiment, we wanted to explore what was so special about ASPECTJ that
the invariant-violating mutations were less likely to be detected than the non-violating
ones. In Table 6.5, we see that ASPECTJ has far more violating mutants than all other
projects combined. We wanted to rank these invariants focusing on those with the

74 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

highest impact: If a mutant violates many invariants, it should have a strong impact on
the behavior of the program and is, therefore, less likely to be equivalent than mutants
that violate fewer invariants.

Hypothesis

In this experiment, we classify not only mutations by whether they violate invariants or
not, but we actually rank them according to their invariant impact, which is the number
of different invariants violated. This is our hypothesis:

H3 The more invariants a mutant violates, the more likely it is to be detected by actual
tests.

Experimental Setup

Our experimental setup for H3 is the same as for H2 discussed in Section 6.4.3, with
the exception that we now focus on the detection rate of the top n% of the invariant-
violating mutants, where n ranges from 5 to 100.

Results

Our results can be summarized easily. For ASPECTJ, there is a clear trend: The higher
the ranking of a mutation (= the more invariants it violates), the higher its likelihood
to be detected by the full test suite. This is shown in Figure 6.6. The x axis shows
the subset considered, ranging from 5% (the top 5% of mutations which violated most
invariants) to 100% (all mutations that violated at least one invariant). The y axis shows
the respective detection rate.

This trend holds for all projects (see Figure 6.6), except for BARBECUE, the project
with the lowest number of violating mutants: Just as ASPECTJ, the project with the
highest number of violating mutants, benefits from ranking, it is reasonable to assume
that the low number of violating invariants in BARBECUE prevents a meaningful rank-
ing. Still, even focusing on the top 5% still yields a higher detection rate than average.

6.4. EVALUATION 75

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

ASPECTJ BARBECUE COMMONS-LANG

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

JAXEN JODA-TIME JTOPAS

20 40 60 80 100

0
20

40
60

80
10

0

Percentage of mutants included

P
er

ce
n

ta
g

e
o

f
m

u
ta

n
ts

 k
ill

ed

XSTREAM

Figure 6.6: Detection rates (y) for the top x% mutations with the highest impact.

In all seven projects, higher-ranked mutations are more likely to be detected than
all mutations (violating or non-violating). For all projects except BARBECUE, higher-
ranked mutations are always more likely to be detected than the average across all
violating mutations.

In Table 6.6, we have shown the detection rate of the 5%, 10%, and 25% violating
mutations with the highest impact. Except for BARBECUE, all detection rates are higher
than those of 100% non-violating mutations (column five of Table 6.5), thus confirming
H3.

76 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

Table 6.6: Results for H3. Best results are obtained by ranking VMs by the number of
invariants violated.

Top 5% Top 10% Top 25%
Project VMs VMs VMs
name detected detected detected

ASPECTJ 91.77 91.93 89.49
BARBECUE 70.00 80.00 82.00
COMMONS-LANG 95.83 95.83 90.46
JAXEN 100.00 100.00 99.68
JODA-TIME 97.17 92.92 95.09
JTOPAS 100.00 93.33 90.13
XSTREAM 100.00 100.00 100.00
VM = Invariant-Violating Mutant, NVM = Non-Violating Mutant.

The more invariants a mutant violates,
the more likely it is to be detected by actual tests.

Again, this implies that the undetected high-impact mutants will also have a low
rate of equivalent mutants.

6.4.5 Invariant Impact of the Manually Classified Mutants

For our fourth experiment, we were interested if the invariant impact can be used as a
predictor for the equivalence or non-equivalence of undetected mutants. We have seen
that mutations with a high impact are very likely to be non-equivalent. Another ques-
tion is how many of the undetected mutants are correctly classified using the invariant
impact.

Hypothesis

In order to use the invariant impact as a predictor, it has to be precise which means
that the impact on invariants should indicate non-equivalence, and it has to be sensitive
which means that non-equivalent mutations should have an impact on invariants. This
leads us to the following hypothesis:

6.4. EVALUATION 77

Table 6.7: Results for H4. Precision and recall of the invariant impact for the 140 man-
ually classified mutants.

Project Precision Recall
name % %

ASPECTJ 100 7
BARBECUE 75 43
COMMONS-LANG 50 17
JAXEN 50 10
JODA-TIME 100 21
JTOPAS 100 10
XSTREAM 40 25

Total 68 19

H4 Most non-equivalent and undetected mutants have an impact on invariants, while
equivalent mutants do not have an impact.

Experiment

As discussed earlier, classifying all undetected mutants would be an enormous effort.
Therefore, we limited this experiment to the 140 previously classified mutants (see
Section 5.2). For the classified mutants, we computed their invariant impact. Then,
we checked how many of the mutants with impact were actually non-equivalent (pre-
cision), and we computed how many of the non-equivalent mutants actually had an
invariant impact (recall).

Results

Table 6.7 shows the results for the 140 manually classified mutants. The first column
gives the project name, the second column (precision) displays the percentage of mu-
tations that are non-equivalent among all mutations with impact, and the last column
(recall) gives the percentage of mutations that have impact among all non-equivalent
mutations. On average, 68% of the mutations with impact are correctly classified as
non-equivalent. This number ranges from 40% for XSTREAM up to 100% for AS-
PECTJ, JODA-TIME, and JTOPAS. However, the average recall is only about 19%

78 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

which indicates a weakness of our technique. Although it is very likely that a mu-
tation is non-equivalent when it violates multiple invariants and still likely when it
violates at least one invariant, we cannot use the invariant impact as a predictor for
non-equivalence since many non-equivalent mutants do not have an impact on invari-
ants.

Many non-equivalent mutants do not have an impact on invariants.

6.4.6 Discussion

The results of our case study suggest that developers should not only focus on those
mutations that violate invariants, but that they should actually focus on those mutations
that violate most invariants.

Whenever mutation testing results in a large number of undetected mutants, it thus
seems a good idea to prioritize the mutants by their impact on invariants:

1. By focusing on those mutants with the highest impact on invariants, one creates
a bias towards non-equivalence. This is good, as this minimizes the number of
equivalent mutants to deal with.

2. As these invariants are originally learned from test suite executions, this implies
a bias towards mutations whose induced behavior differs most from the “normal”
behavior as characterized by the test suite.

3. Focusing on high-impact mutants also implies focusing on those areas where a
defect can create most damage across the program execution. Again, we consider
such a focus a very valuable property.

Our results also indicate that it is generally useful to focus on those mutations that
violate most invariants. Even in a program with few violating mutants like BARBE-
CUE, which did not benefit much from ranking (see the discussion in Section 6.4.4),
the top-ranked mutations consistently yielded better detection results than the average
mutation.

Finally, our results also place an upper bound on the number of equivalent mutants.
Omitting BARBECUE due to its low number of violating mutants, the detection rate for
the top 5% of violating mutations (Figure 6.6) is 92 to 100%, with an average of 97%.

6.5. THREATS TO VALIDITY 79

Thus, only 3% of these high-impact mutations were undetected placing an upper bound
on the number of equivalent (undetectable) mutants. (Note that in Section 6.4.2, only
17% of this small high-impact set were actually found to be equivalent, suggesting an
even lower overall rate.) This very low rate is what makes our approach to mutation
testing efficient.

On average, focusing on the top 5% of invariant-violating mutants yields
less than 3% of equivalent mutants.

6.5 Threats to Validity

Like any empirical study, this study has limitations that must be considered when in-
terpreting its results.

External validity The results of H1 should be considered as promising but not gen-
eralizable as the sample is small. Similarly, we cannot claim that the results of
H4 for the 140 manually classified mutants are generalizable. The manual effort
generally stands in the way of larger studies. Regarding H2 and H3, we eval-
uated our approach on seven programs with different application domains and
sizes; some of them were larger by several orders of magnitude than programs
previously used for evaluation of mutation testing [70, 27, 39, 3]. Generally, our
results were consistent across a wide range of programs. Still, there is a wide
range of factors with regard to both programs and test suites that may impact the
results, and we, therefore, cannot claim that the results would be generalizable
to other projects. Prospective users are advised to conduct a retrospective study
like ours.

Internal validity Regarding H1 and H4, our own assessment may be subject to errors,
incompetence, or bias; to counter these threats, all our assessments are publicly
available1. For H2 and H3, our implementation could contain errors that affect
the outcome. To control for these threats, we ensured that earlier stages (Fig-
ure 6.1) had no access to data used in later stages. Our statistical evaluation was
conducted using textbook techniques implemented in widely used frameworks.

1see http://www.st.cs.uni-saarland.de/mutation

http://www.st.cs.uni-saarland.de/mutation

80 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

Construct validity Regarding H1 and H4, being able to write a test can be seen as
the ultimate measure whether a mutant is non-equivalent. In H2 and H3, our as-
sumption that the test suite measures real defects is an instance of the “competent
programmer hypothesis” also underlying mutation testing [18]. This hypothesis
may be wrong; however, the maturity and widespread usage of the subject pro-
grams suggest anything but incompetence. Further studies will help completing
our knowledge on what makes a test suite adequate.

6.6 Related Work

6.6.1 Mutation Testing

Assessing the state to check the impact of mutations is also related to the concept of
weak mutation testing, as proposed by Howden [40] and explained in Section 3.3.4.
Weak mutation testing assesses the effect of a mutation by determining the state after
its execution: If the state is different, then the mutation is detectable. Weak mutation
testing thus checks whether the test suite could possibly detect a mutation; it does not
matter whether the tests actually pass or not. Strong mutation testing, which is what we
assume, assesses the test suite by determining whether it actually detects a mutation.
Our approach also measures state changes. However, the knowledge of state changes,
in the form of invariant violations, is used to compute the impact of a mutant instead
of deciding whether the mutant is detected or not.

6.6.2 Equivalent Mutants

The issue of equivalent mutants has frustrated generations of mutation testers. In Sec-
tion 5.3, we have quoted Frankl et al. [27] on the enormous amount of work needed
to eliminate equivalent mutants. A number of researchers have tackled the problem
of detecting equivalent mutants. Baldwin and Sayward were the first ones to suggest
heuristics for detecting equivalent mutants. Their approach is based on detecting id-
ioms from semantics-preserving compiler optimizations. Later, it was shown by Offutt
and Craft [68] that this approach detects approximately 10% of all equivalent mutants.

In 1996, Offutt and Pan [70] realized that detecting equivalent mutants is an in-
stance of the infeasible path problem which also occurs in other testing techniques.

6.6. RELATED WORK 81

They presented an approach based on solving path conditions that originate from a
mutant. If the constraint solver can show that all subsequent states are equivalent, the
mutant is deemed equivalent. The technique was reported to detect 48% of equivalent
mutants. A similar approach, based on program slicing, was presented by Hierons and
Harman [39]; this approach additionally provides guidance in detecting the locations
that are potentially affected by a mutant. Modern change impact analysis [86] can do
this in the presence of subtyping and dynamic dispatch. The recent concept of differ-
ential symbolic execution [80] brings the promise of easily detecting potential impact
of changes.

All of these techniques are orthogonal to ours; indeed, if we can prove statically
that a mutation will have no impact, we can effectively omit the runtime tests. The
question is how well these static approaches scale up when it comes to detecting mu-
tant equivalence in real programs. Offutt and Pan’s [70] technique, for instance, was
evaluated on eleven Fortran 77 programs which “range in size from about 11 to 30 ex-
ecutable statements”. In contrast, the programs we have been looking at are larger by
several orders of magnitude.

6.6.3 Invariants and Contracts

The idea of checking the program state at runtime is as old as programming itself.
Design by contract [59] mandates specifying invariants for every public method in a
program; the resulting runtime checkers effectively catch errors at the moment they
originate.

If the programmer does not provide invariants, one can infer them from program
runs. This is the idea of dynamic invariants as realized in the DAIKON tool by Ernst
et al. [23]. Most related to our work is the ECLAT tool by Pacheco and Ernst [77]
which selects, from a set of test inputs, a subset that is most likely to reveal defects by
assessing the impact of the inputs on dynamic invariants. McCamant and Ernst [58]
use dynamic invariants to check whether invariants had changed after a code change—
indicating a potential problem in the future. (Our approach, of course, explicitly looks
for such invariant changes.)

Sosič and Abramson [93] suggest another technique to detect the impact of changes
to programs. The idea of relative debugging is to compare the execution of two pro-
grams (in our setting, the original vs. the mutant) and automatically report any differ-
ences in variable values. While the differences do not translate into invariants, they
could nonetheless serve as impact indicators.

82 CHAPTER 6. INVARIANT IMPACT OF MUTATIONS

Our concept of efficient dynamic invariant checking was inspired by the DIDUCE
tool by Hangal and Lam [36], flagging invariant violations as they occur during the run.
Neither approach discussed in this section was applied to mutation testing so far.

6.7 Summary

In this chapter, we explained how to assess the impact of mutations using dynamic
invariants. To this end, we presented a scalable and efficient method to learn the most
common invariants (Section 6.1) and to check them (Section 6.2). In order to learn
the invariants, a run of the test suite on the original program is traced with ADABU.
From the resulting trace, dynamic invariants are computed using DAIKON. During
mutation testing, JAVALANCHE then inserts code that checks for invariant violations
at runtime. In the evaluation of the approach, we have seen that we can apply this
technique to real-world programs with reasonable efficiency, and that mutations with
impact on invariants are less likely to be equivalent. Furthermore, we have seen that
mutants violating most invariants are even less likely to be equivalent. However, our
results also showed that the invariant impact cannot be used as a predictor for the non-
equivalence of a mutant because there are also many non-equivalent mutants that do not
have an impact on the invariants. When improving test suites, we therefore, suggest
that test managers should focus on those surviving mutations that have the greatest
impact on invariants.

Chapter 7

Coverage and Data Impact of
Mutations

The results of the previous chapter showed that a mutation that has an impact on invari-
ants is very likely to be non-equivalent. However, we have also seen that mutations vio-
lating dynamic invariants are rare (Section 6.4.5). This finding motivated us to develop
a measure that provides a more fine-grained view on the impact. A mutant can have
an impact on the program run by changing the control flow of the run or by changing
the data that is processed. The control flow refers to the order in which the individual
statements in a program are executed. By manipulating a control flow statement, a
mutation can change the order or cause different statements to be executed. The data
refers to the program state which includes all values that can be accessed at a specific
point of the program run. By manipulating statements involving the computation or
storage of data, a mutation can manipulate the program state. Both changes can prop-
agate throughout a program run and result in a different result. Furthermore, a change
in the control flow can also result in changes to the data, and vice versa, changed data
can cause a differing control flow.

In this chapter, we present an approach that measures the impact on the control flow
by checking for differences in the execution frequency of individual statements and the
impact on data by comparing the return values of public methods.

83

84 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

7.1 Assessing Mutation Impact

Equivalent mutants are defined to have no observable impact on the program’s output.
This impact of a mutation can be assessed by checking the program state at the end of
a computation, just like tests do. However, we can also assess the impact of a mutation
while the computation is being performed. In particular, we can measure changes in
program behavior between the mutant and the original version. The idea is that if a
mutant impacts internal program behavior, it is more likely to change external program
behavior. Thus, it is also more likely to impact the semantics of the program. If we
focus on mutations with impact, we would thus expect to find fewer equivalent mutants.

How does one measure impact? Weak mutation [40] assesses whether a mutation
changes the local state of a function or a component; if it does, it is considered de-
tectable (and, therefore, non-equivalent). In this work, we are taking a more global
stance and examine how the impact of a mutation propagates all across the system. To
assess this impact degree, we consider two aspects:

• One aspect of impact is control flow: If a mutation alters the control flow of
the execution, different statements are executed in a different order. This is an
impact that can be detected by using standard coverage measurement techniques.

• Another aspect of the behavior concerns the data that is passed between methods
during the computation: If a mutation alters the data, different values are passed
between methods. This is an impact that can be detected by tracing the data that
is passed between methods.

In both cases, we measure the impact as the number of changes detected all across
the system; as the number of impacted methods grows, so does the likelihood of the
mutation to be generally detectable—and non-equivalent.

7.1.1 Impact on Coverage

In order to measure the impact of mutations on the control flow, we developed a tool
that computes the code coverage of a program and integrated it into the JAVALANCHE
framework. The program records the execution frequency for each statement that is
executed for each test case and each mutation. Note that the data collected by our tool

7.1. ASSESSING MUTATION IMPACT 85

is very similar to statement coverage which computes whether a statement is executed
or not. In addition to statement coverage, our tool also stores the execution frequency
of a statement.

Running the complete test suite of a program and tracing its coverage provides us
with a set of lines that were covered together with frequency counts for every test case
of the test suite. By comparing the coverage of a run of the original version with the
coverage of the mutated version, we can determine the coverage difference.

7.1.2 Impact on Return Values

Mutations with impact on the control flow manifest themselves in coverage differences,
but it is also possible that a mutation has only impact on the data, which is not used in
control flow affecting computations. In a manual investigation of random undetected
mutations, we found two categories of non-equivalent mutations that had no impact on
the code coverage:

• The first category are mutations that changed return values that were subse-
quently just passed around.

• The second category are mutations causing state changes that only manifest in a
change of the string representation of an object.

Therefore, we decided to additionally trace the return values of public methods. We
chose the public methods as they represent an object’s communication to the environ-
ment.

Storing all return values of a program run would require a huge amount of disk
space. For example, objects can cover huge parts of the program state through refer-
ences. The storage of all this data for each return value might be justifiable for one run
of a test suite. As we plan to use this data for assessing each mutation, which involves
several thousand executions of the test suite, we decided to abstract each return value
into an integer value.

For each public method that has a return value, we store these integers and count
how often they occur. In this way, we end up with a set of integers for each method
together with frequency counts. Similar to coverage data, we can compare the sets of
traced return values of the original execution with the mutated execution and obtain the
data difference.

86 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Abstracting Return Values

To obtain an integer value for returned JAVA objects, we compute its string representa-
tion by invoking toString(). Then, we remove substrings that represent memory
locations, as returned by the standard implementation of the toString() method in
java.lang.Object, because these locations change between different runs of the
program even though the computed data stays the same. From the resulting string, we
then compute the hash code. Thereby, we obtain an integer value that characterizes the
object.

For each primitive value (int, char, float, short, boolean, byte), we
store its natural integer representation; for 64-bit values (long,double), we compute
the exclusive or of the upper and lower 32 bits.

7.1.3 Impact Metrics

The techniques defined above produce a set of differences between a run of the test
suite on the original and mutated program. Using these differences, we define impact
metrics that quantify the difference between the original and mutated run:

Coverage impact —the number of methods that have at least one statement that is
executed at a different frequency in the mutated run than in the normal run—
while leaving out the method that contains the mutation.

Data impact —the number of methods that have at least one different return value
or frequency in the mutated run than in the normal run—while leaving out the
method that contains the mutation.

Combined coverage and data impact —the number of methods that either have a
coverage or data impact.

Definition 29 (Coverage Impacted Methods) For a mutant SM of a program S and a
set of tests T , the set of methods with coverage impact SCI is the set of methods that
have at least one statement with a different execution frequency between a run of T on
S and a run of T on SM , excluding the method m where the mutation was applied.

7.1. ASSESSING MUTATION IMPACT 87

Definition 30 (Coverage Impact) The coverage impact CI of a mutant SM of a pro-
gram S for a set of tests T , is the cardinality of the set of methods with coverage impact
SCI .

CI(SM,S,T) = |SCI |

Definition 31 (Data Impacted Methods) For a mutant SM of a program S and a set of
tests T , the set of methods with data impact SDI is the set of methods that have at least
one different return value between a run of T on S and a run of T on SM , excluding the
method m where the mutation was applied.

Definition 32 (Data Impact) The data impact DI of a mutant SM of a program S for
a set of tests T , is the cardinality of the set of methods with data impact SDI .

DI(SM,S,T) = |SDI |

Definition 33 (Combined Impact) The combined impact CombI of a mutant SM of a
program S for a set of tests T , is the cardinality of the union of the set of methods with
coverage impact SCI and the set of methods with data impact SDI .

CombI(SM,S,T) = |SCI ∪SDI |

These metrics are motivated by the hypothesis that a mutation that has non-local
impact on the program is more likely to change the observable behavior of the program.
Furthermore, we would assume that mutations which are undetected despite having
an impact across several methods can be considered as particularly valuable for the
improvement of a test suite, as they indicate inadequate testing of multiple methods at
once.

7.1.4 Distance Metrics

To further emphasize non-local impact, we use distance metrics that are based on the
distance between the method that contains the mutation and the method that has a
coverage or data difference.

The distance between two methods is the length of the shortest path between them
in the undirected call graph. The undirected call graph is a variant of the traditional

88 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

call graph that contains a node VM for each method M in the program. There is an edge
between two nodes VM and VN if there exists a call from method M to N or vice versa.

By using this distance, we can define three distance metrics analogous to the impact
metrics defined above:

• Coverage distance—For each method that has a coverage difference, we com-
pute the shortest path to the method that contains the mutation. The coverage
distance is then the length of the longest path.

• Data distance—For each method that has a data difference, we compute the
shortest path to the method that contains the mutation. The data distance is then
the length of the longest path.

• Combined coverage and data distance—the maximum of the data and cover-
age distance.

Definition 34 (Distance) For the mutant SM that was applied to method m of the pro-
gram S, a set of impacted methods S , and a distance function sp that computes the
shortest path between two methods in the undirected call graph, the coverage distance
is the maximum distance between the method that contains the mutation and one of the
impacted methods.

Dist(S) = max(sp(m,x)), x ∈S

With this distance definition, the distance metrics are defined by using different sets
of impacted methods. The set of methods with coverage impact SCI , as introduced in
Definition 29, defines the coverage distance. The set of methods with data impact SDI ,
as introduced in Definition 31, defines the data distance. The union of both sets defines
the combined distance.

7.1.5 Equivalence Thresholds

Each of the metrics defined above (Sections 7.1.4 and 7.1.3) produces a natural number
that describes the impact of a mutation. As we want to automatically classify mutants
that are less likely to be equivalent, we introduce a threshold t. A mutant is considered
to have an impact if and only if its impact metric is greater than or equal to t.

This allows us to split the set of mutants into the set of mutants with impact (MI)
and the set of mutants with no impact (MNI).

7.2. EVALUATION 89

Definition 35 (Mutants with impact (MI)) For an impact metric Ix, a test set T , and
a threshold t, the set of mutations with impact MI is the set of mutations where the
impact is greater than or equals t.

MI = {Si
M | Ix(Si

M,S,T)≥ t}

Definition 36 (Mutants with no impact (MNI)) For an impact metric Ix, a test set T ,
and a threshold t, the set of mutations with no impact MNI is the set of mutations where
the impact is less than t.

MNI = {Si
M | Ix(Si

M,S,T) < t}

7.2 Evaluation

We evaluated our approach in three experiments. First, in Section 7.2.1, we applied our
techniques to automatically classify mutants to the 140 manually classified mutants
from Section 5.2. For our second experiment, we devised an evaluation scheme based
on mature test suites. This automated evaluation scheme is presented in Section 7.2.2
and compares the detection rate of mutants with impact and mutants with no impact.
Finally, we were interested if the mutants with the highest impact are less likely to be
equivalent. We, therefore, ranked the mutants according to their impact and looked
at the highest ranked mutants (Section 7.2.3), both for the manually classified and the
ones detected by the test suites.

7.2.1 Impact of the Manually Classified Mutations

In the first experiment, we wanted to evaluate our hypothesis that mutants with impact
on coverage or return values are less likely to be equivalent. We, therefore, determined
the coverage and data differences and computed the impact (Section 7.1.3) and the
distance metrics (Section 7.1.4) for the 140 manually classified mutants, and automati-
cally classified them by using a threshold of 1 for all metrics. Then, we compared these
results to the actual results of the manual classification.

To quantify the effectiveness of the classification, we computed its precision and
recall:

90 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Table 7.1: Effectiveness of classifying mutants by impact: precision and recall.

Project Coverage Data Combined Invariant
name impact impact impact impact

ASPECTJ 72 / 87 72 / 87 72 / 87 100 / 7
BARBECUE 100 / 43 100 / 29 100 / 43 75 / 43
COMMONS-LANG 0 / 0 0 / 0 0 / 0 50 / 17
JAXEN 67 / 60 78 / 70 73 / 80 50 / 10
JODA-TIME 90 / 64 89 / 57 91 / 71 100 / 21
JTOPAS 100 / 70 43 / 30 64 / 70 100 / 10
XSTREAM 50 / 25 67 / 25 60 / 38 40 / 25

Total 75 / 56 67 / 48 70 / 61 68 / 19
First value in a cell gives the precision, the second the recall.

Table 7.2: Effectiveness of classifying mutants by distance based impact.

Project Coverage Data Combined
name distance distance distance

ASPECTJ 77 / 67 67 / 67 67 / 67
BARBECUE 100 / 43 100 / 29 100 / 43
COMMONS-LANG 0 / 0 0 / 0 0 / 0
JAXEN 67 / 60 78 / 70 73 / 80
JODA-TIME 90 / 64 89 / 57 91 / 71
JTOPAS 100 / 60 50 / 30 67 / 60
XSTREAM 50 / 13 67 / 25 67 / 25

Total 79 / 49 68 / 44 71 / 55
First value in a cell gives the precision, the second the recall.

• The precision is the percentage of mutants that are correctly classified as non-
equivalent, i.e. the mutant has an impact and is non-equivalent. A high precision
implies that the results of a classification scheme contain few false positives—
that is, most mutants classified as non-equivalent are indeed non-equivalent.

• The recall is the percentage of non-equivalent mutants that are correctly clas-
sified as such. A high recall means that there are few false negatives—that is,
a high ratio of the non-equivalent mutants was retrieved by the classification

7.2. EVALUATION 91

scheme.

While it is easy to achieve a 100% recall (just classify all mutants as non-equivalent),
the challenge is to achieve both a high precision and a high recall.

The results of the evaluation of the different metrics on the classified mutants are
summarized in Table 7.1 and Table 7.2 . Each entry gives first the precision of the
metric, and then its recall. Table 7.1 displays the results for coverage impact, data
impact, and their combined impact as defined above. It also contains the results for the
impact on dynamic invariants as defined in Chapter 6. Table 7.2 gives the results for
the distance metrics.

When considering the average results (last row), we can see that all techniques have
a high precision, ranging from 68% for the data distance (column 3 of Table 7.2) and
invariant metric (last column of Table 7.1) up to 79% for coverage distance (column 2
of Table 7.2) . This means that 68% to 79% of all mutants classified as non-equivalent
actually are non-equivalent. In comparison, a simple classifier that classifies all mu-
tations as non-equivalent, would have a precision of 54%. Thus, the metrics improve
over the simple approach by 14 to 25 percentage points.

Mutations with impact on coverage and data have a likelihood of 68 to 79% to be
non-equivalent, compared to 54% across all mutations.

When we look at the results of each project, COMMONS-LANG is a clear outlier,
with a precision and recall of zero for almost all metrics. This is due to several mu-
tations that alter the caching behavior of some methods. Although they are manually
classified as equivalent because the methods still return a correct object, they have a
huge impact because new objects are created at every call instead of taking them from
the cache. When we look at the result of the manual classification for COMMONS-
LANG (Table 5.1), we also see that it is the project with the highest number of equiv-
alent mutants—which might indicate that most mutations that are not detected by the
test suite are equivalent.

The recall values for the coverage and data metrics range from 44% for data dis-
tance to 61% for the combined impact metric. Both the combined impact and the
combined distance metric have a higher recall than the two metrics they are based on.
This, however, comes at the cost of lower precision. Furthermore, all coverage and data
metrics also have a far better recall than the earlier invariant-based technique which has
a recall of only 19%.

92 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

0 20 40 60 80 100

0
20

40
60

80
10
0

Coverage Impact

Threshold

P
er
ce
nt
ag
e

0 20 40 60 80 100

0
20

40
60

80
10
0

Data Impact

Threshold

P
er
ce
nt
ag
e

0 20 40 60 80 100

0
20

40
60

80
10
0

Combined Impact

Threshold

P
er
ce
nt
ag
e

0 20 40 60 80 100

0
20

40
60

80
10
0

Coverage Distance

Threshold

P
er
ce
nt
ag
e

0 20 40 60 80 100

0
20

40
60

80
10
0

Data Distance

Threshold

P
er
ce
nt
ag
e

0 20 40 60 80 100
0

20
40

60
80

10
0

Combined Distance

Threshold

P
er
ce
nt
ag
e

Precision

Recall

Figure 7.1: Precision and Recall of the impact metrics for different thresholds.

Coverage and data impact have better recall values than invariant impact.

There is always a trade-off between precision and recall. Increasing one of both
values decreases the other one. The simple classifier, for example, has a recall of 100%
by definition while it only has a precision of 55%. On the other hand, we can also
increase the precision of our metrics by increasing the threshold, e.g. when we use a
threshold of 2 for the coverage impact, we get a precision of 81% and a recall of 44%.

All distance metrics have a lower recall than their corresponding impact metrics.
A reason for this is that some mutations impact methods that are not connected via
method calls. In these cases, the impact propagates through state changes.

Sensitivity Analysis

The previous results were all computed with a threshold of 1. Thus, it is not clear how
the metrics perform when a higher threshold is used. In order to analyze its influence,

7.2. EVALUATION 93

Table 7.3: Assessing whether mutants with impact on coverage are detected by tests.

Project Number of Number of MIs MNIs
name MIs MNIs detected detected

ASPECTJ 5,531 1,661 76% 20%
BARBECUE 1,045 528 83% 32%
COMMONS-LANG 10,061 4,559 97% 58%
JAXEN 5,997 548 97% 26%
JODA-TIME 15,883 2,037 95% 18%
JTOPAS 1,362 150 93% 5%
XSTREAM 5,940 788 97% 39%
MI = Mutation with Impact, MNI = Mutation with No Impact.

we repeated the previous experiment with varying thresholds. Figure 7.1 shows a graph
for each distance metric. The x-axis displays the threshold and the y-axis shows the
percentage for precision and recall. A continuous line stands for the precision whereas
a dashed line stands for the recall. For a higher threshold, we would expect higher
precision as only the mutations with a higher impact are considered. This comes at
the cost of a lower recall as fewer mutations are considered in total. By looking at the
graphs, we can see that all metrics follow this trend. For the distance based metrics,
however, this trend only holds up to a threshold of 15. For thresholds greater than 15,
both recall and precision are 0 since our sample contains no non-equivalent mutation
with a distance impact greater than 15. In contrast to the distance based metrics, the
trend holds for the coverage, data, and combined impact up to a threshold of 100.

Coverage and data metrics are more stable for higher thresholds than distance
based metrics.

7.2.2 Impact and Tests

Besides our evaluation on the manually classified mutations, we also wanted a broader
objective evaluation scheme that can be automated. However, in order to automatically
determine the equivalence of a mutation, we either need a test suite that detects all
non-equivalent mutations, or an oracle that tells the equivalence of a mutation. Unfor-
tunately, obtaining such a test suite or an oracle is infeasible. Thus, we decided to base
our automated evaluation scheme on the existing mature test suites of the projects.

94 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Table 7.4: Results for ranking the mutations according to their impact on coverage.

Top 5% Top 10% Top 25%
Project MIs MIs MIs
name detected detected detected

ASPECTJ 100% 100% 99%
BARBECUE 100% 97% 99%
COMMONS-LANG 98% 99% 99%
JAXEN 100% 100% 100%
JODA-TIME 100% 100% 99%
JTOPAS 100% 100% 100%
XSTREAM 100% 100% 100%

Table 7.5: Assessing whether mutants with impact on data are detected by tests.

Project Number of Number of MIs MNIs
name MIs MNIs detected detected

ASPECTJ 5,186 2,006 80% 19%
BARBECUE 956 617 92% 25%
COMMONS-LANG 7,861 6,759 98% 70%
JAXEN 6,005 540 95% 46%
JODA-TIME 15,173 2,747 91% 55%
JTOPAS 1,286 226 94% 31%
XSTREAM 5,543 1,185 95% 64%

The rationale for our evaluation is as follows: A mutation classification scheme
helps the programmer when it detects many non-equivalent and fewer equivalent mu-
tants. For every mutant that is detected by the test suite, we know for sure that it is
non-equivalent. If we can prove that a classification scheme has a high precision on the
mutations that are detected by the test suite, this might also hold for the mutations that
are not detected by the test suite.

Thus, we applied the impact metrics to all mutations in each project and evaluated
them on the mutations detected by the test suite. The results are given in Tables 7.3 to
7.8.

For each project and impact metric, we determined the number of mutations that
had an impact (MIs in column 2), and the number that had no impact (MNIs in column

7.2. EVALUATION 95

Table 7.6: Results for ranking the mutations by their impact on data.

Top 5% Top 10% Top 25%
Project MIs MIs MIs
name detected detected detected

ASPECTJ 100% 99% 99%
BARBECUE 100% 97% 99%
COMMONS-LANG 97% 98% 98%
JAXEN 100% 100% 100%
JODA-TIME 100% 100% 99%
JTOPAS 100% 100% 100%
XSTREAM 100% 100% 100%

Table 7.7: Assessing whether mutants with combined coverage and data impact are
detected by tests.

Project Number of Number of MIs MNIs
name MIs MNIs detected detected

ASPECTJ 5,200 1,992 81% 17%
BARBECUE 1,142 431 81% 25%
COMMONS-LANG 10,467 4,153 95% 59%
JAXEN 6,063 482 95% 41%
JODA-TIME 15,841 2,079 91% 43%
JTOPAS 1,388 124 92% 6%
XSTREAM 6,059 669 94% 52%

3). For the MIs and MNIs, we then computed the ratio that was detected by the test
suite (column 4 and 5).

In Section 7.1.5, we saw that we need a threshold t when to consider a mutation
to have an impact according to the underlying metric. As our manual classification
showed 45% of the undetected mutations to be equivalent, we automatically set t so
that at most 45% of the undetected mutations are classified as having no impact.

The ratio of mutations with impact ranges from 54% for COMMONS-LANG and
data impact (Table 7.5) up to 93% for JAXEN and the combined impact metric (Ta-
ble 7.7). The number of mutations with impact that are detected is around 90% on
average (i.e. at most 10% are equivalent) while the average ratio of mutations with

96 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Table 7.8: Results for ranking the mutations by their impact on coverage and data.

Top 5% Top 10% Top 25%
Project MIs MIs MIs
name detected detected detected

ASPECTJ 100% 100% 99%
BARBECUE 100% 97% 99%
COMMONS-LANG 98% 98% 99%
JAXEN 100% 100% 100%
JODA-TIME 100% 100% 99%
JTOPAS 100% 100% 100%
XSTREAM 100% 100% 100%

no impact ranges from 28% for coverage impact to 45% for data and combined im-
pact. These results indicate that the impact metrics classify the mutations with a high
precision while the coverage impact metric has the highest precision.

Of the mutations that have impact on coverage or data, at most 10% are equivalent.

Sensitivity Analysis

We investigated the sensitivity of our approach in relation to the threshold by repeating
the previous experiment for the coverage impact measure and varying values for the
threshold. The results are shown in Figure 7.2. For each of the 7 projects, there is one
graph where the x-axis gives the different threshold values and the y-axis the percentage
for 3 different measurements: (1) a solid line for the mutations with impact, (2) a
dashed line for the ratio between detected and undetected mutations with impact, and
(3) a dotted line for the ratio between detected and not detected mutations with no
impact.

The percentage of mutations with impact declines for all projects, and for BARBE-
CUE, COMMONS-LANG, and JTOPAS there are no mutations with an impact greater
than 200 while for JAXEN, JODA-TIME, and XSTREAM, there are some mutations
with an impact greater than 800. The ratio of detected mutations with impact rises
up to 100% for all mutations when higher thresholds are used. This is because only
mutations with a big impact (mostly mutations that cause exceptions) are considered.

7.2. EVALUATION 97

0 200 400 600 800

0
20

40
60

80
10
0

AspectJ

Threshold

P
er
ce
nt
ag
e

0 200 400 600 800

0
20

40
60

80
10
0

Barbecue

Threshold

P
er
ce
nt
ag
e

0 200 400 600 800

0
20

40
60

80
10
0

Commons-Lang

Threshold

P
er
ce
nt
ag
e

0 200 400 600 800

0
20

40
60

80
10
0

Jaxen

Threshold

P
er
ce
nt
ag
e

0 200 400 600 800

0
20

40
60

80
10
0

Joda-Time

Threshold

P
er
ce
nt
ag
e

0 200 400 600 800

0
20

40
60

80
10
0

JTopas

Threshold

P
er
ce
nt
ag
e

0 200 400 600 800

0
20

40
60

80
10
0

XStream

Threshold

P
er
ce
nt
ag
e Percentage of mutations

 with impact.
Ratio of mutations with impact
 that are detected.
Ratio of mutations with no impact
 that are detected.

Figure 7.2: Percentage of mutations with impact and detection ratios of mutations with
and without impact for varying threshold.

The ratio of detected mutations with no impact also rises for higher thresholds, because
more mutations are considered to have no impact.

At higher thresholds 100% of the mutations with impact are detected.

Mutation Operators

As the results from the manual classification indicated that there is a difference in
ratio between equivalent and non-equivalent mutations for different mutation operators
(Section 5.2.3), we were interested in the detection ratios for mutation operators. To
this end, we grouped the results for combined coverage and data impact by mutation
operator and combined the results for all projects. Table 7.9 summarizes the results.
The number of mutations (column 2) that are produced for an operator ranges from
2,359 for replace arithmetic operator to 22,457 for replace numerical constant. Similar
to the results concerning equivalence (Section 5.2.3), there is a difference between
operators that manipulate the control flow (negate jump condition and omit method call)
and operators that manipulate data (replace numerical constant and replace arithmetic
operator).

98 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Table 7.9: Detection ratios for different operators

Mutation Number of Detected Mutant with MI
operator mutants mutants impact (MI) detected

Replace numerical constant 22,457 76.96 85.08 83.59
Negate jump condition 9,790 90.41 91.65 90.69
Replace arithmetic operator 2,359 80.63 86.90 87.95
Omit method call 21,484 86.55 94.42 88.11

Total 56,090 83.14 89.88 86.85

Compared to the data manipulating operators, the control flow manipulating opera-
tors have higher detection rates (87 to 90% vs. 77 to 81% in column 3), more mutations
with impact (92 to 94% vs. 85 to 87% in column 4), and higher detection rates for mu-
tations with impact (88 to 91% vs. 84 to 88% in column 5).

Mutations that manipulate the control flow have higher impact and higher detection
rates than mutations that manipulate data.

7.2.3 Mutations with High Impact

In the previous experiments, we saw that mutations with impact are more likely to
be non-equivalent. Besides that, we were interested in whether mutations with a high
impact are more likely to be non-equivalent.

To evaluate this hypothesis, we did two experiments. First, we ranked the mutations
that were detected (as described in Section 7.2.2) by their impact, picked the top 5, 10,
and 25%, and checked how many of them were non-equivalent. In a second experiment,
we ranked the mutations from the manual classification according to their impact for
the different impact metrics. Then, we picked the 15, 20, and 25% of the highest ranked
mutations out of all mutations that were classified as non-equivalent by the metric, and
checked if they were correctly classified.

The results for the first experiment (for mutations detected by the test suite) can be
found in the last 3 columns of Tables 7.3 to 7.7. For many projects and impact metrics
the 25% of mutations with the highest impact are all detected. If not all of them are
detected, at least 98% of them are. For the impact on invariants (see Chapter 6), we

7.2. EVALUATION 99

Table 7.10: Focusing on mutations with the highest impact: precision of the classifica-
tion

Impact metric Top 15% Top 20% Top 25%

Coverage impact 88% 91% 93%
Data impact 88% 91% 86%
Combined impact 90% 85% 76%
Coverage distance 86% 80% 75%
Data distance 88% 80% 85%
Combined distance 89% 75% 80%

observed a similar trend but not as distinctive as for the data and coverage impact
metrics.

Table 7.10 shows the results for the manual classification. For all impact metrics,
75% or more out of the top 25% are non-equivalent. Compared to the precision results
in Table 7.1, picking the 25% of mutations with the highest impact attains a higher ratio
of non-equivalent mutations than choosing mutations with impact in no specific order.
In this setting, the coverage impact metric performs best again. When we choose the
top 25% ranked mutations, 93% of them are non-equivalent.

More than 90% of the mutations with the highest coverage impact are
non-equivalent.

The results for the detected mutants indicate that a high impact strongly correlates
with non-equivalence, and the results for the manually classified mutations confirm this
finding also for the undetected mutants.

In practice, this means that focusing on the mutations with the highest impact yields
the fewest amount of equivalent mutants. The question is whether mutations with a
high impact are also the most valuable mutations—that is, whether they uncover most
errors, or at least the most important errors. Our intuition tells us that if we can make
a change to a component that impacts several other components, while the test suite
still does not detect it, such a change has a higher chance to be valuable than a change
whose impact is hardly measurable. The relationship between impact and value of
mutations remains to be assessed and quantified, though.

100 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

7.3 Threats to Validity

The interpretation of our results is subject to the following threats to validity.

External validity In our studies, we have examined 20 sample mutations from seven
non-trivial JAVA programs with different application domains and sizes; some of
them were larger by several orders of magnitude than programs previously used
for evaluation of mutation testing [70, 27, 39, 3]. Generally, our results were
consistent across a wide range of programs. Still, there is a wide range of factors
of both programs and test suites that may impact the results, and we, therefore,
cannot claim that the results would be generalizable to other projects.

Internal validity Regarding the manual classification (Section 5.2), our own assess-
ment may be subject to errors, incompetence, or bias. At the time we conducted
the assessment, we did not know how the mutations would score in terms of im-
pact. For assessing mutations based on coverage (Sections 7.2.1 and 7.2.2), our
implementation could contain errors that affect the outcome. To control for these
threats, we ensured that earlier stages had no access to data used in later stages.

Construct validity Regarding the manual classification of mutations (Section 5.2),
being able to write a test is the ultimate measure whether a mutant is non-
equivalent. When classifying mutations based on impact (Section 7.2.1), we
directly provide the information as required by the programmer. Finally, in
Section 7.2.2, our assumption that the test suite measures real defects is an in-
stance of the “competent programmer hypothesis” also underlying mutation test-
ing [18]. This hypothesis may be wrong; however, the maturity and widespread
usage of the subject programs should suggest sufficient competence. Further
studies will help completing our knowledge on what makes a test suite adequate.

7.4 Related Work

As stated in Section 6.6.2, the problem of equivalent mutants was also diagnosed and
tackled by other researchers [71, 68]. Similar to invariant impact, coverage and data
impact are also dynamic analysis techniques. Therefore, the static approaches can be
used in combination with the dynamic approaches. If it can be statically proven that a
mutation is equivalent, we do not need to compute its impact and can focus on those
mutations that cannot be handled with static approaches.

7.4. RELATED WORK 101

The traditional use of statement coverage is to measure how well tests exercise
the code under test and to detect areas of the code that are not covered by the tests.
In contrast to our approach which also takes into account the execution frequency of a
statement, traditional statement coverage just measures whether a statement is executed
or not. Besides its traditional use, statement coverage is also used in different scenarios.

Jones and Harrold [45] presented the TARANTULA tool that uses coverage informa-
tion for bug localization. By comparing the statement coverage of passing and failing
test cases, the suspiciousness of a statement is computed. The intuition behind this
approach is that statements that are primarily executed by failing test cases are more
suspicious than statements primarily executed by passing tests. The statements can
then be ranked according to their suspiciousness. The results of their evaluation show
that the defective statement is ranked in the top 10% for 56% of the cases. Both our ap-
proach and TARANTULA follow the idea that changed coverage expresses anomalous
behavior. TARANTULA uses coverage differences between test cases to find a defective
statement while our approach uses coverage difference between runs of the test suite to
estimate the impact of a mutation.

Elbaum et al. [21] investigated how statement coverage data changes when the
source code is changed. The results suggest that even small changes can have a huge
impact on the code coverage. However, the authors also state that the changes in code
coverage are hard to predict. These findings support our decision to use statement
coverage as an impact metric because mutations are also small changes. Furthermore,
not all changes result in coverage changes which indicates that the coverage changes
are sensitive to semantic changes.

Gordia [31] proposed the concept of dynamic impact analysis. To this end, the
dynamic impact graph is built which is directed and acyclic. The nodes of the graph
represent different executions of the program elements. Edges are between nodes that
can potentially impact each other. The edges carry a probability that tells how likely
an element impacts its direct successor. By traversing the graph, it can be computed
how likely it is that a program element impacts an output element. The proposed
applications of this approach are to estimate the risk of changes and to aid in test case
selection for mutation testing. However, this approach might also be used in a similar
way as our approach. For a not detected mutant its probability of manipulating the
output can be computed, which corresponds to its chance of being non-equivalent.

Test case prioritization [85] is concerned with meeting a specific performance goal
faster by reordering the execution of test cases, e.g. to detect faults earlier in the testing
process, or to reach specific coverage goals faster. To this end, coverage data is used to
prioritize the test cases according to different strategies.

102 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Software change impact analysis aims to predict the results of code changes, that is,
which parts of the code are affected by a change. Orso et al. [75, 76] proposed an ap-
proach for software impact analysis which is also called COVERAGEIMPACT. They use
their Gamma approach to collect actual field data from deployed programs to compute
the potential impact of a program change. To this end, traces are taken from a sample
of deployed programs. A trace, in this context, consists of all methods that were called
during an execution of the program. Every trace that traverses a changed method is
identified, and all methods that are covered by this trace are added to a set of covered
methods. Then, a static forward slice for every method that was changed is computed,
and the methods that are covered by the slice are collected in a set of slice methods.
The intersection of both sets is the set of methods that are potentially impacted by this
change. Besides using the same name, our approach and the approach by Orso et al.
are different. Orso et al.’s approach samples many executions on different machines to
approximate the impact of potentially larger changes on deployed programs and typical
usage scenarios, while our approach just aims to assess the impact of one small change
(mutation) for a specified usage scenario (test cases) for one deployed version. How-
ever, using static forward slices can also help assessing the equivalence of a mutant. A
similar idea was proposed by Hierons et al. [39].

7.5 Summary

In this chapter, we introduced the concepts of coverage impact and data impact of a
mutation. The coverage impact is the number of methods that have lines with different
execution frequencies between a run of the test suite on the mutated and the original
version, and the data impact is the number of methods that have different return values
between the two runs. To further emphasize non-local impact, we introduced distance
metrics that measure the distance between the method containing the mutation and
its furthest impacted method. The distance between two methods is the length of the
shortest path between them in the undirected call graph.

In a study on seven open-source programs, it was shown that both coverage and
data impact can be used to assess the equivalence of mutations with a good preci-
sion and recall, i.e. most mutations with impact are non-equivalent and most of non-
equivalent mutations are detected by impact metrics. The distance metrics reach a
higher precision at the cost of a lower recall, i.e. a higher percentage of mutations are
correctly classified as non-equivalent but fewer are detected. When we compare the
different approaches, we see that the coverage impact performs slightly better than the

7.5. SUMMARY 103

data impact, and all metrics based on coverage and data impact perform better than
the invariant metrics in terms of recall, i.e. they detect more non-equivalent mutations.
Combining coverage and data metrics increases the recall, and by focusing on high im-
pact mutants, the results can be improved further in terms of precision, e.g. if we rank
the undetected mutations by impact and choose the top 25% ranked mutations, 93% of
them are non-equivalent.

104 CHAPTER 7. COVERAGE AND DATA IMPACT OF MUTATIONS

Chapter 8

Calibrated Mutation Testing

During mutation testing, defects are generated by using predefined mutation operators
which are inspired by faults that programmers tend to make. But how representative are
mutations for real faults? Andrews et al. [3] showed in their study that mutations are
better representatives for real faults than faults generated by hand. However, different
types of faults are made in different projects [52]. Therefore, mutation testing might
be improved by learning from the defect history. As future defects are often similar to
past ones, mutations that are similar to past defects can help to develop tests that also
detect future bugs. This motivated us to develop calibrated mutation testing which is
a technique that produces mutations according to characteristics of defects that were
detected in the past. To this end, we mine the repository of a project for past fixes.
These fixes represent attempts to cure a defect. Thus, they provide information about
past defects. By producing mutation sets that share properties with these past fixes, we
calibrate mutation testing to the defect history of a project. Figure 8.1 summarizes our
approach. First, fixes are mined from different sources. Then, the mutations are (Step
2) calibrated to characteristics of the fixes and (Step 3) presented to the tester.

8.1 Classifying Past Fixes

Calibrated mutation testing aims to produce mutations similar to past defects, as made
during the development of a project. To this end, we need to obtain information about

105

106 CHAPTER 8. CALIBRATED MUTATION TESTING

Original Program Mine Fixes

1 2 3 4 5

Report to TesterInsert Calibrated Mutations

Issue Tracker Rcs

Figure 8.1: The process of calibrated mutation testing.

these defects. We do this by learning from fixes as they represent attempts to cure a
defect, and describe a defect. In the following sections, we describe how to collect and
classify past fixes for a software project.

8.1.1 Mining Fix Histories

Defects are constantly fixed during the development of a project. These fixes, however,
are documented in different ways. Thus, we mine fixes for a project from different
sources:

Revision Control System (RCS) Revision Control Systems such as cvs, svn, and git,
provide commit message. These messages may contain the word ‘fix’ which
indicates that a defect was fixed with this revision. We use the Kenyon frame-
work [7] for collecting such commits automatically. Then, we manually validate
if they are really fix revisions.

Issue tracker connected with RCS logs Several commit logs may contain the issue
index numbers of an issue tracking system. We can automatically collect the
revisions that contain these numbers with Kenyon, and then check manually
whether they are really fix revisions corresponding to a certain issue.

Testing We can compare the test results of two adjacent revisions to obtain fixes. If
a test case fails on the former revision and passes on the latter one, this is a fix
revision.

8.1. CLASSIFYING PAST FIXES 107

25

57 fixes
from Testing

42 fixes from
issue tracker

99 fixes from SVN logs

4

21
17

6

50

11

134 fixes in total

Thursday, April 28, 2011Figure 8.2: Collected fixes for the JAXEN project.

8.1.2 Subject Project

A project has to fulfill several criteria to be suitable for calibrated mutation testing. It
has to have a version history that lasts long enough, so that we can learn from past
fixes. There has to be an issue tracker from which we can extract bugs that were fixed.
Furthermore, it has to come with a JUNIT test suite, so that we can test several revisions
automatically and apply mutation testing to it.

The JAXEN XPath engine fulfills these criteria. It has a version history of 1319
revisions that span a duration of about 7 years. It is of medium size (12,438 lines of
code) and comes with a JUNIT test suite that consists of 690 test cases.

Figure 8.2 shows the fixes that we collected for JAXEN, with the techniques de-
scribed in the previous section. In total, we got 134 fixes. Out of these, 99 fixes
were extracted from the version archive (svn), 42 from the issue tracker, and 57 from
comparing the test results of subsequent revisions. Some of the fixes extracted from
different sources are overlapping, which is shown by a Venn diagram. For example, 21
of the fixes that were extracted from the version archive were also extracted from the
issue tracker.

108 CHAPTER 8. CALIBRATED MUTATION TESTING

Table 8.1: Fix pattern properties and their values.

Properties Values

Flow control(C), data(D)
Fix change add(A), remove(R), modify(M)
Syntactic if(IF), method call(MC), operation(OP),

switch(SW), exception handling(EX),
loop(LP), variable declaration(DC),
casting(CT)

8.1.3 Fix Categorization

The collected fixes were categorized according to the fix pattern taxonomy proposed
by Pan et al. [78]. The taxonomy categorizes fixes based on syntactical factors and
their source code context. For example, the ‘IF-APC’ pattern describes fixes that add
a precondition check via an if statement. In total, Pan et al. propose 27 fix patterns.
However, some fixes could not be categorized by the taxonomy, so we added 12 new
fix patterns.

For each fix pattern, we also determined several properties that describe its effects.
The flow property describes the impact of the fix on control and data flow. The change
property indicates if new code was added, or existing code was changed or deleted.
The syntactic property describes which type of statements were involved in the fix (e.g.
if statements or method calls). Table 8.1 shows all values for the different properties.
Note that a fix pattern can also be associated with multiple values from each category.

Furthermore, we also determined the location for each fix—that is, the package,
class, and method that were affected by the fix. Thereby, we could identify areas of the
program that were more vulnerable than others.

By using these patterns and properties, each fix can be categorized. Although the
fixes were categorized manually, each of the categorization steps could be automated.

8.2 Calibrated Mutation Testing

The idea of calibrated mutation testing is to adapt mutations to the defects that occurred
during the development of the project. We obtain information about the defects by

8.2. CALIBRATED MUTATION TESTING 109

Table 8.2: 10 most frequent fix patterns for Jaxen.

Pattern name Abbreviation

Change of Assignment Expression AS-CE
Addition of an Else Branch IF-ABR
Change of if condition expression IF-CC
Addition of Precondition Check IF-APC
Method call with different actual parameter values MC-DAP
Addition of a Method Declaration MD-ADD
Addition of Precondition Check with jump IF-APCJ
Removal of an Else Branch IF-RBR
Modify exception message EX-MOD
Addition of Operations in an Operation Sequence SQ-AMO

Table 8.3: Classification of the 10 most frequent fix patterns.

Properties
Pattern Flow Change Syntactic Frequency Mutation operator

AS-CE D M OP 18 replace assignments
IF-ABR CD A IF 13 skip else
IF-CC C M IF 13 negate jump in if
IF-APC C A IF 9 remove check
MC-DAP D M MC 9 replace method arguments
MD-ADD D A DC 9 -
IF-APCJ C A IF 8 skip if
IF-RBR CD R IF 7 always else
EX-MOD N M EX 6 -
SQ-AMO D A MC 6 remove method calls

mining past fixes. Using this data, we define mutation operators that mimic defects
that were fixed (Section 8.2.1), and devise mutation selection schemes based on the
properties of previous fixes (Section 8.2.2).

110 CHAPTER 8. CALIBRATED MUTATION TESTING

8.2.1 Mutation Operators

To generate mutations similar to actual defects, we use the fix patterns that are based on
actual fixes. For a fix pattern, we derive a mutation operator that reverses the changes
described by the pattern. Thereby, we introduce defects similar to fixes that are repre-
sented by this pattern.

For the JAXEN project, we examined the 10 most frequent fix patterns and checked
which mutation operators reverse this pattern. Table 8.2 gives the names of the 10 most
frequent fix patterns together with their abbreviations, and the results are summarized
in Table 8.3. The first column gives the fix pattern ordered by their frequency (column
5). Columns 2 to 4 show the properties associated with each fix pattern. The mutation
operator that corresponds to a fix pattern is given in the last column. For 8 out of
these 10 patterns, we found a corresponding mutation operator. For our experiments,
we used JAVALANCHE, the mutation testing framework presented in Chapter 4. One
of the mutation operators that corresponds to a pattern was already implemented in
JAVALANCHE, and for the seven others, we had to implement new mutation operators.

For example, the corresponding mutation operator for the ‘IF-APC’ pattern (see
Section 8.1.3) removes checks. Checks are if conditions without an else part. Thereby,
code that was previously guarded by the check gets executed regardless of the check
result.

8.2.2 Mutation Selection Schemes

As we do not want to apply all possible mutations exhaustively, we propose different
selection schemes that aim to represent past defects. To this end, a selection scheme
takes properties of past fixes into account and selects mutations according to these
properties. Therefore, we also mapped the characteristics, described in Section 8.1.3,
to mutations and derived different selection schemes:

Pattern-based scheme Past fixes can be described by fix patterns. Many of these fix
patterns can be related to mutation operators as described in Section 8.2.1. By
using this relation, we can select a set of mutations that reflects the distribution
of fix patterns among the past fixes.

8.3. EVALUATION 111

Property-based schemes A fix pattern is characterized by different properties (flow,
change, and syntactic properties). We calculate the distribution of these prop-
erties among all fixes. Then, we select a set of mutations that manipulate these
properties so that the distribution of properties among the fixes is reflected—
e.g. if more fixes are associated with a property, more mutations are selected to
manipulate this property. In this way, we get three different mutation selection
schemes as there are three different properties.

Location-based schemes Source code locations where defects were fixed in the past
may be more vulnerable than other locations. Thus, we collect the locations
of the fixes and count their occurrences. Then, we select mutations according
to the distribution of fix locations. By considering three different granularity
levels (package, class, and method level), we obtain three different location-
based schemes.

Random scheme A scheme that randomly selects mutations from all possible muta-
tions serves as a benchmark.

From the different selection schemes, we obtain different sets of mutations, which
are calibrated to different aspects of the defect history of the project. Note that the
mutation selection schemes are not deterministic. When a selection scheme is applied
multiple times, different mutations may be chosen, and only the distribution of the
underlying characteristic stays the same.

8.3 Evaluation

For the evaluation of our approach, we were interested if mutation schemes that are
based on properties of previous fixes help to develop better tests than schemes that are
based on a random selection of mutations. But how do we define better or good tests
in this context? Although there are many different opinions on what makes a good test,
for our evaluation, we consider a test to be good when it detects bugs.

Therefore, in an ideal setting, we would first apply each mutation selection scheme
to a project and develop tests that cover the selected mutations. Then, we would check
how many bugs these tests detect. Unfortunately, the first step is very hard as it would
involve tremendous human effort to write tests for all mutations, and the second step
is impossible as we do not know all bugs that are in a project. Thus, we propose an
alternative evaluation setting that is based on the version history of a project.

112 CHAPTER 8. CALIBRATED MUTATION TESTING

8.3.1 Evaluation Setting

For a project, we check out every revision from the revision control system. Then,
we compile each revision using the build scripts of it. If the revision can successfully
be compiled, we also run its unit tests and record the results of the individual tests.
With this approach, we obtain a matrix that depicts which test passes or fails on which
revision. Using this data, we consider a test to detect a bug if the test fails on a revision
and passes on a later one.

For evaluating our approach, we pick a specific revision. Then, we compute all
fixes, as described in Section 8.1, up to this revision. By learning from these fixes,
we create mutation sets according to different selection schemes. For these mutation
sets, we check by which tests each mutation is detected. Then, we prioritize the tests
in a way that they are sorted by the number of additional mutations that they detect.
In this way, we obtain a test prioritization for each scheme. To assess the quality of
a prioritization, we check how many future bugs are detected by the tests in the top
x percent of the prioritization. Again, the number of future bugs that a test detects is
derived from the previously produced matrix. As we create multiple sets for each muta-
tion generation scheme, the result is the average number of bugs detected by tests from
the different prioritizations. For each scheme, we compare this number to the results
obtained for randomly selected mutations, and test whether differences are statistically
significant. We use the Mann–Whitney U test to determine whether a difference is sta-
tistically significant because we could not ensure that the underlying data is normally
distributed, i.e. the hypothesis that the data is normally distributed was rejected by the
Shapiro–Wilk test.

8.3.2 Evaluation Results

We applied our approach to two revisions of JAXEN (revisions 1229 and 931). We ran-
domly chose them among the revisions that had enough (≥ 5) tests that detect defects
in future revisions. For each revision, we applied the different selection schemes and
produced 100 different mutation sets for each scheme. Then, we checked the average
failure detection ratios of the prioritizations that were produced for these sets.

Table 8.4 and Table 8.5 show the results for applying the different selection schemes
on revision 1229 of JAXEN. The columns give the selection scheme that the prioritiza-
tion is based on, and the rows give the percentage of tests considered. A value in the
table depicts how many future faults are found on average by tests in the top x percent

8.3. EVALUATION 113

Table 8.4: Defects detected for pattern and location based schemes (for revision 1229).

Top x Fix Location
percent pattern Package Class Method Random

10 0.39 0.75 0.53 0.68 0.58
20 0.85 1.45 0.67 0.87 1.00
30 1.39 2.61 1.30 2.54 1.95
40 2.28 3.68 2.07 3.93 3.24
50 3.02 4.47 2.80 4.78 4.14
60 3.82 5.13 3.84 5.59 4.59
70 4.64 5.63 5.84 6.58 5.32
80 5.58 6.29 6.27 6.62 6.40
90 8.95 8.63 8.66 9.31 8.85

100 10.00 10.00 10.00 10.00 10.00

of a prioritization. The values that are better than the values for the random scheme are
underlined, and statistically significant values are shown in bold face.

For the detected defects, especially for the random prioritization, one would expect
a linear distribution, i.e. for the top x percent, x/10 bugs are detected. However, all
schemes perform worse. This is due to the setup of the evaluation. First, the mutations
are chosen, and then, the tests are prioritized according to these mutations. For the
random scheme, also the mutations that are used for the prioritization are randomly
chosen and not the tests. A test that detects a bug but only detects few or no mutations
is ranked low in all prioritization schemes. As there are such tests in this revision,
the prioritization schemes perform worse than a linear distribution, which would be
achieved by randomly choosing tests.

The results for the prioritization based on the fix pattern scheme (column 2 of Ta-
ble 8.4) give constantly worse values than the ones for the random scheme (last column
of Table 8.4) for the top 10 to 80%, and 6 out of them are significantly worse. Two of
the location based schemes, the package and method based scheme (column 3 and 5 of
Table 8.4), produce mostly better results than the random scheme. For the scheme that
is based on the package location (column 3 of Table 8.4), though, this is only statisti-
cally significant for the top 20 and 30% of the test cases. The scheme that is based on
the method location of previous fixes (column 5 of Table 8.4) has statistically signifi-
cant better values for the top 30 to 70%. For the scheme that is based on class location
(column 4), this trend does not seem to hold as it produces values that are worse than

114 CHAPTER 8. CALIBRATED MUTATION TESTING

Table 8.5: Defects detected for property based schemes (for revision 1229).

Top x Property
percent Flow Change Syntactic

10 0.49 0.72 0.56
20 0.94 1.31 1.13
30 1.78 2.19 1.67
40 2.79 3.11 2.62
50 3.47 3.9 3.47
60 4.21 4.44 4.19
70 4.85 4.94 4.86
80 5.65 6.06 5.76
90 8.46 8.63 8.81

100 10.00 10.00 10.00

the ones for the random scheme. This effect seems counterintuitive and might be due
to the nature of the tests. Tests that perform well on mutations in a package seem to
be more successful in defect detection than tests that perform well on mutations in de-
fect prone classes. More specific tests that perform well on mutations in defect prone
methods are again better in defect detection. The test prioritizations generated for the
property based techniques (column 2 to 4 of Table 8.5), on the other hand, perform
worse than the prioritization based on a random selection of mutations, except for the
change property based scheme which has better values for the top 10 to 30%. However,
these values are not statistically significant.

In order to check whether these results hold throughout the history of the project,
we also looked at an earlier revision. Table 8.6 and Table 8.7 show the corresponding
results for revision 931. Note that for almost all prioritization schemes, all the defects
are detected at 90% . This is due to tests that detect very only few mutations but no
defect. Therefore, they are always ranked very low by the different prioritizations. The
prioritizations based on the fix pattern type performs better for the top 10 and 20% but
worse for the rest. The location based schemes, which perform best for revision 1229,
do not perform well on this revision. Only three values are better than the ones for the
random scheme, but none is statistically significant. Among the property based prior-
itization schemes, the scheme based on the flow property of fixes performs best. The
top 10 to 30% perform better than the random scheme, but again, this is not statistically
significant. From these results, we can conclude that:

8.4. THREATS TO VALIDITY 115

Table 8.6: Defects detected for pattern and location based schemes (for revision 931).

Top x Fix Location
percent pattern Package Class Method Random

10 1.72 1.12 1.47 1.33 1.44
20 2.73 2.35 2.64 2.61 2.71
30 3.28 2.97 3.09 3.2 3.41
40 3.47 3.35 3.25 3.69 3.82
50 3.77 3.65 3.53 3.99 4.05
60 4.17 4.13 4.08 4.45 4.32
70 4.44 4.52 4.66 4.68 4.59
80 4.80 4.83 4.84 4.84 4.86
90 5 5 5 5 5

100 5 5 5 5 5

Random mutation selection schemes cannot be outperformed by selection schemes
based on defect history.

8.4 Threats to Validity

Like any empirical study, this study is limited by threats to validity.

External validity As the evaluation was only carried out on one project, we cannot
claim that the results carry over to other projects. However, the results may
serve as a starting point for further investigation and discussion.

Internal validity Due to the randomness that goes into the selection schemes, they are
affected by chance. To counter this threat, we produced 100 different mutation
sets for each scheme, averaged the results and compared the results to the aver-
age of 100 randomly chosen sets. Furthermore, we followed rigorous statistical
procedures to evaluate the results.

Construct validity We learned about past defects from fixes. Although we used 3
different methods to mine fixes, some of the fixes are missed—and thereby, data
about past defects. For our evaluation, we had to make several approximations

116 CHAPTER 8. CALIBRATED MUTATION TESTING

Table 8.7: Defects detected for property based schemes (for revision 931).

Top x Property
percent Flow Change Syntactic

10 1.76 1.35 1.41
20 2.95 2.44 2.65
30 3.55 3.13 3.02
40 3.68 3.44 3.39
50 3.92 3.66 3.76
60 4.15 4.17 3.93
70 4.49 4.6 4.43
80 4.79 4.90 4.73
90 5 5 4.98

100 5 5 5

that may have influenced the results. The test cases to detect (kill) mutations
were chosen from existing test cases rather than writing new ones. This created
a bias towards the type of tests as some mutations are not detected, and tests that
covered large parts of the program were preferred. In addition, we only evaluate
against defects that were detected by tests that existed in an earlier revision. This
provided only a few defects and created a bias towards the type of defect.

8.5 Related Work

8.5.1 Mining Software Repositories

Software repositories have been mined for various purposes, among others to suggest
and predict further changes [108], defect prediction [46] and to infer API Usage pat-
terns [53].

The DynaMine tool presented by Livshits and Zimmermann [53] combines soft-
ware repository mining and dynamic analysis techniques. In their approach, they mine
the commits for usage patterns, and then they use dynamic analysis to validate the pat-
terns and to find violations. Similar to our approach, they also use a combination of
repository mining and dynamic analysis techniques, but for a different purpose. They

8.5. RELATED WORK 117

try to detect defects in the form of pattern violations while we aim to improve test suites
through calibrated mutation testing.

Pan et al. [78] studied the bug fix patterns in seven open-source projects and came
up with a categorization that covers up to 63.3% of all fixes made in a project. Their
fix classification forms the basis for one of our calibration schemes.

To our knowledge, calibrated mutation testing is the first trial to combine mutation
testing and software repository mining.

8.5.2 Mutation Testing

In one of the first publications on mutation testing, DeMillo et al. [18] introduced the
coupling effect that relates mutations to errors and is stated as follows:

Test data that distinguishes all programs differing from a correct one by only sim-
ple errors is so sensitive that it also implicitly distinguishes more complex errors.

Offutt [66, 67] later provided evidence for the coupling effect with a study on higher
order mutants. The results of our work can also be seen as a support of the coupling
effect. They indicate that tests detecting randomly chosen mutations are as effective as
tests detecting calibrated mutations.

Mutation selection was first proposed by Mathur [57] as a way to reduce the costs
for mutation testing by omitting the mutation operators that produce most mutations.
The goal of mutation selection is to produce a smaller set of mutations so that tests that
are sufficient (they detect all mutations) for the smaller set are also (almost) sufficient
for all mutations.

In an empirical study on 10 Fortran programs, Offutt et al. [69] showed that 5 out
of 22 mutation operators are sufficient—test suites that detect all selected mutations
also detect 99.5% of all mutations.

Barbosa et al. [6] did a similar study on C programs. They proposed 6 guidelines for
the selection of mutation operators. In an experiment on 27 programs, they determined
10 out of 39 operators to produce a sufficient set with a precision of 99.6%.

A slightly different approach was taken by Namin et al. [61]. They tried to produce
a smaller set of mutations that can be used to approximate the mutation score for all

118 CHAPTER 8. CALIBRATED MUTATION TESTING

mutations. Using statistical methods, they came up with a linear model that generates
less than 8% of all possible mutations, but accurately predicts the effectiveness of the
test suite for the full set of mutations.

In a recent study, Zhang et al. [107] compared these 3 different operator-based
selection techniques to random selection techniques. They showed that all techniques
performed comparably well, and that random selection techniques can outperform the
best operator-based selection techniques. This is similar to our results, which show no
significant difference between more sophisticated calibrated selection techniques and
simple random techniques in terms of fault detection ratios for the corresponding test
suites.

The selective approaches aim at minimizing the number of mutations and approxi-
mating the results for all mutations while our approach selects mutations calibrated to
past defects in order to approximate future defects.

8.6 Summary

One application of mutation testing is to improve a test suite by analyzing not detected
mutations and developing new tests that detect them. In this work, we investigated
whether calibrating mutations to the defect history improves this process as future de-
fects are often similar to past defects. To this end, the inserted mutations were cal-
ibrated to different aspects of the defect history expressed through fixes made in the
past. We proposed different calibration schemes that are based on the pattern type, the
location, and on different properties of the fix. Then, we prioritized tests in such a way
that the ones detecting most mutations for a selection scheme were ranked first. For
the obtained prioritization we checked how many future defects they would detect.

Although the results on one revision showed better values for some calibrated
schemes than for random selection, we found no scheme in which this trend mani-
fested for more revisions. Our results can, therefore, be seen in line with previous
research by Zhang et al. [107]. They compared random selection schemes with dif-
ferent operator selection schemes, and in their evaluation random selection schemes
were also not outperformed by more sophisticated schemes. Furthermore, our results
might also be seen as support for the coupling effect—which states that tests that are
sensitive enough to detect simple errors also detect complex errors. From our results,
we can conclude that tests that detect randomly chosen mutations are as effective as
tests that detect calibrated mutations.

Chapter 9

Comparison of Test Quality
Metrics

During software testing, a developer is interested in writing good tests. In most cases a
test is considered to be good when it has the potential to reveal defects in the code. Test
coverage metrics can be used to assist in writing new tests. A developer can create new
tests in such a way that the coverage level is increased, i.e. previously unsatisfied test
requirements get satisfied by new tests. This process might help to produce better test
suites than those obtained by unsystematically adding new tests. In this chapter, we
investigate whether coverage metrics help to develop better test suites, i.e. if there is a
correlation between the coverage level of a test suite and its defect detection capability.
If such a correlation exists, this would mean that test suites reaching a higher coverage
are more likely to detect defects, and fewer defects are undetected by the test suite.
Thus, developers can gain confidence that their program contains fewer defects if their
program exhibits no defect for a test suite with a high coverage.

Another issue when testing software is the cost-effectiveness of a test generation
strategy. Developing more tests also means higher cost in terms of development effort
and computing resources. For example, it might be the case that test suites satisfy-
ing criterion C1 are more likely to detect defects than tests that satisfy criterion C2.
However, producing a test suite that satisfies criterion C1 requires more effort than pro-
ducing a test suite that satisfies C2, e.g. more tests are needed to satisfy C1 than for
C2. In cases like these, the better defect detection capabilities can also be caused by

119

120 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

the larger size of test suites satisfying C1 compared to suites satisfying C2. Therefore,
one is interested in a metric where the coverage level correlates with defect detection
independently of the test suite size.

Even though such a correlation might exist, there is no guarantee that test suites
reaching a high coverage level will detect defects. One reason for this is that there
are many tests that satisfy a test requirement or detect a defect. From the universe of
all possible tests a specific fraction of tests does both: it satisfies a requirement and
also detects a specific defect. The defect detection capability of a concrete test suite
depends on the type of test chosen to satisfy a criterion, i.e. whether the test satisfies
the requirement and detects the defect or only satisfies the requirement. Therefore, a
correlation between defect detection and coverage can only give indication for the like-
lihood of a test suite detecting potential defects. In the same way subsumption relations
do not carry over to the defect detection capability of a coverage metric. For example,
it cannot be concluded that Ca correlates with defect detection when it subsumes a cri-
terion Cb that does correlate with defect detection. This is because tests that satisfy
requirements in Ca might have a different fraction of tests that detect a defect than tests
that satisfy requirements Cb, although some of them also satisfy requirement imposed
by both criteria.

9.1 Test Quality Metrics

In this work, we were interested whether a high coverage level correlates with defect
detection, i.e. whether there is a correlation for test suites between their coverage level
with regard to a metric and their defect detection capability. Especially, we were in-
terested how mutation testing compares to traditional coverage metrics. Therefore, we
generated several test suites for a set of subject programs and computed the mutation
score and the coverage level for different metrics as well as the number of defects the
test suites detect. The mutation score is defined as the number of detected mutants
divided by the number of all mutants (see Chapter 3). We used the following coverage
metrics to compare against mutation testing:

Statement Coverage that requires every statement to be executed.

Branch Coverage that requires every branch to be executed.

Modified Condition/Decision Coverage that requires assignments to all predicates
so that each clause independently affects the outcome of its predicate.

9.2. EXPERIMENT SETUP 121

Table 9.1: Description of the Siemens suite.

Project Lines of Number of
name code test cases Defects

print tokens 536 4130 7
print tokens2 387 4115 10
schedule 425 2650 9
schedule2 766 2710 10
tot info 494 1052 23
replace 554 3155 32
tcas 136 1608 41

Loop Coverage that requires every loop construct to be executed zero times, once, or
several times.

Section 2.3.1 contains a more detailed description of these metrics. For each cov-
erage metric, we computed the coverage level of a test suite, which is the number of
requirements satisfied by the test suite divided by the total number of requirements
imposed by the coverage criterion.

9.2 Experiment Setup

In order to carry out our experiment, we needed subject programs that contain known
defects and several tests that detect these defects. The Siemens test suite [19] is a set
of programs that fulfills these requirements. It consists of seven different subjects that
have in total 132 faulty versions and 19,420 different tests. For our experiments, we
used a version adapted for JAVA by Masri et al. [56]. A description of the subjects can
be found in Table 9.1

For each of the seven subjects, we generated several test suites with varying sizes.
To this end, we followed the following method. We first fixed the number of test cases
a test suite should contain, and then randomly picked that many test cases from the
pool of all test cases. This method was applied to generate 250 test suites for each test
suite size from 1 to 500 test cases. Following this procedure, we obtained 125,000 test
suites per subjects. For each test suite, we computed the coverage metrics and how

122 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

many defects it detects. We computed the mutation score with JAVALANCHE, which
was presented in Section 4. To compute the coverage level for the different metrics, we
used the CODECOVER tool developed at the University of Stuttgart.

By using the test suites’ coverage levels and the number of detected defects they
detected, we tested for a correlation between them at different sizes. To test for a
correlation, we used the Spearman’s rank correlation coefficient, because the data is
not normally distributed.

9.3 Results

The results of our experiments are shown in Figures 9.1, 9.2, 9.3, and 9.4. The corre-
lation between the coverage level of a test suite and its defect detection capability for
test suite sizes from 1 to 15 test cases is shown in Figure 9.1. For each subject, there
is an own plot. The x-axis represents the test suite size and the y-axis the correlation
coefficient. Different lines depict the development of the correlation coefficient of the
different metrics. For almost all projects there is a weak correlation, mostly around 0.4,
between the coverage level and the defect detection capability of a test suite. As the test
suite sizes increase the correlations decrease. These correlations are statistically signif-
icant for 5 out of 7 projects, i.e. the P-Value, obtained by using a t-distribution, is within
the confidence interval of -0.05 and +0.05. For schedule and schedule2 the cor-
relation is only statistically significant for very small test suites. However, mutation
testing performs better than the other metrics for these two projects. The correlation
for mutation testing is statistically significant until the size of 10 for schedule, and
for schedule2 it becomes significant at the size of 10. The only project at which
the coverage metrics do not decrease is print tokens2. Here the correlation for all
metrics except for loop coverage increases with growing test suite size.

For 5 out of 7 subjects mutation testing performs better than or is on par with the
best coverage metric. For schedule2 the correlation is stronger for the coverage
metrics at small test suite sizes, but at a test suite size of 5 the correlation is again
stronger for mutation testing. For tot info the correlation is the strongest for modi-
fied condition/decision coverage.

The mutation score shows the best correlation to defect detection for most projects
at small test suite sizes.

9.3. RESULTS 123

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

print_tokens

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

print_tokens2

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

replace

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

schedule

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

schedule2

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

tcas

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

2 4 6 8 10 12 14

−
0.

5
0.

0
0.

5

tot_info

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

Mutation
Statement
Branch
Loop
MC/DC

Figure 9.1: Correlation between coverage level and defect detection for test suite
sizes 1 to 15.

124 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

print_tokens

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value print_tokens

Test suite size
P

−
va

lu
e

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

print_tokens2

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value print_tokens2

Test suite size

P
−

va
lu

e

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

replace

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value replace

Test suite size

P
−

va
lu

e

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

schedule

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value schedule

Test suite size

P
−

va
lu

e

Figure 9.2: Correlation between coverage level and defect detection and corresponding
P-values for test suite sizes 1 to 100.

9.3. RESULTS 125

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

schedule2

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value schedule2

Test suite size

P
−

va
lu

e

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

tcas

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value tcas

Test suite size

P
−

va
lu

e

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

tot_info

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 20 40 60 80 100

−
0.

10
0.

00
0.

05
0.

10

P−value tot_info

Test suite size

P
−

va
lu

e

Mutation
Statement
Branch
Loop
MC/DC

Figure 9.3: Correlation between coverage level and defect detection and corresponding
P-values for test suite sizes 1 to 100.

126 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

print_tokens

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

print_tokens2

Test suite size
C

or
r.:

 m
et

ric
/d

ef
ec

ts

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

replace

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

schedule

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

schedule2

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

tcas

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

tot_info

Test suite size

C
or

r.:
 m

et
ric

/d
ef

ec
ts

Mutation
Statement
Branch
Loop
MC/DC

Figure 9.4: Correlation between coverage level and defect detection for test suite
sizes 1 to 500.

9.4. THREATS TO VALIDITY 127

Figure 9.2 and Figure 9.3 show the same type of graphs as Figure 9.1 but for an
interval from 1 to 100. In addition, for each project they also show a graph for the
P-value, which determines the significance of the correlation. These graphs show the
development of the P-Value for the different metrics as the test suite size increases.
The general trend we can observe is that the correlations decrease as the test suite size
increases until there is no correlation (Spearman’s rank correlation coefficient is zero).
However, there are a few exceptions and some metrics perform better than others before
the correlation becomes insignificant. Mutation testing performs best for three projects
(replace, schedule2, tcas) during the whole interval, i.e. it has the strongest
correlation. For two other (print tokens2, schedule) projects it performs best
at the beginning, and then at larger sizes another metric performs better. For example,
mutation testing performs best until a test suite size of 60 for the print tokens2
subject, and then loop coverage performs better. For schedule mutation testing per-
forms best until a test suite size of 35 and then all criteria have a correlation of 0. When
we look at the development of the P-values, we see that for most projects there is a sig-
nificant correlation for all metrics at smaller test suite sizes. Most correlations, with a
few exceptions, become insignificant as the test suites get bigger. For example, almost
all correlations for the print tokens2 subject become insignificant for test suite
sizes between 40 and 60, and only for loop coverage a significant correlation remains.
We suspect a direct relation between a test requirement and a defect, in cases where
the coverage level during the whole interval stays significant, i.e. all tests that fulfill the
test requirement do also detect a defect.

The development of the correlations for test suite sizes from 1 to 500 test cases is
shown in Figure 9.4. The trend that we observed for the interval from 1 to 100 also
holds for the interval 1 to 500. The correlation for all metrics decreases as the test
suite size increases. However, there are two exceptions for the projects replace and
tcas: a correlation for mutation testing remains until a test suite size of 500, again
this effect might be caused by a direct relation between a test requirement and a defect.

For certain projects the correlation between mutation testing and detected defects
holds longer than for other coverage metrics.

9.4 Threats to Validity

For our experiments, we used the seven subjects from the Siemens suite. They contain
hand-seeded defects, which might be different from defects made in other programs.

128 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

As the subjects are relatively small, other effects might be observed for small test suites
on bigger programs. Thus, it is possible that the results do not generalize to other
programs with a bigger size and different types of defects.

Moreover, our construction method for the test suites might not reflect how devel-
opers proceed. We choose tests from a pool of existing tests, while developers choose
from the universe of all possible tests. This might introduce a bias regarding the type
of tests, e.g. the tests might have a different fraction of defect revealing tests.

Furthermore, our implementation and the programs we use might contain defects.
To control for this threat, we relied on public, well-established open-source tools wher-
ever possible, and made our own JAVALANCHE framework publicly available as open-
source package to facilitate replication and extension of our experiments.

9.5 Related Work

Frankl and Weiss [25] compared the effectiveness of branch and data flow testing
in terms of defect detection. In three experiments they compared all-uses coverage,
branch coverage (all-edges coverage), and random selection of test cases. In a first
experiment, they compared the defect detection rates of test suites that satisfy all-uses
coverage, or branch coverage and randomly selected test suites. To this end, they built
different test suites for nine small subjects, reaching from 22 to 78 lines of code, each
containing several defects. For these test suites it was checked whether they detect an
error in the program and whether they satisfy one of the coverage criteria. Then, the
ratio of test suites that detect at least one defect was compared for randomly selected
test suites and test suites that satisfy a criterion. The results showed that all-uses ad-
equate test sets were better than or equal to branch adequate test suites in all cases.
This difference was statistically significant in 5 out of 9 cases. Both criteria were better
than randomly selected test suites in all cases. For the all-uses adequate sets this was
statistically significant in 6 cases and for branch adequate test suites in 5 cases. This
experiment, however, did not consider the size of the test suites. Test suites satisfying
the all-uses criterion are typically larger than test suites satisfying branch coverage,
and for both criteria the test suites were larger than an average randomly selected test
suite. Therefore, in a second experiment the size of the test suites was fixed, so that
test suites of the same size were compared. The results showed that significantly more
all-uses coverage adequate test suites detect defects than randomly selected test suites
in 4 out of 9 cases. Branch adequate test suites, however, did not perform significantly

9.5. RELATED WORK 129

better than randomly selected test suites. In a last experiment, which is most similar
to our approach, the dependency between the coverage level and the defect detection
capability of a test suite was investigated. To this end, a regression model in terms of
size and coverage level was built for each subject. The coverage level was considered
to correlate with the defect detection capability if the coefficient of the term containing
highest power of the coverage level was positive and has a large magnitude. The inves-
tigation of the regression results showed that there is such a dependency for 4 out of 9
cases, for both all-uses coverage and branch coverage.

Frankl et al. [27] also compared the all-uses coverage criterion and mutation testing.
For this comparison the same setup as in the previously described study was used. In
their experiments the size of the test suite for each subject was fixed and the defect
detection rates for different coverage levels were compared. The results indicated that
mutation coverage is more effective than all-uses coverage for 7 out of 9 subjects, and
all-uses coverage is more effective for 2 subjects.

In a later paper, Frankl and Iakounenko [26] compared the effectiveness of branch
and data flow testing again, but on a different subject program. In this experiment
they used the space program, a medium sized C-program with 5,905 lines of code that
comes in 33 different versions, each containing one defect. Frankl and Iakounenko
restricted their experiments to eight versions, in which defects were harder to detect,
i.e. only a limited fraction of 5000 randomly selected test cases detect the defect. The
results showed that test sets reaching high all-uses coverage or high branch coverage
are more likely to detect a defect than a randomly chosen test suite of the same size, for
all of the eight investigated versions. However, the defect detection rates of test suites
reaching a high coverage were still relatively low for most of the subjects.

In comparison to our approach, Frankl et al. [25, 27, 26] did not consider the num-
ber of defects in their experiments, they just checked whether a test suite detects any
defects or none. Furthermore, they did not control for the size of the test suites in many
of their experiments.

Hutchins et al. [43] carried out an experiment similar to the first experiment of
Frankl and Weis. In their work, they also compared data flow and control flow based
coverage criteria in terms of their defect detection capability. As subject programs they
used 7 C-programs with hand seeded defects, which also form the basis for the pro-
grams used in our study. For each program they generated a test pool and built several
test suites of varying sizes. Then, they compared the defect detection capabilities for
the test suites that lie in specific coverage intervals, for branch coverage and definition
use coverage. The results showed that both coverage criteria performed better than

130 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

randomly selected test suites for high coverage levels, i.e. when the coverage level was
above 93%. Between the two criteria there was no significant difference. In contrast
to our approach, Hutchins et al. used a different approach to generate test suites. Their
approach is focused on the coverage level while we randomly generate test suites of a
specific size. For their experiments, they built test suites by incrementally adding new
test from the pool, but they only added tests that increase the coverage and pruned tests
that do not increase it. This process is repeated until a specific size of tests or maximum
coverage is reached.

Andrews et al. [4] investigated whether mutation testing can be used to predict the
effectiveness of a test suite in detecting real-world defects. Among other questions,
they thus investigate whether mutation scores are a good predictor of the defect de-
tection ratio. In an experiment, they used the space program, which was also used
by Frankl and Iakounenko. For a first experiment, they compared the average ratio of
detected defects with the average ratio of detected mutants of test suites generated to
fulfill several coverage criteria. The results indicate the difference between these ratios
is small. Therefore, it is concluded that the mutation score can be used as a predictor
for the defect detection capability of a program. This finding is then used as a basis
to investigate further questions regarding the cost-effectiveness of test suites generated
according to specific coverage criteria. Compared to our approach, Andrews et al. used
the similarity of defect and mutation detection ratios of test suites as a basis for further
experiments that involve other coverage metrics, while we compare different coverage
metrics directly to mutation testing.

9.6 Summary

In this chapter, we investigated whether the defect detection capability of a test suite
correlates with the coverage level with regard to a specific criterion. Our results showed
that a weak correlation exists at small test suite sizes for almost all metrics. In most
cases mutation testing performed best. At larger test suite sizes most of these correla-
tion become statistically insignificant, or there is no measurable correlation anymore.
This effect is due to the coverage level these test suites reach. Because our subject
programs are small, a high coverage for most metrics can be reached with few tests.
This coverage level then rarely increases when more tests are used. Thus, we expect
a slightly different effect for larger programs. There might also be the trend that the
correlations decrease with increasing test suite size but this effect might start later at
bigger test suite sizes, because more tests are needed to reach a high coverage level.

9.6. SUMMARY 131

For a few projects and few metrics, however, we observed correlations that lasted dur-
ing the whole observed interval. In these cases, we suspect a direct relation between
the defect and the test requirement, i.e. all tests that satisfy a requirement do also detect
a defect.

132 CHAPTER 9. COMPARISON OF TEST QUALITY METRICS

Chapter 10

Checked Coverage

The previous chapters were focused on mutation testing, a technique to assess and
improve the quality of the inputs and checks of a test suite. In this chapter, we propose
a new alternative coverage metric that also assesses the quality of a test suite’s checks.

Coverage criteria are the most widespread metrics to assess test quality. Test cov-
erage criteria measure the percentage of code features such as statements or branches
that are executed during a test. The rationale is that the higher the coverage, the higher
the chances of catching a code feature that causes a failure—a rationale that is easy
to explain, but it relies on an important assumption. This assumption is that we are
actually able to detect the failure. It does not suffice to cover the error, we also need a
means to detect it.

As it comes to detecting arbitrary errors, it does not make a difference whether an
error is detected by the test (e.g. a mismatch between actual and expected result), by the
program itself (e.g. a failing assertion), or by the runtime system (e.g. a dereferenced
null pointer). To validate computation results, though, we need checks in the test code
and in the program code—checks henceforth summarized as oracles. A high coverage
does not tell anything about oracle quality. It is perfectly possible to achieve a 100%
coverage and still not have any result checked by even a single oracle. The fact that
the runtime system did not discover any errors indicates robustness but does not tell
anything about functional properties.

As an example of such a mismatch between coverage and oracle quality, consider
the test for the PatternParser class from the JAXEN XPATH library, shown in

133

134 CHAPTER 10. CHECKED COVERAGE

Figure 10.1. This test invokes the parser for a number of paths and achieves a statement
coverage of 83% in the parser. However, none of the parsed results are actually checked
for any property. The parser may return complete nonsense, and this test would never
notice it.

public void testValidPaths() throws
JaxenException, SAXPathException {
for (int i = 0; i < paths.length; i++) {
String path = paths[i];
Pattern p = PatternParser.parse(path);

}
}

Figure 10.1: A test without outcome checks.

To assess oracle quality, a frequently proposed approach is mutation testing. Mu-
tation testing seeds artificial errors (mutations) into the code and assesses whether the
test suite finds them. A low score of detected mutants implies low coverage (i.e. the
mutant was not executed) or low oracle quality (i.e. its effects were not checked). Un-
fortunately, mutation testing is costly; even with recent advancements, there still is
manual work involved to weed out equivalent mutants.

In this work, we introduce an alternative, cost-efficient way to assess oracle quality.
Using dynamic slicing, we determine the checked coverage—statements which were
not only executed, but which actually contribute to the results checked by oracles. In
Figure 10.1, the checked coverage is 0% because none of the results ever flows into a
runtime check (again, in contrast to the 83% traditional coverage). However, adding
a simple assertion that the result is non-null already increases the checked coverage
to 65%; adding further assertions on the properties of the result further increases the
checked coverage.

Using checked coverage as a metric rather than regular coverage brings significant
advantages:

• Few or insufficient oracles immediately result in a low checked coverage, giving
a more realistic assessment of test quality.

• Statements that are executed, but whose outcomes are never checked would be
considered uncovered. As a consequence, one would improve the oracles to
actually check these outcomes.

10.1. CHECKED COVERAGE 135

 1. static int max(int a, int b) {
 2. int maxVal;
 3. countCalls++;
 4. if (a > b) {
 5. maxVal = a;
 6. } else {
 7. maxVal = b;
 8. }
 9. return maxVal;
10. }

11. public void testMax() {
12. assertEquals(5, max(5, 4));
13. }

 1. static int max(int a, int b) {
 2. int maxVal;
 3. countCalls++;
 4. if (a > b) {
 5. maxVal = a;
 6. } else {
 7. maxVal = b;
 8. }
 9. return maxVal;
10. }

Data Dependency

Control Dependency

Figure 10.2: Dynamic data and control dependencies as used for checked coverage.

• Rather than focusing on executing as much code as possible, developers would
focus on checking as many results as possible, catching more errors in the pro-
cess.

• To compute checked coverage, one only needs to run the test suite once with a
constant overhead—which is way more efficient than the potentially unlimited
number of executions induced by mutation testing.

10.1 Checked Coverage

Our concept of checked coverage is remarkably simple: Rather than computing cov-
erage,the extent to which code features are executed in a program, we focus on those
code features that actually contribute to the results checked by oracles. For this pur-
pose, we compute the dynamic backward slice of test oracles, i.e. all statements that
contribute to the checked result. This slice then constitutes the checked coverage.

More formally, a program slice can be defined as the set of statements that influence
the variables used in a given location, which is obtained by transitively following the
control and data dependencies (for more details on program slicing see Section 2.4.6).
The slices can be computed statically or dynamically. A static program slice consists
of all statements that potentially influence the variables at a given point, while the dy-
namic program slice only consists of the variables that actually influence the variables
during a concrete program run. We have chosen dynamic slices for our approach, be-
cause we use the slices to measure the quality of a concrete execution of the test suite.

136 CHAPTER 10. CHECKED COVERAGE

Furthermore, we consider all occurrences of a statement during a program run for a
dynamic slice. This is done by computing the union of the dynamic slices from every
occurrence of a statement.

Figure 10.2 shows a test that exercises the max method, similar to the slicing exam-
ples (Figure 2.1 and Figure 2.2) in Section 2.4.6. To compute the checked coverage for
this example, the dynamic backward slice from the call to assertEquals (statement
12) is built, and only the statements that are on this slice are considered to be covered.

10.1.1 From Slices to Checked Coverage

For the checked coverage, we are interested in the ratio of statements that contribute
to the computation of values which are checked later by the test suite. To this end, we
first identify all statements which check the computation inside the test suite. Then, we
trace one run of the test suite, and compute the dynamic slice for all these statements.
This gives us the set of statements that have a control or data dependency to at least one
of the check statements. The checked coverage is then the percentage of the statements
in the set relative to all coverable statements.

In order to define checked coverage in terms of a test requirement as introduced in
Section 2.3, we define the set of statements that can be on a slice. Some statements
of a program can never show up on a slice because there exists no data or control
dependency from and to them. Therefore, for checked coverage only the statements
that read or write variables or that can manipulate the control flow of the program are
considered.

Definition 37 (Sliceable Statements) For a program P, the set of sliceable statements
SL(P) consists of all statements that read or write a variable or manipulate the control
flow.

With the help of this set we can define the test requirements of checked coverage.

Definition 38 (Checked Coverage) Checked coverage requires each sliceable state-
ment s ∈ SL(P) to be on at least one backward slice from an explicit check of the test
suite.

10.1. CHECKED COVERAGE 137

Checked coverage subsumes statement coverage because in order to reach full
checked coverage every statement has to be on a dynamic slice, and thereby, it also
has to be executed at least once. Thus, every test suite that reaches full checked cover-
age also reaches full statement coverage.

Note that in general checked coverage does not subsume all definitions coverage.
There are two reasons for this. First, statements that manipulate the control flow can
also define variables. Thus, they can end up on a slice because of control dependencies
although their data dependencies are not exercised. Second, uses can also happen inside
the test suite. In this case a definition is on a slice although no use of it in the program
is exercised. If we account for theses two special cases, i.e. we do not allow definitions
in control flow manipulating statements and we consider uses inside the test suite,
checked coverage subsumes all definitions coverage. This is because a variable that
is defined in a statement is always used when it appears on a slice. As the only way
it can end up on a slice is via a data dependency which implies a use of the variable.
Therefore, every test suite that satisfies checked coverage also satisfies all definitions
coverage, under the premise that uses in the test suite are included and no definitions
are made in control flow manipulating statements.

However, the main goal of checked coverage is to ensure that computations are also
checked, and not just exercised. In order to find computations that are not checked, a
developer can compare the level of statement coverage for a unit to the level of checked
coverage. A high statement coverage level but a low checked coverage level for a
unit indicates that it is exercised by the test suite, but the results are not checked. A
developer can precisely tell which computations are not checked, by looking at the
statements which are considered as covered by statement coverage but not by checked
coverage.

Notice that checked coverage is focused on one type of checks: explicit checks of
the test suite. Implicit checks of the runtime system or explicit checks in the program
are not considered by checked coverage. The different checks, however, vary in the
type of properties they check and how detailed they check. While explicit checks of the
test suite verify the result for one concrete run and can make very detailed assumptions,
the other checks can only examine generic properties that hold during all possible runs.
Because the explicit checks of the program and the implicit checks are generic, they
lend to static verification approaches very well, e.g. for many objects it can be proved
that they never become null [24, 79]. In general explicit checks of the test suite cannot
be efficiently proved because they make more complex assumptions. We believe that it
is important for a test suite to have strong explicit checks, because the computed results
should be checked in detail.

138 CHAPTER 10. CHECKED COVERAGE

10.1.2 Implementation

For the implementation of our approach, we use Hammacher’s JAVASLICER [33] as a
dynamic slicer for JAVA. The slicer works in two phases: In the first phase, it traces
a program and produces a trace file, and in the second one, it computes the slice from
this trace file.

The tracer manipulates the JAVA bytecode of a program by inserting special tracing
statements. At runtime, these inserted statements log all definitions and references of
a variable, and the control flow jumps that are made. By using the JAVA agent mech-
anism, all classes that are loaded by the JAVA Virtual Machine (JVM) can be instru-
mented. There are a few exceptions, though, that are explained in Section 10.3. Since
JAVA is an object-oriented language, the same variable might be bound to different
objects. The tracer, however, needs to distinguish these objects. For that purpose, the
slicer assigns each object a unique identifier. The logged information is directly written
to a stream that compresses the trace data using the SEQUITUR [64, 63] algorithm
and stores it to disk.

To compute the slices, an adapted algorithm from Wang and Roychoudhury [100,
101] is used. The data dependencies are calculated by iterating backwards through the
trace. For the control dependencies, the control flow graph (CFG) for each method is
built, and a mapping between a conditional statement and all statements it controls is
stored. With this mapping, all the control dependent statements for a specific occur-
rence of a statement can be found.

Our implementation computes the checked coverage for JUNIT test suites, and
works in three steps:

1. First, all checks and all coverable statements are identified. We use the heuris-
tic that all calls to a JUNIT assert-method from the test suite are considered as
checks. As coverable lines, we consider all lines that are handled by the tracer.
Note that this excludes statements such as try, or simple return statements,
as they do not translate to data or control flow manipulating statements in the
byte code.

2. Second, all test classes are traced separately. This is a performance optimization,
since we observed that it is more efficient to compute slices for several smaller
files than computing it for one big trace file.

10.2. EVALUATION 139

3. Finally, a union of all the slicing criteria that correspond to check statements is
built, since the slicer supports to build a slice for a set of slicing criteria. By
merging the slices from the test classes, we obtain a set of all statements that
contribute to checked values. The checked coverage score is then computed by
dividing the number of statements in this set by the—previously computed—
number of coverable statements.

10.2 Evaluation

In the evaluation of our approach, we were interested whether checked coverage can
help in improving existing test suites of mature programs. To this end, we computed the
checked coverage for seven open-source programs that have undergone several years
of development and come with a JUNIT test suite. We manually analyzed the results,
and found examples where the test suites can be improved to more thoroughly check
the computation results (see Section 10.2.2). We also detected some limitations of our
approach, summarized in Section 10.3.

Furthermore, we were interested how sensitive our technique is to oracle decay—
that is, oracle quality which was artificially reduced by removing checks. In a second
automated experiment (Section 10.2.3), we removed a fraction of the assert-statements
from the original test suites and computed the checked coverage for these manipulated
test suites. This setting also allowed us to compare checked coverage against other
techniques that measure test quality, such as statement coverage and mutation testing.

10.2.1 Evaluation Subjects

As evaluation subjects, we used seven open-source projects that were presented in Sec-
tion 4.2 and in Table 4.2. Table 10.1 gives the results for computing the checked cov-
erage (column 2), statement coverage (column 3) and the mutation score (column 4)
for our subject projects. The statement coverage values are between 70% and 90% for
all projects except for ASPECTJ and BARBECUE. For ASPECTJ the results are lower
because we only used a part of the test suite in order to run our experiments in a fea-
sible amount of time. Although we only computed the coverage of the module that
corresponds to the test suite, test suites of other modules might also contribute to the
coverage of the investigated module. For BARBECUE, we had to remove tests that ad-
dress graphical output of barcodes, as we ran our experiments on a server that has no

140 CHAPTER 10. CHECKED COVERAGE

Table 10.1: Checked coverage, statement coverage, and mutation score.

Project Checked Statement Mutation
name coverage% coverage% score%

ASPECTJ 13 38 63
BARBECUE 19 32 66
COMMONS-LANG 62 88 86
JAXEN 55 78 68
JODA-TIME 47 71 83
JTOPAS 65 83 73
XSTREAM 40 77 87

Average 43 67 75

graphics system installed and this causes these tests to fail. Consequently, these parts
are not covered.

In all projects, checked coverage is lower than regular coverage, with an average
difference of 24%. With 37%, this difference is most pronounced for XSTREAM. This
is due to a library class that directly manipulates memory and is used by XSTREAM
in a central part. As this takes place outside of JAVA in native code, some dependen-
cies cannot be traced by the slicer, which leads to statements not being considered for
checked coverage, although they should.

The traditional definition of the mutation score is the number of detected mutations
divided by the total number of mutations. In our setting, we only consider the score
for covered mutations (last column). These values are also lowest for ASPECTJ and
BARBECUE because of the reasons mentioned earlier.

10.2.2 Qualitative Analysis

In our first experiment, we were interested whether checked coverage can be used to
improve the oracles of a test suite. We computed checked and statement coverage for
each class individually. Then, we manually investigated those classes with a difference
between checked and regular coverage, as this indicates code that is executed without
checking the computation results.

In the introduction, we have seen such an example for a test of PatternParser,
a helper class for parsing XSLT patterns, from the JAXEN project (Figure 10.1). The

10.2. EVALUATION 141

corresponding test class calls the parse() method with valid inputs (shown in Fig-
ure 10.1) and invalid inputs, and passes when no exception or an expected exception is
thrown. The computation results of the parse() method, however, are not checked.
Consequently, this leads to a checked coverage of 0%.

boolean checkCreateNumber(String val){
try {

Object obj =
NumberUtils.createNumber(val);

if (obj == null) {
return false;

}
return true;
} catch (NumberFormatException e) {

return false;
}

}

Figure 10.3: Another test with insufficient outcome checks.

Another example of missing checks are the tests for the NumberUtils class of
the COMMONS-LANG project. Some statements of the isAllZeros() method,
which is indirectly called by the createNumber() method, are not checked al-
though they are covered by the tests. The test cases exercise these statements via the
checkCreateNumber() method shown in Figure 10.3. This method then calls
createNumber() and returns false when null is returned or an exception is
thrown, or true otherwise. The result of createNumber(), however, is not ade-
quately checked. It is only checked whether the result is not null. Adding a test that
checks the result of createNumber() would include the missing statements for the
checked coverage.

public String next()
throws TokenizerException {

nextToken();
return current();

}

Figure 10.4: A method where the return value is not checked.

Figure 10.4 shows the next() method from the AbstractTokenizer class of
the JTOPAS project. Although this method is executed several times by the test suite,

142 CHAPTER 10. CHECKED COVERAGE
0

20
40

60
80

10
0

AspectJ

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Barbecue

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Commons-Lang

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Jaxen

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Joda-Time

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Jtopas

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

XStream

Statement
Coverage

Checked
Coverage

Mutation
Score

Asserts Disabled
0%
25%
50%
75%
100%

Figure 10.5: Coverage values for test suites with removed assertions.

its return value is never checked, and consequently, reported as missing from checked
coverage. This means that the method could return any value and the test suite would
not fail. In the same way as for the previous examples, adding an assertion which
checks the return value properly solves this problem.

These examples illustrate how developers could use checked coverage in order to
detect computations not checked by the test suite, and how to improve the test suite by
introducing additional checks. Furthermore, these examples demonstrate that mature
test suites, which have undergone several years of development, do not check all the
computations that are covered by their inputs.

Mature test suites miss checks.

10.2.3 Disabling Oracles

In our first experiment, we have seen cases were a test suite covers parts of the program,
but does not check the results well enough. As discussed earlier, this can be detected
by checked coverage. In our second experiment, we explored the questions:

• How sensitive is checked coverage to missing checks?

10.2. EVALUATION 143

• How does checked coverage compare to other metrics that measure the quality
of a test suite?

To this end, we took the original JUNIT test suites of the seven projects, and pro-
duced new versions with decayed oracles, i.e., we systematically reduced oracle quality
by removing a number of calls to assert methods. In JUNIT, assert methods constitute
the central means for checking computation results; therefore, removing calls to assert
methods means disabling checks and, therefore, reducing oracle quality.

To disable a call to an assert method in the source code, we completely removed
the line that contains the call. In some cases, we had to remove additional statements,
as the new test suites were not compilable anymore, or failed because they relied on the
side effects of the removed assert methods. After the test suite could be successfully
compiled and had no failing tests anymore, we computed the coverage metrics for each
of the test suite.

An alternative way of removing calls to assert methods is to disable the method
calls on bytecode level. The advantage of this approach would be that just the check
is removed, and no recompilation step would be necessary. However, we choose to
remove complete source code lines because we believe that this more closely simulates
the scenario that a developer misses to write a check.

The results are given in Figure 10.5. For each of our subject programs there is a
plot that shows the statement coverage value, checked coverage value, and mutation
score for a test suite with all assertions enabled (0% removed), and with 25, 50, 75,
and 100% of the assertions removed, respectively.

For almost all projects, all metric values decrease with a decreasing number of
assertions. An exception is ASPECTJ where the statement coverage values stay constant
for all test suites. This is due to the nature of the ASPECTJ test suite that does not have
any computations inside assertions. Furthermore, the checked coverage value and the
mutation score are higher for the test suite with 50% assertions removed than for the
suite with 25% removed. As we chose the disabled assertions randomly each time,
some assertions that check more parts of the computation were disabled in the 25%
test suite and not disabled in the 50% test suite. This also explains the higher values
for statement coverage in the 75% than the 50% test suite for BARBECUE, and the
difference for XSTREAM and checked coverage between 50 and 25%.

All test quality metrics decrease with oracle decay.

144 CHAPTER 10. CHECKED COVERAGE
0

20
40

60
80

10
0

AspectJ

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Barbecue

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Commons-Lang

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Jaxen

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Joda-Time

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

Jtopas

Statement
Coverage

Checked
Coverage

Mutation
Score

0
20

40
60

80
10
0

XStream

Statement
Coverage

Checked
Coverage

Mutation
Score

Asserts Disabled
0%
25%
50%
75%
100%

Figure 10.6: Decrease of the coverage values relative to the coverage values of the
original test suite.

In order to compare the decrease of the different metrics, we computed the decrease
of each metric relative to the value for the original test suite. Figure 10.6 shows the
results for the seven subject programs.

For statement coverage, the decrease values are the lowest for all projects. This
comes by no surprise, as it is not designed to measure the quality of checks in a test
suite. Thus, it is the least sensitive metric to missing assert-statements.

Checked coverage and mutation score show a similar development for BARBECUE,
COMMONS-LANG, JODA-TIME and JTOPAS for 0 to 75% of removed checks. For the
other projects, there is a greater decrease for the checked coverage than for the mutation
score. On average, when 75% of the tests are removed, checked coverage decreases
by 23%, whereas the mutation testing score only decreases by 14%.

Checked coverage is more sensitive to missing assertions than statement coverage
and mutation testing.

Note that when all checks are removed, checked coverage drops to 0% for all
projects. This is caused by the construction of the approach, as there are no state-
ments left to slice from once all checks are removed from the test suite. Since we are
interested in poor rather than nonexistent oracles, the results obtained for the decays of
25 to 75% are much more meaningful.

10.2. EVALUATION 145

10.2.4 Explicit and Implicit Checks

As mutation testing is also a measure of a test suite’s check quality, we might also
expect that the mutation score dramatically drops when no checks are left. However,
in the previous experiment, we have seen that test suites with no assertions still detect
a significant fraction of the mutants (43% on average). The reason for this is that a
mutant can be detected by an explicit check of the test suite, an explicit check of the
program, or by an implicit check of the runtime system. For modern object-oriented
and restrictive programming languages like JAVA, many mutants are detected through
these implicit runtime checks.

JAVALANCHE, the mutation testing tool used in this study, uses the distinction made
by JUNIT to classify a mutation as either detected by an explicit check of the test suite
or other checks. JUNIT classifies a test that does not pass either as a failure, or as an
error. A test that does not pass is classified as a failure when an AssertionError
was thrown. This error is thrown by JUNIT assert methods when a comparison failed,
and by the JAVA assert keyword when its condition evaluates to false. Hence, failures
can be caused by explicit checks of the test suite or program. Our subject programs,
however, do not use the assert keyword. Thus, all failures are caused by explicit
checks of the test suite. A test that does not pass is classified as an error, when any
Throwable other than AssertionError is thrown. These exceptions can either
be thrown explicitly inside the program or implicitly by the runtime system. Hence,
errors can be caused by explicit checks of the program or implicit checks of the runtime
system.

In order to see how the fraction of mutants detected by explicit checks (i.e. classi-
fied as failure) of the test suite changes with decreasing oracle quality, we computed
this fraction for the original test suite and the test suite with all checks removed.

Table 10.2 gives the results for each project. The first two values are for the original
test suite. First, the total number of detected mutants (column 2) is given and then the
percentage of those that are detected by explicit checks of the test suite (column 3).
The remaining mutants are detected by other checks. The two last columns give the
corresponding values for the test suite with all assert-statements removed.

For the original test suite, 35 to 68% of the mutants are detected by explicit checks
of the test suite, and consequently, 32 to 65% of the mutants are detected by other
checks. The main fraction of the mutants detected by other checks are detected through
implicit checks of the runtime system, namely NullPointerExceptions caused
by mutants.

146 CHAPTER 10. CHECKED COVERAGE

Table 10.2: Mutations detected by explicit checks of the test suite.

Original test suite All checks removed

Detected by Detected by
Project Mutants explicit test suite Mutants explicit test suite
name detected checks detected checks

ASPECTJ 5736 63% 5529 53%
BARBECUE 1036 59% 357 6%
COMMONS-LANG 13415 68% 3377 16%
JAXEN 4154 38% 3298 12%
JODA-TIME 12164 56% 6094 15%
JTOPAS 1295 57% 597 0%
XSTREAM 7764 35% 5156 5%

Total 45564 55% 24408 21%

Almost half (45%) of the mutants are not detected by explicit checks of the test suite.

The test suites with all checks removed still detect 54% of the mutants that are de-
tected by the original test suite; on average, 21% of the detected mutants are found by
explicit checks of the test suites. For test suite with all checks removed, one might ex-
pect 0% of the mutants to be detected by explicit checks. However, assertions in exter-
nal libraries—that are not removed— cause this 21%. Examples include the fail()
method of JUNIT or the verify() method of a mocking framework.

One could argue that it does not matter how a mutation is being found—after all,
the important thing is that it is found at all. Keep in mind, though, that implicit checks
are not under control by the programmer. A mutation score coming from implicit
checks thus reflects the quality of the runtime checks rather than the quality of the test
suite checks. Also, the runtime system will only catch the most glaring faults (say,
null pointer dereferences or out of bound accesses), but will not check any significant
functional property. Therefore, having mutations fail on implicit checks only is an
indicator for poor oracle quality—just as a low checked coverage.

A test suite with no assertions still detects over 50% of the mutants detected by the
original test suite;

around 80% of these are detected by explicit checks of the program and implicit
checks.

10.3. LIMITATIONS 147

10.2.5 Performance

Table 10.3 shows the runtime for checked coverage and mutation testing. The checked
coverage is computed in two steps. First, a run of the test suite is traced (Column 2),
then, using the slicer, the checked coverage (Column 3) is computed from the pre-
viously produced trace file. Column 4 gives the total time needed to compute the
checked coverage. For almost all projects, the slicing step takes much longer than trac-
ing the test suite. XSTREAM, however, is an exception. Here the slicing takes less
time because some of the central dependencies are not handled by the tracer (see Sec-
tion 10.3). The last column gives the time needed for mutation testing the programs

Table 10.3: Runtime to compute the checked coverage and the mutation score.

Project Checked coverage Mutation
name Trace Slice Total testing

ASPECTJ 0:08:51 0:35:26 0:43:17 20:18:38
BARBECUE 0:06:10 0:15:30 0:21:40 0:06:07
COMMONS-LANG 0:32:07 3:40:37 1:12:44 1:29:06
JAXEN 0:24:21 0:37:18 1:01:39 1:29:00
JODA-TIME 0:23:53 1:38:10 2:02:03 0:45:43
JTOPAS 0:04:04 0:05:32 0:09:36 0:41:25
XSTREAM 0:40:13 0:16:35 0:56:48 1:49:13

with JAVALANCHE. When we compare the total time needed to compute the checked
coverage with the time needed for mutation testing, checked coverage is faster for four
of our projects and mutation testing is faster for three of the projects. Keep in mind,
though, that JAVALANCHE reaches its speed only through a dramatic reduction in mu-
tation operators; full-fledged mutation testing requires a practically unlimited number
of test runs.

In terms of performance, checked coverage is on par with the fastest mutation
testing tools.

10.3 Limitations

In some cases, statements that contribute to the computation of results later checked by
oracles are not considered for the checked coverage due to limitations of JAVASLICER

148 CHAPTER 10. CHECKED COVERAGE

or limitations of our approach.

Native code imposes one limitation to the tracer. In JAVA it is possible to call as-
sembly code, written in other languages, via the JAVA Native Interface (JNI). This code
cannot be accessed by the tracer as it only sees the bytecode of the classes loaded by
the JVM. Regular programs rarely use this feature. In the JAVA standard library, how-
ever, there are many methods that use the JNI. Examples include the arraycopy()
method of the java.lang.System class, or parts of the Reflection API. In these
cases, the dependencies between the inputs and the outputs of the methods are lost.
This limitation also caused the huge differences between normal coverage and checked
coverage for the XSTREAM project. It uses the class sun.misc.Unsafe which al-
lows direct manipulation of the memory in a core part. Therefore, many dependencies
get lost and the checked coverage is lower than expected.

Another limitation imposed by the tracer is that the String class is currently not
handled. This class is used heavily in core classes of both the JVM and the tracer which
makes it difficult to instrument without running into circular dependencies. Handling
this class would allow the slicer to detect dependencies that are currently missed.

try {
methodThatShouldThrowException();
fail("No exception thrown");

} catch(ExpectedException e) {
// expected this exception

}

Figure 10.7: A common JUNIT pattern to check for exceptions.

A frequently used practice to check for exceptions is to call a method under such
circumstances that it should throw an exception, and fail when no exception is thrown
(Figure 10.7). When the exception is thrown, everything is fine, and nothing else is
checked. In our setting, the statements which contribute to the exception are not on a
slice. Thus, they do not contribute to the checked coverage. A remedy would be to
introduce an assertion that checks for the exception.

Another limitation of our approach are computations that lead to a branch not being
taken. The code shown in Figure 10.8, contains a boolean flag inSaneState. Later,
an exception is thrown when this flag has the value false. Thus, only computations
that lead to the variable being set to false can be on a dynamic slice, and computa-
tions that lead to the variable being set to true will never be on a dynamic slice. Such
problems are inherent to dynamic slicing, and would best be addressed by computing
static dependencies to branches not taken.

10.4. THREATS TO VALIDITY 149

private boolean inSaneState = true;
...
if(!inSaneState)

exceptionThrowingMethod();
...

Figure 10.8: Statements that lead to not taking a branch.

10.4 Threats to Validity

As with any empirical study, several limitations must be considered when interpreting
its results.

External validity Can we generalize from the results of our study? We have investi-
gated seven different open-source projects, covering different standards in matu-
rity, size, domain, and test quality. But even with this variety, it is possible that
our results do not generalize to other arbitrary projects.

Construct validity Are our measures appropriate for capturing the dependent vari-
ables? The biggest threat here is that our implementation could contain errors
that might affect the outcome. To control for this threat, we relied on public,
well-established open-source tools wherever possible; our own JAVALANCHE
and JAVASLICER frameworks are publicly available as open-source packages to
facilitate replication and extension of our experiments.

Internal validity Can we draw conclusions about the connections between indepen-
dent and dependent variables? The biggest threat here is that we only use sen-
sitivity to oracle decay as dependent variable—rather than a more absolute “test
quality” or “oracle quality”. Unfortunately, there is no objective assessment of
test quality to compare against. The closest would be mutation testing [3], but as
our results show, even programs without oracles can still achieve a high mutation
score by relying on uncontrolled implicit checks. As it comes to internal validity,
we are thus confident that sensitivity to oracle decay is the proper measure; a low
checked coverage, therefore, correctly indicates a low oracle quality.

150 CHAPTER 10. CHECKED COVERAGE

10.5 Related Work

10.5.1 Coverage Metrics

During structural testing, a program is tested using knowledge of its internal struc-
tures. Hereby, one is interested in the quality of the developed tests, and how to im-
prove them in order to detect possible errors. To this end, different coverage metrics
(see Section 2.3) have been proposed and compared against each other regarding their
effectiveness in detecting specific types of errors, relative costs, and difficulty of sat-
isfying them [42, 65, 104, 27]. Each coverage metric requires different items to be
covered. This allows to compute a coverage score by dividing the number of coverable
items by the number of items actually covered.

Best known, and most easy to compute is statement coverage. It simply requires
each line to be executed at least once. Because some defects can only occur under
specific conditions, more complex metrics have been proposed. The popular branch
coverage requires each condition to evaluate to both true and false at least once;
decision coverage extends this condition to boolean subexpressions in control struc-
tures. A more theoretical metric is path coverage, measuring how many of the (nor-
mally infinitely many) possible paths have been followed. Similar to our approach data
flow testing criteria [83] also relate definitions and uses of variables. These techniques
consider the relation between all defined variables inside the program and their uses.
For example, the all-uses criterion requires that for each definition use pair a path is
exercised that covers this pair. In contrast, our approach is only targeted at uses inside
the oracles. Other definition use pairs are followed transitively from there.

Each of these proposed metrics just measures how well specific structures are ex-
ercised by the provided test input, and not how well the outputs of the program are
checked. Thus, they do not assess oracle quality of a test suite.

10.5.2 Mutation Testing

A technique that aims at checking the quality of the oracles is mutation testing (see
Chapter 3). Originally proposed by Richard Lipton [73, 18], mutation testing seeds
artificial defects, as defined by mutation operators, into a program and checks whether
the test suite can distinguish the mutated from the original version. A mutation is
supposed to be detected (“killed”) if at least one test case fails on the mutated version

10.5. RELATED WORK 151

that passed on the original program. If a mutation is not detected by the test suite,
similar defects might be in the program that have not been detected as well. Thus,
these undetected mutants can give an indication on how to improve the test inputs and
checks. However, not every undetected mutant helps in improving the test suite as
it might also be an equivalent mutant; that is a mutation that changes the syntax but
not the semantics of a program. In our experiments, we have also seen that mutation
testing measures the quality of all types of checks, explicit checks of the test suite and
program, and implicit checks of the runtime system, while checked coverage is focused
on explicit checks of the test suite.

10.5.3 Program Slicing

Static program slicing was originally proposed by Weiser [102, 103] as a technique that
helps the programmer during debugging. Korel and Laski [47] introduced dynamic
slicing that computes slices for a concrete program run. Furthermore, different slicing
variants have been proposed for program comprehension; Conditioned Slicing [54] is a
mix between dynamic and static slicing, it allows some variables to have a fixed value
while others can take all possible values. Amorphous Slicing [37] requires a slice only
to preserve the semantics of the behavior of interest, while syntax can be arbitrarily
changed, which allows to produce smaller slices.

Besides its intended use in debugging, program slicing has been applied to many
different areas [97, 38]. Examples include minimization of generated test cases [50],
automatic parallelization [34, 97], and the detection of equivalent mutants [39].

10.5.4 State Coverage

The concept closest to checked coverage is state coverage proposed by Koster and
Kao [49]. It also measures the quality of checks in a test suite. To this end, all output
defining statements (ODS) are considered. Output defining statements are statements
that define a variable that can be checked by the test suite for a concrete run. The
state coverage is defined as the number of ODS that are on a dynamic slice from a
check divided by the total number of ODS. This differs from our approach, as we also
consider statements that influence the computation of variables that are checked.

Furthermore, the number of ODS is dependent on the test input. For different
inputs, different statements are considered as output defining. This can lead to cases

152 CHAPTER 10. CHECKED COVERAGE

where a test suite is improved by adding additional tests (with new inputs), but the state
coverage drops. Checked coverage stays constant or improves in such cases.

Unfortunately, there is no broader evaluation of state coverage that we can compare
against. In a first short paper [49], a proof of concept based on a static slicer, and one
small experiment is presented. A second short paper [48] describes an implementation
based on taint analysis [13], but no experimental evaluation is provided.

10.6 Summary

In this chapter, we presented checked coverage. Checked coverage is a coverage metric
that aims to measure how well the results of the program are checked by the test suite.
This is in contrast to traditional metrics that only measure how well the test inputs
exercise the program. Technically, checked coverage requires every statement to be on
a dynamic backward slice from one of the explicit checks of the test suite.

We presented an implementation of checked coverage for JAVA that is based on the
JAVASLICER by Hammacher. In a study on seven open-source programs, we have seen
that even mature test suites miss checks, and that we can use checked coverage to detect
them. A difference in the coverage level between the checked coverage and statement
coverage indicates computations that are not well checked. In an experiment, we inves-
tigated the sensitivity of different metrics with regard to missing explicit checks. We
compared checked coverage, mutation testing, and statement coverage. To this end, we
removed a fraction of explicit checks from existing test suites and observed the change
in the coverage levels of the different metrics. In comparison to the other metrics,
checked coverage is most sensitive to missing assertions. Although the coverage level
for the other metrics does also decrease when explicit checks are removed this effect
is most pronounced for checked coverage. Because mutation testing was designed to
measure the quality of checks, we then investigated why mutation testing did not react
as strongly to missing checks as checked coverage. The reason for this is that mutations
can be detected by three types of checks. They can be detected by implicit checks of
the runtime system, explicit checks in the program, and explicit checks in the test suite.
In an experiment, we compared the detection rates of the different type of checks for
the original test suites and test suites with all explicit checks removed. For the origi-
nal test suite the results indicated that 45% of the mutations were detected by implicit
checks or explicit checks of the program. When we removed all checks, still 54% of
the previously detected mutations were detected and 79% of them by implicit checks

10.6. SUMMARY 153

the runtime system or explicit checks of the program. The remaining 21% were due to
external test libraries from which we did not remove explicit checks.

154 CHAPTER 10. CHECKED COVERAGE

Chapter 11

Conclusions and Future Work

The quality of checks plays an important role in a unit test’s ability to detect defects.
This is because a defect manifests itself during a program run through an infected state
which propagates and results in a failure. Good checks help to distinguish normal
expected behavior from unexpected failures, and thereby, to detect defects.

Coverage metrics, which are the state of the art for assessing the quality of unit
tests, only focus on the quality of test inputs. An alternative technique that measures
the quality of test inputs and checks is mutation testing. However, it also has two
drawbacks. It is computationally expensive and equivalent mutants dilute the quality
of its results.

This work makes the following contributions to improve mutation testing, and pre-
sented a novel alternative metric to assess the quality of a test suite’s checks:

• We introduced JAVALANCHE, a mutation testing framework for JAVA, that was
developed with a focus on automation and efficiency. To enable efficient mu-
tation testing, JAVALANCHE applies several optimization techniques, and in our
experiments we have shown that it scales to real-life programs. JAVALANCHE
is published as open-source, and has been the basis for further experiments
presented in this work. Moreover, it has been successfully used by other re-
searchers. For example, it has been extended for mutation testing of multi-
threaded code [29], used by an approach to automatically generate test ora-
cles [28], used to assess the quality of test suites generated by students [1], and
to compare different test generation strategies [92].

155

156 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

• We studied the extend of equivalent mutants on real-life programs, and the re-
sults show that equivalent mutants are a serious problem that effectively inhibits
widespread usage of mutation testing. In a sample taken from seven JAVA pro-
grams about 45% of the undetected mutants are equivalent, and classifying a
mutant took on average about 15 minutes.

• We introduced impact measures as a method to separate equivalent from non-
equivalent mutants. The impact of a mutation is the difference between a run
of the test suite on the original program, and a run on the mutated program. In
this work, we presented impact metrics based on dynamic invariants, covered
statements, and return values. Invariant impact measures how many invariants,
obtained from the original program are violated by a mutated version. Coverage
and data impact measure the differences in the execution frequency of statements
and in return values of public methods between a run of the original program and
a mutant. The results indicate that all impact metrics are well suited to detect
non-equivalent mutants, i.e. when a mutation has an impact it is very likely that
it is non-equivalent. However, in contrast to invariant impact, coverage and data
impact are effective means to separate equivalent from non-equivalent mutants,
i.e. when a mutation has no impact it is more likely that it is equivalent.

• We presented checked coverage, an alternative method to mutation testing, to
assess the quality of the test suite’s checks. It measures which parts of the cov-
ered computation are actually checked by oracles. Technically, it requires each
statement to be on at least one dynamic backward slice from an explicit check of
the test suite. Our experiments show that checked coverage and mutation testing
are sensitive to oracle quality, and that checked coverage is more sensitive to
missing explicit checks in the test suite.

To sum up, this works advances the state of the art by introducing the first approach
to detect non-equivalent mutants on larger programs, and by introducing a novel cov-
erage metric that assesses the quality of the checks. These approaches can be further
extended and the following topics can be investigated:

Extensions to JAVALANCHE Currently, JAVALANCHE supports a limited set of mu-
tation operators. For some scenarios, however, more mutation operators are
needed. JAVALANCHE can be extended to support more mutation operators, and
to apply mutations in source code. Some mutation operators can only be applied
to source code. This is because there is not enough information available at the
bytecode level to carry out these mutations. Examples include object-oriented

157

mutations which correspond to one single change on the source code level and
several changes on the bytecode level. Although it is more costly to manipulate
source code because a recompiling step is needed, the advantage is that more
mutation operators can be supported.

Alternative impact measures While we consider violations of dynamic invariants,
and changes in coverage and return values to be particularly useful predictors
of failures, there are many ways to determine the impact of a change. One can
measure impact in anything that characterizes a run; including different coverage
criteria, sequences of executed methods [15], program spectra [84] or numerical
ranges of data and increments [36]. Furthermore, several different impact met-
rics might be combined as they measure different aspects of a program run that
can be impacted by a mutation.

Include static analysis In this work, we presented dynamic analyses approaches to
separate non-equivalent from equivalent mutants. We choose dynamic analyses
because our main goal was to have a scalable technique that works on real-life
programs. However, static analysis techniques can also detect equivalent mutants
for these programs. If it can be statically proved that a mutated statement cannot
be reached, that a mutation cannot change the program state, or that an infection
cannot propagate the mutation is equivalent. Our techniques would benefit from
applying those analyses beforehand, because these mutations do not have to be
considered for further investigation.

Extend checked coverage Checked coverage requires the tests to check each compu-
tation. The concept, that computations exercising a structure have to be checked,
can be carried over to other coverage metrics. For example, branch coverage
can be combined with the concept of checked coverage by requiring that the
statement controlling the execution of a branch is on a dynamic slice when the
branch is taken and when it is not taken. These metrics would impose more
complex requirements on the inputs while ensuring that the computed results
are checked. Another aspect which can be extended are the type of checks con-
sidered by checked coverage. Currently, only explicit checks of the test suite
are considered. Checked coverage can be extended to also account for explicit
checks of the program. This can be done by including the backward slice from
assert statements in the code and from conditions that control branches leading
to explicitly thrown exceptions.

158 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] AALTONEN, K., IHANTOLA, P., AND SEPPÄLÄ, O. Mutation analysis vs. code
coverage in automated assessment of students’ testing skills. In SPLASH/OOP-
SLA ’10: Companion to the 25th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (2010), pp. 153–160.

[2] AMMANN, P., AND OFFUTT, J. Introduction to Software Testing, 2 ed. Cam-
bridge University Press, 2008.

[3] ANDREWS, J. H., BRIAND, L. C., AND LABICHE, Y. Is mutation an ap-
propriate tool for testing experiments? In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering (2005), pp. 402–411.

[4] ANDREWS, J. H., BRIAND, L. C., LABICHE, Y., AND NAMIN, A. S. Using
mutation analysis for assessing and comparing testing coverage criteria. Trans-
actions of Software Engineering 32, 8 (2006), 608–624.

[5] BALL, T., AND LARUS, J. R. Efficient path profiling. In MICRO ’96: Proceed-
ings of the 29th International Symposium on Microarchitecture (1996), pp. 46–
57.

[6] BARBOSA, E. F., MALDONADO, J. C., AND VINCENZI, A. M. R. Toward the
determination of sufficient mutant operators for C. Software Testing, Verification
Reliability (STVR) 11, 2 (2001), 113–136.

[7] BEVAN, J., WHITEHEAD, JR., E. J., KIM, S., AND GODFREY, M. Facilitating
software evolution research with kenyon. In ASE’ 05: Proceedings of the 10th
European Software Engineering Conference held jointly with 13th International
Symposium on the Foundations of Software Engineering (2005), pp. 177–186.

159

160 BIBLIOGRAPHY

[8] BOYAPATI, C., KHURSHID, S., AND MARINOV, D. Korat: Automated testing
based on Java predicates. In ISSTA ’02: Proceedings of the 13th International
Symposium on Software Testing and Analysis (2002), pp. 123–133.

[9] BRUNETON, E., LENGLET, R., AND COUPAYE, T. ASM: A code manipulation
tool to implement adaptable systems. In Proceedings of the Workshop on Adapt-
able and Extensible Component Systems (Systèmes à composants adaptables et
extensibles) (2002).

[10] BUDD, T. A., AND ANGLUIN, D. Two notions of correctness and their relation
to testing. Acta Informatica 18, 1 (1982), 31–45.

[11] BUDD, T. A., AND GOPAL, A. S. Program testing by specification mutation.
Computer Languages 10, 1 (1985), 63–73.

[12] BUDD, T. A., LIPTON, R. J., DEMILLO, R., AND SAYWARD, F. The de-
sign of a prototype mutation system for program testing. In Proceedings of the
1978 International Workshop on Managing Requirements Knowledge (1978),
pp. 623–627.

[13] CLAUSE, J. A., LI, W., AND ORSO, A. Dytan: A generic dynamic taint analy-
sis framework. In ISSTA ’07: Proceedings of the 16th International Symposium
on Software Testing and Analysis (2007), pp. 196–206.

[14] DALLMEIER, V., LINDIG, C., WASYLKOWSKI, A., AND ZELLER, A. Mining
object behavior with adabu. In WODA 2006: Proceedings of the 2006 interna-
tional workshop on Dynamic systems analysis (2006), pp. 17–24.

[15] DALLMEIER, V., LINDIG, C., AND ZELLER, A. Lightweight defect localiza-
tion for Java. In ECOOP ’05: Proceedings of 19th European Conference on
Object-Oriented Programming (2005), pp. 528–550.

[16] DELAMARO, M. E., AND MALDONADO, J. C. Proteum-a tool for the assess-
ment of test adequacy for c programs. In PCS ’96: Proceedings of the Confer-
ence on Performability in Computing Systems (1996), pp. 79–95.

[17] DELAMARO, M. E., MALDONADO, J. C., AND MATHUR, A. P. Integration
testing using interface mutations. In ISSRE ’96: Proceedings of the 7th Interna-
tional Symposium on Software Reliability Engineering (1996), pp. 112–121.

[18] DEMILLO, R. A., LIPTON, R. J., AND SAYWARD, F. G. Hints on test data
selection: Help for the practicing programmer. Computer 11, 4 (1978), 34–41.

BIBLIOGRAPHY 161

[19] DO, H., ELBAUM, S., AND ROTHERMEL, G. Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering 10, 4 (2005), 405–435.

[20] DOWSON, M. The ariane 5 software failure. Software Engineering Notes 22, 2
(1997), 84.

[21] ELBAUM, S., GABLE, D., AND ROTHERMEL, G. The impact of software evo-
lution on code coverage information. In ICSM ’01: Proceedings of the 17th
International Conference on Software Maintenance (2001), pp. 170–179.

[22] ELLIMS, M., INCE, D., AND PETRE, M. The csaw c mutation tool: Initial
results. In Mutation ’07: Proceedings of the 3rd International Workshop on
Mutation Analysis (2007), pp. 185–192.

[23] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND NOTKIN, D. Dy-
namically discovering likely program invariants to support program evolution.
Transactions on Software Engineering 27, 2 (2001), 99–123.

[24] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE,
J. B., AND STATA, R. Extended static checking for Java. In PLDI ’02: Pro-
ceedings of the 23rd Conference on Programming Language Design and Imple-
mentation (2002), 201-212, Ed.

[25] FRANKL, P., AND WEISS, S. An experimental comparison of the effectiveness
of branch testing and data flow testing. Transactions on Software Engineering
19, 8 (1993), 774–787.

[26] FRANKL, P. G., AND IAKOUNENKO, O. Further empirical studies of test ef-
fectiveness. In FSE ’98: Proceedings of the 6th International Symposium on the
Foundations of Software Engineering (1998), pp. 153–162.

[27] FRANKL, P. G., WEISS, S. N., AND HU, C. All-uses versus mutation testing:
An experimental comparison of effectiveness. Journal of Systems and Software
38 (1997), 235–253.

[28] FRASER, G., AND ZELLER, A. Mutation-driven generation of unit tests and
oracles. In ISSTA ’10: Proceedings of the 19th International Symposium on
Software Testing and Analysis (2010), pp. 147–158.

[29] GLIGORIC, M., JAGANNATH, V., AND MARINOV, D. Mutmut: Efficient ex-
ploration for mutation testing of multithreaded code. In ICST ’10: Proceedings

162 BIBLIOGRAPHY

of the 3rd International Conference on Software Testing, Verification and Vali-
dation (2010), pp. 55–64.

[30] GODEFROID, P., KLARLUND, N., AND SEN, K. Dart: directed automated ran-
dom testing. In PLDI ’05: Proceedings of the 26th Conference on Programming
Language Design and Implementation (2005), pp. 213–223.

[31] GORADIA, T. Dynamic impact analysis: A cost-effective technique to enforce
error-propagation. In ISSTA ’93: Proceedings of the 8th International Sympo-
sium on Software Testing and Analysis (1993), pp. 171–181.

[32] GRÜN, B. J. M., SCHULER, D., AND ZELLER, A. The impact of equivalent
mutants. In Mutation ’09: Proceedings of the 4th International Workshop on
Mutation Analysis (2009), pp. 192–199.

[33] HAMMACHER, C. Design and Implementation of an Efficient Dynamic Slicer
for Java. Bachelor’s thesis, Saarland University, November 2008.

[34] HAMMACHER, C., STREIT, K., HACK, S., AND ZELLER, A. Profiling Java
programs for parallelism. In IWMSE’09: Proceedings of the 2nd International
Workshop on Multi-Core Software Engineering (2009), pp. 49–55.

[35] HAMPTON, M., AND STEPHANE, P. Leveraging a commercial mutation anal-
ysis tool for research. In Mutation ’07: Proceedings of the 3rd International
Workshop on Mutation Analysis (2007), pp. 203–209.

[36] HANGAL, S., AND LAM, M. S. Tracking down software bugs using automatic
anomaly detection. In ICSE ’02: Proceedings of the 24th International Confer-
ence on Software Engineering (2002), pp. 291–302.

[37] HARMAN, M., BINKLEY, D., AND DANICIC, S. Amorphous program slicing.
Journal of Systems and Software 68, 1 (2003), 45–64.

[38] HARMAN, M., AND HIERONS, R. M. An overview of program slicing. Soft-
ware Focus 2, 3 (2001), 85–92.

[39] HIERONS, R., AND HARMAN, M. Using program slicing to assist in the de-
tection of equivalent mutants. Software Testing, Verification and Reliability 9, 4
(1999), 233–262.

[40] HOWDEN, W. E. Weak mutation testing and completeness of test sets. Trans-
actions on Software Engineering 8, 4 (1982), 371–379.

BIBLIOGRAPHY 163

[41] HU, J., LI, N., AND OFFUTT, J. An analysis of oo mutation operators. In Mu-
tation ’11: Proceedings of the 6th International Workshop on Mutation Analysis
(to appear) (2011).

[42] HUANG, J. C. An approach to program testing. Computing Surveys 7, 3 (1975),
113–128.

[43] HUTCHINS, M., FOSTER, H., GORADIA, T., AND OSTRAND, T. J. Exper-
iments of the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In ICSE ’94: Proceedings of the 16th International Conference on Soft-
ware Engineering (1994), pp. 191–200.

[44] JIA, Y., AND HARMAN, M. An analysis and survey of the development of
mutation testing. Transactions on Software Engineering (to appear).

[45] JONES, J. A., AND HARROLD, M. J. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE ’05: Proceedings of the 20th
international Conference on Automated Software Engineering (2005), pp. 273–
282.

[46] KIM, S., ZIMMERMANN, T., JR., E. J. W., AND ZELLER, A. Predicting faults
from cached history. In ICSE ’07: Proceedings of the 29th International Con-
ference on Software Engineering (2007), pp. 489–498.

[47] KOREL, B., AND LASKI, J. Dynamic program slicing. Information Processing
Letters 29, 3 (1988), 155–163.

[48] KOSTER, K. A state coverage tool for JUnit. In ICSE ’08: Proceedings of the
30th International Conference on Software Engineering (2008), pp. 965–966.

[49] KOSTER, K., AND KAO, D. State coverage: A structural test adequacy criterion
for behavior checking. In ESEC/FSE ’07: Proceedings of the 11th European
Software Engineering Conference held jointly with 15th International Sympo-
sium on the Foundations of Software Engineering (2007), pp. 541–544.

[50] LEITNER, A., ORIOL, M., ZELLER, A., CIUPA, I., AND MEYER, B. Efficient
unit test case minimization. In ASE ’07: Proceedings of the 22nd international
conference on Automated Software Engineering (2007), pp. 417–420.

[51] LEVESON, N. An investigation of the therac-25 accidents. Computer 26, 7
(1993), 18–41.

164 BIBLIOGRAPHY

[52] LI, Z., TAN, L., WANG, X., LU, S., ZHOU, Y., AND ZHAI, C. Have things
changed now? An empirical study of bug characteristics in modern open source
software. In ASID ’06 Proceedings of the 1st workshop on Architectural and
system support for improving software dependability (2006), pp. 25–33.

[53] LIVSHITS, B., AND ZIMMERMANN, T. Dynamine: finding common error pat-
terns by mining software revision histories. In ESEC/FSE ’05: Proceedings
of the 10th European Software Engineering Conference held jointly with 13th
International Symposium on the Foundations of Software Engineering (2005),
pp. 296–305.

[54] LUCIA, A. D., FASOLINO, A. R., AND MUNRO, M. Understanding function
behaviors through program slicing. In WPC ’96: Proceedings of the 4th Inter-
national Workshop on Program Comprehension (1996), pp. 9–18.

[55] MA, Y.-S., OFFUTT, J., AND KWON, Y.-R. MuJava: a mutation system for
Java. In ICSE ’06: Proceedings of the 28th International Conference on Soft-
ware Engineering (2006), pp. 827–830.

[56] MASRI, W., ABOU-ASSI, R., EL-GHALI, M., AND AL-FATAIRI, N. An em-
pirical study of the factors that reduce the effectiveness of coverage-based fault
localization. In DEFECTS ’09: Proceedings of the 2nd International Workshop
on Defects in Large Software Systems (2009), pp. 1–5.

[57] MATHUR, A. P. Performance, effectiveness, and reliability issues in software
testing. In COMPSAC ’91: Proceedings of the 15th International Computer
Software and Applications Conference (1991), pp. 604–605.

[58] MCCAMANT, S., AND ERNST, M. D. Predicting problems caused by compo-
nent upgrades. In ESEC/FSE ’03: Proceedings of the 9th European Software
Engineering Conference held jointly with 11th International Symposium on the
Foundations of Software Engineering (2003), pp. 287–296.

[59] MEYER, B. Object-Oriented Software Construction, 2nd ed. Prentice-Hall,
1997.

[60] NAM, J., SCHULER, D., AND ZELLER, A. Calibrated mutation testing. In Mu-
tation ’11: Proceedings of the 6th International Workshop on Mutation Analysis
(to appear) (2011).

[61] NAMIN, A. S., ANDREWS, J. H., AND MURDOCH, D. J. Sufficient mutation
operators for measuring test effectiveness. In ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering (2008), pp. 351–360.

BIBLIOGRAPHY 165

[62] NETHERCOTE, N., AND SEWARD, J. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI ’07: Proceedings of the 28th Con-
ference on Programming Language Design and Implementation (2007), pp. 89–
100.

[63] NEVILL-MANNING, C. G., AND WITTEN, I. H. Linear-time, incremental hi-
erarchy inference for compression. In DCC ’97: Proceedings of the 7th Data
Compression Conference (1997), pp. 3–11.

[64] NEVILL-MANNING, C. G., WITTEN, I. H., AND MAULSBY, D. Compression
by induction of hierarchical grammars. In DCC ’94: Proceedings of the 4th
Data Compression Conference (1994), pp. 244–253.

[65] NTAFOS, S. C. A comparison of some structural testing strategies. Transactions
on Software Engineering 14, 6 (1988), 868–874.

[66] OFFUTT, A. J. The coupling effect: fact or fiction. Software Engineering Notes
14 (1989), 131–140.

[67] OFFUTT, A. J. Investigations of the software testing coupling effect. Transac-
tions on Software Engineering and Methodology 1, 1 (1992), 5–20.

[68] OFFUTT, A. J., AND CRAFT, W. M. Using compiler optimization techniques
to detect equivalent mutants. Software Testing, Verification, and Reliability 4
(1994), 131–154.

[69] OFFUTT, A. J., LEE, A., ROTHERMEL, G., UNTCH, R. H., AND ZAPF, C. An
experimental determination of sufficient mutant operators. ACM Transactions
on Software Engineering and Methodology (TOSEM) 5, 2 (1996), 99–118.

[70] OFFUTT, A. J., AND PAN, J. Detecting equivalent mutants and the feasible path
problem. In COMPASS ’96: Proceedings of the 11th Conference on Computer
Assurance (1996), pp. 224–236.

[71] OFFUTT, A. J., AND PAN, J. Automatically detecting equivalent mutants and
infeasible paths. Software Testing, Verification, and Reliability 7, 3 (1997), 165–
192.

[72] OFFUTT, A. J., PARGAS, R. P., FICHTER, S. V., AND KHAMBEKAR, P. K.
Mutation testing of software using a mimd computer. In ICPP ’92: Proceedings
of the 21st International Conference on Parallel Processing (1992), pp. 257–
266.

166 BIBLIOGRAPHY

[73] OFFUTT, A. J., AND UNTCH, R. H. Mutation 2000: Uniting the orthogonal.
In Mutation ’00: Proceedings of the 2nd International Workshop on Mutation
Analysis (Mutation testing for the new century) (2001), pp. 34–44.

[74] OFFUTT, VI, A. J., AND KING, K. N. A fortran 77 interpreter for mutation
analysis. In Proceedings of the 1st Symposium on Interpreters and interpretive
techniques (1987), pp. 177–188.

[75] ORSO, A., APIWATTANAPONG, T., AND HARROLD, M. J. Leveraging field
data for impact analysis and regression testing. In ESEC/FSE ’03: Proceedings
of the 9th European Software Engineering Conference held jointly with 11th
International Symposium on the Foundations of Software Engineering (2003),
pp. 128–137.

[76] ORSO, A., APIWATTANAPONG, T., LAW, J., ROTHERMEL, G., AND HAR-
ROLD, M. J. An empirical comparison of dynamic impact analysis algorithms.
In ICSE ’04: Proceedings of the 26th International Conference on Software En-
gineering (2004), pp. 491–500.

[77] PACHECO, C., AND ERNST, M. D. Eclat: Automatic generation and classifica-
tion of test inputs. In ECOOP ’05: Proceedings of the 9th European Conference
on Object-Oriented Programming (2005), pp. 504–527.

[78] PAN, K., KIM, S., AND WHITEHEAD, JR., E. J. Toward an understanding of
bug fix patterns. Empirical Software Engineering 14 (2009), 286–315.

[79] PAPI, M. M., ERNST, D., AND SMITH, C. Practical pluggable types for Java.
In ISSTA ’08: Proceedings of the 17th International Symposium on Software
Testing and Analysis (2008), pp. 201–212.

[80] PERSON, S., DWYER, M. B., ELBAUM, S., AND PĂSĂREANU, C. S. Differen-
tial symbolic execution. In FSE ’08: Proceedings of the 16th International Sym-
posium on the Foundations of Software Engineering (Atlanta, Georgia, 2008).

[81] PEZZE, M., AND YOUNG, M. Software Testing and Analysis: Process, Princi-
ples and Techniques. John Wiley & Sons, 2008.

[82] RADIO TECHNICAL COMMISSION FOR AERONAUTICS (RTCA). DO-178B:
Software Considerations in Airborne Systems and Equipment Certification,
1982.

BIBLIOGRAPHY 167

[83] RAPPS, S., AND WEYUKER, E. J. Data flow analysis techniques for test data
selection. In ICSE ’82: Proceedings of the 6th International Conference on
Software Engineering (1982), pp. 272–278.

[84] REPS, T., BALL, T., DAS, M., AND LARUS, J. The use of program profil-
ing for software maintenance with applications to the year 2000 problem. In
ESEC/FSE ’99: Proceedings of the 7th European Software Engineering Con-
ference held jointly with 7th International Symposium on the Foundations of
Software Engineering (1999), pp. 432–449.

[85] ROTHERMEL, G., UNTCH, R. H., CHU, C., AND HARROLD, M. J. Prioritizing
test cases for regression testing. Transactions on Software Engineering 27, 10
(2001), 929–948.

[86] RYDER, B. G., AND TIP, F. Change impact analysis for object-oriented pro-
grams. In PASTE ’01: Proceedings of the 3rd Workshop on Program Analysis
for Software Tools and Engineering (2001), pp. 46–53.

[87] SCHULER, D., DALLMEIER, V., AND ZELLER, A. Efficient mutation testing
by checking invariant violations. In ISSTA ’09: Proceedings of the 18th Inter-
national Symposium on Software Testing and Analysis (2009), pp. 69–80.

[88] SCHULER, D., AND ZELLER, A. Javalanche: Efficient mutation testing for
Java. In ESEC/FSE ’09: Proceedings of the 12th European Software Engineer-
ing Conference held jointly with 17th International Symposium on the Founda-
tions of Software Engineering (2009), pp. 297–298.

[89] SCHULER, D., AND ZELLER, A. (Un-)Covering equivalent mutants. In ICST
’10: Proceedings of the 3rd International Conference on Software Testing, Ver-
ification and Validation (2010), pp. 45–54.

[90] SCHULER, D., AND ZELLER, A. Assessing oracle quality with checked cover-
age. In ICST ’11: Proceedings of the 4th International Conference on Software
Testing, Verification and Validation (2011), pp. 90–99.

[91] SEN, K., MARINOV, D., AND AGHA, G. Cute: A concolic unit testing en-
gine for C. In ESEC/FSE ’05: Proceedings of the 10th European Software
Engineering Conference held jointly with 13th International Symposium on the
Foundations of Software Engineering (2005), pp. 263–272.

[92] SHARMA, R., GLIGORIC, M., ARCURI, A., FRASER, G., AND MARINOV, D.
Testing container classes: Random or systematic? In FASE ’11: Proceedings

168 BIBLIOGRAPHY

of the 14th International Conference on Fundamental Approaches to Software
Engineering (2011), pp. 262–277.

[93] SOSIČ, R., AND ABRAMSON, D. A. Guard: A relative debugger. Software
Practice and Experience 27, 2 (1997), 185–206.

[94] SPAFFORD, E. H. Extending mutation testing to find environmental bugs. Tech.
rep., Purdue University, 1990.

[95] TASSEY, G. The economic impacts of inadequate infrastructure for software
testing. Tech. rep., National Institute of Standards and Technology, 2002.

[96] TILLMANN, N., AND DE HALLEUX, J. Pex: white box test generation for
.net. In TAP ’08: Proceedings of the 2nd International Conference on Tests and
Proofs (2008), pp. 134–153.

[97] TIP, F. A survey of program slicing techniques. Journal of Programming Lan-
guage 3, 3 (1995), 121–189.

[98] UNTCH, R. H., OFFUTT, A. J., AND HARROLD, M. J. Mutation analysis using
mutant schemata. In ISSTA ’93: Proceedings of the 8th International Symposium
on Software Testing and Analysis (1993), pp. 139–148.

[99] VISSER, W., PǍSǍREANU, C. S., AND KHURSHID, S. Test input generation
with Java pathfinder. In ISSTA ’04: Proceedings of the 14th International Sym-
posium on Software Testing and Analysis (2004), pp. 97–107.

[100] WANG, T., AND ROYCHOUDHURY, A. Using compressed bytecode traces for
slicing Java programs. In ICSE ’04: Proceedings of the 26th International Con-
ference on Software Engineering (2004), pp. 512–521.

[101] WANG, T., AND ROYCHOUDHURY, A. Dynamic slicing on Java bytecode
traces. Transactions on Programming Languages and Systems 30, 2 (2008),
10:1–10:49.

[102] WEISER, M. Program slices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, University of
Michigan, 1979.

[103] WEISER, M. Program slicing. Transactions on Software Engineering 10, 4
(1984), 352–357.

BIBLIOGRAPHY 169

[104] WEYUKER, E. J., WEISS, S. N., AND HAMLET, R. G. Comparison of program
testing strategies. In ISSTA ’91: Proceedings of the 7th International Symposium
on Software Testing and Analysis (1991), pp. 1–10.

[105] WHEELER, D. A. Sloccount: http://www.dwheeler.com/sloccount/, 2004.

[106] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating failure-
inducing input. Transactions of Software Engineering 28, 2 (2002), 183–200.

[107] ZHANG, L., HOU, S.-S., HU, J.-J., XIE, T., AND MEI, H. Is operator-based
mutant selection superior to random mutant selection? In ICSE ’10: Pro-
ceedings of the 32nd International Conference on Software Engineering (2010),
pp. 435–444.

[108] ZIMMERMANN, T., WEISSGERBER, P., DIEHL, S., AND ZELLER, A. Mining
version histories to guide software changes. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering (2004), pp. 563–572.

	1 Introduction
	1.1 Thesis Structure
	1.2 Publications

	2 Background
	2.1 Software Testing
	2.2 Unit Tests
	2.3 Coverage Metrics
	2.3.1 Control Flow Criteria
	2.3.2 Data Flow Criteria
	2.3.3 Logic Coverage Criteria
	2.3.4 Summary Coverage Criteria

	2.4 Program Analysis
	2.4.1 Static Program Analysis
	2.4.2 Dynamic Program Analysis
	2.4.3 Execution Trace
	2.4.4 Program Analysis Techniques
	2.4.5 Coverage Metrics
	2.4.6 Program Slicing
	2.4.7 Invariants
	2.4.8 Related Work

	2.5 Summary

	3 Mutation Testing
	3.1 Underlying Hypotheses
	3.1.1 Competent Programmer Hypothesis
	3.1.2 Coupling Effect

	3.2 Costs of Mutation Testing
	3.3 Optimizations
	3.3.1 Mutation Reduction Techniques
	3.3.2 Mutant Sampling
	3.3.3 Selective Mutation
	3.3.4 Weak Mutation
	3.3.5 Mutation Schemata
	3.3.6 Coverage Data
	3.3.7 Parallelization

	3.4 Related Work
	3.5 Summary

	4 The Javalanche Framework
	4.1 Applying Javalanche
	4.2 Subject Programs
	4.3 Mutation Testing Results
	4.4 Related Work
	4.4.1 Further Uses of Javalanche

	4.5 Summary

	5 Equivalent Mutants
	5.1 Types of Mutations
	5.1.1 A Regular Mutation
	5.1.2 An Equivalent Mutation
	5.1.3 A Not Executed Mutation

	5.2 Manual Classification
	5.2.1 Percentage of Equivalent Mutants
	5.2.2 Classification Time
	5.2.3 Mutation Operators
	5.2.4 Types of Equivalent Mutants
	5.2.5 Discussion

	5.3 Related Work
	5.4 Summary

	6 Invariant Impact of Mutations
	6.1 Learning Invariants
	6.2 Checking Invariants
	6.3 Classifying Mutations
	6.4 Evaluation
	6.4.1 Evaluation Subjects
	6.4.2 Manual Classification of Impact Mutants
	6.4.3 Invariant Impact and Tests
	6.4.4 Ranking
	6.4.5 Invariant Impact of the Manually Classified Mutants
	6.4.6 Discussion

	6.5 Threats to Validity
	6.6 Related Work
	6.6.1 Mutation Testing
	6.6.2 Equivalent Mutants
	6.6.3 Invariants and Contracts

	6.7 Summary

	7 Coverage and Data Impact of Mutations
	7.1 Assessing Mutation Impact
	7.1.1 Impact on Coverage
	7.1.2 Impact on Return Values
	7.1.3 Impact Metrics
	7.1.4 Distance Metrics
	7.1.5 Equivalence Thresholds

	7.2 Evaluation
	7.2.1 Impact of the Manually Classified Mutations
	7.2.2 Impact and Tests
	7.2.3 Mutations with High Impact

	7.3 Threats to Validity
	7.4 Related Work
	7.5 Summary

	8 Calibrated Mutation Testing
	8.1 Classifying Past Fixes
	8.1.1 Mining Fix Histories
	8.1.2 Subject Project
	8.1.3 Fix Categorization

	8.2 Calibrated Mutation Testing
	8.2.1 Mutation Operators
	8.2.2 Mutation Selection Schemes

	8.3 Evaluation
	8.3.1 Evaluation Setting
	8.3.2 Evaluation Results

	8.4 Threats to Validity
	8.5 Related Work
	8.5.1 Mining Software Repositories
	8.5.2 Mutation Testing

	8.6 Summary

	9 Comparison of Test Quality Metrics
	9.1 Test Quality Metrics
	9.2 Experiment Setup
	9.3 Results
	9.4 Threats to Validity
	9.5 Related Work
	9.6 Summary

	10 Checked Coverage
	10.1 Checked Coverage
	10.1.1 From Slices to Checked Coverage
	10.1.2 Implementation

	10.2 Evaluation
	10.2.1 Evaluation Subjects
	10.2.2 Qualitative Analysis
	10.2.3 Disabling Oracles
	10.2.4 Explicit and Implicit Checks
	10.2.5 Performance

	10.3 Limitations
	10.4 Threats to Validity
	10.5 Related Work
	10.5.1 Coverage Metrics
	10.5.2 Mutation Testing
	10.5.3 Program Slicing
	10.5.4 State Coverage

	10.6 Summary

	11 Conclusions and Future Work
	Bibliography

