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Abstract

We report in this thesis the first complete formal verification of a bus interface at
the gate and register level. The presented bus interface allows to implement a time-
triggered system consisting of several units interconnected by a bus. Time-triggered
systems work decentralized, allow some grade of fault-tolerance against a bounded
number of single errors and show a predictable recurrent behaviour.

We use a hardware model for multiple clock domains obtained by formalization of
data sheets for hardware components, and we review known results and proof tech-
niques about the essential components of such bus interfaces: among others serial
interfaces, clock synchronization and bus control. Combining such results into a single
proof leads to an amazingly subtle theory about the realization of direct connections
between units (as assumed in existing correctness proofs for components of interfaces)
by properly controlled time-triggered buses. It also requires an induction arguing si-
multaneously about bit transmission across clock domains, clock synchronization and
bus control.1

The design of the bus controller can be automatically translated into Verilog and
deployed on FPGAs.

Zusammenfassung

In dieser Arbeit präsentieren wir die erste formale Verifikation einer Bus-Schnittstelle
auf der Register- und Gatter-Ebene. Die Bus-Schnittstelle ermöglicht die Implemen-
tierung eines zeitgesteuerten Systems, welches aus mehreren Einheiten besteht, die
durch einen Bus verbunden sind. Systeme dieser Art funktionieren dezentralisiert, sind
fehlertolerant gegen einzelne System- und Umgebungsfehler und weisen ein berechen-
bares periodisches Verhalten auf.

Wir benutzten ein Hardware-Model für mehrere Clock-Domänen, welches durch
die Formalisierung der Herstellungsinformationen abgeleitet wurde. Wir präsentieren
verschiedene Ergebnisse und Verifikationstechniken über die essentiellen Komponen-
ten solcher Bus-Schnittstellen: serielle Schnittstellen, Clock-Synchronisierung, Bus-
Kontrolle, usw.

Die Kombination solcher Ergebnisse zu einem einzigen Korrektheitsbeweis führt zu
einer nicht-triviallen Theorie über die Realisierung einer direkten Verbindung zwis-
chen verschiedenen Einheiten des Systems (wie das in den einzelnen Beweisen ver-
schiedener Komponente angenommen wird), die auf einer korrekten Kontrolle zeit-
gesteuerter Busse basiert. Die Korrektheit der gesamten Schnittstelle ergibt sich aus
einem Induktionsbeweis, der gleichzeitig über drei Eigenschaften argumentiert: über
die Signalübertragung zwischen unterschiedlichen Clock-Domänen, über die Clock-
Synchronisierung und über die zeitlich-korrekte Einteilung der Bus-Zugriffe.

Die Implementierung kann automatisch in Verilog-Code übersetzt werden und auf
FPGA-Boards ausgeführt werden.

1Note that this abstract partially coincides with the abstract of [PM11].
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Usually, the motivation section of work in the area of verification talks about exploding
rockets, expensive bugs in processors, complex technologies and many other things,
which have mostly implicit impact on our everyday life. We would like to talk about
technologies, which we deal almost every single day with – and not implicitly but ex-
plicitly: the modern automobiles.

According to the Institute of the Motor Industry:

Electronics account for around 20% of the value of today’s average light
vehicle, with one supplier, Siemens, stating that 90% of innovations in a
modern car can be attributed to electronics development. But here’s the
rub: DaimlerChrysler blames electronic faults for 70% of its well-publicised
quality problems at Mercedes-Benz.1

While quality problems do not affect safety, the real problems may arise when the auto-
mobile electronics begin to assist the driver in safety-critical functions.

In 2009, Volvo introduced a crossover XC60 with the industry’s first auto-breaking
feature which serves as an automatic collision detector. The system scans the environ-
ment of the moving car using built-in laser sensors to detect a potential collision with a
pedestrian or another car, and – in case of a detected obstacle – if the system does not
register any driver’s reaction to avoid the collision, the car will jab the breaks and stop.
While some luxury sedans like the BMW 7 Series and Mercedes Benz S-Class have used
similar collision detection systems, their functionality was limited to warnings of the
driver only. In Volvo’s XC60, the system actively interferes with the car control in case
of an emergency.

While such a feature is undoubtedly conductive to safety of the motor traffic, it is
important to understand that it is not allowed to produce any false-positive results. If a
car full of passengers would be automatically stopped by its error-prone electronics on
a highway with high density traffic, such a feature may call for more lives than it will
possibly save. The same problems concern any sensor-based safety-critical features,
like airbags or stability control.

1http://www.motor.org.uk/magazine/articles/cover-feature-bugs-in-the-system-101.html
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Figure 1.1: Time-Triggered Bus System

Through testing alone, it is infeasible to prove the desired level of reliability [Pik07,
BF93]. But on the other hand, verification of an industrial-scale bus system is possibly
infeasible in a reasonable amount of time [Pik06]. Previous research contains numerous
examples of case studies about verification of isolated parts, protocols and algorithms
of time-triggered systems. However, the question whether all these verification efforts
carried out with different tools and on different abstraction levels can be combined into
one single correctness statement remained open so far.

1.2 The Problem

A round-based time-triggered system consists of several units interconnected by a bus
as depicted in Figure 1.1. These units function in the following manner. The global time
line of the system is split into equal time segments called rounds, consisting of several
slots. In each slot exactly one unit broadcasts one message over the bus. All other units
are listening to the bus in that slot.

Every unit is clocked by its own oscillator, i.e., units don’t share one common discrete
time notion. The correctness of message transmission in a time-triggered system can
roughly be split into 5 sub-problems as depicted in Figure 1.2. Note that arrows in
that figure denote dependencies of sub-problems. Hence, there are five problems to
overcome.

1. Correctness of Serial Interfaces. In order to establish a message transfer over
the bus from one unit to another, we need a formalism for an asynchronous signal
exchange between two directly connected units: a sender and a receiver. Addi-
tionally, the transfer of complex messages requires a low-level protocol synchro-
nization due to clock drift of the sender and the receiver.

2. Clock (Timer) Synchronization. As in the first problem, the speed differences
of units make a synchronization of the common time notion among all participants
of the communication necessary. Any software clock synchronization algorithm
relies on the message exchange. In the presented time-triggered system, this is
rather a simple mechanism and will be realized with the help of sync messages
(prefixes of ordinary messages indicating the start of a new round). However, the
sync messages will be transferred over the bus, which has to be collision-free at
the time of the transmission.

3. Bus Contention Control. The synchronized time notion of all units provides a
coordinated behaviour among them, s.t. at each time at most one unit acts as a

4



1. Correctness of Serial Interfaces:
(a) Signal Transfer

across Clock Domains;
(b) Low-level Clock Synchronization.

2. Clock (Timer) Synchronization.

3. Bus Contention Control.

4. Sync Message
Transfer Over the Bus

5. Payload Message Transfer

Figure 1.2: Decomposition of the Message Exchange Correctness
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sender. Hence, it can be shown that no bus contention (a conflict between two
senders) can appear during the system run.

4. Sync Message Transfer Over the Bus. Since the bus can be proven to be
collision-free during all transmission times, we can show, that the sync messages
can be transmitted correctly.

5. Payload Message Transfer. The bus contention control provides a transmis-
sion window where the bus can be abstracted to a direct connection between the
sender and all receivers; thus, applying the correctness of serial interfaces, the
correctness of the payload message transfer can be shown.

Note that Problems 2, 3 and 4 have a cyclic dependency. That means, clock syn-
chronization hinges on message transfer (at least for the synchronization messages),
message transfer on bus contention control and bus contention control on clock syn-
chronization. Any theorem stating in isolated form the correctness of clock synchro-
nization, bus contention control or message transfer alone must use hypotheses which
break this cycle in one way or the other. If the theorem is to be used as part of an overall
correctness proof, then one must be able to discharge these hypotheses in the induction
step of a proof arguing simultaneously about clock synchronization, bus contention and
message transfer. A paper and pencil proof of this nature can be found in [KP07].

Besides the enumerated problems, another important point is fault-tolerance. Time-
triggered systems are usually required to operate in an environment with possibly faulty
components and flipped bits during transmission. These faults can be caused by the
physical environment or by the error-prone software or hardware. Hence, almost every
of the presented problems should tolerate a number of faults bounded by the fault
hypothesis (assumptions about the frequency, type, location of faults, etc.). We do
not deal with fault-tolerance in this thesis, however, we recognize that this problem
has to be tackled as soon as the message exchange can be proven in an error-free
environment.

Despite the fact that probably every of these five problems were solved by previ-
ous research in isolation, to the best of our knowledge, there is not a single previous
successful combination of the presented challenges into one uniform correctness state-
ment.

We review the related work in the next section in context of the presented problem
decomposition and describe our contribution afterwards.

1.3 Related Work

Verification of real-time systems is by no means new. First efforts were done in the late
80’s, tackling the clock synchronization algorithms for fault tolerant systems [RvH89,
RvH93, SS92, PSHI99]. These results deal with algorithmical correctness of the clock
synchronization only and cover the Problem 2 from Section 1.2. Furthermore, over
the last years, several architectures suitable for safety-critical real-time systems were
developed. Rushby [Rus01a] gives an overview and a comparison of four of them:
SAFEbus, SPIDER, FlexRay and TTA. He also describes [Rus99] a general approach
for deriving time-triggered implementations from algorithms specified as functional
programs under the assumption of correct message exchange across clock domains
(Problem 3, 4) and clock synchronization (Problem 2). He specifies timing constraints,

6



which a schedule of a time-triggered protocol has to fulfill, to form in its system run
so-called cuts. These cuts are time segments, where the state of the time-triggered sys-
tem can be related to a state of its synchronous counterpart. The overall correctness
of these implementations would then follow from the correctness of concrete functional
programs (which is supposed to be relatively easy), and from the correct transformation
of synchronous systems into timed asynchronous implementations.

In [Pik06], Pike has presented several results. One part of his work related to this pa-
per was a corrected and significantly extended version of Rushby’s formalism [Rus99].
He also applies this approach to verify the schedule timings of two protocols of the
SPIDER bus architecture: Clock Synchronization and Distributed Diagnosis.2 However,
it remains unclear how exactly the timing properties of hardware implementations of
these protocols were derived and mapped to the formal model. Moreover, the proposed
technique assumes even in the proof of timing properties of a Clock Synchronization
protocol already synchronized clocks initially. That is, to extend the proof to correct-
ness for all rounds one needs to use the proposed proof as an induction step. However,
to show the initial clock synchronization the correctness of the initialization might be-
come necessary.

Other previous verification efforts – to the best of our knowledge – tackle isolated
parts or particular algorithms and protocols of different time-triggered real-time sys-
tems. For example, Rushby gives an overview [Rus02] of verified algorithms of TTA.
The described verification efforts concern some isolated parts, properties or algorithms
of TTA such as clock synchronization, transmission window timing, group membership,
etc. Rushby says in this overview: “Some of these algorithms pose formidable chal-
lenges to current techniques and have been formally verified only in simplified form
or under restricted fault assumptions.” For example, the window transmission timing
(Problem 3) was verified by Rushby himself [Rus01b] for a transmitter, its bus guardian
and a receiver. As in [Rus99] this work assumes the correctness of clock synchroniza-
tion and correct scheduling mechanism (Problem 1, 2 and 4).

Steiner et al. [SRSP04] verify a startup algorithm for TTA against all possible fail
scenarios using a model checker (this might serve as solving of Problem 2 for the ini-
tial round). Pike and Brown present in [BP06] a largely automated verification of the
Biphase Mark and 8N1 protocols, which covers the Problem 1. They derive a generic
model for two asynchronously communicating units, which includes modeling of clock
jitter. Their clock model is based on so-called timeout automata. The progress of global
time is enforced cooperatively by sender and receiver clocks. This model deals with
clock jitter but does not model the set up and hold times explicitly. The clock model-
ing is partially protocol-dependent. Since the sender’s clock progress depends on the
receiver’s clock progress, it is not fully clear how to extend this model to several re-
ceiver clocks. Unfortunately, no discussion was provided about the gap between the
given stack of abstractions and modeling of actual hardware. Pike and Johnson report
in [PJ05] a verification of the Reintegration Protocol of the SPIDER architecture, where
this approach was developed.

In [BP07], Brown and Pike show an approach, derived from the classic Abadi-Lamport
refinement method, how to use a model checker and an SMT solver to prove temporal
refinement of the 8N1 protocol (Problem 1).

In [Pfe03], Pfeifer formally verifies two fault-tolerant algorithms implemented in the
Time-Triggered Protocol TTP/C: Group Membership and Clock Synchronization (Prob-

2Note that no correctness of the synchronous version of these protocols was provided.
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lem 2). Both algorithms were analyzed, using a hand-derived mathematical specifi-
cation of the TTP/C protocol. Group Membership is an algorithm executed on every
processor of the bus architecture, which is used to analyze and determine faulty pro-
cessors to exclude them from the communication. Pfeifer proves the correctness of
Group Membership for an untimed system, where all processors work in lock-step shar-
ing one common discrete time notion. Hence, his proof assumes the correctness of
underlying asynchronous hardware (Problems 1-5) and could be implemented on the
bus interface presented in this thesis.

His Clock Synchronization algorithm uses the arrival times of ordinary messages.
However, only the messages comming from processors with accurate clocks will be
considered. By his fault hypothesis, in every round, at least the minimal amount of re-
quired messages will be transmitted. He does not deal with bus control and message
transmission assuming a working message exchange mechanism. Hence, his proof is
based on the solved Problem 1 and on an abstraction of the bus to an one to one con-
nection between all processors, or on the solved Problem 4 for a bus architecture.

Both algorithms are mutually dependend for the following reasons.

1. Since the messages whose arrival times are used for computation of the clock
adjustment should come from non-faulty processors, the correctness of the Group
Membership algorithm has to be assumed.

2. However, the Group Membership algorithm was proven as an untimed algorithm,
which is only possible if Clock Synchronization can be proven to be correct, such
that an untimed algorithm can be refined to a timed one.

Although the algorithms are mutually dependend, Pfeifer has analyzed them in isolated
form and on different levels of abstraction: the Group Membership was analyzed as
an untimed (synchronous) mechanism, whereas the Clock Synchronization was verified
in a timed model. He also introduces an abstract induction-based principle how to
combine both proofs resolving their mutual dependency.

If we want to integrate both algorithms into the time-triggered system presented
in this thesis, we need to extend the circular dependency by a new Problem 6: the
Group Membership. This 6th problem would depend on Problems 1-5, and the Problem
2 becomes dependend on Problem 6.

Some interesting results were recently achieved with the Uppaal model checker.
Gerke et al. [GEFP10] presented a fully automatic proof of the message transmission
on the physical layer protocol of FlexRay describing the underlying model as a network
of timed automata. They model the asynchronously communicating part of the FlexRay
hardware as proposed in [Sch07], which was developed in Verisoft project for the auto-
motive system presented in this thesis. The proof was carried out under the assumption
of working TDMA schedule (this implies clock synchronization), which is maintained by
high-level protocols. Hence, they have solved Problem 1 fully automatically.

Furthermore, assuming clock synchronization Zhang [Zha06] has proven two prop-
erties of the scheduling protocol of a FlexRay bus guardian: the correct relay and mes-
sage integrity.

Almost all of these efforts deal with conceptual correctness of algorithms without
linking them to concrete asynchronously communicating hardware models. Moreover,
it would be highly desirable to reuse some of the developed techniques or proven al-
gorithms and to consolidate them into one single theory. However, it is not clear, how
to combine these results taking into account the fact, that these theories were made
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Figure 1.3: Direct Connection of Serial Interfaces

using different formalisms, different verification environments and are formulated at
different levels of abstractions.

1.4 Contribution to the "Automotive" Project

The work presented in this thesis was started as subproject "Automotive" of the Verisoft
project. Verisoft is a long-term research project funded by the German Federal Min-
istry of Education and Research. One of the goals of Verisoft is the formal pervasive
verification of computer systems including all levels from gate-level hardware to user
applications.

In contrast to related work, Verisoft has tackled the problem of pervasive verifica-
tion of a distributed time-triggered system from another side. Instead of verifying an
industrial-scale bus system, a simple but flexible and extendible architecture influenced
by the FlexRay standard [Con06] with simple synchronization and communication pro-
tocols was developed at the gate and register level. The system consists of bus inter-
faces implemented on gate and register level, interconnected by a bus. The modeling
of the asynchronous communication relies on a precise timing model of hardware reg-
isters obtained by formalization of data sheets for hardware components.

The theoretical foundations of this work were formulated in computer science lec-
tures "Computer Architecture 2" [Pau05] by Wolfgang Paul and published in [KP07].
Previous verification efforts were reported in [Sch07] and [Böh07].

In [Sch07], Schmaltz has proven the correctness of serial interfaces (Problem 1) of
the presented bus controller and the payload message transfer (Problem 5) under the
assumption of two directly connected and appropriatelly initialized units. That means,
Schmaltz’s results can be used as soon as Problems 2, 3 and 4 are solved.

In [Böh07], Böhm has used the correctness of serial interfaces provided by Schmaltz
and has shown the transmission of sync messages (Problem 4) and resulting Clock Syn-
chronization (Problem 2) for one sender and arbitrary receiver under the assumption
that every receiver is directly connected to the sender as depicted in Figure 1.3. Thus,
he could ignore the Problem 3, because no notion of the bus was introduced.

Hence, to couple these two results into one theory, filling of the last gap, namely,
solving of the Problem 3 was necessary. The extension and consolidation of previous re-
sults into a single correctness theorem presented in this thesis was reported in [PM11],
hence, some passages of this publication coincide with this thesis literally.

In this case study, we have verified the message transmission over the bus relying on
the minimal set of hypotheses like bounded clock drift. The design of the bus controller
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can be automatically translated into Verilog and deployed on FPGAs. Our contribution
is the first complete formal verification of a FlexRay-like bus interface at the gate and
register level.

1.5 Tools

The gate-level implementation of the bus controller which will be presented in this
thesis was carried out [Kna08] in the specification language of the interactive theorem
prover Isabelle/HOL [NPW02]. The Isabelle/HOL specification language is an extension
of functional programming language ML.

The verification of the controller was carried out in Isabelle/HOL supported by
the symbolic model checker NuSMV [CCG+02], which was integrated [Tve05] into Is-
abelle/HOL. NuSMV is an open source re-implementation of the model checker CMU
SMV [CCG+98] for CTL and LTL properties. We have used NuSMV to verify temporal
properties of the system defined over Kripke structures [Gup93] and as an external BDD
decision procedure. To verify a property by NuSMV, we have formulated this property
as an LTL formula and applied IHaVeIt [Tve05] to it.

IHaVeIt is a translation tool, which translates Isabelle’s specification language into
NuSMV input language. Moreover, it consists of several algorithms for handling unin-
terpreted functions and data abstractions used in Isabelle models.

After the Isabelle code is translated from Isabelle to NuSMV language, the NuSMV
model checker can be applied to it. We will present all lemmas in higher-order logic
notation.

Another benefit of the IHaVeIt tool is the possibility to translate a gate-level hard-
ware implemented in Isabelle/HOL specification language directly to Verilog fully au-
tomatically. This was used [End09] to translate the bus controller implementation into
Verilog and to deploy it on three interconnected FPGAs.

1.6 Outline

In Chapter 2 we introduce the notation and concepts we use during modeling and veri-
fication; we introduce boolean gates and circuits representing basic blocks in the hard-
ware design of the studied bus controller.

In Chapter 3 we formalize the communication scheme used in our FlexRay-like time-
triggered system. The communication scheme is based on the Time Division Multiple
Access strategy and hinges on recurrent clock synchronization of all units participating
in the communication.

In Chapter 4 we describe how a clock domain crossing communication is mod-
eled [Sch07] by developing a register model with precise timing and linking it to a
digital hardware model. Furthermore, we extend this model to a communication bus
interconnecting all units of the time-triggered system. We also present and extend the
results of previous efforts in the verification of the low-level signal tranmission among
different clock domains.

In Chapter 5 we formulate the correctness criteria for message transmission in our
time-triggered system and decompose it into three milestones.

In Chapter 6 we show the implementation of relevant parts of the bus controller and
introduce the used message protocol.
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In Chapter 7 we present previous verification [Böh07] of the schedule timing and
clock synchronization within a single round under the assumption of a direct connection
between the sender and all receivers. We use these results and present the verification
of bus contention control property, allowing us to abstract the bus connection between
the sender and every receiver as a direct wire. This allows us to apply results from
Chapter 4 to show the correctness of high-level message transmission [Sch07].

Finally, in Chapter 8 we use the theorem about the contention control and apply the
hardware correctness of serial interfaces to show the high-level transmission correct-
ness.

In Chapter 9 we conclude our work, discuss future work and give some statistics.
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CHAPTER

TWO

BASICS

2.1 Notation

In this thesis we use following notation.

Operators

• the operator := denotes an assignment, e.g., in a := b we assign value b to identi-
fier a

• the operator ≡ denotes equivalence of expressions

Sets

• B := {0, 1}

• B∗ is a set of all tupels with elements from B

• R is the set of real numbers

• Z is the set of integers

• N is the set of natural numbers without 0

• N0 := N ∪ {0}

Intervals For a, b, c ∈ R we define:

• [a : b] := {x | a ≤ x ≤ b}

• [a : b) := {x | a ≤ x < b}

• (a : b] := {x | a < x ≤ b}

• (a : b) := {x | a < x < b}
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Bits and Bitvectors

• if b ∈ B then we call b a bit

• if a and b are bits then we denote by a ◦ b a concatenation of bits a and b

• a concatenation of bits is also called a bitvector

• if a and b are bitvectors then we denote by a◦b a concatenation of bitvectors a and
b, which is a bitvector again

• if b is a bitvector, then b[i] is its i’th bit, counting right to left (little endian)

• if b is a bitvector of length n, then we also refer to it by b[n− 1 : 0]

• a bitvector of length 1 is a bit

• if a ∈ B, n ∈ N then we denote by an a bitvector a ◦ a ◦ ... ◦ a︸ ︷︷ ︸
n times

Functions

• Let b be a bitvector of length n, then we encode b as a natural number by function
〈·〉 as follows:

〈b〉 :=

n−1∑

i=0

b[i] · 2i

• if i < 2n for n ∈ N then binn(i) returns the bitvector of length n, which represents
number i (note: i = 〈binn(i)〉)

• For x ∈ R we define the flooring and ceiling operators:

– bxc = max{a ∈ Z | a ≤ x}
– dxe = min{a ∈ Z | x ≤ a}

2.2 Trace Semantics

Note that our hardware model of the entire time-triggered system goes beyound the
ordinary digital hardware model. Since we want to argue about a set of asynchronously
working units within different clock domains, we need to extend the usual hardware
model by more precise timing parameters such as setup and hold times. We also must
deal with undefined and metastable signals. We will introduce this extension in Chap-
ter 4.

The hardware presented within a clock domain consists of finite data structures
only and has a deterministic behaviour. To model hardware we split it into hardware
states (configurations) and a transition function over them. The state of a hardware
can be characterized by the contents of its registers and memories. These registers
change their content from cycle to cycle according to the logical circuits, placed at
their inputs. We can represent a digital hardware model and its computations as a
finite Mealy automaton [MP00]:

(S, S0,Σ,Λ, δ, η)

It consists of the following:
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• a finite set of hardware states S;

• a set of initial states S0 ⊂ S;

• a finite set of all possible register inputs Σ;

• a finite set of all possible register outputs Λ;

• a transition function δ : S × Σ→ S;

• an output function η : S × Σ→ Λ.

The transition function takes a hardware state, register inputs and produces a new
configuration of the bus controller. The output function takes a hardware state, register
inputs and outputs register contents of the next hardware state.

Moreover, we fix an abstract trace function trace : N → S, which assigns a hard-
ware state to each natural number. We also fix a similar function for register inputs:
inputs : N→ Σ.

We call the function trace a valid execution trace if it produces an initial config-
uration for cycle 0 and each consecutive configuration is computed by applying the
transition function once:

trace(0) ∈ S0 ∧ ∀i : trace(i+ 1) = δ(trace(i), inputs(i))

Such a valid execution trace represents a computation of the real hardware. Each
hardware state of the model is represented in a real hardware by contents of its regis-
ters and RAMs. The transition function is then realized by logical gates and combina-
tional circuits.

In this thesis we will refer to a hardware state of some model h in cycle i by hi, which
denotes the configuration returned by the trace function for number i:

hi := trace(i)

We will always assume that used trace functions are valid execution traces.
Moreover, we denote by hi.R the content of register R of hardware state h in cycle i,

and by f(hi) a boolean signal derived from other register contents and boolean gates of
hardware state h in cycle i. Sometimes, we will abbreviate hi.R by Ri and f(hi) by f i.
The same notation and abbreviatation is also used for a memory content hi.M .

2.3 Boolean Gates and Basic Circuits

In the description of the hardware design we use the following boolean gates and cur-
cuits.

• Register is depicted in Figure 2.1(a); it stores a bitvector of length n (or one bit,
in case n = 1) and has the following semantics. Let Ri be the content of register
R in cycle i and let ai be the input and cei be the clock enable signal of register R
in cycle i.

Ri+1 =

{
ai : cei = 1

Ri : otherwise
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Figure 2.1: Boolean Gates and Circuits

• AND Gate depicted in Figure 2.1(b) has the following semantics. Let a ∈ B and
b ∈ Bn with n ∈ N. Then its output c ∈ Bn is specified as:

∀i ∈ [0 : n− 1] : c[i] := a ∧ b[i]

Hence, it computes logical conjunction of a bit and a bitvector.

• OR Gate depicted in Figure 2.1(c) computes disjunction of a bit and a bitvector
and is specified analogously to the AND Gate in a straightforward way.

• NOT Gate depicted in Figure 2.1(d) flips every bit of the input bitvector a ∈ Bn
with n ∈ N. Its output b ∈ Bn is specified as:

∀i ∈ [0 : n− 1] : b[i] := ¬a[i]

• Multiplexer Gate depicted in Figure 2.1(e), its output c ∈ B is specified as:

∀n ∈ N, a, b ∈ Bn, sel ∈ B : c := if sel then a else b

• Shift Register depicted in Figure 2.1(f) is a tuple of 1-bit registers

(Rn−1, ..., R0)
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with n ∈ N, which are always clocked. The registers are connected, s.t. for all
cycles c ∈ N and input a ∈ B holds:

Rcn−1 = ac−1 ∧ ∀i ∈ [0 : n− 2] : Rc+1
i = Rci+1

Its output c ∈ Bn is specified as follows:

∀i ∈ [0 : n− 1] : c[i] = Ri

• Incrementer circuit is depicted in Figure 2.1(g), it increments a bitvector b of
length n by one. The overflow bit will be skiped, thus, incrementing of bitvector
1n yields 0n.

• Equivalence circuit depicted in Figure 2.1(h) compares two bitvectors. Its output
c ∈ B is computed as:

∀n ∈ N, a, b ∈ Bn : c := (a = b)

• And Tree circuit depicted in Figure 2.1(i) computes the conjunction of all bits of
the input bitvector a ∈ Bn with n ∈ N. The output b ∈ B is specified as:

b =
∧

i∈[0:n−1]

a[i]

• Or Tree circuit depicted in Figure 2.1(j) is a counterpart of the And Tree for the
logical OR operation.

• Decoder circuit depicted in Figure 2.1(k) interprets the given bitvector as a num-
ber and outputs this number as a unary bitvector (see Terminology below). Let
a ∈ Bn with n ∈ N. Then, the output b ∈ B2n of the Decoder Circuit is specified as:

b = 02
n−1−〈a〉10〈a〉

• (n,m)-RAM circuit depicted in Figure 2.1(l) is used to store bitvectors of length
m. Each bitvector will be addressed by a n-bit address bitvector. A RAM circuit
has input ports we, a and din – for write enable signal, addrress and input data,
respectively. It has following semantics. Let M be a (n,m)-RAM. Then:

M i+1(addr) =

{
dini : wei = 1 ∧ ai = addr

M i(addr) : otherwise

2.4 Terminology

• We understand under a clock domain the scope of a system (a set of registers),
where the time can be measured with the help of one clock. For example, if two
circuits c1 and c2 are clocked by two different clocks, then we would refer to all
registers of c1 as being in the clock domain of circuit c1; analogously, all register
of c2 would be in the clock domain of c2.

• A value computed by logical gates and circuits within one clock domain is called
a signal; we say it is active, if the computed signal has the value ‘1’; the signal is
inactive otherwise.
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• Later we will deal with instability and undefined behaviour of analog registors. An
undefined register value will be denoted by Ω. Moreover, we will call a function s
an analog signal if it is typed as follows:

s : R→ {0, 1,Ω}

The analog signal s is active at time t if s(t) = 1; it is inactive if s(t) = 0; it is
undefined if s(t) = Ω.

• We say a bitvector is unary if it has the form 0i ◦ 1 ◦ 0j for some i ∈ N and j ∈ N0.
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CHAPTER

THREE

COMMUNICATION MODEL OF A
SIMPLE FLEXRAY-LIKE

TIME-TRIGGERED BUS SYSTEM

Clean formal definitions of time-triggered systems have been given in [Rus99] and [Pik06].
The term time-triggered means that the functionality of a system, e.g., communication,
is based on actions scheduled at predefined repetitive points in time. Hence, the main
control signal for all nodes of such system is the progress of the global time. Conse-
quently, all nodes have to constantly synchronize their notion of time with at least one
reference. Such a system works decentralized, allows some grade of fault-tolerance
against a bounded number of single errors and shows a predictable recurrent behaviour.

The simple time-triggered system whose hardware realization is studied in this the-
sis is inspired by the FlexRay standard [Con06]. In this chapter we will develop a
well-defined mathematical model of a TDMA-based communication scheme between
asynchronously working units interconnected by a single communication bus.

This chapter is structured as follows. In Section 3.1 we give a top-level overview
of the architecture of the studied bus network consisting of several Electronic Control
Units (ECUs). We explain the concept of time from the point of view of a single ECU
in Section 3.2.1 and explain the idea behind the used synchronization mechanism in
Section 3.2.2. Then, we formalize the notion of clocks in Section 3.3 and show lemmas
about their bounded drift. Finally, in Section 3.4 we formalize the notion of local time
of all types of ECUs used in the studied bus network.

3.1 Top Level Overview

The studied bus architecture consists of N electronic control units (ECUs) connected
to a single bus as depicted in Figure 3.1. The bus is used to broadcast signals in a
serial manner from one ECU to all others. Broadcasting means that every ECU reads
what was put on the bus. All ECUs are able to read and to change the bus value, but
not simultaneously. That is, at any given time at most one ECU can broadcast to avoid
the bus contention. Therefore, the communication between ECUs is split into disjoint
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Figure 3.1: Network Topology of the Studied Bus Architecture

time periods according to the Time Division Multiple Access (TDMA) strategy. The
TDMA strategy implies, that at each of these periods exactly one ECU has an exclusive
write access to the bus, whereas all others are accessing the bus in read-only mode.
To achieve such co-ordinated behavior of several ECUs, we have to ensure, that each
ECU is aware of the current time interval in the communication and its role in this time
interval.

Obviously, all ECUs should know ‘what time it is’, to agree on the same time points
in the communication. The obstacle we have to overcome here, is the fact that all
ECUs ‘run’ at different speed, since they are clocked by different oscillators. This may
happen in physical designs because of temperature or voltage fluctuations, production
tolerances of the timing source (an oscillator, for example), etc [Con06]. As a result, the
clocks of all ECUs constantly drift apart which leads to shifting of local time views of all
ECUs relatively to each other. Fortunately, the clock drift is bounded by some constant
factor. To ‘align’ the view of the global time on different ECUs, a synchronization among
all ECUs becomes necessary.

Thus, the communication in our bus network is time-triggered and is based on
bounded clock drift and recurring synchronizations of all ECUs.

3.2 Communication Scheme

In this thesis, we call a continuous list of bits put on the bus by one ECU a message.
Such an ECU is called a sender. All receiving ECUs will be referred to as receivers.
We will refer to some concrete ECU in the bus network using its index as ECUi for
i ∈ [0 : N − 1]. Note that our implementation assumes that every ECU broadcasts one
message per round. The implementation and verification can be easily generalized to n
messages per round for every ECU.

Our goal is to coordinate message transmissions in the bus network, such that each
ofN ECUs has a possibility to broadcast its message while all others are listening to the
bus. All ECUs have to send their messages in turn. This consecutive message broadcast
has to happen in rounds, i.e. once allN ECUs have finished their message transmission,
another round starts and all ECUs have to send their messages in turn all over again.
We need N disjoint slots in each round: one for each ECU. To let each ECU keep track
of the current slot in each round, we will supply it with a time notion in Section 3.2.1.

However, as mentioned in Section 3.1, due to clock drift, the more time passes, the
more the view of the global time on different ECUs differs. Thus, we need to synchronize
all ECUs either between slots or between rounds. As the FlexRay standard [Con06] we
choose the second option.
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Figure 3.2: Local Time Notion of an ECU
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Figure 3.3: Local Time Notions of Different ECUs

3.2.1 Time Notion of an ECU

As depicted in Figure 3.2, on a top level, the local time of an ordinary ECU is split
into rounds, where a round is a time segment between two synchronizations. Thus,
all rounds are consecutive and disjoint. Moreover, a round contains N slots. These
slots build a static task, which is executed by every ECU after every synchronization.
Every ECU counts the number of cycles passed using local counters. The values of
these counters determine the index of the current slot. In one of this slots, each ECU
will act as a sender, and it will act as a receiver in all other slots. Each ECU knows
its sending slot according to a fixed schedule function send : [0 : N − 1] → [0 : N − 1],
which assigns to each slot number s an ECU index, s.t. ECUsend(s) is a sender in slot
s. After an ECU has executed the last slot in a round, it does not start a new round
automatically. Instead, it waits for a synchronization message denoting the start of a
new round.

3.2.2 Synchronization

The synchronization message will be produced by a special ECU called master. Our bus
network has exactly one master ECU; we call all other ECUs slaves. Moreover, w.l.o.g.
we assume, that the master ECU has the index 0, thus it will be denoted as ECU0.

This synchronization principle is depicted in Figure 3.3 for two arbitrary ECUs. The
master’s behavior is very similar to the slave’s behavior: within every round it keeps
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Figure 3.4: Overlapping Time Notions of Different ECUs

track of slots. However, in the beginning of each round, the master waits for some
fixed amount of time, which is long enough to let all slaves finish the previous round.
Afterwards, the master ‘notifies’ slaves about a new round by broadcasting a message,
which simultaneously serves as a synchronization message for slaves. Thus, slot 0
of every round is always reserved for the master: send(0) = 0. The master always
executes this static schedule. In contrast to this, the slave’s behavior is time-dependent.
They behave statically only within round boundaries keeping track of N slots after
they have received a synchronization message. Afterwards, they wait until the next
synchronization message to start the next round.

After a synchronization, the time views of different ECUs will continue to shift due
to clock drift, however each local slot overlaps now with the same local slot on all other
ECUs (see Figure 3.4). This overlapping time of each slot – the time segment where all
ECUs agree on the current slot – will be used for a message transmission, and will be
denoted as transmission window W (s) of slot s. Obviously, this communication scheme
will work only if the length of the master’s waiting period, the length of each slot, and,
hence, the length of a round, is chosen according to the maximal speed difference be-
tween two arbitrary ECUs. We will formalize all timing parameters in the next section.

3.3 Clocks and Clock Drift

As mentioned before, the local time notion of a single ECU consists of rounds which
consist of slots. Moreover, the local time of an ECU is measured in hardware cycles. In
the digital model of hardware circuits there are no states between two hardware cycles.
Thus, the local time of an ECU is discrete.

In contrast, if we look at several ECUs simultaneously, we have to consider them
outside of their clock domains. All ECUs run asynchronously to each other, and at every
point in real time there is some state of the bus network, which depends on the state of
every ECU. At this time point an ECU can be either within its local hardware cycle i or
it can be in between cycles i and i + 1, updating its registers. Hence, we have to deal
with continuous (real-valued) global time.
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Figure 3.5: Clock Period of a Digital Clock

3.3.1 Formalization of Clocks

We have already mentioned, that all ECUs run at different speed, considering them rela-
tively to each other. That is, one ECU accomplishes the same amount of local hardware
cycles faster than an other ECU. Obviously, we cannot measure their speed difference
in terms of local hardware cycles. Instead, we have to be able to compute ‘how much
time’ it takes one ECU – in terms of global time – to accomplish n hardware cycles. This
depends on the length of one hardware cycle of ECUi known as clock period τi. As
depicted in Figure 3.5, τi is the amount of real time, which ECUi needs to accomplish
one hardware cycle.

With the help of this formalization, we can measure the duration of n hardware
cycles of two arbitrary ECUs: ECUi and ECUj . Obviously, these durations would be
τi · n and τj · n, respectively.

Besides this relative time measurement, we are also able to compute the absolute
real time at which some local hardware cycle of a given ECU starts. For these compu-
tations we have to enumerate all hardware cycles starting from an origin in time, i.e.
the real time of the start of the very first cycle. Later, we will have to compute local
hardware cycles of several ECUs corresponding to a given real time. That is, our origin
of the global real time should be valid for all ECUs. However, we cannot assume, that
the very first cycles of all ECUs take place at the same time. Thus, we fix an imaginary
origin as depicted in Figure 3.6, as being the minimal real time, when all ECUs are up
and running. This would be the start time of the first cycle of the last started ECU.

Hence, we refer to the first cycle of each ECU starting at or after this origin as cycle
0. Since some ECUs might have started earlier, the fixed time origin will be within an
already started cycle as it is the case for ECUj in Figure 3.6. We will refer the time
segment from the origin to the next cycle start as γi for a given ECUi. Obviously, γi
should be smaller than τi, otherwise the new defined cycle 0, would not be the minimal
cycle taking place after the origin. Now we have all necessary information to define
clocks formally.

Definition 1 (Clocks). A clock of an ECUi is defined as a tuple of two real numbers
(γi, τi) ∈ R2 with 0 ≤ γi < τi.

Definition 2 (Edge Function). The starting time (edge) of the hardware cycle c of ECUi
is then defined as ei(c) = γi + c · τi.

Thus, eu(i) is the global time, at which the hardware cycle i was started in the clock
domain u.
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3.3.2 Bounded Clock Drift

Now we can measure the speed of different ECUs in terms of the real time needed
to accomplish the same amount of hardware cycles. This speed difference depends
on the difference of the length of two clock periods. For further modeling we assume
that all clock periods of every clock deviate at most by a percentage δ = 0.39% of a
reference clock period τref . This constant is derived from the concrete parameters of
our implementation (64 slots per round, 1 Kb per message). Note that this bound can
be easily achieved by current technology. For example, FlexRay specification [Con06]
prescribes maximal clock period deviation of size 0.15%.

Assumption 1 (Bounded Clock Drift). ∀i ∈ [0 : N − 1] : 1− δ ≤ τi
τref
≤ 1 + δ

We will implicitly use all introduced assumptions as premisses in all subsequent lem-
mas and theorems presented in this thesis. From Assumption 1 we can easily compute
the maximal deviation of two arbitrary clocks.

Lemma 1 (Maximal Deviation of Two Clocks). Two arbitrary clock periods deviate at
most by ∆ = 2·δ

1−δ percent:

∀i, j ∈ [0 : N − 1] : 1−∆ ≤ τi
τj
≤ 1 + ∆

Proof. Let τi, τj be two clock periods with i, j ∈ [0 : N − 1]. By Assumption 1 we know:

∀τ ′ ∈ {τi, τj} : 1− δ ≤ τ ′

τref
≤ 1 + δ

thus:
∀τ ′ ∈ {τi, τj} : (1− δ) · τref ≤ τ ′ ≤ (1 + δ) · τref

Since we are interested in the maximal deviation of two arbitrary clock periods, we
consider two cases, where the clock periods have the maximal difference lying on the
boundaries of the allowed range [(1− δ) · τref : (1 + δ) · τref ].
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Upper bound computation.

τi
τj
≤ (1 + δ) · τref

(1− δ) · τref
=

1 + δ

1− δ

=
1

1− δ +
δ

1− δ
=

1− δ + δ

1− δ +
δ

1− δ
=

1− δ
1− δ +

δ

1− δ +
δ

1− δ
= 1 +

2 · δ
1− δ = 1 + ∆

Lower bound computation. By an analogous computation as above we get:

τi
τj
≥ (1− δ) · τref

(1 + δ) · τref
= 1− 2 · δ

1 + δ

Hence, it remains to show:

1− 2 · δ
1 + δ

≥ 1−∆

The inequation follows by definition of ∆ and δ > 0.

Now we show two additional helper lemmas.

Lemma 2 (Upper bound of ∆).

δ ≤ 0.39%⇒ ∆ ≤ 0.78%

Proof. Trivial computation.

Lemma 3 (Maximal Drift within 128 Cycles). Two arbitrary clocks clku and clkv obeying
Assumption 1 drift no more than by 1 cycle within 128 cycles.

∀i ≤ 128 : ∀τu, τv : τu · (i− 1) ≤ τv · i ≤ τu · (i+ 1)

Proof.

Lower bound.

τu · (i− 1)

(Lemma 1) ≤ τv · (1 + ∆) · (i− 1)

= τv · (i+ i ·∆− 1−∆)

(∀i : i ·∆ < 1) ≤ τv · i

Upper bound.

τu · i
(Lemma 1) ≤ τv · (1 + ∆) · i

= τv · (i+ i ·∆)

(∀i : i ·∆ < 1) ≤ τv · (i+ 1)
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3.4 Formalization of the Notion of Local Time

In Figure 3.3 we have schematically shown the local time notions of two types of ECUs:
master and slaves. All ECUs of our bus network will be configured by the operating
system, running on top of it, before the communication starts. The configuration pa-
rameters written to each ECU represent such values as the slot length, the message
length, number of slots in a round, a boolean flag for each slot indicating whether an
ECU should behave as master or as a slave in that slot, etc. Except for the latter,
all configuration parameters are equal for all ECUs. However, message transmissions
cannot take place within an entire round due to shifting local time notions of different
ECUs. Instead, there are time segments within every round, where all ECUs agree on
the current slot as depicted in Figure 3.4. That is, in every slot, except for slot 01, there
should be some ‘space’ before the transmission start and after the transmission end. In
this section we will introduce these parameters formally.

First, we assume that a slot lasts at most T hardware cycles. With N participating
ECUs, and therewith slots in a round,N slots last at mostN ·T hardware cycles on every
ECU. However, due to clock drift one ECU accomplishes these N · T hardware cycles
faster than some other in terms of global time. Now we want to know this difference
in terms of local hardware cycles of an arbitrary ECU. From Lemma 1 we know that
every clock period is at most ∆% longer or shorter than any other. Thus, if some ECU
accomplishes N ·T hardware cycles, then ECUi will accomplish in this time x hardware
cycles with

(1−∆) · N · T ≤ x ≤ (1 + ∆) · N · T
That is, for any number off with dN · T ·∆e ≤ off < T the following lemma holds.

Lemma 4 (Maximal drift within N · T cycles). W.l.o.g., let τj , τi with τj ≤ τi be clock
periods of ECUi and ECUj . Then:

N · T · τi −N · T · τj ≤ off · τi

Proof.

N · T · τi −N · T · τj = N · T · (τi − τj)
(Lemma 1) ≤ N · T ·∆ · τi

≤ dN · T ·∆e · τi
(Assumption on off ) ≤ off · τi

Lemma 4 says, that if ECUi and ECUj are two arbitrary ECUs, and if ECUi is faster
than ECUj , then ECUi outruns ECUj within N slots by at most x cycles with x ≤ off ,
as depicted in Figure 3.7.

Let αi(r, s) denote the cycle of ECUi, at which slot s 6= 0 of round r starts. Assume,
that ECUi is the sender in slot s, and that all slaves start the slot 0 roughly at the same
time. When ECUi enters cycle αi(r, s), then by Lemma 4 every receiver ECUj will be in
cycle αj(r, s) at last at the time, when ECUi is in cycle αi(r, s) + off . That is, the sender
is allowed to start its transmission in cycle αi(r, s) + off . Furthermore, by Lemma 4 we

1Since the slot 0 denotes the start of a new round and, hence, a new synchronization, the starting time of
the slot 0 is roughly the same on all ECUs.
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Figure 3.7: ECUi Outruns ECUj by x Cycles

αi(r, s)

T cycles
(1 slot)

Transmission
︸ ︷︷ ︸

off cycles

︸ ︷︷ ︸
off cycles

︸ ︷︷ ︸
tc cycles

Figure 3.8: Slot Composition of a Sender ECUi

also know, that every ECUj will accomplish the slot s (reaching cycle αj(r, s)+T ) at the
earliest whenECUi is in cycle αi(r, s)+T−off . From this follows, that the sender (ECUi)
is allowed to transmit a message in the local time interval [αi(r, s)+off : αi(r, s)+T−off ].
Let tc be the number of cycles in a slot, which can be used to transmit a message:

tc = T − 2 · off

As depicted in Figure 3.8, a slot length can be computed as T = off + tc + off . This
decreases the upper bound of off :

dN · T ·∆e ≤ off <
T

2

Note, that the lower bound dN · T ·∆e holds only if all ECUs will start the execution of
the round simultaneously. However, in the real implementation, they start the execution
with some maximal delay of d cycles, which depends on a concrete implementation of
an ECU, in particular on the ‘transmission pipeline’, i.e., the length of the datapath of a
transmitted signal in the sender and in the receiver. Moreover, due to effects of clock
domain crossing signal transmission (see Section 4) an additional delay cycle may arise
under certain circumstances. This increases the lower bound of off by additional d + 1

cycles:

dN · T ·∆e+ d+ 1 ≤ off <
T

2

Now we have defined everything we need to formalize the local time notion of ECUs.
As mentioned before (Figure 3.3), the master ECU waits in the beginning of every round
r for some amount of cycles, until all slaves have finished the previous round. Assuming
that all slaves will receive the synchronization message at the start of round r−1 roughly
at the same time (the difference is bounded by d + 1), it would be enough to wait for
off cycles. For convenience’s sake we count these initial off cycles of a new round as a
part of slot 0 on the master.
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Definition 3 (Local Time Notion of Master). Let α0(0, 0) be the first cycle of slot 0 of
round 0 on the master. Then the first cycle of slot s ≤ N of round r is denoted by α0(r, s)

and is defined as follows:

α0(r, s) =





α0(0, 0) : s = 0, r = 0

α0(r − 1,N ) : s = 0, r 6= 0

α0(r, s− 1) + T : otherwise

For example, the start time of slot 0 of the 4’th round α0(4, 0) is computed as:

α0(4, 0) = α0(3,N )

= α0(3,N − 1) + T

= α0(3,N − 2) + T + T

= α0(3, 0) + T + T + . . .+ T︸ ︷︷ ︸
N·T

= α0(3, 0) +N · T

Thus, the master ECU makes exactly N · T cycles between rounds i and i+ 1.

Lemma 5 (α0 Arithmetic).

∀s ∈ [0 : N − 1] : α0(r, s) = α0(r, 0) + s · T
Proof. By induction on slot s.

1. Induction base: s = 0.

α0(r, s) = α0(r, 0) = α0(r, 0) + 0 · T = α0(r, 0) + s · T

2. Induction step: s→ s+ 1.

α0(r, s+ 1)
Def. 3

= α0(r, s) + T
IH
= α0(r, 0) + s · T + T = α0(r, 0) + (s+ 1) · T

Note that by IH we abbreviate Induction Hypothesis, which is the claim to show
for smaller instance of the inductive variable.

A new round on a slave ECU starts in the cycle when the synchronization message
was sampled and processed. This cycle depends on the concrete implementation of the
bus interface of the ECU and delays caused by the effects of signal transmission across
different clock domains. We will instantiate the round start time of a slave ECU by a
concrete definition later. At the synchronization all slaves adjust their local counters
to the value off , which should denote the master’s local time, when the synchroniza-
tion message was initiated. The first slot of a round (slot 0) of a slave lasts then only
tc + off cycles. The initial offset of off cycles is not necessary in the first slot, since
the slot starts right after the synchronization, and the clocks of all ECUs are ideally
synchronized.

Definition 4 (Local Time Notion of a Slave). Let αi(r, 0) be the first local cycle of round
r. Then αi(r, s) for arbitrary r and s < N is defined as follows.

αi(r, s) =





αi(r, 0) : s = 0

αi(r, 0) + tc+ off : s = 1

αi(r, s− 1) + T : otherwise
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Thus, the start time of every non-zero slot depends on the start time of the pre-
vious slot. Whereas, the start time of slot 0 of every round depends on the master’s
synchronization message.

Lemma 6 (αi Arithmetic).

∀s ∈ [1 : N − 1] : αi(r, s) = αi(r, 0) + tc + off + (s− 1) · T

Proof. By induction on slot s.

1. Induction base: s = 1.

αi(r, s) = αi(r, 1)
Def. 4

= αi(r, 0) + tc + off = αi(r, 0) + tc + off + 0 · T
= αi(r, 0) + tc + off + (s− 1) · T

2. Induction step: s→ s+ 1. We have to make a case distinction on s according to
Definition 4.

(a) Case s = 0.
αi(r, s+ 1) = αi(r, 1)

The case follows from induction base.

(b) Case s > 0.

αi(r, s+ 1)
Def. 4

= αi(r, s) + T
IH
= αi(r, 0) + tc + off + (s− 1) · T + T

= αi(r, 0) + ((s+ 1)− 1) · T
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CHAPTER

FOUR

BUS MODEL FOR CLOCK
DOMAIN CROSSING

COMMUNICATION

In the previous chapter we have (i) introduced the communication scheme between
ECUs, (ii) formalized the notion of a clock relating the local time of an ECU to the
common global time, and (iii) formalized the notion of local time of an ECU in terms of
slot and round start times.

Computing the maximal local time deviation off of two arbitrary ECUs within one
round and using it as a waiting offset at the beginning and at the end of a slot provides
us with a sampling window in the remaining time of a slot. The sampling window is
a time interval within a slot, where all ECUs agree on the current slot. The sampling
window will be used for a message transmission.

Until now, we skipped the interconnection of ECUs and concentrated on the timing
of their behaviour. In this chapter we will introduce the formalization of the low-level
interconnection of several ECUs. We start with an overview of the hardware connection
of an ECU with a bus in Section 4.1. We introduce in Section 4.2 a precise timing model
of a register, which allows us to argue about the content of this register outside of its
clock domain. Afterwards, we use this model to formalize in Section 4.3 a low-level
signal transmission from one clock domain to another. In this section we will present
previous verification efforts, their improvement and extension. Finally, in Section 4.4
we will extend the model of hardware interconnection to N clock domains.

4.1 Hardware Interconnection

In the beginning of the previous chapter we have schematically shown the topology of
our network: several nodes interconnected by a bus (see Figure 3.1). The more detailed
scheme of the connection of a single ECU to the bus is depicted in Figure 4.1. The bus
is connected to every ECU with open collector outputs.
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ECUi

SiR̂i

Ri

Bus

Figure 4.1: Connection of an ECU to the Bus

Output signal of an ECU. The output of every ECUi will be written first to a send
register Si. To mimic the behaviour of the open collector bus, we model our bus value
as a conjunction of outputs of send registers of all ECUs. The send register value of a
non-sender ECU should be a ‘1’, s.t. at any message transmission time the bus value is
equal to the send register value of the sending ECU.

However, since every send register Si is part of a different clock domain and since
the bus should be defined at every point in real time, we have to deal with undefined
register values. For example, if at some given real time the ECUi is updating its send
register Si at cycle c, then between cycles c and c + 1, the content of Si is undefined.
We describe this undefined value by Ω. Note that Ω may describe:

• a metastable value – a voltage between thresholds recognized as 0 or 1;

• a stable but unknown boolean value.

Moreover, we use a weaker assumption about the outcome of a conjunction of register
outputs, and compute a conjunction of any value with an undefined value as a (possibly
new) undefined value again:

∀x ∈ B : Ω ∧ x = x ∧ Ω = Ω

Assume, OutS,u is the analog signal modeling the output of the send register S at any
given real time:

OutS,u : R→ {0, 1,Ω}
Then the bus is also modeled as an analog signal

bus : R→ {0, 1,Ω}

and is computed as a conjunction of all send register outputs of all ECUs:

bus(t) =
∧

u

OutS,u(t)

Input signal to an ECU. As mentioned before, the bus value can be an undefined
value Ω. To deal with this fact, we make use of a common technique in hardware design.
Before the bus signal enters the receiver ECUi, it will be consecutively sampled into two
receive registers Ri and R̂i. It is possible, that an undefined bus value will be sampled
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Figure 4.2: An Update in the Detailed Register Model

into the register Ri. In this case, its content either flips to any boolean value or remains
metastable hanging between voltages, defining 1 and 0. However, the probability that
the content of Ri remains metastable for an entire cycle and that this metastable value
will be sampled to R̂i in the next cycle, is for practical purposes nearly zero. Thus, we
assume, that if an undefined value will be sampled into the register Ri in cycle c, then
R̂i will be either 1 or 0 in cycle c+ 1.

4.2 Detailed Register Model (DRM)

Since the time of a digital circuit computation is represented by hardware cycles, a
register has the following straightforward semantic. Let R be a register. Let Rce be
the clock enable signal of R, let Rin be the input signal of R, and let R0 be the initial
content of R. Then, the content of R in cycle c ∈ N0 is defined as follows.

Rc+1 =

{
Rinc : Rcec = 1

Rc : otherwise

Thus, the register content is specified only for every given hardware cycle. There
is no need to define some intermediate states of a register. However, to formalize a
signal transmission across different clock domains, we have to formalize the content
(the output signal) of a register for any given real time, also during its update time.
This output would be the signal, visible by other ECUs. Therefore, we will extend
the discrete model of a digital register with more precise timing parameters obtained
by formalization of data sheets for hardware components [Sch07]. The parameters are
setup time ts, hold time th, as well as minimum and maximum propagation delays tpmin
and tpmax. Moreover, we model all inputs and outputs of an analog register as analog
signals. For every register P in clock domain i we denote by:

• InP,i its analog input signal;
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• ceP,i its analog clock enable signal;

• OutP,i its analog output signal.

Let P be some register of ECUi, which holds some value y and will be updated at
cycle c with value x. Then the output of P outside of the clock domain i is modeled by
the analog output signal OutP,i and behaves during an update as depicted in Figure 4.2.
To update P both of his analog input signals InP,i and ceP,i should be stable around the
clock edge c, namely, in the time interval [ei(c)− ts : ei(c) + th]:

∀t ∈ [ei(c)− ts : ei(c) + th] : InP,i(t) = x ∧ ceP,i(t) = 1

If both signals were stable during that time interval, the output of the modeled register
i) does not change before ei(c)+tpmin, ii) becomes undefined in (ei(c) + tpmin, ei(c) + tpmax),
and iii) assumes the new value InP,i(ei(c)) = x from ei(c) + tpmax until the next clock
edge plus the minimum propagation delay: ei(c) + τ + tpmin. Note that we make the
following assumptions about the relation of the timing parameters to each other and to
the clock period of an arbitrary ECU.

Assumption 2 (Timing Parameters). Let ECUi be arbitrary ECU. Moreover, let (γi, τi)
be the clock of ECUi. Then we assume:

1. 0 ≤ ts

2. 0 ≤ th

3. 0 ≤ tpmin < tpmax

4. tpmax < τi

5. ts+ th+ tpmax − tpmin ≤ 0.9 · τi
The inequalities 1 and 2 are rather natural assumptions about time intervals (they

cannot be negative). The third inequality is justified by the fact, that the observed
output of a register cannot change its value in no time at all. With the fourth inequality
we require, that a register changes its value during the current cycle. The inequality
5 is needed later in our proofs to relate the introduced timing parameters to the clock
period of an arbitrary clock. This assumptions can be easily fulfilled by the current
technology.

We formalize the behaviour of an analog register in the following definitions.

Definition 5 (Stable Signal). Let s be some signal and let c be a cycle of some ECUj .
We define a predicate indicating stability of s around the clock edge of cycle c as follows:

stablei(s, c) = ∃b ∈ B : ∀t ∈ [ei(c)− ts : ei(c) + th] : s(t) = b

Definition 6 (Detailed Register). Let P be some register in clock domain i, and c be
some local cycle of this clock domain. The analog output signal of P is defined for all
times t ∈ (ei(c) + tpmin : ei(c+ 1) + tpmin] as follows:

OutP,i(t) =





InP,i(ei(c)) : ei(c) + tpmax ≤ t ∧ stable(InP,i, c) ∧
stable(ceP,i, c) ∧ ceP,i(ei(c)) = 1

OutP,i(ei(c)) : stable(ceP,i, c) ∧ ceP,i(ei(c)) = 0

Ω : otherwise
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This simple part of the definition which models completely regular clocking has an
important consequence. Imagine we have InP,i(ei(c)) = OutP,i(ei(c)), i.e., we clock
the old value again into the register. Then, in the digital abstraction the output is
constant in two consecutive cycles. In the detailed hardware model however (and in
reality) we have a possible spike Out(t) = Ω for t ∈ (ei(c) + tpmin : ei(c) + tpmax).
If we want to guarantee, that the output really stays stable (Out(t) = Out(ei(c)) for
t ∈ [ei(c) : ei(c) + τ ]), we need to disable clocking at edge ei(c): ce(t) = 0 for t ∈
[ei(c)− ts : ei(c) + th]. If clocking is properly enabled but setup or hold time is violated
or the input is undefined, then after the maximum propagation delay the output stays 0,
1 or undefined (the latter case models metastability). In all these cases we model this
by Ω.

∃a ∈ {0, 1,Ω} : ∀t ∈ [ei(c) + tpmax, ei(c) + τi + tpmin] : Out(t) = a

Metastability is highly unlikely to occur. As mentioned before, the possibility that clock-
ing of a metastable value of register R into a second register R̂ results in the metastabil-
ity of R̂ too is so unlikely that one models it as impossible. The result is an unpredictable
digital value:

∃a ∈ {0, 1} : ∀t ∈ [ei(c) + tpmax : ei(c) + τi + tpmin] : OutR̂,u(t) = a

Fortunately, in our case we can restrict the use of the detailed model to the part of the
hardware, where clock domain crossing occurs. This portion consists of the bus, the
send register S and the receiver register R as depicted in Figure 4.1. The remaining
hardware is partitioned into clock domains, one for each ECU. In each clock domain
u we can abstract from the detailed model local digital hardware configurations hu
with, e.g., register components hu.R ∈ {0, 1}, hardware cycles i ∈ N, configuration hiu
during cycle i in the following way. We couple local cycle numbers i on ECUu (hence,
in clock domain u) with the real time eu(i) of the i’th local clock edge on ECUu using
Definition 2:

eu(i) = γi + τi · i
This edge starts local cycle i on ECUu. For t ∈ [eu(i) + tpmax : eu(i) + τu], i.e., after the
propagation delay the output OutR,u(t) of register R on ECUu is stable for the rest of
local cycle i of ECUu. We abstract this value to the digital register value:

hiu.R = dig(OutR,u, eu(i+ 1)) (4.1)

The function dig(s, t) digitizes the output of signal s at real valued time t:

dig(s, t) := if s(t) 6= Ω then s(t) else x, for some x ∈ {0, 1} (4.2)

As mentioned before, we assume, that a metastable value is never sampled into register
R̂. However, modeling the input of R as in 4.1 we also exclude the appearance of an
undefined value in the digital model completely. The resulting model is still sound,
because the first register R is never used for any computations, but only for suppressing
metastable values in a real hardware implementation.

If we now define a hypothesis ’Correct detailed timing analysis’ stating that for all
local cycles setup and hold times for register inputs are met1, then one can show that
the hardware configurations hiu we just abstracted are exactly the configurations one
would get by applying the transition function δH of ordinary digital hardware models.

1Summing propagation delays along appropriate paths.
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Soundness: Assume correct detailed timing analysis. Then:

∀i : hi+1
u = δH(hiu)

This justifies the use of ordinary digital logic within clock domains and restricts the use
of the detailed model to the boundaries between the domains, in our case the bus.

4.3 Clock Domain Crossing Signal Transmission

Schmaltz has formally verified [Sch07] a bit transmission across two different clock
domains.2 His theorem assumes a direct connection of the input and output signals of
two registers interpreted with DRM.

Let R and S be two registers from two different clock domains u and v, respectively;
they are interpreted using DRM. Assume the analog input signal InR,u of R is directly
connected to the analog output signal OutS,v of S:

InR,u(t) = OutS,v(t)

Assume the clock enable signal of the send register S is active in cycle c and the clock
enable signal of R is always active. By the definition of DRM, the output of S will change
right after ev(c) + tpmin. We want to know the first cycle at which the receive register R
will ‘notice’ the change of its input signal changing its content. We call such cycle the
next affected cycle and define it as follows [Pau05].

Definition 7 (Next Affected Cycle). Let u and v be clock domains. Then, cyu,v(c) is the
next effected cycle in clock domain u by cycle c of clock domain v and is defined as:

cyu,v(c) = min{ x | ev(c) + tpmin < eu(x) + th}

Thus, the receiver’s next affected cycle by sender’s cycle c is the first cycle, whose
hold time ends after the output change of S.

For further computations, we need to estimate the timing relation between the clock
edge ev(c) and the clock edge of the next cycle of clock domain u affected by the cycle c
of clock domain v. By Definition 7 we know the lower bound of the next affected cycle:

ev(c) + tpmin − th < eu(cyu,v(c))

The next lemma establishes an upper bound of the next affected cycle. We want
to show, that if we fix the next affected cycle for some given cycle c as depicted in
Figure 4.3, then the previous cycle of the next affected cycle, is smaller than ev(c) +

tpmin − th.

Lemma 7.
eu(cyu,v(c)− 1) < ev(c) + tpmin − th

Proof. By Definition 7, cyu,v(c) is the first cycle such that:

ev(c) + tpmin < eu(cyu,v(c)) + th

That is, the hold time of cycle cyu,v(c) ends somewhere during interval:

(ev(c) + tpmin : ev(c) + tpmin + τu]

2Formal proofs can be found at [MSB].
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Figure 4.3: Next Affected Cycle
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Figure 4.4: Violation of Timing Parameters of the Next Affected Cycle

Which gives us:

eu(cyu,v(c)) + th ≤ ev(c) + tpmin + τu

(Definition 2) ≡ eu(cyu,v(c)− 1) ≤ ev(c) + tpmin − th

Obviously, if the set up time of the next affected cycle starts during time interval
(ev(c) + tpmin : ev(c) + tpmax) then the input signal InR,u(t) = OutS,v(t) of register R is
unstable for

t ∈ (ev(c) + tpmin : ev(c) + tpmax) ∩ [eu(cyu,v(c))− ts : eu(cyu,v(c)) + th]

One possible case for the intersection of these intervals is depicted in Figure 4.4.
Thus, by Definition 6 and by violated timing parameters (¬stable(InR,u, cyu,v(c))) the

analog output of register R gets undefined during the next affected cycle:

∀t ∈ [cyu,v(c) + tpmax : cyu,v(c) + τu + tpmin] : OutR,u(t) = Ω
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That is, the signal transmission across different clock domains may start with sampling
of an undefined value. In this case, even if all timing parameters are met during sub-
sequent cycles, the transmission of the correct value will be delayed by one cycle. We
formalize this delay cycle as follows.

Definition 8 (Delay Cycle). Let u, v be two clock domains. We define for a cycle c of
clock domain v a delay cycle in clock domain u as:

σu,v(c) =

{
1 : eu(cyu,v(c))− ts < ev(c) + tpmax
0 : otherwise

4.3.1 Transmission Correctness Across Two DRM Registers

Now we can prove a correct bit transmission between two registers modeled with DRM.
That is, the lemma only shows a transmission of a signal from the analog input of one
register to the analog output of another. This lemma will be used afterwards, to show a
transmission of a digital signal from one clock domain to another.

Lemma 8 (Analog Signal Transmission). We fix the following variables:

• u, v as clock domains;

• S as send register of clock domain v;

• R as receive register of clock domain u;

• n,m ∈ N as positive integers with m = 6, n = 7;

• c ∈ N as cycle of clock domain v;

• ξ = cyu,v(c) as receiver cycle.

Premises:

(a) The input signal of S is stable during cycle c, and the clock enable signal is stable
during cycle c and n subsequent cycles:

stable(InS,v, c) ∧ ∀i ≤ n : stable(ceS,v, c+ i)

(b) The clock enable signal of S is active in cycle c and inactive during n subsequent
cycles:

ceS,v(ev(c)) = 1 ∧ ∀i ∈ [1 : n] : ceS,v(ev(c+ i)) = 0

(c) The clock enable signal of R is always active:

∀i ∈ N, t ∈ [eu(i)− ts : eu(i) + th] : ceR,u(t) = 1

(d) The analog input signal of R is the analog output signal of S during n+1 local cycles
of clock domain of S:

∀t ∈ (ev(c) + tpmin : ev(c+ n) + tpmin] : InR,u(t) = OutS,v(t)
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Then: the output signal of R at m+ 1 cycle edges starting with cycle ξ + σu,v(c) + 1 is
equal to the input signal of S at ev(c):

∀i ∈ [ξ + σu,v(c) + 1 : ξ + σu,v(c) + 1 +m] : OutR,u(eu(i)) = InS,v(ev(c))

Proof. We consider the analog output of S during time interval:

(ev(c) + tpmin : ev(c+ n) + tpmin]

Since clock enable signal ceS,v was active and stable at the clock edge ev(c) (premises
(a) and (b)), by Definition 6 we have:

∀t ∈ ev(c) + (tpmin : tpmax) : OutS,v(t) = Ω

∀t ∈ [ev(c) + tpmax : ev(c+ 1) + tpmin] : OutS,v(t) = InS,v(ev(c))

We also know from the same premises, that ceS,v was stable and inactive during the next
n = 7 cycles. Hence, the content of S did not change during these n cycles. Applying
Definition 6 we get:

∀t ∈ (ev(c+ 1) + tpmin : ev(c+ 1 + n) + tpmin] : OutS,v(t) = OutS,v(ev(c+ 1)) (4.3)

Putting all together and applying premise (d) we can describe the analog input signal
of register R:

∀t ∈ (ev(c) + tpmin : ev(c) + tpmax) : InR,u(t) = Ω (4.4)

∀t ∈ [ev(c) + tpmax : ev(c+ 1 + n) + tpmin] : InR,u(t) = InS,v(ev(c)) (4.5)

What remains to show, is a proof of a correct propagation of the received signal to the
output of register R.

By premise (c) we know, that R always samples its input value. Moreover, by the
same premise and Definition 5 we know that the clock enable signal of R is always
stable. Thus, the output of R for any clock edge eu(i) with

i ∈ [ξ + σu,v(c) + 1 : ξ + σu,v(c) + 1 +m]

is equal to the input signal of the previous clock edge by Definition 6:

∀i ∈ [ξ + σu,v(c) + 1 : ξ + σu,v(c) + 1 +m] : OutR,u(eu(i)) = InR,u(eu(i− 1)) (4.6)

However, this holds only if InR,u is stable around clock edge eu(i − 1). We consider
the value of InR,u at time interval [eu(i − 1) − ts : eu(i − 1) + th]. Obviously, the claim
of the main lemma follows from 4.5 and 4.6 if we prove for all i ∈ [ξ + σu,v(c) + 1 :

ξ + σu,v(c) + 1 +m]:

[eu(i− 1)− ts : eu(i− 1) + th] ⊆ [ev(c) + tpmax : ev(c+ 1 + n) + tpmin] (4.7)

For convenience, we denote the interval on the right side by I and sketch the proof
of 4.7.

Case σu,v(c) = 0 (Figure 4.5). We know by Definition 8:

eu(ξ)− ts ≥ ev(c) + tpmax
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Figure 4.5: No Violation of Timing Parameters of the Next Affected Cycle

Hence, for the smallest i = ξ + 1 we have:

eu(ξ)− ts = eu(i− 1)− ts ≥ ev(c) + tpmax (4.8)

Hence, eu(i− 1)− ts is in I.
Consider i > ξ + 1 and i ≤ ξ + 1 +m. By Lemma 7 we have

eu(ξ − 1) + th ≤ ev(c) + tpmin (4.9)

By Lemma 1, m = 6, n = 7, and Lemma 3 we show:

(m+ 1) · τu ≤ (n+ 1) · τv (4.10)

With help of 4.10 we extend 4.9 to:

eu(ξ − 1) + th+ (m+ 1) · τu ≤ ev(c) + tpmin + (n+ 1) · τv
Applying Definition 2 we rewrite the inequation as:

eu(ξ +m+ 1− 1) + th ≤ ev(c+ 1 + n) + tpmin (4.11)

Finally, we show:

eu(i− 1) + th (4.12)

(since i ≤ ξ +m+ 1) ≤ eu(ξ +m+ 1− 1) + th (4.13)

(Inequation 4.11) ≤ ev(c+ 1 + n) + tpmin (4.14)

Thus, in case of absence of the delay cycle σu,v(c), we can show, that the input signal
InR,u is stable and is equal to analog output of S around the clock edge eu(i−1), because
it lies within interval I by 4.8 and 4.14.

Case σu,v(c) = 1 (Figure 4.4). The smallest i is ξ + 2. We conclude:

(Assumption 2) ev(c) + tpmax ≤ ev(c) + tpmin + τu (4.15)

(Definition 7) ≤ eu(ξ) + th+ τu (4.16)

(Definition 2) = eu(ξ + 1) + th (4.17)

(since i = ξ + 2) = eu(i− 1) + th (4.18)
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Thus, in presence of a delay cycle, the clock edge eu(i−1) still lies within the interval I.

Consider an i > ξ + 2 with i ≤ ξ + 2 + m. It remains to show that eu(i − 1) does not
cross the upper boundary of I:

eu(ξ + 1 +m) + th ≤ ev(c+ 1 + n) + tpmin

Applying Definition 2 we rewrite this as:

eu(ξ)− ts ≤ ev(c) + tpmax + (tpmin − tpmax − ts− th− (1 +m) · τu + (n+ 1) · τv)

If we now show:

0 ≤ tpmin − tpmax − ts− th− (1 +m) · τu + (n+ 1) · τv (4.19)

The claim would follow by Definition 8. We rewrite 4.19:

tpmax + ts+ th− tpmin ≤ (n+ 1) · τv − (1 +m) · τu
(Lemma 1) = (n+ 1) · (1−∆) · τu − (1 +m) · τu

= ((n+ 1) · (1−∆)− 1−m) · τu
= (n− n ·∆ + 1−∆− 1−m) · τu
= (n−m− (n+ 1) ·∆) · τu

For n = 7 we get:

tpmax + ts+ th− tpmin ≤ (7− 6− (7 + 1) ·∆) · τu
(Lemma 2) = (1− 8 · 0.0078) · τu

= 0.96 · τu

Which is fulfilled by Assumption 2. Thus, we have shown, that independently of the
appearance of the delay cycle σu,v(c) the edge eu(i − 1) never crosses the boundaries
of I.

4.3.2 Improvement of Lemma 8

The original version of Lemma 8 was not applicable in a bus network with multiple
senders and receivers. The assumption of a direct connection between the sender and
the receiver (premise (d)) was not restricted in the original version to 8 sender cycles,
but was allowed for all times:

∀t : InR,u(t) = OutS,v(t)

This narrows the usage of the theorem to cases, where the send and the receive regis-
ters are connected forever. However, in the case of a bus, we can abstract the bus to a
direct connection only at certain times, as we will see later. Hence, we have weakened
the premise (d) to the minimal time range as it is presented in Lemma 8 and adjusted
the proof.

The reason, why this bug remained undiscovered, is because the Lemma 8 was never
applied in context of a bus system, where the sender changes from time to time.
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4.3.3 Digital Signal Transmission Across Different Clock Domains

While Lemma 8 shows the transmission correctness of an analog signal across two
different detailed registers, we need to extend this result to a correctness of a trans-
mission of digital signals across different clock domains. We model the digital input
of the received register as a digitized analog value using the function dig (cf. 4.1). To
convert digital bits to analog signals, e.g., to model the inputs of register S, Schmaltz
assumes the existence of a special function conv(bv) : R → {0, 1,Ω}, which converts a
bitvector bv to a signal. He extended the previous Lemma to the following theorem.

Theorem 1. Fix the same variables as in Lemma 8 and additionally:

• u, v as clock domains;

• bvceS as bitvector, s.t. bvceS [i] is the bit sent as clock enable signal to S in cycle i;

• bvinS as bitvector, s.t. bvinS [i] is the bit sent as input signal to S in cycle i;

Premises

(a) Let bvP,u be a bitvector, where every bit bvP,u[i] is sent as input signal to register
P of clock domain u in cycle i. Then there exists a conversion function conv(bvP,u)

which converts every bit bvP,u[i] to an analog value around clock edge i+ 1:

∀i : ∀t ∈ [eu(i+ 1)− ts : eu(i+ 1) + th] : conv(bvP,u)(t) = bvP,u[i]

(b) The bit sent as clock enable signal to S in cycle c − 1 is a ‘1’; in the subsequent n
cycles it is a ‘0’: bvceS [c− 1] = 1 ∧ ∀i ∈ [1 : n] : bvceS [c− 1 + i] = 0

(c) The clock enable signal of R is always active: ∀i, t ∈ [eu(i)−ts : eu(i)+th] : ceR,u(t) =

1

(d) The input signal of R is the output signal of S during n + 1 local cycles of clock
domain of S:

∀t ∈ (ev(c) + tpmin : ev(c+ n) + tpmin] : InR,u(t) = OutS,v(t)

Then, the digitized content of register R is equal to the digital input of S in cycle
c− 1 during m+ 1 cycles of clock domain of register R:

∀i ∈ [0 : m] : hu.R
ξ+σu,v(c)+i = bvinS [c− 1]

Proof. The proof is rather straightforward and follows from Lemma 8 and Equation 4.1.
First we show, that all premises of Lemma 8 are satisfied. The premises (a) and (b) of
Lemma 8 will be satisfied by premises (a) and (b) of Theorem 1 if we instantiate the
input and clock enable signals of S by corresponding bitvectors converted to signals:

∀t : InS,v(t) = conv(bvinS)(t) ∧ ceS,v(t) = conv(bvceS)(t) (4.20)

Since according to premise (a) of Theorem 1 the function conv(bvceS)(t) provides for
every t ∈ [ev(i + 1) − ts : ev(i + 1) + th] the boolean value of bit bvceS [i], such a signal
is always stable and corresponds to the digital values of the bitvectors (premise (b) of
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Theorem 1). Premises (c) and (d) are identical in both cases. Hence, we can use the
result of Lemma 8 which we rewrite as:

∀i ∈ [0 : m] : OutR,u(eu(ξ + σu,v(c) + 1 + i)) = InS,v(ev(c)) (4.21)

By Equation 4.1 we get:

∀i ∈ [0 : m] : Rξ+σu,v(c)+i = dig(OutR,u, eu(ξ + σu,v(c) + i+ 1)) (4.22)

Furthermore, with 4.20, i.e., an instantiation of signal InS,v(ev(c)) by conv(bvinS)(ev(c)),
and by premise (a) we know:

InS,v(ev(c)) = bvinS [c− 1] (4.23)

The claim of Theorem 1 follows now from 4.21, 4.22, 4.23, and by definition of dig
function.

Thus, Theorem 1 proves, that if a send register S of clock domain v does not change
its value for 8 cycles, then the receive register R of clock domain u will successfully
sample this value for at least 7 cycles. The direct linking of registers should be consid-
ered as an abstraction of the bus, when there is no bus contention.

4.3.4 Improvement of Theorem 1

The shortcoming of Theorem 1 is the fact, that Schmaltz has assumed in premise (a) the
existence of bitvectors bvinS and bvceS modeling the lists of input signal to the digital
register S independently of a local cycle c, at which register S will be updated. Thus, if
we would use Theorem 1 within one clock domain for two different instantiations of cy-
cle c, e.g., by cycles c1 and c2, then we have to provide instantiations for both bitvectors
bvinS and bvceS , such that premise (b) is fulfilled for cycles c1 and c2 simultaneously.
That is, e.g., we have to show that one single vector bvceS satisfies simultaneously the
assumption:

bvceS [c1] = 1 ∧ bvceS [c2] = 1

But this would only work, if we could instantiate bvceS with a list of bits sent as clock
enable signals to S in the entire (possibly infinite) trace of the clock domain. However,
it is impossible to model infinite bitvectors in the Isabelle language, so we could not
instantiate these bitvectors with any meaningful values derived from the computational
traces, since the trace function provides a clock domain state for a concrete hardware
cycle. As a solution, these bitvectors were replaced with functions, which map from
local hardware cycles to corresponding bitvectors:

bvinS : N→ B∗

bvceS : N→ B∗

Every of these functions, takes a hardware cycle c and produces a bitvector containing
the list of bits sent as digital signals to the corresponding register input from cycle 0
and up to cycle c. For example, bvinS(5) would produce the list of 6 bits, sent as input
to register S in cycles 0 to 5. We can fix now premise (b) as follows:

bvceS(c− 1)[c− 1] = 1 ∧ ∀i ≤ n : bvceS(n+ c− 1)[c+ i− 1] = 0
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Now, for any given cycle c we can easily model a bitvector of signals sent to a register
for any given hardware cycle i ≤ c, but cycle c must be provided before. That is, using
Theorem 1 for two different cycles c1 and c2 we will parameterize the function bvinS
(and bvceS analogously) with cycles c1 +n and c2 +n which gives us bitvectors of all bits
sent as input to S for all cycles up to cycles c1 + n in case of bvinS(c1 + n), and c2 + n in
case of bvinS(c2 + n).

Consequently, we also have to fix premise (a). The original version of this premise
was defined for any bitvector and did not restrict the preimage of the conversion func-
tion to only edges smaller than the bitvector size.

Thus, the original version of premise (a) has required that the value conv(bvinS)(t)

has to be defined for all times t for the fixed bitvector bvinS , even if t ∈ [e(i)−ts, e(i)+th]

and the length of bvinS is smaller than i.3 That is, the abstraction would only work
if we assume that bvinS will be substituted by an infinite bitvector and, hence, can
provide a corresponding bit for any clock edge i. However, as mentioned before, this
is not possible in the Isabelle language. We improve the premise (a) by introducing
the following global Assumption, which will be used together with applying of improved
version Theorem 1.

Assumption 3 (Analog to Digital Conversion). Let bvP,u ∈ Bn be a bitvector of size n,
where every bit bvP,u[i] with i < n is sent as input signal to register P of clock domain u
in cycle i < n. Then there exists a conversion function conv(bvP,u) which converts every
bit bvP,u[i] to an analog value around clock edge i+ 1:

∀i < n : ∀t ∈ [eu(i+ 1)− ts : eu(i+ 1) + th] : conv(bvP,u)(t) = bvP,u[i]

Now, we have to adjust the proof of Theorem 1. In the proof we have to assign to
InS,v(t) and ceS,v(t) for t ∈ [eu(i)− ts : eu(i) + th] values derived from the corresponding
bitvectors. The main difficulty here is the fact, that we have to fix the original proof,
which makes use of Lemma 8. To do so, we have to fix the instantiations of analog
signals ceS,v and InS,v. Originally, they were substituted by function

conv(bvceS) : R→ {0, 1,Ω}

and, analogously conv(bvinS). Hence, the conversion function conv was used with some
fixed bitvector. But besides some bitvector bv, conv takes only one argument: the real
valued time t around some clock edge i, and returns the bit, corresponding to bv[i − 1].
However, we have to replace a fixed bitvector bv with a function generating a bitvector
for some given cycle. Hence, to fix the instantiation we have to parameterize the conv
function with the result of the bitvector generation function bvinS parameterized with a
cycle (which we do not know), corresponding to the given real time t. We could do this,
if we provide a function, which gives us the current hardware cycle of clock domain u

at any given real-valued time.

This raises the question – for any given real time t, which cycle we should consider as
corresponding to t? Since in the end, we are interested in local cycles of an ECU only
in connection with its analog output, basing on the definition of the detailed register
model, we say, that if t lies in the intervall (eu(i) + tpmin : eu(i + 1) + tpmin], then it
corresponds to cycle i of clock domain u.

3In Isabelle, every list is empty or has a fixed length.

44



Definition 9 (Real Time to ECU Time). Let u be a clock domain, and let t be a real-
valued global time. Then, we compute the i’th local cycle of clock domain u as follows:

ρu(t) =
⌈ t− γu − tpmin

τu

⌉
− 1

Lemma 9.
t ∈ (eu(ρu(t)) + tpmin : eu(ρu(t) + 1) + tpmin]

Proof. We show that t lies within the boundaries of the interval.
Lower bound.

eu(ρu(t)) + tpmin

(Definition 2) = γu + ρu(t) · τu + tpmin

< t

≡ ρu(t) <
t− γu − tpmin

τu

(Definition 9) ≡
⌈ t− γu − tpmin

τu

⌉
− 1 <

t− γu − tpmin
τu

Upper bound.

t ≤ eu(ρu(t) + 1) + tpmin

(Definition 2) ≡ t ≤ γu + ρu(t) · τu + τu + tpmin

≡ t− γu − tpmin
τu

− 1 ≤ ρu(t) + 1

(Definition 2) ≡ t− γu − tpmin
τu

− 1 ≤
⌈ t− γu − tpmin

τu

⌉

We change the instantiation as follows:

∀t ∈ [ev(i)− ts : ev(i) + th] : InS,v(t) = conv(bvinS(ρv(t)))(t) ∧
ceS,v(t) = conv(bvceS(ρv(t)))(t)

We finish the correction of Theorem 1 by changing the statement to:

∀i ∈ [0 : m] : hu.R
ξ+σu,v(c)+i = bvinS(c− 1)[c− 1]

Now, Theorem 1 is ready for use in a bus network with arbitrary number of ECUs and
during the entire communication under the assumption, that at any transmission time,
only one ECU is sending, s.t. we can abstract the bus connection between the sender
and every receiver to a direct connection.

The presented flaw of Theorem 1 remained undiscovered because the bitvectors
bvinS and bvceS were never instantiated with concrete digital signals, but assumed to
coincide with certain digital signals of a concrete hardware for all hardware cycles.
Such an assumption cannot be resolved simply because an infinite bitvector cannot
be expressed in Isabelle. Hence, in case of a bus architecture with multiple senders
this would lead to similar assumptions in the top-level theorem for every sending bus
controller. However, the presented correction allowed to get rid of this assumptions
completely.

We formulate the correct version of Theorem 1 as a new theorem, which will be
used later. Note that we skip the original premise (a) due to the newly introduced
global Assumption 3 which will be assumed in all further proofs implicitly.
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Theorem 2. Fix the same variables as in Lemma 8 and additionally:

• bvceS as a function producing a bitvector, s.t. bvceS(n)[i] with i ≤ n is the bit sent
as clock enable signal to S in cycle i;

• bvinS as a function producing a bitvector, s.t. bvinS(n)[i] with i ≤ n is the bit sent
as input signal to S in cycle i;

Premises:

(a) The bit sent as clock enable signal to S in cycle c is a ‘1’; in the subsequent n cycles
it is a ‘0’:

bvceS(c− 1)[c− 1] = 1 ∧ ∀i ≤ n : bvceS(n+ c− 1)[c+ i− 1] = 0

(b) The clock enable signal of R is always active:

∀i, t ∈ [eu(i)− ts : eu(i) + th] : ceR,u(t) = 1

(c) The input signal of R is the output signal of S during n + 1 local cycles of clock
domain of S:

∀t ∈ (ev(c) + tpmin : ev(c+ n) + tpmin] : InR,u(t) = OutS,v(t)

Then, the content of digital register R is equal to the digital input of S during m+ 1

cycles of clock domain of register R:

∀i ∈ [0 : m] : hu.R
ξ+σu,v(c)+i = bvinS(c− 1)[c− 1]

These changes led to series of changes in Lemma 10 which is based on the low-level
transmission correctness and will be presented in the next chapter.

4.4 Extension to Bus

In a model, where several ECUs are communicating with each other, we need one ana-
log signal bus, which represents the real bus wire and has the same functionality. We
model the outputs of send registers Sv facing the bus as open collector output. In this
case the bus computes the logical ‘and’ of the analog output signals put on the bus:

∀t : bus(t) =
∧

v

OutS,v(t)

The intended use of the bus is to simulate for all slots s the direct connection of a
sender register Ssend(s) to every receive registers Ru on the bus during the transmission
windowW (s) of slot s, because this permits to apply results about clock domain crossing
bit transmission for pairs of directly connected senders and receivers. Obviously, this
is achieved by keeping OutS,u(t) = 1 for all t in the transmission window and all u 6=
send(s).

Finally, we connect the output of the bus with the input of every receive register Ru:

∀t : InR,u(t) = bus(t) (4.24)
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In the bus controller implementation, both receive registersR and R̂ are always clocked.
Thus, by definition of DRM together with Equation 4.1, which describes how we model
the digital content of the first receive register R, we get for any ECUu:

(Equation 4.1) hiu.R = dig(OutR,u, eu(i+ 1))

(Definition 6,∀t : ceR,u(t) = 1) = dig(InR,u, eu(i))

(Equation 4.24) = dig(bus, eu(i))

Where hiu is to be substituted by the hardware configuration of ECUu in cycle i.
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CHAPTER

FIVE

CORRECTNESS CRITERIA OF
MESSAGE TRANSMISSION

As mentioned in Chapter 1, in contrast to the related work, we not only concentrate
on the correctness of one particular protocol or property of a time-triggered system,
but we rather try to identify all properties and dependencies one has to resolve, to
provide one single correctness statement about the crucial property of a TDMA-based
time-triggered system: the message exchange.

In this short chapter we sketch the correctness statement for the message transmis-
sion in the studied bus architecture in Section 5.1. We decompose the final theorem
into three milestones. Section 5.2 describes the fundamental property we need – the
low-level communication among different clock domains. In Section 5.3 we explain the
problem of bus contention control which is provided by the verification of two proto-
cols circularly depending on each other. Finally, in Section 5.4 we describe the last
milestone, the correctness of message protocol implementation.

5.1 Correctness Statement

On the top-level, each ECUi consists of two blocks: the processor pi and the automo-
tive bus controller abci. On the bus controller of each ECUi pairs of send and receive
buffers ECUi.sb(j) and ECUi.rb(j) with j ∈ {0, 1} serve both for the local communica-
tion between processors and their local bus interface and for communication between
bus controllers over the bus. Buffers indexed by ‘(s + 1) mod 2’ face the processor in
slot s, buffers indexed by ‘s mod 2’ face the bus. Thus, the work of every ECU consists
of two tasks:

• Local computation. During slot s each processor can access buffers sb((s+ 1) mod 2)

and rb((s+ 1) mod 2) of its bus interface via memory mapped I/O for local compu-
tation. We will not consider local computation in this thesis.

• Message broadcast. The scheduling function send specifies for each slot s the ECU
ECUsend(s) whose bus facing send buffer sb(s mod 2) will broadcast to the bus fac-
ing receive buffers rb(s mod 2). Observe that in the following slot (s + 1) mod N
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Figure 5.1: Schematic Message Transmission in Slot s

these receive buffers face the processors. This allows to overlap local computa-
tion with message broadcast. The message broadcast is schematically depicted in
Figure 5.1.

Let ECU ju denote the state of ECUu at hardware cycle j. Let Slot(r, s) denote the
slot s of round r with obvious definition of the next slot function:

Slot(r, s) + 1 =

{
Slot(r, s+ 1) : s < N
Slot(r + 1, 0) : s = N

Moreover, let hcyu(Slot(r, s)) be the first hardware cycle of Slot(r, s) on ECUu. The
essential correctness statement of the bus interfaces whose formal proof will be pre-
sented in the following chapters is then a very simple and clean statement about mes-
sage transfer:

∀u, r, s : ECU
hcysend(s)(Slot(r,s))

send(s) .sb(s mod 2) = ECUhcyu(Slot(r,s)+1)
u .rb((s+ 1) mod 2)

That is, we show, that the content of send buffer with index s mod 2 will be in the
next slot in the receive buffer exposed to the processor. Note that an interrupt signal
will notify the processor at the end of every slot s, indicating that the accessible receive
buffer contains the message transmitted by the sender of slot s. Additionally we show,
that in the next slot the content of this receive buffer will not change during the entire
slot:

∀x ∈ [hcyu(Slot(r, s) + 1) : hcyu(Slot(r, s) + 1) + T ] :

ECUhcyu(Slot(r,s)+1)
u .rb((s+ 1) mod 2) = ECUxu .rb((s+ 1) mod 2)

A hardware realization of such a bus interface has obviously to deal with the following
three problems [PM11].

5.2 Low-Level Transmission Correctness

To establish a TDMA-based communication scheme as described in Chapter 3, we need
to ensure that in the beginning of every round a synchronization signal can be trans-
mitted from the master to all slaves.

This milestone is covered by the improved Theorem 2 presented in Chapter 4. Theo-
rem 2 shows that at least one digital bit can be transferred from the sender ECU to any
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directly connected receiver ECU. This result abstracts the bus assuming that the analog
output of the sender is directly connected to the analog input of the receiver. The cor-
rectness of the transmission of one single bit is enough to verify that a synchronization
can be established if the bus contains an idle value.

5.3 Bus Control Correctness

At the start of each round ECUs exchange synchronization messages in order to syn-
chronize clocks according to some protocol. Non-trivial protocols based on Byzantine
agreement are used if one wants to provide fault tolerance against failures of some
ECUs. Without fault tolerance a single synchronization message broadcast from a mas-
ter ECU suffices at the start of each round.

Note however that synchronization messages need to be transferred. The natural
vehicle for this transfer is the bus. Obviously, to show transmission correctness of a
message in slot s during the transmission window W (s), we not only need to ensure
a correct schedule execution by every ECU and correctness of the message protocol
implementation on sender and receiver. We also have to show, that during W (s) all
non-sending ECUs are producing an idle bus value, ensuring a collision-free message
transfer by the sender ECUsend(s):

∀t ∈W (s) : bus(t) = OutS,send(s)

While this lemma is trivial, showing the hypothesis requires not only to show that the Su
have constant value 1 in the digital model for u 6= send(s). One has also to establish the
absence of spikes by showing (in the digital model) that clocking of these registers is
disabled in the transmission window, which depends on the correct schedule execution.

Moreover, most importantly, the correct schedule execution in round r hinges on
the correct synchronization at the beginning of round r, which in turn depends on the
absence of bus contention during the time of synchronization, and this again depends
on correct schedule execution in round r − 1.

Thus, clock synchronization hinges on message transfer (at least for the synchroniza-
tion messages), message transfer on bus contention control and bus contention control
on clock synchronization. Any theorem stating in isolated form the correctness of clock
synchronization, bus contention control or message transfer alone must use hypotheses
which break this cycle in one way or the other. If the theorem is to be used as part of
an overall correctness proof, then one must be able to discharge these hypotheses in
the induction step of a proof arguing simultaneously about clock synchronization, bus
contention and message transfer. A paper and pencil proof of this nature can be found
in [KP07].

That is, we need to argue inductively simultaneously about the correct schedule
execution by all ECUs in a round, and about the subsequent correct bus value until
the next synchronization. The corresponding theorem and its proof are presented in
Chapter 7.

A bus architecture with a fixed TDMA-based schedule with bus contention control
– verified this way – provides us with a bus framework for any message transmission
protocol. That is, the provided bus controller implementation can be instantiated with
an arbitrary message protocol and the bus contention control property would not be
affected. The message exchange correctness of a new protocol would only require to
verify the hardware executing the new protocol.
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5.4 High-Level Transmission Correctness

Having the bus contention under control, we know, that during the entire transmission
window of every slot s the bus value is equal to the output of the sending ECU. And
since the bus value is sampled by every ECU during a transmission window W (s), it
remains to show, that the content of sending buffer ECUsend(s).sb(s mod 2) will be cor-
rectly encoded and transmitted during the transmission window on the sender side, and
that it will be correctly received and decoded on the receiver side, respectively.

The message transmission depends on the low-level transmission of a single bit (Sec-
tion 5.2) and will be implemented as follows. If a message m[0 : ` − 1] consisting of `
bytes is transmitted, then the sender inserts at the start of each byte m[i] so called sync
edges into the message. Then, the sender puts each bit of the modified message n times
on the bus. The purpose of the sync edges is to permit the receiver a low-level clock syn-
chronization. Because sync edges occur at regular intervals, the receiver knows when
to expect them in the absence of clock drift. If a sync edge before byte m[i] occurs 1 re-
ceiver cycle earlier/later than without clock drift, then the receiver knows that his clock
has slipped/advanced against the sender clock and adjusts the cycles when it samples
the m hardware bits belonging to the same n copies of a message bit accordingly.

The final statement 4 we aim at is clearly a theorem about message transfer using
such a mechanism. Hardware devices performing such a transfer are called serial inter-
faces. Correctness theorems about serial interfaces assume a single sender in one clock
domain directly connected by a wire to a single receiver in a second clock domain. The
correctness of the serial interfaces used in our case study is presented in Chapter 8.
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CHAPTER

SIX

BUS CONTROLLER
IMPLEMENTATION

In this chapter we will present and explain the crucial parts of the implementation of the
studied bus controller and how we model computations of the bus controller hardware
over sequences of cycles. Roughly, the bus controller design of a time-triggered system
with a TDMA-based communication can be split into two parts.

The first part of the design are the implementations of the scheduling and synchro-
nization protocols presented in Chapter 3. The correctness and functionality of both
protocols have a circular dependency on each other and cannot be discussed in isola-
tion.

The second part of the design are serial interfaces – the implementation of the actual
message transmission protocol. Obviously, a choice of a concrete message protocol has
no impact on the first two protocols as long as all assumptions about serial interfaces
are met, e.g., that the Receive Unit initiates a signal to the Scheduler after the reception
of the synchronization message. The correctness of the message protocol will be applied
after the correctness of the first part of the design is established.

Moreover, the fully digital computation model of the presented hardware can be
extended with the DRM model presented in Chapter 4 and combined with the Bus Model
from Section 4.4, interconnecting several asynchronously working bus controllers.

This chapter is structured in the following way. In Sections 6.1 and 6.2, we explain
how we model the distributed computations ofN ECUs using a local computation model
of a single ECU. In Section 6.3, we discribe the top-level view of an ECU, explaining the
datapaths between the major building blocks. Section 6.4 contains the implementation
of the Scheduler circuit, which maintains states of an ECU realizing the execution of
its schedule in each round if a synchronization message was sampled. In Section 6.5,
we explain the used message protocol and show its hardware realization. Finally, in
Section 6.6 we shortly describe the deploying of the presented implementation of an
ECU on three FPGA boards.
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6.1 Distributed Computation Model

Our verification is supported by automated tools, which require us to model all hard-
ware computations in terms of traces (Section 2.2). We model parallel computations of
N ECUs as follows.

Assumption 4 (N Computation Traces). Assume SECU is a set of all possible hard-
ware states of an ECU, where each state is defined by the contents of its registers. Let
ecus : N → (N → SECUs) be a function, which returns for every i < N a trace function
corresponding to the i’th ECU. Let inputs : N → (N → B2) be a function, which returns
for every i < N a mapping from local hardware cycle to the ECU inputs in this cycle.
We are interested in the two boolean signals, which are part of the input returned by
function inputs for some given cycle c: (i) the reset signal: inputs(i)(c).reset, (ii) and
an input from the bus to the bus controller inputs(i)(c).bus_value. Moreover, we as-
sume that ecus returns for every i < N a valid trace execution function in terms of
Section 2.2:1

∀i < N : inputs(i)(0).reset = 1 ∧
∀n ∈ N : ecus(i)(n+ 1) = δECU (ecus(i)(n), inputs(i)(n))

Thus, ecus(i)(j) corresponds to the hardware state of ECUi in cycle j and will be
abbreviated by ECU ji :

ECU ji = ecus(i)(j)

Furthermore, we abbreviate all signals inputs(u)(i).x denoting the value of the input
signal to the bus controller from the bus or the processor of ECUu in cycle i by xiu.
Sometimes, we omit the cycle index, writing xu (or even only x) if we want to refer to
the signal in general and not in the context of a concrete cycle or a concrete ECU.

Since we will not present the proofs in a very detailed and technical way, we will not
specify the entire implementation of next step function δECU limiting it to crucial parts
only.

6.2 ECU Computation Model

The schematic top-level implementation of ECUi is presented in Figure 6.1. The hard-
ware state of ECUi in cycle j is defined by a tuple of hardware states in cycle j of its
processor and a corresponding automotive bus controller:

ECU ji = (pji , abc
j
i )

Before we go into the detailed explanation of the functionality of single components, we
concentrate first on the modeling of the computational progress of the entire ECU.

As the name suggests, the bus controller is used by the processor to communicate
with other ECUs over the bus. On the ISA-level, the bus is not directly accessible for
the processor. Instead, the processor communicates with the bus controller via its in-
ternal memory-mapped protocol, whereas the protocol is implemented in the processor
interface circuit.

The bidirectional communication between the processor pi and the bus controller
abci consists of transmissions of the following signals:

1W.l.o.g., instead of requiring ecus(i)(0) to be an initial state, we require input(i)(0) to provide a reset
signal.
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1. in the very first cycle the processor sends (by writing to an I/O-port) a reset signal
reset to the bus controller reseting all other registers to necessary idle values;

2. then the processor initializes its bus controller by writing configuration parame-
ters to the configuration registers;

3. after the configuration phase is over, the processor sends (by writing to an I/O-
port) a signal setrd (set ready) to the bus controller, indicating, that the bus con-
troller can start its local work;

4. finally, during a system run, the processor recurrently passes to the bus controller
the messages to send and reads the received messages.

Thus, potentially, the processor and the bus controller produce some output to each
other in every cycle, e.g., if processor reads from a receive buffer.

Let p_out(pji ) denote the output of pi in cycle j for the bus controller abci. Let
abc_out(abcji ) denote the output of abci in cycle j for the processor pi. As mentioned
before, the hardware state of ECUi in cycle j + 1 depends not only on the hardware
state of its components in cycle j, but also on the external signals like reset or the
signal coming from the bus value bus_valuej , which was sampled during the cycle j:

ECU j+1
i = δECU (ECU ji , inputs(i)(j))

The computation of the next hardware state of ECUi can be split into two next step
functions: the processor next step function δp and the bus controller next step func-
tion δabc:

δECU (ECU ji , inputs(i)(j)) = (δp(p
j
i , inputs(i)(j).reset, abc_out(abc

j
i )),

δabc(abc
j
i , inputs(i)(j).bus_value, p_out(p

j
i )))

Thus, we separately compute the next hardware state of the processor in dependence
of the reset signal and the bus controller’s output, and the next hardware state of the
bus controller in dependence of the processor’s output and the value, sampled from the
bus.

The input from the bus bus_value will be computed as follows. From Section 4.4 we
know, that in a digital bus model we would compute:

abciu.R = bus_valuei−1u = dig(bus(eu(i)))

Hence:
bus_valueiu = dig(bus, eu(i+ 1)) (6.1)

Since the studied bus controller should not depend on the architecture of its host
processor, we do not specify a concrete processor state pi, the computation of the func-
tion inputs and the implementation of its next step function δp.

We assume, that the processor initiates a reset signal, writes correct configuration
parameters and sends a signal p_out(pji ).setrd (we abbreviate this signal by setrdji from
now on) to its bus controller afterwards. Then we are able to verify, that the bus con-
troller i is able to broadcast the content of its send buffer to the receive buffers of all
other ECUs in every slot s of all rounds r with send(s) = i. The argumentation about
the processor’s correct filling of the send buffers or reading of the receive buffers has
no impact on the correctness of the message exchange executed by the bus controller.
Thus, in this thesis we only specify a hardware implementation of the bus controller,
which comprises a hardware state and the next step function δabc.
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Figure 6.1: Top-level Datapaths of ECUi

Assumption 5. (reset and setrd signals) Let ECUi be an arbitrary ECU. Then, the reseti
signal will be activated in cycle 0 only; the setrdi signal will be activated eventually.

reset0i = 1 ∧ (∀x > 0 : resetxi = 0) ∧ ∃j > 0 : setrdji = 1

6.3 ECU Datapaths

The dashed components in Figure 6.1 represent abstracted components of the imple-
mentation. The implementation of the Processor Interface module depends on the pro-
tocol used by the processor and initiates only reads and writes to the RAMs and regis-
ters located in the send buffers, receive buffers and configuration registers. As in the
case of the processor, a particular implementation of this module is irrelevant for the
communication protocol, under the assumption, that all configuration registers will be
filled with valid parameters until the end of the configuration phase.

The Scheduler is the main control block of the bus controller and consists of a control
automaton, slot and cycle counters. It computes the internal state of the controller. The
Scheduler uses configuration register values, which specify the number of cycles for
different phases in the schedule of an ECU. Moreover, the Scheduler communicates
with the serial interfaces of the controller: Send and Receive Units.

If the ECU enters a slot, where it acts as a sender, the Scheduler activates the
Send Unit. The Send Unit reads out messages from one of two send buffers, encodes
them according to the chosen message protocol as described in Section 5.4. That is,
the sender wraps the message with sync edges and puts each bit of the message for n
cycles into the send register S. As mentioned before, the sync edges are necessary to
allow the low-level synchronization of serial interfaces. The replication of every bit on
the sender side and a majority voting on the receiver side makes the message protocol
fault-tolerant against random (but bounded) signal distortions leading to bit flips during
the low-level transmission. After the entire message was transmitted, the Send Unit
returns to its idle state and remains there as long as the ECU acts as a receiver.
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The Receive Unit is responsible for receiving messages from the bus. After every
sampled bit goes through registers R and R̂, the Receive Unit first eliminates the re-
dundancy, built in by the sender, using a majority voter. Besides this, it synchronizes
its internal automaton to the protocol flow after each sampled byte of the transmitted
message by recognizing the sync edges. Then, every sampled byte is moved into the
receive buffer to be read out by the processor later.

The communication of the Scheduler with the Receive Unit is bidirectional. In the
beginning of a new round both the Scheduler and the Receive Unit are looping in an idle
state. The Receive Unit stays idle until it notices an active signal on the previously idle
bus. This signal comes with the very first bit of the very first message of a round sent by
the master, which simultaneously serves as the synchronization message. The Receive
Unit sends then a signal to the Scheduler indicating that a synchronization signal was
received. Subsequently, the Scheduler starts the execution of a round-based schedule
consisting of N slots. At the end of each slot, the Scheduler resets the Receive Unit by
setting its control automaton to an idle state. This ensures that the reception of the next
message will not be missed by the Receive Unit. In the remaining part of this chapter
we will present a schematic implementation of all non-dashed units from Figure 6.1.

Conventions Besides this, we will introduce predicates, indicating certain hardware
states, which we will argue about later. For convenience, we will refer to the bus
controller of ECUu by abcu. We will refer to register x of controller abcu in cycle i by
abciu.x or by xiu. We will omit the cycle index i or the ECU index u if the context of
the cycle or of the ECU is irrelevant or clear. Moreover, for simplicity, in all figures
presenting parts of the bus controller implementation or control automaton, we will
omit the depicting and effects (in case of automaton) of the reset signal, since this
signal is supposed to stay inactive during an ordinary system run. Note, that in full
implementation, every crucial register (like receive registers) will be set to idle values
if reset signal gets active.

6.4 Scheduling And Clock Synchronization Protocols

Implementation

The implementation of the bus controller consists of a Scheduler, which is fully compat-
ible with the TDMA-based communication presented in Chapter 3. Thus, the Scheduler
module of the bus controller is the actual implementation of the Scheduling and the
Clock Synchronization protocols.

6.4.1 Configuration Registers Module

The Configuration Registers module is depicted in Figure 6.2. The module has three
inputs: (1) write enable signal crwe, (2) unary coded write address crwa and (3) and data
input crdin. These inputs are used in an obvious way to update the register contents
with the following bitvectors:

1. ns ∈ [0 : 63] represents the number of slots in a round, which is the number N
from Chapter 3;

2. l ∈ [0 : 1023] represents the message length in bytes;
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Figure 6.2: Configuration Registers

3. off ∈ [0 : 232 − 1] represents the length (in cycles) of the offset at the start and at
the end of every slot;

4. T ∈ [0 : 232 − 1] represents the length of a regular slot in cycles;

5. iwait ∈ [0 : 232 − 1] represents the amount of cycles, which the master ECU has to
wait in state iwait;

6. sendli ∈ B64 is a bitvector containing a unary mask denoting for a slot s < ns that
ECUi is a sender in slot s if and only if sendli[s] = 1.2 Note that we check whether
an ECU is the master by evaluating sendli[0] = 1.

The configuration registers will be updated by Processor Interface module in the
configuration phase and never changed after this. In the following proofs, we will refer
to each register x by abc.CR.x.

Note that all registers except for two registers containing the sendl bitvector will be
initialized with the same parameters. The sendl bitvector will be initialized on all ECUs
such that in every slot exactly one ECU is sending.

Moreover note that since all counters start counting with 0, all registers containing
bitvectors interpreted as number values (ns, l, off , etc.) actually contain the corre-
sponding numbers decremented by one.

Note that our bus controller design [Kna08] assumes, that there are exactly ns slots
in a round and ns ECUs in the bus network. Hence, in every slot exactly one ECU is
sending and every ECU sends once in each round. From now on, we will use number
ns instead of N .

In the remaining chapters of this thesis we will refer to the values of the presented
registers as natural numbers, skipping technical details of converting natural numbers
to bitvectors and vice versa.

2For simplicity, we consider one register abc.CR.sendl ∈ B64 instead of two 32-bit parts as in the actual
implementation.
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4.4 Hardware
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Figure 4.7: Overall schematic of the schedule environment

Lemma 4.6 (Delay of the startedrcv signal)
Given that the shift register shi[3 : 0] consists of ones, the receive automaton is in the

idle state (rcvidle), and the second receiver register R̂ is equal to the TSS for the next
seven cycles, R̂i+[0:6] = TSS = 0. Then the startedrcv signal becomes active two cycles
after the first zero. Formally:

�
rcvidlei ∧ (shi[3 : 0] = 14) ∧ (R̂i+[0:6] = TSS )

�
=⇒ startedrcvi+2

Similar to the proof of the sender delay, this lemma is also proven directly on the
hardware implementation.

4.4.2 Schedule Environment

Figure 4.7 shows the overall schematic of the schedule environment. As mentioned,
it consists of a control automaton and two counters, one for the current slot and one
for the current hardware cycle within the slot. The environment provides the following
outputs:

• startsnd ∈ B signals that the send environment has to start the message trans-
mission.

• p ∈ B is a parity bit which signals if it the current slot is even or odd
(slot mod 2 = 0). This signal is needed within the detailed implementation of
the send and receive buffers.

In the following, we specify the control automaton and implement the counters.

29

reset_ru

1—

Figure 6.3: Datapaths of the Scheduler Module [Böh07]

Assumption 6 (sendl Register Value). The register abci.sendl will be initialized with
a unary bitvector sendli, which is different for all ECUs. The master (ECU0) gets the
bitvector 0631, thus it’s sending in the first slot.

∀i < ns : sendli is a unary bitvector of length ns ∧ sendl0[0] = 1 ∧
∀j ∈ [0 : 63] : sendli[j] = 1→ ∀k < ns : k 6= i→ sendlk[j] = 0

6.4.2 Scheduler Module

All ECUs share the same Scheduler module. In Figure 6.3 the top-level datapaths of
the Scheduler module are presented. It consists of thee submodules: (1) Cycle Counter
module cycle, (2) Slot Counter module slot and (3) Control Automaton scontrol.

Cycle Counter Module

The cycle counter module counts the local hardware cycles and is implemented as de-
picted in Figure 6.4(a). The module has a bidirectional communication with the Sched-
uler Automaton. The cycle counter module signals if the counter abc.cycle value reaches
one of the configuration register values: off , T or iwait. In every of these three cases it
initiates a corresponding signal to the control Automaton of the Scheduler:

• signal eqiwaiti is active if the counter value is equal to input value iwait:3

eqiwaiti ⇔ abci.cycle = iwait− 1

• signals eqoff i and eqT i are defined in the same manner.

Moreover, the Control Automaton of the Scheduler controls the cycle counter module
by three signals.

3Remember, all counters start counting with 0.
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Figure 6.4: Implementation of the Slot Counter and the Cycle Counter Modules

• inccyclei signal increments the cycle counter by one in the next cycle:

inccyclei ⇒ abc.cyclei+1 = abci.cycle+ 1

• clrcyclei sets the cycle counter to zero:

clrcyclei ⇒ abci+1.cycle = 0

• setoff i sets the cycle counter to off :

setoff i ⇒ abci+1.cycle = off

Slot Counter Module

The Slot Counter module is implemented as depicted in Figure 6.4(b) and has the fol-
lowing functionality. It outputs three signals:

1. eqnsi which is active if the slot counter is equal to the configuration value ns:

eqnsi ⇔ abci.slot = ns− 1

2. the parity bit p is just the least significant bit (index 0) of the slot counter value,
which is equivalent to the stored value mod 2:

pi = abci.slot[0]

3. sendlcuri indicates whether the bus controller is acting as a sender in the current
slot:

sendlcuri = sendl[〈abci.slot〉]

The Slot Counter module is controlled by the Control Automaton with two input signals:
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Figure 6.5: Scheduler Automaton

1. incsloti causes an incrementation of the counter in the next cycle:

incsloti ⇒ abci+1.slot = abci.slot+ 1

2. ¬incloti ∧ clrsloti sets the slot counter to zero:

¬incloti ∧ clrsloti ⇒ abci+1.slot = 0

Control Automaton

The control Automaton of the Scheduler computes the next state according to the cur-
rent state and its input signals. We will refer to the state of the Scheduler Control
Automaton of ECUi in cycle c by abcci .state. The signals eqiwait, eqoff , eqT , eqns and
sendlcur are coming from the Slot and Cycle Counters. The signal startedrcv will be
sent by the Receive Unit at the reception of a synchronization signal. The signal setrd
will be initiated by the Processor Interface at the end of the configuration phase. Finally,
the Automaton reads the least significant bit abc.sendl[0] of the configuration register
abc.sendl, which indicates whether the ECU is the master or not. The schematic rep-
resentation of the Scheduler control Automaton is depicted in Figure 6.5, where every
transition between two states is an edge annotated by labels of the form:

a0 ∧ . . . ∧ an−1 : b0, . . . , bn−1

or simply
a0 ∧ . . . ∧ an−1

Here, the a’s are predicates whose conjunction causes the transitions and b’s are pred-
icates getting active at the cycle of the transition.

By our assumption, every ECU will be reset in its very first cycle. After this initial
reset signal, all ECUs are in state idle. They remain in this state during the entire
configuration phase (¬setrd = 1). After all configuration registers are written, the
operating system running on the processor initiates signal setrd, which forces all ECUs
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to change either to state iwait if the ECU was configured as master (sendl[0] = 1),
or to state rcvwait otherwise. The master stays in state iwait for iwait cycles, until
the cycle counter reaches this value and the signal eqiwait gets active. Assuming that
all ECUs are started roughly at the same time, it should be guaranteed that after the
master initialization and additional iwait cycles4 all slaves are initialized and are in
state rcvwait. The size of iwait can be estimated by industrial worst case execution
time analyzers [FW99].

While slaves are still waiting for a synchronization message in state rcvwait, the
master starts slot 0 of round 0 by entering state offwait. Its slot and cycle counters
are set to 0. The master is always scheduled as sender in slot 0 (send(0) = 0), since its
message serves as a synchronization signal for all slave ECUs. After off cycles in state
offwait, the master starts broadcasting of its message going through state startsnd.
The first bit of the message should be the non-idle value ‘0’. This bit serves as the
actual synchronization signal for all slaves, listening to the idle bus containing only ‘1’
(since no one else is sending). Note that at the start of the message broadcast, the cycle
counter of the master contains number off .

Slaves get into state rcvwait not only after the initialization but also after the end
of each round to wait for the next synchronization message. As mentioned before, the
signal rcvwaitwill be sent by the Receive Unit to the Scheduler as soon as it samples the
first active signal on a previously idle bus (at the end of a round). When this happens,
the Scheduler Automaton switches to state Twait and resets the slot counter, since a
new round is started. But the cycle counter will be set to off , which is the local time of
the master at the moment of the synchronization, thus synchronizing its own local time
to it.

In state Twait each ECU waits until signal eqT gets active, which happens if the
cycle counter reaches number T − 1. In state Twait every ECU is sending or receiving,
depending on its role in the current slot. After the slot ends (eqT = 1), a slave ECU
(¬sendl[0] = 1) either switches back to rcvwait if the maximal number of slots in a round
is reached (eqns = 1), or to state offwait if not all slots of a round are accomplished
(¬eqns = 1). Every leaving of state Twait denotes the end of a slot. The Scheduler
Automaton generates a signal reset_ru which sets the Receive Unit to its idle state and
resets all crucial registers to an idle value. Until that point the message reception
should be finished on all slaves. Signal reset_ru is computed by the Scheduler module
as follows:

reset_rui ≡ abci.state = Twait ∧ abci.cycle = T − 1 (6.2)

In offwait, all ECUs are waiting for off hardware cycles until eqoff = 1. This is
the waiting time (cf. Section 3.4) at the start of every slot, which is necessary due to
clock drift to guarantee that all ECUs have started the current slot. Afterwards, if the
ECU is a sender (sendlcur = 1) in the current slot, the Scheduler sends startsnd signal
to the Send Unit going through state startsnd. This signal activates the Send Unit
which start a message broadcast. Otherwise (¬sendlcur = 1), it switches directly to
state Twait again.

The master ECU (sendl[0] = 1) acts as a sender in the first slot of each round. After-
wards, it switches as a receiver between states offwait and Twait during remaining
ns− 1 slots.

Note that in states iwait, offwait, startsnd and Twait the control automaton
keeps the signal inccycle active. This causes incrementation of the cycle counter in

4Actually, even iwait+ off cycles would work.
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Sequence Value Comment
TSS 01 Transmission Start Sequence
BSS 10 Byte Start Sequence
TES 01 Transmission End Sequence

Table 6.1: Sync Edged of the Message Protocol

all of these states.

6.5 Message Protocol

Before we start with the implementation of serial interfaces, we will first explain the
message protocol used in the studied architecture.

Assume, that l is the message length in bytes of the message m, which has to be
transmitted over the bus. Since the sender and receivers’ clocks are constantly drifting
apart, we cannot stream the entire message without resynchronizing the serial inter-
faces of both parties of the communication protocol. Let function f denote the encoding
function, and mi the i’th byte of m with 0 ≤ i ≤ l − 1. We encode the message m by
inserting at the beginning, at the end and before every byte special bit sequences called
sync edges. They are listed in Table 6.1 and are used as follows:

f(m) = TSS ◦BSS ◦m0 ◦BSS ◦m1 ◦ ... ◦BSS ◦ml−1 ◦ TES

Thus, the encoded message starts and ends with bits ‘01’. Every byte starts with a
sequence ‘10’. Since the message is always transmitted when no other ECU is sending
and the bus contains idle value ‘1’, by bus construction, the message reception on every
ECU starts with a falling edge, produced by TSS[0] = 0.

The encoded message f(m) contains exactly 4 + 10 · l bits: TSS and TES produce
4 bits together and every byte with a corresponding BSS yields 10 bits. However, as
mentioned before, along the lines of FlexRay specification, we replicate every bit of the
encoded message 8 times on the bus. This provides a fault-tolerance against random
but bounded bit jitters during a message transfer. Hence, the transmission length tl

can be computed as:
tl = 8 · (4 + 10 · l) = 32 + 80 · l

However, this is the length of the plain transmission of the encoded message f(m) with
every bit replicated 8 times. The entire message transmission from the Send Unit of
the sender to the Receive Unit of the receiver lasts tl + 9 sender cycles [Böh07]. The
additional 9 cycles are caused by local register delays of the serial interfaces and effects
of the clock domain crossing signal transmission. The output signal enters the bus 2
cycles after the Send Unit starts the broadcast. The Receive Unit of the receiver will
need 6 additional cycles to process the sampled signal. The latter delay is caused by
eliminating the 8-bit replication built in by the sender and will be explained later in this
chapter. The remaining delay cycle might result on the side of the receiver in case of a
not correctly sampled bit at the start of the transmission (see Definition 8).

Thus, the amount of transmission cycles tc needed to transmit an encoded repli-
cated message from the Send Unit of the sender to the Receive Unit of the receiver is
computed as follows:

tc = tl + 9 = 41 + 80 · l
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Figure 6.7: Send Unit Control Automaton

In the next two sections we will present the implementation of serial interfaces for
the introduced protocol: the send and Receive Units. We will not show the entire imple-
mentation, but we will concentrate on the most important parts of their functionality.

6.5.1 Send Unit

The datapaths of the Send Unit are depicted in Figure 6.6. It has an input signal and two
input buses, and it has two output signals and an output bus. The Send Unit consists
of three submodules: (1) Control Automaton, (2) Address Computation and (3) Output
Computation. Input signal startsnd manipulates the Control Automaton. The Address
Computation module takes the message length l from the corresponding configuration
register and generates memory address ra for the send buffer. The Output Computation
module is depicted in Figure 6.8 reads a byte sb.dout returned by the send buffer for
the generated address ra. Afterwards, according to the state of the Control Automaton,
one of the bits of sb.dout byte, or one of the sync edges of the protocol will be output as
Sin, which is the input of the send register S. The clock enable signal Sce of register S
gets active every 8 cycles.

The Control Automaton module is the control logic of the Send Unit and is schemati-
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Figure 6.8: Output Computation Module with Send Register S

cally depicted in Figure 6.7. The Automaton implementation is straightforward; it sends
to the Output Computation module three signals:

• 1-bit signals se1, se2, which are used to produce sync edges of the message proto-
col;

• a unary bitvector b[7 : 0] will be produced as output in every state byte[i], such
that b[i] = 1 (not depicted in Figure 6.7).

According to this information, the Output Computation module either produces one
of two bits of a sync edge or choses which bit will be clocked into the send register S as
depicted in Figure 6.8. Every transition from one state to another is triggered by output
signal nextbit of the Output Computation module every 8 cycles, hence, the Automaton
stays in every state for 8 cycles.

After the initial reset activation and before every transmission the Automaton is idle.
While signal startsnd remains inactive, the Automaton does not leave its idle state.
If the signal gets active, the Send Unit starts with the protocol execution according
to Section 6.5. Besides this, the Address Computation module signals to the Control
Automaton whether the last byte of the message was sent (done = 1). In this case the
message transmission will be finished and the transmission end sequence TES will be
generated.

In proofs, we will refer to the state of the Send Unit Control Automaton of ECUi in
cycle c by abcci .sstate.

6.5.2 Receive Unit

The Receive Unit has a more sophisticated design. As depicted in Figure 6.9 it has
three input signals, four output signals and consists of five modules and a shift register
abc.Byte of length 8.
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Figure 6.10: Receive Unit Control Automaton

The Address Computation module has the same functionality, as the identically
named module of the Send Unit. It takes the length l in bytes of the transmission
message and computes addresses for the receive buffer.

As depicted in Figure 6.10, the control Automaton of the Receive Unit has the same
states as the control Automaton of the Send Unit and is used to keep track of the
protocol run. Every transition will be triggered by the Synchronizer circuit (see Fig-
ure 6.11(b)) activating signal strobe every 8 cycles except for one state. As we will de-
scribe later, the Synchronizer resets its cycle counter before the reception of every byte
in state BSS[1]. Note the Automaton does not return into the idle state after the end
of a transmission. Instead, it remains non-idle until it will be reset by the Scheduler at
the end of a slot (reset_ru gets active). This makes the entire system more robust, since
it prevents the Receive Unit from false start after the message transmission in some
slot s and before the slot s was accomplished on the Scheduler. This could happen,
because the Receive Unit is not inevitable aware of the internal state of the Scheduler.
In our design, the Receive Unit starts with a message reception as soon as it is idle and
notices a bus activity. The message transmission lasts tc cycles, which is a sub-interval
of an entire slot (remember, slot length is T with T = 2 · off + tc). Thus, by locking the
Receive Unit in a non-idle state after the transmission, we only have to argue about the
idle bus value beginning from the slot end and not from the transmission end.
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Figure 6.11: Redundancy Elimination and Synchronizer Circuits

The Redundancy Elimination module takes the output of the second receive register
R̂ and tries to recognize the bit, whose replication was sent over the bus. The imple-
mentation of that module, together with the Byte buffer and both receive registers is
depicted in Figure 6.11(a). As described in Section 4.4 the digitized bus output goes
directly into the first receive register R. The output of R will be immediately clocked
into register R̂, and afterwards it will be shifted through the shift register abc.sh, which
consists of four nested (always clocked) 1-bit registers abc.shi, i < 4, s.t.:

∀c : abcc+1.sh0 = abcc.R̂ ∧ ∀i ∈ [1 : 3] : abcc+1.shi = abcc.shi−1

Hence, the Receive Unit has a shift register, containing the last five bits sampled from
the bus. As depicted in Figure 6.11(a), both receive registers R and R̂ as well as the
shift register abc.sh will be set to the idle value ‘1’ every time the Receive Unit will be
reset by the active reset_ru signal.

The 5-bit majority voter circuit outputs the most frequently appearing bit v among
register abc.R̂ and shift register abc.sh. The output of the majority voter goes then
through the shift register abc.Byte. In contrast to the shift register abc.sh, the shift
register abc.Byte is clocked only if the signal strobe gets active.

The strobe signal is computed by the Synchronizer Circuit depicted in Figure 6.11(b).
The Synchronizer Circuit tracks the voted bit v, and counts the number of passed cycles,
constantly incrementing the value of a 3-bit register abc.bitcon. Signal strobe gets active
every time abc.bitcon reaches the value ‘010’, which corresponds to 2. After the value
‘111’ (corresponds to 7), the counter value gets 0. Thus, in most cases, the strobe signal
gets active every 8 cycles. However, it will be reset in two cases.
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If the voted bit v changes its value from 1 to 0 and the Control Automaton of the
Receive Unit is idle (r_idle = 1), then a new message reception is started. In this case
the Synchronizer also initiates signal startedrcv to the Scheduler module.

In the second case, if the Receive Unit is about to start the sampling of a new byte
(Receive Automaton is in state BSS[1]), the cycle counter will be reset to adjust the
Receive Unit to the protocol flow. This is necessary, since by Lemma 3 the Receive Unit
might have been drifted away from the Send Unit by 1 cycle during the reception of
previous byte, which lasts exactly 80 cycles.

Thus, the strobe signal gets active every 8 cycles roughly in the middle of 8 sampled
sender bits. Therefore, shift register abc.Byte consists eight values of the most voted
bit v, which are exactly the sent bits.

The Receive Buffer WE Control module is responsible for the computation of the
write enable signal of the Receive Buffer. Thus, every time, the output signal we gets
active, the output signal rb.din (the content) of the shift register abc.Byte will be writ-
ten to the Receive Buffer at the address wa. By construction of that module, the we

signal gets active every time the Control Automaton leaves state byte[7], denoting the
reception of the last bit of the currently transmitted byte.

6.5.3 Send and Receive Buffers

The Send Buffer construction is depicted in Figure 6.12(a).
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Figure 6.12: Buffers Construction

It consists of two byte-addressable RAMs abc.SB[0] and abc.SB[1] storing bitvectors
of length 32. As inputs it has:

• read address ra[9 : 0] specified by the bus controller to read out byte-wise the
message to send;
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• write address wa[7 : 0] and write enable signal we specified by the processor while
the buffer is filled with a message to send;

• data input din[31 : 0] specified by the processor – note the processor writes the
messages word-wise5;

• parity bit p specified by the Scheduler module denoting whether the current slot
is odd or even (p = s mod 2).

The parity bit p routes all write accesses (made by processor only) to the buffer
abc.SB[¬p]. All reads (made by bus controller only) are routed to the buffer abc.SB[p].
Thus, in every slot, the bus controller and the processor are accessing one of the send
buffers exclusively. This allows us to overlap on one ECU the local work of the processor
with communication over the bus of the bus controller. The Send Buffer has only one
output sb.dout[7 : 0] which is used by the Send Unit.

The Receive Buffer consists of 8 byte-addressable RAMs, storing bytes. Its design is
depicted in Figure 6.12(b). It has following input signals:

• read address ra[7 : 0] used by the processor to read out received messages word-
wise;

• write address wa[9 : 0] and write enable signal we computed by the Receive Unit
at the byte-wise messages reception;

• data input rb.din[7 : 0] provided by the Receive Unit;

• parity signal analogously to the Send Buffer.

As in the Send Buffer, writes by the Receive Unit and reads by the processor are routed
to different RAMs. The single output of the Receive Buffer dout[31 : 0] is then used by
the processor to read out the received messages.

6.6 Deploying on FPGAs

An experimental deploying of the bus controller on three FPGAs (Figure 6.13) with a
self-implemented bus was supervised during this work and was reported in [End09,
EMST10]. In this work, two different kinds of FPGAs were used: two of three FPGA
boards of type Spartan-3 and the third one of type Virtex-2.

Each FPGA board has represented one single ECU. The bus was realized by two
ethernet cables, connected to RJ45 registered jacks. The jacks were connected to each
board through an IOBUFDS driver interface, provided by the FPGA boards. Two open
ends of the bus were closed by terminal resistance (Rt = 100Ω). As a processor a simple
version of the VAMP architecture [MP00] was used.

To test the system, a simple assembler program was written, which has configured
the FPGAs imitating a simple operating system. The message transmission was tested
with help of on-board signal analysis. Besides this, simple signal transfer was realized
by switching of eight DIP-switches on the sender FPGA to generate a one byte message,
which was displayed on eight LEDs built-in on the receiver FPGAs.

During this work numerous bugs in the implementation of the configuration routine
were discovered and fixed.

5Here a word contains 4 bytes.
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Abbildung 3.7: Aufbau des Bussystems

eine Referenzspannung von 3,3V angesteuert und somit konnte an Bank
0 kein LVDS-Signal mit einer Referenzspannung von 2,5V erzeugt werden.
Daher musste das Virtex-2 Board über ein Breakout Module H294-APPS-
AVL1-3101-A [AVN06] angeschlossen werden. Die Buchsenleiste wird dabei
auf dem Breakout Module an die Pins 1 bis 20 des JP2 Headers angeschlos-
sen. Analog zum Spartan-3 Board mussten daher die Pins 13 und 16 hoch-
ohmig geschaltet werden.

3.3.5 Potenzialausgleich

Die Spannungsversorgung der FPGA-Boards geschieht über Netzteile. Da
jedes Board über ein eigenes Netzteil versorgt wird, besteht zwischen ihnen
eine nicht zu vernachlässigende Potenzialdifferenz. Um diese zu minimieren
wurden die Bezugspotenzialen (GND) der Boards miteinander verbunden.
Da die Differenz zwischen den Bezugspotenzialen mit 80-120mV klein genug
waren, konnte dies durch den beidseitig aufgelegt Schirm des Netzwerkka-
bels geschehen. Damit die dabei entstehenden Ausgleichsströme nicht über
das FPGA fließen, wurden dazu vorhandene GND-Pins auf den Boards ver-
wendet, die nicht mit dem FPGA verbunden sind. Über diese Verbindung
konnte erfolgreich ein Bussystem wie in Abbildung 3.7 dargestellt aufgebaut
werden.

3.4 Bussystem

Für die Realisierung des Bussystems auf den FPGA-Boards wurden unter-
schiedliche ECUs und weitere Bauteile benötigt. In diesem Kapitel werden
zunächst alle weiteren Bauteile beschrieben, die für den Aufbau des Pro-
totyps implementiert wurden. Im darauffolgenden Abschnitt wird die Pro-
grammierung der einzelnen ECUs beschrieben.

Figure 6.13: Three FPGAs Interconnected by a Bus [End09]
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CHAPTER

SEVEN

VERIFICATION OF BUS
CONTENTION CONTROL

In this chapter we will establish formally the correctness of the bus contention control
during the transmission times of all slots. That is, we will show for all ECUs executing
the same schedule, that they always agree on a slot s during the corresponding trans-
mission window W (s). Afterwards, we will show, that every non-sending ECUi with
i 6= send(s) produces an idle bus output during W (s). Combining this result with the
bus construction, we will conclude that during all slots of all rounds, the bus contains
the analog output of the sending ECU:

∀r, s < ns, t ∈W (s) : bus(t) = OutS,send(s)(t)

Such a proof requires a formal computation model for ns asynchronously working
ECUs, which includes a bus model developed in Chapter 4 used for signal exchange
among ECUs. Note that to prove the absence of bus contention we initially need only the
correctness of signal exchange during the transmission of the synchronization signal
from the master to all slaves. For this, Theorem 1 will be applied. The subsequent
agreement on the global time progress will then result from the construction of the
Scheduler.

Note that all proofs in this chapter are presented in extremely short form. Lots of
technical details are hidden.

This chapter is structured as follows. First we start with the description of pre-
vious work in Section 7.1. We show which parts were already verified and how they
needed to be improved and extended. In Section 7.2 we explain how we extend the se-
mantics used to model computations of single controllers in a post-configuration phase
in previous verification results, to a global semantics modeling computation of entire
ECUs during their complete sysem run starting from cycle 0. In Section 7.3 we argue
about the startup correctness on the master and slaves and explain the main assump-
tion we make on the startup routine. In Sections 7.4 and 7.5 we extend previous proofs
from Section 7.1 about the correct schedule execution in one round correctness for all
rounds. In case of a slave it requires simultaneous induction about the correct schedule
execution and bus control in the end of a round. Finally, in Section 7.6 we show the
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correctness of the bus control during every message transmission, using the correct
schedule execution for all rounds by the master and all slaves.

7.1 Previous Results and Their Improvements

In this Section we will present the results of Böhm from [Böh07]. In this work Böhm has
formally verified that the Scheduler implementation presented in Section 6.4.2 fulfills
the timing constraints with respect to a transmission window of a slot. He also has
shown a schedule execution within one round. Moreover he has shown the correct
transmission of the synchronization signal using Theorem 1.

Informally speaking, Böhm has fixed two bus controller traces: one of them belong-
ing to a master controller and one arbitrary slave. Note that his lemma uses a trace
semantics in the sense of Section 2.2 of bus controllers only and not of entire ECUs.
Hence, he assumed that all configuration registers of the controllers contain correct
values and during the entire system the configuration registers of all hardware states
are always stable; moreover, the bus controllers do not receive any reset signals from
the input function of the trace semantics. Thus, the configuration phase was abstracted
away completely.

Furthermore, he assumed, that the hardware states of the receivers are in a syn-
chronization waiting states (rcvwait) with idle Receive Units. He also assumed, that
the redundancy elimination shift register of the receives units (Figure 6.11(a)) is filled
with idle values, i.e., ones.

On the master side, he assumed that its Scheduler is in state startsnd, denoting
the start of a synchronization message broadcast. However, for some reason, Böhm
did not instantiate the bitvector bvceS of Theorem 1 with the bit list of clock enable
signals derived from the trace semantics of the sender controller. Instead, he left the
bitvector as uninterpreted data structure with the assumption about correct values of
this bivector. Hence, his original results are based on the assumption, that the clock
enable signal of the master controller are computed correctly.

Moreover, Böhm has used the original low-level transmission Theorem 1 and in-
cluded its broken assumption about the permanent direct connection of the master and
two receivers. Hence, all fixes made to Theorem 1 had to be propagated through all
results of Böhm.

Note that as in case of low-level transmission, the assumption about the direct con-
nection of the master and receivers abstracts the bus and makes the bus contention
problems irrelevant. Hence, he did not need to make any assumptions about the Send
Units of both receivers and did not need to argue about their behaviour, because no no-
tion of bus was used. So he also did not argue about the clock enable signals or analog
output of the send registers S of receiver controllers.

Thus, assuming that all the receive bus controllers are in the state of waiting for
synchronization, and that the master controller starts the broadcasting, he has shown,
that the transmission start sequence (TSS[0] = 0) will be put by the Output Computation
module of the Send Unit into the send register S for 8 cycles. Since he assumed an idle
Receive Unit with the shift register filled with ones, he could easily show the generation
of the startedrcv signal triggering the Schedulers of the receivers.

Afterwards, he argued about the correct execution of the schedule for one round
consisting of ns slots on all ECUs. This follows from the control automaton and slot /
cycle counter constructions. Finally, he has shown that in terms of global time every slot
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on every ECU starts before and ends after the message transmission of this slot. This
result did not take into account, that the analog output of the send register changes
with a two cycle delay with respect to the Scheduler state.

Besides this, all theorems of Böhm contained one too strong assumption. He has as-
sumed, that the shift and receive registers of the Receive Unit (register R, R̂ and abc.sh)
are filled with ones in cycle ξ+σu,0(c+2). Thus, he has shown, that the synchronization
might be delayed by one cycle depending solely on the value of σu,0(c+2). However, his
assumption is not fullfilled if the timing requirements of the first receive register R are
not met (σu,0(c+ 2) = 1) but the undefined value sampled into R flips to or turns out to
be the correct one. In this case the synchronization will not be delayed.

We fix it by defining a synchronization delay cycle in the next definition.

Definition 10 (Synchronization Delay). Let u and v be two arbitrary ECUs; u acts as
a receiver and v as a sender. Let c be the cycle at which ECUv changes the content of
its send register abcv.S to 0. Let ξ = cyu,v(c) be the next affected cycle of ECUu. Then
φu,v(c) denotes a synchronization delay cycle which arises if the timing constraints of
the receive register abcu.R are not met and the sampled undefined value flips to an
incorrect value, i.e., to a ‘1’:

φu,v(c) ≡ if σu,v(c) = 1 ∧ abcu.R
ξ = 1 then 1 else 0

This flaw was not discovered by Böhm because all his results argue about one round
only and he did not provide a proof, that assumptions he fixes at the start of some round
r still hold at the start of the next round r + 1.

7.1.1 Synchronization Correctness

Now we will formally present the improved results of [Böh07]. First we show the lemma
stating, that slaves will enter slot 0 after the synchronization. For this we need a for-
malization of a slot start.

Definition 11 (Slot Start). Let Σu(s)c denote the predicate indicating that the hard-
ware state of ECUu, is at the start of slot s in cycle c. We say that ECUi is at the start
of some slot s ∈ [1 : ns − 1] in cycle c if in that cycle its Scheduler is in state offwait,
its cycle counter is 0 and its slot counter contains s:

∀i < ns, s ∈ [1 : ns− 1] : Σi(s)
c ≡ abcci .state = offwait ∧ abcci .slot = s ∧ abcci .cycle = 0

The slot start Σ0(0)c of slot 0 on the master is defined in the same way:

Σ0(0)c ≡ abcc0.state = offwait ∧ abcc0.slot = 0 ∧ abcc0.cycle = 0

Whereas slot 0 starts on a ECUi (i 6= 0) in slot s directly after synchronization, i.e.,
after leaving the state rcvwait. Thus, its Scheduler is in state Twait, its slot counter
contains 0 and its cycle counter has value off :

∀i ∈ [1 : ns− 1] : Σi(0)c ≡ abcci .state = Twait ∧ abcci .slot = 0 ∧ abcci .cycle = off

In the following lemma we show that under the assumption that the master starts the
broadcasting of the first message and that slaves are idle and ready for synchronization
reception, the synchronization will happen. Note that we present already fixed results
according to the improved low-level correctness (Theorem 2) and using the previously
introduced synchronization delay cycle.
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Lemma 10 (Synchronization Correctness). If a synchronization-awaiting slave is di-
rectly connected to the synchronization-starting master, then the synchronization sig-
nal will be transmitted and the slave will get into the start of slot 0. Fix the following
constants and variables:

• abcj0 as the state of the master controller in some cycle j;

• abcju as the state of an arbitrary slave ECU with 0 < u < ns;

• c ∈ N as a cycle of the master ECU;

• ξu = cyu,0(c+ 2) as receiver cycles;

• bvceS as a function generating a bitvector, s.t. bvceS(c)[i] where i ≤ c is the bit sent
as clock enable signal to abc0.S in cycle i.

• bvinS as a function generating bitvector, s.t. bvinS(c)[i] where i ≤ c is the value
sent as input signal to abc0.S in cycle i if abc0.S was clocked in cycle i; this value
will be modeled as the bit, which is stored in this register in cycle i+ 1:

∀i, j : i ≤ j ∧ bvceS(j)[i] = 1⇒ bvinS(j)[i] = Si+1

For convenience we abbreviate the send register abc0.S of the master by S and the
receive register abcu.R of the receiver by R.

Premises:

(a) In all cycles of the system run, the reset signal stays disabled and all configuration
registers contain the correct configuration parameters:

∀c, i ∈ {0, u} : resetc = 0 ∧
abcci .CR.ns = bin6(ns) ∧ abcci .CR.l = bin10(l) ∧
abcci .CR.off = bin32(off ) ∧ abcci .CR.T = bin32(T ) ∧
abcci .CR.iwait = bin32(iwait) ∧ abcci .CR.sendl = sendli

(b) The master is in synchronization starting state, its Send Unit is idle:

abcc0.state = startsnd ∧ abcc0.sstate = s_idle

(c) The bit sent as clock enable signal to S in cycle c + 1 is a ‘1’; in the subsequent n
cycles it is a ‘0’:

bvceS(c+ 1)[c+ 1] = 1 ∧ ∀i ∈ [1 : 7] : bvceS(c+ 8)[c+ 1 + i] = 0

(d) The clock enable signal of R is assumed to be stable around each cycle edge:

∀i : ∀t ∈ [ev(i)− ts : ev(i) + th] : ceR,u(t) = 1
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(e) The shift register is filled with ones in cycle ξ + σu,0(c+ 2):1

abcξ+σu,0(c+2)
u .sh = 14

(f) The receiver is in synchronization-awaiting state, its Send Unit is idle:

abcξ+σu,0(c+2)
u .state = rcvwait ∧ abcξ+σu,0(c+2)

u .rstate = r_idle

(g) The input signal of R is the output signal of S during 8 local cycles of the master:

∀t ∈ (e0(c+ 2) + tpmin : e0(c+ 9) + tpmin] : InR,u(t) = OutS,0(t)

(h) Signal reset_ru remains inactive during cycle ξ and three cycles after ξ:2

∀i ≤ 3 : reset_ruξ+i = 0

Then: slot 0 starts on the receiver φu,0(c+ 2) + 4 cycles after the next affected cycle:

Σu(0)ξ+φu,0(c+2)+4

Proof Sketch of Lemma 10. (Note that the first premise will be used to ensure that con-
figuration values are available in every cycle and that no reset is possible during a
system run.)

First we argue about the output of the send register S. By premise (b) we know
that the master is in broadcast-starting state startsnd in cycle c. In this state, the
Scheduler Control Automaton (Figure 6.5) initiates by its construction signal startsndc

to the Send Unit, which, in turn, by the construction of the Send Unit Control Automaton
(Figure 6.7), triggers the first transition from s_idle state to state TSS0 in the next cycle
c+ 1. Thus, we have in cycle c+ 1:

abcc+1
0 .sstate = TSS0

In this state, the Send Unit Automaton activates signal se1 but not the signal se2. Hence,
by construction of the corresponding part of the Output Computation module (Fig-
ure 6.8) the input of the send register S in cycle c + 1 is a ‘0’. The clock enable of
register S is taken from the bitvector bvceS(c+ 1), which is assumed to contain a ‘1’ as
signal sent in cycle c+ 1 by premise (c). Hence, send register S takes value TSS[0] = 0

in cycle c+ 2:
Sc+2 = 0

Since Böhm took all premises of Theorem 2 and put them into the premise set of his
theorems (premises (b), (c) and (g)) we can directly apply this theorem for cycle c + 2

and get:
∀i ∈ [0 : 6] : Rξ+σu,v(c+2)+i = bvinS(c+ 1)[c+ 1]

1Note that initially this assumption has additionally required R̂ξ+σu,0(c+2) = 1 which is wrong.
2Note that this assumption was not in the original version of the lemma and was added later after changes

we made to the Elimination Redundancy module, introducing signal reset_ru. More on this in the last chapter
of this thesis.
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Since the register S was clocked in cycle c+ 1 by premise (c), by definition of bvinS (see
fixed variables) we instantiate the input signal of S in cycle c + 1 by its content in the
next cycle:

∀i ∈ [0 : 6] : Rξ+σu,v(c+2)+i = Sc+2 = 0

Thus, we know, that the receive register R will contain ‘0’ in seven consecutive cycles
starting from ξ + σu,v(c+ 2). We make a case destinction on σu,v(c+ 2).

Case 1: σu,v(c+ 2) = 0. By definition of the delay cycle (Definition 8) we can assume,
that the timing parameters of R were met and a zero was sampled into R in cycle ξ. By
the construction of the Redundancy Elimination module (Figure 6.11(a)) we can easily
verify, that in cycle ξ + 3 we get

∀P ∈ {R̂, sh[3], sh[2]} : abcξ+3
u .P = 0

if we show that signal reset_ru remains 0 in cycles ξ+ i for i ∈ [0 : 4], which follows from
the premise (h). Moreover, in cycle ξ + 3 the voted bit v will flip to 0 for the first time,
since 3 out of 5 inputs to the majority voter are zeros. This will immediately activate
the startedrcvξ+3 signal by the construction of the Synchronizer (Figure 6.11(b)). By
premise (f), the receiver’s Scheduler was waiting for synchronization in state rcvwait
in cycle ξ. Since the startedrcv signal was inactive until ξ + 3 and, thus, the Scheduler
remained in state rcvwait, by the Scheduler Automaton construction (Figure 6.5), in
the next cycle ξ + 4 it will switch to state offwait, set its cycle counter to off and its
slot counter to 0. By definition of slot start (Definition 11) and synchronization delay
the claim follows:

Σu(0)ξ+4 = Σu(0)ξ+0+4 = Σu(0)ξ+φu,0(c+2)+4

Case 2: σu,v(c + 2) = 1. If the timing parameters of R were not met, there are two
possibilities: the sampled unstable value flips to zero or to one.

• In the first case (value of R flips to 0), by definition of the synchronization delay
(Definition 10) we get: φu,0(c+ 2) = 0 because of Rξ = 0. Thus, technicaly, we are
in the same situation as for σu,0(c+ 2) = 0 and make the same proof as in Case 1.

• In the second case (value of R flips to 1), if the unstable value flips to a 1, the
correct value will be sampled at least in the next 7 cycles by Theorem 2. Thus,
beginning with cycle ξ + 1 we make the same hardware proof as in Case 1 and
show that the synchronization will happen 4 cycles after the first sampled zero,
namely after ξ + 1. This yields:

Σu(0)ξ+4+1 = Σu(0)ξ+4+φu,0(c+2)

Now we also can extend Definition 4, by defining the cycle where the first slot of a
slave ECU will be started.

Definition 12 (Start Cycle Of Slot 0 of A Slave). Let u ∈ [1 : ns − 1] be index of
a non-master ECU. Then, slot 0 of every round starts on a slave one cycle after the
synchronization signal (sent by master off + 2 cycles after its slot start) will be sampled
and processed by the slave:

∀r : αu(r, 0) = cyu,0(α0(r, 0) + off + 2) + φu,0(α0(r, 0) + off + 2) + 4
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7.1.2 Schedule Execution Correctness

The next lemma states that once an ECU i starts the slot 0, it will subsequently execute
a fixed schedule consisting of ns slots. Note that ECUs have no notion of rounds, thus,
the next lemma is shown for an arbitrary but fixed round.

Lemma 11 (Round Schedule Correctness). If an ECU i is in state Σi(0), then it will
start the remaining ns− 1 slots. We fix the following variables:

• abci as bus controller of ECUi;

• c ∈ N as a cycle of ECUi.

Premises:

(a) The reset signal stays inactive, as well as configuration registers stay stable during
the entire system run:

∀c : resetci = 0 ∧ abcci .CR = abcc+1
i .CR

(b) ECUi is in slot 0 in cycle c: Σi(0)c.

Then: the master will start a new slot every T cycles, whereas a slave starts the first
slot after tc+ off cycles, and all remaining slots every T cycles:

∀s ∈ [1 : ns− 1] : (i = 0→ Σ0(s)c+s·T ) ∧
(i 6= 0→ Σi(s)

c+tc+off +(s−1)·T )

Proof. The premise (a) will be used to conclude, that the configuration registers always
contain the same correct values, specified in Section 6.4.1. Since this conclusion is ob-
vious, we will not elaborate on it any further and assume in the remaining explanations
of the proof the correct content of configuration registers and absence of reset signal
in all cycles.

The proof of the claim is done by induction on s.

• Induction base: s = 1. We make a case distinction on i = 0:

1. Assume, ECUi is a master, i.e., i = 0. By premise (b) we know, that ECU0 is
in the start of slot 0 and by Definition 11 holds:

abc0.state = offwait ∧ abc0.slot = 0 ∧ abc0.cycle = 0

By construction of the Scheduler Automaton (Figure 6.5) we can show:

(a) the cycle counter abc0.cyclewill be incremented in states offwait, startsnd
and Twait;

(b) state offwait will be left only if abc0.cycle = off − 1;

(c) state Twait will be left only if abc0.cycle = T − 1;

(d) after Twait, the Scheduler of the master (sendl[0] = 1) changes to state
offwait, sets cycle counter to 0 and increments the slot counter if it is
smaller than ns− 1 (¬eqns = 1).
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Hence, the controller abc0 will stay for off cycles3 in offwait, for 1 cycle in
startsnd and T − 1− (off + 1) in Twait, which collectively sums up to T − 1

cycles. By Scheduler Automaton construction we have in the subsequent
cycle:

abcc+T0 .state = offwait ∧ abcc+T0 .cycle = 0 ∧ abcc+T0 .slot = s+ 1

which yields by the definition of a slot start Σ0(2)c+T = Σ0(s + 1)c+s·T and
proves the claim for the master.

2. In case i 6= 0 we have by premise (b):

abci.state = Twait ∧ abci.slot = 0 ∧ abci.cycle = off

Since we already know, that the Scheduler stays in Twait until the cycle
counter reaches T − 1, we can show, that it happens in T − 1 − off cycles.
By Scheduler Automaton construction we have in the subsequent cycle for a
slave (sendl[0] = 0):

abcc+T−off
i .state = offwait ∧ abcc+T−off

i .cycle = 0 ∧ abcc+T−off
i .slot = s+ 1

which gives us by definition of T and Definition 11:

Σi(2)c+T−off = Σi(s+ 1)c+tc+off

Hence, the claim of the induction base follows.

• Induction step: s→ s+ 1. By induction hypothesis, we get:

i = 0→ Σ0(s)c+s·T

i 6= 0→ Σi(s)
c+tc+off +(s−1)·T

As above, we make a case distinction on i = 0:

1. Let i = 0. By induction hypothesis we know, that the master has started
slot s in cycle c + s · T and it holds: Σ0(s)c+s·T . From this point we proceed
along the lines of the proof of the induction base case for i 6= 0 and for an
arbitrary slot s, which yields a proof, that slot s + 1 will be started T cycles
later: Σ0(s+ 1)c+s·T+T = Σ0(s+ 1)c+(s+1)·T .

2. Let i 6= 0. We make a case distinction on send(s+ 1) = i.

(a) ECUi is sender in slot s + 1. Since the master and slaves share the
same hardware, the same configuration parameters and have the same
behaviour during the sender slot, we use the same hardware proof as for
the Induction Base, which gives us a new slot start in T cycles. Together
with the induction hypothesis, the claim follows trivially.

(b) ECUi is receiver in slot s + 1. For the same reason as above, because of
equal behavior of master and a non-sending slave in a non-zero proof, we
use the proof of the induction step for i 6= 0 and get a new slot start T
cycles later after the induction hypothesis: Si(s + 1)c+tc+off +(s−1)·T+T =

Si(s+ 1)c+tc+off +((s+1)−1)·T .

This finishes the proof.

3Note that cycle counter starts with 0.
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7.1.3 Schedule Timing Correctness

The last Lemma of Böhm argues about the correct timing of a schedule executed by ev-
ery ECU. Basically, it says that if all receivers synchronize with the master as shown in
Lemma 10, then every ECU will start every slot s before the sender ECUsend(s) will start
its message transmission, and, respectively, the ECU will end the slot after ECUsend(s)
finishes the message transmission as depicted in Figure 3.4. However, this result con-
tained two flaws.

Flaws of Previously Proven Lemma

Fundamentally, the idea behind the proof is correct – we want to ensure, that every
ECU is able to receive the transmitted message. However, this proof will never be
used for the correctness of serial interfaces, since we do not need the time overlapping
argument for this, because the Receive Unit is not aware of the schedule per se. It will
be triggered as soon as it recognizes an active signal on the bus. Hence, for the message
transmission, it should be guaranteed, that all ECUs are synchronized at the start of
every round and that there is no bus contention during the message transmission. And
to show the second argument, we have to be able to relate the local schedule times, like
local slot start of a receiver with the start of the message transmission on the sender.

Although, at the first glance, it seems to be exactly what Böhm has verified in his
lemma, it is not. The reason why we have to relate local schedule times of receivers with
the message transmission times of the sender, is that states of the Scheduler impact
the analog output of an ECU. That means, if ECU starts a slot as a receiver, then and
only then we can show, that its analog output will remain idle during the entire slot.
However, the problem here is that the generation of the correct analog output triggered
by the Scheduler state is certainly almost always delayed. In our implementation, this
delay consists of two hardware cycles. Practically, it means, that if ECUu enters a slot
s in its local cycle αu(r, s) as a receiver, then its analog send register output will be
updated with the correct value 2 cycles later. (We will show it in a lemma later.)

Thus, what should have been shown in a lemma about correct timing of the Sched-
uler, is:

1. on all ECUs the slot start cycle plus two additional delay cycles lies before the
message transmission:

eu(αu(r, s) + 2) ≤ esend(s)(αsend(s)(r, s) + off + 2)

2. and the message transmission end plus two delay cycles lies before the slot end
of the receive ECU.

esend(s)(αsend(s)(r, s) + off + tc + 2) ≤ eu(αu(r, s) + T + 2)

The reason why this flaw remained undiscovered is because Böhm did not couple
the state of the hardware scheduler with the analog output of the send register S, and
because he did not apply this lemma to show, that the correct schedule timing provides
a contention-free bus at the time of the actual message transmission, the time when
the sender’s message hits the bus, instead of the start of the message transmission in
the hardware scheduler.

The second flaw was, that Böhm has verified, that all ns slots on all ECUs start
before the corresponding message transmission. For this, Böhm has defined slot start
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times of ECUs in terms of global time as follows. Let αu(r, 0) be the cycle in which ECUu
has sampled and processed the synchronization message sent by the master in the
beginning of round r. Then, Böhm defines the global slot start time of slot s ∈ [0 : ns−1]

as:
eu(αu(r, 0)) + (s · T − off ) · τu

Obviously, this definition is not applicable for slot s = 0, since it would mean, that
the first slot on a slave ECU starts off cycles before the synchronization. However, as
we know from Definitions 3 and 4 the fixed schedule of the master lasts exactly ns · T
cycles, whereas the fixed schedule of a slave lasts ns ·T −off cycles. We also know from
Section 3.4 that off is the maximal possible clock drift in terms of local cycles between
two ECUs. Hence, the master ECU is waiting off cycles before every synchronization
to let all slaves finish the last slot of previous round. Thus, with Böhm’s definition it is
possible, that the end of slot ns− 1 of some round r would overlap with the start of slot
0 of round r + 1.

Besides the confusing nature of this definition, the problem is that we only can
argue about local slots of a slave ECU if it has synchronized with the master, thus, we
consider the earliest cycle – the first cycle after the synchronization – as the start of slot
0. However, since it was triggered by a synchronization message, which is the first bit
of a regular message, the first slot of a slave cannot lie before the transmission start of
the master. Thus, with Böhm’s definition it is only possible to show that the schedule
timing is correct for all non-zero slots. This didn’t cause any problems simply because
the correct schedule timing was never applied to the bus model, and because arguing
about one round didn’t expose the problem of potential overlapping of rounds.

7.1.4 Schedule Timing Correctness (Improved)

Note that the next lemma is not about a concrete implementation (we do not need
any hardware computations for it), but rather about the correct schedule timing of
hardware, obeying the TDMA-based communication described in Chapter 3 and under
the synchronization timing shown in Lemma 10.

Moreover, note that Böhm has computed the offset off as:

off := 10 + dns · T ·∆e (7.1)

First we show one helper lemma.

Lemma 12 (Synchronization Time Bound). Start times of slot 0 on different slaves are
bounded by 3 cycles:

eu(αu(r, 0))− ev(αv(r, 0)) ≤ 3 · τv
Proof.

eu(αu(r, 0))− ev(αv(r, 0))

(Def. 12) = eu(cyu,0(α0(r, 0) + off + 2) + φu,0(α0(r, 0) + off + 2) + 4)−
ev(cyv,0(α0(r, 0) + off + 2) + φv,0(α0(r, 0) + off + 2) + 4)

(Def. 2) = eu(cyu,0(α0(r, 0) + off + 2)− 1) + (φu,0(α0(r, 0) + off + 2) + 5) · τu −
ev(cyv,0(α0(r, 0) + off + 2)) + (φv,0(α0(r, 0) + off + 2) + 4) · τv

(Lemma 7) ≤ e0(α0(r, 0) + off + 2) + tpmin − th+ (φu,0(α0(r, 0) + off + 2) + 5) · τu −
ev(cyv,0(α0(r, 0) + off + 2)) + (φv,0(α0(r, 0) + off + 2) + 4) · τv
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(Def. 7) ≤ e0(α0(r, 0) + off + 2) + tpmin − th+ (φu,0(α0(r, 0) + off + 2) + 5) · τu −
e0(α0(r, 0) + off + 2) + tpmin − th+ (φv,0(α0(r, 0) + off + 2) + 4) · τv

= (φu,0(α0(r, 0) + off + 2) + 5) · τu − (φv,0(α0(r, 0) + off + 2) + 4) · τv
(Lemma 1) ≤ (φu,0(α0(r, 0) + off + 2) + 5) · τv · (1 + ∆)− (φv,0(α0(r, 0) + off + 2) + 4) · τv

(φx,y(z) ≤ 1) ≤ 6 · τv · (1 + ∆)− 4 · τv
= (6 · (1 + ∆)− 4) · τv = (2 + 6 ·∆) · τv ≤ 3 · τv

Lemma 13 (Schedule Timing Correctness). Fix following constants:

• clk0 as the clock of the master ECU;

• clku, clkv are two arbitrary clocks with ∀x ∈ {u, v} : 0 < x < ns;

If bus controllers with clocks clku and clkv have synchronized with the bus controller
with the clock clk0 in cycles αu(r, 0) and αv(r, 0), then every slot on every receiver starts
before and ends after the message transmission in slot s ∈ [1 : ns− 1]:

1. eu(αu(r, s) + 2) + tpmin ≤ ev(αv(r, s) + off + 2) + tpmin

2. eu(αu(r, s) + off + tc + 2) + tpmin ≤ ev(αv(r, s) + T + 2) + tpmin

Proof. • Slot start lies before transmission start:

eu(αu(r, s) + 2) + tpmin − (ev(αv(r, s) + off + 2) + tpmin)

(Lemma 6) = eu(αu(r, 0) + tc + off + (s− 1) · T + 2) + tpmin −
(ev(αv(r, 0) + tc + off + (s− 1) · T + off + 2) + tpmin)

= eu(αu(r, 0) + tc + off + (s− 1) · T + 2)−
ev(αv(r, 0) + tc + off + (s− 1) · T + off + 2)

(Definition 2) ≡ eu(αu(r, 0)) + (tc + off + (s− 1) · T + 2) · τu −
ev(αv(r, 0)) + (tc + off + (s− 1) · T + off + 2) · τv

= eu(αu(r, 0))− ev(αv(r, 0)) + (tc + off + (s− 1) · T + 2) · τu −
(tc + off + (s− 1) · T + off + 2) · τv

(Lemma 12) ≤ (tc + off + (s− 1) · T + 2) · τu −
(tc + off + (s− 1) · T + off − 1) · τv

(Lemma 1) ≤ (tc + off + (s− 1) · T + 2) · τv · (1 + ∆)−
(tc + off + (s− 1) · T + off − 1) · τv

= (tc + off + (s− 1) · T + 2 + (tc + off + (s− 1) · T + 2) ·∆−
(tc + off + (s− 1) · T + off − 1)) · τv

= (3 + (tc + off + (s− 1) · T + 2) ·∆− off ) · τv
(Def. of off and T ) ≤ (3 + s · T ·∆− off ) · τv

(s ≤ ns− 1) ≤ (3 + ns · T ·∆− off ) · τv
(Definition of off ) ≤ 0
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• Slot end lies after transmission end.

ev(αv(r, s) + off + tc+ 2) + tpmin − (eu(αu(r, s) + T + 2) + tpmin)

(Definition 12) = ev(αv(r, 0) + tc + off + (s− 1) · T + off + tc+ 2) + tpmin −
(eu(αu(r, 0) + tc + off + s · T + 2) + tpmin)

= ev(αv(r, 0) + tc + off + (s− 1) · T + off + tc+ 2)−
eu(αu(r, 0) + tc + off + s · T + 2)

(Definition 2) = ev(αv(r, 0)) + (tc + off + (s− 1) · T + off + tc+ 2) · τv −
(eu(αu(r, 0)) + (tc + off + s · T + 2) · τu)

(Definition 2) = ev(αv(r, 0))− eu(αu(r, 0)) + (tc + off + (s− 1) · T + off + tc+ 2) · τv −
(tc + off + s · T + 2) · τu

(Lemma 12) ≤ (tc + off + (s− 1) · T + off + tc+ 2) · τv −
(tc + off + s · T − 1) · τu

(Lemma 1) ≤ (tc + off + (s− 1) · T + off + tc+ 2) · (1 + ∆) · τu −
(tc + off + s · T − 1) · τu

= ((tc + off + (s− 1) · T + off + tc+ 2) · (1 + ∆)−
(tc + off + s · T − 1)) · τu

= ((s · T + tc+ 2) · (1 + ∆)− (tc + off + s · T )) · τu
= ((s · T + tc+ 2) ·∆ + 2− off ) · τu

(Def. T ) ≤ (((s+ 1) · T + 2) ·∆ + 2− off ) · τu
(s ≤ ns− 1) ≤ (ns · T ·∆ + 2− off ) · τu

(Def. off ) ≤ 0

7.2 From Local to Global Computational Semantics

Until now, all lemmas from Section 7.1 have argued about computational traces, mod-
eling a computation of a bus controller only. Every hardware state abcc in cycle c of
some controller was provided by a fixed valid execution trace function trace and input
function inputs, s.t. abcc = trace(c) with:

∀i : trace(i+ 1) = δabc(trace(i), inputs(i))

That means, such modeling does not provide a straightforward extension of the
semantics by a processor computational semantics later. Moreover, the assumptions
about stable configuration registers in all cycles and inactive reset signal (e.g., premise
(a) in Lemma 10) restrict the modeling to the post-configuration period of the bus con-
troller computation.

But in our final correctness of a message transmission, we want to argue about
distributed asynchronously working ECUs, which can be instantiated with a concrete
processor model later as specified in Section 6.1. Hence, we want to model every hard-
ware cycle of an ECU computation, including the configuration phase. This requires to
discharge some assumptions made in previous results.
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The results from Section 7.1 have required – among other technical assumptions –
the following:

∀c, i ∈ {0, u} : resetc = 0 ∧
abcci .CR.ns = bin6(ns) ∧ abcci .CR.l = bin10(l) ∧
abcci .CR.off = bin32(off ) ∧ abcci .CR.T = bin32(T ) ∧
abcci .CR.iwait = bin32(iwait) ∧ abcci .CR.sendl = sendli

That means, it is required to show, that in the entire system run no reset signal will
be activated, and that in every configuration register the corresponding parameter is
stored.

First we introduce the following assumption on the global computational trace of
every ECU.

Assumption 7 (Configuration Registers). Let ns be an even number. Let ECUi be
arbitrary ECU with i < ns. Let setrd_cyclei be the hardware cycle, where the signal
setrdi gets active:

setrdsetrd_cyclei
i = 1

The configuration registers of every ECUi will be filled with meaningful values before
the end of the configuration phase. The write enable signal crwe stays inactive after the
configuration phase.

∀c ≥ setrd_cyclei : crwec = 0 ∧
ECUsetrd_cyclei

i .abc.ns = bin6(ns) ∧ ECUsetrd_cyclei
i .abc.l = bin10(l) ∧

ECUsetrd_cyclei
i .abc.off = bin32(off ) ∧ ECUsetrd_cyclei

i .abc.T = bin32(T ) ∧
ECUsetrd_cyclei

i .abc.iwait = bin32(iwait) ∧ ECUsetrd_cyclei
i .abc.sendl = sendli

Having this, we easily show by induction, that all registers remain stable after the
setrd_cycle.

Lemma 14 (Configuration Register Stability).

∀c ≥ setrd_cyclei : ECU ci .abc.ns = bin6(ns) ∧ ECU ci .abc.l = bin10(l) ∧
ECU ci .abc.off = bin32(off ) ∧ ECU ci .abc.T = bin32(T ) ∧
ECU ci .abc.iwait = bin32(iwait) ∧ ECU ci .abc.sendl = sendli

Now we can satisfy the assumption from previous lemmas about stable configura-
tion registers as follows. We show that a global ECU computation trace which models
hardware computations of any ECUi starting from cycle 0, can simulate the bus con-
troller trace, starting from cycle setrd_cyclei. That is, every cycle c of the bus controller
trace used by Böhm was mapped to cycle setrd_cyclei + c of the global trace. Let x be
one of the configuration registers and y its corresponding value. Instead of satisfying
assumptions required by Böhm on the global trace for some configuration register x:

∀c : abcci .CR.x = y

we map these assumptions to a post-configuration phase of the global ECU trace:

∀c : ECU c+setrd_cyclei
i .abc.CR.x = y

The new assumption can be discharged by Lemma 14 using Assumption 7. The assump-
tion of an inactive reset signal will be discharged in the same way using Assumption 5.
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This is a very technical work which requires a lot of Isabelle-related notation to be
introduced and, hence, we will not elaborate on it in this thesis.

From now on, all lemmas and theorems will be shown not for bus controller hard-
ware only as in Section 7.1, but for global computation traces of ECUs as specified in
Section 6.1. Moreover, we do not list all assumption we use explicitly, but, instead, we
implicitly use all introduced assumption so far.

7.3 Startup Correctness

We will show that all slave ECUs reach the state rcvwait, and the master ECU will start
its first slot.

Before we start with stating a lemma about the correctness of the startup routine,
we have to figure out which assumptions we can make about the startup routine. As
described in Section 6.4.2, the idea of the startup routine is quite simple. All ECUs are
intented to be started roughly at the same time. In the very first cycle, every controller
will be reset by its processor by activating the reset signal. Afterwards, the config-
uration phase begins, where all slaves will be initialized with the same configuration
parameters except for the content of bitvector sendlu, which determines whether ECU
is a slave or the master. Since we want to keep the interface between the bus controller
and the processor as general as possible, we do not argue about the correctness of fill-
ing the configuration registers, instead we assume in Assumption 7, that all registers
are filled with correct values during the configuration phase.

After the configuration phase, all slaves switch to state rcvwait and remain there
until they get a synchronization signal sent by the master. The master, switches after
the configuration to state iwait and remains there for iwait cycles. The intention was
that the number of cycles iwait should be long enough to guarantee that all slaves
have had enough time to pass the configuration phase and to switch to sate rcvwait,
where slaves wait for the next synchronization. However, such an assumption requires
an additional assumption – a time bound of the startup times of all ECUs: master and
slaves.

Instead, we fix one master cycle t0 such that it is the first cycle after the master has
left state iwait, and assume that if the master is in cycle t0, then all slaves are in state
rcvwait.

Assumption 8 (Startup Correctness). Let t0 be the first cycle after the master has left
state iwait. Then we assume, that all slaves are in state rcvwait in cycle cyu,0(t0).

ECU t00 .abc.state = offwait ∧
∀c < t0 : ECU c0 .abc.state ∈ {idle, iwait} ∧

∀u ∈ [1 : ns− 1] : ECU cyu,0(t0)
u .abc.state = rcvwait ∧

∀c ≤ cyu,0(t0) : ECU cu.abc.state ∈ {idle, rcvwait}
Obviously, t0 is the smallest master cycle, where its hardware can be interpreted as

being in a slot start according to the Scheduler Automaton construction (Figure 6.5)
and Definition 11.

Definition 13 (Start Cycle Of Slot 0 of Master).

t0 is the cycle in which the master starts slot 0 of round 0:

Σ0(0)t0 ≡ Σ0(0)α0(0,0)
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Finally, we have to show, that Assumption 8 is sound by showing all ECUs will reach
states rcvwait and offwait after the initial reset signal.

Lemma 15 (Startup Correctness).

∀i < ns− 1 : (sendli[0] = 0 ⇒ ∃x : ECUxi .abc.state = rcvwait ∧
∀y ≤ x : ECUyi .abc.state ∈ {idle, rcvwait})

(sendli[0] = 1 ⇒ ∃x : ECUxi .abc.state = offwait ∧
∀y < x : ECUyi .abc.state ∈ {idle, iwait})

Proof. Since we have assumed, that the setrd signal will be activated eventually (As-
sumption 5), the proof follows from the construction of the Scheduler, mainly automati-
cally.

In the next two sections we show that all ECUs execute their schedules correctly
in every round. That is, we will show, that the slot start state of the bus controller
will be established at recurrent points in time on the master and on all receivers. The
latter part is non-trivial, since it assumes correct synchronization between master and
all slaves in the current round and implies correct synchronization in the next round.

Although we argue about global traces of ECUs as described in Section 7.2, for con-
venience, we will abbreviate in most of the following proofs, the bus controller ECUi.abc
of an ECUi by abci.

7.4 Schedule Correctness Of Master for All Rounds

In this section we will show, that the master ECU executes its schedule in every round.
This part is easy because, the master’s schedule execution is static during the entire
system run and depends solely on the hardware correctness. In Chapter 3 we have
defined (Definition 3) the local time notion of the master ECU, assuming the existence
of a cycle α0(0, 0), where slot 0 of round 0 starts. As mentioned there, this cycle depends
on a concrete implementation of a time-triggered system. Obviously, in our case it is
the cycle t0 by Definition 13, since it is the smallest cycle, where predicate Σ0(0) holds,
indicating a hardware state which is starting slot 0.

Lemma 16 (Schedule Correctness of the Master for All Rounds). The master ECU will
start all slots of all rounds:

∀r, s < ns : Σ0(s)α0(r,s)

Proof. Proof by induction on round r.

1. Induction base: r = 0. We have to show that every slot of the first round will be
started in the corresponding slot start cycle:

∀s < ns : Σ0(s)α0(0,s)

By definition of cycle t0 (Definition 13) we have:

Σ0(0)t0 = Σ0(0)α0(0,0) (7.2)

We apply Lemma 11 for i := 0 and c := α0(0, 0). The premise (a) of Lemma 11 will
be discharged as described in Section 7.2. Premise (b) is discharged by 7.2. We
get:

∀s ∈ [1 : ns− 1] : Σ0(s)α0(0,0)+s·T
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By Lemma 5 we show:
α0(0, 0) + s · T = α0(0, s)

and the claim follows.

2. Induction step: r → r + 1. By induction hypothesis we get for round r the
execution of all ns slots:

∀s < ns : Σ0(s)α0(r,s)

We have to show, that in the next round r + 1, all slots will be executed at appro-
priate local time:

∀s < ns : Σ0(s)α0(r+1,s)

From the induction hypothesis we conclude: Σ0(ns− 1)α0(r,ns−1). That is, the last
slot of a round ns− 1 will be started in cycle α0(r, ns− 1):

abc
α0(r,ns−1)
0 .state = offwait ∧ abc

α0(r,ns−1)
0 .slot = ns− 1 ∧ abcα0(r,ns−1)

0 .cycle = 0

By Scheduler construction we can easily show, that in T − 1 cycles, the Scheduler
of the master will be in state Twait with active signals eqT and eqns. Hence, one
cycle later, the Scheduler will switch to state offwait resetting the values of the
slot and cycle counters:

abc
α0(r,ns−1)+T
0 .state = offwait ∧ abcα0(r,ns−1)+T

0 .slot = 0 ∧abcα0(r,ns−1)+T
0 .cycle = 0

which is equivalent to Σ0(0)α0(r,ns−1)+T and by Definitions 11 and 3 to:

Σ0(0)α0(r+1,0) (7.3)

As in the induction base case, we apply Lemma 11 for cycle α0(r + 1, 0) and get
with 7.3:

∀s ∈ [1 : ns− 1] : Σ0(s)α0(r+1,0)+s·T

By Lemma 6 we conclude:

α0(r + 1, 0) + s · T = α0(r + 1, s)

and the claim follows.

7.5 Schedule Correctness Of A Slave for All Rounds

While the schedule execution for all rounds of the master is almost trivial due to its
static nature, the correctness for all rounds of slaves is more challenging. First we will
extend the local time notion of a slave introduced in Definition 4, by defining the time
of the very first slot in every round. This time depends on the master’s time of slot
0 of every round, because shortly after the start of slot 0 the master broadcasts the
synchronization message over the bus. To receive this synchronization message three
requirements should be met: (i) the serial interfaces of the sender and all receivers are
in appropriate hardware states, (ii) the low-level signal transmission works (Theorem 2),
and (iii) the bus connection can be abstracted to a direct wire connection between the
master and every slave (premise (c) of Theorem 2). The main challenge here is to
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satisfy the assumptions of Theorem 2, requiring to prove that the analog output of all
send registers of all non-receivers does not produce any bus activity in the time period
between the end of the last transmission of a round and the first transmission of the
next round.

We start arguing about the analog send register output of an ECU in dependence
of its Scheduler state in Section 7.5.1. We will show, that a non-transmitting ECU
never produce any disturbing non-idle bus activity. Second, using these arguments,
we will formally show in Section 7.5.2, that during the time period where all ECUs
are waiting for a synchronization, no ECU (including the master) is sending until the
synchronization.

The Isabelle counterparts of the following lemmas and proofs are extremely rich in
detail and are built of dozens of lemmas. We will skip most of them and will sketch the
proof outlining the basic strategy and idea behind the proofs.

7.5.1 Analog Output of a Receiver

In this section we will investigate the correlation of the Scheduler state and the analog
output of the send register abci.S. In contrast to Theorem 2 we do not argue about
signal transmission among different DRM models. Instead, we need to couple events of
the digital hardware, like states of control automaton with the analog behaviour of the
send register S. Since we have to use the DRM interpretation of the send register, we
also have to provide instantiations for input signals needed by DRM. Moreover, to stay
within the semantics provided in Chapter 4, we need functions returning lists of digital
signals sent as inputs to the digital send register S.

Definition 14 (Clock Enable and Input Signal Generators). Let genCEsu : N → B∗ be
a function, which returns for given cycle number n, a list of bits, sent as clock enable
signals to the send register S of ECUu. We compute genCEs(n) as follows:

genCEsu(0) = abc0u.dnbit

genCEsu(n) = abcnu.dnbit ◦ genCEsu(n− 1)

Let genINsu : N → B∗ be a function, which returns for given cycle number n, a list of
bits which coincides at every index i ∈ [0 : n−1] with the list of bits sent as input values
to the send register S of ECUu, if S was clocked in cycle i. 4 We compute genINs(n) as
follows:

genINsu(0) = abc1u.S

genINsu(n) = abcn+1
u .S ◦ genINsu(n− 1)

We instantiate in all following lemmas the clock enable input signal ceS,u and input
signal InS,u of register S with signals derived from their digital counterparts:

∀c ∈ N, t ∈ R : t ≤ eu(c) + th⇒ ceS,u(t) = conv(genCEsu(c))(t) (7.4)

∀c ∈ N, t ∈ R : t ≤ eu(c) + th⇒ InS,u(t) = conv(genINsu(c))(t) (7.5)

Moreover, we show a helper lemma, allowing us to reduce the signals generator
functions to needed bits.

4Note that we never use genINsu(n)[i] if S was not clocked in cycle i.
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Lemma 17 (Bit pickers).

∀i ≤ n : genCEsu(n)[i] = ECU iu.abc.dnbit

∀i ≤ n : genINsu(n)[i] = ECU i+1
u .abc.S

Proof. Straightforward (by induction on n).

In the next lemma we show, that the clock enable signal ceS,u of send register S of
ECUu returns for all times around a clock edge i the digital value of the dnbit register
in cycle i− 1.

Lemma 18 (Clock Enable Signal Derivation).

∀t ∈ [eu(i)− ts : eu(i) + th] : ceS,u(t) = ECU i−1u .abc.dnbit

Proof. Let t ∈ [eu(i)− ts : eu(i) + th]. We instantiate ceS,u as in Equantion 7.4 with c = i:

ceS,u(t) = conv(genCEsu(i))(t)

By Assumption 3 with instantiations i := i− 1, n = i+ 1, t := t we get:

ceS,u(t) = genCEsu(i)[i− 1]

And by Lemma 17 the claim follows.

We proceed with a lemma, which establishes a dependency between states of the
Scheduler and states of the Send Unit. As depicted in Figure 6.5, the only state, which
triggers the Send Unit by activating signal startsnd is the state startsnd. After this
state the Scheduler switches to state Twait, where the Send Unit is transmitting a
message during tc cycles. The Scheduler remains in Twait for off + tc − 1 cycles,
since arriving at Twait after startsnd is only possible if the cycle counter contains the
number off + 1.5 That is, if the Send Unit can be proven to take not more than tc cycles
for a message transmission, it will be idle when the Scheduler leaves the state Twait.
Thus, the Send Unit can be non-idle only if the Scheduler is in state Twait.

Lemma 19 (No Twait Implies Idle Send Unit). If the Scheduler of ECUu is not in state
Twait, then it’s Send Unit is idle.

ECU cu.abc.state 6= Twait⇒ ECU cu.abc.sstate = s_idle

Proof. By the control Automaton of the Send Unit (Figure 6.7) we know, that it if it is
idle, it will only be triggered by an incoming startsnd signal. By Scheduler Automaton
construction (Figure 6.5) we know, that this signal is active only in state startsnd. We
prove the claim by induction on c.

1. Base case: c = 1. The first cycle takes place after the reset signal gets active.
It resets the entire hardware and all automata to their idle states, so the claim
follows by construction of the Send Unit, Scheduler and by Assumption 5.

5Leaving of state offwait when abc.cycle = off − 1, arriving in startsnd when abc.cycle = off and one
cycle will be spent in startsnd
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2. Induction step: c→ c+ 1. By induction hypothesis we have:

ECU cu.abc.state 6= Twait⇒ ECU cu.abc.sstate = s_idle

We have to show:

ECU c+1
u .abc.state 6= Twait⇒ ECU c+1

u .abc.sstate = s_idle

We make a case distinction on the fact whether the Scheduler was in state startsnd
in cycle c.

(a) Case 1: abccu.state = startsnd. In this case we know that by Scheduler Au-
tomaton construction, it will switch into state Twait in the next cycle. How-
ever, this contradicts the premise we have in the induction step:

abcc+1
u .state 6= Twait

Hence, the case is closed by contradiction.

(b) Case 2: abccu.state 6= startsnd. Here we consider the case distinction on
whether the Scheduler was in state Twait in cycle c.

i. Case 1: abccu.state 6= Twait. This case allows us to use the induction
hypothesis for cycle c and we can conclude abccu.sstate = s_idle. By
hardware construction we can easily prove, that if the Send Unit is idle
in cycle c, and since the Scheduler is not in state startsnd (by outer
Case 2), then there is no way for activation of the startsnd signal and the
Send Unit will stay idle in cycle c+ 1.

ii. Case 2: abccu.state = Twait. This case eliminates the induction hypothe-
sis and the only additional assumption we have is that in cycle c + 1 the
Scheduler has left the state Twait: abcc+1

u .state 6= Twait. That is, we have
to show, that when the Scheduler leaves the state Twait in cycle c+ 1 its
Send Unit is always idle: abcc+1

u .sstate = s_idle. To show this, first we
have to show a lemma, that state Twait can only be entered from state
rcvwait, offwait and startsnd. In the first two cases the Send Unit will
not be triggered and stays idle in the next cycle. In case of startsnd, the
Send Unit will be started and remains non-idle during the entire transmis-
sion lasting tc cycles. Then we show, that if the transmission is over, the
Send Unit returns to idle state and the Scheduler is still in state Twait.
Then we show that the Send Unit cannot be started while the Scheduler
is in state Twait, hence, we show that the Send Unit remains idle until
the Scheduler leaves state Twait, and the claim of Lemma follows.

Now we will formally couple the state of the Send Unit and the analog output of
the send register. Obviously, as depicted in Figure 6.8, the clock enable signal of the
send register S is computed in cycle c as the content of register abcci .dnbit. This register
is clocked in every cycle. By construction of the Output Computation module, we can
show, that the input clocked into the dnbit register is a ‘0’ as long as the input s_idle,
denoting the idle Send Unit, is active and signal startsnd is inactive. Since the Send
Unit will be triggered by the Scheduler initiating the startsnd signal, we can show a
lemma, stating, that as long as the bus controller does not act as a sender, its analog
output will stay idle (‘1’).
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Lemma 20 (Analog Output of the Send Register). If the Send Unit of an ECU is idle,
its analog output remains idle and spike-free as long as it does not start a message
transmission:

ECU cu.abc.sstate = s_idle ∧ ∀x ∈ [c : c+ y] : ECUxu .abc.state 6= startsnd

⇒ ∀t ∈ [eu(c+ 2) + tpmin : eu(c+ y + 3) + tpmin] : OutS,u(t) = 1

Proof. We prove Lemma 20 by induction on y.

1. Induction base: y = 0. For y = 0 we have to show:

ECU cu.abc.sstate = s_idle ∧ ECU cu.abc.state 6= startsnd

⇒ ∀t ∈ [eu(c+ 2) + tpmin : eu(c+ 3) + tpmin] : OutS,u(t) = 1

By Scheduler construction we can verify, that signal startsnd is inactive in cycle
c, since the Scheduler is not in state startsnd. Since we know that the Send
Unit is idle in c, by Output Computation module construction (Figure 6.8) we can
conclude, that a zero will be clocked into abcu.dnbit in cycle c:

abcc+1
u .dnbit = 0 (7.6)

In DRM we get by Definition 6:

∀ : t ∈ [eu(c+ 2) + tpmin : eu(c+ 3) + tpmin] : OutS,u(t) = OutS,u(eu(c+ 2)) (7.7)

if the condition stable(ceS,u, c+2) ∧ ceS,u(eu(c+2)) = 0 is satisfied. By Equation 7.4
and Lemma 18 we know:

∀t ∈ [eu(c+ 2)− ts : eu(c+ 2) + th] : ceS,u(t) = abcc+1
u .dnbit = 0

That is, we have ceS,u(eu(c+ 2)) = 0, and by Definition 5 we conclude:

stable(ceS,u, c+ 2) ≡ ∃b ∈ B : ∀t ∈ [eu(c+ 2)− ts : eu(c+ 2) + th] : ceS,u(t) = b

≡ ∀t ∈ [eu(c+ 2)− ts : eu(c+ 2) + th] : ceS,u(t) = 0

Hence, by 7.7 we can simplify the initial claim to:

abccu.sstate = s_idle ∧ abccu.state 6= startsnd⇒ OutS,u(eu(c+ 2)) = 1

It remains to show, that the analog output of the send register contains the idle
value at time eu(c+ 2) if the Scheduler is not in a broadcast starting state and the
Send Unit is idle in cycle c. We show this claim by induction on c:

(a) In the induction base case c = 0, we show that in the second cycle after the
startup, the send register S will be initialized with idle value ‘1’ and state
startsnd will not be entered by the Scheduler in the next three cycles.

(b) In the induction step c→ c+ 1 we get by the induction hypothesis:

abccu.sstate = s_idle ∧ abccu.state 6= startsnd⇒ OutS,u(eu(c+ 2)) = 1
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We have to show:

abcc+1
u .sstate = s_idle ∧ abcc+1

u .state 6= startsnd⇒ OutS,u(eu(c+ 3)) = 1

Note that we can only use the induction hypothesis if its premise is satisfied.
However, we can use the same premise for cycle c + 1, which is the premise
of the claim to show:

abcc+1
u .sstate = s_idle ∧ abcc+1

u .state 6= startsnd (7.8)

First we consider the case, that the premise of the induction hypothesis is
not satisfied:

abccu.sstate 6= s_idle ∨ abccu.state = startsnd (7.9)

If the left part holds, i.e., the Send Unit is not idle, we know that it will be
idle in the next cycle by 7.8. Hence, by the construction of the Send Unit
control Automaton (Figure 6.7), we can show that the Send Unit can only be
in the last state TES1 of the sending protocol in cycle c. As we know from
the protocol specification, the value TSS[1] = 1 has to be sampled into the
send register S. By Send Unit control Automaton (Figure 6.7) we can show
that in state TSS1 both signals se1 and se2 are activated. Hence, by output
computation construction (Figure 6.8) the input to the send register S is a
‘1’. Moreover, we show that according to the output computation module
construction this value will be written to S in some cycle c′ ≤ c + 1. We also
show, that the content of S will not be changed until cycle c + 1. Then, we
show by induction, that the analog output will be equal to the sampled value
in cycle c′ by Definition of 6:

OutS,u(eu(c+ 3)) = InS,u(eu(c′ + 1)) = 1

The case where the second part of 7.9 holds is easier to resolve, because in
this case together with 7.8 we have:

abccu.state = startsnd ∧ abcc+1
u .sstate = s_idle

By Lemma 19 we get abccu.sstate = s_idle. Now we can easily verify that
the Scheduler Automaton would activate the signal startsnd in cycle c, which
would trigger the idle Send Unit, which becomes non-idle in cycle c + 1 and
this case is closed by contradiction. Thus, we have shown that if the premise
of the induction hypothesis does not hold, we still can show the claim. If the
premise holds, we have:

abccu.sstate = s_idle ∧ abccu.state 6= startsnd ∧ OutS,u(eu(c+2)) = 1 (7.10)

It remains to show, that the analog output of the send register did not change:

OutS,u(eu(c+ 3)) = OutS,u(eu(c+ 2)) (7.11)

By Definition 6 the equation 7.11 holds if:

stable(ceS,u, c+ 2) ∧ ceS,u(eu(c+ 2)) = 0
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By Lemma 18 we know: ceS,u(eu(c + 2)) = abcc+1
u .dnbit As in the induction

base case, by 7.10, Scheduler Automaton and output computation module
construction we can show:

abcc+1
u .dnbit = 0

And the claim follows.

2. Induction step: y → y + 1. By induction hypothesis we have:

ECU cu.abc.sstate = s_idle ∧ ∀x ∈ [c : c+ y] : ECUxu .abc.state 6= startsnd

⇒ ∀t ∈ [eu(c+ 2) + tpmin : eu(x+ 3) + tpmin] : OutS,u(t) = 1

We have to show:

ECU cu.abc.sstate = s_idle ∧ ∀x ∈ [c : c+ y + 1] : ECUxu .abc.state 6= startsnd

⇒ ∀t ∈ [eu(c+ 2) + tpmin : eu(x+ 3) + tpmin] : OutS,u(t) = 1

By the premise of the induction step we can fulfill the premise of the induction
hypothesis and conclude:

∀t ∈ [eu(c+ 2) + tpmin : eu(c+ y + 3) + tpmin] : OutS,u(t) = 1

Then, it remains to show:

∀t ∈ [eu(c+ y + 3) + tpmin : eu(c+ y + 4) + tpmin] : OutS,u(t) = 1

Since the ECUu has an idle Send Unit and did not start a message broadcast
in cycle c + y and its send register contains the idle value ‘1’ by the induction
hypothesis, by the same argumentation as in the induction base, we argue:

∀ : t ∈ [eu(c+y+ 3) + tpmin : eu(c+y+ 4) + tpmin] : OutS,u(t) = OutS,u(eu(c+y+ 3))

and the claims follows.

Note that Lemma 20 shows, that the analog output reacts with a two cycles delay
to the changes of the Scheduler Automaton. The first delay comes from the fact, that
the clock enable signal will be stored in the register abc.dnbit before it clocks the send
register S. The second delay cycle comes from the DRM model, since the output of an
analog register at the clock edge e(c) is equal to the input signal written to the register
at the clock edge e(c− 1).

7.5.2 Post-round Correctness of Analog Send Register Outputs

In the previous section we have established a formal dependency between the behaviour
of the Scheduler, Send Unit and the analog output of the send register S of the corre-
sponding ECU. Basically, we have shown, that if the Send Unit is idle, then the send
register contains idle bus value until the Scheduler of the ECU enters startsnd state,
which starts a message broadcast.
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In this section, we will use this result to show the correctness of recurrent synchro-
nizations during the system run. This will be proven inductively, arguing simultaneously
about the clock synchronization and correct schedule execution, since both properties
hinge on each other. First, we will show that after the startup routine, the bus is free
for the first synchronization. In the induction step, assuming that synchronization has
worked in round r, we will show, that all ECUs will accomplish all slots of a round and
will switch to a synchronization-waiting state. Then we will show, that no one of them
will leave this state until the actual synchronization message will be sent by master.
Since no ECUs are sending at that point, we can abstract the bus as a direct wire from
the master to every receiver and use Lemma 10 to show the the synchronization in the
beginning of round r + 1 will happen.

We will need one helper lemma. As mentioned in Section 7.1.3, we cannot show, that
slot 0 starts before the master starts the first message transmission, because the first
bit of this message transmission serves as a synchronization wich actually triggers the
first slot on the slave ECU. However, we have to show, that the slave does not produce
any bus activity during the master’s message transmission. Since we know, that all
slaves should be waiting in state rcvwait for the synchronization, and that the analog
output is delayed by two cycles (Lemma 20), we have to show, that if the slave is in state
rcvwait, then its Send Unit was idle in the previous four cycles and remains idle for at
least T next cycles.

Lemma 21. Let ECUu be a slave ECU. If it is in state rcvwait in cycle c, then its analog
bus output is idle for 4 cycles before and for at least T cycles after cycle c.

abccu.state = rcvwait⇒ ∀t ∈ [eu(c− 2) + tpmin : eu(c+ T + 1) + tpmin] : OutS,u(t) = 1

Proof. First we show, that the Send Unit of ECUu was idle in cycles c− b for b ∈ [1 : 4]:

abcc−bu .sstate = s_idle (7.12)

By Scheduler construction, if an ECU is in state rcvwait in cycle c, then in cycle c − b
it could be in states rcvwait, idle or Twait (since an ECU stays for T cycles in Twait).
In case of states rcvwait and idle the claim 7.12 follows immediately by Lemma 19. In
case of state Twait it would mean, that ECUu has finished the last slot ns − 1 of some
round in the previous cycle. Hence, we show by hardware construction, that even if
send(ns − 1) = u holds, the transmission would end off cycles before ECUu leaves the
state Twait:

abcc−off
u .sstate = s_idle

Then we show, that in the remaining off cycles the state startsnd cannot be entered
and, thus, by instantionation of the constant off (Section 7.1.4) the Send Unit would
remain idle until cycle c − b because off > b. Furthermore, since by assumption the
ECUu is in state rcvwait in cycle c, we can show by Scheduler Automaton construction,
that it will not start a message broadcast for at least T cycles. Obviously, this holds
because the slave being in state rcvwait has first to pass in the next cycles states
rcvwait (possibly), Twait and finally offwait to reach the broadcast starting state
startsnd. Alone in states Twait and offwait it will spend altogether T cycles. Hence,
we have:

∀x ∈ [c− 4 : c+ T ] : abcxu.state 6= startsnd

Finally, we apply Lemma 20 for cycle c− 4 and y := T + 1 and the claim follows.
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Now we are ready to show that a slave will successfully synchronize with master
and start all slots of all rounds.

Lemma 22 (Schedule Correctness Of Slaves for All Rounds). Every slave ECUu with
u ∈ [0 : ns− 1] will start all slots of all rounds

∀r, s < ns : Σu(s)αu(r,s)

Proof. We prove the lemma by Induction on round r.
Induction base: r = 0. We will start with showing, that the synchronization in the
beginning of round 0 will take place by showing, that slot 0 of round 0 will be started
on all slaves. Thus, by Definition 12 and 13 we have to show:

Σu(0)αu(0,0) ≡ Σu(0)cyu,0(α0(0,0)+off +2)+φu,0(α0(0,0)+off +2)+4

≡ Σu(0)cyu,0(t0+off +2)+φu,0(t0+off +2)+4

By Assumption 8 we know, that ECUu is in state rcvwait, when the master is in state
startsnd in cycle t0 + off :

abct0+off
0 .state = startsnd ∧ abccyu,0(t0+off )

u .state = rcvwait

Here we use the next affected cycle cyu,0(t0 +off ) to fix a cycle of a slave corresponding
to cycle t0 + off of the master. To show, that the first synchronization will hapen, we will
apply Lemma 10. However, we have to be able to resolve all of its premises first. For
this, we first instantiate all variables fixed in that lemma:

• abcj0 will be instantiated by ECU0.abc
j;

• abcju will be instantiated by ECUu.abcj;

• the master’s cycle c will be instantiated by t0 + off ;

• the generation function bvceS of bit lists of clock enable signals will be instantiated
by function genCEs0;

• the generation function bvinS of bit lists of input signals will be instantiated by
function genINs0;

• clock enable signal ceR,u for register R of ECUu will be instantiated by a constant
function (λx.1).6

Then we resolve all premises:

(a) The first premise will be resolved as described in Section 7.2.

(b) In the second premise we have to show, that the master is in state startsnd in cycle
t0 + off and its Send Unit is idle. By Assumption 8 we know, that the master starts
slot 0 of round 0 in cycle t0: Σ0(0)t0 . By Scheduler construction we easily conclude:
abct0+off

0 .state = startsnd. By Lemma 19 we can conclude that in state startsnd,
the Send Unit of every ECU is idle.

6This is sound because the clock enable signal of register R is always clocked and does not depend on any
external computations.
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(c) After all instantiations we have to show:

abct0+off +1
0 .dnbit = 1 ∧ ∀i ∈ [1 : 7] : abct0+off +i+1

0 .dnbit = 0

By discharging of premise (b) we know, that the master is in state startsnd in cycle
t0 + off and its Send Unit is idle (s_idle = 1). Now we can show by Scheduler
Automaton (Figure 6.5) and output computation module construction (Figure 6.8),
that in the next cycle a ‘1’ will be written to the dnbit register. We also can show,
that the abc0.bitcon counter will be reset in cycle c + 1. In the same cycle the Send
Unit will be triggered by active startsnd signal and remains non-idle during the
entire message transmission. Thus in the next 7 cycles (until abc0.bitcon reaches
value ‘111’) a zero will be sampled into register abc0.dnbit.

(d) Proof of (λx.1)(t) = 1 is obvious.

(e) The fifth premise requires that the shift register is filled with ones at the moment,
when the master starts the broadcasting of the synchronization message:

abccyu,0(α0(0,0)+off +2)
u .sh = 14

We make use of Assumption 8 and conclude, that in cycle cyu,0(α0(0, 0)) every slave
is in state rcvwait, and that all previous states were idle or rcvwait. Using
Lemma 19 we can show, that the Send Unit of all ECUs was idle until that cycle,
thus, the send register of every slave contains a ‘1’. By Lemma 21 we know that the
analog output of a slave will stay for at least T cycles idle after cycle cyu,0(α0(0, 0)).
Moreover, by Scheduler construction we can conclude, that the master will never
enter the state startsnd until cycle t0 + off . Thus, by Lemma 19 and Lemma 20 we
can show, that the master’s analog output is idle until e0(α0(0, 0) + off + 2) + tpmin.
Hence, by bus construction we can show that all slaves will sample only idle values
until the start of the synchronization in cycle cyu,0(α0(0, 0) + off + 2).

(f) The sixth premise requires that the receiver is in the state rcvwait and its Receive
Unit is idle at the time when the master starts its broadcast. We use the same lem-
mas shown for the fifth premise and argue that since the shift register contained
idle values only until the message broadcast, by synchronizer construction (Fig-
ure 6.11(b)) the signal startedrcv was never activated. Hence, the Receive Unit was
never started and the Scheduler could not leave state rcvwait.

(g) In the seventh premise we have to justify that the bus can be abstracted to a direct
wire between the master and every slave for the time of the transmission of the first
bit of the master’s message:

∀t ∈ (e0(α0(0, 0)+off +2)+tpmin : e0(alpha0(0, 0)+off +9)+tpmin] : InR,u(t) = OutS,0(t)

We have already argued in the proof of the previous premise, that every slave will
be in state rcvwait and its Send Unit is idle in cycle cyu,0(α0(0, 0) + off + 2). By
Lemma 21 we know that the slave’s analog output is idle during time t in the fol-
lowing interval:

[eu(cyu,0(α0(0, 0) + off + 2)− 2) + tpmin : eu(cyu,0(α0(0, 0) + off + 2) + T + 1) + tpmin]

Hence, if we show that this interval includes the interval of the seventh premise,
the premise can be discharged.
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• Left boundary:

eu(cyu,0(α0(0, 0) + off + 2)− 2) + tpmin −
(e0(α0(0, 0) + off + 2) + tpmin)

= eu(cyu,0(α0(0, 0) + off + 2)− 2)− e0(α0(0, 0) + off + 2)

(Definition 2) = eu(cyu,0(α0(0, 0) + off + 2)− 1)− τu −
e0(α0(0, 0) + off + 2)

(Lemma 7) ≤ e0(α0(0, 0) + off + 2) + tpmin − th− τu −
e0(α0(0, 0) + off + 2)

= tpmin − th− τu
(Assumption 2) ≤ 0

• Right boundary:

e0(α0(0, 0) + off + 9) + tpmin −
eu(cyu,0(α0(0, 0) + off + 2) + T + 1)− tpmin

Definition 2 = e0(α0(0, 0) + off + 2) + 7 · τ0 −
(eu(cyu,0(α0(0, 0) + off + 2)) + (T + 1) · τu)

Definition 7 = e0(α0(0, 0) + off + 2) + 7 · τ0 −
(e0(α0(0, 0) + off + 2) + tpmin − th+ (T + 1) · τu)

Assumption 2 ≤ 7 · τ0 ≤ T · τu
Lemma 3 ≤ 0

(h) the last premise requires that beginning with cycle cyu,0(α0(0, 0) + off + 2) of slave
ECUu signal reset_ru remains inactive. By definition of signal reset_ru (page 62)
we know that it gets active if the Scheduler is in state Twait and the cycle counter
reaches T − 1. Since we already know that every slave ECU is in state rcvwait in
cycle cyu,0(α0(0, 0) + off + 2), by Scheduler Automaton construction, there is no way
to activate signal reset_ru in the next 3 cycles.

Finally, Lemma 10 can be applied and we get for every slave the start of slot 0 in cycle
αu(0, 0):

Σu(0)cyu,0(α0(0,0)+off +2)+φu,0(α0(0,0)+off +2)+4 = Σu(0)αu(0,0)

Now we just apply Böhm’s Lemma 11 and get for the remaining slots:

∀s ∈ [1 : ns− 1] : Σu(s)αu(0,0)+tc+off +(s−1)·T

By Lemma 6 we conclude:

∀s ∈ [1 : ns− 1] : αu(0, 0) + tc + off + (s− 1) · T = αu(0, s)

And the claim of the induction base (r = 0) follows.
Induction step: r → r + 1. By induction hypothesis we know, that all slaves will start
all slots of round r:

∀s < ns : Σu(s)αu(r,s)

We have to show, that they will start all slots of the next round r + 1:

∀s < ns : Σu(s)αu(r+1,s)
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Basically we have to show that after all slaves have accomplished the last slot of round
r, the synchronization before round r + 1 will take place, by applying Lemma 10 again.
However, in this case we will instantiate the master’s cycle c by cycle α0(r + 1, 0) +

off , i.e., the cycle in which the master starts the broadcasting of the synchronization
message of round r + 1. All fixed variables of Lemma 10 can be instntiated exactly as
in the base case of the induction, as well as all premises except for premises (e), (f) and
(g) can be resolved identically to the proof of the induction base case. Thus, we will
only deal with three remaining premises.

• Premise (e): the shift register of all ECUs is filled with ones:

∀u ∈ [1 : ns− 1] : abccyu,0(α0(r+1,0)+off +2)+σu,0(α0(r+1,0)+off +2)
u .sh = 14

• Premise (f): every slave is waiting for synchronization and his Receive Unit is idle:

∀u ∈ [1 : ns− 1] : abc
cyu,0(α0(r+1,0)+off +2)+σu,0(α0(r+1,0)+off +2)
u .state = rcvwait ∧

abc
cyu,0(α0(r+1,0)+off +2)+σu,0(α0(r+1,0)+off +2)
u .rstate = r_idle

• Premise (g): the input signal of every receive register is the output of the send
register of the master during 7 cycles:

∀u ∈ [1 : ns− 1] :

∀t ∈ (e0(α0(r + 1, 0) + off + 2) + tpmin : e0(α0(r + 1, 0) + off + 9) + tpmin] :

InR,u(t) = OutS,0(t)

Proof of Premise (e). First, by induction hypothesis we conclude that every slave
ECU will reach the last slot of round r:

∀u ∈ [1 : ns− 1] : Σu(ns− 1)αu(r,ns−1)

By simple proof over the construction of the Scheduler Automaton, we can show that
every ECU will also reach the end of the last slot:

∀u : abc
αu(r,ns−1)+T
u .state = Twait ∧ abc

αu(r,ns−1)+T
u .cycle = T − 1 ∧

abc
αu(r,ns−1)+T
u .slot = ns− 1

This implies predicates eqTαu(r,ns−1)+T and eqnsαu(r,ns−1)+T by their definitions. As
depicted in Figure 6.5 every time the Scheduler leaves the state Twait (on active eqT
signal), a signal reset_ru will be activated. By Figure 6.10 we can verify, that signal
reset_ru resets the Receive Unit putting it into the r_idle state. By Figure 6.11(a) we
also can verify, that the Redundancy Elimination module of the Receive Unit will be
filled with ones on active reset_ru signal. Thus, formally we have in the next cycle, after
the end of slot ns− 1 is reached:

abcαu(r,ns−1)+T+1
u .state = rcvwait ∧ abcαu(r,ns−1)+T+1

u .rstate = r_idle ∧

abcαu(r,ns−1)+T+1
u .sh = 14 ∧ abcαu(r,ns−1)+T+1

u .R̂ = 1 ∧ abcαu(r,ns−1)+T+1
u .R = 1

Since, the shift register abcu.sh will be filled with values sampled 2 cycles before on the
bus (because the values go through two receive registers first), it is enough to show, that
the ECU has received only ones 2 cycles before the next affected cycle plus delay cycle.
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Hence, we show, that after the end of the last slot of round r in cycle αu(r, ns−1)+T +1

and until two cycles before the next cycle affected by the synchronization message for
the next round in cycle cyu,0(α0(r+1, 0)+ off +2)+σu,0(α0(r+1, 0)+ off +2) all Receive
Units sample only the idle value. For convinience, we abbreviate this time range of
ECUu as PostRoundu:

PostRoundu := [αu(r, ns−1)+T+1 : cyu,0(α0(r+1, 0)+off +2)+σu,0(α0(r+1, 0)+off +2)−2]

And we have to show:

∀u ∈ [1 : ns− 1] : ∀x ∈ PostRoundu : abcxu.R = 1 (7.13)

By our bus modeling in Section 4.4 we model the digital input of the receive register in
cycle x as digitized bus value at clock edge eu(x):

abcxu.R = dig(bus, eu(x))

Hence, if we show that the bus value contains the idle value at every clock edge eu(x)

with x ∈ PostRound, then by Definition of the dig function (Definition 4.2), the equa-
tion 7.13 would follow. Thus, we show

∀u ∈ [1 : ns− 1] : ∀x ∈ PostRoundu : bus(eu(x)) = 1

We can conclude this by bus construction if we show:

∀x ∈ PostRoundu : ∀v ∈ [0 : ns− 1] : OutS,v(eu(x)) = 1 (7.14)

That is, the send register S of any ECUv contains ‘1’ at the time of clock edge x of
arbitrary ECUu. We show this as follows.

We make a case distinction on sendlv[0] = 1, denoting whether ECUv is the master.

1. Case 1: ECUv is a slave. By induction hypothesis we can conclude, that ECUv has
started the last slot of round r: Σv(ns − 1)αv(r,ns−1). We know that the Send Unit
of ECUv would be idle in cycle αv(r, ns− 1) + tc + off independendtly of whether
it is a sender in slot ns − 1 or not. If it was a receiver, its Send Unit will never be
started. If it was a sender, its Send Unit will be started in cycle αv(r, ns− 1) + off

and finishes tc cycles later by returning back to state s_idle. Hence, in both cases
we can show:

abcαv(r,ns−1)+tc+off
v .sstate = s_idle ∧ abcαv(r,ns−1)+tc+off

v .state = Twait (7.15)

Moreover, we can easily show, that the Scheduler will stay another off cycles in
state Twait until signal eqT gets active in cycle:

αv(r, ns− 1) + tc + off + off = αv(r, ns− 1) + T

Since this would be the end of slot ns − 1 signal eqns would also get active
and by Scheduler construction, ECUv would switch to state rcvwait in cycle
αv(r, ns − 1) + T + 1. By Lemma 21 we know, that ECUv will not enter
the state startsnd for at least another T cycles. Summing up, we can show:

abcαv(r,ns−1)+tc+off
v .sstate = s_idle ∧

∀x ≤ off + T : abcαv(r,ns−1)+tc+off +x
v .state 6= startsnd
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Applying this to Lemma 20 and the Definition of T we can conclude:

∀t ∈ [ev(αv(r, ns−1)+tc+off +2)+tpmin : ev(αv(r, ns−1)+2·T+3)+tpmin] : OutS,v(t) = 1

Now to show 7.14 we only have to show:

∀x ∈ PostRoundu :

eu(x) ∈ [ev(αv(r, ns− 1) + tc + off + 2) + tpmin : ev(αv(r, ns− 1) + 2 · T + 3) + tpmin]

• Lower bound. We show for the smallest x ∈ PostRoundu:

ev(αv(r, ns− 1) + tc + off + 2) + tpmin ≤ eu(αu(r, ns− 1) + T + 1)

Proof.

ev(αv(r, ns− 1) + tc + off + 2) + tpmin −
eu(αu(r, ns− 1) + T + 1)

(Lemma 6) = ev(αv(r, 0) + tc + off + (ns− 2) · T + off + tc+ 2) + tpmin −
eu(αu(r, 0) + tc + off + (ns− 1) · T + 1)

(τu > tpmin) ≤ ev(αv(r, 0) + tc + off + (ns− 2) · T + off + tc+ 2)−
eu(αu(r, 0) + tc + off + (ns− 1) · T )

(Definition 2) = ev(αv(r, 0)) + (tc + off + (ns− 2) · T + off + tc+ 2) · τv −
eu(αu(r, 0))− (tc + off + (ns− 1) · T ) · τu

= ev(αv(r, 0))− eu(αu(r, 0)) +

(tc + off + (ns− 2) · T + off + tc+ 2) · τv −
(tc + off + (ns− 1) · T ) · τu

(Lemma 12) ≤ (tc + off + (ns− 2) · T + off + tc+ 2) · τv −
(tc + off + (ns− 1) · T − 3) · τu

(Lemma 1) ≤ (tc + off + (ns− 2) · T + off + tc+ 2) · (1 + ∆) · τu −
(tc + off + (ns− 1) · T − 3) · τu

= (((ns− 1) · T + tc+ 2) · (1 + ∆)− (tc + off + (ns− 1) · T − 3)) · τu
= (((ns− 1) · T + tc+ 2) ·∆ + 5− off ) · τu

(Def. T ) ≤ (ns · T ·∆ + 5− off ) · τu
(Def. off ) ≤ 0

• Upper bound. We show for the largest x ∈ PostRoundu:

eu(cyu,0(α0(r + 1, 0) + off + 2) + σu,0(α0(r + 1, 0) + off + 2)− 2)

≤ ev(αv(r, ns− 1) + 2 · T + 3) + tpmin

Since 0 ≤ tpmin and σu,0(α0(r + 1, 0) + off + 2) ≤ 1 we can simplify this
expression:

eu(cyu,0(α0(r + 1, 0) + off + 2)− 1) ≤ ev(αv(r, ns− 1) + 2 · T + 3)

By Lemma 7 we conclude:

e0(α0(r + 1, 0) + off + 2) + tpmin − th ≤ ev(αv(r, ns− 1) + 2 · T + 3)
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By Lemma 6 we have:

e0(α0(r + 1, 0) + off + 2) + tpmin − th ≤ ev(αv(r, 0) + tc + off + ns · T + 3)

By Definition 12 we have:

e0(α0(r + 1, 0) + off + 2) + tpmin − th

≤ ev(cyv,0(α0(r, 0) + off + 2) +φv,0(α0(r, 0) + off + 2) + 4 + tc + off +ns · T + 3)

Since φv,0(α0(r, 0) + off + 2) ≤ 1 and by Definition 2 we get:

e0(α0(r+1, 0)+off +2)+tpmin−th ≤ ev(cyv,0(α0(r, 0)+off +2))+(tc+off +ns·T+7)·τv

By Lemma 7:

e0(α0(r+1, 0)+off +2)+tpmin−th ≤ e0(α0(r, 0)+off +2)+tpmin−th+(tc+off +ns·T+7)·τv

Which simplifies to:

e0(α0(r + 1, 0) + off + 2) ≤ e0(α0(r, 0) + off + 2) + (tc + off + ns · T + 7) · τv

By Lemma 5, Definitions 2 and 3, Assumption 2 we have:

e0(α0(r, 0)+off +2)+ns ·T ·τ0 ≤ e0(α0(r, 0)+off +2)+(tc +off +ns ·T +7) ·τv

Which simplifies to:

ns · T · τ0 ≤ (ns · T + tc + off + 7) · τv

And can be shown as follows:

ns · T · τ0 − (ns · T + tc + off + 7) · τv
(Lemma 1) ≤ ns · T · (1 + ∆) · τv − (ns · T + tc + off + 7) · τv

= (ns · T ·∆− tc + off + 7) · τv
(Definition of off ) ≤ 0

2. Case 2: ECUv is master. Since the master ECU sends only in cycle 0, we can
easily show by Lemma 16 that it will start the last slot of the previous round:

Σ0(ns − 1)α0(r,ns−1)

and it will skip the state startsnd for T cycles, since it is a receiver in the last
slot. By Lemma 19 we also can conclude, that the Send Unit is idle in cycle
α0(r, ns− 1). However, it will enter a new round right in the next cycle and start a
message transmission in cycle α0(r, ns−1)+T +off which is cycle α0(r+1, 0)+off

by Lemma 5 and Definition 3. Thus, by Definition 11 and Lemma 20 we conclude:

∀t ∈ [e0(α0(r, ns−1)+2)+ tpmin : e0(α0(r, ns−1)+T +off +2)+ tpmin] : OurS,0 = 1

As in the slave-case, we have to show:

∀x ∈ PostRoundu :

eu(x) ∈ [e0(α0(r, ns− 1) + 2) + tpmin : e0(α0(r, ns− 1) + T + off + 2) + tpmin]

100



• Lower bound. We show for the smallest x ∈ PostRound:

e0(α0(r, ns− 1) + 2) + tpmin − eu(αu(r, ns− 1) + T + 1)

(Lemma 6 and 5) = e0(α0(r, 0) + (ns− 1) · T + 2) + tpmin −
eu(αu(r, 0) + tc+ off + (ns− 1) · T + 1)

(Definition 12) ≤ e0(α0(r, 0) + (ns− 1) · T + 2) + tpmin −
(eu(cyu,0(α0(r, 0) + off + 2) + φu,0(α0(r, 0) + off + 2) +

4 + tc+ off + (ns− 1) · T + 1))

(1 ≥ φu,0(x)) ≤ e0(α0(r, 0) + (ns− 1) · T + 2) + tpmin −
eu(cyu,0(α0(r, 0) + off + 2) + 4 + tc+ off + (ns− 1) · T + 1)

(Definition 2) = e0(α0(r, 0) + off + 2) + ((ns− 1) · T − off ) · τ0 + tpmin −
(eu(cyu,0(α0(r, 0) + off + 2)) + (4 + tc+ off + (ns− 1) · T ) · τu)

(Definition 7) ≤ e0(α0(r, 0) + off + 2) + ((ns− 1) · T − off ) · τ0 + tpmin −
(e0(α0(r, 0) + off + 2) + tpmin − th+

(4 + tc+ off + (ns− 1) · T ) · τu)

= ((ns− 1) · T − off ) · τ0 + th−
(4 + tc+ off + (ns− 1) · T ) · τu

(τu > th) ≤ ((ns− 1) · T − off ) · τ0 − (3 + tc+ off + (ns− 1) · T ) · τu
(Lemma 1) ≤ (((ns− 1) · T − off ) · (1 + ∆)− 3− tc− off − (ns− 1) · T ) · τu

= (((ns− 1) · T − off ) ·∆− 3− 2 · off − tc) · τu
(Definition of off ) ≤ 0

• Upper bound. For the upper bound we have:

eu(cyu,0(α0(r + 1, 0) + off + 2) + σu,0(α0(r + 1, 0) + off + 2)− 2)

≤ e0(α0(r, ns− 1) + T + off + 2) + tpmin

Since σu,0(α0(r + 1, 0) + off + 2) ≤ 1, we simplify the inequation above:

eu(cyu,0(α0(r + 1, 0) + off + 2)− 1) ≤ e0(α0(r, ns− 1) + T + off + 2) + tpmin

As above, by Lemma 7 we get:

e0(α0(r + 1, 0) + off + 2) + tpmin − th ≤ e0(α0(r, ns− 1) + T + off + 2) + tpmin

By Lemma 5 and Definition 3 we reformulate the inequation

e0(α0(r, ns− 1) + T ) + (off + 2) · τ0 − th ≤ e0(α0(r, ns− 1) + T ) + (off + 2) · τ0

And the claim follows by Assumption 2 (th ≥ 0).

Thus, we have verified, that the Premise (e) of Lemma 10 is fullfiled for instan-
tiation of cycle c by α0(r + 1, 0) + off + 2. Proof of Premise (f) becomes obvious
due to the already proven claim 7.13 and Premise (e). First, we have shown in
the proof of Premise (e), that the Receive Unit will be reset at the end of the last
slot. Since the receive register R has sampled only ones starting from the last
slot and up to the next cycle affected by the synchronization plus delay, then by
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a simple hardware proof, we can show, that the majority voter never voted for 0
during that time, and, hence, signal startedrcv could not get active. Thus, every
receiver’s Receive Unit remained idle and, hence, the receiver could not leave the
rcvwait state.

Premises (g) and (h) can be proven along the lines of the proof in the induction
base case. Since we have shown in Premise (g), that all slaves are in state rcvwait
(or in Twait ending the last slot) shortly before the synchronization, we apply
Lemma 21 to show, that all slaves will have an idle value in their send registers
for the next T cycles. Thus, we can apply Lemma 10 for cycle α0(r+ 1, 0) + off + 2

and finally get for all slaves:

∀u ∈ [1 : ns− 1] : Σαu(r+1,0)
u

Then, applying Lemma 11, the claim of round-based schedule correctness follows.

7.6 Bus Control Correctness

Until now we have shown, that in every round the synchronization signal transmitted
by the master, can be successfully received by all slaves. Afterwards, all slaves will
execute a fixed schedule consisting of ns slot. Moreover, we know, that all non-zero
slots overlap during a message transmission. In this section we will show first, that in
every slot where the ECU acts as a receiver, it will produce an idle bus output. Second,
we will show, that despite the fact, that slot 0 will start after the start of the very first
transmission, all slaves produce an idle output in the first slot. Then combining all
results we will show, that in every slot of every round every non-sending ECU produces
an idle bus output. Then, by bus construction we can show, that the bus contains the
value of the send register of the sending ECU.

Lemma 23 (Receiver Skips startsnd State). Let ECUu be an abritrary ECU and s ∈
[0 : ns − 1] any slot, s.t. send(s) 6= u. Then we show, that during the entire slot ECUu
does not enter Scheduler state startsnd:

∀u, r, s ∈ [0 : ns−1] : send(s) 6= u⇒ ∀x ∈ [αu(r, s) : αu(r, s)+T−1] : abcxu.state 6= startsnd

Proof. We split cases on slot s.

• Case 1: s = 0. First we can conclude that u 6= 0, i.e., we consider a slave, because
we know:

sendl[0] = 0 = send(0)

By Lemma 22 we know Σu(0)αu(r,0), i.e., by Definition 11:

abcαu(r,0)
u .state = Twait ∧ abcαu(r,0)

u .cycle = off ∧ abcαu(r,0)
u .slot = 0

By Scheduler Automaton construction we know, that the cycle counter will be
incremented in every cycle as long as the bus controller stays in state Twait and
it will leave it after T − off − 1 cycles. Then, since the slot counter was set to zero
in the beginning of the slot 0 on the transition from state rcvwait to Twait, it will
be incremented in the next cycle. Since we assume ns > 1, we clearly do not have
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the number ns in the slot counter, so the slave ECU will switch to state off in cycle
αu(r, 0) + T − off . As before, it will increment the cycle counter in every cycle and
it will stay in that state during off − 1 cycles. Summing up all cycles of slot 0 and
additional off cycles where ECUu was in states Twait and offwait we get:

αu(r, 0) + T − 1− off + off = αu(r, 0) + T − 1

• Case 2: s > 0. By similar argumentation as above, we have:

abcαu(r,s)
u .state = offwait ∧ abcαu(r,s)

u .cycle = 0 ∧ abcαu(r,s)
u .slot = s

Thus, we simply show, that ECUu leaves the state offwait in off − 1 cycles, then
it will skip startsnd because we have assumed send(s) 6= u. When ECUu enter
Twait its cycle counter shows off cycles. In state Twait it will stay until the cycle
signals the number T −1. That is, it will remain there for T −off −1 cycles. Hence,
ECUu needs

off + T − off − 1 = T − 1

cycles for slot s. Since it will skip the state startsnd, the claim follows.

Now we are ready to show the correctness of bus contention control during every
transmission.

Theorem 3 (Bus Contention Control). During all transmission times of all slots of all
round, the bus value is the value of the analog output of the send register of ECUsend(s):

∀r, s : ∀t ∈ [αsend(s)(r, s) + off + 2 : αsend(s)(r, s) + off + tc + 2] : bus(t) = OutS,send(s)

Proof. To show the claim we fix an arbitrary receiver u in slot s with u 6= send(s). We
make a case distinction on slot number s.

• Case 1: s = 0. By Lemma 22 we know Σu(0)αu(r,0). By Scheduler construction
we show, that ECUu was in state rcvwait in cycle αu(r, 0) − 1. Then we apply
Lemma 21 and show that the analog output of ECUu will be kept in the send
register during the entire transmission time in slot 0.

• Case 2: s > 0. By Lemma 23 we know:

∀x ∈ [αu(r, s) : αu(r, s) + T − 1] : abcxu.state 6= startsnd

By Lemma 22 we know, that ECUu will start slot s in cycle αu(r, s) and by Defini-
tion 11 and Lemma 19 we can conclude:

abcαu(r,s)
u .sstate = s_idle

Applying Lemma 20 for cycle αu(r, s) we get:

∀t ∈ [eu(αu(r, s) + 2) + tpmin : eu(αu(r, s) + T + 2) + tpmin] : OutS,u(t) = 1

Finally, the claim follows from Lemma 13.
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CHAPTER

EIGHT

VERIFICATION OF MESSAGE
TRANSMISSION

In the previous chapter we have verified, that during the entire transmission time the
bus value is the value of the send buffer of the sending ECU. After we have proven the
abstraction of the bus to a direct wire, the proof of message transmission can be boiled
down to hardware proofs of serial interfaces. We sketch the remaining arguments in
this section.

Note that in this chapter we will refer to the j’th byte of buffer RB(i) or SB(i)

by RB(i)[j] or SB(i)[j]. In the real implementation, this is more complicated and as
depicted in Figures 6.12(a) and 6.12(b), the buffers are implemented as RAMs. Hence,
to read out or to write a byte, an reading/writing access has to be set up.

Schmaltz [Sch07] has shown in the following Lemma, that under the same assump-
tions as in Böhm’s Lemma 10, i.e., if the Receive Unit is waiting for message reception
and the directly connected send unit is starting to broadcast a message consisting of
l bytes, then all messages will be transferred correctly from the send buffer of the
sending ECU to the Byte shift register (see Figure 6.11(a)) of the receiving ECU.

Lemma 24 (High-Level Message Transmission Correctness). Fix following constants:

• abcjv as the state of the sender ECU in some cycle j;

• abcju as the state of an arbitrary slave ECU with 0 < u < N ;

• c ∈ N as cycle of sender ECU;

• ξu = cyu,v(c+ 2) as receiver cycle;

• ξju = cyu,v(c+ 18 + 80 · j) as receiver cycles;

Premises:

(a) In all cycles of the system run, the reset signal stays disabled and all configuration
registers containt the correct configuration parameter:

∀c, i ∈ {0, u} : resetc = 0 ∧
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abcci .CR.ns = bin6(ns) ∧ abcci .CR.l = bin10(l) ∧
abcci .CR.off = bin32(off ) ∧ abcci .CR.T = bin32(T ) ∧
abcci .CR.iwait = bin32(iwait) ∧ abcci .CR.sendl = sendli

(b) The master is in synchronization starting state in cycle c and it will skip this state
in the next tc cycles:

abccv.state = startsnd ∧ ∀x ≤ tc− 1 : abcc+xv .state 6= startsnd

(c) The the clock enable signal of R is assumed to be stable around each cycle edge:

∀i : ∀t ∈ [ev(i)− ts : ev(i) + th] : ceR,u(t) = 1

(d) The shift register is filled with ones in cycle ξ + σu,v(c+ 2):

abcξ+σu,v(c+2)
u .sh = 14

(e) The receiver is in synchronization-awaiting state, its send unit is idle:

abcξ+σu,v(c+2)
u .rstate = idle

(f) The input signal of R is the output signal of S during n+1 local cycles of the master:

∀t ∈ (ev(c+ 2) + tpmin : ev(c+ 2 + tc) + tpmin] : InR,u(t) = OutS,v(t)

Then: every byte will be transmitted correctly from the send buffer of the sender
to the shift register of the receiver:

∀i ≤ l : abc
ξju+79
u .Byte = abcv.SB(s mod 2)[i]c+18+80·j ∨

abc
ξju+80
u .Byte = abcv.SB(s mod 2)[i]c+18+80·j ∨

abc
ξju+81
u .Byte = abcv.SB(s mod 2)[i]c+18+80·j

Thus, Schmaltz has shown, that if both serial interfaces are initialized and ready for
the message transmission and the transmission starts in sender’s cycle c, then every
byte of the transmitted message will be transmitted correctly into the receiver’s shift
register abcu.Byte. Note, that as in Lemmas 8, in the original version of Lemma 24
a permanent connection (premise (f)) between the send and receive registers was re-
quired (see Section 4.3.2). This premise was corrected by restricting of the connection
time to the length of one transmission lasting tc sender cycles.

We will sketch the proof idea. The detailed proof description can be found in [Sch07].

Proof Sketch. Every byte will be transmitted together with a leading 2-bit sync edge
BSS by the sender bit for bit. As we know from the message protocol construction,
every bit will be replicated 8 times, hence, the transmission of one byte takes 80 cy-
cles. All sampled bits go through the Redundancy Elimination module (Figure 6.11(a)),
where the majority voter checks the last 5 sampled bits and outputs the most frequently
occurring bit among them. The Synchronizer circuit (Figure 6.11(b)) counts cycles in
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the 3-bit counter bitcon and outputs a strobe signal every 8 cycles. This signal will be
used by the shift register Byte as write enable signal. Hence, every time strobe is active,
the voted bit will be sampled into Byte and the oldest bit will be overwritten with the
previously sampled bit.

During these 80 cycles the clocks of both ECUs can drift by at most one cycle by
Lemma 3. However this only means, that the receiver will either not recognize one bit
on the bus if it is too slow, or it will recognize one sent bit as two bits, if it is too fast.
This error will be smoothed out by the majority voter. Thus, the receiver will receive
every transmitted byte either one cycle earlier (79 cycles), in time (80 cycles) or one
cycle later (81 cycles).

Furthermore, by the Synchronizer circuit construction 6.11(b) we can verify, that if
the voted bit changes from 1 to 0 (falling edge) and the send unit automaton is in state
BSS1, i.e., the sync edge of a new byte was recognized, the cycle counter abcu.bitcon will
be reset to adjust the receiver automaton to the master’s view of the protocol flow. The
proof is done by induction on length of the message l in bytes.

This lemma was proven before Böhm has started his work. Since he used the
same semantcis (local bus controller traces) and has adopted the same assumptions,
Lemma 24 has had the same wrong assumption as Lemma 10, requiring R̂ξ+1 = 1. Be-
sides this, the lemma has previously used another wrong assumption making the proof
valid only for cases if no drifts occur within 80 cycles between sender and receiver
clocks. As in the case of previous bugs, since Lemma 24 was never applied, the error
remained undiscovered until we have used it.

Schmaltz has provided an improved version on our demand.
Finally, we show the overall message transmission correctness and receive buffer

stability during the consequent slot, as well as during the time after the last slot and
until the start of the next round.

Theorem 4 (Overall Message Transmission Correctness).

∀u, r, s : ECU
αsend(s)(r,s)

send(s) .sb(s mod 2) = ECUαu(r,s)+T+1
u .rb((s+ 1) mod 2) ∧

∀x ∈ [αu(r, s) : αu(r, s) + T ] :

ECUαu(r,s)
u .rb((s+ 1) mod 2) = ECUxu .rb((s+ 1) mod 2) ∧

∀x ∈ [αu(r, ns− 1) + T + 1 : αu(r + 1, 0)] :

ECUαu(r,ns−1)+T
u .rb((s+ 1) mod 2) = ECUxu .rb((s+ 1) mod 2)

Proof. First we show the correctness of the message transmission from the send buffer
of the sender to the receive buffer of the receiver. We apply Lemma 24 for senders cycle
αsend(s)(r, s) + off , since this is the transmission start cycle for every ECU. We resolve
Premise (a) and (c) as in the case of Lemma 10.

Premise (b) scan be shown by Scheduler automaton construction. We know from
previous lemmas that every ECU will start slot s: Σsend(s)(s)

αsend(s)(r,s) . By Definition 11
we can conclude that ECUsend(s) is in state offwait in the beginning of the slot s.
Then by scheduler construction and sendl[send(s)] = 1 we show, that it will enter slot
startsnd in off cycles. Obviously, by automaton construction we can easily show, that
ECUsend(s) will not enter this state during the message transmission, staying only in
state Twait.

Premises (d) and (e) are shown for slot s = 0 exactly as in the case of Lemma 10. For
slot s > 0 both assumption are shown in similar manner, as in Lemma 22 where we have
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shown that the Receive Unit remains idle until the synchronization message. Here we
show, that the slot start cycle αu(r, s) starts directly after the last cycle of slot s− 1. By
scheduler construction we know, that every slot ends with the active eqT signal which
resets the Receive Unit. Then we show, that from the slot start and until the message
transmission start no ECU produces any bus activity because of:

• slaves do not produce any bus activity for the entire slot by Lemmas 23 and 20;

• the master behaves as a non-sending slave during all non-zero slots.

Finally, premise (g) is given by Theorem 3.
Hence, we get for ξju = cyu,send(s)(αsend(s)(r, s) + off + 18 + 80 · j):

∀i ≤ l : abc
ξju+79
u .Byte = abcsend(s).SB(s mod 2)(i)αsend(s)(r,s)+18+80·j ∨

abc
ξju+80
u .Byte = abcsend(s).SB(s mod 2)[i]αsend(s)(r,s)+18+80·j ∨

abc
ξju+81
u .Byte = abcsend(s).SB(s mod 2)[i]αsend(s)(r,s)+18+80·j

As next we show two following hardware lemmas. The send buffer with index s mod 2

stays stable during the entire slot s:

∀ x ∈ [αsend(s)(r, s) : αsend(s)(r, s) + T ] :

abc
αsend(s)

send(s) .SB(s mod 2)s mod 2 = abcxsend(s).SB(s mod 2)s mod 2

This is simple, because by Send Buffer construction (Figure 6.12(a)), the parity bit
p = s mod 2 prevents writing to the send buffer, exposed to the bus. We show that
the content of the shift register Byte will be written to the Receive Buffer in one of
three possible cycles ξiu + 80 + ω with ω ∈ {−1, 0, 1}. This is shown by correctness of
Receive Buffer WE Control. We show the correctness of Address Computation module
and conclude for each possible ω:

∀ x ∈ [cyu,send(s)(ξ
i
u + 80 + ω : αu(r, s) + T ] :

abcαu(r,s)+T
u .RB(s mod 2)[j] = abcxu.RB(s mod 2)[j]

Finally, we have to show, that the value of the receive buffer exposed to the bus in cycle
αu(r, s) + T is equal to the value of the receive buffer exposed to the processor in the
next cycle αu(r, s) + T + 1:

abcαu(r,s)+T
u .RB(s mod 2) = abcαu(r,s)+T+1

u .RB((s+ 1) mod 2)

Basically, this statement would follow if we can show, that the parity of the slot changes
in cycle αu(r, s) + T and the receive buffer will not be changed. The latter statement
is easy to show by the construction of the Receive Unit and the computation of the
write enable signal of the receive buffer, which will be acivated only if the Receive Unit
automaton is in state byte[7].

To show that the slot parity changes in cycle αu(r, s) + T , we consider two cases.

1. s < ns− 1: in this case, we are at the end of slot s, but not at the end of the round
r. By the Scheduler construction (Figure 6.5), signal incslot will be activated at
the transition from the state Twait to offwait. Obviously, the incrementation of
the slot counter leads to the flipping of the least significant bit which is the parity
bit.
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2. s = ns − 1. By Assumption 7, the number of slots ns is an even number. Since
the slot counter counts from 0, ns − 1 is the number of the last slot in the end of
a round. Hence, ns − 1 is odd and its least significant bit (the parity bit) is 1. In
case that the last slot of a round has ended (slot counter has reached ns − 1), a
transition from the state Twait to rcvwait will be taken and the slot counter will
be set to 0.

Thus, the parity flag changes in all cases and the proof of the message transmission
(the first statement) follows.

To show that the receive buffer exposed to the processor (the receive buffer with in-
dex s+ 1 mod 2) does not change its content, we have proven by the Scheduler automa-
ton, that the slot counter stays stable during every slot and between the last slot of a
round and the new round. Stable slot counter value implies that its last bit denoting the
slot parity stays stable too. By the Construction of the receive buffer (Figure 6.12(b))
we could conclude, that the write signal of the receive buffer exposed to the proces-
sor remains disable during the entire slot. This proofs the last two statements of the
claim.
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CHAPTER

NINE

CONCLUSION

9.1 Summary

We presented results on verification of time-triggered real-time bus system, which was
inspired by the FlexRay standard. The network consists of electronic control units in-
terconnected by a bus. We have verified the soundness of startup routine assumptions,
the clock synchronization, the correct TDMA scheduling and a low-level bit transmis-
sion. Finally, consolidating these results, we have shown the correctness of recurrent
message broadcasts during a system run. In contrast to most of previous research, we
not only show the algorithmic correctness of protocols, but we also provide justified
models linking these protocols to a concrete gate-level hardware.

The bus controller implementation consists of about 1800 lines of code. The ECU
implementation has been automatically translated to Verilog directly from formal Is-
abelle/HOL hardware descriptions and has been synthesized with the Xilinx ISE soft-
ware. The implementation which consists of several FPGA boards interconnected into
a prototype of a distributed hardware network was reported in [End09].

The entire formal proof [MSB] consists of 900 lemmas and theorems, and of 426
definitions, which all together comprise about 66000 lines. About 43% of lines account
for the (improved) proofs of previous results.

9.2 Discussion

During the presented verification work, several bugs were discovered in the hardware
implementation, as well as in the formulation of lemmas in previous verifications. It
turns out that formal verification of theorems, which are intended to be used as a
lemmas of other theorems later, often results in assumptions which cannot be easily
instantiated. This seems to happen due to lack of overview about the complete be-
havior and requirements of upper levels. As a result we have discovered in previous
verified theories (cf. Section 7.1 and Subsection 4.3.3) too strong assumption (e.g., un-
necessary quantifications), inconsistent assumptions (due to syntactic mistakes), wrong
assumption, different formalizations of same semantics, and so on. Fixing these issues
led to new unproven cases in existing proofs, which were studied and adjusted to new
assumptions. This was one of the most time consuming tasks.
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The time spent on the verification can be split into:

• Verification of the low-level message transmission (Theorem 1) and hardware ver-
ification of serial interfaces (Lemma 24) which took Julien Schmaltz about one
person-year.

• Verification of the Scheduler hardware (Lemma 11), Synchronization (Lemma 10)
and schedule timings (Lemma 13) took Peter Böhm one person-year [ABK08].

• Remaining verifications, extensions of previous results, adjusting of proofs and
consolidation into one theory, described in this work, took another 2.5 person-
years.

All three results were achieved in isolation and not in a team work. This had a
huge disadvantage during the consolidation of previous results. Every time a problem
was discovered during the consolidation work, first a study of the problem nature was
necessary. Unfortunately, the impossibility to collectively discuss such problems did
cost a huge amount of time, since all possible problem causes, e.g., wrong assump-
tions, wrong formulations, wrong abstractions, imprecise semantics, typos, etc., had to
be investigated. Then, if the cause of the problem was in existing theories, the cor-
responding proofs had to be studied and adjusted. If the verification would happen in
a collaborative work at the same time, the time spent on the verification of the entire
implementation could be probably decreased by factor 2.

9.2.1 Tools

The verification was carried out on several abstraction layers using a combination of an
interactive theorem prover Isabelle/HOL supported by the model checking technique
[TA08].

The use of the NuSMV model checker had a significant impact on the verification
speed. By our estimation, it reduced the overall verification time by about 20%. NuSMV
is a symbolic model checker and helped to argue about hardware properties with the
help of temporal logic. However, most proofs dealt with inequalities about real num-
bers, which is not applicable for NuSMV.

The Isabelle/HOL environment would benefit from a more advanced tool for search
of existing theories and lemmas in the libraries provided by Isabelle.

9.2.2 Found Bugs

During our work several hardware bugs were detected. The Processor Interface module
(see Figure 6.1) has accessed the configuration register in big-endian mode, whereas
we are using little-endian. The bug was discovered by Erik Endres during testing the
bus controller on FPGA boards (Section 6.6).

The reset signal did not reset a lot of registers and the control automata of serial
interfaces.

Moreover, an interesting bug was discovered during verification of Lemma 20. As
depicted in Figure 6.8, the input of the send register will be computed as a disjunction
of signal startsnd ∧ s_idle and of a conjunction of signals ¬s_idle and the output of an
and-tree. The problem here was, that the conjunction checking whether the signal
s_idle is inactive was missing in the original implementation. Instead, the output of the
and-tree was taken directly. Since the and-tree takes the output bitvector of a bitcon
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counter which is incremented every cycle, the output of the and-tree was a ‘1’ every
eight cycles, namely if the value of the bitcon counter reached ‘111’. In all other cycles,
signal startsnd signal was inactive, i.e., ‘0’ was written into the dnbit register.

The dnbit register stores the clock enable value of the send register S. Hence, the S
register was clocked every 8 cycles, even when the send unit was idle. By construction
of the Send Unit control automaton (Figure 6.7), the signal which was clocked into the
S register was the active signal se2 = 1. But according to DRM, after every clocking in
clock edge e(c), there is a possible spike at the output of the register at the time (e(c) +

tpmin : e(c) + tpmax). Thus, our bus controller could produce a spike on the bus every
eight cycles, independently on whether is was a sender or a receiver. Interestingly, this
bug was not discovered during our tests of interfaces on FPGAs.

9.3 Future Work

Undoubtedly, the presented time-triggered system is not applicable in the context of
safety-critical applications if it will not be extended with fault-tolerant features.

As part of the future work we see, e.g., an extension of the Clock Synchronization
protocol by fault-tolerance as sketched in [ABK08].

Another possibility would be supplying each ECU with a bus guardian, tackling the
problem of ‘babbling idiot’, a fault of the scheduler mechanism, causing the defect
ECU to send messages at a wrong time. This could be done as follows. We supply each
controller abci with a corresponding bus guardian bgi. The bus guarding bgi should have
its own clock source and the same scheduler implementation as abci, such that it has
the same local time notion, as the bus interface. Moreover, the bus guarding gets one
configuration register bgi.sendl, s.t. bgi.sendl = abci.CR.sendl, a special register bgi.S′

and parts of the sending unit, s.t. holds:

∀s < ns : (i = send(s)⇒ ∀x ∈ [αi(r, s) + off : αi(r, s) + off + tc] : bgi.S
′ = 0)

∧ (i 6= send(s)⇒ ∀x ∈ [αi(r, s) : αi(r, s) + T ] : bgi.S
′ = 1)

Finally, the bus would be computed as:

∀t : bus(t) =
∧

u

(OutS,u(t) ∨OutS′,u(t))

Obviously, such a construction would protect the bus for all times except for the actual
broadcasting time W (s) and at most off cycles before or after W (s).

Moreover, due to redundancy in the message protocol, the bus controller is already
fault-tolerant against signal jitter. The computing and verifying of its maximal fault
assumptions remains as future work.
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APPENDIX

In this section we show the mapping of all presented lemmas to their formal counter-
parts in Isabelle. Please note that the proof structure and, hence, the formulation of
some lemmas slightly differ in the Isabelle proof.

Name in Thesis Isabelle Name / Comment

Lemma 1 bounded_drift
Lemma 2 ∆_bound
Lemma 3 proven inside of parent theorems
Lemma 4 not needed in that form formally,

serves as an explanation only
Lemma 5 alpha_t_ecu_0
Lemma 6 alpha_t_ecu_u
Lemma 7 proven inside of parent theorems
Lemma 8 TransCorr
Lemma 9 realtime2cycle’_helper
Lemma 10 βsync_to_startedrcv_frontend
Lemma 11 schedule_round_exec_master,

alpha_to_alpha, slot_boundary
Lemma 12 proven inside of parent theorems
Lemma 13 slot_start_of_u_plus_off_gt_slot_start_of_w,

alpha_w_transmission_lt_alpha_u_end_of_slot
Lemma 14 constant_ns_CR, constant_T_CR,

constant_L_CR, constant_SENDL_CR,
constant_OFF_CR, constant_OFF_CR

Lemma 15 startup_soundness, s1_to_eqiwait
Lemma 16 alpha_and_alpha_t_eq_master
Lemma 16 alpha_and_alpha_t_eq_master
Lemma 17 get_SB_in_from_ecu_shorthand,

get_SB_ces_from_ecu_shorthand
Lemma 18 proven inside of parent theorems
Lemma 19 no_s4_implies_no_g0
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Lemma 20 no_s5_implies_idle_analog_value_on_the_bus
Lemma 21 after_s2_no_s5_for_bigT_cycles
Lemma 22 alpha_and_alpha_t_eq_slave_part1
Lemma 23 from_alpha_bigT_no_s5_and_only_g0
Lemma 24 TransmissionCorrectness
Theorem 1 replaced by Theorem 2
Theorem 2 dig_thm
Theorem 3 bus_output_correctness
Theorem 4 OverallTransmissionCorrectness
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