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Abstract

In this note we consider an initial-boundary value problem describing a nonlinear
variant of the nonstationary Stokes equation. We prove the existence of a (unique)
global solution with Galerkin-type arguments.

1 Notation and results

In this note we prove the existence of a global solution (u, π) : (0, T ) × Ω → Rn × R for
the following nonstationary and nonlinear variant of the Stokes-type problem:

(1.1)





u(0, ·) = u0 on Ω, u = 0 on (0, T )× ∂Ω,

div u = 0 and

∂u
∂t
− div

(
Df(ε(u))

)
= −∇π in (0, T )× Ω.

Here Ω ⊂ Rn is a bounded Lipschitz domain, T denotes a positive number, and differential
operators like div or the symmetric gradient ε(u) act w.r.t. the spatial variable x ∈ Ω.
We assume that f : Sn → [0,∞) is a potential of class C2 defined on the space Sn of
symmetric matrices satisfying for some p ∈ [2,∞) the ellipticity estimate

(1.2) λ(1 + |ε|2) p−2
2 |σ|2 ≤ D2f(ε)(σ, σ) ≤ Λ(1 + |ε|2) p−2

2 |σ|2

for all ε, σ ∈ Sn with positive constants λ, Λ. As usual u stands for the velocity field, and
π denotes the apriori unknown pressure.

We let

V :=
◦

W
1
p (Ω;Rn),

V0 := {v ∈ V : div v = 0}
Acknowledgement: The second author’s research was supported by the Humboldt foundation.
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equipped with the norm
‖v‖V := ‖ε(v)‖Lp

which by Korn’s and Poincaré’s inequality is equivalent to the usual norm. Finally, we
consider a function u0 ∈ V0. Note that for technical simplicity we restrict ourselves
to functions vanishing on (0, T ) × ∂Ω. Nonhomogeneous boundary conditions can be
handled in a similar way. Potentials f satisfying (1.2) are of power growth type since
they can be bounded from above and from below (up to irrelevant terms) by the standard
model Φ(ε) = (1 + |ε|2)p/2, ε ∈ Sn. The physical relevance of power growth potentials is
explained in the monographs [AM] and [BAH], the mathematical background is discussed
in the works [L1] and [L2], we also refer to [MNR] and [MNRR].

Our main concern is to give an elementary existence proof for problem (1.1), more
precisely, we are going to show

THEOREM 1.1. There exists a unique function u ∈ Lp(0, T ; V ) with distributional time
derivative d

dt
u ∈ L2(0, T ; L2(Ω;Rn)) such that u(0) = u0, u(t) ∈ V0 and

(1.3)

∫

Ω

d

dt
u · ϕ dx +

∫

Ω

Df(ε(u)) : ε(ϕ) dx = 0

for all ϕ ∈ V0 and almost all t ∈ (0, T ).

In (1.3) “ · ” denotes the scalar product in Rn, “ : ” stands for the scalar product of
matrices. We recall that “ d

dt
u ∈ L2(0, T ; L2(Ω;Rn))” means that there exists a function

v in this space such that

d

dt

∫

Ω

u · w dx =

∫

Ω

v · w dx ∀w ∈ L2(Ω;Rn)

holds in the scalar distributional sense on (0, T ). This is equivalent to

∫ T

0

u(t)η′(t) dt = −
∫ T

0

v(t)η(t) dt

for all η ∈ C∞
0 (0, T ), where

∫ T

0
...... are Bochner integrals.

REMARK 1.1. The solution described in Theorem 1.1 usually is called the strong solu-
tion to problem (1.1).

2 A lemma on finite dimensional nonstationary vari-

ational inequalities

In this section we consider the space Rm equipped with some scalar product [·, ·] and
associated norm ‖x‖ =

√
[x, x].
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LEMMA 2.1. Let K denote a compact and convex set in Rm. Suppose further that
we are given a point x0 ∈ K and a vectorfield F : Rm → Rm of class C1 satisfying the
monotonicity inequality

(2.1) [F (x)− F (y), x− y] ≥ ν(‖x− y‖) ∀x, y ∈ Rm

for a function ν : [0,∞) −→ [0,∞) being continuous and such that ν(0) = 0, ν(t) > 0
for t > 0. Then there exists a unique Lipschitz curve x : [0, T ] −→ Rm satisfying

(2.2)

{
x(0) = x0, x(t) ∈ K for all t ∈ [0, T ] and[
ẋ(t), y − x(t)

]
+

[
F (x(t)), y − x(t)

] ≥ 0 a.e. for all y ∈ K.

Proof: Step 1 “Uniqueness”

Let x(t), y(t) satisfy (2.2). Then we get

[
ẋ(t)− ẏ(t), x(t)− y(t)

]
+

[
F (x(t))− F (y(t)), x(t)− y(t)

] ≤ 0,

thus (see (2.1)) d
dt
‖x(t)− y(t)‖2 ≤ 0 which gives x(t) = y(t) on account of the initial

condition.

Step 2 “Existence for special sets K”

Let K = G for an open, bounded and convex set G with ∂G of class C2. For ρ sufficiently
small let U = {x ∈ Rm : dist (x, ∂G) < ρ} and define d : U → R as

d(x) =

{
dist (z, ∂G), if z ∈ U ∩K

−dist (z, ∂G), if z ∈ U −K.

Here of course “dist ” is measured with respect to ‖ · ‖ . Finally, let N : U → Rm, N =
grad d (calculated w.r.t. [·, ·]) and observe that on ∂K N is just the interior normal
vectorfield of ∂K. Let a denote a number such that

(2.3) a > sup
{‖F (y)‖ : y ∈ K

}

and fix ε ∈ (0, ρ). We choose a smooth function hε : R→ [0,∞) with the properties

(2.4) hε(s) = a for |s| ≤ ε

2
, hε(s) = 0 for |s| ≥ 3ε

4
.

With η ∈ C1
0

(
Rm; [0, 1]

)
, η = 1 on K ∪ U , we finally let

Fε(x) = η(x)F (x)− hε

(
d(x)

)
N(x).
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Note that Fε is of class C1(Rm;Rm) with compact support, hence the initial value problem

(2.5) ẋ(t) + Fε

(
x(t)

)
= 0 on [0, T ], x(0) = x0,

admits a unique solution xε ∈ C1
(
[0, T ];Rm

)
.

We claim that

(2.6) xε(t) ∈ K ∀ 0 ≤ t ≤ T.

For proving (2.6) let us assume that xε(t) /∈ K for some time t > 0. Since xε(0) ∈ K we
can find t1 ∈ [0, t) such that xε(t1) ∈ ∂K and x(s) /∈ K for s > t1 close to t1. From (2.5)
we get

0 =
[
ẋε(t1), N

(
xε(t1)

)]
+

[
Fε

(
xε(t1)

)
, N

(
xε(t1)

)]

=
(2.4)

d

dt|t1
d(xε(t)

)
+

[
F

(
xε(t1)

)
, N

(
xε(t1)

)]− a

≤ d

dt|t1
d
(
xε(t)

)
+ sup

{‖F (y)‖ : y ∈ K
}− a,

and we see by (2.3) that d
dt|t1

d
(
xε(t)

)
> 0. This gives d

(
xε(s)

)
> 0 for s > t1 sufficiently

close to t1, hence the solution curve stays inside K which is a contradiction.

Equation (2.5) together with (2.6) implies

(2.7)
∥∥ẋε(t)

∥∥ ≤ sup
{∥∥F (y)

∥∥ : y ∈ K
}

+ a

for all t ∈ [0, T ] and all ε ∈ (0, ρ), thus we find a Lipschitz curve x : [0, T ] −→ Rm such
that xε−→

ε↓0
x uniformly (at least for a subsequence). Clearly x(0) = x0, x(t) ∈ K for all

t ∈ [0, T ], and (2.7) continues to hold for ẋ(t) and almost all t ∈ [0, T ]. We claim that x is
the solution of (2.2). To this purpose we assume w.l.o.g. that ẋε ⇁ ẋ as ε ↘ 0 weakly in
L2(0, T ;Rm). From (2.5) we obtain for any y ∈ L2(0, T ;Rm) with the property y(t) ∈ K
a.e.

0 =

∫ T

0

[
ẋε, y − x] dt +

∫ T

0

[
Fε(xε), y − x

]
dt

=

∫ T

0

[
ẋε, y − x] dx +

∫ T

0

[
F (xε), y − x

]
dt

−
∫ T

0

hε

(
d(xε)

)[
N(xε), y − x

]
dt

=: I1 + I2 − I3.
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Here we have used that xε(t) ∈ K, hence η
(
xε(t)

)
= 1. Obviously

I1 −→
∫ T

0

[ẋ, y − x] dt,

I2 −→
∫ T

0

[
F (x), y − x

]
dt

as ε ↓ 0. Let us look at I3:

I3 =

∫ T

0

hε

(
d(xε)

)[
N(x), y − x

]
dt

+

∫ T

0

hε

(
d(xε)

)[
N(xε)−N(x), y − x

]
dt

=: J1 + J2,

|J2| ≤ diam (K)
∫ T

0
hε

(
d(xε)

) ∥∥N(xε)−N(x)
∥∥ dt −→

ε↓0
0 (by the boundedness of hε),

J1 =

∫

{t∈[0,T ]: x(t) ∈ ∂K}
hε

(
d(xε)

)[
N(x), y − x

]
dt

+

∫

{t∈[0,T ]: x(t) /∈ ∂K}
hε

(
d(xε)

)[
N(x), y − x

]
dt

=: α + β.

Clearly hε

(
d(xε)

) −→
ε↓0

0 on the set
{
t ∈ [0, T ] : x(t) /∈ ∂K

}
, hence β −→ 0 as ε ↓ 0 by

dominated convergence. By convexity of K we see that α ≥ 0, hence we finally get

∫ T

0

[ẋ, y − x] dt +

∫ T

0

[
F (x), y − x] dt ≥ 0

for all L2– curves y : [0, T ] −→ K, in particular we may choose y(t) = x(t)+ϕ(t)
(
y−x(t)

)
for y ∈ K and ϕ ∈ C0

0(0, T ), 0 ≤ ϕ ≤ 1.

This gives

0 ≤
∫ T

0

ϕ(t)
{[

ẋ(t), y − x(t)
]
+

[
F

(
x(t)

)
, y − x(t)

]}
dt,

and by the arbitrariness of ϕ inequality (2.2) follows.

Step 3 “Existence for general sets K”
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Let now K ⊂ Rm denote an arbitrary compact and convex set. If ϕ is a symmetric
mollifier, we let

gε(z) =

∫

Rm

ε−m ϕ (
y − z

ε
) dist (y,K) dy,

i.e. gε denotes the mollification of the distance to K. For any ρ > 0 the sets [gε < ρ] are
open, bounded and convex, moreover, Sard’s theorem shows that ∂ [gε < ρ] is a smooth
hypersurface for almost all values of ρ. For z ∈ K we have

gε(z) =

∫

Rm

ε−m ϕ (
y

ε
) dist (y + z,K) dy

=

∫

Bε(0)

ε−m ϕ (
y

ε
) dist (y + z,K) dy ≤ ε,

hence
K ⊂ [gε ≤ ε] ⊂ [gε < ρ]

if ρ > ε.

Let εk ↘ 0, k → ∞, and choose ρk ∈ (εk, 2εk) such that ∂ [gεk
< ρk] is smooth. We

apply Step 2 to the sets Kk = [gεk
≤ ρk], i.e. we get for each k a solution of (2.2) with

K replaced by Kk. Since obviously Kk ⊂ BR(x0) for a sufficiently large ball BR(x0), we
have that supk∈N ‖xk‖L∞(0,T ) < ∞.

Note that in Step 2 we proved that

‖ẋk‖L∞(0,T ) ≤ sup
{‖F (y)‖ : y ∈ Kk

}
+ ak,

where ak has to be chosen according to (see (2.3))

ak > sup
{‖F (y)‖ : y ∈ Kk

}
=: ξk.

Let us define ak = ξk + 1. Since ξk ≤ sup
{‖F (y)‖ : y ∈ BR(x0)

}
=: ξ we get

‖ẋk‖L∞(0,T ) ≤ 2ξ + 1,

hence (after passing to a subsequence) there is a Lipschitz curve x : [0, T ] → Rm with the
properties x(0) = x0, xk → x uniformly on [0, T ] and ẋk ⇁ ẋ weakly in L2(0, T ;Rm). We
have

dist
(
x(t), K) ≤ dist

(
xk(t), K

)
+

∥∥xk(t)− x(t)‖
≤ 3εk + ‖xk(t)− x(t)‖ −→

k→∞
0,

hence x(t) ∈ K. Note that dist
(
xk(t), K

)
> 3εk would give dist (y,K) ≥ 2εk on

Bεk
(xk(t)), hence gεk

(
xk(t)

) ≥ 2εk which contradicts the fact that xk(t) ∈
[
gεk

≤ ρk

]
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and ρk < 2εk.

Consider y ∈ L2(0, T ;Rm), y(t) ∈ K a.e., and observe K ⊂ Kk, thus

∫ T

0

[
ẋk(t), y(t)− xk(t)

]
dt +

∫ T

0

[
F

(
xk(t)

)
, y(t)− xk(t)

]
dt ≥ 0.

By uniform convergence the second integral converges to
∫ T

0

[
F

(
x(t)

)
, y(t)− x(t)

]
dt, the

first integral equals

∫ T

0

[
ẋk(t), y(t)− x(t)

]
dt +

∫ T

0

[
ẋk(t), x(t)− xk(t)

]
dt −→

k→∞

∫ T

0

[
ẋ(t), y(t)− x(t)

]
dt,

which follows from ẋk ⇁ ẋ weakly in L2(0, T ;Rm) together with xk −→ x uniformly on
[0, T ].

This implies

∫ T

0

[
ẋ(t), y(t)− x(t)

]
dt +

∫ T

0

[
F

(
x(t)

)
, y(t)− x(t)

]
dt ≥ 0

for all L2 – curves y : [0, T ] −→ Rm such that y(t) ∈ K, and the final claim follows as at
the end of Step 2. This completes the proof of Lemma 2.1. ¤

3 Proof of Theorem 1.1 with a Galerkin-type argu-

ment

Let {vi : i ∈ N} denote a dense subset of V0 and let Vm the subspace of V0 generated by
the functions u0, v1, . . . , vm,m ∈ N. We define Km as the convex hull of {u0, v1, . . . , vm}.
By Lemma 2.1 there exists a unique Lipschitz function um : [0, T ] → Vm s.t.

(3.1)





um(0) = u0, um(t) ∈ Km, 0 ≤ t ≤ T,
∫

Ω

d

dt
um(t) · (v − um(t)

)
dx +

∫

Ω

Df
(
ε(um(t)

))
:

(
ε(v)− ε(um(t)

)
dx ≥ 0

for almost all t ∈ [0, T ] and all v ∈ Km.

To justify this suppose that w1, . . . , wM is some basis in Vm and consider the linear iso-
morphism

Φm : RM −→ Vm, x 7−→
M∑
i=1

xiwi, x = (xi)1≤i≤M .
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We define the scalar product (“ · ” denoting the product in Rn)

[x, y] =
M∑

i,j=1

xiyj

∫
Ω

wi · wj dz, x, y ∈ RM , and the vectorfield F : RM → RM through the

relation [
F (x), y

]
=

∫

Ω

Df
(
ε(Φm(x))

)
: ε

(
Φm(y)

)
dz ∀ y ∈ RM .

Note that for fixed x ∈ RM the r.h.s. is a linear functional w.r.t. y ∈ RM , thus can be
represented by a unique vector F (x) via the scalar product [·, ·]. Let x0 = Φ−1

m (u0) and
K = Φ−1

m (Km) which is a compact and convex subset of RM . We show that F satisfies
(2.1): for any x, x̃ ∈ RM we have

[
F (x)− F (x̃), x− x̃

]
=

∫

Ω

(
Df

(
ε(u)

)−Df
(
ε(ũ))

)
:

(
ε(u)− ε(ũ)

)
dz

=

∫ 1

0

∫

Ω

D2f
(
ε(ũ) + t

(
ε(u)− ε(ũ)

))(
ε(u)− ε(ũ), ε(u)− ε(ũ)

)
dz dt,

where u = Φm(x), ũ = Φm(x̃). Since p ≥ 2 we can bound the double integral from below
by

c

∫

Ω

∣∣ε(u)− ε(ũ)
∣∣2 dz,

c denoting a positive constant independent of m. Korn’s and Poincaré’s inequality give

∫

Ω

∣∣ε(u)− ε(ũ)
∣∣2 dz ≥ c

∫

Ω

|u− ũ|2 dz

= c

∫

Ω

|Φm(x)− Φm(x̃)|2 dz

= c

∫

Ω

∣∣
M∑
i=1

(
xi − x̃i

)
wi

∣∣2 dz

= c

M∑
i,j=1

(
xi − x̃i

)(
xj − x̃j

) ∫

Ω

wi · xj dz = c‖x− x̃‖2,

thus
[
F (x) − F (x̃), x − x̃

] ≥ c‖x − x̃‖2, and we can apply Lemma 2.1 to our choices
of x0, K and F . Let xm denote the corresponding solution. By construction it is now
immediate that um = Φm(xm) is the solution of (3.1).
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Next we derive suitable apriori bounds for the sequence {um}. By definition u0 ∈ Km,
thus ∫

Ω

d

dt
um · (u0 − um) dx ≥

∫

Ω

Df
(
ε(um)

)
:

(
ε(um)− ε(u0)

)
dx

for almost all t, and we get:

(3.2)

∫

Ω

Df
(
ε(um)

)
: ε(um) dx +

1

2

d

dt

∫

Ω

|um|2 dx

≤
∫

Ω

Df
(
ε(um)

)
: ε(u0) dx +

∫

Ω

d

dt
um · u0 dx.

W.l.o.g. we may assume that Df(0) = 0. Then we obtain (all constants are independent
of m)

c1‖um(t)‖p
V +

d

dt

∫

Ω

(1

2
|um(t)|2 − um(t) · u0

)
dx ≤ c2‖um(t)‖p−1

V ‖u0‖V

and with Young’s inequality this implies

c3‖um(t)‖p
V +

d

dt

∫

Ω

(1

2
|um(t)|2 − um(t) · u0

)
dx ≤ c4‖u0‖p

V

being valid for almost all t. Integrating this inequality from 0 to T gives the bound

c3

∫ T

0

‖um(t)‖p
V dt +

∫

Ω

(1

2
|um(T )|2 − um(T ) · u0

)
dx ≤ c4T‖u0‖p

V −
1

2

∫

Ω

|u0|2 dx,

hence

c3

∫ T

0

‖um(t)‖p
V dt +

∫

Ω

1

4
|um(T )|2 dx ≤ c5

(
T‖u0‖p

V + ‖u0‖2
L2(Ω)

)
,

and if we neglect the second term on the l.h.s. we arrive at the apriori bound

(3.3)

∫ T

0

‖um(t)‖p
V dt ≤ c6,

c6 = c6

(
n, p, λ, Λ, Ω, T, ‖u0‖V

)
,

which means that {um} is a bounded sequence in the space Lp(0, T ; V ).

Next consider t ∈ (0, T ) s.t. d
dt

um(t) exists and observe that for h > 0 the function
um(t− h) belong to the set Km (since um(s) ∈ Km for all s ∈ [0, T ]), hence by (3.1)

∫

Ω

d

dt
um(t) · (um(t)− um(t− h)

)1

h
dx

+

∫

Ω

Df
(
ε(um(t))

)
:

(
ε
(
um(t)

)− ε
(
um(t− h)

))1

h
dx ≤ 0
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and we get by passing to the limit h ↓ 0
∫

Ω

∣∣ d

dt
um(t)

∣∣2 dx +

∫

Ω

Df
(
ε(um(t))

)
:

d

dt
ε(um(t)) dx ≤ 0.

In the same way we use v = um(t + h), h > 0, in (3.1) with the result

∫

Ω

∣∣ d

dt
um(t)

∣∣2 dx +

∫

Ω

Df
(
ε(um(t))

)
:

d

dt
ε(um(t)) dx ≥ 0.

Observing d
dt

f
(
ε(um(t))

)
= Df

(
ε(um(t))

)
: d

dt
ε(um(t)) we get

0 = ‖ d

dt
um(t)‖2

L2(Ω) +
d

dt

∫

Ω

f
(
ε(um(t))

)
dx

which yields upon integration

∫ T

0

∥∥ d

dt
um(t)

∥∥2

L2(Ω)
dt

= −
∫ T

0

d

dt

∫

Ω

f
(
ε(um(t))

)
dx dt

=

∫

Ω

f
(
ε(um(0))

)
dx−

∫

Ω

f
(
ε(um(T ))

)
dx ≤

∫

Ω

f
(
ε(u0)

)
dx.

Taking into account (3.3), we have shown

LEMMA 3.1. The sequence {um} is bounded in the space
{
w ∈ Lp(0, T ; V ) : d

dt
w ∈

L2(0, T ; L2(Ω;Rn))
}

equipped with the norm

( ∫ T

0

‖w‖p
V dt

)1/p

+
( ∫ T

0

‖ d

dt
w‖2

L2 dt
)1/2

.

With Lemma 3.1 we may pass to a suitable subsequence and find a function u ∈
Lp(0, T ; V ) with du

dt
∈ L2(0, T ; L2(Ω;Rn)) such that

um ⇁ u weakly in Lp(0, T ; V ),

d
dt

um ⇁ d
dt

u weakly in L2(0, T ; L2(Ω;Rn))

and um → u strongly in L2
(
0, T ; L2(Ω;Rn)

)
. The last statement follows from the com-

pactness of the embedding (see, e.g. [Li])

{
w ∈ L2

(
0, T ;

◦
W1

2(Ω;Rn)
)

: d
dt

w ∈ L2
(
0, T ; L2(Ω;Rn)

)}
↪→ L2(0, T ; L2(Ω;Rn)

)
.
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Next we fix η ∈ C0
0(0, T ), η ≥ 0. Multiplying (3.1) with η and integrating over [0, T ] gives

(3.4)

0 ≤
∫ T

0

∫

Ω

η(t)
d

dt
um(t) · (v − um(t)) dx dt

+

∫ T

0

∫

Ω

η(t)Df
(
ε(um(t))

)
:

(
ε(v)− ε(um(t))

)
dx dt

for any function v ∈ Kk and all m ≥ k. Passing to the limit m →∞ we see that the first
integral converges to ∫ T

0

∫

Ω

η(t)
d

dt
u(t) · (v − u(t)

)
dx dt.

For the second one we observe that it is equal to

∫ T

0

∫

Ω

η(t)Df
(
ε(v)

)
:

(
ε(v)− ε(um(t))

)
dx dt

+

∫ T

0

∫

Ω

η(t)
{
Df

(
ε(um(t))

)−Df
(
ε(v))

}
:

(
ε(v)− ε(um(t))

)
dx dt

≤
∫ T

0

∫

Ω

η(t)Df
(
ε(v)

)
:

(
ε(v)− ε(um(t))

)
dx dt

−→
m→∞

∫ T

0

∫

Ω

η(t)Df
(
ε(v)

)
:

(
ε(v)− ε(u(t))

)
dx dt.

Here we used the fact that

Lp(0, T ; V ) 3 ϕ 7→
∫ T

0

η(t)

∫

Ω

Df
(
ε(v)

)
: ε

(
ϕ(t)

)
dx dt

is a continuous linear functional and um ⇁ u weakly in Lp(0, T ; V ).

Our calculations now show that

∫ T

0

∫

Ω

η(t)
d

dt
u(t) · (v − u(t)

)
dx dt

+

∫ T

0

∫

Ω

η(t)Df
(
ε(v)

)
:

(
ε(v)− ε(u(t))

)
dx dt ≥ 0

for any v ∈ Kk, k ∈ N.

Recalling that {vi : i ∈ N} is dense in V0 we see that the last inequality holds for any
v ∈ V0. Let us also remark that actually u belongs to Lp(0, T ; V0) since the um are in this

11



closed subspace of Lp(0, T ; V ). By the arbitrariness of η we deduce that for almost all t
we have

∫

Ω

d

dt
u(t) · (v − u(t)

)
dx +

∫

Ω

Df
(
ε(v)

)
:

(
ε(v)− ε(u(t))

)
dx ≥ 0.

Finally, we replace v by u(t) + εw,w ∈ V0, ε > 0, and end up with (after passing to the
limit ε ↓ 0)

0 =

∫

Ω

d

dt
u(t) · w dx +

∫

Ω

Df
(
ε(u(t))

)
: ε(w)dx

which proves Theorem 1.1 by remarking that the uniqueness follows in a standard way.
¤

4 Some extensions

We assume first that f can be written as

(4.1) f(ε) = A(|ε|),

where A : [0,∞) → [0,∞) is a smooth, i.e. C2, N -function for which the ∆2–property
holds and which satisfies for some p ≥ 2

(4.2)

D2f(ε)(σ, σ) = 1
|ε| A

′(|ε|)[|σ|2 − 1
|ε|2 (ε : σ)2

]

+A′′(|ε|) 1
|ε|2 (ε : σ)2

≥ λ
(
1 + |ε|2)

p−2
2 |σ|2

for all ε, σ ∈ Sn. Note that (4.1), (4.2) imply that f grows at least as |ε|p. The space V

has to be replaced by
◦

W1
A(Ω;Rn), and we let

V0 = {v ∈ V : div v = 0}

equipped with the norm
‖v‖V = ‖ε(v)‖LA

.

Of course, now u0 is assumed to be an element of V0. By choosing a countable dense
subset of V0 and by the appropriate use of Young’s inequality it is easy to modify the
arguments of Section 3 and to prove Theorem 1.1 in this more general setting.

Next we consider the case that f satisfies an anisotropic (p, q)–growth condition, i.e.

(4.3) λ
(
1 + |ε|2)

p−2
2 ≤ D2f(ε) ≤ Λ

(
1 + |ε|2)

q−2
2
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with exponents 2 ≤ p < q < ∞. Let V, V0 denote the spaces introduced in Section 1 (with
exponent p !), and we try to find a solution of the evolution problem in the class

X =
{
u ∈ Lp(0, T ; V ) : u(t) ∈ V0,

∫ T

0

∫

Ω

f
(
ε(u(t))

)
dx dt < ∞}

.

Of course we assume that u0 is a given function from V0 s.t.
∫
Ω

f
(
ε(u0)

)
dx < ∞. This

clearly will follow if ε(u0) ∈ Lq(Ω; Sn) is assumed (see (4.3)). Let {vm}m∈N a set of

functions in C∞
0 (Ω;Rn) ∩ Kern (div) being dense in

◦
W 1

q(Ω;Rn) ∩ Kern (div) w.r.t. the
norm ‖ε(v)‖Lq and let

Vm := space generated by u0, v1, . . . , vm,

Km := convex hull of u0, v1, . . . , vm.

As before we can solve problem (3.1) with unique solution um : [0, T ] → Vm.

In order to get apriori bounds for the sequence {um}, we assume

ε(u0) ∈ L∞(Ω; Sn).

If this is not the case, we may insert v := v1 in inequality (3.1). As a result we get
estimate (3.2). Assuming f(0) = 0, the convexity of f implies

∫
Ω

Df
(
ε(um)

)
: ε(um)dx ≥∫

Ω
f
(
ε(um)

)
dx, whereas from (4.3) it follows that

∣∣
∫

Ω

Df
(
ε(um)

)
: ε(u0) dx

∣∣ ≤ c‖ε(u0)‖L∞

∫

Ω

∣∣ε(um)
∣∣q−1

dx.

In order to continue we need the restriction that

(4.4) q < p + 1.

Then
∫

Ω

∣∣ε(um)
∣∣q−1

dx can be absorbed in
∫
Ω

f
(
ε(um)

)
dx (which is bounded from below

by
∫

Ω

∣∣ε(um)
∣∣p dx on account of (4.3)), and we find that

c1

∫

Ω

f
(
ε(um)

)
dx +

d

dt

∫

Ω

(1

2
|um(t)|2 − um(t) · u0

)
dx ≤ c2

with c2 depending on u0 but both constants c1, c2 being independent of m. Following the
arguments presented in Section 3 we see that (3.3) has to be replaced by

(4.5)

∫ T

0

∫

Ω

f
(
ε(um(t))

)
dx dt ≤ c3,

i.e. {um} “stays bounded” in the space X, in particular we have boundedness in
Lp(0, T ; V ). The calculations carried out before Lemma 3.1 also show that

∫ T

0

∥∥ d

dt
um(t)

∥∥2

L2(Ω)
dt ≤ c4,
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thus we find u ∈ Lp(0, T ; V ) with d
dt

u ∈ L2(0, T ; L2(Ω;Rn)) and such that the convergences
stated after Lemma 3.1 hold. By l.s.c. and (4.5) we see that u ∈ X. Returning to (3.4)
and estimating the second integral on the r.h.s. of (3.4) in an obvious way, we deduce the
inequality

0 ≤
∫ T

0

η(t)

∫

Ω

d

dt
um(t) · (v − um(t)) dx dt

+

∫ T

0

η(t)

∫

Ω

Df
(
ε(v)

)
:

(
ε(v)− ε(um(t))

)
dx dt

for any v ∈ Kk and all m ≥ k. Since the functions vk are smooth, we see that we may
pass to the limit m →∞, thus

0 ≤
∫ T

0

η(t)

∫

Ω

d

dt
u(t) · (vk − u(t)) dx dt

+

∫ T

0

η(t)

∫

Ω

Df
(
ε(vk)

)
:

(
ε(vk)− ε(u(t))

)
dx dt.

Now, if v ∈ ◦
W1

q(Ω;Rn) ∩ Kern (div) is arbitrary, we have that ε(v′k) → ε(v) in Lq(Ω;Sn)
for a subsequence, but this is not enough to get

∗
∫

Ω

Df
(
ε(v′k)

)
: ε(u(t)) dx −→

k→∞

∫

Ω

Df(ε(v)) : ε(u(t)) dx.

∗ is correct if ε(v) ∈ L
p

p−1
(q−1)(Ω; Sn) and ε(v′k) → ε(v) strongly in this space. So if we

replace in the beginning
◦

W1
q ∩ Kern (div) by

◦
W1

p
p−1

(q−1) ∩ Kern (div) and choose {vk} as

a dense subset, then we have shown:

THEOREM 4.1. Let f satisfy (4.3) together with (4.4). Then there exists a function

u : [0, T ] → ◦
W 1

p ∩ Kern (div), u(0) = u0, such that u ∈ Lp(0, T ; W 1
p ), d

dt
u ∈ L2(0, T ; L2)

and 0 ≤ ∫
Ω

d
dt

u(t) · (v − u(t)) dx +
∫

Ω
Df

(
ε(v)

)
:

(
ε(v) − ε(u(t))

)
dx for a.a. t and all

v ∈ ◦
W1

p
p−1

(q−1) ∩ Kern (div).

REMARK 4.1. If one can prove higher integrability of ε(u(t)), then the argument from
Section 3 turns this evolution variational inequality into the evolution equation. We there-
fore have produced some kind of “weak” solution.
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Finally we discuss how to remove (4.4) in the anisotropic case (4.3).

If we consider the example

f(ε) =
(
1 + |ε1|2

)p/2
+

(
1 + |ε2|2

)q/2

for some decomposition ε = (ε1ε2), then it is easy to see that for each δ > 0 there is a
constant c (δ) such that

(4.6)
∣∣Df(ε)

∣∣ ≤ δf(ε) + c (δ) ∀ ε ∈ Sn

holds. Thus we may replace the inequality stated before (4.4) by (recall ε(u0) ∈ L∞)
∣∣∣
∫

Ω

Df
(
ε(um)

)
: ε(u0) dx

∣∣∣ ≤ δ

∫

Ω

f
(
ε(um)

)
dx + c (δ),

and for δ small enough we arrive at (4.5). We therefore can replace (4.4) in Theorem 4.1
by the condition (4.6) with the same result. Note that under the assumption (4.4) we
clearly have (4.6), thus (4.6) is less restrictive than (4.4).
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linéaires. Dunod, Paris 1969.
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