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Abstract

Methods based on partial differential equations (PDEs) belong to
those image processing techniques that can be extended in a par-
ticularly elegant way to tensor fields. In this survey paper the most
important PDEs for discontinuity-preserving denoising of tensor fields
are reviewed such that the underlying design principles becomes evi-
dent. We consider isotropic and anisotropic diffusion filters and their
corresponding variational methods, mean curvature motion, and self-
snakes. These filters preserve positive semidefiniteness of any positive
semidefinite initial tensor field. Finally we discuss geodesic active
contours for segmenting tensor fields. Experiments are presented that
illustrate the behaviour of all these methods.

Keywords: matrix-valued images, denoising, regularisation, segmenta-
tion, partial differential equations, nonlinear diffusion, mean curvature
motion, self-snakes, active contours.

Contents

1 Introduction 2

2 Structure Analysis of Tensor-Valued Data 3

3 Diffusion Filtering 5
3.1 Linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Isotropic Nonlinear Diffusion . . . . . . . . . . . . . . . . . . . 5
3.3 Anisotropic Nonlinear Diffusion . . . . . . . . . . . . . . . . . 7

4 Regularisation Methods 9

5 Mean Curvature Motion 11

6 Self-Snakes 12

7 Geodesic Active Contour Models 14

8 Summary and Conclusions 16

1



1 Introduction

In the last 15 years, partial differential equations (PDEs) have become in-
creasingly popular in image processing. This has a number of reasons: PDE-
based methods are mathematically well-understood techniques, they allow
a reinterpretation of several classical methods under a unifying framework,
they have led to novel methods with more invariances, and they are the
natural framework for scale-space analysis. Moreover, the PDE formulation
reflects the continuous structure of space. Thus, PDE approximations aim to
be independent of the underlying grid and may reveal good rotational invari-
ance. In a number of image processing and computer vision areas, PDE-based
methods and related variational approaches and level-set techniques belong
to the best performing methods; see e.g. the books [2, 5, 19, 21, 26, 31] and
the references therein.

Interestingly, PDEs are also among the first image processing techniques that
have been extended from scalar- and vector-valued images to matrix-valued
data. One of the reasons for this is the fact that these extensions are not too
difficult, once the scalar-valued processes are mastered.

In this paper we give a survey on some of the most important PDE meth-
ods for discontinuity-preserving denoising of tensor images, namely nonlinear
diffusion filters and their corresponding regularisation methods, mean curva-
ture motion, and self-snakes. Moreover, we describe an extension of geodesic
active contours for tensor images. In order to keep things as simple as pos-
sible, we focus on 2-D methods. It should be noted, however, that these
concepts can be extended in a natural way to higher dimensions [14]. Parts
of our description follow the original papers [13, 14, 32]. We would like to
emphasise that we focus on methods for genuine tensor processing. Thus we
do not consider scalar- or vector-valued PDE methods working on the eigen-
system or filtering channels that are measured prior to computing tensors
[11, 28, 29].

The paper is organised as follows. In Section 2 we introduce a generalised
structure tensor for matrix fields. It is used for steering all nonlinear PDE
methods that are discussed in the course of this paper. Section 3 describes
nonlinear diffusion filters for tensor data, both in the isotropic case with a
scalar diffusivity as well as in the anisotropic case with a diffusion tensor.
Closely related regularisation methods are presented in Section 4. In Sec-
tion 5 we design a mean curvature type evolution for tensor-valued data.
Modifying tensor-valued mean curvature motion by a suitable edge stopping
function leads us to tensor-valued self-snakes. They are discussed in Sec-
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tion 6. In Section 7 we use the self-snake model in order to derive geodesic
active contours for tensor fields. The paper is concluded with a summary in
Section 8.

2 Structure Analysis of Tensor-Valued Data

In this section we generalise the concept of an image gradient to the tensor-
valued setting [13]. This may be regarded as a tensor extension of Di Zenzo’s
method for vector-valued data [12].

Let us consider some rectangular image domain Ω ∈ IR2 and some tensor
image F = (fi,j) : Ω → IR2×2, where the indices (i, j) specify the tensor
channel. We intend to define an “edge direction” for such a matrix-valued
function. In the case of some scalar-valued image f , we would look for
the direction v which is orthogonal to the gradient of a Gaussian-smoothed
version of f :

0 = v>∇fσ (1)

where fσ := Kσ ∗ f and Kσ denotes a Gaussian with standard deviation
σ. Gaussian convolution makes the structure detection more robust against
noise. The parameter σ is called noise scale.
In the general tensor-valued case, we cannot expect that all tensor channels
yield the same edge direction. Therefore we proceed as follows. Let Fσ =
(fσ,i,j) be a Gaussian-smoothed version of F = (fi,j), where the smoothing
is performed componentwise. Then we define the edge direction as the unit
vector v that minimises

E(v) :=

2
∑

i=1

2
∑

j=1

(v>∇fσ,i,j)
2 = v>

(

2
∑

i=1

2
∑

j=1

∇fσ,i,j∇f>

σ,i,j

)

v.

This quadratic form is minimised when v is an eigenvector to the smallest
eigenvalue of the structure tensor

J(Fσ) :=
2

∑

i=1

2
∑

j=1

∇fσ,i,j∇f>

σ,i,j. (2)

The eigenvalues of this positive semidefinite matrix measure the local contrast
in the directions of the eigenvectors. Its trace

tr J(Fσ) =

2
∑

i=1

2
∑

j=1

|∇fσ,i,j|2 (3)
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Figure 1: Edge detection with a structure tensor for matrix-valued data.
From left to right: (a) Original 2-D tensor field extracted from a 3-D
DT-MRI data set by using the channels (1, 1), (1, 2), (2, 1) and (2, 2). Each
channel is of size 128 × 128. The channels (1, 2) and (2, 1) are identical for
symmetry reasons. (b) Trace of the structure tensor of (a) with σ = 1. (c)
Noisy version of (a) with 30 % noise. (d) Trace of the structure tensor from
(c) with σ = 3. From [14].

sums up all eigenvalues. It can be regarded as a tensor-valued generalisa-
tion of the squared gradient magnitude. The matrix J(Fσ) will allow us to
generalise a number of PDE methods to the tensor-valued setting.

Figure 1 illustrates the concept of edge detection with the structure tensor.
The test image we use for our experiments is obtained from a DT-MRI data
set of a human brain. We have extracted a 2-D section from the 3-D data.
The 2-D image consists of four quadrants which show the four tensor channels
of a 2×2 matrix. The top right channel and bottom left channel are identical
since the matrix is symmetric. To test the robustness under noise we have
replaced 30 % of all data by random matrices: The angles of their eigensystem
obey a uniform distribution on [0, π], while their eigenvalues are random
numbers uniformly distributed in [0, 127]. Figure 1 shows the outcome of
using trJ(Fσ) for detecting edges in tensor-valued images. We observe that
this method gives good results for the original data set. When increasing the
noise scale σ, it is also possible to handle situations where substantial noise
is present.
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3 Diffusion Filtering

3.1 Linear Diffusion

Linear diffusion filtering is the oldest PDE method for image denoising [16].
It creates a family of simplified images {u(x, t) | t ≥ 0} from some scalar
initial image f(x) by solving the PDE

∂tu = ∆u on Ω × (0,∞), (4)

with f as initial condition,

u(x, 0) = f(x) on Ω, (5)

and reflecting (homogeneous Neumann) boundary conditions:

∂νu = 0 on ∂Ω × (0,∞). (6)

Here ∂ν denotes differentiation in the direction of the outer normal of the
image boundary ∂Ω. The diffusion time t determines the degree of simplifi-
cation: For t = 0 the original image f is recovered, and larger values for t
result in more pronounced smoothing. On an infinitely extended image do-
main, linear diffusion filtering with stopping time T is equivalent to Gaussian
convolution with standard deviation σ =

√
2T .

It is straightforward to extend linear diffusion filtering to tensor images: All
one has to do is to apply this process channelwise.

Figure 2 zooms into the corpus callosum region of Fig. 1(a),(c), and displays
the evolution of this region under linear diffusion. The tensors are visualised
by ellipses with colour-coded orientation. We observe that linear diffusion is
well-suited for removing noise, but suffers from blurring important features
such as discontinuities in the tensor field.

3.2 Isotropic Nonlinear Diffusion

The goal of nonlinear diffusion filtering is to smooth an image while respecting
its discontinuities [23, 7]. Nonlinear diffusion filtering replaces the linear
diffusion equation (4) by

∂tu = div
(

g(|∇uσ|2)∇u
)

on Ω × (0,∞). (7)

5



Figure 2: Tensor-valued linear diffusion. Top row, from left to right:
Detail from a DT-MR image (size 15× 15), at time t = 0.96, at time t = 2.4.
Bottom row, from left to right: Same experiment with 30 % noise.

The diffusivity function g is a decreasing nonnegative function of the squared
gradient magnitude of uσ, a Gaussian smoothed version of u. One may choose
e.g. [23]

g(|∇uσ|2) =
1

1 + |∇uσ|2/λ2
(8)

with some contrast parameter λ > 0. We observe that |∇uσ|2 serves as
an edge detector: Locations where |∇uσ| � λ are regarded as edges where
diffusion is inhibited, while locations with |∇uσ| � λ are considered to belong
to the interior of a segment, where full diffusion is performed.

This scalar-valued diffusion scheme can also be generalised for smoothing a
matrix field F = (fi,j) : Ω → IR2×2. Tschumperlé and Deriche [28] have
proposed a PDE system for matrix-valued diffusion where a joint diffusivity
function is used that depends on the trace of the structure tensor (in their
case with σ = 0):

∂tui,j = div (g(trJ(Uσ))∇ui,j) (i, j ∈ {1, 2}). (9)
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Figure 3: Tensor-valued isotropic nonlinear diffusion. Top row, from left
to right: Detail from a DT-MR image (size 15 × 15), at time t = 4.8, and
at t = 12.0 (λ = 0.5, σ = 0.5). Bottom row, from left to right: Same
experiment with 30 % noise (λ = 0.5, σ = 1).

The synchronised channel evolution with a joint diffusivity avoids that edges
are formed at different locations for the different tensor channels. This syn-
chronisation of channel smoothing is also a frequently used strategy in vector-
valued diffusion filtering [15].

Figure 3 illustrates the evolution under isotropic nonlinear diffusion. Dis-
continuities are well-preserved, but noise at discontinuities is removed rather
slowly.

3.3 Anisotropic Nonlinear Diffusion

Besides isotropic diffusion schemes with a scalar-valued diffusivity, there exist
also anisotropic counterparts. In the anisotropic case not only the amount of
diffusion is adapted locally to the data but also the direction of smoothing. It
allows to encourage smoothing along discontinuities rather than across them.
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Figure 4: Tensor-valued anisotropic nonlinear diffusion. Top row, from
left to right: Detail from a DT-MR image (size 15 × 15), at time t = 1.92,
and at t = 4.8 (λ = 0.5, σ = 0.5). Bottom row, from left to right: Same
experiment with 30 % noise, at time t = 1.92 and t = 4.8 (λ = 0.5, σ = 1).

This can be achieved by replacing the scalar-valued diffusivity function by a
matrix-valued diffusion tensor.1

Tensor-valued anisotropic diffusion regards the original image F (x) = (fi,j(x))
as initial value for the coupled PDE system [32]

∂tui,j = div (g(J(Uσ))∇ui,j) (i, j ∈ {1, 2}) (10)

subject to the reflecting boundary conditions

∂ν (g(J(Uσ))∇ui,j) = 0 (i, j ∈ {1, 2}). (11)

Here the scalar-valued function g is generalised to a matrix-valued function in
the following way: Let J(Uσ) = Q diag(λi)Q

> denote the principal axis de-
composition of J(Uσ), with the eigenvalues λi as the elements of the diagonal

1In the diffusion filtering literature, the word anisotropic is often already used for
space-variant diffusion processes with a scalar diffusivity function.
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matrix diag(λi), and the normalised eigenvectors as the columns of the or-
thogonal matrix Q. Then it is common to set g(J(Uσ)) := Q diag(g(λi))Q

>,
where the scalar diffusivity g is the same decreasing function as in the
isotropic case.

Anisotropic diffusion offers the advantage of smoothing in a direction-specific
way: Along the i-th eigenvector of J(Uσ) with corresponding eigenvalue λi,
the eigenvalue of the diffusion tensor is given by g(λi). In eigendirections
with large variation of local structure, λi is large and g(λi) is small. This
avoids smoothing across discontinuities. Along discontinuities, λi is small.
Hence, g(λi) is large and full diffusion is performed. For more information
about anisotropic diffusion in general, we refer to [31].

Interestingly, the bare coupling of the tensor channels via a joint diffusion
tensor guarantees – without additional projection steps – that the evolving
matrix field U(x, t) = (ui,j(x, t)) remains positive semidefinite if its initial
value F (x) = (fi,j(x)) is positive semidefinite. In the discrete case, this
follows from the fact that convex combinations of positive semidefinite ma-
trices are computed [32]. In the continuous case, going from matrices to their
quadratic forms allows to prove preservation of positive semidefiniteness by
means of a scalar-valued maximum-minimum principle [4]. This reasoning
also holds for linear and isotropic nonlinear diffusion. Hence one does not
have to consider more sophisticated constrained flows [9] if one is only inter-
ested in preserving positive semidefiniteness.

The effects of anisotropic nonlinear diffusion are illustrated in Figure 4. It
seems to combine the advantages of linear and isotropic nonlinear diffusion:
Noise is removed efficiently while discontinuities are preserved for a long time.

Tensor-valued nonlinear diffusion has also led to nonlinear structure tensors,
a refinement of the structure tensor concept itself [4, 3]. They offer advan-
tages for optic flow estimation, texture analysis, and corner detection.

4 Regularisation Methods

Regularisation methods belong to the class of variational approaches for im-
age restoration. Typically one calculates a restoration of some degraded
scalar-valued image f as the minimiser of an energy functional

E(u) :=

∫

Ω

(

|u−f |2 + α Ψ(|∇u|2)
)

dx (12)
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where the penaliser Ψ : [0,∞) → IR is an increasing function [20]. The first
summand encourages similarity between the restored image and the original
one, while the second one rewards smoothness. The smoothness weight α > 0
is called regularisation parameter. From variational calculus it follows that a
minimiser of E(u) satisfies the Euler–Lagrange equation

u − f

α
= div

(

Ψ′(|∇u|2)∇u
)

(13)

with homogeneous Neumann boundary conditions. This elliptic PDE can be
regarded as a fully implicit time discretisation of the diffusion filter

∂tu = div
(

Ψ′(|∇u|2)∇u
)

(14)

with initial image f and stopping time α; see [27] for more details.

In the tensor case, Deriche and Tschumperlé [28] consider the energy

E(U) =

∫

Ω

(

‖U−F‖2 + α Ψ(tr J(U))
)

dx (15)

where ‖ · ‖ is the Frobenius norm for matrices. Then the corresponding
Euler–Lagrange equations are given by

ui,j − fi,j

α
= div (Ψ′(tr J(U))∇ui,j) (i, j ∈ {1, 2}). (16)

They can be regarded as an approximation to the isotropic nonlinear diffusion
filter (9) if one chooses Ψ′ := g and σ := 0.

Weickert and Brox [32], on the other hand, consider

E(U) =

∫

Ω

(

‖U−F‖2 + α trΨ(J(U))
)

dx. (17)

It leads to the Euler–Lagrange equation

ui,j − fi,j

α
= div (Ψ′(J(U))∇ui,j) (i, j ∈ {1, 2}). (18)

which is an approximation to the anisotropic nonlinear diffusion filter (10).

These considerations show that regularisation methods are closely related
to nonlinear diffusion filtering. In practise they can lead to results that are
hardly distinguishable from diffusion results [27]. For this reason we refrain
from presenting specific experiments for this filter class.
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5 Mean Curvature Motion

In this section we describe tensor-valued mean curvature motion [13]. To
this end, we first have to sketch some basic ideas behind scalar-valued mean
curvature motion.

We start with the observation that the Laplacian ∆u of an isotropic linear
diffusion model may be decomposed into two orthogonal directions ξ ⊥ ∇u
and η ‖ ∇u:

∂tu = ∆u = ∂ξξu + ∂ηηu (19)

where ∂ξξu describes smoothing parallel to edges and ∂ηη smoothes perpen-
dicular to edges. Mean curvature motion (MCM) uses an anisotropic variant
of this smoothing process by permitting only smoothing along the level lines:

∂tu = ∂ξξu. (20)

This can be rewritten as

∂tu = |∇u| div

( ∇u

|∇u|

)

. (21)

Alvarez et al. have used this evolution equation for denoising highly degraded
images [1]. It is well-known from the mathematical literature that under
MCM convex level lines remain convex, nonconvex ones become convex, and
in finite time they vanish by approximating circular shapes while converging
to points.

If we want to use an MCM-like process for processing tensor-valued data
F = (fi,j), it is natural to replace the second directional derivative ∂ξξu in
(20) by ∂vvu, where v is the eigenvector to the smallest eigenvalue of the
structure tensor J(U). This leads us to the evolution

∂tui,j = ∂vvui,j on Ω × (0,∞) (22)

ui,j(x, 0) = fi,j(x) on Ω, (23)

∂νui,j = 0 on ∂Ω × (0,∞) (24)

for all tensor channels (i, j). Note that this process synchronises the smooth-
ing direction in all channels. It may be regarded as a tensor-valued general-
isation of the vector-valued mean curvature motion by Chambolle [8].

Our notion of edge directions as eigenvectors of the structure tensor is equiv-
alent to the generalised level lines in [10]. Hence, tensor-valued MCM can be
regarded as smoothing along these lines. Reinterpreting the concept of curve
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Figure 5: Tensor-valued mean curvature motion. Top row, from left to
right: Detail of size 15 × 15 from a DT-MR image; at time t = 2.4, at time
t = 6. Bottom row, from left to right: Same experiment with 30 %
noise.

evolution in the same spirit allows even to gain a theoretical foundation of
MCM as shortening flow for its level lines [14]. It is also possible to show
that tensor MCM preserves positive semidefiniteness [14].

Figure 5 illustrates the tensor-valued mean curvature model. As can be seen
in the first row, this process regularises the tensor field while it is capable of
respecting anisotropies in a better way than linear diffusion. The second row
of Figure 5 shows the same algorithm applied to the noisy image. It displays
a fairly high robustness to noise: For increasing evolution times the results
for the original and the noisy images approach each other.

6 Self-Snakes

In [25], Sapiro has proposed a specific variant of MCM that is well-suited for
image enhancement. This process – which he names self-snakes – introduces
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Figure 6: Tensor-valued self-snakes. Top row, from left to right: Detail
of size 15× 15 from a DT-MR image; at time t = 2.4, at time t = 6 (σ = 0.5,
λ = 2). Bottom row, from left to right: Same experiment with 30 %
noise (σ = 1, λ = 2).

an edge-stopping function into mean curvature motion in order to prevent
further shrinkage of the level lines once they have reached important image
edges. In the scalar-valued setting, a self-snake u(x, t) of some image f(x) is
generated by the evolution process

∂tu = |∇u| div

(

g(|∇uσ|2)
∇u

|∇u|

)

on Ω × (0,∞), (25)

u(x, 0) = f(x) on Ω, (26)

∂νu = 0 on ∂Ω × (0,∞), (27)

where g is a decreasing function such as the diffusivity (8). Self-snakes have
been advocated as alternatives to nonlinear diffusion filters [33], they can
be used for vector-valued images [25], and related processes have also been
proposed for filtering 3-D images [24].

Using the product rule of differentiation, we may rewrite (25) as

∂tu = g(|∇uσ|2) ∂ξξu + ∇>(g(|∇uσ|2))∇u (28)
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with ∇> := (∂x, ∂y). This formulation suggests a straightforward generalisa-
tion to the tensor-valued setting. All we have to do is to replace |∇uσ|2 by
tr J(Uσ), and ∂ξξ by ∂vv , where v is the eigenvector to the smallest eigenvalue
of J(U). This leads us to the following tensor-valued PDE:

∂tui,j = g(trJ(Uσ)) ∂vvui,j + ∇>(g(trJ(Uσ)))∇ui,j. (29)

We observe that the main difference to tensor-valued MCM consists in the
additional term ∇>(g(trJ(Uσ)))∇ui,j. It can be regarded as a shock term
[22] that is responsible for the edge-enhancing properties of self-snakes.

With only minor modifications, it is possible to extend the semidefiniteness
preservation proof for tensor-valued MCM also to the case of tensor-valued
self-snakes.

Experimental results for the tensor-valued self-snake technique are shown
in Figure 6. Compared to tensor-valued MCM, self-snakes offer increased
sharpness at discontinuities due to the additional shock term. The filtered
tensor fields look segmentation-like.

7 Geodesic Active Contour Models

Active contours go back to Kass et al. [17]. They play an important role in
interactive image segmentation, in particular for medical applications. The
underlying idea is that the user specifies an initial guess of an interesting
contour (organ, tumour, ...). Then this contour is moved by image-driven
forces to the edges of the object in question.

So-called geodesic active contour models [6, 18] achieve this by applying a
specific kind of level set ideas. In its simplest form, a geodesic active contour
model consists of the following steps. One embeds the user-specified initial
curve C0(s) as a zero level curve into a function f(x), for instance by using
the distance transformation. Then f is evolved under a PDE that includes
knowledge about the original image h:

∂tu = |∇u| div

(

g(|∇hσ|2)
∇u

|∇u|

)

on Ω × (0,∞), (30)

u(x, 0) = f(x), on Ω, (31)

∂νu = 0 on ∂Ω × (0,∞), (32)

where g inhibits evolution at edges of f . One may choose decreasing functions
such as the diffusivity (8). Experiments indicate that, in general, (30) will
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Figure 7: Tensor-valued geodesic active contours (σ = 3, λ = 1). Top row,
from left to right: Tensor image of size 128 × 128 including contour at
time t = 0, t = 960 and t = 9600. Bottom row, from left to right: Same
experiment with 30 % noise. From [14].

have nontrivial steady states. The evolution is stopped at some time T , when
the process does hardly alter anymore, and the final contour C is extracted
as the zero level curve of u(x, T ). This contour turns out to be a shortest
path with respect to an image-induced metric which motivates the notion of
geodesic active contours.

In [13] geodesic active contours have been extended to tensor valued data
H = (hi,j) by using tr (J(Hσ)) as argument of the stopping function g:

∂tu = |∇u| div

(

g(trJ(Hσ))
∇u

|∇u|

)

. (33)

Note that, in contrast to the processes in the previous section, this equation
is still scalar-valued, since the goal is to find a contour that segments all
channels simultaneously. In [14] it is shown that the final contour is a geodesic
in a metric that now depends on J(Hσ). The PDE (33) may also be rewritten
as

∂tu = g(trJ(Hσ)) ∂ξξu + ∇>(g(trJ(Hσ)))∇u. (34)
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Figure 8: Left: Noisy tensor image from Fig. 7 with initial contour. Right:
Result when no channel coupling is used. (σ = 3, λ = 1, t = 9600). From
[14].

Since a tensor-valued image involves more channels than a scalar-valued one,
we can expect that this additional information stabilises the process when
noise is present.

Figure 7 shows the temporal evolution of the active contour model for tensor
fields. The goal was to extract the contour of the human brain shown in
the original image. First one notices that the evolution is slower in the
noisy case. The reason is that noise creates large values in the trace of
the structure tensor. As a consequence, the evolution is slowed down. For
larger times, however, both results become very similar. This shows the high
noise robustness of the active contour model for tensor-valued data sets. A
comparison with an uncoupled active contour model in Figure 8 demonstrates
the crucial role of channel coupling.

Alternative active contour models based on the Mumford–Shah functional
have been considered recently in [30].

8 Summary and Conclusions

We have surveyed a number of discontinuity-preserving PDEs for denoising
or segmenting tensor fields. They include isotropic and anisotropic nonlinear
diffusion and their corresponding regularisation methods, mean curvature
motion, self-snakes, and geodesic active contours. We have seen that they
arise as natural extensions of their scalar-valued predecessors provided that
uniform design principles are obeyed: The evolution of the different chan-
nels has to be coupled by a joint diffusivity, diffusion tensor or smoothing
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direction. Instead of adapting the nonlinear PDEs to the evolving image
structure via the squared gradient magnitude, the trace of a structure tensor
is used. In those cases where the edge direction is required, it is replaced
by the eigenvector direction for the smallest eigenvalue of the structure ten-
sor. Apart from these natural design principles, PDEs for tensor fields offer
additional qualities: Their continuous nature supports rotationally invariant
models. Last but not least, by virtue of the channel coupling a maximum–
minimum principle for the scalar-valued PDEs translates into preservation
of positive semidefiniteness in the tensor setting.
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R. Mrázek, and P. Kornprobst. Adaptive structure tensors and their
applications. In J. Weickert and H. Hagen, editors, Visualization and
Processing of Tensor Fields. Springer, Berlin, 2005. To appear.

[4] T. Brox, J. Weickert, B. Burgeth, and P. Mrázek. Nonlinear structure
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