Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 128

Variational integrals with a wide range of anisotropy

Michael Bildhauer, Martin Fuchs and Xiao Zhong

Saarbrücken 2005

Variational integrals with a wide range of anisotropy

Michael Bildhauer

Saarland University Dep. of Mathematics P.O. Box 15 11 50 D-66041 Saarbrücken Germany bibi@math.uni-sb.de

Martin Fuchs

Saarland University Dep. of Mathematics P.O. Box 15 11 50 D-66041 Saarbrücken Germany fuchs@math.uni-sb.de

Xiao Zhong

Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences and University of Jyväskylä Dep. of Mathematics and Statistics P.O. Box 35 FIN-40014 University of Jyväskylä Finland zhong@maths.jyu.fi

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

Abstract

We consider anisotropic variational integrals of (p, q)-growth and prove for the scalar case interior $C^{1,\alpha}$ -regularity of bounded local minimizers under the assumption that $q \leq 2p$ by the way discussing a famous counterexample of Giaquinta. In the vector case we obtain some higher integrability result for the gradient.

1 Introduction

Roughly speaking, an anisotropic variational integral of the type $J[u] = \int_{\Omega} f(\nabla u) dx$ defined for functions $u: \Omega \to \mathbb{R}^N$ on some bounded domain $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is characterized through a growth condition like

$$a|Q|^p - b \le f(Q) \le A|Q|^q + B$$
, (1.1)

where a, b, A, B denote positive constants, $1 are given exponents, and Q is an arbitrary matrix from <math>\mathbb{R}^{nN}$. A natural space for local minimizers is the class of functions u from $W_p^1(\Omega; \mathbb{R}^{nN})$ such that $\int_{\Omega'} f(\nabla u) \, dx < \infty$ for each subregion $\Omega' \in \Omega$, and so one is interested in the regularity properties of local minimizers u which means that one asks for higher integrability of ∇u , Hölder-continuity of u or even Hölder-continuity of ∇u provided that f satisfies additional smoothness and convexity assumptions. In general, the hope for positive results increases in the scalar case but counterexamples of [Gi2] and (later) of [Ho] show that even for N = 1 unbounded minimizers exist, when q is too big with respect to p.

On the contrary, there is a long list of authors investigating the different aspects of the regularity theory, we mention (without being complete) the works of Acerbi and Fucso ([AF]), Fusco and Sbordone ([FS]), Marcellini ([Ma2]), Choe ([Ch]) and the papers [ELM1], [ELM2] of Esposito, Leonetti and Mingione, where the interested reader can also find further references.

Typically, in the above mentioned works either a bound of the form

$$q < c(n)p \tag{1.2}$$

with c(n) > 1, but $c(n) \to 1$ as $n \to \infty$ is required, or a dimensionless restriction like

$$q$$

occurs together with the assumption that u is a locally bounded function. Then, in a first step, it is shown that actually ∇u is in the space $L^q_{loc}(\Omega; \mathbb{R}^{nN})$. This result in turn is used in a second step to prove $C^{1,\alpha}$ -regularity in the scalar case or in the vector case with an additional structure condition, whereas in the general vectorial setting partial $C^{1,\alpha}$ -regularity is established. Of course, to do so, (1.1) has to be replaced by a stronger condition: for example, one may assume that $f: \mathbb{R}^{nN} \to [0,\infty)$ is of class C^2 together with

$$\lambda(1+|Q|^2)^{\frac{p-2}{2}}|Z|^2 \le D^2 f(Q)(Z,Z) \le \Lambda(1+|Q|^2)^{\frac{q-2}{2}}|Z|^2, \quad Q, Z \in \mathbb{R}^{nN},$$
(1.4)

where λ , Λ denote positive constants. Clearly (1.4) implies (1.1), moreover, the first inequality in (1.4) shows that f is strictly convex.

In this note we have a closer look on the counterexamples mentioned above. Giaquinta's example works with the choice p = 2, q = 4, $n \ge 6$: he considers the variational integral

$$J[u] = \int \left[\sum_{i=1}^{n-1} (\partial_i u)^2 + \frac{1}{2} (\partial_n u)^4 \right] dx,$$

AMS Subject Classification: 49N60

Keywords: anisotropic problems, regularity of minimizers

for which in case $n \ge 6$

$$u(x) := \sqrt{\frac{n-4}{24}} \frac{x_n^2}{\left(\sum_{i=1}^{n-1} x_i^2\right)^{\frac{1}{2}}}$$

is of finite energy and satisfies the Euler-Lagrange equation, i.e. u is a local *J*-minimizer. This singular minimizer however is not bounded, in fact in [FS] a sharp condition is proved under which we have to expect unbounded minimizers. This condition reads in the case p = 2 as

$$n-1 > \frac{2q}{q-2},$$

in particular for q = 4 we have singular unbounded solutions for $n \ge 6$. Note that the question of unbounded solutions is strongly related to the dimension n. On the other hand, as mentioned above, the smoothness of bounded solutions should follow from a dimensionless condition. For instance, up to now it is not clear, if an anisotropic energy exists which satisfies a condition like (1.4) with p = 2, q = 4 and for which locally bounded but nonsmooth local minimizers can be constructed. Note that for the choice p = 2, q = 4 we have reached the limit case q = p + 2 of condition (1.3), and according to [Bi], Theorem 5.4, the smoothness of locally bounded minimizers is only known under the stronger hypothesis that q . Here we are $going to include the limit case of (1.3) in our considerations and to weaken (in case <math>p \ge 2$) condition (1.3) to

$$2 \le p \le q \le 2p \tag{1.5}$$

by making use of the particular properties of the functionals under consideration. More precisely we will show that (1.5) together with some structural hypotheses imposed on f actually is strong enough to obtain the usual smoothness properties of locally bounded solutions at least in the scalar case.

To discuss some details, let us split an element Q of \mathbb{R}^{nN} in the form $Q = (\tilde{Q}, Q_n)$, where

$$\tilde{Q} := (Q_1, \dots, Q_{n-1}), \quad Q_i \in \mathbb{R}^N, \quad i = 1, \dots, n.$$

Then, a typical example we have in mind is given by

$$f(Q) = (1 + |\tilde{Q}|^2)^{\frac{p}{2}} + (1 + |Q_n|^2)^{\frac{q}{2}}.$$
(1.6)

In fact we could also look at any decomposition

$$Q = (Q^{(1)}, Q^{(2)})$$

of the matrix Q into two submatrices $Q^{(i)}$ and consider f growing of order p with respect to $Q^{(1)}$ and of order q with respect to $Q^{(2)}$. Another model we could discuss is

$$f(Q) = \sum_{i=1}^{n} (1 + |Q_i|^2)^{\frac{p_i}{2}},$$

where now $p := \min p_i, q := \max p_i$.

In order to keep our exposition simple, we assume from now on that $f \in C^2(\mathbb{R}^{nN})$ can be written as (compare (1.6))

$$f(Q) = f_1(Q) + f_2(Q_n)$$
(1.7)

with

$$\lambda(1+|\tilde{Q}|^2)^{\frac{p-2}{2}}|\tilde{Z}|^2 \leq D^2 f_1(\tilde{Q})(\tilde{Z},\tilde{Z}) \leq \Lambda(1+|\tilde{Q}|^2)^{\frac{p-2}{2}}|\tilde{Z}|^2, \lambda(1+|Q_n|^2)^{\frac{q-2}{2}}|Z_n|^2 \leq D^2 f_2(Q_n)(Z_n,Z_n) \leq \Lambda(1+|Q_n|^2)^{\frac{q-2}{2}}|Z_n|^2,$$

$$(1.8)$$

moreover, we assume that

$$\begin{cases} f_1(\hat{Q}) &= f_1(Q_1, \dots, Q_{n-1}) &= g_1(|Q_1|, \dots, |Q_{n-1}|), \\ f_2(Q_n) &= g_2(|Q_n|) \end{cases}$$

$$(1.9)$$

with g_2 increasing and g_1 increasing with respect to each argument. The assumption (1.9) ensures the convex hull property (see, e.g. [BF3]), i.e. the global minimizer w.r.t. Dirichlet boundary data $u_0 \in L^{\infty}(\Omega; \mathbb{R}^N)$ also is a bounded function. Therefore, it is reasonable to look at locally bounded local minimizers, where the notion of a local minimizer u means that

$$J[u,\Omega'] := \int_{\Omega'} f(\nabla u) \, \mathrm{d}x < \infty$$

together with $J[u, \Omega'] \leq J[v, \Omega']$ for all v such that $\operatorname{spt}(u - v) \subset \Omega'$, and for all subdomains $\Omega' \subseteq \Omega$. Let us now state our results:

Theorem 1.1. Suppose that we are given exponents $2 \le p \le q < \infty$ with (1.5). Let f satisfy (1.7), (1.8), (1.9) and let $u \in L^{\infty}_{loc}(\Omega; \mathbb{R}^N)$ denote a local minimizer. Then we have that $\tilde{\nabla} u := (\partial_1 u, \ldots, \partial_{n-1} u) \in L^{p+1}_{loc}(\Omega; \mathbb{R}^{(n-1)N})$. Moreover, the function $\partial_n u$ is in the class $L^{q+1}_{loc}(\Omega; \mathbb{R}^N)$.

Corollary 1.1. Let the assumptions of Theorem 1.1 hold and assume in addition that n - 1 , <math>q > n. Then we have that $u \in C^{0,\alpha}(\Omega; \mathbb{R}^N)$ for some $0 < \alpha < 1$.

- **Remark 1.1.** i) As already noted similar results can be obtained for decompositions different from the one considered here.
 - ii) We may also consider functionals as discussed above with an additional x-dependence (compare [BF4]). Note that in the situation at hand we do not have to expect a Lavrentiev phenomenon.
 - iii) Modifying the proof according to [BFM], for instance, we can also handle the case of degenerate ellipticity, which means that the 1 is dropped in the left-hand sides of the inequalities stated in (1.8).
 - iv) In [Bi], Corollary 5.6, a partial regularity result is shown provided that q < 2 + p and q < pn/(n-2). It would be interesting to see, whether partial regularity holds in the above examples under a dimension free condition on the exponents. This will be investigated in a separate paper.
 - v) If p < 2, then we obtain better integrability results under the weaker assumption qvalid even for a more general class of functionals, we refer to [Bi], Theorem 5.4. AlsoTheorem 1.2 and Corollary 1.2 below continue to hold for <math>p < 2 together with q .

Next we turn our attention to the scalar case for which we can improve the integrability of ∇u , more precisely we have the following result:

Theorem 1.2. Let N = 1, let f satisfy (1.7) and (1.8) together with $2 \le p \le q \le 2p$. Then, if $u \in L^{\infty}_{loc}(\Omega)$ denotes a local minimizer, we have

- i) $\tilde{\nabla} u \in L^s_{loc}(\Omega; \mathbb{R}^{n-1})$ for any finite exponent s, in particular u actually is in the space $W^1_{a,loc}(\Omega)$;
- ii) ∇u is in the space $L_{loc}^t(\Omega; \mathbb{R}^n)$ for any finite t.

Remark 1.2. i) Note that the structural condition (1.9) is not required in the scalar case.

- ii) According to [Ma2], $u \in W^1_{a,loc}(\Omega)$ implies $u \in C^{1,\alpha}(\Omega)$ if we additionally require q .
- iii) It would be desirable to extend Theorem 1.2 including Corollary 1.2 to the vector-situation studied in Theorem 1.1. We think that this is possible if in addition to (1.9) f_1 also just depends on the modulus of the matrix, i.e. $f_1(\tilde{Q}) = g_1(|\tilde{Q}|)$. We leave the details to the reader.

Corollary 1.2. In the scalar case locally bounded local minimizers of the variational integral $J[u, \Omega] = \int_{\Omega} f(\nabla u) dx$ are of class $C^{1,\alpha}(\Omega)$ for any $0 < \alpha < 1$, provided that f satisfies (1.7), (1.8) and $2 \le p \le q \le 2p$ holds.

- **Remark 1.3.** i) We conjecture that the bound $q \leq 2p$ is optimal, and so it would be interesting to find bounded solutions which are not of class $C^{1,\alpha}$ for a functional J satisfying the hypotheses of Corollary 1.2 but with q > 2p, where q can be chosen arbitrarily close to 2p.
 - ii) We like to remark explicitly that sufficient conditions for regularity of the form (1.2) in general give better results for low dimensions n, for example, we mention the paper [FS] where for n = 2, 3 the bounds on p and q are less restrictive.
 - iii) As mentioned above, in this note we do not touch the question of (partial) regularity in the vector case. We just remark that for two-dimensional vectorial problems (i.e. n = 2and N > 1) the condition q < 2p is sufficient for interior $C^{1,\alpha}$ -regularity even for a priori unbounded local minimizers of an energy $\int_{\Omega} f(\nabla u) dx$ with f just satisfying (1.4). We refer the reader to [BF5].

Our paper is organized as follows: in Section 2 we introduce an appropriate local regularization, i.e. we replace the integrand f and the minimizer u by suitable sequences f_k and u_k , and prove a Caccioppoli-type inequality for the approximation. In the vector-case this procedure is rather delicate since it is not clear if the test-functions one likes to use are really admissible. The Caccioppoli-type inequality then is used to prove that $\partial_1 u, \ldots, \partial_{n-1} u$ are in the space $L_{loc}^{p+1}(\Omega; \mathbb{R}^N)$. In Section 3 we study the scalar case and show by iteration the first part of Theorem 1.2. From this we deduce in Section 4 that $u \in W_{t,loc}^1(\Omega)$ for any finite t, and we use this to get $u \in C^{1,\alpha}(\Omega)$.

2 Approximation and proof of Theorem 1.1

Let the hypotheses of Theorem 1.1 be satisfied. Following familiar arguments we introduce an appropriate local regularization: given $\epsilon > 0$, we let $(u)_{\epsilon}$ denote the mollification of the local minimizer u with radius ϵ . Let us fix $x_0 \in \Omega$ and a ball $B_R(x_0) \Subset \Omega$. Moreover, define

$$\delta := \delta(\epsilon) = \frac{1}{1 + \epsilon^{-1} + \|\tilde{\nabla}(u)_{\varepsilon}\|_{L^q(B_R(x_0);\mathbb{R}^{nN})}^{2q}}$$

and let $f_{\delta}(Q) = \delta(1 + |\tilde{Q}|^2)^{q/2} + f(Q)$. Finally, let $u_{\delta} \in (u)_{\varepsilon} + \overset{\circ}{W}_q^1(B_R(x_0); \mathbb{R}^N)$ denote the unique solution of the problem

$$J_{\delta}[w, B_R(x_0)] := \int_{B_R(x_0)} f_{\delta}(\nabla w) \, \mathrm{d}x \to \min \quad \text{in} \quad (u)_{\epsilon} + \overset{\circ}{W}_q^1(B_R(x_0); \mathbb{R}^N) \, .$$

Lemma 2.1. We have as $\epsilon \to 0$:

i)
$$u_{\delta} \rightarrow u$$
 in $W_p^1(B_R(x_0); \mathbb{R}^N)$,

- ii) $\delta \int_{B_R(x_0)} (1 + |\tilde{\nabla} u_\delta|^2)^{q/2} \,\mathrm{d}x \to 0,$
- iii) $\int_{B_R(x_0)} f(\nabla u_\delta) \, \mathrm{d}x \to \int_{B_R(x_0)} f(\nabla u) \, \mathrm{d}x.$

Moreover, $||u_{\delta}||_{L^{\infty}(B_{R}(x_{0}),\mathbb{R}^{N})}$ is uniformly bounded.

Proof. i)-iii): compare e.g. [BF1] with minor adjustments; the last statement follows from the convex hull property established in [BF3].

Lemma 2.2. (Caccioppoli-type inequality) For any $\eta \in C_0^{\infty}(B_R(x_0))$ we have

$$\int_{B_R(x_0)} \eta^2 D^2 f_{\delta}(\nabla u_{\delta}) (\partial_{\gamma} \nabla u_{\delta}, \partial_{\gamma} \nabla u_{\delta}) \,\mathrm{d}x$$

$$\leq c \int_{B_R(x_0)} D^2 f_{\delta}(\nabla u_{\delta}) (\nabla \eta \otimes \partial_{\gamma} u_{\delta}, \nabla \eta \otimes \partial_{\gamma} u_{\delta}) \,\mathrm{d}x \,.$$
(2.1)

Here $\gamma \in \{1, ..., n\}$ is arbitrary (no summation in (2.1)), c is a constant independent of δ and \otimes denotes the tensor product.

Proof. Compare, for example, [BF1], Lemma 3.1; it is easy to check that the proof given in [BF1] actually produces inequality (2.1).

Let us now have a closer look at inequality (2.1) for our special integrand f. Using (1.7) and (1.8) we deduce from (2.1)

$$\begin{split} \delta \int_{B_R(x_0)} \eta^2 (1+|\tilde{\nabla} u_{\delta}|^2)^{\frac{q-2}{2}} |\partial_{\gamma} \tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x + \int_{B_R(x_0)} \eta^2 (1+|\tilde{\nabla} u_{\delta}|^2)^{\frac{p-2}{2}} |\partial_{\gamma} \tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x \\ &+ \int_{B_R(x_0)} \eta^2 (1+|\partial_n u_{\delta}|^2)^{\frac{q-2}{2}} |\partial_{\gamma} \partial_n u|^2 \, \mathrm{d}x \\ &\leq c \bigg[\delta \int_{B_R(x_0)} |\nabla \eta|^2 (1+|\tilde{\nabla} u_{\delta}|^2)^{\frac{q-2}{2}} |\partial_{\gamma} u_{\delta}|^2 \, \mathrm{d}x + \int_{B_R(x_0)} |\nabla \eta|^2 (1+|\tilde{\nabla} u_{\delta}|^2)^{\frac{p-2}{2}} |\partial_{\gamma} u_{\delta}|^2 \, \mathrm{d}x \\ &+ \int_{B_R(x_0)} |\nabla \eta|^2 (1+|\partial_n u|^2)^{\frac{q-2}{2}} |\partial_{\gamma} u_{\delta}|^2 \, \mathrm{d}x \bigg] \,. \end{split}$$

Now, taking the sum w.r.t. γ from 1 to n-1 on both sides, we get with an obvious meaning of $\tilde{\nabla}^2$:

$$\begin{split} \delta \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}^2 u_{\delta}|^2 \, \mathrm{d}x + \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}^2 u_{\delta}|^2 \, \mathrm{d}x \\ &+ \int_{B_R(x_0)} \eta^2 \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n \tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x \\ \leq c \left[\delta \int_{B_R(x_0)} |\nabla \eta|^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x + \int_{B_R(x_0)} |\nabla \eta|^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x \\ &+ \int_{B_R(x_0)} |\nabla \eta|^2 \Gamma_{n,\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x \right], \end{split}$$
(2.2)

where $\tilde{\Gamma}_{\delta} := 1 + |\tilde{\nabla} u_{\delta}|^2$, $\Gamma_{n,\delta} := 1 + |\partial_n u_{\delta}|^2$.

Before we prove Theorem 1.1, let us recall the following auxiliary result, a proof can be found in [GM]

Proposition 2.1. Consider a function $g: \mathbb{R}^L \to \mathbb{R}$ of class C^2 such that for some $s \geq 2$ we have with a positive constant c_1

$$c_1 \left(1+|A|^2\right)^{\frac{s-2}{2}} |B|^2 \le D^2 g(A)(B,B) \quad \text{for all } A, B \in \mathbb{R}^L.$$

Then there is another positive constant c_2 , just depending on s and c_1 such that

$$\int_{0}^{1} D^{2}g(A+tB)(X,X) \,\mathrm{d}t \ge c_{2}D^{2}g(A)(X,X) \quad \text{for all } A, B, X \in \mathbb{R}^{L}.$$
(2.3)

We proceed by showing a version of the Caccioppoli-type inequality involving difference quotients, which will be an essential ingredient in the proof of Theorem 1.1.

Lemma 2.3. Fix a direction e_{γ} , $\gamma \leq n-1$, and let $v := \Delta_h u_{\delta}$ denote the difference quotient of u_{δ} in this direction. Then we have for any $\eta \in C_0^{\infty}(B_R(x_0))$

$$\begin{split} \int_{B_R(x_0)} \eta^2 D^2 f_{\delta}(\nabla u_{\delta})(\nabla v, \nabla v) \, \mathrm{d}x &\leq c \|\nabla \eta\|_{\infty}^2 \left[\delta \int_{\operatorname{spt} \eta} \int_0^1 (1 + |\tilde{U}|^2)^{\frac{q-2}{2}} |v|^2 \, \mathrm{d}t \, \mathrm{d}x \right. \\ &+ \int_{\operatorname{spt} \eta} \int_0^1 (1 + |\tilde{U}|^2)^{\frac{p-2}{2}} |v|^2 \, \mathrm{d}t \, \mathrm{d}x \\ &+ \int_{\operatorname{spt} \eta} \int_0^1 (1 + |U_n|^2)^{\frac{q-2}{2}} |v|^2 \, \mathrm{d}t \, \mathrm{d}x \right] \\ &=: c \|\nabla \eta\|_{\infty}^2 [\delta \cdot I_1 + I_2 + I_3] \, . \end{split}$$

Here we have set $U := \nabla u_{\delta} + th \Delta_h \nabla u_{\delta}$.

Proof. Let us introduce the bilinear form $\mathcal{B} := \int_0^1 D^2 f_{\delta}(U) \, \mathrm{d}t$. If we write

$$\begin{aligned} \mathcal{B}(X,X) &= \int_0^1 D^2 f_\delta \left(\nabla u_\delta + th \Delta_h \nabla u_\delta \right) (X,X) \, \mathrm{d}t \\ &= \int_0^1 D^2 f_\delta \left(A + tB \right) (X,X) \, \mathrm{d}t \\ &= \int_0^1 D^2 g_\delta (\tilde{A} + t\tilde{B}) (\tilde{X},\tilde{X}) \, \mathrm{d}t + \int_0^1 D^2 f_2 (A_n + tB_n) (X_n,X_n) \, \mathrm{d}t \end{aligned}$$

with $A = \nabla u_{\delta}$, $B = h\Delta_h \nabla u_{\delta}$, $g_{\delta}(\epsilon) := \delta(1 + |\epsilon|^2)^q + f_1(\epsilon)$, then – due to the ellipticity conditions for f_1 and f_2 – the inequality (2.3) can be applied to both terms on the r.h.s. of the above equation leading to the estimate

$$D^2 f_{\delta}(\nabla u_{\delta})(X, X) \le \mathcal{B}(X, X) \quad \text{for all } X \in \mathbb{R}^N$$

This together with (3.2) of [BF1] gives

$$\int_{B_R(x_0)} \eta^2 D^2 f_{\delta}(\nabla u_{\delta})(\nabla v, \nabla v) \, \mathrm{d}x \le c \int_{B_R(x_0)} \mathcal{B}(\nabla v, \nabla v) \, \eta^2 \, \mathrm{d}x \le c \int_{B_R(x_0)} \eta \mathcal{B}(\nabla v, \nabla \eta \otimes v) \, \mathrm{d}x \, .$$

Using now the Cauchy-Schwarz inequality for the bilinear form \mathcal{B} we get

$$\begin{split} \int_{B_R(x_0)} \eta^2 D^2 f_{\delta}(\nabla u_{\delta})(\nabla v, \nabla v) \, \mathrm{d}x &\leq c \int_{B_R(x_0)} \mathcal{B}\left(\nabla \eta \otimes v, \nabla \eta \otimes v\right) \, \mathrm{d}x \\ &\leq c \left[\int_{B_R(x_0)} \int_0^1 D^2 g_{\delta}(\tilde{U})(\tilde{\nabla} \eta \otimes v, \tilde{\nabla} \eta \otimes v) \, \mathrm{d}t \, \mathrm{d}x \right. \\ &\quad + \int_{B_R(x_0)} \int_0^1 D^2 f_2(U_n) \left(\partial_n \eta v, \partial_n \eta v\right) \, \mathrm{d}t \, \mathrm{d}x \right], \end{split}$$

which immediately gives the lemma on account on our ellipticity assumption (1.8).

Proof of Theorem 1.1. ; From the minimality of u_{δ} it follows that

$$\int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) : \nabla \varphi \, \mathrm{d}x = 0$$
(2.4)

for any $\varphi \in \overset{\circ}{W}_{q}^{1}(B_{R}(x_{0}); \mathbb{R}^{N})$. As a test vector in (2.4) we like to choose $\varphi = \eta^{2} |\tilde{\nabla} u_{\delta}| u_{\delta}$. Using the standard difference quotient procedure, see e.g. [Mo] or [Ca], we get that $\tilde{\nabla} u_{\delta}$ is just of local Sobolev class W_{2}^{1} so that the admissibility of φ ist not immediate. To overcome this problem, we fix a direction $e_{\gamma}, \gamma \leq n-1$, and as above we let $v := \Delta_{h} u_{\delta}$ denote the corresponding difference quotient of u_{δ} . Then (2.4) gives choosing $\varphi = \eta^{2} u_{\delta} |v|, \eta \in C_{0}^{\infty}(B_{R}(x_{0})),$

$$\int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) : \nabla u_{\delta} \eta^2 |v| \, \mathrm{d}x = -2 \int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) : (\nabla \eta \otimes u_{\delta}) \eta |v| \, \mathrm{d}x - \int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) : (u_{\delta} \otimes \nabla |v|) \eta^2 \, \mathrm{d}x \,.$$
(2.5)

For any matrices X, Z we have (assuming w.l.o.g. Df(0) = 0) $Df_{\delta}(X) : Z = \int_{0}^{1} D^{2} f_{\delta}(tX)(X, Z) dt$, so that by(1.7), (1.8) we get the estimates

$$Df_{\delta}(X) : X \geq c \left[\delta(1 + |\tilde{X}|^2)^{\frac{q-2}{2}} |\tilde{X}|^2 + (1 + |\tilde{X}|^2)^{\frac{q-2}{2}} |\tilde{X}|^2 + (1 + |X_n|^2)^{\frac{q-2}{2}} |X_n|^2 \right],$$

$$(2.6)$$

$$|Df_{\delta}(X)| \leq c \left[\delta(1+|\tilde{X}|^2)^{\frac{q-2}{2}} |\tilde{X}| + (1+|\tilde{X}|^2)^{\frac{p-2}{2}} |\tilde{X}| + (1+|X_n|^2)^{\frac{q-2}{2}} |X_n| \right]$$

$$(2.7)$$

with positive constants independent of ϵ . From (2.6) we immediately deduce that

l.h.s. of (2.5)
$$\geq c \left[\delta \int_{B_R(x_0)} |v| \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^2 dx + \int_{B_R(x_0)} |v| \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^2 dx + \int_{B_R(x_0)} |v| \eta^2 \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n u_{\delta}|^2 dx \right].$$
 (2.8)

For the r.h.s. of (2.5) we observe that (2.7) together with the uniform L^{∞} -bound of u_{δ} implies:

$$\begin{aligned} |1^{\text{st}} \text{ term on the r.h.s. of } (2.5)| \\ &\leq c \bigg[\|\nabla \eta\|_{\infty} \bigg(\delta \int_{\operatorname{spt} \eta} |v| \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}| \, \mathrm{d}x + \int_{\operatorname{spt} \eta} |v| \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}| \, \mathrm{d}x \bigg) \\ &+ \int_{\operatorname{spt} \eta} \eta |\nabla \eta| |v| \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n u_{\delta}| \, \mathrm{d}x \bigg] \\ &=: c \bigg[\|\nabla \eta\|_{\infty} (T_1 + T_2) + T_3 \bigg] \,. \end{aligned}$$

By Hölder's inequality and elementary properties of difference quotients we see by Lemma 2.1, i), that

$$T_1 \le c\delta \int_{B_R(x_0)} \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \mathrm{d}x \to 0 \quad \text{as } \epsilon \to 0 \,,$$

whereas

$$T_2 \le c \int_{B_R(x_0)} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \le c$$

The last inequality follows from the minimality of the functions u_{δ} , i.e.

$$J_{\delta}[u_{\delta}, B_R(x_0)] \le J_{\delta}[(u)_{\epsilon}, B_R(x_0)] \le c.$$

We further have (for any $\tau \in (0,1)$)

$$T_{3} \leq \int_{\operatorname{spt}\eta} \left[\tau \eta^{2} |\partial_{n} u_{\delta}|^{2} + \frac{1}{\tau} \|\nabla \eta\|_{\infty}^{2} \right] |v| \Gamma_{n,\delta}^{\frac{q-2}{2}} dx$$

$$\leq \tau \int_{\operatorname{spt}\eta} \eta^{2} |v| |\partial_{n} u_{\delta}|^{2} \Gamma_{n,\delta}^{\frac{q-2}{2}} dx + \frac{c}{\tau} \|\nabla \eta\|_{\infty}^{2} \int_{\operatorname{spt}\eta} \left\{ \Gamma_{n,\delta}^{\frac{q}{2}} + |v|^{\frac{q}{2}} \right\} dx.$$
(2.9)

Since we assume $q \leq 2p$, we get that

$$\int_{\operatorname{spt}\eta} |v|^{\frac{q}{2}} \,\mathrm{d}x$$

is bounded in terms of $\int_{B_R(x_0)} |\tilde{\nabla} u_\delta|^p \, dx$. Moreover, if τ is sufficiently small, then the first integral on the right-hand side of (2.9) can be absorbed in the last integral on the right-hand side of (2.8) with the result (w.l.o.g. $\|\nabla \eta\|_{\infty} \ge 1$)

$$\delta \int_{B_R(x_0)} |v| \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \,\mathrm{d}x + \int_{B_R(x_0)} |v| \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \,\mathrm{d}x + \int_{B_R(x_0)} |v| \eta^2 \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n u_{\delta}|^2 \,\mathrm{d}x \\ \leq c \|\nabla\eta\|_{\infty}^2 + c \left| \int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) : (u_{\delta} \otimes \nabla |v|) \eta^2 \,\mathrm{d}x \right|.$$

$$(2.10)$$

Let us now discuss the remaining integral on the right-hand side of (2.10): we observe that

$$Df_{\delta}(X): Y = \delta \frac{q}{2} \left(1 + |\tilde{X}|^2 \right)^{\frac{q-2}{2}} \tilde{X}: \tilde{Y} + Df_1(\tilde{X}): \tilde{Y} + Df_2(X_n) \cdot Y_n , \qquad (2.11)$$

which implies (using the uniform boundedness of u_{δ}) for any $0 < \tau < 1$

$$\begin{aligned} |Df_{\delta}(\nabla u_{\delta}): (\nabla |v| \otimes u)| &\leq c \left[\delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}| |\tilde{\nabla} v| + \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}| |\tilde{\nabla} v| + \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}| |\partial_{n} v| \right] \\ &\leq c \left[\delta \tau \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} v|^{2} + \delta \frac{1}{\tau} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} + \tau \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} v|^{2} + \frac{1}{\tau} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \right] \\ &+ \tau \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} v|^{2} + \frac{1}{\tau} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}|^{2} \right]. \end{aligned}$$

This gives the following upper bound for the integral under consideration:

$$c \left[\delta \tau \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}v|^2 \, \mathrm{d}x + \tau \int_{B_R(x_0)} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \eta^2 |\tilde{\nabla}v|^2 \, \mathrm{d}x + \tau \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{n,\delta}^{\frac{q-2}{2}} |\partial_n v|^2 \, \mathrm{d}x + \frac{1}{\tau} \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \, \mathrm{d}x + \frac{1}{\tau} \delta \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \, \mathrm{d}x + \frac{1}{\tau} \int_{B_R(x_0)} \Gamma_{n,\delta}^{\frac{q}{2}} \, \mathrm{d}x \right],$$
(2.12)

where all the quantities which are multiplied by $\frac{1}{\tau}$ stay bounded uniformly w.r.t ϵ (recall $\delta = \delta(\epsilon)$). In order to continue we look at the sum of the first three items of (2.12) and observe that

$$\int_{B_R(x_0)} \eta^2 \left[\delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}v|^2 + \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}v|^2 + \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n v|^2 \right] \mathrm{d}x$$
$$\leq c \int_{B_R(x_0)} \eta^2 D^2 f_{\delta}(\nabla u_{\delta}) (\nabla v, \nabla v) \,\mathrm{d}x \,.$$

Note that the right hand side can be estimated with the help of Lemma 2.3, i.e. (with the notation of Lemma 2.3) we get from (2.10) (for any $0 < \tau < 1$)

$$\delta \int_{B_{R}(x_{0})} |v| \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}u_{\delta}|^{2} dx + \int_{B_{R}(x_{0})} |v| \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}u_{\delta}|^{2} dx + \int_{B_{R}(x_{0})} |v| \eta^{2} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n}u_{\delta}|^{2} dx \leq c \|\nabla\eta\|_{\infty}^{2} + c\tau \|\nabla\eta\|_{\infty}^{2} [\delta I_{1} + I_{2} + I_{3}] + \frac{c}{\tau}.$$
(2.13)

We have

$$I_{1} \leq \int_{\operatorname{spt}\eta} |v|^{q} \, \mathrm{d}x + \int_{\operatorname{spt}\eta} \int_{0}^{1} (1+|\tilde{U}|^{2})^{\frac{q}{2}} \, \mathrm{d}t \, \mathrm{d}x$$

$$\leq c \int_{B_{R}(x_{0})} |\tilde{\nabla}u_{\delta}|^{q} \, \mathrm{d}x + c \int_{\operatorname{spt}\eta} \int_{0}^{1} (|(1-t)\tilde{\nabla}u_{\delta}(x) + t\tilde{\nabla}u_{\delta}(x+he_{\gamma})|^{2} + 1)^{\frac{q}{2}} \, \mathrm{d}t \, \mathrm{d}x,$$

and if from now on we assume that spt $\eta \subset B_{R/2}(x_0)$, then of course (for all $|h| \ll 1$ uniform in ϵ)

$$I_1 \le c \int_{B_R(x_0)} \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \mathrm{d}x,$$

and we know $\delta I_1 \to 0$ as $\epsilon \to 0$, thus δI_1 is uniformly bounded for all small ϵ and |h|. Since we also know that $\int_{B_R(x_0)} \tilde{\Gamma}_{\delta}^{p/2} dx \leq c$, the same argument applies to I_2 . To handle I_3 we observe that in the limit $h \to 0$

$$I_{3} \leq \int_{\operatorname{spt}\eta} \int_{0}^{1} (1+|U_{n}|^{2})^{\frac{q-2}{2}} |v|^{2} \, \mathrm{d}t \, \mathrm{d}x \to \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{\gamma} u_{\delta}|^{2} \, \mathrm{d}x \,.$$
(2.14)

To prove (2.14) we note that according to [Gi], Theorem 3.1, p. 159, there exists an exponent s > q (depending on ϵ) such that $\nabla u_{\delta} \in L^{s}_{loc}(B_{R}(x_{0}); \mathbb{R}^{nN})$. This implies (as $h \to 0$)

$$\partial_n u_\delta(x + he_\gamma) \to \partial_n u_\delta, \quad v \to \partial_\gamma u_\delta$$

in $L^s_{loc}(B_R(x_0); \mathbb{R}^N)$ and a.e. Clearly (as $h \to 0$)

$$\zeta_h := \int_0^1 (1 + |U_n|^2)^{\frac{q-2}{2}} \, \mathrm{d}t |v|^2 \to \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_\gamma u_\delta|^2$$

a.e. and, using the local L^s -convergences, the equi-integrability of ζ_h follows. Then (2.14) follows from Vitali's convergence theorem. Returning to (2.13), using (2.14) and the foregoing estimates and applying Fatou's lemma on the l.h.s. of (2.13), we find in the limit $h \to 0$

$$\delta \int_{B_{s}(\bar{x})} |\partial_{\gamma} u_{\delta}| \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} \, \mathrm{d}x + \int_{B_{s}(\bar{x})} |\partial_{\gamma} u_{\delta}| \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} \, \mathrm{d}x + \int_{B_{s}(\bar{x})} |\partial_{\gamma} u_{\delta}| \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}|^{2} \, \mathrm{d}x$$

$$\leq c(t-s)^{-2} + \frac{c}{\tau} + c\tau(t-s)^{-2} \int_{B_{t}(\bar{x})} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{\gamma} u_{\delta}|^{2} \, \mathrm{d}x \,. \tag{2.15}$$

where $\eta \in C_0^{\infty}(B_t(\bar{x}))$ $(0 < s < t < T, B_T(\bar{x}) \in B_{R/2}(x_0))$ has been chosen according to $0 \leq \eta \leq 1, \eta \equiv 1$ on $B_s(\bar{x}), |\nabla \eta| \leq c/(t-s)$. We estimate the last integral of (2.15) in the following way. By Young's inequality

$$\begin{split} \int_{B_t(\bar{x})} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_\gamma u_\delta|^2 \, \mathrm{d}x &\leq c \int_{B_t(\bar{x})} |\partial_n u_\delta|^{q-2} |\partial_\gamma u_\delta|^2 \, \mathrm{d}x + c \int_{B_t(\bar{x})} |\partial_\gamma u_\delta|^2 \, \mathrm{d}x \\ &\leq c \int_{B_t(\bar{x})} |\partial_\gamma u_\delta| |\partial_n u_\delta|^q \, \mathrm{d}x + c \int_{B_t(\bar{x})} (|\partial_\gamma u_\delta|^{\frac{q}{2}+1} + |\partial_\gamma u_\delta|^2|) \, \mathrm{d}x \end{split}$$

Moreover, since $q \leq 2p$,

$$\begin{aligned} |\partial_{\gamma} u_{\delta}|^{\frac{q}{2}+1} &\leq \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\partial_{\gamma} u_{\delta}|^{\frac{q}{2}+1-p+2} &\leq \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} |\partial_{\gamma} u_{\delta}|^{\frac{q}{2}-p+1} \\ &\leq \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} \left[|\partial_{\gamma} u_{\delta}| + 1 \right]. \end{aligned}$$

This gives

$$\int_{B_t(\bar{x})} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{\gamma} u_{\delta}|^2 \, \mathrm{d}x \le c \left[\int_{B_t(\bar{x})} |\partial_{\gamma} u_{\delta}| |\partial_n u_{\delta}|^q \, \mathrm{d}x + \int_{B_t(\bar{x})} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^2 |\partial_{\gamma} u_{\delta}| dx + 1 \right].$$

Inserting this estimate into (2.15) we obtain (by neglecting the first term on the l.h.s. of (2.15))

$$h(s) := \int_{B_{s}(\bar{x})} |\partial_{\gamma} u_{\delta}| \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} dx + \int_{B_{s}(\bar{x})} |\partial_{\gamma} u_{\delta}| \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}|^{2} dx$$

$$\leq c(t-s)^{-2} + \frac{c}{\tau} + c\tau(t-s)^{-2}$$

$$+ c\tau(t-s)^{-2} \left[\int_{B_{t}(\bar{x})} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^{2} |\partial_{\gamma} u_{\delta}| dx + \int_{B_{t}(\bar{x})} |\partial_{\gamma} u_{\delta}| \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}|^{2} dx \right], \quad (2.16)$$

i.e. with the choice $\tau = (t-s)^2/(2c)$

$$h(s) \le c(t-s)^{-2} + c + \frac{1}{2}h(t)$$

for any s, t as above. Lemma 3.1, p. 161, of [Gi] finally shows that

$$\int_{B_s(\bar{x})} |\partial_\gamma u_\delta| \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_\delta|^2 \,\mathrm{d}x + \int_{B_s(\bar{x})} |\partial_\gamma u_\delta| \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n u_\delta|^2 \,\mathrm{d}x \le c \big[(T-s)^{-2} + 1 \big]$$

with a constant c independent of ϵ being valid for all s < T. Recalling that $\gamma \leq n-1$ we get the uniform bound

$$\int_{B_{R/4}(x_0)} |\tilde{\nabla} u_{\delta}|^{p+1} \, \mathrm{d}x + \int_{B_{R/4}(x_0)} |\tilde{\nabla} u_{\delta}| \, |\partial_n u_{\delta}|^q \, dx \le c(R) \, .$$

Since by Lemma 2.1 we already know $u_{\delta} \to u$ as $\epsilon \to 0$ in $W_p^1(B_R(x_0); \mathbb{R}^N)$, the first claim of Theorem 1.1 follows.

The second statement is obtained by a similar calculation replacing the function v by the difference quotient of u in the n^{th} coordinate direction. We also refer to the last section where this calculation is carried out for the scalar case (avoiding the difference-quotient technique).

The statement of the corollary is an immediate consequence of Sobolev's embedding theorem.

3 Higher integrability in the scalar case: proof of the first part of Theorem 1.2

We will use the notation introduced in Section 2. From [LU] (see the discussion in Remark 2.3 of [BF4]) we deduce that u_{δ} is in the space $W_{t,\text{loc}}^2(B_R(x_0))$ for any $t < \infty$, therefore we may test the differentiated Euler equation valid for u_{δ} with the function $\eta^2 \partial_{\gamma} u_{\delta} \Gamma_{\delta}^{\beta/2}$, where $\beta \geq 0$, $\eta \in C_0^{\infty}(B_R(x_0))$ and γ runs from 1 to n-1. Since we consider the scalar case, it is easy to check that (from now on summation w.r.t. γ from 1 to n-1)

$$0 \leq \int_{B_R(x_0)} D^2 f_{\delta}(\nabla u_{\delta}) (\partial_{\gamma} \nabla u_{\delta}, \eta^2 \partial_{\gamma} u_{\delta} \nabla \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}}) \, \mathrm{d}x \, .$$

In fact, this is the only place where N = 1 is needed. Thus (2.1) is replaced by the inequality

$$\begin{split} \int_{B_R(x_0)} \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \eta^2 D^2 f_{\delta}(\nabla u_{\delta}) (\partial_{\gamma} \nabla u_{\delta}, \partial_{\gamma} \nabla u_{\delta}) \, \mathrm{d}x \\ &\leq c \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} D^2 f_{\delta}(\nabla u_{\delta}) (\nabla \eta \partial_{\gamma} u_{\delta}, \nabla \eta \partial_{\gamma} u_{\delta}) \, \mathrm{d}x \end{split}$$

which means that we get (2.2) with factor $\tilde{\Gamma}_{\delta}^{\beta/2}$ on both sides:

$$\begin{split} \delta \int_{B_R(x_0)} \tilde{\Gamma}^{\frac{\beta}{2}} \eta^2 \tilde{\Gamma}^{\frac{q-2}{2}}_{\delta} |\tilde{\nabla}^2 u_{\delta}|^2 dx + \int_{B_R(x_0)} \tilde{\Gamma}^{\frac{\beta}{2}} \eta^2 \tilde{\Gamma}^{\frac{p-2}{2}}_{\delta} |\tilde{\nabla}^2 u_{\delta}|^2 dx \\ &+ \int_{B_R(x_0)} \tilde{\Gamma}^{\frac{\beta}{2}} \eta^2 \Gamma^{\frac{q-2}{2}}_{n,\delta} |\partial_n \tilde{\nabla} u_{\delta}|^2 dx \\ \leq c \left[\delta \int_{B_R(x_0)} \tilde{\Gamma}^{\frac{\beta}{2}} |\nabla \eta|^2 \tilde{\Gamma}^{\frac{q-2}{2}}_{\delta} |\tilde{\nabla} u_{\delta}|^2 dx + \int_{B_R(x_0)} \tilde{\Gamma}^{\frac{\beta}{2}} |\nabla \eta|^2 \Gamma^{\frac{p-2}{2}}_{\delta} |\tilde{\nabla} u_{\delta}|^2 dx \\ &+ \int_{B_R(x_0)} \tilde{\Gamma}^{\frac{\beta}{2}} |\nabla \eta|^2 \Gamma^{\frac{q-2}{2}}_{n,\delta} |\tilde{\nabla} u_{\delta}|^2 dx \right]. \end{split}$$

$$(2.2\beta)$$

We apply (2.4) with $\varphi := \eta^2 u_{\delta} \tilde{\Gamma}_{\delta}^{(1+\alpha)/2}$ as admissible test function, $\alpha \ge 0$ being some number specified below. As a result we get (2.5) with |v| replaced by $\tilde{\Gamma}_{\delta}^{(1+\alpha)/2}$:

$$\int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) \cdot \nabla u_{\delta} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} dx = -2 \int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) \cdot \nabla \eta u_{\delta} \eta \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} dx - \int_{B_R(x_0)} Df_{\delta}(\nabla u_{\delta}) \cdot u_{\delta} \nabla \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \eta^2 dx. \quad (2.5_{\alpha})$$

We observe (compare (2.8))

$$\begin{aligned} \text{l.h.s.of} (2.5_{\alpha}) &\geq c \left[\delta \int_{B_{R}(x_{0})} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \eta^{2} |\tilde{\nabla}u_{\delta}|^{2} \,\mathrm{d}x + \int_{B_{R}(x_{0})} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \eta^{2} |\tilde{\nabla}u_{\delta}|^{2} \,\mathrm{d}x \\ &+ \int_{B_{R}(x_{0})} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \Gamma_{n,\delta}^{\frac{q-2}{2}} \eta^{2} |\partial_{n}u_{\delta}|^{2} \,\mathrm{d}x \right]. \end{aligned}$$
(3.1)

Next we estimate the first term on the r.h.s. of (2.5_{α}) (compare the inequality stated after (2.10))

$$2\int_{B_{R}(x_{0})} Df_{\delta}(\nabla u_{\delta}) \cdot \nabla \eta u_{\delta} \eta \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} dx \bigg|$$

$$\leq c \|\nabla \eta\|_{\infty} \left[\delta \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}| dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}| dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}| dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \tilde{\Gamma}_{\delta}^{\frac{q-1}{2}} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \Gamma_{n,\delta}^{\frac{q-1}{2}} dx \bigg]$$

$$\leq c \|\nabla \eta\|_{\infty} \left[\delta \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+1+\alpha}{2}} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha}{2}} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\alpha-1}{2}} dx + \tau \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha+1}{2}} dx + c(\tau) \delta \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\alpha-1}{2}} dx + \tau \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha}{2}} dx + c(\tau) \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} dx \bigg], \quad (3.2)$$

where $0 < \tau < 1$ is arbitrary. In order to handle the second term on the r.h.s. of (2.5_{α}) we recall (2.11) and get

$$\begin{aligned} \left| Df_{\delta}(\nabla u_{\delta}) \cdot \nabla \tilde{\Gamma}_{\delta}^{\frac{\alpha+1}{2}} \right| &\leq c \frac{\alpha+1}{2} \tilde{\Gamma}_{\delta}^{\frac{\alpha-1}{2}} \left[\delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}| |\tilde{\nabla} \tilde{\Gamma}_{\delta}| + \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}| |\tilde{\nabla} \tilde{\Gamma}_{\delta}| + \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}| |\partial_{n} \tilde{\Gamma}_{\delta}| \right] \\ &\leq c(\alpha) \left[\delta \tilde{\Gamma}_{\delta}^{\frac{q+\alpha-1}{2}} |\tilde{\nabla}^{2} u_{\delta}| + \tilde{\Gamma}_{\delta}^{\frac{p+\alpha-1}{2}} |\tilde{\nabla}^{2} u_{\delta}| + \tilde{\Gamma}_{\delta}^{\frac{\alpha}{2}} \Gamma_{n,\delta}^{\frac{q-1}{2}} |\partial_{n} \tilde{\nabla} u_{\delta}| \right]. \end{aligned}$$
(3.3)

We have

$$\begin{split} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha-1}{2}} |\tilde{\nabla}^2 u_{\delta}| &\leq \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}^2 u_{\delta}|^2 + \tilde{\Gamma}_{\delta}^{-\frac{\beta}{2}+\frac{p+2\alpha}{2}},\\ \delta \tilde{\Gamma}_{\delta}^{\frac{q+\alpha-1}{2}} |\tilde{\nabla}^2 u_{\delta}| &\leq \delta \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}^2 u_{\delta}|^2 + \delta \tilde{\Gamma}_{\delta}^{-\frac{\beta}{2}+\frac{q+2\alpha}{2}} \end{split}$$

as well as

$$\begin{split} \tilde{\Gamma}_{\delta}^{\frac{\alpha}{2}} \Gamma_{n,\delta}^{\frac{q-1}{2}} |\partial_n \tilde{\nabla} u_{\delta}| &= \tilde{\Gamma}_{\delta}^{\frac{\beta}{4}} \Gamma_{n\delta}^{\frac{q-2}{4}} |\partial_n \tilde{\nabla} u_{\delta}| \tilde{\Gamma}_{\delta}^{-\frac{\beta}{4} + \frac{\alpha}{2}} \Gamma_{n,\delta}^{\frac{q}{4}} \\ &\leq \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_n \tilde{\nabla} u_{\delta}|^2 + \Gamma_{n,\delta}^{\frac{q}{2}} \tilde{\Gamma}_{\delta}^{\frac{2\alpha-\beta}{2}} \,. \end{split}$$

We insert these inequalities into (3.3) and get

$$\begin{split} &\int_{B_{R}(x_{0})} Df_{\delta}(\nabla u_{\delta}) \cdot \nabla \Gamma_{\delta}^{\frac{\alpha+1}{2}} u_{\delta} \eta^{2} \, \mathrm{d}x \bigg| \\ &\leq c(\alpha) \bigg[\delta \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}^{2} u_{\delta}|^{2} \, \mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}^{2} u_{\delta}|^{2} \, \mathrm{d}x \\ &+ \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{\beta}{2}} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} \tilde{\nabla} u_{\delta}|^{2} \, \mathrm{d}x \bigg] \\ &+ c(\alpha) \bigg[\delta \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q+2\alpha-\beta}{2}} \, \mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p+2\alpha-\beta}{2}} \, \mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{q+2}{2}} \tilde{\Gamma}_{\delta}^{\frac{2\alpha-\beta}{2}} \, \mathrm{d}x \bigg] \\ &\leq c(\alpha) \|\nabla \eta\|_{\infty}^{2} \bigg[\delta \int_{\mathrm{spt}\,\eta} \tilde{\Gamma}_{\delta}^{\frac{q+2\alpha}{2}} \, \mathrm{d}x + \int_{\mathrm{spt}\,\eta} \tilde{\Gamma}_{\delta}^{\frac{p+2\alpha}{2}} \, \mathrm{d}x + \int_{\mathrm{spt}\,\eta} \tilde{\Gamma}_{\delta}^{\frac{\beta+2}{2}} \Gamma_{n,\delta}^{\frac{q-2}{2}} \, \mathrm{d}x \bigg] \\ &+ c(\alpha) \bigg[\delta \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q+2\alpha-\beta}{2}} \, \mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p+2\alpha-\beta}{2}} \, \mathrm{d}x \\ &+ \int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{q-2\alpha-\beta}{2}} \, \mathrm{d}x \bigg], \end{split}$$
(3.4)

where the last inequality follows from (2.2_{β}) . In a next step we combine (3.1), (3.2) and (3.4) with the result that

$$\begin{split} \delta \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q+1+\alpha}{2}} dx + \int_{B_{R}(x_{0})} \tilde{\Gamma}_{\delta}^{\frac{p+1+\alpha}{2}} dx + \int_{B_{R}(x_{0})} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \Gamma_{n,\delta}^{\frac{q}{2}} \eta^{2} dx \\ \leq c(\alpha) \bigg[\tau \delta \| \nabla \eta \|_{\infty} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+1+\alpha}{2}} dx + c(\tau) \delta \| \nabla \eta \|_{\infty} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\alpha-1}{2}} dx + \tau \| \nabla \eta \|_{\infty} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha+1}{2}} dx \\ + c(\tau) \| \nabla \eta \|_{\infty} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha-1}{2}} dx + \tau \| \nabla \eta \|_{\infty} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} \Gamma_{n,\delta}^{\frac{q}{2}} dx + c(\tau) \| \nabla \eta \|_{\infty} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha}{2}} dx \\ & + \| \nabla \eta \|_{\infty}^{2} \delta \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\beta}{2}} dx + \| \nabla \eta \|_{\infty}^{2} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha}{2}} dx + \| \nabla \eta \|_{\infty}^{2} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha}{2}} dx + \| \nabla \eta \|_{\infty}^{2} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\alpha}{2}} dx \\ & + \| \nabla \eta \|_{\infty}^{2} \delta \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\beta}{2}} dx + \| \nabla \eta \|_{\infty}^{2} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+\alpha}{2}} dx + \| \nabla \eta \|_{\infty}^{2} \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+\alpha}{2}} dx \\ & + \delta \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+2\alpha-\beta}{2}} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p+2\alpha-\beta}{2}} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{q+2\alpha-\beta}{2}} dx \\ & =: c(\alpha) \sum_{l=1}^{12} T_{l}. \end{split}$$

$$(3.5)$$

We recall that from the proof of Theorem 1.1 we already know that the quantities

$$\tilde{\Gamma}^{\frac{p+1}{2}}_{\delta}, \quad \tilde{\Gamma}^{\frac{1}{2}}_{\delta}\Gamma^{\frac{q}{2}}_{n,\delta}$$

are uniformly bounded in the space $L^1_{loc}(B_R(x_0))$, and (2.15) and the uniform boundedness of the r.h.s. of (2.16) immediately gives the same result for $\delta \tilde{\Gamma}^{(q+1)/2}_{\delta}$. We now define

$$\alpha_0 = \beta_0 = 0$$
, $\alpha_i = \frac{1}{2} + \alpha_{i-1}$, $\beta_i = \alpha_{i-1}$, $i \in \mathbb{N}$,

i.e. $\alpha_i = i/2$, $\beta_i = (i-1)/2$. Then we suppose that for a suitable constant $c(\rho)$ (also depending on i)

$$\int_{B_{\rho}(x_{0})} \delta \tilde{\Gamma}_{\delta}^{\frac{q+1+\alpha_{i-1}}{2}} dx + \int_{B_{\rho}(x_{0})} \left[\tilde{\Gamma}_{\delta}^{\frac{p+1+\alpha_{i-1}}{2}} + \tilde{\Gamma}_{\delta}^{\frac{1+\alpha_{i-1}}{2}} \Gamma_{n,\delta}^{\frac{q}{2}} \right] dx \le c(\rho)$$
(3.6)

for any $\rho < R$, and we like to prove (3.6) with α_{i-1} being replaced by α_i . (Note that by the remarks after (3.5) we already know the validity of (3.6) for i = 1.)

To do so we choose s < t < R and let $\eta \in C_0^{\infty}(B_t(x_0))$ satisfy $\eta \equiv 1$ on $B_s(x_0)$, $|\nabla \eta| \le c/(t-s)$. We then apply (3.5) with $\alpha = \alpha_i$, $\beta = \beta_i$. The terms T_1 , T_3 , T_5 can be handled easily (see Section 2) by requiring that

$$au \| \nabla \eta \|_{\infty} c(\alpha_i) = \frac{1}{2}.$$

Note that with this choice the constants $c(\tau)$ occurring in (3.5) are bounded from above by $c(t-s)^{-\kappa}$ with some suitable power $-\kappa$. For T_2 we observe that clearly

$$\tilde{\Gamma}_{\delta}^{\frac{q+\alpha_i-1}{2}} \leq \tilde{\Gamma}_{\delta}^{\frac{q+\alpha_{i-1}+1}{2}},$$

hence T_2 is bounded by a local constant on account of (3.6). The same is true for T_4 and T_6 . Since $q + \beta_i = q + \alpha_{i-1} < q + \alpha_{i-1} + 1$, there is no problem with T_7 , and $p + \beta_i$ $shows a nice behaviour of <math>T_8$, i.e. we just replace $\delta \int_{B_t(x_0)} \tilde{\Gamma}_{\delta}^{(q+\beta_i)/2} dx$ and $\int_{B_t(x_0)} \tilde{\Gamma}_{\delta}^{(p+\beta_i)/2} dx$ by the quantities $\delta \int_{B_t(x_0)} \tilde{\Gamma}_{\delta}^{(q+1+\alpha_{i-1})/2} dx$ and $\int_{B_t(x_0)} \tilde{\Gamma}_{\delta}^{(p+1+\alpha_{i-1})/2} dx$, respectively. In order to control T_9 we estimate

$$\begin{split} \tilde{\Gamma}_{\delta}^{\frac{\beta_{i}+2}{2}} \Gamma_{n,\delta}^{\frac{q-2}{2}} &= \Gamma_{n,\delta}^{\frac{q-2}{2}} \tilde{\Gamma}_{\delta}^{\frac{q-2}{q}\frac{1+\alpha_{i-1}}{2}} \tilde{\Gamma}_{\delta}^{\frac{\beta_{i}+2}{2}-\frac{q-2}{q}\frac{1+\alpha_{i-1}}{2}} \\ &\leq \Gamma_{n,\delta}^{\frac{q}{2}} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha_{i-1}}{2}} + \tilde{\Gamma}_{\delta}^{\frac{q}{2}\left[\frac{\beta_{i}+2}{2}-\frac{q-2}{q}\frac{1+\alpha_{i-1}}{2}\right]} \end{split}$$

Obviously

$$\frac{q}{2} \Big[\frac{\beta_i + 2}{2} - \frac{q - 2}{q} \frac{1 + \alpha_{i-1}}{2} \Big] \le \frac{p + 1 + \alpha_{i-1}}{2} \Leftrightarrow \frac{q}{2} \Big[\frac{q + 2 + 2\alpha_{i-1}}{2q} \Big] \le \frac{p + 1 + \alpha_{i-1}}{2},$$

and the latter inequality holds on account of our requirement $q \leq 2p$. The calculation further shows that T_9 is bounded due to (3.6).

We further have $q + 2\alpha_i - \beta_i = q + 1 + \alpha_{i-1}$, $p + 2\alpha_i - \beta_i = p + 1 + \alpha_{i-1}$, hence T_{10}, T_{11} are bounded by (3.6).

Quoting (3.6) for a last time, we also get a bound for $\int_{B_t(x_0)} \Gamma_{n,\delta}^{q/2} \tilde{\Gamma}_{\delta}^{(2\alpha_i - \beta_i)/2} dx$. Collecting these estimates and going back to (3.5) we get

$$\int_{B_s(x_0)} \left[\delta \tilde{\Gamma}_{\delta}^{\frac{q+1+\alpha_i}{2}} + \tilde{\Gamma}_{\delta}^{\frac{p+1+\alpha_i}{2}} + \Gamma_{n,\delta}^{\frac{q}{2}} \tilde{\Gamma}_{\delta}^{\frac{1+\alpha_i}{2}} \right] \mathrm{d}x \le \frac{1}{2} \int_{B_t(x_0)} [\dots] \,\mathrm{d}x + A(t-s)^{-\gamma} + B$$

being valid for $0 < s < t \le \rho < R$, where A and B are local constants depending in particular on ρ and the bounds for the quantity [...], when α_i is replaced by α_{i-1} , but being independent of $\delta = \delta(\epsilon)$. As in Section 2 the above inequality immediately implies the desired version of (3.6). Since $\alpha_i \to \infty$ as $i \to \infty$, we have shown that

$$\int_{B_{\rho}(x_0)} \tilde{\Gamma}_{\delta}^{\frac{t}{2}} \mathrm{d}x + \int_{B_{\rho}(x_0)} \tilde{\Gamma}_{\delta}^{\frac{t}{2}} \Gamma_{n,\delta}^{\frac{q}{2}} \mathrm{d}x \le c(t,\rho)$$
(3.7)

for any t > 1 and all radii $\rho < R$, where the constant is independent of $\delta(\epsilon)$. Using $u_{\delta} \to u$ in $W_p^1(B_R(x_0))$ as $\epsilon \to 0$ it is immediate that $\tilde{\nabla} u \in L^s_{loc}(\Omega; \mathbb{R}^{n-1})$ for any $s < \infty$, thus $\nabla u \in L^q_{loc}(\Omega; \mathbb{R}^n)$.

4 Improvement of the initial higher integrability in the scalar case: proof of the second part of Theorem 1.2

Using the method of iteration introduced in the previous section and also using (3.7) we will show that

$$\int_{B_{\rho}(x_0)} |\partial_n u_{\delta}|^t \, dx \le c(t,\rho) < \infty \tag{4.1}$$

for any $t < \infty$ and all $\rho < R$. Let $\beta \ge 0$ and $\eta \in C_0^{\infty}(B_R(x_0))$. We have

$$0 = \int_{B_R(x_0)} D^2 f_{\delta}(\nabla u_{\delta}) \left(\partial_n \nabla u_{\delta}, \nabla [\eta^2 \partial_n u_{\delta} \Gamma_{n,\delta}^{\frac{\beta}{2}}] \right) \mathrm{d}x \,,$$

and since we are in the scalar case this implies

$$\int_{B_R(x_0)} D^2 f_{\delta}(\nabla u_{\delta}) (\partial_n \nabla u_{\delta}, \partial_n \nabla u_{\delta}) \eta^2 \Gamma_{n,\delta}^{\frac{\beta}{2}} dx$$

$$\leq c \int_{B_R(x_0)} D^2 f_{\delta}(\nabla u_{\delta}) (\nabla \eta^2, \nabla \eta^2) |\partial_n u_{\delta}|^2 \Gamma_{n,\delta}^{\frac{\beta}{2}} dx.$$

Here, as before, we used the inequality of Cauchy-Schwarz and Young's inequality. The structure of $D^2 f_{\delta}$ gives the estimate

$$\delta \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2}} |\partial_n \tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x + \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2}} |\partial_n \tilde{\nabla} u_{\delta}|^2 \, \mathrm{d}x + \int_{B_R(x_0)} \eta^2 \Gamma_{n,\delta}^{\frac{q-2}{2} + \frac{\beta}{2}} |\partial_n \partial_n u_{\delta}|^2 \, \mathrm{d}x \leq c \|\nabla \eta\|_{\infty}^2 \left[\int_{\operatorname{spt} \eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2} + 1} \, \mathrm{d}x + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2} + 1} \, \mathrm{d}x + \int_{\operatorname{spt} \eta} \Gamma_{n,\delta}^{\frac{q+\beta}{2}} \, \mathrm{d}x \right].$$
(4.2)

Next we return to (2.4) and choose $\varphi = \eta^2 u_{\delta} \Gamma_{n,\delta}^{(1+\alpha)/2}$, $\alpha \ge 0$. We get

$$\int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} Df_{\delta}(\nabla u_{\delta}) \cdot \nabla u_{\delta} \, \mathrm{d}x$$

$$= -2 \int_{B_{R}(x_{0})} \eta \nabla \eta \cdot Df_{\delta}(\nabla u_{\delta}) u_{\delta} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \, \mathrm{d}x$$

$$-(1+\alpha) \int_{B_{R}(x_{0})} u_{\delta} \eta^{2} Df_{\delta}(\nabla u_{\delta}) \cdot \nabla(\partial_{n} u_{\delta}) \Gamma_{n,\delta}^{\frac{\alpha-1}{2}} \partial_{n} u_{\delta} \, \mathrm{d}x \,.$$

$$(4.3)$$

From (2.6) we deduce

$$\begin{aligned} \text{l.h.s.of} (4.3) &\geq c \left[\int_{B_R(x_0)} \delta \eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \, \mathrm{d}x + \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}|^2 \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \, \mathrm{d}x \right. \\ &+ \int_{B_R(x_0)} \eta^2 \Gamma_{n,\delta}^{\frac{q-2}{2} + \frac{1+\alpha}{2}} |\partial_n u_{\delta}|^2 \, \mathrm{d}x \right], \end{aligned}$$

$$(4.4)$$

moreover, (2.7) shows

 $|1^{st}$ term on the r.h.s. of (4.3)|

$$\leq c \left[\int_{B_{R}(x_{0})} \eta |\nabla \eta| \delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}u_{\delta}| \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx + \int_{B_{R}(x_{0})} \eta |\nabla \eta| \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}u_{\delta}| \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx \right]$$

$$+ \int_{B_{R}(x_{0})} \eta |\nabla \eta| \Gamma_{n,\delta}^{\frac{q-2}{2} + \frac{1+\alpha}{2}} |\partial_{n}u_{\delta}| dx \right]$$

$$\leq c \left[\tau \int_{B_{R}(x_{0})} \delta \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}u_{\delta}|^{2} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx + \frac{1}{\tau} \int_{B_{R}(x_{0})} \delta |\nabla \eta|^{2} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx \right]$$

$$+ \tau \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}u_{\delta}|^{2} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx + \frac{1}{\tau} \int_{B_{R}(x_{0})} |\nabla \eta|^{2} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx$$

$$+ \tau \int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n}u_{\delta}|^{2} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} dx + \frac{1}{\tau} \int_{B_{R}(x_{0})} |\nabla \eta|^{2} \Gamma_{n,\delta}^{\frac{q-2}{2}} + \frac{1+\alpha}{2} dx$$

for $\tau \in (0, 1)$. If we use this estimate and choose τ small enough, then the τ -terms can be absorbed in the l.h.s., more precisely, they can be absorbed in the terms giving the lower bound stated in (4.4). This implies

$$\begin{split} \int_{B_{R}(x_{0})} \delta\eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla}u_{\delta}|^{2} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla}u_{\delta}|^{2} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{q-1+\alpha}{2}} |\partial_{n}u_{\delta}|^{2} \mathrm{d}x \\ &\leq c \|\nabla\eta\|_{\infty}^{2} \left[\int_{\operatorname{spt}\eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \mathrm{d}x + \int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \mathrm{d}x + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q-1+\alpha}{2}} \mathrm{d}x + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q-1+\alpha}{2}} \mathrm{d}x \right] \\ &+ c |2^{nd} \text{ term on the r.h.s. of (4.3)}|. \end{split}$$

$$(4.5)$$

To estimate the second term on the r.h.s. of (4.3), we observe that (compare (2.11))

$$|Df_{\delta}(\nabla u_{\delta}) \cdot \nabla(\partial_{n} u_{\delta})| \leq c \Big[\delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} |\tilde{\nabla} u_{\delta}| |\partial_{n} \tilde{\nabla} u_{\delta}| + \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} |\tilde{\nabla} u_{\delta}| |\partial_{n} \tilde{\nabla} u_{\delta}| + \Gamma_{n,\delta}^{\frac{q-2}{2}} |\partial_{n} u_{\delta}| |\partial_{n} \partial_{n} u_{\delta}|\Big].$$

Thus (using (4.2))

 $|2^{nd}$ term on the r.h.s. of (4.3)|

$$\leq c(\alpha) \left[\int_{B_R(x_0)} \delta\eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-1}{2}} |\partial_n \tilde{\nabla} u_{\delta}| \Gamma_{n,\delta}^{\frac{\alpha}{2}} dx + \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-1}{2}} |\partial_n \tilde{\nabla} u_{\delta}| \Gamma_{n,\delta}^{\frac{\alpha}{2}} dx \right. \\ \left. + \int_{B_R(x_0)} \eta^2 \Gamma_{n,\delta}^{\frac{q-1}{2}} |\partial_n \partial_n u_{\delta}| \Gamma_{n,\delta}^{\frac{\alpha}{2}} dx \right] \\ \leq c(\alpha) \left[\int_{B_R(x_0)} \delta\eta^2 \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2}} |\partial_n \tilde{\nabla} u_{\delta}|^2 dx + \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{\delta}^{\frac{\beta}{2}} |\partial_n \tilde{\nabla} u_{\delta}|^2 dx \right. \\ \left. + \int_{B_R(x_0)} \eta^2 \Gamma_{n,\delta}^{\frac{q-2}{2} + \frac{\beta}{2}} |\partial_n \partial_n u_{\delta}|^2 dx \right. \\ \left. + \int_{B_R(x_0)} \delta\eta^2 \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{2\alpha-\beta}{2}} dx + \int_{B_R(x_0)} \eta^2 \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \Gamma_{n,\delta}^{\frac{2\alpha-\beta}{2}} dx + \int_{B_R(x_0)} \eta^2 \Gamma_{n,\delta}^{\frac{q+2}{2}} \Gamma_{n,\delta}^{\frac{q+2}{2}} dx \right] \\ \leq c(\alpha) ||\nabla \eta||_{\infty}^2 \left[\int_{\operatorname{spt} \eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2} + 1} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{n,\delta}^{\frac{\beta}{2} + 1} dx + \int_{\operatorname{spt} \eta} \Gamma_{n,\delta}^{\frac{q+2\alpha-\beta}{2}} dx \right] \\ \left. + c(\alpha) \left[\int_{\operatorname{spt} \eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{2\alpha-\beta}{2}} dx + \int_{\operatorname{spt} \eta} \tilde{\Gamma}_{\delta}^{\frac{p-2\alpha-\beta}{2}} dx + \int_{\operatorname{spt} \eta} \Gamma_{n,\delta}^{\frac{q+2\alpha-\beta}{2}} dx \right].$$

We insert this estimate into (4.5) observing at the same time that quantities like $\tilde{\Gamma}_{\delta}^{(q-2)/2} |\tilde{\nabla}u|^2$ occuring on the l.h.s. of (4.5) can be replaced by $\tilde{\Gamma}_{\delta}^{q/2}$ since the resulting difference already appears on the r.h.s. of (4.5), therefore we get:

$$\begin{split} &\int_{B_{R}(x_{0})} \delta\eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \,\mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha}{2}} \,\mathrm{d}x + \int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{q+1+\alpha}{2}} \,\mathrm{d}x \\ &\leq c(\alpha) \|\nabla\eta\|_{\infty}^{2} \left[\int_{\operatorname{spt}\eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \left[\Gamma_{n,\delta}^{\frac{1+\alpha}{2}} + \Gamma_{n,\delta}^{\frac{2+\beta}{2}} \right] \,\mathrm{d}x + \int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \left[\Gamma_{n,\delta}^{\frac{1+\alpha}{2}} + \Gamma_{n,\delta}^{\frac{2+\beta}{2}} \right] \,\mathrm{d}x \\ &+ \int_{\operatorname{spt}\eta} \left[\Gamma_{n,\delta}^{\frac{q-1+\alpha}{2}} + \Gamma_{n,\delta}^{\frac{q+\beta}{2}} \right] \,\mathrm{d}x \right] \\ &+ c(\alpha) \left[\int_{\operatorname{spt}\eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{2\alpha-\beta}{2}} \,\mathrm{d}x + \int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \Gamma_{n,\delta}^{\frac{2\alpha-\beta}{2}} \,\mathrm{d}x + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q+2\alpha-\beta}{2}} \,\mathrm{d}x \right]. \end{split}$$
(4.6)

Now we make use of this inequality with the choices $\alpha_0 = 0$, $\beta_0 = 0$, $\alpha_i = \alpha_{i-1} + 1/2$, $\beta_i = \alpha_{i-1}$, $i \ge 1$, in particular we have $1 + \beta_i/2 = \frac{1}{2}(\alpha_i + \frac{3}{2})$, and obtain for $i \ge 1$

$$\int_{B_{R}(x_{0})} \delta\eta^{2} \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha_{i}}{2}} dx + \int_{B_{R}(x_{0})} \eta^{2} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha_{i}}{2}} dx + \int_{B_{R}(x_{0})} \eta^{2} \Gamma_{n,\delta}^{\frac{q+1+\alpha_{i}}{2}} dx
\leq c(i) \|\nabla\eta\|_{\infty}^{2} \left[\int_{\operatorname{spt}\eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{\alpha_{i}+3/2}{2}} + \int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{p-2}{2}} \Gamma_{n,\delta}^{\frac{\alpha_{i}+3/2}{2}} + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q+\beta_{i}}{2}} dx \right]
+ c(i) \left[\int_{\operatorname{spt}\eta} \delta \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{2\alpha_{i}-\beta_{i}}{2}} dx + \int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \Gamma_{n,\delta}^{\frac{2\alpha_{i}-\beta_{i}}{2}} dx + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q+2\alpha_{i}-\beta_{i}}{2}} dx \right]. \quad (4.6_{i})$$

We claim that we have for all $i \in \mathbb{N}_0$ and for any radius $\rho < R$

$$\int_{B_{\rho}(x_0)} \delta \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha_i}{2}} \,\mathrm{d}x + \int_{B_{\rho}(x_0)} \tilde{\Gamma}_{\delta}^{\frac{p}{2}} \Gamma_{n,\delta}^{\frac{1+\alpha_i}{2}} \,\mathrm{d}x + \int_{B_{\rho}(x_0)} \Gamma_{n,\delta}^{\frac{q+1+\alpha_i}{2}} \,\mathrm{d}x \le c(i,\rho) < \infty \,. \tag{4.7}$$

In fact, for i = 0 this is an immediate consequence of (4.6) with $\alpha = \beta = 0$ and the estimate (3.7) from which we get finiteness of the r.h.s. of (4.6) together with a local bound independent of δ .

Suppose that (4.7_{i-1}) , $i \ge 1$, is true. We look at the r.h.s. of (4.6_i) and observe that by assumption

$$\int_{B_{\rho}(x_{0})} \Gamma_{n,\delta}^{\frac{q+1+\alpha_{i-1}}{2}} \, \mathrm{d}x \le c(i,\rho) \,, \quad \text{i.e.} \quad \int_{B_{\rho}(x_{0})} \Gamma_{n,\delta}^{\frac{q+\alpha_{i}+1/2}{2}} \, \mathrm{d}x \le c(i,\rho) \,.$$

Using Young's inequality with s very large we get

$$\int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{q-2}{2}} \Gamma_{n,\delta}^{\frac{\alpha_i+3/2}{2}} \, \mathrm{d}x \le c \left[\int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{s\frac{q-2}{2}} \, \mathrm{d}x + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{s}{s-1}\frac{\alpha_i+3/2}{2}} \, \mathrm{d}x \right]$$

and obviously the exponent $\frac{s}{s-1} \frac{\alpha_i + 3/2}{2}$ is below $(q + \frac{1}{2} + \alpha_i)/2$. In the same way (recall (3.7)) we can bound the quantity $\int_{\text{spt }\eta} \tilde{\Gamma}_{\delta}^{(p-2)/2} \Gamma_{n,\delta}^{(\alpha_i+3/2)/2} \, dx$. The finiteness of $\int_{\text{spt }\eta} \Gamma_{n,\delta}^{(q+\beta_i)/2} \, dx$ follows from (4.7_{*i*-1}). We have $2\alpha_i - \beta_i = \alpha_{i-1} + 1$ and $\int_{B_{\rho}(x_0)} \Gamma_{n,\delta}^{(q+1+\alpha_{i-1})/2} \, dx \leq c(i,\rho)$, hence

$$\int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{\frac{q}{2}} \Gamma_{n,\delta}^{\frac{2\alpha_i - \beta_i}{2}} \le c \left[\int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{s \cdot \frac{q}{2}} \, \mathrm{d}x + \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{s}{s-1} \frac{\alpha_{i-1}+1}{2}} \, \mathrm{d}x \right],$$

and $\frac{s}{s-1}(\alpha_{i-1}+1)\frac{1}{2} < (q+1+\alpha_{i-1})/2$ for sufficiently large s. For $\int_{\operatorname{spt}\eta} \tilde{\Gamma}_{\delta}^{p/2} \Gamma_{n,\delta}^{(2\alpha_i-\beta_i)/2} dx$ we argue in the same way. Finally

$$\int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q+2\alpha_i-\beta_i}{2}} \, \mathrm{d}x = \int_{\operatorname{spt}\eta} \Gamma_{n,\delta}^{\frac{q+\alpha_{i-1}+1}{2}} \, \mathrm{d}x$$

stays bounded by (4.7_{i-1}) . Thus we have proved that all of the quantities on the r.h.s. of (4.6_i) are bounded in an appropriate way which gives (4.7_i) , in particular we have that

$$\int_{B_{\rho}(x_0)} \Gamma_{n,\delta}^{\frac{q+1+\alpha_i}{2}} \, \mathrm{d}x \le c(i,\rho) < \infty$$

for any i and any $\rho < R$. Since $\alpha_i \to \infty$ as $i \to \infty$, the claim follows since now we know

$$\|u_{\delta}\|_{W^{1}_{t}(B_{\rho}(x_{0}))} \leq c(\rho, t)$$
(4.8)

for all $t < \infty, \rho < R$.

Having established (4.8), the proof of $C^{1,\alpha}$ -regularity can be obtained following for example [Bi], proof of Theorem 5.22, or [BF4] Lemma 2.9, where it is shown that from (4.8) we can deduce $\|\nabla u_{\delta}\|_{L^{\infty}(B_{\rho}(x_0))} \leq c(\rho) < \infty$. Uniform Hölder continuity of ∇u_{δ} then follows as outlined in [BF4], end of Section 2.1. Alternatively we may quote [LU], Chap.4, Sec.6, or [Ma1], Theorem D, as references for the step from Lipschitz regularity to Hölder continuity of the gradient.

References

- [AF] Acerbi, E., Fusco, N., Partial regularity under anisotropic (p,q) growth conditions. J. Diff. Equ. 107, no. 1 (1994), 46–67.
- [Bi] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003.
- [BF1] Bildhauer, M., Fuchs, M., Partial regularity for variational integrals with (s, μ, q) -growth. Calc. Var. 13 (2001), 537–560.
- [BF2] Bildhauer, M., Fuchs, M., Twodimensional anisotropic variational problems. Calc. Var. 16 (2003), 177-186.
- [BF3] Bildhauer, M., Fuchs, M., Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymp. Anal. 32 (2002), 293-315.
- [BF4] Bildhauer, M., Fuchs, M., $C^{1,\alpha}$ -solutions to non-autonomous anisotropic variational problems. To appear in Calc. Variations.
- [BF5] Bildhauer, M., Fuchs, M., Twodimensional anisotropic variational problems. Calc. Var. 16 (2003), 177-186.
- [BFM] Bildhauer, M., Fuchs, M., Mingione, G., A priori gradient bounds and local $C^{1,\alpha}$ estimates for (double) obstacle problems under nonstandard growth conditions. Z. Anal. Anw. 20, no.4 (2001), 959–985.

- [Ca] Campanato, S., Hölder continuity of the solutions of some non-linear elliptic systems. Adv. Math. 48 (1983), 16–43.
- [Ch] Choe, H. J., Interior behaviour of minimizers for certain functionals with nonstandard growth. Nonlinear Analysis, Theory, Methods & Appl. 19.10 (1992), 933-945.
- [ELM1] Esposito, L., Leonetti, F., Mingione, G., Regularity results for minimizers of irregular integrals with (p,q)-growth. Forum Math. 14 (2002), 245-272.
- [ELM2] Esposito, L., Leonetti, F., Mingione, G., Regularity for minimizers of functionals with p-q growth. Nonlinear Diff. Equ. Appl. 6 (1999), 133-148.
- [FS] Fusco, Sbordone, Some remarks on the regularity of minima of anisotropic intergals. Comm. P.D.E. 18, 153–167 (1993).
- [Gi] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Studies 105, Princeton University Press, Princeton 1983.
- [Gi2] Giaquinta, M., Growth conditions and regularity, a counterexample. Manus. Math. 59 (1987), 245–248.
- [GM] Giaquinta, M., Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals. Manus. Math. 57 (1986), 55–99.
- [Ho] Hong, M.C., Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. U.M.I. (7) 6-A (1992), 91-101.
- [Ma1] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989), 267–284.
- [Ma2] Marcellini, P., Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions. J. Diff. Equ. 90 (1991), 1–30.
- [Mo] Morrey, C. B., Multiple integrals in the calculus of variations. Grundlehren der math. Wiss. in Einzeldarstellungen 130, Springer, Berlin-Heidelberg-New York 1966.
- [LU] Ladyzhenskaya, O.A., Ural'tseva, N.N., Linear and quasilinear elliptic equations. Nauka, Moskow, 1964. English translation: Academic Press, New York 1968.