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Abstract
We consider anisotropic variational integrals of (p, q)-growth and prove for the scalar case

interior C1,α-regularity of bounded local minimizers under the assumption that q ≤ 2p by
the way discussing a famous counterexample of Giaquinta. In the vector case we obtain some
higher integrability result for the gradient.

1 Introduction

Roughly speaking, an anisotropic variational integral of the type J [u] =
∫

Ω f(∇u) dx defined
for functions u: Ω → R

N on some bounded domain Ω ⊂ R
n, n ≥ 2, is characterized through a

growth condition like
a|Q|p − b ≤ f(Q) ≤ A|Q|q + B , (1.1)

where a, b, A, B denote positive constants, 1 < p < q < ∞ are given exponents, and Q is an
arbitrary matrix from R

nN . A natural space for local minimizers is the class of functions u from
W 1

p (Ω; RnN ) such that
∫

Ω′ f(∇u) dx < ∞ for each subregion Ω′ b Ω, and so one is interested in
the regularity properties of local minimizers u which means that one asks for higher integrability
of ∇u, Hölder-continuity of u or even Hölder-continuity of ∇u provided that f satisfies additional
smoothness and convexity assumptions. In general, the hope for positive results increases in the
scalar case but counterexamples of [Gi2] and (later) of [Ho] show that even for N = 1 unbounded
minimizers exist, when q is too big with respect to p.
On the contrary, there is a long list of authors investigating the different aspects of the regularity
theory, we mention (without being complete) the works of Acerbi and Fucso ([AF]), Fusco and
Sbordone ([FS]), Marcellini ([Ma2]), Choe ([Ch]) and the papers [ELM1], [ELM2] of Esposito,
Leonetti and Mingione, where the interested reader can also find further references.
Typically, in the above mentioned works either a bound of the form

q < c(n)p (1.2)

with c(n) > 1, but c(n) → 1 as n → ∞ is required, or a dimensionless restriction like

q < p + 2 (1.3)

occurs together with the assumption that u is a locally bounded function. Then, in a first step,
it is shown that actually ∇u is in the space Lq

loc(Ω; RnN ). This result in turn is used in a second
step to prove C1,α-regularity in the scalar case or in the vector case with an additional structure
condition, whereas in the general vectorial setting partial C 1,α-regularity is established. Of
course, to do so, (1.1) has to be replaced by a stronger condition: for example, one may assume
that f : R

nN → [0,∞) is of class C2 together with

λ(1 + |Q|2)
p−2

2 |Z|2 ≤ D2f(Q)(Z,Z) ≤ Λ(1 + |Q|2)
q−2

2 |Z|2 , Q, Z ∈ R
nN , (1.4)

where λ, Λ denote positive constants. Clearly (1.4) implies (1.1), moreover, the first inequality
in (1.4) shows that f is strictly convex.
In this note we have a closer look on the counterexamples mentioned above. Giaquinta’s example
works with the choice p = 2, q = 4, n ≥ 6: he considers the variational integral

J [u] =

∫

[

n−1
∑

i=1

(∂iu)2 +
1

2
(∂nu)4

]

dx ,
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for which in case n ≥ 6

u(x) :=

√

n − 4

24

x2
n

(

∑n−1
i=1 x2

i

)
1

2

is of finite energy and satisfies the Euler-Lagrange equation, i.e. u is a local J -minimizer. This
singular minimizer however is not bounded, in fact in [FS] a sharp condition is proved under
which we have to expect unbounded minimizers. This condition reads in the case p = 2 as

n − 1 >
2q

q − 2
,

in particular for q = 4 we have singular unbounded solutions for n ≥ 6. Note that the question
of unbounded solutions is strongly related to the dimension n. On the other hand, as mentioned
above, the smoothness of bounded solutions should follow from a dimensionless condition. For
instance, up to now it is not clear, if an anisotropic energy exists which satisfies a condition
like (1.4) with p = 2, q = 4 and for which locally bounded but nonsmooth local minimizers
can be constructed. Note that for the choice p = 2, q = 4 we have reached the limit case
q = p + 2 of condition (1.3), and according to [Bi], Theorem 5.4, the smoothness of locally
bounded minimizers is only known under the stronger hypothesis that q < p + 2. Here we are
going to include the limit case of (1.3) in our considerations and to weaken (in case p ≥ 2)
condition (1.3) to

2 ≤ p ≤ q ≤ 2p (1.5)

by making use of the particular properties of the functionals under consideration. More precisely
we will show that (1.5) together with some structural hypotheses imposed on f actually is strong
enough to obtain the usual smoothness properties of locally bounded solutions at least in the
scalar case.
To discuss some details, let us split an element Q of R

nN in the form Q = (Q̃,Qn), where

Q̃ := (Q1, . . . , Qn−1) , Qi ∈ R
N , i = 1, . . . , n .

Then, a typical example we have in mind is given by

f(Q) = (1 + |Q̃|2)
p
2 + (1 + |Qn|

2)
q
2 . (1.6)

In fact we could also look at any decomposition

Q = (Q(1), Q(2))

of the matrix Q into two submatrices Q(i) and consider f growing of order p with respect to
Q(1) and of order q with respect to Q(2). Another model we could discuss is

f(Q) =
n
∑

i=1

(1 + |Qi|
2)

pi
2 ,

where now p := min pi, q := max pi.
In order to keep our exposition simple, we assume from now on that f ∈ C 2(RnN ) can be written
as (compare (1.6))

f(Q) = f1(Q̃) + f2(Qn) (1.7)

with

λ(1 + |Q̃|2)
p−2

2 |Z̃|2 ≤ D2f1(Q̃)(Z̃, Z̃) ≤ Λ(1 + |Q̃|2)
p−2

2 |Z̃|2 ,

λ(1 + |Qn|
2)

q−2

2 |Zn|
2 ≤ D2f2(Qn)(Zn, Zn) ≤ Λ(1 + |Qn|

2)
q−2

2 |Zn|
2 ,

}

(1.8)
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moreover, we assume that

f1(Q̃) = f1(Q1, . . . , Qn−1) = g1(|Q1|, . . . , |Qn−1|),
f2(Qn) = g2(|Qn|)

}

(1.9)

with g2 increasing and g1 increasing with respect to each argument. The assumption (1.9)
ensures the convex hull property (see, e.g. [BF3]), i.e. the global minimizer w.r.t. Dirichlet
boundary data u0 ∈ L∞(Ω; RN ) also is a bounded function. Therefore, it is reasonable to look
at locally bounded local minimizers, where the notion of a local minimizer u means that

J [u,Ω′] :=

∫

Ω′

f(∇u) dx < ∞

together with J [u,Ω′] ≤ J [v,Ω′] for all v such that spt(u − v) ⊂ Ω′, and for all subdomains
Ω′ b Ω. Let us now state our results:

Theorem 1.1. Suppose that we are given exponents 2 ≤ p ≤ q < ∞ with (1.5). Let f satisfy
(1.7), (1.8), (1.9) and let u ∈ L∞

loc(Ω; RN ) denote a local minimizer. Then we have that ∇̃u :=

(∂1u, . . . , ∂n−1u) ∈ Lp+1
loc (Ω; R(n−1)N ). Moreover, the function ∂nu is in the class Lq+1

loc (Ω; RN ).

Corollary 1.1. Let the assumptions of Theorem 1.1 hold and assume in addition that n − 1 <
p ≤ n, q > n. Then we have that u ∈ C0,α(Ω; RN ) for some 0 < α < 1.

Remark 1.1. i) As already noted similar results can be obtained for decompositions different
from the one considered here.

ii) We may also consider functionals as discussed above with an additional x-dependence
(compare [BF4]). Note that in the situation at hand we do not have to expect a Lavrentiev
phenomenon.

iii) Modifying the proof according to [BFM], for instance, we can also handle the case of degen-
erate ellipticity, which means that the 1 is dropped in the left-hand sides of the inequalities
stated in (1.8).

iv) In [Bi], Corollary 5.6, a partial regularity result is shown provided that q < 2 + p and
q < pn/(n− 2). It would be interesting to see, whether partial regularity holds in the above
examples under a dimension free condition on the exponents. This will be investigated in
a separate paper.

v) If p < 2, then we obtain better integrability results under the weaker assumption q < p + 2
valid even for a more general class of functionals, we refer to [Bi], Theorem 5.4. Also
Theorem 1.2 and Corollary 1.2 below continue to hold for p < 2 together with q < p + 2.

Next we turn our attention to the scalar case for which we can improve the integrability of ∇u,
more precisely we have the following result:

Theorem 1.2. Let N = 1, let f satisfy (1.7) and (1.8) together with 2 ≤ p ≤ q ≤ 2p. Then, if
u ∈ L∞

loc(Ω) denotes a local minimizer, we have

i) ∇̃u ∈ Ls
loc(Ω; Rn−1) for any finite exponent s, in particular u actually is in the space

W 1
q,loc(Ω);

ii) ∇u is in the space Lt
loc(Ω; Rn) for any finite t.

Remark 1.2. i) Note that the structural condition (1.9) is not required in the scalar case.
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ii) According to [Ma2], u ∈ W 1
q,loc(Ω) implies u ∈ C1,α(Ω) if we additionaly require q < p n

n−2 .

iii) It would be desirable to extend Theorem 1.2 including Corollary 1.2 to the vector-situation
studied in Theorem 1.1. We think that this is possible if in addition to (1.9) f1 also just
depends on the modulus of the matrix, i.e. f1(Q̃) = g1(|Q̃|). We leave the details to the
reader.

Corollary 1.2. In the scalar case locally bounded local minimizers of the variational integral
J [u,Ω] =

∫

Ω f(∇u) dx are of class C1,α(Ω) for any 0 < α < 1, provided that f satisfies (1.7),
(1.8) and 2 ≤ p ≤ q ≤ 2p holds.

Remark 1.3. i) We conjecture that the bound q ≤ 2p is optimal, and so it would be inter-
esting to find bounded solutions which are not of class C 1,α for a functional J satisfying
the hypotheses of Corollary 1.2 but with q > 2p, where q can be chosen arbitrarily close to
2p.

ii) We like to remark explicitely that sufficient conditions for regularity of the form (1.2) in
general give better results for low dimensions n, for example, we mention the paper [FS]
where for n = 2, 3 the bounds on p and q are less restrictive.

iii) As mentioned above, in this note we do not touch the question of (partial) regularity in
the vector case. We just remark that for two-dimensional vectorial problems (i.e. n = 2
and N > 1) the condition q < 2p is sufficient for interior C 1,α-regularity even for a priori
unbounded local minimizers of an energy

∫

Ω f(∇u) dx with f just satisfying (1.4). We
refer the reader to [BF5].

Our paper is organized as follows: in Section 2 we introduce an appropriate local regularization,
i.e. we replace the integrand f and the minimizer u by suitable sequences fk and uk, and
prove a Caccioppoli-type inequality for the approximation. In the vector-case this procedure is
rather delicate since it is not clear if the test-functions one likes to use are really admissible.
The Caccioppoli-type inequality then is used to prove that ∂1u, . . . , ∂n−1u are in the space
Lp+1

loc (Ω; RN ). In Section 3 we study the scalar case and show by iteration the first part of
Theorem 1.2. ¿From this we deduce in Section 4 that u ∈ W 1

t,loc(Ω) for any finite t, and we use

this to get u ∈ C1,α(Ω).

2 Approximation and proof of Theorem 1.1

Let the hypotheses of Theorem 1.1 be satisfied. Following familiar arguments we introduce an
appropriate local regularization: given ε > 0, we let (u)ε denote the mollification of the local
minimizer u with radius ε. Let us fix x0 ∈ Ω and a ball BR(x0) b Ω. Moreover, define

δ := δ(ε) =
1

1 + ε−1 + ‖∇̃(u)ε‖
2q
Lq(BR(x0);RnN )

and let fδ(Q) = δ(1 + |Q̃|2)q/2 + f(Q). Finally, let uδ ∈ (u)ε+
◦

Wq
1(BR(x0); R

N ) denote the
unique solution of the problem

Jδ[w,BR(x0)] :=

∫

BR(x0)
fδ(∇w) dx → min in (u)ε+

◦

Wq
1(BR(x0); R

N ) .

Lemma 2.1. We have as ε → 0:

i) uδ ⇁ u in W 1
p (BR(x0); R

N ),
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ii) δ
∫

BR(x0)(1 + |∇̃uδ|
2)q/2 dx → 0,

iii)
∫

BR(x0) f(∇uδ) dx →
∫

BR(x0) f(∇u) dx.

Moreover, ‖uδ‖L∞(BR(x0),RN ) is uniformly bounded.

Proof. i)–iii): compare e.g. [BF1] with minor adjustments; the last statement follows from the
convex hull property established in [BF3]. �

Lemma 2.2. (Caccioppoli-type inequality) For any η ∈ C∞

0 (BR(x0)) we have

∫

BR(x0)
η2D2fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx

≤ c

∫

BR(x0)
D2fδ(∇uδ)(∇η ⊗ ∂γuδ,∇η ⊗ ∂γuδ) dx . (2.1)

Here γ ∈ {1, . . . , n} is arbitrary (no summation in (2.1)), c is a constant independent of δ
and ⊗ denotes the tensor product.

Proof. Compare, for example, [BF1], Lemma 3.1 ; it is easy to check that the proof given in
[BF1] actually produces inequality (2.1). �

Let us now have a closer look at inequality (2.1) for our special integrand f . Using (1.7) and
(1.8) we deduce from (2.1)

δ

∫

BR(x0)
η2(1 + |∇̃uδ|

2)
q−2

2 |∂γ∇̃uδ|
2 dx +

∫

BR(x0)
η2(1 + |∇̃uδ|

2)
p−2

2 |∂γ∇̃uδ|
2 dx

+

∫

BR(x0)
η2(1 + |∂nuδ|

2)
q−2

2 |∂γ∂nu|2 dx

≤ c

[

δ

∫

BR(x0)
|∇η|2(1 + |∇̃uδ|

2)
q−2

2 |∂γuδ|
2 dx +

∫

BR(x0)
|∇η|2(1 + |∇̃uδ|

2)
p−2

2 |∂γuδ|
2 dx

+

∫

BR(x0)
|∇η|2(1 + |∂nu|2)

q−2

2 |∂γuδ|
2 dx

]

.

Now, taking the sum w.r.t. γ from 1 to n− 1 on both sides, we get with an obvious meaning of
∇̃2:

δ

∫

BR(x0)
η2Γ̃

q−2

2

δ |∇̃2uδ|
2 dx +

∫

BR(x0)
η2Γ̃

p−2

2

δ |∇̃2uδ|
2 dx

+

∫

BR(x0)
η2Γ

q−2

2

n,δ |∂n∇̃uδ|
2 dx

≤ c

[

δ

∫

BR(x0)
|∇η|2Γ̃

q−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
|∇η|2Γ̃

p−2

2

δ |∇̃uδ|
2 dx

+

∫

BR(x0)
|∇η|2Γ

q−2

2

n,δ |∇̃uδ|
2 dx

]

, (2.2)

where Γ̃δ := 1 + |∇̃uδ|
2, Γn,δ := 1 + |∂nuδ|

2.

Before we prove Theorem 1.1, let us recall the following auxiliary result, a proof can be found
in [GM]
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Proposition 2.1. Consider a function g: R
L → R of class C2 such that for some s ≥ 2 we

have with a positive constant c1

c1

(

1 + |A|2
)

s−2

2 |B|2 ≤ D2g(A)(B,B) for all A, B ∈ R
L .

Then there is another positive constant c2, just depending on s and c1 such that
∫ 1

0
D2g(A + tB)(X,X) dt ≥ c2D

2g(A)(X,X) for all A, B, X ∈ R
L . (2.3)

We proceed by showing a version of the Caccioppoli-type inequality involving difference quo-
tients, which will be an essential ingredient in the proof of Theorem 1.1.

Lemma 2.3. Fix a direction eγ , γ ≤ n− 1, and let v := ∆huδ denote the difference quotient of
uδ in this direction. Then we have for any η ∈ C∞

0 (BR(x0))

∫

BR(x0)
η2D2fδ(∇uδ)(∇v,∇v) dx ≤ c‖∇η‖2

∞

[

δ

∫

spt η

∫ 1

0
(1 + |Ũ |2)

q−2

2 |v|2 dtdx

+

∫

spt η

∫ 1

0
(1 + |Ũ |2)

p−2

2 |v|2 dtdx

+

∫

spt η

∫ 1

0
(1 + |Un|

2)
q−2

2 |v|2 dtdx

]

=: c‖∇η‖2
∞

[δ · I1 + I2 + I3] .

Here we have set U := ∇uδ + th∆h∇uδ.

Proof. Let us introduce the bilinear form B :=
∫ 1
0 D2fδ(U) dt. If we write

B(X,X) =

∫ 1

0
D2fδ (∇uδ + th∆h∇uδ) (X,X) dt

=

∫ 1

0
D2fδ (A + tB) (X,X) dt

=

∫ 1

0
D2gδ(Ã + tB̃)(X̃, X̃) dt +

∫ 1

0
D2f2(An + tBn)(Xn, Xn) dt

with A = ∇uδ, B = h∆h∇uδ, gδ(ε) := δ(1+ |ε|2)q +f1(ε), then – due to the ellipticity conditions
for f1 and f2 – the inequality (2.3) can be applied to both terms on the r.h.s. of the above
equation leading to the estimate

D2fδ(∇uδ)(X,X) ≤ B(X,X) for all X ∈ R
N .

This together with (3.2) of [BF1] gives
∫

BR(x0)
η2D2fδ(∇uδ)(∇v,∇v) dx ≤ c

∫

BR(x0)
B (∇v,∇v) η2 dx ≤ c

∫

BR(x0)
ηB (∇v,∇η ⊗ v) dx .

Using now the Cauchy-Schwarz inequality for the bilinear form B we get
∫

BR(x0)
η2D2fδ(∇uδ)(∇v,∇v) dx ≤ c

∫

BR(x0)
B (∇η ⊗ v,∇η ⊗ v) dx

≤ c

[

∫

BR(x0)

∫ 1

0
D2gδ(Ũ)(∇̃η ⊗ v, ∇̃η ⊗ v) dtdx

+

∫

BR(x0)

∫ 1

0
D2f2(Un) (∂nηv, ∂nηv) dtdx

]

,
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which immediately gives the lemma on account on our ellipticity assumption (1.8). �

Proof of Theorem 1.1. ¿From the minimality of uδ it follows that
∫

BR(x0)
Dfδ(∇uδ) : ∇ϕdx = 0 (2.4)

for any ϕ ∈
◦

Wq
1(BR(x0); R

N ). As a test vector in (2.4) we like to choose ϕ = η2|∇̃uδ|uδ. Using

the standard difference quotient procedure, see e.g. [Mo] or [Ca], we get that ∇̃uδ is just of local
Sobolev class W 1

2 so that the admissibility of ϕ ist not immediate. To overcome this problem, we
fix a direction eγ , γ ≤ n− 1, and as above we let v := ∆huδ denote the corresponding difference
quotient of uδ. Then (2.4) gives choosing ϕ = η2uδ|v|, η ∈ C∞

0 (BR(x0)),
∫

BR(x0)
Dfδ(∇uδ) : ∇uδη

2|v|dx = −2

∫

BR(x0)
Dfδ(∇uδ) : (∇η ⊗ uδ) η|v|dx

−

∫

BR(x0)
Dfδ(∇uδ) : (uδ ⊗∇|v|) η2 dx . (2.5)

For any matrices X, Z we have (assuming w.l.o.g. Df(0) = 0) Dfδ(X) : Z =
1
∫

0

D2fδ(tX)(X,Z) dt,

so that by(1.7), (1.8) we get the estimates

Dfδ(X) : X ≥ c
[

δ(1 + |X̃|2)
q−2

2 |X̃ |2

+(1 + |X̃ |2)
p−2

2 |X̃|2 + (1 + |Xn|
2)

q−2

2 |Xn|
2
]

, (2.6)

|Dfδ(X)| ≤ c
[

δ(1 + |X̃|2)
q−2

2 |X̃ |

+(1 + |X̃ |2)
p−2

2 |X̃| + (1 + |Xn|
2)

q−2

2 |Xn|
]

(2.7)

with positive constants independent of ε. ¿From (2.6) we immediately deduce that

l.h.s. of (2.5) ≥ c

[

δ

∫

BR(x0)
|v|η2Γ̃

q−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
|v|η2Γ̃

p−2

2

δ |∇̃uδ|
2 dx

+

∫

BR(x0)
|v|η2Γ

q−2

2

n,δ |∂nuδ|
2 dx

]

. (2.8)

For the r.h.s. of (2.5) we observe that (2.7) together with the uniform L∞-bound of uδ implies:

|1st term on the r.h.s. of (2.5)|

≤ c

[

‖∇η‖∞

(

δ

∫

spt η
|v|Γ̃

q−2

2

δ |∇̃uδ|dx +

∫

spt η
|v|Γ̃

p−2

2

δ |∇̃uδ|dx

)

+

∫

spt η
η|∇η||v|Γ

q−2

2

n,δ |∂nuδ|dx

]

=: c
[

‖∇η‖∞(T1 + T2) + T3

]

.

By Hölder’s inequality and elementary properties of difference quotients we see by Lemma 2.1,
i), that

T1 ≤ cδ

∫

BR(x0)
Γ̃

q
2

δ dx → 0 as ε → 0 ,
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whereas

T2 ≤ c

∫

BR(x0)
Γ̃

p
2

δ ≤ c .

The last inequality follows from the minimality of the functions uδ, i.e.

Jδ [uδ, BR(x0)] ≤ Jδ[(u)ε, BR(x0)] ≤ c .

We further have (for any τ ∈ (0, 1))

T3 ≤

∫

spt η

[

τη2|∂nuδ|
2 +

1

τ
‖∇η‖2

∞

]

|v|Γ
q−2

2

n,δ dx

≤ τ

∫

spt η
η2|v||∂nuδ|

2Γ
q−2

2

n,δ dx +
c

τ
‖∇η‖2

∞

∫

spt η

{

Γ
q
2

n,δ + |v|
q
2

}

dx . (2.9)

Since we assume q ≤ 2p, we get that
∫

spt η
|v|

q
2 dx

is bounded in terms of
∫

BR(x0) |∇̃uδ|
p dx. Moreover, if τ is sufficiently small, then the first

integral on the right-hand side of (2.9) can be absorbed in the last integral on the right-hand
side of (2.8) with the result (w.l.o.g. ‖∇η‖∞ ≥ 1)

δ

∫

BR(x0)
|v|η2Γ̃

q−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
|v|η2Γ̃

p−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
|v|η2Γ

q−2

2

n,δ |∂nuδ|
2 dx

≤ c‖∇η‖2
∞

+ c

∣

∣

∣

∣

∣

∫

BR(x0)
Dfδ(∇uδ) : (uδ ⊗∇|v|)η2 dx

∣

∣

∣

∣

∣

. (2.10)

Let us now discuss the remaining integral on the right-hand side of (2.10): we observe that

Dfδ(X) : Y = δ
q

2

(

1 + |X̃ |2
)

q−2

2

X̃ : Ỹ + Df1(X̃) : Ỹ + Df2(Xn) · Yn , (2.11)

which implies (using the uniform boundedness of uδ) for any 0 < τ < 1

|Dfδ(∇uδ) : (∇|v| ⊗ u) | ≤ c

[

δΓ̃
q−2

2

δ |∇̃uδ||∇̃v| + Γ̃
p−2

2

δ |∇̃uδ||∇̃v| + Γ
q−2

2

n,δ |∂nuδ||∂nv|

]

≤ c

[

δτ Γ̃
q−2

2

δ |∇̃v|2 + δ
1

τ
Γ̃

q−2

2

δ |∇̃uδ|
2 + τ Γ̃

p−2

2

δ |∇̃v|2 +
1

τ
Γ̃

p
2

δ

+τΓ
q−2

2

n,δ |∂nv|2 +
1

τ
Γ

q−2

2

n,δ |∂nuδ|
2

]

.

This gives the following upper bound for the integral under consideration:

c

[

δτ

∫

BR(x0)
η2Γ̃

q−2

2

δ |∇̃v|2 dx + τ

∫

BR(x0)
Γ̃

p−2

2

δ η2|∇̃v|2 dx + τ

∫

BR(x0)
η2Γ

q−2

2

n,δ |∂nv|2 dx

+
1

τ

∫

BR(x0)
η2Γ̃

p
2

δ dx +
1

τ
δ

∫

BR(x0)
η2Γ̃

q
2

δ dx +
1

τ

∫

BR(x0)
Γ

q
2

n,δ dx

]

, (2.12)
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where all the quantities which are multiplied by 1
τ stay bounded uniformly w.r.t ε (recall δ =

δ(ε)). In order to continue we look at the sum of the first three items of (2.12) and observe that

∫

BR(x0)
η2

[

δΓ̃
q−2

2

δ |∇̃v|2 + Γ̃
p−2

2

δ |∇̃v|2 + Γ
q−2

2

n,δ |∂nv|2

]

dx

≤ c

∫

BR(x0)
η2D2fδ(∇uδ)(∇v,∇v) dx .

Note that the right hand side can be estimated with the help of Lemma 2.3, i.e. (with the
notation of Lemma 2.3) we get from (2.10) (for any 0 < τ < 1)

δ

∫

BR(x0)
|v|η2Γ̃

q−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
|v|η2Γ̃

p−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
|v|η2Γ

q−2

2

n,δ |∂nuδ|
2 dx

≤ c‖∇η‖2
∞

+ cτ‖∇η‖2
∞

[δI1 + I2 + I3] +
c

τ
. (2.13)

We have

I1 ≤

∫

spt η
|v|q dx +

∫

spt η

∫ 1

0
(1 + |Ũ |2)

q
2 dtdx

≤ c

∫

BR(x0)
|∇̃uδ|

q dx + c

∫

spt η

∫ 1

0
(|(1 − t)∇̃uδ(x) + t∇̃uδ(x + heγ)|2 + 1)

q
2 dtdx ,

and if from now on we assume that spt η ⊂ BR/2(x0), then of course (for all |h| � 1 uniform in
ε)

I1 ≤ c

∫

BR(x0)
Γ̃

q
2

δ dx ,

and we know δI1 → 0 as ε → 0, thus δI1 is uniformly bounded for all small ε and |h|. Since we

also know that
∫

BR(x0)
Γ̃

p/2
δ dx ≤ c, the same argument applies to I2. To handle I3 we observe

that in the limit h → 0

I3 ≤

∫

spt η

∫ 1

0
(1 + |Un|

2)
q−2

2 |v|2 dtdx →

∫

spt η
Γ

q−2

2

n,δ |∂γuδ|
2 dx . (2.14)

To prove (2.14) we note that according to [Gi], Theorem 3.1, p. 159, there exists an exponent
s > q (depending on ε) such that ∇uδ ∈ Ls

loc(BR(x0); R
nN ). This implies (as h → 0)

∂nuδ(x + heγ) → ∂nuδ , v → ∂γuδ

in Ls
loc(BR(x0); R

N ) and a.e. Clearly (as h → 0)

ζh :=

∫ 1

0
(1 + |Un|

2)
q−2

2 dt|v|2 → Γ
q−2

2

n,δ |∂γuδ|
2

a.e. and, using the local Ls-convergences, the equi-integrability of ζh follows. Then (2.14) follows
from Vitali’s convergence theorem. Returning to (2.13), using (2.14) and the foregoing estimates
and applying Fatou’s lemma on the l.h.s. of (2.13), we find in the limit h → 0

δ

∫

Bs(x̄)
|∂γuδ|Γ̃

q−2

2

δ |∇̃uδ|
2 dx +

∫

Bs(x̄)
|∂γuδ|Γ̃

p−2

2

δ |∇̃uδ|
2 dx +

∫

Bs(x̄)
|∂γuδ|Γ

q−2

2

n,δ |∂nuδ|
2 dx

≤ c(t − s)−2 +
c

τ
+ cτ(t − s)−2

∫

Bt(x̄)
Γ

q−2

2

n,δ |∂γuδ|
2 dx . (2.15)
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where η ∈ C∞

0 (Bt(x̄)) (0 < s < t < T , BT (x̄) b BR/2(x0)) has been chosen according to
0 ≤ η ≤ 1, η ≡ 1 on Bs(x̄), |∇η| ≤ c/(t − s). We estimate the last integral of (2.15) in the
following way. By Young’s inequality

∫

Bt(x̄)
Γ

q−2

2

n,δ |∂γuδ|
2 dx ≤ c

∫

Bt(x̄)
|∂nuδ|

q−2|∂γuδ|
2 dx + c

∫

Bt(x̄)
|∂γuδ|

2 dx

≤ c

∫

Bt(x̄)
|∂γuδ||∂nuδ|

q dx + c

∫

Bt(x̄)
(|∂γuδ|

q
2
+1 + |∂γuδ|

2|) dx .

Moreover, since q ≤ 2p,

|∂γuδ|
q
2
+1 ≤ Γ̃

p−2

2

δ |∂γuδ|
q
2
+1−p+2 ≤ Γ̃

p−2

2

δ |∇̃uδ|
2|∂γuδ|

q
2
−p+1

≤ Γ̃
p−2

2

δ |∇̃uδ|
2
[

|∂γuδ| + 1
]

.

This gives

∫

Bt(x̄)
Γ

q−2

2

n,δ |∂γuδ|
2 dx ≤ c

[

∫

Bt(x̄)
|∂γuδ||∂nuδ|

q dx +

∫

Bt(x̄)
Γ̃

p−2

2

δ |∇̃uδ|
2|∂γuδ|dx + 1

]

.

Inserting this estimate into (2.15) we obtain (by neglecting the first term on the l.h.s. of (2.15))

h(s) :=

∫

Bs(x̄)
|∂γuδ|Γ̃

p−2

2

δ |∇̃uδ|
2 dx +

∫

Bs(x̄)
|∂γuδ|Γ

q−2

2

n,δ |∂nuδ|
2 dx

≤ c(t − s)−2 +
c

τ
+ cτ(t − s)−2

+cτ(t − s)−2

[

∫

Bt(x̄)
Γ̃

p−2

2

δ |∇̃uδ|
2|∂γuδ|dx +

∫

Bt(x̄)
|∂γuδ|Γ

q−2

2

n,δ |∂nuδ|
2 dx

]

, (2.16)

i.e. with the choice τ = (t − s)2/(2c)

h(s) ≤ c(t − s)−2 + c +
1

2
h(t)

for any s, t as above. Lemma 3.1, p. 161, of [Gi] finally shows that

∫

Bs(x̄)
|∂γuδ|Γ̃

p−2

2

δ |∇̃uδ|
2 dx +

∫

Bs(x̄)
|∂γuδ|Γ

q−2

2

n,δ |∂nuδ|
2 dx ≤ c

[

(T − s)−2 + 1
]

with a constant c independent of ε being valid for all s < T . Recalling that γ ≤ n − 1 we get
the uniform bound

∫

BR/4(x0)
|∇̃uδ|

p+1 dx +

∫

BR/4(x0)
|∇̃uδ| |∂nuδ|

q dx ≤ c(R) .

Since by Lemma 2.1 we already know uδ ⇁ u as ε → 0 in W 1
p (BR(x0); R

N ), the first claim of
Theorem 1.1 follows.
The second statement is obtained by a similar calculation replacing the function v by the differ-
ence quotient of u in the nth coordinate direction. We also refer to the last section where this
calculation is carried out for the scalar case (avoiding the difference-quotient technique). �

The statement of the corollary is an immediate consequence of Sobolev’s embedding theorem.
�
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3 Higher integrability in the scalar case: proof of the first part

of Theorem 1.2

We will use the notation introduced in Section 2. From [LU] (see the discussion in Remark 2.3
of [BF4]) we deduce that uδ is in the space W 2

t,loc(BR(x0)) for any t < ∞, therefore we may

test the differentiated Euler equation valid for uδ with the function η2∂γuδΓ
β/2
δ , where β ≥ 0,

η ∈ C∞

0 (BR(x0)) and γ runs from 1 to n − 1. Since we consider the scalar case, it is easy to
check that (from now on summation w.r.t. γ from 1 to n − 1)

0 ≤

∫

BR(x0)
D2fδ(∇uδ)(∂γ∇uδ, η

2∂γuδ∇Γ̃
β
2

δ ) dx .

In fact, this is the only place where N = 1 is needed. Thus (2.1) is replaced by the inequality

∫

BR(x0)
Γ̃

β
2

δ η2D2fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ) dx

≤ c

∫

BR(x0)
η2Γ̃

β
2

δ D2fδ(∇uδ)(∇η∂γuδ,∇η∂γuδ) dx ,

which means that we get (2.2) with factor Γ̃
β/2
δ on both sides:

δ

∫

BR(x0)
Γ̃

β
2 η2Γ̃

q−2

2

δ |∇̃2uδ|
2 dx +

∫

BR(x0)
Γ̃

β
2 η2Γ̃

p−2

2

δ |∇̃2uδ|
2 dx

+

∫

BR(x0)
Γ̃

β
2 η2Γ

q−2

2

n,δ |∂n∇̃uδ|
2 dx

≤ c

[

δ

∫

BR(x0)
Γ̃

β
2 |∇η|2Γ̃

q−2

2

δ |∇̃uδ|
2 dx +

∫

BR(x0)
Γ̃

β
2 |∇η|2Γ

p−2

2

δ |∇̃uδ|
2 dx

+

∫

BR(x0)
Γ̃

β
2 |∇η|2Γ

q−2

2

n,δ |∇̃uδ|
2 dx

]

. (2.2β)

We apply (2.4) with ϕ := η2uδΓ̃
(1+α)/2
δ as admissible test function, α ≥ 0 being some number

specified below. As a result we get (2.5) with |v| replaced by Γ̃
(1+α)/2
δ :

∫

BR(x0)
Dfδ(∇uδ) · ∇uδη

2Γ̃
1+α

2

δ dx = −2

∫

BR(x0)
Dfδ(∇uδ) · ∇ηuδηΓ̃

1+α
2

δ dx

−

∫

BR(x0)
Dfδ(∇uδ) · uδ∇Γ̃

1+α
2

δ η2 dx . (2.5α)

We observe (compare (2.8))

l.h.s.of (2.5α) ≥ c

[

δ

∫

BR(x0)
Γ̃

q−2

2

δ Γ̃
1+α

2

δ η2|∇̃uδ|
2 dx +

∫

BR(x0)
Γ̃

p−2

2

δ Γ̃
1+α

2

δ η2|∇̃uδ|
2 dx

+

∫

BR(x0)
Γ̃

1+α
2

δ Γ
q−2

2

n,δ η2|∂nuδ|
2 dx

]

. (3.1)
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Next we estimate the first term on the r.h.s. of (2.5α) (compare the inequality stated after
(2.10))

∣

∣

∣

∣

∣

2

∫

BR(x0)
Dfδ(∇uδ) · ∇ηuδηΓ̃

1+α
2

δ dx

∣

∣

∣

∣

∣

≤ c‖∇η‖∞

[

δ

∫

spt η
Γ̃

1+α
2

δ Γ̃
q−2

2

δ |∇̃uδ|dx +

∫

spt η
Γ̃

1+α
2

δ Γ̃
p−2

2

δ |∇̃uδ|dx

+

∫

spt η
Γ̃

1+α
2

δ Γ
q−2

2

n,δ |∂nuδ|dx

]

≤ c‖∇η‖∞

[

δ

∫

spt η
Γ̃

q+α
2

δ dx +

∫

spt η
Γ̃

p+α
2

δ dx +

∫

spt η
Γ̃

1+α
2

δ Γ
q−1

2

n,δ dx

]

≤ c‖∇η‖∞

[

τδ

∫

spt η
Γ̃

q+1+α
2

δ dx + c(τ)δ

∫

spt η
Γ̃

q+α−1

2

δ dx + τ

∫

spt η
Γ̃

p+α+1

2

δ dx

+c(τ)

∫

spt η
Γ̃

p+α−1

2

δ dx + τ

∫

spt η
Γ̃

1+α
2

δ Γ
q
2

n,δ dx + c(τ)

∫

spt η
Γ̃

1+α
2

δ dx

]

, (3.2)

where 0 < τ < 1 is arbitrary. In order to handle the second term on the r.h.s. of (2.5α) we recall
(2.11) and get

∣

∣Dfδ(∇uδ) · ∇Γ̃
α+1

2

δ

∣

∣ ≤ c
α + 1

2
Γ̃

α−1

2

δ

[

δΓ̃
q−2

2

δ |∇̃uδ||∇̃Γ̃δ| + Γ̃
p−2

2

δ |∇̃uδ||∇̃Γ̃δ| + Γ
q−2

2

n,δ |∂nuδ||∂nΓ̃δ|

]

≤ c(α)

[

δΓ̃
q+α−1

2

δ |∇̃2uδ| + Γ̃
p+α−1

2

δ |∇̃2uδ| + Γ̃
α
2

δ Γ
q−1

2

n,δ |∂n∇̃uδ|

]

. (3.3)

We have

Γ̃
p+α−1

2

δ |∇̃2uδ| ≤ Γ̃
β
2

δ Γ̃
p−2

2

δ |∇̃2uδ|
2 + Γ̃

−
β
2
+ p+2α

2

δ ,

δΓ̃
q+α−1

2

δ |∇̃2uδ| ≤ δΓ̃
β
2

δ Γ̃
q−2

2

δ |∇̃2uδ|
2 + δΓ̃

−
β
2
+ q+2α

2

δ

as well as

Γ̃
α
2

δ Γ
q−1

2

n,δ |∂n∇̃uδ| = Γ̃
β
4

δ Γ
q−2

4

nδ |∂n∇̃uδ|Γ̃
−

β
4
+α

2

δ Γ
q
4

n,δ

≤ Γ̃
β
2

δ Γ
q−2

2

n,δ |∂n∇̃uδ|
2 + Γ

q
2

n,δΓ̃
2α−β

2

δ .
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We insert these inequalities into (3.3) and get
∣

∣

∣

∣

∣

∫

BR(x0)
Dfδ(∇uδ) · ∇Γ

α+1

2

δ uδη
2 dx

∣

∣

∣

∣

∣

≤ c(α)

[

δ

∫

BR(x0)
η2Γ̃

β
2

δ Γ̃
q−2

2

δ |∇̃2uδ|
2 dx +

∫

BR(x0)
η2Γ̃

β
2

δ Γ̃
p−2

2

δ |∇̃2uδ|
2 dx

+

∫

BR(x0)
η2Γ̃

β
2

δ Γ
q−2

2

n,δ |∂n∇̃uδ|
2 dx

]

+c(α)

[

δ

∫

BR(x0)
η2Γ̃

q+2α−β
2

δ dx +

∫

BR(x0)
η2Γ̃

p+2α−β
2

δ dx +

∫

BR(x0)
η2Γ

q
2

n,δΓ̃
2α−β

2

δ dx

]

≤ c(α)‖∇η‖2
∞

[

δ

∫

spt η
Γ̃

q+β
2

δ dx +

∫

spt η
Γ̃

p+β
2

δ dx +

∫

spt η
Γ̃

β+2

2

δ Γ
q−2

2

n,δ dx

]

+c(α)

[

δ

∫

BR(x0)
η2Γ̃

q+2α−β
2

δ dx +

∫

BR(x0)
η2Γ̃

p+2α−β
2

δ dx

+

∫

BR(x0)
η2Γ

q
2

n,δΓ̃
2α−β

2

δ dx

]

, (3.4)

where the last inequality follows from (2.2β).
In a next step we combine (3.1), (3.2) and (3.4) with the result that

δ

∫

BR(x0)
η2Γ̃

q+1+α
2

δ dx +

∫

BR(x0)
Γ̃

p+1+α
2

δ dx +

∫

BR(x0)
Γ̃

1+α
2

δ Γ
q
2

n,δη
2 dx

≤ c(α)

[

τδ‖∇η‖∞

∫

spt η
Γ̃

q+1+α
2

δ dx + c(τ)δ‖∇η‖∞

∫

spt η
Γ̃

q+α−1

2

δ dx + τ‖∇η‖∞

∫

spt η
Γ̃

p+α+1

2

δ dx

+c(τ)‖∇η‖∞

∫

spt η
Γ̃

p+α−1

2

δ dx + τ‖∇η‖∞

∫

spt η
Γ̃

1+α
2

δ Γ
q
2

n,δ dx + c(τ)‖∇η‖∞

∫

spt η
Γ̃

1+α
2

δ dx

+‖∇η‖2
∞

δ

∫

spt η
Γ̃

q+β
2

δ dx + ‖∇η‖2
∞

∫

spt η
Γ̃

p+β
2

δ dx + ‖∇η‖2
∞

∫

spt η
Γ̃

β+2

2

δ · Γ
q−2

2

n,δ dx

+δ

∫

spt η
Γ̃

q+2α−β
2

δ dx +

∫

spt η
Γ̃

p+2α−β
2

δ dx +

∫

spt η
Γ

q
2

n,δΓ̃
2α−β

2

δ dx

]

=: c(α)

12
∑

l=1

Tl . (3.5)

We recall that from the proof of Theorem 1.1 we already know that the quantities

Γ̃
p+1

2

δ , Γ̃
1

2

δ Γ
q
2

n,δ

are uniformly bounded in the space L1
loc(BR(x0)), and (2.15) and the uniform boundedness of

the r.h.s. of (2.16) immediately gives the same result for δΓ̃
(q+1)/2
δ . We now define

α0 = β0 = 0 , αi =
1

2
+ αi−1 , βi = αi−1 , i ∈ N ,

i.e. αi = i/2, βi = (i − 1)/2. Then we suppose that for a suitable constant c(ρ) (also depending
on i)

∫

Bρ(x0)
δΓ̃

q+1+αi−1

2

δ dx +

∫

Bρ(x0)

[

Γ̃
p+1+αi−1

2

δ + Γ̃
1+αi−1

2

δ Γ
q
2

n,δ

]

dx ≤ c(ρ) (3.6)
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for any ρ < R, and we like to prove (3.6) with αi−1 being replaced by αi. (Note that by the
remarks after (3.5) we already know the validity of (3.6) for i = 1.)
To do so we choose s < t < R and let η ∈ C∞

0 (Bt(x0)) satisfy η ≡ 1 on Bs(x0), |∇η| ≤ c/(t− s).
We then apply (3.5) with α = αi, β = βi. The terms T1, T3, T5 can be handled easily (see
Section 2) by requiring that

τ‖∇η‖∞c(αi) =
1

2
.

Note that with this choice the constants c(τ) occurring in (3.5) are bounded from above by
c(t − s)−κ with some suitable power −κ. For T2 we observe that clearly

Γ̃
q+αi−1

2

δ ≤ Γ̃
q+αi−1+1

2

δ ,

hence T2 is bounded by a local constant on account of (3.6). The same is true for T4 and T6.
Since q + βi = q + αi−1 < q + αi−1 + 1, there is no problem with T7, and p + βi < p + 1 + αi−1

shows a nice behaviour of T8, i.e. we just replace δ
∫

Bt(x0) Γ̃
(q+βi)/2
δ dx and

∫

Bt(x0) Γ̃
(p+βi)/2
δ dx

by the quantities δ
∫

Bt(x0) Γ̃
(q+1+αi−1)/2
δ dx and

∫

Bt(x0)
Γ̃

(p+1+αi−1)/2
δ dx, respectively. In order to

control T9 we estimate

Γ̃
βi+2

2

δ Γ
q−2

2

n,δ = Γ
q−2

2

n,δ Γ̃
q−2

q

1+αi−1

2

δ Γ̃
βi+2

2
−

q−2

q

1+αi−1

2

δ

≤ Γ
q
2

n,δΓ̃
1+αi−1

2

δ + Γ̃
q
2

[

βi+2

2
−

q−2

q

1+αi−1

2

]

δ .

Obviously

q

2

[βi + 2

2
−

q − 2

q

1 + αi−1

2

]

≤
p + 1 + αi−1

2
⇔

q

2

[q + 2 + 2αi−1

2q

]

≤
p + 1 + αi−1

2
,

and the latter inequality holds on account of our requirement q ≤ 2p. The calculation further
shows that T9 is bounded due to (3.6).
We further have q + 2αi − βi = q + 1 + αi−1, p + 2αi − βi = p + 1 + αi−1, hence T10, T11 are
bounded by (3.6).

Quoting (3.6) for a last time, we also get a bound for
∫

Bt(x0) Γ
q/2
n,δ Γ̃

(2αi−βi)/2
δ dx. Collecting these

estimates and going back to (3.5) we get

∫

Bs(x0)

[

δΓ̃
q+1+αi

2

δ + Γ̃
p+1+αi

2

δ + Γ
q
2

n,δΓ̃
1+αi

2

δ

]

dx ≤
1

2

∫

Bt(x0)
[. . . ] dx + A(t − s)−γ + B

being valid for 0 < s < t ≤ ρ < R, where A and B are local constants depending in particular
on ρ and the bounds for the quantity [...], when αi is replaced by αi−1, but being independent of
δ = δ(ε). As in Section 2 the above inequality immediately implies the desired version of (3.6).
Since αi → ∞ as i → ∞, we have shown that

∫

Bρ(x0)
Γ̃

t
2

δ dx +

∫

Bρ(x0)
Γ̃

t
2

δ Γ
q
2

n,δ dx ≤ c(t, ρ) (3.7)

for any t > 1 and all radii ρ < R, where the constant is independent of δ(ε). Using uδ ⇁ u
in W 1

p (BR(x0)) as ε → 0 it is immediate that ∇̃u ∈ Ls
loc(Ω; Rn−1) for any s < ∞, thus ∇u ∈

Lq
loc(Ω; Rn). �
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4 Improvement of the initial higher integrability in the scalar

case: proof of the second part of Theorem 1.2

Using the method of iteration introduced in the previous section and also using (3.7) we will
show that

∫

Bρ(x0)
|∂nuδ|

t dx ≤ c(t, ρ) < ∞ (4.1)

for any t < ∞ and all ρ < R. Let β ≥ 0 and η ∈ C∞

0 (BR(x0)). We have

0 =

∫

BR(x0)
D2fδ(∇uδ)

(

∂n∇uδ,∇[η2∂nuδΓ
β
2

n,δ]
)

dx ,

and since we are in the scalar case this implies

∫

BR(x0)
D2fδ(∇uδ)(∂n∇uδ, ∂n∇uδ)η

2Γ
β
2

n,δ dx

≤ c

∫

BR(x0)
D2fδ(∇uδ)(∇η2,∇η2)|∂nuδ|

2Γ
β
2

n,δ dx .

Here, as before, we used the inequality of Cauchy-Schwarz and Young’s inequality. The structure
of D2fδ gives the estimate

δ

∫

BR(x0)
η2Γ̃

q−2

2

δ Γ
β
2

n,δ|∂n∇̃uδ|
2 dx +

∫

BR(x0)
η2Γ̃

p−2

2

δ Γ
β
2

n,δ|∂n∇̃uδ|
2 dx

+

∫

BR(x0)
η2Γ

q−2

2
+β

2

n,δ |∂n∂nuδ|
2 dx

≤ c‖∇η‖2
∞

[

∫

spt η
δΓ̃

q−2

2

δ Γ
β
2
+1

n,δ dx +

∫

spt η
Γ̃

p−2

2

δ Γ
β
2
+1

n,δ dx +

∫

spt η
Γ

q+β
2

n,δ dx

]

. (4.2)

Next we return to (2.4) and choose ϕ = η2uδΓ
(1+α)/2
n,δ , α ≥ 0. We get

∫

BR(x0)
η2Γ

1+α
2

n,δ Dfδ(∇uδ) · ∇uδ dx

= −2

∫

BR(x0)
η∇η · Dfδ(∇uδ)uδΓ

1+α
2

n,δ dx

−(1 + α)

∫

BR(x0)
uδη

2Dfδ(∇uδ) · ∇(∂nuδ)Γ
α−1

2

n,δ ∂nuδ dx . (4.3)

¿From (2.6) we deduce

l.h.s.of (4.3) ≥ c

[

∫

BR(x0)
δη2Γ̃

q−2

2

δ |∇̃uδ|
2Γ

1+α
2

n,δ dx +

∫

BR(x0)
η2Γ̃

p−2

2

δ |∇̃uδ|
2Γ

1+α
2

n,δ dx

+

∫

BR(x0)
η2Γ

q−2

2
+ 1+α

2

n,δ |∂nuδ|
2 dx

]

, (4.4)
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moreover, (2.7) shows

|1st term on the r.h.s. of (4.3)|

≤ c

[

∫

BR(x0)
η|∇η|δΓ̃

q−2

2

δ |∇̃uδ|Γ
1+α

2

n,δ dx +

∫

BR(x0)
η|∇η|Γ̃

p−2

2

δ |∇̃uδ|Γ
1+α

2

n,δ dx

+

∫

BR(x0)
η|∇η|Γ

q−2

2
+ 1+α

2

n,δ |∂nuδ|dx

]

≤ c

[

τ

∫

BR(x0)
δη2Γ̃

q−2

2

δ |∇̃uδ|
2Γ

1+α
2

n,δ dx +
1

τ

∫

BR(x0)
δ|∇η|2Γ̃

q−2

2

δ Γ
1+α

2

n,δ dx

+τ

∫

BR(x0)
η2Γ̃

p−2

2

δ |∇̃uδ|
2Γ

1+α
2

n,δ dx +
1

τ

∫

BR(x0)
|∇η|2Γ̃

p−2

2

δ Γ
1+α

2

n,δ dx

+τ

∫

BR(x0)
η2Γ

q−2

2

n,δ |∂nuδ|
2Γ

1+α
2

n,δ dx +
1

τ

∫

BR(x0)
|∇η|2Γ

q−2

2
+ 1+α

2

n,δ dx

]

for τ ∈ (0, 1). If we use this estimate and choose τ small enough, then the τ -terms can be
absorbed in the l.h.s., more precisely, they can be absorbed in the terms giving the lower bound
stated in (4.4). This implies
∫

BR(x0)
δη2Γ̃

q−2

2

δ |∇̃uδ|
2Γ

1+α
2

n,δ dx +

∫

BR(x0)
η2Γ̃

p−2

2

δ |∇̃uδ|
2Γ

1+α
2

n,δ dx +

∫

BR(x0)
η2Γ

q−1+α
2

n,δ |∂nuδ|
2 dx

≤ c‖∇η‖2
∞

[

∫

spt η
δΓ̃

q−2

2

δ Γ
1+α

2

n,δ dx +

∫

spt η
Γ̃

p−2

2

δ Γ
1+α

2

n,δ dx +

∫

spt η
Γ

q−1+α
2

n,δ dx

]

+c|2nd term on the r.h.s. of (4.3) | . (4.5)

To estimate the second term on the r.h.s. of (4.3), we observe that (compare (2.11))

|Dfδ(∇uδ) · ∇(∂nuδ)| ≤ c
[

δΓ̃
q−2

2

δ |∇̃uδ||∂n∇̃uδ| + Γ̃
p−2

2

δ |∇̃uδ||∂n∇̃uδ| + Γ
q−2

2

n,δ |∂nuδ||∂n∂nuδ|
]

.

Thus (using (4.2))

|2nd term on the r.h.s. of (4.3)|

≤ c(α)

[

∫

BR(x0)
δη2Γ̃

q−1

2

δ |∂n∇̃uδ|Γ
α
2

n,δ dx +

∫

BR(x0)
η2Γ̃

p−1

2

δ |∂n∇̃uδ|Γ
α
2

n,δ dx

+

∫

BR(x0)
η2Γ

q−1

2

n,δ |∂n∂nuδ|Γ
α
2

n,δ dx

]

≤ c(α)

[

∫

BR(x0)
δη2Γ̃

q−2

2

δ Γ
β
2

n,δ|∂n∇̃uδ|
2 dx +

∫

BR(x0)
η2Γ̃

p−2

2

δ Γ
β
2

δ |∂n∇̃uδ|
2 dx

+

∫

BR(x0)
η2Γ

q−2

2
+β

2

n,δ |∂n∂nuδ|
2 dx

+

∫

BR(x0)
δη2Γ̃

q
2

δ Γ
2α−β

2

n,δ dx +

∫

BR(x0)
η2Γ̃

p
2

δ Γ
2α−β

2

n,δ dx +

∫

BR(x0)
η2Γ

q
2

n,δΓ
2α−β

2

n,δ dx

]

≤ c(α)‖∇η‖2
∞

[

∫

spt η
δΓ̃

q−2

2

δ Γ
β
2
+1

n,δ dx +

∫

spt η
Γ̃

p−2

2

δ Γ
β
2
+1

n,δ dx +

∫

spt η
Γ

q+β
2

n,δ dx

]

+c(α)

[

∫

spt η
δΓ̃

q
2

δ Γ
2α−β

2

n,δ dx +

∫

spt η
Γ̃

p
2

δ Γ
2α−β

2

n,δ dx +

∫

spt η
Γ

q+2α−β
2

n,δ dx

]

.

16



We insert this estimate into (4.5) observing at the same time that quantities like Γ̃
(q−2)/2
δ |∇̃u|2

occuring on the l.h.s. of (4.5) can be replaced by Γ̃
q/2
δ since the resulting difference already

appears on the r.h.s. of (4.5), therefore we get:

∫

BR(x0)
δη2Γ̃

q
2

δ Γ
1+α

2

n,δ dx +

∫

BR(x0)
η2Γ̃

p
2

δ Γ
1+α

2

n,δ dx +

∫

BR(x0)
η2Γ

q+1+α
2

n,δ dx

≤ c(α)‖∇η‖2
∞

[

∫

spt η
δΓ̃

q−2

2

δ

[

Γ
1+α

2

n,δ + Γ
2+β
2

n,δ

]

dx +

∫

spt η
Γ̃

p−2

2

δ

[

Γ
1+α

2

n,δ + Γ
2+β
2

n,δ

]

dx

+

∫

spt η

[

Γ
q−1+α

2

n,δ + Γ
q+β
2

n,δ

]

dx

]

+c(α)

[

∫

spt η
δΓ̃

q
2

δ Γ
2α−β

2

n,δ dx +

∫

spt η
Γ̃

p
2

δ Γ
2α−β

2

n,δ dx +

∫

spt η
Γ

q+2α−β
2

n,δ dx

]

. (4.6)

Now we make use of this inequality with the choices α0 = 0, β0 = 0, αi = αi−1 +1/2, βi = αi−1,
i ≥ 1, in particular we have 1 + βi/2 = 1

2 (αi + 3
2 ), and obtain for i ≥ 1

∫

BR(x0)
δη2Γ̃

q
2

δ Γ
1+αi

2

n,δ dx +

∫

BR(x0)
η2Γ̃

p
2

δ Γ
1+αi

2

n,δ dx +

∫

BR(x0)
η2Γ

q+1+αi
2

n,δ dx

≤ c(i)‖∇η‖2
∞

[

∫

spt η
δΓ̃

q−2

2

δ Γ
αi+3/2

2

n,δ +

∫

spt η
Γ̃

p−2

2

δ Γ
αi+3/2

2

n,δ +

∫

spt η
Γ

q+βi
2

n,δ dx

]

+c(i)

[

∫

spt η
δΓ̃

q
2

δ Γ
2αi−βi

2

n,δ dx +

∫

spt η
Γ̃

p
2

δ Γ
2αi−βi

2

n,δ dx +

∫

spt η
Γ

q+2αi−βi
2

n,δ dx

]

. (4.6i)

We claim that we have for all i ∈ N0 and for any radius ρ < R
∫

Bρ(x0)
δΓ̃

q
2

δ Γ
1+αi

2

n,δ dx +

∫

Bρ(x0)
Γ̃

p
2

δ Γ
1+αi

2

n,δ dx +

∫

Bρ(x0)
Γ

q+1+αi
2

n,δ dx ≤ c(i, ρ) < ∞ . (4.7i)

In fact, for i = 0 this is an immediate consequence of (4.6) with α = β = 0 and the estimate
(3.7) from which we get finiteness of the r.h.s. of (4.6) together with a local bound independent
of δ.
Suppose that (4.7i−1), i ≥ 1, is true. We look at the r.h.s. of (4.6i) and observe that by
asssumption

∫

Bρ(x0)
Γ

q+1+αi−1

2

n,δ dx ≤ c(i, ρ) , i.e.

∫

Bρ(x0)
Γ

q+αi+1/2

2

n,δ dx ≤ c(i, ρ) .

Using Young’s inequality with s very large we get

∫

spt η
Γ̃

q−2

2

δ Γ
αi+3/2

2

n,δ dx ≤ c

[

∫

spt η
Γ̃

s q−2

2

δ dx +

∫

spt η
Γ

s
s−1

αi+3/2

2

n,δ dx

]

and obviously the exponent s
s−1

αi+3/2
2 is below (q + 1

2 +αi)/2. In the same way (recall (3.7)) we

can bound the quantity
∫

spt η Γ̃
(p−2)/2
δ Γ

(αi+3/2)/2
n,δ dx. The finiteness of

∫

spt η Γ
(q+βi)/2
n,δ dx follows

from (4.7i−1). We have 2αi − βi = αi−1 + 1 and
∫

Bρ(x0) Γ
(q+1+αi−1)/2
n,δ dx ≤ c(i, ρ), hence

∫

spt η
Γ̃

q
2

δ Γ
2αi−βi

2

n,δ ≤ c

[

∫

spt η
Γ̃

s· q
2

δ dx +

∫

spt η
Γ

s
s−1

αi−1+1

2

n,δ dx

]

,
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and s
s−1(αi−1 + 1)1

2 < (q + 1 + αi−1)/2 for sufficiently large s. For
∫

spt η Γ̃
p/2
δ Γ

(2αi−βi)/2
n,δ dx we

argue in the same way. Finally

∫

spt η
Γ

q+2αi−βi
2

n,δ dx =

∫

spt η
Γ

q+αi−1+1

2

n,δ dx

stays bounded by (4.7i−1). Thus we have proved that all of the quantities on the r.h.s. of (4.6i)
are bounded in an appropriate way which gives (4.7i), in particular we have that

∫

Bρ(x0)
Γ

q+1+αi
2

n,δ dx ≤ c(i, ρ) < ∞

for any i and any ρ < R. Since αi → ∞ as i → ∞, the claim follows since now we know

‖uδ‖W 1
t (Bρ(x0)) ≤ c(ρ, t) (4.8)

for all t < ∞, ρ < R. �

Having established (4.8), the proof of C1,α-regularity can be obtained following for example [Bi],
proof of Theorem 5.22, or [BF4] Lemma 2.9, where it is shown that from (4.8) we can deduce
‖∇uδ‖L∞(Bρ(x0)) ≤ c(ρ) < ∞. Uniform Hölder continuity of ∇uδ then follows as outlined in
[BF4], end of Section 2.1. Alternatively we may quote [LU], Chap.4, Sec.6, or [Ma1], Theorem
D, as references for the step from Lipschitz regularity to Hölder continuity of the gradient.
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