Universität des Saarlandes

Fachrichtung 6.1 - Mathematik

Preprint Nr. 127

On the Tate Modules of Elliptic Curves over a Local Field of Characteristic two

Jochen Frieden

Saarbrücken 2004

On the Tate Modules of Elliptic Curves over a Local Field of Characteristic two

Jochen Frieden

Saarland University

Department of Mathematics
Postfach 151150
D-66041 Saarbrücken
Germany
frieden@math.uni-sb.de

Edited by
FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken
Germany

Fax: $\quad+496813024443$
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

Let $K:=\mathbb{F}_{2^{f}}((T))$ be the field of Laurent series over the finite field with 2^{f} elements. Every non-supersingular elliptic curve \mathcal{E} over K has a short Weierstraß form $$
Y^{2}+X Y=X^{3}+\alpha X^{2}+\beta
$$ with appropriate $\alpha, \beta \in K$. The Tate module of \mathcal{E} yields a two dimensional representation $\pi_{\alpha, \beta}^{\prime}$ of the Weil-Deligne group $W^{\prime}\left(K^{\text {sep }} / K\right)$. Contrary to characteristics different from two, arbitrarily high ramification may occur. If β is integral, the rational points of \mathcal{E} can be completely described in terms of periodic functions. As a consequence, $\pi_{\alpha, \beta}^{\prime}$ is completely known.

We will deal with the case in which β is not integral. In this case we can consider $\pi_{\alpha, \beta}^{\prime}$ as a representation $\pi_{\alpha, \beta}$ of the Weil group $W\left(K^{\text {sep }} / K\right)$ of K. The aim of this article is to give an explicit description of $\pi_{\alpha, \beta}$ and to determine the ramification properties. As a consequence, we will be able to calculate the conductor.

1 Introduction

In the following we will recall the most important facts and definitions. For further information as well as a general introduction to this topic, we refer to [3]. Our notation concerning local fields is the notation from [4].
Let K be a local field with finite residue field of characteristic p with $q=$ p^{f} elements. By $G\left(K^{\text {sep }} / K\right)$ we denote the absolute Galois group of K, thought of as the group of automorphisms of a fixed separable closure $K^{\text {sep }}$ of K. The group $G\left(K^{\text {sep }} / K\right)$ can be regarded as a topological group by taking $G\left(K^{\text {sep }} / M\right)$, where M runs over all finite Galois extensions of K, as a fundamental system of open neighbourhoods of the identity element. Let K_{0} be the maximal unramified extension. We consider the non-open subgroup $G_{0}\left(K^{\text {sep }} / K\right):=G\left(K^{\text {sep }} / K_{0}\right)$, which is called inertia group. The quotient

$$
G\left(K^{\mathrm{sep}} / K\right) / G_{0}\left(K^{\mathrm{sep}} / K\right)
$$

is canonically isomorphic to the absolute Galois group $G\left(\mathbb{F}_{q}^{\text {alg }} / \mathbb{F}_{q}\right)$ of the residue field. An element of $G\left(K^{\text {sep }} / K\right)$ is called Frobenius if it is mapped to the Frobenius automorphism $x \longmapsto x^{q}$ of $G\left(\mathbb{F}_{q}^{\text {alg }} / \mathbb{F}_{q}\right)$.
The Weil group $W\left(K^{\text {sep }} / K\right)$ is the subgroup of $G\left(K^{\text {sep }} / K\right)$ generated by the inertia group $G_{0}\left(K^{\text {sep }} / K\right)$ and a Frobenius element. We define $W\left(K^{\text {sep }} / K\right)$ as a topological group by requiring that the topology on $G_{0}\left(K^{\text {sep }} / K\right)$ is the
topology induced from $G\left(K^{\text {sep }} / K\right)$ and that $G_{0}\left(K^{\text {sep }} / K\right)$ itself is open. A representation of $W\left(K^{\text {sep }} / K\right)$ is a continuous group homomorphism

$$
\rho: W\left(K^{\mathrm{sep}} / K\right) \longrightarrow \mathrm{GL}(W),
$$

where W is a finite dimensional vector space over \mathbb{C} and $\mathrm{GL}(W)$ denotes the general linear group of W, endowed with its complex topology. We recall that there always exists a finite Galois extension L of K so that the restriction of ρ to $G_{0}\left(K^{\text {sep }} / L\right)$ is trivial. As in [4] we can choose an uniformizer T_{L} of L and define for every $i \in \mathbb{N}_{0}$ the higher ramification group

$$
G_{i}(L / K):=\left\{\sigma \in G(L / K) \mid \nu_{L}\left(\sigma\left(T_{L}\right)-T_{L}\right) \geq i+1\right\} .
$$

This definition does not depend on the choice of T_{L}. We now consider for every $i \in \mathbb{N}_{0}$ the action of $G_{i}(L / K)$ on W and denote by $W^{G_{i}(L / K)}$ the fixed space of W. Then the conductor of ρ is defined by

$$
\operatorname{cond}(\rho):=\sum_{i=0}^{\infty} \frac{\# G_{i}(L / K)}{\# G_{0}(L / K)} \operatorname{dim}\left(W / W^{G_{i}(L / K)}\right)
$$

We have to add that $\operatorname{cond}(\rho)$ is always an integer greater or equal zero, which does not depend on the choice of L. We think of $\operatorname{cond}(\rho)$ as a measure which describes the ramification properties of ρ, i.e., the complexity of the operation of the higher ramification groups on W.
We now consider an elliptic curve \mathcal{E} over K and assume that \mathcal{E} has potential good reduction, i.e., that the j-invariant of \mathcal{E} is integral. We further fix an embedding $\iota: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$ and consider the tensor product

$$
V:=\mathbb{C} \otimes_{\iota} T_{\ell}(\mathcal{E}),
$$

where $T_{\ell}(\mathcal{E})$ is the ℓ-adic Tate module and ℓ a prime different from p. The action of $G\left(K^{\text {sep }} / K\right)$ on the points of \mathcal{E} induces an action of $G\left(K^{\text {sep }} / K\right)$ on V. Restricting this action to the Weil group defines a continuous representation $\pi: W\left(K^{\text {sep }} / K\right) \longrightarrow \mathrm{GL}(V)$. The isomorphism class of π is independent of the choices of ℓ and ι.
We can apply the same construction if the j-invariant fails to be integral, but then π will turn out to be not continuous. In this case, there is a construction due to Deligne and Grothendieck which gives us a representation π^{\prime} of the so-called Weil-Deligne group $W^{\prime}\left(K^{\text {sep }} / K\right)$. This group can be realised as a semi-direct product of the form $W\left(K^{\text {sep }} / K\right) \ltimes \mathbb{C}$. Since there is a satisfactory characterisation for π^{\prime}, if the j-invariant is non-integral, there is no need to treat this case in detail here. We restrict to presenting the result. The representation π^{\prime} is then isomorphic to the two dimensional special representation
$\operatorname{sp}(2)$ iff \mathcal{E} has multiplicative reduction. If the reduction of \mathcal{E} is additive then there exists always a separable quadratic extension M / K so that \mathcal{E} has multiplicative reduction over M. If χ is the unique non-trivial character of $W\left(K^{\text {sep }} / K\right)$ vanishing on $W\left(K^{\text {sep }} / M\right)$, then we have $\pi^{\prime} \cong \chi \otimes \operatorname{sp}(2)$. For the definitions and proofs we refer to [3].
The famous Neron-Ogg-Shafarevich criterion says that \mathcal{E} has good reduction iff π is unramified, i.e., if π is trivial on $G_{0}\left(K^{\text {sep }} / K\right)$. Now an extension M of the ground field K causes a restriction of π to the corresponding subgroup $W\left(K^{\text {sep }} / M\right)$ of $W\left(K^{\text {sep }} / K\right)$. So if L is an extension of K such that \mathcal{E} has good reduction over L, then $\pi\left(G_{0}\left(K^{\mathrm{sep}} / M\right)\right)$ has to be trivial. Further it is well known that such an L can be obtained by adjoining the coordinates of the set of all ℓ-torsion points.
We now restrict ourselves to the case that K is of equal characteristic 2 . That is, K can be considered as a field of Laurent series $\mathbb{F}_{2^{f}}((T))$ over a finite field $\mathbb{F}_{2 f}$. In this case, every elliptic curve over K with non-vanishing j-invariant has a short Weierstraß form

$$
\mathcal{E}: Y^{2}+X Y=X^{3}+\alpha X^{2}+\beta
$$

for appropriate $\alpha, \beta \in K$. Using this short Weierstraß form the j-invariant is β^{-1}. So the condition of \mathcal{E} having potential good reduction means that β^{-1} is integral. The aim of this article is to analyse the corresponding representation $\pi_{\alpha, \beta}$ of the Weil group $W\left(K^{\text {sep }} / K\right)$.
Since $\pi_{\alpha, \beta}$ is semi-simple, it has to be irreducible or the direct sum of two one dimensional representations. So there are two questions natural to ask about $\pi_{\alpha, \beta}$.

- First, when is $\pi_{\alpha, \beta}$ irreducible ?
- Secondly, how can we describe $\pi_{\alpha, \beta}$ explicitly in terms of α and β ?

Further, we want to describe the ramification properties of $\pi_{\alpha, \beta}$ and to calculate $\operatorname{cond}\left(\pi_{\alpha, \beta}\right)$.
The impact of the parameter α on $\pi_{\alpha, \beta}$ is already known and can easily be described. Viz., let γ be an element of K, and consider the splitting field M of the polynomial $X^{2}+X+\gamma$. Define χ_{γ} as the unique one dimensional representation of $W\left(K^{\text {sep }} / K\right)$ whose kernel is $W\left(K^{\text {sep }} / M\right)$. Then for all $\alpha^{\prime} \in K$ we have an isomorphism

$$
\pi_{\alpha^{\prime}, \beta} \cong \chi_{\alpha+\alpha^{\prime}} \otimes \pi_{\alpha, \beta} .
$$

2 Adjoining coordinates of 3-torsion points

In this section we will give an explicit construction of a Galois extension L over K such that the restriction of $\pi_{\alpha, \beta}$ to $G_{0}\left(K^{\text {sep }} / L\right)$ is trivial. This extension may be obtained by adjoining coordinates of the ℓ-torsion points. In order to minimise the calculation effort we choose $\ell=3$. Applying the duplication formula [5, III.2.3 (d)] gives us the following system

$$
\begin{gathered}
0=x^{4}+x^{3}+\beta \\
0=y^{2}+x y+x^{3}+\alpha x^{2}+\beta,
\end{gathered}
$$

whose solutions (x, y) are precisely the coordinates of the non-trivial 3-torsion-points. For the construction of L we choose

- a primitive third root φ of the unit element 1 ,
- a third root γ of β,
- an element D of $K^{\text {sep }}$ satisfying $D+D^{2}=\gamma$,
- an element E of $K^{\text {sep }}$ satisfying $E+E^{2}=D$, and
- an element F_{α} of $K^{\text {sep }}$ satisfying $F_{\alpha}+F_{\alpha}^{2}=(D+1) E+\alpha$.

We set $L:=K\left(\varphi, E, F_{\alpha}\right)$. An explicit calculation shows that the 3-torsion points unequal to zero of \mathcal{E} are exactly the points $P_{i j}=\left(x_{i}, y_{i j}\right)$ with

$$
\begin{array}{ll}
x_{1}:=(D+1) E, & x_{2}:=(D+1)(E+1), \\
x_{3}:=(E+\varphi) D, & x_{4}:=(E+\varphi+1) D
\end{array}
$$

and

$$
\begin{array}{ll}
y_{11}:=x_{1}\left(x_{1}+F_{\alpha}\right), & y_{12}:=x_{1}\left(x_{1}+F_{\alpha}+1\right), \\
y_{21}:=x_{2}\left(x_{2}+F_{\alpha}+E+\varphi\right), & y_{22}:=x_{2}\left(x_{2}+F_{\alpha}+E+\varphi+1\right), \\
y_{31}:=x_{3}\left(x_{3}+F_{\alpha}+(\varphi+1) E\right), & y_{32}:=x_{3}\left(x_{3}+F_{\alpha}+(\varphi+1) E+1\right), \\
y_{41}:=x_{4}\left(x_{4}+F_{\alpha}+\varphi E\right), & y_{42}:=x_{4}\left(x_{4}+F_{\alpha}+\varphi E+1\right) .
\end{array}
$$

On the other hand, we can recover the generators φ, E, F_{α} by the formulas

$$
\varphi=\frac{x_{3}}{E+E^{2}}+E, \quad E=\frac{x_{1}}{x_{1}+x_{2}}, \quad F_{\alpha}=\frac{y_{11}}{x_{1}}+x_{1} .
$$

We conclude that L is the smallest extension of K containing the coordinates of all 3 -torsion points.
We now consider \mathcal{E} as an elliptic curve over L.

Proposition 2.1 Over L the elliptic curve \mathcal{E} is isomorphic to the elliptic curve

$$
\mathcal{E}_{E}: Y^{2}+E^{-1} X Y+Y=X^{3}+E^{-3}+1
$$

PROOF. First, we make the transformation $(X, Y) \longmapsto\left(X, Y+X\left(E+F_{\alpha}\right)\right)$. This yields the equation

$$
Y^{2}+X Y=X^{3}+\left(F_{\alpha}+F_{\alpha}^{2}+E+E^{2}+\alpha\right) X^{2}+\beta
$$

Using the identities

$$
F_{\alpha}+F_{\alpha}^{2}=(D+1) E+\alpha=E^{3}+E^{2}+E+\alpha
$$

and

$$
\beta=\gamma^{3}=\left(E+E^{4}\right)^{3}=E^{3}+E^{6}+E^{9}+E^{12}
$$

we obtain

$$
Y^{2}+X Y=X^{3}+E^{3} X^{2}+E^{3}+E^{6}+E^{9}+E^{12}
$$

Now we make the transformation $(X, Y) \longmapsto\left(X+E^{3}, Y+E^{6}\right)$, which gives us

$$
Y^{2}+X Y+E^{3} Y=X^{3}+E^{3}+E^{6}
$$

Finally, the transformation $(X, Y) \longmapsto\left(E^{2} X, E^{3} Y\right)$ leads us to the result

$$
Y^{2}+E^{-1} X Y+Y=X^{3}+E^{-3}+1
$$

Note that the curve \mathcal{E}_{E} has integral coefficients. In order to simplify our exposition, we will further assume that the valuation $\nu_{K}(\beta)$ is strictly less than zero. Then we can consider the reduced curve, which is given by the equation

$$
Y^{2}+Y=X^{3}+1
$$

The coefficients are independent of α and β, and the curve \mathcal{E}_{E} has good reduction. Now we can apply the criterion of Neron-Ogg-Shafarevich, which states that the action of $G_{0}\left(K^{\text {sep }} / L\right)$ on V is trivial and the action of a Frobenius automorphism of $G\left(K^{\mathrm{sep}} / L\right)$ is given by the action of the Frobenius automorphism of $G\left(\mathbb{F}_{2}^{\text {alg }} / \mathbb{F}_{2^{g}}\right)$, where $\mathbb{F}_{2^{g}}$ is the residue field of L. On the other hand, the eigenvalues of the Frobenius automorphism can be obtained just by counting rational points.
In the following we will write $\pi_{\alpha, \beta}^{M}$ for the restriction of $\pi_{\alpha, \beta}$ to $W\left(K^{\text {sep }} / M\right)$ for an arbitrary finite separable extension M of K. We recall that, if we
consider \mathcal{E} as an elliptic curve over M, the construction of $\pi_{\alpha, \beta}^{M}$ is completely analogous to that of $\pi_{\alpha, \beta}$. To avoid confusion, we will sometimes write $\pi_{\alpha, \beta}^{K}$ instead of $\pi_{\alpha, \beta}$ if we like to emphasise that $\pi_{\alpha, \beta}$ is defined over the ground field K.
In order to characterise the representation $\pi_{\alpha, \beta}^{L}$, we define the one dimensional representation

$$
\Omega_{K}: W\left(K^{\mathrm{sep}} / K\right) \longrightarrow \mathbb{C}^{*}
$$

by requiring that it should be trivial on $G_{0}\left(K^{\mathrm{sep}} / K\right)$ and

$$
\Omega_{K}\left(\Phi_{K}\right)=\left(\frac{\mathrm{i}}{\sqrt{2}}\right)^{f}
$$

for every Frobenius element Φ_{K} of $G\left(K^{\mathrm{sep}} / K\right)$. This definition ensures that, for every finite separable extension M of K, the representation Ω_{M} is equal to the restriction of Ω_{K} to $W\left(K^{\text {sep }} / M\right)$.

Proposition 2.2 The representation

$$
\Omega_{K} \otimes \pi_{\alpha, \beta}^{K}: W\left(K^{\mathrm{sep}} / K\right) \longrightarrow \mathrm{GL}(V)
$$

is trivial on $W\left(K^{\text {sep }} / L\right)$.

PROOF.

Let Φ_{L} be a Frobenius element of $G\left(K^{\text {sep }} / L\right)$ and $\mathbb{F}_{2^{g}}$ the residue field of L. We only have to show that $\pi_{\alpha, \beta}^{K}\left(\Phi_{L}\right)=\left(\frac{\sqrt{2}}{\mathrm{i}}\right)^{g}$. According to the Neron-OggShafarevich criterion, $\pi_{\alpha, \beta}^{K}\left(\Phi_{L}\right)$ is determined by the action of the Frobenius element $\Phi_{\mathbb{F}_{2 g}}$ of $G\left(\mathbb{F}_{2}^{\text {alg }} / \mathbb{F}_{2^{g}}\right)$ on the Tate module of the reduced curve

$$
Y^{2}+Y=X^{3}+1
$$

Since this curve is even defined over \mathbb{F}_{2}, we have only to regard the action of the Frobenius $\Phi_{\mathbb{F}_{2}}$ of $G\left(\mathbb{F}_{2}^{\text {alg }} / \mathbb{F}_{2}\right)$. Over \mathbb{F}_{2} the curve has precisely 3 points. As described in [5, p. 136], we get for the eigenvalues λ_{1} and λ_{2} of $\Phi_{\mathbb{F}_{2}}$ the relations

$$
\begin{gathered}
3=1-\lambda_{1}-\lambda_{2}+2, \\
\lambda_{1}=\overline{\lambda_{2}},
\end{gathered}
$$

and

$$
\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=\sqrt{2} .
$$

This is possible only if these eigenvalues are $\sqrt{2} i$ and $-\sqrt{2} i$. Since $\varphi \in L$, the subfield $\mathbb{F}_{4}=\{0,1, \varphi, \varphi+1\}$ is contained in L. It follows that g is even.

Therefore $\pi_{\alpha, \beta}^{K}\left(\Phi_{L}\right)$ has two equal eigenvalues $\left(\frac{\sqrt{2}}{\mathrm{i}}\right)^{g}$ and must be a scalar.

As a consequence of this proposition, we can divide out $W\left(K^{\text {sep }} / L\right)$ and obtain a representation $\rho_{\alpha, \beta}^{K}$ of the finite Galois group

$$
W\left(K^{\text {sep }} / K\right) / W\left(K^{\text {sep }} / L\right) \cong G(L / K)
$$

which contains all the information about $\pi_{\alpha, \beta}$.
Proposition 2.3 The representation

$$
\rho_{\alpha, \beta}^{K}: G(L / K) \longrightarrow \mathrm{GL}(V)
$$

is injective.

PROOF.

Suppose $\sigma \in G(L / K)$ with $\rho_{\alpha, \beta}^{K}(\sigma)=1$. Then σ has to act as a scalar on the 3 -torsion points. So we have $\sigma(P)=-P$ or P for all 3 -torsion points $P=(x, y)$. It follows that $\sigma\left(x_{i}\right)=x_{i}$ for $i=1, \ldots, 4$. So we conclude that $\sigma(\varphi)=\varphi$ and $\sigma(E)=E$, which means that σ is trivial on $K(\varphi, E)$. In the case $K(\varphi, E)=L$ we are done.
In the case $K(\varphi, E) \neq L$ it remains to show that the restriction

$$
\Omega_{K(\varphi, E)} \otimes \pi_{\alpha, \beta}^{K(\varphi, E)}
$$

of $\Omega_{K} \otimes \pi_{\alpha, \beta}^{K}$ is not trivial. We apply our remark in the end of the introduction. Since we have

$$
\left(F_{\alpha}+E\right)^{2}+F_{\alpha}+E+\alpha+E^{3}=F_{\alpha}^{2}+F_{\alpha}+D+\alpha+E^{3}=0,
$$

we get

$$
\pi_{\alpha, \beta}^{K(\varphi, E)} \cong \chi \otimes \pi_{E^{3}, \beta}^{K(\varphi, E)}
$$

where χ is the one dimensional representation of $W\left(K^{\text {sep }} / K(\varphi, E)\right)$ defined by the condition $\operatorname{Ker}(\chi)=W\left(K^{\text {sep }} / L\right)$. From the identity

$$
\left(F_{E^{3}}\right)^{2}+F_{E^{3}}=(D+1) E+E^{3}=D,
$$

we conclude that $K\left(\varphi, E, F_{E^{3}}\right)=K(\varphi, E)$. Therefore $\Omega_{K(\varphi, E)} \otimes \pi_{E^{3}, \beta}^{K(\varphi, E)}$ has to be trivial, which means that $\Omega_{K(\varphi, E)} \otimes \pi_{\alpha, \beta}^{K(\varphi, E)}$ is not.

As a simple conclusion of this proposition, we can answer the first question asked in the introduction.

Conclusion 2.4 The representation $\pi_{\alpha, \beta}$ is reducible iff $G(L / K)$ is abelian.

3 Functorial properties of $\pi_{\alpha, \beta}$

In order to describe how $\pi_{\alpha, \beta}$ depends on β, we assume $\alpha=0$. We now consider the smallest local subfield of K over which the curve \mathcal{E} is defined. Obviously, this is the field $\tilde{K}:=\mathbb{F}_{2}\left(\left(\beta^{-1}\right)\right)$. Note that this construction is only possible because we made the assumption $\nu_{K}(\beta)<0$.
Considering \mathcal{E} as an elliptic curve over \tilde{K}, we can apply the construction mentioned above and obtain a representation $\pi_{0, \beta}^{\tilde{K}}$ of the Weil group $W\left(\tilde{K}^{\text {sep }} / \tilde{K}\right)$. Similarly we get a representation $\rho_{0, \beta}^{\tilde{K}}$ of $G(\tilde{L} / \tilde{K})$, where $\tilde{L}=\tilde{K}\left(\varphi, E, F_{0}\right)$. Further, we may identify the underlying spaces of $\pi_{0, \beta}^{\tilde{K}}$ and $\pi_{0, \beta}^{K}$ as well as the underlying spaces of $\rho_{0, \beta}^{\tilde{K}}$ and $\rho_{0, \beta}^{K}$. If we do so, we get the following proposition.

Proposition 3.1 The following diagram is commutative:

PROOF.

Comparing the action of $G\left(K^{\text {sep }} / K\right)$ with that of $G\left(\tilde{K}^{\text {sep }} / \tilde{K}\right)$ on V, we get the commutative diagram

Figure 2:

We now compare Ω_{K} with $\Omega_{\tilde{K}}$. They are both trivial on the inertia groups $G_{0}\left(K^{\text {sep }} / K\right)$ and $G_{0}\left(\tilde{K}^{\text {sep }} / \tilde{K}\right)$. We remark further that the rule $\left.\sigma \longmapsto \sigma\right|_{\tilde{K}^{\text {sep }}}$
maps the inertia group $G_{0}\left(K^{\text {sep }} / K\right)$ to $G_{0}\left(\tilde{K}^{\text {sep }} / \tilde{K}\right)$. If Φ_{K} is a Frobenius element of $W\left(K_{\tilde{K}}^{\text {sep }} / K\right)$, then $\left.\Phi_{K}\right|_{\tilde{K}} ^{\text {sep }}$ is the f-th power of a Frobenius element $\Phi_{\tilde{K}}$ of $W\left(\tilde{K}^{\text {sep }} / \tilde{K}\right)$. This yields the equation

$$
\Omega_{\tilde{K}}\left(\left.\Phi_{K}\right|_{\tilde{K}^{\operatorname{sep}}}\right)=\Omega_{\tilde{K}}\left(\Phi_{\tilde{K}}^{f}\right)=\left(\frac{\mathrm{i}}{\sqrt{2}}\right)^{f}=\Omega_{K}\left(\Phi_{K}\right) .
$$

So we have the commutative diagram

Now we get the required result by tensoring both diagrams and dividing out the subgroup $W\left(K^{\text {sep }} / L\right)$ on the left and $W\left(\tilde{K}^{\text {sep }} / \tilde{L}\right)$ on the right hand side.

The significance of the last proposition is that we only have to consider the case $K=\mathbb{F}_{2}((T))$ and $\beta=T^{-1}$, what we will do now.

4 The special case $K=\mathbb{F}_{2}((T))$ and $\beta=T^{-1}$

Throughout this section we assume $K=\mathbb{F}_{2}((T))$ and $\beta=T^{-1}$. We note that $K(\varphi) / K$ is an unramified extension. Further we have the equations

$$
\beta=E^{3}+E^{6}+E^{9}+E^{12}
$$

and

$$
F_{0}+F_{0}^{2}=E^{3}+E^{2}+E .
$$

Since $\nu_{K}(\beta)=-1$, we conclude that $\nu_{K}(E)=-\frac{1}{12}$ and $\nu_{K}\left(F_{0}\right)=-\frac{1}{24}$. In particular $L / K(\varphi)$ must be totally ramified of degree 24 . So L / K has maximal degree 48. Since we obtained L by adjoining coordinates of 3torsion points, we have the inclusion $G(L / K) \hookrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ and therefore an isomorphism

$$
G(L / K) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right) .
$$

So we can consider $\rho_{0, \beta}^{K}$ as a representation of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$. We now apply the representation theory of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, which can be found for example in [2]. We briefly recall some basic facts.
Referring to the table on page 70 , loc. cit., all two dimensional irreducible representations of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ are cuspidal. The cuspidal representations of the group $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ are parametrised by the regular characters of \mathbb{F}_{9}^{*}. A character $\mu: \mathbb{F}_{9}^{*} \longrightarrow \mathbb{C}^{*}$ is called regular if it does not agree with the conjugate character $\bar{\mu}$. The conjugate character $\bar{\mu}$ is defined by $\bar{\mu}(x):=\mu(\bar{x})$, where \bar{x} is the conjugate of x over \mathbb{F}_{3}. This conjugation of characters yields an equivalence relation on the set of all regular characters of \mathbb{F}_{9}. Each equivalence class corresponds to an isomorphism class of cuspidal representations of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$. As a generator of \mathbb{F}_{9}^{*} we choose the element $\zeta=1+\sqrt{-1}$. We further choose the characters μ_{1}, μ_{2}, and μ_{5} defined by $\mu_{k}(\zeta)=\left(\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}\right)^{k}$ for $k=1,2,5$ as a system of representatives of the equivalence classes of regular characters. By ρ_{k} for $k=1,2,5$ we denote the corresponding isomorphism classes of cuspidal representations of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$. Since μ_{2} is not injective, the representation ρ_{2} is not injective either. So we only have to decide whether $\rho_{0, \beta}^{K}$ is isomorphic to ρ_{1} or ρ_{5}.
To do so we must identify $G(L / K)$ and $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ by choosing a basis for the \mathbb{F}_{3}-vector space of 3 -torsion points. Our choice is the basis $\left(P_{11}, P_{21}\right)$. Then we have the following result.

Proposition 4.1 The representation $\rho_{0, \beta}^{K}$ is isomorphic to ρ_{5}.

PROOF.

Let $\sigma \in G(L / K)$ be the automorphism whose operation on the 3 -torsion points is expressed by the matrix

$$
\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{rr}
0 & -\zeta \bar{\zeta} \\
1 & \zeta+\bar{\zeta}
\end{array}\right) .
$$

According to [2, p. 70] we have

$$
\begin{aligned}
\operatorname{Tr}\left(\mu_{1}\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right)\right) & =-\mu_{1}(\zeta)-\mu_{1}(\bar{\zeta}) \\
& =-\mu_{1}(\zeta)-\mu_{1}\left(\zeta^{3}\right) \\
& =-\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}-\mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}} \\
& =-\mathrm{i} \sqrt{2} .
\end{aligned}
$$

We now determine the action of $\sigma(\varphi)$. Recall that $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ is the only subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ of index two. As a consequence, $K(\varphi) / K$ is the only
subfield of L quadratic over K. Since the matrix corresponding to σ is not contained in $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$, we must have $\sigma(\varphi) \neq \varphi$.
Next we construct an appropriate extension of σ, which will enable us to calculate $\rho_{0, \beta}^{K}(\sigma)$ approximately. Therefore let $\tilde{\sigma} \in W\left(K^{\text {sep }} / K\right)$ be an arbitrary extension of σ. For a fixed Frobenius element Φ_{K} we have $\tilde{\sigma}=\Phi_{K}^{j} \sigma_{0}$, where $j \in \mathbb{Z}$ and $\sigma_{0} \in G_{0}\left(K^{\text {sep }} / K\right)$. Since $f(L / K)=2$ and $\sigma(\varphi) \neq \varphi$, we conclude that j is odd and Φ_{K}^{j-1} is trivial on L. So $\sigma^{*}:=\Phi_{K} \sigma_{0}$ is also an extension of σ. Further we have

$$
\Omega_{K}\left(\sigma^{*}\right)=\frac{\mathrm{i}}{\sqrt{2}} .
$$

Now assume that $\rho_{0, \beta}^{K}$ is isomorphic to ρ_{1}. Then we have

$$
\begin{aligned}
\operatorname{Tr}\left(\pi_{0, \beta}^{K}\left(\sigma^{*}\right)\right) & =\Omega_{K}^{-1}\left(\sigma^{*}\right) \operatorname{Tr}\left(\rho_{0, \beta}^{K}(\sigma)\right) \\
& =\frac{\sqrt{2}}{\mathrm{i}}(-\mathrm{i} \sqrt{2}) \\
& =-2 .
\end{aligned}
$$

On the other hand, the operation of σ^{*} on the 3-torsion points yields the congruence

$$
\begin{aligned}
\operatorname{Tr}\left(\pi_{0, \beta}^{K}\left(\sigma^{*}\right)\right) & \equiv \operatorname{Tr}\left(\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right)\right) \bmod 3 \mathbb{Z}_{3} \\
& \equiv 2 \bmod 3 \mathbb{Z}_{3} .
\end{aligned}
$$

This is clearly a contradiction. So our assumption needs to be false and we conclude that $\rho_{0, \beta}^{K}$ is isomorphic to ρ_{5}.

Now the second question asked in the introduction is completely answered. But this answer is less satisfactory than it appears on a first view, since it fails to reveal the ramification properties of $\pi_{\alpha, \beta}$. This question will be addressed in the next section.

5 The ramification properties of $\pi_{\alpha, \beta}$

In this section we will calculate the conductor of $\pi_{\alpha, \beta}$ in the general case, where α is arbitrary and $\nu_{K}(\beta)<0$. Therefore we need to consider the extension L / K more closely. We define the elements

$$
D_{\varphi}:=\varphi E+(\varphi E)^{2} \quad \text { and } \quad D_{\varphi^{2}}:=\varphi^{2} E+\left(\varphi^{2} E\right)^{2} .
$$

This yields $D_{\varphi}+\left(D_{\varphi}\right)^{2}=\varphi \gamma$ and $D_{\varphi^{2}}+\left(D_{\varphi^{2}}\right)^{2}=\varphi^{2} \gamma$, which should be compared with the relation $D+D^{2}=\gamma$. So the elements D_{φ} and $D_{\varphi^{2}}$ describe how D changes if we choose $\varphi \gamma$ or $\varphi^{2} \gamma$ instead of γ as a third root of β. Later we will see that this change of D in dependence of the choice of γ becomes important for the calculation of the conductor.
In order to calculate $\operatorname{cond}\left(\pi_{\alpha, \beta}\right)$ (see section 1), we have to calculate the higher ramification groups $G_{i}(L / K)$ for $i>0$. We begin with a closer look at $G_{1}(L / K)$. Since $K(\varphi, \gamma) / K$ is tamely ramified, we have

$$
G_{1}(L / K) \subset G(L / K(\varphi, \gamma))
$$

Lemma 5.1 Let $\sigma \in G_{1}(L / K)$. Then all possible values for the pair

$$
\left(\sigma(E), \sigma\left(F_{\alpha}\right)\right)
$$

are listed in the following table:
Table 1: Possible elements of $G_{1}(L / K)$

$\sigma(\mathbf{E})$	$\sigma\left(\mathbf{F}_{\alpha}\right)$
E	F_{α}
E	$F_{\alpha}+1$
$E+1$	$F_{\alpha}+E+\varphi$
$E+1$	$F_{\alpha}+E+\varphi+1$
$E+\varphi$	$F_{\alpha}+(\varphi+1) E$
$E+\varphi$	$F_{\alpha}+(\varphi+1) E+1$
$E+\varphi+1$	$F_{\alpha}+\varphi E$
$E+\varphi+1$	$F_{\alpha}+\varphi E+1$

For the order of σ we have

$$
\operatorname{ord}(\sigma)= \begin{cases}1 & \text { if } \sigma(E)=E \text { and } \sigma\left(F_{\alpha}\right)=F_{\alpha} \\ 2 & \text { if } \sigma(E)=E \text { and } \sigma\left(F_{\alpha}\right)=F_{\alpha}+1 \\ 4 & \text { else. }\end{cases}
$$

PROOF.

Since σ leaves $\gamma=E+E^{4}$ invariant, we have the identity

$$
\sigma(E)+\sigma\left(E^{4}\right)=E+E^{4} .
$$

On the other hand, we have $E+a+(E+a)^{4}=E+E^{4}+a+a^{4}$ for all $a \in \mathbb{F}_{4}=\{0,1, \varphi, \varphi+1\}$. So $E, E+1, E+\varphi, E+\varphi+1$ are exactly the possible values for $\sigma(E)$.

In the case $\sigma(E)=E$ we obtain from $F_{\alpha}+F_{\alpha}^{2}=(D+1) E+\alpha$ the equation

$$
\sigma\left(F_{\alpha}\right)+\sigma\left(F_{\alpha}\right)^{2}=(D+1) E+\alpha
$$

which has the solutions $\sigma\left(F_{\alpha}\right)=F_{\alpha}$ and $\sigma\left(F_{\alpha}\right)=F_{\alpha}+1$. We leave it to the reader as an exercise to check that we obtain the equation

$$
\sigma\left(F_{\alpha}\right)+\sigma\left(F_{\alpha}\right)^{2}=(D+1)(E+1)+\alpha
$$

in the case $\sigma(E)=E+1$, the equation

$$
\sigma\left(F_{\alpha}\right)+\sigma\left(F_{\alpha}\right)^{2}=D(E+\varphi)+\alpha
$$

in the case $\sigma(E)=E+\varphi$, and

$$
\sigma\left(F_{\alpha}\right)+\sigma\left(F_{\alpha}\right)^{2}=D(E+\varphi+1)+\alpha
$$

in the case $\sigma(E)=E+\varphi+1$. Further the reader should check that the values for $\sigma\left(F_{\alpha}\right)$ given in the table are all possible solutions of these equations.
There remains the calculation of $\operatorname{ord}(\sigma)$. In the case $\sigma(E)=E$ it is clear that $\operatorname{ord}(\sigma)=1$ if $\sigma\left(F_{\alpha}\right)=F_{\alpha}$ and $\operatorname{ord}(\sigma)=2$ if $\sigma\left(F_{\alpha}\right)=F_{\alpha}+1$. In all other cases we have only to show that $\sigma^{2}(E)=E$ and $\sigma^{2}\left(F_{\alpha}\right)=F_{\alpha}+1$, which we leave again as an exercise.

We now calculate for every possible $\sigma \in G_{1}(L / K)$ the numbers

$$
i_{L / K}(\sigma):=\nu_{L}\left(\sigma\left(T_{L}\right)+T_{L}\right),
$$

where T_{L} is an arbitrary uniformizer of L. Let us recall some basic facts about these numbers, which can be found in [4, Chap. 4]. We assume that we have a tower $M \supset N \supset K$, where M / K is Galois. First we have the identity

$$
\begin{equation*}
i_{M / K}(\sigma)=i_{M / N}(\sigma) \tag{1}
\end{equation*}
$$

for every $\sigma \in G(M / N)$. Secondly, if N / K is Galois then

$$
\begin{equation*}
i_{N / K}(\sigma)=\frac{1}{e(M / N)} \sum_{\substack{s \in G(M / K) \\ s l_{N}=\sigma}} i_{M / K}(s) \tag{2}
\end{equation*}
$$

for each $\sigma \in G(N / K)$. Finally we have the relation

$$
\begin{equation*}
d(M / K)=\sum_{\sigma \in G(M / K) \backslash\left\{\operatorname{id}_{M}\right\}} i_{M / K}(\sigma), \tag{3}
\end{equation*}
$$

where $d(M / K)$ denotes the different exponent of M / K.

Lemma 5.2 1. Let $\sigma \in G_{1}(L / K)$ with $\sigma(E)=E$ and $\sigma\left(F_{\alpha}\right)=F_{\alpha}+1$.
Then we have

$$
i_{L / K}(\sigma)=d(L / K(\varphi, E))
$$

2. If $d(L / K(\varphi, E))>0$ then there is a $\sigma \in G_{1}(L / K)$ with $\sigma(E)=E$ and $\sigma\left(F_{\alpha}\right)=F_{\alpha}+1$.

PROOF.

Assertion (1) is just a simple application of (1) and (3). To show (2), just note that $L / K(\varphi, E)$ has to be wildly ramified of degree two. Therefore an automorphism σ with the required properties exists.

Lemma 5.3 1. Let $\sigma \in G_{1}(L / K)$ with $\sigma(E)=E+1$. Then we have

$$
i_{L / K}(\sigma)=d(K(E) / K(D)) .
$$

2. If $d(K(E) / K(D))>0$ then there are two different automorphisms $\sigma \in$ $G_{1}(L / K)$ with the property $\sigma(E)=E+1$.

PROOF.

Ad (1). An easy calculation shows that σ has order 4 and that $\sigma^{3}(E)=E+1$. Every subgroup of $G(L / K)$ which contains σ also contains σ^{3} and vice versa. Therefore we have $i_{L / K}(\sigma)=i_{L / K}\left(\sigma^{3}\right)$. Applying (1), (2), and (3) we get

$$
\begin{aligned}
\frac{2}{e(L / K(\varphi, E))} i_{L / K}(\sigma) & =i_{K(\varphi, E) / K}\left(\left.\sigma\right|_{K(\varphi, E)}\right) \\
& =i_{K(\varphi, E) / K(\varphi, D)}\left(\left.\sigma\right|_{K(\varphi, E)}\right) \\
& =d(K(\varphi, E) / K(\varphi, D))
\end{aligned}
$$

Since $K(\varphi, D)$ is the fixed field of $<\sigma>$ and $\sigma \in G_{1}(L / K) \subset G_{1}(L / K(\varphi, D))$, the extension $L / K(\varphi, D)$ needs to be totally ramified. It follows that

$$
i_{L / K}(\sigma)=d(K(\varphi, E) / K(\varphi, D))
$$

Finally note that the transitivity property of the different gives us

$$
d(K(\varphi, E) / K(\varphi, D))=d(K(E) / K(D)) .
$$

Ad (2). Let $\tilde{\sigma}$ be the unique non-trivial element of $G(K(\varphi, E) / K(\varphi, D))$ and $\sigma \in G(L / K(\varphi, D))$ an extension of $\tilde{\sigma}$. Then we have $\sigma(E)=E+1$. In order to show that σ is in $G_{1}(L / K)$, it suffices to show that $L / K(\varphi, D)$ is totally
ramified. Since σ has order 4, the extension $L / K(\varphi, D)$ is cyclic of degree 4. Let K^{\prime} be the maximal unramified subextension of $L / K(\varphi, D)$. From $d(K(E) / K(D))>0$ we conclude that the degree of $K^{\prime} / K(\varphi, D)$ is at most two. If it were two we had $K^{\prime}=K(\varphi, E)$, which is impossible. Thus we have shown that σ has the required properties. Finally it is easily seen that σ^{3} is also an element of $G_{1}(L / K)$ for which $\sigma^{3}(E)=E+1$ holds.

In the same way we get the following two lemmata.
Lemma 5.4 1. Let $\sigma \in G_{1}(L / K)$ with $\sigma(E)=E+\varphi+1$. Then we have

$$
i_{L / K}(\sigma)=d\left(K(\varphi E) / K\left(D_{\varphi}\right)\right) .
$$

2. If $d\left(K(\varphi E) / K\left(D_{\varphi}\right)\right)>0$ then there are two different automorphisms $\sigma \in G_{1}(L / K)$ with the property $\sigma(E)=E+\varphi+1$.

Lemma 5.5 1. Let $\sigma \in G_{1}(L / K)$ with $\sigma(E)=E+\varphi$. Then we have

$$
i_{L / K}(\sigma)=d\left(K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right)\right) .
$$

2. If $d\left(K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right)\right)>0$ then there are two different automorphisms $\sigma \in G_{1}(L / K)$ with the property $\sigma(E)=E+\varphi$.

Now we are able to calculate the numbers $\# G_{i}(L / K)$.
Proposition 5.6 Let

$$
\begin{aligned}
r & :=\min \left\{d(K(E) / K(D)), d\left(K(\varphi E) / K\left(D_{\varphi}\right)\right), d\left(K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right)\right)\right\}, \\
s & :=\max \left\{d(K(E) / K(D)), d\left(K(\varphi E) / K\left(D_{\varphi}\right)\right), d\left(K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right)\right)\right\},
\end{aligned}
$$

and

$$
t:=d(L / K(\varphi, E))
$$

Then we have

$$
\# G_{i}(L / K)= \begin{cases}8 & \text { if } i<r \\ 4 & \text { if } r \leq i<s \\ 2 & \text { if } s \leq i<t \\ 1 & \text { if } t \leq i\end{cases}
$$

for all $i \in \mathbb{N}_{0}$.

PROOF.

Since $G_{i}(L / K)$ is a 2-group for $i>0$, the only possible values for $\# G_{i}(L / K)$ are $1,2,4$, and 8 . We now only have to apply the last four lemmata.
If $i<r$ then $G_{1}(L / K)$ must contain two automorphisms which send E to $E+1$, two which send E to $E+\varphi$ and another two which send E to $E+\varphi+1$. So we have $\# G_{i}(L / K)=8$.
If $r \leq i<s$ then there is either no element of $G_{1}(L / K)$ which takes E to $E+1$ or no element which takes E to $E+\varphi$ or no element which takes E to $E+\varphi+1$. So we have $\# G_{i}(L / K) \leq 4$. On the other hand there must be two elements of $G_{i}(L / K)$ which take E to $E+1, E+\varphi$ or $E+\varphi+1$. Since $G_{i}(L / K)$ contains the identity element, we get $\# G_{i}(L / K)=4$.
In the case $s \leq i<t$ the group $G_{i}(L / K)$ contains no automorphism which takes E to $E+1, E+\varphi$ or $E+\varphi+1$, but an automorphism σ with $\sigma(E)=E$ and $\sigma\left(F_{\alpha}\right)=F_{\alpha}+1$. This gives us $\# G_{i}(L / K)=2$.
In the case $t \leq i$ the group $G_{i}(L / K)$ contains only the identity element.

Lemma 5.7 For all $i \in \mathbb{N}$ the fixed space $V^{G_{i}(L / K)}$ is either V or 0 .
(Recall that V is the representation space of $\pi_{\alpha, \beta}$.)
PROOF.
If $G_{i}(L / K)$ is trivial then we have $V^{G_{i}(L / K)}=V$. If $G_{i}(L / K)$ is not trivial then it contains an element σ which has order two. According to 5.1 we have $\sigma(E)=E$ and $\sigma\left(F_{\alpha}\right)=F_{\alpha}+1$. Since σ leaves the values x_{1}, x_{2}, x_{3}, and x_{4} invariant it has to act as the scalar -1 on the 3 -torsion points. Applying [2, p. 70] gives us $\operatorname{Tr}\left(\rho_{\alpha, \beta}^{K}(\sigma)\right)=-2$. So $\rho_{\alpha, \beta}^{K}(\sigma)$ needs to be the scalar -1 . Therefore $\pi_{\alpha, \beta}(\sigma)$ is a non-trivial scalar, so $V^{G_{i}(L / K)}=0$.

Now we can state our main result.
Theorem 5.8 Let

$$
\begin{aligned}
r^{\prime} & :=\min \left\{d(K(E) / K(D) t), d\left(K(\varphi E) / K\left(D_{\varphi}\right)\right), d\left(K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right)\right)\right\}, \\
s^{\prime} & :=\max \left\{d(K(E) / K(D)), d\left(K(\varphi E) / K\left(D_{\varphi}\right)\right), d\left(K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right)\right)\right\},
\end{aligned}
$$

and

$$
t^{\prime}:=d(L / K(\varphi, E))
$$

Further we define the numbers $r:=\max \left\{r^{\prime}-1,0\right\}, s:=\max \left\{s^{\prime}-1,0\right\}$, and $t:=\max \left\{t^{\prime}-1,0\right\}$. Then we have

$$
\operatorname{cond}\left(\pi_{\alpha, \beta}\right)= \begin{cases}0 & \text { if } L / K \text { is unramified } \\ 2+\frac{8 r+4(s+t)}{e(L / K)} & \text { if } L / K \text { is ramified. }\end{cases}
$$

PROOF.

If L / K is unramified then clearly $G_{i}(L / K)=\{1\}$ for all $i \geq 1$. Therefore $\operatorname{cond}\left(\pi_{\alpha, \beta}\right)=0$. We now consider the case where L / K is ramified. Using the abbreviation $g_{i}:=\# G_{i}(L / K)$ we have

$$
\begin{aligned}
\operatorname{cond}\left(\pi_{\alpha, \beta}\right) & =\frac{2}{e(L / K)} \sum_{i=0}^{t} g_{i} \\
& =2+\frac{2}{e(L / K)}\left(\sum_{i=1}^{r} g_{i}+\sum_{i=r+1}^{s} g_{i}+\sum_{i=s+1}^{t} g_{i}\right) \\
& =2+\frac{2}{e(L / K)}(8 r+4(s-r)+2(t-s)) \\
& =2+\frac{8 r+4(s+t)}{e(L / K)} .
\end{aligned}
$$

6 Concluding Remark

The descriptions of the higher ramification groups $G_{i}(L / K)$ in 5.6 and of the conductor of $\pi_{\alpha, \beta}$ in 5.8 are not quite explicit, since they depend on the calculation of the different exponents of the extensions

$$
K(E) / K(D), \quad K(\varphi E) / K\left(D_{\varphi}\right), \quad K\left(\varphi^{2} E\right) / K\left(D_{\varphi^{2}}\right), \quad \text { and } \quad L / K(\varphi, E) .
$$

Therefore, we would like to add that there is a way to determine these differents by explicit calculations in K in dependence of β and α. These calculations, too involved to present here, are carried out in [1].

References

[1] J. Frieden, Zur darstellungstheoretischen Beschreibung von elliptischen Kurven über lokalen Körpern der Charakteristik 2, doctoral thesis, Universität des Saarlandes, Saarbrücken, 2004.
[2] I. Piatetski-Shapiro, Complex Representations of GL $(2, K)$ for Finite Fields K, Contemporary Mathematics 16, Amer. Math. Soc. 1983.
[3] D. E. Rohrlich, Elliptic Curves and the Weil-Deligne Group, in: Elliptic Curves and Related Topics, CRM Proceedings \& Lecture Notes 4, ed. by H. Kisilevsky and R. Murty, Amer. Math. Soc. Providence, RI, 1994, S. 125-157.
[4] J-P. Serre, Local Fields, Springer-Verlag, New York, 1979.
[5] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986.

