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Abstract

The popularity of level sets for segmentation is mainly based on the sound and
convenient treatment of regions and their boundaries. Unfortunately, this convenience
is so far not known from level set methods when applied to images with more than two
regions. This paper introduces a comparatively simple way how to extend active contours
to multiple regions keeping the familiar quality of the two-phase case. We further suggest
a strategy to determine the optimum number of regions as well as initializations for the
contours.
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1 Introduction

Image segmentation has a long tradition as one of the fundamental tasks in image processing.
Quite early, the problem has been formalized by Mumford and Shah as the minimization of a
functional [18]

E(u, Γ) =

∫
Ω

(u− I)2 dx + µ

∫
Ω−Γ

|∇u| dx + ν

∫
Γ

ds (1)

that supports the creation of a piecewise smooth approximation of an image I : Ω → R. Its
first term ensures the solution u to stay close to the input image, whereas the second term
penalizes deviations from smoothness within regions separated from each other by a boundary
set Γ. Finally, the third term minimizes the total length of Γ. The tuning parameters µ > 0
and ν > 0 weight the relative importance of the three terms.
Later in [35], Zhu and Yuille related this formulation to the minimum description length [15]
and the Bayesian restoration of images [11]. They presented a new energy functional that
unified many existing approaches on image segmentation:

E(Ωi, Γi, pi, N) =
N∑

i=1

(
−
∫

Ωi

log pi dx +
ν

2

∫
Γi

ds + %

)
. (2)

Here the first term maximizes the total a-posteriori probability of pixels being assigned to
the correct region. The regions Ωi are modelled by probability density functions pi. The
second term minimizes the boundary length like the Mumford-Shah functional. The third
term introduces a fixed penalty for each additional region. ν > 0 and % > 0 are again tuning
parameters.
Although the suggested energy functionals describe the segmentation problem quite accurately,
their minimization is very difficult. Firstly, one has to deal with a highly non-convex problem
yielding lots of local optima. Secondly, the functionals contain terms acting on different
domains: once on the two-dimensional image domain and once on a one-dimensional curve.
A very nice tool to deal with the latter problem appeared with the introduction of level sets
[10, 21, 30, 19, 20]. In the level set framework, the one-dimensional contour is embedded
into the image domain as the zero-level line of an artificial level set function Φ : Ω → R.
It therefore allows for connecting region and contour based constraints and for solving for a
single unknown representing both the regions and the separating contour. Interestingly, the
first application of level sets in the scope of image segmentation by active contour models
[5, 16, 6, 14] did not make use of this property, as these models comprised only a constraint
on the contour taking edge information into account. Only some time later, level sets have
also been applied to region based segmentation. The methods in [7, 8] and [22, 24] minimize
variants of the functionals of Mumford-Shah and Zhu-Yuille that are restricted to two regions.
In the level set formulation this reads:

E(Φ, p1, p2) = −
∫

Ω

H(Φ) log p1 dx−
∫

Ω

(1−H(Φ)) log p2 dx + ν

∫
Ω

|∇H(Φ)| dx (3)

where Φ is the level set function representing the regions Ω1 for Φ > 0 and Ω2 for Φ < 0, as
well as the contour Γ for Φ = 0. The Heaviside function H(Φ) = 0 for Φ < 0 and H(Φ) = 1
for Φ > 0 is used to distinguish the two regions. Replacing H by a regularized version Hε

ensures the functional to be differentiable; for details see [8].
Using level sets for image segmentation has many advantages. Firstly, level sets yield a
convenient representation of regions and their boundaries on the pixel grid without the need of
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complex data structures. This considerably simplifies optimization, as variational methods and
mature numerical techniques can be employed. Moreover, level sets can describe topological
changes in the segmentation, i.e., parts of a region need not necessarily be connected; regions
may split and merge.
Unfortunately, this image of a perfect segmentation framework is disturbed by an inherent
drawback: the restriction of the embedding function to separate only two regions. Images
with more than one object region can therefore not be captured by the model. Thereby, the
ability of the level set framework to change the topology of regions should not be confused with
multi-region segmentation. Although parts of a region may be disconnected, they still share
the same region model given by pi and the same representation in the level set framework.
The restriction to two regions has already been addressed by a few works in the past. The
immediate idea to overcome the problem is to use more than one embedding function and to
assign a separate embedding function Φi to each region Ωi

E(Φi, pi) =

∫
Ω

N∑
i=1

(
−H(Φi) log pi +

ν

2
|∇H(Φi)|

)
dx (4)

where N is the fixed number of regions. This concept has been proposed in [17, 34] and has
been adopted for segmentation in [29, 23].
While the basic idea is very simple, assigning a level set function to each region entails a
new difficulty that is not easy to address: the level set functions need a coupling in order to
respect the constraint of disjoint regions, i.e., regions must not overlap and there must not be
pixels that are not assigned to any region. Note that in the two-region case this constraint is
automatically satisfied by the regions’ representation.
Two different coupling concepts have been suggested. In [34, 29] the constraint of disjoint
regions is integrated by means of a Lagrangian multiplier λ:

E(Φi, pi) =

∫
Ω

N∑
i=1

(
−H(Φi) log pi +

ν

2
|∇H(Φi)|

)
dx +

λ

2

∫
Ω

N∑
i=1

(H(Φi)− 1)2 dx. (5)

This is a sound strategy to integrate the constraint, though it leads to a considerably more
complex optimization problem than in the two-phase case. Alternatively, it was proposed in
[23] to supplement an artificial coupling force to the functional by means of an additional
parameter. This methodology is easier to implement than the concept in [34]. On the other
hand it induces additional numerical parameters which can be difficult to choose. In particular,
for a fixed parameter setting disjoint regions cannot be ensured for arbitrary images.
A completely different approach has been introduced in [33]. Instead of assigning a separate
level set function to each region, the level set functions recursively split the domain into two
subdomains. This way, n level set functions can represent N = 2n regions. Indeed, if the
number of regions is a power of 2, this multi-region model adopts from the two-region model
the nice property of implicitly respecting the constraint of disjoint regions, so no further
coupling forces are necessary. However, the model looses parts of its attractiveness when the
number of regions is not a power of 2. In such cases, parts of the region boundaries are
weighted twice, and the model must introduce empty regions, which does not go well together
with region models beyond the piecewise constant model log pi = (I − µi)

2.
In a recent work, it has further been suggested to use also level lines besides the zero-level line
for representing contours [9]. In this setting, a single embedding function Φ can be sufficient
for representing N regions. For dealing with triple junctions, however, the authors in [9]
suggest a combination with the model from [33].
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In this paper, we present a new coupled curve evolution for an arbitrary number of regions.
We embark on the concept of using one level set function for each region. Despite the larger
memory requirements than in [33] and [9], it can be quite convenient to have direct access to
a region by its level set function. In contrast to [34] and [24] the constraint of disjoint regions
is enforced directly by the coupling of the evolution equations without touching the energy
functional or adding further parameters. The evolution is comparatively easy to implement
and works also in case of triple junctions and with arbitrary many regions. Since there are no
empty regions involved, the region model can be chosen freely.
We further propose to automatically estimate the optimum number of regions according to
the energy in (2) by applying hierarchical splitting based on the two-phase case. Besides the
region number, the splitting also yields good initializations for the level set functions evolved
with the proposed coupled scheme. With such a combination, the concept of level sets can be
fully exploited, which leads to excellent segmentation results.
This paper involves and extends ideas that have been presented earlier at a conference [3]. In
contrast to the coupling proposed in the present paper, however, the scheme in [3] could not
fully avoid region overlapping and vacuum since the length constraint has not been subject to
the coupling.
In the next section we will briefly review the two-phase case. It will help to derive the
new coupled scheme in Section 3 The method’s description is followed by an experiment. In
Section 4, the method will be used together with a hierarchical approach to minimize the
energy of Zhu-Yuille. This section contains as well some experiments. The paper is concluded
by a brief summary.

2 The basic two-phase case

Contrary to the segmentation with multiple regions, two-region segmentation with level sets
is well understood. Reducing the functional of Zhu-Yuille in (2) to two regions and applying
a level set function Φ for representing the two regions and the separating contour leads to
the functional in (3). For minimization with respect to the level set function, one derives the
Euler-Lagrange equation, which has to be satisfied in an optimum. Introducing the artificial
time variable t and initializing Φ at t = 0 with some contour, one can then perform a gradient
descent according to

∂tΦ = H ′(Φ)

(
log

p1

p2

+ ν div

(
∇Φ

|∇Φ|

))
(6)

where H ′(s) is the derivative of H(s) with respect to its argument. Since the probability
densities p1 and p2 of the two regions depend on Φ, they have to be updated after each iteration
according to the expectation-maximization principle. In case of Gaussian densities this means,
one has to recompute the means and standard deviations of the regions. It has been shown
in [28] that for Gaussian densities, expectation-maximization comes down to the full gradient
descent considering also the dependency of pi on Φ. In [12] it has been shown empirically
for Laplacian densities that higher order terms of the gradient descent can be neglected in
the evolution. For the experiments in this paper, we determine pi by nonparametric Parzen
density estimates [26], which are computed by means of smoothed histograms of the regions
[27, 2], and apply the texture feature space proposed in [4].
This iterative process converges to the next local minimum, i.e., the initialization matters.
In order to attenuate this dependency on the initialization, it is recommendable to apply a
coarse-to-fine strategy, also known as graduated non-convexity (GNC) [1]. Starting with a
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downsampled image, there are less local minima, so the segmentation is more robust. The
resulting segmentation can then be used as initialization for a finer scale, until the original
optimization problem is solved.
Under the assumption of two regions in the image, this framework works very well. For results
obtained in the two-phase case we refer to [8, 32, 25, 27, 2, 4, 12]. The inherent shortcoming
of this method is the fact that the assumption of exactly two regions in an image is mostly
not true.

3 Coupled curve evolution by means of competing re-

gions

As a remedy, the segmentation framework is extended by employing N level set functions
Φi, i = 1, ..., N , each representing one region Ωi, by setting x ∈ Ωi if and only if Φ(x) > 0.
We then seek to minimize (4) under the constraint

⋃
i Ωi = Ω and

⋂
i Ωi = ∅. Neglecting this

constraint, the gradient descent equations to (4) read:

∂tΦi = H ′(Φi)

(
log pi +

ν

2
div

(
∇Φi

|∇Φi|

))
. (7)

Since log pi is always negative, the curve evolution according to these equations will cause the
level set functions to quickly become negative everywhere, i.e., all regions Ωi disappear. To
avoid this, we regard the concept that prevents this situation in the classical two-region case.
In this case, where both regions are represented by a single level set function, there is always
a competition between the two regions. Thus the negative value of log p1 is balanced by
subtracting the negative value log p2 of the competing region; cf. (6). This balance is missing
in (7). The same is true for the term resulting from the length constraint: in the two-region
model, a shrinking region due to the length constraint automatically induces the competing
region to capture the released area. This recapturing is missing in (7) as well.
With these considerations in mind, it is possible to prevent overlap and vacuum in (7): one
has to add a competitor to the evolution equation. If this competitor is chosen to be the most
severe competitor, there will be a balanced competition between two regions as in the classical
two-region setting. The enhanced evolution equation reads:

ek := log pk +
ν

2
div

(
∇Φk

|∇Φk|

)
∂tΦi = H ′(Φi)

(
ei − max

j 6=i

H′(Φj)>0

(ej, ei − 1)

)
.

(8)

The additional term ei − 1 in the maximum operation ensures a balancing term if there is no
competing region in the vicinity, i.e., there is a vacuum region. In such situations, the region
extends with constant speed towards the vacuum. One can verify easily that the constraint of
disjoint regions is satisfied, as each pixel is captured by one of the competing regions. This is
also true for triple or quadruple junctions. In such cases, each involved region competes with
the best fitting region, which itself competes with the second best fitting region. Moreover,
for t →∞ the constraint of disjoint regions is even ensured, if there has been vacuum and/or
overlap in the initialization.
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Figure 1: Coupled evolution of 5 curves in a textured image (256 × 256). From Left to
Right: t = 0, t = 200, t = 2000. Top Row: Evolving curves. Center Row: Evolving
regions shown in different gray scales. Black represents vacuum. Bottom Row: Vacuum
(black) and overlap (white) versus pixels assigned to a single region (gray).

This evolution model has several advantages when compared to previous approaches:

• In contrast to the coupling by means of a Lagrange multiplier, the evolution equations
stay simple and are comparatively easy to implement.

• In contrast to the method suggested in [23] the coupling does not involve any further
numerical parameters that might influence the segmentation result.

• In contrast to the model in [33], each region, including its boundary, is directly accessible
by its assigned level set function. Furthermore, the evolution is independent from the
number of regions involved. There are no empty regions and no varying weights for
the length constraint if the number of regions is not a power of 2. Since empty regions
are not an issue anymore, the evolution method can be employed together with more
sophisticated statistical region models than the piecewise constant model in [33].

Fig. 1 shows the evolution of 5 regions in a texture image. The initialization of the level
set function at t = 0 does not satisfy the constraint of disjoint regions; there are large areas
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Figure 2: Enlarged cutout of a triple junction. From Left to Right: t = 0, t = 200, t = 400,
t = 2000. Top Row: Evolving regions shown in different gray scales. Black represents
vacuum. Bottom Row: Vacuum (black) and overlap (white) versus pixels assigned to a
single region (gray).

of vacuum as well as overlap. During the evolution, the regions successively evolve towards
the vacuum. In areas of overlap and at region boundaries, competition between the regions
resolves the ambiguities such that the best fitting region captures the area.
The evolution can also deal with triple junctions as demonstrated in Fig. 2 that shows an
enlarged cutout of a triple junction from Fig. 1. Obviously, the complex region model, which
takes texture and higher order statistics into account, also causes no problems with the coupled
equations.

4 Estimating the initialization and number of regions

So far, the number of regions N has been presumed to be known in advance. However, keeping
the number of regions fixed from the beginning introduces a considerable degree of supervision
and actually solves only a simplified version of the segmentation problem stated in (2). For a
full unsupervised partitioning of the image, also the number of regions is a free variable and
has to be determined automatically by the segmentation model.
Especially in the scope of active contours, it has usually been avoided to raise the segmentation
model to this more general case. An exception is the work in [23] where the number of regions
is estimated in a preliminary stage by means of a Gaussian mixture estimate of the image
histogram. This way, the optimum number of mixture coefficients determines the number of
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regions. Also the model in [33] can up to a certain degree deal with a variable number of
regions by relying on the consideration that dispensable regions may shrink to empty regions.
However, both approaches do generally not minimize the energy in (2) where the sought
number of regions N is incorporated into the functional

E(Ωi, Γi, pi, N) =
N∑

i=1

(
−
∫

Ωi

log pi dx +
ν

2

∫
Γi

ds + %

)
.

and optimized together with the shape of the regions. The constant term weighted with the
parameter % > 0 is supplemented in order to prevent N from becoming too large. The necessity
of this additional term becomes obvious, if one regards the change of energy when a region is
split into two regions. Since the region model for two separated regions can adopt much better
to the underlying data than for a joint region, the energy evoked by the statistical term always
decreases by a split. The energy increase due to the length constraint on the boundary is in
general much too small to compensate for the reduced energy in the statistical term. For an
acceptable balance, the weighting parameter ν has to be chosen very large, thus the evolving
contour gets much too smooth. The supplement of a fixed penalty for each region allows for
setting ν to reasonable values while keeping the number of regions small.
For minimizing the energy in (2), a mixture of seeded region growing, region merging, and
explicit active contours has been suggested in the original work. In contrast, it is sought here
to minimize the energy by exploiting the advantages of the level set framework. Furthermore,
the coarse-to-fine strategy coupled with a hierarchical splitting substitutes the placement of
seeds. It should be noted here that N is an integer variable. Consequently, only minimization
with respect to the contour can be performed in the classical variational framework. For
optimization also with respect to the number of regions, a different strategy has to be employed.
To this end, consider the following two special cases for level set segmentation:

• The image or a subdomain of the image can be split into two parts by a two-phase
segmentation as described in Section 2. Due to the usage of a coarse-to-fine strategy,
the outcome of this partitioning is often independent from the initialization.

• By means of the coupled evolution presented in Section 3, an arbitrary number of region
contours can evolve, minimizing the energy in Eq. 2, provided the number of regions N
is fixed and reasonable initializations for the regions are available.

By combining both methods, one can efficiently minimize the energy in (2). Starting with the
whole image domain Ω being a single region, so N = 1, the two-region segmentation can be
applied in order to find the optimum split of this domain. If the energy decreases by the split,
this results in two regions. On each of these regions, again the two-phase split can be applied,
and so on, until the energy does not decrease by further splits anymore. With this proceeding,
not only the optimum number of regions is determined, but also suitable initializations for the
regions are obtained.
Such hierarchical splits have already been proposed in combination with other segmentation
techniques, e.g. the normalized cut [31] and semi-definite programming [13]. As a nice property
of such a procedure, each split completely ignores the cluttering rest of the image and can
therefore succeed in establishing new contours without knowing good initializations.
On the other hand, ignoring parts of the image will likely not minimize the global energy, since
possibilities of a region to evolve have been ignored by restricting the regions to a subdomain
of the image. However, as the region number and the initialization are known, the energy
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Figure 3: Segmentation results with synthetic images. Left: Result with two-phase segmen-
tation (curve is shown). Right: Result with multiple regions (regions are shown).

can now be further optimized in the global scope by applying (8). This evolution adapts the
regions to the new situation where they may have more than one competitor.
The combined procedure is applied in a multi-scale setting. Starting the procedure as described
on the coarsest scale, with every refinement step on the next finer scale it is checked whether
any further split or merge decreases the energy before the evolution according to (8) is applied.
So for each scale the optimum N as well as the region boundaries and the region statistics are
updated.
In contrast to other splitting based segmentation algorithms, the method proposed here has the
advantage that the contour is not fixed by an early split. It is allowed to evolve after the number
and coarse location of regions is determined and thus all competitors are known. In contrast
to other curve evolution techniques, the method is less dependent on good initializations, since
the problem’s complexity is temporarily reduced to two-phase problems.
The experiments depicted in Fig. 3 and Fig. 4 demonstrate the performance of this method.
All parameters have been kept fixed during the experiments, except an automatic adaptation
to the image size |Ω|. In particular, ν := 0.001|Ω|0.7 and % := 0.075|Ω|. The value of 0.7 has
been determined empirically in a number of experiments and can be motivated by the fact
that the weight has to mediate 1-D and 2-D constraints.
Despite the fixed set of parameters, a variety of region numbers reaching from 2 to 5 regions
is detected. Even for several natural images, where the homogeneity of regions is often not
ensured, one obtains reasonable results. It can be observed, particularly in case of the koala,
that the curve evolution may change the region shape considerably after the hierarchical split.
In classical splitting based methods, the region boundary found by the two-phase segmentation
would be kept in the final result.

9



Figure 4: Segmentation results with natural images. Left: Result with two-phase segmenta-
tion. Right: Result with multiple regions.

5 Conclusion

This paper has presented an easy to implement curve evolution by means of coupled level set
functions. The coupling ensures the requirement of disjoint regions to be satisfied and allows
for triple junctions. It does not introduce further parameters and has no restrictions concerning
the number of regions. In combination with hierarchical splitting, the new technique can be
employed to minimize the energy of Zhu-Yuille in the level set framework.
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